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1. Introduction 

1.1 The prostate carcinoma- incidence and risk factors 

 

Worldwide, prostate cancer (PCa) is with an estimated 1.1 million new cases the second most 

frequently diagnosed cancer in men and the fifth leading cause of cancer-related death in men 

with an estimated 307.500 deaths in 2012. Thereby, the majority of new cases (about two-thirds) 

was diagnosed in economically developed countries (American Cancer Society, Global cancer 

facts and figures, 3rd edition, 2015). In Germany, PCa is with 63.710 (25.7% of total cancer 

diagnosis, Fig. 1.1) newly diagnosed cases in 2011 still the most frequent diagnosed cancer in 

men, although the frequency decreased slightly from 67.300 newly diagnosed cases in the year 

2010. In the list of cancer-related deaths in men in Germany PCa is listed with 12.957 deaths 

(10.5%, Fig. 1.1) at the third place, preceded only by lung cancer (24.8%) and intestinal cancer 

(11.5%; Robert Koch-Institute (RKI) and German Centre for Cancer Registry Data (ZfKD), Krebs 

in Deutschland 2011/2012). Worldwide, the number of newly diagnosed PCa cases will even 

further increase due to recording of prostate-specific antigen (PSA) testing in countries where it 

was not yet commonly used for PCa diagnosis. In contrast, PCa death rates will decrease due 

to improved treatment and/or early detection. To date, the 5-year relative survival rate for PCa 

patients in the USA is 97%, whereas in Germany it is 91% (American Cancer Society, Global 

cancer facts and figures, 3rd edition, 2015). 

 

Fig.1.1: Most frequent tumor sites and most frequent cancer-related deaths as a percentage of all cancer 

cases in Germany, 2011. PCa is the most common newly diagnosed cancer in men in Germany with 25.7% of all 
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new cancer cases. It is the third leading cause of cancer-related death with 10.5% of all cancer related deaths. 

Modified from: Robert Koch-Institute and German Centre for Cancer Registry Data (ZfKD), Krebs in Deutschland 

2011/2012. 

 

Several risk factors for the development of PCa are known and depicted in Fig. 1.2. The main 

risk factor for the development of PCa is increasing age. A 35-year old male in Germany has a 

0.1% risk to develop PCa in the next 10 years, whereas a 75-year old male has a 6% risk to 

develop PCa within 10 years (RKI and German Centre for Cancer Registry Data (ZfKD), Krebs 

in Deutschland 2011/2012). Other risk factors include the level of the male sex hormone 

testosterone, African ancestry and a family history of the disease, although the underlying 

molecular mechanisms remain unclear. In Asia, where the incidence rates for PCa are lowest 

(2012: 10.5% and 4.5% in East and South-Central Asia, respectively) the mortality rates are 

rising. Presumably this is due to an increased economic development and western lifestyle with 

increased consumption of animal fat, obesity and physical inactivity (American Cancer Society, 

Global cancer facts and figures, 3rd edition, 2015), indicating that diet and life style might also 

influence the risk to develop PCa. 

 

Fig.1.2: Risk factors involved in initiation and development of PCa and the role of the immune system. Risk 

factors collectively influence genetic and epigenetic factors, leading to dysregulation of tumor suppressor genes 

(TSGs), oncogenes, mismatch repair genes (MMR) and micro RNAs (miRNA). The balanced cell growth is shifted 

toward excessive cell growth leading to development of PCa. Immune cells, which are primarily responsible for the 

killing of tumor cells, are unable to take care of the great amount of cancer cells, resulting in tumor cells escape and 

further growth. Modified from Karan et al. 2008. 

 

1.2 Diagnosis and standard therapy options for PCa  

 

Since the late 1980s PSA testing is being used as a tumor marker for malignancy of the prostate. 

Today, it represents the most important tool to detect PCa in very early stages, even before the 
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patient notices any symptoms. But its’ use is still controversially discussed, mainly due to 

frequent overdiagnosis (tumors which would never have become clinically evident; estimated 

23% - 42% for PSA screen-detected cancers, Draisma et al. 2009) and due to the large potential 

of serious side effects of treatment options once PCa has been diagnosed. Therefore, in 

Germany health insurance is not covering the PSA screening. But it is still offered as individual 

health service by many medical practices and the patient has to pay for it himself. Yearly routine 

early detection screening for PCa in Germany starts for men at the age of 45 years and includes 

questioning of health problems like experience with weak or interrupted urine flow, the inability 

to urinate or difficulty starting or stopping the urine flow, the need to urinate frequently, especially 

at night, blood in the urine and pain or burning with urination. Also the prostate gland and the 

lymph nodes will be examined by palpation (RKI and German Centre for Cancer Registry Data 

(ZfKD), Krebs in Deutschland 2011/2012). Once the PSA test reveals a conspicuous value the 

only way to find out whether the patient really has a PCa is by examination of prostate biopsies. 

An elevated PSA value can not only be caused by PCa, but also by benign prostatic hyperplasia 

(BPH).  

The treatment options for PCa depend on the patients’ age as well as on the stage of the cancer 

(Fig. 1.3). According to the International Union against Cancer (UICC) PCa can be described by 

four mayor stages, stage one (T1) being a tumor that cannot be felt and is not visible on imaging. 

Stage two (T2) describes a tumor that is confined to the prostate whereas stage three (T3) 

describes a tumor that has spread beyond the prostatic capsule. Stage four (T4) describes a 

tumor that has metastasized at distant organs. 

Men with a less aggressive tumor and older men will not be treated immediately since the 

treatment options cause severe side effects. Instead, they will be carefully observed (active 

surveillance/watchful waiting) and only when the tumor becomes more aggressive the treatment 

will be initiated. Early stage PCa (organ specific, no metastatic spread) that is not subject to 

careful observation can be treated by surgery (radical prostatectomy: open, laparoscopic or 

robotic-assisted), external beam radiation or radioactive seed implants (brachytherapy), which 

reduces radiation exposure of surrounding tissue compared to external beam radiation 

(American Cancer Society, Global cancer facts and figures, 3rd edition, 2015). But all three early 

stage treatment options are associated with severe side effects, mainly effecting urination and 

erection. For advanced early stage disease the hormone depletion therapy, which cause 

withdrawal of androgens (testosterone and dihydrotestosterone), is used alongside to surgery 

or radiation therapy. This therapy approach, which can be either chemically or surgically, is not 

curative anymore, it solely prevents PCa cells from growing. Thereby, it slows tumor progression 

down for 2-4 years before recurrence, marking the progression to metastatic castration-resistant 

http://www.dict.cc/englisch-deutsch/palpation.html
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PCa (mCRPC) because PCa cells gradually developed resistance to hormonal therapy. 

Advanced stages of PCa, indicated by metastatic spread or castration resistance, are also 

treated by hormone depletion therapy since the tumor shrinkage and/or limited expansion can 

help relieve pain and other symptoms. Other treatment options include radiation therapy in 

combination with hormone depletion therapy and chemotherapy with docetaxel. Docetaxel was 

the first known agent to extend survival in men with mCRPC, a cancer that has come back or 

has progressed while being treated with hormonal therapy and is invariably fatal (Harris et al. 

2009). 

During the last six years several new treatments have been tested in randomized phase III trials 

and approved for the treatment of mCRPC since they have been shown to improve survival (Fig. 

1.3, bottom). The new treatment options include the immunotherapy sipuleucel-T (removed from 

the German market for unknown reasons in June 2015, Kantoff et al. 2010), cabazitaxel, which 

is a novel tubulin-binding taxane drug with antitumor activity in docetaxel-resistant cancers (de 

Bono et al. 2010), abiraterone acetate, which is an inhibitor of androgen biosynthesis (de Bono 

et al. 2011), radium-223, which delivers cytotoxic radiation to the sites of bone metastases (El-

Amm and Aragon-Ching 2015) and enzalutamide, which targets multiple steps in the androgen–

receptor-(AR) signaling pathway, the major driver of PCa growth (Scher et al. 2012).  

 

Fig.1.3: Treatment options for patients with PCa. At the top, the traditional treatment options for early stage PCa 

and mCRPC are indicated. At the bottom, the newly approved treatment options for mCRPC are depicted, which were 

developed during the last six years. Although, sipuleucel-T was removed from the German market in June 2015 for 

unknown reasons. Modified from Jha et al. 2014. 
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1.3 Therapeutic perspectives in PCa 

 

Current research is investigating the potential of several alternative treatment options in PCa 

prevention and therapy. A list of different treatment approaches under current investigation, 

including hormone therapy, chemotherapy and epigenetic modulators, together with examples 

of tested drugs and their targets are demonstrated in Table 1.1. The hormone therapy, especially 

the androgen deprivation therapy, is of great interest for the treatment of PCa treatment since 

androgens, such as testosterone and dihydrotestosterone (DHT), stimulate the growth of PCa 

cells. Established androgen receptor (AR) pathway-targeting agents display clinical efficacy in 

mCRPC, but dose-limiting side effects remain problematic for all current agents. One novel, 

promising agent under current investigation is ARN-509, a synthetic biaryl thiohydantoin 

compound and competitive AR inhibitor. It was shown to exhibit characteristics predicting a 

higher therapeutic index with a greater potential to reach maximally efficacious doses in man 

than current AR antagonists (Clegg et al. 2012). Another phase I study including thirty patients 

with progressive CRPC that received daily oral ARN-509, showed that this drug is safe and well 

tolerated, displayed dose-proportional pharmacokinetics and demonstrated anti-tumor activity 

(Rathkopf et al. 2013). Another promising strategy for PCa control is chemoprevention which is 

the use of naturally (e.g. dietary) occurring or synthetic agents as a way to prevent, delay, or 

slow the process of carcinogenesis. A clinical trial in which PCa patients were treated orally with 

the hormone vitamin D3 revealed an increase in prostate calcitriol levels and a modestly lowered 

PSA level (Wagner et al. 2013a). Calcitriol was shown to exert several anti-inflammatory actions 

in prostate cells which contribute to its potential as a chemopreventive and therapeutic agent in 

PCa (Krishnan et al. 2007).  

Epigenetic modulators, such as microRNA (miRNA)-based therapeutic strategies are also under 

intensive investigation. miRNAs modulate the activity of key cell signaling networks by regulating 

the translation of pathway component proteins. Therefore, pharmacological targeting of miRNAs 

that regulate cancer cell signaling networks, either by promoting (using miRNA-supplementation) 

or by suppressing (using antisense oligonucleotide-based strategies) miRNA activity is a 

promising opportunity for therapeutic intervention in cancer in general (Sharma and Ruppert 

2015). In PCa, miRNAs are rather implied in miRNA profiling which can be a useful diagnostic 

and prognostic tool to assist in the recognition of PCa with aggressive behavior (Schaefer et al. 

2010, Walter et al. 2013). Although, studies using miRNA-34a in PCa showed that it has a pro-

apoptotic effect and can suppress malignancy in human PCa cells by modulating c-Myc 

transcriptional complexes (Yamamura et al. 2012, Li et al. 2014).  
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Phytochemicals such as sulforaphane (SFN) and 3,3'-diindolylmethane (DIM) are promising 

chemopreventive agents in PCa (Hsu et al. 2011, Wong et al. 2014). SFN and DIM, derived from 

glucosinolates in cruciferous vegetables like cabbage and broccoli, are epigenetic modulators 

which have been shown to alter promoter methylation in distinct sets of genes in PCa cells. SNF 

has been shown to de-methylate the cyclin D2 promoter in PCa cells, resulting in cyclin D2 re-

expression (Hsu et al. 2011). Hyper-methylation of the cyclin D2 promoter, a major regulator of 

the cell cycle, is correlated with PCa progression, and restoration of cyclin D2 expression exerts 

anti-proliferative effects in LNCaP PCa cells (Kobayashi et al. 2009).  

Regulation of gene expression as a therapeutic approach for PCa is also exerted by the histone 

deacetylase inhibitor valproic acid (VPA). Its therapeutic benefits have been studied for many 

tumor entities in vitro and in vivo, including cancer of the bladder (Ozawa et al. 2010, Vallo et al. 

2011, Byler et al. 2012), hepatocellular cancer (Machado et al. 2011), head and neck cancer 

(Gan et al. 2012), pancreatic cancer and colon cancer (Jones et al. 2008, Venkataramani et al. 

2010), renal cell carcinoma (Jones et al. 2009), small cell lung cancer (Hubaux et al. 2010), 

cervical cancer (Sami et al. 2008) and breast cancer (Fortunati et al. 2008) as well as in clinical 

trials for breast cancer, lung cancer, pancreatic cancer and ovarian cancer (Arce et al. 2006, 

Candelaria et al. 2007, Munster et al. 2009, Chateauvieux et al. 2010). 

Similar to SNF, VPA was shown to specifically re-express cyclin D2 in mouse PCa cells in a 

time- and concentration-dependent manner (Witt et al. 2013). Several VPA in vitro and in vivo 

studies in PCa resulted in inhibition of proliferation (Xia et al. 2006, Annicotte et al. 2006, 

Shabbeer et al. 2007, Gao et al. 2007, Chou et al. 2011). Thereby, proliferation inhibition was 

due to functional effects of VPA treatment inducing either growth arrest, cell death, senescence 

or anti-angiogenic properties (Shabbeer et al. 2007, Gao et al. 2007, Wedel et al. 2011). 

Nonetheless, the underlying molecular mechanisms for the VPA-induced inhibition of PCa cell 

proliferation remain unsolved. Witt et al. (2013) could also show that treatment of murine PCa 

cells 2E with VPA resulted not only in proliferation inhibition but also in migration and invasion 

inhibition. These functional effects were concentration- and time-dependent. Microarray analysis 

of 2E cells treated for 24 hours with VPA identified several candidate genes that were 

deregulated after VPA treatment, including the angiogenesis-related genes ceruloplasmin 1 and 

2 (Cp1, Cp2) and chemokine (C-X-C motif) ligand 15 (Cxcl15) among others (Witt et al. 2013). 

After VPA treatment their expression was decreased in a concentration- and time-dependent 

manner.  
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Table 1.1: Examples of therapy options under investigation for PCa treatment. PCa therapy can be approached 

in several ways, including hormone therapy, chemotherapy and epigenetic modulations. Here, therapy options under 

current investigation, along with their effect/target, example drugs and the corresponding studies are depicted.  

 

The anti-angiogenic effect of in vitro or in vivo VPA treatment has already been described in a 

few studies for PCa (Shabbeer et al. 2007, Gao et al. 2007, Sidana et al. 2012). Sidana et al. 

(2012) showed that DU145 and LNCaP xenografts showed a statistically significant decrease in 

microvessel density (MVD) following VPA treatment. MVD is a quantitative indication of the risk 

of tumor prognosis and metastases risk in various solid malignant tumors and it was evaluated 

by CD34 expression in the xenografts. CD34 is commonly used as a marker for tumor 

neovascularization since it is expressed by endothelial cells of blood vessels (Fina et al. 1990). 

Gao et al. (2007) could show that xenografts derived from the human PCa cell line PC-3 that 

were treated with VPA had a reduced expression of vascular endothelial growth factor (VEGF), 

the main angiogenic stimulator in normal and metastatic tissue (Ferrara 1995). For other cells 

and cancer types the anti-angiogenic effects of in vitro and in vivo VPA treatment have also been 

described (Michaelis et al. 2004), including gliomas (Osuka et al. 2012) and acute myeloid 

leukemia (Zhang et al., 2014).  

Therapy option Effect/Target Drug Studies 

Hormone 

therapies 

 lowered PSA level 
and anti-
inflammatory 
actions 
 

 androgen receptor 
(AR) antagonist 

 Vitamin D3 
 

 

 

 

 ARN-509 

 Krishnan et al. 2007, 
Wagner et al. 2013b 

 

 

 

 Clegg et al. 2012, 
Rathkopf et al. 2013 

Chemotherapies 

 extended survival 
and inhibition of 
other tumorigenic 
effects 

 docetaxel in 
combination with 
anti-angiogenic 
agents, immune 
modulators or 
miscellaneous 
agents 

 Antonarakis and 
Eisenberger 2013, Lei 
et al. 2014 

 

 

 

 

Epigenetic 

modulators 

 

 

 

 gene silencing  
 

 

 altered promoter 
methylation 
 

 

 histone 
deacetylase 
inhibitor 
 

 miRNA 
 

 

 

 sulforaphane (SFN) 
and 3,3'-diindolyl-
methane (DIM) 

 

 e.g.: valproic acid, 
vorinostat, 
panobinostat 

 Yamamura et al. 2012, 
Li et al. 2014, Sharma 
and Ruppert 2015 

 

 Hsu et al. 2011, Wong 
et al. 2014 

 

 

 

 Sharma et al. 2008, 
Braiteh et al. 2008, 
Munster et al. 2009, 
Kaushik et al. 2015 
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Anti-angiogenic treatment is an emerging and promising approach for the treatment of CRPC 

(Kluetz et al. 2010, Mukherji et al. 2013). By inhibiting tumor angiogenesis the metastatic spread 

as well as the growth of the primary tumor itself will be inhibited. Angiogenesis seems to play an 

important role in the pathophysiology of PCa (Weidner et al. 1993) and many anti-angiogenic 

agents have proven to be effective in the treatment of several solid tumors, including renal-cell 

carcinoma (Motzer et al. 2007), colorectal cancer (Hurwitz et al. 2004) and non-small cell lung 

cancer (Sandler et al. 2006). Bevacizumab, a monoclonal antibody against VEGF, in 

combination with other chemotherapy drugs proved to be very effective in many different 

cancers, but not so in PCa. A large phase III study in patients with CRPC using bevacizumab in 

combination with docetaxel chemotherapy did not improve overall survival (OS) of these patients 

and was even associated with greater toxicity (Kelly et al. 2012). Docetaxel in combination with 

other anti-angiogenic agents also did not increase the OS or progression-free survival (PFS), as 

shown by several clinical trials with CRPC patients. In contrast, it might even increase the risk 

for treatment-related mortality (Lei et al. 2014). Clinical phase III trials investigating the benefits 

of the anti-angiogenic agents sunitinib, a receptor tyrosine kinase inhibitor, or lenalidomide, an 

immune-modulating agent, in CRPC patients were even discontinued due to futility (Mukherji et 

al. 2013). Nonetheless, the rationale for the use of anti-angiogenic therapy in patients suffering 

from CRPC remains strong since PCa progression is strongly dependent on angiogenesis. It 

was shown that angiogenesis measured as microvessel density (MVD) is associated with tumor 

stage as well as WHO grade and is an independent predictor of clinical outcome. Besides, VEGF 

expression correlates positively with tumor stage and outcome (Strohmeyer et al. 2000). 

Therefore, novel anti-angiogenic agents are being under constant investigation. One promising 

approach is targeting the dual VEGFR2/MET with the tyrosine kinase inhibitor cabozantinib, 

which showed improvements in bone scans and pain response (Lee and Smith 2013, Smith et 

al. 2013). Generally, the role of anti-angiogenic treatment in PCa has yet to be defined.  

The reduced Cp1, Cp2 and Cxcl15 expression after VPA treatment observed by Witt et al. 

(2013), together with the VPA-induced anti-angiogenic effects observed by Gao et al. (2007), 

Shabbeer et al. (2007) and Sidana et al. (2012) highlight the beneficial effects of VPA treatment 

in PCa by acting as an anti-angiogenic factor and thereby preventing the tumor from growing 

and spreading. To further investigate the molecular mechanisms underlying the VPA-mediated 

anti-angiogenic properties in PCa was subject of this project.  
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1.4 Cyclin D2 in general  

 

As mentioned above, for several PCa therapies, including treatment with the HDI VPA or with 

sulforaphane, it was shown that cyclin D2 will be specifically re-expressed, which usually is 

downregulated due to hypermethylation of the promoter, and might contribute to the anti-

cancerous effects observed. 

Cyclin D2 belongs to the highly conserved family of D-type cyclins, together with cyclin D1 and 

cyclin D3. Although the literature often refers to cyclin D in general, there are significant 

differences in the structure of the three D-type cyclins (Fig. 1.4) as wells as in their function.  

The D-type cyclins consist of different domains for which the percentage in homology to the 

cyclin D1 sequence is indicated in Fig. 1.4. The greatest homology occurs in the cyclin box which 

mediates the interaction with cyclin-dependent kinase 4 (CDK4) and CDK6 and is also needed 

for the interaction with cyclin-dependent kinase inhibitors. The interaction with the 

retinoblastoma (Rb) protein is mediated by the LXCXE motif, which is also conserved in all three 

D-type cyclins. Cyclin D1 contains as sole exception a LLXXXL motif which facilitates binding to 

specific transcription factors. Another common feature of all three D-type cyclins is a threonine 

residue near the C terminus which triggers ubiquitin-mediated degradation when 

phosphorylated. It is located within the PEST domain that is characteristic of proteins that are 

rapidly turned over (Musgrove et al. 2011). 

 

Fig. 1.4: Schematic presentation of the protein domain structure of the three D-type cyclins. The three D-type 

cyclins consist of different domains of which the percentage in homology to the sequence of cyclin D1 is indicated. 

Cyclin D1, cyclin D2 and cyclin D3 share a LXCXE motif which mediates interaction with the retinoblastoma (Rb) 

protein, a cyclin box which mediates the interaction with cyclin-dependent kinases (CDK4 and CDK6) and cyclin-

dependent kinase inhibitors and has the greatest homology between the D-type cyclins, a C-terminal PEST domain 

which is characteristic of proteins that are turned over rapidly, and a C-terminal threonine residue which triggers 

ubiquitin-mediated degradation once phosphorylated. Cyclin D1 comprises as sole exception a LLXXXL motif which 

facilitates binding to specific transcription factors. Modified from Musgrove et al. 2011. 
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The D-type cyclins exhibit their major function in regulating the cell cycle. The cell cycle is divided 

into the G1, S, G2 and M phase plus the G0 rest phase. Transition of the cell from one phase to 

the next is strictly regulated by cyclins which serve as regulatory co-factors for cyclin-dependent 

kinases (CDKs) which are inactive in the absence of a partner cyclin. The specific complexes 

that result from binding of the cyclin to its′ particular CDK activate the catalytic subunit of the 

CDK resulting in phosphorylation of target genes (Matsushime et al. 1992). This leads to either 

activation or inactivation of target proteins which ultimately leads to the progression to the next 

phase of the cell cycle. Different combinations of cyclin-CDK complexes, as well as the 

expression of CDK-inhibitors operate during different phases of the cell cycle and determine the 

target genes. CDKs are expressed continuously whereas the cyclins are expressed at specific 

stages of the cell cycle (Voorzanger-Rousselot et al. 2007). For example, cyclin D2 binds 

specifically to CDK4 and CDK6. The resulting complex causes phosphorylation of the tumor 

suppressor gene retinoblastoma (Rb) growth-inhibitory complex. Once phosphorylated, this 

complex releases the E2F transcription factor which controls various genes required for DNA 

synthesis and cell cycle control and thus Rb is no longer able to prevent the G1 arrest and the 

cell progresses to the S phase (Weinberg 1995). In tumor cells many of the regulatory 

mechanism of the cell cycle can be deregulated. According to Musgrove et al. (2011), especially 

the abnormal expression of the D-type cyclins and their CDKs is linked to cancer development 

and progression. 

 

1.5 Cyclin D2 in PCa 

 

In different tumor entities different expression patterns of cyclin D2 are observed. On the one 

hand, in ovarian epithelial carcinomas (23 % of 81 patients, Milde-Langosch and Riethdorf 2003), 

colon cancer (53% of 57 patients, Mermelshtein et al. 2005) and gastric cancer (34.2% of 260 

patients, Takano et al. 2000) cyclin D2 is frequently overexpressed. On the other hand, in breast 

cancer (44% of 109 patients, Evron et al. 2001, Fischer et al. 2002), lung cancer (57% of 56 

patients with small cell lung cancer (SCLC), Virmani et al. 2003), pancreatic cancer (65.1% of 

109 patients, Matsubayashi et al. 2003) and some gastrointestinal tumors (48.9% of 23 patients, 

Yu et al. 2003) cyclin D2 expression is frequently downregulated. The downregulation of cyclin 

D2 in these cancers is mainly due to a hypermethylation of the cyclin D2 promoter region. In 

PCa patients it was shown that, depending on the stage of the tumor, the cyclin D2 promoter 

was increasingly hypermethylated resulting in epigenetic silencing (32% of 101 PCa samples, 

Padar et al. 2003). Henrique et al. could show a significant inverse correlation between the cyclin 

D2 methylation status and the expression levels in prostatic tissue (Henrique et al. 2006). 



1. Introduction - 11 - 

  

 
 

Methylation of the cyclin D2 promoter in PCa correlates thereby with clinico-pathological features 

of faster tumor progression and poor prognosis (Padar et al. 2003, Rosenbaum et al. 2005). Witt 

et al. could show by immunohistochemistry of PCa sections that indeed only the PCa cell lack 

cyclin D2 expression and the cells of the intercellular space as well as of the surrounding healthy 

tissue still exhibit cyclin D2 expression (Witt et al. 2013). In contrast, cyclin D1 expression was 

increased in PCa tissue. This was also shown by Drobnjak et al. (2000). They could demonstrate 

that overexpression of cyclin D1 is associated with metastatic spread of PCa to the bone 

(Drobnjak et al. 2000) highlighting the function of cyclin D1 as an oncogene in PCa (Ewen and 

Lamb 2004). The role of cyclin D2 in PCa further remains unclear, but studies conducted by Witt 

et al. (2013) suggest that it could act as a tumor suppressor gene in PCa. Witt and coworkers 

could show that the mouse PCa cell line 2E as well as the human PCa cells DU145, LNCaP and 

PC-3 which displayed a very low, not detectable basal cyclin D2 expression due to 

hypermethylation of the promoter region, specifically re-expressed cyclin D2 (in a time- and 

concentration-dependent manner) when treated with VPA or other HDIs. Treatment of the PCa 

cells with the HDI VPA led to increased acetylation of the cyclin D2 promoter and thereby 

resulting in its activation (Witt et al. 2013). Simultaneously, the proliferation rate of VPA-treated 

PCa cells was significantly reduced. In contrast, fibroblast cells, such as NIH/3T3 cells among 

four other tested cell lines, exhibited a high basal cyclin D2 expression which was not further 

increased after VPA treatment. An inhibition of the proliferation rate after VPA treatment could 

solely be observed in one out of five fibroblast cell lines (L-cells, Witt et al. 2013). The hypothesis 

that cyclin D2 could act as a tumor suppressor in PCa is further supported by a publication by 

Kobayashi et al. (2009) in which it is stated that restoration of the cyclin D2 expression in the 

human PCa cells LNCaP inhibited cell proliferation (Kobayashi et al. 2009). Moreover, in non-

small cell lung cancer, a reduced cyclin D2 expression is correlated with a poor recurrence-free 

survival (Ko et al. 2012). The findings by Witt et al. (2013), Kobayashi et al. (2009) and Ko et al. 

(2012) support the hypothesis that cyclin D2 plays an important role in PCa and could be a 

putative tumor suppressor. During this study the possible connection between an increased 

cyclin D2 expression and a proliferation inhibition in PCa ought to be further investigated. 

Thereby, the role of cyclin D2 in PCa is further elucidated by overexpression studies, 

downregulation studies and generation of a mouse model with a prostate epithelium-specific 

cyclin D2 knockout.  
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1.6 Aims of this study 

 

In the present study VPA was investigated as a putative candidate for PCa therapy. Thereby, 

especially the influence of VPA treatment on tumor and tumor cell angiogenesis was studied in 

vitro and in vivo. Furthermore, the role of the candidate gene cyclin D2 as a possible tumor 

suppressor gene in PCa was subject of this thesis. 

 

The main aims were: 

 

 Analyses of the molecular effects of VPA treatment on candidate gene expression 

o Verification of deregulated candidate gene expression in mouse prostate tumor tissue 

o Performance of an in vivo VPA treatment experiment with isolation of prostate tissue 

to verify deregulated candidate gene expression in mouse prostate tissue 

o Verification of deregulated expression of one candidate gene in human PCa cell lines 

 

 Analysis of the molecular effects of VPA treatment on angiogenesis  

o In vitro expression analysis of markers for blood and lymphangiogenesis  

o In vivo expression analysis of markers for blood and lymphangiogenesis 

 

 Analysis of in vivo effects of VPA treatment on prostate tumor cells using the chicken 

chorioallantoic membrane (CAM) assay 

o Performance of CAM experiments  

o Macroscopic analysis of CAM tumors 

o Determination of the CAM-tumor volume  

o Immunohistological analysis of the CAM tumors by staining for the lymphatic vessel 

marker Prox1 and the blood vessel marker Mep21 

o Expression analysis of markers for blood and lymphangiogenesis in CAM tumors 

 

 Overexpression studies of cyclin D2 

o Cloning of cyclin D2 into pIRES2-EGFP and pEBTetD 

o Analysis of effects of transient cyclin D2 overexpression in human PCa cells on 

proliferation 

o Generation of human PCa cells with stable and inducible overexpression of cyclin D2 
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o Analysis of effects of stable and inducible cyclin D2 overexpression in human PCa cells 

on proliferation and migration 

 

 Downregulation studies of cyclin D2 

o Effects of siRNA-mediated cyclin D2 and cyclin D1 downregulation on migration 

behavior in NIH/3T3 cells 

o Effects of siRNA-mediated cyclin D2 downregulation on transformation potential of 

NIH/3T3 cells  

o Generation of a pSingle-tTs-Ccnd2-shRNA expression plasmid for inducible 

downregulation of cyclinD2 

o Generation of NIH/3T3 cells with stable downregulation of cyclin D2  

o Analysis of effects of stable cyclin D2 downregulation in NIH/3T3 cells on proliferation 

o Analysis of effects of stable cyclin D2 downregulation in NIH/3T3 cells on 

transformation potential 

 

 Analysis of functional consequences of cyclin D2 downregulation in VPA-treated PCa cells 

 

 Generation of a conditional cyclin D2 knockout mouse model for cyclin D2 to study its 

physiological role in the prostate 

o Genotyping and establishment of purchased mouse lines PB-Cre4+ and Ccnd2fl/fl  

o Mating of the two mouse lines to generate a conditional cyclin D2 knockout mouse 

model 

o Verification of the prostate-specific deletion of cyclin D2  

o Mating of conditional cyclin D2 knockout mice with TRAMP mice for studies on 

prostate tumor development and progression
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2. Materials and Methods 

2.1 Chemicals and Reagents 

 

Chemicals/ Reagents Manufacturer 

5-bromo-4-chloro-3-indolyl-β-D-galacto-

pyranoside galactopyranosid (X-Gal) 
Carl Roth GmbH, Karlsruhe,  Germany 

Adenosintriphosphate (ATP) Biomol GmbH, Hamburg, Germany 

Agar-Agar Carl Roth GmbH, Karlsruhe, Germany 

Agarose Carl Roth GmbH, Karlsruhe, Germany 

Ampicillin Carl Roth GmbH, Karlsruhe, Germany 

Ampuwa Fresenius AG, Bad Homburg, Germany 

Bacto-Trypton  Carl Roth GmbH, Karlsruhe, Germany 

Boric acid Scharlau Chemie S.A., Barcelona, Spain 

Bromophenol blue Carl Roth GmbH, Karlsruhe, Germany 

Cell culture media 
PAN, Aidenbach, Germany, Gibco by Life 

Technologies, Darmstadt, Germany 

Crystal violet 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Dimethylsulfoxid (DMSO) Carl Roth GmbH, Karlsruhe, Germany 

Disodium phosphate (Na2HPO4) 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Dithiothreitol (DTT) Biomol, Hamburg, Germany 

DHT (Dihydrotestosterone) 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

DNA Stain G Serva GmbH, Heidelberg, Germany 

dNTPs (100 mM) Life Technologies, Darmstadt, Germany 

Doxycycline-Hyclat Biochemica AppliChem GmbH, Darmstadt, Germany 

Dulbecco's phosphate buffered sodium 

chloride solution (DPBS)  
PAN, Aidenbach, Germany 

Ethanol 
Chemie Vertrieb Hannover, Hannover, 

Germany 

Ethidiumbromid 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Ethylendiamine-tetraacetic acid (EDTA) ICN, Aurora, USA 

Ficoll® 400 AppliChem GmbH, Darmstadt, Germany 

Formaldehyde Carl Roth GmbH, Karlsruhe, Germany 

Formamide Carl Roth GmbH, Karlsruhe, Germany 
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Fluoromount-G 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Fungizone Life Technologies, Darmstadt, Germany 

Geneticin disulfate (G418)-solution Carl Roth GmbH, Karlsruhe, Germany 

Gentamycin sulphate solution Carl Roth GmbH, Karlsruhe, Germany 

Glycerol Carl Roth GmbH, Karlsruhe, Germany 

Glycin Carl Roth GmbH, Karlsruhe, Germany 

L-Glutamine PAN, Aidenbach, Germany 

Hydrochloric acid, J.T.Baker® 
Avantor Performance Materials B.V., 

Deventer, Netherlands 

IGEPAL-CA-360 (NP-40) 
Sigma-Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Isopropanol Carl Roth GmbH, Karlsruhe, Germany 

Kanamycin 
Sigma Aldrich Chemie GmbH, Taufkirchen, 

Germany 

Methanol Carl Roth GmbH, Karlsruhe, Germany 

NaOH Merck KGaA, Darmstadt, Germany 

Natriumdeoxycholat AppliChem GmbH, Darmstadt, Germany 

N.N-Dimethylformamide 
Sigma Aldrich Chemie GmbH, Taufkirchen, 

Germany 

NuPAGE™ MES Running buffer (20x) Life Technologies, Darmstadt, Germany 

NuPAGE™ LDS Sample buffer (4x) Life Technologies, Darmstadt, Germany 

NuPAGETM See Blue Plus2 Life Technologies, Darmstadt, Germany 

OptiMEM®I PAN, Aidenbach, Germany 

Orange-G Sigma-Aldrich, Deisenhofen, Germany 

Penicillin/Streptomycin PAN, Aidenbach, Germany 

peqGREEN DNA/RNA Dye 
Peqlab Biotechnologie GmbH, Erlangen, 

Germany 

Potassium dihydrogen phosphate (KH2PO4) AppliChem GmbH, Darmstadt, Germany 

Potassium acetate Carl Roth GmbH, Karlsruhe, Germany 

Potassium chloride (KCl) Carl Roth GmbH, Karlsruhe, Germany 

Powdered milk Carl Roth GmbH, Karlsruhe, Germany 

Puromycin InvivoGen, San Diego, USA 

Roti®-Nanoquant Carl Roth GmbH, Karlsruhe, Germany 

Simply Blue Safe Stain Life Technologies, Darmstadt, Germany 

Sodium chloride AppliChem GmbH, Darmstadt, Germany 
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Sodiumdodecylsulfate (SDS) Serva GmbH, Heidelberg, Germany 

Sucrose (D(+)-Saccharose) Carl Roth GmbH, Karlsruhe, Germany 

Tris AppliChem GmbH, Darmstadt, Germany 

Triton X-100 Fluka, Deisenhofen, Germany 

Tween 20 Carl Roth GmbH, Karlsruhe, Germany 

Valproic acid Sigma-Aldrich, Deisenhofen, Germany 

VectaShield with DAPI VectorLab, Burlingame, USA 

Xylencyanol Sigma-Aldrich, Deisenhofen, Germany 

Yeast extract Carl Roth GmbH, Karlsruhe, Germany 

 

2.2 Biochemicals and enzymes 

 

Biochemicals/enzymes Manufacturer 

Albumin fraction V (BSA) Biomol GmbH, Hamburg, Germany 

BigDye® Life Technologies, Darmstadt, Germany 

Complete Mini Protease Inhibitor Cocktail 

Tablets 

Roche, Mannheim, Germany 

DH5α™ Competent Cells Life Technologies, Karlsruhe, Germany 

Direct PCR Lysis Reagent Peqlab, Erlangen, Germany 

Fetal bovine serum (SeraPlus) PAN, Aidenbach, Germany 

Immulase™ DNA Polymerase Bioline, Luckenwalde, Germany 

Lipofectamine® 2000 Thermo Fisher Scientific, Langenselbold, 

Germany 

MangoTaq-DNA-Polymerase Bioline, Luckenwalde, Germany 

Matrigel® Basement Membrane Matrix  Corning Inc., New York, USA 

Metafectene® Pro Biontex Laboratories GmbH, Munich, 

Germany 

MycoZap™ Spray Lonza, Cologne, Germany 

Nu-Serum™ Corning Life Sciences, Bedford, USA 

Oligofectamine™ Transfection Reagent Thermo Fisher Scientific, Langenselbold, 

Germany 

Phosphatase Inhibitor Mix II solution Serva GmbH, Heidelberg, Germany  

PolyFreeze (Tissue Freezing Medium) - 

Clear 

Polysciences Europe GmbH, Eppelheim, 

Germany 

Platinum® SYBR® Green qPCR SuperMix-

UDG with Rox 

Life Technologies, Darmstadt, Germany 

Proteinase K Carl Roth GmbH, Karlsruhe, Germany 
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Phusion™ High-Fidelity DNA Polymerase Finnzymes, Espoo, Finnland 

Restriction enzymes New England Biolabs, Ipswich, USA 

Reverse Transcriptase SuperScript II Life Technologies, Darmstadt, Germany 

RNase A AppliChem GmbH, Darmstadt, Germany 

T4 DNA Ligase Life Technologies, Darmstadt, Germany 

Tet System Approved Fetal Bovine Serum Clontech-Takara, Saint Germain-en-Laye, 

France 

Trypsin/EDTA solution  PAN, Aidenach, Germany 

 

2.3 Usage ware 

 

Usage ware  Manufacturer 

10, 13, 50 ml Cellstar® Tubes 
Greiner-bio-one GmbH, Frickenhausen, 

Germany 

6-, 12, 24- or 96well cell culture plates Sarstedt, Nümbrecht, Germany 

96- well assay plates, white  Biozym, Hessisch Oldendorf, Germany 

384 well plates, white ABgene, Hamburg, Germany 

384 well plates, black 4titude, Surrey, UK 

4 chamber polystyrene vessel tissue culture 

treated glass slide 
Corning Life Sciences, Bedford, USA 

Amersham Hybond PVDF-Membran 
GE Healthcare Life Sciences, Freiburg, 

Germany 

Blotting Papier GB 002, 003, 004 Schleicher & Schüll, Dassel, Germany 

Cell culture flasks (T25, T75) Sarstedt, Nümbrecht, Germany 

Cover glass 24x60mm Menzel Gläser, Braunschweig, Germany 

Cryo.S™ cups with screw cap 
Greiner-bio-one GmbH, Frickenhausen, 

Germany 

FALCON culture slides Becton Dickinson GmbH, Heidelberg, 

Germany 

Flat-bottomed Nucleon™ surface 96- well 

cell culture plates  
Nunc A/S, Roskilde, Denmark 

Gloves 
Rösner- Mautby Meditrade GmbH, 

Kiefersfelden, Germany 

Membrane filter  Millipore, Billerica, USA 

Microcentrifuge tubes (0.2 ml) Sartedt, Nümbrecht, Germany 

Microscope slides SuperfrostPlus Schütt, Göttingen, Germany 

Migration assay inserts 
Millipore, Billerica, USA, Corning Inc., New 

York, USA 

http://www.biozym.com/DesktopModules/WebShop/shopdisplayproducts.aspx?id=2741&cat=96%20Well%20Assay-Platte,%20Volumen%20350%20%C2%B5l
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Needle Eclipse™ with Smartclip Technologie  BD, Heidelberg, Germany 

Neubauer improved hemocytometer  Hartenstein, Würzburg, Germany 

Nunc® F96 Micro Well™ white Nunc A/S, Roskilde, Denmark 

NuPAGETM 4-12% Bis-Tris Gel Life Technologies, Darmstadt, Germany 

Pasteur pipette Brand GmbH&Co.KG, Wertheim, Germany 

Petri dishes  Sarstedt, Nümbrecht, Germany 

Petri dishes (cell culture), Nuncleon™ 

surface 
Nunc A/S, Roskilde, Denmark 

Pipet tips  Sarstedt, Nümbrecht, Germany 

Pipettes (1000μl, 200μl, 20μl, 10μl) Gilson, Limburg-Offheim, Germany 

PVDF-Membrane GE Healthcare, Munich, Germany 

Quarz- Cuvette Hellma, Mühlheim, Germany 

Reaction tubes (1.5ml, 2ml) Sartstedt, Nümbrecht, Germany 

Serological pipettes (5ml, 10ml) Sartstedt, Nümbrecht, Germany 

Sterile Single-use filter Minisart Sartorius, Göttingen, Germany 

Sterile surgical blades Braun, Tuttlingen, Germany 

Scissors (HSB-390-10/HSB-006-10) Hammacher, Solingen, Germany 

Stainless steel beads (Ø 5 mm) Quiagen, Hilden, Germany 

Syringe Discardit™ II (10ml/ 20ml) BD, Heidelberg, Germany 

Syringe disposable filters, 0.45µm/20µm Sartorius, Göttingen, Germany 

Tweezer (Wironit HWC 110-10) 
Hammacher, Solingen,Germany/ Inox, 

Dumont, Switzerland 

QPCR Adhesive Clear Seals 4titude, Surrey, UK 

 

2.4 Technical equipment 

 

Technical equipment Manufacturer 

3500XL Genetic Analyzer Applied Biosystems GmbH, Darmstadt, 

Germany 

ABI PRISM 7900 HT Sequence Detection 

System 

Applied Biosystems GmbH, Darmstadt, 

Germany 

Autoclaves Biomedis Laborservice GmbH, Gieβen, 

Webeco, Bad Schwartau, Germany 

Systec, Wettenberg, Germany 

C1000™ Thermal Cycler Bio-Rad Laboratories GmbH, Munich, 

Germany 

Centrifuges (1-15, 1-15K, 4K15) Sigma-Aldrich, Deisenhofen, Germany 
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Centrifuge Heraeus Fresco21 Thermo Scientific, Langenselbold, Germany 

CO2 Water Jacketed Incubator Series II Systec, Wettenberg 

Electro Blotter (Fastblot B44) Biometra GmbH, Göttingen, Germany 

Electrophoresis power supply Power Pac 

3000 

Bio-Rad Laboratories GmbH, Munich, 

Germany 

FluorChem® Q Alpha Innotech, Logan, Utah, USA 

Gel-image documentation system Doc-Print 

VX2 
Vilber Lourmat, Eberhardzell, Germany 

Heating block, MR Hei-Standard Heidolph Instruments, Schwabach, 

Germany 

Inverted microscope IX71 Olympus GmbH, Hamburg, Germany 

Fluorescence microscope BX60 Olympus GmbH, Hamburg, Germany 

Nanodrop 2000c Thermo Scientific, Langenselbold, Germany 

Mini centrifuge Sprout™ Heathrow Scientific, Illinois, USA 

RM5 Assistent 348 Roller Karl Hecht GmbH & Co KG, Sondheim, 

Germany 

Scale Quintix Sartorius, Göttingen, Germany 

Synergy Mx Bio Tek, Bad Friedrichshall, Germany 

Thermomixer 5436 Eppendorf AG, Hamburg, Germany 

TissueLyser LT Qiagen, Hilden, Germany 

Thermocycler 2720 Applied Biosystems, Carlsbad, USA 

Vortexer Schütt Labortechnik, Göttingen 

UV light table EXC-F20-M Vilber Lourmat, Eberhardzell, Germany 

 

2.5 Sterilization of solutions and equipment 

 

Laboratory equipment, solutions and culture media were autoclaved at 121 ̊C and 105 Pa for 60 

min or sterilized at 220 ̊C overnight. 

 

2.6 Ready-to-use reaction systems 

 

Reaction system Manufacturer 

CellTiter 96® AQuaous Non-Radioactive 

Proliferation Assay (MTS) 

Promega, Mannheim, Germany 

ECL Prime  GE Healthcare, Munich, Germany 

Myco Alert® Mycoplasma Detection Kit Lonza, Cologne, Germany 
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MSB® Spin PCR apace Invitek, Berlin, Germany 

NucleoSpin® Extract II Machery & Nagel, Düren. Germany 

peqGold Total RNA Kit PeqLab, Erlangen, Germany  

PhosSTOP Phosphatase Inhibitor Roche, Mannheim, Germany 

PureLinkTM HiPure Plasmid Midiprep Kit Life Technologies, Darmstadt, Germany 

Diff-Quick Staining Set  Dade Behring GmbH, Marburg, Germany 

 

2.7 Solutions 

 

Solutions for routine applications were prepared according to Sambrook et al. (1989). Required 

chemicals were dissolved in ddH2O and, when necessary, autoclaved or filtered under sterile 

conditions. 

 

Solution Composition 

Blocking Buffer I (Western blot) 1x TBS-Tween 

5 % low-fat dry milk 

Antibody solution (Immunohistochemistry) 1x TBS (0.05 M, pH 7.2 – 7.4) 

1 % BSA 

0.5 % Triton X-100 

Blocking Buffer II (Immunohistochemistry) 1x PBS with 3 % BSA 

Goat blocking reagent (Immuno-

histochemistry) 

1x PBS 

5 % goat serum 

1 % BSA 

0.2 % Triton X-100 

Lysis Buffer for Protein (modified RIPA) 150 mM NaCl 

1 mM EDTA 

50 mM Tris-HCl, pH 7.4 

1 % IGEPAL-CA-360 (NP-40) 

0.25 % sodium deoxycholate 

1 Tablet/10 ml Complete-Mini protease- 

inhibitor 

100 µl/10 ml Phosphatase-Inhibitor-Mix II 

solution 
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P1 Buffer (Plasmid preparation) 50 mM Tris-HCl, pH 8.0 

10 mM EDTA 

100 µg/ml RNase A 

P2 Buffer (Plasmid preparation) 200 mM NaOH 

1 % SDS 

P3 Buffer (Plasmid preparation) 3 M Potassium acetate, pH 5.5 

10x PBS 1.37 M NaCl 

81 mM Na2HPO4 

27 mM KCl 

14.7 mM KH2PO4 

10x TBS 1.37 M NaCl 

100 mM Tris 

Adjust to pH 7.6 with HCl 

1x TBS-Tween (TBS-T) 10 % 10x TBS 

0.1% Tween 20 

Stop Mix I 95 % Formamide 

20 mM EDTA 

0.05 % Bromophenol blue 

0.05 % Xylencyanol 

Stop Mix II 15 % Ficoll 400 

200 mM EDTA 

0.1 % Orange G 

Transfer Buffer IIa (Western blot) 25 mM Tris pH 8.3 

150 mM Glycin 

20 % Methanol 

20x Turbo-Puffer 0.2 M NaOH 

Adjust to pH 8.0 with H3BO3 (Boric acid) 

Washing Buffer I (Western blot) 1x TBS-Tween 

2.5 % low-fat dry milk 

X-Gal stock solution 20 mg X-Gal/ml N.N-Dimethylformamide 
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2.8. Culture media, antibiotics, agar plates 

 

2.8.1 Culture media for bacteria 

 

Luria-Bertani medium (LB medium), pH 7.0:  1 % Bacto-Trypton 

       0.5 % Yeast extract 

       1 % NaCl 

 

The LB medium was prepared with bi-distilled water. Afterwards it was autoclaved and kept at 

4 ̊C. For selection, either ampicillin (50 µg/ml final concentration) or kanamycin (25 µg/ml final 

concentration) was added to the medium. 

 

2.8.2 Agar plates 

 

Agar plates were prepared by adding 1.5 % (w/v) Agar-Agar to the liquid LB medium before 

autoclaving. Following the autoclaving procedure the LB medium was cooled to 55°C on a 

stirring plate before the antibiotics were added in the corresponding concentration (ampicillin: 50 

µg/ml, kanamycin: 25 µg/ml). Finally, the medium was poured into petri dishes and set aside to 

cool out and harden. The ready-to-use agar plates were stored in a sterile plastic back at 4°C. 

 

2.8.3 Media for eukaryotic cell cultures 

 

Media used for the culture of eukaryotic cells was purchased from PAN, Aidenbach, Germany. 

Before use, fetal bovine serum (FBS), which was heat-inactivated for 30 min at 56 ̊C, and 

antibiotics (Penicillin/Streptomycin) were added. The following media were used for cell culture: 

 

Cell line  Components of the media 

2E Advanced DMEM 

8 % NuSerum 

10 % FBS 

100 nM Dihydrotestosterone (DHT) 

80 µg/ml Gentamycin 

1 % Glutamine 
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Caco-2 MEM 

20 % FBS 

1.2 % Penicillin/Streptomycin 

LNCaP, PC-3, DU145, SW620 RPMI 1640 

10 % FBS 

1.2 % Penicillin/Streptomycin 

LNCaP and PC-3 + pIRES2-EGFP-CCND2 See LNCaP, PC-3 

+ 400 µg/ml G418 

LNCaP + pEBTetD-CCND2 RPMI 1640 

10 % Tet System approved FBS 

1.2 % Penicillin/Streptomycin 

0.4 µg/ ml Puromycin 

PC-3 + pEBTetD-CCND2 RPMI 1640 

10 % Tet System approved FBS 

1.2 % Penicillin/Streptomycin 

1.4 µg/ ml Puromycin 

NIH/3T3 DMEM 

10 % FBS 

1.2 % Penicillin/Streptomycin 

NIH/3T3 + pSingle-tTs-Ccnd2-shRNA See NIH/3T3 

+ 400 µg/ml G418 

 

For cryopreservation of the cells in liquid nitrogen cryo-medium was diluted 1:1 with the 

appropriate medium. 

 

Cryo-medium:  7.5 ml medium of the corresponding cell line 

 + 12.5 ml FBS   

 + 5 ml DMSO 

 

The solution was sterile filtered with a 20 µM filter, aliquoted and stored at -20°C. 
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2.9. Biologic material 

 

2.9.1 Bacterial strains 

 

The bacterial strain Escherichia coli DH5α was used for the transformation of plasmids (Hanahan 

1983). It was purchased form Life Technologies, Karlsruhe, Germany. 

 

2.9.2 Eukaryotic cell lines 

 

Cell line Description 

2E Murine prostate adenocarcinoma cell line,  generated from a 

prostate tumor of a TRAMP mouse in our research group, C57/Bl6 

background, (Hardenberg, 2010) 

CaCo-2 Human colorectal adenocarcinoma cell line, ATCC, Rockville, 

USA 

DU145 Human prostate adenocarcinoma cell line (brain metastasis), 

castration resistant (Stone et al. 1978) 

LNCaP Human prostate adenocarcinoma cell line (lymph node 

metastasis), androgen dependent (Horoszewicz et al. 1983), 

ATCC, Rockville, USA 

NIH/3T3 Murine embryonal fibroblast cell line, ATCC, Rockville, USA 

PC-3 Human prostate adenocarcinoma cell line (bone metastasis), 

castration resistant (Kaighn et al. 1979, Ohnuki et al. 1980), 

ATCC, Rockville USA 

SW 620 Human colorectal adenocarcinoma cell line (lymph node 

metastasis), ATCC, Rockville, USA 

 

2.9.3 Mouse strains 

 

All mice experiments were conducted according to the European and German protection of 

animals act. The number of sacrificed mice was kept to a minimum as well as the stress and 

pain level. The mice were euthanized by CO2-asphyxation and subsequent cranial dislocation. 

Keeping conditions were set to 12 hours light/dark cycles at 22 ̊C and 55 ± 5 % relative humidity. 

Animal food was ordered from ssniff Spezialdiäten GmbH, Soest, Germany.  
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TRAMP mice with a C57/Bl6 background were ordered and obtained from Jackson Lab. (Bar 

Harbor, USA). C57/Bl6 mice came from a colony of our own department. 

Heterozygous Ccnd2flox/+ mice were kindly provided by Peter Sicinski from the Dana Faber 

Institute, Boston, USA. PB-Cre4+ mice were kindly provided by Xiantuo Wu from the Department 

of Pathology, Keck School of Medicine, University of Southern California, USA (Wu et al. 2001). 

 

2.9.4 Synthetic DNA oligonucleotides 

 

For the generation of PCR products as well as for quantitative RT-PCR (qRT-PCR) analysis 

synthetic oligonucleotides were purchased from Eurofins MWG Operon (Ebersberg, Germany). 

Sequences are listed from the 5´- to 3´- end. 

 

Human specific primers for quantitative real-time PCR 

 

Primer name  Sequence 

Cp-Q1-fw 

Cp-Q1-rev 

CTCTGATCACCCCGAGAAAG  

AAGCTATGGCCGTGAAAATG 

Cp-Q2-fw 

Cp-Q2-rev 

AAACAATTTACTCTTGTGCAACAC 

GGAATGTTCCGTGTCAACAG 

Cyclin D2-Q1-fw 

Cyclin D2-Q1-rev 

ATTGCTCTGTGTGCCACCGACTT 

CCGTCACGTTGGTCCTGACGG 

GAPDH-fw 

GAPDH-rev 

CATCACCATCTTCCAGGAGC 

ATGACCTTGCCCACAGCCTT 

HPRT-fw 

HPRT-rev 

ACCCTTTCCAAATCCTCAGC 

GTTATGGCGACCCGCAG 

LDHA-fw 

LDHA-rev 

GGAGATCCATCATCTCTCCC 

GGCCTGTGCCATCAGTATCT 

PBGD-fw 

PBGD-rev 

GCAATGCGGCTGCAACGGCGGAAG 

CCTGTGGTGGACATAGCAATGATT 

TBP-fw 

TBP-rev 

AGCCTGCCACCTTACGCTCAG 

TGCTGCCTTTGTTGCTCTTCCA 

VEGFA-Q1-fw 

VEGFA-Q1-rev 

AAGGAGGAGGGCAGAATCAT 

GCAGTAGCTGCGCTGATAGA 

VEGFC-Q1-fw 

VEGFC-Q1-rev 

TGAACACCAGCACGAGCTAC 

GCCTTGAGAGAGAGGCACTG 

VEGFR1-Q1-fw 

VEGFR-Q1-rev 

TCCAAGAAGTGACACCGAGA 

TTGTGGGCTAGGAAACAAGG 

VEGFR2-Q1-fw 

VEGFR2-Q1-rev 

GACTTGGCCTCGGTCATTTA 

ACACGACTCCATGTTGGTCA 

  

http://www.sciencedirect.com/science/article/pii/S0925477300005517
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sVEGFR1-Q1-fw 

sVEGFR1-Q1-rev 

GCACGTTTGGATTTGGAGGA 

GGAAAGGATCATCCCAAGTTGTT 

sVEGFR2-Q1-fw 

sVEGFR2-Q1-rev 

GCCTTGCTCAAGACAGGAAG 

CAACTGCCTCTGCACAATGA 

 

Mouse specific primers for quantitative real-time PCR 

 

Primer name Sequence 

Ang1-Q1-fw 

Ang1-Q1-rev 

CATTCTTCGCTGCCATTCTG 

GCACATTGCCCATGTTGAATC 

Ccnd1-Q1-fw 

Ccnd1-Q1-rev 

ACACCAGCTCCTGTGCTGCGAA 

CCAGGTAGTTCATGGCCAGCGG 

Ccnd2-Q1-fw 

Ccnd2-Q1-rev 

GGAGCTGCTGGAGTGGGAACTGGT 

GCGCATGCTTGCGGATCAGGGACA 

Cp1-Q1-fw 

Cp1-Q1-rev 

ACCAAGCAGGGCCTGGGAAAAGGA 

CCCAAGTGCTCGTCTTCGGCTCGT 

Cp2-Q1-fw 

Cp2-Q1-rev 

TACTCCACTGCCACGTGACTGACC 

ACCAGGTCCCTCGCAAATGAACAGT 

Cxcl15-Q1-fw 

Cxcl15-Q1-rev 

GGCTGTCCTTAACCTAGGCATCTT 

AGCATCAGGATCCAAACAAATCAT 

HPRT-fw 

HPRT-rev 

AGCCCCAAAATGGTTAAGGTTGC 

TTGCAGATTCAACTTGCGCTCAT 

Lif1-Q1-fw 

Lif1-Q1-rev 

AGACTGTGGAGGGCTGCGAGACCA 

ATGGGTGGCGTATGGCACAGGTGG 

PECAM-1-Q1-fw 

PECAM-1-Q1-rev 

GAGCCCAATCACGTTTCAGTTT 

TCCTTCCTGCTTCTTGCTAGCT 

Ptprn-Q1-fw 

Ptprn-Q1-rev 

TGCCCACGGCTGTCTGTTTGACCG 

TGGGCACCAAACCAGACCTGTCCC 

Rcbtb2-Q1-fw 

Rcbtb2-Q1-rev 

TCCAGCGGGTTGCCTGTGGCTACG 

TGCCCACCTTGTGTCTTGGCAGCA 

Tie-1-Q3-fw 

Tie-1-Q3-rev 

TCAACTGCAGCTCCAAAATG 

CATGACAGACACCTCCATGC 

TBP-Q-fw 

TBP-Q-rev 

CACCAATGACTCCTATGACCCCTA 

CAGTTGTCCGTGGCTCTCTTATTC 

Uchl1-Q1-fw 

Uchl1-Q1-rev 

GTACGAGCTCGATGGGCGAATGCC 

GGGATCGGCTGGTTCTCTCTCCCC 

VEGFA-Q1-fw 

VAGFA-Q1-rev 

CCC CGG ACG GGC CTC CGA AA 

TGC ACA GCG CAT CAG CGG CA 

VEGFA-Q2-fw 

VEFGA-Q2-rev 

GGAGATCCTTCGAGGAGCACTT 

GGCGATTTAGCAGCAGATATAAGAA 

VEGFC-Q1-fw 

VEGFC-Q1-rev 

TTCTTGTCTCTGGCGTGTTCCC 

GCTCCTCCAGGTCTTTGCCTTC 
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VEGFR1/Flt-1-Q2-fw 

VEGFR1/Flt-1-Q2-rev 

CAAGAGCGATGTGTGTCCT 

TCCCATCCTGTTGGACGTTG 

VEGFR2/KDR-Q1-fw 
VEGFR2/KDR-Q1-rev 

GCCCTGCTGTGGTCTCACTAC 
CAAAGCATTGCCCATTCGAT 

 

Cyclin D2 shRNA oligonucleotides for cloning into pSingle-tTs-shRNA 

 

Primer name Sequence 

shRNA-B-fw 

 

shRNA-B-rev 

ctcgagGCCACACTGATGTGGATTGTCTCAAATTCAAGAGA

TTTGAGACAATCCACATCAGTGTGGTTTTTTACGCGTa 

aagcttACGCGTAAAAAACCACACTGATGTGGATTGTCTCAA

ATCTCTTGAATTTGAGACAATCCACATCAGTGTGGCc 

shRNA-C-fw 

 

shRNA-C-rev 

ctcgagGTGCTGGAGTGGGAACTGGTAGTGTTTTCAAGAGA

AACACTACCAGTTCCCACTCCAGCATTTTTTACGCGTa 

aagcttACGCGTAAAAAATGCTGGAGTGGGAACTGGTAGTG

TTTCTCTTGAAAACACTACCAGTTCCCACTCCAGCACc 

 

Primers for amplification of cDNA designated for cloning 

 

Primer name Sequence 

CyclinD2-fw-Kpn (pEBTetD) GGTACCATGGAGCTGCTGTGCCACGAGGTGG 

CyclinD2-rev-EcoRI (pEBTetD/pIRES2-

EGFP) 

GAATTCTCACAGGTCGATATCCCGCACGTCTG 

CyclinD2-fw-XhoI (pIRES2-EGFP) CTCGAGATGGAGCTGCTGTGCCACGAGGTGG 

 

Mouse specific primers for genotyping 

 

Primer name Sequence 

Cyclin D2 flox 3´ 

Cyclin D2 flox 5` 

Cyclin D2 delta 

CAGTCCTCCAGCACACCA 

GAGGACGAGTTTGTGCTCA 

CCAGACTTTATCCTCCGGGT 

PB-Cre EII a cre fw 

PB-Cre EII a cre rev 

CCTGGAAAATGCTTCTGTCCG 

CAGGGTGTTATAAGCAATCCC 

TRAMP rPB-423 fw 

TRAMP-SV40Tag rev 

CTCTGCACCTTGTCAGTGAGGTCCAG 

CTCCTTTCAAGACCTAGAAGGTCCA 
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2.9.5 Synthetic RNA oligonucleotides 

 

Synthetic mouse RNA oligonucleotides (siRNAs) 

 

Primer name Sequence 

Cyclin D2 A CAGCAGUUCCGUCAAGAGCAGCAUA 

Cyclin D2 B UAUGCUGCUCUUGACGGAACUGCUG 

Cyclin D2 C CCACACUGAUGUGGAUUGUCUCAAA 

Luciferase CGUACGCGGAAUACUUTGATT 

 

Synthetic human RNA oligonucleotides (siRNAs) 

 

Primer name Sequence 

Cyclin D2 A UGCUCCUCAAUAGCCUGCAGCAGUA 

Cyclin D2 B UGACGGAUCCAAGUCGGAGGAUGAA 

Cyclin D2 C GAUGAGGAAGUGAGCUCGCUCACUU 

 

Vector specific primers for sequencing 

 

Primer name Sequence 

Sp6-new TTAGGTGACACTATAGAATACTCAAGC 

T7-new AATACGACTCACTATAGGGCGAATTGG 

pSingle-fw 

pSingle-rev 

GCCATGAACAAAGGTGGCTATAAAGAGGTCATC 

GAAGCGGAAGAGCGCCCAATACGCAAACCGCCT 

pIRES2-EGFP-3fw 

pIRES2-EGFP-4fw 

pIRES2-EGFP-3rev 

pIRES2-EGFP-5rev 

AGACCTTCATTGCTCTGTGTGC 

CTTCCCTCTGGCCATGAATTAC 

TTCGAAGCTTGAGTCACAGGTC 

ATAGACAAACGCACACCGGCCTTATTC 

pEBTetD-fw 

pEBTetD-rev 

GTGAACCGTCAGATCGCCTG 

CGTGTCACATGTGGAACAGG 
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2.9.6 Antibodies 

 

2.9.6.1 Primary antibodies 

 

Antibody Manufacturer Dilution 

Anti-α-Tubulin (clone B-5-1-

2), monoclonal antibody, 

mouse 

Sigma-Aldrich, Deisenhofen, Germany 
1:10000 

Anti-Ceruloplasmin 

(ab135649), polyclonal 

antibody, rabbit 

Abcam, Cambridge, UK 

1:2000 

Anti-Cyclin D1 (A-12), 

monoclonal antibody, mouse 
Santa Cruz, Heidelberg, Germany 

1:2000 

Anti-Cyclin D2 (M-20), 

polyclonal antibody, rabbit 
Santa Cruz, Heidelberg, Germany 

1:200 

Anti-Cyclin D2 (D52F9), 

monoclonal antibody, rabbit 
Cell Signaling, Danvers, USA 

1:2000 

Anti-HSC-70 (B-6), 

monoclonal antibody, mouse 
Santa Cruz, Heidelberg, Germany 

1:10000 

Anti-Mep21, mouse 

M. Williams, AbLab, University of 

British Columbia, Vancouver, B.C., 

Canada 

1:500 

Anti-Prox1 (102-PA32), 

polyclonal antibody, rabbit 

ReliaTech GmbH, Wolfenbüttel, 

Germany 

1:500 

 

2.9.6.2 Secondary antibodies  

 

Antibody Manufacturer Dilution 

Anti-rabbit IgG, 

Cy3-conjugated, sheep 
Sigma-Aldrich, Deisenhofen 1:200 

Anti-rabbit IgG (H+L), HRP- 

(horse radish peroxidase) 

conjugated, goat 

Dianova Jackson ImmunoResearch, 

Hamburg, Germany 

1:5000  

Anti-mouse IgG1 (γ1), Alexa 

Fluor® 488-conjugated, goat 

Life Technologies, Darmstadt, 

Germany 

1:200 

Anti-rabbit IgG, Alexa Fluor® 

594-conjugated, goat 

Life Technologies, Darmstadt, 

Germany 

1:200 

Anti-mouse IgG (H+L), HRP-

conjugated, rabbit 

Dianova, Jackson ImmunoResearch, 

Hamburg, Germany 

1:5000  

1:10000  
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2.9.7 Plasmids and Vectors 

 

Plasmid/Vector Source 

pGEM®-T Easy Promega, Wisconsin, USA 

pIRES2-EGFP Clontech-Takara, Saint Germain-en-Laye, 

France 

pIRES2-EGFP-CCND2 Claudia Morich, 2013 

pEBTetD Bach et al. 2007 

pEBTetD-CCND2 Claudia Morich, 2013 

pSingle-tTs-shRNA 
Clontech-Takara, Saint Germain-en-Laye, 

France 

pSingle-tTs-shRNA-Ccnd2 Claudia Morich, 2014 

pEGFP Clontech-Takara, Saint Germain-en-Laye, 

France 

pEGFP-KRAS Silke Kaulfuß (unpublished data) 

pEGFP-KRAS-G12V Silke Kaulfuß (unpublished data) 

 

2.10 Databases 

 

Usage Program 

Analysis of DNA and protein sequences 
BLAST-program, (Altschul et al. 1990) 

(http://www.ncbi.nlm.nih.gov) 

Restriction site analysis 

NEB Cutter 2.0 

(http://tools.neb.com/NEBcutter2/index.php) 

WEB Cutter 2.0 

(http://rna.lundberg.gu.se/cutter2) 

Bioinformatics 

Ensembl v32 (http://www.ensembl.org) 

National Center for Biotechnology 

Information (http://ncbi.nlm.nih.gov) 

Primer design Primer3 (http://bioinfo.ut.ee/primer3-0.4.0) 

Examination of primers 

Primer-BLAST  

(http://www.ncbi.nlm.nih.gov/tools/primer-

blast/index.cgi?LINK_LOC=BlastHome) 

Statistical analysis 
GraphPad 

(http://graphpad.com/quickcalcs/ttest1.cfm) 
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2.11 Isolation, purification and concentration determination of nucleic acids 

 

2.11.1 Isolation of total RNA from cell cultures  

 

Total RNA from cell cultures was isolated and purified by using the peqGOLD Total RNA Kit 

according to the manufactures instruction (Peqlab, Erlangen, Germany). 

 

2.11.2 Isolation of RNA from mouse tissue 

 

RNA from mouse prostate or prostate tumor tissue was obtained via homogenization of the 

tissue using the TissueLyser LT (Quiagen, Hilden, Germany). A small sample of the tissue was 

transferred to a 2 ml reaction tube together with a stainless steel bead (Ø 5mm, Quiagen) and 

400 μl RNA lysis buffer T from the peqGOLD Total RNA Kit (Peqlab, Erlangen, Germany). The 

amount of used RNA lysis buffer T depended on the size of the tissue sample. The tissue was 

homogenized for 5 min at 50 1/s oscillation in the TissueLyser LT. Thereafter the cups were kept 

for 5 min on ice before centrifuging them for 10 min at 13000 rpm and 4°C. The supernatant 

containing the lysed cells was transferred to a new 1.5 ml reaction tube and RNA isolation and 

purification was continued by use of the peqGOLD Total RNA Kit according to the manufactures 

instruction. 

 

2.11.3 Determination of nucleic acid concentration 

 

The concentration of nucleic acids was measured by either one of three different methods. One 

approach was to use a spectral photometer (BioPhotometer, Eppendorf, Germany). The blank 

value was measured with water or whatever other substance the nucleic acid was eluted in. 

Then the absorption maximum of nucleic acids (260nm) was measured. Contaminations by 

proteins (280nm) or salts (320nm) were also detected. The nucleic acid concentration was 

calculated by the Lambert´s law. A Nanodrop-photometer (PeqLab, Erlangen, Germany) was 

also used to measure the concentration of nucleic acids, especially of RNAs. The blank value 

was measured similar to the spectral photometer with water or whatever other substance the 

nucleic acid was eluted in. Only 1 µl of the sample is needed to measure the absorption 

maximum of nucleic acids (260nm). Another method used to measure the nucleic acid 

concentration, especially of low concentrations, was by agarose gel electrophoresis. 2 µl of DNA 

were loaded onto an agarose gel and run with the MassRuler DNA standard (MassRuler DNA 

ladder, Thermo Scientific, Langenselbold, Germany). The ladder consists of a mixture of 
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chromatography-purified individual DNA fragments and therefore the amount of DNA for each 

band was known. A picture was taken of the stained DNA when the gel was run for an 

appropriate time. The DNA concentration of the samples was based upon the band intensities. 

 

2.12 Cloning techniques 

 

2.12.1 pSingle-tTs-shRNA cloning 

 

Cyclin D2 shRNA oligonucleotides were designed using the shRNA Sequence Designer 

software (Clontech) and purchased. The shRNA oligonucleotides were annealed and cloned into 

the XhoI/HindIII-digested pSingle-tTS-shRNA vector according to the manufacturer instruction 

(Knockout™ Single Vector Inducible RNAi System, Clontech-Takara, Saint Germain-en-Laye, 

France). 

 

2.12.2 Amplification of DNA for subcloning into pGEM®-T Easy vector 

 

cDNA generated from RNA of either mouse or human cell lines was used for amplification of the 

open reading frame of the gene of interest using specific primers. The PCR reaction was 

conducted according to section 2.14.2. 

 

2.12.3 Purification of the PCR-product 

 

The generated PCR product was purified using the MSB® Spin PCR apace Kit (Invitek, Berlin, 

Germany). The purification was done according to the manufacturer’s instruction. 

 

2.12.4 Subcloning of PCR products/ TA-cloning 

 

Many polymerases, including the Taq DNA polymerase, possess a terminal transferase activity 

which results in the non-template addition of a single nucleotide to the 3´-ends of the PCR 

products (Clark 1988, Hu 1993). The Phusion™ High-Fidelity DNA polymerase (Finnzymes, 

Finnland) contains no such terminal transferase activity. Therefore, PCR products amplified with 

the Phusion™ High-Fidelity DNA polymerase contain no 3´-overhangs. Since the pGEM®-T 

Easy vector, which contains 5´-dT overhangs, was used for cloning of PCR products, the 

terminal dA had to be added to the PCR products. The following A-tailing reaction was carried 

out before the PCR product could be cloned into the pGEM®-T Easy vector (TA cloning): 
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7 µl PCR product (purified)  

    1 µl 1x Immolase buffer 

    0.3 µl MgCl2  

    1 µl Immolase 

    2 µl dATPs (2 mM) 

 

The reaction mixture was incubated for 30 min at 70°C.  

 

2.12.5 Ligation 

 

During a ligation reaction, the T4 DNA ligase catalyzes the formation of a phosphodiester bond 

between the 3´-hydroxy- and 5´- phosphate group of linearized DNA, resulting in the generation 

of recombinant DNA molecules. 

 

Ligation with pGEM®-T Easy 

 

After adding A-overhangs to the PCR product the A-tailing mixture was cloned into the pGEM®-

T Easy vector (Promega, Wisconsin, USA). The A-overhangs of the PCR product anneal to the 

3´-thymidine overhangs of the T-cloning pGEM®-T Easy vector. The following reaction mixture 

with a total volume of 10 µl was used: 

 

1 µl pGEM®T-Easy vector 

    1 µl T4 DNA ligase 

    5 µl 2x rapid ligation buffer 

    1 µl PCR product (insert) 

 2 µl H2O 

 

The reaction was kept for 30 min at RT before it was transferred for overnight incubation to 4°C.  

The following day continued with the transformation of competent DH5α-cells. 

 

Ligation with pIRES2-EGFP or pEBTetD 

 

The pGEM®-T Easy-Ccnd2 plasmid was digested overnight with the corresponding enzymes. 

After the digestion was run on an agarose gel and the cyclin D2-insert DNA-band was excised 
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and purified it was ligated into the corresponding vector pIRES2-EGFP or pEBTetD in multiple 

insert-DNA to vector-DNA ratios, ranging from 1:1, 2:1 to 3:1. 

 

1 µl vector (digested) 

    1-3 µl PCR product (insert) 

5 µl 2x rapid ligation buffer 

    ad. H2O to final volume of 9 µl 

 

The reaction mixture was incubated for 5 min at 65°C and then for 5 min on ice. Finally, 1 µl T4 

DNA ligase was added. The reaction was kept for 30 min at RT before it was transferred for 

overnight incubation to 4°C or to 16°C thermocycler. 

 

2.12.6 Transformation 

 

A 50 µl aliquot of competent bacteria (E.coli DH5α) was thawed for 5-10 min on ice. 2-7 µl of the 

ligation reaction were added and gently mixed with the bacteria. After incubation for 30 min on 

ice a 45 sec. heat shock was performed at 42°C. The cells cooled down again for 5 min on ice 

before 200 µl LB medium were added and mixed by incubation on a thermomixer for 1 hour at 

37°C and 1000 rpm. Finally, the transformed bacteria were plated out on LB agar plates 

containing the appropriate antibiotic. The plates were incubated overnight at 37°C (Hanahan 

1983). Bacteria transformed with the pGEM®-T Easy plasmid had to be plated on LB agar plates 

not only containing the appropriate antibiotic but also X-Gal for blue and white screening (10 µl 

X-Gal in 100 µl H2O). A blue colored colony indicates that the lacZ gene in pGEM®-T Easy is 

intact (no insert) whereas a white colony indicates that the gene is disrupted (insert present, 

Langley et al. 1975, Vieira and Messing 1982). 

 

2.12.7 Generation of bacterial glycerol stocks 

 

10 % sterile glycerol was added to the bacterial suspension, mixed well by vortexing and stored 

at -80°C for future purposes. 

 

2.12.8 Minipreparation of plasmid DNA 

 

Small amounts of plasmid DNA were prepared for testing by restriction endonuclease digestion 

whether the plasmid contains the desired insert or not. Therefore, 1 ml LB medium, together with 
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1 µl of the corresponding antibiotic, was inoculated with a single clone from the agar plate and 

incubated overnight on a thermomixer at 37°C and 600 rpm. The following day the bacterial 

overnight-culture was centrifuged at 5000 x g. The pellet was resuspended in 250 µl P1 buffer 

and 250 µl of P2 buffer (modified alkaline lysis) were added afterwards. The suspension was 

incubated for 5 min at RT before 250 µl P3 were added (for neutralization). The sample was 

centrifuged for 10 min at 4°C and 13000 rpm. The resulting supernatant was transferred to a 1.5 

ml reaction tube and 500 µl isopropanol were added. The solution was well mixed and 

precipitated by centrifugation for 30 min at 4°C and 13000 rpm. Thereafter the DNA pellet was 

washed with 200 µl of 70 % ethanol and centrifugation for 5 min at 13000 rpm. The supernatant 

was discarded and the plasmid DNA pellet was dried and resolved in 20 µl ddH2O. 

 

2.12.9 Midipreparation of plasmid DNA 

 

Large amounts of plasmid DNA were needed for restriction analysis, subcloning, sequencing or 

transfection of cell lines. To generate these large amounts of plasmid DNA, 50 ml LB medium 

together with 50 µl of the corresponding antibiotic were inoculated with either 50 µl bacterial 

overnight-culture (taken before Minipreparation and stored at 4°C) or with a swap of a glycerol 

stock. The solution was incubated overnight on a shaker at 37°C. Plasmid DNA of the resulting 

bacterial overnight-culture was isolated by using the PureLink™ HiPure Plasmid Midiprep Kit 

(Life Technologies, Darmstadt, Germany) which uses affinity chromatography columns to purify 

the DNA. The purification was performed according to the manufactures instructions.  

 

2.12.10 Cleavage of DNA with restriction endonucleases 

 

Enzymatic cleavage of DNA by restriction enzymes was prepared in volumes ranging from 10 µl 

for test digestions, up to 100 µl for isolation of DNA fragments from agarose gels. Per µg DNA 1 

U of the respective restriction enzyme was used together with the corresponding buffer. The 

reaction was incubated at 37°C for 30 min for test digestions or overnight for gel extractions. 

When two restriction enzymes had to be used, either a buffer was chosen that ensured sufficient 

activity of the endonucleases or a sequential restriction was performed. 

 

2.12.11 Isolation of DNA fragments from agarose gels 

 

DNA fragments resulting from cleavage with restriction enzymes were separated by gel 

electrophoresis on an agarose gel. The desired fragment was excised from the gel using a sterile 
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scalpel and dissolved at 55°C in the appropriate amount of Binding Buffer NTI. Binding buffer 

NTI is supplied within the NucleoSpin™ Extract II Kit (Machery & Nagel, Düren, Germany), which 

was used for further isolation of the DNA from the gel slice according to the manufacturer’s 

instructions. The DNA was eluted in ddH2O. 

 

2.13 Agarose gel electrophoresis of DNA 

 

During agarose gel electrophoresis an electric field is used to separate charged 

macromolecules, such as nucleic acids, according to their size. Small fragments will move further 

through the gel than larger fragments. The resolution of the separation can be influenced by the 

concentration of the gel and the charge to mass ratio of the corresponding macromolecule. Gels 

with an agarose concentration of 0.5 - 2.0 % (w/v) were prepared, depending on the size of the 

fragments to be separated. The agarose was resolved in the appropriate amount of 1x Turbo 

buffer by boiling. DNA Stain G (Serva GmbH, Heidelberg, Germany), which intercalates with 

DNA, was added to visualize the DNA. The agarose gel was poured into a horizontal gel 

chamber to cool out. When the gel was completely hardened it was loaded with the samples and 

a length standard in order to be able to determine the length of the separated DNA fragments. 

The following length standards were used: 1 Kb Plus DNA-ladder (Life Technologies, Darmstadt, 

Germany) or MassRuler® (MBI Fermentas, St. Leon-Rot, Germany). The gel electrophoresis 

was performed in 1x Turbo buffer at a constant voltage of 200 V and 200 mA. For documentation 

a picture of the gel was taken on an UV table/transilluminator. 

 

2.14 Polymerase-Chain-reaction (PCR) 

 

The polymerase chain reaction is a standard method to amplify specific DNA fragments (Saiki 

et al. 1985, Mullis and Faloona 1987). Thereby double stranded DNA is denatured at high 

temperatures, which allows short oligonucleotides (primers) to bind to the single stranded DNA 

(annealing). Once bound, these oligonucleotides will be extended by the polymerase 

(elongation). The periodic repetition of the denaturation, annealing and elongation steps results 

in an exponential increase in DNA fragments. Whether the PCR was successful can be checked 

by agarose gel electrophoresis.  
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2.14.1 Standard PCR 

 

The standard PCR was used to control the efficiency of the cDNA synthesis after reverse 

transcription PCR (Section 2.14.5). Therefore, specific primers for the housekeeping genes 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH, for human samples) or hypoxanthine-

guanine phosphoribosyltransferase (Hprt, for mouse samples) were used. The following reaction 

was used: 

 

    1 µl cDNA 

    5 µl 5x buffer 

    2.5 µl dNTPs (2 mM) 

    0.5 µl Primer fw (10 pmol/µl) 

    0.5 µl Primer rev (10 pmol/µl) 

    0.75 µl MgCl2 (50 mM) 

    0.7 µl Mango Taq DNA-Polymerase (1 U/µl) 

    14.05 µl ddH2O 

 

The reaction mixture was afterwards incubated on a Thermocycler (2720 Thermal Cycler, 

Applied Biosystems, California, USA) using the following program: 

 

Initial denaturation  94°C 5 min 

Denaturation   94°C 30 sec 

Annealing   60°C 30 sec 

Elongation   72°C 30 sec 

Final elongation  72°C 7 min 

Storage   8°C  ∞ 

 

2.14.2 Amplification of DNA fragments for molecular cloning/ Touchdown PCR 

 

A specific pair of primers, defining the DNA-region of interest designated for cloning into the 

pGEM®-T Easy vector (Promega, Wisconsin, USA), was designed and purchased. DNA 

fragments selected for eventual cloning were amplified with the Phusion™ High-Fidelity DNA 

polymerase (Finnzymes, Finnland). This polymerase encompasses not only the 5´ 3´ DNA 

polymerase activity but also a 3´ 5´ exonuclease (proofreading) activity. The following PCR 

reaction mixture was used: 

30x 
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1 µl cDNA 

    5 µl 5x Phusion™ HF buffer 

    2.5 µl dNTPs (2 mM) 

    0.5 µl Primer fw (10 pmol/µl) 

    0.5 µl Primer rev (10 pmol/µl) 

    0.75 µl MgCl2 (50 mM) 

    0.7 µl Phusion™ High-Fidelity DNA-Polymerase (0.02 U/µl) 

    14.05 µl ddH2O 

 

To increase specificity, sensitivity and yield, a touchdown PCR program was applied. The initial 

annealing temperature will be above the projected melting temperature (Tm) of the used primers, 

then it progressively transitions to a lower, more permissive annealing temperature over the 

course of successive cycles (Korbie and Mattick 2008). The primer will anneal at the highest 

temperature which is least-permissive of nonspecific binding. The generated fragments will be 

further amplified during subsequent rounds at lower temperatures and will out-compete the 

nonspecific sequences to which the primers may bind at those lower temperatures (Don et al. 

1991, Hecker and Roux 1996). 

The reaction was carried out in the Primus 25 advanced Thermocycler from Peqlab (Erlangen, 

Germany). The following Touchdown PCR program was used: 

 

Initial denaturation 98°C   30 sec 

Denaturation 98°C  10 sec 

Annealing 65°C  30 sec  -1°C  

Elongation 72°C  3 min  

Denaturation 98°C   10 sec 

Annealing 58°C  30 sec 

Elongation 72°C   3 min 

Storage 8°C   ∞ 

 

2.14.3 Colony PCR 

 

Colony PCR is a method used to examine many different clones in a short period of time. In this 

study, it was conducted to identify clones from an agar plate after ligation and transformation 

procedure, which have integrated the desired PCR product. The following reaction was used: 

 

30x 

10x 
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    1 µl Primer fw (10 pmol/µl) 

    1 µl Primer rev (10 pmol/µl) 

    2.5 µl dNTPs (2 mM) 

    5 µl 5x buffer  

    0.75 µl MgCl2 

    0.5 µl Mango Taq-Polymerase 

    14.25 µl ddH2O 

 

The reaction mixture was inoculated with a single clone picked from the agar plate with a pipette 

tip. As a backup, the pipette tip with the clone was also smeared on a fresh and sterile agar plate 

containing the appropriate antibiotic. The mixture was incubated on a thermocycler (2720 

Thermal Cycler, Applied Biosystems, California, USA) using the following program: 

 

Initial denaturation  95°C 5 min 

Denaturation   95°C 30 sec 

Annealing   60°C 30 sec 

Elongation   72°C 50 sec 

Final elongation  72°C 7 min 

Storage   8°C ∞ 

 

2.14.4 Genotyping PCR 

 

For the mouse genotyping PCR, DNA had to be isolated first from the tail biopsy. Therefore, the 

DirectPCR® Lysis Reagent Tail from Peqlab (Erlangen, Germany) was used. 200 µl of the lysis 

reagent were added to the biopsy as well as 6 µl Proteinase K (10mg/ml). For lysis, the reaction 

was incubated overnight at 55°C and 600 rpm on a thermomixer. The following day the reaction 

was incubated for 45 min at 55°C for heat inactivation and then transferred on ice and used for 

the following PCR reaction: 

 

 

 

 

 

 

 

30x 
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1 µl DNA 

    5 µl 5x buffer 

    2.5 µl dNTPs (2 mM) 

    0.5 µl Primer fw (10 pmol/µl) 

    0.5 µl Primer rev (10 pmol/µl) 

    0.75 µl MgCl2 (50 mM) 

    0.7 µl Mango Taq DNA-Polymerase (1 U/µl) 

    14.05 µl ddH2O 

 

The reaction mixture was afterwards incubated on a Thermocycler (2720 Thermal Cycler, 

Applied Biosystems, California, USA) using the following program: 

 

Initial denaturation  95°C 5 min 

Denaturation   95°C 30 sec 

Annealing   61°C 1 min 

Elongation   72°C 1 min 

Final elongation  72°C 10 min 

Storage   8°C  ∞ 

 

2.14.5 Reverse Transcription  

 

The reverse transcriptase used in the reverse transcription (RT) PCR transcribes RNA into 

cDNA. The principle of reverse transcription is, that the added oligo(dT)-primers anneal to the 

poly(A)-sequences of mRNAs. Corresponding to the standard PCR, the reverse transcriptase 

can elongate the strand to synthesize cDNA. For the generation of cDNA from total RNA the 

reverse transcriptase SuperScript II from Life Technologies (Darmstadt, Germany) was used. 

Eventually, the cDNA was subject to quantitative real-time PCR analysis. The reaction was 

performed in three following steps: 

 

1. Step:  1 – 5 µg RNA 

  Added to a 6 µl volume with ddH2O 

  + 0.5 µl oligo(dT)-primer (0.5 µg/ µl) 

  + 0.5 µl dNTPs (10 mM) 

  Incubation: 10 min at 65°C 

 

35x 
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2. Step:  + 2 µl 5x First Strand Buffer 

  + 1 µl DTT (0.1 M) 

  Incubation: 2 min at 42°C 

 

3. Step:  + 0.25 µl SuperScript II 

  + 0.75 µl ddH2O 

  Incubation for reverse transcription: 50 min at 42°C 

  Heat-inactivation: 15 min at 75°C 

  Storage: 8°C ∞ 

 

The cDNA was diluted 1:10 with ddH2O. Before the generated cDNA was subjected to 

quantitative real-time PCR analyses, the quality of the reverse transcription was analyzed by 

standard PCR (Section 2.14.1) using specific primers for the housekeeping genes GAPDH or 

HPRT, depending on the source of the RNA. 

 

2.14.6 Quantitative real-time PCR 

 

Basically, the quantitative real-time PCR relies on the principal of the conventional PCR, but 

additionally, it enables the quantification of the PCR product during the PCR. This is possible 

due to the measurement of a fluorescent dye which binds to double stranded DNA and thereby 

increases its fluorescent signal (Pfaffl 2001, Ponchel et al. 2003). Thus, the increase in the 

measured fluorescent signal correlates to the amount of generated DNA. The fluorescent dye 

used in this study was PCR Mastermix Platinum® SYBR® Green qPCR SuperMix-UDG with 

Rox (Life Technologies, Darmstadt, Germany). Double stranded DNA bound with SYBR® Green 

can be excited using light of 480 nm wavelength resulting in an emission spectrum with a 

maximum at 520 nm. The Rox reference dye serves for normalization of non-PCR-related 

fluctuations in fluorescence. Using the ABI Prism 7900T Sequence Detection System the 

increase in the fluorescent intensity was measured after every PCR cycle and hence a graph 

was generated. During the exponential phase of the PCR reaction, in which the conditions are 

optimal by means of optimal polymerase activity and sufficient amount of reaction materials 

(primers, MgCl2), the threshold value is determined. This value defines the PCR cycle with the 

optimal conditions and it is used for further quantification calculations (Ct value). The generated 

data was evaluated with the Sequence Detection System software (SDS Version 2.1, PE Applied 

Biosystems). Usually, the used cDNA was diluted 1:20 with ddH2O prior to the quantitative real-

time PCR. The reaction for one well of a 396- well plate consisted of the following components: 
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2.5 μl cDNA 

   2.5 μl Primer (fw + rev 100 pmol/µl) 

5.0 μl SYBR® Green 

 

The relative expression for one sample was measured in duplicates of which the mean value 

was used for the final calculations. The following program was used on the ABI Prism 7900T 

Sequence Detection system: 

 

50°C  2 min 

Taq activation: 95°C  3 min 

Denaturation: 94°C   15 sec 

Annealing: 60°C  30 sec 

Elongation: 72°C   30 sec 

95°C  15 sec 

60°C  15 sec 

Melting curve 60°C - 95°C 2°C/min  

 

After completion of the run, the data was evaluated with the SDS program and transferred to MS 

Excel (Microsoft) for further calculations. The relative expression was determined by ΔΔ-Ct-

method for which the following formulae were used: 

 

ΔCt = Ct (Gene of interest) – Ct (housekeeping gene) 

    ΔΔCt = ΔCt (Control) – ΔCt (sample of interest) 

    Relative expression = 2ΔΔCt 

 

The mRNA expression of two housekeeping genes, including TBP (TATA box binding protein), 

PBGD (porphobilinogen deaminase), LDHA (Lactate dehydrogenase A) or HPRT 

(Hypoxanthine-guanine phosphoribosyltransferase) for human samples was used as a 

reference. For murine samples Hprt (hypoxanthine-guaninephosphoribosyltransferase) und Tbp 

(TATA box binding protein) were used for normalization. 

 

2.14.7 Sequence analysis  

 

The standard, non-radioactive sequence analysis according to Sanger is based on the principle  

of chain termination (Sanger and Coulson 1975). During the sequence reaction not only deoxy- 

40x 
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nucleosides, but also dideoxynucleotides that have been labeled with different fluorescent dyes, 

will be incorporated into the DNA during the elongation step. Since the dideoxynucleotides do 

not possess a 3´- hydroxyl group no further nucleotides can be added by the polymerase 

resulting in a chain termination. Due to the detected dye the nucleotide can be determined and 

due to the length of the fragments to position of the nucleotides within the DNA strand could be 

determined. The used reaction consisted of the following components in a total volume of 10µl: 

 

1 µl DNA 

    2 µl 5x Buffer 

    1 µl BigDye®  

    1 µl sequence-specific primer, either the fw or rev (10 pmol/µl) 

    5 µl H2O 

  

The reaction was incubated on a Thermocycler (2720 Thermal Cycler, Applied Biosystems, 

California, USA) using the following program: 

 

Initial denaturation   95°C   1 min 

Denaturation    95°C   30 sec 

Annealing    60°C   2.5 min 

Elongation    60°C   5 min 

Storage    8°C  ∞ 

 

When the reaction was completed, 10 µl ddH2O were added to the sample. Gel electrophoresis 

by specific capillaries, which detect the fluorescent signals of the dideoxynucleotides, was 

performed in the automatic sequencer 3500XL (Applied Biosystems, Life Technologies, 

Darmstadt, Germany). 

 

2.15 Protein chemical techniques 

 

2.15.1 Isolation of total protein from cell cultures 

 

For isolation of total protein from cell cultures the medium was first removed and then the cells 

were washed with ice cold PBS. Depending on the confluency of the cells and the used culture 

flask/plate, the appropriate amount of protein lysis buffer (modified RIPA) was added to the 

30x 
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adherent cells; for example 150 μl lysis buffer were used for cells with a 90 % confluency in a 6-

well plate. The cells were incubated for 5 min on ice before they were scraped off the bottom 

with either a pipette tip or a cell scraper and transferred to a reaction tube. To pellet the cell 

debris the cells were centrifuged at 13000 rpm at 4°C for 10 min. The supernatant, which 

consists of the isolated protein, was transferred to a new reaction tube and the protein 

concentration was measured. For short-term storage the protein was kept at -20°C, for long-

term storage at -80°C. 

 

2.15.2 Isolation of protein from mouse tissue 

 

Proteins from mouse prostate or prostate tumor tissue was obtained via homogenization of the 

tissue using the TissueLyser LT (Quiagen, Hilden, Germany). A small sample of the tissue was 

transferred to a 2 ml reaction tube. A stainless steel bead (Ø 5mm, Quiagen) was added as well 

as 500 μl modified RIPA lysis buffer. The tissue was homogenized for 5 min at 50 1/s oscillation 

in the TissueLyser LT. Thereafter the cups were kept for 5 min on ice before centrifuging them 

for 10 min at 13000 rpm and 4°C. The supernatant was transferred to a new 1.5 ml reaction tube 

and the protein concentration was measured. For short-term storage the protein was kept at -

20°C and for long-term storage at -80°C. 

 

2.15.3 Determination of protein concentration 

 

The protein concentration was measured via Bradford protein assay (Bradford 1976). Roti®- 

Nanoquant (Carl Roth GmbH, Karlsruhe, Germany) was used, which consists of the Coomassie 

Brilliant blue dye. In acidic solutions, this dye binds unspecific to cationic and hydrophobic side 

chains of proteins. Once bound, the absorption maximum of the dye is shifted from 495 nm to 

595 nm since the binding reaction stabilizes the dye in its non-protonated and anionic form. A 

series of Roth Albumin Fraction V dilution was used for calibration according to the 

manufacturer’s recommendation. The protein concentration was determined by extrapolating to 

this standard curve.  

5x Roti®- Nanoquant dye was diluted with ddH2O to a final 1x concentration and stored at 4°C. 

Protein samples were diluted 1:100 with ddH2O. 50μl of the sample were added to a 96-well 

plate in triplicates. ddH2O was used as a control. 200μl of 1x Roti®- Nanoquant were added to 

samples and incubated for 5 min at RT. The protein concentration was measured using the 

SynergyMx plate reader spectrophotometer (BioTek, Friedrichshall, Germany) and calculated 

by inherent Gene5 software. 
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2.15.4 Sodium Dodecyl Sulfate Polyacrylamide gel electrophoresis (SDS-PAGE) 

 

SDS-PAGE gel electrophoresis (Western blot) is a useful biochemical method to separate 

proteins of a sample according to their molecular weight. The NuPage® Pre-Cast Gel System 

from Life Technologies (Darmstadt, Germany) was used which is based on the SDS-PAGE gel 

chemistry by Laemmli (Laemmli 1970). This polyacrylamide gel system, designed for high 

performance gel electrophoresis, consists of pre-cast gels and buffers with an operating pH of 

7.0, which increases stability in both proteins and gels. The samples consisted of 20-30 μg 

protein, 0.25 vol sample buffer (LDS Sample Buffer (4x), NuPAGE®, Life Technologies, 

Darmstadt, Germany) and 10 % 1M DTT (reducing agent). The samples were denatured at 70°C 

for 10 min and afterwards kept on ice for 5 min. Before the samples were loaded onto the 

gradient gel (NuPAGE® 4-12% Bis-Tris Gel, Life Technologies, Darmstadt, Germany), they were 

centrifuged briefly. 7 μl of the pre-stained molecular weight standard (See Blue® Plus2, Life 

Technologies, Darmstadt, Germany) were also loaded onto the gel to determine the size of the 

separated proteins. Gel electrophoresis was performed at 160 V and 160 mA in 1x MES buffer 

(Life Technologies, Darmstadt, Germany). Depending on the molecular weight of the protein of 

interest the gel was run for 1-3 hours. 

 

2.15.5 Transfer of proteins onto a PVDF membrane 

 

After SDS-PAGE gel electrophoresis the proteins were transferred onto a PVDF membrane (GE 

Healthcare, Freiburg, Germany) using the semi-dry blotting procedure. Thereby, the PVDF 

membrane (7 cm x 8 cm or 7 cm x 13 cm) was first activated for 10 sec in 100% methanol before 

it was equilibrated for 10 min in transfer buffer IIa. Six sheets of Whatman GB003 filter paper 

(Schleicher & Schull, Dassel, Germany) having the same size as the gel and the PVDF 

membrane, were also soaked in transfer buffer IIa. The electro-blotter (Biometra, Göttingen, 

Germany) was loaded in a sandwich system in the following order:  

 

Bottom of the blotter, Anode (+): Three sheets of filter paper 

     PVDF membrane 

     Gel 

Lid of the blotter, Cathode (-):  Three sheets of filter paper 

 

Before the blotter was closed, remaining air bubbles were removed from the sandwich system. 

The transfer was carried out at 25 V and 220 mA for 30 min to 1 hour, depending on the 

molecular weight of the proteins.  
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2.15.6 Incubation of protein-bound membranes with antibodies 

 

The PVDF membrane was incubated in the western blot blocking buffer for 1 hour at RT to block 

unspecific binding sites. Thereafter it was thoroughly washed with western blot washing buffer. 

The membrane was incubated with the primary antibody overnight at the recommended dilution 

in TBS-T at 4 °C. The next day, unbound antibody was removed by washing twice for 10 min 

with the western blot washing buffer. The membrane was then incubated for at least 2 hours 

with the secondary alkaline phosphatase conjugated antibody, diluted accordingly to the 

manufacturer’s recommendation in western blot blocking buffer. It was washed three times for 

15 min in western blot washing buffer and 5 min in TBS-T to remove the remaining milk. ECL 

Prime Detection solution (GE Healthcare, Freiburg, Germany) was used to detect chemi-

luminescent signals. Therefore, the membrane was placed on a plastic film and the detection 

solution was pipetted onto the membrane according to the manufacturer’s instruction and 

incubated for 5 min. The signals were captured using the western blot detection system 

(FlourChem® Q Alpha Innotech, Logan, USA) and evaluated using the inherent AlphaView 

Software for FluorChem® systems (FlourChem® Q Alpha Innotech, Logan, USA). 

 

2.16 Cell biological methods 

 

2.16.1 Cell culture of eukaryotic cells 

 

Cells were cultured in their appropriate medium (see section 2.8.3) in surface-treated cell culture 

flasks (Sarstedt, Nümbrecht, Germany) at 37°C in a humidified incubator with 5 % CO2. 

Depending on the proliferation rate and confluency of the cells, they were splitted once or twice 

per week. For the splitting process the cells were first washed with DBPS (PAN Biotech GmbH, 

Aidenbach, Germany) and then incubated for a few minutes at 37 °C in a minimal amount of 

Trypsin/EDTA (PAN Biotech GmbH, Aidenbach, Germany) for detachment from the culture flask. 

Using an inverted microscope it was controlled whether all cells were detached. If this was the 

case, the trypsin reaction was stopped by adding growth medium. Depending on proliferation 

rate of the cells they were diluted either 1:5 or 1:10 with fresh culture medium. 

 

2.16.2 Cryo-preservation and revitalization of eukaryotic cells 

 

For cryo-preservation, the cells were grown to 80 % confluency and then trypsinized as 

described in 2.16.1. When all the cells had detached from the bottom of the cell culture flask the 
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tryspin reaction was stopped with medium. The cells were transferred to a tube and centrifuged 

at 200 x g for 5 min to form a cell pellet and remove the remaining trypsin. The pellet was 

resuspended in the appropriate amount of culture medium and then diluted 1:1 with cryo-medium 

(see 2.8.3). Overnight, the cells were kept in Mr. Frosty (Thermo Scientific, Langenselbold, 

Germany) in a -80°C freezer where the cells were slowly cooled (1°C/min). The following day, 

the cells were transferred to liquid nitrogen for long-term storage. When cells were revitalized, 

they were quickly thawed and transferred to a tube containing 5 ml of the appropriate medium. 

The cells were centrifuged at 200 x g for 5 min, the supernatant was removed and the cell pellet 

was resuspended in pre-warmed culture medium. The cells were then transferred to a cell culture 

flask and kept in the incubator. The next day the medium had to be changed in order to fully 

remove remaining DMSO. 

 

2.16.3 Test for Mycoplasma contamination 

 

To detect a possible contamination by Mycoplasma, a routinely test was conducted every month. 

Therefore, the MycoAlert® Mycoplasma Detection Kit (Lonza, Cologne, Germany) was used 

according to the manufacturer’s instructions, except that only half of the recommended amounts 

were used. The principle of this test is the measurement of the activity of mycoplasma-specific 

enzymes before and after application of specific substrates.  

 

2.16.4 Transfection of eukaryotic cells  

 

2.16.4.1 Transfection of plasmids into eukaryotic cells 

 

Eukaryotic cells were transfected with plasmids in order to induce an overexpression of fusion 

proteins (pIRES2-EGFP-CCND2, pEBTetD-CCND2) or to induce a downregulation of the fusion 

protein by shRNA (pSingle-tTs-Ccnd2-shRNA). Two different transfection reagents were used: 

Lipofectamine® Transfection Reagent (Thermo Fisher Scientific, Langenselbold, Germany) or 

Metafectene® Pro (Biontex Laboratories GmbH, Munich, Germany). Both transfection reagents 

contain lipids which form vesicles with a bilayer sheet, so called liposomes, in aqueous solution. 

The liposomes can form nucleic acid lipid complexes with nucleic acids. These complexes can 

actively be taken up by the eukaryotic cells by a process called endocytosis. The nucleic acid 

can enter the nucleus only if the nuclear membrane dissolves during mitosis. Therefore, the 

division rate of cells is critical for DNA transfection and must be as high as possible for efficient 

transfection. The cells were plated in a sufficient number into 6-well cell culture plates or T-25 
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cell culture flasks so that the following day a confluency of 70 – 90 % was reached. For the 

transfection, plasmid DNA was mixed with the transfection reagent according to the 

manufacturer’s instructions. The mix was incubated for 20 – 30 min and then applied dropwise 

to the cells in normal growth medium, which were prior washed with DPBS. The cells were 

incubated overnight at normal culture conditions. The following day, the transfection reagent- 

containing medium was replaced by fresh medium.  

 

2.16.4.1.1 Generation of single-cell clones/populations 

 

Cells transfected with the pEBTetD-CCND2 plasmid were treated from the next day on with 

puromycin for clonal selection of successfully transfected cells (see Chapter 2.8.3.). The 

surviving cells were further cultured until the amount of cells was sufficient to test by western 

blot analysis if the cells indeed exhibit a cyclin D2 overexpression. Total protein was isolated 

after the cells were treated with doxycycline in different concentrations (0.01 µg/ml – 1 µg/ml) for 

48 or 72 hours to induce cyclin D2 overexpression. Successfully generated cells with a 

doxycycline-inducible cyclin D2 overexpression were preserved by cryo-preservation and 

subject to proliferation studies. 

Cells transfected with the plasmid pIRES2-EGFP-CCND2 or pSingle-tTs-Ccnd2-shRNA 

underwent a serial dilution with normal growth medium, ranging from 1:10 – 1:80, in order to 

generate single-cell clones. This was done two days after the transfection. The diluted cells were 

plated in cell culture petri dishes and cultured under normal cell culture conditions. From the next 

day on the cells received Geneticin disulfate (G418)-solution with their normal growth medium 

in order to select positively transfected cells. Approximately three weeks after the serial dilution 

of the cells, single cells had formed clones which were picked with a pipette, transferred to a 96-

well plate and incubated at normal culture conditions. When a confluency of 70 – 90 % was 

reached the cells were transferred to the next bigger well until again a confluence of 70 – 90 % 

was reached and so on (96-well  24-well  12-well 6-well  T-25 flask), until finally the 

amount of cells was sufficient to fill a T-75 cell culture flask. Total protein was isolated from the 

cells and via western blot analysis the overexpression or downregulation of cyclin D2 within the 

transfected cells was tested. Cells transfected with pSingle-tTs-Ccnd2-shRNA had to be treated 

with doxycycline for 48 – 72 hours prior to protein isolation in order to induce transcription of the 

shRNA. Cells that were tested positive for cyclin D2 overexpression or cyclin D2 downregulation 

were conserved by cryo-preservation and were subjected to proliferation, migration or soft agar 

assays.  
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2.16.4.2 Transfection of small interfering RNA (siRNA) into eukaryotic cells 

 

siRNAs were used for silencing of a specific gene. siRNAs bind to a specific mRNA, thereby 

marking it for degradation which results in a reduced gene expression. Three different mouse 

siRNAs against cyclin D2 (MSS236126, MSS236127, MSS236128, Stealth RNAi™ siRNA, Life 

Technologies, Darmstadt) and three different human siRNAs against cyclin D2 were used 

(HSS101452, HSS101453, HSS101454, Stealth RNAi™ siRNA, Life Technologies, Darmstadt). 

Human and mouse PCa cells were transfected with gene-specific siRNAs by using the siRNA 

transfection reagent Oligofectamine™ (Life Technologies, Darmstadt, Germany). Thereby 

complexes of lipids and siRNA oligonucleotides will be formed which facilitate the uptake of the 

siRNA molecule into mammalian cells. A sufficient amount of the cells were plated into a 6-well 

plate or T-25 culture flask so that the following day for transfection a confluence of 50 % was 

reached. The transfection reaction was pipetted according to the manufacturer’s instructions with 

a final concentration of 50 nM siRNA- duplexes. Control PCa cells were transfected with siRNA- 

duplexes against the luciferase gene Photinus pyralis. The transfection reaction was incubated 

for 30 min at RT in order to form the lipid-siRNA-complexes. In the meantime the cells were 

washed with DBPS (PAN, Aidenbach, Germany). OptiMEM I (Life Technologies, Darmstadt, 

Germany) was added to the cells as well the transfection reagent, which was applied dropwise. 

The cells were cultured overnight at normal culture conditions in the 37°C incubator. The 

following day the transfection reagent-containing medium was replaced by normal growth 

medium. Either protein or RNA was isolated from the transfected cells at different time points or 

the cells were further subjected to migration or soft agar assays. 

 

2.17 Functional analyses of eukaryotic cells  

 

2.17.1 Migration assay 

 

48 hours prior to the in vitro cell migration assay NIH/3T3 cells were transfected with the cyclin 

D2-specific siRNAs. For the cell migration assay, 20000 cells suspended in 200 µl medium were 

transferred to an insert of the assay (Millicell 8.0µm hanging PET inserts, Millipore, Billerica, 

USA). The assay was incubated overnight at normal cell culture conditions. The following day, 

cells that had migrated through the membrane of the insert were stained using the Diff-Quick 

Staining Set (Dade Behring GmbH, Marburg, Germany) according to the manufacturer’s 

instruction. The membranes were excised from the insert using a sterile scalpel and then fixed 

in oil on a slide. For evaluation, the number of cells that had migrated through the membrane 
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overnight was counted per field of view of five pictures taken on the microscope (BX60, Olympus 

GmbH, Hamburg, Germany) at a 40x magnification.  

Cells transfected with pIRES2-EGFP-CCND2 or doxycycline-treated (48 hours) pEBTetD-

CCND2-transfected cells were plated right away into the inserts from Corning Transwell® 

Permeable Supports (8.0 µm pore size and 6.5 mm Transwell insert diameter, Corning Inc., New 

York, USA). 20000 cells suspended in 100 µl medium were transferred to the insert according 

to the manufacturer instruction. Cells were incubated overnight, stained, fixed and counted as 

described above. 

 

2.17.2 Proliferation assay 

 

The proliferation rate of PCa cells with cyclin D2 overexpression (transfected with pIRES2-

EGFP-CCND2 or pEBTetD-CCND2) or of NIH/3T3 cells with cyclin D2 downregulation 

(transfected with pSingle-tTs-Ccnd2-shRNA or siRNA) was studied. Therefore, the CellTiter 96® 

AQueous Non-Radioactive Cell Proliferation Assay (MTS, Promega, Mannheim, Germany) was 

used. This assay is based on the principle that faintly yellow stained tetrazoles (MTS) can be 

reduced to intensively purple stained formazan derivatives by living cells. MTS, in the presence 

of phenazine methosulfate (PMS), produces a formazan product that has an absorbance 

maximum at 490-500 nm. The intensity of the staining is measured from which conclusions on 

the cell proliferation are drawn. This reaction requires active mitochondria which are found only 

in living cells. 3000 cells were plated into a well of a flat-bottomed 96-well cell culture plate. In 

case of siRNA-transfected 2E, PC-3, LNCaP and DU145 cells, which were also treated with VPA 

to study the functional consequence, the day following transfection 10000 cells suspended in 

VPA-containing medium were plated per well. After two hours, when the cells were adherent, 

the PMS/MTS solution was added according to the manufacturer’s instruction. In case of cells 

transfected with the tetracycline inducible vectors pEBTetD and pSingle-tTs-shRNA doxycycline 

was simultaneously added. Cells were incubated in the PMS/MTS solution for 2 hours at 37°C 

and 5 % CO2 to let the color reaction develop. Then the intensity of the staining was measured 

using the SynergyMx plate reader spectrophotometer (BioTek, Friedrichshall, Germany). The 

generated data was transferred to MS Exel (Microsoft) for further calculation of the absolute and 

relative proliferation rate at a certain time point (t) according to the following formulas:   

 

Absolute Proliferation (t):         mean (t)/ mean (t=0)                   

                                                                  

Relative Proliferation:  absolute proliferation (t)/absolute proliferation of the control (t) 

https://en.wikipedia.org/wiki/Tetrazole
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2.17.3 Soft agar assay 

 

The soft agar assay is a detection method for the ability of cells to grow anchorage-independent 

in agarose in vitro. Transformed cells have the ability to grow independently of a solid surface, 

which is a hallmark of carcinogenesis (Borowicz et al. 2014). By contrast, mouse fibroblast cells 

NIH/3T3 are not able to grow anchorage-independent. Therefore, these cells were tested after 

cyclin D2 siRNA-transfection or transfection with the pSingle-tTs-Ccnd2-shRNA plasmid for 

malignant transformation by using the soft agar assay.  

A 5 % agar solution was prepared with DPBS and sterilized by autoclaving. This was the basic 

solution for the different agar concentrations needed. The agar was liquefied in a microwave and 

kept for the duration of the experiment at a 45°C water bath. Through careful but rapid pipetting, 

the appropriate amount of 5 % agar was mixed with pre-warmed cell culture medium to yield the 

agar concentration needed. The bottom of 6-well plates was covered with 1ml of the so called 

bottom layer which consisted of 1 % agar. The agar was applied carefully to avoid air bubbles. 

The plate was set aside for the bottom layer to solidify. Meanwhile, the top layer was prepared 

for which 5000 cells were added to 500 µl pre-warmed medium and then mixed with 500 µl of 

0.6 % agar to yield a 1 ml volume with 0.3 % agar concentration for the top layer. It was applied 

carefully but rapidly to the bottom layer and then the plate was kept for 10 min at RT before it 

was transferred to the incubator with normal cell culture conditions. There it was kept for up to 

four weeks so that colonies could form from the single cells. For visualization of colonies the 

agar was stained overnight with 0.001 % crystal violet. 

The NIH/3T3 cells used for this experiment were transfected 48 hours prior to the soft agar with 

cyclin D2-specific siRNA. Cells from the pSingle-tTs-Ccnd2-shRNA transfected NIH/3T3 clone 

No. 11 were either treated with doxycycline 48 hours before the soft agar assay or they were 

transfected with pEGFP, pEGFP-KRAS or pEGFP-KRAS-G12V and treated the following day 

with doxycycline before they were subject to the soft agar assay. 

 

2.18 Immunohistochemistry 

 

2.18.1 Immunofluorescent staining of eukaryotic cells  

 

For the immunofluorescent staining the cells were plated into 4-chamber slides at a medium cell  

density of 25000 cells per chamber. The cells were cultured overnight in normal cell culture 

medium at 37°C and 5 % CO2. The following day the cells were fixed with 3.7 % formaldehyde 

in DPBS for 20 min at RT. Cells were washed briefly with DPBS and then incubated for 10 min 
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with 0.1 % Triton-X-100 in DPBS to make the membrane permeable. After the cells were washed 

again with DPBS they were blocked for 20 - 30 min with blocking buffer II to block unspecific 

binding sites. The cells were incubated at 4°C overnight with the primary antibody (anti-cyclin 

D2 (M-20), Santa Cruz, Heidelberg, Germany) which was diluted 1:200 with blocking buffer II. 

The next day the cells were washed twice for 10 min with DPBS. Afterwards the secondary Cy-

3-coupled antibody, which was diluted 1:200 with blocking buffer II, was applied to the cells and 

incubated for 2 hours. The cells were washed twice for 10 min with DPBS and once for 10 min 

with H2O. Finally, the slides were covered with Vectashield/DAPI (VectorLab, Burlingame, USA) 

and the staining was documented with the fluorescence microscope BX60 (Olympus GmbH, 

Hamburg, Germany). 

 

2.18.2 Immunohistochemical staining of cryo-sections from CAM tumors 

 

The cryo-slides were removed from the -20°C freezer and kept for 1 hour at RT to dry. Unspecific 

binding sides were blocked by incubation with goat blocking reagent for 1 hour at RT. The 

primary antibodies, Mep21 (chicken CD34 homolog; M. Williams, AbLab, University of British 

Columbia, Vancouver, B.C., Canada) and Prox1 (ReliaTech GmbH, Wolfenbüttel, Germany) 

were diluted 1:500 with antibody solution. The slides were incubated overnight at 4°C with the 

primary antibodies. The following day the slides were briefly washed twice with PBS before the 

secondary antibodies were added, which were diluted 1:200 with antibody solution. Secondary 

antibodies used were Alexa 594-conjugated goat-anti-rabbit IgG (Life Technologies, Darmstadt, 

Germany) and Alexa 488-conjugated goat-anti-mouse IgG1 (Life Technologies, Darmstadt, 

Germany). DAPI (kept in aliquots of 1:20000 dilution in PBS) was also added to the secondary 

antibody solution in a 1:100 dilution. The slides were incubated for 90 min in the dark at RT with 

the secondary antibody/DAPI. Afterwards they were washed twice with PBS. Finally, the slides 

were covered with Fluoromount-G (Sigma-Aldrich Chemie GmbH, Taufkirchen, Germany) and 

the staining was documented with a microscope.  

 

2.19 In vivo studies 

 

The experiments were performed according to the guidelines of the European Parliament 

(2010/63/EU) and the council for the protection of animals in science (§14 TierSchVersV). 
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2.19.1 In vivo treatment of TRAMP mice with VPA 

 

TRAMP mice received VPA over the drinking water. A final concentration of 0.4 % w/v VPA was 

applied to the mice. Since the final concentration was not tolerated instantly by the mice, VPA 

had to be crept in during the first week by increasing the concentrationd from 0.1 % w/v VPA in 

0.1 %- steps every other day until the final concentration of 0.4 % w/v was reached. To make 

the drinking water more tasty, common household sweetner tablets from the brand "Das 

gesunde PLUS" (dm-drogerie markt GmbH + Co. KG, Karlsruhe, Germany) were added to the 

drinking water (1 tablet/100 ml drinking water). Mice that received drinking water only with 

sweetner served as controls. This experiment consisted of 11 VPA-treated and 11 control-

treated TRAMP mice. In Figure 2.1 the treatment scheme is depicted.  

 

Figure 2.1: In vivo VPA treatment scheme. VPA treatment started when TRAMP mice were 6 weeks old. Both 

groups received their treatment for the duration of 10 weeks. At the age of 16 weeks the mice were sacrificed, their 

prostates were isolated and stored at -80°C for molecular evaluation either by western blot analysis or quantitative 

real-time PCR. 

 

2.19.2 Chicken chorioallantoic membrane (CAM) assay 

 

The CAM assay was conducted in collaboration with Prof. Dr. Jörg Wilting in the Center of 

Anatomy, University Medical Center Göttingen. Specific pathogen-free fertilized White Leghorn 

chicken eggs were purchased from Valo BioMedia GmbH (Osterholz-Scharmbeck. Germany) 

and stored for up to 10 days in the refrigerator until the experiment was started. When beginning 

the experiment, the eggs were incubated for 72 hours at >80 % relative humidity and 37.8°C. 

On developmental day 3, a little window (0.5 cm x 0.5 cm) was sawed into the egg shell and 

afterwards sealed again with cellotape. The eggs were thereafter incubated again for seven 

days. On developmental day 10, the window was re-opened and 50 µl of PCa cells-matrigel 

mixture were applied to the CAM. For the murine PCa 2E cells, 2 × 106 cells were applied per 
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egg and for the human PCa PC-3 cells 5 × 106 cells were applied per egg. The cells were 

resuspended in 50 % normal growth medium and 50 % Matrigel (Corning® Matrigel® Basement 

Membrane Matrix, LDEV-Free, Product #354234, Corning Inc., New York, USA). Before 

application to the CAM, the cells were pre-treated with either 1 mM or 3 mM VPA for 24 hours 

or seven days. On the day of application to the CAM the same concentration of VPA was added 

to the medium-Matrigel mixture. Control cells were not treated with VPA at all. After adding the 

cells to the CAM the window was sealed again with cellotape and the eggs were further 

incubated for seven days. Cells that were treated with VPA were re-treated after three days by 

applying 10 µl of cell culture medium with the appropriate amount of VPA onto the already 

developed tumor within the egg. On developmental day 17 the window was re-opened and 

enlarged so that the tumors that had grown from the applied cells could be excised. Tumors that 

were subjected to embedding and immunohistochemical analysis were first fixed with 4 % 

paraformaldehyde within the egg for 20 min. Tumors that were subjected to gene expression 

analyses by quantitative real-time PCR were excised right away without fixation, transferred to 

liquid nitrogen and then stored at -80°C until continuation with total RNA isolation. The fixed 

tumors were excised from the CAM, washed with PBS and then pictures were taken with the 

Leica MZ16FA microscope. Afterwards, the tumors were placed into little tubes filled with 10 % 

sucrose (in PBS). When the tumors were soaked with the sucrose they sank to the bottom. Only 

then the tumors were transferred for overnight incubation at 4°C to a tube filled with 30 % sucrose 

(in PBS). The following day tumors were embedded in clear PolyFreeze Tissue Freezing Medium 

(Polysciences Europe GmbH, Eppelheim, Germany) and stored for one night at -80°C before 

they were kept for long-term storage at -20°C. The embedded tissue was cut with a cryotome 

(Leica CM3050 S, Wetzlar, Germany) into 16 μm thick sections. Three to four sections were 

transferred to one slide. Until the slides were used for immunofluorescent staining they were 

stored at -20°C. 

 

2.20 Statistics 

 

To analyze the statistical significance of the experimental results the unpaired t test was used. 

The results were depicted as follows: 

 

* 0.01 < p ≤ 0.05, "significant"  

** 0.001 ≤ p < 0.01, "very significant"  

*** p ≤ 0.001, "extremely significant"
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3. Results 

3.1 Molecular effects of VPA treatment in PCa therapy 

 

Witt et al. could show that VPA treatment of the murine 2E PCa cells reduced the migration, 

invasion and proliferation rate, all in a concentration-dependent manner (Witt et al., 2013). In 

vivo studies showed that TRAMP mice that received VPA with the drinking water had a reduced 

number and onset of tumors as well as an increased age of survival compared to control-treated 

mice (Witt, 2012). Microarray analysis of 2E cells treated for 24 hours with VPA identified several 

candidate genes that could be responsible for the observed effects of VPA treatment in vivo and 

in vitro (Witt, 2009). Eight candidate genes were chosen for further investigation because of their 

known expression in the prostate and their known connection to cancer. They included the 

downregulated genes chemokine (C-X-C motif) ligand 15 (Cxcl15), which codes for a cytokine 

of the CXC chemokine family, RCC1 and BTB domain-containing protein 2 (Rcbtb2) coding a 

member of the RCC1 related GEF family, both transcript variants of ceruloplasmin (Cp), which 

is the main copper transporting protein of blood, and leukemia inhibitory factor (Lif), which codes 

for a class 6 interleukin. Candidate genes that were upregulated after VPA treatment included 

ubiquitin carboxy-terminal hydrolase L1 (Uchl1), which codes for a de-ubiquitinising enzyme, 

tyrosine-protein phosphatase-like N (Ptprn), which codes for a member of the protein tyrosine 

phosphatase family and cyclin D2 (Ccnd2), which codes for a member of the strongly conserved 

D-type cyclin family. The up- and downregulation of the candidate genes was verified by 

quantitative real-time PCR on cDNA derived from VPA-treated 2E cells (Witt et al., 2013). 

In the present project TRAMP mouse tumors which were derived and isolated from previous in 

vivo VPA experiments (Witt, 2012) were now further evaluated in terms of deregulated candidate 

gene expression. 

 

3.1.1 Verification of deregulated candidate gene expression in tumors of VPA-treated 

TRAMP mice 

 

The expression of the candidate genes was investigated both on RNA and protein level in 

prostate tumors derived of VPA- and control-treated TRAMP mice.  

This first in vivo VPA treatment experiment was conducted by Witt during her dissertation (2012). 

Witt used three different study groups which were treated with a final concentration of 0.4% w/v 

VPA and sweetener over the drinking water. 
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Control-treated mice received drinking water with sweetener only. Two of the study groups were 

preventive study groups which received VPA treatment at the age of 6 weeks when the prostate 

shows no malignant changes yet. One of the groups was treated until the age of 30 weeks (group 

1), when tumor progression should still be ongoing, and then sacrificed. The second group was 

treated until the age of 40 weeks (group 2), when TRAMP mice should have developed a PCa, 

and then sacrificed. The third group received VPA as a curative treatment starting at the age of 

16 weeks, when tumor development should have initiated already in TRAMP mice, and at the 

age of 40 weeks they were sacrificed (group 3, Mentor-Marcel et al., 2001). If mice showed a 

weight loss of more than 20 % within 48 hours, exhibited behavioral problems (including apathy, 

increased aggressiveness, paralysis) or had a clearly palpable PCa, the mice were sacrificed 

immediately. Of all the sacrificed TRAMP mice the prostate tumors were isolated (Witt, 2012).  

 

3.1.1.1 Verification of deregulated candidate gene expression on RNA and protein level 

 

The expression of the candidate genes Cp1, Cp2, Ccnd2, Ptprn, Uchl1, Lif and Rcbtb2 was 

analyzed by quantitative real-time PCR on RNA derived from isolated prostate tumors of VPA- 

and control-treated TRAMP mice. In total, 12 prostate tumors were available for molecular 

evaluation. Six of the tumors were derived from VPA-treated TRAMP mice (group 1: 1 tumor, 

group 2: 3 tumors, group 3: 2 tumors) and the other six tumors were received from control mice 

(group 1: 1 tumor, group 2: 4 tumors, group 3: 1 tumor). 

In vivo VPA treatment led to a significant reduction of the Cp2 and Lif expression in prostate 

tumor tissue (Fig.3.1). Cp2 and Lif were also downregulated in the previous microarray 

experiment of VPA-treated 2E cells (Witt, 2009). The Ccnd2 expression after VPA treatment was 

not quite significantly decreased in the tumor tissue (p= 0.0511) which is contrary to the array 

result. The expression of Uchl1 and Ptprn was downregulated after VPA treatment, which is also 

contrary to the microarray results. Cp1 expression was downregulated after VPA treatment in 

the prostate tumors of TRAMP mice, though not statistically significant, which is in accordance 

to the microarray data. Rcbtb2 showed no expression differences in tumors of VPA and control-

treated TRAMP mice (Fig 3.1). 

By quantitative real-time PCR analysis on prostate tumor tissue the downregulation of three 

candidate genes could be confirmed (Cp1, Cp2 and Lif) whereas three genes showed a contrary 

expression pattern (Ccnd2, Uchl1 and Ptprn) and Rcbtb2 expression was not deregulated. 
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Fig. 3.1: Candidate gene expression analysis in tumor tissue of VPA-treated TRAMP mice. RNA was isolated 

from prostate tumors of in vivo VPA-treated TRAMP mice (6 tumors) and from the prostate tumors of control-treated 

TRAMP mice (6 tumors). RNA was reverse transcribed into cDNA and quantitative real-time PCR analysis was 

conducted. VPA treatment led to a significant reduction of Cp2 expression (p= 0.0349) and Lif expression (p= 0.0176) 
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in prostate tumor tissue compared to tumor tissue of control-treated mice. The expression of Ccnd2, Cp1, Uchl1, 

Rcbtb2 and Ptprn was not statistically significant deregulated in prostate tumor tissue of VPA-treated and control 

TRAMP mice. Data are presented as mean +/- standard deviation of three quantitative real-time PCR analyses 

performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001, n.s.: not significant 

 

On the protein level the expression of cyclin D2 was tested by western blot analysis (Fig.3.2A). 

Densitometrical evaluation of a single western blot showed that there is a statistically significant 

increase in the cyclin D2 expression in the prostate tumors of VPA-treated TRAMP mice as 

compared to control-treated mice (Fig. 3.2B). 

 

Fig. 3.2: Cyclin D2 expression in tumors of VPA and control-treated TRAMP mice. A) Whole protein lysate of 

prostate tumors derived from VPA-treated TRAMP mice was immunoblotted using a cyclin D2-specific antibody. 

Protein lysate of tumors derived from mice not treated with VPA served as controls. Immunoblotting of α-tubulin 

ensured equal protein loading. B) Densitometrical analysis revealed a significant increase in the cyclin D2 expression 

in prostate tumors of VPA-treated mice as compared to prostate tumors derived from control mice (p=0.0480). * 0.01 

< p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 



3. Results  - 59 - 

 

 

3.1.1.2 In vivo VPA treatment of TRAMP mice 

 

A new in vivo VPA treatment experiment of TRAMP mice was conducted due to the fact that in 

the previous in vivo experiment too many points were not consistent: tumors were isolated at 

different time points depending on either which of the three study groups the mice belonged to 

(two preventive groups sacrificed at weeks 30 or 40 and one curative group sacrificed also at 

week 40 but treatment started at week 16 and not at week 6 like for the other two groups), the 

size of the tumor or behavioral problems of the mice. The difference in the mice age when their 

prostate tumor was isolated could also lead to differential expression of the candidate genes. In 

addition, the few isolated tumors may have risen due to either failure of therapy or resistance to 

VPA treatment. To avoid the differences between mice mentioned above a new in vivo VPA 

treatment experiment of TRAMP mice was conducted. This time there was only one study group 

consisting of 11 VPA-treated and 11 control-treated mice. The treatment for the mice started at 

the age of 6 weeks. All mice were sacrificed at the age of 16 weeks, resulting in a 10 week 

treatment period (Fig. 2.1). The mice received 0.4% w/v VPA with the drinking water which was 

enriched with sweetener. Control-treated mice received water with sweetener only. When the 

mice were sacrificed their prostates were isolated for molecular evaluation. None of the TRAMP 

mice had developed a visible prostate tumor yet.  

The expression of the eight candidate genes from the microarray was analyzed on RNA derived 

from prostates of VPA- and control-treated TRAMP mice by quantitative real-time PCR. This 

analysis revealed a significant downregulation of Cp2 and a significant upregulation of Ptprn and 

Uchl1 in the prostate tissue of VPA-treated mice compared to prostate tissue of control-treated 

mice (Fig. 3.3). These results are in accordance to the microarray data (Witt, 2009). The other 

candidate genes showed no statistically significant expression differences in the prostates of 

VPA- and control-treated TRAMP mice although the expression of Rcbtb2 was not quite 

significantly upregulated after VPA treatment (p=0.0523, Fig. 3.3). 



3. Results  - 60 - 

 

 

 

Fig. 3.3: Candidate gene expression analysis in prostate tissue of VPA-treated TRAMP mice. RNA was isolated 

from prostate tissue of 11 TRAMP mice that were treated for 10 weeks with VPA over the drinking water and from 11 

control-treated TRAMP mice. RNA was reverse transcribed into cDNA and quantitative real-time PCR analysis was 

conducted. VPA treatment led to a significant reduction of Cp2 expression (p=0.0451) and a significant increase in 

Ptprn and Uchl1 expression (p=0.0011; p=0.0010) in the prostate tissue of TRAMP mice as compared to prostate 
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tissue of control-treated TRAMP mice. The expression of Ccnd2, Cp1, Rcbtb2, Lif and Cxcl15 was not statistically 

significant deregulated in prostate tissue of VPA-treated TRAMP mice compared to prostate tissue of control-treated 

TRAMP mice. Data are presented as mean +/- standard deviation of three quantitative real-time PCR analyses 

performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001, n.s.: not significant 

 

3.1.1.3 Ceruloplasmin expression in human PCa cells 

 

The expression of the ceruloplasmin (CP) gene was investigated in human PCa cells LNCaP, 

DU145 and PC-3 because to date CP expression was only studied in mouse PCa 2E cells (Witt, 

2009). The PCa cells were treated in vitro for 72 and 144 hours with VPA, respectively, before 

RNA was isolated. Untreated PCa cells served as controls. The RNA was reversed transcribed 

into cDNA and the expression of CP was analyzed by quantitative real-time PCR. In the human 

genome only one isoform of CP exists whereas in mouse two transcript variants are known. For 

all three human PCa cell lines a reduced CP expression was observed after VPA treatment, 

mostly in a time- and concentration-dependent manner (Fig.3.4A). To confirm the quantitative 

real-time PCR result also at protein level western blot analyses for CP expression in murine and 

human PCa cells was performed. In 2E cells the protein level of CP did not change upon VPA 

treatment and in human PCa cells DU145, LNCaP and PC-3 the CP level was rather increased 

after VPA treatment (Fig.3.4B, depicted only for 2E and DU145 cells). Because the western blot 

analyses could not confirm the quantitative real-time PCR results, ceruloplasmin expression 

studies in PCa cells were discontinued.  
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Fig. 3.4: Ceruloplasmin expression in human PCa cells. The human PCa cells LNCaP, DU145 and PC-3 were 

treated for 72 and 144 hours with two concentrations of VPA (1mM and 5mM) in vitro. Protein lysate and total RNA 

was isolated and the RNA was reverse transcribed into cDNA. The generated cDNA was subjected to subsequent 

quantitative real-time PCR analyses. A) For all three human PCa cell lines a reduced CP expression was observed 

after VPA treatment, mostly in a time- and concentration-dependent manner as compared to untreated cells. B) 

Protein lysate was subjected to western blot analysis using a ceruloplasmin-specific antibody. Immunoblotting of α-

tubulin ensured equal protein loading. In 2E cells the ceruloplasmin protein level of VPA-treated cells was comparable 

to controls whereas in human PCa cells DU145 the ceruloplasmin level increased after VPA treatment. This was also 

observed for the human PCa cells LNCaP and PC-3 (data not shown). Data are presented as mean +/- standard 

deviation of three quantitative real-time PCR analyses performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, 

*** p ≤ 0.001 
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3.1.2 Effects of VPA treatment on the expression of angiogenesis markers 

 

Since three of the eight candidate genes from the previous microarray experiment (Witt, 2009), 

namely Cp1, Cp2 and Cxcl15, are associated with angiogenesis the effects of VPA treatment on 

angiogenesis were analyzed in the present study in more detail. Therefore, the expression of 

several so called angiogenesis markers was investigated by quantitative real-time PCR first in 

in vitro VPA-treated 2E PCa cells and then in prostate tumors and prostate tissue of in vivo VPA-

treated TRAMP mice. The angiogenesis markers were chosen from a publication by Shih et al. 

and included two angiogenic cytokines (vascular endothelial growth factor A (Vegfa) and 

angiopoietin 1 (Ang1), three endothelial cell receptor tyrosine kinases (vascular endothelial 

growth factor receptor 1 (Flt-1/Vegfr1), vascular endothelial growth factor receptor 2 

(Kdr/Vegfr2), tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (Tie-1)), and an 

endothelial cell adhesion molecule, platelet endothelial cell adhesion molecule (Pecam-1, Shih 

et al., 2002). 

 

3.1.2.1 Effect of in vitro VPA treatment on the expression of blood- and lymph-

angiogenesis markers 

 

The mouse PCa cells 2E were treated for 72 and 144 hours with two different concentrations of 

VPA (1mM and 5mM). RNA was isolated and reversed transcribed into cDNA. The cDNA was 

used for the subsequent quantitative real-time PCR analyses to test the expression of the 

angiogenesis markers Vegfa, Ang1, Flt-1/Vegfr1, Kdr/Vegfr2, Tie-1 and Pecam-1. Cells that 

were not treated with VPA served as controls.  

The angiogenic cytokines Vegfa and Ang1 as well as the receptor tyrosine kinase Tie-1 and the 

endothelial cell adhesion molecule Pecam-1 were statistically significant downregulated in 2E 

cells that were treated with VPA as compared to control treated cells (Fig. 3.5). The decrease in 

the expression was concentration-dependent and partially also time-dependent (Fig. 3.5). 

However, the two receptor tyrosine kinases Flt-1/Vegfr1 and Kdr/Vegfr2 were statistically 

significant upregulated after VPA treatment as compared to untreated control cells. 
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Fig. 3.5: Expression analyses of angiogenesis markers in PCa cells after VPA treatment. The mouse PCa 2E 

cells were treated for 72 and 144 hours with either 1mM or 5mM VPA in vitro. Cells that were not treated with VPA 

served as control. RNA was isolated from which cDNA was generated by reverse transcription. Using this cDNA the 

expression of the following six angiogenesis markers was analyzed by quantitative real-time PCR analysis: two 

angiogenic cytokines (Vegfa and Ang1), three endothelial cell receptor tyrosine kinases (Flt-1/Vegfr1, Kdr/Vegfr2, Tie-

1), and one endothelial cell adhesion molecule (Pecam-1). In vitro VPA treatment resulted in a decreased expression 

of Vegfa, Ang1, Tie-1 and Pecam-1. The downregulation of these genes after VPA treatment was concentration- and 

also mostly time-dependent. The two receptor tyrosine kinases Flt-1/Vegfr1 and Kdr/Vegfr2 had an increased 
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expression after VPA treatment as compared to control cells. This effect was also concentration-dependent. Data are 

presented as mean +/- standard deviation of three quantitative real-time PCR analyses performed in triplicate. * 0.01 

< p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 

Tumors grow and spread not only by blood angiogenesis but also by lymphangiogenesis. To 

differentiate between these two angiogenesis options the components of the VEGF-system are 

helpful because some components induce mainly blood angiogenesis, i.e. VEGFA when binding 

to the VEGFR2 receptor (Cursiefen et al., 2004). Other components induce mainly 

lymphangiogenesis, i.e. VEGFC when binding to VEGFR2 or VEGFR3 (Skobe et al., 2001) or 

inhibit lymphangiogenesis, like the soluble form of VEGFR2 (sVEGFR2, Albuquerque et al., 

2009). 

To study the effects of VPA treatment on blood- and lymphangiogenesis in vitro the expression 

of the different VEGF-system components was analyzed by quantitative real-time PCR. 

Therefore, the mouse PCa cells 2E and the human PCa cells PC-3 were treated for 72 and 144 

hours with different VPA concentrations (1mM and 5mM). RNA was isolated from the PCa cells 

and reverse transcribed into cDNA which was then used for quantitative real-time PCR analyses. 

The expression of the ligands Vegfa and Vegfc was analyzed as well as the expression of the 

receptors Flt-1/Vegfr1 and Kdr/Vegfr2 and of sVegfr2. Untreated PCa cells served as control. 

Some components of the VEGF-system were already analyzed for the murine 2E PCa cells 

within the set of angiogenesis markers (see Fig. 3.5) and are presented here again to visualize 

the relation of the different components of the VEGF-system.  

In 2E PCa cells the expression of the ligands Vegfa and Vegfc was decreased, whereas the 

expression of the receptors Flt-1/Vegfr1 and Kdr/Vegfr2 increased in a concentration-dependent 

manner after VPA treatment as compared to untreated control cells (Fig. 3.6A). In human PC-3 

PCa cells the expression of VEGFA decreased when cells were treated with 1mM VPA but 

increased after treatment with a 5mM concentration for 72 hours. After 144 hours of VPA 

treatment VEGFA expression was decreased compared to untreated PC-3 cells. The FLT-

1/VEGFR1 expression was decreased in PC-3 cells after VPA treatment for both time points. 

The VEGFC, KDR/VEGFR2 and sVEGFR2 expression was increased in PC-3 cells after VPA 

treatment for 72 hours as compared to untreated control cells. This effect was abolished after 

144 hours of VPA treatment (Fig. 3.6B). 

The differential expression of the VEGF-system components in PCa cells after VPA treatment 

compared to untreated cells highlights the beneficial effects of VPA treatment in PCa cells. 

Downregulation of the ligands and receptors of the VEGF-system after VPA treatment indicate 

that there is decreased expression of factors which play a role in blood or lymphangiogenesis. 
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Also by upregulation of sVEGFR2 there is a competition of VEGFC binding to either 

KDR/VEGFR2 or sVEGFR2 which would also result in reduced lymphangiogenesis. 
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Fig. 3.6: Expression analyses of VEGF-system components in PCa cells. The mouse 2E PCa cells (A) and the 

human PC-3 PCa cells (B) were treated for 72 hours and 144 hours with 1mM VPA and 5mM VPA, respectively. RNA 

was isolated and transcribed into cDNA on which the expression of some components of the VEGF-system was 

analyzed by quantitative real-time PCR. Cells without VPA treatment served as controls. A) In 2E cells the expression 

of Vegfa and Vegfc decreased in a concentration-dependent manner after VPA treatment as compared to untreated 

cells, whereas the expression of the receptors Flt-1/Vegfr1 and Kdr/Vegfr2 increased in a concentration-dependent 

manner after VPA treatment. B) In PC-3 cells the expression of VEGFA decreased when the cells were treated with 

1mM VPA but increased after treatment with a 5mM concentration of VPA for 72 hours. After 144 hours of VPA 

treatment the VEGFA expression was decreased compared to untreated cells. The FLT-1/VEGFR1 expression was 

decreased after VPA treatment for both time points. The VEGFC, KDR/VEGFR2 and sVEGFR2 expression was 

increased after VPA treatment for 72 hours as compared to untreated control cells. This effect was abolished after 

144 hours of VPA treatment. Data are presented as mean +/- standard deviation of three quantitative real-time PCR 

analyses performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 

3.1.2.1.1 Is the Vegfr2 signaling pathway activated by VPA treatment? 

 

Quantitative real-time PCR analysis of VPA-treated 2E cells revealed an increased expression 

of the two receptor tyrosine kinases Flt-1/Vegfr1 and Kdr/Vegfr2 as compared to control-treated 

cells (Fig. 3.5). In order to find out whether the increased expression is correlated to an increased 

activation of the VEGFR signaling pathway the phosphorylation status of one of the two 

receptors, namely pKDR/pVEGFR2 was analyzed on protein level by western blot analysis 

(Fig.3.7), which was then subject to densitometrical evaluation (Fig.3.7, the values are indicated 

underneath the western blot). Densitometrical evaluation of the western blot revealed an 

increased pKDR/pVEGFR2 expression in VPA-treated 2E cells as compared to controls. This 

effect was weak in cells that were treated for 72 hours with VPA but more pronounced in cells 

that were treated for 144 hours with VPA. This indicates that the increased Kdr/Vegfr2 

expression in VPA-treated 2E cells is accompanied with an increased activation of the VEGFR2 

signaling pathway as seen by increased pKDR/pVEGFR2 expression in the same cells. 
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Fig. 3.7: pKDR/VEGFR2 levels in VPA-treated 2E cells. Whole protein lysate of 2E cells treated with either 1mM or 

5mM VPA for 72 or 144 was immunoblotted using a pKDR/pVEGFR2-specific antibody. Protein lysate of untreated 

cells served as controls. Immunoblotting of HSC70 ensured equal protein loading. The western blot was evaluated 

densitometrically and the values are depicted underneath the western blot. Densitometrical analysis revealed an 

increase in pKDR/pVEGFR2 expression in VPA-treated 2E cells as compared to control-treated cells. This effect was 

more pronounced in cells that were treated for 144 hours with VPA then in cells that were treated for only 72 hours 

with VPA.  

 

3.1.2.2 Effect of in vivo VPA treatment on the expression of blood- and lymph- 

angiogenesis markers 

 

The expression of the six angiogenesis markers, namely Vegfa, Ang1, Tie-1, Flt-1/Vegfr1, 

Kdr/Vegfr2 and Pecam-1 was analyzed by quantitative real-time PCR on RNA isolated from the 

prostate of mice that received 10 weeks of in vivo VPA treatment. Only the expression of Flt-

1/Vegfr1 was statistically significant downregulated in the prostate of VPA-treated mice as 

compared to control-treated mice (Fig.3.8). All other factors, namely Ang1, Tie-1, Kdr/Vegfr2 and 

Pecam-1 showed a reduced expression after VPA treatment in the mouse prostate, but this 

effect was not statistically significant. Vegfa was not differentially expressed in the prostate of 

VPA-treated mice as compared to control-treated mice (Fig.3.8). 
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Fig. 3.8: Expression analyses of angiogenesis markers in prostate tissue of in vivo VPA-treated TRAMP mice. 

RNA was isolated from prostate tissue of in vivo VPA-treated TRAMP mice and of control-treated mice. RNA was 

reverse transcribed into cDNA and quantitative real-time PCR analysis for expression of the angiogenesis markers 

Vegfa, Ang1, Tie-1, Flt-1/Vegfr1, Kdr/Vegfr2 and Pecam-1 was conducted. VPA treatment led to a statistically 

significant reduction of Flt-1/Vegfr1 expression (p= 0.0409). Ang1, Tie-1, Kdr/Vegfr2 and Pecam-1 also exhibited a 

reduced expression in the prostate tissue after VPA treatment but this effect was not statistically significant. Vegfa 

was equally expressed in the prostate of VPA- and control-treated TRAMP mice. Data are presented as mean +/- 

standard deviation of three quantitative real-time PCR analyses performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p 

< 0.01, *** p ≤ 0.001, n.s.: not significant 

 

The expression of the six angiogenesis markers Vegfa, Ang1, Tie-1, Flt-1/Vegfr1, Kdr/Vegfr2 

and Pecam-1 was also analyzed by quantitative real-time PCR on RNA isolated from prostate 

tumor tissue of in vivo VPA-treated TRAMP mice and control-treated TRAMP mice (first in vivo 
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VPA experiment conducted by D. Witt, 2012). RNA was reverse transcribed into cDNA before it 

was subjected to quantitative real-time PCR (Fig. 3.9). In the prostate tumors of VPA-treated 

TRAMP mice a statistically significant reduction of Ang1, Vegfa, Tie-1 and Kdr/Vrgfr2 expression 

was observed as compared to control-treated mice. Pecam-1 expression was also 

downregulated after VPA treatment, although not statistically significant. The expression of Flt-

1/Vegfr1 was similar in prostate tumors of VPA-treated mice and control-treated mice (Fig.3.9). 

Taken together these results indicate that inhibition of expression of angiogenesis markers by 

VPA treatment could play a more important role during tumor progression than in the beginning 

of tumor development. 

 

Fig. 3.9: Expression analysis of angiogenesis markers in PCa tumors of in vivo VPA-treated TRAMP mice. 

RNA was isolated from prostate tumor tissue of in vivo VPA-treated TRAMP mice and of control-treated mice. RNA 

was reverse transcribed into cDNA and quantitative real-time PCR analyses were conducted for expression analysis 
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of the angiogenesis marker Vegfa, Ang1, Tie-1, Flt-1/Vegfr1, Kdr/Vegfr2, and Pecam-1. VPA treatment led to a 

statistically significant reduction of Vegfa (p=0.0226), Ang1 (p=0.0427), Tie-1 (p=0.0462) and Kdr/Vegfr2 (p=0.0410) 

as compared to prostate tumor tissue of control-treated mice. The expression of Flt-1/Vegfr1 and Pecam-1 was not 

statistically significant deregulated in prostate tumor tissue of VPA-treated TRAMP mice as compared to prostate 

tumor tissue of control-treated mice. Data are presented as mean +/- standard deviation of three quantitative real-

time PCR analyses performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001, n.s.: not significant 

 

3.1.2.3 Studying the influence of VPA on angiogenesis in vivo – CAM experiments 

 

Both VPA in vitro and in vivo experiments point to the fact that VPA could have an important 

influence on angiogenesis during PCa progression. Therefore, to study the effects of VPA 

treatment on tumor angiogenesis in vivo, the chicken chorioallantoic membrane (CAM) assay 

was conducted in cooperation with Prof. Dr. Jörg Wilting from the Center of Anatomy, University 

Medical Center Göttingen. The chicken embryo CAM is an extraembryonic membrane rich of 

blood vessels and therefore suitable to study the effects of a substance on angiogenesis. Tumor 

cells applied to the CAM, together with matrigel as a carrier, will form solid tumors which can be 

harvested and used for molecular evaluation. 

For the CAM experiment the mouse PCa cells 2E and the human PCa cells PC-3 were used. 

Prior to the application to the CAM the PCa cells were either pre-treated with VPA for 24 hours 

(experiment 1), for 1 week (experiment 3) or not pre-treated at all (experiment 2). Also different 

concentrations of VPA were tested (1mM VPA or 3mM VPA, Table 3.1).  

 

Table 3.1: CAM experiments conducted with human and mouse PCa cells. Depicted are the three different CAM 

experiments conducted during the present study along with the respective PCa cell line and VPA concentration used 

to treat the cells. 

1. experiment 2E and PC-3 cells, 24 hours pre-treatment with 1mM VPA 

2. experiment 2E and PC-3 cell, no pre-treatment, 3mM VPA on the day of 

application to the CAM 

3. experiment 2E cells, one week pre-treatment with 3mM VPA 

 

Pre-treated or non-pre-treated PCa cells were applied to the CAM and three days thereafter the 

growing tumor was treated again with VPA in the corresponding concentration. The developed 

tumors were harvested after one week and fixed or otherwise prepared for further studies, 

including immunohistochemistry and molecular expression analysis by quantitative real-time 

PCR. Three different CAM experiments were conducted (Table 3.1).  
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3.1.2.3.1 Macroscopic analysis of the CAM tumors 

 

The macroscopic analysis revealed three different effects in which the angiogenesis of the CAM 

tumor could be influenced. First, untreated 2E and PC-3 cells as well as VPA-treated cells could 

severely disturb angiogenesis as seen by bloodshot tumors (Fig 3.10A). The second effect in 

which CAM tumor angiogenesis could be affected was observed by bloody spots within the CAM 

tumor (Fig 3.10B). Finally, the blood vessel formation around the CAM tumor could also be 

severely affected as seen by disturbed blood vessels (Fig 3.10C). 

 

Fig. 3.10: Three examples in which CAM angiogenesis can be affected. These exemplary pictures of CAM tumors 

derived from VPA-treated and untreated control 2E cells were chosen to demonstrate three different effects on CAM 

tumor angiogenesis compared to an unaffected tumor. The effects were generally observed in all tree CAM 

experiments for tumors raised from VPA-treated as well as from untreated control cells. A) Tumor angiogenesis could 

be influenced in that way, that the tumors were severely bloodshot as compared to unaffected tumors. B) Bloody 

spots within the CAM tumor, as indicated by the arrow, were also observed. C) Affected tumors displayed disturbed 
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blood vessel formation around the tumor, indicated by the arrow, as compared to an unaffected tumor. The pictures 

were taken at an inverted microscope, at a 9x magnification (A), 11x magnification (C) and 19x magnification (B). 

 

For the three CAM experiments the number of bloodshot tumors, tumors with bloody spots and 

tumors with disturbed vessel formation was calculated for tumors developed from VPA-treated 

and untreated control cells (Fig. 3.11). In the first experiment tumors resulting from VPA-treated 

2E cells showed bloody spots or were bloodshot, whereas tumors resulting from untreated 

control 2E cells only showed disturbed blood vessel formation (Fig. 3.11A). In the second 

experiment, where the cells were not pre-treated with VPA, only with 3mM VPA on the day of 

application to the CAM, tumors derived from VPA-treated 2E cells were more often bloodshot 

than tumors resulting from untreated control 2E cells (Fig 3.11A). This finding is in accordance 

to the first experiment with VPA-treated 2E cells. In the third experiment, VPA treatment of the 

2E cells resulted in a slightly reduced number of bloodshot tumors, a stronger reduction of 

tumors with bloody spots, and an increase in tumors with disturbed blood vessel formation 

(Fig.3.11B). These results from the third experiment are contrary to the observations from the 

previous two experiments. 

Tumors derived from VPA-treated PC-3 cells in the first experiment were not bloodshot at all, 

whereas tumors resulting from control PC-3 cells were bloodshot (Fig. 3.11B). VPA treatment of 

the PC-3 cells also resulted in an increased number of tumors with bloody spots as well as with 

disturbed blood vessel formation compared to tumors resulting from untreated control PC-3 cells 

(Fig. 3.11B). In the second experiment, tumors resulting from VPA-treated PC-3 cells showed a 

reduced number of bloodshot tumors compared to tumors derived from untreated control PC-3 

cells, as compared to the observation in the first experiment (Fig. 3.11B). Contrary to the first 

experiment, treatment of PC-3 cells with 3mM VPA resulted in reduced number of tumors with 

disturbed blood vessel formation as compared to tumors derived from untreated control cell (Fig. 

3.11B).  

Taken together, a general effect of VPA treatment in PCa cells on the phenotype of CAM tumors 

could not be observed, since within the experiments for one cell line the phenotypic 

characteristics did not correlate (except for PC-3 cell tumors, which in both experiments had a 

reduced number of bloodshot tumors when the cells were treated with VPA) and they also did 

not correlate within the two cell lines.  
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Fig. 3.11: Macroscopic analysis of the CAM tumors. For three different CAM experiments the CAM tumors resulting 

from VPA-treated and control cells were macroscopically analyzed and the number of bloodshot tumors, tumors with 

bloody spots and tumors with disturbed blood vessel formation was calculated. In the first experiment, tumors resulted 

from 2E and PC-3 cells that were pre-treated with 1mM VPA for 24 hours. In the second experiment, tumors resulted 

from 2E and PC-3 cells that were not pre-treated with VPA, only on the day of application to the CAM with 3mM VPA. 

In the third experiment tumors resulted from 2E cells that were pre-treated with 3mM VPA for 1 week. A) Macroscopic 

analysis of the CAM tumors of all three CAM experiments conducted with 2E cells. B) Macroscopic analysis of the 

CAM tumors of the two CAM experiments using PC-3 cells. 
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3.1.2.3.2 Analysis of CAM tumor volume 

 

Based on the macroscopic pictures the tumor volume was calculated by use of the modified 

ellipsoid formula 1/2(length × width2). 2E cell and PC-3 cell tumors derived from cells that were 

pre-treated with 1mM VPA for 24 hours and treated again with 1mM VPA on the day of 

application to the CAM showed a slightly reduced but no statistically significant difference in the 

tumor volume as compared to tumors derived from untreated control cells (Fig. 3.12A). On the 

other hand, tumors derived from cells that were only treated with 3mM VPA on the day of 

application to the CAM had a slightly increased tumor volume as compared to tumors derived 

from untreated control cells, although this effect was also not statistically significant (Fig. 3.12B). 

2E cell tumors derived from cells that were pre-treated with 3mM VPA for one week and again 

treated with 3mM VPA on the day of application to the CAM had a not statistically significant 

reduced tumor volume as compared to untreated cells (Fig. 3.12C). These results indicate that 

only tumors derived from VPA pre-treated PCa cells led to a reduced tumor volume as compared 

to untreated control cells. PCa cells that were not pre-treated with VPA rather resulted in tumors 

with an increased tumor volume compared to untreated control cells. Since it is known that VPA 

treatment has an inhibitory effect on cell proliferation and this could not be confirmed in VPA-

treated CAM tumors it appears that the CAM model is not a suitable model for studies with VPA. 
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Fig. 3.12: Tumor volume of CAM tumors derived from VPA-treated PCa cells. The tumor volume of CAM tumors 

derived from VPA- and control-treated 2E and PC-3 cells was calculated by the modified ellipsoid formula based on 

the macroscopic pictures of the tumors. Tumors derived from untreated PCa cells served as control. Cells that were 

applied to the CAM were either pre-treated with VPA for 24 hours (A), for 1 week (C) or not pre-treated at all (B). Also 

different concentrations of VPA were tested (1mM VPA (A) or 3mM VPA (B, C). A) 2E and PC-3 cell tumors derived 

from cell that were pretreated with 1mM VPA for 24 hours and again treated with 1mM VPA on the day of application 

to the CAM had a not statistically significant reduced tumor volume as compared to tumors derived from untreated 

control cells. B) 2E and PC-3 cell tumors derived from cells that were treated with 3mM VPA on the day of application 
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to the CAM had a slightly increased, also not statistically significant, tumor volume as compared to tumors derived 

from the control-treated cells. C) 2E cell tumors that were derived from cells that were pre-treated with 3mM VPA for 

one week and again treated with 3mM on the day of application to the CAM had reduced, but not statistically 

significant, tumor volume as compared to tumors derived from untreated control cells. 

 

3.1.2.3.3 Studying blood and lymphangiogenesis in the CAM tumors with the markers 

Mep21 and Prox1 

 

To differentiate the effect of in vivo VPA treatment on lymphatic and blood vessels 

immunofluorescence staining was performed on 2E and PC-3 cell-derived CAM tumors. 

Sections of the CAM tumors were stained by immunofluorescence with the blood vessel marker 

Mep21 (CD34 homolog) and with the lymphatic vessel marker Prox1 (Wigle et al. 2002, Wilting 

et al. 2002, Hong et al. 2002). The immunofluorescence analysis of tumors grown from untreated 

mouse 2E and human PC-3 PCa cells revealed that 2E cell tumors had a prominent Mep21 

staining and also some Prox1-positive vessels (Fig. 3.13B,C) whereas PC-3 cell tumors had a 

very prominent staining for Prox1- and Mep21-positive vessels (Fig.3.13F,G). This indicated that 

tumors of the 2E cell tumors grow mainly by blood angiogenesis and PC-3 cell tumors by blood- 

and lymphangiogenesis. 

 

Fig. 3.13: Immunofluorescence staining of blood and lymphatic vessels in untreated 2E and PC-3 tumors. 

Immunofluorescence staining of cryosections from 2E cell CAM tumors (A-D) and PC-3 cell CAM tumors (E-H). 

Pictures show staining of blood- and lymphatic vessels in CAM tumors. Cells were stained with DAPI (blue in A, E), 

anti-Mep21 (green in B, F) and anti-Prox1 (red in C, G). A, E) 2E and PC-3 cells can be discriminated from the chicken 

cells due to their large nuclei. B, F) Mep21 staining of chicken blood vessel capillaries is very prominent in the 2E and 

PC-3 cell tumors. C, G) Prox1 staining of chicken lymphatic endothelial cells. PC-3 cell tumors exhibit a very prominent 

Prox1 staining. D, H) Merged pictures.  
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CAM tumor cryo-sections derived from 3mM VPA-treated 2E and PC-3 cells were also subjected 

to Mep21 and Prox1 immunofluorescent staining. Analysis of VPA-treated 2E cell tumors 

showed no significant differences in the Mep21 and Prox1 staining as compared to tumors 

derived from untreated 2E cells (data not shown). Analysis of VPA-treated PC-3 cells tumors led 

to the impression that they had a reduced number of Prox1-positive cells as compared to tumors 

derived from untreated PC-3 cells, whereas the Mep21 expression seemed not to be different 

(data not shown). Since Prox1 stains the nuclei of lymphatic endothelial cells the number of 

Prox1-positive cells can be calculated. Therefore, the number of Prox1-positive cells in tumors 

derived from 3mM VPA-treated PC-3 cells und untreated control PC-3 cells was calculated (2. 

experiment). The tumor was divided in three sections in order to see differences in how far into 

the tumor lymphangiogenesis had progressed. The first section was above the CAM layer, the 

second section was the middle part of the tumor and the third part was the distal tumor part 

(Fig.3.14). 

 

Fig. 3.14: Schematic presentation of the three different sections of the CAM tumor. The CAM tumor was divided 

in three different sections in order to compare the number of Prox1-positive cells in each of the sections. Prox1 stains 

nuclei of chicken lymphatic endothelial cells. The CAM layer was designated as the first section. It can be 

discriminated from the tumor by the smaller nuclei of chicken cells compared to the bigger tumor cells as seen by 

DAPI staining. The designated second section was the middle part of the tumor. The distal tumor part was the third 

section, which contained the least Prox1-positive cells. 

 

Counting of Prox1-positive cells within the tumors did not reveal a statistically significant reduced 

number of Prox1-positive cells within the tumors of VPA-treated PC-3 cells as compared to 

tumors raised from control cells. But, in the distal tumor part a reduced number of Prox1-positive 

cells was observed when the tumor was raised from VPA-treated cells compared to control 

tumors. Whereas the number of Prox1-positive cells was rather increased in the layer right above 

the CAM and the middle tumor part (Fig. 3.15). However, increased Prox1 staining in the CAM 

part and in the middle tumor part is in accordance to the quantitative real-time PCR analysis of 

the VEGF-system components in untreated and VPA-treated PC-3 cells, where VPA treatment 
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resulted in an increased VEGFC expression, which induces mainly lymphangiogenesis by 

binding to VEGR2 or VEGFR3 (see Fig. 3.6B). 

 

Fig. 3.15: Number of Prox1 positive cells in the CAM tumors. The number of Prox1-positive cells in tumor sections 

of PC-3 cell CAM tumors was calculated. The number of Prox1-positive cells in tumors derived from 3mM VPA-treated 

PC-3 cells was compared to the number of Prox1-positive cells in tumors derived from untreated control PC-3 cells. 

The mean of Prox1-positive cells was calculated for three slides which each consisted of three tumor slices. VPA 

treatment of the PC-3 cells resulted in an increased number of Prox1-positive cells within the middle part of the tumor 

and the tumor part right on top of the CAM as compared to Prox1-positive cells in tumors derived from untreated 

control PC-3 cells whereas in the distal tumor part the number of Prox1-positive cells was reduced, although not 

statistically significant. 

 

3.1.2.3.4 Expression analysis of angiogenesis markers in CAM tumors 

 

RNA was isolated from a whole CAM tumor (1. experiment, 2E and PC-3) or from half of a  

CAM tumor (3. experiment, 2E). From the second CAM experiment no RNA was isolated. For 

the PC-3 cell tumors from the first experiment the expression of the members of the VEGF-

system and other angiogenesis markers was analyzed as well as the expression of CP and 

CCND2. No significant differences in the expression of the VEGF-system members nor CP and 

CCND2 was observed between tumors grown from untreated control PC-3 cells and VPA-treated 

PC-3 cells although VPA treatment of the cells seemed to slightly increase the expression of 

most of the genes tested (Fig. 3.16A). For the 2E cell tumors from the first CAM experiment the 

expression of the angiogenesis markers Vegfa, Vegfc, Ang1, Tie-1, Flt-1/Vegfr1, Kdr/Vegfr2 and 

Pecam-1 was analyzed, as well as the expression of the angiogenesis-related candidate genes 

Cp1, Cp2 and Cxcl15 from the microarray (Witt, 2009) and Ccnd2. The expression of Ccnd2 

was examined as a control for the VPA treatment of cells because it is known that VPA treatment 

leads to a dramatic (about 200x) increase in the Ccnd2 expression in 2E cells. Indeed an 
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increase in the Ccnd2 expression in the VPA-treated 2E cell CAM tumors could be observed, 

although this observation was not statistically significant (Fig. 3.16B). Cp1 expression in VPA-

treated CAM tumors was statistically significant downregulated (p=0.0347) and the expression 

of Vegfa had a strong tendency towards upregulation (Fig. 3.16B). The other tested genes were 

not significantly deregulated in the tumors of VPA-treated or untreated control 2E cells but their 

expression was rather increased. The only genes that were downregulated after VPA treatment 

in 2E cell CAM tumors were Cp1, Cp2 and Cxcl15, of which solely Cp1 was statistically 

significant.  
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Fig. 3.16: Expression analyses of angiogenesis markers and members of the VEGF-system in CAM tumors of 

the first experiment. The expression of the angiogenesis markers, angiogenesis-related candidate genes from the 

previous array experiment (Witt, 2009) and of some members of the VEGF-system was analyzed on cDNA generated 

from CAM tumors that have either developed from VPA-treated PC-3 cells (A) or VPA-treated 2E cells (B) from the 

first experiment (24 hours pre-treatment with 1mM VPA). Tumors derived from untreated PCa cells served as control. 
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The expression of the following genes was analyzed: VEGFA, ANG1, TIE-1, PECAM-1, FLT-1/VEGFR1, 

KDR/VEGFR2, sVEGFR2, VEGFC, Cp1 and Cp2 (mouse), CP (human) and CXCL15. The expression of CCND2 was 

analyzed to show that the VPA treatment was functional because it is known that VPA treatment leads to a major 

increase in Ccnd2 expression in mouse 2E cells. A) VPA treatment of PC-3 cells resulted in no statistically significant 

expression differences of the genes analyzed in the CAM tumors as compared to control tumors. B) CAM tumors 

derived from VPA-treated 2E cells had a statistically significant reduced Cp1 expression (p=0.0347) as compared to 

control tumors. The expression of the other genes analyzed was not statistically significant affected after VPA 

treatment in CAM tumors. Data are presented as mean +/- standard deviation of three quantitative real-time PCR 

analyses performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001, n.s.: not significant 

 

The expression of angiogenesis markers and of some members of the VEGF-system was also 

analyzed for tumors of the third CAM experiment (2E cells only, 1 week pre-treatment with 3mM 

VPA, Fig. 3.17). Vegfa was statistically significant upregulated in tumors derived from VPA-

treated cells compared to tumors developed from untreated control cells (p=0.0373). The 

expression of Ccnd2 was also significantly upregulated (p=0.0428) which is in accordance to the 

microarray result of VPA-treated 2E cells, which also had an increased Ccnd2 expression 

compared to untreated control cells (Witt, 2009). Flt-1/Vegfr1 expression was not yet statistically 

significant (p=0.0874). The other genes were not statistically significant deregulated in tumors 

derived from VPA-treated cells as compared to controls (Fig. 3.17). Generally, the expression of 

all genes tested was increased after VPA treatment compared to controls in CAM tumors. 

Although it was shown in the previous experiments that in vitro and in vivo VPA treatment 

influences the expression of candidate genes and angiogenesis-related genes this could not be 

observed and confirmed in studies using the CAM model which further indicates that maybe the 

CAM model is not the appropriate model for VPA studies. 
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Fig. 3.17: Expression analyses of angiogenesis markers and members of the VEGF-system in CAM tumors of 

the third experiment. The expression of angiogenesis markers, angiogenesis-related candidate genes from the array 

(Witt, 2009) and of some members of the VEGF-system was analyzed on cDNA generated from CAM tumors derived 

from VPA-treated or control-treated 2E cells from the 3. experiment (1 week pre-treatment with 3mM VPA). The 
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expression of the following genes was analyzed: Vegfa, Ang1, Tie-1, Pecam-1, Flt-1/Vegfr1, Kdr/Vegfr2, Vegfc, Cp1 

and Cp2. The expression of Ccnd2 was analyzed to show that the VPA treatment was functional because it is known 

that VPA treatment leads to a major increase in Ccnd2 expression. CAM tumors risen from VPA-treated 2E cells had 

a statistically significant upregulated expression of Vegfa (p=0.0373) and Ccnd2 (p=0.0428) as compared to control 

tumors. The expression of the other genes analyzed was not statistically significantly affected after VPA treatment. 

Data are presented as mean +/- standard deviation of three quantitative real-time PCR analyses performed in 

triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001, n.s.: not significant 

 

3.2 Is cyclin D2 a tumor suppressor gene in PCa? 

 

3.2.1 Cyclin D2 overexpression studies in human PCa cells 

 

In order to verify the hypothesis that cyclin D2 is a tumor suppressor gene in PCa overexpression 

studies were conducted. Cyclin D2 is known to be downregulated in PCa due to 

hypermethylation of the promoter region. Witt et al. (2013) could demonstrate a VPA-induced 

re-expression of Ccnd2 due to increased acetylation of the Ccnd2 promoter region. Since the 

re-expression was accompanied with proliferation inhibition, which was only observed in PCa 

cells but not in fibroblast cells or other cancer cells, it is of great interest to investigate the role 

of cyclin D2 in PCa. 

Human PCa cell lines, which have an undetectable low basal cyclin D2 expression, were 

transfected with a cyclin D2 expression vector and the functional effects were analyzed. If cyclin 

D2 is indeed a tumor suppressor then these human PCa cells that overexpress cyclin D2 should 

exhibit less features of a cancer cell, e.g. reduced proliferation and migration rates. 

 

3.2.1.1 Transient overexpression of cyclin D2 in human PCa cells 

 

Initially the human PCa cells were transiently transfected with the generated pIRES2-EGFP-

CCND2 expression vector to investigate whether the transient overexpression of cyclin D2 might 

be sufficient to induce its supposed anti-tumorous effects as a putative tumor suppressor. 

 

3.2.1.1.1 Generation of the pIRES2-EGFP-CCND2 expression vector 

 

An 870 bp fragment of the cyclin D2 open reading frame was amplified from CaCo2 cDNA by 

touchdown PCR using the primers CCND2-Fw-Xho and CCND2-Rev-Eco. The amplicon was 

first cloned successfully into the pGEM®-T Easy vector (data not shown). Thereafter the cyclin 

D2 insert was excised from pGEM®-T Easy vector and ligated to the pIRES2-EGFP vector. Test 
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digestion with the restriction enzymes XhoI and EcoRI (Fig 3.18) and subsequent sequencing 

reaction (data not shown) of the clones 7 and 9 showed the successful integration of the 870 bp 

cyclin D2 insert into the pIRES2-EGFP vector. 

 

Fig. 3.18: Test digestion of two different pIRES2-EGFP-CCND2 clones. The pIRES2-EGFP-CCND2 clones were 

digested with the restriction enzymes XhoI and EcoRI. The cyclin D2 insert consisting of 870 bp could be successfully 

excised from the 5.3 kb pIRES2-EGFP vector. 1kb: 1Kb Plus DNA-ladder 

 

The established human PCa cells DU145, LNCaP and PC-3 were transiently transfected with 

the generated pIRES2-EGFP-CCND2 expression vector using Metafectene® Pro transfection 

reagent. Two days after transfection protein was isolated from the PCa cells to confirm the 

overexpression of cyclin D2 by western blot analysis. PCa cells that were transfected with the 

empty pIRES2-EGFP vector were used as controls. For all three human PCa cell lines a very 

strong expression of cyclin D2 could be detected after transient transfection with the pIRES2-

EGFP-CCND2 expression vector. In contrast, the control-transfected PCa cells showed no cyclin 

D2 expression (Fig. 3.19). 
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Fig. 3.19: Confirmation of the overexpression of cyclin D2 in human PCa cells after transient transfection with 

pIRES2-EGFP-CCND2. Whole protein lysates of the PCa cells DU145, LNCaP and PC-3 cells transiently transfected 

with the generated pIRES2-EGFP-CCND2 expression vector were immunoblotted using a cyclin D2-specific antibody. 

All three cell lines transfected with the empty pIRES2-EGFP expression vector had no cyclin D2 expression in contrast 

to the strong cyclin D2 expression in PCa cells transfected with the generated pIRES2-EGFP-CCND2 vector. 

Immunoblotting of α-tubulin ensured equal protein loading. 

 

3.2.1.1.2 Studies on the proliferation rate of PCa cells with transient cyclin D2 over-

expression 

 

The PCa cells DU145, LNCaP and PC-3 were transiently transfected with the pIRES2-EGFP-

CCND2 expression vector. Cells transfected with the empty pIRES2-EGFP vector served as 

controls. The following day the transfected cells were plated into 96- well plates and the 

proliferation rate was measured every 24 hours for 4 days by a MTT assay.  

DU145 cells overexpressing cyclin D2 had a statistically significant increase in the proliferation 

rate 24 hours after transfection as compared to control cells transfected with the empty pIRES2-

EGFP vector. The increase in proliferation rate was abolished over the next three days and no 

differences in the proliferation rate between cyclin D2 overexpressing and control cells could be 

detected (Fig.3.20). LNCaP and PC-3 cells with transient cyclin D2 overexpression also had a 

similar proliferation rate as compared to control cells (data not shown). 

 

Fig. 3.20: Analysis of the proliferation rate of DU145 cells transiently overexpressing cyclin D2. The human 

PCa cells DU145 were transiently transfected with the pIRES2-EGFP-CCND2 expression vector. The proliferation 

rate was measured by a MTT assay every 24 hours for 5 days beginning the day after transfection. After 24 hours 

there was a statistically significant increase in the proliferation rate of cells transfected with the cyclin D2 expression 

vector as compared to the control cells transfected with the empty pIRES2-EGFP vector. The increase in the 

proliferation rate was abolished over the next three days and no differences in the proliferation rate between cyclin 

D2 overexpressing and control PCa cells could be detected. Data are presented as mean +/- standard deviation of 

three proliferation assays. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 
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3.2.1.2 Stable overexpression of cyclin D2 in human PCa cells 

 

Since the transient overexpression of cyclin D2 did not result in any changes or the expected 

reduction in the proliferation rate as compared to control transfected cells, a different approach 

was used to verify the hypothesis that cyclin D2 could serve as a tumor suppressor gene in PCa. 

Presumably a constant overexpression of cyclin D2 is necessary to exhibit its′ anti tumorous 

effects while the transient overexpression of cyclin D2 is not sufficient to induce any functional 

effects in PCa cells.  

Next, PCa cell clones were generated that exhibited a stable overexpression of cyclin D2. For 

this experiment two different strategies were used, i.e. on the one hand, PCa cell clones were 

generated where the overexpression of cyclin D2 was inducible by treatment with doxycycline 

(transfection with pEBTetD-CCND2) and on the other hand, cell clones were generated which 

constitutively overexpress cyclin D2 (transfection with pIRES2-EGFP-CCND2).  

 

3.2.1.2.1 Generation of the pEBTetD-CCND2 expression vector 

 

An 870 bp fragment of the cyclin D2 ORF was amplified from CaCo2 cDNA by touchdown PCR 

using the primers CCND2-Fw-Kpn and CCND2-Rev-Eco. The amplicon was first cloned 

successfully into the pGEM®-T Easy vector (data not shown). Thereafter the cyclin D2 insert 

was excised from pGEM®-T Easy vector and ligated to the pEBTetD vector. Test digestion with 

the restriction enzymes KpnI and NotI (Fig. 3.21) and subsequent sequence analysis (data not 

shown) of one clone showed the successful integration of the 870 bp cyclin D2 insert into the 

pEBTetD vector. 

 

Fig. 3.21: Test digestion of a pEBTetD-CCND2 clone. The pEBTetD-CCND2 clone was digested with the restriction 

enzymes KpnI and NotI. The 870 bp cyclin D2 insert could be successfully excised from the 11.5 kb pEBTetD vector. 

1kb: 1Kb Plus DNA-ladder 
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The established human PCa cells LNCaP and PC-3 were transfected with the generated 

pEBTetD-CCND2 expression vector using Metafectene® Pro transfection reagent for inducible 

overexpression of cyclin D2 by treatment with doxycycline. Starting the following day after 

transfection cells were selected by puromycin treatment. Since the vector does not integrate into 

the genome but exists as an episomal plasmid within the cytoplasm there was no need for clonal 

isolation of transfected cells (Bach et al., 2007). Cells that had taken up the pEBTetD-CCND2 

expression vector with the puromycin resistance cassette were further cultured in the presence 

of puromycin. To test for successful uptake of the expression vector and inducibility of cyclin D2 

expression protein was isolated and analyzed by western blot analysis. For this approach two 

different LNCaP cell populations with a doxycycline-inducible expression of cyclin D2 could be 

established (LNCaP+pEBTetD-CCND2-1 and LNCaP+pEBTetD-CCND2-2) as well as one 

LNCaP cell population that was transfected with the empty pEBTetD plasmid (LNCaP+pEBTetD) 

which served as a negative control (Fig. 3.22). There is a strong induction of cyclin D2 expression 

72 hours after the two LNCaP cell populations were treated with different concentrations of 

doxycycline. LNCaP cells not treated with doxycycline showed no cyclin D2 expression 

comparable to LNCaP cells transfected with the empty pEBTetD plasmid after doxycycline 

treatment. Doxycycline-inducible cyclin D2 overexpressing PC-3 cells could also be generated 

(Fig. 3.22, PC-3+D2) but after cryoconservation and subsequent repeated testing a loss of the 

doxycycline-inducible cyclin D2 overexpression had occurred (data not shown). Therefore, only 

LNCaP cells transfected with pEBTetD-CCND2 could be used for studies on the functional 

effects of inducible cyclin D2 overexpression. 

 

Fig. 3.22: Confirmation of the doxycycline-inducible overexpression of cyclin D2 in human PCa cells after 

transfection with pEBTetD-CCND2. Whole protein lysates of LNCaP and PC-3 cell populations transfected with the 
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generated pEBTetD-CCND2 expression vector and treated for 72 hours with doxycycline were immunoblotted using 

a cyclin D2-specific antibody. Different concentrations of doxycycline were tested, ranging from 0.05 µg/ml to 1 µg/ml 

doxycycline. Both LNCaP cell populations transfected with the pEBTetD-CCND2 expression vector as well as the one 

PC-3 cell population showed a strong induction of cyclin D2 expression after treatment with the indicated 

concentrations of doxycycline in contrast to the control cells that were not treated with doxycycline. Cells transfected 

with the empty pEBTetD vector, which served as a second negative control, had also no cyclin D2 expression. 

Immunoblotting of α-tubulin ensured equal protein loading.  

 

The established human PCa cells LNCaP and PC-3 were also transfected with the generated 

pIRES2-EGFP-CCND2 expression vector (see section 3.2.1.1.1) using Metafectene® Pro 

transfection reagent for constitutively overexpression of cyclin D2. Two days after transfection 

the cells were serially diluted and plated into petri dishes do generate single-cell clones. From 

the next day on selection of transfected cells occurred by treating them with 400µg/ml G418. 

After approximately 21 days single-cell clones were picked and further cultured in the presence 

of G418. To test for successful stable overexpression of cyclin D2 protein from different cell 

clones (clones 1-3) including one cell clone transfected with the empty pIRES2-EGFP vector as 

control (clone 4) was isolated. As seen in Fig. 3.23 the three LNCaP clones exhibit a very strong 

cyclin D2 expression in contrast to the control clone which exhibits no cyclin D2 expression. For 

the PC-3 cells only two stable cyclin D2 overexpressing clones could be generated, as seen in 

Fig. 3.23 by the strong cyclin D2 expression of clone 1 and 3. However, the control clone 4 

showed no cyclin D2 expression. 

 

Fig. 3.23: Confirmation of the stable overexpression of cyclin D2 in human PCa cells after transfection with 

pIRES2-EGFP-CCND2. Whole protein lysates of LNCaP and PC-3 cell clones stably transfected with the pIRES2-

EGFP-CCND2 expression vector were immunoblotted using a cyclin D2-specific antibody. All three LNCaP cell clones 

transfected with the pIRES2-EGFP-CCND2 expression vector showed a strong induction of cyclin D2 expression, 

whereas only two of the four tested PC-3 cell clones transfected with the pIRES2-EGFP-CCND2 expression vector 

showed a strong induction of cyclin D2 expression (clone 1 and 3) in contrast to the control clones transfected with 

the empty pIRES2-EGFP vector (clone 4, respectively). Immunoblotting of HSC70 ensured equal protein loading. 
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When cells transfected with the pIRES2-EGFP or pIRES2-EGFP-CCND2 vector indeed 

incorporated the plasmid DNA then these cells should be green fluorescent because of the 

EGFP gene transcription. The presence of green fluorescent cells was reviewed under the 

inverted fluorescence microscope. All three generated LNCaP cell clones with a stable cyclin D2 

overexpression (clone 1-3) exhibited about 100% green fluorescent cells (Fig. 3.24A). Cells of 

the control transfected clone (4) without the cyclin D2 construct were also green fluorescent (Fig. 

3.24A). Equally, the two generated PC-3 cell clones stably overexpressing cyclin D2 consisted 

only of green fluorescent cells as well as the cells of the control transfected clone (4) without the 

cyclin D2 construct (Fig. 3.24B). 
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Fig. 3.24: Verification of the presence of green fluorescent cells after transfection with pIES2-EGFP-CCND2. 

The presence of the incorporated EGFP construct from the pIRES2-EGFP-CCND2 plasmid DNA in the human PCa 

cells LNCaP (A) and PC-3 (B) was verified by the presence of green fluorescent cells. For both cell lines the generated 

clones consisted to about 100% of green fluorescent cells. Pictures were taken on the inverse microscope at a 10x 

magnification. 

 

Another method used to show that the generated PCa-pIRES2-EGFP-CCND2 cell clones indeed 

exhibit cyclin D2 overexpression was by immunofluorescence staining. Therefore, cells were 

plated on glass culture slides, fixed with 3.7% formaldehyde after 24 hours and immunostained 

using a cyclin D2-specific antibody. Cells of clone 4 which were transfected with the empty 

pIRES2-EGFP plasmid served as controls. About 100% of the cells of the different clones 

stained positive for cyclin D2. Cells of two control clones (clone 4, respectively) showed no cyclin 

D2 overexpression (Fig. 3.25). 
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Fig. 3.25: Verification of cyclin D2 overexpression in the generated PCa cell clones by immunofluorescence 

staining. The generated cyclin D2 overexpressing LNCaP (A) and PC-3 (B) clones were tested by 

immunofluorescence staining for their cyclin D2 expression. The cells were fixed and stained by the use of a cyclin 

D2-specific antibody (anti-cyclin D2 (M-20)). Nuclei were stained with DAPI. About 100% of the cells stained positive 

for cyclin D2. Cells of control clones which were transfected with the empty pIRES2-EGFP plasmid showed no cyclin 

D2 overexpression (clone 4, respectively). The pictures were taken on a fluorescence microscope at a 20x 

magnification. 

 

3.2.1.2.2 Functional effects of stable and inducible cyclin D2 overexpression 

 

3.2.1.2.2.1 Studies on the proliferation rate of PCa cells with stable or inducible cyclin 

D2 overexpression 

 

The proliferation rate of the cell populations with doxycycline-inducible cyclin D2 overexpression 

and of the cell clones with stable cyclin D2 overexpression was measured every 24 hours for 4 

days by MTT assay. Cells of the two LNCaP+pEBTetD-CCND2 populations, which were treated 

with doxycycline (0.025µg/ml) to induce the cyclin D2 overexpression, showed a statistically 

significant increase in the proliferation rate as compared to LNCaP control cells transfected with 

the empty pEBTetD plasmid (Fig. 26A). 

All three LNCaP clones stably overexpressing cyclin D2 showed an increase in the proliferation 

rate as compared to the LNCaP control clone which did not show cyclin D2 overexpression (Fig. 

3.26B). The same result was observed for the two PC-3 clones overexpressing cyclin D2 which 

also exhibit a slight, but not statistically significant, increased proliferation rate compared to the 

PC-3 control clone (Fig. 26C). 
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Fig. 3.26: Analysis of the proliferation rate of PCa cells stably overexpressing cyclin D2. The proliferation rate 

of the LNCaP+pEBTetD-CCND2 colonies (A), the LNCaP+pIRES2-EGFP-CCND2 cell clones (B) and the PC-

3+pIRES2-EGFP-CCND2 cell clones (C) was measured by MTT assay every 24 hours for 5 days. A) The 

LNCaP+pEBTetD-CCND2 cells were treated with 0.025 µg/ml doxycycline to induce cyclin D2 overexpression. After 

48 hours there was a significant increase in the proliferation rate of cells transfected with the cyclin D2 expression 

vector as compared to the control cells transfected with the empty pEBTetD vector. B) LNCaP-pIRES2-EGFP-CCND2 
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cell clones 1, 2 and 3 with a stable cyclin D2 overexpression have a slightly increased proliferation rate, although not 

statistically significant, as compared to cells of clone 4 without cyclin D2 overexpression. C) The two PC-3+pIRES2-

EGFP-CCND2 cell clones 1 and 3 with a stable cyclin D2 overexpression showed an increased proliferation rate, 

although not statistically significant, as compared to cells of clone 4 without cyclin D2 overexpression. Data are 

presented as mean +/- standard deviation of three proliferation assays. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 

0.001 

 

3.2.1.2.2.2 Studies on the migration rate of PCa cells with stable or inducible cyclin D2 

overexpression 

 

The migration ability of the generated LNCaP and PC-3 clones transfected with the pIRES2-

EGFP-CCND2 expression vector was tested by the transwell migration assay. The cyclin D2 

overexpressing clones of both cell lines had an unexpected increased migration rate as 

compared to control cells (Fig. 3.27). 

 

Fig. 3.27: Analysis of the migration rate of PCa cells stably overexpressing cyclin D2. The migration rate of the 

LNCaP+pIRES2-EGFP-CCND2 cell clones (A) and PC-3+pIRES2-EGFP-CCND2 cell clones (B) was measured by 

the transwell migration assay 24 hours after the cells were transferred to the assay. The cells were fixed, stained with 
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hemalum/eosin and counted under the microscope. A) All three LNCaP cyclin D2 overexpressing cell clones (clone 

1, 2, 3) showed an increase in the proliferation rate as compared to control cells (clone 4) not overexpressing cyclin 

D2. B) The two PC-3 cell clones with a stable cyclin D2 overexpression showed and increased proliferation rate as 

compared to cells of clone 4 without cyclin D2 overexpression. Data are presented as mean +/- standard deviation of 

three migration assays. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 

3.2.2 Cyclin D2 downregulation studies in NIH/3T3 cells 

 

In order to verify the hypothesis that cyclin D2 serves as a tumor suppressor gene in PCa 

previous cyclin D2 overexpression studies were conducted with LNCaP and PC-3 PCa cells from 

which it was expected that they showed less functional effects of a cancer cell. However, 

contrary to the expectation and as demonstrated in the previous experiments, their proliferation 

and migration rate was rather increased. Simultaneously, cyclin D2 downregulation studies were 

conducted with the mouse fibroblast cell line NIH/3T3 to verify the hypothesis from the other 

direction. Here, it was expected that cells with reduced cyclin D2 expression exhibit more 

characteristics of a cancer cell, if cyclin D2 should be a tumor suppressor. 

NIH/3T3 cells, which have a high basal cyclin D2 expression, were transfected with different 

cyclin D2-specific siRNAs or transfected with a generated cyclin D2 shRNA plasmid (pSingle-

tTs-shRNA). Subsequently, the functional effects on migration and invasion behavior were 

analyzed. If cyclin D2 is indeed a tumor suppressor then these fibroblast cells in which the cyclin 

D2 expression is downregulated by either siRNA or shRNA should exhibit more features of a 

cancer cell, e.g. an increased proliferation and migration rate. 

 

3.2.2.1 Influence of reduced cyclin D2 expression on migration behavior of NIH/3T3 cells 

 

The murine fibroblast cells NIH/3T3 were treated with three different siRNAs against cyclin D2 

(siRNA A, B, C). Protein of the transfected cells was isolated to test the efficiency of the siRNAs 

by western blot analysis (Fig. 3.28A). Cyclin D2 siRNA-treated cells had a reduced cyclin D2 

expression as compared to luciferase transfected cells, demonstrating the effectiveness of the 

used siRNAs. Two days after transfection, the migration behavior of the cells was studied by the 

transwell migration assay. The migration rate of the siRNA-treated NIH/3T3 cells was increased 

for all three siRNAs tested in comparison to luciferase control transfected cells (Fig. 3.28B). For 

siRNA B and siRNA C transfected NIH/3T3 cells this effect was statistically very significant.  
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Fig. 3.28: Analysis of the migration rate of NIH/3T3 cells after cyclin D2 downregulation. NIH/3T3 cells were 

treated with three different cyclin D2-specific siRNAs (siRNA A, B, C). 48 hours thereafter the cells were transferred 

to the transwell migration assay and incubated for 24 hours. The cells were fixed, stained with hemalum/eosin and 

counted under the microscope. A) Protein of the transfected cells was isolated to test the efficiency of the siRNAs by 

western blot analysis. Cyclin D2 siRNA-transfected cells had a reduced cyclin D2 expression as compared to 

luciferase transfected cells, demonstrating the effectiveness of the used siRNAs. B) Treatment of NIH/3T3 cells with 

either one of the three cyclin D2 siRNAs induced an increase in the migration rate compared to luciferase control 

transfected cells. Data are presented as mean +/- standard deviation of three independent migration assays. * 0.01 < 

p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 

In order to determine whether the increase in the proliferation rate after cyclin D2 siRNA 

treatment in NIH/3T3 cells is specific for cyclin D2 downregulation, the effect of cyclin D1 

downregulation on the migration rate was also studied. The efficiency of the cyclin D1-specific 

siRNA was tested by western blot analysis (Fig.3.29A) and quantitative real-time PCR 

(Fig.3.29B). Both, total protein and total RNA lysates were isolated from NIH/3T3 cells 48 hours 

after cyclin D1 siRNA transfection. The cyclin D1 siRNA proved to be effective as seen by a 

reduced Ccnd1 expression compared to luciferase control transfected cells in the western blot 

analysis as well as in the quantitative real-time PCR (Fig. 3.29). 
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Fig. 3.29: Confirmation of the effectiveness of the cyclin D1-specific siRNA. A) Whole protein lysate of NIH/3T3 

cells transfected with a cyclin D1-specific siRNA for 48 hours was immunoblotted using a cyclin D1-specific antibody. 

Cyclin D1 siRNA treatment reduced the expression of cyclin D1 in comparison to luciferase control transfected cells. 

Immunoblotting of α-tubulin ensured equal protein loading. B) RNA of NIH/3T3 cells transfected with a cyclin D1-

specific siRNA was isolated 48 hours after transfection and reverse transcribed into cDNA which was subjected to 

quantitative real-time PCR analysis to demonstrate the effectiveness of the cyclin D1-specific siRNA. Cyclin D1 

siRNA-treated cells had a significantly reduced Ccnd1 expression (p= 0.0088) as compared to luciferase-transfected 

cells. Data are presented as mean +/- standard deviation of three quantitative real-time PCR analyses performed in 

triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 

After demonstrating that the cyclin D1 siRNA is effectively downregulating Ccnd1 expression the 

influence on the migration rate of NIH/3T3 cells was investigated. No significant difference 

between the migration rate of cyclin D1 siRNA-transfected and luciferase control-transfected 

cells was observed (Fig. 3.30). 

 

Fig. 3.30: Analysis of the migration rate of NIH/3T3 cells after cyclin D1 downregulation. NIH/3T3 cells were 

transfected with a cyclin D1-specific siRNA. 48 hours thereafter the cells were transferred to the transwell migration 

assay and incubated for 24 hours. The cells were fixed, stained with hemalum/eosin and counted under the 

microscope. Treatment of NIH/3T3 cells with cyclin D1 siRNA induced no changes in the proliferation rate as 

compared to control cells transfected with luciferase. Data are presented as mean +/- standard deviation of three 

migration assays. 
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3.2.2.2 Influence of siRNA-mediated reduced cyclin D2 expression on transformation 

potential of NIH/3T3 cells 

 

One feature of cancer cells is their ability to grow anchorage-independent which can be 

investigated by soft agar assay. If the hypothesis is true that cyclin D2 is a tumor suppressor 

gene, then cells with a reduced or no cyclin D2 expression should exhibit more characteristics 

of a cancer cell.  

To test whether NIH/3T3 cells transfected with a cyclin D2-specific siRNA indeed have the ability 

to grow anchorage-independent the cells were plated in soft agar and incubated for 4 weeks. 

During this period of time no anchorage-independent growth of the NIH/3T3 cells with a reduced 

cyclin D2 expression could be observed (Fig. 3.31). The colon carcinoma cells SW620 cells are 

known to grow anchorage-independent and served as a positive control (Fig. 3.31, Bullard et al., 

2003; Coffey et al., 1986).  

 

Fig. 3.31: Analysis of the anchorage-independent growth of NIH/3T3 cells after cyclin D2 downregulation. 

NIH/3T3 cells were transfected with three different cyclin D2-specific siRNAs (A, B, C). 48 hours thereafter the cells 

were plated into the top layer of a soft agar assay and incubated for 4 weeks. No anchorage-independent cell growth 

could be observed in the cyclin D2 siRNA-transfected NIH/3T3 cells. Luciferase control transfected NIH3T3 cells were 

also not growing in the soft agar assay. The colon carcinoma cells SW620 are known to grow anchorage-independent 

and served as a positive control. They formed visible colonies already after 2 weeks (red arrows). 

 

To exclude the possibility that anchorage-independent growth of cyclin D2 siRNA-transfected 

NIH/3T3 cells could not be observed because of a not proper function of the siRNAs the 

downregulation-efficiency of the three different siRNAs (siRNA A, B, C) on NIH/3T3 cells over a 

period of three weeks was investigated by western blot analysis. As seen in Fig. 3.32 the initial 

downregulation of cyclin D2 by either one of the three siRNAs in week one is abolished after 

three weeks of incubation with the cyclin D2-specifc siRNA. After three weeks siRNA A and C 
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can not efficiently suppress the cyclin D2 expression anymore which is seen by a stronger cyclin 

D2 band in the western blot analysis as compared to the luciferase control transfected cells. 

Therefore, stable downregulation of cyclin D2 is needed. 

 

Fig. 3.32: Testing the cyclin D2-specifc siRNA efficiency during a period of three weeks in mouse fibroblast 

cells. To find out whether siRNA treatment is the appropriate method to test the transformation potential of the mouse 

fibroblast cells NIH/3T3 with a reduced cyclin D2 expression the efficiency of three different cyclin D2-specific siRNAs 

(siRNA A, B, C) was tested. Therefore whole protein lysate of NIH/3T3 cells transfected with the cyclin D2-specific 

siRNA for one, two or three weeks was immunoblotted using a cyclin D2-specific antibody. In the first week, cells 

treated with either one of the siRNAs had a reduced cyclin D2 expression compared to luciferase control transfected 

cells. By week three, cells treated with siRNA A or C had an increased cyclin D2 expression compared to the luciferase 

control transfected cells. Immunoblotting of α-tubulin ensured equal protein loading. 

 

3.2.2.3. Cyclin D2 shRNA studies in NIH/3T3 cells 

 

3.2.2.3.1 Generation of NIH/3T3 cell clones with a stable cyclin D2 downregulation 

 

Since the downregulation of cyclin D2 in NIH/3T3 cells by the use of siRNAs is not effective and 

sufficient over longer periods of time (Fig. 3.32) NIH/3T3 cell clones with stable and inducible 

cyclin D2 downregulation were generated. Therefore, a cyclin D2-specific shRNA construct was 

cloned into the doxycycline-inducible pSingle-tTs-shRNA vector. Test digestion of isolated 

plasmid DNA with the restriction enzyme MluI which has a restriction site exclusively in the 

shRNA sequence ensured proper integration of the cyclin D2 shRNA in the pSingle-tTS-shRNA 

plasmid (Fig. 3.33) which was also verified by sequence analysis (data not shown). 
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Fig. 3.33: Test digestion of pSingle-tTs-Ccnd2-shRNA clones. Competent DH5α cells were transformed with the 

pSingle-tTs-Ccnd2-shRNA vector. Plasmid DNA of single clones was isolated and digested with the restriction 

enzyme MluI. The single restriction site of MluI is located in the shRNA sequence. All of the five clones tested (1-5) 

could be successfully digested with the restriction enzyme MluI, indicating the effective integration of the shRNA 

construct into the pSingle-tTs-shRNA vector. 1kb: 1Kb Plus DNA-ladder 

 

NIH/3T3 cells were transfected with the pSingle-tTs-Ccnd2-shRNA vector using Metafectene® 

Pro transfection reagent. To generate single-cells clones, two days after transfection cells were 

serially diluted and plated into petri dishes. From the next day on transfected cells were selected 

by treatment with 400µg/ml G418. Colonies of NIH/3T3 fibroblast cells expressing the resistance 

marker could be generated by app. 21 days of growth in medium containing G418 selection 

agent. Single-cell clones were picked and further cultured in the presence of G418. Total RNA 

and whole protein lysate were isolated from cell clones to test by quantitative real-time PCR and 

western blot analysis whether stable transfection was successful and if the cells indeed exhibited 

a doxycycline inducible downregulation of cyclin D2 by RNA interference. NIH/3T3 cells not 

treated with doxycycline served as controls.  

Subsequently, several different NIH/3T3 clones were tested but only one clone (clone No. 11) 

showed an efficient downregulation of cyclin D2 after treatment with doxycycline. Quantitative 

real-time PCR (Fig. 3.34A) demonstrated a downregulation of cyclin D2 expression of about 60 

% in the NIH/3T3 cell clone No. 11 when treated with 0.1 µg/ml doxycycline, as compared to 

control cells without doxycycline treatment. The downregulation of cyclin D2 after doxycycline 

treatment with different concentrations was confirmed by western blot analysis (Fig. 3.34B). 
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Fig. 3.34: Confirmation of the doxycycline-inducible downregulation of cyclin D2 in mouse fibroblast cells 

after transfection with pSingle-tTs-Ccnd2-shRNA. Cells of NIH/3T3 clone No. 11 stably transfected with the 

pSingle-tTs-Ccnd2-shRNA plasmid were treated with three different concentrations of doxycycline (0.01, 0.05 and 0.1 

µg/ml) to induce transcription of the cyclin D2 shRNA. 72 hours thereafter total RNA and whole protein lysate were 

isolated from the cells. A) Of the isolated RNA cDNA was generated by reverse transcription on which the expression 

of cyclin D2 was tested by quantitative real-time PCR using cyclin D2-specific primers. A reduced cyclin D2 expression 

of NIH/3T3-pSingle-tTs-Ccnd2-shRNA clone No. 11 after treatment with either one of three different tested 

doxycycline concentrations compared to the control cells without doxycycline treatment could be observed. Thereby 

the strongest downregulation of cyclin D2 was seen by the highest doxycycline concentration tested (0.1 µg/ml). 

Treatment of NIH/3T3 clone No. 11 cells with 0.1 µg/ml doxycycline reduced the cyclin D2 expression by about 60% 

as compared to cells that were not treated with doxycycline. B) Whole protein lysates were immunoblotted using a 

cyclin D2-specific antibody. Western blot analysis revealed a reduced cyclin D2 expression of NIH/3T3-pSingle-tTs-

Ccnd2-shRNA clone No. 11 after treatment with either one of three different tested doxycycline concentrations as 

compared to the control cells without doxycycline treatment, confirming the quantitative real-time PCR data. 

Immunoblotting of α-tubulin ensured equal protein loading. Data are presented as mean +/- standard deviation of 

three quantitative real-time PCR analyses performed in triplicate. * 0.01 < p ≤ 0.05, ** 0.001 ≤ p < 0.01, *** p ≤ 0.001 

 

3.2.2.3.2 Studies on the proliferation rate of NIH/3T3 cells with shRNA-mediated cyclin 

D2 downregulation  

 

In order to test the hypothesis that cyclin D2 displays the features of a tumor suppressor gene 

then NIH/3T3 cells with reduced cyclin D2 expression (in this case by shRNA) should exhibit 

more characteristics of cancer cells, e.g. an increased proliferation rate as compared to NIH/3T3 

cells with a normal cyclin D2 expression. Therefore, cells of the generated NIH/3T3-pSingle-tTs-

Ccnd2-shRNA clone No. 11 were plated into 96-well plates. The next day cells were treated with 

three different concentrations of doxycycline (0.05 µg/ml; 0.1 µg/ml; 1.0 µg/ml) as well as with 
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the PMS/MTS solution of the MTT assay. Two hours later the first proliferation was measured 

and then every 24 hours for 4 consecutive days by a MTT assay. The doxycycline treated cells 

had a slight tendency to a reduced, although not statistically significant, proliferation rate as 

compared to control cells which were not treated with doxycycline (Fig. 3.35). 

 

Fig. 3.35: Analysis of the proliferation rate of NIH/3T3 cells with an inducible cyclin D2 downregulation. The 

proliferation rate of NIH/3T3-pSingle-tTs-Ccnd2-shRNA clone No. 11 cells was measured by a MTT assay every 24 

hours after plating the cells to the 96-well plate for 5 consecutive days. On the first day of the measurement the cells 

were treated with three different concentrations of doxycycline (0.05 µg/ml; 0.1 µg/ml; 1.0 µg/ml) to induce cyclin D2 

shRNA expression. NIH/3T3 cells not treated with doxycycline served as a control. Overall, the doxycycline treatment 

of NIH/3T3-pSingle-tTs-Ccnd2-shRNA clone No. 11 resulted in a reduced, although not statistically significant, 

proliferation rate as compared to control cells which were not treated with doxycycline. Data are presented as mean 

+/- standard deviation of three proliferation assays. 

 

3.2.2.3.3.3 Influence of shRNA-mediated reduced expression of cyclin D2 on the 

transformation potential of NIH/3T3 cells 

 

The previous soft agar assay performed with cyclin D2 siRNA-transfected NIH/3T3 cells revealed 

no transformation potential of these cells, presumably because siRNA transfection is not 

effective for downregulation of cyclin D2 over a longer time period. Therefore, the soft agar assay 

was repeated with cells of NIH/3T3-pSingle-tTs-Ccnd2-shRNA clone No. 11 treated with 

doxycycline to induce stable cyclin D2 downregulation. Control cells were not treated with 

doxycycline. But again, even with stable cyclin D2 downregulation no transformation potential 

by anchorage-independent growth of the NIH/3T3-pSingle-tTs-Ccnd2-shRNA clone No. 11 cells 

after a four week incubation period could be observed (data not shown). Therefore, NIH/3T3-

pSingle-tTs-Ccnd2-shRNA clone No. 11 cells were additionally transiently transfected with 

pEGFP-KRAS and pEGFP-KRAS-G12V, which was shown to induce anchorage-independent 
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growth in fibroblasts (Barr and Johnson 2001, Song et al. 2002, Hoque et al. 2006). As a control 

cells of the NIH/3T3-pSingle-tTs-Ccnd2-shRNA clone No. 11 were transiently transfected with 

the empty pEGFP plasmid. The soft agar assay was done after 48 hours of doxycycline 

treatment with a concentration of 0.1 µg/ml. The NIH/3T3- pSingle-tTs-Ccnd2-shRNA clone 11 

alone acquired no transformation potential, since no colonies were growing in the soft agar (Data 

not shown). The soft agar assay with the KRAS oncogene transfected cells could not be 

evaluated since the transfection efficiency was not sufficient (data not shown). 

 

3.2.3 Studies on the functional consequences of cyclin D2 downregulation in VPA- 

treated PCa cells 

 

Witt et al. (2013) could show that VPA treatment of PCa cells specifically led to a re-expression 

of cyclin D2. Because the cyclin D2 promoter region is hypermethylated cyclin D2 expression is 

downregulated in PCa. Treatment of PCa cells with the histone deacetylase inhibitor VPA 

induced increased acetylation of the cyclin D2 promoter and consequently re-expression of 

cyclin D2 (Witt et al., 2013). Witt et al. could also show that VPA treatment of PCa cells reduced 

the ability of the cells to proliferate, a characteristic of cancer cells. To study the possible 

connection between the increased cyclin D2 expression and the reduced proliferation of PCa 

cells after VPA treatment an experiment was conducted where human and mouse PCa cells 

(LNCaP, DU145, PC-3 and 2E) were first transfected with two different cyclin D2-specific siRNAs 

and at the following day transfected cells were treated with different concentrations of VPA (1mM 

and 5mM). Simultaneously, the proliferation rate was measured by a MTT assay. Cyclin D2 

siRNA treatment was supposed to prevent the VPA-induced re-expression of cyclin D2 and 

should thereby lead to an increase in the proliferation in case cyclin D2 would be responsible for 

the VPA-induced reduced proliferation of PCa cells. Since the efficiency of the three mouse 

cyclin D2-specific siRNAs had already been tested by western blot on proteins isolated from 

mouse NIH/3T3 cells transfected with the siRNAs (see Fig. 3.28A), the human cyclin D2-specific 

siRNAs (siRNA A, B, C) still had to be tested regarding their efficient downregulation of cyclin 

D2. Therefore, the human colon epithelial cancer cell line CaCo-2, which is known to express 

human cyclin D2, were transfected with the human cyclin D2-specific siRNAs and 120 hours 

later total amount of protein was isolated and immunoblotted with a cyclin D2-specific antibody. 

Human cyclin D2 siRNA A and B led to a sufficient downregulation of cyclin D2 whereas siRNA 

C led only to a minor downregulation of cyclin D2 as compared to the luciferase control 

transfected cells (Fig. 3.36). For the following study of simultaneous cyclin D2 siRNA treatment 

and VPA treatment only human cyclin D2 specific siRNA A and B were used. 
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Fig. 3.36: Testing the efficiency of three different human cyclin D2-specific siRNAs in CaCo2 cells. Human 

colon epithelial cancer cells CaCo-2 were transfected with three different cyclin D2-specific siRNAs (A, B, C) and 120 

hours later protein was isolated from the cells. Whole protein lysate was immunoblotted using a cyclin D2-specific 

antibody. Transfection with either siRNA A or siRNA B led to an efficient cyclin D2 downregulation as compared to 

the luciferase control transfected cells. Transfection with siRNA C had only minor effects on cyclin D2 downregulation. 

Immunoblotting of HSC70 ensured equal protein loading. 

 

After testing the efficiency of the human cyclin D2-specific siRNAs human and mouse PCa cells 

(LNCaP, DU145, PC-3 and 2E) were transfected with two different cyclin D2 specific siRNAs 

(LNCaP, DU145, PC-3 cells: human-specific siRNAs A and B; 2E cells: mouse-specific siRNAs 

B and C) and controls were transfected with luciferase. The following day, the transfected cells 

were treated with different concentrations of VPA (1mM and 5mM) before the proliferation rate 

was measured by a MTT assay for 96 consecutive hours (Fig 3.37).  

Control cells that were transfected only with the siRNA but were not treated with VPA exhibited 

a reduced proliferation rate as compared to luciferase transfected cells during the four day study. 

In PC-3 and LNCaP cells this effect was time-dependent. An increased proliferation rate as 

compared to the control was observed in 2E cells after 48 and 96 hours and in LNCaP cells 

during the first two days, although this was a minor effect (Fig.37, left panel). Upon VPA 

treatment of all four cell lines their proliferation rate decreased further as compared to the 

controls in a concentration-dependent manner (only shown four one time point (48 hours), 

Fig.37, right panel). The only exception here was observed in PC-3 cells transfected with siRNA 

B and treated with 1mM VPA, where the proliferation rate slightly increased. 

Here it was expected, that cells which have a reduced cyclin D2 expression due to siRNA-

transfection would have an increased or comparable proliferation rate to controls upon VPA 

treatment. The known increased cyclin D2 expression after VPA treatment should be prevented 

by the siRNA which should lead to an increased proliferation rate in case cyclin D2 is directly 

responsible for the decreased proliferation rate observed in 2E cells (Witt et al., 2013). But 

contrary to the expectation, VPA treatment of the siRNA-transfected cells further decreased the 

proliferation rate. This could be due to the fact that downregulation of cyclin D2 expression via 

siRNA is not sufficient to prevent VPA-induced re-expression of cyclin D2. This assumption is 

31 kDa 

70 kDa 
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supported by the observation from a quantitative real-time PCR analysis which showed that 

cyclin D2 siRNA-transfected 2E cells still exhibited an increased cyclin D2 expression upon VPA 

treatment as compared to controls by using quantitative real-time PCR analysis (data not 

shown).  
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Fig. 3.37: Analysis of the proliferation rate in VPA-treated PCa cells with a reduced cyclin D2 expression. The 

mouse PCa cells 2E and the human PCa cells PC-3, LNCaP and DU145 were transfected with two different cyclin 

D2-specific siRNAs (human: siRNA A and B; mouse: siRNA B and C). Cells transfected with luciferase served as 

control. The day following transfection the cells were treated with either 1mM or 5mM VPA. Controls were not treated 

with VPA. Simultaneously, PMS/MTS solution was added to the cells and two hours later the measurement of the 

proliferation rate started by a MTT assay, which was conducted for 96 consecutive hours. Here, the proliferation rate 

for transfected control cells (no VPA treatment) over the time course is depicted on the left panel. The human PCa 

cell lines transfected with either one of the two siRNAs exhibit a reduced proliferation rate as compared to luciferase-

transfected cells, which was time-dependent in PC-3 and LNCaP cells. In 2E cells, after 48 and 96 hours and in 

LNCaP cells during the first 48 hours the proliferation rate is slightly increased as compared to controls. On the right 

panel, the proliferation rate for the four cell lines upon VPA treatment is represented for one time point, namely after 

48 hours. In all cell lines analyzed, the proliferation rate decreased further upon VPA treatment in a concentration-

dependent manner as compared to untreated controls. Solely in PC-3 cells transfected with siRNA B and treated with 

1mM VPA a slight increase in the proliferation rate was observed. This experiment was conducted once. 

 

3.2.4 Generation of a conditional cyclin D2 knockout mouse model 

 

3.2.4.1 Establishment of the Ccnd2fl/fl and PB-Cre4+ mouse lines 

 

To investigate the function of cyclin D2 in vivo a conditional cyclin D2 knockout mouse model 

was generated. The Cre-Lox system relies on the DNA recombinase Cre and its recognition 

(loxP) sites. For conditional mutagenesis, a target gene is modified by the insertion of two loxP 

sites that enable the excision of the flanked (floxed) gene segment through Cre-mediated 

recombination. Conditional mutant mice are obtained by crossing the floxed strain with a Cre 

transgenic mouse line such that the target gene becomes inactivated in vivo within the 

expression pattern of Cre (Friedel et al., 2011).  

Two male homozygous Ccnd2fl/fl mice with a C57bl/6N background were obtained from Peter 

Sicinski at the Dana Faber Institute in Boston, USA. The scheme of the cyclin D2 floxed construct 

is depicted in Fig. 3.38A. Exon 1 and 2 are flanked by loxP sites and will be excised upon Cre-

mediated recombination. A male and a female heterozygous PB-Cre4+ mouse were obtained 

from Xiantuo Wu, Keck School of Medicine, University of Southern California, Los Angeles, USA 

(Wu et al., 2001). This established mouse line carries the Cre gene under the control of a 

composite promoter, ARR2PB, containing two tandem repeats of the androgen responsive 

region and PB, which is a derivative of the rat prostate-specific probasin (PB) promoter. It 

ensures specific post-natal expression only in prostate epithelial cells. The scheme of the 

constructed cassette (ARR2PB-Cre-SV40) is depicted in Fig. 3.38B. 
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Fig. 3.38: Scheme of the cyclin D2 floxed construct and the Cre construct. A) The cyclin D2 target gene was 

modified by P.Sicinski (Dana Faber Institute, Boston, USA) by the insertion of two loxP sites flanking Exon 1 and Exon 

2. These loxP sites can be recognized by the Cre-recombinase and excised upon Cre-mediated recombination. B) 

The Cre transgene construct carries the Cre gene under the control of the composite ARR2PB promoter which is a 

derivative of the rat prostate-specific probasin (PB) promoter, followed by a SV40 polyadenylation sequence. The PB 

promoter ensures specific post-natal expression only in prostate epithelial cells. 

 

To establish a colony of the purchased Ccnd2fl/fl mice, the obtained two male mice were mated 

with female C56bl/6N wild type mice (Fig. 3.39A). In the F1 generation heterozygous Ccnd2fl/+ 

mice were obtained which were mated with heterozygous Ccnd2fl/+ mice from the second line to 

generate homozygous Ccnd2fl/fl mice (Fig.3.39A).  

For the establishment of a colony of the purchased PB-Cre4+ mice, the heterozygous male and 

female mice were mated with female and male C56bl/6N wild type mice, respectively 

(Fig.3.39B). The genotype of the offspring was determined by genotyping PCR. Therefore, 

genotyping-specific primers were used on genomic DNA isolated from a mouse tail biopsy. 

Cyclin D2 floxed-specific primers amplified a 260 bp product from the wild type allele and a 500 

bp product from the floxed allele (Fig. 3.39A).The Cre-specific primers amplified an app. 500 bp 

product from the Cre allele (Fig.3.39B). 
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Fig. 3.39: Mating scheme for the establishment of the Ccnd2fl/fl and PB-Cre4+ mouse lines and genotyping 

PCR. The obtained Ccnd2fl/fl mice (A) as well as the PB-Cre4+ mice (B) were mated to C57bl/6N wild type mice to 

establish a colony of these lines. The genotype of the mice was determined by genotyping PCR using genotyping-

specific primers and genomic DNA derived from a tail biopsy. Cyclin D2-floxed specific primers identified a 260 bp 

product from the wild type (wt) allele and a 500 bp product from the floxed allele. The Cre-specific primers identified 

an app. 500 bp product from the Cre allele. A known heterozygous sample was used as positive control and ddH2O 

was used as negative control. A) Heterozygous Ccnd2fl/+ mice of the F1 generation were mated with heterozygous 

Ccnd2fl/+ mice to receive homozygous Ccnd2fl/fl mice again in the F2 generation. B) The obtained heterozygous PB-

Cre4+ mice were mated with C57bl/6N wild type mice to establish a colony of heterozygous PB-Cre4+ mice. 1kb: 1 

Kb Plus DNA-ladder 

 

3.2.4.2 Generation of Ccnd2fl/fl/Cre+ mice 

 

According to Birbach, female PB-Cre4 mice can display aberrant Cre activity due to Cre 

expression in the oocyte (Birbach, 2013). When transmitted through male mice the Cre 

expression cassette is exclusively expressed in the prostate epithelium. However, when 

transmitted through female mice, recombination with loxP-flanked alleles can occur in many 

different tissues, resulting in different outcomes for maternally or paternally transmitted loxP-

flanked alleles. Paternally transmitted loxP-flanked alleles will give rise to mosaic expression 
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patterns in the offspring since they undergo recombination inefficiently, whereas maternally 

transmitted loxP-flanked alleles undergo recombination very efficiently (monoallelic Cre deleted 

line, Birbach, 2013). To avoid aberrant Cre-activity in the conditional cyclin D2 knockout mice 

female Ccnd2fl/fl
 had to be mated to male PB-Cre4+ mice (Fig.3.40).  

For the main mating homozygous female Ccnd2fl/fl
 mice were bred with heterozygous male PB-

Cre4+ mice to generate heterozygous Ccnd2fl/+/Cre+ mice in the F1 generation. Male 

Ccnd2fl/+/Cre+ mice were then crossed again with homozygous female Ccnd2fl/fl
 mice to generate 

homozygous Ccnd2fl/fl/Cre+ conditional knockout mice in the F2 generation (Fig. 3.40A). The 

genotype of the offspring was determined by genotyping PCR using genotyping-specific primers. 

Genomic DNA was isolated from a mouse tail biopsy and then subjected to two different 

genotyping PCRs (Fig. 3.40B). Using cyclin D2 floxed-specific primers a 260 bp product from 

the wild type allele, a 500 bp product from the floxed allele and a 423 bp product from the deleted 

allele were amplified, respectively. The Cre-specific primers amplified an app. 500 bp product 

from the Cre allele. Animal numbers 123 and 124 show the desired Ccnd2fl/fl/Cre+ genotype (Fig. 

3.40B). 
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Fig. 3.40: Mating scheme for the generation of homozygous conditional cyclin D2 knockout mice and 

genotyping PCR. A) Female homozygous Ccnd2fl/fl mice were mated with male heterozygous PB-Cre4+ mice. Male 

heterozygous Ccnd2fl/+/Cre+ mice obtained in the F1 generation were further mated to homozygous Ccnd2fl/fl. The F2 

generation yielded homozygous Ccnd2fl/fl/Cre+. B) The genotype of the offspring was determined by two different 

genotyping PCRs using genotyping-specific primers. Genomic DNA was derived from a tail biopsy. In one PCR cyclin 

D2 floxed-specific primers were used and amplified a 260 bp product from the wild type (wt) allele, a 500 bp product 

from the floxed allele and a 423 bp produced from the deleted allele. In the second PCR Cre-specific primers were 

used and amplified an app. 500 bp product from the Cre allele. ddH2O was used as negative control. Animal numbers 

123 and 124 have the desired Ccnd2fl/fl/Cre+ genotype. 1kb: 1 Kb Plus DNA-ladder 

 

3.2.4.3 Verification of the prostate-specific cyclin D2 knockout  

 

Genomic DNA of different mouse tissues, including testis, kidney, liver, intestine, spleen and 

prostate, from putative heterozygous and homozygous conditional cyclin D2 knockout mice was 

analyzed to verify the prostate-specific cyclin D2 knockout. 

For the PCR analysis of conditional knockout mice the genotypic-specific primers were used: D2 

FLOX 3', D2 FLOX5' and D2 Delta. These primers amplified a 500 bp product from the D2 floxed 

allele, a 423 bp product from the knockout allele (both encircled in green, Fig.3.41) and a 260 

bp product from the wild type sequence in the tissue of heterozygous Ccnd2fl/+/Cre+ mice (Fig. 

3.41). The tissue of homozygous Ccnd2fl/fl/Cre+ knockout mice showed two bands in the prostate 

where only one band for the deleted cyclin D2 allele was expected (423 bp, Fig. 3.41). This 

observation is probably due to the fact that DNA from a mixture of cells (e.g. epithelial cells and 

stromal cells) from the mouse prostate was analyzed and not exclusively pure epithelial cells 

from the prostate gland. 
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Fig. 3.41: Results of genotyping PCR on tissue DNA isolated from heterozygous and homozygous conditional 

cyclin D2 knockout mice. Genomic DNA of different tissues, including testis, kidney, liver, intestine, spleen and 

prostate, was isolated from Ccnd2fl/+/Cre+ and Ccnd2fl/fl/Cre+ mice. PCR analysis using the specific D2 FLOX 3', D2 

FLOX5' and D2 Delta primers amplified a 500 bp product from the cyclin D2 floxed allele, a 260 bp product from the 

wild type sequence and a 423 bp product from the knockout allele. The heterozygous Ccnd2fl/+/Cre+ knockout mice 

showed three bands in the prostate. As expected, the 500 bp band for the floxed allele and the 423 bp band for the 

deleted allele (green circle) as well as the band for the wild type (wt) allele are visible. The homozygous Ccnd2fl/fl/Cre+ 

knockout mice showed two bands in the prostate (red circle) where only one band for the deleted allele was expected. 

1kb: 1 Kb Plus DNA-ladder 

 

Since by PCR analysis the prostate-specific cyclin D2 knockout could only partially be confirmed, 

two other methods were applied to show that the generated conditional cyclin D2 knockout mice 

indeed show a prostate-specific deletion of cyclin D2. On the one hand the expression of cyclin 

D2 in different tissues of heterozygous and homozygous conditional cyclin D2 knockout mice 

was tested on the RNA level by quantitative real-time PCR analysis (Fig. 3.42A) and on the other 

hand on the protein level by western blot analysis (Fig. 3.42B). But again, both methods did not 

reveal a reduced cyclin D2 expression in prostate tissue of Ccnd2fl/fl/Cre+ mice compared to 

Ccnd2fl/+/Cre+ mice (Fig. 3.42, red circle). This result was predictable, because also in the 

present experiment a mixture of prostate cells from the Ccnd2fl/fl/Cre+ was analyzed and not pure 

prostate epithelial cells. 
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Fig. 3.42: Quantitative real-time PCR and western blot analyses of Ccnd2fl/+/Cre+ and Ccnd2fl/fl/Cre+ mice. A) 

RNA was isolated from different tissues of heterozygous and homozygous Ccnd2fl/+/Cre+
 and Ccnd2fl/fl/Cre+ mice. 

RNA was reverse transcribed into cDNA and the expression of cyclin D2 was analyzed by quantitative real-time PCR. 

A reduced cyclin D2 expression in the prostate tissue of Ccnd2fl/fl/Cre+ mouse as compared to the prostate tissue of 

Ccnd2fl/+/Cre+
 mouse could not be observed. B) Whole protein lysate of different mouse tissues from Ccnd2fl/+/Cre+

 

and Ccnd2fl/fl/Cre+ mice was immunoblotted using a cyclin D2-specific antibody. In the prostate tissue of Ccnd2fl/fl/Cre+
 

mice cyclin D2 expression was still detectable (red circle) and similarly expressed as compared to prostate tissue of 

heterozygous Ccnd2fl/+/Cre+
 mice. Immunoblotting of HSC70 ensured equal protein loading. Data are presented as 

mean +/- standard deviation of three quantitative real-time PCR analyses performed in triplicate. P: prostate, T: testis, 

K: kidney, L: liver, C: colon 

 

Immunohistochemistry was also applied to verify the prostate-specific cyclin D2 knockout in 

epithelial cells of the prostate from Ccnd2fl/fl/Cre+ mice. Therefore paraffin sections of the 

prostate of Ccnd2fl/fl/Cre+ mice were stained with a cyclin D2-specific antibody. Due to the fact 

that the cyclin D2-specific antibody used for this experiment showed an unspecific staining 

pattern, a specified conclusion of the cyclin D2 expression could not be drawn from the 

immunohistochemistry data (data not shown). Because the verification of the prostate-specific 
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cyclin D2 knockout in Ccnd2fl/fl/Cre+ mice could only partially be confirmed by PCR analysis, but 

not quantitative real-time PCR studies as well as western blot analyses, respectively, these 

methods are not appropriate to detect a cyclin D2 conditional knockout. Therefore, a still ongoing 

approach is to verify the cyclin D2 conditional knockout in prostate epithelial cells of 

Ccnd2fl/fl/Cre+ mice on the RNA level by in situ hybridization. 

 

3.2.4.4 Mating of the putative conditional cyclin D2 knockout mice with TRAMP mice 

 

To study the influence of cyclin D2 on the development and progression of PCa putative male 

Ccnd2fl/fl/Cre+ were mated with heterozygous TRAMP mice (T+). Male heterozygous F1 offspring 

was mated again to homozygous Ccnd2fl/fl mice to generate TRAMP mice with a homozygous 

conditional cyclin D2 knockout (Ccnd2fl/fl/Cre+/T+, Fig.3.43A). TRAMP mice are an established 

PCa mouse model in which the oncogene SV40 T/t antigen is specifically expressed in prostate 

epithelial cells under the control of the rat probasin promoter (Gingrich et al., 1997). The prostate-

specific expression of the oncogene results in the development of a prostate adenocarcinoma 

which is reported to develop around week 18 in TRAMP mice (Gingrich et al., 1997)). If cyclin 

D2 is expected to display tumor suppressive functions in PCa then it can be presumed that in 

double transgenic TRAMP mice which lack prostate-specific cyclin D2 expression 

(Ccnd2fl/fl/Cre+/T+) the prostate tumor development and progression would be enhanced as 

compared to the tumor development of single transgenic TRAMP mice. 

From the above described mating there is only a minor chance of 12.5% to receive male TRAMP 

mice with a prostate epithelium-specific homozygous conditional cyclin D2 knockout. The 

genotype of the offspring was determined by genotyping PCR using genotyping-specific primers. 

Genomic DNA was isolated from a mouse tail biopsy and then subjected to three different 

genotyping PCRs (Fig. 3.43B). Using cyclin D2 floxed-specific primers a 260 bp product from 

the wild type allele, a 500 bp product from the floxed allele and a 423 bp product from the deleted 

allele were amplified, respectively. Cre-specific primers amplified an app. 500 bp product from 

the Cre allele. TRAMP mouse-specific primers amplified a 200 bp product from the TRAMP 

allele. Animal number 103 displayed the desired Ccnd2fl/fl/Cre+/T+ genotype (Fig. 3.43B). 
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Fig. 3.43: Mating scheme for the generation of TRAMP mice with conditional homozygous cyclin D2 knockout 

and genotyping PCR. A) Homozygous Ccnd2fl/fl/Cre+ were mated with heterozygous TRAMP mice (T+). In the F1 

generation heterozygous Ccnd2fl/+/Cre+/T+ mice were generated and further mated to homozygous Ccnd2fl/fl mice. 

There is a 12.5% chance to receive TRAMP mice with the desired genotype Ccnd2fl/fl/Cre+/T+ in the F2 generation. 

B) The genotype of the offspring was determined by three different genotyping PCRs using genotyping-specific 

primers. Genomic DNA was derived from a tail biopsy. One PCR used cyclin D2 floxed-specific primers and amplified 

a 260 bp product from the wild type (wt) allele, a 500 bp product from the floxed allele and a 423 bp produced from 

the deleted allele. The second PCR used Cre-specific primers that amplified an app. 500 bp product from the Cre 

allele. In the third PCR TRAMP mouse-specific primers were used and a 200 bp product from the TRAMP allele was 

amplified. A known heterozygous sample as well as ddH2O was used as positive and negative controls, respectively. 

Animal number 103 showed the desired Ccnd2fl/fl/Cre+/T+ genotype. 1kb: 1Kb Plus DNA-ladder 

 

Until now, only seven mice with the correct Ccnd2fl/fl/Cre+/T+ genotype could be obtained, of 

which the oldest mice is 18 weeks old. These animals are subject to routinely palpation of the 

prostate in order to determine the onset of tumor development and to study the progression of 

the prostate tumor. To date, none of the seven Ccnd2fl/fl/Cre+/T+ have developed a PCa. In 

contrast, three heterozygous Ccnd2fl/+/Cre+/T+ mice had a palpable PCa and had to be sacrificed. 
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It turned out that two of these heterozygous Ccnd2fl/+/Cre+/T+ mice had seminal vesicle 

carcinoma and one had a macroscopic PCa. The mouse which had a PCa was just 16 weeks 

old. 

Due to the small number of Ccnd2fl/fl/Cre+/T+ mice and their young age no conclusions can be 

drawn at the moment on the physiological role of cyclin D2 in PCa development and progression. 
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4. Discussion 

4.1 Summary of results 

 

One of the two main parts of the present study was the investigation of VPA as a putative 

candidate for the therapy of PCa. In a previous study, using microarray analysis several 

candidate genes were identified which were deregulated in mouse 2E PCa cells when treated 

with VPA (Witt, 2009). These genes included the downregulated genes chemokine (C-X-C motif) 

ligand 15 (Cxcl15), which codes for a cytokine of the CXC chemokine family, RCC1 and BTB 

domain-containing protein 2 (Rcbtb2) coding for a member of the RCC1-related GEF family, both 

transcript variants of ceruloplasmin (Cp), which is the main copper transporting protein of blood, 

and leukemia inhibitory factor (Lif), which codes for a class 6 interleukin. Candidate genes that 

were upregulated after VPA treatment included ubiquitin carboxy-terminal hydrolase L1 (Uchl1), 

which codes for a de-ubiquitinising enzyme, tyrosine-protein phosphatase-like N (Ptprn), which 

codes for a member of the protein tyrosine phosphatase family and cyclin D2 (Ccnd2), which 

codes for a member of the strongly conserved D-type cyclin family (Witt, 2009). 

In the present study, the expression of these candidate genes was analyzed by quantitative real-

time PCR analyses in prostate tumor tissue and prostate tissue of VPA-treated TRAMP mice. 

The prostate tumor tissue was derived from an in vivo VPA experiment conducted by Witt during 

her Ph.D. thesis (Witt, 2012). Since in this first in vivo VPA treatment experiment the tumors 

were isolated at different time points of age and different treating durations, which could result 

in differential expression of genes, a new in vivo VPA treatment experiment was conducted 

during this study. The mice were sacrificed at the age of 16 weeks after 10 weeks of VPA 

treatment and their prostates were isolated for molecular investigation.  

In prostate tumor tissue of VPA-treated TRAMP mice Cp2 and Lif were statistically significant 

downregulated compared to control-treated mice as revealed by quantitative real-time PCR. 

Uchl1, Ptprn and Ccnd2 exhibited a different expression pattern to the array result (Witt, 2009). 

Using western blot analysis the increased Ccnd2 expression after VPA treatment observed in 

the microarray could be confirmed in prostate tumor tissue. 

In prostate tissue derived from the second in vivo VPA treatment experiment, the expression 

pattern was more similar to the microarray data. The downregulation of Cp2 as wells as the 

upregulation of Ptprn and Uchl1 in prostate tissue of VPA-treated mice compared to prostate 

tissue of control-treated mice could be confirmed. This indicates that VPA treatment is more 

effective in the deregulation of the candidate genes at the onset of PCa development. 
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In human PCa cells, including LNCaP, DU145 and PC-3, the expression of the candidate gene 

CP was investigated by quantitative real-time PCR analysis. For all three human PCa cell lines 

a concentration- and time-dependent decrease in CP expression after VPA treatment could be 

observed, whereas by western blot analysis the opposite effect was detected.  

Since two of the above mentioned candidate genes, namely Cp and Cxl15, are associated with 

angiogenesis, a major project of the present study was the investigation of the influence of in 

vitro and in vivo VPA treatment on tumor- and tumor cell angiogenesis as well as on 

lymphangiogenesis. Primarily, these studies consisted of expression analyses of angiogenesis 

and lymphangiogenesis markers. The markers included the angiogenic cytokines vascular 

endothelial growth factor A and C (Vegfa, Vegfc) and angiopoietin 1 (Ang1), three endothelial 

cell receptor tyrosine kinases (vascular endothelial growth factor receptor 1 (Flt-1/Vegfr1), 

vascular endothelial growth factor receptor 2 (Kdr/Vegfr2) and tyrosine kinase with 

immunoglobulin-like and EGF-like domains 1 (Tie-1)), the soluble form of Vegfr2 (sVegfr2) and 

an endothelial cell adhesion molecule, platelet endothelial cell adhesion molecule (Pecam-1).  

In VPA-treated 2E PCa cells almost all angiogenesis markers mentioned above were 

significantly downregulated in a concentration- and partially time-dependent manner as 

compared to control cells, except for the two receptors Flt-1/Vegfr1 and Kdr/Vegfr2, which were 

statistically significant upregulated. By western blot analysis it was shown that the VEGFR2 

receptor signaling pathway gets activated after 144 hours of VPA treatment in 2E cells as seen 

by an increased level of the phosphorylated receptor. 

VEGFA expression was also shown to be statistically significant downregulated in human PC-3 

PCa cells upon VPA treatment and in prostate tumor tissue of in vivo VPA-treated TRAMP mice. 

Solely in prostate tissue of VPA-treated TRAMP mice it exhibited a similar expression pattern to 

controls. Ang1, Tie-1, Kdr/Vegfr2 and Pecam-1 were downregulated in both, prostate tissue and 

prostate tumor tissue of VPA-treated TRAMP mice. KDR/VEGDR2 expression was increased 

after VPA treatment in PC-3 cells, similar to 2E cells. FLT-1/VEGFR1 expression was also 

downregulated in PC-3 cells upon VPA treatment and in prostate tissue of in vivo VPA-treated 

TRAMP mice, but its expression was unchanged in prostate tumor tissue. The expression of 

VEGFC and the lymphangiogenesis inhibitor sVEGFR2 in PC-3 cells was dependent on the time 

of VPA treatment: it increased after 72 hours of VPA treatment but decreased after 144 hours.  

Taken together, these data confirm that VPA is an alternative treatment option for PCa, mainly 

because of the induced deregulation of the above mentioned candidate genes associated with 

PCa and especially because it exerts anti-angiogenic properties, for both, blood and 

lymphangiogenesis, which has not been described to date for the latter.  
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To confirm the influence of VPA treatment on angiogenesis several chicken chorioallantoic 

membrane (CAM) experiments were conducted using the human PCa cells PC-3 and the mouse 

PCa cells 2E. These cells underwent different VPA pre-treatment strategies using different VPA 

concentrations. Macroscopic analysis of the CAM tumors revealed that tumors could be affected 

in three different ways: either by bloody spots within the tumor, by bloodshot tumors or by 

disturbed blood vessel formation. VPA treatment of PC-3 cells resulted in a reduced number of 

bloodshot tumors in two experiments. The other observations for 2E and PC-3 cell tumors were 

not consistent within the experiments for one cell line and also not comparable within the two 

cell lines.  

CAM tumor volume was not significantly altered in tumors derived from VPA-treated cells as 

compared to controls. Immunofluorescent staining with the lymphatic vessel marker Prox1 and 

the blood vessel marker Mep21 of untreated tumors showed that 2E cell tumors grow mainly by 

blood angiogenesis and PC-3 cell tumors by blood- and lymphangiogenesis. In VPA-treated 

CAM tumors raised from PC-3 cells treated with 3mM VPA, but without pre-treatment, Prox1 

staining was slightly reduced in the distal tumor part. 

In CAM tumors derived from PC-3 cells that were pre-treated for 24 hours with 1mM VPA no 

statistically significant expression differences of the tested angiogenesis markers (VEGFA, 

VEGFC, ANG1, FLT-1/VEGFR1, KDR/VEGFR2, sVEGFR2, PECAM-1, TIE-1 and CP) could be 

observed as compared to controls. In CAM tumors derived from 2E cells that were pre-treated 

for 24 hours with 1mM VPA only Cp1 was statistically significant downregulated. The other tested 

genes were not significantly deregulated except VEGFA which showed a tendency to an 

upregulated expression. CAM tumors derived from 2E cells which were pre-treated for 1 week 

with 3mM VPA exhibited increased expression of Ccnd2 and Vegfa. Taken together, the CAM 

assay could only partially confirm the anti-angiogenic features of VPA in PCa. 

The second major project of the present thesis was the investigation of the role of the candidate 

gene cyclin D2 as a putative tumor suppressor gene in PCa. 

Human LNCaP and PC-3 PCa cell clones with stable overexpression of cyclin D2 were 

generated. The incorporation of the expression vector was confirmed by the presence of about 

100% EGFP-positive cells. Cyclin D2 overexpression was confirmed by immunofluorescent 

staining and western blot analysis. LNCaP colonies with a doxycycline-inducible cyclin D2 

overexpression were also generated and the overexpression was verified by western blot 

experiments.  

Human PCa cells with a transient, stable or inducible cyclin D2 overexpression had a similar or 

slightly increased proliferation rate as compared to controls. Surprisingly, both PC-3 and LNCaP 



4. Discussion - 122 - 

 

 

cell clones with stable cyclin D2 overexpression had an increased migration rate as compared 

to controls.  

NIH/3T3 cells with endogenous cyclin D2 expression were transfected with cyclin D2-specific 

siRNAs and showed an increased migration rate compared to luciferase control transfected cells, 

whereas cells transfected with a cyclin D1-specific siRNA had a similar migration behavior as 

compared to control cells. Cyclin D2 siRNA transfected NIH/3T3 cells had acquired no 

transformation potential, which was investigated by soft agar assay. 

Since it was shown that siRNA transfection is not effective over a longer time period NIH/3T3 

clones with doxycycline-inducible cyclin D2 downregulation were generated. Their proliferation 

rate was similar to that of control cells not treated with doxycycline. Besides, they also acquired 

no transformation potential, not even when double transfected with the oncogene KRAS. This 

can be explained by the fact, that the transfection efficiency was very low. 

Contrary to the expectation, the functional consequence of siRNA-mediated cyclin D2 

downregulation in VPA-treated 2E, LNCaP, PC-3 and DU145 cells was a reduced proliferation 

rate. 

To elucidate the physiological role of cyclin D2 in the organism a conditional cyclin D2 knockout 

mouse model was generated. The purchased Ccnd2fl/fl and PB-Cre4+ mouse lines were 

established and bred to generate homozygous Ccnd2fl/fl/Cre+ mice. The knockout was partially 

confirmed by PCR analysis of prostate tissue, but could not be confirmed by quantitative real-

time PCR and western blot analyses. To definitely verify the prostate-specific deletion of cyclin 

D2 other experiments, including RNA in situ hybridization, are still ongoing. 

Ccnd2fl/fl/Cre+ mice were further bred to TRAMP mice to study the influence of the prostate-

specific cyclin D2 deletion on prostate tumor development and progression. To date, there are 

seven homozygous Ccnd2fl/fl/Cre+/T+ mice, which are too young to have even developed a PCa 

yet. Therefore, no conclusions can be drawn at the moment on the physiological role of cyclin 

D2 in the mouse prostate. 

 

4.2 The histone deacetylase inhibitor VPA 

 

Valproic acid is a histone deacetylase inhibitor (HDI) that selectively inhibits the catalytic activity 

of class I histone deacetylates (HDACs) and induces proteasomal degradation of class II histone 

deacetylates (Göttlicher et al. 2001, Krämer et al. 2003). Histones are the primary protein 

components of chromatin, which compact the DNA. The chromatin structure can exist in two 

states, either acetylated or de-acetylated. Acetylated chromatin is structurally loose and strongly 

de-condensed to allow binding of RNA and DNA polymerases to transcribe and replicate the 
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DNA. HDACs catalyze the deacetylation of histones in chromatin, making it strongly condensed 

and transcriptionally inactive. Condensed chromatin can be transformed again into the more 

relaxed, de-condensed structure by histone acetyltransferases (HATs, Gillet et al. 2007). 

Treatment with HDIs, such as VPA, inhibits the activity of HDACs, thereby increasing the level 

of acetylated chromatin since HATs are still active, resulting in increased gene expression. 

VPA was licensed in Europe in 1960 and in the United States in 1978 for the treatment of 

epilepsy. Now it is widely available throughout the world and became the drug of choice in 

primary generalized epilepsies. In the mid-1990s, VPA was approved for treatment of partial 

seizures. Its potential is exerted in the human brain, where VPA acts on the neurotransmitter 

Gamma-Aminobutyric acid (GABA) by potentiating the inhibitory activity of GABA in several 

ways, for example by inhibition of GABA degradation, increased synthesis of GABA and 

decreased GABA turnover (Johannessen 2000, Johannessen and Johannessen 2003, Owens 

and Nemeroff 2003, Kostrouchová et al. 2007).  

This makes VPA a long known drug which has been extensively studied and its side effects are 

well known. Common clinical side effects of VPA include dyspepsia, weight gain, dysphoria, 

fatigue, dizziness, drowsiness, hair loss, headache, nausea, sedation and tremor. VPA can also 

impair liver function and prolong blood coagulation times. Although very rare, side effects such 

as spina bifida and other defects of neural tube closure are observed when used in early 

pregnancy, indicating that valproic acid interferes with the developmental regulatory pathway 

(Lammer et al. 1987, Koren and Kennedy 1999, Koren et al. 2006, Kostrouchová et al. 2007). 

HDIs important role in regulating transcription makes them also very promising drugs for the 

therapy of cancer. Not only did studies using neuroblastoma-, glioma- and promyelotic leukemia 

cells lines reveal a promising proliferation inhibition after VPA treatment (Fischkoff and Walter 

1984, Regan 1985) but also studies on several solid tumors, including cancer of the bladder 

(Ozawa et al. 2010, Vallo et al. 2011, Byler et al. 2012), hepatocellular cancer (Machado et al. 

2011), head and neck cancer (Gan et al. 2012), pancreatic cancer and colon cancer (Jones et 

al. 2008, Venkataramani et al. 2010), renal cell carcinoma (Jones et al. 2009), small cell lung 

cancer (Hubaux et al. 2010), cervical cancer (Sami et al. 2008) and breast cancer (Fortunati et 

al. 2008). VPA treatment alone proved to be beneficial but also in combination with other anti-

cancer therapeutics, like cytotoxic agents among others, which exhibited synergistic anti-cancer 

effects (summarized in Sun and Coy, 2014). To date, VPA is already commonly prescribed for 

brain tumor patients (glioma, Zhou et al. 2014) and suberoylanilide hydroxamic acid (SAHA, also 

known as Vorinostat), another HDAC inhibitor, is approved to treat patients with cutaneous T 

cell lymphoma (Edelstein et al. 2009). 
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In PCa, several in vitro studies using VPA also resulted in proliferation inhibition (Xia et al. 2006, 

Annicotte et al. 2006, Shabbeer et al. 2007, Gao et al. 2007, Chou et al. 2011, 2015). In vivo 

studies using PC-3-, DU145-, LNCaP- or C4-2-Z xenografts demonstrated a reduced tumor 

volume after VPA treatment (Xia et al. 2006, Shabbeer et al. 2007, Gao et al. 2007, Angelucci 

et al. 2008). Thereby, proliferation inhibition observed in in vitro and in vivo studies was due to 

functional effects of VPA treatment inducing either growth arrest, cell death, senescence or anti-

angiogenic properties (Shabbeer et al. 2007, Gao et al. 2007, Wedel et al. 2011). Although, the 

underlying molecular mechanism for the VPA-induced proliferation inhibition remain unsolved. 

Shabbeer et al. (2007) reported an increase in p21 expression, but this is a general effect not 

only observed in cancer cells but also in non-malignant cells. Besides, Brinkmann et al. (2001) 

could show that after HDI treatment with suberic bishydroxamate (SBHA) the expression of p21 

was upregulated in human fibroblast cells, whereas the proliferation rate was not affected 

(Brinkmann et al. 2001).  

Thus, the molecular mechanism for the VPA-induced proliferation inhibition in the tumor further 

remained unresolved and was subject to investigation during the present study. Besides, the in 

vivo VPA treatment studies conducted so far were carried out with xenografted mice instead of 

a PCa mouse model, thereby the natural situation will not be resembled. In the present study, in 

vivo VPA treatment was conducted with the Transgenic Adenocarcinoma of the Mouse Prostate 

(TRAMP) PCa mouse model and its molecular mechanisms were analyzed on prostate and 

prostate tumor tissue of these mice. The TRAMP mouse is one of the first PCa models and one 

of the most widely used mouse model in PCa research since it represents the course of the 

human disease (Fig 4.1). Using this model, conclusions on tumor initiation and progression can 

also be drawn and not only on tumor growth like in conventional xenograft models (Mentor-

Marcel et al. 2001). The transgene of TRAMP mouse model comprises the minimal probasin 

promoter (-426/+28, 426 basepairs of the rat probasin (PB) gene promoter and 28 basepairs of 

5'-untranslated region driving viral SV40 large-T and small t antigens which results in prostate 

epithelium-specific inactivation of the two tumor suppressors pRb and p53 (Murphree and 

Benedict 1984, Greenberg et al. 1994, Gingrich et al. 1996, Surget et al. 2013). Thus, TRAMP 

mice will develop prostatic intraepithelial neoplasia (PIN) by 8 weeks which will progress to high 

grade PIN by 18 weeks and poorly differentiated and invasive adenocarcinoma by 28 weeks of 

age. With nearly 100% of penetrance at the age of 40 weeks TRAMP mice have developed an 

adenocarcinoma (Fig. 4.1, Gingrich et al. 1997, Mentor-Marcel et al. 2001). The TRAMP mouse 

model also displays metastasis to distant organs, including the lung and lymph nodes (Gingrich 

et al. 1997), although rarely to the bone which in human PCa is the major side for metastasis. 

The majority of PCa patients die due to the development of a metastatic disease of which 80% 
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is primarily localized in the bone (Coleman 2006, Ganguly et al. 2014). 5-12% of prostate cancer 

patients with clinically organ-confined cancer exhibit regional lymph node metastasis (Cai et al. 

2009). More rarely, prostate cancer metastases can occur in the adrenal gland, lung, liver and 

brain. 

 

Fig. 4.1: Schematic presentation of PCa progression in humans and in the TRAMP mouse. A) The course of 

the human PCa disease is depicted. Normal prostatic epithelium develops into prostatic intraepithelial neoplasia (PIN) 

which progresses into a latent adenocarcinoma and a clinically relevant, castration resistant adenocarcinoma which 

metastasizes preferably to the bone. B) The timeline represents the course of PCa development and progression in 

the TRAMP mouse model. Starting after puberty at the age of 8 weeks TRAMP mice develop PIN which progresses 

into high grade PIN by 18 weeks and into poorly differentiated and invasive adenocarcinoma by 28 weeks. With nearly 

100% penetrance TRAMP mice develop an adenocarcinoma at the age of 40 weeks which also displays prevalent 

metastasis to distant organs, although rarely to the bone. The TRAMP mouse model reproduces the course of the 

mouse PCa disease and is therefore suitable for studies on PCa initiation, progression and treatment. Modified from 

Irshad and Abate-Shen 2013. 

 

The positive effects observed during in vitro and in vivo VPA treatment studies prompted the 

initiation of several clinical trials investigating the effect of VPA treatment in hematological tumor 

diseases (Wagner et al., 2010), breast cancer, lung cancer, pancreatic cancer, cervical cancer, 

testicular and ovarian cancer (Arce et al. 2006, Candelaria et al. 2007, Munster et al. 2009, 

Chateauvieux et al. 2010), as well as in glioblastoma (Weller et al. 2011) and melanoma (Rocca 

et al. 2009). Generally, patients responded well to VPA treatment, which was partially combined 

with chemo- and radiotherapy. 
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To date, only a single phase 2 study was conducted with PCa patients that received oral VPA 

treatment. Merely 10 patients were included in this study of which one died due to PCa 

progression. Two patients exhibited reduced PSA levels and no tumor progression (Sharma et 

al. 2008) but due to toxicity this trial had to be discontinued early.  

In male patients that received long term antiepileptic treatment with VPA, it was shown that they 

exhibited lower age-correlated PSA levels as compared to control groups. VPA treatment also 

exerted anti-proliferative effects on neoplastic PCa cells in vitro (LNCaP) and in vivo (Stettner et 

al. 2012), further highlighting the beneficial effect of VPA treatment in PCa patients. 

 

4.2.1 Deregulated candidate genes after VPA treatment of mouse 2E PCa cells  

 

In order to investigate the molecular mechanism underlying the VPA-induced inhibition of 

proliferation described in section 4.2 the expression of previously identified candidate genes 

(Witt, 2009) was analyzed in prostate and prostate tumor tissue of in vivo VPA-treated TRAMP 

mice. Witt et al. (2013) could show that treatment of murine PCa 2E cells with VPA resulted not 

only in inhibition of proliferation, but also in inhibition of migration and invasion. These functional 

effects were concentration- and time-dependent. Microarray analysis of 2E cells treated for 24 

hours with VPA identified several genes that were deregulated after VPA treatment (Witt, 2009). 

Eight candidate genes were chosen for further investigation because of their known expression 

in the prostate and their connection to cancer (Table 4.1). Their deregulation in 2E cells was 

confirmed by quantitative real-time PCR. Thereby it was shown that VPA treatment had a 

concentration- and time-dependent effect on the expression of these candidate genes (Witt et 

al., 2013, summarized in Table 4.1).  
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Table 4.1: Deregulated candidate genes in murine 2E PCa cells after 24 hours of VPA treatment (Witt et al. 

2013).  

Candidate 
gene 

Connection to cancer/PCa 

Expression 
in murine 2E 

PCa cells 
after VPA 
treatment 

Cxcl15 

 belongs to the CXC chemokine family of which members containing an 

ELR-(Glu-Leu-Arg-) motif can induce angiogenic activity (Strieter et al. 

1995) 

 in multiple myeloma patients the plasma level of these chemokines was 

reported to be increased (Pappa et al. 2011) 

 

Rcbtb2 

 reduced expression in PCa (Latil et al. 2002), in B cell chronic 

lymphocytic leukemia (CLL, Dewald et al. 2003) and multiple myeloma 

(MM, Fonseca et al. 2004)  

 novel tumor suppressor for histiocytic sarcoma and histiocyte-associated 

lymphoma (Spillane et al. 2015) 

 

Cp1 

Cp2 

 transcription is dependent on high copper concentration as well as 

Hif1α initiation (Martin et al. 2005) 

 PCa patients have a significantly increased plasma level of CP (Nayak 

et al. 2003) and serum CP was even suggested as a marker for PCa 

(Fotiou et al. 2007) 

 

Lif 

 undergoes a functional transition from paracrine growth inhibitor to 

autocrine growth stimulator during progression of PCa to the hormone-

refractory phenotype (Chung et al. 1999) 

 stimulates breast and kidney cancer cell proliferation (Kellokumpu-

Lehtinen et al. 1996) 

 

Uchl1 

 potential tumor suppressor in PCa that is frequently silenced by 

promoter methylation 

 restored expression in LNCaP cells decreased the rate of cell 

proliferation and suppressed anchorage-independent growth (Ummanni 

et al. 2011) 

 

Ptprn 

 Ptprf decreased survival in PCa when overexpressed (DaSilva et al. 

2013, Du and Grandis 2015) 

 Ptprn is overexpressed in gastrointestinal neuroendocrine carcinomas 

(Leja et al. 2008) 

 

Ccnd2 

 abnormal expression of D-type cyclins and CDKs is linked to cancer 

development and progression (Musgrove et al. 2011) 

 in PCa, the CCND2 promoter is frequently hypermethylated, which is 

associated with loss of mRNA expression and tumor development 

(Henrique et al. 2006) 

 

 

To date, the analyses on the effect of VPA treatment on PCa were solely conducted with 

xenografted mice, thereby the natural situation is not resembled like in a PCa mouse model, 

such as the TRAMP model which is a more similar model to the human situation. Witt et al. 

(2013) could show that in vitro VPA treatment also exerts effects on PCa progression in the 

murine PCa 2E cells, which were derived from a PCa of a TRAMP mouse. This raised the 

question of whether the in vitro observed effects are replicable in vivo. Therefore, in the present 

study the expression of the above mentioned candidate genes was investigated by quantitative 
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real-time PCR and western blot analyses in prostate tumor tissue and prostate tissue of VPA- 

and control-treated TRAMP mice.  

 

4.2.1.1 Candidate gene expression in prostate tumor tissue and prostate tissue of in 

vivo VPA-treated TRAMP mice 

 

In vivo studies are essential for research on a putative new therapeutic agent. For the treatment 

of PCa some VPA in vivo studies have already been conducted. Thereby it was shown that 

treatment of mice with 0.4 % w/v VPA over the drinking water was well tolerated and resulted in 

a constant plasma level of 0.4mM VPA (Shabbeer et al. 2007). 

The first in vivo VPA treatment experiment in our research group was conducted by D. Witt 

(Dissertation, 2012). She used three different TRAMP mice study groups that were treated with 

a final concentration of 0.4% w/v VPA and sweetener over the drinking water. Control-treated 

mice received drinking water with sweetener only. Two of the study groups received preventive 

VPA treatment at the age of 6 weeks when the prostate shows no malignant changes yet. Of 

these, one group was treated until the age of 30 weeks, when tumor progression should still be 

ongoing, and then sacrificed. The second group was treated until the age of 40 weeks, when 

TRAMP mice should have developed a PCa, and then sacrificed. The third group received VPA 

as a curative treatment starting at the age of 16 weeks, when tumor development should have 

initiated already in TRAMP mice, and at the age of 40 weeks they were sacrificed (Mentor-Marcel 

et al., 2001). Prostate tumors were isolated for molecular evaluation and subjected to 

quantitative real-time PCR analysis to confirm in vivo the deregulation of the chosen candidate 

genes after VPA treatment (Table 4.2).  

In prostate tumor tissue of VPA-treated TRAMP mice the expression of Cp2 was statistically 

significant reduced as demonstrated by quantitative real-time PCR analysis, which is in 

accordance to the previously obtained array data (Table 4.2). The expression of the other 

candidate genes was also decreased, although not statistically significant. Rcbtb2 expression 

was comparable to controls. By densitometrical evaluation of a western blot the upregulation of 

CCND2 after VPA treatment could also be confirmed in prostate tumor tissue of VPA-treated 

TRAMP mice as compared to controls (Table 4.2). 

Quantitative real-time PCR of prostate tumor tissue of in vivo VPA-treated TRAMP mice solely 

confirmed the downregulation of Cp1, Cp2 and Lif as observed after in vitro VPA treatment of 

2E cells (Table 4.2). 

 



4. Discussion - 129 - 

 

 

Table 4.2: Summary of the results concerning candidate gene expression in 2E cells after VPA treatment and 

in prostate tumor tissue of VPA-treated TRAMP mice. Expression patterns that differ from those observed in VPA-

treated 2E cells are marked with a red arrow. The ones that are similar expressed after in vitro and in vivo VPA 

treatment are marked with a gray arrow. An unchanged expression pattern as compared to untreated controls is 

marked with a blue arrow. n.d: not determined 

 

Several aspects can be responsible for the poor correlation of the candidate gene expression 

profile observed after in vitro and in vivo VPA treatment. 

Since no non-pathologic prostate tissue of in vivo VPA-treated TRAMP mice was isolated for 

expression comparison, it cannot be excluded that the few PCa tumors may have risen due to 

failure of therapy or resistance to VPA treatment. Besides, tumors were isolated at different time 

points depending on which of the three study groups the mice belonged to. To date, resistance 

to in vivo or in vitro VPA treatment has not yet been described for PCa. But, it is known that VPA 

induces irreversible resistance in human colon cancer cells (Fedier et al. 2007) and in renal cell 

carcinoma in vivo (Juengel et al. 2013). In the latter case resistance is associated with elevated 

AKT activation (Juengel et al. 2013). 

The difference in the mice age, when their prostate tumor was isolated, could also lead to 

differential expression of the candidate genes. This initiated implementation of a new in vivo VPA 

treatment experiment of TRAMP mice in the present study, in which the mice were sacrificed at 

the same age, namely at 16 weeks of age (see section 2.19.1). The prostates were isolated for 

molecular evaluation by quantitative real-time PCR analysis to confirm the in vitro observed 

deregulation of the candidate genes in vivo (Table 4.3).  

Candidate gene Expression in murine 2E PCa cells 

after VPA treatment 

Expression in prostate tumor 

tissue of VPA-treated TRAMP 

mice 

Cxcl15  

 
            n.d. 

Rcbtb2  

 

 

Cp1 

Cp2 

 

 

 

Lif  

 

 

Uchl1  

 

 

Ptprn  

 

 

Ccnd2 

 

 real-time PCR:          

western blot: 
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In prostate tissue of VPA-treated TRAMP mice the downregulation of Cp2 as well as the 

upregulation of Uchl1 and Ptprn after VPA treatment could be confirmed. Rcbtb2 was not quite 

statistically significant upregulated, which is the only contrary result to the array data. The other 

genes displayed an unchanged expression pattern as compared to the controls (Table 4.3).  

 

Table 4.3: Summary of the results concerning candidate gene expression in 2E cells after VPA treatment, in 

prostate tumor tissue of VPA-treated TRAMP mice and in prostate tissue of VPA-treated TRAMP mice. 

Expression patterns that differ from those observed in VPA-treated 2E cells are marked with a red arrow. The ones 

that are similar expressed after in vitro and in vivo VPA treatment are marked with a gray arrow. An unchanged 

expression patterns as compared to untreated controls is marked with a blue arrow. n.d.: not determined 

Candidate gene Expression in murine 

2E PCa cells after VPA 

treatment 

Expression in prostate 

tumor tissue of VPA-

treated TRAMP mice 

Expression in prostate 

tissue of VPA-treated 

TRAMP mice 

Cxcl15  

 
       n.d. 

 

Rcbtb2  

 

  

Cp1 

Cp2 

 

 

  

Lif  

 

  

Uchl1  

 

  

Ptprn  

 

  

Ccnd2 

 real-time: 
 
western blot: 
 

 

 

Expression analysis of prostate tissue from the second in vivo VPA treatment experiment 

confirmed the deregulation of more candidate genes, including Cp1, Cp2, Uchl1 and Ptprn, as 

compared to the expression analysis of prostate tumor tissue from the first in vivo VPA treatment. 

More genes had a similar expression pattern as compared to controls, but only one gene, namely 

Rcbtb2, exhibited a contrary expression pattern to the previously obtained array data (Witt, 

2009). This indicates that VPA treatment has already a clear influence on the expression of 

genes when adenocarcinomas have not yet developed. It has to be mentioned that it was not 

possible to evaluate the analyzed prostates histopathologically. Due to the small size of the 

prostate gland, the complete tissue was used for RNA isolation. Therefore, it cannot be excluded 

that in some TRAMP mice the development of prostatic intraepithelial neoplasia (PIN) had 

already taken place. 
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Taken together, molecular effects observed by in vitro VPA treatment of mouse PCa cells (2E) 

could be partially confirmed in prostate tumor tissue of in vivo VPA-treated TRAMP mice and to 

a greater extend in prostate tissue of in vivo VPA-treated TRAMP mice. In the latter, the only 

contrary result as compared to the in vitro studies was the observed upregulation of Rcbtb2 

expression in prostate tissue of VPA-treated mice. Interestingly, Rcbtb2 is a known tumor 

suppressor whose expression is frequently lost or downregulated in PCa (Latil et al. 2002). 

Therefore, increased Rcbtb2 expression upon VPA treatment should be favorable for PCa 

patients, nonetheless. In conclusion it can be stated, that in vitro and in vivo VPA treatment 

influences the expression of PCa-associated genes positively, which might inhibit or reduce 

tumor progression. These results further highlight the beneficial effects of VPA as an alternative 

treatment opportunity for PCa. 

One candidate gene, namely ceruloplasmin (Cp), was chosen for further, more profound studies 

due to its clinical relevance in PCa. PCa patients have a significantly increased plasma level of 

ceruloplasmin (Nayak et al. 2003) and serum ceruloplasmin was even suggested as a marker 

for PCa (Fotiou et al. 2007). Ceruloplasmin, the main copper carrier in blood, is known to be 

indirectly involved in angiogenesis, but only when copper is bound (Raju et al. 1982). Its 

transcription is initiated by high copper concentrations and hypoxia-inducible factor-1α (Hif1α) 

activation (Martin et al. 2005). Hypoxic conditions favor angiogenesis as the heterodimeric 

transcription factor HIF-1 induces the expression of vascular endothelial growth factors (Vegfs), 

the main angiogenic cytokines (Banerjee et al. 2007).  

VPA treatment of mouse 2E PCa cells resulted in a statistically significant decreased Cp 

expression in a concentration- and time-dependent manner, accompanied with reduced Vegfa 

expression and increased Hif1α expression (Witt, 2012). In the present study it was confirmed 

by quantitative real-time PCR that the expression of human CP also mostly decreased in a time- 

and concentration-dependent manner in human PCa cells after VPA treatment. In contrast, by 

western blot analysis the downregulation of CP after VPA treatment of human PCa cells could 

not be confirmed. Since no consistent results of ceruloplasmin expression after VPA treatment 

in human PCa cells could be observed, studies on ceruloplasmin were discontinued.  

 

4.3 Tumor angiogenesis in general 

 

Angiogenesis, the formation of new blood vessels from existing blood vessels, was identified as 

one of the ‘hallmarks of cancer’ by Hanahan and Weinberg (2000; 2011) due to the recognition 

that this process is of crucial importance during the transition from benign hyperplastic nodules 

to malignant lesions (Folkman, 1971). The importance of angiogenesis for tumor growth and 
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metastasis was also shown in 1982 by Muthukkaruppan et al. who infused cancer cells in the 

iris, which is supplied with blood circulation, and into the anterior chamber of the eye, which is 

not supplied with circulation. The cancer cells without blood circulation grew to 1–2 mm3 and 

then stopped. When placed in an area where angiogenesis was possible they grew beyond 2 

mm3 (Muthukkaruppan et al. 1982). It was even shown that without vascular support, tumors 

may become necrotic or even apoptotic (Holmgren et al. 1995, Parangi et al. 1996). 

Angiogenesis is indispensable for tumor growth and metastatic spread, since without adequate 

supply of oxygen and nutrients and the removal of waste products the tumor could not grow past 

a few millimeters in diameter (Fig. 4.2). Not only blood vessels but also lymphatic vessels are 

thereby essential. New lymphatic vessels grow by a process called lymphangiogenesis.  

 

Fig. 4.2: Process of tumor angiogenesis. When the tumor requires oxygens and nutrients for further growth the 

angiogenic switch shifts the balance of angiogenic activators and inhibitors to the activators. 1) The tumor produces 

growth factors, such as VEGF, in response to gene mutation or hypoxia and releases them. 2) Growth factors bind to 

endothelial cell receptors thereby inducing signal transduction pathways and causing cell proliferation for the 

generation of new blood and lymphatic vessels. 3) Once cancer cells penetrate blood or lymphatic vessels, they 

receive oxygen and nutrients for further growth and they are able to remove waste products. Cancer cells are also 

able to circulate through the intravascular stream and then proliferate at another site by formation of metastases. 

Modified from the Angiogenesis Foundation, http://www.dianasaville.com, 17.01.2016. 

 

Tumors remain dormant in an avascular state at diameters of 1 to 2 mm (Folkman 1974) and 

proceed to a vascular state when the angiogenic switch is turned on. Further growth is possible 

only after new capillaries form a network to supply the tumor with oxygen, nutrients and immune 

cells (Folkman 1971). Once cancer cells penetrate blood or lymphatic vessels they circulate 

through the intravascular stream and then proliferate at another site by formation of metastases 

(Folkman 1971). Angiogenesis is regulated by the balance of angiogenic activators and 

inhibitors. When the tumor requires fuel, the angiogenic switch shifts the balance of angiogenic 

activators and inhibitors to the activators. Their expression will be upregulated and 
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simultaneously the expression of the inhibitors or negative regulators will be decreased 

(Dameron et al. 1994). Pro-angiogenic factors will be released from the tumor to stimulate 

angiogenesis and lymphangiogenesis. It has been shown that expression levels of angiogenic 

factors reflect the aggressiveness of tumor cells (Weidner et al. 1993). 

The process of neovascularization, which is the formation of new vessels in tissue not normally 

containing them, including tumor angiogenesis, can be categorized into ten steps. During the 

first step angiogenic factors produced in the tumor will be released, which then during the second 

step bind to endothelial cell receptors located on a vessel, thereby inducing an intracellular 

signaling cascade. In the third step the capillary basement membrane will be enzymatically 

degraded, resulting in hypoxia. During the fourth step, endothelial cells activated by angiogenic 

factors proliferate and then during the fifth step migrate directional. In the sixth step the 

extracellular matrix will be remodeled so that during the seventh step the tube can be formed. 

During the eighth step a loop for circulation is formed. The ninth step encompasses stabilization 

of the vessel by smooth muscle cells or pericytes and finally the tenth step includes the 

continuous stimulation of the angiogenic process by angiogenic factors since vascular 

endothelial cells divide only about every 1000 days on average (Denekamp 1993, Nishida et al. 

2006, Adair and Montani 2010).  

Naturally occurring proteins that are able to inhibit angiogenesis include angiostatin, endostatin, 

interferon, platelet factor 4, thorombospondin, prolactin 16 kd fragment and tissue inhibitor of 

metalloproteinase-1, -2 and -3 (Nishida et al. 2006).  

The main angiogenic activators, of which more than a dozen have been identified, include growth 

factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), 

angiogenin, transforming growth factor (TGF)-α, TGF-β, tumor necrosis factor (TNF)-α, platelet-

derived endothelial growth factor, hepatocyte growth factor, epidermal growth factor, granulocyte 

colony-stimulating factor and placental growth factor, cytokines like interleukin-8, and other 

endogenous modulators like angiopoetin-1 (Ang-1, Nishida et al. 2006, Kluetz et al. 2010, 

Mukherji et al. 2013). 

The angiogenic activators of the VEGF family and their receptors (VEGFRs, depicted in Fig. 4.3) 

are receiving the most attention since VEGF is a powerful angiogenic agent in neoplastic tissues, 

as well as in normal tissues. Among the VEGF family, VEGF-A, VEGF-B and VEGF-C are known 

to induce proliferation of blood vessels when acting on their respective receptors, while VEGF-

C and VEGFD are involved in lymphangiogenesis when binding to their respective receptors 

(Neufeld et al. 1999, Mandriota et al. 2001, Pepper 2001, Rafii and Skobe 2003).  

VEGF-A is overexpressed in a variety of tumors (Dvorak 2002) and it is the most studied of all 

the angiogenic activators. It is a potent and very specific mitogen for vascular endothelial cells 
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that stimulates the full cascade of events required for angiogenesis (Leung et al. 1989, Conn et 

al. 1990, Nishida et al. 2006). VEGF expression can be triggered for example by hypoxia, 

resulting from the increasing distance between the growing tumor cells and the capillaries or 

from the inefficiency of new vessels. This results in induction of VEGF expression and its 

receptors via Hif-1α (Bottaro and Liotta 2003). 

 

Fig. 4.3: VEGF family members and their receptors. The mammalian VEGF family members include VEGF-A, -B, 

-C, -D, and placental growth factor (PlGF). VEGF-A can bind to VEGFR-1 and VEGFR-2. VEGF-B and PlGF only 

bind to VEGFR-1. VEGF-A, VEGF-B, VEGF-C induce proliferation of blood vessels when acting on their respective 

receptors. VEGF-C and -D bind to VEGFR-3 and VEGFR-2, thereby promoting blood- and lymphangiogenesis. 

Modified from Almodovar et al. 2009. 

 

Activation of endothelial cells by VEGF results in production of matrix metalloproteinases 

(MMPs) which are responsible for the breakdown of the extracellular matrix filling the space 

between cells. Matrix breakdown permits the migration of endothelial cells into the surrounding 

tissue. There they organize into hollow tubes which finally evolve into a mature blood vessel 

network. Platelet endothelial cell adhesion molecule (PECAM-1) participates in adhesive and 

signaling procedures required for the motility of endothelial cells and their subsequent 

organization into vascular tubes (DeLisser et al. 1997, Cao et al. 2002) as well as other adhesion 

factors like integrin α or β, which are also indispensable for this process (Mizejewski 1999, 

Nelson et al. 2000). Newly formed blood vessels are stabilized and governed to vascular growth 

by the angiogenic factor angiopoietin-1 (Ang-1) and its receptor Tie-2. Angiopoietin-2 (Ang-2) is 

a naturally occurring antagonist for Ang-1 and Tie-2 competing for Tie-2 binding (Suri et al. 1996, 

Maisonpierre et al. 1997, Tournaire et al. 2004). It is known to disrupt blood vessel formation 
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(Hu and Cheng 2009). Additionally to ligand-binding, Tie-2 forms a pre-formed hetero-oligomeric 

complex with the related receptor tyrosine kinase Tie-1 by physical interaction (Marron et al. 

2000, Chen-Konak et al. 2003). The role of Tie-1 in angiogenesis is not fully clear since the Tie-

1 ectodomain is unable to bind angiopoietins (Davis et al. 1996). The Tie-2:Tie-1 complex seems 

to partially block Ang-1 binding to Tie-2 (Marron et al. 2007). In response to VEGF, inflammatory 

stimuli or changes in shear stress the Tie-1 ectodomain can undergo regulated cleavage 

whereby it is removed. This has been shown to increase access of Ang-1 to Tie-2 resulting in 

enhanced Ang-1-activation of Tie-2 and Tie-2-mediated signaling (Marron et al. 2007, Hansen 

et al. 2010). 

It has been observed that all VEGF ligands and receptors, except for VEGFR-2, show extensive 

staining in human prostate specimens. In epithelial cells, VEGF-A and VEGFR-1 expression was 

higher in tumor tissue as compared to benign tissue whereas VEGF-D and VEGFR-3 expression 

was significantly higher in benign tissue as compared to tumors in the stroma and the 

endothelium of lymphatic and blood vessels. Additionally, the incidence of lymphatic vessels, 

but not blood vessels, was lower in tumor tissue as compared with benign tissue. These 

observations suggest that activation of VEGFR-1 by VEGF-A within the tumor, and activation of 

lymphatic endothelial cell receptor VEGFR-3 by VEGF-D within the adjacent benign stroma may 

be important signaling mechanisms involved in the progression and subsequent metastatic 

spread of PCa. Consequently, inhibition of these pathways may contribute to therapeutic 

strategies for the management of PCa (Woollard et al. 2013). 

 

4.3.1 Antiangiogenic treatment in cancer 

 

Since angiogenesis is essential for tumor growth and metastasis, controlling tumor-associated 

angiogenesis has been shown to inhibit tumor progression (Ferrara and Kerbel 2005). This 

makes anti-angiogenic treatment is an emerging, promising approach for the treatment of 

cancer.  

There are several ways one can inhibit angiogenesis: inhibition of pro-angiogenic factors such 

as VEGF, for example by use of an antibody, inhibition of receptors for pro-angiogenic factors 

(VEGF-receptors), by inhibiting endothelial cells, inhibition of proteases (inhibit the synthesis of 

MMP), by interrupting the signaling pathways, by raising the concentration of anti-angiogenic 

factors or directly by killing tumor-related vascular endothelial cells (Kluetz et al. 2010, Hwang 

and Heath 2010).  

Anti-angiogenic agents have proven to be effective in the treatment of several solid tumors, 

including renal cell carcinoma (Motzer et al. 2007), colorectal cancer (Hurwitz et al. 2004) and 
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non-small cell lung cancer (Sandler et al. 2006). Bevacizumab for example, an anti-VEGF 

antibody, which has been shown to be effective in multiple cancer cell lines, is currently Food 

and Drug Administration- (FDA) approved for treatment of several malignancies including 

colorectal carcinoma (Cohen et al. 2007a), non-squamous non-small cell lung cancer (Cohen et 

al. 2007b), metastatic breast cancer (Montero et al. 2012), recurrent glioblastoma (Chamberlain 

2011) and most recently metastatic renal cell carcinoma (Pichler, 2015).  

Angiogenesis plays an important role in the pathophysiology of PCa as several studies correlate 

markers of angiogenesis with metastatic disease, higher Gleason score and clinical outcome 

(Kluetz et al. 2010). Weidner et al. could show that tumor angiogenesis, measured by 

microvessel density (MVD), correlates with metastasis (Weidner et al. 1993). Besides, MVD of 

tumor samples at diagnosis was statistically significant correlated with stage, grade and disease-

specific survival, as revealed by a study following PCa patients for a median of 15 years (Borre 

et al. 1998). Plasma levels of VEGFs are increased in patients with metastatic PCa (Duque et 

al. 1999) making them an independent prognostic factor in men with metastatic PCa (George et 

al. 2001, El-Gohary et al. 2007). Lastly, HIF-1α, a key mediator of VEGF expression, was shown 

to have a higher expression in PCa than in benign prostate tissue (Du et al. 2003). Concluding 

from these findings, angiogenesis inhibition could be a powerful strategy to treat PCa. 

Surprisingly, clinical trials for angiogenesis-inhibition conducted with PCa patients have so far 

not been as successful as expected. A selected number of clinical trials of anti-angiogenic agents 

in development for PCa and their results/status are demonstrated in Table 4.4. The tested anti-

angiogenic agents can be grouped into different classes of which one class consists of anti-

VEGF antibodies, like bevacizumab, another class consists of immunomodulators like 

lenalidomide, thalidomide and tasqunimod and the biggest class consists of tyrosine-kinase-

inhibitors (TKIs) like sunitinib, sorafenib, cabozantinib, vandetanib, pazopanib and cediranib. 

Other agents tested include an mTor inhibitor (temsirolimus), a VEGF trap (aflibercept), an anti-

endoglin antibody (TCR105) and an anti-angiopoietin (AMG386, Table 4.4). Most of the studies 

are still ongoing and the ones already finished had mostly negative results. For example, a large 

phase III study in castration-resistant prostate cancer (CRPC) with bevacizumab in combination 

with docetaxel chemotherapy did not improve overall survival in men and was even associated 

with greater toxicity (Kelly et al. 2012). Combination of docetaxel with other anti-angiogenic 

agents also did not increase the overall survival or progression-free survival. Contrary, it might 

even increase the risk for treatment-related mortality (Lei et al. 2014). Clinical phase III trials 

using the anti-angiogenic agents sunitinib or lenalidomide on CRPC patients were even 

discontinued due to futility (Mukherji et al. 2013). Targeting the dual receptors VEGFR2/MET 

with the tyrosine kinase inhibitor cabozantinib was slightly more effective as improvements in 
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bone scans and pain response in PCa patients were observed (Lee and Smith 2013, Smith et 

al. 2013). 

In general, the role of anti-angiogenic treatment in PCa has yet to be defined. Although no 

angiogenesis-inhibitors have been approved for patients with metastatic CRPC, the rationale for 

the use of anti-angiogenic therapy in CRPC remains strong nonetheless and novel anti-

angiogenic agents are being constantly investigated (Bilusic and Wong 2014). 

 

Table 4.4: Selected clinical trials of anti-angiogenic agents in development for PCa therapy. This table shows 

selected clinical trials of anti-angiogenic agents in development for the therapy of PCa. The tested anti-angiogenic 

agent, its target, the study with its primary end point and the results or status of the study are displayed. mCRPC: 

metastatic castration-resistant prostate cancer, PDGFR: platelet derived growth factor receptor; EGFR: epidermal 

growth factor receptor; mAb: monoclonal antibody; OS: overall survival; PFS: Progression free survival; mTOR: 

mammalian target of rapamycin; TTP: time to progression. Modified from Mukherji et al. 2013. 

Drug Class  Study Primary 
end point 

Result/Status 

Bevacizumab VEGF mAb Phase III chemotherapy-naïve 
mCRPC: docetaxel/prednisone 
+/- bevacizumab 

OS OS 22.6 m vs. 21.6 
m (p=0.181), median 

PFS 9.9 m vs. 7.5 m 
(p<0.001). Increased 
toxicity with addition 
of bevacizumab 

1. Bevacizumab 
2. Temsirolimus 

1. VEGF mAb 
2. mTor inhibitor 

Phase I/II docetaxel-refractory 
mCRPC: bevacizumab + 
temsirolimus 

Objective 
response 

ongoing 

Aflibercept VEGF trap Phase III chemotherapy naïve 
mCRPC: docetaxel/prednisone 
+/- aflibercept 

OS Negative (full results 
awaited) 

1. Thalidomide 
2. Bevacizumab 

1. Immuno-
modulator 
2. VEGF mAb 

Phase II chemotherapy naïve 
mCRPC: docetaxel/prednisone+ 
bevacizumab+ thalidomide 

PSA decline 
> 50% 

PSA response rate: 
90%, median TTP 
18.3 m, median OS 
28.2 m, all patients 
grade ¾ neutropenia 

Lenalidomide Immuno-
modulator 

Phase III mCRPC, docetaxel +/- 
lenalidomide 

OS Negative (full results 
awaited) 

Sunitinib TKI (VEGFR/ 
PDGFR) 

Phase III mCRPC after 
progression on docetaxel: 
sunitinib + prednisone vs. 
placebo + prednisone 

OS Prematurely 
discontinued due to 
futility 

Sorafenib TKI (VEGFR/ 
PDGFR) 

Phase II pre-docetaxel mCRPC: 
sorafenib + docetaxel 

PSA decline 
> 50% 

ongoing 

Cabozantinib TKI (VEGFR2/ 
MET) 

1. Non-randomized expansion 
cohort (phase II) CRPC post-
docetaxel: cabozantinib single 
agent 
2. Phase III CRPC post-
docetaxel, post-
abiraterone/enzalutamide: 
cabozantinib vs. prednisone 
3. Phase III cabozantinib vs. 
mitoxantrone in previously 
treated CRPC 

Bone scan 
response 
rate 
 
OS 
 
 
 
Pain 
response 

60% bone scan 
response rate 
 
 
ongoing 
 
 
 
ongoing 

Vandetanib TKI (VEGFR2/ 
EGFR) 

Phase II mCRPC pre-docetaxel: 
vandetanib + bicalutamide vs. 
bicalutamide 

PSA 
response  

ongoing 
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Pazopanib TKI (VEGFR/ 
PDGFR) 

Phase I/II mCRPC pre-
docetaxel: docetaxel+/- 
pazopanib 

PFS ongoing 

Cediranib  TKI (VEGFR) Phase II mCRPC pre-docetaxel: 
docetaxel +/- cediranib 

PFS ongoing 

Tasquinimod Immuno- 
modulator 

1. Phase II mCRPC: 
tasquinimod vs placebo 
 
2. Phase III randomized 
mCRPC: tasquinimod vs. 
placebo 

PFS 
 
 
PFS 

7.6 m vs. 3.3 m 
(p=0.0042) for 
median PFS 
ongoing 

TCR105 mAb against CD-
105 (endoglin) 

Phase II mCRPC PFS ongoing 

AMG386 Anti-angiopoietin Phase II mCRPC: AMG386 +/- 
abiraterone 

PFS Ongoing 

 

4.3.1.1 VPA as a possible anti-angiogenic treatment  

 

Since Witt et al. (2013) could observe a VPA-induced effect on the regulation of angiogenesis-

associated genes, namely Cp and Cxcl15 (described in 4.2.1), the influence of in vitro and in 

vivo VPA treatment on angiogenesis in PCa was subject to further investigation during the 

present study.  

To date, only little is known about the effects of VPA treatment on angiogenesis. VPA is known 

to up-regulate the anti-angiogenic proteins thrombospondin-1 and activin A (Cinatl et al. 2002). 

In vitro studies on human umbilical vein endothelial cells and in vivo studies in the chicken 

chorioallantoic membrane assay (CAM) and in a Matrigel plug assay showed that VPA inhibits 

angiogenesis in vitro and in vivo (Michaelis et al. 2004). In vitro VPA treatment inhibited 

proliferation, migration and tube formation. In vivo VPA treatment, as investigated by matrigel 

plug assay, showed that few distinct and perfused vessels were formed after VPA treatment. 

Additionally, the CAM assay showed reduced vessel ingrowth, the development of irregular and 

brittle vessels, and a markedly reduced perfusion as compared with control CAM (Michaelis et 

al. 2004). 

In terms of a VPA-induced effect on angiogenesis in PCa, Witt et al. (2013) could show that the 

expression of Cp and Cxcl15, two genes associated with angiogenesis, decreased in a time- 

and concentration-dependent manner in mouse PCa 2E cells after VPA treatment. This was 

accompanied by reduced Vegfa expression and increased Hif-1α expression. Besides from that, 

a study by Shabbeer et al. (2007) could show that angiogenesis was inhibited after VPA 

treatment (0.4% w/v) of PC-3 xenografted mice, as measured by microvessel density after CD31 

staining. However, inhibition of angiogenesis was only observed in PC-3 xenografts, but not in 

DU145 xenografts. 
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Another study by Gao et al. (2007) showed that PC-3 cell xenografts which were treated with 

VPA had a reduced expression of vascular endothelial growth factor, the main angiogenic 

stimulator.  

Since very little is known about the molecular mechanisms underlying the VPA-mediated anti-

angiogenic properties in PCa, they were further elucidated in the present project by in vitro and 

in vivo studies. As mentioned above, solely one in vitro study shows that VPA treatment exerts 

an effect on the expression on angiogenesis markers in PCa cells (Witt et al. 2013). Besides, to 

date only two in vivo studies demonstrated that VPA treatment displayed an inhibitory effect on 

tumor angiogenesis in PCa, which were both conducted with xenograft mice (Shabbeer et al. 

2007, Gao et al. 2007). In the present study, a PCa mouse model was used, namely the TRAMP 

mouse model, resembling the human PCa superiorly as compared to a xenograft model. 

Additionally, for the in vitro studies a suitable cell line was used, namely the 2E cell line, which 

was generated from a PCa of a TRAMP mouse (Hardenberg, 2010). 

The expression of several angiogenesis markers (Fig. 4.4), including Vegfa, Vegfc, Flt-1/Vegfr1, 

Kdr/Vegfr2, sVegfr2, Ang-1, Tie-2 and Pecam-1 was analyzed by quantitative real-time PCR 

after VPA treatment of mouse PCa cells 2E and human PCa cells PC-3. 

 

Fig. 4.4: Angiogenesis markers used for expression analyses of PCa cells, prostate tissue and prostate tumor 

tissue after in vitro and in vivo VPA treatment. The markers used for expression analyses included the angiogenic 

cytokines vascular endothelial growth factor A and C (Vegfa, Vegfc) and angiopoietin 1 (Ang1), three endothelial cell 

receptor tyrosine kinases (vascular endothelial growth factor receptor-1 (Flt-1/Vegfr1), vascular endothelial growth 

factor receptor-2 (Kdr/Vegfr2) and tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (Tie-1)), the 

soluble form of Vegfr2 (sVegfr2) and an endothelial cell adhesion molecule, platelet endothelial cell adhesion molecule 

(Pecam-1). Black, dark and light grey circles represent the angiogenic stimulators Vegfa, Vegfc and Ang1. 
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Analyzing the expression of the above mentioned angiogenesis markers in PCa cells or tissue 

after in vitro or in vivo VPA treatment is was expected to be reduced compared to controls in 

order to exert its anti-angiogenic properties. Indeed, it could be observed in 2E cells that upon 

VPA treatment the expression of Vegfa, Vegfc and Ang1 as well as Tie-1 and Pecam-1 was 

statistically significant downregulated, mostly in a time- and concentration- dependent manner. 

However, the two receptor tyrosine kinases Flt-1/Vegfr1 and Kdr/Vegfr2 were upregulated after 

VPA treatment (Fig.4.5). In PC-3 cells, VEGFA and FLT-1/VEGFR1 were also downregulated 

after VPA treatment, depending on the duration of VPA treatment. In contrast, KDR/VEGFR2 

was upregulated. VEGFC and sVEGFR expression, dependent on the duration of VPA 

treatment, were upregulated after 72 hours, but downregulated after 144 hours (Fig.4.5). 

sVEGFR2, an alternatively spliced variant of VEGFR2, is known to inhibit developmental and 

reparative lymphangiogenesis by blocking VEGFC function while competing for VEGFR2 

binding (Albuquerque et al. 2009). 

 

Fig. 4.5: Expression of angiogenesis markers in 2E and PC-3 cells after in vitro VPA treatment. The expression 

levels of several angiogenesis markers were analyzed in 2E cells (blue arrows) and PC-3 cells (green arrows) after 

VPA treatment and compared to untreated controls. Black, dark and light grey circles represent the angiogenic 

stimulators Vegfa, Vegfc and Ang1. 

 

Taken together, in 2E and PC-3 PCa cells not only blood- but also lymphangiogenesis must be 

impaired after VPA treatment, since the expression of blood- and lymphangiogenic-stimulators 

and of their respective receptors was mainly downregulated and the lymphangiogenesis inhibitor 

sVEGFR2 was upregulated. However, in PC-3 cells the duration of VPA treatment seems to 

have an important impact on the deregulation of angiogenesis markers as in some cases (Vegfc 

and sVegfr2) the expression deregulation observed after 72 hours VPA treatment was contrary 

to the observation after 144 hours of VPA treatment. 
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Nonetheless, the question remains unresolved why the expression of the receptors Flt-1/Vegfr1 

and Kdr/Vegfr2 is upregulated in 2E cells and PC-3 after VPA treatment. The KDR/VEGFR2 

signaling pathway was even shown to be activated after VPA treatment by an unknown 

mechanism. It is probably not activated by binding of Vegfa or Vegfc, since their expression was 

reduced. 

The effect of in vivo VPA treatment on the expression of the angiogenesis markers was also 

investigated. Therefore, prostate tumor tissue and prostate tissue of VPA-treated TRAMP mice 

was used. In prostate tissue, of the six analyzed angiogenesis markers (Vegfa, Flt-1/Vegfr1, 

Kdr/Vegfr2, Ang-1, Tie-2 and Pecam-1) only Flt-1/Vegfr1 was statistically significant 

downregulated in VPA-treated mice as compared to controls (Fig.4.6). Ang1, Tie-1, Kdr/Vegfr2 

and Pecam-1 all had a reduced expression after VPA treatment in the mouse prostate, but this 

effect was not statistically significant. Prostate tissue was isolated from mice at the age of 16 

weeks, when TRAMP mice should have developed PIN already, and almost no statistically 

significant effect of VPA treatment on the expression of angiogenesis markers was observed 

(except Flt-1/Vegfr1 downregulation). It can be hypothesized that the expression of angiogenesis 

markers is not severely affected in prostates of 16-week-old TRAMP mice, because at that age 

these mice did not develop adenocarcinomas and tumor angiogenesis seems to play an inferior 

role. 

In the prostate tumor tissue, the expression of Ang1, Vegfa, Tie-1 and Kdr/Vegfr2 was 

statistically significant reduced in VPA-treated TRAMP mice as compared to controls (Fig.4.6). 

Pecam-1 was also downregulated after VPA treatment, although not statistically significant, and 

Flt-1/VEGFR1 was similar expressed in prostate tumors of VPA-treated mice and control-treated 

mice. 

This indicates that VPA treatment is especially effective in downregulating angiogenesis related 

genes in more advanced PCa and not in the very early PCa stages (e.g. PIN) when there has 

no adenocarcinoma developed yet. The effect of VPA on angiogenesis especially in the more 

advanced PCa could imply a decrease or inhibition of tumor cell proliferation. 
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Fig. 4.6: Expression of angiogenesis markers in prostate tissue and prostate tumor tissue of in vivo VPA 

treated TRAMP mice. The expression of several angiogenesis markers was analyzed in prostate tumor tissue (red 

arrows) and prostate tissue (purple arrow) of in vivo VPA-treated TRAMP mice and compared to untreated controls. 

Filled arrows indicate statistically significant results, unfilled arrows indicate not statistically significant results. Black, 

dark and light grey circles represent the angiogenic stimulators Vegfa, Vegfc and Ang1. 

 

Within the present study it could be shown that VPA treatment reduces the expression of several 

angiogenesis markers in PCa cells and in prostate tumor tissue, indicating an angiogenesis 

inhibition. In vitro VPA treatment reduced the expression of Vegfa, Vegfc, Ang1, Tie-1 and 

Pecam-1 in murine 2E PCa cells and of VEGFA and FLT-1/VEGFR1 in human PC-3 PCa cells. 

VEGFC and sVEGFR2 expression, dependent on the duration of VPA treatment, was increased 

after 72 hours and reduced after 144 hours of VPA treatment. In vivo VPA treatment exerts an 

angiogenesis inhibition since the expression of almost all angiogenesis markers tested was 

reduced as compared to controls. Especially in prostate tumor tissue this effect was statistically 

significant, indicating that VPA treatment is effective in downregulating angiogenesis-related 

genes in more advanced PCa as compared to the very early PCa stage. 

Solely the overexpression of the two receptors Flt-1/Vegfr1 and Kdr/Vegfr2 after VPA treatment 

in 2E cells and of KDR/VEGFR2 in PC-3 cells is contradictory to the picture of VPA as an anti-

angiogenic drug. This data is also contrary to what is known from the literature about the effect 

of VPA treatment on the expression of theses receptors in other cancer entities. A study by Dong 

et al. (2007) could show that VEGFR1 in human multiple myeloma KM3 cells was decreased 

upon VPA treatment (Dong et al., 2007). Additionally, in leukemia cell xenografts, a VPA-induced 

VEGFR2 downregulation has been shown (Zhang et al., 2014). As already mentioned above, 

the question why Flt-1/Vegfr1 and Kdr/Vegfr2 as well as KDR/VEGFR2 expression are 
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upregulated and activated (as seen by increased phosphorylation) in PCa cells after VPA 

treatment remains unsolved. 

To evaluate the influence of VPA on angiogenesis in more detail the chicken chorioallantoic 

membrane (CAM) assay, being one of the most famous angiogenesis assays, was applied in 

cooperation with Prof. Dr. Wilting from the Center of Anatomy, University Medical Center 

Göttingen. Here, both mouse and human PCa cells 2E and PC-3 were pre-treated for different 

time points with VPA (either no pre-treatment, pre-treatment for 24 hours or for one week) and 

then applied to the CAM, where they were forming tumors within one week. The tumors were 

harvested and subjected to macroscopic, immunohistochemical as well as molecular analysis to 

investigate the influence of VPA treatment on angiogenesis in vivo (Fig. 4.7).  

Generally, for each CAM experiment the number of harvested tumors was very low since many 

eggs had to be discarded due to either contamination or death of the embryo which made 

evaluation of the CAM experiments very difficult. 

 

Fig. 4.7: Different approaches used to investigate the influence of VPA treatment on angiogenesis in the CAM 

tumor. After conducting the CAM assay four different approaches were used to investigate the influence of VPA 

treatment on angiogenesis. Firstly, the morphology of the CAM tumor and the surrounding blood vessels was 

investigated. Secondly, the tumor volume itself was calculated. Thirdly, the blood and lymphatic vessels within the 

CAM tumor were visualized and analyzed by immunofluorescent staining with antibodies against Mep21 and Prox1. 

Finally, the expression of blood and lymphangiogenesis markers in CAM tumor tissue was investigated by quantitative 

real-time PCR. 

 

Macroscopic analysis revealed, that CAM tumors can be affected in three different ways, which 

included blood shot tumors, bloody spots within the tumor and tumors with disturbed blood 

vessel formation. However, when comparing the numbers of tumors affected by either one of 

the three phenotypes in tumors derived from VPA-treated cells with tumors grown from control 

cells, no general characteristic phenotype by VPA treatment could be observed. Within the 

experiments for one cell line the phenotypic characteristics did not correlate upon VPA treatment 
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and they also did not correlate within the two cell lines. The only exception was observed for PC-

3 cell tumors, which in both experiments showed a reduced number of bloodshot tumors when 

cells were treated with VPA.  

A study from Michaelis et al. (2004) in which VPA was applied to the CAM, showed reduced 

vessel ingrowth, the development of irregular and brittle vessels, and a markedly reduced 

perfusion as compared with control CAM (Michaelis et al. 2004). In the present study, in the third 

experiment with 2E cells and in the first PC-3 cell experiment an increase in disturbed blood 

vessels was detected when the cells were treated with VPA as compared to the control. 

However, irregular and brittle blood vessels were not characteristic for tumors of VPA-treated 

PCa cells since they were also seen in the control cells.  

The CAM tumor volume was calculated by using the modified ellipsoid formula 1/2(length × 

width2). Generally, tumors grown from VPA pre-treated PCa cells had a slightly, however not 

significantly reduced tumor volume as compared to controls. Furthermore, tumors grown from 

PCa cells that were not pre-treated with VPA, only on the day of application to the CAM and 

three days thereafter, exhibited a slightly, but not significant increase in tumor volume compared 

to controls. These results indicate, that VPA pre-treatment of PCa cells might be of great 

importance for tumor progression in the CAM model. It is known from several studies that in vivo 

and in vitro VPA treatment has a significant inhibitory effect on proliferation (Shabbeer et al. 

2007, Gao et al. 2007, Witt et al. 2013) which could only partially be observed in the present 

study. Nonetheless, this observation needs to be treated with caution since only few tumors were 

available for the tumor volume calculation from each experiment and each group (n=2-8). 

Besides, the modified ellipsoid formula was used, which is quite inaccurate since the tumor 

height is not considered within this formula. Also, length and width were measured from CAM 

tumor pictures taken on the microscope and not from the actual compound since this proved 

very difficult with a sliding caliper. Taking the measurements from CAM tumor cryo-sections on 

a slide could have been an alternative but this proved also to be difficult since some tumors 

slices were incomplete or deformed when transferred to the slide.  

Immunofluorescence staining of CAM tumor sections with the blood vessel marker Mep21 (CD34 

homolog) and with the lymphatic vessel marker Prox1 revealed that CAM tumors derived from 

untreated 2E cells had very strong Mep21 staining and tumors derived from untreated PC-3 cells 

had very strong Prox1 and Mep21 staining. This indicates that 2E cell tumors grow mainly by 

blood angiogenesis, whereas PC-3 cell tumors can grow also by blood angiogenesis and to a 

major part by lymphangiogenesis. Upon VPA treatment of PC-3 cells, but without pre-treatment, 

in the distal tumor part the number of Prox1-positive cells was reduced as compared to control 

tumors, whereas in the proximal CAM part and in the middle part of the tumor the number of 
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Pox1-positive cells was increased. This indicates that upon VPA treatment the progression of 

lymphatic vessels into the tumor might be inhibited.  

In support of the observation mentioned above, VPA-treated PC-3 cells showed an increased 

expression of the lymphangiogenesis inhibitor sVEGFR2. In contrast, an increased expression 

of VEGFC was also observed, leading to the assumption that VEGFC competes with sVEGFR2 

for the binding to VEGFR2. This could result in compensation of the VEGFC-VEGFR2 induced 

lymphangiogenesis, leading to either reduced lymphangiogenesis or unchanged 

lymphangiogenesis upon VPA treatment. And indeed, reduced lymphangiogenesis could be 

observed in the distal tumor part of VPA-treated CAM tumors as compared to controls.  

Since untreated PC-3 CAM tumors exhibit strong Prox1 staining, indicating that growth of these 

tumors depends on lymphangiogenesis, it would be interesting to study if lymphangiogenesis 

can be inhibited, for example by use of a lymphangiogenesis inhibitor such as sVEGFR2. To 

date, nothing is known about the effect of VPA treatment on lymphangiogenesis, neither on 

cancer growth in general nor on PCa development in particular. Lymphatic vessels provide an 

additional route for tumor cells to metastasize, therefore, inhibiting lymphangiogenesis in PCa 

could be a promising approach to prevent metastatic spread and thus, making it an interesting 

target and possible alternative treatment option to inhibition of blood angiogenesis in cancer 

therapy. 

Molecular evaluation of the CAM tumors exhibited some variability between the different 

experiments performed. Analyzing CAM tumors by quantitative real-time PCR showed that in 

VPA-treated PC-3 cell CAM tumors from the first CAM experiment (1 mM VPA pre-treatment for 

24 hours) none of the angiogenesis markers were statistically significant deregulated as 

compared to controls, although their expression was slightly increased. The same result was 

observed for 2E cell CAM tumors from the first experiment. Solely Cp expression was statistically 

significant downregulated in 2E cell CAM tumors upon VPA treatment. 

Increased Ccnd2 expression after VPA treatment of 2E cells was described by Witt et al. (2013) 

and was therefore used as positive control. Only 2E cell CAM tumors from the third experiment 

(3mM VPA pre-treatment for one week) exhibited a statistically significant increase in Ccnd2 

expression, indicating that at least in the third experiment VPA treatment was effective, 

suggesting that a longer VPA pre-treatment period as well as a higher VPA concentration is 

therefore necessary. 

Generally, the expression levels of the angiogenesis markers were rather increased in VPA-

treated CAM tumors, which is contrary to results mentioned above where the expression of 

angiogenesis markers after in vitro and in vivo VPA treatment was rather reduced. Besides, only 
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a small number of tumors were available for molecular evaluation (n= 2-5), which makes this 

study not quite representative. 

Taken together, data received from the CAM experiments need to be considered with caution 

since the results are not quite representative due to the small number of CAM tumors. Besides, 

the CAM model does not seem to be the appropriate model to study VPA-induced effects on 

blood and lymphangiogenesis, not just because of the above mentioned aspect, but also 

because previous described molecular mechanism observed upon in vitro and in vivo VPA 

treatment could not be confirmed. Also the known functional proliferation inhibition of VPA could 

not be observed in VPA-treated PCa cell-derived CAM tumors. 

 

4.4 The role of cyclin D2 in PCa 

 

4.4.1 The family of D-type cyclins 

 

Passage of any cell through the cell cycle is modulated by a series of proteins, of which the main 

players include cyclins, CDKs (cyclin-dependent kinases, positive regulators) and CDK inhibitors 

(negative regulators such as p21 and p27). Cyclin D2 belongs to the family of D-type cyclins 

alongside cyclin D1 and cyclin D3. D-type cyclins play an important role as cell cycle regulators 

controlling transition through G1 phase. Thereby D-type cyclins serve as regulatory co-factors 

for cyclin-dependent kinases (CDKs) which are inactive in the absence of a partner cyclin. 

Binding of the cyclin to its specific CDK activates the catalytic subunit of the CDK resulting in 

phosphorylation of target genes, especially of the retinoblastoma (Rb) growth-inhibitory complex 

(Matsushime et al. 1992). This leads to either activation or inactivation of target proteins, which 

ultimately leads to the progression to the next phase of the cell cycle. Different combinations of 

cyclin-CDK complexes, as well as the expression of CDK-inhibitors operate during different 

phases of the cell cycle and determine the target genes expressed during a specific phase.  

The three D-type cyclins differ not only in their structure (see Fig. 1.4), but also in their function. 

For example, cyclin D2 and cyclin D3 can not only bind to CDK4 and CDK6 but also to CDK2, 

which cyclin D1 cannot (Ewen et al. 1993). Phenotypic analyses of single cyclin D knockout mice 

revealed that each of the D-type cyclins is sufficient to drive normal development of the majority 

of tissues (Ciemerych et al. 2002). Besides, each cyclin D exhibits distinct and mutually exclusive 

expression patterns in mouse embryos and some organs of adult animals. Cells risen from the 

epiblast and trophoblast are solely positive for cyclin D3 expression. This indicates that individual 

cyclin Ds may have their specific functions (Wianny et al. 1998). These specific functions may 

not only be CDK-dependent as seen in case of cyclin D1 which conveys cell cycle- or CDK-
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independent functions. Cyclin D1 can directly influence the expression of estrogen and androgen 

receptors, regulate cellular metabolism, fat cell differentiation and cellular migration (Fu et al. 

2004).  

In tumor cells many of the regulatory mechanism of the cell cycle can be deregulated. Especially 

the abnormal expression of the D-type cyclins and their CDKs is linked to cancer development 

and progression (Musgrove et al. 2011). 

 

4.4.2 Does cyclin D2 act as an oncogene or a tumor suppressor gene in PCa? 

 

As already mentioned above the expression of cyclin D2 is deregulated in many cancer entities. 

High levels of cyclin D2 messenger RNA are frequently observed in ovarian epithelial 

carcinomas (Milde-Langosch and Riethdorf 2003), testicular cancer (Sicinski et al. 1996), colon 

cancer (Mermelshtein et al. 2005) and gastric cancer (Takano et al. 2000), indicating an 

oncogenic role of cyclin D2 in these tumors. In glioblastoma stem cells (GSCs), cyclin D2 was 

also shown to play a critical role in tumorigenicity. Suppression of cyclin D2 expression by RNA 

interference was shown to cause G1 arrest in vitro and growth retardation of GSCs xenografted 

into immunocompromised mice in vivo (Koyama-Nasu et al. 2013). 

However, in breast cancer (Evron et al. 2001, Fischer et al. 2002), lung cancer ((Virmani et al. 

2003), pancreatic cancer (Matsubayashi et al. 2003) and some gastrointestinal tumors (Yu et al. 

2003) cyclin D2 expression is frequently downregulated. Also in PCa the expression of cyclin D2 

is frequently downregulated due to hypermethylation of the cyclin D2 promoter. Thereby an 

increased methylation status correlates with the stage of the tumor which in turn correlates 

inversely with the expression levels in prostatic tissue (Padar et al. 2003, Henrique et al. 2006). 

Increased cyclin D2 promoter methylation in PCa was also shown to correlate with faster tumor 

progression and poor prognosis (Padar et al. 2003, Rosenbaum et al. 2005). In contrast, cyclin 

D1 is frequently overexpressed in PCa and cyclin D1 has been described to act as an oncogene 

not only in PCa (Drobnjak et al. 2000, Ewen and Lamb 2004) but also in breast, lung, colon and 

hematopoietic cancer (Gillett et al. 1996, Courjal et al. 1996, Fu et al. 2004, Arnold and 

Papanikolaou 2005, Santarius et al. 2010, Lehn et al. 2010). 

Witt et al. (2013) could show a specific re-expression of cyclin D2 after treatment with either VPA 

or other HDIs in PCa cells with undetectable low basal cyclin D2 expression. This phenomenon 

was accompanied by proliferation inhibition of PCa cells. Due to the fact that this could not be 

observed in fibroblast cells which exert a very high basal cyclin D2 expression, led to the 

hypothesis that increased cyclin D2 expression in PCa has anti-tumorigenic capacities indicating 

that cyclin D2 might act as a tumor suppressor (Table 4.5). 
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This hypothesis was reinforced by two further studies: Kobayashi et al. (2009) stated that 

restoration of cyclin D2 expression in the human PCa cell line LNCaP inhibits cell proliferation 

(Table 4.5) and Ko et al. (2012) demonstrated that a reduced cyclin D2 expression is correlated 

with a poor recurrence-free survival in non-small cell lung cancer (Table 4.5). To further elucidate 

the role of cyclin D2 in PCa cyclin D2 downregulation studies were conducted in the present 

thesis, expecting that non-cancerous cells with reduced cyclin D2 expression could display 

features comparable to cancer cells. Therefore, NIH/3T3 fibroblast cells were used since they 

exhibit high basal cyclin D2 expression. Simultaneously, cyclin D2 overexpression studies were 

conducted with human and mouse PCa cells, expecting that these cancer cells exhibit reduced 

features of a cancer cell when cyclin D2 expression is increased. If cyclin D2 is indeed a tumor 

suppressor in PCa, this knowledge would be of great value for possible treatment options for 

patients with PCa.  

Downregulating cyclin D2 expression in NIH/3T3 cells by the use of three different cyclin D2-

specific siRNAs resulted in an increased migration rate which was statistically significant for 

siRNA B and siRNA C. The increase in the migration rate was specific after cyclin D2 

downregulation, since downregulation of cyclin D1 had no effect on the migration behavior. From 

the literature such an effect of cyclin D2 expression on PCa cell migration was not reported. But 

a similar effect is known from a study with mammary epithelial cells. The authors could show 

that the Ets family transcription factor Pea3, which is involved in tumorigenesis especially during 

the metastatic process and induces migration and invasion in mammary epithelial cell models, 

stands in a negative feedback loop with cyclin D2. Cyclin D2 expression is lost during Pea-3-

induced tumorigenesis, but restoration of cyclin D2 expression resulted in decreased cell 

migration (Ladam et al. 2013). Here, we could show the opposing effect in fibroblast cells, i.e. 

reducing the cyclin D2 expression resulted in increased cell migration. Cyclin D1 is also known 

to influence cell migration in breast cancer cells, which is mediated through transforming growth 

factor beta (TGFβ) signaling (Dai et al. 2013), but does not seem to effect cell migration in 

fibroblast cells.  

One feature of cancer cells is their ability to grow anchorage-independent (colony forming 

capacity in semisolid media, Cifone and Fidler 1980). To test whether NIH/3T3 fibroblast cells 

with siRNA-mediated cyclin D2 downregulation possess transformation potential and can grow 

anchorage-independent, which normal NIH/3T3 cells would not, a soft agar assay was 

conducted. The capability of transformed NIH/3T3 cells, including ras-transformed NIH3T3 cells, 

to grow anchorage–independent has been demonstrated in many studies (Barr and Johnson 

2001, Song et al. 2002, Hoque et al. 2006). The colon carcinoma cells SW620 cells, which are 

known to grow anchorage-independent (Coffey et al. 1986, Bullard et al. 2003) formed visible 
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colonies after two weeks, whereas cyclin D2 siRNA-transfected NIH/3T3 cells exhibited no 

anchorage-independent growth. One possible explanation is that the transfected cells either 

possess no transformation potential or that the siRNA-mediated cyclin D2 downregulation is not 

effective over longer time periods. To exclude the latter possibility the efficiency of the cyclin D2-

specific siRNAs over longer time periods was tested by western blot analysis. Indeed, it could 

be demonstrated that the siRNA-mediated downregulation of cyclin D2 expression persists only 

for up to two weeks and thereafter cyclin D2 expression is restored.  

Since it is known that shRNA is significantly more potent than siRNA at mediating knockdown of 

gene expression (McAnuff et al. 2007), a pSingle-tTs-Ccnd2-shRNA plasmid was generated 

which was used for transfection of NIH/3T3 fibroblast cells. The doxycycline-inducible 

expression of the shRNA resulted in downregulation of cyclin D2 expression which was 

confirmed for one clone (clone No. 11) by quantitative real-time PCR and western blot analysis. 

Treatment of transfected NIH/3T3 cells with 0.1µg/ml doxycycline resulted in a 60% decrease in 

cyclin D2 expression. However, also shRNA-mediated cyclin D2 downregulation resulted in no 

aquired transformation potential of NIH/3T3 cells. Furthermore, cell colonies of clone No. 11 

were not even growing in soft agar when simultaneously transfected with an oncogene 

expressing plasmid, such as pEGFP-KRAS or pEGFP-KRAS-G12V, which could support 

transformation potential. At this point it is important to note that the transfection efficiency for 

transfection with pEGFP-KRAS or pEGFP-KRAS-G12V was very poor, since only few of the 

transfected cells showed green fluorescence.  

Additionally, the proliferation rate of doxycycline-treated NIH/3T3 clone No. 11 cells with 

downregulated cyclin D2 expression was comparable to control cells, although it was expected 

to be increased in case cyclin D2 possesses anti-proliferative functions.  

It could be possible that the shRNA-mediated cyclin D2 downregulation would lead to an 

increased proliferation rate of NIH/3T3 cells, but that doxycycline-treatment abolishes this effect. 

Doxycycline-treatment is known to reduce or inhibit cell proliferation (Fife et al. 1997, Chang et 

al. 2010, Ahler et al. 2013). The usage of a cyclin D2-specific inhibitor would be helpful to 

circumvent this problem, but to date there are no cyclin D2-specific inhibitors available, only 

inhibitors that also inhibit other D-type cyclins, which is not intended in the present studies. 

Taken together, the increased migration rate of NIH/3T3 cells transfected with a cyclin D2-

specific siRNA suggests that cyclin D2 possesses anti-tumorigenic capacities (Table 4.5) which 

could be neither confirmed nor proved invalid by both soft agar and proliferation assays. To 

better evaluate the functionalities of reduced cyclin D2 expression for PCa in general the studies 

should be repeated with a prostate epithelial cell line, for example with ATCC or PNT2 cells. But 
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first it needs to be evaluated whether either one of these two cell lines encompasses high basal 

cyclin D2 expression, making this cell model suitable for cyclin D2 downregulation studies. 

To investigate whether overexpression of cyclin D2 reduces tumorigenic features in PCa cells, 

cell clones and colonies were generated with stable or inducible cyclin D2 expression. Therefore, 

two different cyclin D2 expression vectors were generated, namely pIRES2-EGFP-CCND2 for 

constitutive cyclin D2 overexpression and pEBTetD-CCND2 for doxycycline-inducible cyclin D2 

overexpression in PCa cells. PCa cell lines were stably transfected with both constructs and 

suitable cell clones were established and verified for cyclin D2 overexpression. 

Studies on the functional effects of transient, stable and inducible cyclin D2 overexpression 

resulted in similar or increased proliferation rates compared to controls, opposing to what was 

expected. In the three LNCaP cells clones with stable overexpression of cyclin D2 a slightly 

increased proliferation was observed during the first 72 hours, whereas only after 92 hours the 

proliferation rate was slightly reduced for two of these LNCaP clones as compared to the control. 

In contrast, Kobayashi et al. (2009) could show that forced cyclin D2 expression in LNCaP cells 

suppressed the proliferative ability and induced cell death in LNCaP cells in a cdk-independent 

manner. When the forced cyclin D2 expression in LNCaP cells was knocked down again, this 

resulted in proliferation restoration (Kobayashi et al. 2009). A connection between increased 

cyclin D2 expression and proliferation inhibition has already been described in 1998 for primary 

and established fibroblast cells (Meyyappan et al. 1998). Inhibition of cell proliferation by either 

contact-inhibition or serum-deprivation was accompanied with increased cyclin D2 expression 

and G1 arrest. Additionally, Meyyappan and coworkers could show that passage number of the 

cells correlated with increased cyclin D2 expression and decreased proliferation (Meyyappan et 

al. 1998). In the present study, PC-3 cells with stable cyclin D2 overexpression had a not 

significantly increased proliferation rate. Furthermore, LNCaP colonies with doxycycline-

inducible overexpression of cyclin D2 showed a significantly increased proliferation rate as 

compared to control cells. In the latter experiment, the concentration of doxycycline was kept as 

low as possible since it is known that doxycycline treatment exhibits off target effects as 

observed for example by a reduction or inhibition of cell proliferation (Fife et al. 1997, Chang et 

al. 2010, Ahler et al. 2013). Nonetheless, the proliferation rate of LNCaP colonies with inducible 

overexpression of cyclin D2 was increased. 

In contrast to the expectation, the migration capability of LNCaP and PC-3 clones with stable 

cyclin D2 overexpression was also increased as compared to control cells.  

Taken together, the studies conducted with cyclin D2 overexpressing cells are opposing to the 

expectation that cyclin D2 encompasses anti-tumorigenic capacities in PCa cells. They rather 

suggest that cyclin D2 exerts oncogenic potential (Table 4.5). This hypothesis is supported by 
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two studies using micro RNAs (miRNAs) which target cyclin D2. Both studies could show that 

miRNAs (miRNA-154 and miRNA-let7a) downregulating cyclin D2 expression in human PCa 

cells inhibited PCa cell proliferation (Table 4.5, Dong et al. 2010, Zhu et al. 2014).  

Studies conducted during this thesis on the functional consequences of cyclin D2 

downregulation in mouse and human PCa cells revealed that their proliferation rate was reduced 

compared to luciferase control transfected cells. Upon VPA-treatment of these cells, their 

proliferation rate decreased further as compared to untreated control cells. However, it was 

expected that cells transfected with cyclin D2-specific siRNA would have an increased or 

comparable proliferation rate to controls after VPA treatment. The siRNA is thought to suppress 

VPA-induced re-expression of cyclin D2 which was shown to be accompanied with proliferation 

inhibition (Witt et al. 2013). Therefore, cell proliferation should not be inhibited but rather 

increased if cyclin D2 is directly responsible for the decreased proliferation rate observed in 2E 

cells. However, as already observed by Witt (2012), the cyclin D2-specific siRNA-mediated 

downregulation was not sufficient to suppress the VPA-induced re-expression of cyclin D2, as 

revealed by quantitative real-time PCR (data not shown). Therefore, a direct connection between 

VPA-induced re-expression of cyclin D2 and proliferation inhibition of PCa cells could not be 

demonstrated.  

Taken together, from the cyclin D2 downregulation and overexpression studies in both PCa and 

NIH/3T3 cells conducted during the present project and due to the above mentioned limitations 

during the soft agar assay it could not be determined whether cyclin D2 acts as a tumor 

suppressor or as an oncogene in PCa. There are advantages and disadvantages for both 

hypotheses and further studies need to be performed to finally identify the role of cyclin D2 in 

PCa (Table 4.5). It would be of great interest to repeat the soft agar experiment with newly 

generated oncogene plasmids to find out whether cells with cyclin D2 downregulation acquire 

transformation potential when co-transfected with an oncogene. Finally, a combined PCa mouse 

model (TRAMP) with a conditional cyclin D2 knockout in the prostate (Ccnd2fl/fl/Cre+/T+) would 

unveil with certainty its role in PCa development and progression (summarized in Table 4.5). 

This conditional cyclin D2 knockout mouse model (Ccnd2fl/fl/Cre+/T+) has already been 

established during the present project, but at the moment no conclusions can be drawn from this 

mouse model, because at 18 weeks of age the Ccnd2fl/fl/Cre+/T+ offspring is still too young to 

have developed a PCa (see Fig. 4.1). 

 

Table 4.5: Comparison of the facts that cyclin D2 might act as a tumor suppressor in PCa with facts that cyclin 

D2 might act as an oncogene in PCa. Several studies and also results from the present project suggest that cyclin 

D2 might act as a tumor suppressor in PCa, whereas there are also indications that cyclin D2 might act as an 

oncogene in PCa. To date, there is no clear fact that proves that cyclin D2 is either an oncogene or a tumor suppressor 
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and its role in PCa still remains unsolved. Two important questions that would elucidate the role of cyclin D2 in PCa 

could not be answered during the present project. On the one hand, the transformation potential of NIH/3T3 cells with 

reduced cyclin D2 expression and co-transfection with an oncogene could not be assessed by soft agar assay since 

transfection efficiency was very poor. On the other hand, the influence of lacking cyclin D2 expression in a conditional 

cyclin D2 knockout mouse model (Ccnd2fl/fl/Cre+/T+) on tumor development and progression could not yet be 

determined since the offspring is too young to have developed a PCa. 

 

Besides, it might be possible that upregulation of cyclin D2 alone cannot exert the VPA-induced 

effects described previously, only in combination with several other factors. Hypermethylation of 

genes is a general effect observed in cancer, therefore not only cyclin D2 should be 

hyperacetylated upon VPA treatment (Witt et al. 2013), but also several other genes which 

together with cyclin D2 might exert the anti-tumorigenic effects (Fig.4.8). 

 

Is cyclin D2 a tumor suppressor in PCa? Is cyclin D2 an oncogene in PCa? 

 Re-expression in PCa cells is associated with 

proliferation inhibition (Witt et al. 2013, Kobayashi 

et al. 2009)  

 

 Reduced expression in NIH/3T3 cells results in 

increased proliferation (Witt et al. 2013) 

 

 Reduced expression in NIH/3T3 cells results in 

increased migration rate (present study) 

 

 in non-small cell lung cancer, a reduced cyclin D2 

expression is correlated with a poor recurrence-

free survival (Ko et al. 2012) 

 Increased proliferation rate upon 

overexpression in PCa cells (present study) 

 

 Increased migration rate upon overexpression 

in PCa cells (present study) 

 

 miRNAs targeting cyclin D2 in human PCa cells 

inhibited PCa cell proliferation (Dong et al. 

2010, Zhu et al. 2014) 

 Transformation potential of NIH/3T3 cells with reduced cyclin D2 expression and co-transfected with 

an oncogene? (Needs to be repeated) 

  

 Earlier tumor development and more aggressive tumor in TRAMP mice with conditional cyclin D2 

knockout? (Ongoing experiment) 
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Fig. 4.8: Schematic presentation how VPA treatment might exert its anti-tumorigenic effects in PCa. The VPA 

mediated anti-tumorigenic effects in PCa might be exerted by combination of promoter hyperacetylation of several 

genes, of which only Ccnd2 has been identified (Witt et al. 2013). 

 

4.4.3 The physiological role of cyclin D2 

 

To elucidate the physiological role of cyclin D2 in the mouse prostate a conditional knockout 

mouse model with a prostate-specific cyclin D2 deletion was established during the present 

project. To investigate especially the effect of cyclin D2 deletion on PCa development and 

progression the cyclin D2 knockout mice were crossed with TRAMP mice.  

In the Apc(Min/+) mice, a popular animal model for studies of human colon cancer (Leclerc et 

al. 2004), it was shown that a knockout of cyclin D2 dramatically reduced tumor growth and 

development (Cole et al. 2010). Cyclin D2 is known to be overexpressed in 53% of colon cancers 

(Mermelshtein et al. 2005), whereas it is inactivated in PCa patients due to promoter 

hypermethylation (Padar et al. 2003). It was shown that restoration of the cyclin D2 expression 

in LNCaP PCa cells resulted in reduced proliferation. Witt et al. (2013) could also show that re-

expression of cyclin D2 in human and mouse PCa cells, induced by VPA treatment was 

associated with decreased proliferation rates, whereas fibroblast cells, in which cyclin D2 

expression was not further increased by VPA treatment, showed no such proliferation inhibition, 

except for the L-cells. Moreover, in non-small cell lung cancer, reduced cyclin D2 expression is 

correlated with a poor recurrence-free survival (Ko et al. 2012). These data indicate that at least 

in some cancers, including PCa, increased or restored cyclin D2 expression is associated with 

anti-tumorigenic effects. To examine whether this holds true in vivo, in the present study a 

prostate-specific cyclin D2 knockout mouse model was generated, because to date such a 

mouse model has not been established. These conditional knockout mice were further crossed 

with TRAMP mice to induce PCa formation and to study the consequences of a cyclin D2 

knockout on tumor development and tumor progression. If cyclin D2 indeed exerts a tumor 

suppressive function in PCa then TRAMP mice lacking cyclin D2 expression in the prostate 

epithelium should develop PCa at an earlier age or exhibit a more aggressive PCa.  

Multiple conventional knockout mouse models already exist with either a single D-type cyclin 

knockout, double D-type cyclin knockout or triple D-type cyclin knockout (cyclin D-null mouse). 

Studies on single D-type cyclin knockout mice showed that they were all viable but exhibited 

different phenotypes. In cyclin D1 knockout mice the proliferation of breast epithelium was 

impaired during pregnancy whereas in female cyclin D2 knockout mice the proliferation of 

ovarian granulosa cells in response to follicle-stimulating hormone (FSH) was inhibited, resulting 
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in infertility. Knockout of cyclin D2 resulted in cerebellar abnormalities and impaired 

neurogenesis (Huard et al. 1999, Kowalczyk et al. 2004). Cyclin D3 knockout mice exhibited 

disturbed development of immature T-lymphocytes. The predisposition for different cancer types 

was also divert in the single D-type cyclin knockout mice. A knockout of cyclin D1 expression led 

to resistance of developing breast cancer promoted by Ras and Neu oncogenes. Cyclin D2 

knockout mice had a decreased susceptibility for cancer of the gonads, whereas cyclin D3 

knockout mice had a decreased susceptibility for skin papilloma and Myc-promoted oral mucosa 

tumors (summarized from Kozar and Sicinski 2005).  

Studies on mice that express only a single D-type cyclin showed that cyclin D1-only mice 

developed severe megaloblastic anemia, cyclin D2-only mice presented neurological 

abnormalities, and cyclin D3-only mice lacked normal cerebella (Ciemerych et al. 2002). These 

studies indicate that the D-type cyclins possess some individual functions, but also general 

functions that can be compensated by the other D-type cyclins. Even the lack of all three D-type 

cyclins in cyclin D-null mice (cyclin D1(-/-)D2(-/-)D3(-/-) showed that cyclins are dispensable for 

cell cycle progression. These mice developed phenotypically and histopathologically 

comparable to control mice until embryonic day 13.5 (E13.5, Kozar et al. 2004) when most of 

the organs are already completely developed. At E17.5 cyclin D1(-/-)D2(-/-)D3(-/-) mice died due 

to heart abnormalities combined with a severe anemia. Furthermore, this study showed that D-

cyclins are critically required for the expansion of hematopoietic stem cells, whereas cyclin D-

deficient fibroblasts proliferate nearly normally. Additionally, mouse embryonic fibroblast (MEF) 

cells lacking D-cyclins displayed reduced susceptibility to oncogenic transformation (Kozar et al. 

2004). 

For the present study, Ccnd2fl/fl mice and PB-Cre4+ mice with a C57/Bl6 background were 

purchased and their colonies established by mating with C57/Bl6 wild type mice. PB-Cre4+ mice 

contain a second-generation composite probasin promoter, the ARR2PB promoter, which was 

modified to contain two androgen response elements (ARR) in the PB promoter (Zhang et al. 

2000). This 0.5-kb PB promoter fragment maintains reliable prostate-specificity and 

simultaneously provides very high transgene expression in transgenic mice (Zhang et al. 2000). 

Mating of Ccnd2fl/fl mice with PB-Cre4+ mice resulted in homozygous Ccnd2fl/fl/Cre+ mice as 

verified by genotyping PCR. The prostate-specific knockout of cyclin D2 could be partially 

confirmed by PCR analysis of different mouse tissues of homozygous Ccnd2fl/fl/Cre+. Only in the 

prostate tissue the band for the deleted Ccnd2 allele could be detected, however, also a specific 

band for the floxed Ccnd2 allele was observed. Quantitative real-time PCR and western blot 

analyses of different tissues revealed that cyclin D2 expression in the prostate was not reduced, 
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which is contrary to the expectation from a homozygous, prostate-specific cyclin D2 knockout 

mouse. 

One possible explanation for this observation could be that not a pure population of epithelial 

cells of the prostate was used for genotyping PCR, quantitative real-time PCR and western blot 

analyses. The probasin promoter in the knockout construct ensures specific expression of the 

Cre recombinase exclusively in prostate epithelial cells, therefore only these cells should exhibit 

a cyclin D2 knockout. For genotyping PCR, quantitative real-time PCR and western blot analyses 

the whole prostate gland was used, which consists of two generic cell types, i.e. epithelial cells 

and stromal cells. Epithelial cells form glands that are composed of the luminal secretory and 

basal cell types and rare neuroendocrine cells. The stroma surrounding the prostatic glands 

contains smooth muscle cells and fibroblasts (Cunha et al. 1996). Blood vessels, peripheral 

nerves and ganglia, and tissue-infiltrating white blood cells are additional constituent cell 

elements of the normal adult human prostate. The fact that the prostate is a solid organ makes 

the isolation of a specific cell type for a knockout verification problematic (Liu and True 2002).  

Ongoing experiments to verify the prostate-specific knockout of cyclin D2 include 

immunohistochemistry, but to date no suitable antibody for mouse cyclin D2 has been identified, 

and RNA in situ hybridization (RNA-ISH). The cyclin D2-specific RNA probes were generated 

during the present study, but still need to undergo digoxigenin (DIG) labeling for the actual ISH 

procedure. If neither one of these two approaches should be successful in demonstrating the 

prostate-specific cyclin D2 downregulation, then microdissection should be conducted as a last 

alternative approach. Using microdissection, a single cell type, in this case prostate epithelial 

cells, can be specifically isolated from tissues consisting of multiple cell types. The isolated pure 

prostate epithelial cells could then be used for repetition of PCR, quantitative real-time PCR and 

western blot analyses. 

The putative conditional cyclin D2 knockout mice were further mated with TRAMP mice (T+) to 

study the effects of prostate-specific loss of cyclin D2 expression in a PCa mouse model. 

Thereby, especially the effect on tumor development and progression ought to be studied. If 

cyclin D2 proves to be a tumor suppressor in PCa, then it is expected that mice lacking cyclin 

D2 expression in the prostate epithelium would develop PCa earlier as compared to normal 

TRAMP mice or exhibit a more aggressive PCa. The likelihood to receive homozygous 

Ccnd2fl/fl/Cre+/T+ mice when mating Ccnd2fl/+/Cre+/T+ mice with Ccnd2fl/fl mice is only 12.5%. To 

date, there are seven putative homozygous Ccnd2fl/fl/Cre+/T+ mice of which none has developed 

a palpable PCa. The oldest of these mice is 18 weeks old, therefore, this mouse is too young to 

have developed an adenocarcinoma yet, as compared to single-transgenic TRAMP mice which 

develop an adenocarcinoma at app. 28 weeks of age. Furthermore, one 16-week-old 
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heterozygous Ccnd2fl/+/Cre+/T+ mice had already developed a palpable PCa and had to be 

sacrificed. Based on the age of this heterozygous mouse it should not have developed a PCa 

but rather a PIN according to the tumorigenic time course in the TRAMP mouse model. 

Development of PCa in heterozygous double transgenic Ccnd2fl/+/Cre+/T+ mice at such a young 

age could suggest that even the loss of one cyclin D2 allele in the prostate of TRAMP mice could 

be sufficient to induce a more severe PCa as compared to single transgenic TRAMP mice. 

Nonetheless, at the present state of the experiment no definite conclusion can be drawn on the 

physiological role of cyclin D2 in PCa development and progression in vivo (Table 4.5, section 

4.4.2). 

The fact that not all TRAMP mice in our institute developed PCa and that these mice often 

develop seminal vesicle carcinoma, which very rarely is accompanied with development of PCa, 

as observed in our institute and also known from the literature (Tani et al. 2005, Yeh et al. 2009), 

led to the search for a more suitable PCa mouse model. In the literature there are other 

disadvantages of the TRAMP mouse model stated, for example that the carcinoma developed 

from TRAMP mice are of neuroendocrine origin (Chiaverotti et al. 2008) and not of epithelial 

origin as compared to the majority of human PCa cases (Abrahamsson 1999). Also, the PCa in 

TRAMP mice rarely metastasizes to the bone, as it is the case in humans, but rather to lymph 

nodes and lung (Gingrich et al. 1997). Another limiting factor for the use of TRAMP mice in PCa 

studies is the inherent use of the probasin promoter which is regulated by androgens (Matuo et 

al. 1989, Kasper et al. 1998). When it comes to interpreting consequences of castration this will 

be confounded by the possibility that observed androgen sensitivity is due to downregulation of 

transgene expression. Furthermore, as already mentioned, use of the non-physiological SV40 T 

antigen leads to prostate epithelium-specific inactivation of pRb and p53, the major targets of 

SV40 T antigen, resulting in formation of neuroendocrine tumors with metastasis potential to 

distant organs. The same is observed by prostate-specific inactivation of pRB and p53 (Zhou et 

al. 2006). Consequently, the phenotype of TRAMP mice may reflect the consequences of RB 

and p53 pathway inactivation. Besides, the relatively short kinetics of PCa development differ 

from the characteristically slow development of PCa in humans (Gingrich et al. 1999). 

The PCa mouse model in which the tumor suppressor gene phosphatase and tensin homolog 

deleted from chromosome 10 (Pten, Song et al. 2012) is excised seems to be a suitable 

alternative to the TRAMP mouse model. It is the most frequently used genetically-engineered 

mouse model, although very few human PCa patients have loss of both PTEN alleles. 

Approximately 23% of human high grade PIN, 69% of localized PCa (Yoshimoto et al. 2006) and 

86% of metastatic castration resistant PCa (Holcomb et al. 2009) exhibit PTEN deletions. PTEN 

is a phosphatase which removes a phosphate group from phosphatidylinositol 3,4,5-
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triphosphate (PIP3,4,5,) resulting in downregulation of the Akt/m-Tor signaling pathway, leading 

to decreased cell proliferation and survival (Cantley and Neel 1999). PTEN is of considerable 

importance for PCa because of its relevance for regulating androgen receptor signaling (Abate-

Shen and Shen 2000, Shen and Abate-Shen 2007, 2010) and its loss has been linked to many 

cancers, including PCa (Cairns et al. 1997). Due to the fact that Pten conditional knockout mice 

resemble the principal driving event of human PCa in PCa of mice and also represents the 

human course of the disease from PIN to metastatic, castration resistant PCa of epithelial origin 

(Wang et al. 2003, Trotman et al. 2003) it was chosen for mating with Ccnd2fl/fl/Cre+ mice instead 

of TRAMP mice. One other major benefit in using Pten conditional knockout mice instead of 

TRAMP mice for the generation of conditional cyclin D2 knockout mice is that there will be no 

further interference with other cell cycle- associated factors, solely the cyclin D2 knockout. PTEN 

is known to induce cell cycle arrest by negatively regulating especially cyclin D1, but also the 

other D-type cyclins (Radu et al. 2003, Diao and Chen 2007). PTEN was also shown to 

downregulate cyclin D2 expression (Huang et al. 2007). Therefore, loss of PTEN in conditional 

cyclin D2 knockout mice should have no further negative effect on cell cycle regulators. Using 

TRAMP mice, the SV40 T antigen would inactivate pRb and p53, two major cell cycle 

components, which would distort the outcome of a conditional cyclin D2 knockout. Thus, the 

phenotype of TRAMP mice with a conditional cyclin D2 knockout may also reflect the 

consequences of RB and p53 pathway inactivation. The idea is to solely interfere with cyclin D2 

and no other cell cycle components since the physiological role of cyclin D2 ought to be 

investigated. The Pten conditional knockout mice fulfills this criteria and was therefore purchased 

and the line just recently established. Due to the advanced stage of this thesis and the 

accompanied time limitation it was not possible to set up the mating of Pten conditional knockout 

mice with prostate-specific cyclin D2 knockout mice during this project. Once the physiological 

function of cyclin D2 in PCa is fully understood, this knowledge can be transferred to reveal its 

pathologic function and might help in the development of new therapeutic strategies for the 

treatment of PCa. 

 

4.5 Perspectives 

 

4.5.1 The histone deacetylase inhibitor VPA in PCa 

 

The influence of in vitro and in vivo VPA treatment on PCa has been investigated by several 

research groups. In the present study, previously described molecular mechanism in mouse PCa 

2E cells induced by VPA treatment could be partially confirmed in prostate and prostate tumor 
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tissue of in vivo VPA-treated TRAMP mice. The expression of one candidate gene, namely cyclin 

D2, was also investigated in murine prostate tumor tissue by immunohistochemistry, but the 

used antibody was not specific. It would be important to verify the deregulation of the candidate 

genes upon VPA treatment in the prostate tumor tissue samples, therefore, new cyclin D2 

antibodies should be obtained for immunohistochemical evaluation of the prostate tumor tissue. 

During the present study it has been shown that VPA exerts anti-angiogenic effects in the mouse 

PCa 2E cells and the human PCa cells PC-3, but also in prostate tumor tissue of VPA-treated 

TRAMP mice, mainly by deregulation of angiogenesis markers. This emphasizes the need for 

further studies on VPA as a putative anti-angiogenic agent in PCa, since to date very little is 

known about the anti-angiogenic effects of VPA in cancer. At present, especially the influence 

of VPA on lymphangiogenesis and tumor growth has not been described in the literature, thus, 

opening a new field in cancer research since formation of new lymphatic vessels provides an 

additional route for tumor cells to metastasize. In the present study, VPA treatment has been 

shown to influence the expression of blood- and lymphangiogenesis-related genes in mouse and 

human PCa cells, highlighting the beneficial effect of VPA as an anti-cancer drug. Here, it would 

be also interesting to study if VPA directly influences the acetylation status of the angiogenesis-

related genes, which could be examined by chromatin immunoprecipitation studies. 

In mouse PCa 2E cells it was shown that VPA treatment reduced the expression of several 

angiogenesis markers, whereas the expression of the two receptor tyrosine kinases Flt-1/Vegfr1 

and Kdr/Vegfr2 was increased after VPA treatment. In case of Kdr/Vegfr2 this was accompanied 

by increased activation of the receptor signaling pathway, as seen by enhanced phosphorylation 

status of the receptor. Since the expression of the two ligands able to bind to Kdr/Vegfr2, namely 

Vegfa and Vegfc, was downregulated upon VPA treatment the question remains open which 

ligand-binding induces the receptor activation. Vegfd is also known to bind to Kdr/Vegfr2, 

therefore its expression status upon VPA treatment should be examined as well. To identify the 

candidate which activates the Vegf-receptor signaling pathway would be of great interest for 

further studies finding an approach to reduce Vegf-ligand expression or to prevent ligand-binding 

which would reduce or prevent signaling of the Vegf-receptor pathway and thereby inhibit 

formation of blood and lymphatic vessels. Furthermore, one should also investigate the 

expression of Vegfr3 upon VPA treatment to exclude that lymphangiogenesis is induced by this 

signaling pathway. 

One major interesting point to investigate would be whether in vivo VPA treatment influences 

angiogenesis at the protein level in prostate tumor tissue of TRAMP mice as compared to 

controls. Therefore, microvessel density could be calculated upon CD31 or CD34 staining of 

prostate tumor sections.  
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By immunofluorescent staining using a Prox1-specific antibody, which is a marker for lymphatic 

vessels, it was shown that PC-3 cell CAM tumors derived from untreated and VPA-treated cells, 

exhibit major staining for Prox1, indicating PC-3 cell derived tumors grow mainly by 

lymphangiogenesis. Further studies using a lymphangiogenesis inhibitor, such as sVegfr2 would 

be very important to demonstrate whether lymphangiogenesis can be inhibited or reduced in 

PCa cells. Therefore CAM experiments could be conducted using PC-3 cells treated with 

sVEGFR2 and compared to untreated controls. If indeed a reduction in lymphatic staining is 

observed in the sVEGFR2 treated tumors, then further studies are necessary to investigate the 

potential of lymphangiogenesis-inhibitors for the treatment of PCa, for example in mouse in vivo 

studies. 

The Prox1 staining was quantified for CAM tumor raised from PC-3 cells that were not pre-

treated with VPA. Thereby a reduction in Prox1-positive cells was observed in the distal tumor 

part of tumors derived from VPA-treated cells as compared to controls. It would be highly 

interesting if different VPA concentrations or different VPA pre-treatment procedures also 

influence lymphatic vessel formation. Therefore the number of Prox1 positive cells should be 

quantified also for other CAM experiments conducted, including 2E cell CAM experiments.  

 

4.5.2 The cell cycle regulator cyclin D2 in PCa  

 

One major aim of this study was to investigate the role of cyclin D2 in PCa. Previously, it was 

shown by Witt (2012) that cyclin D2 exerts a specific role in PCa and it was hypothesized to 

function as a putative tumor suppressor in PCa.  

Firstly, it would be interesting to identify direct interaction partners of cyclin D2, for example by 

a Yeast-two-Hybrid-experiment using a prostate-specific library. This could contribute to the 

understanding of specific functions of cyclin D2 in the prostate and how they are exerted. 

In the present study, cyclin D2 was overexpressed in PCa cells and the functional effects were 

analyzed. It was proposed that cyclin D2 overexpressing PCa cells would exhibit less features 

of cancer cells if cyclin D2 acts indeed as a tumor suppressor in PCa. However, migration and 

proliferation rates of cyclin D2 overexpressing PCa cell were rather increased than reduced, 

suggesting that cyclin D2 does not function as a tumor suppressor gene in PCa cells. Cyclin D2 

expression was also downregulated in fibroblast cells, since they exert high basal cyclin D2 

expression in contrast to PCa cells and the functional effects were analyzed. It was proposed 

that NIH/3T3 cells exhibiting reduced cyclin D2 expression would change their phenotype into 

the direction of cancer cells in case cyclin D2 is a tumor suppressor. Indeed, NIH/3T3 cells with 

reduced cyclin D2 expression displayed an increased migration rate. In contrast, the proliferation 
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rate of NIH/3T3 cells was unchanged and a shift in the transformation potential could also not 

be observed, not even after transfection with an oncogene, for which the very low transfection 

efficiency could be responsible. Therefore, it would be very important to generate or obtain new 

oncogene expression vectors and transfect NIH/3T3 cells with inducible cyclin D2 

downregulation with these vectors. When transfection efficiency is optimal it should be 

determined by soft agar assay whether fibroblast cells with reduced cyclin D2 expression exhibit 

a shift in the transformation potential. 

Generally, the studies in which cyclin D2 was downregulated, either by siRNA or shRNA, should 

be repeated with prostate epithelial cells. In the present study, fibroblast cells were used since 

they were available in the institute and exhibit high basal cyclin D2 expression. In order to 

optimize the evaluation regarding the functionalities of reduced cyclin D2 expression for PCa in 

general the studies should be repeated with a prostate epithelial cell line which exhibits high 

basal cyclin D2 expression. Human or mouse PCa cells are not suitable for these future 

experiments since they display undetectable low cyclin D2 expression levels. 

Downregulation of cyclin D2 by transfection with a shRNA expression vector could be not 

sufficient in completely silencing cyclin D2, since the expression of cyclin D2 was downregulated 

by only 60%. During this study the transcription activator-like effector nuclease (TALEN) 

technique was also consulted to induce cleavage of the cyclin D2 DNA sequence but it could not 

be applied, since molecular cloning of the specific domains was not successful. Another option 

to induce downregulation of cyclin D2 would be the use of a cyclin D2-specific inhibitor, but to 

date there are none available. At present, available cyclin inhibitors inhibit cyclin D2 as wells as 

other cyclin Ds simultaneously, but this phenomenon would distort the results. 

Taken together, the in vitro studies do not really confirm the hypothesis that cyclin D2 has a 

tumor suppressive function in PCa. Therefore, the in vivo studies on tumor development and 

progression in TRAMP mice with a prostate-specific knockout of cyclin D2 are of major 

importance to clarify the role of cyclin D2 in PCa.  

The most important aspect concerning the in vivo studies is the confirmation of the prostate-

specific deletion of cyclin D2 in the generated transgenic mice. By PCR analysis of prostate 

tissue the knockout could only be partially confirmed, presumably because a mixture of prostate 

cells was analyzed and not pure epithelial cells in which the cyclin D2 knockout should occur. 

Other approaches conducted during this study to verify the conditional deletion of cyclin D2 

include RNA in situ hybridization (RNA-ISH) and immunohistochemical staining of prostate 

sections with a cyclin D2-specific antibody. Both approaches are still ongoing and need to be 

continued. If neither one of these techniques is able to demonstrate the conditional knockout 
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then microdissection of prostate tissue should be conducted, where only prostate epithelial cells 

are being excised with a laser and which can then be used for repetition of PCR analyses.  

To date, the in vivo studies on tumor development and tumor progression in the conditional cyclin 

D2 knockout mice are still ongoing because the available mice are too young to have even 

developed an adenocarcinoma yet. Therefore, at the present state of the in vivo experiment no 

definite conclusion can be drawn on the physiological role of cyclin D2 in PCa which implies 

continuation of the in vivo studies. Besides, the TRAMP mouse model should be switched to the 

Pten knockout mouse model since it exhibits several benefits over the TRAMP mouse model 

described in section 4.4.3. The Pten knockout mouse model has just recently been established 

and can now be used for further in vivo studies. 

It would also be interesting to analyze the normal prostate tissue of conditional cyclin D2 

knockout mice (Ccnd2fl/fl/Cre+ and Ccnd2fl/fl/Cre+/T+) histologically, for example by H&E staining. 

Thereby the physiological role of cyclin D2 in normal prostate development can also be 

evaluated. 
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5. Summary 

In the first project of the present study, the influence of in vivo VPA treatment on the expression 

of previously identified candidate genes associated with PCa (Witt, 2009) was subject to 

investigation. Besides, VPA-mediated molecular effects on angiogenesis-related genes and on 

angiogenesis in vivo by use of the CAM model should be analyzed.  

In the second project, the role of cyclin D2 in PCa should be further elucidated. It was 

hypothesized that cyclin D2 exerts tumor suppressive function in PCa (Witt, 2012) which was 

further investigated in the present study by functional experiments of cells overexpressing cyclin 

D2 and of cells with reduced cyclin D2 expression. To elucidate the physiological role of cyclin 

D2 in PCa in vivo a conditional cyclin D2 knockout mouse model was generated and crossed 

with TRAMP mice. 

 

5.1 The histone deacetylase inhibitor valproic acid in PCa 

 

Studies on possible agents for PCa therapy are indispensable since treatment options for early 

PCa stages are associated with severe side effects and treatment options for mCRPC solely 

prolong the patients live and relieve pain, but they are not curative and death is inevitable. 

One of the two main parts of the present study was to investigate valproic acid (VPA) as a 

putative candidate for PCa therapy. VPA is a histone deacetylase inhibitor implicated by many 

studies as a putative agent for the treatment of cancer, including PCa. Previously, it has been 

described that VPA treatment decreases the expression of Cxcl15, Cp1, Cp2, Rcbtb2 and Lif  

and increases the expression of Uchl1, Ptprn and Ccnd2 in the murine PCa cells 2E in a time- 

and concentration-dependent manner (Witt et al. 2013).  

In the present study, the downregulation of Cp2 and Lif could be confirmed by quantitative real-

time PCR in prostate tumor tissue of VPA-treated TRAMP mice. Densitometrical evaluation of a 

western blot confirmed the increased Ccnd2 expression upon VPA treatment observed in 2E 

cells also in prostate tumor tissue of VPA-treated TRAMP mice. 

In prostate tissue of in vivo VPA-treated TRAMP mice the candidate gene expression pattern 

was more similar to the previously obtained microarray data (Witt. 2009). The downregulation of 

Cp2 as well as the upregulation of Ptprn and Uchl1 could be confirmed in prostate tissue of in 

vivo VPA-treaded TRAMP mice. 

Taken together, molecular effects observed by in vitro VPA treatment of mouse PCa cells (2E) 

could be partially confirmed in prostate tumor tissue and to a greater extend in prostate tissue 
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of in vivo VPA-treated TRAMP mice. These results demonstrate the benefits of VPA as a 

possible treatment opportunity for PCa especially in early PCa stages such as PIN. 

In the present study, the investigation of the influence of VPA treatment especially on tumor 

angiogenesis as well as on lymphangiogenesis was of major interest. The expression of several 

angiogenesis markers, including Vegfa, Vegfc, Ang1, Flt-1/Vegfr1, Kdr/Vegfr2, Tie-1, the soluble 

Vegfr2 receptor (sVegfr2) and Pecam-1 was analyzed by quantitative real-time PCR after in vitro 

VPA-treatment of murine 2E PCa cells and in vivo VPA treatment of TRAMP mice. In murine 

PCa 2E cells, the expression of almost all angiogenesis markers mentioned above (i.e. Vegfa, 

Vegfc, Ang1, Tie-1 and Pecam-1) was decreased in a concentration- and partially time-

dependent manner upon VPA treatment. However, both Flt-1/Vegfr1 and Kdr/Vegfr2 were 

significantly upregulated after VPA treatment and in case of Kdr/Vegfr2 it was accompanied by 

increased activation of the receptor signaling pathway as identified by western blot analysis. In 

human PC-3 cells, the downregulation of angiogenesis markers could be partially confirmed but 

dependent on the duration of VPA treatment. 

In vivo VPA treatment also reduced the expression of several angiogenesis markers, as can be 

seen by statistically significant reduced Flt-1/Vegfr1 expression in prostate tissue and Ang1, 

Vegfa, Tie-1 and Kdr/Vegfr2 expression in prostate tumor tissue. These results indicate, that 

VPA treatment has a greater effect on the downregulation of angiogenesis markers in more 

advanced PCa than in very early tumor stages. 

Taken together, in vivo and in vitro VPA treatment effects both blood and lymphangiogenesis, 

as it could be observed by reduced expression of the angiogenic ligands and their receptors and 

by the upregulation of sVEGFR2, a lymphangiogenesis inhibitor, the latter describing a novel 

effect of VPA treatment on lymphangiogenesis. 

For in vivo studies of VPA treatment regarding the influence on angiogenesis several CAM 

experiments were conducted with mouse 2E and human PC-3 PCa cells, which were treated 

with different concentrations of VPA and received different pre-treatments. The CAM 

experiments were not quite successful, because the tumor outcome was very low and 

macroscopic, immunohistochemical and molecular evaluation of these tumors did not yield the 

expected results, such as a reduced tumor volume or reduced expression of angiogenesis 

markers.  

Taken together, in vivo and in vitro VPA treatment was shown to modulate the expression of 

candidate genes associated with PCa. Furthermore, it was shown to modulate not only the 

expression of angiogenesis-related genes (i.e. Vegfa, Ang1, Flt-1/Vegfr1, Pecam-1 and Tie-1) 

but also of lymphangiogenesis related genes (i.e. Vegfc, Kdr/Vegfr2 and sVegfr2) which might 
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be associated with angiogenesis inhibition. These data further highlight the beneficial effect of 

VPA treatment for PCa therapy.  

 

5.2 The cell cycle regulator cyclin D2 in PCa 

 

Cyclin D2 is a known cell cycle regulator, which was proposed to have a special function in PCa, 

possibly acting as a tumor suppressor (Witt, 2012). 

To elucidate the role of cyclin D2 in PCa cells, LNCaP and PC-3 cell clones with a stable 

overexpression of cyclin D2 and LNCaP colonies with a doxycycline-inducible cyclin D2 

overexpression were generated.  

Contrary to the expectation, functional analysis of human PCa cells with a transient, stable or 

inducible cyclin D2 overexpression revealed that these cells exhibited a similar or slightly 

increased proliferation rate as compared to controls. PC-3 and LNCaP cells with stable cyclin 

D2 overexpression had an increased migration rate as compared to controls. These data rather 

indicate that cyclin D2 is not a tumor suppressor in PCa. 

Functional studies of NIH/3T3 cells transfected with cyclin D2-specific siRNAs showed that these 

cells had an increased migration rate as compared to luciferase control transfected cells, 

indicating that cyclin D2 might have anti-tumorigenic capacities, nonetheless. 

NIH/3T3 cells transfected with cyclin D2-specific siRNA acquired no shift in their transformation 

potential, which was investigated by soft agar assay, presumably because siRNA transfection is 

not effective over longer time periods. Therefore, NIH/3T3 clones with doxycycline-inducible 

cyclin D2 downregulation were generated. Their proliferation behavior was similar to that of 

control cells which were not treated with doxycycline. Again it was tested by soft agar assay if 

these cells acquired transformation potential, but this was not the case, not even when the cells 

were double transfected with the oncogene KRAS. For this phenomenon the insufficient 

transfection efficiency could be responsible. 

The functional consequence of cyclin D2 downregulation in VPA-treated 2E, LNCaP, PC-3 and 

DU145 cells was a reduced proliferation rate, indicating that cyclin D2 is not directly responsible 

for the known VPA-induced proliferation inhibition. But, since it was shown that the siRNA is not 

sufficient to prevent the VPA-induced re-expression of cyclin D2, this result needs to be 

considered with caution. 

The physiological role of cyclin D2 in the organism was investigated by the generation of a 

prostate-specific cyclin D2 knockout mouse model, the Ccnd2fl/fl/Cre+ mice. Ccnd2fl/fl/Cre+ mice 

were further bred to TRAMP+ mice to study the influence of the prostate-specific deletion of 

cyclin D2 on prostate tumor development and progression. To date, there are seven 
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homozygous Ccnd2fl/fl/Cre+/T+ mice of which none has developed a palpable PCa so far. The 

oldest of these Ccnd2fl/fl/Cre+/T+ mice is 18 weeks old. 

Taken together, the hypothesis that cyclin D2 could act as a tumor suppressor in PCa remains 

unsolved. Functional studies of cells overexpressing cyclin D2 rather point to the opposite 

direction, whereas functional studies of cells in which cyclin D2 is downregulated indicate that it 

might have anti-tumorigenic capacities. Nonetheless, the downregulation studies exhibited 

several limitations and should be repeated with an epithelial prostate cell line in order to make a 

closing statement. Besides, from the in vivo studies, which could give a definite answer on the 

physiological role of cyclin D2 in PCa, no conclusions can be drawn at the present state of the 

in vivo experiment, because these studies are still ongoing. 
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