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Chapter 1

Introduction
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1.1 Overview

1.1.1 Motivating example

Proteins are macromolecules consisting of long chains of amino acids that occur in all types of

cells in living organisms. They are responsible for many different functions, among others the

transport of substances and enabling important chemical reactions.

Examples of proteins are hemoglobin, which transports oxygen in the blood stream, aquaporins

that are essentially channels that control the flow of water into and out of cells and lysozymes,

which are responsible for the splitting of chemical compounds with water, see, e.g., Branden

and Tooze (1998) for more details on proteins and their structure.

Because proteins perform these crucial tasks the study of their biological functions is important.

One approach, that we will be dealing with in this work, is the analysis of the function-dynamic

relationship. It is well known that the collective motions of the atoms of a protein are impor-

tant for its biological function, see Henzler-Wildman and Kern (2007). Among experimental

methods like nuclear magnetic resonance spectroscopy (Mittermaier and Kay, 2006) or X-ray

crystallography (Bourgeois and Royant, 2005) computational methods like molecular dynam-

ics simulations have become crucial tools for the analysis of this relationship (Berendsen and

Hayward, 2000).

We concentrate on data acquired by the latter method, i.e., we deal with the simulated dynamics

of proteins by the Gromacs software (Abraham et al., 2014). Typical functions of proteins like

the opening of channels or the changing geometry of binding sites where chemical reactions take

place happen over small time frames of femto- or picoseconds (Tuckerman et al., 1991). This

necessitates the gathering of a large number of observations n ∈ N over very small intervals of
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time, making molecular dynamics simulations particularly useful.

The atoms of the backbone, i.e., the longest chain of amino acids the protein consists of, are

often used for this analysis. If the backbone consists of p ∈ N atoms in Cartesian coordinates

At,1, . . . , At,p ∈ R3 observed at times t = 1, . . . , n the protein dynamics are encoded in the

design matrix X = (X1, . . . , Xn)
T ∈ Rn×(3p) that consists of Xt = (AT

t,1, . . . , A
T
t,p)

T ∈ R3p,

t = 1, . . . , n (Brooks and Karplus, 1983).

The biological function of a protein will usually be measured by the opening area of a binding

site or the distance between two (or several) groups of atoms or residues that are assumed to be

responsible for its performance. These measurements at time t = 1, . . . , n will be denoted by

yt and gathered in the vector y = (y1, . . . , yn)
T.

Hence the question of the function-dynamic relationship can be recast into asking how X and

y are related. Although the dynamics and function are explicitly available the high number

of atoms and observations can be cumbersome for regression analysis. As the motions of the

atoms are highly dependent in space it is clear that we encounter a collinearity problem in X ,

see Hub and de Groot (2009).

Furthermore not all atom motions might be important for the function of interest. If the protein

has a binding site the movements of atoms surrounding this site might be more important than

atoms that are farther away. One approach would be to incorporate this information into the

model building process. Here we will focus on regression methods that automatically find the

important information in a subspace of the column space of X .

This problem is well known in biophysics and several different approaches were used to identify

the important motions. Some of the most popular techniques are principal component analysis,

normal mode analysis and functional mode analysis, (Kitao and Gō, 1999; Gō and Noguti,
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1983; Hub and de Groot, 2009). The first two methods find motions that have a large variance

in X or that occur with a low frequency, but neglect the information present in y. Functional

mode analysis seeks to find the collective motions that are highly correlated with y. Recently,

Krivobokova et al. (2012) proposed the use of the partial least squares algorithm to uncover

the responsible collective motions. It was seen that this method is related to functional mode

analysis and partial least squares was successfully used to uncover several function-dynamic

relationships. This is the main motivation for the topic of this thesis and the analysis of the

partial least squares algorithm.

The other motivation is the fact that {Xt}nt=1 are, as motions of atoms over time, inherently

highly dependent and the need for methods that can deal with these types of data arises. It is

well known that the dynamics of proteins have long autocorrelations that decay slowly (Nadler

et al., 1987). In Alakent et al. (2004) autoregressive integrated moving average time series were

used to model and analyze them. This lead to the interest in studying how the partial least

squares algorithm performs when the data are time series with (possibly) long autocorrelations.

1.1.2 Regularized regression

Regularized regression is an important topic in modern statistics. For illustration purposes we

consider the fixed design regression problem

y = Xβ + ε, (1.1)

with X ∈ Rn×d, β ∈ Rd and ε is an n-dimensional random vector with independent and

identically distributed components. We assume throughout this chapter that n ≥ d, i.e., we have
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more observations than variables. Assuming that the columns of X have mean zero and that y

is centred we denote the sample covariance matrix with A = n−1XTX and the cross covariance

with b = n−1XTy. The ordinary least squares estimator β̂OLS = A−1b is the minimizer (in β) of

the squared Euclidean distance between y and Xβ. This estimator is unbiased and has several

other important properties, see, e.g., Rao and Toutenburg (1999), chapter 3.

On the other hand it is obvious that the variance of β̂OLS is high when A is ill-conditioned. This

problem is closely related to high collinearity in the columns of X and thus A will have small

eigenvalues. As was mentioned in the previous section this occurs in the modelling of protein

dynamics.

This complication can lead to unstable estimates of the coefficients of β and, although the data

used for model building can be estimated exactly, can lead to a poor generalization error also

known as model overfitting (Hawkins, 2004).

When the quality of an estimator β̂ is measured via the mean squared error the well known bias-

variance decomposition can be used to analyze its behaviour. A biased estimator can improve

upon β̂OLS in this sense if the variance is significantly lowered and at the same time the bias

increases only slightly.

We consider estimators of the form β̂fθ = fθ(A)b for a function fθ : [0,∞) → R that depends

on a parameter θ ∈ Θ ⊂ R. Usually fθ is chosen such that fθ(A) is better conditioned than

A−1. Here fθ(A) is to be understood as the functional calculus of A, i.e., applying fθ to the

eigenvalues of A. Of course for β̂OLS we have fθ(x) = x−1, x > 0. Typically fθ has the role

of a function that regularizes x−1 and the degree of regularization depends on the regularization

parameter θ.

We will first consider linear methods, that is, fθ does not depend on y. Among this class of
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methods are two of the most well known regression techniques, ridge regression and principal

component regression. Partial least squares is a nonlinear regression technique and will be the

focus of the next section.

Ridge regression (Hoerl and Kennard, 1970) is a biased method that is frequently used by statis-

ticians when the regressor matrix is ill conditioned. It is also known in the literature of ill-posed

problems as Tikhonov regularization (Tikhonov and Arsenin, 1977).

The regularization function is fθ(x) = (x+ θ)−1, x ≥ 0, for a parameter θ > 0. For any θ > 0

the matrix A + θId, Id being the d × d identity matrix, is invertible. Furthermore for small θ

the perturbation of the original problem might be small enough that β̂RR
θ = fθ(A)b is a good

estimator for β with low variance.

It can be shown that the ridge estimator is the solution to the optimization problem

minv∈Rd ∥Xv − y∥2 + θ∥v∥2 and thus large choices of θ shrink the coefficients towards zero.

This hinders the regression estimates from blowing up like they can in the ordinary least squares

estimator.

The simple description makes the theoretical analysis of ridge regression attractive. The opti-

mality under a rotational invariant prior distribution on the coeffients β in Bayesian statistics

(Frank and Friedman, 1993), make ridge regression a strong regularized regression technique

when there is no prior belief on the size of the coefficients β. A major disadvantage is the need

for the inversion of a d × d matrix that can be quite cumbersome if d is large. The choice of θ

is crucial, see Khalaf and Shukur (2005) for an overview of approaches.

Principal component regression is a technique that is based on principal component analysis

(Pearson, 1901). Let us denote the eigenvalues of A with λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 and the

corresponding eigenvectors v1, . . . , vd ∈ Rd. Denote with I the indicator function. For principal
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component regression the function fa(x) = x−1I(x ≥ λa), x > 0, is used with regularization

parameter θ = a ∈ {1, . . . , d}, i.e., all eigenvalues that are smaller than λa are ignored for

the inversion of A. This leads to the estimator β̂PCR
a = fa(A)b, a = 1, . . . , d, that avoids the

collinearity problem if a is not chosen too large.

The principal component regression estimators can also be written as β̂PCR
a =

Wa(W
T
a AWa)

−1W T
a b. The matrix Wa = (w1, . . . , wa) ∈ Rd×a is calculated as follows. In

the first step the aim is to find a vector w1 ∈ Rd that maximizes the empirical variance of Xv1

and has unit norm, yielding w1 = v1. Subsequent principal component vectors are calculated

in the same way under the additional constraint that they are orthogonal to w1, . . . , wi−1. This

gives wi = vi. See Jolliffe (2002) for details on the method.

Thus principal component regression also solves the problem of dimensionality reduction as we

restrict our estimator to the space spanned by the first a eigenvectors. These eigenvectors are

the ones that contribute most to the variance in X . For proteins this corresponds to the largest

collective motions. To compute the principal component estimator it is necessary to calculate

the first a eigenvectors of the matrix A, which, similar to the inversion in ridge regression,

can be time intensive for large matrices. The number of used eigenvalues is crucial for the

regularization properties of principal component regression and there are several ways to choose

them, e.g., cross validation or the explained variance in the model.

We will mention some other methods, that are not necessarily linear in y, only shortly: the least

absolute shrinkage and selection operator (Tibshirani, 1996), factor analysis (Gorsuch, 1983),

least angle regression (Efron et al., 2004) and variable subset selection (Guyon and Elisseeff,

2003), to name only a few. We refer to Hastie et al. (2009) for an overview of the mentioned as

well as other regularized regression methods.
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1.1.3 Partial least squares

Partial least squares has developed into a wide array of methods that deal with finding relation-

ships between a response and a regressor. Usually latent variable models are considered where

not all the information of the regressor X is useful for the prediction of y. Instead there is a

subset of vectors in the column space of X that contains all the information. More precisely,

the considered (multivariate) models are of the form

X = NP T +X0, Y = NQT + Y0, (1.2)

with the latent variables N ∈ Rn×l connecting X and Y , the X-loadings P ∈ Rd×l, the Y -

loadings Q ∈ Re×l and X0 ∈ Rn×d, Y0 ∈ Rn×e. We take l ≤ d the number of latent variables

and e ∈ N the number of response variables. The matrices X0 and Y0 are typically considered

as residuals that have no meaningful information on the relationship between X and Y that is

contained in N . This is enforced, e.g., by assuming that X0 is uncorrelated to Y and Y0 is

uncorrelated to X .

In order to find these latent relationship, partial least squares regression was suggested by Wold

et al. (1984) for applications in chemometrics and is based on the work of Wold (1966). Some

other methods that take the basis concept of this algorithm and use it for the discovery of latent

relationships are partial least squares path modelling or multi-block partial least squares, see,

e.g., Vinzi et al. (2010), for an overview.

Here we will focus on the (univariate) partial least squares regression as presented in Helland

(1988) with e = 1 in model (1.2). The main idea of partial least squares is similar to the

one presented in Section 1.1.2 for principal component regression. In the first step the vector
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w1 ∈ Rd is calculated such that it maximizes the empirical covariance between Xw1 and y

and is of unit norm. Subsequent components wi, i = 2, . . . , d, are calculated in the same way

with the additional restriction that they are orthogonal to w1, . . . , wi−1. Thus, whereas principal

component regression only considers the variance of X to construct the model, partial least

squares inherently takes the response into account. The algorithm can be formulated as a two

step recursion

wi+1 = b− Aβ̂i, β̂0 = 0, (1.3)

β̂i = Wi(W
T

i AWi)
−1W T

i b,

with Wi = (w1, . . . , wi), i = 1, . . . , d. Hence the partial least squares estimator can be written

in the same way as the principal component one but with different matrices Wi, i = 1, . . . , d.

It was established in Krämer (2007) that W T
i AWi is a positive definite tridiagonal matrix for

i ≤ l∗. Here l∗ is what is called the number of relevant eigenvalues of A, i.e., the ones such that

λiv
T
i b ̸= 0, see Helland (1990).

Based on the weight vectors wi the score vectors are calculated via ti = P⊥
t1,...,ti−1

Xwi. Here

P⊥
t1,...,ti−1

denotes the orthogonal projection onto span{t1, . . . , ti−1}⊥. These are used to esti-

mate the latent componentsN in the model (1.2), which connectX and y, see Martens and Næs

(1989).

It was shown in Phatak and de Hoog (2002) that the partial least squares estimator β̂i solves the

optimization problem

β̂i = arg min
v∈Ki(A,b)

∥y −Xv∥2, (1.4)

with ∥ · ∥ denoting the Euclidean norm and Ki(A, b) = span{b, Ab, A2b, . . . , Ai−1b} being the
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ith Krylov space with respect toA and b. Hence the estimator β̂i can be written as β̂i = qi−1(A)b

for some polynomial qi−1 of degree i− 1 with random coefficients. The regularization function

for partial least squares is given by fi = qi−1, q−1 = 0 with regularization parameter θ = i ∈

{1, . . . , d}, but this function depends on y. This shows that the partial least squares estimator

is nonlinear in the response, in contrast to linear methods like ridge regression and principal

component regression. For an overview of some other properties of partial least squares we

refer to Rosipall and Krämer (2006).

The polynomials qi establish the link between partial least squares and the conjugate gradient

algorithm as derived by Hestenes and Stiefel (1952) applied to the normal equation Ax = b

for x ∈ Rd, see Phatak and de Hoog (2002). In fact, if xi denotes the conjugate gradient

approximation of the solution x ∈ Rd after i steps, it holds xi = β̂i if x0 = 0 is chosen.

It is well known that conjugate gradient is an efficient algorithm for the solution of normal equa-

tions and is part of the wider range of Krylov subspace methods, see Golub and van Loan (1996)

for details and it is a well suited algorithm to study ill-posed problems, see Hanke (1995). Com-

putationally this efficiency is due to the fact that only multiplications of matrices and vectors

are necessary in the conjugate gradient algorithm. From a theoretical perspective Krämer and

Braun (2007) showed that partial least squares uses more degrees of freedom of (1.2) in each

iteration than principal component regression does for the calculation of β̂i and β̂PCR
i , respec-

tively. In this sense partial least squares extracts more information about the regression problem

in each step.

In iterative methods like principal component regression and partial least squares regularization

is achieved by early stopping of the algorithm, i.e., we stop after i ≤ d iterations. Here we

consider discrepancy principles as stopping rules. In applications discrepancy principles can be
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difficult to evaluate and other techniques are used, e.g., the number of iterations are derived by

cross-validation or the used degrees of freedom of the model.

Discrepancy principles were introduced by Morozov (1984) for the parameter selection in

Tikhonov regularization. The main idea for iterative methods like partial least squares is that

the smallest i ≤ d is chosen such that ∥Aβ̂i − b∥ ≤ Λn, where {Λn}n∈N ⊂ [0,∞) is a threshold

sequence that converges to zero, making the choice of regularization parameter more adaptive

to the data than a-priori parameter choices. Blanchard and Krämer (2010b) use such stopping

rules to derive consistency results for a type of kernel conjugate gradient algorithm and state

explicit convergence rates.

The consistency of partial least squares was analyzed before in Naik and Tsai (2000) when the

number of latent variables of the model is known for independent and identically distributed

data without giving explicit rates.

1.1.4 Kernel partial least squares

We will now consider a nonparametric regression model of the form

yt = f ∗(Xt) + εt, t = 1, . . . , n, (1.5)

with (Xt, yt)
T being independent and identically distributed as (X̃, ỹ)T, f ∗ ∈ L2

(
PX̃
)

and

ε1, . . . , εn independent and identically distributed and independent of X1, . . . , Xn.

There are several approaches to estimate the regression function f ∗ in the model (1.5). If the

dimension d of Xt is small interpolation by splines is often used (under additional smoothness

assumptions on the target function f ∗). On higher dimensional data conditions are usually
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imposed to negate the curse of dimensionality (Hastie and Tibshirani, 1990), e.g., f ∗ follows an

additive model f ∗(x) =
∑d

i=1 f
∗
i (xi), x = (x1, . . . , xd)

T, as was done in the extension of the

partial least squares algorithm to a spline setting in Krämer et al. (2010).

In the field of machine learning reproducing kernel Hilbert space methods that map the data

into abstract spaces in which the nonparametric regression problem is transformed into a linear

one are popular (Gyorfi et al., 2002). These are the methods we will deal with in this section.

We consider a reproducing kernel Hilbert space (H, ⟨·, ·⟩H) of functions on Rd with reproducing

kernel k : Rd × Rd → R, i.e., the property g(x) = ⟨g, k(·, x)⟩H holds for g ∈ H and x ∈ Rd.

By virtue of the generalized representer theorem of Schölkopf et al. (2001) it is known that the

solution of the regularized least squares problem

min
h∈H

n−1

n∑
t=1

{yt − h(Xt)}2 + ξ∥h∥2H (1.6)

with penalization parameter ξ > 0 has the form fα =
n∑

t=1

αtk(·, Xt) for some α1, . . . , αn ∈ R.

We will use fα as an approximation of f ∗ in H. This leads to the problem of estimating α =

(α1, . . . , αn)
T. For this purpose linear methods are applied that can be cast into the reproducing

kernel Hilbert space setting, like kernel ridge regression (Saunders et al., 1998) and kernel

principal component regression (Rosipal et al., 2000).

There is an extension of the partial least squares algorithm to reproducing kernel Hilbert spaces

derived by Rosipal and Trejo (2001). The kernel partial least squares estimator α̂i, i = 1, . . . , n,

can be written as the solution of the optimization problem

α̂i = arg min
v∈Ki(Kn,y)

∥y −Knv∥2,
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with Kn = [k(Xt, Xs)]
n
t,s=1 being the kernel matrix, see Krämer and Braun (2007) for the

derivation. This is comparable to the linear partial least squares algorithm (1.4) if we write

β̂i = XTα̂i and

α̂i = arg min
v∈Ki(XXT,y)

∥y −XXTv∥2.

Thus in the linear case we haveKn = XXT, or, in other words, we use the kernel k(x, y) = xTy.

Note that an explicit mapping of the data into H is not necessary due to the kernel trick (Hoff-

mann et al., 2008) and in the algorithm only the kernel matrix Kn is needed. This is due to

an alternative representation of the partial least squares algorithm proposed in Lindgren et al.

(1993) that avoids the use of A = XTX as in (1.3) and only relies on the matrix XXT, which,

as demonstrated above, fits perfectly into a kernel setting.

Blanchard and Krämer (2010a) showed the universal consistency of the kernel partial least

squares estimator for two different stopping rules without giving explicit convergence rates.

In the study of ill-posed problems it is well known that the convergence rates of conjugate

gradient algorithms can be arbitrarily slow if no other assumptions are imposed on the target

function f ∗, see Hanke (1995), chapter 3. Assuming that the kernel is measurable and bounded

and that the target function coincides almost surely with an element f ∈ H, an a-priori condition

on f and the kernel covariance operator S : H → H, g 7→ E{g(X̃)k(·, X̃)} is given by the

Hölder source condition: there exists an u ∈ H and r ≥ 1/2, R > 0 such that f = Sr−1/2u

with ∥u∥H ≤ R.

This condition is usually interpreted as an abstract smoothness condition for f with respect to

S, i.e., the higher r can be chosen the smoother the solution is in H. See Bauer et al. (2007),

Section 2.3 for more details and Flemming (2012) for alternative conditions that are used in the
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ill-posed problems literature.

Under a source condition convergence rates in the L2
(
PX̃
)

-norm of reproducing kernel Hilbert

space methods for independent data are of order Op{n−r/(2r+1)}, see, e.g., de Vito et al. (2005)

for kernel ridge regression and Blanchard and Krämer (2010b) for a kernel conjugate gradient

algorithm.

It was shown in Caponnetto and de Vito (2007) that the order optimal convergence rate of

kernel ridge regression for independent and identically distributed data is Op{n−r/(2r+s)}. Here

s ∈ (0, 1] is the intrinsic (effective) dimensionality parameter measuring the complexity of

the data in H. These rates are also achieved for kernel conjugate gradient in Theorem 2.2 of

Blanchard and Krämer (2010b). If the parameter s is unknown and only a source condition is

assumed as a-priori information on the model we get the worst case rates with respect to this

parameter with s = 1.

1.1.5 Dependent data

The previously mentioned results dealt either with the case of fixed design (1.1) or with inde-

pendent and identically distributed data (1.5). A major motivation for this work was the fact

that trajectories of atoms in proteins are highly correlated over time as has been discussed in

Section 1.1.1.

In this thesis we consider serial dependence in the data given by time series models. Our main

focus is on the description of these processes by their autocovariance function to measure the

second order dependence in the data. This is due to the fact that the autocovariance function is

a popular tool in applications to study dependence and is also investigated in the dynamics of

proteins, e.g., Nadler et al. (1987). On the other hand it is an easy to understand and to handle
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concept in the framework of time series analysis and is closely linked to the spectral density

function that is crucial in the analysis of stationary time series (Priestley, 1981). Finally, under

the assumption of Gaussianity, it is also all the information that is needed (assuming the data

have mean zero) to study the behaviour of the whole process.

A time series {Zt}t∈Z is stationary if for all choices h1, . . . , hp ∈ Z, p ∈ N and h ∈ Z the

property PZh1
,...,Zhp = PZh1+h,...,Zhp+h holds. If the dependence can be characterized completely

by the mean and autocovariance functions, as is the case for Gaussian time series, this can

be reduced to E(Zt) = E(Zt+h) and Cov(Zt, Zs) = Cov(Zt+h, Zs+h), t, s, h ∈ Z, and the

covariance matrix of {Zt}nt=1 is a symmetric Toeplitz matrix.

Examples of processes we consider are stationary autoregressive moving average time se-

ries of order (p, q), p, q ∈ N0, i.e., Zt =
∑p

i=1 αiZt−i +
∑q

i=1 βiνt−i + νt for coefficients

α1, . . . , αp, β1, . . . , βq ∈ R and independent and identically distributed innovations {νt}t∈Z.

In Brockwell and Davis (1991), Chapter 4.4, it is shown that any stationary time series with

continuous spectral density can be approximated by an autoregressive moving average process,

making these models very flexible.

For stationary time series the distinction between short and long range dependence has to be

made. A process is called short range dependent if its autocovariance function is absolutely

summable. If this is not the case we speak of long range dependence (Giraitis et al., 2012).

If the data are short range dependent, many statistical properties of the time series are similar

to the independent case, e.g., the sample mean and the sample variance are
√
n-consistent.

Stationary autoregressive moving average time series are examples of short range dependent

processes whose autocovariance function decays exponentially fast. See Brockwell and Davis

(1991) for more details.
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For long range dependent processes convergence rates usually become worse than the rates in

the independent case, e.g., O(n−q/2) for some q ∈ (0, 1), complicating the statistical analysis

of these types of data (Samorodnitsky, 2007). An example of a process that exhibits long range

dependence is the fractional Gaussian noise Zt = BH(t)−BH(t−1), t ∈ N. Here {BH(t), t >

0} is a zero mean Gaussian process in continuous time with E[{BH(t)−BH(s)}2] = |t− s|2H ,

t, s > 0, for some H ∈ (0, 1]. This H is usually referred to as the Hurst coefficient, after Hurst

(1951), and is used as a measure for the degree of long range dependence.

As the motions of atoms in proteins exhibit properties of nonstationarity we also consider in-

tegrated models. Assume {Zt}t∈Z is a stationary process. Then Xt =
∑t

i=1 Zi, t = 1, . . . , n,

is an integrated process of order one. A simple example is the random walk if Zt, t ∈ Z, are

independent and identically distributed.

In contrast to stationary time series the statistical properties can change at each point in time,

e.g., PXt ̸= PXs for t ̸= s = 1, . . . , n, and the covariance matrix of {Xt}nt=1 will in general not

have a Toeplitz structure. This makes the statistical treatment of integrated time series difficult

and there is no reason to believe that standard statistical estimators, like the sample mean or

sample variance, should converge.

If {Zt}t∈N is an autoregressive moving average time series of order (p, q) we call the cor-

responding integrated process autoregressive integrated moving average time series of order

(p, 1, q). These processes are often used to model nonstationarity in the data and, as mentioned

before, were also applied to model the dynamics of atoms in Alakent et al. (2004).
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1.2 Papers

Here the papers that this work consists of are summarized.

1.2.1 Partial least squares for dependent data

Published in Biometrika, Singer et al. (2016)

We consider a latent variable model of the form

X = V (NP T + η1F ), y = V (Nq + η2f), (1.7)

where V ∈ Rn×n is such that V 2 is a covariance matrix, as is Σ2 = PP T + η21Id ∈ Rd×d and

l ≤ d. The constants η1, η2 ≥ 0 denote the noise level in the data. N is an n × l dimensional

random matrix, F an n× d dimensional random matrix and f an n dimensional random vector.

We assume that the noise F and f are independent of the latent variables N and independent of

each other. The matrix V 2 is interpreted as the covariance of the observations over time. The

partial least squares estimators β̂i estimate in this model β(η1) = Σ−2Pq, where we understand

Σ−2 as the Moore-Penrose pseudoinverse if η1 = 0 and l < d.

We derive the population partial least squares estimators and the corresponding population

Krylov space of the model (1.7) and show that they are independent of the temporal covari-

ance. In Theorem 2.1 we establish concentration inequalities for the estimators A = n−1XTX

and b = n−1XTy under dependence in the data. We see that the mean squared error of A and

b does not converge to zero if the ratio of Frobenius norms ∥V ∥−2∥V 2∥ does not go to zero.

Otherwise the estimators are consistent and converge to their population counterparts, showing
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that the population Krylov space can be estimated consistently.

With this result the consistency of the partial least squares estimator is proven in Theorem 2.2

when the algorithm is stopped according to a discrepancy principle. The convergence rate is

Op(∥V ∥−2∥V 2∥) if ∥V ∥−2∥V 2∥ goes to zero.

Under the assumption that ∥V ∥−2∥V 2∥ does not converge to zero we prove the inconsistency of

the first partial least squares estimator β̂1 in Theorem 2.3. In Theorems 2.4 and 2.5 we consider

the convergence of ∥V ∥−2∥V 2∥, showing that if V 2 is the covariance matrix of a stationary

time series with autocorrelation function that decays exponentially fast, the partial least squares

estimator is
√
n-consistent. If V 2 is the covariance matrix of an integrated process we show,

on the other hand, that the ratio converges to some positive constant. Hence β̂1 will be an

inconsistent estimator when this type of nonstationarity is present.

We suggest a simple modification of the partial least squares algorithm, called corrected partial

least squares, to deal with this shortcoming. Using an estimator V̂ 2 for V 2 we consider the

partial least squares algorithm with A(V̂ ) = n−1XTV̂ −2X and b(V̂ ) = n−1XTV̂ −2y instead

of A and b, respectively. In Theorem 2.6 we establish consistency of the corrected partial least

squares estimator and show that the convergence rate depends on the rate with which V 2 can be

estimated by V̂ 2 in operator norm.

We demonstrate the validity of these results by a simulation study that incorporates several

different dependence structures V 2, e.g., independent and identically distributed, autoregressive

of order one and autoregressive integrated moving average of order (1, 1, 1).

Finally we apply corrected partial least squares to a protein dynamics problem. The protein

aquaporin is a water channel and we consider as the functional value y its opening diameter. We

see that corrected partial least squares considerably improves the predictive performance over
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partial least squares and principal component regression. The first corrected partial least squares

estimator already yields a good representation of the dynamics of the protein responsible for

changes in the functional value.

1.2.2 Kernel partial least squares for stationary data

We consider the nonparametric regression problem (1.5) when {Xt}t∈Z is a d-dimensional sta-

tionary time series. Let X̃ be a random vector that is independent of {Xt}t∈Z and {εt}t∈Z

and has the same distribution as X0. We derive properties of the kernel partial least squares

estimator given the training set {(Xt, yt)
T}nt=1.

In the following we will assume that the reproducing kernel is bounded and that the target

function f ∗ fulfils a source condition with parameter r ≥ 1/2. In Theorem 3.1 we prove that

the kernel partial least squares estimator is consistent in the L2
(
PX̃
)

-norm and the H-norm

when the algorithm is stopped early.

The convergence rate depends on two factors: the source parameter r ≥ 1/2 and the rate at

which the estimators of the kernel covariance operator Sng = n−1
∑n

t=1 g(Xt)k(·, Xt), g ∈

H, and the kernel cross covariance T ∗
ny = n−1

∑n
t=1 ytk(·, Xt) converge to their population

counterparts in probability.

In Proposition 3.1 we investigate the set of functions for which a source condition holds. We

derive upper bounds for such functions in the H-norm that depend on the parameter r. For

univariate normally distributed data and the Gaussian kernel k(x, y) = exp{−s(x−y)2}, x, y ∈

R, s > 0, we give an explicit expression of these functions.

The mean squared error of Sn and T ∗
ny is calculated in Theorem 3.2.
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Under the assumption that {Xt}t∈Z is a Gaussian process we establish convergence rates for Sn

and T ∗
ny in Theorem 3.3. These rates depend on the type of stationarity that we have: if {Xt}t∈Z

is a short range dependent process we get
√
n-consistency, but for long range dependence the

convergence slows down significantly.

Corollary 3.1 combines the previously obtained results and shows that in the considered Gaus-

sian setting the convergence rate of the kernel partial least squares estimator is sensitive to the

range of the dependence in the data. The strength of dependence between observations of the

process is measured by the polynomial decay of its autocorrelation function ρ. More precisely,

we consider |ρ(h)| ≤ (h + 1)−q, h ∈ N0, q > 0. The case q > 1 corresponds to short and

q ∈ (0, 1) to long range dependence. We see that the kernel partial least squares estimator has

a convergence rate in the L2
(
PX̃
)

-norm of Op{n−r/(2r+1)}, if q > 1. For q ∈ (0, 1) the rate is

only Op{n−qr/(2r+1)}.

These theoretical results are supported by a simulation study highlighting how different de-

pendence structures influence the convergence rate. We consider independent and identically

distributed, stationary autoregressive and long range dependent data.

1.3 Conclusion

The contribution of this thesis and the papers contained within are threefold. Firstly the par-

tial least squares algorithm was analyzed with respect to its consistency and convergence rate.

Secondly the impact of serial dependence in the observations was studied, with focus on long

range dependence and nonstationarity. Thirdly a modification was proposed to deal with non-

stationarity in the data and was applied to the analysis of the function-dynamic relationship in
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proteins. In the following we will go into more detail on each of these contributions and outline

some possible further research directions.

1. Convergence rates of the (kernel) partial least squares algorithm:

The statistical properties of partial least squares are not well understood, despite an increasing

interest in the last decades. One of the main problems in the analysis of the algorithm is its

nonlinearity in the response. The fact that the algorithm is consistent was known for some time

when the data are independent and identically distributed, yet explicit convergence rates were

not available even in this setting.

In the paper Singer et al. (2016) we focused on probabilistic convergence rates and established

the
√
n-consistency of the partial least squares estimator if the data are either independent or

follow a stationary process with exponentially decaying autocovariance function. These rates

are obtained if the algorithm is stopped early using a discrepancy principle stopping rule. This

result makes use of the link between partial least squares and the conjugate gradient algorithm,

specifically the results obtained by Nemirovskii (1986).

We considered the model (1.7) in which the covariance matrix of the multivariate process

{Xt}nt=1 is separable, i.e., Cov(Xt,i, Xs,j) = [Σ2]i,j[V
2]t,s for t, s = 1, . . . , n and i, j = 1, . . . , d.

The assumption has its origin in the analysis of spatio-temporal data (Cressie and Wikle, 2011).

This special covariance structure makes it possible to treat the temporal effects separately and

is a reason we obtain such clear convergence rates that depend on the ratio of the Frobenius

norms ∥V ∥−2∥V 2∥. The fact that the population Krylov space turns out to be independent of

the temporal covariance structure is thanks to this assumption as well.

An extension of our results into a nonseparable setting would be certainly interesting, but not
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straight forward.

For the kernel partial least squares estimator there is little research into its statistical proper-

ties. The universal consistency of the algorithm was proven in Blanchard and Krämer (2010a)

without giving explicit convergence rates and the closest result to ours is the one obtained in

Blanchard and Krämer (2010b) for a kernel conjugate gradient algorithm that is similar to kernel

partial least squares.

We derived the consistency of the kernel partial least squares estimator in both the L2
(
PX̃
)

-

norm and the H-norm. Similar to the linear case this is possible because we stop the algorithm

early. The stopping rule used for kernel partial least squares is based on the work of Hanke

(1995) and is of a more complicated form than the discrepancy principles discussed before.

The derivation of this result uses the connection between kernel partial least squares, kernel

conjugate gradient and the theory of orthogonal polynomials. The employed techniques are

similar to the ones used in Hanke (1995) and Blanchard and Krämer (2010b).

To obtain explicit rates we focus on Gaussian time series. If these time series are short range

dependent, i.e., the autocovariance function is absolutely summable, we get convergence rates in

the L2
(
PX̃
)

-norm for the kernel partial least squares estimator of order Op{n−r/(2r+1)}. These

rates were also achieved for kernel ridge regression when only a source condition is assumed

and the data are independent and identically distributed.

The best obtainable rates are Op{n−r/(2r+s)} with s ∈ (0, 1] denoting the intrinsic dimension-

ality parameter as discussed in Section 1.1.4. We obtain the rate for s = 1, i.e., when there

is no a-priori information about this parameter. Our results could be extended to include this

information, but different types of concentration inequalities than the ones established here are

needed for this.
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2. Properties of the algorithm under long range dependence and nonstationarity:

We investigated the influence of integrated time series, which are inherently nonstationary, on

the partial least squares algorithm. We found that the mean squared error of the estimators

A and b does in fact not converge to zero in this situation and hence we might be unable to

estimate the population Krylov spaces consistently. Furthermore we saw that the first partial

least squares estimator β̂1 is inconsistent under this specification. This result highlights the fact

that ignoring strong dependencies in the observations leads to incorrect estimation.

An extension of these results would be the study of partial least squares score vectors ti under

nonstationary dependence. The scores are important for the interpretation of latent variable

models.

For the kernel partial least squares algorithm we considered stationary but long range dependent

observations. We measure the range of the dependence in the data with the degree q > 0 of

the polynomial decay of the autocorrelation function of the considered Gaussian process. For

q ∈ (0, 1) we are in the situation of long range dependence and the convergence rate of the

kernel partial least squares estimator in the L2
(
PX̃
)

-norm is Op{n−qr/(2r+1)}. This highlights

the fact that for stable statistical results in the long range dependent situation more observations

are needed than in the independent case. This is not an unexpected result, as many statistical

techniques lose efficiency when long range dependence is present in the data (Samorodnitsky,

2007).

It would be interesting to extend these results to nonstationary depence structures, e.g., inte-

grated processes. There are several technical problems with this approach. It is for example

not clear how the kernel covariance operator should be defined, as Stg = E{g(Xt)k(·, Xt)},

g ∈ H, inherently depends on t = 1, . . . , n, in contrast to the stationary case. This operator is
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crucial for the definition of the source condition that we impose on the target function f ∗.

3. Modifications of the algorithm to deal with nonstationarity:

To counter the inconsistency of the partial least squares estimator that results from nonstationary

data the corrected partial least squares algorithm was suggested. The idea is to remove corre-

lation in the data in the model (1.7) by multiplying both X and y with the inverse of V̂ . Here

V̂ 2 is an estimator of the temporal covariance matrix V 2. We saw that the corrected partial least

squares estimator is consistent if the estimator for the temporal covariance matrix is consistent

in operator norm. The feasibility of this approach is again due to the fact that we are dealing

with data that has a separable covariance matrix.

The corrected partial least squares algorithm was applied to analyze the function-dynamic re-

lationship of the protein aquaporin. We found an improvement in the predictive power of the

algorithm, especially in the first partial least squares components, when using corrected par-

tial least squares compared to ordinary partial least squares and principal component regres-

sion. This improvement is especially important in the first estimator β̂1. It corresponds to the

ensemble-weighted maximally correlated mode of motion contributing most to the fluctuations

in the response y (Krivobokova et al., 2012). Hence corrected partial least squares also improves

upon functional mode analysis and helps in identifying relevant underlying dynamics.

A heuristic extension of corrected partial least squares is the corrected multivariate partial least

squares algorithm, i.e., we have several response variables. This is the case in model (1.2) for

e > 1. This method was already implemented and tested on some function-dynamic problems

where the function is not represented by a univariate time series. The predictive power of

this corrected multivariate partial least squares algorithm substantially improved upon that of
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ordinary multivariate partial least squares. It could be interesting to do some research in that

direction, as there are currently no theoretical results on this algorithm. It has to be noted though

that multivariate partial least squares does not share many properties used in the derivation of

the results presented in this thesis, making any extensions not straight forward.

At the moment there are no results on a modification of the kernel partial least squares algo-

rithm for long range dependent data. The way the dependence structure enters the algorithm

nonlinearly makes this a rather difficult problem.

An interesting feature of our convergence in probability results for both partial least squares and

kernel partial least squares is the fact that the convergence rates of the algorithms are based on

concentration inequalities for the sample covariance matrix or sample covariance operator and

the sample cross covariance. Thus it is possible to include other types of dependence structures

than the ones studied in this thesis as long as concentration inequalities can be derived for the

aforementioned estimators, making our results in Theorem 2.2 and Theorem 3.1 rather flexible.

The problem of dealing with long range dependence and nonstationarity in the data is of in-

creasing interest in the statistical community as many datasets in applications exhibit these

properties, e.g., the dynamics of proteins. The partial least squares algorithm is widely used,

especially in the chemometrics but also the biophysics community to analyze regression prob-

lems when there is high collinearity present in the regressor matrix or a latent variable model is

assumed.

This thesis made contributions to these fields, yet there are still many open questions and possi-

ble ways to extend the research presented here. Hopefully the results obtained in this thesis and

the corresponding papers will spark further interest in the study of the behaviour of partial least
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squares when the observations are neither independent nor identically distributed, but rather

time series with possible long autocorrelations.

1.4 Own Contribution

Here the contribution by M. Singer to the presented publications are summarized.

The paper “Partial least squares for dependent data” (Singer et al., 2016) is a joint work with

T. Krivobokova, A. Munk and B. de Groot. The theory, implementation and simulations were

done by M. Singer with some help of T. Krivobokova and A. Munk. The data analysis was done

by M. Singer with the aid of B. de Groot. The writing of the paper was done by M. Singer and

T. Krivobokova. His own contribution can be judged to 80%.

The paper “Kernel partial least squares for stationary data” is a joint work with T. Krivobokova

and A. Munk. This paper was largely done by M. Singer, including model, theory and simula-

tions, with input from T. Krivobokova and A. Munk.
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We consider the partial least squares algorithm for dependent data and study the consequences

of ignoring the dependence both theoretically and numerically. Ignoring nonstationary depen-

dence structures can lead to inconsistent estimation, but a simple modification leads to consis-

tent estimation. A protein dynamics example illustrates the superior predictive power of the

method.
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2.1 Introduction

The partial least squares algorithm introduced by Wold (1966) is a powerful regularized regres-

sion tool. It is an iterative technique, which is, unlike most similar methods, nonlinear in the

35



response variable. Consider a linear regression model

y = Xβ + ε, (2.1)

where y ∈ Rn , X ∈ Rn×d, β ∈ Rd and the error term ε is a vector of n independent and

identically distributed random variables. To estimate the unknown coefficients β with partial

least squares, a base of i ≤ d weight vectors ŵ1, . . . , ŵi is iteratively constructed. First, the data

are centered, i.e., y and the columns of X are transformed to have mean zero. Then the first

vector ŵ1 is obtained by maximizing the empirical covariance between Xw and y in w ∈ Rd,

subject to ∥w∥ = 1. Afterwards, the data are projected into the space orthogonal toXŵ1 and the

procedure is iterated. The ith partial least squares estimator β̂i for β is obtained by performing

a least squares regression of y on X , constrained to the subspace spanned by the columns of

Ŵi = (ŵ1, . . . , ŵi). Helland (1988) summarizes the partial least squares iterations in two steps

via

ŵi+1 = b− Aβ̂i, β̂0 = 0, (2.2)

β̂i = Ŵi(Ŵ
T

i AŴi)
−1Ŵ T

i b,

with b = n−1XTy and A = n−1XTX , under the assumption that (Ŵ T
i AŴi)

−1 exists. The

regularisation is achieved by early stopping, that is, by taking i ≤ d.

Alternatively, β̂i can be defined using the fact that ŵi ∈ Ki(A, b), where Ki(A, b) is a Krylov

space, that is, a space spanned by {Aj−1b}ij=1 (Helland, 1988). Then, one can define partial

least squares estimators as β̂i = argminβ∈Ki(A,b)(y − Xβ)T(y − Xβ). There is also a direct

correspondence between partial least squares and the conjugate gradient method with early
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stopping for the solution of Aβ = b.

Frank and Friedman (1993) and Farkas and Héberger (2005) find the partial least squares al-

gorithm to be competitive with regularized regression techniques, such as principal component

regression, lasso or ridge regression, in terms of the mean squared prediction error. Also, the op-

timal number of partial least squares base components is often much lower than that of principal

components regression, as found in Almøy (1996).

Partial least squares regression has a long and successful history in various application areas, see

e.g., Hulland (1999), Lobaugh et al. (2001), Nguyen and Rocke (2002). However, the statistical

properties of this algorithm have been little studied, perhaps because of the nonlinearity of

partial least squares estimators in the response variable. Some attempts to understand properties

of partial least squares can be found in Höskuldsson (1988), Phatak and de Hoog (2002) and

Krämer (2007). Their almost sure convergence was established by Naik and Tsai (2000). For

kernel partial least squares, Blanchard and Krämer (2010a) obtained convergence in probability

results by early stopping. For the closely linked kernel conjugate gradient algorithm, Blanchard

and Krämer (2010b) established order-optimal convergence rates dependent on the regularity of

the target function. Delaigle and Hall (2012) compared theoretically the population and sample

properties of the partial least squares algorithm for functional data.

Regression techniques typically assume independence of responses, but this is often violated,

for example, if the data are observed over time or at dependent spatial locations. We are not

aware of any treatment of the partial least squares algorithm for dependent observations. In this

work we propose a modification of partial least squares to deal with dependent observations and

study the theoretical properties of partial least squares estimators under general dependence in

the data. In particular, we quantify the influence of ignored dependence.
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Throughout the paper we denote by ∥ · ∥L the spectral and by ∥ · ∥ the Frobenius norm for

matrices, ∥ · ∥ also denotes the Euclidean norm for vectors.

All proofs are given in Section 2.7.

2.2 Partial least squares under dependence

2.2.1 Latent variable model

In many applications the standard linear model (2.1) is too restrictive. For example, if a covari-

ate that is relevant for the response cannot be observed or measured directly, so-called latent

variable or structural equation models are considered (Skrondal and Rabe-Hesketh, 2006): it

is assumed that X and y are linked by l ≤ d latent vectors and the remaining vectors in the

d-dimensional column space of X do not contribute to y. This can be interpreted as if the

latent components are of interest, but onlyX , which contains some unknown nuisance informa-

tion, can be measured. Such models are relevant in modelling of chemical (Wold et al., 2001),

economic (Hahn et al., 2002) and social data (Goldberger, 1972).

We consider a latent variable model with the covariatesX and response y connected via a matrix

of latent variables N ,

X = V (NP T + η1F ),

y = V (Nq + η2f),

(2.3)

where Nand F are an n× l-dimensional and an n×d-dimensional random matrix, respectively,

and f is an n-dimensional random vector. The random elements N , F , f can have different dis-

tributions, but are independent of each other, with all entries being independent and identically

distributed with expectation zero and unit variance. The matrix P ∈ Rd×l and vector q ∈ Rl are
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deterministic and unknown, along with the real-valued parameters η1, η2 ≥ 0. We assume that

n ≥ d ≥ l and that rank(N) = rank(P ) = l, rank(F ) = d almost surely.

The matrix V ∈ Rn×n is a deterministic symmetric matrix, such that V 2 is a positive definite

covariance matrix. If V ̸= In, then X in model (2.3) can be seen as the matrix form of a d-

dimensional time series {Xt}nt=1 and y can be seen as a real-valued time series {yt}nt=1. The

covariance matrix V 2 determines the dependence between observations, which might be non-

stationary. We will call V 2 the temporal covariance matrix of X and define Σ2 = PP T + η21Ik.

Setting l = d, η1 = 0 reduces model (2.3) to standard linear regression with dependent obser-

vations.

The latent variables N connect X to y, whereas F can be considered as noise, thus giving a

model where not all directions in the column space of X are important for the prediction of y.

The representation (2.3) highlights practical settings where the partial least squares algorithm

is expected to outperform principal component regression and similar techniques. In particular,

if the covariance of η1F dominates that of NP T, then the first principal components will be

largely uncorrelated to y. In contrast, the first partial least squares basis components should by

definition be able to recover relevant latent components.

The partial least squares algorithm is run as described in Section 2.1 with matrixX and vector y

defined in (2.3). If η1 = 0, then model (2.1) is correctly specified with q = P Tβ and the partial

least squares estimator (2.2) estimates β. If η1 > 0, then β(η1) = Σ−2Pq is rather estimated.

Note that β(0) = β.

In the standard partial least squares algorithm it is assumed that V = In. In the subsequent

sections we aim to quantify the influence of V ̸= In, which is ignored in the algorithm.
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2.2.2 Population and sample partial least squares

The population partial least squares algorithm for independent observations was first introduced

by Helland (1990). Under model (2.3) we modify the definition of the population partial least

squares basis vectors as

wi = arg max
w∈Rd

∥w∥=1

1

n2

n∑
t,s=1

Cov(yt −XT

t βi−1, X
T

s w), β0 = 0,

where βi ∈ Rd are the population partial least squares regression coefficients. The average co-

variances over observations are taken, since the data are neither independent nor identically dis-

tributed if V 2 ̸= In. Solving this optimization problem implies that the basis vectors w1, . . . , wi

span the Krylov space Ki(Σ
2, P q): see Section 2.7.1. In particular, under model (2.3), the

Krylov space in the population turns out to be independent of the temporal covariance V 2 for

all n ∈ N.

For a given Krylov space, the population partial least squares coefficients are obtained as

βi = arg min
β∈Ki(Σ2,P q)

E

{
1

n

n∑
t=1

(yt −XT

t β)
2

}
.

It is easy to see that the solution to this problem is

βi = Ki

(
KT

i Σ
2Ki

)−1
KT

i Pq, Ki = (Pq,Σ2Pq, . . . ,Σ2(i−1)Pq),

which is independent of V 2 for all n ∈ N.

To obtain the sample partial least squares estimators β̂i, Σ2 and Pq are replaced by estimators.
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In the standard partial least squares algorithm, under independence of observations, Σ2 and

Pq are estimated by unbiased estimators n−1XTX and n−1XTy, respectively. However, if the

observations are dependent, such naive estimators can lead to L2-inconsistent estimation, as the

following theorem shows.

Theorem 2.1 Let the model (2.3) hold and the fourth moments of N1,1, F1,1 exist. Define A =

∥V ∥−2XTX, b = ∥V ∥−2XTy. Then

E
(∥∥Σ2 − A

∥∥2) =
∥V 2∥2

∥V ∥4

(
CA +

n∑
t=1

∥Vt∥4

∥V 2∥2
cA

)

E
(
∥Pq − b∥2

)
=

∥V 2∥2

∥V ∥4

(
Cb +

n∑
t=1

∥Vt∥4

∥V 2∥2
cb

)
,

where

CA = ∥P∥4 + ∥P TP∥2 + 4η21∥P∥2 + η41d(1 + d)

cA =
{
E
(
N4

1,1

)
− 3
} l∑

i=1

∥Pi∥4 +
{
E
(
F 4
1,1

)
− 3
}
η41d

Cb = ∥Pq∥2 + ∥P∥2∥q∥2 + η21d∥q∥2 + η21η
2
2d+ η22∥P∥2

cb =
{
E
(
N4

1,1

)
− 3
} l∑

i=1

∥Pi∥2q2i

and Vt denotes the t-th column of matrix V .

The scaling factors in A and b have no influence on the sample partial least squares estimators

in (2.2), so that replacing n−1 with ∥V ∥−2 does not affect the algorithm and both A and b are

unbiased estimators for Σ2 and Pq, respectively.

If E(N4
1,1) = E(F 4

1,1) = 3, then constants cA and cb vanish, simplifying expressions for the mean

squared error of A and b. This is satisfied, for example, for the standard normal distribution.
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Thus, these terms can be interpreted as a penalization for non-normality.

Finally,
∑n

t=1 ∥Vt∥4 ≤
∑n

t,s=1 (V
T
t Vs)

2 = ∥V 2∥2 implies that the convergence rate of both

estimators is driven by the ratio of Frobenius norms ∥V ∥−2∥V 2∥. In particular, if ∥V ∥−2∥V 2∥

converges to zero, then the elements of the population Krylov space Σ2 and Pq can be estimated

consistently. This is the case, for example, for independent observations with V = In, since

∥I2n∥ = ∥In∥ = n1/2. However, if ∥V ∥−2∥V 2∥ fails to converge to zero, ignoring the temporal

dependence V 2 may lead to inconsistent estimation.

2.3 Properties of partial least squares estimators under de-

pendence

2.3.1 Concentration inequality for partial least squares estimators

In this section we apply techniques of Blanchard and Krämer (2010b), who derived convergence

rates of the kernel conjugate gradient algorithm, which is closely related to kernel partial least

squares. Both algorithms approximate the solution on Krylov subspaces, but employ different

norms. In particular, Blanchard and Krämer (2010b) have shown that if the conjugate gradi-

ent algorithm is stopped early, the convergence in probability of the kernel conjugate gradient

estimator to the true regression function can be obtained for bounded kernels. Moreover, the

convergence is order-optimal, depending on the regularity of the target function. These results

hold for independent identically distributed observations.

We avoid the nonparametric setting of Blanchard and Krämer (2010b) and study a standard

linear partial least squares algorithm with a fixed dimension d of the regression space. We allow
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the observations to be dependent, and, instead of a bounded kernel, consider unbounded random

variables with moment conditions. In this setting we derive concentration inequalities for partial

least squares estimators that allow us to quantify the influence of the temporal covariance.

We assume that η1 > 0 and hence rank(A) = d almost surely. Regularization of the partial

least squares solution is achieved by early stopping, which is characterized by the discrepancy

principle, i.e., we stop at the first index 0 < a0 ≤ a such that

∥∥∥A1/2β̂a0 − A−1/2b
∥∥∥ ≤ τ(δ∥β̂a0∥+ ϵ), (2.4)

for δ, ϵ > 0 defined in Theorem 2.2, and some τ ≥ 1. Here a denotes the maximal dimension

of the sample Krylov space Ki(A, b) and almost surely equals d. For technical reasons we stop

at a∗ = a0 − 1 if pa0(0) ≥ ζδ−1, where pi is a polynomial of degree i − 1 with pi(A)b = β̂i

and ζ < τ−1. The existence of such polynomials was proved by Phatak and de Hoog (2002). If

(2.4) never holds, a∗ = a is taken. With this stopping index we get the following concentration

inequality.

Theorem 2.2 Assume that model (2.3) with η1 > 0 holds and that the fourth moments of N1,1,

F1,1 exist. Furthermore, a∗ satisfies (2.4) with τ ≥ 1, ζ < τ−1. For ν ∈ (0, 1] let δ =

ν−1/2∥V ∥−2∥V 2∥Cδ and ϵ = ν−1/2∥V ∥−2∥V 2∥Cϵ, such that δ, ϵ→ 0, where

Cδ = (2CA + 2cA)
1/2 , Cϵ = (2Cb + 2cb)

1/2 ,
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with CA, cA, Cb and cb given in Theorem 2.1. Then with probability at least 1− ν,

∥∥∥β̂a∗ − β(η1)
∥∥∥ ≤ ∥V 2∥

∥V ∥2

{
c1(ν) +

∥V 2∥
∥V ∥2

c2(ν)

}
, (2.5)

where

c1(ν) = ν−1/2{c(τ, ζ) + o(1)}∥Σ−1∥L
(
Cϵ + ∥Σ∥L∥Σ−3Pq∥Cδ

)
c2(ν) = ν−1{c(τ, ζ) + o(1)}∥Σ−1∥L

(
CϵCδ + ∥Σ−3Pq∥C2

δ

)
,

for some constant c(τ, ζ) that depends only on τ and ζ .

If N1,1,F1,1, f1 ∼ N (0, 1), then the expressions for Cδ and Cϵ are simplified and the scaling

factor of c1(ν) and c2(ν) can be improved from ν−1/2 to log(2/ν), which is achieved by using

an exponential inequality proved in Theorem 3.3.4 of Yurinsky (1995).

Theorem 2.2 states that the convergence rate of the optimally stopped partial least squares esti-

mator β̂a∗ to the true parameter β(η1) is driven by the ratio of the Frobenius norms of V 2 and

V , similar to the results of Theorem 2.1. In particular, if the data are independent with V = In

then β̂a∗ is square-root consistent. In this case c2(ν) is asymptotically negligible. Note that the

theorem excludes the case that ∥V ∥−2∥V 2∥ does not converge to zero.

2.3.2 Properties of β̂1 under dependence

Nonlinearity in the response variable of β̂i hinders its standard statistical analysis, as no closed-

form expression for the mean square error of β̂i is available and concentration inequalities sim-

ilar to (2.5) are the only results on the convergence rates of partial least squares estimators, to
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the best of our knowledge. However, if the ratio of ∥V 2∥ and ∥V ∥2 does not converge to zero,

Theorem 2.2 does not hold.

In this section we study the first partial least squares estimator β̂1, for several reasons. First, the

explicit expression for its mean square error can be derived. Second, if there is only one latent

component that links X and y, i.e., l = 1 in (2.3), then consistent estimation of β1 is crucial.

Finally, β̂1 is collinear to the direction of the maximal covariance betweenX and y given by ŵ1,

which is important for the interpretation of the partial least squares model in applications, see

Krivobokova et al. (2012). The next theorem gives conditions under which β̂1 is an inconsistent

estimator of β1.

Theorem 2.3 Assume that model (2.3) holds, d > 1 and eighth moments of N1,1, F1,1, f1 exist.

Furthermore, suppose that the ratio ∥V ∥−2∥V 2∥ does not converge to zero as n → ∞. Then,

for either l > 1, η1 ≥ 0 or l = 1, η1 > 0, β̂1 is an inconsistent estimator for β1.

The case l = 1, η1 = 0 not treated in Theorem 2.3 corresponds to the standard linear regression

model with a single covariate, so the partial least squares estimator coincides with the ordinary

least squares estimator, see Helland (1988).

Hence, if there is only one latent component in the model, i.e., l = 1, η1 > 0, and ∥V ∥−2∥V 2∥

does not converge to zero, then β(η1), which in this case equals β1, cannot be estimated consis-

tently with a standard partial least squares algorithm.

2.3.3 Examples of dependence structures

In all previous theorems the ratio ∥V 2∥∥V ∥−2 plays a crucial role. In this section some special

covariance matrices V 2 are studied in order to understand its behaviour. Stationary processes
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considered in this section are assumed to have expectation zero and to decay exponentially, i.e.,

for for c, ρ > 0 and γ(0) > 0,

|γ(t)| ≤ γ(0)c exp(−ρt), t ∈ Z, (2.6)

with γ : Z → R being the autocovariance function of the process.

Subsequently, f(n) ∼ g(n) denotes c1 ≤ f(n)/g(n) ≤ c2, for n large, 0 < c1 < c2 and

f, g : N → R.

Theorem 2.4 Let [V 2]t,s = γ(|t− s|) (t, s = 1, . . . , n) be the covariance matrix of a stationary

process, such that the autocovariance function γ : Z → R satisfies (2.6). Then ∥V 2∥ ∼ n1/2

and ∥V ∥2 ∼ n.

Hence, if V 2 in model (2.3) is a covariance matrix of a stationary process, then ignoring depen-

dence of observations in the partial least squares algorithm does not affect the rate of conver-

gence of partial least squares estimators, but might affect the constants. Examples of processes

with exponentially decaying autocovariances are stationary autoregressive moving average pro-

cesses.

As examples of nonstationary processes we consider first-order integrated processes. If {Xt}t∈Z

is stationary with autocovariance function γ satisfying (2.6), then
∑t

i=1Xi is an integrated

process of order one.

Theorem 2.5 Let {Xt}t∈Z be a stationary process with autocovariance function γ satisfying

(2.6). If γ(t) < 0 for some t, we assume additionally ρ > log(2c+1). Let V 2 be the covariance

matrix of
∑t

i=1Xi. Then ∥V ∥2 ∼ n2 and ∥V 2∥ ∼ n2.
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The lower bound on ρ for negative γ(t) ensures that no element on the diagonal of V 2 becomes

negative, so that V 2 is a valid covariance matrix.

This theorem implies that the ratio ∥V ∥−2∥V 2∥ does not converge to zero for certain integrated

processes. In particular, combining this result with Theorems 2.1 and 2.3 shows that the ele-

ments of the sample Krylov space A and b, as well as β̂1, are inconsistent, if the dependence

structure of the data can be described by an integrated process satisfying the conditions of The-

orem 2.5, e.g., an integrated autoregressive moving average process of order (1, 1, 1).

2.4 Practical issues

2.4.1 Corrected partial least squares estimator

So far we considered the standard partial least squares algorithm, showing that if certain de-

pendences in the data are ignored, estimation is inconsistent. Hence, it is crucial to take into

account the dependence structure of the data in the partial least squares estimators.

Let us define b (S) = n−1XTS−2y and A (S) = n−1XTS−2X for an invertible matrix S ∈

Rn×n. Furthermore, let ki(S) = A(S)i−1b(S),Ki(S) = [k1(S), . . . , ki(S)] ∈ Rd×i and β̂i(S) =

Ki(S) {Ki(S)
TA(S)Ki(S)}−1Ki(S)

Tb(S), i = 1, . . . , d.

For S = In this yields a standard partial least squares estimator. If S = V , the temporal

dependence matrix, then b (V ) and A (V ) are square-root consistent estimators of Pq and Σ2,

respectively, with the mean squared error independent of V , which follows from Theorem 2.1.

Hence, the resulting β̂i(V ) is also a consistent estimator of βi and Theorem 2.2 shows that β(η1)

can be estimated consistently by early stopping as well. This procedure is equivalent to running

47



the partial least squares algorithm on V −1y and V −1X , that is, with the temporal dependence

removed from the data.

In practice the true covariance matrix V 2 is typically unknown and is replaced by a consistent

estimator V̂ 2. We call the estimator β̂i(V̂ ) the corrected partial least squares estimator. The next

theorem shows that, given a consistent estimator of V 2, the population Krylov space and β(η1)

can be estimated consistently.

Theorem 2.6 Let V̂ 2 be an estimator for V 2 that is almost surely invertible for n ∈ N and∥∥∥V V̂ −2V − In

∥∥∥
L
= Op(rn), where rn is some sequence of positive numbers such that rn → 0

as n→ ∞. Then

∥A(V̂ )− Σ2∥L = Op(rn), ∥b(V̂ )− Pq∥ = Op(rn).

Moreover, if we assume that η1 > 0, we have with probability at least 1− ν, ν ∈ (0, 1],

∥β̂a∗(V̂ )− β(η1)∥ = O(rn),

where the definition of a∗ in (2.4) is updated by replacing A, b and β̂i by A(V̂ ), b(V̂ ) and β̂i(V̂ ),

respectively.

Theorem 2.6 states that if a consistent estimator of the covariance matrix V 2 is available, then

the elements of the population Krylov space A, b, as well as the coefficient β(η1), can be

consistently estimated by A(V̂ ), b(V̂ ) and β̂a∗(V̂ ). The convergence rate of these estimators is

not faster than that of V̂ 2. For example, if the temporal dependence in the data follows some

parametric model, then parametric rates of n−1/2 are also achieved for A(V̂ ), b(V̂ ) and β̂a∗(V̂ ).
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Estimation of V 2 by some nonparametric methods, e.g., with a banding or tapering approach,

leads to a slower convergence rates: see Bickel and Levina (2008) or Wu and Xiao (2012).

Similar results are well-known in the context of linear regression. For example, Theorem 5.7.1

in Fuller (1996) shows that the convergence rate of feasible generalized least squares estimators

is the same as that of the estimator for the covariance matrix of the regression error.

2.4.2 Estimation of covariance matrices

To obtain the corrected partial least squares estimator, some consistent estimator of V 2 based

on a single realisation of the process is necessary. In model (2.3) the dependence structure over

the observations of X is the same as that of y and V can be estimated from y alone.

If V 2 is the autocovariance matrix of a stationary process, it can be estimated both parametri-

cally and nonparametrically. Many stationary processes can be sufficiently well approximated

by an autoregressive moving average process, see Brockwell and Davis (1991), Chapter 4.4.

Parameters of autoregressive moving average processes are estimated either by Yule–Walker or

maximum likelihood estimators, both attaining parametric rates. Another approach is to band

or taper the empirical autocovariance function of y (Bickel and Levina, 2008; Wu and Pourah-

madi, 2009; Wu and Xiao, 2012). These nonparametric estimators are very flexible, but are

computationally intensive and have slower convergence rates.

If y is an integrated processes of order one, then V 2 can easily be derived from the covariance

matrix estimator of the corresponding stationary process.
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2.5 Simulations

To verify small sample performance of the partial least squares algorithm under dependence

we consider the following simulation setting. To illustrate consistency we choose three sample

sizes n ∈ {250, 500, 2000}. In the latent variable model (2.3) we set d = 20, l = 1, 5 and take

the elements of P to be independent identically distributed Bernoulli random variables with

success probability 0.5. Elements of the vector q are qi = 5 i−1, i = 1, . . . , l, in order to control

the importance of the different latent variables for y. The random variables N1,1, F1,1 and f1 are

taken to be standard normally distributed. The parameter η2 is chosen to get the signal to noise

ratio in y to be two and η1 is set so that the signal to noise ratio in X is 0.5. Three matrices V 2

are considered: the identity matrix, the covariance matrix of an autoregressive process of the

first order with coefficient 0.9 and the covariance matrix of an autoregressive integrated moving

average process of order (1, 1, 1) with both parameters set to 0.9.

First, we ran the standard partial least squares algorithm on the data with the three aforemen-

tioned dependence structures to highlight the effect of the ignored dependence in the data. Next,

we studied the performance of our corrected partial least squares algorithm applied to nonsta-

tionary data. Thereby, the covariance matrix of the autoregressive moving average process has

been estimated parametrically, as discussed in Section 2.4.2. A nonparametric estimation of

this covariance matrix has lead to qualitative similar results.

The boxplots in Figure 2.1 show the squared distance of β̂i and β(η1) in 500 Monte Carlo

replications. Two cases are shown in one panel: the model has just one latent component and β̂1

is considered, i.e., l = i = 1 and the model has five latent components and the squared distance

of β̂5 to β(η1) is studied, i.e., l = i = 5.
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Figure 2.1: Squared distance of partial least squares estimators β̂i and β(η1) in 500 Monte
Carlo samples. First three boxplots in each panel correspond to l = i = 1, the latter three to
l = i = 5. The dependence structures are: first order autoregressive (top left), autoregressive
integrated moving average of order (1,1,1) (right) and independent, identically distributed (bot-
tom left). The standard partial least squares (top and bottom left) and corrected partial least
squares (bottom right) have been employed.
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We observe that the mean squared error of β̂i obtained with the standard partial least squares

converges to zero for autoregressive and independent data with the growing sample size. How-

ever, an autoregressive dependence in the data leads to a somewhat higher mean squared error,

compare the top and bottom left panels. If the data follow an autoregressive integrated moving

average process and this is ignored in the partial least squares algorithm, then the mean squared

error of β̂i converges to some positive constant, see the top right boxplots. Taking into ac-

count these nonstationary dependencies in the corrected partial least squares leads to consistent

estimation, similar to the independent data case, compare the bottom left and right panels.

We conclude that if the observations are dependent, corrected partial least squares improves

estimation: in case of stationary dependence the mean squared error is reduced and in case of

nonstationary dependence the estimation becomes consistent.

2.6 Application to Protein Dynamics

Proteins fulfil their biological function through particular movements, see Henzler-Wildman

and Kern (2007), so a key step in understanding protein functions is a detailed knowledge of

the underlying dynamics. Molecular dynamics simulations (de Groot et al., 1998) are routinely

used to study the dynamics of biomolecular systems at atomic detail on timescales of nanosec-

onds to microseconds. Although in principle allowing to directly address function-dynamics

relationships, analysis is frequently hampered by the large dimensionality of the protein con-

figuration space, rendering it non-trivial to identify collective modes of motion that are directly

related to a functional property of interest.
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Figure 2.2: Distance between the first backbone atom and the first centre of mass of aquaporine
(left) and the opening diameter over time (right).

Krivobokova et al. (2012) have shown that partial least squares helps to identify a hidden re-

lation between atom coordinates of a protein and a functional parameter of interest, yielding

robust and parsimonious solutions, superior to principal component regression. In this work we

look at a protein studied in the aforementioned paper: the water channel aquaporine as found in

the yeast Pichia pastoris. This is a gated channel, i.e., the diameter of the opening can change,

controlling the flow of water into the cell. We aim to study which collective motions of protein

atoms influence the diameter yt of the channel at time t, measured by the distance of two centres

of mass of the residues of the protein which characterize the opening. For the description of the

protein dynamics we use an inner model, i.e. at each point in time we calculate the Euclidean

distance d of each backbone atom of the protein and a set of certain four fixed base points. We

denote the p = 739 atoms by At,1, . . . , At,p ∈ R3, the fixed base points by B1, . . . , B4 ∈ R3 and

take

Xt = {d(At,1, B1), . . . , d(At,p, B1), d(At,1, B2), . . . , d(At,p, B4)}T ∈ R4p.
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The available timeframe has a length of 100 ns split into n = 20 000 equidistant points of

observation. Krivobokova et al. (2012) found that a linear relationship between X and y can be

assumed.

Taking a closer look at the data reveals that both yt and Xt,i, i = 1, . . . , 4p, are nonstation-

ary time series, see Figure 2.2. For the calculation of V̂ 2 we used the banding approach

mentioned in Section 2.4.2 and found the results to be very similar to a simple autoregres-

sive integrated moving average process with parameters (3,1,1) and corresponding coefficients

(0.1094, 0.0612, 0.0367,−0.9159). Autoregressive integrated moving average models have

been employed before to study protein time series (Alakent et al., 2004).

To validate our estimators, we used the following procedure. First, the data were split into two

equal parts and the models were build on the first half. Then the prediction was done on the

test set consisting of the second half of the data and was compared to yt from the test set. To

measure the accuracy of the prediction we used the Pearson correlation coefficient common

in the biophysics community and the residual sum of squares, both shown in Figure 2.3. The

partial least squares estimator clearly outperforms principal components regression. The cor-

rected partial least squares algorithm, which takes temporal dependence into account, delivers

better prediction than standard partial least squares. The improvement is strongly present in the

first components. High predictive power of the first corrected partial least squares components

is particularly relevant for the interpretation of the underlying protein dynamics. Krivobokova

et al. (2012) established that the first partial least squares regression coefficient β̂1 corresponds

to the so-called ensemble-weighted maximally correlated mode of motion contributing most to

the fluctuation in the response y.

Altogether, due to the low dimensionality, corrected partial least squares greatly facilitates the
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Figure 2.3: Correlation (left) and residual sum of squares (right) of the predicted opening di-
ameter and the real data on the test set. Compared methods are principal component regression
(grey), corrected partial least squares (black, solid) and partial least squares (black, dashed).

interpretation of the underlying relevant dynamics, compared to partial least squares and prin-

cipal component regression, where many more components are required to obtain the same

predictive power.
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2.7 Proofs

2.7.1 Derivation of the population partial least squares components

Let Ki ∈ Rd×i denote the matrix representation of a base for Ki(Σ
2, P q) . Then

n∑
t=1

E (yt −XT

t Kiα)
2 =

n∑
t=1

[V 2]t,t
(
∥q∥2 + η22 − 2αTKT

i Pq + αTKT

i Σ
2Kiα

)
.

Taking the derivative with respect to α ∈ Ri and setting the resulting equation to zero gives

KT
i Σ

2Kiα = KiPq. Since the matrix KT
i Σ

2Ki is invertible, we get the least squares fit βi in

Section 2.2.

Assume now that the first i < a partial least squares base vectors w1, . . . , wi have been calcu-

lated and consider for λ ∈ R the Lagrange function

n∑
t,s=1

Cov (yt −XT

t βi, X
T

s w)− λ(∥w∥2 − 1) = wT
(
Pq − Σ2βi

) n∑
t,s=1

[V 2]t,s − λ(∥w∥2 − 1).

Maximizing with respect to w yields

wi+1 = (2λ)−1
(
Pq − Σ2βi

) n∑
t,s=1

[V 2]t,s ∝ Pq − Σ2βi.

Since βi ∈ Ki(Σ
2, P q), we get wi+1 ∈ Ki+1(Σ

2, P q) and wi+1 is orthogonal to w1, . . . , wi.
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2.7.2 Proof of Theorem 2.1

First consider

E
(
∥b− Pq∥2

)
=E

[∥∥∥∥ 1

∥V ∥2
{
(PNT + η1F

T)V 2Nq + η2(PN
T + η1F

T)V 2f
}
− Pq

∥∥∥∥2
]

=

{
E

(∥∥∥∥ 1

∥V ∥2
PNTV 2Nq − Pq

∥∥∥∥2
)

+
η22

∥V ∥4
E
(∥∥PNTV 2f

∥∥2)}

+
η21

∥V ∥4
{
E
(∥∥F TV 2Nq

∥∥2)+ η22 E
(∥∥F TV 2f

∥∥2)} = S1 + S2,

due to the independence of N , F and f . It is easy to see that

S2 =
∥V 2∥2

∥V ∥4
η21d

(
∥q∥2 + η22

)
.

Furthermore, with A0 = NTV 2N , we get

S1 =
1

∥V ∥4
E (qTA0P

TPA0q)− ∥Pq∥2 + η22
∥V ∥4

E
(∥∥PNTV 2f

∥∥2) .
Consider now E (qTA0P

TPA0q) as a quadratic form with respect to the matrix P TP . Denote

κ = E
(
N4

1,1

)
− 3. First, E (A0q) = E (NTV 2Nq) = ∥V ∥2q and

Var(A0q) =

[
l∑

a,b=1

qaqb

n∑
t,s,u,v=1

V T

u VsV
T

t Vv E(Ns,iNu,aNt,jNv,b)

]l
i,j=1

− ∥V ∥4qqT

=

[
qiqj∥V ∥4 +

(
qiqj + δi,j∥q∥2

)
∥V 2∥2 + κ

n∑
t=1

∥Vt∥4δi,jq2i

]l
i,j=1

− ∥V ∥4qqT

= ∥V 2∥2
(
qqT + ∥q∥2Il

)
+ κ

n∑
t=1

∥Vt∥4diag
(
q21, . . . , q

2
l

)
,
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where diag(v1, . . . , vl) denotes the diagonal matrix with entries v1, . . . , vl ∈ R on its diagonal

and δ is the Kronecker delta. In the second equation we made use of E (Ns,iNu,aNt,jNv,b) =

δi,aδj,bδs,uδt,v + δi,bδj,aδs,vδt,u + δi,jδa,bδt,sδu,v + κ δt,sδs,uδu,vδi,jδj,aδa,b, t, s, u, v = 1, . . . , n,

i, j, a, b = 1, . . . , d.

Hence,

1

∥V ∥4
E (qTA0P

TPA0q) =
1

∥V ∥4
tr {P TP Var (A0q)} −

1

∥V ∥4
E (qTA0)P

TP E (A0q)

=
∥V 2∥2

∥V ∥4
(
qTP TPq + ∥P∥2∥q∥2

)
+ qTP TPq + κ

n∑
t=1

∥Vt∥4

∥V ∥4
l∑

i=1

∥Pi∥2q2i .

The remaining term in S1 follows trivially, proving the result. E ∥Σ2 − A∥2 is obtained using

similar calculations. �

2.7.3 Proof of Theorem 2.2

Lemma 2.1 Assume that for ν ∈ (0, 1], η1 > 0 and some constants δ, ϵ > 0 it holds that

P (∥A− Σ2∥L ≤ δ) ≥ 1− ν/2 and P (∥b− Pq∥ ≤ ϵ) ≥ 1− ν/2. Then the inequalities

∥A1/2 − Σ∥ ≤ 2−1δ∥Σ−1∥{1 + o(1)},

∥A−1/2b− Σ−1Pq∥ ≤ ϵ∥Σ−1∥L + 2−1δ(∥Pq∥+ ϵ)∥Σ−2∥∥Σ−1∥ {1 + o(1)}

hold simultaneously with probability at least 1− ν.

Proof: We show the result by using the Fréchet-derivative for functions F : Rd×d → Rd×d.

Due to the fact that η1 > 0 it holds that Σ2 is positive definite and thus invertible. It holds

rank(A) = d almost surely since rank(F ) = d almost surely and NP T and F are independent.
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We assume that we are on the set where ∥A − Σ2∥L ≤ δ and ∥b − Pq∥ ≤ ϵ hold both with

probability at least 1− ν.

It holds due to Higham (2008), Problem 7.4, that F ′(Σ2)B for an arbitraryB ∈ Rd×d is given as

the solution in Z ∈ Rd×d of B = ΣZ + ZΣ, i.e., due to the symmetry and positive definiteness

of Σ we have F ′(Σ2)B = 2−1Σ−1B. We take the orthonormal base {Ei,j, i, j = 1, . . . , d} for

the space (Rd×d, ∥ · ∥) with Ei,j corresponding to the matrix that has zeros everywhere except

at the position (i, j), where it is one. The Hilbert-Schmidt norm ∥F ′(Σ2)∥HS is

∥F ′(Σ2)∥2HS = 4−1

d∑
i,j=1

∥Σ−1Ei,j∥2 = 4−1

d∑
i,j=1

[Σ−1]2i,j = 4−1∥Σ−1∥2.

This yields with the Taylor expansion for Fréchet-differentiable maps

∥A1/2 − Σ∥L ≤ ∥F ′(Σ)(A− Σ2)∥+ o(∥A− Σ2∥) ≤ 2−1∥Σ−1∥δ{1 + o(1)}.

For the second inequality we see first that

∥A−1/2b− Σ−1Pq∥ ≤ ϵ∥Σ−1∥L +
∥∥(A−1/2 − Σ−1)b

∥∥ . (2.7)

The Fréchet-derivative of the map F : Rd×d → Rd×d, A 7→ A−1/2 is F ′(Σ2)B =

−2−1Σ−2BΣ−1 for B ∈ Rd×d and

∥F ′(Σ2)∥2HS = 4−1

d∑
i,j=1

∥Σ−2Ei,jΣ
−1∥2 ≤ 4−1∥Σ−2∥2∥Σ−1∥2.

Here we used the submultiplicativity of the Frobenius norm with the Hadamard product of
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matrices. Thus we get via Taylor’s theorem

∥A−1/2 − Σ−1∥ ≤ 2−1∥Σ−2∥∥Σ−1∥∥A− Σ2∥δ{1 + o(1)}.

Plugging this into (2.7) yields

∥A−1/2b− Σ−1Pq∥ ≤ ϵ∥Σ−1∥L + 2−1δ(∥Pq∥+ ϵ)∥Σ−2∥∥Σ−1∥ {1 + o(1)} ,

where we used that ∥b∥ ≤ ∥Pq∥+ ϵ. �

Equivalence of conjugate gradient and partial least squares: We denote Ã = A1/2 and

b̃ = A−1/2b. The partial least squares optimization problem is

min
v∈Ki(A,b)

∥y −Xv∥2,

whereas the conjugate gradient problem studied in Nemirovskii (1986) is

min
v∈Ki(Ã2,Ãb̃)

∥b̃− Ãv∥2. (2.8)

It is easy to see that the Krylov space Ki(Ã
2, Ãb̃) = Ki(A, b), i = 1, . . . , d. We have

arg min
v∈Ki(Ã2,Ãb̃)

∥b̃− Ãv∥2 = arg min
Ki(A,b)

∥y −Xv∥2, i = 1, . . . , d.
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Thus it holds

β̂i = arg min
v∈Ki(Ã2,Ãb̃)

∥b̃− Ãv∥2.

Furthermore we have Σβ(η1) = Σ−1Pq, i.e., the correct problem in the population is solved by

β(η1) as well. Now we will restate the main result in Nemirovskii (1986) in our context:

Theorem 2.7 Nemirovskii

Assume that we have η1 > 0 and there are δ̃ = δ̃(ν, n) > 0, ϵ̃ = ϵ̃(ν, n) > 0 such that

for ν ∈ (0, 1] it holds that P
(
∥Σ− A1/2∥L ≤ δ̃, ∥Σ−1Pq − A−1/2b∥ ≤ ϵ̃

)
≥ 1 − ν. Assume

furthermore that there is a vector u ∈ Rd and constants R, µ > 0 such that β(η1) = Σµu,

∥u∥ ≤ R is satisfied.

If we stop according to the stopping rule a∗ as defined in (2.4) with τ ≥ 1 and ζ < τ−1 then we

have for any θ ∈ [0, 1] with probability at least 1− ν

∥∥∥Σθ{β̂a∗ − β(η1)}
∥∥∥2 ≤ C2(µ, τ, ζ)R2(1−θ)/(1+µ)

(
ϵ̃+ δ̃RLµ

)2(θ+µ)/(1+µ)

.

Proof: Note first that on the set where ∥Σ − A1/2∥L ≤ δ̃ holds we also have

max{∥A1/2∥L, ∥Σ∥L} ≤ L. Constrained on the set where all the conditions of the theorem

hold with probability at least 1− ν we consider Nemirovskii’s (Σ, A1/2,Σ−1Pq,A−1/2b) prob-

lem with errors δ̃ and ϵ̃. Furthermore by assumption Nemirovskii’s (2θ, R, L, 1) conditions

hold and thus the theorem follows by a simple application of the main theorem in Nemirovskii

(1986). �

We will now apply Theorem 2.7 to our problem. Due to the fact that η1 > 0 it holds that

Σ2 is positive definite and thus invertible. We note that the spectral norm is dominated by the
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Frobenius norm. From Markov’s inequality we get

P
(
∥A− Σ2∥ ≥ δ

)
≤ δ−2 E

(∥∥A− Σ2
∥∥2) .

Using Theorem 2.1,
∑n

t=1 ∥Vi∥4 ≤ ∥V 2∥2 and setting the right hand side to ν/2 for ν ∈ (0, 1]

gives δ = ν−1/2∥V ∥−2∥V 2∥Cδ. In the same way ϵ = ν−1/2∥V ∥−2∥V 2∥Cϵ. Lemma 2.1 gives

with probability at least 1− ν the concentration results required by Theorem 2.7 with

δ̃ = ν−1/2∥V 2∥
∥V ∥2

Cδ{1 + o(1)}

ϵ̃ =

(
ν−1/2∥V 2∥

∥V ∥2
Cϵ + ν−1∥V 2∥2

∥V ∥4
CϵCδ

)
{1 + o(1)}

The remaining condition of Theorem 2.7 holds by choosing µ = 1 and R = ∥Σ−3Pq∥. Here

we used that β(η1) = Σ−2Pq. Thus the theorem yields for θ = 1

∥∥∥Σ{β(η1)− β̂a∗}
∥∥∥ ≤ C(1, τ, ζ)

(
ϵ̃+ δ̃RL

)
,

with L = ∥Σ∥L + δ̃. Denote c(τ, ζ) = C(1, τ, ζ). Finally we have ∥Σ−1∥−1
L ∥v∥ ≤ ∥Σv∥ for

any v ∈ Rd and thus the theorem is proven with

c1(ν) = ν−1/2{c(τ, ζ) + o(1)}∥Σ−1∥L
(
Cϵ + ∥Σ∥L∥Σ−3Pq∥Cδ

)
c2(ν) = ν−1{c(τ, ζ) + o(1)}∥Σ−1∥L

(
CϵCδ + ∥Σ−3Pq∥C2

δ

)
.

�
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2.7.4 Proof of Theorem 2.3

The theorem is proved by contradiction. Assume that β̂1 −→ β1 in probability. Choosing

v ∈ Rd, v ̸= 0, orthogonal to β1 implies that vTβ̂1 converges in probability to zero. Note that

we assume d > 1. Next we show that the second moment vanishes as well.

Let Mr(z) = maxi∈Ir
∏r

j=1 E(z
ij) for a random variable z with existing mixed rth moments,

r ∈ N and Ir = {i ∈ {0, . . . , r}r : i1 + i2 + · · ·+ ir = r}. Consider

E
(
∥PNTV 2Nq∥4

)
≤ ∥P∥4∥q∥4 E(∥NTV 2N∥4)

≤ ∥P∥4∥q∥4
∑

i∈{1,...,l}4

∑
s∈{1,...,n}8

8∏
j=1

∥Vsj∥

∣∣∣∣∣E
(

4∏
h=1

2h∏
j=2h−1

Nih,sj

)∣∣∣∣∣
≤ l4∥P∥4∥q∥4

{
n∑

t=1

∥Vt∥2
}4

M8(N1,1) = l4∥P∥4∥q∥4∥V ∥8M8(N1,1).

In the last inequality we used the fact that the Nt,i, t = 1, . . . , n, i = 1, . . . , l, are independent

and identically distributed and E(Nt,i) = 0. Thus E(
∏4

h=1

∏2h
j=2h−1Nih,sj) is zero if the random

variables Nih,sj do not appear at least in pairs in the product. We see that then the norms

∥Vsj∥ have to appear at least in pairs as well. Finally we can use the fact that
∑n

t=1 ∥Vt∥u ≤

(
∑n

t=1 ∥Vt∥2)u/2 for u ≥ 2 and the definition of M8(N1,1).

Now using (a+ b)2 ≤ 2(a2 + b2) for a, b ∈ R and the independence of N , F and f we obtain

E (vTb)4 ≤82∥v∥4

∥V ∥8
E
(∥∥PNTV 2Nq

∥∥4 + η41
∥∥F TV 2Nq

∥∥4 + η42
∥∥PNTV 2f

∥∥4 + η41η
4
2

∥∥F TV 2f
∥∥4)

≤82∥v∥4
{
M8(N1,1)∥q∥4l4∥P∥4 +M4(N1,1)M4(F1,1)η

4
1∥q∥4l2d2

+M4(N1,1)M4(f1)η
4
2l

2∥P∥4 +M4(F1,1)M4(f1)η
4
1η

4
2d

2
}
<∞, n ∈ N.
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Thus, (vTb)2 is uniformally integrable by the theorem of de la Vallée-Poussin and it follows that

the directional variance Var(vTb) has to vanish in the limit as well. Now, calculations similar to

Theorem 2.1 yield

Var(vTb) =
∥V 2∥2

∥V ∥4
{
η21∥v∥2

(
∥q∥2 + η22

)
+ ∥P Tv∥2

(
∥q∥2 + η22

)
+ (vTPq)2

}
+

n∑
t=1

∥Vt∥4

∥V ∥4
l∑

i=1

q2i (v
TPi)

2 {E(N4
1,1)− 3}, v ∈ Rd.

We assumed that ∥V ∥−2∥V 2∥ does not converge to zero. It remains to check under which

conditions Var(vTb) is larger than zero. This will always be the case if v ̸= 0 and η1 > 0, l = 1.

For η1 = 0 and l > 1 a vector v that lies in the range of P and is orthogonal to β1 ∝ Pq exists,

thus contradicting β̂1 −→ β1 in probability. �

2.7.5 Proof of Theorem 2.4

It is easy to verify that ∥V ∥2 = tr(T 2) = nγ(0) and ∥V 2∥2 = nγ2(0) + 2
∑n−1

t=1 γ
2(t)(n − t).

If (2.6) is fulfilled, then

nγ2(0) ≤
∥∥V 2

∥∥2 ≤ nγ2(0)

{
1 + 2c2

1− exp(−2ρ(n− 1))

exp(2ρ)− 1

}
≤ nγ2(0)

{
1 +

2c2

exp(2ρ)− 1

}
.

It follows that ∥V 2∥ ∼ n1/2. �

2.7.6 Proof of Theorem 2.5

Let γ : N → R be the autocovariance function of a stationary time series that has zero mean.

For the autocovariance matrix V 2 of the corresponding integrated process of order one we get
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[V 2]t,s =
∑t,s

i,j=1 γ(|i − j|), t, s = 1, . . . , n. Let t ≥ s. By splitting the sum into parts with

i < j and i > j we get [V 2]t,s = sγ(0)+
∑s

j=1

∑t−j
i=1 γ(i)+

∑s
j=2

∑j−1
i=1 γ(i).Due to symmetry,

[V 2]t,s = [V 2]s,t for s > t.

First, consider the case that all γ(j), j > 0, are negative. Using (2.6) we obtain

γ(0)s ≥
[
V 2
]
t,s

≥ γ(0)

{
s− c

s∑
j=1

t−j∑
i=1

exp(−ρj)− c
s∑

j=2

j−1∑
i=1

exp(−ρj)

}
, t ≥ s.

Evaluation of the geometric sums gives

[
V 2
]
t,s

≥ γ(0)

(
s

{
1− 2c

exp(ρ)− 1

}
+ c

exp(ρ)

{exp(ρ)− 1}2
{1− exp(−ρs)} [1 + exp{ρ(s− t)}]

)
.

The second term on the right is always positive and the positivity of the first term is ensured by

the condition ρ > log(2c+ 1). Hence, γ(0)
[
1− 2c {exp(ρ)− 1}−1] s ≤ [V 2]t,s ≤ γ(0)s, s ≥

1. If γ(t), t ≥ 1, is not purely negative, it can be bound by

γ(0)
[
1− 2c {exp(ρ)− 1}−1] s ≤ [V 2

]
t,s

≤ γ(0)
[
1 + 2c {exp(ρ)− 1}−1] s.

We write δ1 and δ2 for the constants in the lower and upper bound, respectively, so that

δ1 min{s, t} ≤ [V 2]t,s ≤ δ2 min{s, t}, t, s = 1, . . . , n. This yields upper and lower bounds

on the trace of V 2 and shows that ∥V ∥2 ∼ n2. Additionally,

[
V 4
]
t,t

=
n∑

l=1

[
V 2
]
t,l

[
V 2
]
l,t
=

t∑
l=1

[
V 2
]2
t,l
+

n∑
l=t+1

[
V 2
]2
l,t
≤ δ22

6
t
(
6nt− 4t2 + 3t+ 1

)
[
V 4
]
t,t

≥ δ21
6
t
(
6nt− 4t2 + 3t+ 1

)
.
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This implies upper and lower bounds on the trace of V 4 in the form c̃ n(n+ 1)(n2 + n+ 1) for

c̃ ∈ {δ21/6, δ22/6} and thus ∥V 2∥ ∼ n2. �

2.7.7 Proof of Theorem 2.6

First consider n−1XTV̂ −2y. Define Xu = (Xu,1, . . . , Xu,n)
T = NP T + η1F and yu =

(yu,1, . . . , yu,n)
T = Nq + η2f such that X = V Xu and y = V yu. By the triangle inequal-

ity we have

∥∥∥n−1XTV̂ −2y − Pq
∥∥∥ ≤

∥∥n−1XTV −2y − Pq
∥∥+ ∥∥∥n−1XT

(
V̂ −2 − V −2

)
y
∥∥∥ .

The first term on the right hand side is convergent to zero in probability due to Theorem 2.1.

The second term can be bound by

n−2
∥∥∥XT

(
V̂ −2 − V −2

)
y
∥∥∥2 ≤ ∥V V̂ −2V − In∥2L n−1∥XT

u∥2 n−1∥yu∥2.

Since both Xu,1, . . . , Xu,n and yu,1, . . . , yu,n are independent and identically distributed, it fol-

lows that n−1∥yu∥2 is a strongly consistent estimator for E(y2u,1), as well as that n−1∥XT
u∥2 is

a strongly consistent estimator of E(∥Xu,1∥2). Convergence in probability of
∥∥∥V V̂ −2V − In

∥∥∥2
L

to zero implies the convergence of b(V̂ ) to Pq in probability by Slutsky’s lemma.

To obtain the convergence rate ∥n−1XTV −2y−Pq∥ = Op(rn), use Theorem 2.1 and ∥V V̂ −2V−

In∥L = Op(rn). The convergence of ∥n−1XTV̂ −2X − Σ2∥ is proven in a similar way.

To show the consistency and the rate of the corrected partial least squares estimator, we follow

the same lines as in the proof of Theorem 2.2. First, δ = rncA(ν) and ϵ = rncb(ν) for ν ∈ (0, 1]
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with constants cA(ν), cb(ν) are taken, such that the inequalities

∥A(V̂ )1/2 − Σ∥L ≤ rncA(ν), ∥A(V̂ )−1/2b(V̂ )− Σ−1Pq∥ ≤ rncb(ν)

hold simultaneously with probability at least 1 − ν. As the product of three matrices that have

almost surely full rank d due to η1 > 0 it holds that A(V̂ ) is almost surely invertible. Moreover,

R = ∥Σ−3Pq∥, µ = 1 fulfils the remaining condition in Theorem 2.7. Thus, with probability at

least 1− ν we get by setting θ = 1

∥∥∥β̂a∗(V̂ )− β(η1)
∥∥∥ ≤ rnC(1, τ, ζ){1+o(1)}∥Σ−1∥L

[
cb(ν) + cA(ν)∥Σ−3Pq∥ {∥Σ∥L + rncA(ν)}

]
,

where the constants ζ, τ are taken from the definition of a∗. �
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Kernel partial least squares for stationary data
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We consider the kernel partial least squares algorithm for the solution of nonparametric regres-

sion problems when the data exhibit dependence in their observations in the form of stationary

time series. Probabilistic convergence rates of the kernel partial least squares estimator to the

true regression function are established under a source condition. The impact of long range

dependence in the data is studied both theoretically and in simulations.

Key words and phrases:

Kernel partial least squares, Long range dependence, Nonparametric regression, Source condi-

tion, Stationary process

3.1 Introduction

We study the statistical regularization properties of the kernel partial least squares algorithm for

the solution of nonparametric regression problems

yt = f ∗(Xt) + εt, t ∈ Z. (3.1)
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For fixed d ∈ N we consider the d-dimensional stationary time series {Xt}t∈Z on a probability

space (Ω,A,P) and {εt}t∈Z is an independent and identically distributed sequence of real val-

ued random variables with expectation zero and variance σ2 > 0 that is independent of {Xt}t∈Z.

Furthermore letX be a random vector that is independent of {Xt}t∈Z and {εt}t∈Z with the same

distribution as X0.

The aim is to estimate the regression function f ∗ ∈ L2
(
PX
)

based on a training sample

{(Xt, yt)
T}nt=1, n ∈ N.

The focus of this work is on the kernel based learning approach. Due to the representer theorem

of Wahba (1999) and its generalization in Schölkopf et al. (2001), reproducing kernel Hilbert

space methods have gained popularity in recent years, especially in the machine learning com-

munity, and many regularized regression techniques like ridge regression, principal component

regression and partial least squares have been adapted to this nonparametric setting (Saunders

et al., 1998; Rosipal et al., 2000; Rosipal and Trejo, 2001).

In reproducing kernel Hilbert space methods the data {Xt}nt=1 are mapped into a Hilbert space

H of functions on Rd with reproducing kernel k : Rd × Rd → R such that the nonparametric

regression problem (3.1) becomes linear in a function space. The main advantage of these

methods is the kernel trick, i.e., this mapping can be done implicitly via the kernel matrix

Kn = n−1[k(Xt, Xs)]
n
t,s=1. Linear methods are then applied to the problem in the reproducing

kernel Hilbert space.

Partial least squares was derived for the solution of linear regression problems with collinear-

ities in the regressor matrix by Wold et al. (1984). The algorithm works similar to principal

component regression with the main difference being that in each step the covariance between

response and regressor is maximized instead of the variance of the regressor, see Helland (1988)

for a detailed description. Similar to principal component regression partial least squares is an

iterative regularized regression technique and regularisation is achieved by stopping the algo-

rithm early. It is also closely related to the conjugate gradient algorithm, see Phatak and de Hoog
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(2002).

In several studies it has been seen that partial least squares is competitive with other regression

methods like ridge regression and principal component regression and it needs generally fewer

iterations than the latter to achieve good parameter estimation and prediction, see, e.g., Frank

and Friedman (1993) and Krämer and Braun (2007). For an overview of further properties of

partial least squares we refer to Rosipall and Krämer (2006).

The method was adapted to the kernel setting in Rosipal and Trejo (2001) by using the reformu-

lation of the algorithm presented in Lindgren et al. (1993). The relationship to kernel conjugate

gradient methods was highlighted in Blanchard and Krämer (2010a). It can be seen in Hanke

(1995) that conjugate gradient methods are well suited for handling ill-posed problems, as they

arise for example in kernel learning (De Vito et al., 2006).

Rosipal (2003) investigated the performance of kernel partial least squares for nonlinear dis-

criminant analysis. Blanchard and Krämer (2010a) proved the consistency of kernel partial

least squares when the algorithm is stopped early without giving convergence rates.

For a variant of kernel conjugate gradient explicit probabilistic convergence rates were proven

in Blanchard and Krämer (2010b). The question what convergence rates kernel partial least

squares achieves remained open.

To the best of our knowledge there was no previous research on the performance of the al-

gorithm when instead of independent and identically distributed observations stationary time

series are considered. We investigate this case and see that under short range dependence the

convergence rates of kernel partial least squares are the same as in the independent case, whereas

long range dependence leads to slower rates.

All the proofs are given in the Sections 3.6 and 3.7.
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3.2 Kernel partial least squares

We consider the nonparametric regression model (3.1) with the stationary time series {Xt}t∈Z

and assume that we have a training sample {(Xt, yt)
T}nt=1 for n ∈ N.

Define with (H, ⟨·, ·⟩H) the reproducing kernel Hilbert space of functions on Rd with reproduc-

ing kernel k : Rd × Rd → R, i.e., the property

g(x) = ⟨g, k(·, x)⟩H, x ∈ Rd, g ∈ H, (3.2)

holds.

The corresponding norm in H will be denoted by ∥ · ∥H. We refer to Berlinet and Thomas-

Agnan (2004) for examples of Hilbert spaces and their reproducing kernels and specifically to

Steinwart et al. (2005) for a derivation of the reproducing kernel Hilbert space belonging to the

Gaussian kernel k(x, y) = exp{−s(x− y)T(x− y)}, x, y ∈ Rd, s > 0.

To find an approximation of f ∗ in H given the training sample {(Xt, yt)
T}nt=1 we consider the

regularized least squares problem

min
h∈H

n−1

n∑
t=1

{yt − h(Xt)}2 + ξ∥h∥2H

with penalty term ξ > 0. By virtue of the generalized representer theorem of Schölkopf et al.

(2001) the solution of this optimization problem is fα =
∑n

t=1 αtk(·, Xt) for some α1, . . . αn ∈

R.

There are a variety of different approaches to estimate the coefficients α1, . . . , αn, including

kernel ridge regression, kernel principal component regression or kernel partial least squares.

Kernel partial least squares was derived by Rosipal and Trejo (2001). Essentially the data

Xt are mapped into H via ϕt = k(·, Xt). This mapping can be done implicitly by using the

kernel trick ⟨ϕt, ϕs⟩H = k(Xt, Xs) and thus only the n × n dimensional kernel matrix Kn =
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n−1[k(Xt, Xs)]
n
t,s=1 is needed in the algorithm.

It was shown by Krämer and Braun (2007) that the kernel partial least squares algorithm solves

the optimization problem

α̂i = arg min
v∈Ki(Kn,y)

∥y −Knv∥2, i = 1, . . . , n, (3.3)

with y = (y1, . . . , yn)
T. Here Ki(Kn, y) = span {y,Kny,K

2
ny, . . . ,K

i−1
n y}, i = 1, . . . , n, is

the ith Krylov space with respect to Kn and y and ∥ · ∥ denotes the Euclidean norm rescaled by

n−1.

The following assumptions on H and k are crucial for our further analysis:

(K1) H is separable,

(K2) There exists a κ > 0 such that |k(x, y)| ≤ κ for all x, y ∈ Rd and k is measurable.

Under condition (K1) the Hilbert-Schmidt norm ∥ · ∥HS for operators mapping from H to H is

well defined. If condition (K2) holds all functions in H are bounded, see Berlinet and Thomas-

Agnan (2004), chapter 2. Thus we have H ⊆ L2
(
PX
)

as every bounded function is integrable

with respect to a probability measure. The condition is satisfied for a variety of popular kernels,

e.g., Gaussian or triangular.

The change of space operator T : H → L2
(
PX
)
, g 7→ g is well defined if (K2) holds and

the kernel integral operator is given by T ∗ : L2
(
PX
)
→ H, g 7→ E{k(·, X)g(X)}. It is easy

to see that T, T ∗ are adjoint, i.e., for u ∈ H and v ∈ L2
(
PX
)

it holds ⟨T ∗v, u⟩H = ⟨v, Tu⟩2

with ⟨·, ·⟩2 being the inner product in L2
(
PX
)
. This property is useful as we will measure the

estimation error of fα̂i
in the L2

(
PX
)
-norm ∥ · ∥2.

The sample analogues of T, T ∗ are Tn : H → Rn, g 7→ {g(X1), . . . , g(Xn)}T and T ∗
n :

Rn → H, (v1, . . . , vn)T 7→ n−1
∑n

t=1 vtk(·, Xt), respectively. In the rescaled Euclidean product

⟨u, v⟩ = n−1uTv, u, v ∈ Rd, both of these operators are adjoint as well.
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Finally we define the sample kernel covariance operator Sn = T ∗
nTn : H → H and the popula-

tion kernel covariance operator S = T ∗T : H → H. Note that it holdsKn = TnT
∗
n . Under (K1)

and (K2) S is a self-adjoint compact operator with operator norm ∥S∥L ≤ κ, see Caponnetto

and de Vito (2007).

In the literature of ill-posed problems it is well known that without further conditions on the tar-

get function f ∗ the convergence rate of the conjugate gradient algorithm can be arbitrarily slow,

see (Hanke, 1995), chapter 3.2. One common a-priori assumption on the regression function f ∗

is the source condition:

(S) There exist r ≥ 1/2, R > 0 and u ∈ L2
(
PX
)

such that f ∗ = (TT ∗)ru and ∥u∥2 ≤ R.

It is well known that in the case r ≥ 1/2 the target function f ∗ ∈ L2
(
PX
)

coincides almost

surely with a function f ∈ H and we can write f ∗ = Tf , see Cucker and Smale (2002). Hence

we can define M = supx∈Rd |f(x)|.

For r ≥ 1/2 the source condition can be restated for the function f ∈ H as what is also known

as the Hölder source condition with µ = r − 1/2

(SH) There exist µ ≥ 0, R > 0 and u ∈ H such that f = Sµu and ∥u∥H ≤ R.

The condition (SH) measures the smoothness of the solution f with respect to S in H, see Bauer

et al. (2007) for more details.

3.3 Consistency of kernel partial least squares

The kernel conjugate gradient algorithm as described by Blanchard and Krämer (2010b) is

consistent when stopped early and explicit convergence rates can be obtained when a source

condition (S) holds. Here we will proof the same property for kernel partial least squares. Early

stopping in this context means that we stop the algorithm at some a ≤ n that depends on n and

consider the estimator fα̂a .
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For x ∈ Rn we define ∥x∥2Kn
= n−1xTKnx. The difference between the two methods is

the norm to be optimized. The kernel conjugate gradient algorithm of Blanchard and Krämer

(2010b) estimates the coefficients α ∈ Rn of fα via α̂CG
i = argminv∈Ki(Kn,y) ∥y −Knv∥2Kn

as

opposed to kernel partial least squares α̂i = argminv∈Ki(Kn,y) ∥y − Knv∥2, i = 1, . . . , n, see

(3.3).

It is easy to see that the optimization problems can be rewritten for the function fα as

ming∈Ki(Sn,T ∗
ny) ∥T

∗
ny − Sng∥2H and ming∈Ki(Sn,T ∗

ny) ∥y − Tng∥2, respectively. Thus kernel con-

jugate gradient obtains the least squares solution g in the H-norm for the normal equation

T ∗
ny = Sng and kernel partial least squares finds a function that minimizes the residual sum of

squares ∥y − {g(X1), . . . , g(Xn)}T∥2. In both methods the solutions are restricted to functions

g ∈ Ki(Sn, T
∗
ny).

An advantage of the formulation for the kernel conjugate gradient estimator is that concentration

inequalities can be established for both T ∗
ny and Sn and applied directly as the optimization

function contains both quantities. The stopping index for the regularization can be chosen by

a discrepancy principle as a∗ = min{1 ≤ i ≤ n : ∥Snfα̂CG
i

− T ∗
ny∥ ≤ Λn} with Λn being a

threshold sequence that goes to zero as n increases.

For the kernel partial least squares optimization problem, on the other hand, the function to be

optimized contains only y and Tng = {g(X1), . . . , g(Xn)}T for which statistical properties are

not readily available. Thus we need to find a way to apply the concentration inequalities for T ∗
ny

and Sn to this slightly different problem. This leads to complications in the proof of consistency

and a rather different and more technical stopping rule for choosing the optimal regularization

parameter a∗ is used, as can be seen in Theorem 3.1. This stopping rule has its origin in Hanke

(1995).

The next theorem states the convergence properties of the kernel partial least squares algorithm

when a source condition holds.

79



Theorem 3.1 Assume that conditions (K1), (K2), (S) hold with r ≥ 3/2 and there are constants

Cδ, Cϵ > 0 and a sequence {γn}n∈N ⊂ [0,∞), γn → 0, such that we have for ν ∈ (0, 1]

P (∥Sn − S∥L ≤ Cδγn) ≥ 1− ν/2, P (∥T ∗
ny − Sf∥H ≤ Cϵγn) ≥ 1− ν/2.

Define the stopping index a∗ by

a∗ = min

{
1 ≤ a ≤ n :

a∑
i=0

∥Snfα̂i
− T ∗

ny∥−2
H ≥ (Cγn)

−2

}
, (3.4)

with C = Cϵ +R{1 + Cδ(r + 1/2)κr−1/2}.

Then it holds with probability at least 1− ν that

∥fα̂a∗ − f ∗∥2 = O
{
γ2r/(2r+1)
n

}
,

∥fα̂a∗ − f∥H = O
{
γ(2r−1)/(2r+1)
n

}
.

It can be shown that the stopping rule (3.4) always determines a finite index, i.e., the set the

minimum is taken over is not empty, see Hanke (1995), chapter 4.3.

The convergence rate of the kernel partial least squares estimator depends crucially on the se-

quence γn and the source parameter r. If γn = O(n−1/2), this yields the same convergence rate

as Theorem 2.1 of Blanchard and Krämer (2010b) for kernel conjugate gradient or de Vito et al.

(2005) for kernel ridge regression with independent and identically distributed data.

The optimal stopping index a∗ is of a theoretical nature. The constants Cδ and Cϵ require decent

knowledge about the estimators Sn and T ∗
ny and the stopping index also depends on the source

parameter r, which is unlikely to be available in every application.

Recall again that the target function fulfils f ∗ = Tf almost surely for an f ∈ H under (S) and

that µ = r + 1/2. As the source condition is crucial for Theorem 3.1 the following proposition
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will derive a more explicit representation for f ∈ H if (SH) holds:

Proposition 3.1 Assume that (K1),(K2) and (SH) hold. Then we have for µ ∈ N

(i) ∥f∥H ≤ Rκµ.

If additionally d = 1 and X0 ∼ N (0, σ2), σ2 > 0, holds and the Gaussian kernel k(x, y) =

exp{−s(x− y)2} for x, y ∈ R, s > 0, is used we have for µ ∈ N

(ii) ∥f∥2H ≤ R

{
µ∑

i=0

βi,µ(sσ
2)i
}−1/2

,

for coefficients {βi,µ}µi=0 ⊂ (0,∞) and β0,µ = 1,

(iii) f can be expressed via f(x) =
∑∞

i=1 ciLµ(x, zi) for certain {zi}∞i=1, {ci}∞i=1 ⊂ R such

that
∑∞

i,j=1 cicjk(zi, zj) ≤ R2. Here we have for x, z ∈ R

Lµ(x, z) = {σ2µ det(Λ1:µ)}−1/2 exp

[
−1/2

{
det(Λ)(x2 + z2)− 2sµ+1xz

det(Λ1:µ)

}]
,

with Λ ∈ R(µ+1)×(µ+1) being a tridiagonal matrix with elements

Λi,j =



σ−2 + 2s , |i− j| = 0, i, j < µ+ 1

s , i = j = µ+ 1

−s , |i− j| = 1

0 , else

for i, j = 1, . . . , µ+1 and Λ1:µ is the µ×µ-dimensional submatrix of Λ including the fist

µ columns and rows.

Given an u ∈ H with ∥u∥H ≤ R and sσ2 > 1 the higher µ ∈ N is chosen the smaller the norm

∥f∥H becomes, which can be interpreted as a higher degree of smoothness of the solution in H.

The first part can be applied for κ < 1 and shows the same property, whereas for κ ≥ 1 this

inequality becomes too coarse.

81



The explicit representation of the solution f under a source condition will be useful for simula-

tions as the convergence rate in Theorem 3.1 explicitly depends on r = µ + 1/2. It shows that

any function satisfying the source condition is a linear combination of very specific exponential

functions Lµ(yi, ·), i ∈ N.

3.4 Concentration inequalities

Crucial assumptions of Theorem 3.1 are the concentration inequalities for Sn and T ∗
ny and

convergence of the sequence {γn}n∈N.

In this section we will derive concentration inequalities by an application of Markov’s inequality

and the mean squared error of both estimators is of interest.

Theorem 3.2 Under Assumptions (K1) and (K2) it holds that

E ∥Sn − S∥2HS =
2

n2

n−1∑
h=1

(n− h)

∫
R2d

k2(x, y)
{
dPXh,X0(x, y)− dPX0(x)dPX0(y)

}
+ n−1

{
E k2(X0, X0)− ∥S∥2HS

}
,

E ∥T ∗
ny − Sf∥2H =

2

n2

n−1∑
h=1

(n− h)

∫
R2d

k(x, y)f(x)f(y)
{
dPXh,X0(x, y)− dPX0(x)dPX0(y)

}
+ n−1

[
E
{
k(X0, X0)f

2(X0)
}
− ∥Sf∥2H + σ2 E k(X0, X0)

]
.

It is obvious that the convergence rate is controlled by the sums appearing on the right hand

side of both equations in Theorem 3.2. If these sums are of O(n) then the mean squared error

of both Sn and T ∗
ny will converge to zero with a rate of n−1. On the other hand if the sums are

of order O(n2−q) for some q ∈ (0, 1), the mean squared errors will converge with the reduced

rate n−q.

In the next theorem we will derive explicit convergence rates for these sums in a Gaussian
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setting, i.e.,

(D1) (Xh, X0)
T ∼ N2d(0,Σh), h = 1, . . . , n− 1, with

Σh =

τ0 τh

τh τ0

⊗ Σ.

Here Σ ∈ Rd×d and [τ|i−j|]
n
i,j=1 ∈ Rn×n are positive definite, symmetric matrices and ⊗

denotes the Kronecker product between matrices. Furthermore X0 ∼ Nd(0, τ0Σ).

(D2) For the autocorrelation function ρh = τ−1
0 τh there exists a q > 0 such that |ρh| ≤ (h+1)−q

for h = 0, . . . , n− 1.

Condition (D1) is a separability condition for the covariance matrices Σh, h = 0, . . . , n − 1.

Under condition (D2) it is easy to see that from q > 1 follows the absolute summability of the

autocorrelation function ρ and thus {Xt}t∈Z is a short memory process.

On the other hand q ∈ (0, 1] yields long memory, see, e.g., Definition 3.1.2 in Giraitis et al.

(2012). Examples of long memory processes are the fractional Gaussian noise with an autocor-

relation function that behaves like (h + 1)−2(1−H), with H ∈ (0, 1] being the Hurst coefficient.

See chapter 2 of Samorodnitsky (2007) for details.

The next theorem gives concentration inequalities for both estimators Sn and T ∗
ny with conver-

gence rates depending on the parameter q > 0.

Theorem 3.3 Under the assumptions (K1),(K2),(D1) and (D2) it holds for ν ∈ (0, 1] with

probability at least 1− ν

∥Sn − S∥2HS ≤ φn(q)
κ2d1/2

ν{(2π)d det(Σ)}1/2
(1− 4−q)−1/4(d−2) + n−1κ

2 − ∥S∥2HS

ν
,

∥T ∗
ny − Sf∥2H ≤ φn(q)

κMd1/2

ν{(2π)d det(Σ)}1/2
(1− 4−q)−1/4(d−2) + n−1κ[M + σ2]− ∥Sf∥2H

ν
.
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The function φn(q), q > 0, is defined as

φn(q) =


n−1ζ(q) , q > 1

n−1 log(n){5− log(4)} , q = 1

n−q [{2(1− q)−1 − (2− q)−1}+ (2− q)−122−q] , q ∈ (0, 1),

with ζ being the Riemann-zeta function.

The theorem shows that for q > 1 both estimators are
√
n consistent. For q ∈ (0, 1] the

convergence rates slow down significantly as the long range dependence affects the estimation

procedure.

Together with Theorem 3.1 Theorem 3.3 implies

Corollary 3.1 Assume that the conditions of Theorem 3.1 hold. Assume also (D1) and (D2).

Then we have with probability at least 1− ν

∥fα̂a∗ − f ∗∥2 =


O{n−r/(2r+1)}, q > 1,

O{n−qr/(2r+1)}, q ∈ (0, 1).

3.5 Simulations

We set d = 1 and Σ = σ2 = 4.

For the matrix V 2 = [τ|i−j|]
n
i,j=1 ∈ Rn×n we choose three different structures. The first setting is

τh = I(h = 0), corresponding to independent data, the second τh = 0.9−h for an autoregressive

process of order one and the third is the long range dependent case with τh = (1 + h)−1/4,

h = 0, . . . , n− 1 and n = 200, 400, . . . , 1000.

We use the Gaussian kernel k(x1, x2) = exp{−s(x1 − x2)
2}, x1, x2 ∈ R for s = 2. The

regression function is chosen as f(x) = 4.37−1{3L̃4(x,−4)−2L̃4(x, 3)+1.5L̃4(x, 9)}, x ∈ R.
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Figure 3.1: The function f evaluated on [−7.5, 7.5] (black) and one realisation of the noisy
data y = f(x) + ε (grey).

The normalization constant is chosen such that f takes values in [−0.35, 0.65]. The function L̃4

is the exponential function L4 given in Proposition 3.1 normalized to take values in [0, 1] and

hence the source condition (SH) is fulfilled with µ = 4.

The function can be seen in Figure 3.1.

In a Monte Carlo simulation with l = 1000 repetitions the time series {X(j)
t }nt=1 are generated

via X(j) = V N (j) with N (j) ∼ Nn(0, σ
2In), j = 1, . . . , l. We denote with In the n × n-

dimensional identity matrix. All Monte-Carlo samples are independent of each other.

The residuals ε(j)1 , . . . , ε
(j)
n are generated as independent standard normally distributed random

variables and independent of {X(j)
t }nt=1 . The response is defined as y(j)t = f(X

(j)
t ) + η ε

(j)
t ,

t = 1, . . . , n, j = 1, . . . , l with η = 1/16.

The kernel partial least squares and kernel conjugate gradient algorithms are run for each sam-

ple {(X(j)
t , y

(j)
t )T}nt=1, j = 1, . . . , l, as described in Rosipal and Trejo (2001) and Blanchard

and Krämer (2010b), respectively, with a maximum of 40 iteration steps. We denote the esti-

mated coefficients with α̂(j,m)
1 , . . . , α̂

(j,m)
40 , j = 1, . . . , l, with m = CG meaning that the kernel
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Figure 3.2: Boxplots of the L2
(
PX
)
-errors {ê(j,m)

n,τ }1000j=1 of kernel partial least squares (top)
and kernel conjugate gradient (bottom) for different autocovariance functions τ and n =
200, 400, . . . , 1000. On the left is τh = I(h = 0), in the middle τh = 0.9−h and on the
right τh = (h+ 1)−1/4.

conjugate gradient algorithm was employed and m = PLS that kernel partial least squares was

used to estimate α1, . . . , αn.

The squared error in the L2
(
PX
)
-norm is calculated via

ê(j,m)
n,τ =

1√
2πσ2

∞∫
−∞

{
f
α̂
(j,m)
a

(x)− f(x)
}2

exp

(
− 1

2σ2
x2
)
dx,

for j = 1, . . . , l, n = 200, 400, . . . , 1000 and m ∈ {CG,PLS}.

The results of the Monte-Carlo simulations can be seen in the boxplots of Figure 3.2. For

kernel partial least squares it can be seen that the independent case on the left and the case of

autoregressive dependence have roughly the same convergence rates, although the latter case

has a generally higher error. On the other hand in the case of long range dependence we see
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Figure 3.3: Mean of the L2
(
PX
)
-errors {ê(j,m)

n,τ }1000j=1 of kernel partial least squares (left) and
kernel conjugate gradient (right) for n = 200, 400, . . . , 1000 multiplied by n2r/(2r+1) for r =
4.5. The solid black line is for τh = I(h = 0), the grey line for τh = 0.9−h and the dashed black
line for τh = (h+ 1)−1/4.

that the convergence is slower and the interquartile range is larger at the same time, supporting

the theoretical results of Corollary 3.1.

On the other hand the L2
(
PX
)
-error of kernel conjugate gradient is generally a bit higher

in this simulation study than that of kernel partial least squares for all settings. Nonetheless,

qualitatively both of them are very similar.

Figure 3.3 shows the mean of the estimated L2
(
PX
)

errors {ê(j,m)
n,τ }1000j=1 for different n, τ and

m ∈ {CG,PLS}. The errors were multiplied by n2r/(2r+1) for r = µ + 0.5 = 4.5 to illustrate

the convergence rates. According to Corollary 3.1 we expect the rates for the independent and

autoregressive cases to be n−2r/(2r+1) which is verified by the fact that the solid black and grey

lines are roughly constant. For the long range dependent case we expect worse convergence

rates which are also illustrated by the divergence of the dashed black line.
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3.6 Proof of Theorem 3.1

The proof of Theorem 3.1 makes use of the connection between the partial least squares and the

conjugate gradient algorithm. This section is structured as follows: First we will introduce the

link between kernel partial least squares and kernel conjugate gradient. We will state some key

facts about orthogonal polynomials and their relationship to the algorithm in Lemma 3.1. Then

the consistency of kernel partial least squares is shown with the help of three error bounds that

are obtained in Lemmas 3.3 – 3.5.

With a slight abuse of notation we define fi = fα̂i
for i = 1, . . . , n. We consider the kernel par-

tial least squares algorithm as an optimization problem α̂i = argminv∈Ki(Kn,y) ∥y−Knv∥2, i =

1, . . . , n, and thus fi = T ∗
n α̂i. It is easy to see that Kn = TnT

∗
n and thus

fi = arg min
g∈Ki(Sn,T ∗

ny)
∥y − Tng∥2, i = 1, . . . , n. (3.5)

This is the conjugate gradient algorithm CGNE discussed in chapter 2.2 of Hanke (1995).

3.6.1 Orthogonal polynomials and some notation

Denote with Pi the set of polynomials of degree at most i = 0, . . . , n. For functions ψ, ϕ :

R → R and r ∈ N0 define the inner products [ψ, ϕ]r = ⟨ψ(Sn)T
∗
ny, S

r
nϕ(Sn)T

∗
ny⟩H. From the

definition of the Krylov space it is immediate that every element v ∈ Ki(Sn, T
∗
ny), i = 1, . . . , n,

can be represented by a polynomial q ∈ Pi−1 via v = q(Sn)T
∗
ny.

The following discussion is based on Hanke (1995), chapter 2. There exist two sequences

of polynomials pi, qi ∈ Pi, i = 0, . . . , n, such that fi = qi−1(Sn)T
∗
ny with q−1 = 0 and

T ∗
ny−Snfi = pi(Sn)T

∗
ny. Both sequences are connected by the equation pi(x) = 1−xqi−1(x),

x ∈ R, and the polynomials {pi}ni=0 are orthogonal with respect to [·, ·]0.

We will also consider other sequences of polynomials, namely q[r]i , p
[r]
i ∈ Pi, i = 0, . . . , n,,
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q
[r]
−1 = 0, such that p[r]i (x) = 1 − xq

[r]
i−1(x), x ∈ R, and the sequence {p[r]i }ni=0 is orthogonal

with respect to [·, ·]r. This yields for every r ∈ N0 a separate conjugate gradient algorithm

with solution f [r]
i = q

[r]
i−1(Sn)T

∗
ny ∈ Ki(Sn, T

∗
ny) and residuals T ∗

ny − Snf
[r]
i = p

[r]
i (Sn)T

∗
ny,

i = 1, . . . , n.

As Sn is self-adjoint, positive semi-definite and the kernel is bounded by κ we know that

its spectrum is a subset of [0, κ], see Caponnetto and de Vito (2007). This also implies that

max{∥S∥L, ∥Sn∥L} ≤ κ, with ∥ ·∥L denoting the operator norm. The i distinct roots of p[r]i will

be denoted by 0 < x
[r]
1,i < . . . x

[r]
i,i < κ, i = 1, . . . , n.

We will summarize some key facts about the orthogonal polynomials in the next lemma.

Lemma 3.1 Let r, s ∈ N0 and i = 1, . . . , n. Then we have:

(i) The roots of consecutive orthogonal polynomials interlace, i.e., for j = 1, . . . , i it holds

0 < x
[r]
j,i+1 < x

[r]
j,i < x

[r+1]
j,i < x

[r]
j+1,i+1 < x

[r]
j+1,i < · · · < x

[r+1]
i,i < x

[r]
i+1,i+1 < κ,

(ii) the optimality property [p
[1]
i , p

[1]
i ]

1/2
0 = ∥T ∗

ny − Snf
[1]
i ∥H ≤ ∥T ∗

ny − Snh∥H holds for all

h ∈ Ki(Sn, T
∗
ny),

(iii) on x ∈ [0, x
[r]
1,i] it holds 0 ≤ p

[r]
i (x) ≤ 1 and q[r]i (x) ≤

∣∣∣∣(p[r]i

)′
(0)

∣∣∣∣,
(iv) p[r]n = p

[s]
n ,

(v)
(
p
[r]
i

)′
(0) = −

∑i
j=1

(
x
[r]
j,i

)−1

,

(vi) define ϕi(x) = p
[r]
i (x)

(
x
[r]
1,i

)1/2 (
x
[r]
1,i − x

)−1/2

for x ∈ [0, x
[r]
1,i], i = 1, . . . , n. Then it

holds for u ≥ 0 that xuϕ2
i (x) ≤ uu

∣∣∣∣(p[r]i

)′
(0)

∣∣∣∣−u

with the convention 00 = 1.

Proof : (i) See Hanke (1995), Corollary 2.7.

(ii) See Hanke (1995), Proposition 2.1.
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(iii) Due to part (i) we know that all i roots of the polynomial p[r]i are contained in (0, κ).

Furthermore p[r]i (0) = 1 − 0q
[r]
i = 1. Thus p[r]i is convex and falling in [0, x

[r]
1,i] and the first

assertion follows.

Because of the convexity of p[r]i on [0, x
[r]
1,i] we get q[r]i (x) = x−1{1− p

[r]
i (x)} ≤

∣∣∣∣(p[r]i

)′
(0)

∣∣∣∣.
(iv) See the discussion in Hanke (1995) preceding Proposition 2.1 and use the facts that T ∗

ny ∈

range(Sn) and Sn is an operator of rank n.

(v) Write p[r]i (x) =
∏i

j=1(1− x/x
[r]
j,i), x ∈ [0, κ], and the result is immediate.

(vi) See equation (3.10) in Hanke (1995). �

We denote for x ≥ 0 by Px the orthogonal projection operator on the eigenspace corresponding

to the eigenvalues of Sn that are smaller or equal x and P⊥
x = IH −Px with IH : H → H being

the identity operator.

3.6.2 Preparation for the proof

An important technical result that will be useful in the upcoming proof is

Lemma 3.2 Let B,C : H → H be two positive semi-definite, self-adjoint operators with

max{∥B∥L, ∥C∥L} ≤ κ. Then it holds for any r ≥ 0 with ζ = max{r − 1, 0}

∥Br − Cr∥L ≤ (ζ + 1)κζ∥B − C∥r−ζ
L .

Proof : See Blanchard and Krämer (2010b), Lemma A.6. �

For the remainder of the proof we assume that we are on the set where it holds with probability

at least 1 − ν, ν ∈ (0, 1], that ∥Sn − S∥L ≤ δ and ∥T ∗
ny − Sf∥ ≤ ϵ. Here we take δ = Cδγn,

ϵ = Cϵγn for a sequence {γ}n converging to zero and constants Cδ, Cϵ > 0.

The stopping rule (3.4) is given by a∗ = min
{
a = 1, . . . , n :

∑a
i=0 ∥Snfi − T ∗

ny∥−2
H ≥ (Cγn)

−2
}

for C = Cϵ +R + Cδ(µ+ 1)κµR.
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With Lemma 2.4 in Hanke (1995) we see that this stopping iteration can also be expressed as

a∗ = min
{
1 ≤ a ≤ n : ∥Snf

[1]
a − T ∗

ny∥H ≤ Cγn
}
, (3.6)

i.e., we stop the kernel partial least squares algorithm when a discrepancy principle for f [1]
a

holds.

Recall that H ⊆ L2
(
PX
)

and T : H → L2
(
PX
)

is the change of space operator. Using the

fact that T , T ∗ are adjoint operators, fa∗ = Tfa∗ and f ∗ = Tf we see

∥fa∗ − f ∗∥2 = ∥T (fa∗ − f)∥2 = ⟨S(fa∗ − f), fa∗ − f⟩H = ∥S1/2(fa∗ − f)∥H.

An application of Lemma 3.2 with r = 1/2 and the definition of δ yields

∥fa∗ − f ∗∥2 = ∥S1/2(fa∗ − f)∥H ≤ ∥S1/2(fa∗ − f
[1]
a∗ )∥H + ∥S1/2(f

[1]
a∗ − f)∥H

≤ δ1/2
(
∥fa∗ − f

[1]
a∗ ∥H + ∥f [1]

a∗ − f∥H
)
+ ∥S1/2

n (fa∗ − f
[1]
a∗ )∥H + ∥S1/2

n (f
[1]
a∗ − f)∥H. (3.7)

The following lemmas will deal with bounding the quantities in (3.7). Recall that µ = r − 1/2

is the source parameter in (SH).

Lemma 3.3 Assume Cx ∈ (0, 1] such that x∗ = (Cxγ)
1/(µ+1) < x

[1]
1,a∗−1 and C > Cϵ + CxR +

Cδ(µ+ 1)κµR. Under the conditions of the theorem it holds

∥fa∗ − f
[1]
a∗ ∥H ≤ γµ/(µ+1) C

C
1/(µ+1)
x [1− C−1{Cϵ + CxR + Cδ(µ+ 1)κµR}]2

∥S1/2
n (fa∗ − f

[1]
a∗ )∥H ≤ γ(2µ+1)/(2µ+2) C

C
1/(2µ+2)
x [1− C−1{Cϵ + CxR + Cδ(µ+ 1)κµR}]

.

Proof: If the inner products [·, ·]0 and [·, ·]1 are the same the proof is done because both polyno-

mial sequences are identical.
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We now observe that we have for a∗ = n due to Lemma 3.1 (iv) qn−1(x) − q
[1]
n−1(x) =

x−1{p[1]n (x) − pn(x)} = 0, i.e., ∥fa∗ − f
[1]
a∗ ∥H = 0 and ∥S1/2

n (fa∗ − f
[1]
a∗ )∥H = 0 and the

proof is done.

If the inner products differ and we have 0 < a∗ < n it holds fa∗ ̸= f
[1]
a∗ .

Proposition 2.8 in Hanke (1995) can now be applied for 0 < a∗ < n and yields qa∗−1(x) −

q
[1]
a∗−1(x) = x−1{p[1]a∗(x)− pa∗(x)} = θa∗p

[2]
a∗−1(x), x ≥ 0, with θa∗ = (p

[1]
a∗)

′(0)− (p
[0]
a∗)

′(0) > 0.

We get fa∗ − f
[1]
a∗ = qa∗−1(Sn)T

∗
ny − q

[1]
a∗−1(Sn)T

∗
ny = θa∗p

[2]
a∗−1(Sn)T

∗
ny.

Proposition 2.9 in Hanke (1995) yields θa∗ =
[
p
[2]
a∗−1, p

[2]
a∗−1

]−1

1

[
p
[1]
a∗ , p

[1]
a∗

]
0
. The optimality

property of f [1]
a∗ in Lemma 3.1 (ii) shows that

∥T ∗
ny − Snf

[1]
a∗ ∥H = ∥p[1]a∗(Sn)T

∗
ny∥H =

[
p
[1]
a∗ , p

[1]
a∗

]1/2
0

≤
[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
. (3.8)

Combining these results yields

∥fa∗ − f
[1]
a∗ ∥H =

[
p
[1]
a∗ , p

[1]
a∗

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

∥p[1]a∗(Sn)T
∗
ny∥H. (3.9)

Recall that x[2]1,a∗−1 denotes the first root of p[2]a∗−1. It holds for any 0 ≤ x ≤ x
[2]
1,a∗−1 that

0 ≤ p
[2]
a∗−1(x) ≤ 1, see Lemma 3.1 (iii), and thus

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ ∥Pxp
[2]
a∗−1(Sn){T ∗

ny − Sf + Sf}∥H + ∥P⊥
x p

[2]
a∗−1(Sn)T

∗
ny∥H

≤ ϵ+ ∥Pxp
[2]
a∗−1(Sn)S

µ+1u∥H + x−1/2∥P⊥
x S

1/2
n p

[2]
a∗−1(Sn)T

∗
ny∥H

≤ ϵ+ xµ+1R + ∥Pxp
[2]
a∗−1(S

µ+1 − Sµ+1
n )u∥H + x−1/2

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1
.

In the second inequality (SH) with µ ≥ 0 and the definitions of δ and ϵ were applied.

By assumption x∗ = (Cxγ)
1/(µ+1) ≤ x

[1]
1,a∗−1 < x

[2]
1,a∗−1 due to the interlacing property of the
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roots of the polynomials p[r]i , i = 1, . . . , n, r ∈ N0, see Lemma 3.1 (i).

Using Lemma 3.2 we get ∥Sµ+1 − Sµ+1
n ∥L ≤ (µ+ 1)κµδ and setting x = x∗ we get

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ ϵ+ xµ+1
∗ R + δ(µ+ 1)κµR + x−1/2

∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

= γ {Cϵ + CxR + Cδ(µ+ 1)κµR}+ x−1/2
∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1
. (3.10)

Due to (3.6) and (3.8) we have additionally Cγ ≤ ∥Snf
[1]
a∗−1 − T ∗

ny∥H = ∥p[1]a∗−1(Sn)T
∗
ny∥H ≤[

p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0
.

Plugging this into (3.10) yields

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ C−1{Cϵ+CxR+Cδ(µ+1)κµR}
[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

+x−1/2
∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1
,

or equivalently

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ γ−1/(2µ+2)

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

C
1/(2µ+2)
x [1− C−1{Cϵ + CxR + Cδ(µ+ 1)κµR}]

, (3.11)

where by assumption C > Cϵ + CxR + Cδ(µ+ 1)κµR and x∗ = (Cxγ)
1/(µ+1).

Combining (3.9), (3.11) and ∥p[1]a∗(Sn)T
∗
ny∥H ≤ Cγ due to the stopping index (3.6) yields

∥fa∗ − f
[1]
a∗ ∥H ≤ γ−1/(µ+1) ∥p[1]a∗(Sn)T

∗
ny∥H

C
1/(µ+1)
x [1− C−1{Cϵ + CxR + Cδ(µ+ 1)κµR}]2

≤ γµ/(µ+1) C

C
1/(µ+1)
x [1− C−1{Cϵ + CxR + Cδ(µ+ 1)κµR}]2

.
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For the second part of the proof we derive in the same way as (3.9)

∥S1/2
n (fa∗ − f

[1]
a∗ )∥H ≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0[

p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

∥p[1]a∗(Sn)T
∗
ny∥H.

Using again (3.11) and ∥p[1]a∗(Sn)T
∗
ny∥H ≤ Cγ gives

∥S1/2
n (fa∗ − f

[1]
a∗ )∥H ≤ γ(2µ+1)/(2µ+2) C

C
1/(2µ+2)
x [1− C−1{Cϵ + CxR + Cδ(µ+ 1)κµR}]

,

finishing the proof. �

Lemma 3.4 For any i = 1, . . . , n, µ ≥ 1 and any 0 < x ≤ x
[1]
1,i we have under the conditions

of the theorem

∥f − f
[1]
i ∥H ≤ R

{
xµ + δµκµ−1

}
+ x−1

(
∥Snf

[1]
i − T ∗

ny∥H + ϵ+ δκµR
)

+ (ϵ+ δκµR)|(p[1]i )′(0)|,

∥S1/2
n (f − f

[1]
i )∥H ≤ R

{
xµ+1/2 + x1/2δµκµ−1

}
+ x−1/2

(
∥Snf

[1]
i − T ∗

ny∥H + ϵ+ δκµR
)

+ x1/2(ϵ+ δκµR)|(p[1]i )′(0)|.

Proof: Denote f̄i = q
[1]
i−1(Sn)Snf and consider

∥f − f
[1]
i ∥H ≤ ∥Px(f − f̄i)∥H + ∥Px(f̄i − f

[1]
i )∥H + ∥P⊥

x (f − f
[1]
i )∥H. (3.12)
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The first term of (3.12) can be bound by an application of Lemma 3.2 and (SH) with µ ≥ 1

∥Px(f − f̄i)∥H = ∥Px{I − q
[1]
i−1(Sn)Sn}f∥H = ∥Pxp

[1]
i (Sn)f∥H = ∥Pxp

[1]
i (Sn)S

µu∥H

≤ ∥Pxp
[1]
i (Sn)S

µ
nu∥H + ∥Pxp

[1]
i (Sn)(S

µ − Sµ
n)u∥H

≤ R
{
xµ + δµκµ−1

}
.

In the last inequality we used that on 0 ≤ x ≤ x
[1]
1,i we have 0 ≤ p

[1]
i (x) ≤ 1.

For the second term of (3.12) we use Lemma 3.1 (iii) q[1]i (x) ≤ |(p[1]i )′(0)| on x ∈ [0, x
[1]
1,i]. This

yields

∥Px(f
[1]
i − f̄i)∥H = ∥Pxq

[1]
i (Sn)(Snf − T ∗

ny)∥H

≤ ∥Pxq
[1]
i (Sn)(Sf − T ∗

ny)∥H + ∥Pxq
[1]
i (Sn)(Sn − S)f∥H

≤ (ϵ+ δκµR)

∣∣∣∣(p[1]i

)′
(0)

∣∣∣∣ .
Finally, we have

∥P⊥
x (f − f

[1]
i )∥H ≤ x−1∥P⊥

x Sn(f − f
[1]
i )∥H ≤ x−1

{
∥Snf

[1]
i − T ∗

ny∥H + ∥Px(T
∗
ny − Snf)∥H

}
≤ x−1

(
∥Snf

[1]
i − T ∗

ny∥H + ϵ+ δκµR
)

and thus the first inequality is proven.

For the second inequality we use

∥S1/2
n (f − f

[1]
i )∥H ≤ ∥PxS

1/2
n (f − f̄i)∥H + ∥PxS

1/2
n (f̄i − f

[1]
i )∥H + ∥P⊥

x S
1/2
n (f − f

[1]
i )∥H.
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In the same way as before we derive bounds for the three terms:

∥PxS
1/2
n (f − f̄i)∥H ≤ x1/2δµκµ−1R + xµ+1/2R,

∥PxS
1/2
n (f̄i − f

[1]
i )∥H ≤ x1/2(ϵ+ δRκµ)

∣∣∣∣(p[1]i

)′
(0)

∣∣∣∣ ,
∥P⊥

x S
1/2
n (f − f

[1]
i )∥H ≤ x−1/2(∥Snf

[1]
i − T ∗

ny∥H + ϵ+ δκµR),

completing the proof. �

Lemma 3.5 Assume that Cx ∈ (0, 1] is such that x∗ = (Cxγ)
1/(µ+1) < x

[1]
1,a∗−1 and C >

Cϵ + CxR + Cδ(µ+ 1)κµR. Under the conditions of the theorem it holds for µ ≥ 1

∣∣∣∣(p[1]a∗

)′
(0)

∣∣∣∣ ≤ γ−1/(µ+1)

[
C−1/(µ+1)

x

{
1− Cϵ + CxR + Cδ(µ+ 1)κµR

C

}−2

+

{
(2µ+ 2)µ+1R

C − Cδ(µ+ 1)κµR + Cϵ

}1/(µ+1)
]

Proof: The proof is done in two steps by using the inequality
∣∣∣∣(p[1]a∗

)′
(0)

∣∣∣∣ ≤ ∣∣∣∣(p[1]a∗−1

)′
(0)

∣∣∣∣ +∣∣∣∣(p[1]a∗

)′
(0)−

(
p
[1]
a∗−1

)′
(0)

∣∣∣∣.
1. Consider first a∗ > 1.

We will bound ∥Snf
[1]
a∗−1 − T ∗

ny∥H from above. Define z = x
[1]
1,a∗−1 and ϕi(x) = p

[1]
i (x)(z −

x)−1/2z1/2, 0 ≤ x ≤ z. Due to Lemma 3.1 (vi) it holds that sup0≤x≤z x
νϕ2

a∗−1(x) ≤

νν |(p[1]a∗−1)
′(0)|−ν , ν ≥ 0. The proof of Lemma 3.7 in Hanke (1995) shows that
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[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0

≤ ∥Pzϕa∗−1(Sn)T
∗
ny∥H. This yields with (SH)

∥Snf
[1]
a∗−1 − T ∗

ny∥H =
[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0

≤ ∥Pzϕa∗−1(Sn)T
∗
ny∥H

≤ ∥Pzϕa∗−1(Sn)Sf∥H + ∥Pzϕa∗−1(Sn)(T
∗
ny − Sf)∥H

≤ ∥Pzϕa∗−1(Sn)Sf∥H + ϵ

(
sup

0≤x≤z
ϕ2
a∗−1

)1/2

≤ ∥Pzϕa∗−1(Sn)S
µ+1
n u∥H + ∥Pzϕa∗−1(Sn)(S

µ+1
n − Sµ+1)u∥H + ϵ

≤ R

{(
sup

0≤x≤z
x2µ+2ϕ2

a∗−1

)1/2

+ δ(µ+ 1)κµ
(

sup
0≤x≤z

ϕ2
a∗−1

)1/2
}

+ ϵ

≤
∣∣∣∣(p[1]a∗−1

)′
(0)

∣∣∣∣−µ−1

(2µ+ 2)µ+1R + δ(µ+ 1)κµR + ϵ.

This gives together with Cγ ≤ ∥Snf
[1]
a∗−1 − T ∗

ny∥H

Cγ ≤
∣∣∣∣(p[1]a∗−1

)′
(0)

∣∣∣∣−µ−1

(2µ+ 2)µ+1R + γ {Cδ(µ+ 1)κµR + Cϵ} .

If C > Cδ(µ+ 1)κµR + Cϵ we finally have

∣∣∣∣(p[1]a∗−1

)′
(0)

∣∣∣∣ ≤ γ−1/(µ+1)

{
(2µ+ 2)µ+1R

C − Cδ(µ+ 1)κµR + Cϵ

}1/(µ+1)

. (3.13)

If a∗ = 1 it holds p[1]a∗−1 = 1 and thus
∣∣∣∣(p[1]a∗−1

)′
(0)

∣∣∣∣ = 0 and the inequality (3.13) is true as

well.

2. We will derive an upper bound on
∣∣∣∣(p[1]a∗

)′
(0)−

(
p
[1]
a∗−1

)′
(0)

∣∣∣∣ . Due to Corollary 2.6 of

Hanke (1995) we have

∣∣∣∣(p[1]a∗−1

)′
(0)−

(
p
[1]
a∗

)′
(0)

∣∣∣∣ ≤
[
p
[1]
a∗−1, p

[1]
a∗−1

]
0[

p
[2]
a∗−1, p

[2]
a∗−1

]
1

. (3.14)
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We have 0 ≤ x ≤ x
[1]
1,a∗−1 < x

[2]
1,a∗−1 due to the interlacing property of the roots in Lemma 3.1

(i) and thus 0 ≤ p
[2]
a∗−1(x) ≤ 1 for 0 ≤ x ≤ x

[2]
1,a∗−1. With that we get with (SH)

∥p[1]a∗−1(Sn)T
∗
ny∥H ≤

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
0

≤ ∥Pxp
[2]
a∗−1(Sn)T

∗
ny∥H + x−1/2∥P⊥

x S
1/2
n p

[2]
a∗−1(Sn)T

∗
ny∥H

≤ ∥Pxp
[2]
a∗−1(Sn)(T

∗
ny − Sf)∥H + ∥Pxp

[2]
a∗−1(Sn)S

µ+1u∥H + x−1/2
[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1

≤ ϵ+R
{
δ(µ+ 1)κµ + xµ+1

}
+ x−1/2

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1
.

For the choice x∗ = (Cxγ)
1/(µ+1) we get

[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0

≤ γ {Cϵ + Cδ(µ+ 1)κµR + Cx}+ x−1/2
∗

[
p
[2]
a∗−1, p

[2]
a∗−1

]1/2
1
.

It holds
[
p
[1]
a∗−1, p

[1]
a∗−1

]1/2
0

= ∥Snf
[1]
a∗−1 − T ∗

ny∥H ≥ Cγ. This yields with C > Cϵ + CxR +

Cδ(µ+ 1)κµR

[
p
[1]
a∗−1, p

[1]
a∗−1

]
0
≤ γ−1/(µ+1)C−1/(µ+1)

x

{
1− Cϵ + CxR + Cδ(µ+ 1)κµR

C

}−2 [
p
[2]
a∗−1, p

[2]
a∗−1

]
1
.

Together with (3.14) we have

∣∣∣∣(p[1]a∗−1

)′
(0)−

(
p
[1]
a∗

)′
(0)

∣∣∣∣ ≤ γ−1/(µ+1)C−1/(µ+1)
x

{
1− Cϵ + CxR + Cδ(µ+ 1)κµR

C

}−2

.

Combining this with (3.13) completes the proof. �
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3.6.3 Proof of Theorem 3.1

The proof is an application of Lemmas 3.3 - 3.5 to (3.7). First note that r ≥ 3/2 implies µ ≥ 1

and thus this condition in Lemma 3.4 holds.

Let us choose x∗ = (Cxγ)
1/(µ+1). Lemma 3.1 (v) shows that

∣∣∣∣(p[r]i

)′
(0)

∣∣∣∣ = ∑i
j=1(x

[r]
j,i)

−1 for

i = 1, . . . , n, r ∈ N0. Thus it holds
∣∣∣∣(p[1]i

)′
(0)

∣∣∣∣−1

≤ x
[1]
1,i.

Equation (3.13) thus shows that Cx can be chosen small enough such that

x∗ ≤
∣∣∣∣(p[1]a∗−1

)′
(0)

∣∣∣∣−1

≤ x
[1]
1,a∗−1

and Cx < 1, which makes the first condition in Lemma 3.3 and 3.5 hold true. The choice

C = Cϵ +R + Cδ(µ+ 1)κµR gives the second condition.

Now we need to check the remaining condition of Lemma 3.4, namely that a Cz can be chosen

such that (Czγ)
1/(µ+1) ≤ x

[1]
1,a∗ is true. Lemma 3.5 yields a Cz > 0 such that Czγ

1/(µ+1) ≤∣∣∣∣(p[1]a∗

)′
(0)

∣∣∣∣−1

≤ x
[1]
1,a∗ . More precisely we want

C1/(µ+1)
z ≤

[
C−1/(µ+1)

x

{
1− Cϵ + CxR + Cδ(µ+ 1)κµR

C

}−2

+

{
(2µ+ 2)µ+1R

C − Cδ(µ+ 1)κµR + Cϵ

}1/(µ+1)
]−1

.

Denote z∗ = (Czγ)
1/(µ+1) and with x = z∗ Lemma 3.4 can be applied.

To ease notation we will denote everything in the derived bounds that does not depend on γ as

a constant cj , j ∈ N. Thus we get by combining Lemmas 3.4 and 3.5 that with probability at

least 1− ν

∥f − f
[1]
a∗ ∥2H ≤ c1γ

µ/(µ+1) + c2γ + c3γ
1−1/(µ+1) + c4γ

∣∣∣∣(p[1]a∗

)′
(0)

∣∣∣∣
≤ c1γ

µ/(µ+1) + c2γ + c3γ
µ/(µ+1) + c5γ

1−1/(µ+1) = O{γµ/(µ+1)}
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and

∥S1/2
n (f − f

[1]
a∗ )∥2H ≤ c6γ

(µ+1/2)/(µ+1) + c7γ
1/(2µ+2)γ + c8γ

−1/(2µ+2)γ + c9γ
1/(2µ+1)γ

∣∣∣∣(p[1]a∗

)′
(0)

∣∣∣∣
≤ c6γ

(µ+1/2)/(µ+1) + c7γ
(2µ+3)/(2µ+2) + c8γ

(2µ+1)/(2µ+2) + c10γ
1+1/(2µ+2)−1/(µ+1)

= O{γ(2µ+1)/(2µ+2)}.

Finally Lemma 3.3 gives

∥fa∗ − f
[1]
a∗ ∥2H = O{γµ/(µ+1)}, ∥S1/2

n (fa∗ − f
[1]
a∗ )∥H = O{γ(2µ+1)/(2µ+2)}.

Combining the above with (3.7) yields

∥f − fa∗∥2H = O{γµ/(µ+1)},

∥f ∗ − fa∗∥22 = O{γ1/2γµ/(µ+1)}+O{γ(2µ+1)/(2µ+2)} = O{γ(2µ+1)/(2µ+2)},

completing the proof with µ = r − 1/2. �

3.7 Additional proofs

3.7.1 Proof of Theorem 3.2

We denote with tr(A∗B) the trace inner product of two Hilbert-Schmidt operators A,B : H →

H and the tensor product (f1 ⊗ f2)h = ⟨f1, h⟩Hf2 for functions f1, f2, h ∈ H. We use the

notation kt = k(·, Xt). Note that it holds ∥A∥2HS = tr(A∗A) for a Hilbert-Schmidt operator A.
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Lemma 3.6 Under the assumptions (K1) and (K2) the following hold

(i) tr{(kt ⊗ kt)(ks ⊗ ks)} = k2(Xt, Xs),

(ii) ∥S∥2HS =
∫
Rd

∫
Rd k

2(x, y)dPX0(x)dPX0(y),

(iii) E[tr{(k0 ⊗ k0)S}] = ∥S∥2HS.

Proof: (i) Let {vi}i∈N denote an orthonormal base of H. Then it holds due to the reproducing

property (3.2)

tr {(kt ⊗ kt)(ks ⊗ ks)} =
∞∑
i=1

⟨vi, kt⟩H⟨vi, ks⟩Hk(Xt, Xs) =

⟨
∞∑
i=1

⟨vi, ks⟩Hvi, kt

⟩
H

k(Xt, Xs).

(ii)

∥S∥2HS =
∞∑
i=1

⟨Svi, Svi⟩H =
∞∑
i=1

∫
Rd

⟨Svi, k(·, x)⟩H⟨vi, k(·, x)⟩HdPX(x)

=

∫
Rd

∫
Rd

⟨
∞∑
i=1

⟨vi, k(·, x)⟩Hvi, k(·, y)

⟩
H

k(x, y)dPX(x)dPX(y).

The assertion follows because PX = PX0 .

(iii)

E[tr{(k0 ⊗ k0)S}] = E(⟨Sk0, k0⟩H) = E

∫
Rd

⟨k0, k(·, x)⟩2HdPX(x)


=

∫
Rd

∫
Rd

k2(x, y)dPX(x)dPX0(y) = ∥S∥2HS.

�
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Proof of the theorem: It holds due to Sn = n−1
∑n

t=1 kt ⊗ kt

E
(
∥Sn − S∥2HS

)
=

1

n2

n∑
t,s=1

(
E[tr{(kt ⊗ kt)(ks ⊗ ks)}]− 2E[tr{(k0 ⊗ k0)S}] + ∥S∥2HS

)
.

For the first summand we get E[tr{(kt ⊗ kt)(ks ⊗ ks)}] = E{k2(Xt, Xs)}, due to Lemma 3.6

(i). Using the stationarity of {Xt}nt=1 and Lemma 3.6 (iii) we get

E
(
∥Sn − S∥2HS

)
=

1

n

{
E{k2(X0, X0)} − ∥S∥2HS

}
+

2

n2

n−1∑
h=1

(n− h)
[
E{k2(Xh, X0)} − ∥S∥2HS

]
,

yielding the first result by an application of Lemma 3.6 (ii).

For the second equation we see due to the independence of {Xt}nt=1 and {εt}nt=1 that

∥T ∗
ny − Sf∥2H = σ2n−1 E{k(X0, X0)}+ E

(
∥Snf − Sf∥2H

)
.

The rest follows along the same lines as the first part of the proof. �

3.7.2 Proof of Proposition 3.1

Recall that Su = Eu(X0)k(·, X0) for u ∈ H. Define the independent random variables

Y1, . . . , Yµ that are all distributed as X0.

First consider the following observation for µ ∈ N:

Sµu = S(Sµ−1u) = EY1(S
µ−1u)(Y1)k(·, Y1) = EY2 EY1(S

µ−2u)(Y2)k(Y1, Y2)k(·, Y1) = . . .

= EYµ · · ·EY1

µ−1∏
ν=1

k(Yν , Yν+1)u(Yµ)k(·, Y1). (3.15)

(i) The inequality follows trivially: ∥f∥H = ∥Sµu∥ ≤ R∥S∥µL ≤ Rκµ.
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(ii) We derive with (3.15) and the Cauchy-Schwarz inequality

∥Sµu∥H ≤ κEYµ · · ·EY1

µ−1∏
ν=1

k(Yν , Yν+1)⟨u, k(·, Yµ)⟩H

≤ REYµ · · ·EY1

µ−1∏
ν=1

k(Yν , Yν+1).

Note that for the Gaussian kernel we have κ = 1.

Define the matrix Γ ∈ Rµ×µ via

Γi,j =



σ−2 + 2s , i = j = 2, . . . , µ− 1

σ−2 + s , i = j = 1, µ

−s , |i− j| = 1

0 , else.

We have

EYµ · · ·EY1

µ−1∏
ν=1

k(Yν , Yν+1) = {2πσ2}−µ/2

∫
Rµ

exp (−1/2xTΓx) dx

= {σ2µ det(Γ)}−1/2.

We denote with Γi:j , i ≤ j the (j− i+1)× (j− i+1)-dimensional submatrix of Γ that contains

only the columns and rows i, i+ 1, . . . , j − 1, j.

For the representation we consider the three term recursion that holds for determinants of tridi-

103



agonal matrices. Denote with Di,µ = σ2idet(Γ1:i) for i = 1, . . . , µ. Then we have

Di,µ =


1 + sσ2 , i = 1

(1 + 2sσ2)Di−1,µ − s2σ4Di−2,µ , i = 2, . . . , µ− 1

(1 + sσ2)Dµ−1,µ − s2σ4Dµ−2,µ , i = µ.

It is immediate that Di,µ is a polynomial of degree i in sσ2 with coefficients β0,i,µ, . . . , βi,i,µ. It

is also straight forward that β0,i,µ = 1, i = 1, . . . , µ. So all left to show is that these coefficients

are always positive via induction.

For D1,1 this is obviously true. We write x = sσ2. Assume now that it is true for some µ ∈ N

and i = 1, . . . , µ. As Di,µ+1 = Di,µ for i < µ we have

Dµ+1,µ+1 = (1 + 3x+ x2)Dµ−1,µ − (1 + x)x2Dµ−2,µ

= (1 + x)Dµ−1,µ − x2Dµ−2,µ + x{(2 + x)Dµ−1,µ − x2Dµ−2,µ}

= Dµ,µ + x(Dµ,µ +Dµ−1,µ).

Thus we have the sum of polynomials with positive coefficients according to the induction

hypothesis and the result is proven.

(iii) We take u =
∑∞

i=1 cik(·, zi) for {zi}i∈N, {ci}i∈N ⊂ R such that ∥u∥2H =∑∞
i,j=1 cicjk(zi, zj) ≤ R2. The fact that a function u ∈ H can be represented as a linear

combination of kernel functions is clear due to the Moore-Aronszajn Theorem, see Berlinet and

Thomas-Agnan (2004).
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Define the matrix Γ = [Γi,j]
µ+2
i,j=1 ∈ R(µ+2)×(µ+2) via

Γi,j =



σ−2 + 2s , i = j = 2, . . . , µ+ 1

s , i = j = 1, µ+ 2

−s , |i− j| = 1

0 , else

.

Then we have via the integration of Gaussian functions and (3.15)

f(x) =
1

(2πσ2)µ/2

∞∑
i=1

ci

∫
Rµ

exp {−1/2(x, x1, . . . , xµ, zi)Γ(x, x1, . . . , xµ, zi)
T} d(x1, . . . , xµ)

=
1

σµ det(Γ2:µ+1)1/2

∞∑
i=1

ci exp
[
−1/2 det(Γ2:µ+1)

−1
{
det(Λ1:µ+1)(x

2 + z2i )− 2sµ+1xzi
}]
.

Here we used the symmetry property det(Γ2:µ+2) = det(Γ1:µ+1) as the first and last rows and

columns of Γ are identical. This concludes the proof. �

3.7.3 Proof of Theorem 3.3

Denote with gh the common density of (Xh, X0)
T and g0 the density of X0. We need some

intermediate results to prove the theorem.

Lemma 3.7 Assume that condition (D2) holds. Then we have

n−2

n−1∑
h=1

(n− h)|ρh| ≤ c


n−1ζ(q) , q > 1

n−1 log(n){5− log(4)} , q = 1

n−q [{2(1− q)−1 − (2− q)−1}+ (2− q)−122−q] , q ∈ (0, 1).

(3.16)
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Here ζ denotes the Riemann zeta function.

Proof : Recall that by condition (D2) we have |ρ(h)| ≤ (h + 1)−q, h = 0, . . . , n − 1 for some

q > 0.

First assume q ∈ (0, 1]. The integral test for series convergence gives lower and upper bounds

for the hyperharmonic series as

(1− q)−1{(n+ 1)1−q − 21−q} ≤
n∑

h=2

h−q ≤ 2−q + (1− q)−1{n1−q − 21−q}.

This yields

n−2

n−1∑
h=1

(n− h)(h+ 1)−q = n−2

n∑
h=2

(n+ 1− h)h−q = n−2

{
(n+ 1)

n∑
h=2

h−q −
n∑

h=2

h−(q−1)

}

≤ n−2
[
(n+ 1)

{
2−q + (1− q)−1(n1−q − 21−q

}
− (2− q)−1

{
(n+ 1)2−q − 22−q

}]
. (3.17)

We need to separate two cases. First let q ∈ (0, 1), then it holds from (3.17) and the fact that

n−2 ≤ n−1 ≤ n−q

n−2

n−1∑
h=1

(n− h)(h+ 1)−q

≤n+ 1

n2

{
2−q(1− q)− 21−q

1− q

}
+
n+ 1

n1+q
(1− q)−1 − (n+ 1)2−q

n2
(2− q)−1 +

1

n2

22−q

2− q

≤n−q[{2(1− q)−1 − (2− q)−1}+ (2− q)−122−q],

due to 2−q(1− q)− 21−q < 0.
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For q = 1 we evaluate the limit

lim
q→1±

n−2
[
(n+ 1)

{
2−q + (1− q)−1(n1−q − 21−q

}
− (2− q)−1

{
(n+ 1)2−q − 22−q

}]
= (2n2)−1[3− log(4)− n{1 + log(4)}] + n−2(n+ 1) log(n)

≤ log(n)

n
[5− log(4)] .

Finally, the case q > 1 is trivial as the zeta-function ζ(q) is defined as the hyperharmonic series

with coefficient q. �

The next lemma and the subsequent corollary show that the quantities appearing in the sums of

Theorem 3.2 can be linked to the autocorrelation function ρ:

Lemma 3.8 Under the assumptions (K1), (K2) and (D1) it holds for h > 0 with ρh = τ−1
0 τh

∫
R2d

k2(x, y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤
κ2

{(4πτ0)d det(Σ)}1/2
θ1/2(ρh),

∫
R2d

k(x, y)f(x)f(y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤
κM

{(4πτ0)d det(Σ)}1/2
θ1/2(ρh),

with θ(ρ) = 1 + (1− ρ2)−d/2 − 2d+1(4− ρ2)−d/2, ρ ∈ [0, 1).

Proof : We will only proof the first inequality, the second one follows in the same way.

By Jensen’s inequality and (K2) we know

∫
R2d

k2(x, y){gh(x, y)− g0(x)g0(y)}d(x, y)

≤ κ2

∫
R2d

{
g2h(x, y)− 2gh(x, y)g0(x)g0(y) + g20(x)g

2
0(y)

}
d(x, y)

1/2

.
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The first and third integral term can readily be calculated as

∫
R2d

g2h(x, y)d(x, y) = [(4π)d(τ 20 − τ 2h)
d/2 det(Σ)]−1


∫
Rd

g20(x)dx


2

= {(4π)dτ d0 det(Σ)}−1.

For the first equality we use det(A⊗ Σ) = det(A)d det(Σ)2 for A ∈ R2×2 and thus

∫
R2d

gh(x, y)g0(x)g0(y)d(x, y) =

∫
R2d exp (−1/2zTG−1z) dz

(2π)2d det(Σ)2τ d0 (τ
2
0 − τ 2h)

d/2
, (3.18)

with

G−1 =


τ0 τh

τh τ0


−1

+

τ−1
0 0

0 τ−1
0


⊗ Σ−1.

It holds det(G) = (4τ 20 − τ 2h)
−d(τ 40 − τ 20 τ

2
h)

d det(Σ)2. Thus we get with (3.18)

∫
R2d

gh(x, y)g0(x)g0(y)d(x, y) =
(2π)dτ d0 (τ

2
0 − τ 2h)

d/2 det(Σ)

(2π)2d det(Σ)2(4τ 20 − τ 2h)
d/2τ d0 (τ

2
0 − τ 2h)

d/2

=
{
(2π)d(4τ 20 − τ 2h)

d/2 det(Σ)
}−1

,

completing the proof by multiplying all integrals with τ−d
0 τ d0 . �

Corollary 3.2 Under the assumptions (K1), (K2), (D1) and (D2) it holds for all h > 0 and

q > 0

∫
R2d

k2(x, y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤
κ2d1/2

{(2π)d det(Σ)}1/2
(1− 4−q)−1/4(d−2)|ρh|

∫
R2d

k(x, y)f(x)f(y){gh(x, y)− g0(x)g0(y)}d(x, y) ≤
κMd1/2

{(2π)d det(Σ)}1/2
(1− 4−q)−1/4(d−2)|ρh|.
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Proof : Recall that θ(ρ) = 1 + {1− ρ2}−d/2 − 2d+1{4− ρ2}−d/2 for ρ ∈ [0, 1). We seek to find

bounds on θ and the corollary can be proven by an application of Lemma 3.8.

By assumption (D2) we know there is a ρ∗ such that ρ2h ≤ ρ2∗ < 1 for all h > 0. Thus consider

ρ ∈ [0, ρ∗]. We start by finding a constant C > 0 with

θ′(ρ) = ρ
{
(1− ρ2)−d/2−1 − 2d+1(4− ρ2)−d/2−1

}
d ≤ ρ2C.

Thus C can be taken as C = d
{
(1− ρ2∗)

−d/2−1 − 2d+1(4− ρ2∗)
−d/2−1

}
.

Thus we know that the slope of θ is always less than that of Cρ2. Finally it holds that θ(0) = 0

and thus 0 ≤ θ(ρ) ≤ Cρ2, ρ ∈ [0, ρ∗].

Under condition (D2) it holds {1 − ρ2∗}−d/2 ≤ {1 − 2−2q}−d/2, completing the proof by using

Lemma 3.8. �

Proof of the theorem: First note that the the operator norm is dominated by the Hilbert-Schmidt

norm. By Markov’s inequality we have for ν ∈ (0, 1]

P
(
∥Sn − S∥2HS ≤ ν−1 E ∥Sn − S∥2HS

)
≥ 1− ν,

P
(
∥T ∗

ny − Sf∥2H ≤ ν−1 E ∥T ∗
ny − Sf∥2H

)
≥ 1− ν.

An application of Theorem 3.2, Corollary 3.2 and Lemma 3.7 completes the proof. �
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