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Prologue 

 

As any thesis, this one is a consequence of several decisions the writer (me) took 

during his life when he was interacting with the environment that surrounds him. In 

my case, this environment was mainly influenced by family, friends, professors, 

musicians, scientists, writers and other idols, and had unique geographical and 

sociological characteristics.  

It has been Brazil. More recently it became also Germany.  

Among the innumerous events that led to this thesis, there are three professional ones 

that I would like to mention: 

 

1) Back in 2008, I was studying wild capuchin monkeys in the Brazilian Atlantic 

Forest. I was recording the behavior of a specific group of monkeys and 

collecting their feces to measure stress and reproduction-related hormones. 

Although most of the fun came from the interactions with juveniles, the 

behavior of the alpha male (Benjamin) was by far the most interesting one. 

During a late afternoon, Benjamin was standing in the branch of a very high 

tree, trying to figure out (I imagine) where he, and consequently the rest of the 

capuchin group, would sleep. He kept standing there for some minutes. During 

this time I could not avoid thinking: What is going on in his mind? How does 

he decide for this or that tree? What influences his decisions? 

 

2) Some of the most important researchers in the field of decision-making were 

in Goettingen for the Bernstein Conference in 2014. Among them, Paul Cisek 

and Michael Shadlen. During one afternoon they were at the German Primate 

Center meeting researchers and students from the Neuroscience section. At a 

certain point of a scientific discussion, Paul Cisek said that animals’ brains 

were built to generate actions; the brain structure serves action-directed 

processing; and this is the framework we should use to address questions 

related to our behavior and to the system that supports it. 

 

3) After being introduced to consciousness-related studies by Dr. Kagan, I 

became more and more interested in metacognition. At certain point, I read 
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Kepecs and Mainen (2012) paper (A computational framework for the study of 

confidence in humans and animals, Philosophical Transactions of the Royal 

Society of London B: Biological Sciences, 367, 1322-1337). The idea that 

“probabilistic reasoning is something that nervous systems do as a matter of 

their construction” really struck me. The authors suggest that our cognitive 

processes bring a “p-value” with them that signalizes, when read out, their 

reliability. According to Kepecs and Mainen, this happens in several animal 

species. 
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General Introduction 

Animal behavior is amazing because of its variety and complexity. Researchers have 

been studying this topic under different levels of analyses which can be summarized 

in “proximate causes” (i.e. genetic-developmental and sensory-motor mechanisms) 

and “ultimate causes” (i.e. selective processes and historical pathways leading to the 

current behavioral traits; Alcock, 1993; Sherman, 1988; Tinbergen, 1963). The 

present work focuses on the neurobiology of decision-making. Specifically, it focuses 

on the sensory-motor mechanisms of decision-making and certainty evaluation, as 

well as on the modification of interhemispheric processing and flexible responses 

selection over the course of primate evolution.  

Classic studies in cognitive psychology proposed that the center of the executive 

system is located in the frontal lobes (e.g. Shallice et al., 1982). However, recent 

studies suggest that the neural mechanisms involved in decision-making are also 

associated with neural activity in cortical and subcortical regions previously related 

exclusively to sensorimotor control (e.g. Klaes et al., 2011; Komura et al., 2013). This 

distributed proposition suggests that the brain inherently and ubiquitously processes 

multiple sources information in order to create actions (Shadlen et al., 2008), or even 

implements multiple action options and decides between them already within the 

sensorimotor system, constructing a distributed consensus among many levels or 

representations (Cisek, 2012). 

According to this action-centered point of view, the primary goal of sensory 

processing is not the extraction of objects features, but building up (accumulating) 

evidence that supports actions. It does not mean that animals cannot make purely 

abstract decisions. Certainly this is not the case for humans, whose reasoning 

complexity can be associated with many abstract activities. But it means that most, if 

not all, neural circuits are actually constructed during evolution to process 

information in order to generate responses that allow interactions with the external 

environment (Shadlen et al., 2008; Cisek, 2012). For example, some areas of the 

parietal lobule can encode the force and the velocity of effector-specific responses (as 

saccades or reaches) and, at the same time, process the reliability of the perceptual 

evidence that supports those actions (Shadlen et al., 2008; Kiani and Shadlen, 2009). 

Moreover, using functional imaging, Filimon et al. (2013) showed that as soon as 

humans have information about which effector (hand or eye) they should employ to 
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report perceptual decisions, not only areas in the frontal cortex encode these 

decisions, but also effector-specific parietal areas start preparing motor responses 

under the modulation of the perceptual signal strength. 

The existence of such versatile and “embodied” processing provides the basis of my 

investigation. Initially, it defined my methodological approach, since I used fMRI to 

investigate the activity of the entire human and monkey brains in order to understand 

the relationship between activation patterns and behavior as a whole (considering 

methodological limitations). But more importantly, this distributed processing 

framework brought to my attention one of the most ubiquitous cognitive processes 

that animals have: certainty readouts. 

Certainty (or confidence) can be defined as the reliability of the evidence that 

supports cognitive processes such as decision-making (Ma and Jazayeri, 2014). 

Recently, certainty evaluation has been approached using a well-developed 

computational framework and suggested to be a fundamental brain function across 

species (Kepecs and Mainen, 2012). Considering that nervous systems inherently 

perform probabilistic “reasoning” (Zemel et al., 1998; Mamassian et al., 2002; Knill 

and Pouget, 2004), certainty readouts are thought to provide, in several animal 

species, confidence intervals about cognitive processes in a similar way that statistical 

p-values are computed for a hypothesis test (Kepecs and Mainen, 2012).  

Moreover, the inherent stochasticity of sensory processing in the nervous system also 

influences the knowledge individuals have about the state of the world, including the 

state of their own body (Mamassian et al., 2002; Shadlen et al., 2008). Consequently, 

probabilistic inferences about the variables that describe the external and the internal 

environments (“beliefs”) might be as important as the sensory evidence itself (Ma and 

Jazayeri, 2014). Interestingly, animals are able to behave almost optimally assessing 

subjective probabilities under conditions of such noisy environment (Pouget et al., 

2016). Optimality here concerns another important aspect of certainty evaluation: the 

association between belief and utility. This association is especially important for 

reward-based decisions since, in this context, certainty can be also defined as the 

individual’s belief that the chosen action maximizes utility (De Martino et al. 2012). 
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But how should one measure certainty? 

Very first experiments about confidence in humans date from the end of the 

nineteenth century (Peirce & Jastrow, 1884). Since then, innumerous methods were 

developed to measure certainty. Humans are most often asked to report their certainty, 

or confidence, explicitly, and their reports demonstrate high correlation with 

performance accuracy (e.g. Boldt and Yeung, 2015; Charles et al., 2013; Fleming et 

al., 2012; Hebart et al., 2014; Heereman et al., 2015). Clearly, other animals and 

patients with language-related impairments cannot provide verbal-based confidence 

reports. For them, more sophisticated tasks were designed to elicit implicit reports of 

confidence (for review see Kepecs and Mainen, 2012). 

Although this still remains a very debatable issue, some researchers (including 

myself) came to the conclusion that implicit confidence reports might capture 

certainty readouts more efficiently than explicit reports because, without a specific 

definition of confidence, it is not clear what subjects are actually reporting when they 

use explicitly-defined response scales (Persaud et al., 2007; Pouget et al., 2016). 

Under the assumption that implicit scales might be more reliable, one of the 

approaches, so called “post-decision wagering” (PDW), not only represents a more 

robust measurement of certainty readouts, but it also reflects simple computations 

employed when humans and other animals behave naturally.  

During PDW, subjects bet resources (usually money for humans) on the accuracy, or 

correctness, of their decisions in order maximize their gains and minimize their losses 

(Persaud et al., 2007). In this way, this motivating and goal-direct certainty scale 

encourages subjects to assess the reliability of the evidence that is supporting their 

decisions by reading out multiple variables involved in such decisions (such as 

sensory evidence and the internal state of the body) without having to transform these 

readouts into subjectively interpretable language-based formulations. In my point of 

view, PDW fits perfectly to the study of cognitive processes (and underlying neural 

activity) performed under the assumption that the brain encodes information 

holistically in order to create actions. 
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Bi-directional certainty 

During my initial investigations of certainty-related processes and associated 

literature, I realized that, although information about being incorrect is as important as 

information about being correct (Yeung and Summerfield, 2012), confidence was 

typically associated with certainty of having done a correct decision (Fleming et al., 

2012; Hebart et al., 2014; Kepecs et al., 2008; Kiani and Shadlen, 2009; Pouget et al., 

2016), whereas certainty of having done an incorrect decision was majorly studied 

separately in the context of error detection and changes of mind (Charles et al., 2013; 

Murphy et al., 2015; Rabbitt, 1966; Resulaj et al., 2009). Nevertheless, I began to 

appreciate the fact, as Yeung and Summerfield (2012) also did, that confidence and 

error detection might be, in a sense, “two sides of the same coin”. In my work, I 

named these processes as readouts of certainty of being correct and certainty of being 

incorrect in order to emphasize the integration of the two traditionally separate 

research fields. It did not make sense for me, for example, that these two processes 

were approached from the previous error detection binary (all-or-none) perspective 

(i.e. subjects report whether they believed their decision was incorrect or not; e.g. 

Charles et al., 2013). I hypothesized, instead, that both readouts are based on 

probabilistic assessments and could be reported using continuous (i.e. non-binary) 

scales.  

While my colleagues and I were collecting data to test the hypothesis that both 

readout “directions” (certainty of being correct and certainty of being incorrect) can 

be measured using the same continuous scale, Boldt and Yeung (2015) published a 

study that corroborated my expectations and demonstrated, by still using an explicitly 

formulated response scale, that there is a continuum in the readout of these two types 

of certainty. In their response scale, subjects reported certainty readouts ranging from 

“certainly wrong” to “certainly correct”.  Although Boldt and Yeung (2015) were the 

first ones to describe certainty bi-directionality, their scale depended on humans fully 

capable to use their language comprehension skills, as well as on conscious 

transformations of certainty readouts into verbally-defined categories. Consequently, 

it was not possible for them to contribute directly to the understanding of certainty-

related processes under the basic computational framework proposed by Kepecs and 

Mainen (2012). 
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Nevertheless, Boldt and Yeung (2015) provides solid support, together with other 

very recent studies, for the idea that individuals not only accumulate evidence 

prospectively in order to make proper decisions (Ratcliff and McKoon, 2008), but 

also continue to accumulate evidence after their decisions (Kiani et al., 2014; Murphy 

et al, 2015; van den Berg et al., 2016; Yu et al., 2015). The demonstration of such 

post-decisional evidence accumulation was essential to bring together the two 

certainty directions because it can be argued that certainty of being incorrect 

intrinsically depends on some sort of extra evidence (otherwise individuals who 

identified incorrect decisions would not make an incorrect choice in the first place) 

and, as I will propose in Chapter 1, it is preceded by a post-decisional decrease in 

certainty of being correct. 

In this context, Chapters 1 and 2 describe the two experiments in humans that I 

developed to capture implicit bi-directional certainty readouts using PDW and to test 

if there are brain areas which encode such bi-directional processing, respectively. In 

these chapters, I was able to demonstrate that during wagering, subjects implicitly 

reported the increase of certainty of being incorrect towards the lowest wager, and the 

increase of certainty of being correct towards the highest wager. Moreover, I showed 

that certainty of being incorrect, in particular, was a likely consequence of post-

decisional evidence accumulation. I also demonstrated that multiple brain areas were 

able to encode these readouts, suggesting that PDW task demands and adaptive 

strategies (i.e. try to gain more when correct and avoid large losses when incorrect) 

indeed prompted brain areas to encode the information in the most adaptive way. 

 

The comparative study 

My initial doctorate project proposal focused on the neural basis of adaptive choices 

of rhesus monkeys contrasting physical and mental efforts. Specifically, I planned a 

series of experiments based on Hampton (2001), who proposed – using a kind of 

wagering (opt-out procedure) before the decisions – that rhesus monkeys know when 

they remember. My aim was to investigate if rhesus monkeys have the capacity for 

introspection and awareness, and to identify, using fMRI, which brain areas they 

employ during such metacognitive processes. 
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Since the development of fMRI in awake and behaving non-human primates has been 

shown to be essential to link the knowledge about the human brain obtained using 

non-invasive imaging techniques and the vast knowledge provided by invasive 

electrophysiological studies in monkeys (e.g. Goense et al., 2010; Kagan et al., 2010; 

Oleksiak et al., 2010; Patel et al., 2015; Vanduffel et al., 2001); and because the brain 

structure of monkeys and their behavioral complexity are closely related to humans 

(Arcaro et al., 2011; Kiani and Shadlen, 2009; Mantini et al., 2011; Vanduffel et al., 

2014), I also intended to perform the same fMRI experiments in humans in order to 

compare the two primate species directly. 

My first experiment, however, was designed to address a very simple question while I 

was training the monkeys to perform more complex tasks: how does the 

interhemispheric processing of visuomotor information differs between rhesus 

monkeys and humans? Although early studies about the transfer of information 

between the hemispheres date from the beginning of the last century (Poffenberger, 

1912), some paradigms involving interhemispheric communication and integration of 

information during simple visuomotor responses were never tested in monkeys. 

Specifically, I wanted to investigate interspecies differences using the paradigm 

created by Poffenberger (1912), which tests the time the brain takes to transfer 

visuomotor information between the hemispheres by comparing two manual response 

conditions: responses which do not require interhemispheric communication because 

visual representation and motor responses can be encoded in the same brain 

hemisphere (uncrossed responses); and responses which require interhemispheric 

communication because the visual information is first represented in the hemisphere 

that does not encode the motor response (crossed responses). 

However, at the moment I realized that – due to problems with monkey training and 

delays in the production of magnetic resonance-compatible equipment specific for 

monkey experiments – I would not be able to perform the Poffenberger-related 

experiments with both primate species and successfully move to the experiments I 

initially planned to investigate introspection in monkeys; I decided to test how 

interhemispheric processes would be modified if I were to add different levels of 

certainty about the upcoming response requirements. I also decided to partially pursue 

my initial scientific questions by testing the capacity of introspection only in humans. 
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As mentioned above, this investigation is described in the metacognition-related 

studies of Chapters 1 and 2. 

Chapter 3, consequently, describes a comparative study conducted in parallel to the 

experiments about bi-directional certainty. In order to address interhemispheric 

communication under different certainty levels, and to test how the varying 

predictability about upcoming response modifies intra-and inter-hemispheric action 

selection processing, I used three tasks with different randomization of visual 

stimulus location and motor response. Therefore, instead of investigating the certainty 

associated with preceding decisions (as in PDW), I compared how the predictability 

determined by the trial history modifies the ensuing visuomotor processes. The 

interspecies comparisons were mainly based on differences regarding brain 

(a)symmetry and lateralization (for review see Oleksiak et al., 2010); brain size (for 

review see Aboitiz et al., 2003); and the capacity each species has to represent the 

abstract components of my tasks. 

 

In summary, the present thesis aimed at investigating neurobiological aspects of two 

ubiquitous processes in the nervous system: decision-making and certainty readouts. I 

based my investigation on the assumption that the brain encodes information in order 

to adapt animals’ behaviors to the complex environment by facilitating flexible action 

selection. I did not address evolutionary causes (selective processes) for the 

investigated decision-making processes directly, but I took into account the 

consequences of anatomical and functional differences between monkeys and humans 

to their behavior.  
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Certainty bi-directionality 

and the efficient use of metacognition 

 

(content of this chapter has been submitted to Cognition as: Moreira, C. M., Rollwage, M., 

Kaduk, K., Wilke, M., Kagan, I. Certainty bi-directionality and the efficient use of 

metacognition) 
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Abstract 

Humans and other animals constantly evaluate their decisions in order to learn and 

behave adaptively. Experimentally, such evaluation processes are accessed using 

metacognitive reports. When made after decisions, metacognitive reports might 

reflect not only different levels of decision certainty, but also two certainty directions 

(certainty of being correct and certainty of being incorrect). It is important to test if 

such bi-directional processing can be measured because, for adaptive decision-

making, information about being incorrect is as important as information about being 

correct. We were able to capture bi-directional certainty readouts by asking subjects 

to bet money on their perceptual decision accuracy using a six-grade wager scale 

(post-decision wagering, PDW). To isolate trial-specific aspects of metacognitive 

judgments, we used pre-decision wagering trials (wagering before the perceptual 

decision) to subtract, from PDW trials, wagering influences resulting from non-trial-

specific assessment of expected difficulty and psychological biases. This novel 

measure of metacognitive ability allowed independent quantification of certainty of 

being correct and certainty of being incorrect readouts. Bi-directional certainty 

readouts were associated with increased sensitivity during wagering in comparison to 

perceptual decisions (i.e. high metacognitive efficiency), suggesting a link between 

post-decisional evidence accumulation and metacognitive efficiency. We also show 

that both readouts increased on easier trials, demonstrating that certainty of being 

incorrect is not confounded with low certainty. The quantification of bi-directional 

certainty by the same implicit graded response scale suggests that both readouts 

represent similar, or even the same, metacognitive process. 

 

Key-words: certainty, metacognition, metacognitive efficiency, post-decision 

wagering, post-decisional evidence, confidence 

 

Abbreviations: pre-decision wagering (PreDW), post-decision wagering (PDW), 

delayed match-to-sample task (DMST) 

  



25 

 

1. Introduction 

Humans and other animals are able to assess their own cognitive processes 

(perception, memory and decisions) to flexibly adapt their behavior (Fleming and 

Lau, 2014; Hampton, 2009; Kepecs and Mainen, 2012). This assessment (i.e. 

metacognition) can be understood as a resulting readout of the certainty associated 

with cognitive processes (Kepecs and Mainen, 2012; Kepecs, 2013; Kiani et al., 2014; 

Ma and Jazayeri, 2014) and is especially useful to plan future actions more efficiently 

after decisions (Fleming et al., 2012a; Kepecs and Mainen, 2012; Kiani et al., 2014; 

Pouget et al., 2016). 

The planning of future actions that relies on the evaluation of previous decisions 

might vary not only with certainty level (from low to high) but also with what we call 

“certainty direction” (i.e. certainty of being correct or certainty of being incorrect). 

For example, a person in a hurry goes to the supermarket and decides to enter an aisle 

to search for a specific product. If she is uncertain about her decision, she will 

probably slow down her pace and search for the product from a distance, staying close 

to other aisle options. This is not the best way to find a product, but it is the best way 

to avoid spending her main resource (in this case, time) on this uncertain decision. If 

she is highly certain about her decision, her planning of a next action might have two 

distinct outcomes depending on her certainty direction. If she is certain she chose the 

correct aisle (certainty of being correct), she will walk down this aisle to search for 

the product closely. On the other hand, if she is certain she made an incorrect decision 

(certainty of being correct), she will turn around and walk to another aisle. 

Choice certainty, or confidence, has been extensively investigated in different 

contexts of perceptual, memory and value-based decision-making (e.g. Fleming and 

Dolan, 2012a; Hampton, 2001; Kiani and Shadlen, 2009; Monosov and Hikosaka, 

2013), however the ability to implicitly use certainty of being correct and certainty of 

being incorrect was never measured in the same experiment. Therefore, the main 

goals of the present study were to capture bi-directional readouts of certainty without 

relying on explicit verbal formulations, and to relate those readouts with other 

cognitive processes (e.g. post-decisional evidence accumulation). As a first step, we 

consider previous assumptions about the relationship between perceptual evidence 

and confidence judgments in order to create a framework that supports such bi-

directional readouts.  
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1.1 Response scales and evidence accumulation 

In Signal Detection Theory (SDT), what has been referred so far as “decisions” are 

defined as “Type 1 decisions”; while decisions about  correctness of Type 1 decisions 

are named “Type 2 decisions” (Clarke et al., 1959; Galvin et al., 2003). Type 2 

decisions, in the form of confidence ratings, are often applied to measure how certain 

subjects are about having done a correct decision (e.g. Fleming and Lau, 2014; Hebart 

et al., 2014; Heereman et al., 2015; Maniscalco and Lau, 2012; Sandberg et al., 2010). 

In such unidirectional formulations, reports of low confidence are thought to signify 

low certainty, while certainty of being incorrect is explicitly not considered.  

In some cases, the experimenters exclude the presence of high certainty of being 

incorrect by instructing subjects to abort trials when they “know” they have done 

incorrect choices (e.g. Hebart et al., 2014). But more commonly, it is assumed that the 

same evidence used for Type 1 decisions is also used for Type 2 decisions (e.g. 

Charles et al., 2013; Galvin et al., 2003; Maniscalco and Lau, 2012), thus precluding 

the realization of errors. Challenging this assumption, recent studies highlighted the 

possibility of post-decisional evidence accumulation, building on a combination of 

signal detection and drift diffusion models to investigate the accumulation of evidence 

after Type 1 decisions (e.g. two-stage Dynamic Signal Detection model of Pleskac 

and Busemeyer, 2010; Moran et al., 2015; Yu et al., 2015). Further support for post-

decisional evidence accumulation has been provided by studies investigating changes 

of mind and error detection (Kiani et al., 2014; Murphy et al, 2015; Yeung and 

Summerfield, 2012; van den Berg et al., 2016), and this process has been associated 

with both certainty directions (Boldt and Yeung, 2015). 

In order to explore this association, we illustrate three different scenarios based on 

different assumptions about evidence accumulation and different interpretations of the 

certainty scale (Fig. 1). These scenarios are exemplified using a task similar to the one 

used in our experiment: a delayed match-to-sample task (DMTS, Type 1 decision) 

followed by a six-grade certainty scale (Type 2 decision). The sample is presented for 

a certain period and, afterwards, subjects should respond if the match is on the right or 

on the left side of the screen. When the two match possibilities are presented, subjects 

start accumulating evidence towards both of them and, since response time is limited, 

at certain point they commit to the Type 1 decision by reading out if the difference 

between the evidence supporting each option (i.e. decision variable) lies on the right 
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or on the left side of the Type 1 criterion (i.e. subjective criterion used to classify the 

evidence). Following the DMTS task, subjects are asked to report their certainty in the 

preceding choice. Generally, it is assumed that subjects assess certainty by reading 

out the distance between the evidence and the Type 1 criterion (Gold and Shadlen, 

2001; Herbart et al., 2014; Kiani et al., 2014). 

In the illustrated example, the subject makes an incorrect Type 1 decision. The first 

scenario represents the model without post-decisional evidence accumulation (Fig. 

1A). In the example, since the evidence at (and after) the Type 1 decision is close to 

the Type 1 criterion, the subject would rate her certainty as low (e.g. rating 2). Since 

scenario A has been challenged by studies which show that subjects acquire 

additional evidence after Type 1 decisions (Murphy et al, 2015; Yu et al., 2015), 

scenario B exemplifies how confidence reports might be misinterpreted if this post-

decisional evidence is not considered for the formulation and interpretation of the 

certainty scale. In scenario B, the drift after the Type 1 decision could lead the 

evidence even further right from the Type 1 criterion or, as exemplified, to the other 

side of the criterion. In this example, the subject is more certain during the Type 2 

decision (greater distance between the evidence and the Type 1 criterion) compared to 

the moment of the Type 1 decision. And, by taking into account the reported Type 1 

decision, she could classify her certainty as certainty of being incorrect. However, due 

to typical unidirectional formulation of the certainty scale (e.g. Fleming et al., 2012b), 

certainty of being incorrect is conflated with low certainty of being correct (Fig. 1B).  

We propose that scenario C is more appropriate if subjects accumulate post-decisional 

evidence because it affords the possibility to use the certainty scale to report both 

certainty of being correct and certainty of being incorrect. The difference between 

scenarios B and C is, therefore, the formulation and interpretation of the certainty 

scale. In scenario C, certainty increases in both directions as, for example, a U-shape 

function. One half of the scale reflects the readout of certainty of being correct, and 

the other half reflects the readout of certainty of being incorrect (Fig. 1C). Such bi-

directional scale might be achieved, for example, by suitable phrasing (e.g. certainty 

ranging from “certainly wrong” to “certainly correct”, as in Boldt and Yeung, 2015) 

or by using monetary incentive formulations such as post-decision wagering (Persaud 

et al., 2007; Sandberg et al., 2010), the approach we adopted in this study. 
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Figure 1. Three scenarios for evidence accumulation during one (incorrect) trial of a perceptual 

decision (match-to-sample, Type 1 decision) followed by certainty rating (Type 2 decision). The match 

was on the left, but the subject reported that the match was on the right. Trial time goes from top to 

bottom (t0 to t4). (A) Scenario A represents the model without post-decisional evidence accumulation. 

The separation between the probability distribution functions of perceptual evidence (purple and 

orange curves) and their variance reflects subject’s Type 1 sensitivity (d’ in SDT) across all trials. 

Since the evidence is close to the criterion subject used to decide if the match was on the right or on the 

left side (Type 1 criterion), she should read out her certainty as low (in this example, the certainty was 

2 because the evidence fell between her Type 2 criteria 2 and 3). (B) The scenario B assumes evidence 

accumulation after Type 1 decisions, but its consequences are not considered in formulation and 

interpretation of the certainty scale. After reporting that the match was on the right side of the screen, 

the subject kept accumulating evidence. In this example, the accumulated evidence crossed Type 1 

criterion and indicated that the subject did an incorrect Type 1 decision. For Type 1 decisions to right, 

the scale formulation places Type 2 criteria along the evidence axis only to the right side of the Type 1 

criterion, neglecting certainty of being incorrect. In this way it is not possible to dissociate if the 

subject was reporting low certainty of being correct or some level of certainty of being incorrect. (C) 

The scenario C allows post-decisional evidence accumulation and considers certainty bi-directionality 

when interpreting certainty ratings. In this way, it distinguishes levels of certainty of being correct from 

levels of certainty of being incorrect. It is important to emphasize that, in all scenarios, Type 2 criteria 

distribution would be flipped horizontally over the evidence axis in the case of Type 1 selection of the 

left option. 

 

When post-decisional evidence accumulation occurs, subjects might improve their 

performance on Type 2 decisions compared to Type 1 decisions. Maniscalco and Lau 
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(2012) developed a function to calculate Type 1 and Type 2 sensitivities on the same 

scale, allowing direct comparison between them. Since Maniscalco and Lau (2012) 

assumed that Type 1 and Type 2 decisions are based on the same evidence, they 

expect that Type 2 sensitivity (meta-d’) should never exceed the Type 1 sensitivity 

(d’). In other words, the ratio meta-d’/d’, termed as metacognitive efficiency, should 

not be higher than 1. We, on the other hand, suggest that values of meta-d’ higher 

than d’ are likely because subjects can accumulate evidence after the Type 1 decision, 

improving their Type 2 sensitivity. 

In the present study we confirmed the assumptions proposed in the scenario C 

(increased certainty in both directions of the certainty scale as a likely consequence of 

post-decisional evidence accumulation) by capturing trial-specific readouts of 

certainty of being incorrect and certainty of being correct; and we associated post-

decisional evidence accumulation with metacognitive efficiency. 

 

2. Methods 

2.1 Subjects 

Eighteen subjects (6 males; mean age 25.7 years) were recruited via an online 

platform of the University of Goettingen. All subjects had normal or corrected-to-

normal vision. One subject was discarded because he did not have sufficient number 

of trials in some of the conditions. Subjects were paid according to their performance 

(please see below). The experimental procedures were approved by the local ethics 

committee. 

 

2.2 Experimental setup 

Subjects sat in front of an LED screen (1600 x 1200 resolution) at 51 cm viewing 

distance and responded manually using two capacitive proximity sensors (buttons) 

connected to the computer via parallel port. Subjects positioned their head over an 

adjustable chin rest and had their head fixed with an adjustable strap for better 

stabilization. Gaze position was acquired with 60 Hz miniature infrared eye tracker 

camera and ViewPoint 2.8.6.21 software (Arrington Research). The task was 

controlled via MATLAB (Mathworks Inc) using the Psychophysics toolbox 
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(http://psychtoolbox.org/). Subjects performed practice trials until they became 

familiar with this experimental setup. 

 

2.3 Type 1 task: delayed match-to-sample task 

Subjects completed 360 trials of a visual delayed match-to-sample (DMTS, Type 1 

decision) task in which they had to find, between two options, the match for a 

preceding sample, which consisted of one gray circle of 1.5° of visual angle radius 

with an oblique black bar crossing its center (Fig. 2). Ten different sample options 

were generated by varying the bar orientation in counterclockwise rotation from the 

horizontal plane (from 18° to 58.5°). One of these ten samples was presented pseudo-

randomly at the beginning of each trial in the center of the screen. During match-to-

sample presentation, one sample-like image was presented 9° to the right and another 

one 9° to the left of the center of the screen (eye fixation spot). One of them had a bar 

in the same orientation as the sample (match) and the other one had a bar in a 

different orientation (non-match). Subjects responded by using the button of the hand 

positioned in the same side of the screen of the image selected as the match (Fig. 2A). 

Five difficulty levels were created by different orientation contrasts between the 

match and the non-match (from 4.5° to 22.5°; Fig. 2B). Trials with different difficulty 

levels were grouped into three families. The overall level of difficulty of each family 

was determined by the different proportions of trials of each difficulty level. The 

sample color - green, blue or red – cued these families: easy, medium or hard, 

respectively (Fig. 2C).  

Subjects were informed before the experiment that colors were related to different 

levels of difficulty, but they were not told about the link between specific colors and 

difficulty of each family. 

 

2.4 Pre-decision wagering, post-decision wagering and the control task 

The Type 2 decision was a wagering task in which subjects were asked to bet money 

on the correctness of their perceptual (Type 1) decision. They won the wagered 

money for correct Type 1 decisions and lost it for incorrect Type 1 decisions. In half 

of the 360 trials, subjects wagered after the Type 1 decision (Post-decision wagering, 

PDW) and in the other half of the trials subjects wagered before the Type 1 decision 

http://psychtoolbox.org/


31 

 

(Pre-decision wagering, PreDW). PreDW and PDW trials were pseudo-randomly 

interleaved. PreDW was used as baseline condition in further analyses. During either 

wagering trials, subjects made the Type 2 decisions by selecting first to wager high 

(wager categories 4, 5 and 6) or low (wager categories 1, 2 and 3), and afterwards by 

selecting a specific wager category among low or high options. They selected a 

specific wager within 3 s by using the button of the hand positioned in the same side 

of the corresponding selected option. 

On PDW trials, subjects performed a control task before the perceptual decision, at 

the same period they were wagering on PreDW trials, and vice-versa for PreDW 

trials. The control task, in which subjects had to select a cued (by blue color) response 

option, worked as an “instructed” wagering (Fig. 2) and did not influence subjects’ 

earnings. It aimed to equalize, across PDW and PreDW trials, the cognitive effort due 

to intervening distraction (visual stimulation, object selection, and corresponding time 

interval). 

Subjects started the experiment with 10 Euros and could earn up to 30 Euros 

according to their performance. They wagered on the correctness of every Type 1 

decision using the following pay-off matrix, which was explained to them before the 

experiment: 

 

Table 1 

Wagering pay-off matrix 

Type 1 

decision 
Low wagers High wagers 

Correct 2 cents 5 cents 8 cents 11 cents 14 cents 17 cents 

Incorrect -2 cents -5 cents -8 cents -14 cents -17 cents -20 cents 

 

As can be seen from the pay-off matrix, if subjects wagered low, they were rewarded 

and punished in the same way for correct and incorrect perceptual decisions. But 

when they wagered high, their incorrect perceptual decisions were punished with 3 

cents more than they would be rewarded for correct Type 1 decisions. This pay-off 

matrix was designed during pilot experiments in which subjects reported that they 

knew they were performing generally above the chance level (50%) and thus could 

earn money by simply wagering high all the time. To counteract this strategy, we 
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encouraged subjects to evaluate every Type 1 decision by punishing high wagers 

associated to incorrect Type 1 decisions more than low wagers. 

 

2.5 Trial timeline 

Eye and hand movements were controlled throughout the trial. Each trial started with 

the appearance of a red sport and a gray framed-square in the center of the screen. 

Subjects were positioned in the rest position when they fixated the gaze inside the eye 

fixation window (3º visual angle radius around the red spot) and, concomitantly, 

positioned the right and left thumbs over two separate buttons. After a variable delay 

(0.5-1 s) in the rest position, the sample was presented in the center of the screen for 1 

s. After sample presentation, subjects had to maintain the rest position for another 1 s 

before the control task (for PDW trials) or the wagering task (for PreDW trials). 

Another period of 1s separated control/PreDW from the match-to-sample task (Type 1 

decision). Subjects had up to 1.5 s to select the image they believed was the match. 

After the Type 1 decision report and another interval of 1 s, subjects performed the 

wagering task (PDW trials) or the control task (PreDW trials, Fig. 2A). 

 

Figure 2. (A) Task design. The appearance of a red spot (for eye fixation) and of a gray framed-square 

(indicating buttons status) in the center of the screen signalized the trial start (pre-rest). The brightening 
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of the red spot and the appearance of the gray filled square indicated that subjects correctly adopted the 

rest position. The sample was then presented in the center of the screen for 1 s. During PDW trials, 

subjects performed first the control task. The letters H (high) and L (low) were presented each in one of 

the sides of the screen. The presentation side varied randomly. A blue square appeared above a specific 

wager and subjects had, first, to select high or low and then use the same button repeatedly to select the 

instructed wager option. The selection always moved from center-out. Overall, subjects had 3 s to 

select the instructed wager. Then, subjects performed the match-to-sample task by selecting the image 

they believed was the match. After that, subjects performed the wagering task, which was similar to the 

control task except that, after freely selecting high or low option, subjects could move the yellow 

square that appeared above one of the three wager options to select any desired option. PreDW trials 

were similar to PDW trials, with the difference that the wagering task and the control task order in the 

trial timeline were reversed. (B) Five difficulty levels were created by different orientation contrasts 

between the match and the non-match (linearly from 4.5° to 22.5°). (C) Proportion of trials from the: 

easy family (green line), medium family (blue line) and hard family (red line) in each difficulty level (1 

to 5). 

 

There was no trial-by-trial feedback about the correctness of match selection (Type 1 

decision). One feedback about the overall earnings was presented during a break that 

occurred after 180 complete trials, and the final earned value was presented after 360 

complete trials. Trials in which subjects broke eye or hand fixation requirements, or 

were too slow to respond in one of task response periods, were aborted and repeated 

at a later time. 

 

2.6 D-prime (d’) and meta-d’ calculation 

In order to obtain a comparable and unbiased measure of Type 1 and Type 2 

sensitivities, we used Maniscalco and Lau (2012) code provided at 

http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html to calculate d’ 

(Type 1 sensitivity) and meta-d’ (Type 2 sensitivity). Meta-d’ is calculated using the 

same parameters of a Type 1 SDT model, thus d’ and meta-d’ are in the same scale. 

The code estimates the value of d’ that would have been required to produce the 

observed type 2 hits and false alarms. 

 

http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html
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2.7 Slope-based measurements 

We used the linear fits to the proportions of correct and incorrect Type 1 decisions 

each wager was assigned to, to assess the readouts of certainty of being correct and 

certainty of being incorrect, as explained below. We calculated these proportion by 

dividing the number of correct trials each wager was assigned to by the number of all 

correct trials (wager-specific proportion of correct trials) and, separately, dividing the 

number of incorrect trials each wager was assigned to by the number of all incorrect 

trials (wager proportion of incorrect trials). Next, we fitted a linear trend to wager-

specific proportions of correct trials and another linear trend to wager-specific 

proportions of incorrect trials. The slopes of those fits were named “slope-correct” 

and “slope-incorrect”, respectively, and were associated to the ability to read out each 

certainty direction. For example, subjects whose proportion of correct trials increased 

towards the highest wager would demonstrate, through this positive slope-correct, the 

ability to read out certainty of being correct (see Fig. 3B). 

However, a problem of using this approach to estimate how subjects read out 

certainties is that, in addition to trial-specific information, those wager-specific trial 

proportions might also be influenced by unspecific factors such as the general task 

difficulty and psychological biases (e.g. loss aversion). For example, subjects with 

higher loss aversion and/or facing harder Type 1 decisions might choose low wagers 

more often than high wagers. In this case, the resulting slope would not be zero, but 

negative, even without any assessment about the performance in specific trials. In 

order to disentangle the influences of such unspecific factors and the assessment of 

trial-specific performance, we used the PreDW task as the baseline for the slope-

based measurements. During PreDW, subjects could only access their average 

performance in each family. The sample color - green, blue or red - indicated three 

families: easy, medium or hard, respectively. Subjects could learn that red-colored 

samples predicted, on average, harder trials; and they could develop some idea about 

the probability of each difficulty level in a specific family. But they were not able to 

predict, at the moment they were wagering, their actual trial performance. 

Consequently, subjects should assign wagers randomly to correct and incorrect trials, 

generating similar PreDW slope-correct and PreDW slope-incorrect values (Fig. 3A), 

the requirement for the baseline condition. 
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During PDW, on the other hand, subjects should have access to their trial-specific 

Type 1 performance. The better they assess this information (i.e. metacognitive 

ability), the more PDW slope-correct and PDW slope-incorrect become distinct from 

each other and from baseline PreDW slopes. This happens when subjects are able to 

assign high wagers more often to correct trials and low wagers more often to incorrect 

trials. The difference between PDW slope-correct (β correct) and PreDW slope-

correct (α correct) characterizes the readout of certainty of being correct. When 

subjects are able to detect correct trials, β correct is larger than α correct (Fig 3B). 

The same calculation is done independently for incorrect Type 1 decisions, with 

inverted assumption: when subjects are able to detect incorrect Type 1 decisions, β 

incorrect is smaller than α incorrect (Fig 3C).  

Subjects’ metacognitive ability (the ability in detecting correct and/or incorrect Type 

1 decisions on a trial-by-trial basis) will be reflected in the sum of their abilities to 

read out certainty of being correct and certainty of being incorrect. The metacognitive 

ability reaches highest levels when subjects are able to read out both certainty 

directions (Fig. 3D).  

 

 

Figure 3. Framework to calculate readouts of certainty of being correct and certainty of being incorrect 

based on the slopes of linear fits to wager-specific proportions of correct and incorrect trials. (A) 

Slope-correct (angle between the blue linear fit and the horizontal plane) and slope-incorrect (angle 

between the red linear fit and the horizontal plane) when subjects cannot detect correct or incorrect 

trials (PreDW). Since subjects cannot tell from correct or incorrect trials, each wager has the same 
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proportion of correct and incorrect trials and therefore the slopes should be the similar ( correct =  

incorrect). In this example, subjects use more often low wagers than high wagers, what leads to 

negative baseline slopes. (B) PDW slope-correct and PDW slope-incorrect when subjects can only 

detect correct trials. PDW slope-correct is different from PreDW slope-correct, indicating the readout 

of certainty of being correct, which is measured by subtracting PreDW slope-correct ( correct) from 

PDW slope-correct (β correct). The readout of certainty of being incorrect is still at zero level ( 

incorrect = β incorrect). (C) PDW slope-correct and PDW slope-incorrect when subjects can only 

detect incorrect trials. PDW slope-incorrect ( incorrect) is different from PreDW slope-incorrect ( 

incorrect), indicating the readout of certainty of being incorrect. (D) PDW slope-correct and PreDW 

slope-incorrect when subjects can detect both correct and incorrect Type 1 decisions. β correct and β 

incorrect are different from α correct and α incorrect, respectively. In this case, slope-based 

metacognitive ability (the sum of both certainty readouts) is partially influenced by the readout of 

certainty of being correct and partially influenced by the readout of certainty of being incorrect. 

 

It is important to emphasize that, although we use words “identify” and “detect”, we 

believe that reading out certainty is a probabilistic process. Therefore the readouts 

reflect the detection of correct and incorrect Type 1 decisions in a probabilistic 

manner. 

 

2.8 Statistical analysis 

We performed one-way, two-way and mixed-effects ANOVAs, linear correlations or 

t-tests using MATLAB (Mathworks Inc), as specified in the Results. R (The R 

Foundation) was used to perform multiple regression and linear mixed-effects 

regression models (R package nlme; Pinheiro et al., 2007). The mixed-effects 

ANOVAs and the linear mixed-effects regression models allowed us to include all 

data (unbalanced design) and still utilize repeated measures when appropriate. When 

required, post-hoc tests were performed and corrected using Bonferroni correction. 

 

3. Results 

17 human subjects were asked to carry out a visual perceptual decision of varying 

difficulty (delayed match-to-sample, DMTS task) and a wagering task either before 

(pre-decision wagering, PreDW) or after (post-decision wagering, PDW) the 

perceptual decisions. Trial types (PreDW and PDW) and difficulty levels were 

randomly interleaved. 
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3.1 Subjects performance in the DMTS task 

We performed a two-way ANOVA for repeated measures to assess if perceptual 

(Type 1) performance varied between trial types (PreDW and PDW, factor 1) and 

among difficulty levels (factor 2). As expected, subjects performed better in the 

DMTS task on trials of lower difficulty (mean±SE for difficulty levels 1 to 5: 

86.7±3.3 81.4±2.2 75.0±3.0 67.8±2.4 49.7±2.7%; F4,64=51.439, p<0.0001). There was 

no difference in average Type 1 performance between PreDW and PDW trial types 

(F1,16=2.104, p=0.17) and no interaction effect (F4,64= 0.970, p=0.43), showing that 

subjects performed similarly in PreDW and PDW trial types across five difficulty 

levels. 

We next tested with separate linear mixed-effects regression models for PreDW and 

PDW trials if there were differences in wagering among the five difficulty levels or 

among the three families. As described in Methods, families had different proportions 

of trials of each difficulty level (Fig. 2C), and were signaled to subjects by the color 

of a sample. As expected, during PreDW trials subjects wagered differently according 

to the families (p<0.001 for all pair-wise comparisons between families), and not 

according to the actual trial difficulty level, which was unknown to the subjects at the 

moment they were wagering (p>0.05 for all difficulty levels; Fig. 4A). In PDW trials, 

although there was a significant difference between easy and hard families (p<0.05), 

this difference was driven by the actual difficulty levels (p<0.05 for the comparisons 

between all difficulty levels, except between difficulty levels 1 and 2; Fig. 4B). 

These results show that during PreDW subjects understood the differences among the 

families and wagered according to them. The results also indicate that during PDW 

trials subjects did not rely solely on the sample color (which signaled the average 

difficulty of each family). Instead, they also used the information accessed through 

the direct comparison between the two match options (trial-specific difficulty level).  
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Figure 4. Means and standard errors of PreDW (A) or PDW (B) per difficulty level for each family: 

easy (green), medium (blue) and hard (red). 

 

The following results will address only the PDW trials, except for the slope-based 

measurements which use PreDW trials as its baseline component. 

 

3.2 Metacognitive efficiency groups 

In the present experiment, d’ (Type 1 sensitivity) reflects how well subjects identified 

the match during Type 1 decisions; and meta-d’ (Type 2 sensitivity) reflects how well 

subjects used wagers to identify correct and incorrect Type 1 decisions. We used 

Maniscalco and Lau (2012) method to measure d’ and meta-d’ on the same scale and 

to compare them directly. We plotted meta-d’ as a function of d’, and distinguished 

between two groups of subjects: a group of 11 subjects with meta-d’>d’ falling above 

the diagonal (high metacognitive efficiency group), and a group of 6 subjects with 

meta-d’<d’ falling below the diagonal (low metacognitive efficiency group; Fig. 5A). 

Since we used a post-hoc grouping approach, it was important to check if the 

measurements (d’ and meta-d’) we used to create those groups varied significantly in 

the intergroup comparison. We applied a mixed-effect ANOVA with two factors: type 

of measurement (d’ and meta-d’, within-subjects) and group (meta-d’>d’ and meta-

d’<d’, between-subjects). Meta-d’ was not different from d’ across the entire sample 

(F1,15=1.118, p=0.31), and there was no group difference averaging the two 

measurements (F1,15=4.256, p=0.06). However, the interaction effect was significant 

(F1,15=24.995, p<0.001). Post-hoc tests revealed that the two groups had the same d’ 

(t15=0.051, p=0.96), but the group of subjects with high metacognitive efficiency had 
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higher meta-d’ than the group of subjects with low metacognitive efficiency 

(t15=3.198, p<0.05; Fig. 5B). This result allowed us to compare the two groups, 

knowing that intergroup differences were not associated with differences in subjects’ 

Type 1 sensitivity.  

 

 

Figure 5. (A) Meta-d’ plotted as a function of d’. 11 subjects with meta-d’>d’ (high metacognitive 

efficiency group) fell above the equality diagonal (green area), and 6 subjects with meta-d’<d’ (low 

metacognitive efficiency group) fell below the diagonal (blue area). (B) Means and standard errors of 

d’ and meta-d’ values for each group: meta-d’>d’ (green bars) and meta-d’<d’ (blue bars; *p<0.05). 

 

3.3 Wager-specific performance 

Next, we analyzed Type 1 performance per wager category using mixed-effects 

ANOVA with factors: performance per wager (within-subjects) and groups (between-

subjects). Subjects performed better on trials they selected higher wagers 

(F4,60=23.837, p<0.0001). In accordance with the results based on Type 1 and Type 2 

sensitivities, the interaction effect showed that, although the high metacognitive 

efficiency and low metacognitive efficiency groups had the same general Type 1 

performance (F1,15=0.107, p=0.75), wager-specific Type 1 performances were 

different between the groups (F4,60=7.077, p<0.0001; Fig. 6A). While the meta-d’<d’ 

group Type 1 performance varied from 58.7% in the lowest wager to 82.1% in the 

highest wager, the meta-d’>d’ group had a range varying from below chance 

performance in the lowest wager (43.1%) to 94.7% in the highest wager. Since the 

general Type 1 performance did not vary between the groups, the difference in the 

range of wager-specific Type 1 performance can only be explained by different Type 

2 sensitivities.  
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Furthermore, the below chance performance in the wager category 1 for the meta-

d’>d’ group (43.1%, t10=-2.569, p<0.05) is a strong indicator that subjects with high 

metacognitive efficiency were reading out certainty of being incorrect to detect 

incorrect Type 1 decisions and to assign them to the lowest wager. 

To understand if there was a continuum in the relationship between wager-specific 

Type 1 performance and metacognitive efficiency, instead of discrete group 

differences, and to assess how much each wager-specific Type 1 performance 

explains inter-subject differences in metacognitive efficiency, we calculated a 

correlation between each wager-specific Type 1 performance and metacognitive 

efficiency, across subjects. We found that Type 1 performance in the wager categories 

1, 2, 5 and 6 correlated significantly with metacognitive efficiency, and that absolute 

correlation values increased towards extreme wagers, generating a U-shaped curve 

(Fig. 6B, black symbols). The significant correlations for high and low wagers had 

opposite signs. Type 1 performance for the wager categories 5 and 6 correlated 

positively with metacognitive efficiency. This correlation indicates that subjects with 

higher metacognitive efficiency assigned more high wagers to correct trials. For the 

wagers 1 and 2 the correlations were negative, indicating that subjects with higher 

metacognitive efficiency were those who assigned more low wagers to incorrect 

trials. 

Although the Type 1 performance in the wager categories 2, 5 and 6 helped to explain 

inter-subject variation in metacognitive efficiency, the strongest correlation occurred 

for the lowest wager (R=-0.8, p<0.0001; Fig. 6C). As shown in the Figure 6C, the 

Type 1 performance in the wager category 1 was below the chance level (50%) for 

several subjects with high metacognitive efficiency, which we view as a clear 

demonstration of the readout of certainty of being incorrect. Conversely, none of the 

subjects with low metacognitive efficiency showed below chance Type 1 performance 

for this wager.  

Finally, since the accumulation of evidence after the Type 1 decision might be 

essential for trial-specific detection of incorrect Type 1 decisions, the negative 

correlation between metacognitive efficiency and Type 1 performance in the wager 

category 1 might also suggests that subjects with higher metacognitive efficiency 

were those who accumulated more information after the Type 1 decision. 
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Figure 6. (A) Means and standard errors of Type 1 performance for each group (meta-d’>d’: green line 

and band; meta-d’<d’: blue line and band). Type 1 performance for the meta-d’>d’ group (green curve) 

is below chance level in the lowest wager (*p<0.05). The horizontal black line represents the chance 

level (50%) for the DMTS task. (B) Absolute values of correlation between wager-specific Type 1 

decisions performance and metacognitive efficiency (black curve and symbols) and wager-specific 

Type 1 decisions performance and meta-d’ (gray curve and symbols; ***p<0.001 and *p<0.05 for 

positive correlations, #p<0.05 and ###p<0.001 for negative correlations). (C) Correlation between 

Type 1 performance in wager category 1 and metacognitive efficiency across subjects (subjects from 

the group meta-d’>d’ are in green and subjects from the group meta-d’<d’ are in blue). The horizontal 

dashed line represents the chance level for the DMTS task. 

 

The pattern of correlations between wager-specific Type 1 performance and meta-d’ 

was different from the one found for the ratio meta-d’/d’. The inter-subject 

differences in meta-d’ presented stronger correlations with Type 1 performance in 

high wagers (Fig. 6B, gray symbols). This result indicates that meta-d’ depended 

more on subjects’ ability to detect correct Type 1 decisions and assign high wagers to 

them, while the metacognitive efficiency depended more on how subjects read out 

certainty of being incorrect to detect incorrect Type 1 decisions and assign low 

wagers to them. 

In the next section we present further evidence for differences in the readout of 

certainty of being correct and certainty of being incorrect during PDW, and their 

relationship with subjects’ metacognitive efficiency. The following results (sections 

3.4-3.7) are based on measurements averaged across the five difficulty levels. In these 

measurements, we first averaged the results of different difficulty levels for one 

subject, and then we calculated averages across subjects. In the section 3.8 we present 

data on separate difficulty levels to establish their relationship with subjects’ 

metacognitive readouts. 
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3.4 Pre-decision wagering is a reliable baseline 

As described in the Methods, slope-correct and slope-incorrect are independent 

measures that quantify readouts of certainty of being correct and certainty of being 

incorrect, respectively. These slopes are based on the linear trends fitted to the 

proportions of correct and incorrect trials each wager was assigned to. To isolate trial-

specific information readouts, we created a baseline condition derived from PreDW 

trials. PreDW provided us with general wagering trends that subjects might have 

developed based on non-trial-specific information (such as expected difficulty and 

psychological biases). PreDW slopes were subtracted from PDW slopes since, on 

PDW trials, subjects had access to both: trial-specific performance and the same non-

trial-specific information they had access during PreDW trials.  

A reliable baseline should result in similar slope-correct and slope-incorrect values 

because, in the absence of trial-specific information, subjects were supposed to assign 

wagers randomly to correct and incorrect Type 1 decisions. We used two-way 

ANOVA for repeated measures to test if slope-correct is different from slope-

incorrect (factor 1) depending on the trial type (PDW or PreDW, factor 2). 

Independently of the other factor, PreDW slopes did not differ from PDW slopes 

(F1,16=0.007, p=0.93) but slope-correct differed from slope-incorrect (F1,16=64.039, 

p<0.0001). The interaction effect revealed that slope-correct and slope-incorrect were 

different depending on the trial type (F1,16=42.493, p<0.0001). Importantly, the post-

hoc test showed that this difference occurred during PDW trials (t15=9.433, p<0.01; 

Figs. 7B), but not during PreDW trials (t15=2.204, p>0.05, Fig. 7A), suggesting a 

reliable baseline.   

We next estimated the readout of certainty of being correct by subtracting, for each 

subject, PreDW slope-correct from PDW slope-correct. The same was done to 

calculate the readout of certainty of being incorrect. The slope-based calculations 

demonstrated that subjects read out certainty in a bi-directional way (Fig. 7C).  
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Figure 7. Means and standard errors of linear fits for correct trials (blue lines and shaded bands) and 

incorrect trials (red lines and shaded bands) for (A) PreDW (baseline) and (B) PDW, fitted to the data: 

means and standard errors of wager-specific proportion of correct (blue curves) and incorrect (red 

curves) trials. (C) Means and standard errors of PDW slope-correct minus PreDW slope-correct (blue 

line and band) and of PDW slope-incorrect minus PreDW slope-incorrect (red line and band). All 

measurements represent data across difficulty levels (averaged within each subject) and then averaged 

across subjects. 

 

The next section addresses the group differences and the statistical differences 

between PreDW and PDW slopes. 

 

3.5 Readouts varied between the metacognitive efficiency groups 

We performed mixed-effect ANOVAs to test the differences not only between PDW 

and PreDW slopes for all subjects (within-subjects), but also between the two groups 

(meta-d’>d’ and meta-d’<d’, between-subjects). The first ANOVA revealed that 

slope-correct was higher for PDW compared to PreDW trials (F1,15=10.218, p<0.01). 

There was no group difference (F1,15=0.017, p=0.90; meta-d’>d’: t10=2.791, p<0.02; 

meta-d’<d’: t4=2.892, p<0.05) or interaction between the factors (F1,15=0.433, p=0.52; 

Fig. 8A). The second ANOVA revealed that slope-incorrect was also different 

between PDW and PreDW for all subjects (F1,15=11.070, p<0.01) without group 

difference (F1,15=1.825, p=0.20). However, the interaction effect was significant 

(F1,15=4.888, P<0.05) and the post-hoc test revealed that PDW slope-incorrect was 

different from PreDW slope-incorrect only for the high metacognitive efficiency 

group (t10=-4.742; p<0.01; Fig. 8A). Figures 8B and 8C further illustrate the 

difference between PWD and PreDW slopes for the two groups. Altogether, these 

results indicate that on average subjects read out both certainty directions during 

PDW. They also suggest that the difference of slope-based metacognitive ability (the 



44 

sum of readouts of certainties of being correct and incorrect, Methods) between the 

groups (7±1 for the meta-d’>d’ group and 3±1 for the meta-d’>d’ group, non-paired t-

test, t15=2.748, p<0.05) was due to the ability of subjects with high metacognitive 

efficiency to read out certainty of being incorrect.  

 

 

Figure 8. (A) Means and standard errors of PDW slope-correct (dark blue bars), PreDW slope-correct 

(light blue bars), PDW slope-incorrect (dark red bars), PreDW slope-incorrect (light red bars) from all 

subjects (“all”), high metacognitive efficiency group (“high”) and low metacognitive efficiency group 

(“low”; *p<0.05, **p<0.01 for differences between PDW and PreDW). (B) Mean and standard error of 

PDW slope-correct minus PreDW slope-correct (blue line and shaded band) and of PDW slope-

incorrect minus PreDW slope-incorrect (red line and shaded band), for high metacognitive efficiency 

group. The text in the top of the panel shows mean and standard error of slope-based metacognitive 

ability. (C) Same as B, but for the low metacognitive efficiency group. All measurements represent 

data across difficulty levels (averaged within each subject) and then averaged across subjects. 

 

3.6 Slope-based metacognitive ability is compatible with meta-d’ 

Since slope-based measure is a new method we developed to assess metacognitive 

abilities, it is important to compare it with meta-d’, a known and widely used 

measure. The strong positive correlation (R=0.89, p<0.0001) between these two 

measures indicates that slope-based method can be considered a valid measure of 

metacognitive ability, with the advantage of allowing the independent quantification 

of certainty of being correct and certainty of being incorrect readouts (Fig. 9). 
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Figure 9. Correlation between two different measures of metacognitive ability. For each subject, the 

novel slope-based metacognitive ability measure is plotted against meta-d’ value. The black line is the 

best linear fit between the two measurements. Subjects are colored according to the metacognitive 

efficiency group (green, high metacognitive efficiency, blue, low metacognitive efficiency), numbers 

indicate subject labels. 

 

3.7 Wager-specific Type 2 reaction time 

In the present experiment, each trial had two manual response periods. Type 1 

reaction times reflect the time subjects took to report the perceptual decision (match-

to-sample). Type 2 reaction times reflect the time subjects took to choose between 

high or low wagers. Type 1 and Type 2 reaction times were calculated separately for 

each wager (wager-specific RT1 and wager-specific RT2), to test the influence of 

Type 1 reaction times on subsequent wagering behavior, as well as the relationship 

between certainty and Type 2 reaction times. 

The first mixed-effect ANOVA showed that mean wager-specific RT1 was 

unidirectional, decreasing when followed by high wagers (F5,75=21.140, p<0.0001). 

The interaction effect showed that subjects from the high metacognitive efficiency 

group responded faster during Type 1 decisions preceding some of the wagers 

(F5,75=4.004, p<0.01; Fig. 10A). 

The second mixed-effect ANOVA showed that mean wager-specific RT2 differed 

among wagers (F5,75=10.087, p<0.0001). They were shorter in the wager categories 1 

and 6 than the middle wagers (categories 3 and 4, p<0.05), generating an inverted U-

shape function of wager-specific RT2 (Fig. 10B). Since faster reaction times are 

associated with increased certainty (Kiani et al., 2014), this result further supports our 
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hypothesis that certainty increases in both directions of the wager scale. We associate 

fast Type 2 reaction times in the wager category 1 with increased certainty of being 

incorrect and fast Type 2 reaction times in the wager category 6 with increased 

certainty of being correct. The group comparison with mixed-effect ANOVA showed 

there were no significant differences between the groups (F1,15=0.397, p=0.54; Fig. 

10B). 

 

 

Figure 10. (A) Means and standard errors of wager-specific Type 1 (perceptual decision) reaction times 

(RT1) across all subjects (black curve), for the high metacognitive efficiency group (green curve) and 

for the low metacognitive efficiency group (blue curve). (B) Means and standard errors of wager-

specific Type 2 reaction times (RT2) across all subjects (black curve), for the high metacognitive 

efficiency group (green curve) and for the low metacognitive efficiency group (blue curve). All 

measurements represent averages across difficulty levels and across subjects. 

 

3.8 Slope-based measurements for each difficulty level 

We used Maniscalco and Lau (2012) approach to calculate the Type 1 decision 

criterion separately for the different difficulty levels. This information is relevant 

because subjects might develop different spatial biases for different difficulties (e.g. 

select more often the image on the right side in harder trials), making it impossible to 

compare different difficulty levels. The two-way ANOVA for repeated measures 

revealed that Type 1 criterion did not differ from zero (F1,16=0.009, p=0.93) or among 

the difficulty levels (F4,64=0.248, p=0.91), suggesting that subjects identified the 

match on the right or left side of the screen with the same probability at all difficulty 

levels. 

Next, we performed two independent one-way ANOVAs for repeated measures to test 

for differences in certainty readouts across the difficulty levels. The first ANOVA 
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showed that readouts of certainty of being correct decreased with difficulty level 

(F4,64=11.715, p<0.0001). The pair-wise post-hoc test revealed that these readouts 

decreased significantly only at the highest difficulty level 5 (p<0.05; Fig. 11). The 

second ANOVA showed that readouts of certainty of being incorrect also decreased 

with increased trial difficulty (F4,64=4.529, p<0.01). The post-hoc test revealed that 

these readouts decreased significantly at the difficulty levels 4 and 5 (p<0.05, Fig. 

11). These results suggest that subjects were able to better read out both certainty 

directions when trials were easier. 

 

 

Figure 11. Means and standard errors of PDW slope-correct minus PreDW slope-correct (blue lines 

and shaded bands) and of PDW slope-incorrect minus PreDW slope-incorrect (red lines and shaded 

bands) for each difficulty level. The text in the top of each panel show means and standard errors of 

slope-based metacognitive ability (“Mcog”), readout of certainty of being correct (“Corr”) and readout 

of certainty of being incorrect (“Incor”). 

 

3.9 Earnings on PDW trials 

Finally, we applied two linear regressions to understand how subjects’ PDW earnings 

were determined by their metacognitive abilities. The first linear regression showed 

that subjects’ earnings can be explained by their general metacognitive ability 

quantified by slope-based measurements (β=0.817, t15=3.686, p<0.005). A second 

linear regression dissociated the two components of the slope-based metacognitive 

ability and showed that, although the ability to read out certainty of being correct 

partially explained their earnings (β=0.622, t14=2.646, p<0.05), their readouts of 

certainty of being incorrect influenced more how much they earned during PDW 

(β=1.060, t14=4.201, p<0.001). 
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4. Discussion 

In the present study we were able to measure trial-specific readouts of certainty of 

being correct and certainty of being incorrect by asking subjects to bet money on their 

perceptual decisions after a delayed match-to-sample task (post-decision wagering, 

PDW). We quantified both certainty directions with a help of pre-decision wagering 

(PreDW, a task in which subjects bet according to the average expected difficulty of 

the upcoming perceptual decision and their internal biases), isolating PDW trial-

specific information. Within the same difficulty level, adaptive PDW arose from 

efficient readouts of varying accumulated evidence and varying Type 1 performances 

in different trials. Our results provide a new perspective on the interpretation of 

certainty scales, since they demonstrate that subjects can use these scales to report bi-

directional certainty readouts if given an opportunity for such reports, even though 

they were not explicitly instructed to do so (see Supplementary Discussion for a 

detailed discussion about the influence of the task design on certainty scales). 

We also established a relationship between certainty readouts and metacognitive 

efficiency (meta-d’/d’). Subjects with high metacognitive efficiency (meta-d’>d’) 

were those who read out not only certainty of being correct, but also certainty of 

being incorrect. In addition, most subjects with high metacognitive efficiency had 

Type 1 performance below the chance level for the lowest wager, revealing their 

ability to identify incorrect Type 1 decisions. Maniscalco and Lau (2012) initially 

assumed that the Type 2 sensitivity (meta-d’) should not exceed the Type 1 sensitivity 

(d’) because subjects use the same evidence in both types of decision. We argue that, 

since trial-specific readouts of certainty of being incorrect intrinsically depend on 

post-decisional evidence accumulation (due to a reversal of the accumulation 

direction), the relationship between certainty of being incorrect and metacognitive 

efficiency suggests the use of extra evidence after Type 1 decisions. Hence, 

metacognitive efficiency can be used not only as measure of deleterious evidence 

leakage when meta-d’<d’, but also as a measure of evidence accumulation, especially 

when meta-d’>d’. 

Altogether, our results suggest – supporting Yu et al. (2015) and Murphy et al. (2015) 

findings – that post-decisional evidence accumulation must be considered when Type 

2 decisions follow Type 1 decisions in time. More importantly, our slope-based 
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results provided the first demonstration that the interpretation of implicit certainty 

scales should take into account certainty bi-directionality. 

The slope-based results were further supported by the reaction times during Type 2 

decisions since they also suggested increased certainty in both directions of the wager 

scale. In previous studies that used multiple-grade scales, Type 2 reaction times were 

not directly associated to certainty because the starting position of motor responses 

used for confidence reports varied across trials to reduce motor planning. 

Consequently, reaction times might have also varied because the starting position 

could be closer or farther from the intended option, causing varying motor urgency 

not related to certainty (e.g. Fleming et al., 2012b; Lebreton et al., 2015). In our task 

design, however, Type 2 reaction times were based on binary decisions (wager high 

or low) and associated with specific wagers in a second response step. This novel 

design with two-step Type 2 decision reports allowed us to measure unbiased Type 2 

reaction times in the first stage, and to provide additional support for the bi-

directional interpretation of the certainty scale mapped onto the wagering scale. 

 

4.1 Metacognitive efficiency as a measure of evidence accumulation  

Yu et al. (2015) found that post-decisional evidence accumulation has asymmetric 

rates depending on the drift direction. According to their results, the accumulation is 

stronger towards the non-selected option (inconsistent evidence). We, therefore, 

interpret the similar asymmetry found in our group comparison – stronger association 

of increased metacognitive efficiency with the readout of certainty of being incorrect 

than with readout of certainty of being correct – as an additional demonstration that 

metacognitive efficiency can be linked to post-decisional evidence accumulation. 

 

4.2 Trial difficulty and certainty readouts 

Commonly, previous studies interpreted low confidence reports as low certainty 

(Fleming and Lau, 2014; Heereman et al., 2015; Maniscalco and Lau, 2012; Sandberg 

et al., 2010). In those cases, low certainty would be expected to increase on harder 

trials together with the use of low ratings. However in the present study, certainty of 

being incorrect increased on easier trials (Fig. 11) indicating that, on these trials, 
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subjects were using low wagers when they were more certain about their (incorrect) 

decisions, and not when they were more uncertain. 

 

4.3 Revisiting our framework 

We bring together our results about certainty bi-directionality, post-decisional 

evidence accumulation and trial difficulty, and the knowledge provided by published 

models of evidence accumulation (e.g. Pleskac and Busemeyer, 2010; Yeung and 

Summerfield, 2012; Yu et al., 2015), to update the framework presented in scenario C 

of the Figure 1.  

Figure 12 illustrates one harder (A) and two easier (B) incorrect trials of the DMTS 

task followed by six-grade certainty scale exemplified in the Figure 1 (see 

Introduction for more details about the trial dynamics). The “evidence axis” 

exemplifies a theoretical range of evidence available for the task. On harder trials, the 

evidence is distributed narrowly around the Type 1 criterion. The easier the trial, the 

higher the probability that the evidence is accumulated further from the Type 1 

criterion, and closer to the limits of the evidence axis. In a specific trial, if the post-

decisional evidence remains in the same side of the Type 1 criterion as during the 

Type 1 decision, it is read out as certainty of being correct (blue curve). If the 

evidence crosses the Type 1 criterion, it leads to different levels of certainty of being 

incorrect (red curve). Hence, certainty increases towards the two directions of the 

evidence axis, resulting in a bi-directional certainty scale as the exemplified U-shape 

function of certainty at the bottom of the figure. 

On harder trials (Fig. 12A), the difference between the perceptual evidence supporting 

each option is small, and consequently d’. According to our results, the Type 1 

performance at the hardest difficulty level was at the chance level. Moreover, subjects 

did not show any metacognitive ability during Type 2 decisions in most difficult trials 

(Fig. 11). We suggest, therefore, that the post-decisional evidence accumulation rate 

remained as low as before the Type 1 decisions, and did not allow subjects to improve 

their metacognitive efficiency. On easier trials (Fig. 12B), the large difference 

between the perceptual evidence supporting each option of the Type 1 decision 

allowed subjects to better distinguish the match, generating a high d’. Nevertheless, 

there were still some trials, as exemplified, in which subjects selected the wrong 
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option. Our group comparisons suggest that subjects with low metacognitive 

efficiency did not accumulate post-decisional evidence or failed in reading it out 

efficiently, since their meta-d’ was smaller than d’ (Fig. 12B, left). We suggest that 

subjects with high metacognitive efficiency accumulated more evidence after the 

Type 1 decisions (Fig. 12B, right). The post-decisional evidence accumulation 

allowed subjects with high metacognitive efficiency to improve the detection of 

correct choices (not shown in this figure), but impacted even more the detection of the 

incorrect choices.  

 

 

Figure 12. Framework of scenario C (Fig. 1C) revised according to our findings and to published 

models of evidence accumulation. Trial time goes down from t0 to t4. (A) On harder trials, d’ is small 

and the drift rate of evidence accumulation before and after the Type 1 decision is low, resulting in 

Type 1 performance at the chance level and no metacognitive ability. The Type 2 criteria distribution is 

biased to the use of low ratings, which in this case signify the low certainty. (B) On easier trials, the 

accumulation of evidence before the Type 1 decision is high and, consequently, d’ is large. We propose 

that the inter-subject variability in metacognitive efficiency arises from their ability to accumulate and 

read out post-decisional evidence. On the left, although subjects with low metacognitive efficiency 

have the same d’ as subjects with high metacognitive efficiency, they did not accumulate post-

decisional evidence fast enough or failed in reading it out efficiently since their meta-d’ is smaller than 

d’. On the right, the post-decisional evidence accumulation is high for subjects with high metacognitive 

efficiency, allowing them to better distinguish correct from incorrect Type 1 decisions and increase 
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their meta-d’. Compared to the low metacognitive efficiency group, the post-decisional accumulation 

of evidence is especially high when it drifts toward the non-selected match option, more strongly 

influencing the detection of the incorrect choices. Importantly, in this case, low ratings signify a high 

certainty (of being incorrect), rather than low certainty. 

 

It is important to emphasize that the level of certainty each rating (or wager) 

represents critically depends on the difficulty level and on individual ability to 

accumulate and read out evidence. On harder trials, subjects more often used low 

wagers and, due to low average certainty (i.e. high difficulty level), these wagers 

represented low levels of trial certainty. On easier trials, subjects used more often 

high wagers because of high average certainty (i.e. low difficulty level) but, in this 

case, low wagers represented high or low levels of trial certainty depending on 

subjects’ metacognitive efficiency. Subjects with high metacognitive efficiency were 

able to accumulate inconsistent post-decisional evidence at high rates. This evidence 

not only could cross the Type 1 criterion, but also reach far distances to the other side. 

The readouts of this evidence generated high certainty of being incorrect, which was 

mainly reported through the lowest wager. Subjects who did not accumulate 

inconsistent post-decisional evidence at high rates, on the other hand, used low 

wagers to report certainty readouts about the evidence that was close to the Type 1 

criterion (i.e. low certainty level). This reasoning further emphasizes that the same 

response scale can be used to represent very different metacognitive readouts, 

underscoring the importance of interpretation in addition to scale formulation. 

Furthermore, the dependence of certainty representations on the difficulty and 

individual biases endorses the importance of the baseline measures to distinguish 

between trial-specific and average certainty readouts. 

 

Summary 

The present work contributes to the idea that humans and other animals continue to 

monitor and accumulate relevant evidence even after the decision, to plan future 

actions more efficiently. Most importantly, it suggests that continued accumulation of 

evidence allows subjects to read out and report two certainty directions: certainty of 

being correct and certainty of being incorrect, provided that the metacognitive 

response scale affords the possibility of such reports. 
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One of the strengths of our task design and analyses is the possibility of studying 

these bi-directional certainty readouts not only in humans but also in other animals, as 

well as in patients with moderate impairments on language comprehension. We 

inherited this strength from the reward-driven post-decision wagering approach, and 

we expanded its advantages by using concomitantly pre- and post-decision wagering 

to isolate trial-specific information and access certainty of being correct and certainty 

of being incorrect separately.  
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Supplementary material 

S.1 Supplementary Results 

The Supplementary Figure 1A and Supplementary Figure 1B illustrate – for PreDW 

and PDW, respectively – the wager-specific proportions of correct and incorrect trials 

separately for the five difficulty levels. These proportions resulted in the slope-based 

measures illustrated in the third row (Supplementary Figure 1C) of this figure and in 

the Figure 11. To test, in each difficulty level, if slope-correct was different from 

slope-incorrect depending on the trial type (PreDW or PDW), we performed two-way 

ANOVAs for repeated measures. In none of the difficulty levels PreDW slope-correct 

was significantly different from PreDW slope-incorrect (p>0.05; Supplementary Fig. 

1A), indicating reliable baselines. 

Next, we performed paired t-tests within each difficulty level to test for significant 

differences between PDW and PreDW slopes. The t-tests revealed that subjects’ PDW 

slopes-correct were different from their PreDW slopes-correct at all difficulty levels 

(p<0.01), except for the highest difficulty level 5 (p>0.05). Additionally, PDW slope-

incorrect was not different from PreDW slope-incorrect for the difficulty levels 4 and 

5 (p>0.05), while subjects were able to read out certainty of being incorrect at the 

difficulty levels 1, 2 and 3 (p<0.01). 

The Supplementary Figure 1 revealed two important points considered in our 

analyses. First: the baseline condition (PreDW trials) revealed the general (non-trial-

specific) effect of expected perceptual difficulty assessments. For instance, the 

realization of increased family difficulty made subjects to use low wagers 

increasingly but independently of the correctness of the trials. Without considering 

this baseline measurement, we would not be able to distinguish this adaptive strategy 

(wagering low for hard trials) from the use of trial-specific certainty during PDW 

trials. Even if the task would contain only one difficulty level, or maybe especially in 

those cases, the baseline measurement is essential to quantify certainty readouts 

taking into account individual biases. Second: during PreDW trials (especially during 

easier trials) subjects chose more often middle wagers (wagers 3 and 4). Since linear 

fits captured wagering trends regardless of the effect of such behavior, our choice for 

using the slopes of linear fits (instead of the best-fitted curves) proved to be valuable 

for establishing useful baselines for the slope-based measurements. 
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Supplementary Figure 1. (A) Means and standard errors of linear fits for correct trials (blue lines and 

shaded bands) and incorrect trials (red lines and shaded bands) for (A) PreDW (baseline) and (B) 

PDW, fitted to the data: means and standard errors of wager-specific proportion of correct (blue 

curves) and incorrect (red curves) trials, for each difficulty level. (C) Means and standard errors of 

PDW slope-correct minus PreDW slope-correct (blue line and band) and of PDW slope-incorrect 

minus PreDW slope-incorrect (red line and band) for each difficulty level (same data as in Figure 11). 

Measurements represent averages across subjects. 

 

The frequency of the use of each wager (means and standard errors from the lowest to 

the highest wager) in PDW trials (19±2 11±1 16±1 16±2 13±1 25±3%) and in PreDW 

trials (15±2 19±3 23±3 19±2 11±2 13±3%) showed that subjects used the entire 

wager scale. 
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S.2 Supplementary Discussion 

Different aspects of the task design might favor or limit post-decisional evidence 

accumulation and, consequently, bi-directional certainty readouts. We discuss these 

aspects below together with our results. 

Time pressure: Yeung and Summerfield (2012) proposed that later drifts towards the 

correct option, not considered by the time subjects commit with the wrong option, 

generate extra evidence used for error detection. In Charles et al. (2013), for example, 

subjects who needed to report Type 1 decisions within 1 s showed higher 

metacognitive efficiency than those who had twice the time to report their perceptual 

decisions. This result suggests, according to the link we propose between 

metacognitive efficiency and post-decisional evidence accumulation, that time 

pressure over Type 1 decisions increased the use of extra information during Type 2 

decisions. In our experiment, the average readout of certainty of being incorrect and 

the predominance of subjects with meta-d’>d’ indicate that the applied time pressure 

(1.5 s) was enough to restrict evidence accumulation before Type 1 decisions and 

favor post-decisional evidence accumulation.  

Memory: memory tasks (such as DMTS) might promote the use of short-term 

memory as another source of extra information for the Type 2 decisions. Since the 

basic information required for these Type 1 decisions, the sample, can only be 

accessed through top-down memory retrieval mechanisms, those mechanisms – which 

do not depend exclusively on continuous evidence input – might keep providing 

information also after Type 1 decisions (Magnussen and Greenlee, 1999; Yu et al., 

2015). 

Propriosensory evidence: the propriosensory evidence related to the report of the 

Type 1 decision itself can serve as another source of post-decisional information. It is 

known that Type 1 reaction times correlate with certainty (Fetsch et al., 2014; Kiani 

and Shadlen, 2009). Therefore, subjects could, in principle, read out those reaction 

times – instead of or in addition to the perceptual evidence – in order to judge their 

Type 1 performance during the Type 2 decisions. In accordance to this reasoning, 

Fleming (2015) modified subjects’ Type 2 decisions by manipulating the activity of 

motor areas prior to metacognitive reports. In our experiment, on the contrary, wager-

specific Type 1 reaction times were unidirectional (decreased towards the highest 
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wager) and could not provide the bi-directional readouts measured both by the slope-

based measurements and by the wager-specific Type 2 reaction times. 

Rewards and punishments: lastly, the use of PDW might favor evidence accumulation 

because it motivates subjects to fully explore their sources of information through 

rewards and punishments (i.e. profit more when correct and avoid losses when 

incorrect). We suggest that the monetary motivational aspect of PDW also contributed 

to the predominance of subjects showing high metacognitive efficiency (11 out of 17 

subjects).  

Taking into account the potential influence of the described aspects on the post-

decisional evidence accumulation, it still needs to be tested how the bi-directionality 

of the certainty scale is affected by different task designs. Nevertheless, we presented 

data to argue that post-decisional evidence accumulation should be considered in 

experiments in which certainty readouts are required after speeded Type 1 decisions.  
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Abstract 

Humans and other animals continuously evaluate their decisions in order to behave 

adaptively. If the post-decisional information is inconsistent with the information used 

during the decision, it might decrease subject’s confidence about having made a 

correct decision (certainty of being correct), or even make them confident about 

having made an incorrect decision (certainty of being incorrect). Using six-grade 

post-decision wagering, we previously demonstrated that many subjects are able to 

read out both certainty directions to flexibly bet money on the accuracy of their 

perceptual decisions. The present study aimed at locating the brain areas that encode 

these readouts by asking subjects to perform a similar task inside an MRI scanner. We 

show that the behavioral requirements of the post-decision wagering task (gain more 

when correct and avoid large losses when incorrect) prompted several brain areas – 

such as the dorsolateral prefrontal cortex, the dorsal anterior cingulate cortex and the 

intraparietal sulcus – to encode certainty in a bi-directional way during the wagering 

response period. Fewer areas encoded exclusively either unidirectional certainty of 

being correct or certainty of being incorrect. Moreover, we demonstrated that the 

areas involved in the bi-directional certainty readouts did not encode the difficulty of 

the perceptual decisions. Nevertheless, some of these areas were involved in the 

evaluation of post-decisional information prior to the wagering event, which might 

have resulted in the certainty-related bi-directional reports. Our results demonstrate 

that under behavioral demands that prompt, and afford, an adaptive strategy of 

implicit metacognitive judgments utilizing both certainty directions, the encoding of 

the bi-directional certainty becomes a prevalent pattern distributed across task-related 

brain regions. 

 

Keywords: bi-directional certainty, confidence, post-decisional information, reward 

expectation, fMRI, post-decision wagering 

 

Abbreviations: post-decision wagering (PDW), delayed match-to-sample task 

(DMST) 
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1. Introduction 

Adaptive interaction with the environment requires that humans and other animals 

evaluate their decisions continuously. This is possible because individuals accumulate 

evidence during decision-making processes (Ratcliff and McKoon, 2008) as well as 

after decisions are made, even if decision outcomes are not accessed promptly 

(Fleming, 2016; Murphy et al., 2015; Pleskac and Busemeyer, 2010; Yu et al., 2015). 

The amount of evidence supporting one decision option is commonly referred to as 

decision variable (DV) and is reflected in the certainty that individuals have about 

their decisions. In this context, binary perceptual decisions are thought to be 

implemented by comparing DV against the criterion that subjects use to classify the 

evidence (i.e. decision criterion), whereas the certainty would reflect the readout of 

the distance between DV and this criterion (De Martino et al., 2012; Hebart et al., 

2014; Kiani and Shadlen, 2009; Moran et al., 2015). Consequently, certainty would 

vary as individuals accumulate more evidence (Pleskac and Busemeyer, 2010; Yu et 

al., 2015).  

At the post-decisional stage, accumulated evidence can represent error likelihood if it 

is conflicting with the information used during the decision (Moran et al., 2015; 

Murphy et al., 2015; Taylor et al., 2015). Hence, post-decisional information not only 

modifies the decision reliability (i.e. its certainty level), but it can also be classified as 

consistent or inconsistent (Yu et al., 2015). The consistency of the post-decisional 

evidence refers to its drift direction. When the post-decisional information drifts to the 

same direction of the pre-decisional drift (consistent information), it increases 

certainty of being correct. When it drifts to the opposite direction of the pre-

decisional drift (inconsistent information), it decreases certainty of being correct. We 

named as certainty of being incorrect the inconsistent information that crosses the 

decision criterion and thus starts supporting the non-selected decision option (Moreira 

et al., 2016). 

Although certainty has recently become one of the most hotly debated topics in the 

neuroscience of decision-making (Fleming, 2016; Pouget et al., 2016), the focus of 

certainty-related studies has been so far on certainty of being correct (Fleming and 

Lau, 2014; Fleming et al., 2012; Hebart et al., 2014; Heereman et al., 2015; Kepecs 

and Mainen, 2012; Kiani and Shadlen, 2009). Most of these studies consider that 

certainty readouts are essentially unidirectional, neglecting the possibility that DV 
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crosses the decision criterion after the decisions. However, in a previous study we 

have demonstrated that human subjects are able to wager adaptively after their 

decisions (post-decision wagering, PDW; Persaud et al., 2007) by reading out 

certainty of being correct and certainty of being incorrect in order to profit more when 

the decision was correct and avoid large losses when it was incorrect (Moreira et al., 

2016). Since we have shown that certainty readouts can be bi-directional, the aim of 

the present study was to identify brain areas that encode both readouts. To this end, 

we used a task with similar perceptual decisions (match-to-sample) and implicit 

certainty scale (six-grade PDW) components as in Moreira et al. (2016), adapted for 

slow event-related fMRI. Three parametric models were created to search for brain 

areas able to encode (a) bi-directional certainty, (b) unidirectional certainty of being 

correct or (c) certainty of being incorrect. 

One hypothesis is that different brain areas are associated with unidirectional readouts 

of certainty of being correct and certainty of being incorrect, and the information 

associated with each certainty direction is only converged at the late stages of brain 

processing (e.g. movement coding at the primary motor cortex). In previous studies, 

the readouts of certainty of being incorrect were more robustly associated with areas 

of the cingulate cortex (e.g. dorsal anterior cingulate cortex in Charles et al., 2013 and 

Taylor et al., 2015; posterior cingulate cortex in Agam et al., 2011), whereas the 

association between readouts of certainty of being correct and brain activity was 

investigated by a greater number of studies, and assigned to innumerous areas (e.g. 

anterior prefrontal cortex in Fleming et al., 2012; ventral striatum, dorsal anterior 

cingulate cortex and superior parietal lobule in Hebart et al., 2014; dorsolateral 

prefrontal cortex in Heereman et al., 2015; pulvinar in Komura et al., 2013; 

ventromedial prefrontal cortex in De Martino et al., 2012; intraparietal sulcus in 

Filimon et al., 2013; premotor cortex in Fleming et al., 2015). Hence, if the brain 

processes each certainty direction mostly independently, those areas would be 

separately associated with each certainty direction.  

As an alternative hypothesis, cortical and subcortical areas could encode both 

certainty directions. This hypothesis is in agreement with the distributed consensus 

model of Cisek and Kalaska (2010) which proposes that the brain implements 

multiple action options and decides for the most adaptive one using many levels of 

representations already within the sensorimotor system. This model fits to our 
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experiment because PDW is not only influenced by evidence-related certainty 

readouts, but it is also associated with subjective cost functions typical of reward-

based decisions that have ecological consequences to the subjects (De Martino et al., 

2012; Kepecs and Mainem, 2012; Pouget et al., 2016). We hypothesized that, in our 

experiment, if certainty-related information influences representations of action 

options, a distributed processing would be reflected in a bi-directional pattern of 

activity in multiple brain areas during the wagering period. 

In accordance with the distributed hypothesis, we found out that several frontal, 

parietal, cingulate and subcortical areas presented bi-directional pattern of activity 

during PDW. Therefore, the present work is the first demonstration of a distributed 

processing based on bi-directional certainty information, resulting from adaptive 

implicit metacognitive judgments driven by task demands. 

 

2. Methods 

2.1 Subjects 

Twenty healthy subjects (5 males; mean age 25.5 ± 3.5 years) were recruited via the 

student online platform of the University of Goettingen. All subjects had normal or 

corrected-to-normal vision. Subjects were compensated with 10 € for the practice 

session and according to their performance during the scanning sessions (see below). 

All subjects provided written consent for participation. The experimental procedures 

were approved by the local ethics committee of the Georg-Elias-Müller-Institute for 

Psychology. 

 

2.2 Experimental setup 

Subjects reclined inside the MRI scanner in the supine position. The stimuli were 

back-projected on a translucent screen (800 x 600 resolution) and viewed by the 

subjects through a surface mirror mounted on the head coil at approximately 12 cm 

from subjects’ eyes and 81 cm from the screen. Subjects maintained central fixation 

throughout the trial. Gaze position was acquired with 60 Hz MR-compatible 

miniature infrared eye tracker camera and ViewPoint 2.8.6.21 software (Arrington 

Research). Subjects responded with their right and left thumbs using the buttons 1 and 

4 of a MR-compatible button box with 4 buttons (Current Designs). The task was 
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controlled via MATLAB (Mathworks) using the Psychophysics toolbox 

(http://psychtoolbox.org/).  

 

2.3 Perceptual decisions: delayed match-to-sample task 

Subjects performed a delayed match-to-sample (DMTS) task in which they had to 

find, between two options, the match for a sample that consisted of a gray circle of 4° 

of visual angle radius with a black bar crossing its center. Ten different sample 

options were generated by varying the bar orientation in counterclockwise rotation 

from the horizontal plane (from 16° to 52°). One of these samples was presented 

pseudo-randomly at the beginning of each trial in the center of the screen. Following 

sample presentation, one sample-like image was presented 10.4° to the right and 

another one 10.4° to the left of the center of the screen. One of them had a bar in the 

same orientation as the sample (match) and the other one had a bar in a different 

orientation (non-match). Five difficulty levels were created by different orientation 

contrasts between the match and the non-match (from 4° to 20°; Fig. 1C). Subjects 

selected the match by using the button positioned in the same side of the screen as the 

selected image (Fig. 1A). 

 

2.4 Confidence scale: post-decision wagering 

We used post-decision wagering (PDW) as confidence scale because it is more 

intuitive and motivating to subjects (Persaud et al., 2007) and because it implicitly 

prompts individuals to read out both certainty directions and report them using the 

wagers (Moreira et al., 2016). During PDW, subjects bet money on the correctness of 

their perceptual decision. They won the wagered money for correct perceptual 

decisions and lost it for incorrect decisions. Subjects wagered by first selecting to 

wager high (wager categories 4, 5 and 6) or low (wager categories 1, 2 and 3), and 

afterwards by selecting a specific wager among high or low options. High or low 

wagers were positioned at 9.2° to the right and 9.2° to the left from the fixation spot, 

on the horizontal axis. The high and low sides varied randomly across the trials. 

In 20% of the trials, subjects performed a control task instead of PDW. During the 

control task subjects were instructed by a blue square to select a specific “wager” 

(Fig. 1). Control trials aimed to dissociate general processes (i.e. visual stimulation 

http://psychtoolbox.org/


71 

 

and motor responses) from the investigated certainty-related processes and did not 

influence subject earnings. 

Task instructions aimed to improve the discriminatory power of metacognitive 

judgments across trials by emphasizing that subjects should try to utilize the entire 

wagering scale. Subjects started each scanning session with 10 € and could earn up to 

20 € according to their performance. They wagered on the correctness of perceptual 

decisions using the following pay-off matrix, which was explained to them before the 

experiment: 

 

Table 1 

Wagering pay-off matrix 

Perceptual decision Low wagers High wagers 

Correct 3 cents 7 cents 11 cents 15 cents 19 cents 23 cents 

Incorrect -3 cents -7 cents -11 cents -18 cents -22 cents -26 cents 

 

As can be seen from the pay-off matrix, if subjects wagered low, they were rewarded 

and punished in the same way for correct and incorrect perceptual decisions. But 

when they wagered high, their incorrect decisions were punished with 3 cents more 

than they would be rewarded for correct decisions. This pay-off matrix was designed 

based on Moreira et al. (2016) in order to avoid the indiscriminate use of high wagers 

when subjects knew they were performing generally above the chance level (50%). 

 

2.5 Trial timeline 

Eye and hand movements were controlled throughout the trial. Each trial started with 

the appearance of a red spot (0.6º radius) and a gray framed-square (size 5x5º) in the 

center of the screen. Subjects were correctly positioned in the “rest position” when 

they fixated the gaze inside the eye fixation window (3º radius) and, concomitantly, 

positioned the left and right thumbs over the buttons 1 and 4, respectively. After the 

rest position period 1 (3/4/5 s), the sample was presented in the center of the screen 

for 1 s, followed by a mask presented at the same position for the same amount of 

time. After mask presentation, subjects maintained the rest position for 3 s (rest 

position period 2) before the match-to-sample presentation, in which they had up to 

1.5 s to select the image they believed was the match by using the button (and hand) 
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corresponding to the selected side (Fig 1.A). The rest position period 3 (7/8/9/10 s) 

followed the perceptual decision. After that, subjects selected one wager category 

within 2.7 s. A green square frame appearing above the selected wager for 0.3 s 

signalized the end of the wagering period. The rest position period 4 (7/8/9/10 s) 

occurred after PDW/control and was followed by an intertrial interval of 2 s, in which 

subjects were allowed to move or close the eyes. During the rest position periods, 

there was blink tolerance of 0.4 s. There was no trial-by-trial feedback about the 

correctness of the perceptual decisions (Fig. 1). 

 

 

Figure 1. Task design. (A) In the two response periods (match-to-sample and PDW/control), subjects 

used the button and hand in the same side of the screen as the intended option. (B) A bright red spot 

and a gray filled square at the center of the screen indicated that subjects adopted in the rest position 

(gaze fixation inside the fixation window and left and right thumbs on the buttons 1 and 4, 

respectively). After staying in the rest position for 3/4/5 s (rest position period 1), the sample was 

presented for 1 s, followed by a mask presentation (also 1 s). After the mask, subjects maintained the 

rest position for 3 s (rest position period 2) before the match-to-sample. Subjects used the buttons 1 or 

4 to select the image they believed was the match. They had up to 1.5 s to respond. After the response, 

in order to keep the same visual stimulation across all trials, the bars disappeared but the circles 

remained until the completion of 1.5 s from match-to-sample presentation. The rest position period 3 

(7/8/9/10 s) separated match-to-sample from PDW/control event. During PDW (80% of the trials), the 

letters H (high) and L (low) were presented on the right and on the left of the screen above gray squares 

representing the wagers. As instructed to and practiced by the subjects, the wager categories had 

always the same position below the letter they were associated to (wager categories 1, 2 and 3 below 

“L”, and wager categories 4, 5 and 6 below “H”), but high and low position varied randomly across 

trials. After subjects selected to wager high or low, a yellow square cursor appeared randomly above 

one of the three gray squares. Subjects used the same button to choose a specific wager. The selection 

always moved from center-out and was restricted up to two movements. It means that the cursor could 
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wrap around from out to center, but could not return to the initial position. The selection was visually 

confirmed by a green square appearing above the selected wager for 0.3 s. The control task was similar 

to PDW, except that subjects were instructed to select high or low and then a specific “wager” 

according to the instruction given by a blue square that appeared above one of the wagers. After 

PDW/control, subjects maintained the rest position for 7/8/9/10 s (rest position period 4) before the 

intertrial interval (2 s). (C) Five difficulty levels were created by different orientation contrasts between 

the match and the non-match options (linearly from 4° to 20°).  

 

The rest position periods 1, 3 and 4 were jittered to decrease the prediction of the 

onset of following events and to improve the estimation of the regressors used in our 

fMRI analyses. The rest position period 2 was not jittered to keep the same time 

interval (and therefore the same memory requirements) between sample presentation 

and match-to-sample across different trials. We chose the jittered rest position periods 

so they fitted our task design and incorporated the smallest total amount of 

unexplained variance in our models. This variance was estimated using 3dDeconvolve 

function (nodata option, AFNI) as described by Filimon et al. (2013). The selected 

series of rest position periods were randomized across different runs.  

 

2.6 Time-course of experiment: practice and experimental sessions 

Subjects performed one practice session (60 minutes) outside the scanner to become 

familiar with the task contingencies, especially the long resting position periods 

required by the slow event-related design. They completed the practice session and 

the three scanning sessions on different days. The scanning sessions included one 

anatomical scan and four functional runs of 15 minutes. Feedbacks about the overall 

earnings were presented every scanning session after the second and fourth runs. 

During the anatomical run of the first session, subjects performed seven practice trials 

to become familiar with the in-bore setup.  

 

2.7 Behavioral data analysis 

The behavioral data were analyzed for performance, wagering, reaction time and 

sensitivities on perceptual and metacognitive decisions. The analysis was performed 

using MATLAB (Mathworks). When required, post-hoc tests were performed and 

corrected using Bonferroni correction. 
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The performance associated to a certain wager was calculated dividing the number of 

correct trials by all trials this wager was assigned to. In order to test if the 

performance across different wagers varied because of the assignment of those wagers 

to correct or incorrect trials, we also calculated wager-specific proportions of correct 

trials (“number of correct trials each wager was assigned to” divided by “all correct 

trials”) and wager-specific proportions of incorrect trials (“number of incorrect trials 

each wager was assigned to” divided by “all incorrect trials”). Both measures were 

used to create our fMRI-related models as described in fMRI Data Analysis.  

The task contained two manual response periods: match-to-sample and wagering. The 

match-to-sample reaction time (named RT1) represented the time to select a possible 

match; and the wagering reaction time (named RT2) represented the time to select 

between wagering high or low. Since faster reaction times are associated with 

increased certainty (Festinger, 1943; Kiani et al., 2014) and because we assumed that 

subjects used wagers to maximize their earnings and, as consequence, implicitly 

reported their certainty; we also calculated RT1 and RT2 for each wager (wager-

specific RT1 and wager-specific RT2, respectively).  

Lastly, in order to obtain a comparable and unbiased measure of perceptual decision 

and metacognitive sensitivities, we used Maniscalco and Lau (2012) code provided at: 

http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html to calculate d’ 

(perceptual decision sensitivity) and meta-d’ (metacognitive decision sensitivity). 

Meta-d’ is calculated using the same parameters of a Signal Detection Theory (SDT) 

model used for perceptual decisions, thus d’ and meta-d’ are in the same scale. The 

code estimates the value of d’ that would have been required to produce the observed 

hits and false alarms of the metacognitive decisions. In our task, metacognitive 

efficiency (meta-d’/d’) demonstrates how much the sensitivity associated to wagering 

was improved (meta-d’>d’) or worsened (meta-d’<d’) compared to the sensitivity 

associated to perceptual decisions. According to Moreira et al. (2016), metacognitive 

efficiency can also reveal how much post-decisional evidence subjects were able to 

accumulate and use for their metacognitive judgments. 

 

http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html
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2.8 MRI Data Acquisition and preprocessing 

Subjects were scanned using a Siemens Trio 3T scanner and a Siemens 32-channel 

head coil. High-resolution structural scan (T1-weighted MPRAGE volume, 1 × 1 × 1 

mm, TR 2300 ms, TE 3.97ms, 192 slices, flip angle: 9°) was acquired for anatomical 

localization. Functional images were acquired with EPI sequences (3 × 3 × 3 mm, TR 

1000ms, TE 33ms, 36 transverse slices, multiband-factor 3, 0.15 mm gap between 

adjacent slices). The anatomical T1-weighted scans were processed in BrainVoyager 

QX 2.4 (Brain Innovation). The anatomical images from sessions 2 and 3 were 

coregistered to the first session in the commissure–posterior commissure (AC–PC) 

plane and then transformed from AC–PC into Talairach space. Each functional run 

consisted of 904 volumes. The first four volumes of each run were excluded from 

functional analyses but were used for coregistration. EPI series from each run were 

preprocessed in NeuroElf 1.0 (Jochen Weber, www.neuroelf.net) using slice time 

correction, linear trend removal, and a high-pass temporal filter with three cycles per 

10 min run cut-off. The first functional volume in the session was aligned to the 

original anatomical T1-weighted scan using rigid body transformations. 3D motion 

correction with 6 degrees of freedom was done by registering all EPI volumes to the 

first volume of the first run in the session. 3D volume time courses were computed in 

Talairach space using the anatomical AC-PC and Talairach transformation parameters 

(voxel size 3 × 3 × 3 mm). Additional spatial smoothing (6 × 6 × 6 mm) was applied 

to the 3D volume time courses. 

 

2.9 fMRI Data Analysis 

Several GLMs were used to estimate the BOLD response associated with specific 

components of the task. The GLMs were performed only for the voxels encompassed 

in a mask based on the Colin brain (Holmes et al. 1998), transformed into the 

Talairach space. The regressors were convolved with a canonical hemodynamic 

response function (time-to-positive-peak: 5 s, time-to-negative-peak: 15 s). 

We modeled five events of main interest: fixation, sample presentation, match-to-

sample, wagering and control (see Supplementary Table 1 for information about the 

onset and duration of each regressor). In addition to the main regressors, all GLMs 

contained eight regressors of no interest: (1) trial abortion due to inappropriate button 

use (e.g. releasing the buttons during rest position periods), (2) trial abortion because 

http://www.neuroelf.net/
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of breaking gaze fixation, and (3-8) six head motion regressors extracted during fMRI 

data preprocessing. When an event aborted the continuation of the trial, the previous 

trial events were still modeled and used in our estimations. 

Three of the main events: fixation, sample and control were modeled using non-

parametric regressors. The events: match-to-sample and wagering were modeled 

using parametric regressors in order to search for areas whose activity varied 

according to specific patterns associated with performance per difficulty level (match-

to-sample event) or associated with certainty readouts (wagering event). Since we 

assume that there are three possible certainty readouts (certainty of being correct, 

certainty of being incorrect and bi-directional certainty), we created one wagering 

parametric regressor for each certainty readout and we entered them in three separate 

GLMs.  

The regressors expansions were selected by fitting the behavioral data (performance 

per difficulty level or wager-specific proportions of correct and incorrect trials) to 

different functions (linear, quadratic and exponential) and, afterwards, choosing the 

best fitting function using the Akaike information criterion (AIC) comparison 

(Burnham & Anderson, 2004; Field, 2009).  

Performance per difficulty level was best described by the quadratic function (AIC = -

513) compared to linear (AIC = -503) and exponential (AIC = -495) functions (see 

Supplementary Fig. 1). The increase in wager-specific proportions of correct trials 

was best described by the exponential model (AIC = 593) compared to quadratic (AIC 

= 614) and linear (AIC = 633) models (Fig. 2A). The same occurred for the decrease 

in wager-specific proportions of incorrect trials, whose AIC values were 578, 591 and 

614 for exponential, quadratic and linear functions, respectively (Fig. 2B). 
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Figure 2. Fit curves (linear, quadratic and exponential), subjects’ means (dots) and group means and 

standard errors (black curve) related to the wager-specific proportions of (A) correct trials and (B) 

incorrect trials. 

 

We calculated the weights of the match-to-sample parametric regressor using the 

quadratic function fitted to subjects’ performance per difficulty level. This parametric 

regressor was used to model the match-to-sample event of the three GLMs: certainty 

of being correct, certainty of being incorrect and bi-directional certainty. Therefore, 

the only difference between these GLMs (or models) was the regressor for the 

wagering event. The weights for the wagering parametric regressor of the certainty of 

being correct model (Fig. 3A) were calculated using the exponential function fitted to 

the wager-specific proportions of correct trials (Fig. 2A). Conversely, we used the 

exponential function fitted to the wager-specific proportions of incorrect trials (Fig. 

2B) to calculate the weights of the wagering parametric regressor of the certainty of 

being incorrect model (Fig. 3B).  

According to its own definition, the bi-directional certainty model should contain a 

wagering parametric regressor with two branches of opposite directions. One branch 

associated with low wagers, and another branch associated with high wagers. We 

calculated the weights associated with low wagers using the exponential function 

fitted to the wager-specific proportions of incorrect trials, while the weights 

associated with high wagers were calculated using the exponential function fitted to 

the wager-specific proportions of correct trials (Fig. 3C; see Supplementary 

information for details about the calculation of the parametric weights). 
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Figure 3. Parametric weights used for the wagering predictor in the models: (A) Certainty of being 

correct, (B) Certainty of being incorrect and (C) Bi-directional certainty, for positive (dark curves and 

dots) and negative (light curves and dots) activation patterns. 

 

The relationship between the different modeled events and brain activity was 

analyzed for each subject. Beta estimates were tested against zero (t-test) to assess 

group level significance. All reported brain activations survived FDR correction 

(FDR<0.05 at RFX level). 

 

2.9.1 Exponential relationship between wagering and brain activation 

Most studies used linear modulations in their certainty-related analyses to map brain 

areas whose activity varied with certainty of being correct, but so far none of them 

provided arguments for choosing such modulation. Hebart et al. (2014), for example, 

provide a detailed description about how they calculated a proxy of DV from 

perceptual and metacognitive reports, and used these measures in their fMRI 

analyses; but the authors did not justify the use of a linear relationship between brain 

activity and the calculated proxy. 

In the present study, we suggest that the large difference between the proportion of 

incorrect trials of wager category 1 and the other wagers and, especially, between the 

proportion of correct trials of wager category 6 and the other wagers, indicate that 

subjects were using wagers non-linearly as they were attempting to maximize their 

earnings, thus implicitly reporting their certainties non-linearly. Supporting this 

notion, not only the wager-specific proportions of correct and incorrect trials were 

best described by exponential functions, but this function also described best subjects’ 
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criteria to select the wagers (see Supplementary Fig. 2). On top of that, we highly 

profited from using exponential functions in our GLMs because, by attributing very 

different variances to low and high wagers, we created unidirectional models which 

were able to differentiate certainty of being correct from certainty of being incorrect. 

For example, while the BOLD signal variance in the certainty of being correct model 

is mainly attributed to differences between high wagers, the BOLD signal 

corresponding to the selection of high wagers should vary minimally in the certainty 

of being incorrect model (comparison between Figure 3A and Figure 3B). 

Nonetheless, we also tested a linear model and presented evidence that the brain 

activity related to certainty of being correct is better described by the exponential 

model, matching behavioral expectations (see Supplementary Information, 

Supplementary Fig. 3 and Supplementary Fig. 4). 

We are aware that wager-specific proportions of correct and incorrect trials do not 

reflect, on their own, subjects’ readouts of certainty of being correct and certainty of 

being incorrect (Moreira et al., 2016). Thus, before the practice and experimental 

sessions of the present fMRI experiment, all subjects also performed the task used in 

Moreira et al. (2016) to confirm that, on average, they were able to wager adaptively 

by significantly reading out both certainty directions (see Supplementary Fig. 5). This 

task contained a baseline condition (pre-decision wagering) that allowed us to isolate 

and quantify PDW trial-specific readouts for each certainty direction independently.  

 

2.9.2 Additional post-hoc tests for regions of interest 

In order to further test the group level results of our parametric-GLMs, we created a 

non-parametric-GLM that modeled each difficulty level and each wager using 

separate regressors. Therefore, instead of using one parametric regressor for the 

match-to-sample event and one parametric regressor for the wagering event as in the 

parametric-GLMs, we used the non-parametric-GLM to estimated separate beta 

values which were submitted to a third level analysis that aimed to further test if the 

activity patterns matched to the patterns predicted by the models. This extra level of 

analysis (consisting of additional post-hoc tests) also aimed at preventing that more 

than one certainty-related activation pattern were assigned to the same brain region. 

For example, identify brain regions included in both certainty of being correct and bi-
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directional certainty maps because the activity associated with high wagers was 

enough to generate beta estimates which survived second level analysis thresholds, 

even if the activity pattern associated with low wagers and predicted by the bi-

directional certainty model was not present.  

Although the non-parametric-GLM was performed for all the voxels encompassed in 

our brain mask (see section 2.9), since we were interested in further test the results of 

our parametric-models (“basic maps”), we only extracted the beta estimates from 

activation clusters of voxels located with these models (i.e. regions of interest). These 

clusters should have more than 20 voxels and should have survived FDR correction 

(FDR<0.05). Moreover, the extraction of beta estimates was restricted to a sphere of 

two functional voxels radius around the cluster peak-voxel (33 functional voxels in 

total) in order to distinguish, despite the low spatial resolution (1.5 cm diameter 

spheres), different regions in the same brain area. 

The additional post-hoc tests (paired t-tests) were map-specific because each 

parametric regressor predicted a specific activity pattern, therefore: (1) clusters from 

the certainty of being correct map should present significant differences between the 

beta values of wagers 4 and 6 (p<0.05). At the same time, differences between the 

wagers 1 and 3 in the opposite direction of the difference between wagers 4 and 6 

should not be significant (p>0.05) in order to guarantee unidirectionality (Fig. 4A); 

(2) Clusters from the certainty of being incorrect map should present significant 

differences between the beta values of wagers 1 and 3 (p<0.05). Concomitantly, 

differences between the wagers 4 and 6 in the opposite direction of the difference 

between wagers 1 and 3 should not be significant (p>0.05; Fig. 4B); (3) Clusters from 

the bi-directional certainty map should present significant differences between the 

beta values of wagers 1 and 3 (p<0.05) and, in the opposite direction, between the 

wagers 6 and 4 (p<0.05; Fig. 4C). 
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Figure 4. Additional post-hoc tests applied to the beta values extracted from clusters of the basic maps. 

(A) Certainty of being correct. (B) Certainty of being incorrect. (C) Bi-directional certainty. Only one 

activation pattern (positive or negative) was exemplified for each model. 

 

Clusters located with the match-to-sample parametric regressor should present 

significant differences (p<0.05) between the beta values of difficulty levels 1 and 5. 

All maps presented in the Results section contain only the voxels that survived the 

additional post-hoc tests. Basic maps are shown in the Supplementary Figures 6, 7, 8 

and 9. 

 

3. Results 

20 human subjects were asked to carry out a perceptual decision (delayed match-to-

sample, DMTS) of varying difficulty followed by post-decision wagering (PDW) 

inside an MRI scanner.  

 

3.1 Behavioral results 

We performed one-way ANOVA to test basic task-related behaviors. As expected, the 

performance in perceptual decisions decreased on harder trials (F4,76 = 113.842, p < 

0.0001; Supplementary Fig. 1) and on lower wagers (F5,95 = 61.646, p < 0.0001). 

Wager-specific proportions of correct trials increased towards the highest wager (F5,95 

= 38.691, p < 0.0001; Fig. 3A). Post-hoc tests showed that the wager-specific 

proportions of correct trials increased only at wager category 6 (p<0.0001). No 

significant differences were found for the comparisons between wagers 1 to 5 

(p>0.05). Wager-specific proportions of incorrect trials increased towards the lowest 
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wager (F5,95 = 40.507, p < 0.0001; Fig. 3B). Post-hoc tests showed that, while the 

proportions on low wagers (1, 2 and 3) were significantly different between each 

other and from all high wagers (p<0.05), the proportion of incorrect trials of high 

wagers did not vary (p>0.05). These results indicate that the performance on high 

wagers varied only because of the different wager-specific proportions of correct 

trials, while the performance on low wagers varied only because of different wager-

specific proportions of incorrect trials. 

According to our analyses for reaction times, RT1 increased on harder trials (F4,76 = 

30.591, p < 0.0001; Fig 4A). This result suggests that, although the stimuli were 

static, subjects might have delayed harder decisions to acquire more perceptual 

evidence. For the RT2, our previous study (Moreira et al., 2016) showed that wager-

specific RT2 might reveal the use of the wagering scale to report bi-directional 

certainty. In the present study, RT2 differed among wagers (F5,95 = 9.831, p < 0.0001). 

The post-hoc test showed that they were shorter in the wager categories 1 and 6 than 

in the middle wagers (categories 3 and 4; p<0.05), generating an inverted U-shape 

function of wager-specific RT2 (Fig. 4B). Therefore we associate, as in Moreira et al. 

(2016), fast RT2 in the wager category 1 with increased certainty of being incorrect 

and fast RT2 in the wager category 6 with increased certainty of being correct. We 

also calculated wager-specific RT1 to test if the reaction time bi-directionality was 

already present at the moment subjects performed perceptual decisions, and could 

determine their wager selection. Since certainty of being incorrect is intrinsically 

dependent on post-decisional evidence (Moreira et al., 2016), we should not find fast 

RT1 in the lowest wager category compared to the middle ones. As expected, wager-

specific RT1 was unidirectional, decreasing towards the highest wager (F5,95 = 15.998, 

p < 0.0001; Fig. 4C). 
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Figure 4. (A) Means and standard errors of RT1 for each difficulty level. (B) Means and standard errors 

of wager-specific RT2. (C) Means and standard errors of wager-specific RT1. All measurements were 

averaged across subjects. 

 

We used a paired t-test to compare the sensitivities on perceptual (d’) and 

metacognitive (meta-d’) decisions. Meta-d’ was higher than d’ (t19 = -4.457, p<0.001) 

indicating that, on average, subjects performed better on metacognitive than on 

perceptual decisions (meta-d’>d’; Fig. 5). 

 

 

Figure 5. (A) Metacognitive sensitivity (meta-d’) plotted as a function of perceptual decision sensitivity 

(d’). 18 subjects with meta-d’>d’ (high metacognitive efficiency subjects) fall above the diagonal 

(green area), and 2 subjects with meta-d’<d’ (low metacognitive efficiency subjects) fall below the 

diagonal (blue area). (B) Means and standard errors of d’ and meta-d’ values (***p<0.001). 

 

3.2 fMRI results 

The three parametric-GLMs contained the parametric regressor for the match-to-

sample event, but their parametric regressor for the wagering event were different in 

order to locate brain areas whose activity varied according to specific patterns related 

to one of the three certainty types: bi-directional certainty, certainty of being correct 

or certainty of being incorrect. 
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3.2.1 Match-to-sample event 

The activity on 37 clusters of voxels varied parametrically according to the five 

difficulty levels of the perceptual decision (match-to-sample event; see 

Supplementary Table 2 for more information about the clusters). These clusters were 

located mostly in cortical areas (Fig. 6).  

 

 

Figure 6. Map on inflated brain of cortical areas whose activity varied parametrically according to the 

five difficulty levels of the perceptual decision (match-to-sample event) and survived additional post-

hoc tests.  

 

The additional post-hoc tests (see Methods) provided further support in matching the 

activity pattern present in the intersubject averages of wager-specific beta values with 

the pattern predicted by the parametric models (Fig. 7). 
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Figure 7. Beta values and averaged time courses of three areas: precuneus (left hemisphere), 

intraparietal sulcus (IPS, left hemisphere) and dorsal anterior cingulate cortex (dAAC, right 

hemisphere). In both rows, difficulty varies from the easiest level (level 1, light green) to the hardest 

level (level 5, red). In the first row, beta value means and standard errors for each of the five difficulty 

levels non-parametric regressors. In the second row, averaged time courses in percent signal change 

(PSC) for each of the five difficulty levels. Averaged time courses baseline was set from -2 to 0 s in 

relation to the match-to-sample presentation. 

 

Although it is not shown in the inflated brain, the ventral striatum in both hemispheres 

(Talairach coordinates: x=±8 mm, y=6 mm and z=0 mm), described by Herbart et al. 

(2014) as reflecting the degree of perceptual confidence, was also present in the 

match-to-sample map (see Supplementary Fig. 10). 

 

3.2.2 Wagering event 

The bi-directional certainty map represents our main results because it is the first 

empirical demonstration that brain areas can encode both certainty directions 

(certainty of being correct and certainty of being incorrect; Fig. 8). From the 125 

clusters located through the FDR corrected contrast between the wagering parametric 

regressor (bi-directional function) and the baseline, 47 clusters survived our additional 

post-hoc tests (Fig. 8).  
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Figure 8. Map on inflated brain of cortical areas whose activity varied parametrically according to the 

bi-directional certainty regressor of the wagering event and survived additional post-hoc tests. 

 

These additional post-hoc tests further supported the (inverted)-U-shape function of 

wager-specific brain activity of the clusters present in the bi-directional certainty 

model (see Supplementary Table 3) as exemplified in the Figure 9. 

 

 

Figure 9. Beta value means and standard errors of wagers and control non-parametric regressors of 

three example areas located with the bi-directional certainty model. (A) dorsolateral prefrontal cortex 

(dlPFC, right hemisphere), (B) anterior cingulate cortex (ACC, right hemisphere) and (C) intraparietal 

lobule (IPL, left hemisphere). Wagers are presented from the smallest stack (category 1, pink) to the 

largest stack (category 6, light blue). The activity related to control trials (instructed wagering) is 

represented in the black bar. 

 

Brain areas encoding certainty in a bi-directional way were identified mainly in the 

frontal, parietal and cingulate cortices. Many of them were previously related to 
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certainty of being correct and certainty of being incorrect studies, suggesting their 

flexibility in encoding information according to the task requirements. 

The certainty of being correct map included 69 clusters of voxels with exponentially 

increasing or decreasing activity as subjects wagered higher. 41 of these clusters 

survived the additional post-hoc tests. Most of them were located in the brain cortex 

(Fig. 10). 

 

 

Figure 10. Map on inflated brain of cortical areas whose activity varied parametrically according to the 

certainty of being correct regressor of the wagering event and survived additional post-hoc tests. 

 

The post-hoc tests provided further support that these clusters of voxels (see 

Supplementary Table 4) presented an exponential and unidirectional function of 

wager-specific brain activity (Fig. 11). 

 

 

Figure 11. Beta value means and standard errors of wagers and control non-parametric regressors of 

three example areas located with the certainty of being correct model. (A) thalamus (left hemisphere), 
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(B) rostral anterior cingulate cortex (rAAC, right hemisphere) and (C) primary motor cortex (M1, right 

hemisphere). Wagers are presented from the smallest stack (category 1, pink) to the largest stack 

(category 6, light blue). The activity related to control trials (instructed wagering) is represented in the 

black bar. 

 

Lastly, the brain activity increased or decreased exponentially as subjects wagered 

lower in 30 clusters of voxels, but only 7 of them (see Supplementary Table 5) 

survived the additional post-hoc tests (Fig. 12). 

 

 

Figure 12. Beta value means and standard errors of wagers and control non-parametric regressors of 

three example areas located with the “Certainty of being incorrect” model. (A) middle temporal gyrus 

(MTG, left hemisphere), (B) middle occipital gyrus (MOG, left hemisphere) and (C) fusiform gyrus 

(right hemisphere). Wagers are presented from the smallest stack (category 1, pink) to the largest stack 

(category 6, light blue). The activity related to control trials (instructed wagering) is represented in the 

black bar. 

 

Our post-hoc tests further supported the bi- or unidirectionality depending on the 

model and, by doing so, did not allow complete overlap of areas from different maps. 

Figure 13 illustrates the maps of the three models (independent on if the activity was 

positive or negative) and shows that only a portion of the ventral posterior cingulate 

cortex (vPCC) is present in both bi-directional certainty and certainty of being correct 

maps (Fig. 13). 
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Figure 13. Maps on inflated brain of cortical areas whose activity varied parametrically according to 

the bi-directional certainty (green), certainty of being correct (blue) and certainty of being incorrect 

(red) regressors of the wagering event and survived additional post-hoc tests. vPCC is highlighted 

because it was present in two maps. 

 

When only the overlapping voxels were considered, the activity pattern of vPCC did 

not survive the additional post-hoc test for bi-directionality (p=0.08 in the left branch; 

see Supplementary Fig. 11). 

 

3.2.3 Overlap between areas encoding difficulty levels and certainty 

No area encoded both: the difficulty levels during match-to-sample and bi-directional 

certainty or certainty of being incorrect during wagering, but two clusters of voxels 

(at the left thalamus – cluster 12-05 in the match-to-sample map and cluster 01-05 in 

the bi-directional certainty map; and at the right dorsal premotor cortex (PMd) – 

cluster 01-01 in the match-to-sample map and cluster 28-01 in the bi-directional 

certainty map) encoded difficulty levels and certainty of being correct during the 

corresponding events of the task (Fig. 14). 
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Figure 14. Beta value means and standard errors of non-parametric regressors for the different 

difficulty levels (left column) and for the different wager categories and control (right column) from 

the two areas whose activity varied parametrically as predicted by the corresponding parametric 

regressor of each event: match-to-sample and wagering (Certainty of being correct model). At the first 

row, information about the thalamus (left hemisphere). At the second row, information about the PMd 

(right hemisphere). Difficulty varies from the easiest level (level 1, light green) to the hardest level 

(level 5, red), and wagers are presented from the smallest stack (category 1, pink) to the largest stack 

(category 6, light blue). The activity related to control trials (instructed wagering) is represented in the 

black bar. 

 

3.2.4 The post-match-to-sample event 

Our task design allowed subjects to evaluate their perceptual decisions for several 

seconds (7 to 10 s during the rest position period 3, see Methods) before wagering. 

We created an additional model to test if areas encoding bi-directional certainty 

during the wagering period presented bi-directional pattern of activity already before 

the wagering stage. If yes, then these areas might be involved in the evaluation of 

post-decisional information that would eventually be used during wagering reports 

related to both certainty directions.  
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In this model we used, instead of the match-to-sample event, a post-match-to-sample 

event that started at the end of the match-to-sample task (1.5 s after the match-to-

sample presentation). We modeled the post-match-to-sample event using six non-

parametric regressors that estimated the increase or decrease in the BOLD signal 

associated to the wagers subjects selected after the rest position period 3. Next, we 

extracted the beta values of the post-match-to-sample event for the clusters identified 

with the bi-directional certainty model (Bi-directional certainty map) and we 

performed the same additional post-hoc tests used for generating this map in order to 

check if the bi-directional pattern occurred also before the wagering period. 

From the 47 clusters of voxels of the bi-directional certainty map, 6 clusters had bi-

directional activation already at the post-match-to-sample period (see Supplementary 

Table 6), for example the left PMd (cluster 50-02; Fig. 15).  

 

 

Figure 15. Beta value means and standard errors of non-parametric regressors for the post-match-to-

sample (left) and the wagering (right) events for the left PMd. This is one of the six areas located with 

the bi-directional certainty model that presented bi-directional pattern of activity already before 

wagering. Wagers are presented from the smallest stack (category 1, pink) to the largest stack (category 

6, light blue). 

 

3.3 Correlations between behavioral measures and brain activity 

Since we did not have the baseline condition necessary to directly estimate the 

readouts of certainty of being correct and certainty of being incorrect as done in 

Moreira et al. (2016), we used the differences between extremes (1 and 6) and middle 

(3 and 4) wagers to determine the U-shapeness, and therefore the bi-directionality, of 

behavioral and brain activity measures. The difference in the proportions of incorrect 
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trials between wagers 1 and 3 was used as the behavioral measure for the low wagers, 

while the difference in the proportions of correct trials between wagers 6 and 4 was 

used as the behavioral measure for the high wagers. We assumed that the greater these 

differences (U-shape, see Figure 16A), the better subjects identified incorrect and 

correct perceptual decisions, respectively.  

For the brain signal measures we used the wager-specific beta values calculated using 

the non-parametric model for the wagering event. These beta values reflect the brain 

activity associated to the selection of each wager. Since we only extracted beta values 

from clusters present in the bi-directional certainty map, we assume that they reflect 

wagering-related activity of areas involved in bi-directional certainty readouts. 

Therefore, the greater the difference between the beta values of wagers 1 and 3 (low 

wagers) or between the beta values of wagers 6 and 4 (high wagers) would indicate 

how much this cluster was modulated by bi-directional certainty readouts. We 

assumed that the greater these differences, the more the brain activity was modulated 

by certainty of being incorrect and certainty of being correct, respectively (see Figure 

16B for U-shape; and Figure 16C for inverted U-shape). Thus, correlations (across 

subjects) between the wager-specific proportions of trials and non-parametric beta 

values would indicate that subjects’ metacognitive ability in identifying incorrect 

and/or correct decisions were reflected in the modulation by certainty of the activity 

of wagering-related areas. These correlations were performed for low and high 

wagers separately and together. The bi-directional measures were based on the sum of 

the measures for high and low wagers.  

While positive values of behavioral measures are always indicative of successful 

behavioral performance (since they indicate that subjects better identified correct and 

incorrect decisions), positive or negative values of the beta values might indicate 

expected brain activity depending on the cluster’s function of wager-specific beta 

values. Independently on if the beta values are below or above zero, positive 

differences between the wagers 1 and 3 and between the wagers 6 and 4 represent 

expected brain activity patterns when wager-specific beta values have a “U” shape in 

the group level (Fig. 16B); whereas negative differences are expected when wager-

specific beta values have an “inverted U” shape in the group level (Fig. 16C). 
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Figure 16. Behavioral and brain signal measurements used for correlations across subjects. (A) The red 

curve represents wager-specific proportions of incorrect trials and the blue curve represents wager-

specific proportions of correct trials. The difference in the proportions of incorrect trials between 

wagers 1 and 3 was used as the behavioral measure for the low wagers, while the difference in the 

proportions of correct trials between wagers 6 and 4 was used as the behavioral measure for the high 

wagers. The gray translucent line highlights the U-shape of the exemplified behavioral measure. (B and 

C) Beta values are presented from the smallest wager (category 1, pink) to the largest wager (category 

6, light blue). As the behavioral measurements, the differences between extreme and middle wagers 

were the brain activity measurements used in our correlations. (B) The orange translucent line 

highlights the U-shape of the exemplified brain signal measure. (C) The blue translucent line highlights 

the inverted-U-shape of the exemplified brain signal measure. These colors match the colors present in 

the map of the Figure 8. 

 

Among the 47 clusters of the bi-directional certainty map, 11 clusters presented 

significant correlations between bi-directional wager-specific activities and behavioral 

measures across subjects (Table 2). No unexpected correlation (e.g. positive 

correlations for clusters with inverted U-shape function of wager-specific activities) 

was significant. This means that, even though we modeled the brain activity using the 

average of wager-specific proportions of correct and incorrect trials across subjects, 

these behavioral measures were also associated with inter-individual differences in 

brain activation patterns. 

 

Table 2 

Clusters that presented significant intersubject correlation for high and low wagers 

 
Area Hemisphere Cluster r p function 

1 dorsal Anterior Cingulate Cortex Left 46-03 -0.58 0.01 inverted U-shape 

2 dorsal Premotor Cortex Right 46-04 -0.45 0.05 inverted U-shape 

3 Precuneus  Right 47-04 -0.61 0.005 inverted U-shape 
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4 Inferior Parietal Lobule  Right 47-05 -0.46 0.04 inverted U-shape 

5 Angular Gyrus  Left 47-08 -0.54 0.01 inverted U-shape 

6 Inferior Parietal Lobule  Left 47-09 -0.51 0.02 inverted U-shape 

7 Superior Occipital Lobule Right 47-12 -0.59 0.01 inverted U-shape 

8 Superior Occipital Gyrus  Right 47-14 -0.62 0.005 inverted U-shape 

9 dorsolateral Prefrontal Cortex Left 48-02 -0.44 0.05 inverted U-shape 

10 ventral Premotor Cortex Left 49-01 -0.47 0.03 inverted U-shape 

11 dorsal Premotor Cortex Left 50-02 -0.47 0.04 inverted U-shape 

 

All the clusters that presented correlations for bi-directional measures also 

demonstrated correlations between behavioral and brain signal measures for high 

wagers. Additionally, 5 clusters presented correlations only for measures based on 

high wagers, adding up to 16 clusters with significant correlations (Table 3). 

 

Table 3 

Clusters that presented significant intersubject correlation for high wagers 

 
Area Hemisphere Cluster r p function 

1 dorsolateral Prefrontal Cortex Right 46-01 -0.45 0.05 inverted U-shape 

2 dorsal Anterior Cingulate Cortex Left 46-03 -0.72 0.005 inverted U-shape 

3 dorsal Premotor Cortex Right 46-04 -0.54 0.01 inverted U-shape 

4 Inferior Parietal Lobule Left 47-03 -0.49 0.03 inverted U-shape 

5 Precuneus  Right 47-04 -0.54 0.01 inverted U-shape 

6 Inferior Parietal Lobule  Right 47-05 -0.57 0.01 inverted U-shape 

7 Angular Gyrus  Left 47-08 -0.62 0.005 inverted U-shape 

8 Inferior Parietal Lobule  Left 47-09 -0.52 0.02 inverted U-shape 

9 Inferior Parietal Lobule  Right 47-10 -0.59 0.01 inverted U-shape 

10 Superior Occipital Lobule Right 47-12 -0.76 0.005 inverted U-shape 

11 Superior Occipital Gyrus  Right 47-14 -0.60 0.01 inverted U-shape 

12 dorsolateral Prefrontal Cortex Left 48-02 -0.67 0.005 inverted U-shape 

13 anterior Prefrontal Cortex Left 48-03 -0.54 0.01 inverted U-shape 

14 anterior Prefrontal Cortex Left 48-05 -0.64 0.005 inverted U-shape 

15 ventral Premotor Cortex Left 49-01 -0.64 0.005 inverted U-shape 

16 dorsal Premotor Cortex Left 50-02 -0.46 0.04 inverted U-shape 

 

Significant intersubject correlation between behavioral and brain signal measures for 

low wagers occurred in six clusters (Table 4). Three of them were correlations that 

went against the predictions (clusters: 01-25, 01-45 and 01-57, see Table 4). The 

cluster 51 01 located at the Insula (left hemisphere) presented significant and 

expected correlation based only on low wagers measures. 
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Table 4 

Clusters that presented significant intersubject correlation for low wagers 

 
Area Hemisphere Cluster r p Function 

1 Insula  Left 01-25 -0.60 0.01 U-shape 

2 Somatosensory Assoc. Cortex Right 01-45 -0.64 0.01 U-shape 

3 Primary Somatosensory Cortex Right 01-57 -0.61 0.01 U-shape 

4 dorsal Anterior Cingulate Cortex Left 46-03 -0.46 0.04 inverted U-shape 

5 Inferior Parietal Lobule  Left 47-09 -0.45 0.05 inverted U-shape 

6 Insula  Left 51-01 -0.49 0.03 inverted U-shape 

 

The dACC (Fig. 17) and the IPL were, therefore, the only areas which presented 

significant correlations both for high and low wagers measures (bi-directional 

encoding of certainty). 

 

 

Figure 17. Correlations between behavioral and brain signal measures for the dorsal anterior cingulate 

cortex (dACC). On the left, the correlation across subjects for the difference between the proportions of 

incorrect trials (y-axis) and the beta values (x-axis) of wagers 1 and 3. On the right, the correlation for 

the difference between the proportions of correct trials and the beta values of wagers 6 and 4. These 

correlations indicate that subjects who better identified correct and incorrect trials had the activity of 

dACC more modulated by certainty of being correct and certainty of being incorrect, respectively. 

Similar pattern was found for the inferior parietal lobule (IPL, not shown). 

 

We also performed correlations between wager-specific beta value and wager-specific 

performance, separately for each wager. There were no significant correlations. This 

result indicates that wager-specific proportions of correct and incorrect trials can 
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predict better the brain activity patterns than the performance associated to each 

wager, providing support for the use of the wager-specific proportions of trials as the 

reference behavior for our fMRI models. 

Contrary to Fleming et al. (2012), we did not find correlations between the estimates 

of the bi-directional certainty parametric regressor and metacognitive sensitivity, 

except a correlation for one cluster in the left aPFC (r=-0.54, p<0.05) that indicates 

higher metacognitive sensitivity for subjects with beta estimate of wager-related 

activity value closer to zero (the opposite of the expected pattern). 

 

4. Discussion 

Certainty readouts are ubiquitous processes intimately related to routine decision-

making. In the present study, we showed that several brain areas are able to encode 

these readouts in a bi-directional way (i.e. certainty of being correct and certainty of 

being incorrect), suggesting a distributed processing based on certainty-related 

information. Furthermore, we demonstrated that these areas were not involved in 

encoding the difficulty of perceptual decisions, but some of them were involved in the 

evaluation of post-decisional information that might have resulted in certainty-related 

bi-directional reports. These areas were mostly located in the frontal, parietal and 

cingulate cortices, and several of them were previously related to readouts of certainty 

of being correct (e.g. aPFC in Fleming et al., 2012; IPS as the human homologous for 

the monkey intraparietal lateral area in Kiani and Shadlen, 2009; dACC in Hebart et 

al., 2014; dlPFC in Heereman et al., 2015) or certainty of being incorrect (e.g. dACC 

in Charles et al., 2013; PCC in Agam et al., 2011). 

Most of the parietal and frontal areas previously related to unidirectional readouts of 

certainty of being correct were only present in the bi-directional map, suggesting that 

our task requirements prompted these areas to encode the information in the most 

adaptive way (i.e. profit more when correct and avoid large losses when incorrect). 

We suggest that, since adaptive wagering reflects the proper assessment of the wager 

options utility (reflecting certainty only implicitly), the information that led to such 

flexible behavior should be based on the reliability of the sensory evidence (i.e. 

certainty). 
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We searched for neural representations of certainty using models based on the 

behavioral data. According to this data, subjects were using the six-grade wager scale 

exponentially in order to maximize gains and minimize losses, meaning that the 

frequency that subjects were assigning wagers to correct trials increased exponentially 

towards the highest wager; whereas the frequency that subjects were assigning wagers 

to incorrect trials increased exponentially towards the lowest wager. Since it is 

assumed that subjects report their certainty implicitly during PDW (Pouget et al., 

2016), we interpret our results as a demonstration that increments of evidence 

increased subjects’ certainty exponentially. Previous studies, on the other hand, 

assumed that cognitive processes transform the decision variable (DV) into certainty 

linearly (e.g. Fleming et al., 2012; Hebart et al., 2014; Heereman et al., 2015). To test 

this assumption, we compared a linear model to the (exponential) certainty of being 

correct model, both unidirectional. According to our results, the model based on an 

exponential function explains the brain activity more efficiently than the linear model. 

The activity of more than two thirds of the areas located with the linear model 

presented exponential relationship determined by the additional post-hoc tests, while 

only 16% of those areas presented linear relationship, even under more permissive 

threshold. These results provided further support for the use of wager-specific 

proportions of correct and incorrect trials as the reference behavioral measure for the 

modulation of certainty-related parametric regressors.  

Additionally, we found correlations between wager-specific proportions of correct 

and incorrect trials and wager-specific beta values, across subjects. These results 

suggest that the right branch of the bi-directional certainty-related signal we recorded 

during the period following wagering was associated with the assignment of wagers 

to correct trials, whereas the left branch was associated to PDW after incorrect trials. 

The association for high wagers was more robust since sixteen areas presented 

correlation between the brain activity and behavior for those wagers. The number of 

areas decreased to three for the expected correlations regarding the low wagers. These 

results indicate that, since low wagers were significantly less often used than the 

highest wager (see Supplementary Fig. 12), the strength of the correlation between 

brain signal and behavior might also depend on the general frequency each wager was 

utilized. But it also might indicate that, more than the real wager-specific proportions 

of correct and incorrect trials, subjects’ belief about the correctness of their decisions 
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influenced certainty-related representations in the brain (Ma and Jazayeri, 2014). 

Nevertheless, two areas presented consistent bi-directional correlations between brain 

signal and behavior: the dorsal anterior cingulate cortex (dACC) and the inferior 

parietal lobule (IPL). dACC was separately associated with both certainty directions  

in several studies (certainty of being correct: Baird et al., 2013; Hebart et al., 2014; 

Heereman et al., 2015; Fleming et al., 2012; and certainty of being incorrect: Agam et 

al., 2011; Charles et al., 2013; Hochman et al., 2014) probably because of its general 

role in conflict monitoring and behavioral adjustment (Kerns et al., 2004), which are 

important cognitive functions to generate adaptive behavior based on certainty 

readouts, independently on the readout direction. The IPL, together with the 

intraparietal sulcus (IPS), is involved in motor planning modulated by evidence 

strength (e.g. in monkeys: Kiani and Shadlen, 2009; in humans: Filimon et al., 2013) 

and, conversely, task-independent certainty assessments (Heereman et al., 2015). 

Since we found – as in Moreira et al., 2016 – bi-directionality in wager-specific RT2 

(faster reaction times associated with the lowest and the highest wagers compared to 

the middle ones), the IPL could be involved in the motor preparation that led to fast 

responses modulated by high levels of certainty of being correct or certainty of being 

incorrect. Nevertheless, both IPL and IPS presented bi-directional readouts during the 

rest position period 3 (before wagering), revealing that bi-directional brain signal 

cannot be explained only as consequence of RT2 (unless non-specific motor 

preparation takes place during this phase). In fact, despite the bi-directional pattern of 

wager-specific RT2, primary motor areas and regions of the cerebellum were not 

present in the bi-directional certainty map, but in the certainty of being correct map, 

suggesting that bi-directional processes were not directly associated with motor 

responses. We did not find correlations between subjects’ metacognitive sensitivity 

(meta-d’) and brain activity, even for the anterior prefrontal cortex (aPFC) which 

showed such correlation in Fleming et al., (2012; see Supplementary Fig. 13). 

The association between belief, certainty and utility is very important for the 

understanding of reward-based decisions as PDW (De Martino et al., 2012). In the 

present experiment, areas located with the parametric regressors for difficulty levels 

(match-to-sample event) and the parametric regressor for certainty of being correct 

(wagering event) can be both related to reward expectation since subjects wagered 

higher after easier trials, probably expecting to profit more. Moreover, certainty can 
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be directly influenced by the difficulty of perceptual decisions as predicted by the 

attractor model of Insabato et al. (2010) and demonstrated by studies with different 

animals, including humans (Kepecs et al., 2008; Kiani and Shadlen, 2009; Rolls et al., 

2010). The comparisons between the match-to-sample and the wagering events 

revealed that two clusters, one situated at the left thalamus and the other one at the 

right dorsal premotor cortex (PMd), were associated with representations of different 

difficulty levels and certainty of being correct. The thalamus is heavily interconnected 

with the prefrontal cortex and receives inputs from the amygdala and ventral striatum. 

This subcortical brain area was associated with reward-guided behavioral updates in 

environments with high reward stochasticity (Chakraborty et al., 2016). Moreover, the 

neural activity of one of its nuclei, the pulvinar, was directly implicated in reward-

based confidence reports during visual categorization in monkeys (Komura et al., 

2013). Regarding the PMd, Fleming et al. (2015) selectively disrupted post-decision 

confidence in visual discrimination judgments by applying TMS to subjects’ PMd. 

Although confidence about perceptual decisions is commonly associated with the 

strength of the supporting evidence (for review see Yeung & Summerfield, 2012), 

motor-related circuits have been implicated in encoding perceptual decision (Cisek & 

Kalaska, 2005; Shadlen & Newsome, 2001), suggesting an “embodied” system that 

also contributes to visual confidence (Filimon et al., 2013). Also considering the 

connection between PMd and areas from the lateral prefrontal cortex associated with 

metacognition (Fleming et al., 2012; Rounis et al., 2010), our results provide extra 

evidence for the association between this motor-related area with certainty-related 

processing, supporting the existence of an “embodied” mechanism that contributes to 

metacognition. 

Since the ventral striatum is involved in reward prediction error (e.g. O’Doherty et al. 

2004), motivation in general (Talmi et al. 2008), as well as in certainty 

representations (Hebart et al., 2014), we extracted this area’s beta values using the 

coordinates reported by Hebart et al. (2014) and, afterwards, we performed the 

additional post-hoc tests related to difficulty levels and certainty of being correct. The 

right and the left ventral striatum showed clear patterns predicted by both tests (see 

Supplementary Fig. 10). The task used by Hebart et al. (2014) contained only one 

difficulty level. In this context, the signal in the ventral striatum was assumed to 

reflect subjects’ confidence in association to readouts of the activity in the right 
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ventrolateral prefrontal cortex. Although we do not consider the reports using explicit 

confidence scale as reward-based decisions, the feeling of being confident was also 

associated with reward (Hebart et al., 2014). Together with our findings, and 

considering that PDW is a reward-based decision, we propose that the areas which 

presented BOLD signal patterns predicted for representation of the trial difficulty 

level and certainty of being correct readouts (ventral striatum, PMd and thalamus) 

were also associated with reward prediction. 

Finally, most subjects of the present experiment (18 from 20) presented high 

metacognitive efficiency (meta-d’>d’), suggesting that they improved their wagering 

performance by using post-decisional information (Moreira et al., 2016). Post-

decisional information contains higher-order representations of error likelihood in 

addition to the accumulated perceptual evidence (Murphy et al., 2015). Here, we 

assumed that the left branch of bi-directional activations also represented both error 

likelihood and the reliability of the inconsistent perceptual evidence (i.e. evidence 

whose post-decisional drift directed to the non-selected decision option). It is 

important to emphasize, however, that these representations are not completely 

overlapping. While the perceptual evidence should correspond to a closer 

representation of the physical visual stimulation in addition to the inherent 

stochasticity of the nervous system during this perception evidence processing, the 

error likelihood (although based on the perceptual evidence) represents more 

subjective distributions. In this context, the left branch of bi-directional activations is 

not only associated with incorrect trials, but also with correct trials perceived as 

probably incorrect by the subjects. Nevertheless, since certainty of being incorrect 

increased on easier trials (which was indicated by the pre-experiment and by the 

increased difference between wager-specific proportions of correct and incorrect trials 

following easier decisions inside the scanner; see Supplementary Fig. 14), error 

likelihood should not be mistaken for low levels of certainty. 

 

Summary 

Flexible PDW (gain more when correct and avoid large losses when incorrect) 

prompted several brain areas to encode certainty in a bi-directional manner. Fewer 

areas encoded unidirectional certainty readouts. Among them PMd, thalamus and 
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ventral striatum represented difficulty levels and certainty of being correct-related 

signals, and were associated with reward prediction. Furthermore, we demonstrated 

that areas involved in bi-directional certainty readouts were involved in the evaluation 

of post-decisional information prior to the wagering event, which might have resulted 

in the certainty-related bi-directional reports. Finally, report-related behavioral 

patterns (specifically the inverted U-shape function of wager-specific RT2) did not 

explain by themselves the activity patterns of motor-related areas; instead, our fMRI 

and behavioral results support the existence of a distributed system that contributes to 

the evaluation of perceptual certainty. 
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Supplementary information 

Regressors timing. The onsets and duration of the main regressors are described in 

the Supplementary Table 1. 

 

Supplementary Table 1 

Onset and duration of the main regressors 

Regressor Onset Duration 

Fixation beginning of the rest position period 1 0.2 s 

Sample sample presentation 1 s 

Match-to-sample 

Post-match-to-sample 

match-to-sample presentation 

1.5 s after match-to-sample presentation 

mean RT1 

mean RT1 

Wagering Presentation of the wagering task mean RT2 

Control presentation of the control task mean RT2 

 

Cluster tables. The relationship between the different modeled events and brain 

activity was analyzed for each subject separately. Subject-estimates were tested 

against zero (t-test) to assess group level significance. Subsequently, significant brain 

activations for those t-tests were FDR corrected (FDR<0.05) and had to fit the 

additional post-hoc tests criteria to be included in the maps presented in the Results 

section and in their respective cluster tables (see below). 

Since, in some cases, different clusters were located in the same brain area, we 

identified the clusters with numbers (last column of the cluster tables) in order to 

cross the information presented in the figures of the Results section and the following 

Supplementary Tables. The clusters were extracted using NeuroElf 

(www.neuroelf.net) and the brain areas identified according to the atlas of the 

Talairach Project at the Research Imaging Institute of the University of Texas Health 

Science Center San Antonio (http://www.talairach.org/applet.html). 

37 clusters presented activity varying parametrically according to the five difficulty 

levels of the perceptual decision (match-to-sample event; Supplementary Table 2). 

 

 

 

 

 

http://www.neuroelf.net/
http://www.talairach.org/applet.html
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Supplementary Table 2 

Clusters which encoded difficulty levels (match-to-sample event) 

 

Name Hemisphere x y z t value Cluster 

1 dorsal Premotor Cortex Right 12 14 61 5.74 01-01 

2 dorsal Premotor Cortex  Right 12 23 55 4.18 01-02 

3 Middle Frontal Gyrus  Right 33 23 40 5.57 02-01 

4 dorsal Anterior Cingulate Cortex Right 12 17 31 5.3 03-01 

5 dorsal Anterior Cingulate Cortex Right 3 20 40 4.74 03-02 

6 dorsal Anterior Cingulate Cortex Left -6 26 34 4.65 03-03 

7 dorsal Anterior Cingulate Cortex Left -6 17 40 4.1 03-04 

8 dorsolateral Prefrontal Cortex  Right 15 38 37 5.28 04-01 

9 Inferior Parietal Lobule  Right 45 -43 34 5.05 05-01 

10 dorsal Premotor Cortex Left -12 8 61 5.04 06-01 

11 Supplementary Motor Area Left -12 8 52 4.65 06-02 

12 dorsolateral Prefrontal Cortex Right 39 41 22 4.23 10-01 

13 Lentiform Nucleus  Right 15 5 -5 -9.36 12-01 

14 Lentiform Nucleus Left -15 5 -2 -7.1 12-02 

15 Lentiform Nucleus  Left -27 -7 -8 -6.96 12-03 

16 Thalamus  Left 0 -7 10 -5.12 12-04 

17 Lentiform Nucleus  Left -24 -1 10 -4.97 12-05 

18 Middle Temporal Gyrus  Right 39 -76 10 -6.19 13-01 

19 Middle Occipital Gyrus  Right 27 -88 13 -5.76 13-02 

20 Middle Occipital Gyrus  Right 36 -85 1 -4.47 13-04 

21 Fusiform Gyrus  Right 39 -70 -11 -4.44 13-05 

22 Middle Occipital Gyrus  Right 36 -82 -8 -4.09 13-06 

23 dorsal Posterior Cingulate Right 15 -37 31 -5.85 14-01 

24 Precuneus  Left 0 -52 37 -5.61 15-01 

25 Precuneus  Left -24 -55 55 -5.32 16-01 

26 dorsal Posterior Cingulate Cortex Left -3 -31 34 -5.26 17-01 

27 dorsal Posterior Cingulate Cortex Left -15 -25 37 -4.5 17-02 

28 Lingual Gyrus  Right 3 -88 -5 -4.93 19-02 

29 Middle Occipital Gyrus  Left -33 -82 -8 -4.98 20-01 

30 Declive Left 0 -58 -14 -4.18 22-02 

31 Parahippocampal Gyrus  Right 42 -43 -5 -4.76 23-01 

32 Precuneus  Left -3 -61 19 -4.7 24-01 

33 Precuneus  Left -12 -58 19 -4.37 24-02 

34 Fusiform Gyrus  Left -45 -70 -11 -4.52 26-01 

35 Medial Frontal Gyrus  Left -6 50 7 -4.52 27-01 

36 Middle Temporal Gyrus Left -42 -67 28 -4.38 31-01 

37 Middle Temporal Gyrus  Left -42 -73 19 -3.91 31-02 

 

As one of our main results, 47 clusters encoded certainty in a bi-directional way 

(wagering event; Supplementary Table 3). Several areas were located at the frontal, 

parietal and cingulate cortices. 
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Supplementary Table 3 

Clusters which encoded both certainty directions (wagering event) 

 
Name Hemisphere x y z t value Cluster 

1 rostral Anterior Cingulate Cortex Left -9 44 -2 9.28 01-01 

2 ventral Posterior Cingulate Cortex Left -9 -52 16 8.6 01-02 

3 Precuneus  Left -12 -46 28 7.58 01-03 

4 Superior Temporal Gyrus  Right 51 17 -17 6.26 01-10 

5 Superior Temporal Gyrus  Left -54 11 -14 6.09 01-11 

6 Middle Temporal Gyrus  Left -57 -4 -11 5.93 01-17 

7 Caudate  Left -21 17 22 5.88 01-19 

8 Insula  Right 30 -28 25 5.48 01-23 

9 Anterior Cingulate Right 18 26 16 5.52 01-24 

10 Insula  Left -33 -22 25 5.39 01-25 

11 rostral Anterior Cingulate Cortex Right 15 41 7 5.39 01-26 

12 Superior Temporal Gyrus  Right 51 8 -14 5.33 01-27 

13 Middle Temporal Gyrus  Right 54 -16 -5 5.06 01-30 

14 Superior Frontal Gyrus  Left -15 41 52 4.82 01-37 

15 anterior Prefrontal Cortex  Left -12 62 10 4.79 01-44 

16 Somatosensory Association Cortex Right 30 -40 64 5.16 01-45 

17 Cingulate Gyrus  Right 18 14 25 4.51 01-51 

18 Insula  Left -27 -34 25 4.47 01-52 

19 Primary Somatosensory Cortex Right 24 -31 67 4.43 01-57 

20 Inferior Frontal Gyrus  Right 33 26 -11 3.81 01-87 

21 Superior Frontal Gyrus  Left -6 59 40 3.71 01-89 

22 dorsolateral Prefrontal Cortex Right 42 23 34 -7.75 46-01 

23 dorsal Anterior Cingulate Cortex Left 0 20 43 -6.21 46-03 

24 dorsal Premotor Cortex Right 21 2 55 -5.38 46-04 

25 dorsal Premotor Cortex Right 30 11 61 -4.69 46-07 

26 (Pre) Supplementary Motor Area Left -9 8 49 -3.89 46-12 

27 Precuneus  Right 6 -70 43 -6.5 47-01 

28 Inferior Parietal Lobule  Left -51 -46 40 -6.27 47-02 

29 Inferior Parietal Lobule Left -42 -46 37 -5.92 47-03 

30 Precuneus  Right 15 -67 40 -5.85 47-04 

31 Inferior Parietal Lobule  Right 39 -43 43 -5.74 47-05 

32 Inferior Parietal Lobule  Left -45 -55 40 -5.68 47-06 

33 Intraparietal Sulcus Left -18 -70 40 -5.31 47-07 

34 Angular Gyrus  Left -33 -61 37 -5.2 47-08 

35 Inferior Parietal Lobule  Left -33 -46 37 -4.98 47-09 

36 Inferior Parietal Lobule  Right 48 -37 43 -4.91 47-10 

37 Intraparietal Sulcus Right 24 -70 34 -4.76 47-11 

38 Superior Occipital Lobule Right 30 -61 34 -4.75 47-12 

39 Superior Occipital Gyrus  Right 36 -73 25 -4.17 47-14 

40 dorsolateral Prefrontal Cortex Left -39 26 34 -5.83 48-02 

41 anterior Prefrontal Cortex Left -45 44 10 -5.24 48-03 
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42 anterior Prefrontal Cortex Left -30 47 19 -4.58 48-05 

43 ventral Premotor Cortex Left -42 -1 37 -5.44 49-01 

44 dorsal Premotor Cortex Left -24 -1 61 -5.46 50-01 

45 dorsal Premotor Cortex Left -21 -1 52 -4.84 50-02 

46 dorsal Premotor Cortex Left -24 8 52 -4.67 50-03 

47 Insula  Left -30 14 10 -5.03 51-01 

 

41 clusters encoded certainty of being correct (wagering event; Supplementary Table 

4). Several clusters were not represented or incompletely represented on the inflated 

brain, such as: Caudate, Declive (cerebellum), Pulvinar, Insula and Parahippocampal 

Gyrus. 

 

Supplementary Table 4 

Clusters which encoded certainty of being correct (wagering event) 

 
Name Hemisphere x y z t value Cluster 

1 Declive (Cerebellum) Left 0 -70 -14 8.17 01-01 

2 Thalamus (Pulvinar) Left -24 -25 13 7.54 01-02 

3 rostral Anterior Cingulate Cortex Left -15 35 4 7.21 01-03 

4 Caudate  Left -12 26 4 6.77 01-04 

5 Thalamus  Left 0 -10 10 6.2 01-05 

6 Anterior Cingulate  Right 15 32 7 6.18 01-06 

7 Caudate  Left -30 -25 -2 6.07 01-08 

8 ventral Posterior Cingulate Cortex Left -12 -55 22 5.87 01-09 

9 ventral Posterior Cingulate Cortex Left -9 -52 13 5.63 01-10 

10 Insula  Left -24 11 19 5.61 01-11 

11 Superior Temporal Gyrus  Left -36 -37 13 5.59 01-12 

12 Sub-Gyral  Right 30 -34 -2 5.52 01-13 

13 Caudate  Left -15 -13 22 5.64 01-14 

14 Caudate  Left -21 -4 25 5.51 01-15 

15 Primary Motor Cortex Right 45 -10 52 5.63 01-17 

16 ventral Anterior Cingulate Cortex Right 3 29 10 5.38 01-18 

17 Declive (Cerebellum) Right 18 -67 -20 5.31 01-20 

18 Lentiform Nucleus  Left -18 -7 -2 5.2 01-21 

19 Posterior Occipital Lobule Right 18 -76 7 5.23 01-22 

20 Anterior Cingulate  Right 24 35 7 5.16 01-23 

21 Posterior Cingulate  Right 30 -70 7 5.17 01-24 

22 Claustrum  Right 24 8 19 5.08 01-25 

23 Superior Temporal Gyrus  Left -36 -49 13 4.95 01-27 

24 Superior Temporal Gyrus  Left -51 8 -14 4.89 01-29 

25 Posterior Occipital Lobule Left -15 -88 7 4.83 01-31 

26 Caudate  Right 21 20 16 4.85 01-32 

27 Parahippocampal Gyrus  Left -36 -43 1 4.71 01-35 

28 Parahippocampal Gyrus  Right 30 -55 4 4.67 01-37 
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29 rostral Anterior Cingulate  Left -15 26 16 4.64 01-38 

30 Posterior Occipital Lobule Left -30 -82 1 4.6 01-39 

31 Superior Temporal Gyrus Right 36 -46 7 4.51 01-40 

32 Caudate  Right 21 -13 28 4.47 01-43 

33 Posterior Occipital Lobule Right 33 -79 1 4.44 01-45 

34 Thalamus (Pulvinar) Right 21 -28 10 4.26 01-47 

35 Precuneus  Right 9 -49 49 4.17 01-49 

36 Caudate  Right 12 17 10 4.17 01-52 

37 Precuneus Right -12 -49 37 4.22 01-56 

38 Posterior Occipital Lobule Left -15 -82 25 3.71 01-76 

39 Superior Temporal Gyrus  Left -48 -16 -2 3.69 01-78 

40 Supplementary Motor Area Left 0 -10 58 4.58 04-01 

41 dorsal Premotor Cortex Right 15 14 61 -4.95 28-01 

 

Only seven areas presented activity varying parametrically according to certainty of 

being incorrect (wagering event; Supplementary Table 5), all of them located at the 

posterior part of the brain. 

 

Supplementary Table 5 

Clusters which encoded certainty of being incorrect (wagering event) 

 
Name Hemisphere x y z t value Cluster 

1 Middle Temporal Gyrus  Left -33 -73 13 -5.47 06-01 

2 Middle Occipital Gyrus  Left -36 -73 4 -5.27 06-02 

3 Middle Occipital Gyrus  Left -30 -82 4 -5.14 06-03 

4 Cuneus  Left -15 -79 7 -4.84 06-04 

5 Cuneus  Right 21 -76 7 -4.64 10-02 

6 Parahippocampal Gyrus  Left -36 -43 -5 -5.21 12-01 

7 Fusiform Gyrus Left -33 -52 -17 -5.45 12-02 

 

Lastly, from the 47 clusters from the bi-directional certainty map, 6 were present also 

in the post-match-to-sample map (Supplementary Table 6).  

 

Supplementary Table 6 

Clusters which encoded both certainty directions before (post-match-to-sample event) and during 

wagering (wagering event) 

 
Name Hemisphere x y z t value Cluster 

1 Precuneus  Right 15 -67 40 -5.85 47-04 

2 Angular Gyrus  Left -33 -61 37 -5.2 47-08 

3 Inferior Parietal Lobule  Left -33 -46 37 -4.98 47-09 

4 Intraparietal Sulcus Right 24 -70 34 -4.76 47-11 

5 anterior Prefrontal Cortex Left -45 44 10 -5.24 48-03 

6 ventral Premotor Cortex Left -42 -1 37 -5.44 49-01 
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Performance per difficulty level. As described in the section 3.1 Behavioral results, 

performance decreased with increasing difficulty level. Performance per difficulty 

level was best described by a quadratic function (Supplementary Fig. 1) compared to 

linear and exponential functions. AIC values for linear, quadratic and exponential fits 

were -503, -513 and -495, respectively. 

 

 

Supplementary Figure 1. Fit curves (linear, quadratic and exponential), subjects’ means (dots) and 

group means and standard errors (black curve) of performance per difficulty level. 

 

Parametric weights calculations. Each best fitted function provided the parametric 

weights associated to each difficulty level or each wager category. Specifically, the 

parametric weights for match-to-sample regressor were calculated by including the 

difficulty levels (diff: 1 to 5) in the fitted quadratic function and getting the 

corresponding weight value (weightdiff = a*diff +b*diff
2
). The parametric weights for 

the certainty of being correct and certainty of being incorrect regressors were 

calculated by including the wager categories (wager: 1 to 6) in the respective fitting 

function (weightwager =a*exp[b*wager]). For the right branch of the bi-directional 

modulator, we used the unidirectional exponential function for correct trials. In order 

to preserve the exponential relationship between the weights, we used the values 1, 

3.5 and 6 to calculate weights for the wagers 4, 5 and 6. The left branch was 

calculated with the unidirectional exponential function for incorrect trials, using the 

values 6, 3.5 and 1 to calculate weights for the wagers 1, 2 and 3. All parametric 
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weights were normalized by the minimum weight value calculated by the 

corresponding function. 

It was essential to have unidirectional regressors (i.e. increase of values only in one 

direction) for the certainty of being correct and certainty of being incorrect models 

because certainty bi-directionality was tested in the third model. Considering that we 

obtained bi-directional curves by fitting wager-specific proportions of trials using 

three parameters, we set the maximum number of fitting function parameters as two.  

 

Fit curves on subjects’ wagering criteria. Most studies about certainty of being 

correct used linear parametric regressors in their certainty-related models to locate 

brain areas encoding confidence (e.g. Hebart et al., 2014). We, instead, have two 

behavioral indications that subjects were using wagers non-linearly to report their 

certainties: wagers proportions of correct and incorrect trials and subjects’ criteria to 

select the wagers, both better described by exponential functions compared to linear 

and quadratic ones (Supplementary Fig. 2). Subjects’ wagering criteria were 

calculated using Maniscalco and Lau’s code provided at: 

http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html. AIC values for 

linear, quadratic and exponential fits for the wagering criteria were -376, -389 and -

393, respectively. 

 

 

Supplementary Figure 2. Fit curves (linear, quadratic and exponential), subjects’ means (dots) and 

group means and standard errors (black curve) of subjects’ wagering criteria. 

 

 

http://www.columbia.edu/~bsm2105/type2sdt/archive/index.html


109 

 

Linear model for unidirectional certainty. Although linear models for 

unidirectional certainty are not able to differentiate certainty of being correct from 

certainty of being incorrect, they are suitable to experiments which aim at locating 

areas encoding only one certainty direction and, therefore, have been used in the main 

studies about confidence evaluation (e.g. Fleming et al., 2012; Hebart et al., 2014 and 

Heereman et al., 2015). In order to test if our data could be better explained by a 

linear relationship between wagering and brain activity, we created a parametric-

GLM with the modulator of the wagering regressor reflecting a linear increase or 

decrease in BOLD signal (Linear certainty model; Supplementary Fig. 3A). We also 

created additional post-hoc tests for the areas located using this model. These 

additional tests required significant differences (paired t-test, p<0.05) between the 

non-parametric beta values of wager 1 and 3 as well as 6 and 4, both in the same 

direction (Supplementary Fig. 3B). Since both differences should occur in the same 

direction, we also created a more relaxed criterion that tested only one tail of the t-test 

(Supplementary Fig. 3C). 

 

 

Supplementary Figure 3. (A) Parametric weights used for the wagering predictor in the model Linear 

certainty. (B) Corresponding post-hoc tests applied to guarantee that the predicted brain activity 

patterns prevailed also for intersubject averages comparisons for two tailed paired t-test and (C) one 

tailed paired t-test. 

 

When no additional post-hoc tests were applied to the clusters, all the 31 clusters of 

voxels present in the certainty linear map (Supplementary Fig. 4) shared at least 11 

functional voxels with one of the clusters present in the certainty of being correct 

map. 
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Supplementary Figure 4. Map on inflated brain of cortical areas whose activity varied parametrically 

according to the “Linear certainty” regressor (no additional post-hoc tests applied). 

 

From the initial 31 clusters of the certainty linear map, only 3 survived the additional 

post-hoc two tailed t-tests, while 5 survived the one tailed t-tests. On the other hand, 

21 clusters survived the post-hoc tests created for the certainty of being correct map 

(Fig. 4A). These results reveal that most of the clusters of both maps (Certainty linear 

and certainty of being correct) presented indeed a unidirectional exponential 

relationship between wager-specific activities. These results also provide support for 

using wager-specific proportions of correct and incorrect trials as the reference 

behavioral measure for the modulation of our wagering-related parametric regressors. 

More importantly, these results demonstrate that subjects were using the wagers non-

linearly to report their certainties. 

 

Pre-experiment. Since wager-specific proportions of correct and incorrect trials 

cannot predict, by their own, if subjects were reading out both certainty of being 

correct and certainty of being incorrect, we first confirmed that subjects were able to 

wager adaptively by significantly reading out both certainty directions using Moreira 

et al. (2016) task. This task contains a baseline condition (pre-decision wagering, 

PreDW) that allows the isolation and quantification of PDW trial-specific readouts for 

both certainty directions independently. 

Specifically, Moreira et al. (2016) calculated certainty readouts by subtracting the 

linear fit slopes of wager-specific proportions of PreDW trials from the linear fit 
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slopes of wager-specific proportions of PDW trials. This calculation was done 

separately for correct (slope-correct) and incorrect (slope-incorrect) trials, generating 

slope-based measures of certainty of being correct and certainty of being incorrect, 

respectively. Slope-correct was different between PDW (blue line and band; 

Supplementary Fig. 5B) and PreDW (blue line and shaded band; Supplementary Fig. 

5A) trials for the 20 subjects of the present study (t19=3.700, p<0.05). Slope-incorrect 

was also different between PDW and PreDW trials (red line and shaded band, t19=-

4.438, p<0.001). The differences between PreDW and PDW slopes (Supplementary 

Fig. 5C) confirmed that subjects were able to read out certainty in a bi-directional 

way. 

 

 

Supplementary Figure 5. Means and standard errors of wagers proportion of correct (blue curve) and 

incorrect (red curve) trials averaged across subjects, and means and standard errors of slope-correct 

(blue line and band) and slope-incorrect (red line and band) for (A) PDW and (B) PreDW (baseline). 

(C) Means and standard errors of PDW slope-correct minus PreDW slope-correct (blue line and band) 

and of PDW slope-incorrect minus PreDW slope-incorrect (red line and band). All measurements 

represent averages across difficulty levels and across subjects. 

 

Subjects improved their metacognitive efficiency in the present fMRI experiment 

(meta-d’/d’ = 1.57) compared to the pre-experiment (meta-d’/d’ = 1.08; t19 = 2.189, 

p<0.05), indicating that they learned how to perform better metacognitive judgments 

and/or used the longer interval between the perceptual and the metacognitive 

decisions in order to accumulate more information for wagering adaptively. Since 

metacognitive efficiency (meta-d’/d’) is also a measure of the metacognitive 

sensitivity corrected by the sensitivity on the perceptual decisions (Maniscalco and 

Lau, 2012), the learning component related to the delayed match-to-sample task was 

not a confounding factor. 
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Maps without additional post-hoc tests. Almost two thirds (78 clusters) of the 

clusters of voxels present in the original bi-directional certainty map (Supplementary 

Fig. 6) did not survive the additional post-hoc tests for bi-directionality.  

 

 

Supplementary Figure 6. Map on inflated brain of cortical areas whose activity varied parametrically 

according to the “bi-directional certainty” regressor of the wagering event (no additional post-hoc tests 

applied). 

 

69 clusters where present in the certainty of being correct map before the additional 

post-hoc tests (Supplementary Fig. 7). Most of them (47 clusters) were still present in 

the final map (Fig. 10).  
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Supplementary Figure 7. Map on inflated brain of cortical areas whose activity varied parametrically 

according to the “Certainty of being correct” regressor of the wagering event (no additional post-hoc 

tests applied). 

The initial certainty of being incorrect map (Supplementary Fig. 8) was the most 

affected by the additional post-hoc tests since only 23% of the 30 clusters survived 

these tests. 

 

 

Supplementary Figure 8. Map on inflated brain of cortical areas whose activity varied parametrically 

according to the “Certainty of being incorrect” regressor of the wagering event (no additional post-hoc 

tests applied). 

 

When we plot the three non-additionally-corrected maps in the same inflated brain, 

we can see that there are several overlapping areas among them (Supplementary Fig. 

9). 
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Supplementary Figure 9. Maps on inflated brain of cortical areas whose activity varied parametrically 

according to the bi-directional certainty (green), certainty of being correct (blue) and certainty of being 

incorrect (red) regressors of the wagering event (no additional post-hoc tests applied). 

 

These overlaps indicate that the parametric regressors were not selective enough. For 

example, the overlap between the bi-directional certainty map and the other maps 

might indicate that the unidirectional models did not restrict their significance to areas 

with low variance on low wagers (Certainty of being correct function) or low variance 

on high wagers (Certainty of being incorrect function). It might also indicate that the 

bi-directional model did not restrict its significance to bi-directional activations 

patterns, being also influenced by unidirectional activations. Some areas overlapped 

even for models with opposite predictions (Certainty of being correct and certainty of 

being incorrect). In this context, we demonstrated that the use of the additional post-

hoc tests was essential to locate areas encoding specific certainty-related patterns. 

 

“Hebart’s area” for the degree of perceptual confidence. Herbart et al. (2014) 

suggested that the activity in the ventral striatum reflects confidence, being derived 

from a transformation of the decision variable encoded in the cerebral cortex. In the 

present experiment, the ventral striatum encoded difficulty levels (first row of the 

Supplementary Fig. 10). 

Although this area was not present in our certainty of being correct map, we extracted 

the beta values for the certainty of being correct parametric regressor (wagering 
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event) and applied the additional post-hoc tests related to its model. On both 

hemispheres, the activity increased in high wagers, while it did not vary in low 

wagers (second row of the Supplementary Fig. 10). 

 

 

Supplementary Figure 10. (A) Coronal slice encompassing the ventral striatum of Hebart et al. (2014; 

Talairach coordinates: x=±8 mm, y=6 mm and z=0 mm). (B) Beta value means and standard errors for 

each of the five difficulty levels (first row) or each of the six wagers (second row) non-parametric 

regressors of the ventral striatum (left and right columns for the left and right hemispheres, 

respectively). Difficulty varies from the easiest level (level 1, light green) to the hardest level (level 5, 

red), and wagers are presented from the smallest stack (category 1, pink) to the largest stack (category 

6, light blue). The activity related to control trials (instructed wagering) is represented in the black bar. 

 

Overlap between the main maps. Part of the ventral Posterior Cingulate Cortex 

(vPCC) was present in the bi-directional certainty and the certainty of being correct 

maps. The average beta values extracted from the overlapping voxels for the wagers 1 

and 3 were not statistically different (t19=1.8268, p = 0.08), while the average beta 

values of wagers 4 and 6 significantly differed (t19=-4.431, p < 0.001; Supplementary 

Fig. 11). This result indicates that the overlapping voxels can only be classified as 

belonging to the certainty of being correct map. The close to significance difference 

between the estimates of wagers 1 and 3 indicates that part of vPCC is likely to be 

involved in bi-directional certainty readouts, as the area belonging to the bi-

directional certainty map above the overlapping voxels (Fig. 13). 
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Supplementary Figure 11. (A) Overlapping voxels between bi-directional certainty and certainty of 

being correct maps. (B) The activity pattern of vPCC did not survive the additional post-hoc test for bi-

directionality in the left branch (wager categories 1 and 3). Wagers are presented from the smallest 

stack (category 1, pink) to the largest stack (category 6, light blue). The activity related to control trials 

(instructed wagering) is represented in the black bar. 

 

Wager-specific proportions of all trials. Wager-specific proportions of correct trials 

were calculated as the “number of correct trials each wager was assigned to” divided 

by “all correct trials”; and wager-specific proportions of incorrect trials were 

calculated as the “number of incorrect trials each wager was assigned to” divided by 

“all incorrect trials”. Wager-specific proportion of all trials reflected, therefore, the 

frequency of the use of a certain wager. Wagers were used in different frequencies 

(F5,95=33.689, p<0.0001; Supplementary Fig. 12). Pots-hoc Bonferroni tests showed 

that, when considering all trials, the three low wagers were used with the same 

frequency (p>0.05), while all the wagers were used less frequently than the wager 6 

(p<0.05). The wager 5 was used less frequently than the wager 1 (p<0.05). 

 

 

Supplementary Figure 12. Wager-specific proportions of all trials (black curve). The red curve 

represents the wager-specific proportions of incorrect trials. The blue curve represents the wager-

specific proportions of correct trials.  
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“Fleming’s area” for confidence. Among the studies with humans aiming to locate 

brain areas encoding certainty of being correct, Fleming et al. (2012) is one of the 

most important ones since it showed that, during their experiment, the activity in the 

right anterior prefrontal cortex (aPFC) varied parametrically according to certainty of 

being correct and correlated with subjects’ metacognitive sensitivity. Although 

Fleming’s area was not present in any of our maps, we extracted its beta values to 

check its activity pattern for subjects performing our task. Interestingly, the right 

anterior prefrontal cortex (aPFC, Talairach coordinates x=26 mm, y=52 mm and 

z=23 mm) had a similar pattern described by Fleming et al. (2012), with decreasing 

activity for higher certainty of being correct (t19=2.261, p<0.05; Supplementary Fig. 

13). Also as in Fleming et al. (2012), the same area in the left hemisphere did not 

present such pattern significantly.  

The absence of the “Fleming’s area” in the unidirectional certainty of being correct 

map indicates, however, that on average (across subjects) this pattern is not consistent 

with the pattern predicted by the certainty of being correct model, possibly because 

the beta values of the low wagers are more similar to the beta value of the highest 

wager than to the beta values of the wager 4, while the certainty of being correct 

model predicts increasing variance towards the wager 6. 

 

 

Supplementary Figure 13. Beta value means and standard errors of non-parametric regressors of wager 

categories and control trials for the area located by Fleming et al. (2012): (A) right aPFC and (B) the 

area located in similar coordinates in the left hemisphere. Wagers are presented from the smallest stack 

(category 1, pink) to the largest stack (category 6, light blue). The activity related to control trials 

(instructed wagering) is represented in the black bar. 
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Wager-specific proportions of trials in the five difficulty levels. Although we were 

not able to quantify certainty of being correct and certainty of being incorrect readouts 

without the baseline condition used in Moreira et al. (2016), we know that if subjects 

would could not distinguish correct from incorrect perceptual decisions, they would 

assign wagers randomly to correct and incorrect trials, generating wager-specific 

proportions of correct trials similar to the wager-specific proportions of incorrect 

trials and, consequently, similar slope-correct and slope-incorrect values (e.g. 

Supplementary Fig. 5A). Since slope-correct was different from slope-incorrect in all 

difficulty levels (p<0.001 for the five paired t-tests), we demonstrated that subjects 

were able to differentiate correct and incorrect perceptual decisions from all 

difficulties, independently on the certainty readout they were using (certainty of being 

correct or certainty of being incorrect). As expected, the difference between slope-

correct and slope-incorrect decreased on harder trials (F4,76=45.169, p<0.0001; 

Supplementary Fig. 14). 

 

 

Supplementary Figure 14. For each difficulty level, means and standard errors of the wagers proportion 

of correct (blue curves) and incorrect (red curves) trials, as well as means and standard errors of slope-

correct (blue line and band) and slope-incorrect (red line and band). See the section Pre-experiment of 

the SI Results for more information about the measures slope-correct and slope-incorrect. All measures 

averaged across subjects. 

 

It is important to emphasize here that, by using the slope-based measurements, we 

were not trying to fit the best curve that explains the variation in wager-specific 

proportions of correct and incorrect trials (which, as described in the Supplementary 

Information section: Linear model for unidirectional certainty, are on average best 

described by an exponential function). Instead, we aimed to compare subjects’ trends 

on assigning wagers to correct and incorrect decisions (see Chapter 1).  
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Abstract 

All primates rely on interhemispheric communication to create unified representations 

of the environment and generate flexible responses, especially when there is 

conflicting information between the brain hemispheres. Interhemispheric transfer has 

been studied for more than one century using speeded manual responses to lateralized 

visual cues (Poffenberger paradigm), but it is still unknown how the predictability of 

upcoming response requirements modifies this communication. Furthermore, 

although this paradigm was tested in different contexts in humans, no previous study 

tested how the interhemispheric transfer of visuomotor information differs between 

humans and non-human primates. Therefore, fourteen human subjects and two rhesus 

monkeys performed three tasks with different predictability about the upcoming 

response requirements inside an MRI scanner while we recorded BOLD signal from 

their brains. Typically, reaction times are faster for uncrossed responses (which do not 

require interhemispheric transfer of information) than for crossed responses, resulting 

in crossed-uncrossed difference (CUD). Both humans and monkeys exhibited reaction 

time and neural CUD effects, but the size of the effect varied depending on the task 

and on the species. The increased uncertainty about the upcoming response 

requirements prolonged apparent interhemispheric transfer time in both species, 

presumably by adding action selection and stimulus-response spatial compatibility 

effects to the brain processing. The main difference between the species was that 

humans showed only positive neural CUD (crossed>uncrossed), while monkeys 

showed both effects. According to our interpretation of activation patterns in humans, 

unpredictability did not increase the interhemispheric transfer time per se, but delayed 

the exchange of relevant information between the hemispheres until the proper 

response could be implemented without decreasing performance. Shorter transfer 

times in monkeys suggest that they failed in delaying responses or their smaller brains 

(and consequently interhemispheric distances) allowed faster interhemispheric 

communication.  

  

Key-words: predictability, interhemispheric communication, action selection, 

Poffenberger, comparative, rhesus monkeys 

Abbreviations: crossed uncrossed difference (CUD), reaction time (RT), stimulus-

response spatial compatibility (SRSC)  
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1. Introduction 

Primate evolution resulted in lateralized brains which process visual and motor 

information mainly in contralateral fashion. The visual information in the right visual 

field is first represented in the left primary visual cortex, while the opposite holds for 

the left visual field. Conversely, the left primary motor cortex encodes mainly right 

effectors (e.g. right hand and right foot) responses, and vice-versa for the left primary 

motor cortex. While the exact evolutionary contingencies of these anatomical and 

functional specializations are very debatable (e.g. Loosemore, 2011; Oleksiak et al., 

2010), it is a fact that all living primates need interhemispheric communication to 

interact adaptively with the environment. For example, without interhemispheric 

transfer of information, we would not be able to respond with our left hand to objects 

approaching us from the periphery of our right visual field. More importantly, the 

unified perception of surroundings is essential for individuals to perform goal-

directed behaviors, especially when the information initially represented in one 

hemisphere is conflicting, or competing, with the information represented in the other 

hemisphere, for example during spatial choices spanning both visual hemifields 

(Kagan et al., 2010). The gradual progression from finely topographically organized 

early visual areas to a coarser, mainly contralateral, topography of parietal and frontal 

areas (Felleman and Van Essen, 1991) indicates a transformation from the “local” 

visual processing to a “global” representation of action space. This progression is 

further influenced by accumulation of inter-hemispheric signals at subsequent stages 

of processing, leading to more bilateral representations in higher order cortical areas.  

The interhemispheric transfer of visuomotor information was first tested by 

Poffenberger (1912) using a simple reaction time task. Poffenberger calculated 

interhemispheric transfer time by comparing reaction times when flashes of light were 

presented in the periphery of subjects’ right or left visual field, and they responded 

with the right or the left hand as soon as they saw the flash. Due to predominantly 

contralateral processing, when subjects responded with the hand positioned in the 

same side of the visual stimulus, there was no need for interhemispheric transfer of 

information (uncrossed response) and, consequently, response time was faster. 

Crossed responses, however, requires interhemispheric communication and, therefore, 

were slower (Fig. 1). The time the brain takes to transfer this information was 
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calculated by Poffenberger by subtracting the averaged uncrossed from the averaged 

crossed response times (Crossed Uncrossed Difference, CUD; Poffenberger, 1912). 

 

 

Figure 1. (A) When the visual stimulus is presented in the left visual field, it is first represented in the 

primary visual cortex of the left hemisphere. (B) Manual responses to this stimulus performed with the 

left hand do not require interhemispheric communication (uncrossed responses). (C) Manual responses 

to the same stimulus performed with the right hand require interhemispheric transfer of information 

(crossed responses) and, therefore, are supposed to be slower. 

 

Roger Sperry’s studies on split-brain patients in the 1960s (e.g. Sperry, 1961) 

increased the scientific interest in lateralization of brain functions and 

interhemispheric communication. More recently, a meta-analysis of several studies 

showed that the average CUD in reaction time (RT) was about 4 ms for more than 

300 normal subjects; about 15 ms for callosal agenesis patients; and from 30 to 60 ms 

for split-brain patients (Marzi et al., 1991), revealing the role of the corpus callosum 

(the biggest brain commissure) in the transfer of visuomotor information. 

Although studies with callosal agenesis or split-brain patients directly implicated the 

corpus callosum in the interhemispheric transfer of visuomotor information, different 

studies (e.g. Saron et al., 2003; Zaidel and Iacoboni, 2003) claimed that CUD is not 

resulting from the contralateral organization of the brain, but reflects stimulus-

response spatial compatibility (SRSC) effects (i.e. faster responses to stimuli that are 

closer to the response effector; Wallace, 1971). Poffenberger himself considered 

SRSC as a possible confound effect saying that ‘‘it is customary to react on the side 

from which the stimulus comes’’ (Poffenberger, 1912, p. 70). He rejected this 

possibility by showing that the spatial compatibility decreased when he presented the 

peripheral stimulus farther away from the gaze fixation. 
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More recently, experiments designed specifically to test if SRSC effects influence RT 

in the simple Poffenberger paradigm showed that CUD is indeed resulting from 

anatomical differences between crossed and uncrossed responses (Anzolla et al., 

1977; Pellicano et al., 2013). Pellicano et al. (2013), for example, tested if subjects 

performing bi-manual responses to lateralized stimuli presented slower reaction times 

for the anatomically crossed hand compared to the anatomically uncrossed hand. The 

authors tested CUD for hands positioned in the normal hand position (i.e. spatially 

compatible responses congruent to anatomically uncrossed responses) and for hands 

positioned in an inverted (one arm laying over the other one as in × symbol) position 

(i.e. spatially compatible responses congruent to anatomically crossed responses). 

Additionally, subjects were separated in two groups: left-handers and right-handers. 

Pellicano and colleagues (2013) showed that RTs were faster for anatomically 

uncrossed hands independently on their spatial localization (far or close to the visual 

stimulus). Moreover, they showed that the CUD is longer when the stimulus is 

presented in the left visual field (as found in Marzi, 2010) and that this asymmetry 

tended to be reversed in left-handers (as found in Marzi et al., 1991).  

It has been argued that SRSC effects are typically not expected in simple reaction 

tasks, but in choice tasks that require a flexible, online selection of a correct response 

(Kornblum et al., 1990; Pellicano et al. 2013). An example of a simple choice task is 

to select and use the hand ipsilateral to the stimulus (compatible mapping condition) 

during a block of trials with randomly lateralized stimuli (one stimulus per trial); and 

the hand contralateral to the stimulus (incompatible mapping condition) in the 

subsequent block of trials. According to De Jong et al. (1994), ipsilateral (i.e. same 

side, compatible) responses are automatically activated regardless of whether the 

required response is compatible or incompatible. This automatic activation must be 

inhibited during incompatible responses to avoid conflict, creating CUD-like effects. 

In the present study, we tested how CUD is modified when we varied subjects’ 

certainty about the upcoming response requirements. Subjects performed three tasks 

with increasing unpredictability: (a) one task similar to the classic Poffenberger 

paradigm (i.e. blocks of trials in which the stimulus were presented in the same visual 

field presentation and the same hand was used to respond); (b) a second task in which 

the visual field presentation was blocked but the hand use was randomized (with 
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correct response cued by the stimulus color); and (c) a third and most unpredictable 

task in which visual field presentation and hand use were both randomly interleaved.  

The unpredictability about which hand subjects should use in the upcoming response 

period obligated them to select the proper response after the “go cue” (i.e. peripheral 

visual stimulus). Thus, the second and third tasks were simple action selection tasks 

and, because of that, subjects might have been under the influence of SRSC effects. 

The first task, on the contrary, did not require speeded action selection because 

subjects could prepare the proper manual response before the “go cue”, in advance of 

actual motor response. We hypothesized that CUD and SRSC effects, as well as the 

amount of (potentially inhibitory) information that should be exchanged between the 

hemispheres (De Jong et al., 1994), should increase with task uncertainty 

In order to locate the areas responsible for transferring the information across the 

hemispheres and associate their function with the quality (i.e. the character) of the 

transferred information (e.g. visual, somatosensory, motor), we used event-related 

fMRI to map areas that are more or less active during crossed as compared to 

uncrossed responses. Previous studies located putative CUD effects in different brain 

areas (Table 1). 

 

Table 1 

Areas from the right (R) and left (L) hemispheres related to crossed uncrossed differences in five 

studies. “-” indicates areas more active during uncrossed responses. Otherwise, areas were more active 

during crossed responses 

 

Areas 
Marzi 

et al. (1999) 

Tettamanti 

et al. (2002) 

Iacoboni 

et al. (2004) 

Weber 

et al. (2005) 

Martuzzi 

et al. (2006) 

vPFC  R and L  R  

dlPFC  R and L R   

PMd  R and L R and L   

ACC  R and L L -R  

Insula  R and L    

CC  R and L  R  

BA 5  R and L    

PCC  R    

SPL L  R   

Precuneus R R R   

Cuneus R   R  

STG  L    

MTG  L  -L  

PCC  R    

Occipital 

lobule 
  R  R 
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There was no brain area that was associated with CUD across all the mentioned 

studies. The involvement of the right precuneus in the medial parietal cortex in 

putative interhemispheric transfer was the most consistent finding (three of the five 

studies). CUD in reaction times also varied across the studies (from non-significant 

1.7 ms to significant 7 ms differences) and, to the contrary of CUD in brain signal, 

was never negative. 

Since negative CUD in brain activation was only found in few areas and only in one 

of the described studies, we expected slower (but more difficult, in a sense) crossed 

responses to be associated with increased activity, as compared to uncrossed 

responses. Moreover, we hypothesized that the more predictable is the upcoming 

response, the earlier (i.e. more visual) stages of the interhemispheric transfer will be 

manifested. Task comparisons can, therefore, help to elucidate how action selection 

and certainty modify the intra- and interhemispheric processing and transferring of 

information. 

 

1.1 Interspecies differences 

Although the Poffenberger paradigm was extensively tested in humans, we are not 

aware of any Poffenberger-related study with non-human primates. Interhemispheric 

communication is essential for goal-directed behavior, being involved in most brain 

processes. Since monkeys are used as best available animal models in order to 

translate the knowledge from invasive electrophysiological studies to the 

understanding of the human brain (Goense et al., 2010), it is very important to test 

how the interhemispheric transfer of relevant visuomotor information might differ 

between the two species. Therefore, two rhesus monkeys (Macaca mulatta) also 

performed the three tasks inside an MRI scanner while we acquired functional images 

of their brains. 

Humans have a behavioral repertoire that greatly exceeds other primates in 

complexity. Our behavioral complexity was associated with hemispheric 

specialization (Semendeferi et al., 2002; Wey et al., 2013), which might be a 

consequence of the enlargement of human neocortex. Since the time associated with 

interhemispheric communication also increases with neocortex enlargement, this 
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expansion imposes constrains to interhemispheric synchronization, favoring 

presumably more efficient intrahemispheric processing (Aboitiz et al., 2003). In this 

context, intrahemispheric networks might have been selected by the same 

evolutionary processes which led to the big human brain (Aboitiz et al., 2003).  

But is hemispheric specialization exclusive feature of humans? 

The first studies about hemispheric specialization are dated from 1861 with the 

French anatomist Paul Broca – who associated speech impairments with lesions in a 

region of the left inferior frontal gyrus (Broca’s area) – or even before with Marc Dax 

in 1836 (Manning and Thomas-Antérion, 2011). Since human language is uniquely 

complex, the demonstration that aspects of our speech is hemisphere-specific led to 

the conclusion that brain asymmetry might also be exclusive of humans. Nonetheless, 

recent studies have been suggested that brain and behavioral asymmetry is more 

widespread across the animal kingdom than previously assumed, being present in 

other mammals (e.g. Corballis, 2009), birds (e.g. Güntürkün et al., 2000), reptiles (e.g. 

Csermelyetal, 2011), amphibians (e.g. Vallortigara, 2006), bony fishes (e.g. Dadda et 

al., 2010), cartilaginous and jawless fishes (e.g. Concha and Wilson, 2001) as well as 

invertebrates as Octopus vulgaris (Byrne et al., 2002) and honey bee Apis mellifera 

(e.g. Frasnelli et al., 2010). The ubiquity of such asymmetry indicates that brain 

lateralization might constitute a basic principle of the nervous system (Jason et al., 

1984; Ocklenburg and Güntürkün, 2012). 

Whereas the occurrence of asymmetrical brain/behavior in several species indicates 

that we should expect hemispheric specializations also for monkeys, there are still 

reported differences in lateralization gradation between monkeys and humans. The 

macaque brain is thought to be mostly symmetrical (both anatomically and 

functionally), and lesions of left or right hemispheres cause comparable contralateral 

deficits (Gaffan and Hornak, 1997). Oleksiak et al. (2010) provide a review about the 

main findings (until the publication date) on the lateralization of spatial functioning in 

primates. The authors conclude that, as expected, spatial lateralization is more 

prominent in the human brain, possibly as a by-product of the language specialization 

in the left hemisphere. They emphasize the importance of fMRI studies for direct 

comparisons between humans and monkeys. In particular, they highlight findings 

from Baker et al. (2006), which demonstrated clear unilateral saccade-related 

activations of the (right) pulvinar in two monkeys during a task that involved attention 
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and visuospatial orientation. Since this asymmetry was also reported for humans 

(Fischer and Whitney, 2009), the authors suggested that human distinct organizational 

principles are more related to cortical regions. In order to support this proposition, 

Oleksiak et al. (2010) described Kagan et al. (2010) fMRI results, which showed 

stronger contralateral tuning in the dorsolateral prefrontal cortex, FEF and LIP (all 

cortical areas) of monkeys performing memory-saccades compared to humans 

performing the same task. Moreover, the patterns of contralateral selectivity in 

humans suggested that the left hemisphere encodes predominantly the right space, 

while the right hemisphere (“free” of most language related processes) represents both 

visual fields (Kagan et al., 2010; Mesulam, 1999). The longer CUD when the visual 

stimulus is first represented in the left hemisphere (Marzi, 2010; Pellicano et al., 

2013) agrees with this asymmetry because the right hemisphere, by representing both 

visual fields, would require less communication with the left hemisphere to generate 

crossed motor responses. 

It is important to draw a distinction between related, and often confused, 

contralaterality and lateralization concepts. For example, the contralaterality of visual 

processing implied that each hemisphere is responsible for one hemifield, thus, both 

hemispheres should be involved in the visual processing, and no lateralization (i.e. 

shift of the entire visual function to one hemisphere) should take place in respect to 

this function. On the other hand, if the right hemisphere would be able to process both 

visual fields (as it might be doing starting from the level of the parietal cortex), then 

the lateralization (i.e. right hemisphere dominance for spatial processing) would be 

able to emerge. Therefore, contralaterality and lateralization of a specific function are 

diametrical phenomena (Kagan et al., 2010). In this framework, monkeys are thought 

to be more contralateral but less lateralized, while humans are less contralateral 

(besides the primary sensory or motor areas), and more lateralized (i.e. asymmetrical). 

Whereas we presume differences in hemispheric asymmetry between species, the 

overall (non-hemispheric-specific) duration of CUD in reaction time is expected to be 

shorter in monkeys due to their smaller brain. For example, the interhemispheric 

distance between V1 in the monkey brain is about 45-47 mm (Innocenti et al. 1995), 

while in humans axons reach 130 mm or more to connect the two hemispheres 

(Aboitiz et al., 2003). Moreover, antidromic transmissions take from 2.6 to 18 ms in 

monkeys, while visually evoked potentials have a latency of 13 to 26 ms in humans 
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(Aboitiz et al., 2003). We must consider, however, that these differences in the 

transmission time might represent methodological discrepancies. Furthermore, it has 

been argued that the human hemispheres are even more isolated that in monkeys 

because the relative size of the corpus callosum (adjusted to the brain size differences) 

decreased in apes and humans as compared to new and old world monkeys (Rilling 

and Insel, 1999).  

Interhemispheric communication time also depends on the axon-to-myelin ratio of the 

callousal fibers and their diameter (Caminiti et al., 2009). While callosal projections 

are made by slow-conducting fibers from higher-order cortical regions (as prefrontal 

and temporoparietal areas), large-caliber fibers provide faster connection between 

primary and secondary sensorimotor areas (Aboitiz et al., 2003; Fig. 2). 

 

 

Figure 2. Differences in the diameter of interhemispheric callousal fibers depending on the regions 

these fibers connect. Fibers from the anterior part of the corpus callosum are mostly thin (slow-

conducting) and connect areas from the frontal lobules (blue fibers). Fibers from the middle part of the 

corpus callosum have medium to thick (fast-conducting) diameter and connect motor, somatosensory 

and temporoparietal areas (red fibers). Lastly, fibers from the posterior part of this commissure have 

mostly thick diameter and connect visual areas (green fibers). Modified from Aboitiz et al. (2003). 

 

Finally, we also expect interspecies differences in task performance. Although the 

Poffenberger task is simpler (i.e. low unpredictability about the upcoming response 

period) than the action selection tasks, all of them require some level of abstract 

stimulus-response representations.  

Contrary to the tasks in which the visual cue is also the target of the movement (e.g. 

Kagan et al., 2010; Koyama et al., 2004), our experiment requires that subjects 

represent visual information and associate this representation with movements 



137 

 

towards a target (button) they are not visualizing. We hypothesize that, since humans 

are supposed to comprehend better such associations, they still should have better 

performance than (overtrained) monkeys; especially when responses cannot be 

prepared in advance but planned and executed under time pressure (action selection 

tasks). 

Whereas previous studies started to provide reliable information about interspecies 

differences in visuomotor processing (Oleksiak et al., 2010), they also raised a 

common problem regarding the sample size in studies with monkeys, and difference 

in methodology. Since the number of individuals in these studies is usually small (2-3 

monkeys), individual idiosyncrasies and a history of training might undermine 

generalizations for the species. In the same time, the individual monkey datasets are 

typically more robust than in the human studies, because the data is collected 

repeatedly and are typically analyzed for reproducibility across sessions, while the 

data collection in humans relies on collecting one or few sessions in each participant 

and instead derives (potentially different type of) statistical power from averaging 

across many subjects and identifying only the consistent power. Taking this in the 

consideration, we compared the results between humans and rhesus monkeys with 

caution, initially focusing on most clearly identifiable effects. 

In summary, in the present study we address the interhemispheric processing of 

visuomotor information related to flexible responses under the following assumptions: 

(a) Subjects’ uncertainty about the upcoming response requirements modify the 

interhemispheric communication because it modulates action selection and SRSC 

effects (e.g. Pellicano et al. 2013); (b) Hemispheric specialization is present in both 

monkeys and humans but in different degrees. Humans should present stronger 

lateralization (e.g. Oleksiak et al., 2010); (c) Humans should have more efficient 

representations of the task requirements; and finally (d) CUD in reaction times and 

brain signal are influenced by interspecies differences in brain size (Aboitiz et al., 

2003). 

 

In order to organize this chapter and convey our messages efficiently, Methods 

(sections 2 and 4) and Results (sections 3 and 5) are presented separately for humans 

and monkeys. Afterwards, some of the behavioral results are compared between the 

two species directly (section 6). 
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Humans 

2. Methods 

2.1 Subjects 

Fourteen healthy subjects (6 males; mean age 25.9 ± 3.1 years) were recruited via the 

student online platform of the University of Goettingen. All subjects had normal or 

corrected-to-normal vision and responded the Edinburgh questionnaire for 

handedness assessment (Veale, 2014). They were compensated with 8 € per each of 

the three sessions and provided written consent for participation. The experimental 

procedures were approved by the local ethics committee. 

 

2.2 Experimental setup 

Subjects lied inside the MRI scanner in the supine position. The stimuli were back-

projected on a translucent screen (800 x 600 resolution) and viewed by the subjects 

through a surface mirror mounted on the head coil at approximately 12 cm from 

subjects’ eyes and 81 cm from the screen. Subjects maintained central fixation 

throughout the trial. Gaze position was acquired with 60 Hz MR-compatible infrared 

eye tracker camera and ViewPoint 2.8.6.21 software (Arrington Research). Subjects 

responded with their right and left thumbs using an MR-compatible button box with 4 

buttons (Current Designs). The task was controlled via MATLAB (Mathworks) using 

the Psychophysics toolbox (http://psychtoolbox.org/).  

 

2.3 Procedure and stimuli 

Subjects performed finger responses under time pressure in response to lateralized 

visual cues. Eye and hand movements were controlled throughout the trial. Each trial 

started with the appearance of a red spot and a gray framed-square in the center of the 

screen. Subjects were correctly positioned in the “rest position” when they fixated the 

gaze inside the eye fixation window (3º radius of visual angle around the red spot) 

and, concomitantly, positioned the left and right thumbs over the buttons 1 and 4, 

respectively. After a varying period, one colored square was presented in the 

periphery of the screen (13º of visual angle from its center). The green square cued 

subjects to respond with the right thumb, while the blue square cued the response with 

http://psychtoolbox.org/
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the left thumb. Subjects should respond as soon as they saw the cue. The response 

should be performed in three steps: releasing the right or the left thumb from the 

respective rest button, pressing the proper target button and coming back to the 

resting position (Fig. 3B). After that, subjects should hold the rest position for 8 s 

until the “success” message appeared on the screen followed by the intertrial interval 

(Fig. 3A). 

 

 

Figure 3. A bright red spot and a gray filled square at the center of the screen indicated that subjects 

were positioned in the rest position (gaze fixation inside the fixation window and left and right thumbs 

on the buttons 1 and 4, respectively). After staying in the rest position for a varying period (2 to 4 s) a 

colored square was presented at 13º of visual angle to the right or to the left of the fixation spot, in the 

same horizontal plane. Subjects had up to 0.9 s to release the proper resting button (1 for the blue cue 

and 4 for the green cue), 0.5 s to press the proper target button (2 for the blue cue and 3 for the green 

cue) and 0.5 s to come back to the resting position. Subjects kept the rest position for 8 s after the 

response. Next, the “success” message appeared on the screen for 0.4 s, followed by the intertrial 

interval (ITI, 2 s). 

 

2.4 Experimental sessions 

Subjects performed three scanning sessions. Each of them contained a different task 

and included one anatomical scan and four functional runs of 10 minutes. The 

differences across the sessions (and therefore across the tasks) were the trial 

sequences and the RT cut-offs. In the No Action Selection (NAS) task, as in the 

Poffenberger task, a lateralized stimulus (e.g. blue square) was presented in the same 

visual field for 10 successful trials. After that, the same stimulus was presented in the 

opposite visual field for the next 10 successful trials. This 20 successful trials 
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sequence was then repeated for the other type of stimulus (e.g. green square; Fig. 4A). 

Moreover, subjects were pre-cued at the beginning of every trial (first rest period) 

about the hand they should use. This was done by a frame around the fixation square 

with the same color of the actual cue. By pre-cueing the subjects, we guaranteed that 

they could prepare their thumb response in advance without using memory-related 

processes. Moreover, since subjects could prepare their motor responses, this task had 

a shorter reaction time cut-off (0.6 s), while the following two tasks had the cut-off at 

0.9 s. In the Action Selection Blocked Visual field (ASB) task, the lateralized stimulus 

was presented in the same visual field for 10 successful trials before changing to the 

other visual field. The stimulus color (and therefore the hand use) was randomized 

(Fig. 4B). In the Action Selection Random (ASR) task, both visual field presentation 

and stimulus color were randomized (Fig. 4C). In the three tasks, the sequences were 

repeated until the end of the run. 

Depending on the trial composition (stimulus color and visual field presentation), the 

responses did not require (i.e. uncrossed condition) or required (i.e. crossed condition) 

interhemispheric transfer of information (Fig. 4). 

 

 

Figure 4. (Top) The combination of stimulus color and visual field presentation determined the trial 

condition: uncrossed or crossed. (Middle) On the left, an example of uncrossed response (left hand/left 
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visual field). On the right, an example of crossed response (right hand/left visual field). The crossed 

uncrossed difference (CUD) was calculated as the RT difference between averaged crossed and 

uncrossed responses. (Bottom) Example sequences for each of the tasks: (A) No Action Selection, (B) 

Action Selection Blocked Visual field and (C) Action Selection Random. Although the structure that 

defined the task did not change, the starting stimulus color and the starting visual field varied randomly 

across different runs. 

 

2.5 MRI Data Acquisition and preprocessing 

Subjects were scanned using a Siemens Trio 3T scanner and a Siemens 32-channel 

head coil. High-resolution structural scan (T1-weighted MPRAGE volume, 1 × 1 × 1 

mm, TR 2300 ms, TE 3.97ms, 192 slices, flip angle: 9°) was acquired for anatomical 

localization. Functional images were acquired with EPI sequences (3 × 3 × 3 mm, TR 

1000ms, TE 33ms, 36 transverse slices, multiband-factor 3, 0.15 mm gap between 

adjacent slices). The anatomical T1-weighted scans were processed in BrainVoyager 

QX 2.4 (Brain Innovation). The anatomical images from sessions 2 and 3 were 

coregistered to the first session in the commissure–posterior commissure (AC–PC) 

plane and then transformed from AC–PC into Talairach space. Each functional run 

consisted of 904 volumes. The first four volumes of each run were excluded from 

functional analyses but were used for coregistration. EPI series from each run were 

preprocessed in NeuroElf 1.0 (Jochen Weber, www.neuroelf.net) using slice time 

correction, linear trend removal, and a high-pass temporal filter with three cycles per 

10 min run cut-off. The first functional volume in the session was aligned to the 

original anatomical T1-weighted scan using rigid body transformations. 3D motion 

correction with 6 degrees of freedom was done by registering all EPI volumes to the 

first volume of the first run in the session. 3D volume time courses were computed in 

Talairach space using the anatomical AC-PC and Talairach transformation parameters 

(voxel size 3 × 3 × 3 mm). Additional spatial smoothing (6 × 6 × 6 mm) was applied 

to the 3D volume time courses. 

 

2.6 Behavioral data analysis 

The behavioral data was analyzed using MATLAB (Mathworks) for performance and 

RT. RTs reflected the time between the presentation of the cue and the release of the 

proper rest button. The time interval for transferring information across the 

hemispheres (Crossed Uncrossed Difference, CUD) was calculated by subtracting the 

http://www.neuroelf.net/
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average of uncrossed reaction times from the average crossed reaction times 

(Poffenberger, 1912). We also compared RTs between the hands, using the four 

combinations of hand-related stimulus (first letter) and visual field presentation 

(second letter): left hand/left visual field (LL), left hand/right visual field (LR), right 

hand/right visual field (RR), right hand/left visual field (RL). 

 

2.7 fMRI data analysis 

One GLM was used to estimate the BOLD response associated with relevant task 

events. The GLM was performed only for the voxels encompassed in a mask based on 

the Colin brain (Holmes et al. 1998), transformed into the Talairach space. The 

regressors were convolved with a canonical hemodynamic response function (time-to-

positive-peak: 5 s, time-to-negative-peak: 15 s). 

We used the four combinations of hand-related stimulus and visual field presentation 

as regressors to model the response event: LL, LR, RR and RL. The main regressors 

consisted of a boxcar function with onsets at the stimulus presentation and duration of 

mean RT for the task, convolved with the HRF. These regressors were named 

differently for each of the three tasks, totalizing twelve main regressors in the GLM 

that included all the tasks. In addition to the main regressors, the GLM included 

twelve regressors of no interest: (1-4) wrong use of the hand for each of the four 

combinations of stimulus color and visual field presentation, (5) trial abortion related 

to gaze fixation break, (6) success message presentation, and (7-12) six head motion 

regressors extracted during fMRI data preprocessing.  

The relationship between the different modeled events and brain activity was 

analyzed for each subject. Estimates were tested using contrasts to assess group level 

significance in two maps with different thresholds: higher threshold map (p<0.001 

uncorrected for CUD, spatial and hand tuning) and lower threshold map (p<0.01 

uncorrected for CUD and p<0.05 for spatial and hand tuning). Since we did not find 

areas more active during uncrossed responses compared to crossed responses, the 

CUD maps resulted from one-tailed t-tests for deviations in the positive direction. All 

reported brain activity was corrected for multiple comparisons with family-wise error 

(FWE, p<0.05) using alphasim of NeuroElf (1000 interactions, 6 mm smoothing 

kernel).  
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3. Results 

Fourteen subjects performed speeded manual responses to lateralized visual cues 

while they kept fixating their gaze in the center of a screen inside the MRI scanner. 

These subjects completed one of three tasks in different sessions. The tasks varied 

according to their trial sequence. The less randomized the sequence 

(NAS<ASB<ASR), the more predictable was the visuomotor contingency in the 

response period. 

 

3.1 Behavioral results 

We performed a one-way ANOVA for repeated measures to test if there were 

differences in reaction times across tasks. Subjects responded faster or slower 

depending on the task (F2,26=143.649, p<0.0001). Post-hoc tests showed that the 

reaction times did not differed between action selection tasks (ASB vs ASR; 

t13=0.972, p>0.05), but were faster in the task that did not require action selection 

(NAS) compared to the ASB (t13=13.994, p<0.0001) and to the ASR (t13=13.636, 

p<0.0001) tasks. Figure 5A illustrates the reaction time distribution for all correct 

trials, even though the tests were performed across subjects’ averages. 

Next, we performed one paired t-test for each task to test CUD in reaction time. Both 

action selection tasks presented positive and significant CUD (ASB, t13=-3.222, 

p<0.05; ASR, t13=-6.828, p<0.001), but crossed and uncrossed responses took the 

same time in the NAS task (t13=-0.284, p>0.05; Fig. 5B). 

 

 



144 

Figure 5. (A) Histogram of the RT distribution of all correct trials for the three tasks, and their 

respective reaction time cut-offs. (B) Means and standard errors, across subjects, of crossed and 

uncrossed reaction times for the three tasks, corrected with the average reaction time of the 

corresponding hand (i.e. reaction times for the LL and LR conditions were corrected with the averaged 

left hand reaction time). No Actions selection task (NAS): green letters and curves. Action Selection 

Blocked visual field task (ASB): blue letters and curves. Action Selection Random (ASR): red letters 

and curves. 

 

We also tested CUD in RT for each hand separately (one paired t-test for each hand). 

In general, these results were similar to the previous results (Fig. 5B), since no 

significant difference was found in the NAS task (left hand: t13=1.001, p>0.05, right 

hand: t13=-1.415, p>0.05), while both hands presented significant CUD in the action 

selection tasks (ASB left hand: t13=-2.611, p<0.02, right hand: t13=-2.261, p<0.05; 

ASR left hand: t13=-4.059, p<0.001, right hand: t13=-8.375, p<0.001; Fig. 6). 

Nevertheless, we found opposite, although not significant, effects between the hands 

during the NAS task. While the right hand presented positive CUD, crossed responses 

with the left hand were faster than the uncrossed responses (Fig. 6A).  

 

 

Figure 6. Reaction times for each hand (blue line for the left hand and green line for the right hand) 

related to each visual field for the (A) NAS, (B) ASB and (C) ASR tasks. *t-test (p<0.05). 

 

Although the CUD was significant on average across subjects in the ASB and ASR 

tasks, not all subjects had individually significant CUD across trials (Fig. 7), 

suggesting high intersubject variability, especially for the ASB task which had only 5 

of the 14 subjects with significant CUD across trials. 
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Figure 7. CUD of each subject in each task. Filled squares represent significant CUD (t-test, p<0.05).  

 

Finally, humans presented the same performance in all tasks (NAS: 93%, ASB: 95% 

and ASR: 94%; F2,26=1.285, p>0.05). 

 

3.2 fMRI results 

The visual stimulation (i.e. stimulus size and distance from the fixation spot) and the 

motor response (i.e. finger movements) were similar across trials and tasks. 

Nevertheless, differences in trial sequence generated different levels of predictability 

across tasks (NAS>ASB>ASR) about the upcoming response period, impacting 

action selection requirements and brain activation patterns. In general, effector 

(left/right hand) and spatial (left/right visual field) contralateral tuning was observed 

with similar patterns in the statistical activation maps of the three tasks, expect for the 

spatial tuning in the NAS task (see below). Moreover, as predicted, the activations 

associated with crossed responses were stronger than on uncrossed responses in all 

the tasks.  

In the No Action Selection (NAS) task, only few areas were associated with 

differences between crossed and uncrossed responses (crossed uncrossed difference, 

CUD). Strikingly, there was no apparent contralateral spatial tuning in the left 

hemisphere that survived a high statistical threshold (p<0.001 uncorrected), while 

ipsilateral activations were observed in the right inferior frontal gyrus (IFG; Fig. 8). 

 



146 

 

Figure 8. High threshold maps on the inflated brain for three activation patterns when subjects 

performed the NAS task. Areas in dark green and blue reflect effector tuning for right and left hands, 

respectively. Areas in light green and blue reflect space tuning for right and left visual fields, 

respectively. The main contrast (orange) mapped areas more active during crossed compared to 

uncrossed responses. There were no areas more active during uncrossed than during crossed responses. 

 

The ipsilateral visual-related activation in the right hemisphere under this high 

threshold indicates that the right hemisphere represents both visual fields as suggested 

by Mesulam (1999) and Kagan et al. (2010). The expected contralateral spatial tuning 

in early visual areas can be observed with a more permissive threshold 

(Supplementary Fig. 1). The information about the clusters present in the lower 

threshold CUD map (which also includes the higher threshold clusters) can be seen in 

the Supplementary Table 1. 

The CUD map of the Action Selection Blocked visual field (ASB) task was the most 

extensive one. This map was characterized by the activations in the middle frontal 

gyrus (MFG) – including the dorsolateral prefrontal cortex (dlPFC) – and in the IFG 

(Fig. 9).  
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Figure 9. Higher threshold maps on the inflated brain for three activation tunings when subjects 

performed the ASB task. Areas in dark green and blue reflect effector tuning for right and left hands, 

respectively. Areas in light green and blue reflect space tuning for right and left visual fields, 

respectively. The main contrast (orange) mapped areas more active during crossed compared to 

uncrossed responses. There were no areas more active during uncrossed than during crossed responses. 

 

At the lower threshold, the CUD map of the ASB task was more symmetrical, 

especially in frontal areas as insula, and included areas from the premotor and the 

inferior parietal cortices (Supplementary Fig. 2).  

Finally, the CUD map of the Action Selection Random (ASR) task contained mainly 

areas from the parietal and temporal lobules. It is important to note the overlap 

between the effector tuning and the CUD maps in the parietal lobule (Fig. 10), which 

suggests that motor-related areas were involved in the transfer of interhemispheric 

information during this task. 
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Figure 10. Maps on the inflated brain for three activation tunings when subjects performed the ASR 

task. Areas in dark green and blue reflect effector tuning for right and left hands, respectively. Areas in 

light green and blue reflect space tuning for right and left visual fields, respectively. The main contrast 

(orange) mapped areas more active during crossed compared to uncrossed responses. There was no 

area more active during uncrossed than during crossed responses. 

 

The lower threshold CUD map for the ASR task was also more symmetrical, 

especially for temporal areas (Supplementary Fig. 3). The only CUD area present on 

all lower threshold maps is the inferior parietal lobule (IPL). There was no overlap 

between the CUD maps of the three tasks. 

Although clusters in the CUD maps presented, on average, higher activations for the 

crossed (LR and RL) conditions than for the uncrossed (LL and RR) conditions, some 

of them also demonstrated spatial or hand tuning. In the Figure 11, we exemplify the 

beta values of three different areas of the right hemisphere for the ASB task. The 

activations in the right dorsolateral prefrontal cortex (right dlPFC) were most 

probably driven exclusively by CUD (LR+RL>LL+RR; Fig. 11A). The right cuneus, 

on the other hand, was tuned to CUD and also presented spatial tuning 

(RL+LL>LR+RR; Fig. 11B), while the right thalamus presented CUD and higher 

activation for conditions associated with the contralateral left hand (LL+LR>RR+RL; 

Fig. 11C). 

 



149 

 

 

Figure 11. Mean beta values and standard errors of the four task main regressors (LL, LR, RL and RR) 

for three different areas (dlPFC, cuneus and thalamus) in the right hemisphere (RH) during the ASB 

task. Together with the CUD-related activity, cuneus also presented spatial tuning (left visual field > 

right visual field), and thalamus presented hand tuning (left hand > right hand). 

 

Next, we performed two statistical comparisons in order to locate areas involved in 

action selection. The first one contrasted the two tasks involving action selection with 

the No Action Selection task (ASB+ASR>NAS). The second one contrasted only 

ASB with NAS (ASB>NAS). This contrast is more reliable since in both tasks the 

visual field presentation of the lateralized cue varied in blocks, while differences 

between ASR and NAS can be related to action selection, but also with the random 

location of the peripheral visual stimulus in the ASR task. Together with areas from 

the ventral occipital lobule and with the insula (present in the ASB+ASR>NAS map), 

areas from the dorsal parietal lobule (as precuneus, superior parietal lobule and 

somatosensory cortex) and from the cingulate cortex (dACC) were more active when 

action selection was required (Fig. 12). There was no area more active during the 

NAS task compared to the other tasks. 
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Figure 12. Maps on the inflated brain for two contrasts related to action selection. The first one 

contrasted both action selections tasks (ASB and ASR) with NAS. The second one only contrasted the 

tasks in which the location of the visual stimulation varied in blocks of trials (ASB and NAS). There 

was no cortical area that was more active when action selection was not required. 

 

Most of the described CUD-related activation occurred in the cortex of the brain and, 

therefore, was represented in the inflated brains (Fig. 8-10). Nevertheless, there were 

activations in four non-cortical areas which we consider important to report. 

In the NAS task, there was an activation cluster in the white matter close to the right 

cingulate gyrus. This was the only CUD-related activity in the white matter we 

mapped, and it occurred in the same side of the ipsilateral spatially tuned activation. 

In the ASB task, the right thalamus was more activated in crossed than in uncrossed 

responses (Fig. 13). 

 

 

Figure 13. Non-cortical areas presenting higher activity on crossed compared to uncrossed responses. 

On the left, a cluster in the white matter of the right cingulate gyrus presented CUD in the activity 
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during the NAS task. On the right, the right thalamus was more responsive during crossed responses in 

the ASB task. 

 

We also identified CUD in the activity of cerebellar areas. During the NAS task, the 

cerebellar CUD activation was more posterior (at the pyramis) than during the ASR 

task. The cerebellar hand tuning was very similar across the three tasks. In the ASR 

task, the right dentate presented both: hand tuning and CUD tuning (Fig. 14); 

repeating the overlapping brain cortical pattern for the task (Fig. 10). 

 

 

Figure 14. Cerebellar areas presenting higher activity on crossed compared to uncrossed responses. The 

CUD cerebellar activity in the NAS task, on the left, was more posterior and did not overlap with the 

hand tuned activity as it did for the ASR task, on the right. 

 

Together with the increased activity in the dorsal parietal, cingulate and inferior 

occipital cortices described in the Figure 12, action selection was also related to 

increased activity in thalamic areas compared to the No Action Selection task (Fig. 

15). 
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Figure 15. Thalamic clusters in both sides of the brain were more active when action selection was 

required than in the NAS task. 

 

Rhesus monkeys 

4. Methods 

4.1 Subjects 

Two male rhesus macaques (Macaca mulatta) weighting 8–11 kg were implanted 

with MR compatible plastic (PEEK) headposts embedded in Palacos bone cement 

(Heraeus). The headposts were attached to the cranium with short ceramic screws 

while the monkeys were under general anesthesia. Animal care and all experimental 

procedures were conducted in accordance with German laws governing animal care 

and approved by local authorities. 

 

4.2 Experimental setup 

For training and scanning, monkeys sat in a specially designed horizontal MR chair 

with the head rigidly attached to the chair with a PEEK headholder. Inside the 

scanner, stimuli were back-projected on a translucent screen at around 64 cm of 

monkeys’ eyes. The monkeys were positioned inside the MRI scanner in the prone 

position. They maintained central fixation throughout the trial. Gaze position was 

monitored with 60 Hz MR-compatible infrared eye tracker camera and ViewPoint 

2.8.6.21 software (Arrington Research). A second MR-compatible camera monitored 

jaw movements associated with licking the liquid reward, that were detected with a 

PELCO MD2001 motion detection system. Monkeys responded with their right and 
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left hands using four customized MR-compatible buttons (Current Designs) mounted 

on a plastic support. Lastly, a plate positioned between their head and hands occluded 

visual information about hands location (Fig 16A). The task was controlled via 

MATLAB (Mathworks) using the Psychophysics toolbox (http://psychtoolbox.org/).  

 

4.3 Trial timeline 

Monkeys performed speeded hand responses under time pressure while they kept 

fixating their gaze in the center of the screen. Eye and hand movements were 

controlled throughout the trial. Each trial started with the appearance of a red spot and 

a gray framed-square in the center of the screen. Monkeys were correctly positioned 

in the “rest position” when they fixated the gaze inside the eye fixation window (3º 

radius of visual angle around the red spot) and, concomitantly, positioned the left and 

right hands over the buttons 1 and 4, respectively (Fig. 16A). After a varying period, 

one colored cue was presented at the periphery of the visual field (13º of visual angle 

from the center of the screen). Squares cued monkeys to release the right (green 

square) or the left (blue square) hand from the respective rest button, press the proper 

target button (2 for the left hand and 3 for the right hand) and come back to the resting 

position. Monkeys should respond as soon as they saw the cue. The orange triangle 

cued monkeys to withhold their hand responses and keep the rest position. After the 

response (or withhold) period, monkeys should hold the rest position until the juice 

reward was delivered (Fig. 16B). 

 

 

Figure 16. (A) Stimuli were back-projected on a screen inside the MRI scanner while the monkeys sat 

in the prone position inside a horizontal MR chair. Their head was attached to the chair. We checked 

gaze fixation and jaw movements with MR-compatible cameras. The monkeys responded with their 

http://psychtoolbox.org/
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right and left hands using four buttons. Buttons 1 and 4 were used to maintain rest position, while 

buttons 2 and 3 were used as targets during hand responses. A plate positioned between their head and 

hands occluded visual information about hands location. (B) A bright red spot and a gray filled square 

at the center of the screen indicated that monkeys were positioned in the rest position (gaze fixation 

inside the fixation window and left and right hands over the buttons 1 and 4, respectively). After 

staying in the rest position for a varying period (2 to 4 s) a colored square or an orange triangle was 

presented at 13º of visual angle to the right or to the left of the fixation spot, in the same horizontal 

plane. Monkeys had up to 0.9 s to release the proper resting button (1 for the blue square and 4 for the 

green square), 0.5 s to press the proper target button (2 for the blue square cue and 3 for the green 

square cue) and 0.5 s to come back to the resting position. They kept the rest position for a period 

varying from 4 to 9 s after the response. Next, the juice reward was delivered, followed by the intertrial 

interval (ITI, 2 s). 

 

4.4 Experimental sessions 

Daily experimental sessions lasted from 2 to 4 hours. During this time, monkeys 

usually completed five to seven functional runs of 15 min each after shimming, 

adjustment, and anatomical scans. Altogether, monkeys completed 49 sessions (24 for 

monkey B and 25 for monkey C). They performed one task in each session. In the No 

Action Selection (NAS) task, a square (e.g. blue square) was presented in the same 

visual field for 10 successful trials. After that, the same stimulus was presented in the 

opposite visual field for the next 10 successful trials. This 20 successful trials 

sequence was then repeated for the other square color (e.g. green cue; Fig. 17A), 

followed by a sequence of orange triangles that was half as long as the squares 

sequences (5 successful trials in each visual field). Monkeys were also pre-cued at the 

beginning of every trial in order to allow them to prepare or avoid their motor 

responses in advance without using memory-related processes. In the Action Selection 

Blocked Visual field (ASB) task, the lateralized stimulus was presented in the same 

visual field for 10 successful trials before changing to the other visual field. Stimuli 

(squares and triangle) were randomized (Fig. 17B), except for trials following the use 

of the wrong hand for the motor response. In those cases, the same stimulus used in 

the previous trials was presented again. For simplification, we named these trials as 

“after wrong hand trials”. In the Action Selection Random (ASR) task, both visual 

field presentation and stimuli (squares and triangle) were randomized (Fig. 17C), 

except after wrong hand trials. The repetition of unsuccessful trials was used to 

prevent monkeys from stop utilizing one of the hands. For all the three tasks, the 
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proportion of green squares, blue squares and orange triangles was around 40, 40 and 

20%, respectively; and the sequences were repeated until the end of the run (Fig. 17). 

 

 

Figure 17. (Top) The four combinations of stimulus color and visual field presentation determined the 

trial condition: uncrossed or crossed. (Middle) On the left, an example of uncrossed response (left 

hand/left visual field). On the middle, an example of crossed response (right hand/left visual field). On 

the right, an example of stay cue withholding the monkey motor response. The crossed uncrossed 

difference (CUD) was calculated as the reaction times (RT) difference between averaged crossed and 

uncrossed responses. (Bottom) Example sequences for each of the tasks: (A) No Action Selection, (B) 

Action Selection Blocked Visual field and (C) Action Selection Random. Although the structure that 

defined the task did not change, the starting stimulus and the starting visual field varied randomly 

across different runs. 

 

4.5 MRI Data Acquisition and preprocessing 

Monkey B was scanned using a Siemens Trio 3T scanner and the Monkey C was 

scanned using a Siemens Prisma 3T scanner. A linear transmitter-receiver birdcage 

volume RF coil allowed whole-head homogeneous coverage. The global SNR 

(meansignal/ SDnoise) in echo-planar imaging (EPI) was in the range of 36–48 for 

Monkey B and 52-72 for monkey C. 

The whole-head high-resolution (1 mm voxel) T1-weighted image was obtained in a 

separate session. Functional images were acquired with EPI sequences (1.2 × 1.2 × 
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1.2 mm, TR 2000 ms, TE 27 ms, 30 transverse slices for Monkey B and 32 transverse 

slices for monkey C, 76° flip angle). The anatomical scans were processed in 

BrainVoyager QX (Brain Innovation). The in-plane anatomical images from all 

sessions were coregistered to the first session, which was coregistered to high 

resolution anatomical image in the commissure–posterior commissure (AC–PC) 

plane. Each functional run consisted of 904 volumes. The first four volumes of each 

run were excluded from functional analyses. EPI sequences from each run were 

preprocessed in NeuroElf (www.neuroelf.net) using slice time correction, linear trend 

removal, and a high-pass temporal filter with three cycles per 10 min run cut-off. The 

first functional volume in the session was aligned to the in-plane anatomical images 

using rigid body transformations. Automated alignment procedures were followed by 

careful visual inspection and manual fine-tuning based on anatomical landmarks. 

Using these transformations, 3D volume time courses were computed in AC–PC 

space using 1.2 × 1.2 × 1.2 mm voxel size. Additional spatial smoothing (3 × 3 × 3 

mm) was applied to the 3D volume time courses. 3D motion correction with 6 degrees 

of freedom was done by registering all EPI volumes to their previous volume in the 

session.  

 

4.6 Behavioral data analysis 

The behavioral data was analyzed using MATLAB (Mathworks) for performance and 

RT as in humans. In the ASB and ASR tasks, however, the after wrong hand trials 

were not used to calculate reaction times since, on the contrary of the other trials of 

these tasks, the monkeys could predict the hand they would need to use in trial after 

incorrect hand responses.  

 

4.7 fMRI data analysis 

One GLM was used to estimate BOLD response associated with relevant tasks events. 

The GLM was performed only for the voxels encompassed in masks adapted to each 

monkey brain. The regressors were convolved with a hemodynamic response function 

(HRF) adjusted for the BOLD dynamics in the monkey brain, peaking at 3 seconds 

(Kagan et al., 2010). 

http://www.neuroelf.net/
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We used the six combinations of hand or no response (stay, S) and visual field 

presentation as main regressors to model the response event: LL, LR, RR, RL, SL and 

SR. The main regressors consisted of a boxcar function with onsets at the stimulus 

presentation and duration of mean RT for the task, convolved with the HRF. For the 

ASB and ASR tasks, these regressors did not contain after wrong hand selection trials 

for the same reason presented for RT-related calculations. In addition to the main 

regressors, the GLM contained sixteen regressors of no interest: (1-4) wrong use of 

the hand for each of the four combinations of hand-related stimulus and visual field 

presentation, (5-8) after wrong hand trials for each of the four combinations of hand-

related stimulus and visual field presentation, (9) trial abortion due to gaze fixation 

break or jaw motion (only for the monkey C) outside the reward period or the 

intertrial interval, (10) reward delivery, and (11-16) six head motion regressors 

extracted during fMRI data preprocessing.  

The relationship between the different modeled events and brain activity was 

analyzed in each individual session. Estimates were tested using contrasts (p<0.05 

uncorrected) to assess significance across sessions. All reported brain activation were 

corrected for multiple comparisons with family-wise error (FWE) using alphasim 

(p<0.05) using NeuroElf (1000 interactions, 1.5 mm smoothing kernel). 

 

5. Results 

5.1 Behavioral results 

Monkey B responded slower on the most complex task (ASR task) compared to ASB 

(t16=2.461, p<0.05) and NAS (t13=3.864, p<0.01) tasks. There was no difference on 

reaction times between the NAS and the ASB tasks (t13=1.973, p>0.05; Fig. 18A). 

Monkey C responded faster on the NAS task than on action selection tasks (ASB: 

t14=-5.986, p<0.0001; ASR: t13=-4.717, p<0.001). There was no difference on reaction 

times between the two action selection tasks (t17=1.596, p>0.05; Fig. 18C). Figures 

18A and 18C illustrate the reaction time distribution for all correct trials, even though 

the tests were performed across sessions’ averages. 

Monkey B was not significantly faster on uncrossed responses compared to crossed 

responses in the ASB and NAS tasks (ASB: t9=-0.339, p>0.05; NAS: t5=-0.665, 
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p>0.05), but the CUD was significantly positive in the ASR task (t8=-2.266, p<0.05) 

for the comparison across session averages (Fig. 18B). 

For the Monkey C, CUD was not significant in the ASR and NAS tasks (ASR: t8=-

0.546, p>0.05; NAS: t5=-1.268, p>0.05), but it was significant in the ASB task (t9=-

2.441, p<0.05) for the comparison across sessions averages (Fig. 18D). 

 

 

Figure 18. (A and C) Histogram of the RT distribution of all correct trials for the three tasks, and their 

respective cut-offs. (B and D) Means and standard errors, across sessions, of crossed and uncrossed 

reaction times for the three tasks, corrected with the average reaction time of each task. No Actions 

selection task (NAS): green letters and curves. Action Selection Blocked visual field task (ASB): blue 

letters and curves. Action Selection Random (ASR): red letters and curves. 

 

We also tested CUD in RT for each hand separately (one paired t-test for each hand). 

For the monkey B, crossed and uncrossed reaction times were not significantly 

different for any hand during the NAS task (right hand: t5=-0.699, p>0.05; left hand: 

t5=-0.494, p>0.05; Fig. 19A) or during the ASB task (right hand: t9=0.625, p>0.05; 

left hand: t9=-1.070, p>0.05; Fig. 19B). The left hand presented CUD almost 
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significant during the ASR task (left hand: t8=-2.155, p=0.06; right hand: t8=-0.726, 

p>0.05; Fig. 19C). 

Interestingly for the monkey C, while there was positive and almost significant CUD 

for the left hand in the NAS task (t5=-2.398, p=0.06), the CUD was significantly 

negative for the right hand (t5=2.573, p<0.05; Fig. 19D). In the ASB task, the CUD 

was significantly positive for the right hand (right hand: t9=-3.448, p<0.01; left hand: 

t9=-1.504, p>0.05; Fig. 19E). There were no significant differences between crossed 

and uncrossed reaction times in the ASR task for both hands (left hand: t8=-0.796, 

p>0.05, right hand: t8=0.483, p>0.05; Fig. 19F). 

 

 

Figure 19. Reaction times for each hand (blue line for the left hand and green line for the right hand) 

related to each visual field for the (A) NAS, (B) ASB and (C) ASR tasks. Reaction times were 

corrected with the average reaction time of the respective hand. *CUD t-test, p<0.05. 

 

Although Monkey B presented significant CUD during the ASR task for the 

comparison across session averages, only 1 individual session presented significant 
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CUD across trials. The same occurred for the Monkey C, whose CUD was significant 

for the ASB task, but only one session presented significant CUD across trials. These 

results suggest intersession variability for the action selection tasks (Fig. 20). 

 

 

Figure 20. CUD of each session in each task. Filled squares represent significant CUD across trials of 

the same session (t-test, p<0.05).  

 

5.2 fMRI results 

The visual stimulation (i.e. stimulus size and distance from the fixation spot) and the 

motor requirements (i.e. hand movements) were similar across trials and tasks for the 

response cues (blue and green squares). The area of the orange triangle matched with 

the area of the squares, but this cue instructed monkeys to withhold hand responses. 

Despite the similarity of visual stimulation, differences in trial sequence generated 

different levels of predictability across tasks (NAS>ASB>ASR), impacting action 

selection requirements and brain activation patterns.  

In general, effector and spatial contralateral tuning were observed in the maps of the 

three tasks suggesting that, although monkeys responded with the entire arm and thus 

introduced more noise than the finger movements performed by humans, this noise 

did not preclude the recording of reliable task-related activity. 
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Effector tuning was observed in different areas as the primary motor cortex (M1), the 

primary sensorimotor cortex (S1), and premotor areas (Fig. 21). 

 

 

Figure 21. Map showing tuned activity for the hand use in the sensorimotor cortex (S1: x=-33, y=-20, 

z=38 mm), motor cortex (M1) and premotor areas (e.g. area 6, area F2 and area F7). Although this 

pattern was similar in the three tasks and for both monkeys, this figure illustrates only the effector-

tuning map of the monkey B during the ASB task.   

 

Space tuning was observed in different areas of the parietal, temporal and occipital 

cortices (Fig. 22). 
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Figure 22. Map showing tuned activity for the visual field presentation in vision-related areas of the 

parieto-temporal (FST, TPO, MST). Although this pattern was similar in the three tasks and for both 

monkeys, this figure illustrates only the space-tuning map of the monkey B during the ASR task.   

 

Nevertheless, the maps also contained clusters whose activation reflected the noise 

due to hand-specific movement artifacts, especially at the edges of the brains (Fig. 

23).  

 

 

Figure 23. Axial slice showing ipsilateral hand-related (Right hand > Left hand) activation at the 

posterior edge (primary visual area, V1) of the monkey B brain. Both location and tuning indicated that 

such activation was related to the noise caused by hand movements and not to BOLD signal.  
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Even the CUD contrast (LL+RR vs LR+RL), which is presumably free of hand-

specific response-related noise (because hand responses were balanced between the 

conditions), seemed to contain noise activation. Moreover, contrary to the human 

CUD maps, activations showed different patterns depending on the threshold we 

applied.  

According to our exploratory analysis, several robust differences between crossed and 

uncrossed activations did not survive a higher threshold (p<0.001 uncorrected). The 

CUD map under the adopted threshold (p<0.05 uncorrected) was more extensive but, 

conversely, included false positives (for example, activations at the edges of the 

brain). Considering both undermining results (false positives and false negatives), we 

decided to select a set of activated clusters using the lower threshold maps 

(Supplementary Tables 4-9) to investigate CUD-related activity patterns in amplitudes 

of beta values.  

Contrary to what we predicted, and unlike the results reported for humans, some areas 

were more active during uncrossed responses than during crossed responses for both 

monkeys. We found this pattern in all the tasks, representing the first robust 

interspecies difference in brain activity: positive and negative CUD-related activity 

for monkeys and only positive CUD-related activity for humans. Positive and 

negative effects in the ROI analysis can be seen as positive and negative t-values in 

the Supplementary Tables 4-9. These t-values correspond to paired t-tests performed 

between crossed and uncrossed beta values (LL+RR vs. LR+RL) across sessions. 

Figures 25 and 26 exemplify one chosen area for each monkey (monkey B and 

monkey C, respectively) in each task (NAS, ASB and ASR). We plotted the four 

response-related predictors (LL, LR, RL and RR) and the “stay cue” predictors (SL 

and SR, for stay cues presented in the left and right visual field, respectively). The 

stay cue beta values provided extra information about the area’s function in the 

visuomotor processing. For example, we interpret the activity in cerebellum as highly 

tuned to motor responses (positive beta values for the response-related predictors) and 

not tuned to visual information (negative values for the conditions which did not 

require motor response; Fig. 25C). Moreover, the activity in the cerebellum during the 

ASR task presented both hand (LL+LR>RR+RL) and CUD (RL+LR>LL+RR) 

tuning, as found for humans during the same task. 
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Both CUD-related patterns, positive and negative, reflected robust (t-vales highly 

different from zero, see Supplementary Tables 4-9) crossed-uncrossed differences in 

BOLD signal (for positive CUD see Fig. 25A; for negative CUD see Fig. 24B). The 

activity pattern in the left ventral intraparietal area (left VIP; Fig. 24B) exemplifies 

the negative CUD in activity found only for monkeys. The right caudate has the 

activity pattern of an area involved in interhemispheric communication to favor 

crossed responses (i.e. symmetrical [no hand or space tuning] and positive CUD; Fig. 

24A). 

 

 

Figure 24. Monkey B. Six main regressors’ beta values (means and standard errors) of example areas 

of each CUD-related task map. (A) Right caudate presenting positive CUD during the NAS task. (B) 

Left ventral intraparietal area (VIP) presenting negative CUD during the ASB task. (C) Left cerebellum 

presenting hand and CUD tuning during the ASR task. 

 

The activity in the left supplementary motor area (SMA) of monkey C during the 

NAS task (Fig. 25A) presents similar pattern (CUD and hand tuning) as found in the 

reported cerebellar activity of monkey B during the ASR task (Fig. 24C), 

emphasizing the motor-related function of this area. The activity of the left parietal 

area (POa) and the left visual area 4 (V4) revealed an specific pattern of negative 

CUD together with the absence of space tuning despite the high beta values found for 

the predictors related to the stay cue (for the ASB task see Fig. 25B; for the ASR task 

see Fig. 25C). 
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Figure 25. Monkey C. Six main regressors’ beta values (means and standard errors) of example areas 

of each CUD-related task map. (A) Left supplementary motor area (SMA) presenting hand and CUD 

tuning during the NAS task. (B) Left parietal area (POa) presenting negative CUD during the ASB 

task. (C) Left visual area 4 (V4) presenting negative CUD during the ASR task. 

 

Next, we contrasted the beta values of all response-related predictors between the 

tasks to investigate if some areas were more or less active in a certain task 

independently on its activation pattern (i.e. independently if the area presented CUD, 

hand or space tuning). Differences across tasks were not consistent between the two 

monkeys. For example, although the activation in the cerebellum was consistently 

higher when the monkey B was performing the ASR task compared to the other two 

tasks (Fig. 26A and 26B), and although the mapped areas were generally more active 

when monkey B was performing action selection tasks compared with the NAS task 

(e.g. left putamen Fig. 26C), this pattern did not repeat for monkey C (Fig. 27). 

 

 

Figure 26. Monkey B. Slices showing differences in brain activity across the tasks. (A) Sagittal slice 

showing that the cerebellum was more active during the ASR task compared to the NAS task. (B) 
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Sagittal slice showing that the cerebellum was more active during the ASR task compared to the ASB 

task. (C) Coronal slice showing that the left putamen was more active during the ASB task compared to 

the NAS task.  

 

Monkey C did not present differences between the action selection tasks (ASB vs 

ASR) and, although a region in the superior temporal sulcus (sts) was more active 

during the ASR task compared to the NAS task (Fig. 28A), the parietal area (PO) was 

more active when no action selection was required (NAS task) than during the ASB 

task (Fig. 27B), suggesting that the reported task differences for the two monkeys 

may represent individual differences or noise. 

 

 

Figure 27. Monkey C. Slices showing differences in brain activity across the tasks. (A) Sagittal slice 

showing that the left superior temporal sulcus (sts) was more active during the ASR task compared to 

the NAS task. (B) Coronal slice showing that the left parietal area (PO) was more active during the 

NAS task compared to the ASB task.  

 

6. Direct interspecies behavioral comparisons 

Humans performed better in the action selection tasks (ASB and ASR) than monkeys 

(p<0.001 for all comparisons across species). The performance in the NAS task, on 

the other hand, was more similar between the species. Although it was significantly 

different between humans and monkey B (p<0.05), it was not significantly different 

between humans and monkey B (p>0.05) and the difference was smaller compared to 

the action selection tasks (Fig. 28A). These results suggest that interspecies 
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differences decreased when movements could be planned in advance. The 

performance did not vary between the two monkeys in all three tasks. 

The monkey B was faster than humans and the monkey C during the two action 

selection tasks (p<0.05). The reaction times of humans and the monkey C were not 

statistically different when action selection was required (p>0.05). In the NAS task, 

on the other hand, humans were faster than both monkeys (p<0.001), representing the 

only clear interspecies difference in reaction times (Fig. 28B). 

Finally, both species did not present CUD in reaction time when no action selection 

was required (p>0.05). In the ASB task, the significant CUD of humans and monkey 

C were not statistically different (p>0.05), and only humans had significantly higher 

CUD than the (nonexistent) CUD of monkey B (p<0.05). In the ASR task, humans 

had higher CUD than both monkeys (p<0.001). These results suggest that in general, 

although we found CUD for monkeys during action selection tasks, the 

interhemispheric transfer time associated to these tasks was longer for humans (Fig. 

28C). 
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Figure 28. (A) Mean and standard errors of performance per task. (B) Mean and standard errors of 

reaction time per task. (C) Mean and standard errors of CUD per task. Each task is represented by one 

color: blue bars for the ASB task, green bars for the ASR task and green bars for the NAS task. The 

bars assigned to humans (H), monkey B (MB) and monkey (MC) have slight brightness variations. *t-

test, p<0.01 and ***t-test, p<0.001. 

 

7. Discussion 

Fourteen human subjects and two rhesus monkeys performed speeded manual 

responses to lateralized visual cues while they kept fixating their gaze in the center of 

a screen inside the MRI scanner. They performed different tasks in different days 

(monkeys performed each task in multiple and separate days).  

Due to the contralateral organization of the brain of primates, different combinations 

between visual field presentation and hand response determined two conditions: 

crossed responses, which required interhemispheric transfer of information; and 

uncrossed responses, which did not require communication between the two brain 
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hemispheres. Crossed responses should be slower than uncrossed (Crossed Uncrossed 

Difference, CUD) because they rely on interhemispheric transfer of information 

(Poffenberger, 1912).  

We hypothesized that, since stimulus-response spatial compatibility (SRSC) effects 

are only expected in choice tasks (Pellicano et al., 2013) and, therefore, coupled with 

action selection, the increased uncertainty of the upcoming response requirements 

would result in longer CUD. This assumption was confirmed since, in humans, the 

CUD in RT increased with the randomization of the trial sequence, being significant 

in both species only when action selection was required.  

The longest CUD for the monkey B also occurred during the ASR task, but the 

significant CUD for the monkey C occurred during the task with intermediate level of 

trial sequence randomization, the ASB task. Nevertheless, since the most general 

predicted pattern for CUD in RT – longer CUD during action selection tasks – was 

found in both species, we suggest that differences between the two monkeys might 

reflect intersubject variation, which might be present in both species. For example, the 

human subjects 4, 9 and 12 presented longer CUD during the ASB task compared to 

the other two tasks. It is also important to emphasize that, as hypothesized, on average 

CUD in RT was positive in both species during the three tasks. 

The direct interspecies behavioral comparison revealed that, when there was 

significant CUD in RT, these differences were longer in humans. The human brain is, 

on average, at least four times bigger than the rhesus monkey brain (Herculano-

Houzel, 2009) and thus requires longer fibers for interhemispheric connections. 

According to Aboitiz et al. (2003), the increase in fiber diameter, and consequently in 

transmission speed, is not enough to compensate for the increased long 

interhemispheric distances. In this context, the general longer CUD in humans might 

be result of increased distances between two brain hemispheres compared to 

monkeys. However, this suggestion might be challenged by the performance 

comparison between the species and by comparison between the different CUD-

related activation patterns across the tasks in humans (see section 7.2). 
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7.1 Interspecies differences in hemispheric specialization 

Hemispheric specialization is another brain feature that could cause interspecies 

differences in interhemispheric processing. Although there are multiple lines of 

evidence that hemispheric asymmetry is not exclusive of humans (Ocklenburg and 

Güntürkün, 2012), and that it is also present in monkeys (Hamilton and Vermeire, 

1988; Jason et al., 1984), the human brain is more lateralized than the monkey brain 

(Aboitiz et al., 2003; Kagan et al., 2010; Oleksiak et al., 2010; Wey et al., 2013). 

Nevertheless, in the present study, we did not find clear differences in hemispheric 

specialization between the species. In humans, when the average CUD in RT was 

significant (action selection tasks), it was fairly symmetrical between the hands. 

Nevertheless, four human subjects presented asymmetrical CUD patterns in RT 

(positive in one hand and negative in the other, significant or not) during the ASB 

task, five during the NAS task and three during the ASR task. None of the subjects 

presented such pattern in all tasks. The two monkeys presented positive averaged 

CUD across sessions (significant or not) for the left hand in all the tasks, whereas the 

right hand presented negative CUD (significant or not) during the NAS (monkey C), 

ASB (monkey B) and ASR (monkey C) tasks. The most robust and unexpected result 

was the significant negative CUD (-11 ms) for the right hand of the monkey C during 

the No Action Selection task. Due to the lack of systematic differences between the 

species, we attribute the variability in the results to intersubject variation more than to 

differences between these two primate species. 

The comparison of activation patterns between the hemispheres in humans revealed 

an opposite pattern compared to the one described in previous Poffenberger-related 

imaging studies with humans (Table 1). While the most consistent finding across the 

five studies mentioned in the Table 1 was the positive CUD activation in the right 

precuneus (Iacoboni et al., 2004; Marzi et al., 1999; Tettamanti et al., 2002); in the 

present study, the CUD map at lower threshold for the NAS task included only areas 

from the left parietal lobule (Supplementary Fig. 1). This was the most robust 

interhemispheric asymmetry in the CUD maps of humans considering all tasks. This 

pattern might result from differences between our Poffenberger-like task (NAS task) 

and the ones presented in the Table 1 addressed in the section 7.4. 
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7.2 Differences in CUD-related activation patterns and RT across the tasks 

Interestingly, the strongest asymmetry in the CUD maps occurred during the same 

task (NAS) in which we found ipsilateral space tuning in the right frontal cortex. We 

suggest that such ipsilateral processing provided representations of visual information 

from both visual fields in the right hemisphere – as suggested by Mesulam (1999) and 

Kagan et al. (2010) – facilitating interhemispheric communication and decreasing the 

CUD in RT to non-significant levels. Commonly, but unlike the original study by 

Poffenberger (1912), behavioral and slow event-related fMRI studies were performed 

intermixing left- and right-sided light flashes to avoid visual attention to be anchored 

in a specific location of the visual field (Iacoboni et al., 2004). We suggest that the 

ipsilateral representation of visual information in the frontal right hemisphere (e.g. 

dlPFC) was possible because both hand use and visual field presentation were 

blocked during the NAS task. Therefore, our results suggest that the more predictable 

the upcoming response requirements, the earlier (i.e. more visual) is the crossed 

information. 

The CUD map of the ASB task was mainly characterized by the fronto-lateral 

activations. Even at higher threshold, the CUD activations during this task partially 

overlapped with the ipsilateral space tuned activation of the NAS task. We interpret 

this overlap as a demonstration that the inferior frontal gyrus was responsible for 

crossing similar (probably visual) information in both tasks, since the visual field 

presentation of lateralized stimulus was equally blocked in both of them. By knowing 

which hand they should use and where the stimulus would be presented, subjects 

could prepare the information transfer before the stimulus presentation during the 

NAS task; but during the ASB task, this transfer preparation could be only partial 

because, although subjects were attending to only one visual field, they could not 

predict if the crossed pathway would be useful or not. The stimulus color (and 

consequently the hand to be used) determined if the proper response was crossed or 

uncrossed. Thus, we suggest that during the ASB task, the fronto-lateral areas were 

involved in crossing the information only after having access to the requested motor 

planning. Nevertheless, we propose that fronto-lateral areas were not involved in the 

action selection itself, since they were not present in the Action Selection map. Areas 

from the dorsal parietal cortex (such as precuneus, SPL, S1 and M1) and dACC, on 

the contrary, were more active when action selection was requested. In fact, dACC 
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was present in both maps (the CUD map for the ASB task and the Action Selection 

Map). The neural activity of this area was associated with conflict monitoring and 

behavioral adjustments (Kerns et al., 2004). Thus, its CUD-related activation during 

the ASB task might reflect the inhibition of incompatible responses. This adjustment 

would be necessary to avoid motor planning conflicts between the brain hemispheres, 

and might be part of the SRSC effects predicted for the task (De Jong et al., 1994). 

Finally, since both tasks, ASR and ASB, required action selection, the difference of 

CUD in RT between these tasks must be caused by the more spread (i.e. both visual 

fields) spatial attention during the ASR task. CUD-related activation in IPL, SPL and 

S1 overlapped with effector-tuned activations during this task. We interpret these 

results as a demonstration that, when the hand use and the visual field presentation 

were most unpredictable, the transfer of (excitatory or inhibitory) interhemispheric 

information occurred later compared to more predictable interhemispheric 

communication, and thus were encoded by motor-related areas. The association of 

crossed information with motor processing during the ASR task was further supported 

by the overlap between CUD and motor tuning maps also in the cerebellum. In this 

context, SRSC effects would need to be stronger since the inhibition of incompatible 

responses would occur when the motor processing is more advanced. 

Furthermore, in monkey B the cerebellum was clearly more active during the ASR 

task than during ASB or NAS tasks, and was present in the CUD maps of both action 

selection tasks (Supplementary Tables 5 and 6). Once again, this pattern was not 

repeated in monkey C, who had cerebellar activity associated with crossed uncrossed 

differences in the NAS and ASB tasks. Nevertheless, altogether these results indicate 

that the cerebellum is involved in interhemispheric communication when action 

selection is required, especially when subjects are most uncertain about where the 

stimulus will be presented and how they should respond to this stimulus, implicating 

the cerebellum in motor adjustments also when interhemispheric transfer is required. 

The comparison in CUD-related activation patterns and RT across the three tasks 

suggests that the content of the information transferred between the brain hemispheres 

varied according to how predictable was the upcoming response requirements. The 

more unpredictable the hand use and visual field presentation, the later the stage of 

the processing (i.e. more motor) is engaged in the interhemispheric communication. 

Although the RT cut-off during the NAS task was 300 ms earlier than during action 
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selection tasks, the performance of human subjects did not change across the tasks. 

Monkeys, on the other hand, performed worse during action selection tasks, 

suggesting that, instead of differences in brain size, the CUD in RT was longer in 

humans because they delayed the exchange of relevant information between the 

hemispheres up to the point when a properly selected response could be implemented 

without affecting the performance. Our findings also suggest that unpredictability did 

not increase the interhemispheric transfer time per se, but only postponed it to support 

the exchange of motor information. In fact, if the interhemispheric transfer time of 

each task would depend exclusively on the differences between the transmission time 

of the involved areas, the ASB task should present the longest CUD in RT, since the 

fibers which connect the fronto-lateral areas (most present in the CUD map of the 

ASB task) between the hemispheres consist of thin slow-conducting axons (Fig. 2; 

Aboitiz et al., 2003). 

 

7.3 Poffenberger paradigm vs the NAS task: why we did not find CUD in RT? 

In opposition to different studies that tested interhemispheric transfer time using the 

Poffenberger paradigm (for review see Marzi et al., 1991), we did not find significant 

crossed uncrossed difference in RT during the NAS task for any of the species. We 

attribute the absence of CUD effects in our Poffenberger-like task to two factors: (a) 

the longer intervals between the response periods (caused by the slow event-related 

fMRI design we adopted), and (b) to motor response contingencies. Robust CUD in 

RT during fMRI experiments was mainly found when experimenters used blocked 

designed tasks (e.g. Tettamanti et al., 2002), while non-significant CUD was found in 

experiments with slow event-related design (e.g. Martuzzi et al., 2006). Moreover, 

contrary to simple button presses typically used in Poffenberger-related tasks (Marzi 

et al., 1991), during our experiments both humans and monkeys needed to release 

“rest buttons”, reach “target buttons” and come back to the rest buttons in order to 

complete the required response. The increased cognitive and motor requirements is 

evident in our task since the average human reaction time during the NAS task is 

around 100 ms slower than reported by the meta-study of Marzi et al. (1991). We 

propose that under more complex response contingencies, the small CUD in RT (e.g. 

4 ms) is diluted across the two response conditions. 
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7.4 Negative CUD in brain activation 

The most striking difference between humans and monkeys in the present experiment 

was the presence of negative activations exclusively in the CUD maps of monkeys. 

Even when we performed a fixed-effects analysis (which is more permissive that a 

random-effects approach) in the first phase of our data analysis, it was clear that 

almost entire the human brain was more active during crossed responses as compared 

to uncrossed responses. The absence of negative CUD activation was also evident in 

the random-effects analysis of humans, whose maps were less extensive and allowed 

us to locate task-specific areas responsible for putative interhemispheric 

communication, or increased task demands. 

Monkeys, on the contrary, presented robust negative CUD in brain activation. It could 

be suggested that negative CUD activations were exclusive for monkeys because, by 

being more impulsive than humans, it was more difficult for them to inhibit non-

required crossed responses. Additionally, the lower performance of monkeys during 

action selection tasks could support this suggestion. But, according to previous 

studies, congruent (uncrossed) responses, and not crossed responses, are 

automatically activated (De Jong et al., 1994; Pellicano et al., 2013). In this context, 

the inhibition of those responses should still result in positive CUD patterns (i.e. 

higher activation for crossed responses). Thus, this interspecies difference requires a 

more general modification of the task representation. In the present experiment, the 

visual cues were associated with hand or finger movements towards buttons that 

subjects were not visualizing. Therefore, all tasks required some level of abstract 

representation. The higher performance of humans in the action selection tasks (ASB 

and ASR) suggests that they could comprehend better some of the task requirements 

and that speeded action selection processes are better performed by humans. 

Another important difference was that the task for humans did not contain the “stay 

cue” (the orange triangle which instructed monkeys to withhold their motor response). 

This cue was utilized to increase the chance of failure because of impulsive responses. 

When there are only two response options (right or left hand), monkeys can respond 

impulsively and still guarantee performance of at least 50%. By including a third 

condition (stay cue), we decreased their chance level performance to 33%, making 
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them to avoid more impulsive reactions to the “go cues” (i.e. peripheral blue or green 

square cues). Although negative CUD activations were not always associated with 

high beta values for the “stay cue” conditions, the existence of such pattern (e.g. Fig. 

24B and Fig. 25C) might represent the involvement of some brain areas in processes 

which inhibit exclusively crossed responses as consequence of a generalization of the 

inhibitory requirements associated with the stay cue. For instance, when the “stay 

cue” was presented, these areas would be involved in the general inhibition of motor 

responses of both hemispheres, which should include, therefore, crossed and 

uncrossed responses. As consequence of such imprinted pattern, when uncrossed 

responses were required, these areas would still inhibit the non-required crossed 

response. 

This and other potential differences between the species cannot be resolved using our 

data. Therefore, we suggest that an extra experiment is necessary to elucidate the 

differences or similarities between the two species. Patel et al. (2015) compared the 

attention networks of humans and monkeys in order to understand how evolution 

changed those networks. Among the eight human subjects used for the interspecies 

comparisons, three received additional training after the initial scanning sessions and 

before completing the data collection. By doing this, Patel et al. (2015) were able to 

compare human behavioral and fMRI results before and after overtraining and, by 

doing so, match the overtraining effects between the species. Overtraining 

undermines comparisons between species because animals can learn non-adaptive 

behaviors and generalize this learning to other representations of the task (Oleksiak et 

al., 2010). For example, Stamm et al. (1977) reported the influence of hand-specific 

training on the memory representation of the spatial location of a cue. We believe that 

a follow up experiment in which few human subjects would be extensively trained in 

a task containing the all three cues (green and blue squares and the orange triangle) 

and imaged in different steps of experiment, would help us to elucidate the results that 

can pertain both to intersubject variation and interspecies differences. Among main 

findings, we should test if the faster CUD in RT and the negative CUD activations in 

monkeys are indeed caused by differences between the species.  

However, let us for the moment take our findings of the negative CUD at the face 

value, and assume that they indeed represent a real signature of neuronal processing 

(or at least its indirect BOLD fMRI correlate). This is not the only difference between 
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species we have found. A parallel study in our lab have found that during spatial 

saccadic decisions, brain activity corresponding to single target instructed trials is 

smaller than the frontoparietal activity corresponding to the two target choice trials, 

while the opposite is true in monkeys (humans: choice > instructed, monkeys: choice 

< instructed). We attributed this difference to summation patterns in less contralateral 

human spatial representations, and putative inhibition due to competition between 

contralateral and ipsilateral options in more contralateral monkey representations 

(Schmidt-Samoa et al., 2012). In the context of crossed-uncrossed responses, one 

possibility might be that the suppressed crossed activity reflects a stronger inter-

hemispheric competition between response options, which is not present when only 

one hemisphere implements an uncrossed response. 

 

7.5 Organization of visuomotor representations 

Since our main research question addresses CUD effects in RT and brain activation, 

we focused on the interspecies comparison on these aspects of the data. Nevertheless, 

the visuomotor components of the reaching responses required by our tasks are almost 

unexplored in fMRI studies, despite the great number of invasive electrophysiological 

studies in monkeys and imaging studies in humans addressing this topic (e.g. in 

monkeys Buneo et al., 2002; Gregoriou and Savaki, 2003; Fattori et al., 2010; Kalaska 

et al., 1997; Raos et al., 2004; in humans Connolly et al., 2003; Prado et al., 2005; 

Cavina-Pratesi et al., 2010). This presents another important aspect of our data that 

warrants further systematic analysis.  

Nelissen and Vanduffel (2011) and Premereur et al. (2015) are the only published 

works which investigated reaching-related activity in macaque brain using a 

technique (fMRI) that allows direct comparison of results with studies in humans. 

Nelissen and Vanduffel (2011) showed higher activation in parietal and frontal areas 

(such as anterior intraparietal area, rostral inferior parietal lobule, somatosensory 

areas, ventral premotor area F5 and the hand field of F1) during “grasping” compared 

to “reaching”. However, they did not address hand-specific encoding (monkeys were 

always reaching with one hand), and the relationship between hand and space 

encoding. Since monkeys performed the tasks in the dark, areas related to visually-

guided manual responses (such as V6A and F2) did not present clear grasp-related 
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activity. Moreover, since in our experiments monkeys and humans saw visual cues 

which instructed reaching responses towards buttons they were not visualizing, we 

will be able to distinguish between visual and motor representations previously 

conflated due to the guidance aspect of the visual cues in direct visually-guided tasks 

(Grol et al., 2007; Raos et al., 2004). In Premereur et al. (2015) monkeys performed 

two tasks which required the same attention to detect the go cue and the target, but 

different effectors: eyes or hands to perform visually-guided saccades or reaching. 

Despite task similarities, two largely segregated cortical networks were activated 

depending on the effector that was used to respond. In the context of these two 

experiments – Nelissen and Vanduffel (2011) and Premereur et al. (2015) – further 

analyses of our data can identify, in addition to interhemispheric interactions, species-

specific representations of (indirectly) visually-guided reaching activity, and compare 

the activation patterns with the described patterns for direct visually-guided saccades 

and reaches. In addition, left/right space-specific vs. left/right hand-specific activation 

patterns can be analyzed. 

 

Summary 

Despite methodological limitations, we were able to demonstrate that the level of 

predictability primates have about the upcoming response requirements influences 

interhemispheric communication by adding action selection and SRSC effects to the 

brain processing. In this context, the unpredictability would not increase the 

interhemispheric transfer time per se, but would delay the exchange of relevant 

information between the hemispheres until the point when the proper response can be 

implemented without decreasing performance. In monkeys, due to their impulsivity, 

failure in delaying the responses until the point in which the transfer of 

interhemispheric information would guarantee the same performance, or smaller brain 

size (and consequently interhemispheric distances), resulted in shorter CUD in RT for 

action selection tasks. 

Further experiments (i.e. in overtrained humans), more rigorous data inspection and 

analysis of the principle findings, as well as more advanced analysis approaches (e.g. 

functional connectivity) should be performed in order to corroborate, and further 

investigate: (a) the suggested inhibitory mechanism that caused negative CUD 

activations, (b) optimal approach in statistical mapping and extracting the activation 
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patterns, especially in the monkey datatset, and (c) the direction of the 

interhemispheric transfer of information. 
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Supplementary information 

 

Cluster tables for humans. The clusters of voxels were extracted using NeuroElf 

(www.neuroelf.net) and the brain areas identified according to the atlas of the 

Talairach Project at the Research Imaging Institute of the University of Texas Health 

Science Center San Antonio (http://www.talairach.org/applet.html). Since, in some 

cases, different clusters of voxels were located in the same brain area, we identified 

the clusters with numbers (last column of the cluster tables) in order to cross-

reference the information presented in the figures of the Results sections and the 

following supplementary tables.  

The cluster tables were extracted from the lower threshold CUD maps 

(Supplementary Figures 1-3). Areas present also in the higher threshold maps 

(Figures 8-10) are highlighted with starts and the orange text color. 

 

Supplementary Table 1 

Table of clusters with significant CUD activity in the NAS task for the threshold p<0.01 (black text) 

and p<0.001 (orange text) 

 

Name Hemisphere x y z t value Cluster 

1 Posterior Cingulate Cortex  Left -16 -48 21 5.98 01 01 

2 dorsal Anterior Cingulate Cortex Left -15 11 31 5.24 01 02 

3 Sub-Gyral Left -24 -31 37 4.49 01 03 

4 Middle Frontal Gyrus  Left -24 11 34 4.46 01 04 

5 dorsal Premotor Cortex  Left -24 -4 46 4.28 01 05 

6 dorsal Anterior Cingulate Cortex Left -15 -10 37 3.95 01 06 

7 dorsal Premotor Cortex Left -15 11 46 3.73 01 08 

8 White matter (Cingulate) * Left -16 -48 21 3.72 01 09 

9 Medial Frontal Gyrus  Left -15 2 58 3.28 01 14 

10 Medial Frontal Gyrus*  Right 15 11 46 4.99 02 01 

11 Sub-Gyral*  Right 21 -4 55 4.54 02 02 

12 Cingulate Gyrus  Right 24 2 34 4.14 02 03 

13 Superior Frontal Gyrus*  Right 6 11 49 4.11 02 04 

14 Medial Frontal Gyrus  Left 0 26 46 4.09 02 05 

15 dorsal Anterior Cingulate Cortex Right 15 8 34 4.03 02 06 

16 Cingulate Gyrus  Right 21 17 25 3.78 02 07 

17 Sub-Gyral  Right 24 -16 49 3.5 02 08 

18 dorsal Premotor Cortex Right 3 2 58 3.31 02 09 

19 Anterior Lobe Left -24 -55 -29 4.16 03 01 

20 Uvula Left -12 -67 -26 4.04 03 02 

21 Pyramis* Right 12 -70 -29 4.84 04 01 

22 Precuneus  Right 12 -58 52 4.4 05 01 

http://www.neuroelf.net/
http://www.talairach.org/applet.html
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23 Precuneus  Right 18 -46 37 4.24 05 02 

24 Precuneus  Right 12 -61 43 3.98 05 03 

25 Precuneus  Left -9 -55 52 4.24 06 01 

26 Precuneus  Left -18 -52 49 3.69 06 02 

27 Postcentral Gyrus  Right 33 -25 31 3.68 07 02 

 

Supplementary Table 2 

Table of clusters with significant CUD activity in the ASB task for the threshold p<0.01 (black text) 

and p<0.001 (orange text) 

 

Name Hemisphere x y z t value Cluster 

1 dorsolateral Prefrontal Cortex*  Right 45 14 28 7.04 01 01 

2 Lingual Gyrus*  Right 18 -40 1 6.73 01 02 

3 Thalamus*  Right 15 -22 4 6.31 01 03 

4 Culmen* Right 3 -58 1 6.09 01 04 

5 Insula*  Right 39 11 10 4.86 01 05 

6 Thalamus*  Right 24 -22 4 4.66 01 06 

7 Thalamus*  Right 6 -16 7 4.57 01 07 

8 Lentiform Nucleus  Right 24 -10 -2 4.54 01 08 

9 Claustrum*  Right 36 8 1 4.52 01 09 

10 Caudate  Right 18 -7 16 4.51 01 10 

11 Culmen* Right 3 -49 -2 4.34 01 11 

12 Insula*  Right 36 20 10 4.3 01 12 

13 Lingual Gyrus  Right 21 -64 -2 3.91 01 15 

14 Declive Right 15 -64 -14 3.9 01 16 

15 Lentiform Nucleus  Right 18 5 1 3.56 01 19 

16 Culmen Left -6 -67 -5 3.51 01 20 

17 Cingulate Gyrus*  Left -12 11 34 7.92 02 01 

18 dorsal Premotor Cortex*  Right 3 2 52 5.61 02 02 

19 Anterior Cingulate*  Left -6 8 25 5.47 02 03 

20 Pre Supplementary Motor Area*  Right 12 -4 52 4.99 02 04 

21 Supplementary Motor Area *  Right 15 -13 55 4.79 02 05 

22 dorsal Anterior Cingulate Cortex Right 3 -1 34 4.53 02 06 

23 dorsal Anterior Cingulate Cortex Right 3 14 34 4.48 02 07 

24 Primary Motor Cortex  Right 27 -13 46 4.38 02 08 

25 dorsal Anterior Cingulate Cortex*  Left -12 5 43 4.26 02 09 

26 dorsal Anterior Cingulate Cortex Right 3 -1 43 3.86 02 11 

27 dorsal Premotor Cortex Right 30 -4 49 3.86 02 12 

28 Lentiform Nucleus  Left -24 -16 -2 4.78 03 01 

29 ventral Premotor Cortex Left -54 5 13 4.66 03 02 

30 Claustrum  Left -33 5 10 4.57 03 03 

31 Superior Temporal Gyrus  Left -54 -4 4 4.00 03 04 

32 Lentiform Nucleus  Left -21 11 10 3.87 03 05 

33 Lentiform Nucleus  Left -18 -1 1 3.87 03 06 

34 Inferior Frontal Gyrus Left -45 8 19 3.62 03 09 

35 Primary Motor Cortex  Left -51 -1 28 3.52 03 10 
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36 Precentral Gyrus  Left -39 -1 28 3.48 03 11 

37 dorsolateral Prefrontal Cortex*  Right 36 41 34 6.47 04 01 

38 anterior Prefrontal Cortex*  Right 45 41 7 5.99 04 02 

39 dorsolateral Prefrontal Cortex *  Left -39 29 37 6.1 05 01 

40 dorsolateral Prefrontal Cortex Left -27 20 34 5.44 05 02 

41 dorsolateral Prefrontal Cortex *  Left -30 26 46 4.53 05 03 

42 dorsolateral Prefrontal Cortex *  Left -36 41 31 4.01 05 04 

43 dorsolateral Prefrontal Cortex Left -48 41 22 3.59 05 05 

44 Precuneus  Left -21 -46 46 4.23 06 01 

45 Inferior Parietal Lobule  Left -48 -43 55 3.49 06 04 

46 Superior Parietal Lobule  Left -30 -55 46 3.48 06 05 

47 Precuneus  Left -30 -43 43 3.43 06 06 

48 Inferior Parietal Lobule  Left -39 -46 46 3.37 06 08 

49 Superior Parietal Lobule  Left -27 -67 46 3.28 06 09 

50 Precuneus*  Right 24 -67 37 4.81 07 01 

51 Precuneus  Right 18 -67 22 4.09 07 02 

52 Precuneus  Right 15 -67 52 3.51 07 03 

53 Cuneus  Right 18 -82 31 3.13 07 04 

54 Middle Temporal Gyrus  Left -39 -61 1 3.61 08 02 

55 Middle Temporal Gyrus  Left -60 -46 10 3.56 08 04 

56 Middle Temporal Gyrus  Left -48 -55 4 3.55 08 05 

57 Superior Temporal Gyrus  Left -54 -37 10 3.41 08 07 

58 Superior Temporal Gyrus  Right 66 -22 13 4.23 09 02 

59 Postcentral Gyrus  Right 66 -22 28 4.41 09 03 

60 Superior Temporal Gyrus  Right 60 -31 16 3.75 09 04 

61 Inferior Parietal Lobule  Right 51 -28 25 3.32 09 06 

62 Inferior Temporal Gyrus*  Right 48 -49 1 5.35 10 01 

63 Sub-Gyral*  Right 45 -40 -5 5.28 10 02 

64 Primary Motor Cortex  Left -15 -19 55 4.92 11 01 

65 Precentral Gyrus  Left -30 -13 61 4.27 11 02 

66 Anterior Lobe Right 18 -43 -29 5.03 12 01 

67 Culmen  Right 18 -25 -32 4.47 12 02 

 

Supplementary Table 3 

Table of clusters with significant CUD activity in the ASR task for the threshold p<0.01 (black text) 

and p<0.001 (orange text) 

 

Name Hemisphere x y z t value Cluster 

1 Culmen  Left -12 -22 -20 5.95 01 01 

2 Culmen* Right 12 -46 -14 5.02 01 02 

3 Anterior LobeDentate* Right 15 -49 -23 4.87 01 03 

4 Culmen* Right 12 -37 -17 4.57 01 04 

5 Culmen Right 0 -52 -20 4.43 01 05 

6 Fusiform Gyrus  Right 48 -34 -8 4.42 01 06 

7 MidbrainRed Nucleus  Left 0 -22 -14 4.36 01 08 

8 Culmen*  Left -3 -40 -17 4.34 01 09 
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9 Culmen Left -18 -43 -20 4.29 01 10 

10 Culmen Right 24 -31 -23 3.51 01 13 

11 Declive Right 15 -61 -14 3.49 01 14 

12 Culmen  Right 33 -34 -20 3.47 01 16 

13 Inferior Parietal Lobule*  Right 42 -43 55 7.03 02 01 

14 Postcentral Gyrus  Right 39 -25 49 5.66 02 02 

15 Precentral Gyrus  Right 24 -22 61 4.85 02 03 

16 Superior Parietal Lobule*  Right 33 -46 46 4.1 02 04 

17 Postcentral Gyrus  Right 45 -25 58 4.01 02 05 

18 Inferior Parietal Lobule  Right 42 -52 49 3.81 02 06 

19 Middle Temporal Gyrus*  Left -63 -22 -8 5.27 03 01 

20 Superior Temporal Gyrus*  Left -48 -13 -8 4.89 03 02 

21 Middle Temporal Gyrus*  Left -54 -22 -14 4.62 03 03 

22 Inferior Parietal Lobule*  Left -48 -37 55 7.45 04 01 

23 Postcentral Gyrus*  Left -51 -28 49 5.75 04 02 

24 Inferior Parietal Lobule  Left -39 -49 55 4.22 04 03 

25 Postcentral Gyrus  Left -36 -28 55 3.81 04 04 

26 Declive Right 27 -79 -20 4.71 05 01 

27 Declive Left -3 -82 -26 4.45 05 02 

28 Declive Right 9 -73 -20 3.74 05 03 

29 Uvula Left -18 -79 -26 3.49 05 04 

30 Precuneus  Left 0 -64 55 4.08 06 02 

31 Precuneus  Left -3 -76 46 3.6 06 03 

32 Cingulate Gyrus  Left -12 -37 37 3.59 06 04 

33 Superior Frontal Gyrus  Left -6 -4 70 4.42 07 01 

 

Cluster tables for monkeys. Clusters were named according to the Calabrese et al. 

(2015) MRI+DTI atlas (https://scalablebrainatlas.incf.org/macaque/CBCetal15). 

Unlike in human data, the clusters were not split in subclusters. Note the negative t-

values (dark red text) indicate the decrease for the crossed vs uncrossed comparison 

(crossed < uncrossed, negative CUD). All areas included in the Supplementary tables 

4-9 presented significant difference between crossed and uncrossed beta values across 

sessions (paired t-test, p<0.05). 

 

Monkey B 

Supplemantary Table 4 

Areas with CUD in activity during the NAS task for the monkey B 

 

Name Hemisphere x y z t value Cluster 

1 Supplementary motor area (6) Right 9 -17 36 6.27 01 01 

2 Parietal area (PEa) Left -9 -57 22 6.88 03 01 

3 Somatosensory cortex (3a) Right 11 -27 46 5.57 04 01 

https://scalablebrainatlas.incf.org/macaque/CBCetal15
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4 Putamen (Pu) Left -23 7 -8 -11.92 05 01 

5 Ventral part of area 9/46 (46V) Left -25 29 16 -7.29 06 01 

6 Parietal area (PEa) Right 39 -27 36 7.16 07 01 

7 Somatosensory cortex (2) Left -11 -37 50 6.07 08 01 

8 Dorsal part of visual area 4 (V4D) Right 45 -53 10 -11.04 15 01 

9 Granular insular cortex (Gl) Left -35 -13 10 -9.05 16 01 

10 Visual area 2 (V2) Right 19 -65 6 -15.45 22 01 

11 Dorsal part of visual area 4 (V4D) Left -57 -45 0 -6.30 31 01 

12 Visual cortex 4 (V4) Left 9 -9 42 5.32 33 01 

13 Dorsorostral area 6 (F7) Left -23 11 36 -5.58 37 01 

14 Ventral part of visual area 4 (V4V) Left -47 -53 -6 -4.39 40 01 

15 Dorsal anterior cingulate cortex (24c) Left -13 3 30 -10.10 43 01 

16 Caudate nucleus (Cd) Right 13 1 12 5.88 44 01 

17 Temporal parietooccipital area (TPO) Right 53 -23 -2 5.35 46 01 

18 Dorsal part of visual area 4 (V4D) Right 53 -47 0 3.13 48 01 

19 Caudal part of the Parietal area (PEC) Right 11 -61 36 5.04 53 01 

 

Supplemantary Table 5 

Areas with CUD in activity during the ASB task for the monkey B 

 

Name Hemisphere x y z t value Cluster 

1 Visual area 1 (V1) Right 37 -69 2 -5.81 02 01 

2 Parietal area (PEa) Left -27 -29 36 7.77 03 01 

3 Caudate nucleus (Cd) Right 11 21 14 4.92 04 01 

4 Caudate nucleus (Cd) Left -9 11 10 6.31 06 01 

5 Cingulate cortex (24b) Right 1 -7 28 4.59 07 01 

6 Putamen (Pu) Right 35 -1 0 5.18 08 01 

7 Dysgranular insular cortex (Dl) Left -37 -1 -8 5.55 09 01 

8 Cerebellum (Cb) Left -25 -49 -12 4.86 11 01 

9 Medial part temporal area (TE) Left -59 -25 -6 4.86 12 01 

10 Dorsal part of visual area 4 (V4D) Left -59 -39 8 -4.99 13 01 

11 Area 45B Left -43 13 18 -5.52 14 01 

12 Ventral intraparietal area (VIP) Left -21 -33 24 -6.28 15 01 

13 Visual area 2 (V2) Right 19 -53 0 6.55 23 01 

 

Supplemantary Table 6 

Areas with CUD in activity during the ASR task for the monkey B 

 

Name Hemisphere x y z t value Cluster 

1 Lateral intraparietal area (LIP) Right 13 -55 34 -7.68 02 01 

2 PECg Right 15 -29 26 -5.52 03 01 

3 Putamen (Pu) Right 21 5 -8 -4.10 06 01 

4 White matter-ps (MW-ps) Left -13 31 12 -5.09 08 01 

5 Parietal area (PEa) Left -41 -19 28 -4.80 09 01 

6 Putamen (Pu) Left -19 1 12 -4.79 10 01 

7 Cingulate cortex (31c) Left -1 -39 28 -7.83 12 01 
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8 Visual area 3 (V3A) Left -35 -63 30 -4.16 13 01 

9 Visual area 3 (V3) Right 11 -19 34 -4.86 14 01 

10 Cerebellum (Cb) Left -1 -67 4 -5.52 15 01 

11 White matter-ps (MW-ps) Right 3 11 18 -4.55 16 01 

12 Cerebellum (Cb) Right 5 -47 -4 4.90 17 01 

13 Parieto-occipital area (PO) Right 3 -71 16 -6.22 18 01 

14 Lateral intraparietal area (LIP) Right -15 -57 26 -9.16 19 01 

15 White matter-ips (MW-ips) Right 17 -53 20 5.40 21 01 

16 White matter-cs (MW-cps) Left -23 -11 28 -4.46 23 01 

 

Monkey C 

Supplemantary Table 7 

Areas with CUD in activity during the NAS task for the monkey C 

 

Name Hemisphere x y z t value Cluster 

1 Anteroventral part of area 8 (8AV) Right 30 16 30 6.76 01 01 

2 White matter-cg (WM-cg) Left -2 12 22 -14.4 02 01 

3 Visual area 1 (V1) Right 24 -72 14 -8.33 03 01 

4 Secondary somatosensory cortex (S2) Right 46 -18 16 -5.51 04 01 

5 Visual area 3 (V3a) Right 28 -8 26 -6.33 05 01 

6 White matter-ips (WM-ips) Left -14 -48 20 -9.47 06 01 

7 Parieto-occipital area (PO) Right 10 -64 26 5.12 08 01 

8 Orbital proisocortex (Opro) Left -22 14 -2 -5.63 09 01 

9 Secondary somatosensory cortex (S2) Left -40 -24 18 -6.45 13 01 

10 Cingulate cortex (31c) Left -2 -24 30 -6.51 19 01 

11 Fundus superior temporal sulcus (FST) Right 40 -30 4 6.87 25 01 

12 Temporoparietal cortex (Tpt) Left -42 -40 30 3.69 26 01 

13 Area PGM-31 of cortex (PGM-31) Left -4 -60 28 5.13 29 01 

14 Cingulate cortex (23c) Right 8 -10 28 -4.65 30 01 

15 Parietal area (PEa) Left -16 -40 38 3.53 31 01 

16 Cerebellum (Cb) Right 0 -70 2 5.23 34 01 

17 Visual area 2 (V2) Left -28 -66 20 3.71 35 01 

18 Cerebellum (Cb) Left -6 -54 -2 -4.18 38 01 

19 Putamen (Pu) Right 22 4 6 -7.36 40 01 

20 Frontal eye field (FEF) Left -30 6 24 4.76 42 01 

21 Supplementary motor area (6M) Left -2 0 46 3.50 43 01 

22 Medial superior temporal area (MST) Right 24 -42 22 -3.76 44 01 

23 Dorsocaudal area 6 (F2) Right 12 10 44 3.21 48 01 
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Supplemantary Table 8 

Areas with CUD in activity during the ASB task for the monkey C 

 

Name Hemisphere x y z t value Cluster 

1 Secondary somatosensory cortex (S2) Left -6 -30 42 -6.24 01 01 

2 Granular insular cortex (Gl) Left -34 -18 10 -8.39 02 01 

3 External part of the parietal area (POa) Left -26 -36 38 -5.21 03 01 

4 Cerebellum (Cb) Right 8 -70 -6 5.00 04 01 

 

Supplemantary Table 9 

Areas with CUD in activity during the ASR task for the monkey C 

 

Name Hemisphere x y z t value Cluster 

1 Temporoparietal cortex (Tpt) Left -54 -32 18 -4.86 01 01 

2 Visual area 2 (V2) Right 12 -62 8 4.40 02 01 

3 External part of the parietal area (POa) Left -16 -52 30 4.34 05 01 

4 Dorsal part of visual area 4 (V4D) Left -44 -42 8 -4.65 07 01 

5 Fundus superior temporal sulcus (FST) Right 26 -40 10 -7.76 08 01 

6 Internal part of the parietal area (POa) Left -32 -26 26 -4.13 09 01 

7 Visual area 1 (V1) Left -28 -44 8 -4.06 10 01 

8 Visual area 1 (V1) Right 24 -66 -4 2.98 11 01 

 

Lower uncorrected threshold maps. The uncorrected thresholds for the lower 

threshold maps were p<0.01 (t-test) for the CUD map, and p<0.05 (t-test) for spatial 

and hand tuning maps. To the contrary of the Figure 8, the expected contralateral 

spatial tuning was observed using a lower threshold for the space map 

(Supplementary Fig. 1). 

 

 

Supplementary Figure 1. Lower threshold maps on the inflated brain for three activation tunings when 

subjects performed the ASB task. Areas in dark green and blue reflect effector tuning for right and left 
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hands, respectively. Areas in light green and blue reflect space tuning for right and left visual fields, 

respectively. The main contrast (orange) mapped areas more active during crossed compared to 

uncrossed responses. There was no area more active during uncrossed than during crossed responses. 

 

The CUD map of the ASB task was more symmetrical under lower threshold, 

showing extensive frontal activation (Supplementary Fig. 2). 

 

 

Supplementary Figure 2. Lower threshold maps on the inflated brain for three activation tunings when 

subjects performed the ASB task. Areas in dark green and blue reflect effector tuning for right and left 

hands, respectively. Areas in light green and blue reflect space tuning for right and left visual fields, 

respectively. The main contrast (orange) mapped areas more active during crossed compared to 

uncrossed responses. There was no area more active during uncrossed than during crossed responses. 

 

The only CUD-related area present on all lower threshold maps is the inferior parietal 

lobule (IPL; Supplementary Figures 1-3). 
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Supplementary Figure 3. Lower threshold maps on the inflated brain for three activation tunings when 

subjects performed the ASB task. Areas in dark green and blue reflect effector tuning for right and left 

hands, respectively. Areas in light green and blue reflect space tuning for right and left visual fields, 

respectively. The main contrast (orange) mapped areas more active during crossed compared to 

uncrossed responses. There was no area more active during uncrossed than during crossed responses. 
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General Discussion 

 

 

“There are times when those eyes inside your brain stare back at you”  

Charles Bukowski (1999) 

 

 

Although Bukowski was right, especially in the context of human deep introspection, 

the present thesis contributes rather to the idea that our brain “stares back at us” all 

the time. It does that because our environment is very complex and dynamic and, 

therefore, it might be of highly adaptive value to read out the reliability of the 

evidence we base our decisions on, and to use these readouts to learn and plan future 

behaviors more efficiently. 

Considering this reasoning, it is almost intuitive to think that information about being 

wrong is as important, and not as different, as information about being right. It was, in 

a way, appealing to me to find out that usually these two “certainty directions” 

(certainty of being correct and certainty of being incorrect) have been studied 

separately, because I felt I stumbled upon an interesting problem and my colleagues 

and I might be the first ones to investigate this in the same experiment. After I started 

collecting data and performing initial analysis, it became clearer why it is difficult to 

bring these two metacognitive fields (confidence evaluation and error detection, 

respectively) together: because it is very not straightforward to find a way to capture 

the two certainty readout directions, especially without requesting subjects to 

consciously evaluate their decisions (Boldt and Yeung, 2015) since other cognitive 

processes might, and probably do, influence certainty-related reports in implicit 

manner. 

 

The contributions of slope-based measurements to the metacognition field 

Although the first chapter is not only a description of the methodological approach I 

used to capture implicit readouts of certainty of being correct and certainty of being 

incorrect – since I also propose a framework about how evidence is processed up to 

the point when these readouts occur –, I am confident (or rather have a high certainty 
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of being correct) that the novel slope-based measurements that I created to measure 

subjects’ metacognitive readouts are reliable and highly relevant to psychologists and 

neuroscientists interested in the cognitive and neural mechanisms of decision-making 

associated with confidence, changes of mind and error detection, as well as the 

burgeoning field of reward processing and value-based decision-making.  

Moreover, my results provide a new perspective on the formulation and interpretation 

of certainty scales. Commonly, experimenters did not consider certainty of being 

incorrect in studies about confidence evaluation, conflating certainty of being 

incorrect with low certainty of being correct (Fleming and Lau, 2014; Fleming et al., 

2012; Heereman et al., 2015; Maniscalco and Lau, 2012; Sandberg et al., 2010). The 

findings presented here provided extra evidence that it is important to distinguish 

these two readouts (Fernandez Cruz et al., 2016; Hebart et al., 2014). Furthermore, 

my approach allows researchers to test the interplay between the two certainty 

direction readouts by formulating certainty scales using different configurations. For 

example, right after post-decision wagering (PDW) was published as a method that 

claims to objectively measures awareness (Persaud et al., 2007), several follow-up 

papers discussed how different pay-off matrices could modify the interpretation of 

PDW results, and relate these results to other cognitive processes which do not 

require awareness, such as loss aversion (Clifford et al., 2008; Schurger and Sher, 

2008; Seth et al., 2008). Later, several other research groups concluded that PDW 

offers the best available metric of confidence due to its elementary neural 

computations requirements (e.g. Pouget et al., 2016), demonstrating the flexibility of 

the method. I suggest that this flexibility can now be utilized to test the two certainty 

directions. 

Moreover, in order to isolate PDW trial-specific assessments from assessments which 

included expected difficulty and psychological biases, I utilized pre-decision 

wagering trials (PreDW, wagering before the perceptual decision). In the context of 

our study, PreDW largely constituted a control experiment. Since PDW is a reward-

based decision, it is influenced by the individual’s belief that the chosen action 

maximizes utility (De Martino et al. 2012). As mentioned, variations in the pay-off 

matrix itself and intersubject variation in reward-related psychological biases, as loss 

aversion and risk-taking (Byrnes et al., 1999; Fleming and Dolan, 2010), can modify 

these beliefs. Thus, yet another strength of my method is that PreDW can control for 
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the effects of varying subjective probabilities on PDW, serving as an important 

baseline measurement, without which the interpretations of the main PDW 

experiment would be ambiguous. 

However, the initial data we obtained with preDW is also of interest as a stand-alone 

study, and warrant further investigations. So far, PreDW has not being a very well 

explored task, but some variants of pre-decision opt-out task (cf. Hampton, 2001) can 

be constructed as variants of PreDW. It would be extremely interesting to contrast the 

PreDW behavior in monkey and human species, and to explore the neural substrate of 

the PreDW processing. I already had in mind to test if the same areas would encode 

both pre- and post-decision wagering variables, but due to already very high 

complexity of the present fMRI task design, this question will have to be addressed in 

the future studies. 

Lastly, since I utilized an intuitive response scale through which subjects reported 

their certainty readouts in an implicit manner (by trying to maximize their gains and 

to minimize losses), my method is also relevant for researchers using animal models 

to investigate metacognitive abilities, as well as to clinical investigators interested in 

studying metacognitive evaluation in patients with impaired language comprehension. 

Specifically, it sets stage for the future investigations of metacognitive neural basis 

that can be conducted using the same techniques across monkeys and humans. 

 

Post-decisional evidence accumulation 

In the chain of decisions that constitute our daily life, our choices can have different 

outcomes at different timings and with different probabilities. Assessing the 

likelihood of decisions outcomes is highly valuable in dynamic environments. For 

that, we need to keep in memory the action we took and reinforce the state-action 

associations when a reward is given (Doya, 2008). But in the absence of explicit 

immediate feedback (which is often the case in the real life), adaptive behavior might 

require the full, or almost full, assessment of the available evidence. In this context, 

post-decisional evidence is a valuable source of information, and its accumulation has 

been studied in more detail in recent years (Fleming, 2016; Murphy et al., 2015; van 

den Berg et al., 2016; Yu et al., 2015).  
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In the first chapter, I addressed post-decisional evidence accumulation by comparing 

subjects’ performance during perceptual decisions (d’) and during metacognitive 

decisions (meta-d’). I divided subjects into two groups: the low metacognitive 

efficiency group (meta-d’<d’), whose performance decreased during PDW 

(metacognitive judgments) compared to the delayed match-to-sample task (perceptual 

decision); and the high metacognitive efficiency group (meta-d’>d’), which was 

formed by subjects who performed better during PDW compared to the perceptual 

decisions. My results showed that only subjects from the high metacognitive 

efficiency group were able to read out certainty of being incorrect in order to wager 

more adaptively. I interpreted these results as a demonstration that meta-d’>d’ reflects 

post-decisional evidence accumulation because – in order to probabilistically detect 

incorrect decisions – subjects need more information than they had during the 

decision itself. Otherwise, subjects who detected incorrect choices would not have 

made an incorrect choice in the first place. Moreover, Yu et al. (2015) showed that 

post-decisional evidence accumulation is stronger towards the non-selected decision 

option. In fact, the studies that have been demonstrating the accumulation of 

information after decisions majorly associate that with error detection or changes of 

mind (Fleming, 2016; Murphy et al., 2015; van den Berg et al., 2016; Yu et al., 2015). 

Nevertheless, there is still some disagreement about the origin and accessibility of the 

post-decisional evidence used for self-monitoring. Whereas van den Berg et al. (2016) 

suggested that such input is based on sensory information that was not available 

during the initial decision due to processing delays, Murphy et al. (2015) proposed 

that following the decision, top-down signals provide the extra evidence used for 

post-decisional processes (see also Fleming et al., 2016). Since I used a memory-

based perceptual task (delayed match-to-sample task) I am inclined to agree with a 

third point of view provided by Yu et al. (2015), which considers that the 

improvement in certainty readouts accuracy is done, at least partly, by memory-based 

post-decisional evidence. However, I believe that the mentioned top-down signals are 

anyway resulting (directly or indirectly) from sensory evidence that was not 

considered when subjects committed to the reported perceptual decision and, 

therefore, should also vary as a function of the sensory input. However, this debate 

will have to be resolved using additional empirical evidence and modeling. 
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The neural representations of bi-directional certainty 

After performing the study presented in chapter one, I planned the subsequent fMRI 

study having in mind a clear and hypothesis-driven scientific question: are both 

certainty readout directions (certainty of being correct and certainty of being 

incorrect) encoded together in the brain? 

To test that, my colleagues and I created a parametric regressor that was used to 

identify BOLD signal with bi-directional pattern in the functional activity related to 

the wagering period of the task. I expected to find, among areas known to encode 

certainty-related information – such as the anterior prefrontal cortex (aPFC), 

dorsolateral prefrontal cortex (dlPFC), dorsal anterior cingulate cortex (dACC), 

intraparietal sulcus (IPS), inferior parietal lobule (IPL), precuneus, posterior cingulate 

cortex (PCC), ventral striatum and thalamus – at least one area representing the 

expected bi-directionality. I did not expect to find out that nearly all of them encoded 

certainty in a bi-directional way. 

Since the map with areas encoding bi-directional certainty was very extensive, I 

performed extra post-hoc tests to guarantee that all the located clusters reliably 

represented the predicted bi-directional pattern. Of all tested regions-of-interest, as 

many as 47 clusters survived those rigorous tests. 

I interpret these results as a indication that PDW task demands prompted brain-wide 

encoding of bi-directional certainty information in order to generate the most adaptive 

behavior (i.e. profit more when correct and avoid large losses when incorrect). 

Moreover, I suggest that since adaptive wagering reflects the proper assessment of the 

wager options utility (reflecting certainty only implicitly), the information that led to 

such flexible behavior should be based on the reliability of the sensory evidence (i.e. 

certainty) that drives goal-directed behavior. The value-based context of the subjects’ 

behavior is further supported by the activations of reward structures (e.g. basal 

ganglia) that encoded expected reward linked to perceptual difficulty. 

While unidirectional patterns related to the representation of the difficulty levels of 

the perceptual decisions and to readouts of certainty of being correct were also 

associated with reward expectation, the bi-directional patterns where too ubiquitous to 

be generally associated with specific cognitive processes other than certainty 

readouts. In this context, I return to the action-centered framework that motivated my 
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investigations in the first place, as well as to the computational framework that 

defined the selection of the certainty scale I employed in my experiments. 

Therefore, going beyond specific implications for understanding metacognitive 

function, what does the wide-spread pattern of bi-directional certainty representation 

mean for a more general view on functional organization of decision-making 

circuitry? As described in the General Introduction, recent studies demonstrated that 

instead of being based exclusively on the executive system localized in the frontal 

lobes, decision-making is also associated with several cortical and subcortical regions 

related to sensorimotor control, which can be modulated by the perceptual signal 

strength (Cisek, 2012; Filimon et al., 2013). This “embodied” and action-directed 

processing, therefore, inherently involves multiple brain areas in relevant information 

processing. I suggest that this distributed processing will happen especially if the 

information is not specifically associated with certain cognitive processes, but it is as 

ubiquitous as certainty readouts. On top of that, I utilized PDW, which includes 

motivating and relevant behavioral requirements that can be performed using the 

simple computations that animals employ routinely. Altogether, I suggest that, 

although it was important to demonstrate that the activity of some “bi-directional 

brain areas” correlated with subjects’ behavior (in particular, IPL and dACC), the 

ubiquity of bi-directional patterns in the brain is more revealing than these 

correlations, since it suggests the existence of a global framework that generates 

adaptive behaviors cohesively. In this global framework, different areas would 

contribute more closely with specific representations (such areas from the occipital 

lobule with visual representations, and areas from the motor cortex with motor 

representations) but working in unison to create a “distributed consensus” encoding of 

certainty (for review about the distributed consensus see Cisek, 2012).  

In this context, comparative studies which investigate the entire animal brain activity 

in its entirety, as the one presented in the third chapter, seem to be essential for 

elucidating if such ubiquitous processing is indeed based on simple computations that 

can be performed by different animal species, as well as how interspecies anatomical 

and functional differences determine (or limit) each species capacity to behave 

adaptively.  

Finally, it is important to emphasize that while these results demonstrate robust 

findings across a group of subjects, further analysis should be performed to test task-
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specific connectivity using dynamic causal modeling (DCM) or psychophysiological 

interaction (PPI) approaches, as well as more novel methods which might be better 

suited for the event-related data (e.g. BetA Series COrrelation, Göttlich et al., 2015). 

 

Certainty about response requirements 

My initial plan was to investigate introspection and awareness in monkeys and 

humans, problems with monkey training and delays in the production of MRI-

compatible equipment forced me to investigate a simpler, but still very relevant, 

scientific question: How is interhemispheric processing modified by different levels 

of certainty of the upcoming response requirements? Thus, instead of investigating 

the certainty associated with preceding decisions, I addressed the predictability in 

respect to upcoming visuomotor requirements. 

I was able to demonstrate that, in both species, the enhanced uncertainty of the 

upcoming response increased interhemispheric transfer time, likely as a result of 

interhemispheric action selection processing and stimulus-response spatial 

compatibility effects. I also showed, by comparing the brain activity patterns of 

humans across three tasks with different randomization of response requirements, that 

such unpredictability did not increase the interhemispheric transfer time per se, but 

delayed the exchange of relevant information between the hemispheres until the point 

when a proper response could be implemented without decreasing performance. 

Lastly, I showed that the time difference between responses which required 

interhemispheric transfer of information (crossed responses) and responses which 

could be encoded in one brain hemisphere (uncrossed responses) was longer in 

humans than in monkeys. There are two possible explanations for this interspecies 

difference: (1) the interhemispheric communication takes more time in humans 

because our brain is bigger than the monkey brain, or (2) humans were more 

successful in delaying crossed responses to guarantee a higher performance. The 

second interpretation relies on higher performance of humans in the tasks with 

significant crossed-uncrossed differences (CUD). Another interspecies difference was 

the presence of negative CUD activations only in monkeys, which might have been 

related to an imprinted inhibitory mechanism associated with the presentation of cues 

that instructed monkeys to withhold their manual responses. 



201 

 

Considering that monkeys were trained for long periods before the actual data 

collection, I plan to perform an extra experiment in which a low number of 

overtrained human subjects will perform the exact same task performed by the two 

monkeys. With this experiment, I aim to elucidate if some differences between 

humans and monkeys occurred because of intersubject or task variability, or indeed 

because of behavioral, anatomical or functional organization differences between the 

two species. 

Some problems with the analysis of the data and interpretation of results that I still did 

not fully overcome are commonly found in the field. Although the first publications 

about fMRI experiments with awake monkeys date from more than fifteen years ago, 

only few laboratories perform these experiments as their research focus (Goense et 

al., 2010), and very few utilize behavioral tasks that require more than either simple 

fixation or saccades. In fact, only one laboratory so far successfully conducted an 

analogous reaching (and grasping) study in awake macaques (Nelissen and Vanduffel, 

2011). Among the technical problems with monkey fMRI experiments, the main ones 

are poor signal-to-noise ratio due to the small size of the brain (and thus smaller voxel 

size) and animal motion. 

In my experiments, I employed different techniques to avoid problems resulting from 

monkey movements. For instance, I checked eye fixation and jaw motions constantly 

(except for inter-trial intervals) and I required that hands were positioned in a specific 

resting place during the entire trial. Using advanced event-related approach, I was 

able to capture expected space and effector tuning-related activations using random-

effects (across sessions) analysis in each monkey individually, and those patterns of 

activation agreed well between the two monkeys, making it possible to compare these 

reliable activations to human group data. However, since I was testing speeded 

reaction time reaches which preceded the trial period in which the relevant BOLD 

response signal was acquired, the motion caused transient distortions in the magnetic 

field, which might have contaminated the initial part of the task-related activation. 

These distortions, while largely negligible for the main effects of space and effector 

tuning, became more problematic when smaller cognitive effects (such as space × 

effector interaction, i.e. crossed vs. uncrossed responses) were analyzed. Therefore, I 

am still exploring the best approaches to optimal statistical modeling and analysis. In 

particular, better modeling of the confound effects (such as transient distortions) and 
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further time-resolved analysis of the BOLD signal timecourses will be necessary to 

create an objective method to distinguish relevant signal changes from the 

accompanying noise. Thus, the conclusions about crossed vs. uncrossed neural 

responses in the two monkeys are currently tentative. Finally, the brain processes 

related to this experiment might have considerable inter-subject variations, since the 

analysis of human data also demonstrated high variability across subjects. The next 

analysis step is to correlate individual behavioral measures with neural activation 

patterns, across subjects, to distinguish task-specific effects from random noise as the 

potential sources of this apparent variability. 

Nevertheless, whereas I am still improving and expanding my analysis of the monkey 

fMRI dataset, the knowledge I gained by designing and performing the monkey 

experiment (and analogous human fMRI experiment) had a positive effect on multiple 

aspects of the task design and analysis that I employed in the human fMRI study 

presented in chapter two, since it resulted in reliable and robust results which 

corroborated my hypothesis. Furthermore, since the visuomotor contingencies 

employed in the two human studies are largely the same, it would be worthwhile to 

compare the putative modulation of visual processing and motor preparation signals 

by the cognitive task demands. 

 

Future directions 

The present thesis described three studies about response selection and certainty-

related processing, in humans and monkeys. Altogether, it contributes to the notion 

that our brains, and likely monkey brains, read out certainty continuously, inherently 

and ubiquitously, and that certainty-related information flexibly modifies the brain 

processing of the goal-directed behaviors. 

Based on that, I believe that it is necessary to perform comparative studies between 

humans and other animal species (starting from non-human primates, since they are 

closely related to us) to test how ubiquitous these principles are, and how they 

contribute to the evolutionary adaptations of the individuals. Therefore, I hope that 

my findings will motivate further comparative studies on metacognition in our lab and 

elsewhere, because finding out more about self-monitoring processes seems to be 

extremely important to understand the brain function as a whole. 
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