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Abstract 

Heart failure (HF) is often associated with inflammation and activation of the immune system. 

Moreover, the development to HF has been shown to be accompanied by autoimmune reactions since 

cardiac autoantibodies were identified in many studies. However, the role of T cells in load-induced 

HF had not been addressed previously. We hypothesized that an aortic constriction leading to 

hypertrophy and subsequently to HF can activate autoreactive T cells, which contribute to the 

progression of the disease. To examine autoimmune responses towards a cardiomyocyte-specific 

antigen, cMy-mOVA mice were used, which express ovalbumin (OVA) selectively on cardiomyocytes. 

In these mice, HF was induced by increasing the afterload by transverse aortic constriction (TAC). It 

was previously demonstrated in our group that cMy-mOVA mice did not show an accelerated 

impairment of heart function after TAC operation, although an activation of OVA-specific cytotoxic T 

lymphocytes (CTLs) was observed at a low level. To clarify the role of autoreactive T cells, TAC-

operated cMy-mOVA mice were challenged by transfer of OVA-specific CD4+ and CD8+ T cells. The 

adoptive transfer of CD8+ and/or CD4+ did not significantly accelerate progression to HF. However, 

double-transgenic cMy-mOVA/OT-II mice, in which the majority of T cells are OVA-specific CD4+ T cells, 

showed an accelerated progression towards HF. Since these mice did not develop OVA-specific 

autoantibodies, we could demonstrate that CD4+ T cells with specificity for a cardiomyocyte-specific 

autoantigen can promote the progression from hypertrophy to HF independent of autoantibodies.  

The immunological milieu within the myocard might not only affect the progression of HF but also the 

chances of repair by new regenerative therapies, e.g. the transplantation of stem cell-derived grafts. 

To clarify the probability of engraftment and reduce the risk of complications for the recipient after 

stem cell-derived graft transplantations, the immunogenicity of pluripotent stem cells (PSCs) and their 

differentiation products has to be considered. It is known that the mismatch of major 

histocompatibility complex (MHC) molecules lead to acute rejection of grafts but additionally, minor 

histocompatibility (miHC) antigens affect engraftment of organs even between MHC-matched 

individuals. Consequently, the role of miHC antigens in PSCs and their derivates need to be clarified 

since they cannot be matched in allogeneic transplantations. For this, OVA-expressing embryonic stem 

cells (ESCs) and induced pluripotent stem cells (iPSCs) were used to monitor immune responses 

against OVA as a model of a miHC antigen after injection into otherwise syngeneic mice. It was 

demonstrated that the expression of OVA led to a significantly reduced rate of engraftment of PSCs. 

OVA-specific CTLs and OVA-specific antibodies were observed in the hosts. Therefore, a single antigen 
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can be sufficient to induce rejection of transplanted PSC-derived grafts suggesting that therapies using 

grafts derived from MHC-matched allogeneic PSCs will likely require immunosuppressive or 

immunomodulatory treatment.  

Since PSCs are at risk to give rise to teratomas if residuals of pluripotent cells remain in a graft after in 

vitro differentiation, the susceptibility of PSCs to natural killer (NK) cells was analyzed. Previous 

antibody inhibition studies indicated that the killing of murine PSCs by NK cells was mainly mediated 

by the activating NK cell receptor NKG2D. To clarify the role of NKG2D for killing of murine PSCs, 

NKG2D-deficient and wildtype NK cells were analyzed concerning their potential to kill several PSC 

lines including multipotent adult germline stem cells (maGSCs), ESCs and iPSCs. Naïve NKG2D-deficient 

NK cells failed to kill PSCs. Stimulation of NK cells by interleukin-2 (IL-2) increased the killing but could 

not completely compensate the NKG2D deficiency. Hence, it was demonstrated that NKG2D is an 

important activating receptor involved in killing of murine PSCs. 
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1 Introduction 

1.1 Heart failure – a disease of considerable clinical and socioeconomic relevance 

Besides cancer, heart failure (HF) is one of the most important health problems worldwide with rising 

incidence in western societies due to aging of the population. The pandemic of HF reflects the 

achievement in preventing premature death caused by other diseases but affects 1-2 % of the adult 

population in developed countries. In patients older than 70 years, HF is the major cause of disability 

and hospitalization with an increasing prevalence up to 10 % in the population (Mosterd and Hoes, 

2007). Current estimates assume that the number of deaths caused by HF will grow from todays  

17.3 million to 23.6 million per year by 2030 (Mozaffarian et al., 2014). While cancer is considered as 

a gain of function disease, HF is a degenerative type of disease since cells become progressively 

dysfunctional and consequently tissue function is declined (Campisi, 2005). In general, HF is not a 

single diagnosis, but is rather a syndrome of multiple etiologies, which the American Heart Association 

defined as ‘a complex clinical syndrome that results from any structural or functional impairment of 

ventricular filling or ejection of blood’ (Yancy et al., 2013). Hereby, HF can be caused by a wide number 

of conditions, including ischemic heart disease (IHD, also coronary artery disease CAD; including e.g. 

myocardial infarction (MI)), arterial hypertension, valvular heart disease, primary cardiomyopathy, 

diabetes mellitus or infections and inflammation (myocarditis) (Korczyk et al., 2012). These processes 

lead to deregulation and impairment of interstitial and cellular elements in the heart including 

fibroblasts, extracellular matrix and myocytes, resulting in chronic, maladaptive ventricular 

remodeling. Here, the pathological remodeling includes an increased myocardial volume and mass 

due to ventricular dilation and a net loss of myocytes (Borghi et al., 2015). Initially, these changes are 

able to compensate for the damages of the myocardium but are later responsible for further 

progression into HF. A hallmark of HF is impaired contractility and one measure of this is a reduced 

ejection fraction (EF) (McMurray, 2010).  
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1.1.1 Therapy and molecular mechanisms of heart failure in humans 

Over the last decades, noninvasive and invasive techniques like echocardiography and cardiac 

catheterization were developed as most important diagnostic tools for patients with cardiovascular 

disease. However, despite large scientific efforts, the morbidity and mortality of HF remains high, since 

the molecular mechanisms leading to HF are still not clarified. Nevertheless, the identification of 

underlying targets is important for improving the efficacy of therapeutic strategies. The pathogenesis 

of chronic HF is often accompanied by inflammatory reactions. A cardiac stress response activates the 

innate immune system, which leads to expression of proinflammatory cytokines, including tumor 

necrosis factor alpha (TNFα), Interleukin (IL)-1 and IL-6, as well as to the activation of Toll-like 

receptors (TLR), that detect pathogen-associated molecular patterns (PAMPs) and damage-associated 

molecular patterns (DAMPs). All features have been observed in patients with HF (Mann, 2003; 

Topkara et al., 2011). During the last years, studies of several laboratories demonstrated that the 

activation of the immune system plays an important role in the progression of cardiac remodeling in 

HF. It was observed that in wound-healing after cardiac injury such as MI, the inflammatory response 

was crucial for the removal of the necrotic debris from the area of injury and helped to attract the 

cells involved in the formation of a scar (Blankesteijn and Altara, 2014). Besides this crucial 

contribution to initial tissue repair, a longstanding and strong inflammation can impair the heart 

function (Heymans et al., 2009). Hereby, inflammation has been described to be involved in the early 

development of cardiac hypertrophy as well as in later progression to HF (Ismahil et al., 2014; Koller 

et al., 2013; Purcell et al., 2001; Thaik et al., 1995; Yndestad et al., 2006). 

 

1.1.2 Evidence of autoimmunity 

The presence of autoimmune reactions accompanying the development to HF were monitored in 

several studies. In patients with myocarditis or dilated cardiomyopathy (DCM), several cardiac 

autoantibodies were identified, e.g. against α- and ß-isoforms of cardiac myosin heavy chain (MyHC) 

or cardiac receptors such as β1-adrenoreceptor (Magnusson et al., 1994). These anti-receptor 

antibodies were shown to either stimulate or block the receptor, thus affecting the cardiomyocyte 

contractility (Limas and Limas, 1991). Furthermore, it was shown that MI can lead to autoimmune 

reactions and the production of cardiac-specific antibodies of the immunoglobulin (Ig)G isotype 

(Bendjelid and Pugin, 2004). The presence of class-switched antibodies of the IgG isotype 

demonstrates an involvement of activated T helper cells with specificity for cardiac antigens. Several 
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subgroups of T helper cells were discussed to contribute to cardiac fibrosis due to cytokine secretion, 

including Th17-polarized T cells (IL-13, IL-17) and regulatory T cells (Tregs) (TGF-β) (Wei, 2011).  

These observations highlight the importance of inflammation as a general molecular pathway of HF, 

offering potentially new options for therapy. Consequently, it is important to analyze the pathogenesis 

of the disease and to understand how inflammation or even autoimmunity could influence the success 

of new therapeutic options for HF, e.g. transplantations of stem cell-derived grafts into the heart.  

The mechanisms underlying autoimmunity and specifically cardiac autoimmunity have not been fully 

clarified. Autoimmunity displays a failure of effective tolerance towards self-antigens by the adaptive 

immune system, leading to inflammation and degeneration of tissues or whole organs by an 

immunopathological process (Abou-Raya and Abou-Raya, 2006). Hereby, genetic as well as 

environmental factors contribute to the induction of the disease (von Herrath et al., 2003). As genetic 

factors, human leukocyte antigen (HLA) genotype, polymorphisms of cytokines and their receptors, or 

defective apoptosis genes can influence the responses to commonly encountered antigens (Actor, 

2014). Additionally, variant antigen dose, infections, or exogenous influences causing tissue damage 

can lead to an altered immune response towards self-antigens (Ascherio and Munger, 2007; Fujinami, 

2001; Libbey and Fujinami, 2010). Mechanisms for the loss of tolerance against self-antigens include 

failure of autoreactive T cell deletion during development in the thymus, impairment of suppressor 

functions of Tregs, cross-reactivity between exogenous and self-antigens (molecular mimicry), 

increased B cell function based on polyclonal activation, e.g. by viral or bacterial components, 

enhanced or abnormal expression of MHC class II molecules, or release of self-antigens from so-called 

immunoprivileged sites. Consequently, various exogenous factors and/or genetic predispositions can 

lead to autoimmune reactions, which subsequently seem to play a role in secondary tissue damage, 

e.g. during HF (Figure 1). 
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Figure 1 Potential mechanisms of autoimmunity induction after a primary myocardial damage, leading to the 
recognition of autoantigens by the immune system.  
Subsequent autoimmune reactions could additionally harm the heart tissue and thus accelerating the 
progression to HF. At this, several factors or predispositions might play a role in the generation of autoimmunity 
in the heart. Picture by Kaya et al. (2012). 
 
 

 

1.1.3 Cardiac immunity 

1.1.3.1 MHC and tolerance 

Besides various types of immune cells, which are responsible for the secretion of proinflammatory 

cytokines in autoimmunity, the primary cell types that are affected are B and T cells, recognizing self-

antigens. Recognition of antigens by T cells is enabled by the MHC molecules. This extremely 

polymorphic gene complex encoding these molecules is the HLA in humans and H2 complex in mice. 

MHC molecules can be divided into two main types, MHC class I and MHC class II molecules, which 

differ in their function and expression pattern. All nucleated cells are able to express MHC class I 

molecules on their cell surface, allowing the identification of infected cells in the organism since, e.g. 

viral peptides are presented via the MHC class I molecules on infected cells to T cell receptors (TCR) 

on cytotoxic CD8+ T cells. If the T cell was activated before, this directly leads to killing of the target 

cells. In contrast, MHC class II molecules are solely expressed on professional antigen presenting cells 

(APCs) such as dendritic cells (DCs), macrophages, B cells and endothelial cells. The function of MHC 

class II molecules is to present peptides to the TCR of CD4+ helper T cells, which are central mediators 

of the adaptive immune response, triggering the secretion of cytokines and controlling the cellular 
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and humoral defense. Hereby, the engagement of the TCR by a peptide-MHC complex is necessary for 

T cell activation to direct an effective adaptive immune response against invading pathogens. It is 

critical to ensure that the reactivity of the immune response to self-antigens is avoided. For this, 

central tolerance is induced already in immature lymphocytes during development of naïve T cells in 

the thymus where the rearrangement of α and β TCR genes occurs and TCRs with random specificity 

are generated. T cells undergo two selection processes. In the first selection process, the positive 

selection, only T cells with a newly rearranged αβ TCR that recognize MHC class I or class II molecules 

e.g. expressed on thymic epithelial cells, further mature into CD8+ and CD4+ single positive cells 

respectively. In the negative selection process, T cells with high affinity to self-peptides presented by 

MHC class I or class II molecules are eliminated by apoptosis. Those T lymphocytes that survive, 

complete their maturation process and are released as naïve T cells into the circulation where further 

peripheral mechanisms of tolerance are able to suppress autoreactive T cells by induction of anergy 

(Figure 2). T cell reactivity generally requires two signals, an antigen-specific signal of the TCR 

recognizing peptide-loaded MHC molecules presented by APCs and a costimulatory signal from 

costimulatory molecules on the cell surface of professional APCs. CD28 is the best characterized 

costimulatory molecule on T cells, which interacts with CD80 and CD86 molecules on the cell surface 

of professional APCs. The absence of those costimulatory signals on the presenting cell leads to anergy 

of the T cell, meaning the T cell becomes functionally inactivated and is subsequently not capable of 

initiating proliferation or effector functions even if the antigen is encountered in the presence of full 

costimulation. Another mechanism of this peripheral tolerance induction can be caused by Tregs. Due 

to interactions including cytokine release, these cells can actively anergize lymphocytes in the 

periphery, which escaped the negative selection process in the thymus. Additionally, local secretion 

of immunosuppressive factors and presence of immunologically privileged sites (e.g. brain and eyes) 

can be seen as tolerance mechanisms due to the exclusion of antigen excess by a physical barrier. 

However disruption of the latter due to tissue damage can lead to release of hidden (cryptic) antigens, 

potentially leading to lymphocyte activation. 
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Figure 2 Tolerance induction of T lymphocytes in the thymus and periphery.  
Central tolerance comprises negative selection in the thymus, leading to apoptosis of autoreactive T cells. 
Peripheral tolerance includes induction of anergy due to absence of costimulatory signals, active suppression by 
Tregs via cytokine secretion or the interception of antigens in immunoprivileged sites. Antigen (Ag), L (ligand). 
Picture by Actor, 2014).  

 

B lymphocytes undergo central tolerance during their development in the bone marrow where the 

immature B cells undergo apoptosis upon interaction of IgM with multivalent self-molecules like MHC 

molecules expressed on stromal cells (clonal deletion). However, alternatively B cell can be rescued 

by receptor editing through further B cell receptor (BCR) gene rearrangements, replacing self-reactive 

B cell receptors. B cell anergy is induced by exposure to soluble circulating antigens, which lead to a 

downregulation of surface IgM expression and partial blockade of the intracellular signaling cascade. 

Generally, only B lymphocytes without self-reactivity migrate to the periphery albeit leakage of weakly 

self-reactive (sleeper) B cells can occur. These cells normally do not cause problems because they 

require help by antigen-specific T cells to become activated. However, they might become activated 
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under certain conditions such as inflammation. In the periphery, response of B cells to antigens 

depends on its isotype type and signaling of coreceptors such as CD19 and CD21. T cell-dependent 

activation of B cells requires a TCR-MHC-II peptide binding complex and interaction of costimulatory 

signals like CD40L on T cells and the B cell surface receptor CD40 leading to B cell proliferation, 

immunoglobulin class switching and somatic hypermutation. Additional cytokines released by T cells 

bind to cytokine receptors of B lymphocytes and promote these processes.  

 

1.1.3.2 HF in animal models 

1.1.3.2.1 Animal models 

Animal models remain an invaluable implement to study cardiovascular diseases. Besides the 

advantage of reasonable similarities in biochemical pathways, pharmacological targets and organ 

function, mice are easy to keep, breed and relatively cheap in maintenance. The broad range of 

available invasive and non-invasive techniques including magnetic resonance imaging (MRI), 

hemodynamic measurements, electro- and echocardiography allow the evaluation of heart function, 

infarct size and specification of cardiac remodeling. Additionally, genetic engineering enables further 

examination of various cardiovascular diseases by mimicking its pathogenesis or addressing 

fundamental mechanism in transgenic or knockout strains. Consequently, mouse models could reveal 

future therapeutic strategies or molecular targets to treat HF. 

 

1.1.3.2.2 Murine overload models to induce HF 

Conventional methods to induce HF in mice include surgery to increase the load of the murine heart. 

These can be divided in volume or pressure overload models of HF that increase either the preload or 

the afterload, respectively. In contrast to an increased blood volume (preload), that can be caused by 

renal failure or valve insufficiency, an increased afterload displays a higher vascular resistance that 

can be obtained by hypertonus, vascular or valvular stenosis. The most common model of pressure 

overload is the transverse aortic constriction (TAC), which was first described by Rockman et al. (1991). 

Hereby, HF is induced by a partly constriction of the aorta, leading to an increased pressure gradient 

in the heart that can be quantified across the stricture by echocardiography. Subsequently, the heart 

becomes hypertrophic within 2 weeks, showing an increase of left ventricular (LV) mass of about  

50 % (Figure 3).  
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In accordance with findings in human pathology, several animals studies in rats and mice revealed an 

influence of inflammation on the development of cardiac hypertrophy (Ismahil et al., 2014; Purcell et 

al., 2001; Thaik et al., 1995). The investigation of murine cardiac remodeling in a preload (aortocaval 

shunt) and afterload (TAC) model in C57BL/6 mice revealed an increase of leukocyte infiltration, 

fibrosis, and apoptosis in response to TAC (Toischer et al., 2010). Additionally, expression profiling 

data suggested an increased activity of T cells, B cells and natural killer (NK) cells in the afterload model 

in contrast to the preload model (aorto-caval shunt). Consequently, our research group focused on 

the examination of immune reactions after TAC operations in C57BL/6 mice. It was monitored that 

the proportion of myeloid cells and lymphocytes in the myocardium was increased after TAC as 

determined by immunohistochemistry (IHC) and flow cytometry (Sasse et al., unpublished data) 

Furthermore, it was shown that NK cells, T helper and cytotoxic T cells were systemically activated, 

leading to a severe inflammation in single animals (Sasse et al., unpublished data). By others, it was 

shown that humoral autoimmune reactions occurred in HF models, e.g. antibodies against troponin I, 

a cardiac-specific antigen, were found in mice (Kaya et al., 2008). Additionally, cardiomyocyte-specific 

autoantibodies were identified in a rat model of aortic constriction (Liu et al., 2002) and in mouse and 

rabbit models (Kaya et al., 2012). These findings indicate a link of autoantibodies to HF and suggest 

that also activated CD4+ T cells with specificity for cardiac antigens might play a role in ventricular 

remodeling and the progression from cardiac hypertrophy to HF. Nevertheless, these autoreactive  

T cells had not been directly identified in these animal models, yet. Analysis of immunodeficient mice 

showed that these are not protected from the progression to HF after TAC surgery (Sasse et al., 

unpublished data). It was recently shown that OT-II mice, which only bear TCR-transgenic T cells 

Figure 3 Exemplary pictures of (A) sham- and 
(B) TAC-operated hearts of C57BL/6 mice 16 
weeks after the operation.  
TAC operation led to cardiac remodeling and 
hypertrophy of the heart. Scale bars indicate 1 
mm each line. Picture by deAlmeida et al. 
(2010). 
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specific for ovalbumin (OVA), which is not present in the murine organism under normal conditions, 

failed to develop HF and adverse remodeling after TAC (Laroumanie et al., 2014). This is a further hint 

that antigen-specific immune responses in the heart could be a critical for the progression to HF. We 

further analyzed this process in our research group. CMy-mOVA mice that express OVA selectively in 

cardiomyocytes are a suitable model to study the influence of antigen-specific immune reactions and 

autoimmunity on the outcome of HF. These mice express OVA under the control of the mouse cardiac 

alpha myosin heavy chain (MyHC) promoter on the cell surface of cardiomyocytes (Figure 4). They 

were first described by Grabie et al. (2003a), who showed that the endogenous adaptive immune 

system of cMy-mOVA mice displays tolerance to OVA.  

 

 

 

To test if these mice develop autoimmunity against OVA in HF, they underwent TAC surgery. After 

this, neither OVA-specific IgG autoantibodies arose nor was the proliferation or cytokine expression 

pattern of CD4+ T cells altered compared to sham-operated mice (Röhrborn et al., unpublished data). 

In contrast, a low but significant activation of OVA-specific CD8+ T cells was found 10 weeks after TAC, 

but this did not significantly impair heart function. However, single animals displayed a higher activity 

of OVA-specific CTLs. These findings suggested that clinically relevant autoimmunity against OVA as 

cardiac antigen is not frequent after TAC in young and otherwise healthy mice. However, cytotoxic  

T cells were activated at low level and consequently, in this thesis, the role of T cells in animals, which 

are at higher risk to develop autoimmunity was further investigated. Therefore, we challenged the 

cMy-mOVA mice with adoptive transfer of OVA-specific CD4+ and CD8+ T cells and aimed to generate 

double-transgenic cMy-mOVA/OT-I and cMy-mOVA/OT-II mice, which were expected to have 

predominantly OVA-specific CD4+ or CD8+ T cells. The influence of these OVA-specific T cells on the 

progression to HF and on the immunological milieu in the myocardium of cMy-mOVA mice was 

Figure 4 CMy-mOVA transgene construct.  
OVA 258–265 and OVA 323–339 epitopes 
are recognized by OT-I and OT-II TCR-
transgenic T cells, respectively. BGHpA, 
bovine growth hormone, polyadenylation 
signal; TM, transmembrane domain; frag, 
DNA fragment. Picture by Grabie et al. 
(2003). 



Introduction 

10 
 

examined. The heart function was assessed by echocardiography and immunological test were 

performed to determine immune responses against OVA and the infiltration of immune cells into the 

myocardium and pathologic features like fibrosis were evaluated. 

 

1.1.3.3 Importance for stem cell therapy 

The immunological characterization of the failing myocard is highly important for the development of 

new therapeutic strategies such as the transplantation of cardiomyocytes derived from pluripotent 

stem cells (PSCs). These transplantations are an upcoming therapeutic concept for HF. Although being 

a promising therapeutic approach, its success in pre-clinical models is currently limited due to loss of 

implanted cells and poor integration (Laflamme and Murry, 2011). Most of the integrated cells either 

spontaneously die or are eliminated by the immune system of the recipient. These problems are 

presumably aggravated by a proinflammatory milieu in the target tissue. Thus, the immunological 

situation in the target tissue of a stem cell-derived transplant has to be considered in the development 

of new transplantation therapies. Moreover, although induced pluripotent stem cell (iPSC) technology 

principally could allow the generation of autologous grafts, most researchers and physicians in the 

field of regenerative medicine currently assume that only allogeneic transplantations will be feasible 

for indications such as HF due to economic and time restrictions. 
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1.2 Stem cell therapy 

The possibility of using PSCs to replace damaged cells or tissue is very appealing and has been 

suggested for various diseases including chronic HF. The replacement of diseased organs by donor 

organs requires lifelong immunosuppressive treatment. Moreover, more organs are required than are 

available. Nonetheless, the frequency of age-related diseases is rising due to the increasing age of 

populations in western countries. Thus, the development of alternative treatments including 

transplantation of stem cells or stem cell-derived grafts is required. However, these regenerative 

therapies will also likely encounter immunological hurdles. The use of allogeneic cells could lead to 

rapid immune rejection if the MHC molecules of donor and recipient are mismatched. If MHC 

molecules are matched, minor histocompatibility (miHC) antigens could still lead to graft rejection by 

the immune system of the recipient. Another hurdle is the ability of PSCs to indefinitely proliferate 

and to give rise to teratomas if residuals of pluripotent cells remain in a graft after in vitro 

differentiation. Here, the immune system could reduce tumor risk, if specifically pluripotent cells could 

be targeted.  

 

1.2.1 Stem cell types and their role for transplantation therapy 

Embryonic stem cells (ESCs) were the first isolated and cultured PSCs, obtained from mouse embryos 

in 1981 by Evans and Kaufman, and  Martin, and later from human embryos by Thomson et al. (1998). 

ESCs are cells derived from the inner cell mass (ICM) of the early blastocyst. They have the capacity of 

self-renewal and to differentiate into any cell type of the three germ layers (Bradley et al., 1984). 

However, because of ethical concerns about their generation and the limitation to be used for the 

generation of allogenic grafts only, efforts to generate pluripotent cells that overcome these 

limitations were pushed. The strategies for the development of autologous pluripotent stem cells 

included somatic cell nuclear transfer (SCNT) and the generation of iPSCs. However, the generations 

of PSCs by SCNT, in which a patient-specific nucleus is transferred into an enucleated oocyte, involves 

again usage of ethical debated biological materials (Rao and Condic, 2008). Therefore, the method of 

reprogramming patient-specific somatic cells into PSCs by transduction of specific transcription factors 

was rapidly further investigated and developed since their first description by Takahashi and 

Yamanaka (2006). Subsequently, iPSCs have been generated from rat (Buehr et al., 2008), rabbit 

(Honda et al., 2010), pig (Esteban et al., 2009), dog (Koh et al., 2010), monkey (Liu et al., 2008) and 

human (Takahashi et al., 2007; Yu et al., 2007). Initially, murine fibroblast were reprogrammed by the 
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transcription factors Oct4, Klf4, Sox2 and c-Myc. Human iPSCs were generated by introducing these 

factors (Takahashi et al., 2007) or OCT4, SOX2, NANOG, and LIN28 (Yu et al., 2007) into somatic cells. 

IPSCs were generated from several cell types including keratinocytes, hepatocytes, hematopoietic 

cells, pancreatic cells and also from patients, including those with Parkinson’s disease (PD), down 

syndrome (DS) and Huntington disease (HD) (Park et al., 2008; Takahashi and Yamanaka, 2006). The 

therapeutic potential of iPSCs was shown in several animals studies, in which murine iPSCs were 

successful differentiated into neural, cardiovascular, hematopoietic or hepatic progenitor cells (Cantz 

et al., 2008; Kuzmenkin et al., 2009; Narazaki et al., 2008; Schenke-Layland et al., 2008; Wernig et al., 

2008). Especially the differentiation of PSCs into functional cardiomyocytes promoted therapeutic 

studies treating the diseased myocardium (Caspi et al., 2007; Laflamme et al., 2007; Qian et al., 2012; 

Shiba et al., 2012; Singla et al., 2006; Song et al., 2012; Xue et al., 2005). Due to these innovations, 

stem cells are seen not only as regenerative source for patient-specific cell therapies but could also 

replace animal experiments in toxicity tests and drug development. Nonetheless, despite the 

promising results, PSC technology has to overcome various obstacles. 

 

1.2.1.1 Limitations 

The usage of viral vectors such as lentivirus and retrovirus was reported to cause tumors and genomic 

instabilities due to the integration of the transcription factors into the genome (Takahashi and 

Yamanaka, 2006). Therefore, various non-integration techniques including the use of plasmids, small 

molecules, mRNA, miRNA, recombinant proteins or adenovirus vectors were examined to improve the 

reprogramming method (Anokye-Danso et al., 2011; Fusaki et al., 2009; Okita et al., 2008; Rohani et 

al., 2016; Soldner et al., 2009; Yakubov et al., 2010; Yusa et al., 2009). Additionally, analysis of 

differentiation, gene expression and epigenetic modulation revealed an frequently insufficient 

reprogramming of iPSCs (Ghosh et al., 2010; Hu et al., 2010; Marchetto et al., 2009; Pick et al., 2009), 

which has to be considered for future therapeutic applications. These differences in the PSC profile 

could sustain after in vitro differentiation and might lead to unexpected immune responses in the 

recipient, eventually destroying the graft and harming the recipient. Moreover, the general 

immunogenicity of PSCs has to be analyzed before they can be used for the clinic. 
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1.2.2 Stem cell immunogenicity 

1.2.2.1 Expression of histocompatibility antigens 

Histocompatibility antigens can be divided into MHC molecules, miHC antigens and ABO blood group 

antigens (Roopenian et al., 2002, Watkins, 2001). Among these variable antigens, the highly 

polymorphic MHC molecules are the strongest indicator for inducing allograft rejections after 

transplantation, if mismatched between donor and recipient (Lechler et al., 2005). MHC molecules 

present processed antigens to circulating T cells which normally respond only to foreign antigens, due 

to tolerance induction in the thymus or periphery. MHC class I molecules, expressed on nearly all 

nucleated cells, present primarily cytosolic proteins to CD8+ T cells, whereas MHC class II molecules, 

located on the surface of professional APCs, show exogenous antigens to CD4+ T cells. The 

allorecognition pathways can be divided into the direct and indirect pathway, which are mainly 

mediated by professional APCs and T cells (Figure 5). During direct allorecognition, T cells recognize 

intact allogeneic MHC molecules on donor APCs such as DCs that migrated from the graft to lymph 

nodes of the recipient. T cell activation results in acute cytotoxic responses leading to graft rejection 

(Morelli and Thomson, 2003). In contrast, the indirect allorecognition pathway comprises the 

recognition of processed alloantigens by T cells in the context of recipient MHC class II molecules, 

causing chronic rejection by promoting the production of alloantibodies and allospecific T cells 

(Briscoe and Sayegh, 2002; Morelli and Thomson, 2003). 

 

 

 

Figure 5 Mechanism of allorecognition. 
During direct allorecognition (left), T cells 
recognize foreign MHC molecules on 
donor APCs, whereas the indirect 
allorecognition (right) involves the 
degradation and processing of donor MHC 
molecules or other allogenes to peptides 
which are taken up by recipient APCs and 
presented to T cells. Picture by Bradley et 
al. (2002). 
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Consequently, it is preferred to match MHC alleles prior to organ transplantation to reduce the 

immune response against allografts. However, these processes cannot only be elicited by foreign MHC 

molecules, but by any other polymorphic antigens, collectively known as miHC antigens. Generally, 

one third of newly synthesized proteins is immediately degraded by the proteasome, producing 

peptides that can potentially elicit CD4+ and CD8+ T cell alloresponses, if the proteins display 

polymorphism between individuals in a transplantation setting, even if MHC loci were matched 

between donor and recipient (Roopenian et al., 2002; Wallny and Rammensee, 1990). Those reactions 

were shown after transplantations between HLA-identical siblings in which the recipients developed 

graft versus host disease (GVHD), graft versus leukemia (GVL) or T cell-mediated graft failure (Bleakley 

and Riddell, 2004; Ferrara et al., 2009; Goulmy et al., 1976; Opelz and Collaborative Transplant Study, 

2005). Also, if patient-specific iPSC would be used for transplantation, it is still possible that miHC 

antigens are ectopically expressed due reprogramming or in vitro culture (Dhodapkar et al., 2010; 

Zhao et al., 2011). Nevertheless, to which extent these miHC antigens would affect immune responses 

after transplantations of stem cell derived grafts, has to be clarified.  

To evaluate the antigenic characteristics of PSCs, expression of MHC molecules on human and murine 

PSCs were examined during the last years. Generally, it was shown that human PSCs express only low 

levels of MHC class I molecules but no MHC class II molecules (Draper et al., 2002; Drukker et al., 2002; 

Jurisicova et al., 1996). On murine PSCs, no MHC class I or class II molecules were detected via flow 

cytometry (Dressel et al., 2008, 2009; Magliocca et al., 2006; Tian et al., 1997). Nevertheless, minor 

amounts of MHC class I molecules must to be expressed since murine ESCs were shown to become 

targets of CTLs after pulsing with appropriate peptides (Dressel et al., 2009).  Some PSCs were reported 

to upregulate MHC class I molecules after the treatment with the proinflammatory cytokine  

interferon γ (IFNγ) but MHC class II molecules were not detected (Bonde and Zavazava, 2006; Drukker 

et al., 2002). However, other murine studies showed that MHC class I molecules on PSCs were not 

affected by INFγ treatment (Abdullah et al., 2007; Monecke, 2013; Nussbaum et al., 2007; Tian et al., 

1997). With differentiation, levels of MHC class I molecules increased (Drukker et al., 2002; Nussbaum 

et al., 2007) and MHC class II expression was ascertained after DC and hematopoietic differentiation 

(Senju et al., 2007; Slukvin et al., 2006; Zhan et al., 2004).  

Concerning the ABO antigen expression, it was demonstrated that human ESCs and differentiated 

cardiomyocyte-like cells express these antigens, what has to be considered prior to clinical translation 

(Mölne et al., 2008).  
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Expression of miHC antigens on PSCs was not directly investigated to date, albeit OCT4-specific T cells 

were found in humans, which is a key factor for pluripotency in stem cells (Dhodapkar et al., 2010). 

Nonetheless, whether the expression of miHC antigens on PSCs alter their immunogenicity has to be 

analyzed, which will be done in this thesis by using OVA as model antigen expressed in PSCs. 

 

1.2.2.2 Susceptibility to T and NK cell killing 

Besides MHC-TCR interaction, costimulatory signals are important for T cell-mediated immune 

responses. CD80 and CD86, ligands for the activation receptor CD28 on T cells were not expressed on 

human ESCs (Drukker et al., 2002; Lechler et al., 2005) but were shown after differentiation into 

hematopoietic cells or DCs (Senju et al., 2007; Slukvin et al., 2006; Zhan et al., 2004). Adhesion 

molecules such as the intercellular adhesion molecule 1 (ICAM-1) and ICAM-3, or B7 molecules (Suh 

et al., 2003) might have additional important functions for PSC immunogenicity. ICAM-1 was reported 

to be important for the killing of murine ESCs (Frenzel et al., 2009). 

However, ligands negatively regulating T cells such as Fas ligand (FasL), which recognizes the death 

receptor Fas on lymphocytes and leads to apoptosis, was shown only on rat ES-like cells but not on 

human PSCs (Drukker, 2006; Fändrich et al., 2002). Additionally, expression of Serpin-6, an inhibitor 

of cytotoxic T cells was found on murine ESCs (Abdullah et al., 2007). However, our group could not 

confirm these results due to missing surface expression of Serpin-6 on several murine PSC lines and 

small amount of detected mRNA (Dressel et al., 2010). The protective protein Cathepsin B, which 

inactivates granzyme B (GrB), was detected on various murine PSCs, but showed no functional 

correlation with resistance to CTLs (Dressel et al., 2010). Additionally, Arginase 1 (Arg1) and 

Indoleamine 2, 3-dioxygenase (IDO), enzymes that degrade necessary amino acids from the 

microenvironment, thereby inhibiting T cells activation and proliferation were reported to be 

expressed on PSCs in few studies (Plumas et al., 2005; Su et al., 2014; Yachimovich-Cohen et al., 2010). 

However, they could not be confirmed to be expressed on murine PSCs by prior studies in our group 

(Monecke, 2013). Furthermore, it was reported that murine ESCs evade an immune response by 

secretion of transforming growth factor beta (TGFβ), which generally inhibits the activation of naïve  

T cells (Koch et al., 2008).  
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Our group showed that PSCs were able to actively suppress T cell activation in vitro, mediated by cell-

cell contact of PSCs and T cells, but the cellular mechanism could not be clarified (Monecke, 2013). 

However, it was shown that the rejection of murine ESCs is dependent on the immune competence 

of the recipient and the immunogenetic setting of the transplantation and includes several immune 

effector mechanisms such as T cells and the complement system (Dressel et al., 2008; Koch et al., 

2008; Pearl et al., 2011). Moreover, T cell-mediated responses against murine ESCs were 

demonstrated in several in vivo studies (Boyd and Wood, 2009; Robertson et al., 2007; Wu et al., 2008) 

and despite the low expression of MHC class I molecules, it was shown that CTLs can kill PSCs in a 

peptide-dependent manner (Dressel et al., 2009). However, murine PSCs fail to process endogenous 

antigens and require pulsing with exogenous peptides to be recognized by CTLs (Monecke, 2013). 

NK cell activation against target cells is regulated by signaling of inhibitory and activating receptors on 

the surface of the cells (Figure 6) (Koch et al., 2013; Raulet, 2006). MHC class I molecules serve as 

ligands for Ly49 receptors on murine and for killer immunoglobulin-like receptors (KIRs) on human NK 

cells (Pegram et al., 2011). The majority of these receptors are inhibitory and signal through 

immunoreceptor tyrosine-based inhibitory motif (ITIM), however also activating KIRs and Ly49 

receptors are known. Further NK cell receptors include the activating receptor NKG2D, which interacts 

with MICA, MICB and ULBPs (1-6) ligands on human cells, and with RAE1, MULT1 and H60 ligands on 

murine cells. Other activating receptors are DNAM-1 to which CD122 and CD155 ligands can bind and 

the natural cytotoxicity receptors (NCRs), including NKp30, NKp44 and NKp46, for which a number of 

various ligands were described (Koch et al., 2013). Generally, NK cell receptors like MICA and MICB 

are not expressed by normal cells but become upregulated due to cellular or genotoxic stress in 

diseased or infected cells, leading to NK cell activation by the ‘stress-induced self’ concept (Vivier et 

al., 2012). 
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Despite several studies in which it was claimed that ESCs are resistant to NK cells (Drukker, 2006; 

Nussbaum et al., 2007; Swijnenburg et al., 2005), it was shown that various PSC lines, including murine 

ESCs, iPSCs and maGSCs can become targets of NK cells due to high expression of ligands for activating 

NK cell receptors, such as NKG2D and DNAM-1, and low expression of ligands for inhibitory NK 

receptors, such as MHC class I molecules (Dressel et al., 2008, 2010; Frenzel et al., 2009; Suárez-

Alvarez et al., 2010). This includes expression of low amounts of ligands of the activating NK receptor 

NKp46 and the NKG2D ligands MICA and MICB detected on human ESCs and iPSCs (Chen et al., 2015; 

Suárez-Alvarez et al., 2010). Murine and human PSCs were shown to be highly susceptible to killing by 

IL-2-activated allogeneic and autologous NK cells (Dressel et al., 2008, 2010; Elsner et al., 2010; Kruse, 

Hamann et al., 2015). At this, killing of human PSCs was partly dependent on the activating NK receptor 

DNAM-1, whereas in the murine situation NKG2D seemed to play a major role.  

In summary, the recent results showed that PSCs are more immunogenic than initially proposed (Koch 

et al., 2008; Li et al., 2004b; Magliocca et al., 2006). Nevertheless, extensive investigations about the 

impact of miHC antigen expression on the stem cell immunogenicity are still lacking. Therefore, in vivo 

analysis of the previously in vitro examined OVA-expressing stem cells (Monecke, 2013) were 

performed to determine the immunogenic potential of those miHC antigen expressing stem cells 

compared to wildtype stem cells.

Figure 6 The activation of NK cells 
depends on a balance between 
inhibitory and activating receptor 
signaling. 
The lack of MHC class I molecules can 
trigger the cytotoxic activity of NK 
cells, which is described as missing-
self concept (Kärre, 2008). 
Additionally, upregulation of 
activating receptors on diseased or 
stress cells can shift the balance 
toward NK cell activation. Picture 
modified from Vivier et al. (2012). 
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2 Aims of this thesis 

The major objectives of this thesis were to examine (1) T cell immune reactions against a 

cardiomyocyte-specific antigen during the progression to heart failure (HF) and (2) T cell immune 

reactions against an antigen of stem cells or stem cell-derived grafts that might affect transplantation 

of those grafts. Knowledge of the immunological milieu in the myocardium is important for future 

medical therapies including tissue transplantation or control of autoimmunity to counteract tissue or 

graft damage by suitable treatments.  

Occurrence of autoimmunity during heart failure 

In the first part of the thesis, the development of autoimmunity in a model of increased afterload 

leading to HF in mice at risk for autoimmune responses was examined. Important questions to answer 

were whether autoimmunity can be triggered by an increased afterload of the heart and additional 

challenge by autoreactive T cells. Differences in the progression to HF or in the immune response after 

transfer of autoreactive T cells or endogenous autoreactive T cells should be clarified.  

Influence of minor histocompatibility antigen expression on stem cell immunity 

Due to the expression of OVA as endogenously expressed antigen in stem cells, the effect of a single 

miHC antigen on engraftment and stem cell immunogenicity was analyzed. For this, teratoma 

formation in immunodeficient and immunocompetent syngeneic recipients was accessed, T and B cell 

activation against OVA monitored, and their infiltration into stem cell-derived teratomas determined. 

Clarification of importance of NKG2D for NK cell killing of pluripotent stem cells 

In addition to T cells also NK cells contribute to the rejection of PSCs. Inhibition experiments in our 

research group had identified NKG2D as the most relevant NK cell receptor for recognition of murine 

PSCs, but DNAM-1 as most important for killing of human iPSCs. Therefore, we wanted to examine 

the relevance of NKG2D for killing of murine PSCs by NK cells by comparing NKG2D-deficient and 

wildtype NK cells. 
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3 Materials and Methods  

3.1 Materials 

3.1.1 Biological material 

3.1.1.1 Cell lines 

 

Table 1 Cell lines. 

Type Label Origin Description Reference 

St
e

m
 c

e
lls

 

ESC BTL1 129/Sv 
mouse 

blastocyst-derived 
embryonic stem cell 

W. Engel; Human 
Genetics, UMC 
Göttingen. 

ESC MPI-II 129/Sv 
mouse 

blastocyst-derived 
embryonic stem cell 

A. Mansouri; MPI for 
Biophysical Chemistry, 
Göttingen 

ESC BTL1 OVA 
(clones #1, #4, 
#9, #14, #20) 

129/Sv 
mouse 

hEF1α/CAG-P-OVA-eGFP-
NeoR 

(Monecke, 2013) 

ESC MPI-II OVA 
(clones #1, #4) 

129/Sv 
mouse 

hEF1α/CAG-P-OVA-eGFP-
NeoR 

(Monecke, 2013) 

iPSC (129/Sv) 129/Sv 
mouse 

iPSCs; clone 11.1; derived 
from MEFs 

(Guan et al., 2006) 

iPSC 129/Sv OVA 
(clones #6, #13, 
#18, #24) 

129/Sv 
mouse 

hEF1α/CAG-P-OVA-eGFP-
NeoR 

(Monecke, 2013) 

maGSC (129/Sv) 129/Sv 
mouse 

multipotent adult 
germline stem cell 

(Guan et al., 2006) 

maGSC (C57BL/6) C57BL/6 
mouse 

multipotent adult 
germline stem cell 

(Guan et al., 2006) 

Ly
m

p
h

o
m

a 
ce

lls
 RMA eGFP  C57BL/6 

mouse 
T cell lymphoma cell line; 
hEF1α/CAG-P-eGFP-NeoR 

(Monecke, 2013) 

RMA eGFP-OVA C57BL/6 
mouse 

T cell lymphoma cell line; 
hEF1α/CAG-P-OVA-eGFP-
NeoR  

(Monecke, 2013) 

YAC-1 A/Sn 
mouse 

Lymphoma cell line  

 

OVA-expressing stem cell lines were previously constructed by electrophoretic transfection of an 

expression construct for OVA-eGFP under the control of the ubiquitously active hEF1α or CAG 

promoter and selection for Neomycin resistance (Monecke, 2013). 
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3.1.1.2 Laboratory animals 

All animal experiments had been approved by the local government and were in accordance with 

institutional guidelines for the welfare of animals. Laboratory animals were bred in the central animal 

facility of the University Medical Center (UMC) Göttingen, where they were kept under specific 

pathogen-free conditions in individually-ventilated cages (IVC) in a 12 hrs light-dark cycle. Female (f) 

and male (m) mice between 8 and 20 weeks of age were used for experiments.  

 

Table 2 Laboratory animals 

Strain  Organism  Description  Reference  

129/Sv mouse MHC haplotype: H2b  

BUF rat MHC haplotype: RT1b  

cMy-mOVA  mouse mice are homozygous for the α-
MyHC-P-mOVA transgene  

(Grabie et al., 2003a)  

cMy-mOVA/OT-I mouse α-MyHC-P-mOVA; transgenic for a 
TCR recognizing SIINFEKL/H2Kb 

 

cMy-mOVA/OT-II mouse α-MyHC-P-mOVA; transgenic for a 
TCR recognizing 
ISQAVHAAHAEINEAGR/ H2b 

 

LOU/c rat MHC haplotype: RT1u  

NKG2D-/- mouse Introduced mutation in exon 2 of 
NKG2D (Klrk1) locus 

(Zafirova et al., 2009) 

OT-I mouse transgenic for a TCR recognizing 
SIINFEKL/H2Kb 

(Hogquist et al., 1994) 

OT-II mouse transgenic for a TCR recognizing 
ISQAVHAAHAEINEAGR/ H2b  

(Barnden et al., 1998) 

RAG2-/- mouse Immunodeficiency affecting B and 
T cells 

(Shinkai et al., 1992) 

RAG2-/-c-/- mouse severe combined 
immunodeficiency affecting B, T 
and NK cells 

(Mombaerts et al., 1992) 

SCID  mouse severe combined 
immunodeficiency affecting B and 
T cells 

(Pla and Mahouy, 1991) 

SCID/beige mouse severe combined 
immunodeficiency affecting B, T 
and NK cells 

(Froidevaux and Loor, 
1991) 
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3.1.1.3 Antibodies 

Antibodies were used according to manufacturer's instructions.  

 

Table 3 Primary murine antibodies.  

Antigen  Isotype Clone Label Supplier 

CD115 rat IgG2a TX56 Alexa 488 BioLegend 

CD11b rat IgG2b M1/70 PE/Cy5 BioLegend 

CD11c hamster IgG N418 PE BioLegend 

CD144 rat IgG1 BV13 APC BioLegend 

CD19 rat IgG2b PeCa1 FITC BioLegend 

CD25 rat IgG1 PC61.5.3 FITC BioLegend 

CD3  mouse IgG2b 17A2 FITC  BioLegend 

CD3 mouse IgG2b 17A2 PE BioLegend 

CD31 rat IgG2a 390 PE BioLegend 

CD314 (NKG2D)  mouse IgG1 149810  PE  R&D Systems  

CD4 rat IgG2a RM4-5 PE/Cy5 BioLegend 

CD45 rat IgG2b 30-F11 FITC, PE, APC BioLegend  

CD45.1 mouse IgG2a A20 FITC BioLegend  

CD45.2 mouse IgG2a 104 FITC BioLegend  

CD45R rat IgG2a RA2-6B2 unconjugated BioLegend 

CD45R rat IgG2a RA2-6B2 PE BioLegend 

CD49b (DX5) rat IgM DX5 PE BioLegend  

CD69 hamster IgG H1.2F3 PE BioLegend 

CD8a  rat IgG2a  53-6.7 PE/Cy5 BioLegend 

F4/80 rat IgG2b A3-1 unconjugated BioLegend 

F4/80 rat IgG2a  BM8 PE BioLegend 

FoxP3 mouse IgG1 159D PE BioLegend  

H60 rat IgG2a 205326 unconjugated RD 

I-Ab MHC II mouse IgG2a AF6-120.1 FITC BioLegend 

IFNγ rat IgG2b JES5-16E3 PE BioLegend 

IL-10 rat IgG1 MP5-20F3 PE BioLegend 

IL-17A rat IgG1 MP6-XT22 PE BioLegend 

IL-17F rat IgG1 TC11-18H10.1 PE BioLegend 

IL-2 mouse IgG1 13/45/31-2 ohne Dianova 

IL-4 rat IgG2b JES6-5H4 PE BioLegend 

IL-6 rat IgG1 11B11 PE BioLegend 

Ki-67 rat IgG2a TEC3 unconjugated DAKO 

Ly6C rat IgG2b HK1.4 PE BioLegend 

Ly6G rat IgG2b RB6-8C5 PE BioLegend 

Mult-1 rat IgG2a 237104 unconjugated RD 

NKp46 rat IgG2a 29A1.4 unconjugated BioLegend 

NKp46 rat IgG2a 29A1.4 PE BioLegend 

Oct3/4 mouse IgG1 40-Oct3 unconjugated BioLegend  

OVA ascites mouse IgG1 OVA-14 unconjugated Sigma 
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RAE-1 (pan) rat IgG2a 186107 unconjugated RD 

TCR Vβ 5.1,5.2 mouse IgG1 MR9-4 FITC BD 

TGFß1 mouse IgG1 9D3.1C8 PE BioLegend 

TNFα rat IgG1 XMG1.2 PE BioLegend 

γδ TCR hamster IgG GL3 PE BioLegend 

 

Table 4 Secondary antibodies and ELISA antibodies 

Antigen  Isotype Clone Label Supplier 

anti-mouse APC  goat IgG Poly4053   BioLegend  

anti-mouse Cy3  donkey IgG 
F(ab')2-fragment 

  Jackson 
ImmunoResearch  

anti-mouse FITC  goat  IgG Poly4053  FITC BioLegend  

anti-mouse IgA  rat IgG1  C10-1   BD  

anti-mouse IgE  rat IgG1  R35-72   BD  

anti-mouse IgG  goat IgG1  M35006  TC BioLegend 

anti-mouse IgG1  rat IgG1  A85-1   BD  

anti-mouse IgG2a  rat IgG1  R11-89   BD  

anti-mouse IgG2b  rat IgG2a  R12-3   BD  

anti-mouse IgG3  rat IgG1  R2-38   BD  

anti-mouse IgM  rat IgG2a  II-41   BD  

 

Table 5 Isotype controls 

Isotype Label  Supplier  

hamster IgG PE BioLegend 

mouse IgG1 FITC BioLegend 

mouse IgG1  PE Immunotools  

mouse IgG2a  FITC  Pharmingen 

mouse IgG2b  PE BioLegend 

mouse IgG2b FITC BioLegend 

mouse IgM  FITC BioLegend 

rat IgG1 FITC BioLegend 

rat IgG1 PE BioLegend 

rat IgG1 APC BioLegend 

rat IgG2a FITC BioLegend 

rat IgG2a PE BioLegend 

rat IgG2a PE/Cy5 BioLegend 

rat IgG2a Alexa 488 BioLegend 

rat IgG2b FITC BioLegend 

rat IgG2b PE BioLegend 

rat IgG2b APC BioLegend 

rat IgM  FITC BioLegend 

rat IgM PE BioLegend 

rat IgM PE/Cy5 BioLegend 
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3.1.1.4 Enzymes 

Table 6 Enzymes 

Enzyme  Supplier  

DNase I  NEB  

Liberase Roche 

M-MLV Reverse Transcriptase  Promega  

Proteinase K  Merck  

RNAse A  Roche Diagnostics  

RNAsin®  Promega  

Taq DNA Polymerase  NEB  

 

3.1.2 Chemicals and Reagents 

Table 7 Chemicals and reagents 

Chemical/Reagent  Supplier 

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS)  AppliChem  

2-β-Mercaptoethanol  SIGMA-Aldrich®  

3,3’-diaminobenzidine (DAB)  Carl Roth  

ABsolute Blue qPCR SYBR Green low Rox Mix  Thermo Scientific  

ABTS® ELISA HRP Substrate  KPL, Sera Care  

Acetic acid  Merck  

Ammonium chloride (NH4Cl)  Merck  

Bovine Serum Albumin (BSA) 100x  Promega  

Carboxyflourescein diacetate succinimidyl ester (CFSE)  Life Technologies  

Chloroform  Merck  

Dimethyl sulfoxide (DMSO)  Merck  

Direct Red 80 Sigma 

DL-Dithiothreitol (DTT)  Promega  

dNTPs  NEB  

Eosin Y  Merck Millipore  

ESGRO® Leukemia Inhibory Facator (LIF)  Merck Millipore  

Ethanol (analytical grade)  UMG Apotheke  

Ethanol (EtOH)  UMG Apotheke  

Ethidium bromide  HyClon  

Ethylenediaminetetraacetic acid (EDTA)  Carl Roth  

FACSflow  BD Biosciences  

FACS™ Lysis solution  BD Biosciences  

Fetal calf serum (FCS)  Biochrom  

Forene (Isofluran) Abbvie 

Geltrex (Growth Factor Reduced)  Life Technologies  

GeneRuler 1 kb DNA ladder Thermo Scientific  

Geneticin (G418 Sulfate)  Biochrom  

GIBCO® Penicillin/Streptomycin  Merck  
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Heparin sodium  Rotexmedica  

Hydrochloric acid (HCl) Merck  

Hydrogen peroxide (H2O2)  Merck  

Isoamylalcohol  Merck  

Isopropanol  Merck  

Magnesium chloride (MgCl2)  Merck  

Mayer’s hemalum solution  Merck Millipore  

Methanol  Merck  

Mitomycin C  AppliChem  

MLV-RT Puffer  Promega  

M-MLV Puffer  Promega  

Non-essential amino acids  Merk Millipore  

Novaminsulfon (Metamizol) Zentiva 

Ovalbumin (OVA) Sigma 

Paraffin  Carl Roth  

PCR-Puffer 10x  NEB  

Picric acid Morphisto 

Potassium chloride (KCl)  Carl Roth  

Potassium phosphate (KH2PO4)  Merck  

Pre-stained protein marker, broad range  NEB  

Propidium iodide (PI)  AppliChem  

Random primer  Promega  

Recombinant mouse interleukin-2 (IL-2)  R & D Systems  

RNasin® Plus Ribonuclease Inhibitor  Promega  

Roswell Park Memorial Institute medium (RPMI)  Gibco  

Roti®-Histokitt  Carl Roth  

Roti®-Phenol  Carl Roth  

Scintillator Optiphase HiSafe 3  PerkinElmer  

SIINFEKL (Ovalbumin amino acid (aa) 257–264)  Bachem AG  

Sodium carbonate (Na2CO3 / NaHCO3)  Merck  

Sodium chloride (NaCl)  Carl Roth  

Sodium chromate (Na2
51CrO4)  Hartmann Analytic  

Sodium hydroxide (NaOH) Carl Roth 

Sodium phosphate (Na2HPO4 / NaH2PO4)  Carl Roth  

Streptavidin-horseradish peroxidase (HRP)  BioLegend  

Sucrose  Carl Roth  

TiterMax®  TiterMax  

Tris  Carl Roth  

Triton X-100  AppliChem  

TRIzol® Reagent  Invitrogen™  

Trypan blue  SIGMA-Aldrich®  

Trypsin  Biochrom  

UltraPure™ Agarose  Invitrogen  

VLE Dulbecco’s Modified Eagle’s medium (DMEM)  Gibco  

Xylol Carl Roth  
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3.1.3 Disposables 

Table 8 Disposables 

Label  Supplier  

96 - well plates for qPCR  Applied Biosystems  

96 - well Wallac plates  PerkinElmer  

Cell culture 96- and 24-well plates  Sarstedt  

Cell culture flasks T25  Sarstedt  

Cell culture plates (5 ml, 10 ml, 25 ml)  Greiner  

Cell culture plates (6, 12, 24 well)  Greiner/Thermo Scientific  

Cell culture plates 96 well round bottom  Sarstedt  

Cell strainer  Falcon  

Conical tubes (13 ml, 15 ml, 50 ml)  Greiner/Sarstedt  

Cover slips glass  Roth  

Cover slips plastic  Sarstedt  

Cryo tubes  Greiner  

FACS tubes  BD/Sarstedt  

MACS LS columns  MACS Miltenyi Biotec  

Microscope slides  Menzel  

Multipette® plus Combitips  Eppendorf  

Needles 21 G x 1 1/2", 22 G x 1 1/4", 26 G x 1/2", 30 G x 1/2"  B. Braun Melsungen AG  

Nunc MaxiSorp microtiter plates Thermo Scientific 

Parafilm  Pechiney Plastic Packaging  

Pasteur pipettes  Wilhelm Ulbrich Mainz  

Pipette Tips (10 μl, 20 μl, 200 μl, 1000 μl)  Greiner/Sarstedt  

Reaction Tubes (0.2 ml, 1 ml, 2 ml)  Greiner/Sarstedt  

Sterile filters (pore size 0.2 μm, 0.45 μm)  Greiner  

Sterile pipettes (1 ml, 2 ml, 5 ml, 10 ml, 25 ml)  Greiner  

Superfrost Plus glass slides  Thermo  

Syringes (1 ml, 2ml, 5ml, 10 ml, 20ml)  Becton Dickinson  

Top Seal for qPCR plates  Applied Biosystems  

Top seal for Wallac plates  PerkinElmer  

U-100 Insulin syringes 0.5 ml BD Micro-Fine™ BD 

Wheighing paper  Machery-Nagel  
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3.1.4 Devices 

Table 9 Devices 

Description  Label  Supplier  

Agarose gel trays and 
chambers  

Perfect Blue™ Gel System  Peglab  

Aqua bidest. Supply  arium® pro  Sartorius  

Autoclave  High pressure steam sterilisator FVS  Integra Biosciences  

Biological Safety Cabinet  HERASave®  Thermo Fisher Scientific  

Centrifuge Multifuge 3 S-R Heraeus  

Centrifuge Mini Centrifuge MCF-2360  Heraeus  

Centrifuge 3K30  LMS Consult  

Centrifuge RC 3B Plus  Sigma  

Centrifuge Mini Centrifuge MCF-2360  Sorvall  

Counting chamber  Neubauer improved  Krannich  

Dispenser  Multipette® plus  Eppendorf  

Echocardiography digital 
imaging platform 

Vevo2100   VisualSonics, Toronto, 
Canada 

ELISA reader PowerWave 340 microplate 
spectrophotometer 

BioTek 

Flow Cytometer  FACS Calibur  Becton Dickinson  

Freezer HERA freeze -80°C  Heraeus  

Freezer Liebherr Comfort -20°C  Liebherr GmbH  

Freezer VIP plus -150°C  SANYO Electric Co., Japan  

Homogenizer  Tenbroeck  schuett-biotec  

Imaging devices  Chemilux Blot Detection Imager  Intas 

Imaging devices  UV workbench GelImager  Intas 

Incubator shaker  Unitron-plus  Infors  

Incubators  HERACell 150  Heraeus  

Liquid Scintillation Counters  MicroBeta2 Plate Counter  PerkinElmer  

MACS separator  VarioMACS™ Separator  MACS Miltenyi Biotec  

Magnetic stirrer/heater  RH basic 2  IKA  

Microscope Axiovert 35  Zeiss  

Microscope LSM 510 Axioplan 2  Zeiss  

Microtome Leica RM2255 Leica Biosystems 

Microwave  HF12M 900W  Siemens  

pH-Meter  inoLab® pH Level 1  WTW  

Pipettes  Research® & Reference®  Eppendorf  

Pipettor  IBS PIPETBOY acu  Integra Bioscience  

Power supply  EPS-301/-3501 XL  GE Heathcare  

Scales  ACCULAB Vicon  Sartorius  

Scales  BP 61  Sartorius  

Slide scanner dotSlide – Virtual slide system Olympus Life Science 

Spectrophotometer  NanoDrop™ ND-1000  Thermo Fisher Scientific  

Thermal Cycler  ABI 7500 Real-Time PCR System  Applied Biosystems  

Thermal Cycler  MasterCycler epgradient  Eppendorf  
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Thermal Cycler  TPersonal 48  Biometra  

Thermoblock  Thermomixer comfort  Eppendorf  

Thermoblock  Stuart Block Heater SBH130  Bibby Scientific  

Vortexer  MS1 Minishaker  IKA  

Water bath  Medingen W6  Labortechnik Medingen  

 

3.1.5 Commercial kits 

Table 10 Commercial kits 

Label Supplier 

ABsolute™ Blue QPCR SYBR® Green Low ROX Mix  Thermo Fisher  

Cytofix/CytopermTM Kit BD 

GeneJET Genomic DNA Purification Kit Thermo Scientific 

Mouse CD4+ T cell isolation kit (MACS) Miltenyi Biotec 

Mouse CD8a+ T cell isolation kit (MACS) Miltenyi Biotec 

Mouse NK cell isolation kit (MACS) Miltenyi Biotec 

 

3.1.6 Buffers and Solutions 

The composition of used buffers and solutions is specified in the corresponding method section. 

Solutions were autoclaved at 125 °C for 30 min or filtrated with a 0.2 μm sterile filter for sterilization. 

A consistently used buffer was PBS with the following composition:  

 

 
PBS 137 mM NaCl 
 2.7 mM KCL 
 10 µM Na2HPO4 
 2.0 mM KH2PO4 
 dissolved in dH2O, pH 7.4 

 

3.1.7 Oligonucleotides 

All primers were synthesized by biomers.net GmbH. The qPCR primers were designed using IDT's 

PrimerQuest that incorporates Primer3 software developed by the Whitehead Institute for Biomedical 

Research. The specificity of the primers was verified with the nucleotide BLAST web tool from NCBI. 

The primers were designed to target all transcript variants if several isoforms exist and to span exon-

exon junctions if feasible. 
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Table 11 Synthetic oligonucleotides used for qPCR. Mus musculus. Dissociation temperature [°C], P.E.: Primer 
efficiencies, *(Monecke, 2013)  

 Gene  Sequence RefSeq °C P.E * 

H
o

u
se

ke
e

p
e

r 

Gapdh F TGTGTCCGTCGTGGATCTGA RTPrimerDB ID: 
7880 

85 2.0 * 

R TTGCTGTTGAAGTCGCAGGAG 

Hprt F GTCCTGTGGCCATCTGCCTA NM_013556.2 78 1.9 * 

R GGGACGCAGCAACTGACATT 

Ubc F AGGTCAAACAGGAAGACAGACGTA RTPrimerDB ID: 42  79 1.8 * 

R TCACACCCAAGAACAAGCACA  

Tr
an

sg
e

n
e

 Ova F AGAGGTGGTAGGGTCAGCAGAGG NM_205152.1  82 1.9 * 

R TGGTTGCGATGTGCTTGATACAGAAG 

Egfp F CAAGCAGAAGAACGGCATCAAGGT U55761.1  88 1.9 * 

R ACTGGGTGCTCAGGTAGTGGTT 

P
lu

ri
p

o
te

n
cy

 

Nanog F GCTGATTTGGTTGGTGTCTTGCTC NM_028016.3 80 1.9  

R TGTGATGGCGAGGGAAGGGATTT 
Oct4 F ATTGAGAACCGTGTGAGGTGGA NM_013633.3 81 2.0  

R GATGTGAGTGATCTGCTGTAGGGA 

Im
m

u
n

o
m

o
d

u
la

ti
o

n
 

Cyp3a11 F ACAAGCAGGGATGGACCTGG NM_007818.3 82 2.0  

R TGTGACAGCAAGGAGAGGCG 

Hormad1 F TGTTTGTCACCTACACTCAGG NM_026489.2 80 2.0  

R GTAAGGAAGAAGAAACTATGC 

Zg16 F TGATCTTCGTGACGGACAAG NM_026918.2 81 2.0  

R CCAGATCGCCCACTAATGAA 

Ido F CCACACTGAGCACGGACGG NM_008324.1  84 2.0 * 

R TGCGGGGCAGCACCTTTCG 

Arg1 F ACCTGGCCTTTGTTGATGTCC NM_007482.3 83 1.8 * 

R AGCACCACACTGACTCTTCCATTC 

G
e

rm
la

ye
r 

α-Mhc F GCAGGAGCTGATTGAGACCA NM_010856.4 85   

R CTGTCTGGAGTTGGGTCAGG   

Th F GTCTCAGAGCAGGATACCAAGC NM_009377 89   

R CTCTCCTCGAATACCACAGCC   

Syn F CAGTTCCGGGTGGTCAAGG NM_009305 86   

R ACTCTCCGTCTTGTTGGCAC   

Ctnt F AGAGGACACCAAACCCAAGC NM_001130176.1 85   

R CCTGTGGATGTCATCAAAGTCC   

Alb F GGCGACTATCTCCAGCAAACT NM_009654.3 83   

R TCATACAAGAACGTGCCCAGG   

Afp F AGTGCGTGACGGAGAAGAAT NM_007423 83   

R AAACACCCATCGCCAGAGTT 
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3.1.8 Software and Databases 

Table 12 Software and databases 

Product Company 

cellSens dimension Olympus Life Science 

7000 System SDS Software  Applied Biosystems  

CellQuest Pro  BD Biosciences  

FlowJo  Tree Star, Inc., USA  

MFE primer-2.0 GitHub Inc.  

MicroBeta Workstation  PerkinElmer  

Microsoft Office Professional Plus 2013  Microsoft  

NCBI database  National Center for Biotechnology Information (NCBI)  

Oligo Analyzer  Integrated DNA Technologies (IDT)  

Primer Quest  Integrated DNA Technologies (IDT)  

qPCR primer database  RTprimerDB.org  

WinStat  R. Fitch Software  

Zotero Standalone for Windows Roy Rosenzweig Center for History and New Media 
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3.2 Methods 

3.2.1 Biomolecular methods 

3.2.1.1 Isolation of nucleic acids 

3.2.1.1.1 Genomic DNA preparation 

DNA was prepared from cell pellets (1 x 106 to 5 x 106 cells) using the GeneJET Genomic DNA 

Purification Kit according to manufacturer’s instructions. DNA was dissolved in dH20 and stored at  

4 °C. The quantity of DNA was determined using the Nanodrop 2000. Thereby, the ratio of 260 nm to 

280 nm values was an important criterion for sample purity (pure DNA: ratio ≥ 1.8). 

 

3.2.1.1.2 RNA preparation 

RNA was isolated from 1 x 106 to 5 x 106 cells or 100 mg tissue using TRIzol® reagent according to the 

manufacturer's protocol. To eliminate trace amounts of DNA, RNA samples were digested with  

DNAse I for 30 min at 37 °C using the following reagents: 

 

5 % 1 M Tris-HCl pH 7.5  
1 % MgCl2  
1 % DNAse I (10 U/μl) 
0.5 % RNAse Inhibitor (40 U/μl)  
50 % total RNA eluate  
add to 50 μl dH2O 

 

After a phenol chlorophorm extraction and alcohol precipitation (Ch. 3.2.1.2.2), the RNA was dissolved 

in an appropriate amount of RNase-free dH2O and stored at -80 °C. The quality of RNA was assured by 

visualization of the integrity of 18S and 28S RNA loaded on a 1 % agarose gel, while the quantity was 

determined using the Nanodrop 2000 at a wavelength of 260 nm.  

 

3.2.1.2 Purification of nucleic acids 

3.2.1.2.1 Purification of nucleic acids via alcohol precipitation 

Nucleic acids were precipitated from aqueous solution by adding 1/10 volume of 3 M sodium acetate 

(pH 4.8; 0.3 M final) and one volume isopropanol or 2.5 volumes pure ethanol, respectively. 

Alternatively, 1/3 volume of 7.5 M (2.5 M final) ammonium acetate was used instead of sodium 

acetate to avoid coprecipitation of short oligonucleotides. Samples were centrifuged (15000 rpm;  
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4 °C; 30 min) and the resulting DNA pellet was washed with 70 % ethanol before solubilization in an 

appropriate volume of dH2O. DNA was stored at -20 °C. 

 

3.2.1.2.2 Precipitation of nucleic acids via phenol-chloroform extraction 

Proteins and other contaminants were removed from nucleic acid solutions using phenol chloroform 

extraction. For this, an equal volume of phenol-chloroform-isoamylalcohol (25:24:1) was added and 

after thoroughly mixing the solution was centrifuged to gain phase separation. The DNA-containing 

aqueous phase was transferred into a new reaction tube. The procedure was repeated with 1 volume 

of chloroform to remove remaining phenol. The nucleic acids were subsequently precipitated by 

alcohol precipitation. 

 

3.2.1.3 Amplification of nucleic acids 

3.2.1.3.1 Polymerase chain reaction 

The polymerase chain reaction (PCR) is a common used in vitro technique to amplify a specific DNA 

segment. Main features are the three distinct temperature steps allowing denaturation of double-

stranded DNA, primer annealing and elongation by a DNA polymerase. For analytical purposes, Taq 

polymerase was used and a reaction was set up as follows: 

 
 

 

The PCR cycler program was adapted with regard to temperature and time for denaturation, annealing 

and elongation steps. The denaturation and elongation times are associated with the polymerase 

specifications and were set according to manufacturer’s instructions, whereas annealing 

temperatures were set according to the specific melting temperatures of the primers that were used.  

2.5 μl  10 x Taq PCR buffer  
0.5 μl  dNTP-Mix (10 mM)  
5 pmol  sense primer  
5 pmol  antisense primer  
100 ng  template DNA  
5 U  Taq polymerase  
add to 25 μl  dH2O  
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3.2.1.3.2 cDNA synthesis 

RNA samples need to be completely transcribed into complementary DNA (cDNA) for qPCR. Thus, 

random hexamers, which are short oligodeoxyribonucleotides of random sequence [d(N)6] that anneal 

to random complementary sites on the target RNA, and the M-MLV reverse transcriptase were used. 

A mixture of 2 μg RNA and 2 μl random hexamer primers was filled with dH2O to a final volume of  

15 μl and was incubated at 70 °C for 10 min to break up secondary structures of the RNA. The sample 

was chilled down on ice to prevent reforming of these structures and subsequently, the following 

master mix was added: 

 

5 μl  5X reverse transcriptase buffer  
2 μl  dNTP mix (10 mM)  
1 μl  DTT (0.1 M)  
1 μl  RNasin plus RNase inhibitor (40 U/μl)  
1 μl  MMLV-reverse transcriptase (200 U/μl)  

 
The reverse transcription reaction was incubated at 37 °C for 1 h for cDNA synthesis and afterwards 

stored at -20 °C. 

 

3.2.1.3.3 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) was performed to determine the relative amount of specific mRNA 

transcripts of a gene of interest using the ABI 7500 Real-Time PCR system and the ABsolute™ Blue 

QPCR SYBR® green mix. The cDNA was diluted 1:40 with dH2O prior to the reaction, which was set up 

as follows:  

 

10 μl  ABsolute™ Blue QPCR SYBR® Green Mix  
5 pmol  sense primer  
5 pmol  antisense primer  
1 μl  1:40 template cDNA  
add to 20 μl  dH2O  

 

Tested genes were analyzed in triplicates to obtain more valid results. Reactions were set up in 96 well 

plates, which were centrifuged briefly before amplification applying the following PCR program:
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PCR step Temperature Time Repeat 

Enzyme activation  50 °C  2 min   

Initial denaturation  95 °C  10 min   

Denaturation  95 °C  15 sec  }   40 cycles Annealing/ elongation 60 °C  60 sec 

Dissociation stage  60-90 °C  +1 °C per min   

 

Since SYBR green dye intercalates non-specifically into DNA, unintended products like primer dimers 

or contaminations could cause a false positive fluorescence signals. Therefore, a stepwise increase of 

temperature during the dissociation step was included to verify the specificity of the arising products 

by comparing temperature peaks of the dissociations curves to the known melting temperatures of 

the intended products. The emerging qPCR data (cycle threshold (Ct)-values) was normalized to a 

reference gene, i.e. housekepper gene, leading to the ΔCt-values. Ct-values over 35 were considered 

as unspecific due to the late amplification and were excluded from analysis. Gene expression in 

reference cell lines was set 1 to calculate relative expression of target tissues (<1: lower expression 

than reference; > 1: higher expression than reference). The relative quantity of expression was 

calculated as 2-ΔΔCt to the control (Livak and Schmittgen, 2001) or with the specific primer pair 

efficiency. The primer pair efficiencies were inferred from the following formula: Efficiency = 10-1/slope. 

Hereby, the slope was calculated from a linear regression based on the obtained Ct-values, when a 

dilution series of pooled cDNA samples were used as template for each specific primer pair.  

 

3.2.1.3.3.1 Housekeeper 

The most stable housekeeping gene for the used cell lines and tissues had to be determined. For this, 

The three different housekeeping genes Hprt, Gapdh and Ubc were compared in several teratomas to 

calculate their gene expression stability. The formulas for housekeeper calculation were described in 

(Vandesompele et al., 2002). Hprt was the most stable housekeeper gene (gene stability measure M 

= -3.1 x 10-3), followed by Gapdh (M = 0.014) and Ubc (M = 0.016). Consequently Hprt was used as 

main housekeeper gene for normalization of gene expression and only in experiments in which Gapdh 

was additionally analyzed, the geometric mean of Hprt and Gapdh was used for normalization 

(indicated in graphs).  
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3.2.1.4 Agarose gel electrophoresis 

DNA or RNA fragments were identified and separated by using the Perfect Blue™ Gel System. The 

agarose concentration varied between 0.7 % up to 2 % (w/v) according to the size of the fragments. 

TAE buffer was used as running buffer and for agarose solutions (dissolved at 100 °C). In addition, 

ethidium bromide was added in concentrations of 0.1 % (v/v) to identify DNA fragments when exposed 

to UV light. The DNA samples were supplemented with 6 x DNA loading dye to facilitate the loading 

procedure and for visualization of the progression during the run. The DNA molecular weight standard 

GeneRuler 1 kb DNA ladder was loaded on the gel to determine the size of amplified products. An 

electric field of 90 to 120 V and 220 mA was applied for 10 to 15 min for RNA and 30 to 60 min for 

DNA according to the fragment length. The running time for RNA samples should not exceed 15 min 

to avoid RNA degradation.  

 

6 x loading dye 34 % (w/v) sucrose 

 0.02 % (w/v)  cresol red dye  

 dissolved in  dH2O 

1 x TAE buffer 40 mM Tris-acetate pH 8.0 

 1 mM EDTA 

 dissolved in dH2O 

 

 

3.2.2 Cell culture methods 

3.2.2.1 Culture of cells 

Cell lines were cultured in a 5 % CO2 humidified atmosphere at 37 °C. All cell culturing was done under 

sterile conditions in laminar flow cabinets and with sterile equipment. If not indicated otherwise, basal 

medium (DMEM + Glutamax with 10 % (v/v) FCS) was used for cell culture. The sterility of medium 

additives was assured by manufacturers or achieved by autoclaving or sterile filtration through a  

0.2 μm filter unit, if necessary. Before usage, FCS was heated to 56 °C for 30 min for inactivation of 

complement factors. Centrifugation of eukaryotic cells was performed at 1200 rpm and RT for 5 min, 

unless otherwise stated.  

 

3.2.2.1.1 Stem cell culture 

Stem cells were cultured on a monolayer of inactivated mouse embryonic fibroblasts (MEFs) or on 

Geltrex coated cell culture plates (333 µg/T25 flask), prepared after manufacturer’s instructions. The 
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cells were splitted upon 80 % confluence by washing once with PBS and subsequent incubation with 

stem cell trypsin for several minutes at 37 °C until dissociation of stem cell colonies occurred. A single 

cell suspension was prepared by diluting cells in 10 volumes of stem cell medium and gently pipetting 

up and down. About 1/10 volume of this cells suspension was transferred into a new cell culture flask 

prepared with MEFs or Geltrex for further culture. Geltrex-coated flasks had to be incubated at 37 °C 

for at least 30 min before usage, MEF coated flasks for 1 day in advance of stem cell passaging. 

Centrifugation of stem cells was always performed at 1000 rpm for 5 min. Stem cells were tested for 

fungal, bacterial and mycoplasma infection via PCR prior to experiments. 

 

Stem cell medium DMEM + Glutamax 
 + 10 % (v/v) FCS 
 + 1 % (v/v) 100 x NEAA  
 + 50 μM 2-mercaptoethanol  
 + 1000 U/ml LIF  

 
Stem cell trypsin 0.1 % (w/v) Glucose 
 0.3 % (w/v)  Tris-HCl  
 0.25 % (w/v)  Trypsin  
 0.02 % (w/v)  EDTA  
 dissolved in PBS 

 

 

3.2.2.1.1.1 Preparation of MEFs 

For generation of MEFs, an uterus of a pregnant mouse was dissected on day 13.5 and transferred 

into a cell culture dish with pre-warmed PBS. The embryos were removed and heads, extremities, tail 

and organs were discarded. Remaining parts were minced using forceps and incubated in an 

Erlenmeyer flask with sterile ballotinis and 5 ml MEF trypsin (0.25 % (w/v) Trypsin; 0.02 % (w/v) EDTA; 

dissolved in PBS) on a magnetic stirrer for 20 min at 37 °C. After washing with 10 ml medium and 

centrifugation for 5 min at 1000 rpm, the pellet was resuspended in 25 ml MEF medium and plated 

on a 15 cm cell culture dish. Following 3 days of culture, cells were frozen (-150 °C) or directly used for 

expansion and inactivation. For this, MEFs were expanded up to passage 4 in 15 cm cell culture dishes 

and upon confluence were inactivated with Mitomycin C (stock solution: 1 mg/ml PBS). After 2.5 hrs 

incubation with 10 ml inactivation medium (1 % (v/v) Mitomycin C stock solution in MEF medium), 

MEFs were washed twice with PBS and harvested by trypsinization. The cells were frozen in aliquots 

à 2 x 106 cells or directly plated for later usage on cell culture flasks treated with 0.1 % (w/v) gelatine 

for 15 min at RT. 
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3.2.2.1.2 Tumor cell culture 

Suspension tumor cells were cultured in MEF medium and maintained in the exponential growth 

phase by regular cell passaging twice a week. For this, approximately 1/10 volume of the cell 

suspension was transferred into a new cell culture dish for further cell culture. Remaining cells were 

used for analysis or were discarded. 

 

3.2.2.1.3 Effector cell culture 

3.2.2.1.3.1 MACS separation 

The magnetic-activated cell sorting (MACS) method allows the separation of various cell populations 

depending on their surface antigens by magnetic particles (magnetic MicroBeads) and a magnetic 

field. For isolation of NK cells, murine spleens were homogenized by a TenBrook homogenizer and 

isolated by MACS technology using a mouse NK cell isolation kit. TCR-transgenic T cells were isolated 

from homogenized lymph nodes using the mouse CD4+ T cell isolation kit or the CD8a+ T cell isolation 

kit, respectively. Cell isolation was accomplished by negative selection according to manufacturer’s 

instructions. The cell solutions with the biotin-antibody cocktail and MicroBeads were transferred on 

MACS LS columns placed in a strong magnetic field of a MACS separator, catching magnetically labeled 

non-target cells on the column, whereas unlabeled NK or T cells pass through and were collected. 

Purity of obtained cells was determined by flow cytometry. 

 

3.2.2.1.3.2 NK cell culture 

NK cells were isolated by MACS separation (Ch. 3.2.2.1.3.1) and cultured in stimulation medium for  

4 days in 6 well plates. The cell density ranged from 106
 to 107

 cells/ml. 

 

NK cell stimulation medium DMEM + Glutamax 
 + 10 % (v/v) FCS 
 + 50 μM 2-mercaptoethanol 
 + 10 ng/ml mIL-2 
 + 20 % Con A supernatant 
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3.2.2.1.3.3 Splenocyte cell culture 

For restimulation of splenocytes, spleens were extracted from animals and homogenized using a 

Tenbrook homogenizer. Cells were centrifuged and pellets were treated with 2 ml erythrocyte lysis 

buffer for 3 min. After an additional washing step, cell pellets were resuspended in DMEM 

supplemented with stimulation reagents and plated in 96 well plates for 4 days at 37 °C.  

 

Restimulation medium for splenocytes DMEM + Glutamax 
 + 10 % (v/v) FCS 
 + 50 μM 2-mercaptoethanol 
 + 10 ng/ml mIL-2 
 + 1 μM OVA 
 + 20 % Con A supernatant 

 

To monitor the proliferation of splenocytes during the culturing, cells were previously stained with 

CFSE (Ch. 3.2.2.4). Unstained cells as well as portions of unstimulated cells were always cultured as 

reference cells, e.g. for flow cytometry. Cells were cultured in restimulation medium supplemented 

with OVA protein to final concentrations of 250 µM for stimulation of CD4+ T cell from OT-II mice and 

1 µM for CD8+ T cells from OT-I mice. 

 

Erythrocyte lysis buffer 155 mM NH4Cl  
 10 mM KHCO3  

 0.1 mM EDTA  
 dissolved in dH2O, pH 7.2  

 

 

3.2.2.2 Freezing and thawing cells 

Cells were harvested from cell culture dishes depending on their specific growth conditions. After 

centrifugation, the cell pellets were resuspended in an adequate volume of cell-specific medium to 

reach a cell density around 1 x 106 cells/ml, of which 500 µl were transferred into a cryo conservation 

tube. After addition of an equal volume of 2 x freezing medium (60 % (v/v) cell-specific culture 

medium; 20 % (v/v) DMSO; 20 % (v/v) FCS), cryo tubes were slowly frozen in a closed styrofoam box 

at -80 °C for 24 hrs. For long-term storage tubes were transferred to -150 °C. For thawing, cryo tubes 

with frozen cells were incubated briefly in a water bath at 37 °C, diluted in washing medium and 

centrifuged for 5 min. Subsequently, cells were resuspended in their specific growth medium and 

plated in an appropriate cell culture dish. 
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3.2.2.3 Counting of cells 

For cell counting, a Neubauer counting chamber and a Zeiss inverted microscope were used. After 

thorough resuspension of cells in an appropriate volume, either the suspension was directly used for 

counting or cells were mixed with 1 % acetic acid to eliminate remaining erythrocytes in the solution 

(used for splenocyte cell suspensions). Alternatively, cells could be mixed with trypan blue counting 

solution (0.4 % (w/v) trypan blue in PBS, pH 7.2), which selectively colors dead cells blue. The latter 

counting method is called trypan blue exclusion method, since living cells are excluded from staining. 

Counting was performed according to manufacturer’s instructions of the Neubauer chamber by 

loading 10 μl of any cell suspension on the loading groove (0.1 mm depth) between the chamber and 

the cover slip. 

 

3.2.2.4 CFSE staining of cells 

CFSE-stainings were performed to either monitor the proliferation capacity of in vitro restimulated 

splenocytes or to track stained cells after adoptive transfer into mice. Isolated splenocytes or TCR-

transgenic T cells were incubated with CFSE according to manufacturer’s instructions for 10 min in a 

water bath at 37 °C. Subsequently, cells were washed three times with basal medium followed by 

centrifugation at 1.200 rpm for 5 min. 

 

3.2.3 Immunological methods 

3.2.3.1 Flow cytometry 

Flow cytometry is a laser-based, biophysical technology which allows rapid cell counting and detection 

of different characteristics of a single cell suspension. Endogenous fluorescence signals such as GFP or 

fluorescent dye-coupled antibodies, as well as cell size and granularity can be detected. Flow 

cytometry was performed with a FACSCalibur flow cytometer and CellQuest data acquisition software. 

Analysis was performed using FlowJo software. For measuring, single cells were collected from 

suspension cell culture or by trypsinization for adherent cells and washed with PBS. Approximately  

1 x 106 cells per FACS tube were incubated with fluorescence-conjugated antibodies for 30 min at 4 °C 

in 100 µl PBS to stain for different cell surface molecules. If unconjugated antibodies were used, an 

additional incubation with a fluorescence-conjugated secondary antibody was performed. Antibodies 

were used in dilutions according to manufacturer’s instructions. After washing with PBS, cells were 

resuspended in an appropriate volume of PBS for measurement. Isotype controls were included for 
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each experiment and fluorescent compensation of different fluorescent dye-conjugated antibodies 

was done with single-stained cell populations and unstained cells, respectively. In some cases, 

propidium iodide (PI) was added to the sample (10 μM final) in order to assess the viability of the cells. 

 

3.2.3.1.1 Intracellular cytokine measurements 

For intracellular cytokine measurements (ICM) via flow cytometry, splenocytes were stained with  

CD3-FITC and CD4-TC antibodies followed by a washing step with PBS. The cell pellets were then mixed 

with 2 ml of BD Fix/Perm solution and incubated for 20 min at 4 °C. After two washing steps with each 

2 ml of BD Perm/Wash solution, cells were stained with PE-coupled antibodies for intracellular 

cytokines for 30 min at 4 °C. Subsequently, cells were washed once with BD Perm/Wash, followed by 

washing with PBS before analysis via the flow cytometer. 

 

3.2.3.2 51Chromium release assay 

The 51Chromium (51Cr) release assay is an in vitro method for quantification of cellular cytotoxicity, 

assessing the susceptibility of different target cells to cytotoxic immune effector cells. If killed,  

51Cr-labeled target cells release the radioactive radionuclide, which can be measured in a liquid 

scintillation counter (LSC). For labeling of the targets, single cell suspensions of 1 x 106 or 5 x 105 cells 

were incubated with 200 μl DMEM containing 100 μl FCS and 50 μCi Na2
51CrO4 for 1 h at 37 °C. Effector 

cells, i.e. NK cells or splenocytes, were plated in triplicates in serial dilutions on round-bottomed  

96 well microtiter plates to achieve different effector to target (E:T) ratios. Labeled target cells were 

washed three times with PBS and added in numbers of 1 x 104 or 5 x 103 cells, respectively in DMEM 

+ 10 % FCS into the plates with a final volume of 200 µl per well. Spontaneous release was determined 

by incubation of target cells in the absence of effector cells. The microtiter plates were centrifuged 

for 5 min at 600 rpm and incubated at 37 °C for 4 hrs. After incubation, the plates were centrifuged 

again and 50 µl of supernatant was transferred into Wallac plates. To break up the remaining cells and 

set all 51Cr isotopes free, 10 µl 10 % Triton-X was added, mixed thoroughly and 50 µl of this sediment 

part was transferred into separate Wallac plates. All probes were mixed with 200 μl Scintillator and 

sealed before measurement in the MicroBeta2 Plate Counter. E:T ratios were adjusted depending on 

the percentage of the effector population measured via flow cytometric analysis. The percentage of 

specific lysis was calculated by subtracting the spontaneous 51Cr release (51Cr release in absence of 

effector cells) shown in particular in the following formula:  
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[%] lysis = 
         4 x cpm supernatant x 100               X 
3 x cpm sediment + 1 x cpm supernatant 

 

3.2.3.3 ELISA 

Enzyme-linked immunosorbent assay (ELISA) is an analytic biochemical assay which can be used for 

detecting and quantifying substances like peptides or antibodies. With this method, the presence of 

OVA-specific antibodies in the sera of mice that previously received stem cell injections was analyzed 

in this study. ELISAs were performed in 96-well Nunc MaxiSorpTM microtiter plates and analyzed with 

a BioTek PowerWave 340 microplate spectrophotometer. At first, 96-well plates were coated 

overnight with 1 μg OVA per well diluted in 50 μl carbonate buffer at 4 °C, followed by an incubation 

with 150 μl of 1 % (w/v) gelatine dissolved in PBS for 1 hr at 37 °C to ensure the blocking of unspecific 

binding sites. After the dilution of sera with PBS/Tween, 50 µl of these were incubated in the prepared 

96-well plates for 2 hrs at 37 °C. The plates were then washed three times with H2O and 50 μl 

peroxidase conjugated goat anti-mouse IgG (1:5000 in PBS/Tween) antibody solution per well was 

added to the plates. In order to differentiate between Ig isotypes in the sera, isotype-specific 

secondary antibodies were additionally used, which were detected with a peroxidase-conjugated goat 

anti-rat antibody. The plates were again incubated at 37 °C for 1 hr and washed 5 times with H2O 

before 100 μl substrate solution per well was added. After 5 min, the maximum absorbance at  

405 nm was detected in the ELISA reader. 

 

Carbonate buffer 85 ml Na2CO3 (0.2 M) 
 40 ml NaHCO3 (0.2 M)  
 375 ml dH2O  
   

PBS/Tween  PBS 
 0.05 % (v/v) Tween 
   
Substrate buffer 0.1 M C2H3NaO2  

 0.05 M NaH2PO4 pH 4.0  
   
Substrate solution 10 ml substrate buffer  
 500μl ABTS (40mM) 
 10μl H2O2 (30 %) 
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3.2.4 Histology 

3.2.4.1 Tissue cross-sections  

Previously fixed teratoma and heart tissue were dehydrated in a series of ethanol solutions of 

increasing concentrations until 100 % (50 %, 70 %, 80 %, 2 x 96 %, 2 x 100 % for 75 min each), since 

paraffin is immiscible with water. Then, the ethanol was replaced with xylol (2 x 75 min), which was 

exchanged by liquid paraffin wax (56 - 58 °C) and the samples were subsequently embedded into 

paraffin blocks. Thin slices of 2.5 µl (teratoma) to 5 μm (heart) from pre-chilled blocks were generated 

using a microtome and transferred to glass slides. These were dried overnight at 37 °C and stored at 

RT for subsequent analysis. 

 

3.2.4.2 Hematoxylin and eosin staining 

For histopathological examination, paraffin sections were stained with Hematoxylin and eosin (H&E) 

to get a broad overview of different cell types within the sample by differentiating between cytoplasm 

and cell nuclei. Hematoxylin (hematein) is considered as a basic dye, which stain acidic or basophilic 

structures a purplish blue (e.g. DNA, RNA), whereas eosin, as an acidic dye, stains basic or acidophilic 

structures red or pink (e.g. cytoplasmic proteins). Dried tissue sections were deparaffinized with xylol 

(2 x 7 min), rehydrated in a descending alcohol series (100 %, 96 %, 75 % and 60 % ethanol for 5 min 

each) and washed with dH2O for 5 min. The samples were then incubated in Mayer’s hemalum 

solution for 5 min, rinsed with H2O for 10 min and incubated in eosin solution (1 % Eosin, 200 µl acetic 

acid, dH2O up to 100 ml) for additional 5 min. Subsequently, samples were briefly washed with dH2O 

followed by incubation in an ascending series of alcohol (60 %, 75 %, 96 %, 100 %) and isopropanol  

(5 min). Sections were transferred to xylol (2 x 5 min) prior to embedding using Roti®-Histokitt. For 

staining of specific proteins, additional immunohistochemistry was performed. 

 

3.2.4.3 Sirius Red staining  

For collagen stainings of myocardia, tissue sections were stained for 1 hr at RT in Sirius Red solution, 

i.e. 0.1 % Direct Red 80 in saturated aqueous picric acid adjusted to pH 2.0 with sodium hydroxide. 

After tipping in 0.5 % acetic acid solution for four times, slides were incubated in ethanol (1 x 5 min), 

isopropanol (1 x 5 min) and xylol (2 x 10 min). Subsequently, slides were embedded using Roti®-

Histokitt, scanned with a dotSlide and analyzed with the cellSens dimensions software. 
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3.2.4.4 Immunohistochemistry 

For Immunohistochemistry (IHC), paraffin sections were stained with specific antibodies to detect 

proteins of interest. All antibodies were diluted according to the manufacturer’s instructions and were 

incubated in a humidified atmosphere on the slides to prevent dehydration of the tissue samples. 

First, tissue sections were processed as for H&E staining (Ch. 3.2.4.2) but after rehydration, sections 

were boiled in citrate buffer (3 x 5 min; 10 mM, pH 6.0) for antigen retrieval. After cooling down to 

RT, samples were incubated with IHC blocking solution (4 % BSA in PBS) for 1 hr at RT. The primary 

antibody was diluted in PBS with 1 % BSA and incubated overnight at 4 °C. To block endogenous 

peroxidases, tissue sections were incubated in 3 % H2O2 (30 %) in PBS at RT for 10 min and slides were 

subsequently washed with PBS (3 x 5 min) before incubation with the secondary biotin-conjugated 

antibody for 1 hr at RT. After additional washings with PBS (3 x 5 min), samples were incubated with 

HRP-streptavidin for 1 hr at RT and stained with a DAB substrate solution (0.05 % DAB, 0.015 % H2O2, 

dissolved in PBS). For a hematoxylin counterstaining, the samples were incubated in hematoxylin  

(3 min), rinsed with H2O (5 min) and dehydrated before the tissue slides were mounted with Roti®-

Histokitt for imaging. Stained slides were scanned with a dotSlide and further analyzed using the 

cellSens dimensions software. 

 

3.2.5 Animal experiments 

3.2.5.1 Animal monitoring 

Animals were monitored for the complete duration of experiments. Every second day, weight of 

operated mice was controlled. The loss of more than 20 % weight in 48 hrs or an altered outer 

appearance let to preterm ending of the experiment. Mice with inoculated stem cells were examined 

for tumor growth every third day and the mice were sacrificed when a tumor volume of 1 cm3 was 

reached or any signs of pain or discomfort were recorded. 

 

3.2.5.2 Teratoma assays 

To analyze the tumorigenicity and immunogenicity of stem cell lines, cells were inoculated in 

syngeneic immunocompetent mice. For this, stem cells were harvested, counted and washed with 

PBS. Each mouse received amounts of 1.5 x 106 to 3 x 106 cells, resuspended in 100 µl PBS via 

subcutaneously (s.c.) injections into the flank. Tumor growth was monitored for up to 90 days and 

regularly controlled by palpation.  



Materials and Methods 

43 
 

3.2.5.3 Adoptive transfer of TCR-transgenic T cells 

TCR-transgenic T cells were isolated from OT-I and OT-II mice via MACS technology. After CFSE-

staining, 1.5 x 106 to 12 x 106 T cells, depending on the experimental setup, were dissolved in 

approximately 100 µl PBS. Mice were fixed in a special self-made 50 ml falcon with breathing holes 

and notch for the tail. Before intravenous (i.v.) injection, mice tails were stuck into warm water which 

lead to dilation of blood vessels and as a consequence to a better visualization of the tail veins. Cells 

were injected into a lateral vein of the mouse tail. 

 

3.2.5.4 Transverse aortic constriction and echocardiography 

TAC surgery was performed by CRC 1002 service project using a minimally invasive operation 

procedure previously described in Toischer et al. (2010). For this, 8 to 12 weeks old mice were 

anesthetized via intraperitoneal injections of medetomidin (0.5 mg/kg), midazolam (5 mg/kg), and 

fentanyl (0.05 mg/kg). Pressure overload was induced by transversal aortic constriction using a  

26 gauge needle. Hereby, the diameter of the aorta was typically reduced by approximately 50 % to 

create a 50 to 60 mmHg systolic pressure gradient between the left ventricle (LV) and aortic pressure. 

However the gradient might vary depending on hemodynamic conditions and the severity of the aortic 

ligation. In sham operations, the transversal aorta was displayed but not restricted. Anesthesia was 

reversed by s.c. injections of atipamezol (2.5 mg/kg) and flumazenil (0.5 mg/kg). Mice were kept on 

heating plates until full recovery from anesthesia. For analgesia, drinking water was supplemented 

with 1.33 mg/ml metamizole two days before surgery, which was refreshed every third day until one 

week after operation. Three days after surgery, the pressure gradient over the aortic ligature (aortic 

stenosis) was measured by transthoracic echocardiography using a Vevo2100 system with a 30 MHz 

center frequency transducer. Therefore, animals were anesthetized with 3 % isoflurane, and 

respiration, temperature and ECG-controlled anesthesia was maintained with 1.5 % isoflurane, as 

described previously (Toischer et al., 2010). At additional points of time after operations (1 week,  

4 weeks, 8 weeks), echocardiography was performed to determine the maximal left ventricular length 

(L), thicknesses of the septum, the posterior myocardial wall, the inner diameter of the left ventricle 

(LVEDD) and the area of the left ventricular cavity (area). Fractional area shortening (FAS) and ejection 

fraction (EF) were calculated via the area length method. 
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3.2.5.5 Sacrification and tissue preparation 

Animals were generally sacrificed in a CO2 atmosphere, followed by cervical dislocation. Therefore, an 

animal was placed into a suitable chamber (e.g. IVC) which was initially filled with atmospheric air, 

followed by gradually filling with CO2 for some minutes until unconsciousness and death of the animal. 

Anesthetized animals were disinfected with 70% ethanol before dissection. 

 

3.2.5.5.1 Donor animals 

For the analysis and isolation of effector cells, murine lymph nodes or/and spleens of rat and mice 

were extracted with a sterile dissection set and cooled in DMEM falcons on ice until homogenization. 

Lymph nodes, used for isolation of OT-I and OT-II TCR-transgenic T cells, were collected from lateral 

flanks, cervical neck and from the large intestine and lower abdomen. 

 

3.2.5.5.1.1 Preparation of Concanavalin A supernatant from rat spleens 

Concanavalin (Con) A supernatant is used as supplement in stimulation-media for splenocytes. To 

generate the supernatant, several rat spleens were dissected and homogenized by a Tenbrook 

homogenizer, followed by an 4 hrs incubation in specific Con A stimulation medium (DMEM, 5 % FCS, 

200 µl Con A) at 37 °C. Afterwards, splenocytes were collected, washed with DMEM and further 

cultured in DMEM supplemented with 10 % FCS for 24 hrs in a cell incubator. The stimulated 

lymphocytes secret various cytokines during this incubation time, generating a cytokine conditioned 

supernatant which is collected after centrifugation (10 min; 1100 x g), aliquoted and stored at -20 °C. 

 

3.2.5.5.1.2 TCR-transgenic T cells from OT-I or OT-II mice  

OT-I and OT-II mice are T-cell receptor (TCR)-transgenic animals, whose T cells were designed to 

recognize specific chicken ovalbumin (OVA) residues. The CD8+ T cells of OT-I mice recognize the OVA 

residues 257-264 in the context of H2Kb (H2 class I) and the CD4+ T cells of OT-II mice the OVA residues 

323-339 in the context of I-A (H2 class II). Therefore, OT-I T cells were used to study the response of 

cytotoxic T cells to antigen, whereas the OT-II mice were generated to analyze T cell help for B cell 

responses towards OVA as model antigen. To isolate TCR-transgenic T cells, lymph nodes from OT-I or 

OT-II mice were homogenized with a Ten brook homogenizer and cells were passed through a cell 

strainer. Cells were counted and an appropriate amount was used for subsequent MACS separation. 
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The isolated cells were counted and stained with CFSE and subsequently used for adoptive transfer. 

Cell quality was assured via flow cytometry. 

 

3.2.5.5.2 Preparation of teratomas 

Subcutaneous teratomas were prepared from anesthetized animals, measured, weighted and cut into 

three parts. The first piece was immediately transferred to liquid nitrogen and stored at -80 °C for 

later gene expression analyses. Another part of the tumor sample was fixed in phosphate-buffered  

4 % formalin overnight at 4 °C, followed by paraffin embedding for histological analysis. The other 

piece was stored in DMEM on ice for subsequent flow cytometric analysis. The abdomen and thoracic 

cavity were examined systematically for the presence of metastases, which, if present, were also 

treated as s.c. teratoma samples. After autopsy, tumor size was measured by calipers and its volume 

was calculated with the following formula: 

 

V= 
π × a × b × c 

2 
 
a, b, c = orthogonal diameters 
 

3.2.5.5.2.1 Teratoma digestion for flow cytometric analysis 

For flow cytometric analysis of teratomas, tumors were digested with Liberase, which is composed of 

highly purified collagenase I and collagenase II. First, tumors were cut into small pieces and transferred 

to round bottomed falcons in which small magnetic stirring bars were placed. A small volume of 

digestion medium (DMEM w/o FCS supplemented with 0.12 mg/ml Liberase) was added and the tubes 

were set into a 37 °C water bath onto a magnetic stirrer and incubated for 10 min. After the first 

incubation, the supernatant was transferred into a fresh tube with ice-cold medium with FCS and 

another volume of digestion medium was added to the remaining tumor parts. After additional  

10 min and merging of both supernatants, tubes were centrifuged at 1200 rpm for 10 min, followed 

by erythrocyte lysis for 3 min and an additional washing step with DMEM medium at 1200 rpm for  

10 min. The cell suspension was then passed through a 40 μm nylon mesh and centrifuged again for 

10 min at 1200 rpm. The resulting pellet was washed once with PBS before addition of antibodies for 

flow cytometry. 

 

 



Materials and Methods 

46 
 

 

3.2.5.5.3 Blood and sera preparation 

After animals were sacrificed, blood was directly taken by cardiopuncture using a 1 ml syringe and 

transferred to 1.5 ml Eppendorf tubes for sera generation or in EDTA-containing plastic tubes if 

analysis using flow cytometry was required. Eppendorf tubes were initially stored at RT, followed by 

storage at 4 °C for 2-3 hrs. After centrifugation for 10 min at 1200 rpm, the upper phase was 

transferred into a new tube, the procedure was once repeated and pure sera were stored for 

subsequent analysis at -20 °C. For flow cytometry analysis, blood was directly transferred from EDTA-

containing tubes into FACS tubes and stained with antibodies. After incubation, erythrocytes were 

lysed with FACS™ lysis solution according to manufacturer’s instructions, followed by washing with 

PBS and subsequent measurement via flow cytometry. 

 

3.2.5.5.4 Preparation of TAC- and sham-operated animals 

After anesthesia and heart punctuation for blood isolation, hearts were excised, weighted and 

perfused with saline solution to eliminate residing blood in the tissue. The atria were cut off and the 

ventricles were weighted and dissected into three parts of which all were immediately transferred to 

liquid nitrogen. Samples were stored at -150 °C until usage for gene expression or histological analysis. 

Additionally, the length of tibia was measured for later calculations of the normalized heart weight 

(heart weight / tibia length). Spleens were collected in DMEM medium for later processing. 

 

3.2.6 Statistical analysis 

Statistical analysis was performed using WinStat software. For statistical evaluation of 51Cr release 

assays, mainly the two-way-ANOVA was used to analyze the lysis of different target cell lines by 

cytotoxic effector cells. Otherwise, if data were not normally distributed, the non-parametric Kruskal-

Wallis (H) test was used for comparison of multiple groups, or the Mann-Whitney U-test for 

comparison of two groups. In single cases, the chi-squared test or student’s t-test was used. Applied 

tests are indicated in figure legends. Data are depicted as mean + standard deviation (SD) or standard 

error of the mean (SEM). A p value of less than 0.05 (*), less than 0.01 (**) or less than 0.001 (***) was 

considered statistically significant.
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4 Results 

4.1 Investigation of immune response contributing to the pathogenesis of load-induced 

heart failure 

Due to the high prevalence of heart failure (HF), it is important to understand the underlying 

mechanisms to prevent or treat this disease. One new concept of treatment could be the 

transplantation of stem cell-derived grafts. For this, it is important to examine the immunological 

milieu of the diseased heart, which would presumably influence the outcome of transplantations. 

Moreover, autoimmunity can contribute to the development of HF and new results suggest that even 

purely load-induced HF might be associated with the development of autoimmune reactions. 

Therefore, we used cMy-mOVA mice, which express ovalbumin (OVA) as model antigen in 

cardiomyocytes to examine whether HF induced by increased afterload elicits OVA-specific 

autoimmunity. For this, animals underwent transverse aortic constriction (TAC) surgery to increase 

the afterload of the heart. Previous experiments in our research group had revealed that cMy-mOVA 

mice show a small but statistically significant increase of OVA-specific CTL activity after TAC operation 

as tested in 51chromium (51Cr) release assays but with considerable individual variations. The level of 

OVA-specific antibodies was not increased after TAC operation and generally the heart function was 

not altered compared to wildtype mice as determined by echocardiography (Röhrborn et al., 

unpublished data). These findings indicate that clinically relevant autoimmunity against OVA as a 

model of a cardiac autoantigen was not a frequent outcome of TAC operations in our experimental 

setting. Therefore, animals were now further challenged by adoptive transfer of OVA-specific T cells 

to increase the number of naïve autoreactive T cells and to examine the progression of HF in animals 

at higher risk to develop autoimmunity.
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4.1.1 Adoptive transfer of TCR-transgenic T cells into cMy-mOVA mice 

OVA-specific TCR-transgenic T cells of OT-I (CD8+) and OT-II (CD4+) mice were isolated by MACS 

technology and stained with CFSE before being adoptively transferred intravenously (107 cells in total 

/mouse) into cMy-mOVA mice. Experiments were performed in which both OT-I and OT-II T cells were 

transferred together because autoantigen-specific CD4+ and CD8+ T cells might need to cooperate to 

accelerate HF. In addition, transfers of only OT-I T cells were performed, because we had previously 

observed a significant activation of OVA-specific CTLs in cMy-mOVA mice after TAC. Transfers of OT-II 

T cells are on the way but currently not sufficient in numbers to be presented here. Animals underwent 

TAC or sham operation (day 3 post transfer) and functional parameters of the heart were regularly 

monitored via echocardiography. Usually at day 3 after the operations, the stenosis of the aorta was 

determined by echocardiography in millimeters of mercury (mmHg). Generally, TAC-operated animals 

showed stenosis of > 50 mmHg, whereas sham-operated control animals showed values about  

2-5 mmHg (data not shown).  

To identify the transferred CFSE+ T cells, blood was taken at day 6 post transfer. Flow cytometric 

analysis showed that CFSE+ T cells constituted only a minor proportion of PBMCs in the blood (Figure 

7A). In single animals up to 1.2 % CFSE+ T cells (CD8+CFSE+) of total PBMCs were found in the blood at 

that time point. Notably, much less CD4+CFSE+ T cells were found than CD8+CFSE+ T cells. Generally, 

TAC-operated animals showed lower numbers of CFSE+ cells in the blood than sham-operated animals. 

This might indicate recruitment to lymphoid organs or the heart, or loss of the CFSE signal due to 

proliferation. Animals were monitored up to 10 weeks after surgery, depending on the health 

condition of mice. At the end point they were sacrificed and tissue samples, including blood, spleen 

and heart were collected for analysis. Blood analysis of animals, which had received a mixture of OT-I 

and OT-II T cells showed a minimal amount of CFSE+ cells in the lymphocyte population in flow 

cytometry (Figure 7B). The low numbers of CFSE+ cells at this late time point could indicate loss of 

cells, recruitment to other organs or proliferation.  
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Analysis of the spleen for CFSE-stained cells at the end of the experiments showed that up to 0.89 % 

of splenocytes in a single animal (TAC, OT-I T cell transfer, CD3+CFSE+) were positive for CFSE. In 

general, only very few CFSE+ T cells were identified (Figure 8A). TCR-transgenic T cells of OT-I and  

OT-II mice can be identified by an anti-TCR Vβ 5.1/5.2 mAb, which is specific for the Vβ chain that was 

used for the transgenic TCR of OT-I and OT-II mice. Between 2.0 % to 2.6 % of splenocytes were 

positive for TCR Vβ 5.1/5.2, indicating a normal range of T cells with usage of these Vβ chains. Thus, 

the transferred CD8+ T cells did not undergo a massive expansion at least not within the splenocyte 

population (Figure 8B). The OT-II mice were CD45.1+, whereas the OT-I and cMy-mOVA mice expressed 

the CD45.2 allotype. This enabled a tracking of the transferred OT-II cells by a stable genetic marker. 

CD45.1+ cells originating from OT-II mice constituted on average 0.06 % (sham) to 0.21 % (TAC) of the 

splenocyte population of cMy-mOVA mice after transfer of OT-I and OT-II T cells. Thus, also the 

transferred CD4+ T cells did not undergo a massive expansion at least not within the splenocyte 

population.  

 

Figure 7 Flow cytometric analysis of transferred T cells in blood samples of cMy-mOVA mice which received 
TCR-specific OT-I T cells (107 cells /mouse) or a mixture of OT-I and OT-II T cells (5 x 106 each /mouse).  
Shown is the proportion of CFSE-stained cells of total lymphocyte numbers + SEM. (A) Proportion of CFSE+       
T cells of total PBMC numbers in blood samples taken 6 days post transfer. Animal numbers of CD3, CD8  and 
CD4 measurements respectively: OT-I sham: CFSE/CD3 (n = 9), CFSE/CD8 (n = 9), CFSE/CD4 (n = 0); OT-I TAC: 
CFSE/CD3 (n = 9), CFSE/CD8 (n = 9), CFSE/CD4 (n = 0); OT-I/OT-II sham: CFSE/CD3 (n = 7), CFSE/CD8 (n = 7), 
CFSE/CD4 (n = 3); OT-I /OT-II TAC: CFSE/CD3 (n = 8), CFSE/CD8 (n = 9), CFSE/CD4 (n = 5) (B) Proportion of CFSE+ 
T cells of total PBMC numbers after OT-I/OT-II transfer in blood samples taken after experimental endings (67 
days). Animal numbers of performed CD3, CD8 and CD4 measurements respectively: sham: CFSE/CD3 (n = 9), 
CFSE/CD8 (n = 9), CFSE/CD4 (n = 8); TAC: CFSE/CD3 (n = 12), CFSE/CD8 (n = 12), CFSE/CD4 (n = 12). 
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4.1.1.1 Immunohistochemical analysis of leukocyte infiltration into the myocardium 

Lymphocyte infiltration into of the myocardium was determined on paraffin-embedded cross sections 

of the heart by immunohistochemistry (IHC). Example pictures in Figure 9 show an infiltration of CD3+ 

and CD45R+ cells into the myocardium of cMy-mOVA mice, which received OVA-specific T cells by 

adoptive transfer. Additionally, the type of infiltrating T cells was determined by staining for CD4+ and 

CD8+ cells (not shown). Stained tissue slides were scanned and analyzed via cellSens dimension 

software, determining cell counts per scanned tissue section area.  

 

Figure 8 Flow cytometric analysis of transferred T cells in spleens of cMy-mOVA mice which 
received OT-I T cells (107 / mouse) or a mixture of OT-I and OT-II T cells (5 x 106 each /mouse). 
Shown is the percentage of positive cells of total splenocytes + SEM (A) Proportion of CFSE+ and 
TCR Vβ 5.1/5.2+ T cells of total splenocytes of animals which received OT-I T cells at the end of 
experiments. CFSE/CD3 and CFSE/CD8: sham (n = 7), TAC (n= 8); TCR Vβ 5.1/5.2 /CD3 and TCR Vβ 
5.1/5.2 /CD8: sham (n= 7), TAC (n= 7) (B) Proportion of CFSE+ and CD45.1+ T cells of total 
splenocytes after experimental ending of animals which received OT-I and OT-II T cells. Animal 
numbers: sham (n = 6), TAC (n = 10). 
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Due to variations in size of myocardial sections, cell counts per mm2 myocardium were computed, 

shown in Figure 10. The most abundant lymphocytes were CD8+ (i.e. cytotoxic T cells) and CD45R+ (i.e. 

B cells) (Figure 10A). CD3+ and CD4+ cells were only found in lower numbers in the myocardium of 

cMy-mOVA mice, ranging from 3.3 x 10-3 to 0.01 cells per mm2 myocard. Generally, more lymphocytes 

were detected in TAC-operated animals than in sham-operated animals and the amount of infiltrating 

T cells in the myocardium was always increased in animals which received adoptive transfers of T cells 

when summarizing transfer experiments of OT-I and OT-I/OT-II T cells. The higher frequency of CD8+ 

than CD3+ T cells could indicate differences in the quality of the mAbs or the presence of CD8+CD3- 

cells, e.g. some NK cells or DCs. 

 

Figure 9 IHC analysis of lymphocyte 
infiltration into myocardia of cMy-
mOVA mice, which received either 
OT-I T cells or OT-I and OT-II T cells. 
Shown are histological example 
tissue slides of TAC- and sham-
operated animals stained for CD3 or 
CD45R. Arrows indicate positive 
stained cells. Scale bars in each 
picture (bottom right corner) 
represent 20 µm each. 
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Figure 10 Immunohistochemical analysis of the myocardium of control cMy-mOVA mice and cMy-mOVA 
mice which received TCR-transgenic T cells. 
Shown are the mean of n-experiments (n numbers depicted below the columns in (B)) + SEM. (A) Summary 
of IHC analysis of infiltrated lymphocytes in the myocardium of operated (TAC, sham) cMy-mOVA mice 
which received no T cells (/) and cMy-mOVA mice which received T cells (OT-I and OT-I/OT-II) (+). (B) 
Diagrams of lymphocyte numbers in the myocardium of different animal groups (control, OT-I transfer,     
OT-I/OT-II transfer) which underwent sham or TAC surgery. Significant differences between groups of TAC-
operated animals are depicted in the diagram: * < 0.05, ** < 0.01. Differences between TAC-operated cMy-
mOVA and cMy-mOVA + OT-I T cells: CD3+ (p = 9.3 x 10-3), CD4+ (p = 8.5 x 10-3), CD8+ (p = 4.4 x 10-3), CD45R+ 
(p = 0.99), between TAC-operated cMy-mOVA and cMy-mOVA + OT-I/OT-II T cells: CD3+ (p = 0.75), CD4+ (p 
= 0.29), CD8+ (p = 0.09), CD45R+ (p = 2.9 x 10-3), and between TAC-operated cMy-mOVA + OT-I T cells and 
cMy-mOVA + OT-I/OT-II T cells: CD3+ (p = 5.4 x 10-3), CD4+ (p = 0.03), CD8+ (p = 0.11), CD45R+ (p = 0.73); 
Mann-Whitney U-Test. 
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In Figure 10B, the separated analysis for animals which received only OT-I T cells and those that 

received a mixture of OT-I and OT-II T cells is shown. Notably, the myocardium of animals that received 

only OT-I T cells showed significantly more infiltrated T cells (CD3+, CD4+, CD8+) after TAC operation 

compared to cMy-mOVA animals without transfer and those which received both T cell types. Hereby, 

up to 0.04 CD3+ and CD4+ and 0.4 CD8+ cells per mm2 myocardium were detected. Average numbers 

of T cell infiltrates in hearts after OT-I/OT-II transfer were similar to control cMy-mOVA mice. B cell 

infiltration was similar in TAC-operated cMy-mOVA and those which additionally received OT-I T cells 

(on average 0.19 and 0.22 cells per mm2), whereas after the transfer of OT-I and OT-II T cells, a lower 

number of B cells was detected in the tissue (in the mean 0.07 cells per mm2). 

Additionally, leukocyte composition in the spleen and heart of cMy-mOVA mice which received 

adoptive transfer of OT-I and OT-II T cells was analyzed but revealed no major differences in overall 

leukocyte proportion in these mice after TAC operation compared to controls (Supplement, Ch. 7.1.1). 

Moreover, adhesion molecules expression on endothelial cells in the heart was not altered after TAC 

operation and consequently did not enhance leukocyte infiltration by this mechanisms (Supplement, 

Ch. 7.1.2). 

 

4.1.1.2 Activation of OVA-specific cytotoxic T lymphocytes 

The splenocytes of the mice were used as effector cells in cytotoxicity assays to determine the lysis 

rate of OVA-expressing (RMA OVA-eGFP) or control RMA (RMA eGFP) cells. For this, splenocytes were 

restimulated in vitro for 4 days with OVA protein and IL-2. In Figure 11, the specific lysis of the target 

cells by restimulated splenocytes isolated of cMy-mOVA which received either OT-I T cells or OT-I and 

OT-II T cell is shown. The lysis of OVA-expressing RMA targets ranged on average from 12.1 % (TAC) 

to 13 % (sham) at the highest effector to target (E:T) ratio by splenocytes of animals, which received 

OT-I T cells. Splenocytes of animals that received OT-I and OT-II T cells showed a mean specific lysis of 

OVA-expressing targets up to 35.6 % (TAC) and 39.4 % (sham). Splenocytes of TAC-operated cMy-

mOVA mice, which did not receive adoptive transfer showed a slightly lower lysis rate of 9 % on the 

highest E:T ratio (Röhrborn et al., unpublished data; data not shown). Killing of the OVA-expressing 

RMA cell line, in contrast to the RMA control showed that OVA-specific CTLs were present in spleens 

of TAC- and sham-operated animals 10 weeks after transfer. Here, the additional transfer of OT-I  

T cells increased the capability of CTLs to kill the OVA-expressing target line compared to cMy-mOVA 

mice without transfer. The combined transfer of CD4+ and CD8+ specific for OVA even lead to a higher 
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cytotoxic response of CTLs towards OVA. However, no major differences in the target lysis rates 

occurred between splenocytes obtained from sham- and TAC-operated animals, showing that even 

without increased afterload, OVA-specific CTLs became activated and were able to lyse OVA-

expressing cells.  

 

 

4.1.1.3 Anti-OVA antibody generation  

Whether OVA-specific antibodies were generated after adoptive transfer of OT-I or a mixture of  

OT-I/OT-II TCR-transgenic T cells was analyzed by ELISAs. For this analysis, pre-sera obtained before 

operation (7 days pre operation) of cMy-mOVA mice and sera, obtained after animals were sacrificed 

(normally after 10 weeks), were used in serial dilutions to determine the OVA-specific antibody titer 

compared to serum of control animals which had been immunized with recombinant OVA protein. 

The OD value of the reference serum was set to 100 % for the lowest dilution (1:30) to calculate the 

relative anti-OVA antibody level of other sera. As seen in Figure 18, no OVA-specific antibodies arose 

after the transfer of OVA-specific T cells into cMy-mOVA mice undergoing surgery. The slightly higher 

anti-OVA titer at the end point of experiments in those animals can be caused by increased age of 

examined animals as it was also found in untreated controls (data not shown). After OT-I T cell 
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Figure 11 Cytotoxicity assays performed with splenocytes of TAC- or sham-operated mice which received 
adoptive transfer of either (A) OT-I T cells or (B) a mixture of OT-I/OT-II T cells. 
Splenocytes were obtained 10 weeks after transfer of TCR-transgenic T cells into cMy-mOVA mice and were 
restimulated in vitro with OVA protein and IL-2 for 4 days before used as effector cells in 51Cr release assays. 
Control RMA (RMA-eGFP) and RMA OVA (RMA eGFP-OVA) served as targets in the test. Shown is the mean 
of specific lysis + SEM at different E:T ratios. OT-I T cell transfer: sham/TAC (n= 10, each); OT-I/OT-II T cell 
transfer: sham (n = 11), TAC (n = 14). 
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transfer, animals displayed a similar OVA-titer independent of the type of surgery (TAC/sham). These 

results were similar to anti-OVA titers of cMy-mOVA mice, which did not received adoptive transfers 

(Röhrborn et al., unpublished data; data not shown). Thus, the transfer of TCR-transgenic T cells had 

no influence on the anti-OVA antibody generation. 

 

 

4.1.1.4 Cardiac fibrosis 

The pathology of HF includes cardiac fibrosis. After TAC operations of cMy-mOVA mice, increased 

fibrosis was detected by histological evaluation of Sirius Red-stained tissue slides. To determine 

whether the transfer of T cells specific for a cardiac antigen increases fibrosis, myocardia of animals 

which received adoptive transfers were analyzed. In Figure 13A, histological example pictures of Sirius 

Red-stained myocardia are depicted which show that the collagen staining is more intense in tissues 

after TAC operation. The proportion of collagen-stained area to total myocardia area was calculated, 

showing that the TAC operation and the additional transfer of OT-I and OT-II T cells led to increased 

fibrosis (18.3 %) compared to TAC-operated cMy-mOVA mice, which did not received T cells (12.5 %), 

although this reached not statistical significance (Figure 13B). In contrast, the transfer of only OT-I  

T cells resulted in a comparable level of fibrosis in TAC-operated mice (12.2 %) to cMy-mOVA mice, 

 

Figure 12 Anti-OVA-antibody titer in cMy-mOVA mice which received (A) OT-I and OT-II or (B) only OT-I     
T cells before sham and TAC operation.  
Sera were taken 1 week prior to surgery (pre) and at the end point of experiments (†). Shown are relative 
anti-OVA titers + SEM compared to control sera, which were obtained from prior OVA-immunized 129/Sv 
animals. 
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undergoing the same surgery. Fibrosis in sham-operated animals ranged from 7.1 % (cMy-mOVA +  

OT-I T cells) to 9.3 % (cMy-mOVA + OT-I/OT-II T cells) and showed no major differences between the 

animal groups. The only significant changes in fibrosis were detected when TAC- and sham-operated 

animals were compared. Overall, there might be a trend towards increased fibrosis after TAC, if 

additional OVA-specific CD4+ T cells were transferred, but these changes were not significant in this 

analysis.  

 

 

 

 

 

(p = 9.3 x 10-4); cMy-mOVA + OT-I/OT-II 
T cells: (p = 1.2 x 10-5); Mann-Whitney U-
test; ***<0.001. 

0

10

20

30

/  + OT-I  + OT-I / OT-II

cMy-mOVA

co
lla

ge
n

 s
ta

in
in

g 
ar

ea
 [

%
]

Fibrosis sham

TAC

*** *** 

*** 

B 

Figure 13 Fibrosis in the myocardia of 
cMy-mOVA and cMy-mOVA mice which 
received adoptive transfer of either OT-I 
or OT-I and OT-II T cells.  
(A) Sirius Red staining of cMy-mOVA 
myocardia of sham- and TAC-operated 
mice to visualize fibrosis. Scale bars in 
each picture (bottom right corner) 
represent 50 µm each. (B) Proportion of 
fibrotic area per myocardium calculated 
by cellSens dimension software. CMy-
mOVA: sham (n= 22), TAC (n= 15); cMy-
mOVA + OT-I T cells: sham (n= 8), TAC (n= 
11); cMy-mOVA + OT-I/OT-II T cells: sham 
(n= 10), TAC (n= 14). Differences between 
cMy-mOVA vs. cMy-mOVA + OT-I T cells: 
sham (p = 0.61), TAC (p = 0.34); cMy-
mOVA vs. cMy-mOVA + OT-I/OT-II T cells: 
sham (p = 0.07), TAC (p = 0.21); differences 
between sham- and TAC-operated 
animals: cMy-mOVA + OT-I T cells:  
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4.1.1.5 Hypertrophy and heart function 

After TAC operation, eliciting pressure overload-induced HF, hearts size and weight were increased in 

cMy-mOVA mice due to cardiac hypertrophy. To analyze heart weight, which can differ between 

animals due to their overall phenotype (size, weight, sex of mice), ventricular weight (vw) is generally 

normalized to the tibia length of animals (Yin et al., 1982). Effects of the transfer of T cells specific for 

OVA into cMy-mOVA mice on the phenotype of the heart are summarized in Figure 14. The heart 

weight was not significantly affected by the adoptive transfer of OVA-specific T cells, showing similar 

heart weight after TAC operations for each animal group, ranging from ratios of 10.3 (+ OT-I T cells) to 

12.1 (+ OT-I/OT-II T cells). Compared to sham-operated animals, all groups showed a significant higher 

heart weight after TAC operation.  

 

 

Major parameters to assess heart function were measured by echocardiography and include ejection 

fraction (EF), which measures the fraction of blood pumped out of the heart with each heartbeat and 

the left ventricular fractional area shortening (FAS), which estimates the cardiac contractility. 

Additionally, hypertrophy parameters including diastolic and systolic anterior wall thickness (AWThd, 

AWThs) were analyzed and evaluated. After TAC operation, hypertrophy increased in all groups 

compared to sham-operated animals, whereas the overall function of the heart decreased compared 

to animals without aortic banding. Comparison of all parameters showed that neither the cardiac 

hypertrophy (wall thickness) nor functional parameters of the heart were significantly affected by the 

additional transfer of OVA-specific T cells into cMy-mOVA mice (Figure 21). 

 

Figure 14 Heart weight of cMy-mOVA mice and 
mice which received OVA-specific T cells.  
Shown are the mean of ventricular weight (vw) 
[mg] to tibia length [mm] ratios after experimental 
ending (10 weeks post operation) + SEM. Animal 
numbers w/o transfer: sham (n= 21), TAC (n= 17); 
+ OT-I T cells: sham (n= 8), TAC (n= 11); + OT-I/OT-
II T cells: sham (n= 8), TAC (n= 14). Differences 
between sham- and TAC-operated animals:       
cMy-mOVA (p = 3.6 x 10-3), OT-I T cell transfer         
(p = 5.2 x 10-7), OT-I/OT-II T cell transfer (p = 5.6 x 
10-7). CMy-mOVA w/o transfer vs. cMy-mOVA + 
OT-I T cells: sham (p = 0.36), TAC (p = 0.49); cMy-
mOVA w/o transfer vs. cMy-mOVA + OT-I/OT-II T 
cells: sham: (p = 0.26), TAC (p = 0.55); Mann-
Whitney U-test. 
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Figure 15 Analysis of hypertrophy and heart function of cMy-mOVA mice by echocardiography.  
Mice underwent TAC or sham surgery and received TCR-transgenic OT-I or a mixture of OT-I and OT-II      
T cells. Over the time of experiments, heart functionality was monitored via echocardiography, including 
measurements/calculation of ejection fraction (EF), left ventricular area shortening (FAS), diastolic 
anterior wall thickness (AWThd) and systolic anterior wall thickness (AWThs). Animal numbers: w/o 
transfer: sham (n= 21), TAC (n= 17); + OT-I T cells: sham (n= 8), TAC (n= 11); + OT-I/OT-II T cells: sham (n= 
8), TAC (n= 14). Differences between TAC-operated cMy-mOVA and cMy-mOVA + OT-I T cells at 8 weeks 
post operation: AWThd (p = 0.86), AWThs (p = 0.25), FAS (p = 0.25), EF (p = 0.23) and between cMy-mOVA 
and cMy-mOVA + OT-I/OT-II T cells at 8 weeks post surgery: AWThd (p = 0.72), AWThs (p = 0.70), FAS (p 
= 0.63), EF (p = 0.56), student’s t-test. 
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4.1.2 Analysis of immune reactions in cMy-mOVA/OT-II 

To further increase the proportion of autoreactive T cells and to ensure their presence at all time 

points during the development of HF after TAC, cMy-mOVA mice were bred with OT-I and OT-II mice 

to create double-transgenic mice, which express OVA exclusively on cardiomyocytes and whose T cells 

were specific for this cardiac antigen. The attempt to create cMy-mOVA/OT-I mice failed because of 

early mortality between days 1 to 5 after birth due to unknown reasons. Analysis of the hearts showed 

no pronounced T cell infiltration, however impairment of heart function by only low numbers of 

autoreactive CTLs at this time point cannot be excluded.  

In contrast, cMy-mOVA/OT-II mice were successfully bred and were therefore available for further 

analysis. Mice were TAC- and sham-operated and monitored for up to 10 weeks. After experimental 

ending 10 weeks post operation, splenocytes of cMy-mOVA/OT-II mice were used for flow cytometric 

analysis to determine proportions of lymphocyte populations and the expression of activation 

markers, including CD25 and CD69 which can be found on activated T cells (Figure 16). Half of the 

splenocyte population consisted of B cells (CD45R+: 53.9 % (TAC) to 54.1 % (sham)), followed by  

T helper cells (CD3+CD4+: 20.6 % (TAC) to 23.0 % (sham)). Significantly smaller numbers of cytotoxic  

T cells (CD3+CD8+: 4.8 % (TAC) to 6.0 % (sham); p = 0.04) than in wildtype mice were found whereas 

the proportion of γδ T cells was in the normal range. Numbers of NK cells were significantly higher 

after TAC operation (DX5+CD3-: 4.3 % (sham) to 5.3 % (TAC); p = 2.1 x 10-3) compared to controls. 

Additionally, the numbers of TCR Vβ 5.1/5.2 positive CD3+ and CD8+ cells were determined, showing 

a significantly lower number of those cells after TAC operation (p = 6.2 x 10-3). Importantly, these data 

demonstrated that the majority of T cells carried the transgenic TCR. Further analysis of activation 

marker on CD3+ cells revealed that after TAC operation, significantly higher numbers of CD4+CD25+ 

cells were present in the splenocyte population (p = 7.5 x 10-3). However, examination of CD69+ cells 

showed no major differences in the activation status of T helper and cytotoxic T cells between sham- 

and TAC-operated animals. 
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Furthermore, intracellular cytokine staining (ICS), that detect cytokine production by immune cells in 

combination with cell surface makers, was performed by flow cytometry to monitor whether the CD4+ 

T cells exhibit a polarization towards a certain cytokine profile. Here, the proportion of T helper cells 

expressing cytokines, including various interleukins (IL-2, IL-4, IL-6, IL-10, IL-17A, IL-17B), interferon 

gamma (IFNγ), tumor necrosis factor α (TNFα), transforming growth factor β (TGFβ) and additionally 

the amount of regulatory T cells (Tregs) was determined in splenocytes 10 weeks post operations 

(Figure 17). Tregs, which are known to be important for immune modulation and tolerance to self-

antigens, made up only 7.8 % of total CD4+ cells in TAC-operated and 10.9 % of CD4+ cells in sham-

operated animals. CD4+ T cells expressing TNFα and TGFβ were most abundant. The proportion of 

TNFα+CD4+ T cells was significantly higher in TAC-operated animals (8.34 %) than sham-operated  

(4.1 %) cMy-mOVA/OT-II mice. In contrast, a greater proportion of TGFβ+CD4+ cells was found after 

sham operation (8.9 %), however the difference to TAC-operated animals (5.4 %) was not significant. 

A significantly higher proportion of IL-17A+CD4+ T cells (4.1 %) was found in TAC-operated than sham-

operated animals. IL-2+CD4+ and IL-10+CD4+ T cells were equal for both animal groups (IL-2+: 1.7 % TAC, 

1.9 % sham; IL-10+: both 1 %), while IL-4+ and IL-6+ T helper cells were significantly more abundant 

after TAC operation (IL-4+: 0.4 %, IL-6+: 1.1 %) although at low level. Additionally, a significantly higher 

 

 

Figure 16 Analysis of surface markers on splenocytes, isolated after experimental ending of cMy-
mOVA/OT-II mice which underwent TAC or sham surgery.  
Shown is the cell proportion of (A) total splenocytes or (B) CD3+ cells + SEM. Animal numbers: sham (n = 10), 
TAC (n= 17). TAC (n = 17), sham (n = 10), mean duration of experiments: TAC (67 days), sham (69 days). 
*<0.05; ** < 0.01; student’s t-test. (A) Staining for various cell types including T helper cells (CD3+CD4+), 
cytotoxic T cells (CD3+CD8+), B cells (CD45R+), NK cells (DX5+CD3-), and for TCRs on CD3+ and CD8+ cells.              
(B) Staining for activation marker CD25 and CD69 on T helper and cytotoxic T cells. 
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amount of IFNγ+CD4+ cells were found after TAC operation (sham: 0.1 %; TAC: 2.7 %). Generally the 

proportion of T helper cells with an inflammatory Th1 and a Th17 cytokine profile was increased at  

10 weeks post TAC operation compared to sham-operated cMy-mOVA/OT-II mice. 

 

 

4.1.2.1 Anti-OVA antibody generation 

To test whether OVA-specific antibodies arose in cMy-mOVA/OT-II mice, sera of various time points 

over the course of experiments (pre, 1 week, 4 weeks, 8 weeks) and after experimental ending (†) 

were collected and analyzed via ELISA tests. The reactivity of sera from sham- and TAC-operated mice 

against OVA were determined at several dilutions compared to control sera of mice immunized against 

OVA. As seen in Figure 18, the level of OVA-specific antibodies in cMy-mOVA/OT-II mice was not 

increased after TAC operation, showing similar levels of anti-OVA titers compared to cMy-mOVA mice 

(Röhrborn et al., unpublished data) and to cMy-mOVA mice which additionally received T cell transfer 

(Ch. 4.1.1.3).  
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Figure 17 Proportion of CD4+ T cells of cMy-mOVA/OT-II mice expressing intracellular cytokines after TAC 
and sham operations.  
Splenocytes were analyzed 10 weeks post operations via flow cytometry. Shown is the mean proportion 
for various intracellular cytokines of CD4+ T cells + SEM. Sham (n = 10), TAC (n = 17). Significant differences 
of cytokines levels between sham- and TAC-operated animals are marked with asterisks, showing an 
increased proportion of Th1- and Th17-polarized T helper cells: IL-2 (p = 0.67), IL-4 (p = 0.045), IL-6 (p = 7.6 
x 10-3), IL-10 (p = 0.84), IL-17A (p = 0.017), IL-17F (p = 0.51), TNFα (p =0.016), IFNγ (p = 1.6 x 10-3), TGFβ (p 
= 0.18), FoxP3/CD25 (p = 0.09). 
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4.1.2.2 Infiltration of lymphocytes into heart tissue 

To analyze the infiltration of immune cells into myocardia of cMy-mOVA/OT-II mice, sections of 

paraffin embedded specimens were used for histological analysis. Representative IHC stainings in 

Figure 19A show the presence of CD3+, CD4+, CD8+ and CD45R+ cells in the myocardium of TAC-

operated cMy-mOVA/OT-II mice. Number of infiltrating cells were calculated via cellSens dimension 

software and are depicted in Figure 19B. The most abundant cells found in the myocardia of cMy-

mOVA/OT-II were CD45R+ cells (0.03 (sham) to 0.05 (TAC) cells /mm2) and CD8+ T cells (0.01 cells /mm2) 

in TAC-operated animals, but generally lower numbers of these cells were found than in myocardia of 

cMy-mOVA mice. The amount of CD3+ cells in cMy-mOVA/OT-II mice was higher after sham operation 

(0.01 cells /mm2) than in TAC-operated animals (7.1 x 10-3 cells /mm2), and overall more CD3+ cells 

were found in cMy-mOVA/OT-II mice than in cMy-mOVA mice. The amount of CD4+ cells in myocardia 

of cMy-mOVA/OT-II mice was significantly higher than in cMy-mOVA mice. In summary, cMy-

mOVA/OT-II animals show lower numbers of infiltrated CD8+ and CD45R+ cells, but higher CD4+ and 

CD3+ cell numbers than cMy-mOVA mice after TAC operation.  
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of cMy-mOVA/OT-II 
mice obtained at 
different time point 
pre and post sham and 
TAC operation. 
 Shown are relative 
anti-OVA titers 
compared to sera of 
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Figure 19 IHC analysis of infiltrating cells into the myocardia of cMy-mOVA/OT-II animals.  
(A) Example pictures of IHC stained tissue slides of myocardia from cMy-mOVA/OT-II mice after TAC 
operation. Positive stained cells indicate infiltrating lymphocytes and are marked with asterisk. Scale bars 
in each picture (bottom right corner) represent 20 µm each. (B) Calculated lymphocyte numbers per 
defined area in myocardia of cMy-mOVA/OT-II mice compared to control cMy-mOVA, all of which 
underwent TAC or sham surgery. Shown are the mean cell numbers per mm2 + SEM; Animal numbers are 
depicted below each column. Differences between TAC-operated cMy-mOVA and cMy-mOVA/OT-II: CD3+ 
(p = 0.03), CD4+ (p = 0.02), CD8+ (p = 0.73), CD45R+ (p = 7.2 x 10-5); Mann-Whitney U-test. * < 0.05, *** < 
0.001. 
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4.1.2.3 Cardiac fibrosis 

Analysis of fibrosis showed that after TAC operation the amount of collagen in the myocardium 

detected by Sirius Red staining on histological tissue slides was significantly increased in all animal 

groups compared to sham-operated mice (Figure 20A). In comparison to cMy-mOVA mice, proportion 

of fibrosis in cMy-mOVA/OT-II mice was slightly lower (6.5 % (sham) to 10.5 % (TAC)), but was not 

significantly altered compared to control animals (Figure 20B). 

 

 

 

 

 

 

 

 

surgery. Calculations were performed via cellSens dimension software. CMy-mOVA: sham (n = 
22), TAC (n = 15); cMy-mOVA/OT-II: sham (n = 15), TAC (n = 19); cMy-mOVA vs cMy-mOVA/OT-
II: TAC (p = 0.07), sham: (p = 0.27); Mann-Whitney U-test, *** < 0.001. 

Figure 20 Fibrosis in the myocardia of 
cMy-mOVA/OT-II mice after TAC and 
sham operations.  
(A) Sirius Red stainings of cMy-
mOVA/OT-II myocardia of sham- and 
TAC-operated mice to visualize fibrosis. 
Scale bars in each picture (bottom right 
corner) represent 50 µm each. (B) 
Proportion of fibrotic area per 
myocardium of cMy-mOVA/OT-II mice 
compared to control cMy-mOVA mice all 
of which underwent TAC and sham  
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4.1.2.4 Hypertrophy and heart function 

The hypertrophy of hearts of cMy-mOVA/OT-II mice after TAC operation was analyzed to detect 

potential differences to cMy-mOVA mice and those, which additionally received adoptive transfer. In 

Figure 21, heart weight of TAC- and sham-operated animals after experimental ending is shown. 

Noticeable, TAC-operated mice of all groups showed a higher heart weight ratio, ranging between 11 

to 12 compared to sham animals (6 to 7). CMy-mOVA/OT-II mice displayed a slightly higher heart 

weight (12.2) compared cMy-mOVA (11.2) or those which received adoptive transfer (11.0) but these 

changes were not significant. Consequently, a high numbers of CD4+ T cells specific for a cardiac 

antigen does not appear to have a significant influence on cardiac hypertrophy. 

 

 

 

 

Next, functional parameters of hearts of cMy-mOVA/OT-II mice after sham and TAC operation were 

analyzed to clarify whether animals with high frequency of T cells specific for a cardiac antigen are at 

higher risk for rapid progression into HF after TAC operation compared to cMy-mOVA mice. As seen 

in Figure 22, the anterior wall thickness in diastole and systole were increased after TAC operation, 

but was not differing between cMy-mOVA and cMy-mOVA/OT-II mice. In contrast, EF and FAS showed 

a significantly reduction in cMy-mOVA mice, showing that high numbers of transgenic T cells have 

influence on the progression of HF.  

 

 

 

 

Figure 21 Hypertrophy of TAC- and sham-
operated cMy-mOVA and cMy-mOVA/OT-II. 
Shown are mean ratios of ventricular weight 
(vw) [mg] to tibia length [mm] + SEM after 
experimental ending. Animal numbers:   
cMy-mOVA: sham (n = 15), TAC (n = 19);   
cMy-mOVA/OT-II: sham (n = 15), TAC (n = 
22). Heart weight was significantly affected 
by TAC operation: cMy-mOVA (p = 3.6 x 10-
3), cMy-mOVA/OT-II (p = 7.4 x 10-7). No 
significant differences were monitored 
between cMy-mOVA and cMy-mOVA/OT-II 
mice: sham (p = 0.29), TAC (p = 0.39).  
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4.1.3 Summary 

The transfer of OVA-specific T cells did not significantly affect cardiac hypertrophy and did not led to 

deterioration of functional parameters determined by echocardiography. Thus, the transfer of T cells 

with a specificity for an antigen in cardiomyocytes alone was not sufficient to accelerate the 

progression to HF. In contrast, the presence of CD4+ T cells, specific for a cardiomyocyte antigen, in 

high frequency as in cMy-mOVA/OT-II mice was associated with a systemic inflammatory T cell 

response and a faster progression to HF at 10 weeks after TAC, indicating that autoreactive T helper 

cells can promote progression from hypertrophy to HF and this independent of an antibody response.

 

Figure 22 Analysis of functional parameters assessing heart function of cMy-mOVA/OT-II after TAC and 
sham operations compared to control cMy-mOVA mice.  
Shown are mean of AWThd, AWThs, FAS and EF + SEM determined by echocardiography over the course 
of experiments. CMy-mOVA: sham (n = 15), TAC (n = 19); cMy-mOVA/OT-II: sham (n = 15), TAC (n = 22). 
Differences at 8 weeks post operation between TAC-operated cMy-mOVA and cMy-mOVA/OT-II animals: 
AWThd (p = 0.14), AWThs (p = 0.79), FAS (p = 0.03), EF (p = 0.04); student’s t-test.  
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4.2 Immunogenicity of pluripotent stem cells 

Pluripotent stem cells (PSCs) are seen as important tool for future medical therapies and are therefore 

an important topic of research. Previous work in our group focused on the in vitro immunogenicity of 

murine PSC lines including ESCs, iPSCs and maGSCs. It was shown that PSCs exhibit an 

immunosuppressive phenotype in vitro, because they were able to inhibit antigen-dependent T cell 

proliferation of CD4+ and CD8+ T cells in direct co-culture experiments. They were also 

immunoprivileged because they failed to process and present antigens on MHC class I molecules. 

However, important for future transplantation therapies is the clarification of the immunogenicity of 

stem cells and stem cell-derived grafts in vivo. Specifically, the role of minor histocompatibility (miHC) 

antigens need to be clarified since they cannot be matched in allogeneic transplantations. For this, 

OVA as a model of a miHC antigen was introduced into several stem cells lines and these were 

examined in comparison to their wildtype counterparts in otherwise syngeneic recipients. One newly 

generated iPSC (129/Sv TD11.1; XY) and one new ESC line (BTL1; XY) from 129/Sv mice were used for 

these experiments and a well-established ESC line (MPI-II; XY) from the same mouse line was included 

for comparison. The PSCs were transfected to express an OVA-EGFP fusion protein. Four or five of the 

new cell lines and two clones of the MPI-II cells were selected for further experiments. All stem cells 

lines and clones that were used for in vivo analysis had been previously analyzed in vitro for their 

pluripotency in terms of OCT4, NANOG, and SSEA-4 expression, expression of the transgene and 

absence of microbial contaminations via quantitative real-time PCR (qPCR), western blot and flow 

cytometric analysis (data not shown).
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4.2.1 Tumor formation in immunodeficient hosts 

To determine their pluripotency in vivo, the cell lines and clones were injected into immunodeficient 

mice. Stem cells were subcutaneously injected in numbers of 1.5 x 106 cells per animal into various 

immunodeficient hosts, including RAG2-/-c-/-, RAG2-/-, SCID/beige and SCID mice, mainly depending 

on availability of the mice. All of these animals are mutant mice, lacking B and T cells, however  

RAG2-/-c-/- and SCID/beige mice are additionally deficient for NK cells or are impaired in their NK cell 

function, respectively. Initially, two ES wildtype stem cell lines (ESC BTL1, ESC MPI-II), seven OVA-

expressing ES cell lines (BTL1 OVA#1, BTL1 OVA#4; BTL1 OVA#9, BTL1 OVA#14, BTL1 OVA#20, MPI-II 

OVA#1, MPI-II OVA#4), one iPSC wildtype cell line (iPSC 129/Sv TD11.1) and four OVA-expressing iPS 

cell lines (iPSC 129/Sv OVA#6, iPSC 129/Sv OVA#13, iPSC 129/Sv OVA#18, iPSC 129/Sv OVA#24) were 

used for inoculation into immunodeficient mice. In Table 13, the tumor frequency of the various stem 

cell lines is shown, which ranged from 0 to 100 %. The ESC BTL1 OVA cell clones #9 and #14 and ESC 

MPI-II OVA clone #1 were excluded from most further experiments due to the lack of tumor formation 

(0 % each, Table 13). Additionally, some cell lines, like ESC BTL1 OVA#1 and #20 show only a minor 

rate of tumor formation (< 30 %) and were also excluded or are reported separately. The failure of 

some OVA-expressing clones to form teratomas is most likely a random clonal effect and not result of 

OVA expression. Thus, one OVA-expressing cell clone for each wildtype ESC stem cell line was used for 

further analysis.  

Table 13 Tumor formation in immunodeficient hosts. Cell lines which were further analyzed are marked bold. 

Stem cell line tumor frequency [%] n 

ESC BTL1 wt 75 12 

ESC BTL1 OVA#1 22 9 

ESC BTL1 OVA#4 64 11 

ESC BTL1 OVA#9 0 3 

ESC BTL1 OVA#14 0 4 

ESC BTL1 OVA#20 29 7 

ESC MPI-II wt 90 30 

ESC MPI-II OVA#1 0 11 

ESC MPI-II OVA#4 88 8 

iPSCs 129 SV TD 11.1 100 17 

iPSCs 129 SV TD11.1 OVA#6 100 29 

iPSCs 129 SV TD11.1 OVA#13 100 4 

iPSCs 129 SV TD11.1 OVA#18 64 11 

iPSCs 129 SV TD11.1 OVA#24 89 9 

total  165 
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The stem cell lines which showed a high proportion of tumor formation in the immunodeficient hosts, 

thereby demonstrating proliferation and differentiation capacity in vivo, were used for further 

analysis. In Figure 23, a summary of wildtype and OVA-expressing stem cells is depicted, which shows 

that all types of cells, comprising ES and iPS and wildtype and OVA-expressing cells lines, were able to 

form tumors in vivo. Therefore, the expression of OVA appears to have no principal effect on the 

tumor formation in immunodeficient hosts. 

 

 

4.2.1.1 Effects of OVA expression on tumor formation, size and weight in immunodeficient 

hosts 

The following data were statistically analyzed with respect to tumor formation rate, tumor size, tumor 

weight and influences of the presence of NK cells, sex of the recipients and type of stem cells on these 

parameters. Moreover, the duration until experiments were terminated, either due to tumor growth 

or due to achievement of the end point of experiments (usually 3 month) were compared. Comparison 

of tumor formation between wildtype and OVA-expressing stem cells showed that the expression of 

OVA does not lead to an altered tumor formation rate compared to wildtype stem cells (ESC wt vs. 

ESC OVA: p = 0.19; iPSC wt vs. iPSC OVA: p = 0.29; PSC wt vs. PSC OVA: p = 0.21; Mann-Whitney U-test; 

Figure 24A). Statistical analysis of teratoma formation between ESC- and iPSC-derived tumors showed 

no significant differences, neither for tumors derived from wildtype stem cells nor from OVA-
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Figure 23 Tumor formation in immunodeficient hosts.  
Stem cell lines which were generally not able to give rise to 
tumors in vivo were already excluded from this summary. 
Numbers of performed experiments are depicted in the 
respective circle graph. 
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expressing stem cells (ESC wt vs. iPSC wt: p = 0.36; ESC OVA vs. iPSC OVA: p = 0.4, Mann-Whitney U-

test; Figure 24A). Further analysis showed that the presence of NK cells in RAG2-/- and SCID mice had 

no influence on the tumor formation rate (data not shown) and that tumor formation also showed no 

statistical differences between the various hosts (RAG2-/-c-/-, RAG2-/-, SCID/beige, SCID, data not 

shown). The different sex of host animals (m vs. f) had also no impact on the tumor formation rate 

(data not shown). Tumor size and weight were also not influenced by the different type of stem cells 

(ESC vs. iPSC), or transgene expression (OVA vs. wt) (Figure 24B, 2C). 

 

 

 

 

  

(B) Depicted is the mean tumor size + SEM. ESC OVA (n = 14), iPSC OVA (n = 18), ESC 
wt (n = 34) iPSC wt (n = 6). ESC OVA vs. ESC wt (p= 0.05), iPSC OVA vs. iPSC wt (p = 
0.79), differences between stem cell type: iPSC wt vs. ESC wt  (p = 0.46), iPSC OVA 
vs. ESC OVA (p = 0.36); Mann-Whitney U-test (C) Shown is the mean tumor weight 
+ SEM. ESC OVA (n = 13), iPSC OVA (n = 18), ESC wt (n = 35), iPSC wt (n = 5). ESC OVA 
vs. ESC wt (p= 0.05), iPSC OVA vs. iPSC wt (p= 0.68); differences between stem cell 
types: iPSC wt vs. ESC wt (p = 0.28); iPSC OVA vs. ESC OVA (p = 0.20); Mann-Whitney 
U-test. 

Figure 24 Analysis of (A) tumor 
formation, (B, tumor size and (C) tumor 
weight after injections of OVA-
expressing and wildtype iPSC and ESCs 
into immunodeficient hosts. 
(A) Shown is the percentage of tumor 
formation of tumors which were further 
analyzed concerning size and weight. ESC 
OVA (n = 19), iPSC OVA (n = 25), ESC wt (n 
= 40), iPSC wt (n = 6).  
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In Table 14, tumor formation rates, tumor size, tumor weight and duration of experiments for each 

analyzed stem cell clone is depicted. Examination of these parameters for each clone showed that the 

tumor formation rate was not statistically differing between the various cell clones. In contrast, 

analysis of tumor size, weight and experimental duration showed significant differences between 

wildtype cell clones, whereas OVA-expressing cell clones significantly varied in duration, while 

showing similar tumor size and weight (Table 14, lower rows). This indicates that each clone has its 

distinct growth rate, leading to varying size and weight of forming tumors. The differing duration of 

experiments for single clones is promoting this hypothesis, revealing the time differences until tumors 

reached a certain size and experiments had to be ended. Apart from that, the varying duration of 

experiments could not be associated with a type of stem cells (ESC, iPSC) or the expression of OVA 

(data not shown). 

 

Table 14 Analysis of tumor formation, mean tumor size, weight and experimental duration for each stem cell 
clone after injection into immunodeficient hosts. Significant differences between wildtype or OVA-expressing 
stem cell clones are depicted in lower rows; Kruskal-Wallis H-test. *<0.05; **<0.01; ***<0.001. 

Immunodeficient hosts 

 tumor duration 

clone formation size weight  

 [n of total] [mm3] [mg] [days) 

ESC BTL1 9 / 12 272.6 0.36 40 

ESC BTL1 OVA#4 7 / 11 467.6 0.96 64 

ESC MPI-II 27 / 30 858.9 1.61 50 

ESC MPI-II OVA#4 7 / 8 488.3 0.87 66 

iPSC 129/Sv 17 / 17 838.98 1.19 27 

iPSC 129/Sv OVA#6 29 / 29 267.9 0.41 26 

iPSC 129/Sv OVA#13 4 / 4 1005.9 1.20 27 

iPSC 129/Sv OVA#18 7 / 11 412.5 1.37 47 

iPSC 129/Sv OVA#24 8 / 9 344.88 0.46 26 

Differences between 
OVA clones: p =  

     *** 

Differences between 
wt clones: p = 

   * ** * 
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4.2.1.2 Histological analysis of teratomas 

All emerging tumors were histologically analyzed for the development of structures of all three germ 

layers and if present confirmed as teratomas. In Figure 25, examples are depicted of mesodermal, 

ectodermal and endodermal structures, which formed after injections of stem cells. All clones that 

were able to form tumors at high frequency were able to form teratomas and can be considered 

therefore as pluripotent. Additionally, qPCR analysis was performed to determine the expression of 

various germ layer marker in the teratomas (Supplement, Ch. 7.2.1). 

 

 

 

Figure 25 Histological example pictures of teratomas formed after injection of iPSC 129/Sv TD11.1 into 

immunodeficient RAG2-/-c-/- mice.  
Teratomas were fixed with formalin and embedded with paraffin for cutting, sections were stained with 
hematoxylin and eosin (H&E). The tumor contains derivatives of all germ layers, indicated by colored arrows: 
yellow: neural-like tissue (ectoderm); light blue: rivulet of muscles/ myocytes (mesoderm); dark blue: cartilage 
(mesoderm); green: gut epithelium (endoderm). Shown are pictures with 10 fold magnification. 
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4.2.2 Adoptive transfer of OVA-specific T cells into immunodeficient hosts 

Next, adoptive T cell transfer experiments were done in immunodeficient (RAG2-/-c-/-) animals to 

examine whether PSCs are immunosuppressive in vivo as they are in vitro. For these experiments a 

wildtype iPSC line (iPSC 129/Sv) and two OVA-expressing iPSC clones (iPSC 129/Sv OVA#6, OVA#24) 

were used. It was analyzed whether OVA-specific CD4+ and/or CD8+ T cells become activated after 

transfer and have an effect on tumor formation of injected stem cells. In Figure 26, a schematic 

overview over the adoptive transfer experiment is depicted.  

 

 

OVA-specific T cells were isolated from spleen and lymph nodes of OT-I and OT-II mice via MACS 

technology and quantified by flow cytometry for expression of the OVA-specific TCR (data not shown). 

Furthermore, the capacity of T cells to become activated after in vitro stimulation with the respective 

OVA peptide was monitored. Over 80 % of isolated T cells expressed the transgenic TCRs specific for 

OVA (TCR Vβ 5.1/5.2+) and showed proliferation after in vitro activation and were therefore 

considered as suitable for adoptive transfer experiments (data not shown). 

Freshly isolated T cells were stained with CFSE and intravenously injected in varying combinations  

(OT-I T cells, OT-II T cells or a mixture of OT-I/OT-II T cells; 5 x 106 cells /animal) into tail veins of  

RAG2-/-c-/- mice four days after injections with wildtype and OVA-expressing stem cells (1.5 x 106 cells 

/animal). Blood was taken on day 5 after adoptive transfer to monitor whether CFSE-stained T cells 

could be detected via flow cytometry. Due to missing native T cells in the immunodeficient hosts, all 

T cells found in this experiment derived from the previously transferred cells. In Figure 27A, it is shown 

that after transfer of OT-I T cells, up to 23.2 % of total PBMCs were cytotoxic T cells in the 

          

 

Figure 26 Schematic overview over adoptive transfer experiments performed in immunodeficient 

RAG2-/-c-/- mice.  
Wildtype or OVA-expressing stem cells were subcutaneously injected followed by an adoptive transfer 
(day 4) of transgenic OT-II CD4+ cells, OT-I CD8+ cells or a mixture of both into the tail vein of the animals 
(5 x 106 /animal). T cells were labeled with CFSE prior to the transfer to monitor cells in vivo. 
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immunodeficient hosts, which also had received stem cells. In contrast, in mice that had received  

OT-II T cells, T helper cells constituted 0.5 to 2.8 % of total PBMCs. Analysis of the CFSE staining 

indicated that cytotoxic T cells (CD3+CD8+) had proliferated since they showed a reduced CFSE staining 

(Figure 27B). Distinct peaks in flow cytometric histograms indicate the cell divisions. T helper cells 

(CD3+CD4+), in contrast, did hardly proliferate after adoptive transfer. Notably, the OVA-specific 

CD3+CD8+ T cells proliferated in recipients which had received OVA-expressing iPSCs as well as in 

recipients with a wildtype stem cell line or control mice without iPSCs. This indicates a high antigen-

independent proliferative capacity of OT-I T cells in lymphocyte-depleted hosts. 

 

Figure 27 Flow cytometric blood analysis of transferred T cells of RAG2-/-c-/- mice which previously received 
different stem cell injections. 
Blood samples were taken on day 5 after adoptive transfer of OT-I and OT-II T cells. (A) Shown is the mean 
proportion + SD of total PBMCs. Animal numbers are indicated directly below the bars. (B) Exemplary 
measurements of CFSE staining of gated CD3+CD8+ and CD3+CD4+ cell populations. Animals received OVA-
expressing stem cells (iPSC OVA#6) and adoptive transfer of CD8+ or CD4+ TCR-transgenic T cells, respectively. 
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4.2.2.1 Effect of TCR-transgenic T cells on tumor formation  

To analyze which influence the adoptive transfer of the TCR-transgenic T cells in various combinations 

had on the injected wildtype or OVA-expressing stem cells, the formation and characteristics of the 

tumors in the immunodeficient mice were evaluated. This showed that the adoptive T cell transfer 

had no influence on the tumor formation rate in those animals (p = 0.36), displaying tumor formation 

in almost every performed experiment (Figure 28). Moreover, the size and weight of formed tumors 

were not significantly altered after T cell transfer (Supplement, Ch. 7.2.2). 

 

 

However, additional histological analysis of tumors showed that teratomas derived from OVA-

expressing stem cells were highly infiltrated by CD3+ cells as depicted in example pictures in Figure 29. 

To examine if these T cells were activated, further experiments were performed. 
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Figure 28 Tumor formation in immunodeficient hosts, which 
either additionally received adoptive transfer of OVA-specific 
T cells (OT-I T cells, OT-II T cells, OT-I/OT-II T cells) or no T cells 
(w/o transfer).  
Numbers of performed experiments are depicted in the 
respective circle graph. 
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After experimental ending, blood and spleen were collected for further analysis of T cell activation. 

Even after 40 days post transfer, CFSE-stained cells were still found in blood and spleen of the hosts 

(around 2-4 %; data not shown). However, most T cells had lost CFSE staining likely due to 

proliferation. Splenocytes were directly used in 51Cr release assays to determine the cytotoxic activity 

of CTLs, shown in Figure 30A for animals which received iPSC 129/Sv OVA#6 stem cells and adoptive 

transfer of OT-I T cells. For this, OVA-expressing RMA (eGFP-OVA) and control RMA (eGFP) cells were 

used as target cell lines. At this, RMA OVA target cells were killed by all splenocytes of animals that 

previously had received OVA-expressing stem cells and OT-I or OT-I/OT-II T cells (data not shown), 

showing that OVA-specific CTLs became activated in those animals. In mice carrying teratomas derived 

from wildtype iPSCs, the CTLs were much less active against the OVA-expressing target cells, indicating 

the activation of CTLs against an antigen expressed in the iPSCs (Figure 30B).  

 

 

 

Figure 29 Histological analysis of T cell infiltration into teratomas derived from iPSC 129/Sv OVA#6 

stem cells in RAG2-/-c-/- mice which additionally received OVA-specific OT-I T cells.  
Shown is an immunohistochemical staining of CD3+ cells in three different teratomas in 100 x 
magnification (upper row) and 400 x magnification (lower row). 

CD3 
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Further analysis of survival of animals showed that animals, which received OT-I T cells and displayed 

high proliferating CD3+CD8+ T cell in blood analysis (day 5 post transfer) showed a longer survival 

(Figure 31C). This indicates that the OVA-specific CTLs could inhibit tumor growth of injected stem 

cells to a certain extent and thereby led to a longer survival in some animals due to delayed tumor 

growth. Nevertheless, the injected OVA-specific T cells were not sufficient to prevent the growth of 

teratomas from the stem cells, which were already injected 5 days prior to adoptive transfer of T cells. 

 

 

 

 

 

Figure 30 Analysis of OVA-specific CTL activation examined via 51Cr release assays.  
Shown is the mean specific lysis of the target cells RMA (eGFP) as control and RMA OVA (eGFP-OVA) by 
splenocytes of animals which received (A) OVA-expressing or (B) wt 129/Sv iPSCs and OT-I T cells + SEM. 
OVA (n = 7), wt (n = 3) 
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Figure 31 Kaplan-Meier survival curve of 
immunodeficient animals after inoculation of 
iPSC 129/Sv OVA#6 and adoptive transfer of 
OT-I T cells.  
T cells showed various patterns of activation, 
defined at day 5 post OT-I T cell transfer: rapid 
proliferating T cells: CD3+CD8+: 20-30 % cell 
count in blood analysis (n = 3), w T cells: all 
other animals which received T cell injections (n 
= 5); w/o T cells: received no T cells (n = 3). 
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4.2.3 Effect of OVA expression in stem cells on tumor formation in immunocompetent 

hosts 

Next, stem cells were injected subcutaneously into immunocompetent mice (129/Sv) to monitor 

whether immune reactions against OVA developed, which represents a single miHC antigen in 

otherwise syngeneic hosts. Only clones that regularly had formed tumors in the immunodeficient 

hosts were included in this analysis. After stem cell injections, tumor formation was monitored and 

differences in the tumor frequency of OVA-expressing and wildtype stem cells were detected (Figure 

32). Injections of wildtype stem cells into immunocompetent mice led to a tumor growth in 83 or  

85 % of the recipients for ESCs and iPSCs, respectively, which is similar to the tumor rates observed in 

immunodeficient hosts (Figure 23). In contrast, OVA-expressing stem cells failed to engraft and to 

form tumors in 62 % of the recipients for iPSC OVA clones and 73 % for ESC OVA clones (Figure 32).  

 

 

In contrast to wildtype iPSCs and its OVA-expressing clones which derived from one iPS cell line 

(129/Sv TD11.1), tested ESC clones consisted of different stem cell lines. Besides the previously widely 

used ESC line MPI-II, the newly generated ESC BTL1 and their OVA-expressing clones were 

investigated. Analysis of tumor formation of the wildtype ES cell lines and their OVA-expressing clones 

showed that tumor formation rate of wildtype ESCs were similar, ranging from 81 % (MPI-II) or 86 % 

(BTL1). However, only in 15 % or 47 % of injections of OVA-expressing ESC BTL1 and MPI-II respectively, 

 

83%

17%

ESC wt
(n=66)

w tumor w/o tumor

85%

15%

iPSC wt
(n=20)

w tumor w/o tumor

27%

73%
ESC OVA

(n=44)

w tumor w/o tumor

38%

62%

iPSC OVA
(n=61)

w tumor w/o tumor

Figure 32 Tumor formation of wildtype and OVA-expressing 
stem cells in immunocompetent 129/Sv mice.  
Numbers of transplanted mice per cell line are depicted in the 
respective diagrams. 
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stem cells were able to engraft, showing variations between the various OVA-expressing cell clones 

(Figure 33). 

 

 

4.2.3.1.1 Effect of OVA expression in stem cells on various parameters in immunocompetent hosts 

Tumors derived from OVA-expressing and wildtype ESCs or iPSCs in immunocompetent 129/Sv mice 

were confirmed to be teratomas by histology (data not shown) and qPCR analysis (Supplement,  

Ch. 7.2.1). They were also analyzed for differences in tumor formation rate, size and weight and the 

influence of recipient gender, stem cell type or expression of OVA. Additionally, the duration until 

experiments were terminated, due to animal condition and tumor size, were considered for analysis. 

In contrast to tumor formation in immunodeficient mice, the expression of OVA led to a significantly 

reduced tumor formation rate in immunocompetent hosts (ESC wt vs. ESC OVA: p = 3.6 x 10-9; iPSC wt 

vs. iPSC OVA: p = 2.4 x 10-4; PSC wt vs. PSC OVA: p = 2.9 x 10-12; Mann-Whitney U-test; Figure 34A). 

However, no differences in engraftment of iPSC- or ESC-derived tumors were observed when 

comparing either wildtype or OVA-expressing stem cell tumors (ESC wt vs. iPSC wt: p = 0.86; ESC OVA 

vs. iPSC OVA: p = 0.26; Mann-Whitney U-test; Figure 34A). Further analysis showed that size and 

weight significantly varied between tumors derived from OVA-expressing or wildtype stem cells and 

additionally between wildtype tumors derived from iPSCs and ESCs. In Figure 34B/C, it is displayed 

that tumors derived from OVA-expressing iPSCs were significantly smaller and lighter compared to 

 

81%

19%
MPI wt
(n=31)

w tumor w/o tumor

86%

14%
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(n=35)

w tumor w/o tumor

47%

53%
MPI OVA

(n=17)

w tumor w/o tumor

15%

85%
BTL OVA

(n=27)

w tumor w/o tumor

Figure 33 Tumor frequency after ESC injections into 
immunocompetent 129/Sv host summarized for groups of 
wildtype ESC BTL1, ESC MPI-II and their derived OVA-expressing 
clones.  
Numbers of transplanted mice per cell line are depicted in the 
respective diagrams. 
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tumors derived from their wildtype counterparts. Tumors derived from OVA-expressing ESCs were 

also slightly smaller although not lighter than wildtype tumors. These results suggest that the 

expression of OVA as a single antigen is sufficient to prohibit engraftment or to lead to a reduction of 

the size of the stem cell-derived tumors. Nevertheless, significant variation in tumor size and weight 

were monitored between tumors derived by wildtype iPSCs and ESCs (ESC wt vs. iPSC wt: size (p = 2.9 

x 10-4), weight (p = 8.7 x 10-5); Mann-Whitney U-test). Tumors originated from OVA-expressing stem 

cell displayed variations concerning tumor size (ESC OVA vs. iPSC OVA, p = 0.03; Mann-Whitney U-

test). This might indicate that immune reactions against other differentially expressed antigens 

between iPSCs and ESCs influence tumor growth. However, these seem to have no major effects on 

the overall engraftment frequency since only sizee of tumors was affected. Consequently, it is more 

likely that these differences rather originated from clonal variations between the analyzed cell clones. 

 

 
 

is depicted. ESC OVA (n = 9), iPSC OVA (n = 22), ESC wt (n = 53), iPSC wt (n = 15). 

ESC OVA vs. ESC wt (p= 0.03), iPSC OVA vs. iPSC wt (p = 6.5 x 10-5), Mann-Whitney 

U-test. (C) The mean tumor weight + SEM is shown. ESC OVA (n = 12), iPSC OVA 

(n =23), ESC wt (n = 51), iPSC wt (n = 17). ESC OVA vs. ESC wt (p= 0.23), iPSC OVA 

vs. iPSC wt (p= 3.6 x 10-5), ESC OVA vs. iPSC OVA (p = 0.48), Mann-Whitney U-

test. 

Figure 34 Analysis of (A) tumor 
formation, (B) tumor size and (C) 
tumor weight after injections of 
OVA-expressing and wildtype iPSCs 
and ESCs into immunocompetent 
129/Sv hosts.  
(A) The frequency of tumor formation 
is shown. ESC OVA (n = 34), iPSC OVA 
(n = 61), ESC wt (n = 66), iPSC wt (n = 
20). (B) The mean tumor size + SEM  
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The analyzed parameters for single stem cell clones are shown in Table 15, revealing variations in 

tumor formation frequency for OVA clones (ESC BTL1 OVA#4; ESC MPI-II OVA#4; iPSC 129/Sv OVA#6, 

#13, #18, #24), but not for wildtype stem cells (ESC BTL1, ESC MPI-II, iPSC 129/Sv) (OVA: p = 3.2 x  

10-3; wt: p = 0.84; Chi-squared test). However, for wildtype stem cell lines significant differences 

concerning tumor size, tumor weight and duration of the experiments were monitored (size:  

p = 5.8 x 10-5; weight: p = 6.5 x 10-5, duration: p = 8.1 x 10-3; Kruskal-Wallis H-test). Tumors derived 

from the OVA-expressing clones showed similar phenotypic characteristics, i.e. tumor size and tumor 

weight, and similar growth rates, indicated by the duration of experiments (size: p = 0.09, weight:  

p = 0.46, duration: p = 0.07, Kruskal-Wallis H-test).  

 

Table 15 Analysis of tumor formation, tumor size, tumor weight and experimental duration for each stem cell 
clone after injection into syngeneic immunocompetent 129/Sv host. Significant differences between wildtype 
or OVA-expressing clones are depicted in lower rows. **< 0.01, ***< 0.001. 

Immunocompetent hosts 

 tumor duration 

clone formation size weight  

 [n of total] [mm3] [mg] [days] 

ESC BTL1 30 / 35 234.48 0.78 30 

ESC BTL1 OVA#4 4 / 27 633.0 0.65 67 

ESC MPI-II 25 / 31 488.81 0.68 64 

ESC MPI-II OVA#4 8 / 17 92.1 1.08 42 

iPSC 129/Sv 17 / 20 941.61 1.79 17 

iPSC 129/Sv OVA#6 10 / 19 280.9 0.81 51 

iPSC 129/Sv OVA#13 1 / 6 879.6 1.39 63 

iPSC 129/Sv OVA#18 1 / 15 58.6 0,09 35 

iPSC 129/Sv OVA#24 11 / 21 227.6 0,34 36 

Differences between 
OVA clones 

 **     

Differences between  
wt clones  

   *** *** ** 

 

Additionally, it was analyzed whether a distinct sex of injected stem cells and hosts led to a reduced 

tumor formation in 129/Sv mice after stem cell inoculations. Injections of male stem cells bearing a Y-

chromosome into female hosts could possibly result in immune reactions against HY antigens besides 

the model antigen OVA. Therefore, the tumor formation in male and female hosts was examined. The 

frequency of teratoma engraftment of wildtype stem cells was similar in male and female recipients 

(Figure 35). In contrast, injections of OVA-expressing stem cells led to a reduced tumor growth in 
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female mice (8%) compared to male hosts (46 %) (Analysis for single cell clones: Supplement,  

Ch. 1.1.1). These data suggest, an additional effect of further miHC antigens such as HY antigens 

derived from the Y-chromosome of male stem cells on the rejection of OVA-expressing stem cells or 

their derivates. However, alternatively stronger immune responses in female than male hosts against 

OVA could explain this result.  

 

 

4.2.4 Comparative analysis of tumor formation and characteristics in immunodeficient 

and immunocompetent hosts 

Comparison of tumor formation in immunodeficient (summarized as SCID) and immunocompetent 

hosts (129/Sv) revealed that the OVA expression led to a significant reduced engraftment as well as 

teratoma size and weight in 129/Sv mice compared to immunodeficient hosts (Figure 36), also 

indicating an effect of OVA expression on the tumor formation. Generally, OVA expression significantly 

affected tumor frequency and tumor weight only in immunocompetent but not in immunodeficient 

mice (OVA vs. wt in 129/Sv: formation (p = 2.9 x 10-12), weight (p = 0.01); OVA vs. wt in SCID: formation 

(p = 0.29), weight (p = 0.08); formation: chi-squared test, weight: Mann-Whitney U-test). The size of 

wildtype and OVA-expressing tumors was reduced in 129/Sv mice (129/Sv wt vs. 129/Sv OVA:  

p = 5.6 x 10-3; SCID wt vs SCID OVA: p = 0.03; Mann-Whitney U-test). This observation is in agreement 

with previous observations that NK cells can delay the growth of teratomas (Dressel et al., 2008, 2010). 

 

Figure 35 Percentage of tumor 
formation and rejection in male 
and female immunocompetent 
129/Sv mice after injections of 
OVA-expressing or wildtype 
stem cells.  
Numbers of performed 
experiments are depicted in 
respective graphs.  
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However, the size differences between wildtype and OVA-expressing stem cell-derived tumors in 

immunodeficient mice (SCID wt vs. 129/Sv wt: p = 0.01; Mann-Whitney U-test) suggest clonal 

differences in the in vivo proliferation rate as a further explanation. The tumor weight showed a similar 

pattern in the different hosts. The duration of experiments before termination due to tumor size was 

not significantly altered by immune status of the hosts (immunocompetent or immunodeficient) or 

OVA expression (SCID wt vs SCID OVA: p = 0.72; 129/Sv wt vs. 129/Sv OVA: p = 0.73; SCID wt vs. 129/Sv 

wt: p = 0.52; SCID OVA vs. 129/Sv OVA: p = 0.68, Mann-Whitney U-test; data not shown). 

 

 

4.2.5 Analysis of teratomas  

Next, teratomas were further analyzed via qPCR for expression of pluripotency and proliferation 

markers, transgene expression and additional markers, which were previously suggested to be 

involved in stem cell immunogenicity or immune escape mechanisms, respectively.  

 

 

OVA SCID vs. OVA 129/Sv (p = 2.5 x 10-7), wt SCID vs. wt 129/Sv (p = 0.39), SCID 
OVA vs. SCID wt (p = 0.29), Mann-Whitney U-test. (B) Depicted is the mean 
tumor size + SEM. SCID OVA (n = 32), SCID wt (n = 40), 129/Sv OVA (n = 31), 
129/Sv wt (n = 68). SCID vs. OVA 129/Sv (p = 0.016), wt SCID vs. wt 129/Sv (p = 
0.01), Mann-Whitney U-test (C) Shown is the mean weight of tumors + SEM. 
SCID OVA (n = 32), SCID wt (n = 40), 129/Sv OVA (n = 31), 129/Sv wt (n = 68).OVA 
SCID vs. OVA 129/Sv (p = 0.05), wt SCID vs. wt 129/Sv (p = 0.08), Mann-Whitney 
U-test. 

Figure 36 Analysis of formation, size 
and weight of tumors derived from 
wildtype or OVA-expressing stem 
cells in immunodeficient and 
immunocompetent 129/Sv animals. 
(A) Shown is the mean percentage of 
tumor formation. SCID OVA (n = 44), 
SCID wt (n = 46), 129/Sv OVA (n = 
105), 129/Sv wt (n = 86). 0,0

0,5

1,0

1,5

2,0

wt OVA

[m
g]

Tumor weight
SCID
129/Sv

* 

* 

C 

0

250

500

750

1000

wt OVA

[m
m

3
]

Tumor size
SCID
129/Sv

* 

* 
** 

* 

B 

0

25

50

75

100

wt OVA

[%
]

Tumor formation 
SCID
129/Sv

*** 
*** 

A 



Results 

84 
 

4.2.5.1 Characterization of pluripotency of tumor cells 

Expression of marker genes for the three germ layers was found in the tumors (Supplement; Ch. 7.2.4). 

Thus they were confirmed to be teratoma cells also at the molecular level, it was then analyzed 

whether teratomas still express markers of pluripotent cells. For this, Nanog and Oct4, two 

pluripotency markers were examined for their expression levels in teratomas. The relative expression 

of Nanog and Oct4 in teratomas was calculated compared to the corresponding PSC line, which was 

set to 1. As shown in Figure 37, the relative expression of both markers varied in teratomas but 

generally they showed a lower expression level (<1) in teratomas than pluripotent control cell lines 

(set as 1). The expression of Nanog was usually higher than Oct4. In summary, after injection of stem 

cells into hosts, cells start to differentiate into more mature cell types expressing markers of specific 

germ layers, while losing their pluripotency. However, pluripotent cells appear to be present in 

teratomas. 

 

 

Additionally, teratomas were examined by IHC, revealing frequently areas positive for the 

pluripotency marker OCT4 and the proliferation marker KI67 as seen Figure 38. Thus even after several 

weeks following transplantation (up to 90 days), pluripotent stem cells were found within teratoma 

tissue. 
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Figure 37 QPCR analysis of pluripotency and transgene markers in teratomas derived from various 

injected stem cells into immunodeficient (RAG2-/-c-/-) and immunocompetent (129/Sv) syngeneic 
hosts.  
Shown is the relative expression of pluripotency marker Oct4 and Nanog + SD in teratomas formed after 
injections of wildtype (ESC BTL1, iPSC 129/Sv) and OVA-expressing (iPSC 129/Sv OVA#6 and #24) stem 
cells compared to the PSC lines (set as 1). Numbers of analyzed teratomas are depicted directly below 
the colums in the graph. 
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4.2.5.2 Transgene expression in teratomas 

Because the effects of the miHC antigen OVA expressed in various stem cells is the basis for this study, 

it was examined whether the transgene OVA-eGFP was expressed after differentiation in teratomas 

as in the PSC lines. In Figure 39, it is shown that the relative expression of the transgene was 

dramatically reduced in many teratomas down to 0.01 fold of the expression in PSCs. Variations 

occurred between different injected clones, e.g. teratomas derived from iPSC 129/Sv OVA#24 showed 

 

Figure 38 Analysis of 
cell proliferation and 
pluripotency via IHC 
stainings of teratoma 
tissue derived from 
wildtype and OVA-
expressing stem cell 
injections into 129/Sv 
hosts.  
Shown are IHC 
stainings with 
antibodies against the 
pluripotency marker 
OCT4 and the 
proliferation marker 
KI67 for exemplary 
teratomas. iPSC wt: 
iPSC 129/Sv, iPSC OVA: 
iPSC 129/Sv OVA#6, 
ESC wt: ESC BTL1, ESC 
OVA: ESC BTL1 OVA#4. 
Scale bars in pictures 
(bottom right corner) 
indicate 20 µm each. 
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a minor reduction (0.73 to 0.34 fold) in transgene expression compared to other teratomas (0.01 to 

0.1 fold). However, the loss of transgene in tumors derived from iPSC OVA#24 was higher in 

immunocompetent animals, which indicates that immune cells might have caused this reduction due 

to elimination of OVA-expressing cells. In contrast, expression in teratomas derived from iPSC OVA#6 

showed similar levels of low transgene expression, leading to the assumption that epigenetic changes 

while differentiation silenced the transgene locus and consequently expression was lost. In summary, 

it was shown that transgene expression can get lost after differentiation, which has to be considered 

in the evaluation of immune reactions against OVA. 

 

4.2.5.3 Expression of amino acid-depleting enzymes in teratomas 

To analyze whether teratomas display an immune escape mechanism that was described for stem 

cells, i.e. T cell suppression by expression of special amino acid depleting enzymes, the expression of 

the respective genes was examined. This included expression analysis of Arg1, which leads to 

depletion of L-arginine if highly expressed and results in T cell suppression and Ido, which is reported 

to act on T cell activity by degrading tryptophan (Munn and Mellor, 2007; Yachimovich-Cohen et al., 
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Figure 39 QPCR analysis of transgene markers in teratomas derived from injections of various 

stem cells into immunodeficient (RAG2-/-c-/-) and immunocompetent (129/Sv) syngeneic hosts.  
Shown is the relative expression of transgene marker Ova and eGFP + SD in teratomas derived 
from OVA-expressing stem cell lines (iPSC 129/Sv OVA#6, #24; ESC BTL1 OVA#4) compared to 
pluripotent precursors (set as 1). Numbers of analyzed teratomas are depicted directly below the 
colums in the graph. 
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2010). Figure 40 shows the relative expression of both genes compared to liver tissue as positive 

control for Arg1 (set as 1) and to placenta as control for Ido (set as 1). Both genes were expressed in 

all PSCs on a minimal level compared to positive controls (Ido: 6.8 x 10-8 to 5 x 10-3 fold, Arg1: 4.6 x  

10-4 to 4 x 10-3 fold). Expression increased with differentiation and teratomas showed a constant 

expression of Arg1 at a low level between 0.02 to 0.08 fold of control, whereas Ido was also low in 

PSCs but became increased in teratomas (0.02 to 0.53 fold). However, in single teratomas derived 

from wildtype ESC BTL1, levels higher than control levels of placenta were reached (1.9 to 22.7 fold). 

Thus, the overexpression of Ido could be responsible for a failing immune recognition of teratomas in 

single cases but not regularly. 
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Figure 40 QPCR analysis of Ido and Arg1 gene expression in teratomas derived from various stem cell clones 

into immunocompetent (129/Sv) or immunodeficient (RAG2-/-c-/-) hosts and their PSC lines.  
Shown is the mean relative expression of Arg1 compared to liver tissue (129/Sv) and Ido expression compared 
to placenta tissue (129/Sv) expression + SD. Numbers of analyzed teratomas are depicted below each column. 
Hprt was used as housekeeper for Ido expression normalization, for Arg1 the geometric mean of Gapdh and 
Hprt was used. 
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4.2.5.4 Expression of immunogenicity-causing genes 

In the literature it was reported that transplanted stem cells show an overexpression of so-called 

‘immunogenicity-causing’ genes namely Cyp3a11, Zg16 and Hormad1 (Zhao et al., 2011). To test 

whether the PSCs analyzed here as well as the teratomas derived from them express these genes, 

qPCR analysis was performed. In Figure 41, the relative expression of these genes in wildtype stem 

cells and teratomas is depicted, showing an overall low expression of each gene. Expression of 

Cyp3a11 ranged from 6.7 x 10-3 to 0.01 in PSCs and from 4.4 x 10-3 to 0.07 in teratomas compared to 

liver tissue. Hormad1 showed even lower expression than Cyp3a11 ranging on minimal levels of  

2.1 x 10-3 to 8.1 x 10-3 in PSCs and from 5.6 x 10-4 to 9.2 x 10-3 in teratomas compared to testis tissue 

expression. Relative Zg16 expression showed the lowest expression of 9.5 x 10-9 to 8.1 x 10-3 fold for 

PSCs and 1.5 x 10-6 to 1.6 x 10-4 in teratomas compared to lung tissue expression. Generally, these 

genes were only expressed on a minimal level and it appears to be unlikely that these genes have 

major impacts on the immunogenicity of stem cells and derived teratomas.  

 

In summary, general analysis of teratomas showed that stem cells differentiated into more mature 

cell types, thereby partly losing their transgene expression. However, residuals of pluripotent cells and 

proliferating cells were still found in certain areas in the teratomas. On gene expression level, tumors 

neither showed strong activation of immune escape mechanisms based on depletion of amino acids 

nor high expression of previously suggested immunogenicity-causing genes.  
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4.2.5.5 Infiltration into teratomas 

To further characterize the effects that the expression of OVA as miHC antigen might have on the 

inoculated stem cells, leukocyte infiltration into teratomas derived from OVA-expressing and wildtype 

stem cell in 129/Sv mice was investigated by IHC.  
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Figure 41 QPCR analysis of ‘immunogenicity-causing’ gene expression in teratomas derived from injections 

of various stem cell clones into immunocompetent (129/Sv) or immunodeficient (RAG2-/-c-/-) hosts and 
their PSC lines.  
Shown is the mean relative expression of Cyp3a11 compared to liver tissue (129/Sv), Hormad1 expression 
compared to testis (129/Sv) and Zg16 expression compared to lung tissue (129/Sv) expression + SD. Numbers 
of analyzed teratomas are indicated directly below the colums. 
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Figure 42 IHC stainings of teratoma tissue derived from wildtype and OVA-expressing stem cell injections 
into 129/Sv hosts, analyzed for infiltrating leukocytes.  
IPSC wt: iPSC 129/Sv, iPSC OVA: iPSC 129/Sv OVA#6, ESC wt: ESC BTL1, ESC OVA: ESC BTL1 OVA#4; Scale bars 
(upper right corner) indicate 20µm each 
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Analysis showed that tumors were infiltrated to a distinct extend by various leukocyte populations 

including T cells (CD3+), macrophages (F4/80+) and B cells (CD45R+) (Figure 42). Granzyme B (GrB) was 

included as a marker of cytotoxic cells such as activated CTLs and NK cells, and single cells positive for 

this marker were found in the teratomas.  

The leukocyte infiltration into teratomas derived from OVA-expressing stem cells and wildtype stem 

cells were further quantified by a semi-quantitative histological analysis and flow cytometry. IHC 

analysis showed that CD3+, CD45R+, F4/80+ and CD8+ cells were found in teratomas derived from 

wildtype and OVA-expressing stem cells (Figure 43). However, if signals were classified in groups of  

(1) single positive cells, (2) groups of positive cells and (3) confluent groups of positive cells, tumors 

derived from OVA-expressing stem cells showed higher infiltration of these immune cell populations 

than tumors derived from wildtype stem cells. Additionally, leukocyte infiltration was examined in 

single teratomas by flow cytometry, confirming the infiltration of several leukocyte populations by 

another method (Supplement, Ch. 7.2.4).  

 

 

 

 

 

 

Figure 43 Analysis of leukocyte infiltration into teratomas analyzed by IHC.  
Proportion of leukocyte marker-positive cells for classified groups. Histological tissue slides of tumors were 
stained with antibodies against various leukocyte markers and positive signals were grouped by manual 
analysis. Visible positive stained cells were classified in either 0 = no staining, 1 = single positive cells,                  
2 = groups of positive cells or 3 = confluent groups of positive cells. Teratomas derived from wildtype stem 
cells: CD3 (n= 42), CD45R (n=22), F4/80 (n= 28), CD8 (n=4); teratomas derived from OVA-expressing stem 
cells: CD3 (n = 30), CD45R (n = 12), F4/80 (n = 8), CD8 (n = 4). 
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4.2.6 Generation of OVA-specific CTLs in syngeneic hosts 

Next, it was clarified whether OVA-specific T cells arose in animals which received OVA-expressing 

stem cells in contrast to animals which received wildtype stem cells. Cytotoxicity tests were performed 

using splenocytes obtained from 129/Sv hosts which previously received injections of wildtype and 

OVA-expressing stem cells. The experiments were performed at the experimental end points, after  

90 days or when animals had to be sacrificed due to tumor growth (long term experiments), or after 

1 week (short-term experiments). The splenocytes were restimulated in vitro for 4 days with OVA 

protein before the 51Cr release assays. Analysis of splenocyte composition, including T helper cells, 

cytotoxic T cells, NK cells and specific TCR Vβ 5.1/5.2 T cells, showed no major differences between 

animals which received wildtype or OVA-expressing stem cells or which showed tumor formation or 

tumor rejection (Figure 44; Supplement, Ch. 7.2.5, unstimulated). The E:T ratio for effector cells in the 

cytotoxicity assays was adjusted to the proportion of CD3+CD8+ cells of the restimulated splenocyte 

population detected via flow cytometry on day 4. 

 

 

The restimulated splenocytes were used as effector cells in 51Cr release assays with two RMA target 

cells lines to examine the activity of OVA-specific CTLs in animals after injections with OVA-expressing 
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Figure 44 Flow cytometric analysis of restimulated splenocytes on day 4 after in vitro 
stimulation with OVA protein and IL-2.  
Splenocytes were obtained from 129/Sv mice which previously received OVA-expressing (OVA) 
or wildtype (wt) stem cells, which led to tumor formation (w tumor) or tumor rejection (w/o 
tumor). Wt w/o tumor: CD3+CD8+ (n = 7), CD3+CD4+ (n = 7), DX5+CD3- (n = 7) CD3+TCRVß+ (n = 0), 
OVA w/o tumor: CD3+CD8+ (n = 126), CD3+CD4+ (n = 36), DX5+CD3- (n = 58), CD3+TCRVß+ (n = 15), 
wt w tumor: CD3+CD8+ (n = 22), CD3+CD4+ (n = 13), DX5+CD3- (n = 22), CD3+TCRVß+ (n = 6), OVA 
w tumor: CD3+CD8+ (n = 36), CD3+CD4+ (n = 3), DX5+CD3- (n = 5), CD3+TCRVß+ (n = 4). 
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stem cells or wildtype stem cells. The RMA target cells comprised of an OVA-expressing RMA cell line 

(RMA eGFP-OVA, here referred as RMA OVA), which was transfected with the transgene for a OVA-

eGFP fusion protein (as OVA-expressing stem cell lines) and a control cell line (RMA eGFP; here 

referred as RMA control), lacking the OVA in the transfected construct. In Figure 45, the specific lysis 

of those RMA target cell lines by splenocytes isolated of two animals is shown, of which one received 

wildtype cells (iPSC 129/Sv) and the other OVA-expressing stem cells (iPSC OVA#13). The control RMA 

cell line was neither killed by splenocytes of the animal receiving OVA-expressing stem cells nor from 

splenocytes of the mouse that received wildtype stem cells. However, the OVA-expressing RMA target 

cell line was only lysed by splenocytes of recipients of OVA-expressing stem cells, indicating the 

presence of OVA-specific CTLs in this animal.  

 

 

In Figure 46A, a summary of the specific lysis of OVA-expressing RMA and control RMA by splenocytes 

of animals which previously received either wildtype or OVA-expressing iPSCs (iPSC 129/Sv) or ESCs 

(ESC BTL1, ESC MPI-II) is shown. On average, the specific lysis of RMA OVA targets by splenocytes of 

animals which received OVA-expressing stem cells was higher (16 % for ESC OVA and 20 % for iPSC 

OVA at the highest E:T ratio), than the lysis by splenocytes isolated of 129/Sv hosts which received 

 

of experimental triplicates.  
(A) Splenocytes were obtained 
on day 49 after injection of 
iPSC 129/Sv stem cells that led 
to tumor formation. (B) 
Splenocytes were obtained on 
day 82 after injection of iPSC 
129/Sv OVA#13 cells, that did 
not form a teratoma in the 
mouse. 
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wildtype stem cells (6.4 % for ESC wt, 7.8 % for iPSC wt). In Figure 46B, the lysis of RMA OVA by 

splenocytes derived from animals, which received the individual stem cell clones is depicted 

separately. Despite the fact that the specific lysis of RMA OVA by the various splenocytes differed, all 

animals which received OVA-expressing stem cells gave rise to OVA-specific CTLs. 
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Figure 46 Analysis of the presence of OVA-specific T cells after stem cell inoculation in syngeneic hosts by 
51Cr release assays at the end point of the experiment (long-term). 
(A) Shown is the mean specific lysis + SEM of RMA control cells (RMA eGFP) and RMA OVA (RMA eGFP-OVA) 
cells by splenocytes from syngeneic hosts inoculated with OVA-expressing or wildtype ESCs or iPSCs at 
different E:T ratios. IPSC OVA (n = 61), iPSC wt (n = 8), ESC OVA (n = 104), ESC wt (n = 28). Differences 
between the killing of control RMA and RMA OVA by various splenocytes of animals that received iPSC OVA 
(p = 6.7 x 10-22), iPSC wt (p = 0.39), ESC OVA (p = 3.5 x 10-25), ESC wt (p = 0.83); Mann-Whitney U-test. (B) 
Shown is the mean specific lysis + SEM of RMA OVA target cells by splenocytes of 129/Sv which received 
distinct ES and iPS cell clones. IPSC OVA#6 (n = 19), iPSC OVA#13 (n = 6), iPSC OVA#18 (n = 15), iPSC OVA#24 
(n = 21), iPSC wt (n = 8), ESC BTL1 wt (n = 17), ESC BLT1 OVA#4 (n = 27), ESC MPI-II wt (n = 3), ESC MPI-II 
OVA#4 (n = 17). Differences between the killing of  control RMA and RMA OVA by various splenocytes of 
animals that received iPSC OVA#6 (p = 7.5 x 10-9), iPSC OVA#13 (p = 3.5 x 10-3), iPSC OVA#18 (p = 1.5 x 10-5), 
iPSC OVA#24 (p = 3.9 x 10-9), iPSC wt (p = 0.39), ESC BTL1 wt (p = 0.47), ESC BLT1 OVA#4 (p = 1.1 x 10-9), ESC 
MPI-II wt (p = 0.15), ESC MPI-II OVA#4 (p = 5.1 x 10-8); Mann-Whitney U-test. 
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Comparative analysis revealed that the specific lysis of OVA-expressing targets was higher by 

splenocytes of animals which did not show tumor formation (23 %) after OVA-expressing stem cell 

inoculation compared to lysis by splenocytes of animals which received the same stem cells but 

displayed tumor formation (14.6 %, p = 9.1 x 10-6, Mann Whitney U-test) (Figure 47A). After inoculation 

of wildtype stem cells, these differences were not monitored. This suggests that increased OVA-

specific CTL activity led to tumor rejection in animals which received OVA-expressing stem cells.  
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Figure 47 Analysis of OVA-specific CTL responses dependent on (A) tumor formation or (B) gender of hosts.  
(A) Shown is the mean specific lysis of OVA-expressing RMA targets by splenocytes of animals which received 
OVA-expressing stem cells (left) or wildtype stem cells (right) and which showed tumor formation (w tumor) 
or no tumor formation (w/o tumor) + SEM determined by 51Cr release assays.  OVA-expressing stem cells: w 
tumor (n = 35), w/o tumor (n = 78), wildtype stem cells: w tumor (n = 22), w/o tumor (n = 6). Differences w/o 
tumor vs. w tumor: OVA-expressing stem cells (p = 9.1 x 10-6), wt stem cells (p =0.06).(B) Influence of gender 
of hosts which received stem cell inoculations on the lysis rate of RMA target cell lines. Shown is the mean 
specific lysis of control RMA and RMA OVA by splenocytes obtained from male and female mice which received 
OVA-expressing stem cells (left) or wildtype stem cells  (right) + SEM determined by 51Cr release assays. OVA-
expressing stem cells: male (n = 69), female (n = 44), wildtype stem cells: male (n = 14), female (n = 14). 
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Noticeable, after inoculation of OVA-expressing stem cells, the specific lysis of the OVA-expressing 

target cell line by splenocytes of female host was significantly higher than the lysis by splenocytes 

obtained from male hosts (RMA OVA m vs. f: p = 2.9 x 10-5; Mann-Whitney U-test; Figure 47B). 

Inoculation of wildtype stem cells did not led to any differences in killing of RMA OVA and control RMA 

by splenocytes obtained from male or female hosts (RMA control m vs. f: p = 0.97; RMA OVA  

m vs. f: p = 0.67; Mann-Whitney U-test). This indicates that that female recipients develop stronger 

immune responses against OVA. 

Next, the presence of an OVA-specific CTL activity was analyzed in animals receiving injections of OVA-

expressing stem cell clones, which were compromised in their pluripotency and did not form 

teratomas, or only in a minority of experiments, in immunodeficient hosts. As seen in Figure 48, the 

not fully pluripotent cell clones elicited a CTL response against OVA. The stem cell clones, which never 

gave rise to a teratoma in immunodeficient hosts, also induced OVA-specific CTLs but at a much lower 

level. This suggest that OVA-expressing cells derived from stem cells in vivo contribute to the CTL 

response. Injections of OVA-expressing stem cells, which lost the ability to substantially proliferate 

and differentiate in vivo elicited only a minor CTL response. 
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Figure 48 Analysis of the presence of OVA-specific T cells in syngeneic 129/Sv animals after stem cell 
inoculation.  
Splenocytes of 129/Sv were used as effector cells in 51Cr release assays with control RMA and RMA OVA as 
target cells. Animals received injections of stem cell clones, which were considered as not fully (left side) or 
not pluripotent (right side) due to reduced or lacking tumor formation in immunodeficient hosts. Shown is 
the mean specific lysis of RMA control (RMA-eGFP) and RMA OVA (eGFP-OVA) + SEM. Poor tumor 
formation: ESC BTL1 OVA#1, ESC BTL1 OVA#20 (n = 15); differences in the killing of RMA OVA and control 
RMA (p = 6.7 x 10-9), Mann-Whitney U-test; no tumor formation :ESC BTL1 OVA#9, ESC BTL1 OVA#14, ESC 
MPI-II OVA#1 (n = 31), differences in the killing of RMA OVA and control RMA (p = 2.3 x 10-5), Mann-Whitney 
U-test. 
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To determine when after inoculation of stem cells a CTL response was induced, short-term 

experiments were performed, in which animals were sacrificed one week after injections of wildtype 

or OVA-expressing stem cells. In Figure 49, the specific lysis of OVA-expressing RMA and control RMA 

by splenocytes of animals which previously received either iPSC 129/Sv or ESC BTL1 wildtype or OVA-

expressing stem cells or no cells as control animals is depicted.  

 

The splenocytes of animals, which were injected with OVA-expressing stem cells showed a higher lysis 

rate of the OVA-expressing target cell line than their wildtype counterparts and the control. On 
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(p = 2.6 x 10-6), iPSC wt (p = 0.08), iPSC OVA (p = 7.8 x 10-11); Mann-Whitney U-test. 

Figure 49 Analysis of the presence of OVA-
specific T cells after stem cell inoculation in 
syngeneic hosts after 1 week.  
Shown is the specific lysis of RMA control cells 
(RMA eGFP) and RMA OVA (eGFP-OVA) cells in 
51Cr release assays. Splenocytes from 
syngeneic hosts either inoculated with OVA-
expressing stem cells and wildtype stem cells 
or without stem cell inoculation (control), 
were used as effector cells. ESC OVA (n = 9), 
ESC wt (n = 9), iPSC OVA (n = 6), 
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average, specific lysis of control RMA at the highest E:T ratio ranged between 5.4 % (ESC BTL1 wt),  

5.8 % (iPSC 129/Sv wt), 10.2 % (control), whereas up to 20.2 % (ESC BTL1 OVA) or 20.4 % (iPSC 129/Sv 

OVA) of the targets were killed when OVA-expressing stem cells had been inoculated. Thus, the lysis 

of both targets cell lines by splenocytes only significantly differed if animals previously received OVA-

expressing stem cells. This shows that the OVA-specific CTLs were present already one week after 

transplantation of the stem cells.  

 

4.2.7 Killing of wildtype and OVA-expressing iPSCs and ESCs by NK cells 

In parallel to several of the 51Cr release assays in which control RMA and RMA OVA were used as 

targets to determine CTL response against OVA in long term experiments, YAC-1, which is highly 

sensitive to NK cells, was used as target cell line. In this way the activation of NK cells in animals which 

either received OVA-expressing stem cells or wildtype stem cells or of animals which gave rise to 

teratomas versus those which did not show tumor formation was analyzed. The lysis of YAC-1 by 

splenocytes of animals which received OVA-expressing stem cells was higher than the killing by 

splenocytes of mice that had received wildtype stem cells (Figure 50, left panel). Moreover, the NK 

cell activity was higher in animals without tumors than in animals with tumors (Figure 50, right panel). 

These results indicate that in parallel to a CTL response against OVA, the NK cell activity increased in 

these mice. This might contribute to tumor rejection as suggested by the higher NK cell activity in the 

tumor-free mice.  
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Figure 50 Analysis of NK cell activity in animals which either received wildtype (wt) or OVA-expressing (OVA) 
stem cells, either leading to tumor formation (tumor) or tumor rejection (w/o tumor).  
Splenocytes were used in 51Cr release assays as effector cells against the target cell line YAC-1, which is known to 
be highly sensitive to NK cell lysis. Shown is the mean specific lysis of YAC-1 cells + SEM at different effector (CD3-

DX5+) to target ratios. OVA (n = 65), wt (n = 14), tumor (n = 14), w/o tumor (n = 65). OVA vs. wt (p = 8.1 x 10-4), 
tumor vs. w/o tumor (p = 2.4 x10-3); Mann-Whitney U-test. 
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4.2.8 OVA-specific antibody generation in syngeneic hosts 

Whether the expression of OVA in stem cells elicited an antibody response in otherwise syngeneic 

hosts was analyzed via ELISA. For this, sera of animals which previously received injections with OVA-

expressing stem cells, wildtype cells or no cells were collected and analyzed to determine OVA-specific 

antibodies by measuring ODs at 405nm at several different serum dilutions (1:20 to 1:2560 for general 

anti-OVA titer, 1:30 to 1:240 for isotype subclasses). For the determination of the general OVA titer a 

secondary antibody reacting with IgG and IgM antibodies was used, for which a cross-reactivity to 

further antibody classes was not excluded. As positive control, four 129/Sv mice were immunized with 

OVA protein and TiterMax adjuvant and further boosting injections with OVA protein. These control 

sera were pooled, stored in aliquots and used as reference serum on each ELISA plate by setting ODs 

at the lowest dilution (1:20) to 100 % to calculate the relative OVA antibody titer of other sera. Sera 

were obtained from blood samples after animals were sacrificed at experimental end points. In the 

long-term setting, the duration of the experiments varied between single animals depending on tumor 

size and animal condition but ranged from 21 (w tumor) to 90 (w/o tumor) days. In Figure 51A it is 

shown that OVA-specific antibodies were found in the sera of animals which received OVA-expressing 

stem cells. Hereby, the average relative OVA titer (94 %) was similar to the OVA titer of the control 

immune serum (100%). In contrast, the average relative anti-OVA titer of animals which received 

wildtype stem cells (27 %) was on a similar level as of those animals which were not injected with any 

cells (34 %). Analysis of sera of animals which were either injected with ESCs or iPSCs showed that 

OVA expression in both ESCs and iPSCs led to significant higher relative anti-OVA titers (ESC wt vs. ESC 

OVA: p = 5.6 x 10-3; iPSC wt vs. iPSC OVA: p = 7.5 x 10-7, Mann-Whitney U-test) (Figure 51B). However, 

relative OVA titers were higher in mice that have received OVA-expressing iPSCs than ESCs (ESC OVA 

vs. iPSC OVA: p = 2.3 x 10-10; ESC wt vs. iPSC wt: p = 2.1 x 10-17, Mann-Whitney U-test). Significant 

variations in OVA titers occurred dependent on the injected clones as depicted in Figure 51C, e.g. 

showing anti-OVA antibody titers up to 153 % relative to control titers after injection of iPSC OVA 

clones #6 and #24. ESC OVA clone injections led to relative anti-OVA titers of 61 % (BTL OVA#4) to  

90 % (MPI OVA#4), whereas injections of iPSC OVA#13 caused anti-OVA titers similar to those found 

after wildtype iPSC injections. Moreover, it was analyzed whether animals which rejected tumors 

showed divergent anti-OVA titers compared to animals showing tumor formation. Anti-OVA 

antibodies showed significant higher titers in animals that formed teratomas compared to those 

without tumors, whereas the OVA antibody level after wildtype stem cell injection was independent 
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of tumor formation or rejection (Figure 51D). Furthermore, it was analyzed whether gender of hosts 

had influence on the generation of OVA antibodies, but no dependency was found.  

 

 

Figure 51 Analysis of OVA-specific antibody titers in syngeneic 129/Sv mice after injections of wildtype or 
OVA- expressing stem cells via ELISA.  

 

 

Sera were obtained from blood samples at the experimental end points. Shown is the mean relative anti-OVA 
titer + SEM compared to a pool of positive controls, which were previously immunized with recombinant OVA 
protein. (A) Mean relative anti-OVA titer in animals which received either no cell injections (/) or wildtype (wt) 
or OVA-expressing stem cells (OVA), depicted in serial dilutions. Control (/) (n = 12); wt (n = 56); OVA (n = 105). 
(B) Comparison of mean relative anti-OVA titer for the smallest sera dilution (1:20) of animals which received 
either wildtype or transgenic ESCs or iPSCs: ESC OVA (n = 44), ESC wt (n = 38), iPSC OVA (n = 61), iPSC wt (n = 
18). **<0.01, ***<0.001; Mann-Whitney U-test. (C) Comparison of relative anti-OVA titers after injections of 
distinct stem cell clones in 129/Sv mice. ESC BTL1 wt (n = 35), ESC BTL1 OVA#4 (n = 27), ESC MPI-II wt(n = 3), 
ESC MPI-II OVA#4 (n = 17), iPSC 129/Sv wt (n = 18), iPSC 129/Sv OVA#6 (n = 19), iPSC 129/Sv OVA#13 (n = 6), 
iPSC 129/Sv OVA#18 (n = 15), iPSC 129/Sv OVA#24 (n = 21). (D) Anti-OVA antibody titers in animals which 
showed tumor formation or rejected tumors after stem cell inoculation of wildtype or OVA-expressing stem 
cells. Numbers of performed experiments are depicted below each bar. Differences in OVA titers between 
animals showing tumor formation or not: OVA (p = 2.8 x 10-31), wt (p = 0.1), Mann-Whitney U-test. 
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If OVA-antibodies (relative anti-OVA titer > 60%) were found, the sera were additionally analyzed for 

the isotypes of OVA-specific antibodies using isotype-specific secondary antibodies in ELISAs. This 

showed that in animals which had received OVA-expressing stem cells, the OVA-specific IgG1 titer was 

increased compared to sera of animals which did not receive stem cell injections (Figure 52). 

Furthermore, OVA-specific antibodies of the IgG2a and IgG2b isotypes were found. No OVA-specific 

antibodies were found among the other isotypes. These findings indicate that the OVA-specific 

antibodies which arose after transplantation of OVA-expressing stem cells were of the IgG isotype. 

Moreover, this demonstrates that a class switch occurred in OVA-specific B cells.  

 

 

 

In short-term experiments, in which animals were sacrificed 1 week after stem cell inoculation, the 

antibody response against OVA was also examined. Comparison of anti-OVA antibody levels of animals 

which either received wildtype stem cells (ESC BTL1 wt and iPSC 129/Sv wt), OVA-expressing stem cells 

(ESC BTL1 OVA#4 and iPSC 129/Sv OVA#6) and control animals (no cell injections) showed no 

differences in OVA-specific antibody titers (p = 0.34, Kruskal-Wallis H-test) one week after injections 

(Figure 53A). Examination of an anti-OVA antibody isotype distribution as depicted in Figure 53B 

showed no major differences compared to controls. In general, no increased levels of OVA-specific 

antibodies were found 1 week after inoculation of OVA-expressing stem cells compared to control 

animals and animals which received wildtype stem cells. 
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Figure 52 Analysis of OVA 
antibody isotype distribution in 
sera of 129/Sv mice which 
received no stem cells (control) 
or OVA-expressing stem cells. 
(OVA).  
Shown is the mean proportion of 
various OVA-specific antibody 
isotypes in the sera (1:30) 
obtained after experimental 
endings + SEM. OVA (n = 79), 
control (n = 3). 
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4.2.9 Summary  

Analysis of OVA-expressing and wildtype stem cells in vivo showed that the expression of OVA as a 

model of a miHC antigen had effects on the engraftment of stem cells in immunocompetent syngeneic 

hosts, affecting tumor frequency, tumor size and weight. Additionally, it was shown that the injection 

of OVA-expressing stem cells elicited OVA-specific immune responses including CTL responses and 

induced OVA-specific IgG antibodies, demonstrating also class switching of OVA-specific B cells. CTL 

responses against OVA were already found early after stem cell injection (1 week), whereas antibody 

generation was monitored only later after injection, with higher OVA-specific titers in animals which 

showed a tumor formation. Moreover, NK cells might be involved in the rejection of stem cells. 
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Figure 53 Analysis of OVA-specific antibody titer in syngeneic hosts 1 week after stem cell injections.  
(A) Mean of relative anti-OVA titer after various cell injections + SEM in serial dilutions from 1:20 to 
1:320 is depicted. As positive control for normalization sera of four 129/Sv mice immunized with 
recombinant OVA protein was used. Numbers of analyzed sera are depicted below columns. (B) Mean 
proportion of antibody isotypes of OVA antibodies at a dilution of 1:30 in various sera + SEM are shown. 
Control (n = 4), OVA (n = 7), wt (n = 9). 
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Adoptive transfer experiments revealed that OVA-specific T cells alone were able to delay tumor 

growth in immunodeficient hosts, but were not able to completely suppress tumor formation. 

Generally, all teratomas were infiltrated by various immune cells. The presence of immune escape 

mechanisms or immunogenicity marker expression on stem cells and their derivatives could not be 

confirmed in this study. In conclusion, the expression of a single antigen largely impaired engraftment 

of stem cells in immunocompetent recipients. 

 

4.3 The role of NKG2D in the killing of pluripotent stem cells 

In the previous experiments, not only an activation of CTLs but also of NK cells was observed. An 

activation of NK cells might be beneficial in the context of a transplantation of stem cell-derived grafts 

because PSC-derived grafts are at risk of giving rise to teratomas in the recipient, if residuals of 

undifferentiated cells remain in the grafts after in vitro differentiation. Our group previously showed 

that NK cells can kill allogeneic and autologous PSCs and reduce the risk of teratoma growth after 

transplantation of PSCs (Dressel et al., 2010; Kruse, Hamann et al., 2015). Inhibition studies indicated 

that NKG2D is an activating NK cell receptor which is involved in the killing of murine PSCs (Dressel et 

al., 2010), whereas for killing of human iPSCs DNAM-1 appeared to be more important (Kruse, Hamann 

et al., 2015). To further clarify the role of NKG2D in the murine system, the capability of NK cells from 

wild type C57BL/6 and NKG2D-deficient mice to kill various murine PSC lines was compared. 

 

4.3.1 Killing of murine stem cells by naïve C57BL/6 and NKG2D-deficient NK cells 

Six murine stem cell lines of different origin (iPSCs, ESCs, maGSCs) which were either syngeneic to the 

used NK cells (C57BL/6) or MHC-matched but otherwise allogeneic (129/Sv) were used as targets for 

freshly isolated wildtype C57BL/6 or NKG2D-deficient NK cells in 51Cr release assays. The NK cell-

sensitive cell line YAC-1 was always included in the experiments as reference target cell line. 

Comparative analysis showed that all tested stem cell lines were moderately killed by freshly isolated 

wildtype C57BL/6 NK cells. The specific lysis at the highest E:T ratio ranged between 12.5 % for iPSCs 

to 20.6 % for maGSCs (Figure 54A). In contrast, the stem cells were largely resistant to killing by naïve 

NKG2D-deficient NK cells, showing specific lysis on the highest E:T ratio only between 3.9 % for ESCs 

to 4.2 % for iPSCs (Figure 54B). The killing of the stem cell lines and the NK cell sensitive cell line YAC-

1 by the NKG2D-deficient NK cells was significantly lower than killing by the wildtype C57BL/6 NK cells 
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(ESCs: p = 3.4 x 10-8; iPSCs: p = 8.4 x 10-8; maGSCs: p = 7.7 x 10-7; YAC-1: p =5.2 x 10-14; 2-way-ANOVA 

adjusted for E:T ratio). 

 

 

 

The killing pattern of syngeneic (C57BL/6) or allogeneic but MHC-matched (129/Sv) target cells were 

similar. A significant lower killing off all six stem cell lines by NKG2D-deficient compared to the killing 

by wildtype C57BL/6 NK cells was observed (ESC BTL-1: p = 1 x 10-4; ESC MPI-II: p = 8.7 x 10-5, iPSC 

129/Sv: p = 3.1 x 10-7; iPSC C57BL/6: p = 0.01; maGSCs 129/Sv: p = 0.01; maGSCs C57BL/6:  

p = 1.1 x 10-5; Figure 55). 

 

 

 

 

 

 

Figure 54 Killing of different 
stem cell lines and control 
YAC-1 cells by (A) naïve 
wildtype C57BL/6 NK cells or 
(B) NKG2D-deficient NK cells. 
Shown is the mean specific 
lysis of target cells + SEM. 
Differences between the killing 
efficiency of the two types of 
NK cells were significant for 
each type of cell. ESCs: ESC-
MPI-II and ESC BTL1; iPSCs: 
iPSC 129/Sv and iPSC C57BL/6; 
maGSCs: maGSCs 129/Sv and 
maGSCs C57BL/6. 
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4.3.2 Killing of murine stem cells by IL-2-activated wildtype C57BL/6 and NKG2D-deficient 

NK cells 

In the next experiments, the lysis of the different stem cell lines by in vitro IL-2-activated wildtype and 

NKG2D-deficient NK cells was compared. For this, isolated NK cells were in vitro stimulated for 4 days 

before they were used in cytotoxicity assays to determine their killing capacity of target cell lines. The 

specific lysis at the highest E:T ratio ranged between 22.8 % for iPSCs to 40.3 % for maGSCs, showing 

that the stimulation of the NK cells by IL-2 increased the killing of all tested stem cell lines (Figure 56). 

However, the NKG2D-deficiency was not fully compensated and wildtype NK cells were still more 

efficient than NKG2D-deficient NK cells, since the specific lysis on the highest E:T ratio by C57BL/6 NK 

cells ranged between 34.2 % for iPSCs to 55.6 % for maGSCs. This difference between the NK cell types 

was significant for iPSCs (p = 0.02) and maGSCs (p = 1.9 x 10-5) and at borderline for ESCs (p = 0.06). 

 

Figure 55 Killing of various stem cells lines by naïve wildtype C57BL/6 and NKG2D-deficient NK 
cells.  
Shown is the mean specific lysis of stem cells by NK cells + SEM. Number of performed experiments: 
maGSCs 129/Sv (n = 4), maGSC C57BL/6 (n = 4), iPSC 129/Sv (n= 4), iPSC C57BL/6 (n = 5), ESC BTL1      
(n = 3), ESC MPI-II (n = 4). 
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The lysis of the syngeneic (C57BL/6) or allogeneic but MHC-matched (129/Sv) stem cells is shown in 

Figure 57 for each stem cell line. Here, the difference between the lysis by wildtype and NKG2D -/- NK 

cells was significant for ESC BTL1 (p = 7.1 x 10-4) and both maGSC cell lines (maGSC 129/Sv: p = 0.01; 

maGSC C57BL/6: p = 5.9 x 10-4). The killing of the ESC MPI-II cell line by NKG2D-deficient NK cells after 

IL-2 stimulation was almost identical to the lysis rate by the wildtype NK cells (p = 0.64). Additionally, 

the susceptibility of both iPSC lines to stimulated NKG2D -/- NKs cell was not significantly lower than to 

stimulated NK cells (iPSC 129/Sv: p = 0.1;  iPSC C57BL/6: p = 0.23), but still not on the wildtype level. 

This shows that a stimulation with IL-2 increases the killing of stem cell lines by NKG2D-deficient NK 

cells and in single cases could almost compensate the NKG2D deficiency.  

 

 

 

 

Figure 56 Killing of various cell lines by IL-2 stimulated wildtype C57BL/6 and NKG2D-deficient NK cells. 
NK cells were in vitro stimulated for 4 days before they were used in cytotoxicity assays to determine 
their killing capacity of target cell lines. Shown is the mean specific lysis + SEM. ESCs (n= 6), maGSCs (n= 
6), iPSC (n= 6), YAC-1 (n= 6). 
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4.3.3 Expression of ligands of the NKG2D receptor on murine stem cells 

To determine the expression pattern of NKG2D ligands on the target cells flow cytometry analysis was 

performed using antibodies against RAE1, MULT1 and H60. All of the stem cell lines expressed these 

NKG2D ligands on their surface, but to a variable extent in number (cell positive for the ligands) and 

intensity (MFI) (Figure 58). The most abundant NKG2D receptor ligands was RAE1 which was detected 

in 40.2 % (iPSC C57BL/6) to 76.0 % (ESC BTL1) of the cells, except on maGSC C57BL/6, for which only 

6.4 % of the cells were positive. RAE1 expression analysis showed also the highest MFI values in the 

experiments, showing values from 4.9 (iPSC 129/Sv) up to 42.6 (maGSC 129/Sv). H60 was expressed 

on 2.7 % (maGSC C57BL/6) to 46.8 % (ESC BTL1) of the stem cells with similar MFI values of 1.4 (ESC 

MPI-II) to 3.4 (maGSC C57BL/6). The cell surface expression of MULT1 was the lowest of the NKG2D 

ligands, ranging from 2.8 % (maGSC C57BL/6) to 10.0 % (ESC-BTL1) with small MFI values of 0.1 (ESC 

MPI-II) to 3.1 (maGSC C57BL/6). YAC-1 was always included as NK cell target cell line and showed a 

 

 

Figure 57 Killing of various stem cells lines by in vitro IL-2 stimulated wildtype C57BL/6 and NKG2D-
deficient NK cells.  
Shown is the mean specific lysis + SEM; maGSCs 129/Sv (n= 3), maGSCs C57BL/6: (n= 3), iPSCs 129/Sv: (n= 
3), iPSC C57BL/6: (n= 3), ESC BTL1: (n= 3), ESC MPI-II: (n=3). 
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high expression of all NKG2D ligands with 87.5 % RAE1+; 28.9 % MULT1+, 49.6% H60+ cells. Therefore, 

NKG2D expression on stem cell lines occasionally almost equals the expression on the control NK cell 

sensitive cell line YAC-1, e.g. RAE1 expression on ESC BTL1 or H60 expression on iPSC 129/Sv and ESC 

BTL1.  

 

4.3.4 Summary 

It was shown that the analyzed PSCs were largely resistant to killing by naïve NKG2D-deficient NK cells. 

In contrast, wildtype NK cells killed all targets with low or intermediate efficacy. The additional 

stimulation of wildtype and NKG2D-deficient NK cells by IL-2 increased the killing of all PSCs. 

Nevertheless, the NKG2D-deficiency was not fully compensated and wildtype NK cells were still more 

efficient. Furthermore, it was demonstrated that all PSC lines expressed NKG2D ligands although the 

expression pattern of RAE-1, MULT-1 and H60 molecules was variable. 

 

 

Figure 58 Expression of NKG2D ligands on stem cell lines and control (YAC-1) cell.  
(A) Mean percentage of NKG2D ligand positive cells + SEM (B) Mean MFI (mean fluorescence intensity) of 
ligands expression on the cells + SEM; YAC-1 (n = 13), iPSC 129/Sv (n = 5), iPSC C57BL/6 (n = 8), ESC BTL1 (n = 
3), ESC MPI-II (n = 7), maGSC 129/Sv (n = 7), maGSC C57BL/6 (n = 7). 
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5 Discussion 

5.1 Involvement of autoimmune responses on the pathogenesis of load-induced heart 

failure 

Previous results of our group have indicated that autoimmune reactions against OVA can occur in 

cMy-mOVA mice after TAC. These mice express OVA exclusively on the surface of cardiomyocytes and 

thus enable the investigation of immune responses against this specific cardiac antigen. The mice were 

generated and first analyzed by Grabie et al., who showed that the mice display tolerance to OVA. Our 

previous results indicated that OVA-specific CTL responses after TAC were weak and stronger 

reactions not frequent in young and otherwise healthy mice. To examine whether autoimmunity is a 

more frequent outcome after TAC operations in animals at higher risk to develop autoimmunity, 

transgenic T cells with specificity for OVA were transferred into the cMy-mOVA mice. Moreover, 

double-transgenic mice were analyzed, which expressed OVA on their cardiomyocytes and an OVA-

specific TCR on the majority of their CD4+ T cells. It was further investigated, whether autoreactive  

T cells, either endogenous or transferred, were sufficient to alter the cardiac remodeling after TAC 

operation or even accelerate the progression to HF. 

 

5.1.1 Increased leukocyte infiltration into the myocard after TAC 

Load-induced HF in C57BL/6 mice achieved by TAC surgery was accompanied with an increased 

leukocyte infiltration into the heart as analyzed by IHC (Toischer et al., 2010). Further analysis of this 

afterload model in our laboratory and by others revealed that TAC operations lead to infiltration of 

professional APCs and T cells into the myocardium (Laroumanie et al., 2014; Sasse et al., unpublished 

data). This was shown in our group for several time points from 1 day to 10 weeks post surgery by 

flow cytometric analysis. In this thesis, the infiltration of lymphocytes into the myocard was monitored 

at the experimental end point latest 10 weeks after surgery by IHC analysis of paraffin sections. At this 

time point a higher number of CD8+, CD4+, and CD45R+ cell were found after TAC than after sham 

operation for cMy-mOVA mice, cMy-mOVA mice which received either CD8+ OT-I T cells or a mixture 

of CD8+ OT-I and CD4+ OT-II T cells, and for cMy-mOVA/OT-II mice. The myocardia of animals that 

received OT-I T cells showed even higher infiltration of CD8+ but also CD4+ T lymphocytes than cMy-

mOVA or cMy-mOVA/OT-II animals, indicating the recruitment of further lymphocytes besides the 

TCR-transgenic CD8+ T cells into the myocardium. The examination of the leukocyte composition in 

the myocardium via flow cytometry showed that after TAC operation, proportions of lymphocyte 
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populations including B cells (p = 0.01), T cells, and NK cells were slightly increased compared to sham-

operated animals. The general distribution of leukocyte populations in the heart resembled 

proportions of myeloid and lymphocyte cell proportions reported in a previous study (Bönner et al., 

2012). This study demonstrated that 2.3 x 103 resident leukocytes /mg tissue were present in the 

unstressed heart of C57BL/6 mice, including a large proportion of APCs as sentinel cells of the 

myocardium (Bönner et al., 2012). These residential APCs in the heart might also play an important 

role in the presentation of autoantigens to T lymphocytes.  

 

5.1.1.1 Controversial influence of endothelial surface adhesion molecules on immune cell 

infiltration 

Moreover, we have investigated whether the increased infiltration of lymphocytes after TAC 

correlates with altered surface expression of adhesion molecules on residential cells. It was previously 

reported that endothelial cells show an activation in chronic HF in terms of expression of adhesion 

molecules and chemokines (Colombo et al., 2005; Tousoulis et al., 2005). Thus, endothelial cells might 

be essential for inflammation in HF by facilitating transendothelial migration of leukocytes. In humans 

and mice with HF, it was reported that T cells showed a higher affinity towards the endothelium than 

controls (Nevers et al., 2015). Therefore, we examined whether an upregulation of the adhesion 

molecules VCAM-1 and ICAM-1 on endothelial cells in the heart occurs after TAC. However, no 

differences in the VCAM-1 and ICAM-1 surface expression in the myocard between sham- and TAC-

operated animals were found. This is in contrast to a study showing an upregulated protein expression 

of ICAM-1 on endothelial cells of left ventricular intramyocardial vessels after TAC (Nevers et al., 2015. 

Another recent study reported that ICAM-1-deficient mice displayed decreased T-cell and 

proinflammatory monocyte infiltration into the left ventricle after TAC surgery compared to controls, 

demonstrating the important role of ICAM-1 for immune cell infiltration (Salvador et al., 2016).  

 

5.1.2 Activation of adaptive immune responses towards cardiac antigens 

After the increase of lymphocytes infiltrating the myocardium in response to TAC operation and 

additional challenge by autoreactive T cells was demonstrated, it had to be clarified whether the OVA-

specific lymphocytes were activated. A first hint of CD8+ T cell activation was found after transfer of 

CFSE-stained T cells. In the blood analysis at day 6 post transfer, a reduced number of CFSE-stained 
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cells was found in animals, which underwent TAC surgery compared to sham-operated mice. However, 

this could indicate proliferation but also loss of cells or recruitment to other organs such as the heart.  

In cytotoxicity assays, the activation of OVA-specific CTLs was further proven in TAC- and sham-

operated animals. In TAC-operated cMy-mOVA mice that did not receive an adoptive transfer of  

T cells, a significant but low activation of CTLs against OVA was detected, albeit single animals showed 

specific lysis rate of RMA OVA targets up to 15 % (Röhrborn et al., unpublished data). In this thesis, 

the specific lysis rate of OVA-expressing target cells was higher for the animals that had received OT-I 

T cells. It was even further enhanced when OT-I and OT-II T cells were transferred, indicating an 

additional effect of OVA-specific CD4+ T cells on the activation of OVA-specific CTLs. However, this 

activation of T cells in cMy-mOVA mice that received OVA-specific T cells was largely independent of 

the type of surgery.  

In C57BL/6 mice, which underwent TAC surgery, it was previously shown that more CD4+ and CD8+  

T cells expressed activation markers such as CD25 and CD69 (Sasse et al., unpublished data). CD4+ cells 

of cMy-mOVA/OT-II mice also expressed more CD25 after TAC than sham surgery. The expression level 

of CD69 on CD4+ T cells was not affected. Laroumanie et al. showed that CD4+CD44high effector T cells 

numbers, in contrast to CD8+CD44high T cells were increased after TAC. These findings indicate a 

contribution of activated CD4+ cells on ongoing immune responses in the failing heart.  

Examination of the cytokine profile of T helper cells in cMy-mOVA/OT-II mice after TAC operation 

revealed a polarization mainly towards an inflammatory Th1 and Th17 response, showing an increased 

proportion of CD4+ T cells positive for IL-6, IL-17A, IFNγ and TNFα. This was also previously found in 

C57BL/6 mice, in which more CD4+ cells expressing IFNγ and IL-17A were present after TAC operation 

(Sasse et al., unpublished data). Nevers et al. (2015) reported an upregulation of TNFα, IL-1β, IL-6 and 

IFNγ after TAC operation compared to controls. A further study confirmed a significant increase of Th1 

cytokines, and a decrease of Th2 type cytokines in TAC-, compared to sham-operated animals 

(Laroumanie et al., 2014). While the Th1 response is triggering macrophage activation and cell-

mediated immunity, the Th17 response is involved in several autoimmune diseases in mice and human, 

including murine models of MS (EAE) (Komiyama et al., 2006), rheumatoid arthritis (Yen et al., 2006), 

psoriasis (Li et al., 2004a) and colitis (Littman and Rudensky, 2010). An upregulation ICAM-1 and the 

increased T cell infiltration after TAC was recently shown to be induced by cardiac cytokines IL-1β and 

IL-6 (Salvador et al., 2016). 
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Generally, due to the detection of autoantibodies in patients and animals models of various cardiac 

diseases (Kaya et al., 2012), it was further analyzed whether antibodies were induced by increased 

afterload in cMy-mOVA mice. Analysis of these animals showed that no OVA-specific IgG 

autoantibodies were induced after TAC (Röhrborn et al., unpublished data). Challenging the mice with 

additional T cells against OVA in this thesis showed that neither in cMy-mOVA mice that obtained 

OVA-specific T cells by adoptive transfer, nor in cMy-mOVA/OT-II mice antibody generation against 

OVA was induced. 

 

5.1.3 The role of adaptive immune responses in the progression to heart failure 

Increased numbers of infiltrating lymphocytes suggested an involvement of adaptive immune 

responses in the progression to HF in the murine afterload model of TAC (Yndestad et al., 2006) as 

well as in humans (Yndestad et al., 2003). When wildtype and immunodeficient RAG2-/-γc-/- mice were 

compared, it was found that lymphocytes promote cardiac hypertrophy in response to an increased 

afterload but are not required for the progression to HF (Sasse et al., unpublished data). However, 

analysis of RAG2-/- mice in another study revealed that the transition from hypertrophy to HF was 

attenuated at 6 weeks after TAC operation compared to immunocompetent animals (Laroumanie et 

al., 2014). This effect disappeared with reconstitution of T cells into the immunodeficient mice 

(Laroumanie et al., 2014), inferring an effect of T cells on cardiac function. Generally, an increased 

afterload in C57BL/6 mice reduced heart function as measured by FAS and EF compared to control 

mice (Patten and Hall-Porter, 2009; Sasse et al., unpublished data; Toischer et al., 2010). These effect 

were not observed after TAC in mice deficient for TCRα. These animals did not displayed hypertrophy 

or impaired cardiac function at 4 weeks after TAC surgery (Nevers et al., 2015), indicating an important 

role of T lymphocytes on the deterioration towards HF. Additionally, cardiac hypertrophy and fibrosis 

of the myocardium were not detectable in those mice, further suggesting T cells as regulators of these 

processes. The pharmacological depletion of T cells in the onset of HF by administration of an anti-

CD3 antibody into TAC-operated C57BL/6 mice led to improved cardiac function although mice 

displayed cardiac hypertrophy (Nevers et al., 2015). Laroumanie et al. (2014) examined the 

importance of CD4+ and CD8+ T lymphocytes on the adverse remodeling in HF by using either CD4-

deficient (MHC-II-/-) or CD8-deficient (CD8-/-) mice. In contrast to CD8-/- mice which developed cardiac 

failure, CD4-deficient mice showed attenuated cardiac remodeling and preserved cardiac function at 

6 weeks after TAC surgery compared to controls. Notably, OT-II mice, with transgenic CD4+ T cells 

specific for OVA, failed to develop HF and adverse remodeling after TAC (Laroumanie et al., 2014). 
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These findings indicate an antigen-specific mechanism of CD4+ T cells that affects the progression to 

HF, which was further investigated in the cMy-mOVA model.  

 

5.1.4 Increased numbers of autoreactive T cells accelerate progression of load-induced 

heart failure 

Since various autoantibodies against cardiac antigens were found in patients with HF and other cardiac 

disease studies, autoimmunity was suggested to be associated with the progression to HF (Kaya et al., 

2012). Röhrborn et al. analyzed whether the expression of OVA as cardiac antigen accelerates the 

progression to HF after TAC operation in cMy-mOVA mice. However, heart function was in general not 

altered compared to C57BL/6 wildtype mice. Moreover, the additional transfer of autoreactive T cells 

against OVA into cMy-mOVA mice was not sufficient to affect fibrosis, heart weight or hypertrophy 

neither after OT-I nor after OT-I and OT-II T cell transfer as shown in this thesis. Higher numbers of 

autoreactive CD4+ T cells in cMy-mOVA/OT-II mice accelerated progression to HF after TAC operation 

compared to cMy-mOVA mice. Unfortunately, the breeding of cMy-mOVA/OT-I mice failed due to 

early mortality of mice after birth (day 1 to 5). In conclusion, these findings demonstrate that a 

pathological increase of cardiac afterload can be sufficient to break the immunological tolerance of 

CD4+ and CD8+ T cells, even in young and healthy mice. In a model for virus-induced myocarditis, it 

was found that inoculation of an OVA-expressing vesicular stomatitis virus into cMy-mOVA mice only 

affected heart function after the animals additionally received adoptive transfer of naïve CD8+ T cells 

of OT-I mice (Grabie et al., 2003), indicating that immunological tolerance can be broken by virus 

infection if enough autoreactive CTLs are present.  

The role of CD4+ cells was previously indicated to be important for the deterioration of cardiac function 

after TAC in C57BL/6 mice (Laroumanie et al., 2014), although our group could not prove their 

necessity for those processes (Sasse et al., unpublished data). In this thesis it was shown that high 

numbers of CD4+ T cells with specificity for a cardiac antigen are sufficient to induce autoimmune 

reactions after TAC and accelerate the progression to HF. Previous findings indicated an involvement 

of antibodies in immune responses responsible for the progression to HF due to detection of cardiac 

autoantibodies (Kaya et al., 2012). However, this thesis proved that heart function was affected by 

autoreactive CD4+ T cells independent of antibody production against cardiac antigens. 
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5.1.5 Immune mechanisms contributing to heart failure 

Generally, in response to tissue injury in the heart, resulting from pathogens or environmental injury 

such as hemodynamic overloading or ischemia, innate immune responses become activated. Cardiac 

innate immune responses are initiated by the detection of damage associated molecular patterns 

(DAMPs) or pathogen associated molecular patterns (PAMPs) by pattern recognition receptors (PRRs), 

which not only detect infiltrating pathogens, e.g. bacteria but were also shown to recognize molecular 

patterns of endogenous material released after heart injury by damaged or dying cells (Mann, 2015). 

Subsequently, neutrophils and monocytes in the damaged tissue area become activated through 

engagement of extracellular or intracellular PRRs, leading to short term adaptation of the heart to the 

abnormal conditions. In addition to many resident tissue macrophages in the heart, which were 

established during embryonic development and contribute to cardiac recovery, the infiltration of bone 

marrow-derived neutrophils and monocytes lead to a pro-inflammatory stress response within the 

myocardium. This has been shown to contribute to further tissue damage, progressive fibrosis and 

adverse cardiac remodeling (Epelman et al., 2015; Lavine et al., 2014). It is assumed that the 

myocardium adapts to environmental stress by synthesizing a variety of cytoprotective factors such 

as adenosine and nitric oxide (Bolli et al., 1997; Downey et al., 1993). It responds to various 

endogenous stress-induced factors including basic fibroblast growth factor (bFGF), TGFβ, vascular 

endothelial growth factor (VEGF) and angiotensin II (Eghbali, 1989; Hammond et al., 1984; Li et al., 

1997; Sadoshima et al., 1993; Weiner and Swain, 1989). This limits cell injury by upregulation of 

cytoprotective factors and facilitate subsequent tissue repair. If cardiac homeostasis cannot be 

restored, overexpression of these factors can lead to a chronic low grad inflammation, which 

contributes to further disease progression and infiltration of further immune cells. An increased 

afterload was shown to lead to a significant up-regulation of Toll-like receptor genes, such as Tlr2, 

apoptosis-related genes such as Casp3, genes encoding chemokines attracting myeloid cells including 

Ccl9, genes for adhesion molecules (Icam-1, Vcam-1, E-selectin), and chemokine receptor genes 

expressed on myeloid cells, such as Ccr1 as examined in hearts of C57BL/6 mice 1 week (Sasse et al., 

unpublished data) or 4 weeks after TAC (Nevers et al., 2015). Additionally, stress-inducible ligands 

including Rae1, Ulbp1 and H60 of the murine NK receptor NKG2D, which functions as costimulatory 

molecule on T cells were found to be significantly upregulated 1 week after TAC surgery (Sasse et al., 

unpublished data). Usually, these mouse ligands and their human counterparts (MICA, MICB,  

ULBP1-6), are constitutively expressed on only few cell types but become inducible by proteotoxic and 

genotoxic stress in most cells and have been implicated in immune responses to infections, tumors 
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but also in many autoimmune diseases (Ogasawara and Lanier, 2005; Ogasawara et al., 2004; Salih et 

al., 2003). The gene encoding NKG2D itself, Klrk1, was also significantly up-regulated at this time point 

suggesting the presence of cells, which can respond to the NKG2D ligands (Sasse et al., unpublished 

data). Due to the early upregulation of these ligands in the myocardium after TAC surgery, non-

professional APCs could co-stimulate and thereby activate naïve T cells, which were found to infiltrate 

the myocardium. Thus, T cells with specificity for cardiac autoantigens might become activated also 

by non-professional APCs including cardiomyocytes. Additionally, professional APCs, i.e. DCs, could 

take up antigens released from damaged cells in the myocardium, maturate in response to DAMPs 

and proinflammatory cytokines, and activate autoreactive T cells in regional lymph nodes that escaped 

central tolerance. Notably, it was found that not all cardiac antigens are expressed by thymic 

medullary epithelial cells as shown for α-MHC, revealing that α-MHC reactive CD4+ T cells were even 

found in the blood of healthy patients (Lv et al., 2011). After activation of T lymphocytes, autoreactive 

cells either directly affect the myocardium, as e.g. CTLs do, or enhance the inflammatory function of 

other cells e.g. by helping B cells produce pathogenic antibodies as shown for T helper cells. 

Additionally, the polarization of CD4+ T cells, into Th1 and Th17 cells, as shown in cMy-mOVA/OT-II mice 

seems to exert adverse effects on the myocardium. Significantly more CD4+ T cells expressing 

inflammatory (IL-6, TNF-), Th1 (IFN-), Th17 (IL-17A), and at very low level Th2 (IL-4) cytokines were 

present after TAC surgery compared to controls. IFN-γ, which is produced by CD4+ Th1, CD8+ CTL, NK 

and NKT cells, is known to have multiple proinflammatory effects (Lichtman, 2013). However, it also 

exhibits anti-inflammatory effects including feedback inhibition of effector T cells that produce the 

cytokine, thereby limiting T cell activation and T cell mediated inflammatory damage to the 

myocardium (Lichtman, 2013). Moreover, IL-6 seems to play a critical role in the pathogenesis of LV 

hypertrophy in response to pressure overload since genetic deletion led to alleviation of hypertrophy 

and cardiac dysfunction (Zhao et al., 2016). Th17 cells produce IL-17, a cytokine associated with 

neutrophilic inflammation, that was shown to affect cardiac fibroblasts, thereby promoting fibrosis, 

but not the severity of inflammation in autoimmune myocarditis (Baldeviano et al., 2010). Moreover, 

it has been shown that a blockade of IL-17A improves the LV function of the heart and lowers 

cardiomyocyte apoptosis and neutrophil recruitment (Liao et al., 2012). The fact that infiltrating T cells 

have influence on cardiac remodeling of the myocardium was additionally proven in a mouse model 

of T cell deficiency (TCRα-/-) since these mice displayed reduced fibrosis and hypertrophy, improved 

cardiac function and survival after TAC operation compared to wildtype mice (Nevers et al., 2015). 
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In conclusion, inflammatory CD4+ T cells and their cytokine products are involved in the progression 

to HF, leading to an increased damage of the myocardium. 

 

5.1.6 Summary and future perspectives 

These data show that CTLs as well as CD4+ T cells specific for OVA as cardiac antigen can become 

activated in a model of increased afterload and promote the progression from hypertrophy to HF. 

Interestingly, T helper cells seem to deteriorate heart function by a mechanism independent of 

antibody induction, since no OVA-specific antibodies were found neither in cMy-mOVA/OT-II nor in 

cMy-mOVA mice which received adoptive transfer of CD4+ and CD8+ T cells. Such direct effects on 

heart function might be of interest if those autoreactive T cells exist in subgroups of patients with HF 

either alone or in combination with cardiac autoantibodies, since autoimmune processes can be 

targeted by established or newly developed therapeutics. Thus, it could be possible to decrease or 

slow the risk of transition into manifest HF in those patients and prevent long term 

immunosuppression if the activation of these autoreactive T cells could be prevented by short-term 

intervention in time periods of increased risk, e.g., after acute cardiac ischemia. 

 

5.2 Stem cell immunogenicity 

Stem cells are important tools for future regenerative medicine since they can be differentiated to 

various cells types and therefore replacing or promoting damaged or diseased tissue. However, it is 

necessary to evaluate the immunogenicity of transplanted material to reduce the risk of graft 

rejection. The role of the highly polymorphic MHC was previously studied, whereas miHC antigens 

were so far mostly disregarded. However, clarification of the immunogenicity of those antigens is 

critical since they cannot be matched in allogenic transplantations, which are expected to be clinically 

most relevant. Therefore, OVA-expressing stem cells, i.e. iPSCs and ESCs, were analyzed regarding 

their engraftment and their effects on effector cell activation in otherwise syngeneic recipients. 

Additionally, expression of immune-evading or immunogenicity-causing genes in stem cells was 

analyzed to better estimate the immunogenic potential of pluripotent stem cells. 
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5.2.1 Influence of minor histocompatibility antigen expression on stem cell immunity  

The expression of other antigens besides MHC and ABO antigens were reported to influence the 

outcome of transplantation, i.e. transplantations between MHC-matched individuals led to the 

development of GVHD or resulted in T cell-mediated graft failure (Ferrara et al., 2009; Opelz and 

Collaborative Transplant Study, 2005). These immune reactions are likely elicited by the expression of 

variant miHC antigens between donor and recipient, leading to activation of CD4+
 and CD8+

 T cell 

alloresponses. To study the effects of miHC antigen expression for transplantations of stem cell-

derived grafts, several murine stem cell lines were transfected with an OVA-eGFP fusion construct to 

express the model antigen OVA (Monecke, 2013). The analysis of OVA-expressing stem cell in vitro 

revealed that the antigen processing and consequently antigen presentation of murine stem cells was 

impaired (Monecke, 2013). The antigen processing and presentation via the MHC class I pathway leads 

to the cell surface expression of MHC class I molecules, which confers susceptibility of cells to the 

cytotoxicity of CTLs. As previously reported, murine PSCs lack surface expression of MHC class I 

molecules, which is also not inducible by IFNγ (Abdullah et al., 2007; Monecke, 2013; Nussbaum et al., 

2007; Tian et al., 1997). The stem cell lines transfected with OVA-eGFP were not killed by OVA-specific 

CTLs in vitro analyzed in cytotoxicity assays (Monecke, 2013). However, the supplement of processed 

OVA peptide SIINFEKL increased the lysis rate of all tested stem cells, including iPSCs, ESCs and 

maGSCs, demonstrating that PSCs were not generally protected against CTL cytotoxicity. In co-culture 

experiments with OVA-specific T cells, it was demonstrated that PSCs were able to actively suppress 

T cell activation in vitro, mediated by cell-cell contact of PSCs and T cells (Monecke, 2013). In addition 

to data describing immune-escape or tolerance-inducing mechanisms of stem cells, e.g. by expression 

of Arg1 and IDO, these findings suggest that PSC are at least in vitro resistant against immune 

responses. Nevertheless, T cell-mediated immune responses against murine PSCs were monitored in 

vivo (Boyd and Wood, 2009; Dressel et al., 2009; Robertson et al., 2007; Wu et al., 2008). To further 

characterize the effect of miHC antigens expressed by stem cells or stem cell-derived grafts on 

engraftment and stem cell immunogenicity, OVA-expressing stem cells were analyzed in vivo 

compared to their wildtype counterparts in this thesis. It was hypothesized that adaptive immune 

reactions against OVA as a single miHC antigen in otherwise syngeneic hosts might affect 

transplantations of stem cells and stem cell-derived grafts in vivo. For this, OVA-expressing ESCs and 

iPSCs and wildtype stem cells were injected into otherwise syngeneic mice to examine their 

engraftment in teratoma formation assays and the potential induction of OVA-specific T and/or B 

lymphocytes. 
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5.2.1.1 Expression of OVA as miHC antigen affects engraftment of stem cells in 

immunocompetent syngeneic hosts 

To exclude clonal abnormalities due to OVA expression, OVA-expressing and wildtype stem cells were 

inoculated into immunodeficient mice to monitor teratoma growth and exclude potentially aberrant 

cell clones. The expression of OVA on iPSCs and ESCs showed no general effects on teratoma 

formation compared to wildtype stem cells. To examine whether OVA-specific T cells impair the 

engraftment of OVA-expressing PSCs, TCR-transgenic T cells, i.e. CD4+ and/or CD8+ T cells, specific for 

OVA, were transferred into the immunodeficient animals after stem cell inoculation. However, the 

presence of the OVA-specific T cells did not impair engraftment of OVA-expressing stem cells. In 

contrast, inoculation of OVA-expressing stem cells into immunocompetent but otherwise syngeneic 

animals revealed differences in the engraftment, i.e. tumor formation rate, compared to inoculated 

wildtype stem cells. Animals which were inoculated with OVA-expressing iPSCs or ESCs displayed a 

significant reduced tumor formation rate, suggesting OVA-specific immune responses towards the 

transplanted cells. Generally, tumors derived from OVA-expressing stem cells were significantly 

smaller and lighter compared to teratomas of wildtype stem cells and to those formed in 

immunodeficient mice, indicating an influence of immune cells on the formation of teratomas. The 

analysis whether Y-chromosome derived (HY) antigens might additionally influence the outcome of 

transplantation, tumor formation of male stem cells in female host was monitored. Noticeably, the 

expression of those antigens seem to have an additional effect on tumor formation since tumor rate 

was markedly reduced in female mice (8 %), compared to male hosts (46 %) but only for tumors 

derived from OVA-expressing stem cells. This indicates an enhancing effect of HY antigens on the 

rejection process of OVA-expressing stem cells. These data are in accord with a previous small scale 

study in our group (Monecke, 2013). Analysis of mouse embryogenesis revealed that HY antigens are 

already expressed at the eight cell stage of the embryo and might therefore affect stem cell 

immunogenicity (Krco and Goldberg, 1976). Infiltration of leukocytes was observed in all teratomas 

derived from wildtype and OVA-expressing stem cells. However, teratomas derived from OVA-

expressing stem cells showed increased numbers of infiltrating leukocytes. The infiltration of 

leukocytes into teratomas derived from PSCs in syngeneic hosts was previously shown in several 

studies (Dressel et al., 2008; Kofidis et al., 2005).  

Clonal differences in proliferation capacity and growth rate between cell clones resulted in slightly 

variable tumor formation rates, variable tumor size, weight and variations in the duration of 

experiments in immunodeficient mice. In immunocompetent mice, additional miHC antigen 
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expression like HY antigens and antigen independent effector mechanisms as NK cell killing possibly 

contributed to smaller differences in tumor size and weight. Monitored distinctions between tumors 

derived from OVA-expressing stem cell clones might be explained by the variant expression of OVA by 

single cell clones and its reduction with differentiation. QPCR analysis revealed that the transgene 

expression was distinctly reduced in teratomas compared to its expression in PSCs. The loss of 

transgene expression over differentiation might happen due to epigenetic changes during the 

differentiation process, resulting in silencing of the genomic loci in which the OVA-eGFP transgene 

had integrated. To overcome this problem, the transgene construct was inserted into the Rosa26 

locus, which was reported to be constitutively expressed with differentiation (Kisseberth et al., 1999). 

Investigations concerning the immunogenicity of those stem cells are still ongoing (Petrov et al., 

unpublished data). Transgene expression differed between iPSCs and ESCs but also displayed 

interclonal variations which affect the overall immunogenicity of each stem cell clone. An already low 

transgene expression in teratomas formed in immunodeficient mice can be explained by transgene 

loss due to differentiation. In contrast, a lower expression of OVA in immunocompetent than in 

immunodeficient animals was probably caused by immune effecter activation against OVA which 

eliminates OVA-expressing cells. Despite the loss of OVA expression with differentiation, it was 

demonstrated that inoculated OVA-expressing stem cells displayed a significantly reduced rate of 

engraftment in immunocompetent mice. This demonstrates that the expression of OVA was still 

sufficient to elicit an immune effector response. 

 

5.2.1.2 Expression of a miHC antigen led to OVA-specific cytotoxic T lymphocyte induction 

Already immunodeficient animals which were inoculated with OVA-expressing stem cells and 

additionally received transfer of OVA-specific T cells from OT-I and OT-II mice displayed altered 

immune responses compared to animals which received wildtype PSCs. Analysis of transferred T cells 

shortly after the transfer and after experimental ending revealed that CD8+ T cells became activated, 

showing proliferation in vivo and were able to directly kill OVA-expressing target cells when tested in 

vitro in cytotoxicity assays. Surprisingly, all OVA-expressing stem cell injections resulted in teratoma 

formation despite the proven activation of OVA-specific T cells and their infiltration into the 

teratomas. However, an influence of these cells on teratoma growth was shown in animals that 

displayed rapid proliferating CD8+ T cells, which was associated with a prolonged survival of the hosts. 

Albeit, T cells were not able to completely eliminate tumors because of either stem cell numbers 
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outranging small numbers of transferred T cells or the loss of transgene expression in stem cells over 

differentiation. In syngeneic immunocompetent host, the effect of OVA expression in the inoculated 

stem cells was investigated in an immunologically fully functional environment. To determine the 

activation status against OVA as miHC antigen, splenocytes were in vitro restimulated after 

experimental ending (up to 90 days) and used as effector cells in cytotoxicity assays. Noticeable, only 

splenocytes of animals which received injections of OVA-expressing stem cells were able to efficiently 

kill the OVA-expressing RMA target cell line, in contrast to splenocytes of animals, which received 

wildtype stem cells. This indicates that OVA-specific CTLs arose in the animals that obtained injections 

of OVA-expressing stem cells. Additionally, this could be already shown in animals 1 week after stem 

cell inoculation, revealing an early activation of CTLs after stem cell injection. Surprisingly, even the 

injection of not fully pluripotent stem cells whose injection did not led to tumor formation in 

immunodeficient mice, led to an induction of OVA-specific CTLs in immunocompetent hosts. 

Consequently, the inoculation of OVA-expressing stem cells, which were not able to proliferate, 

differentiate or form teratomas in vivo, was sufficient to activate immune effector responses against 

the expressed antigen. PSCs did not express MHC class I molecules but these are required for peptide 

presentation to activate CTLs. It is known that with differentiation of PSCs towards embryoid bodies 

(EBs), MHC class I molecule expression is upregulated (Petrov et al., unpublished data; Suárez-Alvarez 

et al., 2010). Additionally, current investigations in our group showed that components for the antigen 

processing machinery are also increased with differentiation to EBs (Petrov et al., unpublished data), 

leading to an augmented potential to present peptides and to become targets of peptide-specific CTLs. 

OVA-specific CTLs must have exerted an effect on the growth of OVA-expressing PSCs after 

differentiation, since the PSCs themselves were not able to process and present this antigen. However, 

some teratomas might have escaped rejection by down-regulation of OVA expressions. 

 

5.2.1.3 Expression of a miHC antigen resulted in OVA-specific antibody generation and CD4+ T 

cell activation 

To clarify whether the expression of OVA in stem cells led to B cell activation and antibody production, 

sera of animals were examined in ELISA assays to determine the anti-OVA antibody titer in animals, 

which received either wildtype or OVA-expressing stem cells. At the early point of time 1 week after 

stem cell inoculation, no induction of anti-OVA antibodies were detected in the sera of animals. 

However, after experimental ending (up to 90 days), anti-OVA antibodies were found in animals, 

which received OVA-expressing stem cells, equaling OVA titers of previously OVA-immunized control 
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animals. Strikingly, anti-OVA titers were significantly higher in animals, which received OVA-expressing 

stem cells and displayed teratoma formation in contrast to animals, which obtained the same stem 

cells but did not develop any tumors. This could be explained by the early activation of CTLs or NK cells 

in the host, leading to rapid rejection of the graft and elimination of the immunogenic antigen, i.e. 

OVA. In contrast, if those cells were not able to completely reject teratomas, OVA would be expressed 

in the forming tissue, enabling an increased immune response against this miHC antigen by CD4+ T 

and B cells.  

Whether CD4+ T cells specific for OVA were involved in the antibody generation of hosts was further 

determined by characterization of generated antibody isotype subclasses. Major proportion of OVA 

antibodies were of the IgG1 and IgG2b isotypes, indicating a class switch in OVA-specific B cells which 

requires the interaction with antigen-specific CD4+ T cells to induce the class switch since the OVA 

protein is a thymus-dependent antigen.  

Generally, the presumed time for humoral response after primary antibody exposure is up to 14 days 

(Ademokun and Dunn-Walters, 2010). Consequently, humoral response against OVA was not 

detectable early after transplantation but developed with tumor formation of inoculated stem cells, 

showing that expression of miHC antigens is sufficient to induce an antibody response of the host. At 

this, not only antigen-specific B lymphocytes but also antigen-specific CD4+ T lymphocytes became 

activated in syngeneic hosts after inoculation of stem cells expressing OVA as single miHC antigen. 

Due to the absent expression of MHC class II molecules, PSC itself unlikely function as professional 

APCs for CD4+ T cell activation. However, with differentiation to epithelial cells which serve as atypical 

APCs since they express MHC class II molecules, CD4+ T lymphocytes could be activated by direct 

allorecognition (Hershberg et al., 1998; Kreisel et al., 2002). More likely, OVA peptides derived from 

apoptotic PSCs or teratoma cells are taken up by host APCs and presented to CD4+ T lymphocytes via 

the indirect allorecognition pathway. Activated T helper cells then further activate and enhance CTL 

and B lymphocyte effector function. 

 

5.2.2 NK cells supported killing of stem cells 

Due to the rather low expression of MHC class I molecules, which served as ligands for inhibitory NK 

cell receptors, stem cells can also become targets for NK cells. The susceptibility of PSCs to NK cell 

killing was previously shown for murine and human cells, demonstrating that besides xenogeneic and 

allogeneic also syngeneic NK cells were able to effectively kill stem cells (Dressel et al., 2008, 2010; 
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Kruse, Hamann et al., 2015; Tian et al., 2006). Therefore, the contribution of NK cell killing in the 

rejection of inoculated stem cells was additionally examined by cytotoxicity assays in which a NK cell-

sensitive target cells line was used as target cell. The lysis of the target cell line by splenocytes obtained 

of animals that received OVA-expressing stem cells was distinctly higher compared to lysis by 

splenocytes of hosts, which were injected with wildtype stem cells. At this, a proinflammatory 

environment due to adaptive effector responses against OVA would increase the capability of NK cells 

to kill PSCs.  

 

5.2.3 Analysis of mechanisms potentially influencing the immunogenicity of stem cell and 

stem cell-derived grafts 

5.2.3.1 Negligible expression of immunogenic genes in stem cells and their derivates 

Initially, Zhao et al. reported that iPSCs were associated with the overexpression of so-called 

immunogenicity-causing genes, affecting the outcome of transplantion, i.e. teratoma formation, in a 

mouse model (Zhao et al., 2011). Since then, several investigations concerning the potential 

expression and impact of these genes, Cyp3a11, Hormad1 and Zg16, on the immunogenicity of iPSC 

compared to ESCs were implemented. Murine studies showed that in contrast to the initial study, 

neither differentiated cells nor undifferentiated iPSCs displayed variant expression of those genes 

compared to ESCs and their derivates (Araki et al., 2013; Guha et al., 2013). These findings were 

confirmed in this thesis since expression of Zg16, Hormad1 and Cyp3a11 in PSCs and derived 

teratomas was detected only on a minimal level and did not show noticeable variations between stem 

cell types or differentiation status. In accordance with these findings, examination of human ESCs and 

iPSCs via qPCR and flow cytometric analysis demonstrated similar gene and protein expression of 

Zg16, Hormad1 and Cyp3a11 regardless of their differentiation status (Maynard et al., 2014). 

Nevertheless, further analysis of ZG16 and HORMAD1 in human stem cells and their differentiation 

products evinced that HORMAD1 expression in hESCs and hiPSCs derivates was very low and 

heterogeneous, but ZG16 expression increased significantly on differentiation of hPSCs into clinically 

relevant cell derivates as hepatocytes, cardiomyocytes and oligodendrocytes (Awe et al., 2015). 

However, modified peripheral blood mononuclear cell (PBMC) co-culture assays in vitro revealed no 

acute immune response due to ZG16 expression, indicating no significant immunogenicity of this gene 

(Awe et al., 2015). 
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5.2.3.2 Expression of immune-mediating enzymes 

Immune privilege was previously reported for several stem cell types including ESCs and mesenchymal 

stem cells (MSCs) (Li et al., 2004b; Uccelli et al., 2008). It comprises cellular, molecular or anatomical 

mechanisms to prevent cells or tissue from immunological pursuit by the immune system (Figure 59). 

This includes passive forms of antigenic invisibility, e.g. achieved by the lack of antigen presentation, 

or active immune regulation to prevent antigen recognition. Evasion of antigen recognition due to 

immunological barriers, e.g. the blood brain barrier (BBB), can lead to immune activation if that 

isolation breaks down or is bypassed by primed immune cells, eventually causing autoimmunity. 

Therefore, most of the classical immune-privileged sites, e.g. the eye, exhibit additional active immune 

regulation, which locally suppress the adaptive immune response against a target antigen. ESC-

derived tissues as well as adult stem cells were reported to exhibit several of these features to evade 

immune recognition by the organism. 

 

Despite their restricted differentiation potential, adult stem cells are required for the homeostasis and 

regeneration of various tissues in the adult organism. They are located in specialized niches, kept 

quiescent and uncompromised by autoimmune or inflammatory responses until their proliferation 

and differentiation is needed (Liu et al., 2009; Uccelli et al., 2008; Zavazava, 2013). It is postulated that 

these niches serve as a protective microenvironment besides the own immune-privilege of the adult 

 

Figure 59 Strategies to 
achieve immune privilege, 
e.g. by cell recruitment, 
anatomical barriers or 
various molecular 
mechanisms.  
Either immune-privileged 
sites possess mechanisms of 
active or passive immune 
evasion, or both 
simultaneously. uNK: uterine 
NK cells; BBB: blood brain 
barrier; ag: antigen. Picture 
by Zavazava, 2013 
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stem cells. However, it was highly debated whether ESCs, derived from the ICM of the early blastocyst, 

exhibit similar immune escape properties. Additionally, the immune regulatory capabilities of other 

stem cell types were investigated since it is important for future regenerative medicine to achieve 

tolerance to transplanted grafts by the recipient.  

A possibility to influence immune recognitions is the limitation of essential amino acids in a local 

environment. This can lead to interference of immune responses since lymphocytes require those fore 

rapid proliferation and effector function and are therefore especially sensitive to amino acid 

starvation (Calder, 2006; Chuang et al., 1990). Consequently, lowering the availability of essential 

amino acids in a tissue might lead to acquisition of immune privilege. It was previously shown that 

Indoleamine 2,3-dioxygenas (IDO), an intracellular enzyme that catabolized tryptophan, is not only an 

important factor for immune privilege during pregnancy but its expression was also found in DCs (Metz 

et al., 2007; Munn et al., 1998). Here, antigen presentation during tryptophan deprivation cause a 

polarization of CD4+ T cells towards the Treg phenotype (Fallarino et al., 2006). Additionally, the 

depletion of other essential amino acids, e.g. of arginine by Arginase 1, were found to modulate T cell 

responses (Bronte and Zanovello, 2005; Cobbold et al., 2009). It is assumed, that Ido expression on 

MSCs led to an immunosuppressive function in the human body (Su et al., 2014). In previous murine 

studies, only low amounts of Ido RNA and protein were found on ESCs and no contribution of IDO to 

immune suppressive activity of ESCs could be confirmed (Han et al., 2011; Monecke, 2013). In 

accordance with these studies, only very low RNA expression of Ido was discovered in PSCs in this 

thesis. After in vivo differentiation into teratomas, most tumors showed an increased level of Ido 

expression compared to PSCs but still lower than placenta tissue. However, in single animals, a 

tremendous amount of Ido, was expressed in teratomas derived from ES cells, outweighing the 

expression in the control. This indicates that undirected differentiation of stem cells can lead to an 

upregulation of Ido expression, which might influence the immunogenicity of the cells or tissue. In 

literature, this could be shown for several carcinomas, in which overexpression of Ido was associated 

with immune escape mechanisms of those tumors (Brandacher et al., 2006; Ozaki et al., 1988; Pan et 

al., 2008; Platten et al., 2012; Thaker et al., 2013). For Arg1 is was previously reported that its 

expression in tumor cell led to an ineffective anti-tumor immune response, but did not result in the 

complete inhibition of anti-tumor immune reactions (Korrer and Routes, 2014). However, other 

studies showed that the amino acid Arginine is important for tumor cells and suggested ARG1 as 

potential enzyme for anti-cancer therapy (Patil et al., 2016). In previous ES cell studies, it was 

demonstrated that a high expression of ARG1 in human ESC lines HES-1 and HES-2 led to suppression 
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of T cell activity (Yachimovich-Cohen et al., 2010). However, in vitro studies of murine ESCs revealed 

that Arg1 was not involved in the inhibition of co-cultured T cells since its expression was not 

detectable via qPCR analysis (Monecke, 2013). However, in this thesis a low expression of Arg1 was 

discovered in iPSC and ESC clones, which increased with differentiation during teratoma formation. 

However, whether this influences the immunogenicity of stem cell-derived tissues needs to be 

clarified. 

 

5.2.4 MiHC antigen expression affects engraftment by inducing an antigen dependent 

immune response – Summary and Outlook  

We could prove in this thesis that the expression of miHC antigens in PSCs led to adaptive immune 

effector activation in vivo. Thus, the in vivo immunogenicity of PSCs is highly different to its previously 

reported in vitro non-immunogenicity. In vitro, PSCs exhibited rather immunosuppressive features. 

However, with transplantation, the risk of indirect antigen presentation increases due to protein 

release from damaged or apoptotic cells. Additionally, the upregulation of MHC class I, as caused by 

differentiation of PSCs and/or an inflammatory environment, increases the risk of peptide-specific CTL 

responses towards miHC antigens. Consequently, variant miHC antigens have to be considered as 

immunogenic in PSCs in allogeneic transplantation settings even when MHC molecules are matched.  

MiHC antigens are generated by the intracellular degradation of polymorphic proteins which originate 

from polymorphisms in single nucleotide polymorphisms (SNPs), copy number variations (CNVs) or 

base-pair insertions or deletions (indels) (Hombrink et al., 2013). Since PSC-derived grafts are seen as 

new source for therapeutic transplantations, potential acquisition of neoantigens might occur due to 

incomplete or aberrant reprogramming of adult donor cells or the reprogramming itself, e.g. after 

integration of transcription factors into the genome (Takahashi and Yamanaka, 2006). Since the 

immune system has not encountered those antigens before, it is most likely that the tolerance 

towards these neoantigens is lacking. It was already reported that in more than 80 % of analyzed 

healthy patients OCT4-specific T cells, mainly CD4+ cells, were detected, indicating a feasible immune 

response against cells expressing this embryonic antigen like stem cells (Dhodapkar et al., 2010).  

Currently described miHC antigens include antigens encoded e.g. by sex chromosomes, derived from 

the Y chromosome, known as HY antigens. HY antigens are expressed among others on human 

hematopoietic progenitor cells which were already early assumed to affect hematopoietic stem cell 

transplantations (HSCT) (Voogt et al., 1988). HY antigens play also a role in graft rejection of solid 
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organs, in which HY-mismatching was shown to correlate with clinical outcome and acute graft 

rejection (Gratwohl et al., 2008; Tan et al., 2008). Moreover, several miHC antigens are encoded by 

autosomal genes, as HA1 – HA8, which are even found in mitochondrial DNA, named maternally 

transmitted antigens (MTA) (López-Larrea, 2012). It was shown for SCNT-derived ESCs that 

mismatched mitochondria affected graft survival, however the group did not clarify by which 

mechanisms (Deuse et al., 2015). The tissue distribution of known miHC antigens ranged from 

exclusive expression on hematopoietic cells, i.e. HA1, HA2, to broader expression as for HY, HA3 and 

HA4 antigens (Goulmy, 1996; Warren et al., 1998).  

Initially, murine skin graft rejection models revealed that a mismatch of MHC molecules between 

donor and recipient led to rapid graft rejection (Rosenberg and Singer, 1992). The transfer of T cells 

from a sensitized donor to a naïve recipient accelerated the graft rejection, indicating that  

T lymphocytes caused this immune response. In experiments where donor and recipient were MHC-

matched but differed in miHC antigens, a slower graft rejection was monitored (Rosenberg and Singer, 

1992), initially revealing that miHC antigen can influence the success of transplantations. Most 

available clinical data concerning miHC antigen mismatch in humans were found in the field of 

hematopoietic stem cell transplantations (HSCT). Here, it was reported that the expression of 

disparate miHC antigens increased the risk to develop acute graft versus host disease (GvHD) 

(Dzierzak-Mietla et al., 2012; Goulmy et al., 1996; Santos et al., 2016; Tseng et al., 1999) and chronic 

GvHD (Dzierzak-Mietla et al., 2012; Markiewicz et al., 2009; Mutis, 2015; Nakasone et al., 2015). 

Studies about discrepancies in miHC antigen expression in solid organ transplantation are still rare and 

controversial. For instance patient studies on autosomal MHC class I-restricted miHC antigens in 

kidney transplantations revealed no effects of minor miHC antigen mismatching (Dierselhuis et al., 

2013; Heinold et al., 2008). However, other studies showed an influence of miHC antigen discrepancies 

on the outcome of transplantation as HY-mismatching affected the clinical outcome of kidney and 

cornea transplantations (Böhringer et al., 2006; Gratwohl et al., 2008; Tan et al., 2008). The 

involvement of CD4+ T lymphocytes against HY antigens was shown to result in plasma cell infiltration 

into biopsied kidneys and antibody development against miHC antigens, which was consistent with 

findings of other groups (Porcheray et al., 2011; Spierings et al., 2003). In a study of miHC antigen 

mismatched skin and hematopoietic cell grafts, the role of direct presentation by donor DCs was 

evaluated. It revealed that direct presentation of miHC antigens by donor DCs is needed for an 

efficient rejection of grafts by CTLs but that in the absence of donor DCs an immune response is caused 

by indirect presentation of antigens (Fernandes et al., 2011).  



Discussion 

127 
 

In this thesis, it was confirmed that indeed expression of miHC antigens elicit antigen-dependent 

immune responses mediated by miHC antigen-specific CTLs, helper T and B cells. For this an in vivo 

murine model of miHC mismatch, due to OVA expression in the inoculated stem cells, was used in 

teratoma formation assays in otherwise syngeneic hosts. Since stem cells and stem cell-derived grafts 

are a potential source for cell replacement therapies, our findings showing their immunogenicity have 

to be considered for future replacement therapies. However, the intensity of the influence that miHC 

antigens have on immune responses might depend on the miHC antigen itself and on the conditions 

of transplantation. Additionally, the differentiation status and type of transplanted cells might alter 

the possibility to activate adaptive immune responses against miHC antigens. Nonetheless, the 

identification of potential immunogenic miHC antigens in PSCs and in PSC-derived grafts would allow 

screening for functionally relevant incompatibilities between donor and recipient and would be a start 

to evaluate the immunogenicity of miHC antigens in vivo. At this, potential recipients at risk of graft 

rejections could be treated by specific immunosuppressive strategies.  

 

5.3 Killing of murine pluripotent stem cells largely depends on the activating NK receptor 

NKG2D 

NK cells play an important role as cytotoxic effector cells scanning the organism for stressed, infected 

or malignant cells. Future strategies to treat diseases, such as HF or Parkinson’s disease might include 

the transplantation of PSC-derived grafts. However, those grafts are at risk of giving rise to teratomas 

in the recipient, if residuals of undifferentiated cells are still present in the grafts after in vitro 

differentiation. Previously, it was shown that NK cells are able to kill various human and murine PSCs 

in xenogeneic, allogeneic and syngeneic experimental set-ups (Dressel et al., 2008, 2010; Kruse, 

Hamann et al., 2015; Tian et al., 2006). The involvement of NKGD2 receptors on NK cells in killing of 

PSCs was assumed (Feng et al., 2009; Kim et al., 2007; Ogasawara et al., 2005) and then shown in an 

inhibition study in our group in which anti-NKG2D antibodies were used for analysis (Dressel et al., 

2008, 2010). To confirm the influence of NKG2D in the killing of various PSCs, a mouse model of NKG2D 

deficiency was used to test whether the susceptibility of PSCs to NK cells was altered in those animals. 

Here, the killing of PSCs by NK cells of NKG2D-deficient mice was compared to NK cells derived from 

wildtype C57BL/6 mice. All analyzed PSCs, including syngeneic and allogenic (but MHC-matched) 

maGSCs, ESCs and iPSCs, showed cell surface expression of NKG2D ligands which made them to 

potential targets for NK cell killing. The important role of NKG2D in the killing of those PSCs was then 



Discussion 

128 
 

clarified in in vitro cytotoxicity assays, in which it was shown that all PSCs were largely resistant to 

killing by naïve NKG2D-deficient NK cells. At this, wildtype NK cells showed a moderate level of killing 

even without previous in vitro stimulation of the NK cells. However, the stimulation of NK cells with 

IL-2 led to an increased killing of the target cell lines by NKG2D-deficient and wildtype NK cells. 

Nonetheless, IL-2-activated wildtype NK cells still showed higher lysis rates than NKG2D-deficient NK 

cells. This indicates that the moderate killing of PSCs largely depends on NKG2D receptors if NK cells 

are not stimulated. After stimulation of NK cells, obviously also other pathways than NKG2D are used, 

leading to an increased but not fully reconstituted killing of PSCs when compared to wildtype NK cell 

killing. Other ligand-receptor interactions that partially compensate the absent NKG2D receptor might 

include the activating NK cell receptor DNAM-1. The ligands for DNAM-1 that are CD112 and CD155 

were found to be expressed on human and murine stem cells (Dressel et al., 2010; Kruse, Hamann et 

al., 2015). Examination of human iPSC susceptibility to NK cells revealed that here DNAM-1 was the 

main mediator of stem cell killing by NK cells, albeit in a single donor-target combination also NKG2D 

was shown to influence PSC susceptibility (Kruse, Hamann et al., 2015). Since only one inbred mouse 

strain was analyzed in this thesis, it is possible that the NK cell receptor-ligand interactions are more 

diverse amongst different strains with different genetic background, which was already indicated for 

humans (Kruse, Hamann et al., 2015). 

In conclusion, it was demonstrated that NKG2D is an important activating receptor involved in killing 

of murine PSCs, which was lately also shown to concern other stem cell-like tumors (Rong et al., 2016; 

Wei et al., 2015; Zhang et al., 2016). Consequently, this knowledge can be used to develop strategies 

to deplete contaminating PSCs before grafting, thereby increasing the safety of transplantations. 

Moreover, immunosuppressive therapies not affecting NK cells might be favorable, if allogeneic PSC-

derived grafts are transplanted to allow a killing of residual PSCs by the NK cells of the recipient. 
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6 Summary and Conclusions 

In this thesis, the effect of immune responses on the pathogenesis of load-induced HF and the 

rejection of stem cell and stem cell-derived grafts was analyzed. It was shown that an increased 

afterload in a murine model of HF was sufficient to activate T helper cells with a specificity for an 

antigen expressed on cardiomyocytes and to accelerate the progression to HF in TCR-transgenic 

animals at risk to develop autoimmunity. T helper cells exerted their effect on the heart function 

independently of autoantibody induction. Thus, autoimmunity may contribute to the transition from 

hypertrophy to HF even when caused by an increased afterload. Immune reactions against cardiac 

antigens might also affect the chances to treat HF by new PSC-based therapies. The expression of a 

single miHC antigen in PSCs affected the engraftment in otherwise syngeneic hosts due to activation 

of adaptive immune responses including antigen-specific CTLs, T helper and B cells. Additionally, it was 

demonstrated that various stem cells became targets for NK cells and that NKG2D was an important 

activating receptor involved in killing of murine PSCs. These findings are important for future 

therapeutic applications, e.g. to prevent activation of autoimmune T cells in heart failure patients. 

Moreover, variant miHC antigen expression in transplantations between donor and recipients have to 

be considered. Consequently, a suitable immunosuppressive or immunomodulatory therapy primarily 

targeting adaptive immune cells is needed. NK cells might be important to eliminate residual PSCs 

after transplantation of stem-cell derived grafts. 
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7 Supplement 

7.1 Investigation of immune response contributing to the pathogenesis of load-induced 

heart failure 

7.1.1 Leukocyte cell composition of spleen and heart 

The splenocytes of animals which received a mixture of OT-I and OT-II T cells were further analyzed via 

flow cytometry to determine the proportion of myeloid cells and lymphocytes in the population. In 

total, 81.6 % (sham) to 82.8 % (TAC) of splenocytes were positive for the leukocyte marker CD45. This 

population of CD45+ cells included B cells (CD19+CD45R+ ), T cells (CD3+CD4+, CD3+CD8+), macrophages 

(F4/80+), NKT cells (CD3+DX5+), dendritic cells (CD11c+MHCII+), NK cells (CD3-DX5+), neutrophils 

(CD11b+Ly6G+), and monocytes (CD115+C11b+Ly6C+) listed in decreasing order of cell numbers (Figure 

60A). Most abundant cells were B cells which made up almost half of the leukocyte population  

(41.6 % (TAC) to 44 % (sham)) followed by T helper cells (16.2 % (sham) to 19.2 % (TAC)), cytotoxic T 

cells (9.5 % (sham) to 10.7 % (TAC)) and macrophages (9.1 % (TAC) to 9.3 % (sham)). The cell 

populations with lower cell numbers included NK T cells (1.3 % (TAC) to 3.1 % (sham)), dendritic cells 

(2.2 % (sham) to 2.3 % (TAC)), NK cells (0.9 % (sham) to 1.6 % (TAC)), neutrophils (1.1 % (sham) to  

1.2 % (TAC)) and monocytes (0.4 %). Analysis of the proportion of CD4+CD45.1+ cells in the leukocyte 

population of cMy-mOVA mice was determined, showing that 0.4 % of CD45+ cells derived from OT-II 

mice (CD45.1+), transferred via adoptive transfer. However, no significant differences in the splenocyte 

composition between TAC- and sham-operated animals were found. 

Additionally, heart tissue was digested to single cells and analyzed via flow cytometry to clarify the 

proportion of lymphocytes and myeloid cells in the target tissue itself. In hearts of TAC-operated 

animals 6.5 % and in sham-operated animals 3.4 % of cells were positive for CD45. Most abundant 

leukocytes in the myocardium of cMy-mOVA mice were macrophages, whose cell proportions ranged 

from 35.6 % (TAC) to 53.2 % (sham) of the total leukocyte population (Figure 60B). B cells, which were 

found in significantly higher levels in the heart after TAC operation (13 % (sham) to 15 % (TAC);  

p = 0.01, student’s t-test) and monocytes (12.3 (TAC) to 19.2 % (sham)) were found in moderate 

numbers, followed by dendritic cell population (5.2 % (TAC) to 8.3 % (sham); p = 0.02, student’s t-test). 

T helper cells and neutrophils made up around 4 to 5 % of leukocyte population (T helper: 3.5 % (sham) 

to 5.5 % (TAC); neutrophils: 3.6 % (TAC) to 3.9 % (sham)). Populations of cytotoxic T cells, NK cells and 

NKT cells were detected in lower cell numbers ranging from 0.4 % (TAC) to 0.6 % (sham) for NKT cells, 

0.9 % (sham) to 1.6 % (TAC) for NK cells and from 1.3 % (sham) to 2.4 % (TAC) for CD8+ T cells. The 
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amount of CD45.1+CD4+ cells derived from transferred OT-II cells was monitored to be significantly 

higher in TAC -(3 %) than sham- (1%) operated animals (p = 0.02, student’s t-test). 

Generally, no major differences of the lymphocyte composition in the spleen and myocardium of TAC-

operated animals compared to sham mice were found after the animals received adoptive transfer of 

OT-I and OT-II T cells, besides an increase in B cell numbers in the myocard. However, TAC-operated 

animals displayed a higher amount of CD45+ positive cell in the heart tissue, suggesting activation of 

inflammatory responses which led to an increased recruitment of leukocytes into the heart tissue. 

 

 

 

 

 

Figure 60 Proportion of lymphocytes and myeloid cells in the (A) spleen and (B) myocardium of 
cMy-mOVA mice which received OT-I and OT-II TCR-specific T cells.  
Shown is the mean proportion of B cells (CD19+B22O+), T cells (CD3+,CD4+/CD8+)), NK cells (CD3-

DX5+), neutrophils (CD11b+Ly6G+), patrolling monocytes (CD115+C11b+Ly6Clow), inflammatory 
monocytes (CD115+C11b+Ly6Chigh), macrophages (F4/80+) and dendritic cells (CD11c+I-Ab) of the 
CD45+ population + SEM. TAC (n = 7), sham (n = 6) except for T and NK cells: TAC (n= 6), sham (n = 
3). * < 0.05, student’s t-test 
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7.1.2 Endothelial cells in the myocard 

Moreover, the amount of endothelial cells (CD144+CD31+) in the population of CD45- cells in the spleen 

(as control) and myocardium of the analyzed cMy-mOVA mice was determined to examine the 

proportion of vascular cell adhesion protein 1 (VCAM-1) and intercellular adhesion molecule 1  

(ICAM-1) positive cells. These proteins are known to be important in inflammation and immune 

responses and could be responsible for an increased infiltration into the heart, if upregulated on 

cardiac endothelial cells. In the analyzed splenocyte population, 7.4 % (TAC) to 16.7 % (sham) were 

negative for the CD45 marker whereas in the myocardium 90.5 % (TAC) to 96.3 % (sham) of cells were 

not expressing this leukocyte marker. Epithelial cells positive for CD144 and CD31 in the CD45- 

population ranged from 0.3 % (TAC) to 0.6 % (sham) in the spleen and from 9.3 % (sham) to 9.8 % (TAC) 

in heart tissue (Figure 61) Further analysis of CD144+CD31+ cells showed that most of the cells in the 

spleen were double positive for VCAM-1 and ICAM-1 (39.5 % (TAC) to 45.2 % (sham)), and around 5 to 

10 % positive for single proteins. In contrast, in heart tissue around 50 % of the CD144+CD31+ cells were 

single positive for ICAM-1. Only 22.1 % (TAC) to 22.7 % (sham) of CD144+CD31+ cells were double 

positive for ICAM-1 and VCAM-1. VCAM-1 expression was found only on 1.9 % (TAC) to 2.5 % (sham) 

in this cell population.  

Overall, adoptive transfer and TAC operation was not associated with an altered expression in VCAM-

1 or ICAM-1 on epithelial cells compared to sham-operated animals.  
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Figure 61 Flow cytometric 
analysis of intercellular 
adhesion molecules ICAM-1 
and VCAM-1 on endothelial 
cells (CD144+CD31+) in 
spleen and heart of cMy-
mOVA mice which received 
a mixture of OT-I and OT-II T 
cells.  
Shown is the mean 
proportion + SEM. TAC (n = 
1), sham (n = 3). 
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7.2 Stem cell immunogenicity 

7.2.1 Germ layer marker expression in tumors derived from wildtype and OVA-expressing 

stem cells in immunodeficient and immunocompetent host 

Besides the characterization of tumors as teratomas by histology, qPCR analysis was performed to 

examine germ layer marker gene expression in various tumors, confirming the formation of teratomas 

after the inoculation of various stem cell clones into immunodeficient (summarized as RAG2-/-γc-/-) and 

immunocompetent (129/Sv) mice. As germ layer markers for the analysis served Th and Syn as marker 

for ectodermal structures, Afp and Alb for endodermal tissues and Ctnt and αMhc for mesodermal 

tissues in the tumor. These markers are not expressed on stem cell lines (data not shown) and 

therefore tissues of syngeneic mice (129/Sv) known to be positive for the specific germ layer markers 

were used as reference cells including hippocampal tissue for ectodermal, spleen and liver for 

endodermal and lung tissue for mesodermal germ layer markers. In this analysis, Hprt and Gapdh were 

used as housekeeper genes. In Figure 62, the mRNA expression of germ layer markers are summarized 

for tumors derived from wildtype or OVA-expressing stem cells in immunocompetent or 

immunodeficient mice. The OVA-expressing stem cells consisted of iPSC 129/Sv clone OVA#6 and 

OVA#24, whereas ESC BTL1 and iPSC 129/Sv TD11.1 were injected as wildtype cell lines. The analyzed 

tumors showed a variable expression of the tested germ layer markers of which at least one out of two 

for every germ layer was clearly detectable. Consequently, the tumors could be characterized as 

teratomas. Expression of markers showed a high standard derivation due to variations in different 

teratomas, indicating that the differentiation is random. Each teratoma showed a variable stage of 

differentiation with different amounts of cells of each germ layer. Overall, Th and Afp were the most 

abundant expressed markers in teratomas derived from OVA-expressing stem cells and wildtype stem 

cells in RAG2-/-γc-/- and 129/Sv mice, with even higher expression than in the control tissues. Ctnt was 

rather expressed in teratomas formed in immunodeficient animals (1.4 and 2.1 fold of reference tissue) 

than in immunocompetent hosts (0.05 to 0.08 fold). Syn and αMHC were only expressed at low levels 

(Syn: 0.03 to 0.33 fold; αMHC: 0.02 to 0.48 fold), whereas Alb was not detectable in any teratoma.  
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Figure 62 Germ layer marker expression in teratomas.  
Shown is the mean relative expression of germ layer marker to their reference tissues known to be 
positive for each gene: ectoderm (Th, Syn), endoderm (Afp, Alb), mesoderm (Ctnt, αMhc) of 129/Sv 
mice + SD. Mean of Hprt and Gapdh was used as housekeeper reference. OVA: iPSC 129Sv #6, #24; 
wt: ESC BTL1, iPSC 129/Sv. Analyzed teratomas each (n = 4). 
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7.2.2 Influence of adoptive transfer on tumor characteristics in RAG2-/-γc-/- mice 

The adoptive transfer of TCR-transgenic T cells had no significant effects on the size or weight of tumors 

derived by wildtype or OVA-expressing stem cells in immunodeficient mice. In Figure 63, it is shown 

that those parameters varied between tumors, independent of OVA expression and type of T cell 

transfer.  

 

Figure 63 Analysis of (A) tumor size and (B) tumor weight after injections of OVA-expressing and wildtype stem 
cells into immunodeficient hosts which received either TCR-transgenic T cells (OT-I T cells, OT-II T cells, OT-
I/OT-II T cells) or no T cells (w/o transfer). 
(A) Depicted is the mean tumor size + SEM. W/o transfer: OVA (n = 23), wt (n = 6); OT-I: OVA (n = 10), wt (n = 3); 
OT-I/OT-II: OVA (n = 12), wt (n = 5); OT-II: OVA (n = 3), wt (n = 2). Differences in tumor size between tumors 
derived from OVA-expressing stem cells (p = 0.32), between tumors derived from wildtype stem cells (p = 0.71), 
Kruskal-Wallis H-test. (B) Shown is the mean tumor weight + SEM. W/o transfer: OVA (n = 23), wt (n = 5); OT-I: 
OVA (n = 11), wt (n = 3); OT-I/OT-II: OVA (n = 14), wt (n = 5); OT-II: OVA (n = 3), wt (n = 3). Differences in tumor 
weight between OVA-expressing stem cell derived tumors (p = 0.36), between wildtype stem cell derived tumors 
(p = 0.51); Kruskal-Wallis H-test. 
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7.2.3 Influence of HY antigens on tumor formation in immunocompetent mice 

Further analysis of tumor formation for each stem cell clone in hosts of different gender revealed that 

almost all male stem cell lines showed tumor formation in male recipients but did not engraft in female 

hosts. Only injections of ESC BTL1 OVA#4 led to tumor formation in female hosts (Figure 64). However, 

tumor formation rate was only significantly altered for two male iPS cell clones (iPSC OVA#6, #24) 

which showed a high tumor formation rate in male host, but in contrast, no tumor formation in female 

hosts. Therefore, an additional influence of other miHC antigens derived from the Y-chromosome of 

male stem cells on the rejection of OVA-expressing stem cell tumors cannot be excluded. 

 

 

 

Figure 64 Tumor formation after 
injection of OVA-expressing stem cells 
into immunocompetent 129/Sv mice 
of different sex.  
IPSC OVA#13 were not injected into 
female hosts, and are consequently 
not depicted in the graph. Numbers of 
experiments are depicted in each 
diagram. Significant differences in 
tumor formations between male and 
female hosts are marked with asterisk. 
**<0.01; ***<0.001. IPSC OVA#6 (p = 6 
x 10-3), iPSC OVA#18 (p = 0.68), iPSC 
OVA#24 (p = 3.2 x 10-5), ESC BTL1 
OVA#4 (p = 0.59), ESC MPI-II OVA#4 (p 
= 0.07); chi-squared test.  
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7.2.4 Leukocyte infiltration into teratomas analyzed by flow cytometry 

For flow cytometry, tumors were digested to single cells and analyzed for several leukocyte 

populations. As seen in Figure 65, tumors derived from wildtype and OVA-expressing stem cells were 

positive for T cells (CD3+,CD4+,CD8+), B cells (CD45R+), macrophages (F4/80+), dendritic cells (CD11c+) 

and NK cells (NKp46+, DX5+). Numbers of cytotoxic T cells, dendritic cells and macrophages appeared 

to be higher in OVA-derived tumors compared to wildtype tumors, ranging from 10 to 30 % of CD45+ 

cells. In contrast, wildtype stem cell-derived teratomas showed higher numbers of T helper cells  

(22.6 %), B cells (10 %), NKp46+ (26.7 %) and DX5+ (11.2 %) NK cells compared to OVA-expressing tumors 

(CD3+CD4+: 14.2 %, CD45R+: 8 %, NKp46+: 20.8 %, DX5+: 6.8 %). Additionally, cells positive for the TCR 

Vβ 5.1/5.2 were found, but in significantly higher numbers in teratomas derived from OVA-expressing 

stem cells (16.6 %) compared to tumors formed by wildtype stem cells (3 %; p = 0.047). T cells using 

this receptor can be OVA-specific T cells as demonstrated by the OT-I and OT-II TCR. However, whether 

this indicates reactivity of OVA-specific T cells against the OVA expressed in the tumor tissue remains 

speculative. 

 

 

 

        

 

Figure 65 Analysis of leukocyte infiltration into teratomas analyzed by flow cytometry.  
Leukocyte population of CD45+ cells in tumor tissue derived from wildtype and OVA-expressing stem 
cells in syngeneic hosts (129/Sv) +SEM. ESC BTL1 wt (n = 6), iPSC OVA (n = 2). Differences between 
teratomas derived from wt and OVA-expressing stem cells: CD3+CD4+ (p = 0.5), CD3+CD8+ (p = 0.36), 
CD11c+ (p = 0.45), CD45R+ (p = 0.58), NKp46+ (p = 0.71), DX5+ (p = 0.71), F4/80+ (p = 0.39), TCR Vβ 
5.1/5.2+ (p = 0.047); student’s t-test. 
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7.2.5 Cellular composition of lymphocytes of host splenocytes after stem cell injections 

Splenocytes obtained from 129/Sv hosts which previously received injections of wildtype and OVA-

expressing stem cells were further analyzed to determine their cellular composition via flow 

cytometry. For this, freshly isolated (day 0) splenocytes of animals which showed tumor growth or 

failed to form teratomas were used. As seen in Figure 66, most abundant cell types were T helper cells 

(CD3+CD4+: around 25 %) and B cells (CD45R+: around 35%), followed by cytotoxic T cells (CD3+CD8+: 

around 10 %). Additionally, a minor extent of these T cells was positive for the TCR Vβ 5.1/5.2 which 

recognizes OVA, and some NK cells (DX5+CD3-, NKp46+) were found. In summary, no differences in the 

lymphocyte composition of animals that received OVA-expressing stem cells compared to wildtype 

stem cells could be monitored. Additionally, the lymphocyte composition of animals which rejected 

the stem cells resembled those of animals in which the injected stem cells engrafted. 
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Figure 66 Naïve splenocyte composition of animals which received either OVA-expressing (OVA) or 
wildtype (wt) stem cells and which showed tumor formation (w tumor) or tumor rejection (w/o 
tumor).  
Shown is the mean proportion of splenocytes + SEM. Wt w/o tumors: CD3+CD8+ (n = 5), CD3+CD4+ (n 
= 5), CD45R+ (n = 5), DX5+CD3- (n = 5), CD3+TCR Vβ 5.1/5.2+ (n = 0), NKp46+ (n = 0); OVA w/o tumor 
CD3+CD8+ (n = 59), CD3+CD4+ (n = 59), CD45R+ (n = 59), DX5+CD3- (n = 59), CD3+TCR Vβ 5.1/5.2+ (n = 
15), NKp46+ (n = 15); wt w tumor: CD3+CD8+ (n = 12), CD3+CD4+ (n = 12), CD45R+ (n = 12), DX5+CD3- (n 
= 12), CD3+TCR Vβ 5.1/5.2+ (n = 6), NKp46+ (n = 6); OVA w tumor CD3+CD8+ (n = 5), CD3+CD4+ (n = 5), 
CD45R+ (n = 5), DX5+CD3- (n = 5), CD3+TCR Vβ 5.1/5.2+ (n = 3), NKp46+ (n = 3). 
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