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Introduction

In 1976 Atiyah introduced an L2-index theorem for elliptic operators on non-

compact manifolds, [Ati76], and described the following application. Given a

closed Riemannian manifold X = X̃/G, where G is an infinite discrete group and

X̃ is a covering of X with free G-action, the Euler characteristic χ (X) is equal

to the index of the operator D = d+ d∗, where d is the exterior derivative on the

differential forms on X.

By Atiyahs L2-index theorem this is the same as the index of the lifted opera-

tor D̃, and with this lifted operator he defined real-valued Betti numbers b
(2)
p

(
X̃
)

of the covering X̃ such that∑
p

(−1)p b(2)
p

(
X̃
)

= χ (X) .

A priori, from their definition using the von Neumann dimension, these Betti

numbers are real and so Atiyah asked for examples where they are irrational.

Over the years this question was reformulated to the Atiyah conjecture, which

states that L2-Betti numbers are rational for certain classes of groups. Positive

results include free groups and torsionfree elementary amenable groups. For an

extensive survey regarding L2-invariants and the Atiyah conjecture see [Lüc02b].

Recent results for irrational L2-Betti numbers include [Aus13], [PSZ15] and

[Gra14], and will be revisited later.

First we recall an equivalent combinatorial approach to L2-Betti numbers.

Combinatorial L2-Betti numbers

For a discrete group G recall l2(G), the Hilbert space of square summable func-

tions on G. It contains the complex group ring C[G] ⊂ l2(G) in a natural way.

So if γ ∈ l2(G) has finite support, then γ ∈ C[G] ⊂ l2(G). Furthermore the inner

product on l2(G) gives also an inner product on C[G]. We sketch the construction

shown in [Eck00], for more details see also [Lüc02b].

Let Y be a connected CW -complex and G be a group acting freely on Y

by permuting the cells such that X = Y/G is a finite CW -complex. We call

1



2 INTRODUCTION

Y a connected free cocompact G-CW -complex. Now the cellular chain groups

Ci (Y ) with complex coefficients are finitely generated free C[G]-modules of rank

αi, where αi is the number of i-cells in X. Let

di : Ci (Y )→ Ci−1 (Y )

be the C[G]-linear boundary map, then the inner product on C[G] gives the

adjoint

d∗i : Ci−1 (Y )→ Ci (Y ) .

Define the combinatorial Laplacian ∆i := di+1d
∗
i+1 + d∗i di : Ci (Y ) → Ci (Y ) .

This induces an L2-Laplacian

∆
(2)
i : Ci (Y )⊗C[G] l

2 (G)→ Ci (Y )⊗C[G] l
2 (G) .

Considering the L2-boundary map δi = di ⊗ Id, we have the decomposition

C
(2)
i (Y ) = ker δi ⊕ im δ∗i = ker ∆

(2)
i ⊕ im δi+1 ⊕ im δ∗i .

So the i-th L2-homology of the free cocompact G-CW -complex Y

H
(2)
i (Y ) := ker δi

/
im δi+1

is isomorphic to the harmonic L2-chains ker ∆
(2)
i .

Let V ⊂ l2(G)n be a C[G]-submodule. We write N (G) for the group von

Neumann algebra, see [Lüc02b]. The von Neumann dimension of V is defined

as

dimN (G) (V ) :=
n∑
i=1

〈PV ei, ei〉 ,

where PV is the orthogonal projection onto the closure of V and (ei) is the natural

basis of l2 (G)n. Via the identification Ci (Y )⊗C[G] l
2 (G) ∼= l2 (G)αi we have the

i-th L2-Betti number

b
(2)
i (Y ) := dimN (G)

(
ker ∆

(2)
i

)
.

Now assume we had a dimension function for K[G]-submodules V ⊂ K[G]n

which takes the place of the von Neumann dimension for any field K. Then

we could consider the combinatorial Laplacian in the construction above with K-

coefficients as a K[G]-linear map from K[G]n to K[G]n and similarly define a K[G]-

Betti number of the covering Y , in particular for a finite field Fp. Unfortunately

the decomposition used for the identification of harmonic chains and homology

only works for Hilbert spaces and fails for positive characteristics. Thus we would
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need the dimension function to be defined for all K[G]-modules such that we may

define the K[G]-Betti numbers as

b
K[G]
i (Y ) := dimK[G]

(
ker di

/
im di+1

)
.

Results

Let G be a discrete amenable group and K be a field. Recall that by the Følner

condition amenability means that we have almost-translation-invariant finite sub-

sets of G. We can think of these as finite almost-subgroups. By averaging over

these sets we establish a dimension function called Følner dimension for submod-

ules of free K[G]-modules.

Theorem 0.1. Let G be an amenable group with Følner net (Fi), K be a field,

n ∈ N, for any K[G]-submodule M ⊆ K[G]n it holds that

dimK[G] (M) := lim
i

dimK
(
{m ∈M | suppm ⊆ Fi}

)
|Fi|

,(0.1)

is well-defined and independent of the choice of (Fi).

Remark 0.2. If the group G is finite, then any K[G]-submodule M ⊆ K[G]n is

a finite dimensional K-vector space. Thus the definition implies

dimK[G] (M) =
dimK (M)

|G| .(0.2)

This gives a rough idea of what we measure with this dimension function.

We also show desirable properties, so that it behaves similar to the von Neu-

mann dimension for C[G]-submodules V ⊂ l2(G)n.

Theorem 0.3. Let n ∈ N and M,N ⊆ K[G]n be K[G]-submodule. The Følner

dimension dimK[G] fulfills the following properties.

(i) dimK[G]

(
K[G]n

)
= n.

(ii) dimK[G] (M) = 0 ⇐⇒ M = 0.

(iii) dimK[G](M) ≤ dimK[G](N), for M ⊆ N ⊆ K[G]n.

(iv) dimK[G] (M) = sup
{

dimK[G]

(
M̄
) ∣∣∣ M̄ ⊆M finitely generated

}
.

(v) dimK[G] (M +N) = dimK[G] (M) + dimK[G] (N)− dimK[G](M ∩N).

(vi) dimK[G] (M) = dimK[G] (kerT ) + dimK[G](imT ), T : M → N K[G]-linear.

(vii) dimK[G](M) = dimK[H](MH), where MH ⊆ K[H]n for a subgroup H ≤ G

such that M = MH ·K[G].



4 INTRODUCTION

Next we show that inspired by additivity for K[G]-submodules this dimension

can be extended to any finitely generated K[G]-module by the following definition,

which is shown to be well-defined, monotonous and also satisfies additivity.

Definition 0.4. Let G be a discrete, amenable group, K be a field and n ∈ N.

Let M be a finitely generated K[G]-module with T : K[G]n → M surjective and

K[G]-linear. We define

dimK[G] (M) := n− dimK[G] (kerT ) .(0.3)

Furthermore inspired by property (iv) for K[G]-submodules we can extend

this all the way to general K[G]-modules, because any such module is the union

of its finitely generated submodules.

Definition 0.5. Let G be a discrete, amenable group, K be a field. Let M be a

K[G]-module. We define

dimK[G] (M) := sup
{

dimK[G]

(
M̄
) ∣∣∣ M̄ ⊆M is finitely generated

}
.(0.4)

Thus we may define new Betti numbers as we intended and also have that

b
K[G]
i (Y ) = dimK[G] (ker di)− dimK[G] (im di+1) .

Theorem 0.6. Let G be a discrete, amenable group and K be a field. Let

0→ N →M → P → 0

be an exact sequence of K[G]-modules, then

dimK[G] (M) = dimK[G] (N) + dimK[G] (P ) .(0.5)

Further investigation of the dimension function reveals that a group with

solvable word-problem produces only computable Følner dimensions. Here com-

putable means that it can be approximated by a Turing machine upto any given

error.

Theorem 0.7. Let G be a finitely generated discrete amenable group and K be

any field. If G has solvable word-problem, then dimK[G] (kerT ) and dimK[G] (imT )

are computable for any K[G]-linear map

T : K[G]m → K[G]n.

And lastly we describe computational tools and construct finitely generated

groups G and elements T ∈ K[G] such that their kernels as K[G]-linear maps

have irrational Følner dimension.
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Theorem 0.8. For every non-negative real number r there exists a finitely gen-

erated amenable group G and T ∈ F2[G]m×n such that

dimF2[G] (kerT ) = r.(0.6)

For L2-Betti numbers we can connect such purely algebraic results to man-

ifolds by a standard construction shown in [GLSŻ00, Theorem 6 and 7] and

[Lüc02a, Lemma 2.2]. Given a finitely generated group G and an element

T ∈ Z[G] we find a closed manifold M with fundamental group G, such that

the third L2-Betti number of a normal covering M̃ is the von Neumann dimen-

sion dimN (G) (kerT ) of the kernel of T as an operator on l2 (G). As is noted in

[PSZ15], if G is finitely presented then the universal covering of M can be chosen

as the normal covering M̃ .

In all we get well-defined K[G]-Betti numbers for an amenable group G and

a field K. Now additivity shows that the alternating sum of K[G]-Betti numbers

coincides with the alternating sum of the number of G-cells in each rank, that is

for a free cocompact G-CW -complex Y∑
i

(−1)i b
K[G]
i (Y ) = χ

(
Y
/
G
)
.

Indeed, the proposed K[G]-homology is a homology with local coefficients and

therefore satisfies homotopy invariance. Since the Følner dimension is invariant

under isomorphisms and we also have homotopy invariance for b
K[G]
i (Y ). Further

topological properties remain to be investigated.

Outline

Amenable groups

At the beginning of Chapter 1 we recall some topological definitions, namely

directed sets and nets. Furthermore we recall the Følner condition [Føl55] for

amenable groups. Afterwards we introduce the notion of K-boundary of F , where

K,F ⊂ G are subsets of a group. This consists of the elements g ∈ G for which

the translated subset Kg intersects both F and its complement G \ F .

Thereby we arrive at an equivalent definition of amenability by Følner nets,

(1.3.1). We also see that without loss of generality we can demand that such nets

are increasing and exhaust the group.
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Linear algebra

In Chapter 2 we recall the definition of a module over a ring and define the

group ring of a field K and a group G. Furthermore we define the support of a

group ring element which is a finite subset of G. Using this we examine two kinds

of finite-dimensional subspaces of a K[G]-submodule M ⊂ F [G] induced from the

K-vector subspace K[F ] ⊂ K[G] for a finite subset F ⊂ G.

Namely the subspace of elements which are supported on F ⊂ G, M ∩ im iF ,

and the subspace of projected elements pF (M). We find estimates on their sizes

which will be used in Chapter 4.

Convergence theorem

In Chapter 3 we reproduce a variation of the quasi-tiling lemma of Ornstein

and Weiss [OW87] as presented by Krieger, [Kri07]. Theorem 3.2.3 shows con-

vergence with regards to Følner nets for subadditive functions on the set of finite

subsets of an amenable group.

We prove an adaption to almost-superadditive functions in Theorem 3.2.2,

this serves as foundation of the dimension function introduced in Chapter 4.

Følner dimension

Chapter 4 contains the main results of this thesis. In the first part we define a

function on submodules of free K[G]-modules which we call the Følner dimension,

(4.1.4). For a submodule M ⊂ K[G]n over the group ring of an amenable group

G this is

dimK[G] (M) := lim
i

dimK
(
M ∩ im iFi

)
|Fi|

,

where (Fi) is a Følner net in G.

This definition is not a new idea. At least similar ones, where the field is

the complex numbers C, are used in approximation results for L2-Betti numbers,

[Ele06]. We also see for which modules the Følner dimension agrees with similar

definitions.

What is new is the well-definition for all submodules of free K[G]-modules

extended to any finitely generated K[G]-module and finally any K[G]-module, in

combination with the proof of properties similar to the von Neumann dimension.

These are proven in the second part of the chapter.
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Then in the third part we investigate the connection between different choices

of fields for the group ring, as well as the relation to the von Neumann dimen-

sion and a rank function introduced by Elek, [Ele03b]. The latter allows the

reformulation of an approximation result for residually finite groups, [LLS11].

Methods of computation

In Chapter 5 we recall our motivation coming from L2-Betti numbers and

the so called Atiyah conjecture. Therefore we investigate which values the Følner

dimension takes for kernels of K[G]-matrices, in particular for a field K of positive

characteristic and a finitely generated amenable group G.

The first part concerns finitely generated amenable groups for which the word-

problem is solvable. We deduce from the coarse monotony of the sequence which

converges to the Følner dimension, that this limit is a computable number.

In the second part we rebuild the computational tool from [GS14] for charac-

teristic 2. Then corresponding to L2-Betti numbers of normal coverings we show,

for any real number r, the construction of a finitely generated amenable group

and an associated F2[G] matrix, whose kernel has Følner dimension r.

Similar, corresponding to L2-Betti numbers of universal coverings we con-

struct a finitely presented amenable group and an associated F2[G]-matrix, whose

kernel has irrational Følner dimension.

In the final part we use the properties established in Chapter 4 to translate

the construction of a transcendental L2-Betti number, the result of [PSZ15], to

all positive characteristics except 2.
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CHAPTER 1

Amenable groups

We begin with the well known generalization of sequences from natural numbers

to directed sets.

1.1. Nets

Recall the basics of topological spaces, for details see [Kel75].

Definition 1.1.1. A binary relation ≥ directs a non-empty set I if

(i) for i, j, k ∈ I such that i ≥ j and j ≥ k it follows that i ≥ k,

(ii) for all i ∈ I holds that i ≥ i,

(iii) for any i, j ∈ I there exists k ∈ I such that k ≥ i and k ≥ j.

The pair (I,≥) is called a directed set.

Definition 1.1.2. (i) A function f : I → X, from a directed set (I,≥) to a

set X, is called a net. We write xi for f(i), i ∈ I and (xi) instead of f .

If X is a topological space, a net (xi) converges to x ∈ X if and only if for

every open neighborhood Ux ⊆ X of x there exists i0 ∈ I such that xi ∈ Ui
for all i ≥ i0 ∈ I. We write limi xi = x if (xi) converges to x.

(ii) Let (xi) and
(
yj
)

be nets in a topological space X, then
(
yj
)

with a function

φ : J → I is a subnet of (xi) if and only if the following holds:

(a) yj = xφ(j), for all j ∈ J ,

(b) for every i ∈ I there exists k ∈ J such that j ≥ k implies φ(j) ≥ i.

(iii) A point x ∈ X is a cluster point of a net (xi) if and only if for every

neighborhood Ux of x and k ∈ I there exists i ≥ k such that xi ∈ Ux.

Theorem 1.1.3. Let (xi) be a net in a topological space X then

(i) x ∈ X is a cluster point of (xi) if and only if there exists a subnet of (xi)

that converges to x,

(ii) C :=
⋂
k∈I
{
xi | |i ≥ k ∈ I

}
is the set of all cluster points of (xi),

(iii) if X is compact then C 6= ∅.

Definition 1.1.4. Let (xi) be a net in the real numbers R such that C is not

empty.

11



12 1. AMENABLE GROUPS

(i) The infimum of its clusterpoints is called lim infi xi, the limes inferior of

(xi).

(ii) The supremum of its clusterpoints is called lim supi xi, the limes superior

of (xi).

Corollary 1.1.5. Let (xi) be a net in the real numbers R such that C is not

empty. If lim infi xi = lim supi xi < ∞, then there is only one cluster point and

(xi) converges to it.

1.2. Amenability

The Følner condition for amenability was introduced by [Føl55], we recall his

original definition and then follow the idea and notation of relative amenability

from [Kri07]. For more details about amenability see [Pat88].

Definition 1.2.1. [Føl55] A discrete group G is amenable if and only if for any

0 < η < 1 and any finite subset L ⊆ G there exists a non-empty finite subset

F ⊆ G such that

|F ∩ lF | ≥ η|F |(1.2.1)

for all l ∈ L.

Definition 1.2.2. [Kri07] Let G be a discrete group, F,K ⊆ G subsets and

a ∈ G, then we define the following subsets of G.

(i) Translates of F ,

aF := {af | f ∈ F} ,

Fa := {fa | f ∈ F} ,

FK−1 :=
{
fk−1

∣∣ f ∈ F, k ∈ K} .
(ii) The K-interior of F ,

IntK (F ) := {g ∈ G | Kg ⊆ F} .

(iii) The K-exterior of F ,

ExtK (F ) :=
{
g ∈ G

∣∣ Kg ⊆ G \ F
}
.

(iv) The K-ball of F ,

BK (F ) := G \ ExtK (F ) .
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(v) The K-boundary of F ,

∂K (F ) := G \
(

ExtK (F ) ∪ IntK (F )
)

Lemma 1.2.3. Let G be a discrete group, F, F ′, K,K ′ ⊆ G subsets and a, g ∈ G
then the definition above implies

(i) ∂{g} (F ) = ∅,
(ii) ∂K (F ) =

{
g ∈ G

∣∣∣ Kg ∩ F 6= ∅ and Kg ∩
(
G \ F

)
6= ∅
}

,

(iii) ∂K (F ) =
⋃
k1,k2∈K k

−1
1

(
F \

(
F ∩ k1k

−1
2 F

))
,

(iv) ∂K (F ) = ∂K
(
G \ F

)
,

(v) ∂K (F ∪ F ′) ⊆ ∂K (F ) ∪ ∂K (F ′),

(vi) ∂K (F ) ⊆ ∂K′ (F ), if K ⊆ K ′ ⊆ G,

(vii) ∂K (Fa) = ∂K (F ) a,

(viii) ∂Ka (F ) = a−1∂K (F ),

(ix) F \ IntK (F ) ⊆ ∂K (F ), if e ∈ K,

(x) KF ⊆ BK (F ), if K−1 = K.

Furthermore, if F,K ⊆ G are finite subsets, then ∂K (F ) is finite.

Proof. Let G be a discrete group, F, F ′, K,K ′ ⊆ G subsets and a, g ∈ G

(i) then Int{g} (F ) = g−1F and Ext{g} (F ) = g−1
(
G \ F

)
. So ∂{g} (F ) = G \

G = ∅.
(ii) The negation of

(
Kg ⊆ F or Kg ⊆ G \ F

)
is equivalent to(

Kg ∩ F 6= ∅ and Kg ∩
(
G \ F

)
6= ∅
)
.

(iii) By definition it holds that

g ∈ ∂K (F ) ⇐⇒ ∃k1, k2 ∈ K : k1g ∈ F and k2g ∈ G \ F

⇐⇒ ∃k1, k2 ∈ K : g ∈ k−1
1 F ∩

(
G \ k−1

2 F
)

⇐⇒ ∃k1, k2 ∈ K : g ∈ k−1
1

(
F \

(
F ∩ k1k

−1
2 F

))
.

(iv) Follows from (ii).

(v) Directly follows from Kg ∩
(
G \ (F ∪ F ′)

)
= Kg ∩

(
G \ F

)
∩
(
G \ F ′

)
and

the equivalence Kg ∩ (F ∪ F ′) 6= ∅ ⇐⇒ Kg ∩ F 6= ∅ or Kg ∩ F ′ 6= ∅.
(vi) Follows from (ii).

(vii) Follows from (iii) with

k−1
1

(
Fa \

(
Fa ∩ k1k

−1
2 Fa

))
= k−1

1

(
F \

(
F ∩ k1k

−1
2 F

))
a.
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(viii) Follows from (iii) with⋃
k1,k2∈Ka

k−1
1

(
F \

(
F ∩ k1k

−1
2 F

))
=

⋃
k1,k2∈K

a−1k−1
1

(
F \

(
F ∩ k1k

−1
2 F

))
.

(ix) Let e ∈ K, by definition Kg ⊆ F for g ∈ IntK (F ), so in particular eg ∈ F .

Thus IntK (F ) ⊆ F and similarly ExtK (F ) ⊆ G\F . The statement follows.

(x) Let K−1 = K. Assume kf ∈ ExtK (F ) , f ∈ F, k ∈ K then Kkf ⊆ G \ F .

But k−1 ∈ K implies f ∈ G \ F which contradicts f ∈ F . Thus KF ⊆
BK (F ).

�

Lemma 1.2.4. A discrete group G is amenable if and only if for any 0 < ε < 1

and any finite subset K ⊆ G there exists a non-empty finite subset F ⊆ G such

that

|∂K (F )|
|F | ≤ ε.(1.2.2)

Proof. Suppose that G is amenable and fix 0 < ε < 1 and a finite subset K ⊆ G.

Let L := KK−1 and η := 1 − ε|L|−2. There exists F ⊆ G finite, such that

|F ∩ lF | ≥ η|F | for all l ∈ L. Thus for all k1, k2 ∈ K we have

|
(
F \

(
F ∩ k1k

−1
2 F

))
| ≤ |F |− η|F | = |F |ε|L|−2.

From Lemma 1.2.3((iii)) above we deduce that

|∂K (F )| ≤
∑

k1,k2∈K

|
(
F \

(
F ∩ k1k

−1
2 F

))
| ≤ ε|F |.

On the other hand, assume that (1.2.2) holds and fix 0 < η < 1 and L ⊆ G finite.

Let K := L−1 ∪ {e} and ε := 1− η. Then Lemma 1.2.3((iii)) shows for all l ∈ L
that F \ (F ∩ lF ) ⊆ ∂K (F ) and there exists F ⊆ G finite with

|F ∩ lF | = |F |− |
(
F \ (F ∩ lF )

)
| ≥ |F |− |∂K (F )| ≥ η|F |.

�

Definition 1.2.5. Let H ≤ G be a non-trivial subgroup of a discrete group G.

We call a subset V ⊆ G a right transversal (for H) if we get a partition of G,

G =
⊔
v∈V

Hv.(1.2.3)

Lemma 1.2.6. Let H ≤ G be finite and V ⊆ G its right transversal.
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(i) For a non-empty subset E ⊆ H we have that

∂H(E) =

H if E 6= H,

∅ if E = H.
(1.2.4)

(ii) For any non-empty finite subset F ⊆ G we get a partition F =
⊔
v∈V F

vv

and have that

∂H (F ) =
⊔
v∈VF

H · v,(1.2.5)

where VF =
{
v ∈ V

∣∣ ∅ 6= F v 6= H
}

.

Proof. Let H ≤ G be finite and V ⊆ G its right transversal.

(i) Since H is a subgroup and E ⊆ H we have

∀g ∈ G : Hg ∩ E 6= ∅ ⇐⇒ g ∈ H,

∀g ∈ H : Hg ∩
(
G \ E

)
6= ∅ ⇐⇒ Hg ∩

(
H \ E

)
6= ∅.

So by definition

∂H(E) =
{
g ∈ G

∣∣∣ Hg ∩ E 6= ∅ and Hg ∩
(
G \ E

)
6= ∅
}

=
{
g ∈ H

∣∣∣ Hg ∩ (H \ E) 6= ∅}
=

H if E 6= H,

∅ if E = H.

(ii) Let V F =
{
v ∈ V

∣∣ F v 6= ∅
}

, then for all g ∈ G it holds that

Hg ∩

 ⊔
v∈V F

F vv

 6= ∅ ⇐⇒ g ∈
⊔
v∈V F

Hv,

and thus for all g ∈
⊔
v∈V F Hv

Hg ∩

G \
 ⊔
v∈V F

F vv


 6= ∅ ⇐⇒ Hg ∩

 ⊔
v∈V F

(
H \ F v

)
v

 6= ∅.
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Finally this implies

∂H (F ) =

g ∈ ⊔
v∈V F

Hv

∣∣∣∣∣∣ Hg ∩
 ⊔
v∈V F

(
H \ F v

)
v

 6= ∅


=
⊔
v∈VF

Hv,

where VF =
{
v ∈ V F

∣∣ F v 6= H
}

.

�

1.3. Følner nets

For a discrete group G let F(G) be the set of non-empty finite subsets of G.

Theorem 1.3.1. Let G be a discrete group. Then G is amenable if and only if

there exists a net
(
Fi
)

in F (G) such that

lim
i

|∂K (Fi)|
|Fi|

= 0(1.3.1)

for all K ∈ F (G). Such a net is called Følner net.

Proof. Let G be an amenable group. To construct a Følner net we need a

directed set (I,≥). Let I := F(G) × N be the set of pairs of finite subsets of G

and positive integers. We may direct this set as follows:

(L,m) ≥ (K,n) ⇐⇒ K ⊆ L and n ≤ m.

By Lemma 1.2.4 there exists a map f : (I,≥)→ F(G) such that for all i = (K,n)

it holds that

|∂K
(
f(i)

)
|

|f(i)| ≤ 1

n
.

This defines a net (Fi) := f. Let U0 ⊆ (−1, 1) be an open neighborhood of 0, fix

n ∈ N such that 1
n
∈ U0 and let iK := (K,n) then by Lemma 1.2.3 we have for

all (L,m) = i ≥ iK that

|∂K (Fi)|
|Fi|

≤ |∂L (Fi)|
|Fi|

≤ 1

m
≤ 1

n
.

This holds for all K ∈ F(G) and thus (1.3.1) follows.

On the other hand, suppose that G admits a Følner net (Fi). Let 0 < ε < 1 and

K ⊆ G be a finite subset. Since limi
|∂K(Fi)|

|Fi| = 0 there exists j ∈ I such that

|∂K(Fj)|
|Fj | ≤ ε. The theorem follows by Lemma 1.2.4. �
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Corollary 1.3.2. Let G be a countable amenable group then there exists a se-

quence (Fi)i∈N in F (G) such that

lim
i→∞

|∂K (Fi)|
|Fi|

= 0(1.3.2)

for all K ∈ F (G). Such a sequence is called Følner sequence.

Proof. Let G be a countable amenable group and
(
Ej
)
j∈F(G)×N a Følner net as

in the proof above. We enumerate the elements of G = {gk | k ∈ N} and define

finite subsets Hn := {gk | 1 ≤ k ≤ n} for n ∈ N. Clearly for every K ∈ F (G)

there exists n ∈ N such that K ⊂ Hn. Now let Fn := E(Hn,n) for n ∈ N then

(Fi)i∈N is a Følner sequence by (1.3.1) and Lemma 1.2.3. �

Lemma 1.3.3. Let (Ai)i∈I ,
(
Bj

)
j∈J be two Følner nets then there exists a Følner

net (Fk)k∈K such that (Ai) ,
(
Bj

)
are subnets.

Proof. Let (Ai)i∈I ,
(
Bj

)
j∈J with directed sets (I,≥) respective (J,≥) be Følner

nets. We construct a directed set (K,≥) as follows. Let Î , Ĵ be copies of I, J and

set K := I × J
⊔
Î × Ĵ . (K,≥) is a directed set by the inherited relation where

(i, j) ≥
(
i′, j′

)
⇐⇒ i ≥ i′, j ≥ j′ if (i, j) ∈ I × J and

(
i′, j′

)
∈ I × J,

(i, j) ≥
(
î′, ĵ′

)
⇐⇒ i ≥ î′, j ≥ ĵ′ if (i, j) ∈ I × J and

(
î′, ĵ′

)
∈ Î × Ĵ ,(

î, ĵ
)
≥
(
i′, j′

)
⇐⇒ î ≥ i′, ĵ ≥ j′ if

(
î, ĵ
)
∈ Î × Ĵ and

(
i′, j′

)
∈ I × J,(

î, ĵ
)
≥
(
î′, ĵ′

)
⇐⇒ î ≥ î′, ĵ ≥ ĵ′ if

(
î, ĵ
)
∈ Î × Ĵ and

(
î′, ĵ′

)
∈ Î × Ĵ .

We define (Fk)k∈K by

Fk :=


Ai if k = (i, j) ,

Bj if k =
(
î, ĵ
)

.

Clearly, this is a Følner net, and (Ai) ,
(
Bj

)
are subnets. �

Lemma 1.3.4. Let H ≤ G be a non-trivial finite subgroup of an amenable

group G, and (Fi) be a Følner net in F(G). Furthermore let V ⊆ G be a

right transversal for H and define Vi :=
{
v ∈ V

∣∣ Fi ∩Hv 6= ∅} and V ′i :=

{v ∈ Vi | Fi ∩Hv 6= Hv}, then

lim
i

|V ′i |
|Vi|

= 0(1.3.3)
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Proof. Consider the partition Fi =
⊔
v∈Vi F

v
i v. By Lemma 1.2.6((ii)) we have

∂H (Fi) =
⊔
v∈V ′i

Hv, and therefore

|V ′i |
|Vi|
≤ |V ′i ||H|

|Vi \ V ′i ||H| +
∑

v∈V ′i
|F v

i |
=

|∂H (Fi)|
|Fi|

lim i−−→ 0

�

This reinforces the intuitive notion that if an amenable group has a non-trivial

finite subgroup, any Følner net eventually looks like a union of cosets.

Lemma 1.3.5. Let G be an infinite amenable group, let (Fi)i∈I be a Følner net

in F(G) then

lim
i

1

|Fi|
= 0.(1.3.4)

Proof. Let G be an infinite amenable group and let F ⊂ G be a non-empty

finite subset. Let f ∈ F, g ∈ G \ F and define K :=
{
e, gf−1

}
then f ∈ ∂K (F ).

Let (Fi)i∈I be a Følner net in F(G) then for every i ∈ I there is a finite subset

Ki ⊂ G such that ∂Ki (Fi) 6= 0. Now (1.3.1) implies the lemma. �

Lemma 1.3.6. Let G be an infinite amenable group, let (Fi) be a Følner net in

F(G) and let A ⊆ G be a finite subset of G then (Fi ∪ A) is also a Følner net.

Proof. Let G be an infinite amenable group, let (Fi) be a Følner net in F(G) and

let A,K ⊂ G be finite subsets of G. By Lemma 1.3.5 it follows that limi
1

|Fi| = 0,

and thus limi
|∂K(A)|
|Fi| = 0. Furthermore we have that

|∂K (Fi ∪ A)|
|Fi ∪ A|

≤ |∂K (Fi)|
|Fi|

+
|∂K (A)|
|Fi|

,

by Lemma 1.2.3 and so limi
|∂K(Fi∪A)|

|Fi∪A| = 0. �

Theorem 1.3.7 (Følner exhaustion). Let G be a discrete amenable group. Then

there exists a Følner net (Fi) in F(G) such that Fi ⊇ Fj for i ≥ j and
⋃
i Fi = G.

Proof. Let G be a discrete amenable group, if G is finite, then the constant net

(G) fulfills the properties. So let G be infinite and let (Ei)i∈I be the Følner net

constructed in the proof of 1.3.1. We construct (Fi)i∈I recursively. For (L,m) ∈ I
with |L| = 1 or m = 1 we define

F(L,m) := L.
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Then ∂L
(
F(L,m)

)
= ∅ for all (L,m) ∈ I with |L| = 1. For (K,n) ∈ I with |K| > 1

and n > 1 we define

F(K,n) := F(K,n−1)

⋃
L(K

F(L,n−1) ∪ EiK,n ,

where iK,n ∈ I such that

|∂K
(
F(K,n−1)

⋃
L(K F(L,n−1) ∪ EiK,n

)
|

|F(K,n−1)

⋃
L(K F(L,n−1) ∪ EiK,n|

≤ 1/n.

We find such an iK,n ∈ I because of Lemma 1.3.6. Clearly,

lim
i

|∂K (Fi)|
|Fi|

= 0

for all K ∈ F (G) and also Fi ⊇ Fj for i ≥ j and
⋃
i Fi ⊇

⋃
K∈F(G) K = G. �

Lemma 1.3.8. [Pat88, p.189] A discrete group G is amenable if and only if

for any 0 < ε < 1 and any two finite subset L,A ⊆ G there exists a non-empty

symmetric finite subset F ⊆ G such that A ⊂ F and for all l ∈ L it holds that

|F ∪ lF |− |F ∩ lF | ≤ ε|F |.(1.3.5)

Corollary 1.3.9. [Symmetric Følner sequence] Let G be a countable discrete

amenable group. Then there exists a Følner sequence (Fi)i∈N in F(G) such that

Fi = F−1
i for all i ∈ N and

⋃∞
i=1 Fi = G.

Lemma 1.3.10. [Pat88, p.14] The class of amenable groups contains all fi-

nite and all abelian groups, and is closed under taking subgroups, forming factor

groups, group extensions, and directed unions.

There is another construction for Følner sequences for amenable, residually

finite groups. See [LLS11] and [KKN15].

Definition 1.3.11. [KKN15] Let G be a residually finite group. Let
(
Hj

)
be a

chain of finite index subgroups ordered by inclusion. Then
(
Hj

)
is called a Farber

chain if and only if

lim
j→∞

|
{
x ∈ G/Hj

∣∣ gx = x
}
|[

G : Hj

] = 0(1.3.6)

for all g ∈ G \ {e}.

Corollary 1.3.12. [KKN15] Let (Gi)i∈N be a chain of finite index normal sub-

groups of G, such that
⋂
i∈NGi = {e}. Then is (Gi)i∈N a Farber chain.
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Theorem 1.3.13. [KKN15, Theorem 7] Let G be an finitely generated amenable

group and
(
Hj

)
a Farber chain in G. Then there exists a Følner sequence

(
Fj
)

such that Fj is a set of coset representatives for Hj in G.



CHAPTER 2

Linear Algebra

In this chapter we make the linear algebra calculations needed for the main results

of this thesis.

2.1. Group ring modules

Recall the definition of K-vector spaces for any field K, [War90]. Similarly we

define modules.

Definition 2.1.1. [War90] Let R be a unitary ring. We call M a (right) R-

module if for α, β ∈ R and m,n ∈M it holds that

(i) (m+ n)α = mα + nα ∈M ,

(ii) m (αβ) = (mα) β ∈M ,

(iii) m1 = m ∈M.

If instead the ring R acts from the left, it is called a left R-module. Consider

R as the free R-module then we see that multiplication from the left by ring

elements gives us right R-submodules.

Corollary 2.1.2. Let R be a ring and let A,B ∈ R be right R-module homomor-

phisms R→ R by left multiplication then

ker (A⊕B : R⊕R→ R⊕R) = kerA⊕ kerB,(2.1.1)

ker


A
B

 : R→ R⊕R

 = kerA ∩ kerB.(2.1.2)

For the definition of group rings we follow [Pas76].

Definition 2.1.3. (i) Let G be a group and K any field, then we call the K-

vector space with basis G the group ring K[G]. The elements are formal

sums
∑

x∈G axx, where only finitely many ax ∈ K are non-zero. It is a ring

21
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by multiplication inherited from G,∑
x∈G

axx

∑
y∈G

byy

 =
∑
x,y∈G

(
axby

)
xy =

∑
z∈G

czz,(2.1.3)

where cz =
∑

x∈G axbx−1z.

(ii) Let α =
∑

x∈G axx ∈ K[G] be an element of the group ring, we may also

consider it as a map α : G → K. Thus we call the finite subset of G for

which the coefficients are non-zero its support, suppα := {x ∈ G | ax 6= 0}.
On the other hand, we also write K⊕G for the K-vector space of maps from

G to K with finite support.

(iii) For n,m ∈ N let K[G]n,K[G]m be the canonical free K[G]-modules of rank

n, respective m. Let (ei)i=1,...,m be a basis for K[G]m then we have the

canonical pairing 〈·, ·〉 : K[G]m ×K[G]m → K[G] defined by

〈
αei, ej

〉
=

α if i = j,

0 if i 6= j.

Any right K[G]-module homomorphisms T : K[G]n → K[G]m, also called

K[G]-linear map, can be written as a matrix
(
Tij
)
∈ K[G]m×n. Where

Tij :=
〈
T (ei), ej

〉
and ei, ej are basis elements of the free modules K[G]n

and K[G]m. We call

LT := suppT ∪ (suppT )−1 ∪ {e} ⊂ G(2.1.4)

the symmetric support of T , where

suppT =
m⋃
i=1

n⋃
j=1

suppTij.(2.1.5)

(iv) For a finite subset F ⊆ G denote by iF : K[F ] ↪→ K[G] and pF : K[G] �

K[F ] the canonical K-linear maps between K-vector spaces. Abusing no-

tation we will also write iF for the map K[F ]n ↪→ K[G]n, as well as pF for

the map K[G]m � K[F ]m, and finally πF := iF ◦ pF : K[G]n → K[G]n.

Corollary 2.1.4. Let G be a group and K any field, and let T ∈ K[G]m×n be

a K[G]-linear map by left multiplication. Then kerT and imT are right K[G]-

modules.

As is well known such group rings are rings with involution and as such make

it possible to treat left modules as right modules and vice versa.



2.1. GROUP RING MODULES 23

Lemma 2.1.5. Let G be a group and K any field. For α =
∑

x∈G axx ∈ K[G] we

write

α :=
∑
x∈G

axx
−1.(2.1.6)

(i) Let M be a left K[G]-module, then M is a right K[G]-module by

mα := ᾱm,(2.1.7)

for m ∈M,α ∈ K[G].

(ii) Let M be a right K[G]-module, then M is a left K[G]-module by

αm := mᾱ,(2.1.8)

for m ∈M,α ∈ K[G].

Proof. Let G be a group and K any field. Let α =
∑

x∈G axx ∈ K[G] and

β =
∑

y∈G byy ∈ K[G] then

αβ =
∑
x,y∈G

(
axby

)
xy

=
∑
x,y∈G

(
axby

)
y−1x−1

=

∑
y∈G

byy
−1

∑
x∈G

axx
−1


= βα.

Let M be a left K[G]-module, and let m ∈M,α, β ∈ K[G] then

m (αβ) = αβm

=
(
βα
)
m

= β (αm)

= (mα) β.

The second case follows immediately. �

We see that it is enough to treat right K[G]-modules, if a distinction between

left and right is necessary.

Definition 2.1.6. Let G be a group and K any field and let M be a K[G]-module.
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(i) We call M finitely generated if there exists a surjective K[G]-linear map

K[G]n →M,

for some n ∈ N.

(ii) We call M finitely presented if for some n ∈ N there exist an extension of

K[G]-modules

0→ N → K[G]n →M → 0,

such that N is finitely generated.

Corollary 2.1.7. Let M ⊂ K[G]m be a finitely generated right K[G]-module for

some m ∈ N, then there exists n ∈ N, T ∈ K[G]m×n such that M = imT.

Lemma 2.1.8. Let M ⊂ K[G] be a K[G]-submodule and F ⊂ G a finite subset,

then

dimK (M ∩ im iF ) ≤ dimK pF (M).(2.1.9)

Proof. Let M ⊂ K[G] be a K[G]-submodule and F ⊂ G a finite subset. Let

α ∈ M ∩ im iF then suppα ⊂ F and so πF (α) = α ∈ πF (M). The lemma

follows. �

Next we recall Definition 1.2.2, and find estimates on the propagation of a

matrix with K[G] coefficients in terms of K-vector spaces.

Lemma 2.1.9. Let T ∈ K[G]m×n be a K[G]-linear map, LT be its symmetric

support and α ∈ K[G]n then

(i) supp (Tα) ⊆ (suppT ) (suppα) ,

(ii) im
(
TiIntLT (F )

)
⊆ im iF =

{
β ∈ K[G]m

∣∣ supp β ⊆ F
}
,

(iii) im
(
TiExtLT (F )

)
⊆ im iG\F ,

(iv) im (TiF ) ⊆ im iBLT (F ).

Proof. Let T ∈ K[G]m×n be a K[G]-linear map, LT be its symmetric support

and α ∈ K[G]n. Now (i) follows from (2.1.3) and by definitions and Lemma 1.2.3

it holds that

(ii) (suppT )
(
IntLT (F )

)
⊆ LT

(
IntLT (F )

)
⊆ F,

(iii) (suppT )
(
ExtLT (F )

)
⊆ LT

(
ExtLT (F )

)
⊆ G \ F ,

(iv) (suppT )F ⊆ LTF ⊆ BLT (F ) .

�
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2.2. Finite-dimensional subspaces

Note that we will consider K[G]-modules as K-vector spaces when appropriate.

Theorem 2.2.1. Let G be a group and K any field. Let T ∈ K[G]m×n be a

K[G]-linear map, LT be its symmetric support and F ⊂ G be a finite subset.

Then

dimK pF (kerT ) ≤ dimK ker (TiF ) + n|∂LT (F )|

≤ dimK ker (pFTiF ) + n|∂LT (F )|

≤ dimK ker (TiF ) + 2n|∂LT (F )|

≤ dimK pF (kerT ) + 2n|∂LT (F )|.

(2.2.1)

Proof. Let T ∈ K[G]m×n and let F ⊂ G be a finite subset. Let LT be its

symmetric support and recall from Lemma 1.2.3 that

F ⊇ IntLT (F ) ,

G \ F ⊇ ExtLT (F ),

G = ∂LT (F ) t IntLT (F ) t ExtLT (F ) ,

BLT (F ) = ∂LT (F ) t IntLT (F ) .

It is clear that ker (TiF ) ⊆ pF (kerT ) and dimK pF (kerT ) ≤
dimK pBLT (F ) (kerT ) .

First we want to show that dimK pF (kerT ) ≤ dimK ker (TiF ) + n|∂LT (F )|.
So let

P : pBLT (F ) (kerT )→ p∂LT (F ) (kerT )

be the natural projection. Let v ∈ kerT and p∂LT (F ) (v) = 0, then pBLT (F ) (v) ∈
kerP and

v = πIntLT (F ) (v) + πExtLT (F ) (v) ∈ kerT.

By Lemma 2.1.9 it follows that

TπIntLT (F ) (v) ∈ im iF

TπExtLT (F ) (v) ∈ im iG\F .

Consequently TπIntLT (F ) (v) = 0 and we see that

pF (v) = pF

(
πIntLT (F ) (v)

)
∈ ker (TiF ) .
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Thus

kerP =
{
pBLT (F ) (v)

∣∣∣ v ∈ kerT, p∂LT (F ) (v) = 0
}

∼=
{
pF (v)

∣∣∣ v ∈ kerT, p∂LT (F ) (v) = 0
}

⊆ ker (TiF ) .

By additivity of dimK, [War90], we have that

dimK pF (kerT ) ≤ dimK pBLT (F ) (kerT )

= dimK kerP + dimK imP

≤ dimK ker (TiF ) + n|∂LT (F )|.

Next we see that

ker (TiF ) ⊆ ker (pFTiF ) ,

and it only remains to show that

dimK ker (pFTiF ) ≤ dimK ker (TiF ) + n|∂LT (F )|.

Let

Q : ker (pFTiF )→ K[F \ IntLT (F )]n

be the natural projection along K[IntLT (F )]n and let v ∈ kerQ, then

TiF (v) = TπIntLT (F )iF (v)

= πFTπIntLT (F )iF (v) = 0.

Thus v ∈ ker (TiF ). Recall F \ IntLT (F ) ⊆ ∂LT (F ), now additivity of dimK

implies

dimK ker (pFTiF ) ≤ dimK kerQ+ n|∂LT (F )|

≤ dimK ker (TiF ) + n|∂LT (F )|.

�

Theorem 2.2.2. Let G be a group and K any field. Let T ∈ K[G]m×n be a

K[G]-linear map, LT be its symmetric support and F ⊂ G be a finite subset.
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Then

dimK
(
pF (imT )

)
≤ dimK

(
im (pFTiF )

)
+ n|∂LT (F )|

≤ dimK
(
im (TiF )

)
+ n|∂LT (F )|

≤ dimK
(
im (pFTiF )

)
+ (m+ n)|∂LT (F )|

≤ dimK (imT ∩ im iF ) + (m+ 2n)|∂LT (F )|

≤ dimK
(
pF (imT )

)
+ (m+ 2n)|∂LT (F )|.

(2.2.2)

Proof. Let T ∈ K[G]m×n and F ⊂ G be a finite subset. By Lemma 2.1.9(iii) it

holds that

im (pFT ) = pF (imT ) = im
(
pFTiBLT (F )

)
.

Since BLT (F ) \ F ⊆ ∂LT (F ), we easily see that

dimK

(
im
(
pFTiBLT (F )

))
≤ dimK

(
im (pFTiF )

)
+ n|∂LT (F )|.

By Lemma 2.1.9(iv) it holds that im (TiF ) = im
(
πBLT (F )TiF

)
and so

dimK
(
im (pFTiF )

)
≤ dimK

(
im (TiF )

)
≤ dimK

(
im (pFTiF )

)
+m|∂LT (F )|.

By Lemma 2.1.9(ii) it holds that

im
(
πFTiIntLT (F )

)
= im

(
TiIntLT (F )

)
⊆ imT ∩ im iF .

Therefore

dimK
(
im (pFTiF )

)
≤ dimK

(
im
(
TiIntLT (F )

))
+ n|∂LT (F )|

≤ dimK (imT ∩ im iF ) + n|∂LT (F )|.

The statement follows with Lemma 2.1.8. �

Lemma 2.2.3. Let T ∈ K[G]m×n and S ∈ K[G]s×r be K[G]-linear maps, LT , LS

as before and let F ⊂ G be a finite subset.

(i) For r = n we have the following dimension formula,

dimK
(
pF (kerT + kerS)

)
= dimK

(
pF (kerT )

)
+ dimK

(
pF (kerS)

)
− dimK

(
pF (kerT ) ∩ pF (kerS)

)
.

(ii) We estimate dimensions for inner sums.
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(a) For r = n we have

dimK
(
pF (kerT + kerS)

)
≤ dimK

(
(kerT + kerS) ∩ im iF

)
+ 3n

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (kerT + kerS)

)
+ 3n

(
|∂LT (F )| + |∂LS (F )|

)
.

(b) For s = m we have

dimK
(
pF (imT + imS)

)
≤ dimK

(
(imT + imS) ∩ im iF

)
+ 3m

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (imT + imS)

)
+ 3m

(
|∂LT (F )| + |∂LS (F )|

)
.

(c) For s = n we have

dimK
(
pF (kerT + imS)

)
≤ dimK

(
(kerT + imS) ∩ im iF

)
+ 3n

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (kerT + imS)

)
+ 3n

(
|∂LT (F )| + |∂LS (F )|

)
.

(iii) We estimate dimensions for sections.

(a) For r = n we have

dimK
(
pF (kerT ) ∩ pF (kerS)

)
≤ dimK (kerT ∩ kerS ∩ im iF ) + n

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (kerT ∩ kerS)

)
+ n

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (kerT ) ∩ pF (kerS)

)
+ n

(
|∂LT (F )| + |∂LS (F )|

)
.

(b) For s = m we have

dimK
(
pF (imT ) ∩ pF (imS)

)
≤ dimK (imT ∩ imS ∩ im iF ) +m

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (imT ∩ imS)

)
+m

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (imT ) ∩ pF (imS)

)
+m

(
|∂LT (F )| + |∂LS (F )|

)
.
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(c) For s = n we have

dimK
(
pF (kerT ) ∩ pF (imS)

)
≤ dimK (kerT ∩ imS ∩ im iF ) + n

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (kerT ∩ imS)

)
+ n

(
|∂LT (F )| + |∂LS (F )|

)
≤ dimK

(
pF (kerT ) ∩ pF (imS)

)
+ n

(
|∂LT (F )| + |∂LS (F )|

)
.

Proof. Let T ∈ K[G]m×n and S ∈ K[G]s×r be K[G]-linear maps, LT , LS as before

and let F ⊂ G be a finite subset. Since pF is a K-linear map, we have that

pF (kerT + kerS) = pF (kerT ) + pF (kerS) .

(i) As we know that pF (kerT + kerS) = pF (kerT ) + pF (kerS). The state-

ment follows from the dimension formula for dimK, [War90]. That is for

any two finite subspaces A,B of a K-vector space C it holds that

dimK (A+B) + dimK (A ∩B) = dimK (A) + dimK (B) .

(ii) For inner sums let M,N ⊂ K[G] be K[G]-submodules, then

M ∩ im iF +N ∩ im iF ⊆ (M +N) ∩ im iF .

Now the statements follow from Theorems 2.2.1 and 2.2.2.

(iii) For sections we have to consider kernels and images seperately.

(a) Let r = n and α ∈ kerT ∩kerS then clearly pF (α) ∈ pF (kerT )∩pF (kerS)

and so,

pF (kerT ∩ kerS) ⊆ pF (kerT ) ∩ pF (kerS) .(2.2.3)

Furthermore, let β ∈ ker (TiF ) ∩ ker (SiF ) then iFβ ∈ kerT ∩ kerS and

pF (iFβ) = β, therefore

ker (TiF ) ∩ ker (SiF ) ⊆ pF (kerT ∩ kerS) .(2.2.4)

and ker (TiF ) ∩ ker (SiF ) = pF (kerT ∩ kerS ∩ im iF ) . As consequence of

Theorem 2.2.1 there exist K-vector spaces WT
∼= K[∂LT (F )]n and WS

∼=
K[∂LS (F )]n such that

pF (kerT ) ∩ pF (kerS) ⊆
(
ker (TiF ) +WT

)
∩
(
ker (SiF ) +WS

)
.
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We write V := ker (SiF ) + WS. Now let v1, v2 ∈ ker (TiF ) and w ∈ WT

such that v1 + w, v2 + w ∈
(
ker (TiF ) +WT

)
∩ V and write

v1 + w, v2 + w ∈
(
ker (TiF ) +WT

)
∩ V

kerTiF ∩ V
.

Then v1 +w− v2−w = v1− v2 ∈ ker (TiF )∩ V and thus v1 + w = v2 + w.

This implies

dimK

((
ker (TiF ) +WT

)
∩ V

)
≤ dimK

(
ker (TiF ∩ V )

)
+ n|∂LT (F )|.(2.2.5)

Repeating the same argument for dimK

((
ker (SiF ) +WS

)
∩ ker (TiF )

)
we

arrive at

dimK
(
pF (kerT ) ∩ pF (kerS)

)
≤ dimK

(
ker (TiF ) ∩ ker (SiF )

)
+ n

(
|∂LT (F )| + |∂LS (F )|

)
.

Thus together with (2.2.4) and (2.2.3) this implies the second statement.

(b) Next we look at the images of T and S. Let s = m and so we deduce from

Lemma 2.1.9 that

im
(
TiIntLT (F )

)
∩ im

(
SiIntLS (F )

)
⊆ imT ∩ imS ∩ im iF

⊆ πF (imT ∩ imS)

⊆ πF (imT ) ∩ πF (imS)

and by the argument that gives estimate (2.2.5) it holds for any V ⊂ K[F ]n

that

dimK
(
πF (imT ) ∩ V

)
= dimK

(
im
(
πFTiBLT (F )

)
∩ V

)
= dimK

((
im
(
πFTiIntLT (F )

)
+ im

(
πFTi∂LT (F )

))
∩ V

)

≤ dimK

(
im
(
TiIntLT (F )

)
∩ V

)
+ n|∂LT (F )|.

The equivalent holds for πF (imS) ∩ V and so translating all inclusions to

dimK gives the statement.
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(c) And finally let s = n, then we find that

im
(
pFTiIntLT (F )

)
∩ ker (SiF ) ⊆ pF (imT ∩ kerS ∩ im iF )

⊆ pF (imT ∩ kerS)

⊆ pF (imT ) ∩ pF (kerS) ,

and as seen above

dimK
(
pF (imT ) ∩ pF (kerS)

)
≤ dimK

(
pF (imT ) ∩ ker (SiF )

)
+ n|∂LS (F )|.

Since

pF (imT ) ∩ ker (SiF ) = im
(
pFTiBLT (F )

)
∩ ker (SiF )

=

(
im
(
pFTiIntLT (F )

)
+ im

(
pFTi∂LT (F )

))
∩ ker (SiF ) ,

we deduce, as for estimate (2.2.5), that

dimK
(
pF (imT ) ∩ ker (SiF )

)
≤ dimK

(
im
(
pFTiIntLT (F )

)
∩ ker (SiF )

)
+ n|∂LT (F )|.

This concludes the proof. �

2.3. Functions on the set of finite subsets

Definition 2.3.1. Let G be a discrete group and let F(G) be the set of non-

empty finite subsets of G. Let M ⊆ K[G]n be a K[G]-submodule, for any field K.

We consider two maps

(i) h : F(G)→ N with

h(F ) := dimK (pFM) ,(2.3.1)

(ii) h : F(G)→ N with

h(F ) := dimK (M ∩ im iF ) .(2.3.2)

Lemma 2.3.2. We have the following properties for the maps above.

(i) h(F ) ≤ h(F ) for all F ∈ F(G).

(ii) h(F ), h(F ) ≤ n|F | for all F ∈ F(G).

(iii) right invariance: h(Fa) = h(F ) and h(Fa) = h(F ).

(iv) subadditivity: h(A ∪B) ≤ h(A) + h(B) for any A,B ∈ F(G).
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(v) almost superadditivity: For any finite subset {A1, . . . , An} ⊂ F(G)

h

 n⋃
i=1

Ai

 ≥ n∑
i=1

h(Ai)− n

 n∑
i=1

|Ai|− |
n⋃
i=1

Ai|

 .

Proof. Let M ⊆ K[G]n be a K[G]-submodule.

(i) Follows from Lemma 2.1.8.

(ii) Follows from the definition.

(iii) Let F ⊂ G be a finite subset and a ∈ G, then

dimK (pFaM) = dimK

(
pF
(
Ma−1

))
= dimK (pFM) ,

dimK (M ∩ im iFa) = dimK

((
Ma−1

)
∩ im iF

)
= dimK (M ∩ im iF ) .

(iv) Let A,B ∈ F(G), C := B \ (A ∩B) and α ∈M , then

πA∪B(α) = πA(α) + πC(α).

So πA∪BM ⊆ πA(M) + πC(M) and since dimK (pCM) ≤ dimK (pBM) the

statement follows.

(v) Let A,B ∈ F(G) and C := B \ (A ∩B) then

M ∩ im iA∪B ⊇M ∩ im iA ⊕M ∩ im iC .

Furthermore define

P : M ∩ im iB → K[A ∩B]n

by pA∩B. Let v ∈ kerP then v = πC (v) ∈ M ∩ im iC and by additivity it

follows that

dimK (M ∩ im iC) ≥ dimK (M ∩ im iB)− n|A ∩B|.

The statement follows by iteration and

n∑
i=2

|

i−1⋃
j=1

Aj

 ∩ Ai| =
n∑
i=2

|
i−1⋃
j=1

Aj| + |Ai|− |
i⋃

j=1

Aj|


=

n∑
i=1

|Ai|− |
n⋃
i=1

Ai|

�



CHAPTER 3

Convergence Theorem

Now we want to find a convergence result for functionals as introduced in the

last section of the previous chapter. This will be the foundation of the dimension

function we are looking for.

3.1. Fillings of finite subsets

First we cite this section from [Kri07]. Let G be a discrete group and let F(G)

be the set of non-empty finite subsets of G.

Definition 3.1.1. A family of finite subsets (Ai) is called ε-disjoint, if there is a

disjoint family (Bi ⊂ Ai) such that

|Bi|
|Ai|

≥ 1− ε,(3.1.1)

for all i.

Lemma 3.1.2. Let (Ai) be a ε-disjoint family, then

(1− ε)
∑
i

|Ai| ≤ |
⋃
i

Ai|(3.1.2)

Lemma 3.1.3. Let G be a discrete group, K ⊂ G finite, 0 < ε < 1. Let

A1, A2, . . . , An be an ε-disjoint family of non-empty finite subsets of G and let

η > 0 such that |∂K(Ai)|
|Ai| ≤ η for all i. Then it follows that

|∂K
(⋃n

i=1Ai
)
|

|
⋃n
i=1Ai|

≤ η

1− ε
.(3.1.3)

Lemma 3.1.4. Let G be a discrete group and let K,A and Ω be finite subsets of

G such that ∅ 6= A ⊂ Ω. Suppose that there exists ε > 0 such that |Ω \A| ≥ ε|Ω|.
Then

|∂K
(
Ω \ A

)
|

|Ω \ A| ≤ ε−1

(
|∂K (Ω)|

|Ω| +
|∂K (A)|

|A|

)
.(3.1.4)

33
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Lemma 3.1.5. Let G be a discrete group and let A and B be two finite subsets

of G. Then one has ∑
g∈G

|Ag ∩B| = |A||B|.(3.1.5)

Definition 3.1.6. Let G be a discrete group. Let K and Ω be finite subsets of

G and ε > 0. A subset R ⊂ G is called an (ε,K)-filling of Ω if the following

conditions are satisfied:

(i) R ⊆ IntK (Ω);

(ii) the family (Kg)g∈R is ε-disjoint.

Lemma 3.1.7. [Kri07, Lemma 3.5] Let Ω and K be non-empty finite subsets of

a group G. For all 0 < ε ≤ 1 there exists a finite subset R ⊂ G such that:

(i) R is an (ε,K)-filling of Ω;

(ii) |KR| ≥ ε (1− α0) |Ω|, where α0 := |∂K(Ω)|
|Ω| .

3.2. Variation of the Ornstein-Weiss lemma

We will prove a variation of the Ornstein-Weiss lemma [OW87] based on [Kri07]

and [Kri10]. The following lemma is extracted from [Kri10]. Again we denote

the set of non-empty finite subsets of a discrete group G by F(G).

Lemma 3.2.1. Let G be a discrete group and let 0 < ε ≤ 1
2

and

n = nε := d log ε

log(2− ε)− log 2
e.

Let K1, . . . , Kn be a family of finite subsets of G such that

|∂Ki
(
Kj

)
|

|Kj|
≤ ε2n for 1 ≤ i < j ≤ n.(3.2.1)

Then for any finite subset D ⊂ G with

|∂Ki (D)|
|D| ≤ ε2n for 1 ≤ i ≤ n,(3.2.2)

we have a decomposition into disjoint subsets

D =
n⊔
j=1

KjRj tDn,(3.2.3)

such that |Dn| ≤ ε|D|. Where Rj ⊂ G are finite, possible empty, and (Kjg)g∈Rj

are ε-disjoint families.



3.2. VARIATION OF THE ORNSTEIN-WEISS LEMMA 35

Proof. Let G be a discrete group and let 0 < ε ≤ 1
2

and n := nε = d log ε
log(2−ε)−log 2

e.
Let K1, . . . , Kn be a family of finite subsets of G such that

|∂Ki
(
Kj

)
|

|Kj|
≤ ε2n for 1 ≤ i < j ≤ n.

Let D ⊂ G be a finite subset with

|∂Ki (D)|
|D| ≤ ε2n for 1 ≤ i ≤ n.

We will find a decomposition into disjoint subsets

D =
n⊔
j=1

KjRj tDn

where Rj ⊂ G are finite, but possible empty, and (Kjg)g∈Rj are ε-disjoint families

such that |Dn| ≤ ε|D|.
We define Dj for 1 ≤ j ≤ n recursively, and set D0 := D. We use Lemma

3.1.7 with Ω = Dj−1 and K = Kn−j+1 to find Rn−j+1 ∈ F(G), an (ε,Kn)-filling

of Dj−1 such that

|Kn−j+1Rn−j+1|
|Dj−1|

≥ ε

(
1−

|∂Kn−j+1

(
Dj−1

)
|

|Dj−1|

)
.

So define Dj := Dj−1 \Kn−j+1Rn−j+1 and see that

|Dj| ≤ |Dj−1|

1− ε

(
1−

|∂Kn−j+1

(
Dj−1

)
|

|Dj−1|

) .

If for any 1 ≤ j < n : |Dj| ≤ ε|Dj−1| then |Dn| ≤ ε|D|, since |Dj| ≤ |Dj−1|
for all 1 ≤ j ≤ n, and we are done.

So assume |Dj| > ε|Dj−1| for all 1 ≤ j < n, and recall that
|∂Ki(Kj)|

|Kj | ≤ ε2n,

then it follows from Lemma 3.1.3 and Lemma 1.2.3 that

|∂Kk
(
Kn−j+1Rn−j+1

)
|

|Kn−j+1Rn−j+1|
≤

|∂Kk
(⋃

g∈Rn−j+1
Kn−j+1g

)
|

|Kn−j+1|

≤ ε2n

1− ε
.
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Now Lemma 3.1.4 shows that

|∂Kk
(
Dj

)
|

|Dj|
≤ ε−1

(
|∂Kk

(
Dj−1

)
|

|Dj−1|
+

|∂Kk
(
Kn−j+1Rn−j+1

)
|

|Kn−j+1Rn−j+1|

)

≤ ε−1

(
|∂Kk

(
Dj−1

)
|

|Dj−1|
+

ε2n

1− ε

)
,

for 1 ≤ k ≤ n and all 1 ≤ j < n.

Then
|∂Ki (D)|

|D| ≤ ε2n together with 0 < ε ≤ 1
2

implies

|∂Kk
(
Dj

)
|

|Dj|
≤ ε−1

ε−1

(
|∂Kk

(
Dj−2

)
|

|Dj−2|
+

ε2n

1− ε

)
+

ε2n

1− ε


≤ ε2n−j +

j∑
i=1

ε2n−i

1− ε
≤ (2j + 1) ε2n−j,

for all 1 ≤ k ≤ n. We get for 0 ≤ j < n

|Dj+1| ≤ |Dj|
(

1− ε
(

1− (2j + 1) ε2n−j
))

.

and thus

|Dn| ≤ |D|
n−1∏
j=0

(
1− ε

(
1− (2j + 1) ε2n−j

))
≤ |D|

(
1− ε

(
1− (2n− 1) εn+1

))n
≤ |D|

(
1− ε

2

)n
≤ ε|D|.

Where we used that for k ∈ N, ε ≤ 1
2

and n = d log ε
log(2−ε)−log 2

e it holds that

(2k − 1) εk+1 ≤ 2kεk+1 ≤ k

(
1

2

)k
≤ 1

2
,

as well as
(
1− ε

2

)n ≤ ε. �

We come to the convergence theorems, wherein we adapt the main result of

[Kri07], respectively [Kri10], and its proof to a slightly different setting.

Theorem 3.2.2. Let G be an amenable discrete group and let h : F(G) → R be

a map satisfying the following conditions:

(i) h is right-invariant, h(Fa) = h(F ) for all F ∈ F(G), a ∈ G;
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(ii) h is almost superadditive, there exists C > 0 such that h
(⋃n

i=1Ai
)
≥∑n

i=1 h(Ai)−C
(∑n

i=1|Ai|− |
⋃n
i=1 Ai|

)
for any finite subset {A1, . . . , An} ⊂

F(G);

(iii) h is relatively bounded, there exists C > 0 such that 0 ≤ h(F ) ≤ C|F | for

all F ∈ F(G).

Then for every Følner net (Fi) in F(G) the limit

lim
i

h(Fi)

|Fi|

exists, is finite and independent of the choice of Følner net.

Proof. Let G be an amenable group and h : F(G) → R a map satisfying the

conditions above. Furthermore let (Fi) be a Følner net in F(G) and fix 0 < ε ≤ 1
2
.

Let xi := h(Fi)
|Fi| and since (xi) is bounded we have a largest cluster point

λ := lim sup
i

xi.

By Theorem 1.1.3 and Definition 1.1.2 there exists a subnet
(
xφ(j)

)
such that

xφ(j) ≥ λ− ε for all j. Note that
(
Fφ(j)

)
is also a Følner net. Now let n = nε :=

d log ε
log(2−ε)−log 2

e and let E ⊂ F(G) be a finite family of finite subsets of G then there

exists Fφ(jE) such that

∀A ∈ E :
|∂A
(
Fφ(jE)

)
|

|Fφ(jE)|
≤ ε2n.

Therefore there exists a finite sequence K1, . . . , Kn from (Fi) such that

h(Ki)

|Ki|
≥ λ− ε for 1 ≤ i ≤ n,(3.2.4)

|∂Ki
(
Kj

)
|

|Kj|
≤ ε2n for 1 ≤ i < j ≤ n.(3.2.5)

Let D ⊂ G be a finite subset with

|∂Ki (D)|
|D| ≤ ε2n for 1 ≤ i ≤ n.(3.2.6)

By Lemma 3.2.1 we find a decomposition into disjoint subsets

D =
n⊔
j=1

KjRj tDn

where |Dn| ≤ ε|D|, Rj ⊂ G are finite, but possible empty, and (Kjg)g∈Rj are

ε-disjoint families.
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It follows that

h(D)

|D| ≥
h(
⊔n
j=1KjRj)

|D| +
h(Dn)

|D| ≥
∑n

j=1 h(KjRj)

|D| .

Since (Kjg)g∈Rj are ε-disjoint families that do not intersect, the combination of

those is again an ε-disjoint family and Lemma 3.1.2 gives

h(
⊔n
j=1 KjRj)

|D| ≥
n∑
j=1

∑
g∈Rj

h(Kj)

|Kj|
|Kjg|
|D| − C

∑n
j=1

∑
g∈Rj |Kjg|− |

⊔n
j=1 KjRj|

|D|

≥
n∑
j=1

∑
g∈Rj

h(Kj)

|Kj|
|Kjg|
|D| − C

|D|/(1− ε)− (1− ε) |D|
|D| .

(3.2.7)

Using (3.2.4) this shows,

h(D)

|D| ≥ (λ− ε)
n∑
j=1

∑
g∈Rj

|Kjg|
|D| − C

2ε− ε2

1− ε

≥ (λ− ε)(1− ε)− 4εC

≥ λ− ε (λ+ 4C + 1) .

Since (Fi) is Følner, we get a lower bound i0 ∈ I such thatFi meets condition

(3.2.6) for all i ≥ i0 . We consider the subnet (Fk) which converges to the limit

inferior µ and the corresponding lower bound k0. Then for k > k0 we have

µ = lim
k

h(Fk)

|Fk|
≥ λ− ε (λ+ 5C) .

All the above holds for any 0 < ε ≤ 1
2
, so we may take the limit of ε tending

to 0 and get

lim inf
i

xi = µ ≥ λ = lim sup
i

xi.

It remains to be seen, that the limit is independent of the choice of Følner net.

Consider any two Følner nets (Ai) ,
(
Bj

)
then by Lemma 1.3.3 there exists a

Følner net (Fk) such that (Ai) ,
(
Bj

)
are subnets. Therefore

(
h(Ai)
|Ai|

)
,
(
h(Bj)

|Bj |

)
are

subnets of
(
h(Fk)
|Fk|

)
and converge to the same cluster point. This gives indepen-

dence from the choice of Følner net. �

The following theorem is a reproduction of [Kri10, Theorem 1.1].

Theorem 3.2.3. Let G be an amenable discrete group and let h : F(G) → R be

a map satisfying the following conditions:
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(i) h is right-invariant, h(Fa) = h(F ) for all F ∈ F(G), a ∈ G;

(ii) h is subadditive, that is h (A ∪B) ≤ h(A) +h(B) for any two finite subsets

A,B ∈ F(G).

Then for every Følner net (Fi) in F(G) the limit

lim
i

h(Fi)

|Fi|

exists, is finite and independent of the choice of Følner net.

Proof. Let G be an amenable group and h : F(G) → R a map satisfying the

conditions above. Furthermore let (Fi) be a Følner net in F(G) and fix 0 < ε ≤ 1
2
.

The conditions imply that h(A) ≤ h
(
{e}
)
|A| for all A ∈ F(G). Let xi := h(Fi)

|Fi|

and since (xi) is bounded we have a least cluster point

λ := lim inf
i

xi.

Therefore there exists a finite sequence K1, . . . , Kn from (Fi) such that

h(Ki)

|Ki|
≤ λ+ ε for 1 ≤ i ≤ n,(3.2.8)

|∂Ki
(
Kj

)
|

|Kj|
≤ ε2n for 1 ≤ i < j ≤ n.(3.2.9)

Let D ⊂ G be a finite subset with

|∂Ki (D)|
|D| ≤ ε2n for 1 ≤ i ≤ n.(3.2.10)

By Lemma 3.2.1 we find a decomposition into disjoint subsets

D =
n⊔
j=1

KjRj tDn

where |Dn| ≤ ε|D|, Rj ⊂ G are finite, but possible empty, and (Kjg)g∈Rj are

ε-disjoint families.

It follows that

h(D)

|D| ≤
h(
⊔n
j=1KjRj)

|D| +
h(Dn)

|D| ≤
∑n

j=1 h(KjRj)

|D| + h
(
{e}
)
|Dn|.

h(
⊔n
j=1 KjRj)

|D| ≤
n∑
j=1

∑
g∈Rj

h(Kj)

|Kj|
|Kjg|
|D|
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Using (3.2.8) this shows,

h(
⊔n
j=1KjRj)

|D| ≤ (λ+ ε)
n∑
j=1

∑
g∈Rj

|Kjg|
|D|

Since (Kjg)g∈Rj are ε-disjoint families that do not intersect, the combination

of those is again an ε-disjoint family and Lemma 3.1.2 gives

h(D)

|D| ≤ (λ+ ε)
n∑
j=1

∑
g∈Rj

|Kjg|
|D| + εh

(
{e}
)

≤ λ+ ε

1− ε
+ εh

(
{e}
)
.

Since (Fi) is Følner, we get a lower bound i0 ∈ I such that Fi meets condition

(3.2.10) for all i ≥ i0. We consider the subnet (Fk) which converges to the limit

superior µ and the corresponding lower bound k0. Then for k > k0 we have

µ = lim
k

h(Fk)

|Fk|
≤ λ+ ε

1− ε
+ εh

(
{e}
)
.

All the above holds for any 0 < ε ≤ 1
2
, so we may take the limit of ε tending

to 0 and get

lim sup
i

xi = µ ≤ λ = lim inf
i

xi.

�



CHAPTER 4

Følner dimension

In this chapter we will define the Følner dimension dimK[G] (M) of a K[G]-

submodule M for any field K and a discrete, amenable group G. Recall that

by Lemma 2.1.5 we may consider left K[G]-modules as right K[G]-modules and

thus we write K[G]-modules to mean right K[G]-modules. Furthermore we take

matrices T ∈ K[G]m×n as K[G]-linear maps by left multiplication.

4.1. Definition

Definition 4.1.1. Let G be a group and K a field. We define the sets of K[G]-

modules which come from K[G]-matrices,

Kn(G) :=
{

kerT
∣∣ T ∈ K[G]m×n,m ∈ N

}
,

Rn(G) :=
{

imT
∣∣ T ∈ K[G]n×m,m ∈ N

}
,

(4.1.1)

for n ∈ N.

Remark 4.1.2. (i) Note that{
M
∣∣ ∃n ∈ N : M ⊆ K[G]n is a finitely generated K[G]-submodule

}
⊂
{
N1 +N2, N1 ∩N2

∣∣ N1, N2 ∈ Kn(G) ∪Rn(G), n ∈ N
}

⊂
{
M
∣∣ ∃n ∈ N : M ⊆ K[G]n is a K[G]-submodule

}
.

(4.1.2)

(ii) Kn(G) is closed under finite sections, see Corollary 2.1.2.

(iii) Rn(G) is closed under finite inner sums, since

imT + imS = im
(
T S

)
.(4.1.3)

Theorem 4.1.3 (Følner dimension). Let G be an amenable group with Følner

net (Fi), K be a field and n ∈ N, then for any submodule M ⊆ K[G]n it holds

that

dimK[G] (M) := lim
i

dimK
(
M ∩ im iFi

)
|Fi|

,(4.1.4)

dimK[G] (M) := lim
i

dimK
(
pFi (M)

)
|Fi|

,(4.1.5)

41
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are well-defined and independent of the choice of (Fi).

Proof. This follows from Theorems 3.2.3 and 3.2.2 with Lemma 2.3.2. �

Remark 4.1.4. These definitions make use of the canonical K[G]-module struc-

ture of K[G]n in how the support of an element is defined. By Corollary 1.3.9 we

can require all Følner sets to be symmetric. Thus for a K[G]-bimodule that inher-

its the canonical K[G]-module structure of K[G]n it makes no difference whether

we consider its natural right K[G]-module structure, or the one gained by Lemma

2.1.5 from its left K[G]-module structure.

Nevertheless, we assume that for every K[G]-module a right K[G]-module

structure was chosen beforehand.

Theorem 4.1.5 (Properties). The Følner dimension dimK[G] fulfills the following

properties for all n ∈ N.

(i) dimK[G]

(
K[G]n

)
= n.

(ii) dimK[G] (M) = 0 ⇐⇒ M = 0 for any K[G]-submodule M ⊆ K[G]n.

(iii) For N1, N2 ∈ Kn(G) ∪Rn(G) we have

dimK[G] (N1 +N2) = dimK[G] (N1 +N2) ,

dimK[G] (N1 ∩N2) = dimK[G] (N1 ∩N2) .

(iv) Monotony.

(v) Continuity from below.

(vi) Dimension formula.

(vii) Additivity.

(viii) Induction from subgroups.

Proof. We will prove all properties except the first one in separate lemmas in

the next section.

(i) Let F ⊂ G be a finite subset, then

dimK
(
K[G]n ∩ im iF

)
= dimK

(
K[F ]n

)
= n|F |.

This holds for all Følner sets and so the statement follows.

(ii) Lemma 4.2.1

(iii) Lemma 4.2.3.

(iv) Lemma 4.2.4.

(v) Lemma 4.2.5.

(vi) Lemma 4.2.6.
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(vii) Lemma 4.2.7.

(viii) Lemma 4.2.8.

�

Next we extend the previous definition to all finitely generated K[G]-modules.

But first note a consequence of additivity.

Corollary 4.1.6. Let M ⊂ K[G]m be a finitely generated K[G]-module with

T : K[G]n →M surjective and K[G]-linear, then

dimK[G] (M) = n− dimK[G] (kerT ) .(4.1.6)

Proof. Apply Lemma 4.2.7 to T : K[G]n →M ⊂ K[G]m. �

Definition 4.1.7 (Finitely generated K[G]-modules). Let G be a discrete,

amenable group, K be a field and n ∈ N. Let M be a finitely generated K[G]-

module with T : K[G]n →M surjective and K[G]-linear. We define

dimK[G] (M) := n− dimK[G] (kerT ) .(4.1.7)

Theorem 4.1.8 (Well-definition). Let G be a discrete, amenable group and K
be a field. Let M and N be finitely generated K[G]-modules with a K[G]-linear

isomorphism f : N →M. Then

dimK[G] (N) = dimK[G] (M) .(4.1.8)

Proof. Let G be a discrete, amenable group and K be a field. Let M and N be

finitely generated K[G]-modules with an K[G]-linear isomorphism f : N → M.

Since M and N are finitely generated there exist surjective and K[G]-linear maps

T : K[G]n → N and S : K[G]m → M for some n,m ∈ N. We may lift f as

follows. Let (b1, . . . , bn) be a basis for K[G]n and consider f
(
T (bi)

)
∈ M . Then

by surjectivity of S there exist ci ∈ K[G]m such that S (ci) = f
(
T (bi)

)
for

1 ≤ i ≤ n. We define the lift

f̃ : K[G]n → K[G]m

by f̃ (bi) := ci for 1 ≤ i ≤ n and K[G]-linearity, by this definition S ◦ f̃ = f ◦ T.
Let K := kerT and L := kerS then S

(
f̃ (K)

)
= f

(
T (K)

)
= 0, so f̃ (K) ⊆ L.

Furthermore let α ∈ K[G]m then S (α) has a preimage β ∈ K[G]n under f ◦ T ,

by surjectivity of f and T . Thus α− f̃ (β) ∈ L and

im f̃ + L = K[G]m.
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We want to show that n− dimK[G] (K) = m− dimK[G] (L) . We need another

step before we can use additivity. Let β ∈ ker f̃ and α ∈ im f̃ ∩ L then

S
(
f̃ (β)

)
= 0 = S (α)

and β ∈ K as well as α ∈ f̃ (K) by injectivity of f . So in fact, ker f̃ ⊂ K and

f̃ (K) = im f̃ ∩ L. Now additivity from Lemma 4.2.7 implies

n = dimK[G]

(
ker f̃

)
+ dimK[G]

(
im f̃

)
,

dimK[G] (K) = dimK[G]

(
ker f̃

)
+ dimK[G]

(
im f̃ ∩ L

)
,

n− dimK[G] (K) = dimK[G]

(
im f̃

)
− dimK[G]

(
im f̃ ∩ L

)
.

On the other hand the dimension formula in Lemma 4.2.6 says that

m = dimK[G]

(
im f̃ + L

)
= dimK[G] (L) + dimK[G]

(
im f̃

)
− dimK[G]

(
im f̃ ∩ L

)
,

m− dimK[G] (L) = dimK[G]

(
im f̃

)
− dimK[G]

(
im f̃ ∩ L

)
.

�

Corollary 4.1.9. Let M be a finitely generated K[G]-module and N ⊆ M be a

finitely generated K[G]-submodule, then

dimK[G] (N) ≤ dimK[G] (M) .(4.1.9)

Proof. Recall the proof of well-definition above. The lack of surjectivity gives

m ≥ dimK[G]

(
im f̃ + L

)
while the rest remains the same. �

The diagram chases used before also produce additivity for finitely generated

K[G]-modules.

Theorem 4.1.10. Let G be a discrete, amenable group and K be a field. Let

0→ N →M → P → 0

be an exact sequence of finitely generated K[G]-modules, then

dimK[G] (M) = dimK[G] (N) + dimK[G] (P ) .(4.1.10)

Proof. Let G be a discrete, amenable group and K be a field. Let

0 → N → M → P → 0 be an exact sequence of finitely generated K[G]-

modules, then there exists the following commutative diagram, where the
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columns and the bottom row are exact.

J L K

K[G]m K[G]p K[G]n

N M P
gf

f̃ g̃

Where f̃ : K[G]m → K[G]p and g̃ : K[G]p → K[G]n are lifts defined as in the

proof of well-definition. Then exactness and commutativity in the diagram give

ker f̃ ⊂ J and f̃ (J) = im f̃ ∩ L and so, by additivity,

dimK[G] (N) = m− dimK[G] (J) = dimK[G]

(
im f̃

)
− dimK[G]

(
im f̃ ∩ L

)
.

Similarly, we see that g̃ (L) ⊂ K and im g̃+K = K[G]n and so, by the dimension

formula,

dimK[G] (P ) = dimK[G] (im g̃)− dimK[G] (im g̃ ∩K) .

Let α ∈ K[G]p be such that it maps to f (N) ⊂ M , then α ∈ im f̃ + L. By the

exactness of the bottom row we furthermore deduce im g̃ ∩ K = g̃
(

im f̃ + L
)

and ker g̃ ⊂ im f̃ + L. Therefore we have that

dimK[G]

(
im f̃ + L

)
= dimK[G] (ker g̃) + dimK[G] (im g̃ ∩K) ,

dimK[G]

(
im f̃ + L

)
= dimK[G]

(
im f̃

)
+ dimK[G] (L)− dimK[G]

(
im f̃ ∩ L

)
.

Recall that

dimK[G] (M) = dimK[G] (im g̃) + dimK[G] (ker g̃)− dimK[G] (L) .

Now all the above combines to

dimK[G] (M) = dimK[G] (P ) + dimK[G]

(
im f̃ + L

)
− dimK[G] (L)

= dimK[G] (P ) + dimK[G] (N) .

�

Corollary 4.1.11. Let M be a finitely generated K[G]-module such that there

exists a surjective K[G]-linear map K[G]n →M . Then

dimK[G] (M) = n ⇐⇒ M ∼= K[G]n.(4.1.11)
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Proof. Let M be a finitely generated K[G]-module with T : K[G]n → M surjec-

tive and K[G]-linear. Let dimK[G] (M) = n, then by definition dimK[G] (kerT ) = 0.

This implies kerT = 0 by Lemma 4.2.1 and thus

M ∼= K[G]n.

�

Finally we use the fact that any module is the union of its finitely generated

submodules to further extend the definition to general K[G]-modules.

Definition 4.1.12 (General K[G]-modules). Let G be a discrete, amenable

group, K be a field. Let M be a K[G]-module. We define

dimK[G] (M) := sup
{

dimK[G]

(
M̄
) ∣∣∣ M̄ ⊆M is finitely generated

}
.(4.1.12)

Corollary 4.1.13. Let M ∼= N be isomorphic K[G]-modules, then

dimK[G] (M) = dimK[G] (N) .(4.1.13)

Proof. Let φ : M → N be a K[G]-module isomorphism. Let M̄ ⊆M be a finitely

generated submodule, then φ
(
M̄
)
⊆ N is a finitely generated submodule and

dimK[G]

(
M̄
)

= dimK[G]

(
φ
(
M̄
))
.

Thus dimK[G] (M) ≤ dimK[G] (N) . On the other hand let N̄ ⊆ N be a finitely

generated submodule, then φ−1
(
N̄
)
⊆M is a finitely generated submodule and

dimK[G]

(
N̄
)

= dimK[G]

(
φ−1

(
N̄
))
.

This implies dimK[G] (N) ≤ dimK[G] (M) and so (4.1.13) holds. �

We show additivity for arbitrary K[G]-modules in two steps.

Lemma 4.1.14. Let G be a discrete, amenable group, K be a field. Let M be a

finitely generated K[G]-module and let N ⊆M be a submodule then

dimK[G]

(
M/N

)
= dimK[G] (M)− dimK[G] (N) .(4.1.14)

Proof. Let G be a discrete, amenable group, K be a field. Let N ⊆M be K[G]-

modules such that M is finitely generated then M/N is also finitely generated.

By definition there exists a surjective K[G]-linear map T : K[G]n → M for

some n ∈ N. Define N̄ := T−1 (N) ⊆ K[G]n, then

N̄ = ker
(
K[G]n →M →M

/
N
)
⊆ K[G]n
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and by definition dimK[G]

(
M/N

)
= n− dimK[G]

(
N̄
)
. Now let ε > 0, clearly any

finitely generated submodule of N̄ maps to a finitely generated submodule of N

and so there exist finitely generated submodules N̄ε ⊆ N̄ and Nε := T
(
N̄ε

)
⊆ N

such that

dimK[G] (N)− dimK[G] (Nε) ≤ ε,

dimK[G]

(
N̄
)
− dimK[G]

(
N̄ε

)
≤ ε.

By monotony dimK[G]

(
N̄
)
− dimK[G]

(
T−1 (Nε)

)
≤ ε and therefore by definition

of dimK[G] for finitely generated K[G]-modules

dimK[G]

(
M/Nε

)
− dimK[G]

(
M/N

)
≤ ε.

So by additivity for finitely generated K[G]-modules, Theorem 4.1.10, we have

dimK[G]

(
M/Nε

)
− dimK[G] (M) + dimK[G] (Nε) = 0.

Therefore we conclude for every ε > 0 that

|dimK[G]

(
M/N

)
− dimK[G] (M) + dimK[G] (N)|

≤ |dimK[G]

(
M/N

)
− dimK[G]

(
M/Nε

)
| + |dimK[G] (N)− dimK[G] (Nε)|

≤ 2ε.

�

Theorem 4.1.15. Let G be a discrete, amenable group and K be a field. Let

0→ N →M → P → 0

be an exact sequence of K[G]-modules, then

dimK[G] (M) = dimK[G] (N) + dimK[G] (P ) .(4.1.15)

Proof. Let G be a discrete, amenable group and K be a field. Let

0→ N
φ−→M

ψ−→ P → 0

be an exact sequence of K[G]-modules and ε > 0, then by monotony, see Corollary

4.1.9 there exist finitely generated K[G]-modules Nε ⊂ N,Mε ⊂ M,Pε ⊂ P such
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that

dimK[G] (N)− dimK[G] (Nε) ≤ ε

dimK[G] (M)− dimK[G] (Mε) ≤ ε

dimK[G] (P )− dimK[G] (Pε) ≤ ε

and

φ (Nε) ⊆Mε ∩ φ (N) =: N̄ε,

ψ (Mε) = Pε.

It follows that Mε

/
N̄ε
∼= Pε and by Lemma 4.1.14

dimK[G] (Pε) = dimK[G] (Mε)− dimK[G]

(
N̄ε

)
.

Together with dimK[G] (N)− dimK[G]

(
N̄ε

)
≤ ε by monotony this implies

|dimK[G] (P )− dimK[G] (M) + dimK[G] (N)|

≤ |dimK[G] (P )− dimK[G] (Pε )|

+ |
(
dimK[G] (M)− dimK[G] (Mε)

)
|

+ |dimK[G] (N)− dimK[G]

(
N̄ε

)
|

≤ 3ε.

�

4.2. Proof of properties

We come back to the postponed proofs of Theorem 4.1.5. Let G be a discrete,

amenable group and K a field.

Lemma 4.2.1. Let M ⊆ K[G]n be a K[G]-submodule, then

dimK[G] (M) = 0 ⇐⇒ M = 0.(4.2.1)

Proof. By definition it is clear that dimK[G] (0) = 0.

On the other hand let M ⊆ K[G]n be a K[G]-submodule such that M 6= 0.

Now let 0 6= m ∈ M . We will show that dimK[G] (M) > 0. Let L := suppm ∪
{e} ⊂ G and let F ⊂ G be a finite subset such that L ⊆ F , recall the definition

of IntL (F ) and consider the subset K[IntL (F )] ⊂ K[G]. Then

m ·K[IntL (F )] =
(
m ·K[IntL (F )]

)
∩ im iF ⊆M ∩ im iF ⊆ im iF ∼= K[F ]n,

(4.2.2)
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as K-vector spaces. Thus left multiplication by m induces a K-linear map

K[IntL (F )]→ K[F ]n,

which we may identify with a matrix T ∈ Kr×s, where r = n|F | and s =

|IntL (F )|, such that m ·K[IntL (F )] ∼= imT as K-vector spaces.

We write l := |suppm|, from the definition of group ring multiplication we

know that each row of T has at most l non-zero entries and each column is a

permutation of m ∈ K[F ]n as a K-vector, in particular each column has the same

number of non-zero entries. Recall from linear algebra ([Hef15]) that the number

of linearly independent columns of T is the same as dimF (imT ) and that deleting

a row or column from a matrix can only reduce this.

We want to see that T has at least s
l

linearly independent columns. We reduce

the matrix as follows.

• Pick a column with the fewest non-zero entries, then pick a non-zero

entry in this column.

• Delete all other columns which have a non-zero entry in the correspond-

ing row, these are at most l − 1.

• Delete all other rows for which the chosen column has a non-zero entry.

Now the chosen column is linearly independent of all other remaining

columns. All other remaining columns have at least one non-zero entry.

• Repeat until all remaining columns are linearly independent.

In each iteration we reduce at most l columns to one and do not touch its non-zero

entry afterwards. So this leaves at least s
l

linearly independent reduced columns.

This implies with (4.2.2) that

dimK (M ∩ im iF ) ≥ dimK
(
m ·K[IntL (F )]

)
≥ s

l
=

|IntL (F )|
|suppm| .

Furthermore by Lemma 1.2.3 we know that

|IntL (F )| ≥ |F |− ∂L (F ) .
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Let (Fi) be a Følner exhaustion for G according to Theorem 1.3.7 then all the

above implies

dimK[G] (M) = lim
i

dimK
(
M ∩ im iFi

)
|Fi|

≥ lim
i

1

|suppm|
|Fi|− ∂L (Fi)

|Fi|

=
1

|suppm| − lim
i

1

|suppm|
∂L (Fi)

|Fi|

=
1

|suppm| > 0.

�

Corollary 4.2.2. Let M ⊆ K[G] be a non-trivial K[G]-submodule.We denote

the size of the minimal support of M by s := min
{
|suppm|

∣∣ 0 6= m ∈M
}
∈ N.

Then

1

s
≤ dimK[G] (M) ≤ 1.(4.2.3)

Lemma 4.2.3. Let G be an amenable group, K be a field, then for any submodule

M ∈
{
N1 +N2, N1 ∩N2

∣∣ N1, N2 ∈ Kn(G) ∪Rn(G), n ∈ N
}

it holds that

dimK[G] (M) = dimK[G] (M) .(4.2.4)

Proof. Let M ∈ Kn(G) ∪ Rn(G), then (4.2.4) follows from Theorems 2.2.1 and

2.2.2 due to the property of Følner nets (1.3.1). Furthermore let N ∈ Kn(G) ∪
Rn(G) then Lemma 2.2.3 implies that,

dimK[G] (M +N) = dimK[G] (M +N) ,

dimK[G] (M ∩N) = dimK[G] (M ∩N) .

�

Lemma 4.2.4 (Monotony). Let n ∈ N and let M ⊆ N ⊆ K[G]n be two submod-

ules, then

dimK[G](M) ≤ dimK[G](N),(4.2.5)

dimK[G](M) ≤ dimK[G](N).(4.2.6)

Proof. Let M ⊆ N ⊆ K[G] be two submodules, then for all F ∈ F(G) it holds

that M ∩ im iF ⊆ N ∩ im iF and pF (M) ⊆ pF (N) therefore the claim follows. �
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Lemma 4.2.5 (Continuity). Let M ⊆ K[G]m, m ∈ N, be a submodule and

{Mα|α ∈ A} be an exhausting directed system of submodules, i.e.
⋃
α∈AMα = M

and for any two indices α, β there is an index γ ∈ A such that Mα ⊂ Mγ and

Mβ ⊂Mγ. Then it holds that

dimK[G] (M) = sup
α

dimK[G] (Mα) .(4.2.7)

Proof. Let M ⊆ K[G]m be a submodule, m ∈ N. Because of Theorem 1.3.7 we

may consider a Følner net (Fi)i∈I such that Fi ⊆ Fj for i ≤ j ∈ I. We want to

show a coarse monotonicity of

I → R : i 7→
dimK

(
M ∩ im iFi

)
|Fi|

.

Recall the proof of Theorem 3.2.2. Fix ε ∈ ]0, 1/2] and with it nε := d log ε
log(2−ε)−log2e.

Let J ε ⊂ I be a directed subset such that
(
Fj
)
j∈Jε is a subnet where for all

k > j ∈ J ε holds that Fj ⊂ Fk and

|∂Fj(Fk)|
|Fk|

< ε2nε .(4.2.8)

Let h : F(G)→ N be as in Definition 2.3.1 and we define

j0 := arg min
j1≤ji≤jnε

h(Fji)

|Fji|
,

for a finite sequence j1 < j2 < j3 < . . . < jnε of length nε. By Lemma 3.2.1 we

have a decomposition of Fk, k > jnε into disjoint subsets

Fk =
nε⊔
l=1

FjlRl tDnε ,
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such that |Dnε| ≤ ε|Fk|. Where Rl ⊂ G are finite, possible empty, and (Fjlg)g∈Rl
are ε-disjoint families. Now as in the proof of Theorem 3.2.2,

h(Fk)

|Fk|
≥

nε∑
l=1

∑
g∈Rl

h(Fjl)

|Fjl|
|Fjlg|
|Fk|

−m2ε− ε2

1− ε

≥ h(Fj0)

|Fj0|

nε∑
j=1

∑
g∈Rj

|Fjlg|
|Fk|

−m2ε− ε2

1− ε

≥ h(Fj0)

|Fj0|
(1− ε)−m2ε− ε2

1− ε

≥ h(Fj0)

|Fj0|
−m

(
ε+

2ε− ε2

1− ε

)

≥ h(Fj0)

|Fj0|
− 5mε.

(4.2.9)

So k 7→ dimK(M∩im iFk)
|Fk|

is almost monotone increasing. Finally, we may consider a

submodule M ⊆ K[G]m, m ∈ N, and an exhausting directed system of submod-

ules {Mα|α ∈ A}, i.e.
⋃
α∈AMα = M and for any two indices α, β there is an

index γ ∈ A such that Mα ⊂Mγ and Mβ ⊂Mγ. Then the following holds

dimK[G] (M) = lim
i

dimK
(
M ∩ im iFi

)
|Fi|

= lim
i

supα dimK
(
Mα ∩ im iFi

)
|Fi|

≥ sup
α

lim
i

dimK
(
Mα ∩ im iFi

)
|Fi|

= sup
α

dimK[G] (Mα) .

(4.2.10)

We write hα(Fi) := dimK
(
Mα ∩ im iFi

)
, h∞(Fi) := dimK

(
M ∩ im iFi

)
and

assume (4.2.10) is a strict inequality. Then there exists ε ∈ ]0, 1/2] such that

lim
i

h∞(Fi)

|Fi|
= lim

i
sup
α

hα(Fi)

|Fi|
≥ sup

α
lim
i

hα(Fi)

|Fi|
+ 10mε.(4.2.11)

For this ε we get nε and a Følner subsequence
(
Fj
)
j∈Jε as in (4.2.8). Since

the limits converge independent of the choice of Følner sequence we find a lower

bound j0 ∈ J ε such that

∀j ≥ j0 :
h∞(Fj)

|Fj|
≥ dimK[G] (M)−mε.
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Fix a finite sequence j1 < j2 < j3 < . . . < jnε of length nε with j0 < j1. Since

Fjk is a finite set we have that supα hα(Fjk) stabilizes at some αk. We note the

maximum α0 := max1≤k≤nε αk, then (4.2.9) gives us that

hα(Fj)

|Fj|
≥ min

1≤k≤nε

hα0(Fjk)

|Fjk|
− 5mε ≥ dimK[G] (M)− 6mε,

for all α > α0 and j > jnε . But then

sup
α

lim
j

hα(Fj)

|Fj|
≥ lim

j

h∞(Fj)

|Fj|
− 6mε,

which contradicts (4.2.11) and we see that (4.2.10) is indeed an equality

dimK[G] (M) = sup
α

dimK[G] (Mα) .

�

Lemma 4.2.6 (Dimension Formula). Let M,N ⊂ K[G]n, n ∈ N, be K[G]-

submodules then

dimK[G] (M +N) = dimK[G] (M) + dimK[G] (N)− dimK[G] (M ∩N) .(4.2.12)

Proof. We start with the case M,N ∈ Rn(G), n ∈ N. Now Lemma 2.2.3 implies

that

dimK[G] (M +N) = dimK[G] (M) + dimK[G] (N)− dimK[G] (M ∩N) .

Thus by Lemma 4.2.3

dimK[G] (M +N) = dimK[G] (M) + dimK[G] (N)− dimK[G] (M ∩N) .

Now consider an elementary consequence of monotony. Let A1 ⊂ A2 ⊂ K[G]

be two submodules, B ⊂ K[G] another one and F ⊂ G a finite subset. Then

linear algebra shows that

dimK (A1 ∩ im iF )− dimK (A1 ∩B ∩ im iF )

≤ dimK (A2 ∩ im iF )− dimK (A2 ∩B ∩ im iF ) ,

and therefore

dimK[G] (A1)− dimK[G] (A1 ∩B) ≤ dimK[G] (A2)− dimK[G] (A2 ∩B) .(4.2.13)

Now let M,N ⊂ K[G]n be arbitrary submodules. We find that{
Mα

∣∣∣Mα ⊂M finitely generated submodule
}
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and {
Nα

∣∣∣Nα ⊂ N f. g. submodule
}

are exhausting directed systems of M respective N . These induce further ex-

hausting directed systems,

M ∩N =
⋃
α

(Mα ∩N) =
⋃
α

⋃
β

(
Mα ∩Nβ

)
=
⋃
β

(
M ∩Nβ

)
=
⋃

(α,β)

(
Mα ∩Nβ

)
,

M +N =

(⋃
α

Mα

)
+

⋃
β

Nβ

 =
⋃

(α,β)

(
Mα +Nβ

)
.

By our previous results we know that

D1 := sup
(α,β)

(
dimK[G] (Mα) + dimK[G]

(
Nβ

)
− dimK[G]

(
Mα ∩Nβ

))
= sup

(α,β)

dimK[G]

(
Mα +Nβ

)
= dimK[G] (M +N) ,

D2 := sup
α

dimK[G] (Mα) + sup
β

dimK[G]

(
Nβ

)
− sup

(α,β)

dimK[G]

(
Mα ∩Nβ

)
= dimK[G] (M) + dimK[G] (N)− dimK[G] (M ∩N) .

We assume there exists ε > 0 such that |D1 − D2| > ε. By definition of the

supremum we find indices (α0, β0) , (α1, β1) , (α2, β2) such that

sup
α

dimK[G] (Mα)− dimK[G] (Mα1) ≤ ε

4
,

sup
β

dimK[G]

(
Nβ

)
− dimK[G]

(
Nβ1

)
≤ ε

4
,

sup
(α,β)

dimK[G]

(
Mα ∩Nβ

)
− dimK[G]

(
Mα2 ∩Nβ2

)
≤ ε

4

and

D1 −
(

dimK[G] (Mα0) + dimK[G]

(
Nβ0

)
− dimK[G]

(
Mα0 ∩Nβ0

))
≤ ε

4
.

By property of directed systems we find (α3, β3) such that

Mα0 ,Mα1 ,Mα2 ⊂Mα3 and Nβ0 , Nβ1 , Nβ2 ⊂ Nβ3 ,

and we call D3 := dimK[G] (Mα3) + dimK[G]

(
Nβ3

)
− dimK[G]

(
Mα3 ∩Nβ3

)
.
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Now monotony gives us that |D3 −D2| ≤ 2ε
4

and with (4.2.13) we see

dimK[G] (Mα0)− dimK[G]

(
Mα0 ∩Nβ0

)
≤ dimK[G] (Mα3)− dimK[G]

(
Mα3 ∩Nβ0

)
,

dimK[G]

(
Nβ0

)
− dimK[G]

(
Mα3 ∩Nβ0

)
≤ dimK[G]

(
Nβ3

)
− dimK[G]

(
Mα3 ∩Nβ3

)
.

Which implies that |D1 −D3| ≤ ε
4

and therefore by triangle inequality

|D1 −D2| ≤
3ε

4
.

This contradicts our assumption and thus

dimK[G] (M +N) = dimK[G] (M) + dimK[G] (N)− dimK[G] (M ∩N) .

�

Lemma 4.2.7 (Additivity). Let T : M → N be a K[G]-linear map with domain

M ⊂ K[G]m and codomain N ⊂ K[G]n K[G]-submodules then

dimK[G] (M) = dimK[G] (kerT ) + dimK[G] (imT ) .(4.2.14)

Proof. Let T : M → N be a K[G]-linear map with domain M ⊂ K[G]m and

codomain N ⊂ K[G]n K[G]-submodules. We start with the case of M = imS

with S : K[G]l → K[G]m a K[G]-linear map. Then T ◦ S : K[G]l → K[G]n and we

may consider it as a matrix with K[G] entries and therefore its support.

Let F ⊂ G be any finite subset and as before let LS = suppS∪(suppS)−1∪{e}
and LT◦S = supp (T ◦ S) ∪

(
supp (T ◦ S)

)−1 ∪ {e}, we set K := LT◦SLS then K

is finite and LS, LT◦S ⊆ K. This implies by definition that IntK (F ) ⊆ IntLS (F )

and BLS (F ) , BLT◦S (F ) ⊂ BK (F ) . With Theorem 2.2.2 we see the following
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estimates,

dimK

(
pF
(
im (T ◦ S)

))
= dimK

(
pF

(
im
(
T ◦ S ◦ iBK(F )

)))
≤ dimK

(
pF

(
im
(
T ◦ S ◦ iIntK(F )

)))
+ l|∂K (F )|

= dimK

(
im
(
T ◦ S ◦ iIntK(F )

))
+ l|∂K (F )|

≤ dimK

(
im
(
T ◦ S ◦ iIntLS (F )

))
+ l|∂K (F )|

≤ dimK

(
im
(
T |imS∩im iF

))
+ l|∂K (F )|

≤ dimK

(
im
(
T ◦ S ◦ iBK(F )

))
+ l|∂K (F )|

≤ dimK

(
im
(
T ◦ S ◦ iIntK(F )

))
+ 2l|∂K (F )|

≤ dimK

(
pF
(
im (T ◦ S)

))
+ 2l|∂K (F )|.

By definition of Følner nets this implies that

lim
i

dimK

(
pFi
(
im (T ◦ S)

))
|Fi|

= lim
i

dimK

(
im
(
T |imS∩im iFi

))
|Fi|

for any Følner net (Fi).

Thus by Lemma 4.2.3 and imT = im (T ◦ S) we have

dimK[G] (imT ) = lim
i

dimK

(
im
(
T |imS∩im iFi

))
|Fi|

,(4.2.15)

for any Følner net (Fi).

Also Lemma 2.1.9 implies

im
(
T |imS∩im iF

)
⊆ im

(
T ◦ S ◦ iBLS (F )

)
⊆ im (T ◦ S) ∩ im iBK(BLS (F )).

So consider now

T |M∩im iF : (M ∩ im iF )→
(
K[G]n ∩ im iBK(BLS (F ))

)
as a K-linear map, then kerT |M∩im iF = kerT ∩ im iF . So additivity for K-linear

maps [War90] tells us

dimK (M ∩ im iF ) = dimK (kerT ∩ im iF ) + dimK
(
imT |M∩im iF

)
.
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Together with (4.2.15) this gives us additivity for M = imS:

dimK[G] (M) = dimK[G] (kerT ) + dimK[G] (imT ) .

Next let M ⊂ K[G] be any submodule and consider the exhausting directed

system

{Mα |Mα ⊂M finitely generated submodule}

then T (Mα) ⊂ T (Mβ) for Mα ⊂Mβ and⋃
α

T (Mα) = T (M).

With the considerations above the additivity result from before extends,

dimK[G] (M) = sup
α

dimK[G] (Mα)

= sup
α

(
dimK[G] (kerT ∩Mα) + dimK[G]

(
T (Mα)

))
= sup

α
dimK[G] (kerT ∩Mα) + sup

α
dimK[G]

(
T (Mα)

)
= dimK[G] (kerT ) + dimK[G]

(
T (M)

)
.

�

Lemma 4.2.8 (Induction from subgroups). Let H ≤ G be a subgroup of a dis-

crete, amenable group G. Let M ⊆ K[H]n, n ∈ N be a K[H]-submodule, with

induced submodule MG := M ·K[G] ⊆ K[G]n, then

dimK[H](M) = dimK[G](M
G).(4.2.16)

For H ≤ G a finite subgroup it also holds that

dimK[H](M) = dimK[G](MG).(4.2.17)

Proof. Let H ≤ G be a subgroup of a discrete, amenable group G and let
(
Fi
)
i∈I

be a Følner net of G. Furthermore, let V ⊂ G be a transversal, such that

G =
⊔
v∈V

H · v

is a disjoint union of conjugacy classes. Then Fi =
⊔
v∈V F

v
i ·v is a disjoint union,

where F v
i := (Fi ∩H · v) · v−1 ⊆ H and Vi :=

{
v ∈ V

∣∣ F v
i 6= ∅

}
⊂ V is a finite

subset.

We prove the cases of H finite and infinite separately. Let H be a finite

subgroup then we see by Lemma 1.2.6 that
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∂H (Fi) =
⊔
v∈V ′i

H · v,

where V ′i = {v ∈ Vi | F v
i 6= H}. So by Lemma 1.3.4 we have

lim
i

|V ′i |
|Vi|

= 0

By partition of G into conjugacy classes we get that K[G] =
⊕

v∈V K[H] · v.

Let M ⊂ K[H] be a K[H]-submodule, and consider

MG := M ·K[G] =
⊕
v∈V

M · v

the induction to G.

Then

pFi

(
MG

)
= pFi

⊕
v∈V

M · v

 =
⊕

v∈Vi\V ′i

pFi (M · v)⊕
⊕
v∈V ′i

pFi (M · v)

=
⊕

v∈Vi\V ′i

M · v ⊕
⊕
v∈V ′i

pF vi ·v (M · v)

=
⊕

v∈Vi\V ′i

M · v ⊕ p⊔
v∈V ′

i
F vi ·v

(
MG

)
.

Thus calculating the Følner dimension we arrive at

dimK pFi
(
MG

)
|Fi|

=
|Vi \ V ′i | dimKM + dimK p⊔v∈V ′

i
F vi ·v

(
MG

)
|Vi \ V ′i ||H| +

∑
v∈V ′i

|F v
i |

=

(
|Vi \ V ′i | dimKM

|Vi \ V ′i ||H|

)(
|Vi \ V ′i ||H|

|Vi \ V ′i ||H| +
∑

v∈V ′i
|F v

i |

)

+

( ∑
v∈V ′i

|F v
i |

|Vi \ V ′i ||H| +
∑

v∈V ′i
|F v

i |

)(
εi +

dimKM

|H|

)

=
dimKM

|H| + εi

( ∑
v∈V ′i

|F v
i |

|Vi \ V ′i ||H| +
∑

v∈V ′i
|F v

i |

)
,

where

εi :=
dimK p⊔v∈V ′

i
F vi ·v

(
MG

)
|
⊔
v∈V ′i

F v
i · v|

− dimKM

|H|
and |εi| ≤ 1 for all i ∈ I.
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Finally we may estimate

|
dimK pFi

(
MG

)
|Fi|

− dimKM

|H| | ≤
∑

v∈V ′i
|F v

i |
|Vi \ V ′i ||H| +

∑
v∈V ′i

|F v
i |

≤ |V ′i ||H|
|Vi \ V ′i ||H| +

∑
v∈V ′i

|F v
i |

=
|∂H (Fi)|

|Fi|
.

It follows that

dimK[H] (M) =
dimKM

|H| = dimK[G]

(
MG

)
.

Now consider the exhausting directed system

{Mα |Mα ⊂M finitely generated submodule}

then {
MG

α

∣∣∣Mα ⊂M finitely generated submodule
}

is an exhausting directed system of the induced submodule MG and so

dimK[H] (M) = sup
α

dimK[H] (Mα) = sup
α

dimK[H] (Mα)

= sup
α

dimK[G]

(
MG

α

)
= sup

α
dimK[G]

(
MG

α

)
= dimK[G]

(
MG

)
.

This concludes the finite subgroup case and leaves the case of an infinite subgroup.

Next let H < G be an infinite subgroup, then we find hv ∈ H such that

H ⊃ F ′i :=
⊔
v∈Vi

F v
i · hv

is a disjoint union. Now let E ∈ F(H) be a finite subset of H. We want to

see that ∂E(Fi) is a disjoint union of ∂E(F v
i · v). For any g ∈ G we have that

Eg ⊂ Hg = Hv for some v ∈ V . Clearly Hv ∩ F v′
i v
′ 6= ∅ implies v = v′ for any

two v, v′ ∈ V . So,

∂E (F v
i v) =

{
g ∈ G

∣∣∣Eg ∩ F v
i v 6= ∅, Eg ∩

(
G \ F v

i v
)
6= ∅
}

=
{
g ∈ G

∣∣∣Eg ∩ F v
i v 6= ∅, Eg ∩

(
Hv \ F v

i v
)
6= ∅
}

⊂
{
g ∈ G

∣∣∣Eg ∩ Fi 6= ∅, Eg ∩ (G \ Fi) 6= ∅}
= ∂E(Fi).
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Take any g ∈ ∂E(Fi), then Eg ⊂ Hv for precisely one v ∈ V and therefore

Eg ∩ F v
i v 6= ∅. Furthermore

Eg ∩
(
G \ Fi

)
= Eg ∩

(
G \ Fi

)
∩Hv = Eg ∩

(
Hv \ F v

i v
)
6= ∅,

that is g ∈ ∂E(F v
i v). Thus

∂E(Fi) =
⊔
v∈Vi

∂E(F v
i v).

Since ∂E(Fg) = ∂E(F )g for any g ∈ G and finite subset F ⊂ G, we have that

|∂E(F v
i v)| = |∂E(F v

i hv)|. This means that

|∂E(F ′i )|
|F ′i |

≤
∑

v∈Vi|∂E(F v
i hv)|∑

v∈Vi|F
v
i hv|

=

∑
v∈Vi|∂E(F v

i v)|∑
v∈Vi|F

v
i v|

=
|∂E(Fi)|
|Fi|

,(4.2.18)

and limi
|∂E(F ′i )|

|F ′i |
= 0, thus

(
F ′i
)
i∈I is a Følner net of H.

Let τ ∈ K[H] define a submodule

M := τ ·K[H] ⊂ K[H]

then the induced module is

MG := τ ·K[H] ·K[G] = τ ·K[G] ⊂ K[G].

As before let L := supp τ ∪(supp τ)−1∪{e} ∈ F (H). For the induced module

we have MG =
⊕

v∈V τ ·K[H] · v and

pFi

(
MG

)
=
⊕
v∈Vi

pFi
(
τ ·K[H] · v

)
=
⊕
v∈Vi

pF vi v
(
τ ·K[H] · v

)
∼=
⊕
v∈Vi

pF vi hv
(
τ ·K[H] · hv

)
=
⊕
v∈Vi

pF vi hv
(
τ ·K[H]

)
⊇ p(⊕

v∈Vi
F vi hv

)(M)

⊇ im iF ′i ∩M

⊇
⊕
v∈Vi

im iF vi hv ∩M.
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So the inclusion above and Theorem 2.2.2 show that

dimK

(
pFi

(
MG

))
≥ dimK

(
im iF ′i ∩M

)
≥ dimK

⊕
v∈Vi

im iF vi hv ∩M


=
∑
v∈Vi

dimK

(
im iF vi hv ∩M

)
≥
∑
v∈Vi

(
dimK

(
pF vi hv

(
τ ·K[H]

))
− 3|∂L (F v

i hv)|
)

= dimK

⊕
v∈Vi

pF vi hv
(
τ ·K[H]

)−∑
v∈Vi

3|∂L (F v
i v)|

= dimK

(
pFi

(
MG

))
− 3|∂L (Fi)|.

Since
(
F ′i
)
i∈I is a Følner net of H and |Fi| = |F ′i |, we get that

dimK[H] (M) = dimK[G]

(
MG

)
= dimK[G]

(
MG

)
.

Clearly this extends to

dimK[H] (M) = dimK[G]

(
MG

)
,

for all M ∈
{

imT
∣∣ T ∈ K[H]n×m,m ∈ N

}
, n ∈ N.

Again for any submodule M ⊂ K[H]n consider the exhausting directed system

{Mα |Mα ⊂M finitely generated submodule}

then {
MG

α

∣∣∣Mα ⊂M finitely generated submodule
}

is an exhausting directed system of the induced submodule MG, and so

dimK[H] (M) = sup
α

dimK[H] (Mα) = sup
α

dimK[G]

(
MG

α

)
= dimK[G]

(
MG

)
.

�
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4.3. Example: Module over the lamplighter group

Let G := Z/2Z o Z be the lamplighter group. For (α, z) ∈ G we can identify α

with a map Z→ Z/2Z of finite support. Denote by τl the element that maps l to

1 and all else to 0 then (τl, 0)2 = (τl + τl, 0) = (0, 0) = 1 is the neutral element

of G. The inverse of (α, 0) · (0, z) = (α, z) is (0,−z) · (α, 0) = (α−z,−z) where

α−z(s) = α(s+ z).

A presentation of G is
〈
a, t
∣∣a2 = 1, [tnat−n, a] = 1 ∀n ∈ Z

〉
. In this pre-

sentation we write (α, z) =
(∏

k∈Z t
kaα(k)t−k

)
tz, in particular we have that

(τl, 0) = tlat−l.

Let K be a field of characteristic 6= 2. We define a Følner net by the finite

subsets

Fi :=
{

(α, z) ∈ G
∣∣ suppα ⊆ [−i, i] 3 z

}−1
, i ∈ N.

Indeed, let K ⊂ G be a finite subset, then there exists j ∈ N such

that KK−1 ⊂ F−1
j , and thus also KK−1 ⊂ Fj. Note that for i > j

we have that ti−j
(
t−jatjtjat−j

)
tj =

(
ti−2jat−i+2jtiat−i

)
ti ∈ F−1

i and so{
(α, z) ∈ F−1

i

∣∣ −i+ j ≤ z ≤ i− j
}
F−1
j ⊆ F−1

i and therefore

{
(α, z)−1 ∈ Fi

∣∣ −i+ j ≤ z ≤ i− j
}
⊆
{

(α, z)−1 ∈ Fi
∣∣ Fj · (α, z)−1 ⊂ Fi

}
.

(4.3.1)

Thus

|Fi ∩ k1k
−1
2 Fi| ≥ |

{
(α, z)−1 ∈ Fi

∣∣ −i+ j ≤ z ≤ i− j
}
|

= |Fi|
(

1− 2j

2i+ 1

)
,

for all k1, k2 ∈ K.

Now Lemma 1.2.3 implies

∂K (Fi)

|Fi|
≤

|K|2
(
|Fi|− |Fi|

(
1− 2j

2i+1

))
|Fi|

= |K|2 2j

2i+ 1

i→∞−−−→ 0.

Note that if l /∈ [−2i, 2i] then (τl, 0) · (α−z,−z) /∈ Fi for all (α−z,−z) ∈ Fi. For

all i ∈ N we make a choice of Hi ⊂ Z \ [−2i, 2i] with |Hi| = i+ 1.

Now define idempotents xi :=
∏

l∈Hi

(
1−(τl,0)

2

)
∈ K[G] and furthermore Xi :=

xi · K[G], Mm :=
∑m

i=1 Xi and M :=
⋃
mMm. Then for all i ∈ N we have

pFiXi = K[Fi] and therefore pFiM = K[Fi], because for l ∈ Hi and (α−z,−z) ∈ Fi
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it holds that

pFi

((
1− (τl, 0)

)
· (α−z,−z)

)
= pFi

(
(α−z,−z)− (τl, 0) · (α−z,−z)

)
= (α−z,−z).

On the other hand for every Hi there is j ∈ N such that Hi ⊂ [−j, j], and

thus
(∑

l∈H′ τl, 0
)
∈ Fj for every subset H ′ ⊆ Hi. So for all n > j we define the

subset

U i
n :=

g ∈ Fn
∣∣∣∣∣∣ ∀H ′ ⊆ Hi :

∑
l∈H′

τl, 0

 · g ∈ Fn
 ⊆ Fn.

Let l ∈ Hi and H ′ ⊆ Hi, then
(∑

l′∈H′ τl′ , 0
)
·(τl, 0) =

(∑
l′∈H̃ τl′ , 0

)
, with H̃ ⊆ Hi.

Thus g ∈ U i
n implies (τl, 0) g ∈ U i

n for all l ∈ Hi. Then for l ∈ Hi this implies

|
{

(α−z,−z) ∈ U i
n

∣∣ α−z(l) = 0
}
| = 1

2
|U i

n| and for any y : Hi → {0, 1},

(τl, 0) ·
{

(α−z,−z) ∈ U i
n

∣∣∣ ∀k ∈ Hi \ {l} : α−z(k) = y(k), α−z(l) = 0
}

=
{

(α−z,−z) ∈ U i
n

∣∣∣ ∀k ∈ Hi \ {l} : α−z(k) = y(k), α−z(l) = 1
}
.

Therefore

dimK

((
1− (τl, 0)

2

)
·K[U i

n]

)
=

1

2
|U i

n|,

dimK

(
xi ·K[U i

n]
)

= 2−|Hi||U i
n|.

By (4.3.1) we see that

1− 2j

2n+ 1
≤ |U i

n|
|Fn|

≤ 1.

and consequently,

dimK
(
xi ·K[Fn]

)
≤ dimK

(
xi ·K[U i

n]
)

+ dimK

(
xi ·K[Fn \ U i

n]
)

≤ 2−|Hi||U i
n| +

(
|Fn|− |U i

n|
)

≤ 2−|Hi||Fn| +
2j

2n+ 1
|Fn|.

Corollary 4.2.2 and Theorem 2.2.2 now imply

2−|Hi| ≤ dimK[G](Xi) = dimK[G](Xi) ≤ 2−|Hi| =
1

2
2−i.

So by dimension formula we have for all m ∈ N that

dimK[G] (Mm) = dimK[G] (Mm) ≤ 1

2

m∑
i=1

2−i ≤ 1

2

∞∑
i=1

2−i =
1

2
.
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Thus 1
4
≤ dimK[G] (M) = supm dimK[G] (Mm) ≤ 1

2
, while dimK[G] (M) = 1.

In the end we see that dimK[G] 6= dimK[G] and as we can prove more nice

properties for it, dimK[G] is preferable as a dimension function.

4.4. Relation to the von Neumann dimension

In the introduction we saw that we want to establish a dimension function similar

to the von Neumann dimension for the group von Neumann algebra. We will

work towards this connection and begin by looking at how the Følner dimension

changes when we change the field.

Lemma 4.4.1 (Change of field). Let G be a discrete, amenable group and let

Fp be the canonical field of p elements, p, q ∈ N, where p is a prime number and

p - q. We consider an element τ ∈ Z[1
q
][G] ⊂ Q[G] and its image τ ∈ Fp[G] under

the natural projection Z[1
q
][G] � Fp[G]. Then

dimFp[G]

(
τ · Fp[G]

)
≤ dimQ[G]

(
τ ·Q[G]

)
.(4.4.1)

Proof. Let G be a discrete, amenable group and let Fp be the field of p elements,

p, q ∈ N, where p is a prime number and p - q. Let τ ∈ Z[1
q
]G ⊂ Q[G] and its

image τ ∈ Fp[G] under the natural projection Z[1
q
]G � Fp[G]. Slightly abusing

notation we may write τ · Fp[G] for τ · Fp[G].

Like before, we define the finite subset L := supp τ ∪ (supp τ)−1 ∪ {e} ⊂ G

and let F ⊂ G be any finite subset. As we have seen before, it holds that

dimK

(
pF

(
im
(
K[G]

τ−→ K[G]
)))

= dimK

(
im
(
K[BL(F )]

pF ◦τ−−−→ K[F ]
))

= dimK

(
im
(
Kn A−→ Km

))
,

where K ∈ {Q,Fp}, n = |BL(F )|, m = |F | and A ∈ Z[1
q
]m×n is the matrix

corresponding to the left multiplication with τ . Therefore it would suffice to

show for any matrix A ∈ Z[1
q
]m×n that

rkFp (A) ≤ rkQ (A) .

Let Ai be the i-th column vector of A. We define the index sets of families of

linear independent column vectors

IK(A) :=

{
I ⊂ {1, . . . , n}

∣∣∣∣〈{Ai∣∣∣i ∈ (I \ {j})}〉 $ 〈{Ai|i ∈ I}〉 ⊂ Km ∀j ∈ I
}
,
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then

rkK(A) = max
I∈IK(A)

|I|.

Now let I ∈ IFp(A) and r := |I| and consider the matrix produced by column

vectors AI := (Ai)i∈I and let A†I be the transpose of AI . Then we know by linear

algebra, see [Hef15], that rkK (AI) = rkK

(
A†I

)
and there exists J ∈ IFp

(
A†I

)
such that |J| = r and det

((
A†I

)
J

)
6≡ 0 mod p. But then we already have that

det

((
A†I

)
J

)
6= 0

and therefore J ∈ IQ
(
A†I

)
. This in turn implies that I ∈ IQ(A).

So IFp(A) ⊆ IQ(A) and

rkFp (A) ≤ rkQ (A) .

We see that this implies dimFp[G]

(
τ · Fp[G]

)
≤ dimQ[G]

(
τ ·Q[G]

)
. �

Corollary 4.4.2. (i) Let T ∈ Z[1
q
]Gm×n be a matrix over the group ring Z[1

q
]G

then

dimFp[G]

(
imT

)
≤ dimQ[G] (imT ) ,(4.4.2)

and by additivity

dimFp[G]

(
kerT

)
≥ dimQ[G] (kerT ) .(4.4.3)

In case of T = T 2 we have that T (1− T ) = 0 = (1− T )T , so kerT =

im (1− T ) and imT = ker (1− T ). Then the same holds for T and these

estimates become equations.

(ii) Let A ∈ Kn×n be a quadratic matrix with coefficients in K. Let K̄ be a field

extension of K, then A ∈ K̄n×n and by definition of the determinant we see

that

detK(A) 6= 0 ⇐⇒ detK̄(A) 6= 0.

So the estimates above become an equality for fields of the same char-

acteristic. In particular we see for T ∈ Q[G]m×n that

dimQ[G] (kerT ) = dimC[G] (kerT ) ,(4.4.4)

dimQ[G] (imT ) = dimC[G] (imT ) .(4.4.5)
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We follow [Ele03a] to see the relation to the von Neumann dimension for

N (G), the group von Neumann algebra of a discrete group. For a more general

discussion of the von Neumann dimension see [Lüc02b].

Definition 4.4.3. [Ele03a] Let G be a discrete group and let

l2(G) :=

∑
x∈G

axx

∣∣∣∣∣∣ ∀x ∈ G : ax ∈ C,
∑
x∈G

|ax|2 <∞

(4.4.6)

be the Hilbert space of square summable functions on G. Note that if γ ∈ l2(G)

has finite support, then γ ∈ C[G]. Let V ⊂ l2(G) be a C[G]-submodule.

(i) The von Neumann dimension of V is defined as

dimN (G)(V ) = 〈PV e, e〉 ,(4.4.7)

where PV is the orthogonal projection onto the closure of V and e ∈ l2(G)

is the sum which contains only the neutral element of G with coefficient

1 ∈ C.

(ii) For arbitrary linear subspaces W ⊂ l2(G) and finite subsets F ⊂ G we

define

dimF (W ) =

∑
g∈F 〈PWg, g〉

|F | .(4.4.8)

Corollary 4.4.4. Let V ⊂ l2(G) be a C[G]-submodule then

dimF (V ) = dimN (G)(V ).

On the other hand note that for a finite dimensional subspace W ⊂ l2(G) which

is supported on F we have that

dimF (W ) =
dimC(W )

|F | .

Proof. Let V ⊂ l2(G) be a C[G]-submodule, and PV be the orthogonal projection

onto the closure of V . Then 〈PV g, g〉 = 〈PV e, e〉 for all g ∈ G. On the other

hand it is well known in linear algebra that the dimension of a finite dimensional

subspace is equal to the trace of its orthogonal projection. So let W ⊂ l2(G) be a

finite dimensional subspace which is supported on F ∈ F(G) then we have that

dimF (W ) =

∑
g∈F 〈PWg, g〉

|F | =

∑
g∈G 〈PWg, g〉

|F | =
dimC(W )

|F | .

�
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Theorem 4.4.5. Let G be a discrete, amenable group. Let τ ∈ C[G] and

Mτ : C[G]→ C[G], M
(2)
τ : l2(G)→ l2(G) be the left multiplication by τ .

dimC[G] (kerMτ ) = dimN (G)

(
kerM (2)

τ

)
,(4.4.9)

dimC[G] (imMτ ) = dimN (G)

(
imM (2)

τ

)
.(4.4.10)

Proof. Let τ ∈ C[G] and Mτ : C[G] → C[G], M
(2)
τ : l2(G) → l2(G) be the left

multiplication by τ . For any finite subset F ⊂ G, we have that

kerM (2)
τ ∩ im iF ⊂ C[G].

So kerM
(2)
τ ∩ im iF = kerMτ ∩ im iF . Then by monotony for subspaces we have

that

dimF (kerMτ ∩ im iF ) ≤ dimF

(
kerM (2)

τ

)
= dimN (G)

(
kerM (2)

τ

)
,

dimF (imMτ ∩ im iF ) ≤ dimF

(
imM (2)

τ

)
= dimN (G)

(
imM (2)

τ

)
.

(4.4.11)

Now by additivity and dimC[G]

(
C[G]

)
= 1 = dimN (G)

(
l2(G)

)
we see that

dimC[G] (kerMτ ) + dimC[G] (imMτ ) = 1,

dimN (G)

(
kerM (2)

τ

)
+ dimN (G)

(
imM (2)

τ

)
= 1,

which together with (4.4.11) implies

dimC[G] (kerMτ ) = dimN (G) (kerMτ ) ,

dimC[G] (imMτ ) = dimN (G) (imMτ ) .

�

4.5. Comparison to Elek’s rank function

In [Ele03b] a rank function for finitely generated modules over the group ring

of a finitely generated amenable group is introduced. It also has nice properties

like additivity, so naturally we want to see if it agrees with the previously defined

Følner dimension. To that end we will reproduce Elek’s definition.

Definition 4.5.1. Let G be a discrete group, K be a field and n ∈ N. We call

(Kn)⊕G the maps from G to Kn with finite support, and (Kn)G general maps from

G to Kn. We define

〈·, ·〉 : (Kn)G × (Kn)⊕G → K(4.5.1)
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by 〈f, α〉 :=
∑

g∈G
(
f(g), α(g)

)
for f ∈ (Kn)G , α ∈ (Kn)⊕G , where (·, ·) is the

canonical bilinear form in Kn

Lemma 4.5.2. Let G be a discrete group, K be a field and n ∈ N. There exists

a canonical isomorphism Φ: K[G]n → (Kn)⊕G.

Proof. Let G be a discrete group, K be a field and n ∈ N. Let

α =

∑
x∈G

a1
xx,
∑
x∈G

a2
xx, . . . ,

∑
x∈G

anxx

 ∈ K[G]n

then we define Φ (α) (g) :=
(
a1
g, a

2
g, . . . , a

n
g

)
∈ Kn. Note that Φ (α) has finite

support and Φ is clearly bijective and K-linear. �

Lemma 4.5.3. Let G be a discrete group and K be a field, we see that(
K[G]n

)∗
:= homK

(
K[G]n,K

) ∼= (Kn)G(4.5.2)

and (Kn)G is a K-vector space and there is a natural right G-action, (f.h) (g) :=

f
(
gh−1

)
for f ∈ (Kn)G and g, h ∈ G.

Proof. Let G be a discrete group and K be a field, by the previous lemma we

have homK
(
K[G]n,K

) ∼= homK

(
(Kn)⊕G ,K

)
. Now let f ∈ (Kn)G then 〈f, ·〉 ∈

homK

(
(Kn)⊕G ,K

)
.

On the other hand let 1g,i ∈ (Kn)⊕G be the map that maps g to the i-th basis

vector of Kn and is zero elsewhere, then
(
1g,i
)
g∈G,i=1,...,n

is a basis for (Kn)⊕G.

Now we define

Ψ: homK

(
(Kn)⊕G ,K

)
→ (Kn)G

by φ 7→
(
g 7→

∑n
i=1 φ(1g,i)1g,i(g)

)
. It is easy to see that

∑n
i=1

〈
f, 1g,i

〉
1g,i(g) =

f(g) for all g ∈ G and

〈
Ψ (φ) , 1h,j

〉
=
∑
g∈G

 n∑
i=1

φ(1g,i)1g,i(g), 1h,j(g)


=
(
φ(1h,j)1h,j(h), 1h,j(h)

)
= φ(1h,j),

for all φ(1h,j) ∈ (Kn)⊕G. This shows that f 7→ 〈f, ·〉 and Ψ are inverse to each

other. �

Lemma 4.5.4. Let G be a discrete group, K be a field and let M be a finitely

generated right K[G]-module with T : K[G]n → M surjective and K[G]-linear for
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some n ∈ N. Then we have T ∗ : homK (M,K)→ homK
(
K[G]n,K

)
by precompo-

sition and T ∗ is injective and K[G]-linear. So we have

M∗ ∼= (kerT )⊥ :=
{
f ∈ (Kn)G

∣∣∣ 〈f,Φ(α)
〉

= 0 ∀α ∈ kerT
}
⊂ (Kn)G ,(4.5.3)

and it is invariant under right G-action.

Proof. Let G be a group, K be a field, n ∈ N and let M be a finitely generated

right K[G]-module with T : K[G]n → M surjective and K[G]-linear. Let f, f ′ ∈
M∗ such that T ∗(f) = T ∗(f ′) then

f
(
T (α)

)
= T ∗(f)(α) = T ∗(f ′)(α) = f ′

(
T (α)

)
for all α ∈ K[G]n. Since T is surjective it follows that f(m) = f ′(m) for all

m ∈M and thus f = f ′ ∈M∗. Furthermore for all α ∈ K[G]n,
∑

x∈G axx ∈ K[G]

and f ∈M∗ it holds that(T ∗f) ·

∑
x∈G

axx


 (α) =

∑
x∈G

ax (T ∗f)
(
αx−1

)
=
∑
x∈G

axf
(
T
(
αx−1

))
=
∑
x∈G

axf
(
T (α)x−1

)
=
∑
x∈G

ax (fx)
(
T (α)

)

=

T ∗
f ·

∑
x∈G

axx



 (α) ,

so T ∗ is K[G]-linear. Finally let f ∈M∗ then T ∗f (x) = f
(
T (x)

)
= f(0) = 0 for

all x ∈ kerT . On the other hand, let f ∈ (kerT )⊥ then it provides

f̄ ∈
(
K[G]n

kerT

)∗
∼= (M)∗

by f̄
(
[α]
)

:=
〈
f,Φ (α)

〉
. �

Definition 4.5.5. [Ele03b] Let G be a discrete, amenable group, K be a field

and (Fi) a Følner net of G. Let M be a finitely generated K[G]-module with

T : K[G]n →M surjective and K[G]-linear.

Then we have T ∗ : homK (M,K) → homK
(
K[G]n,K

)
by precomposition and

T ∗ is injective. So consider M∗ ∼= (kerT )⊥ ⊂
(
K[G]n

)G
and define

rkElek (M) := lim
i

dimK

(
(kerT )⊥Fi

)
|Fi|

,(4.5.4)
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where

(kerT )⊥Fi :=
{
f ∈ (Kn)G

∣∣∣ supp f ⊆ Fi, ∃f ′ ∈ (kerT )⊥ : f(g) = f ′(g) ∀g ∈ Fi
}
.

Theorem 4.5.6. [Ele03b]Let G be a finitely generated, discrete and amenable

group, K be a field and let M,N,P be finitely generated K[G]-modules. Then the

following statements hold.

(i) If M ∼= N , then rkElek (M) = rkElek (N) .

(ii) If 0→M → P → N → 0 is an exact sequence, then

rkElek (M) + rkElek (N) = rkElek (P ) .

(iii) rkElek

(
K[G]

)
= 1.

Our next goal is to approximate this rank by the previously defined dimen-

sions. For this purpose we need to compare the segments the normalized average

is taken over.

Lemma 4.5.7. Let G be a group, K be a field, n ∈ N and let M be a finitely

generated right K[G]-module with T : K[G]n → M surjective and K[G]-linear.

For F ∈ F(G) let iF : K[F ]n ↪→ K[G]n and pF : K[G]n � K[F ]n be the canonical

K-linear maps between K-vector spaces. Then

(kerT )⊥F
∼=

φ : K[F ]n → K

∣∣∣∣∣∣∣∣
∃f ∈ (kerT )⊥ : ∀α ∈ K[G]n :

φ
(
pF (α)

)
=
∑
g∈F

(
f(g),

(
Φ(α)

)
(g)
)
 ,(4.5.5)

and also

K[F ]n

pF (kerT )
∼=
{
φ : K[F ]n → K

∣∣∣ φ (pF (α)
)

= 0 ∀α ∈ kerT
}
,(4.5.6)

K[F ]n

kerT ∩ im iF
∼=

φ : K[F ]n → K

∣∣∣∣∣∣
∀α ∈ kerT ∩ im iF :

φ
(
pF (α)

)
= 0

 .(4.5.7)

Proof. Let G be a group, K be a field, n ∈ N and let M be a finitely generated

right K[G]-module with T : K[G]n → M surjective and K[G]-linear. Let F ∈
F(G) and let iF : K[F ]n ↪→ K[G]n and pF : K[G]n � K[F ]n be the canonical K-

linear maps between K-vector spaces. We define πF := iF ◦ pF . Let f ∈ (Kn)G

then by Definition 4.5.1 and Lemma 4.5.2 we have that supp f ⊆ F if and only if

∀α ∈ K[G]n :
〈
f,Φ (α)

〉
=
∑
g∈F

(
f (g) ,

(
Φ (α)

)
(g)
)

=
〈
f,Φ (πFα)

〉
.
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With Lemmas 4.5.3 and 4.5.2 we get that (kerT )⊥F is isomorphic to〈f, ·〉
∣∣∣∣∣∣∣∣

f ∈ (Kn)G ,∃f ′ ∈ (kerT )⊥ : ∀α ∈ K[G]n :〈
f,Φ (α)

〉
=
∑
g∈F

(
f (g) ,

(
Φ (α)

)
(g)
)

=
∑
g∈F

(
f ′(g),

(
Φ(α)

)
(g)
)


∼=

φ : (Kn)⊕G → K

∣∣∣∣∣∣∣∣
∃f ∈ (kerT )⊥ : ∀α ∈ K[G]n :

φ
(
Φ (α)

)
= φ

(
Φ (πFα)

)
=
∑
g∈F

(
f(g),

(
Φ(α)

)
(g)
)


∼=

φ : K[F ]n → K

∣∣∣∣∣∣∣∣
∃f ∈ (kerT )⊥ : ∀α ∈ K[G]n :

φ
(
pF (α)

)
=
∑
g∈F

(
f(g),

(
Φ(α)

)
(g)
)
 .

As K[F ]n is a finite dimensional K-vector space, we have that dimK
(
K[F ]n

)
=

dimK

((
K[F ]n

)∗)
. The same holds for any quotient space.

Furthermore let φ : K[F ]n → K and let V ⊂ K[F ]n be a K-subspace, then

V ⊂ kerφ if and only if φ factors through the quotient space K[F ]n

V
. Thus,

K[F ]n

pF (kerT )
∼=
{
φ : K[F ]n → K

∣∣∣ φ (pF (α)
)

= 0 ∀α ∈ kerT
}
,

K[F ]n

kerT ∩ im iF
∼=

φ : K[F ]n → K

∣∣∣∣∣∣
∀α ∈ kerT ∩ im iF :

φ
(
pF (α)

)
= 0

 .

�

We see that Elek’s rank lies between the ”upper” and ”lower” Følner dimen-

sion in some sense.

Theorem 4.5.8. Let G be a discrete, amenable group, K be a field, n ∈ N and

let M be a finitely generated K[G]-module with T : K[G]n → M surjective and

K[G]-linear. Then

n− dimK[G] (kerT ) ≤ rkElek (M) ≤ n− dimK[G] (kerT ) = dimK[G] (M) .(4.5.8)

Proof. Let G be a discrete, amenable group and (Fi) a Følner net of G. Let

K be a field, n ∈ N and let M be a finitely generated K[G]-module with

T : K[G]n →M surjective and K[G]-linear. For F ∈ F(G) let iF : K[F ]n ↪→ K[G]n

and pF : K[G]n � K[F ]n be the canonical K-linear maps between K-vector spaces.

Let φ : K[F ]n → K be a K-linear map such that for all α ∈ kerT we have

φ
(
pF (α)

)
= 0 and let f ∈ (Kn)G be the image of φ precomposed by pF ◦ Φ−1
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under the map Ψ, then f ∈ (kerT )⊥. Indeed by the proof of Lemma 4.5.3,〈
f,Φ (α)

〉
= φ

(
pF ◦ Φ−1

(
Φ (α)

))
= φ

(
pF (α)

)
= 0

for all α ∈ kerT.

On the other hand let φ : K[F ]n → K be a K-linear map and f ∈ (kerT )⊥

such that φ
(
pF (α)

)
=
∑

g∈F

(
f(g),

(
Φ(α)

)
(g)
)

for all α ∈ kerT . Now let α ∈
kerT ∩ im iF then

0 =
〈
f,Φ (α)

〉
=
∑
g∈F

(
f(g),

(
Φ(α)

)
(g)
)

= φ
(
pF (α)

)
.

We have shown the following inclusions,{
φ : K[F ]n → K

∣∣∣ φ (pF (α)
)

= 0 ∀α ∈ kerT
}

⊆

φ : K[F ]n → K

∣∣∣∣∣∣∣∣
∃f ∈ (kerT )⊥ : ∀α ∈ K[G]n :

φ
(
pF (α)

)
=
∑
g∈F

(
f(g),

(
Φ(α)

)
(g)
)


⊆

φ : K[F ]n → K

∣∣∣∣∣∣
∀α ∈ kerT ∩ im iF :

φ
(
pF (α)

)
= 0

 .

By Lemma 4.5.7 we get for all F ∈ F(G) that

n|F |− dimK
(
pF (kerT )

)
≤ dimK

(
(kerT )⊥F

)
≤ n|F |− dimK (kerT ∩ im iF ) .

Now the statement follows from the definitions of dimK[G], rkElek and dimK[G]. �

Corollary 4.5.9. Let G be a discrete, amenable group, K be a field, n ∈ N and

let M be a finitely presented K[G]-module with T : K[G]n → M surjective and

K[G]-linear. Then

dimK[G] (M) = rkElek (M) .(4.5.9)

Proof. Let G be a discrete, amenable group, K be a field, n ∈ N and let M be a

finitely presented K[G]-module with T : K[G]n → M surjective and K[G]-linear.

Then by definition of finitely presented modules kerT is finitely generated. Now

Lemma 4.2.3 implies the corollary. �

Remark 4.5.10. Let M be a finitely generated K[G]-module with a surjective

K[G]-linear map T : K[G]n → M and let {Kα|Kα ⊂ kerT finitely generated} be

an exhausting directed system of submodules of kerT . We have corresponding
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finitely presented Mα := K[G]n
/
Kα, such that by the corollary above and conti-

nuity from below, Lemma 4.2.5, we see that

inf
α

(
rkElek (Mα)

)
= inf

α

(
dimK[G] (Mα)

)
= n− sup

α

(
dimK[G] (Kα)

)
= n− dimK[G] (kerT )

= dimK[G] (M) .

(4.5.10)

Thus if this kind of continuity from above holds for Elek’s rank function,

rkElek (M) = inf
α

(
rkElek (Mα)

)
,(4.5.11)

then dimK[G] = rkElek for all finitely generated K[G]-modules. On the other hand

if it does not hold, then dimK[G] seems preferable.

4.6. Residually finite groups

Again recall Lemma 2.1.5, which says that we can consider a left K[G]-module as

a right K[G]-module. Now we reformulate the approximation result from [LLS11]

which uses Elek’s rank.

Theorem 4.6.1. Let G be a finitely generated amenable group and (Gi)i∈N be a

chain of finite index normal subgroups of G, such that
⋂
i∈NGi = {e}. Let K be

a field and let M be a finitely presented left K[G]-module. Then

dimK[G] (M) = lim
i→∞

dimK
(
K⊗K[Gi] M

)
[G : Gi]

.(4.6.1)

Proof. With dimK[G] = rkElek (Corollary 4.5.9) this follows directly from [LLS11,

Theorem 2.1]. �

Remark 4.6.2. As is done in [LLS11, p.10] it is possible to drop the condition

finitely generated from the group G.

If we recall Definition 1.3.11 and Theorem 1.3.13, the same result for Farber

chains follows from the proof of [LLS11, Theorem 2.1].

Corollary 4.6.3. Let G be a finitely generated amenable group and (Gi)i∈N a

Farber chain in G. Let K be a field and let M be a finitely presented left K[G]-

module. Then

dimK[G] (M) = lim
i→∞

dimK
(
K⊗K[Gi] M

)
[G : Gi]

.(4.6.2)





CHAPTER 5

Methods of computation

In this chapter we want to investigate which numbers lie in the range of the

introduced Følner dimension. Recall our motivation from L2-Betti numbers in

the introduction. In accordance with the definition of L2-Betti numbers we limit

our investigation to the Følner dimension of kernels of K[G]-matrices, where K[G]

is the group ring of a finitely generated amenable group G over a field K. Our

main interest lies with fields of positive characteristics.

5.1. Computable numbers

Definition 5.1.1. [VS03] A function r : Q>0 → Q is called computable, if there

exists an algorithm which halts (in finite time) on input q ∈ Q>0 and prints r(q).

Remark 5.1.2. Vereshchagin and Shen mean algorithm in the sense of any pro-

gramming language and remark that any algorithm computed by a mathematician

with pen and paper can be build as a Turing machine as the requirements of finite

memory and finite alphabet are met.

Definition 5.1.3. [Mil04] A real number x ∈ R is computable if there exists a

computable function r : Q>0 → Q such that for all q ∈ Q>0 we have

|r(q)− x| < q.(5.1.1)

Lemma 5.1.4. Let G be a finitely generated discrete amenable group with solvable

word-problem. We fix a generating set S and for k ∈ N we write Bk for the set of

all words of length k or less. Then there exists an algorithm which halts on input

k ∈ N and prints Fk ⊂ G finite, such that

|∂Bk (Fk)|
|Fk|

≤ 1

k
,(5.1.2)

and Fk−1 ⊂ Fk.

Proof. Let G be a finitely generated discrete amenable group with solvable word-

problem. We fix a generating set S and for k ∈ N we write Bk for the set of all

words of length k or less. Enumerate a symmetric generating set of G, and

75
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thus fix an enumeration of G by word length, g1 = e, g2, g3, . . . ∈ G. We find an

enumeration Li, i ∈ N, of finite subsets of G in the following way. Let L1 := ∅ and

L2 := {g1}, then define L3 := L1 ∪{g2} and L4 := L2 ∪{g2}. Let L5 := L1 ∪{g3}
and so on.

We describe a recursive algorithm for which the claim holds. Note that we

make use of a word-problem algorithm throughout. On input k ∈ N:

(1) If k = 1, set F0 := {e} . Otherwise call the algorithm with input k − 1 and

get Fk−1.

(2) Calculate Fk−1 ∩Bs for s ∈ N until Fk−1 ∩Bs = Fk−1 and therefore Fk−1 ⊆
Bs.

(3) For i > 0 check Bs ⊂ Li and if so calculate
|∂Bk (Li)|

|Li| until

|∂Bk (Li)|
|Li|

≤ 1

k
.

By Theorem 1.3.7 this halts because G is amenable.

(4) Set Fk := Li.

We have Fk−1 ⊆ Bs ⊂ Fk and the claim holds. �

Corollary 5.1.5. The sequence (Fk)k∈N defined by an algorithm as in the lemma

above is a Følner sequence.

Proof. Let (Fk)k∈N be of sequence of finite subsets of G such that

|∂Bk (Fk)|
|Fk|

≤ 1

k
,

and Fk−1 ⊂ Fk. Now let L ⊂ G be a finite subset, then there exists kL ∈ N such

that L ⊆ Bk for all k ≥ kL. Then

|∂L (Fk)|
|Fk|

≤ |∂Bk (Fk)|
|Fk|

≤ 1

k
,

for all k ≥ kL. Thus limk→∞
|∂L(Fk)|

|Fk|
= 0. �

Theorem 5.1.6. Let G be a finitely generated discrete amenable group and K be

any field. If G has solvable word-problem, then dimK[G] (kerT ) and dimK[G] (imT )

are computable for any K[G]-linear map

T : K[G]m → K[G]n.
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Proof. Let K be any field and G be a finitely generated discrete amenable group

such that G has solvable word-problem. Since G is finitely generated it is count-

able and all nets used in definitions of previous chapters can be reduced to se-

quences. For any K[G]-linear map T : K[G]m → K[G]n we need a computable

function r : Q>0 → Q such that

|r(q)− dimK[G] (kerT )| < q.

We will describe the algorithm for r in two parts, the first part finds a certain

Følner set F , and the second part is the computation

F 7→ dimK (kerT ∩ im iF ) = dimK

(
ker
(
K[F ]m

T−→ K[BL (F )]n
))

.

Since G has solvable word-problem, the second part halts on any input F ⊂ G

finite. Without loss of generality we may assume that 0 < q ≤ 1 ∈ Q>0 and

set ε := q
10m

. Fix the finite subset L := suppT ∪ suppT−1 ∪ {e} ⊂ G. We fix

a symmetric generating set S of G and for k ∈ N we write Bk for the set of all

words of length s or less.

Find s ∈ N such that L ⊂ Bs and 1
s
< ε. Now the algorithm from Lemma

5.1.4 produces Følner sets Fi for i ≥ s, such that

|∂L (Fi)|
|Fi|

≤ |∂Bs (Fi)|
|Fi|

≤ 1

s
< ε.

Calculate nε := d log ε
log(2−ε)−log 2

e. Now we use the algorithm to find a family of

Følner sets
(
Fk1 , . . . , Fknε

)
with kj ≥ s and kj < kj+1 such that

|∂Fkj
(
Fkl
)
|

|Fkl|
< ε2nε ,(5.1.3)

and

|

dimK

(
kerT ∩ im iFkj

)
|Fkj |

−
dimK

(
kerT ∩ im iFkl

)
|Fkl|

| < 2mε,(5.1.4)

for all 1 ≤ j < l ≤ nε. To do this we may start with k1 := s. Then find the next

kl under the restriction (5.1.3) and (5.1.4) for kj = kl−1. Then check (5.1.4) for

all kj ≤ kl found so far, and if it fails, discard k1 and shift all labels until it holds.

We repeat until the family is found.

We can find such a family in finite time, because the first condition reduces

to
|∂Fkj

(
Fkj+1

)
|

|Fkj+1
| < ε2nε by Fkj ⊂ Fkj+1

and furthermore h
(
kj
)

:=
dimK

(
kerT∩im iFkj

)
|Fkj |
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is an element of the same convergent sequence for all kj ≥ s. On the other hand

define h
(
kj
)

:=
dimK

(
pFkj

(kerT )

)
|Fkj |

, then by Theorem 2.2.1 we have

h
(
kj
)
≤ h

(
kj
)

+m
|∂L
(
Fkj
)
|

|Fkj |

≤ h
(
kj
)

+mε,

and thus

max
1≤j≤nε

h
(
kj
)
≤ min

1≤j≤nε
h
(
kj
)

+ 3mε.

Recall that h
(
kj
)
, h
(
kj
)
≤ m for all 1 ≤ j < l ≤ nε. Now by the estimate

(4.2.9) for all Følner sets Fi with i > knε we know that

min
1≤j≤nε

h
(
kj
)
≤ dimK[G] (kerT ) + 5mε.

For i > knε such that

|∂Fknε (Fi)|
|Fi|

< ε2nε

we get by decomposition of Fi according to Lemma 3.2.1 and the estimates seen

in the proof of Theorem 3.2.3 that

max
1≤j≤nε

h
(
kj
)
≥
(

dimK[G] (kerT )− ε dimK
(
p{e} (kerT )

))
(1− ε)

≥
(

dimK[G] (kerT )−mε
)
−
(
mε+mε2

)
≥ dimK[G] (kerT )− 2mε.

Finally we can estimate that

−5mε ≤ h (k1)− dimK[G] (kerT ) ≤ 7mε,

and so we define r : Q>0 → Q by r(q) := h (k1). Thus

|r(q)− dimK[G] (kerT )| ≤ 7mε < q.

So r : Q>0 → Q is computable.

This shows the case of kerT , for imT we merely need to consider

dimK (imT ∩ im iF ) = dimK

(
im
(
K[BL (F )]m

T−→ K[BL

(
BL (F )

)
]n
)
∩ im iF

)
,

and Theorem 2.2.2. If we replace m by (2m+ n) the proof works just the same.

�
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5.2. Graphical representation

To showcase some calculations of the Følner dimension previously defined, we

amend the results of [GS14] with the case of F2, the field of 2 elements.

Theorem 5.2.1. For every non-negative real number r there exists a finitely

generated amenable group Λ and T ∈ F2[Λ]m×n such that

dimF2[Λ] (kerT ) = r.(5.2.1)

Theorem 5.2.2. There exists a finitely presented amenable group Λ and T ∈
F2[Λ]2×1 such that

dimF2[Λ] (kerT ) =
28

310
·
∑
k∈N

1

3k2+3k
,(5.2.2)

which is irrational.

Remark 5.2.3. By Corollary 4.2.2 we can deduce from dimF2[Λ] (kerT ) the min-

imal number of summands every element in kerT must have.

Because 28

310 ·
∑

k∈N
1

3k2+3k
≤ 28

310 · 81
80

we see that every element in kerT has

atleast 228 summands.

5.2.1. Computational tool

This section is a reproduction of parts of [GS14] with some major modifica-

tions.

Let Λ be an amenable group, which is discrete and countable, and K be any

field. Recall Definition 2.1.3. So for a finite subset F ⊂ Λ let iF : K[F ] ↪→ K[Λ]

be the inclusion of the finite-dimensional K-vector subspace spanned by F and

for any matrix T ∈ K[Λ]m×n denote the compression of T to F by the natural

projection pF : K[Λ] � K[F ],

TF := pFTiF : K[F ]n → K[Λ]m → K[F ]m.

Now we have by Theorem 2.2.1 and Corollary 1.3.2 that

dimK[Λ] (kerT ) = dimK[Λ] (kerT ) = lim
i→∞

dimK
(
kerTFi

)
|Fi|

,

for any Følner sequence (Fi)i∈N of Λ.

Let G be a discrete, finitely generated amenable group and let F2, F4 = F2[z]

with z2 = 1 + z, be the fields of two respectively four elements. Then there is a

natural embedding of group rings F2[G] ⊂ F4[G]. Let A be a discrete, countable,
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abelian group, where each element has order 3, then all homomorphisms A→ T
factor through

{
1, exp

(
2
3
πi
)
, exp

(
4
3
πi
)}

. As we have an isomorphism between{
1, exp

(
2
3
πi
)
, exp

(
4
3
πi
)}
⊂ T and the multiplicative group F∗4, let

X := Â = Hom (A,T) ∼= Hom (A,F∗4)

be its compact Pontryagin dual and µ the normalized Haar measure on X.

Now by Pontryagin Duality there is an embedding F4[A] −̂→ FX4 given by

∑
ci∈F4

ciai 7→

x 7→ ∑
ci∈F4

cix(ai)

 .

So the image of p ∈ F4[A] in FX4 is written as p̂, while the preimage of χ ∈ F̂4[A]

is written as χ̂ ∈ F4[A].

Now let e ∈ A be the neutral element, E ⊂ A be a finite subset and Ψ: E →
F∗4, for these we define cylinder sets in X by

CΨ :=
{
x ∈ X

∣∣ ∀a ∈ E : x (a) = Ψ (a)
}
.

Then

pΨ :=
∏
a∈E

(
e+ Ψ (a)2 a+ Ψ (a) a2

)
maps to the indicator function of CΨ, p̂Ψ = 1CΨ

. To check this, let x ∈ CΨ then

p̂Ψ (x) =
∏
a∈E

(
x (e) + Ψ (a)2 x (a) + Ψ (a)x

(
a2
))

=
∏
a∈E

(1 + 1 + 1) = 1.

On the other hand, let x /∈ CΨ, then there exists a ∈ E such that x (a) 6= Ψ (a).

Thus 1 = x (a)3 6= Ψ (a)x (a)2, Ψ (a)2 x (a) 6= Ψ (a)3 = 1 and Ψ (a)x (a)2 6=
Ψ (a)2 x (a) . So we see that

x (e) + Ψ (a)2 x (a) + Ψ (a)x
(
a2
)

= 1 + Ψ (a)2 x (a) + Ψ (a)x (a)2 = 0,

and thus p̂Ψ (x) = 0. This means the image of the duality map F̂4[A] contains all

f ∈ FX4 , which are linear combinations of such indicator functions.

Let Gy X be an action by automorphisms, then G acts on FX4 by precompo-

sition, g.χ (x) = χ
(
g−1.x

)
, and G y A such that the map above is equivariant.
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Then we may define the semidirect product GnA and for g ∈ G, a ∈ A we denote

the group multiplication by g · a = g.a · g while the action is g.a.

Definition 5.2.4. Let T be the sum
∑m

i=1 gi · fi where gi ∈ G′ for a symmetric

subset G′ ⊆ G with e ∈ G′ and fi ∈ F4[A]. Then T ∈ F4[Gn A] and we define a

good basic graph with respect to G′ for T as a set Γ = {p1, . . . , pn} ⊂ F4[A] such

that

(i) p̂i are indicator functions of pairwise disjoint subsets of X which are all of

the same measure;

(ii) we have either supp
(
p̂j
)
⊆ supp

(
f̂k

)
or supp

(
p̂j
)
∩ supp

(
f̂k

)
= ∅ for all

j ≤ n, k ≤ m;

(iii) if supp
(
p̂j
)
⊆ supp

(
f̂k

)
then gk.pj ∈ Γ and f̂k is constant on supp

(
p̂j
)
;

(iv) for each pair pj, pl ∈ Γ there exists exactly one g ∈ G′ such that g.pj = pl

and for g, g′, g̃ ∈ G′ and p ∈ Γ,

g.p = g′g̃.p⇒ g = g′g̃.

Definition 5.2.5. Let Γ be a good basic graph with respect to G′ for T =∑m
i=1 gi · fi ∈ F4[Gn A]. For 1 ≤ i ≤ m and pj ∈ Γ let

tpj ,gi :=


1 if supp

(
p̂j
)
⊂ supp

(
f̂i

)
,

0 otherwise;
(5.2.3)

and

f̄i(pj) :=


f̂i

(
supp

(
p̂j
))
∈ F4 if supp

(
p̂j
)
⊂ supp

(
f̂i

)
,

0 otherwise.
(5.2.4)

Let S (Γ, T ) be the directed edge-labelled graph whose vertices are pj ∈ Γ and

for 1 ≤ i ≤ m and pj ∈ Γ such that tpj ,gi = 1 there is an edge from pj to gi.pj

labeled with f̄i(pj). Let TΓ be the directed adjacency operator on S (Γ, T ), that

is TΓ : F4[Γ]→ F4[Γ] is given by

TΓ (p) :=
m∑
i=1

f̄i(p)gi.p.

Also we write G (Γ, T ) for the underlying directed graph of S (Γ, T ).

Remark 5.2.6. Let α :=
(
pj1 , g

ε1
i1
, pj2 , g

ε2
i2
, . . . , gεbib , pjb+1

)
be a path in S (Γ, T ),

where ε1 = −1 means that the path goes along the edge generated by tpj2 ,gi1 in
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the reverse direction, then we write g (α) :=
∏b

l=1 g
εl
il

. Note that if G (Γ, T ) is a

tree, i.e. disregarding the direction of the edges it is connected and cycle-free,

then
{
g (α)

∣∣ α is an undirected path in S (Γ, T )
}

does the job for G′ in condition

(iv).

Definition 5.2.7. Let p ∈ Γ then we define G (p) := {g ∈ G′ | ∃q ∈ Γ: g.p = q}
and G (Γ) :=

⋃
p∈ΓG (p). Note that G (Γ) ⊂ G′ is symmetric and contains the

neutral element. Also |G (p)| = |Γ| for all p ∈ Γ.

Lemma 5.2.8. Let Γ be a good basic graph with respect to G′ for T =
∑m

i=1 gi·fi ∈
F4[GnA] and fix p ∈ Γ then span

{
g · p

∣∣ g ∈ G (p)
}
⊂ F4[GnA] is T -invariant

and T is isomorphic to TΓ on it.

Proof. Let Γ be a good basic graph with respect to G′ for T =
∑m

i=1 gi · fi ∈
F4[Gn A] and fix p ∈ Γ and g ∈ G (p). By definition

f̂i · g.p = f̂i · ĝ.p = f̄i(g.p)ĝ.p,

and thus

T · g · p =
m∑
i=1

gi · fi · g · p

=
m∑
i=1

gi · fi · g.p · g

=
m∑
i=1

gi · f̄i(g.p)g.p · g

=
m∑
i=1

f̄i(g.p)gi · (g · p) ,

where gig ∈ G (p) if f̄i(g.p) 6= 0 by property of good basic graphs. For each pair

pj, pl ∈ Γ there exists exactly one g ∈ G′ such that g.pj = pl, thus the map

span
{
g · p

∣∣ g ∈ G (p)
}
→ F4[Γ]

induced by g · p 7→ g.p is an isomorphism. The lemma then follows from the

calculation above. �

Definition 5.2.9. Let Γ be a good basic graph with respect to G′ for T ∈
F4[Gn A] then

(i) supp (Γ) :=
⋃
p∈Γ supp (p̂).

(ii) Two good basic graphs for T are disjoint if their supports are disjoint.
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(iii) We call a sequence of good basic graphs Γ1,Γ2, . . . exhausting if∑∞
i=1 µ

(
supp (Γi)

)
= 1 and Γi,Γj are pairwise disjoint.

(iv) A set of idempotent elements K ⊂ F4[A] is called a refinement of Γ if⋃
p∈K supp (p̂) = supp (Γ) and for each p ∈ K there exists q ∈ Γ such that

supp (p̂) ⊂ supp (q̂).

Theorem 5.2.10. Let G be a discrete, finitely generated amenable group acting

on A, an elementary abelian 3-group, by automorphisms. If Γ1,Γ2, . . . is an ex-

hausting sequence of good basic graphs with respect to G′ for a family of operators

T 1, . . . , T l ∈ F4[Gn A], which are represented by sums as before, then

dimF4[GnA]

⋂
j

kerT j

 =
∞∑
i=1

µ
(
supp(Γi)

)
|Γi|

dimF4

⋂
j

kerT jΓi

 .

Proof. Since the left hand side of the equation is calculated via the vector spaces

spanned by Følner sets, the idea of the proof is to find a Følner sequence such that

we can decompose these vector spaces upto a small remainder into T -invariant

subspaces of known size. This leads to the right hand side.

First we will prove the case of only one operator. Let Γ1,Γ2, . . . be an ex-

hausting sequence of good basic graphs with respect to G′ for T =
∑m

i=1 gi · fi ∈
F4[G n A] and a subset G′ ⊂ G. For n ∈ N let N ∈ N be such that∑N

i=1 µ
(
supp (Γi)

)
> 1 − 1

n
. We note that by definition p = p · p ∈

⋃N
i=1 Γi

and any two different p 6= p′ ∈
⋃N
i=1 Γi have disjoint support. Thus we define

p∞ := 1−
∑

p∈
⋃N
i Γi

p.

Let Σ′ be a symmetric generating set for G and define

Σ :=
K⋃
i=1

G (Γi) ∪ Σ′.

Note that Σ is symmetric and contains the neutral element of G. Recall Corollary

1.3.9 and let Φn ⊂ G be a symmetric Følner set such that

|∂Σ (Φn)|
|Φn|

≤ 1

n
,

fix n ∈ N and write Φ := Φn.

We will construct a special Følner set F ⊂ A such that for every p ∈
⋃N
i=1 Γi

we find a decomposition of supp (p̂) =
⊔
U where

(i) the indicator function of U can be written using elements from F ,



84 5. METHODS OF COMPUTATION

(ii) for any ϕ ∈ Φ we have that ϕ.U ∩
(⋃

p∈
⋃N
i=1 Γi

supp (p̂)
)

= ∅ or ϕ.U ⊆
supp (p̂) for some p ∈

⋃N
i=1 Γi.

Lemma 5.2.11. There exist refinements K1, K2, . . . , KN for Γ1,Γ2, . . . ,ΓN such

that for every p ∈
⋃N
i=1Ki, ϕ ∈ Φ, q ∈

⋃N
i=1 Γi we have that

supp (ϕ.p̂) ∩ supp (q̂) 6= ∅

implies supp (ϕ.p̂) ⊆ supp (q̂).

Proof. We fix an enumeration ϕ1, ϕ2, . . . ∈ Φ and for 1 ≤ j ≤ |Φ| we define

recursively refinements Γji of Γi. With Γ0
i := Γi, we define

Γji :=

p ·
(
ϕ−1
j .q

)
∣∣∣∣∣∣∣∣∣∣
p ∈ Γj−1

i , q ∈

 N⋃
i=1

Γi ∪ {p∞}

 ,

ϕj. supp (p̂) ∩ supp (q̂) 6= ∅

 .

This is a refinement, because supp
(⋃N

i=1 Γi ∪ {p∞}
)

= X. Now let p ∈ Γji and

fix k ≤ j. Recall that A is abelian, then

ϕk.p = ϕk.p
′ · qk ·

 j∏
l=k+1

(
ϕkϕ

−1
l .ql

) ,

where p′ ∈ Γk−1
i and ql ∈

(⋃N
i=1 Γi ∪ {p∞}

)
. Let q ∈

⋃N
i=1 Γi, if q = qk then

supp (ϕ.p̂) ∩ supp (q̂) 6= ∅

and supp (ϕ.p̂) ⊆ supp (q̂). On the other hand if q 6= qk then supp (ϕ.p̂) ∩
supp (q̂) = ∅, because the supports of different elements in an exhaustion of good

basic graphs are disjoint. The lemma follows with Ki := Γ
|Φ|
i . �

Now let S < A be the finite subgroup generated by the finite subset⋃
p∈
⋃N
i=1 Ki

supp (p) ⊂ A.

Let Fj be an ascending sequence of finite overgroups of S such that
⋃
j Fj = A

and Φj.Fj−1 ⊂ Fj.

Lemma 5.2.12. Φj · Fj ⊂ Gn A is a Følner sequence in Gn A.
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Proof. Let aj−1 ∈ Fj−1, aj ∈ Fj and ϕj ∈ Φj then by symmetry of Φj and

Φj.Fj−1 ⊂ Fj we have that

aj−1 ·
(
ϕj · aj

)
= ϕj ·

((
ϕ−1
j .aj−1

)
· aj
)
∈ Φj · Fj.

Let L ⊂ G n A be finite and 0 < ε < 1 then there exists some k ∈ N such

that L ⊂ Σk · Fk. Let j > k ∈ N be such that |Φj ∩ lΦj| ≥ (1− ε) |Φj| for all

l ∈ Σk, we find this by Lemma 1.2.4. Recall that Fj is a group, then for any

g · f ∈ L ⊂ Σk · Fk

|Φj · Fj ∩ g · f · Φj · Fj| = |Φj · Fj ∩ g · Φj · Fj|

≥ |
(
Φj ∩ g · Φj

)
· Fj|

= |Φj ∩ g · Φj||Fj|

≥ (1− ε) |Φj||Fj| = (1− ε) |Φj · Fj|.

�

Let F := Fn for previously fixed n ∈ N and Φ̄ := Φ ∪ ∂Σ (Φ). Note that

F is a Følner set as it is described above Lemma 5.2.11. We want to compute

dimF4 (kerTΦ̄·F ) .

Lemma 5.2.13. Let p ∈
⋃N
i=1Ki then

dimF4 span {p · a | a ∈ F} = |F | · µ
(
supp (p̂)

)
.(5.2.5)

Proof. Let XF be the Pontryagin dual of F / A, since F is finite abelian, we

have that |F | = |XF |. Let f ∈ FXF4 , since XF is finite, we have that f =∑
x∈XF f (x) 1Cx , where the cylinder sets

Cx =
{
x′ ∈ XF

∣∣ ∀a ∈ F : x′ (a) = x (a)
}

= {x}

are singletons. Then the F4-algebra embedding F4[F ]
ˆ−→ FXF4 is surjective and

we denote the left multiplication with p̂ by Mp̂ : FXF4 → FXF4 .

Let ν be the normalized Haar measure on XF and recall that p̂ is the indicator

function for supp (p̂), then

|
{
x ∈ XF

∣∣ p̂ (x) = 1
}
| = |F | · ν

(
supp (p̂)

)
.
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Thus dimF4 im
(
Mp̂

)
= |F | · ν

(
supp (p̂)

)
. Denote by Mp : F4[F ]→ F4[F ] the left

multiplication with p then by the F4-algebra isomorphism we have that

dimF4 span {p · a | a ∈ F} = dimF4 im
(
Mp

)
= dimF4 im

(
Mp̂

)
= |F | · ν

(
supp (p̂)

)
.

It remains to be seen, that ν
(
supp (p̂)

)
= µ

(
supp (p̂)

)
.

Let x̃ ∈ supp (p̂) ⊂ XF , that is x̃ : F → F∗4, a ∈ F \{e} and consider the cylin-

der sets C ′x̃,a :=
{
x ∈ XF

∣∣ x (a) = x̃ (a)
}

and Cx̃,a :=
{
x ∈ X

∣∣ x (a) = x̃ (a)
}

.

Then ν
(
C ′x̃,a

)
= 1

3
= µ

(
Cx̃,a

)
. Finally let E ⊂ F \ {e} be a minimal generating

set, then 1
3

|E|
= ν

(⋂
a∈E C

′
x̃,a

)
= ν

(
{x̃}
)

= 1
|F | and

⋂
a∈E Cx̃,a = Cx̃. Finally

µ
(
supp (p̂)

)
=
∑

x̃∈supp(p̂)⊂XF
1
|F | = ν

(
supp (p̂)

)
. �

Now for each p ∈
⋃N
i=1Ki let F (p) ⊆ F be the minimal subset such that

dimF4 span
{
p · a

∣∣ a ∈ F (p)
}

= |F | · µ
(
supp (p̂)

)
.

We say that a pair ϕ ∈ Φ, p ∈
⋃N
i=1Ki is lovely if there is i ≤ N such that for

some q ∈ Γi we have supp (ϕ.p̂) ⊆ supp (q̂) . Then we define

Γ (ϕ, p) := Γi,

G (ϕ, p) := G (q) ⊆ G (Γi) ,

and Q (ϕ, p) := q.

We call a triple ϕ ∈ Φ, p ∈
⋃N
i=1Ki, a ∈ F a lovely triple, if (ϕ, p) is lovely

and a ∈ F (p) .

Corollary 5.2.14. Let (ϕ, p, a) be such a lovely triple, then

Y (ϕ, p, a) := span
{
g · ϕ · p · a

∣∣ g ∈ G (ϕ, p)
}
⊆ F4[Φ̄ · F ].(5.2.6)

Proof. Since Σ is symmetric and contains the neutral element of G, we have by

Lemma 1.2.3 that Σ · Φ ⊆ Φ ∪ ∂Σ (Φ) = Φ̄. Let (ϕ, p, a) be a lovely triple and

g ∈ G (ϕ, p), then supp (p · a) ⊆ F and g · ϕ ∈ Σ · Φ ⊆ Φ̄. Thus

supp (g · ϕ · p · a) ∈ Φ̄ · F.

�

Next we shall investigate how T acts on such Y (ϕ, p, a).

Lemma 5.2.15. Let (ϕ, p, a) , (ϕ1, p1, a1) and (ϕ2, p2, a2) be lovely triples.
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(i) Y (ϕ, p, a) is T -invariant and the restriction of T to Y (ϕ, p, a) is isomorphic

to TΓ(ϕ,p).

(ii) Y (ϕ1, p1, a1) = Y (ϕ2, p2, a2) if and only if p1 = p2, a1 = a2 and for some

g ∈ G (ϕ1, p1) we have gϕ1 = ϕ2.

(iii) The subspace of F4[Φ̄ · F ] generated by all the spaces Y (ϕ, p, a), is a direct

sum of all the different such spaces.

Proof. (i) Let q := Q (ϕ, p), then by definition we have supp (ϕ.p̂) ⊆ supp (q̂)

and also supp (gϕ.p̂) ⊆ supp (g.q̂) for g ∈ G (ϕ, p). Recall that q̂ is an

indicator function, thus (gϕ.p̂) · (g.q̂) = (gϕ.p̂) and also (g.q) · (gϕ.p) =

(gϕ.p) . As is Lemma 5.2.8 we see that

T (g · ϕ · p · a) =
m∑
i=1

gifi · (gϕ) .p · (gϕ) · a

=
m∑
i=1

(
gifi · (g.q)

)
· (gϕ) .p · (gϕ) · a

=
m∑
i=1

f̄i (g.q)
(
gi · (g.q)

)
· (gϕ) .p · (gϕ) · a

=
m∑
i=1

f̄i (g.q) gig · ϕ · p · a.

So Y (ϕ, p, a) is T -invariant because f̄i (g.q) 6= 0 implies gi ∈ G (g.q) and

thus gig ∈ G (ϕ, p) . Since for each pair q, q′ ∈ Γ (ϕ, p) there exists at most

one g ∈ G such that g.q = q′, the map

Y (ϕ, p, a)→ F4[Γ (ϕ, p)]

induced by g ·ϕ ·p ·a 7→ g.q is an isomorphism. The statement follows from

the definition of TΓ(ϕ,p).

(ii) Let p1 = p2, a1 = a2, q1 := Q (ϕ1, p1) , q2 = Q (ϕ2, p2), and ḡ ∈ G (ϕ1, p1)

such that ḡϕ1 = ϕ2. Then ḡϕ1 · p1 = ϕ2 · p2. and

∅ 6= supp (ḡϕ1.p̂1) = supp (ϕ2.p̂2) ⊆ supp (ḡ.q̂1) ∩ supp (q̂2) ,

so ḡ.q1 = q2 and therefore Γ (ϕ1, p1) = Γ (ϕ2, p2) as well as G (ϕ1, p1) =

G (ϕ2, p2) ḡ. Finally, for g ∈ G (ϕ2, p2) we have g ·ϕ2 ·p2 ·a2 = gḡ ·ϕ1 ·p1 ·a1.

On the other hand let Y (ϕ1, p1, a1) = Y (ϕ2, p2, a2), that means that

for every g ∈ G (ϕ2, p2) we have g · ϕ2 · p2 · a2 =
∑

k skgk · ϕ1 · p1 · a1, with

sk ∈ F4, gk ∈ G (ϕ1, p1).
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But the group multiplication in GnA then implies that gk ·ϕ1 = g ·ϕ2

for all k and
∑

k sk = 1, because p̂1 and p̂2 are indicator functions. In

particular ϕ2 = ḡ ·ϕ1 for some ḡ ∈ G (ϕ1, p1), ϕ2 · p2 ·a2 = ḡ ·ϕ1 · p1 ·a1 and

so p2 · a2 = p1 · a1. Recall that p̂1 and p̂2 have disjoint support if p1 6= p2

and that â (x) 6= 0 for all x ∈ X, a ∈ A thus supp
(
p̂1 · a1

)
= supp (p̂1 · â) =

supp (p̂1), so p1 = p2 and in turn a1 = a2, since F (p1) was chosen to be

minimal.

(iii) Consider

0 =
∑
j∈J

sj
(
gjϕj · pj · aj

)
∈ F4[Φ̄ · F ],

for some 0 6= sj ∈ F4, lovely triples
(
ϕj, pj, aj

)
and gj ∈ G

(
ϕj, pj

)
. Then

the summands where gjϕj is some fixed element in Φ̄ also add up to 0. So

we may assume that gjϕj = g1ϕ1 for all j ∈ j.
Now

∑
j∈J sj

(
pj · aj

)
= 0, again recall that p̂j and p̂j′ with j 6= j′ have

disjoint support and as above supp
(
p̂j
)

= supp
(
p̂j · aj

)
. Again we may

assume pj = p1 for all j ∈ J and linear independence of p1 ·a for a ∈ F (p1)

implies aj = a1.

But then gjϕj.pj = g1ϕ1.p1 for all j ∈ J and so gj.qj = g1.q1 for

qj := Q
(
ϕj, pj

)
, because gj.qj 6= g1.q1 implies disjoint support. Since

the graphs Γi are pairwise disjoint we have that qj ∈ Γ (ϕ1, p1) and so

g−1
j g1 ∈ G (ϕ1, p1) for all j ∈ J. It follows that g−1

j g1ϕ1 · p1 = ϕj · pj and

therefore Y (ϕ1, p1, a1) = Y
(
ϕj, pj, aj

)
.

�

Our aim is to calculate the dimension of the kernel of T compressed to F4[ΦF ],

for that we investigate the subspace where T behaves well-understood, as seen in

the previous lemma. We define Y ⊆ F4[Φ̄F ] to be the span of all Y (ϕ, p, a) where

(ϕ, p, a) is a lovely triple and TY to be the restriction of T to Y . Furthermore let

Y c be its complement in F4[Φ̄F ], i.e. Y ⊕ Y c = F4[Φ̄F ].

To estimate the size of the complement Y c, let Y∞ ⊆ F4[Φ · F ] be

Y∞ := span

ϕ · p · a
∣∣∣∣∣∣ ϕ ∈ Φ, p ∈

N⋃
i=1

Ki, a ∈ F (p) , (ϕ, p) is not lovely

 .

Recall that p̂∞ = 1−
∑

q∈
⋃N
i=1 Γi

q̂ and
∑N

i=1 µ
(
supp (Γi)

)
> 1− 1

n
.

Lemma 5.2.16. For Y∞ as above we have dimF4 (Y∞) ≤ 1
n
|Φ||F |.
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Proof. We consider the subspace of Y∞ for a fixed ϕ first. For all p ∈
⋃N
i=1Ki

such that (ϕ, p) is not lovely we have supp (ϕ.p̂) ⊆ supp
(
p̂∞
)

by Lemma 5.2.11.

Since µ
(

supp
(
p̂∞
))
≤ 1

n
and the measure on X is preserved by automorphisms

we see ∑
(ϕ,p) not lovely

µ (supp p̂) ≤ 1

n
.

Then we see by Lemma 5.2.13 that the dimension of the subspace of Y∞ for a

fixed ϕ is bounded by 1
n
|F |. As Y∞ lies in the sum of all such subspaces for ϕ ∈ Φ

the statement follows. �

Corollary 5.2.17. dimF4 (Y ) ≥
(
1− 2

n

)
|Φ̄||F |.

Proof. We see that Y c ⊆ F4[∂Σ (Φ) · F ] + Y∞ and recall that Φ is a 1
n
-Følner set

for Σ, therefore

dimF4 Y
c ≤ |∂Σ (Φ)|

|Φ| |Φ||F | +
1

n
|Φ||F | ≤ 2

n
|Φ||F | ≤ 2

n
|Φ̄||F |.

�

Now we want to estimate dimF4 (kerTΦ̄·F ) and thus note that

dimF4

(
F4[Φ̄ · F ]

)
= |Φ̄||F | ≥ dimF4 (Y ) ≥

(
1− 2

n

)
|Φ̄||F |.

As Y is T -invariant, we have that

dimF4 (kerTΦ̄·F )− dimF4 (kerTY ) ≤ 2

n
|Φ̄||F | ≤ 2

n

(
1 +

1

n

)
|Φ||F | ≤ 4

n
|Φ||F |.

(5.2.7)

Furthermore, with Theorem 2.2.1 we have that

|dimF4 (kerTΦ̄·F )− dimF4 (kerTΦ·F )| ≤ 3

n
|Φ||F |.(5.2.8)

Next we estimate dimF4 (kerTY ) in multiple steps. Let YΓi be the subspace of

Y where T acts like TΓi . Define for all ϕ ∈ Φ̄ the set of projections p which are

shifted into Γi,

Kϕ,Γi :=

p ∈
N⋃
i=1

Ki

∣∣∣∣∣∣ ∃q ∈ Γi : supp (ϕ.p̂) ⊆ supp (q̂)

 ,
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then by the Lemma 5.2.15

YΓi =
∑
ϕ∈Φ

⊕
p∈Kϕ,Γi

⊕
a∈F (p)

Y (ϕ, p, a) .

On the other hand we define for all ϕ ∈ Φ̄ the following subspace correspond-

ing to Γi,

Yϕ,Γi := span
{
ϕ · p · a

∣∣ p ∈ Kϕ,Γi , a ∈ F (p)
}

=
⊕

p∈Kϕ,Γi

span
{
ϕ · p · a

∣∣ a ∈ F (p)
}
.

Note that for ϕ ∈ Φ this is the vector space spanned by ϕ · p · a for lovely triples

(ϕ, p, a) such that Γ (ϕ, p) = Γi.

Recall that different p have disjoint support and
⋃N
i=1 supp (Ki)tsupp

(
p̂∞
)

=

X, so by Lemma 5.2.11⋃
p∈Kϕ,Γi

supp (ϕ.p̂) = supp (Γi) \ supp
(
ϕ.p̂∞

)
.

This implies by Lemma 5.2.13

Corollary 5.2.18.

dimF4

(
Yϕ,Γi

)
= µ

(
supp (Γi) \ supp

(
ϕ.p̂∞

))
|F |

= |F |
(
µ
(
supp (Γi)

)
− µ

(
supp (Γi) ∩ supp

(
ϕ.p̂∞

)))
,

(5.2.9)

and also
N∑
i=1

µ
(

supp (Γi) ∩ supp
(
ϕ.p̂∞

))
≤ 1

n
.

Next we introduce an equivalence relation ∼Γi on
⊕

ϕ∈Φ̄ Yϕ,Γi generated by

ϕ · p · a ∼Γi ϕ
′ · p′ · a′

if (ϕ, p) is lovely, p = p′, a = a′ and ∃g ∈ G (ϕ, p) : gϕ = ϕ′.

Note that for ϕ, ϕ′ ∈ Φ we have

ϕ · p · a ∼Γi ϕ
′ · p · a ⇐⇒ Y (ϕ, p, a) = Y

(
ϕ′, p, a

)
,

and recall that for every lovely pair (ϕ, p)

|G (ϕ, p)| = |Γ (ϕ, p)|.
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Lemma 5.2.19. With YΓi as before and ∼Γi restricted to YΦ,Γi :=
⊕

ϕ∈Φ Yϕ,Γi we

have that

YΓi
∼= YΦ,Γi/∼Γi

⊗ F4[Γi].(5.2.10)

Proof. We define the isomorphism on basis elements g · ϕ · p · a ∈ YΓi by

g · ϕ · p · a 7→ [ϕ · p · a]⊗ g.Q (ϕ, p) .

We need to show injectivity and surjectivity for basis elements, then we get the

isomorphism by linear extension.

(i) Let [ϕ · p · a] ⊗ g.Q (ϕ, p) = [ϕ′ · p′ · a′] ⊗ g′.Q (ϕ′, p′) , since ϕ, ϕ′ ∈ Φ this

implies p = p′, a = a′ and there exists g̃ ∈ G (ϕ, p) such that g̃ϕ = ϕ′.

Furthermore g.Q (ϕ, p) = g′.Q (ϕ′, p) = g′g̃.Q (ϕ, p), so by property of good

basic graphs (iv), g = g′g̃. Therefore,

g · ϕ · p · a = g′g̃ · ϕ · p · a = g′ · ϕ′ · p′ · a′,

shows injectivity.

(ii) Let

[ϕ · p · a]⊗ q ∈ YΦ,Γi/∼Γi
⊗ F4[Γi],

since ϕ ∈ Φ we know that (ϕ, p, a) is a lovely triple. By definition of good

basic graphs, there exists g ∈ G (ϕ, p) such that g.Q (ϕ, p) = q. Then

g · ϕ · p · a 7→ [ϕ · p · a]⊗ g.Q (ϕ, p) = [ϕ · p · a]⊗ q,

shows surjectivity.

�

Corollary 5.2.20. TYΓi
, the restriction of T to YΓi, is isomorphic to Id⊗TΓi on

YΦ,Γi/∼Γi
⊗ F4[Γi].

Proof. Let g · ϕ · p · a ∈ YΓi with q := Q (ϕ, p) ∈ Γi and g ∈ G (ϕ, p), then as in

the proof of Lemma 5.2.15, we have

T (g · ϕ · p · a) =
m∑
i=1

f̄i (g.q) gig · ϕ · p · a,

and gig ∈ G (ϕ, p) .
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On the other hand the Lemma above shows that

g · ϕ · p · a 7→ [ϕ · p · a]⊗ g.q,
m∑
i=1

f̄i (g.q) gig · ϕ · p · a 7→ [ϕ · p · a]⊗
m∑
i=1

f̄i (g.q) gig.q

This agrees with the definition of Id⊗TΓi . �

As YΓi is T -invariant for all 1 ≤ i ≤ N , we can use this isomorphism to

describe the kernel of TY ,

kerTY =
N⊕
i=1

kerTYΓi

∼=
N⊕
i=1

YΦ,Γi/∼Γi
⊗ kerTΓi .

This shows that we need to estimate the dimension of YΦ,Γi/∼Γi
.

Lemma 5.2.21. For every 1 ≤ i ≤ n we have that

|
(

dimF4

(
YΦ,Γi/∼Γi

)
−
µ
(
supp (Γi)

)
|Γi|

|Φ||F |
)
|

≤ |F |
|Γi|

 |Φ|
n
µ
(
supp (Γi)

)
+
∑
ϕ∈Φ

µ
(

supp (Γi) ∩ supp
(
ϕ.p̂∞

)) .

(5.2.11)

Proof. First we find the lower bound for dimF4

(
YΦ,Γi/∼Γi

)
. Note that for ∼Γi at

most |Γi| basis elements lie in the same equivalence class. Therefore, in combi-

nation with Corollary 5.2.18,

dimF4

(
YΦ,Γi/∼Γi

)
≥ 1

|Γi|
∑
ϕ∈Φ

dimF4

(
Yϕ,Γi

)
=

1

|Γi|
∑
ϕ∈Φ

(
|F |
(
µ
(
supp (Γi)

)
− µ

(
supp (Γi) ∩ supp

(
ϕ.p̂∞

))))

=
µ
(
supp (Γi)

)
|Γi|

|Φ||F |− |F |
|Γi|

∑
ϕ∈Φ

µ
(

supp (Γi) ∩ supp
(
ϕ.p̂∞

))
.

For the upper bound note that Y ⊆
⊕

ϕ∈Φ̄ Yϕ,Γi and YΦ,Γi ⊆
⊕

ϕ∈Φ̄ Yϕ,Γi ∩ Y .

Let g · ϕ · p · a ∈
⊕

ϕ∈Φ̄ Yϕ,Γi ∩ Y then

ϕ · p · a ∼Γi g
′ · ϕ · p · a

for all g′ ∈ G (ϕ, p). So from the definition of ∼Γi it is apparent that every equiv-

alence class on
⊕

ϕ∈Φ̄ Yϕ,Γi ∩ Y contains exactly |Γi| basis elements. Therefore,
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again with Corollary 5.2.18,

dimF4

(
YΦ,Γi/∼Γi

)
≤ dimF4

⊕
ϕ∈Φ̄

Yϕ,Γi ∩ Y
/
∼Γi


=

1

|Γi|
dimF4

⊕
ϕ∈Φ̄

Yϕ,Γi ∩ Y


≤ 1

|Γi|
∑
ϕ∈Φ̄

dimF4

(
Yϕ,Γi

)
≤
µ
(
supp (Γi)

)
|Γi|

|Φ̄||F |

≤
µ
(
supp (Γi)

)
|Γi|

(
1 +

1

n

)
|Φ||F |

�

With this lemma we may now estimate

|dimF4 kerTY −

 N∑
i=1

µ
(
supp (Γi)

)
|Γi|

|Φ||F |

 dimF4 ker
(
TΓi

)
|

= |

 N∑
i=1

dimF4

(
YΦ,Γi/∼Γi

)−
 N∑

i=1

µ
(
supp (Γi)

)
|Γi|

|Φ||F |

| · dimF4 ker
(
TΓi

)

≤
N∑
i=1

 |F |
|Γi|

 |Φ|
n
µ
(
supp (Γi)

)
+
∑
ϕ∈Φ

µ
(

supp (Γi) ∩ supp
(
ϕ.p̂∞

))


· dimF4 ker
(
TΓi

)
≤

N∑
i=1

|F |

 |Φ|
n
µ
(
supp (Γi)

)
+
∑
ϕ∈Φ

µ
(

supp (Γi) ∩ supp
(
ϕ.p̂∞

))
≤ |F |

 |Φ|
n

+
∑
ϕ∈Φ

1

n


=

2

n
|Φ||F |.

(5.2.12)

Combine the previous estimates (5.2.8),(5.2.7) and (5.2.12), while recalling

that Φ = Φn, F = Fn and N = Nn, and so the estimates hold for every n ∈ N.
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We conclude

|dimF4 (kerTΦn·Fn)

|Φn||Fn|
−

Nn∑
i=1

µ
(
supp (Γi)

)
|Γi|

dimF4 ker
(
TΓi

)
| ≤ 9

n
.

This shows the statement for one operator.

The general case with any number of operators T 1, . . . , T l ∈ F4[G′nA], follows

directly, because the construction of Y and its subspaces is the same for all T j

and so

dimF4

⋂
j

kerT j
Φ̄·F

− dimF4

⋂
j

kerT jY

 ≤ 4

n
|Φ||F |,

|dimF4

⋂
j

kerT j
Φ̄·F

− dimF4

⋂
j

kerT jΦ·F

| ≤ 3

n
|Φ||F |,

⋂
j

kerT jY
∼=

N⊕
i=1

YΦ,Γi/∼Γi
⊗
⋂
j

kerT jΓi .

�

The theorem we have just proven allows us to compute the dimension of the

kernel by way of adjacency operators on certain labeled graphs. In the calculation

for the main theorems of this section, we need one class of labeled graphs, simply

called nice graphs following the idea in [GS14].

Definition 5.2.22 (Nice graph). Let k ∈ N0, l ∈ {0, 1}. A nice graph of type

(k, l) G, is a finite rooted tree Gα, where all edges are directed towards the root and

there are loops at all vertices with exception of k leafs, together with a subgraph

Gβ which has all the same vertices and no edges but the loop at the root if l = 1.

Let G =
(
Gα,Gβ

)
be a nice graph of type (k, l). We denote the adjacency

matrix of Gα by Tα and the one for Gβ by Tβ.

Example 5.2.23. We draw a nice graph G of type (2, 1), that is a finite rooted

tree Gα (Figure 5.1) together with its subgraph Gβ (Figure 5.2).

Lemma 5.2.24. Let G be a nice graph of type (k, l) and K any field then

dimK
(
kerTα ∩ kerTβ

)
=

0 if k = 0,

k − l else.
(5.2.13)
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root

Figure 5.1. Gα of a nice graph G of type (2, 1)

root

Figure 5.2. Gβ of a nice graph G of type (2, 1)

Proof. Let G be a nice graph of type (k, l) and K any field, where 1 ∈ K is the

neutral element of the group of units. Let V := V (G) be the set of vertices of

this tree, m = |V | and r ∈ V the root of the tree.

Let (ζi)i=1,...,m be a basis for K[V ] such that the first k elements correspond to

the leafs without loops, the last element corresponds to the root and the partial
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order induced by the tree is respected. Then for this basis Tα ∈ Km×m is a lower

triangle matrix such that

Tα =


A 0 0

C B 0

C B 1

 ,

where A is an k× k zero-matrix,
(
B
B

)
is an (m− k)× (m− k− 1) matrix with 1’s

on the diagonal and one additional 1 in every column and
(
C
C

)
is an (m− k)× a

matrix with a single 1 in every column. Using elementary matrix operations, see

[Hef15], we may diagonalize from the right starting with column m − 1, which

has 1’s in the two lowest entries and 0’s elsewhere. This does not change the rank

but pushes the off-diagonal non-zero entries to the bottom row. Thus we arrive

at the following matrix 
A 0 0

0 I 0

D D 1

 ,

where I is the identity matrix, all the entries of D and D are ±1 and the rank of

this matrix is m− k.

Now we treat the two cases of Tβ. If l = 0 then Tβ is the zero operator, and

dimK
(
kerTα ∩ kerTβ

)
= dimK (kerTα) = m− rkK (Tα) = k.

If l = 1 then by the rank-nullity theorem and the corollary above

dimK
(
kerTα ∩ kerTβ

)
= m− rkK



0 0 0

0 0 0

0 0 1

A 0 0

0 I 0

D D 1


=

0 if k = 0,

k − 1 else.

The lemma follows immediately. �

Finally, before we start the proofs for the main theorems of this section, let

us see what kind of indicator functions χY ∈ FX4 come from elements in F2[A].
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Example 5.2.25. Let Z3 := Z/3Z be the abelian group of three elements, and

A := Z2
3 then X ∼= Z2

3. Let F4 = F2[1, z] with z2 = 1 + z. We write

f1 =

(
0

0

)
+

(
1

0

)
+

(
2

0

)
∈ F2[A],

f2 =

(
0

1

)
+

(
0

2

)
∈ F2[A],

then

f̂1

((
0̄

0̄

))
= 0̄(0) · 0̄(0) + 0̄(1) · 0̄(0) + 0̄(2) · 0̄(0) = 1 + 1 + 1 = 1,

f̂1

((
1̄

0̄

))
= 1̄(0) · 0̄(0) + 1̄(1) · 0̄(0) + 1̄(2) · 0̄(0) = 1 + z + (1 + z) = 0,

f̂1

((
0̄

2̄

))
= 0̄(0) · 2̄(0) + 0̄(1) · 2̄(0) + 0̄(2) · 2̄(0) = 1 + 1 + 1 = 1,

f̂2

((
0̄

0̄

))
= 0̄(0) · 0̄(1) + 0̄(0) · 0̄(2) = 1 + 1 = 0,

f̂2

((
1̄

0̄

))
= 1̄(0) · 0̄(1) + 1̄(0) · 0̄(2) = 1 + 1 = 0,

f̂2

((
0̄

2̄

))
= 0̄(0) · 2̄(1) + 0̄(0) · 2̄(2) = (1 + z) + z = 1.

Now it becomes clear, that f̂1 is the indicator function on
{(

t1
t2

) ∣∣∣ t1 = 0̄
}

, and f̂1

is the indicator function on
{(

t1
t2

) ∣∣∣ t2 ∈ {1̄, 2̄
}}

.

Thus f1f2 ∈ F2[A] and f̂1f2 = f̂1f̂2 = χ{
(0̄

1̄),(
0̄
2̄)
}.

5.2.2. Proof of Theorem 5.2.1

We will proof the theorem by constructing an amenable group and an operator

represented in the group ring with coefficients in F2. To calculate the Følner

dimension of its kernel with Theorem 5.2.10, we will also construct an exhaustion

of good basic graphs for this operator.

The following construction is inspired by section 5.1 from [Gra14] adopted

to Z3 := Z/3Z with ideas from [Gra10]. Let X := MZ × S be a discrete abelian

group with normalized Haar measure µ, M := (Z3)3 as the set of symbols and

S := (Z3)4 as the set of states. For subsets m−k, . . . ,m0, . . . ,ml ⊂M and σ ⊂ S
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the set

{(ṅ, τ) ∈MZ × S : n−k ∈ m−k, . . . , nl ∈ ml, τ ∈ σ}

is denoted by

[m−k . . .m−1m0m1 . . .ml][σ].

Furthermore, for σ ⊂ S, let

[][σ] :=
⋃
m⊂M

[m][σ],

and for m ⊂M let

[m][] :=
⋃
σ⊂S

[m][σ].

With 0 := {0} ⊂ Z3 and 1 := {1, 2} ⊂ Z3 let M̄ := {0,1}3 ⊂ P(M) be a

partition of M and let S̄ := {0,1}4 ⊂ P(S) be a partition of S. Then we can

divide X into disjoint subsets

X =
⊔

m∈M̄,σ∈S̄

[m][σ].

Let A :=
⊕

ZM×S then X = Â = Hom(A,F∗4). Note, like in Example 5.2.25,

that the indicator function χ[m][σ] ∈ FX4 , for m ∈ M̄ and σ ∈ S̄, has a preimage

in F2[A] ⊂ F4[A].

Let

β :=

1 0 0

0 0 1

0 1 0

 ∈ Aut(M)

and defineG :=
[(
〈β〉 × Z2

2

)
o Z
]
×Aut(S), which is a finitely generated amenable

group by Lemma 1.3.10.

Let Bκ, κ ∈ {1, 2}, be the generators of Z2
2, t be the generator of Z and e the

neutral element. Fix two subsets of the natural numbers, Σ = {Σ1,Σ2} ⊂ P (N),

and define the left-action ρΣ : Gy X component-wise. Aut(S) acts naturally on
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S and the action
[(
〈β〉 × Z2

2

)
o Z
]
yMZ is defined by

(
β.(ṅ)

)
j

=

nj for j 6= 0,

β(n0) for j = 0.

(
Bκ.(ṅ)

)
j

=

β(nj) for j ∈ Σκ,

nj otherwise.(
t.(ṅ)

)
j

= nj+1

For example

[(0,1,0) · ][σ]
ρΣ(t·β)−−−−→ [(0,0,1) · ][σ].

This gives us G nΣ A, which is finitely generated and amenable as the

semidirect product, and thus extension, of two finitely generated amenable

groups, see Lemma 1.3.10. Now we fix a subset of M of fixed points for β,

mβ := (0,0,0) ∪ (1,1,1). Note that µ
(

[mβ][]
)

= 1
3
. Furthermore, we write mk

β

for a sequence of k entries with mβ. Similarly we fix subsets of S, s0 := (1,1,0,0),

s1 := (1,0,1,0), s2 := (0,1,0,1), s3 := (0,0,1,1) as well as automorphism of S

which are bijections from and to these sets.

(s0 → s1) :=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ∈ Aut(S), (s1 → s2) :=


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

 ∈ Aut(S),

(s2 → s3) :=


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 ∈ Aut(S)

To define the operator we look at a partition of X into four sets, I, C, P and

R with

I := [(0,1,0)][s0],

C := [mβ][s1] ∪ [(0,1,0)][s1] ∪ [mβ][s2] ∪ [(0,1,0)][s2] ∪ [mβ][s3],

P := [(0,1,0)][s3]

R := X \ (I ∪ C ∪ P ) .
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s0

s1 s2

s3

(0,1,0): t

(0,1,0): t−1 · β

(0,1,0): t ·Bκ

mβ: t mβ: t−1

mβ: t

Figure 5.3. Graphical representation of T

Now we fix κ ∈ {1, 2} and define the operator T̂ ∈ F2[GnΣ A] by the formal

sum T := (
(s0 → s1) · t

)
·χ[(0,1,0)][s0]

(t) ·χ[(0,0,0)][s1]+

(t) ·χ[(1,1,1)][s1]+ (
(s1 → s2) · t−1 · β

)
·χ[(0,1,0)][s1]+ (

t−1
)
·χ[(0,0,0)][s2]+ (

t−1
)
·χ[(1,1,1)][s2]+ (

(s2 → s3) · t ·Bκ

)
·χ[(0,1,0)][s2]+

(t) ·χ[(0,0,0)][s3]+

(t) ·χ[(1,1,1)][s3]+

(e) ·χP∪R.+

It is also described by the Figure 5.3, where the trivial loops from the last

summand are neglected. Because the supports of the summands give a disjoint

partition of X, we may interpret T as a map from X to X.

Thus note that T (x) = x,∀x ∈ P∪R, so if ∃N ∈ N such that T k+1(x) = T k(x),

∀k ≥ N , we write T∞(x) := TN(x).

Lemma 5.2.26. Let X̄ := {x ∈ X : T∞(x) ∈ P ∪R}, then

µ(X̄) = 1.
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Proof. Let (ṅ, τ) ∈ X \ X̄ then we see by looking at the diagram in Figure 5.3

that either ∀k > 0 : nk ∈ mβ or ∀k < 0 : nk ∈ mβ, in both cases (ṅ, τ) lies in a

set of measure zero. �

We see that no element is mapped into I, {x ∈ X : T (x) ∈ I} = ∅.

Lemma 5.2.27. Let IP := {x ∈ I : T∞(x) ∈ P} be the elements that start in I

and arrive in P . Then

IP =
⊔
k∈Σκ

Fk

with Fk := [(0,1,0)mk−1
β (0,1,0)][s0]. Furthermore µ (Fk) = 2

33 · 1
3k−1 · 2

33 · 4
34 , and

T is measure-preserving.

Proof. ⊇: We chase the sets Fk for k ∈ Σκ through the diagram in Figure 5.3

T 0(Fk) = [(0,1,0)mk−1
β (0,1,0)][s0],

T 1(Fk) = [(0,1,0)mβm
k−2
β (0,1,0)][s1],

T 2(Fk) = [(0,1,0)mβmβm
k−3
β (0,1,0)][s1],

T k(Fk) = [(0,1,0)mk−1
β (0,1,0)][s1],

T k+1(Fk) = [(0,1,0)mk−2
β mβ(0,0,1)][s2],

T 2k(Fk) = [(0,1,0)mk−1
β (0,0,1)][s2],

T 2k+1(Fk) = [(0,1,0)mβm
k−2
β (0,1,0)][s3],

T 3k(Fk) = [(0,1,0)mk−1
β (0,1,0)][s3] ⊂ P.

⊆: Let x ∈ IP ⊂ [][s0] be an element that arrives in P ⊂ [][s3]. By definition this

takes finitely many steps, and from the diagram in Figure 5.3 we can see that

there exists n ∈ N such that T n(x) ∈ [][s1] and T n+1(x) ∈ [][s2]. Thus the chase

above shows that x ∈ Fn.

Now assume n 6∈ Σκ then T 3n(x) ∈ [(0,1,0)mk−1
β (0,0,1)][s3] ⊂ R which is a

contradiction to x ∈ IP . To calculate the measure of Fk we have to multiply the

measures of the subsets each position is restricted to. So

µ (Fk) = µ
(

[(0,1,0)][]
)
µ
(

[mβ][]
)k−1

µ
(

[(0,1,0)][]
)
µ
(
[][s0]

)
=

2

33
· 1

3k−1
· 2

33
· 4

34
.

T is measure-preserving since µ
(
[][si]

)
= µ

(
[][sj]

)
for i, j ∈ {0, 1, 2, 3} and

µ
(

[(0,1,0)][]
)

= µ
(

[(0,0,1)][]
)
. �

Let S1 := T + (e · χC) and S2 := e · χR, we define good basic graphs for Ŝ1

and Ŝ2, Γk = {χ̂T i(Fk) : 0 ≤ i ≤ 3k}, k ∈ Σκ, where we can easily check the
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conditions for a good basic graph are fulfilled according to Remark 5.2.6 and the

proof above.

Thus, recalling the Figure 5.3, we see that G :=

(
G
(

Γk, Ŝ1

)
,G
(

Γk, Ŝ2

))
is a

nice graph of type (1, 0). Furthermore Ŝ1,Γk = Tα and Ŝ2,Γk = Tβ, the adjancency

operators for G, since supp Γk ∩R = ∅, and thus by Lemma 5.2.24

dimF4

(
ker Ŝ1,Γk ∩ ker Ŝ2,Γk

)
= 1.

Note that µ
(
supp(Γk)

)
= |Γk| · 2

33 · 1
3k−1 · 2

33 · 4
34 .

Let Y =
{
y ∈ X̄ \ IP

∣∣ @x ∈ X : T (x) = y
}

then for every x ∈ X̄ \(⋃
k∈Σ supp Γk

)
there exists n ∈ N and y ∈ Y such that T n(y) = x, that is

all of X̄ is reached from Y ∪ IP . We use this to find good basic graphs to exhaust

X̄.

For every y ∈ Y the sequence
(
T n(y)

)
n∈N produces a sequence δ(y) = (χn)n∈N

of indicator functions corresponding to which summand of T applies at that step.

Then the subset Yδ :=
{
y ∈ Y

∣∣ δ(y) = δ
}

generates a good basic graph Hδ for

every such sequence δ. Clearly, δ 6= δ′ implies Hδ is disjoint from H ′δ and thus we

produce an exhaustion of X̄.

Now let H be such a good basic graph for Ŝ1 disjoint from Γk for k ∈ Σ.

There are two cases to consider. In the first case supp(H) ∩ I 6= ∅, then by

Lemma 5.2.27 supp(H) ∩R 6= ∅ and so

(
G
(
H, Ŝ1

)
,G
(
H, Ŝ2

))
is a nice graph

of type (1, 1). Thus

dimF4

(
ker Ŝ1,H ∩ ker Ŝ2,H

)
= 0.

In the second case supp(H) ∩ I = ∅, then

(
G
(
H, Ŝ1

)
,G
(
H, Ŝ2

))
is a nice

graph of type (0, l). Thus

dimF4

(
ker Ŝ1,H ∩ ker Ŝ2,H

)
= 0.

Since µ
(
X̄
)

= 1, we can amend (Γk)k∈Σ by such Hδ to get an exhausting sequence

of good basic graphs for Ŝ1 and Ŝ2. So with Corollary 2.1.2 and Theorem 5.2.10

we get that

dimF2[GnΣA]

ker

Ŝ1

Ŝ2


 = dimF4[GnΣA]

(
ker Ŝ1 ∩ ker Ŝ2

)
=

8

39
·
∑
k∈Σκ

1

3k
.
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Now let r ∈ R+ and r0 ∈ [0, 1] ⊂ R such that r · 39

8
1
r0

= R ∈ N then using the

triadic expansion we fix Σ = {Σ1,Σ2} ⊂ P (N) such that

r0 =
∑
k∈Σ1

1

3k
+
∑
k∈Σ2

1

3k
.

In the calculations above we fixed κ ∈ {1, 2} . Now we write Ŝ
1

1, Ŝ
1

2 for κ = 1 and

Ŝ
2

1, Ŝ
2

2 for κ = 2, then we define

S̃ :=
R⊕
i=1


Ŝ

1

1 0

Ŝ
1

2 0

0 Ŝ
2

1

0 Ŝ
2

2

 ∈ F2[GnΣ A]4R×2R.

Then again with Corollary 2.1.2 and Theorem 5.2.10 we get that

dimF2[GnΣA]

(
ker S̃

)
= R ·

dimF4[GnΣA]

ker

Ŝ1

1

Ŝ
1

2

⊕ ker

Ŝ2

1

Ŝ
2

2





= R ·

 8

39
·
∑
k∈Σ1

1

3k
+

8

39
·
∑
k∈Σ2

1

3k


= R · 8

39
· r0 = r.

5.2.3. Proof of Theorem 5.2.2

As with the previous proof this construction is inspired by section 5.1 from

[Gra14] adopted to Z3 := Z/3Z with ideas from [Gra10]. Let X :=
(
MZ
)3 × S

be a discrete abelian group with normalized Haar measure µ, M := Z3 as the set

of symbols and S := (Z3)4 as the set of states.

We use notation similar to the previous section. For subsets

a−ka , . . . , a0, . . . , ala , b−kb , . . . , b0, . . . , blb , c−kc , . . . , c0, . . . , clc ⊂ M and σ ⊂ S the

set (ẋ, ẏ, ż, τ) ∈
(
MZ
)3

× S

∣∣∣∣∣∣∣∣∣
x−k ∈ a−ka , . . . , x0 ∈ a0, . . . , xl ∈ ala ,

y−k ∈ b−kb , . . . , y0 ∈ b0, . . . , yl ∈ blb ,

z−k ∈ c−kc , . . . , z0 ∈ c0, . . . , zl ∈ clc ,

τ ∈ σ
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is denoted by a−ka . . . a0 . . . ala

b−kb . . . b0 . . . blb
c−kc . . . c0 . . . clc

 [σ].

Givenm = (m1,m2,m3) ∈
(
P (M)

)3
we may also write [m][σ] or [(m1,m2,m3)][σ]

for m1

m2

m3

 [σ].

With 0 := {0} ⊂ Z3 and 1 := {1, 2} ⊂ Z3 let M̄ := {0,1} ⊂ P(M) be a partition

of M and let S̄ := {0,1}4 ⊂ P(S) be a partition of S. Then we can divide X

into disjoint subsets

X =
⊔

m∈M̄3,σ∈S̄

[m][σ].

Let A :=
(⊕

ZM
)3 × S then X = Â = Hom(A,F∗4). Note that the indicator

function χ[m][σ] ∈ FX4 , for m ∈ M̄3 and σ ∈ S̄, has a preimage in F2[A] ⊂ F4[A].

Let G := Z3×Aut(S) with generators t1, t2, t3 for Z3. Clearly, G is amenable

by Lemma 1.3.10. Then there is a natural left action ρ : Gy X via component-

wise shift on the tapes
(
MZ
)3

and natural action on S. For example · 1 ·· 0 ·
· 1 ·

 [σ]
ρ(t1·t−1

2 )
−−−−−→

 · 1 ·· 0 ·
· 1 ·

 [σ].

Let G y A be the dual action, then G n A ∼= is amenable as the semidirect

product, and thus extension, of two amenable groups, see Lemma 1.3.10.

We fix s0, s1, s2, s3 ∈ S as before and to define the operator we look at a

partition of X into four sets, I, C, P and R with

I :=[(1,1,1)][s0],

C :=
(

[(0,0,1)][s1] ∪ [(1,1,1)][s1] ∪ [(0,0,0)][s2]

∪[(1,0,0)][s2] ∪ [(0,0,0)][s3] ∪ [(1,0,0)][s3]
)
,

P :=[(0,1,1)][s2]

R :=X \ (I ∪ C ∪ P ) .



5.2. GRAPHICAL REPRESENTATION 105

s0

s1 s2

s3

(1,1,1): t1t2

(1,1,1): t−1
1 t−1

2 t3

(1,0,0): t1

(1,0,0): t−1
1 t−1

2 t3

(0,0,1): t1t2 (0,0,0): t−1
1

(0,0,0): t1t3

Figure 5.4. Graphical representation T

Now we define the operator T̂ ∈ F2[Gn A] by the formal sum T :=(
(s0 → s1) · t1 · t2

)
·χ[(1,1,1)][s0]

(t1 · t2) ·χ[(0,0,1)][s1]+ (
(s1 → s2) · t−1

1 · t−1
2 · t3

)
·χ[(1,1,1)][s1]+ (

t−1
1

)
·χ[(0,0,0)][s2]+ (

(s2 → s3) · t1
)
·χ[(1,0,0)][s2]+

(t1 · t3) ·χ[(0,0,0)][s3]+ (
(s2 → s3)−1 · t−1

1 · t−1
2 · t3

)
·χ[(1,0,0)][s3]+

(e) ·χP∪R.+

It is also described by the Figure 5.4, where the trivial loops from the last sum-

mand are neglected. Since the supports of the summands do not intersect, we

may interpret T as a map from X to X.

Thus note that T (x) = x,∀x ∈ P ∪ R and if ∃N ∈ N such that T k+1(x) =

T k(x), ∀k ≥ N , we write T∞(x) := TN(x).

Lemma 5.2.28. Let X̄ := {x ∈ X : T∞(x) ∈ P ∪R}, then

µ(X̄) = 1.

Proof. Let w = (ẋ, ẏ, ż, τ) ∈ X \ X̄ be an element that is caught in a cycle in

Figure 5.4 then we see three cases for this.
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For the first case, let T k(w) ∈ [][s1] for k > n1 ∈ N, but this is only the case

if T k(w) ∈ [(0,0,1)][s1] which implies that xi, yi ∈ 0 for i > l1 ∈ Z.

In the second case, let T k(w) ∈ [][s2] for k > n2 ∈ N, but this is only the case

if T k(w) ∈ [(0,0,0)][s2] which implies that xi ∈ 0 for i < l2 ∈ Z.

The remaining case is that T k(w) ∈ [][s3] for infinitely many k, but then

T k(w) ∈ [(· , · ,0)][s3] for infinitely many k. As t3 but not t−1
3 appears in T , the

third tape (ż) is shifted forward only. Thus follows that zi ∈ 0 for infinitely many

i.

In all three cases w lies in a set of measure zero. So µ(X̄) = 1. �

By construction there are no elements which are mapped to I,

{x ∈ X : T (x) ∈ I} = ∅.

Lemma 5.2.29. Let IP := {x ∈ I : T∞(x) ∈ P} be the elements that start in I

and arrive in P . Then

IP =
∞⊔
k=1

Fk

with

Fk :=

1 0k 1

1 0k 1

1 0k
2+k 1

 [s0].(5.2.14)

Furthermore

µ (Fk) =

(
2

3
· 1

3k
· 2

3

)2

· 2

3
· 1

3k2+k
· 2

3
· 4

34
,

and T is measure-preserving.



5.2. GRAPHICAL REPRESENTATION 107

Proof. ⊇: We chase the sets Fk for k ∈ N through the diagram in Figure 5.4

T 0(Fk) =

1 0k 1

1 0k 1

1 0k
2+k 1

 [s0], T 1(Fk) =

1 0 0k−1 1

1 0 0k−1 1

1 0k
2+k 1

 [s1],

T k+1(Fk) =

1 0k 1

1 0k 1

1 0k
2+k 1

 [s1], T k+2(Fk) =

1 0k−1 0 1

1 0k−1 0 1

1 0 0k
2+k−1 1

 [s2],

T 2k+2(Fk) =

1 0k 1

1 0k−1 0 1

1 0 0k
2+k−1 1

 [s2], T 2k+3(Fk) =

1 0 0k−1 1

1 0k−1 0 1

1 0 0k
2+k−1 1

 [s3],

T 3k+3(Fk) =

1 0k 1

1 0k−1 0 1

1 0k 0 0k
2−1 1

 [s3], T 3k+4(Fk) =

1 0k−1 0 1

1 0k−2 0 0 1

1 0k+1 0 0k
2−2 1

 [s2],

T (3k+4)+(2k+2)(Fk) = T 5k+6(Fk) =

1 0k−1 0 1

1 0k−3 0 0 0 1

1 02k+2 0 0k
2−k−3 1

 [s2],

T k(2k+2)+k+2 = T 2k2+3k+2(Fk) =

1 0k−1 0 1

1 0k 1

1 0k
2+k 1

 [s2] ⊂ P.

⊆: Let w ∈ IP ⊂ [][s0] be an element that arrives in P = [(0,1,1)][s2]. By

definition this takes finitely many steps, and from the diagram in Figure 5.4 we

can see that there exists n ∈ N such that T n(w) ∈ [][s1] and T n+1(w) ∈ [][s2].

Thus the chase above shows that

w ∈

1 0n−1 1

1 0n−1 1

1

 [s0].

If n = 1 then T 2(w) ∈ [(1,1, ·)][s2] ⊂ R. Now the second half of the diagram in

Figure 5.4 shows that

w ∈

1 0n−1 1

1 0n−1 1

1 0m 1

 [s0],
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and for m 6= (n− 1)2 + n− 1 computation shows that T 2(n−1)2+3(n−1)+2(w) ∈ R.

So w ∈ Fn−1.

To calculate the measure of Fk we have to multiply the measures of the subsets

each position is restricted to. T is measure-preserving since µ
(
[][si]

)
= µ

(
[][sj]

)
for i, j ∈ {0, 1, 2, 3}. �

As in the previous section, let S1 := T + (e · χC) and S2 := e · χR. We define

good basic graphs for Ŝ1 and Ŝ2, Γk = {χ̂T i(Fk) : 0 ≤ i ≤ 2k2 + 3k + 2}, k ∈ N.

Then G :=

(
G
(

Γk, Ŝ1

)
,G
(

Γk, Ŝ2

))
is a nice graph of type (1, 0). Furthermore

Ŝ1,Γk = Tα and Ŝ2,Γk = Tβ, the adjancency operators for G, and thus by Lemma

5.2.24

dimF4

(
ker Ŝ1,Γk ∩ ker Ŝ2,Γk

)
= 1.

Note that

µ
(
supp(Γk)

)
= |Γk| ·

(
2

3
· 1

3k
· 2

3

)2

· 2

3
· 1

3k2+k
· 2

3
· 4

34
= |Γk| ·

28

310
· 1

3k2+3k
.

We find an exhaustion of X̄ by good basic graph as in the previous section.

Let H be a good basic graph for Ŝ1 disjoint from Γk for k ∈ N. There are two

cases.

In the first case supp(H) ∩ I 6= ∅, then by Lemma 5.2.29 supp(H) ∩ R 6= ∅

and so

(
G
(
H, Ŝ1

)
,G
(
H, Ŝ2

))
is a nice graph of type (1, 1). Thus

dimF4

(
ker Ŝ1,H ∩ ker Ŝ2,H

)
= 0.

In the second case supp(H) ∩ I = ∅, then

(
G
(
H, Ŝ1

)
,G
(
H, Ŝ2

))
is a nice

graph of type (0, l). Thus

dimF4

(
ker Ŝ1,H ∩ ker Ŝ2,H

)
= 0.

Since µ
(
X̄
)

= 1, we thus amend {Γk}k∈N to get an exhausting sequence of good

basic graphs for Ŝ1 and Ŝ2. So with Theorem 5.2.10 we get the following result:

dimF2[GnA]

ker

Ŝ1

Ŝ2


 = dimF4[GnA]

(
ker Ŝ1 ∩ ker Ŝ2

)
=

28

310
·
∑
k∈N

1

3k2+3k
.

As the series is a non-periodic triadic expansion the number above is irrational,

but not covered by well known transcendence results.
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Recall GnA ∼=
(
Z3 n

(⊕
Z Z3

)3
)
×
(
Aut(S) n S

)
, clearly

(
Z3 n

(⊕
Z Z3

)3
)

is finitely generated metabelian, by [BBDZ13, Theorem 7.1] there exists a

finitely presented overgroup G̃ which is metabelian and thus amenable. Since(
Aut(S) n S

)
is finite, G̃×

(
Aut(S) n S

)
is also finitely presented.

Remark 5.2.30. Well known examples of transcendental numbers in form of a

convergent series are of the type ∑
k

βrk ,

where β ∈ (0, 1) is algebraic and rk is a sequence of exponential growth in k.

In Theorem 5.2.2 β = 1
3

and rk is a sequence of polynomial growth. Now if rk

is a polynomial in k, then the set of such numbers is countable, since the alge-

braic numbers are countable and the set of polynomials is countable. Therefore

cardinality does not obstruct it from being a subset of the algebraic numbers and

therefore the example being algebraic.

Remark 5.2.31. The example above corresponds to polynomial growth of order

2. From the construction used it seems natural, that the order can be increased

with additional tapes, that is copies of MZ. However, there is little hope to make

the jump to exponential growth while keeping Gn A metabelian-by-finite. This

seems to restrict to ’read-only systems’ as in the construction above in contrast

to the underlying system for arbitrary real numbers seen in the proof of Theorem

5.2.1.

5.3. Spectral computation

In this section we adapt the role model for the computational tool of the previous

section, sometimes called spectral computation, directly using the properties of

the Følner dimension established in Chapter 4.

Thus with some algebraic effort we will see that the spectral computation

from [PSZ15] can be translated to fields of finite characteristics. For this section

we will only consider fields K with char (K) 6= 2. Note the similarity to the

computational tool in the previous section.

5.3.1. General Setup

The following setup is meant to be a slight generalization of the setup in

[PSZ15], also borrowing notation from [Aus13].
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Let G be a discrete, finitely generated amenable Group and let U be a dis-

crete, countable, abelian group, where each element has order 2, then all homo-

morphisms U → T factor through {1,−1}. Let X := Û = Hom (U,T) be its

compact Pontryagin dual and µ the normalized Haar measure on X.

Let f ∈ l1 (U), we define the Fourier transform

T ′f (x) :=
∑
u∈U

f (u)x (u) , for x ∈ X.(5.3.1)

Theorem 5.3.1. [Fol15, Theorem 4.26] Let U,X, µ be as above. Then the

Fourier transform T ′ on l1 (U) ∩ l2 (U) extends uniquely to an unitary isomor-

phism

T : l2 (U)→ L2 (X,µ) .(5.3.2)

This agrees with the following inverse Fourier transform,

T ∗F (u) = 〈T ∗F, δu〉l2(U) = 〈F, T δu〉L2(X)

=

∫
x∈X

F (x)
∑
v∈U

δu (v)x (v)dµ (x)

=

∫
x∈X

F (x)x (u) dµ (x) ,

(5.3.3)

for F ∈ L2 (X) and u ∈ U .

Consider C[U ] ⊂ B
(
l2 (U)

)
by the left regular action of U and L∞ (X) ⊂

B
(
L2 (X)

)
by pointwise multiplication.

Lemma 5.3.2. Let U,X, µ be as above. Then

(i) there is an algebra homomorphism C[U ] −̂→ L∞ (X) given by

∑
u∈U

cuu 7→

x 7→∑
u∈U

cux(u)

 .(5.3.4)

We write p̂ for the image of p ∈ C[U ] in L∞ (X).

(ii) Let E ⊂ U be a finite subset and Ψ: E → {1,−1}, for these we define

cylinder sets in X by CΨ :=
{
x ∈ X

∣∣ ∀u ∈ E : x (u) = Ψ (u)
}

. Then

pΨ :=
∏
u∈E

(
e+ Ψ (u)u

2

)
∈ Z[1

2
][U ](5.3.5)

maps to the indicator function of CΨ, p̂Ψ = 1CΨ
.

(iii) For p ∈ C[U ] we see that

p ◦ T ∗ = T ∗ ◦ p̂.(5.3.6)
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Proof. (i) Let p =
∑

u∈U cuu, q =
∑

v∈U dvv ∈ C[U ] then

p̂q (x) =
∑
u,v∈U

(cudv)x(uv)

=

∑
u∈U

cux(u)

∑
v∈U

dvx(v)


= p̂ (x) q̂ (x) = (p̂ · q̂) (x) .

(ii) Let E ⊂ U be a finite subset and Ψ: E → {1,−1} and let x ∈ CΨ then

p̂Ψ (x) =
∏
u∈E

(
x (e) + Ψ (u)x (u)

2

)

=
∏
u∈E

(
1 + x (u)2

2

)
=
∏
u∈E

(
2

2

)
= 1.

On the other hand, let x /∈ CΨ, then there exists u ∈ E such that x (u) 6=
Ψ (u). Thus we see that

x (e) + Ψ (u)x (u) = 1 + (−1) = 0,

and therefore p̂Ψ (x) = 0.

(iii) Let p =
∑

u∈U cuu ∈ C[U ], F ∈ L2 (X) and v ∈ U , then

T ∗ (p̂F ) (v) =

∫
x∈X

p̂ (x)F (x)x (v) dµ (x)

=

∫
x∈X

∑
u∈U

cux(u)F (x)x (v) dµ (x)

=
∑
u∈U

cu

∫
x∈X

F (x)x (uv) dµ (x)

=
∑
u∈U

cuT ∗F (uv)

= pT ∗F (v) .

�

We see that the image of Z[1
2
][U ] contains all χ ∈ L∞ (X), which are Z[1

2
]-

linear combinations of such indicator functions. Note that im (pΨ) ⊆ l2 (U) and

im (pΨ) ∼= im
(
1CΨ

)
⊆ L2 (X,µ) .
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Corollary 5.3.3. [Tak02, VII, Theorem 3.14] We have a spatial isomorphism

of von Neumann algebras by

T N (U) T ∗ = L∞ (X) .(5.3.7)

Let G y X be an action by automorphisms, then G acts on L∞ (X,µ) by

precomposition, g.χ (x) = χ
(
g−1.x

)
, and G y U such that the algebra homo-

morphism above is equivariant.

We follow [Aus13] and define the semi-direct product U oG by the following

multiplication on U ×G,

(u, g) · (v, h) :=
((
h−1.u

)
v, gh

)
.(5.3.8)

By the Fourier transform above, we get the unitary isomorphism

F̄ : l2 (U oG)→ L2 (X oG, µ⊗#G)

via l2 (U oG) ∼= l2 (U)⊗ l2 (G),

l2 (U)⊗ l2 (G)
F⊗Idl2(G)−−−−−−→ L2 (X)⊗ l2 (G)

and L2 (X)⊗ l2 (G) ∼= L2 (X oG, µ⊗#G) .

For f ∈ l1 (U oG) ∩ l2 (U oG) we have the explicit formula

T̄ f (x, g) :=
∑
u∈U

f (u, g)x (u) ,(5.3.9)

and thus for F ∈ L2 (X oG, µ⊗#G) we get the inverse

T̄ ∗F (u, g) =
〈
T̄ ∗F, δu,g

〉
l2(UoG)

=
〈
F, T̄ δu,g

〉
L2(XoG)

=

∫
(x,g′)∈X×G

F
(
x, g′

)
T̄ δu,g (x, g′)d (µ⊗#G)

(
x, g′

)
=

∫
x∈X

∑
g′∈G

F
(
x, g′

)∑
v∈U

δu,g
(
v, g′

)
x (v) dµ (x)

=

∫
x∈X

F (x, g)x (u) dµ (x) .

(5.3.10)

Recall the group measure space construction [BV95, p.169]. The group mea-

sure space von Neumann algebra L∞ (X,µ) oG is generated by{
Mχ

∣∣ χ ∈ L∞ (X,µ)
}
∪ {Th | h ∈ G} ,
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where Mχ for χ ∈ L∞ (X,µ) is the twisted pointwise multiplication, that is for

F ∈ L2 (X oG, µ⊗#G)

MχF
(
(x, g)

)
:= g−1.χ (x)F

(
(x, g)

)
, for (x, g) ∈ X ×G(5.3.11)

and Th for h ∈ G is a translation operator,

ThF
(
(x, g)

)
:= F

((
x, h−1g

))
.(5.3.12)

Where the covariant relation ThMχTh−1 = Mh.χ holds, indeed(
ThMχT

−1
h

)
F (x, g) =

(
MχTh−1F

) (
x, h−1g

)
= g−1h.χ (x) (Th−1F )

(
x, h−1g

)
= g−1. (h.χ) (x)F (x, g)

= Mh.χF (x, g) .

Lemma 5.3.4. We have a spatial isomorphism of von Neumann algebras by

T̄ N (U oG) T̄ ∗ = L∞ (X,µ) oG.(5.3.13)

Proof. Let F ∈ L2 (X oG, µ⊗#G), the left regular action U oGy l2 (U oG)

gives

(v, e) T̄ ∗F
(
(u, g)

)
= T̄ ∗F

(
(v, e) · (u, g)

)
= T̄ ∗F

((
g−1.v

)
u, g
)

=

∫
x∈X

F (x, g)x
((
g−1.v

)
u
)
dµ (x)

=

∫
x∈X

F (x, g)x
(
g−1.v

)
x (u) dµ (x)

=

∫
x∈X

g−1.v̂ (x)F (x, g)x (u) dµ (x)

=

∫
x∈X

Mv̂F (x, g)x (u) dµ (x)

= T̄ ∗Mv̂F
(
(u, g)

)
,

and

(e, h) T̄ ∗F
(
(x, g)

)
= T̄ ∗F

(
(x, hg)

)
=

∫
x∈X

F (x, hg)x (u) dµ (x)

=

∫
x∈X

ThF (x, g)x (u) dµ (x)

= T̄ ∗ThF
(
(x, g)

)
.
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Let A =
∑

(v,h)∈UoG a(v,h) (v, h) ∈ C[U oG], then

AT̄ ∗F
(
(u, g)

)
=

∑
h∈G

(e, h)

∑
v∈U

a(v,h) (v, e)

 T̄ ∗F ((u, g)
)

=
∑
h∈H

(e, h) T̄ ∗Mp̂hF
(
(u, g)

)
= T̄ ∗

∑
h∈H

ThMp̂hF
(
(u, g)

)
,

where ph :=
∑

v∈U a(v,h) (v, e) ∈ C[U ]. This together with

C[U ] ⊂ N (U) ∼= L∞ (X)

shows the statement for the generators of both von Neumann algebras. �

Corollary 5.3.5. Let E ⊂ U be a finite subset and Ψ: E → {1,−1}, then by

G y U we have g.Ψ: g.E → {1,−1} for any g ∈ G such that by definition of

cylinder sets g.CΨ = Cg.Ψ and thus by the covariant relation

T̄ (e, g) · pΨ ·
(
e, g−1

)
T̄ ∗ = TgM1CΨ

Tg−1 = Mg.1CΨ
= M1Cg.Ψ

= T̄ pg.ΨT̄ ∗.
(5.3.14)

Furthermore

T̄ pg.Ψ · l2 (U oG) = T̄ pg.ΨT̄ ∗T̄
(
l2 (U oG)

)
= Mg.1CΨ

(
L2 (X oG)

)
= TgM1CΨ

(
L2 (X oG)

)
= T̄ (e, g) · pΨ · l2 (U oG) .

(5.3.15)

Finally note that for χ ∈ L∞ (X,µ) the canonical von Neumann trace for

N (U oG) gives

trN (UoG)

(
T̄ ∗MχT̄

)
=
〈
T̄ ∗MχT̄ δ(e,e), δ(e,e)

〉
l2(UoG)

=
〈
MχT̄ δ(e,e), T̄ δ(e,e)

〉
L2(XoG,µ⊗#G)

=

∫
x∈X

∑
g∈G

g−1.χ (x)
∑
u∈U

δ(e,e) (u, g)x (u)
∑
v∈U

δ(e,e) (v, g)x (v)dµ (x)

=

∫
x∈X

χ (x) dµ (x) ,
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and for h 6= e ∈ G

trN (UoG)

(
T̄ ∗ThT̄

)
=
〈
T̄ ∗ThT̄ δ(e,e), δ(e,e)

〉
l2(UoG)

=
〈
ThT̄ δ(e,e), T̄ δ(e,e)

〉
L2(XoG,µ⊗#G)

=

∫
x∈X

∑
g∈G

∑
u∈U

δ(e,e)

(
u, h−1g

)
x (u)

∑
v∈U

δ(e,e) (v, g)x (v)dµ (x)

=

∫
x∈X

∑
u∈U

δ(e,e)

(
u, h−1

)
dµ (x) = 0.

This fixes our choice of von Neumann trace for L∞ (X,µ)oG. We will also write

Â := T̄ AT̄ ∗(5.3.16)

for A ∈ N (U oG) .

5.3.2. Decomposition

Definition 5.3.6. We call an operator A ∈ C[U oG] regional if

(i) there exists a sequence of pairs Cr := (Ψr, Gr), where Ψr : E → {1,−1}
with E ⊂ U finite and {e} ⊂ Gr ⊂ G finite. Which gives a disjoint Borel

partition of X

X = C0 ∪
∞⋃
r=1

⋃
g∈Gr

g.CΨr ∪ C∞,(5.3.17)

where CΨr are cylinder sets as before and µ (C∞) = 0. Furthermore this

partition must induce an Â-invariant decomposition into right Hilbert U o
G-modules

L2 (X oG, µ⊗#G) = H0 ⊕

(
∞⊕
r=1

HCr

)
⊕H∞,(5.3.18)

where H0 = im
(
M1C0

)
, H∞ = im

(
M1C∞

)
and

HCr =
⊕
g∈Gr

TgHΨr , with HΨr = im
(
M1CΨr

)
.

Note that by Corollary 5.3.5

TgHΨr = Hg.Ψr .

(ii) Â|H0 = 0.

(iii) Consider the natural basis (bi) of C|Gr| corresponding to an enumeration

of gi ∈ Gr for i = 1, . . . , |Gr|. There is an unitary isomorphism of right
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Hilbert U oG-modules

HΨr ⊗ C|Gr| ∼= HCr

given by F ⊗ bi 7→ TgiF for F ∈ HΨr , such that this implies an unitary

equivalence of Hilbert U oG-endomorphisms

Â|HCr ' IdHΨr
⊗ACr ,

where ACr ∈ C|Gr|×|Gr| is a finite dimensional matrix. We also write (A,R)

for a regional operator where R := (Cr)∞r=1 is the sequence of finite families.

Lemma 5.3.7. Let K be a field with char (K) 6= 2, then

dimK[UoG]

(
pΨ ·K[U oG]

)
= dimQ[UoG]

(
pΨ ·Q[U oG]

)
= dimC[UoG]

(
pΨ · C[U oG]

)
= dimN (UoG)

(
pΨ · l2 (U oG)

)
= dimL∞(X,µ)oG (HΨ)

= µ (CΨ) .

(5.3.19)

Proof. Let K be a field with char (K) 6= 2. From Lemma 5.3.2 we deduce pΨ =

p2
Ψ ∈ Z[1

2
][U o G] and pΨ · l2 (U oG) ∼= HΨ. Furthermore we denote by pΨ the

image of the canonical homomorphism in K[U oG]. Then we have by Corollary

4.4.2 and Theorem 4.4.5 that

dimK[UoG]

(
pΨ ·K[U oG]

)
= dimQ[UoG]

(
pΨ ·Q[U oG]

)
= dimC[UoG]

(
pΨ · C[U oG]

)
= dimN (UoG)

(
pΨ · l2 (U oG)

)
.

On the other hand by definition of the von Neumann dimension

dimN (UoG)

(
pΨ · l2 (U oG)

)
= dimL∞(X,µ)oG (HΨ)

= trL∞(X,µ)oG

(
M1CΨ

)
= trN (UoG)

(
T̄ ∗M1CΨ

T̄
)

=

∫
x∈X

1CΨ
(x) dµ (x)

= µ (CΨ) .

�
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Lemma 5.3.8. Let K be a field with char (K) 6= 2. Let (A,R) be a regional

operator with A ∈ Z[1
2
][U oG] and its image under the canonical homomorphism

A ∈ K[U oG]. Then we get the following module isomorphisms,

A ·
∑
g∈Gr

pg.Ψr · C[U oG] ∼= pΨr · C[U oG]⊗C imACr ,(5.3.20)

A ·
∑
g∈Gr

pg.Ψr ·K[U oG] ∼= pΨr ·K[U oG]⊗K imACr ,(5.3.21)

where ACr ∈ K|Gr|×|Gr| is the image of ACr ∈ Z[1
2
]|Gr|×|Gr| under the canonical

homomorphism.

Note that the left hand side is a submodule of K[U o G], but the right hand

side is a submodule of K[U oG]|Gr|.

Proof. Let K be a field with char (K) 6= 2. Let (A,R) be a regional operator with

A ∈ Z[1
2
][UoG] and its image under the canonical homomorphism A ∈ K[UoG].

Recall the definition of regional operator and Corollary 5.3.5. Let F ∈ HCr then

F =
∑|Gr|

i=1 TgiFgi with Fgi ∈ HΨr , where gi ∈ Gr is the enumeration corresponding

to the natural basis (bi) of C|Gr|. Now we get

F 7→
|Gr|∑
i=1

Fgi ⊗ bi ∈ HΨr ⊗ C|Gr|,

Â (F ) 7→
|Gr|∑
i=1

Fgi ⊗ ACr (bi)

=

|Gr|∑
i=1

|Gr|∑
j=1

Fgi ⊗
〈
ACr (bi) , bj

〉
C
bj,

and thus

Â (F ) =

|Gr|∑
i=1

|Gr|∑
j=1

〈
ACr (bi) , bj

〉
C
TgjFgi .
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Furthermore assume f := T̄ ∗F ∈
∑

g∈Gr pg.Ψr ·C[UoG], then f =
∑|Gr|

i=1 (e, gi) fgi

for some fgi ∈ pΨr · C[U oG], and fgi = T̄ ∗Fgi . Thus

A · f = A · T̄ ∗F = T̄ ∗Â (F )

= T̄ ∗
|Gr|∑

i=1

|Gr|∑
j=1

〈
ACr (bi) , bj

〉
C
TgjFgi


=

|Gr|∑
i=1

|Gr|∑
j=1

〈
ACr (bi) , bj

〉
C

(
e, gj

)
fgi .

So we get an isomorphism of C[U oG]-modules

A ·
∑
g∈Gr

pg.Ψr · C[U oG] ∼= pΨr · C[U oG]⊗C imACr ,

under the isomorphism

pΨr · C[U oG]⊗ C|Gr| ∼=
∑
g∈Gr

pg.Ψr · C[U oG]

defined by

f ⊗ bi 7→ (e, gi) · f

for f ∈ pΨr · C[U oG].

Now consider the canonical homomorphism C[UoG] ⊃ Z[1
2
][UoG]→ K[Uo

G]. Similarly the natural basis of C|Gr| maps bijectively to the natural basis of

K|Gr|. Let f ∈ pgi.Ψr ·Z[1
2
][UoG] then f = (e, gi)·fi for some fi ∈ pΨr ·Z[1

2
][UoG]

and thus

A · (e, gi) · fi =

|Gr|∑
j=1

〈
ACr (bi) , bj

〉
C

(
e, gj

)
· fi,

A · (e, gi) · fi =

|Gr|∑
j=1

〈
ACr

(
bi

)
, bj

〉
K

(
e, gj

)
· fi.

The statement of the lemma follows. �

Remark 5.3.9. Let K be a field with char (K) = q /∈ {0, 2} and Y < q ∈ N.

Furthermore let A′ ∈ Z[1
2
][
√
Y ][U oG] ⊂ C[U oG] such that (A′,R) is a regional

operator with the same sequence of finite families as (A,R) in the lemma above.

Then (5.3.21) holds for K[
√
Y ] where A ∈ K[

√
Y ][U oG] is the image under the

canonical homomorphism.
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Theorem 5.3.10. Let G and U be as in the previous section. Let K be a field

with char (K) = q /∈ {0, 2} and b < q ∈ N. Let (A,R) be a regional operator with

A ∈ Z[1
2
][UoG] and its image under the canonical homomorphism A ∈ K[UoG].

Recall the subsets CΨr ⊂ Hom (U,T) and the matrices ACr from the definition

of regional operator.

(i) Then

dimC[UoG] ker (A+ b) =
∞∑
r=1

µ (CΨr) dimC ker
(
ACr + b · 1

)
,(5.3.22)

dimK[UoG] ker
(
A+ b

)
=
∞∑
r=1

µ (CΨr) dimK ker
(
ACr + b · 1

)
.(5.3.23)

(ii) Let Y < q ∈ N and let A′ ∈ Z[1
2
][
√
Y ][U oG] ⊂ C[U oG] such that (A′,R)

is a regional operator with the same sequence of finite families. Then

dimC[UoG] ker
(
A′ + b

)
=
∞∑
r=1

µ (CΨr) dimC ker
(
A′Cr + b · 1

)
,(5.3.24)

dimK[
√
Y ][UoG] ker

(
A′ + b

)
=
∞∑
r=1

µ (CΨr) dimK[
√
Y ] ker

(
A′Cr + b · 1

)
.(5.3.25)

Proof. Let K be a field with char (K) = q /∈ {0, 2} and b < q ∈ N. Let (A,R)

be a regional operator with A ∈ Z[1
2
][U o G] and its image under the canonical

homomorphism A ∈ K[U o G]. We only treat dimK[UoG] ker
(
A+ b

)
, the other

cases behave the same way.

By definition we have Â|H0 = 0, thus we may add the identity operator b

times and see that H0 has empty intersection with the kernel of Â+ b. Together

with µ (C∞) = 0, we have that

lim
R→∞

dimK[UoG]

ker
(
A+ b

)
∩

R⋂
r=1


1−

∑
Ψ∈Cr

pΨ

 ·K[U oG]


 = 0.

It remains that with Lemma 5.3.8 we get these isomorphisms of modules

ker
(
A+ b

)
∩

∑
Ψ∈Cr

pΨ ·K[U oG]

 ∼= pΨr ·K[U oG]⊗K ker
(
ACr + b · 1

)

∼=
dimK ker

(
AC+b·1

)⊕
i=1

pΨr ·K[U oG].
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Now continuity from below (4.2.5) implies

dimK[UoG] ker
(
A+ b

)
= lim

R→∞
dimK[UoG]

 R⊕
r=1

ker
(
A+ b

)
∩

∑
Ψ∈Cr

pΨ ·K[U oG]


 .

Thus the theorem follows by Lemma 5.3.7 and additivity (4.2.7). �

5.3.3. Calculations for different fields

Finally, we look at the actual setup from [PSZ15] where

G := Z o Z =

〈
s1, s2

∣∣∣∣ ∀k ∈ Z :
[
sk2s1s

−k
2 , s1

]
= 1

〉
is the wreath product of Z by Z, and U := Z⊕G2

/
VI , for some G-action invariant

subgroup VI / Z⊕G2 depending on a subset I ⊂ N. The operator in question from

[PSZ15] is given by

Â =
∑

s∈{s±1
1 ,s±1

2 }

(
Ts−1MFs +MFs−1Ts−1

)
,(5.3.26)

where
(
Fs : X → Z[1

2
]
)
∈ L∞ (X) and Fs (x) depends only on the evaluation

of x at a fixed finite subset of U . Therefore we can write Fs as a Z[1
2
]-linear

combination of indicator functions for cylinder sets as described in Lemma 5.3.2.

This in turn implies that A ∈ Z[1
2
][U o G] and with R given by Section 4

in [PSZ15] Theorem 5.3.10 applies. Indeed it only remains to check [PSZ15,

Lemma 6.1].

By [PSZ15, Proposition 5.3] the matrices AC + 2 · 1 ∈ Ql+1×l+1 are

parametrized by triples (l, i, j) and take the form

2 α 0 · · ·
α 2 2 0 · · ·

0 2
. . . . . . . . .

... 0
. . . . . .

...
...

. . . . . . 0
...

. . . . . . . . . 2 0

· · · 0 2 2 β

· · · 0 β 2


,

where l ≥ 2 ∈ N and 1 ≤ i ≤ j ≤ 2. Depending on the definition of Fs we have

that α = 2 for i = 1 and α = 2−1 for i = 2, the same holds for j and β. Any
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vector x in the kernel must be mapped to zero by each row, thus if there exists

any such vector we may fix the first coordinate and use the first l rows to get

x0 = 2α,

x1 = α−1 (−2x0) = −22,

x2 = 2−1 (−αx0 − 2x1) = −α2 + 22,

x3 = 2−1 (−2x1 − 2x2) = 22 + α2 − 22 = α2,

x4 = 2−1 (−2x2 − 2x3) = α2 − 22 − α2 = −22,

x5 = 2−1 (−2x3 − 2x4) = −α2 + 22,

...

xl = β−1 (−2xl−2 − 2xl−1)

=


β−1

(
23 + 2α2 − 23

)
= 2α2β−1 if l ≡ 0 (mod 3),

β−1
(
2α2 − 23 − 2α2

)
= −23β−1 if l ≡ 1 (mod 3),

β−1
(
−2α2 + 23

)
if l ≡ 2 (mod 3).

It remains to be checked that the last row maps this vector to zero to show

that the kernel is non-zero. That is

0 = βxl−1 + 2xl

=


β
(
−α2 + 22

)
+ 22α2β−1 = β−1

(
22β2 − α2β2 + 22α2

)
for l ≡ 0 (mod 3),

βα2 − 24β−1 = β−1
(
α2β2 − 24

)
for l ≡ 1 (mod 3),

−22β + 2β−1
(
−2α2 + 23

)
= 22β−1

(
22 − α2 − β2

)
for l ≡ 2 (mod 3).

Now we treat the three cases for i, j explicitly.

(i) For i = j = 1 and therefore α = β = 2 we get

βxl−1 + 2xl =


23 6= 0 for l ≡ 0 (mod 3),

23 (1− 1) = 0 for l ≡ 1 (mod 3),

−23 6= 0 for l ≡ 2 (mod 3).

(ii) For i = 1, j = 2 and therefore α = 2, β = 2−1 we get

βxl−1 + 2xl =


25 6= 0 for l ≡ 0 (mod 3),

2
(
1− 24

)
6= 0 for l ≡ 1 (mod 3),

−2 6= 0 for l ≡ 2 (mod 3).
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(iii) For i = j = 2 and therefore α = β = 2−1 we get

βxl−1 + 2xl =


2−3

(
25 − 1

)
6= 0 for l ≡ 0 (mod 3),

2−3
(
1− 28

)
6= 0 for l ≡ 1 (mod 3),

22
(
23 − 1

)
6= 0 for l ≡ 2 (mod 3).

This confirms the result of [PSZ15, Lemma 6.1] that only in the case of i = j = 1

and l ≡ 1 (mod 3) the kernel is non-trivial and in particular has dimension 1.

Now for a field K with char (K) = q 6= 2 the same calculations (mod q) hold

for A+ 2 · 1 ∈ Kl+1×l+1. Then we can read from the equations above, that for

q -
(
23 − 1

)
,
(
24 − 1

)
,
(
25 − 1

)
,
(
28 − 1

)
the same results hold without adjusting the maps Fs.

In turn this means that we have to find examples for q ∈ {3, 5, 7, 17, 31}
separately and adjust Fs. For that we see in [PSZ15, Proposition 3.5] that the

value 2−1 of Fs corresponding to i, j = 2 has no influence on anything but the

value of α and β in the calculations of [PSZ15, Lemma 6.1] above. Therefore we

may freely change this value without changing the sequence of finite families R.

First we treat q ∈ {17, 31} and change 2−1 to 3. Subsequently the computa-

tions above change in two of the three cases.

(i) For i = 1, j = 2 and therefore α = 2, β = 3 we get

βxl−1 + 2xl =


243−1 6= 0 for l ≡ 0 (mod 3),

3−122
(
32 − 22

)
6= 0 for l ≡ 1 (mod 3),

−223 6= 0 for l ≡ 2 (mod 3).

(ii) For i = j = 2 and therefore α = β = 3 we get

βxl−1 + 2xl =


3
(
−32 + 23

)
6= 0 for l ≡ 0 (mod 3),

3−1
(
34 − 24

)
6= 0 for l ≡ 1 (mod 3),

233−1
(
−32 + 2

)
6= 0 for l ≡ 2 (mod 3).

This takes care of q ∈ {17, 31}, since 81 ≡ 13 6≡ 16 (mod 17) and 81 ≡ 19 6≡ 16

(mod 31).

For the cases of q ∈ {3, 5, 7} we have to allow Fs : X → Z[1
2
][
√
Y ], Y < q ∈ N

and thus arrive in the second case of Theorem 5.3.10.
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In particular, let K = F7 be the field with 7 elements and Y = 6. We change

2−1 to 1 +
√

6.

(i) For i = 1, j = 2 and therefore α = 2, β2 = 1 + 2
√

6 + 6 = 2
√

6 ∈ F7[
√

6] we

have

βxl−1 + 2xl =


24β−1 6= 0 for l ≡ 0 (mod 3),

22β−1
(

2
√

6− 22
)
6= 0 for l ≡ 1 (mod 3),

22β−1
(
−2
√

6
)
6= 0 for l ≡ 2 (mod 3).

(ii) For i = j = 2 and therefore α2 = β2 = 2
√

6 ∈ F7[
√

6] we have

βxl−1 + 2xl =


β−1

(
24
√

6− 22 · 6
)
6= 0 for l ≡ 0 (mod 3),

22β−1
(
6− 22

)
6= 0 for l ≡ 1 (mod 3),

22β−1
(

22 − 2
√

6− 2
√

6
)
6= 0 for l ≡ 2 (mod 3).

Next let K = F5 be the field with 5 elements and Y = 2. We change 2−1 to

1 + 2
√

2.

(i) For i = 1, j = 2 and therefore α = 2, β2 = 4 + 4
√

2 ∈ F5[
√

2] we have

βxl−1 + 2xl =


β−1

(
24
)
6= 0 for l ≡ 0 (mod 3),

β−1
(

3 + 2
√

2− 24
)
6= 0 for l ≡ 1 (mod 3),

−22β−1
(

4 + 4
√

2
)
6= 0 for l ≡ 2 (mod 3).

(ii) For i = j = 2 and therefore α2 = β2 = 4 + 4
√

2 ∈ F5[
√

2] we have

βxl−1 + 2xl =


β−1 (2− 3) 6= 0 for l ≡ 0 (mod 3),

β−1
(

3 + 2
√

2− 24
)
6= 0 for l ≡ 1 (mod 3),

22β−1
(

22 − 3− 3
√

2
)
6= 0 for l ≡ 2 (mod 3).

Finally let K = F3 be the field with 3 elements and Y = 2. We change 2−1 to

1 +
√

2.
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(i) For i = 1, j = 2 and therefore α = 2, β2 = 1 + 2
√

2 + 2 = 2
√

2 ∈ F3[
√

2] we

have

βxl−1 + 2xl =


β−1

(
24
)
6= 0 for l ≡ 0 (mod 3),

β−1
(

23
√

2− 24
)
6= 0 for l ≡ 1 (mod 3),

22β−1
(
−2
√

2
)
6= 0 for l ≡ 2 (mod 3).

(ii) For i = j = 2 and therefore α2 = β2 = 2
√

6 ∈ F3[
√

2] we have

βxl−1 + 2xl =


β−1

(
24
√

2− 23
)
6= 0 for l ≡ 0 (mod 3),

β−1
(
23 − 24

)
6= 0 for l ≡ 1 (mod 3),

22β−1
(

22 − 22
√

2
)
6= 0 for l ≡ 2 (mod 3).

Thus we have rebuild the example from [PSZ15] for all finite characteristics

except 2.

In particular we also get the result of [PSZ15, Theorem 10.1] for

I = {k! | k ∈ N} ,

that is

dimK[UoG] ker
(
A+ 2

)
= β1 + β2

∞∑
k=1

2−6(k!)+k,

where β1, β2 are rational numbers. It is a known result that this number is

transcendental as
∑∞

k=1 2−6(k!)+k is a Liouville number [Lio51].

Remark 5.3.11. Note that it is also possible to rebuild the example for charac-

teristics 2 but requires a change in setup similar to the previous section.
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