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1 Introduction 

The rise of food prices combined with periods of high volatility leads to considerable 

economic private and social costs. Since food expenditures represent a large portion 

of the income for many people in developing countries, they are particularly exposed 

especially those net-food-buyers living in urban areas. Unexpected price surges 

prevent them from acceding to food in appropriate quantity and quality. Moreover, 

price uncertainty delays new investments in agriculture, putting in the mid term 

further pressure not only on food access but also on food availability (Prakash, 2011). 

This situation may in turn lead to social unrest and political instability worldwide as 

evidenced by the so-called ‘Arab Spring’.  

With tranquil agricultural markets following a historical downward trend in prices 

over the past decades, little research had been devoted to understanding and managing 

food volatility. However, after the 2007/2008 food and financial crisis –which was 

coupled with high volatility periods– the issue of food price development was brought 

back to the top of the international political agenda (FAO et al., 2011). In the after 

crisis period many factors were identified as potential contributors to the steep 

upsurge of food prices and volatility. The provision of many staple foods, for 

instance, was affected by a declining trend of investments in agriculture, and by 

decreasing scales of production, which were coupled with more frequent weather 

disruptions. It has been also a change in consumption patterns in emerging countries 

towards protein rich aliments, coupled with a global demographic expansion, raising 

further concerns on food availability. These patterns were identified as structural or 

long-term determinants of price volatility in food markets. Additionally, in the short-

term, factors like the intractability of grain stocks and unexpected ‘poor’ harvests due 

to more frequent weather disruptions exacerbate further agricultural prices. Moreover, 

increased connectedness to intrinsic volatile markets like oil, discretionary biofuel 

policies and the so-called financialisation added complexity and uncertainties to 

agricultural and food markets.  
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There are special concerns in the international community, however, around the 

increasing participation of investment funds in agricultural markets and the tightening 

relation between oil and agricultural markets due to biofuel policies. While many 

studies conclude that the alleged financial speculation in commodity futures does not 

have a significant impact on spot price levels or volatility (for a summary review see 

Will et al. (2012), there is increasing evidence on the role of biofuels as volatility 

drivers in agricultural markets. The biofuel industry emerged as a consequence of 

technological progresses, which allowed processing agricultural products into 

secondary energy carriers, namely ethanol and biodiesel, substitutes for gasoline and 

diesel, respectively. Though, the rapid growth of the market was driven mainly by 

political decisions aiming at reducing greenhouse gas emissions, promoting energy 

diversification and fostering rural development. The discretionality and 

unpredictability of these policies, however, added further complexity and 

uncertainties to agricultural markets (see De Gorter et al., 2015). Mitchell (2008), for 

instance, estimates that the production of biofuels in the US and Europe explain 

between 70% and 75% of the rise of food prices owing to the depletion of wheat and 

corn stockholdings, land use changes, increased speculative activity and export 

restrictions. Baffes and Haniotis (2010) find also evidence of the contribution of 

biofuels to the escalation of food prices, though their predictions are more 

conservative. Wright (2011, 2014) argues that the imposition of permanent and 

ambitious biofuel mandates, coupled with support policies, diverts substantial 

amounts of grains exacerbating further agricultural prices. The International Energy 

Agency forecasts in US$ 1.4 trillion the aggregated costs of biofuels (including 

subsidies and mandates globally), between 2011 and 2035 (Gerasimchuk et al., 2012). 

This disproportionate support provoked that an average of 20% of sugar cane 

production, 9% of oilseeds and cereals, and 7% of sugar beet were diverted to biofuels 

between 2007 and 2009 (OECD and FAO, 2010). While stockholdings serve as price 

buffers for agricultural commodities, due to the permanent character of the biofuel 

mandates and the low responsiveness of agricultural supply, stock levels have been 

steadily declining. At low levels, the smoothing role of stocks renders ineffective 

against market shocks, resulting in longer periods of high volatility (Bobenrieth et al., 

2013).  
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The broad purpose of this research is therefore to provide new insights to the fuel 

versus food debate, including the effects of the financial and food crisis of 2007/2008. 

While research in price linkages between these markets is prolific, literature on 

volatility spillovers is recent and scant. We aim particularly at improving the 

understanding of the functioning and development of second order moment dynamics 

between agricultural markets and oil. The main body of this study comprises the 

following sections: 

Section 2. We start this section addressing methodological issues concerning the 

estimation of volatility. We draw attention to important considerations like market 

definition, data frequency, time horizon, and modelling approach before empirically 

measuring price volatility. This in turn would certainly facilitate an accurate 

interpretation of the results. We continue with a comprehensive, though not 

exhaustive, review of recent literature concerning different aspects of volatility. 

Particularly, we focus on identifying key drivers of volatility in agricultural and food 

markets. We conclude this section commenting which drivers the scientific 

community agree on and where still remain some controversy. 

Section 3. In this section we begin the volatility spillover assessment between oil and 

agricultural markets, implying that biofuels play a role in this relation. Based on the 

approach of Diebold and Yilmaz (2009) we derive spillover indices from forecast 

error variance decompositions using systems of realised-monthly volatilities of 

ethanol and biodiesel feedstocks, respectively. The spillover index measures the share 

of the variance-covariance matrix due to shocks spilling across markets (off diagonal 

elements), leaving out the effects of own markets innovations (diagonal elements). It 

is therefore indicative of the level of connection among a group of markets. We run 

the analysis dynamically applying successive rolling windows of 60 months. As 

suggested in the literature and to control for external effects, we add US Dollar 

exchange rate volatility as an exogenous variable. In order to identify 

contemporaneous shocks among oil and biofuel feedstocks we use a Cholesky 

factorisation with empirically predetermined orderings. Results demonstrate a steep 

increase of volatility spillovers in both systems, particularly between 2011 and 2013. 

In general, however, cereals and sugar markets behave more stable than vegetable oils 

during the considered period.  
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Section 4. This section presents a refinement of the methodology proposed in the 

previous section which allows us to derive more informative and new volatility 

spillover measures as proposed by Diebold and Yilmaz (2012, 2014). While the 

Cholesky decomposition provides results sensible to the pre-imposed causality orders, 

the methodology presented in this section is not only invariant to orderings but also 

provides a tool to monitor volatility spillover levels on a daily basis. It is built upon a 

Vector Autoregressive Moving Average (VARMA) representation of a (half-vec) 

BEKK model which delivers daily spillovers estimates conditional on time-t 

observations (Fengler and Herwartz, 2015). Results confirm (slightly) more spillover 

dynamics for vegetable oils compared to cereals and sugar. However, when 

considering a mix of ethanol and biodiesel feedstocks, the high-risk transmission 

between corn and soybean markets renders this system the most volatile in terms of 

spillovers. Evidence suggests also that, in general, the interdependences between oil 

and agricultural markets strengthened substantially after the financial and food crisis 

of 2007/2008. 

We end this study in section 5 with a discussion on the applied methodologies, their 

differences, advantages and weaknesses, as well as on the results and their relevance 

for policy advice. 
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2 Volatility in the after crisis period – A 

literature review of recent empirical research  

This section corresponds to the Working Paper No.1 prepared by the research team of 
the University of Göttingen for the EC-funded ULYSSES Project 1. Prof. Dr. Olaf Korn 
and Kristina Schlüssler from the Faculty of Economics, Chair of Finance, were in charge 
of Section 2.2. Prof. Dr. Bernhard Brümmer, Dr. Tinoush Jamali and I, from the Faculty 
of Agricultural Sciences, Chair of Agricultural Market Analyses, were responsible for 
the remaining part of the paper. My main contribution to this study corresponds to 
Section 2.3, which I prepared jointly with my colleague and friend Dr. Jamali. 

2.1 Introduction  

Over recent years, price volatility on agricultural and food markets has become a 

major concern of policymakers worldwide. This increased attention was triggered by 

the food price crisis of 2007/2008, when prices for major agricultural products were 

increasing at an accelerating pace, before quickly coming down again in the last year 

of the crisis. Price changes over this period were often viewed as excessive, raising 

the question of which drivers were responsible for these patterns. 

Scientists and market commentators have responded to these concerns over recent 

years, resulting in a rich body of literature. However, most of the literature is focused 

on price levels rather than price volatility. There is a need for a clear distinction 

between these two aspects. Most internationally traded agricultural commodities are 

storable; this makes high price volatility more likely when prices are high (and stocks 

                                                 
1 Brümmer, B., Korn, O., Schlüssler, K., Jaghdani, T.J. and Saucedo, A., 2013. Volatility in the after 
crisis period – A literature review of recent empirical research, Working Paper 1, ULYSSES project, 
EU 7th Framework Programme, Project 312182 KBBE.2012.1.4-05, http://www.fp7-ulysses.eu/ , 46 
pp. 
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are low). Nevertheless, a qualified discussion of the drivers of price volatility requires 

careful distinction between drivers of price levels and drivers of price volatility.  

Volatility relates to unexpected price changes. Hence, it is important to specify an 

explicit model for the expected price in order to be able to distinguish between 

expected price changes and unexpected price changes. In addition, there are a number 

of conceptual choices which have to be made in order to empirically assess price 

volatility, e.g., market definition, data frequency, time horizon, and methodological 

approach. The specific choices have repercussion on the interpretation of the 

generated price volatility measure. Therefore, we start section 2.2 of our review by 

exploring the consequences of the various possibilities with regard to these choices. 

Section 2.3 continues with an extensive review of the relevant literature on drivers of 

agricultural price volatility (broadly defined). The studies are categorised according to 

both methodological and topical criteria so that the most relevant strands of thought in 

the literature become clear. Next, Section 2.4 contains discussions concerning current 

perceptions on the relative importance of the potential drivers of agricultural price 

volatility. We elicit the consensus on major drivers from the literature where possible, 

and highlight the areas where the literature provides no clear guidance on whether or 

not a certain driver is relevant for price volatility on agricultural and food markets. 

Section 2.5 concludes with a focus on the research gaps in the literature. 

2.2 Volatility concepts and measurement 

This review article mainly focuses on the literature that contributes to the 

understanding of volatility drivers. Any attempt, however, to identify factors that 

govern volatility in agricultural commodity markets depends on the applied volatility 

concept. In particular, any empirical analysis of volatility and its drivers requires a 

definition of volatility that is specific enough to make the empirical volatility 

measurement operational. Therefore, this section sets some groundwork by dealing 

with the concept of volatility itself, i.e., the quantity to be explained, and not with its 

driving factors, i.e., the variables that explain volatility. 

Almost all papers reviewed in this report base their analysis of volatility on the 

following definition: Volatility is the standard deviation of relative price changes 
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(logarithmic-returns).2 This simple definition has several important implications. (i) 

Since the standard deviation is the square root of the expected squared deviation 

between the actual (relative) price change and the expected price change, such a 

volatility concept clearly distinguishes between expected price changes and 

unexpected price changes. In the words of Andersen et al. (2010), p. 69, volatility is 

stated to be “…the component of a given price increment that represents a return 

innovation as opposed to an expected price movement”. (ii) Since volatility expresses 

the magnitude of deviations from the expected price movement, any attempt to 

measure volatility empirically requires modelling of the price process, for instance, by 

modelling trends, seasonality, or cyclical components. Such trend models are often 

not discussed explicitly in the literature on volatility, but they are always present. For 

example, the popular assumptions of zero expected returns, or expected returns that 

are constant over time, imply the absence of any trend or a simple linear trend, 

respectively. These simple trend models may be perfectly appropriate for short time 

intervals like a minute or a day. However, for longer time intervals it is important to 

deal with both long-term trends and cycles as well as with seasonalities according to 

harvest cycles. If these were ignored, the corresponding expected price changes would 

be mistaken for volatility. (iii) Since volatility addresses potential price changes, it 

inevitably refers to a period (over which a price change can happen) and not only to a 

single point in time. (iv) According to the previous definition, volatility is not a 

directly observable quantity like a price, and has to be estimated. Although the 

literature largely agrees on this definition of volatility, its concrete measurement or 

estimation still involves many choices. Because different choices could lead to 

different volatility estimates, which in turn could lead to different conclusions about 

volatility drivers and policy implications, we briefly discuss these options. 

2.2.1 Time Horizon 

Volatility always refers to a time period. The end of this period defines the time 

horizon. The selection of an appropriate horizon is a major decision one has to make 

for the analysis of volatility; this decision clearly depends on the goal of the analysis. 

For example, for an understanding of the effects of volatility on producers and 

                                                 
2 The only alternative concept that is used in some papers is the coefficient of variation, however, this 
measure contains the standard deviation in the numerator. 
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consumers, a time horizon of at least one month seems appropriate, but it could also 

be much longer. It is important to note that the time horizon does not necessarily 

coincide with the frequency of the data, which is used to estimate volatility. On the 

contrary, some estimation methods require that data is available at a higher frequency 

than the time horizon under consideration. However, several studies were reviewed 

that do not explicitly discuss the time horizon they are focusing on. Moreover, the 

time horizon should not be confused with the data period that defines the total period 

of historical data that is available for volatility estimation. 

2.2.2 Considered Markets 

Another central issue is the choice of markets to be considered in a study. The goal of 

the analysis should in principle determine which commodities and which regions are 

investigated. In practice, however, it can be a difficult task. Even if one is interested 

in a single commodity and a specific region, connections between markets and spill 

over effects might require an analysis of several markets to obtain a clear 

understanding of the factors that drive the volatility of the commodity of interest. 

Another important aspect concerning the choice of markets is the use of spot data 

versus futures data. Even if one is interested in the spot price volatility, futures 

markets are frequently used because of data availability and quality. It is important to 

note, however, that volatilities obtained from futures data can be quite different from 

the corresponding spot price volatilities. For example, Schwartz (1997) provides a 

theoretical and empirical analysis of this issue. He shows that spot volatilities tend to 

be higher than futures volatilities, an observation that can be explained by the 

dependence between spot prices and convenience yields. 

2.2.3 Ex-post measurement versus ex-ante prediction  

It is important to clearly distinguish between ex-post volatility and ex-ante volatility. 

In general, the ex-post measurement of volatility can use all available information, 

including the price changes that occurred in the period of interest (see above the 

discussion on the time horizon), and even price changes that occurred later. In 

contrast, a measurement of ex-ante volatility is based entirely on information up to the 

beginning of the time period. This distinction has several implications: (i) The 

preferred approach depends on the objectives of the volatility assessment. Ex-post 

volatility is most useful in an analysis that aims to explain what has driven volatility 
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in the past, whereas ex-ante volatility helps us to understand expectations about future 

volatility. Both perspectives are economically relevant. In terms of policy 

implications, the ex-post analysis can be used to guide longer-term reforms, whereas 

ex-ante measures could provide an early warning system that may indicate the need 

for immediate action. (ii) Ex-post volatility can be interpreted as an in-sample 

volatility, whereas ex-ante volatility can be seen as a forward-looking out-of-sample 

volatility. Ex-ante approaches hence require that the estimated volatility model 

continue to be valid for the time horizon outside the observation sample. (iii) 

Different estimation methods are available for ex-post and ex-ante volatility. In 

particular, implied volatilities based on the expectations of options markets 

participants can be used as measures of ex-ante volatility. 

2.2.4 Estimation method 

Given all the choices mentioned above, the concrete selection of the estimation 

method still allows us to make a great number of decisions. This could have a large 

impact on the resulting volatility estimate. The most common approach is the use of a 

parametric volatility model coupled with historical data. Models of the Generalised 

Autoregressive Conditional Heteroskedasticity (GARCH) class 3 and stochastic 

volatility models 4 are two important approaches. A GARCH model explains 

(squared) volatility by past return innovations and past (squared) volatilities (plus 

potentially some exogenous explanatory variables (GARCH-X)). A stochastic 

volatility model treats volatility as a random variable and describes it using a 

stochastic process. GARCH models are commonly used for the analysis of volatility 

in agricultural commodity markets, too. Model specification in this context involves 

several choices: (i) To obtain the return innovations, one has to specify a model for 

the expected price changes (see discussion above). In the discussion to follow, we 

concentrate on the volatility part of the model. (ii) Some general specification issues 

involve questions on whether to use a univariate GARCH model for every individual 

market or to treat several markets simultaneously via a multivariate (vector) GARCH 

model. Additional considerations are the integration property of the volatility 

                                                 
3 The approach dates back to the seminal work by Engle (1982) and Bollerslev (1986). 
4 An early example of a model that treats volatility itself as stochastic is Clark (1973). A very popular 
stochastic volatility model is the one by Heston (1993). For a review paper that covers both GARCH 
models and stochastic volatility models see Andersen et al. (2010).   
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(stationary, integrated, or fractionally integrated GARCH models) and the question of 

whether the volatility response to past return innovations is asymmetric (GJR-

GARCH) 5 or depends on certain thresholds (T-GARCH). For storable agricultural 

commodities, the fact that demand for storage tends to become more elastic at low 

price levels suggests that asymmetry or threshold effects are likely present. (iii) One 

has to select the order of the GARCH model, i.e. the number of lagged return 

innovations and lagged volatilities to be included. (iv) Finally, the data frequency and 

the historical period are additional important aspects. One disadvantage though, is that 

GARCH models assume that the structure of the model remains constant over the 

whole sample period, including any possible forecast horizon.      

An alternative to parametric volatility models is a nonparametric approach often 

called “realised volatility”. 6 The basic idea is that the volatility of a certain time 

period can only be estimated with data from this period, which is available on a higher 

frequency. For example, the volatility referring to a certain month is estimated from 

the daily price changes within this month. The major advantage of this approach is 

that it does not require the assumption of a fixed model structure over quite a long 

period of time (the data period used for GARCH models usually spans several years). 

One disadvantage of the approach is its need for price data measured at relatively high 

frequencies, which might not be available. Moreover, we are presented with the issue 

of how volatility scales over different frequencies. For example, if daily data is used 

to estimate the volatility for a time horizon of one month, we have to convert the daily 

volatility into a monthly one. Simple scaling rules for the volatility, like the square 

root of time rule, might not work very well because of dependencies in the daily price 

changes.7 

Parametric and nonparametric methods based on historical price data can in principle 

be used both for the ex-post measurement of volatility and for ex-ante predictions. 

Prediction is rather straightforward with the parametric models. Given the parameter 

estimates, volatility forecasts for different time horizons are often easily obtained 

from the model, e.g., for the standard GARCH model. The nonparametric approach 

                                                 
5 GJR stands for Glosten-Jagannathan-Runkle. 
6 This approach was first introduced and applied by French et al. (1987), Schwert (1989, 1990a, 
1990b), and Schwert and Seguin (1990). It was later formalised by Andersen and Bollerslev (1998). 
7 See Lo and MacKinlay (1988) for an analysis of the scaling of volatility in the stock market. 
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delivers a time series of “realised volatilities” that can build the basis for out-of-

sample predictions of volatilities. The specification of the concrete prediction model, 

however, is an additional task that again entails many choices to be made by the 

researcher. A completely different approach to ex-ante volatility prediction is the use 

of options data to reveal volatility expectations of market participants. This leads to 

the concept of implied volatility. This concept relies on the idea that volatility is an 

input variable in standard option pricing models. Given observed market prices for 

options, the corresponding pricing formula can be inverted to obtain a volatility 

estimate that is in line with observed market prices. A drawback of this approach is its 

reliance on a particular option-pricing model. For example, a standard approach uses 

the model of Black (1976) for options on futures or a corresponding discrete-time 

approximation. Alternatively, model-free approaches to estimate implied volatilities 

have been developed by Britten-Jones and Neuberger (2000) and Bakshi et al. (2003). 

These are computationally more complex but do not require the assumption of any 

specific pricing model. The major advantage of the implied approach to volatility 

estimation, in general, is that it does not require any historical data, which in turn may 

no longer be representative of the future. It relies instead only on current option 

prices. It can therefore exploit the most recent information available to market 

participants in derivatives markets, often leading to better predictions than alternative 

methods based on historical price data.8 

 

 

 

 

 

 

 

 

                                                 
8 See Poon and Granger (2003, 2005) and Christoffersen et al. (2012) for survey articles that document 
the excellent predictive performance of implied methods for many different markets. This result still 
holds despite the fact that implied estimates can be biased due to risk premia. 
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Figure 1. Differences among commonly used volatility measures 

 
Source: Own elaboration. 

Note: All graphs show the annualised standard deviations of logarithmic price changes of wheat 
(annualised volatility). The futures used for the estimation are the ones traded at CME (soft red 
winter), as well as their corresponding spot prices (WHEATSF from Data Stream). The time series of 
futures prices are constructed by using the futures contract with the shortest time to maturity and 
rolling it over to the second shortest contract, when there are less than five trading days for the 
shortest contract. The realised volatilities for the futures and spot markets refer to a period starting 
on the 20th calendar day or the next trading day (if there is no trading on the 20th) of each month 
using the following 20 daily (logarithmic) price changes. The full data period is March 1982 to April 
2012. For the ex-post and ex-ante GARCH estimation, a GARCH (1,1)-model is selected and estimated 
with monthly spot market returns. The data period for the ex-post GARCH estimation is also March 
1982 to April 2012. The first GARCH-based ex-ante prediction is made in January 1987 for the next 
month’s volatility, using monthly returns from April 1982 to January 1987 for the estimation of model 
parameters. The following predictions use a successively extended estimation window up to March 
2012. Implied volatilities are calculated based on a discrete version of Black’s (1976) option pricing 
model that can handle American-style options. For the calculation, at-the-money options on wheat 
futures traded at CME between January 1987 and March 2012 are used, with times to maturity 
between 29 and 32 calendar days. 
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As a brief illustration of some of the approaches presented previously, consider the 

examples given in Figure 1 for the wheat market. We choose a common time horizon 

of one month and present three different ex-post measures of wheat price volatility 

and two different approaches to ex-ante volatility prediction. The total sample period 

for the ex-post measures is March 1982 to April 2012. The ex-ante approaches deliver 

predictions for every month between February 1987 and April 2012. All numbers 

refer to annualised values.  

Table 1. Descriptive statistics of the volatility measures shown in Figure 1  

 
Source: Own elaboration. 

Note: The summary statistics of the volatility measures are calculated from 362 observations for the 
ex-post measures (Realised Futures, Realised Spot and GARCH (ex post)) and 303 observations for the 
ex-ante predictions (GARCH (ex ante) and Implied). 

We make an initial distinction between futures and spot markets. As the upper two 

graphs of Figure 1 and the first two columns of Table 1 show, realised volatilities 

(using daily data) obtained from futures and spot markets are rather different. Our 

example confirms previous results from the literature (e.g., Schwartz, 1997), that 

futures returns show lower volatility than spot returns. Although we use the futures 

with the shortest maturity available, the difference is substantial. On average, the spot 

volatility (29.75%) is about five percentage points higher than futures volatility 

(24.92%). Moreover, spot volatilities are less stable over time. There is also a 

distinction between the non-parametric realised volatility and the volatility resulting 

from a parametric GARCH (1,1) model (Figure 1, second and fourth graphs). 

Although both approaches use spot data and deliver similar average volatility levels 

(29.75% and 29.65%, respectively), they develop differently over time. The GARCH 

model presents a much more stable evolution of volatility. Its standard deviation 

(5.1%) is much lower compared to the realised volatility (15.49%). A third aspect to 

note is that ex-post and ex-ante volatilities can be rather different, even if they are 

based on the same model (GARCH (1,1)). In particular, the series of ex-ante 

volatilities shown in Figure 1 are smoother than the corresponding series of ex-post 

volatilities over the period 1987-2006. Finally, a comparison between GARCH and 
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implied volatility predictions reveals that the option-based values fluctuate more over 

time. 

The discussion of this section and the examples presented for the wheat market, 

although not exhaustive, reveal the wide range of issues a researcher has to confront. 

Any empirical study should therefore explicitly recognise the diversity of approaches 

and transparently document their outcomes. This would certainly facilitate the 

understanding and correct interpretation of the results.  

2.3 Literature review on food price volatility 

2.3.1 Introduction 

In this section we present a comprehensive review on agricultural and food price 

volatility research conducted over the last decade. We focus not only on peer-

reviewed articles but also include a selected number of working papers, policy briefs, 

and discussion papers (‘grey literature’) from recognised international organisations 

and research institutes. We separate the studies according to their contribution to the 

theory underlying volatility estimation; volatility drivers; volatility spillover effects; 

and medium to long term changes in volatility pattern. 

2.3.2 Studies on price volatility 

Food price volatility is a major focus of research and policy advising for many 

international organisations or research institutes such as the FAO, IFPRI, NBER, 

IMF, World Bank, etc. The issue of food price development was brought back to the 

top of the international political agenda after the food price crisis of 2007/2008. For 

instance, the book edited by Prakash (2011) presents a comprehensive overview of 

food price volatility, its drivers, consequences, and case studies. This book partially 

reflects FAO´s view on food price volatility. Other international organisations like 

IFPRI conducted empirical research on food price volatility (e.g. Pietola et al., 2010) 

and released policy briefings (e.g. Robles et al., 2009). There are also publications 

which represent the shared vision of different development organisations (e.g. FAO et 

al., 2011). Similar policy papers can be found by other organisations. The main focus 

of these types of policy briefings is to present the drivers of food price volatility or to 

give policy recommendations to deal with this problem. The aim of this section is to 

review the established body of literature on food price volatility with a 
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methodological and analytical background. The precedent discussion on volatility 

concepts illustrates that identifying food price volatility drivers requires a clear 

methodological and analytical framework. It highlights the central role of conceptual 

choices for the findings and implications of any empirical study on this topic.   

In general, food price volatility literature can be categorised into studies looking at:  

 Volatility levels 

 Theoretical aspects of price volatility analysis 

 Empirical analysis of price volatility drivers 

 Volatility spillover effects 

 Interaction between spot and futures price volatility 

 Price formation in futures markets 

In the following section we will present detailed information on empirical studies in 

each of the above-mentioned categories.  

2.3.2.1 Volatility levels 
The after crisis period has shown, in general, high price volatility for many 

agricultural commodities. However, when compared to the 1970s, it seems that recent 

volatility spikes remain below their historical levels for most commodities. Gilbert 

and Morgan (2010) conclude that the volatility for agricultural products was lower 

over the past two decades than it was in the 1970s and 1980s, with the exception of 

rice. Despite the fact that there has been no growing tendency for food volatility over 

recent years, volatility of the major grains and some oil seeds (groundnut oil, soybean 

and soybean oil) have increased steeply. Gilbert and Prakash in Prakash (2011) argue 

that periods of extreme volatility in agricultural markets are seldom. They distinguish 

the episode of 1973-1974 as a ‘crisis’ with extreme high price levels and volatility in 

commodity markets, whereas the recent period of 2006-2007 – despite showing 

relatively high price levels and volatility – is not comparable in size and effects (ca. 

five million malnutrition related deaths). Huchet-Bourdon (2011) finds from the 

analysis of ten products (1957-2010) that agricultural price volatility is on average 

lower for beef and sugar. She also concludes that volatility is higher over the last 

decade than in the 1990s, but not higher than the 1970s. Moreover, she confirms that 

recent volatility episodes are only higher than the 1970s for cereals. Ocran and Biekpe 

(2007) determine whether long-run price volatility and trends have changed over the 

past four decades for 18 food and non-food commodities in Sub-Saharan countries. 
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Their findings reveal that the volatility does not show any significant change over the 

period considered for aluminium, beef, cocoa, groundnut oil, crude oil, palm oil, 

rubber, timber, and tobacco. For gold, sisal, shrimps, groundnuts, and sugar the 

volatility decreases while for copper, coffee, cotton, and tea it increases. Crude oil 

price exhibits the highest volatility persistence followed by sugar, aluminium, and 

coffee. 

2.3.2.2 Theoretical aspects of price volatility analysis 
There are few works comparing models and studies in the area of price volatility. For 

instance, Poon and Granger (2003, 2005) review different understandings of price 

volatility, check empirical volatility models, and run some empirical trials in the area 

of finance. Analogously, Gouel (2012) does a review of the major theoretical studies 

on price volatility, but oriented to agricultural markets instead.  

The papers presented in this section use empirical statistical methods to shed some 

light on various theoretical aspects of volatility estimation in agricultural markets.  

Lence and Hayes (2002) consider a ‘Rational Expectations Storage model’ to uncover 

the potential effects of the FAIR Act on the US corn and soybean markets. Results 

suggest that the price volatility was driven mainly by an unusual sequence of events 

during the 1995 crop year. Symeonidis et al. (2012) analyse the relation between 

stock levels and the shape of the forward curve. They use daily futures of grains and 

livestock for the US market. As predicted by the theory of storage they demonstrate 

that low (high) inventory is related to curves in backwardation (contango) and price 

volatility is a decreasing function of stock levels for most of the commodities 

considered.  

Black and Tonks (2000) use a multi-period futures model to test whether price 

volatility increases or decreases as the maturity date of the futures contract approaches 

(also known as the Samuelson effect (Samuelson, 1965)). They find that if output 

uncertainty is resolved before the maturity of the contract, and if the re-trade market 9 

is informationally efficient, the Samuelson hypothesis does not hold. Smith (2005) 

develops a Partially Overlapping Time Series (POTS) framework to jointly model 

volatility dynamics of traded futures contracts with different delivery dates. This 

                                                 
9 The market that appears after some new information arrives between the beginning and the maturity of the 
contract. 
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model incorporates time-to-delivery, storability, seasonality, and GARCH effects. 

Using US corn futures, the author shows the dynamic structure of the data and reveals 

substantial inefficiency in the contract delivery. His results also provide evidence in 

favour of both the theory of storage and the relevance of the Samuelson effect. Karali 

et al. (2011), using weekly data on soybean, corn, and wheat in the US futures market, 

apply a Stochastic Volatility (SV) and Bayesian Seemingly Unrelated Regression 

(SUR) method. They aim to prove whether modelling volatility as a stochastic instead 

of a deterministic variable leads to improved inference about its relationship with 

seasonality, storage, and time to delivery. Results show that volatility decreases the 

closer it gets to the time of delivery for soybeans and wheat; however, it increases for 

corn. This study provides limited support for the theory of storage and for 

Samuelson's maturity hypothesis. 

Yang et al. (2001) investigate the effects of the US FAIR act of 1996 on agricultural 

price volatility. They use GARCH models for corn, oat, soybeans, wheat, and cotton 

daily futures. Their findings show that agricultural liberalisation policy provoked an 

increase in price volatility for the three major commodities (corn, soybean and wheat), 

a little change for oats, and a decrease for cotton. Fong and See (2001) examine the 

relevance of considering volatility regime switches. Using daily settlement spot and 

futures prices, they find that the simple GARCH is not adequate to treat volatility in 

the presence of regime shifts since the shift dominates the GARCH effects. Jin and 

Kim (2012), contribute to the discussion about regime switches. They use real prices 

for rice, red pepper, onion, and sesame in South Korea, to test different regime 

switching techniques. They suggest a new type of measure using a model which 

incorporates multiple structural changes in the unconditional mean to overcome the 

problem of amplified variance. They prove that this method performs better when the 

regime switches are given a form of parallel mean shift. However if the series are 

more dominated by trends than by mean shifts, this method is not suitable.  

Ramírez and Fadiga (2003) use soybean, sorghum, and wheat deflated farm gate 

prices, in order to evaluate an Asymmetric Error GARCH model. They find that this 

type of model is a viable alternative for forecasting time-series when the conditional 

probability distribution of the dependent variable is asymmetric. With leptokurtic but 

not skewed errors, they suggest using either the Threshold GARCH or the 

Asymmetric GARCH models. If there is positive kurtosis and positive or negative 
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skewness, then the Exponential Generalised Beta 2-GARCH or the Asymmetric 

GARCH are appropriate choices. Complementarily, Onour and Sergi (2011) compare 

the performance of models to capture volatility in food commodities when 

considering a normal instead of a t-distribution. They use monthly prices for wheat, 

rice, sugar, beef, coffee, and groundnut and conclude that the t-distribution performs 

better. This implies that the normality assumption of the residuals may lead to 

unreliable volatility results. 

Jin and Frechette (2004) investigate the long memory phenomenon in agricultural 

futures markets; they find that a Fractionally Integrated GARCH approach can be a 

better way to model long dependence in volatility by allowing for fractional 

integration in the variance equation. Elder and Jin (2007) argue that wavelet 

methodology can explain long memory processes in agricultural futures better than 

the Fractionally Integrated GARCH model. Sephton (2009), using the same dataset as 

Jin and Frechette (2004), tests a fractional integration model but incorporating 

additionally leverage effect. He finds that the Fractionally Integrated Asymmetric 

Power ARCH (FIAPARCH) model explains the long dependence in futures prices for 

some of the crops better than Fractionally Integrated GARCHs. The reason is that 

some agricultural futures display asymmetric leverage effects. Power and Turvey 

(2010) assess the presence of the long-memory in the volatility of energy and 

agricultural commodities. They use an improved Hurst coefficient estimator in a 

wavelet-based rescaled range (R/S) analysis. Using daily futures for coffee, cotton, 

sugar, cocoa, orange juice, wheat, live cattle, lean hogs, corn, and soybeans, they find 

evidence of long memory and a non-constant Hurst parameter in most of the 

considered commodities.  

Egelkraut and García (2006) investigate the predictive accuracy of implied forward 

volatility for agricultural commodities with different seasonalities. They use daily 

futures prices for corn, soybeans, soybean meal, wheat, and hogs and their results 

indicate that the implied forward volatility has better predictive power for 

commodities whose uncertainty resolution is concentrated in space and time. 

Similarly, Giot (2003) evaluates the information content of the implied volatility for 

options on futures contracts of cacao, coffee, and sugar. He shows that lagged squared 

returns slightly improve the information content provided by the lagged implied 

volatility in a GARCH framework. Moreover, Value at Risk (VaR) models that rely 
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on past-implied volatilities perform as well as those with ARCH-type modelled 

conditional variances. The author concludes that implied volatility has high 

informative content for the studied commodities.  

Westerhoff and Reitz (2005) and Reitz and Westerhoff (2007) develop a simple 

commodity market model which explains the cyclical nature of commodity prices by 

considering the behaviour of two types of heterogeneous agents, the fundamentalists 

and the technical traders. They use monthly data for agricultural and non-agricultural 

commodities in a Smooth Transition Autoregressive GARCH model. Evidence shows 

that technical traders progressively enter the market as price deviates from its long run 

equilibrium. This trend-following pattern initially enforces market’s mispricing. At 

the same time fundamentalists become more active, forcing the price back to its 

fundamental value and leading to cyclical motions. Voituriez (2001) uses the ‘Trader 

Behaviour model’ for the palm oil market to test the hypothesis that the overlapping 

of operators’ expectations (short versus long term expectation horizon) is triggering 

volatility changes. Using monthly prices he finds that volatility might increase as long 

as operators with a short-term expectations horizon superimpose on the long-term 

expectations traders, precluding the argument that larger markets reduce volatility.  

Taylor (2004) compares the performance of the Periodic GARCH with alternative 

Periodic Conditional Volatility (PCV) models using 5-minute data of cocoa futures. 

When considering high-frequency commodity futures returns, the periodicity in 

conditional return volatility is a key issue. He argues that neglecting periodicities in 

high frequency data could lead to poor volatility forecasts. Moreover, the author 

concludes that return volatility forecasts, obtained by the Spline Periodic GARCH 

model, are shown to be less accurate than those generated by PCV models, but if used 

in a Value at Risk framework, the Spline model produces accurate and consistent 

measures.   

2.3.2.3 Empirical analysis of price volatility drivers 
There are some empirical works which do not explicitly present quantitative 

estimates: They are descriptive in nature. Gilbert and Morgan (2010) are an 

appropriate example; they recognise that the volatility during the recent crisis period 

is not as high as in the 1970s, nevertheless they argue that factors like global 

warming, oil price volatility transmitted via biofuels, and the relative large 

investments in index funds might permanently increase agricultural volatility, 
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especially in grain markets. Anderson and Nelgen (2012), using annual prices for rice, 

wheat, corn, soybean, sugar, cotton, coconut, coffee, beef, pork, and poultry, assess 

the trade responses of 75 countries to provide empirical evidence on how 

governments, both in developing and developed countries, reacted during the past 

price spikes. They conclude that responses of agricultural importing and exporting 

countries are offsetting, and therefore the domestic price-stabilising effect of their 

interventions was ineffective. Nissanke (2012) argues that the financialisation of 

commodity markets served as a transmission channel for the financial crisis from 

developed to developing countries. He proposes more regulation and transparency in 

futures markets, minimal stockholding of essential commodities, and innovative 

market oriented stabilisation mechanisms like virtual reserve holdings or multi-tier 

transaction taxes. Jennifer Clapp (2009) considers agricultural commodities on 

different periods. She argues that the falling value of the US dollar, increasing 

speculation activities in commodity futures markets, and trade measures have an 

important influence on food price volatility. Wright (2011) identifies the low grain 

stocks due to biofuel mandates as a major cause of food volatility. He concludes that 

accumulated shocks such as the long drought in Australia and oil price spikes would 

have caused panic leading to a cascade of export bans and taxes. Chandrasekhar 

(2012) finds that for the case of India the 2008/2010 food crises were driven mainly 

by food inflation and to a lesser extent by an increase in volatility.  

A smaller set of studies uses mathematical models to explain food price volatility. For 

instance, Babcock (2012) uses a stochastic partial equilibrium model to analyse the 

price volatility in US soybean, corn, and wheat markets in order to assess the impact 

of domestic biofuel policies on agricultural price levels and volatility. He finds that 

US ethanol policy barely increased corn prices from 2006-2009, but under tighter 

market conditions like those in 2010-2011 the impacts on prices were larger. 

Moreover, US biofuel policy increases price volatility especially on the upside when 

demand for feedstocks is high or supply is tight. Miao et al. (2011) model the ‘Herd 

Behaviour Theory’ to test the risk and regulations on price volatility for non-staple 

agricultural commodities in China. They find that speculation and price manipulation, 

originating from asymmetries of information, bring about a herd-like behaviour. This 

phenomenon has pervasive and difficult to manage consequences that especially 

affect farmers and consumers. 
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The last group of literature uses different statistical methods to examine food price 

volatility drivers. Zheng et al. (2008) apply an Exponential GARCH model to 

examine whether unexpected news affects food price volatility. They use monthly 

prices for 45 food products in the US. Their results confirm that the amplifying effect 

of the news is present only in one third of the products. The authors argue that the 

increasing concentration of food distribution and retailing in large firms act to absorb 

the price volatility. Hayo et al. (2012) measure the impact of the US monetary policy 

on the price volatility of different commodities (agricultural, livestock, energy and 

metals) with a GARCH model. They arrive at the conclusion that changes in expected 

(target) interest rates and communications do decrease volatility, whereas unexpected 

interest rate movements and innovative measures increase it. Roache (2010) runs a 

Spline-GARCH model with US corn, palm oil, rice, soybeans, sugar, and wheat 

monthly spot prices. He aims at explaining what drives low frequency volatility. The 

author shows that the slow-moving component of spot price volatility is positively 

correlated across the different commodities, proving the presence of common factors 

affecting the low frequency volatility. He argues that the variables with the largest 

effect on this type of volatility – since the mid 1990s – are volatilities in the US dollar 

exchange rate and inflation. Du et al. (2011) use a Stochastic Volatility model with 

Merton Jumps in returns (SVMJ) to investigate the role of speculation in crude oil 

price variability and to what extent oil volatility transmits to agricultural markets. 

Using weekly futures of oil, corn, and wheat they conclude that scalping10, 

speculation, and petroleum inventories explain crude oil volatility. Oil price shocks 

appear to trigger sharp price changes in agricultural commodities, especially in the 

corn and wheat markets, arguably because of the tightening relation between oil and 

agricultural markets. In a study by IFPRI, Pietola et al. (2010) assess the empirical 

relationship among US weekly wheat prices, inventories, and volatility. They use a 

Co-integrated Vector Autoregressive model, and add price volatility in the form of the 

estimated variance to the basic model. Volatility and inventories have a significant 

negative relation in the very short run, but this relation levels off over time. Thus, in 

the short run, increasing wheat prices coincide with decreasing inventories. 

Decreasing prices imply either inventory build-ups or postponement of inventory 

                                                 
10 Scalping refers to a trading strategy that opens and closes contract positions within a very short 
period of time to realise small gains. 
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withdrawals. Ghosh et al. (2010) employ different models (GARCH, GARCH 

dummy, Exponential GARCH in mean, and Ordinary Least Squares) to examine price 

volatility and supply responses of rice, jowar, bajra, corn, groundnut, and cotton. 

Using annual prices, they check whether trade liberalisation exacerbates volatility of 

agricultural products in India. The results reveal that prices of major agricultural 

products became unstable in India after the signing of the WTO agreement. Swaray 

(2007) applies Exponential and Threshold GARCH models to assess the impact of the 

suspension of trade agreements on the asymmetry and persistency of volatility. They 

use monthly prices of cocoa, coffee, rubber, sugar, and tin. Their results demonstrate a 

rise in the asymmetry but a decrease in the persistence of the shocks. 

2.3.2.4 Volatility spillover effects 
A large body of the literature concerning food price volatility investigates volatility 

transmission, or spillovers, across markets. With this purpose in mind, many 

researchers use bivariate or multivariate GARCH models. Others also apply (Granger) 

causality-in-variance tests. The spillover articles have different focuses; some authors 

investigate spillover effects between different types of commodities, for instance 

between oil and agricultural products. Others analyse the impact of macroeconomic 

variables on agricultural markets or the spillover effects along the food supply chains. 

Macroeconomic factors 
The interaction between food commodities and macroeconomic variables is an 

important area of research of the volatility literature. Udoh and Egwaikhide (2012) 

employ GARCH, Vector Autoregressive and Ordinary Least Squares methods to test 

for Dutch Disease effects in agricultural markets in Nigeria. They use domestic prices 

between 1970 and 2008, and conclude that oil price volatility has a complementary 

relation with food inflation in Nigeria. Oleg (2011) focuses on the conditional 

correlations between commodity futures and traditional asset classes in periods of 

high equity and bond volatility. He applies a bivariate GARCH model to a variety of 

products (Shanghai Stock Index (SSI), China’s 10-year Government Bond Index, and 

different agricultural and non-agricultural commodities) for the period 2006-2010. 

The author shows that conditional correlation between commodity futures and the SSI 

rises in periods of recession and high market risks. Moreover, the negative correlation 

between bonds and commodity futures rises with the bond volatility, suggesting that a 

bond-commodity portfolio should not be tilted towards commodity futures in periods 
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of high bond volatility. Busse et al. (2011) analyse the behaviour of price volatility in 

EU biofuel markets, during and after the 2007/2008 financial crisis. They use a 

Dynamic Conditional Correlation (DCC) model to investigate the correlation between 

oil volatility and the volatilities of rapeseed, rapeseed oil and soybean oil. The authors 

find significant correlations between oil and both rapeseed oil and soybean. However, 

they clarify that the model neither allows for conclusions about causal mechanisms of 

volatility spillovers nor is it able to capture the magnitude of the influence of one 

market on the other. Apergis and Rezitis (2003b) employ a multivariate GARCH 

model to assess volatility spillovers between food markets and macroeconomic 

fundamentals in Greece. They recognise positive spillovers from macroeconomic 

fundamentals to food markets.  

Volatility spillovers along the supply chain 
This subcategory of research deals with volatility transmission between the different 

marketing levels of food chains.  

Khaligh et al. (2012) is one of the recent studies on this topic. They apply a 

multivariate GARCH model to examine the degree by which price uncertainty spills 

over across the agricultural input, output, and retail markets in Iran. They use indices 

of the poultry market between 1997 and 2010. The authors show that information 

generated at the agricultural input and retail levels could lead to changes in the 

volatility of output prices. Serra (2011a) assesses the price volatility spillovers –

resulting from the Spanish Bovine Spongiform Encephalopathy (BSE) crisis– at 

different stages of the Spanish beef marketing chain. She applies a Smooth Transition 

Conditional Correlation GARCH model to farm-gate and consumer prices for the 

period 1996-2005. The author concludes that during turbulent times price volatilities 

can be negatively correlated. Moreover, one cannot expect that intervening with one 

market will stabilise other related markets. An early paper on this issue is Apergis and 

Rezitis (2003a). They use also a multivariate GARCH framework to investigate 

volatility spillovers along food chains in Greece. They consider three indices, for 

input, output and retail prices (1990=100) for the period 1985-1999. The authors 

conclude that volatilities of input and retail prices positively impact on the output 

price volatility. Moreover, output prices are more volatile than agricultural input and 

retail food prices. Another pioneer work in this area is Buguk et al. (2003). In this 

article the researchers examine the extent to which volatility in US soybean and corn 
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markets spills over to feed and catfish markets. They apply an Exponential GARCH 

model and find significant unidirectional volatility spillovers from corn, soybean, and 

menhaden to catfish prices. Additionally, the authors prove that farmers exert some 

market power in the chain, and consequently transmit volatility in an asymmetric 

manner. Kostov and Mcerlean (2004) criticised Apergis and Rezitis (2003b) by 

arguing that as in other financial markets, the theoretical framework of Mixture of 

Distribution Hypothesis (MDH) can better explain the spillover effect. Furthermore, 

the authors believe that a proper model for explaining agricultural price volatility 

should include (own) volume information.  

Volatility spillovers in commodity markets 
The last set of studies on volatility spillovers addresses interdependencies between 

commodities markets both, within and between countries. Sehgal et al. (2013) 

investigate whether the Indian futures market effectively serve price discovery and the 

introduction of futures trading resulted in volatility transmission to spot markets. They 

run a bivariate Exponential GARCH model for different agricultural (chana, guar 

seed, soybean, kapas, potato and agra), metal (gold, silver, zinc, lead and copper) and 

energy commodities (natural gas, crude oil) for the period 2003-2011. They find 

bidirectional volatility spillovers for soybean, zinc and natural gas. Moreover, spot 

volatility transmission to futures markets is larger. For the rest of commodities there 

are no significant volatility spillovers. Rezitis and Stavropoulos (2011) examine the 

implications of the rational expectations assumption in primary commodity markets. 

They use a multivariate GARCH model for major meat markets in Greece (beef, 

lamb, pork, and broiler) from 1993-2006. The authors conclude that uncertainty 

caused by price volatility is a restrictive factor for the growth of the Greek meat 

industry. Some other articles focus on spot markets of multiple commodities. 

Motivated by the issues raised by the biofuel industry, Serra et al. (2011) analyse 

volatility transmissions among sugar, ethanol, and oil markets in Brazil (2000-2008). 

Using a multivariate GARCH model, they confirm oil volatility spillovers to sugar 

and ethanol. Additionally, they observe spillovers between ethanol and sugar in both 

directions, and significant but small volatility spillovers from the sugar and ethanol 

markets to oil.  

A group of research also concentrates on volatility spillover effects among countries 

and commodities. Alom et al. (2011a) use a multivariate Threshold GARCH 
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(MTGARCH) to analyse the relationship of inter-country food price volatilities. They 

consider food indices for Australia, New Zealand, the US, Korea, Singapore, Hong 

Kong, Taiwan, India, and Thailand for the period 1995-2010. The countries were 

selected according to the following criteria: net food importing/exporting countries; 

geographic spread; economies in transition and participation in free trade agreements. 

The authors find no strong spillover effects at the returns level, except for some 

evidence of cross-country spillover effects between geographically close countries. 

Regarding volatility though, there are substantial cross-country spillovers. Kaltalioglu 

and Soytas (2011) examine the volatility spillovers between oil, food, and agricultural 

products. They examine IMF aggregated price indices between 1980 and 2008. To 

test for spillover effects the authors use the correlation test procedure by Cheung and 

Ng (1996). Results show no volatility spillovers from oil to food markets, instead 

there is only a contemporaneous link between oil and agricultural commodities. 

2.3.2.5 Price volatility between spot and futures markets 
Other articles analyse the relation between futures and spot markets. Will et al. 

(2012), for instance, conducts a review of 35 empirical works and conclude that the 

alleged financial speculation in commodity futures markets does not have any 

significant impact on spot price levels or volatility. They find that fundamental factors 

(e.g. increasing demand for agricultural and non-agricultural products, 

underinvestment in agriculture, increased frequency of weather shocks, etc.) are 

responsible instead. Algieri (2012) looks for relationships between (excessive 11) 

speculation and price volatility, using as proxies for speculation the share of total 

open interest positions held by non-commercial traders and the speculative pressure. 

She applies Granger causality tests to find reciprocal effects between futures and 

volatility in spot markets for wheat, corn, soybean, palm kernel, palm oil, barley and 

rice. Her findings prove no significant relation between rice and soybeans. In the case 

of wheat, volatility leads speculation, whereas for corn there is a more complex 

bidirectional relation. Bohl and Stephan (2012) use expected and unexpected 

speculative open interest as explanatory variables, controlling for aggregate trading 

volume and aggregate open interest. They apply a GARCH model using weekly spot 

and futures prices for corn, soybeans, soft red wheat and sugar. Their results reveal 

                                                 
11 Excessive is defined as the level of speculation that surpasses the need for hedging transactions and 
market liquidity. 
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that even though futures prices tend to lead spot prices in agricultural markets, the 

speculation seems not to hinder the price discovery process. Von Braun and Tadesse 

(2012) apply a Seemingly Unrelated Regression to test the impact of supply 

(production) and oil price shocks, and futures market speculation, on spot returns and 

volatility. They consider monthly spot prices for corn, wheat, rice and soybeans. The 

volatility is calculated as the standard deviation from the long run average price. The 

authors consider trading volume of commercial and non-commercial positions in 

futures markets as proxies for speculation. Findings show that the speculation has a 

larger impact than oil and supply shocks on spot price spikes, and oil shocks have a 

larger impact than speculation and supply shocks on spot price volatility. Dwyer et al. 

(2011) examine the fundamental and financial factors, especially Index Fund 

investments, as drivers of the level and volatility of commodity prices. Using 

graphical representations of daily and monthly spot and futures indices, they conclude 

that despite the fact that speculators might play some role in spot price volatility, their 

contribution seems to be short termed and relatively small if compared with the effect 

of fundamentals. Dwyer et al. (2012) assess interactions between spot and futures 

prices for a group of agricultural and non-agricultural commodities. They use spot 

prices and futures from the Chicago Board of Trade (CBOT) price data for 

agricultural commodities (corn, soybeans and wheat) and London Metal Exchange 

(LME) prices for non-agricultural commodities (US natural gas, gold, silver, 

aluminium, copper, nickel and zinc) for the period 1997-2011. They apply a GARCH 

model together with a principal component analysis and find evidence of influence of 

futures on spot prices. Moreover, the authors claim that since 2003, individual 

commodity prices are primarily driven by macroeconomic fundamentals. Finally, they 

conclude that the theoretical relationship between commodity futures and spot prices 

does not imply that changes in futures necessarily lead to changes in spot markets. 

McPhail et al. (2012) evaluate the relative importance of different drivers on corn 

price volatility. They use a structural vector autoregressive model to obtain forecast 

error variance decompositions. The data used in this study consists of US corn futures 

prices, ethanol production, crude oil spot prices, the Working Speculative Index and 

the Baltic Dry Index as a proxy for corn demand. They find that within a month about 

73% of variation in real corn prices is accounted for by corn market shocks, which 

include any shocks affecting corn prices not captured by shocks in global demand, 

crude oil prices, ethanol demand, or speculative demand. Additionally, speculation 
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demand shocks (14%), crude oil price (9.5%), ethanol demand (3%) and global 

demand (1%) explain corn price variation within a month. The authors demonstrate 

that after own corn market shocks, speculation is the main factor driving corn price 

variations in the short run. However, in the long run, energy and global demand are 

the relevant determinants. Shanmugam et al. (2012) test the efficiency of futures 

market for agricultural commodities. They look for causal relations and volatility 

issues between spot and futures prices during periods of turmoil. They use US data 

(1995-2011) for corn, soybeans, wheat, soybean oil, cotton, coffee, sugar, cocoa, live 

cattle, lean hogs and feeder cattle. Co-integration tests show a long run relation 

between spot and futures prices for all commodities. Moreover, the Granger causality 

test shows that futures prices cause spot prices for wheat, soybean and lean hogs. A 

GARCH (1,1) provided evidence of volatility clustering and persistency throughout 

the period for all series. However, the authors find no evidence of volatility increase 

after 2006. They conclude that US futures markets are highly efficient for agricultural 

commodities. Dahl and Iglesias (2009) analyse the implications of the theory of Muth 

(1961) within a new and general empirical modelling framework. According to the 

rational expectations theory of Muth (1961), current spot prices are functionals of 

futures prices (and vice versa). Therefore, they suggested to model spot prices jointly 

with futures prices of traded commodities. The authors find evidence to support 

Muth's theory i.e. spot price risk associated with storable commodities has predictive 

content. Furthermore, inventory carryover, which is reduced by a larger price 

variance, creates autoregressive conditional heteroskedasticity in (storable) 

commodity spot prices. Yang et al. (2005) empirically assess the lead-lag relationship 

between the level of trading activity and cash price volatility in futures markets. They 

use US corn, soybean, wheat, cotton, hogs, and live cattle futures and the international 

sugar price between 1992 and 2001. By means of a forecast error variance 

decomposition analysis the authors conclude that an unexpected increase in futures 

trading volume causes an increase in cash price volatility for most commodities, while 

there is weak causal feedback between open interest and cash price volatility. 

2.3.2.6 Price formation in futures markets 
This section presents a compilation of studies, which concentrates on the impact of 

speculation in index funds and on the level and volatility of futures prices. Aulerich et 

al. (2012), for instance, assess the impact of financial index investments on 
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agricultural futures prices and (implied) volatility, using disaggregated data from the 

Large Trading Reporting System (LTRS) of the US Commodity Futures Trading 

Commission (CFTC). The advantage of this new dataset is that commodity index 

trading positions are available on a daily frequency, contracts are separated by 

maturity, and there is information available before 2006. They use futures for corn, 

soybeans, soybean oil, wheat, feeder cattle, lean hogs, live cattle, cocoa, cotton, 

coffee, and sugar. The authors apply Bivariate Granger causality tests. They consider 

as explanatory variables the changes in aggregate new net inflows and the rolling of 

existing index positions from one contract to another. Results confirm no bidirectional 

causality between aggregate positions and returns/volatility. Moreover, rolling 

positions do not cause futures price returns or volatility. Brunetti et al. (2011) apply 

Granger causality tests using Generalised Methods of Moments with Newey-West 

robust standard errors. Their findings demonstrate that speculators do not lead price 

changes; rather they reduce market volatility and add liquidity to the system. Irwin 

and Sanders (2012) test the ‘Masters Hypothesis’ 12 applying the Fama-MacBeth 

cross-sectional regression test. They argue that a cross-section as opposed to a time 

series analysis of index funds is more informative. The researchers use quarterly 

futures data of corn, soybeans, soybean oil, wheat, cotton, live cattle, feeder cattle, 

lean hogs, coffee, sugar, and cocoa. As proxy for index fund activity they use the 

Index Investment Data from the US Commodity Futures Trading Commission. Their 

results fail to demonstrate the ‘Masters Hypothesis’. They find no significant evidence 

of index funds affecting futures’ returns or volatility, implying that the markets are 

sufficiently liquid and traders do not confuse position changes of index funds with 

changes in market fundamentals. Bastianin et al. (2012) investigate whether 

speculation drives futures’ levels and volatility, and which macroeconomic or 

financial factors are relevant to model returns. They apply GARCH and multivariate 

GARCH models using weekly data for agricultural (corn, oats, soybean oil, soybeans, 

and wheat) and energy (gasoline, heating oil, crude oil, and natural gas) commodities. 

Their findings show that excess speculation does not affect commodities’ returns, 

whereas macroeconomic and financial factors are more relevant, especially equity 

returns and exchange rates. They also observe that spillover effects are statistically 

                                                 
12 The Masters’ hypothesis was called after the hedge fund manager Michael Masters, who argues that 
the large buy-side positions from index funds created a bubble in commodities, moving prices far away 
from their fundamental values.  
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significant within and between both commodity groups. Bohl et al. (2012) use a 

Stochastic Volatility model to reveal whether index fund activity induces volatility in 

futures’ markets. This type of model can be used to control for simultaneity problems 

between conditional volatility and trading activity, which are jointly influenced by 

new information. They use weekly data for cocoa, coffee, corn, cotton, feeder cattle, 

lean hogs, live cattle, soybean oil, soybeans, sugar, and soft/hard red wheat. Results 

present no robust evidence that expected and unexpected index trading activity causes 

higher volatility in futures markets. Sanders and Irwin (2011) assess the impact of 

index fund investment in the US commodity futures market. They use weekly nearby 

futures contracts for wheat, soybean, and corn, alongside commodity index trader 

data. The researchers apply Granger causality tests and long-horizon regression. Their 

results don’t provide evidence of linkages between commodity index positions and 

grain futures. Gilbert (2012) focuses on the influence of speculative trading on grain 

volatilities. He uses the cash prices of futures’ contracts for soft wheat, corn, 

soybeans, and soybean oil, together with position data from the CBOT Commitments 

of Traders report (2006-2011). His results prove no significant effects of 

financialisation on cash and futures returns. Manera et al. (2012) conduct a detailed 

study about speculation issues between 1986 and 2010. They use Ordinary Least 

Squares to prove whether macroeconomic factors and speculation exert significant 

effects on futures prices for different energy and non-energy commodities. In a 

second stage, they use a Dynamic Conditional Correlation (DCC) model to recognise 

volatility spillovers across markets. Their findings prove that financial speculation 

does not significantly affect futures returns. Moreover, they find volatility spillovers 

among commodities and high, time-varying conditional correlations. Frenk and 

Turbeville (2011) consider the effects of the rolling period 13, contango 14, and 

backwardation. 15 The authors test whether the behaviour of Commodity Index 

Traders (CIT) impacts futures prices independently from (fundamental) supply and 

demand forces. They examine futures prices of wheat, oil, heating oil, corn, feeder 

                                                 
13 A set period from the 5th to 9th business day of each month, during which funds tracking the most 
popular commodity index, the Standard and Poor’s Goldman Sachs Commodity Index (GSCI), must 
roll forward their expiring futures contracts. 
14 A situation where the futures price of a commodity is above the expected future spot price. Contango 
refers to a situation where the future spot price is below the current price, and people are willing to pay 
more for a commodity at some point in the future than the actual expected price of the commodity. 
15 Inverse to the Contango is Backwardation. Backwardation is the market condition where the price of 
a forward or futures contract is trading below the expected spot price at contract maturity. 
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cattle, and natural gas (1983-2011) before, during, and after the monthly CIT “Roll” 

period. Their findings show that futures distributions display a consistent bias towards 

an increasing Contango curve during the Roll period. They find that the persistent bias 

did not exist before 2004, prior to the sharp growth in commodity index trading. 

2.4 Assessment of drivers 

In this section, we focus on the main results from the literature regarding the extent to 

which certain factors drive agricultural price volatility. The preceding sections have 

highlighted the influence of the researchers' choices on the results. The variability in 

terms of methods employed, of commodities included, of differences in frequency, 

and nature of the price data and sample period suggest that some caution is warranted 

in extracting the main results. In the following subsections, we distinguish between 

those drivers where the scientific literature seems to be largely unanimous, and the 

more conflicting areas. We focus on the results for the more recent episodes in food 

price volatility (short-run perspective) but augment these, where feasible, with the 

expected development and impact of the identified drivers in the years to come (long-

run perspective). 

2.4.1 Supply 

There seems to be a high level of agreement in the existing literature with regard to 

the rule which states that short run supply shocks cause increases in volatility. For 

crops, short-term changes to expected harvests contribute to price volatility. This is 

particularly visible on futures markets, where prices immediately before the 

harvesting dates in key producing and exporting regions are highly responsive to new 

information about weather changes or about sudden occurrences of pests. Similarly, 

the few studies on livestock prices usually find that the disease outbreaks, which in 

addition to the direct reduction in supply might also negatively affect internationally 

traded volumes through trade restrictions because of quarantine requirements, lead to 

a thinning of the market on the supply side and thus to increased price volatility. 

Some studies emphasise the role of shocks on input markets, although the imminent 

effect on output price volatility is somewhat mitigated through the specific temporal 

nature of typical agricultural production processes, where the supply response usually 

takes place with a substantial delay after most inputs are applied. 
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The role of long-run supply shifters is discussed more controversially in the literature. 

There is still some degree of accordance with regard to the role, which involves the 

diversion of agricultural land to non-agricultural uses and plays as a long-run shifter 

of the supply curve for agricultural products. However, a minority of studies judge 

global land supplies as sufficiently high and expect the global supply of agricultural 

goods to be able to keep pace with the expected demand increases. However, even 

these studies concede that pressure on local land markets might lead to locally thinner 

markets; the impact on local price volatility then depends in turn on the extent of 

market integration between local and international prices. Substantial 

underinvestment in agricultural technologies at the global level is often mentioned as 

an additional long-term factor. In light of the high returns promised by investment in 

publicly available agricultural innovations, the underinvestment observed over the 

past two decades or so is undoubtedly a challenge for the years to come. However, 

whether the looming danger of insufficient productivity growth in the future will have 

any impact on price volatility is much less clear than the (already hotly debated) 

expected increasing impact on agricultural price levels.  

Climate change is often mentioned as another long-term driver of price volatility. 

Many scenarios for climate in the future predict an increased frequency of extreme 

weather events with possibly negative impacts on agricultural supplies in virtually all 

agricultural products. An increase in the frequency of crop failures, or an increase in 

the number of disease outbreaks in combination with spreading of tropical and 

subtropical animal disease to more temperate climate zones, would then suggest that 

prices of the corresponding commodities will fluctuate more strongly than in recent 

decades. However, the literature indicates that global agricultural commodity prices 

react more strongly to supply shocks in key producing regions than they do to 

globally occurring changes that affect all regions. This suggests that the impact of 

climate change on price volatility might be more complex than this simple line of 

reasoning suggests. In particular, its impact will be specific for commodities and 

regions. 

A final factor in the list of long-run supply shifters is structural change in farming. 

The argument relies on the presumed higher resilience of small-scale, locally adapted 

agricultural structures in comparison to more commercially oriented large-scale 

farming. This argument is not frequently mentioned, which is perfectly 
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understandable since the question of resilience is again very context-specific. The 

consensus in the existing literature does not attribute structural change in agricultural 

systems as being one of the key-driving factors towards increased price volatility.  

2.4.2 Demand 

On the demand side, the most frequently listed short-run driver is the increasing role 

of bioenergy, in particularly grain- or oilseed-based biofuels. Virtually all studies 

which look into demand-side drivers discuss the role of bioenergy markets and 

policies for agricultural price volatility. A general consensus exists that biofuel 

policies exert a substantial influence on price volatility; in most countries the relevant 

policies are implemented in a way that makes the resulting additional demand for 

agricultural raw materials rather price inelastic. A given quantity shock requires, 

ceteris paribus, a stronger price change in order to balance supply and demand. This 

concern about the lack of flexibility in biofuel mandates is particularly strong for 

corn-based bioethanol in the US, and vegetable oil-based biodiesel in the EU. While 

the general mechanism is broadly supported in the literature, there is much less 

agreement as to its relative importance. The most recent price developments for corn 

in 2012 illustrate that even the US bioethanol blending requirements are actually more 

flexible than initially expected, mainly because of the possibility to roll over parts of 

the blending mandates between years. 

In the 2007/2008 episodes, additional demand was observed by hoarding behaviour of 

some major importing countries. In most cases, such hoarding was observed in 

particular in those countries where the import of agricultural commodities is 

substantially controlled by state trading enterprises. The resulting positive demand 

shock at a time where prices were already following an upward trend exacerbated the 

price momentum but also had an impact on price volatility since the market tended to 

react very sensitively to new information, even new rumours, about the actions of 

state trading enterprises. Timmer (2010) also highlights the particular relevance of 

such hoarding behaviour at the individual level of consumers and producers.  

In the long run, demand for agricultural products with potential repercussions on price 

volatility is affected by three factors. First, income and population growth in 

developing countries is expected to exert an influence on the tightness of the global 

balance sheets for major food crops. The tighter the markets, the more susceptible to 
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shocks they will generally be. Second, the role of the “westernisation” of diets might 

additionally exacerbate these shifts in the constellation of supply and demand. The 

increasing move toward higher meat shares in hitherto more vegetarian diets in Asia 

and Africa will lead to an increasing competition in major agricultural products 

between food and feed. Again, this will make market balances tighter unless rapid 

productivity growth (see above) overcompensates this effect. Third, the longer term 

perspectives for bioenergy, in particular biofuels, could inflate price volatility levels if 

the policy instruments employed are retained with similar inflexibility as in the past. 

The majority of literature is in agreement on these longer run factors.  

2.4.3 Storage 

Most of the staple foods traded on international markets are storable. Carry-over 

stocks from year to year (i.e., the quantities in stock in excess of working stocks) play 

a crucial role for dampening price volatility over time. The nature of demand for and 

supply from storage, in combination with the impossibility of negative stocks, 

suggests that the impact of stocks on price volatility is asymmetric: At relatively low 

stock levels, the dampening effect is close to nil, while with sufficiently filled stocks, 

storage demand and supply is able to neutralise shocks to a substantial extent. Since 

stocking outs are likely to occur at high prices, while low prices increase ceteris 

paribus the demand for storage, phases of increased volatility for storable 

commodities are likely to coincide with high prices (Wright, 2011). 

The usual approach in the literature is based on an analysis of stocks-to-use ratios, and 

gives rather robust results. For cereals, low levels of carry-over stocks are indeed a 

major factor for volatility increases. For wheat, the early literature already reports a 

perceived threshold of about 20 % although there is substantial residual uncertainty 

about the exact figure where to locate the critical threshold.  

Speculative stockholding is a phenomenon which also can exert a substantial impact 

on price volatility. The literature here is often related to the emergence of bubbles in 

commodity markets (which seemed to play a role in futures price developments for 

major agricultural products over recent decades, e.g., Gutierrez, 2012). However, for 

the specific case of the 2007/2008 crisis, speculative stockholding has been regularly 

rejected in the literature as one of the causes of the crisis because the official figures 

on stocks did not see any increase in stocks over the relevant time period.  
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There is a third aspect related to storage, which will probably also exert a substantial 

impact on price volatility in the longer term. Official figures on stocks are usually 

published regularly, and aim at giving information on both private and public stocks, 

e.g., for major crops at a monthly frequency by the USDA in their World Agricultural 

Supply and Demand Estimates (WASDE). The published information on public 

stocks typically relies on national statistics, with varying degrees of precision. 

Reasons include the reluctance of some countries to provide sufficient and transparent 

figures on their public stocks (usually for political reasons), but also general problems 

with the statistical information systems in other countries. However, with the 

exception of a few countries, the situation is drastically worse as far as private 

holdings of stocks are concerned. A few countries (notably the US for major crops) 

have established reporting systems at both the farm and the downstream sector level. 

The vast majority of countries rely on ‘guesstimates’ for private stocks. It is thus 

expected that figures on global stocks would be severely affected by statistical errors.  

The impact on price volatility is impressively illustrated by the development of wheat 

prices over the 2007/2008 crisis. Prices started to increase at an accelerating pace after 

the publication of the USDA WASDE report in May 2007. This report included the 

first forecast for the ending stocks of the wheat marketing year 2007/2008, and 

contained an alarmingly low figure for expected global wheat stocks at the end of this 

marketing year in June 2008. In the WASDE reports for the subsequent 9 months, the 

forecasts were even further reduced. The turning point was reached with the report of 

March 2008 when the forecast at 110 million Mt of wheat was again roughly equal to 

the forecast of May 2007; subsequently, the numbers where substantially increased to 

a final estimate of 126 million Mt. The turning point in March 2008 not only marked 

the end of the rapid price increases but also the end of a period of inflated price 

volatility. This episode emphasises the importance of reliable information on stocks 

(and it also serves as a strong argument in favour of the efforts started by 

governments and international organisations in the AMIS initiative). 

2.4.4 Macroeconomic factors 

Under the admittedly broadly defined category of macro-economic factors, two 

subcategories can be identified. First, spillover effects from other markets outside 

agriculture are found to play an important role for the development of price volatility 
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over the past five years; looking forward, they are expected to continue to be 

significant for years to come. Second, general economic policies and developments 

affect agricultural markets since the latter have become increasingly integrated with 

the rest of the economy. Macro policies have a substantial impact on the stability of a 

whole economy, which in turn affects price volatility for agricultural products.  

Spillover effects from markets outside agriculture are frequently listed among the 

major explanatory factors for the food price crisis of 2007/2008. Most studies 

emphasise the importance of energy markets (usually exemplified through the crude 

oil markets), and conclude that these have been an important factor in driving price 

developments prior to 2007/08. The causal linkages, however, are much less clear. 

There are a number of potential linkages discussed in the literature. The 

intensification of agriculture in many production systems worldwide has made 

production processes in crop production more dependent on fossil fuels over time 

since fossil fuels are of substantial importance directly through diesel use in 

agriculture, and indirectly via increased use of fertilisers and pesticides, which both 

depend on fossil fuels in their production. For example, a substantial part of nitrogen 

fertiliser production is highly dependent on natural gas. Thus, the relevance of the 

fossil fuel market as an input to agricultural production has increased over time. Over 

the past decade, the interdependence between agricultural and energy markets was 

further increased through the emergence of bioenergy related policies, mostly in 

emerging and industrialised economies. Biodiesel policies in the EU (Busse et al., 

2012) and bioethanol policies in the US and Brazil have made the price formation 

processes between energy and agricultural markets interrelated in a complex and often 

regime-dependent manner. The interdependence is not confined to price levels but 

also leads to price volatility spillover effects. Relative market sizes strongly suggest 

that the net effect of both input and output linkages leads to an inflated vulnerability 

of the relatively small international markets for agricultural products to price volatility 

shocks from the notoriously volatile global markets for crude oil.  

Other commodity markets are occasionally mentioned as drivers of agricultural price 

volatility in the literature, too. Over the course of the food price crisis of 2007/2008, 

virtually all the major commodities were experiencing substantial price level changes. 

However, it is difficult to think of direct causal linkages between agricultural and 

most of the non-agricultural commodities. Therefore, most of the studies mentioning 
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non-agricultural commodity market development focus on two indirect channels: 

macro-economic policies (to be discussed in the next paragraph) and linkages through 

increasing financialisation (which deserves a separate section, see below).  

Among macro-economic policies, exchange rates are viewed as important drivers of 

price levels. This holds particularly true for the US-Dollar rates, since most of the 

global trade in agricultural products is still denominated in US dollars. Volatility in 

exchange rates might hence be transmitted to domestic markets even in cases where 

international prices are not particularly volatile. During the food price crisis of 

2007/2008, exchange rates have generally been acknowledged as a driver for price 

levels but have not been singled out as particularly important for volatility 

transmission. For the longer run, exchange rate fluctuations might become more 

important, depending on the overall stability of the world economy.  

This leads to the second major factor among macro-economic policies, the changing 

nature of monetary policies in many - if not virtually all - countries. Money 

authorities have gradually loosened monetary policy regimes in response to the 

economic and financial crisis and have injected liquidity for a long period of time, in 

combination with interest rate policies, which frequently lead to negative real interest 

rates. The quantitative easing policies of the US are an important case at hand, as is 

the recent move of the Japanese central bank to loosen its monetary policy and to 

weaken the Yen exchange rate. The loose monetary policies will likely put an upward 

pressure on general price levels in the longer run, although current sluggish economic 

growth suggests that there is no immediate danger of substantial inflation. The impact 

on price volatility, however, is already felt in the shorter run. With substantial and 

virtually open-ended liquidity injections, price boom and bust cycles for individual 

commodities including agricultural and food commodities become more likely. This 

mechanism is most likely an import driver for future price volatility. 

2.4.5 Specific policies 

The literature on the causes of the 2007/2008 food price crisis reaches a broad 

consensus: Policy measures in the field of trade policies by both exporters and 

importers have substantially contributed to the price development for major 

agricultural products, in particular for crops. Timmer (2010) explores this in detail for 

the case of rice. Many exporters introduced some type of export restriction in order to 
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shield domestic consumers from international price increases. The measures included 

export taxes, quotas, or complete bans. Importing countries often responded with 

import alleviations, e.g., tariff reductions, import levy reductions, or new preferential 

market access opportunities. The overall impact of these measures on global price 

levels and volatilities should not be underestimated. Even if it seemed to make 

perfectly sense from the perspective of an individual country to introduce some policy 

which allows for a wedge between international and domestic prices, the combined 

use of such policies in many countries at the same time added to the upward trend in 

international prices while reducing global trade volumes. The new world trade 

equilibrium was then characterised by higher prices in thinner markets. Such a 

constellation inevitably increases the susceptibility of agricultural markets to shocks, 

in particular if there is a substantial lag in re-adjusting trade policy measures.  

It is difficult to predict how such agricultural policies are going to affect price 

volatility in the longer run. It will be crucial in deciding the extent to which countries 

pursue ‘beggar-thy-neighbour’ policies in the future. The experience of the 2007/2008 

crisis has clearly shown that the outcome of the WTO Uruguay round with its 

(relatively) strict disciplines on bound tariffs and on the use of export subsidies is not 

effective against ‘beggar-thy-neighbour’ policies which aim at lowering domestic 

agri-food prices below the international level. The Uruguay round agreement is a 

child of the experience of the 80s and 90s, where the major concern was about 

pushing domestic agri-food prices above international levels. In the aftermath of the 

crisis, many countries verbally committed themselves to aim at export policy related 

disciplines in the ongoing WTO negotiations. However, given the lack of progress in 

the ongoing WTO talks, it seems unlikely that effective rules on such policies will 

become mandatory in the near future. The observable move toward regional and 

preferential trade agreements in the past cannot be expected to substitute for the lack 

of progress in multilateral trade negotiations. It is more likely that the additional 

degrees of freedom which trading blocs have in negotiating such agreements might 

lead to a complex network of trade relationships which in total might be harmful to 

global market integration. In consequence, discretionary policies in the agricultural 

sector can be expected as an additional driver for higher price volatility in the future. 

Another longer-term factor, albeit observable at a much lower frequency, is related to 

agricultural policy cycles. In many countries of the world, in particular in OECD 
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countries, agricultural policies are subject to major revisions in relatively constant 

phases (e.g., US farm bill legislation, EU Common Agricultural Policy). Major policy 

shifts cause uncertainty, which might lead to a higher degree of caution in investments 

in production capacities. After the uncertainty is resolved, previously delayed 

decisions will be taken relatively quickly, which might induce synchronisation in 

investments, and hence contribute to cyclical supply patterns which in turn might lead 

to low-frequency price volatility. 

Specific policies in other economic sectors might also contribute to agricultural price 

volatility in the longer run. This holds particularly true for policy measures with an 

impact on land use. Bioenergy related policies have already been discussed above, but 

broader environmental policies might also divert agricultural land to other purposes so 

that intensification of the remaining agricultural areas might become necessary. This 

would not necessarily lead to higher price volatility, however, since the relationship 

between intensification and output variability is complex.  

2.4.6 Financialisation 

Financialisation in the context of the overall economy usually refers to the increasing 

importance of financial organisations and institutions in comparison to real economic 

activities. In the context of price formation for agricultural and food products, the 

term is less clearly defined but usually refers to the increasing role of non-commercial 

investors (perceived important actors include index funds, hedge funds, and OTC 

swap dealers) in agricultural markets (usually in futures or options). Concerns are 

voiced that financialisation might hamper the price discovery function of futures 

markets so that agricultural prices both on spot and futures markets are driven by 

money rather than by fundamentals. In order to shed light on the impact of 

financialisation on agricultural price volatility, it is helpful to clearly distinguish three 

aspects of financialisation, which might have an impact.  

Firstly, financialisation might open the window for market manipulation if individual 

economic agents are sufficiently large to exert influence on price formation. This 

danger is particularly obvious in futures markets, which are not sufficiently liquid. A 

recent episode in London cacao futures, dating from 2010, involved the funds 

‘Armajaro’ taking delivery at maturity of the July contract of cocoa volumes 

equivalent to about 7% of annual world production. Since the open position held by 
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‘Armajaro’ was anticipated before maturity of the July contract, prices experienced a 

substantial increase in July. However, this episode also serves as an example of how 

difficult such mid-term market manipulation attempts are. Over the second half of 

2010, prices for cocoa dropped by about a quarter so that the actual profit over this 

period for ‘Armajaro’ was likely negative. Nevertheless, market manipulation fears, 

be they justified or not, will lead to increased price volatility because of the 

uncertainty they introduce to the market. Transparency requirements involving, for 

example, regular reporting on open positions, seem to be an appropriate and effective 

instrument for reducing market manipulation attempts. 

Secondly, financialisation is often associated with speculative bubbles. Speculative 

bubbles are characterised by prices which grow over a longer period of time up to a 

point where market participants seem to (suddenly) realise that prices are way above 

the fundamental values. Bubbles are a common feature in market economies. They 

have also been observed for agricultural products as early as the 17th century, when 

the famous Dutch tulip bubble led first to skyrocketing tulip prices, which crumbled 

down quickly again after the bubble burst.  

Agricultural commodity price bubbles exert an increasing influence on price volatility 

through their typical boom and bust sequence. They have recently been identified in 

agricultural commodity prices on futures markets, too (e.g. for the 2007/2008 food 

price crisis see Gutierrez, 2012). However, as is clearly stated in the published 

literature, finding statistical evidence for the presence of a bubble does not allow us to 

tie down the culprits. Self-enforcing price trends -at least over a certain period- can be 

driven by any group active on the relevant market; e.g., for spot markets, the hoarding 

behaviour of producers and consumers has been suggested as a major factor for the 

emergence of a price bubble. Experiences outside agriculture also suggest that 

bubbles (which are relatively easy to identify once the bubble has burst but difficult to 

recognise while a strong trend is present) are usually driven by a combination of 

factors, e.g., the house price bubble in the US before the economic and financial crisis 

was affected by credit approval practices, and by loose overall monetary policies, to 

name only two of the factors involved. In summary, bubbles seem to be a common 

feature in capitalist systems, and it is difficult to identify a clear mechanism to prevent 

their occurrence on agricultural commodity markets.  
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Thirdly, price volatility might be affected by the composition of traders in a given 

market. In the context of agricultural and food prices, the literature often singles out 

the behaviour of index funds on futures (and related financial derivatives) markets. 

Index funds are a relatively new phenomenon which became more important over the 

course of the increasing interest in exchange traded funds (ETF). Their typical 

strategy is based on mimicking the price of an underlying index so that no active 

management of the fund composition is necessary. In the case of agricultural markets, 

commodity index funds are of direct interest. Concerns about the impact which these 

funds have on price volatility are related to the trading strategy of such a broad index 

fund; this is usually composed of a number of different commodities with fixed 

weights in terms of values. In order to follow the price movements of the underlying 

broad commodity index, the fund has to sell and buy futures or options in response to 

any relative change in the prices of the single commodities. For example, consider a 

hypothetical fund mimicking an index with 50% wheat and 50% copper. A price 

shock on the futures market might drive up the price of the copper’s future. Thus, the 

value share of copper in the commodity basket becomes too high, which requires 

either reducing the investment in copper futures or increasing the value share of 

wheat. If the fund manager chooses the last option, volatility from the copper futures 

market might spill over to the wheat futures market (provided that the positions held 

by the index fund are substantial on the wheat futures market). However, if the first 

option is chosen (i.e., changing the position in the market where the price changes 

originated, in this example copper), the index fund would contribute to lower price 

volatility in this market. It seems natural to assume that most index fund managers 

follow this approach, simply because in a complex composite index it is much easier 

(and less costly) to adjust only those positions which actually changed. This 

hypothesis is not rejected by the current literature. Will et al. (2012), and Gilbert and 

Pfuderer (2013) survey the relevant publications and conclude that the vast majority 

of all studies attribute a stabilising function to the position changes associated with 

index funds trading.  

The increasing number of positions held by index funds has one additional (albeit 

relatively minor) impact on price volatility on commodity futures markets. Since the 

funds are forced to roll over (i.e., switch from the contract close to maturity to the 

following one) in regular and foreseeable intervals, other market participants might 
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anticipate the settlement of a huge number of long positions shortly before maturity, 

and might try to react to this. However, this would require the latter group to have 

market power. Empirically, this very short run effect has not been analysed until now.  

2.4.7 Miscellaneous drivers of price volatility 

Parts of the empirical literature emphasise the role of information shocks for price 

formation. For food and agricultural markets, food scares and scandals are one 

important shock affecting not only price levels but also volatility. The increasing 

media attention to negative news about food suggests that such news about food 

scares will lead to huge price drops, with a relatively slow and volatile recovery. 

2.5 Conclusions 

Price volatility on agricultural and food markets has attracted considerable attention in 

the literature, both in mainstream agricultural economics but also in related fields. 

This attention is reflected in a growing number of studies published in peer-review 

journals, which is augmented by some high-profile reports from relevant 

organisations. In addition, the scientific community has responded to policymakers’ 

concerns by publishing many working papers and technical reports (so-called grey 

literature), a substantial part of which will be published in journals over the course of 

the next years. 

This already rich (but still emerging) body of literature allows for the development of 

a relatively clear picture about the driving factors of price volatility patterns in recent 

years. The literature seems to be in broad agreement regarding the fundamental 

factors that explain most of the observed price volatility increases in recent times. 

Supply and demand side factors, which in the short run lead to thinner markets and 

thus make the price finding mechanism more susceptible to the arrival of new 

information, can be identified as major drivers. Many of these drivers will continue to 

play out in the medium and long run. On the supply side, climate change might 

increase the frequency of rare detrimental weather events, which will generally lead to 

higher price volatility. The stagnation in terms of productivity growth in agriculture in 

particular in OECD countries, exacerbated by land diversion for non-agricultural 

purposes, will certainly not help in mitigating the susceptibility of agricultural and 

food markets for episodes of high price volatility. On the demand side, population and 
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income growth are often mentioned as long-run driving factors. These long-term 

trends will be difficult to change, in contrast to another major driver, biofuel policies. 

The specific instruments employed in this policy field often lead to additional 

demand, which is very price-inelastic. Given that current biofuel policies are not 

responsive in their requirements to short- and medium-run price changes in the main 

input markets, price volatility will be elevated. 

However, information on stocks is an important factor, too. Much of the de-

centralised stockholding is not regularly monitored; even if public or private entities 

have the necessary information, this is often still treated by public bodies as state 

secretes or as potentially very rewarding private information (private bodies). With 

increasingly integrated agricultural markets worldwide, national level information on 

carryover stocks - in particular in key exporting or importing countries - spills over to 

global markets. Country-specific statistical information systems have an important 

role to play in the future, as does the global coordination of information on available 

stocks, which is now pushed forward within the AMIS initiative. 

Nowadays agriculture is integrated into the overall economy (even though most 

countries interfere in agricultural markets much more intensively than in other sectors 

of the economy). The interdependencies with non-agricultural markets exist both on 

the input and on the output side. Increasing integration also implies that price 

volatility from input markets will have repercussions on agricultural and food 

markets. This mechanism has been established in the literature for fossil fuel price 

volatility (and is exacerbated through biofuel policies). However, as a part of the 

overall economy, agricultural price formation will also be subject to the impacts of 

overall economic policy, in particular monetary policy. Inflationary risks will affect 

price volatility directly and indirectly (many because investors view agricultural 

assets as relatively safe from inflation). 

The role of speculation and financialisation when it comes to price volatility on 

agricultural and food markets is, however, less clearly defined in the literature. This is 

not surprising since speculation itself is a very broad phenomenon, which is difficult 

to capture quantitatively. Financialisation, on the other hand, is a relatively new 

phenomenon but again is not always consistently defined across different studies. 

However, the literature seems to have reached broad agreement on one specific aspect 

of financialisation, namely, the role of index funds for price volatility on futures 
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markets. There is no recent sound scientific evidence in favour of a volatility 

increasing impact of index funds trading activities on agricultural futures. On the 

contrary, there is a tendency to find price volatility reducing impacts of index fund 

trading for major cereals. Reforms to the regulatory framework for futures markets 

should hence be applied rather carefully in order not to hamper the price discovery 

and hedging functions of those markets, although additional transparency 

requirements should be imposed as swiftly as possible.  

A much less debated driver of volatility is the wide field of trade policies. The 

experience from the food price crisis of 2007/2008 showed that policy responses from 

both importing and exporting countries have the potential to increase price volatility 

in international markets. Initially triggered by concerns about domestic food price 

inflation, both the reduction of import barriers and the implementation of export 

restrictions are essentially attempts to export domestic problems to the international 

market. Unfortunately, the current WTO regime is not adequate to tackle these issues. 

A renewed impetus for the multilateral trade negotiations looks like a promising 

pathway toward better functioning of the international markets during a food price 

crisis. From our point of view, the multilateral framework is better suited for 

imposing self-discipline in such trade policies than the approach via negotiations on 

bilateral and regional trade preferences (which seems to currently be the first choice 

by many important trading blocs). 

Notwithstanding the quite substantial body of literature reviewed in this study, there 

still remain some important research needs. A first set of issues is related to the 

methodological dimension. Price volatility is inherently unobservable and thus has to 

be estimated. Such estimation requires many conceptual choices; the estimates for - 

and the interpretation of - price volatility depend crucially on these choices. Even if 

conceptual clarity has been reached, there are many estimation methods available. In 

order to apply these, additional assumptions are necessary, which often turn out to be 

rather restrictive. The impact on the generated volatility estimates is not always clear, 

and there is a danger that some of the estimated price volatility patterns might be 

driven by inappropriate estimation methods.  

In terms of product coverage, there is a strong focus in the existing literature on cereal 

markets. On the one hand, this is perfectly understandable since cereal prices are still 

the key prices for agricultural and food markets. On the other hand, the lack of 
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attention toward livestock and non-cereal staple crops is unsatisfactory since livestock 

products and staple crops are nowadays often more important for farmers and 

consumers than cereal prices. Farmers in the EU generate a substantial share of their 

revenues from livestock production; rural households in developing countries 

crucially depend on price development for local staple crops. Lack of appropriate data 

and heterogeneous product quality are two standard excuses for the focus on the 

relatively liquid international cereal markets, but researchers view this as a challenge, 

not as a barrier. 

Finally, the identification of policy impacts with the goal to establish causal links 

between policy intervention and price volatility developments is also not yet settled in 

the existing literature. Instead of focusing too strongly on causality, the concept of 

predictability might prove to be more fruitful in applied research. In particular, if 

certain factors are useful in predicting future price volatility, then these are also 

natural candidates for inclusion in medium- and long-term models, with the aim of 

capturing observable price volatility patterns in these models.  
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3 The dynamic pattern of volatility spillovers 

between oil and agricultural markets  

This section corresponds to an improved version of the Scientific Paper No.8 prepared 
for the EC-funded ULYSSES Project.16 This paper was elaborated under the supervision 
of Prof. Dr. Bernhard Brümmer and with the collaboration of Dr. Tinoush Jamali. It was 
presented in the ULYSSES meeting held at FAO’s headquarters in Rome in February 
2015. An early version of this study was also presented at the Conference “Food in the 
Bio-based Economy” organised by the University of Wageningen in May 2015.17 

3.1 Introduction 

In the after crisis period many factors were identified as potential contributors to the 

steep upsurge in food prices and volatility.18 There is a special interest in the rapid 

financialisation of agricultural markets, the tightening relation between oil and 

agricultural markets, the declining and uncertainty on grain stocks levels, the 

exchange rate variability of US dollar-denominated agricultural international trade, 

and the biofuel promotion policies enforced by developed countries. Nevertheless, 

given the complexity of the economic system, no author has been able to clearly 

identify a causal order among these factors, nor quantify their impacts separately. 

From the set of drivers, however, the increasing participation of investment funds in 

agricultural markets and the biofuel boost are the most controversial. Will et al. 

(2012) review a sample of empirical studies. They conclude that the alleged financial 

                                                 
16 Saucedo, A., Brümmer B., Jaghdani, T.J., 2015. The dynamic pattern of volatility spillovers between 
oil and agricultural markets, Scientific Paper 8, ULYSSES project, EU 7th Framework Programme, 
Project 312182 KBBE.2012.1.4-05, http://www.fp7-ulysses.eu/, 31 pp. 
17 Saucedo, A., Brümmer B., Jaghdani, T.J. (2015). The dynamic pattern of volatility spillovers 
between oil and agricultural markets. International Conference - Food in the Bio-based Economy; 
Sustainable Provision and Access, Wageningen University, May 27 – 29, 2015, Wageningen, 
Netherlands. 
18 For a summary of the volatility drivers see Table 7 of the Appendix. 
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speculation in commodity futures markets does not have a significant impact on the 

level of volatility of spot prices. Mitchell (2008) estimates that the production of 

biofuels in the US and Europe explain between 70% and 75% of the rise of 

food prices due to a reduction of the international grain stocks, changes in land use, 

increased speculative activity and export restrictions. Baffes and Haniotis (2010), on 

the other hand conclude that the impact of biofuels on rising food prices is not as high 

as previously thought, but that the use of commodities as a strategy of investment 

diversification by large institutional investors may be partly responsible for the rise. 

According to Nazlioglu et al. (2013), the relation between energy and food markets is 

driven by three factors: oil as an input for farming, transporting and processing crops; 

energy crops used for producing biofuels (e.g. cereals, oil seeds, and sugar crops), 

close substitutes, and complements for diesel and gasoline; and the co-movements of 

both energy commodities and agricultural commodities, due to investment funds’ 

activity. While evidence shows that the role of speculative positions on futures 

markets held by investment funds has no significant impact on grain price volatility, 

oil-derived input costs and biofuels are some plausible channels linking energy and 

food markets. The aim of this paper is consequently to contribute to the ‘food versus 

fuel’ debate by shedding some light on the development of the energy-food nexus.  

We show the evolution of the volatility spillover dynamics between oil and commonly 

used biofuel feedstocks, namely corn, wheat, and sugar for ethanol, and soybean oil, 

rapeseed oil, and palm oil for biodiesel. The paper is organised as follows: In section 

3.2 we present the development of biofuel markets. Section 3.3 reviews the recent 

literature concerned with the volatility spillovers effects between energy and food 

markets. Section 3.4 presents the data and introduces the methodology. Section 3.5 

shows our empirical findings. We conclude in Section 3.6 and provide some policy 

recommendations in section 3.7. 

3.2 Market development of biofuels 

The biofuel market emerges as the result of technological advancements that made it 

possible to obtain ethanol and biodiesel, substitutes for gasoline and diesel, 

respectively, from starch, sugar and oil crops, as well as the development of flex-cars 

that are able to run with different biofuel blends. However, the rapid growth of the 

market is driven mainly by political decisions aiming at reducing greenhouse gas 
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emissions, promoting domestic energy diversification and fostering rural 

development.  

With this purpose, developed countries assign large budgets to the promotion of the 

ethanol and biodiesel industries. In May 2003, for instance, the EU passed a first 

Directive 2003/30/EC to promote the use of renewable fuels, stipulating a 5.75% 

replacement of transport fuels with biofuels by the end of 2010. In April 2009 the EU 

released a new Directive (2009/28/EC), which mandates that 20% of total energy 

consumption must come from renewable sources by 2020 and 10% of transport fuels 

from biofuels. 

Table 2. Estimates of total support for the biofuel industry in developed countries 

 
Source: Own elaboration based on the Global Subsidies Initiative.  

Note: Empty spaces mean no information is available. 

Table 2 shows estimates of the Global Subsidies Initiative (GSI) concerning biofuel 

support budgets assigned in different developed countries. The GSI estimates that 

total support for ethanol in the EU was in 2011 between 1.3 and 1.8 Billion US$ and 

for biodiesel between 6.4 and 7.8 Billion US$. Similarly, the US approved the US 

Energy Policy Act in 2005, which mandated the consumption of 28 Billion Lt of 

biofuels (mainly ethanol) by 2012. In December 2007, however, a new boost for 

biofuels was enforced through the Energy Independence and Security Act. It requires 

a consumption of 136 Billion Lt by 2022, a far more ambitious target. In comparison 

the EU, the US promotes the (corn-based) ethanol industry more. In 2009, GSI 

estimates US ethanol and biodiesel budgets in 7.7 Billion US$ and 0.4 Billion US$, 

respectively. The substantial support given to the biofuel industry has diverted in turn 

approximately 20% of sugar cane production, 9% of oilseeds and cereals, and 7% of 

sugar beet between 2007 and 2009 (OECD and FAO, 2010). 

Figure 2 presents the major biofuel producing countries. In 2011, the largest ethanol 

producer was the US with 54 Billion Lt, a 63% share of world’s production. Brazil 

was the second ethanol producer with 21 Billion Lt (24%) followed by the EU with 

2.7 Billion Lt (3%), and China with 2 Billion Lt (2%).  The  US  was  also  the  largest  
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Figure 2. World’s leading biofuel producing countries, 2011 

 
Source: Own elaboration based on estimates of the Earth Policy Institute with data from F.O. Licht. 

ethanol exporter in 2011 (2.5 Billion Lt), followed by Brazil (1 Billion Lt)  and  

China. However, China’s exports are negligible in comparison (200 thousand Lt).19 

From this group, Brazil is the most productive. It processes ethanol from sugar cane 

with average yields of 5 thousand Lt/Ha while the US corn-based ethanol only attains 

ca. 4 thousand Lt/Ha, a 25% less. The EU produces ethanol mainly from wheat, but 

its yield is even lower than that of corn (ca. 3 thousand Lt/Ha). Besides wheat and 

other minor cereals, the EU also produces ethanol from sugar beets, which performs 

much better in terms of yields (ca. 6 thousand Lt/Ha). When it comes to biodiesel, EU 

is the leading region, accounting for 30% of world’s production in 2011. Within the 

EU, Germany has the highest processing capacity with 3 Billion Lt followed by 

France (1.6 Billion Lt), Spain (0.7 Billion Lt), Italy (0.6 Billion Lt) and the 

Netherlands (0.4 Billion Lt). The next largest biodiesel producers are the US (3.2 

Billion Lt), Argentina (2.8 Billion Lt) and Brazil (2.6 Billion Lt). The EU is also a 

major biodiesel consumer. It imported 2.5 Billion Lt in 2011, almost 100% of net 

global imports. Argentina is the main exporting country with 1.6 Billion Lt, followed 

by Indonesia (0.3 Billion Lt) and the US (0.2 Billion Lt). In a similar fashion to 

ethanol, biodiesel yields are also very heterogeneous. The most efficient biodiesel 

producers are Malaysia and Indonesia with an average of 4 thousand Lt/Ha, derived 

from palm oil. The main feedstock in the EU is rapeseed oil, however, biodiesel 

yields from this crop are comparatively much lower (ca. 1.5 thousand Lt/Ha). 

Argentina, the US and Brazil obtain their biodiesel from soybean oil, which is the less 

productive feedstock (ca. 0.5 thousand Lt/Ha).  

 

                                                 
19 FAPRI and ISU (2012). 
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Figure 3. World biofuel production and oil equivalent consumption, 1991-2011 

 
Source: Own elaboration based on Earth Policy Institute with data from F.O. Licht and the US 
International Energy Agency. 

Note: (*) The production for 2012 has been estimated. 

Over the last twenty years, the global production of ethanol and biodiesel has grown 

at an average annual rate of 9% and 67%, respectively, reaching 86 Billion Lt of 

ethanol and 21 Billion Lt of biodiesel in 2011(Figure 3). One can observe a steeper 

increase of biofuels’ production between 2005 and 2007, a time which coincides with 

the enforcement of the United States’ energy acts. Despite the accelerate growth of 

biofuels, ethanol and biodiesel represented in 2011 only 1% and 0.2% of global oil 

consumption, respectively. The reason is the low energy density of agricultural 

products if compared to fossil fuels. 

3.2.1 Price co-movements between oil and biofuel feedstocks 

The price evolution of different biofuel feedstocks with respect to oil is now shown in 

order to shed some light on whether this relationship has strengthened over time. We 

develop some understanding on the degree of interconnection among food and energy 

markets and the consequences for the volatility dynamics shown later. We provide 

additional information regarding the internationalisation of the different commodities. 

The larger the integration of a product to international markets, the larger its exposure 

to shocks from other widely traded (more volatile) commodities like oil.  

3.2.1.1 Ethanol feedstocks 
Corn is the main feedstock used for ethanol in terms of volume. The US is the largest 

user of corn for ethanol; nevertheless, it is only price competitive with the Brazilian 

sugar cane-based ethanol through subsidies. The second most important feedstock is 

sugar cane, widely used in Brazil, India, and Thailand, but since it is a non-tradable 
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commodity we use the international sugar price instead. The final ethanol feedstock 

we consider in this study is wheat. It is mainly used in the EU and Canada. 

Nevertheless, its global relevance as biofuel feedstock is negligible if compared to 

corn and sugar cane. For the period we consider, an average of around 12% of corn 

production and 19% of wheat were commercialised internationally. The international 

trade for these cereals is relatively tight; most of their production is consumed 

domestically or exported as processed products like corn cakes and ethanol, or wheat 

flour. The international sugar market is larger. Sugar exports accounted for nearly 

30% of total production.20 

Figure 4. Evolution of the price of cereals and sugar, 1996 - 2014 

 
Source: Own elaboration. 

Figure 4 depicts the monthly evolution of the international prices for the commodities 

mentioned above. It also shows the successive policies implemented by the US and 

the EU to support biofuel production. During the period considered, the corn and 

wheat series co-move while the sugar follows its own more cyclical pattern. While the 

sugar series tends to follow the development of oil prices more closely, wheat and 

corn prices start following it later, around mid 2005, coinciding with the enforcement 

of the US Energy Policy Act. From November 1996 the prices of wheat and corn start 

converging, attaining a minimal difference in April 2000. Since then, both prices start 

diverging and reach a maximum gap price of 250 US$/Mt in February 2008. 

Nevertheless, between the end of 2006 and the beginning of 2007, the growth rate of 

corn prices accelerated and the gap substantially fell by February 2007. In December 

                                                 
20 Own estimates based on information from USDA Foreign Agricultural Service 
http://apps.fas.usda.gov/psdonline/psdQuery.aspx , acceded on March 5th, 2016. 

http://apps.fas.usda.gov/psdonline/psdQuery.aspx


  65   

2007 the US increased its mandate levels further, boosting cereal prices to new highs. 

However, since the beginning of 2011 both series were practically tied, commoving 

around very similar price levels and following a decreasing trend from the second half 

of 2012. 

3.2.1.2 Biodiesel feedstocks 
Soybean oil and rapeseed oil are used for biodiesel especially in temperate zones due 

to their low viscosity. The US, Brazil, and Argentina mainly process biodiesel form 

soybean oil, whereas the EU uses rapeseed oil. Palm oil is the main feedstock in 

tropical countries like Indonesia, Malaysia, and Thailand in Southeast Asia, or 

Colombia and Ecuador in Latin America. Rapeseed oil, similar to wheat, has a 

relatively small international market. Only 12% of this oil is commercialised 

internationally. The international trade for soybean oil is more important and 

represents 26% of its production. However, over recent years it has been increasingly 

exported as biodiesel, too. For instance, Argentina, the third largest soybean producer, 

developed a very efficient biodiesel cluster during the last decade. Its exports reached 

a record of 1.9 Billion Lt in 2011 (CARBIO, 2015). While rapeseed and soybean oils 

are mainly consumed domestically or exported as biodiesel, the international market 

for palm oil accounts for roughly 70% of global production. This product is the most 

widely traded vegetable oil of the group.21 

Figure 5. Evolution of the price of vegetable oils, 1996 – 2014 

 
Source: Own elaboration. 

                                                 
21 Own estimates based on information from USDA Foreign Agricultural Service 
http://apps.fas.usda.gov/psdonline/psdQuery.aspx , acceded on March 5th, 2016. 

http://apps.fas.usda.gov/psdonline/psdQuery.aspx
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Figure 5 shows a narrow comovement among vegetable oils throughout the entire 

period. Since the beginning of 2000 they start also following oil’s price development 

closely. Starting 2001, the three vegetable oils commence an upward trend, which 

ends shortly before the beginning of the financial crisis in September 2008. Oil prices 

start a similar trend around one year later in 2002. From the beginning of 2007, 

however, both oil and vegetable oil prices start commoving tightly. Soybean oil and 

palm oil maintain similar price levels along the considered period, except between 

2003 and 2006, and 2012 and 2013, when soybean oil becomes more expensive. Short 

before the crisis outbreak all prices start declining. In October 2008 palm oil price 

plummet, followed by oil in January 2009 and soybean oil and rapeseed oil in 

February of the same year. In April 2009, though, the EU enacted a new biofuel 

directive requiring member States to replace 10% of transport fuels with biofuels by 

2020. This measure seems to have exerted (at least) some pressure on vegetable oil 

prices as observed in Figure 5 since the beginning of 2009. 

3.3 Literature review  

In this section we review the recent findings and the methods applied to reveal food-

energy linkages and related volatility spillovers. Most of the research concentrates on 

finding correlations of second order moments between agricultural and oil markets. 

For this purpose, a commonly used method is the multivariate Generalised 

Autoregressive Conditional Heteroskedastic (GARCH) model with BEKK 

specification (Engle and Kroner, 1995). This method provides positive-definite 

conditional variances, while simultaneously accounting for cross effects. Regarding 

the conditional mean, which filters out secular and cyclical price developments, 

different methods are used e.g. Autoregressive Moving Averages (ARMA), Vector 

Autoregressive (VAR), or Vector Error Correction Models (VECM) (Engle and 

Granger, 1987). Another standard method is the Dynamic Conditional Correlation 

(DCC) model of Engle (2002). This model, however, does not consider cross 

dynamics among variables, which in turn allows managing larger systems. This body 

of literature is reflected well in Algieri (2014). He concludes that good news (e.g. the 

prospect of good harvests) generates less volatility than bad news (e.g. droughts, 

floods) for corn, while the opposite happens for wheat and sugar. Moreover, lagged 

oil and ethanol returns have a significant influence on corn, wheat, sugar, and soybean 

volatilities, implying that energy drives volatility in agricultural markets. Serra and 
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Gil (2012) verify that the so-called stock-to-disappearance forecasts lower corn 

volatility while interest rate uncertainty increases it, and ethanol volatility spills to 

corn volatility. Trujillo-Barrera et al. (2012) find volatility transmission from oil to 

corn and ethanol markets as well as from corn to ethanol. However, they obtain no 

evidence of volatility spillovers from ethanol to corn. Wu et al. (2011) notice 

significant volatility spillovers from oil to corn spot and futures. Moreover, spillovers 

become larger after the introduction of the Energy Policy Act of 2005. They conclude 

that substantial volatility spillovers occur in periods of high ethanol–gasoline 

consumption rates. Chang and Su (2010) find no significant volatility spillovers from 

oil to corn and soybean during the low oil price period (2000-2004), but they do for 

the high oil episode (2004-2008). However, volatility spillovers between corn and 

soybean remain insignificant in both periods Zhang et al. (2009) observe bidirectional 

volatility spillovers between corn and soybean, and from soybean to ethanol only 

during the Ethanol Boom period (2000-2007). In the same period they also notice 

(unexpected) spillovers from corn to oil. Mensi et al. (2014) analyse volatility 

transmission between energy and cereal markets in both the US and EU, and the 

effect of OPEC decisions to cut, maintain, or reduce oil production levels. They show 

that oil volatility spills over to corn, whereas gasoline impacts on corn, sorghum, and 

barley volatilities. Moreover, cut decisions by OPEC have a much stronger effect both 

on energy and agricultural markets. Busse et al. (2011) find significant correlations 

between oil and both rapeseed oil and soybean. They conclude that causality may 

extend from oil to the agricultural markets. Teresa (2011b) shows that shocks in oil 

and sugar markets increase ethanol volatility, but ethanol does not affect either sugar 

or oil volatilities. Additionally, sugar volatility also spills over to ethanol volatility. 

Serra et al. (2011) confirm that oil volatility transmits to sugar and ethanol volatilities. 

Furthermore, they observe bidirectional spillovers between ethanol and sugar, and 

significant but small reverse spillovers from sugar and ethanol to oil. Wu and Li 

(2013) analyse spillover effects across oil, corn, and ethanol for the Chinese market. 

They find unidirectional spillovers from oil to corn and ethanol markets, but 

bidirectional spillovers between corn and ethanol. In particular they notice higher 

correlations among oil, corn, and ethanol after September 2008. Alom et al. (2011b) 

confirm significant mean and volatility spillovers from oil to food, though their 

magnitudes differ among countries and timeframes. They notice that larger spillovers 

appear particularly after 2001.  
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A second important group of studies assess Granger causalities between oil and 

agricultural commodities. Harri and Hudson (2009), for example, verify volatility 

spillovers from oil to corn after the food crisis, whereas Kaltalioglu and Soytas (2011) 

don’t find any volatility spillovers from oil to food and agricultural raw materials.  

Zilberman et al. (2012) argue that the main reason why some studies only find a weak 

oil-food connection is because the impact of biofuels is only reflected when the 

source of the change in food prices is taken into account. Nazlioglu et al. (2013) 

observe volatility spillovers from wheat to oil in the pre-crisis period (01.1986-

12.2005) and bidirectional causalities between oil and soybean, and oil and wheat in 

the post-crisis period (01.2006-03.2011).  

Finally, several studies also apply cross correlation, stochastic volatility, random 

parameter, and non-linear least squares models. Du et al. (2011), find spillovers from 

oil to both corn and wheat, as well as increased correlations between oil and corn, and 

oil and wheat during the period 2006-2009. Liu (2014) confirms highly significant 

and persistent cross correlations between the volatilities of oil and each of the 

considered cereals, especially during the crisis period. Balcombe (2011) verifies 

positive spillovers from oil to the considered agricultural products and Alghalith 

(2010) argues that an increase in oil price and volatility yields higher food prices, 

while an increase in oil supply reduces them. 

3.4 Data and methodology 

The aim of this study is to assess the evolution of the volatility spillovers between oil 

and the major agricultural feedstocks used for biofuels. With this purpose we use 

daily international prices for cereals, sugar, vegetable oils and oil from November 

1996 to November 2014, obtained from Thomson Reuter’s Data Stream. All prices 

are spot, except for the rapeseed oil series, which corresponds to a futures contract.  

3.4.1 Data 

Table 3 shows the descriptive statistics for price levels and their logarithmic price 

changes for every series. The Jarque-Bera test rejects normality for both price levels 

and their returns. Returns show a relatively high degree of kurtosis if compared to 

price levels. Rapeseed oil’s returns present an excessive level of kurtosis followed by 

wheat, palm oil and crude oil. Although sugar, corn and soybean oil also exhibit some  
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Table 3. Descriptive statistics of the data 

 
Source: Own elaboration. 

excess kurtosis, their values are closer to normality. In contrast to returns, price levels 

show low or even negative kurtoses, reflecting more stable values around their means. 

In terms of symmetry, both returns and price levels are skewed. Price levels are 

predominantly positive skewed, while returns show both positive and negative 

skewness. 

3.4.2 Methodology 

Some of the studies concerned with the relationship between agricultural and energy 

markets identify structural breaks around the financial crisis of 2007/2008 and base 

their analysis on two sample periods, before and after the crisis. Others apply 

econometric techniques to explicitly account for structural breaks (e.g. threshold 

models). In contrast to the previous methods, we use a rolling windows approach. An 

argument in favour of using rolling windows is that fixed-parameter models are 

unable to capture secular and cyclical patterns of the data (Diebold and Yilmaz, 

2009). In a first step we estimate volatilities separately for different biofuel feedstocks 

and in a second stage we use them in Vector Autoregressive (VAR) models. We run 

the analysis through 158 subsamples or windows of 60 months, which covers 

episodes before, during, and after the financial crisis. Doing so, we provide more 

information about the development of the volatility spillovers through time.  

3.4.2.1 Realised Volatility 
To estimate the volatility we use the ex-post monthly-realised volatility (RV) 

estimator based on daily observations 
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𝑗𝑗=1

 , (1) 

where 𝑟𝑟𝑗𝑗∆2  is the square of the daily logarithmic returns summed over 𝑚𝑚 week-days 

observations in every month (between 20 and 23 days per month). The RV is further 

corrected for intra-month noise using a Moving Average process of order 1 (MA (1)) 

to account for the autocorrelation effect. The adjusted estimator is then 

 𝜎𝜎�2 = 𝑚𝑚 𝛾𝛾�2(1 + 𝜂̂𝜂)2 , (2) 

where 𝛾𝛾�2 and 𝜂̂𝜂 are the variance and the moving average coefficient, respectively, 

from the Maximum Likelihood (ML) estimate of the MA (1). Finally, we annualised 

the squared root by multiplying it by the square root of twelve. While most of the 

literature relies on GARCH-type models to estimate the volatility, we chose the non-

parametric RV estimator since this imposes less structure on the volatility process, an 

important advantage in highly volatile markets. 

3.4.2.2 Estimation of volatility spillovers  
Most of the reviewed literature on spillovers between energy and food markets relies 

on the BEKK specification of multivariate GARCH models. However, for systems 

with more than three variables, these models suffer from over-parameterisation issues. 

A further limitation to apply this method in a dynamic multi-period framework like 

rolling windows is the lag order selection, which must be done for every subsample. 

Another frequently used method is the Dynamic Conditional Correlation (DCC) 

model proposed by Engle (2002). While this method allows managing larger systems 

without the ‘over-parameterisation’ problem, it doesn’t account for contemporaneous 

effects among variables. 

Instead, we apply a two-step approach. First, we estimate realised volatilities for 

every commodity and use them later in VAR models. The advantage of the VAR 

framework is that it captures linear interdependencies among variables without 

requiring prior knowledge about their drivers. Instead, one needs a hypothetical 

relation among them. With this purpose in mind, we divide the studied agricultural 

products into two groups: one for ethanol and one for biodiesel feedstocks. The 

Ethanol Group comprises oil, corn, wheat, and sugar while the Biodiesel Group 
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gathers oil, soybean oil, rapeseed oil, and palm oil. We use a Cholesky ordering to 

identify the contemporaneous effects in the VAR systems. Considering the relative 

extent and depth of the oil market, we assume its precedence against agricultural 

markets. In the case of agricultural commodities –and pondering again their market 

size and relevance as biofuel feedstocks– we assume the following ordering for the 

ethanol feedstocks: sugar, corn, and wheat. For the biodiesel feedstocks the order is as 

follows: soybean oil, rapeseed oil, and palm oil.  

Based on the forecast error variance decompositions (FEVD) of the VAR models, we 

derive the ‘Spillover Index’ suggested in Diebold and Yilmaz (2009). The error 

variance of the H-step ahead forecast of a VAR model can be decomposed into own 

and cross variance shares. The former corresponds to the portion of the error variance 

due to shocks in the same market, while the latter represents the portion of the error 

variance due to shocks in different markets, or ‘spillovers’. First we consider that the 

one step ahead forecast of a bivariate VAR system, given by 

 𝑒𝑒𝑡𝑡+1,𝑡𝑡 = 𝑥𝑥𝑡𝑡+1 − 𝑥𝑥𝑡𝑡+1,𝑡𝑡 = 𝐴𝐴0𝑢𝑢𝑡𝑡+1 = �
𝑎𝑎0,11 𝑎𝑎0,12
𝑎𝑎0,21 𝑎𝑎0,22

� �
𝑢𝑢1,𝑡𝑡+1
𝑢𝑢2,𝑡𝑡+1

� , (3) 

has a covariance matrix 

 𝐸𝐸�𝑒𝑒𝑡𝑡+1𝑒𝑒𝑡𝑡+1,𝑡𝑡
′ � = 𝐴𝐴0𝐴𝐴0′  , (4) 

and the one step ahead error in forecasting 𝑥𝑥1𝑡𝑡 is 𝑎𝑎0,11
2 + 𝑎𝑎0,12

2  and in forecasting 𝑥𝑥2𝑡𝑡 

is 𝑎𝑎0,21
2 + 𝑎𝑎0,22

2 . Then, we define the own variances as 𝑎𝑎0,11
2 + 𝑎𝑎0,22

2  and the cross 

variances or ‘spillovers’ as 𝑎𝑎0,12
2 + 𝑎𝑎0,21

2 . The spillover index is then defined as the 

cross-variance share of the total forecast error variation 

 
𝑆𝑆 =

𝑎𝑎0,12
2 + 𝑎𝑎0,21

2

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴0𝐴𝐴0′ )  ×  100 , (5) 

and its generalisation, for different H-step-ahead forecast horizons and diverse VAR 

orders and dimensions, is 

 
𝑆𝑆 =

∑ ∑ 𝑎𝑎ℎ,𝑖𝑖𝑖𝑖
2𝑁𝑁
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∑ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝐴𝐴ℎ𝐴𝐴ℎ′ )𝐻𝐻−1
ℎ=0

 ×  100 . (6) 
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3.5 Empirical findings  

We start this section by illustrating how the spillover index proposed in (6) is built. As 

mentioned before, we estimate spillover indices for 158 consecutive sub-periods of 60 

months. We use ten-month ahead (H=10) forecast errors to decompose the variances 

in own and cross impacts. Since most of the international trade of agricultural 

commodities is done in US dollars, its variations (appreciation/depreciation) not only 

affect the amount but also the direction of the trade flows. To control for the effects of 

exchange rate, which could potentially preclude spillover dynamics, we consider the 

(US) Dollar Index volatility as an exogenous component in the VAR systems. 

Table 4. Variance decomposition matrix, Ethanol Group 

 
Source: Own elaboration. 

Table 4 presents the variance decompositions for the Ethanol Group considering 

average values of the 158 windows. Columns show the contribution of individual 

commodities to the forecast error variances of the remaining ones. For instance, the 

first column describes how innovations in oil impact on sugar (0.32), corn (0.39) and 

wheat (0.27). Since our interest is in cross ‘spillover’ effects we don’t consider the 

diagonal elements of the matrix. In total, the contribution of oil volatility to ethanol 

feedstocks is 0.97. Rows, on the other hand, provide information on how much 

volatility a particular commodity receives from other markets. In the case of oil, sugar 

contributes with 0.13, corn with 0.35, and wheat with 0.10. The spillover index then 

corresponds to the total transmissions or receptions (without own effects) divided by 

the full matrix (3.7/40). In the case of the Ethanol Group, its average spillover index 

is, on average, 9.2%, whereas for the Biodiesel Group the index is 11.4%. 

Figure 6 depicts the development of the volatility spillovers among oil and the 

corresponding ethanol and biodiesel feedstocks. The thinner lines represent index 

estimates without considering the dollar exchange rate volatility. One can observe  for 
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Figure 6. Volatility spillover index evolution for the ethanol and biodiesel groups 

 
Source: Own elaboration. 

Note: Dotted arrows describe the trending behaviour of the index series.  

instance, that for vegetable oils the spillover index was unaffected by exchange rate 

volatility until September 2008, when the financial crisis started. After this point, 

exchange rate effects might have induced more volatility spillovers among vegetable 

oils and between vegetable oils and oil. In the case of ethanol feedstocks, the 

exchange rate effects are present before and after the crisis outbreak. In the pre-crisis 

episode volatility spillovers were underestimated, while after the crisis, exchange rate 

volatility of US dollar-denominated trade might have provoked more volatility 

transmission among sugar, cereals and oil. In general, the indices (controlling for US 

exchange rate volatility) remain between 5% and 10% for the pre-crisis period. The 

biodiesel index started an upward trend at the beginning of 2005, which accelerates 

between 2011 and 2012. At the end of 2012 it reached a maximum spillover level of 

24%. Since then, it falls back to pre-crisis levels close to 10%. The spillover index for 

ethanol feedstocks is in general lower, reflecting more stable cereal and sugar 

markets. It grew moderately during the first decade (1996-2006). However, between 

2003 and 2008 the ethanol index became temporarily larger by around 3% (on 



  74   

average). Until 2010 this index followed a downward trend, which reverted between 

2011 and the first semester of 2013.  

Table 5. Relative average contributions to the spillover index, Ethanol Group 

 
Source: Own elaboration. 

Note: Numbers in this table represent shares of the spillover index. 

To reveal the contributions of the different commodities to the spillover index, as well 

as to other markets, Table 5 presents the variance-covariance matrix for the Ethanol 

Group. Its values are expressed as shares of the total spillover index. For instance, 

oil’s volatility transmission to other markets represents 26% of total group spillovers. 

We can also observe that oil is a net volatility transmitter. Its contributions to 

agricultural markets (26%) are larger than its volatility receipts from them (16%). 

Similar to oil, sugar and corn markets are net volatility transmitters. Wheat, on the 

other hand, remains the only volatility receptor of the group. One can also observe 

that ca. 58% of the spillovers originate in agricultural markets. 

Figure 7. Relative contribution of oil to the spillover index, Ethanol Group 

 
Source: Own elaboration. 

To illustrate the development of oil’s contribution to the spillover index, Figure 7 

shows a comparison of the volatility spillovers from oil to the three ethanol feedstocks 
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considered. One can observe in this graph that oil spillovers to corn, wheat and sugar 

markets reach similar important peak values in different periods. During the third 

quarter of 2003, for instance, spillovers to wheat represent 27% of the spillover index. 

Between 2007 and 2008 oil’s volatility spillovers to corn and sugar attain similar 

levels. After 2011, however, oil spillovers to agricultural markets decline, while the 

spillover index rise. This suggests more volatility dynamics across agricultural 

markets than between these markets and oil.  

Table 6. Relative average contributions to the spillover index, Biodiesel Group 

 
Source: Own elaboration. 

Note: Numbers in this table represent shares of the spillover index. 

Table 6 displays the individual volatility contributions among the commodities which 

make up the Biodiesel Group. In this case, oil’s volatility transmissions to agricultural 

markets are smaller (21%). Accordingly, much of the volatility spillovers derive from 

vegetable oil markets (74%). Although oil remains a net volatility transmitter, the 

volatility spillovers received from agricultural markets (6%) are almost three times 

smaller than for the case of cereals and sugar (16%). This is partially explained by the 

low integration of rapeseed oil to international markets. Besides oil, soybean oil, and 

rapeseed oil are also net volatility transmitters. Palm oil, on the other hand, is the only 

net volatility receiving market. Based on empirics, we established the following 

causality order for this group: oil, soybean oil, rapeseed oil and palm oil. 

Consequently, it is not surprising that palm oil is the major volatility receptor as is the 

case of wheat in the ethanol group. 

Figure 8 depicts the evolution of the spillovers from oil to vegetable oils. Oil’s 

spillover contributions to vegetable oils range, on average, between 6% and 8%. In 

August 2002, however, there was a large volatility spillover episode to the soybean oil 

market representing 36% of the spillover index alone. Between 2007 and 2008 the 

remaining vegetable oils were particularly volatile, reaching values between 20% and 

35%. However, their influence in the spillover index  declined  rapidly  and  remained 
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Figure 8. Relative contribution of oil to the spillover index, Biodiesel Group 

 
Source: Own elaboration. 

mostly close to or below 10% after 2008. Since the beginning of 2009 volatilities 

originating and spilling over to agricultural markets are responsible for the largest 

share of the spillover index, suggesting a minor role of oil during this period.   

3.6 Conclusions  

Biofuel production is mainly driven by political decisions in developed (and to an 

increasing extent, in developing) countries, which assign large budgets to promote the 

ethanol and biodiesel industries as a way to reduce greenhouse gases and manage 

their grain surpluses.  

While ethanol production is concentrated around two countries (the US and Brazil) 

and two major feedstocks (corn and sugar cane), biodiesel is more evenly distributed 

(Germany, France, US, Argentina and Brazil). Although biodiesel feedstocks are 

more diverse, they have low productivities, with the exception of palm oil. 

Comparatively, ethanol feedstocks are more productive. Owing to the generous 

support given to biofuels, between 1991 and 2011 ethanol and biodiesel production 

grew at an average annual rate of 9% and 67%, respectively. However, due to the low 

energy density of agricultural commodities as compared to fossil fuels, the degree of 

substitution of oil-based liquid fuels by biofuels has been negligible and at the 

expense of large amounts of foodstuffs. This in turn has destabilised agricultural 

markets.  

Until September 2008, the levels of volatility spillovers in the Biodiesel Group 

remained unaffected when controlling for the effect of the US dollar exchange rate 
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volatility. Conversely, during this period, volatility spillovers in the Ethanol Group 

appeared to be overestimated. During the post-crisis period, however, exchange rate 

volatility might have induced more volatility in both groups amplifying the 

connection among markets.  

The Ethanol Group shows a cyclical pattern with alternating periods of high and low 

volatility transmission among markets before, during and after the financial crisis. 

The Biodiesel Group displayed a more persistent development. It started an upward 

trending behaviour at the beginning of 2005, which accelerated between 2011 and 

2012, and declined abruptly subsequently. Although the average spillover index for 

the Ethanol Group is lower (9.2%) if compared to the Biodiesel Group (11.4%), oil’s 

contribution to ethanol feedstocks is comparatively larger (26%) than for biodiesel 

feedstocks (21%). This situation denotes a closer relation between oil and 

cereals/sugar. However, since 2009 oil’s contribution to both indices decline, 

suggesting larger risk transmissions among agricultural markets and a secondary role 

of oil. 

3.7 Policy recommendations 

The analysis of volatility spillovers in the two groups has clearly indicated that these 

spillovers between the products rarely follow a simple pattern. We find episodes when 

the notoriously high oil price fluctuations induce additional volatility in key 

agricultural markets. These episodes are generally characterised by some common 

features. First, the spillovers seem to be particularly strong when the prices of the 

agricultural products are comparatively high. This suggests that volatility spillovers 

are more likely to occur in periods when stocks are low. Second, the magnitude of 

spillovers in these episodes has increased over time. Finally, the prevalence of 

spillover periods is product specific, and seems to be driven by substitutability of the 

products in food, feed, or biofuel use. These three characteristics suggest that the 

biofuel policies do indeed contribute to higher volatility spillovers from the oil market 

to key agricultural products. Hence, the biofuel policies should be carefully re-

considered, taking this finding into account. The fact that spillovers are relatively 

small for most of the pre-crisis period cannot be used as an argument that price 

volatility spillovers would not matter. The key episodes, even if they are limited in 

number, are the ones that are politically important. At those times, the impact of oil 



  78   

price volatility on agricultural markets, which are already suffering from higher price 

levels and inflated uncertainty, exacerbates the situation, harming poor and vulnerable 

consumers, and reducing the incentives to agriculture at a time when the price level 

would particularly favour an expansion of production.  

However, biofuel policies are unlikely to be radically reformed, at least in the short 

run. Our analysis of volatility spillovers suggests that mitigating measures, which 

have the potential to limit the transmission of price volatility from oil to agriculture, 

might constitute a politically feasible yet helpful approach. These measures could 

include a more flexible handling of blending requirements for biodiesel and ethanol, 

an approach which is already partially in use in Brazil and the US. Developing 

countries contemplating increasing their support of biofuels should keep this in mind 

when designing their policies. Publicly managed buffer stocks held by a single 

country, on the other hand, seem to be considered as an alternative tool by policy 

makers, too. However, their potential for curbing price volatility seems rather limited, 

especially in those periods when oil markets drive agricultural price volatilities, given 

the drastic difference in the relative size of the markets.  
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Appendix 

Table 7: Volatility drivers 

 
Source: Own elaboration. 
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4 Volatile agricultural markets, the role of oil 

before and after the Great Recession 

This article, which corresponds to section 4 of the thesis document, is a joint effort with 
Prof. Dr. Helmut Herwartz from the Faculty of Economics, Chair for Econometrics. Its 
introductory part is built on the paper presented in the previous section. However, it 
proposes a new, refined and more flexible method to estimate directional spillover 
indices.  

4.1 Introduction 

Although the existing literature attributes the increasing volatility of agricultural 

prices to different factors and their interactions, there is special interest in the effects 

of oil price changes in agricultural markets.22 The rise of food prices combined with 

periods of high price uncertainty leads to considerable economic private and social 

costs. Price uncertainty may impact countries differently depending on whether they 

are net food importers or exporters, their degree of integration to international markets 

and the effectiveness of their domestic policies. Developing countries are especially 

exposed to food price volatility, since food expenditures represent a high budget share 

for most of their population. Those living in urban areas, which are net food buyers, 

are particularly affected. Price surges may prevent them from acceding to food in 

appropriate quantity and quality. Additionally, price instability hinders investments in 

agriculture putting further pressure on production and food prices in the mid-term. 

This situation, in turn, may lead to social unrest and political instability worldwide 

(FAO et al., 2011; Prakash, 2011). Assuring stable agricultural markets is 

                                                 
22 For a review of the different drivers of price volatility in agricultural markets see Brümmer et al. 
(2013).  



  82   

consequently a pre-requisite to address food security in developing countries (FAO, 

2013). 

Oil production is centred in politically unstable developing countries, most of them 

cartelised in the Organisation of the Petroleum Exporting Countries (OPEC). Since 

OPEC holds 80% of world’s proven oil reserves (OPEC, 2015), uncertainties 

originating in these countries send shock waves throughout the world’s economy, 

including sensible sectors like agriculture. The linkage between oil and agricultural 

commodities was traditionally driven by the use of oil derivatives as inputs for crop 

production (e.g. fuel, fertilisers, pesticides, etc.), processing and transporting. With 

the introduction of biofuels, however, agricultural commodities became energy 

carriers themselves, adding complexity to the oil-food relation. As close substitutes 

for fossil fuels, biofuels derived from cereals, oil seeds and sugar crops now compete 

directly for staple foods. The literature concerned with volatility spillovers between 

energy and food markets is recent. While most articles focus on finding significant 

correlations or causalities in the Granger sense (Granger, 1969) (e.g. Mensi et al., 

2014; Busse et al., 2011; Nazlioglu et al., 2013; Harri and Hudson, 2009), only few 

studies attempt to quantify the role of oil in shaping volatility spillovers in agricultural 

markets (e.g. Trujillo-Barrera et. al, 2012). The objective of this article is 

consequently twofold: to provide a novel and flexible dynamic measure of the share 

of volatility spillovers in agricultural markets explained by price variations of oil; and 

to offer an improved understanding of the complex and evolving relation between 

agricultural and energy markets. We assess the development, magnitude and direction 

of volatility spillovers between oil and commonly used biofuel feedstocks. Our 

analysis builds on the notion of spillover indices obtained from forecast error variance 

decompositions (Diebold and Yilmaz, 2009, 2012, 2014). Instead of adopting this 

approach directly, however, we follow a more recent method introduced by Fengler 

and Herwartz (2015). Their spillover indices are derived from linearized versions of 

multivariate GARCH (MGARCH) models. Implemented at the daily frequency this 

framework signals spillover dynamics in a timely manner. As a further distinction 

from indices originating from Diebold and Yilmaz (2009), the vectorisation of 

MGARCH models is informative for spillover patterns, characterising both price 

variations and covariations. 



  83   

In section 4.2 we provide an overview of the evolution of the biofuel industry and its 

role on shaping the new food-energy nexus, as a context for the interpretation and 

discussion of results on second order price transmissions, together with a condensed 

review of the related work and its main findings. Section 4.3 describes the data, 

especially concerning its second order moment dynamics. In section 4.4 we propose a 

new methodology to quantify the impact of (co)variation of oil prices on volatility 

spillovers in agricultural markets. Empirical findings are provided in section 4.5. We 

conclude in section 4.6. 

4.2 Biofuels and the food-energy nexus 

Ethanol is derived mainly from sugar and starch crops like sugar cane, sugar beats, 

wheat and corn, whereas biodiesel is produced mainly from vegetable oils, e.g., 

soybean oil, palm oil and rapeseed oil. Up to a certain proportion, between 5% and 

10%, biodiesel can be blended with gasoline and diesel, respectively, in unmodified 

motor vehicles. The rapid growth of the biofuel industry was mainly driven by 

political decisions aiming to reduce greenhouse gas emissions, diversifying domestic 

energy sources, and fostering rural development. Between 1991 and 2011, the global 

production of ethanol and biodiesel grew at an average annual rate of 9% and 67%, 

respectively. It reached 86 Billion Lt of ethanol and 21 Billion Lt of biodiesel in 

2011.23 However, the disruptive and discretional character of biofuel policies has 

exacerbated agricultural markets in unforeseeable ways, adding complexity to their 

functioning.24 Typically, the biofuel industry has been supported by a combination of 

consumption mandates and production subsidies, particularly in developed countries. 

In August 2005 the US Government passed the Energy Policy Act, which required the 

consumption of 28 Billion Lt of biofuels (mainly ethanol) by 2012. In December 2007 

the Energy Independence and Security Act pushed biofuel production further, 

requiring a consumption of 136 Billion Lt by 2022. In May 2003 the EU passed a 

Directive (2003/30/EC) to promote the use of renewable fuels, stipulating a 5.75% 

replacement of transport fuels with biofuels by the end of 2010. In April 2009 the EU 

released a new Directive (2009/28/EC), which mandated that 20% of total energy 

consumption should come from renewable sources by 2020 and 10% of transport 

                                                 
23 Own estimates based on F.O. Licht. 
24 For a comprehensive analysis of the effects of the different biofuel policies and how they interact see 
De Gorter et al. (2015). 
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fuels from biofuels. The International Energy Agency has estimated the global 

aggregated subsidy costs of biofuels (including consumption mandates) to be US$ 1.4 

trillion for the period between 2011 and 2035 (Gerasimchuk et al., 2012). The large 

mandates and the substantial production subsidies transformed the US to the major 

ethanol producing and exporting country surpassing Brazil, and the EU to the main 

biodiesel producing and consuming region.25 

After the high price volatility episodes of the food crisis of 2007/2008, there has been 

a renewed interest of the international community in understanding and managing the 

sources of instabilities in agricultural markets. Based on different methodologies and 

assumptions, experts agree that volatility in agricultural markets has been higher since 

2007/2008 when compared to the decades of the 1990s and 2000s (Huchet-Bourdon, 

2011; Gilbert and Morgan, 2010). Consequently, over the last decade some research 

has concentrated on understanding the causes of the new volatility episodes, including 

the role of biofuels.  

Recent studies examine mainly the correlation levels and statistical significance 

between second order moments of agricultural feedstocks and oil. With this aim 

different MGARCH models with BEKK specification (Engle and Kroner, 1995) have 

been used. This method guarantees that model implied (co)variances are positive-

definite under mild conditions, and simultaneously accounts for cross equation 

causality among the considered variables. For the parameterisation of the conditional 

mean other methods are used, e.g. Autoregressive Moving Averages (ARMA), Vector 

Autoregressive (VAR), or Vector Error Correction Models (VECM) (Engle and 

Granger, 1987), when there is evidence of long run relationships among the price 

series. Most of these studies find significant correlations, indicating some degree of 

spillovers from oil to agricultural markets. Few authors also use exogenous 

covariates. For instance, Chang and Su (2010) treat oil exogenously in the conditional 

mean, whereas Serra and Gil (2012)  use forecasts of the corn stock-to-use ratios and 

interest rate volatility as weakly exogenous explanatory variables in the conditional 

variance. Another frequently employed method is the Dynamic Conditional 

Correlation (DCC) model of Engle (2002). It shows how correlations, in this case, 

between price changes of oil and agricultural commodities evolve over time. Unlike 

                                                 
25 More information on lead biofuel producing countries is given in Appendix 1. 
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MGARCH models, this model framework does not account simultaneously for cross 

effects among variables to estimate the conditional variance. Authors using this 

method find increased correlations between oil and agricultural products especially 

after the financial crisis of 2007/2008. As an alternative to correlation estimates, other 

studies apply Granger-causality tests in variance. Some of them find oil volatilities 

Granger-causing volatilities in grain markets, whereas others do not, especially for 

sample periods before the financial crisis.26  

Although our review is not exhaustive, it is striking to note that despite of conceptual 

differences, correlations and Granger-causalities are described interchangeably as 

“volatility spillovers” throughout the literature. Most of the reviewed articles provide, 

at different levels of significance, estimates of the marginal effects of oil volatility on 

different agricultural products. As a notable exception Trujillo-Barrera, Mallory, and 

Garcia (2012) propose a measure of the total contribution of oil volatility to two 

agricultural products, namely corn and ethanol.27 A contribution of this article is 

consequently to offer a more flexible method, which –besides providing timely 

estimates– delivers information on alternative transmission channels, without 

imposing unidirectional spillovers from the oil market. 

4.3 Data 

Covering the period between October 3, 1995 and February 27, 2015 we use daily 

data for international spot prices of wheat, corn, sugar, soybean, soybean oil, palm oil 

and oil, and one futures series28, namely rapeseed oil. All prices were obtained from 

Thomson Reuters’ Data Stream.29 Hereafter in this section, and to account for the 

effects of the 2007/2008 financial crisis and the subsequent Great Recession, we split 

the series into two periods: from October 1995 to December 2005 and from January 

2006 to February 2015 (Nazlioglu, Erdem and Soytas, 2013).  

                                                 
26 See Table 14 of Appendix 2 for a summary review of the recent literature on price volatility 
transmission between energy and agricultural markets. 
27 Trujillo-Barrera et al. (2012) build “Volatility Spillover Ratios”, which show that oil’s volatility 
explains, on average, 14% and 16% of corn and ethanol volatilities, respectively. 
28 We use a futures price for rapeseed oil because of the lack of spot prices for this commodity. 
29 Data Stream codes: OILWTIN, WHEATHD, CORNUS2, WSUGDLY, SOYADSC, SOYAOIL, 
PALOLCD, RPOLDNE. 
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To uncover the development of second order moment dynamics, this section describes 

some basic statistics of the logarithmic price changes for the considered commodities. 

Secondly, we estimate conditional volatilities and depict their evolution to identify 

periods of high uncertainty, which could potentially govern volatility spillovers 

among markets. Finally, a measure of the linear relation is provided as a means to 

expose the degree of second order interdependence between the considered markets. 

4.3.1 Log price changes of energy and food markets 

We provide in this section a summary of the statistical characteristics of the log price 

changes that are used later to assess the transmission of (co)variations of oil prices to 

agricultural commodities commonly used as biofuel feedstocks. 

Table 8. Descriptive statistics of the data 

 
Source: Own elaboration. 

Note: (I) corresponds to the pre-crisis period 10.1995-12.2005 and (II) corresponds to the post crisis 
period 01.2006-02.2015. Δ% is the percentage change from period (I) to (II).  

Table 8 shows that all commodities, except oil, rapeseed oil and sugar, face a 

declining price trend during the pre-crisis period, evidenced by their negative average 

log price changes. Average price changes become, however, positive during the post 

crisis episode owing to the price recovery as experienced by agricultural 

commodities’ super cycle starting around 2000 (Erten & Ocampo, 2013). In general, 

standard deviations increase during this period, too, especially for wheat (64%) and 

corn (34%). In the post crisis period, excess kurtosis, associated either with extremely 

small or large (return) values, increases for oil (38%), soybean oil (23%) and 

particularly for wheat (100%). The remaining commodities experience a reduction of 

excess kurtosis, especially rapeseed  (-73%) and soybean oil (-49%). From this point 

and for the subsequent analysis, we separate the agricultural commodities according 

to their suitability either for ethanol or biodiesel processing. Doing so, we account for 

substitutability effects among them. We build three four-variable systems, each 

containing log price changes of oil and three agricultural commodities. The ‘Ethanol 
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Group’ comprises oil, corn, wheat and sugar. The ‘Biodiesel Group’ contains oil, 

soybean oil, rapeseed oil and palm oil. The last group combines a mix of both ethanol 

and biodiesel feedstocks, namely oil, corn, wheat and soybean. Corn, wheat and 

soybean, together with rice, account for almost 75% of the world’s food production in 

terms of caloric content and are close substitutes in production and/or consumption. 

On a per-calorie basis their prices are not only similar, but also tend to co-move over 

time (Roberts and Schlenker, 2009). The addition of oil to every group allows us to 

measure (co)variation dynamics (direction and magnitude) among energy and 

agricultural markets.  

4.3.2 Development of market uncertainties in commodity markets 

To understand intensity and direction of volatility transmission dynamics among 

commodity markets, we depict the evolution of their respective conditional volatilities 

that are analysed by means of GARCH(1,1) specifications. Doing so, we obtain useful 

information on the timing and degree of market uncertainties, which allows to identify 

potentially destabilizing effects originating in commodity markets. 

Figure 9. Conditional GARCH variances of agricultural markets 

 
Source: Own elaboration. 

Note: This graph exposes the development of the conditional variances estimated by means of a 
GARCH(1,1) model for the set of agricultural commodities and oil, analyzed in this article.  

One can observe from Figure 9 that wheat volatilities remain at low levels until the 

beginning of 2008. Subsequently, however, and especially between 2012 and 2013 the 

wheat market exhibits episodes of much larger volatility. Corn, soybean oil and 

soybean maintain low volatility levels before and after the financial turmoil of 
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September 2008. There are only two episodes in mid 2004 and mid 2005 when 

soybean volatility experienced peak values. Similarly, the sugar market remains 

relatively tranquil along the entire period, with the exception of some isolated (highly 

volatile) events at the mid of 1999 and 2002. The oil market behaves volatile until the 

beginning of 2003 and especially during the last quarter of 2008. In the after crisis 

period, though, its price volatility is comparatively much lower. The palm oil and, 

particularly the rapeseed oil market, behave predominantly volatile during the decade 

preceding the food and financial crisis of 2007/2008. The international rapeseed oil 

market is relatively thin and subject to discretionary domestic policies of the major 

producing countries (EU, China and Canada). Based on information from the USDA 

Foreign Agricultural Service,30 between 1995 and 2015, on average, only 13% of 

rapeseed oil’s production was internationally traded. Additionally, it is also the main 

biodiesel feedstock in the EU and largely affected by its biofuel policies. Palm oil is a 

tree crop and its supply is less elastic than annual crops like soybean or rapeseed. It is 

therefore more responsive to unexpected demand or supply shocks. Between 1995 and 

2005 its global production was, on average, only one third of its production in 2015. 

During the post crisis episode however, both rapeseed oil and palm oil markets 

stabilise and their volatility levels have been declining sizeably.  

4.3.3 Unconditional second order moment interactions among 

commodities 

Besides volatility levels, the degree of connection between markets is an important 

determinant of the direction and intensity of volatility spillovers across markets. 

Highly volatile but disconnected markets, for instance, are unlikely to transmit 

shocks. In order to assess the degree of integration among agricultural commodities, 

and between them and oil, we estimate their respective co-volatilities. Co-volatility, 

also known as co-kurtosis, shows the strength of linear dependence between second 

order moments of two random variables. It is positive by construction and ranges 

from 0 to 1. Building upon Ang et al. (2006), co-volatility between two commodity 

markets 𝑖𝑖 and 𝑗𝑗 reads as  

                                                 
30 Own estimates based on information from USDA Foreign Agricultural Service 
http://apps.fas.usda.gov/psdonline/psdQuery.aspx , acceded on March 5th, 2016. 

http://apps.fas.usda.gov/psdonline/psdQuery.aspx
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where 𝑟𝑟𝑡𝑡,𝑖𝑖 and 𝑟𝑟𝑡𝑡,𝑗𝑗 are the log price chnages of commodities 𝑖𝑖 and 𝑗𝑗, and 𝜇̅𝜇𝑖𝑖 and 𝜇̅𝜇𝑗𝑗 are 

their respective sample means.  

Table 9. Co-volatilities 𝑪𝑪𝒊𝒊𝒊𝒊 for the commodity groups and periods 

 
Source: Own elaboration. For further notes see Table 8. 

Table 9 documents co-volatility estimates for the previously defined commodity 

groups. With some exceptions, the degree of integration among markets rose steeply 

during the post crisis period. However, despite the sharp increments, co-volatility 

levels still remain low to moderate ranging from 0.13 to 0.53. When considering co-

volatilities between oil and the different biofuel feedstocks, vegetable oils stand out. 

Their degree of integration with oil rose in the post crisis episode by a factor of 3 and 

4 for soybean oil and rapeseed oil, respectively. The development of the market 

integration between oil and grains, although not as steep as for vegetable oil, was also 

important, especially for corn and soybean. When considering dynamics only among 

agricultural markets, again, vegetable oils experienced the steepest increase of 

integration during the after crisis episode. Similarly, co-volatilities of corn with sugar 

and remarkably with soybean are also sizeable.  

4.4 Methodology 

The quantification of volatility/risk transmission in speculative markets has been 

attracting large interest in the finance literature, in particular, with the emergence of 

the great financial crisis. Among several interdependence measures that have been put 

forth recently (e.g. Acharya et al., 2010; Adrian and Brunnermeier, 2016), the 

spillover indices suggested in Diebold and Yilmaz (2009, 2012, 2014) are closest 
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related to standard diagnostics commonly known from the literature on Vector 

Autoregressive (VAR) models (Lütkepohl, 2007). These statistics are basically 

forecast error variance decompositions derived from vector systems of realised 

volatilities. Fengler and Gisler (2015) point out that the concentration on variance 

spillovers neglects transmission channels operating through market covariations. 

Furthermore, the implementation of spillover indices in the spirit of Diebold and 

Yilmaz (2012, 2014) requires the specification of dynamically stable VARs over 

extended time periods comprising, say, one year of observations. While using moving 

windows of sample information may offer insights into time variation of market 

interdependence to some extent, such statistics are representative for medium sized 

time periods (a trading year, say). Motivated by the natural interest in more timely 

assessments of (local trends) in market interdependence, Fengler and Herwartz (2015) 

propose spillover indices in the spirit of the statistics in Diebold and Yilmaz (2012, 

2014) but with reference to linearised multivariate GARCH processes in their BEKK 

form. 

To measure cross-market volatility spillovers at the daily frequency, it appears natural 

to rely on a high frequency model specification such as MGARCH processes. Among 

the various representations of second order dynamics,31 the BEKK model (Engle and 

Kroner, 1995) appears particularly convenient as it allows a rich cross equation 

dynamic structure on the one hand. On the other hand it implies positive definite 

covariance patterns under mild conditions. Fengler and Herwartz (2015) derive 

measures of volatility propagation (transmission and reception) from a vector 

ARMA(1,1) model that is derived from the linear representation of a squared BEKK 

process (comprising squared returns and return cross-products). Their approach is 

briefly outlined next.32  

A BEKK(1,1)-model reads as   

 𝑟𝑟𝑡𝑡 =  𝜀𝜀𝑡𝑡 =  𝐻𝐻𝑡𝑡
1 2⁄ 𝜉𝜉𝑡𝑡 ,  (8) 

 𝐻𝐻𝑡𝑡 = 𝐶𝐶𝐶𝐶′ + 𝐹𝐹′𝜀𝜀𝑡𝑡−1𝜀𝜀𝑡𝑡−1′ 𝐹𝐹 + 𝐺𝐺′𝐻𝐻𝑡𝑡−1𝐺𝐺, (9) 

                                                 
31 see Bauwens et al. (2006) for a review treatment of multivariate GARCH models. 
32 see Fengler and Herwartz (2015) for a detailed discussion. 
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where 𝑟𝑟𝑡𝑡 is an 𝑁𝑁-dimensional vector of log price changes, 𝜉𝜉𝑡𝑡~𝑁𝑁(0, 𝐼𝐼𝑁𝑁) is an 𝑁𝑁-

dimensional innovation vector, and 𝐻𝐻𝑡𝑡 =  𝐸𝐸𝑡𝑡−1[𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡′] is the conditional covariance 

matrix of 𝑟𝑟𝑡𝑡. Throughout, the log price change of oil is the first element of 𝑟𝑟𝑡𝑡 in each 

commodity system. Model parameters are collected in parameter matrices 𝐺𝐺, 𝐹𝐹 and 𝐶𝐶, 

with the latter being lower triangular. Table 15 in Appendix 3 provides model 

estimates for the three commodity groups. To apply decomposition techniques that are 

common in the VAR literature, the BEKK model is reformulated in its so-called half-

vec form describing the determinants of the non-trivial elements of 𝐻𝐻𝑡𝑡. With vech (⋅) 

denoting an operator that stacks the elements on and below the diagonal of an 𝑁𝑁 ×  𝑁𝑁 

square matrix into a 𝑁𝑁∗ = 𝑁𝑁(𝑁𝑁 + 1) 2 ×  1⁄  dimensional vector, the half-vec model 

is 

 ℎ𝑡𝑡 =  𝜔𝜔 +  𝐴𝐴𝐴𝐴𝑡𝑡−1 +  𝐵𝐵ℎ𝑡𝑡−1,  (10) 

where ℎ𝑡𝑡 = vech(𝐻𝐻𝑡𝑡) and 𝜂𝜂𝑡𝑡 = vech(𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡′). Moreover, 

 𝜔𝜔 = vech(𝐶𝐶𝐶𝐶′), 𝐴𝐴 = 𝐷𝐷𝑁𝑁+(𝐹𝐹⨂𝐹𝐹)′𝐷𝐷𝑁𝑁 and 𝐵𝐵 = 𝐷𝐷𝑁𝑁+(𝐺𝐺⨂𝐺𝐺)′𝐷𝐷𝑁𝑁 (11) 

with  𝐷𝐷𝑁𝑁 and 𝐷𝐷𝑁𝑁+ denoting the so-called duplication matrix and its generalised inverse, 

respectively. From the half-vec model it is convenient to define a linear innovation 

process as  

 𝑢𝑢𝑡𝑡 = 𝜂𝜂𝑡𝑡 − ℎ𝑡𝑡. (12) 

The process 𝑢𝑢𝑡𝑡 has mean vector zero by construction, is free of serial correlation but 

heteroskedastic, Ω𝑡𝑡 = 𝐸𝐸𝑡𝑡−1[𝑢𝑢𝑡𝑡𝑢𝑢𝑡𝑡′]. Hence, apart from second order heterogeneity 𝑢𝑢𝑡𝑡 

can serve as an innovation process in a vector MA representation of the squared 

returns and their cross products in 𝜂𝜂𝑡𝑡 = vech(𝜀𝜀𝑡𝑡𝜀𝜀𝑡𝑡′). Fengler and Herwartz (2015) 

show that the vector MA representation of 𝜂𝜂𝑡𝑡 obtains  

 𝜂𝜂𝑡𝑡 = 𝜔𝜔 + 𝐴𝐴𝐴𝐴𝑡𝑡−1 + 𝐵𝐵(𝜂𝜂𝑡𝑡−1 − 𝑢𝑢𝑡𝑡−1) + 𝑢𝑢𝑡𝑡 (13) 

                                       =  𝜔𝜔� + Θ(𝐿𝐿)𝑢𝑢𝑡𝑡 (14) 

                                       =  𝜔𝜔� + Θ(𝐿𝐿)Ω𝑡𝑡
1/2Ω𝑡𝑡

−1/2𝑢𝑢𝑡𝑡  (15) 
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                                       =  𝜔𝜔� + Ψ𝑡𝑡(𝐿𝐿)𝜈𝜈𝑡𝑡 , (16) 

where 𝒜𝒜 = 𝐴𝐴 + 𝐵𝐵, 𝜔𝜔� = (𝐼𝐼 − 𝒜𝒜)−1𝜔𝜔 and Θ(𝐿𝐿) = (𝐼𝐼 − 𝒜𝒜𝒜𝒜)−1(1 − 𝐵𝐵𝐵𝐵). Invertibility 

of (1 −𝒜𝒜𝒜𝒜) holds under assumption that the spectral radius of 𝒜𝒜 is less than unity 

(see Engle and Kroner, 1995). Noticing that the elements in 𝑢𝑢𝑡𝑡 are contemporaneously 

correlated, Cov[𝑢𝑢𝑡𝑡] = Ω𝑡𝑡, the effects of orthogonalised shocks, denoted 𝑣𝑣𝑡𝑡 =

Ω𝑡𝑡
−1/2𝑢𝑢𝑡𝑡, are retrieved from the model in (16) as 

 Ψ𝑡𝑡(𝐿𝐿) = Θ(𝐿𝐿)Ω𝑡𝑡
1 2⁄ . (17) 

Unlike in standard VAR analysis33 the impulse response matrices Ψ𝑡𝑡(𝐿𝐿) are time 

varying, since they depend on the time local covariance decomposition Ω𝑡𝑡 =

Ω𝑡𝑡
1 2⁄ Ω𝑡𝑡

1 2⁄ , where Ω𝑡𝑡
1 2⁄  is the symmetric matrix constructed from the eigenvalues and 

(square roots of) eigenvalues of Ω𝑡𝑡. Moreover, it is noteworthy that the covariance of 

𝑢𝑢𝑡𝑡 depends on fourth order moments of the innovations 𝜉𝜉𝑡𝑡 since 𝑢𝑢𝑡𝑡 is the linear 

innovation of the squared MGARCH process. Fengler and Herwartz (2015) evaluate 

the fourth order moment structure and show that the half-vec model representation is 

convenient to solve the prediction problem for Ω𝑡𝑡 to obtain spillover measures up to 

distinguished (forecast) horizons 𝐷𝐷. With the vector MA representation in (13) one 

can now define spillover measures in the spirit of Diebold and Yilmaz (2012, 2014) 

which apply at the daily frequency. Specifically, the proportion of the 𝐷𝐷-step ahead 

forecast-error variance of variable 𝑖𝑖, accounted for by innovations in variable 𝑗𝑗, is 

given by 

 
𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
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  , (18) 

where 𝜓𝜓𝑖𝑖𝑖𝑖
(𝑡𝑡,𝑑𝑑) is a typical element of the d-step ahead effect matrix determined in time t 

(Ψ𝑑𝑑,𝑡𝑡). To fully assess the result in (18) it is important to notice that the ‘variables’, 

comprising 𝑢𝑢𝑡𝑡 refer to squared returns (variances) and cross products of returns 

(covariances). Similar to the interpretation in Diebold and Yilmaz (2012, 2014) the 𝑖𝑖-

                                                 
33 see Diebold and Yilmaz (2012) or Lütkepohl (2007). 
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th (j-th) columns (rows) of the matrices Ψ𝑑𝑑,𝑡𝑡 ,𝑑𝑑 = 1, … ,𝐷𝐷, quantify transmission 

(reception) patterns among variables 𝜂𝜂𝑖𝑖 and 𝜂𝜂𝑗𝑗, 𝑖𝑖 ≠ 𝑗𝑗. 

4.4.1 Volatility spillover indices 

By means of a linearised BEKK model we deliver subsequently spot measures of 

spillover dynamics between energy and agricultural markets, incorporating also 

covariance transmission channels. This methodology provides handy and timely (i.e. 

daily) tools to monitor the evolution of the degree of volatility transmission among 

agricultural markets and between them and other potentially destabilising markets like 

oil. The indices, besides providing information on which market is transmitting and 

which receiving volatility, in our particular case, also show the development of oil’s 

contributions to uncertainties in (selected) agricultural markets, both at an aggregated 

level and for individual markets. 

4.4.1.1 General spillover indices 
The aggregated indices outlined in this section are generic in scope and deliver 

estimates of spillover dynamics without individualising transmission and reception 

volatility patterns. To show the scope of the indices and facilitate their interpretation, 

Figure 10 displays a schematic disaggregation of the information provided by them 

for the case of the ‘Ethanol Group’.  

Figure 10. Structure of 𝚲𝚲𝒕𝒕 for the ethanol group 

 
Source: Own elaboration. 

Note: This graph visualises the relation among the different (co)variation patterns in terms of spillover 
volatility transmissions from markets ‘i’ and rows collect volatility receptions of markets ‘j’. The four 
additional segments, separated by dashed lines, represent specific transmission and reception 
channels clustered in agricultural and energy (co)variation patterns.  

The ‘Total Spillover Index’ (TSI) provides essentially information about the 

interdependence among all 𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑁𝑁∗ markets up to horizon ‘D’. It is an 
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aggregation, either column-wise or row-wise, of the 𝑁𝑁∗ = 10 individual (co)variances 

shown in Figure 10, i.e.  

 
𝑆𝑆𝑡𝑡 =

∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁∗
𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗

𝑁𝑁∗
 . 34 (19) 

Since we are only interested in cross-market dynamics, all ‘own-effects’, i.e., the 

diagonal elements of Λ𝑡𝑡 (Figure 10, in grey) are ruled out. Directional spillovers, 

complementarily, offer evidence on the primacy of the markets in terms of volatility 

transmission. These indices basically identify which markets are net volatility 

transmitters or net receptors. In Figure 10, each column (row) corresponds to 

directional spillover originating in (going to) specific variables in 𝜂𝜂𝑡𝑡. Formally, 

directional spillovers are described as 

               𝑇𝑇𝑖𝑖,𝑡𝑡 =
∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁∗
𝑗𝑗=1,𝑖𝑖≠𝑗𝑗 

𝑁𝑁∗     and    𝑅𝑅𝑗𝑗,𝑡𝑡 =
∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁∗
𝑖𝑖=1,𝑗𝑗≠𝑖𝑖 

𝑁𝑁∗ . (20) 

Row 5 in Figure 10, for instance, contains all the spillovers received by the variance 

of corn (𝜂𝜂𝑗𝑗𝑗𝑗 , 𝑗𝑗 = 5) from the six covariances (𝜂𝜂𝑖𝑖𝑖𝑖, 𝑖𝑖 = 2,3,4,6,7,9), and the remaining 

variances of oil, wheat and sugar (𝜂𝜂𝑖𝑖𝑖𝑖, 𝑖𝑖 = 1,8,10). Similarly, column 5 collects the 

spillovers transmitted by corn’s variance to the remaining (co)variances. Moreover, it 

is also meaningful to compute net transmission effects defined for the variables in 𝜂𝜂𝑡𝑡 

as  

 𝑁𝑁𝑖𝑖,𝑡𝑡 = 𝑇𝑇𝑖𝑖,𝑡𝑡 − 𝑅𝑅𝑖𝑖,𝑡𝑡 . (21) 

For instance, the net transmission for the variance of corn (𝜂𝜂𝑖𝑖𝑖𝑖, 𝑖𝑖 = 5) is the difference 

between the sum of elements in column 5 and row 5. If the result is positive, corn’s 

variance is a net volatility transmitter, whereas a negative outcome quantifies a net 

reception. By construction, ∑ 𝑁𝑁𝑖𝑖,𝑡𝑡 = 0𝑁𝑁∗
𝑖𝑖=1 . 

4.4.1.2 Measuring the influence of oil in agricultural markets 
As we have argued above, understanding the determinants of volatility in agricultural 

markets has been a topic of major interest in the international political agenda since 

the food crisis of 2007/2008. Against this background, the following indices aim at 

separating volatility spillovers between those originating in energy or agricultural 

                                                 
34 To facilitate the notation of spillover indices the underlying forecast horizon D is omitted from the 
notation. 
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markets and identifying whether they spread to similar or different markets. 

Additionally, these indices are suitable to track oil’s volatility transmissions to 

individual agricultural markets.  

To define (group) specific measures of (co)variance spillovers we can decompose the 

space of total volatility spillovers as displayed in Figure 10 in four more specialised 

categories of indices. 

1. The ‘Oil own spillovers’ index summarizes volatility originating and spilling over 

to (co)variations of the oil market  

 
          𝑆𝑆𝑡𝑡

(𝑂𝑂) =
∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
4
𝑖𝑖,𝑗𝑗=1 ,𝑖𝑖≠𝑗𝑗

𝑁𝑁∗  .            
(22) 

2. Similarly, the index of ‘Agricultural own spillovers’ collects volatility spillovers 

originating and impacting only on (co)variations of agricultural markets 

 
    𝑆𝑆𝑡𝑡

(𝐴𝐴) =
∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁∗
𝑖𝑖,𝑗𝑗=5 ,𝑖𝑖≠𝑗𝑗

𝑁𝑁∗ .      (23) 

3. The index of ‘Agricultural cross transmissions/Oil cross receptions’ collects 

volatility originating in agricultural and transmitting only to oil related 

(co)variations, i.e. 

 
                           𝑇𝑇𝑡𝑡

(𝐴𝐴) = 𝑅𝑅𝑡𝑡
(𝑂𝑂) =

∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁∗
𝑖𝑖=5

4
𝑗𝑗=1

𝑁𝑁∗ .   (24) 

4. Analogously, the index of ‘Oil cross transmissions/Agricultural cross receptions’ 

gathers volatility spilling from oil related (co)variations to agricultural markets  

 
                          𝑇𝑇𝑡𝑡

(𝑂𝑂) = 𝑅𝑅𝑡𝑡
(𝐴𝐴) =

∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
4
𝑖𝑖=1

𝑁𝑁∗
𝑗𝑗=5

𝑁𝑁∗ .         
(25) 

By construction, 

              𝑆𝑆𝑡𝑡
(𝑂𝑂) + 𝑆𝑆𝑡𝑡

(𝐴𝐴) + 𝑇𝑇𝑡𝑡
(𝐴𝐴) + 𝑇𝑇𝑡𝑡

(𝑂𝑂) = 𝑆𝑆𝑡𝑡
(𝑂𝑂) + 𝑆𝑆𝑡𝑡

(𝐴𝐴) + 𝑅𝑅𝑡𝑡
(𝑂𝑂) + 𝑅𝑅𝑡𝑡

(𝐴𝐴). 

 

(26) 

The representation in (26) is convenient to identify volatility transmissions/receptions 

of particular markets. In our analysis, for instance, we define oil’s total volatility 

transmissions to agricultural markets as �𝑆𝑆𝑡𝑡
(𝑂𝑂) + 𝑇𝑇𝑡𝑡

(𝑂𝑂)� 𝑆𝑆𝑡𝑡� .  Moreover, since oil 
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market uncertainties potentially threaten the stability of agricultural and food prices, 

we are also concerned with measuring second order effects of oil on individual 

agricultural markets. For this purpose let 𝑎𝑎• = {𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4} denote a set of indices 

of vectors 𝜂𝜂𝑡𝑡  referring to (co)variations involving a particular agricultural market ‘•’. 

With regard to the ‘Ethanol Group’ we have, for instance, • ∈  {𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠}, 

and, focussing on the wheat market 𝑎𝑎𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑡𝑡 = {3, 6, 8, 9}. To unravel the importance 

of (co)variations of oil prices in shaping the volatility reception of single agricultural 

markets we consider ratios of the following type 𝑅𝑅�𝑡𝑡• = 𝑅𝑅f𝑂𝑂𝑡𝑡•/𝑅𝑅𝑡𝑡• where 𝑅𝑅𝑡𝑡• is the total 

volatility received by market ‘•’ and, 𝑅𝑅f𝑂𝑂𝑡𝑡• is the part transmitted from oil markets. In 

specific these indices read, respectively, as 

 
𝑅𝑅f𝑂𝑂𝑡𝑡• =

∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
4
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖𝑖𝑖∈𝑎𝑎•
𝑁𝑁∗      and     𝑅𝑅𝑡𝑡• =

∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁∗
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖𝑖𝑖∈𝑎𝑎•
𝑁𝑁∗  . 

(27) 

4.5 Empirical findings 

We start the assessment of overall second order moment dynamics between major 

staple foods and oil by providing total spillovers 𝑆𝑆𝑡𝑡 as defined in (19). 

Complementarily, we deliver directional spillovers, which order markets according 

their degree of risk transmissions, spanning from net volatility transmitters to net 

receptors. In addition, we isolate the influence of oil on the uncertainty of agricultural 

markets, providing an aggregate estimate of oil risk transmissions to the different 

groups of biofuel feedstocks. Finally, we disaggregate the effects of oil on particular 

agricultural markets.  

4.5.1 Total spillovers  

The total spillover indices 𝑆𝑆𝑡𝑡 measure the linkage or interdependence among second 

order moments of agricultural markets, and between them and oil. Figure 11 shows 

that daily spillover dynamics are, on average, larger for the ‘Mixed Group’, followed 

by the Biodiesel and Ethanol groups. In October 2008, after the financial crisis 

outbreak, all indices reach maximum values (50% - 60%) and remain at higher levels 

(10% - 40%) than during the pre-crisis period, particularly between 2009 and 2012. 

Although for most of the period dynamics in the ‘Biodiesel Group’ remain lower than 

for the ‘Mixed Group’, biodiesel spillovers are remarkably higher between 2000 and 

2004, coinciding with periods of high price volatility in vegetable oil markets.  



  97   

 

Figure 11. Evolution of TSI 

 
Source: Own elaboration. 

Note: The upper graph depicts TSIs for the three commodity groups as measures of connection 
among markets. The lower graph offers a different perspective, showing the relative size of the group 
spillover dynamics vis-à-vis the TSI of the Mixed Group.  

The close substitutability (in production and consumption) among corn, wheat and 

soybean reflects a close integration among these markets, yielding consequently the 

largest TSI for the ‘Mixed Group’. Since there is a weaker relation between sugar and 

corn, and sugar and wheat (see Table 9), the TSI of the ‘Ethanol Group’ is the lowest 

on average. The ‘Biodiesel Group’ shows an intermediate TSI level, owing 

particularly to the increased interdependence among soybean oil, rapeseed oil and 

palm oil during the post crisis episode. Additionally, the relation between oil and the 

vegetable oils has sizeably increased during the same period, coinciding with a 

growing use of oilseeds for biofuels. Soybean oil, for instance, is the main feedstock 

for biodiesel in the US, Argentina and Brazil, whereas palm oil is widely used for 

biodiesel in countries like Indonesia and Thailand, all of them important biodiesel 

producers (see Appendix 1). Moreover, both vegetable oils are extensively 

commercialised in international markets and therefore more exposed to oil market 

swings. On average, between 1995 and 2015, 71% of palm oil and 25% of soybean oil 



  98   

production was exported.35 Although not widely traded, rapeseed oil is the main 

biofuel feedstock in the EU, an important biodiesel producing and consuming region. 

Rapeseed oil’s market is consequently affected largely by European biofuel policies 

rather than by international shocks. 

4.5.2 Directional spillovers   

The ‘Directional Spillover Indices’ 𝑇𝑇𝑖𝑖,𝑡𝑡 and 𝑅𝑅𝑗𝑗,𝑡𝑡 defined in (20) allow not only to draw 

conclusions about the development of the linkages among markets, but also to 

separate the effects by commodity type and patterns of variations and covariations.  

Figure 12. Net directional spillovers 

 
Source: Own elaboration. 

Note: This graph describes the net volatility transmission effects of (co)variation patterns separated 
by type of commodity, namely agricultural and non-agricultural. Net transmissions are calculated as 

                                                 
35 Own estimates based on information from USDA Foreign Agricultural Service 
http://apps.fas.usda.gov/psdonline/psdQuery.aspx , acceded on March 5th, 2016. 

http://apps.fas.usda.gov/psdonline/psdQuery.aspx
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the difference of what a particular (co)variance transmits vis-à-vis what it receives. Positive values 
represent net transmissions, while negative ones denote net volatility receipts.  

Figure 12 depicts the net directional effects of variances and covariances for oil and 

agricultural commodities. In general, for the three commodity groups, oil and 

agricultural variances have been net volatility transmitters, whereas, in particular, 

agricultural covariances were mainly volatility receptors. Between the third quarter of 

2008 and the first half of 2009, however, oil covariances turned into net transmitters 

while agricultural variances became net receptors of price volatility. Until December 

2005, (co)variation patterns in the ‘Ethanol Group’ and ‘Mixed Group’ were mainly 

oil volatility receptors, though at a moderate level. Since then, they turned into net 

transmitters, again excluding the period between September 2008 and June 2009. 

During these months agricultural markets were severely exposed to oil market 

uncertainties adding more volatility to already unstable food prices. After this period, 

agricultural commodities from the ‘Ethanol Group’ and ‘Mixed Group’ start 

transmitting volatility to their respective covariances with oil, driven mainly by the 

relatively high price volatility levels of wheat. Vegetable oils included in the 

‘Biodiesel Group’, behaved as net volatility transmitters until September 2008 

governed by large instability in rapeseed oil and palm oil markets. Between the last 

quarter of 2008 and the first half of 2012 though, they turned into net oil volatility 

receptors. The rapeseed oil market was particularly prompt to oil market shocks 

owing its large degree of co-volatility with oil during the post crisis episode.  

Table 10 shows a summary of the average net directional volatility spillovers for the 

three groups of commodities, distinguishing pre and post crisis developments. As 

such, it provides complementary information to Figure 12. Negative numbers 

correspond to net volatility receptors, while positive numbers refer to net transmitters. 

It is important to notice that the net effects sum up to zero, implying that what one 

variable transmits (either through variances or covariances), another one receives. On 

average, covariation patterns represent two thirds of the total spillover indices 

providing a wealth of information on volatility spillover patterns (see Fengler and 

Gisler (2015)). Covariances are generally net volatility receptors while variances are 

net transmitters. In the ‘Ethanol Group’, wheat and oil are the predominant volatility 

transmitting markets during the post crisis period. Risk transmissions from the corn 

market remain at an intermediate level. Although sugar also transmits some volatility, 
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compared with the other markets its spillovers are the lowest, while its covariances 

are sizeable volatility receptors. Analogously, for the ‘Biodiesel Group’ soybean oil  

Table 10. Average directional spillover indices, all groups 

 
Source: Own elaboration. For further notes see Table 8. 

and oil are the largest volatility transmitting markets, followed by palm oil. Though 

palm oil is the most important volatility transmitter during the pre-crisis period, its net 

transmissions remain almost unchanged after the crisis. This situation points to a more 

neutral role of palm oil in the after crisis period when its (conditional) volatility 

declines (see Figure 9). Rapeseed oil is a net volatility receptor in this group, 

particularly from the soybean oil and palm oil markets. Finally, in the ‘Mixed Group’, 
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while corn and wheat are the largest volatility transmitting markets, oil’s volatility 

transmissions remain moderate. The soybean market fully receives volatility 

transmissions from the rest of markets in this group.  

Owing to the natural dependence of modern agriculture from oil as a key input and as 

an important determinant of biofuel production, it is unlikely that any shock 

originating in agricultural markets affects oil prices. Since oil covariances represent 

linear relations with agricultural markets, the likely channel of price volatility 

transmission flows from oil variation patterns through both the oil and the agricultural 

components of the covariances. However, agricultural variation patterns impact only 

through the agricultural component and not through oil. Moreover, the strength of the 

volatility transmissions is related to the degree of market integration.  

4.5.3 Composite spillover indices and the contribution of oil  

Based on the directional spillovers discussed in the previous section we build new 

composite indices, which separate oil’s effects from volatilities originating in own 

agricultural markets. Additionally, we show the distinct indices to shed some light on 

how the relation between oil and agricultural markets has evolved, especially after the 

food and financial crisis of 2007/2008. We begin providing a global measure of the 

contribution of oil volatility to the different groups of commodities and separate 

subsequently oil’s effects on individual agricultural markets. 

Figure 13 illustrates the development of the spillover indices defined in (22) – (25) for 

the three commodity groups. Indices 𝑆𝑆𝑡𝑡
(𝑂𝑂)and 𝑆𝑆𝑡𝑡

(𝐴𝐴) gather volatility initiating and 

spreading to own oil and agricultural markets, respectively. As depicted by Figure 13, 

own agricultural volatility spillovers account for ca. 60% of TSIs, and are particularly 

significant for the ‘Mixed Group'. Although own oil volatility spillovers account also 

for a large share (20%), they are comparatively lower. Collecting volatility originating 

in oil and spilling over to agricultural markets, 𝑇𝑇𝑡𝑡
(𝑂𝑂) is the most relevant index in our 

analysis. It is remarkably strong along the entire sample period for the ‘Biodiesel 

Group’, suggesting more vulnerability of vegetable oil markets to oil shocks in 

comparison with grains and sugar.  
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Figure 13. Development of own/cross contributions of oil and agricultural 
spillovers as shares of the TSI 

 
Source: Own elaboration.  

Note: This graph depicts the evolution of the four components of the TSI portrayed in Figure 10, and 
defined in (22) – (25), for each of the commodity groups. It shows how the composition of TSI, as 
shares of it, has evolved during the sample period, capturing the periods of high and low oil spillover 
transmissions to agricultural markets (𝑇𝑇𝑡𝑡

(𝑂𝑂)). 

Complementarily, Table 11 provides not only average values for the spillover indices 

shown in Figure 13, but also defines the sum of indices 𝑇𝑇𝑡𝑡
(𝑂𝑂) and 𝑆𝑆𝑡𝑡

(𝑂𝑂)as the total 

Table 11. Average own/cross contributions of oil and agricultural spillovers as 
shares of the TSI 

 
Source: Own elaboration. 
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contribution of oil to volatility spillovers in agricultural markets. It is worth to 

mention that we consider oil’s contributions to own covariances because they 

characterise relations between oil and agricultural markets. Results show that, on 

average, approximately one third of volatility spillovers in agricultural markets might 

be attributed to oil. Moreover, for all the three groups the increment of spillover 

dynamics between energy and food markets (𝑇𝑇𝑡𝑡
(𝐴𝐴), 𝑇𝑇𝑡𝑡

(𝑂𝑂)) points to a stronger linkage 

between these markets after the crisis outbreak.  

Figure 14. Development of the contributions of oil to volatility spillovers in 
agricultural markets  

 
Source: Own elaboration. 

Note: This graph illustrates the variability and levels of the contributions of oil to the total spillover 
dynamics of the different individual agricultural markets during the sample period. Every column 
gathers the set of agricultural commodities corresponding to the biodiesel, ethanol and mixed groups, 
respectively.  

Figure 14 portrays the contribution of oil to volatility spillovers in individual 

agricultural markets. One can observe that oil effects on vegetable oil markets are 

remarkably intense and show the highest variability of the three commodity groups, 

ranging between 3% and 85%. Sugar is the main oil volatility receptor within the 

‘Ethanol Group’ and more prone to oil shocks if compared with corn and wheat 

markets. Its variability is slightly higher than for vegetable oils, fluctuating from 0.5% 

to 85%. Although the ‘Mixed Group’ exhibits the highest spillover dynamics of the 

three groups, its oil spillover contributions to the different agricultural markets –as 

shares of TSI– and its variability (2% – 61%) are the lowest. Spillover dynamics in 

this group are originating predominantly in agricultural markets. The linkage between 
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corn and soybean is remarkably strong in this group during the after crisis episode 

(see Table 9).  

In addition, Table 12 provides average values for the series presented in Figure 14. 

One can observe that after the crisis soybean, soybean oil and sugar are particularly 

affected by shocks from the oil market. In the same period, markets like 

Table 12. Average contributions of oil to volatility spillovers in agricultural markets 

 
Source: Own elaboration. 

corn and rapeseed oil experienced an intermediate increase of their exposure to oil, 

whereas the degree of exposure for (co)variations of wheat and palm oil prices remain 

unchanged. It is important to notice that although the ‘Mixed Group’ shows the lowest 

values of oil’s volatility contribution to agricultural markets, they are precluded by the 

larger spillover dynamics among the agricultural commodities. However, when 

measuring oil spillovers in absolute terms, their levels are (moderately) larger than for 

the other groups. Therefore one may conclude that for grains, smoothing wheat prices 

through a sound stockholding policy, for instance, would be a more effective price 

stabilising measure as trying to prevent oil shocks. Nonetheless, still between one fifth 

and one third of uncertainties in important staple food markets originate and spill 

from the oil market. Therefore, managing oil risk transmissions remains an important 

task to achieve stable food markets. The decision on how to stabilise food prices, 

whether through interventions on the oil or on specific agricultural markets, is likely 

country specific. It depends, inter alia, on the institutional framework, resource 

availability and political economic considerations.  
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4.5.4 Integration between oil and agricultural markets 

We continue the market integration assessment by offering an additional visual and 

formal measure of correlation, which confirms an enhanced interdependence between 

agricultural markets and oil since 2006. 

Figure 15. Synchrony between the conditional GARCH variance of oil and its 
average contribution to the TSI 

 
Source: Own elaboration. 

Note: The average oil’s contribution to the ‘Total Spillover Index’ is an average of the individual 
contributions of oil in each of the three commodity groups. The conditional volatility of oil was 
estimated by means of a univariate GARCH(1,1) model as already shown in Figure 9.  

The upper graph of Figure 15 reveals that although oil’s conditional volatility was 

sizeable during the pre crisis period, its contribution to TSIs remained relatively low. 

It was particularly high during 1998, the end of 2001 and the beginning of 2003. 

However, since the beginning of 2006, oil’s synchronisation with agricultural markets 

has been intensified. One can observe more proportionality between the level of oil 

volatility and the relative size of its contribution to second order price transmission in 

systems of oil and agricultural markets. Unlike during the previous period, states of 

higher oil volatility are coupled more frequently with larger contributions of oil to 

second order moment spillovers. Since oil markets are intrinsically volatile, stronger 

linkages with agricultural commodities render more uncertainty for food producers 

and consumers, a situation which may in turn lead to social and political unrest.  
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Table 13. Rank correlations between oil’s conditional volatility and its 
contributions to TSI  

 
Source: Own elaboration. 

Note: This table provides Spearman’s rank correlation coefficients between oil’s conditional volatility 
and oil’s contribution to the ‘Total Spillover Index’ for the three commodity groups, including the 
average contribution of them as presented in Figure 15. For further notes see Table 8. 

As complementary information to Figure 15, Table 13 provides rank correlations as 

measures of the degree of integration between oil and agricultural markets. In the after 

crisis episode, one can observe that the rank correlation between oil’s (conditional) 

volatility and its time contribution to agricultural markets rose by a factor of two. 

Owing to the larger volatility transmissions (in absolute terms) of oil to the 

agricultural markets included in the ‘Mixed Group’, its rank correlation experienced 

accordingly the largest increase of the three groups. The rank correlation coefficients 

for the ‘Ethanol Group’ and the ‘Biodiesel Group’, though lower, also exhibited a 

steep increase after the crisis. The significant and sharp increments of all rank 

correlation coefficients highlight a tightening relation between agricultural 

commodities and oil over the last decade.  

4.6 Conclusions  

This article provides timely measures to describe the development of volatility 

spillovers between oil and agricultural commodities, which are not only important 

staple foods, but also commonly used biofuel feedstocks (sugar, corn, wheat, soybean, 

soybean oil, rapeseed oil, and palm oil). In order to shed light on the evolution of the 

degree of interdependence between oil and food commodities, we separate the 

analysis into two periods: before (October, 1995 to December, 2005) and after 

(January, 2006 to February, 2015) the 2007/2008 global financial crisis. Starting with 

a simple measure of linear dependence between second order moments, we show that 

in the after crisis period the degree of co-volatility among vegetable oils rises 

considerably, as well as their linkages with oil. Co-volatilities of grains (except 

soybean) and sugar, on the other hand, remain comparatively more stable and 
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moderate. We derive subsequently indices as proposed by Fengler and Herwartz 

(2015) to measure the degree of volatility spillovers among agricultural commodities 

and oil. This approach grounds on linearised multivariate GARCH processes in their 

BEKK form. Hence, different from the measures put forth by Diebold and Yilmaz 

(2009, 2012, 2014), it allows for on-time volatility spillovers monitoring, and 

incorporates rich (co)variance dynamics as suggested by Fengler and Gisler (2015). 

From the three groups of commodities under consideration, the ‘Mixed Group’ shows 

the strongest spillover dynamics, owing to the strong risk transmission between corn 

and soybean markets. We find additionally that oil, wheat and soybean oil markets are 

predominantly volatility transmitters, particularly during the post crisis period. Corn 

and palm oil remain moderate volatility transmitting markets, whereas sugar’s price 

volatility transmissions are low to neutral. Rapeseed oil and soybean behave primarily 

as net volatility receiving markets. Moreover, when considering the whole sample 

period, oil contributes with around one-fifth to volatility spillovers in grains (corn, 

wheat, and soybean) and sugar markets, and almost one third to vegetable oil markets 

(soybean oil, palm oil, and rapeseed oil).  

With major economies like the US and EU growing modestly, China lowering its 

growth rate, and in light of the decision of OPEC countries to maintain oil supplies at 

their current levels, the mid-term scenario for oil appears to be one of low prices and 

volatility. Nonetheless, any disruption of the oil market (e.g. an armed conflict in the 

Middle East; a decision of OPEC to reduce oil supplies; natural disasters, etc.) is 

likely to bring considerable uncertainties to agricultural markets. Measures aiming at 

buffering risk transfers from oil markets may therefore contribute to stabilising 

agricultural prices.  
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Appendix 1 

Figure 16. Major biofuel producing countries, 2011 

 
Source: Own elaboration based on estimates of the Earth Policy Institute with data from F.O. Licht. 

As Figure 16 shows, in 2011 the US accounted for 63% of world ethanol production 

(54 Billion Lt), followed by Brazil with 24% (21 Billion Lt), the EU with 3% (2.7 

Billion Lt) and China with 2% (2 Billion Lt). For the same period the US was the 

largest net ethanol exporter with 2.5 Billion Lt, followed by Brazil (1 Billion Lt) and 

China (200 thousand Lt). The EU accounted for 30% of world biodiesel production in 

2011. Within the EU, Germany was the largest producer (3 Billion Lt) followed by 

France (1.6 Billion Lt), Spain (0.7 Billion Lt), Italy (0.6 Billion Lt) and the 

Netherlands (0.4 Billion Lt). Other large producers were the US with a market share 

of 15% (3.2 Billion Lt), Argentina with 13% (2.8 Billion Lt) and Brazil with 12% (2.6 

Billion Lt). Despite its sizable production capacity the EU remained the world’s major 

biodiesel importer, accounting for almost 100% of net global imports (2.5 Billion Lt). 

Argentina, on the other hand, was the leading net exporter with 1.6 Billion Lt, 

followed by Indonesia (0.3 Billion Lt) and the US (0.2 Billion Lt) (FAPRI and ISU, 

2012). 
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Appendix 2 

Table 14. Literature review summary 

 
Source: Own elaboration. 

 

(Algieri, 2014) (H. Wu & Li, 2013)(T. Serra & Gil, 2012)(Alghalith, 2010; Alom et al., 2011b; Balcombe, 2011; Busse et al., 2011; T.-H. Chang & 

Su, 2010; Du et al., 2011; Gardebroek & Hernandez, 2013; Harri & Hudson, 2009; Kaltalioglu & Soytas, 2011; Liu, 2014; Mensi et al., 

2014; Nazlioglu et al., 2013; Teresa Serra, Zilberman, Gil, & Goodwin, 2011; Teresa Serra, 2011b; Trujillo-Barrera et al., 2012; F. Wu et 

al., 2011; Zhang et al., 2009) 
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Appendix 3 

Table 15. BEKK estimates   

 
Source: Own elaboration. 
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5 Discussion  

Volatility is related to unexpected price changes. It measures the variability of the 

changes in prices associated with market uncertainties. Statistically, it represents the 

standard deviation of the (logarithmic) price changes. Since volatility is not 

observable directly, it must be estimated using some approach. The several 

methodologies to estimate price volatility involve different modelling and assumption 

settings. At the beginning of this document we stated the importance of explicitly 

specifying a model for the expected price in order to distinguish between expected 

and unexpected price changes. Additionally, we identified key elements necessary for 

the correct interpretation of the selected volatility measure. For instance, besides the 

method selection, other important considerations are the correct market definition, the 

data frequency, the time horizon, and whether the analysis is with predictive or 

explanatory purposes.  

The broad objective of this study is to contribute to the understanding of the causes of 

volatility in agricultural markets. The first step involved searching through specialised 

literature to identify different volatility drivers. There are structural and short-term 

factors that provoke uncertainty in agricultural prices. We found that the long-run 

provision of the main grains has been affected by underinvestment in agriculture, 

declining yields, the decrease in production scales, and the increasing frequency of 

weather disruptions. Moreover, consumption in developing countries has been 

growing due to changes in dietary preferences towards protein rich dairy and meat 

products, coupled with a demographic expansion. There are also different elements, 

which exacerbate volatility in the short-term, for instance, unanticipated ‘poor’ 

harvests due to climate disturbances, unpredictability of grain stock levels, and shocks 

coming from cross-related markets like oil. Additionally, market disruptions 

motivated by arbitrary trade-restrictive measures and ‘arguably’ the rapid 

financialisation of agricultural markets further aggravated volatility. Other identified 

long-lasting potential volatility drivers include the future development of biofuel and 

macroeconomic policies and the outcome of on going international trade negotiations.  
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From all these potential drivers we focus on the tightening relation between oil and 

agricultural commodities due to biofuels. The purpose of this work is to introduce 

new evidence on the development of this relationship in order to improve the 

understanding of the volatility dynamics between energy and food markets. The 

linkage between oil and agricultural commodities was traditionally driven only by the 

use of oil as input for crop production, processing, and transporting. Biofuels, 

however, introduced an alternative use for different crops as direct oil substitutes. 

Farmers now have to decide –according to the relative prices they face (and where 

policy incentives play a decisive role)– whether to send crops to the food or fuel 

industry. Particularly, since the food crisis of 2007/2008, there is a wide debate 

between the ones that claim against an expansion of biofuels because of food security 

considerations and others who argue that higher agricultural prices bring more income 

and therefore development to the rural poor. In a paper by Ivanic and Martin (2014), 

for instance, the authors find that an increment of food prices in developing countries 

aggravates poverty in the short run, but in the longer run it raises salaries for unskilled 

workers as well as income for poor farmers. Biofuels, however, not only have the 

potential to increase food prices, they also bring more uncertainty to agricultural 

markets through different channels. According to Wright (2014), owing to the 

permanent character of the mandates and the low responsiveness of supply, stocks 

have steadily declined. Without appropriate levels, the price-stabilising role of storage 

is ineffective against market shocks, resulting in prolonged episodes of high volatility 

(Bobenrieth et al., 2013). Biofuel policies may also contribute to price instability in 

agricultural markets by changing the incentives for biofuels in a discretionary manner. 

Moreover, the strengthened connection between agricultural products and oil, an 

intrinsically volatile market, adds complexity and unpredictability to the functioning 

of agricultural markets. 

5.1 Volatility measures 

Since our interest centres on characterising and interpreting the relation and 

dependences among volatilities in different markets, and not forecasting their values, 

a natural choice for our analysis is to use ex-post volatility measures (realised 

volatility and parametric multivariate GARCH) based on spot prices. As observed in 

Figure 1 (p.26) and corroborated by results presented in Table 1 (p.27), the realised 

monthly volatility presents more variability than its GARCH counterpart. By 
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construction, the realised volatility is the sum of the squared price changes of every 

observation over a predetermined period, in our case around 20 daily return 

observations per month. The GARCH only considers the change between two points 

one month apart i.e. the daily variability is left out. However, if the variation from 

month to month is equivalent to the sum of the daily variations, then both measures 

will show similar point volatility levels. As explained previously, the advantage of 

using realised estimates is that it is a simple, straightforward, model-free measure, 

which does not require distributional assumptions for fixed structures. However, it is 

(high-frequency) data demanding and suffers from scaling problems due to intra-

period noise. Nevertheless, there is one fundamental difference between both 

methods. While realised volatilities are estimated separately for every commodity, the 

multivariate GARCH model simultaneously accounts for cross relations among the 

considered variables. Additionally, its BEKK specification (Engle and Kroner, 1995) 

not only guarantees that implied (co) variances are positive-definite under mild 

conditions, but also provides richer spillover dynamics. 

5.2 Impulse response analysis 

After estimating volatilities for the different markets, the next step is to interprete 

their relations across markets. With this purpose we use impulse response methods. 

Concretely, we describe the development and behaviour of second order moment 

dynamics between these markets deriving the spillover indices proposed by Diebold 

and Yilmaz (2009, 2012). The indices are based on forecast error variance 

decompositions obtained from VARMA representations. VAR models only require 

hypothetical relations among the considered variables while capturing linear 

interdependencies among them. 

In section 3 we derive a simple volatility index for two systems of variables, one 

containing ethanol feedstocks (wheat, corn, and sugar) and oil, and an analogous set 

containing biodiesel feedstocks (soybean oil, rapeseed oil, and palm oil) instead. In 

order to depict volatility spillover patterns, we adopt the approach proposed by 

Diebold and Yilmaz (2009, 2012) to run impulse response analysis rolling subsequent 

windows. They argue in favour of this technique because of the impossibility of fixed-

parameter models to capture secular and cyclical patterns. However, this measure 

only provides average volatility effects and their smoothness depends on the length of 
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the window. When only considering average instead of point estimates, we lose 

accuracy with respect to the real spillover level and information on recent 

innovations.  

To control for cross correlations among markets, we use the Cholesky decomposition 

to orthogonalise impulse responses before obtaining forecast variance 

decompositions. The ordering to identify contemporaneous effects in every system is 

established according to empirical market considerations. Due to the size of the oil 

market and the unfeasibility of being affected by any agricultural market, we assume 

its precedence in both groups. With respect to agricultural markets, we consider the 

relevance of every product as biofuel feedstock together with its relative market size. 

For the Ethanol Group we assume the following declining order: sugar, corn, and 

wheat, whereas for the Biodiesel Group the order is as fallows: soybean oil, rapeseed 

oil, and palm oil. Since we imposed a unidirectional causality ordering among the 

variables, altering this sequence will also modify the direction and magnitude of the 

volatility spillovers. Oil, for example, affects sugar, corn, and wheat. However, none 

of these markets impact contemporaneously on oil. Similarly, by assumption, sugar 

volatility drives volatilities in corn and wheat markets. Corn only impacts on wheat, 

whereas wheat (contemporaneously) does not affect any of the precedent markets. It 

is not surprising therefore that wheat is a net volatility receptor, while oil is a net 

volatility transmitter, though not the largest. Since the chosen agricultural markets are 

more related to each other than with oil, some of them are even larger volatility 

transmitters. However, when comparing agricultural commodities alone, the 

magnitude of their volatility spillovers maintains the pre-imposed ordering sugar-

corn-wheat (see Table 5, p.74). In the case of the Biodiesel Group the direction and 

magnitude of the results are also affected by the ordering selection. In this case, 

rapeseed oil and palm oil are net receptors while oil and soybean oil are net volatility 

transmitters. Again, when considering only cross spillovers in agricultural markets, 

soybean oil leads, followed by rapeseed oil and palm oil respecting the assumed 

causality (see Table 6, p.75). It was striking, however, to observe an atypically large 

share of ca. 9% in the spillover index from corn spillovers to oil.  

However, as shown in Figure 17 corn’s feedback contribution to oil represents, on 

average, only 0.88%. Feedbacks to oil from the other products are even lower. Due to 

the  order-dependence  feature  of  the  Cholesky  decomposition,  we  run  a  sensitive 
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Figure 17. Volatility feedbacks from agricultural markets to oil  

 
Source: Own elaboration. 

Note: The dotted line corresponds to the average of corn’s contribution to oil. It is the value obtained 
from the forecast error variance decomposition. 

analysis to check whether the spillover indices change substantially when rotating the 

causality order among agricultural commodities. We left oil as the dominant market. 

Figure 18. Spillover index for different orderings of the variables, Ethanol Group  

 

Source: Own elaboration. 

As observed in Figure 18, the spillover index for the Ethanol Group remains almost 

invariant to different orderings. The index adjusted for US dollar exchange rate 

volatility moves, on average, between 9.15% for the assumed causality order (sugar-

corn-wheat), and 9.20% for the opposite ordering (wheat-corn-sugar). When not 

considering the exchange rate influence though, the spillover index declines slightly, 

but its largest value (9.11%) corresponds in this case to the assumed ordering while 
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the lowest value (9.05%) is associated with causality going again from wheat to corn 

and to sugar. 

Figure 19. Spillover index for different orderings of the variables, Biodiesel Group 

 

Source: Own elaboration. 

In the case of biodiesel feedstocks, different rotations do not significantly affect the 

spillover index (Figure 19). When adjusting for exchange rate effects, the index 

moves, on average, between 11.39% (soybean oil-rapeseed oil-palm oil, assumed 

order) and 11.71% (palm oil-soybean oil-rapeseed oil); when not adjusting, it moves 

from 12.36% to 12.62% (soybean oil-palm oil-rapeseed oil), where the lower value 

corresponds to our causality selection again. In both cases, for ethanol as well as for 

biodiesel feedstocks, when considering the Dollar Index volatility influence, our 

spillover estimates are the most conservative. Additionally, we checked 

autocorrelation functions for the different rotations in both groups and results confirm 

that auto and cross correlations were removed in each of the 158 rolling periods. 

To cope with the issue of ordering dependence of the Cholesky factorisation, Diebold 

and Yilmaz (2012, 2014) use the generalised impulse response analysis proposed by 

Pesaran and Shin (1998) which provides invariant-to-ordering forecast errors. This 

approach does not orthogonalise innovations; instead, it allows shocks to be correlated 

but account for them using historical information on ‘assumed’ normally distributed 

errors. As in Diebold and Yilmaz (2009), they built spillover indices combining the 

impulse response analysis with rolling windows, arguing in favour of this approach 

because of its simplicity and consistency with different motives for non-stable model 
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parameters. They recognise, however, that this technique is sensitive to the choice of 

the window width. Moreover, rolling windows only reflect average historical 

information of every window, being more useful for backward-looking diagnostics 

rather than for risk surveillance purposes. In section 4 we propose to use the 

symmetric matrix square root –recognised also in Diebold and Yılmaz (2014), p.121, 

– as an alternative invariant-to-ordering identification scheme. The symmetric matrix 

decomposition, different to the generalised impulse response method, has the 

additional advantage of avoiding the normality-imposed assumption of the innovation 

processes. So too, motivated by the convenience of timely information on market 

interdependence for risk-monitoring purposes, we build spillover indices based on a 

(linear) VARMA representation of multivariate GARCH processes in their BEKK 

form (Fengler and Herwartz, 2015). Doing so, instead of obtaining average volatility 

values (as for rolling windows), we deliver spot volatility estimates conditional on 

time-t observations. The BEKK model is a suitable choice because of its flexible 

structure that allows for rich cross-variable interactions while providing positive 

definiteness of the variance-covariance matrix under mild conditions. Moreover, 

following the advice of Fengler and Gisler (2015) on the importance of covariance 

transmission channels, we reformulate the BEKK model in its half-vec form. We 

provide conservative QML t-ratios for all the implied parameters of this model (Table 

15, p.111). Pointing to the criticisms of the normality assumption when deriving 

BEKK models (see e.g. Chang et al., 2015), Jeantheau (1998), and Comte and 

Lieberman (2003) prove that QML estimators are consistent and asymptotically 

normal under specific regularity conditions. However, due to over-parameterisation 

concerns this type of model is able to handle no more than four variables.  

5.3 The results 

The volatility spillover indices proposed in this study measure the portion of the 

variance-covariance matrix attributable to shocks spilling across different markets (off 

diagonal elements). There are individual indices for every system of variables, namely 

the Ethanol Group, Biodiesel Group and Mixed Group. The different indices reflect to 

some degree the level of connection or interdependence between second order 

moments (volatilities) of a set of markets composed basically of oil and commonly 

used biofuel feedstocks. Owing to the order-dependence of the Cholesky 

decomposition, the indices delivered in section 3 are not able to provide additional 
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information concerning the direction and magnitude of the spillovers. For instance, 

we can neither isolate the effects of the different markets on each other, nor can we 

measure their strength, since for every new ordering, both directions and amount of 

spillovers vary accordingly. In section 4 we build more flexible invariant-to-ordering 

indices, which are able to capture these additional features. For instance we find that 

wheat, soybean oil, and oil markets are primarily volatility transmitters during the 

post-crisis period. Corn, palm oil, and sugar also transmit volatility, though less than 

previous markets. Rapeseed oil and soybean markets are, on the other hand, the net 

volatility receptors of the groups. Owing to the pre-imposed causality, the 

methodology used in section 3 delivers different results. For instance, wheat and palm 

oil are the largest volatility receptors. This result is not surprising since both wheat 

and palm oil are assumed to receive volatility spillovers from the remaining markets 

without transmitting any effect back. Additionally, we find that oil contributes, on 

average, 20% to volatility spillovers in grain (corn, wheat, and soybean), 22% in 

sugar, and 28% in vegetable oil markets (soybean oil, palm oil, and rapeseed oil). In 

section 3, again, for ordering considerations it is not possible to obtain similar 

conclusions. 

Although both methods deliver conceptually analogous volatility spillover measures, 

each of them has particular features that render any comparison of their findings 

meaningless. Nevertheless, there is some degree of coherence between their results, 

which allows some useful generalisations to be made:  

 An important share of volatility transmissions originates in agricultural 

markets, although the role of oil is important. 

 After the 2007/2008 food and financial crisis, we find stronger linkages among 

the considered markets, which also includes oil.  

 The linkage among vegetable oils is stronger and therefore transmits more 

volatility across the system than cereals and sugar do.  

 Corn, wheat, and soybean are closely connected markets. 

Dynamics of agricultural markets have grown in complexity, especially during the last 

decade and after the emergence of biofuels. The methodology provided in section 4 is 

flexible and invariant to ordering; however, applying it to systems containing more 

than four variables is cumbersome. Nonetheless, adding some exogenous covariates to 

the system would be a natural step forward in this analysis. The literature suggests 
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candidates such as exchange rates, interest rates, index fund activity, and different 

macroeconomic policies. Another interesting advance would be trying to capture the 

effects of different biofuel policies in important markets like the US, EU, and Brazil. 
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