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Abstract

Insolvency prediction and credit rating are challenging tasks used to evaluate the creditwor-
thiness of commercial enterprises based on qualitative and quantitative attributes. One way
to approach these tasks is machine learning whereby prediction models are built from sam-
ple data. The advantage of machine learning is the automatization of the process obviating
the need for human knowledge in most cases and thus, its high level of objectivity. Nev-
ertheless, this approach does not claim to be perfect which is why it does not completely
replace human knowledge. Since these models can be used as decision support for ex-
perts, interpretable models are desirable. Unfortunately, interpretable models are provided
by only a few machine learners. Furthermore, some tasks in finance like credit rating of-
ten are multiclass problems. Multiclass classification is often achieved via meta-algorithms
using multiple binary learners. However, most state-of-the-art meta-algorithms destroy the
interpretability of binary models.

In this thesis, we study the performance of interpretable models compared to non-
interpretable models in insolvency prediction and credit rating. We look at disjunctive
normal forms and decision trees of thresholds of financial ratios as interpretable models.
We use random forests, artificial neural networks, and support vector machines as non-
interpretable models. Furthermore, we use our own developed machine learning algorithm
Thresholder to build disjunctive normal forms and interpretable multiclass models.

For the task of insolvency prediction, we demonstrate that interpretable models are not
inferior to non-interpretable black-box models. In a first case study, a real-life database with
financial statements of 5152 enterprises is used to evaluate the performance for all models.

In a second case study focused on credit rating, we show that interpretable multiclass
models are even superior to non-interpretable multiclass models. We evaluate their perfor-
mances on three real-life data sets divided into three rating classes.

In these case studies, we compare different interpretable approaches concerning their
model size and type of interpretability. We provide example models built on these real-life
databases and an interpretation for them.

The results show that interpretable threshold-based models are appropriate for classifica-
tion problems in finance. For these tasks they are not inferior to more sophisticated models
like support vector machines. Our algorithm Thresholder builds the smallest models while
its performance is comparable to the other interpretable models.

In our case study on credit rating, interpretable models perform better than for our case
study on insolvency prediction. A possible explanation can be found in the nature of credit
rating. In contrast to insolvencies, credit ratings are man-made. This implies that credit rat-
ings are based on decisions by people thinking in interpretable rules, e.g., logical operations
on thresholds. Thus, we assume that interpretable models match the problems and detect
and represent these interpretable rules.





Zusammenfassung

Insolvenzprognosen und Ratings sind wichtige Aufgaben der Finanzbranche und dienen
der Kreditwürdigkeitsprüfung von Unternehmen. Eine Möglichkeit dieses Aufgabenfeld
anzugehen, ist maschinelles Lernen. Dabei werden Vorhersagemodelle aufgrund von Bei-
spieldaten aufgestellt. Methoden aus diesem Bereich sind aufgrund Ihrer Automatisier-
barkeit vorteilhaft. Dies macht menschliche Expertise in den meisten Fällen überflüssig
und bietet dadurch einen höheren Grad an Objektivität. Allerdings sind auch diese An-
sätze nicht perfekt und können deshalb menschliche Expertise nicht gänzlich ersetzen. Sie
bieten sich aber als Entscheidungshilfen an und können als solche von Experten genutzt
werden, weshalb interpretierbare Modelle wünschenswert sind. Leider bieten nur wenige
Lernalgorithmen interpretierbare Modelle. Darüber hinaus sind einige Aufgaben wie z.B.
Rating häufig Mehrklassenprobleme. Mehrklassenklassifikationen werden häufig durch
Meta-Algorithmen erreicht, welche mehrere binäre Algorithmen trainieren. Die meisten
der üblicherweise verwendeten Meta-Algorithmen eliminieren jedoch eine gegebenenfalls
vorhandene Interpretierbarkeit.

In dieser Dissertation untersuchen wir die Vorhersagegenauigkeit von interpretierbaren
Modellen im Vergleich zu nicht interpretierbaren Modellen für Insolvenzprognosen und
Ratings. Wir verwenden disjunktive Normalformen und Entscheidungsbäume mit Schwel-
lwerten von Finanzkennzahlen als interpretierbare Modelle. Als nicht interpretierbare Mo-
delle werden Random Forests, künstliche Neuronale Netze und Support Vector Machines
verwendet. Darüber hinaus haben wir einen eigenen Lernalgorithmus Thresholder entwick-
elt, welcher disjunktive Normalformen und interpretierbare Mehrklassenmodelle generiert.

Für die Aufgabe der Insolvenzprognose zeigen wir, dass interpretierbare Modelle den
nicht interpretierbaren Modellen nicht unterlegen sind. Dazu wird in einer ersten Fallstudie
eine in der Praxis verwendete Datenbank mit Jahresabschlüssen von 5152 Unternehmen
verwendet, um die Vorhersagegenauigkeit aller oben genannter Modelle zu messen.

In einer zweiten Fallstudie zur Vorhersage von Ratings demonstrieren wir, dass inter-
pretierbare Modelle den nicht interpretierbaren Modellen sogar überlegen sind. Die Vorher-
sagegenauigkeit aller Modelle wird anhand von drei in der Praxis verwendeten Datensätzen
bestimmt, welche jeweils drei Ratingklassen aufweisen.

In den Fallstudien vergleichen wir verschiedene interpretierbare Ansätze bezüglich deren
Modellgrößen und der Form der Interpretierbarkeit. Wir präsentieren exemplarische Model-
le, welche auf den entsprechenden Datensätzen basieren und bieten dafür Interpretationsan-
sätze an.

Unsere Ergebnisse zeigen, dass interpretierbare, schwellwertbasierte Modelle den Klas-
sifikationsproblemen in der Finanzbranche angemessen sind. In diesem Bereich sind sie
komplexeren Modellen, wie z.B. den Support Vector Machines, nicht unterlegen. Unser Al-



gorithmus Thresholder erzeugt die kleinsten Modelle während seine Vorhersagegenauigkeit
vergleichbar mit den anderen interpretierbaren Modellen bleibt.

In unserer Fallstudie zu Rating liefern die interpretierbaren Modelle deutlich bessere
Ergebnisse als bei der zur Insolvenzprognose (s. o.). Eine mögliche Erklärung dieser Ergeb-
nisse bietet die Tatsache, dass Ratings im Gegensatz zu Insolvenzen menschengemacht
sind. Das bedeutet, dass Ratings auf Entscheidungen von Menschen beruhen, welche in
interpretierbaren Regeln, z.B. logischen Verknüpfungen von Schwellwerten, denken. Da-
her gehen wir davon aus, dass interpretierbare Modelle zu den Problemstellungen passen
und diese interpretierbaren Regeln erkennen und abbilden.
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1 Introduction

1.1. Scope of this Thesis . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Thesis Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3. Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 4

Insolvency prediction and credit rating are important tasks in finance. Their purpose is
the evaluation of the economic situation of enterprises. Inaccurate predictions may cause
huge financial losses. Besides more accurate results, it is desirable to achieve a higher
automation of these processes as well. Therefore, the development of computer programs
for these tasks is an important research topic in business informatics. A commonly used
way is to apply machine learning techniques.

Machine learning is an algorithmic method for deriving models from training data. The
aim is to generalize and not to memorize instances in order to evaluate unseen data. Thus, by
swapping the learning sample and recomputing the classifier, economic changes or needs
of different industry sectors can be captured without modifying program logic. Machine
learners are implemented as computer programs. In general, computer programs have the
advantage of objective decision-making on the basis of the provided data and are not in-
fluenced by human opinions. Despite the fact that machine learning methods using annual
accounts offer an automated and rather objective way to achieve high prediction rates for
this task, to a certain degree humans may also subjectively contribute to the development of
computer programs.

For predictions, an accuracy of 100% can rarely be achieved which results in so called
classification errors. Low error rates are tolerable up to a certain limit. Since this limit
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strongly depends on its application, it is not possible to provide a precise value. A distinc-
tion is made between different error types, e.g., misclassifications on insolvent and solvent
enterprises. This distinction is important because a misclassified insolvent enterprise results
in a payment default, whereas a misclassified solvent enterprise only results in the loss of
a possible client which is less crucial. Furthermore, there are naturally much more solvent
than insolvent enterprises which results in so called imbalanced data.

In any case, machine learning models may be incorrect. Therefore, these models cannot
completely replace expensive experts. Thus, our goal is to build objective models with a
low prediction error as a helpful decision support for experts in credit rating. Therefore,
we additionally focus on the interpretability of models. This requires a definition of inter-
pretability in terms of machine learning models. Different positions can be found in the
literature. A model is already called interpretable if the importance of features is derivable
[62]. In addition, some researchers call models interpretable, if they consist entirely of in-
terpretable rules, no matter how many there are [39]. We think that an interpretable model
needs to be interpretable by human beings and therefore consists entirely of interpretable
rules, but of a reasonable amount. Furthermore, these rules have to be connected by inter-
pretable operations. The less rules there are in a model the more interpretable it becomes.
The rules should have a structure of what a human being would think of: Boolean expres-
sions with threshold indicators. In this work, a threshold indicator is the Boolean indicator
function of a threshold of a financial ratio, e.g., ”Cash flow > 1.5 mil. BC”. The indicator
returns 1, if the condition displayed is satisfied and 0 otherwise. Decision Trees (DTs), for
example, are well-established models of machine learning and considered interpretable in
the literature [8, 26, 35, 109]. The models consist of threshold indicators and can be very
effectively interpreted. Moreover, taking pattern from Brodag [19], we have adopted and
further developed Thresholder which outputs Disjunctive Normal Forms (DNFs) of upper
and lower threshold indicators for financial ratios as Boolean variables.

There are binary tasks such as insolvency prediction and multiclass tasks like credit rat-
ing. In machine learning, the latter case is often reduced to several binary learning steps.
This might change the structure and increase the complexity and size of the models, and
therefore may destroy their interpretability. Thus, we further developed Thresholder to out-
put interpretable multiclass models.

1.1. Scope of this Thesis

We want to find out whether it is possible to achieve accurate results which are interpretable
as well. Therefore, we compare different interpretable models with frequently used non-
interpretable models in two case studies for two different problems in finance. Furthermore,
we use our own developed algorithm Thresholder for interpretable multiclass models.

The first case study [85] is about the binary classification problem of insolvency predic-
tion. A big challenge can be seen in the imbalanced data set. Highly imbalanced data is
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always a problem for machine learning [20, 93]. To tackle this problem and to benefit from
the huge amount of solvent data sets, we use asymmetric bagging [102]. This results in a
majority vote over downsampled data sets with a solvent to insolvent ratio of 1:1. There-
fore, we are able to train the algorithms on a balanced data set without having to relinquish
solvent data. We compare the two models DTs and DNFs, which we call white-box models,
with some of the most frequently and recently used non-interpretable models. We denote
a method gray-box, if an interpretable form is not directly available, but can be calculated
from the model. In most cases, this calculated model is more complex than white-box
models or less accurate than the original form. There are some approaches to explain the
outcome of Artificial Neural Networks (ANNs) and Random Forests (RFs) which renders
them gray-box models. Support Vector Machines (SVMs) are considered black-box models.
Details and sources of this distinction can be found in Section 3.2.1.

Our main finding is that the two white-box models are not inferior to the more sophisti-
cated gray and black-box models. We think that logical operations on threshold indicators
for financial ratios are appropriate for insolvency prediction.

The motivation of our second case study [86] is to find out whether the results of the
first case study can be transferred to the multiclass classification problem of credit rating.
Furthermore, we want to show that this does not only work for a multiclass problem, but
even better for a problem with man-made classifications, i.e., credit ratings. We compare
Thresholder with another DNF and DT algorithm. We compare these three interpretable
models again with RFs, ANNs, and SVMs.

This time, the interpretable models even outperform to the more sophisticated models.
This can be explained by the nature of the problem. Insolvency is influenced by multiple
economic factors. In contrast, credit rating is based on decisions by people thinking in
interpretable ways. Thus, we assume that logical operations on threshold indicators for
financial ratios are the best choice to reconstruct human decisions in credit rating.

1.2. Thesis Impact

We published the results of this thesis in the following peer-reviewed international journal
articles.

• Lennart Obermann and Stephan Waack. Demonstrating non-inferiority of easy
interpretable methods for insolvency prediction. Expert Systems with Applications,
42(23):9117 – 9128, 2015.

• Lennart Obermann and Stephan Waack. Interpretable multiclass models for corpo-
rate credit rating capable of expressing doubt. Submitted, 2016.
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Furthermore, the following master’s thesis and student projects were supervised during
the work on this thesis.

• Automatisierte Rekonstruktion unvollständiger Datensätze am Beispiel der Insolven-
zprognose, Christian Otto, Student project, 2012.

• Verbesserung der Vorhersagegenauigkeit bei Klassifikationsproblemen durch einen
Ensemble-Lern-Ansatz mit Boosting am Beispiel der Insolvenzprognose, Master’s
thesis, Christian Otto, 2012.

• A PAC learning heuristic considering noise for insolvency prediction, Wiebke
Tornow, Student project, 2014.

1.3. Thesis Structure

This thesis is mainly based on two case studies [85, 86] published by us. The description in
the following chapters is based on these studies. Following the introduction, the theoretical
background of this thesis is presented. The thesis continues with a motivation for our work
and a description of earlier and recently used algorithms and models for problems in finance.
Afterwards, we present our methods, evaluate them in two case studies, and discuss the
results. The thesis is summarized in a brief conclusion. In more detail, the chapters are
organized as follows.

• Chapter 2 (Background) explains the foundations of this thesis in two sections. The
section on finance describes the background of the problem statement and the section
on machine learning describes the tools used to solve this problem statement.

• Chapter 3 (Interpretability of Models) presents the motivation for the use of in-
terpretable models and defines the term “interpretable models” in the context of this
thesis. Afterwards, the models used in this work are categorized by this definition.
Finally, interpretable model classes are compared.

• Chapter 4 (Related Work) describes the latest state of the art in the field of machine
learning for financial problems. It starts with the history of machine learning algo-
rithms generally used in finance, presents multiclass approaches, and finally, presents
studies focusing on interpretable models.

• Chapter 5 (Cascaded DNFs as Interpretable Multiclass Models) introduces
Thresholder, a DNF learning algorithm developed in the context of this thesis. At
first, the binary version for learning DNFs and the multiclass version for learning cas-
caded DNFs are presented. Afterwards, we describe a method to express uncertainty
of the classifier in an interpretable way and list the benefits of this approach.
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• Chapter 6 (Case Studies) presents the two case studies this thesis is based on, their
results, and a discussion. The first case study is a binary insolvency prediction.
Thereby, we show that interpretable models are not inferior to the rest. The sec-
ond case study is a multiclass credit rating. Here interpretable models perform even
better than most of the rest.

• Chapter 7 (Discussion) discusses the results of the case studies as a whole and points
out strengths and limitations of our approach.

• Chapter 8 (Conclusion) summarizes this thesis and its main contributions and pro-
vides an outlook on possible future work.
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This section introduces the foundations of this thesis. They are split into two sections. In
the section on finance we explain important terms to understand the problem statement. The
theory and the tools used to approach the problem are explained in the section on machine
learning.

2.1. Finance

Since our case studies are based on German data, all concepts in this section are described
according to the generally accepted accounting principles in Germany, the German commer-



7 2.1. Finance

cial code called “Handelsgesetzbuch” (HGB). Note that there are international differences
concerning accounting principles, e.g., Generally Accepted Accounting Principles in the
United States (USGAAP) or International Financial Reporting Standards (IFRS).

In this section, we describe the data obtained from enterprises (financial ratios, financial
statements), solvency classifications of an enterprise (insolvency, credit rating) and the pre-
diction process of these classifications (default prediction). Sources are the HGB1 and the
German insolvency statute called “Insolvenzordnung” (InsO)2.

2.1.1. Financial Statements

Financial statements are annual reports of a business’s financial position. They consist of
balance sheets and income statements which are explained in the following sections. In
Germany, each businessman or business has to create an annual financial statement. An
exception are businesses with small revenue and annual net income. The main purposes of
these reports are informing owners, managers, shareholders, and creditors about the cur-
rent status as well as the assessment of tax and dividend. Financial statements have to
be published by corporations (Kapitalgesellschaften), business partnerships (Personenhan-
delsgesellschaften), and businesses exceeding a certain size. There are some easements for
micro, small, and medium-sized enterprises concerning accountability as well as disclosure.
Some items can be excluded and some can be combined.

2.1.1.1. Balance Sheets

Business balance sheets list capital usage and capital origin at the end of a fiscal year.
Capital usage mainly consists of assets. In sum the total assets are listed on the left side
of the balance sheet. Capital origin mainly consists of equity and liabilities. Equity and
liabilities in total are listed on the right side. Since these are two different views on the
same capital, the sums of both sides are always identical. Table 2.1 shows an example of an
shortened balance sheet.

2.1.1.2. Income Statements

Income statements list the business’s revenues and expenses during a particular period, com-
monly a fiscal year. It distinguishes different kinds and sources of revenues and expenses.
Sales revenue is the starting value and all others are added up in a particular order with
certain interim results. Table 2.2 shows items of an income statement.

1Handelsgesetzbuch in der im Bundesgesetzblatt Teil III, Gliederungsnummer 4100-1, veröffentlichten bere-
inigten Fassung, das durch Artikel 1 des Gesetzes vom 28. Juli 2015 (BGBl. I S. 1400) geändert worden
ist

2Insolvenzordnung vom 5. Oktober 1994 (BGBl. I S. 2866), die zuletzt durch Artikel 16 des Gesetzes vom
20. November 2015 (BGBl. I S. 2010) geändert worden ist
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Assets (capital usage)
A. Non-current assets (fixed assets)

Intangible assets
Fixed assets
Financial assets

B. Current assets
Inventories
Receivables and other assets
Securities
Cash and cash equivalents

C. Prepaid expenses

Total assets

Equity and liabilities (capital origin)
A. Equity

Capital stock
Capital reserves
Revenue reserves
Retained earnings
Unappropriated net income
Annual net income

B. Provisions
C. Liabilities

Current liabilities
long-term liabilities
Liabilities to banks
Advance payments received on orders
Liabilities to affiliated companies

D. Deferred income
Total equity and liabilities

Table 2.1.: Example of a shortened balance sheet according to HGB §266.

2.1.2. Financial Ratios

Financial ratios are numbers to evaluate enterprises. Their values are determined by formu-
las whose parameters are mostly taken from balance sheets and income statements. Often,
several items merge into one financial ratio. Thus, financial ratios offer a more compact
overview on balance sheets and income statements. Financial ratios are either absolute,
mostly monetary, values in a certain currency or relative values between two or more finan-
cial ratios. They are used for comparisons of past values or other companies to determine
a company’s performance. Many financial ratios are correlated to each other to a certain
degree. Therefore, one financial ratio might be good, despite the fact that another one is
bad. For example, an enterprise might have a comparatively big number of machines (high
amount of fixed assets). However, those might be bought on credit (high amount of lia-
bilities). This example shows why it is not possible to evaluate enterprises on just one (or
few) financial ratios. Another reason for using multiple financial ratios are the differences
of importance and value between industries. For example, fixed assets are less important
for the evaluation of banks rather than for construction businesses. In turn, a more precise
outline of liabilities is an important factor for evaluating banks.

Financial ratios are grouped into different categories describing different financial as-
pects. The ones that are used in this work are briefly described below. Most calculation
rules could directly derived from our database [110]. The rest can be found in other litera-
ture [19, 107].
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Sales revenue
Changes in inventories and other own capitalized costs
Other own work capitalized
Other operating income
Material expenses

Cost of consumables and supplies and of goods purchased and held for resale
Cost of purchased services

= Total operating performance
Staff costs

Wages, salaries and emoluments
Social security contributions, retirement benefit expenses and assistance benefits

Amortisation of intangible assets and depreciation of property, plant and equipment
Other operating expenses

= Results from ordinary business activities
Income from investments
Income from other securities and from loans held as financial assets
Interest income
Depreciation of financial assets and of securities held as current assets
Interest expenses
Income tax expense

= Annual net income
Unappropriated net income carried forward from previous year
Retained earnings
Capital surplus

= Unappropriated net income

Table 2.2.: Income statement according to the total expenditure format in HGB §275.

2.1.2.1. Profitability Ratios

• Return on investment measures the efficiency of an investment by comparing the
income with the capital invested. It is defined as

return on investment =
net income
total assets

.

• Return on equity measures the interest rate from shareholders equity, by comparing
the income with the equity and is defined as

return on equity =
net income

equity
.
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2.1.2.2. Operating Ratios

• Sales revenue is the business’s income from its normal business activities, commonly
consisting of selling goods and services. It is directly taken from the enterprise’s
income statement.

• (Annual) net income is a result of the income statement and reflects the profit after
taxation. The definition is

(annual) net income = total revenues− total expenses.

• Profit margin is profit as a percentage of sales revenue

profit margin =
net income

sales revenue
.

• Cash flow measures the amount of cash flowing in and out of an enterprise. There are
different definitions in the literature [79], e.g.,

cash flow = revenue+non-cash expenses−non-cash revenue

and
cash flow = net income+depreciation+ amortization+depletion.

• Earnings Before Interest and Taxes (EBIT) is profit without interest and taxes

EBIT = annual net income+ income taxes−financial income+financial expenses.

• Cash flow is set in proportion to current liabilities to determine the amount of liabili-
ties which can be defrayed by income within a year

cash flow / current liabilities =
cash flow

current liabilities
.

2.1.2.3. Liquidity Ratios

• Current ratio measures the business’s ability to pay debts within a year by comparing
current assets to current liabilities. It is defined as

current ratio =
current assets

current liabilities
.
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• Working capital is similar to current ratio. It measures the remaining capital when
current liabilities are paid with current assets and is defined as

working capital = current assets− current liabilities.

2.1.2.4. Capital Structure Ratios

• Equity ratio is the amount of equity compared to the total capital

equity ratio =
equity

total assets
.

• Dynamic debt-to-equity ratio measures the duration of repayment of liabilities by
dividing liabilities by cash flow

dynamic debt-to-equity ratio =
total liabilities

cash flow
.

• Working capital can be set in proportion to total assets to get a relative value instead
of an absolute one

working capital / total assets =
working capital

total assets
.

• Debt-to-capital ratio is the amount of debt compared to total capital and is defined as

debt-to-capital ratio =
total liabilities

total assets
.

• Current maturity (Kurzfristige Fristenkongruenz) is an undocumented financial ratio
in the DAFNE database [111] which seems to be based on the ratio of equity and
fixed assets.

2.1.3. Insolvency

Insolvency means that debtors cannot pay their debts to their creditors. To satisfy both
parties, insolvencies are treated according to the insolvency proceedings process defined in
InsO. Insolvency proceedings are opened either by a creditor or a debtor. The purpose is
either to liquidate the debtors assets and distribute the earnings which leads to bankruptcy,
or to reach an arrangement for an insolvency plan to keep the enterprise running. For the
latter case, creditors give up a part of their redemption and rely on a complete refund of the
rest in the near future.
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This work only focuses on corporate insolvency. Reasons for insolvency can be mis-
planning or mismanagement. However, external factors can strike a healthy enterprise as
well, e.g., strong competitors, a changing market, bad press, or other unexpected causes.
According to the Federal Statistical Office of Germany [98] the number of annual corporate
insolvencies in Germany is about 20,000 to 30,000 for the last few years. The absolute and
relative number of insolvencies per industry varies a lot. Construction and trade, for exam-
ple, have had the most insolvencies in the last few years. The total corporate insolvency
claims for 2014 were about 25 billion BC.

2.1.4. Credit Rating

Creditworthiness of a debtor measures its solvency. Often, this is measured by the proba-
bility of the debtors to pay back their debts. These probabilities are assigned to an ordinal
set of rating classes. The process and the outcome of this evaluation are called credit rating.

Measuring solvency of a client is very important for creditors, since insolvency results in
payment defaults and may cause huge financial losses for the creditor. Therefore, creditors
use credit ratings to evaluate the solvency of a client. Depending on the outcome, the credit
is either granted or denied. Furthermore, in some countries like in the US and the UK, it is
required to provide reasons for a declined credit [29]. The amount of interest may depend
on the credit rating of the client as well.

Credit ratings can be applied to customers, enterprises, or national governments. This
work focuses on corporate credit rating which applies to enterprises only. Credit ratings can
be performed for internal purposes, e.g., banks rating their customers, or external purposes,
e.g., performed by credit rating agencies which sell these information to their clients. The
most important international rating agencies are Standard & Poor’s, Moody’s, and Fitch
which cover most of the market. There are also smaller national rating agencies like the
German Creditreform. This is where we obtained our data sets from. Rating classes are
not standardized and may differ from agency to agency. However, the labels are similar
and they differ only in small details. There are long term ratings, short term ratings, and so
called traffic light reports. The latter two try to simplify the original rating by combining
several classes. Table 2.3 compares the rating scales of Standard & Poor’s to the ones of
Creditreform which we use in our studies.

Ratings are basically based on quantitative and qualitative factors. Quantitative factors
are expressed by financial ratios which can be obtained and calculated from annual ac-
counts. Their acquisition and evaluation can be partly automated. Qualitative factors are
naturally not expressed in numbers. Examples are quality of management, business strat-
egy, organizational structure, payment experiences from creditors, or competitiveness of the
enterprise. These factors are tediously collected by hand and evaluated by analysts.
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Standard & Poor’s Creditreform Meaning
Long Short Long Short Traffic light

Rating Rating Rating Rating Report

AAA

A-1+

AAA AAA

Good

Best solvency, lowest risk of in-
solvency.

AA+ AA+
AA

Very good solvency, very low
risk of insolvency.

AA AA
AA- AA-
A+

A-1
A+

A
Good solvency, low risk of
insolvency.

A A
A-

A-2
A-

BBB+ BBB+
BBB

Strongly satisfying solvency,
low to medium risk of
insolvency.

BBB
A-3

BBB
BBB- BBB-
BB+

B

BB+
BB

Satisfying solvency, medium
risk of insolvency.

BB BB

Medium
BB- BB-
B+ B+

B
Sufficient solvency, higher risk
of insolvency.

B B
B- B-

Bad

CCC+

C
CCC

C
Barely sufficient solvency, high
to very high risk of insolvency.

CCC
CCC-
CC CC
C C
D / D D Insufficient solvency, insovency.

Table 2.3.: Standard & Poor’s ratings compared to Creditreform ratings.

2.1.5. Default Prediction

Predicting insolvency, bankruptcy, business failure, or financial distress as well as credit
rating are important tasks with a similar aim in finance. They are all used to predict the
default risk of a debtor at different levels. All of the above tasks are binary classification
problems except for credit rating which can be a multiclass problem as well. From the ma-
chine learning point of view, these are harder to handle than binary classification problems.
Another difference is the origin of the classification labels. Credit ratings are man-made.
Business failure and financial distress classifications depend on the definition of failure and
distress. Insolvencies and bankruptcies are influenced by multiple economic factors and are
more likely to affect enterprises in financial distress.

Default predicting is an important task since default cause huge financial losses. How-
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ever, these predictions are not perfect and may contain errors. It is important to distinguish
between different types of errors, e.g., errors on solvent and insolvent enterprises. The for-
mer results in denying a credit to a healthy enterprise and the loss of a possible client. The
latter results in granting a credit to an unhealthy enterprise which might result in a payment
default.

These predictions are mainly used by banks, but also by shareholders, suppliers, and
auditors. Rating agencies and credit bureaus provide these predictions. They collect data
from published financial statements and use financial ratios and qualitative data to calculate
their prediction models. These prediction models are based on expert knowledge, statistical
models, or sophisticated artificial intelligence models. These models can be interpretable
or black-box models. Research on this topic is important because there is always room for
improvement of the prediction rate.

2.2. Machine Learning

Machine learning is the derivation of generalized hypotheses from data to predict properties
in yet unseen data. This means for the learned models to describe the data in general and not
to memorize specific samples. The aim is to predict unseen data using sample data. Machine
learning has been successfully applied to numerous fields (e.g., DNA-Sequencing in bioin-
formatics [73], image recognition systems [96], and evaluating enterprises (see Chapter 4)).
A general definition of machine learning is given by Mitchell [80, p. 2]:

“A computer programm is said to learn from experience E with respect to some
class of task T and performance measure P, if its performance at tasks in T , as
measured by P, improves with experience E."

In this thesis, the task T is the evaluation of enterprises using financial ratios. The perfor-
mance P is the occurring error and the experience E is derived from the financial statements
of the enterprises. Thus, this definition states that the error of an evaluation can be lowered
by increasing the amount of data.

Typically, machine learning is classified into three main categories [32].

• In supervised learning, the data consists of pairs of a feature vector and a label. An
algorithm trains a function on labeled data, which calculates the label for unlabeled
data. Examples are insolvency prediction or handwriting recognition.

• In unsupervised learning or clustering, the data only consists of features without la-
bels. Algorithms have to find a structure on their own and divide the data into dif-
ferent classes. Examples are identifying communities of people in social networks or
partitioning customers into market segments.
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• In reinforced learning, the algorithm learns to achieve a certain goal in a dynamic en-
vironment by getting rewards and punishments. Examples are playing a game against
an opponent or driving a car.

This work is solely about supervised learning. Labels are determined by insolvency status
or credit rating class. The data set is randomly split into a training and test data set. The
training data set is used to build the models and the test data set is used to evaluate their
performance.

In the following, we explain the theoretical principles of machine learning. We describe
models, algorithms, and performance measures used in this thesis for binary and multiclass
learning. The introduction of machine learning is based on several textbooks [4, 13, 32, 53,
65].

2.2.1. Definitions

This section describes the theoretical principles of machine learning necessary to understand
the following sections of this chapter.

2.2.1.1. Learning Universe

The learning universe U consists of an n-dimensional input space X ⊂ Rn which describes
all possible input data and an output space Y ⊂ N0, |Y| = l with all possible labels and,
optionally a label for uncertainty [4] which we call IDK-classification. In the latter case, the
label value l represents IDK-assignments. The learning universe is defined as the Cartesian
product of input and output space U := X×Y.

2.2.1.2. Training Data

The training data is a subset of the learning universe. It should be an independent and
identically distributed random sample

U :=
(
U1,U2, ...Us

)
=
((

X1,Y1
)
,
(
X2,Y2

)
, ...
(
Xs,Ys

))
with s instances U = (X,Y ) ∈ U consisting of a feature vector X ∈ X and a label Y ∈ Y.
Note that IDK-classifications do not appear in the training data and therefore P(Y = l) = 0.

2.2.1.3. Concept Class and Hypothesis Class

The concept class C and the hypothesis class (or model class) H, both describe sets of
functions, which map the input space to the output space h : X→Y. Each function provides
a classification rule for the instances. It is the task of a learning algorithm A, using the
training data, to select a hypothesis h = A(U) ∈H, which approximates Y as accurate as
possible.
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2.2.1.4. Noise

Unfortunately, predicting the observed label Y is not the ultimate goal. In theory, there is
an unknown function called target concept which calculates the true label of an instance
f (X), e.g., its solvency status or credit rating. However, in practical applications, the target
concept can not necessarily be found, because of insufficiencies of the data. These can be
wrong or missing features or wrong labels. This circumstance is modeled by noise. To
match reality, it is assumed that the target concept is influenced by random noise ε which
may invert the classification observed Y = f (X)+ ε . It would be desirable to approximate
f instead of Y . However, since both f and the parameters of ε are unknown, it is only
possible to approximate Y .

2.2.1.5. Loss Function

The degree of approximation of h to Y is measured by a loss function. A loss function
λ (ci,c j) assigns a numerical loss value for the true label ci and the predicted label c j. If
there is no misclassification, the function returns 0. For a misclassification, the returned
value depends on the function. Probably, the most common loss function is the 0/1 loss
function

λ0/1(ci,c j) =

{
0 if ci = c j

1 otherwise
.

An example for another loss function is the quadratic loss function

λ
(2)(ci,c j) = (ci− c j)

2.

Sometimes it is desirable for the decision of the classifier to express doubt. In case
of doubt, the classifier assigns a special label to this instance. Later, these instances can
receive a special treatment, e.g., classification by hand. We call this additional label IDK-
classification. A 0/1 loss function utilizing this IDK-classification uses a value τ to penalize
assignments of this class

λτ(ci,c j) =


0 if ci = c j

τ if c j = l
1 otherwise

.

Choosing τ = 0, an IDK-classification is always assigned. Choosing τ = 1, an IDK-
classification is never assigned. Therefore the parameter should be chosen that 0 < τ < 1.
A sensible value of τ is the probability of guessing the wrong label.

2.2.1.6. Classification Error

With a loss function, the classification error of a set of instances can be calculated. Using
λ0/1 as loss function, the error of a hypothesis h is the probability of a wrong classification
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of a randomly drawn instance U using its feature vector X, i.e., the deviation of h from label
Y :

err h := P
(
h(X) 6= Y

)
.

The classification error for two classes can be divided into α-error and β -error:

errα h := P
(
h(X) = 1 | Y = 0

)
,

errβ h := P
(
h(X) = 0 | Y = 1

)
.

In practical applications, it is impossible to calculate the true error of a hypothesis, be-
cause the distribution of the sample is unknown and there is only a finite amount of samples.
Instead, the empirical error or empirical risk can be calculated, which is the error observed
in a certain sample, e.g., for λ0/1

erremp h =
1
s

s

∑
i=1

λ0/1
(
h(Xi),Yi

)
.

Thus, error values provided by case studies are always empirical error values. It is obvious
that larger training samples usually reduce classification error values, because they contain
more empirical information to approximate the true distribution.

2.2.1.7. Bias-Variance Trade-off

The classification error can further be investigated. Let Z be an estimator of constant z ∈R.
It can be shown [4] that

E(Z− z)2 = E
(
(Z−EZ)2)+(EZ− z)2. (2.2.1)

A fixed instantiation of U leads to a constant hypothesis h. This trick allows for the usage
of Equation 2.2.1 to divide the expected square error of h into two parts

E
(
(Y −h(X))2 | X

)
= E

(
(Y −E(Y |X)2 | X

)︸ ︷︷ ︸
noise

+(E(Y |X)−h(X))2︸ ︷︷ ︸
squared error

. (2.2.2)

It can be seen that the noise part of Equation 2.2.2 does not depend on h and therefore not on
U. Thus, there is no potential to reduce it. The bias part depends on the deviation between
Y and h and therefore on U. For some data h may be a good approximation to Y and for
some it may be a bad one.

However, averaging over all possible data sets U of size s and using the same trick from
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above leads to Equation 2.2.1.7

EU
(
(h(X)−E(Y |X))2 | X

)
= EU

(
(h(X)−EU(h(X)))2)︸ ︷︷ ︸

variance

+(EU(h(X))−E(Y |X))2︸ ︷︷ ︸
bias

.

Now, these two parts of the formula are called bias and variance. Instead of the squared
error, bias measures the deviation to Y regardless of varying samples. Variance measures
how much the classifier fluctuates for varying samples. For example, the very simple clas-
sifier h = 1 would have no variance and a big bias. In contrast, a complicated classifier that
perfectly fits the data would have no bias but a big variance because a change in the data
would strongly change the classifier as well. These two phenomena are called underfitting
and overfitting and are displayed in Figure 2.1. It is challenging to find the best trade-off
between bias and variance. Typically, a training sample is used for building the classifier
and a separate testing sample is used for evaluating the performance. If the training error is
much lower than the test error, there is strong evidence for overfitting. A possible solution
is changing the generalization parameters of the algorithm which control the complexity of
the model.
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Figure 2.1.: Examples for underfitting and overfitting.

2.2.1.8. Cross-validation

Typically, machine learning models are trained on a training set and tested on a test set.
These subsamples are created by randomly splitting the original data set. Common propor-
tions are using 0.67% of the original data as training set and the remaining 0.33% as test set
[50].
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However, if the original data set is small, the training set might be too small to build
a model. This results in a big variance. Furthermore, the test set might be too small to
obtain a reliable performance estimation. A solution for this problem is the statistical model
validation technique cross-validation. Using this technique, the size of the training set is
typically chosen to be much more than 0.67% of the original data. This enables building
models with a decreased variance. In contrast, the size of the test set becomes smaller
which renders the evaluation less reliable. Therefore, the evaluation is performed multiple
times; in η-fold cross-validation, the data is split in η equal sized partitions. A classifier
is evaluated on each partition after it is trained on the remaining data. The performance is
calculated by taking the mean of all η evaluations. Typical values of η are 10 or more [50].

2.2.2. Binary Learning

For binary classification problems the label of the data is 0 or 1 (sometimes also named
-1 and +1). Binary learning is applicable to many problem statements. Furthermore, it
is a simpler special case of multiclass classification and researched in more detail. Many
learning algorithms are only capable of binary classification.

2.2.2.1. Models and Learning Algorithms Used

This section describes the binary learning algorithms and the models which are calculated
by the former. Binary learning algorithms take a training data set as input and train a
classifier. This classifier can output a classification prediction for unknown data. Some
algorithms are also capable of returning probability estimates for each class which is useful
for multiclass learning (see Section 2.2.3).

Disjunctive Normal Forms, Conjunctive Normal Forms, Rule Sets, and Decision Lists
DNFs are disjunctions of conjunctions of Boolean variables. In contrast, Conjunctive Nor-
mal Forms (CNFs) are conjunctions of disjunctions of Boolean variables. DNFs are subsets
of Rule Sets (RSs) which are also called Decision Lists (DLs) or decision tables. They con-
sist of a number of ordered rules. If a rule is fulfilled it determines the classification. If this
is not the case the decision is passed to the next rule. There is a default classification after
the last rule. The rules are most commonly conjunctions of thresholds.

DNFs are special cases of RSs. The rules are always conjunctions and if fulfilled they
always yield a positive classification. The default case is always a negative classification.
In the literature, DNFs are called rulesets as well and the containing monomials are called
rules. This is likewise correct, but less precise as well.

A popular DNF learning algorithm is the Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) heuristic. It is an improvement to IREP [44] and was introduced by
William Cohen [25]. RIPPER is a greedy heuristic, which grows monomials, prunes them,
and then adds them to a DNF. To achieve this, the training set is randomly partitioned into
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a growing set and a pruning set. After that, one monomial at a time is calculated, using
the growing set. The selection of literals is based on the metric precision - false discovery
rate. After a monomial is calculated, it is pruned using the pruning set and accuracy as
the performance measure. The pruned monomial is added to the DNF. Instances covered
by the monomial are deleted. The heuristic stops, if all positive instances are covered or
the description length of the DNF is more than a certain parameter larger than the smallest
description length of the monomials obtained so far. The DNF is post-processed in an
optimization phase, which optimizes the monomials step by step by creating a replacement
and a revision of the monomial. The replacement is created by growing and then pruning
a new rule, where pruning minimizes the error of the entire DNF. The revision is created
the same way, but starts with the original rule instead of an empty rule. A decision is made
by the minimum description length (MDL) heuristic [92], whether the original monomial
should or should not be exchanged by the replacement or the revision.

Important parameters are the number of folds which are used for pruning and the gener-
alization parameter which determines the minimum number of samples in a rule.

In the context of this thesis, we have designed a DNF learning algorithm as well, which
offers some additional features. It is described in Section 5.1.1.

Decision Trees Usually, a DT is a binary tree consisting of nodes with thresholds. The
nodes split the input space. The leaves determine the classification.

C4.5 is a widely used algorithm to build DTs developed by Ross Quinlan [90]. It is an
improvement of the ID3 algorithm [89]. Both of them split the data according to informa-
tion gain. After the calculation of a tree, C4.5 uses pruning to remove branches and thus,
reducing the size of the model. If properly applied, this reduces the variance and in turn
slightly increases the bias.

Important generalization parameters are the confidence factor C which controls the
amount of pruning and the minimum number of instances in a leaf M.

Random Forests RFs were developed by Breiman [18]. A good introduction can be
found in Hastie et al. [53]. RFs are a combination of DTs and bagging (Section 2.2.2.2)
algorithms. The model is a collection of DTs. The output of this model is a majority vote
of these trees. By using multiple trees, RFs reduce the variance of the learner.

The RF-algorithm grows I independent DTs on randomly drawn bootstrap samples of
the training data. The tree growing process differs from stand-alone DT algorithms; for
each node the threshold is chosen only from a subset of features. Each tree has a maximum
depth of d. In contrast to the C4.5 DT algorithm there is no pruning because variance
already decreases through the usage of multiple trees.

Artificial Neural Networks ANNs are non-linear statistical models. Inspired by biological
neural networks in the nervous system of humans and animals, they consist of a number of
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connected neurons which can activate each other to generate an output.
There are different types of ANNs. However, in this thesis we use and describe only RBF-

Networks which are amongst the most popular ANNs. RBF-Networks [12, 53] consist of
an input layer, an output layer, and a hidden layer with radial basis functions (RBF) as
activation functions. The output of this network is a function of the input vector X

h(X) =
B

∑
j=1

w jφ j(X)+w0

with Gaussian basis functions

φ j(X) = exp

(
−
||X−µ j||2

2σ2
j

)
,

the number of RBF-functions B, their weight w j, a bias w0, the center of the RBF-functions
µ j, and their width σ j. There are two important parameters we can use to control the
performance of our network, i.e., the number of RBF-functions (nodes in the hidden layer)
B and the minimum width W of each RBF-function.

Support Vector Machines The basic SVM [53] is a linear classifier which maximizes the
margin between two classes. This margin may be soft and violations can be punished by a
cost factor C to control the model complexity. However, most real-life-data cannot be sepa-
rated by linear classifiers. Nevertheless, the classifier can perform a non-linear classification
by using what is called the kernel trick, which maps the input space to a high-dimensional
feature space. A linear classifier in this high-dimensional space can be non-linear, if mapped
back to the low-dimensional space. The mapping depends on the kernel used. In this thesis,
we use

• the linear kernel K(Xi,X j) = Xi ·X j,

• the polynomial kernel K(Xi,X j) = (Xi ·X j)
d , and

• the RBF-Kernel K(Xi,X j) = exp
(
−γ · ||Xi−X j||2

)
.

A linear kernel yields only a linear classifier and does not benefit from the kernel trick. The
polynomial kernel parameter d is the degree of the polynomial. The RBF-Kernel γ defines
how far the influence of a single training instance reaches. Figure 2.2 shows an example of
data which is not linearly separable. Transforming the data with a kernel makes it linearly
separable.
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Figure 2.2.: Non-linearly separable data (a) transformed to linearly separable data (b) using a kernel.
For the original data, the SVM classifier now looks non-linear (c).

2.2.2.2. Ensemble Learning

Ensemble learners are meta algorithms which use several learning algorithms to build a
better classifier. In this work we use bagging which reduces the variance of a learner and
boosting which reduces bias.

Bagging Bagging is a meta-algorithm developed by Breiman [17]. A short introduction
can be found in Hastie et al. [53, p. 282f]. Bagging increases the stability by reducing
the variance and, therefore, decreases the error of a classifier. The algorithm iterates for a
number of B bagging iterations. In each iteration it draws a bootstrap sample of the data
and trains a classifier. After the last iteration, the final model is the majority vote of all
classifiers. Since a mean classifier is built on different data sets, it is less data dependent
than a single classifier, thus, reducing variance. Bagging is a generalized form of RFs.

There are different approaches to draw the bootstrap samples. They can be drawn by
oversampling, undersampling, with replacement, or without replacement to name but a few
[46].

In this work, a special case of undersampling, either on the positive or the negative clas-
sified data is used. We call it asymmetric bootstrapping. The bagging method using asym-
metric bootstrapping is called asymmetric bagging and was already used by Tao et al. [102].

Boosting Hypothesis boosting is a technique based on the idea by Kearns [64]. It can be
used to decrease the bias and the training error of a weak classifier without overfitting and
hence, to decrease the prediction error of a learning algorithm. Freund et al. [41] developed
the boosting algorithm AdaBoost. A short introduction can be found in Hastie et al. [53,
page 337ff]. The algorithm trains a classifier, increases the weight of wrongly classified
instances and trains a new classifier, according to the changed weights. This is repeated for
B boosting iterations. After the last iteration, the final model is a linear combination of all
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classifiers. The linear combination makes simple classifiers more descriptive and therefore
might decrease the bias. Obviously, classifiers that are already complex might not profit
from this technique.

Algorithm 1 shows this method in detail with weights w = w1 . . .ws. The labels of the
instances are expected to be −1 or 1.

Algorithm 1: AdaBoost
Input : Training sample U = (U1,U2, . . . ,Us) of size s, learning algorithm A
Output: Boosted classifier h

wi =
1
s , i = 1 . . .s;

for b = 1 . . .B do
hb = A(U,w);

errb =
∑

s
i=1 wierr hb(Xi)

∑
s
i=1 wi

;

αb = ln 1−errb
errb

;
wi = wi · eαb·err hb(Xi), i = 1 . . .s;

end
h = sign

(
∑

B
b=1 αb ·hb

)
;

2.2.2.3. Performance Evaluation

The performance of a classifier depends on the amount of correctly classified and misclas-
sified instances of each label. The results are stored in a so called confusion matrix (see
Table 2.4) where all actual (P) and predicted (P′) positive labels as well as all actual (N)
and predicted (N′) negative labels are noted. Correctly classified positive instances are
called True Positives (TPs) and correctly classified negative instances are called True Nega-
tives (TNs). In return, wrongly classified positive instances are called False Negatives (FNs)
and wrongly classified negative instances are called False Positives (FPs).

Predicted
P′ N′

Actual
P T P

FN
(Type II Error)

N
FP

T N
(Type I Error)

Table 2.4.: Confusion matrix.

Since there are two classes which might be of different importance and of different num-
ber, it is not possible to put performance in just one number. There are different well
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established performance measures using the 0/1 loss function with values derived from the
confusion matrix.

• Accuracy, also known as overall success rate, and error rate both measure the overall
success of a classifier. They are defined as

accuracy =
T P+T N

P+N

and
error rate =

FP+FN
P+N

= 1− accuracy.

• α/β -error rate (type I/II error rate) measures the error only for positively/negatively
labeled data and are defined as

α-error rate =
FP
N

and
β -error rate =

FN
P

.

• TP/TN rate represents the success only for positively/negatively labeled data. The
TP rate is also called sensitivity or recall and the TN rate is called specificity. The
definitions are

TP rate =
T P
P

= 1−β -error rate

and
TN rate =

T N
N

= 1−α-error rate.

• Positive/negative prediction value shows the success for positively/negatively classi-
fied data classified by the classifier. The positive prediction value is also known as
precision. False discovery rate shows the failure for positively classified data. These
three performance measures are defined as

positive prediction value =
T P
P′

,

negative prediction value =
T N
N′

,

and
false discovery rate =

FP
P′

.
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• Matthews Correlation Coefficient (MCC) and F-Score are appropriate measures for
imbalanced data. They yield a value of 1 in case of no misclassification and a value
of 0 in case of trivial models where all instances are classified as the same class.
Inverting the classifications yields an inverted MCC. The definitions are

MCC =
T P ·T N−FP ·FN√

P ·N ·P′ ·N′

and
F-Score = 2 · Precision · recall

precision+ recall
.

The confusion matrix for IDK-classifications has an additional column counting the pre-
dicted IDK-classifications as seen in Table 2.5.

Predicted
P′ N′

Actual
P T P

FN

IDK
(Type II Error)

N
FP

T N
(Type I Error)

Table 2.5.: Confusion matrix for IDK-classifications.

• Using IDK-classifications, accuracy and error rate are calculated as follows. α/β -
error rates and TP/TP rates are calculated in a similar way, namely

accuracyτ =
T P+T N +(1− τ) · IDK

P+N

and
error rateτ =

FP+FN + τ · IDK
P+N

= 1− accuracyτ .

2.2.3. Multiclass Learning

Multiclass classification problems are characterized by data having more than two different
label values. This complicates both the training process and the performance evaluation,
because not all binary performance measures are applicable.

2.2.3.1. Learning Algorithms Used

Many learning algorithms naturally support only binary classification, like SVMs. However,
there are meta-algorithms which turn binary learning algorithms to multiclass classifiers
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by using multiple binary learning algorithms. A short introduction can be found in [13,
p. 182ff]. This section describes how learning algorithms achieve multiclass classification
and a selection of popular multiclass meta-algorithms used in this thesis.

All-at-once Some classifiers naturally support training multiple classes at once. Tree-
based models like DTs and RFs can assign arbitrary label values in their leaves. DLs and
RSs can assign arbitrary label values as well when a rule is fulfilled. Since DNFs are
Boolean expressions, they naturally support only binary classification. ANNs classify mul-
tiple classes by using multiple output nodes with a probability for each label. SVMs cannot
handle multiclass learning problems naturally.

One-vs-one This method combines binary classifiers to multiclass classifiers and there-
fore naturally allows binary classifiers like SVMs to be used for multiclass problems [42].
There are classifiers trained for each pair of labels resulting in l(l−1)

2 classifiers where l is
the number of labels. For an ordinal multiclass problem, each label ci is trained against each
label c j > ci. The predicted label is a majority vote of the l(l−1)

2 classifiers. In case of a tie,
a decision must be made, e.g., by using the smaller class index.

One-vs-rest Like the one-vs-one method, this method trains multiple binary classifiers
[68]. There is one classifier trained for each label. Each label ci = 1 . . . l is trained against
the rest. Again, the final decision is a majority vote of all classifiers. If label ci wins against
the rest, it gets a vote.

Compared to one-vs-one, an advantage of this method is the smaller runtime which is
linear in the number of labels. On the contrary, the binary training is more expensive,
because the training set consists of the whole data set. A disadvantage is the imbalance
between the data of label ci and the data of the merged rest in the training set where in
general the latter is probably much bigger. Furthermore, it is problematic that for this
method a tie is much more likely than for the one-vs-one method, because a label can
only get either one or no vote. This problem can be solved by using probability estimates
for each class as a vote.

One-vs-next One-vs-next and one-vs-followers (explained below) are both methods for
ordinal multiclass problems. Originally, Kwon et al. [70] proposed this method for ANNs.
Later, this method was adopted for other methods like SVMs [67].

The idea is to train l−1 classifiers to differentiate between label ci and ci−1 for ci = l . . .1.
If the first classifier decides for the higher class, then this will be the final classification.
However, if the classifier decides for the lower class, the next classifier will be evaluated.
This is repeated until either the higher classification is chosen or the last classifier is evalu-
ated with a final decision. Advantages of this method are fewer classifiers and balanced data
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sets. Furthermore, this method preserves interpretability of interpretable binary classifiers
by simply cascading them.

One-vs-followers Like the one-vs-next approach, this method works on ordinal multi-
class problems. The difference is what label ci is compared to. It is not only compared to
ci−1, but to all labels c j = i−1 . . .0. This leads to the same amount of classifiers. Simi-
larly to the one-vs-rest approach it leads to imbalanced training data sets. This method also
maintains interpretability since it uses the same hypothesis class as the one-vs-next method.

2.2.3.2. Performance Evaluation

In multiclass learning problems there are classes C1 to Cn instead of the two positive and
negative classes P and N used for binary learning. Therefore, the confusion matrix looks
different. As can be seen in Table 2.6, Ti denotes the number of correctly classified samples
of class i. In turn, Fi denotes the number of incorrectly classified samples by summing up
all wrong assignments for class i.

Predicted
C′1 C′2 . . . C′n

Actual

C1 T1 F1,2
. . . F1,n

C2 F2,1 T2
. . . F2,n

...
. . . . . . . . .

...
Cn F3,1 F3,2 . . . Tn

with Fi = ∑
j

Fi, j and n = ∑
i

Ci

Table 2.6.: Multiclass confusion matrix.

Since the confusion matrix is different, formulae of performance measures have to be
adjusted. According to Labatut et al. [71] they can be computed as follows.

• Accuracy and error rate are calculated similarly for both binary and multiclass classi-
fication, namely

accuracy =
∑i Ti

n
and

error rate =
∑i Fi

n
= 1− accuracy
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• For multiclass learning, there are error rates for each class defined as

error ratei =
Fi

Ci
.

• The TP rate is defined for each class as well, namely

TP ratei =
Ti

Ci
= 1− error ratei.

Performance can also be measured by F-Score and Jaccard Coefficient [71]. Since these
are rarely used in practical applications for finance problems, these are left out and only the
common ones are presented.

Table 2.7 depicts the confusion matrix for multiclass IDK-classifications.

Predicted
C′1 C′2 . . . C′n

Actual

C1 T1 F1,2
. . . F1,n

IDKC2 F2,1 T2
. . . F2,n

...
. . . . . . . . .

...
Cn F3,1 F3,2 . . . Tn

with Fi = ∑
j

Fi, j and n = ∑
i

Ci

Table 2.7.: Multiclass confusion matrix for IDK-classifications.

• Using IDK-classifications, accuracy and error rate are calculated as follows

accuracyτ =
∑i Ti +(1− τ) · IDK

n

and
error rateτ =

∑i Fi + τ · IDK
n

= 1− accuracyτ .
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Machine learning models can be categorized into interpretable or non-interpretable. This
distinction depends on whether it is comprehensible how classifications are obtained. In
this section we define the term and motivate the usage of interpretable models and IDK-
classifications. Section 4.3.1 in the next chapter deals with interpretable models and at-
tempts to make black-box models interpretable.

3.1. Why Do We Need Interpretable Models and
IDK-classifications?

The question may arise why models need to be interpretable and why not simply apply
black-box models with a high accuracy. Florez-Lopez et al. [39] listed three important
benefits from interpretable models.

• Interpretable models allow to justify the decision of a refused credit [51, 103] which
is actually a legal obligation in some countries, e.g., in the UK and the US [29].



3. Interpretability of Models 30

• Managers are less likely to refuse to use a model which they understand [100]

• Models that are understood can be combined with expert knowledge to obtain a more
powerful model [38].

Sometimes the prediction for some instances may be of a high uncertainty. In some
applications, it would be helpful to have an IDK-classification for these instances rather
than guessing a label. These IDK-classified instances can be treated in a more sophisticated
or expensive process. In insolvency prediction, for example, if an enterprise is labeled
solvent with a high uncertainty, the possibility to lose the money of a granted credit to this
enterprise can be reduced by manually reevaluating this enterprise again by experts.

Technically, IDK-classifications are simply an additional class label which does not occur
in the training set. Therefore, each multiclass model can represent IDK-classifications.
there are several challenges when dealing with IDK-classifications, like the training process
where none of these labels are observed, finding a reasonable amount of IDK-classifications,
and using a decent error measure when evaluating the performance.

3.2. Definition of Interpretability of Models and Model Classes

In the literature, the definitions for interpretability in terms of machine learning are different.
A model is called interpretable if the importance of features is derivable [62] or if it consists
entirely of interpretable rules, no matter how many there are [39]. However, the latter
applies for RFs as well which are not considered interpretable in the literature [78]. Thus,
we suggest in our recently published studies [85, 86] that interpretable models need to be
interpretable by human beings and therefore should

• consist entirely of human-interpretable rules and

• consist of a reasonable amount of rules.

The less rules there are in a model the more interpretable it becomes. The rules should
have a structure of what a human being would think of, e.g., Boolean expressions with
threshold indicators. In this work, a threshold indicator is the Boolean indicator function of
a threshold of a financial ratio, e.g., ”Cash flow > 1.5 mil. BC”. The indicator returns 1, if
the condition displayed is satisfied and 0 otherwise. Models using threshold indicators are,
e.g., DNFs and DTs.

In this thesis we specify this definition by two additional items stating that interpretable
models

• consist of human-interpretable operations connecting these rules and

• do not consist of to many different types of operations.
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This supplement ensures that interpretable rules are not connected by to many different
types of connections. Although, conjunctions, disjunctions, cascades, trees, and majority
votes are interpretable. In our opinion, combining multiple of these operations destroys the
interpretability of the model for humans.

We are aware that this definition is kind of vague. However, we cannot give an exact list
of rules or an exact number of rules or different operations which we consider interpretable.
This is for the reason that there might be interpretable rules which we have not thought
of, the number of rules is to some extend a matter of taste, and the number of different
types of operations depends on their type and connection. For example, a tree with majority
votes in its nodes is probably considered less interpretable by most people than a cascade
of disjunctions of conjunctions.

In the following sections, we apply our definition to the models studied in this thesis.
We show whether models provide interpretable results. Furthermore, we show whether
meta-algorithms preserve the interpretability of interpretable binary models.

3.2.1. Binary Models

This section uses the definition above to categorize binary models into interpretable (white-
box or glass-box) and non-interpretable (black-box) models. Gray-box is another term used
in the literature to describe a partial interpretable model. However, according to our defini-
tion gray-box means non-interpretable. Unfortunately, the second part of our definition, a
restricted model size, is normally not provided by model classes. Therefore, the model size
has to be restricted by the parameters of the algorithm. The categories are summarized in
Table 3.1.

Model Provides/preserves Boxinterpretability
DNFs 3 �
DTs 3 �
CNFs 3 �
DLs 3 �
Scoring tables 3 �
Decision diagrams 3 �
RFs 7 �
ANNs 7 �
SVMs 7 �
Bagging 7 �/�
Boosting 7 �/�

Table 3.1.: Categorization of binary machine learning models concerning their interpretability.
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3.2.1.1. Disjunctive Normal Forms

A DNF model predicting insolvency is shown below. If the Boolean formula is fulfilled, the
enterprise is labeled solvent, otherwise insolvent.

Solvent =
(
(Cash flow > 1.5 mil. BC) ∧ (RoI > 8%)

)
∨
(
(Cash flow > 1 mil. BC) ∧ (RoI > 10%)

)
DNF models are considered interpretable [91, 97] and analysts or managers can understand
how classifications come about. In this example we see that a lower financial ratio (Cash
flow: 1.5 mil. BC→ 1 mil. BC) can be compensated by a higher one (RoI: 8%→ 10%). The
most important financial ratios and thresholds for classification can easily be detected by
their number of appearance. This can be used to obtain a selection of most important ratios
as well.

3.2.1.2. Decision Trees

Figure 3.1 shows an exemplarily DT. Starting at the root node, if the condition in a node
is fulfilled the right edge, otherwise the left edge is used to get to the next node or leaf.
The leaves determine the solvency status of the enterprise. Since this exemplarily DT is a
direct transformation of the DNF model above, it can be interpreted the same way. In the
literature, DTs are categorized as interpretable models as well [8, 26, 35, 109].
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Figure 3.1.: An example DT model.

3.2.1.3. Other Interpretable Models

In addition to DNFs and DTs, there are other interpretable models as well. However, they
are either similar or less popular compared to the previously presented DNF and DT models.
Thus, they were not evaluated in our case studies.
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• CNFs are Boolean conjunctions of disjunctions.

• DLs are a sequence of if-then-else rules where the if-conditions are Boolean formulas
and the then-statements are assignments of labels.

• Scoring tables are lists of unordered pairs of conditions and points. The points of the
conditions that are fulfilled are added up to a score. If the score is above a certain
threshold, the corresponding classification is assigned.

• Decision diagrams are directed graphs with a starting node. Conditions in the nodes
determine the next node. Nodes with no outgoing edges determine the classification.

All of these models consist of interpretable rules whose number can be restricted. Therefore,
they are called interpretable in the literature [39, 81, 103].

3.2.1.4. Random Forests

RFs consist of interpretable rules. However, there are some issues that make RFs less inter-
pretable than DTs. The main issue is the multiplicity of trees. The first study on RFs uses
hundreds or thousands of trees [18]. In our case studies, just ten trees suffice to obtain the
best result. However, even this amount of rules prevents easy interpretation. Another issue
is the bigger size of each single tree because there is no pruning. Thus, for real-life appli-
cations the size of a RF is too big to be interpretable. The idea of restricting the number of
trees and the size of each tree even further to obtain an interpretable model can be discarded
for the following reasons. This model is not intended to grow only a small interpretable
amount of trees, the performance may drop significantly, and one could use one DT in the
first place.

However, there are some approaches that can help interpreting the model, e.g., by deter-
mining the importance of features by the number of their occurrence, or by visualizing the
ensembles as graph [78]. And after all, the model consists of many big, but still individually
interpretable trees. Therefore, in the literature, they are sometimes categorized as gray-box
[88] instead of black-box models [26].

3.2.1.5. Artificial Neural Networks

The original structure of an ANN is not easily interpretable by a human, especially, when
there are multiple hidden layers with multiple nodes. However, there are some approaches
which try to extract interpretable rules from these networks. These approaches help in
understanding the outcome of ANNs.

However, such approaches have some drawbacks, e.g., simplification of the original
model which results in a reduced accuracy. On the other hand very big models keep the
accuracy of the original model, but gain less interpretability. For details on approaches
to interpret ANNs see Section 4.3.1. Since there is that much much work on interpreting
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ANNs [27, 40, 59, 74, 105], they should rather be considered as gray-box models instead
of black-box models [26, 53].

3.2.1.6. Support Vector Machines

SVMs are prime examples of black-box models. Hyper planes in high dimensional spaces
are not imaginable for the human brain. However, there are attempts to open the black-box
as well. Nevertheless, research in this topic is less far advanced compared to research for
ANN interpretation. Therefore, SVMs are still considered black-boxes [26, 84]. For details
on work on interpreting SVMs see Section 4.3.1.

3.2.1.7. Bagging and Boosting

Since bagging and boosting are meta-algorithms it can not be determined whether they
build interpretable models. The categorization depends on the algorithm used. Therefore,
it can only be determined whether these meta-algorithms preserve interpretability. The
hypothesis classes of bagging and boosting using DTs are similar to the hypothesis class
of RFs. They are majority votes of DTs. However, in the case of boosting, these votes are
additionally weighted. Nevertheless, we denote them non-interpretable like RFs. Since it is
not discussed in the literature, we do not assign the label gray-box or black-box.

3.2.2. Multiclass Models

Multiclass models based on an interpretable binary model are not necessarily interpretable
as well. This holds for some multiclass meta-algorithms, e.g., one-vs-one and one-vs-
rest. In turn, multiclass models based on a non-interpretable binary model are also non-
interpretable. Therefore, we skip the discussion of multiclass models based on binary non-
interpretable models in this section. Since we are not using them in our studies, we skip
the “other interpretable models” from Section 3.2.1.3 as well. The categories concerning
interpretability of multiclass models are summarized in Table 3.2.

Model Provides/preserves
interpretability

DTs 3
Cascaded DNFs 3
One-vs-one 7
One-vs-rest 7
One-vs-next 3
One-vs-followers 3

Table 3.2.: Categorization of multiclass machine learning models concerning their interpretability.
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3.2.2.1. Decision Trees

DTs are naturally interpretable multiclass classifier. Their leaves can assign arbitrary class
labels while their structure remains the same as in the binary case. However, their size
might increase linearly with the number of class labels compared to the size of their binary
models. Thus, the multiclass version of a DT can still be considered interpretable. The C4.5
DT algorithm uses this form for multiclass classification.

3.2.2.2. Cascaded DNFs

Interpretable DNF multiclass classification can be obtained by cascading number of labels
l−1 binary DNF classifiers which classify one class with one DNF consecutively. This
cascade of DNFs can be seen as a DL of DNFs. Algorithm 2 shows how such a classification
is achieved. Since this model is basically an interpretable DL which grows only linearly in
size with the number of class labels, it can be considered an interpretable multiclass model.

Algorithm 2: Cascaded DNF classifier
Input : DNFs DNF1, . . . ,DNFl−1, label assignments cDNF1 , . . . ,cDNFl ,

unknown instance X
Output: Predicted class of X

if DNF1(X) then return cDNF1 ;
else if DNF2(X) then return cDNF2 ;
...
else if DNFl−1(X) then return cDNFl−1 ;
else return cDNFl ;

RIPPER uses this model for multiclass classification. To build such a classifier,
the algorithm orders the classes of the data set ascending by their size c1, . . . ,cl
and trains DNF1, . . . ,DNFl−1 using labels c1, . . . ,cl−1 as positive data and labels⋃
(ci, i > 1), . . . ,

⋃
(ci, i > l− 1) as negative data. The training leads to a cascaded DNF as

described in Algorithm 2. This method is basically the one-vs-followers approach with a
different class ordering.

3.2.2.3. Models based on the One-vs-one and One-vs-rest Meta-algorithm

These two meta-models are majority votes of binary models like RFs. Therefore, it is hard
to understand the outcome of a model. Both models increase in size with the number of
class labels. The one-vs-one method’s size even increases quadratically. Thus, we classify
them non-interpretable independent of the binary model used.
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3.2.2.4. Models based on the One-vs-next and One-vs-followers Meta-algorithm

These two approaches train cascaded classifiers like the cascaded DNFs above. The model
size grows linearly in size with the number of class labels as well. We consider cascades
of models more comprehensible than majority votes. To understand the outcome, cascades
have to be evaluated successively and majority votes have to be evaluated all at once. The
latter case renders it much more difficult for a human to keep track of the whole model.
Thus, the one-vs-next and the one-vs-followers method can be categorized interpretable if
the base classifier is interpretable as well.

According to this definition, cascades of DTs should be interpretable as well. However,
multiclass DTs are naturally interpretable. Restricting them to binary outputs and cascading
them would actually make the model less interpretable than a single DT. Therefore, we only
use single multiclass DTs instead of cascaded DTs in this work.

3.3. Comparison of Interpretable Model Classes

All interpretable models presented in this thesis are similar at least from a theoretical point
of view. Many of them can be transformed into each other. From a practical point of view,
the differences of the models may in fact matter, but more in a matter of taste. For example,
one analyst prefers graph-based models where another one prefers Boolean formulas. In the
following, a brief description between the relationship of these model classes is given.

• DNFs and CNFs can be transformed into each other using De Morgan’s laws and
inverting the output classification.

• DNFs are a subset of DLs where each if-condition is a monomial of the DNF and
each then-statement returns 1 except for the default case which returns 0.

• Scoring tables can be expressed as DNFs by forming a disjunction of all conjunctions
of all combinations of conditions fulfilled with the sum of their points bigger than the
threshold. Obviously, this leads to a very big model.

• Decision diagrams are a generalization of DTs. They can be transformed into each
other where the size of the DT is at least as big and in many cases even bigger than
the size of the decision diagram.

Since DTs and DNFs are actually evaluated in our case studies, their relationship is ex-
plained in more detail. The pure hypothesis classes are, in fact, the same because it is
possible to transform a DNF into a DT and vice versa. However, in practical applications
both classes are restricted by parameters which on the other hand prevents a transformation.
Performing a transformation, they might significantly change in size (number of compar-
isons) as seen in Figure 3.2 and 3.3. Additionally, both figures show that DTs are smaller
for recurring comparisons and DNFs are smaller for different comparisons. Thus, they can



37 3.3. Comparison of Interpretable Model Classes

be interpreted differently and DNFs offer an alternative view on the interpretation of the
data.
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Figure 3.2.: This figure shows an example of how a DT can be transformed into a DNF consider-

ing all paths leading to positive labeled leaves. The conjunction of all nodes in a path
represents a monomial and the disjunction of all monomials represents the DNF.

Both methods have generalization parameters to adjust the tradeoff between interpretabil-
ity and accuracy as well as underfitting and overfitting by changing the model size. Using
the C4.5 algorithm, DTs can be adjusted indirectly by changing the amount of pruning or
changing the minimum number of instances in a leaf. The RIPPER algorithm can indirectly
adjust DNFs by changing the amount of pruning as well and by determining the minimum
number of instances in a rule. Likewise, our Thresholder algorithm (see Section 5.1.1)
allows to indirectly adjust the DNF model size by determining the amount of pruning. Ad-
ditionally, there are three parameters to direct adjust DNFs. Two of them determine the
maximum number of literals and monomials and the third one determines a desired model
size to which the model is pruned down.
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Figure 3.3.: This figure shows an example of the transformation of a DNF into a DT. Each monomial
represents a single DT and the outcome is the disjunction of these DTs. They can be
merged into a single tree by starting with one tree and inserting the other trees one after
another at each leaf labeled 0.
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There are several binary classification problems in finance, e.g., predicting bankruptcy,
insolvency, business failure, or financial distress. Credit rating or bond rating with more
than two classes are typical multiclass classification problems. However, there are many
studies which examine these problems for only two classes.

Most studies are solely based on data obtained from annual accounts. Despite the fact
that few studies also consider qualitative factors [7], this paper focuses on quantitative data.
A common problem is acquiring useful data sets since annual accounts of enterprises have
to be collected from different sources, declarations of insolvency are only published for a
limited amount of time, and rating classes which are not publicly available are determined
by credit rating agencies. Therefore, many studies suffer from small and different data sets
as well. Thus, their absolute results are not directly comparable. A second problem of most
data sets are big imbalances. Naturally, there are less insolvent or low rated enterprises for
a given time period than solvent ones. Inhomogeneities are a third problem. Predictions for
a mixture of enterprises of different sizes, of different industries, and with annual accounts
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from different years are more difficult than they are for homogeneous data sets. Many
studies used a downsampling technique for the data set by pairing instances of each class to
balance the classification ratio of the data set. They matched every instance of the smaller
class with to of the bigger class, e.g., by industry or asset size. In some studies the data sets
are restricted to some features (e.g., enterprise size) to obtain homogeneous data sets.

In the following, we provide an overview of the most used techniques and the size and
the structure of the data sets used for evaluation. This chapter is divided into three parts. It
is about general statistical and machine learning methods, methods for multiclass problems,
and interpretable models in finance.

4.1. Machine Learning in Finance in General

The following is an overview about prior studies on binary financial problems using statis-
tical and machine learning approaches. It shows which methods are used and that in most
studies at least one of the data problems stated above is present.

An early study on business failure was published in 1966 by Beaver [11]. The model
used was univariate meaning that classifications are obtained by only one variable (financial
ratio). The author worked with 158 instances, paired by industry and asset size.

A few years later (linear) Multiple Discriminant Analysis (MDAs) were used more fre-
quently. This method allows for the use of more than one variable and finds a linear com-
bination of them for prediction. Altman [5] used this to predict corporate bankruptcy with
66 instances, paired by industry and asset size. Other studies followed the same approach
[14, 72].

In the seventies, the logit model gained popularity. In this model, data is fitted to a logistic
function which predicts the probability of the occurrence of an event. Ohlson [87] worked
with 105 bankrupt and 2058 non-bankrupt industrial enterprises to predict bankruptcy. Mar-
tin [76] studied bank failure with 23 failed and 5575 non-failed Federal Reserve member
banks. Gentry et al. [48] worked with 66 instances paired by industry, asset size, and sales
to classify bankrupt firms.

The probit model is similar to the logit model, but less popular. The main difference is
that data is fitted to a cumulative standard normal distribution function instead of a logis-
tic function. It was used by Zmijewski [118] to predict financial distress. 40 positive and
800 negative instances were used with the industry code less than 6000, according to stan-
dard industrial classification [106]. Another study using the probit model by Skogsvik [94]
predicts business failure. 51 failed and 328 non-failed Swedish mining or manufacturing
companies with more than 200 employees or at least 200 million SEK3 assets were used.

DTs are concepts where decision conditions are placed as nodes in a tree and labels are
assigned by its leaves. The recursive partitioning method was used by Frydman et al. [45]
to create DT classifiers. They applied this method to train a classifier with 58 bankrupt and

3Swedish krona, 200 million SEK are about 21 million BC
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142 healthy companies. No restrictions in the choice of companies are mentioned. There
are several other DT algorithms like ID3 or its extension C4.5. The latter was used by
Fernandez et al. [37] for bankruptcy prediction on a data set of 29 failed and 37 non-failed
banks. Fritz et al. [43] studied regression trees in which each leaf of a tree can contain a
regression function. In their case study, they worked with 2580 good and 1019 bad German
accounts with an annual turnover of between 5 and 50 million DM4. There are up to 51
accounts for one enterprise each covering an interval of one month. The author studied five
different methods to classify these accounts. Feldman et al. [35] used the CART algorithm
to build DTs for a mortgage default prediction. They evaluated their method with 3,035
mortgage contracts from Israel where about half of them were delinquent.

ANNs try to simulate a network between simple neurons which provide complex global
information. They were used by Tam et al. [101] for failure prediction for a pairing of 59
failed and 59 non-failed Texas banks matched by asset size, number of branches, age, and
charter status. For each bank there were financial statements for two time periods available.
Wilson et al. [117] performed a bankruptcy prediction with 65 and 64 instances matched
on industry and year. Charitou et al. [22] studied 51 pairs of industrial firms. Neves et al.
[83] worked with a data set of 583 distressed companies of about 2800 French industrial
companies, most of them of small to medium size with 35 to 400 employees.

SVMs use hyperplanes to classify data sets. They were used to study 86 bankrupt and
88 non-bankrupt small and medium Australian industrial firms by Fan et al. [33]. Härdle
et al. [56] studied smooth SVMs to predict insolvency with 10,468 solvent and 811 insol-
vent German financial statements for estimation and testing. Each of these enterprises has
statements for up to six different years. Accordingly, the amount of enterprises is much
smaller than the amount of statements. Harris [52] used clustered SVMs to reduce the com-
putational complexity. A German and a Barbadian credit scoring data set with 300 and 503
non-creditworthy and 700 and 21,117 creditworthy applicants were used. Danenas et al.
[30] proposed an approach also using linear SVMs to save computational complexity in the
credit risk domain. Their evaluation was based on 5527 risky and 15,961 non-risky entries.

A less widespread method in this field of research is Rough Set Theory (RST). Usually,
continuous values of features are transformed into finite sets of low cardinality. Based on
these sets, decision rules are created. Slowinski et al. [95] were the first to use this for
bankruptcy prediction on a very small sample of 39 clients of a Greek investment bank.
McKee et al. [77] did a bankruptcy prediction on a sample of 100 bankrupt and 100 non-
bankrupt companies of different industries. Bose [16] distinguished 120 healthy and 120
unhealthy dot-com enterprises using the RST approach.

A heuristic for learning DNFs was used by Brodag [19] for insolvency prediction based
on German and Austrian data of about 177 paired enterprises paired by industry.

In recent years, the focus changed from single learning algorithms to ensemble learning
algorithms to improve the performance of the models. Boosting and bagging are among

4Deutsche Mark, 5 to 50 million DM are about 2.5 to 25 million BC
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the most popular representatives of this class of methods. As described in the founda-
tions chapter, boosting improves the performance of a learning algorithm by reweighting
instances which are hard to learn. Therefore, boosting primarily decreases the bias of the
base learner. Bagging improves the performance of a learning algorithm by randomly draw-
ing bootstrap samples from a sample and casting a majority vote over all trained classifiers.
This primarily decreases the variance of the base learner. Wang et al. [114] introduced a
feature selection for boosting and compared it with boosting and bagging. They worked
with a data set of 112 failed and 128 non-failed companies from 1997 to 2001 and another
one of 66 risk cases and 66 non-risk cases from 1970 to 1982. Nanni et al. [82] used a fea-
ture selection method in combination with bagging which outperforms the standard bagging
approach. Abellán et al. [1] presented a new procedure to build DTs which outperforms the
feature selection of Nanni et al. [82]. Both worked with three data sets containing non-
bankrupt and bankrupt instances from Australia (307/383), Germany (700/300), and Japan
(307/383). Kang et al. [63] used genetic algorithms to improve the output of bagging and
boosting on a data set of a Korean bank with 600 bankrupt and 600 non-bankrupt manu-
facturing firms from 2002 to 2005. There are other studies on bankruptcy prediction using
boosting as well [2, 3].

A detailed overview of the history of methods used on business data can be found in
Balcaen et al. [9] and Dimitras et al. [31]. A general survey on bagging and other ensemble
techniques in bankruptcy prediction can be found in Verikas et al. [112]. This section shows
that most of the studies were based on very small or imbalanced data sets which is often a
problem in insolvency prediction.

4.2. Machine Learning in Finance for Multiclass Problems

Most of the studies on multiclass credit rating propose SVMs or ANNs. However, inter-
pretable DNFs or DTs are hardly ever considered.

Huang et al. [58] performed a credit rating comparing methods for improved accuracy of
SVMs and improved interpretability through feature extraction for ANNs. However, they
realized that only a slight performance improvement of SVMs was achieved. They worked
with two data sets from the US and Taiwan with 265 and 74 instances in five different rating
classes.

Instead of a credit rating a bond rating with six classes was done by Cao et al. [21]
on a data set with 239 enterprises from the same country and industry code. They tested
different multiclass methods for SVMs and compared these results with ANNs and logit
models. A main finding was that few features are not only sufficient, but can even improve
the accuracy. They achieved an accuracy gain of about 2%.

Hájek et al. [55] proposed different ANNs for municipal credit rating and compared
them with classification trees and SVMs. Probabilistic neural networks obtained the best
results. However, the interpretable classification trees achieved good results as well. They
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used values from 169 US municipalities from 2003-2007 resulting in 766 instances divided
into nine and four classes. It was concluded that only small lists of features determine the
classification.

Kim et al. [67] performed a credit rating with four rating classes using 1295 enterprises
from the manufacturing industry in Korea. They propose new multiclass methods for SVMs
and compare them with other methods. Their method outperformed the rest, but only with
an advantage of less than 1%.

Guo et al. [49] studied credit rating with four classes as well. The same Korean data
from above [67] was used in addition to a data set from China. They used a support vector
domain combined with a fuzzy clustering algorithm and compared it with different SVM
multiclass methods. Their approach outperformed conventional multiclass methods with
less than 2%.

A credit rating with 16 classes was performed by Kwon et al. [69]. Their data set contains
1480 companies and covers the period from 2002 to 2012 resulting in 21,321 instances.
They used double ensemble approaches containing bagging and boosting to significantly
improve DTs.

4.3. Interpretable Models

Up to recently, insolvency prediction focused on improving the accuracy of the models.
The models became more complex and their accuracy was improved, as for instance in
ensemble learning. Recently, there are more and more papers being published that focus on
interpretable models.

4.3.1. Interpretable Models in General

There are general approaches that try to simplify non-interpretable models. They render
models interpretable by extracting rules or pointing out feature importance. Some ap-
proaches combine interpretable models to a more accurate but bigger interpretable model.

Some approaches focus on extracting rules from less interpretable models like ANNs. To
mention just a few, Craven et al. [27] built DTs from ANN predictions. Jang et al. [59]
showed equivalence of RBF-Networks and fuzzy inference systems. Mantas et al. [74]
extracted fuzzy rules from multilayer perceptrons. Feraud et al. [40] explained multilayer
perceptrons by clustering the data and selecting important variables for each cluster. Jo-
hansson et al. [60] introduced a rule extraction method based on genetic programming,
which can transform ANN models into different interpretable models. A graphical visual-
ization to understand ANNs was applied by Tzeng et al. [105]. Some approaches try to
simplify black-box models like SVMs. Martens et al. [75] adopted methods, already ap-
plied to ANNs, to build DTs from SVMs. Barbella et al. [10] showed interpretations for
single data points. Su et al. [99] extracted rules from SVMs. All of these extracted rules do
only represent an approximation of the original model and therefore lose accuracy.
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Some researchers combine simple rules like Florez-Lopez et al. [39]. They merged
multiple DTs which leads to a higher accuracy, but additionally to more rules than in a single
DT and therefore to less interpretability. Kainulainen et al. [62] introduced a method which
calculates ensembles of linear models. This method is comparable to SVMs regarding the
accuracy, but more interpretable because of an embedded feature selection which points
out the important ones. For all methods above there is a tradeoff between accuracy and
interpretability. Models gain accuracy by getting bigger and thus lose interpretability. Vice
versa, non-interpretable models lose accuracy by becoming interpretable. Although, the
loss in accuracy often is very small.

4.3.2. Interpretable Models in Finance

In finance, most studies concentrate on improving the prediction accuracy. There are few
studies dealing with interpretability of models, especially for multiclass problems. One of
these studies was performed by Kim et al. [66] on a small data set with 228 enterprises
to predict six class bond rating. They compared DTs, ANNs, MDAs, and logit models.
ANNs performed much better than the rest. However, this study dates back to 1993, the
data set is very small, and DT algorithms have evolved a lot since then. As mentioned
above, Huang et al. [58] improved interpretability in credit rating through feature extraction
for ANNs. Mues et al. [81] extracted rules and DTs from ANNs to build interpretable
decision diagrams which are smaller than DTs. They did a binary credit-risk prediction
on a German credit data set publicly available at UCI repository5 and two data sets from
major Benelux finance institutions. There are no details provided about the latter data sets.
Tomczak et al. [103] created scoring tables from ANNs (restricted Boltzmann machines) to
build binary credit scoring models. They worked with four data sets from different countries
with 471 to 150,000 instances and partially huge imbalances. De Bock et al. [15] studied
the problem of customer churn prediction. They applied interpretable ensemble classifiers
based upon generalized additive models. The classifier yields interpretability by pointing
out importance of features and confidence bands and average trends of the entire range of
a feature. The data is obtained from six real-life churn prediction projects of European
companies which consist of 3827 to 43,305 instances.

For binary problems in finance, research has shown that already existing interpretable
models are not necessarily worse than more complex models. Jones et al. [61] concluded
that simpler and more interpretable classifiers like logit, probit, and MDAs performed com-
paratively well to ANNs and SVMs. Their task was to predict rating changes with 2891
good ratings and 2162 bad ratings from 1983 to 2013 of enterprises from the US. Vir’ag
et al. [113] studied RST for bankruptcy prediction. They showed that this interpretable
model is competitive to ANNs and SVMs. Their database contains 78 bankrupt and 78
non-bankrupt enterprises with 16 financial ratios.

5http://www.ics.uci.edu/~mlearn/MLRepository.html

http://www.ics.uci.edu/~mlearn/MLRepository.html
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On a final note, David Hand [51] argues that “the apparent superiority of more sophis-
ticated methods may be something of an illusion”. He showed that for many cases the
marginal gain of sophisticated and ensemble models is small compared to simple models.
Section 4.2 shows similar observations for most multiclass credit rating studies. Neverthe-
less, we appreciate the work on sophisticated methods because classification performance
is still a more important factor for a classifier than interpretability.

4.3.3. Our Work on Interpretable Models in Finance

In our first case study [85], we follow the trend of examining interpretable models for in-
solvency prediction. We take two of the most interpretable model classes, namely DTs
and DNFs, and restrict the model size. Thus, the resulting models stay interpretable. We
compare them with the most common methods, namely ANNs and SVMs. RFs are used to
represent combined interpretable models using thresholds. A huge database with financial
statements of 246 insolvent and a selection of 4916 solvent companies is used. The selec-
tion is a matching of 20 solvent enterprises per one insolvent enterprise, if available of the
same industry and size6.

In our second case study [86], we examine interpretable multiclass models for a three-
class credit rating. We consider the interpretable model classes of DTs and DNFs using
different learning algorithms to build the models. The model size is restricted to obtain
small and interpretable models. Again, we compare them with ANNs and SVMs. RFs
are used to represent combined interpretable models using thresholds. We compare the
multiclass methods used by Guo et al. [49] and an ensemble method representatively for
the work of Kwon et al. [69]. Three data sets with financial statements of 1256 trading,
1361 construction, and 1066 financial enterprises are used for a three-class credit rating.

6Enterprise size is determined by internal criteria of our database.
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In this chapter, we present the Thresholder heuristic which was developed and imple-
mented within the scope of this thesis. The implementation can be found on the website
of our research group.7 This algorithm builds DNFs for binary classification problems and
cascaded DNFs for multiclass classification problems. Following the description of the
algorithm, a small summary of its benefits is given.

5.1. Thresholder Heuristic

This section describes the Thresholder algorithm. The binary Thresholder learning algo-
rithm for learning DNFs is described as well as the multiclass version training cascaded
DNFs. At last, we present a general method to obtain IDK-classifications and apply it to
our interpretable multiclass model.

7http://filepool.informatik.uni-goettingen.de/publication/tcs/2016/thresholder.zip

http://filepool.informatik.uni-goettingen.de/publication/tcs/2016/thresholder.zip


47 5.1. Thresholder Heuristic

5.1.1. Learning DNFs

A DNF is a disjunction of monomials m with a conjunction of literals l

DNF= m1 ∨ m2 ∨ . . . ∨ mr

= (l1,1 ∧ l1,2 ∧ . . . ∧ l1,p)∨ (l2,1 ∧ l2,2 ∧ . . . ∧ l2,p)∨ . . .∨ (lr,1 ∧ lr,2 ∧ . . . ∧ lr,p),

with a maximum number of monomials r and a maximum number of literals per monomial
p. In our work, these literals are threshold indicators. If this formula is fulfilled, the instance
will be classified positive, otherwise negative.

The Thresholder heuristic calculates a DNF of threshold indicators as hypothesis h. Ide-
ally, the hypothesis h chosen should minimize the empirical risk [108, p. 20f]. According
to their different importance, an error on a positive instance (X,1) ∈ U counts for ω ∈ R+,
whereas an error on a negative instance (X,0) ∈ U counts for 1. The value ω provides us
with the possibility to implement weights between the α-error on the negative instances and
the β -error on the positive instances. Unfortunately, empirical risk minimization in the case
of the hypothesis class of DNFs is NP-hard because this is already the case for the sub-
class of monomials [36]. Thus, heuristics come into play. Modifications of the well-known
standard greedy algorithm for the set cover problem [24] are a good choice as proposed
by Brodag [19]. Each monomial’s threshold is calculated step by step. This is achieved
by considering each feature value of the instances as a possible upper and lower threshold
candidate and selecting the best one. After a threshold is calculated, the algorithm uses only
the positively classified instances for the next threshold in this monomial because adding
further conjunctions so far only affects positively classified data. If all p thresholds are
calculated or there is no further benefit in adding thresholds, the algorithm builds the next
monomial only using the negatively classified instances for the next monomials. Adding
disjunctions only affects yet negatively labeled data.

In more detail, assume that we have already computed

hi−1 := m1 ∨ m2 ∨ . . . ∨ mi−1.

Let
Ui := U\U ∈ U | ∀U : hi−1(X) = 1.

Furthermore, assume that

mi, j−1 := li,1 ∧ li,2 ∧ . . . ∧ li, j−1

as prefix of mi has just been computed. To compute the j-th literal of mi, let

Ui, j := Ui \U ∈ Ui | ∀U : mi, j−1(X) = 0.
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The candidate threshold indicators for li, j are the set of all indicator functions 1{xk>t} or
1{xk≤t}, where k = 1,2, . . . ,n, and t is any midpoint between two consecutive data points for
feature xk ∈ X. This maximizes the margin between the two instances resulting in a better
generalization. The candidate threshold indicator l is chosen that maximizes the advantage.
The advantage of a literal l on sample U in turn is derived to be

adv(l,Ui, j) =
#{(X,0) ∈ Ui, j|l(X) = 0}

#{(X,0) ∈ Ui, j}︸ ︷︷ ︸
gain (TN rate)

− ω ·
#{(X,1) ∈ Ui, j|l(X) = 0}

#{(X,1) ∈ Ui, j}︸ ︷︷ ︸
loss (β -error rate)

.

Figure 5.1 visualizes this process for the example model in Section 3.2.1.1.

For dimension n and sample size s, the complexity is O
(
r · p ·n · s2

)
, as there are two

nested loops over a maximum number of r · p thresholds for which n · s possible upper and
lower thresholds are evaluated. The evaluation itself costs s steps for counting how many
instances are above or below this threshold. Thus, the heuristic runs in quadratic time with
regard to the sample size.

The greedy approach of this heuristic allows a reasonable run time of the program. How-
ever, greedy algorithms do generally not find an optimal solution. A bruteforce approach
could find an optimal solution, but runs in polynomial time O

(
(n · s)2r·p

)
. As a compro-

mise, we propose a semi-greedy heuristic between those two approaches which yields bet-
ter results and increases computation time only by a linear factor. For each monomial in
the DNF, we calculate n monomial candidates m1,m2, . . . ,mn simultaneously, with the first
threshold indicator of dimension 1,2, . . . ,n. The following threshold indicators of each
monomial candidate are calculated greedy as before. The best of these n monomial candi-
dates is added as monomial to the DNF. This decision is made according to the classification
error of the DNF using this monomial candidate. Afterwards, the next monomial is calcu-
lated in the same way. This procedure increases the complexity for each monomial as well
as for the whole DNF only by factor n.

To further improve the heuristic, we use post-pruning which is adapted from the C4.5
DT algorithm. We build a bigger DNF than intended and afterwards prune some threshold
indicators to obtain a different DNF. Like the improvement above, this technique should
compensate for the greediness of the approach. The process of building the DNF involves
adding one literal after another. In contrast, the pruning technique deletes multiple literals
at any position in the DNF. Our pruning technique has three parameters pruning complexity
pc, pruning error pe, and pruning size ps and works as follows: remove the set of 1 . . . pc

threshold indicators or the monomial, whichever worsens the error of the model at least.
Repeat this until the error worsens by at most pe. Depending on the value of pe, this might
increase the training error slightly, but decreases overfitting and therefore might decrease
the generalization error. The third parameter ps restricts the maximum size of the model
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Figure 5.1.: An example model calculated by the threshold heuristic for two literals and monomials
with ω = 1
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measured by the number of threshold indicators. Pruning will not stop until model size is
equal or below ps. This parameter controls the degree of interpretability. Especially for
small values of ps, it is important to prune the DNF to exactly size ps + pc and, afterwards,
to prune the remaining pc literals all at once. This enhances the performance by minimizing
the influence of the greediness of the pruning algorithm. For reducing the generalization
error, these pruning parameters should be selected on a separate data set. The complexity
increases at most by factor r · p ·∑pc

k=1

(n
k

)
. Since pc highly affects the complexity we only

recommend using small values.
The pseudo-code of the algorithm using the semi-greedy approach and the pruning tech-

nique is given in Algorithm 3.
The threshold heuristic provides two ways of reducing the α-error, although this comes at

the cost of a higher β -error. Firstly, ω penalizes misclassification of negative instances, i.e.,
insolvent enterprises. Secondly, by adapting the parameters r and p, the maximum number
of monomials and literals is restricted. Increasing r or decreasing p will reduce the α-error
at the expense of the β -error because each monomial offers a chance of a positive classifi-
cation. The more monomials there are, the higher the probability of a positive classification.
The opposite applies to the literals. Each literal limits the chance of a positive classification
of its monomial.

Between the first and the second case study, we applied a few improvements for the prun-
ing part of the Thresholder algorithm. They are not displayed in Algorithm 3 for reasons
of clarity and comprehensibility, but briefly described in the following. The option to prune
a monomial as a whole was added. Additionally, we added some runtime performance
improvements such as dynamically lowering pc for bigger model sizes. As the model size
shrinks through pruning, pc increases until it obtains its adjusted value. Since this parameter
exponentially increases computation time with regard to the model size, this performance
improvement now allows for using higher values of pc.

There are several generalization parameters which allow for the output models to be ad-
justed to one’s needs. The maximum number of literals p and monomials r is adjustable.
Furthermore, the pruning parameters pe and ps allow to output models of a certain size.
Smaller models increase the interpretability, but might increase the training error as well.
However, a small increase in the training error might increase the generalization of the
heuristic. To find the right amount of pruning, we recommend using a separate cross-
validation loop for parameter selection.

5.1.2. Learning Cascaded DNFs

Due to its Boolean structure, a DNF is only capable of handling binary problems. To handle
multiclass problems with l different labels, at least l−1 DNFs are needed. The easiest ways
to achieve this model structure are the one-vs-next and one-vs-followers approaches which
directly yield a cascade of DNFs. As mentioned before, RIPPER uses the one-vs-followers
approach with labels ordered ascending by their occurrence in the data set. The one-vs-one
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Algorithm 3: Thresholder heuristic
Input : Training sample U, maximum number of monomials r and literals p, pruning

parameters pc, pe, and ps

Output: DNF h

/* building */

U0 := U;
for i = 1 to r do

for k = 1 to n do
mk
⋃

argmaxl adv(l | in dimension k,U0);
Uk := U0

k := U0 \U ∈ U0 | mk(X) = 0;
for j = 2 to p do

mk
⋃

argmaxl adv(l,Uk);
Uk := U0

k \U ∈ U0
k | mk(X) = 0;

end
end
q := arg mink(err(h

⋃
mk));

h := h
⋃

mq;
U0 := Uq \U ∈ Uq | h(X) = 1;

end
/* pruning */

prune := true;
repeat

if |h|> ps + pc then
L := {all sets of literals of size at most pc};
lmin := arg minl∈L(err(h\ l));
h := h\ lmin;

else if |h|> ps then
L := {all sets of literals of size |h|− ps};
lmin := arg minl∈L(err(h\ l));
h := h\ lmin;

else
prune := f alse;
L := {all sets of literals of size at most pc};
lmin := arg minl∈L(err(h\ l));
if err(h\ lmin)− err(h)< pe then

h := h\ lmin;
prune := true

end
until prune;
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and the one-vs-rest approaches naturally do not yield interpretable forms since they consist
of majority votes of DNFs.

For our Thresholder algorithm we use all multiclass strategies from Section 2.2.3.1 and
convert them into an interpretable form. As mentioned above, the one-vs-next and one-vs-
followers approaches already yield an interpretable form since they are trained according to
Algorithm 2 with an ordering of class labels. The one-vs-one and one-vs-rest approaches
are more difficult because the resulting majority votes consist of interpretable parts, but the
whole classifiers are not interpretable, like RFs. In our approach, we solve this problem
by transforming them into cascaded DNFs. We achieve this by using Boolean algebra to
calculate conjunctions and negations of DNFs. Before we explain this algorithm in detail,
we show how applying these two operations on DNFs will maintain the DNFs every time.

5.1.2.1. Conjunctions of DNFs

The conjunction of two DNFs can be transformed back into a single DNF using the distribu-
tive property and the associative property of Boolean algebra as seen below. The disjunction
of two DNFs is automatically a disjunction of all monomials and therefore a new DNF.

DNF1∨DNF2 = (ml ∨ . . .∨mr)∨ (m′1∨ . . .∨m′2) = DNF1∨2

The conjunction of a DNF and a literal is a new DNF with a conjunction of this literal with
each monomial.

l∧DNF1= l∧ (m1∨ . . .∨mr) = (l∧m1)∨ . . .∨ (l∧mr)
= (l∧ l1,1∧ . . .∧ l1,p)∨ . . .∨ (l∧ lr,1∧ . . .∧ lr,p) = DNFl∧1

Using the two formulae above, the conjunction of two DNFs can be transformed into a
single DNF.

DNF1∧DNF2= (m1∨ . . .∨mr)∧DNF2 = (m1∧DNF2)∨ . . .∨ (mr ∧DNF2)
= ((l1,1∧ . . .∧ l1,p)∧DNF2)∨ . . .∨ ((lr,1∧ . . .∧ lr,p)∧DNF2)
= (l1,1∧ . . .∧ (l1,p∧DNF2))∨ . . .∨ (lr,1∧ . . .∧ (lr,p∧DNF2)) = DNF1∧2

5.1.2.2. Negations of DNFs

The negation of a DNF can be calculated using De Morgan’s and distributive laws as seen
below. Threshold indicators can be negated by inverting the relational operator, i.e., chang-
ing “>” to “≤” and vice versa. Using this, the negation of a monomial can be calculated.

m1 = (l1,1∧ . . .∧ l1,p) = (l1,1∨ . . .∨ l1,p)
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The conjunction of two negated monomials can be transformed into a DNF by using every
combination of one literal per monomial as a new monomial.

m1∧m2= (l1,1∨ . . .∨ l1,p)∧ (l2,1∨ . . .∨ l2,p)
= (l1,1∧ l2,1)∨ . . .∨ (l1,1∧ l2,p)∨ . . .∨ (l1,p∧ l2,1)∨ . . .∨ (l1,p∧ l2,p)

And finally, the negation of a DNF, which is a CNF, can be transformed into a DNF as well
using the formulae above.

DNF1 = m1∨ . . .∨mr = m1∧ . . .∧mr = DNF1

Calculating the conjunction or negation of a DNF exponentially increases the amount of
threshold indicators, a problem which will be addressed later in Section 5.1.2.5.

5.1.2.3. Interpretable One-Vs-One Classifiers

Since the data sets of our case study have three classes, we explain our algorithm only for
the three class case for reasons of simplicity. However, it can easily be extended to n classes.

We denote DNFiv j the binary classifier which is trained with label j as positive and label
i as negative data. Taking an instance of the data set as parameter, it returns true for label j
and false for label i. The majority vote of the three one-vs-one classifiers DNF0v1, DNF0v2,
and DNF1v2 votes for label 2 only if DNF0v2 and DNF1v2 both return true. It votes for label
1 only if DNF0v1 and DNF2v1 = DNF1v2 both return true. It votes for label 0 if DNF0v1 and
DNF0v2 both return false. Otherwise, there is a tie. In this case we assign label 0 as well.

Firstly, we train DNF0v1, DNF0v2, and DNF1v2 similar to the normal one-vs-one approach.
Afterwards, we build two cascaded DNFs using the conjunctions and negations of DNFs
representing the majority votes as seen above. An alternative method is to directly train the
negated DNF from the data instead of calculating it. This requires one additional training
step. Both methods are shown in Algorithm 4.

5.1.2.4. Interpretable One-Vs-Rest Classifiers

We denote DNF(i, j)vk the binary classifier which is trained with label i and j as negative
and label k as positive data. Taking an instance of the data set as parameter, it returns
true for label k and false for label i or j. The interpretable one-vs-rest classifier returns a
positive classification for class k only if DNF(i, j)vk returns true, DNF(k,i)v j returns false, and
DNF( j,k)vi returns false. Like the interpretable one-vs-one method, this method exists in an
indirect and direct version. Algorithm 5 shows this procedure in detail.
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Algorithm 4: Indirect and direct method for interpretable one-vs-one DNF classifiers.
Input : Training sample U, unknown instance X
Output: Predicted class of X

train DNF0v1 on U;
train DNF0v2 on U;
train DNF1v2 on U;
DNF2v1 := DNF1v2︸ ︷︷ ︸

indirect method

OR train DNF2v1 on U︸ ︷︷ ︸
direct method

;

if DNF0v2(X)∧DNF1v2(X) then
return 2

else if DNF0v1(X)∧DNF2v1(X) then
return 1

else
return 0

end

Algorithm 5: Indirect and direct method for interpretable one-vs-rest DNF classifiers.
Input : Training sample U, unknown instance X
Output: Predicted class of X

train DNF(1,2)v0 on U;
train DNF(0,2)v1 on U;
train DNF(0,1)v2 on U;
DNF0v(1,2) := DNF(1,2)v0 OR train DNF0v(1,2) on U;
DNF1v(0,2) := DNF(0,2)v1 OR train DNF1v(0,2) on U;
DNF2v(0,1) := DNF(0,1)v2︸ ︷︷ ︸

indirect method

OR train DNF2v(0,1) on U︸ ︷︷ ︸
direct method

;

if DNF(0,1)v2(X)∧DNF0v(1,2)(X)∧DNF1v(0,2)(X) then
return 2

else if DNF(0,2)v1(X)∧DNF0v(1,2)(X)∧DNF2v(0,1)(X) then
return 1

else
return 0

end
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5.1.2.5. Simplification and Pruning of Cascaded DNFs

As mentioned above, the conjunction and negation operations for DNFs increase the size of
the resulting cascaded DNFs exponentially, a problem which does not exist for directly cal-
culated models from the one-vs-next and one-vs-followers approaches. However, in these
bigger DNFs, many rules are redundant and can be pruned for simplification.

If a monomial contains multiple threshold indicators of the same dimension and orien-
tation, the less restrictive ones can be discarded without changing the logic of the Boolean
formula. In this example, the first threshold indicator can be discarded

Solvent =
(
(Cash flow > 1.45 mil. BC) ∧ (Cash flow > 1.5 mil. BC) ∧ (RoI > 9.5%)

)
∨ . . ..

Whole monomials can be discarded as well; consider the example of the conjunction of two
monomials m1 and m2, where m1 is less restrictive than m2 in every threshold

Solvent =
(
(Cash flow > 1.45 mil. BC) ∧ (RoI > 9.5%)

)
∨
(
(Cash flow > 1.5 mil. BC) ∧ (RoI > 10%)

)
∨ . . ..

Then, m2 can be pruned and m1 already represents the conjunction.
Using these conversions, which do not touch the outcome of the formulae, the size of

the cascaded DNF shrinks significantly. Nevertheless, the model size might become clearly
bigger than directly calculated models since there might be monomials which are not exactly
as restrictive but only almost as restrictive as other monomials

Solvent =
(
(Cash flow > 1.45 mil. BC) ∧ (RoI > 9.5%)

)
∨
(
(Cash flow > 1.4 mil. BC) ∧ (RoI > 10%)

)
∨ . . ..

Pruning them would change the logic of the formula, but in practice this might only affect
very few instances indicating the usage of post pruning. Therefore, we apply the same
pruning algorithm for both a single DNF and the cascaded DNF classifier.
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After all, we have six interpretable multiclass methods implemented for our Thresholder
algorithm, namely

• one-vs-next,

• one-vs-followers,

• one-vs-one(-indirect),

• one-vs-one-direct,

• one-vs-rest(-indirect), and

• one-vs-rest-direct.

All of these methods are trained with an ascending and descending order of the class
labels in a three-fold-cross-validation of the training data to chose the better order. The
all-at-once method of our Thresholder trains all of the six methods above in a three-fold-
cross-validation and chooses the best one. When there is a tie, it chooses the one with the
smaller model size.

5.1.3. IDK-Classification for Cascaded DNFs

IDK-labels are assigned by classifiers, but cannot be observed in training data sets. We
propose to assign IDK-classifications when a tie of the one-vs-one and one-vs-rest multi-
class method occurs. Therefore, all classifiers using these methods can implement IDK-
classification.

However, we want to go one step further and develop interpretable models using IDK-
classifications. In the previous section, we presented interpretable one-vs-one and one-vs-
rest multiclass methods for Thresholder. We assign the label 0 in case of a tie. However,
if we add an l-th DNF to our cascade, we can distinguish between label 0 and a tie which
we can assign an IDK-classification. Algorithm 6 shows this procedure for the one-vs-one
method. IDK-classification using the one-vs-rest method works similar.

The all-at-once method of Thresholder using IDK-classifications uses only the four mul-
ticlass methods which support IDK-classifications, i.e., the two versions of one-vs-one and
one-vs-rest.

Compared to the basic one-vs-one method, the model size is increased by one additional
DNF and the training involves negating or training two additional DNFs. As before, the
model size can be controlled via pruning. Furthermore, using different values of τ , pruning
can control the amount of IDK-assignments. Decreasing τ should result in an increase of
IDK-classifications and an increase of the classification error.
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Algorithm 6: Indirect and direct method for interpretable one-vs-one DNF classifiers
using IDK-classifications.
Input : Training sample U, unknown instance X
Output: Predicted class of X

train DNF0v1 on U;
train DNF0v2 on U;
train DNF1v2 on U;
DNF2v1 := DNF1v2 OR train DNF2v1 on U;
DNF1v0 := DNF0v1 OR train DNF1v0 on U;
DNF2v0 := DNF0v2︸ ︷︷ ︸

indirect method

OR train DNF2v0 on U︸ ︷︷ ︸
direct method

;

if DNF0v2(X)∧DNF1v2(X) then
return 2

else if DNF0v1(X)∧DNF2v1(X) then
return 1

else if DNF1v0(X)∧DNF2v0(X) then
return 0

else
return 3 (IDK)

end

5.2. Advantages of Thresholder

In the following, benefits and advantages of Thresholder over the similar RIPPER algorithm
and other algorithms are summarized. Thresholder

• builds interpretable binary and multiclass models,

• allows better adjustments of model size and interpretability compared to RIPPER,

• implements different ways of building cascaded DNFs, which allows to chose the
best one for a certain task compared to RIPPER which only provides one way to
build cascaded DNFs,

• builds interpretable models using IDK-classifications, and

• allows to control the balance between number of IDK-classifications and the classifi-
cation error rate.
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This section presents the two case studies of this thesis. The first case study compares
interpretable with non-interpretable models for insolvency prediction. The second one com-
pares different algorithms to build interpretable and non-interpretable models for a multi-
class credit rating. The former focuses on comparing different model classes and demon-
strates non-inferiority of interpretable models in a binary setting. The latter goes into more
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detail about comparing interpretable models among each other. Furthermore, it introduces
a new interpretable multiclass method and a technique to build interpretable models using
doubt in their decisions.

For both studies the underlying data sets, features, and preprocessing techniques used are
described, as well as the execution of the experiments and their results and discussion.

6.1. Insolvency Prediction

Insolvency prediction is a binary prediction problem in finance. Most challenges emerge
from the data sets. In our case study and in many others (see Chapter 4), inhomogeneous
data and imbalanced classification labels are a big challenge. Furthermore, the latter leads
to the problem of finding a proper error measure. There is an important difference between
errors on negative (insolvent) and positive (solvent) data, named α-errors and β -errors.
Therefore, we choose the error measure of the classifiers on grounds of the following two
facts.

• The α-error is more important than the β -error. A misclassified insolvent enterprise
results in a payment default, whereas a misclassified solvent enterprise only results in
the loss of a possible client.

• Naturally there are much more solvent than insolvent enterprises. In our data sets, this
results in an imbalance ratio of about 1:1000. If we had taken the standard empirical
risk as error measure, the α-error would have been of minor influence.

Thus, we use the mean of the α-error and β -error rate instead. A more detailed explanation
can be found in Section 6.1.4.1.

6.1.1. Data

As basis for this case study the DAFNE database by Verband der Vereine Creditreform e.V.,
a group offering business information and debt collection services, was used [110]. It con-
tains about 250,000 financial statements of mostly German and some Austrian enterprises.
From these financial statements we calculate financial ratios which are used as features for
the learning algorithms.

However, the data of most statements is incomplete, i.e., not all financial ratios are avail-
able. Thus, many instances were excluded from the case study or repaired using a replace-
ment strategy.

Another problem is that there are only very few insolvent enterprises in this database.
There are usable financial statements of about 250 insolvent enterprises which is only about
0.1% of the whole data. However, in machine learning it is important to have balanced
data sets to prevent trivial models which would classify all enterprises as solvent. Although
the error of this model would only be 0.1%, it would not perform its duty, i.e., actually
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Figure 6.1.: The amount of enterprises for each industry and size as they appear in our database.

predict insolvencies. There are some ways to prevent this, e.g., by adjusting the weight
of the smaller class [23, 54]. We tried this but for such a big imbalance it did not work,
especially, for ANNs and SVMs. For ANNs, a weight of 1 for the negative data always
yielded positive classifications. With the increase of this value the classification changed
only slightly, but at some point completely tilted to the opposite side and classified all data
as negative. SVMs always achieved balanced but very poor error rates. DNFs and RFs
performed better. However, these improved results were not satisfying as well.

To solve this problem, we used asymmetric bagging with undersampling only on the
solvent data and with a matching of enterprise size and industry. In the following, we refer
to enterprises which are of the same size and industry as a group. Enterprise size is an
attribute in DAFNE. Its calculation is not documented, but it has the advantage that it is
available for each enterprise. Hence, there are no features needed that might be missing for
some enterprises8. Industry classes are determined by WZ 2003, a measure of the German
Federal Statistical Office [34]. The database provides data for 36 different industry classes
and four different enterprise sizes. The distribution of these groups is shown in Figure 6.1
with detailed numbers in Table 6.1. For reasons of clarity, only nine super classes of 36
industry classes are shown.

8Among others, the number of employees is a feature commonly used for determining the size of an enterprise.
Since this feature often is missing in DAFNE, we could not have grouped these enterprises and would have
had to discard them.
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Industry Small Medium Big Very big Total
Electricity, gas and water supply 0 0 0 21 21
Hotels and restaurants 0 0 21 0 21
Community, social and personal service 0 42 0 42 84
Transport, storage and communication 0 63 42 0 105
Agriculture, hunting and forestry 21 105 21 0 147
Wholesale and retail trade 42 105 294 315 756
Manufacturing 42 357 399 332 1130
Real estate, renting and business 147 63 651 567 1428
Construction 252 336 588 294 1470
All industries 5162

Table 6.1.: The number of enterprises for each industry and size as they appear in our database.

6.1.2. Financial Ratios

In this case study, we used 18 financial ratios as features. This is an adaptation of the ratio
system defined by Uthoff [107] which has been further developed by Brodag [19]. We
denote the features directly available in DAFNE as base features. They are used to calculate
these 18 financial ratios.

Since many of these financial ratios are similar, we performed a correlation analysis to
reduce them. The Pearson product-moment correlation coefficient was calculated pairwise
for each financial ratio. These results are shown in Table 6.2. Based on this table, we
clustered the financial ratios. We iterated through all financial ratios row by row. If this
financial ratio was not in a cluster, a new cluster was created. It consisted of this financial
ratio and all other financial ratios, which were not already assigned to a cluster, with a
correlation coefficient of above 0.4. These values are in bold in Table 6.2. If this financial
ratio was already assigned to a cluster, it was skipped. This way, we obtained nine clusters
of similar ratios, from which we have choose one representative. For the rest of this study
we only used these representatives as features. Thus, we have reduced the dimension from
18 to nine financial ratios. The financial ratios and clusters are shown in Table 6.3. Tests
have shown that this dimension reduction does not significantly affect the accuracy but
drastically decreases the run time of the algorithms.

We experimented with different threshold values for the correlation coefficients. The
value 0.3 already assigns eight financial ratios to the first cluster which is almost half of
the ratios. Compared to 0.4, the value 0.5 would additionally divide a cluster of size two
into two single ratios. Therefore, we think that 0.4 is an appropriate threshold yielding an
appropriate amount of clusters with an appropriate size.
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Net income
Cash flow
Working capital
Net working capital
Current ratio
Return on equity (RoE)
Debt-to-equity ratio
Return on assets
Return on investment (RoI)
Net income / total assets
Cash flow / total liabilities
Equity ratio
Debt ratio
Dynamic debt-to-equity ratio (Dyn. D/E)
EBIT
EBITDA
Working capital / total assets (WC / TA)
Cash flow / current liabilities (Cash flow / CL)

Table 6.3.: All 18 financial ratios from Brodag [19] reduced to nine clusters with representatives in
bold.

6.1.3. Replacement and Selection

This section describes the preprocessing of our data. At first, insolvent instances missing
more than 50% of the base features were discarded, thus, 246 instances were left. Due to
the big amount of solvent data, we are in the postion to choose only solvent data with no
missing base features. Subsequently, the enterprises were grouped by industry and size as
described in Section 6.1.1 and depicted in Figure 6.2. Twenty or less solvent statements,
depending on the availability, were randomly added from the same group for each insolvent
statement. There are 4,916 out of 4,920 solvent data sets available, which totals to 5,162
instances together with the insolvent ones.

For the incomplete insolvent instances, the missing base feature values were replaced by
the median of the base feature of their group. This replacement methodology has already
been successfully used [19, 104]. Afterwards, the financial ratios were calculated from the
base features. The whole replacement and selection process for a group is visualized in
Figure 6.3.
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Figure 6.2.: Grouping of enterprises by industry and size.

Financial statement 1

Financial statement 2

Financial statement 3

Financial statement 4

(a) 1. Financial statements of insolvent en-
terprises.

F1,1 F1,2 F1,3 F1,4 F1,5

F2,1 F2,2 F2,3 F2,5

F3,1 F3,5

F4,1 F4,2 F4,5

(b) 2. Base features (F) may be missing.

F1,1 F1,2 F1,3 F1,4 F1,5

F2,1 F2,2 F2,3 F2,5

F4,1 F4,2 F4,5

MV4

MV4MV3

(c) 3. Replacement of missing base features
with the median value (MV) of the ac-
cording group or deletion of the whole fi-
nancial statement.

R1,1 R1,2 R1,3 R1,4 R1,5

R2,1 R2,2 R2,3 R2,5

R4,1 R4,2 R4,3 R4,4 R4,5

R2,4

R1,6

R2,6

R4,6

(d) 4. Calculation of financial ratios from
the replaced base features.

Figure 6.3.: Example of the treatment of instances with missing values. Replacements with the me-
dian value of this base feature are marked MV.
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6.1.4. Experiments

In this section, we describe the experimental setting of our first case study. The experiments
were performed for the models

• Decision Trees (DTs) using C4.5,

• Disjunctive Normal Forms (DNFs) using Thresholder,

• Random Forests (RFs),

• Artificial Neural Networks (ANNs) using RBF-networks, and

• Support Vector Machines (SVMs) using the RBF-kernel

and the meta-algorithm

• Asymmetric bagging.

Details are provided in the following sections.

6.1.4.1. Performance Measure

It is a difficult task to find one reasonable performance measure for ranking imbalanced
data sets where one class is more important than the other, as in our case study. Due to our
selection, we have 20 times as many solvent instances. However, they are less important
than the insolvent instances. Due to this imbalance, taking accuracy as the performance
measure would lead to nearly the same value as the TP rate. Therefore, accuracy or error
rate are useless measures in this scenario. However, MCC and F-score consider imbalances,
but not the weighting of the different classes. Furthermore, they favor the less important
solvent data [54].

Altman et al. [6] introduced a measure called ZETA-score which weighs α- and β -error
rates according to probability of occurrence and costs. Since this paper is from 1977 and
does not provide parameters that are up-to-date, we cannot apply this measure. However,
Altman et al. stated, and his data gives evidence, that the two pairs of parameters more or
less neutralize each other9. Thus, we just take the mean of both error rates

err =
α-err+β -err

2
.

Since insolvent enterprises are the negative instances and solvent enterprises are the positive
ones, α-errors are the errors on insolvent data and β -errors are the errors on solvent data.

9High insolvency costs (0.7) and low insolvency occurrence (0.02) in contrast to low opportunity costs (0.02)
for solvent enterprises with a high occurrence (0.98) nearly neutralize each other.
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In order to show whether there are significant differences between the mean error rates of
the models, we did 20 repetitions of the experiments. Then, we applied two commonly used
statistical tests; Welch’s t test [115] and the Wilcoxon signed-rank test [116] for pairwise
error comparisons. We used the two-tailed test which means testing the null hypothesis, so
that the two population means are equal. It was rejected at a significance value of 0.01. We
tested the significance of the differences of mean errors between all models.

6.1.4.2. Training Process

We examined each model using asymmetric bagging with 100 bagging iterations. In each
bagging iteration we used a 10-fold cross-validation for estimating the performance. The
cross validation was used on the imbalanced data set. The balancing through the asymmetric
bagging method was applied on each training set of the cross-validation. Thus, the test set
of the cross-validation remains imbalanced for the performance measure.

6.1.4.3. Evaluation

All models listed in Section 6.1.4 are trained using asymmetric bagging. The idea behind
this is to have a balanced data set and to make use of the excess of solvent data. Based
on this idea, we take the insolvent data and then train multiple classifiers with different,
randomly drawn solvent data using the asymmetric bootstrapping method. Asymmetric
bagging merges them to a single classifier. This allows for the training on a balanced data
set while still using the information of all10 solvent data. While the results may fluctuate
for a low number of bagging iterations, they converge with a high number of iterations.

A second evaluation was performed to measure the impact of the asymmetric bagging
approach. As mentioned above, using imbalanced data sets yielded bad results. Therefore,
we trained our models only using asymmetric bootstrapping without using a majority vote
and compared it with asymmetric bagging.

Each algorithm has different parameters, whose values determine its performance. Previ-
ous tests have shown that standard parameters are not always the best choice. Therefore, we
identified important parameters where we used different values. The remaining parameters
use standard values. Based on some experiments, we broke the important parameters down
into two per algorithm and three values per parameter which results in a set of nine param-
eter value combinations. For Thresholder, only one important parameter with four different
values is needed. To select parameter value combinations from these sets, a 10-fold cross-
validation loop was used. The parameter sets of the white-box algorithms are chosen in a
way that the models have an average size of about 14 threshold indicators or decision nodes.
Thus, we can guarantee that the size of the model is small and therefore stays interpretable.
The parameter sets used are listed in Table 6.4.

10The probability that each solvent enterprise will be drawn at some point converges with the number of random
draws.
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Model Parameters and values used

DNF

Max. number of literals p = 4
Max. number of clauses r = 4
Prune at most pc = 2 literals at once
Prune only if error worsens by at most pe = {0;0.005;0.01;0.02}

DT

Confidence factor C used for pruning and
min. number of instances per leaf M

(C,M) ∈ {(0.0005,3);(0.001,3);(0.005,3);(0.001,6);
(0.005,6);(0.01,6);(0.005,12);(0.01,12);(0.05,12)}

RF Number of trees I = {4;7;10}
Max. depth of the trees d = {2;3;4}

ANN Number of RBF-functions B = {2;10;20}
Min. width of RBF-functions W = {0.01;0.1;1}

SVM
γ in RBF-function G = {0.01;0.1;1}
Complexity parameter C = {10;100;1000}
Normalize data

Table 6.4.: The parameter sets used to build the models. For each algorithm all parameter combina-
tions of these values are used.

6.1.5. Results

We performed the experiments as described above. The corresponding results are described
below. In tables and figures, the abbreviation err refers to the error rate.

6.1.5.1. Comparison of the Performance of Interpretable and Non-interpretable
Models

Table 6.5 shows the results of all models. First of all, it needs to be mentioned that there
are still very few fluctuations on the error rate caused by the random process of drawing the
training sample. Thus, we performed a significance test as described in Section 6.1.4.1. Ac-
cording to the test, all differences are significant. A graphical representation of the deviation
of the mean error can be found in Figure 6.4.

Concerning the error rates, we are interested in how well white-box models compare to
other models. It can be seen that DTs and DNFs perform best. DTs have a smaller β -error
rate, in turn DNFs have a smaller α-error rate. They are followed by the gray-box models.
SVMs are the worst performing models in this study.

6.1.5.2. Performance of Asymmetric Bagging

The results of the second evaluation comparing the use of asymmetric bagging to training
without bagging are shown in Table 6.6 and visualized in Figure 6.5. An improvement of
the error rate for each algorithm except for RFs can be observed.



6. Case Studies 68

Model err ± SD α-err β -err TP FN
FP TN

DT � 24.2±0.0033 34.4 14.0 4228 688
85 161

DNF � 24.8±0.0038 32.5 17.2 4070 846
80 166

RF � 26.1±0.0022 39.4 12.7 4292 624
97 149

ANN � 27.0±0.0023 50.0 3.9 4724 192
123 123

SVM � 29.1±0.0027 42.6 15.5 4154 762
105 141

Table 6.5.: Ranking of all models determined by the cross-validation error rates in percent. Err is the
mean value of α- and β -error rate. The square shows the interpretability of the model as
white, gray, or black-box.

Model No bagging Asymmetric bagging
err α-err β -err err α-err β -err

DT 26.4 33.5 19.3 24.2 34.4 14.0
DNF 28.1 33.7 22.5 24.8 32.4 17.2
RF 26.1 37.2 14.9 26.1 39.4 12.7

ANN 28.4 51.4 5.4 27.0 50.0 3.9
SVM 31.9 45.7 18.1 29.1 42.6 15.5

Table 6.6.: Comparison of the cross-validation error rates in percent using asymmetric bagging with
the error rates using no bagging. Err is the mean value of α- and β -error rate.

6.1.6. Discussion

This section discusses the results and is divided into a comparison of interpretable models
with the non-interpretable ones, an evaluation of the benefit of asymmetric bagging, and a
comparison of the interpretability of DTs and DNFs.

6.1.6.1. Comparison of the Performance of Interpretable and Non-interpretable
Models

In our case study the white-box models perform best, followed by gray-box and black-box
models. Furthermore, the model size of the white-box models is limited to ensure a good
interpretability. This is a desirable result because interpretability and a low error rate are the
most important factors. However, the results are empirical, therefore, we carefully interpret
the result as non-inferiority of interpretable models. An interesting outcome is that RFs,
which have a lot more rules than DTs and DNFs, actually perform worse.

Moreover, Table 6.5 shows the Standard Deviation (SD) of error rates over 20 repetitions.
It can be seen that the SD for the white-box models is a little bit bigger than for the other



69 6.1. Insolvency Prediction

22%

23%

24%

25%

26%

27%

28%

29%

30%

DT DNF RF ANN SVM

M
e

a
n

 e
rr

o
r 

ra
te

Model

Figure 6.4.: Boxplot for the error rates and variation of all five models.

models in this case study. Nevertheless, the SD for all models is quite low, which explains
why Welch’s t test and the Wilcoxon signed-rank test both find statistical differences for all
results.

Concerning a comparison to other approaches building interpretable models from orig-
inally not interpretable models, black-box rule extraction, white-box rule combination, or
variable extraction either lose accuracy or do not provide a comparable level of interpretabil-
ity. The models to which these approaches can be applied, already perform worse and are
less interpretable. Applying these approaches will either decrease the performance further
or yield a lower interpretability with an already lower performance.

Our results match the findings of other researchers [61, 113] (see Section 4.3.2) who also
figured out that interpretable models are not inferior in finance classification problems. We
could verify these findings on a large sample with two of the most interpretable models and
an interpretable model size. Thus, we can conclude that interpretable models are useful for
insolvency prediction and similar tasks in finance. A possible explanation can be found in
the small amount of required features. Financial ratios are correlated somehow, so that there
is no need for a bigger number. Most studies from Chapter 4 use only 15 or less financial
ratios. It seems that few simple rules suffice for insolvency prediction. However, black-box
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using no bagging.

algorithms like SVMs have a big advantage classifying high dimensional data [28].

6.1.6.2. Performance of Asymmetric Bagging

We successfully used asymmetric bagging to tackle the class imbalance problem. As men-
tioned above, directly learning this imbalanced data set worked out quite badly, especially,
with ANNs and SVMs. Using asymmetric bootstrap samples, we solved the problem of
classifying almost the whole data as positive. Moreover, asymmetric bagging further im-
proved the overall error rate for each learning algorithm by about 1% to 3%. An exception
are RFs which are not improved, probably because they already consist of bagged trees.

All β -error rates are much lower than their corresponding α-error rates. Asymmetric
bagging further decreases all β -error rates while the α-error rates even increase in some
cases.

Unfortunately, bagging does not preserve the interpretability of the interpretable mod-
els. Therefore, the overall classifier is non-interpretable. However, asymmetric bagging is
primarily used to compensate for the imbalanced data set. We expect similar results for a
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Solvent =(
(Equity ratio > 1,529.5%) ∧ (Dyn. D/E≤ 649,000%) ∧
(EBIT > 9,490.5BC) ∧ (WC / TA > 0.031%)

)
∨
(
(Equity ratio > 272.5%) ∧ (Dyn. D/E≤ 4,556,000%) ∧
(EBIT > 68,993.5BC) ∧ (RoE >−6.315%)

)
⇓

Equity ratio 

> 1,529.5%

EBIT 

> 9,490.5€

WC / TA 

> 0.031%

Dyn. D/E 

≤ 649,000%
AND AND AND

OR
Equity ratio 

> 272.5%

EBIT 

> 68,993.5€

RoE 

> -6.315%

Dyn. D/E 

≤ 4,556,000%
AND AND AND

ELSE

Insol-

vent

Sol-

vent

Figure 6.6.: Example model of a DNF in its mathematical form and a clearer representation for
analysts. Abbreviations are taken from Table 6.3.

balanced data set without bagging. On this data set, the ranking of the models stays un-
changed when using no bagging except for the RFs which take the lead.

6.1.6.3. Interpretability of DTs Compared to DNFs

Since DTs perform just as good as DNFs, the question arises which one should be used.
To answer this question, we compare their interpretability with two example models. They
were built during the experiments of this case study and are displayed in Figure 6.6 and 6.7.

The DNF output by Thresholder shows tighter thresholds for “Equity ratio” and
“Dyn. D/E” in the first monomial which have to be fulfilled for a solvent enterprise.
If these thresholds are less tight in the second monomial, we see that it can be compensated
by a better “EBIT” value. Its focus is on the combination of financial ratios.

The DT first checks if “Equity ratio”, “Cash flow / CL”, and “EBIT” are good enough for
a solvent enterprise and then branches according to “WC / TA”. It focuses on the importance
of financial ratios ranking them starting at the root. Notice that there are some decisions
which at first sight do not appear plausible, marked with an ∗. Sometimes, they occur in
the DNFs as well. The problem might either be the small data set, where artifacts have too
much impact on the algorithm or complex circumstances which cannot be understood at
first sight.

It can be seen that these models are both quite easy to read. However, the interpretations
are different. Thus, an analyst should consider both models to achieve the best decision
support. An additional advantage of these models and their algorithms is the ability to adjust
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Equity ratio 

> 27.558%

Cash flow / CL 

> 122,616.471%

Insol-

vent*

Insol-

vent

EBIT 

> -112,000€

WC / TA 

> 0.034%

Cash flow / CL 

> 26.133%

Equity ratio

> 1,523%

Dyn. D/E 

> 3,393,000%

Current ratio 

> 1.28%

Dyn. D/E 

> 1,119%

Insol-

vent

Insol-

vent

Insol-

vent

Insol-

vent

Sol-

vent

Sol-

vent

Sol-

vent

Sol-

vent*

Figure 6.7.: Example model of a DT. Abbreviations are taken from Table 6.3.

the tradeoff between interpretability and accuracy by adjusting generalization parameters.
Thus, analysts could obtain yet simpler and smaller models with a loss of accuracy.

6.2. Credit Rating

Like insolvency prediction, credit rating evaluates the solvency of enterprises. However, for
this task, the labeling of the data is man-made.

Overall, our second case study faces different challenges. Our data sets for this study
are more homogeneous and balanced. Therefore, the problem of dealing with imbalances
and finding an adequate error measure fades into the background. The new challenges are
predicting multiple classes and obtaining interpretable classifiers for this task. Furthermore,
we experiment with interpretable IDK-classifications. This study compares different inter-
pretable models in more detail than the previous study.

Our research went on between these two studies meaning that Thresholder evolved a bit
since the first study (see Section 5.1.1). The resulting runtime improvements enable us to
chose more computationally complex parameter settings.
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6.2.1. Data

This case study is based on a newer version of the DAFNE database [111]. In our previous
study on insolvency prediction [85], we worked with a much older version of this database
with a big number of inhomogeneous enterprises of different industries, sizes, and years of
annual accounts. This time we obtained more homogeneous data. Thus, we were able to
work with a random selection of three separate data sets roughly containing 1000 to 1500
enterprises of the industries wholesale and retail trade, construction, and finance. Each data
set contains mostly German and only very big enterprises11 with annual accounts from 2013
divided into three rating classes. The highest rating matches Standard & Poor’s AAA to BB+
rating classes, the medium rating matches BB to B, and the lowest rating matches B− to D.
The idea was to find 500 enterprises for each industry and rating class, but since enterprises
with the lowest rating are comparatively rare, this requirement could not be met. Details
about the actual numbers can be found in Table 6.7.

Data set Low Medium High Total
Wholesale and retail trade 256 500 500 1256
Construction 361 500 500 1361
Finance 62 500 504 1066

Table 6.7.: Number of enterprises of each rating class as they appear in our data sets

6.2.2. Financial Ratios

The features of the data sets are directly taken or calculated from annual accounts, i.e.,
balance sheets and income statements. Many of these features contain missing values since
only a few financial ratios are required to be published in an annual financial statement.
We discarded all features that were not at least 90% complete. All features which were not
used in our previous study and which are just single values from balance sheets or income
statements were discarded as well. Performing this feature selection we ended up with nine
financial ratios as shown in Table 6.8.

6.2.3. Replacement and Selection

Since these data sets are much more complete than in the previous case study, no instances
had to be discarded. Furthermore, there is only a small imbalance between the classes.
Therefore, no data balancing techniques were necessary.

However, missing values had to be replaced with some numerical values. Experiments
with different replacement strategies have shown that missing values provide rating infor-
mation. Enterprises with a low rating tend to have more missing values. Therefore, our

11Enterprise size is a feature in the database and its calculation is undocumented.
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Revenue
Net income
Profit margin
Capital-debt ratio
Equity ratio
Cash flow
Current maturities
Return on equity (RoE)
Return on investment (RoI)

Table 6.8.: The nine financial ratios used in this study.

replacement strategy for missing values is using the value zero instead of mean, median or
other estimators. This value isolates the information and can easily be recognized in the
resulting model. Our data sets are randomly drawn subsets of bigger data sets of the Cred-
itreform. Thus, the distribution of missing values should represent the distribution of the
missing values of the bigger data sets. Since this distribution is not altered, missing values
are a legitimate discrimination criterion. Note that in the previous case study, the data se-
lection of solvent enterprises was partially based on missing values. Using information of
missing values in the previous study would have been cheating.

6.2.4. Experiments

This section describes the experimental setting of this case study. The experiments were
performed using the models

• Thresholder DNFs,

• RIPPER DNFs,

• C4.5 DTs,

• RBF-networks (ANNs),

• RFs,

• Linear SVMs (L-SVMs),

• RBF-kernel SVMs (R-SVMs), and

• Polynomial-kernel SVMs (P-SVMs),

the multiclass meta-algorithms

• One-vs-next,
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• One-vs-followers,

• One-vs-one, and

• One-vs-rest,

and the meta-algorithm

• Boosting.

Details are provided in the following sections.

6.2.4.1. Performance Measure

Since we do not have big imbalances in our data anymore, we have chosen the error rate as
a performance measure. According to the related literature this is a common measure for
multiclass problems in finance.

For the error rate in case of IDK-classifications, a value of τ had to be chosen. We have
chosen τ = 0.67, i.e., the probability of guessing the wrong label in the three class case as
discussed in Section 2.2.1.5.

Since the data is split randomly, repetitions slightly change results similar to the previous
study. Therefore, we performed 20 repetitions as well and took the mean value of these
results. Then we tested the statistical significance between the different methods using
Welch’s t test [115] and the Wilcoxon signed-rank test [116] for pairwise error and model
size comparisons. We denoted results as significantly different, if the p-value was below
0.01.

6.2.4.2. Model Size Measure

There are different measures for the model size of DNFs and DTs. The size of a DT can
be measured by the size of the tree which is the number of nodes (threshold indicators) and
the number of leaves (output values). This measure is used in WEKA as well [50]. Possible
measures for the DNF size are the number of rules as used in WEKA [50] and the total
number of threshold indicators [47]12. Since the first measure only counts the number of
monomials and does not take the size of the monomials into account at all, we consider the
second measure to be more appropriate to quantify model size and interpretability. However,
simply using the latter measure for cascaded DNFs would result in an unfair advantage over
DTs. Hence, we have to add the number of output values which is the number of single
DNFs +1.

12Technically they use the number of rules multiplied by the mean rule size.
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6.2.4.3. Training Process

The algorithms from Section 2.2.2.1 were evaluated using the standard procedure which
splits the data randomly into a 67% training and 33% test split. Since standard parameters
are not always the best choice, a three-fold cross-validation was applied to the training set
for the parameter selection of all algorithms.

6.2.4.4. Evaluation

We evaluated all learning algorithms of Section 2.2.2.1 in combination with all multiclass
methods from Section 2.2.3.1. The one-vs-one and one-vs-rest methods were applied in
two different ways. Thresholder used the indirect and direct method (Sections 5.1.2.3 and
5.1.2.4). All other algorithms used the normal method with majority votes and a modified
method with probability estimates as votes. To test whether the learning algorithms can be
further improved by ensemble learning, we exemplarily tested the one-vs-one method with
boosted classifiers using AdaBoost with 10 boosting iterations.

We experimented with different parameter values for the algorithms to find an ideal and
fair setting for each of them to represent their performance. This resulted in sets of parame-
ter values where the final setting is selected using a three-fold-cross-validation. For details
of the parameter sets see Table 6.9. Parameters of interpretable models were chosen only
based on their performance regardless of model size.

In a second experiment we tried different generalization parameters for all interpretable
models of the all-at-once multiclass method. We started with the parameter settings of the
previous experiments and changed the values stepwise in a way that the model size of the
last parameter combination was five or lower. This is the smallest model size which allows
for a separation of three classes. For details see Table 6.10. That way, we can evaluate a
model’s performance compared to its size. Lowering the model size is desirable, because a
lower model size increases interpretability.

A third experiment was performed to study the behaviour of IDK-classifications.
We tested all algorithms in combination with all multiclass methods supporting IDK-
classification, i.e., one-vs-one and one-vs-rest. Additionally, we evaluated Thresholder
using different values of τ . Although we tried different values of τ in the training process,
τ is always fixed to 0.67 when testing the model. This allows for a proper evaluation. Since
we are more interested in the performance using IDK-classifications and model size is of
second rank, we use the parameters from Table 6.9.

6.2.5. Results

The experiments were performed as described above. Welch’s t test and the Wilcoxon
signed-rank test both yielded almost always the same results for our experiments. If they
disagreed, result were denoted as significantly different.
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Algorithm Parameters and values used

Thresholder

Max. number of literals p = 5
Max. number of clauses r = 5
Max. number of thresholds in a single DNF ssingle = 7
Prune at most pc = 4 literals at once
Prune only if error worsens by at most pe = 0.001
Max. number of thresholds in the cascaded DNF

s = {2;3;4;6;8;10}

C4.5

Confidence factor used for pruning
C = {0.005;0.01;0.02}

Min. number of instances per leaf
M = {10;20;50}

RIPPER
Number of folds for growing/pruning F = {2;3;4}
Min. number of instances per rule N = {1;2;4}
Number of optimization runs O = 2

RF Number of trees I = {4;6;10}
Max. depth of the trees d = {2;5;10}

ANN Number of RBF-functions B = {10;20;30}
Min. width of RBF-functions W = {1;10;100}

L-SVM
Complexity parameter

C = {100;500;1000;5000;10000}
Normalize data

P-SVM
Exponent in polynomial function E = {2;3;4}
Complexity parameter C = {10;100;1000}
Normalize data

R-SVM
γ in RBF-function G = {0.01;0.1;1}
Complexity parameter C = {10;100;1000}
Normalize data

Table 6.9.: Parameter sets used for learning algorithms. For each algorithm all parameter combina-
tions of these values are used.

Parameter set Thresholder C4.5 RIPPER
P1 s = {2;3;4;6;8;10} M = {10;20;50} N = {1;2;4}
P2 s = {2;3;4;6;8} M = 20 N = 5
P3 s = {2;3;4;6} M = 30 N = 10
P4 s = {2;3;4} M = 40 N = 20
P5 s = {2;3} M = 50 N = 50
P6 s = {2} M = 60 N = 100

Table 6.10.: The six different generalization parameter sets used for evaluating the correlation be-
tween classification error and model size.

In the following tables, the abbreviation err refers to the error rate and size to the model
size.



6. Case Studies 78

6.2.5.1. Performance of All Models and Methods

Table 6.11 shows the error rates for all three data sets, learning algorithms, and multiclass
methods. Figure 6.8 visualizes the mean error rates for the three data sets and shows that
all algorithms for interpretable models and RFs perform similarly well and are much better
than other algorithms. The visualization of the error rates for each single data set can be
found in Figure A.1 - A.3. All best performing algorithms are threshold-based. Different
multiclass methods do only affect the performance of the non-threshold-based algorithms.
Boosting does not significantly increase performance. In fact, in most cases it tends to
overfit and slightly decreases it.
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Figure 6.8.: Mean error rates of learning algorithms and multiclass methods for all data sets.

6.2.5.2. Performance of Interpretable Models Compared Among Themselves

Multiclass methods may break the interpretability of the model. Therefore, Table 6.12
shows the error rates, their significances, and model sizes only of interpretable multiclass
models. Figure 6.9 visualizes the results of the interpretable methods by plotting the mean
error rates and model sizes for the three data sets. The visualization of the error rates and
models sizes for each single data set can be found in Figure A.4 - A.6. As mentioned above,
the performances are comparable, while the model sizes change. Since we focused only on
performance when choosing parameters for the algorithms, it might not be fair to compare
these model sizes at this point. Therefore, we performed an additional experiment described
in the following section.
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Algorithm All One One One One One One Boosting
-at- -vs- -vs- -vs- -vs- -vs- -vs- (one
once one one rest rest next followers -vs-

direct/prob. direct/prob. one)
Thresholder 4.8 5.0 5.1 5.0 5.2 4.6 4.9 5.8
C4.5 4.8 5.2 5.5 5.2 5.0 5.4 5.4 5.3
RIPPER 4.7 4.2+ 4.2+ 5.1 5.0 4.7 4.5 4.9
RF 4.9 4.9 4.2+ 4.9 4.8 5.0 4.6 5.1
ANN∗ 19.2 11.6 12.0 16.1 18.2 11.5 13.4 11.7
L-SVM∗ 7.9 10.5 20.3 28.4 8.2 7.5 8.2
P-SVM∗ 8.1 13.1 18.1 22.6 8.4 8.1 9.6
R-SVM∗ 13.0 12.9 22.4 25.4 12.0 13.0 11.9

(a) Trade data set.

Algorithm All One One One One One One Boosting
-at- -vs- -vs- -vs- -vs- -vs- -vs- (one
once one one rest rest next followers -vs-

direct/prob. direct/prob. one)
Thresholder 8.8 8.8 8.4 9.4 9.2 9.2 9.0 11.5
C4.5 8.6 8.9 8.2+ 8.2+ 8.8 8.4 8.3 10.4
RIPPER 8.4 8.7 8.9 9.9 9.7 8.5 8.7 11.1
RF 8.8 10.0 9.1 10.6 10.3 9.5 9.5 9.6
ANN∗ 18.5 18.2 18.0 27.9 28.5 19.1 17.8 18.1
L-SVM∗ 13.8 16.1 37.1 33.4 14.3 14.3 14.5
P-SVM∗ 15.4 17.8 25.5 26.4 16.9 16.5 17.2
R-SVM∗ 16.2 17.0 24.5 26.2 15.6 15.5 16.5

(b) Construction data set.

Algorithm All One One One One One One Boosting
-at- -vs- -vs- -vs- -vs- -vs- -vs- (one

once one one rest rest next followers -vs-
direct/prob. direct/prob. one)

Thresholder 16.6 16.6 17.0 17.0 17.5 17.2 17.0 28.4
C4.5 16.0 16.5 15.8+ 16.0 17.0 15.9 16.6 20.4
RIPPER 16.8 17.6 17.9 17.2 16.9 17.0 17.9 20.4
RF∗ 18.4 18.3 17.4 20.2 18.8 17.6 17.4 18.5
ANN∗ 32.6 32.7 32.2 36.1 36.5 33.4 32.9 33.2
L-SVM∗ 36.9 37.1 37.1 41.1 36.5 35.8 36.3
P-SVM∗ 30.6 29.1 30.8 31.9 30.1 30.2 29.9
R-SVM∗ 30.9 29.9 34.4 35.3 32.3 31.0 32.6

(c) Finance data set.

Table 6.11.: Error rates of learning algorithms and multiclass methods in percent. There are marks,
if the best result for an algorithm (∗) is significantly worse than the overall best result
(+).
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Algorithm Trade Construction Finance
err size err size err size

Thresholder

All-at-once 4.8 7.6 8.8 8.8 16.6 5.9
One-vs-one 5.0 7.4 8.8 8.4 16.6 5.1
One-vs-one-direct 5.1 7.4 8.4+ 7.9 17.0 6.6
One-vs-rest 5.0 8.7 9.4∗ 8.0 17.0 5.6
One-vs-rest-direct 5.2 8.0 9.2 8.0 17.5 5.9
One-vs-next 4.6 8.6 9.2 8.9 17.2 6.4
One-vs-followers 4.9 8.2 9.0 8.7 17.0 6.4

RIPPER
All-at-once 4.7 8.9 8.4+ 9.9 16.8 9.3
One-vs-next 4.7 9.1 8.5 8.9 17.0 7.8
One-vs-followers 4.5+ 8.0 8.7 9.7 17.9∗ 8.0

C4.5 All-at-once 4.8 7.6 8.6 9.0 16.0+ 6.8

Table 6.12.: Comparison of error rate in percent and model size of all interpretable multiclass models
in this study. Results with an ∗ are significantly worse than the best interpretable result
(marked with a +) for this data set.
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Figure 6.9.: Comparison of mean error rate and mean model size for all data sets of all interpretable
multiclass models in this study.
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6.2.5.3. Model Sizes of Interpretable Models

To obtain the required model size for a comparable performance, we examined performance
and model size for different parameters. Figure 6.10 and Table 6.13 show the connection
of performance and model size when the model size is decreased. They denote statistical
significances between error rates and model sizes as well.

Generalization Thresholder C4.5 RIPPER
parameter set err size err size err size

P1 4.8 7.6 4.8 7.6 4.7 8.9
P2 4.6 7.8 5.3∗ 5.8 4.6 8.5
P3 4.9 7.3 5.4∗ 5.0 4.7 8.0
P4 4.9 6.7+ 5.4∗ 5.0 5.9∗ 5.4
P5 5.3∗ 5.4 5.4∗ 5.0 5.9∗ 5.4
P6 5.5∗ 5.0 5.4∗ 5.0 5.7∗ 5.1

(a) Trade data set.

Generalization Thresholder C4.5 RIPPER
parameter set err size err size err size

P1 8.8 8.8 8.6 9.0 8.4 9.9
P2 8.7 8.0 8.9 8.8 8.3 9.4
P3 8.6 7.4 10.5∗ 7.2 8.4 9.1
P4 9.0 6.9+ 11.0∗ 5.0 10.4∗ 7.1
P5 10.9∗ 5.3 11.0∗ 5.0 10.2∗ 5.0
P6 10.8∗ 5.0 11.0∗ 5.0 10.2∗ 5.0

(b) Construction data set.

Generalization Thresholder C4.5 RIPPER
parameter set err size err size err size

P1 16.6 5.9 16.0 6.8 16.8 9.3
P2 16.6 5.6 16.5 6.0 16.7 9.5
P3 16.9 5.3 16.5 5.0 17.0 8.9
P4 16.8 5.1 16.5 5.0 15.9 5.4
P5 16.9 4.5 16.5 5.0 17.5 4.3
P6 16.9 4.0 16.9 5.0 17.9 3.7+

(c) Finance data set.

Table 6.13.: Error rate in percent and model size for different generalization parameters. Results
with an ∗ are significantly worse than the best interpretable result (marked with a + in
Table 6.12) for this data set. Horizontal lines separate significant from non-significant
results. All smallest model sizes which are not significantly different from each other
with an error not significantly worse than the best error for this data set are marked with
a +.



6. Case Studies 82

P1 P2 P3 P4 P5 P6

4,0%

4,5%

5,0%

5,5%

6,0%

6,5%

7,0%

7,5%

8,0%

8,5%

9,0%

1

2

3

4

5

6

7

8

9

10

Thresholder 
error rate

Thresholder 
model size

C4.5          
error rate

C4.5          
model size

RIPPER     
error rate

RIPPER     
model size

Significance 
border 

Generalization parameter set

E
rr

o
r 

ra
te

M
o
d
e
l 
s
iz

e

(a) Trade data set.
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(b) Construction data set.
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(c) Finance data set. Since there are no results which are significantly worse than the best result, no
border is plotted.

Figure 6.10.: Error rate and model size for different generalization parameters. A border is plotted
between the results which are not significantly worse and the results which are signifi-
cantly worse than the best result.
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6.2.5.4. Performance of IDK-classifiers

Table 6.14 shows the results obtained using IDK-classifications. Results which were signif-
icantly worse than the best interpretable result (marked with a + in Table 6.12) or with less
than one assigned IDK-label were intentionally left out, because we could not derive benefit
from them. However, the whole results can be found in Tables A.1 - A.3. The tables show
the error rate, the number of IDK-assignments, and die proportion of IDK-assignments per
misclassification.

6.2.6. Discussion

This section discusses the results of the second case study and is divided into a comparison
of all models and methods, all interpretable models, model sizes, and IDK-classifiers.

6.2.6.1. Performance of All Models and Methods

Our case study shows that interpretable algorithms perform best. Moreover, all of them
have a similar classification error. RFs perform slightly worse only for the finance data set.
All other non-interpretable algorithms perform significantly worse. Thus, the best perform-
ing algorithms are all threshold-based. There is quite a big gap between the error rates of
the threshold-based algorithms and the rest, as can be seen in Figure 6.8. The figure shows
that the mean gap over the three data sets is almost always about 10% or higher for each
multiclass method which means about twice as many misclassifications. Despite the fact
that this figure only plots the mean values for all data sets, it reflects the relative results
of each data set as well. Different multiclass methods do not influence the performance of
threshold-based algorithms to a great extend. Nevertheless, for ANNs and SVMs, there is a
big performance drop when using the one-vs-rest method which was observed in other stud-
ies [49, 57, 67] as well. The remaining multiclass methods only show marginal differences
among each other. For these data sets, using methods with probability estimates is almost
always worse than using methods with simple votes. When ignoring the badly performing
one-vs-rest methods, SVMs perform better than ANNs as observed by Kim et al. [67]. The
simple L-SVMs perform slightly better than the more sophisticated P-SVMs and R-SVMs
on the trade and construction data set. The ensemble learning method boosting slightly in-
creases the performance only of some of the bad performing non-interpretable algorithms.
However, the best performances are achieved by the threshold-based algorithms and boost-
ing does not increase it. This and the fact that they all perform similarly well leads to the
conclusion that the remaining error is noise which can only be eliminated using additional
information.

We were surprised at the bad performance of the popular SVMs and ANNs. Therefore,
we experimented with different parameters and different kernels in this study. Furthermore,
we tried a feature selection, but to no avail. There are very few studies comparing these
methods with threshold-based models in the field of multiclass credit rating. Furthermore,



6. Case Studies 84

Learning algorithm Multiclass method τ #IDK #IDK / #err errτ = 0.67

Thresholder

All-at-once
0.67 2.8 15 4.8
0.5 2.9 15 5.0
0.3 4.3 23 5.2

One-vs-one 0.3 2.7 14 5.0

One-vs-one-direct
0.67 1.7 8 5.0
0.5 1.9 10 4.9
0.3 3.5 18 5.2

One-vs-rest-direct 0.3 2.7 14 5.1
RF One-vs-rest 5.0 30 4.8

(a) Trade data set.

Learning algorithm Multiclass method τ #IDK #IDK / #err errτ = 0.67

Thresholder

All-at-once 0.67 3.2 8 9.3
0.5 5.4 15 8.9

One-vs-one-direct
0.67 2.4 6 9.1
0.5 3.8 10 9.1
0.3 5.6 14 9.5

One-vs-rest 0.67 3.6 9 9.5
0.5 4.3 11 9.5

One-vs-rest-direct 0.67 4.9 12 9.5
0.5 4.2 10 9.6

C4.5 One-vs-rest 2.3 6 8.3

(b) Construction data set.

Learning algorithm Multiclass method τ #IDK #IDK / #err errτ = 0.67

Thresholder

All-at-once
0.67 10.9 19 18.0
0.5 10.7 19 17.9
0.3 8.6 16 17.4

One-vs-one
0.67 4.6 8 17.4
0.5 3.4 6 17.1
0.3 4.2 7 16.6

One-vs-one-direct 0.67 7.1 12 18.3
0.5 9.3 16 18.0

One-vs-rest
0.67 2.0 3 17.8
0.5 6.6 11 18.4
0.3 7.7 13 18.4

One-vs-rest-direct
0.67 4.8 8 18.2
0.5 8.3 14 18.0
0.3 6.8 12 17.9

C4.5 One-vs-rest 5.0 10 15.7
RIPPER One-vs-rest 14.1 27 17.3
RF One-vs-one 1.1 2 18.2

(c) Finance data set.

Table 6.14.: Absolute number of IDK-assignments and error rate and number of IDK-assignments
per misclassifications in percent of all learning algorithms and IDK-classifier capable
multiclass methods. Results are left out, either if there are less than one IDK classified
instances or the error rate is significantly worse than the error rate of the best inter-
pretable method. For a full list see Tables A.1 - A.3.



85 6.2. Credit Rating

the credit agencies’ processes of determining credit ratings are unknown and differ from
agency to agency. We suspect that Creditreform’s credit rating is focused on thresholds
of account data. Therefore, threshold-based models are more appropriate to reconstruct
this credit rating using these data sets. Other approaches from Section 4.2 would probably
increase the performance of SVMs and ANNs. However, the small performance gain of
methods from these studies compared to the standard algorithms used in this case study,
renders it unlikely to fill the performance gap between the former and the threshold-based
algorithms. This applies at least to this problem and these data sets.

6.2.6.2. Performance of Interpretable Models Compared Among Themselves

In this case study, interpretable models outperform non-interpretable models and according
to Figure 6.9 and Table 6.12, there are no significant differences between the error rates
of the interpretable multiclass methods except for two cases. The Thresholder one-vs-rest
method for the construction data set and the RIPPER one-vs-followers method for the fi-
nance data set perform significantly worse than the best results for these data sets. On the
contrary, model sizes differ from each other. The smallest model size for each data set is
always achieved by Thresholder.

6.2.6.3. Model Sizes of Interpretable Models

The parameter selection for the previous comparisons is solely based on the classification
error and does not consider model size, because we wanted to compare interpretable and
non-interpretable algorithms. Therefore, it would be unfair to choose the winner of the sim-
ilarly performing models solely based on the model size of these experiments. As described
above, we did another experiment using different generalization parameters to compare
classification error and model size for the all-at-once method of the Thresholder, RIPPER,
and C4.5 algorithm. Figure 6.10 and Table 6.13 show that increasing the generalization also
increases the classification error and lowers the model size at the same time. We consider
the smallest model sizes that do not perform significantly worse than the overall best inter-
pretable result of this data set. This is done for each algorithm and data set. In the following,
we will refer to these smallest model sizes as the model size of an algorithm. Thus, we can
compare the similarly performing algorithms based on their model size.

Furthermore, we did a significance analysis for the model sizes of each algorithm to de-
termine models which are significantly bigger than the smallest model. For the trade data
set, Thresholder and C4.5 models are significantly smaller than RIPPER models. Thresh-
older yields the significantly smallest models for the construction data set as well. For the
finance data set the situation is different due to the small amount of low-rated enterprises.
Using small models, these enterprises are ignored by the learners which results in model
sizes below five. Nevertheless, these model sizes could be achieved without getting sig-
nificantly worse. For the finance data set, RIPPER models are significantly smaller than
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Thresholder models. However, the advantage is small and only significant because of the
constant model sizes of Thresholder and C4.5 over all repetitions of the experiments. Nev-
ertheless, the mean model size of Thresholder (5.87) is more than one threshold smaller
than the sizes of C4.5 (7.13) and RIPPER (6.93). Although the proportions of these num-
bers might seem small, it has to be taken into consideration that the number of thresholds in
these models is much smaller (3.21, 4.13, and 4.33) resulting in differences of about 25%.
A reason for the small thresholder models is probably the combination of several multiclass
methods and choosing the best ones with the smallest model size. Another reason could be
the generalization parameter which directly allows to control the model size.

Figures 6.11 - 6.13 show example models for all interpretable all-at-once algorithms for
each data set. For each algorithm and data set we picked a single model out of the 20 repe-
titions of the parameter set with the biggest generalization that did not perform significantly
worse. We took the models whose model sizes were closest to the mean model size for
this algorithm, data set, and parameter set. It can be seen that these models are small and
only contain a small number of different financial ratios. The finding that few features are
sufficient to solve financial problems was shown before [21, 55]. Investigating these models
shows that revenue is the most important financial ratio to classify trade and construction
enterprises. Despite the fact that revenue is of no importance for financial enterprises, miss-
ing values (replaced by zero-values) are indeed a very important discrimination criterion.
The worse the enterprise’s rating the more missing values seem to appear in their annual
accounts. The models catch them by using an upper threshold of or slightly above zero
and a second lower threshold of or slightly below zero. All models displayed are of an
interpretable structure and of an interpretable size. The size of the Thresholder DNFs is
lower than or equal to the size of RIPPER DNFs and DTs. Albeit, DT interpretability is of
a different kind.

6.2.6.4. Performance of IDK-classifiers

Roughly a third of the 34 IDK-classifier results assign at least one IDK label and are not
significantly worse than the best interpretable result. There are less for the trade (9) and
construction data sets (10) and more for the finance data set (17). As expected, increasing
the IDK class weight τ leads to a higher amount of IDK-class assignments. In return it leads
to higher error rates. However, there are results assigning a higher number of uncertain
predictions whose errors are not significantly worse than the error of the best interpretable
result.

As mentioned above, the one-vs-rest approach is more likely to produces a tie than the
other methods, resulting in more IDK-classifications. However, this does not hold for
Thresholder where all methods perform similarly. An explanation for this could be the
pruning of the cascaded DNF which might prune the decisions leading to a tie.

There is only a maximum number of five IDK-classifications in the trade and construc-
tion data set and 14 in the finance data set which seems to be a very low number compared
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Figure 6.11.: Example models for Thresholder DNFs built on the three data sets.
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to the size of a data set. Nevertheless, the purpose of this study is not to find as many IDK-
instances as possible. Correct predictions are still the most important observations. How-
ever, it is desirable to turn as many misclassifications as possible into IDK-classifications.
Consider that these absolute numbers of IDK-classifications are only observed on the test
data set which is 33% of the whole data. Comparing their amount with the number of mis-
classifications yields rates of 15% to 30% IDK-classifications per misclassification without
worsening the accuracy significantly.

While performing not significantly different, RFs yield the most IDK-classifications
for the trade data set, Thresholder for the construction data set, and RIPPER for the
finance data set. However, only Thresholder yields interpretable models to explain
these IDK-assignments. Figure 6.14 shows example DNFs built by Thresholder using
IDK-classification. For each data set we selected the setting which yields the most IDK-
assignments without performing significantly worse than the best interpretable result.
The model whose number of IDK-assignments is closest to the mean number of IDK-
assignments for this data set and settings is displayed. The trade and finance models are
similar to those in Figure 6.11, but with one additional threshold which discriminates the
IDK-label from the rest. The model built on the construction data set is much bigger. An
explanation can be found in the missing optimization of the model size as done in the
experiment above. However, we think that these models are well suited for decision support
with their additional information about doubt.
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data sets.
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In this chapter, we discuss the results of this thesis as a whole and provide an overview
of the research contributions and limitations of our work.

Even though the results are empirical, we conclude that interpretable models are well
suited for classification problems in finance. Those performed slightly better than non-
interpretable models in the first case study on insolvency prediction. In the second case
study on credit rating interpretable models even outperformed non-interpretable models
reducing the misclassifications by about 50%. The results can be explained by the way
classification is achieved. Insolvency happens when an enterprise cannot pay its debts which
is caused by several financial factors in contrast to credit ratings which are at least partially
man-made classifications. We conclude that man-made classifications are based on few
thresholds, and therefore, can be detected by threshold-based algorithms. ANNs and SVMs
might build models which are too complex for these simple rules and lead to an overfitting
of the data. The fact that less sophisticated L-SVMs outperform P-SVMs and R-SVMs
on two data sets confirms this assumption. Furthermore, boosting which reduces bias by
building more complex models does not increase the performance.

Since all threshold-based methods perform similarly, we expect the remaining error to be
noise which cannot be explained by the data. In fact, Creditreform gave information that
annual accounts only influence their rating by 20%. Instead, qualitative factors like payment
experiences from the past are more important.
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7.1. Contributions

The research contributions of this work are manifold and described in the following.

Showing Non-inferiority of Interpretable Models for Two Problems in Finance We
showed non-inferiority of interpretable models for two different problems in finance. An
explanation for these surprising results is provided and can be found in the nature of the
problems.

Focusing on Interpretability in Detail Most studies in this field of research focus on
improving the accuracy of prediction models. Some of them focus on interpretability as
well. However, we focus mainly on interpretability and thus examine them in more detail.
We do not just apply interpretable models, we also compare both the interpretability of their
model structures and the model sizes of different learning algorithms.

Using Asymmetric Bagging to Solve the Class Imbalance Problem Imbalances are a
big problem for finance problems where unusual cases are predicted. For example, insol-
vencies are not the normal case and therefore less common. We propose a successfully
tested method to increase the accuracy for imbalanced data problems.

Building Adjustable DNFs Using Thresholder We present an algorithm to build DNFs
which are more adjustable than the ones built by other algorithms. The generalization pa-
rameters are more comprehensible. It is possible to directly adjust the amount and structure
of thresholds used in this model in various ways. As a result, decision makers can build
models according to their purpose.

Building Cascaded DNFs on the Basis of Standard Multiclass Methods Using Thresh-
older Cascaded DNFs as interpretable multiclass models are already used by RIPPER.
However, our approach calculates them in several different ways on the basis of well-known
multiclass meta-algorithms inheriting their pros and cons. For practical applications, a par-
ticular method can be chosen or they can be used all together and Thresholder chooses
the best one. Furthermore, the comprehensible generalization parameters can be applied to
cascaded DNFs. Nevertheless, this approach performs as well as other algorithms building
interpretable models while its model size is smaller.

Assigning IDK-classifications We provide a general approach for assigning IDK-
classifications for multiclass meta-algorithms which use a voting. These IDK-labels can be
used as a marker for doubtful classifications. These marks allow for a selective application
of more expensive classification methods, e.g., classification by hand. However, simple
methods can still be applied, e.g., assigning the most critical label or randomly choosing a
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label. In two thirds of the cases, the performance either significantly drops or the number of
IDK-assignments is vanishingly low. However, the remaining results are not significantly
worse with up to 30% of IDK-classifications per misclassification. Therefore, it can be
considered a useful decision support in cases where the performance is not negatively
affected.

Interpretable Assignments of IDK-classifications Using Thresholder Last but not
least, we combine the two preceding contributions and present an approach to build inter-
pretable models assigning IDK-classifications. Furthermore, the balance between accuracy
and number of IDK-assignments can be controlled by a parameter.

7.2. Limitations

In this section we will explain the limitations of this thesis.

Comparision with Other Interpretable Models and Algorithms We only evaluated inter-
pretable DT and DNF models. For each of them we only used one algorithm. Additionally
we used our approach. Nevertheless, there are other interpretable models and algorithms
building interpretable models as can be seen in Section 3.2.1.3. Instead of testing additional
approaches we decided to use only the most popular methods (see Section 3.2.1.3) due to
the similar nature of most of the approaches (see Section 3.3). Using them would not change
the finding that DTs and DNFs are not inferior to non-interpretable models.

Furthermore, it is unlikely that the performance could be improved much further as C4.5
is an established algorithm. As mentioned at the beginning of this section, we do not think
that much better results could be achieved because all threshold-based models perform
equally well. However, different models would yield a different kind of interpretation. We
consider the evaluation of different interpretations future work. Nevertheless, Thresholder
has benefits that we have not discovered in related literature, i.e., comprehensible model
size restriction and interpretable IDK-classifications.

Comparision with Explanatory Approaches for Non-interpretable Models As stated
in Section 4.3.1, there are some approaches that try to simplify non-interpretable models,
e.g., by rule extraction. We consider a comparison of their performance and interpretability
future work.

Comparision with Improvements of SVMs, ANNs, and Ensemble Methods In our case
studies, we compare our work only with standard SVMs, ANNs, and AdaBoost. However,
there are a lot of improvements of these algorithms. Section 4.1 and 4.2 only list some
applied to finance problems. The application of these approaches is difficult as there are
no implementations publicly available for most cases. Since also the data sets used for
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evaluation are mostly not publicly available, these algorithms have to be reimplemented for
a proper comparison on one’s own data. However, this enormous effort discourages most
researchers. Therefore, most studies in finance including this one compare their approaches
with standard algorithms only. In Section 6.2.6.1, we justify our approach with the big
performance gap between interpretable and non-interpretable methods and the other case
studies’ small performance gain.

Results are Empirical The results of our case study do not state that interpretable models
are always non-inferior to more sophisticated models. The results are empirical and apply
only to our data sets. However, we expect similar results for the same problem statements
since we performed a proper evaluation and used multiple real-life data sets. Nevertheless,
results may vary, especially for the credit rating, because different rating agencies apply
different rating techniques. Thus, different algorithms could be more appropriate for credit
data from different agencies.

Doubtlessly, the results are not generally transferable to other problems. For most ap-
plications SVMs and ANNs still yield the best results. However, they perform worse for
insolvency and for credit rating whereas the bad results for insolvency prediction are more
surprising than for credit rating.

Runtime of Our Approaches A drawback concerning Thresholder and asymmetric bag-
ging maybe the runtime. The post-pruning of Thresholder is more costly than the pruning
of RIPPER which takes place directly after the calculation of each monomial. However,
limiting the model size via pruning works only this way. Thresholder’s technique of com-
bining all multiclass methods and choosing the best one is a runtime expensive method as
well. Despite these two costly features Thresholder’s runtime is shorter than the runtime
of the SVMs in our studies. When runtime is important, these two features can be left out
without worsening the prediction performance much.



8 Conclusion

8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.2. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

This chapter summarizes the thesis and provides a brief outlook on future work.

8.1. Summary

Computer-aided rating and insolvency prediction have become a powerful tool. While its
accuracy is not 100% reliable, it is a very helpful decision support.

As stated in Section 7.1, the research contributions of this thesis are manifold. In two
case studies on insolvency prediction and credit rating, we showed that the simple DNF and
DT models are not inferior or even perform better than non-interpretable models like SVMs
and ANNs. As a consequence the best results are actually created in a way that is easy
to interpret. We showed the theoretical differences between these two hypothesis classes.
They can be transformed into each other, but with a loss of interpretability. We provided
example models for both of them built on real-life data and offer an interpretative approach.
We concluded that none of them is superior concerning interpretability. Thus, the preferable
method is a matter of taste. We presented a new interpretable multiclass method to learn
DNFs by adopting several well known multiclass methods. The comprehensible generaliza-
tion parameters of our method are advantages as they allow for a direct adjustment of model
size and structure. The classification error of our method is similar to the other interpretable
methods, but further experiments show smaller model sizes with similar error rates. Born
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from necessity, another small research contribution is the finding that asymmetric bagging
helps to tackle the problem of imbalanced data for most learning algorithms.

The practical implication of our research is that interpretable models with thresholds are
well suited for some classification problems in finance and should be used. Since DNFs and
DTs perform similarly well and are of a different structure, we recommend using both mod-
els as decision support. If the size of DTs or DNFs is too big for easy interpretation, both
algorithms provide parameters to decrease the model size. We prefer using our Thresholder
algorithm over RIPPER for DNF models because it builds smaller models while yielding
a comparable classification error. Furthermore, Thresholder provides parameters which are
more comprehensible to adjust the amount of interpretability, e.g., by determining a maxi-
mum model size instead of determining a minimum number of instances in a rule. In prac-
tice, these models can be used by managers to justify decisions. Once they understand the
model, they will hopefully be less reluctant to use it. Also, they might be able to combine
statistical models with expert knowledge [39].

8.2. Outlook

Our results show that future work on computer-aided rating is a promising research topic.
Interpretable models are quite underrated. Since they are not inferior to other models for
solving important problems in finance, there should probably be more effort put in increas-
ing the performance of algorithms building interpretable models.

In the future, we would like to implement the generalization of our multiclass method
to work for more than three classes and evaluate it accordingly. These models will get
much bigger due to logical operations on more DNFs. Experiments will show whether the
resulting cascaded DNFs can be pruned down to an interpretable size.

We would like to identify additional problem statements where interpretable models are
non-inferior to interpretable models. We suggest using sophisticated models only when
it is necessary. However, to determine this necessity it is important to understand which
problems are solvable by interpretable models.

As mentioned in Section 7.2, we want to evaluate different models which yield a different
kind of interpretation, e.g., scoring tables or decision diagrams. Moreover, explanatory
approaches for non-interpretable models deserve to be studied in more detail concerning
the interpretability-performance trade-off.
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This appendix provides additional visualizations and results of this thesis. They do not
necessarily provide new findings, but supplement some parts which we felt were too de-
tailed. Therefore, they were left out in the main text.

A.1. Credit Rating

This section presents the supplementary results of the second case study on credit rating
from Section 6.2.

A.1.1. Performance of All Models and Methods

Figure A.1 - A.3 visualize the results of each data set from Table 6.11. In the case study,
only the mean over all data sets was visualized.
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Figure A.1.: Mean error values of learning algorithms and multiclass methods for the trade data set.
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Figure A.2.: Mean error values of learning algorithms and multiclass methods for the construction
data set.
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Figure A.3.: Mean error values of learning algorithms and multiclass methods for the finance data
set.
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A.1.2. Performance of Interpretable Models Compared Among Themselves

Figure A.4 - A.6 visualize the results of each data set from Table 6.12. In the case study,
only the mean over all data sets was visualized.
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Figure A.4.: Comparison of error rate and model size for the trade data set of all interpretable mul-
ticlass models in this study.
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Figure A.5.: Comparison of error rate and model size for the construction data set of all interpretable
multiclass models in this study.
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Figure A.6.: Comparison of error rate and model size for the finance data set of all interpretable
multiclass models in this study.
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A.1.3. Performance of IDK-classifiers

Table A.1 - A.3 show the full list of results from Table 6.12. In the case study, results which
are significantly worse than the best interpretable result or with less than one assigned IDK-
label were intentionally left out.
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Learning algorithm Multiclass method τ #IDK #IDK / #err errτ = 0.67 Sig.

Thresholder

All-at-once

0.67 2.8 15 4.8 X
0.5 2.9 15 5.0 X
0.3 4.3 23 5.2 X
0.1 14.6 81 6.7

One-vs-one

0.67 0.6 3 4.7
0.5 0.7 4 4.7
0.3 2.7 14 5.0 X
0.1 15.3 78 7.2

One-vs-one-direct

0.67 1.7 8 5.0 X
0.5 1.9 10 4.9 X
0.3 3.5 18 5.2 X
0.1 11.9 67 6.2

One-vs-rest

0.67 0.4 2 5.1
0.5 0.6 3 5.2
0.3 4.0 19 5.8
0.1 14.8 75 7.1

One-vs-rest-direct

0.67 0.5 2 5.2
0.5 0.4 2 5.2
0.3 2.7 14 5.1 X
0.1 10.5 53 6.5

C4.5 One-vs-one 0.1 0 5.2
One-vs-rest 2.6 13 5.3

RIPPER One-vs-one 0.1 0 4.2
One-vs-rest 11.7 76 5.6

RF One-vs-one 0.2 1 4.9
One-vs-rest 5.0 30 4.8 X

ANN One-vs-one 4,1 9 11,9
One-vs-rest 92,2 309 22,1

L-SVM One-vs-one 1,2 4 7,8
One-vs-rest 12,0 15 21,3

P-SVM One-vs-one 4,4 14 8,0
One-vs-rest 40,2 68 20,7

R-SVM One-vs-one 6,9 14 13,4
One-vs-rest 40,2 56 23,8

Table A.1.: Trade data set: Absolute number of IDK-assignments and errors and number of IDK-
assignments per misclassifications in percent of all learning algorithms and IDK-
classifier capable multiclass methods. Methods with more than one IDK classified in-
stance and an error rate not significantly worse than the error rate of the best interpretable
method are checkmarked.
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Learning algorithm Multiclass method τ #IDK #IDK / #err errτ = 0.67 Sig.

Thresholder

All-at-once

0.67 3.2 8 9.3 X
0.5 5.4 15 8.9 X
0.3 8.5 22 9.9
0.1 38.3 17 13.0

One-vs-one

0.67 5.1 12 9.8
0.5 6.4 16 9.9
0.3 9.3 23 10.3
0.1 30.9 78 13.4

One-vs-one-direct

0.67 2.4 6 9.1 X
0.5 3.8 10 9.1 X
0.3 5.6 14 9.5 X
0.1 38.0 105 13.7

One-vs-rest

0.67 3.6 9 9.5 X
0.5 4.3 11 9.5 X
0.3 9.0 24 9.7
0.1 38.5 106 13.8

One-vs-rest-direct

0.67 4.9 12 9.5 X
0.5 4.2 10 9.6 X
0.3 12.4 32 10.5
0.1 28.8 69 13.6

C4.5 One-vs-one 0.3 1 8.9
One-vs-rest 2.3 6 8.3 X

RIPPER One-vs-one 0.7 2 8.7
One-vs-rest 13.4 39 9.6

RF One-vs-one 0.5 1 10.0
One-vs-rest 15.5 45 9.9

ANN One-vs-one 3,4 4 18,2
One-vs-rest 111,3 200 29,0

L-SVM One-vs-one 1,1 2 13,7
One-vs-rest 179,9 428 36,2

P-SVM One-vs-one 3,9 6 15,3
One-vs-rest 101,2 191 26,9

R-SVM One-vs-one 3,1 4 16,1
One-vs-rest 97,4 170 27,3

Table A.2.: Construction data set: Absolute number of IDK-assignments and errors and number of
IDK-assignments per misclassifications in percent of all learning algorithms and IDK-
classifier capable multiclass methods. Methods with more than one IDK classified in-
stance and an error rate not significantly worse than the error rate of the best interpretable
method are checkmarked.
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Learning algorithm Multiclass method τ #IDK #IDK / #err errτ = 0.67 Sig.

Thresholder

All-at-once

0.67 10.9 19 18.0 X
0.5 10.7 19 17.9 X
0.3 8.6 16 17.4 X
0.1 42.0 84 22.2

One-vs-one

0.67 4.6 8 17.4 X
0.5 3.4 6 17.1 X
0.3 4.2 7 16.6 X
0.1 42.2 77 23.5

One-vs-one-direct

0.67 7.1 12 18.3 X
0.5 9.3 16 18.0 X
0.3 13.6 24 18.9
0.1 49.8 92 24.8

One-vs-rest

0.67 2.0 3 17.8 X
0.5 6.6 11 18.4 X
0.3 7.7 13 18.4 X
0.1 42.8 78 23.8

One-vs-rest-direct

0.67 4.8 8 18.2 X
0.5 8.3 14 18.0 X
0.3 6.8 12 17.9 X
0.1 45.9 86 23.9

C4.5 One-vs-one 0.6 1 16.5
One-vs-rest 5.0 10 15.7 X

RIPPER One-vs-one 0.7 1 17.5
One-vs-rest 14.1 27 17.3 X

RF One-vs-one 1.1 2 18.2 X
One-vs-rest 23.6 45 19.4

ANN One-vs-one 5,0 4 32,5
One-vs-rest 33,5 33 34,8

L-SVM One-vs-one 1,3 1 36,8
One-vs-rest 11,4 9 36,8

P-SVM One-vs-one 4,1 4 30,5
One-vs-rest 14,5 15 30,3

R-SVM One-vs-one 1,8 2 30,9
One-vs-rest 21,8 21 33,5

Table A.3.: Finance data set: Absolute number of IDK-assignments and errors and number of
IDK-assignments per misclassifications in percent of all learning algorithms and IDK-
classifier capable multiclass methods. Methods with more than one IDK classified in-
stance and an error rate not significantly worse than the error rate of the best interpretable
method are checkmarked.
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