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1. Introduction 
 

Hearing allows animals and man to localize the sources of sound and to 

communicate with conspecifics. For animals sound source localization is important 

for detection and an appropriate response to danger and it allows predators to detect 

prey. The sense of hearing is mediated by the auditory system, which involves the 

cochlea and the spiral ganglion as peripheral parts, and sends signal to the central 

nervous system through auditory nerve fibres. To identify and make a percept of an 

acoustic event, the brain can use only a few acoustic cues. These acoustic cues are 

transformed into temporal firing patterns of the auditory nerve fibers and further 

processed and integrated at hierarchically organized stations of the ascending 

pathways. Sound location is computed at more central levels in the auditory pathway 

and is based entirely on neural representations of the spectral and temporal 

characteristics of the acoustic stimuli.  

 

1.1 The auditory system and sound localization in the auditory 
brainstem 

Auditory stimuli are created by moving objects (e.g. human speaking, snipping 

fingers, and flapping wings) that cause changes of pressure in the air or other elastic 

media. In this way, sound waves with certain characteristics are generated. The 

sound frequency is defined as the number of cycles of a sound wave per second. 

The frequency of a sound wave encodes the pitch of a tone. On the other hand, the 

intensity of a sound is assigned to the maximum deflections of the sound wave, the 

amplitude. The hearing (intensity) threshold, is described as the just perceptible 

sound pressure level and is dependent on the frequency. 

Humans can detect sound between 16 and 20 kHz. In contrast, the hearing range of 

animals is more various with some specialized to low frequencies, e.g. gerbils (0.1-50 

kHz) and barn owls (0.2-12 kHz), and others having a better high frequency hearing 

ability (cats: 0.1-90 kHz and mice: 3-100 kHz, respectively) (Fay 1988) . 

The external ear collects sound waves and carries them down the ear canal, where 

the sound waves cause the vibration of the eardrum. The mechanical deflections of 

the eardrum are transmitted to the cochlea via the ossicles. These tiny bones act as 
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an impedance-matching device effectively coupling the air-borne sound to the fluids 

of the inner ear. Vibrations of the ossicles cause the oval and round window at the 

base of the cochlea to move in opposite directions. This leads to a displacement of 

the cochlear fluids and consequently a wave starts travelling across the basilar 

membrane. As it moves the traveling wave increases in amplitude and reaches a 

peak deflection at a place that corresponds to the frequency of the sound. Hair cells 

in the organ of Corti are specialized for the transduction and resolution of sound 

frequency, i.e. mechanical energy is converted into bioelectric energy in form of 

membrane depolarization. This depolarization induces transmitter release, which 

triggers action potentials in spiral ganglion neurons. Their afferent nerve fibers 

transmit the action potentials to the central auditory system. High-frequency sounds 

produce deflections near the base of the cochlea, while low-frequencies deflect the 

membrane near the apex. In this way frequency is coded via a place-code with 

neurons at different places coding for different frequencies. Precise mapping of 

frequency to a position is known as tonotopic mapping which is preserved throughout 

the auditory pathway. The afferent auditory nerve fibers (ANF) arise from spiral 

ganglion cell axons and terminate in the cochlear nucleus (CN). Second-order 

neurons of the CN project in several parallel pathways to the inferior colliculus (IC). in 

the midbrain. Neurons from the dorsal cochlear nucleus (DCN) project directly to the 

contralateral IC. Some neurons from the ventral cochlear nucleus (VCN) pass across 

the midline to cells of the superior olivary complex (SOC), whereas others make 

connection with olivary cells of the same side. Nerve fibers from the VCN, SOC and 

DCN join the lateral lemniscus and end in the IC. Neurons of the IC project to the 

medial geniculate nucleus of the thalamus and from there to the auditory cortex in the 

temporal lobe. The ascending auditory pathway to the midbrain is illustrated and 

summarized in figure 1.1.  

To perform sound localization, many mammals make use of two binaural cues, 

interaural time differences and interaural level difference (Grothe et al. 2010). 

Microsecond differences in the arrival time of a sound at the two ears (interaural time 

differences, ITDs) are the main cue for localizing low-frequency sounds in the 

horizontal plane. Sound waves arrive first at the ear which is turned towards the 

sound source but arrives delayed at the other ear. Neurons in the medial superior 

olive (MSO) compute ITDs in a sub-millisecond range. The relative arrival times are 

transmitted via two excitatory inputs deriving from the contralateral and the ipsilateral 

http://www.britannica.com/EBchecked/topic/427687/olive
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spherical bushy cells in the CN (Cant & Casseday 1986). In addition, neuronal 

inhibition originating from the medial and lateral nucleus of the trapezoid body (MNTB 

and LNTB) (Grothe & Sanes 1994) refines the ITD sensitivity (Grothe & Pecka 2014; 

Grothe 2003) 

For frequencies higher than 2 kHz, differences in sound level, or intensity, are 

analyzed in the lateral superior olive (LSO) which receives excitatory inputs from 

ipsilateral spherical bushy cells in the VCN and inhibitory inputs from the MNTB 

which itself is innervated by globular bushy cells the contralateral VCN (Cant and 

Casseday, 1986). Interaural level differences (ILDs) are created by a shadowing 

effect of the head which is produced at the ear further away from the sound source. 

For instance, sound coming from the left side is attenuated by the head, which lies 

between the contralateral ear and the sound-source, before it reaches the right ear. 

Significant ILDs occur when the wavelength is shorter than the head width (Grothe & 

Pecka 2014). 

 

 

Figure 1.1 The ascending auditory pathway. Schematic coronal section of the auditory 

brainstem and midbrain. Selected afferent projections. IHC: inner hair cell, CN, cochlear 

nucleus, LSO: lateral superior olive, MNTB: medial nucleus of the trapezoid body, MSO: 

medial superior olive, VLL: ventral lateral lemniscus, DLL: dorsal lateral lemniscus. (adapted 

from Gersdorff & Borst, 2002) 
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The mechanisms described above emphasize that the processing of sound source 

information in both nuclei, MSO and LSO, are dependent on the accurate 

coincidence and integration of excitatory as well as inhibitory inputs. A precisely 

timed transmission of the binaural signals from the auditory nerve fibers via the CN is 

essential for appropriate detection of ITDs and ILDs in the brainstem (Grothe 2003; 

Oertel 1999). 

 

1.2 Cell types and function in the ventral cochlear nucleus 

The cochlear nucleus of the brainstem can be divided into a ventral and a dorsal part. 

Each part is topographically organized with regard to incoming ANFs. Consequently, 

high frequency information is transmitted in dorsal regions and low frequency 

processing takes place in ventral areas. The VCN is separated from the DCN by a 

cap that harbors the granule cells. The DCN serves as the initial site of multimodal 

signal integration along the ascending auditory pathway. It integrates audition with 

other sensory input and subsequently refers this information to the midbrain (Cant & 

Benson 2003). The ventral cochlear nucleus can be further divided into an anterior 

and posterior subdivision based of the bifurcation zone of the auditory fibers (Cajal, 

1909). The region where ANFs enter the brainstem marks the border between 

anterior the ventral cochlear nucleus (AVCN) and posterior the ventral cochlear 

nucleus (PVCN) (overview see figure 1.1). 
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Figure 1.2. The cochlear nucleus. (adapted from Oertel and Kandel et al., 2013) 

 

Bushy and T-stellate cells are the main cell types in the AVCN.  

T-stellate cells occupy a region between the octopus cell area (in the most caudal 

and dorsal part of the PVCN) and the nerve root, and a few sit anterior to the nerve 

root (Oertel et al. 2011). They receive many small inputs from ANF, i.e. 6.5 on 

average (Cao & Oertel 2010). T-stellate cells respond to tone bursts with regular, 

tonic firing of action potentials (AP). Hence, the response pattern was termed as 

chopping (Smith & Rhode 1989). The tonic firing rate increases monotonically with 

intensity (Oertel et al. 2011). This makes T-stellate cells well suited for encoding the 

envelope of sounds and (as a population) for the spectrum of complex sound, cues 

that are used for the sound localization (Blackburn & Sachs 1990) and speech 

processing (Shannon et al. 1995),respectively. T-stellate cells innervate numerous 

auditory nuclei in the brainstem including DCN, LSO, VNTB, the nuclei of the lateral 
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lemniscus (NLL), and the IC (Cant & Benson 2003). Their axons project through the 

trapezoid body, hence, they were called T stellate cells (Oertel et al. 2011). 

 

Bushy cells can be divided into two subtypes (spherical bushy cells and globular 

bushy cells) based on the distribution of response properties and patterns of inputs 

and projections (Cao & Oertel 2010; Lauer et al. 2013). Spherical bushy cells (SBCs) 

give rise to an excitatory bilateral projection to the MSO and to the ipsilateral LSO 

(Cant & Casseday 1986). Globular bushy cells (GBCs) sent their axons to the 

contralateral MNTB (Smith et al. 1991) where they form a large synaptic ending, the 

calyx of Held.  

In cats, spherical and globular bushy cells occupy different parts of the VCN. SBCs 

were primarily found in the more rostral regions of the AVCN (Osen 1969) whereas 

GBSs were located in the posterior part of AVCN and near the root of the auditory 

nerve (Osen 1969). In contrast, a recent anatomical study from Lauer et al. (2013) in 

the mouse AVCN revealed that bushy cells do not occupy distinct regions. Instead 

differences in inputs to bushy cell bodies were obvious at the electron microscopic 

level. In a physiological study Cao et al. (2010) found that bushy cells can be 

separated into two groups that differ in converging excitatory inputs with SBCs 

generally receiving1 to 3 and GBCs receiving 4 to 6 excitatory inputs.  

Bushy cells respond rapidly at the onset of a tone followed by a decline in rate to a 

steady state response. The phasic firing pattern of bushy cells is very similar to that 

of ANFs; hence the firing pattern was called primary-like (Rhode & Smith 1986). In 

that way, bushy cells preserve the timing of the stimulus onset by integrating 

temporal information from multiple ANF (Liberman 1991; Sento & Ryugo 1989; 

Spirou et al. 2005). Accordingly, they convey information about the fine structure of 

sounds (Joris et al. 1998; Kopp-Scheinpflug et al. 2002) which is important for the 

localization of sound sources (Joris & Yin 2007) and pitch identification (Shofner 

2008). Furthermore, bushy cells report the phase of a sound wave by firing an AP at 

a certain time during the cycle of a wave, a phenomenon called phase-locking. At low 

frequency phase-locking is an important cue for coding sound frequency (Joris et al. 

1994). 

In addition to their excitatory inputs from ANFs both bushy and T-stellate cells receive 

inhibitory inputs from narrowly tuned tuberculaventral (TBV) cells originating in the 

DCN (Wickesberg & Oertel 1990) and broadly tuned D-stellate cells of the VCN. D 
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stellate cells are the major source of inhibition in the VCN (Smith & Rhode 1989; 

Campagnola & Manis 2014) .These local circuits within the CN are either glycinergic, 

GABAergic, or use both transmitters.(Kolston et al. 1992). Other sources of inhibitory 

inputs include the LNTB, VNBT, MNTB and the superior paraolivary nucleus (SPN) 

(Schofield 1991; Schofield 1994). Time course of inhibition to bushy cells is much 

slower than the excitation (Xie & Manis 2013; Nerlich et al. 2014). Functionally, the 

glycinergic synapses provide a tonic inhibition that can increase the temporal 

precision of spikes in bushy cells (Kuenzel et al. 2011; Xie & Manis 2013). 

 

1.3 The Endbulbs of Held  

Within the AVCN, auditory nerve fibers produce large axo-somatic terminals, the so 

called endbulbs of Held, on bushy cells (Held 1893). These giant synapses exhibit 

highly branched aborizations and a strong fenestration of synaptic specializations 

which can have complex shapes and extend over a considerable distance. Moreover 

the converging terminals appeared to be well separated from each other around the 

cell soma. Functionally, these arrangements support efficient neurotransmitter 

clearance (Nicol & Walmsley 2002). Each endbulb has a high number, 400 to 1500, 

of closely spaced release sites as calculated through serial section electron 

microscopy (Nicol & Walmsley 2002). In addition, the pool of readily releasable 

vesicles (RRP) that can be released upon an action potential was estimated at ~1050 

vesicles from capacitance measurements (Lin et al. 2011). 

Immunohistochemical studies in the AVCN of mature animals demonstrated the 

presence of mainly α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 

receptor at the postsynaptic site inferring that the endbulb of Held is a glutamatergic 

synapse. The AMPA receptor complexes are composed of the rapid desensitizing 

‘flop’ isoforms GluR4 and GluR3 that contribute to fast the kinetics of excitatory 

postsynaptic potentials (EPSCs) in bushy cells (Petralia et al. 2000; Wang et al. 

1998). In addition to AMPA receptors N-Methyl-D-aspartate (NMDA) receptors are 

expressed and contribute to synaptic transmission during development. In mature 

bushy cells only low levels of NMAR receptors remain but they promote firing 

probability and improve temporal precision (Pliss et al. 2009). 
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The fast kinetics of EPSPs is also determined by the intrinsic properties of bushy 

cells. They express a low voltage–activated potassium conductance at the resting 

potential that assures fast repolarization and prevents repetitive firing. Furthermore, a 

hyperpolarization-activated conductance near rest leads to low input resistances and 

short membrane time constants (Cao et al. 2007; Cao & Oertel 2010). 

Thus, excitatory postsynaptic potentials (EPSPs) in bushy cells are brief and have 

rapid kinetics. As a consequence, action potentials occur reliably and with little 

temporal jitter, endbulb depolarization produces only one (or few) postsynaptic spike, 

and the refractory period is short. Hence, bushy cells exhibit the ability to ‘follow’ 

repeated stimulation up to 300Hz which is near the maximum firing rate of auditory 

nerve fibers (Ryugo & Spirou 2010). 

 

1.3.1 Short-term plasticity in endbulbs of Held 

Synapses adapt their strength to the preceding activity level and/or to postsynaptic 

alterations. This ability is referred to as synaptic plasticity. Short-term plasticity acts 

on a time scale of milliseconds to seconds and is thought to contribute to information 

processing. Synaptic strength can change in two directions, a decrease is called 

depression and increase is called facilitation.  

During high frequency endbulbs are subjected to dynamic regulation of 

neurotransmitter release and receptor sensitivity. In the AVCN, ANF terminals on 

bushy cells show strong depression while on T-stellate cells depression is lower or 

facilitation occurs. Thus, bushy cells adapt faster to high frequency stimulation (Cao 

& Oertel 2010; Chanda & Xu-Friedman 2010). Wang et al. (2010) concluded that the 

endbulb synapses are chronically depressed by spontaneous activity, and are more 

resistant to further depression when challenged with a higher rate of activity. Thus, 

short-term synaptic depression at the endbulbs is activity dependent at high 

stimulation rates of 100 to 300 Hz (Oleskevich & Walmsley 2002; Wang & Manis 

2008; Yang & Xu-Friedman 2008). Mechanisms contributing to depression include 

depletion, postsynaptic receptor desensitization and saturation (Xu-friedman & 

Regehr 2004). In the endbulb of Held the depression results from desensitization 

(Oleskevich, Clements, and Walmsley 2000; Yang and Xu-Friedman 2008) and 

vesicle depletion (Wang & Manis 2008; Yang & Xu-Friedman 2008). Release 

probability and the amount of depression vary between endbulbs that converge on 
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different bushy cells (Oleskevich and Walmsley 2000; Yang and Xu-Friedman 2009). 

Interestingly, endbulbs which terminate on the same bushy cell have similar plasticity 

(Yang & Xu-Friedman 2009; Yang & Xu-Friedman 2012), suggesting that plasticity is 

closely regulated between converging endbulbs. In dynamic clamp experiments 

depression was particularly important in suppressing highly active inputs that may 

carry less precise temporal information this indicates an important role in preserving 

and enhancing temporal firing precision of bushy neurons (Yang & Xu-Friedman 

2009).  

The role of activity in regulating synaptic transmission has been intensively studied 

by the effects of eliminating or reducing ANF activity i.e. deafness and hearing loss. 

Studies have been performed in congenitally deaf (dn/dn, deafness) mutant mice 

(Oleskevich & Walmsley 2002) and DBA mice which develop with normal hearing 

thresholds, but begin to show elevated hearing thresholds by P30 (Wang & Manis 

2005; Wang & Manis 2006). In both cases, auditory nerve fibers survive and can be 

electrically stimulated. Moreover, the intrinsic membrane properties of VCN neurons 

seem to be resistant to sensory deprivation (Lu et al. 2007; Wang & Manis 2005; 

Wang & Manis 2006; Cao et al. 2008). In deaf mice, synaptic transmission was found 

to be similar to control mice in many aspects, implying that many parameters of 

synaptic transmission develop normally in these animals. In dn/dn mutants, only two 

significant differences were found. Deaf mice had higher release probability (Pr) and 

stronger depression and showed delayed-release (asynchronous) after stimulation 

with a train of action potentials. Both changes could be reversed by the addition of 

EGTA-AM, suggesting that endogenous calcium buffering may be impaired 

(Oleskevich & Walmsley 2002). Surprisingly, no changes in the synaptic transmission 

were found in the calyx of Held of deaf mice. 

In contrast, in DBA mice which exhibit age-related hearing loss, Wang & Manis 

(2005) showed that the spontaneous miniature EPSC frequency is greatly reduced 

and Pr is lower in endbulbs after the onset of hearing loss. However, synaptic 

depression at different stimulation rates (100 to 300 Hz) is unchanged, indicating that 

other compensatory changes may be occurring in these hearing-impaired animals.  

Yet, molecular mechanisms underlying the adaption to lacking activity are not known. 

Also it is still not clear whether activity in the auditory nerve contributes to regulate 

e.g. Pr and synaptic plasticity in endbulbs. Oleskevich et al. (2000) raised the 

possibility of a relationship between AN activity and Pr at endbulb terminals. They 



Introduction 

  10 

suggested that the varying Pr in endbulbs is due to morphological differences 

between endbulbs. Morphological adaptions to different levels of activity in ANFs 

have been revealed earlier. Endbulbs arising from highly active auditory nerve fibers 

exhibit larger endbulbs with more and smaller synaptic specializations than endbulbs 

from less active auditory nerve fibers. This indicates that, the synapse structure of 

endbulbs is subject to activity-related change (Ryugo et al. 1996). Moreover, in deaf 

cats that lack spontaneous and evoked activity the extent and complexity of endbulb 

branching were much less pronounced (Ryugo et al. 1997; Ryugo et al. 1998). 

All in all, the auditory pathway offers a good system to investigate the mechanisms 

underlying activity-dependent changes in synaptic plasticity. 

 

1.4 Proteins of the active zone 

An incoming action potential evokes calcium influx in the presynaptic nerve terminal 

which triggers the fusion of synaptic vesicles (SV) with the presynaptic membrane 

and leads to neurotransmitter release into the synaptic cleft. At the postsynaptic site 

transmitters bind to specific receptors and cause ionic channels in the membrane to 

either open or close. When these channels open, depolarization occurs triggering 

further action potential generation. The SV exocytosis occurs exclusively at a small 

area of the presynaptic neuron, the active zone (AZ), which appears as an electron-

dense structure opposite the postsynaptic density. The active zone harbors a rich 

network of proteins that is referred to as the cytomatrix of the active zone (CAZ). Five 

protein families have been characterized that are enriched in the CAZ: Munc-13s, 

RIMs, ELKSs (ERC/CAST), liprins-αs and piccolo and bassoon (Schoch & 

Gundelfinger 2006). CAZ proteins serve diverse functions including: determining the 

structure of the AZ; docking and priming of SVs; recruitment of Ca2+ channels; and 

mediating short-term plasticity (Südhof 2012). Among these proteins RIM, Munc13, 

RIM-BP, liprin-α, and ELKSs are evolutionary conserved proteins as well as the 

trans-SNARE plasma membrane proteins syntaxin, SNAP-25, synaptobrevin 

mediating the SV exocytosis and synaptotagmins acting as a calcium sensor. The 

latter proteins are not enriched at the AZ but are distributed all over the plasma 

membrane. In addition to these conserved proteins there are only a few presynaptic 

proteins that are specific for vertebrates including synuclein, a SV-associated protein, 
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and the large scaffolding proteins bassoon and piccolo. Piccolo mainly seems to play 

a role in connecting the CAZ to the cytoskeleton forming a link between endo- and 

exocytosis of synaptic vesicles (Schoch & Gundelfinger 2006). Bassoon shown to be 

important for vesicle replenishment (Frank et al. 2010; Hallermann et al. 2010; 

Mendoza Schulz et al. 2014) and SV clustering (Mukherjee et al. 2010). Interestingly, 

in cultured piccolo- and bassoon-deficient neurons no electrophysiological phenotype 

was detected although electron microscopy revealed a strong reduction in the 

number of SVs in the presynaptic terminals (Mukherjee et al. 2010). Furthermore, 

partial deletion of only bassoon in cultured hippocampal neurons led to reduction of 

normal synaptic transmission attributed to a silencing of a fraction of glutamatergic 

synapses but did not affect SV number (Altrock et al. 2003). Bassoon disruption in 

the endbulb of Held revealed increased quantal size and a reduced number of readily 

releasable vesicles accompanied by an increased release probability and stronger 

short-term depression but slower vesicle replenishment. As a result these opposing 

effects did not alter the reliability of synaptic transmission possibly due to 

homeostatic plasticity (Mendoza Schulz et al. 2014). 

 

1.5 Mover, a novel presynaptic protein that is associated with 
Bassoon 

The only known vertebrate-specific interaction partner of Bassoon is the novel 

presynaptic protein Mover. Mover was identified as a Bassoon binding partner in a 

yeast-two-hybrid assay using the C-terminus of Bassoon as bait. Mover is a 30 kDa 

protein consisting of 266 amino acids that is named after its localization to mossy 

fiber terminals in the hippocampus and its exclusive expression in vertebrates 

(Kremer et al. 2007). Mover associates with SV membranes confirmed by subcellular 

fractionation with SVs where it was highly enriched in the purified SV fraction. 

Moreover, Mover was shown to be present on SV by mass spectrometry and by 

immunogold electron microscopy in these fractions. Flotation and carbonate stripping 

and the absence of a transmembrane domain indicated that Mover is a peripheral 

membrane protein (Kremer et al. 2007; Ahmed et al. 2013). 

Mover has also been identified as SV associated protein (SVAP30) in an analysis of 

the synaptic vesicle proteome (Burré et al. 2006). The corresponding mouse gene 



Introduction 

  12 

was called TPRGL1 in a gene expression study where it was found in many tissues 

including the brain (Antonini et al. 2008). Mover is highly expressed in the 

hippocampal CA1, CA3 and dentate gyrus areas, the cerebellar purkinje cell layer, 

superficial layers of neocortex, and in restricted areas of the striatum, while lower 

levels are present in most brain areas (Allen Mouse Brain Atlas; http://www.brain-

map.org). Protein levels of mover are highest in the brain. Furthermore, Mover is also 

expressed in testis while there is relatively weak expression in heart, spleen and liver. 

Immunofluorescence signal of the Mover protein was detected in the hippocampus, 

cerebellar cortex and auditory brainstem (Kremer et al. 2007). In detail, in the 

hippocampal CA3 region, Mover is present at glutamatergic mossy fiver terminals 

and absent from inhibitory synapses in the stratum pyramidale, whereas it is present 

at inhibitory synapses in all cell layers in the cerebellum. Moreover, Mover shows 

punctate staining that co-localizes with synaptophysin in the calyx of Held in the 

brainstem (Kremer et al. 2007). 

Recently, an in vivo knock-down (75%) of Mover using AAV-mediated shRNA 

expression in globular bushy cells of the VCN was generated to study the function of 

Mover in the calyx of Held (Körber 2011). The knock-down resulted in increased 

EPSC amplitudes as well as increased vesicular release probability and an enhanced 

and accelerated STD and recovery from depression during high frequency 

stimulation. Spontaneous synaptic transmission, the RRP and presynaptic calcium 

currents remained unaltered. However, the calcium sensitivity of SV fusion was 

increased in calcium uncaging experiments. Hence, the authors suggest that Mover 

acts as a negative regulator of Pr by decreasing the Ca2+ sensitivity of 

neurotransmitter release. This effect is mediated by a calcium-dependent interaction 

of Mover with calmodulin indicated by a pull-down of Mover and calmodulin in the 

presence of calcium (Körber 2011). In line with the proposed regulatory role of 

Mover, a recent Bassoon knock-out study revealed an increase in Pr  in addition to a 

stronger and faster STD in the endbulb of Held synapse which was associated with a 

~20% reduction in Mover expression (Mendoza Schulz et al. 2014). Furthermore, 

upon treatment with TTX for 48h neuronal activity was blocked in cultured cortical 

neurons and a reduction of Mover was observed in a western blot (Kremer 2008) 

indicating that mover protein expression may be influenced by synaptic activity or 

inactivity.  
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In summary, Mover is a peripheral membrane protein that is associated with SVs. It 

exists in a phosphorylated form and self-interacts. Throughout the brain, Mover is 

differentially expressed at presynapses, for example in the hippocampus, the 

cerebellum and the MNTB. Mover might be expressed in an activity-dependent way. 

In the calyx of Held, Mover likely regulates the release probability by decreasing the 

Ca2+ sensitivity of neurotransmitter release. Mover interacts with Bassoon and 

Calmodulin. 

 

1.6 Aim of study 

A recent study used a knock-down approach in the calyx of Held to investigate the 

role of Mover (Körber 2011). Still the picture of Mover’s role is not complete. The 

present study aimed to further elucidate the function of Mover. Therefore, a Mover 

knock-out mouse line was generated to investigate changes in synaptic transmission 

at the endbulb-bushy cell-junction in Mover knock-out animals and test whether 

Mover has the same function in endbulbs of Held as suggested in the calyx of Held. 

Initially, the location and distribution of Mover in the ventral cochlear nucleus, in 

general, and in particular in the endbulbs of Held will be revealed here. Moreover, 

preliminary data from Kremer (2008) indicated an activity-dependent regulation of 

Mover upon blocking neuronal activity with TTX in cell cultures. This issue is 

addressed again by analyzing the Mover fluorescence intensities in endbulbs of Held 

in deaf mice.  
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2 Material and Methods 
 

2.1 Animals 

All animals used in this study were housed on a 12h light/dark cycle with food and 

water ad libitum. 

All experiments performed in this study complied with national animal care guidelines 

and were approved by the Board for Animal Welfare the University of Göttingen and 

the Animal Welfare Office of the State of Lower Saxony. 

For immunohistochemistry, wistar rats of the postnatal day (P) 21 and Otoferlin 

knock-out mice and wild-type littermates between P16 to P19 were used. Genotyping 

for Otoferlin mice was performed by polymerase chain reaction (PCR). For 

generation of Otoferlin knock-out (see Reisinger et al. 2011). Mover knock-out mice 

and their wild-type littermates were used for immunohistochemistry and 

electrophysiology between P15 to P19. The Animals were derived from heterozygous 

breeding. Genotyping was performed by PCR.  

 

2.2 Generation of Mover knock-out mouse 

A conditional targeting vector harboring Exons 1 to 3 of the Mover flanked by lox P-

sites and a frt flanked Neomycin selection cassette between Exon 3 and 4 was 

generated by PolyGene AG (Schweiz). This targeting vector was electroporated into 

129Ola ES-cells. The extracted DNA from ES cell clones, which contained the 

conditional targeting vector of Mover, was injected into blastocysts of C57BL/6J mice 

to generate chimeric mice. Heterozygous offspring from one chimera (50%) was bred 

with C57BL/6J mice and subsequently bred with a flp-recombinase expressing 

mouse line to excise the neomycin cassette. The progeny has a Mover gene that is 

flanked by loxP sites; hence mice were named ‘flox mice’. These ‘floxed’ mice were 

bred with a mouse line that has a cre-recombinase under the E2a promotor to allow a 

global knock-out of Mover in the early mouse embryo and in nearly all tissue (Lakso 

et al., 1996). Finally, the heterozygote offspring were inbred to generate Mover 

knock-out mice. See figure 2.1. for a summary and scheme of derived 

alleles. 
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Genotyping. Global Mover knock-out mice were verified by genotyping using a 

multiplex PCR (see table 2.2). Additionally, the presence of a cre-recombinase was 

verified using a cre PCR (see table 2.1) 

Table 2.1 Cre PCR – protocol 

To identify the presence of Cre  PCR conditions 

DMSO 1µl   95°C 03:00   

DNA 1µl   95°C 00:30 

35x 24365 1µl 5pmol/µl 61°C 00:30 

24366 1µl 5pmol/µl 72°C 00:30 

H2O 8.5µl   72°C 07:00   

2X MM 12.5µl   4°C      pause   

       

24365  GCG GTC TGG CAG TAA AAA CTA TC 

24366   GTG AAA CAG CAT TGC TGT CAC TT 

Expected bands 
Cre positive 100bp 

Cre negative no band 

 

Table 2.2 Multiplex PCR – protocol 

To identify the knock-out allele PCR conditions 

DMSO 1µl   98°C 03:00   

DNA 1µl   98°C 00:30 35x 

B008-P4 1µl 5pmol/µl 55°C 00:30 

E-4001 1µl 5pmol/µl 72°C 00:30 

E-3001 1µl   72°C 10:00   

H2O 7.5µl  10°C pause  

2X MM 12.5µl       

       

B008-P4 CCAATCACAAGGCGAACGAG 

E-3001    CATTCAGTGGGACAAGCAGA 

E-4001    CAAGGCTCTCCTGATCCAAG 

Expected bands 

Wild-type 867bp 

Knock-out 697bp 

flox 1106bp 

heterozygous  867bp & 697bp 
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Figure 2.1 Scheme illustrating Mover knock-out generation.  

The Mover wild-type allele consists of 4 exons. LoxP-sites and a Neo cassette flanked with 

frt-sites were inserted. The neo cassette was removed with a flp-recombinase resulting in the 

floxed allele. Exon 1 to 3 were excised by a cre-recombinase resulting in a knock-out (KO) 

allele. 

 

2.3 Immunohistochemistry 

Fluorescence stainings. The animals were transcardially perfused with 0.9% sodium 

chloride and fixed with 2% paraformaldehyde (PFA). After decapitation and removal 

of the brain the tissue was postfixated in 2% PFA over night at 4°C. The brain was 

embedded in 3% agarose and sections of 50-30μm thickness were cut on a vibrating 

microtome (Thermo Scientific Microm HM 650 V) and collected in a 24-well plate in 

phosphate buffer (PB). For immuhistochemical stainings free-floating slices were 

blocked in a solution containing 5% of normal goat serum (NGS) and 1% of Triton X-

100 (in PB) for 90 minutes at room temperature. Primary and secondary antibodies 

(see table) were diluted in a solution consisting of 1% NGS and 0.2% Triton X-100 (in 

PB) and were applied over night at 4°C. A washing step of 3x 10 minutes with a 2% 

NGS (in PB) solution followed. Secondary antibodies incubated for 90 minutes at 

room temperature in the dark followed by washing with 1% NGS (in PB) for 3x 10 

minutes. Eventually sections were stained for DAPI, 2 minutes at RT. Finally, the 

slices were mounted on Superfrost®Plus (Thermo Scientific) slides with Mowiol and 

DABCO (both Carl Roth GmbH&Co. KG, Germany) and covered with a glass cover 

slip. 

3,3'-Diaminobenzidine (DAB) stainings. The Universal Immuno-enzyme Polymer 

(UIP) method was applied using a Polymer Detection System from Nichirei 
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Biosciences Inc., Japan. In order to block and inactivate endogenous peroxidases 

the sections were treated with Triton-X 100 and H2O2. Antibodies were diluted in a … 

solution and incubated over night at 4°C. The polymer solution (N-Histofine® Simple 

Stain Max PO) which corresponds to the secondary antibody was applied in a third 

step. The solution must be against animal species in which the primary antibody has 

been raised (mouse or rabbit were used here). The sections incubated for 30 minutes 

in the polymer solution and were rinsed 3x in PB for 5 minutes afterwards. The DAB-

solution was prepared of 2 ml DAB in 84 ml 0.1M Tris and 20 µl H2O2 were added 

just before the DAB-reaction. The reaction was stopped by washing the sections with 

distilled water. The sections were mounted on Superfrost®Plus (Thermo Fischer 

Scientific, Germany) slides with Mowiol covered with a glass cover slip. 

The following tables summarize the antibodies used for immunohistochemistry: 

Table 2.3 Primary antibodies 

antibody host dilution company 

Mover 9a* rabbit 1:1000 Synaptic Systems, Germanny 

Mover 9c** rabbit 1:1000 Synaptic Systems, Germanny 

Mover 1c*** rabbit 1:1000 Synaptic Systems, Germanny 

Mover (commercial)**** guinea pig 1:250 Synaptic Systems, Germanny 

gp Mover pool 1+ guinea pig 1:250 Synaptic Systems, Germanny 

gp Mover pool 2++ guinea pig 1:250 Synaptic Systems, Germanny 

VGLUT1 guinea pig 1:1000 Synaptic Systems, Germanny 

VGLUT1 mouse 1:250-1:500 Abcam, United Kingdom 

VGAT guinea pig 1:1000 Synaptic Systems, Germanny 

VGAT mouse 1:600 Synaptic Systems, Germanny 

Synapsin 1,2 mouse 1:500 Synaptic Systems, Germanny 

Bassoon mouse 1:1000-1:2000 Enzo Life Science, Germany 

GlyT2 guinea pig 1:1000 Synaptic Systems, Germanny 

GAD 65 mouse 1:500 Synaptic Systems, Germanny 

VGLUT2 guinea pig 1:1000 Synaptic Systems, Germanny 

GFAP mouse 1:1000 Synaptic Systems, Germanny 

 

*     Anti-Mover9a: raised against GST-Mover, purified using GST-Mover95-266 

**    Anti-Mover9c: raised against His-Mover, purified using GST-Mover95-266 
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***   Anti-Mover1c: raised against GST-Mover, purified using His-Mover 

****  Anti-Mover commercial: raised against His-Mover, purified using His-Mover 

+          Anti-Mover pool 1: raised against GST-Mover, purified using His-Mover 

++       Anti-Mover pool 2: raised against GST-Mover, purified using His-Mover 

 

Table 2.4 Seondary antibodies 

antibody host dilution company 

Alexa 488 Donkey anti-mouse 1:2000-1:4000 
Invitrogen; Life technologies, 

Germany 

Alexa 488 Goat anti-guinea pig 1:2000 
Invitrogen; Life technologies, 

Germany 

Alexa 568 Goat anti-guinea pig 1:1000 
Invitrogen; Life technologies, 

Germany 

Alexa 647 Goat anti-rabbit 1:1000 
Invitrogen; Life technologies, 

Germany 

Cy3 Donkey anti-mouse 1:4000 Dianova, Germany 

Cy3 Goat anti-chicken 1:4000 Dianova, Germany 

 

Preparation of Mowiol 

Mix 2.4g Mowiol and 6g Glycerol by vortexing. Add 6 ml of H2O and mixed again. Incubate 

for 2 hr at RT. Add 12ml of 0.2M Tris pH 8.5 and heat at 50°C for 10 min. Centrifuge at 

5000g for 15 min. A final concentration of 2.5% DABCO was added. Aliquote and store at  

-20°C. 

 

Preparation of Phosphate buffer 0.1M 

Weigh 35.61g Na2HPO4x2H2O and dilute in 1 liter aqua bi-dest (solution X). Weigh 27.6g 

Na2HPO4x2H2O and dilute in 1 liter aqua bi-dest (solution Y). Mix 385 ml of solution X and 

115 ml of solution Y and add 500ml aqua bi-dest. 

 

Confocal microscopy. Confocal images were acquired using a laser-scanning 

confocal microscope (Leica TCS SP5, Leica Microsystems CMS, Germany) equipped 

with 488 nm (Ar) and 561/633 nm (He–Ne) lasers for excitation of the respective 

Alexa fluorophores and a 63x / 1.4 NA oil- immersion objective. All images were 
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acquired with identical settings. For all experiments, the pinhole was set to 1 airy unit 

(AU) and the scan speed to 400 Hz.  

Single section images for analysis were acquired with a zoom between 1x and 10x 

resulting in pixel sizes between 126 nm and 24.6 nm. The zoom factor was kept 

constant for the respective set of images. Images comprised 1024*1024 pixels and 

were obtained from 4 frame averages.  

Overview images of the brainstem were acquired with a 40x, zoom factor 1x and 2x, 

1024*1024 image size and 4 frame averages. 

 

Bright-field microscopy. DAB Images were acquired with a AxioCam MRc5 from 

Zeiss on an inverted microscope (Observer Z.1, Zeiss, Germany) with 10x, 20x, and 

63x objectives. 

Data analysis. Confocal images were analyzed with ImageJ (FIJI version) using the 

following procedure: The scale was set. Background noise was subtracted 

automatically (100 px) from raw images with the background subtraction macro 

based on the "rolling ball" algorithm (described in Stanley Sternberg's article, 

"Biomedical Image Processing", IEEE Computer, 1983). A threshold was applied to 

the image of the `control protein` (e.g. VGLUT1 representing endbulbs of Held or 

VGAT representing inhibitory synapses) and a mask was created from the 

suprathreshold pixels. Region of interests (ROIs) were defined with the Analyze 

Particles option in the Analyze menu. Areas of 60nm (represent background puncta 

in Mover stainings ) were excluded from the analysis. The ROIs were used as a mask 

which was applied to the respective fluorescence double or triple staining. With the 

Measure option parameters such as area, mean intensity, standard deviation and 

maximum intensity were measured. 

Pearson’s correlation coefficient as a measure for colocalization was analyzed with 

the JACOP plugin (Bolte & Cordelières 2006). 

Figures were assembled for display in the CorelCRAW Graphics Suite 11 (Corel 

Corporation). 

Intensity values were normalized to the mean VGLUT1 intensity levels (of wild-type 

animals). 
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All statistical tests were performed on GraphPad Prism 5 software. Means are 

presented with their standard errors (SEM), statistically significant differences 

between groups were determined by using unpaired, two-tailed t-tests or ANOVA for 

mort ah 2 groups (if data was distributed normally). 

2.4 Electrophysiology 

Preparation of slices and solutions. Parasagittal slices of the cochlear nucleus , 

180µm thick,  were cut from the brain stem with a vibrating microtome (Thermo 

Scientific Microm HM 650 V) in an ice-cold high-sucrose extracellular saline solution 

that contained (in mM) 99 NaCl, 3 KCl, 1.2 KH2PO4, 1 CaCl2x2H20 , 1.3 

MgSO4x7H2O, 20 NaHCO3 , 3 HEPES, 10 glucose, and 72 sucrose, pH 7.3–7.4.. 

Afterwards slices incubated for 30 minutes in a normal physiological saline at 33°C 

and recovered for another 30 minutes at room temperature. The physiological 

extracellular saline comprised (in mM) 130 NaCl, 3 KCl, 1.2 KH2PO4 , 2.4 CaCl2 , 

1.3 MgSO4 , 20 NaHCO3 , 6 HEPES, 10 glucose, and 0.4 ascorbic acid, pH 7.3. The 

osmolality was between 305 and 310 mOsm/kg (OM 801 Osmometer, Vogel). Slices 

were transferred to a heated recording chamber (PH-1, Warner Instruments) and 

were superfused with the pre-warmed physiological extracellular saline (through a 

heated Perfusion Tube HPT-2 from Alascience). All salines were saturated with 95% 

O2-5% CO2. The internal pipette solution for voltage- and current-clamp recordings 

contained (in mM) 108 potassium gluconate, 9 HEPES, 9 EGTA, 4.5 MgCl2x6H2O, 

14 phosphocreatinine (Tris salt), 4 ATP (Na salt), and 0.3 GTP (Tris salt), final 

osmolarity was between 297 and 303 mosM. The pH was adjusted to 7.4 with KOH. 

The final holding potentials were corrected for a -12 mV junction potential. All 

measurements of EPSCs were made in the presence of 1µM strychnine to block 

inhibition (Cao et al., 2010). Miniature EPSCs (mEPSCs) were measured in the 

absence of TTX since no difference in the mEPSCs was noted when compared with 

and without TTX (Isaacson & Walmsley 1996). After mEPSC recordings the cell type 

was identified and confirmed by evoking synaptic transmission. 

The temperature was measured and controlled with a Temperature controller (T-20-

W1, npi) to remain at 32 or 33°C. 

 

Electrophysiological recordings. Whole cell patch-clamp recordings were made with a 

EPC 10 amplifier (HEKA) under the control of PatchMaster software. The tissue was 
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visualized through a Olympus BX51WI microscope with a 40x water immersion 

objective and CCD Camera (Hamamatsu) with the image displayed on a screen. 

Patch electrodes were made from borosilicate glass (GB150F-8P, Science Products) 

and had resistances between 3 and 8 MΩ. Recordings of evoked excitatory 

postsynaptic currents (eEPSCs) were made at -70 mV and sampled at 50 Hz, low 

pass filtered at 10.000 kHz and further filtered by a 2.9 kHz Bessel filter. 

Compensation for the capacitance and series resistance of electrodes was done with 

the automatic features of the amplifier. The series resistance was compensated 50–

80% with a 100 µs lag. EPSCs were evoked by current stimulation through a Linear 

Stimulus Isolator (A395, WPI) and delivered through an extracellular saline- filled 

glass pipette (2 MΩ tip). The stimulating pipette was placed in the vicinity of the 

recorded bushy cell. 

Table 2.5 Chemicals for electrophysiology 

Chemical company 

NaCl BioFroxx, AppliChem 

KCl Sigma-Aldrich 

KH2PO4 ChemCruz 

CaCl2 x 2H20 Sigma-Aldrich 

MgSO4 x 7H2O Roth 

NaHCO3 AppliChem 

HEPES Sigma-Aldrich 

glucose BioFroxx, AppliChem 

sucrose BioFroxx, AppliChem 

ascorbic acid Merck 

potassium gluconate Sigma-Aldrich 

EGTA AppliChem 

MgCl2 x 6H2O AppliChem 

Phosphocreatinine (Tris salt) Sigma-Aldrich 

ATP (Na salt) Sigma-Aldrich 

GTP (Tris salt) Sigma-Aldrich 

strychnine Sigma-Aldrich 
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Data analysis. Analysis of miniature EPSCs was performed with the MiniAnalysis 

program from Synaptosoft Inc. Evoked EPSCs were analyzed with a custom written 

Igor procedure (Igor Pro v6.32). All statistical tests were performed on GraphPad 

Prism 5 software and are given as means ±SEM. 
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3 Results 

3.1 Testing available antibodies against Mover  

Polyclonal antibodies generated against purified Mover protein fused to polyhistidin 

(His-Mover) or glutathione-S-transferase (GST-Mover) respectively and additionally 

affinity purified using various antigen columns were available in the laboratory. 

Overview of available antibodies against Mover:  

 Rabbit Anti-Mover9a: raised against GST-Mover, purified using GST-Mover95-266 

 Rabbit Anti-Mover9c: raised against His-Mover, purified using GST-Mover95-266 

 Rabbit Anti-Mover1c: raised against GST-Mover, purified using His-Mover 

 Rabbit Anti-Mover commercial: raised against His-Mover, purified using His-Mover 

 Guinea pig Anti-Mover pool 1: raised against GST-Mover, purified using His-Mover 

 Guinea pig Anti-Mover pool 2: raised against GST-Mover, purified using His-Mover 

In order to identify the antibody with the best fluorescence signal in the endbulbs of 

Held immunohistochemical stainings of coronal brainstem sections of the anterior the 

ventral cochlear nucleus (AVCN) were employed and are summarized in figure 3.1.  

As a co-label an anti-VGLUT1 antibody was used as a maker for glutamatergic 

synapses (in the anteroventral cochlear nucleus, particularly for endbulbs of Held). 

The glutamate transporter 1 (VGLUT1) is associated with the SV membrane and 

responsible for the uptake of glutamate into SV in excitatory neurons. Figure 3.1 

gives an overview of example confocal single sections for each tested rabbit-

antibody. Merged images with the co-labeled marker and grey scale images for the 

respective labeled protein are displayed. Surprisingly, Mover9a IF signals do not 

appear as small or large puncta as assumed for a synaptic vesicle marker (compare 

with VGAT or VGLUT1 IF signals, Fig. 3.1, A, B right) but rather appears as 

elongated red stripes indicating that an antigen is recognized in nerve fibers (Fig. 3.1, 

A). Moreover, IF signals for Mover9a do not co-localize with signals from the 

vesicular GABA transporter (VGAT), which is expressed in both GABAergic and 

glycinergic inhibitory neurons in the AVCN (Chaudhry et al. 1998) and used as a 

marker for inhibitory synapses. IF signals from anti-Mover1c antibodies are very dim 

(Fig. 3.1, B) in VGLUT1-positve synapses. Instead, bright IF signals are seen in 

VGLUT1-negative synapses, probably inhibitory, next to endbulbs and around small 

round cells which were not determined further.  
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Figure 3.1 Mover antibody stainings in the anteroventral cochlear nucleus. 

Immunohistochemical stainings with several polyclonal antibodies against Mover and VGAT 

or-VGLUT1 as marker for and inhibitory synapses or glutamatergic synapses (endbulb), 

respectively, in brain slices of the anteroventral cochlear nucleus (AVCN). A-D. Single 

confocal sections labeled for Mover, VGAT or VGLUT and DAPI (blue) counterstaining. A. 

The anti-Mover9a antibody does not label inhibitory synapses but labels structures that are 

likely nerve fibers. B. Immunofluorescence signals from Mover1c are very weak in endbulbs 

(labeled with VGLUT1) and brighter in VGLUT1-negative synapses, probably inhibitory 

synapses. C and D. Mover9c and commercial Mover labels co-localize with VGLUT1 in the 

endbulbs but also label VGLUT1-negative synapses, probably inhibitory synapses. All scale 

bars: 10µm. 

 

Next, I immunostained AVCN sections using the two antisera raised against His-

Mover. Single confocal images from brainstem slices immunostained with the anti-

Mover9c or commercial anti-Mover antibody and a VGLUT1 antibody reveal co-
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localization of Mover and VGLUT1 labels indicated by the yellow color in the merged 

image. The Mover IF signal at VGLUT1-positive sites is light and spread over the 

whole endbulb terminal. However, Mover immunoreactivity is more pronounced at 

VGLUT1-negative sites (probably inhibitory synapses) around a bushy cell. This is 

reminiscent of the staining pattern observed with anti-Mover1c. Nuclei of these cells 

are indicated with DAPI stainings. Both antibodies raised against His-Mover gave 

stronger fluorescence compared to anti-Mover1c, which was raised against GST-

Mover. The IF signals from the commercial anti-His-Mover antibody showed slightly 

higher co-localization with VGLUT1 IF signals. For that reason I chose the 

commercial anti-Mover antibody for all further experiments. In the following, the 

commercial anti-Mover antibody is referred to as anti-Mover. It is commercially 

available from Synaptic Systems, Germany.  

 

3.2 Mover immunolabeling in the auditory brainstem and ventral 
cochlear nucleus 

The distribution of Mover in the all auditory brainstem nuclei, single confocal sections 

comprising brainstem nuclei including the anteroventral cochlear nucleus (AVCN) is 

illustrated in figure 3.2, A-C. Mover IF signals appear homogeneously distributed in 

the brainstem and can be detected in the AVCN and several other nuclei including 

the medial superior olive (MSO), medial, lateral and ventral nucleus of the trapezoid 

body (MNTB,LNTB and VNTB), superior olivary nucleus (SPN) (Fig.3.2, C) and 

lateral superior olive LSO (Fig.3.2, A). Demarcations of the nuclei were made with the 

help of the VGLUT1 and VGAT co-labels (not shown).The nuclei in figure 3.2 A and 

C are projection areas of bushy cell terminals arising in the AVCN. There, the Mover 

immunolabels appear in a ring-like shape likely around the principal cells which are 

bushy and few stellate cells (Fig.3.2, B). In AVCN slices co-labeled with a Mover and 

a VGLUT1 or VGAT antibody, Mover labels co-localizes with VGLUT1 labels (Fig. 

3.2, D) as well as with VGAT labels (Fig., 3.2, E) all over the nucleus. This is a first 

indication that Mover is present in excitatory and inhibitory synapses.in the AVCN 

and, in addition, is present in nerve terminals that project from the AVCN to nuclei in 

the ascending auditory pathway. 
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Figure 3.2 Mover is present in auditory brainstem nuclei.  

A-C. Confocal single sections of a rat brainstem slice immunolabeled for Mover. Mover 

fluorescence signals can be detected in the anteroventral cochlear nucleus (AVCN) (B) and 

in several nuclei that are innervated from bushy in the AVCN. Nuclei include lateral superior 

olive (LSO) (A), medial nucleus of the trapezoid body (MNTB), medial superior olive (MSO), 

LNTB and VNTB (lateral and ventral nucleus of the trapezoid body) and superior olivary 

nucleus (SPN) (C). D-E. Confocal single sections of AVCN slices co-labeled for Mover and 

VGLUT1 (D) or VGAT (E). Mover immunosignals appear as ring like structures that co-

localize with immunosignals from the marker protein. All scale bars: 100µm. 

 

Mover is a peripheral synaptic vesicle (SV) protein that is associated with the SV 

membrane similar to the SV protein Synapsin (Ahmed et al. 2013). VGLUT1 and 

VGAT are proteins in the SV membrane in either glutamatergic or inhibitory nerve 

terminals. All four proteins can be used as SV marker. 3,3'-Diaminobenzidine (DAB) 

stainings with an antibody against Mover, Synapsin, VGLUT1 and VGAT were 

performed for comparison of the staining patterns (Fig.3.3. B-E). The small punctate 

pattern of brown Mover label resembles those of Synapsin and VGAT. These SV 

proteins mostly localize around a cell body (indicated with asterics) of a bushy cell. In 

contrast, the VGLUT1 DAB signal is more clustered in probably endbulb terminals. 

Additionally, co-localization of Mover and Synapsin IF labels was analyzed from 
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confocal images of rat brainstem slices of co-labeled for Mover and Synapsin 

(images not shown). Fluorescence signals from both proteins overlap to 62%. The 

co-localization coefficient is 0.6248±0.03 (n=20) (Fig.3.3, A). For Pearson’s 

coefficients of VGLUT1 and VGAT see Fig.3.6, D. These results support the notion 

that Mover is localized to synaptic vesicles in synapses in the AVCN.  

 

Figure 3.3 Mover is a synaptic vesicle protein.  

Staining pattern of the Mover antibody resembles those of synaptic vesicle markers. A. 

Immunolabels for Mover and Synapsin co-localize to 62.5%. B-D. In addition, the staining 

pattern of Synapsin (B) and VGAT (D) is similar to the Mover patterns (C). E. VGLUT1 signal 

appears clustered in synaptic structures, probably endbulb terminals. Scale bar: 10µm. 

 

Figure 3.3 and 3.4 display confocal images of immunostainings with the antibody 

against Mover and against several antibodies that label excitatory and inhibitory 

synapses. An overview image is displayed on the left side. Next to it is an example 

cell from the overview area shown as merge and single color images. The Mover IF 

signals appear in small or larger bright puncta and as broad clusters of weaker 

signal. Immunosignals from VGLUT1 appear as large synaptic structures of diverse 

shapes (Fig 3.4, D) and immunosignals from Mover appear as either large bright 

puncta or weaker signal clusters where they overlap with VGLUT1 signals (Fig. 3.3, 

C). As indicated by the yellow color in merged images, Mover and VGLUT1 

immunolabels overlap strongly around bushy cells (Fig. 3.4, A). In addition, the Mover 

label co-localizes with VGLUT2 labels (Fig. 3.4, B). Some labels are more and some 

less co-localized depending on how strong the Mover immunosignal is. Thus, it 

Mover is present in the endbulbs of Held. Because co-localization of Mover labels 

and VGLUT1 labels appeared more homogenous and stronger only VGLUT1 was 

used for the following experiments. The glial fibrillary acidic protein (GFAP) is 

expressed in astrocytes and served as glial cell marker. IF signals from stainings with 



Results 

  28 

an antibody against GFAP show a divergent pattern and no co-localization with 

Mover signals is seen (Fig. 3.4, C). Therefore, it can be concluded that Mover is 

located to Mover is not present in glia cells in the AVCN. 

 

Figure 3.4 Mover is present in the endbulbs of Held.  

A-B. Brainstem slices immunolabeled with anti-Mover and anti-VGLUT1 (A), anti-VGLUT2 

(B) antibodies. Mover immunolabeling overlaps with immunolabels of VGLUT1 (A) and 

VGLUT2 (B). Co-localization with VGLUT1 labels appears stronger. C. Antibodies against 

Mover and the astrocyte marker glial fibrillary acidic protein (GFAP) stain different structures, 

thus, Mover is not present in astrocytes. All scale bars: 10µm 

 

Apart from positive VGLUT1-co-localization Mover IF signals are detected in 

VGLUT1-negative synapses around bushy cells. These are probably inhibitory 

terminals which can be stained with VGAT. Mover and VGAT immunosignals appear 

in shapes which are round and smaller compared to the shape of IF signals (Fig. 3.5, 

C and D). The VGAT and Mover labels strongly co-localize at most of the VGAT-

positive spots indicated by the yellow color in merged confocal images. But there are 

few VGAT spots where the Mover immunosignal seems weak.  

Next, markers for each of the inhibitory neurotransmitter (glycine and GABA) in the 

AVCN were used. The glycine transporter 2 (GlyT2) is a membrane protein which 
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mediates glycine uptake of inhibitory synaptic terminals. GlyT2 IF signals surround 

and/or overlap with Mover signals in terminals that can be determined as glycinergic 

terminals now (Fig. 3.5, E-H). GAD65 is an isoform of the glutamate decarboxylase 

that mediated the synthesis of gamma-aminobutyric acid (GABA) in nerve terminals. 

The GAD65 IF signals appear as small puncta (Fig 3.5, L). Only few GAD65 

immunolabels co-localizes with the Mover immunolabels (Fig. 3.5, I and J) indicating 

that Mover is mainly present in glycinergic nerve terminals in the AVCN.  

 

 

Figure 3.5 Mover is present in inhibitory terminals in the AVCN.  

Three different antibodies were used to label the glycine transporter 2 (GlyT2), an isoform of 

the glutamate decarboxylase (GAD65) and VGAT in glycinergic, GABAergic and both nerve 

terminals in brainstem slices. A. Mover labels co-localize strongly with VGAT. B. GlyT2 

labels overlaps and surrounds Mover labels. C. GAD65 and Mover labels co-localize rarely. 

All scale bars: 10µm 

 

In summary, immunolabeling for Mover and markers for excitatory and inhibitory 

synapses suggest that Mover is present in excitatory glutamatergic as well as in 

inhibitory, mainly glycinergic, nerve terminals in the AVCN. Mover antibody signals 

co-localize with signals from antibodies that label vesicular neurotransmitter 
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transporters in SV supporting that Mover is associated with SV in those nerve 

terminals. 

 

3.2.1 Mover fluorescence intensities in the AVCN and calyx of Held  

 

Figure 3.6 Analysis of Mover antibody fluorescence intensities in the ventral cochlear 

nucleus and calyx of Held.  

A. Illustration of the region of interests (red) that were obtained from a suprathreshold 

VGLUT1 mask and applied to Mover and VGLUT1 images for analysis of intensities in 

specific areas. Same procedure was applied to confocal images labeled with VGAT and 

Mover (B). Single confocal sections for example cells labeled for VGLUT1 (A) or VGAT (B) 

and Mover. C. A simple model visualizing endbulbs of Held and inhibitory inputs converging 

on a bushy cell soma and (E) the appearance of a transverse cut through a bushy cell in 

confocal sections. F. Pearson’s coefficient is significantly higher in inhibitory synapses in 



Results 

  31 

VCN and the calyx in the MNTB when compared to endbulbs. G. Normalized mean 

intensities of Mover signals are not different from each other in the three nerve terminals. H. 

Normalized maximum intensities of Mover signals are significantly higher in the calyx 

compared to maximum intensities of Mover signals in the ventral cochlear nucleus. Scale 

bars: 10µm . ** p<0.01, *** p<0.0001 

 

As the Mover IF signals that co-localized with VGAT IF signals seemed to be brighter 

the intensity of Mover IF signals in endbulbs and inhibitory synapses was analyzed 

and compared in confocal images. Co-stainings with anti-Mover and anti-VGLUT1 or 

anti-VGAT antibodies, respectively, were performed in rat AVCN slices. For 

illustration figure 3.6, C shows a simplified model how endbulbs and inhibitory 

synapses arrange around a bushy cell and figure 3.6, E displays the top view of a 

transverse cut through a bushy cell as it appears in a confocal section. Fluorescence 

intensities were analyzed as described in the methods chapter. Briefly, a 

suprathreshold mask (Fig. 3.6., A, rightmost image) from VGLUT1 or VGAT pixels 

are generated. This mask was used to create regions of interest (ROI, red selections 

in Fig. 3.6, A). These selections were applied to the VGLUT1 or VGAT and Mover 

image and the fluorescence intensities within the ROIs were measured. Example 

confocal images labeled for Mover and VGLUT1 and VGAT are displayed in figure 

3.6, A-C. The co-localization of Mover IF signals with VGLUT1 or VGAT IF signals, 

respectively, is indicated as Pearson’s coefficient measures the pixel-by-pixel 

covariance in the signal levels. A Pearson’s coefficient of 1 denotes a perfect co-

localization and 0 denotes no co-localization. For this method a threshold has to be 

applied to the VGLUT1 and the Mover pixels. The Pearson’s coefficient is 

significantly lower (0.47±0.01) in images labeled for Mover and VGLUT1 compared to 

images labeled for Mover and VGAT (0.58±0.01; p<0.001). This means that Mover IF 

signals co-localize stronger with VGAT IF signals in inhibitory synapses while Mover 

IF signals co-localizes less with VGLUT1 IF signals in the endbulbs of Held (Fig. 3.6, 

F). The result confirms the visual observation of brighter Mover IF signals in inhibitors 

nerve terminals. In contrast, the mean intensities of Mover IF signals have similar 

values in endbulbs (0.46±0.02, n=42) and inhibitory synapses (0.46±0.02, n=34; 

p=0.93) (Fig. 3.6, G). These opposing results may be attributed to the fact that for the 

calculation of the Pearson’s coefficient a threshold is set for Mover pixels which 

neglects Mover signals that are below the threshold but are still inside VGLUT1 

selections. Another possibility can be that the maximum intensities of Mover IF 

signals in inhibitory synapses are higher and thus the Mover signal appears stronger. 
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But maximum intensities of Mover IF signals are also similar in endbulbs (0.59±0.02, 

n=42) and inhibitory synapses (0.62±0.03, n=34; p=0.38) (Fig. 3.6, H). Mean 

intensities of Mover IF signals in the calyx of Held (0.47 ± 0.038, n=20) are not 

significantly different from the intensities of Mover IF signals in endbulbs of Held 

(p=0.69). However, the Pearson’s coefficient is higher in the calyx of Held (0.54 ± 

0.02, n=20; p=0.006). This may be a consequence of the significantly higher 

maximum intensities detected in the calyx of Held (1.00±0.08, n=20) compared to the 

endbulbs of Held (p<0.0001) and inhibitory synapses (p<0.0001). 

3.3 Mover is associated with Bassoon at active zones 

Figure 3.7 A and D show overview images of two bushy cell labeled for Mover and 

the active zone marker Bassoon. With higher magnification it can be seen that Mover 

signals overlap partially with the Bassoon signals at active zone sites (see Fig. 3.7, 

B,C,E,F). In endbulb of Held terminals, (Fig. 3.7, E,F) where the Mover IF signals are 

distributed more broadly over the large terminal, the overlap is visually less obvious. 

An overlap is indicated by the yellow color. Hence, confocal images confirm the 

association of Mover with the active zone protein Bassoon. However, there are 

Bassoon spots lacking any Mover IF signal (arrow heads). 

 

Figure 3.7 Mover associates with Bassoon.  

Mover immunosignals overlaps partially with the active zone marker Bassoon. A and D. 

Example bushy cells in a brain sections labeled for Mover (red) and Bassoon (green). B-C. 

Association of Mover and Bassoon is indicated by the overlap of their fluorescence signals 

(yellow color). E-F. In endbulb areas the Mover signal is weaker and the signal overlap with 

Bassoon is less clear. Arrow heads in C and E point out active zones lacking Mover signal. 
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3.4 Mover fluorescence intensities in deaf Otoferlin knock-out mice 

In order to examine how reduction or loss of activity in auditory nerve fibers (ANF) 

affect Mover expression in the endbulbs of Held Mover IF signals were studied in 

deaf Otoferlin knock-out mice which lack ANF activity. AVCN sections from wild-type 

(wt) and Otoferlin knock-out (ko) mice were stained with an anti-VGLUT1 antibody to 

label the endbulbs, with an anti-VGAT antibody to label inhibitory synapses and with 

an anti-Mover antibody to check for changed Mover fluorescence signals. The 

analysis of confocal images from these stainings was performed as described before. 

The intensities of Mover IF signals are reduced by 35% in endbulbs in Otoferlin 

knock-out mice (0.75±0.03, n=65, N=3; p<0.0001) (Fig. 3.8, C). Interestingly, the 

intensities of Mover IF signals are lower (0.97±0.03; p=0.02) in the inhibitory 

synapses of these knock-out mice as well. Hence, the loss of activity in ANF leads to 

a down-regulation of Mover in endbulbs and in inhibitory synapses. Moreover, the 

area of VGLUT1 ROIs is smaller in Otoferlin knock-out mice when compared to 

Otoferlin wild-type mice (wt: 0.61±0.04 µm2; ko: 0.36±0.03 µm2; p<0.0001). 

Additionally, the area of VGAT ROIs is smaller in Otoferlin knock-out mice, as well 

(0.38±0.02 µm2, wt: 0.27±0.01 µm2; p<0.0001). This indicates that the size of 

endbulbs and inhibitory synapses which is represented by the area of VGLUT1 or 

VGAT ROIs is decreased in the AVCN in Otoferlin knock-out mice. 

The comparison of Mover IF signal intensities in wild-type mice revealed no 

difference between endbulbs (0.58±0.02 (n=81, N=3) and inhibitory synapses 

(0.62±0.02; p=0.11) comparable to the result in rat AVCN. 
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Figure 3.8 Reduced intensities of Mover fluorescence signals in the endbulbs of Held 

in Otoferlin knock-out mice.  

A-B. Single confocal section of a bushy cell in an Otoferlin wild-type mouse (A) and knock-

out mouse (B) labeled for VGLUT1 (blue), VGAT (green) and Mover (red). C. Normalized 

Mover fluorescence levels are reduced in endbulbs as well as in inhibitory synapses of 

knock-out mice. D. The size of endbulbs, represented by the area of VGLUT1 labels, and the 

size of inhibitory synapses, represented by the area of VGAT labels, is decreased in Otoferlin 

knock-out mice. E. In wild-type mice, normalized mean intensities of Mover signals are 

similar in endbulbs and in inhibitory synapses. Scale bar: 10 µm. * p<0.05, ** p<0.01, *** 

p<0.0001 

 

Further it was tested whether the reduction of Mover IF signals in endbulbs of Held 

lead to a subsequent modification of Mover IF signals at the next station in the 

auditory pathway, the MNTB. There globular bushy cell axons form the large nerve 

terminal the calyx of Held. The analyzed intensities of Mover IF signals in the calyx of 

Held (labeled with VGLUT1) are higher in a knock-out mouse (1.44±0.03, n=42, N=1) 

in comparison to wild-type mice (p<0.0001). These results reveal an opposite change 

of Mover IF signal intensities in the calyx of Held. The area of VGLUT1 ROIs in the 
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MNTB is not changed in Otoferlin knock-out mice (wt: 0.81±0.02 µm2, n=53; ko: 

0.74±0.02 µm2, n=59; p=0.12) indicating that the size of calyces has not changed.  

 

 

Figure 3.9 Increased intensities of Mover fluorescence signals in the calyx of Held in 

Otoferlin knock-out mice.  

A-B. Single confocal sections of calyces of Held in the MNTB labeled for VGLUT1 (green) 

and Mover (red) in wild-type (A) and knock-out (B) Otoferlin mice. C. Mover fluorescence 

levels are increased in Otoferlin knock-out mice compared to Otoferlin wild-type mice. D. The 

area of VGLUT1 ROIs in the MNTB, representing the size of calyces of Held, remained 

changed in Otoferlin knock-out mice. Scale bar: 5 µm. *** p<0.0001 

 

The CA3 region of the hippocampus was chosen as a control region since the lack of 

Otoferlin did not to affect presynaptic function in hippocampal autaptic cultures 

revealed in electrophysiological experiments (Reisinger et al. 2011). Therefore, it is 

assumed that the Mover IF signals remains unchanged in mossy fiber terminals 

where Mover was identified earlier (Kremer et al. 2007). To analyze Mover 

fluorescence intensities in these excitatory terminals hippocampus slices were 
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stained with an anti-VGLUT1 and an anti-Mover antibody. In wild-type and in knock-

out IF signals from both antibodies show a strong co-localization of Mover and 

VGLUT1 in mossy fiber terminals indicated by the yellow color (Fig. 3. 10, A). 

Fluorescence intensities of Mover immunosignals were analyzed in 3-5 areas of 

100x100 pixels in the stratum pyramidale where mossy fibers form presynaptic 

terminals at the dendrites of pyramidal cells. VGLUT1 suprathreshold pixels were 

used as mask and to create ROIs. Intensities of Mover and VGLUT1 IF signals were 

measured within the ROIs (Fig. 3.10, A2). The analysis of Mover and VGLUT1 

fluorescence intensities in the mossy fiber terminals revealed that Mover levels are 

changed in Otoferlin knock-out mice compared with the wild-type animals (p=0.38) 

(Fig. 3.10, B). Mover intensity was 1.00±0.02 in wild-type (n=32, N=2) mice and 

0.97±0.03 (n=25, N=2) in knock-out mice.  

 

 

Figure 3.10 Intensities of Mover signals remain unchanged in hippocampal mossy 

fiber terminals in Otoferlin knock-out animals.  

A1. Single confocal section of the hippocampus CA3 region labeled for VGLUT1 (green) and 

Mover (red). Scale bar 10 µm. Three to five areas were picked for the intensity analysis. A2. 

Blow-up of a 100x100 pixel area from A1. A suprathreshold mask was created from VGLUT1 

pixels and region of interests (red selections) were selected for intensity measurements. B. 

No changes in VGLUT1 and Mover fluorescence intensity are detected. Scale bar 0.5 nm. 
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3.5 Characterization of a Mover knock-out mouse 

3.5.1 Validation of the Mover knock-out 

A Mover knock-out mouse was generated to study and determine the changes that 

occur when Mover is lacking in the brain.  

Initially, the global knock-out of Mover was validated using immunofluorescence 

stainings. For this, brain slices of the VCN and hippocampus were stained with an 

anti-Mover and an anti-VGLUT1 antibody. The results are illustrated in figure 3.11, A-

D. Mover fluorescence signals disappeared from endbulbs (labeled with VGLUT1) in 

(Fig. 3.11, A, B) and also from VGLUT1-negative synapses in knock-out animals 

confirming the knock-out of Mover in the VCN. Co-immunolabeling of Mover and 

VGLUT1 in the hippocampal CA3 region revealed strong co-localization of both 

immunosignals in the stratum pyramidale which harbors the mossy fiber terminals 

(Fig 3.11, C). In contrast, no Mover fluorescence signal and thus no co-localization 

are observed in the Mover knock-out mice (Fig. 3.11, D). Both in the VCN and 

hippocampus VGLUT1 fluorescence signals do not show obvious changes in the 

labeled glutamatergic terminals. 

DAB stainings were used to confirm the knock-out of Mover with a second staining 

method. A dark brown DAB signal from the Mover antibody is detected in brainstem 

nuclei (LSO, MSO, VNTB, LNTB and SPN) and in the AVCN (Fig. 3.12, A, B) in 

Mover wild-type mice. In the AVCN, the Mover signals exhibit a punctate staining 

pattern around bushy cells (Fig. 3.12, C, asterics). In Mover knock-out mice a light 

brown signal remains in the brainstem and the AVCN. This signal Possibly reflects 

background signal of the Mover antibody. 

In summary, immunofluorescence and DAB stainings confirmed the global knock-

down of Mover. 
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Figure 3.11 Mover fluorescence signals are absent in brainstem and hippocampal 

slices in a Mover knock-out mouse.  

A-D. Single confocal sections from VCN and hippocampus brain slices labeled for Mover and 

VGLUT1. A. Mover labels co-localizes with VGLUT1 labels in endbulbs of Held. B. Complete 

absence of Mover signals and remaining VGLUT1 signals in the VCN in a Mover knock-out 

mouse. Scale bar: 10 µm C. Mover labels and VGLUT1 labels strongly co-localize in the 

stratum pyramidale in the hippocampus in Mover wild-type mice. D. The Mover fluorescence 

signal disappeared. The VGLUT1 signals remains. Scale bar: 100 µm 
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Figure 3.12 Validation of Mover knock-out with DAB stainings in the auditory 

brainstem slices of a Mover knock-out mouse.  

A. A dark brown Mover DAB signal appears in several brainstem nuclei including the lateral 

superior olive (LSO), medial nucleus of the trapezoid body (MNTB), medial superior olive 

(MSO), LNTB and VNTB (lateral and ventral nucleus of the trapezoid body) and superior 

olivary nucleus (SPN) as well as in the anteroventral cochlear nucleus (AVCN) (B) in wild-

type mice. C. Higher magnification of (B) shows a punctate Mover signal around bushy cells 

(asterics) in AVCN. D-F. Mover DAB signal is absent in Mover knock-out mouse brainstem 

slices. The light brown signal that remains possibly reflects background staining from the 

Mover antibody. 

 

3.5.2 Electrophysiological characterization of synaptic neurotransmission 

between bushy cells and endbulbs of Held in Mover knock-out mice 

Here, I started to characterize the synaptic transmission between endbulbs and 

bushy cells in global Mover knock-out mice in order to understand the function of 

Mover. In electrophysiological recordings bushy cells can be distinguished from 

stellate cells based on their firing pattern in current clamp recordings (also see 

introduction). Bushy cells fire one or few spikes at the onset of an injected 

depolarizing current. In response to hyperpolarizing current pulses bushy cells show 

typical sag due to hyperpolarization-activated conductance (Fig. 3.13, C). In contrast, 

stellate cells lack a hyperpolarization-activated conductance and fire tonically in the 

depolarizing voltage range (Fig. 3.13, F). In addition, miniature EPSCs (mEPSC) 

from both cell types differ in kinetics and amplitude. Bushy cell mEPSCs usually have 

higher amplitudes and decay faster than mEPSCs in stellate cells (compare B and E 

in Fig. 3.13). This can be used to differentiate between cell types in voltage clamp 
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recordings. A superimposed trace of mEPSCs from a bushy cell and a stellate cell 

are displayed in figure 3.13 (A and D). 

 

Figure 3.13 Identification of bushy and stellate cells in electrophysiological 

recordings.  

A and D. A superimposed miniature EPSC trace from a bushy cell (A) and a stellate cell (D). 

B and E. A superimposed miniature EPSC spike. mEPSCs typically differ in amplitude and 

decay time. C and F. As response to current injections bushy and stellate cells show 

characteristic firing pattern. 

 

To test whether the basal synaptic transmission is changed mEPSCs were recorded 

from bushy cells in acute sagittal slice preparations of Mover wild-type and knock-out 

animals. The analysis revealed a significant increase in the amplitude and area of 

mEPSCs in knock-out mice. The frequency and kinetics of mEPSCs remained 

unchanged in knock-out mice (Fig.3.14 and table 3.1). The amplitude of mEPSCs 

can be used as a measure for the quantal size. Thus, also the quantal size increased 

in Mover knock-out animals. 
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Figure 3.14 Increased quantal size in Mover knock-out mice.  

A and E. A typical trace of a miniature EPSCs in a wild-type (A, B, black) and knock-out (F, 

G, red) animal. C-E. mEPSC amplitude and area are significantly increased while the 

frequency remained unchanged in Mover knock-out mice. H-J. mEPSC kinetics such as 

decay time (H), rise time (I) and half-width (J) are not altered in Mover knock-out mice. 

 

Table. 3.1 Analysis of miniature EPSCs 

 

 

  

 Mov+/+ 

n=14 

Mov-/- 

n=17 
p value 

Amplitude (pA) 43.34 ± 2.94 54.27 ± 3.58 0.029 

Tau decay time (ms) 0.39 ± 0.023 0.36 ± 0.017 0.34 

10-90% rise-time (ms) 0.16 ± 0.006 0.16 ± 0.005 0.87 

Frequency (Hz) 8.16 ± 0.93 7.00 ± 0.85 0.37 

Half-width (ms) 0.44 ± 0.024 0.42 ± 0.015 0.52 

Area (pAms) 17.45 ± 0.70 21.32 ± 1.24 0.016 
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4 Discussion 

In the present study, the location and distribution of the synaptic protein Mover was 

studied in the anterior ventral cochlear nucleus (AVCN). It could be shown that Mover 

is expressed in the endbulbs of Held as well as in inhibitory synapses. Within the 

endbulbs, fluorescence signal intensities of antibodies generated against Mover were 

broadly distributed over bushy cells. Using immunohistochemical approaches, activity 

dependent regulation of Mover expression was studied in a deaf mouse model that 

lacks Otoferlin a calcium sensor proposed to regulate synaptic vesicle exocytosis.  It 

could be shown that Mover signal intensities were significantly reduced in these mice 

compared to control animals suggesting that is activity-dependently regulated. 

Finally, in order to see if the absence of Mover in synapses affects synaptic 

transmission global knock-out of the mover gene in mice was studied, revealing an 

increased quantal size in endbulbs. 

 

4.1 Methodological considerations 

An indirect immunofluorescence method was used for fluorescence stainings. Here, a 

primary antibody binds directly to the antigen in the probe. The secondary antibodies 

bind indirectly through the primary antibody to the target protein. The detection of the 

bound antibody is due to a fluorophore that is conjugated to the secondary antibody. 

Emission of fluorescence is triggered by a laser light in the confocal microscope. In 

general, indirect immunofluorescence is the most common and cost effective 

approach to label proteins in a specimen. Secondary antibodies are available in a 

wide spectrum of colors allowing the use of several secondary antibodies (in 

combination with any primary antibody that they are reactive to) at the same time. 

Hence, several proteins can be labeled in the same specimen and their localization in 

relation to each other can be studied. Indirect immunofluorescence offers a high level 

of sensitivity and signal amplification because more than one secondary antibody can 

bind to each primary antibody. Nevertheless there are a number of pitfalls that can 

affect a sufficient signal and accurate localization of immune complexes, i.e. 

nonspecific binding and cross-reactivity of the secondary antibodies, high 

concentrated antibodies and auto-fluorescence of the fixed tissue are possible 



Discussion 

  43 

causes for a high background in immunofluorescence images. Problems that occur 

with the Mover fluorescence signal and/ or antibody are high background, high signal 

variability and low signal at particular regions of interest. Various adaptions of the 

staining protocol were tested to approach these problems. Blocking of nonspecific 

binding to identical or similar epitopes on non-target antigens was performed with 

normal serum from the same species of the secondary antibody. Higher 

concentration of normal serum with and without bovine serum albumine did not 

improve the staining. Cross-reactivity of anti-mouse and anti-rabbit secondary 

antibodies was prevented by using antibodies raised in different species. The fixation 

was reduced to 2% of paraformaldehyde (PFA) (instead of commonly used 4% PFA) 

to avoid high background and auto-fluorescence. Fixation with methanol, cryo-

sectioning of PFA-fixed brains or of freshly frozen brains in 2-methylbutane led to 

very low or no Mover signals. Thus PFA fixation is the most suitable for Mover 

immunostainings. To improve the affinity and specificity of the primary antibody, all of 

our Mover antibodies were affinity purified to an immobilized antigen column. 

Antibody concentration and incubation times were adapted to obtain specific signals. 

Thin brain slices of 30 µm were cut to achieve an optimal antibody penetration of the 

tissue. In order to amplify the weak Mover immunosignal the Universal Immuno-

enzyme Polymer (UIP) method developed by NICHIREI BIOSCIENCES was applied 

in DAB stainings. This is a simplified chromogenic, indirect immunofluorescence 

staining method which uses a complex of amino acid polymers, peroxidases and Fab' 

fragments of the secondary antibody instead of a horse radish peroxidase coupled 

secondary antibody. When adding DAB and hydrogen peroxide to the bound 

polymer, the DAB is oxidized and a brown, alcohol-insoluble precipitate at the site of 

enzymatic activity (site of labeled protein).  

While imaging stacks of confocal sections and using high magnification Mover 

fluorescence signals bleached mainly in endbulb regions. For that reason only 

confocal single sections were considered for analysis of Mover fluorescence 

intensities in endbulbs. 

 

4.2 Mover immunofluorescence in AVCN  

Fluctuations in Mover signal may result from difficulties with the antibody or the 

applied experimental protocol. However, one has to take into consideration that the 

varying signal intensity may also reflect variation in Mover protein level. 
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When comparing the Mover fluorescence signal intensity in inhibitory terminals, 

which appeared brighter and smaller, to the Mover signal intensity in excitatory 

endbulbs, which appeared weaker and more widespread, similar mean and 

maximum intensity values were detected in both terminals in the rat AVCN. However, 

the Pearson’s coefficient, as a read-out for co-localization, was different between 

Mover and VGLUT or VGAT signals, respectively. For the co-localization analysis 

overlapping suprathreshold pixels were analyzed meaning that the lower signal 

below the threshold is cut off. As a result, the Pearson’s coefficient of Mover and 

VGLUT1 signal is lower than the Pearson’s coefficient of Mover and VGAT signal. In 

the calyx Mover mean fluorescence signal intensity is similar to that in the endbulb. 

Additionally, the Pearson’s coefficient is higher in the calyx. In this case the higher 

maximum fluorescence signal intensity of Mover in the calyx may account for the 

difference between both structures. In contrast, in Otoferlin wild-type mice mean and 

maximum fluorescence signal intensity and Pearson’s coefficient of Mover in 

endbulbs and inhibitory synapses are not different. But Mover mean signal intensity 

in the calyx is higher than in endbulbs indicating that Mover expression is higher in 

calyx terminals. The different intensities of Mover fluorescence signals in the calyx in 

rat and mouse brain might result from species differences and/or different functional 

roles for Mover. Or it is due to a different Mover antibody specificity in rat and mouse 

brain. Note, that the Mover antibody dilution was slightly higher for the rat stainings.  

Standard deviation (SD) of the mean quantifies variability of the values in a data set. 

For example a low SD means that the values are close to the mean of the data set on 

average, and vice versa. A better way of looking at SD is by plotting the distribution 

as a histogram of values. For example a distribution with a high SD would display as 

a wide shape while a distribution with a low SD would display as a narrow shape. The 

intensity analysis of Mover and VGLUT signals in endbulbs revealed a higher SD for 

Mover mean signal intensities when compared to VGLUT1 signal intensities, in 

endbulbs in rat and mouse. Furthermore, histograms of Mover signals in endbulbs 

have a broad distribution whereas those of VGLUT1 have a narrow distribution (see 

appendix, figure 7.2. A,B). The variability of fluorescence signals might be a result of 

variability in specific antibody binding and staining or it has physiological reasons, for 

example different protein levels due to physiological differences or changes. This is 

further discussed below. 
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In the calyx of Held the role of Mover was associated with the synaptic vesicle 

release probability (Pr) (Körber 2010). The author suggests a negative correlation 

between Mover expression and Pr because the knock-down of Mover in the calyx of 

Held resulted in an enhanced and accelerated short-term depression and a higher 

Pr. In general, estimates of Pr in endbulbs are rather high: 0.55 in rats (2.0 mM 

calcium, P10–12; S Oleskevich, Clements, and Walmsley 2000), 0.5 in CBA mice 

(2.0 mM calcium, P11–16; (Oleskevich & Walmsley 2002), 0.65 in normal-hearing 

young DBA/2j mice (2.0 mM calcium, P17–25; Yong Wang and Manis 2005), 0.49 in 

BassoonEx4-5 wild-type mice (1.5 mM calcium, P15-P23; Mendoza Schulz et al. 

2014). The Pr can be estimated in different ways. Oleskevich and Walmsley used a 

variance-mean analysis to examine the Pr. Interestingly the mean Pr (at 2.0 mM 

calcium) varied from 0.3 to 0.95 in 10 endbulbs (Oleskevich et al. 2000). This 

variance was observed in other studies as well (e.g. (Yang & Xu-Friedman 2009; Cao 

& Oertel 2010) Another way to estimate Pr is to quantify the paired-pulse ratio (PPR). 

This is defined as the amplitude ratio of the second and the first evoked EPSC after 

stimulation with two consecutive pulses. The extent of PPR, i.e. the degree of 

depression or facilitation, depends among others factors on the initial Pr of a synapse 

(Regehr 2012). In the endbulbs of Held synapse a linear correlation between PPR 

and Pr was observed (Oleskevich et al. 2000). Bushy cells with high Pr had a low 

PPR and vice versa. A recent study revealed that endbulbs converging on the same 

bushy cell have similar PPRs. Whereas the PPR was more divergent in randomly 

chosen endbulbs terminating on different bushy cells (Yang & Xu-Friedman 2009). 

This was also true for responses during low-frequency trains. Later experiments with 

a use-dependent NMDA-receptor blocker MK-801 confirmed that presynaptic Pr is 

similar in converging endbulbs (Yang & Xu-Friedman 2012). Moreover, the results 

from that study indicate that plasticity is tightly regulated on a cell-by-cell basis. Yet, 

underlying mechanisms or involved molecules in the coordinated plasticity in the 

AVCN are not known.  

 

A correlation between auditory nerve activity and endbulb morphology was described 

in cats (Ryugo et al. 1996). Auditory nerve terminals were found to have high and low 

spontaneous activity. Those terminals that converge on the same bushy cell have 

similar spontaneous rates (Ryugo & Sent 1991) and exhibit similar shapes (Ryugo et 
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al. 1996). Endbulbs with low spontaneous rates are smaller and more complex in 

shape while endbulbs with high spontaneous rates are larger (Ryugo et al. 1996). 

An obvious question arising from these findings is whether activity in the auditory 

nerve is contributes to the regulation of Pr in endbulbs. Currently Xu-Friedman and 

colleagues are addressing this question. Preliminary data yield to a correlation 

between activity and Pr in a way that higher activity in ANF led to lower Pr in 

endbulbs (Xu-Friedman, talk, German Neuroscience society conference, 2015). 

In the following it will be discussed that the findings mentioned above and the results 

from the present study support an earlier suggested correlation between Mover level 

and the Pr of synapse.  

The broad distribution of Mover mean fluorescence signals may reflect the varying Pr 

between endbulbs at different bushy cells. And changes in the Mover level could 

correlate to the observed differences in Pr. Thus it is conceivable that higher Mover 

levels are detected when endbulbs have lower Pr and vice versa. Moreover, the SD 

of Mover mean intensities in endbulbs from one cell is lower than the SD for VGLUT1 

intensities indicating similar Mover levels in endbulbs that converge onto one bushy 

cell. This is consistent with the finding that `sibling` endbulbs have similar Pr (Yang & 

Xu-Friedman 2012). Certainly; the correlation of fluorescence signals with Pr is only 

indirect in this particular instance. In order to prove a direct correlation, 

electrophysiological recordings would have to be performed followed by 

immunostainings of the recorded cell. Then the measured Mover fluorescence can be 

compared or correlated with the measured Pr. This seems to be a very tedious 

approach. Instead, we chose to generate a Mover  knock-out mouse model for further 

studying its function in synaptic plasticity (see 4.4). 

 

4.3 Activity-dependent regulation of Mover in deaf mice 

Otoferlin appears in inner hair cells (IHC) at P4 after which it is important for calcium-

dependent exocytosis (Beurg et al. 2010) and involved in SV replenishment in IHC 

(Pangrsic et al. 2010). In mice that lack Otoferlin exocytosis in the IHC is almost 

completely abolished (Roux et al. 2006)and ABRs are absent (Roux et al. 2006; 

Wright et al. 2014) indicating that the transmission from IHC to the brainstem is 

impaired. However, the auditory nerve responded to electrical stimulation and 

electrically evoked brainstem responses (eEBRs) could be elicited suggesting that 
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the afferent auditory pathway is functional and the hearing impairment in these mice 

is probably due to defective IHCs (Roux et al. 2006). A recent study by Wright et al. 

(2014) examined the synaptic transmission between endbulbs of Held and bushy 

cells in mice with a mutation in Otoferlin. They revealed a decrease in the paired-

pulse ratio indicating a higher release probability. Moreover, bushy cells from the 

mutant mice show stronger and faster synaptic depression in response to a train of 

stimuli. Furthermore, they could show that bushy cells in deaf mutant mice received a 

greater number of inputs that were smaller in morphology. 

Analysis of Mover fluorescence signal intensities in endbulbs in Otoferlin knock-out 

mice revealed reduced intensity of Mover signals indicating an activity-dependent 

regulation of Mover in deaf mice. This result supports previous experiments in 

cultured cortical neurons where neuronal activity was blocked with TTX and a down-

regulation of Mover was detected with western blot. The observed reduction of Mover 

level in the current study is in line with the higher Pr found in Otoferlin mutants 

assuming that Mover correlates with Pr in a negative way. In addition, the reduced 

endbulbs size (represented by the VGLUT1 labeled area) that was measured here 

matches with a smaller endbulb morphology reported in the Otoferlin mutant study. 

Moreover, in Otoferlin knock-out animals a decreased VGLUT1 fluorescence was 

observed which correlated with the area of VGLUT1 fluorescence signals and Mover 

signal intensities. The reduction in VGLUT1 level (4%) is much smaller than the 

reduction in Mover level and both fluorescence intensities correlate negatively (see 

appendix, figure 7.1), making it unlikely that the VGLUT1 reduction account for the 

changed intensity of Mover signals. However, the decreased VGLUT1 fluorescence 

may be related to the decreased VGLUT1 area due to a positive correlation of both 

parameters. VGAT fluorescence signal area represents the inhibitory terminal size 

and was also reduced in deaf Otoferlin knock-out. A loss of glycinergic terminals 

surrounding bushy cells was observed after bilateral cochlear ablation (Asako et al. 

2005). This suggests that a loss or reduction of ANF activity affects not only the 

excitation to bushy cells but also leads to changes at inhibitory synapses. This 

possibly results in lower Mover level in inhibitory synapses. Increased Pr and greater 

depression in bushy cells was also found in a congenitally deaf (dn/dn) mouse which 

lack normal synaptic activity (Oleskevich & Walmsley 2002; Oleskevich et al. 2004). 

Similarly, stronger depression indicating higher Pr was revealed in T-stellate and 

octopus cells in deaf jerker mice in which IHC start to degenerate around the onset of 
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hearing (Cao et al. 2008). In contrast, Pr is lower in `old` DBA mice exhibiting hearing 

loss by the age of 5 weeks (Wang & Manis 2005). In Otoferlin mutant and jerker mice 

it was reported that the size of endbulbs is reduced (Cao et al. 2008; Wright et al. 

2014). Moreover, morphological and structural abnormalities in deaf cat endbulbs 

were reported by Ryugo et al. (1998). Interestingly, changes in cats suffering from 

hearing loss exhibited intermediate features (Ryugo et al. 1998). 

The partial auditory deprivation in BsnEx4-5 mice, arising from defective IHC and a 

reduced ANF spike rate, had as a consequence an increased Pr and an enhanced 

and stronger depression in endbulbs. The loss of Bassoon was accompanied by a 

~20% reduction of Mover in endbulbs and mossy fiber terminals in hippocampus 

(Mendoza Schulz et al. 2014). In the first place, this supports the association of 

Mover with Bassoon at the active zone and with a regulatory role of Mover in Pr 

adaptation. Secondly, the lower Mover level might be a result of a down-regulation of 

Mover upon reduced ANF activity. The present study revealed that the fluorescence 

intensities of the Mover signal remained unchanged in hippocampus in Otoferlin 

knock-out mice. Moreover, these results are in line with results from 

electrophysiological recordings in autaptic hippocampal cultures that revealed normal 

synaptic transmission and synaptic properties (Reisinger et al. 2011).  

Homeostatic plasticity is a phenomenon in which neurons modify their intrinsic or 

synaptic properties to maintain a target level of electrical activity on a local and/or 

circuit level. Many cellular mechanisms that counteract or compensate for changes in 

the activity level have been observed and studied including pre- and postsynaptic 

forms of synaptic plasticity, such as synaptic scaling, the balancing of excitation and 

inhibition, compensatory changes in synapse number, the activity-dependent 

regulation of intrinsic neuronal firing and several others (Turrigiano 2012). The 

increase of Pr in Otoferlin mutant, deafness and Bassoon mutant mice can partly be 

attributed to presynaptic homeostatic adaptations upon the loss of activity in ANF 

(Oleskevich & Walmsley 2002; Wright et al. 2014; Mendoza Schulz et al. 2014). In 

addition, higher evoked EPSC amplitudes but unchanged quantal content in Otoferlin 

mutant possibly result from an AMPA receptor up-regulation (Wright et al. 2014) in 

line with expected homeostatic mechanisms. In contrast, changes in synaptic 

transmission mice with age-related hearing loss seem to contradict those from 

completely deaf mice and Bassoon mutant mice.  
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In the present study an increase of Mover signal intensities at the calyx of Held level 

was detected suggesting a compensatory and homeostatic adjustment on the protein 

level. Interestingly, no differences in synaptic transmission (Oleskevich et al. 2004) 

but an increase in excitability due to changes in potassium currents and 

hyperpolarization-activated currents were found at the calyx of Held in deafness mice 

(Leao et al. 2004). This leads to the assumption that other mechanisms act in mice 

that undergo a normal auditory development and have to face changes in activity 

level later on.  

It would be interesting to study if the Mover level increases in endbulbs of mice which 

were exposed to noise in order to increase the ANF activity. In the future we will 

proceed with such experiments in order to confirm an activity-dependent regulation of 

Mover. A first attempt (N=1) did not reveal any changes probably because the 

acoustic and experimental conditions were not efficient or optimal. Note, that 

electrical stimulation of auditory nerve fibers with cochlear implants can ameliorate 

the phenotype of deaf (O’Neil et al. 2011). Thus, adaptions to activity changes are 

plastic. 

In summary, the present study supports the notion that Mover is regulated by activity. 

Furthermore, recent studies indicate that activity is involved in the regulation of Pr.. 

The correlation between Mover and afferent activity complements the arising picture 

of a functional involvement of Mover in the regulation of Pr. 

 

4.4 Characterization of synaptic transmission at the endbulb bushy 
cell junction in a Mover knock-out mouse 

The Mover knock-out mouse model was used to study if and how a loss of Mover 

affects synaptic transmission in the brain. A mouse line was generated that allows to 

knock out Mover in the entire brain (global knock-out) or to conditionally knock out 

Mover in specific brain regions or synapses. Initially, we bred flox-Mover mice with 

mice from a E2A-cre mouse line. This resulted in a global knock of Mover in the 

brain. These knock-out mice are viable and do not exhibit obvious behavioral 

abnormalities. The knock-out of Mover was validated with immunostainings and 

confirmed the absence of Mover fluorescence signals in the AVCN and 

hippocampus. The present study focused on the examination of synaptic 

transmission between endbulbs and bushy cells in the AVCN in the knock-put mice. 
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Acute brainstem slice preparations were used to record from bushy cells and 

stimulate the ANF. Miniature excitatory postsynaptic currents (mEPSC), which are 

produced in response to spontaneous release of a single vesicle, were analyzed to 

study the basal synaptic transmission of the synapse. An increase in quantal size and 

the average charge transferred in each mEPSC was revealed in Mover knock-out 

animals. Kinetics and shapes of mEPSCs were unchanged suggesting that the 

composition of AMPA receptors is similar in knock-out and wild-type animals. The 

larger size of mEPSCs might be due to the action of spontaneous events on more 

AMPA receptors or a larger postsynaptic density (PSD) size (Xu-friedman & Regehr 

2004). An enlargement of the PSD can be quantified with electron microscopy. An 

up-regulation of AMPA receptors can be measured by isolating the AMPA receptor 

response with AP5 (NMDA receptor blocker) and calculate the ratio of the AMPA 

receptor and NMDA receptor response. The ratio should be larger if more AMPA 

receptors are present in knock-out mice.  

Further experiments are necessary to elucidate causes and consequences from the 

observed changes in basal synaptic transmission in endbulbs in Mover knock-out 

mice. 

Preliminary data from experiments of evoked EPSC indicate changes in synaptic 

transmission upon stimulation of auditory nerve fibers in the vicinity of the recorded 

bush cell that are contradictory to those observed upon a knock-down of Mover in the 

calyx of Held (see appendix, figure 7.3). To date one can only speculate on effects 

that cause these surprising changes. We cannot rule out that Mover is present in IHC 

and that the knock-out of Mover affects synaptic transmission in IHC. Thus, the 

effects that are measured in bushy cell recordings are caused by an impaired signal 

transmission from IHC to spiral ganglion neurons which can lead to changes in the 

firing rate of auditory nerve fibers. Such changes can be higher or reduced activity in 

the auditory nerve. As revealed from studies with hearing-impaired and deaf animals 

a reduced activity results in an increase in Pr in endbulbs of Held. Increased activity 

leads to forms of tinnitus. There are several options to clarify whether the Mover 

knock-out affects IHC synaptic transmission. One is to use immunostaining with 

Mover antibody to test if Mover is present in IHC and how the immunosignals are 

changed in Mover knock-out animals. Additionally, the spike rate of auditory nerve 

fibers can be determined with in vivo recordings from auditory nerve fibers indicating 

higher or reduced activity of these nerve fibers. Furthermore one can use the 
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conditional Mover mouse model to selectively knock-out Mover in endbulbs by 

breeding the flox-Mover mice with a vglut1:cre mouse line. As IHCs express only 

vglut3 the knock-out of Mover would not affect synaptic transmission at IHC. Then 

effects of the absence of Mover in endbulbs can be studied and are more clearly. 

One can also take into account that Mover has synapse specific roles, thus a knock-

out would show different effect at different synapses which could explain different 

changes of PPR in the calyx of Held and endbulb of Held. 

 

4.5 Association of Mover with Bassoon 

 

Figure 4.1 Schematic illustration of the location of Mover at the active zone 

 

A direct association of Mover with Bassoon was found in a yeast-to-hybrid assay with 

the C-terminus of Bassoon (Kremer et al. 2007). Moreover, the C-terminus was found 

to be required for an association of Bassoon with CAZ whereas the N-terminus is not 

incorporates into the CAZ but is rather involved in binding synaptic organelles such 

as SV (Dresbach et al. 2003). In more detail, the C-terminus of Bassoon was found to 

be located at a distance of 35 to 50 nm from the presynaptic plasma membrane in a 

conventional synapse (Limbach et al. 2011; Dani et al. 2010) and the N-terminus was 

detected at a distance of around 70-80 nm from the presynaptic plasma membrane 

(Dani et al. 2010). Immuno-gold electron microscopy confirmed that Mover is 

attached to SV (Körber 2011; Ahmed et al. 2013). Now, the promising assumption 



Discussion 

  52 

arises that Mover binds to docked vesicles since they are thought to be associated to 

the plasma membrane and approximately located in the same area as the C-terminus 

of Bassoon - giving a SV diameter of 38 nm (Limbach et al. 2011). In an integrative 

approach combining quantitative immunoblotting and mass spectrometry Wilhelm et 

al. (2014) determined the protein copy number of Bassoon as 400 in a synaptic 

bouton containing roughly 400 SVs. A copy number of 80 molecules was calculated 

for Mover (personal communication T. Dresbach and S. Rizzoli) meaning that Mover 

is associated to 20% of the vesicles (and Bassoon molecules) given that one Mover 

molecules bind to one SV. This is in line with an electron microscopy analysis of a SV 

fraction where 16.4 % percent of the SVs were positive for Mover whereas 98% of 

the SVs were positive for Synaptophysin (Ahmed et al. 2103). Combining these facts 

a model for the location of Mover can look illustrate in figure 4.1. 

On the contrary, Mover immuno-gold signals in the calyx of Held were detected at a 

distance of around 100 nm away from the active zone plasma membrane which 

resembled the signal location of the labeled N-terminus of Bassoon (Körber 2011) 

suggesting the possibility that Mover also binds to the N-terminus of Bassoon. In 

addition, the fluorescence signals of the Mover and Bassoon overlap only partially in 

confocal images. Though, the confocal resolution might not be sufficient to make 

precise conclusions as it is limited to 100-200nm. Unfortunately, to date, we did not 

get immuno-gold stainings with the `commercial` Mover antibody in brainstem 

sections to work. Nevertheless, analysis of immuno-gold labelings with electron 

microscopy provides an optimal tool to confirm the localization of Mover to docked 

vesicles. 
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5 Summary 

The central auditory pathway contains highly specialized giant presynaptic nerve 

terminals specialized to preserve temporal information carried by acoustic signals 

(Oertel et al., 1999). One of them, the endbulbs of Held, are large and highly 

branched axosomatic endings arising from auditory nerve fibers that converge onto 

bushy cells in the anterior ventral cochlear nucleus (AVCN). In addition, bushy cells 

receive a number of inhibitory inputs from of non-cochlear origin. Due to their 

remarkable size these terminals are a useful model to investigate signal transmission 

but little is known about the underlying molecular mechanisms. The vertebrate-

specific presynaptic protein Mover was identified as an interaction partner of the 

active zone protein Bassoon and suggested to have a regulatory role in the control of 

release probability (Pr) (Kremer et al., 2007; Körber, 2011). Based on these findings 

the present study aimed to further investigate the localization and role of Mover with 

a particular focus endbulbs of Held. Mover immunosignals co-localized with Synapsin 

immunosignals confirming that Mover is associated with synaptic vesicles. 

Furthermore, immunofluorescence signals of Mover were present at endbulbs of Held 

as well as at inhibitory synapses around bushy cells. Mean fluorescence intensities of 

Mover signals in endbulbs of Held were broadly distributed over different cells but 

were similar between converging endbulbs onto one bushy cell. Similar findings have 

been reported for the Pr in endbulbs of Held (Yang and Xu-Friedman, 2009, 2012). 

The results from Mover immunofluorescence analysis presented here provide an, 

albeit indirect, correlation between the Mover level and Pr and support the 

suggestion for the role of Mover in regulation of Pr. In order to study whether Mover 

is regulated by activity in auditory nerve fibers (ANF) Mover fluorescence intensities 

were compared in wild-type and knock-out Otoferlin mice, the latter one are lacking 

activity in ANF. A reduction of Mover fluorescence intensities by 35% was found 

indicating an activity dependent regulation of Mover in endbulbs of Held. To further 

elucidate the role of Mover a Mover knock-out mouse as generated. Using 

electrophysiology and patch clamp recordings from bushy cells in auditory brainstem 

slices the synaptic transmission at the endbulbs of Held in Mover knock-out animals 

was studied. The absence of Mover in endbulbs of Held was validated with 

fluorescence stainings. Analysis of spontaneous miniature excitatory postsynaptic 

currents (mEPSCs) revealed an increased quantal size and area of mEPSCs in 
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Mover knock-out animals. However, kinetics of mEPSCs remained unchanged 

suggesting that the amount of AMPA receptor is increased. Yet, further experiments 

have to be performed to study the consequences of these changes for synaptic 

transmission upon evoked action potentials. 
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7 Appendix 

 

Figure 7.1 Correlation of measured immunofluorescence intensities in Otoferlin mice. 

A. Summary of analyzed fluorescence signals. Intensities are normalized against VGLUT1 

intensities in wild-type endbulbs. B. Intensities of Mover and VGLUT1 signal do not correlate 

in calyx of Held of wild-type or knock-out Otoferlin mice. C and D. Mover signal intensities 

are negatively correlated with VGLUT1 and VGAT signal intensities in Otoferlin knock-out 

mice (r2=0.27 and r2=0.14) but not in wild-type mice (r2=0.006 and r2=0.01). 
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Figure 7.2 Standard deviation of mean intensities from Mover immunosignals in rat.  

A. Standard deviations (SD) of the mean intensity of all regions of interest in a confocal 

image is lower for Mover signals than for VGLUT1 signal. B. Distribution of the mean 

intensities of analyzed images in broad for the Mover signals and more narrow for the 

VGLUT1 signals. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 Evoked paired EPSCs in endbulbs of Mover knock-out mice.  

A and D. Evoked paired EPSCs of an example cell in a wild-type (black) and knock-out 

animal red). B-C. Amplitude size (B) and kinetics such as decay time (C) are not affected. E. 

Paired-pulse ratio (PPR) serves as a mean for release probability. For evaluation of the PPR 

the amplitude of the second eEPSC is divided by the amplitude of the first eEPSC. PPR 

tends to be increased in endbulbs of knock-out mice. F. Cell size, approximated by the 

membrane capacitance, remained unchanged (16.68 ± 0.83, n=21, versus 17.62 ± 0.68, 

n=22; p=0.38). 
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Table. 7.1 Analysis of evoked EPSCs 

 Mov+/+ 

n=5 

Mov-/- 

n=5 
p value 

Amplitude (nA) 3.03 ± 0.75 2.38 ± 0.39 0.46 

Tau decay time (ms) 0.36 ± 0.05 0.38 ± 0.04 0.70 

PPR (EPSC2/EPSC1) 0.85 ± 0.01 0.70 ± 0.09 0.21 
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List of abbreviations 
ABR  auditory brainstem 

response 
AMPA  α-amino-3-hydroxy-5-

methyl- 4-
isoxazolepropionic acid 

AVCN  anteroventral cochlear 
nucleus 

AZ   active zone 
CAZ  cytomatrix of the active 

zone 
CN   cochlear nucleus 
DCN   dorsal cochlear nucleus 
eEPSC  evoked excitatory 

postsynaptic current 
GBC   globular bushy cell 
ILD   interaural level difference 
ITD   interaural time difference 
KO   knock-out 
LNTB lateral nucleus of the 

trapezoid body 
LSO   lateral superior olive 
mEPSC  miniature excitatory 

postsynaptic current 
MNTB  medial nucleus of the 

trapezoid body 
MSO   medial superior olive  
NMDA  N-methyle-D-aspartate  
MNTB  medial nucleus of the 

trapezoid body 
MSO   medial superior olive  
PB   phosphate buffer 
PSD   postsynaptic density 
PVCN  posteroventral cochlear 

nucleus 
Pr    release probability 
q   quantal size 
ROI   region of interest 
SBC   spherical bushy cell 
SPN  superior olivary nucleus 
SV   synaptic vesicle  
TTX   tetrodotoxin 
VCN  ventral cochlear nucleus 
VGAT vesicular GABA 

transporter 
VGLUT1 vesicular glutamate 

transporter1 
VNTB ventral nucleus of the 

trapezoid body 
WT   wild-
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