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ABSTRACT

The retina is a complex neural network, responsible for breaking down the visual
scene into its distinctive features such as local contrast, motion and color. The reti-
nal ganglion cells form the output layer of this network, and a typical vertebrate
retina may contain more than 10 different ganglion cell types. These cells can be
separated based on their anatomical or physiological properties, and each type
is expected to relay information about distinct visual features to specific areas in
the brain. Separating these channels of information is crucial for understanding
how the visual scene is encoded, and much effort is put into classifying retinal
ganglion cells. From the different strategies used to classify a ganglion cell, the
physiological one — based on the responses of the cell to light stimulation — may
be the most challenging, because physiological properties do not always discrimi-
nate between different cell types. For the salamander, previous attempts to classify
retinal ganglion cells were based on their temporal filtering properties, and were
successful in separating ganglion cells into coarse temporal response types. But
surprisingly, only one of the types showed tiling (a mosaic arrangement) of its re-
ceptive fields. Because tiling is considered a strong signature of single cell types, I
ask here whether a refined classification is possible — and whether it yields tiling
by further ganglion cell types.

Spiking activity was recorded from isolated axolotl retinas using multi-electrode
arrays, and more than 200 cells could be simultaneously recorded in a typical
experiment. The retina was stimulated with an uncorrelated noise (white-noise)
stimulus, which was used to estimate via reverse correlation the receptive field
properties of the ganglion cells. Together with the autocorrelation of the spike-
trains, the receptive field extent and temporal filtering properties were used to
characterize the ganglion cells. While a single property did not easily distinguish
between cell types, a spectral clustering algorithm was able to classify the ganglion
cells into putative types based on a combination of their properties. The identified
types were then matched across retinas.

At least two tiling types were consistently observed across retinas, with the re-
maining types showing few violations of tiling. Cell types with similar physio-
logical properties, whose distinction would be blurred if analyzed within a sin-
gle property, could be distinguished by a combination of properties. The results
suggest that salamander ganglion cells can be classified when their physiological
features are taken in tandem, and that tiling is a fundamental feature of ganglion
cells types — also in the salamander retina.
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INTRODUCTION

The scientist does not study nature because it is useful to do so. He studies it
because he takes pleasure in it; and he takes pleasure in it because it is beautiful.
— HEeNRI POINCARE, Science and Method

Our eyes are fantastic. Unlike a camera, our eyes can see at various light levels,
constantly adjusting their sensitivity to the incoming light (for review, see Hurley
2002; Dowling 1987; Rodieck 1998). The differences to a camera do not stop there,
however. The eyes do not send to the brain a unique view of the world. After an
image is projected onto the back of the eye, it is broken down into color, outlines,
motion — all are separately relayed to the brain. These parallel views of the world
are created by a very thin and delicate tissue on the back of the eye — the retina (for
review, see Wdssle 2004; Masland 2012).

In the retina, an image is processed via five major classes of neurons: photorecep-
tors, horizontal, bipolar, amacrine and ganglion cells. Together, these cell classes
combine into a complex neural network which decomposes the image into its dis-
tinct components. The ganglion cells form the output layer of the retina, and are
very diverse: more than ten sub-classes (or types) are described in the vertebrate
retina. Because all visual information that the brain receives must originate from
the ganglion cells, it is expected that each of those ganglion cell types is responsi-
ble to encode specific features of the visual scene (see Gollisch and Meister 2010),
giving a distinct view of the world (see Masland 2012). Hence, to understand the
features encoded by the retina, much effort has been put into classifying ganglion
cells based on their anatomical or physiological properties (see, e.g., Sanes and
Masland 2015).

Before moving onto the properties of ganglion cells, it is worth reviewing the
organization of the retina, and how the morphology of retinal cells relates to their

physiology.
1.1 OVERVIEW OF THE RETINA

The retina has five classes of neurons which are interconnected to decompose the
visual scene. Photoreceptors are the light-sensitive cells in the retina, and encode
the light level as a graded chemical signal (high glutamate when dark, low when
bright). Bipolar cells process the graded signal and relay it to the ganglion cells.
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Figure 1.1: CLASSES OF NEURONS AND THEIR LAYERS IN THE RETINA. The retina is or-
ganized into either somatic (nuclear or cell) or synaptic (plexiform) layers.
Photoreceptor somas are in the Outer Nuclear Layer (ONL); Synapses
between photoreceptors, bipolar and horizontal cells take place in the
Outer Plexiform Layer (OPL); Horizontal, bipolar and amacrine so-
mas are in the Inner Nuclear Layer (INL); Synapses between bipolar,
amacrine and ganglion cells take place in the Inner Plexiform Layer
(IPL); Ganglion cells are in the Ganglion Cell Layer (GCL). Note that
light enters most vertebrate retinas through the GCL. (see, e.g., Dowl-
ing 1987; Rodieck 1998)

Image: Reprinted from Current Biology, Vol. 8, Charles F. Stevens, “Neuronal diversity: Too many

cell types for comfort?”, Ryo8-Ry10, Copyright (1998), with permission from Elsevier.



1.2 A BRIEF HISTORY OF PHYSIOLOGICAL CLASSIFICATION

The signal from the bipolar cells is collected and compared by ganglion cells,
which transmit the visual information to the brain through their axons. The re-
maining classes, horizontal and amacrine cells, perform lateral signaling and feed-
back within the retina. The retina is organized into five layers, each containing
either somas or synapses." A scheme of the organization of the retina is shown
in Figure 1.1.

This simple model, however, must be adapted to the reality of the retina. To
give a taste of reality, at least 12 bipolar cell types are reported in the mouse
retina (Masland 2012). From those, one is a rod bipolar and eleven types are cone
bipolar. Each cone bipolar can be coarsely classified into either ON or OFF bipolar.
OFF bipolar cells are hyperpolarized by light, while ON bipolar cells are depolar-
ized. The main difference between the two lies in their glutamate receptors: OFF
bipolar expresses ionotropic (AMPA and kainate) receptors, while ON bipolar ex-
presses metabotropic receptors. The axons of the bipolars terminate at the Inner
Plexiform Layer, and are spatially segregated. OFF bipolars terminate closer to the
Inner Nuclear Layer, while ON bipolars terminate closer to the Ganglion Cell Layer.
Each different type of bipolar, however, may stratify to a different sub-layer (see,
e.g., Wissle 2004). The intuition is that each bipolar already filters the visual scene
in some special way: ON, OFF, transient, sustained, and so on; those channels of
visual information are then provided at a specific depth in the Inner Plexiform
Layer (see, e.g., Masland 2012). Ganglion cells arborize their dendrites in the In-
ner Plexiform Layer and are a diverse population, with 10-15 ganglion cells often
reported in vertebrate retinas. Depending on their arborization, the ganglion cells
will receive distinct information from the bipolar cells, and can have their response
modified by amacrine cells (of which there are many types, but little is known of
their effects). (see Sanes and Masland 2015)

Morphology then plays an important role for determining the response of gan-
glion cells. By studying their different responses, one may be able to grasp this
complexity. But how to understand the responses of a ganglion cell?

1.2 A BRIEF HISTORY OF PHYSIOLOGICAL CLASSIFICATION

Recording from the optic nerve of an Eel, Adrian and Matthews (1927) observed
an increased activity whenever light was presented or withdrawn. Because of the
experimental conditions, however, they were limited to recording from many axons
simultaneously. The recording of a single ganglion cell was only possible after
improvements on the technique by Hartline (1938).

If one is not familiar with the nomenclature, it can be hard to remember what is in each retinal layer.

A tip, as seen in Rodieck (1998), is that each layer in the retina contains either cell bodies (nuclear
or cell layer) or synaptic processes (plexiform layers). Inner layers are closer to the center of the eye,
outer layers closer to the outside.
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1.2.1  Receptive fields

Reporting on how a single fiber of the optic nerve of frogs responded to light, Hart-
line (1938) observed an “extreme and unmistakable” diversity, and could discern
three response types: cells which responded to increments of light (ON), those that
responded to decrements (OFF), and those that responded to both (ON-OFF). Hart-
line (1938) further observed that a cell would only respond if light was presented
to a specific region on the retina — the receptive field. To account for a surround-
ing region that was observed to suppress the action of the receptive field center,
the concept of a receptive field was extended in the cat by Kuffler (1953) (and in
the frog by Barlow 1953) to include all regions which could functionally affect a
ganglion cell.

To understand the effect of this surrounding region on the ganglion cell, Rodieck
(1965) suggested a linear model of the receptive field, consisting of two compo-
nents: an excitatory center and an inhibitory surrounding region, each indepen-
dently filtering the incoming light. In this model, for each component, the pattern
of light on the retina is weighted by its spatial sensitivity and convolved by its
temporal response curve. The ganglion cell activity would then be determined by
the combined output of center and surround.?

While studying the (spatial) contrast sensitivity of ganglion cells in the cat retina,
Enroth-Cugell and Robson (1966) observed that ganglion cells responded differ-
ently to a grating pattern that varied sinusoidally along one direction in space,
perpendicular to the bars. By shifting the position of this grating, some cells would
not respond to presentations of the grating. This silence was assumed to happen
because they linearly collected what was presented to their photoreceptors, and
hence it was possible to find a position where the dark and bright segments negate
each other, evoking no response from the cell. Those linear cells were referred to
as X cells. Surprisingly, other cells did not sum their receptive fields linearly, and
responded to the presentation of the grating at any position — those were called
Y cells. This non-linearity was independent of whether the cell responded prefer-
ably to increments (ON) or decrements (OFF) of light. Later, a method to measure
this non-linearity was devised by Hochstein and Shapley (1976). This suggested a
division of ganglion cells in the cat retina based on non-linearity (X and Y) and
polarity of response (ON, ON-OFF and OFF).

Rodieck (1965) suggests that a non-linear function could account for second-order effects in the
response, and observed that a supra-linear function best matches the experimental data. In the cat,
using parameters of the receptive field obtained from flashing spots (Rodieck and Stone 1965a),
this model was used to explain the average firing rate of cells to moving bars (Rodieck and Stone
1965b). Note also that this linear model is similar to the linear-nonlinear-Poisson model, which will
be discussed in Section 2.5.1.
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1.2.2  Feature detection

Meanwhile, evidence of more complex features in the retina started accumulating.
Barlow (1953), for example, observed that the center-surround structure could aid
the retina of the frog to reject useless information from the image, passing on
only the features relevant for the animal behavior; that is, he suggested that the
retina should be viewed as a feature detector (see also Barlow 1961). This idea
was explored by Lettvin et al. (1959), who showed that the frog retina had at least
four ganglion cell types which could be distinguished based on their behaviors
(sustained contrast detection, net convexity detection, moving edge detection and
net dimming detection).

In the rabbit, Barlow and Hill (1963) observed direction-selective units (cells
which respond to a moving stimulus with a preferred direction). A survey of re-
sponse types of rabbit ganglion cells by Barlow et al. (1964) showed that besides
the classical receptive fields and direction-selective cells, there were cells which
were selective to the speed of movement. This reinforced the idea of “trigger fea-
tures”, features which a ganglion cell type would preferably encode. A more thor-
ough survey of the rabbit retina by Levick (1967) showed a rich repertoire of fea-
ture detection: ganglion cells could now also be classified as orientation-selective,
uniformity-detectors or local-edge-detectors.

1.2.3 Physiological types and morphology

These ganglion cells with complicated receptive fields, however, had properties
which could not be accounted for by the simple center-surround model, and did
not fit into either the X or the Y class. In the retina of cats, these neurons were
collected into a new class, the W cells (see Stone and Fukuda 1974; Rodieck 1979).3
From the X, Y and W classification, only the X and Y cells could be matched to
morphological types that had been recently identified in the cat retina (Boycott and
Wiassle 1974). The Y cells were found to be a-cells, cells with large dendritic fields,
while the X cells were found to be p-cells, with small dendritic fields (Wassle and
Boycott 1991). This correlation between morphology and physiology was strength-
ened by Peichl and Wissle (1981), who observed that the center of the receptive
fields of Y cells matched the location of a-cell somas.

In these morphological types, a curious pattern emerged. The somas of a-cells
were not randomly spread, but instead avoided one another, so that their dendrites
resembled a mosaic (Wéssle and Riemann 1978; Waissle, Peichl, et al. 1981). A
similar pattern was observed for the somas of p-cells (Wassle, Boycott, and Illing

Later, the W cells were found to be too diverse, and it was suggested that each distinct ganglion
cell type should be named on its own. Hence, X (or brisk-sustained) and Y (brisk-transient) cells
remained, but were joined by at least 10 more types (Rodieck 1979).
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1981). It was not clear, however, if this spatial organization would apply to other
ganglion cell types.

1.2.4 Mosaics of functional types

Because of its regularity, this mosaic organization of cells was called tiling. Wéssle
and Boycott (1991) suggested that tiling was important to ensure that a popula-
tion of cells in a type is equally sensitive to light spots anywhere in the retina,
minimizing blind spots.

To investigate the generality of tiling, DeVries and Baylor (1997) recorded si-
multaneously the electrical activity from ganglion cells in a rabbit retina using a
multi-electrode array. The ganglion cells were grouped according to the statistics
of their spike-trains and time-courses of their mean effective stimulus (also known
as spike-triggered average, see Chapter 2). From the 11 types described by DeVries
and Baylor (1997), 8 of those tiled the retina.

Tiling was further observed in the monkey retina, where Field et al. (2007)
grouped ganglion cells based on their response to light (mean effective stimulus).
Then, they assigned the grouped cells to morphological types by comparing their
light responses to those reported in the literature. They observed mosaics in at
least 5 types. Using a similar method, Gauthier et al. (2009) observed that recep-
tive fields of ganglion cells from the same type, while irregularly shaped, would
organize to uniformly tile the visual space.

For the salamander, Segev et al. (2006) grouped cells by either the statistics of
their spike-trains (autocorrelation functions), receptive field size or temporal prop-
erties — one at a time, because the grouping was found to be worse by combining
features. Tiling was reported only when cells were classified by their temporal
properties, yet for only 1 of the 5 proposed types. Segev et al. (2006) further sug-
gested that this absence of tiling could be a property of the salamander retina,
given the known redundancy in this retina (Puchalla et al. 2005).

1.3 AIM OF THIS STUDY

The classification of ganglion cells is important for understanding how visual in-
formation is transmitted to the brain. However, because properties which can be
used for characterizing cells do not always clearly distinguish between types, the
physiological classification of ganglion cells is a challenging problem. Manual clas-
sification of ganglion cells is possible (DeVries and Baylor 1997; Field et al. 2007),
but does not scale as datasets grow (Stevenson and Kording 2011; Armafianzas
and Ascoli 2015).

Tiling is also considered a fundamental property of retinal cell types, and is key
to identify types in morphological studies (see, e.g., Cook and Chalupa 2000; Rock-
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hill et al. 2000; Masland 2012). Hence, one may wonder whether the presence of a
single tiling type in the salamander retina, as observed by Segev et al. (2006), comes
from the classification method which was chosen or a fundamental difference in
the organization of its retina.

In this thesis, I suggest an improvement on the current physiological classifi-
cation of ganglion cells in the salamander retina. Using a multi-electrode array, I
record simultaneously from hundreds of ganglion cells in the same retina. These
ganglion cells are characterized based on a simple stimulus — an uncorrelated
noise. This stimulus provides information on the ganglion cell receptive field size
and temporal filtering properties, which together with the autocorrelation of spike-
trains are used to characterize a ganglion cell. I investigate whether it is possible
to classify retinal ganglion cells based on a combination of these features, using
a spectral clustering algorithm, and if an improved classification would recover
tiling from more than a single ganglion type.

In Chapter 2, I describe the experimental methods required to obtain a large
enough dataset for classification and the methods used to characterize a ganglion
cell. In Chapter 3, I consider different clustering techniques and their advantages
and limitations. Because clustering is an involved problem in itself, I consider it
separately from cell classification. In Chapter 4, I classify ganglion cells in the
salamander retina, using a spectral clustering algorithm. The putative types from
clustering are tested for their quality based on the homogeneity of their properties,
and whether they tile. Tentative names are given to the clusters based on their prop-
erties. In Chapter 5, I compare the results from the classification shown here with
previous results for the salamander, the implications of tiling for functional classifi-
cation and how the retina can be used for illuminating aspects of the organization
of the brain.






EXPERIMENTAL METHODS

“Datal data! data!” he cried impatiently. “I can’t make bricks without clay.”
— SIR ARTHUR CONAN DovYLE, The Adventure of the Copper Beeches

To classify retinal ganglion cells based on their physiology, one must first gather
data from a large population of cells. Preferably, one would simultaneously record
these cells to avoid variance caused, for example, by the animal development (age,
diseases, or mutations), or preparation quality. One technique for recording from
multiple cells is to use a multi-electrode array (MEA), which records the neuronal
activity extracellularly. In this chapter, I will describe how to mount the retina
on a multi-electrode array. Because it is not known a priori from which neuron a
recorded spike originated, the spikes must be grouped according to the similarity
of their waveforms (spike-sorting). These groupings are referred to as units and
considered to contain most of the spikes originating from a single cell. Of course,
this method has limitations. I will explain how these limitations affect the goal of
classifying retinal ganglion cells (RGCs) and how to best overcome them. Finally, I
show how to analyze properties from the recorded neurons such as their receptive
field dynamics, direction selectivity and temporal structure of their spike-trains.
These properties will be important for classifying as well as evaluating the possible
retinal ganglion cell types.

2.1 ANIMAL MODEL

For the experiments in this thesis, isolated retinas from axolotl salamanders (Am-
bystoma mexicanum, pigmented wild type) were used. The axolotl is an amphibian
which becomes sexually mature while retaining its larval morphology (neoteny),
with only few reported cases of successful metamorphosis (see Taurog 1974; Tau-
rog et al. 1974). Because of its ability to regrow limbs, it is known as a model in
regeneration and aging research (for a review, see McCusker and Gardiner 2011).
But why use axolotls in vision research?

Amphibians, being cold-blooded vertebrates, are more forgiving to harsh exper-
imental conditions and have a long history in retinal studies. Frogs were used for
the first recordings of single fibers in the optic nerve (Hartline 1938), leading to
the first description of receptive fields (Hartline 1940b; Hartline 1940a). Later, it
was observed that salamanders possessed large retinal neurons (larger than many
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other vertebrates), which were more easily recorded with microelectrodes. The
mudpuppy (Necturus maculosus), an aquatic salamander, was used for understand-
ing the structure and function of photoreceptors (Brown et al. 1963) and had an
important role in mapping the synaptic organization of the retina (Dowling and
Werblin 1969; Werblin and Dowling 1969; Miller and Dacheux 1976).

A close relative to the axolotl, the tiger salamander (Ambystoma tigrinum) is fre-
quently studied in retina research. It was used for describing the connections be-
tween retinal cells (Lasansky 1973; Wong-Riley 1974) and for identifying the synap-
tic input received by ganglion cells, according to their response classes (Wunk and
Werblin 1979; Asari and Meister 2014). The tiger salamander’s retina was a model
to understand contrast adaptation (Baccus and Meister 2002) and to find, for ex-
ample, that the separation of objects from the scene background can already be
performed by the retina (Olveczky et al. 2003). More recently, a new form of plas-
ticity was identified using the tiger salamander, where a ganglion cell sensitizes
— instead of adapting — when presented with a high-contrast stimulus.” The gan-
glion cells were found to divide into two populations according to their responses
after a change in the stimulus contrast: the adapting and sensitizing cells (Kastner
and Baccus 2011; Kastner and Baccus 2013). There were recent attempts to auto-
matically classify ganglion cells in the tiger salamander retina using either their
morphological (Costa and Velte 1999) or temporal filtering properties (Segev et al.
2006; Marre et al. 2012), with reasonable success.

The axolotl is not a new model in vision research either. Axolotls were used in
one of the first observations of gap junctions between photoreceptors (Custer 1973)
and for understanding adaptation in rods (Grabowski et al. 1972). They have also
been used for research on the role of glial cells in the retina (Brew and Attwell
1987; Mobbs et al. 1988), membrane properties of the bipolar cell (Attwell et al.
1987; Tessier-Lavigne et al. 1988), and the study of subfields in the retina (Bolinger
and Gollisch 2012; Garvert and Gollisch 2013; Takeshita and Gollisch 2014).

Salamanders have thus been proven as a useful model for retinal research. The
most recent works in the field have focused on tiger salamanders and axolotls.
There are no reported (nor expected) differences in the organization of their retinas,
and the decision between both species boils down, mostly, to local availability. The
recordings using salamander retinas can last 6-8 hours, with anecdotal evidence of
retinas whose neurons were still reliably responding to stimuli after 12 hours of
recordings. The ease of preparation is also an advantage compared to mammals,
due to the salamander retina’s robustness to changes of temperature or oxygen
concentration.

This sensitization supposedly helps overcome the loss of information during changes of contrast, in
the brief period before short-term adaptation. (Kastner and Baccus 2011)
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2.2 TISSUE PREPARATION

The axolotl was anesthetized and dark-adapted by placing it in an ice bath, in a
dark room, for at least 30 minutes. After the cold anesthesia, the animal was decap-
itated and double-pithed through the spinal cord to stop the contraction reflexes.
The eyes were enucleated and kept in Ringer’s solution (110 mM NaCl, 2.5 mM KCl,
1.0mM CaCl,, 1.6 mM MgCl,, 22 mM NaHCQO3, and 10 mM D-Glucose). The Ringer
solution was continuously bubbled with Carbogen (5% CO,, 95% O3), for a mini-
mum of 30 minutes before use, to maintain a pH of 7.4. The eyes were hemisected
and the halves containing the retinas were stored in Ringer solution, at room tem-
perature, until further use.

The whole procedure was performed in the dark to avoid bleaching the retina
and ensure it remained responsive to a variety of light intensities for longer times.
The tissue was prepared under infrared illumination, with infrared goggles adapted
to the oculars of a microscope. The eyes of salamanders are small, with a diameter
of about 3mm, and the retina is a very fragile tissue. The retina must be gently
detached from the eye cup using forceps. The vitreous humor, an insulating trans-
parent sticky substance that fills the inside the eye, was removed. The forceps were
inserted and delicately slid between the retina and the pigmented epithelium until
the retina was completely free. The remaining pigmented epithelium was picked
away and small incisions were made at the retina’s border to flatten it. Any vitre-
ous humor still attached to the ganglion cell-side was carefully removed until the
retina could lay mostly flat.

2.3 RECORDING AND STIMULATION

For classifying RGCs, it is important to record from as many cells as possible in the
same retina. The larger number of ganglion cells increases the chance of finding
more cells in each putative type, thus improving the statistics for assessing the
quality of the found types. But that is not all. Recording from the same retina avoids
variations in the ganglion cell response properties due to animal age, diseases,
genetic background, and preparation quality. While it is reasonable to expect cell
types to be conserved in animals of the same species, it is safer to assume that
experimental variations could blur the distinction between cell types when the
data from multiple retinas is taken together. An overview of the experimental setup
used for these large-scale recordings is shown in Figure 2.1.

An isolated axolotl retina was recorded with a 252-electrode array (MEA; Mul-
tichannel Systems), with 30 um electrode diameter and 100 ym spacing between
electrodes.? In order to mount the retina on the array, the retina was moved with

2 A higher density MEA model, with 60 ym distance and 10 ym electrodes, was used initially but
yielded only 80 — 100 cells per recording. The arrays used for the experiments in this thesis, with

11



EXPERIMENTAL METHODS

Experimental setup Recording and spike-sorting
stimulus 1. recorded activity
ﬁ O ﬁ :
to recording 2. offline spike-sorting
computer e ey
(252 MEA _isolated retina Sdate
A g
i e

3. assigned spikes
rmr T rrm
300um (T 1 T I |

Figure 2.1: OVERVIEW OF ELECTROPHYSIOLOGICAL SETUP. The retina was laid with
the ganglion cell layer down on a 252-electrode array and stimulated
with an OLED, whose image is focused on the photoreceptor layer.
The extracellular potential recorded at each electrode is band-pass fil-
tered (300 Hz to 5KHz) and digitized at 10 KHz. Offline spike-sorting
assigned detected spikes (within groups of up to four electrodes) to
putative units (see Section 2.4). The black spots on the retina are from
the remaining pigmented epithelium, but do not significantly affect the
recording.
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a pipette onto a semipermeable membrane (dialysis membrane), which was held
taut on a plastic support. Excess solution was removed until the retina could lay
flat with the ganglion cell side up. A multi-electrode array was pressed from above
against the retina, so that the electrodes were in contact with the ganglion cell layer.
The combination was then placed onto the amplifier for recording. Oxygenated
Ringer solution (pH 7.4; bubbled with Carbogen) was continuously supplied at a
rate of 3 — 5mL/min.

Stimuli were generated by a computer with custom-made C++ software using the
OpenGL library for graphics generation. The image was presented with an OLED
display (eMagin, resolution of 800 x 600 pixels at 60 Hz) and projected onto the
retina via a telecentric lens (Edmund Optics). The projected image was focused on
the photoreceptor layer and optically reduced to a constant size of 7.5 um/pixel.

The electrical activity of the ganglion cells was sensed by the MEA electrodes.
The signal at each electrode was band-pass filtered from 300 Hz to 5KHz, digi-
tized at 10 KHz and stored in the recording computer for offline analysis. The MEA
detected the extracellular activity close to the ganglion cell layer, where each elec-
trode recorded the combination of extracellular potentials from cells in its neigh-
borhood. At the same time, the spikes from individual cells could be detected in
multiple electrodes. The spikes were sorted offline and assigned to single units.

2.4 SPIKE-SORTING

Spike-sorting is the procedure of assigning spikes from the recorded population
activity to the single cells which produced them. Because one does not have direct
access to the original cells, spike-sorting uses the fact that spikes from the same
cell are stereotypical and can be grouped according to their shapes (for a review,
see Lewicki 1998). The amplitude of the spikes depends on the distance of the cell
to the recording electrode, so the signal from multiple electrodes can be pooled
to differentiate between spikes with similar waveforms but generated by spatially
separated cells.

To classify retinal ganglion cells, it is important that spikes which are grouped
together indeed originate from the same cell. Similarly, one would presume that
the spikes from a single cell are not split into two groups.

However, no method is perfect. Spikes can be wrongly assigned, so it is common
to refer to those clusters of spikes as units or candidate cells. Good units are clus-
ters with well separated spikes and which respect the refractory period (i.e., no
spikes less than 1ms apart, very few below 3ms). While one might be confident
that good units are single cells, there is the lurking possibility of a spike sorting
artifact that must be in mind at all time (see, for e.g., Lewicki 1998; Pillow et al.

larger inter-electrode spacing and electrodes, consistently recorded from 150 — 300 cells at a time,
depending on the preparation quality.
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2013). For simplicity, the good units in this thesis which are not artifacts — to the
best of my knowledge — will be referred to as cells.

Using a custom-made spike-sorting software (Pouzat et al. 2002; written in IgorPro
6, 64-bit), the electrodes from the MEA were joined into groups of up to four elec-
trodes according to the cross-correlations of their recorded signals (Pouzat et al.
2002). For each electrode group, spikes were detected when the filtered signal at
any electrode crossed a threshold Thr defined as

_ I |x(t)]
Thr =40y, 0y = med1an{0‘6745 (2.1)

where 0 is the estimated background noise level and x(t) the band-pass filtered
signal. The median absolute deviation? was used instead of the standard deviation,
as the latter could be biased by the high amplitude of the spike events and cause an
artificially high threshold (Quiroga et al. 2004; Donoho and Johnstone 1994). Each
spike was represented by a 2.1 ms waveform (21 sample points) extracted from the
filtered signal of all channels belonging to the same group. The spike peaks were
aligned at the 7th sample, so that information from the rising phase of the action
potential could also be considered. The waveforms in each channel group were
clustered using a Gaussian mixture model (see Section 3.3) and the units ranked
according to their quality (Pouzat et al. 2002).

The resulting clusters from unsupervised sorting were inspected and manually
split (or joined) to improve the sorting quality. Each unit was graded according to
its spike amplitudes, how well separated its spikes were from other units, and its
refractory period. The quality of the refractory period was used to tell whether a
unit contained spikes from a single cell (if a unit is composed of two cells, spikes
would not necessarily respect the refractory period); this quality was assessed by
the fraction of spikes that happened within 3ms of each other. Violations up to
3% of the inter-spike intervals were still accepted, as long as the unit had large
amplitude spikes and appeared to be well-separated. Those were mostly the case
for bursting cells.# The grades ranged from 1 (best quality) to 5 (should be ignored
in analysis, e.g., when amplitudes are too low or the cluster has poor separation).
Axonal spikes were few, but could be identified in this step because of their stereo-
typical triphasic shape (see, e.g., Li et al. 2015) and only removed if the same
neuron had already been recorded in another group of electrodes (Section 2.4.1).

The median absolute deviation is defined as MAD{x(t)} = median{|x(¢#) — median{x(¢)}|} and
can be used to approximate the standard deviation of a signal. As the signal x(t) was high-pass
filtered and the noise is considered Gaussian, median{x(¢)} is small, which results in Equation 2.1.
This assumption is often not explicitly mentioned in the literature, but is empirically found to hold
true.

Roughly, half of the good units showed no refractory period violations (inter-spike intervals smaller
than 3ms), while only 10% of units in an experiment have more than 1% violations in their inter-spike
intervals; data not shown.
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2.4.1 Dealing with duplicate units

Duplicates can be detected by cross-correlating the spike trains (binned in bins of
0.5ms) for each cell pair. In the ideal case for duplicate cells, the cross-correlation
would show a peak of unit amplitude at zero lag, as all spike times should be the
same. However, spikes may not always be perfectly assigned, leading to peaks in
the cross-correlation function which are less than unity (Field et al. 2007).

A pair of units are considered “suspicious” (possible duplicates) whenever their
cross-correlations have a peak with an amplitude larger than a threshold, defined
here to be four standard deviations above the average peak amplitude of all pairs.
Besides showing a supra-threshold peak in the cross-correlation, a suspicious pair
will be considered a duplicate only if the spatial components of both receptive
tields (see Section 2.6) are similar,® with a cosine similarity larger than 0.8.

When the same units are found in two or more duplicate pairs, all units in those
pairs are joined into a single group. From each group of duplicates, only the unit
with largest number of spikes and best quality (best grade from Section 2.4) is kept
for further analysis.

2.5 ESTIMATING RECEPTIVE FIELDS

The receptive field is the region of the visual space over which a retinal ganglion
cell integrates a stimulus. The receptive field is known for having a center-surround
structure, so that there exists a region outside its center which, when stimulated,
typically suppresses the response of the ganglion cell. Because ganglion cells show
temporal dynamics in the stimulus integration (e.g., by responding with different
latencies to light flashes), it is common to attribute these dynamics to the recep-
tive field. This extension of the receptive field is referred to as a spatiotemporal
receptive field.

In single-cell recordings, the receptive field of a retinal ganglion cell is often
stimulated by flashing dark and bright spots in the receptive field center. Using
the flashed spots, one can coarsely separate ganglion cells into different response
types, based on their polarity. There are ON cells, which respond to increments of
light in the receptive field center. The OFF cells, which respond to decrements of
light. Finally there are the ON-OFF cells, which respond to both increments and
decrements of light. Moreover, the spatial extent of a receptive field can be mapped
by varying the size of the flashed spots. As the spots initially grow in size, the
number of evoked spikes also increases. When a spot is larger than the receptive
field center, the surround will begin to suppress the ganglion cell’s activity. The

In this work, most suspicious pairs showed also very similar spatial components (cosine similarities
larger than o0.9), with only few exceptions. The exceptions were often suspicious pairs whose cross-
correlation peaks were small, close to the threshold, but with clearly distinct spatial components.
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spot size which elicits maximum activity is then taken as the size of the receptive
field center.

While useful for characterizing ganglion cells, the method of flashing spots relies
on knowing the location of the receptive field. This limitation is often a hindrance
for experiments which record simultaneously from multiple cells. When dealing
with multiple cells, one often simplifies the method by flashing the whole screen
instead of a single spot. However, the stimulus is then not specific to the location
of the cell’s receptive field center. Besides losing information on the receptive field
size, the response may mix center and surround properties, which is not always
easy to disambiguate.

An alternative method, better suited for multiple-cell recordings, models the
spiking output of each ganglion cell as resulting from a “black box”, whose input
is defined as the light arriving on the photoreceptors and is, somehow, processed
in the circuit (i.e., horizontal, bipolar and amacrine cells) that precedes the gan-
glion cell (see, e.g., Chichilnisky 2001). The underlying model assumes that one or
more linear filters are convolved with the input (see, e.g., Schwartz et al. 2006). The
resulting linear output is transformed by a non-linear function and fed into a prob-
abilistic process for spike generation. Then, the filters of the model can be adjusted
until the generated spikes optimally match the recorded spikes from a ganglion
cell (see, e.g., Paninski 2003). By fitting the model to approximate the recorded
spikes, one finds not only an estimate for the latency and polarity of the cell, such
as in the flashed spots, but also a fine description for the temporal dynamics of the
receptive field. The receptive field extent can also be estimated directly, even if its
location is a priori unknown, from this black box approach.

A simple model for this black box consists of a single filter, with a spike genera-
tor that follows a Poisson distribution, which is called a Linear-Nonlinear-Poisson
model. I will briefly describe this model and show how its parameters can be esti-
mated directly from the data, when one chooses the correct stimulus.

2.5.1 Linear-Nonlinear-Poisson Model
A stimulus can be represented by the brightness of each pixel on the screen S(X, ),
where X = (x,y) is the pixel location and ¢ is the frame index. The linear-nonlinear-

Poisson (LNP) model then assumes that a single spatiotemporal filter F(¥,t) of size
Npixets X W is convolved over time with the stimulus, generating a linear signal

i(t) = ﬁZF(f, t)S(x,t—t), (2.2)
X

which, assuming a non-linear function N(-), results in an instantaneous firing rate
A(t) = N(i(t)). If the spike generation is modeled by an inhomogeneous Poisson
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process, then the probability of having at least one spike in a window between
times t and f + dt is given, for small enough dt, by

P(spike; t) = A(t)dt (2-3)

The LNP model is useful because the estimation of its parameters do not require
titting, and can be directly obtained from the data.

2.5.2  Reverse correlation

By using an uncorrelated stimulus (white noise) as input, the linear filter of the LNP
model can be estimated via reverse correlation (Chichilnisky 2001). The stimulus
vector

Ss=[S(X,t—W+1) ... S(X,t—1) S(X,1)] (2.4)

represents the last W frames of stimulus that were observed by the model before
a time ¢. If 5} is collected whenever a spike occurs, one has an ensemble of spike-
triggered stimuli {5}|t = spike}. The average of the spike-triggered ensemble is
the spike-triggered average (STA), and is proportional to the linear filter of the
LNP. This is true as long as the stimulus distribution is radially symmetric and
the non-linearity is “sufficiently asymmetric” (Chichilnisky 2001; Paninski 2003).
The reverse correlation can then be used to obtain a linear approximation for the
receptive field of a ganglion cell; see for example the illustration in Figure 2.2.

The LNP model is surprisingly effective in estimating the instantaneous firing
rate of ganglion cells. Despite being only a phenomenological model, composed of
a single linear filter and an output non-linearity, it approximates the way the visual
information is processed all the way from the photoreceptors to the ganglion cells.
This model can also be extended, for example, to consider multiple filters (Sharpee
et al. 2004; Schwartz et al. 2006) or even coupling between cells and spike-history
dependence (Paninski et al. 2007). This increase in complexity improves the predic-
tion of the spike generation, but makes the model harder to fit and requires longer
recordings. For this work, I focused on the information captured by a single linear
filter.

2.6 DECOMPOSING THE SPATIOTEMPORAL RECEPTIVE FIELD

Using singular value decomposition (SVD), the spatiotemporal receptive field F(X, t)
was approximated into spatial and temporal components,

F(xX,t) = X(X)T(t) (2.5)

where X (X) represents the sensitivity of the receptive field center, while T(t) rep-
resents the temporal filtering performed by the receptive field center.
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binary white noise stimulus ensemble
stimulation

spike n-1

spike n

time of
spike

spike triggered average (STA)
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Figure 2.2: REVERSE CORRELATION. Frames of an uncorrelated stimulus (binary
white noise) were presented to the cell. The stimulus which caused
a spike are the last W frames before the neuron spiked (t = 0) and
can be collected, for each cell, in a stimulus ensemble. The average of
the stimulus ensemble, also known as spike-triggered average (STA), is
an estimate of the integration properties of the receptive field (see text
in Section 2.5.2). For an OFF (ON) cell, the STA shows a darkening
(brightening) of the region on the screen integrated by the receptive
field center, as in the examples shown here.
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In general, a ganglion cell receptive field is not separable.® However, the SVD
offers a good approximation for its spatial extent and temporal filtering proper-
ties (see, e.g., Gauthier et al. 2009). An example of a decomposed receptive field
is shown in Figure 2.3, where the temporal filter T(f) can be used to distinguish
between an OFF and an ON cell.

The spatial component of the receptive field X (X) was approximated by a 2D-Gaus-
sian function

. 1, Te1/o2 =
X(X) = Aexp (—Z(x — y)TZ 1(x — y)) (2.6)
with
2
| oy powoy S e
X = [po_xa,y o_yz ] ’ i’l - |:yc:| . (27)

The parameters A, oy, 0y, and p represented the shape of the receptive field, while
x. and y. represented the location of the receptive field center. The receptive field
center was defined as the area enclosed by the ellipse at one standard deviation.”
Defining A; and A, as the eigenvalues of ¥, the semi-axes of this ellipse were given

by
0’1:\/)\ ,0'2:\//\ ,
and the receptive field size Drr was defined as the geometric mean
Dgrr = 2y/0102,
= 2(AA0) Y4 = 2det(2)Y4,
=2(1 - p*)1/* 0x0y . (2.8)
which is the diameter of a circle needed to cover the same area as the receptive

field center. Finally, the orientation 0 of the ellipse was obtained from the largest
eigenvector 77 = [my my]T of ¥ as

f = arctan <my> . (2.9)

X

2.7 MEASURING DIRECTION SELECTIVITY

Direction selectivity is characterized by a special asymmetry in the response of a
RGC to moving stimuli (most commonly, bars or gratings). A direction selective

6 This is clear if one considers for example the receptive field surround, which is typically slower than
the receptive field center. Because of the different speeds, the whole receptive field cannot be exactly
described by a single temporal filter.

7 That is, (Xgrr — ﬁ)TZ*1 (Xrp — fi) <1 for every ¥gr located inside the receptive field center.
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Figure 2.3: DECOMPOSED RECEPTIVE FIELD. The spatiotemporal receptive field is de-
composed into spatial and temporal components. The ellipse at one
standard deviation delimits the receptive field center. The temporal
component incorporates the temporal filtering properties of the recep-
tive field and can show, for example, if the cell responds preferentially
to a decrease (OFF) or an increase (ON) in light intensity.

RGC responds only to movement in its preferred direction and shows no response
to movements in the opposite direction (Barlow and Hill 1963; Barlow et al. 1964;
Barlow and Levick 1965; Vaney et al. 2001).

One measures the direction selectivity of a cell by presenting a grating on the
screen, which moves towards a direction 8, relative to the screen’s center. For each
direction, one counts the number of spikes R; (where R; > 0) evoked by the
stimulus presentation during a fixed time window. A retinal ganglion cell is then
direction selective if there is a direction 6,,,x = 0; for which the response Ry, is
maximum, while the opposite direction 6,,,;; = —0u4x (also called null direction)
has Ryun < Rumax-

Instead of dealing with the whole set of responses to the moving grating, it is
common to extract a number that represents how selective a single cell is. The
direction selectivity index (DSI) is useful in this regard, being defined as

1

R, e
YaRq4 Xd:

where ¢ = cosf +isinf, > = —1 and | - | is the norm of a complex number. By
construction, 0 < DSI < 1, and a larger DSI suggests a more direction-selective cell.
The DSI equals unity only if all the spikes happen exclusively for a single direction
(Rmax = X4 Ry), indicating a perfectly direction selective cell. Conversely, the DSI
will be close to zero if there is no direction preference. The complex number

Z =Y Rye, (2.11)
a

DSI = , (2.10)
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which appears inside Equation 2.10, is named the direction bias. The reason for
this name becomes clear if one visualizes the set of responses as vectors in the
complex plane, with R; = Ry exp(ify). Then, Z = Y, R, will point towards the
preferred direction with a norm proportional to the DSI.

2.8 MEASURING PROPERTIES OF THE SPIKE-TRAINS

Estimating direction selectivity and spike-triggered average are of course not the
only uses for the spikes of a ganglion cell. The statistics of the spike-train can be
useful for cell classification (Zeck and Masland 2007).

2.8.1 Autocorrelation of the spike-trains

The temporal autocorrelation of a spike-train, when properly normalized, is the
probability of finding spikes at a time t + T after observing a spike at a time t —
regardless of how many spikes happened in-between. Because the autocorrelation
does not depend on a model, but on the spiking probability of a cell, it can be
useful for neuronal classification (see, for e.g., Rieke et al. 1999).

When describing the temporal structure of the spike-train, one should be aware
of the caveats of the autocorrelation function. For example, peaks in autocorrela-
tion are often assumed to be an indication of bursts, but may be an effect of the
refractory period on a cell with high spiking activity (Bar-Gad et al. 2001).

2.8.2  Coefficient of variation

If a spike-train is represented by its spike times {t;}, where i is the index of a spike,
then the inter-spike interval (ISI) can be defined as A; = t; ;1 — t;. To measure the
variability of the ISIs, one can use the coefficient of variation

OA 1 1 N _
Co = A AMNZ-T ;(Ai —A)%, (2.12)
where
N
A= ZAi (2.13)

is the average ISI and N is the number of inter-spike intervals. For long time-
series, the coefficient of variation C, equals unity when the spike times are Poisson-
distributed (as 05 = A). For a more regular time series, C, will be very small.
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2.8.3 Local variation coefficient

The coefficient of variation, however, does not take into account local variations in
the temporal activity, assuming a stationary distribution of inter-spike intervals. To
accommodate for those variations, Shinomoto et al. (2003) have proposed the local

variation coefficient
1 N=3(a—Ag)?

L, = Y
N-15 (A+Ai)

The local variation coefficient takes into account the local regularity of the spikes.
For spike-trains which change due to a stimulus or to adaptation, but whose local
regularity is preserved, the L, will stay small while C, will grow large; therefore,
the local variation coefficient is a better estimate of the “intrinsic spiking” proper-
ties of a cell (Shinomoto et al. 2003). Similar to C,, L, will be unity if the spike-train
is Poisson-distributed. The local variation coefficient will be small for more regular
spike-trains, being zero when the spikes are perfectly regular.

(2.14)
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If somebody thinks they re a hedgehog, presumably you just give 'em a mirror
and a few pictures of hedgehogs and tell them to sort it out for themselves.
— Doucras Apawms, So long, and thanks for all the fish

The experimental methods described in the previous chapter provide a large
amount of data, with often more than 200 ganglion cells recorded in a single ex-
periment. When evaluating such large datasets, manual analysis does not scale
well and techniques of machine learning become useful (for a review see, e.g.,
Armananzas and Ascoli 2015). Machine learning is at the intersection of statistics
and computer science, dedicated to the use of statistical methods to solve problems
mechanically in a way that mimics human decisions (Hastie et al. 2009; Barber
2012).

Machine learning methods can be supervised or unsupervised, and their appli-
cation depends on what is known about the dataset. If each element in a dataset
is labeled by an expert’, a supervised method can be used to discover which fea-
tures were important for the expert’s decision and apply a similar decision to un-
labeled elements of a similar dataset. Unsupervised methods are those used when
the data was not previously labeled, but still one seeks structure in the dataset.
Unsupervised methods can be used for dimensionality reduction, where one re-
duces the features needed to describe a dataset (e.g., principal component analy-
sis; non-negative matrix factorization) by only keeping the most descriptive ones.
Clustering is also an unsupervised method, where the data elements are grouped
according to the similarity of their features. Members of a cluster are assumed to
be more similar between themselves than to members of other clusters (Hastie et al.
2009).

The ganglion cells recorded in the experiments of this thesis have no labels,
as there was no a priori knowledge to which classes they should belong. Thus,
clustering may give insight on the possible ganglion cell classes by grouping cells
based on the similarity of their features. For now, I will leave aside the problem of
neuronal classification. Clustering is already an involved problem by itself, without

An expert, by definition, is someone with an expert knowledge of the problem, trained to solve it. It
does not need to be a human being; an algorithm sometimes does the role of an expert. For many
techniques, the expert does not need to have perfect knowledge either (Liao 2005; Hastie et al. 2009).
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the specifics of neuronal classification; I will return to the ganglion cells in the next
chapter.

In this chapter, I will describe the clustering problem from a statistical point of
view and the different methods to solve it. Each method has its own assumptions
of what constitutes a cluster. As such, different methods are suited for different
datasets, according to the expected structure in the data. In other words, the best
case for each method is when the natural groups present in the data can be de-
scribed by the method’s own definition of a group. Conversely, there are datasets
where these methods will fail. I will provide a short description of common clus-
tering procedures, their assumptions and their shortcomings. For describing the
methods, I will assume that the expected number of clusters in a dataset is known.
This is not always true. Towards the end of the chapter, I will discuss heuristics
which may be used to estimate the number of clusters in a dataset.

3.1 THE CLUSTERING PROBLEM

There is no single clustering method, just as there is no single way of describing
why elements belong together. The intuitive feeling that two elements should be
grouped has to be defined objectively, and each definition will lead to a different
method. There are methods which attempt to minimize the dispersion of the data
points (e.g., K-means), while others assume that the points are generated by a
mixture of probability distributions (e.g., Gaussian mixture). Additionally, there
are methods which transform the dataset to improve the separation of the data
before the points are grouped (e.g., spectral clustering).

Formally, a dataset contains N elements which can be labeled with an index i =
1,2, ..., N. The goal of clustering is to assign for each element a label A; =1, 2, ..., K,
where K is the total number of clusters. Each element i in the dataset has n features
xﬁ, xé, ..., x and can be represented by a vector

Xi=[x1, ¥y oo )" (3.1)
The dissimilarity between two elements i and j is defined as the dissimilarity (or
distance) between their features. When the features are numeric, the squared Eu-
clidean distance )
d(i, ) = || = X2 = 1 (%) — xh) (3-2)
m
is often taken due to its simplicity (Hastie et al. 2009). Other distances may be more
appropriate depending on the features in consideration and expected structure of
the data; finding a good (dis-)similarity measure for a problem is sometimes an
art (Gordon 1990; Hastie et al. 2009).
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For a given configuration of labels {A;}, the dispersion D(k) of a cluster k is
defined (Hastie et al. 2009) as the sum of the pairwise distances of its elements.
That is,

D) =5 ¥ Y dij), (53

Ai=k Aj=k
and the total dispersion

K

K
D' =Y D(k) = ;Eékékd“’” . G49)

k=1

3.2 K-MEANS

Maybe one of the most popular clustering methods, K-means assumes that clusters
are compact: their dispersion should be minimal (Hastie et al. 2009). In this way,
K-means searches for a collection of labels A* = {A;} such that the total dispersion
(Eq. 3.4) is minimized:

. 1 .
A =argminz Y Y ) d(ij). (3.5)
(A} “k=1A=k A=k

In principle, this equation could be solved by brute-force, testing all the possible
labels {A;} until a minimal dispersion is found. In practice, the number of possible
assignments grows too fast with the input parameters. For instance, for K = 2 clus-
ters the number of possible assignments®> S(N,K) « 2N, which quickly becomes
impractical.

To avoid sampling the whole solution space, K-means is often implemented as
an iterative descent algorithm (Hastie et al. 2009, p.510); labels are randomly as-
signed at the start and exchanged at each step to reduce the total dispersion, until
a minimum is found. The algorithm has guaranteed convergence, but may reach
a local minimum. To avoid local minima (suboptimal solutions), the procedure is
repeated several times with different initial conditions; the final label assignment
is taken from the repeat with smallest total dispersion.

The algorithm of K-means runs fast and can be found in most scientific comput-
ing packages; for this thesis, I used the implementation of K-means already present
in MATLAB3. Because K-means minimizes the total dispersion, it is better suited for
finding spherical (or ellipsoidal) clusters, and often fails for non-convex clusters
such as those shown in Figure 3.1.

2 For a formula for S(N, K), see Hastie et al. 2009, p.508.
3 Method kmeans; MATLAB and Statistics Toolbox Release 2012a, The MathWorks, Inc., Natick, MA.
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Figure 3.1: K-MEANS. The unlabeled dataset (left column) is classified via K-means
for K = 2 and K = 3 clusters (center columns). The right column shows
the original labels of the dataset. Points with the same color belong to
the same cluster. Notice how K-Means classifies convex clusters well
(top row) but fails to classify non-convex clusters (bottom row).

3.3 GAUSSIAN MIXTURE

The definition of K-means is not sensitive to the probability distribution of the
features in the dataset. A mixture model (Hastie et al. 2009), on the other hand,
attempts to explain the observed probability density of the n-dimensional feature
vector X = [x1,%2,...,%,]T in the dataset. A mixture model assumes the existence
of k components with their own probability distributions P(X|A = k), so that

K
P(R) = Y. aP(RIA = k), )
k

where gy is the weight of component k in the mixed distribution and Zak =1
k
If the probability distributions of the components were known, one could esti-

mate the probability of membership for a data point i in component k as

P(Xi|A = k)

X B .
ZHZP(XZ"/\ = l)
l

P(A =k X;) = (3-7)

This probability of membership incorporates the uncertainty which is inherent to
the clustering process, and differently from K-means, leads to a “soft” classifica-
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tion (Hastie et al. 2009). If, instead, a sharp classification is desired, the point i is
assigned to its most likely component

A; = argmax P(A = k| X;) . (3.8)
k
However, one still needs to find the underlying probability distributions. Mix-
ture models are usually built as a Gaussian mixture. As the name suggests, in a
Gaussian mixture the probability distribution of the features from a component k
is assumed Gaussian with mean i} and covariance matrix Xy, so that

1 g anTy-1/%_ -
2y (det )12 P <_2<X ) (X ”")> |
(3-9)
To estimate the parameters of a Gaussian mixture, one defines the likelihood of
the dataset as

P()?V\ = k,' ﬁk,Zk) =

K
L) =T aP(XilAi = k; jir, Z) (3.10)
k

1

where 6 = ({ai}, {#ix}, {Zr}) is the set of parameters of the model. Then, the most
likely parameters for the mixture are given by

Opr = argmax L£(0) , (3.11)
0

which can be solved via an expectation maximization (EM) algorithm (see Barber
2012, Pp-439-442).

Similarly to K-means, a Gaussian mixture separates convex clusters well (Fig-
ure 3.2). Indeed, K-means can be shown (Hastie et al. 2009; Barber 2012) to be a
special case of a Gaussian mixture, and hence both methods are related. If one re-
stricts all components in a mixture to have the same covariance matrix 0?1 (where
I is the identity matrix), then the probability that a data point belongs to a compo-
nent (Equation 3.7) will depend mostly on the distance of that point to the center
of the mixture components. Moreover, in the limit ¢ — 0, the Gaussian mixture
reduces to K-means as each data point will be strictly assigned to a single cluster;
that is, the membership function for a given data point will be either 1 or 0 (Hastie
et al. 2009).

But differently from K-means, Gaussian mixtures have the advantage of estimat-
ing the probability distribution of the cluster features, as can be seen by the iso-
probability curves in Figure 3.2. The dependence on Gaussian-distributed features,
though, leads a Gaussian mixture model to still be a poor choice when non-convex
clusters are expected, as exemplified by the bottom row of Figure 3.2.
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Figure 3.2: GAussiAN MIXTURE. The unlabeled dataset (left column) is classified via
Gaussian mixture using K = 2 and K = 3 components, with the points
labeled according to their most likely component. The original labels
are shown in the right column. Lines are iso-probability curves of the
mixture. Gaussian mixtures classify convex clusters well (top row) but
are also not suited to classify non-convex clusters (bottom row).

3.4 SPECTRAL CLUSTERING

K-means and Gaussian mixtures are reasonable clustering methods, both being rel-
atively fast and simple. Gaussian mixtures improved on K-means by modeling the
distribution of features in the data, but did not remove the assumption that clus-
ters should be convex, which is implicit in the use of the Euclidean distance (Hastie
et al. 2009).

Spectral clustering, on the other hand, takes into account the local structure of
the data by mapping the clustering problem into a graph partition problem (Luxburg
2007; Hastie et al. 2009). A similarity graph is built by considering the data points
as nodes in a graph, where two nodes i and j are connected by an edge that has a
non-negative weight w;; > 0, given by the similarity between the two points. When
w;; = 0, the nodes are unconnected. The similarity measure is considered symmet-
ric, so that w;; = wj;. The similarity matrix W = {wij} is then also symmetric and
can be seen as the adjacency matrix of an undirected similarity graph.

Once a similarity graph is defined (from the adjacency matrix W), the cluster-
ing problem reduces to the problem of finding groups of nodes which are highly
connected between themselves, while having few connections to nodes in other
groups. There are different ways of implementing this intuitive description, which
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leads to a diversity of spectral clustering methods (Shi and Malik 2000; Meila and
Shi 2001; Ng et al. 2002; Luxburg 2007). The common thread among those meth-
ods is the reliance on eigenvectors of matrices derived from the similarity matrix
W (Ng et al. 2002).

3.4.1 Building a similarity matrix

Similarity matrices can be built in many ways (Luxburg 2007). If one has a distance
measure d(i,]), a simple procedure is to connect points i and j whose distances
d(i,j) < € (where € is a constant chosen to represent the typical distances in the
data). Another procedure involves connecting the closest k neighbors of a point i
and assign w;; = wj; = 1 (for all j in the neighborhood). Finally, one can also build
a fully-connected graph, where the weights w;; can be arbitrarily small and defined
based on a similarity measure. So far, no theoretical guidelines exist for knowing
which similarity matrix construction works best for typical problems (Luxburg
2007); for simplicity, I considered a fully connected graph# for the classification of
ganglion cells, which will be shown in Chapter 4.

To create a fully-connected similarity graph, one first defines an appropriate
similarity measure between the nodes i and j. Choosing a good similarity measure
is not always easy (and sometimes an art; see Gordon 1990). A common choice (Shi
and Malik 2000; Ng et al. 2002; Luxburg 2007) is to use the Gaussian similarity

_ [1Xi — X2
wij=exp | —— 53— | (3.12)

where X; and )_fj are the feature vectors of i and j, and ¢ is a scaling parameter. The
Gaussian similarity transforms the Euclidean distance into a similarity measure via
a Gaussian kernel. If all the features of the nodes coincide (that is, d(i, j) = 0), then
the two nodes are similar and w;; = 1. This similarity decreases as the Euclidean
distance increases, with a characteristic length controlled by the parameter ¢. The
parameter ¢ is usually fine-tuned for each dataset, and in Section 3.4.4 I show a
way to optimize it.

3.4.2 Partitioning the similarity graph
Given an adjacency matrix W of a graph, there are many eigenvector-based meth-

ods which are proposed to partition the graph into subsets with highly connected
nodes. Often, most of these methods have no supporting theoretical background (Ng

The use of other construction methods for the similarity graph did not seem to improve on the
overall classification of ganglion cells, though no exhaustive study was performed in this regard.

29



CLUSTERING

et al. 2002; Luxburg 2007). Two main approaches have been used to formalize spec-
tral clustering, using either normalized minimal cuts of the graph (Shi and Malik
2000), or random walks on a graph (Meila and Shi 2001). While these methods
seem unrelated at first, they were shown to be equivalent (Meila and Shi 2001) and
complement each other in clarifying how spectral clustering works.

If a graph is partitioned into two disjoint sets of nodes A and B by removing
edges, the sum of the disconnected weights will be given by

Cut(A,B) = 2 Z wl’]‘ . (313)

i€AjeB

A minimal cut searches for a partition where cut(A, B) is minimal (Shi and Malik
2000; Luxburg 2007). Because this definition could easily lead to sets where only
a single node is separated, it has been proposed that minimal normalized cuts
should be used instead (Shi and Malik 2000). Normalized cuts are defined as

Ncut(A, B) = cut(A, B) (Voll(A) + Voll(B)> (3.14)

where vol(A) = Yica Z}V wj; is the total sum of weights connecting nodes of set
A to all nodes in the graph. Thus, a minimal normalized cut is the procedure of
finding A and B such that Ncut(A, B) is minimal. The minimal normalized cut
is more parsimonious, as it takes into account the relative weight of the severed
edges.

However, there is no known efficient algorithm to minimize a normalized cut
exactly®, and an approximation has been proposed (Shi and Malik 2000). This ap-
proximation is based on the eigenvectors of the graph Laplacian. Defining the
degree of a node i as

8i = ;wim , (3.15)
and the diagonal matrix
g1 0 0
p=|? & 0 .16
0 0 0. n
the graph Laplacian is given by
L=D-W. (3.17)

Indeed, the minimal normalized cut problem was shown to be NP-complete (Shi and Malik 2000).
NP-complete is a class of problems for which no polynomial-time algorithms are expected to exist.
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The approximate minimal normalized cut is obtained (Shi and Malik 2000) by solv-
ing the generalized eigenvector problem

L7 = AD7, (3.18)

2) as an indicator vector

2)

and taking the second smallest generalized eigenvector &

for the partition; that is, for a given node i, the coordinate v;
side of the partition the node belongs.

Intuitively, if the transition probability between two nodes is proportional to the
weight of the edge connecting them, a random walker will likely visit a region
of highly connected nodes. In this region, the random walker will visit the same
nodes over and over. If there are few connections to other nodes in other groups,
the random walker might take a long time to reach another group of highly con-
nected nodes. One can formalize this intuition by defining the transition probabil-
ity between nodes i and j as

will specify to which

_ Wi

Zm Wim
which is the stochastic matrix P = {p;j} = D~'W.If P represents a Markov process,
the eigenvectors and eigenvalues of P can be used to describe the dynamics of a
random walk, with a convergence to a stationary state (if it converges) with a rate
controlled by the eigenvalues. Note that by left-multiplying (3.18) by D!, one
obtains

pij , (3.19)

D'Li=(I-D'W)3= A5,
Pi=(1-A)7. (3.20)

Thus, an eigenvector 7 of the stochastic matrix P with eigenvalue (1 — A) is also an
eigenvector of L with eigenvalue A. As before, the second largest eigenvector of P
is also an indicator vector and partitions the graph. The equivalence between the
random walk and the minimal normalized cuts is not a coincidence; the minimal
normalized cuts separate the graph into two regions A and B, where the chance of
transiting from a node in A to a node in B is minimal (Meila and Shi 2001; Luxburg
2007). That is, a random walk starting in A will tend to stay in it for a long time.
The graph Laplacian has an interesting property. Given a vector 4,

i'li=ad"(D-W)i=d'Di—d Wi,

= Zgia? - Zwijaiﬂj ,
i i,f
1 2
=5 Zwij(ﬂi —aj)". (3-21)
ij

From this equation, it is easy to see that 1= 1,1,...,1] T'isan eigenvector of L with
eigenvalue 0, and the multiplicity of the eigenvalue 0 will indicate the number of
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connected components® in the graph (see, e.g., Luxburg 2007). This is consistent
with the random walk interpretation, as PT =Tis always true for an stochastic
matrix because the rows are normalized to one. Moreover, if 47 Ld = 0, this result
implies that for w;; # 0, a; = a; and all nodes in the same connected component
will have the same constant. If the value of @' L@ # 0 but small, with the nodes i
and j connected (w;; > 0), then the difference between a; and a; must also be small.
This suggests an intuitive reason for why the coordinates of the second smallest
eigenvector of L can be used for partitioning the similarity graph, if its eigenvalue
is very small or zero (for a proof, see Shi and Malik 2000).

3.4.3 Clustering using graph partitions

Based on the second smallest eigenvector of the graph Laplacian L, a similarity
graph can be partitioned into two disjoint sets of nodes. For clustering a dataset,
though, one often seeks a specific number K of groups (Section 3.1). In principle,
the similarity graph could be recursively split until a desired number of groups
is reached (Shi and Malik 2000; Meila and Shi 2001). However, the next smallest
eigenvectors of L may already contain the information required to group similar
nodes, as suggested by (3.21) above.

For instance, if the graph consists of K connected components, both the similarity
matrix W and the graph Laplacian L can be block-diagonalized. The K eigenvalues
Mo,k = 0 of L will lead to K orthogonal eigenvectors @), k. The indicator vec-
tors of the connected components are eigenvectors of L (Luxburg 2007). But note
also that any rotation of the K eigenvectors still spans the same subspace. As such,
the smallest eigenvectors 7, will cover the same subspace as the indicator vec-
tors, but rotated, which could hinder the interpretation of any single eigenvector
as an indicator vector. (Ng et al. 2002).

Nevertheless, as the eigenvectors span the same subspace, then the eigenvector
coordinates vfn = v}, (for every m = 1,2,...,K) for nodes i and j in the same con-
nected component. In this K-dimensional space, the nodes form compact clusters;
thus, any simple clustering algorithm — such as K-means or Gaussian mixtures —
can be used to easily separate the K components. (Meila and Shi 2001; Ng et al.
2002; Luxburg 2007)

Of course, having a block-diagonal similarity matrix W is an ideal case. In prac-
tice, this is not always the case. Weak connections between different components
do exist, sometimes by noise, and should be taken into account. Hence, it is impor-
tant to know whether spectral clustering methods still work for “real” datasets. If
the ideal block-diagonal matrix is W, one can treat the difference E = W — W as a
perturbation. Ng et al. (2002) shows, using matrix perturbation theory, that if there

In a connected component, a path can be found between any pair of nodes.
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is at least one eigenvalue Ax 1 = 6 > 0, and the perturbation is small compared
to 4, then spectral clustering can still be used to find K partitions in the similarity
graph. (for a formal proof, see Ng et al. 2002; Luxburg 2007)

3.4.4 An algorithm for spectral clustering

So far, I have shown how and why spectral partitioning of a graph works. While
there are many choices of spectral clustering methods (Shi and Malik 2000; Meila
and Shi 2001; Ng et al. 2002), they are closely related (Luxburg 2007). For this
thesis, I use the algorithm of spectral clustering as proposed by Ng et al. (2002), as
it directly recovers K clusters. This will be the algorithm that I refer from now on
as spectral clustering, and it is performed as follows.

Recall that the goal is to find K clusters in a dataset. A dataset contains N
data points, each having n features. The features of a node i are organized as an
n-dimensional vector X;. A similarity matrix W for this dataset is built as described
in Section 3.4.1. In short, the similarity graph is fully-connected and the weight of
an edge between a pair of nodes i and j is given as

w;j :exp(—\\}?i—)?j\\z/az) , (3.22)

which is a Gaussian similarity with ¢ as a scale parameter.

Given a similarity matrix W, the degree of a node i is defined as g; = Z]' w;j and
a diagonal matrix D is constructed with the values g; in its diagonal. A normalized
graph Laplacian? is then given by

Lom=I1—D73LD2,
— D PWD"?. (323)

The K largest eigenvalues of Lsym are Ay, x < 1, with respective eigenvectors
71, k. If any repeated eigenvalues exist, the eigenvectors are chosen to be orthogo-
nal. The K largest eigenvectors are then collected in a matrix

LR °K

N Uk

= . . o (3-24)
N N N
COANCS) Ug

7 The results in the previous section for the unnormalized graph Laplacian L still apply to the nor-
malized graph Laplacian Lsym, with the distinction that one now must find the K largest eigenvectors
U1, x, whose eigenvalues A1 g < 1. (see, e.g., Ng et al. 2002; Luxburg 2007)
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The matrix V' can be normalized so the rows have unit length, resulting in a new
matrix Y = {y;;} whose elements are

v

L m— 2
Yij AL (3.25)

The matrix Y has size N x K and a row i can be taken as coordinates of the orig-
inal data point i in a transformed K-dimensional space. Because of the properties
of the graph Laplacian shown in the previous section, the coordinates v, and vy,
(for every m = 1,...,K) should be numerically close if i and i’ belong in the same
cluster. So, in this transformed space, the data should consist of many compact
clusters, which are more amenable to any simple clustering methods.

Finally, K-means is used to find K clusters in the transformed data, with the
rows of Y taken as N data points, each containing K features. The labels C = {c;}
returned by K-means are directly used to label the original dataset. Because the
new features should form convex and tight clusters, K-means is expected to easily
find the clusters. K-means was repeated 3000 times and only the best repeat, the
one with smallest dispersion, was considered.

Ng et al. (2002) also suggests a way to optimize the scaling parameter o. After
clustering, the dispersion of the data can be measured (e.g., from Equation 3.4) and
the o adjusted until a minimal dispersion is found. That is, until the clusters are as
compact as possible.

An example of this method is shown in Figure 3.3. A toy dataset used throughout
this chapter contains non-convex clusters, which foiled every attempt to cluster it
based on K-means or Gaussian mixture. Spectral clustering not only is able to find
convex clusters, just as the other methods, but also works for non-convex clusters
— differently from K-means and Gaussian mixtures.

The similarity matrix for the toy dataset with complicated clusters is shown
in Figure 3.4. While the original similarity matrix shows no apparent structure,
spectral clustering is used to find groups of very similar data points. Once the
data points are sorted according to their assigned labels (for the K = 3 case), the
similarity matrix is shown to be organized in blocks of highly similar elements
(center of Figure 3.4), with almost no similarity between points in different blocks.

Finally, Figure 3.5 illustrates how spectral clustering works (K = 3). On the
bottom of Figure 3.5, the three largest eigenvectors of Lsym are shown. Note how
the eigenvector coordinates are piecewise constant, as expected from (3.21). Each
coordinate represents one point in the dataset, and the difference between two
coordinates should be small if the points should belong together. The coordinates
of the eigenvectors are used to transform the points into a 3-dimensional space,
whose projections are shown on the top. The transformed dataset shows very tight
and easily classifiable clusters. In this example, the non-convex clusters have been
transformed into well-separated compact clusters, and it is clear that these clusters
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Figure 3.3: SPECTRAL CLUSTERING. The unlabeled dataset (left) is classified via spec-
tral clustering using K = 2 and K = 3 clusters (center). The original
labels are shown in the right. Besides classifying convex clusters well
(top), spectral clustering is well suited to classify non-convex clusters
because it considers the local structure (bottom).

should be found by any reasonable clustering method. Although this fact may not
hold true for every dataset, spectral clustering can be a useful method for teasing
out clusters when complicated cluster shapes are expected.

3.5 HEURISTICS FOR THE NUMBER OF CLUSTERS

The clustering methods defined in this chapter require as input the number of clus-
ters that are sought. So far, nothing was said on how to find this crucial parameter.
Estimating the number of clusters is not an easy problem; it can be specially chal-
lenging when there is no prior knowledge to guide the estimation. Before ventur-
ing, finally, into the classification of ganglion cells, I will show how to estimate the
number of classes in a dataset, in the context of a general clustering problem. Tech-
niques which apply only to the classification of ganglion cells will be explained in
the next chapter.

Clustering is straightforward when the clusters are clearly separated and their
number is known. Even if the correct number of clusters in a dataset is unknown,
clustering still may be used to provide an estimate. An expert in the problem
at hand (be it classifying shopping preferences of consumers, animal species, or
neuronal cells) may use their intuition and previous knowledge for finding the
number that best explains the data. Unfortunately, real data is messy. The intuition
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Figure 3.4: SIMILARITY MATRIX. (left, center) The similarity matrix of the dataset
(left) is created from the pairwise Gaussian similarity of data points (see
text). Pixel brightness indicates the similarity of a pair, with brighter
pixels showing higher similarity (dark blue means no similarity). If data
points are ordered by assigned cluster (right; from spectral clustering
with K = 3), one observes blocks of similarity (center).

of what constitutes a class may not be sufficient if the data is unclear. Even in good
datasets, different experts might disagree on how many clusters should be present.
In this case, it could be useful to have an objective procedure that substitutes or
complements the expert knowledge.

A naive algorithm could assign each data point to its own class, but nothing
could be generalized from that classification. At the other extreme, the whole
dataset could be lumped as a single class; and nothing new would be learned®.
Of course, the correct number of clusters must be between those extremes; but
how to find it? Over time, many heuristics have been developed, each depending
on the properties of the chosen clustering algorithm.

3.5.1 Guap statistic

For K-means, a common approach is to observe the sum of intra-cluster distances
(the dispersion, as defined by Equation 3.4) as it changes with increasing number
of clusters. When new clusters are added, they are created by rearranging the old
clusters and the total dispersion will reduce. This could go on until each data point
is in its own cluster, which is not desired. Thus, the hypothesis is that once the new
clusters are formed only by splitting tight clusters, there should be a noticeable
slow-down in the decay of the intra-cluster distances. The number of clusters just

In fact, the task would become much easier, but the result boring.
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Figure 3.5: SPECTRAL CLUSTERING PROCEDURE. The spectral clustering uses the
eigenvectors of the normalized graph Laplacian for improving data sep-
aration. For K = 3 clusters, the first three eigenvectors are selected and
shown in the bottom. Each eigenvector coordinate represents a single
data point and can be used together to separate the data points (top cen-
ter). Finally, because the transformed data is typically well separated
and compact, simple clustering methods (such as K-means, or Gaus-
sian mixture) work well in the transformed dataset and can be used for

classification.
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before the decay rate changes is then considered the number of clusters of the
dataset.

This method as described is a subjective, but often suggested, rule-of-thumb.
Indeed, it has already been proposed for a long time (see, e.g., Thorndike 1953),
but only recently formalized (Tibshirani et al. 2001). A “gap” is defined as the
difference between the observed decay rate of the dispersion and the decay from
a surrogate distribution of features. Then, the most likely number of clusters is
found when the gap is largest (Tibshirani et al. 2001).

3.5.2 Akaike and Bayesian information criteria

Other approaches are better suited for models with a likelihood function, such as
the Gaussian mixture in Section 3.3. Again, the idea is to let the number of clusters
vary, but with a cost for each new cluster. If no penalty existed, the number of
clusters would be the number of data points. A penalty incorporates a trade-off
in the model, where the gains from better explaining the data must be considered
against the costs of creating new clusters. More formally, given a cost function
F(K,N), a new likelihood is defined as

log L' (0k) = log L(0x) — F(K,N), (3.26)

where log £(0x) is the original model likelihood, with parameters collected in 6k,
and the cost is a function of how many clusters (K) and data points (N) are in the
dataset.

In statistics, this is known as a problem of model selection (see, e.g., Hastie et al.
2009; Barber 2012); that is — among different models, which is better at explaining
the data? Two measures are often used. Defining #(K) = dim(fx) as the number
of parameters required to fit a model with K clusters, the Akaike information
criterion (AIC) is given (Akaike 1974) by

AIC(0k) = ~2 {log L(0x) — #(K)} | (3:27)

and the Bayesian information criterion (BIC) is defined (Schwarz 1978) as

2

The “best” model will then be the one which minimizes either the AIC or BIC, which
is the same as maximizing the likelihood with different costs. But which of the two?
While the costs of both AIC and BIC are linear on the number of parameters, the BIC
penalizes large datasets more. As more data is accumulated, the BIC favors models
which are simpler than the ones given by AIC. However, there is no consensus on
whether AIC or BIC gives a better model.

Nevertheless, because the BIC will estimate fewer clusters than AIC, one can use
AIC and BIC together to obtain a bound on the number of clusters.

BIC(fkx) = —2 {log L(0k) — #(K) logN} . (3.28)
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3.5 HEURISTICS FOR THE NUMBER OF CLUSTERS

3.5.3 Eigenvalues of the graph Laplacian

In spectral clustering, the eigenvectors of the graph Laplacian (Equation 3.17) were
used to partition the similarity graph, thus clustering the data. But the eigenvalues
of the Laplacian matrix can be useful too: they indicate how many clusters one
should expect in a dataset. For the unnormalized graph Laplacian, the number of
null eigenvalues gives the number of connected components in the graph. For a
block-diagonal similarity matrix, this is an estimate for the number of clusters. For
other datasets, the number of clusters K is estimated by finding the first large gap
|Ak+1 — Ak|, where A1 5 g1 are the K+ 1 smallest eigenvalues (Luxburg 2007).

An example of this method can be seen on the top right of Figure 3.5. There, the
largest eigenvalues of the normalized graph Laplacian start decreasing after K = 3,
the true number of clusters in the data. If the number of clusters were unknown,
an estimate of K = 6 based on the gap between the sixth and seventh eigenvalues
would be reasonable.
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The concept of a neuronal type can be quite slippery. Just when you think
you've got it in hand, it can jump out of your grasp like the soap in the shower.
— JErEMY CoOOK, Getting to Grips with Neuronal Diversity

For classifying retinal ganglion cells, a few strategies are commonly employed.
As shown in Chapter 1, ganglion cells can be classified by using genetic markers,
morphological aspects, or light-response properties. In this chapter, I investigate
the classification of ganglion cells in the axolotl retina based on their response to a
simple stimulus, a spatiotemporal uncorrelated noise (white-noise).

While simple, a spatiotemporal white-noise can be used, via reverse correlation,
to find the average spike-causing stimulus for a cell (spike-triggered average, STA;
see Section 2.5.2). The STA provides a rich description of a ganglion cell’s receptive
field. Besides capturing the spatial extent of a receptive field, the STA gives an
approximation for the fine temporal filtering properties of that receptive field. The
STA has been useful for classifying ganglion cells in the rabbit (DeVries and Baylor
1997), monkey (Field and Chichilnisky 2007), and tiger salamander (Segev et al.
2006; Marre et al. 2012).

Here, I investigate a classification of ganglion cells based on their receptive field
features from the STA and the temporal structure of their spike trains (represented
by the spike-train autocorrelation). These features are obtained for each cell. The
cells are then grouped based on their similarities via a spectral clustering algo-
rithm (Section 3.4). At least three groups were consistently found between experi-
ments.

Before delving into the results of cell classification, however, it is important to
understand the signature of a cell type. How to recognize that a group of cells
forms a type? For ganglion cells of the same type, a pattern is often observed in
their somas. This pattern, an apparent repulsion between cell bodies, resembles a
mosaic whose occurrence is referred to as tiling. Tiling is used in morphological
studies as a tell-tale sign of single cell types (Wéssle, Peichl, et al. 1981; Shamim
et al. 1999; Zhang et al. 2012) and was often observed in the receptive fields of func-
tionally classified ganglion cells (DeVries and Baylor 1997; Field and Chichilnisky
2007). Tiling is considered a gold-standard for confirming retinal cell types (Cook
and Chalupa 2000; Sanes and Masland 2015). I will briefly review the importance
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of tiling for classifying cell types, and methods to measure the mosaic formed by
the receptive fields of a putative type.

4.1 ASSESSING CLASSIFICATION QUALITY WITH TILING

Retinal cells of a single type are not just randomly located in the retina, but their
somas form a seemly regular pattern — akin to a frustrated lattice — with an ap-
parent local (but not global) regularity (Wassle and Riemann 1978; Wassle, Peichl,
et al. 1981; Wissle, Boycott, and Illing 1981; Rockhill et al. 2000). This pattern was
observed as a minimum distance between somas of cells of the same type, often
compared to a repulsion. Because of this local structure, this spatial organization
is described as a mosaic; the cells which form a mosaic are then said to tile (Cook
2004).

Tiling is likely not just an artifact of the retinal development, and is expected to
play a role in visual encoding (see, e.g., Cook 1998). Receptive fields were found
to tile in the primate (Field and Chichilnisky 2007) and rabbit (DeVries and Baylor
1997) retinas. As cell types are expected to encode independent features of the vi-
sual scene, tiling reduces redundancy (DeVries and Baylor 1997; Masland 2001). By
respecting a minimum distance, cells avoid encoding the same feature at the exact
same visual location. However, to avoid a perceptual gap, the separation between
cells is not expected to be arbitrarily large. This interplay between reducing redun-
dancy and avoiding gaps has been observed in receptive fields of ganglion cells,
and may depend on the functions that a cell exerts (DeVries and Baylor 1997; Field
et al. 2007; Gauthier et al. 2009)."

Because of its near ubiquity, tiling is often taken as the defining property of cell
types and used for compensating the unknowns in cell classification (Cook 1998).
When describing a cell type, it is often unclear which properties of a retinal cell
should be considered. Moreover, the variance of a property inside a type may not
be known a priori, and could indeed be as large as the variance across types. Some
properties may overlap between types, requiring the combination of features to dis-
ambiguate a neural type (Rowe and Stone 1980). However, most of the uncertainty
vanishes if a group of retinal cells is found to tile (Cook and Chalupa 2000; Cook
2004; Sanes and Masland 2015).

Whether one “defines” or “discovers” a type, the observation of tiling cells is
a strong evidence for the existence of a cell type (Cook 1998). Violations of tiling
have been used in morphological studies to guide the detection of new cell types,

A population of ganglion cells with Gaussian-shaped receptive fields, when packed at a distance
smaller than the linear size of a receptive field, has a uniform spatial sensitivity to stimuli. This
would imply that this population could equally respond to a spot flashed anywhere in the aggregated
visual field, avoiding perceptual gaps (DeVries and Baylor 1997). Gauthier et al. (2009) has further
shown, in the primate retina, that receptive fields interlock as “puzzle pieces”, with the irregularities
of a receptive field being compensated by the irregularities of its neighbors.
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as features could be selected in order to distinguish overlapping cells. Then, by
using the distinguishing features, cell types can be disambiguated and shown to
tile (Cook and Sharma 1995; Shamim et al. 1999; Cook 2004).

Therefore, tiling was considered in this work as a benchmark for a cell type. If a
group of cells was found to tile, the hypothesis was that they belonged to the same
bona-fide type. Because ganglion cells of a type may be collected by a clustering
algorithm into two or more groups, groups with similar features were tested on
whether they independently tiled the retina.

4.1.1  Measuring tiling

To make the detection of tiling less subjective, one must measure how cells are
spatially distributed in a retina (for a review, see Cook 2004). Given a group of
cells, how to tell whether they indeed tile?

Nearest-neighbor distance method

The use of the nearest-neighbor distances (Clark and Evans 1954) was one of the
tirst, and perhaps most intuitive, methods to be proposed for assessing tiling (Wassle
and Riemann 1978). This method is based on measuring the distance of a cell to
its closest neighbor; the average nearest-neighbor distance, then, is an estimate of
how closely packed cells are and, if a significance test is desired, the distribution
of distances itself can be analyzed (Cook 1996).

However, while simple, the nearest neighbor method may be misleading for
incompletely recorded populations, as the average distance increases when neigh-
boring cells are missing (Cook 1996; Cook 2004). Because recordings are rarely
complete, the nearest neighbor method should be cautiously employed.

Spatial autocorrelation

A second method, the spatial autocorrelation, measures not only how close cells
in a group are, but also whether their cell bodies (or receptive fields) repel one
another (Rodieck 1991). After choosing a reference cell from the group, all other
cells are plotted relative to this reference cell. By repeating the procedure for all
cells, one at a time as reference cell and overlaying the plots, one obtains what is
called a spatial autocorrelogram

For a group of cells, the spatial autocorrelogram provides a clear visualization of
their spatial organization. If the cells repel one another, there will be a region close
to the center of the autocorrelogram which is empty — the size of this area is the
minimum distance between cells. If the cells are distributed in a regular pattern,
such as a lattice, this regularity will also be represented in the autocorrelogram.
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As an example, the center columns of Figures 4.1B-C show the autocorrelogram
for receptive field mosaics (left column of the same figure) created from a simple
model of a mosaic. The model is based on displacing cells from an underlying
hexagonal lattice and is described in detail in Section 4.1.2. In Figures 4.1B, the
mosaic is close to a regular lattice (small displacements), which is reflected in the
autocorrelogram; notice how the cells — represented as black dots — are grouped
in a hexagonal pattern. In Figures 4.1C, the displacements are larger and no clear
pattern is observed. For both mosaics, an empty region is observed in the center
of the autocorrelogram, showing that the receptive fields indeed tile (which comes
from the repulsion rule of the model, see Section 4.1.2).

The spatial autocorrelogram is not only a visual representation of the spatial dis-
tribution, but can also provide a quantitative measure. By counting the cells inside
circular bins around the center, it is possible to observe a gap in the distribution
of tiling cells below some distance. If the count of cells is normalized by the area
of each circular bin (which increases linearly with the radius), the distribution is
referred to as a density recovery profile (Rodieck 1991). The name is because the
density of cells (if they tile) will increase with distance, eventually “recovering” an
average density for large distances.

Compared to the nearest neighbor distance, the existence of an empty region in
the center of the autocorrelogram (“exclusion zone”) is a more robust measure of
tiling; this is especially true for recorded populations whose cells are (uniformly)
missing (Cook 1996; Cook 2004).

4.1.2  Modeling a mosaic

To illustrate the spatial autocorrelogram method, a mosaic was simulated using
a simplified model. Similar (but more complex) models have been proposed in
the literature, showing how local rules lead to the mosaic pattern observed in cell
types (see, e.g., Galli-Resta et al. 1997; Reese 1999; Eglen and Ooyen 1999).

Here, a regular hexagonal lattice was used as substrate, from where the receptive
fields were randomly displaced (Figure 4.1A). The displacement was independent
for each cell and chosen from a symmetric 2D-Gaussian distribution with standard
deviations of either 20% (Figure 4.1B) or 100% (Figure 4.1C) of the receptive field
size. For mimicking repulsion, the displacement of a cell was re-sampled whenever
the chosen position would cause a large overlap with an already existing receptive
field (i.e., centers having a distance less than a receptive field diameter). The recep-
tive field size and orientation for every simulated cell was the same. For simulating
an incomplete mosaic, cells were randomly removed with a probability of 20%.
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Figure 4.1: MOSAICS OF RECEPTIVE FIELDS. One of the tell-tale signs of a single cell
type is the apparent repulsion between receptive fields (tiling). (A) Mo-
saics are simulated by randomly displacing center locations from an un-
derlying hexagonal lattice; a displacement is re-sampled if the chosen
location is closer to another cell than a receptive field size. To simulate
an incomplete mosaic, 20% of cells are randomly excluded. (B,C) Au-
tocorrelation of the receptive field locations (center; Rodieck 1991) for
simulated mosaics (left); for each pair of cells, a point is placed at the
location of the second cell, relative to the first. The reduced number
of centers at a distance less than the median receptive field size (red
ring) suggests tiling, which can also be seen as a gap in the cell count
(right; mean=std. error). A gap below a distance of 0.5 indicates that
the centers are separated by at least one receptive field size.
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Figure 4.2: NORMALIZED DISTANCE BETWEEN RECEPTIVE FIELDS. To account for dif-
ferences in receptive field sizes, the distance between a pair of receptive
tield centers (d) is normalized by the receptive field radii (r; and r»),
in the direction of the line connecting their centers (DeVries and Bay-
lor 1997). The receptive field radius of a cell, in a specific direction, is
defined as the line segment from the center to the border of the one
standard deviation ellipse.

4.1.3 Normalizing distances

Because receptive field sizes may vary (within or between experiments), the dis-
tance d between two receptive field centers was normalized by the distance from
each center to its respective border, r; and r,, measured along the line connecting
both centers (DeVries and Baylor 1997). The normalized distance is then

, d

d = )
r+n (4-1)

and is a measure of receptive field overlap, as shown in Figure 4.2. For receptive
fields that do not overlap, d’ > 1. Once the border of the receptive fields touch,
d’ = 1. Finally, if the receptive fields overlap, then d’ < 1.

Note, however, that small overlaps are not necessarily a violation of tiling. A
normalized distance of 4’ = 0.5, for instance, shows that centers are away by a
distance of about a receptive field size. While overlaps increase the redundancy,
the receptive fields are still considered to tile if a minimum gap is observed in the
distribution of cell distances (DeVries and Baylor 1997).
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4.2 PHYSIOLOGICAL CLASSIFICATION OF GANGLION CELLS

For classifying ganglion cells based on how they respond to light, an experimenter
has at their disposal an abundance of features which can be measured from those
cells: contrast adaptation (Kastner and Baccus 2011), direction selectivity (Farrow
and Masland 2011), spike-train statistics (Zeck and Masland 2007), receptive field
shape and filtering properties (DeVries and Baylor 1997; Segev et al. 2006; Field
et al. 2007), among others. One must still account, however, for how well a given
feature distinguishes ganglion cells from different classes (Carcieri et al. 2003) — if
at all - and how long an experiment must last for recording all the desired features.

An isolated retina does not remain viable for long, therefore a classification
method is more useful when it uses a smaller set of features, recorded in the least
amount of time. If the recording duration is short, one does not need to perform
an experiment exclusively for identifying cell types. Rather, one can use the classi-
fication method as a tool to achieve further scientific goals, a tool to constrain the
variability of the recorded cells. Better yet if these features can be extracted from a
simple and commonly employed stimulus.

Uncorrelated noise (white-noise) is often used to estimate, via reverse correla-
tion, the receptive field properties of ganglion cells (Chichilnisky 2001; see also Sec-
tion 2.5.2). This stimulus allows the estimation of ganglion cell features such as the
receptive field extent and its temporal filtering properties, features which can be
useful for cell classification (DeVries and Baylor 1997; Segev et al. 2006; Field et al.
2007).

Besides recovering the receptive field properties, white-noise stimulation can be
used for classifying ganglion cells based on statistical properties of the evoked
spike-trains (Zeck and Masland 2007). The autocorrelation of the spike-trains, in
mammalian retinas, has been useful for finding ganglion cell types which tile (De-
Vries and Baylor 1997; Field et al. 2007).

For tiger salamanders, Segev et al. (2006) suggested that only the temporal filters
should be considered for cell classification. They reported that receptive field sizes
and autocorrelation functions — while individually successful for separating cells
into few types — blurred the distinction between ganglion cell types when taken
together. However, the classification based on temporal components alone led to a
single tiling type (Segev et al. 2006; Marre et al. 2012).

4.3 FEATURES OF GANGLION CELLS

To improve on the current classification for salamander ganglion cells, I investi-
gated whether ganglion cell types in the axolotl retina could be found based on
features obtained from spatiotemporal white noise stimulation: receptive field size,
temporal dynamics, and autocorrelation function of the spike-trains.
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In Section 4.4, these features are combined and a clustering algorithm is ap-
plied to study whether these features, when combined, can differentiate between
ganglion cell types. But first, I will show how these features are distributed for gan-
glion cells from a single axolotl retina, show how — in contrast to the mammalian
retina — the axolotl ganglion cells are not easily distinguished by a single feature,
as similarly observed by Segev et al. (2006) for the tiger salamander.

Multi-electrode recordings

Retinal ganglion cells were recorded from an isolated axolotl retina using 252-
electrode arrays (see Section 2.2). The retina was stimulated via an OLED display,
which projected a computer-generated stimulus on the photoreceptor layer. Elec-
trical activity from the ganglion cells was band-pass filtered (300 Hz to 5 KHz) and
recorded from the multi-electrode array at 10 KHz. Spike-sorting was performed
off-line and only the best units considered (i.e., those with well-separated spike
shapes and assumed non-duplicate, as in Section 2.4).

Binary white-noise

The isolated retina was stimulated with an uncorrelated spatiotemporal noise, with
a refresh rate of 30 Hz. For each pixel in each frame, the pixel brightness was
randomly and independently chosen as dark or bright with equal probabilities
(binary white-noise). Each stimulus pixel had a projected size of 75 x 75 ym on the
retina.

Temporal white-noise

The retina was also stimulated with a temporal uncorrelated noise, with the same
refresh rate of 30 Hz. This stimulus is sometimes referred as a full-field stimulation,
because all pixels on the screen are set to the same brightness. For each frame, the
screen brightness was independently sampled from a Gaussian distribution. The
standard deviation of the stimulus was 30% of the average screen brightness (30%
contrast).

4.3.1 Autocorrelation function

For each cell, the spikes evoked from the binary white-noise stimulation were
binned in 2ms bins and the spike-train autocorrelated. The autocorrelation func-
tion of each cell was normalized so that the peak at zero-lag had unit amplitude.
This normalized autocorrelation is related to the probability of a cell to spike, and
is an estimate of how often a spike will occur after a certain delay from a reference
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Figure 4.3: SPIKE-TRAIN AUTOCORRELATIONS FROM A SINGLE EXPERIMENT. Autocor-
relation of the spike-trains for cells from a single experiment, with
spikes binned into 2 ms bins. The autocorrelation function was normal-
ized to unit amplitude. Observe the difference between ON (top) and
OFF-cell (bottom) autocorrelations. The ON cells showed more sparse
activity, with longer timer intervals between spikes. For the OFF cells
at least three kinds of activity were observed, depending on the time
course of the autocorrelation function (see text).

spike (regardless of how many spikes happened in-between; see, e.g., Rieke et al.
1999).

The autocorrelation of the spike-trains from a single experiment are shown
in Figure 4.3. From the autocorrelation function, one observes that ON cells have
more sparsely distributed spikes, with few spikes in the first 20 — 30 ms after a
spike. The autocorrelation function increased to a constant value for longer time
intervals, suggesting a return to an average firing rate from a sustained activity.

By visual inspection, at least three kinds of OFF cells could be distinguished
based on the time course of their autocorrelation functions. The first kind showed
a very strong peak in activity at 5 — 10 ms after a spike. For the second kind, activity
rose sharply, but less pronounced than the first, at about 15ms after a spike. The
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Figure 4.4: DIVERSITY OF TEMPORAL FILTERS FROM A SINGLE EXPERIMENT. A tempo-
ral filter provide a fine description of how a receptive field integrates a
visual stimulus over time. The peak is used to determine the latency of
the cell and whether it responds preferentially to an ON or OFF stimuli.
In a single experiment there is a rich diversity of temporal filters. (left)
Super-imposed temporal filters from a single experiment. (right) Tem-
poral filters ordered by their polarity (ON, OFF) and latencies (fast to
slow), based on their angle in the principal component space (see Fig-

ure 4.5).

third kind increased its activity, until a maximum activity at about 25ms after a
spike, but showed no sharp peak. The activity after a spike for the three kinds
decreased at a similar rate for longer time intervals.

4.3.2  Spatiotemporal receptive field

The spatiotemporal receptive fields of the recorded cells were estimated by re-
verse correlating the evoked spikes to the stimulus (see Section 2.5.2). For each
ganglion cell, the spatiotemporal receptive field was approximated into separa-
ble spatial and temporal components using singular value decomposition (SVD,
see Section 2.6). The re-composed spatiotemporal filters (obtained by multiplying
the temporal and spatial components) were observed to be similar to the original
spatiotemporal filters.
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4.3.3 Receptive field size

The spatial receptive fields were approximated by a 2D-Gaussian function, with
the ellipse at one standard deviation considered as the extent of the receptive field
center. The receptive field radius r was defined as the geometric average of the
semi-axes 01 and o of the ellipse, given by

r= o, (4.2)

and the receptive field size then defined as the diameter Dgrr = 2r. This is the size
of an equivalent circle that occupies the same area as the receptive field.

The distribution of receptive field sizes for a single experiment is shown in the
bottom left of Figure 4.5. In a single experiment, the receptive field sizes ranged
from 100 — 400 ym; however, no clear separation was observed between cells based
on the receptive field size alone.

4.3.4 Temporal filters

A temporal filter provides a fine description of how a receptive field integrates a
stimulus over time. It shows if a cell responds preferably to an increase (ON) or
a decrease (OFF) of brightness, and how fast. In a typical experiment, temporal
filters were observed to be very diverse (see Figure 4.4), with different latencies
and waveforms. The majority of cells was observed to be OFF cells (183 out of
201, or 91% of the recorded cells). Possible groupings of cells based on temporal
components were observed for ON cells. Manually, one could assign ON cells into
at least three types according to their latencies: fast, medium and slow ON cells.
For OFF cells, however, a manual classification would be hindered by the difficulty
to distinguish between filters.

To gain insight on possible groupings of cells using principal component anal-
ysis (PCA), the temporal filters were projected onto their first two principal com-
ponents, as shown in the top left of Figure 4.5. The first principal component was
related to the amplitude (and sign) of the filter peak, clearly separating ON cells
from the OFF cells. The second component was related to the latency of a cell, yet
with opposite trend for ON and OFF cells. That is, for ON cells, the projection onto
the second component was largest for the slowest ON cells. For OFF cells, the pro-
jection was largest for the fastest OFF cells. Conversely, the slowest OFF cells (and
the fastest ON cells) had the smallest second component projection.

If the principal component space is described in polar coordinates, the angle ¢ of
a cell represents both its latency and the sign of its peak. Moving counter-clockwise,
for —t/2 < ¢ < 71/2, the cells are ON and become faster with increasing angles;
for /2 < ¢ < 37/2, the cells are OFF and become slower with increasing angles.
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Figure 4.5: RECEPTIVE FIELD FEATURES. Features of the receptive field used for clas-
sification. (left column) Neither receptive field size nor the principal
component projections of the temporal components alone show clear
separations. (right column) Polar plot shows the receptive field size
together with the angle in the principal component space. This visual-
ization increases the apparent separation between ganglion cells, most
noticeably in the 150-180° range.

Regions of apparent higher density were observed in the principal component
space, but no clear separation could be obtained apart from the one between ON

and OFF cells.

4.3.5 Combined temporal and spatial components

Based on their temporal and spatial components alone, cells could not be easily
distinguished. One may consider, however, what happens if those components are
taken together. The cells were represented in a polar plot with the angular coor-
dinate given by the angle in the principal component space (¢), and the radial
coordinate given by receptive field size (Dgr). This representation is shown on the
right in Figure 4.5.

The combined data increased the apparent separation between ganglion cells.
While visual inspection alone was not yet enough to find groupings of similar

52



4.4 FINDING PUTATIVE TYPES

cells, the differences of receptive field sizes between cells with similar temporal
components (small angular differences) were large. Note for example the lower
density of cells in a region between 150-180° in the polar plot. In that region, OFF
cells with similar temporal components — the fastest OFF cells — may be separated
based on their receptive field sizes.

4.4 FINDING PUTATIVE TYPES

Manual classification of ganglion cells is not easy: differences which are clear for
one researcher may not be as clear for another, and it is hard to draw a line between
possible types. Specially so in the salamander retina, where the distinctions appear
to be blurred. As discussed in Chapter 3, methods of unsupervised learning can
find patterns in unlabeled data, such as the ganglion cells recorded here. In par-
ticular, cells which share similar features can be grouped using objective criteria,
based on a clustering method (Zeck and Masland 2007; Farrow and Masland 2011).

For individual features, Segev et al. (2006) have shown that groups of ganglion
cells in a tiger salamander retina could be distinguished by individually apply-
ing K-means (see Chapter 3) to each of the available features. K-means was found,
however, unable to separate ganglion cells when all features were combined (Segev
et al. 2006). Indeed, for grouping cells, clustering methods which assume convex
and compact clusters may be a poor choice. This is especially true for the salaman-
der retina, whose ganglion cells have few distinctive features and may not always
form convex clusters in the feature space (see, for example, the projection of the
temporal filters onto their principal components in Figure 4.5).

Grouping ganglion cells with spectral clustering

To account for the possibility of non-convex clusters, I used the spectral clustering
algorithm as defined by Ng et al. (2002). A detailed explanation of the algorithm
can be found in Section 3.4. Briefly, spectral clustering takes into account the local
structure of the feature space, mapping the clustering problem into a graph par-
tition problem. A graph is built using each cell as a node, with an edge created
between two cells with a weight proportional to their pairwise similarity. The algo-
rithm then partitions the nodes so that the least amount of connections are broken
(measured by the sum of the edge weights), relative to the connections inside each
group. That is, edges within strongly connected nodes will remain, while weak
edges between distinct groups will be cut away.
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Gaussian similarity

The similarity between two cells i and j was given by the Gaussian similarity

_ [1Xi — X P
wij=exp | ———— |, (4.3)

0—2

where ¢ is a parameter to be adjusted, and X; is an n-dimensional vector repre-
senting the coordinates of a cell i in the feature space. The similarity is unity when
the two cells have exactly the same features, and decreases as the differences (mea-
sured with the Euclidean distance) increase (see Section 3.4.1).

4.4.1 Representing ganglion cells in a feature space

One must be careful when representing the features of a ganglion cell. The larger
the dimensionality of the feature space is, the less meaningful will the distance
between two cells become; for sufficiently large 7, a cell can be almost as far from
its nearest neighbor as it is from its farthest neighbors (Marimont and Shapiro 1979;
Beyer et al. 1999).>

For the cell features considered here, the autocorrelation function alone is 61-di-
mensional, while the temporal filter is 40-dimensional. Including the receptive field
size, one would require a 102-dimensional space to represent the ganglion cells.
Disregarding the uneven number of coordinates (61, 40 and 1), which may unduly
favor similarities within a single feature, remember that not more than a few hun-
dred cells are simultaneously recorded in a single experiment. When spread over
102 dimensions, those cells would be sparsely distributed and unlike to cluster —
especially in the presence of noise. However, one may not need all those dimen-
sions.

To avoid the dimensionality curse, the number of dimensions required to repre-
sent the temporal filters and autocorrelation functions were reduced via principal
component analysis (PCA). The temporal filters were projected onto their first and
second principal components (about 88% of explained variance), resulting in the
scores Ti(l) and Ti(z) for each cell i. The autocorrelation functions were projected
onto their first principal component (about 60% of explained variance), resulting
in the score A;.3

In total, four scores were used to describe each ganglion cell i. The first three

(1)

scores were based on the projections T; ~, TZ-(2), from the temporal filters, and A;

This is one instance of the infamous “curse of dimensionality”, which often afflicts high-dimensional
spaces (see Hastie et al. 2009).

The second principal component of the autocorrelation function, while increasing the explained
variance to 82%, did not significantly improve the quality of classification for the datasets considered
here.
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from the autocorrelation function. The fourth score, D;, was the receptive field
diameter. To compensate for differences in scale, all scores were normalized to
unit variance. Each cell was then represented by the feature vector

/ (4-4)

where all four scores had equal weight.+

4.4.2  Putative types of ganglion cells

With every ganglion cell represented by the four scores, 201 ganglion cells from the
same retina were grouped according to their similarity. The similarity matrix W =
{wj;} was built from the pairwise Gaussian similarities w;; between all cells i and j
(from Equation 4.3, see also Section 3.4.1). The similarity was close to unity when
the Euclidean distance between scores was low, and vanished when the distance
between scores was large. Using the similarity matrix W, the spectral clustering
algorithm (see Section 3.4.4) partitioned the ganglion cells into K = 14 clusters
(putative types). The resulting clusters were labeled from 1 to 14, ordered by their
median latency (slowest to fastest) and polarity of response (OFF to ON).

The number of clusters K = 14 was chosen via a collection of heuristics. An
increase in the number of clusters led to new clusters with few cells each, while
a decrease led to the grouping of seemly distinct cells. The heuristics were used
to estimate a range of appropriate values (see Section 3.5). The eigenvalues of the
graph Laplacian (shown on the bottom left in Figure 4.6) suggested a number
of clusters between 11-20, a range which was consistent with both Akaike and
Bayesian information criteria (AIC, BIC). The heuristics had no clear optima, but
were useful to restrict the number of clusters.

4.5 PROPERTIES OF THE PUTATIVE TYPES
4.5.1 Sorted similarity matrix

The elements of the similarity matrix were re-ordered according to their cluster
label, with the sorted matrix shown on the right in Figure 4.6. The sorted similarity

The relative weight of each feature, which represents its importance for the classification, could
in principle be tweaked. For the datasets considered here, however, tweaking the weights did not
improve the classification. To the best of my knowledge, none of the features shown here should be
favored when classifying ganglion cells; the equal weights represent this fact.
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(top left) A similarity matrix was built from the pairwise Gaussian sim-
ilarities between cells from a single experiment. Dark blue means no
similarity, brighter pixels indicate higher similarity. (top right) After
spectral clustering (K = 14), the similarity matrix was ordered by clus-
ters. Blocks of similarity were observed within clusters, with little simi-
larity across clusters. (bottom left) Eigenvalues of the normalized graph
Laplacian, whose eigenvectors are used by spectral clustering for group-
ing the cells (see Figure 3.5).
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matrix shows blocks of similarity composed of elements from the same cluster. The
blocks indicate that the similarity of cells within a cluster was larger than between
clusters, as expected from the spectral clustering algorithm. The similarity matrix
gives an overview of the overall cluster quality. Cluster 9, for example, was a large
cluster with barely any similarity to other clusters, suggesting that cells in it were
well separated from the others. Cells in Cluster 8 shared similarities to cells in
Cluster 4; and the same occurred between Clusters 4 and 5. This similarity across
clusters often indicated that cells in those clusters had mostly similar features, yet
they could be distinguished on at least one of the features.

4.5.2  Receptive field properties

In Figure 4.7, the receptive field components from all cells are overlaid, showing
the diversity of sizes and temporal filters of the unsorted cells. The temporal (top)
and spatial (bottom) components of the receptive fields for the 14 clusters are then
arranged and color-coded according to their assigned clusters. The spatial compo-
nents are represented by their ellipses at one standard deviation of the 2D-Gaus-
sian fit. The clusters are arranged from 1 (top left, red) to 14 (bottom right, gray)
from left-to-right and top-to-bottom.

The first 9 clusters were composed of OFF cells with increasing latencies (top
of Figure 4.7). Cluster 1 had the slowest OFF cells (latency of 170 & 17 ms; mean +
std.dev.), while Cluster g had the fastest OFF cells (121 & 10 ms). The next 4 clusters
(10-13) were composed of ON cells. Cluster 10 had the slowest ON cells (237 &
20ms), while Clusters 12 and 13 had the fastest ON cells (respectively 155 + 7 ms
and 139 + 2 ms). Finally, Cluster 14 collected singular cells which were not similar
to any other in the dataset.

The clustered receptive fields spread over the visual space with few apparent
overlaps (see bottom of Figure 4.7). Some clusters (2, 6, 7, 10 and 11) were observed
to sparsely cover the visual space, with large gaps between ganglion cells. These
large gaps may, however, be due to the low number of cells in those clusters — a
result of a possibly uneven sampling of cell types in the recording. Clusters 8 and 9
were noteworthy, as they were composed of many (ng = 20, n9 = 50) cells and
densely covered the visual space with almost no overlaps (only a single overlap
was observed in Cluster g). Cluster 8 cells also had the largest receptive field sizes
(337 £27 ym).

4.5.3 Differences between the putative types
Ganglion cells were not easily separated by a single feature (see Section 4.3), and

this is reflected in the clusters. The four scores used for the classification are shown
in Figure 4.8, where each cell was colored according to its assigned cluster. To
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Figure 4.7: GROUPED CELLS FROM A SINGLE RETINA. Temporal and spatial compo-
nents of receptive fields from ganglion cells (n = 201) recorded from
the same retina. The cells were grouped into K = 14 clusters based on
the similarity of their receptive field sizes, temporal filters and auto-
correlation of the spike trains, using the spectral clustering algorithm
(see text). Ellipses represent the extent of the receptive field center (one
std.dev. of the Gaussian fit).
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Figure 4.8: MATRIX OF CLASSIFICATION FEATURES. Projection of the features used for
classification, for every cell (diamonds) from the same retina. While no
single feature clearly separates the cells, the combination of features
can be used for teasing out clusters with a spectral clustering algorithm.
Cells are colored according to their clusters (K = 14).
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visualize the distribution of scores for each cluster, the cells were projected onto
two scores at a time. The use of the combined scores allowed ganglion cells to be
separated. Pairs of clusters with similar properties were often observed, but were
separable by at least one of the scores.

For instance, cells in Clusters 5 and 9 (yellow and blue) had similar receptive
field sizes but differed both in their autocorrelation functions (Figure 4.8, bottom-
right) and temporal components (bottom-center). Clusters 2 and 6 (light blue and
light green) had very similar temporal components, but distinct autocorrelation
functions. Likewise, Cluster 8 (dark red) and Cluster 9 (blue) had cells with very
similar temporal components, but distinct receptive field sizes (337 & 27 ym and
219 £ 25 ym).

46 COMPARING THREE OFF TYPES

Those differences between clusters were intriguing, and one might wonder whether
those similar-but-different clusters were in fact composed of a single natural cell
type; a cell type that was split, by chance, into many clusters. To investigate this
possibility, I focused on three OFF clusters: Clusters 5, 8 and 9, which had a large
population of cells each. Those were named respectively Medium Small OFE> Fast
Large OFF, and Fast Small OFF. The three clusters were compared qualitatively
in Figure 4.9 and quantitatively in Figure 4.11.

4.6.1  Differences between functional properties

The Fast Large OFF and Fast Small OFF had very similar temporal components
(top-left of Figure 4.9), with barely any difference in speeds, but the Fast Small
OFF cells were biphasic (see also Figure 4.10). The autocorrelation functions of
the Fast Small OFF cells showed a pronounced peak at about 10 ms, while the
Fast Large OFF cells showed a smaller autocorrelation (Figure 4.11A). The striking
difference between the two cell types, as also noticed in the previous section, was
the size of their receptive fields (Figure 4.11B).

The Medium Small OFF cells were slower than the Fast Small OFF cells. This was
seen in their temporal components (bottom-left of Figure 4.9), which had clearly
distinct waveforms — with the Medium cells shifted to the left (slower). This tar-
diness of the Medium Small OFF cells could also be measured in their latencies
(148 +25ms and 121 4+ 10 ms). The autocorrelation functions of the Medium Small
OFF cells were smaller than the ones for Fast Small OFF cells. Indeed, the autocor-
relation functions of the Medium Small OFF were almost the same amplitude as

5 Note that “Medium” here refers to their latency and not their size.
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Figure 4.9: COMPARING THREE SIMILAR OFF 1YPES. The autocorrelation function for
Fast Small OFF cells was larger than both Fast Large OFF (top-right)
and Medium Small OFF cells (bottom-right). The temporal filters were
very similar between Fast Large OFF and Fast Small OFF cells (top-left).
Medium Small OFF cells were slower than the Fast Small OFF (bottom-
left). For a quantitative comparison, see Figure 4.11.

Fast Large OFF Fast Small OFF

Monophasic 100ms

Temporal filter
(full field stimulus)

Figure 4.10: TEMPORAL FILTERS FROM TEMPORAL WHITE-NOISE. Temporal filters are
shown for the Fast Large OFF and Fast Small OFF cells. The filters
were obtained from temporal white-noise stimulation (Gaussian, 30%
contrast, full-screen). The full field stimulation emphasized the bipha-
sicness of the Fast Small OFF cells, while the Fast Large OFF cells
remained monophasic (compare to Figure 4.9).
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Figure 4.11: DIFFERENCES BETWEEN THREE OFF TYPES. Autocorrelation of the spike
trains (A; projected onto its first principal component) and receptive
field properties (B, C, D) are shown for different cells (filled circles),
grouped by type. (A, B, C) Filled boxes span the range from the first
to the third quartile of the distribution, with the median indicated by
an horizontal line. Unconnected points (outside the vertical line) are
outliers. Average receptive field sizes (B) and latencies (C) are given as
mean =+ std.dev. (D) Temporal filters (in the first and second principal
components space) and receptive field size for every cell (filled circle,
colored by type; see Figure 4.5).

62



46 COMPARING THREE OFF TYPES

the ones of the Large Fast OFF (Figure 4.11A). The receptive fields of the Medium
Small OFF and Fast Small OFF cells were, however, similar in size (Figure 4.11B).

4.6.2  Mosaics which independently tiled the retina

For a putative cell type, a good test of its quality is to observe whether its cells
repulse one another, creating a mosaic which tiles the retina (Section 4.1). The
three OFF types considered here had indications of tiling. Their receptive fields
were spread over the visual space, with only few violations of tiling (overlapping
cells) observed: two in the Medium Small OFF, and one in the Fast Small OFF. The
Fast Large OFF cells had no observed overlaps.

From the three types, two showed a rather clear evidence of tiling — the Fast
Large OFF and the Fast Small OFF cells. In Figure 4.12, tiling was measured for
the Fast Large OFF and Fast Small OFF cells via the histogram of normalized
distances and the spatial autocorrelogram.

The histogram (bars in Figure 4.12) counted how many cells from the same group
were in a circular bin at a normalized distance from a reference cell, averaged over
all cells in the group. The gray area in the background is the histogram for a surro-
gate group of cells, a group with the same number of cells but whose cluster labels
were randomly shuffled; the surrogate histogram was averaged over 1000 indepen-
dent repetitions. A gap in the count of cells below a certain distance is evidence of
tiling. The spatial autocorrelogram showed the relative position between pairs of
cells from the same group, where each pair of cells was represented as a black dot.
Absence of cells in the spatial autocorrelogram below a certain distance (e.g., a re-
ceptive field size) indicated tiling. Both measures are equivalent, but complement
each other in assessing whether a group of cells tile (see Section 4.1).

Both Fast Large OFF and Fast Small OFF had a clear gap in the distance his-
togram and spatial autocorrelogram (top of Figure 4.12) — indicating that they tiled
the retina. This raised the question, however, of whether this observed tiling was
caused by a single tiling ganglion cell type which is (however unlikely) split into
two groups. That is, did the two groups independently tile the retina, or were they
just different shards of the same mosaic?

To investigate whether the Fast Large OFF and Fast Small OFF cells indepen-
dently tiled the retina, the two types were combined into a single group. This com-
bined group, however, had many more overlapping cells. Indeed, no gaps were
observed: neither in the histogram of distances, nor in the spatial autocorrelogram
(bottom of Figure 4.12). This suggested that both types not only tiled the retina,
but did so independently.
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Figure 4.12: COMBINING CLUSTERS INCREASES OVERLAPS. The large (left) and small
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(right) fast OFF cells individually tile the retina, shown here for a sin-
gle experiment. However, when combined (bottom), the number of
overlaps increases, indicating that they both individually tile the retina.
Autocorrelogram is calculated as in Figure 4.1, and shows a reduced
number of cells of the same group at a distance smaller than the me-
dian receptive field size. Histogram shows the average number of cells,
from the same group, at a given distance (bars: mean =+ std. error); the
gray area in the histogram shows the expected average of cells at a
given distance, if cells are randomly grouped from the dataset (same
number of cells, averaged over 1000 repeats). Scale bars are 1 mm.



4.7 HOMOGENEITY OF PROPERTIES IN A CLUSTER

4.7 HOMOGENEITY OF PROPERTIES IN A CLUSTER

For the remaining putative types, it was not straightforward to assess whether
they all tiled. Though most clusters had few or no overlapping cells, most clusters
also had only a few cells each. To assess the quality of the classification for those
clusters, one may hypothesize that a natural cell type should be homogeneous
in other properties, properties that were not used for the classification. Here, I
briefly consider the regularity of the spike-trains and the direction-selectivity of
the ganglion cells in each cluster.

4.7.1  Regularity of the spike-trains

Spikes from a single cell can come in bursts, with many spikes being fired in
short intervals, followed by longer intervals of silence. Spikes can also come regu-
larly spaced, with small differences in the interval between the spikes (inter-spike
interval, 1SI). The spikes were recorded during stimulation with spatiotemporal
white-noise. To assess the regularity of the spike-trains, I measured the coefficient
of variation (C,) and the local variation coefficient (L,) of the inter-spike intervals
for each cell (see Section 2.8).

Briefly, the coefficient of variation C, measures the standard deviation of the
inter-spike intervals relative to their mean (C, = oys;/pysy). If the spikes were
generated by a homogeneous Poisson process, 01s; = prs; and C, = 1. If the spikes
were perfectly regular, org; is small and C, vanishes. If the spikes would come in
bursts, C, > 1. The local variation coefficient

1 N=13 (A —Aq)?

Ly = % )

15 (A+80)7 ]

(4-5)

where A; is the i-th inter-spike interval, behaves similarly to C,. However, differ-
ently from C,, the local variation coefficient measures the local regularity and is
less affected by global changes, caused for example by the stimulus or cell adap-
tation. Without being confused by stimulus-caused variances, the local variation
coefficient may better capture the intrinsic properties of a cell. (Shinomoto et al.
2003).

The two variation coefficients were compared in Figure 4.13 against the auto-
correlation of the spike-trains (projected onto its first principal component); the
coefficient of variation C, is shown on the bottom and the local variation coef-
ficient L, on the top. To better visualize the distributions of the coefficients, the
clusters were divided into ON (left) and OFF (right) clusters. Each cell (diamond)
was colored by its assigned cluster.

The variation coefficients for ON cells were small, suggesting a more regular
spike-train. For OFF cells, variation coefficients were larger than unity, indicating
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a more bursty spike-train. Apart from the difference between ON and OFF cells,
small differences in burstiness could be noticed between the clusters. For the OFF
cells, the variation coefficients distinguished Clusters 2 and 6 as being more bursty
(Ly = 2.0£0.2, measured together) than the other OFF cells (L, = 1.5 £ 0.2, to-
gether). Even though their autocorrelation functions were distinct, there were no
differences in burstiness measured between any of the Medium Small OFF, Fast
Large OFF, and Fast Small OFF types (each had L, = 1.5 £0.2).

4.7.2  Direction selectivity

Direction selectivity is an asymmetry in the response of a cell to moving stimuli
(see Section 2.7). For measuring the direction-selectivity of the ganglion cells, black-
white gratings (100% contrast) were presented with a bar width of 300 ym on the
retina. The gratings moved in the directions 6; = (d —1)%, with d = 1 to 8, with
a speed of 225 um/s, such that each cell observed a complete black-white cycle in
4/3s. Defining R, as the average firing rate of a cell when the gratings were moved
in the direction 6, then

1 .
Rd eled
YiRa Xd:

was the direction selectivity index (DSI) of that cell. A direction bias is also defined
as the vector pointing towards the preferred direction, normalized to have norm
equal to the DSI. The DSI was unity only if a cell responded exclusively to gratings
moving in a single direction, and the DSI vanished if there was no preference (by
construction, 0 < DSI < 1).

In Figure 4.14, the direction bias for every ganglion cell (top-left) is shown to-
gether with the distribution of DSIs (middle-left). Cells were considered direction-
selective (DS) whenever their DSI > 0.4. On the bottom-left, the fraction of direction-
selective (DS) cells in each cluster is shown. On the bottom-right, the total number
of cells (DS and non-DS) in each cluster. Clusters with at least one DS cell (Clusters 1,
3, 4 and 5) were represented on the top-right in Figure 4.14.

Only OFF clusters were observed to have Ds cells. The majority of cells in Clus-
ter 4 (53%) were DS cells, and Cluster 4 also had 39% of the DS cells in the exper-
iment. Cluster 5 had 33% of the DS cells in the experiment, but they were only a
minority (18%) of Cluster 5 itself. Cluster 1 had slow temporal filters, when com-
pared to Clusters 3, 4 and 5, which suggested that at least two populations of
direction-selective cells may exist (DS Slow and DS Medium OFF cells).

DSI =

(4.6)
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Figure 4.13: MEASUREMENTS OF SPIKE-TRAIN REGULARITY. Local variation coefficient
(Lo, top) and coefficient of variation (C,, bottom) for the spike-trains
of each cell were compared to the autocorrelation function of the same
spike-trains (projected onto its first principal component). Both C, and
L, are unity when the spike-train is Poisson-distributed. The spike-
trains from ON cells (left) were more regular than Poisson, while the
ones from OFF cells (right) were more bursty. The clusters were homo-
geneous in the variability of their spike-trains. Differences in autocor-
relation were not always captured by the variability coefficients.
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Figure 4.14: DIRECTION SELECTIVITY. Direction bias for all cells (top left) and for
clusters with direction-selective (DS) cells (top right). The direction bias
points toward the preferred stimulus direction with norm equal to
the DsSI (Equation 2.10), which vanishes if the cell has no preferred
direction (0 < DSI < 1). The DS cells (DSI > 0.4, 18 in total; center
left) were observed in few clusters (1, 3, 4 and 5). All observed DS
cells were OFF cells. Cluster 4 was mostly (53%) composed of DS cells
(bottom left). Cluster 4 and 5, together, collected 72% of all observed
DS cells (respectively 39% and 33%). DS cells were, however, a minority
in Cluster 5 (18% of total cells).
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Figure 4.15: FAsT ON TYPE ACROSS RETINAS. Fast ON cells were identified across
retinas. Here they are shown for three retinas with their spatial com-
ponents (left), temporal components (center) and autocorrelation func-
tions (right).
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48 COMPARING TYPES ACROSS RETINAS

One remaining question was, of course, how to identify the same cell types across
retinas. Could cells coming from different retinas be pooled together, and classified
using the same method used for the single retina? Properties of ganglion cells do
change for different preparations, as experimental conditions change. Animal size,
health, room temperature, and preparation quality may all affect the cell responses.
Indeed, pooled experiments had an increased variance in the data; many clusters
separated cells according to which retina they come from instead of grouping them
into cell types. Hence, pooling was not found to be useful for identifying types
across experiments.

However, while individual cell types had different properties across retinas, the
relative order of these types in a retina was conserved (DeVries and Baylor 1997).
By clustering cells from each retina individually, the clusters could be ordered
by the latency and receptive field size of their cells. Finally, by comparing the
autocorrelation functions, it was possible to match similar types across retinas.

Across three retinas, at least five types could be matched. A Fast ON type (Clus-
ter 12 in the first retina) is shown in Figure 4.15. The Fast Small OFF and Fast
Large OFF cells are shown in Figure 4.16. Similarly, the Medium Small OFF and
the Bursty Medium OFF (Cluster 6) are shown in Figure 4.17.
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Figure 4.16: FAsT OFF TYPES ACROSs RETINAS. Fast Small OFF (top) and Fast Large
OFF (bottom) were identified across retinas. Here they are shown
for three retinas with spatial components (left), temporal components
(center) and autocorrelation functions (right). Note how the time-
courses of the temporal filters and autocorrelation functions changed
across retinas. For example, the autocorrelation functions from cells in

Retina 3 were higher for both cell types.
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Figure 4.17: MeEDIUM OFF TYPES ACROSS RETINAS. Medium-latency OFF cells
(Medium Small OFF, top; Bursty Medium OFF, bottom) are shown
for three retinas with their spatial components (left), temporal compo-
nents (center) and autocorrelation functions (right).
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Table 4.1: POSSIBLE DIRECTION-SELECTIVE TYPES. Direction selectivity was observed
in four clusters (1, 3, 4 and 5); from those, one cluster (Cluster 4) had
the majority of direction-selective cells. Two direction-selective cell types
were postulated.

Tentative name  Cluster Observed characteristics

DS Slow OFF 1 Direction-selective cells with slow temporal filters.
They formed, however, only a small fraction (9%)
of Cluster 1 (Figure 4.14).
DS Medium OFF 3-5 Direction-selective cells were found mostly in Clus-
ter 4, with Medium-latency temporal filters. They
were also present in Clusters 3 and 5, but as a mi-
nority (respectively 17% and 18% of those clusters;
see Figure 4.14).

4.9 SUMMARY

Salamander retinal ganglion cells were recorded and analyzed to obtain their re-
ceptive field sizes, temporal filters, and autocorrelation of their spike-trains. While
individual features were hazy, without a clear separation into cell types, the combi-
nation of features led to an improvement on the separation of ganglion cells. Before
applying a clustering algorithm, to avoid the dimensionality curse, the temporal
filters and autocorrelation functions were projected onto their principal compo-
nents. The projections together with the receptive field size were used as scores to
represent the ganglion cells in a feature space. After the similarity between every
ganglion cell pair was calculated, a spectral clustering algorithm partitioned the
dataset into K = 14 clusters. As expected from the algorithm, the cells in each clus-
ter were mostly similar between themselves, with few similarity to cells in other
clusters. Those 14 clusters were taken as putative types.

Putative types were observed to share similarities with one another. Specifically,
three OFF types (Medium Small OFF, Fast Large OFF, Fast Small OFF) were ob-
served to have similar temporal filters, receptive field sizes, and autocorrelation
functions — only not all simultaneously. While similar in a few properties, the three
types could still be distinguished by taking another of their properties into account.

Despite observing a separation between clusters, one could still wonder if the
putative types do have any relation to natural cell types. That is, whether the
identified clusters would tile or, perhaps, show homogeneity in their properties.
Two types were observed to individually tile the retina (Fast Large OFF and Fast
Small OFF). Moreover, these two types independently tiled the retina — an evidence
that they were indeed distinct cell types.
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Table 4.2: SUMMARY OF OBSERVED TYPES. Observed types and their tentative names,
the clusters in which they were found (see Figure 4.7), and their defining

characteristics.
Tentative name Cluster Observed characteristics
Fast ON 12 Fast cells with large receptive fields; their au-

tocorrelation functions showed sparse but sus-
tained activity (Figure 4.15).

Medium Small OFF 5 These cells were slower than the Fast OFF cells;
they have small receptive field sizes, similar
in size to the Fast Small OFF cells. The time-
course of their autocorrelation functions were
similar to the Fast Large OFF cells (Figure 4.11,
Figure 4.17).

Bursty Medium OFF 6 These cells had similar temporal filters as the
Medium Small OFF cells, but had a peak in
the autocorrelation function. Their peaks were
larger than the peaks observed for the Fast
Small OFF cells (Figure 4.17). These cells were
more bursty than most other OFF cells (as
measured with the local variation coefficient
L,, Figure 4.13).

Fast Large OFF 8 Almost as fast as the Fast Small OFF, these cells
had monophasic temporal filters. The large re-
ceptive fields were its most distinctive prop-
erty. The autocorrelation functions of these
cells reached an amplitude smaller than the
ones from Fast Small OFF cells — with no clear
peak. They independently tiled the retina (Fig-
ure 4.12).

Fast Small OFF 9 Largest population in the dataset. These cells
had a sharp peak in their autocorrelation func-
tions and small receptive field sizes. The fastest
OFF cells, cells of this type had biphasic tem-
poral filters (Figure 4.10). They independently
tiled the retina (Figure 4.12).
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Most types had only few violations of tiling, but many of those types had also
only few cells each, which hindered the analysis of their mosaic. Therefore, the
homogeneity of those cell types was tested using properties not used for classi-
fication, such as the regularity of their spike-trains and direction-selectivity. The
spike-trains of ON ganglion cells were more regularly spaced than the ones from
OFF cells. Most OFF clusters were equally irregular in their spike-trains, with the
exception of two more bursty clusters (one of which was tentatively named Bursty
Medium OFF). Direction-selectivity was observed only in OFF cells. Four clusters
contained direction-selective (DS) cells, but DS cells were a minority (less than 20%
of the cells) in three of those. One cluster collected most DS cells. Because of the dif-
ferent temporal filters of the DS cells, two types of OFF Ds cells could be postulated
and are shown in Table 4.1.

In total, three different retinas were analyzed. Due to differences in experimental
conditions, their data could not be pooled together. However, types were matched
across retinas by their relative order in latency and size, together with the autocor-
relation functions. At least five types were consistently identified across retinas. All
five types had few or no violations of tiling. Moreover, two types showed strong
evidence of tiling: the Fast Large OFF and Fast Small OFF. The five identified types,
together with their characteristics, are summarized in Table 4.2.
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The White Rabbit put on his spectacles. “Where shall I begin, please your Majesty?” he asked.
‘Begin at the beginning,” the King said gravely, ‘and go on till you come to the end: then stop.’
— LeEwis CARROLL, Alice’s Adventures in Wonderland

The main goal of this work was to improve on the classification of ganglion cells
in the salamander retina. The salamander is useful not only because of its history in
vision science and ease of recording, but also due to the challenges involved in the
functional classification of its retinal ganglion cells. Salamander ganglion cells were
suggested to be highly redundant (Puchalla et al. 2005), and not easily separable
based on their functional properties (Segev et al. 2006; Marre et al. 2012). A method
which can identify ganglion cell types in the salamander would be expected to also
work well for other species. The classification method developed here, based on a
simple stimulus, offers an improved view of the salamander retina. While not every
putative type was reliably found across retinas, at least five were. This suggests that
the salamander retina may have more structure than was previously thought.

5.1 CELL TYPES IN THE SALAMANDER RETINA

Ganglion cells in the salamander retina were characterized based on their recep-
tive field sizes, temporal filters, and autocorrelation of spike-trains. These proper-
ties were chosen because of their success in distinguishing ganglion cell types in
the rabbit (DeVries and Baylor 1997) and monkey (Field et al. 2007) retinas. Sur-
prisingly, ganglion cells had few clear groupings when these properties were indi-
vidually considered (Segev et al. 2006), which was also observed here. However,
by considering the functional properties in tandem, putative cell types could be
teased out here. For example, cells with similar temporal filters were distinguished
by their receptive field sizes (Fast Large OFF vs Fast Small OFF), and those with
similar receptive field sizes were distinguished by their temporal filters and auto-
correlation functions (Medium Small OFF vs Fast Small OFF). This suggests that a
combination of features is not only helpful, but required if one expects to separate
ganglion cell types.

In contrast, Segev et al. (2006) observed putative types to be less distinct when
grouped according to combined features. Instead, Segev et al. (2006) proposed six
broad classes based on the temporal filters alone: Fast ON, Slow ON, Biphasic OFF,
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Table 5.1t OBSERVED CELL TYPES AND THEIR TEMPORAL COUNTERPARTS.

This work Segev et al. (2006)
Fast ON Fast ON
Fast Small OFF Biphasic OFF
Fast Large OFF Monophasic OFF
Medium Small OFF .
Bursty Medium OFF Medium OFF

Monophasic OFF, Medium OFF and Slow OFE. The matching between this tem-
poral classification and the clusters found in this work is straightforward, but not
always one-to-one, as is shown in Table 5.1. Here, Medium ON and Slow ON cell
types were observed, but not consistently across retinas; most other types could
be matched. Both Bursty Medium OFF and Medium Small OFF types, however,
would fall into the same Medium OFF type. Indeed, Segev et al. (2006) reported
that except for the Biphasic OFF, most of the proposed types showed a diversity
of receptive field sizes and autocorrelation functions — suggesting that the tem-
poral filters may in fact not be sufficient for cell classification. This may also ex-
plain why only the Biphasic OFF cells had been observed to tile in the salamander
retina (Segev et al. 2006; Marre et al. 2012), as tiling is considered a tell-tale of a
single cell type (Section 4.1).

Consistent with being the Biphasic OFF type, the Fast Small OFF cells did tile
the retina. However, they were not the only type to do so — the Fast Large OFF cells
showed a mosaic which was consistent with tiling. Could both cell types actually
come from the same natural type? Not likely. The Fast Small OFF and Fast Large
OFF did not belong in a single mosaic, as combining cells from the two groups
increased the receptive field overlap. Hence, by independently tiling the retina, there
is a strong evidence that each forms an individual cell type.

Indeed, a similar split of the Fast OFF types was recently described in the sala-
mander retina. By presenting the retina with temporal noise that alternated from
high to low-contrast, Fast OFF cells could be separated depending on whether
they adapted or sensitized to the high-contrast conditions. The Adapting Fast OFF
population had small receptive field sizes, with likely biphasic temporal filters.
The Sensitizing Fast OFF had large receptive field sizes, with monophasic tempo-
ral filters (Kastner and Baccus 2011). While sensitization and adaptation were not
measured here, it is tempting to consider the Adapting Fast OFF as analogous to
the Fast Small OFF cells, and the Sensitizing Fast OFF to the Fast Large OFF cells. If
this correspondence is true, it would suggest a role for having two cell populations
with so similar filtering properties; the two populations would compensate each
other for the loss of visual information when changing to a low-contrast condition,
before short-term adaptation has a chance to act (Kastner and Baccus 2011). This
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parallel also suggests higher-order functionality for those cell types. For example,
that the Fast Small OFF cells should preferably encode for the local motion of ob-
jects in the visual scene (object-motion sensitivity, see Olveczky et al. 2003; Kastner
and Baccus 2013).

The question still remains, however, on whether the other observed types were
indeed composed of single natural types. Most reliably identified cell types (see Ta-
ble 4.2) contained very few violations of tiling. These identified types were also
homogeneous in their properties. Even when types were divided based on their
direction-selectivity, this sub-division was limited to few clusters with similar tem-
poral filters (only 3 of the 18 direction-selective cells were Slow OFF, all others
were Medium OFF). The direction-selective Slow OFF cells, for example, may cor-
respond to a recently proposed subtype of direction-selective cells, which focus on
local movement (Kiithn and Gollisch 2012; Kiihn, personal communication).

It is important to note that the number of putative types, as suggested by the
cluster heuristics, may not necessarily give the correct number of natural cell types.
However, the number of types used here closely matched those observed in mor-
phological studies in the salamander (Toris et al. 1995; Costa and Velte 1999). There,
ganglion cells were separated mainly on their dendritic area of influence and on
the complexity of their branching patterns into 5 coarse types. These coarse types,
then, were found to further sub-divide depending on where they branched within
the inner-plexiform layer — which is assumed to define the ON or OFF characteris-
tics of a ganglion cell (Hare et al. 1986). In total, about 10 ganglion cell types were
identified based on their morphology and possible polarity (Toris et al. 1995).

Taken together, the results suggest that the classification method presented here
successfully grouped ganglion cells according to their functional similarities. As
evidenced by the homogeneity of their properties, and few overlaps, ganglion cells
may have been classified into groups likely composed of similar natural types.
This work complements the current physiological view of the salamander retina
by Segev et al. (2006), indicating that functional ganglion cell properties should be
considered simultaneously. Moreover, the discovery of a second tiling type implies
that tiling may be a fundamental feature of ganglion cells also in the salamander
retina.

5.2 SCOPE FOR IMPROVEMENTS

While tiling types were observed, it is likely that the classification may be incom-
plete, and one will eventually find sub-divisions in a few of the proposed types.
For example, because direction selectivity was not taken into account for the clas-
sification, the direction-selective cells were outliers between the Medium and Slow
OFF cells, instead of forming their own class. It could be worth investigating which
sub-divisions may still exist by considering further functional properties. A good
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first candidate is the difference between sensitizing and adapting cells (Kastner
and Baccus 2011). While a parallel exists between the Fast OFF types identified
here and the ones from Kastner and Baccus (2011), it has yet to be tested. More-
over, the dichotomy between sensitizing and adapting cells was not restricted to
the Fast OFF cells, and was also observed for Medium and Slow OFF cells (Kastner
and Baccus 2011).

Another interesting problem is in how to combine data from multiple retinas.
Without pooling data, one may not be able to find rare cell types. Pooling data,
however, decreases the quality of clustering due to the differences in cell properties
between retinas. This was compensated by individually classifying each dataset,
matching the types according to their relative properties (DeVries and Baylor 1997).
An improvement could come from using easily identifiable cell types, such as the
Fast Small OFF cell, as a reference to normalize the remaining cell types.

5.3 TILING IN PHYSIOLOGICAL CLASSIFICATIONS

The observation of tiling ganglion cells is key for confirming (Wassle, Peichl, et
al. 1981; Zhang et al. 2012) or discovering (Cook and Sharma 1995, Shamim et
al. 1999) a retinal cell type (Cook and Chalupa 2000). Tiling has been useful in
morphological studies, for example, to define which properties should be used to
disambiguate between ganglion cells (Shamim et al. 1999; Cook 2004). If tiling is a
general feature of retinal cells (Rockhill et al. 2000), one would expect tiling to be
similarly helpful in the physiological classification of ganglion cells.

Due to the low number of cells in physiological experiments, it is often difficult
to assess tiling for every functional type (Sanes and Masland 2015). While tiling
receptive fields had been observed in the rabbit (DeVries and Baylor 1997) and
monkey (Field et al. 2007) retinas, it was unclear whether the same organization
could be found in salamander retinas (Segev et al. 2006; Marre et al. 2012). In this
work, the observation of tiling in the salamander reinforces tiling as a general prin-
ciple in the organization of the vertebrate retina, which is useful for demonstrating
the existence of a cell type (Cook 1998).

As the number of simultaneously recorded cells increase (Stevenson and Kord-
ing 2011), one can only expect the importance of tiling for the physiological classi-
fication of ganglion cells to grow. Indeed, it may be possible — given enough cells
— to use tiling not only as a tool for confirming putative cell types, but as an active
tool for their discovery. As suggested for morphological studies by Cook (2004),
violations of tiling can be a guide for feature selection. Whenever overlapping cells
are observed, one may search for features that disambiguate them — and use those
features for improving on the classification, repeating as needed.
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5.4 IMPORTANCE OF CLASSIFICATION

The most accepted view of the retina considers the ganglion cells to form a di-
verse population of cells, which however can be grouped into discrete types based
mainly on their morphology. Each type is expected to encode a different aspect of
the visual scene, working as parallel channels of information (see Masland 2012).
However, the retina is also known to extract specific features of an image which
can be behaviorally significant to an animal, performing computation already at
the level of the retina (see Gollisch and Meister 2010). The functional classification
of ganglion cells is an important tool to grasp how visual information is encoded,
aggregating cells into populations which are expected to have a more homoge-
neous response, linking physiological behavior to morphology.

The distinction of types has been used, for example, to explore how much in-
formation is encoded by each ganglion cell type (Koch et al. 2006), the shape of
receptive field mosaics from a single type (Gauthier et al. 2009) and how ganglion
cell types change their response with age (Samuel et al. 2011). The classification of
ganglion cells provides an important view into the retinal circuitry, allowing one
to map the functional connections between different retinal cell types (Asari and
Meister 2014; Field and Chichilnisky 2007) and to target specific cell types. Much
of the classification has however been performed coarsely, which may lose fine in-
formation on types, or manually, which may not scale as the number of recorded
cells grow (Stevenson and Kording 2011; Armafianzas and Ascoli 2015).

The retina is however not the only area of the brain to struggle with neuronal
classification. In other areas of the brain, neuronal identification has been a grow-
ing problem (Stevens 1998; Armafanzas and Ascoli 2015). Because retinal cells
are so easily accessible and have well studied morphological properties, the retina
may be uniquely suited for developing and testing methods for neuronal classifica-
tion (Masland 2004; Sanes and Masland 2015). The tiling observed in retinal cells
may be a fundamental advantage for the fine-tuning of classification methods, but
it may also provide insights into the variety of neuronal types in higher areas of
the brain (Stevens 1998). Hence, by using the retina as a testbed for classification
methods, one may eventually not only understand the retinal circuitry, but also
illuminate aspects of the general organization of the brain.
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