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Multiple sequence alignment using external sources of information

Abstract:

Multiple sequence alignment is an alignemnt of three or more protein

or nucleic acid sequences. The alignment area has always been of much

interest for researchers, this is due to that fact that many scientific researchs

depend in their workflow on sequence alignemnts. Thus, having an alignment

of high quality is of high importance. Much work has been done and is

still carried in this field to help improving the quality of alignments. Many

approaches have been developed so far for performing pairwise and multiple

sequence alignments, yet, most of those approaches rely basically on the

sequences to be aligned as their only input. Recently, some approaches began

to incorporate additional sources of information in the alignment process, the

sources of external data can come from user knowledge or online databases.

This data, when integrated in the workflow of the alignment programs, may

add new constraints to the produced alignment and improve its quality

by making it biologically more meaningful. In this thesis, I will introduce

new approaches for multiple sequence alignment which use the alignment

software DIALIGN along with external information from databases, where

useful information is extracted and then integrated in the alignment process.

By testing those approaches on benchmark databases, I will show that

using additional data during alignemnt produced better results than using

DIALIGN alone without any external input other than the sequences to be

aligned.

Keywords: Multiple sequence alignment, PFAM, PROSITE,

Protein-Domains, Patterns, Profile hidden markov models
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Chapter 1

Introduction

1.1 Assignment formulation

The research projects in genome sequencing and related fields are producing huge

amounts of biological data daily. This data is deposited in public and private

databases in a structured and searchable form. At present, hundreds of free public

databases such as PFAM [47] and PROSITE [16] are available.

Many multiple sequence alignment softwares accept, as their only input, the

sequences to be aligned without employing any other source of external information

in the alignment process. But when such softwares make use of the data available

in public databases, the quality of the produced alignments will be improved. This

happens because constraints will be extracted from the used data and employed

during the alignment calculation.

In this thesis, I will present new approaches which fall under the category of

incorporating external information in the alignment process.

The tasks of this thesis are clearly summarized by the following points:

• Short survey about the various pairwise and multiple sequence alignment

methods.

• Performing sequence alignments using external information from PFAM and

PROSITE databases and then testing those two approaches on the two bench-

mark databases: BAliBASE and SABmark.

• Implementing a webserver for multiple sequence alignments using external

information from PFAM database.

• Implementing an approach for aligning alignments with unaligned sequences.

• Implementing a webserver for aligning alignments with unaligned sequences.
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1.2 Structure of the thesis

Chapter 1 shows the structure of the thesis in addition to a summery of all the

projects presented in this thesis. Moreover, a list of the published, unpub-

lished manuscripts and posters that have been written during the course of

the thesis is presented in this chapter.

Chapter 2 covers a brief introduction to DNA, RNA and proteins.

Chapter 3 provides a detailed introduction about sequence alignment. Various

methods for performing pairwise and multiple sequence alignments will be

mentioned, in addition to some tools which implement those methods. Fur-

thermore, the different versions of the alignment software DIALIGN will be

discussed.

Chapter 4 describes in detail the four projects presented in this thesis: DIALIGN-

PFAM, DIALIGN-PROSITE, webserver for DIALIGN-PFAM, ”aligning

alignments with unaligned sequences”. The algorithms for those approaches

are outlined. Besides, the results of testing DIALIGN-PFAM, DIALIGN-

PROSITE on benchmark databases will be presented.

Chapter 5 mentions a general conclusion and suggests future perspectives.

1.3 Thesis projects summary

Four main projects have been implemented during the PhD period and are presented

in this thesis:

1.3.1 DIALIGN-PFAM

Using external sources of information in the alignment process will certainly im-

prove the performance of the alignment programs by producing biologically more

meaningful and correct alignments. DIALIGN-PFAM [29], one of the latest versions

of DIALIGN, incorporates additional information from PFAM database to improve

its output.

The paper entitled ”Using protein-domain information for multiple sequence

alignments” [29] explains the first implementation of the algorithm behind

DIALIGN-PFAM. A manuscript entitled ”Multiple sequence alignment using in-

formation derived from PFAM and PROSITE databases” provides a detailed de-
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scription of an improved version of the algorithm in addition to the testing results

on BAliBASE and SABmark.

1.3.2 DIALIGN-PFAM webserver

DIALIGN-PFAM webserver is an interactive version of DIALIGN-PFAM. It allows

users to participate in some of the steps in the workflow of this tool.

The paper entitled ”DIALIGN at Gobics-multiple sequence alignment using var-

ious sources of external information” [30] speaks briefly about the DIALIGN-PFAM

webserver, in addition to a brief overview on the previous versions of DIALIGN

webservers.

1.3.3 DIALIGN-PROSITE

Similar to DIALIGN-PFAM, the idea behind DIALIGN-PROSITE is the integra-

tion of external information from PROSITE database in the alignment process.

The manuscript entitled ”Multiple sequence alignment using information de-

rived from PFAM and PROSITE databases” explains in more details the algorithm

behind DIALIGN-PROSITE and shows the results of testing this approach on BAl-

iBASE and SABmark.

1.3.4 Aligning Alignments with Unaligned Sequences

This project is considered as an enhancement done to the anchoring option of

DIALIGN. This newly developed functionality permits users to align an already

existing alignment with a set of alignments or unaligned sequences. Users can

either choose to keep the input alignment/s fixed in the final alignment, or just

keep certain blocks in the input alignment/s fixed in the final alignment.

In the second case, the user has to specify the start and end positions, with

respect to the alignment, of the blocks he wishes to keep fixed in the final multiple

sequence alignment.

Afterward, the smallest possible set of anchor points is extracted from these

blocks and input later on to DIALIGN along with the input sequences in order to

produce the final multiple sequence alignment.

In the manuscript entitled ”Multiple sequence alignment using partial-

alignments as anchor points”, a webserver for the previously mentioned option

is presented. Users can see visually the input alignments on the screen and select

blocks (partial alignments) interactively by pressing on the start and end positions

for each block the user wishes to keep fixed in the final multiple sequence alignment.
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In case the user wishes the whole alignment to be kept fixed in the final alignment

then no blocks shall be selected; thus, the whole alignment will be considered as

one large block.
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Chapter 2

Biological Background

2.1 Nucleic acid

2.1.1 DNA

DNA stands for deoxyribonucleic acid. It is considered to be the blueprint of organ-

isms since it contains all the necessary information for a cell growth and division.

The chemical structure of DNA is a regular backbone of 2’-deoxyriboses, joined

by 3’-5’ phosphodiester bonds. Information carried by a certain DNA molecule is

represented by a series of four chemical bases(Figure 2.1):

• The purines adenine ’A’ and guanine ’G’

• The pyrimidines cytosine ’C’ and thymine ’T’

DNA bases pair with each other: the adenine nucleotide on one DNA strand

can bind with the thymine nucleotide on the other strand via hydrogen bonds to

form units called base pairs. On the other hand, the guanine and cytosine can base

pair with each other. These base pairs A-T and C-G when stacked over each other

via hydrophobic interactions will form what is known as a ’Chromosome’. The

latter is a thread-like molecule that carries hereditary information on two DNA

helix strands.

Figure 2.1: Chemical structures of the heterocyclic bases of DNA.
Source: “www.atdbio.com”

http://www.atdbio.com/img/articles/DNA-heterocyclic-bases-large.png
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2.1.2 RNA

RNA stands for ribonucleic acid. Its chemical structure is similar to that of DNA.

The backbone of RNA uses riboses rather than 2’-deoxyriboses, and the methyl

group on the thymine is absent. There are three main types of RNA:

• Messenger RNA (mRNA)

• Transfer RNA (tRNA)

• Ribosomal RNA (rRNA)

rRNA and tRNA are parts of protein synthesizing engine, and mRNA is a

template for protein synthesis.

2.2 Proteins

2.2.1 Definition

Proteins are among the most complex molecules known so far. A protein molecule

is made of a sequence of amino acids. Amino acids are the building blocks of all

proteins. There are 20 amino acids, each one is characterized by its own chemical

properties. Most of the amino acids have a structure based on a single carbon atom

to which is attached four different groups of atoms: an amine group, a carboxylic

acid group, a hydrogen atom and a variable group which is unique for every amino

acid. Every three bases of RNA codes for an amino acid, (see figure 2.2 for more

details).

2.2.2 Protein structure

A protein sequence is composed of a chain of amino acids. This chain is called a

polypeptide chain and is considered to be the primary structure of a given protein

sequence. The primary structure describes the unique order in which amino acids

are linked together. Protein also have a secondary structure. The most common

ones are alpha helices and beta sheets. The alpha helix structure resembles a coiled

spring while the beta sheet structure appears to be folded out like a sheet. Moreover,

proteins have a tertiary structure which refers to the comprehensive 3-D structure

of the polypeptide chain of the protein.
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Figure 2.2: Triplet codes for each Amino Acid. Source: “www.biogem.org”

2.2.3 Transcription and translation

Important biological events link DNA, RNA and proteins. These events are tran-

scription and translation. Transcription is the process of transforming DNA to

messenger RNA (mRNA). At this stage, the mRNA constitutes of expressed re-

gions (exons) and unexpressed regions (introns). The latter are spliced out by a

splicing machinary. In the case of eukaryotes, transcription takes place in the cell

nucleus by an enzyme named RNA Polymerase. The mRNA is then transferred

to the cytoplasm where it meets the ribosome. fterwards, translation takes place.

During this process, mRNA along with tRNA are used by the ribosome to produce

proteins.

2.2.4 Protein functions

Proteins serve various functions in the body. They are involved in almost all cell

functions. Every protein has a specific function. The antibodies for instance are

involved in defense against antigens. Enzymes catalyze biochemical reactions, for

example, lactase enzyme breaks down the lactose sugar found in milk. Pepsin,

another enzyme, is a digestive enzyme that works in the stomach to break down

proteins in food. Other proteins act as transcription factors that turn genes on

http://www.biogem.org/codon.jpg
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and off. Other proteins, the hormonal proteins, help in coordinating certain bod-

ily activities. For instance, insulin regulates glucose metabolism by controlling the

blood-sugar concentration; oxytocin simulates contractions in females during child-

birth while somatotropin is a growth hormone that simulates protein production in

muscle cells.

The structure of a protein helps in identifying its function. For instance, col-

lagens have a long coiled helical shape which looks like a rope. This structure is

great for providing support for connective tissues such as tendons and ligaments.

For another example, see figure 2.3.

Figure 2.3: Hemoglobin is a folded and compact protein with a spherical shape that
is mostly useful for maneuvering through blood vessels and transporting oxygen.
Source: “rpi-cloudreassembly.transvercity.net”

2.2.5 Protein domains and families

A protein domain is a part of a protein sequence that has a specific function or

interaction, can fold and exist independently of the rest of the protein sequence. A

single protein domain’s length ranges from 25 up to 500 amino acids. Most often,

it is conserved through evolution. A certain domain may appear in a variety of

different proteins. On the other hand, many proteins consist of several structural

domains. For instance, Src homology 3 (SH3) is a protein domain that is involved

in protein-protein interactions. These domains occur in a diverse range of proteins

with different functions. An example of a protein which contains three copies of the

http://rpi-cloudreassembly.transvercity.net/2012/11/05/forms-of-oxygen/
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SH3 domain is the cytoplasmic protein Nck. lilo put reference to this protein

A protein family is a set of proteins which share common functions, similar

structures and a common evolutionary ancestor. PFAM [47] is an important exam-

ple of a database which contains a large number of protein domains and families,

presented as profile hidden markov models [18] and multiple sequence alignments

(For an example of a protein family, see figure 2.4 ).

Figure 2.4: Piwi is a family of protein sequences, its name stands for: P-element in-
cluded wimpy testis. Piwi is a class of genes which play crucial roles during germline
development and gematogenesis of many metazoan species. This family contains
2067 protein sequences. This figure illustrates a section of the seed alignment for
the family which constitutes of 18 sequences. A seed alignment of a certain family
is a small subset of sequences from the complete set of sequences contained within
the family. The sequences in the seed alignment are representative members of the
family they belong to. Source: “pfam.xfam.org”

2.3 Types of mutations through evolution

Mutations are permanent changes that happen to the nucleotides of a DNA se-

quence. Two factors play important role in causing DNA mutations:

• External factors, i.e. environmental factors such as radiation.

• Native factors which are errors that occur during DNA replication.

2.3.1 Types of mutations

There are several types of mutations, they are listed below with examples. The

mutated segments in the sequences are highlighted in yellow.

http://pfam.xfam.org/family/Piwi#tabview=tab3
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• Insertion: a mutation where extra base pairs are inserted into the DNA se-

quence. Example:

Original sequence ACG GGC TTA ATA ATG

Mutated sequence ACG GGC TT A TA A ATA ATG

• Deletion: a mutation in which one or more nucleotides are deleted from the

DNA sequence. Example:

Original sequence ACG GGC T TA T AA ATA ATG

Mutated sequence ACG GGC TAA ATA ATG

• Translocation: a section of DNA is exchanged between two or more non-

homologous chromosomes (for an example, see figure 2.5).

• Inversion: The order of a segment of nucleotides is reversed.

2.3.1.1 Frameshift

A frameshift is an insertion or deletion of a number of nucleotides. The added

or deleted segment is not a multiple of three, as a result, the reading frame is

altered. Example:

Original sequence ACGGGCT TATT AAATAAT

Mutated sequence ACGGGCTAAATAAT

Figure 2.5: Example of a translocation of the two genes J and K from one chro-
mosome to th other. Source: “biology-online.org”

http://www.biology-online.org/2/8_mutations.htm
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2.3.1.2 Point mutations

A point mutation is a single base change in a DNA sequence. A point mutation

may be silent, missense, or nonsense.

– Silent: since amino acids are encoded by more than one codon, a muta-

tion can silent when the change in the DNA sequence does not change

the coded protein sequence. Example:

Original sequence CAA GGC TAA TAA

Mutated sequence CA G GGC TAA TAA

In both sequences, the first codon codes for the Glutamine amino acid

– Missense: a mutation in one nucleotide which changes the codon to a

different amino acid. EXample:

Original sequence CAA GGC TAA TAA

Mutated sequence CA C GGC TAA TAA

The first codon in the original sequence codes for Glutamine while the

first codon in the mutated sequence codes for Histadine.

– Nonsense: a mutation in one nucleotide which results in a STOP codon.

Example:

Original sequence CAA GGC TTA TAAT

Mutated sequence CAA GGC T A A TAAT

The third codon in the original sequence codes for Leucine while in the

mutated sequence it codes for the STOP codon.





Chapter 3

Sequence Alignment

Sequence alignment is one of the major research subjects in the bioinformatics

field. It accepts as its input two or more protein or nucleic acid sequences, then

identifies using some measures the regions of the sequences that are similar, and

finally outputs the homologous positions aligned in columns. An alignment displays

the residues for each sequence on a single line, with gaps ”-” inserted such that

homologous residues appear in the same column.

Let Al = {α1 . . . αn} be an alphabet of size n containing the characters that

may constitute any given sequence. For DNA sequences, Al = {A,C,G, T}. For

protein sequences, Al constitutes mainly of the twenty amino acids. A sequence

can be denoted as S = α1α2 . . . αg where g is the length of the sequence. An

alignment of k sequences S1, S2, . . . Sk is the set of sequences S′
1, S

′
2, . . . S

′
k where

S1 is transformed to S′
1, S2 is transformed to S′

2 . . . and Sk is transformed to S′
k

by inserting gaps in the original sequences in certain positions allowing the new

produced sequences to share more similarity.

3.1 Similarity versus homology

The term ’Homologous’ in the sequence alignment context is meant to be on the

structural and evolutionary level. Sequence alignment always try to visualize the

relationships between residues in a collection of evolutionarily or structurally related

sequences.

Strong similarity between two sequences presents a strong argument for their

homology and provides an evidence that the two sequences have a common ancestor.

Thus, sequences of related proteins or genes are similar, in a sense that one could

align the sequences such that many corresponding residues match.

On the other hand, if a set of sequences are homologous, then they should not

necessarly share a noticeable similarity .
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Figure 3.1: Some of the applications of sequence alignment.

3.2 Applications Of multiple sequence alignment

An alignment provides a closer view on the underlying evolutionary, structural, or

functional constraints characterizing the sequences involved in the alignment.

Sequence alignment is a critical step towards sequence comparison. It is useful

in discovering structural information and helps in detecting functional relationships

between related species.

Alignment, as a single task, is of little interest for most researchers. Most often

it is used as a transitional step to reach deeper areas of study (Figure 3.1). Sequence

alignment enables researchers to identify conserved regions and functional motifs,

facilitates evolutionary and phylogenetic studies [40, 41], aids in structure prediction

[42, 43] and characterization of protein families [44, 46, 47]. The quality of sequence

alignments plays a major role in the analyses process of protein sequences [48].

Thus, it is important to obtain and use high quality and biologically meaningful

alignments. This is why sequence alignment is an active area of research.
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3.3 Global verses Local alignment

A global alignment in general tries to align a pair of sequences starting from the

first pair of nucleotides in both sequences till the last pair. Global alignments are

used when the sequences to be aligned share similarity along their full length.

On the other hand, local alignments tries to align only some specific parts of the

sequences which share a significant similarity according to some measure (Figure

3.2).

It seems that local alignment shall always be used, however, it may be difficult

to spot an overall similarity if one uses only local alignment. It might also appear

that finding an optimal local alignment is more complex than finding an optimal

global alignment since in the first case, the start and end positions of the sequences

involved in the alignment must be found. Nevertheless, only a constant factor more

calculation is necessary.

Figure 3.2: Global alignment (upper figure) v.s. local alignment (lower figure). To
align sequences globally, the Needleman & Wunch algorithm [1] can be used while
the Smith & Waterman algorithm [5] can be used to align sequences locally. Source:
David Gibert, 2013 [Sequence Comparison].
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3.4 Scoring scheme

Before calculating an alignment, two important factors should be defined: the ob-

jective function and the optimization algorithm. The objective function defines

how the quality of a certain alignment is determined. Generally, the quality of an

alignment depends on its score such that alignments with higher scores have better

quality. On the other hand, the optimization algorithm defines the method used to

calculate the alignment.

A scoring scheme is adopted by almost all alignment methods in order to evalu-

ate an alignment. Many alignment methods uses a scoring scheme that consists of

character substitution scores plus penalties for gaps(explained in the next section).

A simple scoring scheme is represented by a ”+1” for a match and a ”−1” or

”0” for a mismatch. This scheme is not very helpful when it comes to identifying

the biologically meaningful alignments since more factors should be taken into con-

sideration when assigning substitution scores. For example, in the case of protein

sequence alignment, the score of substituting two amino acids that are chemically

similar should be higher than that of two chemically non-similar ones.

3.4.1 Protein substitution matrices

The protein substitution matrices are used to score protein sequence alignments.

They offer a substitution score for each pair of amino acids. The most widely used

substitution matrices for protein alignment are PAM [2] and BLOSUM [3]. The

scores presented in these matrices are derived from the analysis of known alignments

of evolutionary related proteins.

3.4.1.1 PAM

PAM matrices were developed by Margaret Dayhoff and co-workers. PAM stands

for Point Accepted Mutations. The scores presented in PAM are derived from

alignments of very similar sequences of at least 85% identity. The expression ”Ac-

cepted point Mutation” refers to the case where a single amino acid is replaced with

another one such that this process is accepted by natural selection.

3.4.1.2 BLOSUM

The BLOSUM matrices were created by Henikoff and Henikoff. BLOSUM stands

for BLOck SUbstitution Matrix.
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BLOSUM matrices are based on local alignments of distantly related sequences.

In summary, a BLOSUM matrix is created by the following procedure:

• Short gap-free multiple alignments are gathered.

• In every alignment, similar sequences (according to some threshold value of

sequence identity) are clustered into groups.

• For every pair of amino acids between the already produced groups, substi-

tution frequencies are determined. The BLOSUM matrix is then calculated

using those frequencies.

The number found next to any BLOSUM matrix name reflects the threshold

identity percentage of the sequences clustered in the groups.

3.5 Gaps

Gaps can be considered as artificial insertions into sequences to move similar

segments of sequences into alignment. For instance, consider the following simple

pairwise alignment:

S1 : VSAAP- EEM

S2 : VSAAPYEEM

A gap, which is represented by a dash symbol ”-”, is inserted after the fifth

residue in S1. This can imply two possibilities:

• First possibility: an amino acid residue has been deleted from S1.

• Second possibility: an amino acid residue has been inserted in S2

Regarding the first possibility, when a residue seems to be deleted, a dash is

inserted instead. With respect to the second possibility, if it seems that a residue

is inserted, then a gap is inserted in the other unaugmented sequence.

In any given alignment, inserting gaps will lower the score of this alignment,

this is due to what is called a ”gap penalty”. A gap penalty can be affine, constant

or linear, where the last two are considered to be special cases of the affine gap

penalty.
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3.5.1 Constant

A constant penalty is given to every gap. This method does not depend on the gap

length. For instance, a gap penalty of −2 and a gap of length 10 will result in a

total gap penalty of −2 (the gap length is not taken into consideration).

3.5.2 Linear

This gap penalty depends linearly on the gap length. For example, a gap penalty

of −2 and a gap of length 10 will result in a total gap penalty of −2 x 10 = −20.

3.5.3 Affine

The affine gap penalty depends on a linear function to calculate the gap cost. One

of the terms in this function depends on the length of the gap while the other does

not. The form of the gap penalty is:

Gap penalty = X + (Y.L)

Where X is the gap opening penalty, Y is the extension penalty and L is the

length of the gap. As an example, a gap penalty of −2, a gap extension penalty of

−1 and a gap of length 10 will result in a total gap penalty of −2 + (−1 x 9) = −11.

3.6 Pairwise sequence alignment

3.6.1 Dynamic programming

The idea behind using dynamic programming in sequence alignment is to build up

an optimal alignment using previous solutions for optimal alignments of smaller

subsequences. Dynamic programming was first used to calculate global alignments

with the Needleman-Wunch algorithm [1]. A local alignment version is the Smith-

Waterman algorithm [5]. For a pair of sequences, both algorithms take nxm for

space and time complexity where n is the length of the first sequence and m is the

length of the second one.

3.6.1.1 Needleman-Wunsch

The Needleman-Wunsch algorithm is a classical algorithm which uses dynamic pro-

gramming to find the optimal global alignment between two sequences using already

calculated optimal alignments of shorter subsequences.
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A scoring function is used in order to score the various alignments, and the

alignment which gets the highest score is considered to be the optimal alignment.

The score of matches is calculated using a substitution matrix (such as PAM [2] or

BLOSUM [3]). On the other hand, gaps penalize the alignment score with a given

gap penalty. For the Needleman-Wunsch algorithm, linear gap penalty is used.

This algorithm produces reasonable alignments when the input sequences are

closely related. Furthermore, detecting similar regions between sequences with small

overall similarity is not so manageable, especially that the resulting alignments

depend on a set of user-defined input parameters.

To briefly explain the Needleman-Wunch algorithm, consider a pair of sequences:

S = s1 . . . sn and S′ = s′1 . . . s
′
m. Construct a matrix M with n + 1 columns and

m+1 rows. M(i, j) is the score of the best alignment for the subsequences s1 . . . si

from S and s′1 . . . s
′
j from S′.

In the first stage, M is initialized as follows:

• Initialize M(0, 0) with 0;

• Along the top row where j = 0, initialize M(i, 0) with −i.d, where d is the

gap penalty and 0 < i ≤ n;

• Along the first column where i = 0, initialize M(0, j) with −j.d, where d is

the gap penalty and 0 < j ≤ m;

M is then filled recursively from top left to bottom right. In order to find the

value of M(i, j), three values should be known:

• M(i− 1, j − 1)

• M(i, j − 1)

• M(i− 1, j)

An alignment up to si and s′j can be performed in three different ways:

• si and s′j are aligned together

• si is aligned to a gap

• s′j is aligned to a gap

Since M(i, j) is the score of the best alignment up to si and s′j , it is defined to

be the maximum of the following three different values:
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M(i, j) = max


M(i, j − 1)− d

M(i− 1, j)− d

M(i− 1, j − 1) + C(si, s
′
j)}

where C(ai, bj) is the substitution score of the two residues si and s′j and d is

the gap penalty. M(i, j − 1) − d is the score of the best alignment of s1 . . . si and

s′1 . . . s′(j−1) minus a gap penalty, since s′j is aligned to a gap. M(i− 1, j)− d is the

score of the best alignment of s1 . . . s(i−1) and s′1 . . . s′j minus a gap penalty, since

si is aligned to a gap. M(i− 1, j − 1) +C(si, s
′
j) is the score of the best alignment

of s1 . . . s(i−1) and s′1 . . . s′(j−1) plus the substitution score of si and s′j since these

two residues are aligned together.

Whenever a certain M(i, j) is calculated, a pointer to the previous cell in the

matrix where M(i, j) was derived from is kept.

M is filled recursively until all the values fromM(1, 1) toM(n,m) are calculated.

M(n,m) carries the score of the optimal global alignment between S and S′.

In order to get this optimal global alignment, a traceback is performed where the

alignment is built in reverse starting from the last cell in matrix M and following

the already stored pointers until the first cell M(0, 0) is reached. Going back from

M(i, j) to the previous cell can be done in three ways:

• Case 1: going back from M(i, j) to M(i− 1, j − 1)

• Case 2: going back from M(i, j) to M(i, j − 1)

• Case 3: going back from M(i, j) to M(i− 1, j)

This is determined by the pointer that have been saved previously which shows

from which cell M(i, j) has been derived from.

Depending on which previous cell is reached, a pair of symbols is added to the

front of the global alignment that is being calculated:

• si and s′j are added if Case 1 applies.

• s′j and a gap ’−’ are added if Case 2 applies.

• si and a gap ’−’ are added if Case 3 applies.

Backtracking terminates when M(0, 0) is reached (Figure 3.3).

The time and space complexity of the Needleman-Wunsch algorithm is O(n.m).
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Figure 3.3: Filled-in Needleman-Wunsch table with traceback. Source:
http://www.ibm.com/developerworks/library/j-seqalign/.

3.6.1.2 Smith-Waterman

It may often be the case that two sequences share some similarity in certain parts

and not through the entire length of the sequence. This is achieved through aligning

the pair of sequences locally. The Smith-Waterman algorithm finds the best local

alignment between a pair of sequences.

Just like the Needleman-Wunsch algorithm, the Smith-Waterman uses dynamic

programming to find the optimal local alignment between two sequences using al-

ready calculated optimal alignments of shorter subsequences.

A scoring function is used in order to score the various alignments, and the local

alignment in the alignment matrix which gets the highest score is considered to be

the optimal local alignment.

The Smith-Waterman algorithm is very similar to that of the Needleman-Wunch,

but with some differences.

The first difference lies in the way matrix M is initialized. The top row and the

first column of M are fillied with 0 instead of −i.d and −j.d as it is the case in the
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Needleman-Wunsch algorithm.

When it comes to finding the value of M(i, j), a new value ’0’ is added to the

previous three values from which M(i, j) take the maximum of:

M(i, j) = max


M(i, j − 1)− d

M(i− 1, j)− d

M(i− 1, j − 1) + C(si, s
′
j)

0}

Taking the option 0 is equivalent to starting a new alignment. When the best

alignment up to some point has a negative score, then it is certainly better not to

extend the old alignment but to start with a new one. Random long matches have

a negative score, otherwise they will be favored more than strong local matches of

shorter length.

Since the aim of the algorithm is to find the best local alignment, this alignment

can start and end anywhere in M without the need to extend from M(0, 0) till

M(n,m). As a result, negative values are not considered.

For backtracking, instead of starting at M(n,m), the process starts at the cell

having the highest score Mh. Then it goes backward following the path of the

pointer stored in the current cell as it is the case in the Needleman-Wunsch algo-

rithm. This continues until a cell with value 0 (which corresponds to the start of the

local alignment) is reached (Figure 3.4). The score of the obtained local alignment

is equal to Mh.

A time complexity of O(nm) is required to align a pair of sequences of length n

and m.

3.6.2 BLAST

When it comes to aligning large sequences together, dynamic programming becomes

too slow for this task. Thus, heuristic methods are preferably used in this case. The

K-tuple methods are in general more effective than the two previously mentioned

ones. They are heuristic methods based on shared tuples (words) of length K

between a pair of sequences. Such methods do not guarantee to find the optimal

alignment solution.

BLAST [6] which stands for Basic Local Alignment Search Tool is a widely used

tool that uses string matching algorithms in order to accomplish its tasks. BLAST
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Figure 3.4: Filled-in Smith-Waterman table with traceback. Source:
http://www.ibm.com/developerworks/library/j-seqalign/.

allows to search a query sequence against a library or a database of sequences, and

outputs a set of sequences that resemble the input sequence.

Depending on the query sequence, different types of BLAST exist, these include:

nucleotide blast, protein blast, blastx, tblastn, tblastx, ... etc.

BLAST uses heuristic algorithms to calculate alignments:

1. BLAST divides the query sequence into tuples (a tuple is a series of characters)

with a certain fixed length. By default, the length is equal to three for protein

sequences and eleven for nucleotide sequences. A sliding window is used to

break a given sequence into tuples. Those tuples are then compared against

sequences in a database (hit sequences).

2. Blast locates all common tuples between the query sequence and the hit se-

quence(s). Only those matches having a score higher than a certain score

threshold T are considered. The score of a match is calculated using a sub-

stitution matrix.
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3. After obtaining all the possible matches, BLAST extends them in both direc-

tions in an attempt to generate an alignment. With every extension, the score

of the alignment is either increased or decreased. The extension continues as

long as the score of the alignment does not drop beneath the maximal score

obtained so far. Otherwise, the alignment ceases to extend. This will prevent

poor alignments to be included in the final result. Moreover, segments in the

alignment with score less than T are discarded.

3.6.2.1 BLAST verses the Smith-Waterman algorithm

When it comes to database similarity searches, the Smith-Waterman and the

BLAST algorithms are the most widely used algorithms within this field.

By using the Smith-Waterman algorithm, one can be sure that optimal local

alignment(s) between a given query sequence and database sequence is calculated.

It is more accurate than BLAST meaning that it does not miss any information.

Due to this, the Smith-Waterman algorithm is very time-consuming and computer

power intensive.

When it comes to BLAST, and due to the fact that it is a heuristic algorithm, it

does not guarantee to find the best results, as it misses the hard-to-find matches be-

tween the query and the target sequences. However, the algorithm is fast compared

to Smith-Waterman.

3.7 Multiple sequence alignment methods

Multiple Sequence Alignment is an alignment of three or more protein or nucleic acid

sequences that help in identifying regions of homology between the input sequences.

This will help in a following step to study more the evolutionary relationships

between the input sequences.

3.7.1 Progressive alignment

Aligning large number of protein sequences may need to be accomplished using

heuristic methods rather than the optimal methods that consume an exponential

runtime. The mostly adopted heuristic strategy when aligning protein sequences is

the progressive alignment method. This method produces sensible alignments with

an efficient running time.

The main idea behind any progressive alignmnet approach is building a guide

tree out of a set of sequences and then aligning those sequences according to the
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order proposed by the tree.

The Feng-Doolittle progressive alignment method [31] is one of the first progres-

sive alignment methods. Many of the current widely used alignment tools adopt

the algorithm of Feng-Dolittle.

For a set of n sequences, progressively aligning those sequences using the Feng-

Dolittle requires performing the following main steps:

1. Distances are calculated between each pair of sequences. A n(n − 1)/2 dis-

tances matrix is produced.

2. Using a clustering algorithm, a guide tree is constructed from the distance

matrix of step 1.

3. Child nodes are aligned according to the order provided by the guide tree.

The two child nodes could be two sequences, two alignments, or an alignment

and a sequence.

The algorithm stops when all the nodes in the guide tree have been processed.

Regarding step 1, the Feng-Dolittle algorithm uses the following formula to

calculate the distances:

D = −logSeff = −log(Sobs − Srand)/(Smax − Srand)

Sobs: The observed pairwise alignment score.

Smax: The maximum score, which is the average score of aligning either sequence

to itself.

Srand: Score of aligning two random sequences having the same length and

residue composition.

Regarding step 2, UPGMA and NJ clustering methods are suitable for this task.

Regarding step 3, three types of alignments may exist:

• When the two child nodes are represented by two sequences, the usual pairwise

dynamic algorithm is used to align those pair of sequences.

• When the two child nodes are represented by an alignment and a sequence,

then this sequence is pairwisely aligned with every other sequence in the

alignment. The pairwise alignment having the highest score will define how

the sequence will be aligned to the alignment.

• When the two child nodes are represented by two alignments, all possible pair-

wise alignments between the sequences of the two groups are performed. The
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pairwise alignment having the highest score will define how the two alignments

are aligned together.

The disadvantage of progressive alignment methods in general is the inability

to recover from errors made in earlier steps. This is because once an alignment is

produced in each step, it is kept fixed and cannot be altered.

PRRP aligns sequences progressively according to a predicted evolutionary tree,

and periodically reassesses both the evolutionary tree and the alignment under

construction.

PIMA, which stands for Pattern-induced multi-sequence alignment, is an align-

ment method which uses the progressive alignment technique to align protein se-

quences. Its workflow can be summarized by the following steps:

1. PIMA first calculates all possible pairwise local alignments between each pair

of the input sequences and a distance matrix is then produced.

2. WPGMA (Weighted pair Group Method using Arithmetic averaging) is then

used to build a guide tree.

3. Sequences from the leafs of the guide tree are progressively aligned and a

pattern is generated for each pairwise alignment.

3.7.1.1 Iterative alignment

The iterative alignment methods are considered as an extension of the progressive

alignment methods. Since alignments when produced using a progressive alignment

method are fixed and cannot be changed, the iterative methods came to provide a

solution for this point. The algorithm behind iterative alignment methods can be

summarized by the following steps:

1. An initial alignment is calculated.

2. One sequence is taken from the alignment and re-aligned to the profile of

the remaining sequences. Only cases where the score is being optimized are

considered, this means that the overall score is increased or stays the same.

3. Step 2 is repeated by choosing another sequence and re-aligning it to the profile

of the remaining aligned sequences until the alignment does not change.

The iterative refinement methods are able to generate excellent alignments, but

require more computing resources than progressive alignment methods.
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FAlign [32] combines the two algorithms: progressive and iterative refinement

to align protein sequences.

Another iterative multiple sequence alignment tool is MUSCLE [38] (multiple

sequence comparison by log-expectation). The alignment process in MUSCLE is

done on three stages (Figure 3.5).

Stage 1: Draft progressive Distances between sequences are estimated using K-

tuple distances. Afterwards, UPGMA is used for clustering using the already

produced distances. Then a progressive alignment is calculated.

Stage 2: Improved progressive Since the K-tuple distance measure results in

suboptimal tree, the tree is re-estimated in this stage using Kimura distances.

Kimura is more accurate than K-tuple. It requires an alignment as an input,

so, the already produced alignment in the previous stage is used and new

distances are calculated. UPGMA is used again for clustering and a new

progressive alignment is produced.

Stage 3: Final stage In the last stage, an edge is chosen from the tree produced

in the previous stage. Edges are visited in order of decreasing distance from

the root. This edge is deleted creating two sub alignments. A profile is

then created for each of the produced sub-alignments. Next, the profiles are

aligned together and the resultant multiple sequence alignment’s SP score is

calculated. If the score gets worse, the alignment is discarded. If the SP score

improves, the alignment is kept and all the steps of choosing an edge up to

aligning the two profile alignments are repeated till convergence is achieved

or till a user specified SP score is reached.

3.7.1.2 Profile alignment

When given a multiple sequence alignment, mush useful information can be ex-

tracted from the alignment and used later on when a new sequence(s) needs to be

aligned to this already existing alignment.This important information constitutes

what is known to be a profile, which is a table containing position-specific symbol

comparison values and gap penalties.

An alignment of two profiles is a multiple sequence alignment obtained by in-

serting complete columns of gaps into the first profile or the second one without

changing the alignment of any of the two profiles.
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Figure 3.5: MUSCLE algorithm overview. [Source: Fig. 2 in PMID: 15034147].

CLUSTALW [8] is a profile-based progressive alignment tool. It allows new

sequences to be added to an existing alignment without modifying it. Alignments

in ClustalW are calculated over three stages:

1. Pairwise sequence alignments are produced for all possible pairs of sequences.

Out of those alignments, a distance matrix is produced. The distances are

calculated using a fast approximate method [50].

2. A guide tree is calculated from the distance matrix using neighbor-joining

[49].

3. The sequences are progressively aligned respecting the order presented in the

guide tree.

Other profile methods include PROMALS [9] (PROfile Multiple Alignment with

predicted Local Structure). The workflow of PROMALS can be summarized by the

following seven steps (Figure 3.6).
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• K-tuples method is used to build a guide tree in order to set the alignment

order. Building this guide tree requires performing the following steps:

– K-tuple are identified for each sequence (a K-tuple is a contiguous sub-

sequence of length K).

– Pairwise distances between sequences are derived from the fraction of K-

tuple in common between a given pair of sequences. A distance matrix

is produced.

– UPGMA is used to cluster the distance matrix. A guide tree is produced.

• Highly similar sequences are progressively aligned with a weighted sum-of-

pairs measure of BLOSUM62 scores. Two neighboring groups are aligned in

this step only if they have an average sequence identity that is higher than

a certain threshold (the default threshold is equal to 60). Pre-aligned groups

that are relatively divergent from each other are produced in this step.

• Representative sequences are selected from each pre-aligned group. A repre-

sentative sequence is the longest sequence in a given group.

• The selected sequences from the previous step are processed by PSI-BLAST

[10] which will search for homologous sequences from the UNIREF90 database

[12]. Hits which have less than 20% identity are removed. PSIPRED [13] is

then used to predict the secondary structures using the PSI-BLAST check-

point file that is produced after the third iteration.

• Using the alignments produced by PSI-BLAST and the secondary structures

produced by PSIPRED, profiles are produced and a matrix of posterior prob-

abilities of matches between positions is obtained by forward and backward

algorithms of a profile-profile hidden Markov model [9]. Out of those matrices,

the scores are calculated [7].

• The scores are used to align the representatives progressively.

• The produced alignments, along with the pre-aligned groups that were ob-

tained in the first step are merged together.

• Gap placement is refined in the alignment produced from the previous step

to make the gap patterns more realistic. In order to explain how this is done,

two terms should be defined:

– Core block: a set of consecutive positions with gap content less than 0.5

at each position.
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– Gappy region: a set of consecutive positions with gap contents no less

than 0.5 at each position.

In the gap refinement stage, continuous gap characters are introduced in be-

tween the [l/2]th residue and the (l[l/2])th residue in all the gappy segments,

where l is the number of amino acid residues in a given gappy region. Gappy

segments in the N- or C-terminus regions are treated in a different way, where

a group of continuous gap characters is inserted at the beginning of the se-

quence or at its end.

Figure 3.6: Flowchart of PROMALS multiple sequence alignment procedure.
Source: [9]

PSI-BLAST (Position-Specific Iterative Basic Local Alignment Search Tool) [10]

is another profile alignment tool which provides a mean for detecting distant rela-

tionships between proteins. After obtaining a multiple sequence alignment of se-

quences detected using protein-protein BLAST, PSI-BLAST constructs a position-

specific scoring matrix (PSSM) or profile which will be used to further search the

database again for new matches. The matrix gets updated at each iteration with

the newly detected sequences.

3.8 Tools that integrate external information in the

alignment process

One of the alignment tools which make use of the publicly available data is COBALT

[14] which is a constraint based alignment tool. It derives information from different
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sources and then incorporates it in the multiple sequence alignment process. One

of the sources that COBALT uses to extract information is databases. COBALT

searches databases and extract pairwise constraints. Those databases are the con-

served domain database (CDD) [15] and PROSITE protein-motif database. This

approach has proved to improve COBALT’s alignment quality.

Another example is DBclustal [51], which is a web application that allows to

include external information derived from database searches, more precisely from

protein BLAST searches, in the alignment process.

T-coffee [22] is another perfect example. Its name stands for Tree based Consis-

tency Objective Function For alignmEnt Evaluation. The basic idea behind T-coffee

consists of combining global and local sequence information. The workflow of T-

coffee (Figure 3.7) can be divided into five main steps:

• In the first step, T-coffee generates two primary libraries. Those libraries con-

tain pairwise alignments. The first library contains global pairwise alignments

for every pair of sequences. Those alignments are calculated by ClustalW [8].

The second library contains local alignments for each pair of sequences. Any

given local alignment consists of the top ten scoring non-intersecting local

alignments calculated by Lalign [11].

• T-coffee assigns a weight score for every pair of residues in the pairwise align-

ments included in both libraries. This weight is equal to the average identity

between the matched residues in the complete alignment from which this pair

comes.

• In the third step, both libraries are combined together into one library.

Residue pairs which are common in both libraries are added to the new li-

brary as a single entry with a weight equal to the sum of weights of the two

original residue pairs. Otherwise, an entry is created for any pair that exists

only once in any of the two libraries.

• In the library, a weight is assigned to each pair of residues. The weight value

depends directly on the number of sequences supporting the alignment of

that pair: the more sequences involved, the higher the weight is. Afterwards,

this pair with the new weight is added to an ”extended library”. This whole

process is called library extension.

• Pairwise alignments are used to produce a distance matrix. Using neighbor

joining, a guide tree is built which will guide the progressive alignment pro-

cess later on. The closest pair of sequences in the tree are aligned first using
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dynamic programming. The weights in the extended library are used to align

the sequences. The produced alignment is fixed and the positions where gaps

are introduced cannot be altered. Afterwards, the closest pairs of a given

entity is aligned together, where an entity can be a sequence or a group of

sequences. Thus, either a sequence is aligned with a sequence, a sequence is

added to an existing group of aligned sequences, or two groups of aligned se-

quences are joined together. Then the next closet pair of sequences is aligned,

or a sequence is added to the existing alignment of the first two sequences.

This continues until all the sequences have been aligned togetehr.

Figure 3.7: T-Coffee workflow: step 1: Generating primary libraries for alignments.
Step 2: Deriving library weights. Step 3: Combining libraries into single primary
library. Step 4: Extending the library. Step 5: Using the extended library for
progressive alignment [Source: Fig. 1 in PMID: 10964570]
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CLUSTAL Omega [17] is the latest addition to the CLUSTAL family. In order to

calculate multiple sequence alignments, Cluctsl Omega first uses a modified version

of mBED [53] in order to create a guide tree. Next, it aligns the sequences using

the HHalign package [54]. Using Clustal Omega, one can also align new sequences

to an existing alignment, or use an already existing alignment to help align new

sequences. Clustal Omega has a new feature which allows the incorporation of

external information in the alignment process. Using this option, users can add as

input, in addition to the sequences to be aligned, a profile HMM that is derived from

an alignment of sequences which are homologous to the input set of sequences. The

latter will be aligned to the profile to help align them to the rest of the sequences.

Another tool which allows the inclusion of an external sources of information in

the alignment process is DIALIGN using its anchoring option. This option, which

is explained in more details in the DIALIGN section, allows users to integrate their

own knowledge in the alignment process such that, if the user already knows that

certain regions in the input sequences are functionally or evolutionary related and

aligning them together will certainly improve the quality of the produced alignment,

he/she can input those regions to DIALIGN in the form of anchor points. DIALIGN

will first align all the regions specified by the anchor points and then align the rest

of the sequences.

The new approaches presented in this thesis are also based on the idea of inte-

grating external information in the alignment process for the sake of improving the

alignment quality. Those new approaches can be considered as new functionalities

added to DIALIGN. The reason behind choosing DIALIGN as a base for our new

approaches is the fact that alignments in DIALIGN are composed of fragments; we

took advantage of this point specifically. For example, fragments with segments

that share a common protein domain or pattern are given a higher score.

3.9 Evaluating sequence alignment methods

In order to perform a comprehensive evaluation of an alignment method, benchmark

databases containing accurate reference alignments are needed. Two of the widely

used benchmark databases for this purpose are BAliBASE [34] and SABmark [35].

The following sections shall give a brief overview about these databases.

3.9.1 BAliBASE

BAliBASE [34] is a database containing manually refined multiple sequence align-

ments. These alignments are used as reference alignments for the evaluation of
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sequence alignment tools.

The BAliBASE database contains six main datasets, where each has its own

distinguishing characteristics:

RV11 contains 38 families with sequence identity less than 20%.

RV12 contains 44 families with sequence identity between 20% and 40%.

RV20 contains 41 families with sequence identity more than 40%.

RV30 contains 30 families which include some highly diverged sequences.

RV40 contains 49 families with large N/C terminal extensions.

RV50 contains 16 families with large internal insertions.

Each reference alignment in BAliBASE contains a number of core blocks that

are considered to be reliably aligned (Figure 3.8). In order to calculate the scores

of the alignments produced by any alignment approach, the application bali score

provided by BAliBASE 3.0 is used.

Figure 3.8: An example of a reference alignment composed of five protein sequences
from BAliBASE. The red color corresponds to segments having an alpha helix sec-
ondary structure. The green color corresponds to segments a beta strand secondary
structure. The underlined segments represents the core blocks which BAliBASE
uses in order to calculate the SP and TC scores when evaluating alignments.

Two scoring schemes were used to evaluate a test alignment with a reference

alignment of the same sequences:

Sum-of-pairs (SP) is the percentage of residue pairs in the core blocks of the

reference alignment that are also correctly aligned in the test alignment.
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True-columns score (TC) is the percentage of columns in the core blocks of the

reference alignment that are also correctly aligned in the test alignment.

Since most aligners work very good on benchmark databases where the sequences

share medium to high similarity, it is preferable also to test the aligners on databases

that focus on sequences with low to intermediate similarity. SABmark database can

be used for this task.

3.9.2 SABmark

SABmark [35] is an automatically generated benchmark database for multiple pro-

tein alignment containing sequences from the SCOP [36] database. SABmark is

composed of two large sets:

The twilight zone contains 209 groups of single-domain sequences. Sequences in

this set share less than 25% identity.

The superfamilies set contains 425 groups of single-domain sequences. Se-

quences in this set share about 50% identity.

Two scoring schemes were used for testing against SABmark:

fp score which is equivalent to the SP score used in BAliBASE.

fm score [39] which is defined as the number of residue pairs that are correctly

aligned in the test alignment divided by the total number of residue pairs

aligned in the test alignment.
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3.10 DIALIGN

3.10.1 DIALIGN 1

DIALIGN [19] is a tool for performing pairwise and multiple sequence alignments.

In DIALIGN’s concept, an alignment, whether pairwise or multiple, is represented

by a collection of fragments, where a fragment is a pair of equal length segments

from two distinct sequences (Figure 3.9). A fragment is also called a diagonal, that

is where the name DIALIGN comes from: DIAgonal ALIGNment. The fragments

constituting a given alignment should be consistent, i.e. the order of the residues in

any sequence in the alignment should be respected (Figure 3.10 and 3.11). Consis-

tency of fragments in a pairwise alignment is met if for any two fragments between

a pair of sequences, the end position of one of them is strictly smaller than the

respective starting point of the other one. When it comes to multiple sequence

alignments, the consistency concept is more complicated [19]. Every fragment is

assigned a weight score [27] which is based on the probability of its random occur-

rence.

Figure 3.9: An example of a fragment which consists of a pair of segments from
sequences Xi and Xj . The length of the fragment is 7. The first segment from Xi

contains the subsequence:RNDLORL. The second segment from Xj contains the
subsequence:RNDLOOL.

Figure 3.10: The figure shows a set of four consistent fragments, two blue, one red
and one orange fragment.

DIALIGN 1 uses a weight function in order to give weights for all possible

fragment. Denote by F a fragment of length LF . Let SF be the sum of similarity

scores of all residue pairs of the two segments of F . For protein sequences, the

BLOSUM matrix [3] can be used to calculate the similarity scores, while for DNA
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Figure 3.11: The figure shows a set of four fragments. The orange and the red
fragments are inconsistent with the rest of the fragments since starting positions of
the two segments of the orange fragment (or the red fragment) are not strictly less
than those of the red fragment (or orange fragment).

sequences, the similarity scores are 1 for matches and 0 for mismatches. Denote by

P1(LF , SF ) the probability that a random fragment of length LF has at least the

same sum SF of similarity scores. The weight of F , w1(F ) is then defined by:

w1(F ) = −logP1(LF , SF )

DIALIGN 1 tries to find a set of fragments with a maximum sum of weights.

Since an alignment in this case might consist of short noisy fragments, a new con-

straint is introduced. This constraint is a weight threshold T that is used in a way

such that all fragments having a weight less than T are discarded.

An alignment produced by DIALIGN is defined to be a one having the highest

score. The score which DIALIGN tries to maximize is defined by the sum of the

weights of all the fragments which constitute the alignment.

The main difference between DIALIGN and the traditional alignment ap-

proaches is the scoring scheme. Most of the traditional methods sum up substi-

tution scores for aligned residues and subtract gap penalties while DIALIGN scor-

ing method for alignments depends on the P − value of local sequence similarities.

Thus, only segments of sequences that share some significant similarity are aligned,

leaving the rest of the sequences unaligned. This justifies the use of DIALIGN for

comparative genomics [52] since when dealing with genomic sequences, islands of

conserved homologies may be separated from non related parts of the sequence.

DIALIGN has also been used to find protein-coding genes in eukaryotes [24, 25].

Also, DIALIGN has been used in studies to analyze protein families [23].

3.10.2 DIALIGN 2

DIALIGN 2.2 [26] is the standard version of the program. An optimal pairwise

alignment in DIALIGN is defined to be a chain of consistent fragments having the

highest sum of fragments scores. To obtain this optimal chain, a simple and space

efficient fragment chaining algorithm is used [33].
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DIALIGN 2 introduced a new weight function [27]. Using the same notations

defined in the section ’DIALIGN 1’, consider the probability P2(LF , SF ) now to

be the probability of finding any fragment of length LF whose sum of individual

similarity values is at least as large as SF somewhere within the comparison matrix

of two random sequences of the same length as the original sequences. Using this

new weight function has reduced the problem of including noisy short fragments in

the alignments produced by DIALIGN.

3.10.3 Anchoring option of DIALIGN

It often happens that the user has previous knowledge about the sequences in

hand and already knows that certain regions in the sequences are functionally or

evolutionary related and, if aligned together, will certainly produce a better and

biologically more meaningful alignment. Using the Anchoring option of DIALIGN

[20, 21], this is possible to do. The user can use this option to force the program

to align certain regions in the sequences (Figure 3.12). Those regions are referred

to as anchor points. An anchor point is a pair of equal-length segments from two

distinct sequences. It is characterised by the following six parameters:

• A number which corresponds to the first involved sequence

• A number which corresponds to the second involved sequence

• The starting position in the first sequence

• The starting position in the second sequence

• The length of the anchor point

• The score of the anchor point

Anchoring can be applied to an alignment in two different ways:

• Strong anchoring

• Weak anchoring

Using the strong anchoring option, DIALIGN forces the alignment of the seg-

ment pairs defined by the anchor points, provided that the anchors are consistent.

Afterwards, the rest of the sequences which were not aligned by the anchor points

will be aligned by DIALIGN.
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Figure 3.12: The white, orange and green pairs of segments represent three anchor
points. Anchoring those three pairs works like spinning those parts together and
insuring that they are kept aligned together in the final multiple sequence alignment
given that they are consistent, otherwise, DIALIGN will greedily select a consistent
set of anchor points.

When it comes to the weak anchoring option, DIALIGN does not force the

alignment of the entire segments provided by the anchor points, but only to do

some restrictions in the output alignment. For example, if a pair of residues from

the first and second sequences are anchored together, this implies that positions

strictly to the left of the first residue from the first sequence are aligned to residues

which are strictly to the left of the second position in the second sequence. The

same applies to positions to the right of the two residues. Aligning the pair of

residues is not strict as mentioned before, it depends on the degree of the similarity

between both residues.

Each anchor point is given a weight score by the user. This would prioritise

anchors which are biologically more meaningful from the user’s point of view. In

order to obtain an alignment respecting the constraints defined by the user through

the chosen anchor points, DIALIGN would first align the regions specified by those

anchors, and then align the rest of the sequences. It is very possible that the anchors

are not consistent with each other. In this case, a greedy selection of anchors is

performed. The anchor with the highest weight is introduced first to the alignment.

The next high scoring anchor is introduced into the alignment given that it is

consistent with the first anchor, otherwise it is discarded. The next high scoring

anchor is chosen and the process is repeated until all the anchor points have been

processed.
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3.10.4 DIALIGN TX

DIALIGN-TX [28] is a substantial improvement of the previous version of DI-

ALIGN. It combines the greedy algorithm used in the previous version with a

classical progressive alignment approach to improve the quality of the alignment

produced.
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Thesis projects

4.1 DIALIGN-PFAM

4.1.1 Preliminary information

4.1.1.1 Pfam database

The PFAM [47] database is one of the most important collections of information

for classifying proteins. The database categorizes 75 % of known proteins to form

a library of protein families. PFAM contains more than 13000 manually curated

protein families, where a family is a set of evolutionary-related protein sequences.

Every family in PFAM is represented by three important files:

1. Seed alignment

2. A profile HMM

3. A multiple sequence alignment

The seed alignment is a manually refined alignment of a representative set of

sequences. The profile HMM is built from the seed alignment. The full multiple

sequence alignment is generated automatically by searching the swissprot database

for detectable members and aligning them to the profile HMM.

Two types of families can be distinguished in PFAM: high quality manually

curated PFAM-A families and automatically generated PFAM-B families.

4.1.1.2 Profile hidden markov models

A profile HMM is a linear state machine consisting of a series of nodes. In order to

model sequences, each node must have three states:

• Match state

• Insert state

• Delete state
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Two types of probabilities are associated with a profile HMM:

• Transition probability: the probability of transitioning from one state to an-

other. A transition might be: match → match, match → insert, match →
delete, insert → match, etc.

• Emissions probability: it is based on the probabilities of residues existing in

that position in the alignment.

Figure 4.1 shows a profile HMM model.

Figure 4.1: General structure of a profile HMM. B: begin state, D: delete
state, M: match state, I: insert state, E: end state. Image source: http://cse-
wiki.unl.edu/wiki/index.php/Machine Learning in sequence search

Dynamic programming methods are used to align a sequence to a profile HMM.

In order to calculate such an alignment, the most probable path that any gievn

sequence might take in a profile HMM is calculated. This is done using the transition

and emission probabilities.

4.1.1.3 HMMER

HMMER [45] is a free distributable implementation of profile HMM software for

protein sequence analysis. HMMER is used to align protein sequences. It is also

used to search a certain sequence against a database of sequences for possible ho-

mologs. The HMMER suite contains a collection of useful programs including:

Hmmscan: used to search sequences against collections of profiles. For each se-

quence S from the input set of sequences, hmmscan searchs S against a target
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database of profiles and outputs ranked lists of the profiles with the most sig-

nificant matches to S.

Hmmpress: used to press a database before it can be searched with Hmmscan.

4.1.2 DIALIGN-PFAM algorithm

Sequences belonging to a given PFAM family will most certainly share the same

evolutionary history, this drove us to come up with our approach DIALIGN-PFAM

which is based on the idea that segments of sequences matching the same protein

domain should preferably be aligned together. The steps that were done can be

summarized by the following:

1. Scanning sequences against PFAM

2. Building single-domain alignments of PFAM matches

3. Anchor points extraction

4. Using single-domain alignments to produce the final multiple sequence align-

ment

4.1.2.1 Scanning sequences against PFAM

First of all, HMMbuild is used to transfer PFAM into an HMM database. HMM-

press is used afterwards in order to compress and index the already produced

database. Then, HMMscan is used to scan every sequence from the input set of

sequences for possible matches to protein domains in PFAM database.

Hmmscan gives a score to each match a sequence has to a given protein domain

from PFAM. In order to decide which hits are taken into consideration by our

algorithm, two threshold values for E-values of HMMER hits are used:

1. Em: associated with matched models

2. Ed: associated with matched domains

The first threshold Em ensures that only models with E-value less than Em are

taken into consideration. All the models which satisfy the first threshold condition

are filtered again with the second threshold Ed for domains. All the domains with E-

values less than Ed will be considered by DIALIGN-PFAM for the later processing

steps. Domains which fail to satisfy the second filter are discarded. DIALIGN-

PFAM uses the default values of 5x10−3 for Em and 10−4 for Ed .
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4.1.2.2 Building single domain alignments of PFAM matches

While scanning, segments from sequences matching PFAM domains are assembled

in multiple lists M1 . . .Mp (p is the total number of domains which the input se-

quences have matches to) where each list is associated with one single domain.

Figure 4.2 shows an example of such a list which contains three sequences that

have matches to the same domain. Figure 4.3 shows the actual alignment of the

sequences to the protein domain match consensus.

Figure 4.2: In this example, sequences S1, S2 and S3 are found to have a match to
the same PFAM protein domain. The consensus of the domain is shown in BLUE.

After scanning is finished, for every list Mi where 0 < i < p, gaps are introduced

(See figure 4.4) within the segments of Mi and a sub-alignment is obtained (See

figure 4.5). These alignments are called single domain alignments SDA. As the

name indicates, an SDA contains segments from sequences matching a specific

protein domain. For each column in an SDA, the corresponding positions in the

involved segments are required to match the same position of the PFAM domain

that is associated with this block. Figure 4.5 shows an example of an SDA.

Multiple copies of the same protein domain may also exist in the same sequence.

In our approach, DIALIGN-PFAM considers only the cases where a protein domain

is present only once at any given sequence. Thus, when constructing a domain block

associated with domain D, all sequences which contain more than one copy of D

are ignored. The job of extracting sequence similarity from those ignored sequences

segments is handed to the standard version of DIALIGN.

In the previous version of DIALIGN-PFAM [29] a domain block is considered

to be a set of gap-free equal-length segments from distinct sequences matching the

same segment of a PFAM protein domain. Thus, for each PFAM domain matched
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Figure 4.3: The alignments of sequencs S1, S2 and S3 to the matched protein
domain consensus.

by the input sequences, we might have multiple domain blocks matching different

parts of the protein domain and not one single domain block as it is the case in the

current improved version of the algorithm.

Figure 4.4: Gaps are introduced (within the sequences) in order to get the same
alignment among all the sequences to the protein domain consensus.
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Figure 4.5: An SDA that contains three segments from three distinct sequences.

4.1.2.3 Anchor points extraction

The goal of this step is to extract one of the smallest possible sets of anchor points

’A’ from an SDA such that if the sequences segments constituting the SDA are

input to DIALIGN to be aligned along with set A, the same exact SDA will be

produced. ’A’ should not contain any redundant anchor points, and by redundant

we mean an anchor point that has no additional effect on the produced alignment

whether it is kept or removed from the list of anchor points (Figure 4.6).

Figure 4.6: Anchor points extraction from an SDA
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4.1.2.4 Using single-domain alignments to produce the final multiple

sequence alignment

The anchor points produced from the previous step are input to DIALIGN. Through

the anchoring option of DIALIGN, the anchor points are aligned first, then the rest

of the sequences are aligned by DIALIGN respecting the constraints defined by

those anchor points.

4.1.3 Requirements

In order to run DIALIGN-PFAM, the following requirements are needed:

• Java 1.3.1 or higher

• PFAM database release 27.0 or higher

• HMMER v3.1b1 or higher

• DIALIGN 2.2.1

4.1.4 Documentation of the main functions

The following section speaks about the main functions used in the DIALIGN-PFAM

code.

1. processFasta(String fileName)

This function will check if the file which contains the input set of sequences

is in FASTA format. The function takes as a parameter the name of the file

containing the sequences to be processed (the name includes the path to the

file).

2. processSequences(String fileName,LinkedList names, String savingDirectory)

This function will read the input sequences and then write each one of them

into a separate file. processSequences takes as an input the following:

• The file name of the input sequences (including the path).

• A list where the name of the input sequences will be written in.

• The path to the directory where the single sequences files will be saved.

3. scanPfam(String fileName, double E1, double E2, String hmmerPath,

String pfamPath, String savingDirectory, int numOfSequences, LinkedList names)

This function will do two important steps:
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1st step: all the input sequences are scanned against PFAM and matches to

PFAM domains are obtained.

2nd step: all the segments in the output set of matches are distributed into

several lists, where each list is associated with one protein domain. For

example, if a certain segment has a match to Piwi domain, then this seg-

ment is put in a list which contains segments matching the Piwi domain

only.

This function takes as an input the following:

• The name of the file containing the input sequences (the name includes

the path).

• The two E-value thresholds used by HMMER to scan PFAM.

• The path to HMMER directory.

• The path to PFAM-A database.

• The path to the directory where the output of this function will be saved.

• The number of input sequences.

• A list containing the names of the sequences.

4. extractFasta(String fileName,LinkedList Sequences)

This function will extract the segments from a protein domain list and will call

the next function processEachDomain in order to process this set of sequences.

This function takes as an input the following parameters:

• The name of the file containing the segments of sequences matching a

certain PFAM domain (the name includes the path).

• A list where this function will put the extracted sequences in.

5. processEachDomain(String savingDirectory, LinkedList sequences)

This function will process each protein domain list produced by the previous

function extractFasta separately. It will introduce gaps in the segments of

each list in order to get a sub-alignment. For more details, check the algorithm

of DIALIGN-PFAM.

The function takes the following as parameters:

• The path to the directory where the output of this function will be saved.
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• The list produced by the previous function which contains the segments

of a certain protein domain list.

6. extractAnchors(String seqOne, String seqTwo, int seqOneId, int seqTwoId)

This function is applied for every consecutive pair of sequences in an SDA

file, for instance, if the file contains 5 sequences S1 to S5, then the function

extractAnchors will process:

• S1 and S2

• S2 and S3

• S3 and S4

• S4 and S5

The function extractAnchors takes as input four parameters:

• The amino acid residues of the first sequence.

• The amino acid residues of the second sequence.

• The id of the first sequence.

• The id of the second sequence.

Every anchor point extracted by this fucntion is added to one single file that

will contain all the anchor points extracted from all the existing SDA files.

7. runDialign(int flag, String fileName)

The final step is to run the alignment program DIALIGN. The function run-

Dialign takes as input two parameters. The first one is an integer called flag.

Giving flag a value of 2 will order DIALIGN to run using its anchoring op-

tion. In this way, we can use the anchors file which contains the anchor points

extracted from the single domain alignments produced in the previous steps.

The second parameter is a String which specifies the name of the file (including

its path) which contains the sequences to be aligned.

The output of this step is a file containing the final multiple sequence align-

ment produced by DIALIGN.

4.1.5 DIALIGN-PFAM webserver

A webserver for DIALIGN-PFAM has been implemented [30]. Using the webserver,

the user can participate more in the alignment process by being involved in the

various steps of the DIALIGN-PFAM algorithm.
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4.1.5.1 Input/Output

DIALIGN-PFAM accepts as its only input a file in FASTA format. This file should

contain a set of unaligned protein sequences. Before running DIALIGN-PFAM, the

user can alter the values of the two thresholds Em and Ed; knowing that default

values are already provided. Since the process of scanning PFAM may be time con-

suming, the user is provided with a URL that can be checked at anytime later. This

URL leads to the results page. Moreover, another URL is given to the user in order

to retrieve the final MSA. This is useful mostly in cases when the final alignment

process by DIALIGN consumes a lot of time. The final MSA is downloadable from

gobics.de and will be stored for a period of one week.

4.1.5.2 Workflow

The workflow of the DIALIGN-PFAM webserver can be summarized by the follow-

ing steps:

1. Scanning sequences against PFAM

This step is already mentioned previously when describing the algorithm of

DIALIGN-PFAM. Figure 4.7 shows an example of a HMMER output when scanning

PFAM.

2. Domain blocks construction

This step is already mentioned previously when describing the algorithm of

DIALIGN-PFAM.

3. Manual inspection of domain blocks

After all the domain blocks have been extracted, the user has the option to view

those blocks in two ways:

• Local view

• Global view

In the local view, only the single segments constituting a given block are shown;

note that these segments may contain gaps. The global view shows the non-aligned
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Figure 4.7: An example of an output from scanning protein sequences against PFAM
using HMMER.
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full input sequences which has segments matching a certain domain. Those segments

are highlighted to make it easier for the user to clearly see where are those segments

located exactly in the input sequences.

By default, all constructed blocks will be used in the next step in which the

final multiple sequence alignment is calculated. The user can accept this default

case or choose a certain number of blocks, from the list of all constructed blocks,

to be used in the next step.

4. Anchor points extraction

This step is already mentioned previously when describing the algorithm of

DIALIGN-PFAM.

5. Alignment by DIALIGN

This step is already mentioned previously when describing the algorithm of

DIALIGN-PFAM.

4.1.5.3 Example

On the home page of DIALIGN-PFAM (Figure 4.8), a file in FASTA format con-

taining a set of seven protein sequences (Figure 4.9) is uploaded. The first output

of running DIALIGN-PFAM is represented in Figure 4.10.
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Figure 4.8: The home page of DIALIGN-PFAM. The sequences files should be
uploaded in this page. Moreover, the two threshold values should be specified.
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Figure 4.9: An example of a protein sequences file that can be uploaded to
DIALIGN-PFAM webserver. The format of the file is the FASTA format.
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Figure 4.10: An example of running DIALIGN-PFAM with an input file containing
seven protein sequences. (a) shows an output produced after running HMMER
to scan each of the input sequences against PFAM. Each line in table (a) corre-
sponds to a matched PFAM domain. The first column shows the domain name.
The second column indicates how many of the input sequences had a matche to
the domain in column one. For example, the first line shows that five sequences
had matches to ’Thioredoxin’ domain, the second line shows that three sequences
had matches to ’Glutaredoxin’, ... etc. The third and forth columns allow the
user to view the matches of a specific row either locally (third column) or globally
(forth column). The checkboxes on the left-hand side can be used to select/deselect
matches to PFAM domains as anchor points for the final MSA calculated by our
program. By default, all matches are selected. (b) shows a multiple sequence
alignment of segments from the input sequences matching a given PFAM domain
(so-called ’local view’). This is obtained by clicking on ’view’ in the third column
of (a). (c) is obtained by clicking on ’view’ in the forth column of (a).It shows the
positions of the matching segments to a certain PFAM domain in the respective
full input sequences (so-called ’global view’). Segments matched by HMMER to
the corresponding PFAM domain are marked in red. Source:[30]
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4.2 DIALIGN-PROSITE

4.2.1 Preliminary information

4.2.1.1 PROSITE database

PROSITE [16] is a database of protein domains and families in addition to as-

sociated patterns and profiles that help in identifying whether an input sequence

belongs to a certain protein family or not. It contains 1308 patterns and 1039

profiles. PROSITE is formulated in a way that allows tools to identify rapidly to

which protein family a certain sequence belongs to, or what functional sites does it

contain. This database has been used by our new approach DIALIGN-PROSITE .

See figure 4.11 for an example of a pattern along with some sequences which have

a match to this pattern.

Figure 4.11: A multiple sequence alignment of twelve protein sequences sharing one
common pattern of an enzyme called Cytochrome Oxidase I. The pattern signature
is represented in the first line. In order for Cytochrome Oxidase I to carry out its
function, the enzyme must have this particular signature: [YWG]-[LIVFYWTA](2)-
[VGS]-H-[LNP]-x-V-x(44,47)-H-H. A short explanation of this signature: [ ] means
any amino acid between the square bracket should be present in the protein se-
quence, (2): means 2 times, x: means any of the 20 amino acid residues, and
x(44,47): means anything (x) occurring 44,45,46 or 47 times.

4.2.1.2 Fragment chaining algorithm of DIALIGN

DIALIGN uses a space-efficient fragment chaining algorithm in order to obtain an

optimal alignment out of a chain of fragments. The algorithm and the objective



4.2. DIALIGN-PROSITE 59

function are explained in details in [33]. A fragment is a pair of equal-length

segments from two distinct sequences. Each fragment has a weight that is based

on the probability of its random occurrence. The fragment chaining algorithm, in

short, calculates pairwise alignments by using dynamic programming to produce

the best chain of fragments out from the set of all possible fragments between two

sequences, i.e. the chain of non-overlapping fragments having the highest weight.

To obtain this optimal chain, a simple and space efficient fragment chaining

algorithm is used. Briefly explaining this algorithm:

Let S= s1. . . sL1 and S′= s′1. . . s
′
L2

be a pair of sequences where L1 and L2 are

the length of S and S′ respectively. Designate by F a fragment associated with S

and S′ and let W (F ) be the maximum weight taken over all chains of fragments

ending in F such that:

W (F ) := max

{
K∑
i=1

w(Fi) : F1 ≪ . . . ≪ Fk = F

}

where the notation F1 ≪ F2 means that the ending position of fragment F1 is

strictly less than the starting position of fragment F2. Define also P (F ) to be the

predecessor of F such that if F1 ≪ . . . ≪ Fk = F is a chain reaching the maximum

in the previous equation, then P (F ) = Fk−1.

The last variable to define is Pr[i, j] which is the last fragment in an optimal

chain of prefixes s1. . . si and s′1. . . s
′
j

P (F ) = Pr[i− 1, j − 1]

So, the score Sc[i, j] [19] of an optimal alignment of the prefixes s1. . . si and s′1
. . . s′j is calculated recursively from the values Sc[i, j−1], Sc[i−1, j], Sc[i− l, j− l],

in addition to the weights ending in (i, j). This is indicated by the following formula

Sc[i, j] = max =


Sc[i, j − 1],

Sc[i− 1, j],

max {W (F ) : F ending in(i, j)}

Where:
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W (F ) := Sc[i− 1, j − 1] + w(F )

Depending on where the maximum is reached for Sc[i, j], Pr[i, j] can be calcu-

lated according to the following equation:

Pr[i, j] = max =


Pr[i, j − 1], ifSc[i, j] = Sc[i, j − 1]

Pr[i− 1, j], ifSc[i, j] = Sc[i− 1, j]

F , if Sc[i, j] = {max W (F ) : F ending in(i, j)}

In order to obtain the best chain of fragments between S ans S′, Sc[i, j]

and Pr[i, j] should be calculated for all positions (i, j) in the comparison matrix

(i, j)0<i≤L1,0<j≤L2 . When traversing the matrix, and at any given position (i, j) we

obtain all possible fragments starting at position si in S and s′j in S′. DIALIGN

by default has limited the maximum length of any possible fragment obtained at

each position to 40. Moreover, and in order not to consider low scoring fragments,

any fragment starting with two amino acids which have a low substitution score is

ignored.

Once the whole comparison matrix have been processed, the fragment Fmax

with maximum weight W (Fmax) is found such that Fmax = Pr[L1, L2]. By tracing

back, the optimal chain of fragments is obtained.

This is how DIALIGN calculates an optimal pairwise alignment. On the other

hand, obtaining an optimal multiple sequence alignment is computationally unfea-

sible. Therefore, some heuristics are used by DIALIGN to accomplish this task.

First, DIALIGN finds all optimal pairwise alignments for every possible pair of

sequences. Fragments constituting those optimal alignments are all assembled in

one list according to their scores. DIALIGN then, in a last step, chooses greedily

a consistent set of fragments from this list to produce the final multiple sequence

alignment.
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4.2.2 DIALIGN-PROSITE algorithm

A new option for DIALIGN called DIALIGN-PROSITE has been developed. Using

this option, additional information from PROSITE database can be incorporated

in the alignment process. Developing this new option required using the fragment-

chaining algorithm [33] of DIALIGN that was explained above but with one modifi-

cation: the scoring function of this algorithm has been altered such that fragments

having matches to the same segment of a PROSITE pattern get higher scores.

The DIALIGN-PROSITE algorithm can be defined by the following steps:

1. Scanning sequences against PROSITE

2. Filling the ’additional-scores’ matrix

3. Obtaining the best chain of fragments for every pair of sequences using

PROSITE matches

4.2.2.1 Scanning sequences against PROSITE

In the first step of the algorithm, all the input sequences that are intended to be

aligned are scanned against PROSITE database for possible patterns matches. This

is accomplished using a perl script that comes along with the PROSITE package.

Using this script, every sequence is scanned against the whole PROSITE database.

For a set of N sequences, the output of the scan of every sequence Si (0 < i < N)

is the following:

• Matched patterns from PROSITE in Si

• The starting position of each matched pattern

• The sequence of amino acids constituting each matched pattern

Figure 4.12 shows an example of a PROSITE scan output.

DIALIGN-PROSITE’s main goal is to search for common patterns which were

matched by two or more sequences and then make use of this information when

building the pairwise sequence alignments by giving higher scores to fragments

having matches to the same PROSITE pattern(s). Following this scenario, patterns

which were matched by only one sequence from the set of input sequences are

ignored by DIALIGN-PROSITE since they are useless. Thus, two matches from

two distinct sequences are needed for any pattern in order for it to be considered

by DIALIGN-PROSITE’s algorithm. Figure 4.13 provides a clarifying example

regarding this point.
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Figure 4.12: The output of scanning four sequences against PROSITE. The first
column indicates the sequence name. The second column indicates the matched
pattern’s name. The third column represents the sequence ID. The fourth and
fifth columns represent the actual start and end positions of the matched pattern.
The last column represents the sequence of the matched pattern. In this example,
sequences 1, 2 and 3 were found to have a match to the same pattern PS00006 while
sequence 4 had a match to pattern PS00001.

Denote by P = p1 . . . pn a set of patterns where two or more sequences had

matches to.

Since each sequence might have two or more matches to the same PROSITE

pattern, denote by m1{i,n} . . .mz{i,n} the set of matches for sequence Si to pattern

pn

4.2.2.2 Filling the ’additional-scores’ matrix

As it has already been mentioned, the main point of the algorithm is to give higher

scores to fragments which have matches to the same PROSITE pattern. In order

to accomplish this, a matrix called ’additional-scores matrix’ is first defined for

each pair of sequences. Specific positions in those matrices will be filled in this

step and will be used later on during the process of building the pairwise sequence

alignments.

Let Mi,j be the additional-scores matrix associated with sequences Si and Sj .

In order to fill this matrix, the following steps are performed:

• Suppose sequence Si had y matches to various PROSITE patterns.

• Same for Sj : suppose Sj had z matches to various PROSITE patterns.

• For each pair of matches ma{i,n} and mb{j,n} from Si and Sj respectively such

that:
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Figure 4.13: In this example, the red balls correspond to patterns that were matched
by at least on sequence from the input set of sequences, the blue balls represent
the sequences which had matches to certain patterns and the silver balls represent
the number of matches a certain sequence had to a certain pattern. For example,
Pattern P5 was matched by the sequences S1 and S4. S1 had four matches to P5
and S4 had 2 matches to P5. Not all of the patterns in this figure are selected for
processing by DIALIGN-PROSITE, since patterns matched by only one sequence
are ignored. In this case, patterns P1, P2, P6, P8 and P9 will be ignored, P4, P5
and P7 will only be considered by DIALIGN-PROSITE.

– 0 < a < y and 0 < b < z

– both ma and mb are matched to the same pattern Pn (define lpn to be

the length of pattern pn).

– ma{i,n} starts at position u in Si and mb{j,n} starts at position u′ in Sj

Do the following:

1. In matrix Mi,j , fill all of the positions between (u, u′) and (u + lpn −
1, u′ + lpn − 1) with blosum scores. For example:

– position (u, u′) should contain the blosum score of the two amino

acids from Si and Sj at positions u in Si and u′ in Sj .

– position (u + 1, u′ + 1) should contain the blosum score of the two

amino acids from Si and Sj at positions u+1 in Si and u′+1 in Sj ,
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and so on.

2. Continue like this until position (u+ lpn − 1, u′ + lpn − 1) is reached.

Figure 4.15 shows an example of how to fill an ”additional-scores matrix” asso-

ciated with a pair of sequences.

Figure 4.14: Three patterns matches associated with two sequences are shown in
this table. Sequence S1 has one match to pattern P5 at position 26. Sequence S2

has two matches to pattern P5 starting at positions 41 and 45. Information present
in this table is used in Figure 4.15 to fill out the additional-scores matrix Mi,jfor
the sequences pair (S1, S2).

4.2.2.3 Obtaining the best chain of fragments for every pair of se-

quences using PROSITE matches

For each pair of sequences Si and Sj , the next step after filling the additional-scores

matrix Mi,j is to build the best chain of fragments for Si and Sj .

In order to accomplish this, the ’best chain of fragments’ algorithm used by

DIALIGN will be also used by DIALIGN-PROSITE with a little modification ap-

plied to the scoring function to allow the incorporation of information from the

”additional-scores matrix”.

The new scoring function is defined as follows:

• Let Fi,j be a fragment of length L associated with sequences Si and Sj

• Denote by t the starting position of Fi,j in Si and by t′ the starting position

of Fi,j in Sj .

The new weight of Fi,j is then defined by :

• w(Fi,j) = wold(Fi,j) + w(X)
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Figure 4.15: Filling out the ”additional-scores matrix” for the sequences pair
(S1, S2) of Figure 4.14. S1 is displayed vertically in the first column. Match m1 of
S1 is represented by a vertical red bar at position 26. S2 is displayed horizontally in
the top row. Matches m1 and m2 of S2 are represented by the two red bars starting
at positions 41 and 45 respectively. Mi,j will be filled only in the cells where S1

and S2 have a match to the same PROSITE pattern. This condition holds in this
example for the matches m1 of S1 and m1 of S2. Also, it holds for the matches m1

of S1 and m2 of S2. As a result, cells (26, 41), (27, 42) and (28, 43) are filled with
5, 2 and 9 respectively for the first matches pair, and cells (26, 45), (27, 46) and
(28, 47) are filled with 5, 1 and 6 respectively for the second matches pair. Those
numbers correspond to the BLOSSUM substitution scores for the amino acid pairs
(T, S), (L,K) and (K,K) (see Figure 4.16 for more information).

Figure 4.16: Blosum scores for the amino acid pairs (T, S), (L,K) and (K,K).
Those values are used in Figure 4.15 in order to fill the ”additional-scores matrix”.
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where X is the sum of the values in the additional scores matrix Mi,j from

positions (t, t′) to (t + L − 1, t′ + L − 1) and w(X) is the weight of the segment

(t, t′) . . . (t+ L− 1, t′ + L− 1) [27] which is based on the probability of its random

occurrence.

4.2.2.4 Calculating the final multiple sequence alignment

After obtaining the best chain of fragments for all possible pairs of sequences, the

following steps are performed in order to obtain the final multiple sequence align-

ment:

• For every pair of sequences Si and Sj , extract all fragments F1 ... Fn from

the best chain of fragments associated with Si and Sj . Add all the fragments

to a list L. in L, the fragments are written using the format of anchor points.

• Run DIALIGN using its anchoring option by giving it as an input the list L

obtained from the previous step.

• DIALIGN will greedily select a consistent set of anchors, add them first to the

final multiple sequence alignment, and then align the rest of the sequences.

4.2.3 Requirements

In order to run DIALIGN-PROSITE, the following requirements are needed:

• Java 1.3.1 or higher

• PROSITE database release 20.105 or higher

• HMMER v3.1b1 or higher

• DIALIGN 2.2.1

4.2.4 Documentation of the main functions

The following section speaks about the main functions used in the DIALIGN-

PROSITE code.

1. processFasta(StringfileNAme)

This function will check if the file which contains the input set of sequences

is in FASTA format. The function takes as a parameter the name of the file

containing the sequences to be processed (the name includes the path to the

file).
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2. extractFasta(StringfileName,LinkedListsequences)

This function extracts the sequences from the file of input sequences and place

each one in a separate class called Sequence. The function takes as input the

following parameters:

• The name of the file containing the sequences to be processed (the name

includes the path to the file).

• A list where the extracted sequences will be put in.

3. doCommand(Stringcommand, StringoutputF ile, LinkedListsequences)

This function scans the the input sequences against the PROSITE database

and takes as input the following:

• A string which contains the command that will be called by the Java

program in order to scan PROSITE. The command is:

”perl ps scan.pl” +outputFile

The perl script ps scan.pl scans PROSITE and put the output of the

scan in the file outputFile.

• The name of the file where the output of the scan will be written in (the

name includes the path to the file).

• A list containing the input sequences. This list is produced by the pre-

vious function extractFasta.

4. extractPatterns(LinkedListsequences, StringoutputF ile)

This function will attach a list of matched patterns for every input sequence.

It takes as input the following:

• The list of input sequences.

• The name of the file containing the output of the PROSITE scan.

5. fillAdditionalScores(Stringname1, Stringname2, StringseqOne, StringseqTwo,

intseqOneId, intseqTwoId)

This function fills the ”additional-scores matrix” associated with a pair of

sequences. It takes as input the following:

• The name of the first sequence.

• The name of the second sequence.
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• The amino acid residues of the first sequence.

• The amino acid residues of the second sequence.

• The id of the first sequence.

• The id of the second sequence.

6. processMatrix(Stringname1, Stringname2, StringS1, StringS2, intid1,

intid2, Stringsaving)

This function fills the dynamic-programming matrix associated with a pair of

sequences. The function takes as input the following:

• The name of the first sequence.

• The name of the second sequence.

• The amino acid residues of the first sequence.

• The amino acid residues of the second sequence.

• The id of the first sequence.

• The id of the second sequence.

7. extractAnchors(StringseqOne, StringseqTwo, intseqOneId, intseqTwoId)

This function extracts all possible anchor points from every pair of sequences

and writes those anchors in one file.

The function extractAnchors takes as an input four parameters:

• The amino acid residues of the first sequence.

• The amino acid residues of the second sequence.

• The id of the first sequence.

• The id of the second sequence.

8. runDialign(intflag, StringfileName)

The final step is to run the alignment program DIALIGN. The function run-

Dialign takes as an input two parameters. The first one is an integer called

flag. Giving flag a value of 2 will order DIALIGN to run using its anchoring

option. In this way, we can use the anchors file which contains the anchor

points extracted from the optimal pairwise alignments produced in the previ-

ous steps.

The second parameter is a String which specifies the name of the file (including

its path) that contains the sequences to be aligned.
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The output of this step is a file containing the final multiple sequence align-

ment produced by DIALIGN.

4.3 Testing and results

To evaluate our approaches DIALIGN-PFAM and DIALIGN-PROSITE, we com-

pared them to the standard version of DIALIGN, in addition to six other established

MSA programs:

• ClustalW 2.1 [8] . Ran with default parameters.

• MAFFT 6.903beta [37] . Ran with the ’linsi’ option.

• ProbCons 1.12 [7]. Ran with default parameters.

• MUSCLE 3.8.31 [38]. Ran with default parameters.

• T-Coffee 5.31 [22]. Ran with default parameters.

• COBALT 2.0.1 [14]. Ran with default parameters.

Testing DIALIGN-PFAM was carried on two benchmark databases: BAliBASE

[34] and SABmark [35]. The results of the tests are displayed in Table 4.1, Table 4.2

and Table 4.3. Tables 4.1 and 4.2 display the SP and TC scores respectively for the

testing results on BAliBASE. It is quite obvious that DIALIGN-PFAM performed

better then the standard version of the program. The winners were Cobalt and

ProbCons. The reason behind such scores could most probably be related to the

fact that BAliBASE is a database that mainly contains globally related protein

sequences, while DIALIGN is a local alignment tool.

As an additional observation, while going from RV11 to RV50, i.e. from the

twilight zone were sequence similarity is less than 25% to those with similarity that

reaches more than 40%, it can be noticed that the scores are improving in general

for the different versions of DIALIGN and for the other aligners as well. In other

words, an increase in accuracy of the alignments produced by the various aligners

is reported with increase in sequence identity.

On the other hand, SABmark contains single domain sequences with very low

to low and low to intermediate similarity, this explains why the results of DIALIGN

appears to be almost the best among the other aligners as it can be seen in Table

4.3. The results show that DIALIGN-PFAM had the highest ’fm’ scores while

cobalt had the highest ’fd’ scores. Also, the performance of the various versions of
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Table 4.1: Performance of different alignment programs on the BAliBASE bench-
mark database. SP scores displayed. Dia+pfam is DIALIGN-PFAM using PFAM
hits as anchor points. Dia+pros is DIALIGN-PROSITE using PROSITE hits in
the fragment chaining algorithm.

Aligner RV11 RV12 RV20 RV30 RV40 RV50

ClustalW 50.06 86.43 85.16 72.49 78.93 74.25
T-Coffee 57.97 92.49 90.97 79.65 89.19 89.39
COBALT 46.66 79.28 75.0 66.97 83.21 82.41
ProbCons 66.97 94.12 91.6 84.52 90.33 89.41
Muscle 57.15 91.53 88.91 81.44 86.48 83.51
MAFFT 65.31 93.55 92.53 85.9 91.54 90.09
Dialign 50.7 86.6 86.9 74.0 83.3 80.7
Dia+pfam 57.2 87.6 86.8 77.5 86.1 80.7
Dia+pros 50.64 87.8 86.2 74.5 82.15 80.37

Table 4.2: Performance of different alignment programs on the BAliBASE bench-
mark database. TC scores displayed. Notation as in Table 4.1.

Aligner RV11 RV12 RV20 RV30 RV40 RV50

ClustalW 22.99 80.89 22.16 27.59 39.82 31.15
T-Coffee 31.61 82.1 38.23 36.79 54.81 58.88
COBALT 61.47 90.63 88.73 79.96 43.66 45.94
ProbCons 41.96 86.04 41.14 54.72 53.61 57.88
Muscle 32.06 80.89 35.30 41.19 45.31 46.38
MAFFT 43.14 84.31 45.12 58.52 59.43 59.85
Dialign 26.8 70.0 29.7 31.6 44.5 42.9
Dia+pfam 32.5 71.02 33.6 37.23 47.7 40.3
Dia+pros 26.9 71 32.6 32 42.5 40

DIALIGN performed better on the superfamilies set than on the twilight zone set

which is logical, as stated before.

DIALIGN-PROSITE was also tested on BAliBASE and SABmark, the results

are shown in Table 4.1, Table 4.2 and Table 4.3. Results on BAliBASE show that

this approach had performed better than the standard version of the program in

general. Compared to the other aligners, DIALIGN-PROSITE was not on the lead,

this can be related to the previously mentioned fact that BAliBASE contains glob-

ally related sequences while DIALIGN is a local alignment tool. On SABmark,

excluding DIALIGN-PFAM from the results, DIALIGN-PROSITE performed bet-

ter than the standard version of the program and the remaining programs when it

comes to the sensitivity scores, while cobalt had the highest specificity scores.
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Table 4.3: Performance of the alignment programs on SABmark. Notation as in
Table 4.1.

Aligner twi sup

fd fm fd fm

ClustalW 22.46 14.99 50.69 38.03

T-Coffee 23.61 17.9 52.53 41.26

Cobalt 30.31 20.64 58.63 44.18

ProbCons 28.878 20.8649 56.632 43.5215

Muscle 23.98 16.49 52.756 39.8179

MAFFT 26.432 19.06 55.37 42.487

Dialign 18.707 18.557 46.01 42.354

Dia+pfam 21.89 24.12 48.62 48.48

Dia+pros 20.86 20.03 46.5 44.4

4.4 Running time for DIALIGN-PFAM and DIALIGN-

PROSITE

In order to check out the running time of DIALIGN-PFAM and DIALIGN-

PROSITE compared to that of DIALIGN, we ran those three programs on the

two datasets RV11 and RV50 of BAliBASE. Table 4.4 and Table 4.5 show the

results.

The time taken by DIALIGN-PFAM and DIALIGN-PROSITE to scan PFAM

and PROSITE databases respectively is shown separately. It is clear that scanning

PFAM consumes much less time than scanning PROSITE. Also, the time taken by

DIALIGN to align the sequences in DIALIGN-PFAM and DIALIGN-PROSITE is

shown.

It can be seen that the standard version of the program consumes more time

to process the alignments than DIALGN-PFAM and DIALIGN-PROSITE do, the

reason is that DIALIGN-PFAM and DIALIGN-PROSITE produce a list of anchor

points out of the matches to PFAM and PROSITE databases. Those anchors

when given to DIALIGN will surely accelerate the alignment process, since after

integrating the anchors in the alignment, parts of the alignment will already be

built. This reduces the total time taken by DIALIGN to produce the final multiple

sequence alignment.

The ’Other processing’ column of DIALIGN-PFAM refers to the time taken to



72 Chapter 4. Thesis projects

Table 4.4: Comparison of the runtime of DIALIGN, DIALIGN-PFAM, and
DIALIGN-PROSITE on set RV11 of BAliBASE. The Scan column corresponds
to the time taken by DIALIGN-PFAM and DIALIGN-PROSITE to scan PFAM
and PROSITE databases respectively. The Alignment column corresponds to the
time taken by DIALIGN to produce the aligmnets. The Total column represents
the total running time.

Aligner RV11

Scan Other processing Alignment Total

Dialign - - 27.896s 27.896s

Dia+pfam 0.014s 77.646s 11.864s 89.524s

Dia+pros 79.22s 69.335s 17.216s 165.771s

Table 4.5: Comparison of the runtime of DIALIGN, DIALIGN-PFAM, and
DIALIGN-PROSITE on set RV50 of BAliBASE. Notation as in Table 4.4.

Aligner RV50

Scan Other processing Alignment Total

Dialign - - 461.261s 461.261s

Dia+pfam 0.03s 345.208s 142.7s 487.938s

Dia+pros 74.805s 863.553 52.8s 991.158s

check for sequences matches to the same protein domain and extracting anchor

points out of them. For DIALIGN-PROSITE, this processing time refers to the

time taken to check for sequences matches to the same PROSITE pattern, building

the ”additional-scores matrix”, calculating all possible pairwise alignments (using

the algorithm explained in [33] along with some modifications to the fragments

scores calculation) and finally extracting anchor points.
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4.5 Aligning Alignments with Unaligned Sequences

4.5.1 Motivation

Most of the multiple sequence alignment softwares calculate alignments for a set of

sequences from scratch. Yet, researchers often want to calculate a multiple sequence

alignment of a sequence set for which a partial alignment is already available. For

example, it is possible that a reliable alignment A is already available for a subset of

input sequences. In this case, one might want to extend A by adding an additional

set of sequences U to it without the need to align the sequences in A and U all

together from scratch.

The program DIALIGN already contains an anchoring option for this purpose.

We have extended the functionalities of this option to allow users to acquire more

flexibility when using anchors. A web-based tool and a command line tool have

been developed for this. Both accept as an input protein sequence alignments, turn

those alignments, or just parts of them (which the user wish to keep fixed in the

final multiple sequence alignment), into a set of anchor points and use them to

calculate a constrained alignment of the input sequences.

This extended anchoring option is mostly useful when the user already has

previous knowledge about the sequences in hand and knows that certain regions

are functionally or evolutionary related, and aligning them together would most

probably produce an alignment of higher quality.

4.5.2 Webserver

If the user already has one or more multiple protein sequence alignments that must

be integrated into one alignment, then it is possible to accomplish this task using

our wevserver. There are two cases that should be taken into consideration for each

alignment file that will be integrated into the final alignment:

• case 1: keeping the whole alignment fixed as it is in the final multiple sequence

alignment.

• case 2: keeping only certain parts of the alignment fixed in the final multiple

sequence alignment.

For the second case, the user has to specify the exact positions of those partial

alignments (blocks). This will be explained in more details in the next sections.

The user might also wish to align a set of unaligned sequences to an existing

alignment/set of alignments; this is also possible. In tis case, the user has to upload

those sequences files along with the alignment files in the upload page.
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4.5.2.1 Workflow

Four main steps should be done by the user in order to use this webserver efficiently

(Figure 4.17):

1. Upload files

2. Specify partial-alignment blocks

3. Submit the blocks

4. View the results

1. Uploading files

The user can submit from one to thirty alignment files and from zero to thirty

sequences files (Figure 4.18). The files format should be in Fasta, otherwise an error

message is prompted on the screen.

The following conditions should be taken into consideration when uploading the

sequences and alignment files in order to avoid error messages:

• Unique sequences names across all uploaded files: The sequences names in

all the input files should be distinct since each sequence will be given by the

webserver a unique identifier based on its name. In case two or more sequences

from distinct files share the same name, the amino acids constituting those

sequences should be the same, otherwise an error message is prompted on the

screen.

• No special characters: sequences of the input alignment and sequences files

should not contain any of the following special characters:’ !’, ’@’, ’#’, ’$’, ’%’,

’̂’, ’&’, ’*’, ’(’, ’)’, ’ ’, ’+’, ’}’, ’{’, ’:’, ’”’, ’—’, ’¡’, ’¿’, ’?’, ’/’, ’.’, ’,’, ’;’, ”’, ’

’, ’]’, ’[’, ’=’, ’-’, ’‘’, ’ ’.

• No spaces should exist in the uploaded alignments and sequences files names.

• Unique files names: the uploaded sequences and alignment files should have

unique names.

• Avoid uploading empty files.

• Uploaded sequences and alignment files should be in FASTA format.
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Figure 4.17: Workflow of the webserver

• Avoid empty sequences names.

• At least two sequences should exist in an alignment file, since an alignment

file with only one sequence is not actually an alignment.

• All sequences in any uploaded alignment file should have the same length,

otherwise, it is not considered an alignment anymore.

• No empty sequences: avoid uploading sequences or alignment files which con-

tain empty sequences, i.e. sequences with defined names but have no amino
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acids residues.

2. Specifying partial-alignment blocks start and end positions

After finishing the upload process successfully, graphical representations of the

uploaded alignments will be shown to the user (Figure 4.19).

The alignment bases are colored by default with the ’Zappo’ coloring scheme

where the residues are colored according to their physicochemical properties. The

user can choose between eight different coloring schemes: Zappo, Taylor, Clustal,

Helix, Strand, TurnX, HPhob and Buried.

A horizontal bar containing numbers lies above every alignment. This bar allows

the user to know the respective position of any column in the alignment.

The second step is to specify which blocks in the alignment should be kept

fixed in the final multiple sequence alignment. In order to choose a block, the

user has to determine the start and end positions of the block by clicking on the

associated positions on the horizontal coordinates bar. The positions will be saved

automatically in the textarea below the alignment (Figure 4.20). The end position

of any block should be greater than or equal to the start position of that block,

otherwise, an error message is prompted on the screen

If the user wants to include the whole alignment fixed as it is in the final multiple

sequence alignment, he/she can do any of the following two options:

• Do not specify any start/end coordinates. The webserver will then consider

the default case and treats the whole alignment as one single block.

• Specify 0 as the start coordinate and the length of the alignment minus one

as the end coordinate.

3. Submit the blocks

After processing all the uploaded alignments and choosing the start and end

positions of the partial alignment blocks, the webserver processes this information

by doing the following steps:

1. Extracting all the possible anchor points from the selected blocks.

2. Inputting the anchors to DIALIGN and running it using the anchoring option.



4.5. Aligning Alignments with Unaligned Sequences 77

In case the alignment process needs a long time to finish, the user will be

prompted with a URL that can be used at any time later to check if the multi-

ple sequence alignment has already been calculated or not. The result file will be

kept on the webserver for a period of ten days.

3. View the results

In the final step, the user can view the result alignment.

4.5.3 Command-line version

A command line tool for aligning alignments also exists. It has the same function-

ality as the webserver, except that the user cannot view the alignments graphically.

Therefore, the start and end positions of the partial-alignment blocks should be

input to the program via a file.

4.5.3.1 Input and output

The command line tool accepts as an input the following files

• Alignment files

• Sequences files

• Coordinates files. One Coordinate file should exist for every input alignment

file

The alignment and sequences files should be in FASTA format. The coordinates

files format should respect the following rules:

• Every line in the file should contain two numbers: start and end coordinates

of a partial-alignment block. Both numbers should be separated by a space.

• The end coordinate should be larger than or equal to the start coordinate.

• All numbers present in the file should be greater than zero and less than or

equal to the alignment length.

The output of running the command line tool is an alignment file in fasta format.
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4.5.4 Requirements

In order to run the command-line version for ”Aligning alignments with un-aligned

sequences”, the following requirements are needed:

• Java 1.3.1 or higher

• DIALIGN 2.2.1

4.5.5 Documentation of the main functions

The following section speaks about the main functions used in the code of ”Aligning

alignments with un-aligned sequences”.

1. main(String[] args)

This is the main function of the program, it takes as input the following set

of parameters:

• The name of sequences files (the name includes the path to the file).

Those files should contain un-aligned sequences in FASTA format. This

parameter is not obligatory.

• The name of one or more alignment files (the name includes the path to

the file). The file should be in FASTA format.

• The name of the coordinates files (the name includes the path to the

file). Each alignment file should have one coordinates file. The format

of the coordinates file are explained in the program algorithm section.

The order of the parameters of the main function should be as follows:

usf1 . . .usfn af1cf1 . . . afmcfm

usf: un-aligned sequences file.

n: number of un-aligned sequences files.

af: alignment file.

cf: coordinates file.

m: number of alignment files/coordinates files.
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2. processFasta(String fileName)

This function will check if the file which contains the input set of sequences

is in FASTA format. This includes all the various checks mentioned earlier

including special characters, sequence name duplicates, empty sequences, ...

etc. The function takes as a parameter the name of the file containing the

sequences to be processed (the name includes the path to the file).

3. extractFasta(String fileName,LinkedList sequences)

This function extracts the sequences from the file of input sequences and put

each one in a separate class called Sequence. The function takes as input the

following parameters:

• The name of the file containing the sequences to be processed (the name

includes the path to the file).

• A list where the extracted sequences will be placed in.

4. extract coordinates(String coordinatesF ileName,LinkedList coordinates)

This function will extract the start and end positions from a certain coor-

dinates file and load them into memory to be used by the next function

extract new alignments. The function takes as input the following:

• The name of the coordinates file.

• A list of Coordinate classes, where the start and end positions will be

loaded in.

5. extract new alignments(LinkedList alignment, LinkedList coordinates,

LinkedList newAlignments)

This function will be applied on every alignment file. Using the coordi-

nates start and end positions associated with the alignment file, a set of

sub-alignments (blocks) will be extracted. The function takes as input the

following:

• A list containing sequences associated with an alignment file.

• The coordinates associated with the alignment file that is being pro-

cessed.

• A list where the newly extracted sub-alignments will be loaded in.
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6. extractAnchorsNew(LinkedList newAlignments, String anchorsF ile)

This function will be applied to each extracted sub-alignment produced by

the previous function extract new alignments. The main job of this function

is to extract anchor points from the sub-alignments and write them in one

file. The input parameters of extractAnchorsNew are:

• A list of sub-alignments which are extracted by the previous function

extract new alignments.

• The name of the file where the extracted anchor points will be written

in.

7. runDialign(String AllSequences, String resultsF ile)

The final step is to run the alignment program DIALIGN. The function run-

Dialign takes as an input two parameters. The first one is an integer called

flag. Giving flag a value of 2 will order DIALIGN to run using its anchoring

option. In this way, we can use the anchors file which contains the anchor

points extracted from the specified partial-alignment blocks.

The second parameter is a String which specifies the name of the file (including

its path) that contains the sequences to be aligned.

The output of this step is a file containing the final multiple sequence align-

ment produced by DIALIGN.
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Figure 4.18: Two types of files can be uploaded to the webserver: Alignment files
and sequences files. One alignment file at least should be uploaded. The sequences
files contain additional sequences which the user wishes to add (align) to the already
uploaded alignment files. In this figure, we see as an example 4 uploaded files: 2
alignment files and 2 sequences files.



82 Chapter 4. Thesis projects

Figure 4.19: Graphical representation of a multiple sequence alignment. Residues
are colored using the Zappo coloring scheme. The user can scroll horizontally and
vertically to view the rest of the alignment.
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Figure 4.20: This figure shows how to choose the start/end coordinates of blocks.
Suppose the user wants to choose the block which is between the two vertical red
arrows, then he/she should click on number 3 for the starting position and number
26 for the end position of the chosen block.





Chapter 5

Conclusion and Future

Perspective

5.1 General conclusion

Most methods for multiple protein alignment are based on primary-sequence simi-

larity alone. In this thesis, the main concept that was being investigated is testing

the effect of incorporating additional sources of information in the alignment pro-

cess. The development of all the approaches presented was driven by the hypothesis

which states that using external input from the user or from the available data de-

posited in the public and private databases and integrating them in the alignment

process would certainly produce alignments which have a better quality and are

biologically more meaningful.

To date, only few MSA programs can include external information in addition

to primary sequences in the alignment process. As a base for my approaches, I

used DIALIGN since this program has an anchoring option which allows the user

to specify positions of the input sequences that are to be aligned.

DIALIGN-PFAM and DIALIGN-PROSITE have been tested against bench-

mark databases. The results proved that relying on external sources of information

in addition to the input sequences has improved the alignment scores and quality.

In principle, it should be possible to use other MSA methods in the same fasion and

add a term for external homology information to the commonly used substitution

scores.

The DIALIGN-PFAM and ”Aligning alignments with un-aligned sequences”

webservers provide additional functionality for users when dealing with sequence

alignments through interactive visualization of various steps in the workflow of

both webservers.
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5.2 Future Perspective

5.2.1 Development of an interactive webserver for DIALIGN-

PROSITE

The idea behind this webserver is to make the user interactively involved in the

various processing steps of DIALIGN-PROSITE. After uploading the sequences file

to the webserver, a PROSITE database scan should be performed. Afterwards, the

user should get a graphical representation of all the input sequences with highlighted

segments that correspond to parts of sequences that match a PROSITE pattern.

The user has the option to include all those matches for processing in the next step,

or discard some. The remaining steps will be done automatically by the webserver.

Firstly, the ”additional-scores matrix” should be built, then pairwise alignments

will be calculated for every pair of sequences, and finally, anchor points will be

extracted and input to DIALIGN to perform the final multiple sequence alignment.

5.2.2 Improvements for the Anchored-Alignment webserver

There are some additional functionalities that can be added to this webserver in

order to make it more effective and flexible to use. After uploading the files (align-

ment files and un-aligned sequences files) and getting a graphical representation of

the alignments, the user must choose start and end positions of the partial align-

ment blocks he/she wishes to keep fixed in the final multiple sequence alignment.

The current scenario is that the partial alignment blocks for a certain alignment

must include segments from every sequence in this alignment. As an improvement,

the user should be able to switch off some of the sequences from the alignment (for

example switch off sequences which share low similarity with the rest of the se-

quences). In this case, any selected block by the user should not necessarily involve

segments from all the sequences of a certain alignment.

Moreover, choosing the partial alignment blocks will be done in a smoother way

by selecting the blocks directly from the alignment using the mouse click-and-drag

method instead of clicking on the start and end positions on the coordinates bar

above the alignment.

5.2.3 Process DNA sequences with DIALIGN-PFAM and

DIALIGN-PROSITE

DIALIGN-PFAM and DIALIGN-PROSITE accept as input protein sequences only.

As a future perspective, a new functionality will be added to those two tools allow-
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ing them to accept DNA sequences for alignment. This can be achieved in several

ways. One way might be to translate the DNA sequences into the possible pro-

tein sequences and then follow the same original workflow of DIALIGN-PFAM and

DIALIGN-PROSITE and take those translated sequences as input.

Moreover, the ”Aligning alignments with un-aligned sequences” webserver will

also get this additional functionality of allowing the input of DNA sequences.
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