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1. Abstract 

G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors that 

are implicated in the physiological regulation of many biological processes. They 

mediate signals through complex networks of G protein-dependent and independent 

signalling pathways. The high diversity of GPCRs and their physiological functions make 

them to primary targets for therapeutic drugs. The property of drugs to potentially 

modulate multiple targets, termed polypharmacology, is widely seen as undesired 

source for adverse side effects. However, polypharmacology may also explain the 

clinical efficacy of some drug classes, such as antipsychotic drugs used for the 

treatment of psychiatric diseases. 

In this thesis, a GPCR profiling system is introduced comprising two aspects of 

multiplexed GPCR assays monitoring multiple selected events both at the level of 

receptor activation and downstream cellular signalling. Firstly, the multiplexed GPCR 

activity assay combines split TEV and EXTassay technologies and enables simultaneous 

measurements of receptor activities for multiple GPCR-ligand combinations within one 

experiment. In proof-of-principle experiments, the specificity of endogenous agonists 

as well as the polypharmacological effects of described antipsychotics on GPCR 

activities was demonstrated. Secondly, the multiplexed GPCR signalling assay allows 

monitoring multiple cellular downstream signalling events following to GPCR 

activation. Both profiling approaches use molecular barcodes as reporters that are 

invariably linked to either a single GPCR activity or cellular signalling event, thus 

enabling a precise and simultaneous measurement of individual events in a global 

profiling setup. The assay was successfully applied to different GPCRs, their correlation 

to G protein-coupled signalling and downstream signalling activities. 

In summary, the multiplexed assays presented constitute a flexible and scalable 

approach, which enables simultaneous profiling of receptor activities and downstream 

signalling, and offer a thorough analysis of compound actions in living cells. 
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2. Introduction 

2.1 G protein-coupled receptors 

Extracellular signals are transduced into cellular responses by signal transduction 

pathways. A central factor of these signal transduction pathways are membrane-

bound receptors, which act as sensors on the cell surface and integrate extracellular 

signals by activating intracellular effector proteins. These effector proteins induce 

distinct intracellular downstream signalling cascades. The largest and most 

investigated class of membrane-bound receptors are the G protein-coupled receptors 

(GPCRs), with more than 800 members in the human genome (Lagerstrom and Schioth, 

2008). All members of this class are composed of seven transmembrane α-helices 

connected by three intra- and three extracellular loops of varying length, an 

extracellular N-terminus and an intracellular C-terminus (Palczewski et al., 2000). 

GPCRs are activated by a variety of extracellular ligands like small molecules, peptides, 

hormones, neurotransmitters, odorants, or even light. Due to this diversity GPCRs are 

implicated in the regulation of a large variety of biological processes, such as neuronal 

activity, immune response, cell growth and differentiation. 

 

 

 Activation of G protein coupled receptors 2.1.1

All GPCRs have the common feature of binding and activating heterotrimeric G 

proteins. Binding of an extracellular ligand to an inactive GPCR induces a 

conformational change of the receptor. This interaction leads subsequently to an 

exchange of bound GDP (Guanosine diphosphate) by GTP (Guanosine triphosphate) at 

the Gα subunit of the coupled heterotrimeric G protein. This change from GDP to GTP 

triggers the dissociation of the Gα subunit from the Gβγ dimeric subunit and the 

concomitant release of both subunits from the receptor. The free receptor can then 

rebind and activate another G protein until the receptor is deactivated. The two 

dissociated subunits, the Gα and the Gβγ dimers, now interact and modulate 

downstream effectors, which in turn regulate intracellular concentrations of second 

messengers. This in turn, results in a physiological response, usually caused by the 
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downstream regulation of gene expression (Hepler and Gilman, 1992; Wettschureck 

and Offermanns, 2005). 

 

 

 Termination of G protein-coupled receptor activity 2.1.2

There are two mechanisms to deactivate GPCR signalling. The first mechanism is the 

short-term deactivation of G proteins by hydrolysis of GTP (active state) to GDP 

(inactive state) of the Gα subunit. The hydrolysis is catalysed on the one hand by the 

intrinsic GTPase activity of the Gα subunit and on the other hand by regulators of G 

protein signalling (RGS), which are also known as GTPase activating proteins (GAPs) 

(Xie and Palmer, 2007). 

The second long-term mechanism is the desensitization of the active receptor. The 

conformation change as a result of agonist binding leads to the recruitment of G 

protein coupled receptor kinases (GRKs). These kinases phosphorylate residues on the 

third intracellular loop and the C terminus of the receptor. The phosphorylation in turn 

promotes the binding of proteins from the β-arrestin family (Kohout and Lefkowitz, 

2003). The binding of β-arrestin sterically hinders G protein coupling and triggers the 

internalization of the GPCR. The internalization is promoted by the interaction of 

β-arrestin, the adaptors of the endocytic machinery, such as the AP2 adaptor complex, 

and clathrin to form clathrin-coated endocytotic vesicles. The endocytosis results 

either in the degradation of the receptor in lysosomes or in the receptor 

dephosphorylation and recycling back to the plasma membrane (Zhang et al., 1996). 

Regarding to the receptor-β-arresting complex and their trafficking patterns GPCRs can 

be classified as follows: ‘class A’ receptors (e.g. ADRB2, DRD1) show a strong affinity to 

β-arrestin 2 that is bound to the receptor at the cell surface but dissociates when the 

receptor internalizes (Oakley et al., 2000; Shenoy and Lefkowitz, 2003). This allows the 

dephosphorylation of the receptor and the trafficking back to the membrane (Pitcher 

et al., 1995). ‘Class B’ receptors (e.g. AVPR2) bind β-arrestin 1 and β-arrestin 2 with 

equal tight affinity and do not dissociate from each other but traffic together into 

endosomes (Oakley et al., 2000; Shenoy and Lefkowitz, 2003). 
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 G protein-coupled receptor signalling 2.1.3

The primary effector proteins and signal transducers of active GPCRs are the coupled 

heterotrimeric G proteins. The versatility of G protein-mediated signalling is based on 

different subtypes of G proteins that are named according to the Gα subunit. There are 

four main families of G proteins, Gs, Gi, Gq and G12. 

Gαs interacts and activates adenylate cyclase (AC), which converts ATP to cAMP (cyclic 

adenosine monophosphate) resulting in increased intracellular cAMP levels. cAMP acts 

as a second messenger and activates the enzyme protein kinase A (PKA), which in turn 

regulates the activity of other proteins by their phosphorylation, such as enzymes and 

transcription factors like the cAMP response element-binding protein (CREB). 

In the Gi pathway the Gαi subunit inhibits adenylate cyclase and therefore, the 

intracellular cAMP concentration decreases. Apart from the Gα subunit, also the Gβγ 

complex induces signal transduction pathways. Gβγ regulated effectors are 

phosphoinositide 3-kinase (PI3K), potassium channels and phospholipase C beta 

(PLC-β) (Neves et al., 2002). 

Gαq signals through the activation of PLC-β that cleaves the membrane-bound 

phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) into the two second 

messengers inositol trisphosphate (IP3) and diacylglycerol (DAG). IP3 mobilises calcium 

release from intracellular stores to increase the cytosolic Ca2+ concentration, and 

activates further signalling events like the activation of nuclear factor of activated 

T-cells (NFAT). DAG interacts with and activates protein kinase C (PKC) that regulates 

other proteins (Neves et al., 2002). 

G12 proteins activate the monomeric GTPase RhoA. RhoA in turn activates effectors 

such as Rho kinase (ROCK). Therefore, G12 proteins are involved in the regulation of the 

actin cytoskeleton, cell growth and cell migration as well as in gene transcription 

(Siehler, 2007). 

The second important signal transducers of GPCRs are β-arrestins. Besides their 

function of GPCR desensitisation, they are also capable to act as adaptor proteins and 

initiate distinct signal transduction pathways. In the late 1990s, the recruitment of 

c-Src to β-arrestin 1 and the activation of the mitogen-activated protein (MAP) kinases 

extracellular signal-regulated kinases (Erk1 and Erk2) was discovered (Luttrell et al., 

1999). Later, multiple interacting partners of β-arrestin 1 and β-arrestin 2 were found, 
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such as phosphoinositide 3-kinase (PI3K) and nuclear factor-κB (NFκB) (DeWire et al., 

2007; Lefkowitz and Shenoy, 2005).  The discovery of β-arrestin mediated signalling 

leads to the changing of the classical model of linear G protein signalling upon receptor 

activation to a complex signalling network of G protein and β-arrestin-mediated 

pathways. 

 

 

 Functional selectivity 2.1.4

In pharmacology, ligands can be described by two properties, affinity and efficacy. 

Affinity is the ability of a ligand to bind to a certain receptor and efficacy is the ability 

of the ligand-receptor complex to produce a cellular response (Rajagopal, 2013; 

Stephenson, 1956). In the classical or traditional concept of pharmacology, ligands act 

either as agonists, antagonists or inverse agonists through a specific receptor. Each of 

these properties is consistent with the induced cellular response pathways coupled to 

that receptor. In this concept an agonist activates all signalling pathways linked to that 

receptor in the same way as the corresponding endogenous ligand, whereas an 

antagonist blocks all signalling pathways to the same degree. A new concept termed 

functional selectivity or biased agonism postulates that a ligand can induce differential 

signalling pathways downstream of a given receptor. Thus, a ligand may act as an 

agonist on some signalling pathways coupled to the receptor and simultaneously as an 

antagonist on other pathways (Figure 1). 

 

 

Figure 1: Schematic representation of functional selectivity (biased agonism).  
Agonist A is functional selective in activating pathway 1 whereas agonist B induces pathway 2. Adapted 
from Kenakin and Christopoulos, 2013.  



                                                                                                               Introduction 

6 
 

The degree to which given signalling pathways are activated is dependent on the 

ligand bound to the receptor. Against the classical concept where ligand efficacy is cell 

type-independent and therefore can be used to predict the activity in any systems, 

functional selective ligands can have multiple efficacies, which are dependent on the 

cell system and the receptor coupled effectors (Chang and Bruchas, 2014; Kenakin, 

2011; Kenakin and Christopoulos, 2013; Urban et al., 2007). 

The developing concept of functional selectivity is based on reports of serotonin 

receptor (Berg et al., 1998) and dopamine receptor (Mottola et al., 2002) agonists. It 

was observed that each ligand is selective for certain signalling pathways compared to 

the other ligands. Regarding GPCRs and the discovery of β-arrestin mediated signalling, 

ligands can be functionally selective either towards G protein- or β-arrestin-mediated 

signalling (Chang and Bruchas, 2014; Rajagopal et al., 2010; Whalen et al., 2011). 

This functional selectivity of ligands offers new opportunities for therapeutic drug 

development. Ligands can be identified or developed that are able to activate 

beneficial signalling pathways and prevent other pathways that are responsive for 

unwanted effects (e.g. side effects or toxicity). 

 

 

2.2 GPCRs as drug targets 

Due to the complexity of GPCRs and their signal transduction mechanisms the 

deregulation of GPCRs and their mediated signalling pathways is implicated in the 

pathophysiology of various diseases. They play a role in metabolic disorders, such as 

obesity and type 2 diabetes, in immune diseases and in neurodegenerative diseases 

like Alzheimer’s and Parkinson’s disease (Heng et al., 2013). Furthermore, GPCRs are 

involved in the pathophysiology and the treatment of major psychiatric disorders like 

schizophrenia and bipolar disorder (Catapano and Manji, 2007; Heng et al., 2013). 

Their roles in the pathophysiology of this variety of diseases make GPCRs to key targets 

for pharmacological research. Currently, GPCRs are targeted by approximately 30-40% 

of all marketed drugs (Stevens et al., 2013). One important class of GPCR targeting 

medications are antipsychotic drugs for the treatment of psychiatric diseases like 

schizophrenia (Komatsu, 2015). 
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 Schizophrenia 2.2.1

Schizophrenia is a severe mental disorder characterized by perception of reality and 

disturbed social behaviour. The lifetime prevalence of schizophrenia ranges between 

0,3% and 0,7% with an onset in the late adolescence and early adulthood (McGrath et 

al., 2008). The symptoms are divided into the terms of positive and negative symptoms 

and cognitive deficits. The positive symptoms, which include e.g. hallucinations, 

delusions and disorganized thinking and speech, can be effectively ameliorated by the 

treatment with antipsychotic drugs. Whereas the negative symptoms including social 

and emotional withdraw, lack of motivation and poverty of speech as well as cognitive 

deficits can only slightly or not effective be treated (Conn et al., 2008; Miyamoto et al., 

2012; Tandon et al., 2009). 

The antipsychotic efficacy of antipsychotic drugs and the pro-psychotic effects of 

amphetamine led to the conceptualization of a role for dopamine in schizophrenia 

(Davis et al., 1991). The dopamine hypothesis involves a dysregulation of dopaminergic 

activities in the brain with an excess of activity in the mesolimbic dopamine pathway 

and an abnormal low activity in the mesocortical pathway (Davis et al., 1991). 

Nonetheless, the pathophysiology and aetiology of schizophrenia are still unknown 

(Insel, 2010). 

 

 

 Antipsychotic drugs 2.2.2

Antipsychotic drugs, also known as neuroleptics, are a class of psychotic medications 

with sedating and antipsychotic effects. They are mainly used in the treatment of 

schizophrenia and bipolar disorder. The main effect of antipsychotics is the reduction 

of positive symptoms, such as hallucinations and delusions. 

The discovery of antipsychotic drugs is based on observations in the late 19th century 

when it was found that the aniline dye methylene blue, a phenothiazine derivative, has 

antimalarial effects. During the early 20th century, phenothiazine derivatives were 

found to have antihistaminic and sedative properties. In 1950, the phenothiazine 

derivative chlorpromazine was synthesised for use in clinical anaesthesia. Shortly 

thereafter, antipsychotic effects of chlorpromazine were discovered, and 
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subsequently, chlorpromazine was introduced into psychiatric practice as the first 

antipsychotic drug. Later on, many antipsychotic drugs, such as haloperidol with 

similar chemical structures and mode of action, were developed and marketed. They 

are referred to as first-generation or typical antipsychotics. However, already shortly 

after the introduction of chlorpromazine the first side effects were recognized. The 

observed side effects are summarized as extrapyramidal symptoms (EPS) including 

Parkinson-like symptoms, akathisia, and dystonia. In 1961, the prevalence of EPS was 

estimated to be about 40% (Ayd, 1961). In the late 1960s, a new antipsychotic drug 

came into the focus of pharmacologists and clinicians, the tricyclic dibenzodiazepine 

derivative clozapine. Clozapine turned out to be an effective antipsychotic inducing no 

or highly reduced EPS. The discovery of clozapine as an effective antipsychotic drug, 

atypical with regard to the lack of EPS side effects, lead to the development of a new 

class of antipsychotics, such as risperidone, olanzapine or quetiapine, then referred to 

as second-generation or atypical antipsychotics (Gründer et al., 2009). However, also 

atypical antipsychotics are associated with serious side effects, such as weight gain and 

metabolic side effects like diabetes and hyperlipidemia (Ücok and Gaebel, 2008). 

Since their introduction atypical antipsychotics seemed promising regarding enhanced 

effectiveness and tolerability over the use of the older typical antipsychotics. However, 

this assumption was dampened in the last years by comparative studies like the clinical 

antipsychotic trials of intervention effectiveness (CATIE) study. It could not be shown 

unequivocally that second-generation antipsychotics are superior in their effectiveness 

than first-generation antipsychotics (Leucht et al., 2009; Lieberman et al., 2005). 

Although all current antipsychotics are effective in the reduction of positive symptoms 

they failed in the treatment of cognitive symptoms and have only little effect on the 

negative symptoms (Conn et al., 2008; Leucht et al., 2009). It is assumed that 

approximately 30% of patients are treatment resistant (Lally and MacCabe, 2015). The 

main mechanism of action of all currently used antipsychotic drugs is the reduction of 

dopaminergic activities in the brain by acting as full or partial antagonists on the 

dopamine D2 receptor (DRD2) and for most of the atypical antipsychotics the blocking 

of serotonin receptor activities, especially the serotonin receptor 2A (HTR2A) 

(Miyamoto et al., 2012). But the antagonism on these receptors alone cannot explain 

the antipsychotic efficacy. By analysing binding affinities of antipsychotics it could be 
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shown that these drugs are pharmacologically complex by having pleiotropic effects. 

Figure 2 represents the relative affinity values (Ki) of commonly used antipsychotics to 

a range of different receptors. It shows that all antipsychotics possess considerable 

affinities to a large number of aminergic GPCRs (Roth et al., 2004). However, the exact 

mode of action of antipsychotics especially with regard to the differences between 

typical and atypical and the induced side effects is still unclear (Miyamoto et al., 2012; 

Roth et al., 2004).  But the affinity to multiple targets leads to the assumption that the 

clinical efficacy of these drugs is based on the complex polypharmacology. This 

evidence for polypharmacology promotes the idea of “magic shotguns” – drugs that 

exhibit their action through multiple targets and therefore can be better candidates in 

drug research for more complex diseases such as schizophrenia (Allen and Roth, 2011; 

Roth et al., 2004). 

 

 

Figure 2: Graphical representation of relative binding affinities of antipsychotic drugs to multiple 
receptors. 
The binding affinity values (Ki) are from the PDSP Ki database as part of the National Institute of Mental 
Health Psychoactive Drug Screening Program (https://pdspdb.unc.edu/pdspWeb/). All antipsychotics 
show a polypharmacology by complex binding affinities to multiple receptors. Adapted from Roth et al., 
2004. 



                                                                                                               Introduction 

10 
 

2.3 Assay technologies 

For the analysis of GPCRs and their mechanisms a high number of assay tools were 

developed over the last decades addressing the several steps of the GPCR signalling 

cascade. The properties of ligands to the particular receptors such as affinity or 

association/dissociation rates can be determined in ligand-binding assays using 

radiolabelled ligands or in newer assay formats with fluorescent-labelled ligands based 

on time-resolved fluorescence resonance energy transfer (TR-FRET) technology 

(Oueslati et al., 2015; Zhang and Xie, 2012). Direct G protein binding can be measured 

via GTPγS binding assays using the non-hydrolysable [35S]-GTPγS analogue (Harrison 

and Traynor, 2003). G protein signalling can be determined either by assays that 

measure changes in the concentration of the intracellular second messengers cAMP, 

Ca2+ and IP3 (Thomsen et al., 2005; Zhang and Xie, 2012) or by reporter gene assays 

using response elements, such as the cAMP responsive element (CRE) or the nuclear 

factor of activated T-cells responsive element (NFAT-RE) coupled to the expression of 

reporter proteins like luciferase, β-lactamase, or GFP (green fluorescence protein) 

(Cheng et al., 2010). Label-free whole cell assays were developed to measure the 

accumulation of cellular responses upon GPCR activation using optical or electrical, 

impedance-based biosensors (Miyano et al., 2014; Zhang and Xie, 2012). Approaches 

to assess the stimulation-dependent GPCR activation widely uses the interaction of 

β-arrestins and activated GPCR by several methods. GFP-tagged β-arrestin 

translocation upon receptor stimulation is tracked by fluorescence imaging (Oakley et 

al., 2002). Direct protein interactions assays based on Bioluminescence Resonance 

Energy Transfer (BRET) (Bertrand et al., 2002), Fluorescence Resonance Energy 

Transfer (FRET) (Eidne et al., 2002) or the enzyme complementation of β-galactosidase 

(Yan et al., 2002) or luciferase (Hattori and Ozawa, 2015) fragments. The Tango assay 

from Invitrogen is based on β-arrestin induced proximity of the TEV (tobacco etch 

virus) protease to its cleavage site resulting in transcription factor release and 

activation of a reporter gene (Barnea et al., 2008). An additional approach to monitor 

receptor-protein interactions are split TEV complementation assays (Djannatian et al., 

2011; Wehr et al., 2006). 
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 Split TEV 2.3.1

Split TEV assays are a method to monitor protein-protein interactions in living cells. It 

is based on the fragment complementation of the NIa protease from the tobacco etch 

virus (TEV protease). The TEV protease is cleaved into two inactive fragments, an 

N-terminal (NTEV) and a C-terminal fragment (CTEV) and both fragments are fused to 

the interacting proteins of interest. If an interaction of the proteins occurs both TEV 

fragments come into close proximity and reconstitute the functional protease activity. 

The cleavage site of the TEV protease is the specific amino acid sequence ENLYFQ’G 

(tevSite or tevS) that is fused to the NTEV fragment along with the artificial 

transcription factor Gal4-VP16 (GV) (Wehr et al., 2006). The Gal4-VP16 transcription 

factor is composed of the DNA binding domain of yeast Gal4 and the activating domain 

of the herpes simplex VP16 transcription factor (Sadowski et al., 1988). Upon 

interaction of proteins, the reconstituted TEV protease cleaves at tevS to release GV 

that translocates into the nucleus, where it activates a reporter gene of choice by 

binding to clustered Gal4-responsive elements (UAS, upstream activating sequence) 

(Figure 3). Reporter genes can be i.e. a fluorescent protein like the green fluorescence 

protein (GFP) or an enzyme like the firefly luciferase. 

 

 
Figure 3: Graphical representation of the split TEV technique. 
Split TEV assays are designed for monitoring protein-protein interactions. (1) The two protein 
interaction partners are fused to the N-terminal and C-terminal fragments of the tobacco etch virus 
protease (TEV). (2) Upon protein-protein interaction both TEV fragments come into close proximity and 
reconstitute the functional protease. (3) The active protease leads to the cleavage of a TEV specific 
cleavage site (tevS) and thereby to the release of the artificial transcription factor Gal4-VP16 (GV), both 
linked to the NTEV fragment. (4) GV then activates a reporter gene by binding a GV responsive upstream 
activating sequence (UAS). 
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The assay is sensitive to monitor protein-protein interactions in the cytosol and at the 

membrane. It was shown to be a robust assay by transient transfections for monitoring 

ERBB receptors as well as G protein coupled receptors (Djannatian et al., 2011; Wehr 

and Rossner, 2015; Wehr et al., 2006, 2015). Furthermore, the split TEV technique 

could be successfully combined with EXT reporter assays for the simultaneous analysis 

of ERBB receptor tyrosine kinase dimerization (Botvinnik et al., 2010). 

 

 

 Cis-regulatory assays 2.3.2

Signal transduction cascades commonly result in the change of gene expression. This 

occurs by activation of transcription factors. Transcription factors are DNA binding 

proteins that recognize and bind specific DNA sequences, so called response or cis-

elements, within the regulatory region of target genes. Through the binding 

transcription factors regulate gene expression by either activation or repression of 

transcription of the adjacent gene. The activity of transcription factors can be 

monitored in reporter gene assays using reporter gene constructs. A reporter gene 

construct is composed of a regulatory DNA sequence, which can be artificially 

clustered cis-elements or an endogenous promoter sequence, coupled to a reporter 

gene encoding an easily detectable and quantifiable protein. Classical reporter 

proteins that are widely used are fluorescence proteins such as green fluorescent 

protein (GFP) or enzymes, such as firefly luciferase or β-galactosidase. 

Reporter gene constructs (cis-reporters) carrying cis-elements indicative for defined 

transcription factors can be used as surrogate markers for distinct upstream signalling 

pathways. In GPCR research, classical cis-reporter constructs are the cAMP responsive 

element (CRE) for monitoring Gs induced cAMP pathway or the nuclear factor of 

activated T-cells responsive element (NFAT-RE) for Gq induced Ca2+ signalling (Cheng et 

al., 2010). However, cellular signalling in particular GPCR mediated signalling involves 

the induction of several transduction pathways and therefore the activation of 

multiple transcription factors. A method to assess the activities of multiple 

transcription factors in parallel is the application of a reporter construct library 

encoding several cis-elements coupled to reporters that can be detected 

simultaneously. Moreover, nucleic acid sequences can serve as reporters that are 
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transcribed but not translated. Easily applicable detection and quantification methods 

for such cis-reporter libraries are for example capillary electrophoresis microarray 

hybridization or next generation sequencing (Botvinnik et al., 2010; Romanov et al., 

2008). 

 

 

 EXT reporter assays 2.3.3

EXT reporter assays (EXTassays) represent a novel method for the simultaneous 

measurement of multiple cellular activities in living cells (Botvinnik et al., 2010). Here, 

unique expressed oligonucleotide tags (EXTs) serve as quantitative molecular barcode 

reporters that can be each invariably linked to different reporter gene assays, like the 

split TEV system or cis-regulatory reporter gene assays. EXTs are designed to replace 

classical reporter proteins and their limitations and enable the parallel assessment of 

numerous cellular events. Multiple EXT reporters can be used in one assay and be 

isolated and analysed as a pool by either microarray hybridisation or next generation 

sequencing (Botvinnik et al., 2010). Thereby, different cellular events can be monitored 

simultaneously within a reporter system or by combination of different reporter gene 

assays. 

Each EXT is composed of a 49 base variable region, flanked by 5’ and 3’ non-variable 

regions. The variable region is arranged symmetrically by a core region of nine bases 

and ten “words” (W) (Figure 4). A “word” is a 4-nucleotide unit each consisting of three 

adenosines (A) or thymidines (T) and one cytosine (C). Eight different “words” were 

used for EXT synthesis. The core region contains 9 bases of alternating A, T (W) or G, 

C (S) residues with 3 G and C residues in the centre (Figure 4). The complexity of a EXT-

library is calculated as 810 (10 positions with 8 words) times 29 (2 bases at 9 core region 

positions) yielding in 5.5x1011 different sequences with a nearly consistent melting 

temperature (Botvinnik and Rossner, 2012). 

EXTassays were applied to monitor neuregulin-1-induced ErbB receptor tyrosine kinase 

dimerisations, and it could be shown that EXTs represent an improved measurement 

method regarding kinetic and sensitivity compared to luciferase assays (Botvinnik et 

al., 2010). 
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Figure 4: Structure of EXTs. 
Each EXT contains a 5’ and 3’ invariable region and a 49-nucleotide variable region of ten 4-nucleotide 
“words” (W) and a 9-nucleotide core sequence. The upper part shows the random distribution of the 
eight “words” to the 10 positions during the EXT synthesis. The resulting complexity of “word” and core 

sequence combinations is ~5.5x1011. Adapted from Botvinnik and Rossner, 2012. 
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2.4 Aim of study 

GPCRs are essential modulators of many biological processes, which make them to key 

targets for a variety of therapeutic drugs. An important aspect within the drug 

discovery process is the potential property of compounds to modulate multiple 

targets. In the past, this polypharmacology was seen as disadvantage responsible for 

adverse side effects. However, over time it was shown that some drug classes 

exhibiting polypharmacology have better clinical efficacy. Antipsychotics represent 

such a class of drugs characterised by a complex pharmacology targeting multiple 

GPCRs for the treatment of psychiatric diseases. Approaches for profiling drug actions 

causing polypharmacological effects in a biological system may reveal desired targets 

and downstream signalling cues responsible for therapeutic effects (on-target & 

pathway effects) as well as targets and pathway activities producing adverse side 

effects (off-target & pathway effects). Furthermore, over the past decades it became 

clear that GPCR signalling is highly complex inducing G protein-dependent and 

independent signalling pathways. Methods to measure these complex GPCR signalling 

networks will lead to a better understanding of physiological effects caused by GPCR 

targeting drugs. 

The aim of this thesis is to develop a multiplexed GPCR profiling system to 

simultaneously monitor multiple selected events in living cells, both at the level of 

receptor activation and downstream cellular signalling. Firstly, the thesis included the 

development of a multiplexed GPCR activation assay to assess receptor activities 

within a matrix of multiple GPCRs and ligands. A selection of GPCRs was adapted to the 

split TEV technique and connected to EXT barcode reporters to monitor receptor 

activation of multiple GPCRs by several ligands in parallel in one experiment. A major 

application of the developed assay was to generate activity profiles induced by 

compounds corresponding to endogenous neurotransmitters and hormones. Further, 

the assay was applied to profile the actions of clinically approved antipsychotic drugs 

and other antagonists. In the second part a multiplexed GPCR signalling assay was 

designed to monitor simultaneously multiple cellular events of GPCR mediated 

downstream signalling. For this an EXT reporter library encoding a variety of different 

cis-regulatory elements was used to assess signalling profiles of activated GPCRs at the 

level of transcription factor activity.  
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3. Materials 

3.1 Equipment 

Arium 611 Water Purification System   Sartorius 

Biophotometer      Eppendorf 

Picodrop Spektrophotometer     Picodrop Limited 

Vortex Genie 2       Bender + Hobein 

Mini Centrifuge Model sprout    Biozym 

Heraeus Centrifuge Fresco 17     Thermo Fisher Scientific 

Heraeus Megafuge 16      Thermo Fisher Scientific 

Thermomixer BioShake iQ     Biometra 

Thermocycler T3000      Biometra 

Thermocycler TGradient     Biometra 

Electrophoresis power supply    Pharmacia LKB 

UV Gel documentation system    INTAS 

Genepulser Xcell Elektroporationsgerät   BioRad 

Ultra-low temperature lab freezer U725   New Brunswick Scientific 

 

Cell culture 

Hera Cell incubator      Thermo Fisher Scientific 

Hera Safe Workbench      Thermo Fisher Scientific 

Nalgene freezing Container “Mr. Frosty”   Sigma-Aldrich 

Microscope Axiovert 25     Zeiss 

 

Luciferase measurements 

Tumbling Table WT17      Biometra 

Microplate Reader Mithras LB 940    Berthold Technologies 

32-Channel Luminometer LumiCycle 32   ActiMetrics 

 

Next-Generation-Sequencing 

Ion OneTouch2 System     Ion Torrent 

Ion Personal Genome Machine (PGM)    Ion Torrent 
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Ion Proton        Ion Torrent   

Ion Torrent Server      Ion Torrent 

Minifuge       Ion Torrent 

Qubit 2.0 Fluorometer     Invitrogen 

UV Airclean Workstation     LTF Labortechnik 

 

Software 

Microsoft Windows Professional 7    Microsoft 

Microsoft Office 2007      Microsoft 

Acrobat Reader 9.5      Adobe 

Illustrator CS5       Adobe 

Photoshop CS5      Adobe 

InDesign CS5       Adobe 

Lasergene 8.0       DNA Star Inc. 

MicroWin 2000      Berthold Technologies 

ImageJ        Freeware 

R Version 2.15.0      Freeware 

R-studio Version 0.99.484     Freeware 

Tinn-R Editor Version 2.3.7.1     Freeware 

Lumicycle Version 1.4      ActiMetrics 

ChemSketch       ACDlabs 

Zotero        https://www.zotero.org 

 

 

3.2 Chemicals and consumables 

All chemical reagents were purchased from Thermo Scientific, Sigma-Aldrich, Merck, 

Roche and Promega unless stated otherwise. The cell culture media and supplements 

were ordered from Thermo Scientific, Lonza or Sigma-Aldrich. General consumables 

were purchased from Eppendorf, Falcon, Sarstedt, Nunc, Nalgene, Biorad and Gilson. 
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 GPCR ligands 3.2.1

Aripiprazole       Toronto Research Chemical 

[Arg8]-Vasopressin acetate salt    Sigma-Aldrich 

Asenapine maleate      Tocris 

Dopamine-hydrochloride     Sigma-Aldrich 

(±)-Epinephrine hydrochloride    Sigma-Aldrich 

Histamine dihydrochloride     Tocris 

(−)-Isoproterenol hydrochloride    Sigma-Aldrich 

L-Norepinephrine hydrochloride    Sigma-Aldrich 

Paliperidone       Sigma-Aldrich 

(±)-Propranolol hydrochloride    Sigma-Aldrich 

Serotonin hydrochloride     Tocris 

Somatostatin       Sigma-Aldrich 

UNC0006       Lead Discovery Center 

 

 Commercial kits 3.2.2

RNeasy Mini Kit      Qiagen 

RNase free DNase Kit      Qiagen 

NucleoSpin Plasmid Quick Pure    Macherey-Nagel 

NucleoBond PC100 Midiprep     Macherey-Nagel 

NucleoBond PC500 Maxiprep     Macherey-Nagel  

NucleoSpin Gel and PCR Clean-up    Macherey-Nagel 

pGEM-T Vector System     Promega 

 

 NGS Reagents & Chips 3.2.3

Qubit dsDNA HS Assay Kit     Invitrogen 

Ion PGM Template OT2 200 Kit      Ion Torrent 

Ion PGM Sequencing 200 Kit v2     Ion Torrent  

Ion PGM Hi-Q™ OT2 Kit     Ion Torrent 

Ion PGM Hi-Q™ Sequencing Kit     Ion Torrent 

Ion PI™ Template OT2 200 Kit v3    Ion Torrent 



                                                                                                                     Materials 

19 
 

Ion PI™ Sequencing 200 Kit v3    Ion Torrent 

Ion Sphere Quality Control Kit    Ion Torrent 

Dynabeads MyOne Streptavidin C1    Invitrogen 

DNA LoBind Tubes (1.5 ml)     Eppendorf 

Ion 314 Chip Kit v2      Ion Torrent 

Ion 318 Chip Kit v2      Ion Torrent 

Ion PI™ Chip Kit v2      Ion Torrent 

 

 Enzymes 3.2.4

HotStarTaq Plus DNA Polymerase    Qiagen 

PWO Polymerase      Roche 

Pfu Ultra Advanced DNA Polymerase    Stratagene 

Pfu Turbo Polymerase      Stratagene 

BP Clonase II       Thermo Fisher Scientific 

LR Clonase II       Thermo Fisher Scientific  

LR Clonase II Plus      Thermo Fisher Scientific 

SuperScript III Reverse Transcriptase    Thermo Fisher Scientific 

RQ1 DNase       Promega 

Alkaline Phosphatase       Roche 

Restriction enzymes      New England Biolabs 

 

3.3 Eukaryotic cell lines 

PC12 tetOFF 

Rat adrenal pheochomocytoma cell line expressing tetracycline regulated 

transactivator tTA (Clonetech) (Greene and Tischler, 1976). 

 
U2OS 

Human osteosarcoma cells (American tissue culture collection, ATCC) (Pontén and 

Saksela, 1967). 

 
CHO 

Chinese Hamster Ovary cells (Puck et al., 1958). 
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3.4 Bacterial strains 

Escherichia coli transformation competent cells: 

MegaX DH10B electro-competent cells   Thermo Fisher Scientific 

One Shot Mach1 chemical-competent cells   Thermo Fisher Scientific 

One Shot ccdB survival 2 T1R chemical-competent cells Thermo Fisher Scientific 

DH5α chemical-competent cells    Self-made 

Mach1 chemical-competent cells    Self-made 

 

 

3.5 Buffers and solutions 

 Molecular biology solutions 3.5.1

TAE (50x) 

2M   Tris-Base  

50 mM  EDTA 

Adjust with glacial acetic acid to pH8  and with H2O to 1l. 

 

TE (Tris-EDTA) 

10 mM  Tris-HCl, pH 7.5 

1 mM   EDTA 

 

10x DNA Orange loading dye 

50%  Glycerol 

0.1%  Orange G 

49.9%  TAE buffer 1x 

 

10x GelRed/Orange loading buffer 

90%  10x DNA Orange loading dye 

10%  GelRed  (from a 1:100 dilution of the 10 000x stock) 

 

Ethidiumbromid 

1 mg/ml EtBr 1% in H2O 
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LB-medium (Luria and Bertani medium) 

0.5%   Yeast extract 

1%  Bacto-Peptone pH 7.5  

1%  NaCl 

 

Low-salt LB-medium 

0.5%   Yeast extract 

1%   Bacto-Peptone pH 7.5 

0.5%  NaCl 

 

LB/Amp: 200 µg/ml f. c. Ampicillin in LB-medium 

LB/Kan: 50 µg/ml f. c. Kanamycin in LB-medium 

LB/Zeo: 35 µg/ml f. c. Zeocin in low-salt LB-medium 

LB/Cm: 25 µg/ml f. c. Chloramphenicol in LB-medium 

LB/Genta: 50 µg/ml f. c. Gentamicin in LB-medium 

 

SOC-Medium 

0.5%  Yeast extract 

2%   Bacto-Peptone 

20 mM  Glucose 

10 mM  NaCl 

2.5 mM  KCl 

10mM  MgSO4 

 

LB-Agar plates 

0.5%   Yeast extract 

1%   Bacto-Peptone pH 7.5  

1%  NaCl 

1.5%  Agar 

Autoclave and after cooling add antibiotics (final concentration like LB-media). 
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For blue-white screening add:  

200 µg/ml  Ampicillin 

15 µg/ml  IPTG (Isopropyl-β-D-thiogalactopyranoside) 

35 µg/ml  X-gal (5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside) 

 

Low-salt LB-Agar plates 

0.5%   Yeast extract 

1%  Bacto-Peptone pH 7.5  

0.5%  NaCl 

1.5%  Agar 

Autoclave and after cooling add antibiotics (final concentration like LB-media). 

 

 Solutions for luciferase assay 3.5.2

Lysis buffer 

5x Passive lysis buffer 

Dilute buffer in ddH2O. 

 

Firefly luciferase assay buffer (Gaunitz and Papke 1998) 

20 mM  Tricine 

1.07 mM  (MgCO3)4*Mg(OH)2*5H2O 

2.67 mM  MgSO4 

0,1 mM  EDTA 

33.3 mM  DTT 

270 M  Coenzyme A 

470 M  D-Luciferin, free base 

530 M  ATP 

For dissolving of magnesium carbonate titrate the pH with HCl until the solution is 

clear. Then adjust the pH to 7.8 with NaOH. Add luciferin and ATP at last and control 

the pH. The buffer is stored at -20°C in the dark and thawed at room temperature. 
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Renilla luciferase assay buffer 

Prepare KxPO4 (pH 5.1) solution: adjust the pH of 1M KH2PO4 solution to 5.1 using 2 M 

KOH. 

1.1 M   NaCl 

2.2 mM  Na2-EDTA 

0.22 M  KxPO4 (pH 5.1)  

0.44 mg/ml  BSA 

1.3 mM  NaN3 

Adjust the pH to 5.0 with KOH. Then add 1.43 mM Coelenterazine (dissolved in 

100% EtOH). The buffer is stored at -20°C in the dark and thawed at room 

temperature. 

 

 Solutions and media for cell culture 3.5.3

PBS 10x (Phosphate buffered saline) 

1.7 M   NaCl 

34 mM  KCl 

40 mM  Na2HPO4*2H2O 

18mM   KH2PO4  

Adjust pH to 7.2 with 1M NaOH. 

 

PLL 250x 

5 mg/ml  Poly-L-Lysine in H2O 

Dilute in ddH2O. Final concentration: 0.02 mg/ml. 

 

Trypsin 10x 

5 g/l   Trypsin  

Dilute in PBS. 

 

Penicillin-Streptomycin (PenStrep) 

10000 U/ml  Potassium Penicillin 

10000 g/ml  Streptomycin Sulfate 
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2x Freezing medium for eukaryotic cell lines 

40%  DMEM 

40%  FBS 

20%  DMSO 

 

PC12tetOFF maintenance medium  

500ml   DMEM (1g/l Glucose) 

10%  Dialyzed FBS 

1%  NEAA 

1%  GlutaMAX 

1%  PenStrep 

 

PC12tetOFF assay medium  

500ml   DMEM (1g/l Glucose) 

1%  Dialysed FBS 

0.1%  NEAA 

1%  GlutaMAX 

1%  PenStrep 

 

U2OS maintenance medium 

500ml   McCoy’s 5A + GlutaMax 

10%  Dialyzed FBS 

1%  NEAA 

1%  PenStrep 

 

U2OS assay medium 

500ml   McCoy’s 5A + GlutaMax 

0.1%  Dialysed FBS 

0.1%  NEAA 

1%  PenStrep 
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CHO maintenance medium 

500ml   F12 + GlutaMax 

10%  Dialyzed FBS 

1%  NEAA 

1%  PenStrep 

 

CHO assay medium 

500ml   F12 + GlutaMax 

0.1%  Dialysed FBS 

0.1%  NEAA 

1%  PenStrep 

 

 

3.6 Oligonucleotides 

Oligonucleotides were made by the AGCTlab (facility of the department of 

neurobiology) of the MPI of Experimental Medicine in Göttingen or purchased from 

Eurofins in Munich. 
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3.7 Plasmids 

Table 1: List of plasmids. 

 

Gateway backbone vectors 
 V9 pDONR207 GentaR 

V40 pDONR221 KanR 

V45 pDONR-Zeo ZeoR 

V881 pDONR_P1-P4 KanR 

V882 pDONR_P4r-P2 KanR 

V883 pDONR_P4r-P3r KanR 

V884 pDONR_P3-P2 KanR 

V101 pTag4C_ST_X-V2R-NTEV-tevS-GV_DEST KanR 

V582 pcDNA3.1_Zeo_X-CTEV-2HA_DEST AmpR 

V84 pGL4.16_X_luc2_Hygro_DEST AmpR 

V825 pAAVspace_DEST_X_luc2_WPRE AmpR 

V288 pEF5/FRT_X-V5_DEST AmpR 

  
 GPCR entry vectors 
 V202 pENTR207_hHTR1A-Cop GentaR 

V243 pENTR-Zeo_HA-Flag-hHTR1A-Cop ZeoR 

V203 pENTR207_hHTR1B-Cop GentaR 

V206 pENTR207_hHTR2A-var1-Cop GentaR 

V246 pENTR-Zeo_HOOK-hHTR2A-var1-Cop ZeoR 

V207 pENTR207_hHTR2B-Cop GentaR 

V247 pENTR-Zeo_HOOK-hHTR2B-Cop ZeoR 

V211 pENTR207_hHTR4-vara-Cop GentaR 

V212 pENTR207_hHTR5A-Cop GentaR 

V213 pENTR207_hHTR6-var-Cop GentaR 

V214 pENTR-Zeo_hHTR7-vara-Cop ZeoR 

V242 pENTR-Zeo_HA-Flag-hHTR7-vara-Cop ZeoR 

V215 pENTR207_hDRD1-Cop GentaR 

V216 pENTR207_hDRD2-var2-Cop GentaR 

V217 pENTR207_hDRD3-vara-Cop GentaR 

V240 pENTR-Zeo_HA-Flag-hDRD3-vara-Cop ZeoR 

V218 pENTR-Zeo_hDRD4-Cop ZeoR 

V241 pENTR-Zeo_HA-Flag-hDRD4-Cop ZeoR 

V219 pENTR207_hDRD5-Cop GentaR 

V173 pENTR-Zeo_hADRA1A-var2-Cop ZeoR 

V174 pENTR-Zeo_hADRA2B-Cop ZeoR 

V175 pENTR-Zeo_hADRA2C-Cop ZeoR 

V191 pENTR207_hADRB2-Cop GentaR 

V177 pENTR-Zeo_hADRB3-Cop ZeoR 

V232 pENTR207_hHRH1-var4-Cop GentaR 

V230 pENTR221_hAVPR1A-Cop KanR 

V231 pENTR207_hAVPR2-var1-Cop GentaR 

V234 pENTR207_hSSTR1-Cop GentaR 
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V248 pENTR-Zeo_HOOK-hSSTR1-Cop ZeoR 

V235 pENTR207_hSSTR2-Cop GentaR 

V236 pENTR-Zeo_hSSTR3-Cop ZeoR 

V237 pENTR-Zeo_hSSTR5-Cop ZeoR 

   GPCRs expression vectors (split TEV) 
 V434 pTag4C_HA-Flag-hHTR1A-V2R-NTEV-tevS-GV KanR 

V436 pTag4C_hHTR1B-V2R-NTEV-tevS-GV KanR 

V441 pTag4C_HOOK-hHTR2A-var1-V2R-NTEV-tevS-GV KanR 

V444 pTag4C_hHTR4-vara-V2R-NTEV-tevS-GV KanR 

V445 pTag4C_hHTR5A-V2R-NTEV-tevS-GV KanR 

V446 pTag4C_hHTR6-var-V2R-NTEV-tevS-GV KanR 

V447 pTag4C_hHTR7-vara-V2R-NTEV-tevS-GV KanR 

V448 pTag4C_HA-Flag-hHTR7-vara-V2R-NTEV-tevS-GV KanR 

V406 pTag4C_hDRD1-V2R-NTEV-tevS-GV KanR 

V407 pTag4C_hDRD2-var2-V2R-NTEV-tevS-GV KanR 

V412 pTag4C_HA-Flag-hDRD3-vara-V2R-NTEV-tevS-GV KanR 

V413 pTag4C_HA-Flag-hDRD4-V2R-NTEV-tevS-GV KanR 

V410 pTag4C_hDRD5-V2R-NTEV-tevS-GV KanR 

V267 pTag4C_hADRA1A-var2_V2R-NTEV-tevS-GV KanR 

V270 pTag4C_hADRA2B_V2R-NTEV-tevS-GV KanR 

V272 pTag4C_hADRA2C_V2R-NTEV-tevS-GV KanR 

V357 pTag4C_hADRB2-V2R-NTEV-tevS-GV KanR 

V1097 pTag4C_hADRB3-V2R-NTEV-tevS-GV KanR 

V286 pTag4C_hHRH1-var4_V2R-NTEV-tevS-GV KanR 

V282 pTag4C_hAVPR1A_V2R-NTEV-tevS-GV KanR 

V284 pTag4C_hAVPR2-var1_V2R-NTEV-tevS-GV KanR 

V302 pTag4C_hSSTR1_V2R-NTEV-tevS-GV KanR 

V306 pTag4C_HOOK-hSSTR1_V2R-NTEV-tevS-GV KanR 

V303 pTag4C_hSSTR2_V2R-NTEV-tevS-GV KanR 

V304 pTag4C_hSSTR3_V2R-NTEV-tevS-GV KanR 

V305 pTag4C_hSSTR5_V2R-NTEV-tevS-GV KanR 

   GPCRs expression vectors (V5 tag) 
 V463 pEF5/FRT_HOOK-hHTR2A-var1-V5 AmpR 

V469 pEF5/FRT_hHTR4-vara-V5 AmpR 

V415 pEF5/FRT_DRD1-V5 AmpR 

V291 pEF5/FRT_hADRA2C-V5 AmpR 

V1100 pEF5/FRT_hADRB2-V5 AmpR 

V300 pEF5/FRT_hHRH1-var4-V5 AmpR 

V311 pEF5/FRT_HOOK-hSSTR1-V5 AmpR 

V307 pEF5/FRT_hSSTR1-V5 AmpR 

   Split TEV  
  V586 pcDNA3.1_Zeo_hARRB2-var1-1-383-CTEV-2HA AmpR 
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Luciferase vectors 
 V1050 pGL4.16-10xUAS-CMV-E00370-S074_FFLuc2 AmpR 

V66 phRL-TK KanR 

V67 phRL-SV40 KanR 

V68 phRL-CMV KanR 

   EXT split TEV sensors 
 V1050 pGL4.16-10xUAS-CMV-E00369-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00370-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00371-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00372-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00373-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00374-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00376-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00377-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00382-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00383-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00385-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00386-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00387-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00388-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00389-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00390-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00391-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00393-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00395-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00396-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00397-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00398-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00399-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00400-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00401-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00402-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00403-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00404-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00405-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00407-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00408-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00410-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00411-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00412-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00413-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00414-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00415-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00418-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00419-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00420-S074 AmpR 
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V1050 pGL4.16-10xUAS-CMV-E00423-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00424-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00425-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00427-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00428-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00429-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00430-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00431-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00432-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00434-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00436-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00439-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00440-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00441-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00442-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00443-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00448-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00450-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00451-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00452-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00455-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00456-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00457-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00459-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00460-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00461-S074 AmpR 

V1050 pGL4.16-10xUAS-CMV-E00463-S074 AmpR 
 
Calibrator EXT reporters 

 V1093 pGL3-5xUAS-TK-E00055-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00056-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00057-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00058-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00059-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00060-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00061-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00062-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00063-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00064-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00065-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00066-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00067-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00068-S073 AmpR 

V1093 pGL3-5xUAS-TK-E00069-S073 AmpR 

V1244 pAAV-sEGFP-MLP-E00250-S072 AmpR 

V1244 pAAV-sEGFP-MLP-E00252-S072 AmpR 

V1244 pAAV-sEGFP-MLP-E00253-S072 AmpR 
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V1244 pAAV-sEGFP-MLP-E01403-S072 AmpR 

V1244 pAAV-sEGFP-MLP-E01404-S072 AmpR 

V1244 pAAV-sEGFP-MLP-E01405-S072 AmpR 
 
 

  EXT downstream signalling sensors 
 Cis-EXT reporters 
 V1296 pAAV-AARE-MLP-E01001-S001 AmpR 

V1296 pAAV-AARE-MLP-E01002-S001 AmpR 

V1296 pAAV-AARE-MLP-E01003-S001 AmpR 

V1397 pAAV-AP1-v1-MLP-E01292-S060 AmpR 

V1397 pAAV-AP1-v1-MLP-E01293-S060 AmpR 

V1397 pAAV-AP1-v1-MLP-E01294-S060 AmpR 

V1339 pAAV-AP1-v2-MLP-E01006-S002 AmpR 

V1339 pAAV-AP1-v2-MLP-E01007-S002 AmpR 

V1339 pAAV-AP1-v2-MLP-E01008-S002 AmpR 

V1342 pAAV-ARE-v1-MLP-E01015-S004 AmpR 

V1342 pAAV-ARE-v1-MLP-E01016-S004 AmpR 

V1342 pAAV-ARE-v1-MLP-E01017-S004 AmpR 

V1343 pAAV-ARE-v2-MLP-E01018-S005 AmpR 

V1343 pAAV-ARE-v2-MLP-E01019-S005 AmpR 

V1343 pAAV-ARE-v2-MLP-E01020-S005 AmpR 

V1340 pAAV-AR-RE-MLP-E01011-S003 AmpR 

V1340 pAAV-AR-RE-MLP-E01013-S003 AmpR 

V1340 pAAV-AR-RE-MLP-E01014-S003 AmpR 

V1344 pAAV-CEBP-RE-v1-MLP-E01026-S006 AmpR 

V1344 pAAV-CEBP-RE-v1-MLP-E01027-S006 AmpR 

V1344 pAAV-CEBP-RE-v1-MLP-E01028-S006 AmpR 

V1253 pAAV-CRE-MLP-E00482-S066 AmpR 

V1253 pAAV-CRE-MLP-E00491-S066 AmpR 

V1345 pAAV-E2F-RE-v1-MLP-E01036-S008 AmpR 

V1345 pAAV-E2F-RE-v1-MLP-E01037-S008 AmpR 

V1345 pAAV-E2F-RE-v1-MLP-E01038-S008 AmpR 

V1400 pAAV-E2F-RE-v2-MLP-E00249-S063 AmpR 

V1400 pAAV-E2F-RE-v2-MLP-E01309-S063 AmpR 

V1400 pAAV-E2F-RE-v2-MLP-E01310-S063 AmpR 

V1346 pAAV-E2F-RE-v3-MLP-E01041-S009 AmpR 

V1346 pAAV-E2F-RE-v3-MLP-E01042-S009 AmpR 

V1346 pAAV-E2F-RE-v3-MLP-E01043-S009 AmpR 

V1399 pAAV-E-box-MLP-E01304-S062 AmpR 

V1399 pAAV-E-box-MLP-E01306-S062 AmpR 

V1399 pAAV-E-box-MLP-E01307-S062 AmpR 

V1347 pAAV-EGR1-RE-v1-MLP-E01045-S010 AmpR 

V1347 pAAV-EGR1-RE-v1-MLP-E01046-S010 AmpR 

V1347 pAAV-EGR1-RE-v1-MLP-E01047-S010 AmpR 

V1348 pAAV-EGR1-RE-v2-MLP-E01050-S011 AmpR 
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V1348 pAAV-EGR1-RE-v2-MLP-E01051-S011 AmpR 

V1348 pAAV-EGR1-RE-v2-MLP-E01052-S011 AmpR 

V1349 pAAV-ELK1-RE-MLP-E01054-S012 AmpR 

V1349 pAAV-ELK1-RE-MLP-E01055-S012 AmpR 

V1349 pAAV-ELK1-RE-MLP-E01056-S012 AmpR 

V1350 pAAV-ER-RE-MLP-E01063-S013 AmpR 

V1350 pAAV-ER-RE-MLP-E01064-S013 AmpR 

V1350 pAAV-ER-RE-MLP-E01065-S013 AmpR 

V1351 pAAV-ERSE-MLP-E01066-S014 AmpR 

V1351 pAAV-ERSE-MLP-E01068-S014 AmpR 

V1351 pAAV-ERSE-MLP-E01069-S014 AmpR 

V1477 pAAV-FOSe2-MLP-E01331-S105 AmpR 

V1477 pAAV-FOSe2-MLP-E01332-S105 AmpR 

V1477 pAAV-FOSe2-MLP-E01333-S105 AmpR 

V1352 pAAV-FOXO-RE-MLP-E01070-S015 AmpR 

V1352 pAAV-FOXO-RE-MLP-E01071-S015 AmpR 

V1352 pAAV-FOXO-RE-MLP-E01072-S015 AmpR 

V1353 pAAV-GATA-RE-v1-MLP-E01076-S016 AmpR 

V1353 pAAV-GATA-RE-v1-MLP-E01078-S016 AmpR 

V1353 pAAV-GATA-RE-v1-MLP-E01079-S016 AmpR 

V1354 pAAV-GATA-RE-v2-MLP-E01083-S017 AmpR 

V1354 pAAV-GATA-RE-v2-MLP-E01084-S017 AmpR 

V1354 pAAV-GATA-RE-v2-MLP-E01085-S017 AmpR 

V1355 pAAV-GLI-RE-MLP-E01086-S018 AmpR 

V1355 pAAV-GLI-RE-MLP-E01088-S018 AmpR 

V1355 pAAV-GLI-RE-MLP-E01089-S018 AmpR 

V1356 pAAV-GR-RE-MLP-E01092-S019 AmpR 

V1356 pAAV-GR-RE-MLP-E01093-S019 AmpR 

V1356 pAAV-GR-RE-MLP-E01094-S019 AmpR 

V1357 pAAV-HRE-MLP-E01098-S020 AmpR 

V1357 pAAV-HRE-MLP-E01100-S020 AmpR 

V1357 pAAV-HRE-MLP-E01101-S020 AmpR 

V1358 pAAV-HSE-MLP-E01105-S021 AmpR 

V1358 pAAV-HSE-MLP-E01106-S021 AmpR 

V1358 pAAV-HSE-MLP-E01108-S021 AmpR 

V1359 pAAV-IRS-MLP-E01113-S022 AmpR 

V1359 pAAV-IRS-MLP-E01114-S022 AmpR 

V1359 pAAV-IRS-MLP-E01116-S022 AmpR 

V1360 pAAV-ISRE-MLP-E01120-S023 AmpR 

V1360 pAAV-ISRE-MLP-E01121-S023 AmpR 

V1360 pAAV-ISRE-MLP-E01122-S023 AmpR 

V1361 pAAV-KLF4-RE-MLP-E01127-S024 AmpR 

V1361 pAAV-KLF4-RE-MLP-E01128-S024 AmpR 

V1361 pAAV-KLF4-RE-MLP-E01129-S024 AmpR 

V1362 pAAV-MRE-MLP-E01131-S025 AmpR 

V1362 pAAV-MRE-MLP-E01133-S025 AmpR 
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V1362 pAAV-MRE-MLP-E01134-S025 AmpR 

V1363 pAAV-Myc-E-box-MLP-E01136-S026 AmpR 

V1363 pAAV-Myc-E-box-MLP-E01137-S026 AmpR 

V1363 pAAV-Myc-E-box-MLP-E01139-S026 AmpR 

V1364 pAAV-NANOG-RE-MLP-E01140-S027 AmpR 

V1364 pAAV-NANOG-RE-MLP-E01142-S027 AmpR 

V1364 pAAV-NANOG-RE-MLP-E01143-S027 AmpR 

V1252 pAAV-NFAT-RE-MLP-E00522-S067 AmpR 

V1252 pAAV-NFAT-RE-MLP-E00530-S067 AmpR 

V1252 pAAV-NFAT-RE-MLP-E00532-S067 AmpR 

V1395 pAAV-NFkB-RE-v1-MLP-E00244-S058 AmpR 

V1395 pAAV-NFkB-RE-v1-MLP-E00245-S058 AmpR 

V1395 pAAV-NFkB-RE-v1-MLP-E01284-S058 AmpR 

V1401 pAAV-NFkB-RE-v2-MLP-E01311-S065 AmpR 

V1401 pAAV-NFkB-RE-v2-MLP-E01312-S065 AmpR 

V1401 pAAV-NFkB-RE-v2-MLP-E01313-S065 AmpR 

V1373 pAAV-Notch-RE-MLP-E01188-S036 AmpR 

V1373 pAAV-Notch-RE-MLP-E01189-S036 AmpR 

V1373 pAAV-Notch-RE-MLP-E01190-S036 AmpR 

V1476 pAAV-Npas4-RE-MLP-E01324-S102 AmpR 

V1476 pAAV-Npas4-RE-MLP-E01325-S102 AmpR 

V1476 pAAV-Npas4-RE-MLP-E01326-S102 AmpR 

V1475 pAAV-NR4A1-RE-MLP-E01349-S109 AmpR 

V1475 pAAV-NR4A1-RE-MLP-E01350-S109 AmpR 

V1475 pAAV-NR4A1-RE-MLP-E01351-S109 AmpR 

V1365 pAAV-NRSE-MLP-E01145-S028 AmpR 

V1365 pAAV-NRSE-MLP-E01146-S028 AmpR 

V1365 pAAV-NRSE-MLP-E01147-S028 AmpR 

V1367 pAAV-OCT4-minP-MLP-E00191-S030 AmpR 

V1367 pAAV-OCT4-minP-MLP-E01155-S030 AmpR 

V1367 pAAV-OCT4-minP-MLP-E01156-S030 AmpR 

V1366 pAAV-OCT4-RE-MLP-E01149-S029 AmpR 

V1366 pAAV-OCT4-RE-MLP-E01152-S029 AmpR 

V1366 pAAV-OCT4-RE-MLP-E01153-S029 AmpR 

V1396 pAAV-p53-RE-v1-MLP-E01286-S059 AmpR 

V1396 pAAV-p53-RE-v1-MLP-E01287-S059 AmpR 

V1396 pAAV-p53-RE-v1-MLP-E01289-S059 AmpR 

V1368 pAAV-p53-RE-v2-MLP-E01165-S031 AmpR 

V1368 pAAV-p53-RE-v2-MLP-E01166-S031 AmpR 

V1368 pAAV-p53-RE-v2-MLP-E01167-S031 AmpR 

V1369 pAAV-RARE-v1-MLP-E01169-S032 AmpR 

V1369 pAAV-RARE-v1-MLP-E01170-S032 AmpR 

V1369 pAAV-RARE-v1-MLP-E01171-S032 AmpR 

V1370 pAAV-RARE-v2-MLP-E01172-S033 AmpR 

V1370 pAAV-RARE-v2-MLP-E01173-S033 AmpR 

V1370 pAAV-RARE-v2-MLP-E01174-S033 AmpR 
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V1371 pAAV-RARE-v3-MLP-E01176-S034 AmpR 

V1371 pAAV-RARE-v3-MLP-E01177-S034 AmpR 

V1371 pAAV-RARE-v3-MLP-E01178-S034 AmpR 

V1398 pAAV-RB-RE-v1-MLP-E00265-S061 AmpR 

V1398 pAAV-RB-RE-v1-MLP-E01298-S061 AmpR 

V1398 pAAV-RB-RE-v1-MLP-E01299-S061 AmpR 

V1372 pAAV-RB-RE-v2-MLP-E01183-S035 AmpR 

V1372 pAAV-RB-RE-v2-MLP-E01184-S035 AmpR 

V1372 pAAV-RB-RE-v2-MLP-E01186-S035 AmpR 

V1443 pAAV-SARE-MLP-E01316-S071 AmpR 

V1443 pAAV-SARE-MLP-E01317-S071 AmpR 

V1443 pAAV-SARE-MLP-E01343-S071 AmpR 

V1374 pAAV-SMAD-RE-v1-MLP-E01191-S037 AmpR 

V1374 pAAV-SMAD-RE-v1-MLP-E01192-S037 AmpR 

V1374 pAAV-SMAD-RE-v1-MLP-E01193-S037 AmpR 

V1375 pAAV-SMAD-RE-v2-MLP-E01196-S038 AmpR 

V1375 pAAV-SMAD-RE-v2-MLP-E01197-S038 AmpR 

V1375 pAAV-SMAD-RE-v2-MLP-E01198-S038 AmpR 

V1376 pAAV-SMAD-RE-v3-MLP-E01201-S039 AmpR 

V1376 pAAV-SMAD-RE-v3-MLP-E01203-S039 AmpR 

V1376 pAAV-SMAD-RE-v3-MLP-E01204-S039 AmpR 

V1378 pAAV-SOX2-OCT4-cRE-MLP-E01211-S041 AmpR 

V1378 pAAV-SOX2-OCT4-cRE-MLP-E01212-S041 AmpR 

V1378 pAAV-SOX2-OCT4-cRE-MLP-E01213-S041 AmpR 

V1377 pAAV-SOX2-RE-MLP-E01205-S040 AmpR 

V1377 pAAV-SOX2-RE-MLP-E01206-S040 AmpR 

V1377 pAAV-SOX2-RE-MLP-E01207-S040 AmpR 

V1379 pAAV-SP1-RE-v1-MLP-E01216-S042 AmpR 

V1379 pAAV-SP1-RE-v1-MLP-E01337-S042 AmpR 

V1379 pAAV-SP1-RE-v1-MLP-E01339-S042 AmpR 

V1380 pAAV-SP1-RE-v2-MLP-E01217-S043 AmpR 

V1380 pAAV-SP1-RE-v2-MLP-E01218-S043 AmpR 

V1380 pAAV-SP1-RE-v2-MLP-E01219-S043 AmpR 

V1385 pAAV-SRE-MLP-E01242-S048 AmpR 

V1385 pAAV-SRE-MLP-E01243-S048 AmpR 

V1385 pAAV-SRE-MLP-E01245-S048 AmpR 

V1381 pAAV-SREBP-RE-v1-MLP-E01221-S044 AmpR 

V1381 pAAV-SREBP-RE-v1-MLP-E01222-S044 AmpR 

V1381 pAAV-SREBP-RE-v1-MLP-E01223-S044 AmpR 

V1382 pAAV-SREBP-RE-v2-MLP-E01226-S045 AmpR 

V1382 pAAV-SREBP-RE-v2-MLP-E01227-S045 AmpR 

V1382 pAAV-SREBP-RE-v2-MLP-E01228-S045 AmpR 

V1383 pAAV-SREBP-RE-v3-MLP-E01233-S046 AmpR 

V1383 pAAV-SREBP-RE-v3-MLP-E01234-S046 AmpR 

V1383 pAAV-SREBP-RE-v3-MLP-E01235-S046 AmpR 

V1384 pAAV-SRF-RE-v2-MLP-E01237-S047 AmpR 
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V1384 pAAV-SRF-RE-v2-MLP-E01239-S047 AmpR 

V1384 pAAV-SRF-RE-v2-MLP-E01240-S047 AmpR 

V1386 pAAV-STAT-RE-v1-MLP-E01246-S049 AmpR 

V1386 pAAV-STAT-RE-v1-MLP-E01248-S049 AmpR 

V1386 pAAV-STAT-RE-v1-MLP-E01249-S049 AmpR 

V1390 pAAV-TEAD-RE-v3-MLP-E01262-S053 AmpR 

V1390 pAAV-TEAD-RE-v3-MLP-E01263-S053 AmpR 

V1390 pAAV-TEAD-RE-v3-MLP-E01264-S053 AmpR 

V1474 pAAV-TEAD-RE-v4-MLP-E01356-S110 AmpR 

V1474 pAAV-TEAD-RE-v4-MLP-E01357-S110 AmpR 

V1474 pAAV-TEAD-RE-v4-MLP-E01358-S110 AmpR 

V1228 pAAV-TEADrev-RE-MLP-E00569-S070 AmpR 

V1228 pAAV-TEADrev-RE-MLP-E00575-S070 AmpR 

V1228 pAAV-TEADrev-RE-MLP-E00579-S070 AmpR 

V1391 pAAV-UPRE-v1-MLP-E01265-S054 AmpR 

V1391 pAAV-UPRE-v1-MLP-E01266-S054 AmpR 

V1391 pAAV-UPRE-v1-MLP-E01267-S054 AmpR 

V1392 pAAV-UPRE-v2-MLP-E01270-S055 AmpR 

V1392 pAAV-UPRE-v2-MLP-E01272-S055 AmpR 

V1392 pAAV-UPRE-v2-MLP-E01273-S055 AmpR 

V1387 pAAV-Wnt-RE-v2-MLP-E01250-S051 AmpR 

V1387 pAAV-Wnt-RE-v2-MLP-E01251-S051 AmpR 

V1387 pAAV-Wnt-RE-v2-MLP-E01252-S051 AmpR 

V1393 pAAV-YY1-RE-v1-MLP-E01276-S056 AmpR 

V1393 pAAV-YY1-RE-v1-MLP-E01277-S056 AmpR 

V1393 pAAV-YY1-RE-v1-MLP-E01279-S056 AmpR 

V1394 pAAV-YY1-RE-v2-MLP-E01280-S057 AmpR 

V1394 pAAV-YY1-RE-v2-MLP-E01281-S057 AmpR 

V1394 pAAV-YY1-RE-v2-MLP-E01282-S057 AmpR 

   Promoter-EXT reporters 
 V1413 pAAV-sEGFP-CXCL1-E00188-S086 AmpR 

V1413 pAAV-sEGFP-CXCL1-E00189-S086 AmpR 

V1413 pAAV-sEGFP-CXCL1-E00190-S086 AmpR 

V1418 pAAV-sEGFP-DUSP1-E00199-S091 AmpR 

V1418 pAAV-sEGFP-DUSP1-E00200-S091 AmpR 

V1418 pAAV-sEGFP-DUSP1-E00201-S091 AmpR 

V1419 pAAV-sEGFP-DUSP5-E01319-S092 AmpR 

V1419 pAAV-sEGFP-DUSP5-E01320-S092 AmpR 

V1419 pAAV-sEGFP-DUSP5-E01321-S092 AmpR 

V1420 pAAV-sEGFP-EGR1-E00209-S093 AmpR 

V1420 pAAV-sEGFP-EGR1-E00210-S093 AmpR 

V1420 pAAV-sEGFP-EGR1-E00212-S093 AmpR 

V1421 pAAV-sEGFP-EGR2-E00114-S094 AmpR 

V1421 pAAV-sEGFP-EGR2-E00115-S094 AmpR 

V1421 pAAV-sEGFP-EGR2-E00116-S094 AmpR 
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V1405 pAAV-sEGFP-EIF2AK2-E00144-S078 AmpR 

V1405 pAAV-sEGFP-EIF2AK2-E00145-S078 AmpR 

V1405 pAAV-sEGFP-EIF2AK2-E00146-S078 AmpR 

V1422 pAAV-sEGFP-FOS-E00120-S095 AmpR 

V1422 pAAV-sEGFP-FOS-E00121-S095 AmpR 

V1411 pAAV-sEGFP-FOSB-E00174-S084 AmpR 

V1411 pAAV-sEGFP-FOSB-E00175-S084 AmpR 

V1415 pAAV-sEGFP-hDLG4-1-E00221-S088 AmpR 

V1415 pAAV-sEGFP-hDLG4-1-E00224-S088 AmpR 

V1416 pAAV-sEGFP-hDLG4-2-E00228-S089 AmpR 

V1416 pAAV-sEGFP-hDLG4-2-E00230-S089 AmpR 

V1404 pAAV-sEGFP-HSPA1A-E00139-S077 AmpR 

V1404 pAAV-sEGFP-HSPA1A-E00140-S077 AmpR 

V1423 pAAV-sEGFP-IL6-E00219-S096 AmpR 

V1423 pAAV-sEGFP-IL6-E01348-S096 AmpR 

V1423 pAAV-sEGFP-IL6-E01365-S096 AmpR 

V1407 pAAV-sEGFP-IL8-E00109-S080 AmpR 

V1407 pAAV-sEGFP-IL8-E00110-S080 AmpR 

V1407 pAAV-sEGFP-IL8-E01364-S080 AmpR 

V1424 pAAV-sEGFP-JUN-E00562-S097 AmpR 

V1424 pAAV-sEGFP-JUN-E00563-S097 AmpR 

V1417 pAAV-sEGFP-mDlg4-2-E00239-S090 AmpR 

V1417 pAAV-sEGFP-mDlg4-2-E00240-S090 AmpR 

V1408 pAAV-sEGFP-NFKB2-E00156-S081 AmpR 

V1408 pAAV-sEGFP-NFKB2-E01345-S081 AmpR 

V1408 pAAV-sEGFP-NFKB2-E01347-S081 AmpR 

V1444 pAAV-sEGFP-Npas4-E01354-S098 AmpR 

V1412 pAAV-sEGFP-NR4A1-E00180-S085 AmpR 

V1412 pAAV-sEGFP-NR4A1-E00185-S085 AmpR 

V1402 pAAV-sEGFP-PPP1R15A-E00127-S075 AmpR 

V1402 pAAV-sEGFP-PPP1R15A-E00128-S075 AmpR 

V1406 pAAV-sEGFP-PSMB9-E00150-S079 AmpR 

V1406 pAAV-sEGFP-PSMB9-E00151-S079 AmpR 

V1406 pAAV-sEGFP-PSMB9-E00152-S079 AmpR 

V1414 pAAV-sEGFP-sDLG4-E00193-S087 AmpR 

V1414 pAAV-sEGFP-sDLG4-E00195-S087 AmpR 

V1403 pAAV-sEGFP-TNFA-E00133-S076 AmpR 

V1403 pAAV-sEGFP-TNFA-E00135-S076 AmpR 

V1409 pAAV-sEGFP-TP53INP1-E00160-S082 AmpR 

V1409 pAAV-sEGFP-TP53INP1-E00163-S082 AmpR 

V1410 pAAV-sEGFP-TP73-E00165-S083 AmpR 

V1410 pAAV-sEGFP-TP73-E00166-S083 AmpR 

V1410 pAAV-sEGFP-TP73-E00167-S083 AmpR 
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4. Methods 

4.1 Molecular biology methods 

 Polymerase chain reaction 4.1.1

The polymerase chain reaction (PCR) is a widely used method for the amplification of 

DNA fragments in vitro. Thermo stable polymerases like the Taq-polymerase of the 

bacteria Thermus aquaticus or the Pfu-polymerase of the archaea Pyrococcus furiosus 

catalyse the reaction. Because the DNA-synthesis cannot start from de novo two 

primer flanking the sequence to amplify, a sense primer for the plus-strand and an 

antisense primer for the minus-strand, are needed. The PCR happens in the following 

steps. 

Denaturation: The initial denaturation at 95°C for 2-3 min, 5-10 min for HotStarTag 

Plus DNA polymerase from Qiagen, leads to the break of secondary structures and the 

separation of the DNA strands. The initial denaturation is followed by a further 

denaturation for 30-45 sec that is the first step of every cycle during the PCR. 

Annealing: In this step the primer anneal to the complementary DNA strands. It 

happens for 20-30 sec at a temperature 2-4°C below the melting temperature of the 

primer. 

Elongation: During the elongation at a temperature of 72°C the synthesis of the new 

DNA strands occurs. It takes about 1 min/ 1 kb DNA length depending on the synthesis 

rate of the polymerase. After the elongation a new cycle starts with the denaturation 

of the new synthesised DNA. Depending on the DNA template (e.g. cDNA, genomic 

DNA or plasmid) 15-35 cycles were used. The last cycle follows an additional 

elongation step for 5-10 min to ensure a complete elongation. In the end the sample 

was kept at 10°C until further processes. 

Scheme of a typical 20μl PCR sample: 

   X µl  DNA template (10-100 ng) 
   2 µl  10x buffer (with MgCl2) 
   2 µl  dNTPs (0.2 mM) 
   1 µl  sense primer (10 pmol/µl) 
   1 µl  antisense primer (10 pmol/µl) 
0.5 µl  polymerase (5 U/µl) 
   X µl  H2O 
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 Agarose gel electrophoresis 4.1.2

For the separation of DNA fragments up to 8 kb 1-3% agarose gels were used. 

Therefore the agarose was dissolved in 1xTAE buffer by heating up in a microwave. The 

agarose was then poured either directly in gel-casting form or at first cooled down to 

ca. 50°C and supplemented with ethidium bromide to a final concentration of 1 µg/ml. 

Pockets for sample loading were obtained by inserting combs into the liquid agarose. 

After polymerisation the agarose were storable at 4°C for up to 4 weeks. For DNA 

separation the gel was placed in a running chamber containing 1xTAE buffer. The DNA 

sample was supplemented with either 6x Loading dye from Thermo Fisher Scientific for 

ethidium bromide gels or 10x GelRed/Orange G loading buffer for ethidium bromide 

free gels and loaded on the gel. The applied voltage was between 90-180 V, dependent 

on the size of the running chamber. The DNA intercalated with either ethidium 

bromide or GelRed was visualised by UV light (260-300nm). For size quantification the 

50 bp, 100 bp or 1 kb ladder from Thermo Fisher Scientific was used. The casting form, 

combs and running chambers were made by the workshop of the Max-Planck-Institute 

for Experimental Medicine. 

 

 Restriction digest of DNA 4.1.3

For restriction digest of DNA restriction endonucleases type II were used. They 

recognise and cleave within palindromic sequences of four, six or eight bases and 

produce either 5’-/3’- overhangs (sticky ends) or blunt ends. For the reaction one of 

four standard 10x buffers was used according to the manufacture’s protocol (New 

England Biolabs, NEB). For diagnostic digests 0.5-1 µg DNA, for preparative digests 

5-20 µg DNA were used in a reaction volume of 30-60 µl. The reactions were usually 

incubated at 37°C for at least 30 min up to overnight, dependent on the DNA amount. 

 

 Classical molecular cloning 4.1.4

PCR products were generates using HotStarTaq Plus DNA polymerase from Qiagen, 

which produces a single 3’- adenosine overhangs. The PCR product was then cloned 

into the pGEM-T vector (Promega) by ligation with T4 DNA ligase (Promega) according 

to the manufacture’s protocol. The pGEM-T vector is provided in a linearized form with 
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single 3’-thymidine overhangs. The ligation was transformed into bacteria and plated 

on LB-Amp-IPTG-X-Gal agar plates for blue white screening over night at 37°C. Clones 

from white colonies were sequenced. 5-10 µg of the pGEM-T insert was cut with the 

same or compatible restriction enzymes like 5-20 µg of the vector of interest in a 

volume of 30-60 µl with 5-10 units of the restriction enzymes. The temperature is 

dependent on the enzymes, usually at 37°C. Afterwards the vector sample was 

incubated with 1 µl alkaline phosphatase (CIP from NEB) for 20 min at 37°C. The DNA 

fragments were analysed on a 1.5% agarose gel and the bands of the desired size were 

cut out and purified with help of the gel and PCR clean up kit from Macherey & Nagel. 

The purified Fragments were ligated in a molar vector: insert ratio of 1:3 using 0.5 µl 

T4 ligase in a total volume of 20 µl for first 2-3 h at room temperature and then over 

night at 4°C. Afterwards the reaction was transformed into OneShot Mach1 or MegaX 

DH10B cells. 

 

 One-way Gateway cloning 4.1.5

The Gateway recombination technology is based on the sequence specific 

recombination of the bacteriophage λ to recombine DNA in a host genome. The site-

specific recombination requires specific sequences (attachment sites, att-sites) 

flanking the sequence of interest and combinatory att-sites on the target DNA (Hartley 

et al., 2000). The recombination process is catalysed by bacteriophage λ enzymes 

Integrase (Int), Integration Host Factor (IHF) and Excisionase (Xis). The benefit of this 

method is the fast and efficient recombination of an ORF of interest into different 

expression vectors without using restriction enzymes, fragment purification and 

ligation. One feature of the gateway technology is that only bacteria carrying 

successfully recombined vectors can survive as not recombined vectors contain the 

ccdB-gene, a toxic gyrase inhibitor. The process of cloning an ORF of interest into an 

expression vector is divided into two steps. 

Creating an entry vector: Specific recombination sites (attB1 and attB2) have to be 

added to both ends of the sequence of interest by PCR. In a BP reaction the attB sites 

recombine with recognition sites (attP1 and attP2) on a donor vector (pDONR, Thermo 

Fisher Scientific). The recombination is catalysed by the BP clonase II enzyme mix. 
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Successfully recombined clones represent entry clones (pENTR) with attL1 and attL2 

sites (product of the recombination of attB and attP sites). 

A BP reaction consists of: 

3 µl  attB1-attB2 PCR  
1 µl  DONR (100 ng) 
1 µl  BP clonase II mix 

 
The reaction was incubated over night at room temperature. For deactivating of 

enzymes 1 µl proteinase K was added and incubated for 10 min at 37°C. 1-5 µl of the 

sample was used for transformation in chemically or electro competent cells. Entry 

clones were selected on agar plates with the appropriate antibiotic and sequenced. 

Creating an expression vector: To generate the final expression vector, the entry 

vector with attL1 and attL2 sites is recombined in a LR reaction with a destination 

vector (pDEST) carrying the recognition sites attR1 and attR2 and the ccdB gene. The 

recombination is catalysed by a LR clonase II enzyme mix. 

A LR reaction consists of: 

 1µl  pENTR (50-200 ng) 
1 µl  pDEST (100 ng) 

          0.5 µl  LR clonase II mix 
 
The reaction was incubated for 3-4 h or overnight at room temperature and 

deactivated by adding 1 ml proteinase K and incubating for 10 min at 37°C. 1.5 µl of 

the LR reaction was used for transformation into chemically or electro competent cells. 

 

 Multisite Gateway cloning 4.1.6

The Multisite Gateway technology is an efficient and simple method to assemble up to 

4 DNA fragments into one expression vector using multiple specific recombination 

sites. The recombination of 3 fragments was applied to generate reporter constructs. 

Detailed information can be found in the Multisite Gateway Pro user manual from 

Thermo Fisher Scientific. The principle of the Multisite Gateway cloning is shown in 

Figure 5. It is based on the specific recombination of different att-sites. Compared to 

the one-way Gateway method in the Multisite Gateway system the entry clone 

containing the middle of three DNA fragments carries attR sites, which recombine in a 

LR reaction with the attL sites of entry clones containing the two flanking DNA 
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fragments. In the same time the two outer attL sites (attB1 and attB2) of the first and 

third entry clone recombine with the attR recognition sites of the destination vector. 

 
Figure 5: Scheme of the three fragments assembly using Multisite Gateway Technology. 

Three DNA fragments can be cloned simultaneously into one vector using different recombination sites. 
The picture is adapted from the Multisite Gateway Pro user manual. 

 

Three PB reactions recombine PCR products with the corresponding pDONR vectors: 

B1-B4 PCR product + pDONR (P1-P4)  pENTR (L1-L4) 

B4r-B3r PCR product + pDONR (P4r-P3r)  pENTR (R4-R3) 

B3-B2 PCR product + pDONR (P3-P2)  pENTR (L3-L2) 

A BP reaction consists of: 

3 µl  PCR product  
1 µl  pDONR (100 ng) 
1 µl  BP clonase II mix 

 
The reaction was incubated over night at room temperature with an additional 

proteinase K deactivation for 10 min at 37°C and transformation into One Shot Mach1 

cells. The purified vector plasmids were sequenced. For the multisite LR reaction 

10 fmol of each entry vector and 20 fmol of the destination vector was used. The 

following formula was applied to calculate the amount of each vector, with N being the 

number of bases of the vector.  

𝑛 = (𝑓𝑚𝑜𝑙)(𝑁)(
660𝑓𝑔

𝑓𝑚𝑜𝑙
)(

1𝑛𝑔

106𝑓𝑔
) 
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The vectors were diluted to the corresponding concentrations (ng/µl). The multisite LR 

was catalysed by the LR clonase II Plus enzyme mix. 

A multisite LR reaction consists of: 

1µl  pENTR (L1-L4, 10fmol) 
1µl  pENTR (R4-R3, 10fmol) 
1µl  pENTR (L3-L2, 10fmol) 
1 µl  pDEST (20fmol) 
1 µl  LR clonase II Plus mix 

 
The reaction was incubated over night at room temperature, deactivated with 1 µl 

proteinase K for 10 min at 37°C and subsequently transformed into One Shot Mach1 

cells. The expression vectors were finally sequenced. 

 

 Photometric concentration determination of nuclear acids 4.1.7

According to the Lambert-Beer law the concentration of a solution is direct 

proportional to their extinction, A = ε*c*λ, with ε being the molar extinction 

coefficient (unit: M-1cm-1), c the concentration (unit: M) and λ the optic path length 

(cuvette thickness). The extinction coefficients for nuclear acids are at λ= 260 nm: 

Cytosine: ε =7050 M-1cm-1 

Guanine: ε = 12010 M-1cm-1 

Adenine: ε = 15200 M-1cm-1
 

Thymine: ε = 8400 M-1cm-1          (Uracil: ε = 8111 M-1cm-1) 

For the determination of nuclear acid concentration the following relation between 

measured absorption and concentration was used:  

1 OD260nm = 50 mg/ml for dsDNA 

1 OD260nm = 40 mg/ml for ssRNA 

1 OD260nm = 33 mg/ml for ssOligonucleotides 

The formula for dsDNA concentration was: 

Concentration [µg/µl] = OD260 x 50 x dilution factor/1000. 

To determine the purity of the nuclear acid solution the relation of the absorption at 

260 nm and 280 nm was calculated. Clear samples of DNA and RNA should give a value 

of 1.8 to 2.0.  
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The measurements were carried out by a biophotometer (Eppendorf) or Picodrop 

spectrophotometer (Picodrop Limited). For the biophotometer a dilution of 1:100 in a 

volume of 100 µl was used. 

 

 Fluorometric concentration determination of nuclear acids 4.1.8

To quantify the concentration of final samples for Next Generation Sequencing a more 

accurate and precise method to determine low nuclear acid concentrations than 

measuring the UV absorbance at 260 nm was needed. This was achieved by using the 

Qubit 2.0 Fluorometer (Invitrogen). Fluorescence based dyes bind specifically to DNA, 

RNA or protein and emit signal only when coupled to the target molecules. Thereby 

only the desired type of nuclear acid is measured. With the Qubit dsDNA High 

Sensitivity (HS) Assay Kit DNA concentrations in the range of 10 pg/µl to 100 ng/µl can 

be determined. 5 µl of the DNA sample and 10 µl of two DNA standards were 

quantified according to the manufacture’s protocol. 

 

 Transformation of chemically competent bacteria 4.1.9

20-50 µl of chemically competent bacteria were thawed on ice. After adding 1-5 µl of a 

recombination or ligation cells were left on ice for additional 20 min followed by a heat 

shock for 42 sec at 42°C. For recovery and expression of resistance genes 800 µl of pre-

warmed SOC medium was added and cells were incubated for 45 min at 37°C and 

160 rpm shaking. After this cells were centrifuged at for 2 min at 11000rpm and the 

cell pellet resuspended in 100 µl SOC medium and plated on an agar plate 

supplemented with the appropriate antibiotic. The plates were incubated over night at 

37°C. 

 

 Transformation of electro competent bacteria 4.1.10

5 µl of electro competent bacteria were diluted 1:10 in a 10% glycerol solution and 

mixed with 1-3 µl of a recombination or ligation. The plasmid/DNA mixture was 

transferred in an on ice pre cooled electroporation cuvette (1 mm) and electroporated 

at 1700 kV, 25 µF and 200 ohm. Afterwards the cells were transferred into 800 µl SOC 

medium and incubated for 45 min at 37°C and 160 rpm shaking. Then the cells were 
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centrifuged for 2 min at 11000 rpm, the pellet resuspended in 100 µl SOC medium and 

plates on an agar plate with the appropriate antibiotic. The plates were incubated over 

night at 37°C. 

 

 Isolation of DNA 4.1.11

Plasmid DNA was prepared from fresh overnight LB cultures. For small plasmid 

amounts 2-4ml (Mini-prep) and for larger plasmid amounts 100ml (Midi-prep) were 

used. The preparation occurred with help of the corresponding kits from Macherey & 

Nagel using the manufacture’s protocols. The purified plasmid DNA was always eluted 

in 100µl of either TE buffer or in case of sequencing the plasmid DNA in double 

deionised water. 

 

 DNA sequencing 4.1.12

The plasmid DNA sequencing was done by the institutes’ core facility AGCTlab 

(department of neurobiology) of the MPI of Experimental Medicine in Göttingen and 

from February 2014 by the sequencing service of the faculty of biology of the Ludwig-

Maximilians-University Munich. The procedure based on a modified dideoxy chain 

termination method according to Sanger (Sanger et al., 1977). 

 

 

4.2 Cell biology methods 

 Coating of cell culture plates 4.2.1

For an improved adhesion of cells at the plate surface all multi-well plates (96-well, 

12-well, 24-well, 6-well) and for PC12 cells also the culture dishes required a coating 

with Poly-L-Lysine (PLL). Plates were incubated with 200 µg/ml PLL solution for 20 min 

at room temperature, washed three times with water and dried under a flow hood. 

 

 Culturing and passaging of eukaryotic cells 4.2.2

The eukaryotic cell lines were incubated in 15 cm dishes (Falcon) at 37°C with 5% CO2 

in a cell culture incubator. After reaching 80-90% confluence the cells were split. For 



                                                                                                                                        Methods     

44 
 

this the medium was removed and the cells washed twice with 1xPBS. To remove cells 

from dish the surface was covered with trypsin and incubated for 2-5 min at 37°C. 

Adding growth medium containing FBS stopped the reaction. The cells were collected 

in a falcon tube and centrifuged for 3 min at 800 rpm. The supernatant was discarded, 

the pellet resuspended and a volume of 1/4 to 1/10 plated on a new dish. PC12 cells 

were before plating triturated 3-5 times through a 24G (0.55 mm) needle using a 10 ml 

syringe and plated on PLL coated dishes. 

 

 Freezing of mammalian cells 4.2.3

Before handling the cells 2 ml cryotubes were labelled and filled with 500 µl of ice-cold 

2xFreezing medium. Cryotubes were stored on ice. Cells were frozen at 80-90% 

confluence. They were removed from the dish by trypsination and centrifuged for 

3 min at 800 rpm. The pellet was resuspended in growth medium at a concentration of 

6-10x106cells/ml medium. 500 µl of cell suspension was transferred in the prepared 

cryotubes, mixed gently by inverting and stored in an isopropyl alcohol filled Nalgene 

freezing container “Mr. Frosty” at -80°C for one day. The Nalgene freezing container is 

a system designed to cool down approximately 1°C/min. Afterwards the tubes were 

stored in liquid nitrogen (-196°C) for long term storage. 

 

 Thawing of mammalian cells 4.2.4

Cryotubes with frozen cells were taken out of liquid nitrogen and thawed quickly in a 

37°C warm water bath. After thawing the cells were mixed with 2 ml 37°C warm 

growth medium and centrifuged for 5 min at 800 rpm. The supernatant was discarded 

and the pellet resuspended and plated on a 15 cm cell culture dish with fresh growth 

medium. 
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 Transfection of eukaryotic cells 4.2.5

All eukaryotic cell lines were transfected using Lipofectamine 2000 (Thermo Fisher 

Scientific). The cell number was dependent of the cell line and the plate format. The 

used cell numbers are indicated below: 

 

Cell line 6-well 12-well 24-well 96-well 

PC12 1.000.000 400.000 200.000 40.000 

U2OS 500.000 200.000 100.000 15.000 

CHO 400.000 - - 10.000 

     
 

On-plate transfection: 

The manufacture’s protocol was modified to improve transfection efficiency. For 

96-well plates 30-50 ng plasmid DNA, 0.2 µl Lipofectamine and 30 µl optiMEM was 

used. For larger well sizes the amount of plasmid and Lipofectamine was increased by 

the factor of increased well surface. Cells were plated one day before transfection. For 

transfection the prepared plasmid mixes and the Lipofectamine was diluted each in 

half of the volume of optiMEM and incubated for 5 min at room temperature. Both 

solutions were mix and incubated for further 20 min at room temperature. The 

medium was completely removed and the Lipofectamine/DNA mixture was added. 

After 2 h for 96-well plates 60 µl of growth medium was added. For larger multi-well 

plates the transfection solution was completely exchanges by growth medium. 

 

In-solution transfection: 

For in-solution transfections the followed conditions or equal ratios were used. 

 

DNA OptiMEM Lipofectamine Cell 
number 

Cell 
volume 

Total 
volume 

6 µg 2x 250 µl 20 µl 6.000.000 2 ml 2,5 ml 

1,2 µg 2x 50 µl 4 µl 1.200.000 400 µl 500 µl 

1 µg 2x 40µl 3,3 µl 1.000.000 400 µl 500 µl 

 

The transfection was done in 5ml cryotubes. The prepared plasmid mixes and the 

Lipofectamine was diluted each in half of the volume of optiMEM and incubated for 

5 min at room temperature. Both solutions were mix and incubated for further 20 min 
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at room temperature. Cells resuspended in the appropriate volume and added to the 

transfection mix. The solution was inverted three times and incubated lying flat in the 

incubator for 2h. Before plating the cell-transfection suspension was centrifuged and 

resuspended in maintenance medium. 

 

 Luciferase reporter gene assays 4.2.6

The principle of the luciferase reporter gene assays is based on the activated gene 

expression of the Firefly luciferase enzyme. The luciferase enzyme catalyses the 

oxidation of luciferin and emit light of a defined wavelength. 

 

Luciferase assays using a plate reader: 

Beside the Firefly luciferase (FF-luciferase) the reporter gene for the Renilla luciferase 

(RN-luciferase) was cotransfected to control the cell number, transfection efficiency 

and health status of the cells. The RN-luciferase was expressed under the control of 

the constitutively active thymidine kinase promoter (TK-promoter). The assays were 

performed in 96-well white plates with 6 wells as replicates per condition. After 

transfection with lipofectamine cells were incubated dependent on the assay for 

24-48h at 37°C and 5% CO2. After the experiment the medium was removed and the 

cells were lysed with 30 µl passive lysis buffer (Promega). The lysates were measured 

either immediately after incubated for 20 min on a tumbling table at 50 rpm or frozen 

at -20°C. The reading of both FF- and RN-luciferase was carried out with a Mithras LB 

940 Microplate Reader (Berthold Technologies) and the software MicroWin2000 under 

the following settings: 

 

55 µl  Firefly luciferase assay buffer 
5 min  delay 
2 sec  measurement of light 
55 µl  Renilla luciferase assay buffer 
2 sec  measurement of light 

 

The data was exported from MicroWin2000 to Excel and the means of the 6 replicates 

for the Firefly and the Renilla readings were calculated. 
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Luciferase assays using a 32-channel luminometer (lumiCycle 32 by ActiMetrics): 

The lumicycler performs live monitoring of the FF-luciferase activity over the complete 

time of the experiment. 32 samples, each in a 3.5 cm dish, can be measured at the 

same time. The transfections were done in 3.5 cm dishes. For measuring the 

FF-luciferase activity the medium from the transfected cells was exchanged by the 

appropriate medium supplemented with 0,1 % luciferin (Promega), the dishes were 

wrapped with parafilm and transferred to the lumicycler, which is located inside a cell 

culture incubator at 37°C and 5% CO2. 

 

 Dose response assays 4.2.7

Luciferase based dose dependent GPCR activations were measured in 96-well plates 

with 6 wells per condition as replicates. The compounds were step wise diluted in 

assay medium from a stock concentration to final concentrations in a range from 10-4 

to 10-11 M in logarithmic and semi logarithmic steps. Each dilution results from the 

next higher concentration and serves for the next lower concentration. EXT based dose 

responses were carried out in 6-well plated in logarithmic steps. 

Dose response data from firefly luciferase as well as from EXT reads were first 

calculated with Excel by converting the means of the replicates from either firefly or 

EXT reads into percentage of activity. Thereby the lowest value was set to 0 by 

subtracting the lowest mean from all replicates. From the resultant means the highest 

was set to 100%. Beside the means the standard error of the mean (SEM) of all 

replicates was calculated. 

Dose response curves and EC50 and IC50 values respectively were generated using the 

dose response curve (drc) package for R. 
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4.3 Preparation of EXT sequencing libraries 

 

 

Figure 6: Workflow of EXT sequencing library preparation. 
Total RNA is isolated and purified from cell lysates and converted into cDNA by reverse transcription. 
EXT sequences are amplified by a decoding PCR (Dec-PCR) using Dec1 and Dec2 primer. Ion-A adapters 
together with 13mer barcodes (BC) and Ion-P1 adapters are added by Code-PCR. 
 

 

 RNA isolation and purification 4.3.1

EXT assays were performed in 6-well and 12-well plates using lipofectamine for DNA 

transfection. Dependent on the assay the cells were lysed 24-48 h after transfection 

with RLT buffer (500 µl for 6-well, 200 µl for 12-well). To homogenize the lysate it was 

passed 5 times through a blunt 20-gauge needle (0.9 mm) fitted to a 1 ml RNase free 

syringe. The RNA was purified with help of the RNeasy mini Kit from Qiagen according 

to the manufacture’s protocol including an on column DNase digest (RNase free DNase 

kit from Qiagen). The RNA was eluted in 50 µl and additional 40 µl RNase free H2O. The 
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90 µl RNA were additional in solution treated with 3 µl RQ1 DNase (Promega) and 10 µl 

of the appropriated 10x DNase reaction buffer for 30 min at 37°C. After the DNase 

digest the RNA was purified again using the RNeasy mini kit and finally eluted in twice 

50 µl RNase free H2O. The RNA concentration was measured using the picodrop. 

 

 RNA precipitation 4.3.2

RNA was precipitated with ammonium acetate salt and ethyl alcohol. To the 100 µl 

purified RNA 50 µl 7.5 M NH4Ac, 1 µl glycogen (20 mg/ml) and 450 µl 100 % EtOH were 

added. The samples were mixed and centrifuged for 30 min at 13 000 rpm. The RNA 

pellets were washed with 800 µl 70 % EtOH, air-dried and resuspended with RNase 

free H2O. All samples were resuspended to the same concentration in at least 10 µl 

H2O but maximal 1.5 µg/µl. 

 

 First strand cDNA synthesis 4.3.3

The cDNA synthesis was performed with 1 µg RNA using superscript III reverse 

transcriptase (Invitrogen). For all samples the equal amount of RNA was used. The 

cDNA synthesis was carried out in a total volume of 10 µl by the following scheme: 

 
      2 µl  RNA 
       1 µl  Random nanomer primer (120 pmol) 
      1 µl  DTT 
      2 µl  5x First strand buffer 

0.5 µl  dNTP mix (10 mM each) 
2.5 µl  H2O 
   1 µl  Superscript III enzyme (200 U) 

 
The samples were incubated for 10 min at 25° for primer annealing followed by 30 min 

at 50°C for cDNA synthesis and 5 min at 85°C for heat inactivation of the enzyme. For 

all samples an additional negative control (-RT) was performed including all reaction 

agents except the superscript enzyme to control RNA purity with respect to plasmid 

DNA contaminations. 
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 Composition of external calibrator mix 4.3.4

For controlling and calibration of differences between samples within an experiment 

that can occur during cell handing, sample processing and sequencing a mix of 

additional EXT sequences were added as external calibrator EXTs (eCal-mix) in a 

constant amount to each sample at the step of EXT amplification (Dec-PCR). The 

eCal-mix consists of 15 5xUAS-TK-EXT plasmids with 3 plasmids each at a certain 

molecule number. 

EXTs Molecules per µl 

5xUAS-TK-E00055 5xUAS-TK-E00056 5xUAS-TK-E00057 10.000 

5xUAS-TK-E00058 5xUAS-TK-E00059 5xUAS-TK-E00060 3.162 

5xUAS-TK-E00061 5xUAS-TK-E00062 5xUAS-TK-E00063 1.000 

5xUAS-TK-E00064 5xUAS-TK-E00065 5xUAS-TK-E00066 316 

5xUAS-TK-E00067 5xUAS-TK-E00068 5xUAS-TK-E00069 100 

 

 

 Amplification of EXT sequences 4.3.5

As all EXT sequences are flanked by the same unique primer sequences the EXTs could 

be filtered out and amplified from the whole cDNA by PCR, called Decoding-PCR 

(Dec-PCR) (Figure 6). Additionally, 1 µl of a 5xUAS-TK-EXT plasmid mix (eCal-mix) was 

added to each sample to introduce external calibrator EXT sequences. The Dec-PCR 

was performed for all samples including the –RT controls in a 20 µl volume using the 

HotstarTaq Plus DNA polymerase (Qiagen). 

 
Dec-PCR set up: 
     1 µl   cDNA  
     1 µl   eCal-mix 
     2 µl   10x CoralLoad buffer 
     2 µl   dNTP mix (2.5 mM each) 
  0.1 µl   Forward Dec1 primer (50 pmol/µl) 
  0.1 µl   Reverse Dec2 primer (50 pmol/µl) 
  0.1 µl   HotStarTaq Plus polymerase  
13.7 µl   H2O 

PCR Program: 
95°C ∞ 
95°C 5min 
95°C 30 sec 
59°C 30 sec      30 cycles 
72°C 30 sec 
10°C ∞ 

 
To analyse the Dec-PCR 4 µl of each sample was loaded on a 2 % agarose gel. To 

indicate no Plasmid DNA contamination after the RNA purification the –RT samples 

should show no or only a slight band. 
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 Attachment of Ion adapters and sample coding 4.3.6

For sequencing with the Ion Torrent technology specific Ion adapter sequences need to 

be added to the 3’ and 5’ end of the Dec-PCR fragments (Figure 6). On order to 

differentiate different samples in a sequencing run 13mer barcodes are introduced 

between 5’ Ion adapter and target sequence. The Ion adapters and barcodes were 

added by PCR, called Code-PCR on the Dec-PCR product that was diluted 1:10 with 

H2O. 

 
Code-PCR set up: 
     1 µl   Dec-PCR product (1:10 diluted)  
     2 µl   10x CoralLoad buffer 
     2 µl   dNTP mix (2.5 mM each) 
  0.5 µl   Forward Ion_A_code primer (10 pmol/µl) 
  0.5 µl   Reverse Ion_P1 primer (10 pmol/µl) 
  0.1 µl   HotStarTaq Plus polymerase  
13.9 µl   H2O 

PCR Program: 
95°C ∞ 
95°C 5min 
95°C 30 sec 
58°C 20 sec      10 cycles 
72°C 20 sec 
10°C ∞ 
 

 

To analyse the Code-PCR 4 µl of each sample was loaded on a 2 % agarose gel. 

10-12µl of each sample was pooled together and purified using the NucleoSpin Gel and 

PCR Clean-up kit (Macherey-Nagel). The final sample was eluted in 50 µl elution buffer 

and the concentration was measured using the picodrop. 

 

 

4.4 Next Generation Sequencing 

The prepared EXT template libraries were sequenced using the Ion semiconductor 

sequencing technology by Ion Torrent (Rothberg et al., 2011). The method is based on 

the detection of released hydrogen ions during DNA replication. The incorporation of a 

deoxyribonucleotide triphosphate (dNTP) in a new synthesised strand leads to the 

formation of a covalent bond and the release of pyrophosphate and a hydrogen ion. 

This happens only if the dNTP is complementary to the leading strand. The released 

positively charged hydrogen ion causes a pH change of the solution resulting in a 

voltage change that is detected by Ion sensors. The advantage of this method is the 

use of unmodified nucleotides and the lack of any optics. 
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The sequencing device consists of two parts, the sequencing instrument itself and an 

Ion semiconductor chip. An Ion chip contains a high-density array of micro-sized wells 

where the sequencing reaction takes place. Each of these wells is loaded with a 

different single-stranded DNA template and a DNA polymerase. During sequencing 

reaction the chip is flooded sequentially with one nucleotide after another. When a 

complementary dNTP is incorporated sensors on the Ion chip detect the pH change 

caused by the released hydrogen ion. The sequencing instrument comprises a fluidic 

system to control the sequencing reagents and nucleotide flows over the chip and 

record and process the detected signals. Actually there are two sequencing 

instruments, the Ion Personal Genome Machine (PGM) and the Ion Proton and four 

different Ion chips available, which differ in their sequencing capability. Ion 314, 316 

and 318 chips run on the Ion PGM and the Ion PI chip on the Ion Proton. Which chip 

type should be used for an experiment is dependent on the complexity of different 

sequences and the desired coverage of reads per individual sequence. The different 

chip types and their specifications are listed in Table 2. All GPCR activation assays were 

sequenced on the Ion PGM using 318 chips and the GPCR signalling assay on the Ion 

Proton using the PI chip. 

 

Table 2: Overview of Ion Torrent sequencing devices and chips. 

 

Sequencer Ion PGM Ion Proton 

Chip 314 316 318 PI 

Total output up to 100 Mb up to 1 Gb up to 2 Gb up to 10 Gb 

Reads 400.000–700.000 2-3 Mio 5-7 Mio 70-100 Mio 

Read length 200-400 Bases 200 Bases 
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Figure 7: Workflow of Next Generation Sequencing by Ion Torrent technology. 

During library preparation isolated RNA is converted into DNA and flanked by Ion adapters (Ion-A and 
Ion-P1) and a unique barcode per sample. Next, the fragments are bound to Ion Sphere Particles (ISPs) 
and amplified by an emulsion PCR. Template-positive ISPs are then isolated and enriched. In the next 
step the prepared template is loaded on an Ion Chip and sequenced using the Ion PGM or Proton. 
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 Preparation of sequencing templates 4.4.1

After library preparation the fragments are attached to Ion Sphere Particles (ISPs) and 

amplified by emulsion PCR (emPCR) using the Ion One Touch system. The fragments to 

be sequenced are mixed with PCR reagents and ISPs covered with primers 

complementary to the Ion-P1 adapter sequence on the fragments. This aqueous 

solution is then mixed with oil to form an emulsion of microdroplets. For clonal 

amplification the concentration of ISPs and fragments are chosen in a way that each 

microdroplet contain only one ISP and one fragment. 

For template preparation of EXT libraries 23 pM of the final sample was used. For this, 

the final purified sample was diluted to a concentration of 2-5 ng/µl and the 

concentration measured with the Qubit 2.0 Fluorometer (Invitrogen). The sample was 

then diluted to 23pM and 25µl were used for emPCR. After clonal amplification 

template-positive ISPs were enriched using the Ion One Touch ES device. Because of 

the use of biotinylated primers during emPCR streptavidin-coupled magnetic beads 

bind only template-positive ISPs. 

All template preparations and enrichments were done according to the manufactures 

protocols for the Ion PGM™ Template OT2 200 Kit, Ion PGM™ Template OT2 400 Kit or 

the Ion PI™ Template OT2 200 v3 Kit respectively. 

 

 Sample sequencing on Ion Torrent sequencer 4.4.2

Before starting a sequencing run, the Ion sequencer needs to be initialized. Both 

devices, the Ion PGM and the Ion Proton are initialized by the same procedure. This 

means the preparation of wash-solutions and nucleotides. After manual preparation of 

the two wash buffers W1 and W2 the instrument is mixing these buffers until the W2 

buffer reaches a pH between 7.45-7.7 according to the reference buffer W3. The final 

W2 buffer then adjust the four nucleotides. 

After initialization sequencing primers are annealed to the template-positive ISPs 

carrying the EXT fragments. The final sample is then loaded together with a 

polymerase onto an Ion chip and the sequencing run started. During the run the chip is 

flooded sequentially with one nucleotide after another. Between the flows the chip is 

washed with W2 buffer to remove unattached dNTPs. 
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The sequencing runs were done according to the manufactures protocols for the Ion 

PGM™ Sequencing 200 v2 Kit, Ion PGM™ Hi-Q™ Sequencing Kit or Ion PI™ Sequencing 

200 v3 Kit. 

 

 Analysis of sequencing data 4.4.3

Raw data analyses were performed by Dr. Sven Wichert (Molecular Neurobiology, 

Department of Psychiatry, LMU Munich) using BLAST algorithm and in-house 

developed R scripts. Raw sequencing reads were normalized to total read numbers of 

samples and additionally to average reads of internal and external calibrator EXTs. 

Final normalized data is given either as raw fold changes (relative differences) or log2 

fold changes between samples. 

In the GPCR signalling assays for each sensor a variance factor was calculated by 

variance analyses based on the log2 fold change values. For filtering all sensors with a 

variance factor under 0.03 were excluded from further analysis and heatmap plotting. 

The hierarchical clustering was done by the average method using R. 

 

 

4.5 Cloning of GPCRs 

All GPCRs except of ADRB3 and DRD4 were first PCR amplified from human brain cDNA 

library using primers complementary to the 5’ and 3’ end of the specific GPCR coding 

sequence and carrying sequences for attB1 and attB2 recombination sites. The PCR 

products were then recombined within a Gateway BP reaction to create pENTR shuttle 

clones. DRD4 was purchased from Bio Basic Inc. as synthesised linear sequence with 

already attached attB1 and attB2 sites. ADRB3 was purchased from Source Bioscience 

as pENTR shuttle vector. All GPCR entry vectors were sequence verified. After 

verification the entry vectors were recombined within a LR reaction into the 

destination vector pTag4C_ST_X-V2R-NTEV-tevS-GV to obtain the final expression 

vectors of GPCR-V2R-NTEV-tevS-GV fusion constructs. The final constructs were 

verified by diagnostic restriction enzyme digest. 
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 Modification of GPCRs 4.5.1

Due to a low expression rate and functionality in split TEV assays of some GPCRs the 

signal peptide for cell membrane localisation was either exchanged or an additional 

signal peptide was added for these receptors. A list of modified GPCRs is depicted in 

Table 3. 

For the modification by changing the signal peptide the native signal peptide sequence 

was determined using the program http://www.predisi.de/. The signal peptide was 

changed by the signal sequence of the mouse Ig κ-chain V-J2-C proteins (Figure 8A). 

The database on http://bp.nuap.nagoya-u.ac.jp/sosui/sosui_submit.html was used to 

ensure a space of at least three amino acids in front of the first transmembrane 

domain. The in this way modified GPCRs were called as “HOOK-GPCRs”. The validation 

was done in my diploma thesis 2010. 

Another modification method to promote membrane localization was the adding of a 

HA-Flag Tag at the N-terminus of the GPCR (Figure 8B) (Guan et al., 1992; Kroeze et al., 

2015). These GPCRs were called as HA-Flag-GPCR or HF-GPCR. 

 

Table 3: Overview of modified GPCRs. 

Native GPCR Modified GPCR 

HTR1A HA-Flag-HTR1A 

HTR2A HOOK-HTR2A 

HTR7 HA-Flag-HTR7 

DRD3 HA-Flag-DRD3 

DRD4 HA-Flag-DRD4 

SSTR1 HOOK-SSTR1 

 

 

Figure 8: Modification of GPCR signal peptides. 

The native signal peptide sequence was modified (A) by exchange of the 5’ signal sequence by the signal 
sequence of the mouse Ig κ-chain V-J2-C protein or (B) by adding a HA-Flag Tag sequence at the 5’ end. 
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4.6 Cloning of EXT reporters 

 10xUAS-EXT reporters for GPCR activation assays 4.6.1

The 10xUAS-EXT reporters were generated by multisite Gateway recombination. 

Ordered 5xUAS oligonucleotides were clustered by PCR and recombined in a BP 

reaction to obtain a 10XUAS_pENTR (L1/L4) shuttle vector. This shuttle vector was 

recombined with pENTR (L4/L3) clone encoding the adenovirus major late minimal 

promoter (MLP) and multiple unique pENTR-EXT (L3/L2) vectors. In total 67 

10xUAS-EXT reporters were cloned and sequence verified. 

 

 Sensor-EXT reporters for GPCR signalling assay 4.6.2

All sensor-EXT reporters (cis-EXT and promoter-EXT reporters) were cloned within a 

one reaction multisite Gateway recombination of three fragments into a final pAAV 

vector backbone. Clustered cis-elements were either synthesized by GenScript as 

pENTR (L1/L4) shuttle vectors or amplified by PCR from available reporter constructs 

and recombined within a Gateway BP reaction to create attL1-attL4-pENTR (L1/L4) 

shuttle clones. Each cis-element was clustered 6-18x depending on the sequence 

length. Endogenous promoter fragments were PCR amplified from genomic DNA and 

recombined within a BP reaction to generate attL4-attL3-pENTR shuttle vectors. The 

primers for PCR amplifications were placed in a way that a 1-1.5 kb long region 

upstream of the transcription start site was generated. Each of the shuttle clones were 

than recombined either with pENTR (L4/L3) clones encoding either the adenovirus 

major late minimal promoter (MLP; cis-elements) or with pENTR (L1/L4) carrying a 

non-coding “dummy sequence” (first 200 bp of the enhanced green fluorescence 

protein, sEGFP) together with multiple unique pENTR-EXT (L3/L2) vectors. For some 

cis-elements different versions of transcription factor binding sequences were existent 

so that in total 69 cis-elements and 24 promoters were cloned. The cis- and promoter-

EXT constructs were cloned for the most part by Dr. Ben Brankatschk (Molecular 

Neurobiology, Department of Psychiatry, LMU Munich). All obtained final reporter 

constructs were sequence verified. The different cis-elements and promoters are listed 

in Table 4 and a complete list of all reporter plasmids is shown in Table 1. 
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Table 4: List of cis-elements and endogenous promoters for sensor-EXT reporters. 

Cis-element Transcription factor Pathway 

AARE ATF2-4 Amino acid deprivation 

AR-RE AR Androgens 

ARE NRF(2) / NFE2L2 Antioxidant response 

Npas4-RE Npas4 Ca2+- signalling 

SARE  CREB, MEF2, SRF Ca2+-, cAMP- signalling 

NFAT-RE NFAT Ca2+-, cAMP- signalling 

CRE CREB cAMP - signalling 

E2F-RE E2F Cell cycle 

RB-RE RB Cell cycle 

SREBP-RE SREBP Cholesterol 

ER-RE ER / ESR1 Estrogen 

HSE HSF Heat shock 

GLI-RE GLI Hedgehog 

TEAD4-RE TEAD Hippo 

HRE HIF1a Hypoxia 

ISRE IRF1, STAT1-2-IRF9 JAK - STAT 

STAT-RE STAT1/3/4 JAK/STAT proliferation 

NFkB-RE NFkB  MAPK 

AP1 AP1 MAPK  

EGR1-RE EGR1 MAPK  

ELK1-RE ELK1 MAPK  

SRE SRF, ETS / ELKs MAPK  

SRF-RE SRF MAPK  

E-box Myc Metabolic and circadian control 

CEBP-RE CEBP-a  Metabolism 

SP1-RE SP1 Metabolism 

MRE MTF1 Metal response 

Notch-RE RBP-JK / RBPJ / CBF1 Notch 

GR-RE GR / NR3C1 Nuclear steroid receptors 

KLF4-RE KLF4 Stem cells 

NANOG-RE NANOG Stem cells 

OCT4-minP OCT4  Stem cells 

OCT4-RE OCT4  Stem cells 

SOX2-OCT4-cRE SOX2-OCT4 Stem cells 

SOX2-RE SOX2 Stem cells 

p53-RE p53 Apoptosis 

FOXO-RE FOXO1/3 PI3K-AKT 

IRS FOXO PI3K-AKT 

GATA-RE GATA Proliferation 

Myc_E-box MYC, MAX, MAD Proliferation 

RARE RAR::RXR all Retinoic acid 

SMAD-RE SMAD1-5 TGFβ 

ERSE NF-Y, ATF6, XBP1, YY1 Unfolded protein response 

UPRE ATF6, XBP1 Unfolded protein response 

YY1-RE YY1 Unfolded protein response 

Wnt-RE TCF-LEF Wnt/β-catenin 
NRSE NRSF Neural stem cells, suppression of 

neurogenesis 
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   Endogenous Promoter Pathway 

TP53INP1 
 

Apoptosis 

TP73 
 

Apoptosis 

Npas4 
 

Ca2+- signalling 

PPP1R15A 
 

cAMP-signalling 

TNFA 
 

cAMP-signalling 

CXCL1 
 

Cytokine signalling, immune response 

IL6 
 

Cytokine signalling, immune response 

IL8 
 

Cytokine signalling, immune response 

HSPA1A 
 

Heat shock 

DUSP1 
 

MAPK  

DUSP5 
 

MAPK  

EGR1 
 

MAPK  

EGR2 
 

MAPK  

FOS 
 

MAPK  

FOSB 
 

MAPK  

JUN 
 

MAPK  

NR4A1 
 

MAPK  

NFKB2 
 

NFkB / cytokines 

hDLG4_1.ATG 
 

Nrg1 back signalling 

sDLG4 
 

Nrg1 back signalling 

EIF2AK2 
 

STAT1, interferon 

PSMB9 
 

STAT1, interferon 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                         Results 

60 
 

5. Results 

5.1 GPCR activation assays 

 Principle of GPCR split TEV assay 5.1.1

The stimulation-dependent interaction of GPCR and β-arrestin was used to set up split 

TEV assays for monitoring a ligand-dependent GPCR activation. 

The split TEV technique is based on the complementation of two inactive fragments of 

the tobacco etch virus (TEV) protease (NTEV and CTEV) to reconstitute the functional 

protease as a result of a protein-protein interaction (Wehr et al., 2006), in this case a 

GPCR and β-arrestin. To do this, amino acids 343-371 of the C-terminal intracellular 

domain of the human arginine vasopressin receptor 2 (AVPR2) (abbreviated V2R) were 

fused to the C-terminal end of a candidate GPCR, followed by the NTEV fragment 

(amino acid 1-118), the TEV cleavage site ENLYFQ’G (tevS) and the artificial 

transcription factor Gal4-VP16 (GV) (Figure 9A). The V2R- tail was added to improve 

the stability between GPCR and arrestin upon receptor activation, because of the 

highly variable affinity of the different GPCRs to arrestin. The specificity of the ligands 

to the GPCRs and the downstream signalling is not affected (Barnea et al., 2008; 

Oakley et al., 2000). The C-terminal TEV fragment (amino acids 119-221, S219P 

mutant) was fused to a truncated β-arrestin 2 lacking the entire C-terminal tail (amino 

acids 383-410) (Figure 9A). This truncation exhibits stronger stimulation-dependent 

receptor desensitisation and therefore enhances the assay sensitivity compared with 

wild type β-arrestin (Djannatian et al., 2011; Kovoor et al., 1999). The CTEV fragment 

was further optimised and carries the stabilising point mutation S219P (Kapust et al., 

2001) and is truncated after amino acid 221 to remove the auto-inhibitory C-terminal 

tail (Nunn et al., 2005). 

After ligand-dependent GPCR activation, β-arrestin is recruited to the receptor and 

both TEV fragments come into close proximity. The reconstituted TEV protease cleaves 

at the tevS, causing GV to be released, which translocates into the nucleus. There, GV 

activates a transcriptional reporter by binding to clustered Gal4-responsive upstream 

activating sequence (UAS) elements (Figure 9B). 
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Either firefly luciferase or EXT molecular barcode reporters were used as read out. The 

firefly luciferase readout was used both in initial experiments to set up the split TEV 

technique for a selection of GPCRs and in later validation experiments. 

 

 

 

Figure 9: GPCR split TEV constructs and principle of GPCR split TEV assays. 
(A) Structure of split TEV constructs for GPCR activation assays. GPCR-V2R-NTEV-tevS-GV constructs are 
composed of the GPCR fused to the C-terminal domain of the arginine vasopressin receptor 2 (V2R) 
followed by the N-terminal TEV protease fragment (NTEV, aa 1-118), the TEV cleavage site (tevS) and the 
Gal4-VP16 transcription factor (GV). β-arrestin2Δ-CTEV constructs harbours the truncated human 
β-arrestin 2 (ARRB2Δ383, aa 1-383) fused to the C-terminal TEV protease fragment (CTEV, aa 119-221). 
GPCR-V2R-NTEV-tevS-GV and β-arrestin2Δ-CTEV fusion proteins are expressed under the control of a 
cytomegalovirus promoter (CMV). attB1 and attB2 designate recombination sites. (B) Schematic 
representation of GPCR split TEV assays. The ligand-dependent receptor activation results in the 
recruitment of β-arrestin to the GPCR and the reconstitution of the protease activity. TevS is cleaved 
(indicated by the scissors) and the released GV translocates to the nucleus to activate reporter gene (i.e. 
firefly luciferase, FFLuc) or EXT barcode reporters by binding to upstream activating sequence (UAS) 
elements. 
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 Cloning of GPCR split-TEV fusions 5.1.2

21 selected GPCRs were fused to the V2R-NTEV-tevS-GV moiety. For some GPCRs, 

HOOK or HA-FLAG tags were fused to the N-terminus of the GPCRs to increase 

expression levels in living cells. Full descriptions of the cloning procedure can be found 

at chapter 4.5. Details for all GPCRs used are depicted in Table 5 including the 

Reference Sequence (RefSeq) numbers provided by the National Center for 

Biotechnology Information (NCBI). 

 
 

Table 5: Overview of all GPCR split TEV fusion constructs used in GPCR activation assays. 
Table listed all GPCRs used in the following assays as denoted in the main text, the full fusion protein 
constructs and the corresponding Reference Sequence (RefSeq) numbers. 

 
Receptor 

subgroup 

GPCR 

(denoted in text) Full fusion protein RefSeq 

Serotonin 

receptors 

HTR1A HA-FLAG-HR1A-V2R-NTEV-tevS-GV NM_000524 

HTR2A HOOK-HTR2A-V2R-NTEV-tevS-GV NM_000621 

HTR4 HTR4-V2R-NTEV-tevS-GV NM_001040169 

HTR5A HTR5A-V2R-NTEV-tevS-GV NM_024012 

HTR7 HA-FLAG-HTR7-V2R-NTEV-tevS-GV NM_000872 

Dopamine 

receptors 

DRD1 DRD1-V2R-NTEV-tevS-GV NM_000794 

DRD2 DRD2-V2R-NTEV-tevS-GV 

NM_016574  

(short isoform) 

DRD3 HA-FLAG-DRD3-V2R-NTEV-tevS-GV BC128123 

DRD4 HA-FLAG-DRD4-V2R-NTEV-tevS-GV NM_000797 

DRD5 DRD5-V2R-NTEV-tevS-GV NM_000798 

α-adrenergic 

receptors 

ADRA1A ADRA1A-V2R-NTEV-tevS-GV NM_033303 

ADRA2B ADRA2B-V2R-NTEV-tevS-GV NM_000682 

ADRA2C ADRA2C-V2R-NTEV-tevS-GV NM_000683 

β-adrenergic 

receptors 

ADRB2 ADRB2-V2R-NTEV-tevS-GV NM_000024 

ADRB3 ADRB3-V2R-NTEV-tevS-GV NM_000025 

Histamine 

receptor HRH1 HRH1-V2R-NTEV-tevS-GV NM_000861 

Vasopressin 

receptors 

AVPR1A AVPR1A-V2R-NTEV-tevS-GV NM_000706 

AVPR2 AVPR2-V2R-NTEV-tevS-GV NM_000054 

Somatostatin 

receptors 

SSTR1 SSTR1-V2R-NTEV-tevS-GV NM_001049 

SSTR2 SSTR2-V2R-NTEV-tevS-GV NM_001050 

SSTR3 SSTR3-V2R-NTEV-tevS-GV NM_001051 
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 EXT barcode reporters 5.1.3

For monitoring the receptor activation of multiple GPCRs simultaneously in one 

experiment, a new class of reporter constructs was generated (Figure 10). Expressed 

oligonucleotide tags (EXTs) are unique barcode sequences that were used to replace 

classical reporter proteins as read out. To generate a large number of unique EXT 

barcode reporters, a multi-fragment recombination cloning strategy was applied 

(Multisite Gateway Recombination Technology). A library of shuttle vectors carrying 

different EXTs were recombined together with two shuttle vectors harbouring a 

transcription factor binding site and a minimal promoter into a firefly luciferase 

reporter backbone vector. The final reporter constructs consist of a 10 times clustered 

upstream activating sequence (10xUAS) element as binding sequence for the artificial 

transcription factor GV followed by a cytomegalovirus minimal promoter (CMVmin), a 

unique EXT and the firefly luciferase sequence (Figure 10A). Non-variable regions flank 

the variable EXT sequence as primer binding sites (Dec1 and Dec2) needed during the 

analysis of expressed EXTs. Because of the dual expression of EXT and luciferase after 

reporter activation the reporters could be used in multiplexed EXT assays (denoted as 

10xUAS-EXT reporters) or in single luciferase assays (denoted as 10xUAS-FFLuc 

reporters).  For multiplexed EXT assays, a construct library of about 70 unique 

10xUAS-EXT barcode reporters was prepared (Figure 10B). 

 

 
 

Figure 10: Structure of EXT barcode reporter constructs and library. 
(A) Modular reporter construct. By a one-reaction recombination the following three fragments were 
introduced in front of the firefly luciferase gene (FFLuc): the GV transcription factor binding site 
(10xUAS), a cytomegalovirus minimal promoter (CMVmin) and an EXT flanked by “decoding” primer 
binding sites (Dec1 and Dec2). attB1, attB2, attB3 and attB4 are the recombination site of the three 
fragments. Naming of the reporter varies between applications, 10xUAS-EXT in multiplexed EXT assays 
and 10xUAS-FFLuc in single luciferase assays. (B) Library of multiple unique EXT barcode reporters. 
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The general performance of the reporters in response of the Gal4-VP16 transcription 

factor (GV) was determined in a luciferase assay by cotransfection with a constitutively 

expressed GV (Figure 11). The reporter showed significant responses of 70-fold with 

1ng GV and 90-fold with 5ng GV in PC12 cells after 24h. In contrast the signals 

remained at the reporter background level when cells were treated with mainly used 

agonists of GPCR activation assays in PC12 cells (Figure 11) as well as in U2OS cells, 

which indicate no direct interference of receptor stimulating substances with the 

reporter system. 

 

 
 

Figure 11: Control of reporter inducibility and potential substance interference. 
Luciferase based functional test of 10xUAS reporter performance. PC12 tetOFF cells were transfected 
with 10 ng of 10xUAS-FFLuc reporter plasmid alone or together with 1 ng and 5 ng GV, respectively. 
Both GV cotransfections show significant high activation signals. To monitor potential substance 
interference on the reporter performance cells transfected with reporter alone were treated for 6 h 
with the GPCR agonists serotonin (5-HT), dopamine (DA), epinephrine (Epi), vasopressin (AVP) and 
somatostatin (SST). The reporter shows no changes in signal intensity compared to the background 
signal of untreated reporter. Luciferase data are given as means ± standard deviations (n=6). *p ≤ 0.05; 
**p ≤ 0.01; *p ≤ 0.001 (two-sided t-test). 
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 Workflow of GPCR split TEV assays 5.1.4

The general workflow and timeline for agonist and antagonist treated assays is 

depicted in Figure 12. All assays for monitoring GPCR activity were done by transient 

transfection of the assay components. The method of transfection, on-plate or 

in-solution, was dependent on the assay type. In luciferase-based assays, cells were 

on-plate transfected whereas cells in most EXT-based assays were transfected 

in-solution. For both methods, cells were incubated with the transfection mix for 2h. 

For expression of the assay components and the receptor localisation at the 

membrane, cells were cultivated after transfection in their respective maintenance 

medium for 20h. After this expression phase maintenance medium was changed by 

assay medium with no or reduced fetal bovine serum (FBS), dependent on the cell line. 

The serum-starvation leads to a reduction of basal cell activity and thereby enhances a 

potential stimulation response after applying a stimulus. Cells were usually serum-

starved over-night. 

The following stimulation phase varied between the applied substances and a point 

analysis (agonist and drug assays) or time analysis (kinetic assays). In agonist assays, an 

agonist diluted in fresh assay medium was added to the cells and incubated for 6h. 

Cells were then lysed and analysed either by luciferase readings or EXT sequencing. To 

monitor inhibition effects of drugs/antagonists, the drug/antagonist was added to the 

cells first and pre-incubated for 1h before adding the corresponding agonist for further 

6h incubation. 

In kinetic assays the stimulation response of a receptor was measured by live 

monitoring the luciferase activity over time. After adding an agonist the cells were 

incubated for 24h or longer in a lumicycler (LumiCycle 32 from ActiMetrics) 

permanently recording luciferase activity. 
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Figure 12: Timeline and workflow of different types of GPCR split TEV assays. 
In all assay types cells were transiently transfected followed by an expression phase of 20h. Afterwards, 
the medium was changed by serum reduced assay medium for reducing basal cell activity (starvation 
period). In agonist assays, an agonist was added and incubated for 6h before lysis. In drug assays, cells 
were pre-incubated with a drug/antagonist for 1h before adding the corresponding agonist for 
additional 6h followed by lysis. In kinetic assays, after addition of an agonist cells were incubated in a 
lumicycler where the luciferase activity was monitored over time. 
 
 

 
 

 GPCR activation kinetics 5.1.5

EXT-based and standard luciferase assays are time point analyses at the point of lysis. 

To determine the optimal point of lysis and thus the length of stimulation phase the 

kinetic of receptor activation in split TEV assays was monitored. This was done by 

incubating transfected cells in an online luciferase assay, recording the luciferase 

activity from the beginning of starvation (Figure 13). Six different GPCRs (2 serotonin, 

2 dopamine and 2 adrenergic receptors) were measured in duplicates. During the 

starvation phase the luciferase readings of all GPCRs decrease, displaying the reduction 

of basal cell activity. After applying GPCR corresponding agonists at time point 0 the 

stimulated samples show an increase in luciferase activity. Over time the readings are 

decreasing to level of unstimulated samples. The peaks of activity are between 2.5h 

stimulation for DRD2 and 9h for ADRA1A (Figure 13, lower square). The average 

induction rates (the maximal signal of stimulated samples divided by the 
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corresponding unstimulated background) are between 1.5-fold for DRD2 and 17-fold 

for HTR2A. 

Based on the kinetics, the period of stimulation for time point assays was set to 6h as 

average for all selected GPCRs. 

 

 

 
 

Figure 13: Kinetic measurement of ligand dependent GPCR activation. 
Receptor activation kinetics were measured for the GPCRs HTR2A, HTR4, DRD1, DRD2, ADRA1A and 
ADRB2. PC12 tetOFF cells were transfected with GPCRs (fused to V2R-NTEV-tevS-GV) and ß-arrestin2Δ-
CTEV and the luciferase activity measured constantly during starvation phase (18h) and after application 
of agonists at indicated concentrations (stimulation phase, 26h). Decreasing signals during starvation 
phase reflect the reduction of cell activity. Luciferase readings of stimulation phase are highlighted in 
the box. For each GPCR the means of two replicates of unstimulated and stimulated samples are 
displayed. Agonists: 5HT, serotonin; DA, dopamine; Epi, epinephrine. 
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 Luciferase-based evaluation of GPCR activation 5.1.6

First, single luciferase assays were performed to monitor GPCR activities. Successively, 

this data was analysed for efficient combination of the EXTassay technique and the 

split TEV method, thereby allowing experimental setups for multiplexed cell-based 

assays. 

21 GPCRs were selected from the serotonin, dopamine, adrenergic, histamine, 

vasopressin and somatostatin receptor subgroups. The GPCRs were stimulated with 

their corresponding agonists serotonin (5HT), dopamine (DA), epinephrine (Epi), 

histamine (His), vasopressin (AVP), and somatostatin (SST) (Figure 15Figure 16). The 

GPCRs activation was tested in different heterologous cell lines to check receptor 

performance under different cellular backgrounds. The tested cell lines were the 

human osteosarcoma cell line U2OS (Figure 14), the rat pheochromocytoma cell line 

PC12 tetOFF (Figure 15) and the Chinese hamster ovary cell line (CHO) (Figure 16). 

Significant stimulation-dependent receptor activation could be detected in U2OS cells 

for all serotonin receptors (Figure 14A), the dopamine receptors DRD1, DRD2, DRD4 

and DRD5 (Figure 14B), the histamine receptor HRH1 (Figure 14C), the adrenergic 

receptors ADRA2B, ADDRA2C, ADRB2 and ADRB3 (Figure 14D), both vasopressin 

receptors AVPR1A and AVPR2 (Figure 14E) and for the somatostatin receptors SSTR2 

and SSTR3 (Figure 14F). 

In PC12 cells, with the exception of HTR1A and HTR7, all serotonin, histamine, 

adrenergic, vasopressin and somatostatin receptors showed significant receptor 

activation after stimulation (Figure 15A, C-F). For the dopamine receptors, only DRD1 

showed receptor activation (Figure 15B). 

In CHO cells, all adrenergic and vasopressin receptors showed stimulation-dependent 

activations (Figure 16C, D). Likewise the dopamine and somatostatin receptors with 

exception of DRD3 and SSTR1 showed significant stimulation-dependent signal 

changes (Figure 16B, E). From the serotonin receptors only for HTR5A significant 

receptor activation could be detected. However, for all serotonin receptors higher 

luciferase readings in the stimulated conditions compared to the corresponding 

unstimulated samples could be observed (Figure 16A). 

By comparing the three cell lines U2OS, PC12 and CHO cell-type specific differences in 

the receptor activations were observed. The performance of each GPCR differed 
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between the cellular backgrounds. All GPCR activations obtained in luciferase assays in 

the different cell lines are summarised in Table 6. 

 

Table 6: Summary table of GPCR performance in luciferase assays. 

Listed are all GPCRs monitored in luciferase-based split TEV assays. Significant receptor activations 
measured in U2OS, PC12 and CHO cells are indicated by a tickmark. 

 

GPCR U2OS PC12 CHO 

HTR1A  - - 

HTR2A   - 

HTR4   - 

HTR5A    

HTR7  - - 

DRD1    

DRD2  -  

DRD3 - - - 

DRD4  -  

DRD5  -  

ADRA1A -   

ADRA2B    

ADRA2C    

ADRB2    

ADRB3    

HRH1   not measured 

AVPR1A    

AVPR2    

SSTR1 -  - 

SSTR2    

SSTR3    
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Figure 14: Split TEV luciferase assay to monitor ligand dependent GPCR activation in U2OS cells. 

Serotonin (A), dopamine (B), histamine (C), adrenergic (D), vasopressin (E) and somatostatin (F) 
receptors were fused to V2R-NTEV-tevS-GV and transfected with β-arrestin2Δ-CTEV into U2OS cells. 
Cells were stimulated with agonists [5-HT, serotonin (A); DA, dopamine (B); His, histamine (C); Epi, 
epinephrine (D), AVP, vasopressin (E); SST, somatostatin (F)] at indicated concentrations for 6h. 
Luciferase data are given as means ± standard deviations (n=6). *p ≤ 0.05; **p ≤ 0.01; *p ≤ 0.001 (two-
sided t-test). 
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Figure 15: Split TEV luciferase assay to monitor ligand dependent GPCR activation in PC12 cells. 

Serotonin (A), dopamine (B), histamine (C), adrenergic (D), vasopressin (E) and somatostatin (F) 
receptors were fused to V2R-NTEV-tevS-GV and transfected with β-arrestin2Δ-CTEV into PC12tetOFF 
cells. Cells were stimulated with agonists [5-HT, serotonin (A); DA, dopamine (B); His, histamine (C); Epi, 
epinephrine (D), AVP, vasopressin (E); SST, somatostatin (F)] at indicated concentrations for 6h. 
Luciferase data are given as means ± standard deviations (n=6). *p ≤ 0.05; **p ≤ 0.01; *p ≤ 0.001 (two-
sided t-test). 
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Figure 16: Split TEV luciferase assay to monitor ligand dependent GPCR activation in CHO cells. 

Serotonin (A), dopamine (B), adrenergic (C), vasopressin (D) and somatostatin (E) receptors were fused 
to V2R-NTEV-tevS-GV and transfected with β-arrestin2Δ-CTEV into CHO cells. Cells were stimulated with 
agonists [5-HT, serotonin (A); DA, dopamine (B); Epi, epinephrine (C), AVP, vasopressin (D); SST, 
somatostatin (E)] at indicated concentrations for 6h. Luciferase data are given as means ± standard 
deviations (n=6). *p ≤ 0.05; **p ≤ 0.01; *p ≤ 0.001 (two-sided t-test). 
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 Dose-dependent GPCR activation and inhibition 5.1.7

An important part in studying stimulation-dependent receptor activation is the 

description of the dose-response relationship between ligand concentration (dose) and 

receptor response. At a given ligand concentration threshold, the receptor response 

reaches an activation plateau and cannot be increased any more by addition of higher 

ligand levels. This relationship is commonly depicted as a dose response curve by 

plotting the receptor response to the logarithm of the ligand concentration. 

A dose-response curve provides information about the potency of ligands by 

determining EC50 or IC50 values. The EC50 value (half maximal effective concentration) is 

the concentration of an agonist required to produce 50% of receptor response. The 

IC50 value (half maximal inhibiting concentration) is the concentration of an antagonist 

required for 50% inhibition of the maximal receptor response of an agonist in vitro. 

The applicability of split TEV assays to monitor dose-dependent GPCR activation was 

tested for a selection of GPCRs in luciferase assays. Because of the observed cell line-

dependent receptor performance, the assays were carried out in either PC12 or U2OS 

cells. 

The serotonin receptors HTR2A and HTR4 showed in PC12 cells a dose-dependent 

activation by stimulation with serotonin with an EC50 of 0.51 µM and 0.63 µM (Figure 

17A, B). The dose-dependent stimulation of the dopamine receptors DRD1 and DRD2 

with dopamine resulted in an EC50 of 0.8 µM for DRD1 and 3 µM for DRD2 in U2OS 

cells (Figure 17C, D). Both adrenergic receptors ADRA2B and ADRB2 showed a dose-

dependent activation induced by isoproterenol, ADRA1A with an EC50 of 0.41 µM in 

PC12 cells and ADRB2 with EC50 of 0.94 µM in U2OS cells (Figure 17E, F). 
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Figure 17: Dose-dependent GPCR activation by agonists in luciferase assays. 
Dose-dependent GPCR activations were measured in luciferase assays using GPCR-V2R-NTEV-tevS-GV 
and ßarr2Δ-CTEV fusion constructs.  Assays with HTR2A (A), HTR4 (B) and ADRA2B (E) were performed in 
PC12 cells, assays with DRD1 (C), DRD2 (D) and ADRB2 (F) were carried out in U2OS cells. Cells were 
stimulated with agonists for 6h. Dose-response curves were fitted with R (‘drc’ package). Luciferase data 
are given as means ± SEM (n=6). 
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The applicability of split TEV assays to monitor the effects of antagonists to inhibit 

GPCR responses was tested by treatment of the serotonin receptor HTR2A with the 

two neuroleptics asenapine and paliperidone. The antagonist assay was done in PC12 

cells. The receptor was pre-incubated with the particular antagonist for 1h before 

adding the agonist serotonin at its EC50 concentration (Figure 17A) of 0.7 µM. 

Asenapine showed a dose-dependent inhibition of the serotonin induced HTR2A 

response with an IC50 of 0.44 nM (Figure 18A). For paliperidone a dose-dependent 

HTR2A inhibition could be monitored with an IC50 of 1.35 nM (Figure 18B). 

 

 

 
 

Figure 18: Dose-dependent GPCR inhibition by antagonists in luciferase assays. 
Dose-dependent HTR2A inhibition by the antagonists asenapine and paliperidone was tested in PC12 
cells using luciferase read out. Cells were pre-treated with either asenapine (A) or paliperidone (B) for 
1h and subsequently stimulated with 0.7 µM serotonin for additional 6h. Dose-response curves were 
fitted with R (‘drc’ package). Luciferase data are given as means ± SEM (n=6). 
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5.2 EXT-based GPCR activation assays 

 Principle of multiplexed GPCR activation EXT assays 5.2.1

Receptor ligands often have the property to act on more than one specific receptor but 

on a subset of receptors as ligands may bind to several receptors. To determine the 

mode of action of ligands on multiple receptors single luciferase assays becomes 

inconvenient due to their limitation of ascertainable data points. A novel method to 

monitor the ligand-dependent receptor activation of multiple GPCRs simultaneously 

are EXT based GPCR assays. The principle of such multiplexed GPCR activation assays is 

the combination of the split TEV technology with EXT barcode reporters (EXTassays). 

Instead of using reporter proteins such as firefly luciferase as read out, EXT reporters 

produce unique RNA sequences that can be analysed in a pool. This feature allows to 

assign each EXT reporter to a unique cellular assay, in this case to a particular GPCR 

activity assay, and analyse a cell population expressing multiple EXT reporters and 

GPCRs at the same time under the same experimental conditions. 

The general experimental set up of multiplexed GPCR activation EXT assays is 

composed of separate in-solution transfections of single GPCR split TEV components 

(GPCR-V2R-NTEV-tevS-GV and β-arrestin2Δ-CTEV) and EXT reporters. Three unique 

10xUAS-EXT reporters were assigned to each GPCR (assay EXTs). In addition, three to 

six 10xUAS-EXT reporters were transfected separately without any GPCR as control for 

sample handling and unwanted condition effects and serve as internal calibrators 

(iCals). Two hours after transfection all cell populations were pooled together, mixed 

and plated out evenly distributed (Figure 19A). The cells were stimulated according to 

the previously described experimental workflow for agonist or drug assays (see 

chapter 5.1.4). After cell lysis the RNA from each sample was isolated and converted 

into cDNA by reverse transcription. To control the next steps of amplification and 

sequencing, additional EXT reporter plasmids were added as external calibrators 

(eCals) to the cDNA. As eCal reporters 5xUAS-TK-EXT constructs were used encoding a 

5 times clustered UAS element followed by the herpes simplex virus thymidine kinase 

promoter (TK) and unique EXT sequences. The assay EXT sequences as well as the iCal 

and eCal EXTs were then amplified by a decoding PCR. Afterwards each sample was 

labelled with a unique sequence barcode by an additional code PCR. This enables the 
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mixing of all samples and sequencing of the pool by next-generation-sequencing using 

the Ion Torrent Personal Genome Machine (PGM) (Figure 19B). Detailed description of 

the sample preparation and sequencing procedure is given in the methods part, 

chapters 4.3 and 4.4. 

 
 

 
 

Figure 19: Schematic design of multiplexed EXT-based GPCR activation assays. 
(A) For each GPCR a separate in-solution transfection of receptor and β-arrestin2Δ split TEV fusion 
plasmids and 3 unique 10xUAS-EXT reporters was done. Additional 10xUAS-EXT reporters were 
transfected as internal calibrators. After 2 hours all transfections were pooled, divided into samples and 
plated out. Samples were treated depending on the assay. (B) Processing of samples after cell lysis. 
From each sample the total RNA was isolated and converted into cDNA. After adding of 5xUAS-TK-EXTs 
as external calibrators EXT sequences were PCR amplified and barcoded. Afterwards samples were 
pooled and sequenced by next generation sequencing followed by raw data processing and analysis. 
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 Processing of sequencing data 5.2.2

To analyse the biological output of the EXT assays the raw sequencing data obtained 

from the Ion Torrent sequencer needed to undergo normalisation, calibration and 

standardisation steps (Figure 20). Each GPCR EXT assay is composed of a defined 

number of samples, with each sample encoding a specific treatment condition. To 

balance differences between the samples occurred during the sequencing process the 

total read number of each sample was calculated and normalized to the highest total 

read number (Figure 21). As low read numbers are instable, all samples with total 

reads under a certain threshold were excluded from the experiment. The threshold 

was commonly set to the 20% value of the highest total read number. To control 

differences between samples that can occur at the level of cell handling and the later 

sample preparations including cDNA synthesis and library amplification calibrator EXTs 

were included into the experiment at the transfection level (internal calibrators, iCals) 

and before the library amplification (external calibrators, eCals). The eCals are also 

used to compensate so called “read eating”- effects. Within a sample highly expressed 

EXTs have an advantage during the library amplification PCRs and the sequencing 

reaction which leads to the suppression of effects of lower expressed EXTs. These 

“read eating”- effects can be detected in samples with low read numbers of the eCals 

(Figure 22A). To balance these effects all reads were calibrated to normalisation factor 

based on the means of eCal reads of each sample (Figure 22B). Following to 

normalisation and calibration steps, the biological sample replicates and the three 

EXTs assigned to the GPCRs were consolidated and the resulting samples standardised 

to a reference sample. In GPCR activation EXT assays, all samples with an applied 

stimulus were standardised to the unstimulated control sample to calculate the fold- 

changes of receptor activation. 

 

 
 

Figure 20: Data processing workflow of GPCR activation EXT assays. 
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 GPCR activation profiles in U2OS cells 5.2.3

The first EXT-based GPCR assay was performed to assess the ligand-dependent 

activation of 20 GPCRs (Table 5, without HRH1) simultaneously in one experiment. All 

receptors were stimulated with the agonists serotonin (5-HT), dopamine (DA), 

epinephrine (Epi), vasopressin (AVP), and somatostatin (SST) separately in a 

concentration range of 100 pM to 100 µM. Additionally to the stimulation with the 

single compounds, a compound-mixture (Mix) of all five agonists was used. The 

experiment was carried out in human osteosarcoma cell line U2OS. For each GPCR 

three unique EXT reporters were assigned and each condition was done in two 

replicates. After stimulation for 6h, the EXT RNA from all samples was extracted and 

processed as previously described (Figure 19B). The sequencing raw data were 

normalised to total read numbers (Figure 21) and to external and internal calibrator 

EXTs (Figure 22). Fold changes of receptor activation are based on the average of 

normalised EXT signals in reference to unstimulated conditions. 

 

 
 

 Figure 21: Normalisation of sequencing raw data to total reads. 

(A) Total reads per sample of raw sequencing data. The red line marks the threshold of the 20% value of 
the highest total read number. Three samples with a total read value below the threshold were 
excluded from further analysis (samples are marked by red boxes). (B) Total reads per sample after 
normalisation. 
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Figure 22: Normalisation to calibrator EXTs. 

(A) Reads of external (eCal) and internal (iCal) calibrator EXTs after normalisation to total reads. 
Normalisation factor was calculated from the highest mean of samples. (B) Calibrator EXT reads after 
application of normalization factor. 

 
 

The activation profiles produced for each GPCR revealed a dose-dependent receptor 

activation induced by the corresponding agonist (Figure 23). The five serotonin 

receptors (HTR1A, HTR2A, HTR4, HTR5 and HTR7) were activated by serotonin up to 

2-5 folds at the higher concentrations. Likewise vasopressin receptors AVPR1A and 

AVPR2 were induced by vasopressin. The induction rates of the somatostatin receptors 

by somatostatin could be detected for SSTR1 up to 4-fold and for SSTR2 and SSTR3 up 

to 9-10 fold. For the dopamine and the adrenergic receptors, a “cross”-stimulation 

could be observed. Both receptor groups showed elevated signals induced by 

dopamine and epinephrine with maximal induction rates from 2-fold for DRD1, DRD3 

and ADRB3 up to 10- and 13-fold for ADRA2B and ADRA2C. The dopamine receptor 
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DRD2 showed also an activation of 3-5 folds at 10-100 µM serotonin concentrations. 

The stimulation conditions with the mixture of agonists showed dose-dependent 

activation signals for all GPCRs, except for HTR7 and ADRB3, which were similar in their 

intensities to the observed signals in the corresponding single agonist conditions. 

 

 

 
 

Figure 23: Profiles of GPCR activations in U2OS cells. 
Heatmap of multiplexed EXT-based measurement of GPCR activations. Plotted are fold changes of 
receptor activation in reference to unstimulated condition of 20 different GPCRs in U2OS cells. All GPCRs 
were treated with the single compounds serotonin, dopamine, epinephrine, vasopressin and 
somatostatin and a mixture (Mix) of the five compounds at different concentrations. To visualize lower 
effects the colour scale is limited to 10-fold changes. 

 
 
In summary, the results suggest that the used agonists, which are classical endogenous 

neurotransmitters and hormones, are specific in their activation to particular GPCR 

subgroups, with the exception of dopamine and epinephrine causing cross-talk 

activities on the two subgroups of dopaminergic and adrenergic receptors. 
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 GPCR activation profiles in PC12 cells 5.2.4

In order to test the assay performance in another cellular background, the activation 

profiles were monitored in the rat pheochromocytoma PC12 tetOFF cell line. 19 GPCRs 

were stimulated with serotonin (5-HT), dopamine (DA), epinephrine (Epi), vasopressin 

(AVP), and somatostatin (SST) separately and the compound-mix (Mix) of all five 

agonists for 6h (Figure 24). 

 

 

 

Figure 24: Profiles of GPCR activations in PC12 tetOFF cells. 

Heatmap of multiplexed GPCR activation EXT assay. Plotted are fold changes of receptor activation in 
reference to unstimulated condition of 20 different GPCRs in PC12 tetOFF cells. Treatment conditions at 
different concentrations were the single compounds serotonin, dopamine, epinephrine, vasopressin and 
somatostatin and a mixture (Mix) of the five compounds. To visualize lower effects the colour scale is 
limited to 15-fold changes. 

 

 

In contrast to the activation profiles observed in U2OS cells in PC12 cells not all GPCRs 

showed a dose-dependent activation stimulated with the corresponding endogenous 

agonist (Figure 24). Within the group of serotonin receptors HTR1A showed no 

response to serotonin and HTR5A and HTR7 only weak activation of 2-fold while for 

HTR2A an up to 90-fold increase in activity by serotonin could be observed. From the 

dopamine receptors for DRD1 dose-dependent receptor activation could be detected 
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whereas DRD2 showed no response to any stimulation and DRD4 and DRD5 only a 

2-fold activation at the highest concentration of 100 µM. As already in the previous 

experiment observed, the adrenergic receptors as well as the dopamine receptor 

DRD1 showed “cross”-stimulated responses to the two agonists dopamine and 

epinephrine. The highest activation was detected for the α-adrenergic receptor 

ADRA1A with 315-fold at 100 µM epinephrine. Altogether the assay performed in PC12 

cells showed more background signals of “unspecific” activities compared with the 

assay performance in U2OS cells. 

 

 
 

 Profiles of antipsychotic drug effects on GPCR activation 5.2.5

The next step was the application of the multiplexed GPCR EXT assay approach to 

measure the effects of GPCR targeting drugs on the receptor activation. 

Here, 19 different GPCRs were treated with the three FDA-approved drugs 

aripiprazole, paliperidone and propranolol, and the antagonist UNC0006 (Figure 25). 

Aripiprazole and paliperidone are commonly used atypical antipsychotic drugs. 

Paliperidone is the active metabolite of the older atypical antipsychotic risperidone 

and acts in the classical mode of action of antipsychotics as DRD2 and HTR2A 

antagonist. In addition, paliperidone has also binding affinities to α-adrenergic and the 

histamine receptor HRH1 (Corena-McLeod, 2015; Mauri et al., 2014). In contrast, 

aripiprazole is controversially described either as DRD2 partial agonist or functionally 

selective drug acting cell type dependent as DRD2 agonist, partial agonist or even as 

antagonist (Lawler et al., 1999; Shapiro et al., 2003). UNC0006 is a functionally 

selective DRD2 ligand and aripiprazole analogue generated by changing the cyclic 

amines of the aripiprazole scaffold. The compound was found to be a β-arrestin-biased 

DRD2 partial agonist, which did not induce Gi protein-dependent signalling, but 

pertained atypical antipsychotic drug-like activities in vivo (Allen et al., 2011). 

Propranolol is a non-selective beta blocker acting as antagonist on β-adrenergic 

receptors. It is mainly used in the treatment of cardiovascular diseases like high blood 

pressure. Further, it is also used in the prevention and treatment of migraine and 

anxiety (Baker, 2005). 
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Figure 25: Structure of GPCR drugs. 
Chemical 2D structures of: the antipsychotic drugs (A) aripiprazole and (C) paliperidone; (B) UNC0006, 
an analog of aripiprazole, differing in the left-hand side cyclic amines of the aripiprazole scaffold; (D) the 
beta blocker propranolol. 

 
 
 
For the 19 GPCRs, separate transfections were done each comprising the constructs 

encoding for one GPCR and three unique 10xUAS-EXT reporters. After transfection the 

cells were mixed and plated out for the different stimulation conditions. Within the 

experiment the GPCRs were stimulated for 6h under two different parameters. To 

monitor potential agonistic effects, GPCRs were treated with the particular drugs 

alone. To measure antagonistic effects GPCRs were treated with the specific drug 

together with the corresponding agonist. The agonists were applied after 1h pre-

incubation with the particular drugs based on the previous experiments within an 

agonist-mix of 1 µM serotonin, dopamine, epinephrine, histamine, vasopressin, and 

somatostatin. Each drug was applied in several concentrations from 100 pM to 1 µM, 

each in two replicates. Thus, for the two stimulation parameters the obtained signals 

either result from direct drug-induced receptor activation (Figure 26A), indicating the 

drug as agonist, or from drug-induced inhibition of agonist-mediated receptor 

activation (Figure 26B), specifying the drug as antagonist. Taken together, differences 

in the activation profiles of individual GPCRs could be detected for these drugs (Figure 

26). Effects of drug-mediated receptor activation and inhibition are highlighted in black 

squares in Figure 26. The calculated dose-response curves are shown in Figure 27. 
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Agonistic effects could be detected on the serotonin receptor HTR2A and the 

dopamine receptor DRD2 induced by aripiprazole and the analogue UNC0006. The 

effects on HT2A are dose-dependent by aripiprazole as well as by UNC0006 (Figure 

27A), but with lower maximal signals compared to the signal induced by the agonist-

mix. In contrast DRD2 showed only a dose-dependence for UNC0006 whereas at all 

concentrations of aripiprazole the activation level is as high as with the agonist-mix 

(Figure 27B). On the other hand both drugs showed dose-dependent receptor 

inhibition of the histamine receptor HRH1 (Figure 27C, D). For paliperidone and 

propranolol only antagonistic drug effects of receptor inhibition were detected. 

Paliperidone showed dose-dependent inhibition of receptor activity on multiple 

GPCRs, the serotonin receptor HTR2A (Figure 27E), the dopamine receptor DRD2 

(Figure 27F), all three α-adrenergic receptors ADRA1A, ADRA2B and ADRA2C (Figure 

27G-I) and the histamine receptor HRH1 (Figure 27J). The treatment with propranolol 

showed the described beta blocker specific receptor inhibition on the β-adrenergic 

receptor ADRB2 (Figure 27L) and additionally an inhibition of the dopamine receptor 

DRD2 (Figure 27K). Except of the inhibition of the dopamine receptor DRD2 by 

propranolol for all observed effects binding affinities are described in the literature 

(Corena-McLeod, 2015; Lawler et al., 1999; Mauri et al., 2014; Shapiro et al., 2003). 
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Figure 26: Profiles of drug effects on GPCR activation and inhibition. 
Heatmap of drug effects on receptor activation measured in the multiplexed GPCR EXT assay. Plotted 
are fold changes of receptor activation in reference to unstimulated condition of 19 different GPCRs in 
U2OS cells. (A) Cells were treated with paliperidone, aripiprazole, UNC0006 and propranolol at the 
indicated concentrations. (B) Cells were treated with drugs as indicated together with agonist-mix 
containing the agonist serotonin, dopamine, epinephrine, histamine, vasopressin and somatostatin each 
at 1 µM. Agonist-mix was added 1h after drugs. Observed dose-dependent receptor activations (A) and 
inhibitions (B) are highlighted by black squares. 
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Figure 27: Analysis of drug effects on receptor activation in multiplexed GPCR EXT assay. 
Bargraphs and dose-response curves of drug induced GPCR activation and inhibition in U2OS cells. Cells 
were treated with the particular drug alone (A and B) or with drug in the presence of an agonist-mix 
consisting of 1 µM serotonin, dopamine, epinephrine, histamine, vasopressin and somatostatin (C-I). 
Data are given either as fold changes or percentage of activity of receptor activation of the mean of 2 
replicates and 3 EXTs each; error bars represent standard error of the mean. 
 

 
 
Next, to validate the effects caused by aripiprazole, paliperidone and propranolol and 

detected in the EXT-based approach, single luciferase-based dose response assays 

were performed. For aripiprazole, a dose-dependent activation of HTR2A and DRD2 

with EC50 values of 125 nM and 90 pM as well as inhibition of HRH1 with an IC50 of 

180 pM could be shown (Figure 28A-D). The dopamine receptor DRD2 showed a high 

affinity to aripiprazole reflected by the low EC50 of 90 pM, which may explain why no 

dose-dependent but rather a constant activation was detected in the EXT approach. 

The concentration range used in the EXT approach was outside the linear range of the 

dose response for the receptor ligand interaction. For paliperidone, all antagonistic 

effects observed in the EXT approach were also monitored in luciferase assays. 

Receptor inhibition was shown for HTR2A with an IC50 of 4 nM, DRD2 with an IC50 of 

188 nM, HRH1 with an IC50 of 90 pM, as well as for the adrenergic receptors with IC50 

values of 773 nM for ADRA2B, and 177 nM for ADRA2C (Figure 28D-H). Against the 

EXT-based data an inhibition of the dopamine receptor DRD2 by propranolol could not 

be validated in luciferase assays. The dose-dependent inhibition of the β-adrenergic 

receptor ADRB2 by propranolol resulted in an IC50 of 4.98 nM. 
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Figure 28: Luciferase-based validation of drug effects from GPCR EXT assay. 

Dose-dependent GPCR activation and inhibition measured in single Luciferase assays in U2OS cells. Cells 
were treated for 6h with the indicated drug (GPCR activation, A and B) or with drug and corresponding 
agonist (GPCR inhibition, C-I). Dose-response curves and EC50 and IC50 values were calculated with R. 
Luciferase data are given as means ± SEM (n=6). 
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5.3 EXT-based measurement of GPCR downstream signalling 

 Principle of multiplexed GPCR signalling EXT assay 5.3.1

GPCR-mediated signalling comprises the induction of multiple transduction pathways 

of G protein-dependent and independent signalling cascades. Therefore, global 

downstream signalling responses initiated by GPCRs should be captured to obtain a 

comprehensive profiling map of GPCR activities. A method to monitor cellular events 

are cis-regulatory assays. Here, a library of sensor-EXT reporters containing different 

transcription factor binding sites (cis-elements) coupled to EXTs was applied to detect 

multiple GPCR mediated downstream events at the level of activated transcription 

factors (Figure 29A). 

 

 
 

Figure 29: Schematic representation of EXT-based GPCR signalling assay. 
(A) Graphical representation of EXT-based monitoring of GPCR downstream signalling using cis-
regulatory assays. Multiple sensor-EXT reporters encoding different transcription factor binding sites are 
simultaneously expressed to measure several signalling events at the level of activated transcription 
factors. (B) Modular structure of the two types of sensor reporter constructs for GPCR signalling assays 
carrying an EXT in front of the firefly luciferase gene (FFLuc). Cis-EXT constructs are under the control of 
a clustered cis-element followed by a minimal adenovirus major late promoter (MLP) whereas 
promoter-EXT constructs are under the control of an endogenous promoter. sEGFP stands for first 
200 bp of enhanced green fluorescence protein and is used as “dummy” for three fragment multisite 
Gateway recombination. attB1, attB2, attB3 and attB4 are recombination sites. 
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Two types of EXT reporters were used, cis-EXT and promoter-EXT reporters. Cis-EXT 

constructs encode clustered single cis-elements and a minimal promoter, whereas 

promoter-EXT constructs encode 1-1.5 kb long regions located 5’ of endogenous 

promoters covering numerous regulatory elements (Figure 29B). Each sensor 

(cis-element and promoter) was assigned to 2-3 unique EXTs to generate a library of 

264 sensor-EXT reporters (Table 1), which were used in multiplexed GPCR signalling 

EXT assays. The library also includes reporter constructs that contain neither a 

cis-element nor a promoter and serve as calibrators during the normalisation process 

of sequencing data. A list of sensors is shown in Table 4 in the Methods section. 

 

 

 Profiles of GPCR-mediated downstream signalling 5.3.2

The EXT-based GPCR signalling approach was applied to measure cellular signalling 

events induced by GPCRs in response to their corresponding agonists in comparison 

with signalling profiles derived from G proteins. For this purpose, GPCRs were selected 

that couple to the different types of G proteins. All used GPCRs are listed in Table 7 

together with the corresponding G proteins and applied agonists. To reduce potential 

interference of receptor fusion tags as used for split TEV assays with cellular signalling, 

constructs encoding GPCRs fused to a small V5-tag were used. To monitor G protein-

induced signalling events, constructs encoding constitutively active variants of G 

proteins Gs, Gi, Gq and G12 were used. 

 

Table 7: Overview of GPCRs and corresponding compounds used in GPCR signalling assay. 
*) Information of G protein coupling is based on the IUPHAR database (Southan et al., 2015). 
 

Receptor subgroup GPCR Full fusion protein G protein * Agonist 

Serotonin receptors HTR2A HOOK-HTR2A-V5 Gq Serotonin (5-HT) 

HTR4 HTR4-V5 Gs Serotonin (5-HT) 

Dopamine receptor DRD1 DRD1-V5 Gs Dopamine (DA) 

Adrenergic receptors ADRA2C ADRA2C-V5 Gi Epinephrine (Epi) 

ADRB2 ADRB2-V5 Gs Epinephrine (Epi) 

Histamine receptor HRH1 HRH1-V5 Gq Histamine (His) 

Somatostatin receptor SSTR1 SSTR1-V5 Gi Somatostatin (SST) 
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Signalling events were measured in PC12 tetOFF cells using the sensor EXT library 

under the conditions of constitutively active G proteins, unstimulated and stimulated 

GPCRs, and ligand administration in absence of receptors (Figure 30A). For each 

condition, separate on-plate transfections of the sensor-EXT library alone, with GPCRs 

or G proteins were performed. Cells expressing sensor library with and without GPCRs 

were treated according to the experimental workflow of agonist assays and stimulated 

for 6h with 1 µM of the corresponding agonist. Cell samples expressing active 

G proteins were harvested 24h after transfection. The RNA from all samples was 

isolated and processed as described for previous experiments (Figure 20B). The raw 

sequencing data was processed according to previous experiments by normalisation, 

consolidation and standardisation. To balance the clarity of results and the stringency 

of the experiment not all sensors were included in the final signal profiles based on 

analyses of the variances of sensor performance (Figure 30B). 

 

 

 

 

Figure 30: GPCR signalling assay for monitoring GPCR and G protein-induced signalling. 

(A) Experimental design of the three different condition parts within the GPCR signalling assay. To 
monitor G protein-induced signalling constitutive active alpha subunits of G proteins were expressed 
(left). To monitor stimulation-induced GPCR signalling GPCRs were expressed as V5 fusion constructs 
and stimulated with corresponding ligands (middle). As control for endogenous signalling ligands were 
applied in absence of GPCRs (right). (B) Workflow of data processing after next generation sequencing of 
GPCR signalling EXT assays. 
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Taken together, signalling profiles with a high similarity as well as with clear 

differences were obtained affecting a broad range of pathway sensors (Figure 32). 

Baseline activities of endogenous GPCR signalling were low in PC12 cells, as seen in 

control experimental conditions of ligand exposure in absence of exogenous GPCRs. 

Using this assay, correlations between signalling profiles were determined. Here, high 

similarities between particular GPCR induced profiles were observed (Figure 33) as 

well as relationships of individual GPCR induced profiles to particular G protein 

mediated profiles (Figure 34). The observations are thereby in accordance with the 

described preferential G protein coupling (Table 7). HTR2A and HRH1 preferentially 

couple to Gq. Both receptors showed strong, high similar signal profiles and form a 

cluster together with the Gq profile separated from all other samples (Figure 33 and 

Figure 34). The profiles of DRD1 and ADRB2 were closely related to each other at the 

first level of clustering and at the second level to HTR4A. All three GPCRs preferentially 

couple to Gs. However, the Gs-induced profile was distantly clustered. The activation of 

the Gi-coupled SSTR2 exhibits a similar signalling pattern as the G protein Gi (Figure 

34). In contrast ADRA2C, which is also described to couple to Gi showed a signal profile 

that is different from all other profiles, with the majority of pathway sensors being 

downregulated. 

The highest regulatory effects for all GPCRs and G proteins were observed for the CRE, 

UPRE and SARE cis-elements and the Il8 and NR4A1 promoters. Here, the reporters 

CRE and UPRE and Il8 and NR4A1 display a highly comparable response. CRE is one of 

the most prominent cis-elements commonly used in reporter gene assays for 

monitoring GPCR activities. Based on the literature for general G protein signalling and 

preferential coupling to GPCRs, the obtained results for the CRE-reporter can be 

compared with other predictions. The EXT-based results for G protein-induced CRE 

reporter activities are compared with the activation patterns derived from an 

independent luciferase assay (Figure 31). By regulating the intracellular cAMP level, Gs 

protein activity caused an increase in reporter activity, whereas the signals for Gi were 

downregulated (Figure 31). Elevated signals were also detected for the Gs-coupled 

GPCRs HTR4, DRD1, and ADRB2, as well as a downregulation for the Gi-associated 

SSTR2 and ADRA2C (Figure 32). CRE cis-element activity is driven by the transcription 

factor CREB, which in turn is activated by the cAMP pathway. In addition, CREB is 
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described to be activated by cellular calcium (Grewal et al., 2000; Johnson et al., 1997). 

As expected, the Gq protein as well as the Gq coupled GPCRs HTR2A and HRH1 showed 

increased activation signals (Figure 32). The SARE reporter showed high activation 

signals in the Gq, G12, HTR2A and HRH1 samples. The G12 G protein is not described to 

be coupled to one of the used GPCRs. The highest activation signals induced by G12 

could be observed for SARE, SRF and JUN promoters (Figure 32). The obtained 

signalling profiles of the G proteins were to some extent similar to the corresponding 

GPCRs; however, differences were observed. For example, Myc-E-box responses were, 

increased by Gq signalling, but decreased by HTR2A and HRH1 actions. 

 
 
 
 
 
 

 
 

 

Figure 31: Activity signals of G proteins on CRE reporter by EXT vs. luciferase measurement. 
Comparison of CRE-reporter activity by active G proteins measured in the EXT-based signalling assay (A) 
and in an independent luciferase assay (B). Plotted are the fold changes of reporter activity by 
constitutively expressed G proteins. Figure (A) shows the extracted data from the multiplexed assay of 
the pooled EXT signals of two CRE-reporters encoding unique EXTs. Figure (B) shows the luciferase 
signals of one CRE-reporter construct. In both assays the G protein and reporter constructs were 
transfected into PC12 cells and expressed for 24h. EXT and luciferase measurements display similar 
activity patterns comparing G proteins. 
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Figure 32: Signal profiles of G proteins and GPCRs using an EXT sensor library. 
PC12 tetOFF cells were transfected on-plate with assay components comprising constitutive active G 
proteins and different GPCRs. Receptors were stimulated with 1 µM of corrsponding agonists for 6h. As 
control cells were exposed to ligands in absence of receptors. For each assay condition the log fold-
changes of the different EXT reporters in reference to basal reporter activities and unstimulated GPCRs 
respectively are plotted. 
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Figure 33: Clustering of GPCR induced signalling profiles and control conditions. 
Selection of data from the multiplexed GPCR signalling assay for the comparison of GPCR induced 
downstream profiles by receptor stimulation and the exposure in absence of exogenous receptors. The 
hierarchical clustering revealed close relationships between groups of GPCRs. 
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Figure 34: Clustering of G protein and GPCR induced signalling profiles. 
Comparison of selected signal profiles of active G proteins and ligand-activated GPCRs from the 
multiplexed GPCR signalling assay. The cluster analysis showed relations between G proteins and 
preferentially associated GPCRs. 
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6. Discussion 

6.1 Multiplexing of GPCR activation assays 

Several methods are available to assess ligand actions on GPCRs. The most classical 

approach to identify ligand receptor interactions are cell-free binding assays. These 

assays have the intrinsic disadvantage that compounds are frequently radioactively 

labelled and that binding affinity data does not provide any information on the 

functional properties of ligands. Thus, it is neither clear whether ligands act as agonist 

or antagonist, nor which efficacies are exerted under physiological conditions (Zhang 

and Xie, 2012). These shortcomings are overcome in cell-based functional assays. 

These approaches address ligand-dependent receptor activation and signalling within a 

cellular context. Most of these approaches rely on receptor-mediated activation of G 

proteins, either by direct measuring of second messenger levels (e.g. cAMP and 

calcium) (Emkey and Rankl, 2009; Gilissen et al.; Williams, 2004) or by reporter gene 

assays that respond to second messenger activities (Cheng et al., 2010). Monitoring 

multiple GPCR-ligand interactions within one experimental setup was, however, not 

feasible as of today different G proteins couple to various types of GPCRs. 

A sensitive and robust method to monitor receptor activation of GPCRs uses the 

dynamic recruitment of β-arrestin, which is a measurement independent of G protein 

activity. Recently, a large collection of cell-based assays based on β-arrestin 

recruitment was introduced to interrogate the druggable GPCRome in a parallel 

manner (Kroeze et al., 2015). The assay uses a modified Tango assay (Barnea et al., 

2008) for screening compound libraries against a multiplicity of orphan and non-

orphan GPCRs. However, the approach is based on the parallel measurement of single 

one compound – one target assays. Therefore, adding additional GPCRs and/or 

compounds to screening conditions will lead to extensive consumption of materials at 

increasing costs. 

In this thesis, a multiplexed GPCR activity assay was developed to profile many GPCR 

activities simultaneously. Within such an assay, multiple GPCRs can be screened at 

various conditions, which, for examples, includes the addition of several ligands. The 

multiplexed assay uses both EXT molecular barcode reporter and split TEV 
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technologies to optimise data point acquisition within one assay. GPCR activity profiles 

induced by both natural agonists and therapeutic drugs were determined in proof-of-

principle experiments. 

 

 

 Selection of GPCRs 6.1.1

One application of the multiplexed activation assay should be the assessment of 

polypharmacological activation profiles of antipsychotic drugs. Therefore, GPCRs were 

selected that are associated with the action of antipsychotic drugs. Most of the 

clinically used antipsychotics show high binding affinities to the subgroups of 

serotonin, dopamine, adrenergic, and histamine receptors (Roth et al., 2004). To 

obtain a manageable number of GPCRs, five representative GPCRs from each group 

and the histamine receptor HRH1 were selected. All GPCRs of the “assay group” are 

monoamine-binding GPCRs- For a control group, GPCRs were selected that bind to 

unrelated ligands, such as the peptide-binding vasopressin and somatostatin 

receptors. Importantly, all GPCRs chosen showed a robust performance in split TEV 

assays. 

 

 

 Time limitations of GPCR split TEV assays 6.1.2

A critical aspect when setting-up an assay monitoring multiple receptor activities 

simultaneously is the determination of the duration of the stimulation phase and 

thereby the time point of measurement. Therefore, the kinetic behaviour of selected 

GPCRs was analysed in split TEV assays to get an estimation for the best stimulation 

time. For all GPCRs. similar kinetics of increasing activity signals, reaching a maximum, 

followed by decreasing signals were observed, thus displaying the typical kinetic of 

receptor activation and desensitisation in this assay system. Notably, activation 

profiles indicated that GPCR/β-arrestin recruitment- assays reach their peak after 4-8h. 

All GPCRs tested displayed comparable activation kinetics, with the exception of the 

dopamine receptor DRD1 showing an advanced kinetic. Based on these results, the 

stimulation phase for all further GPCR split TEV assays was set to 6h, covering all 
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receptor activation phases including early and delayed ones. However, it should be 

noted that shifted peaks of activation have to be considered when assaying multiple 

receptors at the same time point as measurable profiles may lie beyond the 

measurement point. 

 

 

 Split TEV assays as tool for monitoring GPCR activations 6.1.3

For efficient combination of the EXTassay and split TEV technique for multiplexed 

assays, first the applicability of split TEV assays under the developed experimental 

conditions/workflow was tested for all GPCRs in single luciferase assays. For each 

GPCR, a significant stimulation-dependent activation was successfully detected in at 

least one cell line. 

Further, it was shown that the GPCR split TEV assay is functional to monitor not only 

the agonist-induced activation bur also the antagonist-induced inhibition of receptor 

activity. In addition, the split TEV assay proved to be sensitive to the applied 

stimulation concentration resulting in dose-response analyses. The obtained EC50 and 

IC50 values are comparable with reported results for binding affinities of these receptor 

ligand combinations (Southan et al., 2015). 

Considering the receptor assay performance, differences between cell lines were 

observed. For example, all serotonin receptors showed only tendencies but no distinct 

receptor activation after stimulation in CHO cells, but performed to some extent in 

PC12 cells, and very well in U2OS cells. In contrast, dopamine receptors performed 

well in U2OS and CHO cells, but not in PC12 cells, a finding also previously reported 

(Djannatian et al., 2011). A possible explanation is that PC12 cells are described to 

synthesize dopamine (Greene and Tischler, 1976) and that this endogenous dopamine 

is sufficient to activate the receptors. For instance, dopamine receptors would get 

permanently activated and the exogenous applied dopamine cannot further increase 

the receptor activation. Another explanation may be that different expression profiles 

of the exogenous assay components exist, especially for GPCR assay constructs. The 

degree of expression and cell surface localisation may differ among cell lines. U2OS 

cells proved to be the most suitable cell line for multiplexed GPCR activation assays, as 

nearly all selected GCPRs showed significant activations. The observed differences in 
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the assay performance confirm the importance of the cell type used for functional 

GPCR assays. The cellular background regarding the synthesis of endogenous ligands 

but also localisation and abundance of proteins within the GPCR regulatory cycle, such 

as G proteins and GRKs may influence assay performance. Therefore, when 

establishing GPCR split TEV assays to be used in multiplexed assays, it is key to 

consider cell type-dependent differences related to sensitivity, robustness, and 

kinetics. 

 

 

 GPCR activity profiles monitored in multiplexed split TEV assays 6.1.4

Split TEV assays have the advantage of providing a highly flexible choice of readout. In 

addition, EXT barcode reporters are a flexible and scalable readout system for an 

integrated analysis of multiple cellular events making EXTs an excellent as readout tool 

for multiplexed GPCR split TEV assays to assess a matrix of GPCR compound 

interactions. Firstly, experiments were done to profile actions of natural agonists to 

the selection of different GPCR subgroups. The profiles obtained show activation 

patterns that are specific for each agonist. The monoamine neurotransmitter serotonin 

as well as the peptide hormones vasopressin and somatostatin are highly specific as 

they only activate their corresponding receptor group. In contrast, the catecholamines 

dopamine and epinephrine are able to activate both dopamine and adrenergic 

receptors, a finding most likely owing to the highly similar structure of both ligands. 

Dopamine, epinephrine and norepinephrine belong to the same synthesis pathway, 

while dopamine is the precursor of epinephrine, which is further converted to 

norepinephrine. The observation of cross-activation of adrenergic receptors by 

dopamine and vice-versa is supported by findings in the literature (Lanau et al., 1997; 

Rey et al., 2001; Zhang et al., 2004). 

The general activation profiles showing the ligand specificity were consistent between 

the human U2OS and rat PC12 cell lines. However, in PC12 cells, some GPCRs, such as 

the dopamine receptors DRD2-5 and the serotonin receptors HTR1A and HTR7, 

showed no marked responses to any of the stimuli. This observation is comparable to 

the luciferase-based activation data, where for these GPCRs also no stimulation-
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dependent activation in PC12 cells could be detected, supporting the notion that 

cellular background has a fundamental influence on the assay performance. 

 

 

 Profiling the action of drugs on receptor activation 6.1.5

In drug discovery, it is important to assess the functional properties of a given drug, as 

a drug may acts as agonist, partial agonist, or antagonist. GPCR assays monitoring 

antagonistic effects implicate a co-treatment of antagonist and a GPCR corresponding 

agonist. In multiplexed GPCR activity assays, numerous GPCRs activated by different 

agonists are implemented within one mixed cell population. Therefore, the activation 

of individual GPCRs by a compound mix was applied that contained all agonists for the 

GPCRs tested. The application of the agonist mix revealed the same activation pattern 

as the applied single compounds. The overall activation strength of the individual 

receptors was comparable between mixed and single agonists. Therefore, antagonistic 

effects can be monitored in multiplexed assays using a co-treatment paradigm based 

on agonist mixtures that keep stimulation conditions and sample numbers down when 

compared to applying the associated agonists separately. 

However, the functional property of a particular drug is not always known. For 

example, aripiprazole the drug is reported to act functionally selective as agonist and 

antagonist depending on both the receptor and cell type (Shapiro et al., 2003). For a 

proof-of-principle experiment to monitor drug effects, substances were chosen that 

have known receptor affinities and functional properties. To detect antagonistic but 

also agonistic drug effects, the multiplexed activation assay was performed under the 

two parameters of drug treatment alone and in the presence of agonists. 

The atypical antipsychotic drug aripiprazole and its analogue UNC006 were monitored 

in the assay as DRD2 and HTR2A agonists and HRH1 antagonist, and these findings 

were validated in single luciferase assays. The activation of HTR2A is contrary to the 

literature where an antagonism for this receptor is usually described. Conversely, a 

weak partial agonistic effect was reported for aripiprazole in GF62 cells (Shapiro et al., 

2003). It may be possible that aripiprazole acts functionally selective not only on DRD2 

(Lawler et al., 1999) but also on HTR2A in a cell type- dependent manner. For 

aripiprazole, an additionally partial agonism on the serotonin receptor HTR1A is 
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reported, which was not, however, detected in this multiplexed activation assay. An 

explanation can be that a partial agonism implies the activation of a receptor with only 

partial efficacy in contrast to a full agonist and that this partial efficacy was too low to 

be detectable in the split TEV assay, indicating a potential limited sensitivity of the 

assay. Taken together, it cannot be concluded if monitored agonistic effects are based 

on a partial or full agonist. For this purpose, the ligand has to be monitored in direct 

comparison to a full agonist (endogenous agonist) to compare the efficacies. 

In contrast to aripiprazole, paliperidone is a more classical atypical antipsychotic drug 

that acts only as full antagonist. The monitored inhibitory effects on HTR2A, DRD2, the 

α-adrenergic receptors and HRH1 are consistent with the literature for all GPCRs 

included in the assay (Mauri et al., 2014). 

Propranolol is a beta blocker and specifically acts on β-adrenergic receptors. A strong 

effect on ADRB2 by propranolol could be assessed and validated by further luciferase 

measurements. Furthermore, the EXT assay showed an inhibitory effect on the 

dopamine receptor DRD2, which was invalidated by single luciferase assays. 

EC50 and IC50 values were calculated using dose-response assays run with EXT and 

luciferase readouts. Notably, EXT-derived values partially differ from luciferase-based 

measurements for the same GPCR ligand combination. Here, it has to be mentioned 

that the EC50/IC50 values obtained from the multiplexed EXT assay are at most semi-

quantitative due to the low number of different concentrations and the wide range 

between the individual dilutions. In contrast, the luciferase-based dose-response 

assays comprise a higher range of dilutions with higher resolution. Another aspect that 

might contribute to the analysis of EXT-based dose response curves is the method of 

read calibration during data processing. An improved method to calibrate sequencing 

data might enhance the robustness between the different samples/conditions. Taken 

together, the obtained EC50/IC50 values are approximate values within a picomolar to 

nanomolar range comparable with published affinity (Ki) values (Southan et al., 2015). 

In summary, GPCR activity assays were applied to monitor dose-dependent activity 

profiles of drugs and known effects caused by these drugs. In this setup, both agonistic 

as well as antagonistic effects by the same drug were assessed in parallel. 
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6.2 Profiling of GPCR downstream signalling 

The multiplexed signalling assay was designed to address the complex cellular 

signalling mediated by active GPCRs. In a proof-of-principal experiment, signal profiles 

were obtained in response to GPCR activation and by expression of constitutively 

active G protein variants. Ligand-activated GPCRs revealed signal patterns that are 

highly similar to those caused by associated G protein variants only, supporting the 

preferential G protein coupling of GPCRs, which is consistent with published data. The 

differences observed between G protein and GPCR-derived profiles indicate the 

participation of other effector proteins, such as β-arrestin involved in GPCR-mediated 

signalling other than the classical G proteins. 

The most prominent activity for GPCR signalling was observed for CRE cis-reporter-

dependent signals, which is in concordance with the known regulation of second 

messengers by the different types of G proteins. CRE was activated by Gs and coupled 

GPCRs as well as by Gq corresponding receptors, while Gi coupled GPCRs showed 

downregulated signals. The observations classify CRE not only as classical sensor for 

GPCR induced cAMP signalling but also for calcium signalling (Grewal et al., 2000). 

Further, high signals were observed for the UPRE cis-element, and the IL8 and NR4A1 

promoters. The unfolded protein response element (UPRE) is involved in the response 

to stress in the endoplasmic reticulum (ER). IL8 is part of the cytokine signalling 

response and is activated by the transcription factors AP-1 and NFκB (Hoffmann et al., 

2002). NR4A1 is an immediate-early gene, or stress response gene, that is activated by 

a variety of stimuli, such as serum or neurotransmitters (Hazel et al., 1988; Maxwell 

and Muscat, 2006). Notably, both promoters contain a CREB binding site (Bezzerri et 

al., 2011; Inaoka et al., 2008) suggesting that activation patterns similar to CRE 

reporter-dependent signals may be induced by G proteins. To analyse the regulation of 

particular sensors in more detail, further experiments for the validation of the 

activation mechanisms of the sensors are required. For example, overexpression of 

pathway specific kinases could be used to classify signalling activities and 

performances of selected sensors, and provide guidelines to establish molecular 

phenotypes of drugs and compounds of interest. 
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6.3 Concepts and future aspects of GPCR profiling assays 

The GPCR activity assay enables the rapid and easy detection of receptor activities for 

multiple GPCRs in response to several ligands within one experiment compared to 

conventional single assays wherein each receptor-ligand combination has to be 

measured separately. The modular structure and robust performance using transient 

transfections make the assay highly flexible and scalable in terms of combinations of 

receptors and ligands. Applying this flexibility, stimulation-dependent interactions of 

receptors with other adapter proteins could be included. For example, GPCR-adapter 

interaction assays other than β-arrestin2 might be useful for further screening 

questions addressed. The application of the assay by transient transfections is time 

and cost effective as well. However, stable cell lines expressing the adapter protein 

and/or reporter constructs might enhance the robustness and sensitivity of the assay, 

especially for weak receptor activations caused by partial agonists. 

Receptor activation profiles are generated that could be useful in drug discovery to 

find novel and unexpected targets and to understand drug actions related to 

therapeutic and adverse effects (Allen and Roth, 2011). An in vitro pharmacological 

profiling of compound actions on a panel of selected targets during early stages of 

drug discovery could contribute to reduced attrition rates at late and more expensive 

clinical stages of the process due to early observed off-target effects (Bowes et al., 

2012; Papoian et al., 2015). 

 

The GPCR signalling assay enables a comprehensive detection of multiple ligand 

mediated GPCR signalling events within one analysis. Signal profiles of GPCRs, 

activated by natural agonists could be successfully monitored. As a next step, profiling 

of drug-mediated GPCR signalling might be applied to get insight into the action of 

drugs on cellular signalling. Results of drug-induced receptor activations obtained from 

the GPCR activity assay could be further analysed regarding the cellular downstream 

effects. Furthermore, the assay could be applied in the analysis of ligands that act 

functionally selective. The assay might be implemented in the research of functional 

selective drugs with enhanced therapeutic and reduced adverse effects (Kenakin and 

Christopoulos, 2013; Whalen et al., 2011). Specific G protein-dependent and 
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independent signalling pathways could be monitored, for example, by silencing the 

expression of G proteins or β-arrestins using shRNAs or CRISPR/Cas9 technologies. 

For monitoring dynamic changes in pathway signalling and provide dynamic profiles, 

compound actions could be determined at different time points. 

The assay is applicable by transient transfections, making it flexible in handling. 

However, transient transfections are not suitable for all cell types. For monitoring 

drug-induced GPCR signalling, more specific cell types should be used for profiling 

effects of antipsychotic drugs. These cell types, are however, often hard to transfect, 

such as primary neuronal cells. The production of viruses from the sensor library will 

be a suitable method to circumvent these problems and will make it feasible to target 

these cell types (i.e. Adeno-associated viruses for primary neurons). Furthermore, an 

adaptation to microtiter plate formats (96- or 384-well) would make the approach 

suitable for high throughput analyses. 

 

In summary, the profiling system presented comprising the two concepts of 

multiplexed assays, constitute a comprehensive approach for an extensive analysis of 

GPCR activities and downstream signalling. The approach offers a screening application 

in drug discovery and development for profiling compound actions in a comprehensive 

and time and cost effective way. More information about drugs developed might 

uncover off-target and off-pathway effects, lower expensive attrition rates or provide a 

better understanding of complex on-target and pathway effects towards complex 

diseases. 
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Abbreviations 

5-HT  5-hydroxytryptamine (serotonin) 

AC  Adenylate cyclase 

Amp  Ampicillin 

ADP  Adenosine diphosphate 

ATCC  American Type Culture Collection 

ATP   Adenosine triphosphate 

AVP  Arginine vasopressin 

BSA   Bovine serum albumin 

cAMP  3’,5’-cyclic adenosine monophosphate 

CNS  Central nervous system 

Cm  Chloramphenicol 

CMV  Cytomegalus virus 

CRE  cAMP response element 

DA  Dopamine  

DAG   Diacylglycerin  

DMEM  Dulbeccos modified eagle medium 

DMSO   Dimethylsulfoxide 

DNA   Deoxyribonucleic acid 

DNase   Deoxyribonuclease 

dNTP   Deoxyribonucleotide 

DTT   1,4-dithiothreitol 

EC50   Half maximal effective concentration 

E.coli   Escherichia coli 

EDTA   Ethylenediamine tetraacetic acid 

EGFP  Enhanced green fluorescent protein 

e.g. For example 

Epi  Epinephrine 

ERK extracellular signal-regulated kinase 

et al.  And others 

EtOH   Ethanol 
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EXT  Expressed oligonucleotide tag 

f.c.   Final concentration 

FBS   Fetal bovine serum 

FDA  U.S. Food and Drug Administration 

Gal4   Yeast DNA binding domain 

GDP  Guanosine diphosphate 

Genta  Gentamycin 

GFP  Green fluorescent protein 

GPCR  G-protein coupled receptor 

GRK  G protein-coupled receptor kinase 

GTP  Guanosine triphosphate 

GV  Gal4/VP16 transcription factor 

HA  Human influenza hemagglutinin 

His  Histamine 

HS   Horse serum 

IC50   Half maximal inhibitory concentration 

IP3  Inositol-1,4,5-trisphosphate   

Kan  Kanamycin 

LB   Luria Bertani 

MAPK  Mitogen-activated protein kinase 

MLP  Adenovirus major late promoter 

mRNA  Messenger RNA 

n  Number 

NaOH  Sodium hydroxide 

NCBI   National Center for Biotechnology Information 

NFAT  Nuclear factor of activated T-cells 

NFκB  Nuclear factor-κB 

ON  Over night 

ORF  Open reading frame 

PAGE  Polyacrylamide gel electrophoresis 

PBS  Phosphate buffered saline 

PCR  Polymerase chain reaction 
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pENTR  Entry vector after BP recombination 

pEXPR  Expressions vector after LR recombination 

PGM  Personal Genome Machine 

PI3K   Phosphoinositid-3-kinase 

PIP2  Phosphatidylinositol-4,5-bisphosphate 

PKA  Proteinkinase A 

PKC  Proteinkinase C 

PLL  Poly-L-Lysine 

PMA   Phorbol 12-myristate 13-acetate 

PNS  Peripheral nervous system 

RLU  Relative luciferase units 

RNA  Ribonucleic acid 

RNase  Ribonuclease 

RT  Room temperature 

SD  Standard deviation 

SEM  Standard error of the mean 

SST  Somatostatin 

SV40  Simian virus 40 

TAE  Tris/acetate/EDTA 

Taq  Thermus aquaticus 

TE  Tris/EDTA 

tet  Tetracycline 

TEV  Tobacco etch virus 

TK   Thymidine kinase 

TRIS  tris(hydroxymethyl)aminomethane  

UAS  Upstream activating sequence 

UV  Ultraviolet 

Zeo  Zeocin 
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Units of measurement 

b  Base 

bp   Base pair 

°C   Degree Celsius 

F  Farad, electrical capacitance 

g   Gram 

G  Gauge, unit of the diameter of a hollow needle 

h  Hour 

kD   Kilo Dalton 

l   Litre 

M  Molar 

Mio  Million 

min  Minute 

OD  Optical density 

ohm  Unit of electrical resistance 

pH  Negative decimal logarithm of the hydrogen ion activity 

rpm  Rotation per minute 

sec  Second 

U  Units of enzymatic activity 

V  Volt 

vol  Volume 

 

Power prefixes 

G  Giga (109) 

M  Mega (106) 

k  Kilo (103) 

c  Centi (10-1) 

m  Milli (10-3) 

  Micro (10-6) 

n  Nano (10-9) 

p  Pico (10-12) 

f  Femto (10-15) 
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DNA/RNA bases 

A  Adenine 

C  Cytidine 

G  Guanine 

T  Thymine 

U  Uracil 

 

GPCRs 

HTR1A  Serotonin receptor 1A 

HTR2A  Serotonin receptor 2A 

HTR4  Serotonin receptor 4 

HTR5A  Serotonin receptor 5A 

HTR6  Serotonin receptor 6 

HTR7  Serotonin receptor 7 

DRD1  Dopamine receptor 1 

DRD2  Dopamine receptor 2 

DRD3  Dopamine receptor 3 

DRD4  Dopamine receptor 4 

DRD5  Dopamine receptor 5 

ADRA1A α-adrenergic receptor 1A 

ADRA2B α-adrenergic receptor 2B 

ADRA2C α-adrenergic receptor 2C 

ADRB2  β-adrenergic receptor 2 

ADRB3  β-adrenergic receptor 3 

HRH1  Histamine receptor 1 

AVPR1A Arginine vasopressin receptor 1A 

AVPR2  Arginine vasopressin receptor 2 

SSTR1  Somatostatin receptor 1 

SSTR2  Somatostatin receptor 2 

SSTR3  Somatostatin receptor 3 
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