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1 INTRODUCTION

1 Introduction

This introduction will provide the reader with sufficient information regarding the topic of
functional translational readthrough (FTR) so as to allow the reader an understanding of the
findings of this study. Translation and termination are explained, followed by examples of
translational readthrough (TR) in lower organisms, which might suggest a first hint that the
phenomenon appears in abundance in different organisms. Exhaustive systems biology ap-
proaches that show surprisingly little redundancy in their results allowed systematic analysis
of TR in recent years. One of these systems biology approaches was designed and applied by
our group. These methods led to the detection and verification of the first FTR genes found
in Homo sapiens. These genes and their target organelle in the cell are elucidated. The likely

functions of the FTR genes in their target organelle - the peroxisome - are discussed.

1.1 Translation and termination

Information, which is stored in our genome in form of DNA, is processed and copied to mes-
senger RNA (mRNA). The mRNA translocates from the nucleus to the cell’s cytosol where it
is translated into enzymes or structural proteins. These function as the biological machinery,
infrastructure or skeleton of the cell. Translation occurs at ribosomes that build peptide chains
(Figure 1 on the following page), which in turn fold into e.g. functional enzymes. Ribosomes
are assembled from two subunits for each translation and present with three slots for transfer
RNAs (tRNAs), namely the E-, P-, and A-site. The process of translation can be divided into
four steps, initiation at the mRNA’s initiation site, elongation, translocation of mRNA through
the ribosome and termination of translation at the termination site. It is the step of termination
that is of particular interest for this study.

When one of the three stop codons (UAG, UAA, or UGA) enters the ribosomal A-site it is gen-
erally bound by a release factor (RF) instead of a tRNA carrying an amino acid. The eukaryotic
release factor 1 (eRF1) recognises each of the three stop codons and bridges the distance from
a stop codon to the peptidyl transferase center in the ribosome. A loop of eRF1 assisted by the
peptidyl transferase utilises a water molecule to cleave the peptidyl-tRNA bond of the tRNA
at the ribosomal P-site (Berg et al. 2011). Subsequently the new peptide is released from the

ribosome and the latter dissembles into its subunits.

1.2 (Functional) translational readthrough in lower organisms

As nature is rarely absolute or binary, also termination of translation is not free of errors. In-

stead of the release factor a competing near-cognate tRNA carrying an amino acid might bind
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Figure 1: A ribosome that translates a mRNA starts at the 5’ end at the start codon
(AUG) and stops generally at the 3’ end at one of the three stop codons (UAG, UAA, or
UGA). tRNAs bind to codons with their respective, specific anticodons and carry amino
acids with them. The amino acids form a peptide. Release factor eRF1 will compete with
near-cognate tRNAs when the stop codon enters the ribosomal A-site in an eukaryotic
cell.

the stop codon in the ribosomal A-site and translation continues until the second in-frame stop
codon. Such errors occur with frequencies up to 0.01 and 0.1% (Namy et al. 2001; Harrell
et al. 2002). In some cases termination efficiency is reduced by one or two orders of magni-
tude, which consequently results in stop suppression between 1 and 10 %. Stop suppression
leads to insertion of amino acids for stop codons (Gesteland and Atkins 1996) and results in
ribosomes that read through the stop codon into the downstream region. Thus they continue
translation and extend the protein C-terminally beyond its normal length. Elevated levels of
ribosomal readthrough above rates of 0.1% are defined here as translational readthrough (TR)

(Figure 2). The extend to which TR occurs varies between the different stop codons in most

) 3

l 10" t0 10" %

Figure 2: Ribosomes that translate mRNAs generally terminate translation at the first
stop codon they encounter and dislocate from the mRNA. In rare cases the error rate
that leads to stop suppression is elevated and ribosomes exhibit translational readthrough
(TR). The first stop codon is decoded as a standard amino acid and the ribosome continues
translation into the 3’ region downstream of the first stop codon. Translation is contin-
ued until a second in-frame stop codon enters the ribosomal A-site and eRF1 terminates
translation.

organisms. TR is often influenced either by nucleotides in the vicinity of the stop codon, by
distal mRNA structures downstream the stop codon, or both kinds of regulatory elements, for
further information please refer to Paragraph 1.5 on page 9. TR and global redefinition of stop

codons are distinct phenomena, as TR leads to insertion of a standard amino acid (Namy et al.

2



1 INTRODUCTION

2001), while the term redefinition of a stop codon is used to describe globally regulated inser-
tion of non-standard amino acids (e.g. selenocysteine), the latter is not known to be used by
viruses (Firth and Brierley 2012). The important effect of TR is probably that it allows contin-
ued translation into the downstream region, while the specific amino acid that is added to the
peptide at the termination site is assumed to be less crucial (Firth et al. 2011). Mutant tRNAs
can be stop codon suppressors and elevate readthrough strongly, but TR occurs with 107! to
10! also in normal physiology. Interestingly, TR can be induced and elevated by drugs such
as antibiotics of the group of aminoglycosides, this is used and investigated as a therapeutic
option for genetic disorders caused by premature stop codons (Bidou et al. 2012; Keeling et al.
2014). Aminoglycosides can also be utilised to confirm TR candidates and differentiate this
mechanism from other recoding events.

Detection of TR ventured from viruses, namely bacteriophage O and fobacco mosaic virus
(TMV) (Weiner and Weber 1971; Hofstetter et al. 1974; Pelham 1978), to prokaryotes (re-
viewed in Engelberg-Kulka (1981)), to eukaryotes (Bonetti et al. 1995). TR was also detected
by chance in mammals (Geller and Rich 1980; Yamaguchi et al. 2012).

5' 3

l 10" t0 10" %

Figure 3: Ribosomes that translate mRNAs generally terminate translation at the first
stop codon they encounter and dislocate from the mRINA. In rare cases the error rate
that leads to stop suppression is elevated and ribosomes exhibit translational readthrough
(TR). The first stop codon is decoded as a standard amino acid and the ribosome continues
translation into the 3’ region downstream of the first stop codon. This might give rise to
new functional domains or signals in the extension, which were hidden in the untranslated
region before. It allows expression of the parental proteins and a small amount of extended
proteins with new functions. Translation is continued until a second in-frame stop codon
enters the ribosomal A-site and eRF1 terminates translation.

Already with the detection of TR in viruses it became apparent that the phenomenon can fulfil
a function as extensions with new domains are appended to the C-termini of proteins (Fig-
ure 3). Functional translational readthrough (FTR) is a term used for TR that gives rise to new
1soforms, which possess new functions and thus differ not only structurally but also function-
ally from their parental proteins. FTR provides organisms with a curious ability to regulate
protein expression as only a small percentage of the original protein is diverted from its task
without disturbing its original function.

Viruses use TR and FTR among other recoding mechanisms (e.g. ribosomal hopping, or frame-
shifting) to expand the coding capacity of their small genome (Atkins et al. 1990; Firth and
Brierley 2012). For example TR that ranges from 6 to 24 % was found in three plant viruses

and one animal virus (Urban et al. 1996). Several examples of FTR in viruses are known.

3



1 INTRODUCTION

The Sindbis virus (SINV) utilises TR to synthesise a viral RNA dependent RNA polymerase
(Li and Rice 1993), TMV exploits TR to express a RNA replicase (Pelham 1978), and feline
leukemia virus (FeLV) requires TR to express a protease (Yoshinaka et al. 1985b). Propagation
of the virus depends on FTR for QB8 (Weiner and Weber 1971; Hofstetter et al. 1974), and beet
western yellow virus (BWYV) (Bruyere et al. 1997). The importance and possible regulatory
capacity of FTR can be seen in the example of Moloney-murine leukemia virus (Mo-MuLV),
which expresses a gag gene and its TR product a gag-pol fusion protein (Yoshinaka et al.
1985a), the propagation of the virus depends on the parental protein, the fusion protein and
possibly even on a fixed ratio between the two proteins (Felsenstein and Goff 1988).

Also in eukaryotes examples of TR and FTR exist. TR of UAG stop codons in yeast (Saccha-
romyces cerevisiae) was analysed, the standard amino acids tyrosine, lysine, and tryptophan
were incorporated for the stop codons, which led to TR of 4 % (Fearon et al. 1994). Further-
more the genes CST6 and RCK?2 are undergoing TR of 0.6 %, and 0.8 %, respectively (Namy
et al. 2002). FTR was observed in other fungi species, e.g. enzymes of the glycolysis pathway
(3-phosphoglycerate kinase), and the pentose phosphate pathway (D-ribulose-5-phosphate-3-
epimerase) exhibit dual localisation to peroxisomes due to FTR in Ustilago maydis (Freitag
et al. 2012; Stiebler et al. 2014). FTR of 2.2 % was proven for phosphodiesterase 2 (PDE?2)
in yeast. The process appends a 21 amino acid extension to the protein and thereby alters its
localisation, and reduces its activity. Although the protein is non-essential its FTR leads to
higher cAMP levels in yeast cells and influences the cell’s stress response (Namy et al. 2002).
In yeast systems biology approaches were applied, these led to the detection of two TR candi-
dates (IMP3, and BSC4), and of underrepresented stop codon environments, which are thought
to influence TR (Namy et al. 2003; Williams et al. 2004). Systems biology approaches allow
systematic screens for TR candidates in a genome or transcriptome and are discussed in the

following paragraph.

1.3 Systems biology approaches to translational readthrough

While the first examples of TR and FTR concern the analysis of individual genes and proteins
and often have been found by serendipity, recently, systems biology approaches (Table 1 on
the following page) have been employed to identify TR and FTR in metazoa. I will shortly
introduce characteristics of metrics such as PhyloCSF, and ribosomal profiling. The method of
our in silico regression model will be laid out in more detail. The systems biology approaches
have been and will be applied in different species to investigate TR. I participated in the devel-
opment of the in silico regression model and the results of this systems biology approach will
be described in detail in Section 3 on page 32.

PhyloCSF is a comparative metric, which belongs to the group of phylogenetic approaches and

utilises multiple sequence alignments to evaluate coding potential in gene sequences (Lin et al.
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PhyloCSF Ribosome Profiling

Relies on multiple species alignment to

distinguish potential protein coding regions  Ribosome profiling utilises ribosomal
from non-coding regions by comparison of  footprints in combination with deep
patterns of codon substitution frequencies in  sequencing. It identifies new coding

a genome-wide scan throughout related regions, previously annotated as
organisms, it identifies translational untranslated regions by their ribosomal
readthrough candidates by an evaluation of ~ footprint density. It can be applied to the
coding potential up- and downstream of whole transcriptome of an organism.

annotated stop codons.

Mass spectrometry In silico regression model

Calculates linear regression between stop
codon context and experimental TR values
to predict TR genes in a genome-wide scan.
It was used to identify the high translational
readthrough consensus in mammals. It can
be combined with search algorithms that
pinpoint functional protein domains.

Protein digest by trypsin or pepsin, followed
by de novo sequencing allows identification
of proteins or extensions. Extensions found
in proteins domains that follow the
annotated/canonical termination region hint
readthrough or recoding events.

Table 1: Recently employed systems biology approaches that identified numerous TR
candidates and events in metazoa including Homo sapiens.

2011) to detect recoding events that lead to translation in presumingly untranslated regions
(UTRs). As a systematic approach applicable to whole genomes and using several related
species, the metric PhyloCSF combines phylogenetic information with a model that measures
codon substitution frequencies (CSF). It utilises prior information of the genome that is to
be analysed e.g. codon frequencies and branch lengths between species. The application of
PhyloCSF requires a target sequence, one or more informant genomes that it can be aligned
to, and known coding gene annotations in one of the data sets (Lin et al. 2011), which are
required to train the model. The detection and verification of TR candidates found by Phy-
1oCSF involves additional analyses and experiments, as PhyloCSF provides information about
putative protein coding regions and thereby can only predict TR candidates. Sequencing of
12 related Drosophila genomes (Clark et al. 2007) allowed the application of comparative
genomic analysis such as CSF on the genome of Drosophila melanogaster. This analysis
revealed protein coding signatures in the extension between the designated stop codon and
the next downstream, in-frame stop codon of 49 TR candidates (Lin et al. 2007). New tran-
scriptional evidence (modENCODE) and PhyloCSF (Lin et al. 2011) were used to enlarge the
number of TR candidates in D. melanogaster to 283 genes excluding non-TR events (Jungreis
et al. 2011). Few candidates were proven to undergo TR using green fluorescent protein (GFP)
transgenic flies (4 candidates), and mass spectrometry (9 candi_dates) including t?le known syn
and kel genes (Jungreis et al. 2011).

Ribosome profiling recognises translating ribosomes in the 3" UTRs and thus identifies recod-




1 INTRODUCTION

ing events including TR (Ingolia et al. 2009, 2011). A ribosome protects the mRNA fragment
(ribosome footprint), which is being translated by the ribosome, from digestion by nucleases.
This in combination with the technique of deep sequencing is used by ribosome profiling. The
approach allows localisation of translating ribosomes and thereby measurement of translation
with sub-codon resolution (Ingolia et al. 2009). The libraries of mRNA fragments are created
by digestion of mRNA, recovery of ribosome footprints, and their quantitative conversion into
complementary DNA (cDNA) (Ingolia et al. 2011). The translation efficiency is defined as
the ratio of ribosome footprints to mRNA abundance (Dunn et al. 2013; Ingolia et al. 2009).
Ribosome profiling identified 307 TR events with readthrough rates above background levels
(0.1 %) in Drosophila melanogaster, these events were not predicted by the PhyloCSF or CSF
approaches (Dunn et al. 2013). Fortythree out of the 283 readthrough candidates found by
application of PhyloCSF (Jungreis et al. 2011) were confirmed by ribosomal profiling (Dunn
et al. 2013). The analysed lysates were prepared from D. melanogaster embryos and S2-cells,
a cell line derived from D. melanogaster embryos. This restricted the results of this study
(Dunn et al. 2013) to one developmental state. Given the premise that readthrough’s regula-
tion depends on the developmental state of the organism, confirmation of more than just 43
of the 283 phylogenetically predicted candidates might have been possible in further grown
flies. Eight of 15 tested constructs showed TR in a dual reporter assay (Dunn et al. 2013), an
experiment to prove TR biochemically via endogenous readthrough products was not carried
out. In yeast, 30 examples of readthrough were found using ribosome profiling (Dunn et al.
2013). Fortytwo TR events that do not result from selenocysteine insertion were identified in
Homo sapiens (Dunn et al. 2013), their functional relevance was not tested (Loughran et al.
2014).

In silico regression model (Schueren et al. 2014): A genome wide in silico analysis of TR
scanned a database of 200,000 human transcripts (Ensembl) for stop codon contexts (SCCs).
The SCCs comprise 15 nucleotides (positions —6 to +9) surrounding the stop codon (positions
+1 to +3). Our in silico regression model computed a readthrough propensity (RTP) score for
42,000 unique human transcripts. Therefore a binary vector represgnts the SCCs using 51 di-
mensions (12 positions X 4 nucleotides +3 stop codons), the binary vector was combined with
experimentally assessed readthrough values. The in silico regression model assigned linear
regression coefficients for all possible nucleotides in each position of the SCC, see Figure 4 on
the following page for a rough sketch of the model. The design and numerical implementation
of the model was done by Dr. T. Lingner, I participated in the development of one subunit,
the RTP scanner. The model consists of two parts, a RTP scanner and a PTS1 scanner, which
searches for putative peroxisomal targeting signal 1 (PTS1) sequences. Both scanner produce
their own score, one RTP score and one PTS1 posterior probability. The RTP for a certain
context was calculated as a sum over the regression coefficients of the context’s positions. A
first model (LIN) (Schueren et al. 2014) was trained with 66 sequences and their respective
readthrough values (Floquet et al. 2012). A second model (LINiter) was trained with 15 ad-
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Figure 4: A schematic representation of the workflow of the RTP scanner. The stop
codon contexts (SCCs) are represented as binary vectors, these and their experimental
readthrough values are used to determine the coefficients employed by a linear regression
model (LIN or LINiter). To predict the RTP score for a given SCC, the position-specific
regression coefficients are added up. The sketch is taken from Schueren et al. (2014) and
was originally designed by PD Dr. rer. nat. S. Thoms.

ditional experimentally tested sequences (Schueren et al. 2014). Feature selection (fs) led to
models (LINfs5, and LINfs3) with yet higher correlation between readthrough and RTP and
to a consensus for high RTP in human genes comprising only the stop codon and the positions
—6, +4 to +7, or the stop codon and the positions +4 to +6 for LINfs5, and LINfs3, respec-
tively. The PTS1 posterior probability predictor is an adaptation to human PTS1 based on a
previously designed algorithm for plant PTS1 (Lingner et al. 2011). The importance of the
PTS1 signal, that directs enzymes to the peroxisomal matrix is highlighted in Paragraph 1.6 on
page 11.

The in silico regression model allows a prediction of readthrough propensity based on linear
regression between an experimentally prepared training set of readthrough values and their re-
spective sequences. Therefore the approach requires an annotated genome to search for SCCs
and experimental evaluation of some of those; subsequently the model is able to predict RTP
for the whole genome. The in silico regression model detected 38 readthrough candidates in
the human genome that contain the high TR motif UGA CUA (stop codon underlined) and 19
candidates that comprehend the high TR consensus UGA CUA G (stop codon underlined), 5
of which were confirmed as TR events recently (Schueren et al. 2014; Loughran et al. 2014;
Stiebler et al. 2014; Dunn et al. 2013). The confirmed TR events include the genes LDHB
and MDH 1, which are the protagonists of this study and thus play the main part in the result
part (Section 3 on page 32), background information on the enzymes (LDH, MDH) are given
in Paragraph 1.6 on page 11. As the influence of SCCs and more distal elements on TR is
very interesting and important, these and also the revealed consensus for high TR in mammals
including Homo sapiens will be explained and supported with additional information (Para-

graph 1.5 on page 9).

1.4 (Functional) translational readthrough in higher organisms

Before systems biology approaches were applied, three genes of Drosophila melanogaster
(syn, kel, and hdc) were proven as TR events (Klagges et al. 1996; Robinson and Cooley
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1997; Steneberg and Samakovlis 2001) and two TR candidates (Sx/, and oaf) were identified
(Samuels et al. 1991; Bergstrom et al. 1995). The expression rates of full length kel and open
reading frame 1 (ORF1) kel vary with respect to the tissue and the fly’s developmental state
(Robinson and Cooley 1997).

The systems biology approach PhyloCSF predicted 283 TR candidates in D. melanogaster
(Jungreis et al. 2011). Four of the 283 candidates (Abd-B, cnc, Spl, and z) were confirmed as
TR events using GFP transgenic flies. Interestingly not all TR events were found in the same
developmental state of the organism (either in embryo, larvae, or both), kindly refer to Jungreis
et al. (2011). Nine other candidates including known readthrough genes (kel, and sync) were
confirmed to undergo TR by analysis of mass spectrometric data.

Ribosome profiling detected 350 TR events and thereby confirmed 43 of the phylogenetically
predicted candidates in D. melanogaster (Dunn et al. 2013). From the 307 newly identified
TR events only 14 of the extensions reached positive scores by application of PhyloCSF. This
might indicate recent occurrence of most of these TR events in evolutionary terms. A com-
parison of the footprint density in different cell types led to the hypothesis that readthrough
is differentially regulated between Drosophila cell types (Dunn et al. 2013). Eight out of 15
tested TR events predicted in D. melanogaster showed readthrough in a reporter assay using
over-expression of constructs (Dunn et al. 2013).

FTR is defined as translational readthrough that leads to an isoform of the parental protein,
which fulfils a different function than the latter one. This is assumed to be used in nor-
mal physiology of organisms. TR candidates with predicted hidden PTS1 were found in D.
melanogaster (NADP-dependent isocitrate dehydrogenase), and Caenorhabditis elegans (in-
organic pyrophosphatase). These candidates are particularly interesting, because the predicted
targeting to peroxisomes was found to be realised in different ways (including alternative splic-
ing, and PTS2) in different organisms (including Ustilago maydis, and Drosophila) (Stiebler
et al. 2014). A number of potentially functional signals in the readthrough extensions, includ-
ing a PTS1, nuclear localisation signals (NLS), eight transmembrane domains (TMDs), and
one prenylation signal were found in TR candidates of D. melanogaster. Three NLS were
shown to be functional using a GFP reporter, thus FTR was proven for these TR events in D.
melanogaster (Dunn et al. 2013).

For a long time, the rabbit 8-globin protein has been the only protein known to undergo stop
codon suppression, without involvement of mutant tRNAs, in mammals (Geller and Rich
1980; Hatfield et al. 1988; Chittum et al. 1998). TR appends a 22 Aa extension to the -
globin protein, but it is probably not conserved in mammals (Jungreis et al. 2011). The ap-
plication of PhyloCSF to a genome alignment of 29 mammalian species yielded the genes
SACMIL, OPRKI, OPRLI, and BRI3BP as human readthrough candidates (Lindblad-Toh
et al. 2011; Jungreis et al. 2011). Of these, two were experimentally confirmed (Loughran
et al. 2014). Recently, the MPZ gene (myelin protein zero, PO) has been found to give rise to
L-MPZ by readthrough (Yamaguchi et al. 2012). A functional significance of L-MPZ is likely
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but not proven. However, the extension is known to contain antigenic sites for neuropathy-
associated antibodies and mutations in MPZ can cause Charcot Marie—Tooth disease and De-
jerine—Sottas disease (Hayasaka et al. 1993). A similar screen of 3’"UTRs for conserved peptide
sequences and an in-frame second stop codon in five mammalian transcriptomes revealed three
readthrough events, VEGFA, MTCH2, and AGOI with 11, 13 and 24 % readthrough in a re-
porter assay respectively (Eswarappa et al. 2014). FTR of VEGFA will be discussed in the
context of my results (Section 4 on page 62).

Ribosome profiling was applied to human foreskin fibroblasts and detected 42 TR events, of
these 95 % exhibit TR > 1.2 % (Dunn et al. 2013). The four TR candidates (SACMIL, OPRK],
OPRLI, and BRI3BP) found by PhyloCSF (Jungreis et al. 2011) and three additional candi-
dates (ACP2, AQP4, MAPK10) were tested in HEK-293T cells (Loughran et al. 2014). The
candidates AQP4, OPRLI, OPRKI, and MAPKI10 exhibit readthrough rates between 7 and
31 % in mammalian translation systems, thus they were confirmed as TR events. Endogenous
expression levels of these proteins, however, were too low to allow estimation of TR by ribo-
some profiling. Only very little TR was found for candidates with a predicted RNA secondary
structure (SACMIL, ACP2) (Loughran et al. 2014). AQP4 showed ~ 3.5 % context driven
readthrough in a dual reporter assay (Schueren et al. 2014) and was detected endogenously
using Western blotting (Loughran et al. 2014). The influence that context and distal elements
(e.g. RNA secondary structures) might exert on TR will be elucidated in Paragraph 1.5. FTR
in Homo sapiens will be discussed in context of my results in the discussion (Section 4 on

page 62).

1.5 Stop codon contexts and distal elements influence translational read-

through

As indicated throughout the preceding paragraphs, TR and FTR can be mediated and influ-
enced by nucleotides in the immediate environment of a stop codon (SCC), or by nucleotide
sequences that are located more distal of the stop codon in the 3’UTR and sometimes form
elaborate secondary RNA structures. Translational readthrough is generally also influenced by
the stop codon itself. The mechanisms are most probably distinct and can occur independently
of each other. However, in possibly all organisms TR exists in both forms, and often both
mechanisms are combined to regulate or ensure TR.

In viruses examples for TR mediated by context/distal elements alone and for TR influenced
by a combination of context and distal elements exist. Distal elements are not generally re-
quired for TR in all viruses but might be necessary for stop suppression in some viruses (ten
Dam et al. 1990; Honigman et al. 1991). A consensus STOP CAR YYA [R=A/G, Y=C/T]
(stop codon underlined) for TR, which depends on context but is independent of stop codons,

was found in TMV (Skuzeski et al. 1991). Of this consensus nucleotide positions +4, and +5




1 INTRODUCTION

are most influential, but also position +6 exerts influence (Zerfass and Beier 1992; Urban et al.
1996). Distal elements in form of a pseudoknot structure in the 3" vicinity of the gag gene’s
stop codon exist in MuLV, aujeszkyvirus (AKV), M7 Baboon endogenous virus, and FeLV
(ten Dam et al. 1990; Wills et al. 1991). Beside the pseudoknot structure also a purine rich se-
quence (positions +4 to +8) immediately downstream the stop codon influences TR of the gag
gene in MuLV (Feng et al. 1992; Honigman et al. 1991). In BWYV positions +8, and +9 of a
SCC, but also two distal regions 3’ the stop codon influence TR (Bruyere et al. 1997; Brown
et al. 1996). In SINV expression of the viral RNA polymerase nsP4 is regulated by context
driven FTR. The SCC UGA CUA (stop codon underlined) regulates TR in plant and animal
viruses (Beier and Grimm 2001), but introduction of distal stem loop structures increases TR
3 to 4 fold, the stems of these distal elements are more important than the loops (Firth et al.
2011).

In prokaryotes the SCC downstream and characteristics of the amino acids upstream the stop
codon might influence TR. In general stop codon dependent TR in E. coli varies with SCCs as
follows UAA/UGA C~A<G<U and UAG C<A~U<G (stop codon underlined) (Poole et al.
1995). Context effects were found for positions +4 to +10 in E. coli, with generally TR be-
ing most influenced by purines (Bossi 1983; Miller and Albertini 1983), or specifically an A
residue at position +4 (Engelberg-Kulka 1981). Interestingly, highly expressed genes show a
strong bias in position +4 against A or C and against usage of leaky stop codons UGA or UAG
(Brown et al. 1990b). In E. coli tRNAs in the A-site of ribosomes might reduce the termina-
tion efficiency of stop codons residing in P-site via tRNA-tRNA interactions (Smith and Yarus
1989). High/low TR was also correlated with the amino acid and its charge (acidic/basic) at
the E-site of the ribosome in E. coli (Mottagui-Tabar et al. 1994) and Bacillus subtilis and
Salmonella typhimurium (Mottagui-Tabar and Isaksson 1998). It was shown that structural el-
ements of release factor 2 (RF2) in E. coli are close enough to positions +4 to +6 (Poole et al.
1997, 1998) to allow site-directed cross-linking with the mRNA. Changes in positions +4 to
+6 influence the efficiency of cross-linking between RF2 and position +1 (first base of stop
codon), which might reflect changes of mRNA orientation with respect to RF2 (Poole et al.
1998).

Also eukaryotes exhibit TR that is influenced by SCC, distal elements, or both mechanisms.
In general eukaryotes favour the consensus U (A/G) (G/A) (C/G) (stop codon underlined) for
TR (Brown et al. 1990a). The SCC UAG CAA (stop codon underlined) in yeast allows high
readthrough and resembles the TMV readthrough context (Kopczynski et al. 1992). The ef-

fect exerted by upstream contexts on TR depends on the downstream contexts (Williams et al.
2004), also synergistic effects of up- and downstream contexts were observed (Bonetti et al.
1995). The consensus UAG CAR NBA [R=A/G, N=any base, B=U/C/G] (stop codon under-
lined), that is very similar to the one found in TMV infected tobacco plant cells (Kopczynski
et al. 1992), promotes high readthrough rates > 5 % in yeast (Namy et al. 2001), the result is
supported by a genome-wide in silico study (Williams et al. 2004). Readthrough in yeast that
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used the mentioned consensus is not promoted by a mRNA-tRNA interaction of positions +7
to +9 thereby the mechanism might involve the tRNA pairing with nucleotides at positions +4
to +6 or more direct effects due to the primary nucleotide sequence as no secondary structure
is predictable for found consensus (Namy et al. 2001).

In D. melanogaster the tetranucleotide termination signal UGA C (stop codon underlined) is
the least common signal among non-TR transcripts (3.1 %), while it is the most common sig-
nal used by genes that were classified as TR candidates (Jungreis et al. 2011). Termination
efficiency is reduced by use of UGA>UAG>UAA and the base C>U>G>A at position +4 in
the given order. This indicates context dependent TR, however, in D. melanogaster FTR that
depends on distal structures and is stop codon independent was also observed for the hdc gene
(Steneberg and Samakovlis 2001).

Like the other organisms also mammals utilise both ways to regulate or promote TR. A strong
bias of position +4 of SCCs found in mammalian translation systems indicates the influence of
this position on TR. A purine/pyridimine split was observed as pyrimidines (C/T) at position
+4 promote translational readthrough and selenocysteyl-tRNA selection (McCaughan et al.
1995). High suppression rates were observed for UAG stop codons followed by a C residue at
position +4 (Martin et al. 1993; Howard et al. 2000). Upstream the stop codon a correlation of
a purine at position —1 and high readthrough was found (Cassan and Rousset 2001; Loughran
et al. 2014).

In mammalian translation systems UGA, and UAG are most often decoded as tryptophan and
glutamine, respectively. The stop codons differ in their termination efficiency (UAA>UAG>UGA)
(Harrell et al. 2002), which is equivalent to the order found in D. melanogaster. In human a
consensus for high TR was systematically derived by our in silico regression model (Schueren
et al. 2014), also other studies found TR events and candidates with this consensus (Loughran
et al. 2014; Stiebler et al. 2014). In a study of mammalian genomes that revealed four TR
events (AQP4, OPRLI, OPRKI, and MAPK10) evidence was found, that supports a larger in-
fluential context encompassing positions +4 to +15 (Loughran et al. 2014). The high TR con-
sensus in mammals supports TR of up to 3 % and constructs with larger contexts, which exhibit
a combination of SCC and distal elements, displayed readthrough of up to 31 % (Loughran
et al. 2014; Schueren et al. 2014). The findings so far support the hypothesis that TR can be
regulated via the context in the stop codons vicinity (SCC) and distal elements in the 3’ region

of the stop codon, however, each mechanism functions also on its own.

1.6 Peroxisomes and their functional significance

Our in silico regression model scanned for SCCs with high RTP values and additionally it
evaluated the PTS1 posterior probability of the C-terminal end of the extensions. We used this

scanner for putative functional PTS1 domains in the TR extensions to search for FTR in Homo
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sapiens. As we concentrated our systematic search for FTR on possible peroxisomal targeting
domains, an overview of the most important features of peroxisomes is given here.
Peroxisomes - formerly also known as microbodies - are cell organelles (de Duve 1969) that
are found in every eukaryotic cell. The organelle builds a cell compartment with a matrix
rich of proteins, which is enclosed by a single membrane (Wanders and Waterham 2006b).
Though the organelle was regarded as relatively isolated, the evidence exists that peroxisomes
are linked to other cell organelles, such as the endoplasmatic reticulum (ER) and mitochondria
(Thoms et al. 2009). Peroxisomes play an essential role in many metabolic pathways (Wan-
ders and Waterham 2006b) and react to environmental prompts by modification of biogene-
sis, morphology, number, and protein composition (Schrader et al. 2013). Monocarboxylate
transporters (MCTs) like those found in cell membranes (Halestrap and Price 1999), and mi-
tochondrial inner membranes (Brooks et al. 1999) were recently also detected in peroxisomal
membranes (McClelland et al. 2003). MCTs support the metabolic activity of peroxisomes. It
is not yet clear whether peroxisomes form by a budding process and originate from the ER or
require the spatial closeness to the ER only for a transfer of peroxisomal membrane proteins,
though evidence grows for an important role of the ER (Thoms et al. 2012). In one mat-
ter peroxisomes appear relatively independent of the ER as they are able to import enzymes
from the cytosol into their matrix. These enzymes are directed to the peroxisomal matrix by
peroxisomal targeting signal 1, and 2 (PTS1, and 2), which are found C- and N-terminally,
respectively. The targeting signal PTS1 is recognised by import receptor PEXS, which di-
rects peroxisomal matrix proteins into the organelle and subsequently returns to the cytosol
(Liu et al. 2012; Smith and Aitchison 2013). The import receptor PEX7 recognises PTS2
(Marzioch et al. 1994). Over 90 % of the targeting signals found for peroxisomal matrix pro-
teins are C-terminal and thus belong to the PTS1 group. The PTS1 does not lead to a binary
decision, in contrast it directs the cytosolic protein partially into peroxisomes as the affinity
of PEXS to the PTS1 strongly depends on the amino acid sequence of the latter (Maynard
et al. 2004). The typical PTS1, Ser-Lys-Leu (SKL) does not suffice for protein import into
peroxisomes, up to nine amino acids further upstream of this tripeptide at the very C-terminus
contribute, and the tripeptide itself exists in functional variants as well (Schueren et al. 2014;
Brocard and Hartig 2006). Interestingly, peroxisomes have the rare ability to import folded en-
zymes and even oligomeric enzymes built from several subunits (Walton et al. 1995; McNew
and Goodman 1996; Lanyon-Hogg et al. 2010).

Peroxisomes have a multitude of metabolic functions that extend beyond the textbook ex-
ample of hydrogen peroxide metabolism. Fatty acids are metabolised in peroxisomes via
pB-oxidation (Lazarow and De Duve 1976), and human peroxisomes are also capable of a-
oxidation. Currently it is assumed that 90 % of short/medium chain fatty acids are metabolised
in mitochondria, the remaining 10 % in peroxisomes (Gladden 2004). Very long chain fatty
acids are shortened in peroxisomes (Lodhi and Semenkovich 2014) and then shuttled to mi-

tochondria, where they are processed in -oxidation. The peroxisomal S-oxidation supplies
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acetyl-CoA for the biosynthesis of functional lipids such as bile acids (Hayashi and Miwa
1989), and phospholipids (Hayashi and Takahata 1991). The organelle is also involved in
glyoxylate detoxification (Wanders and Waterham 2006b) and peroxisomes might be related
to leucine metabolism (McGroarty et al. 1974). Peroxisomal S-oxidation fuels anabolic pro-
cesses in the peroxisomes, FADH, and NADH are produced during the oxidation and need
to be re-oxidised to allow the S-oxidation to continue. In peroxisomes the FADH, transfers
electrons directly to O, and consequently the pool of FAD used for S-oxidation is refilled
(Gladden 2004). The mechanism for NADH re-oxidation in peroxisomes was long enigmatic.
Then it was shown, that NAD*/NADH and acetyl-CoA couldn’t translocate over the peroxiso-
mal membrane in Saccharomyces cerevisiae (van Roermund et al. 1995), and that peroxisomal
B-oxidation could be stimulated by addition of oxaloacetate, and pyruvate (Osmundsen 1982;
McClelland et al. 2003), while the addition of cytosolic lactate dehydrogenase (LDH) had no
enhancing effect (Osmundsen 1982; Gladden 2004). As NAD*/NADH can’t cross the perox-
isomal membrane, the findings indicate that monocarboxylates like lactate and pyruvate can
translocate over the peroxisomal membrane. These monocarboxylates might be used to ensure
redox-balance by use of dehydrogenases such as LDH and malate dehydrogenase (MDH). This
hypothesis requires lactate to either translocate directly over the peroxisomal membrane or to
use transporters as part of a shuttle system. Lactate shuttles exist in many forms as cell-to-
cell shuttles, as intracellular lactate shuttles, as astrocyte-neurone lactate shuttle and possibly
as peroxisomal shuttles (Gladden 2004). The stimulating effect of pyruvate on peroxisomal
metabolism could be overcome by addition of a MCT blocker (McClelland et al. 2003). This
supports the hypothesis that lactate/pyruvate use MCTs to translocate over the peroxisomal
membrane (McClelland et al. 2003) instead of a direct shuttle system (Visser et al. 2007).
This indicates that the re-oxidation of NADH takes place in peroxisomal matrix, as cytosolic
LDH doesn’t contribute to reaction inside the peroxisome and pyruvate can serve as a substrate
for LDH inside the peroxisome. LDH would catalyse the reaction of pyruvate to lactate and
thereby re-oxidise NADH.

The presence of LDH in peroxisomes and participation in the re-oxidation of NADH, produced
by B-oxidation of palmitoyl-CoA, was confirmed (Baumgart et al. 1996). LDH was found to
be to 0.33 to 1.2 % in peroxisomes (McGroarty et al. 1974; Volkl and Fahimi 1985; Baumgart
et al. 1996). LDHA and also MDHI1 were detected in peroxisomes by a mass spectrometry
based proteomics survey (Gronemeyer et al. 2013). The way how LDH or MDH enter the per-
oxisome and their specific function in the peroxisome remained unclear. The redox-balance of
the peroxisome might depend on the presence of LDH in peroxisomes, which highlights the
enzymes importance in this particular organelle.

Lactate dehydrogenase (LDH) catalyses the conversion between lactate and pyruvate in the
glycolysis pathway in an ordered sequential reaction (Figure 5 on the following page). A
ternary complex is formed out of the enzyme and its substrates and products. LDH first binds

the co-factor NADH and subsequently pyruvate, it releases the product lactate prior to NAD*
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(Berg et al. 2011). Beside lactate and pyruvate also glyoxylate is a substrate of LDH (Salido
et al. 2012).

O OH

“0O0C——C——CH; + NADH+H* “O0C——C——CH; + NAD*

H

pyruvate lactate

Figure S: Reaction catalysed by lactate dehydrogenase (LDH)

LDH, the textbook example of the concept of isozymes, was resolved electrophoretically into
five isozymes, which present with a molecular weight of 135kDa and different net electri-
cal charges (Markert 1963). The isozymes LDH 1-5 consist of four subunits (35 kDa) re-
cruited from two different subunits M (muscle) and H (heart). These subunits M and H
are encoded in the genes LDHA (OMIM® 2014a), located on chromosome 11p15.4 and
LDHB (OMIM® 2014b), located on chromosome 12p12.2-p12.1, respectively. The differ-

ent tetrameric isozymes are shown with their composition of subunits (Figure 6). As can be

Heart Kidney EI(::)d cell Brain Leukocyte Muscle Liver
He @) ab G e e
v o a @ @& =
HaM2 a — 6 @& = —
HM3 -

M4 --

Figure 6: The LDH isozymes and their expression pattern in adult rat tissues, after
(Urich 2013). The isozymes are LDH-1 (H4), LDH-2 (H3M,), LDH-3 (H,M,), LDH-4
(H{M3), and LDH-5 (M4).

expected by the composition of isozymes from their subunits, LDH 1-5 generate from an equal
mixture of the two subunits in binomial distribution, in a proportionof 1 : 4 : 6 : 4 : 1 (Markert
1963). The homotetramer LDH-1 has the highest affinity to its substrates and works best in
aerobic environments while LDH-5 has the lowest substrate affinity of all tetramers and works
best in an anaerobic environment. LDH-1 unlike LDH-5 is allosterically inhibited by high lev-
els of pyruvate (Berg et al. 2011). LDH is mostly found in a cell’s cytosol and contributes to
the anaerobic glycolysis with the shown reaction (Figure 5). This reaction allows a continued
anaerobic glycolysis as it refills the pool of cytosolic NAD*. The reverse reaction allows a
refill of the pyruvate pool used for gluconeogenesis in e.g. liver cells.

Mammalian cells express two isoforms of malate dehydrogenase (MDH), which are the cy-

toplasmic MDHI1, and the mitochondrial MDH2. MDH exists as a homodimeric enzyme
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and is an ancestor of LDH in evolutionary terms. These enzymes participate in citrate cy-
cle, gluconeogenesis (MDH2) and urea cycle (MDH1) and both isoforms contribute to the
malate-aspartate-shuttle mainly in heart muscle and liver cells (Dettmer et al. 2005). Malate
dehydrogenase catalyses the oxidation of malate (+NAD™) to oxaloacetat acid (+NADH+H")
(Figure 7).

| T | I

~00C C C COO~ + NAD* =———— "00C C C COO~ + NADH+H*
H H H
malate oxaloacetic acid

Figure 7: Malate dehydrogenase catalyses the interconversion of malate and oxaloacetic
acid.

In mitochondria the reaction is driven by the use of oxaloacetate and NADH by citrate syn-
thase, and the electrontransport chain, respectively (Berg et al. 2011).

In the yeast Yarrowia lipolytica the cytosolic and peroxisomal isoforms of MDH are derived
from the same gene by alternative splicing (Kabran et al. 2012). In Saccharomyces cerevisiae
the isoform MDH3 was found in peroxisomes (McAlister-Henn et al. 1995). The peroxisomal
MDH is involved in the glyoxylate pathway, a pathway that takes place in cytosol and per-
oxisomal matrix (Kabran et al. 2012). Recently MDH1 was found in peroxisomes of human
liver cells by a proteomics survey using mass spectrometry (Gronemeyer et al. 2013). It seems
MDH is diverted to peroxisomes throughout different organisms. Until 2014 it remained un-
clear how MDH entered the peroxisomal matrix in human cells.

The importance of functioning peroxisomes becomes apparent in severe diseases related to
peroxisomes. These diseases are grouped into two classes, namely the peroxisome biogenesis
disorders (PBD), which are autosomal recessive disorders and geneticall;/ heterogeneous (Weller
et al. 2003), and single peroxisomal protein defects. The single peroxisomal protein defects can
be grouped by the metabolic pathway they disturb: the ether phospholipid synthesis, the perox-
isomal -oxidation, the peroxisomal @-oxidation, the glyoxylate detoxification, and the H,O,-
metabolism (Wanders and Waterham 2006a). The PDB are divided into Zellweger spectrum
diseases (ZSD) and rhizomelic chondrodysplasia punctata (RCDP), which exhibits a different
phenotype (Weller et al. 2003) and includes a defect in PEX7. Patients that suffer from severe
form of ZSD have commonly a life expectancy of one year or less and show defects in sev-
eral peroxisomal metabolic functions. These patients exhibit neurodevelopmental disorders.
RCDP patients present with skeletal abnormalities and neurological symptoms, and on the

molecular level both ether lipid synthesis and @-oxidation is affected (Thoms et al. 2009).
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1.7 The study’s goal

The goal of this study was to find physiological functional translational readthrough (FTR)
in Homo sapiens by identification of functional domains or signals in extensions that are ap-
pended by TR and lead to differences between the parental and extended proteins. I planned
to analyse the most promising putative FTR candidates (genes: LDHB, MDH]) in detail re-
garding their respective TR and new function. I contributed to the design of the RTP scanner
that led to the detection of the consensus for high TR in humans and characterised the TR of

LDHB and MDHI1 as well as quantified their import into peroxisomes.

16



2 MATERIAL AND METHODS

2 Material and Methods

The chemicals used are listed in Table 2.

Table 2: The chemicals used for this study listed with their manufacturing company.

Product Company Product Company

Agar-Agar, Kobe I Roth GmbH LB-Medium Roth GmbH

Agarose, molecular o
Bioline, UK Na,CO; Merck KGaA
grade

. Life technologies
BigDye Na,HPO,*H,0O Roth GmbH
GmbH, Germany

Sigma-Aldrich,

Bromophenol blue Merck KGaA Na,S,0;5
USA
New England Sigma-Aldrich,
BSA X Na28204
Biolabs USA
Complete EDTA-free - Sigma-Aldrich,
o Roche NaAc (pH 4.6, 85 mM)
Protease inhibitor tbl. USA
New England
Cutsmart ) NaH,PO, Merck KGaA
Biolabs
SERVA
o ) ) New England
Dithiothreitol (DTT) Electrophoresis NEBuffer 3.1 )
Biolabs
GmbH
DMEM (Dulbecco’s Boehringer
minimal essential Biochrom GmbH Nonidet P 40 Mannheim,
medium) Germany
Thermo
DNAse I o Orange G Merck KGaA
Scientific
PEQLAB ]
. . PageRuler Prestained Thermo
dNTPs Biotechnologie ) o
Protein Ladder Scientific
GmbH
Biochrom
EDTA Roth GmbH PBS Dulbecco

GmbH, Germany

continued on next page...
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Table 2: continued

Product Company Product Company
Phenylmethanesul-
FBS Biochrom GmbH fonylfluoride Roth GmbH
(PMSF)
. Sigma-Aldrich, .
Formamide Roti-Loadl (4x) Roth GmbH
USA
Thermo
GC-Buffer (5%) o SDS stock (20 %) Roth GmbH
Scientific
Gel Red Biotium, Inc. Skimmed milk powder Roth GmbH
. . Thermo
Imidazol Roth GmbH T4 DNA Ligase o
Scientific
PTG Sigma-Aldrich, T4 DNA Ligase Buffer Thermo
USA (10%) Scientific
KH,PO, Roth GmbH TAE Clontech
LB-Agar Roth GmbH Tris-HCl Roth GmbH
Triton X100 Roth GmbH

The devices and software used in this study are listed in Table 3 on the next page and Table 4
on the following page, respectively.

The reaction kits used are listed in Table 5 on page 20. The organisms used are listed in Table 6
on page 20. The plasmids and oligonucleotides used are listed in the appendix (Table 17 on
page 80, Table 18 on page 82). The restriction enzymes used for cloning and plasmid prepa-
ration were ordered from New England Biolabs, the enzymes are: Xhol, EcoRI-HF, EcoRV,
BspEl, BstEll, Clal, Mscl, Sacll, and Ndel. Buffers and solutions used in this study are listed
in Table 7 on page 21.
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Device Company

Akta Purifier Amersham Biosciences
Amicon Ultra-4 10K MWCO Merck Millipore, USA
BioDocAnalyze Biometra

Centrifuge 5417 R Eppendorf

Centrifuge GPR Beckman

Genetic Analyzer 3130 (Sequencer) Hitachi Applied Biosystems
His Trap HP 5 ml Amersham Biosciences
Homogenizer/Mixer Qiagen

Large volume centrifuge CPR Beckmann

LAS-4000 Fujifilm

NanoDrop 1000 - spectrophotometer Thermo Scientific
Special accuracy wheighing machine - 2001 Sartorius

MP2

Standard Power Pack P25 Biometra

Synergy Mx plate reader Biotek

T3000 Thermocycler Biometra

Thermostar Shaker/Incubator DMG

Vortex Genie 2 Bender & Hobein AG
Weighing machine - excellence Sartorius

Table 3: The devices used for this study listed with their label and their manufacturing

company.
Software Company/Source

ND1000 for NanoDrop Spectrometer Thermo Scientific

SLR ferm 1 PD Dr. rer. nat. S. Thoms

Gen5 v1.08 Biotek

OligoCalc (Kibbe 2007)

Sequence conversion (Joosse and Hannemann 2013)
Prenylation site predictor (Maurer-Stroh and Eisenhaber 2005)
TMD predictor - AG prediction server v1.0  (Hessa et al. 2007)

TMD predictor - TopPred 1.10 (Claros and von Heijne 1994)

TMD predictor - TMPred (Hofmann and Stoffel 1993)

TMD predictor - TMHMM Server, v 2.0 (CBS 2013)

TMD predictor - Split 4.0 server (Jureti et al. 2002)

Table 4: The software used for this study listed with label and providing company.
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Reaction kit Company

High Pure PCR Product Purification Kit  Roche, Switzerland
Nucleospin Gel and PCR Clean-up Macherey-Nagel
NucleoSpin Plasmid Macherey-Nagel
NucleoBond Xtra Midi/Maxi Macherey-Nagel
Lumi-light WB substrate Roche, Switzerland
Transfection Kit Qiagen, Netherlands
BCA-Assay Interchim, France

Table 5: The reaction kits used for this study listed with their name and manufacturing

company.
Product Company
BL21 Codon Plus Competent Cells AGILENT TECHNOLOGIES, USA
TOP10 Competent Cells Thermo Fisher Scientific

BIOBIue 10° Chemically Competent Cells BIOLINE

Table 6: The organisms used for this study listed with their name and distributor.
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2 MATERIAL AND METHODS

Table 7: Lists buffers and solutions used in this study with their trivial name, purpose

and ingredients.

Buffer name

Purpose

Ingredients

Annealing buffer
(10x)

Annealing of

oligonucleotides

DPEC-treated water, NaCl (1 M), Tris-HCI (pH
7.5, 100 mM), EDTA (10 mM)

Annealing solution

Annealing of

oligonucleotides

H, O, oligonucleotides (each 100 pM),
annealing buffer (1x)

Digestion solution

Digest of plasmids

H,0, Cutsmart, plasmid (300 ng), restriction
enzymes, BSA (20 ug/ml)

Ligation solution

Ligation of insert

into plasmid

H,O, vector (ca. 50 ng), insert (ca. 10ng), T4
DNA ligase, buffer T4 DNA (1x)

. Constructs H,0O, GC-bufter (1x), dNTPs (0.3 mM),

PCR reaction ) ]

uti FL-LDHB/ primer,, (0.3 uM), primer,, (0.3 uM),
solution

FL-LDHB-[UGG] polymerase (Thermo Scientific)
) For PCR Sequencing buffer (1x), Big Dye (1x),
Sequencing . . .
] amplification of primery,, (0.5 ul), template DNA (200 ng),

solution

target sequence

DEPC-treated water

Clean-Up for

DEPC-treated water, ethanol (60 %), NaAc

Cleaning solution  sequencing
. (pH 4.6, 85 mM)
analysis
Loading buffer Gel TAE (1x), saccharose (50 %), SDS (1 %),
(6x) electrophoresis Orange G (0.25 %)
PBS (pH 7.5), 200 mM NaCl, 25 mM
Protei imidazole, 1 mM DTT, protease inhibitor PI 1
rotein
Buffer A . . tbl., 0.1 mM phenylmethanesulfonylfluoride
purification
(PMSF), 0.1 mg/ml lysozyme, 22.5 ug/l
DNAse I, 1 mM g-mercaptoethanol (ME)
H,0, 20 mM Tris-HCl (pH 7.4), 200 mM
) i ) NaCl, 1 % Triton x100, fresh: 5 mM
Lysis buffer Tissue lysis

Dithiothreitol (DTT), 0.1 mM PMSF, protease
inhibitor PI 1x (Complete, Roche)

SDS-running
buffer 10x

WB running buffer

H,0, 30.3 g Tris-base, 144 g glycin, 50 ml
10 % SDS

continued on next page...
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2 MATERIAL AND METHODS

Table 7: continued

Buffer name Purpose Ingredients

H,0, 160 mM Tris-HCI (pH 6.8), 8 % SDS,

Lammli buffer WB loading buffer
0.01 g bromophenol blue, 2 ml glycerol

H,0, 24.8 mM Tris-base, 160 mM glycin,
200 ml methanol

Transfer buffer WB transfer buffer

H,0, 10 % (w/v) NaCl, 0.25 % (w/v) KCl,
PBS 10x PBS buffer 1.8 % (w/v) Na,HPO,*H,0, 0.3 % (w/v)
KH,POy, adjusted with NaOH to pH 7.4

PBS-Tween with ) ) PBS, 1 % Tween, 5 % (w/v) skimmed milk
. blocking solution
Casein powder

H,0, 20 mM Tris-HCI (pH 7.5), 0.1 mM EDTA
IP-buffer IP of tissue LDHB  (pH 8), 150 mM NaCl, 0.1 % (w/v) Non-ident
P-40, 1 mM DTT, 1:25 Protease inhibitor

PBS-NaCl PBS with NaCl PBS, 150 mM NaCl
Sodium phosphate
Buffer for H,0, 0.3 % (w/v) NaH,POy4, 1 % (w/v)
buffer (0.1 M pH .
7.4) proteomics Na,HPO,

2.1 DNA cloning

Plasmids used in this study are listed in Table 17 on page 80. Oligonucleotides used in this
study are listed in Table 18 on page 82. The backbone of the dual reporter assay, vector
pDRVL (PST1360, Figure 8 on the following page) encoding an N-terminal Venus tag and a
C-terminal hRluc tag, was derived from pEXP-Venus-hRluc (PST1327, a gift from A. Muntau
and S. Gersting) by introduction of a multi-cloning site (MCS, 33 bp) containing BstEIl, Clal,
BspEl, and BsiWI restriction sites between position 1483 and 1517 of PST1327.

pDRVL The backbone vector for the dual reporter constructs was created by ligating pre-
annealed oligonucleotides OST963 and OST964 into the Xhol site of pEXP-Venus-hRluc. The
oligonucleotides OST963 and OST964 were delivered dry and dissolved in DEPC-treated wa-
ter to a concentration of 100 uM. The oligonucleotides were then subjected to primer hybridi-
sation. The annealing buffer is listed in Table 7 on the previous page. The annealing reaction

was carried out in a thermocycler (T3000, Biometra) using three steps, first denaturation at
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prom_6369...6041

A
i

0. 1315 BsilV

!I

-

dloaac e PST1380ref seq.xdna - 8763 nt

—

523...2438 hRluc

lac_4556...4527
%
M13rev 4434 _d7, 7460...2484 AHEZ]
24877533 V5 tag

Figure 8: The Map of pDRVL (6763 bp) shows the ampicillin resistance gene, the genes
encoding Venus and hRluc as well as the restriction sites of the multi-cloning site (Bs?EII,
Clal, BspEl, and BsiWI).

98 °C for 5's, then gradual reduction of temperature to allow primer annealing at optimal tem-
perature of 40 °C for 5. After further gradual reduction of temperature the reaction solution
1s kept at 10 °C.

The concentration of the annealed oligonucleotides OST963 and OST964 was measured with
a spectrometer (NanoDrop 1000, Thermo Scientific). The vector pEXP-Venus-hRluc was di-
gested to open the Xhol restriction site using a reaction solution (Table 7 on page 21). The
reaction solution was incubated at 37 °C for 2h. Subsequently the restriction enzyme Xhol
was inactivated (incubation of reaction solution for 20 min at 65 °C). The digested vector was
cleaned according to manufacturers manual (High Pure PCR Product Purification Kit, Roche)
and the concentration of the digested and cleaned vector pEXP-Venus-hRluc was measured
using a spectrometer (NanoDrop 1000, Thermo Scientific). The ligation solution (Table 7 on
page 21) was prepared with a vector/insert ratio of 1 : 10 and the solution was incubated at
room temperature over night.

The transformation of the ligated vector into competent E. coli cells (TOP10, Table 6 on
page 20) was done with 20ul cells and 2l ligation solution. The mixture was kept for
30 min on ice, then on 42 °C for 30s, for 2min on ice again, and subsequently incubated in
0.5 ml medium (LB-Medium, Table 2 on page 17) at 37 °C for 1 h on a shaker. The cells were
plated on LB-Medium plates (ampicillin resistance) and incubated over night at 37 °C. Picked
colonies were incubated in 3 ml LB-Medium (1 % (v/v) ampicillin) over night at 37 °C. A sam-
ple of 2 ml underwent a DNA preparation procedure (NucleoSpin Plasmid, Machery-Nagel)
according to manufacturers manual, except for the use of only 40 instead of 50 ul elution buffer

to yield higher concentrations of DNA. 1 ul of the elution was taken for a restriction test di-
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gest (restriction sites EcoRV, BstEIl, Buffer: Cutsmart, Table 7 on page 21) to check if the
cells contained the correct plasmid. This was done by electrophoresis (gel: 1 % (w/v) agarose,
1 %(v/v) gel red in 1x TAE buffer, 6x loading buffer: 50 % (w/v) saccharose, 1 % (w/v) SDS,
0.25 % (w/v) Orange G in 1x TAE buffer) with 80 — 100 V at room temperature, the gels were
analysed at 366 nm excitation wavelength, the gels were used with O’GeneRuler™ DNA Lad-
der (Thermo Scientific).

Promising clones were sequenced (Paragraph 2.2 on page 26). Mini-prep solutions of cho-
sen plasmids were incubated in medium (100 ml LB-Medium with respective antibiotic 0.1 %
(v/v), over night at 37 °C) and subjected to a DNA preparation reaction kit (NucleoBond Xtra
Midi/Maxi, Machery-Nagel) according to manufacturers manual. The concentration of the
resulting elution was measured using the spectrometer (NanoDrop 1000, Thermo Scientific).
pDRVL was cut open for insertion of inserts using a digest that contained the restriction en-
zyme BspEl, BSA, NEBuffer 3.1, pDRVL, DEPC-treated water. As BstEIl has a different
temperature optimum as BspEI it was added 2 h later and at 60 °C instead of 37 °C. The cut
vector was then cleaned from enzymes and plasmid debris by gel purification according to
manufacturers manual (Table 5 on page 20).

All listed dual reporter reporter constructs PST1418, 1419-1423, 1424-1426, 1430, 1435,
1437, 1444, 1466-1470, 1472-1473, 1475-1477, 1479-1481, 1445, 1446-1454, and 1455 were
derived from pDRVL by insertion of pre-annealed oligonucleotides OST1144-1145, 1148-
1157, 1160-1165, 1158-1159, 1190-1191, 1198-1199, 1229-1230, 1449-1458, 1461-1464,
1467-1472, 1475-1480, 1207-1208, 1211-1228, and 1235-1236 into BspEl and BstEII sites
(Table 18 on page 82). The oligonucleotides were ordered from Metabion (Steinkirchen, Ger-
many) and annealed, ligated and transformed, plated and processed as described for pDRVL.
Colonies were picked, prepared with NucleoSpin Plasmid (Macherey-Nagel) and digested,
run on an agarose gel (1 %) to check for the insert. The concentration of positive clones was
measured, subsequently they were subjected to sequencing. Clones with correct sequences
were prepared using NucleoBond Xtra Midi/Maxi (Macherey-Nagel), the concentration was
obtained using the spectrometer (ND1000).

To construct plasmids PST1431, 1432, the full length (FL-)LDHB and FL-LDHB-[UGG] con-
structs for expression in E. coli and subsequent purification, the primers OST1166-1168 were
used with the templates PST1365 (LDHB) and PST1389 (LDHB-[UGG]) in a PCR reaction to
amplify FL-LDHB and FL-LDHB-[UGG], refer to Table 7 on page 21 for solution and Table 8
on the next page for the programme of thermocycler (T3000, Biometra).

The amplified inserts (Figure 9 on the following page) were retrieved using gel purification
according to manufacturers manual (Table 5 on page 20). The inserts concentration was mea-
sured using NanoDrop spectrometer (ND1000). The insert were digested overnight at 37 °C,
to prepare their ends for ligation (H,O, Cutsmart buffer, Ndel, EcoRI-HF). The vector was pre-
pared for ligation (H,O, Cutsmart buffer, Ndel, EcoRI-HF, Sacll) overnight at 37 °C. The di-

gested inserts and vector were run on 1% agarose gel and cut out for gel purification according
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Purpose T [°C] Duration Repetitions
Initial denaturation 95 3 min

Denaturatoin 98 20s } 25 cycles
Primer annealing 60 30s

Primer extension 72 1 min 2 s (60 s/kb)

Final extension 72 4 min

Cooling 4 00

Table 8: The programme as it was used for the PCR to amplify FL-LDHB and FL-
LDHB-[UGG].

3 kbp

1 kbp

Figure 9: PCR product of inserts FL-LDHB, FL-LDHB-[UGG] for pET-41(+) vector,
the insert runs with the 1kbp band. Gel: 1% agarose. Acquisition settings: brightness
50, contrast 50, time 440, gamma 50. Ruler, O’GeneRulerTM DNA Ladder (Thermo
Scientific). (k)bp, (kilo) base-pair

to manufacturers manual (Table 5 on page 20). The elution’s concentration was measured with
a spectrometer (ND1000). Then the inserts were ligated into PST884 (pET41a(+), 5933 bp,
kanamycin resistance, Merck Millipore, USA) at ratio (vector:insert) of 1 : 10 over night at
6 °C. The resulting constructs pET41a-FL-LDHB and pET41a-FL-LDHB-[UGG] were trans-
formed into competent cells (BIOBlue, Bioline), the cells were plated (LB-medium plates,
kanamycin 1:1000). Colonies were picked, incubated in 3 ml LB-media (with kanamycin)
over night at 37°C. Preparation of grown colonies using NucleoSpin Plasmid (Macherey-
Nagel). Test digestion (H,O, Cutsmart, Xmal, Ndel) for 1h at 37 °C of colonies, control of
digest using 1% agarose gel. Positive clones were sequenced. Clones (PST1431, 1432) with
correct sequences were prepared using NucleoBond Xtra Midi/Maxi (Macherey-Nagel), the

concentration was obtained using a spectrometer (ND1000).
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2.2 Sequencing reaction to confirm plasmids

The region of interest of each constructed plasmid was sequenced, therefore a sequencing so-
lution (Table 7 on page 21) with 200ng of plasmid DNA was subjected to a thermocycler
(T3000, Biometra; 25 cycles of 96 °C for 10s, and 60 °C for 4 min). The sequencing solution
was added to 350 pul of cleaning solution (Table 7 on page 21), the solution was mixed (Vortex
Genie 2, Table 3 on page 19), and incubated at room temperature for 15 min. The solution was
spun at 14, 000 rpm for 15 min, supernatant was removed, 300 ul ethanol (70 %) was added, the
solution was mixed, spun for 7 min and supernatant was removed. The remains were incubated
for 10 min at 37 °C with open lid and the dried pellets were resuspended in 10 pl formamide.
Subsequently the plasmid solution was analysed in a sequencer (Table 3 on page 19). For
DRVL-constructs the primer p24 (pEC/YFP=61) was used. The sequencing results were anal-
ysed and evaluated using SerialCloner (version 2.6, Serial Basics) and 4Peaks (version 1.7.2,

Nucleobytes Inc.).

2.3 Cell culture and transfection

HeLa cells and human skin fibroblasts were maintained in low glucose Dulbecco’s minimal
essential medium (DMEM), HEK, HT1080, U118, U373 and COS-7 cells in high glucose
DMEM. Culture media were supplemented with 1 % (w/v) glutamine, 5710 % (v/v) heat inac-
tivated fetal calf serum (FCS), 100 units/ml penicillin, and 100 ug/ml streptomycin. For U118
cells, 1 % non-essential amino acids and 1 % pyruvate were added to the media.

Cells were split when confluent reached 90 %, the new media (see above) was pre-warmed,
the cells media was aspirated, cells were washed with PBS (10 ml), PBS was removed, cells
were incubated at 37 °C in a humidified 5 % CO, incubator for 2 min with trypsin (1 ml) to
loosen the cells from the surface. Trypsin was neutralised with 9 ml medium, the cells were
spun at 800 rpm for 5 min, the pellet was retrieved and suspended in 5 ml of media. One ml
of the suspension was added to 11 ml of fresh media, the solution was incubated at 37 °C in a
humidified 5 % CO, incubator for further use.

Cells were transfected using Effectene transfection reagent (Transfection kit, Qiagen, Ger-
many) as described by the manufacturer. Plasmids were diluted in Buffer EC (Transfection
kit, Qiagen, Germany), and Enhancer (Transfection kit, Qiagen, Germany) and incubated for
5 min at room temperature. Effectene was added and incubated for 10 min at room tempera-
ture. Pre-warmed medium was added to the HeLa cells and to the transfection mixture which
was then added to cells and incubated at 37 °C in a humidified 5 % CO, incubator for 24 h.
Then, 6 h after transfection, transfection reagent was removed, and, where indicated, geneticin

(G418) was added at a concentration of 100 pg/ml.
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After I learned how to proceed in cell culture and after the DRVL assay was optimised, trans-

fections in cell culture were carried out by C. Dickel.

2.4 Dual reporter assay and readthrough calculation

The dual reporter assay was carried out in two versions, the 12-well and the 96-well protocol.
The 96-well protocol allows a higher throughput of constructs and measurements. The dual
reporter constructs used Venus and hRluc, Venus is characterised as follows: A, = 515 nm,

Aem = 528 nm, quantum yield 0.57, photostability: 50 % brightness after 15s.

12-well protocol Transfection: 1 x 10° cells per well were seeded 24 h before transfec-
tion. Media was removed using aspiration, cells were washed with PBS (1x), transfected with
300 ng of plasmid DNA. Media was changed again 6 h after transfection. Cells were washed
with PBS (1x), 1 ml warm media was added per well, which contained 100 pg of G418 if in-
dicated. Cells were incubated for 24 h at 37 °C in a humidified 5 % CO, incubator.

Harvest: Media was removed using aspiration, cells were washed with PBS (1x), PBS was
removed and cells were treated with trypsin (100 ul for 2 min at 37 °C. After addition of 1 ml
media the cells were spun at 1000 rpm for 5 min, the media was removed. The wet pellet was
resuspended and lysed in Renilla Luciferase Assay Lysis Buffer (Promega, Madison, Wiscon-
sin) according to the manufacturer’s manual, plate was shaken for 15 min at room tempera-
ture. Cells were spun down (14, 000 rpm, 2 min, 4 °C) and supernatants were stored at —80 °C.
For Venus fluorescence measurement, cell lysates were diluted 1 : 25 in PBS and analysed
at 485 nm excitation, 530 nm emission (sensitivity: 130) using a Synergy Mx plate reader
(Biotek, Winooski, Vermont). Settings of measurement in well mode: shake (medium, 2 s),
delay (1s), read with detection method fluorescence, read type end point, read speed normal,
optics position fop, top probe vertical offset 4 mm. PBS was used as a blank control for fluores-
cence measurements. Undiluted lysates (20 ul) were used to measure hRluc luminescence by
the Renilla Luciferase Assay System (Promega) and the Synergy Mx plate reader (Biotek). An
automated injector was used to add 100 ul Renilla Luciferase Assay Reagent. Luminescence
measurement in well mode settings: shake (medium, 2 s), dispensor (100 ul Renilla Luciferase
Assay Reagent, speed v = 225 ul/s), shake (medium, 1s), delay 1 s, read type endpoint, inte-
gration time 10's, emission hole, optics position top, sensitivity 150, top probe vertical offset
15 mm. Renilla Luciferase Assay Reagent was used as a blank control for hRluc luminescence
measurements. Each construct was analysed in n biological replicates with n being 3 < n < 10
and each biological sample was measured in triplets.

The mean and standard deviation of these replicate’s triplets were computed. To obtain TR
rates, the ratio of hRluc/Venus signal was calculated, and the readthrough of control construct

pDRVL was set to 100 %. The quotient g of the fluorescence f and luminescence [/ signal and
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its standard deviation o, were calculated for each replicate using uncertainty propagation for
computation of standard deviation (Equation 1). The standard deviations of the fluorescence

and luminescence signals being oy and o, respectively.

2 2
= \/O'?X(%) +0'12><(%) (D)

Letw; =1/ O'Zl. be the weight of a readthrough value from replicate i with o; being the error

of the ratios g;. Then the weighted mean X of the replicates and its error oz were calculated

according to Equation 2 and 3, respectively.
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96-well protocol Cells were washed with PBS and lysed by Renilla Luciferase Assay Lysis
Buffer (Promega, Madison, Wisconsin) with 50 ul per well. The 96-well plate was incubated
at 20°C on a shaker for 15 min. Lysates were used for analysis subsequently. For Venus
fluorescence measurement, cell lysates were diluted 1 : 6 in PBS (final volume 60 ul ) and
analysed at 485 nm excitation, 530 nm emission (sensitivity: 130) using a Synergy Mx plate
reader (Biotek, Winooski, Vermont). PBS was used as a blank control for fluorescence mea-
surements. Undiluted lysates (40 ul) were used to measure hRluc luminescence by the Renilla
Luciferase Assay System (Promega) and the Synergy Mx plate reader (Biotek). An automated
injector was used to add 100 ul Renilla Luciferase Assay Reagent. Luminescence was read 2 s
after injection and integrated over 10 s (sensitivity: 150). Renilla Luciferase Assay Reagent
was used as a blank control for hRIuc luminescence measurements. Each construct was anal-
ysed in n biological replicates with n being 4 < n < 6.

To obtain readthrough rates, the ratio of hRluc/Venus signal was calculated, and the readthrough
of control construct pPDRVL was set to 100 %. Subsequently the arithmetic mean and standard

deviation were computed for each construct from its biological replica.

2.5 Immunofluorescence, microscopy and quantification

Transfected LDHB and LDHA fusion constructs were detected in HeLLa cells by combined di-
rect fluorescence and immunofluorescence experiments (antibodies, Table 9 on the following
page). Endogenous LDHB was analysed in HeLa, U118, human skin fibroblasts and COS-7
cells by immunofluorescence.

Fluorescence microscopy was done using a 100x oil objective (1.3 NA) with a Zeiss Im-
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Construct primary Ab secondary Ab

anti-LDHB mouse monoclonal
antibodies, dilution 1:500
(Abnova, Taiwan)

anti-PEX14 rabbit polyclonal Cy3 labeled Ab, dilution 1:200
PEX14 antibodies, dilution 1:200 (Jackson Immuno Research,
(ProteinTech, Chicago, Illinois) ~ West Grove, Pennsylvania)

Alexa647 labeled Ab, dilution

endogenous
LDHB

Alexa488 labeled Ab, dilution
1:200 (MoBiTech, Germany)

PEX14 (when anti-PEX 14 rabbit polyclonal )
eCFP-LDHA antibodies, dilution 1:200 éjizfgﬁcﬁg; IGmrr;‘:‘e“O
present) (ProteinTech, Chicago, Illinois) ’ ’

Pennsylvania)

Table 9: List of antibodies and constructs used for immunofluorescence. Primary and
secondary antibodies are listed with their respective dilutions and manufacturers.

ager M1 fluorescence wide field scope equipped with the Zeiss Axiocam HRm Camera and
Zeiss Axiovision 4.8 acquisition software. Acquisition settings: DAPI (4,,. = 350nm, A, =
470nm), eYFP (A,,. = 514nm, A, = 527 nm), Alexab47 (A, = 652nm, A,, = 668 nm),
Alexad488 (doxe = 499nm, 4., = 519nm), Cy3 (A = 512nm, A, = 570nm). z-Stacks
with 30 images and 0.25 um spacing were recorded and subjected to deconvolution. Where
necessary, linear contrast enhancements were applied (Axiovision).

To estimate TR of endogenous LDHB and to quantify induction of endogenous LDHB by ge-
neticin, fluorescence images from samples prepared with anti-LDHB and anti-PEX14 antibod-
ies were recorded under identical conditions and subjected to deconvolution. To quantify TR
induction the LDHB/PEX14 intensities were measured, and the same threshold ratios were ap-
plied to all channel pairs (ImageJ, 1.47v). Induction is expressed as the ratio of LDHB/PEX14
ratios with and without geneticin treatment, respectively. For TR estimation no treatment with
geneticin was carried out, and cytosol removal was only required for one group of samples. To
quantify translational readthrough the signal of the anti-LDHB antibody was measured in cells
with cytosol, and set to 100 %, the anti-LDHB antibody’s signal was measured after cytosol
removal and normed to the 100 % control. Thus TR i.e. the remaining LDHB in peroxisomes

could be quantified.

2.6 Image analysis using ImageJ

The cells cores were selected in the DAPI channel of the analysed images using the threshold
function, this region of interest (ROI) was then used in the LDHB and PEX14 channels to
set the pixel values in that particular region to zero. The plug-in JACoP (just another co-
localisation plug-in, (Bolte and Cordelieres 2006)) for ImageJ (Schneider et al. 2012) was used
to compute Pearson and Mander coefficients. The Pearson coefficient gives the correlation of
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fluorophore signal between Alexa488 (LDHB) and Cy3 (PEX14) channels. Mander coeflicient
M1 acts as a score for pixels with LDHB signal that overlap with pixels showing PEX14 signal
with respect to the overall intensity of LDHB signal, M2 is defined conversely for the PEX14
signal. Thus the Mander coefficients are not disturbed by intensity differences between the
channels. As a multi-channel image might exhibit a shift between its channel the function Van
Steensel’s CCF of JACoP is a practical tool. The tools shifts images against each other in the
x-axis and calculates a Pearson coefficient r each time, the maximum of r(dx) is the Pearson
coeflicient of a picture without a shift. Only a x-axis can be corrected, not a z-/y-shift. This

tool was used to check against 7,,,,(dx # 0).

2.7 Purification of full length LDHB and full length LDHB-[UGG]

For expression of FL-LDHB and FL-LDHB-[UGG] E. coli cells (BL21 Codon Plus RIL, Ag-
ilent Technologies, USA) were used. The transformed cells were incubated in pre-culture
over night (shaker 300 rpm, 37 °C, 100 ml, 2.5 mg kanamycin, 3 mg chloramphenicilin). The
main culture (750 ml, 9.375 mg kanamycin, 11.25 mg chloramphenicilin) was inoculated to an
optical density (OD) of OD = 0.08. A sample of 1 ml was taken every hour (3x) for analy-
sis of the growth speed on western blot stained with coomassie (Bio-Rad, USA) over night.
After 1.5h induction with 0.5 IPTG (Sigma-Aldrich, USA) and temperature was lowered to
20°C. After another 3.5h the cells were harvested and spun at high speed for 20 min. The
wet pellet was lysed in buffer A (Table 7 on page 21) (Buffer with PBS pH 7.5, 200 mM
NaCl, 25 mM imidazole, 1 mM DTT, protease inhibitor PI 1 tbl., 0.1 mM phenylmethanesul-
fonylfluoride (PMSF), 0.1 mg/ ml lysozyme, 22.5ug/1 DNAse I) and the lysate rotated for
30min at 4°C. Lysates were sonicated (20 x 20s, amplitude 40 %), spun down to remove
debris (27,000 g, 30 min, 4 °C) and filtered (filter 0.45 wm). Purification was carried out with
imidazole gradient (Purifier Akta, Amersham Biosciences; column: His_Trap_HP 5 ml, Amer-
sham Biosciences), that was created using buffer B (buffer with PBS pH 7.5, 200 mM NaCl,
500 mM imidazole), for further parameters see Figure 35 on page 73. The fractions of purified
protein were checked on commassie stained (over night at 4 °C) SDS-gel (12 %, 20 mA, sam-
ple loaded with 1 : 1 Roti-buffer (Carl Roth GmbH + Co. KG, Germany Karlsruhe) (Figure 36
on page 74). The fractions containing most protein were pooled (FL-LDHB fractions 17, 18,
19, and FL-LDHB-[UGG] fractions 15, 16, 17) and enriched using a centrifugal filter device
(Amicon-Ultra-4, 10 K MWCO, Table 3 on page 19). The enriched protein solution’s concen-
trations were measured with BCA assay (Interchim, France) and adjusted to a concentration
of approximately 0.004 ug/ul (dilution with PBS pH 7.5 and 200 mM NacCl) for enzymatic
activity measurement in central laboratory of UMG. The measured activity was recorded in
the units U/l. The mean and standard deviation of 20 samples was taken and the equivalent

mean in the units U/mg was calculated, the respective standard deviation was calculated with
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uncertainty propagation (Equation 1 on page 28).
For analysis of purified FL-LDHB and FL-LDHB-[UGG] by mass spectroscopy the solution’s
buffer was exchanged for a sodium phosphate buffer (0.1 M, pH 7.4) to reduce the background

of imidazole.

2.8 Immunoprecipitation of endogenous protein from tissue lysates

tissue acquisition and lysis Tissue of different organs from wild-type rats were shock frozen
in fluid nitrogen (boiling temperatur —195.8 °C) less than 10 min after the animals death (CO,
induced unconsciousness followed by decapitation). Heart muscle, skeletal muscle, liver, kid-
ney, and fat tissue were acquired and stored at —80 °C. Lysis buffer was prepared fresh (Table 7
on page 21), 0.15 g tissue was mixed with 1 ml lysis buffer and homogenised 5x for 5 s (Tis-
sueRuptor, Qiagen). The lysate was spun at 14,000 rpm at 4 °C for 20 min, supernatant was
divided for use in BCA-assay (25 ul), WB analysis (25 ul) and storage at —20 °C.

For the western blot lysates were sonificated (amplitude 40 %, 20s) and incubated with 1x
Lammli-buffer at 95 °C for 10 min. Western blot was carried out with following settings, cur-
rent in stacking gel / = 20 mA, current in separation gel / > 20 mA, current while blotting
I = 1.2mA/cm?, incubation over night at 4 °C with primary antibody (monoclonal anti-LDHB
mouse antibody, dilution 1 : 5, 000), after three washing steps, incubation for 1 h at room tem-
perature with secondary antibody (goat anti-mouse antibody, dilution 1 : 5,000). Images were
acquired with Lumi light kit (Roche) and a reader (LAS-4000, Fujifilm).

IP Two aliquots for each tissue were prepared with 1 mg of protein in lysate solution, which
was added to lysis buffer to a final volume of 300 ul. For each tissue sample both aliquots
were incubated for 1 h at 4 °C, one with, one without anti-LDHB antibody. Protein G, agarose
beads (20 ul) were added to aliquots and rotated for 3 h at 4 °C. Samples were spun for 3 min at
7,000 rpm at 4 °C. Supernatant was discarded, volume (300 ul) refilled with IP-buffer (Table 7
on page 21). The washing step was repeated 5x with IP-buffer, then with PBS-NaCl (150 mM).
Bead pellets were dried (aspiration) and resuspended in 40 ul Lammli-buffer (with 600 mM
DTT). The samples and controls (taken prior to addition of antibody, and after pull down of
LDHB by beads from supernatant) were incubated (with Limmli-buffer) at 70 °C for 10 min.

These were used for western blot, Coomassie-stained gels and a silver-gel (not shown).
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3 Results

3.1 Genome wide database scan in Homo sapiens for readthrough pre-

diction

In order to find functional translational readthrough (FTR) genes that are expressed in cells of
Homo sapiens, it was necessary to predict high translational readthrough (TR) candidates in a
first step. Therefore we employed the in silico regression model (Schueren et al. 2014), that
is explained in the introduction (Paragraph 1.3 on page 4). For a first round of whole-genome
readthrough propensity (RTP) prediction, we extracted 42,000 unique stop codon contexts
(SCCs) out o_f the 200,000 transcript stored in the Ensembl database and calculated RTP by
adding up the regression coefficients of all relevant positions. A sortable list of RTP values
for all human transcripts computed by our first model LIN is contained in Dataset 1 (Schueren
et al. 2014).

3.2 Selection of candidates for experimental assessment of translational

readthrough

To expand the data basis used to train the model and to obtain evidence that the algorithm in-
deed predicts TR values I selected SCCs from the list of RTP values for all human transcripts
computed by the LIN in silico regression model. I scanned the transcripts that seemed to be
good test objects for transmembrane domains (TMDs) (one of 5 employed predictors found a
TMD for THGIL), putative farnesylation sites (CaaX-box, found in extensions of PRDM 10,
EDNI, IRAK3, and prior to annotated stop codon in FBXL20), and possible ER-retention sig-
nals (KDEL-sequence, found in EDEM3 and LEPRET), and most importantly PTS1 signals,
see Table 4 on page 19 for employed predictors. Finally I selected 15 candidates for exper-
imental assessment of TR values. I focused on PTS1 signals to identify peroxisomal matrix
proteins and thus TMDs had to be excluded. The readthrough candidates I wanted to test using
a dual reporter assay comprised genes with high (RTP>0.2), intermediate (0.2>RTP>0.05),
and low (RTP<0.05) predicted RTP values (Column LIN, Table 15 on page 78). The results of
my experimental assessment of TR rates for these 15 candidates are described in Paragraph 3.3

on the next page (Table 15 on page 78).
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3.3 Dual reporter assay using Venus/luciferase to characterise readthrough

candidates

For experimental analysis, SCCs spanning 10 nucleotides upstream and downstream of the
stop codon were expressed with a 5’/N-terminal yellow fluorescent protein (Venus) and a 3’/C-
terminal humanized Renilla luciferase (hRluc) tag. Normal termination of translation results
in expression of only Venus protein. Stop suppression leads to the expression of hRluc. Thus
Venus serves as an internal expression control. TR is expressed as luciferase activity per Venus
fluorescence. This dual reporter assay (DRVL) excludes introns and exon junction complexes
and, due to the relatively short stretch of variable nucleotides between the reporters, also does
not allow for extensive RNA structures that could modulate readthrough (Paragraph 1.5 on
page 9). Consequently, this form of the dual reporter assay focuses on the assessment of TR
not influenced by specific distal elements. The candidates (pDRVL-X) selected to expand
the training data used for the in silico regression model were tested and showed TR between
0.10 % (+£0.006 %) and 2.91 % (+0.15 %) relative to the 100 % readthrough control (pDRVL)
expressing the Venus-hRluc fusion protein without an intervening stop codon region (Figure 10
on the following page). The TR rates of the candidates are also listed (Table 15 on page 78)
with their respective RTP values.

The construct pPDRVL-VASN-[UAA UAA] serves as a negative control, as it contains a tan-
dem termination site (2 times the tightest stop codon UAA) and gives thereby an estimation
of readthrough background level (= 0.1 %) in the dual reporter assay, which confirms the TR
background levels found earlier (Namy et al. 2001; Harrell et al. 2002).

Five out of 13 tested genomic constructs that are shown in Figure 10 on the following page ex-
hibit TR rates that exceed the background significantly. These constructs are pPDRVL-LENGI,

pDRVL-HGNC SCC (stop codon underlined) TR SD p-values
pDRVL-LENG1 CCTTACTCAC TGA CTCCTGAGGG 0.26 0.01  0.008
pDRVL-ZNF574 GATCAGTGGC TGA CTCTGCCCGA 0.31 0.02  0.006
pDRVL-EDEM3 GGATGAGCTA TGA CTTGCTAAAC 0.66 0.03  0.001
pDRVL-EDNI1 AGCACATTGG TGA CAGACCTTCG 0.25 0.01  0.028

pDRVL-PPPIR3F ATTCTCCCAA TAA AGCTTTACAG 0.18 0.01  0.024

Table 10: The genomic candidates selected to expand the training data for in silico
regression model LINiter show partially TR higher than background levels. These dual
reporter constructs are shown with their respective SCC, TR values and p-values. P-values
were computed with two sided, unpaired, equal variance Student’s t-tests. SD, standard
deviation.

pDRVL-ZNF574, pDRVL-EDEM3, pDRVL-EDNI1, pDRVL-PPP1R3F, which showed TR of
0.25 to 0.66 % and exceeded background levels significantly (Table 10).
Naturally also the other constructs displayed in Figure 10 on the following page and two fur-

ther constructs, which will be elucidated in Paragraph 3.5 on page 37, contributed to the new
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Figure 10: The translational readthrough (TR) [%] rates shown for the selected candi-
dates of the genomic wide search list were obtained using a dual reporter assay [Venus-
hRluc] (Table 15 on page 78). The weighted mean was calculated from a number of n
constructs with n being 3 < n < 7, all constructs were transfected in HeLa cells and

analysed in 12-well plates. Ratios normed to positive control (100 % TR), pDRVL-VASN
[UAA UAA] with tandem stop codon serves as negative control, thus the red line indicates
background level. Error bars, SD.

training set. We added the new experimental data in form of these measured readthrough levels
to the training data to obtain an iterative and extended RTP model (LINiter). The regression
factors of the LINiter model are listed in Table 13 on page 76. Again, we applied this model
to all human transcripts, see Dataset 1 (Schueren et al. 2014) for listed values. The iterative
model was refined two times using feature selection (fs), i.e. those positions that contributed
least to the prediction were taken out of the model successively (Schueren et al. 2014). The re-
fined models consider less positions of the SCCs. These models LINfs5, and LINfs3 comprise
contexts of 5 positions (-6, +4 to +7) and 3 positions (+4 to +6), respectively. The measured
data shows correlation to the prediction of TR (Schueren et al. 2014), i.e. the RTP score (Ta-
ble 15 on page 78), as the Pearson correlation coefficients for TR [%] vs LINiter, and TR [%]
vs LINfs3 are r = 0.34 (p = 0.002), and r = 0.41 (p = 0.0001), respectively. So the rational
refinement of the model led to a better correlation between model and measured data and more
importantly revealed the consensus UGA CUA (G) (stop codon underlined) for context-driven
high TR in Homo sapiens. Only 38 (19) genes actually carry this consensus, see Table 14 on
page 77 in the appendix.

As mentioned in Paragraph 1.2 on page 1 drugs from the group of aminoglycoside antibiotics

and their derivatives can induce TR. The aminoglycoside antibiotic geneticin (G418) increased
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TR between 3.25 (£0.41) and 40.38 (+5.33) fold (Figure 11).
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Figure 11: The induction factor (IF) is shown for selected candidates of the genomic
wide search list, it was obtained using the dual reporter assay and the comparison between
untreated and treated samples (treated with geneticin (G418), 100 ug/ml), the values are
listed in Table 15 on page 78. The weighted mean was calculated from a number of n
constructs with n being 4 < n < 7, constructs were transfected in HeLa cells and analysed
in 12-well plates. The construct pPDRVL-VASN [UAA UAA] serves as a negative control,
and it shows no response to treatment with aminoglycoside geneticin (G418). Error bars,
SD

Geneticin only increased TR (i.e. the ratio luciferase-signal/Venus-signal) when a stop codon
separated Venus and luciferase. This is a requirement for my assay, as the control’s signal
should not be altered by TR inducing drugs. The finding that experimental TR could be in-
creased by treatment with aminoglycosides excludes alternative mechanisms such as RNA
editing or splicing that might explain the relative increase of the luciferase over the Venus sig-
nal. Thereby I confirmed that the dual reporter assay really measures translational readthrough

and does so faithfully.

3.4 Ranking of translational readthrough candidates by a product of
readthrough propensity and peroxisomal targeting signal 1 posterior

probability

As the goal of the study was not to find high TR candidates but to detect FTR candidates in

the human genome, the next step involved an in silico scan for a functional domain. While I
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first scanned the dataset by hand for different possible functional domains, now a predictive
algorithm was used. The scan in our database focused on the peroxisomal targeting signal 1
(PTS1) (Paragraph 1.6 on page 11). A PTS1 posterior probabili_ty score was calculated for the
42,000 unique human SCCs using a PTS1 algorithm, it was adapted from plant PTS1 to human
PTS]1 for this purpose (Lingner et al. 2011; Schueren et al. 2014). Given that we scanned the
database for PTS1 in the extensions of TR candidates, we had to combine the scores of RTP
and PTS1 posterior probability. The RTP score indicated the level to which the extension was
appended to a protein and the PTS1 score is an indicator for the probability that the appended
signal resulted in peroxisomal targeting of the protein. Thus a protein would be most likely
to target to peroxisomes by a cryptic PTS1 when the product of the RTP and the extension’s
PTS1 scores are high. To avoid negative scores we used the product of positively scaled RTP
(—RTP") LINiter scores and PTS1 posterior probabilities (RTP*x PTS1) as a predictor of
functional peroxisomal targeting by a hidden PTS1 in the extension (Schueren et al. 2014).
The 42,000 unique SCCs were ranked by the product (RTP*x PTS1) (Figure 12).
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Figure 12: The product of positively scaled RTP and PTSI probability score
(RTP*x PTS1) is shown in its genomic distribution. The scores of ranks 5,015-42,069
are zero. LDHB exhibits the highest product score and exceeds rank 2 by 24 %. The

green cross indicates 50 % of the highest product score (LDHB). The figure was designed
by T. Lingner (Schueren et al. 2014).

We identified LDHB, one of the two human lactate dehydrogenase (LDH) subunits, at the
top (position 1 of 42,069 entries) of our sorted list of multiplied RTP* and PTS1 scores, see
dataset 1 (Schueren et al. 2014). The RTP*x PTS1 product score shows a striking distribution.
It drops by 50 % over the first 40 of 42, 069 transcripts and transcripts 5, 015 to 42,069 have a
score of zero. This rapid decline of the product score indicates that other candidates must have

considerably lower RTP scores and/or targeting efficiencies and that there might be only few
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candidates for FTR involving PTS1 in the human genome. Malate dehydrogenase 1 (MDH1)
was found on rank 175, it’s score being only 27 % of LDHB’s product score. Still both en-
zymes, which were already part of the set of 15 TR candidates I used to expand the database,
sparked my interest and I characterised them further in terms of TR and IF as well as possible

secondary structures in their respective extensions.

3.5 Dual reporter assay for stop codon contexts of LDHB and MDH1

Lactate dehydrogenase subunit B and malate dehydrogenase 1 were chosen for further eluci-
dation. Therefore their SCCs (positions —10 to +13) were cloned into the dual reporter and
TR was measured. Additionally the response upon treatment with aminoglycoside geneticin
(G418) was tested (Figure 14 on the next page). LDHB undergoing TR appends six amino
acids to the protein plus the one inserted at the over-read termination site. MDHI1 is extended

by a sequence of 18 amino acids if read through, see Figure 13.

LDHB C-terminus TLWDIQKDLKDLSTOPLVSSRLSTOP
MDH1 C-terminus EKESAFEFLSSASTOPLDNDVTKCFKAEESKCRLSTOP

Figure 13: The extensions of LDHB and MDH1 shown as an amino acid sequence differ
in length. Six amino acids are appended to LDHB undergoing TR and 18 amino acids are
attached C-terminally to MDHI1 after stop supression.

Both constructs showed readthrough rates exceeding the background level by far. LDHB
exhibited TR of 1.55% (£0.09 %) and geneticin treatment induced readthrough rates 2.82
(20.31) fold. MDH1 showed readthrough rates of 2.91 % (+0.15 %) and drug treatment in-
duced TR 4.51 (+£0.32) fold. TR of MDH1-WT and LDHB-WT shown in Figure 14 on the
next page differs between the constructs significantly, pPDRVL-MDHI1 exhibits roughly twice
as much TR as pDRVL-LDHB.

The feature selection that revealed the consensus UGA CUA (G) (stop codon underlined) illus-
trates the importance of the stop codon and position +4 for TR, thus these were the positions
first analysed for LDHB (Figure 15 on page 39).

LDHB-WT was compared with three altered constructs, the first has a U instead of C at posi-
tion +4, I exchanged the stop codon of LDHB-WT for the assumed tightest stop codon (UAA)
to design the second construct, and the third construct exhibits the tight stop codon UAA and
U at position +4. The measurement of LDHB construct and three mutants in the dual reporter
assay revealed a strong dependence of TR of LDHB on the leaky stop codon UGA and the
cytosine residue at position +4 (Figure 15 on page 39). The TR value of wild-type construct
pDRVL-LDHB is significantly higher than TR of the altered constructs pPDRVL-LDHB-[UGA
U], pDRVL-LDHB-[UAA C], and pDRVL-LDHB-[UAA U]. Mutation of the stop codon or

the first position downstream (pos. +4) strongly suppresses TR.
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Figure 14: (a) TR values for pDRVL-LDHB, pDRVL-MDH1 obtained with DRVL-
assay. TR of pDRVL-MDHI is significantly higher than TR of pDRVL-LDHB (p =
0.022, two sided, unpaired, equal variance Student’s t-test). (b) IF calculated as the ratio
of the construct’s TR values from treated/untreated cells. The weighted mean of TR and
IF were calculated from a number of n constructs with n being 5 < n < 7. Constructs
were transfected in HeLa cells in 12-well plates. Error bars, SD.

In order to further analyse the influence of nucleotides surrounding the stop codons of LDHB
and MDHI1, dual reporter constructs were designed with altered nucleotides at positions +4 to
+6 for LDHB and exchanged stop codons and nucleotides at positions +4 to +6 for MDHI.
The readthrough rates measured for these constructs are displayed (Figure 16 on page 40).
The wild-type construct (p)DRVL-LDHB) exhibits significantly higher TR than any construct
displayed in Figure 16 on page 40 (a) with p < 0.002 (two sided, unpaired, equal variance
Student’s t-tests). TR of constructs pPDRVL-LDHB-[UGA UUA] and pDRVL-LDHB-[UGA
GUA] differs significantly with G at position +4 allowing higher readthrough than U at posi-
tion +4, see marker (*) in Figure 16 on page 40. This finding is not supported by the in silico
derived regression factors (Table 13 on page 76). TR of constructs pPDRVL-LDHB-[UGA
CAA] and pDRVL-LDHB-[UGA CCA] differs significantly (Figure 16 on page 40, (*x)). The
residue A at position +5 allows higher readthrough than C at that position, which is supported
by the in silico derived regression factors (Table 13 on page 76).

The wild-type construct (pDRVL-MDH1) exhibits significantly higher TR than any construct
displayed in Figure 16 on page 40 (b) with p < 0.000005 (two sided, unpaired, equal variance
Student’s t-tests). TR of constructs pPDRVL-MDH1-[UAA CUA] and pDRVL-MDHI1-[UAA
UUA] differs significantly, compare marker (*) in Figure 16 on page 40. The residue C at
position +4 mediates higher readthrough than residue U at position +4, which is supported
by the in silico derived regression factors (Table 13 on page 76). TR rates differ significantly
between the constructs pPDRVL-MDHI1-[UAA UUA] and pDRVL-MDHI1-[UGA UUA], com-
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Figure 15: (a) TR values for pDRVL-LDHB, pDRVL-LDHB-[UGA U], pDRVL-
LDHB-[UAA], and pDRVL-LDHB-[UAA U] obtained with DRVL-assay. The TR of
wild-type construct pPDRVL-LDHB differs significantly from TR of altered constructs
pDRVL-LDHB-[UGA U], pDRVL-LDHB-[UAA C], and pDRVL-LDHB-[UAA U] (p =
0.0006, p = 0.00003, p = 0.00001 respectively, two sided, unpaired, equal vari-
ance Student’s t-tests). (b) IF calculated as the ratio of the construct’s TR values from
treated/untreated cells. The weighted mean of TR and IF were calculated from a number
of n constructs with n being 4 < n < 8. Constructs were transfected in HeLa cells in
12-well plates. Error bars, SD.

pare marker (xx) in Figure 16 on the next page. The stop codon UGA at positions +1 to +3
allows higher TR than the tight stop codon UAA. This finding meets the expected outcome
(Table 13 on page 76). TR of constructs pPDRVL-MDH1-[UGA UUA] and pDRVL-MDHI1-
[UGA GUA] differs significantly with G at position +4 allowing higher readthrough than U,
see marker (x * %) in Figure 16 on the next page. This is not in agreement with the in silico de-
rived regression factors (Table 13 on page 76). TR of constructs pPDRVL-MDHI1-[UGA CUU]
and pDRVL-MDHI1-[UGA CUG] differs significantly with G at position +6 allowing higher
readthrough than U (Figure 16 on the next page, (x * * x)), which is supported by the in sil-
ico derived regression factors (Table 13 on page 76). TR of constructs pPDRVL-MDHI1-[UGA
AUA] and pDRVL-MDHI-[UGA GUA] differs significantly with A at position +4 allowing
higher readthrough than G. The effect of A>G on TR is confirmed by the in silico derived
regression factors (Table 13 on page 76). Also TR of constructs pPDRVL-MDH1-[UGA AUA]
and pDRVL-MDHI1-[UGA UUA] differs significantly with A at position +4 allowing higher
readthrough than U, which is supported by the in silico derived regression factors (Table 13 on
page 76).

The analysis of context driven TR of LDHB and MDHI leads to an order of nucleotides for
high TR, which is UGA>UAA>UAG (C>A>G>U) (U>A>C) (A>G>U) (stop codon under-
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Figure 16: TR of DRVL-assay for LDHB and MDH1 mutated in positions +4 to +6.
TR was calculated as weighted mean from n constructs with n = 4. (a) shows the TR
[%] of LDHB derivatives. TR differs significantly for construct pair (x) and (*x) with
p = 0.005, and p = 0.03, respectively. (b) shows the TR [%] of MDHI1 derivatives.
TR differs significantly for construct pair (), (#x), (% * %), and (* = =* %) with p =
0.00001, p = 0.0006, p = 0.027, and p = 0.000006, respectively. TR of pDRVL-
MDH1-[UGA AUA] is significantly higher than TR of pPDRVL-MDHI1-[UGA GUA], and
pDRVL-MDHI1-[UGA UUA] with p = 0.001, and p = 0.0005, respectively. The p-values
were calculated using two sided, unpaired, equal variance Student’s t-tests. The constructs
were transfected in HeLa cells in 96-well plates. Error bars, SD.

lined), this indicates the consensus UGA CUA for high context driven TR. Except for the order
of G>U for position +4 and +6 this found influence of nucleotides/ stop codons in position +1
to +6 is in agreement with our models LINiter, and LINfs3, compare Table 13 on page 76 and
Table 2 (Schueren et al. 2014).

The feature selection of the in silico regression model’s coefficients identified positions —6,
and +7 as important beside the now analysed positions +4, +5, +6 (Schueren et al. 2014).
LDHB, MDHI1 and also my pDRVL constructs of these genes have a G residue at position +7,
thus I didn’t test the position’s influence here. However they differ in position —6, which is G,
U for LDHB, MDHI respectively. To test if position —6 might influence readthrough values as
predicted by the model given that the other relevant positions (positions +1 to +7) bear iden-
tical nucleotides, I compared LDHB and MDH]1 constructs with identically mutated SCCs of
Figure 16. Two pairs were identified that do not show a significant effect of position —6 on TR
and two pairs exhibit a significant difference of TR between one another. TR of construct pair
pDRVL-LDHB-[UGA UUA] and pDRVL-MDH1-[UGA UUA], and construct pair pDRVL-
LDHB-[UGA GUA] and pDRVL-MDHI1-[UGA GUA] differs not significantly (p = 0.5,
p = 0.57, two sided, unpaired, equal variance Student’s t-tests). Translational readthrough of
constructs pPDRVL-LDHB-[UGA CCA] and pDRVL-MDH1-[UGA CCA] differs significantly
(p = 0.02, two sided, unpaired, equal variance Student’s t-test) with pDRVL-MDHI1-[UGA
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CCA] allowing higher readthrough than its LDHB counterpart. Thus this indicates an effect
of U>G for position —6, which is in agreement with the in silico derived regression factors
(Table 13 on page 76). TR of constructs pPDRVL-LDHB-[UGA CUG] and pDRVL-MDHI1-
[UGA CUG] differs significantly (p = 1.5x 1077, two sided, unpaired, equal variance Student’s
t-test) with pDRVL-MDHI1-[UGA CUG] allowing higher readthrough than its LDHB counter-
part, again this is supported by the in silico derived regression factors (Table 13 on page 76).
The model LINiter predicts that U at position —6 (as in the MDHI constructs) allows higher
readthrough than G (as in the LDHB constructs), however the comparison is not entirely clean
as the less influential positions of my dual reporter constructs were influencing the measured
TR rates although the important positions had the same nucleotides in the compared constructs.
To exclude that distal elements in the extensions of LDHB and MDH1, which are conserved in
mammals, and vertebrates respectively, exist and influence TR, the extensions were subjected
to a prediction programme. The secondary structures of mRNA parts (nucleotide position -10
to the second in-frame stop codon) were predicted for LDHB and MDHI1 in several species,
including Homo sapiens, Felis catus and Mus musculus (Gruber et al. 2008). The predicited
RNA secondary structures are shown in Figure 17 on the next page. The structures suggest no
conserved element in the TR extension of LDHB and MDHI1. This justifies the focus of the
analysis on context driven TR, although a distal elements downstream of the extension is not
excluded.

So far I described the in silico regression model and how I selected candidates to expand the
database of the model LIN. The refined models led to the consensus for high context-driven
TR and allowed us to rank our extensive gene list according to the product score of RTP* and
PTS1 posterior probability. Within the highest ranks of the sorted list LDHB and MDH1 were
found with LDHB on the top position. I used the dual reporter assay to characterise TR of
these two genes and the influence of the SCC on their TR.

3.6 Translational readthrough in multiple cell types

As mentioned in the introduction, evidence was found indicating that TR can undergo regula-
tion due to developmental state of the organism. This was observed for genes in Drosophila
melanogaster, compare Paragraph 1.3 on page 4, and Paragraph 1.4 on page 7. It was also
observed that the TR gene VEGFAx was down-regulated in grade 2 or 3 adenocarcinoma cells
of colon (human xenografttumor in mice) (Eswarappa et al. 2014). To test if TR might be dif-
ferentially regulated in different cell types as well, first TR and IF of pDRVL-LDHB and one
mutant of pDRVL-LDHB with a tight stop codon were analysed in COS-7, HEK and U118
cells (Figure 18 on page 43). Subsequently TR of pDRVL-MDHI1 and pDRVL-LDHB was
compared in HeLa, and glioblastoma cell lines (U373, and U118) (Figure 19 on page 44).

This analysis was expanded to more constructs and further cell lines (Figure 20 on page 45).
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Figure 17: The RNA secondary structures do not indicate conserved structures in the
hidden TR extensions of LDHB, and MDHI1. From 13 analysed species three examples
are shown for LDHB, and MDH1. Shown examples are LDHB ((a) Homo sapiens, (b)
Mus musculus, (¢) Felis catus), and MDH1 ((d) Homo sapiens, (€) Mus musculus, (f) Felis
catus). mRNA structure prediction was done with RNAfold Web Server (Gruber et al.
2008), the sequence fragment was entered from nucleotide position -10 until the second
in-frame stop codon. The colour code indicates the pairing probability of the nucleotides.

Similarly to the assessment of TR of pDRVL-LDBH and pDRVL-LDHB-[UAA U] in HeLa
cells (Figure 15 on page 39) the first analysis of TR in different cells was carried out with these
two constructs in fibroblast-like cells (COS-7), human embryonic kidney cells (HEK 293) and
glioblastoma cells (U118). TR and IF by treatment with geneticin (G418) are visualised in Fig-
ure 18 on the following page. It seems apparent that readthrough rates are at different levels in
each of the cell lines, however, TR of wild-type construct pPDRVL-LDHB differs significantly
only between HeLLa and U118 cells, COS and U118 cells, and HEK and U118 cells. The high
TR in glioblastoma cells (U118) in comparison to the other cell types might be noteworthy.
The effect of the stop codon (UAA) on TR is as striking in COS, HEK, and U118 cells as in
the HelLa cells.
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Figure 18: TR values for pDRVL-LDHB and pDRVL-LDHB-[UAA U] obtained with
DRVL-assay. TR of construct pPDRVL-LDHB differs significantly only between Hela
(data of Figure 14 on page 38) and U118 cells, COS and U118 cells, and HEK and
U118 cells (with p = 0.00004, p = 0.009, and p = 0.003, respectively, two sided,
unpaired, equal variance Student’s t-test). IF calculated as the ratio of RT values from
treated/untreated cells. The weighted mean, and IF were calculated from a number of n
constructs with n being 3 < n < 10. (a,d) Constructs were transfected in COS cells, (b,e)
constructs were transfected in HEK cells, (c,f) constructs were transfected in U118 cells
in 12-well plates. Error bars, SD.

LDHB and MDHI1 were the genes of highest interest in this study and the high TR rates ob-
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served for LDHB in U118 were interesting, thus I compared the TR rates of both constructs
(pDRVL-LDHB/-MDHI1) in HeLa cells with their TR rates in the glioblastoma cell lines U118
and U373 (Figure 19).
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Figure 19: TR values of pDRVL-LDHB, and pDRVL-MDH]1 obtained with DRVL-
assay in HeLa, U118, and U373 cells. TR of pDRVL-LDHB in U118 cells is significantly
higher than in HeLa, and U373 cells (p = 0.0000003, p = 0.00008). TR of pDRVL-
MDHI1 in U118 cells is significantly higher than in HeLa, and U373 cells (p = 0.013,
p = 0.011). TR of pDRVL-MDHI is higher than TR of pDRVL-LDHB in all three cell
lines (U373, HeLa, U118, with p = 0.002, p = 0.001, p = 0.0005, respectively). The
significance was tested using two sided, unpaired, equal variance Student’s t-tests. The
mean was calculated from a number of 7 constructs with n = 5 or n = 6. Constructs were
transfected in HeLLa, U373, U118 cells in 96-well plates. Error bars, SD.

Readthrough of pDRVL-LDHB in Hela and U373 does not differ significantly between the
cell lines, but expression of pPDRVL-LDHB in U118 cells shows significantly higher TR than
in HeLa and U373 cells. A very similar pattern is evident for pPDRVL-MDHI1 (Figure 19), as
its expression results in TR rates that are significantly higher in U118 cells than in HeLLa and
U373 cells. Thus pDRVL-LDHB and pDRVL-MDHI exhibit significantly higher TR in U118
cells than in the other two cell lines, a pattern that was observed earlier for LDHB (Figure 18
on the previous page). The construct pPDRVL-MDH]1 exhibits TR rates that are higher than TR
of pDRVL-LDHB in all three cell lines (U373, HeLa, U118).

Further analysis of cell dependent readthrough regulation was carried out with two constructs
(pDRVL-ZNF574 and pDRVL-EDEM3) that had shown significant readthrough above back-
ground in the genomic candidate analysis in HeLa cells and naturally pPDRVL-LDHB, pDRVL-
MDHI1 and one low readthrough construct (pDRVL-IRAK3). These constructs were tested in
five distinct cell lines (HeLa, HEK, U373, U118 and HT1080 cells) (Figure 20 on the follow-

ing page).
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Figure 20: TR values for pPDRVL-ZNF574, pDRVL-LDHB, pDRVL-EDEM3, pDRVL-
IRAK3, pDRVL-MDHI1 obtained with DRVL-assay. Measurements were undertaken in
12-well plates. The weighted mean was calculated from a number of n = 3 constructs,
except for LDHB, which was measured in HeLa/HEK 7/5 times, respectively. (a) Con-
structs were transfected in HeLa cells, (b) constructs were transfected in HEK cells, (c¢)
constructs were transfected in U373 cells, (d) constructs were transfected in U118 cells,
(e) constructs were transfected in HT1080 cells, pPDRVL-IRAK3 in HT1080 was compro-
mised. The HT1080 set of constructs showed significantly lower TR than the HeLa set
(p = 0.03, two sided, paired, equal variance Student’s t-test). (f) TR values of pDRVL-
MDHI1 grouped for the different cell types as additional overview. Error bars, SD.

Of the sets of constructs in different cell lines only the HT1080 group showed significant
lower TR values as a group in comparison to the HeLLa group. The pattern observed before,
that constructs expressed in the U118 glioblastoma cell line exhibit higher TR than in the same
constructs expressed in other cell lines, was not observed in a comparison of the groups dis-
played in Figure 20. Thus this might be an effect of single high TR constructs (LDHB, and
MDH1), but not necessarily an effect that could be generalised.

Translational readthrough of pDRVL-MDHI1 is significantly lower in HEK and HT1080 than
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in HeLa cells (p = 0.0003, p = 0.03, two sided, unpaired, equal variance Student’s t-tests). Ac-
cording to this measurement readthrough of pPDRVL-LDHB is significantly higher in U118 and
lower in HT1080 than in HeLa cells (p = 0.002, p = 0.02, two sided, unpaired, equal variance
Student’s t-tests). No evidence was found for a significant difference in readthrough rates of
pDRVL-ZNF574 between HeLa and any of the other cell lines (HEK, U373, U118, HT1080).
Construct pPDRVL-EDEM3 exhibits significantly lower TR in HEK cells and HT1080 cells
than in HeLa cells (p = 0.005, p = 0.01, two sided, unpaired, equal variance Student’s t-tests).
Translational readthrough of pPDRVL-IRAKS is significantly lower in HEK cells in compari-
son to HeLa cells (p = 0.01, two sided, unpaired, equal variance Student’s t-test).

After I characterised the influence of the nucleotides around the stop codon on TR or LDHB
and MDHI, I tested if TR might be regulated differently in distinct cell lines. The constructs
pDRVL-LDHB and pDRVL-MDHI1 showed similar patterns in HeLa cells and glioblastoma
cell lines (U118, U373). The MDHI1 construct exhibits higher TR than LDHB in all cell lines
tested and the cell line U118 allowed higher TR of LDHB and MDHI1 than the other cell
lines. A more expanded analysis of five constructs was carried out in five cell lines. All five

constructs showed TR rates that were lower in HT1080 cells than in Hela cells.

3.7 Influence of stop codon context on expression in absence of the stop

codon

So far it was shown in the preceding paragraphs that the SCC including the stop codon can
influence TR, this might indicate an effect exerted directly by the nucleotides neighbouring the
termination site on the ribosome. Consequently I asked three questions, such as whether the
influence of the stop codon can be isolated, whether the SCC is able to influence expression
of luciferase in the dual reporter without the stop codon, and whether the codon frequencies
downstream the stop codon are possibly relevant for TR. In other words, I wanted to know if
the sequence that evolved around the stop codon had an effect on the genes expression even
in absence of the stop codon and to possibly find a clue hinting the mechanism that underlies
context-driven TR.

The effect of the stop codon was isolated already by exchange of UGA with one of the other
two termination codons, as displayed in Figure 15 on page 39.

To check if the SCC without a stop codon is able to influence expression of the luciferase
in the pDRVL constructs these SCCs were designed with a tryptophan codon (UGG) at the
former termination site. Tryptophan was chosen, because it is one of the amino acids that
were found to be incorporated most often for UGA termination sites in mammalian translation
systems (Paragraph 1.5 on page 9). The HGNC symbols of the constructs, the nucleotide
sequences and the amino acid sequences of these constructs are shown in Table 11 on page 49.

The luciferase/Venus-signal of these constructs with respect to the control pPDRVL is shown in
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Figure 21 and listed as SCC influence in Table 11 on page 49. The respective constructs derived
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Figure 21: Results of the pPDRVL-X-[UGG] measurement, with n = 4. The stop codons
of the constructs for genomic TR measurement were exchanged for a tryptophan codon
(UGG). The venus signal served as expression control, the hRluc signal is proportional to
the expression of luciferase, the ratios hRluc/Venus are shown as bars in % of the positive
control’s ratio. The measurement was carried out in 12-well plates. Error bars, SD.

from genes LENGI, PRDM10, FBXL20, EDEM3, EDNI, UBQLNI, and SLC3A1 exhibit a
signal ratio (SCC influence, Table 11 on page 49) that is significantly lower than the signal of
positive control pDRVL (p; < 0.024, two sided, unpaired, equal variance Student’s t-tests). The
results displayed (Figure 21) indicate that the SCC without the stop codon still influences the
expression of luciferase relative to that of Venus.

Table 11 on page 49 also lists TR,, which is the signal of a pDRVL-X construct divided by its
equivalent pDRVL-X-[UGG] construct. Although the controls (either pPDRVL or pDRVL-X-
[UGQG]) that serve as a norm are quite distinct from each other, TR (pDRVL-X/pDRVL) and
TR, correlate well with Pearson correlation coefficient r = 0.98. This might confirm that the
stop codon’s influence by far exceeds the influence of the surrounding nucleotides.

To understand the differences between the pDRVL-X-[UGG] constructs and pDRVL shown in
Figure 21, the codons in the vicinity of the former stop codon were analysed. Could the low
expression level of luciferase of some pDRVL-X-[UGG] constructs be the result of rare codons

in the SCC? The Pearson correlation coefficient for SCC influence [%] and codon frequency
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(i.e. the lowest codon frequency in the SCC) is r = —0.869 and it is not significant with error
probability @ = 5 %. This suggests that it is not rare codons that influence the luciferase/Venus
signal of the pPDRVL-X-[UGG] constructs.

To test whether TR might be influenced by rare codons located downstream the stop codon, i.e.
the abundance of tRNAs that decode certain codons might influence the speed of the ribosome
and thereby the probability of mis-incorporation of a near-cognate tRNA at a termination site,
the codon usage frequencies in human genome (Table 16 on page 79) were used to create a
score that evaluated the context downstream of the termination site. The score simply shows
the rarest codon within the first four codons downstream the stop codon (codon frequency,,i,,
Table 11 on the following page). There was no apparent correlation between TR and the
codon frequency score, though interestingly, leucine is coded for with a rare codon (CUA)
in LDHB and MDHI, the two high TR genes. However, if the rare codon (for leucine) was
really facilitating readthrough, the construct pPDRVL-LDHB-[UGA UUA] would have shown
a similar readthrough rate as the wild-type construct pPDRVL-LDHB-[UGA CUA] (Figure 16
on page 40), because UUA is also a rarely used codon for leucine, see table of codon usage
in the appendix (Table 16 on page 79). TR of pDRVL-LDHB-[UGA UUA] is by far lower
than TR of pDRVL-LDHB-[UGA CUA], thus the frequency with which codons are used in
the genome (i.e. abundance of respective tRNAs) might not influence TR this obviously.

The next paragraphs focus on FTR, so on the physiological effect TR has on LDHB in human
cells.
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3.8 Peroxisomal targeting of endogenous LDHBx analysed quantitatively

by immunofluorescence experiments

After I used the dual reporter assay to expand the database for our in silico regression model,
to analyse TR of mainly LDHB and MDHI, and to test the influence of the nucleotides in the
vicinity of their stop codons (the SCC), my further interest was to analyse the function hid-
den in the extension of LDHBx (extended LDHB), see Figure 22. MDH1x (extended MDH1)
was shown to be peroxisomal using fluorescence imaging and cytosol bleaching (Stiebler et al.
2014).

LDHB C-terminus TLWDIQKDLKDLSTOPLVSSRLSTOP
MDH1 C-terminus EKESAFEFLSSASTOPLDNDVTKCFKAEESKCRLSTOP

Figure 22: The extensions of LDHB and MDH1 shown as an amino acid sequence differ
in length. Six amino acids are appended to LDHB undergoing TR and 18 amino acids are
attached C-terminally to MDHI1 after stop suppression. The hidden PTS1 are boxed in
green.

While the qualitative experiments to prove FTR of LDHB were done by coworkers (Schueren
et al. 2014), I focused on the quantitative assessment of FTR using immunofluorescence mi-
croscopy. Instead of truncated regions of interest that were analysed in the dual reporter assay,
here the endogenous LDHB in untransfected wild-type cells was used for FTR analysis. This
analysis relies on the samples created by C. Dickel and an assay developed by R. George. The
assay depletes a cell’s cytosol by perforation of its membrane using digitonin and subsequent
washing steps (Schueren et al. 2014). Only the content of organelles remains intact, thereby
any background signal of fluorophores residing in the cytosol is drastically reduced, which in
turn allows undisturbed observation of fluorophores trapped in organelles.

As pDRVL-LDHB was analysed in different cell types using the dual reporter assay, the fol-
lowing figures display endogenous LDHB and LDHBXx in different cell types (Figure 23, Fig-
ure 24, and Figure 37). The peroxisomal enzyme LDHBX was unmasked using the digitonin-
assay to remove the cytosol. FTR of endogenous LDHB is shown using immunofluorescence
microscopy in four cell types, and the qualitative prove of visual co-localisation is supported by
Pearson correlation coefficients that I computed for each of the images displayed in the follow-
ing figures using ImagelJ (plug-in JACoP). See figure legends of immunofluorescence images
(Figure 23-26, Figure 37) for the Pearson correlation coefficient that indicates the correlation
between the Alexa488 (LDHB) fluorophore and the Cy3 (PEX14) fluorophore. LDHBx was
observed endogenously in HeLa cells (Figure 37 on page 75 in the appendix), human skin
fibroblasts (Figure 23 on the next page), COS-7 cells, and glioblastoma cells (U118 cell line)
(Figure 24 on page 52).

My measurements of TR of pDRVL-LDHB (shortened constructs) in HeLa cells with the dual
reporter assay revealed TR rates of 1.55 (+£0.09 %) for LDHB. I wanted to check this result of

50



3 RESULTS

(a) Anti-LDHB (b) Anti-PEX14 (c) Merge w/DAPI

(d) Anti-LDHB (e) Anti-PEX14 (f) Merge w/DAPI

Figure 23: Endogenous LDHB in wild-type human skin fibroblasts localises to per-
oxisomes (PEX14), cells with (a-c)/ without (d-f) cytosol. Immunofluorescence with
secondary antibodies Alexa488-coupled and Cy3-coupled. Co-localisation: Pearson cor-
relation coefficient r;_y = 0.71. Slides were prepared by C. Dickel. Bar 10 um.

the dual reporter assay using immunofluorescence experiments of full length LDHB, i.e. the
images of endogenous LDHB in untreated wild-type HeLa cells. These cells were not treated
with any readthrough stimulating antibiotic. The analysis contained two groups of images,
group 1 consists of 18 cells without cytosol removal (Figure 25 on page 53, (a-f)) and group
2 consists of 28 images of cells that were treated with digitonin (Figure 25 on page 53, (g-1)).
The images of the two groups were analysed for signal of anti-LDHB antibodies against the
endogenous LDHB with ImageJ. The residual intensity observed in peroxisomes of cells with
removed cytosol was divided by the signal intensity in cells with complete cytosol. The ratio
that is equal to the relative amount of LDHBx to cytosolic LDHB gives thereby a TR of en-
dogenous LDHB in untreated HeLa cells. The measurements reveals endogenous TR of 2.85
(£1.22 %) (p = 1.18E — 25, two sided, unpaired, equal variance Student’s t-test). Therefore
the alternative way to measure the TR using endogenous full length LDHB in wild-type cells
supports the TR rate of pDRVL-LDHB (1.55 %) measured with the dual reporter assay.

In an attempt to support the qualitative evidence that LDHB partially localises to peroxisomes
in a quantitative way I used the plug-in JACoP developed for Imagel to analyse the degree of
co-localisation between the peroxisomes and the LDHB signal in cytosol or peroxisomes, the

Pearson correlation coefficients of the displayed images are given in their figure legends.
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(a) Anti-LDHB (b) Anti-PEX14

(d) Anti-LDHB (e) Anti-PEX14 (f) Merge w/DAPI

(¢) Anti-LDHB (h) Anti-PEX14 (i) Merge w/DAPI

(i) Anti-LDHB (k) Anti-PEX14 (1) Merge w/DAPI

Figure 24: Endogenous LDHB in wild-type fibroblast cells (COS-7) localises to perox-
isomes, cells with (a-c)/ without (d-f) cytosol. Endogenous LDHB in wild-type glioblas-
toma cells (U118) localises to peroxisomes, cells with (g-i)/ without (j-1) cytosol. Im-
munofluorescence with secondary antibodies Alexa488-coupled and Cy3-coupled. Co-
localisaton: Pearson correlation coefficient ry_y = 0.70 (COS-7), and r;_; = 0.82 (U118).
Slides were prepared by C. Dickel. Bar 10 um.
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(a) Anti-LDHB (b) Anti-PEX14 (c) Merge w/DAPI
(d) Anti-LDHB (e) Anti-PEX14 (f) Merge w/DAPI

(¢) Anti-LDHB (h) Anti-PEX14 (i) Merge w/DAPI

(j) Anti-LDHB (k) Anti-PEX14 (1) Merge w/DAPI

Figure 25: (a-f) Endogenous LDHB in wild-type HeLa cells is distributed in cytosol
and peroxisomes. Fightteen images of this kind were analysed of cells without removal
of cytosol to observe the overall signal of anti-LDHB antibodies in the cell. (g-1) Endoge-
nous LDHB in wild-type HeLa cells is localised to peroxisomes. Twenty-eight images
of this kind were analysed of cells with depleted cytosol to observe the residual signal
of anti-LDHB antibodies in peroxisomes. Immunofluorescence with secondary antibod-
ies Alexa488-coupled and Cy3-coupled. Co-localisation: Pearson correlation coefficient
re—i = 0.84 and r;_; = 0.87. Slides were prepared by C. Dickel. Bar 10 um.
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3.9 Influence of readthrough induction on peroxisomal localisation of
LDHB

To test whether beside TR of endogenous LDHB in HeLa cells also the mechanism’s induction
by drug treatment with G418 could be observed, several images of cells with removed cytosol
and with (Figure 26) or without (Figure 25 on the preceding page, (g-1)) drug treatment (G418)
were analysed. I expected to see evidence of elevated residual LDHBx levels after the removal

of cytosol.
(a) Anti-LDHB (b) Anti-PEX14 (¢) Merge w/DAPI
(d) Anti-LDHB (e) Anti-PEX14 (f) Merge w/DAPI

Figure 26: Endogenous LDHB in wild-type HeLa cells localises to peroxisomes.
Twenty-eight images of this kind of wild-type HeLa cells with depleted cytosol that un-
derwent drug treatment (G418, geneticin 50 mg/ml, dilution 1 : 500) were analysed to
estimate the residual signal of of anti-LDHB antibodies in peroxisomes. Immunofluores-
cence with secondary antibodies Alexa488-coupled and Cy3-coupled. Co-localisation:
Pearson correlation coefficient r,_. = 0.88 and r,_y = 0.86. Slides were prepared by C.
Dickel. Bar 10 pm.

The quantitative analysis of TR induction by application of G418 to HeLLa was carried out
using ImageJ. The images of HeLa cells with and without G418 treatment were acquired after
removal of cytosol, for each of the two conditions 28 images were analysed. It is apparent that
the treatment with G418 leads to higher residual intensity in peroxisomes after cytosol removal
(Figure 27 on the next page).

The difference of residual signal between treated and untreated cells is significant and results
in an induction factor of 1.86 (x1.01) fold (p = 0.0001, two sided, unpaired, equal variance
Student’s t-test) for readthrough of endogenous LDHB in HelLa cells. This IF supports the IF
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Figure 27: Image acquisition with Zeiss Axio Cam, channels adjusted equally for each
image, then measurement of LDHB-Marker intensity with ImageJ. Analysis to test if
HeLa cells without G418 treatment (n = 28) and with G418 treatment (n = 28) exhibit
different residual intensity in peroxisomes after removal of cytosol. The analysed pictures
were acquired from slides prepared by C. Dickel. Error bars, SD.

measured for pPDRVL-LDHB (IF,pry;-rprp = 2.82 fold) using the dual reporter assay, refer
to Paragraph 3.5 on page 37.

3.10 Co-import of LDHA with LDHBX into peroxisomes

As elucidated in the introduction (Paragraph 1.6 on page 11) LDHB is one of the two subunits
of LDH. While the mechanism used to import LDHB into peroxisomes is now apparent, it
remained unclear how LDHA, which was found in peroxisomes as well, enters the organelle.
As peroxisomes are able to import oligomers, we concluded that LDHA is imported into per-
oxisomes by piggy-pack co-import via LDHBx (Schueren et al. 2014). To prove this hypoth-
esis, both genes (LDHBx, LDHA) were over-expressed as N-terminally fluorophore coupled
proteins (Figure 28 on the following page). The images display the co-localisation of di-
rect fluorescence signals from eYFP-LDHA and eCFP-LDHBx with the peroxisomal marker
PEX14, which was detected using immunofluorescence. This indicates peroxisomal localisa-
tion of both LDHBx and LDHA. The visual appearance of co-localisation is striking, however
to support our hypothesis I computed Pearson correlation coefficients r (Imagel, JACoP) for
the three signals. The result proves the co-localisation of both enzymes with peroxisomes and
indicates strongly that both reside in the organelle, as they were already found within it by
other studies. The signals of LDHBx and PEX14 show r = 0.86, the signals of LDHA and
PEX14 show r = 0.85, and the signals of LDHB and LDHA show r = 0.93, so all signals are

highly correlated with one another.
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(a) eYFP-LDHA (b) eCFP-LDHBx
(c) Anti-PEX14 (d) Merge wo/DAPI

Figure 28: The co-import of LDHA by overexpressed LDHBx in HeLa cell localises
eCFP-LDHA and eYFP-LDHBx to peroxisomes, cytosol removed. Secondary antibody
used to stain peroxisomes was Alexa647 coupled. Slides were prepared by C. Dickel. Bar
10 ym.

3.11 Mass spectrometry analysis of LDHB and its peroxisomal isoform
LDHBx

I attempted to isolate endogenous LDHBX in rat tissue samples with the ultimate goal to iden-
tify the amino acid that is incorporated for the stop codon using mass spectrometry. The
concentration of protein contained in the rat tissue lysates was measured (BCA-assay, Inter-
chim, France) (Table 12 on the next page).

The lysates were analysed using western blot, per pocket 20 ug of protein were loaded (ac-
cording to BCA assay results) (Figure 29 on the following page). The high amount of fat in
the fat tissue sample led to a high uncertainty in the BCA assay and during the handling of the
sample. Although the lines were loaded with equal amounts of protein the bands of the heart
muscle, liver, kidney, and skeletal muscle show slightly different amounts of LDHB. The result
is roughly in agreement with the distribution of isozymes shown for adult rat tissues (Figure 6
on page 14), as the liver sample shows less LDHB that the heart and skeletal muscle sample.

An immuno precipitation (IP) (monoclonal mouse anti-LDHB antibody 2H6, Abnova) was
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Sample Crean [1g/W]  SD
heart muscle 20.02 1.07
liver 22.43 0.18
kidney 17.06 0.15
skeletal muscle 11.28 0.52
fat 6.06 0.18

Table 12: Lists the protein concentration of rat tissue lysates. The mean concentration
values are arithmetic means of two samples. SD, standard deviation.
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Figure 29: Equal amounts of protein from rat tissue lysates were loaded, the tissues
contain varying amounts of LDHB. LDHB was stained using a monoclonal mouse a-
LDHB-antibody (2H6, Abnova). The image was taken with 240 s for integration. Ruler:
PageRuler Prestained Protein Ladder, Thermo Scientific. kDa, kilo Dalton.

carried out with the tissue lysates to detect endogenous LDHB and LDHBx (WB, Figure 30).
As the IPs done by me did not enable me to detect the endogenous LDHBx in rat tissue using
western blots or silver stained SDS gels (not shown), C. Dickel repeated the experiments. The
IP performed with a-LDHB (mouse, monoclonal, 60H11, Abnova) led to a tissue dependent
pull down of LDHA as well, which might be related to the oligomer composition pattern (Fig-
ure 6 on page 14). I used an -LDHA antibody (polyclonal, epitope 216-228, Sigma-Aldrich)
to check the WB for pull downs for LDHA.

The work is ongoing and we hope that the pull down of the IP will enable PD Dr. Olaf Jahn
(MPI for experimental medicine) to detect and further characterise endogenous LDHBx using
mass spectrometry. It would allow the identification of the amino acid inserted at the stop
codon’s position. To achieve this the amount of precipitated protein has to be increased, to this

end the procedure needs to be optimised.
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Figure 30: (a) Controls (cl = input, ¢2 = supernatant) of immunoprecipitation (IP)
of endogenous LDHB and LDHBX in rat tissue. Integration time 8 min. (b) IP of rat
tissue lysates in search for endogenous LDHBXx, samples are shown with (+) and without
(-) antibody. Integration time 2 min. LDHB was stained using a monoclonal mouse a-
LDHB-antibody (2H6, Abnova). Ruler: PageRuler Pre-stained Protein Ladder, Thermo
Scientific. kDa, kilo Dalton.

3.12 Purification of LDHB and LDHBx to analyse their enzymatic activ-
ity

To be able to test LDHB and LDHBx for functional differences not concerning their locali-
sation in the cell but concerning their enzymatic activity, the full length (FL-) proteins were
overexpressed in E. coli. After transfection of E. coli cells with FL-LDHB-WT and FL-LDHB-
[UGG] constructs, expression was induced using IPGT (Table 2 on page 17). At time points
to (prior to induction), #; = 1h (after induction), #, = 2h (after induction), 3 = 3h (after
induction) samples were taken and subsequently compared on an SDS-Gel. Sample 7, showed
the highest amount of bacteria (Figure 31 on the following page).

The purification of the cells’ lysates was done with an imidazole gradient for LDHB-WT and
LDHB-[UGG] (Figure 35 on page 73) using an Akta Purifier (Table 3 on page 19). The pu-
rification process resulted in purified protein, that was in solution in Buffer A (Table 7 on
page 21) with additional imidazole from the eluting gradient. The device divided the lysate in
fractions, these were checked with a commassie stained gel (Figure 36 on page 74). Of each
construct three fractions that showed the highest concentration were chosen. These fractions

were pooled and enriched using a filter device (Amicon Ultra-4, Table 3 on page 19). The
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Figure 31: Samples taken at certain time points prior to (fp) and after induction
(t; = i[h]) from the growing E-coli in culture. The bacteria were transfected with the
constructs FL-LDHB (wild-type) and FL-LDHB-[UGG]. They were grown for purifi-
cation and subsequent enzymatic activity analysis and mass spectroscopy analysis. f;,
timepoints. kDa, kilo Dalton.

pooled fractions were loaded onto the filter device and spun in a precooled centrifuge (4 °C,
4,000 g, 30 min). The enriched solutions were pooled again and stored at 4 °C.

Samples of the enriched solutions were depleted of imidazole, and the buffer solution was
switched from a PBS based buffer that contains imidazole to a sodium phosphate bufter (Ta-
ble 7 on page 21) using a disposable PD-10 desalting column (GE Healthcare, UK). The pro-
tein samples in sodium phosphate buffer were given to PD Dr. Olaf Jahn for mass spectrometric
analysis (Figure 32 on the next page).

The two enzymes exhibit distinct spectra. Though I could not precipitate endogenous LDHBx
and determine the physiological amino acid(s) that decode(s) the stop codon of LDHB, I did
analyse the over-expressed enzyme LDHBx. As the two enzymes are clearly distinguishable,
the result suggests that the endogenous extension could be detected using mass spectrometry.
Additionally the enzymatic activity of FL-LDHB (pooled fractions 17, 18, 19) and FL-LDHB-
[UGG] (pooled fraction 15, 16, 17) was analysed (Figure 33 on the following page). For this
purpose samples with a similar concentration of protein were created, their concentration was
measured with a BCA assay, this allowed me to reach a concentration that would result in
activities within the optimal range of the central laboratory’s device (~ 200 U/1). The catalytic
activity of the enzymes was assessed in central lab of UMG Goéttingen. Two samples with
different concentrations of both FL-LDHB and FL-LDHB-[UGG] were analysed, the mean

activities [U/mg] are shown (Figure 33 on the next page).
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Figure 32: Mass spectroscopy from the constructs FL-LDHB and FL-LDHB-[UGG]
that where expressed in E. coli and purified with imidazole gradient purifier. The differ-
ence between the constructs though only a six amino acids is obvious. The analysis was
carried out by Dr. Olaf Jahn, MPI for experimental medicine.
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Figure 33: The enzymatic activity in U/mg of FL-LDHB and the 100 % readthrough
mutant FL-LDHB-[UGG] was measured in central lab of UMG Géttingen and is shown
as the weighted mean of two sets of measurement from 2014-01-22 and 2014-02-29 with
each n = 10. Interference by stability problems due to residual imidazole in the purified
LDHB constructs. Error bars, SD.

The activity of FL-LDHB-[UGG] appeared to be significantly lower than the enzymatic ac-
tivity of FL-LDHB (p = 1E — 19, two sided, unpaired, equal variance Student’s t-test), see
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Figure 33 on the preceding page. The striking difference in activity might be a result of the
extension that is appended to the parental protein, however, it is also possible that the imida-
zole used in the gradient to purify the protein, the temperature it was stored at, or other factors
destabilised the protein and thereby disturbed the activity analysis of LDHB and LDHBx. Thus

a second purification process and further experiments are required.
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4 Discussion

The study presented here was undertaken to detect and characterise physiological translational
readthrough (TR) and functional translational readthrough (FTR) in Homo sapiens. The focus
was set on gain or alteration of function by FTR for proteins in form of dual localisation due to
hidden peroxisomal targeting signals 1 (PTS1). This particular focus was motivated by findings
of TR driven dual localisation in fungi (Freitag et al. 2012). The results of this study can be
seen against a background of interesting findings and approaches on TR and FTR in various
organisms including Homo sapiens. In general viruses are known to use TR to maximise
their coding capacity (Atkins et al. 1990). System biology approaches have been employed
to detect TR and analyse stop codon environments in yeast (Namy et al. 2003; Williams et al.
2004) and Drosophila melanogaster (Jungreis et al. 2011). In mammals the first TR genes
were identified by serendipity (Geller and Rich 1980; Chittum et al. 1998; Yamaguchi et al.

2012), though recently systems biology approaches have been used to reveal TR in mammals.

A genome wide in silico scan for translational readthrough and the design of a high TR

consensus

The database scan of the human genome (Ensembl database), the extraction of 42,000 unique
stop codon contexts (SCCs) and their ranking with respect to their readthrough propensity pre-
diction was an iterative process. For this the in silico regression model was utilised (Schueren
et al. 2014). The model was based on a training data set of sequences and their respective
experimental TR values. The first model (LIN) was trained with 66 sequences of which 65
originate from human disease related nonsense mutations (Floquet et al. 2012).

The data base was expanded for a second model (LINiter) using TR values acquired through a
dual reporter assay. The shortness of the dual reporter constructs excluded mRNA secondary
structures that might influence TR. The selected genes of which the dual reporter constructs
were derived comprised SCCs with high, intermediate and low RTPs (based on LIN model).
The TR of constructs derived from genes LENG1, ZNF574, EDEM3, EDN1, and PPP1R3F
exceeded background levels significantly (p<0.03). Feature selection (fs) led to reduction of
considered nucleotide positions and to refined models (LINfs5, LINfs3) (Schueren et al. 2014).
These models consider 5 and 3 nucleotide positions respectively. As the reduction of positions
taken into account led to higher correlation between experimental TR values and predicted
RTP scores, it can be concluded that the nucleotide positions influence TR non-linearly. A
larger database of experimental TR values is needed to set up a non-linear in silico model
(Schueren et al. 2014), which could model TR more accurately. A high throughput assay em-
ployed to measure TR values is advisable in case non-linear approximative models are to be

designed.
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The non-linear contribution of certain nucleotide positions to RTP scores is a precondition for
the consensus we rationally derived for context-driven high TR in Homo sapiens (Schueren
et al. 2014). This consensus reads UGA CUA (G) (stop codon underlined). 38 genes com-
prising the consensus UGA CUA plus 19 genes comprising the consensus UGA CUA G are
listed in the database created by the in silico regression model (Schueren et al. 2014). So far
only five of these genes namely AQP4, LDHB, MDH1, OPRK1, and OPRLI are characterised
in terms of TR (Dunn et al. 2013; Schueren et al. 2014; Loughran et al. 2014; Stiebler et al.
2014).

The consensus we derived differs from the motifs found for some viruses (Skuzeski et al.
1991) and yeast (Namy et al. 2001), however, it reminds of the motif found for alphavirus
SINV, which is UGA/UAA CGG/CUA (stop codon underlined) (Li and Rice 1993; Beier and
Grimm 2001; Firth et al. 2011).

Besides our in silico regression model used to predict TR candidates in the human transcrip-
tome, two complementary systems biology approaches to TR (partially in mammals) have been
employed. Phylogenetic approaches create a comparative metric using alignments of several
species and evaluate thereby the coding potential of sequences (Lin et al. 2011). Thus also the
coding potential of sequences downstream of annotated stop codons can be estimated. Still
verification of TR candidates requires experiments. In total this approach was used to detect
283 putative TR genes in Drosophila melanogaster (Lin et al. 2007; Jungreis et al. 2011), and
some of them were confirmed as TR events using transgenic flies and mass spectrometry (Jun-
greis et al. 2011). Ribosome profiling (Ingolia et al. 2009, 2011) combines next generation
deep sequencing with the fact that translating ribosomes protect a fragment of mRNA from di-
gestion by nucleases (Takanami et al. 1965; Steitz 1969). This allows the detection of recoding
events including TR, by detecting sequences downstream of stop codons that show translat-
ing ribosomes. The systems biology approach ribosome profiling revealed 350 TR events in
Drosophila melanogaster embryos and S2 cells, derived from this organism (Jungreis et al.
2011). Remarkably, the approach also identified putative TR genes in yeast and human skin
fibroblasts (Dunn et al. 2013). Indeed the methods appear to be complementary and show little
redundancy in their results (Figure 34 on the next page), which originates from their distinct
angles used to approach TR. Phylogenetic approaches concentrate on evolutionary conserved
TR events, our in silico model detects only context-driven TR and therefore overlooks other
forms of TR and recoding events that occur downstream the stop codon. Both methods can
detect TR genes, which are expressed at low levels or TR restricted to few tissues. Ribosome
profiling on the other hand is a powerful experimental method and is less focused in its detec-
tion of recoding events, however, it might miss short TR extensions or TR that occurs only in
few tissues. Ribosome profiling is possibly unable to differentiate between TR and low level
re-initiation of translation in 3’UTRs. Additional experiments are required for all three meth-
ods to verify TR events.

Figure 34 on the following page gives an overview on systems biology approaches used to
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Figure 34: Systems biology approaches to translational readthrough in mammals.
Readthrough genes have identified with varying levels of experimental confirmation.
Gene symbols of gene products known to undergo functional translational readthrough
(FTR) are depicted in bold. Circle sizes do not correspond to number of analysed genes.
Black cycles refer to other than systems biology approaches.

detect TR in mammals and recent findings of TR and FTR. While TR of the rabbit beta-globin
was detected 35 years ago (Geller and Rich 1980), recently the MPZ gene (myelin protein zero
P0) was found to be expressed as L-MPZ via stop suppression. MPZ is displayed here because
its readthrough form is probably a case of FTR in mammals. The appended extension of L-
MPZ contains antigenic sites for neuropathy-associated antibodies, and may be involved in ad-
hesion processes of PNS myelin (Yamaguchi et al. 2012). Phylogenetic approaches identified
10 possible TR genes (Lindblad-Toh et al. 2011; Jungreis et al. 2011; Eswarappa et al. 2014;
Loughran et al. 2014), of these candidates OPRK1, OPRL1, AQP4, MAPK10, MDHI, MTCH2,
and AGO1 were confirmed as TR genes experimentally (Loughran et al. 2014; Eswarappa et al.
2014; Schueren et al. 2014). 42 TR events were identified using ribosome profiling (Dunn et al.
2013). Our in silico regression model predicted 57 TR genes based on the immediate environ-
ment of their stop codons, three of these (AQP4, LDHB, and MDH1) were confirmed so far,
all three exhibit the consensus UGA CUA G (stop codon underlined) (Schueren et al. 2014).
The human MDH1 was independently studied in four of the recent studies and thereby is the
most robust of the new TR genes (Dunn et al. 2013; Loughran et al. 2014; Schueren et al.
2014; Stiebler et al. 2014).

To detect FTR the search for functional domains or signals in the extensions downstream the
annotated stop codon was focused on PTS1 using an algorithm (Schueren et al. 2014). The
gene database was sorted according to the product of positively scaled RTP (RTP*) and PTS1
posterior probability, thus RTP*xXPTS1. We identified LDHB at position 1 out of 42,069 genes
(Schueren et al. 2014). The gene of the related enzyme MDHI1 was found at position 175,
its score at this position is only 27% of LDHB’s product score. The general distribution of

the product score hints that only few genes possess both high TR scores and PTS1 posterior
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probabilities as the product score drops by 50% within the first 40 candidates (Figure 12 on
page 36). However, this does not exclude these candidates (rank > 40) from being targeted
to peroxisomes. The two enzymes LDH and MDH are well known and sparked my interest,
therefore I characterised the TR of LDHB and MDHI, their response to treatment with amino-
glycoside geneticin, and partly functional aspects of their appended extensions.

Both LDHB and MDHI1 exhibit TR exceeding background levels in the dual reporter as-
say, while the latter shows roughly 1.9 times higher TR than the former. MDHI1 displays a
higher response (IF=4.51) to geneticin treatment as well. Full length constructs were analysed
by Western blotting and showed TR, which could be elevated by aminoglycoside treatment
(Schueren et al. 2014). My analysis of the influence of the stop codons themselves and nu-
cleotides at positions +4 to +6, the positions with the highest influence as found by feature
selection, confirmed the consensus UGA CUA found in silico for high context dependent TR
in Homo sapiens (Schueren et al. 2014). Additionally the analysis confirmed the order of in-
fluence of U>G on TR in position -6 as predicted by the in silico model (LINfsS5). The focus of
the analysis on context driven TR is justified by the lack of conserved secondary structures of
mRNA (i.e. position -10 to the 2 in frame stop codon). Distal elements downstream the con-
served extension might exist, however, functional distal elements would present as conserved
sequences and are thereby unikely.

Evidence was found indicating that TR can undergo regulation due to developmental state
of the organism. This was observed for genes in Drosophila melanogaster, compare Para-
graph 1.3 on page 4, and Paragraph 1.4 on page 7. The TR gene VEGFAX is down-regulated in
grade 2 or 3 adenocarcinoma cells of colon (human xenografttumor in mice) (Eswarappa et al.
2014). In order test if TR might be differentially regulated in different cell types as well, TR
of LDHB was assessed in several cell lines (HeLLa, COS-7, HEK, U118, U373, and HT1080).
Translational readthrough of MDH1 was observed in cell lines HelLa, HEK, U118, U373, and
HT1080. In general this analysis suggests that TR of LDHB is not restricted to one tissue and
there might exist a varying regulation of its TR in different tissues. The comparison of TR rates
between the cell lines exhibited higher TR in U118 glioblastoma cells for LDHB and MDHI.
The high TR in the glioblastoma cell line hinted that TR rates might be elevated in cancer
cell lines, possibly because cancer cell lines have less regulated and controlled metabolism
and protein synthesis. Also glial cells might require higher levels of LDH in peroxisomes as
it might be involved in neuronal/glial lactate metabolism (Schueren et al. 2014). Therefore
TR of MDHI1 and LDHB was tested in another glioblastoma cell line (U373), the constructs
did not show elevated TR rates in U373 compared to TR in HeLa cells. Additionally TR of
three further constructs (pDRVL-ZNF574/EDEM3/IRAK3) was measured in U118 and four
other cell lines (incl. U373), the set of constructs did not show significantly elevated TR rates
in U118 in comparison to other cell lines. Thus it can be concluded that firstly it is probably
neither the cancer cell’s metabolism nor the specific glial metabolism that explains the effect of
elevated TR of LDHB and MDHI1 in U118 glioblastoma cells as it wasn’t observed for U373
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cells, and secondly that the effect observed for LDHB and MDH1 does not extend to other TR
genes (pDRVL-ZNF574/EDEM3/IRAK3).

I tried to gather information on the mechanism of context driven TR and its most influential
elements. The stop codon itself is highly important and the effect it exerts on TR was isolated.
The SCC did influence expression of luciferase in the dual reporter assay even in absence of
the stop codon, though this influence is not correlated to TR. No effect of codon frequencies
(and thereby tRNA abundance) on TR was observedfor the tested constructs. This suggests
that the influence of SCC (especially pos. +4 to +6) on TR might be mediated directly by the
nucleotides following the stop codon, which might possibly work via conformational changes

in the ribosome invoked by the nucleotides.

Functional translational readthrough

Beside TR the focus of this study is the physiological FTR found for LDHB. LDHB is known
to reside in peroxisomes, however, it was not known how it reached peroxisomal matrix. Qual-
itatively it was shown that LDHBx (extended LDHB) resides in peroxisomes due to TR and
its appended PTS1 using overexpression of an N-terminally tagged LDHBx. The importance
of TR and PTSI1 for the targeting process was tested and confirmed using mutant constructs
(Schueren et al. 2014). Interestingly an analysis of LDHB orthologs in vertebrates revealed
strict conservation of the hidden PTS1 in mammals (Schueren et al. 2014), which highlights
the importance of TR in an evolutionary perspective. Using untransfected HeLa cells, human
skin fibroblasts, COS-7 cells and glioblastoma cells (U118) it was shown that endogenous LD-
HBx exhibits dual localisation in cytosol and peroxisomes of these cells. I present quantitative
results that suggest the extent to which endogenous LDHBX occurs in peroxisomes (2.85 %)
is in agreement with pDRVL-LDHB’s TR rate (1.55 %) measured in the dual reporter assay
using shortened constructs. Due to time limitation I could not test the effect of high (F)TR
in U118 cells for endogenous or transfected full length LDHB as it was observed for it’s
pDRVL construct. Endogenous LDHBx in HeLa cells exhibits a response to G418 treatment
(IF= 1.86 fold) that resembles the induction factor of the pPDRVL-LDHB construct (IF= 2.82
fold). Interestingly, this hints a new effect of treatment with antibiotics (aminoglycosides), i.e.
a treatment with aminoglycosides or their derivatives might raise LDH levels in peroxisomes
of human cells.

High correlation coefficients support the visual assumption of co-localisation between LDHBx
and peroxisomal marker PEX-14. The evidence that TR of LDHB exists in several human cell
types and that LDHBx is expressed in various human cell types hints that LDHBx is possibly
expressed in all human tissues which generally express LDHB. The measured TR of 1.55 %
(dual reporter assay) and 2.85 % (fluorescence imaging) is in agreement with the 1.2 % activity
of LDH found in peroxisomes (see Paragraph 1.6 on page 11) and possibly ensures a cytosolic

concentration of LDH in peroxisomes considering that peroxisomes comprise 2 % of a cell’s
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volume (Moody and Reddy 1976). It indicates as well that TR of LDHB is the only mechanism
that targets the subunits of LDH to peroxisomes and thereby results in peroxisomal LDH. The
targeting of LDHBx being dependent on TR and the hidden PTS1, LDHBx belongs to the first
examples of this kind of expansion of our genome’s coding potential on a post-transcriptional
level.

Interestingly, the second subunit LDHA of lactate dehydrogenase was also found in perox-
isomes but does not comprise a hidden PTS1. As peroxisomes are capable of importing
oligomers it was tested if LDHBx imports LDHA via a piggy-pack mechanism (Schueren
et al. 2014). This seems possible as the structure of homotetramer LDHBx does show the PTS1
signal at the margin of the oligomer, see Figure 38 on page 76. Additionally, the oligomeri-
sation is not disturbed by the extension (Schueren et al. 2014). Expression of a fluorophore
tagged LDHA did result in cytosolic localisation, however co-expression of a tagged LDHA
and LDHBx led to presence of LDHA in peroxisomes (Schueren et al. 2014). The signals of
fluorophores attached to LDHB, LDHA and PEX-14 reveal correlation coefficients of r > 0.85,
which support the visual appearance of co-localisation between peroxisomal marker and the
two subunits of LDH. These results explain the long known presence of LDH subunits LDHB
and LDHA in peroxisomes (McGroarty et al. 1974; Volkl and Fahimi 1985; Baumgart et al.
1996; Gronemeyer et al. 2013). They also suggest that peroxisomes contain up to 9 new iso-
forms of LDH, though those containing a maximum of one LDHBx subunit are most likely to
occur as LDHBXx is expressed at a low level. Interestingly, the isoform LDHA3;B was found in
peroxisomes to a higher percentage than in the cytosolic fraction of rat hepatocytes Baumgart
et al. (1996). The isoform LDHA, was assumed to be found in peroxisomes due to cytosolic
contamination (Baumgart et al. 1996). However it is not ruled out that this isoform does exist
in peroxisomal matrix (Baumgart et al. 1996), especially as LDHA was found to be associated
to peroxisomes (Gronemeyer et al. 2013) and a piggy-pack import mechanism for LDHA was
revealed (Schueren et al. 2014). The question arises whether the oligomers might be reorgan-
ised in the peroxisome and therefore also isoforms of LDH without any LDHBx subunit (e.g.
LDHA,) exist in peroxisomes.

The function of peroxisomal LDH is still a matter of speculation. Peroxisomes exhibit sev-
eral metabolic processes including fatty acid oxidation, which leads to production of NADH,
which in turn needs to be re-oxidated to NAD™ for fatty acid oxidation to continue. The
balance of the peroxisomal NAD*/NADH pool requires a shuttle system as peroxisomal mem-
branes are impermeable to NAD*/NADH (van Roermund et al. 1995). This system could
involve lactate/pyruvate shuttling either directly (Visser et al. 2007) or via transporters over
the peroxisomal membrane (Baumgart et al. 1996; McClelland et al. 2003), either way the
system could involve cytosolic and peroxisomal LDH. Given the size of NADH molecules
and monocarboxylates it seems logical that the smaller ones are used for the shuttle over the
membrane. Peroxisomal LDH might also contribute to peroxisomal glyoxylate metabolism

(Schueren et al. 2014). Thus peroxisomal LDH is probably involved in the redox balance of
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peroxisomes, allowing thereby the organelle’s metabolism to occur.

So far the only other known FTR gene in mammels - besides LDHB, and MDH1 - is VEGFA,
to which FTR appends an extension of 22 amino acids. The gene undergoes FTR of 7 — 25 %
and the extension changes its function form proangiogenic to antiangiogenic (Eswarappa et al.
2014). The level of VEGFA in cells is strictly regulated, a two-fold increase of its amount
is lethal to embryonic cells. In high-grade colon adenocarcinomaa reduced expression levels
were found (Eswarappa et al. 2014). The extension of VEGFA is conserved in mammals and
contains a sequence, which is known to mediate antiangiogenic activity of VEGFA’s alterna-
tive splice variant VEGFAb (Harper and Bates 2008). The readthrough form of VEGFA is the
first example of stop codon independent and distal element dependent FTR in mammals.

In contrast to VEGFA, LDHBx and MDH x are the first examples of context-driven FTR, as
their extensions (6, and 18 aa, respectively) are too short to allow extensive conserved mRNA
secondary structures, see also Figure 17 on page 42 (Dunn et al. 2013; Stiebler et al. 2014;
Schueren et al. 2014; Loughran et al. 2014). MDH1x might fulfil a similar function in perox-
isomes as LDHBX, it appends a hidden PTS1 using TR and it targeted to peroxisomes by it
(Stiebler et al. 2014).

In general TR or FTR might be an affordable way for an organisms to test new functions of
proteins on an evolutionary scale by appending new C-termini, as FTR diverts only a small
fraction of the parental protein to the new function. Thereby the parental protein’s function is
not disturbed. However, it is doubtful that FTR in human is as abundant as it is assumed to

occur in e.g. D. melanogaster (Jungreis et al. 2011).

Further analysis of LDHBx

In an attempt to characterise the amino acid that is incorporated at the stop codon’s position
during TR rat tissues were used. The different tissues (heart and skeletal muscle, liver, kidney
and fat tissue) were lysed and subjected to immuno precipitation (IP) with the aim to employ
a a-LDHB antibody to pull down LDHB residing in cytosol and peroxisomes and to detect
endogenous LDHBx using a western blot. Unfortunately the immunoprecipitation did not yet
yield sufficient LDHB to detect LDHBx in the samples. The detection of LDHBx and its
further characterisation is planned with the help of mass spectrometry.

Overexpressed LDHB and LDHBx were purified using an imidazole gradient and subjected
to catalytic activity analysis to test whether the appended extension of LDHBx effects the
enzymes activity. The result of this analysis requires verification and retesting is in order
as apparently LDHBx shows lower catalytic activity than that of LDHB, however, several
disturbing factors were present. Imidazole used for the gradient and still present in the solution
of the purified proteins might destabilise the enzymes. Additionally the enzymes were stored at

4 °C, a temperature that might not be optimal for LDH and might be a cause of instability, thus
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4 DISCUSSION

the results presented for LDHBx’s activity may be seen as a possibility but are not reliable yet.
A purification that does not involve imidazole and new activity analysis that minimise storage

time are required.
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5 OUTLOOK

5 Outlook

Translational readthrough was studied for a long time in lower organisms, now it is apparent
that it plays a physiological role in higher organisms as well. The mechanisms of TR are not
yet fully understood, though there is new insight into the mechanism of termination of trans-
lation (Brown et al. 2015). Even though many TR candidates were found recently, they need
still need to be verified. Databases of mass spectrometry experiments might contain informa-
tion that would allow confirmation of TR candidates. Also flow cytometry experiments might
be suitable to analyse TR candidates time efficiently to detect the most promising genes. The
possible physiological functions of the extended proteins await characterisation. More specifi-
cally the function of peroxisomal LDH and MDH might be hypothesised but is not yet proven,
though the function of LDHBX is revealed. It is known now that MDHI1 targets to peroxisomes
(Stiebler et al. 2014), but it is still of interest to further analyse the gene in terms of the ex-
tension’s conservation and to test if TR of MDHI1 varies with the tissue endogenous MDH1
is expressed in. Even though TR and FTR is probably not as abundant in complex organisms
such as Homo sapiens as it is said to be in viruses or Drosophila, we just started to uncover the
extensome, the set of gene products expressed using TR.

Additionally, there is the chance to utilise TR in medical research and clinical application. Al-
ready the induction of TR by aminoglycosides of their derivatives (often less toxic than amino-
glycosides) is a strategy to treat genetic disorders caused by premature stop codon (Bidou et al.
2012; Keeling et al. 2014). Results from studies on aminoglycosides describe firstly the prob-
lems of the drugs toxicity and thereby the impossibility of long term application and secondly
the variable effect in patients, i.e. the extent to which the full length proteins are restored
(Keeling et al. 2014). I did observe very variable responses to drug treatment and it might be
fruitful to use a high throughput assay to analyse different SCCs in terms of their response to
different drugs. A promising experiment could be designed using flow cytometry, to analyse
many transfected cell samples efficiently. The data could be used to build a training set for
the model we used, this time it would model the SCCs responses to drug treatment to pre-
dict the outcome of treatments of premature stop codons in human patients. Such a predictor
would allow rational and targeted therapies for patients and avoid subjecting patients with non-
responsive SCCs to the side-effects of the drugs.

Remarkably, the same SCC we derived as the high TR consensus, was found to reduce the
otherwise lethal effect of a premature stop codon in the LAMA3 gene in a patient with junc-
tional epidermolysis bullosa (Pacho et al. 2011). This exemplifies the clinical potential of the
presented findings.
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6 SUMMARY

6 Summary

The presented work deals with translational readthrough and functional translational readthrough.
Translational readthrough is a phenomenon that is not yet fully understood. In most cases a
ribosome stops and detaches from the mRNA after the encounter with a stop codon. However
at low rates amino acids are incorporated at termination sites and the ribosome continues trans-
lation into the extension downstream the stop codon. The term translational readthrough de-
scribes ribosomes that translate into mRNA sequences downstream of a stop codon at a higher
ratio than the normal error rate. Functional translational readthrough is defined as translational
readthrough that appends extensions to parental proteins that change the function of the result-
ing protein from its original one. Translational readthrough is employed by viruses and more
complex organisms to expand the coding potential of their limited genome, however, also in
more complex organisms examples of readthrough and even functional readthrough have been
found. The study contains a description of an in silico regression model that was used to de-
rive a consensus for nucleotide context based high readthrough in mammals and to detect 57
candidates for translational readthrough in a genome wide scan in a human transcriptome. The
results of this genome wide scan for TR are discussed against a background of eight recent
studies that applied systems biology approaches (PhyloCSF, ribosome profiling, and in silico
regression model) to mammalian genomes/transcriptomes.

A dual reporter assay was used to test and verify the stop codon context of some of these 57
transcripts. The results of 15 constructs were used to expand the database used for the model.
The resulting database of 42.000 unique stop codon contexts was sorted according to their
readthrough potential and a score developed to estimate the probability for hidden PTS1 (per-
oxisomal targeting signal). The subunit LDHB of lactate dehydrogenase was detected at the
first position, exceeding rank two by far. MDH 1, the gene coding for cytosolic malate dehydro-
genase was detected at rank 175. Both enzymes are evolutionary related and were analysed in
detail in terms of their translational readthrough. The proteins showed high readthrough rates
and responded to treatment with aminoglycosides with elevated readthrough rates. Analysis
of readthrough in multiple cell types suggests that the readthrough forms of LDHB (LDHBXx)
and MDH1 (MDH1x) are expressed in probably all human tissues at varying levels. Their
extensions are conserved in mammals, but show no conserved secondary structure. Next to
immediate stop codon contexts also elaborate mRNA secondary structures can influence and
mediate translational readthrough. The influence of the stop codon and of the stop codon con-
text on TR was tested as well as codon usage frequencies.

The hidden PTS1 found in the extensions of LDHBx was tested. It was found that endoge-
nous LDHBXx is imported to peroxisomes by means of translational readthrough and the hid-
den PTS1. Translational readthrough was quantified and analysed using immunofluorescence
imaging and image analysis tools (ImageJ). LDHBx was found to co-import the other subunit

LDHA into peroxisomes allowing theoretically nine new isoforms to occur in the peroxisomal
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6 SUMMARY

matrix.

The potential of the findings lies in the used methods themselves e.g. the in silico regression
model, and clinical application in form of drug treatment of genetic disorders caused by pre-
mature stop codons. An outline for experiments that could allow the design of a predictor
model for the response of stop codon contexts to drug treatment (aminoglycosides and their

derivatives) is given.
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A Appendix

A.1 Appendix - Figures

A.1.1 Purification graphs of full length LDHB and full length LDHB-[UGG]
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Figure 35: Report of purification of LDHB-WT and LDHB-[UGG]. The purification
was carried out with the support of PD Dr. S. Thoms.
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A.1.2 Commassie gel with purified fractions of FL-LDHB and FL-LDHB-[UGG]
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Figure 36: The purification process of FL-LDHB and FL-LDHB-[UGG] resulted in
fractions with different concentrations of protein, to decide which fractions were to be
used in further analysis, they were run on a commassie stained SDS gel (12 %). A gene
ruler allows an estimation of the protein’s weight.
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A.1.3 Endogenous LDHB in HeLa cells under various conditions

(a) Anti-LDHB (b) Anti-PEX14 (c) Merge w/DAPI

&

(d) Anti-LDHB (e) Anti-PEX14 (f) Merge w/DAPI

(¢) Anti-LDHB (h) Anti-PEX14 (i) Merge w/DAPI

(j) Anti-LDHB (k) Anti-PEX14 (1) Merge w/DAPI

Figure 37: Endogenous LDHB in wild-type HeLa cells localises to peroxisomes, cells
with (a-c, g-i)/ without (d-f, j-1) cytosol and with (g-1)/ without (a-f) drug treatment
(G418). Immunofluorescence with secondary antibodies Alexa488-coupled and Cy3-
coupled. Co-localisaton: Pearson correlation coefficient 74—y = 0.85 and r;_; = 0.94.
Slides were prepared by C. Dickel. Bar 10 um.
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A.1.4 LDHBXx tetramer structure

Figure 38: The structure shows four LDHx subunits that form together a homotetramer
(Schueren et al. 2014). The C-termini of the subunits are shown to be on the margin of the
enzyme and the appended extensions of the LDHBX subunits are displayed in yellow. It
is likely that the PTS1 that are located at the very c-terminal end are accessible to PEXS.

A.2 Appendix - Tables

A.2.1 Model weights used for the in silico regression model

Base/position -6 -5 -4 -3 -2 -1 4
A -0.00041  0.00130 -0.00028 -0.00073 -0.00071 0.00016 -0.00037
C -0.00105 0.00164 0.00075 -0.00004 0.00133 0.00109 0.00375
G 0.00060 -0.00077 -0.00041 0.00193 -0.00048 0.00043 -0.00156
U 0.00200 -0.00103  0.00108 -0.00002 0.00100 -0.00054 -0.00067

Base/position +5 +6 +7 +8 +9 Stop
A -0.00068  0.00276 -0.00020 0.00105 -0.00081 -0.00026 UAA
C -0.00097 -0.00026 -0.00062 -0.00017 0.00148 -0.00103 UAG
G -0.00008 -0.00059 0.00245 -0.00058 0.00014 0.00243 UGA
U 0.00287 -0.00076 -0.00049 0.00084 0.00032

Table 13: The regression factors listed here are model weights of the LINiter model. The
training data set used for the model includes the experimental TR values measured with
the dual reporter assay, see Paragraph 3.3 on page 33. The RTP score is a sum of weights
representing the stop codon and the corresponding nucleotides of the SCC surrounding
the termination site. The weights were computed by the model build by T. Lingner, for
more information please refer to Table 2 in Schueren et al. (2014).
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A.2.2 Human high TR candidates comprising consensus UGA CUA (G)

Genes with consensus

Genes with consensus

UGA CUA UGA CUA G
APHIA ALI21581.1
BIVM AQP4
Cl120rf74 CDH23
Cl150rf57 CGGBPI
CCNL2 DIO2
DUS?2 DUSAL
DYRKIA EPTI
ELK1 HCLS1
EMCS KCNB2
ESRRG LDHB
FOXP1 MAPK10
FUZ MDH]I
GSKIP MS4A5
HPS6 OPRK1
KLK15 OPRLI
KLRB1 PHF19
KRTAP13-3 SPATA32
LMANI TMEMS6B
MAPKS VDR
MEDI8
METTL4
NPS
NUBP2
OPRMI
OR2Z1
PAN2
PLA2G10
PLCEI
PRRG4
RGS13
SHCBPI
SKA2
STONI-GTF2AIL
STRIP2
TFAP4
TTC4
ZNF548
ZPLDI1

Table 14: 38 human high TR candidates comprising consensus UGA CUA and 19 human
high TR candidates comprising consensus UGA CUA G are listed above. The gene sym-

bols were extracted from the database created by the in silico regression model (Schueren
et al. 2014).
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A.2.3 Results of dual reporter assay of genomic candidates

PST# pDRVL-HGNC TR SD If‘;‘::‘:: SD LIN LINiter LINfs5 LINfs3

1435 pDRVL-MDHI1 291 0.147 451 032 0.23 0.816 0.917 0.939
1385 pDRVL-LDHB 1.55 0.087 282 031 0.27 0.609 0.816 0.939
1422  pDRVL-EDEM3  0.66 0.027 815 044 0.15 0.426 0.631 0.655
1418 pDRVL-LENGI1 0.26  0.009 6.03 029 0.10 0.372 0.472 0.714
1384 pDRVL-ZNF574  0.31 0.020 2146 219 0.27 0.367 0.465 0.714
1419 pDRVL-PRDMI10 0.13 0.005 4038 533 0.24 0.276 0.424 0.655
1420 pDRVL-FBXL20 0.10 0.006 29.51 3.80 0.10 0.245 0.394 0.646
1423  pDRVL-EDNI1 025 0.008 1841 216 0.17 0.230 0.238 0.330
1430 pDRVL-LEPRE1 0.27 0.010 3923 447 0.08 0.209 0.260 0.330
1421 pDRVL-THGIL 0.15 0.006 3220 2.74 0.22 0.168 0.264 0.394
1424  pDRVL-UBQLNI 0.13 0.009 17.23 244 0.02 0.125 0.047 0.107
1425 pDRVL-IRAK3 0.10  0.007 932 122 0.14 0.090 0.054 0.204
1426 pDRVL-SLC3A1 0.18 0.008 11.89 154 0.02 0.029 0.109 0.070
1437  pDRVL-VASN 0.12  0.004 4.14 050 0.01 0.024 0.002  -0.112
1387 pDRVL-PPPIR3F 0.18 0.009 325 041 -021 -0.024 -0.076 -0.215

Table 15: A list of the 15 TR candidates derived from a scan of the human genome, it
comprises experimental TR values [%], experimentally assessed IF (fold) values, and RTP
scores predicted by in silico regression models: LIN, LINiter, LINfs5, and LINfs3. The
construct pPDRVL-VASN was used to derive a negative control. SD, standard deviation.

A.2.4 Codon frequencies in the human genome
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A.2.5 List of plasmids used in this study

Table 17: List of plasmids used to for genomic candidates (pDRVL-X), position +4,
+5, +6 mutants, pPDRVL-X-[UGG] constructs, as well as full length constructs for im-
munofluorescence experiments (IF) and expression in bacteria.

Plasmid .

No. PST plasmid name/ genotype Source

genomic
cand
1360 pDRVL R. George, F. Schiiren
1384 pDRVL-ZNF574 R. George
1385 pDRVL-LDHB R. George
1387 pDRVL-PPPIR3F R. George
1393 pDRVL-LDHB-[UGG] R. George
1394 pDRVL-LDHB-[UGA U] R. George
1395 pDRVL-LDHB-[UAA] R. George
1396 pDRVL-LDHB-[UAA U] R. George
1418 pDRVL-LENGI F. Schiiren
1419 pDRVL-PRDM10 F. Schiiren
1420 pDRVL-FBXL20 F. Schiiren
1421 pDRVL-THGIL F. Schiiren
1422 pDRVL-EDEM3 F. Schiiren
1423 pDRVL-EDNI1 F. Schiiren
1424 pDRVL-UBQLNI F. Schiiren
1425 pDRVL-IRAK3 F. Schiiren
1426 pDRVL-SLC3A1 F. Schiiren
1430 pDRVL-LEPREI1 F. Schiiren
1435 pDRVL-MDHI1 R. George, F. Schiiren
1437 pDRVL-VASN F. Schiiren
1444 pDRVL-VASN-doubleTAA F. Schiiren

Pos 4,5,6
1466 pDRVL-LDHB-[UAG CUA] T. Wilke, F. Schiiren
1467 pDRVL-LDHB-[UGA UUA] T. Wilke, F. Schiiren
1468 pDRVL-LDHB-[UGA GUA] T. Wilke, F. Schiiren
1469 pDRVL-LDHB-[UGA CAA] T. Wilke, F. Schiiren
1470 pDRVL-LDHB-[UGA CCA] T. Wilke, F. Schiiren
1472 pDRVL-LDHB-[UGA CUG] T. Wilke, F. Schiiren
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Table 17: continued

Plasmid
No. PST

plasmid name/ genotype Source

1473 pDRVL-MDH1-[UAA CUA]
1475 pDRVL-MDH1-[UAA UUA]
1476 pDRVL-MDH1-[UGA UUA]
1477 pDRVL-MDHI1-[UGA GUA]
1479 pDRVL-MDH1-[UGA CCA]
1480 pDRVL-MDH1-[UGA CUU]
1481 pDRVL-MDH1-[UGA CUG]
-

T. Wilke, F. Schiiren
T. Wilke, F. Schiiren
T. Wilke, F. Schiiren
T. Wilke, F. Schiiren
T. Wilke, F. Schiiren
T. Wilke, F. Schiiren
T. Wilke, F. Schiiren

1502 pDRVL-MDHI1-[UGA AUA] J. Hofhuis
SCC-
Memory
1445 pDRVL-LENG1-[UGG] T. Wilke, F. Schiiren
1446 pDRVL-PRDM10-[UGG] T. Wilke, F. Schiiren
1447 pDRVL-FBXL20-[UGG] T. Wilke, F. Schiiren
1448 pDRVL-THGIL-[UGG] T. Wilke, F. Schiiren
1449 pDRVL-EDEM3-[UGG] T. Wilke, F. Schiiren
1450 pDRVL-EDNI1-[UGG] T. Wilke, F. Schiiren
1451 pDRVL-LEPREI1-[UGG] T. Wilke, F. Schiiren
1452 pDRVL-UBQLN1-[UGG] T. Wilke, F. Schiiren
1453 pDRVL-IRAK3-[UGG] T. Wilke, F. Schiiren
1454 pDRVL-SLC3A1-[UGG] T. Wilke, F. Schiiren
1455 pDRVL-MDHI1-[UGG] T. Wilke, F. Schiiren
IF
1434 pEYFP-C1-LDHA R. George
1440 pECFP-C1-LDHBx-[UGG] R. George
FL-
Construct-
Purification
884 pET41a(+) Merck Millipore, USA
1365 pOTB7-LDHB Laboratory RG: S. Thoms
1389 pEYFP-C1-LDHB-[UGG] R. George
1431 FL-LDHB F. Schiiren
1432 FL-LDHB-[UGG] F. Schiiren
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A.2.6 List of oligonucleotides used in this study

Table 18: List of oligonucleotides used to construct plasmids for genomic candidates,
position +4, +5, +6 mutants, SCC memory constructs, as well as full length constructs
for immunofluorescence experiments (IF) and expression in bacteria.

OST No. Name Sequence 5’ - 3’
genomic
cand
TCGAGCGGTCACCATCGATTCCGGACCG-
963 DR-MCS for
TACGG
TCGACCGTACGGTCCGGAATCGATGGTGAC-
964 DR-MCS rev

1081
1082
1083
1084
1086
1087
1123
1124
1117
1118
1119
1120
1121
1122
1144
1145
1148
1149
1150
1151
1152
1153
1154
1155
1156

DR-ZNF574 for
DR-ZNF574 rev
DR-LDHB for
DR-LDHB rev
DR-PPP1R3F for
DR-PPP1R3F rev
DR-LDHB [UGG] for
DR-LDHB [UGG] rev
DR-LDHB [UGA U] for
DR-LDHB [UGA U] rev
DR-LDHB [UAA] for
DR-LDHB [UAA] rev
DR-LDHB [UAA U] for
DR-LDHB [UAA U] rev
DR-LENGI for
DR-LENGI rev
DR-PRDMI10 for
DR-PRDM10 rev
DR-FBXL20 for
DR-FBXL20 rev
DR-THGIL for
DR-THGIL rev
DR-EDEM3 for
DR-EDEM3 rev
DR-EDNI1 for

[
[
[
[

CGC
GTCACCATATCAGTGGCTGACTCTGCCCGAT
CCGGATCGGGCAGAGTCAGCCACTGATATG
GTCACCAAAAAGACCTGTGACTAGTGAGCTT
CCGGAAGCTCACTAGTCACAGGTCTTTTTG
GTCACCATTGGTTCTCATAGGCTCTGCTTGT
CCGGACAAGCAGTGCCTATGAGAACCAATG
GTCACCAAAAAGACCTGTGGCTAGTGAGCTT
CCGGAAGCTCACTAGCCACAGGTCTTTTTG
GTCACCAAAAAGACCTGTGATTAGTGAGCTT
CCGGAAGCTCACTAATCACAGGTCTTTTTG
GTCACCAAAAAGACCTGTAACTAGTGAGCTT
CCGGAAGCTCACTAGTTACAGGTCTTTTTG
GTCACCAAAAAGACCTGTAATTAGTGAGCTT
CCGGAAGCTCACTAATTACAGGTCTTTTTG
GTCACCGCCTTACTCACTGACTCCTGAGGGT
CCGGACCCTCAGGAGTCAGTGAGTAAGGCG
GTCACCGCACCAAACCATGACTTCCACCCTT
CCGGAAGGGTGGAAGTCATGGTTTGGTGCG
GTCACCGCATCATCCTATGACAATGGAGGTT
CCGGAACCTCCATTGTCATAGGATGATGCG
GTCACCGAGCCAGGCTTTGACGGAAGAGTCT
CCGGAGACTCTTCCGTCAAAGCCTGGCTCG
GTCACCGGGATGAGCTATGACTTGCTAAACT
CCGGAGTTTAGCAAGTCATAGCTCATCCCG
GTCACCGAGCACATTGGTGACAGACCTTCGT

continued on next page...
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Table 18: continued

OST No. Name Sequence 5’ - 3’
1157 DR-EDNI rev CCGGACGAAGGTCTGTCACCAATGTGCTCG
1160 DR-UBQLNTI1 for GTCACCGCCAGCCATCATAGCAGCATTTCTT
1161 DR-UBQLNI1 rev CCGGAAGAAATGCTGCTATGATGGCTGGCG
1162 DR-IRAKS3 for GTCACCGCAAAAAAGAATAAATTCTACCAGT
1163 DR-IRAK3 rev CCGGACTGGTAGAATTTATTCTTTTTTGCG
1164 DR-SLC3ATI for GTCACCGTACCTCGTGTTAGGCACCTTTATT
1165 DR-SLC3AI rev CCGGAATAAAGGTGCCTAACACGAGGTACG
1158 DR-LEPREI for GTCACCGGGATGAGCTATGACAGCGTCCAGT
1159 DR-LEPREI rev CCGGACTGGACGCTGTCATAGCTCATCCCG
1190 DR-MDHI for GTCACCGTTCCTCTGCCTGACTAGACAATGT
1191 DR-MDHI rev CCGGACATTGTCTAGTCAGGCAGAGGAACG
1198 DR-VASN for GTCACCGGCCCTACATCTAAGCCAGAGAGAT
1199 DR-VASN rev CCGGATCTCTCTGGCTTAGATGTAGGGCCG
1229 DR.VASN-ATAA for GT CAC CGG CCC TAC ATC TAA TAA AGA
GAG AT
CCG GAT CTC TCT TTA TTA GAT GTA GGG
1230 DR-VASN-dTAA rev
CCG
Pos 4,5,6
1449 DR-LDHB-[UAG CUA] GT CAC CGA AAA GAC CTG TAG CTA GTG
for AGCTT
DR-LDHB-[UAG CUA]
1450 oy CCG GAAGCTCACTAGCTACAGGTCTTTTCG
1451 DR-LDHB-[UGA UUA] GT CAC CGA AAA GAC CTG TGA TTA GTG
for AGCTT
DR-LDHB-[UGA UUA]
1452 CCG GAAGCTCACTAATCACAGGTCTTTTCG

1453

1454

1455

1456

rev
DR-LDHB-[UGA GUA]
for
DR-LDHB-[UGA GUA]
rev
DR-LDHB-[UGA CAA]
for
DR-LDHB-[UGA CAA]

rev

GT CAC CGA AAA GAC CTG TGA GTA GTG
AGCTT

CCG GAAGCTCACTACTCACAGGTCTTTTCG

GT CAC CGA AAA GAC CTG TGA CAA GTG
AGCTT

CCG GAAGCTCACTTGTCACAGGTCTTTTCG

continued on next page...
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Table 18: continued

OST No.

Name

Sequence 5’ - 3’

1457

1458

1461

1462

1463

1464

1467

1468

1469

1470

1471

1472

1475

1476

1477

1478

1479

DR-LDHB-[UGA CCA]
for
DR-LDHB-[UGA CCA]
rev
DR-LDHB-[UGA CUG]
for
DR-LDHB-[UGA CUG]
rev
DR-MDHI1-[UAA CUA]
for
DR-MDHI1-[UAA CUA]
rev
DR-MDHI1-[UAA UUA]
for
DR-MDHI1-[UAA UUA]
rev
DR-MDHI1-[UGA UUA]
for
DR-MDHI1-[UGA UUA]
rev
DR-MDHI1-[UGA GUA]
for
DR-MDHI1-[UGA GUA]
rev
DR-MDHI1-[UGA CCA]
for
DR-MDHI1-[UGA CCA]
rev
DR-MDHI1-[UGA CUU]
for
DR-MDHI1-[UGA CUU]
rev
DR-MDHI1-[UGA CUG]
for

GT CAC CGA AAA GAC CTG TGA CCA GTG
AGCTT

CCG GAAGCTCACTGGTCACAGGTCTTTTCG

GT CAC CGA AAA GAC CTG TGA CTG GTG
AGCTT

CCG GAAGCTCACCAGTCACAGGTCTTTTCG

GT CAC CGT TCC TCT GCC TAA CTA GAC AAT
GT

CCG GACATTGTCTAGTTAGGCAGAGGAACG

GT CAC CGT TCC TCT GCC TAA TTA GAC AAT
GT

CCG GACATTGTCTAATTAGGCAGAGGAACG

GT CAC CGT TCC TCT GCC TGA TTA GAC AAT
GT

CCG GACATTGTCTAATCAGGCAGAGGAACG

GT CAC CGT TCC TCT GCC TGA GTA GAC
AATGT

CCG GACATTGTCTACTCAGGCAGAGGAACG

GT CAC CGT TCC TCT GCC TGA CCA GAC
AATGT

CCG GACATTGTCTGGTCAGGCAGAGGAACG

GT CAC CGT TCC TCT GCC TGA CTT GAC
AATGT

CCG GACATTGTCAAGTCAGGCAGAGGAACG

GT CAC CGT TCC TCT GCC TGA CTG GAC
AATGT

continued on next page...
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Table 18: continued

OST No.

Name

Sequence 5’ - 3’

1480

JH77

JH78

SCC

DR-MDHI1-[UGA CUG]
rev
DR-MDHI-[UGA AUA]
for
DR-MDHI1-[UGA AUA]

rev

CCG GACATTGTCCAGTCAGGCAGAGGAACG

GTCACCGTTCCTCTGCCTGAATAGACAATGT

CCGGACATTGTCTATTCAGGCAGAGGAACG

1207

1208

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

DR-LENG1-[UGG] for

DR-LENGI1-[UGG] rev

DR-PRDM10-[UGG] for

DR-PRDM10-[UGG] rev

DR-FBLX20-[UGG] for

DR-FBLX20-[UGG] rev

DR-THG1L-[UGG] for

DR-THGIL-[UGG] rev

DR-EDEM3-[UGG] for

DR-EDEM3-[UGG] rev

DR-EDNI1-[UGG] for

DR-EDN1-[UGG] for

DR-LEPRE1-[UGG] for

DR-LEPREI-[UGG] rev

GT CAC CGC CTT ACT CAC TGG CTC CTG
AGG GT

CCG GAC CCT CAG GAG CCA GTG AGT AAG
GCG

GT CAC CGC ACC AAA CCATGG CTT CCA
CCCTT

CCG GAA GGG TGG AAG CCATGG TTT GGT
GCG

GT CAC CGC ATC ATC CTA TGG CAA TGG
AGGTT

CCG GAA CCT CCA TTG CCA TAG GAT GAT
GCG

GT CAC CGA GCC AGG CTT TGG CGG AAG
AGT CT

CCG GAG ACT CTT CCG CCA AAG CCT GGC
TCG

GT CAC CGG GAT GAG CTA TGG CTT GCT
AAACT

CCG GAG TTT AGC AAG CCA TAG CTC ATC
CCG

GT CAC CGA GCA CAT TGG TGG CAG ACC
TTC GT

CCG GAC GAA GGT CTG CCA CCA ATG TGC
TCG

GT CAC CGG GAT GAG CTA TGG CAG CGT
CCA GT

CCG GAC TGG ACG CTG CCA TAG CTC ATC
CCG

continued on next page...
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Table 18: continued

OST No. Name Sequence 5’ - 3’

GT CAC CGC CAG CCA TCA TGG CAG CAT
1223 DR-UBQLN1-[UGG] for

TTCTT

CCG GAA GAA ATG CTG CCA TGA TGG CTG
1224 DR-UBQLN1-[UGG] rev

GCG

GT CAC CGC AAA AAA GAA TGG ATT CTA
1225 DR-IRAK3-[UGG] for

CCA GT

CCG GAC TGG TAG AAT CCATTCTTT TTT
1226 DR-IRAK3-[UGG] rev

GCG

GT CAC CGT ACC TCG TGT TGG GCA CCT
1227 DR-SLC3A1-[UGG] for

TTATT

CCG GAA TAA AGG TGC CCA ACA CGA GGT
1228 DR-SLC3A1-[UGG] rev

ACG

GT CAC CGT TCC TCT GCC TGG CTA GAC
1235 DR-MDHI1-[UGG] for

AAT GT

CCG GAC ATT GTC TAG CCA GGC AGA GGA
1236 DR-MDHI1-[UGG] rev

ACG

IF

GCGCGAATTCTATGGCAACTCTTAAG-
1053 pEYFP-C1-LDHBx for

GAAAAAC
1054 pEYFP-C1-LDHBx rev GCGCTCTAGACTACAGCCTAGAGCTCAC
FL-

Construct-
Purification

1166

1167

1166

1168

FL-LDHB for

FL-LDHB rev

FL-LDHB-[UGG] for

FL-LDHB-[UGG] rev

CGC CATATG AAA CAT CAC CAT CAC CAT
CAC CCC GCA ACT CTT AAG GAA AAA CTC
CGCGC GAATTC TTA
CAGGTCTTTTAGGTCCTTC

CGC CATATG AAA CAT CAC CAT CAC CAT
CAC CCC GCA ACT CTT AAG GAA AAA CTC
CGCGC GAATTC CTACAGCCTAGAGCTCAC
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