
Automated Field Usability Evaluation Using
Generated Task Trees

Dissertation
zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades

“Doctor rerum naturalium”
der Georg-August-Universität Göttingen

im Promotionsprogramm Computer Science (PCS)
der Georg-August University School of Science (GAUSS)

vorgelegt von

Patrick Harms
aus Göttingen

Göttingen, November 2015

Betreuungsausschuss

Prof. Dr. Jens Grabowski,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Dieter Hogrefe,
Institut für Informatik, Georg-August-Universität Göttingen

Mitglieder der Prüfungskommission

Referent: Prof. Dr. Jens Grabowski,
Institut für Informatik, Georg-August-Universität Göttingen

Korreferent: Prof. Dr. Dieter Hogrefe,
Institut für Informatik, Georg-August-Universität Göttingen

Korreferent: Prof. Dr.-Ing. Thomas Ritz,
Fachbereich Elektrotechnik und Informationstechnik,
Fachhochschule Aachen

Weitere Mitglieder der Prüfungskommission

Prof. Dr. Carsten Damm,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Stephan Waack,
Institut für Informatik, Georg-August-Universität Göttingen

Prof. Dr. Wolfgang May,
Institut für Informatik, Georg-August-Universität Göttingen

Tag der mündlichen Prüfung
17. Dezember 2015

Abstract

Usability is an important aspect of any kind of product. This also applies for software like
desktop applications and websites, as well as apps on mobile devices and smart TVs. In
a competitive market, the usability of a software becomes a discriminator between success
and failure. This is especially important for software, as alternatives are often close at hand
and only one click away. Hence, the software development must strive for highly usable
products.

Usability engineering allows for continuously measuring and improving the usability of a
software during its development and beyond. For this, it offers a broad variety of methods,
that support detecting usability issues in early development stages on a prototype level, as
well as during the operation of a final software. Unfortunately, most of these methods are
applied manually, which increases the effort of their utilization.

In this thesis, we describe a fully automated approach for usability evaluation. This
approach is a user-oriented method to be applied in the field, i.e., during the operation of a
software. For this, it first traces the usage of a software by recording user actions on key
stroke level. From these recordings, it compiles a model of the Graphical User Interface
(GUI) of a software, as well as a usage model in the form of task trees. Based on these
models and the recorded actions, our approach performs a detection of 14 different so called
usability smells. These smells are exceptional user behavior and indicate usability issues.
The result of the application of our approach on a software is a list of findings for each of the
smells. These findings provide detailed information about the user tasks that are affected by
the related usability issues, as well as about the elements of the GUI that cause the issues.

By applying it on two websites and one desktop application, we perform an in-depth vali-
dation of our approach in three case studies. In these case studies, we verify if task trees can
be generated from recorded user actions and if they are representative for the user behavior.
Furthermore, we apply the usability smell detection and analyze the corresponding results
with respect to their validity. For this, we also compare the findings with the results of gen-
erally accepted usability evaluation methods. Finally, we conclude on the results and derive
conditions for findings of our approach, which must be met to consider them as indicators
for usability issues.

The results of the case studies are promising. They show, that our approach can find,
fully automated, a broad range of usability issues. In addition, we show, that the findings
can reference in detail the elements of the GUI that cause a usability issue. Our approach is
supplemental to established usability engineering methods and can be applied with minimal
effort on a large scale.

Zusammenfassung

Jedes Produkt hat eine Gebrauchstauglichkeit (Usability). Das umfasst auch Software, Web-
seiten und Apps auf mobilen Endgeräten und Fernsehern. Im heutigen Anbieterwettbewerb
kann Usability ein entscheidender Faktor für den Erfolg eine Produktes sein. Dies gilt spe-
ziell für Software, da alternative Angebote meist schnell und einfach verfügbar sind. Daher
sollte jede Softwareentwicklung Gebrauchstauglichkeit als eines ihrer Ziele definieren. Um
dieses Ziel zu erreichen, wird beim Usability Engineering während der Entwicklung und der
Nutzung eines Produkts kontinuierlich dessen Gebrauchstauglichkeit erfasst und verbessert.
Hierfür existiert eine Reihe von Methoden, mit denen in allen Projektphasen entsprechende
Probleme erkannt und gelöst werden können. Die meisten dieser Methoden sind jedoch nur
manuell einsetzbar und daher kostspielig in der Anwendung.

Die vorliegende Arbeit beschreibt ein vollautomatisiertes Verfahren zur Bewertung der
Usability von Software. Das Verfahren zählt zu den nutzerorientierten Methoden und kann
für Feldstudien eingesetzt werden. In diesem Verfahren werden zunächst detailliert die Ak-
tionen der Nutzer auf der Oberfläche einer Software aufgezeichnet. Aus diesen Aufzeich-
nungen berechnet das Verfahren ein Modell der Nutzeroberfläche sowie sogenannte Task-
Bäume, welche ein Modell der Nutzung der Software sind. Die beiden Modelle bilden die
Grundlage für eine anschließende Erkennung von 14 sogenannten Usability Smells. Diese
definieren unerwartetes Nutzerverhalten, das auf ein Problem mit der Gebrauchstauglichkeit
der Software hinweist. Das Ergebnis des Verfahrens sind detaillierte Beschreibungen zum
Auftreten der Smells in den Task-Bäumen und den aufgezeichneten Nutzeraktionen. Da-
durch wird ein Bezug zwischen den Aufgaben des Nutzers, den entsprechenden Problemen
sowie ursächlichen Elementen der graphischen Oberfläche hergestellt.

Das Verfahren wird anhand von zwei Webseiten und einer Desktopanwendung validiert.
Dabei wird zunächst die Repräsentativität der generierten Task-Bäume für das Nutzerver-
halten überprüft. Anschließend werden Usability Smells erkannt und die Ergebnisse manu-
ell analysiert sowie mit Ergebnissen aus der Anwendung etablierter Methoden des Usability
Engineerings verglichen. Daraus ergeben sich unter anderem Bedingungen, die bei der Er-
kennung von Usability Smells erfüllt sein müssen.

Die drei Fallstudien, sowie die gesamte Arbeit zeigen, dass das vorgestellte Verfahren
fähig ist, vollautomatisiert unterschiedlichste Usabilityprobleme zu erkennen. Dabei wird
auch gezeigt, dass die Ergebnisse des Verfahrens genügend Details beinhalten, um ein ge-
fundenes Problem genauer zu beschreiben und Anhaltspunkte für dessen Lösung zu liefern.
Außerdem kann das Verfahren andere Methoden der Usabilityevaluation ergänzen und da-
bei sehr einfach auch im großen Umfang eingesetzt werden.

Acknowledgements

I would like to thank several persons who supported me in my work on this thesis. First
of all, I want to thank my first supervisor Prof. Dr. Jens Grabowski. For him, it was kind
of an experiment to supervise the thesis of someone with a diploma in applied sciences. I
really hope, that this experiment was as successful for him as it was for me. His guidance,
our discussions, and the working environment offered by his group were valuable sources
of inspiration for the work.

In addition, I thank my second supervisor Prof. Dr. Dieter Hogrefe and my external
reviewer Prof. Dr.-Ing. Thomas Ritz. They gave me valuable feedback and helped me to
find the right structure for the work. Furthermore, I want to thank the thesis committee Prof.
Dr. Carsten Damm, Prof. Dr. Wolfgang May, and Prof. Dr. Stefan Waack for investing
their valuable time.

Additionally, I dedicate many thanks to my current and former colleagues in my research
group and at our institute. They were good discussion partners and helped me to see things
also from other points of view. Without Thomas Rings, who supported me in doing the first
steps, I would not have started with this work. I also thank Ella Albrecht, Michael Göttsche,
and Steffen Herbold for reviewing and commenting the thesis. And although it was hard for
me to accept some comments, in the end, they were completely right and helped to make
the best out of the work.

I also want to thank my family. They always motivated me go certain steps in my educa-
tion, which now ended in a potential PhD. At the end of my school time, my sister said, that
she hopes to call me a PhD some day. It seems, this could be the case. But she also said,
that I may become a professional and popular comedian. I really hope, she is not always
right.

Finally, I want to thank my cohabitee Simone Münz. She did not only spend so much
time for a very detailed proof-reading and subsequent discussions, but she also supported
and motivated me all the way and, especially, in the last steps of completing this work. She
accepted, that I spend way too much time at work and on my desk at home, especially in
the last weeks. I do not want to miss her and her support in my life.

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Scope of the Thesis . 3
1.3. Goals and Contributions . 4
1.4. Impact . 5
1.5. Structure of the Thesis . 6

2. Foundations 9
2.1. GUIs, Actions, and Events . 9
2.2. Task Trees . 11
2.3. Usability Engineering . 13

3. Related Work 17
3.1. Automation in Usability Evaluation . 17
3.2. Utilizing GUI Events for Usability Evaluation 18
3.3. Recording of Action Instances . 20
3.4. Usage-based Generation of Task Trees . 21
3.5. Automation in Usability Issue or Smell Detection 25
3.6. Summary and Research Delta . 28

4. Automated Field Usability Evaluation Using Generated Task Trees 31
4.1. A Framework for Automated Field Usability Evaluation 31

4.1.1. General Structure . 31
4.1.2. Framework Instantiation for this Thesis 32

4.2. Recording of Action Instances . 33
4.3. GUI Model Derivation . 34
4.4. Usage-based Task Tree Generation . 35

4.4.1. Overall Process . 36
4.4.2. Iteration and Sequence Detection 37
4.4.3. Merging of Similar Sequences . 42
4.4.4. Complexity Analysis . 58

4.5. Usage and Task-Tree-Based Usability Evaluation 61
4.5.1. Approach . 61
4.5.2. Detection of Usability Smells Based on Task Trees 62

Contents x

4.5.3. Detection of Usability Smells Based on Action Instances 73

5. Implementation 83
5.1. Recording of Action Instances . 83
5.2. Post-Processing of Events . 85
5.3. Harmonization of GUI models . 85
5.4. Generation of Task Trees . 86
5.5. Verification of the Task Tree Representativeness 86

6. Case Studies 91
6.1. Case Study Setup . 91

6.1.1. Data Post-Processing and Task Tree Generation 91
6.1.2. Merging of Most Prominent Sequences 92
6.1.3. Verification of the Task Tree Representativeness 93
6.1.4. Usability Evaluation Analysis . 94
6.1.5. Reasons for the Case Study Selection 95

6.2. Case Study 1: Master Application Portal 96
6.2.1. Case Study Facts . 96
6.2.2. Task Tree Generation Results . 99
6.2.3. Task Tree Representativeness . 100
6.2.4. Usability Evaluation Results . 107
6.2.5. Result Validation: Application of a User-oriented Usability Test . . 118

6.3. Case Study 2: Research Website . 120
6.3.1. Case Study Facts . 120
6.3.2. Task Tree Generation Results . 122
6.3.3. Task Tree Representativeness . 124
6.3.4. Usability Evaluation Results . 127
6.3.5. Result Validation: Application of a User-oriented Usability Test . . 134

6.4. Case Study 3: BORG Calendar App . 136
6.4.1. Case Study Facts . 136
6.4.2. Task Tree Generation Results . 138
6.4.3. Usability Evaluation Results . 139
6.4.4. Result Validation: Application of a User-oriented Usability Test . . 144

6.5. Additional Experiments . 146

7. Discussion 147
7.1. Answers for Research Questions Concerning the Task Tree Generation . . . 147
7.2. Answers for Research Questions Concerning the Usability Smell Detection 148
7.3. Strengths and Limitations . 153
7.4. Ethical Aspects . 156

xi Contents

8. Conclusion 157
8.1. Summary . 157
8.2. Outlook . 158

Bibliography 161

List of Acronyms 173

Glossary 175

List of Definitions 179

List of Figures 183

List of Algorithms and Listings 187

List of Tables 189

A. AutoQUEST Commands for Post-Processing Recorded Events 191
A.1. Extended AutoQUEST Commands . 191
A.2. AutoQUEST Command Application . 193

B. Extension of GUI Models for Websites With DOM Ids 195
B.1. Parsing Configuration for Case Study 1 195
B.2. Parsing Configuration for Case Study 2 215

B.2.1. Parsing Configuration for the Old Website Version 215
B.2.2. Parsing Configuration for the New Website Version 222

C. Optimization for the Generation of Task Trees 233

D. Transformation of Task Models to Other Standards 235

E. Additional Plots for Case Study 1 239
E.1. Sequence Coverage Plots for Case Study 1 239
E.2. Matches Plots for Case Study 1 . 244

F. Additional Plots for Case Study 2 247
F.1. Sequence Coverage Plot for Case Study 2 247
F.2. Matches Plot for Case Study 2 . 250

1. Introduction

Usability of software becomes more and more important [1], as software is used in daily
life also by non computer professionals. The term software herewith spans from apps on
touch devices or TVs, websites, user interfaces of modern hardware, to conventional tools
on desktop PCs. Usability even evolves to complex experience when using a software [2].
It, therefore, not only influences the plain usage of a software but the whole process of
informing about a product, buying it, using it the first time, using it regularly, until ending
the usage.

The usability of a software can be decreased by usability issues, which are aspects of
the software that negatively influence its usage. To ensure a high usability of developed
software, several methods established over the past years [3] that aim at detecting usability
issues for a software. For example, several methods ask potential users to perform selected
tasks with a software and determine the problems the users have while doing so. The de-
tected problems can then be solved afterwards. But very often, the application of these
methods requires in-depth knowledge about them and a high effort for their execution.
Hence, these methods are seen as being applicable only by professionals. In addition, a
prerequisite for these methods is an analysis of the tasks that users perform with a software.
But these tasks are often manifold, user specific, and, hence, challenging to be analyzed.
Therefore, usability evaluation should be simplified and automated [4] to scale with the
increasing complexity of software and its usage scenarios. In this thesis, we describe an ap-
proach for automated usability evaluation of software incorporating an automatic detection
of user tasks. This approach is intended to be applicable with minimal effort and by any
person without required previous knowledge.

1.1. Motivation

Usability evaluation needs to become easier and more efficient [5] as, nowadays, more and
more software are developed with a decreasing time to market. Hence, the community
strives for automating usability evaluation. Automation has the advantage of cost reduc-
tion, increased consistency of uncovered usability issues and the potential to detect usabil-
ity issues in system components that would not be evaluated using manual methods (e.g.
because of cost and time constraints) [6, 7, 8]. In addition, automated usability evaluation
can be executed rather quickly [9] without detailed previous knowledge about usability en-
gineering. Furthermore, it allows for the objective comparison of different user interface

1. Introduction 2

solutions [6, 7]. Automated techniques may be applied before the system is fully imple-
mented [6, 7] and can be used to predict the errors across a whole software design [7].
Finally, the results of automated usability evaluation methods do not underlie the human ef-
fects that come with a subjective evaluation either by end users or by experts [1]. Therefore,
we strive for an automated usability evaluation method in this thesis.

Automating usability evaluations is challenging. Usually, it starts with recording users
when they utilize a software. But the recorded data are large and unstructured. This makes
it challenging to map the data to the actual tasks that users want to accomplish [6, 10]. This
issue can be addressed by using user interface technologies that are based on models of user
tasks. These models have a direct relationship to the elements of a Graphical User Interface
(GUI) with which users interact. Based on this, recordings of user actions performed on
a GUI can directly be transformed to recordings of user tasks. But such user interface
technologies are seldom used. Hence, other approaches are required, which are directly
based on existing GUI technologies without information about tasks and without requiring
a developer to explicitly record the user actions or to model user tasks [10]. Due to this, our
approach described in this thesis solely relies on recordings of user actions performed in
GUIs. Based on the recordings, we automatically generate models of the users’ tasks which
we then use for an automatic usability evaluation.

Automating usability evaluation and applying it in the field can be helpful to get a big pic-
ture of the usability of a software [10]. Evaluation in the field means evaluation in the right
usage context and environment [11] as well as evaluation with the real users of a software,
which should be strived for [1]. Usually, the sample sizes of a field usability evaluation
are large which allows for considering a large number of distinct test participants [5, 8] and
usage contexts including distinct devices, times of the day, etc. [11]. This broad variety of
test scenarios cannot be considered in a lab situation [12]. Hence, field evaluation takes
into account a broader list of actual user requirements towards a software and supports bet-
ter analyses of the actual use of the software [13]. Through this, it may also lead to other
conclusions than evaluation in the lab. For example, a feature judged as important by lab
participants may not be needed often in regular use [11]. For field usability evaluation, no
lab is required which could interfere with normal user behavior [14]. In the field, users
can do the tasks in the way they are used to it [4, 9]. In addition, field evaluation cannot
be invalidated through wrong selection of test participants, wrong selection of user tasks,
and disturbances through the lab setup or the evaluator [1] as no evaluator is required [9].
Therefore, our approach is intended to be applied in the field, analyzing the behavior of real
users and the usability the software has for them.

An intermediate result of our approach are task trees which are a model of the usage of a
software. These provide a lot of potential for subsequent usability analysis. Normally, such
models are created manually which can be hard and error prone. In addition, these models
may describe tasks not executed by users or executed in a different way. In our approach,
we initially determine the real users’ tasks automatically and then check if the evaluated
system has a good usability for performing these tasks. For this, we consider often executed

3 1.2. Scope of the Thesis

action combinations which are considered important and, hence, worth to be analyzed with
respect to usability [15].

In general, the method described in this thesis intends to be applicable ad-hoc, easily, and
without previous experience, which is so far lacking for other usability evaluation meth-
ods [16]. Instead, the current approaches for automatic usability evaluation are only sup-
portive, for example by automating the analysis of questionnaires, performing static checks
of user interface structures, and supporting the analysis of user logs [17]. Some automatic
methods go one step further and focus also on task analysis. Nonetheless, they require
user interface management systems which are not applicable in different contexts [10]. Our
approach aims at being applicable for any kind of software independent of the underlying
technology and by anybody without a high learning curve.

1.2. Scope of the Thesis

In this thesis, we present an approach for automated field usability evaluation based on
user actions recorded during the usage of a software and based on task trees generated
out of these user actions. The basic assumption for this approach is that users perform
the most important actions and action combinations also most often and that these action
combinations represent typical user tasks. Our major hypothesis is, that it is possible to
extract user tasks from the recorded user actions and to perform an automated usability
evaluation based on them. For evaluating this hypothesis, we focus on and answer the
following first research question regarding the derivation of user tasks from recorded user
actions:

• RQ 1: Can typical user tasks be determined based on recorded user actions and addi-
tional information about the structure of the GUI of a software?

This question leads to the following more detailed subquestions, which we also answer in
this thesis:

• RQ 1.1: Which is the level of detail and semantics of the tasks that can be identified?
• RQ 1.2: What are requirements towards the recorded user actions (e.g., minimal num-

ber of recorded actions) and the GUI structure to allow for a detection of user tasks?
• RQ 1.3: Under which conditions can a detected task still be considered representative

for user behavior?
• RQ 1.4: Can similar tasks be detected and merged and are the merge results still

representative tasks?

In addition, we consider a further main research question with a focus on automating a
usability evaluation based either solely on recorded user actions or on detected tasks:

1. Introduction 4

• RQ 2: Is it possible to automatically identify usability smells, i.e., indicators for
usability issues, in recorded user actions or detected user tasks with additional infor-
mation about the GUI structure?

Also this question leads to more detailed subquestions answered in this thesis, which are:

• RQ 2.1: What are usability smell specific thresholds that should be exceeded or con-
ditions that should be met to consider a usability smell as true hint for a usability
issue?
• RQ 2.2: For usability smells with a direct relationship to a detected user task, which

conditions should a referred task match to consider a usability smell as true positive?
• RQ 2.3: What are requirements towards the recorded user actions, the detected tasks,

and the information about the GUI structure to allow for an effective usability smell
detection?
• RQ 2.4: Is the detection of usability smells able to replace the application of other

usability evaluation methods or does it only supplement them?

1.3. Goals and Contributions

This thesis advances the state of the art of task tree analysis and automatic usability evalua-
tion through the following contributions:

• A general framework for the automated field usability evaluation which we in-
stantiate for the scope of this thesis (Section 4.1). This framework includes the basic
steps to be taken as well as the data types that need to be considered. Through this,
the framework provides a basic structure for the work in this thesis but also for other
automatic usability evaluation methodologies.
• An approach for the detection of iterations and sequences of typical user actions

(Section 4.4.2) and their transformation into task trees. The result of this approach
are task trees being a simple task and usage model for a software. The advantage
of these structures is that they are a condensed representation of the recorded user
actions and, therefore, easier to be analyzed.
• An approach for merging similar sequences of user actions (Section 4.4.3) to detect

also task execution variants, including actions that can be left out or task execution
alternatives. The resulting task trees are more condensed than the ones resulting from
the previous contribution and can, hence, contribute to a better understanding of the
users’ tasks.
• Support for manual task analysis by displaying detected task trees (Section 6) or

transforming them into the well-known representation of ConcurTaskTree (Annex D).
Through this, software usage analysis can be simplified and task models are easier
generated than through manual creation.

5 1.4. Impact

• A systematic catalog of automatically detectable usability smells (Section 4.5) be-
ing indicators for well-known usability issues. Each usability smell refers to founda-
tions in the literature and expected user behavior, which can be searched for in the
recorded data. The usability smells have a direct relation to an identified user task or
to recorded user actions, as well as to the GUI of an analyzed software. Each smell
provides a description that details, how the recorded actions and task trees are struc-
tured to consider a smell as present. In addition, the descriptions provide an intensity
metric for each of the smells to be able to assess the severity of a detected usability
smell.
• The combination of the above contributions into a fully automated approach for

usability evaluation in the field (Section 4), which can be applied for different kinds
of software including websites, desktop applications, and apps on touch devices. The
approach can be utilized ad-hoc and does not require previous experience of its user.
The results of applying the approach are representative for the real users of the system.

1.4. Impact

During the course of this work, intermediate results have been published in the following
peer reviewed journal articles:

• P. Harms and J. Grabowski, “Usability of generic software in e-research infrastruc-
tures,” Journal of the Chicago Colloquium on Digital Humanities and Computer Sci-
ence, vol. 1, no. 3, 2011. [Online]. Available: https://letterpress.uchicago.
edu/index.php/jdhcs/article/view/89

• P. Harms, S. Herbold, and J. Grabowski, “Extended trace-based task tree genera-
tion,” International Journal on Advances in Intelligent Systems, vol. 7, no. 3 and 4,
pp. 450–467, 12 2014. [Online]. Available: http://www.iariajournals.org/

intelligent_systems/

In addition, the following papers have been published in peer reviewed conference proceed-
ings:

• P. Harms, S. Herbold, and J. Grabowski, “Trace-based task tree generation,” in Pro-
ceedings of the Seventh International Conference on Advances in Computer-Human
Interactions (ACHI 2014). XPS - Xpert Publishing Services, 2014.
• P. Harms and J. Grabowski, “Usage-based automatic detection of usability smells,”

in Human-Centered Software Engineering, ser. Lecture Notes in Computer Science,
S. Sauer, C. Bogdan, P. Forbrig, R. Bernhaupt, and M. Winckler, Eds. Springer
Berlin Heidelberg, 2014, vol. 8742, pp. 217–234. [Online]. Available: http:

//dx.doi.org/10.1007/978-3-662-44811-3_13

https://letterpress.uchicago.edu/index.php/jdhcs/article/view/89
https://letterpress.uchicago.edu/index.php/jdhcs/article/view/89
http://www.iariajournals.org/intelligent_systems/
http://www.iariajournals.org/intelligent_systems/
http://dx.doi.org/10.1007/978-3-662-44811-3_13
http://dx.doi.org/10.1007/978-3-662-44811-3_13

1. Introduction 6

• P. Harms and J. Grabowski, “Consistency of task trees generated from website us-
age traces,” in Proceedings of the 17th International Conference on System Design
Languages (SDL Forum 2015). Springer Berlin Heidelberg, 2015.

Furthermore, the author of this thesis has contributed to the following papers:

• S. Herbold and P. Harms, “AutoQUEST - Automated Quality Engineering of Event-
driven Software,” in Proceedings of the Fourth International Workshop on Testing
Techniques & Experimentation Benchmarks for Event-Driven Software, March 2013,
pp. 134 – 139.
• S. Herbold, A. D. Francesco, J. Grabowski, P. Harms, L. M. Hillah, F. Kordon, A.-P.

Maesano, L. Maesano, C. D. Napoli, F. de Rosa, M. Schneider, N. Tonellotto, M.-
F. Wendland, and P.-H. Wuillemin, “The MIDAS Cloud Platform for Testing SOA
Applications,” in The 8th IEEE International Conference on Software Testing, Verifi-
cation and Validation (ICST) 2015 - tools track, Apr. 2015.

Finally, the author of this thesis supervised one student project, one bachelor thesis, and two
master theses related to the scope of this work, for which he also identified and specified
the topics:

• F. Trautsch, “Development and Integration of a Drupal module in a Website for gath-
ering usage data to perform a Usability Analysis.” Student Project, Institute of Com-
puter Science, University of Goettingen. 2013.
• F. Trautsch, “User-oriented Usability Evaluation of a Research Website.” Bach-

elor Thesis, Institute of Computer Science, University of Goettingen. 2013.
[Online]. Available: http://filepool.informatik.uni-goettingen.de/

publication/ifi/theses/2013/ZAI-BSC-2013-14-trautsch.pdf

• A. Deicke, “Automatic Usability Evaluation of Task Models.” Master Thesis,
Institute of Computer Science, University of Goettingen. 2013. [Online]. Avail-
able: http://filepool.informatik.uni-goettingen.de/publication/

ifi/theses/2013/ZAI-MSC-2013-07-deicke.pdf

• R. Krimmel, “Improving Automatic Task Tree Generation With Alignment Algo-
rithms.” Master Thesis, Institute of Computer Science, University of Goettingen.
2014.

1.5. Structure of the Thesis

The thesis is structured as follows. We start with foundations in Chapter 2, in which we
introduce the terminology used in this thesis. This terminology spans the usage of soft-
ware (Section 2.1), the concepts of task models and trees (Section 2.2), as well as usability
engineering and evaluation (Section 2.3).

http://filepool.informatik.uni-goettingen.de/publication/ifi/theses/2013/ZAI-BSC-2013-14-trautsch.pdf
http://filepool.informatik.uni-goettingen.de/publication/ifi/theses/2013/ZAI-BSC-2013-14-trautsch.pdf
http://filepool.informatik.uni-goettingen.de/publication/ifi/theses/2013/ZAI-MSC-2013-07-deicke.pdf
http://filepool.informatik.uni-goettingen.de/publication/ifi/theses/2013/ZAI-MSC-2013-07-deicke.pdf

7 1.5. Structure of the Thesis

In Chapter 3, we refer to scientific work related to this thesis and put our work into a
broader research context. This is subdivided into existing work on automating usability
evaluation in general (Section 3.1), processing of recordings of software usage with a focus
on usability evaluation (Section 3.2 and 3.3), the generation of task trees (Section 3.4), and
the automation of usability issue and smell detection (Section 3.5). We close Chapter 3 with
a description of the research delta provided by this thesis.

In Chapter 4, we depict the details of our approach for automated field usability evalu-
ation. We start by introducing the approach in general (Section 4.1). Then we describe,
how we record user actions (Section 4.2) and derive a model of the GUI of a software (Sec-
tion 4.3). Afterwards, in Section 4.4, we explain the generation of task trees from recorded
user actions. The usability smell detection, subdivided into smells for task trees and smells
for user actions, forms Section 4.5.

We validated our approach in three case studies. The required implementation is de-
scribed in Section 5. In Section 6, we first introduce the basic setup of all case studies and
provide reasons for the case study selection. Then we provide one subsection per case study
(Section 6.2, 6.3, and 6.4), in which we describe and list the results of applying our ap-
proach on two websites and one desktop application. Afterwards, in Section 6.5, we briefly
mention two additional experiments, which we performed in the context of this thesis. We
discuss the results of the case studies in Section 7. This includes answering the research
questions formulated in Section 1.2 in the sections 7.1 and 7.2, as well as showing strengths
and limitations of our approach (Section 7.3). We close Section 7 with a consideration of
ethical aspects. In Section 8, we conclude the thesis and provide an outlook on potential
future work.

2. Foundations

This chapter introduces the foundations of this thesis which consist of terminology and
basic concepts. We start by introducing terms related to GUIs and their usage. Then, we
describe our notion of task trees and their structuring used throughout the thesis. Finally,
we introduce usability and related concepts.

2.1. GUIs, Actions, and Events

Any software has a User Interface (UI) that can be utilized by users to interact with the
software [18]. Nowadays, this interface is mostly graphical and, therefore, called Graphical
User Interface (GUI). A GUI consists of many GUI elements. We subdivide GUI elements
into interaction elements, visual elements and container elements. Interaction elements are
those directly utilized by users for executing functions of a software [18]. Examples are
buttons and text fields. Visual elements present information to the users but do not allow
for direct user interaction. Container elements are used for structuring interaction elements,
visual elements, and other container elements of a GUI. Usually, these are panels, tabbed
panes, frames, or dialogs. Container elements can be in conflict with each other regarding
their visibility. For example, of several sibling tabbed panes, only one can be visible at a
time. We call these container elements a view. A view belongs to a set of views of which
only one is visible at a time and which have the same parent container element. In addition,
container elements can have a virtual nature in that they are not presented to the user but
only used for structuring the GUI.

Container elements contain other GUI elements. Because of this relationship, GUIs fol-
low a tree structure, that we call the GUI model. The leaf nodes of this tree are interaction
and visual elements. The parent nodes are container elements. The root node of a GUI is a
container element containing all other GUI elements directly or indirectly as its children.

A GUI model following this approach can be drawn for desktop applications, apps, and
websites. An example of a GUI model for a website is shown in Figure 2.1. The root
node is a virtual container element representing the whole website. Its children are also
virtual and represent the individual pages of the website. These nodes are views as only
one of the pages can be displayed at the same time. The other nodes refer to the Hypertext
Markup Language (HTML) Document Object Model (DOM) structure of the specific page
by referring to the name of the HTML tag they represent. Some of them are also virtual
container elements, e.g., the node representing the form tag, which itself is not displayed on

2. Foundations 10

host

login

html

div

body

head

form(id=“form1“)

input(id=“username“)

input(id=“password“)

input(id=“login“)
content

html

...

Figure 2.1.: Example of a simple GUI model.

a website. The leaf nodes of the GUI model represent interaction elements. Visual elements
are not included in the example.

The following terminology is based on several papers [19, 20, 21, 22, 23] that we pub-
lished in the context of our work. Interaction elements of a GUI offer to users different
actions [18] that can be performed on a software. For example, a user can click on a but-
ton to trigger some functionality or enter a text into a text field. We refer to the set of all
available actions that can be performed on a GUI of a software as the set A.

Actions can be subdivided into the two groups of efficient and inefficient actions. Efficient
actions are contributing semantically to a users task. For example, entering a text into a
text field can contribute to a login process. Inefficient actions are the opposite and do not
contribute semantically to a users task. For example, scrolling vertically usually does not
have any semantic meaning when performing a login process.

The execution of a specific action a ∈ A by a user is called an action instance a′. All
action instances recorded on a software belong to the set A′. An action instance a′ triggers
an event inside the software. This event signals that the user performed the respective action
a and the software handles the event to process a′. An event has an event type and an
event target [10]. The event type denotes the type of action the user performed such as a
click, stroking a key on the keyboard, and moving the mouse. The event target refers to
the GUI element on which the action was performed. Event targets are usually interaction
elements. Events can also be observed on GUI elements which are no interaction elements.
In this case, the corresponding action instances belong to actions which are not in A, i.e.,
which cannot be executed on the software. All events contain additional information, e.g.,
a time stamp or coordinates of a mouse click [10]. As events are representations of action
instances, these information are available also for action instances.

11 2.2. Task Trees

All action instances recorded on a software can be subdivided into lists of subsequent ac-
tion instances that were performed in the same view. Each list represents one opening of the
view and contains the action instances that were performed when this view was displayed.
For the determination of these lists, we define the function viewActionInstances(A′,view).
The result of this function is a number of sublists resulting from the number of times the
users opened the corresponding view.

The interaction of a user with a software can be seen as a language spoken by the user
and understood by the software [10]. Herewith, the actions correspond to the words of
the language. The combination of several actions builds sentences. Word combinations
of a certain length n are named n-grams. We reuse the term n-gram to denote a certain
combination of n actions.

2.2. Task Trees

The following terminology is based on several papers [19, 20, 21, 22, 23] that we published
in the context of our work. Users perform an ordered list of actions a1 . . .an to reach a
certain goal and, hence, to perform an individual task [24]. For example, users combine the
actions for entering text into text fields and clicking on a confirmation button to accomplish
the task of logging in on a website.

Tasks can be combined with other tasks and actions to form higher level tasks. For
example, on an online shop website, the higher level task of buying a specific product is a
combination of the task of logging in on the website, actions for searching and selecting the
respective product, and a further task for performing the checkout. We refer to all tasks that
can be performed with a software as the set T . Formally, any task t ∈ T has an ordered list of
children c(t) = c1 . . .cn. These children are either actions or other tasks, i.e., ci ∈ A∪T \{t}.
The number of children of a task t is defined as |c(t)|. Additionally, we defined that neither
direct nor indirect children of a task t refer to t. This means, a task is never its own direct
or indirect child.

A task is of a specific type through which it defines the execution order of its children.
This order is called temporal relationship [25]. In our work, we consider the tasks of type
sequence, iteration, selection, and optional. A sequence is a task having two or more chil-
dren (i.e., |c(t)|> 1) which are executed in their given order. An iteration is a task that has
only one child (i.e., |c(t)| = 1) which can be executed one or more times. A selection is a
task having two or more children (i.e., |c(t)| > 1) of which only one can be executed. An
optional is a task having only one child (i.e., |c(t)|= 1) which can be left out.

Through the child relationships defined above, a task forms a tree structure, that we call
a task tree. The root node of a task tree is the task itself. The leaf nodes are the actions
belonging to the task. The intermediate nodes are the child tasks belonging to the root task
and define together with the root task the execution order of the actions. An example for
a task tree representing a typical login procedure on a website including the entering of a

2. Foundations 12

user name and a password is shown in Figure 2.2. The leaf nodes are the actions that can
be performed. The parent nodes, i.e., tasks, define through their type (indicated through the
node name) the execution order of the actions. For example, the task Sequence 2, which
represents the entering of the user name, is a sequence and defines that its children Click
on Text Field "username" and Enter Text in Text Field "username" must be executed in
their given order. Selection 1 defines that the user may choose between entering the user
name, represented through Sequence 2, and entering the password, represented through
Sequence 3. Iteration 1 defines that the user can perform this selection any amount of time.
After the user name and the password are entered, the user may optionally check a check
box to stay logged in, represented through Optional 1. Finally, the task is completed through
a click on the login button.

Sequence 1

Iteration 1

Selection 1

Sequence 2

Click on Text Field „username“

Enter Text in Text Field „username“

Sequence 3

Click on Text Field „password“

Enter Text in Text Field „password“

Optional 1

Check Checkbox „stay logged in“

Click on Button „login“

Figure 2.2.: Example of a simple task tree representing a login process on a website.

The execution of a task t is called a task instance t ′ [26]. A task instance also has children
being task or action instances. Hence, it also forms a tree structure similar to that of a
task. The leaf nodes of this tree are action instances. The root node is an instance of
the respective task. The number and types of children of a task instance depend on the
type of the corresponding task. The children of a sequence instance s′ of sequence s with
n children c(s) = c1 . . .cn are a list of instances of the children of s in the same order,
i.e., c(s′) = c′1 . . .c

′
n. An iteration instance has one or more children all being instances of

the single child of the iteration. The number of children of an iteration instance defines
how often the child of the iteration was executed. A selection instance has exactly one
child being an instance of one of the children of the selection and representing the selected
execution variant. An optional instance has zero or one child being an instance of the single
child of the optional. If the optional instance has no child, the execution of the single child of

13 2.3. Usability Engineering

the optional was left out. Otherwise it was performed. An example for a task instance of the
task tree in Figure 2.2 is shown in Figure 2.3. The nodes are instances of the respective tasks
or actions. The user first enters a user name, then a password, leaves the box for staying
logged in unchecked, and performs the login through a click on the respective button.

Instance of Enter Text in Text Field “username“

Instance of Sequence 1

Instance of Enter Text in Text Field “password“

Instance of Click on Text Field “username“

Click on Button “login“

Instance of Click on Text Field “password“

Instance of Selection 1

Instance of Iteration 1

Instance of Sequence 2

Instance of Sequence 3

Instance of Optional 1

Instance of Selection 1

Figure 2.3.: Example of a task instance representing an execution of the task in Figure 2.2.

A task has diverse characteristics, that are of importance for our work. For example,
we consider the depth of a task depth(t) that we call task depth, which corresponds to the
number of levels of the corresponding task tree. The task itself is the first level, its children
the second, and so on. The actions are the last level of a task tree. The example task in
Figure 2.2 has a depth of depth(Sequence1) = 5. In our work, we generate task trees based
on recordings of action instances, i.e., events. For generated task trees, we define several
functions. One is a′(t) which returns all recorded action instances based on which the task t
and its task tree were generated. Similarly, a′(t ′) returns the recorded action instances which
represent the instance t ′ of task t. A further function is x(t) which returns all instances, i.e.,
executions, of task t.

2.3. Usability Engineering

Usability is a characteristic of products in general [27]. After ISO 9421 part 11, the usability
of products focuses on executing tasks with effectiveness, efficiency and satisfaction [28].
Effectiveness means that the tasks are fully completed. Efficiency refers to the effort for task
execution which should be as low as possible. Satisfaction, in addition, considers that the
task execution must be pleasant for the users. Usability depends on the usage context, which

2. Foundations 14

covers user groups, tasks to be executed, as well as the physical and social environment of
the user. Usability may vary strongly between different usage contexts which means, e.g.,
that a product can have a high usability for one person and a low usability for another.

Usability can be considered to reflect "... how easy a system is to learn and use, how
productively users will be able to work and how much support users need" [29]. ISO 9126
part 11 also provides a definition for usability. There, the focus is on software quality and
usability is, therefore, "[t]he capability of [a] software product to be understood, learned,
used and attractive to the user, when used under specified conditions" [30]. Although dif-
fering in some aspects, this definition is similar to the one of ISO 9241 part 11 as it also
considers the usage context, i.e., the specified conditions. In addition to effectiveness, effi-
ciency, and satisfaction, further aspects may be considered. Examples are learnability [31],
error rate [32], and attention [33].

In this thesis, we use the definition of usability after ISO 9421 part 11. Although the term
is defined for products in general, in this thesis, we consider usability of software, only. The
term software in this thesis covers mainly websites and GUI based computer programs on
PCs. But we also consider apps on mobile devices.

A usability issue is a problem with the software that decreases its usability. This means, it
decreases one or several factors of effectiveness, efficiency, and satisfaction [22]. Usability
issues can have different causes like the visual design, the information architecture, the
performance, or failures of a software. For example, a specific color combination in the
visual design can make it hard for users to identify a certain GUI element and, therefore, to
fulfill a task (effectiveness). Furthermore, the information architecture may require users to
perform long navigation paths through a website (efficiency) to reach a specific information.

A usability smell in our work is exceptional behavior of users indicating one or more
usability issues [22]. For example, users click on an unclickable GUI element which may
indicate a usability issue with respect to the visual design. Another example is that users
perform long navigation paths through a website. This indicates an inefficiency of finding a
specific information, the usability issues mentioned above. A usability smell has a descrip-
tion of expected user behavior and refers to usability issues it may indicate. Furthermore, it
has an intensity being the likelihood of indicating a usability issue.

The goal of a usability evaluation is to measure different aspects of the usability of a soft-
ware [3], like efficiency and satisfaction. Basically, it aims at identifying usability issues.
This requires the predefinition of evaluation goals, the analysis of the usage context, and
finally the measurement and assessment of usability aspects using dedicated methods. The
analysis of the usage context includes the identification of typical tasks users perform with
a software. These tasks serve as input for the evaluation methods.

The usability evaluation methods can be subdivided into expert- and user-oriented meth-
ods [34]. Expert-oriented methods are performed by experts who know how a specific
method must be applied. These methods define concrete steps the expert has to take to

1In the meantime, ISO 9126 is superseded by ISO 25000.

15 2.3. Usability Engineering

identify usability issues. For example, an expert measures the achievable efficiency of a
user executing a specific task by identifying detailed actions a user has to take and then
estimating the average time for the action executions [35]. In contrast, user-oriented meth-
ods follow a process in which users use a prototype or a running software for predefined
tasks while they are observed by an evaluator. The observations are then analyzed and help
to identify usability issues. For gathering data during the observations, different methods
like taking notes, recording user actions, letting users fill out questionnaires, or thinking
aloud [27] can be applied. Thinking aloud asks the users to verbalize their thoughts while
performing the tasks so that the evaluator gets respective insights not visible from the plain
actions that the users perform. User-oriented usability evaluation can be done in a laboratory
or in the field [36]. A laboratory setup might influence the user and, hence, the evaluation
results [27]. When done in the field, user-oriented usability evaluation lets users do their
tasks in their natural environment, i.e., in the matching usage context making the results
more reliable [36]. For a user-oriented usability evaluation, already three to six users are
sufficient to determine the most important usability issues [34].

As model-based usability evaluation we refer to usability evaluation methods that utilize
some kind of model. These models can describe users and the way they utilize a soft-
ware [35] or the software itself [18]. For example, a model can define average durations
for specific actions or it may describe the GUI. Usually, the model is created before and
analyzed during the evaluation. A model can be created manually or automatically where
in the latter case it is usually derived from other models (like the GUI itself) through model
transformation.

The continuous application of usability evaluation methods during the development pro-
cess of a software with the goal to achieve high usability of the final product is called
usability engineering [3]. The application of the evaluation methods requires preparation.
Therefore, usability engineering usually covers five tasks: a) analysis of users and con-
text, b) modeling of a solution, c) specification of solution details, d) realization, and e)
evaluation of the solution [37]. These tasks must not be understood as successive but as
contributing to each other. For example, a modeling may result in requiring a further anal-
ysis of a specific aspect. Usability evaluation methods are applied in Task e) but require
preparation in all other tasks.

Related to usability is the term user experience which covers a broader context than
usability [2]. In addition to usability, it considers an "... individual’s entire interaction
with the [software], as well as the thoughts, feelings, and perceptions that result from that
interaction." [1]. In some definitions, user experience covers a whole customer journey from
searching for a product, via buying it, up to using support during usage [37]. Usability can
be seen as an important part contributing to the user experience.

A further related term is interaction design which focuses on designing the ways users
perform actions with a software [37]. Usability is also related to accessibility which aims
at making software usable for people with certain disabilities. Finally, usability must be
separated from the research field of human computer interaction, whose goal is to develop

2. Foundations 16

interaction methods with human behavior and cognitive psychology in mind [38]. This can
contribute to the iterative improvement of interfaces with respect to usability.

3. Related Work

The approach described in this thesis performs an automated detection of usability smells
based on recorded user actions which are transformed into task trees. As such, it is an
automated, model-based, and user-oriented usability evaluation method in the field. In this
chapter, we discuss the related work covering the different aspects of our approach. We start
with automation in usability evaluation in general and based on GUI events. Afterwards,
we cover the different aspects of our work, which are recording action instances, generating
task trees, and detecting usability issues and smells.

3.1. Automation in Usability Evaluation

In 2001, Ivory and Hearst performed a survey on how automation can be introduced in us-
ability evaluation [6]. For this, they defined a framework for usability evaluation in general.
This framework consists of the three steps capture, analysis, and critique. Capture covers
recording and pre-processing data required for a subsequent analysis. Analysis aims at pro-
cessing and interpreting the data and identifying usability issues. Finally, critique proposes
solutions for solving the issues. Ivory and Hearst found out that only a few usability eval-
uation methods can be or are automated and that automation focuses more on capture and
analysis than on critique. They also propose to develop further automated methods to have
a cost reduction and an improved comparability of evaluation results. The goal of our work
is a full automation of usability evaluation covering capture, analysis, and also critique. In
our approach, capturing is done via recording of action instances. We focus on analysis by
transforming action instances into task trees and subsequently processing them for detect-
ing usability smells. Finally, critique is provided by the resulting usability smells as they
contain detailed information about the potential usability issues as well as a proposal for
their solution. Through this end to end solution, our approach is applicable also for people
having no deep understanding of usability and usability engineering.

Paternò and Santoro 2008 defined a framework for remote usability evaluation [39]. This
framework subdivides the evaluation process into five dimensions which are 1) the inter-
action between the user and the evaluator, 2) the interaction platform or modality, 3) the
techniques for recording user action instances, 4) the technology used for implementing a
software, and 5) the type of evaluation results. In the first dimension (interaction between
user and evaluator), they distinguish four different types of data collection being remote
observation, remote questionnaires, critical incidents reported by the users, and automatic

3. Related Work 18

data collection. Our approach belongs to the last category, as we automatically record ac-
tion instances without notice of the user. As Paternò and Santoro point out, this approach
requires an extensive effort for the analysis of large amounts of data. In our approach, we
address this by fully automating subsequent analysis steps.

The second dimension of Paternòs and Santoros framework (platform and modality), is
subdivided into the three categories desktop, vocal, and mobile applications. Our work
focuses on desktop applications, including websites. As websites can also be used via
mobile devices, we also recorded users utilizing mobile devices in our case studies. The
usability evaluation of mobile applications in the sense of Paternòs and Santoros framework,
i.e., apps on mobile devices, is not yet fully supported. We only recorded action instances
on an Android app and generated task trees out of them in an additional experiment. But,
we did not perform a full usability evaluation based on this data. Our approach may be
adapted to consider vocal interactions as action instances, as well. Through this, it may also
be applicable for vocal interfaces. But in this thesis, vocal interfaces are not considered.

The third dimension of Paternòs and Santoros framework (recording action instances) is
subdivided into the categories server side logging, proxy-based logging, client side logging,
eye-trackers, webcam and audio recorders, as well as sensors. In our approach, we perform
a client side logging for websites and desktop applications. As pointed out by Paternò and
Santoro, this has several advantages, e.g., a very detailed recording of action instances.
However, they also mention, without reference to other work, that usability evaluations
on plain recorded user actions are unlikely to provide helpful results. In our work, we
show that we gather helpful results from recorded action instances through an intermediate
transformation into task trees and their subsequent analysis.

For their fourth dimension (software technology), Paternò and Santoro do not give cate-
gories but name respective technologies, e.g., Java. In our work, we record users of websites
and Java applications. In an additional experiment, we recorded users of an Android app.

The fifth and final dimension of Paternòs and Santoros framework focuses on the type of
evaluation result. It is subdivided into the categories task-related information, qualitative in-
formation, presentation-related data, and quantitative cognitive-physiological information.
Mainly, our approach provides task-related information. However, our tasks are not prede-
fined and premodeled as considered by Paternò and Santoro. Instead, they are generated
based on action instances and, therefore, represent not intended but actual user behavior.
The subsequent detection of usability smells refers to the detected tasks. We also provide
presentation-related data such suboptimal positioning of GUI elements for some of the de-
tected usability smells.

3.2. Utilizing GUI Events for Usability Evaluation

A framework that focuses on the extraction of usability information from events was de-
fined in 2000 by Hilbert and Redmiles [10]. In their paper, they provide a classification

19 3.2. Utilizing GUI Events for Usability Evaluation

scheme for methods that extract usability related data from recorded events, i.e., action
instances. They identified five major method groups which are synchronization and search-
ing, transformation, analysis, visualization, and integrated support. Our approach covers
transformation and analysis, as well as, to some degree, visualization.

Hilbert and Redmiles subdivide the method group of transformation into selection, ab-
straction, and recoding [10]. Selection means to consider only a subset of events of interest
instead of all recorded ones. An example is discarding keyboard focus change events or
mouse movements. In our approach, we perform a selection of events by discarding them
after recording or not even recording them. With abstraction, Hilbert and Redmiles mean
combining recorded key stroke level events to higher level events. In our approach, we do
this to overcome platform dependent differences between the level of recorded events. For
example, on a Java platform, we record individual key press events on the keyboard which
we compile to text input events on text fields whereas on websites, we directly record whole
text inputs on text fields as one event. Furthermore, we apply abstraction to prevent interre-
lationships between distinct events, i.e., to consider any event as standing for its own. For
example, a key press event on the keyboard may depend on a preceding key press event of
the shift key on the keyboard. A combined text input event does not have such relationships
to other events. In our approach, we also do recoding which Hilbert and Redmiles define as
"... producing new event streams based on the results of selection and abstraction". When
discarding events and generating higher level events from key stroke level events, the result
in our work is always an adapted event stream.

The second method group of Hilbert and Redmiles that our approach belongs to is anal-
ysis, which they further subdivide into counts and summary statistics, sequence detection,
sequence comparison, and sequence characterization. Our approach offers not only counts
and summary statistics about the events, but also about the detected tasks. Our task tree
generation includes a sequence detection. The methods described by Hilbert and Redmiles
either detect occurrences of predefined sequence patterns or they provide general statistics
about the occurrences of all sequences up to a specific length. The first method type requires
a high effort to define sequences of interest as well as knowledge about the events. Its ad-
vantage is that it allows for detecting execution variants. In contrast, the second method
type can not handle execution variants but can be applied without preparation. Our task tree
generation does not require any manual effort for identifying interesting sequences and it
also detects execution variants of similar sequences. Therefore, it directly solves the disad-
vantages of both variants and combines the advantages in one approach.

As sequence comparison, Hilbert and Redmiles consider approaches that compare
recorded event sequences with predefined and optimal sequences or usage models. This is
not supported by our approach as in our opinion, the optimal usage of a software can not
be predefined by an evaluator. Instead, this predefinition represents the designers intended
usage. Only the users inherently know what they consider optimal. This means, a system
usage considered optimal by an evaluator may conflict with the requirements of a user.
Furthermore, the predefined usage models need to be complete and, therefore, their creation

3. Related Work 20

usually is accompanied with a high effort for the evaluator. Our approach does not utilize
predefined and considered-optimal system usage.

Finally, Hilbert and Redmiles consider sequence characterization which has the goal of
deriving a usage model from events. This model is either probabilistic or grammatical. Our
approach generates a grammatical model which are the task trees. In comparison to the
approaches named by Hilbert and Redmiles, it does not require manual intervention and it
is not sensitive to noise data.

Visualization as mentioned by Hilbert and Redmiles is used for a manual analysis of the
data and requires human interpretation and, hence, respective experience and knowledge
of the evaluator. This contradicts our goal of making our approach applicable for anybody
without specific knowledge prerequisites. Therefore, we make only rare use of visualiza-
tion. Nevertheless, our approach allows visualizing task trees and related statistics as shown
in the case studies. Furthermore, we support a transformation of our task trees into other for-
mats to support a manual inspection using existing tools. Because of the rare visualization,
our approach is only partially integrated in the sense of Hilbert and Redmiles.

3.3. Recording of Action Instances

Recording of action instances on software is a well researched topic. Rosenbaum calls
it behavioral data collection [13]. It can be performed in different ways, e.g., through
video recordings or the creation of screencasts. In this thesis, action instances are recorded
through recording GUI events.

Recording events strongly depends on the platform used for creating the GUI. In the liter-
ature, there are descriptions for recording events on Quicktime applications [40], Windows
applications [6, 41], and even games [42]. Most important for this thesis is recording events
on websites and Java applications.

For recording events on Java applications, usually the event handling capabilities of the
respective interface technology is used. An example is recording events from Abstract
Window Toolkit (AWT) GUIs where any event handled by the GUI is intercepted and logged
to a log file [43]. In our approach, we practice the same which also works for Swing-based
interfaces. In addition, there are techniques using aspect-oriented programming with the
goal not to change the source code of a GUI for the purpose of recording. The way in which
we utilize the event handling mechanisms of Swing/AWT, the source code of the GUI also
does not need to be changed.

Events on websites can be recorded through a variety of techniques. Rather easily, log
files of web servers can be utilized. But due to client side caching and other technologies,
not all events are logged by this approach [44]. Another possibility is recording events using
browser plugins. This requires an adaptation of the user’s environment and is, hence, not
applicable for large scale field studies [14]. Therefore, other approaches utilize only web
technologies for this purpose. An example is the usage of JavaScript [14], potentially in

21 3.4. Usage-based Generation of Task Trees

combination with Java applets [45, 46]. For this, websites are extended with a JavaScript,
which registers with the event handling mechanism of HTML on page loading to record a
pre-selected set of events. If events are observed, they are either stored locally [47] or sent
to a server, either through a Java applet [46] or through JavaScript [14] mechanisms. The
integration of the JavaScript in the website can be done manually or automatically. For the
automatic approach, a website can be routed through a proxy, which adds the JavaScript [14]
to any page. Furthermore, modern Content Management Systems (CMSs) support adding
a JavaScript to any page by configuration [48]. In our approach, we use only JavaScript to
intercept events and to send them to a server which stores them in an eXtensible Markup
Language (XML) format. This does not require any change in the user’s technical setup and
stores the recorded events on a location accessible for subsequent analysis.

The recording of events can also be done for apps on mobile devices. For example, Jensen
and Larsen [11] recorded events on a mobile device and sent them to a server that processes
the data. In addition to actions, they also recorded the startup and shutdown of an app. In
an additional experiment done in this thesis, we recorded events caused by actions on an
Android app and stored them on the device for later processing.

There are also technologies for setting up prototypes or whole websites that have an
integrated support for recording events. For example, Remote Model-Based Evaluation
(ReModEl) supports the generation of websites based on defined task models [49]. These
websites are then capable of storing recorded events that have a direct relationship to the
task model. In contrast to our approach, these approaches require the utilization of a specific
technology and are, hence, not directly applicable on arbitrary websites.

In recent years, more and more web analytic tools are used for recording user behavior.
They utilize JavaScript and other web technologies to track what users do on websites. Ex-
amples are Piwik [50] and Google Analytics [51]. Although very helpful for many research
questions, these tools usually do not record user behavior as detailed as required for the
approach described in this thesis. Furthermore, the recorded data may not be accessible for
subsequent analysis different from that provided by the tool itself.

Recorded GUI events can have issues making a subsequent analysis difficult. For exam-
ples, events may be disordered due to the concrete recording mechanism [41]. Furthermore,
event logs can become large if too many events, e.g., mouse movements, are recorded [10].
Finally, there may be inconsistencies in the logs, e.g., due to system crashes [11]. To handle
all this, the recorded events require a post-processing, that we also perform in this thesis.
We describe this post-processing together with our case studies, their implementation, and
in detail in the Annex A.

3.4. Usage-based Generation of Task Trees

In addition to usability evaluation, we describe in this thesis an approach for automatically
generating task trees based on recorded action instances. Task trees are one variant of

3. Related Work 22

task models which describe the nature and structure of the tasks that users perform with a
software [5]. Mostly, they refer to the users’ goals that can be achieved when performing a
task. Following an ontology for task models defined by Van Welie et al. [24], task models
are formal and they describe 1) the decomposition of tasks into subtasks and actions, 2) a
tasks’ flow, 3) the objects required or important for a task execution, as well as 4) the task
world, i.e., the environment in which tasks are executed. The task trees that we generate in
our approach focus only on task decomposition and task flow description.

Task models can be applied at several stages of the development of a software. For
example, they can aid the software design, help on validating design decisions, or be used
for generating task-oriented user interfaces [24]. The task trees generated in our approach
can be used for a summative validation of a software and, through this, support subsequent
design adaptations.

The ontology of Van Welie et al. [24] allows for comparing different variants of task
models. It defines a terminology for typical concepts and their relationships used in task
models. The concepts being important for our work are task, basic task, and user action.
Van Welie et al. describe the two latter concepts as being more concrete variants of the first.
A user action in Van Welie’s terminology is what we simply call an action in this thesis. A
basic task is "... a task for which a system provides a single function. Usually[,] basic tasks
are further decomposed into user actions and system operations" [24]. With our approach,
we mainly identify tasks on the level of Van Welie’s basic tasks but without considering
system operations. Van Welie et al. further utilize the term unit task which they describe "...
as the simplest task that a user really wants to perform" [24]. This is the level of tasks that
our approach can generate as long as sufficient users are recorded performing these tasks.
However, our tasks do not refer to a user’s goal as this can not be derived automatically.

In addition to the different terms for tasks, Van Welie et al. define relationships between
tasks. The relationships that are generated in our approach are Van Welie’s subtask and trig-
ger. The subtask relationship corresponds to the parent child relationships in our task trees.
The trigger relationship defines the order in which tasks are executed. In our approach, this
is covered through the task types. Van Welie et al. mention three different trigger relation-
ship types being AND, OR, and NEXT. The NEXT trigger, defining a subsequent order of
tasks or actions, is covered by our task type sequence. The OR trigger, defining execution
variants, is supported through our task types selection, iteration, and optional as well as
their possible combinations. The AND trigger used to defined parallel task execution is not
supported by our approach. According to Van Welie et al., the trigger relationship can be
implemented on task level through temporal relationships or through modeling a workflow
representation [24]. In our approach, we focus on the first variant which has the disadvan-
tage that intermediate nodes may be required in the task trees to fully describe a trigger
relationship [24]. The advantage is that we do not require an additional time axis which is
needed for the workflow representation.

There are many different approaches utilizing tree structures for task modeling similar
to our approach. These approaches usually focus on a specific utilization of the task trees.

23 3.4. Usage-based Generation of Task Trees

For example, Goals, Operators, Methods, and Selection Rules (GOMS) is an approach that
utilizes tree structures for manually describing a user’s task with all its actions, but also with
all its mental and physical effort [52]. Based on this model, an evaluator can estimate the
average task execution duration. In contrast, the Task Modelling Language (TaskMODL)
focuses on specifying task trees with reference to the resources required for task execu-
tion [18]. This helps to identify all required resources especially for complex tasks. Fur-
thermore, Paternò et al. provide a notation for task trees called ConcurTaskTrees [53, 25]
that allows specifying conditions, software side activities, and data flow on top of usual task
structures. Furthermore, parallel task executions are supported. The task structures gener-
ated in our approach do not intend to replace any of the modeling approaches introduced by
other researchers. Instead our goal is to have a simple variant of task trees which provides
exactly what our approach requires or is able to generate. Through this, we hope to make
our approach more understandable. Nonetheless, we show that our task tree notation can be
transformed into other notations like ConcurTaskTrees.

There have been several attempts to detect tasks in recorded user actions. An example
is Automated Website USability Analysis (AWUSA) [54] which tries to determine usage
patterns from recorded website navigation. This work focuses on navigational patterns and
does not include other actions. Furthermore, some works calculate a probabilistic model of
system usage, e.g., using Petri nets [55]. These models include representations of tasks in
the form of the most probable system usage. But they usually include longer action com-
binations which were not executed by users. In addition, these longer action combinations
may have a high probability because shorter contained action combinations have a high
probability. As such, these models may provide a wrong view on the actual system usage.
Our task trees may also represent invalid action combinations. However, the tasks always
refer to their instances which show how the tasks were effectively executed, making our
model more realistic.

There are several attempts that detect tasks in form of action combinations in recorded
action instances based on labeled data [4]. Labeling means to identify when a task starts or
ends in a list of recorded action instances. The labels can be defined by the evaluator [56]
or by the user when they start a task [57]. Other approaches try to generate the labels,
for example, via time stamps of the events [58]. Afterwards, the approaches use different
methods, e.g., machine learning [59] or sequence alignment [58], to identify tasks based on
the labels. Our approach does not require labeled data and is as such more flexible. There
are also approaches working on unlabeled data, e.g., Maximal Repeating Patterns (MRPs),
which provide statistics for action combinations up to a specific length [15, 9]. This is
similar to subdividing natural language texts into n-grams up to a certain length and then
providing statistics for them. These approaches consider always full action combinations
which may include repetitions of single actions. In our approach, we also detect repeti-
tions of actions as standalone and include them in larger action combinations. Furthermore,
MRPs do not consider shorter action combinations being part of longer action combinations
as done by our approach.

3. Related Work 24

A further variant for identifying tasks from user actions is programming by example.
Here user actions are observed at runtime. If a pattern of actions is identified as a task, users
are either proposed with next steps to be executed [60] or with automating repeated action
combinations, i.e., tasks. These approaches intend to improve the efficiency of a concrete
user. They do not consider the broader view of many users having different or similar tasks.

There are approaches that generate GOMS models from recorded user actions. As men-
tioned above, GOMS models are a hierarchical approach for task modeling similar to task
trees with the goal to estimate task execution time. Examples for these approaches are ACT-
R [61] and Convenient, Rapid, Interactive Tool for Integrating Quick Usability Evaluations
(CRITIQUE) [62]. The goal of these approaches is to ease the definition of GOMS mod-
els. Usually, an optimal task execution is performed once by an evaluator and the tools
then generate a GOMS model based on this single recording of actions. A further approach
called TOME generates similar models from recordings of several executions of the same
task [57]. For this, the recordings are manually linked to the executed task. All of these
approaches require predefined tasks whose executions are recorded. Our approach aims at
detecting real user tasks and not predefining them.

The interaction of a user with a software can be seen as a language spoken by the user
and understood by the software. Task trees are a grammatical description for such a lan-
guage [10]. Executions of tasks are n-grams of the words belonging to the language. There-
fore, approaches for grammatical inference for given language examples could be used for
generating task trees based on recorded user actions. But most of the current approaches
for grammatical inference require complete sentences of the language for which a grammar
shall be created [63]. For natural languages, the sentences can be identified by splitting the
input at, e.g., the punctuation marking the end of a sentence [64]. Considering recorded
user actions, this can not be automated that easily. Instead, it would mean to label in the
event streams where a task starts and where it ends. This can be time consuming especially
if a large number of users is recorded. Our approach does not require labeled event streams
and is, therefore, also applicable for larger data sets.

There are other attempts for grammatical inference for user actions that do not require a
labeled event stream. But still, some of them require manual interaction of an evaluator [65]
which is a disadvantage in comparison to our approach. To the best of our knowledge, Ac-
tionStreams is the only approach that generates grammars describing user actions without
labeling the recordings [66]. This works by iterating the recorded events and if a first sub-
sequence, i.e., n-gram, is detected that occurred a second time, then a non-terminal node for
the grammar is introduced. In this approach, iterations will only be detected as a whole and
not as the single elements being repeated. Through this, ActionStreams generates grammars
which are quite different from our task trees. Not the actions being executed most often are
subsumed to a task, but those that occurred first in their combination. Through this, their
approach generates different grammars for different orders of data input. Furthermore, con-
sidering a large amount of user recordings, their approach may lead to grammar structures
which include non-terminals that represent seldom executed action combinations, whereas

25 3.5. Automation in Usability Issue or Smell Detection

non-terminals for often executed action combinations are missing. Our approach, instead,
creates the same task trees independent of the order in which user sessions are read. The
task trees are generated considering the full data set at once and not only the part that has
already been read.

In parallel to the work on this thesis, there was an attempt to identify task trees having
the same structure as those resulting from our approach using sequence alignment algo-
rithms coming from the context of bio informatics [67]. These alignment algorithms are
usually used to align protein sequences with each other to detect similarities. The approach
is capable of detecting sequences, iterations, optionals, and selections. It was compared
to our approach in terms of processing duration and the resulting task tree structures. The
alignment approach is significantly slower than our approach [67]. Furthermore, a major
disadvantage of the alignment approach is that the resulting task trees describe many in-
teractions that are not possible with the recorded software. In our approach, the task trees
containing only sequences and iterations (which is the case at the beginning of the genera-
tion process) do not have this downside, which allows for reliable analysis. In contrast, the
final merged task trees resulting from our approach may describe invalid interactions.

3.5. Automation in Usability Issue or Smell Detection

In the literature, there are several approaches that strive for an automated detection of us-
ability issues or smells. They can be distinguished based on the type of data they use being,
e.g., GUI models, usage models, or recorded action instances. Depending on the data types,
different analysis types are applied. The following paragraphs describe examples for the
analysis of the different data types.

For identifying usability issues, GUI models can be checked statically against certain
heuristics which are based on standards. A tool performing this is the USability Evaluation
Framework (USEFul) [7], which directly evaluates websites based on their source code.
Typical usability issues that can be detected through such an approach are inconsistencies
regarding the structure of different pages. Other approaches analyze GUI models by cal-
culating different metrics such as relationships between text and links or the number of
images [6]. Our approach utilizes GUI models as input and focuses on the usage of a GUI.
It does not perform a static check of the GUI model.

A work dealing with static GUI analysis and using the term usability smell is from
Almeida et al. [68]. In their paper, the authors consider a usability smell as a less optimal
structure of a GUI with respect to its usage. They define six different smells, each belong-
ing to one of three smell categories. For example, their smell "Middle Man" belonging to
the "design" category refers to unnecessary intermediate dialogues that can open while a
user works in a specific view of a GUI. All the described smells focus on the static GUI
structure as well as the order in which views in a GUI are shown. This is different to our
definition of the term usability smell that focuses on exceptional user behavior. In addition,

3. Related Work 26

they base their smells on interviews of software developers making them less representative
for software users.

Due to their nature, some usability issues can not easily or at all be identified automati-
cally through static analysis of a GUI [7]. For example, a static analysis cannot identify if
a GUI uses the terminology that can be understood by its users except such a terminology
is predefined in a formal way. Our approach does not check a GUI model itself. Instead,
we map the GUI to its usage for identifying potential usability issues. Through this, we
can identify some usability issues that cannot be found based on the GUI model alone. For
example, our approach aims at identifying unused GUI elements, which may not be used,
because their label does not match the users terminology. But our approach cannot identify
badly chosen terminology in other GUI element, e.g., in plain text.

In addition to GUI models, task models can also be the source of an automated usability
issue detection. For example, they can be used to predict the efficiency of an expert user
when performing a specific task as done with GOMS [69]. If task models are mapped to a
GUI model, efficiency predictions can even be improved as interface specific characteristics,
e.g., GUI element types and their usage, can be taken into account [70]. Task models can
help to simulate user behavior on a GUI model. Through this, potential usability issues
with a specific version of a GUI can be detected. Based on these findings, the GUI can be
iteratively adapted to best support a set of predefined user tasks. This adaptation can be
automated with the goal of reducing the remaining usability issues [71, 72]. To use all these
approaches, task models need to be predefined manually. Our approach does not rely on
predefined task models, but compiles them based on actual system usage. Therefore, the
effort for the task model creation is lower in comparison to manual approaches. In addition,
our task models could be used for the other approaches, e.g., to measure the actual user
efficiency. But our task models can also become rather complex, which may make them too
complex for a reuse in other approaches.

For detecting usability issues, recorded action instances, the third data type, can be ana-
lyzed through visualization. For example, they can be transformed into heat maps [40] or
mapped to GUI elements [43] to show where users mostly act in a software. Furthermore,
there are tools for simultaniously displaying several distinct action sequences and, through
this, visualizing similarities [73]. These techniques still require a high effort for usability
issue detection from an evaluator as they do not perform an automatic usability issue de-
tection. Our approach does not simply visualize software usage, but also analyses it in an
automated manner.

There is research, that performs certain statistical analysis on recorded action in-
stances [74]. For example, one can determine, how often elements of a menu are usually
used and if there are significant differences in their usage. Furthermore, a usage duration
or a usage success can be visualized [11]. An analysis can also extract significant actions
from recordings that may indicate usability issues such as the usage of an undo function or
an erase operation [75]. These analyses provide more helpful results for an evaluator than
simple visualization, which decreases the evaluator’s effort. But still the evaluator has to

27 3.5. Automation in Usability Issue or Smell Detection

decide if a usability issue is present by manually analyzing parts of the GUI and its usage.
One aim of our approach is to minimize this requirement, and to allow for an automatic
decision if a usability issue is present. This is done by calculating intensities of usability
smells and identifying corresponding thresholds which need to be exceeded.

Additionally, it is possible to compare recorded action instances with expected user be-
havior. The expected user behavior can be an example log, that is created by an evaluator
who performs a task with the software in an optimal way. This variant is applied in the
tools WebHint [76], Web Automatic Usability Evaluation EnviRonment (WAUTER) [8],
and Web Usability Probe [77]. The comparison can be done by a simple sequence compari-
son or through a more sophisticated approach using coordinate vectors on websites and their
respective distances [78]. Furthermore, the expected usage can be a predefined usage model.
Here, the actual usage is compared with the model. Any deviations are expected to be us-
ability issues. Examples for these approaches with manually defined models are the differ-
ent variants of the Web USer INterface Evaluator (WebRemUSINE) [79, 45, 5, 80, 12, 81] as
well as similar works comparing user logs with task trees [82] in smart environments [26].
The models can also be an average system usage which is compiled from other record-
ings [55]. Finally, recorded action instances can be compared with a state machine of the
user interface [83, 84]. The transitions in such a state machine represent the actions users
are expected to take. Any deviation between recorded user actions and allowed transitions
in the state machine is considered a usability issue. The comparison of logs with example
logs or predefined usage models is not always easy and straightforward [10]. Furthermore,
example logs and predefined usage models are a representation of the designer’s intent how
a software shall be used. But this intent may include usability issues for the users. In our ap-
proach, the expected usage of a system is not predefined and, therefore, not prone to contain
usability issues. A downside is, that our usage models, i.e., task trees, can become rather
complex and impractical to be analyzed manually.

In some setups for comparing actual with expected user behavior, it is required to do a
manual mapping between recorded action instances and the predefined usage model. This
increases the effort for applying these methods. In addition, the models of expected user
behavior must be complete making their creation very time consuming [17] or impracticable
for large systems [10]. This disadvantage can be mitigated if the expected user behavior is
deducted from a model that is a byproduct of the development process. An example is
ReModEl, where task models are used to generate GUIs. The usage of the interfaces can
then be mapped back to the task models to identify differences. Our approach for usability
smell detection does not require any predefined usage. This reduces the effort for applying
our approach significantly. Furthermore, it generates task trees for seldom used parts of a
GUI for which usually no models are defined manually due to the required effort. Hence,
our evaluations may also find usability issues in less important GUI parts.

Some approaches search recorded action instances for specific patterns that may indicate
a usability issue. For example, specific mouse movements, non-continuous up and down
scrolling, or page hopping can indicate a searching behavior of the user which in turn means

3. Related Work 28

that the user has problems in finding a specific information [85]. These approaches resemble
our work most. Especially the work of Grigera et al. [86] is to be mentioned as they also
detect something they call usability smells, which is similar to our notion of the term. In
their work, Grigera et al. record action instances on websites. Specific action combinations
lead to so called usability threats, which are higher level actions being sent to a server
and stored. Afterwards, the evaluator can request a report that contains usability smells
which are in terms of Grigera et al. "problems cataloged in the literature along with the
refactorings that solve them." [86]. Unfortunately, Grigera et al. do not explain the details
of their usability smell detection algorithms. In comparison to our approach, Grigera’s and
similar approaches do not consider actual user tasks. Instead, they focus on fine grained
interactions consisting of only a few actions in a specific combination. Hence, they do
not have a look on the broader context in which a problem actually occurs. For example,
they cannot identify if a usability issue is always existing or only during the execution of a
specific user task. In our approach, we can detect for a subset of usability smells for which
user task they exist. But this is not given for all usability smells.

Nonetheless, the work of Grigera et al. [86] can be the basis for a usability refactoring
as described by Garrido et al. [87]. The goal of this refactoring is to provide rules to be
followed and detailed steps to be taken to overcome specific usability issues. The usability
issues themselves must be determined by the application of usability evaluation methods.
This is similar to solving code smells using refactoring rules for source code [88], where
the code smells are detected, e.g., through static source code analysis. As our approach
automatically detects usability smells, it can be the basis of a subsequent refactoring. In
addition, our work also uses rules similar to those of refactoring to provide detailed critique,
i.e., possibilities to improve a software. But refactoring itself is out of scope of this thesis.

3.6. Summary and Research Delta

The analyzed related work shows, that automation of usability engineering is not a com-
pletely new topic. Nonetheless, Ivory and Hearst [6] argued, that in usability engineering,
automation mainly strives for supporting capture and analysis required for manual evalua-
tion methods. Additionally, they found, that automated critique, which is a prerequisite to
consider a method fully automated, is mostly lacking in the attempts for automation. Also
Paternò’s and Santoro’s [39] framework aims only at supporting manual user-oriented us-
ability evaluation, where automation focuses on capture and analysis. Therefore, the first
major research delta that we strive for in this thesis is to extend automation to also provide
critique. For this, we aim at detecting usability smells. These offer critique based on the
combination of their detailed description as well as tasks and GUI elements referenced by
corresponding findings.

Furthermore, there are several attempts utilizing GUI events for a usability evaluation.
These include techniques for synchronization and searching, transformation, analysis, vi-

29 3.6. Summary and Research Delta

sualization, and integrated support [10]. While our approach also makes use of existing
techniques for transformation and supports simple visualization, its major research delta
lies in the context of analysis. Here, our task tree generation allows for detecting typical ac-
tion combinations, including execution variants, which results in a grammatical description
of typical user behavior. Based on these task trees, we detect usability smells. Especially,
the full automation, which does not require human intervention, is an aspect not provided
by any other method that exists to the best of our knowledge.

This thesis does not provide a research delta considering the recording of user actions.
In addition, although we utilize our own notion of task trees that matches our approach
with respect to complexity and mightiness, we do not intend to define a new way of task
modeling. Though, the generation of task trees based on these user recordings is brought
to a new level in this thesis. In contrast to existing work, we allow for detecting task trees
without required manual labeling of data or other human effort. In addition, although the
generated task trees do not include user goals, they fully describe the recorded effective
system usage, and no expected or possible usage as is the result of other approaches.

Finally, our inspection of related work showed several attempts for automatic detecting
of usability issues. Some of these approaches also utilize recorded user actions as the basis
for their analysis. We showed, that the parallel research of Grigera et al. [86] is closest to
our work. But, to the best of our knowledge, there is no full description of their detected
usability smells available. In addition, they do not consider detected users tasks and, hence,
cannot put their findings in a broader usage context, which is a further research delta of our
approach. They also did not validate, if their approach can be applied in a real environment.

4. Automated Field Usability Evaluation
Using Generated Task Trees

In this chapter, we introduce our approach for automated field usability evaluation using
task trees generated from action instances. We start by describing an overall framework
for our approach, which we instantiate for the work in this thesis. Then, we describe the
recording of action instances and the derivation of a GUI which are the prerequisites for
our approach. Afterwards, we specify our task tree generation mechanism that is based on
recorded action instances. Finally, we describe how we utilize recorded action instances, a
GUI model, and generated task trees for a detection of usability smells.

4.1. A Framework for Automated Field Usability Evaluation

In this section, we describe the overall approach that we take for performing an automated
usability evaluation. The description is twofold. We start by describing the general structure
of the approach. Then, we instantiate this structure for the thesis.

4.1.1. General Structure

Automated usability evaluation is based on two types of data. The first is static data in-
cluding, e.g., information about GUI elements and structure. The static data are usually
prepared manually, e.g., through the definition of a model. The second is dynamic data
being recorded information about the usage of the GUI by users. Partially, static data can
be compiled from dynamic data, e.g., used GUI elements are part of dynamic data to have a
reference to where a user action took place. The initial step for automated usability evalu-
ation is obtaining static and dynamic data and post-processing it to match the requirements
of subsequent analysis steps.

Static and especially dynamic data are typically large, what makes an analysis a chal-
lenge. Hence, as a second step the data must be compiled into one or several models de-
scribing the data. If the models are well generated, they do not only describe recorded data
but are also valid for and describing unrecorded usage. A model is usually smaller and
structured better than the input data. Hence, the effort for its analysis is lower. A disad-
vantage may be information loss as the model does not contain all information that was
contained in the data anymore. On top of that, a model may be imprecise and not describe

4. Automated Field Usability Evaluation Using Generated Task Trees 32

all recorded and unrecorded data. Nonetheless, in most cases a model represents an average
usage of the system.

Finally, in a third step the models can be used for usability evaluation. If the models are
compiled in a way that if they contain references to static and dynamic input data, this data
can also be used for evaluation. The whole process covering the three steps for obtaining
static and dynamic data, generating models, and analyzing the models and obtained data is
shown in Figure 4.1.

Analyse
Models, Static,
and Dynamic

Data

Generate
Models

Obtain
Static and

Dynamic Data

Figure 4.1.: Process for automated usability evaluation.

4.1.2. Framework Instantiation for this Thesis

In this section, we instantiate the general approach defined in the previous section. In the
first step, we record action instances performed by users. This is done by recording the
events caused by action instances (Section 4.2). These events also refer to GUI elements on
which the actions were performed. The events are dynamic data. We do not obtain static
data before applying our approach to reduce the effort of their preparation.

In the second step, we generate two types of models: a GUI model (Section 4.3) and task
trees (Section 4.4). The GUI model is structured as described in Section 2.1. The task trees
follow the structure described in Section 2.2. We also obtain task instances for all tasks and
task trees so we know how the generated tasks were executed by the users. Through this,
we have references from the models to the recorded dynamic data. These references can be
used in the subsequent analysis.

In the third step, we perform a usability evaluation by detecting usability smells (Sec-
tion 4.5). This includes an analysis of the recorded action instances, the derived GUI model
and the generated task trees including task instances. This more concrete three-step process
is show in Figure 4.2.

Analyse
GUI Model,

Task Trees, and
Task Instances

Generate
Task Trees and

GUI Model

Record
Action Instances

and GUI Elements

Figure 4.2.: The overall process taken in this thesis for automated usability evaluation.

33 4.2. Recording of Action Instances

4.2. Recording of Action Instances

The initial step in our overall approach is the recording of action instances and GUI ele-
ments. As described in Section 2.1, action instances cause events in a software. We record
action instances by recording these events. For each action instance, exactly one event is
recorded. The result is a list of events in the order they were caused by the action instances.
An example for recorded action instances of a login process is shown in Figure 4.3. In the
figure, the event types denote the type of the executed action. The event targets refer to the
GUI elements on which the events where recorded and, hence, the actions were executed.
In the example, the user starts with a click on the user name field. Then he or she enters
some text and clicks the text field again to correct the text. Afterwards, the user clicks the
password field and enters a password. Finally, he or she clicks the login button.

1. Left Mouse Button Click on Text Field with id username

2. Text Input „usr“ on Text Field with id username

3. Left Mouse Button Click on Text Field with id username

4. Text Input „user“ on Text Field with id username

5. Left Mouse Button Click on Text Field with id password

6. Text Input „“ on Text Field with id password

7. Left Mouse Button Click on Button with name „login“

Event Types Event Targets

Figure 4.3.: Example of recorded events caused by action instances.

The events shown in Figure 4.3 are abstract. The concrete recorded events depend on
the type of platform on which the events are recorded. For example, events recorded on
websites are different from those recorded for Java applications. Hence, we do a mapping
to a common event meta model with the goal of harmonizing these differences. The meta
model includes abstract event types for different actions which are instantiated platform
specific. These abstract event types include, e.g., clicks with a mouse or entering text into a
text field. The event types used in our work are listed in Table 4.1.

The event types in Table 4.1 are grouped into event types for keyboard actions, mouse
actions, and complex actions. Event types for keyboard and mouse actions are very de-
tailed and correspond to a recording on a key stroke level. Event types for complex actions
combine several key stroke level events to one event and are used if the recorded platform
allows for recording events on this level. For example, several subsequent events of type
Key Pressed and Key Released on the same text field represent the entering of a text into
the field. They can also be recorded as a single event of type Text Input if the respective
platform supports this.

If a platform only supports recording events on key stroke level, we perform a transfor-
mation of these events into events for complex actions. For example, we transform Key

4. Automated Field Usability Evaluation Using Generated Task Trees 34

Abstract event type Description Additional information
Keyboard actions

Key pressed User presses key on the keyboard Pressed key
Key released User releases key on the keyboard Released key

Key typed Combination of pressing and releasing a key on the keyboard Typed key
Mouse actions

Mouse button down User presses button of the mouse Pressed mouse button
Mouse button up User released button of the mouse Released mouse button

Mouse button click User clicks button of the mouse Clicked mouse button
Complex actions

Mouse drag & drop User presses left button of the mouse, moves the mouse, and
releases the button

Movement coordinates

Text input User performs several key presses and releases to enter a text Entered text
Value selection User selects a value on a combo box or toggles a check box

either through clicking or via the keyboard
Selected value

Scroll User scrolls a panel or view in the GUI Scrolled pixel
(horizontal and vertical)

Table 4.1.: Abstract event types considered in this thesis.

Pressed and Key Released events into Text Input events. As these transformations are plat-
form specific, they will be detailed in Section 5. Our subsequent process can handle both,
key stroke level event types and complex event types. Nonetheless, to reduce the number
of events processed for our overall approach and also to ensure a self-containment of the
events (i.e., a single event does not have a dependency to a preceding event [10]), we strive
for transforming key stroke level events into complex events before we derive GUI models
and task trees.

4.3. GUI Model Derivation

The first model created in our overall process is a GUI model as shown in Figure 2.1. This
model is recorded and derived together with the action instances. In this section, we de-
scribe how we determine the GUI model from the recorded events representing the action
instances. This derivation is not fully identical for the different platforms on which we apply
our approach. For some platforms, the GUI can directly be derived using mechanisms pro-
vided by the respective technology. For others, a more complex approach must be applied,
which we describe in the following.

The targets of the recorded events are references to the GUI elements utilized in the
corresponding action instances. Additionally, every GUI element has a reference to its
parent container element. Using this reference, we determine a full path of a GUI element
through the GUI model. This path starts with the root node of the respective GUI model
and ends with the interaction element on which the event was recorded. The path is created
from its end to its start, as the first known element of the path is its last element, which is the

35 4.4. Usage-based Task Tree Generation

event target. An example of such a path for the interaction element input(id="username")
in Figure 2.1 is the following. The / character separates the GUI elements from each other.
The GUI elements contain additional information to be uniquely identified.

• /host/login/html/body/div/form(id="form1")/input(id="username")

Any container element also has references to its children. Hence, we can determine GUI
elements in a GUI model including those not referenced by events. For these GUI elements,
we can create paths, too.

Using all paths, we generate a GUI model which is structured as described in Section 2.1.
This is done iteratively through the algorithm in pseudo code shown in Algorithm 4.1. In
this code, we first determine all paths for GUI elements. Then, we create an empty GUI
model. Afterwards, we iteratively fill the model based on the paths. For each unseen GUI
element in any of the paths, a new node is added to the GUI model. As we start from the
beginnings of the paths, it is ensured that container elements are added to the model before
their children are added. In the pseudo code, the model itself is a set of parent-child pairs,
where the parent is a container element and the child another GUI element.

Algorithm 4.1 Creation of a GUI model out of GUI element paths from events.
1: Paths← {all GUI element paths from events}
2: Model← /0 // empty GUI model being a set of parent child pairs
3: parent← null
4:

5: for all path ∈ Paths do
6: for all guiElement ∈ path do
7: Model←Model∪{(parent,guiElement)}
8: parent← guiElement
9: end for

10: end for

4.4. Usage-based Task Tree Generation

The second model that we create in our overall process for usability evaluation are task
trees. In this section, we describe the task tree generation which utilizes the recorded ac-
tion instances as input. This description was already published in a similar fashion in [20]
and [21]. We start by introducing the basic steps for the task tree generation. We then de-
scribe each step in detail. Finally, we analyze the complexity of our task tree generation
process.

4. Automated Field Usability Evaluation Using Generated Task Trees 36

4.4.1. Overall Process

The input for our usage-based task tree generation are recorded action instances, i.e., events.
Each event represents exactly one action instance. Considering tasks and task instances as
introduced in the Section 2.2, the recorded action instances are leaf nodes of instances of
the tasks that we intend to detect. Hence, we generate task trees starting from the leaf nodes
of the instances of the corresponding tasks.

For this, we initially transform the events into representations of action instances and
store them in an ordered list, called task instance list, which we refer to using the variable
L′. The action instances are stored in the list in the order, in which they were recorded and,
hence, performed. Afterwards, we identify tasks and corresponding instances of different
types. We start by detecting iterations and sequences on the task instance list. Then, we
search for similar sequences and merge them. Through this, we also detect selections and
optionals. In our case studies, we analyze both, task trees with unmerged and merged
sequence. Therefore, the merging can also be skipped in our approach. The overall process
for the task tree generation is shown in Figure 4.4. The details for the different steps of the
process are described in the following subsections.

Creation of
Task Instance List

Detection of
Sequences and Iterations

Merging of
Similar Sequences

[merge similar
sequences]

[yes]

[no]

Figure 4.4.: Overall task tree generation process (adapted from [21]).

37 4.4. Usage-based Task Tree Generation

4.4.2. Iteration and Sequence Detection

The contents of this section are based on [20, 21]. The iteration and sequence detection
consists of two substeps, one for detecting iterations and one for detecting sequences. The
substeps are repeated alternately until neither further iterations nor sequences are detected.
This interplay is shown in Figure 4.5.

Iteration Detection
on Task Instance List

Sequence Detection
on Task Instance List

[further tasks
detected]

[yes]

[no]

Figure 4.5.: Process for iteration and sequence detection (adapted from [21]).

The iteration and the sequence detection both search a task instance list L′ for sublists of
action instances that match certain criteria. This corresponds to searching a conversation in
the language spoken between the user and the software for n-grams of words, i.e., actions.
Therefore, we use the term n-gram to denote a sublist of L′ having the length n in the
following sections.

4.4.2.1. Iteration Detection

The substep for iteration detection is executed first to find iterations of actions. It searches
the task instance list L′ for n-grams l′1 . . . l

′
n of instances of the same action, e.g., two sub-

sequent clicks on the same button. The n-grams do not have a fixed length. If it finds such
n-grams for a specific action a, it

1. creates an iteration i having a as its single child,

2. identifies the set of all n-grams l′1 . . . l
′
n of the task instance list containing only one or

more subsequent instances of a,

3. for each n-gram l′i ∈ l′1 . . . l
′
n, creates an instance i′ of i,

4. Automated Field Usability Evaluation Using Generated Task Trees 38

4. adds the instances of a in l′i as children to i′, and

5. replaces l′i with the corresponding iteration instance i′ in the task instance list.

As a result, the task instance list contains action instances as well as iteration instances.
An example for the iteration detection is shown in Figure 4.6 a and 4.6 b. Figure 4.6 a
shows an initial task instance list with action instances. The respective actions are indicated
through the letters in the grey boxes. Thus, instances using the same letter represent in-
stances of the same action. In the example, the iteration detection identifies two separated
n-grams of subsequent instances of Action b (indicated through the dotted boxes). For both
n-grams, it creates one iteration Iteration 1 as well as two instances of Iteration 1 that re-
place the two n-grams in the task instance list (Figure 4.6 b). The detected iteration is shown
in the upper part of Figure 4.6 d.

If the iteration detection identifies repetitions of several actions, it creates iterations and
respective instances for all of them and performs also the corresponding replacements in

a b b b c a

a) Initial task instance list:

a

b

Iteration 1 c a

b) Task instance list with detected iterations:

Iteration
detection

bb d

b

Iteration 1 d

a

Sequence 1 c d

c) Task instance list with detected sequences:

a

Sequence 1

Sequence
detection

Iteration 1 Iteration 1

a = Instance of action “a“

= n-gram considered in next step

Iteration 1 = Instance of “Iteration 1“

b b b

bb b bb

a

Sequence 1

Iteration 1

b

a = Action “a“

Iteration 1 = “Iteration 1“

Legend:

Iteration 1

b

d) Detected tasks:

Figure 4.6.: Example for iteration and sequence detection (adapted from [20, 21]).

39 4.4. Usage-based Task Tree Generation

the task instance list. There is no predefined order for the replacements as the n-grams do
not overlap and can be replaced independently. Through its nature, the iteration detection
adapts the task instance list and, at the same time, ensures that it still represents the original
order of executed actions.

4.4.2.2. Sequence Detection

After the iteration detection, we perform the substep for sequence detection. The sequence
detection searches the task instance list L′ for identical n-grams l′1 . . . l

′
n having a minimum

length of two. Identical means that

• the n-grams have the same length (|l′1|= |l′2|= · · ·= |l′n|) and
• at each position the n-grams consist either of instances of the same action or instances

of the same task, e.g., iteration.

If the algorithm detects identical n-grams l′1 . . . l
′
n it

1. creates a sequence s having actions or tasks represented by the n-grams as its children,

2. for each n-gram l′i ∈ l′1 . . . l
′
n, creates an instance s′i of s,

3. adds child instances to s′i being the action or task instances belonging to the n-gram l′i
represented through s′i, and

4. replaces each n-gram l′i with the corresponding s′i in the task instance list.

As a result, the task instance list contains action, iteration, and sequence instances. Sim-
ilar to the iteration detection, the sequence detection adapts the task instance list and, yet,
ensures its order and representativeness for the executed actions. An example for the se-
quence detection is shown in Figure 4.6 b and 4.6 c. Figure 4.6 b shows a task instance list
after an iteration detection with action and iteration instances. In the example, the sequence
detection identifies two identical n-grams consisting of instances of Action a and instances
of Iteration 1 (indicated through the dotted boxes). For both n-grams it creates one sequence
Sequence 1 as well as two instances of Sequence 1 that replace the two n-grams in the task
list (Figure 4.6 c). The detected sequence is shown in the middle part of Figure 4.6 d.

The sequence detection may identify several sets of identical n-grams. For example, there
can be one set l′1 . . . l

′
i representing the executed actions {a1a2} and a second set l′i+1 . . . l

′
n

representing the executed actions {a2a3}. These sets can be overlapping. This means, that
in the task instance list, an n-gram of one set overlaps with an n-gram of another set. For
example, the task instance list may contain a sublist of action instances {a′1a′2a′3}. The
first and the second action instance in this sublist belong to the n-gram set l′1 . . . l

′
i , as they

represent the executed actions {a1a2}. The second and the third action instance in this
sublist belong to the n-gram set l′i+1 . . . l

′
n, as they represent an execution of {a2a3}. In this

4. Automated Field Usability Evaluation Using Generated Task Trees 40

case, we need to decide, which of both n-gram sets needs to be handled first. If l′1 . . . l
′
i is

handled first, {a′1a′2} would be replaced by a sequence instance while an n-gram in l′i+1 . . . l
′
n

gets destroyed. If l′i+1 . . . l
′
n is handled first, the situation is the other way around.

To decide, which of the n-gram sets needs to be replaced first, the sequence detection
compares the n-grams sets with each other. It determines those sets that contain the maxi-
mum number of n-grams and discards all other sets. This ensures to handle those n-gram
sets first that represent action and task combinations being performed most often by users
and being, hence, more representative for a task execution than others. From the remaining
sets, it determines those whose n-gram are the longest, i.e., have the largest n, and discards
all other sets. This ensures that longer action and task combinations are preferred instead of
shorter ones as they represent more complex tasks.

After this initial choosing, there can still be overlapping n-gram sets. For example, there
may remain the two n-gram sets l′1 . . . l

′
i and l′i+1 . . . l

′
n mentioned above. This happens if they

contain the same number of n-grams and because the n-grams in both sets have the same
length. Therefore, we perform a further choosing to decide, which of the n-gram sets needs
to be handled first. For this, we first check if the remaining sets are indeed overlapping, i.e.,
if there is a sublist {a′1a′2a′3} in the task instance list. If not, we handle the remaining sets
because the contained n-grams can be replaced independent from each other.

If there are overlapping sets, we perform a further choosing of the n-gram sets to be
handled. For this, we iteratively discard n-gram sets causing overlaps. For this process,
we introduce the two terms succeeding overlap and preceding overlap. An n-gram l′i has a
succeeding overlap to an n-gram l′j if both n-grams overlap and if l′i starts later in the task
instance list than l′j. In this situation, l′j has a preceding overlap with l′i as it starts earlier in
the task instance list. Using this terminology, the discarding process works as follows:

1. determine all overlapping n-gram sets

2. if there is exactly one n-gram set causing most overlaps, discard it and go back to 1.

3. if there is exactly one n-gram set causing most succeeding overlaps, discard it and go
back to 1.

4. if there is exactly one n-gram set causing least preceding overlaps, discard it and go
back to 1.

5. discard the n-gram set containing the n-gram being the last succeeding overlap in the
task instance list and go back to 1.

If at some point in this discarding process, no further overlapping n-gram sets exist, the
process is finished and the remaining n-gram sets are handled. The process always termi-
nates as at some point the last succeeding overlap is discarded and, through this, no further
overlaps can exist. Through its nature, the process detects sequences in a predictive order
and does create random structures. The discarded n-gram sets are handled in a subsequent

41 4.4. Usage-based Task Tree Generation

sequence detection. This takes place due to the alternating iteration and sequence detection,
which we describe in the following subsection.

4.4.2.3. Alternating Iteration and Sequence Detection

As shown in Figure 4.5, the iteration and sequence detection are repeated alternately. If the
iteration detection is applied after a sequence detection, it identifies subsequent instances
of the same sequence. As with action instances, these are replaced with instances of an
iteration having the corresponding sequence as its single child. In addition, the sequence
detection can detect and replace identical n-grams containing other sequences. Through
this, at any iteration and sequence detection cycle, the task instance list becomes shorter
and consists of more and more sequence and iteration instances. Additionally, the task
trees become more complex and deeper. As shown in Figure 4.5, the process stops, when
no further sequences or iterations are detected. In the end, the task instance list contains
instances of detected iterations and sequences, as well as action instances. These action
instances are noise in the data or belong to tasks that were executed only once. These tasks
are not detected as our approach requires at least two executions of a task to be detectable.

Within a single task instance list, users may perform a specific task only once. For exam-
ple, in a single user session, users usually perform a login process only once. If our approach
is applied only on one task instance list, these tasks are not found as our approach requires,
that tasks are executed at least twice to be detected. Therefore, we apply the iteration and
sequence detection not on a single task instance list, but on several task instance lists at
once. This means, the approach is applied on recordings of several users and several user
sessions. Through this, we ensure that those tasks being executed seldom in a single user
session but occur in many user sessions are more likely to be detected. This is important as
the generated task trees intend to represent actual user behavior.

When being applied on several task instance lists, our process for choosing the n-gram
sets to be handled first needs to be adapted. This is required, because the last rule in the
process considers only one task instance list, so far. Hence, we adapt the rules to be ap-
plicable on several task instance lists. The basis for this adaptation are the positions of
n-grams in task instance lists. Each n-gram l′i in an n-gram set l′1 . . . l

′
n has a specific po-

sition p(l′i) in a task instance list. An example is an n-gram set l′1 . . . l
′
n representing the

executed actions {a2a3}. If there is a task instance list {a′1a′2a′3}, then there is an n-gram
l′i = {a′2a′3} ∈ l′1 . . . l

′
n which represents the second and the third element in this task instance

list. The position p(l′i) in this task instance list is 2. In this manner, we determine positions
for any n-gram in an n-gram set l′1 . . . l

′
n. Based on the individual positions, we define a

metric for all n-grams in l′i ∈ l′1 . . . l
′
n. This metric is the sum of all positions of all n-grams

in an n-gram set, i.e., ∑l′1...l
′
n

p(l′i).
Based on the position information for n-grams and the above metric, we adapt our process

for choosing n-gram sets to be handled first. We replace the last rule by two other rules,
which take the position information into account. The first of the new rules considers the

4. Automated Field Usability Evaluation Using Generated Task Trees 42

sum of the positions of all n-grams in an n-gram set. The second focuses only on the smallest
position of any n-gram in an n-gram set. The extended choosing process is as follows:

1. determine all overlapping n-gram sets

2. if there is exactly one n-gram set causing most overlaps, discard it and go back to 1.

3. if there is exactly one n-gram set causing most succeeding overlaps, discard it and go
back to 1.

4. if there is exactly one n-gram set causing least preceding overlaps, discard it and go
back to 1.

5. determine the n-gram sets for which ∑l′1...l
′
n

p(l′i) is minimized and, if these are not all
detected n-gram sets, discard all other n-gram sets

6. determine the n-gram sets containing an n-gram l′i for which p(l′i) is minimized and,
if these are not all detected n-gram sets, discard all other n-gram sets

Also this extended process finishes at any position if there are no further overlaps. Then
the remaining n-gram sets are handled. This process might not terminate anymore. The
reason is, that even the last two rules may not be distinctive enough and several n-gram
sets might match all criteria in the same way. For example, there can be an n-gram set
representing the actions {a1a2} and a further n-gram set representing the actions {a2a1}.
If there are two task instance lists, one starting with {a′1a′2a′1} and the other starting with
{a′2a′1a′2}, then there are exactly two n-grams in both n-gram sets. Both n-gram sets contain
an n-gram l′1 having the smallest position p(l′i) = 0 in the task instance lists. In this situation,
we cannot decide anymore, which of the n-gram sets needs to be handled first. Therefore, we
throw an exception and terminate the whole task tree generation at this point. We consider
this a fail of the task tree generation. In our case studies, we evaluated how often the task
tree generation fails and how this influences the task tree generation process.

4.4.3. Merging of Similar Sequences

The task trees generated through iteration and sequence detection consist only of sequences
and iterations [20]. They cannot describe execution variants like optional actions or a choice
between subtasks. Hence, for each execution variant performed by users, the approach gen-
erates separate task trees. This increases the number of generated tasks and makes a sub-
sequent usability evaluation more challenging. For example, users usually carry out two
variants of performing a login process on a website. These are distinct in the navigation
between the user name field and the password field [21]. Some users use a mouse click
on the password field, others the tabulator key for this navigation. For these variants, the
iteration and sequence detection generates two similar task trees, one containing the mouse

43 4.4. Usage-based Task Tree Generation

click navigation, the other the tabulator key navigation. Nonetheless, both task trees se-
mantically describe the same task, i.e., performing a login. To handle execution variants,
subsequent to the iteration and sequence detection we perform a detection and merging of
similar sequences as shown in Figure 4.4. We focus on sequences, as merging iterations
mainly consists of merging their children, which are either actions or sequences.

Our approach for detecting and merging similar sequences consists of several substeps
which are shown in Figure 4.7. The substeps are: detection of similar sequences, choos-
ing of sequences to merge, adaptation of flattened instances, iteration detection, sequence
detection, and harmonization of parent tasks. The substeps are repeated until no further
similar sequences are detected. The details of the substeps are described in the following
subsections.

Detection of
Similar Sequences

Choosing of
Sequences to Merge

Adaptation of
Flattened Instances

Iteration Detection
on Flattened Instances

Sequence Detection
on Flattened Instances

[no] [yes]

[further tasks
detected]

[similar
sequences
detected]

[no]

[yes]

Harmonization
of Parent Tasks

Figure 4.7.: Process for detection and merging of similar sequences (adapted from [21]).

4.4.3.1. Detection of Similar Sequences

Detecting similar sequences is the first substep of merging similar sequences (see Fig-
ure 4.7). For this we use a similarity measure for two sequences [21]. We call this measure

4. Automated Field Usability Evaluation Using Generated Task Trees 44

sequence similarity. We refer to the sequence similarity for two sequences s1 and s2 as
sim(s1,s2).

The sequence similarity is based on the leaf nodes, i.e., actions, of the task tree belonging
to a sequence. We start by creating a list L(s) of these actions for each sequence s, which we
call task list. The actions in the task list are in the order in which, they would be executed
if the sequence was performed with any iteration in the task tree repeated exactly once.
Figure 4.8 shows an example for a full merging process for two similar sequences. There,
Figure 4.8 a displays the task trees for two sequences s1 and s2. For simplification, the
actions are named with single characters. Figure 4.8 b shows L(s1) and L(s2) containing the
actions of s1 and s2 in the order of minimal execution.

After the creation of the task lists, we compare them with each other. The comparison is
done using a diff algorithm similar to those used for the comparison of texts. In our work,
we use Myers diff algorithm [89] designed for comparing texts, which we adapted to be
used for the comparison of task lists, instead. The result of the comparison of two lists
L(s1) and L(s2) is a list of deltas d1 . . .dn of three different types:

• insert: an action contained in L(s2) at a specific position is not contained in L(s1) at
the corresponding position
• delete: an action contained in L(s1) at a specific position is not contained in L(s2) at

the corresponding position
• change: an action contained in L(s1) at a specific position is replaced by another

action in L(s2) at the corresponding position

The number of actions covered by a delta di in both lists is |di|. An example for deltas
identified for the two lists L(s1) and L(s2) in Figure 4.8 b is also shown in the figure. The
deltas are an insert of Action b at the second position, a delete of Action d at the third
position and a change of Action f to Action g at the fifth position, where positions are
counted for L(s1).

For the list of deltas between two task lists, we determine the number of all actions in
both lists L(s1) and L(s2) that belong to a delta, i.e., ∑

n
i=1 |di|. For calculating the sequence

similarity sim(s1,s2), we divide this sum by the number of all actions belonging to both lists
L(s1) and L(s2) and subtract the result from 1. Hence, the sequence similarity is calculated
as follows:

sim(s1,s2) = 1− ∑
n
i=1 |di|

|L(s1)|+ |L(s2)|
(4.4.1)

The utilized diff algorithm is not necessarily commutative. This means, the list of deltas
returned by the diff algorithm may differ if the left and the right hand side of the comparison
are swapped. Therefore, the sequence similarity as calculated above would depend on the
order in which L(s1) and L(s2) are given to the diff algorithm. To ensure that we always
get the same similarity for two sequences s1 and s2, we apply the diff algorithm twice, i.e.,

45 4.4. Usage-based Task Tree Generation

Sequence 2

Sequence 1

a) Example of two similar sequences:

a

c

d

e

f

h

a

b

c

e

g

h

insert({b})

delete({d})

change({f}, {g})

h

a

Sequence 3

c

d

Sequence 4

e

f

Sequence 6

Sequence 5

h

a

Iteration 2

c

Sequence 7

e

g

b

b) Deltas of the two similar sequences:

c) Adaptation of a flattened instance of s
1
:

a c

d

e

f

hOptional 1 Optional 2 Selection 1

a c d e f h

Adaptations
based on deltas

d) Adaptation of a flattened instance of s
2
:

a c e

g

hOptional 1 Optional 2 Selection 1

a b c e g hc c

Adaptations
based on deltas

b

Optional 1

Optional 2

Selection 1

c c

= Delta with details

e) Task structure after re-application of the alternating iteration and sequence detection:

c

Iteration 2

d

Optional 2Optional 1

b

Sequence 9

a e Selection 1

f g

h

s
1
: s

2
: L(s

1
): L(s

2
):

a = Instance of Action “a“

Iteration 1 = Instance of
 “Iteration 1“

a = Action “a“

Iteration 1 = “Iteration 1“

d

b

f

g

Figure 4.8.: Example for merging two similar sequences (adapted from [21]).

4. Automated Field Usability Evaluation Using Generated Task Trees 46

first with L(s1) and second with L(s2) as the left hand side of the comparison. Then, we
calculate the sequence similarity for both lists of deltas. The resulting sequence similarity
for s1 and s2 is then the maximum of the two individually calculated sequence similarities.
Furthermore, the subsequent merging process considers only the deltas that cause the higher
sequence similarity.

The sequence similarity sim(s1,s2) is 1 for sequences sharing the same task lists. But
as it does not consider the structure of the sequences task trees, the sequences may still be
different. The similarity of two sequences will be lower the more deltas are contained in
their task lists. At a minimum, sim(s1,s2) can be 0, indicating no common actions in the
task lists and, hence, no similarity between the sequences.

To detect similar sequences, we compare all sequences resulting from the iteration and
sequence detection with each other and calculate their similarities. This results in a list of
sequence pairs with an attributed similarity. In the next substep, we choose from this list
those pairs that need to be merged.

4.4.3.2. Choosing Sequences to Merge

The list of sequence pairs and their similarities resulting from the previous substep contains
all pairs of sequences determined in the iteration and sequence detection. This also includes
pairs for which a merging is not reasonable. For example, there might be pairs with a
rather low similarity. Therefore, we perform a choosing of sequence pairs to be merged as
the second substep for merging similar sequences (see Figure 4.7). For this, we start by
choosing only those pairs (si,s j)|i 6= j

• whose similarity sim(si,s j) exceeds a certain threshold called simmin,
• for which sim(si,s j) is maximal and which are, therefore, the most similar ones,
• whose deltas are covering neither the first nor the last elements of the task lists L(si)

and L(s j), and
• for which neither si nor s j is a direct or indirect parent of any sequence of another

pair.

Through these conditions, we ensure several aspects. In the first place, sequences are only
considered similar if at least a minimum of similarity, i.e., simmin, is reached. Secondly,
with the third condition we ensure that we always consider entire similar sequences. If we,
instead, considered similarities, where the deltas are at the beginning or end of the task
lists, there might be a parent sequence of either sequence having a higher similarity to the
respective other sequence of the pair. Finally, the resulting pairs will all be independent from
each other, in reference to the parent child relationships between tasks. Hence, subsequently
we do not merge a sequence with either one of its parents or one of its children in the same
merging cycle.

47 4.4. Usage-based Task Tree Generation

The list resulting from this initial choosing contains only sequence pairs with the same
similarity. Several of these pairs might refer to the same sequence. For example, a sequence
s1 may represent a default execution of a users task. At the same time, two further sequences
s2 and s3 may represent two different variants of s1. The sequence similarities of such an
example can be equal, i.e., sim(s1,s2) = sim(s1,s3). In such a case, we need to decide,
which sequence pair sharing the same sequence needs to be merged first. For this, we
initially determine the set S containing all sequences shared by more than one pair. If S = /0,
there are no conflicts and all pairs will be merged. If S 6= /0, we drop those pairs not referring
to a sequence s ∈ S and perform a choosing between the remaining pairs. This choosing is
done by sorting and filtering the remaining pairs. This results in a pair list that starts with
the pair to be merged first and ends with the pair to be merged last. The sorting is done
based on the following rules for comparing two pairs. The rules are applied in their given
order, meaning that if a rule is not able to make a distinction between the pairs, then the
next rule is tried. The rules are:

• the pair whose number of action instances from which both sequences are generated,
i.e., |a′(s1)|+ |a′(s2)|, is higher, precedes in the list
• the pair whose number of instances of both sequences, i.e., |x(s1)|+ |x(s2)|, is higher,

precedes in the list
• the pair whose sum of the depths of both sequences, i.e., depth(s1)+ depth(s2), is

higher, precedes in the list
• the pair whose sum of the instances of both sequences and all their direct and indirect

subtasks is higher, precedes in the list

The last rule is based on the fact, that any child of a sequence s can also be a child of an-
other task and its number of instances might be higher than |x(s)|. After its sorting, we per-
form a filtering of the list. We drop those pairs that refer to an s∈ S which is already referred
by another pair preceding in the list. As an example, we consider {s1,s2},{s1,s3},{s1,s4}
as a sorted list of sequence pairs. All pairs in this list refer to s1. The filtering discards the
second and the third pair from the list, because the first pair already references s1. Hence,
the subsequent pairs in the list also referencing s1 need to be discarded.

There may be pairs for which the above rules cannot provide a unique sorting. This hap-
pens if the compared values for two pairs are the same. In this situation, the sorting process
puts the pairs next to each other in the list without a predefined order. The subsequent fil-
tering then ensures that still always the same sequence pairs will be discarded. For this,
it performs a check before discarding a pair {si,s j} from the list. In this check, it ensures
that the above rules are able to create a sorting for {si,s j} and the preceding pairs in the list
referring to si or s j. If the rules cannot provide a sorting, we throw an exception and termi-
nate the process as the filtering cannot decide, which of the pairs should remain in list. In
the above example, the filtering terminates if the rules cannot provide a sorting for the first
and the second, or for the first and the third element in the list. If the filtering terminates in

4. Automated Field Usability Evaluation Using Generated Task Trees 48

this way, we consider the sequence merging as failed. In our case studies, we evaluate how
often the sequence merging fails and how this influences the sequence merging process.

After the sorting and the filtering, the list contains only pairs referring to different se-
quences. Hence, we perform the merging of the remaining pairs in the order given by the
list. The full choosing process for sequence pairs is shown as pseudocode in Algorithm 4.2.
There, the Lines 4 to 7 show the initial choosing of pairs that show a minimum similarity
and that are not parents of sequences of other pairs in P. Lines 9 and 11 check if there are
multiple remaining pairs referring to the same sequence. If so, Line 12 drops all pairs not
referring to the same sequences from P. In Lines 14 and 15, we do the initial sorting of the
remaining pairs, which is stored in the sorted set P′. Then, in Lines 17 to 26, we perform
the filtering. Line 20 checks if the filtering can decide which pair should be discarded. As a
result, the sorted set P contains the remaining pairs which need to be merged.

Algorithm 4.2 Choosing of sequence pairs to be merged.
1: P← {sequence pairs and their similarity level}
2: simmax← max{similarity level of pairs in P}
3:
4: P← P\{(si,s j) | sim(si,s j)< simmin}
5: P← P\{(si,s j) | deltas are at beginning or end of L(s1) or L(s2)}
6: P← P\{(si,s j) | sim(si,s j)< simmax}
7: P← P\{(si,s j) | si or s j are parent of any other sequence referred by another pair}
8:
9: S← {sequences belonging to several pairs in P}

10:
11: if S 6= /0 then
12: P← P\{(si,s j) | si,s j /∈ S}
13:
14: C← comparator // for applying sort rules
15: P′← sort(P using C)
16:
17: P← /0
18: for all (si,s j) ∈ P′ do
19: if ∃(s′i,s′j) ∈ P | (si = s′i∨ si = s′j ∨ s j = s′i∨ s j = s′j) then
20: if C cannot provide a sorting for (si,s j) and (s′i,s

′
j) then

21: // throw Exception
22: end if
23: else
24: P← P∪{(si,s j)}
25: end if
26: end for
27: end if
28:
29: // merge remaining pairs in P

49 4.4. Usage-based Task Tree Generation

4.4.3.3. Flattening and Adaptation of Sequence Instances

After having detected and chosen the sequences to be merged, we perform the next substep
for merging similar sequences, which is the flattening and adaptation of sequence instances
(see Figure 4.7). We start by considering flattened instances of the sequences to be merged.
A flattened instance of a task instance t ′ is an ordered task instance list L′(t ′) of the action
instances, i.e., leaf nodes, of t ′ in the order they were performed by the user. This is similar
to a task list L(s) of a sequence s, except that it contains action instances instead of actions2.
Examples of flattened task instances for the tasks in Figure 4.8 a are shown in the upper
lists in Figure 4.8 c and Figure 4.8 d. The lists consist of grey boxes representing action
instances. The corresponding actions are identified through letters in the boxes. The arrows
between the boxes denote the order of execution of the action instances. We create flattened
instances out of all instances of two sequences to be merged.

Afterwards, for two sequences s1 and s2 to be merged, we consider the deltas between
their task lists L(s1) and L(s2), which were identified in the previous substep. For each insert
or delete delta, we generate a new task of type optional. The single child of this optional
is the action that is either inserted or deleted. For each change delta, we generate a new
task of type selection. This selection gets both execution variants denoted by the delta as
its new children. In Figure 4.8 b, we show examples for generated optionals and selections
for a list of deltas. In this figure, Optional 1 is generated for the insert delta of Action b
and, therefore, has the action as its child. Selection 1 is generated for the change delta of
the actions f and g and, thus, has both actions as its children.

Using the optionals and selections generated for the deltas, we adapt the flattened in-
stances of two sequences s1 and s2 to be merged. For this, we integrate instances of the
optionals and selections into the flattened instances. This integration is done based on the
deltas and the knowledge where these deltas are located in the task lists L(s1) and L(s2).

For each insert or delete delta, we first consider the sequence where the actions denoted
by the delta are missing. In each flattened instance of this sequence, we integrate an instance
of the optional created for the delta. The position of the optional instance depends on the
delta and corresponds to the position where the corresponding action was left out in the
execution. The optional instances have no children to indicate, that the execution of the
action was left out. We then consider the other sequence of the pair. In each flattened
instance of this sequence, we replace the instance of the action denoted by the delta with an
instance of the optional created for the delta. This optional instance gets the replaced action
instance as child to denote that the action was performed. An example for a replacement of
action instances for insert and delete deltas is shown in Figure 4.8 c and Figure 4.8 d. There,
the insert delta of Action b is handled through integrating instances of Optional 1 into the
flattened instances of s1 and s2. In the flattened instance of s1 (Figure 4.8 c), an instance

2L′(t ′) is also similar to a′(t ′) but only in its simplest form. In adaptations of our approach described in
Section 4.4.3.7 and Section 4.4.3.8, L′(t ′) contains other elements than action instances and is, hence,
different from a′(t ′).

4. Automated Field Usability Evaluation Using Generated Task Trees 50

of Optional 1 without a child is integrated to indicate, that the execution of the optional
Action b was left out. In contrast, in the flattened instance of s2 (Figure 4.8 d), an instance
of Optional 1 replaces the instance of Action b and gets it as its child. This indicates, that
here Action b was performed although it could have been left out.

The handling of change deltas is similar to that of insert and delete deltas. Instead of op-
tional instances, we create instances of the selection representing the delta. These instances
replace the instances of the actions denoted by the delta. An example of the handling of a
change delta is also shown in Figure 4.8 c and Figure 4.8 d. The instances of actions f (Fig-
ure 4.8 c) and g (Figure 4.8 d) are replaced by instances of Selection 1, which represents the
corresponding delta. The selection instance gets the replaced action instances as children.

A single delta may cover several actions at once in L(s1) and/or L(s2). In this case, we
create optionals and selections that have intermediate sequences as their children. These
sequences in turn have the actions belonging to the delta as their children. For example,
if an insert delta denotes an insert of the actions ai . . .a j, then the single child of the cor-
responding optional o is a sequence s having ai . . .a j as its children. The same applies for
change deltas. Introducing these intermediate sequences also has an effect on the adapta-
tion of the flattened instances. If an intermediate sequence is required for a delta, then the
adaptation of a flattened instance, which is done to reflect the delta, also creates instances of
the intermediate sequence. For example, for the above mentioned insert delta, the flattened
instances of one of the merged sequences contains executions of ai . . .a j. These need to be
replaced by an instance of the optional o. This optional instance gets a single child, which is
an instance of the intermediate sequence s. This sequence instance in turn gets the replaced
instances of ai . . .a j as its children.

After all adaptations are done, the flattened instances of the two sequences to be merged
consist of action, optional, and selection instances. Their ordering corresponds to a common
task model, which will be determined in the next substeps for merging similar sequences.

4.4.3.4. Iteration and Sequence Detection on Adapted Flattened Sequence Instances

On the adapted flattened instances of two sequences to be merged, we apply an iteration
and sequence detection as described in Section 4.4.2. This is also done alternately as shown
in Figure 4.7 until no further iterations and sequences are detected. For this, the flattened
instances become task instance lists, which in turn become the input of the iteration and
sequence detection. Due to the adaptations, the flattened instances have similar orders and
share common n-grams of action, optional, and selection instances. Furthermore, the it-
eration and sequence detection is applied on at least two flattened instances, one for each
sequence to be merged. Therefore, at the end of its application, the iteration and sequence
detection always finds a single sequence. This single sequence is the result of the merge.
Figure 4.8 e shows the sequence resulting from the iteration and sequence detection on the
adapted flattened instances in Figure 4.8 c and Figure 4.8 d, which is the result of merging
the sequences in Figure 4.8 a.

51 4.4. Usage-based Task Tree Generation

4.4.3.5. Harmonization of Parent Tasks

After we calculated a result s3 for the merging of two sequences s1 and s2, we need to
update the parent tasks that have s1 or s2 as any of their children. We do this in the next
substep of our sequence merging process shown in Figure 4.7. This substep covers the
replacement of s1 and s2 with s3 in any child list of any other task. This adaptation is done
by a simple child replacement. Examples for updates of two parent tasks, after their children
have been merged, are shown in Figure 4.9. Figure 4.9 a shows two sequences Sequence 2
and Sequence 3 (indicated through dotted boxes) which are similar and, hence, merged to
become Sequence 4 in Figure 4.9 b. Through this, Iteration 1 and Iteration 2, which are
the parent tasks of Sequence 2 and Sequence 3, are also updated having now the new child
Sequence 4.

Sequence 2

a = Action “a“ Iteration 1 = “Iteration 1“

a

c

b

Sequence 1

Sequence 3

Iteration 1

Iteration 2

Sequence 4

a

c

b

Sequence 1

Iteration 1

Iteration 2

Selection 1

d

Sequence 4

a

c

b

Selection 1

d

a

c

d

Sequence 4

a

c

b

Sequence 1

Iteration 3

Iteration 3

Selection 1

d

Sequence 4

a

c

b

Selection 1

d

Iteration 3

Sequence 4

a

c

b

Selection 1

d

a) Before merging
child sequences:

b) After merging
child sequences:

c) After update of
parent iterations:

d) After removal of
invalid sequence:

= Tasks to be updated in next step

Figure 4.9.: Example for updating parent tasks after merging two similar sequences.

In addition to the update of the parent tasks, we also adapt their instances. This is required
to ensure, that the instances match the corresponding model. The adaptation is done based
on the flattened instances of s1 and s2, which became task instance lists and also input for
the iteration and sequence detection. After the iteration and sequence detection, these task
instance lists all have a length of one and the sole elements in the lists are instances of
s3. These instances are the replacements for the instances of s1 or s2. As we know, which

4. Automated Field Usability Evaluation Using Generated Task Trees 52

instance of s1 and s2 was flattened and transformed into a specific task instance list, we also
know which instance of s3 needs to replace the corresponding instance of s1 or s2. We use
this traceability to perform the respective replacements in the instances of the parent tasks.

Due to the replacements, parent tasks can become unharmonized. For example, there may
be two parent iterations i1 and i2, where the single child of i1 is s1 and the single child of i2
is s2. After a merge of s1 and s2, the children of i1 and i2 are replaced by the merge result
s3. Due to this, i1 and i2 become identical. To ensure a homogeneous task tree, we also
replace i1 and i2 with a new iteration i3, which has s3 as its single child. This also implies
an adaptation of the corresponding instances. An example for this situation is shown in
Figure 4.9 b and 4.9 c. There, after the merging of their children, Iteration 1 and Iteration 2
have the same child. Hence, we replace both of them with Iteration 3, which has the merge
result Sequence 4 as its single child.

By merging sequences, but also by harmonizing iterations, two subsequent children of
a parent sequence may become identical. This situation is shown in Figure 4.9 c, which
resulted from a harmonization of iterations. There Sequence 1 has two subsequent children,
which are the same iteration, namely Iteration 3. In our task trees, this must be represented
as one iteration. Hence, we detect these situations and replace two subsequent identical
children with a single iteration of them. If the children are already iterations, as in the
example, the iteration is reused. This update is done correspondingly on the instances of
the affected parent tasks, as well. In addition, if a sequence only has two children, which
become identical, the whole sequence is discarded and all its occurrences are replaced by
an iteration of the identical children. This situation is shown in Figure 4.9 c and 4.9 d.
Through the merging of their children, the child iterations of Sequence 1 become identical,
i.e., Iteration 3. Hence, any occurrence of Sequence 1 will be replaced by an iteration of its
identical children. In this example, these children are already iterations, namely Iteration 3.
Therefore, Iteration 3 is used for the replacement of Sequence 1.

Through the harmonization of parent tasks, grandparent tasks may also require a har-
monization. The corresponding adaptations are identical to those mentioned for the parent
tasks. We perform them until no further parent tasks require an adaptation.

4.4.3.6. Repetition of Sequence Merging

As shown in Figure 4.7, the merging of similar sequences is repeated multiple times. This
is required, as during a single merge only some pairs of similar sequences are chosen to be
merged. The merging is repeated until no further pairs of similar sequences are chosen to
be merged. This may happen, e.g., if the similarity level of the pairs does not exceed simmin.

During several mergings, identical optionals, selections, or intermediate sequences may
be detected. An example are optionals that have the same action as their single child. For
all mergings, we ensure, that previously created optionals, selections, and intermediate se-
quences are reused. It may also be the case, that the result of a merge is a sequence having
the same children as a previously detected intermediate sequence. In this case, we also

53 4.4. Usage-based Task Tree Generation

reuse the intermediate sequence to not create a new one. Through this, the task trees remain
harmonized.

In a merging cycle, a sequence pair to be merged might contain the result of a previous
merge. This includes optionals, selections, and new intermediate sequences. Such sequence
pairs require a specific handling in the merging process. This, and other exceptional han-
dlings during the merge process, are described in the following subsections.

4.4.3.7. Adaptations of the Sequence Similarity Calculation

The sequence similarity as described in Section 4.4.3.1 does not yet consider exceptional
situations. These situations as well as their consideration in the calculation of sim(s1,s2)
are described in this section. One situation is, that during task execution, users perform
inefficient actions like scrolling, which do not contribute semantically to the task. Due to
the iteration and sequence detection, as described in Section 4.4.2, these actions are part
of the task trees generated so far. Hence, they may also occur in the task lists, which
are the basis for calculating sim(s1,s2). When comparing two task lists, a high number
of inefficient actions in both lists may cause a high similarity of these lists. But from a
semantic point of view, the lists can be very different. Hence, we adapt the calculation of the
sequence similarity to be higher for two sequences, which have common efficient actions,
and respectively lower for two sequences, which share inefficient actions. To achieve this,
we consider inefficient actions also as deltas between two lists. Let nineff be the number of
inefficient actions in two task lists L(s1) and L(s2), which are not part of any delta between
L(s1) and L(s2). Then we adapt the calculation of the sequence similarity sim(s1,s2) for the
two sequences s1 and s2 as follows:

sim(s1,s2) = 1−
nineff +∑

n
i=1 |di|

|L(s1)|+ |L(s2)|
(4.4.2)

Through this adaptation, sim(s1,s2) cannot become 1, even if L(s1) = L(s2), as long as
L(s1) contains an inefficient action. In addition, it contradicts the idea of the sequence
similarity. Hence, we adapt the calculation of the sequence similarity further to be 1 if
L(s1) = L(s2) and as previously defined if L(s1) 6= L(s2):

sim(s1,s2) =

{
1− nineff +∑

n
i=1 |di|

|L(s1)|+|L(s2)| L(s1) 6= L(s2)

1 L(s1) = L(s2)
(4.4.3)

A further exceptional situation results from the repetition of merging similar sequences.
In merging cycles following the first merge, the pairs of similar sequences may include
results of a previous merge. This means, that the compared sequences may have direct or
indirect children, which are optionals or selections. When calculating the task lists for two
sequences, optionals do not need a specific handling. The actions covered by an optional
are simply included in the task lists. On the contrary, for selections, it is not clear, in which

4. Automated Field Usability Evaluation Using Generated Task Trees 54

order the actions covered by their children have to be included in the task lists. Therefore,
we do not include the actions denoted by a selection, but the selection itself in the task lists.

The calculation of sim(s1,s2) so far considers only actions in the task lists. But a selection
may cover multiple actions at once and, therefore, represents multiple actions at once as a
single entry in a task list. Through this, the number of actions, represented by entries in the
task lists, becomes unbalanced. We consider this in a further adaptation of the calculation
of the sequence similarity. For this, we introduce a function a(t) that returns the average
number of actions covered by a task t. This function is defined recursively and its result
depends on the children and the type of t. The function returns the following:

a(t) =


∑ci∈c(t) a(ci) if t is a sequence
a(c1) if t is an iteration or optional and c1 its single child
∑ci∈c(t) a(ci)

|c(t)| if t is a selection

(4.4.4)

If a child ci of a task is an action, then a(ci) = 1. In addition, we define the function a(L)
also for a task list L. Here, it returns the sum of the average number of actions covered by
the tasks t ∈ L plus the number of actions a ∈ L. This means, a(L) is calculated as follows:

a(L) = ∑
t∈L

a(t)+ |{a | a ∈ L}| (4.4.5)

Correspondingly, for a delta d, we define the function a(d). This returns the sum of the
average number of actions covered by the tasks t ∈ d plus the number of actions a ∈ d. This
means, a(d) is calculated as follows:

a(d) = ∑
t∈d

a(t)+ |{a | a ∈ d}| (4.4.6)

We use a(L) and a(d) to adapt the calculation of the sequence similarity as follows:

sim(s1,s2) =

{
1− nineff +∑

n
i=1 a(di)

a(L(s1))+a(L(s2))
L(s1) 6= L(s2)

1 L(s1) = L(s2)
(4.4.7)

Through this adaptation, we ensure that selections in task lists get a weight corresponding
to the average number of actions they represent.

4.4.3.8. Adaptations of the Sequence Flattening

The above approach for merging similar sequences discards common substructures of both
sequences. For example, if the first child of two similar sequences s1 and s2 is the same
task (as shown in Figure 4.10 a), then instances of this task would be discarded by flattening
the instances x(s1) and x(s2). In addition, they would not be found again on the subsequent

55 4.4. Usage-based Task Tree Generation

Sequence 2

Sequence 1

a) Example of two similar sequences:

a

b

d

Selection 1

g

a

b

d

h

g

change({Selection 1}, {h})

g

a

Optional 1

b

Sequence 2

Sequence 3

a

g

b

b) Deltas of the two similar sequences:

c) Example of a flattened instance of s
1

(no adaptation required):

a b

d g

d) Adaptation of a flattened instance of s
2
:

c gd h

Adaptations
based on deltas

= Delta with details

e) Task structure after re-application of
the alternating iteration and sequence
detection:

Optional 1

c

Sequence 5

a Selection 1

f h

g

s
1
: s

2
: L(s

1
): L(s

2
):

a = Instance of Action “a“

Iteration 1 = Instance of “Iteration 1“

a = Action “a“

Iteration 1 = “Iteration 1“

c

Selection 1

e

f

Sequence 4

c

dd

h

c c

Optional 1 Selection 1

e

d gOptional 1

c

Selection 1

h

b d

e

Sequence 2

a b

Sequence 2

a b

Sequence 2

Figure 4.10.: Example for merging two similar sequences containing selections and option-
als (adapted from [21]).

sequence detection. To prevent discarding task instances, we adapt the creation of flattened
instances. For this, we start by determining direct or indirect child tasks of the sequences s1
and s2, which are shared between s1 and s2. Each of these tasks represents a sublist in L(s1)
and L(s2). We then check for each shared child task if its corresponding sublists in L(s1)
and L(s2) are at the same positions. If so, we do not flatten the instances of this task when
creating of the flattened instances of s1 and s2. As a result, the flattened instances contain
instances of already detected tasks, which do not get discarded on the subsequent iteration
and sequence detection. Through this, we also ensure that during the merging process, no
new iteration or sequence is detected, which is structurally identical to a previously detected

4. Automated Field Usability Evaluation Using Generated Task Trees 56

iteration or sequence. An example for this preservation is shown in Figure 4.10 c and 4.10 d.
There, the instances of Sequence 2 are not flattened, because Sequence 2 is a shared child
between s1 and s2 (see Figure 4.10 a), and because it represents the same entries in L(s1)
and L(s2) (see Figure 4.10 b). We use the same approach for child tasks of s1 and s2, whose
corresponding sublists in L(s1) and L(s2) represent parts of a delta or a full delta. Through
this, also the instances of these child tasks are preserved.

When merging two sequences s1 and s2, which have optionals as direct or indirect chil-
dren, the creation of flattened instances also needs to be adapted. This is because an optional
instance may not have a child, which indicates that the corresponding action was left out.
In this situation, the optional instance has no flattened representation except itself. When
creating the flattened instances of s1 and s2, we do not flatten instances of an optional being
left out in instances of s1 or s2. An example for this is shown in Figure 4.10 c, which shows a
flattened instance for the first Sequence s1 in Figure 4.10 a. As the instance of Optional 1 is
left out, it is not flattened. The flattened instances of a similar sequence, that do not contain
the optional, will contain the instances of the actions covered by the optional, instead. An
example for a sequence similar to s1 is s2, also shown in Figure 4.10 a. A flattened instance
of s2 is shown in the upper part of Figure 4.10 d. It does not contain instances of Optional 1,
as this does not belong to the task model. Instead, it contains instances of the actions, which
are similar to the actions covered by Optional 1, i.e., an instance of action c. As in this
case the flattened task instances are not harmonized anymore, we reharmonize them before
we apply the subsequent iteration and sequence detection. We do this by creating optional
instances and integrating them into the flattened instances, where the optional instances are
not present. The optional instances replace the elements of the flattened instances, which
need to be considered optional. For the example in Figure 4.10, this is shown for Optional 1
in the lower part of Figure 4.10 d. There, the instance of action c is replaced by an instance
of Optional 1, which has the replaced action instance as its child.

We also make exceptional considerations for selections. Selections are added directly
to task lists as described in the previous section. This results in the fact, that two similar
sequences s1 and s2 either share the same selection, or a selection is part of a delta, when
considering L(s1) and L(s2). If s1 and s2 share the same selection z, we do not flatten
respective instances, because z is a shared task and instances of shared tasks stay unflattened
as described above. If a selection is part of a change delta or belongs to an insert or delete
delta, the situation is handled as described in Section 4.4.3.3, i.e., no selection-specific
handling is done. If a selection z fully covers one side of a change delta between two
sequences s1 and s2, then the respective other side of the delta becomes a new variant of
z. Let s1 be the sequence containing z. When creating the flattened instances of s1, the
instances of z are not flattened. When creating the flattened instances of s2, the action
instances representing the other side of the change delta are replaced by an instance of z.
This instance gets the replaced action instances as its children, introducing an intermediate
sequence, if required. An example for this situation is shown in Figures 4.10 c and 4.10 d.
There, Selection 1 belonging to s1 is one side of a change delta. Its instances being children

57 4.4. Usage-based Task Tree Generation

of instances of s1 are not flattened. In a flattened instance of s2, the instance of Action h,
which is the other side of the change delta, is replaced by a new instance of Selection 1,
which has the instance of Action h as its child.

A change delta may also have one selection representing one side and another selection
representing the other side. In this situation, both selections are merged. For this merge, we
create a new selection, which gets the children of both selections as its children.

A final exceptional situation, that we consider, are interleaving iterations. Our sequence
comparison so far compares only task lists. It does not consider the structure of two se-
quences, especially iterations inside. But iterations in sequences may cause, that different
parts of the task lists of two sequences may be repeatable. For example, consider two se-
quences s1 and s2, where L(s1) consists of the actions a, b, and c, and L(s2) contains the
actions a, d, and c. Let s1 contain an iteration i1, that allows {ab} to be repeated multi-
ple times, whereas s2 contains an iteration i2, which allows a repetition of {dc}. We call
such iterations interleaving iterations. In this situation, our above approach would try to
create a selection z between the actions b and d. But during the flattening of s1 and s2,
it would create completely unharmonized instances if an instance of s1 and an instance of
s2 contain multiple executions of i1 and i2. For example, a valid flattened instance of s1
is {a′b′a′b′c′}, where i1 is executed two times. This would be adapted to {a′z′a′z′c′}. In
addition, a valid flattened instance of s2 is {a′d′c′d′c′}, where i2 is executed two times. This
would be adapted to {a′z′c′z′c′}. Based on these unharmonized flattened instances, no cor-
rect iteration and sequence detection can be performed and, therefore, no single sequence as
replacement for s1 and s2 can be detected. To prevent this, we detect interleaving iterations,
that are executed multiple times in instances of s1 and s2, before performing the merge.
We then create new task lists L(s1) and L(s2), which contain the interleaving iterations in-
stead of the repeated actions. Based on them, we get a new set of deltas. When afterwards
flattening the sequence instances, we do not flatten instances of the interleaving iterations.
Furthermore, we adapt the flattened instances only on the new set of deltas. Through this,
the flattened instances are harmonized and the interleaving iterations are preserved.

Due to interleaving iterations, L(s1) and L(s2) of two similar sequences s1 and s2 can
become completely different, as similar elements are dropped. This is the case for the
example in the previous paragraph. There, after the interleaving iterations i1 and i2 are
detected and directly included in the task lists, L(s1) is {i1 c} and L(s2) is {a i2}. In these
cases, the resulting sequence similarity will also become 0 as L(s1) and L(s2) do not contain
common elements anymore. If we detect this, we do not perform a merging of s1 and s2.
This is because although they initially seemed similar, in fact, they are not.

4.4.3.9. Adaptations of the Harmonization of Parent Tasks

As described in Section 4.4.3.5, we update iterations, which have merged sequences as
their children. In later merging cycles, merged sequences can also be children of optionals.
Hence, we perform the same adaptations for optionals as done for iterations.

4. Automated Field Usability Evaluation Using Generated Task Trees 58

In addition, it may be the case, that for two sequences s1 and s2, which are merged into
s3, there is only one iteration i1 having s1 as its child, but no iteration i2 having s2 as its
child. Performing the harmonization of parent tasks as described before, this can lead to a
situation, where s3 once occurs without a parent iteration and once with. Before merging,
our task trees always include iterations of a sequence at any position if a sequence is iterated
at least once. Therefore, we ensure, that, if for s2 there is no parent iteration, but for s1 there
is one, then s1 is simply replaced by s3, but s2 is replaced by an iteration of s3.

Due to the merging of children and the harmonization of parent tasks, two distinct parent
sequences may become similar, or even the same. This is handled in subsequent merging
cycles, as these sequences have a high similarity level. Therefore, they are selected to be
merged, as well.

4.4.4. Complexity Analysis

When recording users of websites, large amounts of action instances may be recorded. The
generation of task trees out of these action instances can, hence, become time-consuming.
Therefore, we perform a complexity analysis as an estimation of the performance of our
approach for larger input data. We do this by first considering the individual steps that we
take in our generation process. Then, we define a complexity for them. finally, we derive a
complexity for the whole approach. The overall task tree generation approach is shown in
Algorithm 4.3. In the following paragraphs, we describe each of the steps in the algorithm
and their complexities.

Initially, we perform an alternating iteration and sequence detection (Lines 1 to 4 in
Algorithm 4.3). The iteration detection itself can be done by reading the input task instance
list once. During this read, we can store directly, which actions are repeated, as well as the
positions of the repeated actions. This storing has a complexity of O(1), as the information
can be stored, e.g., in an array or a list. Afterwards, the instances of the repeated actions
are replaced through respective iteration instances, which requires at most a second read of
the input data. Hence, the iteration detection itself has a complexity of O(n), where n is the
number of processed action instances.

The complexity of the sequence detection is similar, but due to the choosing of sequences
to be merged, its calculation requires more insight. Through a single read of the input task
instance list, all n-grams can be determined, including their size and locations in the input
data. The only boundary here is the size of the memory, as an action instance list of length
n contains ∑

n−1
i=2 i = n(n+1)

2 − (n+ 1) permutations of n-grams l′ with a length 1 < |l′| < n.
During the single read, the detected n-grams can directly be combined into n-gram sets,
which represent the same action combinations. The assignment of n-grams to n-gram sets
can be done with a complexity of O(1). For this, we can use an algorithm that is capable of
using an n-gram as unique index of the corresponding n-gram set in an array of n-gram sets.
From all n-gram sets, we determine which n-gram sets need to be replaced first. We initially
choose those n-gram sets with first the highest number and second the longest length of n-

59 4.4. Usage-based Task Tree Generation

Algorithm 4.3 Simplified task detection process with complexities.
1: repeat
2: // iteration detection O(n)
3: // sequence detection O(n)
4: until no new sequence or iteration detected O(n2)
5:
6: repeat
7: // compare sequences O(n4)
8: // choose sequences to be merged first O(n2)
9:

10: if there are sequences to be merged then
11: for all sequence pairs to be merged do
12: // adapt flattened task instances O(n2)
13:
14: repeat
15: // iteration detection on flattened task instances O(n)
16: // sequence detection on flattened task instances O(n)
17: until no new sequence or iteration detected O(n2)
18:
19: // harmonize parent tasks O(n)
20: end for O(n3)
21: end if
22: until no sequences to be merged O(n5)

grams. This can be done during the initial reading of the input data. When having read the
next action instance from the input data, several new n-grams are completed. For each of
these n-grams, we know to which of the n-gram sets it belongs. We also know the current
number of n-grams in a set, as well as the n-gram length. Hence, we can also determine
at any time during the first read, which n-gram sets currently contain most n-grams, and
which length these n-grams have. This can be done by maintaining pointers to these n-gram
sets. These pointers are also available at the end of reading the input data. Hence, the
initial choosing of the n-gram sets, which contain most and the longest n-grams, also has
a complexity of O(1). After this initial choosing, only an amount of n-gram sets remains,
which is a fraction of n. This is because a task instance list of length n contains only
n+1−|l′| permutations of n-grams l′ of length |l′|. These n-grams must be identical to be
added to an n-gram set. As the minimum number of identical n-grams per set is two, at most
n+1−|l′|

2 n-gram sets will remain after the first choosing. The subsequent choosing process
will discard at least one of the sets in any repetition and, therefore, runs at most n+1−|l′|

2
times. This shows, that considering an unlimited amount of memory, also the sequence
detection has a maximum complexity of O(n).

The iteration and sequence detection are repeated alternately (Lines 1 to 4 in Algo-
rithm 4.3). Either, the iteration or the sequence detection will detect at least one iteration or

4. Automated Field Usability Evaluation Using Generated Task Trees 60

one sequence in a cycle. In the worst case scenario, only two action or task instances in the
task instance list are combined to one new task instance per cycle, resulting in at most n−1
cycles for the iteration and sequence detection. Hence, the complexity of the alternation is
also O(n). As the iteration and sequence detection already have a complexity of O(n), and
as they are called in the alternation, the resulting complexity of the iteration and sequence
detection is O(n2).

After the iteration and sequence detection, we perform a merging of similar sequences
(Lines 6 to 20 in Algorithm 4.3). For this, we first have to determine similar sequences,
which is done by comparing each sequence with any other sequence. This means perform-
ing n(n− 1) comparisons if n is the number of sequences. Considering an algorithm for
comparing two sequences with a complexity of at most O(n2), which is given for My-
ers Diff algorithm used in this thesis [89], the complexity of the detection of similar se-
quences is O(n4). Afterwards, we perform a choosing of similar sequences to be merged
first. The complexity of this choosing increases with an increasing number of sequences
that are shared between the pairs. But still any pair is handled at most three times, resulting
also in a maximum complexity of O(n2) where n is the number of sequences.

The subsequent flattening of task instances needs to be done for any task instance and
also for any detected delta. Hence, the complexity of this step is linearly dependent on the
multiplicity of the number of task instances and the number of deltas. Therefore, it is at
most O(n2). Afterwards, we perform an alternating iteration and sequence detection on the
flattened instances, which, as shown above, also has a complexity of O(n2). Furthermore,
we do a harmonization of parent tasks, which can be done in linear time (O(n)). Finally,
after a merging, we check if there are further similar sequences and merge them if required.
Through this repetition of the merging process, the complexity increases to O(n5) for the
overall merging process. So referring to Algorithm 4.3, the major complexity issue is the
multiple repetition of Line 7, which already has a complexity of O(n4).

The complexity of our approach with O(n5) seems to be quite high. But this consid-
ers the worst case scenario, in which we have as few as possible identical n-grams in the
task instance list. The complexity also depends strongly on the number of distinct avail-
able actions and action combinations. If, for example, the user can perform only a small
set of distinct actions and only a small amount of distinct action combinations, even large
task instance lists will contain many identical n-grams. Hence, already the sequence and
iteration detection will perform many more reductions of the number of entries in the task
instance list within one cycle, than done in the worst case scenario. The same applies for the
detection and merging of similar sequences. With a decreasing number of possible action
combinations, fewer similar sequences are detected and merged. In addition, after a certain
data set size is reached, no new actions or action combinations are recorded, because the
previously recorded data already contains all actions and action combinations possible on
a software. Hence, the number of iteration and sequence detection cycles, as well as the
number of required sequence comparisons, do not increase anymore, even if the data set
size increases. Furthermore, action combinations performed only once in a data set are not

61 4.5. Usage and Task-Tree-Based Usability Evaluation

detected and, hence, there is no corresponding detection cycle for them in the iteration and
sequences detection.

Additionally, the approach has some opportunities for runtime improvements, which are
not considered in the complexity analysis. For example, one aim in this thesis is to de-
termine, how many action instances a detected sequence should cover to consider it rep-
resentative for typical user behavior. This implies not detecting sequences, that are not
be representative. Through this, we intent to reduce the number of cycles in the iteration
and sequence detection, as well as the amount of sequence comparisons for the subsequent
merging. In fact, in our case studies, we only compare and merge those sequences with
each other that cover most of the recorded action instances and which are, hence, the most
representative ones. Furthermore, when comparing sequences for detecting similar ones, it
is possible to skip comparisons based on the knowledge about the sequences structures. For
example, if the task list of one sequence is much longer than the one of another sequence,
the similarity level sim(si,s j) can be estimated to be lower than simmin. In this case, the
comparison does not need to be done. We also skip sequence pairs whose deltas are at the
beginning or end of the task lists. This can also be checked before applying a complex diff
algorithm on the task lists. Hence, it is sufficient to only compare sequences with each other
whose first and last elements of the corresponding task lists are the same. In addition, if a
sequence s1 is the direct or indirect child of a sequence s2, the comparison of s1 and s2 can
be skipped, because parent tasks are not merged with their children. This is ensured by the
choosing process applied for identifying sequences to merge. All this reduces the number
of required comparisons significantly. Finally, the remaining comparisons can be done in
parallel, as they are independent from each other, which can further reduce the runtime. We
implemented the optimizations named in this chapter in our case studies.

4.5. Usage and Task-Tree-Based Usability Evaluation

In this section, we describe our approach for usability smell detection. We start by introduc-
ing the basic concepts. Then, we explain the detection of usability smells of two separate
major types. The first type are usability smells with relation to the generated task trees.
The second type are usability smells, which are detected solely based on recorded action
instances.

4.5.1. Approach

The detection of usability smells as done in our approach results in two smell categories.
The usability smells of the first type are detected using the generated task trees. Most
of these smells have a direct relation to a specific task and provide task specific details.
The usability smells of the second type are detected solely based on the recorded action

4. Automated Field Usability Evaluation Using Generated Task Trees 62

instances. They have a more statistical nature and refer mostly to specific elements of a
GUI, such as a specific text field or a specific view. For each of the smells, we provide

• a foundation and a justification for the smell,
• expected user behavior if the corresponding usability issue is present,
• expected occurrence of the user behavior in the task trees or the recorded action in-

stances,
• a description of the detection of the smell, including the calculation of its intensity,
• the possible usability critique the smell can provide, and
• if applicable, a simple example for the smell.

In the foundation and justification for each smell, we provide references to the correspond-
ing literature. Most important here is the guideline catalog "The Research-Based Web De-
sign & Usability Guidelines, Enlarged/Expanded edition" of the U.S. Dept. of Health and
Human Services [90]. Although being from 2006, this catalog includes many guidelines for
user interface design, which are still valid today. In the catalog, each guideline is described
and rated for its validity based on available studies and literature as well as based on ex-
periences of known usability experts. Hence, the guidelines have a scientific background,
which is described in the introduction section of the catalog.

The intensity of each smell is given as a smell specific calculation. For each smell, we
provide a formula used for the calculation of the intensity. The intensity of a specific smell
found for a task t is given as Rsmell(t). The intensity of a specific smell found for a task
instance t ′ is given as Rsmell(t ′). The intensity of other smells is simply named as Rsmell. We
do not provide smell specific intensity thresholds, which need to be exceeded to consider a
smell present. This is due to the fact, that we aim at determining possible thresholds in the
case studies of this thesis.

For the smells, we provide examples for an improved clarification of their detection and
intensity calculation. For some smells, it is not possible to provide simple examples. The
reason is, that even a simple example for a specific smell may include a large number of
tasks, actions, or respective instances. Hence, we provide the examples only for those
smells, where the examples are rather simple.

4.5.2. Detection of Usability Smells Based on Task Trees

In this section, we describe the usability smells that have a relationship to the generated task
trees. Either, the smells refer to a single task or they consider all detected tasks in general.
Most smells focus on tasks of type sequence, only. This is because sequences express the
main execution order of a task, whereas iterations, optionals, and selections only express
execution variants. We already published some usability smell descriptions in this section
in a similar fashion in [22]. We indicate for the respective smells if this is the case. The
smells described in this section are

63 4.5. Usage and Task-Tree-Based Usability Evaluation

• Important Tasks,
• Required Inefficient Actions,
• High GUI Element Distance,
• Missing Feedback,
• Required Input Method Change, and
• Missing User Guidance.

4.5.2.1. Important Tasks

We already published a similar description of this smell in [22].

Foundation and Justification One important aspect of usability is efficiency [28]. Espe-
cially tasks executed often should be executed with a high efficiency [90]. For example, they
should require only a minimum of actions [82, 91, 1]. This can be achieved by automating
specific action combinations for a task, if applicable [15].

Expected User Behavior The most important tasks performed with a software are exe-
cuted most often by users. In addition, the more often users perform the same task, the more
similar are the performed actions and their respective order.

Expected Occurrence in Generated Task Trees As the task tree generation generates
tasks for those action combinations executed most often by the users, regularly executed
action combinations are represented as tasks with many instances in the task trees.

Detection and Intensity The detection focuses on sequences only. For each sequence s,
we determine the action instances a′(s) from which s was detected. We correlate this to the
number of all recorded actions instances |A′|. As a result, we get the following ratio as the
smell’s intensity:

RimpTask(s) =
a′(s)
|A′|

(4.5.1)

This ratio is the percentage of recorded action instances, which represent instances of s in
all recorded action instances. The higher the intensity RimpTask(s), the more important is s
for the users when using a software.

Possible Usability Critique The smell provides an ordering of the detected user tasks by
their importance, when regarding the number of recorded action instances. It can directly
state, which tasks are of most importance for the user, and propose to optimize the execu-
tions of these tasks to increase the user’s efficiency. Through the relationship to respective

4. Automated Field Usability Evaluation Using Generated Task Trees 64

tasks, the smell provides much information helpful for optimizing the task. This includes
the actions belonging to the task as well as the typical task executions. However, the smell
can not give more detailed information about how the optimization should be done.

4.5.2.2. Required Inefficient Actions

We already published a similar description of this smell in [22].

Foundation and Justification When executing tasks, users perform inefficient actions,
which have no or minimal semantical effect on the task fulfillment [80]. An example is
performing the scroll action when filling out a form. In some situations, these actions may
be required for advancing the task execution. For example, if a form is too large, users need
to scroll to reach the next element to be filled out. As required inefficient actions decrease
the users efficiency, they should be minimized [90].

Expected User Behavior If inefficient actions are not required, users will perform them
in an unsystematic way. But if inefficient actions are required for the execution of a specific
task, users will perform them as needed and systematically.

Expected Occurrence in Generated Task Trees The task trees are generated based on
all recorded action instances, including inefficient ones. Therefore, they include inefficient
actions at the positions where they were executed and especially where they are required.
In addition, the task instances include the instances of inefficient actions if they were per-
formed, even if in the task model they are optional.

Detection and Intensity The detection of this smell focuses on sequences only. For each
instance s′ ∈ x(s) of a sequence s, we first determine the number of inefficient actions ia′(s′)
performed in the instance. Then, we calculate the intensity of the smell as follows:

RineffAct(s) =
1
|x(s)| ∑

s′∈x(s)

ia′(s′)
|a′(s′)|

(4.5.2)

This ratio is the percentage of inefficient action instances performed on average, when ex-
ecuting sequence s. The higher the intensity RineffAct(s), the more inefficient actions are
performed when executing s on a software.

Possible Usability Critique The smell detects tasks that are usually executed with a cer-
tain ratio of inefficient actions. Due to the task relationship, the smell can provide detailed
information about where and when the inefficient actions seem to be required and which
inefficient actions are performed. Therefore, it can also propose, which actions should be
prevented for the task execution. How the actions can be prevented, depends on the type of

65 4.5. Usage and Task-Tree-Based Usability Evaluation

action. Actions of type scrolling are typically an indicator, that the visual screen space is too
small for displaying a certain view. Hence, the view must become smaller to be displayable
at once. This can be proposed by the smell.

Example An example for a task structure where the smell has a high intensity is shown
in Figure 4.11. The figure displays two instances of an example Sequence 1. Both in-
stances have two action instances as their children, of which one is an inefficient scrolling
action and the other is an efficient click on a button. For Sequence 1, the smells intensity
RineffAct(Sequence 1) is 0.5, i.e., 50%, indicating that half of the actions done for executing
Sequence 1 are inefficient actions.

Instance of Action 2: Scroll of Page

Instance of Sequence 1

Instance of Action 1: Click on Button “OK“

Instance of Action 2: Scroll of Page

Instance of Sequence 1

Instance of Action 1: Click on Button “OK“

Figure 4.11.: Example for the usability smell "Required Inefficient Actions" (adapted
from [22]).

4.5.2.3. High GUI Element Distance

We already published a similar description of this smell in [22].

Foundation and Justification The structure of a GUI should allow for an efficient ex-
ecution of a task [90]. This can be achieved through an appropriate arrangement of GUI
elements. This means, that GUI elements required for the execution of a task should be ar-
ranged in the order, in which they are used, and they should be as colocated as possible [82].

Expected User Behavior Users interact with GUI elements in the order required for the
task executions.

Expected Occurrence in Generated Task Trees The task trees show the order, in which
actions are performed to fulfill a task. As actions refer to GUI elements, the task trees also
show the used GUI elements and their usage order.

4. Automated Field Usability Evaluation Using Generated Task Trees 66

Detection and Intensity The detection of this smell is based on a metric for the distance
of GUI elements. In our work, the GUI models do not refer to physical locations of GUI
elements. Hence, our distance metric is based on the tree structure of the GUI model. This
structure contains information about container elements and views, to which individual GUI
elements belong. We utilize this information for the distance metric. We consider different
distances between two GUI elements. These distances depend on the elements’ locations in
the GUI element tree. We define the distance metric dist(g1,g2) between two GUI elements
g1 and g2 as follows:

dist(g1,g2) =



0.0 g1 and g2 are identical
0.2 g1 and g2 have the same direct parent container element
0.5 g1 and g2 belong to the same view
0.75 g1 and g2 belong to the same software
1.0 g1 and g2 belong to different software

(4.5.3)

The distance values of this metric are arbitrary and could be chosen differently. The
way we define them allows us to have smaller distances for closer GUI elements and larger
distances for distant GUI elements. The unequal distribution between the distances intends
to put more weight on GUI elements, which are very close to each other, i.e., in the same
panel. The highest distance is 1.0, which indicates that two GUI elements do not belong to
the same software.

Based on this metric, we perform the detection of the usability smell. We focus on se-
quences only. We first determine for any instance s′ of a sequence s the action instances
that were performed. From them, we extract the list of GUI elements utilized by the action
instances. From this list, we remove the GUI elements referred to by instances of inefficient
actions, as these actions do not contribute to the semantic fulfillment of the task. The result
is a list G(s′) = g1 . . .gn of GUI elements utilized by instances of efficient actions in the
sequence instance s′. The sorting order of the list is the order, in which the GUI elements
were used. We then calculate for any subsequent pair of GUI elements in G(s′) the distance
and sum up the distances to the cumulative distance ∑

|G(s′)|
i=2 dist(gi−1,gi) of GUI elements

utilized in s′. Furthermore, we determine the number of distances, which is |G(s′)| − 1.
Finally, we determine the average distance between two subsequently used GUI elements
in instances of sequence s. This average distance is the intensity of the smell. For its cal-
culation, we sum up all cumulative distances and divide them by the sum of the number of
distances. The corresponding formula for the smell intensity is as follows:

RhighDist(s) =
∑s′∈x(s) ∑

|G(s′)|
i=2 dist(gi−1,gi)

∑s′∈x(s)(|G(s′)|−1)
(4.5.4)

67 4.5. Usage and Task-Tree-Based Usability Evaluation

This ratio is the average distance between two subsequently used GUI elements, when
executing efficient actions for performing task s. The higher the intensity RhighDist(s), the
higher the distance between these GUI elements, what decreases the efficiency of the task
execution. The intensity values can be traced back to the distance metric dist(g1,g2). For
example, if RhighDist(s) is higher than 0.5, then, when executing the efficient actions of s,
two subsequently used GUI elements are located in different views of the software.

Possible Usability Critique Through the relationship to a concrete task, this smell pro-
vides detailed information about which GUI elements are used, as well as the usage order.
If the distances between the required GUI elements are large, the smell gives concrete infor-
mation about which GUI elements should be more colocated to improve the users efficiency
for executing the task. The smell also shows the order, in which the GUI elements should
be arranged for best supporting the task execution.

Example An example for a task with a high intensity of this smell is shown in Figure 4.12.
On the left side, this figure contains a GUI model of a website with two pages. On page 1,
there is a link with id link1 leading to page 2, as well as a button with id OK. On page 2,
there is a link with id link2 leading to page 1. On the right side, the Figure shows an instance
of a task Sequence 2. It represents the executions of a click on link1, a click on link2, and
finally a click on button OK. Therefore, G(Instance of Sequence 2) is {link1, link2,OK}.
The distance between link1 and link2, as well as between link2 and the button OK, is 0.75

Instance of Sequence 2

Instance of Action 4: Click on Link “link2“

page 1

website 1

Instance of Action 1: Click on Button “OK“

html

body

a (id=“link1“)

Instance of Action 3: Click on Link “link1“

page 2

html

body

div (id=“div2“)

input (id=“OK“)

div (id=“div1“)

a (id=“link2“)

div (id=“div1“)

Figure 4.12.: Example for the usability smell "High GUI Element Distance" (adapted
from [22]).

4. Automated Field Usability Evaluation Using Generated Task Trees 68

in our distance metric. The sum of these distances is 1.5. As this is the only instance of
Sequence 2, the resulting intensity of the smell RhighDist(Sequence 2) is 1.5

2 = 0.75.

4.5.2.4. Missing Feedback

We already published a similar description of this smell in [22].

Foundation and Justification For actions performed by users, a software must provide
feedback to indicate that the action instance is being or was processed [92, 93, 94, 8, 90].

Expected User Behavior If a software does not provide any feedback as reaction on an
action instance, or if the feedback is not recognized, users repeat the action one or more
times, as it seems to them, that the previous action instance is not processed. For example,
if users click on a download link of a website and nothing visible happens, they click the
link again.

Expected Occurrence in Generated Task Trees Repetitions of an action indicating
missing feedback are transformed into iterations of the action in the task trees. Not all
repeated actions indicate missing feedback. For example, while reading a longer text on the
screen, users may repeatedly scroll. Hence, in this smell we only consider repetitions of
clicks on buttons and links. In addition, users may accidentally repeat a click. For example,
they may perform a double click on a button, although a single click would be sufficient.
Furthermore, regarding download links on websites, users may click a download link sev-
eral times, each time for starting the download again. Usually, these repetitions occur after
some time has elapsed. Therefore, we only search for repetitions that occur in a specific
time frame. We consider repetitions in a time frame that is smaller than 1,000 millisec-
onds as accidental. Furthermore, we consider repetitions in a time frame that is larger than
15,000 milliseconds as intended.

Detection and Intensity For the detection of the smell, we filter the generated tasks for
iterations of clicks on buttons and links. For any iteration i matching this criterion, we con-
sider each instance i′ ∈ x(i). We determine the list of action instances a′(i′) = a′1 . . .a

′
|a′(i′)|

which represent i′. Of this list, we create sublists of a minimum length of two. In these
sublists, the time stamp difference ∆ts(a′i,a

′
j) between the first action instance in the sublist

a′i and the last action instance in the sublist a′j is 1,000≤ ∆ts(a′i,a
′
j)≤ 15,000. The sublists

may overlap in exactly one element. This means, that the last element of one sublist can
be the first element of the next sublist. The sublists are as long as possible, to determine a
maximum number of actions performed in a time frame smaller than 15,000 milliseconds.
The determined sublists do not necessarily cover all action instances in a′(i′). We do this

69 4.5. Usage and Task-Tree-Based Usability Evaluation

sublist determination to ensure to have representations of repeated action executions that
indicate a missing feedback.

For each of the determined sublists a′i . . .a
′
j, we calculate a measure for the missing feed-

back. The measure depends on the time ∆ts(a′i,a
′
j) between the first and the last action

instance in a sublist, as well as on the length of the sublist being j− i. The missing feed-
back for a sublist is calculated as ∆ts(a′i,a

′
j)× (j− i). Through this, the missing feedback

measure increases with the time, but also, the more often a user clicks. Thus, the less of-
ten the user sees any feedback, the more increases the missing feedback measure. For the
iteration instance i′, the resulting missing feedback measure is then the sum of the missing
feedback measures of the determined sublists, and it is calculated as follows:

RmissFeed(i′) = ∑
a′i...a

′
j∈a′(i′)

(
∆ts(a′i,a

′
j)× (j− i)

)
(4.5.5)

In this formula, a′i and a′j represent the first and the last elements of a determined sublist
of a′(i′). This sublist matches the above mentioned criteria, which also implies i < j. The
missing feedback measure for the iteration i, which is also the intensity of the smell, is then
the average missing feedback measure for all instances i′ ∈ x(i). It is calculated as follows:

RmissFeed(i) =
1
|x(i)| ∑

i′∈x(i)
RmissFeed(i′) (4.5.6)

Although the unit of RmissFeed(i) is milliseconds, it does not represent milliseconds. Instead,
it increases with the number of repeated action executions if they are done in the predefined
time range. The more often the action is repeated, the more increases RmissFeed(i). If there
are no repetitions of the respective action that fall in the time frame of 1 to 15 seconds,
RmissFeed(i) evaluates to 0ms. A value of 1000ms for RmissFeed(i) for an iteration i that has
10 instances indicates, that in half of the instances the corresponding action is typically
repeated once in a time frame of 2 seconds. RmissFeed(i) evaluates to the same result if in
only two of the instances of i, the corresponding action has been repeated twice in a time
frame of 5 seconds.

Possible Usability Critique Through the relationship to the action, the smell provides
detailed information about where the user might be missing feedback. The corresponding
iteration and its instances give detailed information about how the action was repeated and,
hence, gives the evaluator some room for interpretation. However, the smell cannot provide
guidance on how to solve the corresponding issue in details. Nevertheless, it can provide
respective ideas and possible patterns to be applied.

Example An example for a task with a high intensity of this smell is shown in Figure 4.13.
It shows three instances of an iteration of Action 1, which is a click on a button. In the first

4. Automated Field Usability Evaluation Using Generated Task Trees 70

instance, the action is performed twice, in the other instances only once. In the first instance,
the figure also shows the time stamps of the action instances. The time difference between
them is 4000ms−1000ms = 3000ms milliseconds. Therefore, RmissFeed(Iteration 1) evalu-
ates to 1

3(3000ms×1+0+0) = 1000ms.

Instance of Action 1: Click on Button “OK“
timestamp = 1000

Instance of Iteration 1

Instance of Action 1: Click on Button “OK“
timestamp = 4000

Instance of Action 1: Click on Button “OK“

Instance of Iteration 1

Instance of Action 1: Click on Button “OK“

Instance of Iteration 1

Figure 4.13.: Example for the usability smell "Missing Feedback" (adapted from [22]).

4.5.2.5. Required Input Method Change

Foundation and Justification When executing tasks, users should not be forced to con-
tinuously switch between input methods [90]. For example, when filling out a form, users
should not need to continuously switch between mouse and keyboard actions. Instead, the
form should support both, filling out the form only with the keyboard and only with the
mouse, so that the user has the choice. For text inputs, the second variant often cannot be
achieved. But for example, entering a date into a text field can be supported by both, text
input and mouse input, through a date chooser.

Expected User Behavior If required, users switch between input methods when execut-
ing a task.

Expected Occurrence in Generated Task Trees The detected tasks and their instances
show the order in which actions are executed. The actions themselves define the input
method used for performing them. Hence, based on the tasks and their instances, it can be
determined which input method changes users need to do to perform a task.

Detection and Intensity The detection of this smell focuses on sequences only. We first
determine for any instance s′ of a sequence s the list a′(s′) of action instances that were
performed. We then determine for any subsequent pair of action instances if they have a

71 4.5. Usage and Task-Tree-Based Usability Evaluation

distinct input method, e.g., if one is an instance of a mouse action and the other an in-
stance of a keyboard action. Then, we sum up the number of input method changes to
inputMethodChanges(s′) and divide it by the number of all possible input method changes
in s′, which is |a′(s′)|−1. Finally, we determine the average ratio of input method changes
for instances of sequence s, which is the intensity of the smell. For this, we sum up all input
method change ratios of the instances s′ ∈ x(s) and divide them by the number of instances
of s. The corresponding formula for the smell intensity is as follows:

RinputMethodChange(s) =
1
|x(s)| ∑

s′∈x(s)

inputMethodChanges(s′)
|a′(s′)|−1

(4.5.7)

RinputMethodChange(s) is the average ratio of input method changes required for two subse-
quent action instances in the instances of s. This ratio increases, the more input method
changes are performed. At most, it can be 1, i.e., 100%, if for any two subsequent action
instances an input method change is done. It is 0, i.e., 0%, if no input method change is
done.

Possible Usability Critique Through the reference to the task, the smell can provide de-
tailed information about action combinations that require input method changes. Through
the actions, it can also provide detailed information about the involved GUI elements. The
smell cannot provide detailed guidance on how to solve the corresponding usability issue.
But it can provide patterns, which can be applied to minimize input method changes.

Example An example for a task with a high intensity of this smell is shown in Figure 4.14.
It shows an instance of a sequence covering five action instances. The first, third, and fifth
action instances are mouse clicks, the second and fourth action instances are text inputs.
Between all action instances, a change between mouse and keyboard is required. This sums
up to four input method changes. Therefore, RinputMethodChange(Sequence 3) evaluates to
1
1(

4
5−1) = 1, being the highest possible intensity for this smell.

Instance of Action 1: Click on Text Field „username“

Instance of Sequence 3

Instance of Action 5: Click on Button “OK“

Instance of Action 2: Enter Text in Text Field „username“

Instance of Action 3: Click on Text Field „password“

Instance of Action 4: Enter Text in Text Field „password“

Figure 4.14.: Example for the usability smell "Required Input Method Change".

4. Automated Field Usability Evaluation Using Generated Task Trees 72

4.5.2.6. Missing User Guidance

Foundation and Justification Users require guidance when using a software [94]. If they
do not have guidance when, e.g., searching an information or filling out a form, they tend
to pogo sticking [95, 96], i.e., trying things and going back, or corrections when entering
data [82].

Expected User Behavior The less guidance users have, the more they try things out.
This means, they perform actions in a large number of different combinations instead of
only some common ones.

Expected Occurrence in Generated Task Trees The more common action combinations
users perform, and the more guidance they have, the less distinct tasks are generated. In
addition, most recorded action instances belong to instances of detected tasks.

Detection and Intensity For the detection of this smell, we consider all task instance
lists that are the result of the task detection. These lists contain instances of actions and
detected tasks. An instance of a detected task represents several action instances. Hence,
m elements in a task instance list represent n action instances, where m <= n. The more
action instances are covered by instances of detected tasks, the smaller is m and the larger is
the difference between m and n. The smaller m in comparison to n, the more common tasks
were performed by the users and the more guidance they had.

The goal of this smell is to determine an average number of m for any combinations
of n = 10 subsequently performed actions. This gives an impression of the average ratio
between m and n. For this, we define the multiset A10 which contains all combinations of
10 subsequently performed actions a10. It also contains as many duplicates of an a10

i as
often as it was performed by the users. We then map each a10

i ∈ A10 to its representation
in the task instance lists, as they resulted from the task detection. Duplicates of an a10

i are
mapped to different representations to ensure, that all different occurrences of the respective
action combination are covered. Then, for any a10

i ∈ A10, we determine m(a10
i), which is

the number of elements in the task instance lists that represent a10
i . We then determine the

average of m(a10
i) for any a10

i ∈ A10. The result is the intensity of the smell, whose formula
is as follows:

Rguidance =
1
|A10| ∑

a10
i ∈A10

m(a10
i) (4.5.8)

The value of Rguidance is higher, the more elements of a task instance list on average rep-
resent the execution of 10 subsequent actions. Its minimum value is 1 indicating that on
average, one element in a task instance list represents 10 subsequently executed actions. Its
maximum value is 10, meaning on average each executed action has its own representation

73 4.5. Usage and Task-Tree-Based Usability Evaluation

in the task instance lists resulting from the task detection. The more common tasks are exe-
cuted by users, the more action instances are covered by a single entry in the task instance
lists and, hence, the smaller Rguidance.

Possible Usability Critique The smell has no reference to an individual task and does,
therefore, not provide details on task level. However, it provides a summary information,
similar to the average number of errors performed by users. This helps an evaluator to get
an overall impression of the user guidance of a software. Hence, the software can be crit-
ically analyzed and improved in this respect. The smell can provide heuristics for possible
improvement, e.g., a hint to adapt the terminology of the software to the terminology known
by the users. It cannot provide details about where a heuristic is violated.

4.5.3. Detection of Usability Smells Based on Action Instances

In this section, we describe the usability smells which are solely detected based on recorded
action instances. These are

• Required Text Format,
• Text Input Repetitions,
• Text Input Ratio,
• Single Checking of Checkboxes,
• Misleading Click Cue,
• Required Text Field Focus,
• Good Defaults, and
• Unused GUI Elements.

4.5.3.1. Required Text Format

Foundation and Justification When entering text, users should not be forced to enter
specific text formats and they should be supported to ease the entering process [91, 97, 98,
90].

Expected User Behavior If required, users enter text into a text field in a specific format.
If the format is too complex or not understood, users will make errors and retype into the
text field, until the required format is matched.

Expected Occurrence in Recorded Action Instances The recorded action instances will
contain text entered into text fields. If a specific format is required, the text will usually
include special characters, e.g., dashes, slashes, colons, and dots, that make up the required
format.

4. Automated Field Usability Evaluation Using Generated Task Trees 74

Detection and Intensity The detection of this smell focuses on instances of text input
actions. It searches the recorded data for respective action instances and extracts the texts
that are entered into specific text fields. Then, for each text field, it determines the number
nnoLetterOrDigit of non-letter and non-digit characters that were entered into the text field in
all text input action instances. It relates this number to the number nall of all characters that
were entered into the text field. The result is the ratio between both numbers, which is the
following intensity of the smell:

RtextFormat =
nnoLetterOrDigit

nall
(4.5.9)

The value of RtextFormat is higher, the more special characters users enter into a specific text
field. It can become at most 1, i.e., 100%, indicating the only special characters are entered
into the text field. It is 0, i.e., 0% if only letters or digits are entered into the text field.

Possible Usability Critique The smell refers to a concrete text field. Hence, it can give
detailed information about into which text field many special characters are entered, usually.

Example An example for the detection of this smell are text fields, into which dates must
be entered. Dates typically follow a specific format. A date in the German notation, e.g., is
in the format 24.12.2015, where the first two digits are the day, followed by a dot, and two
digits for the month, followed by a dot, and four digits for the year. The special characters
here are the two dots. If a user enters a correct date into this text field, then on any entering
of the ten characters, two of them are no letter or digit. Hence, for such a text field, the
intensity of the smell is RtextFormat =

2
10 = 0.2. Thus, 20% of the entered characters are no

letters or digits.

4.5.3.2. Text Input Repetitions

Foundation and Justification When entering text, users should not be forced to enter the
same data several times or to remember data displayed in one view that needs to be entered
in another view [94, 90].

Expected User Behavior If required, users will reenter the same text in separate text
fields if the same text needs to be filled in.

Expected Occurrence in Recorded Action Instances The recorded action instances in-
clude text entered into text fields. If the same text is entered into distinct text fields in the
same user session, then the session includes several text input action instances, which were
performed on different text fields, but in which the same text was entered.

75 4.5. Usage and Task-Tree-Based Usability Evaluation

Detection and Intensity The detection of this smell analyses the entering of text into text
fields. For each text field, we first determine the number of all texts nallTexts entered in the
text field. Then, we determine for any other text field if there is a text, which was entered
into both text fields in the same user session. This results in the number nreenteredTexts of
all texts that were entered into both text fields in the same user session. We then set both
numbers into relation, resulting in the following ratio, which is the also the smell’s intensity:

RtextRepetitions =
nreenteredTexts

nallTexts
(4.5.10)

RtextRepetitions always refers to a pair of text fields. A value of 1 indicates that in 100% of the
usages of the first text field, the same text is entered into the second text field in the same
user session, as well. A value of 0 indicates, that never a text, which is entered into the first
text field, is also entered into the second text field in the same user session.

Possible Usability Critique As the smell refers to text field pairs, it can provide detailed
information about into which text fields usually the same text is entered. In addition, it
can inform about the repeated texts. The smell can only be detected if the entered text is
recorded or encrypted in a way, so that subsequent text comparisons are possible.

4.5.3.3. Text Input Ratio

Foundation and Justification When entering data, users should not be forced to enter
too much text into text fields [91, 90]. Instead, data should be entered via data type specific
GUI elements, e.g., date choosers for entering a date.

Expected User Behavior If required, and if not possible otherwise, users will enter data
by entering text into text fields.

Expected Occurrence in Recorded Action Instances The recorded action instances in-
clude text, which is entered into text fields and text areas, as well as the usage of other data
entry methods.

Detection and Intensity For the detection of this smell, we first count the number of
action instances ntextInput, which are text inputs into text field and text areas. Then, we set
this value in relation to all recorded action instances, which results in the following intensity
of the smell:

RtextInputRatio =
ntextInput

|A′|
(4.5.11)

4. Automated Field Usability Evaluation Using Generated Task Trees 76

RtextInputRatio varies between 0 and 1. 0 indicates no text inputs and 1 indicates that 100% of
the action instances were text inputs. Especially, for devices on which text inputs are hard
to perform, RtextInputRatio should strive for 0.

Possible Usability Critique The smell does not refer to a specific action or GUI element.
Hence, it only provides a general statistic about the usage of the system, as well as the
possibilities of the system for entering data.

4.5.3.4. Single Checking of Checkboxes

Foundation and Justification User interfaces should provide GUI elements for entering
data, that match the type of entered data. For example, a GUI should offer radio buttons
instead of check boxes if no multiple checking of options is useful or required [90].

Expected User Behavior If of a set of check boxes, always only one option is relevant
for users, then users check only one option any time the set of check boxes is displayed.

Expected Occurrence in Recorded Action Instances The recorded action instances
have a reference to the GUI elements on which they were observed. Through their child par-
ent relationship, GUI elements themselves refer to the view to which they belong. Hence,
we can determine viewActionInstances(A′,view), which is the lists of subsequent recorded
action instances that took place in the same view. If users always check only one of sev-
eral check boxes of a check box group during the displaying of a view, then all lists in
viewActionInstances(A′,view) contain a final checking of only one check box of a check
box group.

Detection and Intensity To detect this smell, we first determine groups of check boxes
that semantically belong together. Normally, a GUI model does not include directly, which
check boxes belong together. To cope with this, we apply a heuristic. In this heuristic,
we determine all check boxes referenced by action instances. Then, we group these check
boxes. For this, we determine a list of the paths to the check boxes through the GUI model.
These paths contain the parent elements of the check boxes and end with the check boxes
themselves. Then, we order the path list, so that those paths being most similar, i.e., that
contain as many as possible identical parent elements, lie next to each other in the list.
Afterwards, we search the list for adjacent paths that differ at most in three elements. Due
to the ordering of the list, the differences are in the last three elements, of which one are
the check boxes represented by the paths. The check boxes, which are represented by a
group of adjacent paths that differ in at most three elements, are then considered a check
box group.

77 4.5. Usage and Task-Tree-Based Usability Evaluation

After the group identification, we analyze each group. For each group, we de-
termine the view in the GUI to which the group belongs. Then, we determine
viewActionInstances(A′,view), which are all lists of the subsequent action instances
that were executed on this view. In each list in viewActionInstances(A′,view), we count for
each check box belonging to the group, how many value selections referring to the check
box are contained in the list. If this number is odd, we consider the check box as checked at
the end of the list. If the number is even, the check box is considered unchecked. Then, we
count the number of check boxes of the group that are checked at the end of the list. If this
number is one, we consider only one of the check boxes to be checked during the execution
of the list. As a list represents a usage of the respective view and, therefore, of the check
box group, we consider that in this usage of the group, only one of the check boxes was
checked. Finally, we count the number nsingleCheckboxChecked, which is the number of lists
in viewActionInstances(A′,view), in which only one of the check boxes belonging to the
group is considered checked at the end of the list. Based on this, we calculate the following
ratio, being also the intensity of the smell:

RsingleCheckboxChecked =
nsingleCheckboxChecked

|viewActionInstances(A′,view)|
(4.5.12)

RsingleCheckboxChecked focuses on a specific check box group and ranges between 0 and 1. It is
0 if the users never checked only one of the check boxes of the group when it was displayed.
RsingleCheckboxChecked is 1 if during 100% of times the check box group was displayed to the
users, exactly one check box stayed checked at the end.

Possible Usability Critique Due to the direct relation to a check box group, this smell can
provide concrete information, where the smell was observed. Currently, the smell does not
consider check boxes already checked when a group is displayed. Hence, when analyzing
the result, check boxes checked per default must be considered.

4.5.3.5. Misleading Click Cue

Foundation and Justification Users should be able to use a system with high efficiency.
For this, they need to know which elements are helpful for fulfilling a task and which are
not [94]. Typical actions that do not support the completion of a task are clicks on unclick-
able elements [8], e.g., pure text. In general, the visual design of a software should not
mislead a user when fulfilling a task by including unclickable elements that look click-
able [90].

Expected User Behavior If first-time users consider something clickable, they click on
it if they think a click will give an advancement in fulfilling their tasks. Experienced users
will not perform these clicks.

4. Automated Field Usability Evaluation Using Generated Task Trees 78

Expected Occurrence in Recorded Action Instances The recorded action instances will
include instances of actions, which are clicks on unclickable elements like pure text or
images without click handler.

Detection and Intensity For detecting this smell, we search the recorded data for in-
stances of actions, in which unclickable GUI elements are clicked. As unclickable GUI
element, we consider texts and images, as long as they are not children of a clickable
GUI element. For each unclickable GUI element, we determine the number of times
nelementDisplayCount the unclickable GUI element was displayed to the user. In addition, we
count the number nineffectiveClicks of performed clicks on the unclickable GUI element. Fi-
nally, we calculate the ratio between the two values, which is also the intensity of the smell:

RmisleadingClickCue =
nineffectiveClicks

nelementDisplayCount
(4.5.13)

The intensity RmisleadingClickCue refers to a specific unclickable GUI element. It is 0 if the
users never clicked an unclickable GUI element. It is 1, i.e., 100%, if, on average, the users
tried to click an unclickable GUI element on every of its displays. The intensity can exceed
100% if, on average, there are more clicks on the unclickable GUI element than the number
of times the element was displayed.

Possible Usability Critique Due to the reference to the unclickable GUI element, the
smell can provide detailed information about which GUI element causes the smell and
where it is located. It can further provide details on how often the element was clicked.

4.5.3.6. Required Text Field Focus

Foundation and Justification When opening a form, the first text field to be filled out
should have the keyboard focus [91, 90]. This prevents users from performing the unneces-
sary action of changing the focus, e.g., through clicking into the text field.

Expected User Behavior If required, users will change the keyboard focus as their first
action when a view is opened. Usually, this will be done through a mouse click.

Expected Occurrence in Recorded Action Instances The recorded action instances re-
fer to the GUI element, on which they were observed. Through this, they also refer to the
view, on which they were performed. Hence, the recorded action instances can be sub-
divided into the lists viewActionInstances(A′,view), each representing subsequent action
instances that occurred in a specific view. The first action instance in such a list is then
usually a click on the first text field, into which the users enter some data.

79 4.5. Usage and Task-Tree-Based Usability Evaluation

Detection and Intensity For the detection of this smell, we first determine all views.
Then, for each view, we determine the actions a1 . . .an that were performed first when open-
ing the view. This is done by calculating viewActionInstances(A′,view) and determining the
actions whose instances are the first elements in all lists in viewActionInstances(A′,view).
For each ai ∈ a1 . . .an, we determine firstInView(ai), which defines how often the action was
executed first in the view. We ignore scrolling actions, as scrolling has no semantic mean-
ing. This means, if scrolling was the first action when a view was opened, then we consider
the second action instance as the first. Afterwards, we check if all firstInView(ai) for each
ai ∈ a1 . . .an follow an equal distribution. We check this by performing a chi-square test
on all firstInView(ai), which compares their distribution with an equal distribution. We use
a confidence level of 95% for this check. If this test observes, that the firstInView(ai) are
not equally distributed, we determine the ai ∈ a1 . . .an that was executed most often. If this
action is a mouse click on a text field, we take firstInView(ai) and relate it to the number
|viewActionInstances(A′,view)| of all displays of the view to the users. As a result, we get
the following ratio being also the intensity of the smell:

RreqTextFieldFocus =
firstInView(ai)

|viewActionInstances(A′,view)|
(4.5.14)

The smells intensity varies between 0 and 1. It is 0 if an action was never the first to be
executed in a view. It is 1, i.e., 100% if the action, for which the smell was detected, was
always the first when the view was displayed.

Possible Usability Critique The smell refers to a view and a specific action, which is a
click on a text field. Hence, it provides detailed information about the view of a software for
which the smell was detected. Furthermore, it can inform about which text field is typically
the one to be filled out first by the users.

Example Consider a view that was opened by users ten times. Once, the first action in the
view was a click on a specific button. In the other nine times, the first action was a click on
a specific text field. The smell detection will calculate the following intensity for the smell:
RreqTextFieldFocus =

9
10 , i.e., in 90% of all displays of the view, the first thing users did was

setting the focus to the respective text field.

4.5.3.7. Good Defaults

Foundation and Justification When entering data, forms should be prefilled with default
values where applicable [82, 83, 90]. These default values can be derived from statistics
about entered data or from knowledge about the users. The defaults should match the data
that most users are likely to enter.

4. Automated Field Usability Evaluation Using Generated Task Trees 80

Expected User Behavior If no default values are provided or if the default values do not
match user requirements, then users will enter or change values in the corresponding GUI
element if this is required. This means, any time the GUI element is displayed to a user,
the user will change the value of the GUI element to something different from the default
value. If the default value is already useful for the users, they will not change it.

Expected Occurrence in Recorded Action Instances The recorded action in-
stances reference the GUI element, on which they were observed. Through this, they
also refer to the view, on which they were performed. Hence, we can determine
viewActionInstances(A′,view) being all lists of subsequent action instances that were
performed in a specific view. If the value of a GUI element in a specific view is changed
anytime it is displayed to a user, then each list in viewActionInstances(A′,view) contains a
value change on this GUI element. Otherwise, the default value is used.

Detection and Intensity For the detection of this smell, we first determine all GUI el-
ements and their corresponding view, that can be used to enter data. These are all GUI
elements, into which a text input took place or on which a value choosing was performed.
For each such GUI element, we determine viewActionInstances(A′,view) for the view to
which the GUI element belongs. Then, for each list in viewActionInstances(A′,view), we
determine the value that is chosen at the end of the list. If there is no value choosing in
a specific list, we assume that the default value was chosen by the user. Through this, we
determine all values chosen by the users on a specific GUI element, as well as the number
nvalueChosen of their choosing. Afterwards, we perform a chi-square test with a confidence
level of 95% to check, whether the values are equally often chosen. If the values are not
equally distributed, then we check which of the values is most often chosen. If this value is
not the default value, we consider the smell present. The intensity of the smell is calculated
by setting the nvalueChosen of the value chosen most often into relation to the number of times
the corresponding view was displayed. The resulting intensity is the following:

RbadDefault =
nvalueChosen

|viewActionInstances(A′,view)|
(4.5.15)

The smell’s intensity varies between 0 and 1. It is 1, i.e., 100%, if a concrete value is always
chosen by the users. The intensity cannot become 0. This is because it is specific to a
concrete value and its calculation depends on the number of times this value was chosen.
But, to be considered, a value is chosen at least once, which results in an intensity greater 0.

Possible Usability Critique Due to the relation to a specific GUI element, the smell can
provide detailed information about where a default value should be set. In addition, it can
provide potential good defaults, as it determines the values that are typically chosen by the
users.

81 4.5. Usage and Task-Tree-Based Usability Evaluation

4.5.3.8. Unused GUI Elements

Foundation and Justification GUIs should not be crowded with too many elements that
are not required by the user [94, 90]. If specific interaction elements are not used, this is an
indicator that they are not required [45] and that they can be removed.

Expected User Behavior If a specific interaction element is not required, users will not
use it or will use it only seldom.

Expected Occurrence in Recorded Action Instances When recording action instances,
we record also the GUI model for a software. Unused GUI elements will show up in the
GUI model, but will not be referenced by any action instance.

Detection and Intensity To detect this smell, we first determine all views utilized by
users. Then, for each view, we determine the list of interaction elements belonging to the
view. From this list, we remove all those interaction elements that are referenced by at least
one action instance. If there remain unused interaction elements, we consider the smell
present for the considered view. The intensity of the smell is then the ratio of unused to all
interaction elements in the view:

RunusedGUIElements =
nunused

nall
(4.5.16)

The smells intensity varies between 0 and 1. It is 0 if there is no unused interaction element
in the view. It is 1 if 100% of the interaction elements in the view are never used.

Possible Usability Critique As the smell has a relation to a specific view and also to
the unused GUI elements, it can provide detailed information about where the smell was
observed and which GUI elements are not required.

5. Implementation

For evaluating our approach for task tree generation and usability smell detection, we per-
formed several case studies. In this chapter, we introduce the technical setup used in these
case studies, which mainly consists of the tool suite for Automated Quality Engineering
of Event-driven SofTware (AutoQUEST) [99]. The AutoQUEST environment supports the
recording of events for different platforms and provides a generic infrastructure for process-
ing them. Based on this, it is possible to generate usage profiles and usage-based test cases.
In the following section, we describe how we utilized and extended AutoQUEST for our
case studies. This covers the recording of action instances, the post-processing of events,
the harmonization of GUI models, the generation of task trees, their transformation into
other standards, and, finally, the derivations of grammatical structures from task trees for
generating parsers for the language spoken between users and the software.

5.1. Recording of Action Instances

AutoQUEST provides functionalities for recording events, which are caused by action in-
stances on different platforms [100]. This covers websites based on HTML and JavaScript,
Java software using Swing and AWT for their GUIs, as well as software based on Microsoft
Foundation Classes (MFC). For our case studies, we utilized the recording for websites and
Java applications.

For recording website usage, AutoQUEST provides a monitoring server application
with an Hypertext Transfer Protocol (HTTP) interface. Via this interface, it publishes a
JavaScript. If a website shall be monitored, this script must be integrated into any page of
the website, which nowadays can typically be configured in the CMS of a website. When a
page is loaded by a web browser, the script registers with the event handling mechanism of
JavaScript. It then handles any event caused by action instances and sends it to the monitor-
ing server. Events are bundled to groups of ten events to prevent too many requests on the
monitoring server. Furthermore, events are sent to the monitoring server if a timeout occurs
or a user leaves a page. The monitoring server then stores the events in an XML format as
files on the hard disk. An excerpt of an example log file for a login process on a website
is shown in the following listing. It contains five recorded events. The first is the click on
the user name field, which has the id id1 as referred to by the target parameter. The second
event is the pressing of the tabulator key to navigate to the password field. Afterwards fol-
lows the event indicating a change of the user name field to a new value. The fourth event is

5. Implementation 84

the changing of the password, which is then followed by a click on the login button. Each
event has a time stamp as well as additional, event-specific information, e.g., coordinates of
mouse clicks. The ids of the referred targets are not the DOM ids in a website but refer to
detailed target information, which is also available in the log file.

1 <event type="onclick">
2 <param name="timestamp" value="1404373276075"/>
3 <param name="target" value="id1"/>
4 <param name="Y" value="13"/>
5 <param name="X" value="182"/>
6 </event>
7 <event type="onkeydown">
8 <param name="timestamp" value="1404373278106"/>
9 <param name="target" value="id2"/>

10 <param name="key" value="9"/>
11 </event>
12 <event type="onchange">
13 <param name="timestamp" value="1404373278111"/>
14 <param name="target" value="id1"/>
15 <param name="selectedValue" value="..."/>
16 </event>
17 <event type="onchange">
18 <param name="timestamp" value="1404373280294"/>
19 <param name="target" value="id3"/>
20 </event>
21 <event type="onclick">
22 <param name="timestamp" value="1404373280332"/>
23 <param name="target" value="id4"/>
24 <param name="Y" value="20"/>
25 <param name="X" value="26"/>
26 </event>

Listing 5.1: Excerpt of an AutoQUEST log file for website events.

The recording of events on websites can be as detailed as to contain confidential data.
For example, in the above listing, the event for changing the user name field can contain
a concrete user name. To prevent this, a website can be annotated using Cascading Style
Sheets (CSS) classes on text fields, which indicate, that value changes on these text fields
shall be recorded, but that the concrete values shall be omitted. As a result, the JavaScript
does not record the values. An example of an event without recorded value is the changing
of the contents of the password field in the above listing.

When the monitoring server receives recorded events, it needs to identify the client, of
which the events were recorded. To allow this, the JavaScript determines an id for a client
based on information about the used browser type, its version, and other information re-
trievable via JavaScript. This id is sent together with the events to the monitoring server,
which stores the events into distinct log files, each belonging to a specific client id. Log
files are closed after a timeout of 10 minutes if no user activity occurs. If the client with
a specific id becomes active after the log file has been closed, a new log file is started to
store the new events. Therefore, we record for any user session a separate log file without
identifying the concrete user.

85 5.2. Post-Processing of Events

For monitoring Java Swing/AWT applications, AutoQUEST provides a library, that is
used as a wrapper when starting the application to be monitored. This wrapper registers
with the event chain of the GUI and, through this, records both, the GUI structure as well
as the events caused by action instances. On each program start, the wrapper starts a new
log file, which is closed when the program shuts down. There is no timeout that can elapse.
Hence, also this monitor stores one log file per user session, whereas in this scenario, the
user sessions can be much longer. The content of the log files is similar to the listing of the
website monitor shown above and, hence, not described in more detail here.

For processing the log files, AutoQUEST provides tools that allow parsing the log files
and applying different commands on the contained events. During this parsing, the platform
specific events stored in the log file are mapped to the common event meta model described
in Section 4.2. The same is done for the platform specific GUI structures. For example,
a javax.swing.JButton from the Java Swing platform is mapped to a generic button repre-
sentation in AutoQUEST. As a result, the recorded user sessions are represented as lists of
generic events in the AutoQUEST transient memory. On these lists, we apply commands
provided by AutoQUEST or added to AutoQUEST in the context of this thesis.

5.2. Post-Processing of Events

Although being transformed into a generic representation, events in AutoQUEST still have
platform specific characteristics. For example, one difference between website and Java
Swing/AWT based events is the level of detail. On Java Swing/AWT we record multiple
key stroke events, whereas on websites we record one text change when a text is entered
into a text field. Furthermore, events can have platform specific issues and misorderings that
need to be corrected after having been parsed into AutoQUEST. Therefore, we implemented
several AutoQUEST commands to overcome platform specific characteristics and problems
as well as to harmonize event streams. Through this, we ensure, that after the application
of these commands, each remaining event represents exactly one action instance. As the
focus of this thesis is the processing of action instances and not of events, the details about
the AutoQUEST commands for event post-processing and their effects can be found in
Annex A. There, we also list, which commands were applied in the different case studies.

5.3. Harmonization of GUI models

A challenge, when working with GUI models, is the identification of the same GUI element
in distinct log files. The reason is, that at runtime, there is no id for a GUI element, which is
the same via many starts of the same software. For example, a specific button in a Java GUI
has an id which may be different at the next start of the application. An exception are ids
of HTML tags in DOMs of websites. If the CMS assigns such an id, it can be preserved via
different user sessions or server restarts. But such ids are not always provided, which results

5. Implementation 86

in the same challenge as for desktop GUIs. To cope with this issue in the data of our case
studies, we implemented both, an identification of the same GUI elements in different log
files of the same software as well as a subsequent assignment of ids to HTML tags in DOMs
of websites. For the first part, we use the path of a GUI element through the GUI model as
identifying information, which helps us to create a GUI model as described in Section 4.3.
The second part is done with an extension of the parsing process when loading log files of
websites into AutoQUEST. Details for this process and its application in the case studies
can be found in Annex B as this is not the focus of this thesis.

Websites and GUIs of desktop software significantly differ in their technical structure.
For example, where a desktop software has one menu, a website normally has duplicates
of a menu on each of its pages. For the user, these duplicates seem to be a single menu
although technically they are not. This also means, that actions on the semantically same
menu element on two different pages of a website are distinct. We call GUI elements,
which are duplicated to many pages of a website common page elements [21]. To detect
common page elements, and to consider them as equal, we extended AutoQUEST with
a further command. This command works by checking the DOM paths of GUI elements
on different pages. If the command finds paths on different pages, which are identical
considering only DOM elements, it considers the respective GUI elements as common page
elements. Through this, the targets referred to by the events parsed into AutoQUEST refer
to one common page element, instead of referring to many duplicates. Hence, the events and
the action instances they represent are also considered equal after the command is applied.

5.4. Generation of Task Trees

A challenge for the implementation was the detection of n-grams in task instance lists for
performing the sequence detection described in Section 4.4.2. The reason is, that for large
amounts of input data, many different n-grams exist, that may occur at many distinct po-
sitions in the task instance lists. To handle this, we applied a dedicated data structure and
feature of AutoQUEST. The corresponding details are described in Annex C.

For the verification of our approach, we required visual representations of the gener-
ated task trees. One visualization comes with AutoQUEST and will be used in the case
study descriptions. A further visualization used in the context of this thesis is based on
ConcurTaskTrees (see Section 3). We implemented a transformation of our task trees to
ConcurTaskTrees, which we describe in detail in Annex D.

5.5. Verification of the Task Tree Representativeness

The task trees generated by our approach need to be representative for the user behavior in
general and not only for the recorded users. Otherwise, results of subsequent analyses using
the generated task trees, such as our usability smell detection, cannot be generalized for

87 5.5. Verification of the Task Tree Representativeness

unrecorded users. To validate the representativeness of the generated task trees, we perform
several analyses in our case studies. In these analyses, we first generate task trees for one
subset of recorded action instances of a website. Then we check if these tasks trees also
describe action combinations in another subset of data recorded for the same website. To
do this check, we implemented a verification approach that utilizes the grammatical nature
of task trees when considering the "language spoken" between the user and the system (see
Section 3.4). In this verification approach, we

1. transform a task tree generated on the first data set into a grammar of the language
spoken by the user,

2. generate a parser based on the grammar, and

3. check for any n-gram of action instances in the second data set if the parser accepts
the n-gram as a sentence of the parsed language.

Through this, we can determine how many action combinations of the second data set
are executions of the task trees generated on the first data set. The higher the number of
such action combinations, the more representative are the task trees. Below, we describe
the transformation of a task tree into a grammar and how we generate and apply a parser
based on them.

A task tree is already similar to a grammar. Therefore, it is possible to perform a trans-
formation of a task tree into a grammar based on transformation rules. In our approach, the
transformation rules are the following:

• The leaf nodes of the task tree become the terminal symbols in the grammar.
• The sequences, iterations, and selections of the task tree become non-terminals in the

grammar.
• For an iteration i with child c, we generate two production rules of the form i→ i c

and i→ c.
• For a selection z with children c1 . . .cn, we create n production rules of the form

z→ ci.
• For a sequence s with children c1 . . .cn, we create one production rule of the form

s→ c1 . . .cn.
• For a sequence s with children c1 . . .ci . . .cn where ci can be optional, we generate a

further production rule s→ c1 . . .c(i−1)c(i+1) . . .cn.

Through the last transformation rule, we ensure that also optionals are handled. An op-
tional is not necessarily a direct child of a sequence s. Instead, it can be a child of a selection
z, which itself is a child of s. Hence, in the last rule we do not check if the direct child of
s is an optional, but if the child can be left out. A child can be left out, if a grandchild or

5. Implementation 88

a great-grandchild is an optional and there is no intermediate other sequence in the path
from s to this optional. If a sequence has multiple optional children, then we create as many
production rules as there are permutations for leaving out the optional children.

An example of a task tree resulting from our task tree generation is shown in Fig-
ure 5.1a. Its corresponding grammar is shown in Figure 5.1b. The terminal symbols and
non-terminals in the grammar are represented and named the same way as the nodes in the
task tree. The production rules for the same non-terminal are grouped together to better
visualize, how many production rules are generated for a specific task. For example, for
Sequence 1, two production rules are generated, as its second child can be left out.

Based on a grammar, we generate a parser for the corresponding task. A parser reads
a given input and decides if the input is a valid sentence of the language that is defined
by its grammar [101]. In our implementation, we use a simple LR parser (SLR) as its
implementation is relatively simple [101]. The concrete implementation of such a parser is
not important for this thesis and, hence, not described in this chapter. Please refer to the
book of Aho et al. [101] for further details.

Using the parser generated for a specific task t, we check if a list of action instances
contains an execution of t. For this, we first subdivide the list of action instances a′1 . . .a

′
n

into all permutations of possible n-grams a′i . . .a
′
j | 1 ≤ i < j ≤ n of a minimum length of

two. Then, we provide the parser with each of these n-grams and check if the parser returns
an accept of the n-gram as a valid input. If we find a valid n-gram, we consider it as an
execution of t. We call the action instances belonging to such an n-gram matches.

a) Example task tree:

Iteration 1

Sequence 2

a

d

b

Selection 1

c

Sequence 1

Optional 1

e

f

Sequence 1 Iteration 1 e f

Sequence 1 Iteration 1 f

Iteration 1 Iteration 1 Sequence 2

Iteration 1 Sequence 2

Sequence 2 a Selection 1 d

Selection 1 b

cSelection 1

b) Corresponding grammar:

Figure 5.1.: Example of a grammar transformed from a task tree generated by our approach.

89 5.5. Verification of the Task Tree Representativeness

For specific valid grammar constructs, it is not possible to generate an SLR parser. This
is the downside that comes with the nature of these parsers [101]. Consider for example the
following grammar:

A→ BC

B→ BD

B→ D

D→ ab

C→ ac

(5.5.1)

When reading an input, an SLR parser only considers the next symbol it reads. For the
input abac, which is a valid input for the above grammar, the parser will parse over ab. For
the next symbol in the input being a, the parser cannot decide if this is the first symbol of the
symbol combination ab represented by the non-terminal D or of the symbol combination ac
represented by the non-terminal C. But considering the grammar, both subsequent symbol
combinations are valid. The parser could only decide this if it would consider one further
symbol of the input, which is not done by SLR parsers.

The transformation of a task tree into a grammar may generate a grammar of the above
or similar structures, for which no SLR parser can be generated. For example, in the above
grammar, the non-terminal A can represent a sequence having the iteration B of sequence
D as well as the sequence C as its children. In our case studies, we will show how often
we cannot generate a parser for a task tree and, hence, how often we cannot check for the
corresponding task if it is executed in a specific list of action instances. But, this is not a big
disadvantage, as we generate parsers also for the children of a task. Hence, for the above
example, we would have parsers for the sequences D and C. These parsers can also be used
to identify executions of D and C, although the execution of A is not recognized.

6. Case Studies

In the context of this thesis, we performed three case studies to validate our approach and to
answer our research questions. We describe these case studies in the upcoming sections. We
start by introducing the commonalities between the case studies. Afterwards, we dedicate a
respective section for each case study. In each of these sections, we provide a description
as well as the results of the task tree generation and the usability evaluation. We finalize
the chapter with a brief summary of additional experiments performed in the context of this
thesis.

6.1. Case Study Setup

All case studies have a similar basic setup. With the different steps of this setup, we focused
on answering our research questions, which we stated in the introduction of this thesis (see
Section 1.2). We always started by recording users of a specific software. Then, we post-
processed the recorded data as required, depending on the platform of the recorded software
and other case-study-specific aspects. Through this, we filtered the recorded data for events
representing only action instances. Afterwards, we compiled a GUI model and generated
task trees, using the remaining action instances as input. With these initial steps, we an-
swer the research questions RQ 1, RQ 1.1, and RQ 1.4. In two of the three case studies, we
validated the representativeness of the task trees for recorded user behavior, which focuses
on, and contributes to, answering the research questions RQ 1.2, RQ 1.3, and RQ 1.4. After-
wards, in all three case studies, we applied our detection of usability smells and analyzed the
validity of the findings. This also includes a check if we detected different usability smells
in merged and unmerged task trees. With these steps, we aimed at answering the research
questions RQ 2, RQ 2.1, RQ 2.3, and RQ 2.3. Furthermore, we compared the findings with
results of the application of established usability evaluation methods, which intended to an-
swer the last research question RQ 2.4. The details for all steps which are common to the
different case studies are described in the following.

6.1.1. Data Post-Processing and Task Tree Generation

In our case studies, we had to consider software-specific aspects. For example, events were
not in their correct order or did not represent action instances. Hence, we performed the
event post-processing as detailed in Annex A. Through this, the number of events recorded
in a case study may have decreased, as some events were discarded. In addition, some

6. Case Studies 92

sessions did not contain any event anymore. Therefore, we dropped these sessions. We list
resulting number of sessions and events in the case study details.

The recorded websites only seldom provide ids for DOM elements. Hence, we performed
a subsequent adding of these ids as described in Annex B. Corresponding to Section 4.4.2.3
and 4.4.3.2, the task tree generation and merging may fail. If we observed these problems in
our case studies, we provide respective data in the detailed descriptions of the case studies.

6.1.2. Merging of Most Prominent Sequences

When merging sequences during the task tree generation, we did not perform a merge for
all sequences detected in a case study. One reason for this is the large number of required
sequence comparisons. In addition, the initial sequence and iteration detection finds all
sequences that occur at least twice. It may also detect sequences, that cover only a few
recorded action instances and which are, thus, less representative for the actual user be-
havior. Hence, we merged only a subset of the detected sequences that cover most of the
recorded action instances. We call these sequences most prominent [23]. We consider all
other detected sequences to represent noise in the data. We define the ratio of most promi-
nent sequences to be 20% of all detected sequence. In our case studies, we show that
this value is a good estimator for separating representative sequences from the others. In
addition, we show that most prominent sequences also cover most of the recorded action
instances and are, therefore, most representative for the user behavior.

As described in our previous work [23], when creating a subset of all sequences, as
required for the most prominent sequences, a concrete percentage, e.g., 20%, can not be
reached exactly. The reason is, that there may be multiple sequences with the same amount
of covered action instances. Hence, also several combinations of sequences can be chosen
to select a specific percentage, e.g., 20%, of sequences that cover most and also the same
number of action instances. Therefore, we determine the most prominent sequences using
the following process. We start by creating a sorted list of disjunctive sets of sequences
S1 . . .Sn. Each set contains all sequences that cover the same amount of action instances,
i.e., ∀si,s j ∈ Si : |a′(si)| = |a′(s j)|. The sorting order of S1 . . .Sn is given by the number of
action instances that are covered by a sequence belonging to a set. This means, if Si contains
a sequence s1, S j contains a sequence s2, and |a′(s1)| > |a′(s2)|, then Si precedes S j in
S1 . . .Sn. After this initial sorting, we determine the most prominent sequences. We start by
analyzing S1. If it contains less than 20% of all sequences, we join it with the next sequence
set in the list being S2. If the result still contains less than 20% of all sequences, we continue
the joining with the respective next set in S1 . . .Sn, until the result of the join contains at
least 20% of all sequences. In the end, the join result contains the most prominent of all
detected sequences. Through this approach, the most prominent sequences will usually be
a little more than 20%. In the case studies, we will provide information about how many
sequences are most prominent and how many of the recorded action instances they cover.

93 6.1. Case Study Setup

When merging the most prominent sequences, we use a value of 75% for the minimal
similarity level simmin. This means, that at most one in four elements of L(t1) and L(t2) are
different.

6.1.3. Verification of the Task Tree Representativeness

In two case studies, we performed a validation of the representativeness of the task trees.
For this, we randomly subdivide a data set A′, which contains the post-processed action
instances of a case study, into multiple subsets A′1 . . .A

′
n ⊂ A′ of almost equal size (i.e.,

|A′1| ≈ |A′2| ≈ · · · ≈ |A′n−1| ≈ |A′n|). Then, we generate task trees for one of the subsets
A′i ∈ A′1 . . .A

′
n, transform the detected sequences into grammars (see Section 5.5), generate

parser for theses grammars, and check in the other subsets A′j ∈ A′1 . . .A
′
n | A′j 6= A′i how

many subsequent action instances can be parsed with the parsers, i.e., how many matches
these parsers have. Afterwards, we also check the amount of matches of the parsers in the
full dataset A′. We only transform tasks of type sequence into grammars. The reason is that
iterations, optionals, and selections are only variants of detected sequences, but sequences
define the main structuring of a task.

In the case studies, we perform this validation with different subset sizes. These sizes
depend on the size of A′. In addition, the number of subsets per size depends on the subset
size and if the subsets are disjunctive to each other or not. The generated subsets are listed
in Table 6.1. The first column is the subset size in % of |A′|. The second column contains
the number of subsets created for the corresponding size, while the third column defines if
the subsets are disjunctive.

Subsets are created based on user sessions as done in [23]. Through this, we ensure, that
we do not split a data set in the middle of a user session or a task execution. The downside is,
that user sessions have a certain size, i.e., number of action instances, and it may, therefore,

Subset statistics Parsing attempts in
Number Disjunctive Subsets of same size Respective full data set

1% 50 true 20 20
2.5% 30 true 20 20

5% 20 true 15 15
10% 10 true 15 10
20% 5 true 15 5
30% 9 false 15 5
40% 6 false 15 5
50% 6 false 15 5

Table 6.1.: Sizes, numbers, and numbers of comparisons of subsets, which are created in
the case studies for evaluating the task tree representativeness.

6. Case Studies 94

not be possible to exactly achieve an intended subset size, especially if subsets shall be
disjunctive. In addition, it is not possible to consider all possible permutations of creating
the subsets, as there are too many. Therefore, we created only one sample of possible
session combinations to form subsets.

During the subset creation, the random assignment of sessions to a subset may result in
the assignment of a session with many action instances to a subset that already has almost
its intended size. Through this, a subset could exceed its intended size extensively. In such
a case, we do not assign the randomly chosen session to the subset. Instead, we randomly
search for another session that contains fewer action instances and still fits into the subset,
so that the intended subset size is not exceeded. Through this, we ensure, that the subsets
are of approximately the intended size. In the case studies, we will provide details on the
number of action instances belonging to a subset on average.

After this preparation, we use the grammars to parse the action instances of subsets of
the same size as well as of the respective full data set. The number of parsing attempts
depends on the subset sizes and the number of subsets of the same size. Moreover, the task
tree generation may fail for some subsets of a specific size and therefore, these subsets can
not be used. Hence, we perform less parsing attempts than would be possible, considering
the number of generated subsets and all permutations of their possible combinations. The
concrete number of parsing attempts performed in our case studies is listed in the fourth and
fifth column of Table 6.1.

For some subset sizes, we create rather few subsets to create them as disjunctive as possi-
ble. Nevertheless, they may all be needed to perform the verification against the respective
full data set. For example, for the subsets of size 20%, all five subsets are used to parse
the full data set. If for one of the subsets the task tree generation fails, then there are not
sufficient subsets for a representative verification. In such a case, we performed a recreation
of the subsets in the case studies, until for sufficient subsets of the respective size the task
tree generation was successful. In the case studies, we mention the amount of times these
recreations were required.

6.1.4. Usability Evaluation Analysis

In all three case studies, we applied our approach for usability smell detection on the full
data sets. Regarding the task trees, we performed the analysis on both, the task trees before
and after the merge. The reason is, that the task merging process has a high complexity
and requires corresponding runtime. Therefore, we evaluate, if the usability smell detection
provides better results on merged than on unmerged task trees, or if the task merging can
be skipped. The distinction between unmerged and merged task trees is not required for the
usability smells that are based on action instances. We provide the number of findings for
the different smell types in the details of each case study.

A usability smell referring to a task may be detected for a task and also for one of its
direct or indirect child tasks. This is because smells are detected on all tasks resulting from

95 6.1. Case Study Setup

the task tree generation. We call these findings duplicates. We indicate in the case studies,
how many of the findings for a specific smell type are duplicates.

After the usability smell detection, we performed a manual inspection of the findings to
determine if they are true positives or not. For this, we analyzed the findings and checked,
if the corresponding usability issues are present in the analyzed GUI. In the case studies,
the number of findings for a smell can be very large. This makes a full manual inspection
of all findings infeasible. Hence, we performed a preselection of the findings which we
considered for manual inspection. In this preselection, we chose only those 30 findings
of a specific smell type and data set, that covered the highest number of recorded action
instances. If there were less than 30 findings per smell type and data set, we inspected all of
them. If applicable, we mention in the case studies, how many of the preselected findings
are duplicates.

In the case studies, we list for each usability smell, to which task group the corresponding
findings belong. These task groups are logical groupings, i.e., a task group represents a set
of tasks with a similar semantic, e.g., tasks representing a login process. If applicable, we
provide distinct number for findings on unmerged and merged task trees for the task groups.
Furthermore, we provide details on how many of the findings for a smell and a task group
we consider true positives. If the findings for a smell in a case study belong to more than
three task groups, we list the true positive findings in a corresponding table. Otherwise, we
do a plain text description.

The smell descriptions do not include thresholds for the intensities of findings, which
should be exceeded to consider a finding as true positive. One goal of our case studies, is to
identify such thresholds. Therefore, we also analyze the intensities of the findings for the
different usability smells and name values or value ranges that the intensities of true and
false positive findings have.

In all case studies, we also compare the findings of our approach with the results of a user-
oriented usability evaluation. For each case study, we describe the setup of this evaluation
and mention the most important outcomes. Then, we compare how many usability issues
found in the user-oriented usability evaluation were also identified, or at least indicated, by
the findings for the usability smells. The number of test participants in these evaluations is
in all three case studies large enough to get representative results (see Section 2.3).

6.1.5. Reasons for the Case Study Selection

In this thesis, we performed three case studies. All case studies serve different purposes
when considering the validation of our approach. The first case study is a website where
users mainly enter data. In contrast, the website of the second case study presents informa-
tion to users. Finally, the third case study is a Java application with a combination of data
input and presentation. Through this case study combination, we can validate our approach
for different types of software (providing or consuming data) as well as for two separate
platforms and interaction concepts (website and desktop application).

6. Case Studies 96

The website of the first case study is subdivided into two main subportals. One of them
is a walk-up-and-use interface, which needs to be easy to use for first- and short-time users.
In contrast, the other subportal is an expert system. Hence, the first case study covers these
two different types of interfaces, which usually have different user requirements regarding
learnability and efficiency. Furthermore, the first subportal is set up as a wizard, which
also allows the evaluation of this kind of interface pattern. The second and third case study
are software for medium regular use. For these software, users may recall elements of the
interface, and their usage, during future usage sessions, but also need to explore some new
parts on any use of the software.

6.2. Case Study 1: Master Application Portal

In the first case study of this thesis, we used our approach for analyzing an online application
portal, i.e., a website. Via this portal, prospective students apply for the master studies in
computer science at the University of Göttingen [102]. In this section, we first describe the
analyzed software and provide several facts about the case study. Then, we list details and
results of the task tree generation and the verification of the task tree representativeness.
Finally, we present the findings of the usability smell detection and compare them with the
results of a user-oriented usability evaluation of the same website.

6.2.1. Case Study Facts

The portal analyzed in this case study is subdivided into two separate subportals. The first,
being the applicants portal, is used by prospective students to submit their application for
the master studies in computer science. The second, called the reviewer portal, is used by
the university employees to assess the applications and to decide if a student is accepted.

The applicants portal follows a wizard paradigm. This wizard guides the students through
the different application steps, which cover entering of personal data, university degrees,
and work experience. A screenshot of the wizard step for entering the personal data is
shown in Figure 6.1. The students can step back and forth in the wizard, as required, using
the navigation buttons at the bottom. Furthermore, the students can directly jump to an ap-
plication step by using the wizard step navigation on the left. Depending on the information
a student provides in a specific step, the subsequent steps of the wizard may be different.
For example, if students select a specific type of how they learned English, they may be
asked in a further step to provide detailed proof for this. At the end of the application pro-
cess, students may be asked to upload several documents, for example a CV or a certificate
of previous studies.

The reviewer portal focuses on the assessment of the students’ applications. For this, it
provides overview pages in a tabular fashion, allowing the reviewers to list all applicants
or to filter, e.g., for those applications that were not yet assessed. In addition, the reviewer

97 6.2. Case Study 1: Master Application Portal

Figure 6.1.: Screenshot of the applicants portal of the master application portal analyzed in
the first case study.

portal contains pages displaying the details of a specific application. On these pages, the
reviewers can make notes for individual aspects of an application and also provide a final
decision if the application is to be accepted or not. Both subportals require a login. The
login screen and other generic pages are shared between both subportals.

6. Case Studies 98

In this case studies, we recorded users over a period of 18 months, which resulted in about
1.4 million events and 19,000 user sessions with more than 2,750 distinct utilized client
browsers. The concrete values are listed in the upper part of the first column of Table 6.2.
We separated the recorded events depending on the subportal on which they were recorded.
This resulted in 1,143,334 events and 17,725 sessions on the side of the applicants portal
and 245,680 events and 1,547 sessions on the side of the reviewer portal. In addition, 7,149
recorded events belonged to 27 test sessions, in which both subportals were utilized. Further
details for this subdivision of the data are listed in the second to fourth column of the upper
part of Table 6.2. In the following, we refer to all recorded data in this case study as the
overall data set. The separated data sets for the subportals are referred to as the applicants
portal data set and the reviewer portal data set.

Overall Reviewer portal Applicants portal Test sessions
Recorded data

Recording period 10/2013 - 02/2015 11/2013 - 02/2015 10/2013 - 02/2015 11/2013 - 11/2014
(18 months) (17 months) (18 months) (13 months)

Events 1,396,163 245,680 1,143,334 7,149
Sessions 19,299 1,547 17,725 27

Distinct clients 2,757 162 2,574 21
Post-proc. data

Events 807,654 147,458 656,100 4,096
Distinct actions 4,445 1,740 2,754 570

Sessions 16,266 1,428 14,811 27
Session length µ 49.7 103.3 44.3 151.7
Session length σ 129.5 323.0 88.9 287.1

Table 6.2.: Facts of the first case study including recorded and post-processed actions for
the overall data set and the separate subportals.

The data was recorded in an anonymized fashion. This means, that the website was an-
notated with CSS classes as required by AutoQUEST to not record concrete values entered
into specific text fields. Nevertheless, we still observed some personal data in unannotated
text fields. Hence, we applied an algorithm on the data that pseudomized further text field
entries. The pseudonymization was done using the SHA-512 hash algorithm. As a result,
the recorded personal data was not human readable anymore, but identical values entered in
different text fields remained identical.

After the pseudonymization of the data, we parsed it into AutoQUEST. Then, we let
AutoQUEST detect common page elements. Finally, we applied several commands for
post-processing the parsed events (see Annex A). The resulting number of events, which
represent only action instances, and the number of remaining sessions are listed in the lower
part of Table 6.2. Furthermore, this part of the table contains the average session length
(µ), i.e., the average number of action instances in a session, as well as the corresponding

99 6.2. Case Study 1: Master Application Portal

standard deviation (σ). In addition, the table contains the number of remaining distinct
actions that were executed. This number for the whole data set is not equal to the sum of
distinct actions of the subportal data sets, as through shared pages some actions are shared
by the subportals.

6.2.2. Task Tree Generation Results

After post-processing the data, we generated task trees using our approach. We did both,
generate task trees without and with subsequent merging. We did not generate task trees
for the test sessions. The numbers of resulting tasks for the overall data set and for the
subportal data sets are listed in Table 6.3. The upper part of the table shows the number of
sequences and iterations before the merge as well as the concrete ratio of the most prominent
sequences for the data sets. The middle part displays the number of sequences, iterations,
optionals, and selections after the merge, and also the ratio of most prominent sequences.
After the merge, the number of sequences is always smaller than the number of sequences
before the merge. In contrast, the number of iterations increases. The lower part of the
table contains three different ratios of recorded action instances. The first are the action
instances covered by all sequences, the second are the action instances covered by the most
prominent sequences before the merge, and the third are the action instances covered by the
most prominent sequences after the merge. The ratio of action instances covered by the most
prominent sequences after the merge is always higher than before the merge. The reason

Overall Reviewer portal Applicants portal
Generated tasks

Sequences 26,380 4,856 21,484
Iterations 2,827 698 2,145

Most prominent sequences 20,3% 20,3% 20,5%
After merge

Sequences 25,158 4,608 20,508
Iterations 2,884 701 2,199

Selections 217 48 161
Optionals 168 31 119

Most prominent sequences 20,2% 20,4% 20,0%
Action instance coverage

All sequences 95,3% 95,8% 95,1%
Most prominent 85,7% 84,6% 86,0%

Most prominent after merge 86,1% 85,2% 86,3%

Table 6.3.: Task trees generated in the first case study for the overall data set and the separate
subportals.

6. Case Studies 100

is, that due to the merging of the most prominent sequences, their number decreases and,
hence, also other sequences become part of the most prominent ones, which then may cover
more action instances. When generating task trees for the three data sets in this case study,
we did not have any task tree generation failures as described in Section 4.4.2.3 and 4.4.3.2.

An example of a task tree generated for the applicants portal for the form shown in Fig-
ure 6.1 is shown in Figure 6.2. The represented task shows the typical actions applicants
take to enter their first and last name into the above form. They start by clicking on the first
name field and entering their name. Then they move to the last name field by either using
the tabulator key, a single mouse click, or a double mouse click. Afterwards, they enter their
last name and move to the next form element by using the tabulator key.

Figure 6.2.: Example for a task tree generated for the form of the applicants portal shown in
Figure 6.1 in the first case study.

6.2.3. Task Tree Representativeness

In this case study, we evaluated the representativeness of the generated task trees. For
this, we performed the approach described in Section 6.1.3 for all three data sets of this
case study. The details for the created subsets can be found in the Table 6.4. This table is
subdivided into three subtables, each containing the subset information for either the overall

101 6.2. Case Study 1: Master Application Portal

data set (first subtable), the reviewer portal data set (second subtable), or the applicants
portal data set (third subtable). The columns of each subtable contain the information for the
subsets of a specific size. The first row of a subtable shows, how many subsets of a specific
size are created. The second row contains the number of failed task tree generations (see
Section 4.4.2.3). The third row lists the number of failed task mergings (see Section 4.4.3.2).
The next two rows show the average (µ) number and standard deviation (σ) of events, i.e.,
action instances, that belong to a subset, as well as of the distinct actions in a subset. For
example, the average number of events belonging to subsets of size 1% (first column) of the
applicants portal data set (third subtable) is 6,561, with a standard deviation of 0. The next
two rows of a subtable show the average number and the standard deviation of the detected
sequences and iterations for the subsets before the merging of sequences. The last four
rows contain the average number and the standard deviation of the sequences, iterations,
selections, and optionals for the subsets after the merging of sequences.

The number of failures for the task tree generation is 0 for the reviewer portal, 3 for the
applicants portal and 6 for the overall data set. For the subset sizes from 10% to 50%, we
create only a small number of subsets per size to create them as disjunctive as possible.
To gain sufficient subsets, for which the task tree generation was successful, we did the
following subset recreations (see Section 6.1.3):

• reviewer portal

– recreation of the subsets of size 20% once

• applicants portal

– recreation of the subsets of size 20% once
– recreation of the subsets of size 50% once

• overall

– recreation of the subsets of size 20% once
– recreation of the subsets of size 40% once
– recreation of the subsets of size 50% once

The number of recreations correlates with the remaining amount of task tree generation
failures, which we did not solve through recreation. For example, for the overall data set,
we performed most recreations of subsets and also have most of the remaining task tree
generation failures (see Table 6.4). The remaining failures impose no problem, as there are
still sufficient subsets of the different sizes for which the task tree generation and merging
succeeded.

The intended average subset size is reached for the overall data set and the applicants
portal data set with minimal deviations (standard deviation is at most 3 action instances for
the overall data set). For the reviewer portal data set, the deviations are increasing with
decreasing subset size. This is because the reviewer portal data set includes sessions that

6. Case Studies 102

Overall 1% 2.5% 5% 10% 20% 30% 40% 50%
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Subset statistics
No. of subsets 50 30 20 10 5 9 6 6

Generation failures 0 0 1 0 0 3 0 0
Merging failures 2 0 0 0 0 0 0 0
Subset contents

Events 8,076 0 20,191 0 40,383 3 80,765 1 161,531 2 242,296 0 323,061 0 403,827 0
Distinct actions 814 54 1,241 76 1,638 74 2,132 44 2,749 62 3,122 122 3,436 60 3,642 54

Generated tasks
Sequences 634 24 1,375 47 2,430 60 4,228 52 7,342 56 10,080 112 12,726 60 15,208 86
Iterations 216 19 390 18 593 25 887 27 1,288 35 1,584 39 1,858 17 2,043 48

After merge
Sequences 631 24 1,360 46 2,394 61 4,139 57 7,164 48 9,803 149 12,455 78 14,750 156
Iterations 217 19 391 18 594 25 890 27 1,295 37 1,599 38 1,867 15 2,067 48

Selections 2 1 5 2 8 2 15 2 25 8 38 16 27 27 58 34
Optionals 1 1 5 2 13 3 28 4 50 7 69 25 68 28 100 29

Reviewer portal 1% 2.5% 5% 10% 20% 30% 40% 50%
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Subset statistics
No. of subsets 50 30 20 10 5 9 6 6

Generation failures 0 0 0 0 0 0 0 0
Merging failures 0 0 0 0 0 0 0 0
Subset contents

Events 1,535 180 3,686 0 7,373 133 14,746 6 29,492 1 44,266 83 58,983 0 73,729 0
Distinct actions 220 30 334 44 468 55 687 51 914 59 1,114 47 1,237 15 1,352 43

Generated tasks
Sequences 124 16 249 27 431 50 766 31 1,322 90 1,867 44 2,348 50 2,815 63
Iterations 40 7 64 10 101 16 164 12 263 11 341 19 416 9 471 15

After merge
Sequences 124 16 248 27 426 50 751 31 1,283 90 1,809 44 2,264 49 2,699 76
Iterations 40 7 64 10 101 16 164 12 263 10 342 19 416 10 472 14

Selections 0 0 0 0 0 0 2 1 5 1 9 2 13 2 20 2
Optionals 0 0 1 1 3 2 7 2 14 2 19 3 24 3 33 2

Applicants portal 1% 2.5% 5% 10% 20% 30% 40% 50%
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Subset statistics
No. of subsets 50 30 20 10 5 9 6 6

Generation failures 0 1 1 0 0 0 0 1
Merging failures 0 0 0 0 0 0 0 0
Subset contents

Events 6,561 0 16,402 0 32,805 0 65,610 0 131,220 0 196,830 0 262,440 0 328,050 0
Distinct actions 646 42 935 46 1,187 42 1,497 47 1,845 22 2,061 21 2,201 30 2,344 14

Generated tasks
Sequences 525 15 1,137 23 1,997 33 3,451 32 5,987 61 8,225 57 10,302 102 12,314 55
Iterations 189 14 333 19 500 18 728 24 1,035 19 1,253 29 1,434 14 1,583 21

After merge
Sequences 523 15 1,124 22 1,967 33 3,380 30 5,830 57 8,012 95 10,066 181 11,898 36
Iterations 189 14 334 20 502 18 731 22 1,043 20 1,267 28 1,448 11 1,606 22

Selections 2 1 5 2 8 2 13 3 24 6 28 13 28 20 52 17
Optionals 1 1 4 2 10 3 21 5 41 4 53 14 50 21 85 13

Table 6.4.: Information about created subsets, generated task trees, and the comparisons
done for the data sets of the first case study.

103 6.2. Case Study 1: Master Application Portal

contain more than 1,800 action instances. A session of this size can strongly influence the
size of the subset to which it belongs, especially if the intended subset size is small.

The number of detected sequences and iterations is similar for different subsets of the
same size. The standard deviation is rather small, in most cases, in comparison to the
number of detected tasks. For example, for the applicants portal data set (third subtable)
the standard deviation for the detected sequences on subsets of size 10% is 32, which is
rather low in comparison to 3,451 sequences detected on average for these subsets. In
addition, the standard deviation decreases with increasing subset size. For example, for
the reviewer portal data set (second subtable), the standard deviation for the number of
sequences detected on the subsets of size 1% is 16, which is more than 13% of the average.
In contrast, the standard deviation for the number of sequences detected on the subsets of
size 50% is 63, which is only 2% of the average. This means, the larger a subset size, the
more similar is the number of detected sequences and iterations for the different subsets.
Similar effects are present for the task trees after the merge. Nonetheless, the standard
deviations for the number of detected selections and optionals are relatively high. This is
because, in comparison to the number of detected sequences and iterations for a subset, the
number of selections and optionals is rather low.

After the subset creation, we visualized, how many recorded action instances are covered
by the detected sequences before the merging of similar sequences. We did this for the
subsets and also for the corresponding full data sets. The visualization for the reviewer
portal data set is shown in Figure 6.3. The sequences form the x-axis. They are ordered by
the number of action instances they cover. The first sequence on the x-axis is the one with
the highest coverage. On the y-axis, we display the cumulative ratio of action instances
that are covered by a specific sequence on the x-axis and all sequences left of it. The unit
of both axes is percent. This means, that a specific ratio of the sequences that cover most
action instances (specific point on the x-axis) covers a specific ratio of action instances
(corresponding point on the y-axis). The plot contains several lines. The bold black line
represents the sequences of the full reviewer portal data set. The thinner lines represent the
sequences of subsets of sizes 2.5% (grey lines), 10% (red lines), and 40% (cyan lines). For
each subset size, we plotted the lines for five subsets.

In Figure 6.3, we marked the amount of action instances (84.6%) that are covered by the
most prominent sequences (20.3%) of the full reviewer portal data set before the merge.
In addition, we marked the action instances covered by all detected sequences, which is
95.8%. The plot shows, that similar to the Pareto principle, already a small amount of
sequences covers a large amount of action instances. This holds true also for the different
subset sizes. Nevertheless, this effect decreases with a decreasing subset size. Furthermore,
the plot shows that using a value of about 20% for separating most prominent from all
sequences is well chosen. This is indicated by the gradient of the graph, which is high for
the most prominent sequences and decreases for the other sequences. In addition, the plot
shows, that the coverages for the different subset sizes are similar, as the five lines for each
subset size are close to each other. Furthermore, the coverage increases with a higher subset

6. Case Studies 104

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100
C

u
m

u
la

ti
ve

 a
ct

io
n

 i
n

st
a

n
ce

 c
o

ve
ra

g
e

 i
n

 %
 o

f
a

ll
re

co
rd

e
d

 a
ct

io
n

 i
n

st
a

n
ce

s

20,3

84,6

95,8

Figure 6.3.: Plot for the cumulative action instance coverage of the unmerged sequences of
the reviewer portal data set (black) and five subsets for the subset sizes 2.5%
(grey), 10% (red), and 40% (cyan).

size. Finally, the larger the subset size, the more similar is the coverage distribution between
the subsets of the same size. This corresponds to the decreasing standard deviation for the
number of detected sequences listed in Table 6.4. The same type of plots for the applicants
portal data set and the overall data set, as well as for the task trees after merging for all three
data sets, are shown in Annex E.1. They show the same relation between the sequences and
the covered action instances, as well as between the subsets and the respective full data set.

Based on the task trees of the subsets, we performed the evaluation of their representa-
tiveness as described in Section 6.1.3. As not all detected sequences can be transformed into
a grammar, we only considered the sequences that could be transformed. Table 6.5 lists the
average ratio (µ) and standard deviation (σ) of sequences of the different subsets, that were
transformed into grammars and that were, hence, subsequently used in the analysis of their
representativeness. In the table, we differentiate between the sequences before and after
the merge. For all data sets, the ratio of transformed sequences decreases with increasing

105 6.2. Case Study 1: Master Application Portal

subset size. The differences between unmerged and merged sequences is at most 3.5% and
increases with a higher subset size. As this increasing correlates to the number of selections
and optionals generated through the merge, this may indicate, that the higher the number of
selections and optionals, the less sequences can be transformed into grammars.

Overall Reviewer portal Applicants portal
Unmerged Merged Unmerged Merged Unmerged Merged

µ σ µ σ µ σ µ σ µ σ µ σ

1% 96.4% 1.3 96.4% 1.4 90.9% 6.7 90.9% 6.6 96.9% 1.1 96.8% 1.2
2.5% 94.0% 2.0 93.9% 1.9 87.5% 7.6 87.5% 7.6 95.3% 0.8 95.1% 0.8

5% 92.3% 1.7 92.2% 1.5 82.0% 6.5 82.0% 6.1 94.5% 0.6 94.1% 0.7
10% 90.2% 1.8 89.5% 1.2 82.8% 5.2 83.0% 4.6 93.1% 0.7 92.4% 0.6
20% 90.6% 0.3 89.1% 1.2 82.2% 3.0 81.7% 2.8 92.1% 0.4 91.3% 0.9
30% 89.6% 0.2 87.2% 0.8 82.6% 0.0 81.1% 0.1 91.0% 0.3 88.8% 1.1
40% 88.3% 0.7 87.1% 1.8 81.8% 1.1 79.4% 1.2 90.7% 0.1 88.5% 1.6
50% 88.2% 0.2 86.6% 1.6 81.1% 1.4 77.9% 0.6 90.1% 0.3 86.6% 1.0

Table 6.5.: Average ratio of sequences that were transformed into grammars for checking
their representativeness for other subsets of the same size as well as for the re-
spective full data set in the first case study.

After the transformation into grammars, we generated parsers for each subset. Then we
counted the number of matches that the parsers of a specific subset have in either other
subsets of the same size or the respective full data sets. We did this several times for each
subset size (see Table 6.1). Finally, we calculated for each subset size the average number
of matches in other subsets of the same size and the respective full data set. We plot these
results for unmerged task trees for the reviewer portal data set in Figure 6.4. The figure
contains two bar charts. The left bar chart (Figure 6.4 a) represents the average matches in
subsets of the same size. The matches are given in percent of action instances belonging to
a subset. For each subset size (x-axis), there are two bars. The left bar (named c) shows
the average number of action instances, which are covered by the transformed sequences
(see Table 6.5) in the subset, from which they were generated. The right bar (named m)
shows the average ratio of matches in another subset of the same size. The black part of
a bar represents the coverage/matches of the most prominent sequences, the grey part the
coverage/matches of the remaining sequences. For example, the sequences of subset size
2.5% (second bars in left chart) cover on average 82% of action instances in their own data
set and match on average 62% of action instances in other subsets of the same size. The
right bar chart (Figure 6.4 b) shows the average number of matches in the full reviewer
portal data set. All bars, except the most right, represent the average number of matches
by parsers, which were generated for the given subset sizes (x-axis). For example, for the
sequences before the merge generated on subsets of size 10% (fourth bar in right chart), the

6. Case Studies 106

average ratio of matches in the full reviewer portal data set is 81%. In this example, the
most prominent sequences already cover 59%. The rightmost bar in this chart shows the
ratio of action instances covered by all sequences detected on the full reviewer portal data
set. We included this bar for easier comparison.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

Most prominent Other

a) Matches in other subsets of same size: b) Matches in full reviewer portal data set:

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure 6.4.: Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the reviewer portal data set in
the first case study.

The plots show, that the average number of matches increases with a higher subset size.
This holds true for the comparison with other subsets of the same size as well as with the
full reviewer portal data set. In addition, the ratio of matches of the most prominent se-
quences increases even stronger. For example, the ratio of matches of sequences generated
on subsets of size 1% is about 50% in the full reviewer portal data set. The most prominent
sequences here match only 27%, which is about half of all matches. In contrast, the se-
quences generated for the subsets of size 50% match 92% of the action instances in the full
reviewer portal data set. Here, the most prominent sequences match about 78% of all action
instances, which is about 85% of all matched action instances. Furthermore, there is a break
even point, after which sequences generated for subsets of a specific size match more action
instances in other subsets of the same size than in the subset from which they were created.
For example, the sequences generated on subsets with sizes smaller than 30% match less
action instances in other subsets of the same size. In contrast, the sequences generated on
subsets with sizes larger than 30% match more action instances in other subsets of the same
size. The reason for this is, that the matching of sequences is much more flexible than their
detection. For example, a subset may contain the action instances {a′b′c′}. Considering also

107 6.2. Case Study 1: Master Application Portal

other data in the subset, the sequence detection may find the sequence representing {ab}.
Even if it would later detect another sequence representing {bc}, the action instance c′ in
the example would not be covered by a sequence, as the two preceding action instances are
already covered by the sequence {ab}. But if we generate parsers for the sequences {ab}
and {bc}, then both parsers would match all action instances, where the parser for {ab}
would match the first two action instances and the parser for {bc} would match the last two.

The corresponding plots for the merged task trees of the reviewer portal data set, as well
as for unmerged and merged task trees for the applicants portal data set and the overall data
set can be found in Appendix E.2. These plots show the same effects as seen in Figure 6.4.

6.2.4. Usability Evaluation Results

As the next step in this case study, we applied our usability smell detection on all data sets
in this case study, except for the test sessions. The resulting number of findings for the
different usability smells are shown in Table 6.6. The table consists of three subtables, each
displaying the findings for a specific data set. The upper table shows the findings for the
overall data set, the middle table the findings for the reviewer portal data set, and the lower
table the findings for the applicants portal data set. Each subtable contains one row per smell
type. In the upper part of a subtable, we list the findings for the smells with reference to the
task trees, the lower part are the findings for the smells detected based on action instances.
The usability smells are named in the left part of a subtable. For the upper part of a subtable,
we provide the distinction between the smells detected without (center subtable part) and
with (right subtable part) merged task trees. This distinction is not required, and, hence, not
given, for the smells in the lower parts of the subtables, as these do not refer to the task trees.
The number of findings for the smells is given in the first column of the respective table part.
For example, in the reviewer portal data set (middle subtable) on merged task trees (right
subtable part), we had 2,558 findings for the smell "Required Inefficient Actions".

As indicated in Section 6.1.4, findings can be duplicates. We indicate for the findings in
Table 6.6 the ratio of duplicates in percent in the second column of the respective subtable
part. For example, of the above mentioned 2,558 findings for the smell "Required Inefficient
Actions", 30% were duplicates.

After the smell detection, we performed a manual inspection of the findings to determine
if they are true positives or not. As due to their large number not all findings could be
manually inspected (see Section 6.1.4), we list in the third column of the respective subtable
part of Table 6.6, how many findings were manually inspected. If applicable, we mention
in the fourth column the corresponding ratio of duplicates in percent. Finally, we mention
in the fifth column of the respective table part, how many of the inspected findings we
considered true positives given as concrete value and as ratio in percent. For example, of
the above mentioned 2,558 findings for the smell "Required Inefficient Actions" for the
merged task trees of the reviewer portal data set, we manually inspected 30 findings, of
which 43% were duplicates, and considered 24, i.e., 80%, of them as true positives. In the

6. Case Studies 108

Overall Before merge After merge
Findings Inspected Findings Inspected
All Dupl. All Dupl. True positive All Dupl. All Dupl. True positive

Based on task trees
Important Tasks 352 57% 30 43% 30 (100%) 333 53% 30 30% 30 (100%)

Required Inefficient Actions 11,918 24% 30 27% 29 (97%) 11,530 24% 30 23% 29 (97%)
High GUI Element Distance 23,246 26% 30 40% 5 (17%) 21,972 25% 30 43% 6 (20%)

Missing Feedback 117 - 30 - 6 (20%) 117 - 30 - 6 (20%)
Required Input Method Change 12,193 25% 30 30% 0 (0%) 11,309 24% 30 27% 2 (7%)

Missing User Guidance 1 - 1 - 0 (0%) 1 - 1 - 0 (0%)
Based on action instances

Required Text Format 217 - 30 - 4 (13%)
Text Input Repetitions 646 - 30 - 3 (10%)

Text Input Ratio 1 - 1 - 0 (0%)
Single Checking of Checkboxes 21 - 21 - 0 (0%)

Misleading Click Cue 173 - 30 - 16 (53%)
Required Text Field Focus 25 - 25 - 17 (68%)

Good Defaults 29 - 29 - 14 (48%)
Unused GUI Elements 68 - 30 - 1 (3%)

Reviewer portal Before merge After merge
Findings Inspected Findings Inspected
All Dupl. All Dupl. True positive All Dupl. All Dupl. True positive

Based on task trees
Important Tasks 440 55% 30 70% 30 (100%) 415 54% 30 67% 30 (100%)

Required Inefficient Actions 2,717 31% 30 40% 29 (97%) 2,558 30% 30 43% 24 (80%)
High GUI Element Distance 4,284 36% 30 80% 0 (0%) 4,034 35% 30 73% 0 (0%)

Missing Feedback 71 - 30 - 2 (7%) 71 - 30 - 2 (7%)
Required Input Method Change 1,223 32% 30 40% 23 (77%) 1,134 31% 30 40% 23 (77%)

Missing User Guidance 1 - 1 - 0 (0%) 1 - 1 - 0 (0%)
Based on action instances

Required Text Format 37 - 30 - 0 (0%)
Text Input Repetitions 72 - 30 - 3 (10%)

Text Input Ratio 1 - 1 - 0 (0%)
Single Checking of Checkboxes 13 - 13 - 0 (0%)

Misleading Click Cue 20 - 20 - 7 (35%)
Required Text Field Focus 4 - 4 - 4 (100%)

Good Defaults 7 - 7 - 3 (43%)
Unused GUI Elements 21 - 21 - 5 (24%)

Applicants portal Before merge After merge
Findings Inspected Findings Inspected
All Dupl. All Dupl. True positive All Dupl. All Dupl. True positive

Based on task trees
Important Tasks 332 53% 30 40% 30 (100%) 324 50% 30 37% 30 (100%)

Required Inefficient Actions 9,145 22% 30 23% 29 (97%) 8,925 23% 30 27% 29 (97%)
High GUI Element Distance 18,907 24% 30 43% 6 (20%) 17,890 23% 30 33% 6 (20%)

Missing Feedback 50 - 30 - 5 (17%) 50 - 30 - 5 (17%)
Required Input Method Change 10,971 24% 30 30% 0 (0%) 10,165 23% 30 43% 0 (0%)

Missing User Guidance 1 - 1 - 0 (0%) 1 - 1 - 0 (0%)
Based on action instances

Required Text Format 181 - 30 - 4 (13%)
Text Input Repetitions 566 - 30 - 3 (10%)

Text Input Ratio 1 - 1 - 0 (0%)
Single Checking of Checkboxes 8 - 8 - 0 (0%)

Misleading Click Cue 156 - 30 - 16 (53%)
Required Text Field Focus 24 - 24 - 16 (67%)

Good Defaults 27 - 27 - 12 (44%)
Unused GUI Elements 51 - 30 - 0 (0%)

Table 6.6.: Numbers of findings for the usability smells in the different data sets of the first
case study, including the detection in unmerged and merged task trees.

109 6.2. Case Study 1: Master Application Portal

following subsections, we provide details about the tasks and actions, for which smells were
found, and why we considered the findings true positives or not. Per smell, we consider all
findings for all data sets at once. This may sum up to at most 180 findings for a specific
smell type that references task trees (30 findings for unmerged and 30 findings for merged
task trees in three data sets) and 90 findings for usability smells referencing action instance.

6.2.4.1. Findings for Usability Smell: Important Tasks

For the usability smell "Important Tasks", we analyzed 30 findings for each of the data
sets. For the reviewer portal data set, the findings focus on tasks for the visualization and
assessment of details of a concrete application. For the applicants portal, the related tasks
cover the uploading of files belonging to an application, the navigation of applicants in
the wizard, the usage of a date chooser, as well as entering the degree gained for previous
studies. Furthermore, there are tasks related to the user registration, login, and logout, which
are shared between both subportals. The detailed numbers of findings for these tasks are
contained in Table 6.7. On the left side of the table, we list the groups of tasks performed by
the users separated into the reviewer portal and the applicants portal. The middle part of the
table shows the findings for the task groups before (left two columns) and after the merge
(right two columns) of detected tasks. The right part of the table provides the corresponding
findings in the overall data set. A dash indicates, that for the given task group, there was no
finding in the respective data set. Findings for the user registration, login, and logout task
group are given separately for the subportal data sets (middle part of the table) and for the
overall data set (last row, right table part). This is because for the overall data set, it cannot
be distinguished anymore between the subportals for these tasks.

Findings for usability smell "Important Tasks" Corresponding data set Overall data set
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Reviewer portal
Assessment and commenting of application details 27 27 24 24 5 5 6 6
Visualization of application details 3 3 3 3 1 1 1 1
Combination of visualization/assessment of application details - - 3 3 - - - -
Applicants portal
Upload files at the end of application process 8 8 9 9 6 6 7 7
Navigation inside the wizard 4 4 5 5 3 3 4 4
Usage of date chooser 7 7 4 4 6 6 3 3
Entering of degree of previous studies 4 4 2 2 2 2 1 1
User registration/login/logout related tasks 7 7 10 10
Shared pages
User registration/login/logout related tasks 7 7 8 8

Table 6.7.: Numbers of detected "Important Tasks" usability smells in the different data sets
of the first case study.

6. Case Studies 110

For the smell "Important Tasks", we considered all findings as true positives. The rea-
son is, that this smell basically searches for sequences that are often executed and, hence,
important for the users. For the manual inspection, we selected the smells referring to the
sequences with the highest action instance coverage. Therefore, any of the referred se-
quences is important. The smell is not found for all sequences detected on a data set. This
is caused by our implementation of the smell detection, which drops any smell with an in-
tensity lower than 0.1. This means, that any smell referring to a sequence covering less than
0.1% of the recorded action instances are dropped. The intensities of the findings in all data
sets varied from 0.5 to 9.2, i.e., the task with the highest action instance coverage covered
9.2% of action instances (here it was a task detected in the reviewer portal data set).

6.2.4.2. Findings for Usability Smell: Required Inefficient Actions

For the usability smell "Required Inefficient Actions", we inspected 30 findings for each
of the data sets. The detailed numbers of the findings are listed in Table 6.8. The table is
structured as the corresponding table for the previous smell.

Findings for usability smell "Required Inefficient Actions" Corresponding data set Overall data set
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Reviewer portal
Assessment and commenting of application details 15 15 13 12 5 5 3 3
Visualization of application details 8 8 6 5 2 2 2 2
Combination of visualization/assessment of application details 7 6 11 7 1 1 1 1
Applicants portal
Upload files at the end of application process 16 16 12 12 13 13 12 12
Navigation inside the wizard 4 4 4 4 3 3 3 3
Insert/edit application details 3 3 3 3 2 2 3 3
Usage of date chooser 1 1 6 6 - - 2 2
Submission of application 1 0 1 0 1 0 1 0
User registration/login/logout related tasks 5 5 4 4
Shared pages
User registration/login/logout related tasks 3 3 3 3

Table 6.8.: Numbers of detected "Required Inefficient Actions" usability smells in the dif-
ferent data sets of the first case study.

We considered 169 out of 180 findings for this smell as true positives. We did not con-
sider findings as true positive if they included less than one inefficient in ten actions. This
correlated to the intensities of the findings which was in most cases also below 10% for the
false positives and above 10% for the true positive findings. As we considered only tasks in
our inspection, and because the intensity calculation for this smell also takes into account
the corresponding instances, there were few true positive findings with an intensity below
10% and false positives with an intensity above 10%. The intensities of the findings varied

111 6.2. Case Study 1: Master Application Portal

between 0.1% and 73%. The intensities of the false positive findings were at most 19.7%. In
addition, we considered four findings with a high intensity as false positives which related
to the submission of an application. Here, students get displayed all entered information
at once for legal reasons and have to confirm them. This is too much to fit on the screen.
Hence, scrolling is required but can also not be prevented.

We had findings, where the tasks contained only few actions, of which the first or the last
were inefficient actions. We considered it hard for these tasks to decide, whether the smells
are true positives or not. We counted them as true positives, anyway, as these tasks had a
relatively high action instance coverage.

We observed, that due to the merging of tasks, the resulting tasks contained optional
inefficient actions and had a higher action instance coverage (the sum of the action instances
covered by the merged tasks). The intensities of corresponding findings were rather low
because, although the model contained inefficient actions, the instances showed that these
were executed rather seldom. These were also the task, were the model contained more
than one inefficient in ten actions but the intensities were below 10%. This shows, that the
intensity calculation correlates with the structure of the tasks.

One of the major findings based on this smell is, that users of the applicants portal have
to do a lot of scrolling when uploading files at the end of the application process. On the
corresponding web page, users are presented with an overview of the whole application data
as a large table. This table includes interaction elements to upload files such as a CV. After
each file upload, the page is reloaded and users have to scroll down to upload the next file.
The corresponding detected smells had a relatively high intensity.

6.2.4.3. Findings for Usability Smell: High GUI Element Distance

For the usability smell "High GUI Element Distance", we analyzed 30 findings for each of
the data sets. The detailed numbers of the findings are listed in Table 6.9. We considered
only 23 out of 180 findings as true positives. The reason is, that many smells referenced
tasks for which the required GUI elements are located close to each other in the correspond-
ing views. This correlated with the intensities of the findings. These were below 0.5 for the
false positives, which indicates that the subsequently required GUI elements are located in
the same view. One example for a false positive finding for the reviewer portal was, that
when assessing the details for an application the corresponding links, check boxes, and text
fields are close to each other on the same page. The only situation, where the findings
were helpful, was for the uploading of files at the end of the application process. The GUI
elements for performing the upload are not located as closely to each other as would best
support the process. Therefore, we considered the corresponding findings as true positives,
although their intensities were rather low and varied between 0.217 and 0.275.

What we observed is, that overlays may be misinterpreted regarding their location. For
example, in the applicants portal, there are many text fields into which the users have to
enter a date. When clicking on the text field, a date chooser opens as overlay of the website

6. Case Studies 112

Findings for usability smell "High GUI Element Distance" Corresponding data set Overall data set
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Reviewer portal
Assessment and commenting of application details 26 0 24 0 6 0 8 0
Combination of visualization/assessment of application details 4 0 6 0 2 0 1 0
Applicants portal
Upload files at the end of application process 6 6 6 6 5 5 6 6
Navigation inside the wizard 1 0 - - - - - -
Insert/edit application details 7 0 6 0 6 0 4 0
Usage of date chooser 10 0 9 0 7 0 6 0
User registration/login/logout related tasks 6 0 9 0
Shared pages
User registration/login/logout related tasks 4 0 5 0

Table 6.9.: Numbers of detected "High GUI Element Distance" usability smells in the dif-
ferent data sets of the first case study.

close to the text field. But regarding the GUI model, the date chooser has a relatively high
distance. Hence, we considered corresponding findings as false positives.

6.2.4.4. Findings for Usability Smell: Missing Feedback

For the usability smell "Missing Feedback", we analyzed 30 findings for each of the data
sets. The detailed numbers of the findings are listed in Table 6.10. The findings were the
same for merged and unmerged task trees, as the considered tasks (iterations of actions)
are not affected by the merging process. We considered only 24 out of 180 findings as
true positives. The reasons for this are manifold. Many findings referenced iterations with
only few repeated clicks in their instances. This correlated with the rather low intensities
of below 266ms3. For example, for the reviewer portal data set, 28 out of the 30 inspected
findings for the unmerged task trees indicated more an occasional reuse of an interaction
element than a required one, which resulted in an intensity lower than 25ms. In contrast,
the other two findings were considered as true positive. The first of these two findings
with an intensity of 1032ms was given for the switching between tabs of a tabular panel
providing overviews of applications. When the users switch between these tabs, the content
of the selected tab is loaded in the background without a page reload. This takes some time
in the case many applications are stored in the system, but the system does not provide any
user feedback while loading. Hence, the users click the tab again, as it appears, that the first
click did not have an effect.

3The intensities have a unit of milliseconds, which is due to the way they are calculated (see Section 4.5.2.4).
But they do not represent a single repetition of a click. Instead they are the result of a calculation, that
considers the number of repetitions, the repetition time, and all instances of the corresponding iteration.

113 6.2. Case Study 1: Master Application Portal

Findings for usability smell "Missing Feedback" Corresponding data set Overall data set
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Reviewer portal
Assessment and commenting of application details 18 0 18 0 9 0 9 0
Visualization of application details 11 2 11 2 3 1 3 1
User registration/login/logout related tasks 1 0 1 0
Applicants portal
Upload files at the end of application process 3 1 3 1 2 1 2 1
Navigation inside the wizard 12 1 12 1 6 1 6 1
Reset form for application details 1 1 1 1 1 1 1 1
Insert/edit application details 3 0 3 0 1 0 1 0
User registration/login/logout related tasks 11 2 11 2
Shared pages
User registration/login/logout related tasks 8 2 8 2

Table 6.10.: Numbers of detected "Missing Feedback" usability smells in the different data
sets of the first case study.

For the applicants portal, some findings were considered as false positives, as they were
found for common page elements reused after a page load. For example, the next button
available on any wizard page is a common page element. Some users navigated through
the wizard by repeatedly clicking the next button in the wizard, what caused an appropriate
false positive finding for the smell. In contrast, we found a true positive for the usage of the
reset button available on any wizard page, which can be used to clear the current form. If
the form is already empty, there is no visual feedback for the users for a click on the reset
button.

6.2.4.5. Findings for Usability Smell: Required Input Method Change

For the usability smell "Required Input Method Change", we analyzed 30 findings for each
of the data sets. The detailed numbers of the findings are listed in Table 6.11. We considered
only 48 out of 180 findings as true positives. These findings all referred to the assessment
and commenting of application details in the reviewer portal. Here, the reviewers perform
several clicks to open a text area, in which they type comments on different aspects of an
application using the keyboard. To submit a comment, the reviewers have to use the mouse
again. Pressing the enter key does not submit the comment, which should be possible. The
intensities of the findings varied between 0.5% and 96.4%.

The findings for the usage of the date chooser in the applicants portal are false positives.
Here the problem occurred, that after the usage of the date chooser the final event was a
text input in the corresponding text field. This event does not represent an action instance.
Instead, it is generated in the background, because the selected date is automatically entered
into the text field. The text input in the text field is considered a keyboard usage, following

6. Case Studies 114

Findings for usability smell Corresponding data set Overall data set
"Required Input Method Change" Before merge After merge Before merge After merge

Smells True Smells True Smells True Smells True
Reviewer portal
Assessment and commenting of application details 26 23 28 23 - - 2 2
Visualization of application details 1 0 1 0 - - - -
User registration/login/logout related tasks 3 0 1 0
Applicants portal
Upload files at the end of application process 6 0 7 0 6 0 6 0
Insert/edit application details 4 0 3 0 4 0 2 0
Usage of date chooser 11 0 9 0 11 0 9 0
User registration/login/logout related tasks 9 0 11 0
Shared pages
User registration/login/logout related tasks 9 0 11 0

Table 6.11.: Numbers of detected "Required Input Method Change" usability smells in the
different data sets of the first case study.

the mouse usage for the date selection. The same effect happened for the uploading of files,
where the file selection is done by using the mouse, which is succeeded by an automatic
text input into a text field.

A final issue causing false positives is, that users utilized the mouse to navigate between
text fields. Hence, there were tasks that were combinations of clicking into a text field and
entering some text. The smell did not check if there are other tasks occurring more often in
which the tab key was used for navigating to the text field instead of using the mouse. The
intensities of all false positive findings varied between 0.3% and 98,3%.

6.2.4.6. Findings for Usability Smell: Missing User Guidance

Due to its nature, the usability smell "Missing User Guidance" returns one finding per data
set as long as no threshold has to be exceeded regarding the intensity. The intensity of the
smell varied between 2.38 for the reviewer portal data set and 2.78 for the applicants portal
data set. The intensities were the same between unmerged and merged task trees, which
was also expected due to the smell’s nature. The intensities are rather good, indicating that
on average 10 subsequently executed actions are described by 2.38, respectively, 2.78 tasks.
These values are considered rather good and, hence, the smell findings are all false positives.

6.2.4.7. Findings for Usability Smell: Required Text Format

For the usability smell "Required Text Format", we analyzed 30 findings for each of the data
sets. We considered only 8 of the 90 findings as true positives. There are several reasons
for this. For example, in 80 out of 90 findings, only a few users entered special characters
into a specific text field. These findings also had a rather low intensity of less than 7.5% and

115 6.2. Case Study 1: Master Application Portal

would not occur if there was a threshold for the smell’s intensity. Furthermore, there were
findings for date (16) and file name (10) fields. Usually, these are not filled manually by
the users, but automatically after the users used the date or file chooser. Hence, we did not
consider them as true positive. Finally, there were 10 findings for fields for entering e-mail
addresses or phone numbers. For the first, the format of an e-mail address is known by users
today and should not be a problem for them. Phone numbers may be more problematic, but
the portal does not check the numbers for a specific format and, hence, does not require the
special signs. These findings contradict with our attempts to pseudomize personal data in
this case study. A subsequent check showed, that even after pseudonymization, there were
a few e-mail addresses and telephone numbers remaining in the data. The intensities of all
false positives varied between 0.2% and 16.1%.

The eight true positive findings were all related to text fields for entering a degree of
previous studies in the applicants portal. Their intensities varied between 5.0% and 28.6%.
The degree is either without decimals, then no format is required, or it is with decimals, then
the decimal numbers must be separated using a dot. The smell detection found the required
format and announced it correctly.

6.2.4.8. Findings for Usability Smell: Text Input Repetitions

For the usability smell "Text Input Repetitions", we also analyzed 30 findings for each of
the data sets and considered 9 of the 90 findings as true positives. For the reviewer portal,
27 out of the 30 findings were occasional text repetitions and, therefore, not considered
as true positives. Their intensities were below 6% and correlated with our decision. The
remaining smells referred to text fields for assessing the grade of an applicant. As grades
for different countries have different ranges, there is a calculator for reviewers that allows
to transfer grades into a harmonized grading system. The entries of this calculator were
often transferred manually to the assessment details of an application, although this could
be automated. Hence, these findings were considered true positives. With a range of 13%
to 35%, the intensities for these true positives where higher than those of the false positives.

Also for the applicants portal and the overall data set, 27 out of 30 findings were oc-
casional text repetitions letting us consider them as false positives, too. Their intensities
were rather low, i.e., less than 10%. Two of the other findings related to a combination of
date fields into which applicants enter information about their former studies. Here, they
have to enter the date of when their studies finished and also when they were awarded with
their degree. In 25% of times, applicants entered the same dates here. In addition, when
applicants registered as a new user for the applicants portal, they used the same user name
twice, first for registration and then for login4. Both situations could be automated. Hence,
we considered the corresponding findings as true positives.

4This finding is based on the pseudomized data. Although being unreadable, the entered texts where encrypted
the same way and, hence, identical.

6. Case Studies 116

6.2.4.9. Findings for Usability Smell: Text Input Ratio

Due to its nature, the usability smell "Text Input Ratio" returns one finding per data set
as long as no intensity threshold has to be exceeded. The intensity of the smell varied
between 4% for the reviewer portal data set and 10% for the applicants portal data set.
The intensities were rather low, as inefficient actions are included in the calculation. The
intensities correlate with the subportals usage. Where on the applicants portal, students
have to enter a lot of data into text fields, the reviewers interact more with the mouse to
do the applications assessment. Anyway, we considered the findings false positives as both
subportals only use text fields where really required.

6.2.4.10. Findings for Usability Smell: Single Checking of Checkboxes

For this smell, there were only 13 findings for the reviewer portal and 8 findings for the
applicants portal. The findings for the overall data set are the joined findings of both sub-
portals. We considered none of the findings as true positives, as all check box groups really
need to be check boxes. For example, at the end of the application process, the applicants
can provide information about how they got to know about the study program. Here, they
can select different sources of information, of which several can be possible at once. In
addition, although this finding had the highest intensity of 58.6%, the intensities of all other
findings were below 25%, which indicates that relatively often not exactly one check box is
selected at the end of displaying a view.

6.2.4.11. Findings for Usability Smell: Misleading Click Cue

For this smell, there were 20 findings for the reviewer portal, 156 for the applicants portal,
and 173 for the overall dataset. We inspected all findings for the reviewer portal, as well as
30 findings for the other two data sets. For the reviewer portal, we considered 7 findings as
true positives. Their intensities varied between 0.2% and 5.1%. The other findings covered
less than 10 action instances and were, thus, not representative in our opinion. The 7 true
positives referred to a disabled user registration button, unclickable headlines (2 findings),
and unclickable reviewer comments (4 findings). The findings for the user registration
button show, that the difference between enabled and disabled for the button may not be
obvious for all users. In addition, there is no direct feedback, why a user registration is
not possible at present. The findings for the headlines focus on the major headline "Master
Application Portal" available on any page of the portal, as well as the subheadline following
it (see Figure 6.1). These headlines have no function when clicking on them, but should
lead the users back to an initial page instead. This initial page could either be an overview
page if users are logged in or the login page if users are not logged in. The unclickable
reviewer comments referenced by the remaining 4 true positives are displayed, e.g., when
showing details of an application. A click on the comments should lead the users to the
change log of the application assessment.

117 6.2. Case Study 1: Master Application Portal

The inspected findings for the applicants portal data set and the overall data set were
the same. We assessed 16 out of the 30 findings as true positives. Their intensities varied
between 0.3% and 63.1%. One finding referenced the disabled user registration button and
four findings the unclickable headlines. In addition, there were 5 findings for the labels in
front of two date fields. These fields are the start and the end date of the applicants previous
studies. The labels here look different from other labels in the wizard and are attached to
the text field. Hence, they suggest to be clickable although they are not. Therefore, we
considered these findings as true positives. The other findings were rather distributed and
considered smaller issues, like unclickable names of uploaded files. The 14 findings we
considered as false positives were all related to the date chooser. This component contains
some labels which are clicked by users to navigate, e.g., between the previous and next
years. Although these labels are no links or buttons, they can be clicked. A Javascript
handles the clicks and takes the required actions. Here, the smell detection was wrong,
because the Javascript makes normally unclickable elements clickable. The intensities of
the false positives findings were between 1.4% and 30.7%.

6.2.4.12. Findings for Usability Smell: Required Text Field Focus

For the smell "Required Text Field Focus", our detection resulted in 53 findings in all three
data sets (24 applicants portal, 4 reviewer portal, 24 overall data set), of which we consid-
ered 37 as true positives. The intensities of the true positive findings were between 28%
and 100%, the intensities of the false positive findings between 11% and 52%. All the true
positives related to different views, where there was no default cursor positioning when a
view was opened. An example is the login page. 8 out of the 16 findings that we consid-
ered as false positives were for views in the applicants portal. These views contained forms
where the first form element was not a text field but a combo box. These views also did not
have a focus on the first combo box after loading. Hence, these findings were also indirect
hints for usability issues. The remaining 8 findings did not reference views with a missing
text field focus and were, therefore, considered as false positives. Their intensity was below
15% correlating with our assessment.

6.2.4.13. Findings for Usability Smell: Good Defaults

Of the 63 findings for the smell "Good Defaults" (27 applicants portal, 7 reviewer portal,
29 overall data set), we considered 29 as true positives. These findings showed mainly the
standard selections applicants took when filling out the application wizard. For example,
our data showed, that most applicants selected the gender male or that their previous studies
were full time studies. But some of these findings also have to be considered with caution.
For example, although selecting the gender male would be a good default from the usability
point of view, it is not from an ethical perspective considering equal opportunities. 24 of the
false positives were related to unrecorded personal data and passwords of the applicants.

6. Case Studies 118

This is caused by the fact, that if the contents of a specific text field are not recorded by
our approach, the stored data is an empty string for each text input. Hence, our evaluation
assesses the empty string as a "good default". But this is no helpful finding. The remaining
four false positives were related to groups of check boxes and showed the typical selections
users took. But as with other findings, these defaults should not always be preselected.
For example, one of the findings referred to the information about how the applicants got
to know about the applicants portal. This questionnaire providing statistics should not be
biased by preselected check boxes.

6.2.4.14. Findings for Usability Smell: Unused GUI Elements

The findings for the smell "Unused GUI Elements" were the hardest to be analyzed. The
findings were polluted with unused GUI elements, which did not belong to the portal, but
were automatically added by browser plugins at client side. In addition, there were findings
for GUI elements, whose position in the GUI model changed once, because of an additional
message displayed to a user. Finally, there were GUI elements that had DOM ids, which
were session specific. If these elements were not used in the session to which they belonged,
they were identified as never used also by other users. Due to these issues, the intensities of
all findings for this smell were unexpectedly high and of not much worth.

We considered all of the 30 findings for the applicants portal, which were the same for
the overall dataset, as false positives. They only referenced noisy GUI elements that do
not belong to the applicants portal. For the reviewer portal, there were 5 out of 21 findings
that we considered as true positives. Two of them were related to filters on overview pages.
For example, a reviewer can list all applications that are yet incomplete. This list can then
be filtered further, e.g., for applications from students coming from a specific university.
The list of available filters is rather long, and not all filters were used by the reviewers.
Hence, these findings were considered as true positives. Perhaps, the number of available
filters could be reduced, or not all filters need to be available on all overview pages. Two
further findings were related to adding a new reviewer account to the system. During this
process, a reviewer can be assigned a fax number. But as indicated by the findings, this
was never done. Hence, these findings are true positives. Finally, the reviewer portal offers
a functionality to automatically assign a list of available reviewers to applications. This is
done to have an even distribution regarding the number of applications the reviewers shall
assess. This function was never used and the corresponding finding was, hence, considered
as true positive.

6.2.5. Result Validation: Application of a User-oriented Usability Test

To validate the results of the usability smell detection, we performed a user-oriented usabil-
ity evaluation of the applicants portal. In this evaluation, we let ten test participants do a
complete application process. The test participants were bachelor students at our univer-

119 6.2. Case Study 1: Master Application Portal

sity. If they wanted to advance to the master studies, they would need to use the applicants
portal to apply for it. Hence, they were representative prospective users for the portal.
Nonetheless, they did not represent all user groups of the portal, as there are usually many
applications of foreigners. One of the test participants was female, the others male. They
all considered their English skills to be between medium to very good. Two of the test par-
ticipants saw the system before, as they were in the process of preparing their application
for the master studies. But none had finalized the application.

All test participants performed a full application process, which we subdivided into the
five logical units shown in the left column of Table 6.12. On average, performing a full ap-
plication took the test participants 37.4 minutes with a standard deviation of 5.8. When the
test participants had to upload files, e.g., a CV, we asked them to upload dummy files, but to
tell us if they would know, which file would be required in a real life scenario. During the
application process, we observed the test participants and made notes about the problems
they had. Furthermore, we asked them to do Thinking Aloud (see Section 2.3). Afterwards,
we counted the problems the test participants had and considered every problem that oc-
curred for at least two test participants as usability issue. Every problem that occurred for
five or more test participants was considered severe. The number of found usability issues
using this process is given in the second and third column of Table 6.12.

Detected issues
All Severe Semantic level

Registration and first login 3 3 3
Entering personal data, e.g., name, date of birth, etc. 2 0 1

Former studies 4 3 3
Language proficiency 4 3 4

File upload and submission 3 2 1

Table 6.12.: Number of usability issues found using a user-oriented usability evaluation with
Thinking Aloud for the applicants portal in the first case study.

Many usability issues, that were detected for the applicants portal by using the user-
oriented usability evaluation, were on a semantic level (listed in the fourth column of Ta-
ble 6.12). This means, that test participants had problems in understanding, e.g., the termi-
nology when entering their grade or did not know how to proceed. Comparing these issues
with the smells found using our approach, we did not find any overlap. In addition, one
of the issues for the file upload and submission of the application was a statement for the
chosen colors of user messages, which also did not correlate to our usability smell detection.

The three remaining issues found through the user-oriented usability evaluation over-
lapped with our findings. The first is, that two test participants found, that the format of
the telephone number entered for the personal data is not validated. Furthermore, several

6. Case Studies 120

test participants were unsure about the format of the grade of the former studies and made
corresponding errors. Finally, 6 test participants had problems with the uploading of files
at the end of the process due to the required page reload and scrolling. In addition, one
participant found, that the reset button in the forms of the wizard pages seems to have no
effect, i.e., it does not provide feedback.

Regarding the reviewer portal, we had informal meetings with some reviewers using
it. During these meetings, we checked if some smells detected by our approach correlate
with the experience of the reviewers. For example, the reviewers confirmed the missing
feedback issue found by our approach, that occurs when switching between different lists
of the applications. In these meetings, the comments of the reviewers were also more on a
semantic level, which is not addressed by our usability smell detection.

6.3. Case Study 2: Research Website

In the second case study of this thesis, we applied our approach on a website of a research
group at the Institute of Computer Science, University of Göttingen [103]. In this section,
we first describe the analyzed software and provide several facts about the case study. Then,
we list details and results of the task tree generation and the verification of the task tree
representativeness applied in this case study. Finally, we show the findings of the usability
smell detection and compare them with the results of a user-oriented usability test.

6.3.1. Case Study Facts

The research website analyzed in this case study mainly serves two purposes. First, it
provides information about the research done by the research group. This covers group
members, research topics, research projects, and publications. Second, the website provides
information about study courses offered by the group. This includes organizational course
information as well as respective learning material, including slides and exercise sheets.

The website was recorded over a period of almost two years. In between, there was
a major structural change of the website, in which no recording took place. Hence, we
subdivided the recorded data into data of the old version and data of the new version of the
website, to ensure to not mix the data of the different website structures. For the old version,
we recorded more than 3,200 distinct client browsers causing more than 101,000 events in
one year and two months. For the new version, we recorded over 1,600 client browsers
causing more than 114,000 events in seven months. The details of the number of recorded
sessions and events are listed in the upper part of Table 6.13.

The old and the new version of the website are different, but offer a similar basic structure.
A screenshot of the main page of the new version of the website is shown in Figure 6.5.
Below the headline, there is the main menu. Some menu items contain sub menus, as
shown for the Teaching menu entry. On the center stage, there is some initial information

121 6.3. Case Study 2: Research Website

Old version New version
Recorded data

Recording period 06/2013 - 08/2014 10/2014 - 04/2015
(15 months) (7 months)

Events 101,856 114,749
Sessions 13,398 9,627

Distinct clients 3,203 1,665
Post-proc. data

Events 43,143 43,298
Distinct actions 1,244 864

Sessions 10,620 7,236
Session length µ 4.0 5.9
Session length σ 5.9 8.9

Table 6.13.: Facts of the second case study including recorded and post-processed actions
for the old and the new website version.

about the research done by the group, as well as links to the most important projects and
contact information. On the right, there are two boxes. The first shows a list of recent news,
the second lists the courses currently offered by the research group.

As in the first case study, we parsed the events into AutoQUEST, let AutoQUEST de-
tect common page elements, and post-processed the recorded events to ensure, that each
remaining event represents an action instance (see Annex A). Pseudonymization of entered
text was not required. Only for login purposes, users need to enter a user name and a pass-
word. We did not record both by using the CSS class mechanism offered by AutoQUEST.
The resulting number of events, sessions, and distinct actions, that were subsequently used
in the task tree generation, are listed for both website versions in the lower part of Ta-
ble 6.13. Here, we also included the average session length and the standard deviation. In
comparison to the first case study, the average session length is much shorter and there are
many sessions that contain only one or two events.

6. Case Studies 122

Figure 6.5.: Screenshot of the homepage of the new version of the research website analyzed
in the second case study.

6.3.2. Task Tree Generation Results

As in the first case study, we generated task trees based on the post-processed data using
our approach with and without merging of similar sequences. The number of the resulting
tasks for the old and the new website version is listed in Table 6.14. The table is structured
similar to the corresponding table of the first case study and, hence, not described in more
detail. Only a few selections and optionals are created during the merging of task trees
in this case study. The number of sequences and iterations before and after the merge are
similar. The ratio of covered action instances is similar for both data sets. There are only
marginal differences between before and after the merge. When generating task trees for the
two data sets in this case study, we did not have task tree generation and merging failures as
described in Section 4.4.2.3 and 4.4.3.2.

123 6.3. Case Study 2: Research Website

Old version New version
Generated tasks

Sequences 1,841 1,204
Iterations 566 446

Most prominent sequences 20,5% 20,1%
After merge

Sequences 1,834 1,191
Iterations 567 445

Selections 1 2
Optionals 3 4

Most prominent sequences 20,2% 20,2%
Action instance coverage

All sequences 73,8% 73,9%
Most prominent 56,9% 57,8%

Most prominent after merge 56,9% 57,9%

Table 6.14.: Task trees generated in the second case study for the two website versions.

An example for a task tree generated for the homepage of the new website version in
Figure 6.5 is shown in Figure 6.6. The represented task shows the typical actions students
take to access information about an offered course. First, they click on the menu to open
the list of available courses. After some scrolling, they click on the link of a specific course
and then scroll down the page.

Figure 6.6.: Example for a task tree generated in the second case study.

6. Case Studies 124

6.3.3. Task Tree Representativeness

Identical to the first case study, we evaluated the representativeness of the generated task
trees also in the second case study. The details for the created subsets of both data sets can
be found in the Table 6.15. This table is subdivided into two subtables, the first containing
the subset information for the old, and second for the new website version. The structure of
the table is identical to Table 6.4 (see Section 6.2.3).

The number of failures for the task tree generation is seven for the old and four for the new
version of the website. There were no merging failures. As there were only few failures,

Old version 1% 2.5% 5% 10% 20% 30% 40% 50%
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Subset statistics
No. of subsets 50 30 20 10 5 9 6 6

Generation failures 0 1 3 0 0 1 1 1
Merging failures 0 0 0 0 0 0 0 0
Subset contents

Events 431 0 1,078 0 2,157 0 4,314 1 8,628 1 12,942 0 17,257 0 21,571 0
Distinct actions 118 11 212 11 317 15 461 20 652 13 785 21 895 10 967 20

Generated tasks
Sequences 28 3 69 6 129 6 244 8 445 9 637 13 827 12 1,014 16
Iterations 23 4 51 6 82 7 135 11 219 12 282 10 342 9 389 12

After merge
Sequences 28 3 69 6 129 6 244 8 444 9 638 14 825 11 1,012 17
Iterations 23 5 51 6 82 7 135 11 219 11 282 11 343 9 390 12

Selections 0 0 0 0 0 0 0 0 1 1 1 1 1 1 2 1
Optionals 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

New version 1% 2.5% 5% 10% 20% 30% 40% 50%
µ σ µ σ µ σ µ σ µ σ µ σ µ σ µ σ

Subset statistics
No. of subsets 50 30 20 10 5 9 6 6

Generation failures 1 0 0 0 0 3 0 0
Merging failures 0 0 0 0 0 0 0 0
Subset contents

Events 432 0 1,082 0 2,164 2 4,329 1 8,660 1 12,989 0 17,319 0 21,649 0
Distinct actions 89 12 159 12 232 14 331 16 460 20 541 17 607 12 677 9

Generated tasks
Sequences 20 3 50 6 94 8 174 6 312 8 432 16 562 21 682 11
Iterations 19 4 38 7 63 10 105 13 165 7 216 12 253 9 298 7

After merge
Sequences 20 3 50 6 94 8 173 6 311 10 427 15 555 20 673 11
Iterations 19 4 38 7 63 10 105 13 165 7 217 12 253 9 298 7

Selections 0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 1
Optionals 0 0 0 0 0 0 1 1 1 1 2 1 3 1 3 0

Table 6.15.: Information about created subsets, generated task trees, and the comparisons
done for the data sets of the second case study.

125 6.3. Case Study 2: Research Website

it was not required to recreate any subsets. The intended average subset size is reached
for both data sets with only minimal deviations (standard deviation is at most two action
instances). This is because both data sets consist of relatively short sessions.

As in the first case study, the number of detected sequences and iterations is similar for
different subsets of the same size. The standard deviation decreases with increasing subset
size. This holds true for the task trees before and after the merge. As in the full data sets,
the number of detected selections and optionals in the subsets is rather small. At most three
optionals and two selections were detected.

In Figure 6.7, we show the plot of the cumulative number of action instances covered
by the sequences, which were detected for the new website version before the merge. The
plot is created in the same way as the corresponding plot for the first case study and, hence,
not described further. As shown in the plot, the most prominent sequences, being 20.1% of
all sequences, cover 57.8% of the recorded action instances. All detected sequences cover

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

C
u

m
u

la
ti

ve
 a

ct
io

n
 i

n
st

a
n

ce
 c

o
ve

ra
g

e
 i

n
 %

 o
f

a
ll

re
co

rd
e

d
 a

ct
io

n
 i

n
st

a
n

ce
s

20,1

57,8

73,9

Figure 6.7.: Plot for the cumulative action instance coverage of the unmerged sequences
of the new website version (black) and five subsets for the subset sizes 2.5%
(grey), 10% (red), and 40% (cyan).

6. Case Studies 126

73.9% of the recorded action instances. Similar to the first case study, the plot shows, that
already a small number of sequences covers a large amount of action instances. However,
in this case study, the achieved coverage is not as high as in the first case study. This is
because the second case study contains many short sequences, for which no or only a few
tasks were detected. Especially for sequences containing only one event, no task trees were
detected. The same plot for the data set of the old website version, as well as for the merged
task trees for both data sets, are shown in Annex F.1. They demonstrate the same relation
between the sequences and the covered action instances, as well as between the subsets and
the respective full data set.

Furthermore, we performed the evaluation of the representativeness of the task trees gen-
erated for the different subsets. Table 6.16 lists the average ratio (µ) and standard deviation
(σ) of sequences transformed into grammars. In comparison to the first case study, the ratio
of transformed sequences is higher, which is due to the fact that less, and, hence, also less
complex sequences were detected. For both data sets, the ratio of transformed sequences
does not decrease with increasing subset size as in the first case study. Also, there is no dif-
ferences between unmerged and merged sequences. This is because only a few selections
and optionals are detected in this case study.

Old version New version
Unmerged Merged Unmerged Merged

µ σ µ σ µ σ µ σ

1% 96.8% 3.8 96.8% 3.8 98.7% 3.0 98.7% 3.0
2.5% 97.3% 2.2 97.3% 2.2 97.9% 2.6 97.9% 2.6

5% 97.9% 1.5 97.9% 1.5 98.6% 1.7 98.6% 1.7
10% 97.7% 1.3 97.7% 1.3 98.5% 1.1 98.5% 1.1
20% 96.9% 0.8 96.9% 0.8 97.4% 0.3 97.3% 0.3
30% 95.5% 1.5 95.5% 1.5 95.8% 0.6 95.7% 0.6
40% 96.0% 0.4 95.9% 0.5 97.1% 1.4 97.1% 1.4
50% 95.5% 0.5 95.4% 0.5 97.3% 0.4 95.4% 1.0

Table 6.16.: Average ratio of sequences that were transformed into grammars for checking
their representativeness for other subsets of the same size as well as for the
corresponding full data set in the second case study.

After the transformation into grammars, we generated parsers for each subset. As in the
first case study, we determined the average number of matches in other subsets of the same
size or the respective full data set. We plot these results for the unmerged task trees of the
new website version in Figure 6.8. The structure of this plot is already described for the first
case study and, therefore, not described in more detail in this chapter. The corresponding
plot for the merged task trees, as well as both plots for the old website version can be found
in Appendix F.2.

127 6.3. Case Study 2: Research Website

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full new version data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure 6.8.: Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the new website version data
set in the second case study.

Figure 6.8 shows, that as in the first case study, the average number of matches increases
with a higher subset size. This holds true for other subsets of the same size as well as
for the full data set. In addition, the ratio of action instances matched solely by the most
prominent sequences increases even stronger. In contrast to the first case study, the matches
are significantly lower. As with the lower task detection rate, this is caused by the much
shorter user sessions in this case study. There is no break-even point after which sequences
generated for a subset of a specific size match more action instances in another subset than
in the subset from which they were created. This break-even point can again be observed in
the evaluation of the old website version (see plot in Appendix F.2).

6.3.4. Usability Evaluation Results

Also in the second case study, we applied our usability smell detection. We performed our
analysis on both data sets as well as with unmerged and merged task trees. The resulting
numbers of findings for the different usability smells are shown in Table 6.17. The table is
structured as for the first case study and, hence, not described further. As in the first case
study, we performed a manual inspection of at most 30 smells per smell type, to check if
they are true positives or not. In the following subsections, we provide details about the
tasks and actions for which smells were found and why we considered the smells as true
positives or not.

6. Case Studies 128

Old version Before merge After merge
Findings Inspected Findings Inspected
All Dupl. All Dupl. True positive All Dupl. All Dupl. True positive

Based on task trees
Important Tasks 219 35% 30 47% 30 (100%) 215 35% 30 47% 30 (100%)

Required Inefficient Actions 1,219 23% 30 27% 30 (100%) 1,215 23% 30 27% 30 (100%)
High GUI Element Distance 1,249 20% 30 47% 7 (23%) 1,242 20% 30 47% 9 (30%)

Missing Feedback 80 - 30 - 2 (7%) 80 - 30 - 2 (7%)
Required Input Method Change 119 31% 30 47% 0 (0%) 114 30% 30 43% 0 (0%)

Missing User Guidance 1 - 1 - 1 (100%) 1 - 1 - 1 (100%)
Based on action instances

Required Text Format 3 - 3 - 0 (0%)
Text Input Repetitions 2 - 2 - 0 (0%)

Text Input Ratio 1 - 1 - 0 (0%)
Single Checking of Checkboxes 0 - - - -

Misleading Click Cue 163 - 30 - 7 (23%)
Required Text Field Focus 1 - 1 - 1 (100%)

Good Defaults 1 - 1 - 0 (0%)
Unused GUI Elements 103 - 30 - 0 (0%)

New version Before merge After merge
Findings Inspected Findings Inspected
All Dupl. All Dupl. True positive All Dupl. All Dupl. True positive

Based on task trees
Important Tasks 242 40% 30 50% 30 (100%) 323 28% 30 43% 30 (100%)

Required Inefficient Actions 786 24% 30 30% 30 (100%) 783 24% 30 30% 30 (100%)
High GUI Element Distance 713 23% 30 47% 6 (20%) 700 23% 30 47% 5 (17%)

Missing Feedback 59 - 30 - 2 (7%) 59 - 30 - 2 (7%)
Required Input Method Change 126 35% 30 50% 0 (0%) 118 35% 30 50% 0 (0%)

Missing User Guidance 1 - 1 - 0 (0%) 1 - 1 - 0 (0%)
Based on action instances

Required Text Format 4 - 4 - 0 (0%)
Text Input Repetitions 2 - 2 - 0 (0%)

Text Input Ratio 1 - 1 - 0 (0%)
Single Checking of Checkboxes 0 - - - -

Misleading Click Cue 108 - 30 - 7 (23%)
Required Text Field Focus 1 - 1 - 1 (100%)

Good Defaults 2 - 2 - 0 (0%)
Unused GUI Elements 74 - 30 - 0 (0%)

Table 6.17.: Numbers of detected usability smells in the different data sets of the second
case study, including the detection in unmerged and merged task trees.

129 6.3. Case Study 2: Research Website

6.3.4.1. Findings for Usability Smell: Important Tasks

For the usability smell "Important Tasks", we analyzed 30 findings for both data sets. The
detailed numbers of findings are listed in Table 6.18. The left column lists the tasks groups.
The middle columns list the findings before and after merging task trees for the data set
of the old website version. The right columns list the corresponding findings for the new
website version.

Findings for usability smell "Important Tasks" Old version New version
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Navigation to and presentation of course details 10 10 8 8 8 8 7 7
Navigation to and presentation of staff details 8 8 8 8 7 7 7 7
Navigation to and presentation of publication details 3 3 4 4 4 4 6 6
Navigation to and presentation of research and project details 3 3 3 3 3 3 3 3
Login process 5 5 6 6 8 8 7 7
Combinations of tasks of different groups 1 1 1 1 - - - -

Table 6.18.: Numbers of detected "Important Tasks" usability smells in the two data sets of
the second case study.

Also in this case study, we considered all findings for the smell "Important Tasks" as true
positives. The reasons for this are the same as in the first case study. The intensities of
the inspected findings varied from 0.6 to 4.3. An interesting aspect in this case study is the
following. We first evaluated the old version. Then the new version was created and some
things were adapted based on our findings for the old version. One change was, that users
of the old version could not navigate directly from the homepage to details of a specific
course offered by our group. Instead, they had to navigate via an intermediate page. This
navigation was referenced by the finding, that had the highest intensity for the old version,
i.e., it was executed very often. In the new version, there are direct links to current courses
on the homepage of the website. In the evaluation of the new version, a task using these
additional links is now referenced by a true positive finding for this smell, what shows, that
these links are used rather often and that the corresponding new tasks became important for
the users.

6.3.4.2. Findings for Usability Smell: Required Inefficient Actions

For the usability smell "Required Inefficient Actions", we analyzed 30 findings for both data
sets. The detailed numbers of the considered smells including the true positives are listed in
Table 6.19. We considered all findings for this smell as true positives as the referenced tasks
contained at least one inefficient in ten actions. The intensities of the smells were higher in
comparison to the first case study. For example, in the data sets of the old version, only 10

6. Case Studies 130

findings had an intensity lower than 50%, and only one for the unmerged and two for the
merged task trees had less than 34% intensity. For the new version, only 3 findings had an
intensity lower than 50%. The lowest intensities were 14.3% for the old, and 25.2% for the
new website version.

Findings for usability smell "Required Inefficient Actions" Old version New version
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Navigation to and presentation of course details 11 11 11 11 11 11 11 11
Navigation to and presentation of staff details 9 9 9 9 10 10 10 10
Navigation to and presentation of publication details 5 5 4 4 3 3 3 3
Navigation to and presentation of research and project details 3 3 3 3 2 2 2 2
Navigation to the homepage - - - - 1 1 1 1
Login process 2 2 3 3 3 3 3 3

Table 6.19.: Numbers of detected "Required Inefficient Actions" usability smells in the two
data sets of the second case study.

Also in this case study, there were many findings for tasks with only two actions, of
which one was inefficient. These were 18 and 19 findings for the unmerged and merged
task trees of the old version, as well as 18 for unmerged and merged task trees of the new
version. The findings with the highest intensity were for tasks with three actions, of which
two were inefficient (6 for the unmerged and merged task trees of the old version, 7 for the
unmerged and merged task trees of the new version). In addition, similar to the first case
study, we observed, that merged tasks including optional inefficient actions provide more
reliable intensities.

One of the major findings based on this smell is, that users often have to scroll when
displaying information. Especially, when navigating to a new page, usually the next action
is a scroll. This also did not improve in the new website version. The reason may be, that
both versions have a rather large header, which cause problems on smaller displays.

6.3.4.3. Findings for Usability Smell: High GUI Element Distance

For the usability smell "High GUI Element Distance", we analyzed 30 findings for both data
sets. The detailed numbers of the detected smells for the different task groups are listed in
Table 6.20. We considered only 27 of the 120 findings as true positives. Also in this case
study, many GUI elements required for a specific task are located close to each other in the
corresponding views, i.e., pages of the website. This correlated with the low intensities of
the corresponding findings. All but two false positive findings had an intensity of below 0.5.

For the old version, we observed, that for the navigation to details of a specific course,
there was a true positive finding for several corresponding tasks. As mentioned, the new
website version was adapted to have direct links to courses on the homepage to ease the

131 6.3. Case Study 2: Research Website

Findings for usability smell "High GUI Element Distance" Old version New version
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Navigation to and presentation of course details 9 6 9 6 6 3 6 4
Navigation to and presentation of staff details 4 1 4 1 3 0 3 0
Navigation to and presentation of publication details 6 0 6 1 7 2 6 1
Navigation to and presentation of research and project details - - - - 3 0 4 0
Usage of the search functionalities 1 0 1 0 - - - -
Login process 8 0 7 1 8 0 7 0
Combinations of tasks of different groups 2 0 3 0 3 1 4 0

Table 6.20.: Numbers of detected "High GUI Element Distance" usability smells in the two
data sets of the second case study.

access to this information. But still, there were corresponding findings for this smell for the
new website version. This is because, the old navigation is still possible and used. For the
new tasks utilizing the direct links, there were no findings for this smell.

One issue that we observed in the findings for this smell is, that for the new version there
was a task made up of actions caused by a JavaScript and not by the users. For this task, we
had findings with a high intensity, which we considered as false positive.

6.3.4.4. Findings for Usability Smell: Missing Feedback

For the usability smell "Missing Feedback", we analyzed 30 findings for both data sets. The
detailed numbers of the findings for this smell are listed in Table 6.21. We considered only
8 of the 120 findings as true positives. As for the first case study, the findings were the same
for merged and unmerged task trees. The reasons for the rather few true positives are as
manifold as in the first case study. We considered many findings as an occasional reuse or

Findings for usability smell "Missing Feedback" Old version New version
Before merge After merge Before merge After merge
Smells True Smells True Smells True Smells True

Filter for courses listed on website 1 0 1 0 1 0 1 0
Navigation to a specific course - - - - 2 0 2 0
Download of files provided for a course 1 1 1 1 1 1 1 1
Navigation to and in staff details 3 1 3 1 3 1 3 1
Filter for publications listed on website 1 0 1 0 - - - -
Navigation to news entry - - - - 1 0 1 0
Other links 24 0 24 0 22 0 22 0

Table 6.21.: Numbers of detected "Missing Feedback" usability smells in the two data sets
of the second case study.

6. Case Studies 132

a random network latency. This correlated with a rather low intensity of the findings (only
6 for the old and 7 for the new version with an intensity above 35ms). The navigations to
the staff details were considered as true positive, as the loading of these pages was partially
slow. In the old version, this was caused by a missing caching of these pages on the server
side. In the new version, there were some bugs causing the staff pages to become partially
large and, hence, slow to be loaded. For both website versions, the finding with the highest
intensity (7,715ms for the old, 2,100ms for the new version) was for the download of files
provided for a specific course. We considered these smells as true positives, as the download
is partially rather slow.

As in the first case study, we observed some findings for different elements of the same
page, which are considered semantically equal. For example, there were some findings for
links to a specific staff on the staff overview page. These finding could only occur if the
users navigated from the staff overview to a concrete staff, then utilized the back button of
the browser, and then navigated to the same or other staff. We considered these findings as
false positives.

For this smell, the intensities did not provide a separation between true and false positives.
The lowest intensity of a true positive for the new version was 1,290ms. In contrast, the
highest intensity of a false positive was 1,815ms. Similar values were given for the old
version. With only two true positive findings per inspected set, the number of true positives
is also rather low and not necessarily representative.

6.3.4.5. Findings for Usability Smell: Required Input Method Change

For the usability smell "Required Input Method Change", we analyzed 30 findings for both
data sets. All smells referred either to the login mechanism of the website or the utilization
of the search functionality. We considered none of the smells as true positives. The reason
is, that both functionalities require the entry of text and can also be utilized with the key-
board only (navigation using the tabulator key is supported). The intensities of the findings
varied between 12.5% and 98.4%.

6.3.4.6. Findings for Usability Smell: Missing User Guidance

The intensities of the findings for the smell "Missing User Guidance" in this case study
were 3.37 for the old version and 2.35 for the new version of the website. The intensities
were the same between merged and unmerged task trees. The intensity for the new ver-
sion is better than for the old version, which indicates an improvement regarding the user
guidance. Unfortunately, the smell requires sessions containing at least 10 action instances
to be calculated. But many of the recorded sessions were shorter, causing that in this case
study 25,063 of 43,143 processed action instances of the old version and 19,277 of 43,298
processed action instances of the new version were not considered in the calculation of the

133 6.3. Case Study 2: Research Website

intensity of this smell. Therefore, the results are not necessarily representative in this case
study.

6.3.4.7. Findings for Usability Smell: Required Text Format

For the usability smell "Required Text Format", we analyzed 7 findings in both data sets.
They all referred either to the login process or the search functionality of the website. We
considered none of the findings as true positives. The reason is, that they referenced text
fields, in which no special format is required. This is in line with the very low intensity of
the findings of below 8%.

6.3.4.8. Findings for Usability Smell: Text Input Repetitions

For the usability smell "Text Input Repetitions", we analyzed 4 findings and considered none
of them as true positives. The reason for two of the findings is, that they were occasional
identical entries in the search fields of the website. The other two findings were for the
usage of the same user name in the password reset and the login functionality. Here, it
could be supported, that the user name, when entered in either of the text fields in a user
session, is automatically entered in the other one. But, although being comfortable, due to
the sensitivity of user data, this should not be implemented.

6.3.4.9. Findings for Usability Smell: Text Input Ratio

The intensity of the findings for the smell "Text Input Ratio" in this case study was below
1% for both data sets, which is rather low. This is in line with the fact, that text inputs are
only required for login and search purposes. Therefore, we considered the findings as false
positives.

6.3.4.10. Findings for Usability Smell: Single Checking of Checkboxes

For this smell, there were no findings in this case study. The reason is, that the old and new
version of the website did, respectively do not contain any checkboxes. Hence, no findings
needed to be analyzed.

6.3.4.11. Findings for Usability Smell: Misleading Click Cue

For this smell, we checked 60 findings, of which we considered 14 (7 for each data set) as
true positives. The 60 findings can be subdivided into three groups. The first group covers
30 findings, which showed occasional clicks on the corresponding GUI elements and which
we, therefore, considered as false positives. Their intensities were also rather low (below
2%) matching this assessment. The second group, consisting of 16 findings, referred to
clicks on headlines. Their intensities reached up to 51.7%. We considered these findings

6. Case Studies 134

as false positives, although it is partially not clear, why users clicked the headlines. Here,
it would have been helpful to have information about how many distinct users clicked the
headlines to be able to check if perhaps only a small group of users has such kind of style
of using a website. The third group are the 14 true positive findings, whose intensities were
between 2.0% and 23.6%. Examples here were clicks on unclickable texts or images. For
example, users clicked the image of a staff member on the staff details page, probably, to
get a larger version of it, although this functionality is not available. Another example are
clicks on names of former staff members, for which no details page exists anymore, and for
which, hence, there is no corresponding link.

6.3.4.12. Findings for Usability Smell: Required Text Field Focus

For the smell "Required Text Field Focus", our detection returned one finding per data set,
of which both were true positives. The findings were for the login page of the website
and showed, that many users placed the cursor into the user name field as first action when
opening the page. An inspection of the website showed, that this is actually required as
there is no default cursor positioning done on that page. The intensities of these findings
were 55.9% and 49.7%.

6.3.4.13. Findings for Usability Smell: Good Defaults

Of the 3 findings for the smell "Good Defaults", we considered none as true positives. This
is due to the fact, that, as in the first case study, the findings referred to unrecorded user
name and password fields.

6.3.4.14. Findings for Usability Smell: Unused GUI Elements

Also in this case study, the findings for the smell "Unused GUI Elements" were hard to
analyze, as they were polluted with GUI elements automatically added by browser plugins.
In addition, there were findings for unclicked links in long link lists, such as search results.
Furthermore, many findings referenced links inside of longer texts. We did not consider any
of the findings as true positives. Only the links in text could perhaps be reduced. But as
they do not require additional screen space (the text without the links would cover the same
space), these links do not disturb the user’s attention.

6.3.5. Result Validation: Application of a User-oriented Usability Test

In this case study, we performed a user-oriented usability evaluation on the old version of
the website. This evaluations was similar to the one in the first case study and done in the
context of a bachelor thesis [104]. For the new version, no evaluation was done. For the old
website version, we started by identifying the typical user groups of the website, which are
students, researchers, and other users. Then, we determined the tasks these user groups are

135 6.3. Case Study 2: Research Website

likely to perform on the website. This was required, as in contrast to the first case study,
there was no single task, like "apply for the master studies", that can be performed by all
users. Then we assigned these tasks to the different user groups. Finally, we identified the
typical environments, in which the users usually use the website.

After this preparation, we performed a usability evaluation with 28 test participants, of
which 20 were students, 5 were researchers, and three were professional web developers,
i.e., other users. In each session, which we performed in the typical usage environments of
the test participants, we first asked the test participants to fill out a questionnaire for gaining
basic information about the test participants for assigning them to a user group. Then, the
test participants were asked to perform the identified tasks belonging to the corresponding
user group. Finally, the test participants were asked to fill out further questionnaires to get
additional information about their opinion on the website.

In sum, each test participant performed seven tasks. Five of them were identical for all
user groups. The other two were dependent on the user group of the test participant. For
example, a test participant belonging to the user group student had to search for information
about a specific course. In contrast, a test participant belonging to the user group researchers
had a task of searching for a specific publication. The whole setup, as well as the results,
are described in detail in [104] and are, hence, not fully mentioned here again.

The results of the evaluation were, similar to the first case study, mainly on the semantic
level. For example, some test participants noted, that a specific term used in the menu was
hard to understand or did not match their expectations. Furthermore, six test participants
mentioned, that the menu should be located on the left and not on the top. Eight partici-
pants did not like the visual design and structuring of the website, e.g., of the start page.
Six participants had problems with the fact, that the website is only available in English.
Comparing these results with the findings of our smell detection, there is, as in the first
case study, not much overlap. The only overlap is, that five test participants experienced
the website to be rather slow. This matches our findings for the "Missing Feedback" smell,
although the intensity of the findings is rather low.

One major disadvantage of this user-oriented usability evaluation is, that the selected
tasks only partially matched the real user tasks. For example, there was no task including
a user login on the website. Only one task referred to getting a specific information about
a course offered by the research group, but it focused on a course of the previous and not
the current semester. Furthermore, four of the selected tasks were not similar or identical to
those identified as "Important Task" by our smell detection. An example is the determination
of the bus line, that can be used to reach the institute of the research group. This task
was analyzed in the user-oriented usability evaluation, but is not one of the major tasks
accomplished on the website. Identifying the tasks for a user-oriented usability evaluation
more on the basis of the "Important Tasks" smell would perhaps have been more helpful
and, probably, would have resulted in more overlap between the results of both evaluations.

6. Case Studies 136

6.4. Case Study 3: BORG Calendar App

In our third case study, which is the smallest in this thesis, we analyzed the usage of the
Berger-Organizer (BORG) calendar application [105]. In this section, we first describe the
analyzed software and provide several facts about the case study. Then, we list details and
results of the task tree generation. Finally, we show the findings of the usability smell
detection and compare them with the results of a user-oriented usability evaluation.

6.4.1. Case Study Facts

BORG is a powerful tool to organize appointments and tasks. It is written in Java and used
as a standalone desktop application. While the overall focus of the tool is more on task
management, we solely analyzed the calendar usage. In addition to other functions, the
calendar functions of BORG cover:

• entering, changing, and deleting appointments,
• managing and assigning appointment categories,
• appointment repetitions daily, weekly, monthly, and yearly (supports both, always

the same day in a month, e.g., always the 10th, or the first of a specific weekday in a
month, e.g., the first monday),
• entering of private appointments that can be hidden in the calendar,
• year view, month view, week view, day view, and
• moving of appointments per drag and drop in these views.

A screenshot of BORG is shown in Figure 6.9. It displays the month view (frame in the
background) and the appointment editor (frame in the foreground). The month view can be
used to get an overview of all appointments in the selected month. The appointment editor is
opened, when the user adds a new appointment or changes an existing one. It can be opened
as a further tab next to the month view in the main frame or as a standalone frame as shown
in the figure. For an appointment, the user can specify a subject, start and end time, several
properties including the appointment category, as well as the repetition of the appointment
under the point Recurrence on the bottom left. The appointment editing is finished using
the Save button at the bottom. With the Save & Close button, the appointment editor is also
closed. On the right side of the appointment editor, there is the list of appointments of the
selected day. The day can be chosen at the top of the list. The appointments in the list are
displayed with subject and start time. If an appointment is a full day appointment, the start
time is omitted.

In this case study, we reused recordings of users, which were done in the context of a
bachelor thesis [106]. These recordings included log files of 16 users. These users were
invited to accomplish five selected goals and to perform corresponding scenarios. These
were:

137 6.4. Case Study 3: BORG Calendar App

• Create appointments for the birthdays of your parents and add them to an appropriate
category.
• Create an appointment on the 5th June 2015 that fits within the already present sched-

ule on that day.
• Handle any appointment collisions in the second week of April 2015.
• Delete the appointment category "Sport".
• Starting with July 2015, create an appointment for a "Group Meeting" that is held

monthly.

Figure 6.9.: Screenshot of the month view and the view for entering/editing appointments
of BORG, which was analyzed in the third case study.

6. Case Studies 138

The users were free to decide how to achieve these goals in BORG. This resulted in 16
recorded sessions containing almost 11,500 events. After post-processing the data, 2,537
events remained. The average session length is 158.6 events. The recordings took place in
a controlled environment. Therefore, this case study was not an analysis in the field. The
details of the recorded data are listed in Table 6.22.

All sessions
Recorded data

Recording period 01/2015 - 04/2015
(4 months)

Events 11,448
Sessions 16

Distinct users 16
Post-proc. data

Events 2,537
Distinct actions 223

Sessions 16
Session length µ 158.6
Session length σ 74.3

Table 6.22.: Facts of the third case study including recorded and post-processed actions for
all sessions.

Contrary to the two other case studies, no pseudonymization of the data was required in
this case study, as the users did not enter valid personal data. After recording, we parsed
the data into AutoQUEST. In contrast to the recording of websites, AutoQUEST is not that
elaborated in generating a harmonized GUI model and detecting identical GUI elements
in different sessions for Java applications. Instead, AutoQUEST offers a graphical editor
for GUI models, in which GUI elements considered distinct after parsing can be marked as
identical. We used this editor to manually create a harmonized GUI model. Afterwards,
we applied the commands on the parsed events for post-processing as listed in Annex A.
Through the post-processing, the number of events decreased as shown in Table 6.22.

6.4.2. Task Tree Generation Results

As in the other case studies, we generated task trees based on the post-processed data using
our approach with and without merging of similar sequences. As this case study is rather
small, no similar sequences were detected during the merge. Hence, the detected tasks
before and after the merge were the same. The number of the tasks detected in this case
study is listed in the upper part of Table 6.23. The lower part of the table contains the ratio
of recorded action instances that are covered by all and by the most prominent sequences.

139 6.4. Case Study 3: BORG Calendar App

Third case study
Generated tasks

Sequences 194
Iterations 74

Most prominent sequences 22,2%
Action instance coverage

All sequences 76,4%
Most prominent 47,1%

Table 6.23.: Task trees generated in the third case study.

When generating the task trees in this case study, we did not have task tree generation
failures as described in Section 4.4.2.3 and 4.4.3.2.

An example of a task tree generated for the BORG calendar is shown in Figure 6.10. The
task tree shows the actions that users take to add a new category to the available appointment
categories. First, the users click on the categories menu. Then, they select the menu point
to add a category. In a subsequently opening dialog, they enter the category name in a
dedicated text field and confirm the dialog using an OK button. We did not perform a check
for the representativeness of the generated task trees in this case study, as the amount of
recorded data is too small.

Figure 6.10.: Example for a task tree generated for the BORG calendar in the third case
study.

6.4.3. Usability Evaluation Results

Also in the third case study, we applied our usability smell detection. As the unmerged
and merged task trees in this case study do not differ (see Section 6.4.2), we performed the
analysis only on unmerged task trees. The resulting number of findings for the different
smell types are shown in Table 6.24. The table is structured as for the previous case studies

6. Case Studies 140

and, hence, not described further. As in the other case studies, we performed a manual
inspection of at most 30 findings per usability smell, to check if they are true positives or
not. In the following paragraphs, we provide details about the tasks and actions, for which
smells were found, and why we considered the findings as true positives or not.

Findings Inspected
All Dupl. All Dupl. True positive

Based on task trees
Important Tasks 194 30% 30 23% 30 (100%)

Required Inefficient Actions 0 - - - -
High GUI Element Distance 160 28% 30 27% 0 (0%)

Missing Feedback 12 - 12 - 2 (17%)
Required Input Method Change 22 9% 22 9% 10 (45%)

Missing User Guidance 1 - 1 - 1 (100%)
Based on action instances

Required Text Format 1 - 1 - 0 (0%)
Text Input Repetitions 2 - 2 - 0 (0%)

Text Input Ratio 1 - 1 - 0 (0%)
Single Checking of Checkboxes 3 - 3 - 0 (0%)

Misleading Click Cue 0 - - - -
Required Text Field Focus 0 - - - -

Good Defaults 0 - - - -
Unused GUI Elements 9 - 9 - 0 (0%)

Table 6.24.: Numbers of detected usability smells in the third case study.

6.4.3.1. Findings for Usability Smell: Important Tasks

For the usability smell "Important Tasks", we analyzed 30 findings. which we assigned to
the task groups as listed in Table 6.25. The table is structured similarly to those of the smell
analysis in the second case study. The only difference is, that it is smaller as only one data
set and only unmerged task trees are inspected.

For the same reasons as in the previous case studies, we considered all findings for the
smell "Important Tasks" as true positives. The intensities of the findings varied from 0.3
to 3.7. We observed, that there were several tasks, in which the users first clicked a GUI

Findings for usability smell "Important Tasks" Smells True
Navigation in the day or month view 17 17
Usage of the appointment editor 9 9
Performing drag and drop of appointments in day or month view 2 2
Exiting the application 1 1
Combination of above tasks 1 1

Table 6.25.: Numbers of detected "Important Tasks" usability smells in the third case study.

141 6.4. Case Study 3: BORG Calendar App

element and, afterwards, double-clicked it. This can be a hint, that users already expect a
reaction on the first click.

6.4.3.2. Findings for Usability Smell: Required Inefficient Actions

We did not observe findings for the usability smell "Required Inefficient Actions" in this
case study. The reason is, that no scrolling was performed by the users. This matches the
fact, that all users used the system in a controlled environment on a screen large enough to
display the full application GUI. Hence, no scroll bars were shown and used.

6.4.3.3. Findings for Usability Smell: High GUI Element Distance

For the usability smell "High GUI Element Distance", we analyzed 30 findings. The de-
tailed numbers of the detected smells for the different task groups are listed in Table 6.26.
We considered none of the 30 findings as true positives. The reason is, that all GUI el-
ements referenced by the findings were rather close to each other. This is also indicated
by the intensity of the findings, which was at most 0.5. In addition, for some findings the
intensity was relatively high in comparison to the concrete location of the GUI elements.
This is caused by the usage of panels in BORG. For example, BORG has parent panels for
submenu items. When clicking on a main menu item, e.g., on "Categories" (see Figure 6.9),
these panels appear on the screen close to the corresponding main menu item. The panels
are the reason, why a submenu item and the corresponding main menu item do not reside
in the same direct parent panel. Hence, our GUI element distance metric considers them
further away from each other than they actually are.

Findings for usability smell "High GUI Element Distance" Smells True
Navigation in the day or month view 16 0
Usage of the appointment editor 7 0
Change appointment categories 3 0
Exiting the application 1 0
Combination of above tasks 3 0

Table 6.26.: Numbers of detected "High GUI Element Distance" usability smells in the third
case study.

6.4.3.4. Findings for Usability Smell: Missing Feedback

For the usability smell "Missing Feedback", we analyzed all 12 findings in this case study.
Three of them referenced the navigation in the month view, where two indicated the multiple
usage of back and forth buttons to navigate to the next or previous month. As in the first
case study, we considered these navigational findings as false positives. The third finding

6. Case Studies 142

for the month view is for the button, which displays the name of the current month ("July
2015" in Figure 6.9) and which is located between the navigational buttons. This button has
no functionality in BORG, but was clicked by some users multiple times. Thereby, it also
does not show any reaction. Hence, this was a true positive. Its intensity was 924ms.

The remaining 9 findings were for the usage of the appointment editor. Eight referred to,
e.g., the arrows next to combo boxes or to the up and down buttons next to text fields (e.g.,
the priority text field in Figure 6.9). We did not consider them as true positives, as these
buttons are intended to be clicked multiple times. The intensities of these findings varied
between 151ms and 1,910ms. The ninth finding was for the save button on the bottom
left. A click on this button stores the appointment. Except the fact, that the entered data
disappears in the appointment editor, there is no other visual feedback. Hence, some users
clicked the button again. BORG then expects, that a second appointment shall be saved,
but denies this due to the fact that the appointment subject is empty. This is not helpful for
the user. Hence, we considered this finding as true positive, although its intensity was only
27ms.

6.4.3.5. Findings for Usability Smell: Required Input Method Change

For the usability smell "Required Input Method Change", we analyzed all 22 findings. 18
of them referred to the usage of the appointment editor. Six of the 18 findings referenced
tasks, in which the users interacted with the subject text field and, afterwards, with other
interaction elements to enter the appointment details. These tasks are not possible to be
done with the keyboard alone, as a navigation with the tabulator key from the subject text
field to other interaction elements is not fully supported in BORG. Hence, we considered
these findings as true positives. Their intensities varied from 30% to 100%. The other
findings for the appointment editor referenced tasks that ended with the usage of the subject
text field and, hence, did not indicate this issue. Therefore, they were considered as false
positives. Their intensities varied between 20% and 100%.

The remaining four findings referred to tasks for adding a new appointment category.
This is done by opening a small editor via the "Categories" menu. This editor consists of a
text field for the category name, a confirmation, and a cancellation button. When the editor
is opened and the user enters a category name, the editor cannot be committed using the
enter key. However, this should be supported considering the smell’s foundations. Hence,
these findings were considered as true positives.

6.4.3.6. Findings for Usability Smell: Missing User Guidance

The intensity of the smell "Missing User Guidance" in the third case study was 4.65. Hence,
only about half of the recorded action instances are covered by detected tasks. This may be,
because the data set is rather small. Considering, that all participants were asked to achieve
the same goals, and that our task detection finds more tasks, the more users perform the same

143 6.4. Case Study 3: BORG Calendar App

action combinations, then the intensity of this smell should be smaller for an application
providing a good user guidance. Hence, we considered this finding as true positive.

6.4.3.7. Findings for Usability Smell: Required Text Format

For the usability smell "Required Text Format", there was only one finding in this case study,
which referred to the subject text field in the appointment editor. It was found, because one
of the users used one special character when adding an appointment. As there is no required
format for this text field, we considered this finding as false positive. This corresponds to
the intensity of the finding, which was below 1%.

6.4.3.8. Findings for Usability Smell: Text Input Repetitions

For the usability smell "Text Input Repetitions" there were two findings, both referring to
the same two text fields. It is in the nature of this smell, that it always occurs twice. One
finding reports, that a text entered in a first text field was also entered in a second text
field. The second finding reports, that the same text entered in the second text field was also
entered in the first. In this case study, one user occasionally entered the same text twice
into two different text fields. Therefore, we considered the findings as false positives. This
correlates to the intensities of the findings, which were rather low.

6.4.3.9. Findings for Usability Smell: Text Input Ratio

The intensity of the usability smell "Text Input Ratio" in this case study is rather low with
only 3%. This matches the fact that users only entered text for the appointment and category
names. Therefore, we considered the finding as false positive.

6.4.3.10. Findings for Usability Smell: Single Checking of Checkboxes

For the smell "Single Checking of Checkboxes", there were three findings in this case study.
Two referred to the check boxes in the properties part of the appointment editor: one for the
appointment editor as separate frame and one for the appointment editor as additional tab
next to the month view. The third finding was for the two check boxes in the appointment
time section for the appointment editor as additional tab next to the month view. We con-
sidered all findings for this smell as false positives, as the check box groups do not provide
mutually exclusive alternatives. The intensities of the findings were also rather low with
3.7%, 3.5%, and 0.3% which matches our decision.

6.4.3.11. Findings for Usability Smell: Misleading Click Cue

In this case study, no user clicked on unclickable text or images. Hence, there was no finding
for the smell "Misleading Click Cue". Unfortunately, the smell detection did not react on

6. Case Studies 144

the unclickable button displaying the current month in the month view. This was due to the
fact, that this is a button and no plain text. So from its type, it is a clickable interaction
element, but BORG has no implemented functionality for it.

6.4.3.12. Findings for Usability Smell: Required Text Field Focus

There was no finding for the smell "Required Text Field Focus" in this case study. This
is correct, as for all views in BORG, that were utilized by the users, the keyboard focus is
correctly set to the first text field, when a view is opened. Hence, this is a true negative
finding for this smell.

6.4.3.13. Findings for Usability Smell: Good Defaults

Our usability smell detection did not return a finding for the smell "Good Defaults" in
this case study. The reason is, that the data set is rather small, and that the individual users
utilized different entries for appointment names. In addition, for Java platforms, the selected
values of combo boxes are not recorded and, hence, not analyzed by our approach. Finally,
the check boxes are only used seldom and, thus, not leading to a statistical significance of
their usage.

6.4.3.14. Findings for Usability Smell: Unused GUI Elements

In this case study, the findings for the smell "Unused GUI Elements" referenced many GUI
elements of unused functionalities of BORG. We did not consider any of the findings as true
positives. The reason for this is, that the data set is rather small, and that the application was
used only by a small set of users for a selected set of scenarios. Hence, we could not expect
all GUI elements to be used. This smell must be reconsidered after a larger scale usage of
the system.

6.4.4. Result Validation: Application of a User-oriented Usability Test

During 10 of the 16 user sessions recorded in this case study, we performed a user-oriented
usability evaluation with Thinking Aloud, similar to those in the other case studies. The
test participants were asked to perform the above mentioned scenarios. The scenarios were
given to them in different orders to prevent learning effects. During the execution of the
scenarios, the test participants commented their steps.

Of the 10 test participants, six were male, the others female. The English skills of the
test participants were rated by themselves between good to very good. Only one of the test
participants saw BORG before, but did not use it. All but one test participants were using
other software tools or apps to manage their appointments. The average duration of the test
sessions was 20 minutes with a standard deviation of 6 minutes.

145 6.4. Case Study 3: BORG Calendar App

The different scenarios are partially overlapping. For example, in several scenarios, a
new appointment must be created. Hence, we analyzed the usability issues not by scenario
but by all observed data. We identified the following problems the test participants had,
while performing the scenarios:

1. Five test participants had problems in finding the way to create an appointment, two
needed support by the evaluator.

2. Five test participants had problems in selecting the right monthly repetition for the
group meeting appointment, as they did not understand the differences between the
available repetition types.

3. Five test participants did not see collisions in appointments, which were actually
there.

4. Four test participants had problems, that a newly created appointment category is not
instantly visible in the appointment editor if this editor was already opened during the
category creation.

5. Four test participants did not understand the function of the save button in the ap-
pointment editor.

6. Three test participants did not understand the red indicator attached to some appoint-
ments in the right list of the appointment editor.

7. Three test participants where confused by the hiding of private appointments, i.e.,
they created a new appointment as private and wondered why it is not displayed in
the month/day view.

8. One test participant clicked on the central button in the upper part of the month view
and wondered why nothing happened.

Considering these results, also in the third case study there are several semantic issues (2,
6, and 7), for which there is no overlap with the findings of our usability smell detection.
In addition, issue 3 refers to a functionality that is not directly supported by BORG, as
appointment collisions are not detected and marked. Issue 4 is a bug in BORG. Hence,
these two findings can also not be in accordance with our usability smell detection.

But there are overlaps with other issues. For example, the first issue is indicated by the
findings of the smell "Important Tasks", where users clicked and, afterwards, double clicked
the same GUI element. This corresponds to the searching behavior, which we observed in
the user-oriented usability evaluation, where users tried to add a new appointment. For this,
they clicked a day in the month view and, afterwards, double clicked it, hoping that an
appropriate dialog for adding a new appointment shows up, which did not always happen.
Issues 5 and 8 match two of the findings for the "Missing Feedback" smell (see above).

6. Case Studies 146

6.5. Additional Experiments

Nowadays, software is more and more provided as apps on touch devices as well as in the
form of Service Oriented Architectures (SOAs). Hence, our approach should also support
the analysis of such setups. AutoQUEST supports the monitoring of software on the An-
droid platform as well as HTTP based SOA applications [100]. In our work, we performed
some smaller experiments with these two platforms, which are not worth a full case study.

In a first experiment, we generated task trees for an Android app. For this, we used some
example recordings of a small test app, read them into AutoQUEST, and called the task
tree generation implementation. A resulting task tree is shown in Figure 6.11. With the
monitoring of touch applications, AutoQUEST also introduces a further action type, which
is Touch Single. This is similar to a click, but indicates, that it was performed as a touch
on the screen instead of using a mouse. The example in Figure 6.11 includes two touch
actions. First, the users touched on a specific frame. Then they entered a text into a text
field. Afterwards, they touched on another frame and entered another text into a further text
field. The capabilities of AutoQUEST to analyze Android apps is still in its infancy. Hence,
no more in depth case study has been done on this platform and no usability evaluation was
performed.

Figure 6.11.: Example for a task tree generated for an Android app in the context of addi-
tional experiments.

Similarly, AutoQUEST supports the recording of HTTP based SOA applications [107].
Also here, it introduces new event types. In a further experiment, we utilized some test
recordings of a SOA, read them into AutoQUEST, and generated corresponding task trees.
Also these capabilities of AutoQUEST are not yet well established, which prevented a larger
case study.

7. Discussion

In this section, we discuss the results of our case studies and draw conclusions about our
approach for task tree generation and usability smell detection. We start by answering the
research questions formulated at the beginning of this thesis. Then, we consider strengths
and limitations of our approach. Finally, we dedicate a short subsection on ethical aspects
to be considered when applying our approach.

7.1. Answers for Research Questions Concerning the Task Tree
Generation

In the introduction of this thesis (Section 1.2), we listed several research questions towards
the task tree generation which, we answer in this section. The answers are based on the
results of our case studies. The first question, RQ 1, asks if typical user tasks can be de-
termined based on recorded action instances and additional information about the structure
of the GUI of a software. We addressed this question by applying the task tree generation
in several case studies and by checking if generated task trees are representative for the
recorded user behavior. By looking at the example task trees generated in the case studies,
we consider them as semantically correct and as defining useful action combinations. In
addition, the experiments for the representativeness show, that the task trees generated on
a subset of recordings are valid descriptions of typical user behavior in other recordings of
the same software. Therefore, we answer RQ 1 with yes, it is possible to detect tasks and
their corresponding trees by using our methodology. Nevertheless, our case studies also
showed, that the task tree generation may not always be possible, as our approach does not
always terminate. Yet, this happened rather seldom considering the low number of task tree
generation failures of less than 5% observed in all task tree generation attempts performed
in the case studies.

The next research question, RQ 1.1, focuses on the level of detail and semantics of the
tasks that can be identified. The examples show, that the task trees generated in our case
studies represent typical action combinations, which are performed to complete a task.
Nonetheless, the corresponding semantic of a task cannot be determined automatically. This
still needs to be done by a human. Yet, the task trees provide many details about the actions
chosen by users, the typical action combinations, and also execution variants for a task,
when considering the merged task trees.

7. Discussion 148

The answer for RQ 1.2, which asks if there are several requirements towards the recorded
user actions and the GUI structure to allow for the detection of user tasks, is yes. Our results
show, that the task trees become more representative, the more action instances in relation
to distinct actions of a software are recorded. This is indicated by the results regarding the
coverages of task trees, which were generated for a subset. Furthermore, we see that the
recorded events need to represent real action instances. If they instead contain automatically
generated events (e.g., the JavaScript generated events in the second case study), the gener-
ated task trees do not only represent user actions, but are polluted with technical issues of
the monitored software. Regarding the GUI structure, it is important to have a correct GUI
model. Otherwise, either tasks are not correctly detected or a subsequent analysis, such as
the usability smell detection, may provide incorrect results. It is especially important to be
able to identify identical GUI elements also via distinct sessions. In our work, we did this,
e.g, by subsequently adding DOM identifiers. Otherwise, action instances are not correctly
identified as instances of the same action.

The next research question, RQ 1.3, which asks under which conditions a detected task
can still be considered representative for user behavior, cannot be answered with a value of
a certain metric. For example, we cannot conclude, that any task covering a specific ratio of
recorded action instances is representative. Our case studies show, that more recorded action
instances result in more representative task trees. Moreover, we see, that we can subdivide
the detected task trees into the most prominent tasks and the other ones, where the most
prominent are also the most representative. There is no fixed point regarding the action
instance coverage of a task tree, which can be used to distinguish between representative or
not. It would be helpful to mark a task on the corresponding coverage plot to see, where it
is located, and to decide if it should still be considered representative or not. In addition,
one could define a point on the plot where the gradient of the graph falls below a certain
threshold, and then consider any sequence lying left of this threshold as representative.

The last research question for the task tree generation, RQ 1.4, is if similar tasks can be
detected and merged, and if the merge results are still representative tasks. We can answer
both with yes. Especially in the first case study, many similar tasks were detected and
merged. In addition, the action instance coverage plots for the merged sequences show, that
these are at least as representative as the unmerged task trees. We further found, that fewer
recorded action instances and, hence, fewer detected tasks lead to fewer similar tasks that
can be merged. For example, in the third case study being the smallest processed data set,
no similar tasks were detected at all.

7.2. Answers for Research Questions Concerning the Usability
Smell Detection

In the introduction, we formulated several research questions regarding the usability smell
detection. The first (RQ 2) was if it is possible to automatically identify usability smells, i.e.,

149 7.2. Answers for Research Questions Concerning the Usability Smell Detection

indicators for usability issues, in recorded user actions or detected user tasks, considering
also additional information about the GUI structure. We addressed this question by applying
our usability smell detection in three case studies, by manually inspecting and assessing the
findings, as well as by comparing the results with corresponding user-oriented usability
evaluations, which are an established method in usability engineering. As we observed true
positive usability smell findings as well as several overlaps between these findings and the
results of the user-oriented usability evaluation, we answer this question with yes.

The next research question, RQ 2.1, needs to be answered per individual smell. It asks
for smell-specific thresholds that should be exceeded, or conditions that should be met, to
consider a finding for a usability smell as a true positive. We addressed this question with
the same method as the previous question. For the smell "Important Tasks", a threshold
can be defined to separate true from false positive findings. The smell aims at detecting
the most representative tasks for a data set. Tasks are most representative if they cover a
larger number of recorded action instances in comparison to other tasks. Hence, a threshold
for this smell is congruent with a threshold for the action instance coverage of the detected
tasks. This is in line with the way we calculate the intensity for this smell. The threshold can
be defined based on the action instance coverage plots. There are two ways for this. First, a
threshold can be a fixed value on the x-axis. All tasks left of this point are considered most
representative and, hence, most important. In our work, we used such a fixed point of 20%
to separate the most prominent sequences from the other ones. Second, a threshold for this
smell can be defined based on the gradient of the graph in an action instance coverage plot.
This gradient is initially high and then decreases the less action instances a task covers. A
threshold could define a minimum value for this gradient, which is reached by the gradient
at some point on the graph. This corresponds to a point on the x-axis, where all tasks left of
this point are most important. A definition of this kind of threshold has not been considered
in this thesis. Considering the second part of RQ 2.1, there are no conditions that findings
of this smell must meet to be considered as true positives.

For the smell "Required Inefficient Actions", we observed a large number of true positive
findings. Several findings were compliant with usability issues, which were detected using
the established user-oriented usability evaluation. This lets us conclude, that the smell pro-
vides valid findings. We derive a threshold for the intensity of this smell to be 10%. This is
because the intensities of the true positive findings correlated with our analysis condition,
that a task must include at most one inefficient in ten actions. The intensities show, that also
values above 50% may be reached for findings of this smell, which lets us conclude, that
also higher thresholds may be applicable. But this must be evaluated in further case studies.
When solving the usability issues associated with the findings, we propose to address find-
ings with the highest action instance coverage and intensity first. Especially, the results of
the first case study show, that for merged task trees findings get a lower threshold if optional
inefficient actions are introduced. Hence, findings for this smell are more appropriate, if
the smell detection is applied on merged task trees. There were no other conditions for this
smell to consider findings as true positives.

7. Discussion 150

In our case studies, many true positive findings for the smell "High GUI Element Dis-
tance" had an intensity above 0.5. In contrast, the intensities of almost all false positive
findings were below 0.5. The only findings that did not match this limit were two findings
for tasks that represented no action instances (second case study) and 24 findings showing
the usability issue of required scrolling, which is also indicated by findings for other smells
(first case study). Hence, we derive the threshold for the intensity of findings for this smell
to be 0.5. This means, that on average, two subsequently required GUI elements of a task
are in the same view. There were also some false positives, which were caused by mis-
matches between the GUI model and the actual rendering of the GUI, as seen in the first
and third case study. The intensities of these false positives did not match the actual position
of the referenced GUI elements. Considering a threshold of 0.5, this was no issue for the
case studies, as the intensities of these findings were below 0.5. Nevertheless, these false
positives show, that this smell is sensitive to GUI model issues. Hence, a condition to be
met for this smell is a proper GUI model. Due to their compliance with some findings from
the user-oriented usability evaluation, we consider findings for this smell as valid indicators
for usability issues.

For the smell "Missing Feedback", we considered many findings as false positives. This
very often correlated with a low intensity of the findings. However, in the second and the
third case study, we also had true positives with a lower intensity than the highest intensity of
false positives. Furthermore, the intensity distribution was different for all case studies. For
example, in the first case study, the intensities varied between 1ms and 1,032ms, whereas
in the second case study, they varied between 5ms and 7,715ms. Considering these results,
we conclude, that the intensity calculation for this smell provides a good orientation, if a
finding is a true positive or not. But based on our data, we cannot conclude on an intensity
threshold. This is especially not possible, as the case studies did not provide sufficient true
positive findings to have a representative result set. In addition, several findings for this
smell in the case studies were false positives due to the usage of common page elements
or GUI elements, which are intended to be clicked multiple times. Hence, a corresponding
condition must be defined, which must be met to consider the findings of this smell as true
positive. In contrast, there were true positive findings, which were compliant with the user-
oriented usability evaluations in the case studies. Therefore, we conclude, that findings
for this smell, which match the above condition and have a high intensity, provide helpful
results. But further investigations are required to improve the detection of this smell and to
be able to define a corresponding intensity threshold.

58 findings for the smell "Required Input Method Change" were considered as true pos-
itive, which lets us conclude, that this smell in general can be used to identify usability
issues. Still, the findings included also many false positives, which were caused by events
not representing action instances or by tasks, which represented one variant of text field
usage, in which the tabulator key navigation was not used by the users, although possible.
Hence, findings for this smell should only be considered as true positives if they refer to a
task, for which there is no alternative task, which requires less input method changes. The

151 7.2. Answers for Research Questions Concerning the Usability Smell Detection

intensities of the true and false positive findings varied between similar ranges. Therefore,
our case studies did not show a potential threshold for the minimal intensity of the findings.
This needs to be determined in future research.

For the smell "Missing User Guidance", there is always one finding per data set. The case
studies showed, that the intensities of the findings are a good indicator for the user guidance.
For example, in the third case study, the intensity of the finding was relatively high, which
matched the experiences from the user-oriented usability evaluation. However, the case
studies also showed, that the findings may be biased by the number of recorded action
instances and the typical session length as described in the second case study. Anyway, we
conclude, that this smell provides valid findings, although an intensity threshold or a scale
should be determined in future work.

The results for the smell "Required Text Format" were mostly false positives. The inten-
sities of the findings tended to be higher for true positives than for false positives. In the
case studies, there were only few text fields at all, for which a format was required. The
true positive findings referenced exactly these text fields. But due to the small number of
respective text fields, our case studies did not allow for a representative analysis of findings
for this smell. Therefore, we also cannot determine a good threshold for this smell based
on our case studies. There were false positive findings for text fields, into which data was
entered automatically. This shows, that this smell is sensitive to events not representing real
action instances. Hence, we derive a condition for this smell, that it must be applied only
for text fields, into which data is entered manually, and that automatic data entries must
not be part of the recorded action instances. Furthermore, also text formats well known
by users, such as e-mail address formats, are detected, which may lead to false positives.
Hence, a further condition for findings of this smell is, that well-known text formats should
be ignored. To have an improved validation of this smell, further case studies need to be
performed, in which these smell conditions are met, and which include more text fields with
required formats.

For the smell "Text Input Repetitions", the findings indicate, that the smell detection
can return valid results. Comparing the intensities of the true and false positives, they can
be separated from each other by using a threshold of 10%. However, this threshold is
only based on the findings in the first case study. The other case studies did not provide
sufficient details for a representative analysis. Hence, this threshold must be validated in
future research. We did not observe additional conditions that a finding for this smell must
meet to consider it as true positive.

The "Text Input Ratio" findings for all case studies correctly indicate the amount of text
inputs required in the considered software. Hence, these findings were valid. However,
our data does not allow for a conclusion on a threshold or a scale for this smell, as it only
contains false, but no true positives. Hence, further case studies are required to determine a
concrete threshold for this smell.

The findings for the smell "Single Checking of Checkboxes" in all case studies are not
sufficient to draw a clear conclusion about the detection of this smell. In general, the find-

7. Discussion 152

ings referenced the checkbox groups belonging to the case studies and correctly indicated
their usage. However, there were no true positives, and all but one finding had low intensi-
ties. Hence, further case studies are required to provide more foundation for the assessment
of this smell.

For the smell "Misleading Click Cue", there were true positive findings, which lets us
conclude, that the detection of the smell provides valid results. Many false positives had
a very low action instance coverage or intensity, which signifies, that a certain threshold
should be exceeded for both values. The case studies did not provide obvious thresholds
for these values. Furthermore, a GUI element should be clicked by several users, so that
corresponding findings are representative for a whole user group. But findings for this smell
yet do not provide information about how many users performed a click on a GUI element.
Therefore, we propose for future work, to determine this number. Then, the findings for this
smell can be sorted based on their action instance coverage, their intensity, and the number
of users that performed the clicks. Afterwards, the findings can be addressed starting with
the findings that have the highest of all values. In further case studies, concrete thresholds
should then be identified to consider findings of this smell as true positives. The smell
detection also returned false positive findings with a high intensity. These showed, that the
smell is sensitive to GUI elements, which are no interaction elements, but made to these
through the underlying implementation. In addition, the smell cannot detect interaction
elements, that have no underlying functionality, as seen in the third case study. In the second
case study, there were findings for headlines, that were clicked several times. Without
further information about the number of users that performed these clicks, it was not easy to
assess these findings through manual inspection. Hence, this smell should be investigated
further in case studies, in which more information is available.

The findings for the smell "Required Text Field Focus" were coherent between the case
studies and included many true positives. Therefore, we considered these findings as valid.
The intensities of the findings tended to be higher for true positives than for false positives.
A concrete threshold for the smell’s intensity can be set to 15%, because most false positives
had a lower intensity. The only exception here were findings for views, in which the first
GUI element is not a text field. This also leads to the following condition to be met by
this smell. The findings are only true positives if the logically first interaction element in a
view is a text field. In the future, this information can be gained from a the GUI model to
automatically filter the findings for this smell.

The smell "Good Defaults" cannot sufficiently be assessed based on our case studies, be-
cause only one case study showed true positive findings. Almost all false positives were
caused by unrecorded data entries into text fields. Hence, an appropriate filter could reduce
the number of false positives significantly. Furthermore, several findings showed good de-
faults, which should not be used as default in the corresponding software, e.g., due to ethical
reasons. Hence, this smell may return findings, which need to be further investigated on a
semantic level. This cannot be automated. Overall, the smell requires further investigation
in other case studies to ensure, that the findings are valid in other contexts, as well.

153 7.3. Strengths and Limitations

The findings for the smell "Unused GUI Elements" were polluted with many GUI ele-
ments, which were either not used due to the case study setup (third case study) or due to
technical aspects. Therefore, we conclude, that this smell should be further investigated in
a more reliable environment to make the findings easier assessable. Nevertheless, the true
positives of the first case study can be considered an evidence, that a further investigation is
worth the effort.

The next research question regarding the usability smell detection, RQ 2.2, focuses on
the conditions, that referenced tasks should match to consider a usability smell as true pos-
itive. Based on our findings regarding the task tree representativeness, we conclude, that
referenced tasks should be representative, e.g., they should be the most prominent ones. In
addition, the tasks must not be based on events that do not represent real action instances.
We did not observe significant differences between the findings, which were based on un-
merged task trees and those that were based on merged task trees. Only for the smell
"Required Inefficient Actions", the number of true and false positives in the first case study
was different. Hence, we conclude, that for the usability smell detection both, merged and
unmerged task trees can be used. However, in our case studies, we used fixed values for
the minimum sequence similarity (75%) and the representativeness of tasks (only the most
prominent) to be merged. An adaptation of these values may lead to other merge results
and, hence, to other results of the usability smell detection on merged task trees.

The answers to RQ 2.3, which asks for the requirements towards the recorded user ac-
tions, the detected tasks, and the information about the GUI structure to allow for an effec-
tive usability smell detection, are similar to those for the task detection. Without correctly
recorded user actions, events that only represent action instances, and a well-structured
GUI model, the findings of our approach can be biased, which leads to potentially wrong
conclusions. The preceding paragraphs include detailed answers for this question on a
smell-specific level.

The last research question, RQ 2.4, asks if the detection of usability smells is able to re-
place the application of other usability evaluation methods. Considering the small overlap
between the findings of our method and the results from the user-oriented usability eval-
uation in the three case studies, we can conclude, that our approach provides helpful and
valid results also in a large scale, but can only support and not replace the application of
other methods. Especially the usability issues on a semantic level, which can be the result
of user-oriented usability evaluations, can only partially be detected using our approach.

7.3. Strengths and Limitations

Our approach can be applied on a large scale as shown in the first case study. The analysis of
the representativeness of the generated task trees for typical user behavior shows, that based
on correct recordings of user actions, we generate representative task trees. Furthermore, the
subsequent usability smell detection provides results, which are based on these tasks trees

7. Discussion 154

and a large number of recorded action instances and user sessions. Hence, we consider our
approach as objective.

When recording actions instances, we intended not to record personal data that was en-
tered into corresponding text fields. Nonetheless, our experiences show, that personal data
may also be entered into text fields, which are initially not supposed to be used for personal
data. In addition, even a subsequent anonymization and pseudonymization of the data may
not be fully correct due to human error, as shown by the remaining personal data in the first
case study. Hence, there is a limitation of our approach for correctly encrypting personal
data.

Furthermore, the recorded events did not always represent action instances. We per-
formed a post-processing of the recorded data to filter the events for those representing only
action instances. Nonetheless, as seen in the usability evaluation, the remaining events still
included some, which did not represent action instances.

The detection of task trees is reliable, as we showed, that the task trees represent actual
user behavior. An important aspect to be considered is, that we must ensure to record only
events that represent action instances. The recording of other events can lead to invalid
results of the task tree generation and the usability smell detection. In addition, also the
GUI model needs to be complete and correct with respect to the identification of utilized
GUI elements. Otherwise, semantically equal actions are considered distinct during the task
tree generation and the usability smell detection. This negatively influences the representa-
tiveness of the generated task trees and the results of the usability smell detection. Finally,
the usability smell detection is reliable only if several smell-specific conditions are met.
We mention these conditions together with the corresponding thresholds in the preceding
sections. A limitation of the task tree generation is the fact, that it may not terminate and,
hence, fail in seldom cases.

Currently, the merging of the task trees relies on the application of Myers diff algorithm.
We have not evaluated in our case studies if other diff algorithms yield different merging
results. Hence, the results of our case studies that refer to merged task trees may be different
if another merging algorithm was applied. In addition, we merge only the most prominent
sequences. We have not evaluated, if merging other sequences, as well, would result in
differently structured task trees. Finally, our merging is currently done with a threshold for
simmin to be 75%. We have not analyzed the potential effects of changing this threshold.
Based on these limitations for the task tree merging, we cannot ensure, that with differ-
ently merged task trees, there may not be significant differences between the usability smell
detection for unmerged and merged task trees.

Our case studies showed, that there may be duplicate findings for a certain usability smell
if the smell references tasks. In our manual inspection of findings, we did not evaluate, how
many of the true positive findings are duplicates, but mention only the ratio of duplicates
in all findings and in the inspected ones. The duplicates may influence our results if they
are not equally distributed between true and false positives. For example, if duplicates
only occur for true positives, but not for false positives, than the corresponding numbers

155 7.3. Strengths and Limitations

would not be comparable. In spite of this potential effect, duplicates help to give priorities
to usability issues when considering task groups. For example, a higher number of true
positive findings for a certain task group than for another is an indicator, that this task group
consists of more tasks and is, hence, more important for the user. As such, the number of
duplicates serves as a priority for the solving of detected usability issues.

In our case studies, we applied our approach on a large scale for different types of soft-
ware and different platforms. We validated our results through manual inspection and
checked them against the results of established methods. Therefore, we consider our case
studies as objective and reliable for the evaluation of our approach. Based on this, we also
conclude that our approach is capable of providing valid results. However, our case studies
are restricted to websites and a Java application. We cannot draw conclusions for the appli-
cation of our approach on other platforms or other types of software. In addition, we also
recorded events in our case studies that do not represent actual action instances. It was not
possible to subsequently filter these events. Hence, we cannot fully be sure if our approach
produces other results when working on events that only represent action instances.

An intended benefit of our approach for its user is the reduction of costs for usability
evaluation. To apply the approach, its implementation in AutoQUEST can directly be used,
as all required infrastructure is already available. Also the effort for the creation of a har-
monized GUI model can be minimized if a software already contains correct mechanisms
for uniquely identifying GUI elements. Yet, our case studies do not allow to conclude if this
cost and effort reduction is really achieved, as we did not perform a cost comparison in this
thesis.

Our case studies also showed, that the GUI model can be polluted with invalid GUI
elements, e.g., by the environment in which a software is used or by changes in the GUI
structure. This is a limitation for the reliability of our results, as they may reference GUI
elements not belonging to the analyzed software.

Furthermore, the findings of our approach in our case studies do not necessarily match
the results of a user-oriented usability evaluation with thinking aloud. Anyway, they can
contribute to findings resulting from the application of other usability evaluation methods.
In addition, the data and task trees, that are byproducts of our approach, may support a de-
tailed analysis of usability issues detected with other approaches. Unfortunately, the smells
are very generic and, hence, only indicators for possible usability issues. The partially large
number of false positives shows, that not any finding for a smell is a valid result. Nonethe-
less, based on the smell specific conditions and thresholds, that we mention in the previous
sections, it should be possible, at least to some degree, to separate true positive from false
positive findings automatically.

A further point to pay attention to is, that solutions for findings for a certain usability
smell may be counterproductive regarding other aspects of usability. For example, the most
efficient task execution may not necessarily be the preferred one, as it may reduce the user’s
satisfaction or contradict to the user’s expectations [95]. Hence, a corresponding finding
for a usability smell may indicate a potential for optimizing a user interface in a certain

7. Discussion 156

usability aspect. However, this may negatively influence other usability aspects at the same
time. In addition, for some findings it may be helpful to have detailed information about
groups of users that show a certain behavior. A finding that indicates a usability issue may
only apply to a certain user group. Currently, this information can not be derived from the
information available for a finding.

7.4. Ethical Aspects

An important aspect of our work is user privacy and security. By using our recording mech-
anism, we could trace any personal data that is entered by users into forms. This starts
with user names and dates of birth, and ends with passwords in login forms. In addition,
we would be able to create profiles of individual users concerning their usage behavior on
a website. This could include the determination of IP addresses, the utilized browser with
all its plugins and settings, as well as typical website navigation. These aspects are another
field of investigation and have a big potential for security leaks and for offending the users’
privacy.

In our case studies, we analyzed where personal and login data of users were recorded
and tried to prevent the recording of this data. In addition to these forecasts, there were
further text fields into which partially personal data was entered, although not expected. We
encoded this data so that it became unreadable. We sorted the recorded events to sessions
and assigned identifiers to them, which do not allow to trace back an individual user. The
result were anonymized and pseudomized events grouped to arbitrary sessions.

Based on these events, we compiled models of a general user behavior, but not of in-
dividual users. The task tree generation is completely independent of individual user data
and profiles. It does also not rely on sessions of a single user and does not consider any
user-specific information. Hence, the task trees do not allow to trace back to individual
users.

Based on the events and the task trees, we performed the usability smell detection. This
also does not require personal or security related data. Only for some smells, like the
"Text Input Repetitions" or the "Good Defaults", concrete entered data would result in more
helpful findings. This is especially shown for the smell "Required Text Format", where
we had several findings based on personal data that remained in the data set even after a
careful encoding. But in general, the case studies showed, that also anonymized events and
pseudomized text inputs can result in proper findings.

Together, all these considerations show, that our approach does not require to attack user
privacy or the security of a website. Anyway, it must be applied with care to not offend
the users’ privacy. Therefore, it is the responsibility of the person or institution utilizing our
approach to apply it with care and to respect the users’ privacy. This is an ethical foundation,
which applies for any developed software, including those analyzed with our approach.

8. Conclusion

In this section, we conclude the thesis. For this, we provide a short summary and give an
outlook on potential future work.

8.1. Summary

In this thesis, we presented an approach for an automated user-oriented usability evaluation
in the field. The approach starts with recording instances of user actions on a software as
well as determining a corresponding GUI model. Then, it transforms the action instances
into task trees to create a model for the usage of the software. Finally, the approach covers
a detection of usability smells, which are indicators for usability issues.

For the description of this approach, we first detailed, how a recording of action instances
and the derivation of a GUI model is performed. This included also descriptions of the level
of detail on which action instances can be and are recorded. Then we described, how to
generate task trees from recorded action instances using an n-gram based approach, which
was followed by a merging of similar tasks. For this, we also performed a complexity
analysis. Afterwards, we depicted, how the approach detects a set of six usability smells
based on these task trees and further eight usability smells based solely on the recorded
action instances. Together, these smells form a catalog, in which we provided for any smell
corresponding foundations and details for their detection.

We implemented our approach and applied it in three case studies on different types of
software platforms and interaction concepts. With these case studies, we attempted to an-
swer ten research questions, which we formulated at the beginning of this thesis. These
questions focused on the quality and reliability of the task trees created by our approach as
well as on the validity of the detected usability smells. The task trees were evaluated by
checking their representativeness for different sets of recorded user actions. The findings
for the usability smells in the case studies were validated against the results of user-oriented
usability evaluations, an established method for usability issue detection. Finally, we dis-
cussed our results and drew several conclusions regarding requirements towards recorded
action instances, the GUI model of the software, the detected task trees, as well as the
usability smells, including conditions for considering findings as true positives.

The findings in the case studies showed, that our approach is able to detect user tasks
based on recorded action instances and to generate task trees for them. These task trees are
representative for the usage of a software and can be used for further usage analysis. In

8. Conclusion 158

addition, the case studies showed, that our usability smell detection is capable of providing
indicators for usability issues, which are partially compliant with findings of a user-oriented
usability evaluation. The case studies had a heterogeneous setup with different types of
software and interaction concepts, but still revealed similar results. This allowed us to
conclude, that our approach can be applied in a broad variety of contexts.

The approach is fully automated and can, therefore, be applied with minimal effort. In
addition, detected usability smells have a reference to the locations of the indicated usability
issues and describe potential causes, which allows for their direct solving. As such, the
presented approach can easily be applied by persons who do not have a deep understanding
of our approach in detail of usability evaluation in general.

8.2. Outlook

Showing promising results, our approach and work open areas for further research. These
can be subdivided into the improvement of the task tree generation, the extension of the
usability smell detection, further evaluation of our approach, as well as application of our
approach in other contexts. This is detailed in the following paragraphs.

The task tree generation currently detects any tasks and does not terminate, although our
case studies show, that especially tasks with a low action instance coverage do not seem to
be representative for user behavior. In this respect, further research is required to define a
stop criterion for the task tree generation, so that only representative tasks remain as result.
This includes the development of an approach to estimate a threshold for this criterion. In
addition, it would be worthwhile to investigate, how task trees would be different from ours
if inefficient actions were considered optional from the beginning and would be ignored in
n-grams. Furthermore, our task merging approach currently relies on Myers diff algorithm
and a fixed minimal task similarity. Here, further studies could help to check, whether an-
other diff algorithm or another value for the minimal task similarity would create different
results. Additionally, we merge only the most prominent sequences, and it should be eval-
uated if merging further sequences can be beneficial. If these factors influence the merge
result, then further studies also need to investigate, if a subsequent usability smell detection
on these merged tasks provides other or improved results.

The usability smell detection already includes 14 different types of smells. However,
there may be further smells that can be detected, especially if smells for other platforms
like touch devices are considered. Hence, in future work the catalog of usability smells
should be extended. This extension should also included verified thresholds and detailed
conditions, which need to be fulfilled to assess findings as true positives. For this, further
smell-specific investigations are required to get improved estimations for thresholds and
more refined conditions. In addition, smell-specific extensions are possible. For exam-
ple, the smell "Required Inefficient Actions" could be extended to detect further inefficient
actions, which are not as obvious as scrolling. An example are mandatory actions, like pro-

159 8.2. Outlook

viding a city additionally to a zip code, that users need to perform when filling out a form,
but which are unnecessary from the user’s perspective. Moreover, if the task tree generation
is adapted to detect only representative tasks or to ignore inefficient actions, then the usabil-
ity smell evaluation needs to be reevaluated to check, whether the same results are achieved.
Finally, the smells currently focus on effectiveness and efficiency. There should also be fur-
ther smells that consider other usability aspects like learnability, error rate of users, or the
users’ attention.

We expect, that our approach is easy to apply. But in this thesis, we have not investigated
if this is really the case. This question can be the focus of further research, as well. In
addition, further case studies applying our approach can verify if the approach provides im-
proved results in case its application is planned from the beginning of a software project. For
example, we observed, that recorded events must be post-processed. This post-processing
may not be required if directly only events are recorded that represent action instances, or if
the events are not on the key-stroke level, but on a higher, yet semantic level. Furthermore,
our approach must be evaluated in and extended for case studies on other platforms, e.g.,
with apps on mobile devices or TVs.

A further area of research is the classification of users into groups and whether our task
trees allow for that. Such a classification may have a strong impact on the whole evaluation
process and the corresponding results. Beyond that, the application of our approach on other
events may be of interest. For example, the approach could be used to analyze events caused
by developers in source code management systems or events of vocal interfaces. Finally,
as being fully automated, our approach can be the basis for an automatic user interface
adaptation based on the detected task trees and smells. This would result in highly user
and user task optimized systems, where the optimization can focus on users groups or even
concrete users. As such, our approach could be the basis for a full personalization of systems
for users.

Bibliography

[1] T. Tullis and W. Albert, Measuring the User Experience: Collecting, Analyzing, and
Presenting Usability Metrics. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2008.

[2] G. Lindgaard and A. Parush, “Utility and experience in the evolution of usability,”
in Maturing Usability, ser. Human-Computer Interaction Series, E. L.-C. Law, E. T.
Hvannberg, and G. Cockton, Eds. Springer London, 2008, pp. 222–240. [Online].
Available: http://dx.doi.org/10.1007/978-1-84628-941-5_10

[3] F. Sarodnick and H. Brau, Methoden der Usability Evaluation: Wissenschaftliche
Grundlagen und praktische Anwendung, 1st ed. Huber, Bern, 2006.

[4] K. L. Norman and E. Panizzi, “Levels of automation and user participation in
usability testing,” Interacting with Computers, vol. 18, no. 2, pp. 246–264, Mar.
2006. [Online]. Available: http://dx.doi.org/10.1016/j.intcom.2005.06.002

[5] F. Paternò, “Tools for remote web usability evaluation,” in HCI International 2003.
Proceedings of the 10th International Conference on Human-Computer Interaction.
Vol.1, vol. 1. Erlbaum, 2003, pp. 828–832, retrieved 7/8/2015. [Online]. Available:
http://giove.isti.cnr.it/attachments/publications/2003-A2-95.pdf

[6] M. Y. Ivory and M. A. Hearst, “The state of the art in automating usability evaluation
of user interfaces,” ACM Comput. Surv., vol. 33, pp. 470–516, 12 2001. [Online].
Available: http://doi.acm.org/10.1145/503112.503114

[7] A. Dingli and J. Mifsud, “USEFul: A framework to mainstream web site
usability through automated evaluation,” International Journal of Human Computer
Interaction (IJHCI), vol. 2, no. 1, pp. 10–30, 2011. [Online]. Available:
http://cscjournals.org/csc/manuscript/Journals/IJHCI/volume2/Issue1/IJHCI-19.pdf

[8] S. Balbo, S. Goschnick, D. Tong, and C. Paris, “Leading web usability evaluations to
WAUTER,” in The Eleventh Australasian World Wide Web Conference. Gold Coast,
2005.

[9] A. C. Siochi and R. W. Ehrich, “Computer analysis of user interfaces based on
repetition in transcripts of user sessions,” ACM Trans. Inf. Syst., vol. 9, no. 4, pp.
309–335, Oct. 1991. [Online]. Available: http://doi.acm.org/10.1145/119311.119312

http://dx.doi.org/10.1007/978-1-84628-941-5_10
http://dx.doi.org/10.1016/j.intcom.2005.06.002
http://giove.isti.cnr.it/attachments/publications/2003-A2-95.pdf
http://doi.acm.org/10.1145/503112.503114
http://cscjournals.org/csc/manuscript/Journals/IJHCI/volume2/Issue1/IJHCI-19.pdf
http://doi.acm.org/10.1145/119311.119312

Bibliography 162

[10] D. M. Hilbert and D. F. Redmiles, “Extracting usability information from user
interface events,” ACM Comput. Surv., vol. 32, no. 4, pp. 384–421, Dec. 2000.
[Online]. Available: http://doi.acm.org/10.1145/371578.371593

[11] K. L. Jensen and L. B. Larsen, “Evaluating the usefulness of mobile services
based on captured usage data from longitudinal field trials,” in Proceedings of the
4th International Conference on Mobile Technology, Applications, and Systems
and the 1st International Symposium on Computer Human Interaction in Mobile
Technology, ser. Mobility ’07. New York, NY, USA: ACM, 2007, pp. 675–682.
[Online]. Available: http://doi.acm.org/10.1145/1378063.1378177

[12] F. Paternò, A. Russino, and C. Santoro, “Remote evaluation of mobile applications,”
in Task Models and Diagrams for User Interface Design, ser. Lecture Notes
in Computer Science, M. Winckler, H. Johnson, and P. Palanque, Eds.
Springer Berlin Heidelberg, 2007, vol. 4849, pp. 155–169. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-77222-4_13

[13] S. Rosenbaum, “The future of usability evaluation: Increasing impact on value.”
in Maturing Usability, ser. Human-Computer Interaction Series, E. L.-C. Law,
E. T. Hvannberg, and G. Cockton, Eds. Springer, 2008, pp. 344–378. [Online].
Available: http://dblp.uni-trier.de/db/series/hci/LawHC08.html#Rosenbaum08

[14] R. Atterer, “Usability tool support for model-based web development,” disser-
tation, Oktober 2008. [Online]. Available: http://nbn-resolving.de/urn:nbn:de:bvb:
19-92963

[15] A. C. Siochi and D. Hix, “A study of computer-supported user interface evaluation
using maximal repeating pattern analysis,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’91. New York, NY, USA: ACM,
1991, pp. 301–305. [Online]. Available: http://doi.acm.org/10.1145/108844.108926

[16] G. Cockton, Usability Evaluation. Aarhus, Denmark: The Interaction Design Foun-
dation, 2013. [Online]. Available: http://www.interaction-design.org/encyclopedia/
usability_evaluation.html

[17] P. Burzacca and F. Paternò, “Remote usability evaluation of mobile web
applications,” in Human-Computer Interaction. Human-Centred Design Approaches,
Methods, Tools, and Environments, ser. Lecture Notes in Computer Science,
M. Kurosu, Ed. Springer Berlin Heidelberg, 2013, vol. 8004, pp. 241–248.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-39232-0_27

[18] H. Trætteberg, Model-based user interface design. Information Systems Group,
Department of Computer and Information Sciences, Faculty of Information Technol-

http://doi.acm.org/10.1145/371578.371593
http://doi.acm.org/10.1145/1378063.1378177
http://dx.doi.org/10.1007/978-3-540-77222-4_13
http://dblp.uni-trier.de/db/series/hci/LawHC08.html#Rosenbaum08
http://nbn-resolving.de/urn:nbn:de:bvb:19-92963
http://nbn-resolving.de/urn:nbn:de:bvb:19-92963
http://doi.acm.org/10.1145/108844.108926
http://www.interaction-design.org/encyclopedia/usability_evaluation.html
http://www.interaction-design.org/encyclopedia/usability_evaluation.html
http://dx.doi.org/10.1007/978-3-642-39232-0_27

163 Bibliography

ogy, Mathematics and Electrical Engineering, Norwegian University of Science and
Technology, May 2002.

[19] P. Harms and J. Grabowski, “Usability of generic software in e-research
infrastructures,” Journal of the Chicago Colloquium on Digital Humanities
and Computer Science, vol. 1, no. 3, 2011. [Online]. Available: https:
//letterpress.uchicago.edu/index.php/jdhcs/article/view/89

[20] P. Harms, S. Herbold, and J. Grabowski, “Trace-based task tree generation,” in Pro-
ceedings of the Seventh International Conference on Advances in Computer-Human
Interactions (ACHI 2014). XPS - Xpert Publishing Services, 2014.

[21] ——, “Extended trace-based task tree generation,” International Journal on
Advances in Intelligent Systems, vol. 7, no. 3 and 4, pp. 450–467, 12 2014. [Online].
Available: http://www.iariajournals.org/intelligent_systems/

[22] P. Harms and J. Grabowski, “Usage-based automatic detection of usability
smells,” in Human-Centered Software Engineering, ser. Lecture Notes in Computer
Science, S. Sauer, C. Bogdan, P. Forbrig, R. Bernhaupt, and M. Winckler, Eds.
Springer Berlin Heidelberg, 2014, vol. 8742, pp. 217–234. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-44811-3_13

[23] ——, “Consistency of task trees generated from website usage traces,” in Proceed-
ings of the 17th International Conference on System Design Languages (SDL Forum
2015). Springer Berlin Heidelberg, 2015.

[24] M. Van Welie, G. C. Van Der Veer, and A. Eliëns, “An ontology for task
world models,” in Proceedings of DSV-IS98, Abingdon, 1998. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.4415

[25] F. Paternò, “ConcurTaskTrees: An engineered notation for task models,” in The
Handbook of Task Analysis for Human Computer Interaction, D. Diaper and N. Stan-
ton, Eds. Lawrence Erlbaum Associates Publishers, 2003, p. 483–503.

[26] S. Propp, G. Buchholz, and P. Forbrig, “Task model-based usability evaluation for
smart environments,” in Proceedings of the 2Nd Conference on Human-Centered
Software Engineering and 7th International Workshop on Task Models and
Diagrams, ser. HCSE-TAMODIA ’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 29–40. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-85992-5_3

[27] W. Schweibenz and F. Thissen, Qualität im Web: Benutzerfreundliche Webseiten
durch Usability-Evaluation, 1st ed. Springer, Berlin, 2003.

[28] “ISO 9241-11: Ergonomic requirements for office work with visual display terminals
(VDTs) – Part 11: Guidance on usability (ISO 9241-11:1998),” ISO, 1998.

https://letterpress.uchicago.edu/index.php/jdhcs/article/view/89
https://letterpress.uchicago.edu/index.php/jdhcs/article/view/89
http://www.iariajournals.org/intelligent_systems/
http://dx.doi.org/10.1007/978-3-662-44811-3_13
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.13.4415
http://dx.doi.org/10.1007/978-3-540-85992-5_3

Bibliography 164

[29] J. Bosch and N. Juristo, “Designing software architectures for usability,” in
Proceedings of the 25th International Conference on Software Engineering, ser.
ICSE ’03. Washington, DC, USA: IEEE Computer Society, 2003, pp. 757–758.
[Online]. Available: http://dl.acm.org/citation.cfm?id=776816.776937

[30] “ISO 9126-1: Software engineering — Product quality — Part 1: Quality model
(ISO 9126-1:2001),” ISO, 2001.

[31] A. Holzinger, “Usability engineering methods for software developers,” Communi-
cations of the ACM, vol. 48, pp. 71–74, January 2005.

[32] B. Shneiderman, C. Plaisant, M. Cohen, and S. Jacobs, Designing the User Interface:
Strategies for Effective Human-Computer Interaction, 5th ed. Boston, MA, USA:
Pearson Higher Education, 2010.

[33] G. Buscher and R. Biedert, “Usability Testing: Affective Interfaces,” Informatik-
Spektrum, vol. 33, no. 5, pp. 499–503, oct 2010.

[34] M. Hegner, Methoden zur Evaluation von Software, ser. Arbeitsbericht. IZ,
InformationsZentrum Sozialwiss., 2003. [Online]. Available: http://books.google.
de/books?id=NhnMHAAACAAJ

[35] S. Abrahão, E. Iborra, and J. Vanderdonckt, “Usability evaluation of user
interfaces generated with a model-driven architecture tool,” in Maturing Usability,
ser. Human-Computer Interaction Series, E. L.-C. Law, E. T. Hvannberg, and
G. Cockton, Eds. Springer London, 2008, pp. 3–32. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84628-941-5_1

[36] L. Kantner, D. H. Sova, and S. Rosenbaum, “Alternative methods for field
usability research,” in Proceedings of the 21st annual international conference on
Documentation, ser. SIGDOC ’03. New York, NY, USA: ACM, 2003, pp. 68–72.
[Online]. Available: http://doi.acm.org/10.1145/944868.944883

[37] M. Richter and M. D. Flückiger, Usability Engineering kompakt: Benutzbare Soft-
ware gezielt entwickeln, ser. It Kompakt. Springer Berlin, Heidelberg, 2013.

[38] T. Memmel, “User interface specification for interactive software systems - process-,
method- and tool-support for interdisciplinary and collaborative requirements mod-
elling and prototyping-driven user interface specification,” PhD thesis, University of
Konstanz, May 2009.

[39] F. Paternò and C. Santoro, “Remote usability evaluation: Discussion of a general
framework and experiences from research with a specific tool,” in Maturing
Usability, ser. Human-Computer Interaction Series, E. L.-C. Law, E. T. Hvannberg,

http://dl.acm.org/citation.cfm?id=776816.776937
http://books.google.de/books?id=NhnMHAAACAAJ
http://books.google.de/books?id=NhnMHAAACAAJ
http://dx.doi.org/10.1007/978-1-84628-941-5_1
http://doi.acm.org/10.1145/944868.944883

165 Bibliography

and G. Cockton, Eds. Springer London, 2008, pp. 197–221. [Online]. Available:
http://dx.doi.org/10.1007/978-1-84628-941-5_9

[40] Cátedra SAES de la Universidad de Murcia. (2014) OHT Plus: an application
framework for non-intrusive usability testing tools. Retrieved 06/2014. [Online].
Available: http://www.catedrasaes.org/wiki/OHTPlus

[41] K. Renaud and P. Gray, “Making sense of low-level usage data to understand
user activities,” in Proceedings of the 2004 Annual Research Conference of the
South African Institute of Computer Scientists and Information Technologists on IT
Research in Developing Countries, ser. SAICSIT ’04. Republic of South Africa:
South African Institute for Computer Scientists and Information Technologists,
2004, pp. 115–124. [Online]. Available: http://dl.acm.org/citation.cfm?id=1035053.
1035067

[42] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J. Pagulayan, and D. Wixon,
“Tracking real-time user experience (true): A comprehensive instrumentation
solution for complex systems,” in Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, ser. CHI ’08. New York, NY, USA: ACM, 2008,
pp. 443–452. [Online]. Available: http://doi.acm.org/10.1145/1357054.1357126

[43] N. Ramsay, S. Marshall, and A. Potanin, “Annotating UI architecture with actual
use,” in Proceedings of the Ninth Conference on Australasian User Interface - Volume
76, ser. AUIC ’08. Darlinghurst, Australia: Australian Computer Society, Inc., 2008,
pp. 75–78. [Online]. Available: http://dl.acm.org/citation.cfm?id=1378337.1378351

[44] K. Grooves. (2007) The limitations of server log files for usability
analysis. Retrieved 06/2015. [Online]. Available: http://boxesandarrows.com/
the-limitations-of-server-log-files-for-usability-analysis/

[45] L. Paganelli and F. Paternò, “Tools for remote usability evaluation of web applica-
tions through browser logs and task models,” Behavior Research Methods, vol. 35,
pp. 369–378, 2003.

[46] I. Shah, L. Al Toaimy, and M. Jawed, “RWELS: A remote web event logging
system,” J. King Saud Univ. Comput. Inf. Sci., vol. 20, pp. 1–11, Jan. 2008. [Online].
Available: http://dx.doi.org/10.1016/S1319-1578(08)80001-8

[47] M. Etgen and J. Cantor, “What does getting WET (web event-logging tool) mean
for web usability?” in 5th Conference on Human Factors and the Web - Conference
Proceedings. Gaithersburg, Maryland, USA: NIST, 1999. [Online]. Available:
http://zing.ncsl.nist.gov/hfweb/proceedings/etgen-cantor/index.html

[48] Drupal.org. (2015) Drupal. Retrieved 06/2015. [Online]. Available: https:
//www.drupal.org/

http://dx.doi.org/10.1007/978-1-84628-941-5_9
http://www.catedrasaes.org/wiki/OHTPlus
http://dl.acm.org/citation.cfm?id=1035053.1035067
http://dl.acm.org/citation.cfm?id=1035053.1035067
http://doi.acm.org/10.1145/1357054.1357126
http://dl.acm.org/citation.cfm?id=1378337.1378351
http://boxesandarrows.com/the-limitations-of-server-log-files-for-usability-analysis/
http://boxesandarrows.com/the-limitations-of-server-log-files-for-usability-analysis/
http://dx.doi.org/10.1016/S1319-1578(08)80001-8
http://zing.ncsl.nist.gov/hfweb/proceedings/etgen-cantor/index.html
https://www.drupal.org/
https://www.drupal.org/

Bibliography 166

[49] G. Buchholz, J. Engel, C. Märtin, and S. Propp, “Model-based usability evaluation -
evaluation of tool support,” in Human-Computer Interaction. Interaction Design and
Usability, ser. Lecture Notes in Computer Science, J. Jacko, Ed. Springer Berlin /
Heidelberg, 2007, vol. 4550, pp. 1043–1052.

[50] Piwik.org. (2015) Piwik - liberating analytics. Retrieved 06/2015. [Online].
Available: http://de.piwik.org/

[51] Google. (2015) Google analytics. Retrieved 06/2015. [Online]. Available: http:
//www.google.com/analytics/

[52] Q. Limbourg, J. Vanderdonckt, B. Michotte, L. Bouillon, M. Florins, and D. Tre-
visan, “UsiXML: A user interface description language for context-sensitive user
interfaces,” in Proceedings of the ACM AVI’2004 Workshop ”Developing User Inter-
faces with XML: Advances on User Interface Description Languages”. Press, 2004,
pp. 55–62.

[53] F. Paternò, C. Mancini, and S. Meniconi, “ConcurTaskTrees: A diagrammatic no-
tation for specifying task models,” in Proceedings of the IFIP TC13 International
Conference on Human-Computer Interaction, ser. INTERACT ’97. London, UK,
UK: Chapman & Hall, Ltd., 1997, pp. 362–369.

[54] T. Tiedtke, C. Märtin, and N. Gerth, “AWUSA – a tool for automated website usabil-
ity analysis,” 2002.

[55] S. Charfi, H. Ezzedine, C. Kolski, and F. Moussa, “Towards an automatic analysis of
interaction data for HCI evaluation: Application to a transport network supervision
system,” in Proceedings of the 14th International Conference on Human-Computer
Interaction: Design and Development Approaches - Volume Part I, ser. HCII’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 175–184. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2022384.2022407

[56] P. Géczy, N. Izumi, S. Akaho, and K. Hasida, “Usability analysis framework
based on behavioral segmentation,” in E-Commerce and Web Technologies,
ser. Lecture Notes in Computer Science, G. Psaila and R. Wagner, Eds.
Springer Berlin Heidelberg, 2007, vol. 4655, pp. 35–45. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-74563-1_4

[57] S. Gomez and D. Laidlaw, “Modeling task performance for a crowd of users from
interaction histories,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’12. New York, NY, USA: ACM, 2012, pp.
2465–2468. [Online]. Available: http://doi.acm.org/10.1145/2207676.2208412

http://de.piwik.org/
http://www.google.com/analytics/
http://www.google.com/analytics/
http://dl.acm.org/citation.cfm?id=2022384.2022407
http://dx.doi.org/10.1007/978-3-540-74563-1_4
http://doi.acm.org/10.1145/2207676.2208412

167 Bibliography

[58] S. Amershi, J. Mahmud, J. Nichols, T. Lau, and G. A. Ruiz, “LiveAction:
Automating web task model generation,” ACM Trans. Interact. Intell. Syst., vol. 3,
no. 3, pp. 14:1–14:23, Oct. 2013. [Online]. Available: http://doi.acm.org/10.1145/
2533670.2533672

[59] J.-D. Ruvini and et al., “Ape: Learning user’s habits to automate repetitive tasks,” in
Proceedings of the 2000 Conference on Intelligent User Interfaces, 2000, pp. 229–
232.

[60] A. Cypher, “EAGER: programming repetitive tasks by example,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, ser.
CHI ’91. New York, NY, USA: ACM, 1991, pp. 33–39. [Online]. Available:
http://doi.acm.org/10.1145/108844.108850

[61] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive human perfor-
mance modeling made easy,” in Proceedings of the SIGCHI conference on Human
factors in computing systems, ser. CHI ’04. New York, NY, USA: ACM, 2004, pp.
455–462.

[62] S. E. Hudson, B. E. John, K. Knudsen, and M. D. Byrne, “A tool for creating predic-
tive performance models from user interface demonstrations,” in Proceedings of the
12th annual ACM symposium on User interface software and technology, ser. UIST
’99. New York, NY, USA: ACM, 1999, pp. 93–102.

[63] A. D’Ulizia, F. Ferri, and P. Grifoni, “A survey of grammatical inference methods
for natural language learning,” Artif. Intell. Rev., vol. 36, no. 1, pp. 1–27, Jun. 2011.
[Online]. Available: http://dx.doi.org/10.1007/s10462-010-9199-1

[64] J. Geertzen and M. Zaanen, “Grammatical inference using suffix trees,” in
Grammatical Inference: Algorithms and Applications, ser. Lecture Notes in
Computer Science, G. Paliouras and Y. Sakakibara, Eds. Springer Berlin
Heidelberg, 2004, vol. 3264, pp. 163–174. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-30195-0_15

[65] G. M. Olson, J. D. Herbsleb, and H. H. Rueter, “Characterizing the sequential struc-
ture of interactive behaviors through statistical and grammatical techniques,” Human-
Computer Interaction, vol. 9, pp. 427–472, 1994.

[66] D. Maulsby, “Inductive task modeling for user interface customization,” in
Proceedings of the 2Nd International Conference on Intelligent User Interfaces, ser.
IUI ’97. New York, NY, USA: ACM, 1997, pp. 233–236. [Online]. Available:
http://doi.acm.org/10.1145/238218.238331

[67] R. Krimmel, “Improving automatic task tree generation with alignment algorithms,”
Göttingen, Germany, 2014.

http://doi.acm.org/10.1145/2533670.2533672
http://doi.acm.org/10.1145/2533670.2533672
http://doi.acm.org/10.1145/108844.108850
http://dx.doi.org/10.1007/s10462-010-9199-1
http://dx.doi.org/10.1007/978-3-540-30195-0_15
http://dx.doi.org/10.1007/978-3-540-30195-0_15
http://doi.acm.org/10.1145/238218.238331

Bibliography 168

[68] D. Almeida, J. C. Campos, J. Saraiva, and J. C. Silva, “Towards a catalog of usability
smells,” in ACM SAC 2015 proceedings - Volume I: Artificial Intelligence and Agents,
Distributed Systems, and Information Systems. ACM, 2015, pp. 175–181.

[69] B. E. John. (2015) Cogtool. Retrieved 06/2015. [Online]. Available: http:
//cogtool.com/

[70] D. D. Salvucci, “Rapid prototyping and evaluation of in-vehicle interfaces,” ACM
Trans. Comput.-Hum. Interact., vol. 16, no. 2, pp. 9:1–9:33, Jun. 2009. [Online].
Available: http://doi.acm.org/10.1145/1534903.1534906

[71] S. Feuerstack, M. Blumendorf, M. Kern, M. Kruppa, M. Quade, M. Runge, and
S. Albayrak, “Automated usability evaluation during model-based interactive sys-
tem development,” in HCSE-TAMODIA ’08: Proceedings of the 2nd Conference
on Human-Centered Software Engineering and 7th International Workshop on Task
Models and Diagrams. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 134–141.

[72] M. Quade, M. Blumendorf, and S. Albayrak, “Towards model-based runtime evalu-
ation and adaptation of user interfaces,” in User Modeling and Adaptation for Daily
Routines: Providing Assistance to People with Special and Specific Needs, 2010.

[73] W. De Pauw and S. Heisig, “Zinsight: A visual and analytic environment for
exploring large event traces,” in Proceedings of the 5th International Symposium on
Software Visualization, ser. SOFTVIS ’10. New York, NY, USA: ACM, 2010, pp.
143–152. [Online]. Available: http://doi.acm.org/10.1145/1879211.1879233

[74] seto GmbH. (2015) m-pathy. Retrieved 06/2015. [Online]. Available: https:
//www.m-pathy.com/

[75] D. Akers, R. Jeffries, M. Simpson, and T. Winograd, “Backtracking events as
indicators of usability problems in creation-oriented applications,” ACM Trans.
Comput.-Hum. Interact., vol. 19, no. 2, pp. 16:1–16:40, Jul. 2012. [Online].
Available: http://doi.acm.org/10.1145/2240156.2240164

[76] A. Vargas, H. Weffers, and H. V. da Rocha, “A method for remote and semi-
automatic usability evaluation of web-based applications through users behavior
analysis,” in Proceedings of the 7th International Conference on Methods and
Techniques in Behavioral Research, ser. MB ’10. New York, NY, USA: ACM, 2010,
pp. 19:1–19:5. [Online]. Available: http://doi.acm.org/10.1145/1931344.1931363

[77] T. Carta, F. Paternò, and V. Santana, “Support for remote usability evaluation of web
mobile applications,” in Proceedings of the 29th ACM international conference on
Design of communication, ser. SIGDOC ’11. New York, NY, USA: ACM, 2011,
pp. 129–136. [Online]. Available: http://doi.acm.org/10.1145/2038476.2038502

http://cogtool.com/
http://cogtool.com/
http://doi.acm.org/10.1145/1534903.1534906
http://doi.acm.org/10.1145/1879211.1879233
https://www.m-pathy.com/
https://www.m-pathy.com/
http://doi.acm.org/10.1145/2240156.2240164
http://doi.acm.org/10.1145/1931344.1931363
http://doi.acm.org/10.1145/2038476.2038502

169 Bibliography

[78] R. Fujioka, R. Tanimoto, Y. Kawai, and H. Okada, “Tool for detecting webpage
usability problems from mouse click coordinate logs,” in Human-Computer
Interaction. Interaction Design and Usability, ser. Lecture Notes in Computer
Science, J. Jacko, Ed. Springer Berlin Heidelberg, 2007, vol. 4550, pp. 438–445.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-73105-4_48

[79] F. Paternò and G. Ballardin, “RemUSINE: a bridge between empirical and
model-based evaluation when evaluators and users are distant.” Interacting
with Computers, vol. 13, no. 2, pp. 229–251, 2000. [Online]. Available:
http://dblp.uni-trier.de/db/journals/iwc/iwc13.html#PaternoB00

[80] F. Paternò, A. Piruzza, and C. Santoro, “Remote usability analysis of multimodal
information regarding user behaviour,” 2005, pp. 15–22. [Online]. Available:
http://giove.isti.cnr.it/attachments/publications/2005-A2-134.pdf

[81] F. Paternò, A. Piruzza, and C. Santoro, “Remote web usability evaluation
exploiting multimodal information on user behavior,” in Computer-Aided Design
of User Interfaces V, G. Calvary, C. Pribeanu, G. Santucci, and J. Vanderdonckt,
Eds. Springer Netherlands, 2007, pp. 287–298. [Online]. Available: http:
//dx.doi.org/10.1007/978-1-4020-5820-2_24

[82] A. Lecerof and F. Paternò, “Automatic support for usability evaluation,” IEEE Trans.
Softw. Eng., vol. 24, pp. 863–888, October 1998.

[83] S. Arondi, P. Baroni, D. Fogli, and P. Mussio, “Supporting co-evolution of
users and systems by the recognition of interaction patterns,” in Proceedings
of the Working Conference on Advanced Visual Interfaces, ser. AVI ’02.
New York, NY, USA: ACM, 2002, pp. 177–186. [Online]. Available: http:
//doi.acm.org/10.1145/1556262.1556291

[84] J. R. I. Susana Gómez-Carnero, Evaluation of the Interface Prototypes Using DGAIU
Abstract Representation Models. InTech, 2009-12-01, ch. 29, pp. 517–538.

[85] I. Shah, “Event patterns as indicators of usability problems,” J. King Saud
Univ. Comput. Inf. Sci., vol. 20, pp. 31–43, Jan. 2008. [Online]. Available:
http://dx.doi.org/10.1016/S1319-1578(08)80003-1

[86] J. Grigera, A. Garrido, and J. Rivero, “A tool for detecting bad usability
smells in an automatic way,” in Web Engineering, ser. Lecture Notes in
Computer Science, S. Casteleyn, G. Rossi, and M. Winckler, Eds. Springer
International Publishing, 2014, vol. 8541, pp. 490–493. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08245-5_34

[87] A. Garrido, G. Rossi, and D. Distante, “Refactoring for usability in web applica-
tions,” Software, IEEE, vol. 28, no. 3, pp. 60–67, May 2011.

http://dx.doi.org/10.1007/978-3-540-73105-4_48
http://dblp.uni-trier.de/db/journals/iwc/iwc13.html#PaternoB00
http://giove.isti.cnr.it/attachments/publications/2005-A2-134.pdf
http://dx.doi.org/10.1007/978-1-4020-5820-2_24
http://dx.doi.org/10.1007/978-1-4020-5820-2_24
http://doi.acm.org/10.1145/1556262.1556291
http://doi.acm.org/10.1145/1556262.1556291
http://dx.doi.org/10.1016/S1319-1578(08)80003-1
http://dx.doi.org/10.1007/978-3-319-08245-5_34

Bibliography 170

[88] Refactoring: Improving the Design of Existing Code. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1999.

[89] E. Myers, “An o(nd) difference algorithm and its variations,” Algorithmica, vol. 1, no.
1-4, pp. 251–266, 1986. [Online]. Available: http://dx.doi.org/10.1007/BF01840446

[90] U. D. of Health and H. Services. (2006) The research-based web design & usability
guidelines, enlarged/expanded edition. Retrieved 06/2015. [Online]. Available:
http://guidelines.usability.gov/

[91] J. Tidwell, Designing Interfaces - Patterns for Effective Interaction Design (2. ed.),
ser. Oreilly Series, M. Treseler, Ed. O’Reilly Media, Incorporated, 2010. [Online].
Available: http://books.google.de/books?id=5gvOU9X0fu0C

[92] P. G. Polson, C. Lewis, J. Rieman, and C. Wharton, “Cognitive walkthroughs: A
method for theory-based evaluation of user interfaces,” Int. J. Man-Mach. Stud.,
vol. 36, no. 5, pp. 741–773, May 1992.

[93] X. Ferré, N. Juristo, H. Windl, and L. Constantine, “Usability basics for software
developers,” IEEE Softw., vol. 18, no. 1, pp. 22–29, Jan. 2001.

[94] D. A. Norman, The design of everyday things, 1st ed. [New York]: Basic Books,
2002.

[95] A. Bedford. (2015) Don’t prioritize efficiency over expectations. Re-
trieved 07/08/2015. [Online]. Available: http://www.nngroup.com/articles/
efficiency-vs-expectations/

[96] ——. (2015) No more pogo sticking: Protect users from wasted clicks. Retrieved
06/2015. [Online]. Available: http://www.nngroup.com/articles/pogo-sticking/

[97] S. Krug, Don’t make me think!: Web Usability- das intuitive Web. mitp, 2006.

[98] ——, Web Usability: Rocket Surgery Made Easy. Addison Wesley Verlag, 2010.

[99] S. Herbold and P. Harms, “AutoQUEST - Automated Quality Engineering of Event-
driven Software,” in Proceedings of the Fourth International Workshop on Testing
Techniques & Experimentation Benchmarks for Event-Driven Software, March 2013,
pp. 134 – 139.

[100] U. o. G. Research Group Software Engineering for Distributed Systems,
Institute of Computer Science. (2015) AutoQUEST - Testing, Analysing,
and Observing Event-driven Software. Retrieved 08/2015. [Online]. Available:
http://swe.informatik.uni-goettingen.de/

http://dx.doi.org/10.1007/BF01840446
http://guidelines.usability.gov/
http://books.google.de/books?id=5gvOU9X0fu0C
http://www.nngroup.com/articles/efficiency-vs-expectations/
http://www.nngroup.com/articles/efficiency-vs-expectations/
http://www.nngroup.com/articles/pogo-sticking/
http://swe.informatik.uni-goettingen.de/

171 Bibliography

[101] A. V. Aho, R. Sethi, and J. D. Ullmann, Compilerbau Teil 1. Oldenburg Verlag
München Wien, 1999.

[102] U. o. G. Institute of Computer Science. (2015) Master application portal
- applied computer science. Retrieved 06/2015. [Online]. Available: https:
//app2.informatik.uni-goettingen.de/cs/2015/wise/accounts/login

[103] U. o. G. Research Group Software Engineering for Distributed Systems, Institute of
Computer Science. (2015) Software engineering for distributed systems. Retrieved
08/2015. [Online]. Available: http://swe.informatik.uni-goettingen.de/

[104] F. Trautsch, “User-oriented usability evaluation of a research website,” Göttingen,
Germany, 2013.

[105] M. Berger. (2015) Borg calendar. Retrieved 07/2015. [Online]. Available:
https://mikeberger.github.io/borg_calendar/

[106] D. May, “Evaluation of fully automated usage based testing with mutation testing,”
Göttingen, Germany, 2015.

[107] S. Herbold, A. D. Francesco, J. Grabowski, P. Harms, L. M. Hillah, F. Kordon, A.-P.
Maesano, L. Maesano, C. D. Napoli, F. de Rosa, M. Schneider, N. Tonellotto, M.-
F. Wendland, and P.-H. Wuillemin, “The MIDAS Cloud Platform for Testing SOA
Applications,” in The 8th IEEE International Conference on Software Testing, Veri-
fication and Validation (ICST) 2015 - tools track, Apr. 2015.

[108] S. Herbold, “Usage-based Testing of Event-driven Software,” Ph.D. dis-
sertation, University Göttingen, June 2012 (electronically published on
http://webdoc.sub.gwdg.de/diss/2012/herbold/ [retrieved: 1, 2014]), 2012.

[109] H. L. T. H.-C. I. Group. (2015) ConcurTaskTrees Environment. Retrieved 06/2015.
[Online]. Available: http://giove.cnuce.cnr.it/ctte.html

https://app2.informatik.uni-goettingen.de/cs/2015/wise/accounts/login
https://app2.informatik.uni-goettingen.de/cs/2015/wise/accounts/login
http://swe.informatik.uni-goettingen.de/
https://mikeberger.github.io/borg_calendar/
http://giove.cnuce.cnr.it/ctte.html

Acronyms

AutoQUEST Automated Quality Engineering of Event-driven SofTware.

AWT Abstract Window Toolkit.

AWUSA Automated Website USability Analysis.

BORG Berger-Organizer.

CMS Content Management System.

CRITIQUE Convenient, Rapid, Interactive Tool for Integrating Quick Usability Evalua-
tions.

CSS Cascading Style Sheets.

DOM Document Object Model.

GOMS Goals, Operators, Methods, and Selection Rules.

GUI Graphical User Interface.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

MFC Microsoft Foundation Classes.

MRP Maximal Repeating Pattern.

ReModEl Remote Model-Based Evaluation.

SOA Service Oriented Architecture.

TaskMODL Task Modelling Language.

UI User Interface.

Acronyms 174

USEFul USability Evaluation Framework.

WAUTER Web Automatic Usability Evaluation EnviRonment.

WebRemUSINE Web USer INterface Evaluator.

XML eXtensible Markup Language.

Glossary

GUI element

Any element of a GUI, i.e., all container elements, visual elements, and interaction
elements. 9, 10

GUI model

Any element of a GUI including their tree like structure given through the container
elements. 9

action

An available interaction of a user with a GUI element, e.g., a click, that can be per-
formed on a button. 10

action instance

The execution of an action. This triggers an event. 10

container element

Element of a GUI that is used for grouping and structuring GUI elements. 9

duplicate

A usability smell finding for a task, whose parent task also has a findings for the same
smell. 95

event

Software internal signal, which indicates, that a user performed an action on a GUI
element. 10

event target

The GUI element on which the action that caused an event was performed. 10

event type

Type of the action that caused an event, e.g., a mouse click. 10

Glossary 176

inefficient action

An action of a user that has no semantic meaning for a task execution, e.g., a hori-
zontal scroll. 10, 53

interaction element

Element of a GUI that is utilized by users, e.g., buttons and text fields. 9, 81

iteration

A type of task, whose temporal relationship defines, that it has only one child, which
is executed one or more times. 11

iteration instance

The execution, i.e, the task instance, of an iteration. 12

optional

A type of task, whose temporal relationship defines, that it has only one child, which
can be left out. 11

optional instance

The execution, i.e, the task instance, of an optional. 12

selection

A type of task, whose temporal relationship defines, that only one of its children can
be executed. 11

selection instance

The execution, i.e, the task instance, of a selection. 12

sequence

A type of task, whose temporal relationship defines, that its children are executed in
the given order. 11

sequence instance

The execution, i.e, the task instance, of a sequence. 12

sequence similarity

A similarity metric calculated for the comparison of two sequences. 44

task

A combination of actions performed by users to reach a certain goal [24]. 11

177 Glossary

task depth

The number of levels of the task tree that corresponds to a task. 13

task instance

The execution of a task, which forms a tree structure, that is similar to a task tree,
with action instances as leaf nodes and task instances as other nodes. 12

task instance list

A list containing task instances and action instances, on which a sequence and itera-
tion detection is done. 36

task list

A list containing actions and tasks. 44

task tree

A tree structure, which is created through the parent-child-relationship defined be-
tween tasks and between tasks and actions. 11

temporal relationship

Defines the execution order of the children of a task, which are other tasks or actions.
11

thinking aloud

A method for user-oriented usability evaluation asking users to verbalize their
thoughts while performing tasks with a software. 15

usability issue

Problem with the software that decreases the usability. 14

usability smell

Exceptional user behavior that indicates one or more usability issues. 14

view

Container element of a GUI that belongs to a group of container elements, of which
only one is visible at a time. 9

visual element

Element of a GUI that displays information to users, but does not allow for interac-
tion. 9

List of Definitions

Variable Description
A Set of all actions executable on a software.
a Individual action ∈ A executable on a software.
a′ Instance of action a ∈ A executed on a software.
A′ All action instances executed on a software, which are derived from recorded

events.
A10 Multiset containing all executed combinations of 10 subsequently executed

actions. The set contains as many duplicates as an action combination was
performed by users.

G All GUI elements belonging to a software.
g Individual GUI element ∈ G belonging to a software.
T Set of all tasks executable on a software.
t Individual task ∈ T executable on a software.
t ′ Instance of task t ∈ T executed on a software.
T ′ Arbitrary set of task instances executed on a software.
S Arbitrary set of sequences S⊆ T .
s Individual sequence.
s′ Instance of Sequence s executed on a software.
S′ Arbitrary set of sequence instances executed on a software.
I Arbitrary set of iterations I ⊆ T .
i Individual iteration.
i′ Instance of Iteration i executed on a software.
I′ Arbitrary set of iteration instances executed on a software.
O Arbitrary set of optionals O⊆ T .
o Individual optional.
o′ Instance of Optional o executed on a software.
O′ Arbitrary set of optional instances executed on a software.
Z Arbitrary set of selections Z ⊆ T .
z Individual selection.
z′ Instance of Selection z executed on a software.
Z′ Arbitrary set of selection instances executed on a software.
c Child of a task being another task or an action.
c′ Child of a task instance being a task or action instance.

Glossary 180

L Task list containing actions and tasks.
l Sublist of a task list.
L′ Task instance list containing action and task instances.
l′ Sublist, i.e., n-gram in a task instance list.
D List of deltas between two task lists.
d Individual delta in a delta list D.

i, j Counter variables.
n,m Sizes of a list or a set.

Table 8.1.: List of variables used in formulas in this thesis.

181 Glossary

Function Description
x(a) Returns all instances of an action a.

viewActionInstances(A′,view) Returns sublists of subsequent action instances a′ ∈ A′ that
were executed in the view.

c(t) Ordered list of children c1 . . .cn of a task t, where ci ∈ A∪
T \{t}.

|c(t)| Number of children of a task t.
c(t ′) Ordered list of children c′1 . . .c

′
n of an instance t ′ of task t,

which are other task or action instances.
|c(t ′)| Number of children of an instance t ′ of task t.

depth(t) Returns the depth of a task t.
x(t) Returns all instances of a task t.
L(t) Returns the task list belonging to a task t.

L′(t ′) Returns the task instance list belonging to a task instance t ′.
p(l′) Returns the position of an n-gram l′ in a task instance list.
a(t) Returns the average number of actions performed for a task

t, when t is executed with a minimum number of action in-
stances.

a(L) Returns the average number of actions performed for the
tasks t ∈ L plus the number of actions a ∈ L.

a(d) For a delta d, returns the average number of actions per-
formed for the tasks covered by d plus the number of actions
covered by d.

a′(t) Returns all action instances based on which a task t was
generated.

a′(t ′) Returns the action instances representing the instance t ′ of
task t.

ia′(t ′) Number of instances of inefficient actions performed in the
task instance t ′.

|d| Number of actions belonging to a delta between two task
lists.

sim(s1,s2) Metric for the similarity of two sequences s1 and s2.
G(s′) Returns the GUI elements used in the instances of efficient

actions, which were performed in the sequence instance s′.
dist(g1,g2) Distance between two GUI elements g1 and g2 based on a

GUI model.
Rsmell(t) Intensity of the usability smell smell calculated for task t.
Rsmell(t ′) Intensity of the usability smell smell calculated for task in-

stance t ′.

Table 8.2.: List of functions used in formulas in this thesis.

List of Figures

2.1. Example of a simple GUI model. 10
2.2. Example of a simple task tree representing a login process on a website. . . 12
2.3. Example of a task instance representing an execution of the task in Figure 2.2. 13

4.1. Process for automated usability evaluation. 32
4.2. The overall process taken in this thesis for automated usability evaluation. . 32
4.3. Example of recorded events caused by action instances. 33
4.4. Overall task tree generation process (adapted from [21]). 36
4.5. Process for iteration and sequence detection (adapted from [21]). 37
4.6. Example for iteration and sequence detection (adapted from [20, 21]). . . . 38
4.7. Process for detection and merging of similar sequences (adapted from [21]). 43
4.8. Example for merging two similar sequences (adapted from [21]). 45
4.9. Example for updating parent tasks after merging two similar sequences. . . 51
4.10. Example for merging two similar sequences containing selections and op-

tionals (adapted from [21]). 55
4.11. Example for the usability smell "Required Inefficient Actions" (adapted

from [22]). 65
4.12. Example for the usability smell "High GUI Element Distance" (adapted

from [22]). 67
4.13. Example for the usability smell "Missing Feedback" (adapted from [22]). . 70
4.14. Example for the usability smell "Required Input Method Change". 71

5.1. Example of a grammar transformed from a task tree generated by our ap-
proach. 88

6.1. Screenshot of the applicants portal of the master application portal analyzed
in the first case study. 97

6.2. Example for a task tree generated for the form of the applicants portal shown
in Figure 6.1 in the first case study. 100

6.3. Plot for the cumulative action instance coverage of the unmerged sequences
of the reviewer portal data set (black) and five subsets for the subset sizes
2.5% (grey), 10% (red), and 40% (cyan). 104

List of Figures 184

6.4. Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the reviewer portal data set
in the first case study. 106

6.5. Screenshot of the homepage of the new version of the research website an-
alyzed in the second case study. 122

6.6. Example for a task tree generated in the second case study. 123
6.7. Plot for the cumulative action instance coverage of the unmerged sequences

of the new website version (black) and five subsets for the subset sizes 2.5%
(grey), 10% (red), and 40% (cyan). 125

6.8. Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the new website version data
set in the second case study. 127

6.9. Screenshot of the month view and the view for entering/editing appoint-
ments of BORG, which was analyzed in the third case study. 137

6.10. Example for a task tree generated for the BORG calendar in the third case
study. 139

6.11. Example for a task tree generated for an Android app in the context of ad-
ditional experiments. 146

C.1. Example of a trie (b) generated based on a task instance list (a). 233

D.1. Example of a task tree in the notation of our approach (a) and its trans-
formed variant in ConcurTaskTrees visualized using the ConcurTaskTree
Environment (b). 236

E.1. Plot for the cumulative action instance coverage of the merged sequences
of the reviewer portal data set of the first case study (black) and five subsets
for the subset sizes 2.5% (grey), 10% (red), and 40% (cyan). 239

E.2. Plot for the cumulative action instance coverage of the unmerged sequences
of the applicants portal data set of the first case study (black) and five subsets
for the subset sizes 2.5% (grey), 10% (red), and 40% (cyan). 240

E.3. Plot for the cumulative action instance coverage of the merged sequences of
the applicants portal data set of the first case study (black) and five subsets
for the subset sizes 2.5% (grey), 10% (red), and 40% (cyan). 241

E.4. Plot for the cumulative action instance coverage of the unmerged sequences
of the overall data set of the first case study (black) and five subsets for the
subset sizes 2.5% (grey), 10% (red), and 40% (cyan). 242

E.5. Plot for the cumulative action instance coverage of the merged sequences
of the overall data set of the first case study (black) and five subsets for the
subset sizes 2.5% (grey), 10% (red), and 40% (cyan). 243

185 List of Figures

E.6. Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the reviewer portal data set in
the first case study. 244

E.7. Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the applicants portal data
set in the first case study. 245

E.8. Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the applicants portal data set
in the first case study. 245

E.9. Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the overall data set in the
first case study. 246

E.10. Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the overall data set in the first
case study. 246

F.1. Plot for the cumulative action instance coverage of the merged sequences of
the new website version (black) and five subsets for the subset sizes 2.5%
(grey), 10% (red), and 40% (cyan). 247

F.2. Plot for the cumulative action instance coverage of the unmerged sequences
of the old website version (black) and five subsets for the subset sizes 2.5%
(grey), 10% (red), and 40% (cyan). 248

F.3. Plot for the cumulative action instance coverage of the merged sequences
of the old website version (black) and five subsets for the subset sizes 2.5%
(grey), 10% (red), and 40% (cyan). 249

F.4. Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the new website version data
set in the second case study. 250

F.5. Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the old website version data
set in the second case study. 251

F.6. Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the old website version data
set in the second case study. 251

List of Algorithms

4.1. Creation of a GUI model out of GUI element paths from events. 35
4.2. Choosing of sequence pairs to be merged. 48
4.3. Simplified task detection process with complexities. 59

List of Listings

5.1. Excerpt of an AutoQUEST log file for website events. 84

List of Tables

4.1. Abstract event types considered in this thesis. 34

6.1. Sizes, numbers, and numbers of comparisons of subsets, which are created
in the case studies for evaluating the task tree representativeness. 93

6.2. Facts of the first case study including recorded and post-processed actions
for the overall data set and the separate subportals. 98

6.3. Task trees generated in the first case study for the overall data set and the
separate subportals. 99

6.4. Information about created subsets, generated task trees, and the compar-
isons done for the data sets of the first case study. 102

6.5. Average ratio of sequences that were transformed into grammars for check-
ing their representativeness for other subsets of the same size as well as for
the respective full data set in the first case study. 105

6.6. Numbers of findings for the usability smells in the different data sets of the
first case study, including the detection in unmerged and merged task trees. 108

6.7. Numbers of detected "Important Tasks" usability smells in the different data
sets of the first case study. 109

6.8. Numbers of detected "Required Inefficient Actions" usability smells in the
different data sets of the first case study. 110

6.9. Numbers of detected "High GUI Element Distance" usability smells in the
different data sets of the first case study. 112

6.10. Numbers of detected "Missing Feedback" usability smells in the different
data sets of the first case study. 113

6.11. Numbers of detected "Required Input Method Change" usability smells in
the different data sets of the first case study. 114

6.12. Number of usability issues found using a user-oriented usability evaluation
with Thinking Aloud for the applicants portal in the first case study. 119

6.13. Facts of the second case study including recorded and post-processed ac-
tions for the old and the new website version. 121

6.14. Task trees generated in the second case study for the two website versions. . 123
6.15. Information about created subsets, generated task trees, and the compar-

isons done for the data sets of the second case study. 124

List of Tables 190

6.16. Average ratio of sequences that were transformed into grammars for check-
ing their representativeness for other subsets of the same size as well as for
the corresponding full data set in the second case study. 126

6.17. Numbers of detected usability smells in the different data sets of the second
case study, including the detection in unmerged and merged task trees. . . . 128

6.18. Numbers of detected "Important Tasks" usability smells in the two data sets
of the second case study. 129

6.19. Numbers of detected "Required Inefficient Actions" usability smells in the
two data sets of the second case study. 130

6.20. Numbers of detected "High GUI Element Distance" usability smells in the
two data sets of the second case study. 131

6.21. Numbers of detected "Missing Feedback" usability smells in the two data
sets of the second case study. 131

6.22. Facts of the third case study including recorded and post-processed actions
for all sessions. 138

6.23. Task trees generated in the third case study. 139
6.24. Numbers of detected usability smells in the third case study. 140
6.25. Numbers of detected "Important Tasks" usability smells in the third case

study. 140
6.26. Numbers of detected "High GUI Element Distance" usability smells in the

third case study. 141

8.1. List of variables used in formulas in this thesis. 180
8.2. List of functions used in formulas in this thesis. 181

A. AutoQUEST Commands for
Post-Processing Recorded Events

Recorded events can have characteristics specific for a certain platform or case study. For
example, there may be a difference between the level of detail of recorded events (see Sec-
tion 4.2), or events can have a wrong order. In this annex, we describe commands for
AutoQUEST, which we implemented to post-process the data recorded in our case studies.
We further list, which of the commands were applied in which case study.

A.1. Extended AutoQUEST Commands

The first command, which we implemented, focuses on the detection of mouse clicks,
mouse drag and drops, and mouse double clicks. The command is named condense mouse
clicks. Depending on the recorded platform, a single mouse click is either recorded as

• one event representing the mouse click,
• two events, the first representing the mouse button down and the second the mouse

button up, or
• three events, the first representing the mouse button down, the second the mouse

button up, and the third the mouse click itself.

The corresponding command handles these different situations and replaces several
events if present by a single event representing a mouse click. In addition, the command
considers drag and drops, which are also represented by two events, the first being a mouse
button down and the second being a mouse button up. If the command finds two such
subsequent events, and if these events are recorded on different GUI elements, they are
replaced by a single mouse drag and drop event instead of a mouse click event. Finally, the
command ensures, that two subsequent mouse click events, even if detected in the steps
before, are replaced by a single mouse double click event. This is only done if the difference
between the events’ timestamps is smaller than 500 milliseconds. The 500 milliseconds are
a typical value when considering attempts for a double click on Windows machines.

The event recordings of Java Swing/AWT applications as well as of websites include
many focus change events. These indicate the GUI element that has the keyboard focus at a
specific point in time. For example, there is usually a focus change event to a specific text
field before any text is entered into this field. These events are implicit to the user actions,

A. AutoQUEST Commands for Post-Processing Recorded Events 192

but they do not represent a real user action. Instead, they are logged in combination with
another event, e.g., a mouse click on a text field, that implies the focus change. To reduce
the amount of processed events, we implemented an AutoQUEST command that searches
for the focus change events and adapts the target of subsequent keyboard events to be the
same as the preceding focus change event. Afterwards, the focus change events are dropped.
The command is named correct key interaction targets.

Especially on websites, the event recordings have a wrong order of events with respect
to the usage of the tabulator for navigating between GUI elements of a form. For example,
when a user enters a text into a text field and then uses the tabulator key for finishing the
entry and navigating to the next text field, the recorded events are first the pressing of the
tabulator key and second the change of the text in the first text field. But from a logical point
of view, the entering of the text precedes the pressing of the tabulator key. Therefore, we
implemented a command named correct tab key navigation order in AutoQUEST, which
switches two subsequent events representing this wrong order.

Furthermore, when recording users on websites, a user may have opened several browser
windows or tabs for the same website. When working in both windows at the same time, the
recorded events are send as groups, together with the identical client id, to the monitoring
server. Due to the intermediate client side caching and its separation in the different browser
windows, the monitoring server will not receive the events in the order in which they were
actually performed. But due to the same client id, they are stored in the same log file. In
addition, the events may represent action combinations, which would not be possible if the
website was opened only once. Therefore, we implemented a command in AutoQUEST
that searches for sessions in which the events are not ordered according to their timestamps.
If this command, which we call check event time stamps, finds such sessions, it drops them
so that they are ignored in our subsequent analysis. The command does not fully prevent,
that there may still be a wrong event order caused by multiple parallel browser tabs. But
due to the large amounts of recorded data, we expect that these wrong orders become noise.
Furthermore, the events that were logged together are in the correct order.

Events recorded on Java Swing/AWT applications are on key stroke level. Hence, when
recording text inputs, the AutoQUEST library records individual key presses on the key-
board, which leads to a large amount of events for entering text. Therefore, we imple-
mented two commands to combine these events into single events for each text input. The
first command is called sort key interactions. This checks the individual usage of keys and
sorts them in a harmonized way. For example, a recording may include the following events
for entering the text "OK" into a text field:

• press ’O’ key
• press ’K’ key
• release ’O’ key
• release ’K’ key

193 A.2. AutoQUEST Command Application

This order is correct but less expected than if the second and the third event were
switched. The command sort key interactions detects the above wrong order and switches
the second and third event. Similarly, it creates a harmonized event order, when special
keys like shift are used to type upper case characters or other signs. The second command,
which we called detect text input, afterwards processes the sorted key stroke level events. It
determines those event groups that together represent the entering of a text into a text field.
These events are then replaced by a single text input event. In addition, the command deter-
mines the entered text based on the pressed keys. This text becomes an additional parameter
of the text input event.

A.2. AutoQUEST Command Application

The above commands are applied differently in the distinct case studies. This is because the
case studies utilize different platforms and, hence, require different commands. In all case
studies, we applied the commands correct key interaction targets, correct tab key navigation
order, and condense mouse clicks. In the first case study, it was not required to execute other
commands for post-processing the events, as we did not observe the issues solved with these
commands in the data. In addition, on websites we already recorded full text inputs. Hence,
no detection of the entered text based on keystrokes is required.

In the second case study, we additionally applied the command check event time stamps.
This was required, as we observed the issue of badly sorted events in our data due to the
opening of multiple tabs by the same client at the same time. In the third case study, we
additionally applied the commands sort key interactions and detect text input. This was
necessary, as on Java platforms, AutoQUEST does not record full text entries but the single
key strokes. The application of other commands was not required.

B. Extension of GUI Models for Websites
With DOM Ids

Websites often lack ids for the different DOM elements. But these ids are helpful when cre-
ating a GUI model, as they can help to identify the same GUI elements in different sessions
and log files. If a website does not make use of such ids, AutoQUEST allows to subse-
quently add these ids again, when log files of a website are parsed into AutoQUEST. For
this, the parsing process can be equipped with a parameter file, which contains a mapping
between a GUI element of a website to an id. In this file, a GUI element of a website is
identified by its path through the DOM of a page. To have this path as unambiguous as
possible, it contains ids of other GUI elements of a page as well as indexes of the elements
in in the child lists of their parents. An example for such a path with a mapping to the id
image1 is the following:
1 document(path\=/path1)/html[0]/body[0]/table(htmlId\=tab_1)/tr[2]/td[3]/img[0] = image1

This path identifies a GUI element on the page of a website which is available at the path
/path1. The element itself belongs to the table with the HTML id tab_1 and is located in the
third row and fourth column. The element itself is the first image located in the indicated
table cell. Using this mapping, the derivation of a GUI model as described in Section 4.3
can be done. The configuration files that we applied in the first and the second case study,
which were both websites, are listed in the following subsections.

B.1. Parsing Configuration for Case Study 1
###
unify document paths
###

document(path\=/cs14/accounts/login/)=CLEAR_QUERY,accounts/login

document(path\=/cs2013ws/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2013ws/accounts/password/reset/)=accounts/password_reset
document(path\=/cs2013ws/review/$)=CLEAR_QUERY,review/overview
document(path\=/cs2013ws/review/#/$)=review/details
document(path\=/cs2013ws/review/##/$)=review/details
document(path\=/cs2013ws/review/###/$)=review/details
document(path\=/cs2013ws/review/####/$)=review/details
document(path\=/cs2013ws/review/#/commit_history)=review/details_history
document(path\=/cs2013ws/review/##/commit_history)=review/details_history
document(path\=/cs2013ws/review/###/commit_history)=review/details_history
document(path\=/cs2013ws/review/####/commit_history)=review/details_history
document(path\=/cs2013ws/review/#/view)=review/details_view
document(path\=/cs2013ws/review/admin/)=review/admin
document(path\=/cs2013ws/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/cs2013ws/review/distribute/)=review/distribute
document(path\=/cs2013ws/review/export/)=review/export

B. Extension of GUI Models for Websites With DOM Ids 196

document(path\=/cs2013ws/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/cs2013ws/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2013ws/review/statistics)=review/statistics

document(path\=/cs2014ss/accounts$)=accounts
document(path\=/cs2014ss/accounts/activate/##/$)=accounts/activate
document(path\=/cs2014ss/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2014ss/accounts/new)=accounts/new
document(path\=/cs2014ss/accounts/password/change/)=accounts/password_change
document(path\=/cs2014ss/accounts/password/reset/$)=accounts/password_reset
document(path\=/cs2014ss/accounts/password/reset/confirm/###########################/$)=accounts/password_reset_confirm
document(path\=/cs2014ss/accounts/register/$)=accounts/register
document(path\=/cs2014ss/accounts/register/complete/)=accounts/register_complete
document(path\=/cs2014ss/adm)=adm
document(path\=/cs2014ss/application/$)=application
document(path\=/cs2014ss/application/edit/contact)=application/edit_contact
document(path\=/cs2014ss/application/edit/degree/$)=application/edit_degree
document(path\=/cs2014ss/application/edit/degree/additional-degree/$)=application/edit_degree_additional-degree
document(path\=/cs2014ss/application/edit/degree/additional-degree/#/)=application/edit_degree_additional-degree_details
document(path\=/cs2014ss/application/edit/degree/additional-degree/##/)=application/edit_degree_additional-degree_details
document(path\=/cs2014ss/application/edit/degree/additional-degree/###/)=application/edit_degree_additional-degree_details
document(path\=/cs2014ss/application/edit/degree/additional-university/#/)=application/edit_degree_additional-university_details
document(path\=/cs2014ss/application/edit/degree/additional-university/##/)=application/edit_degree_additional-university_details
document(path\=/cs2014ss/application/edit/degree/additional-university/###/)=application/edit_degree_additional-university_details
document(path\=/cs2014ss/application/edit/degree/degree/)=application/edit_degree
document(path\=/cs2014ss/application/edit/degree/eu/)=application/edit_degree_eu
document(path\=/cs2014ss/application/edit/degree/university/)=application/edit_degree_university
document(path\=/cs2014ss/application/edit/english/$)=application/edit_english
document(path\=/cs2014ss/application/edit/english/english/)=application/edit_english
document(path\=/cs2014ss/application/edit/english/en-other/)=application/edit_english_en-other
document(path\=/cs2014ss/application/edit/english/en-test/)=application/edit_english_en-test
document(path\=/cs2014ss/application/edit/german/$)=application/edit_german
document(path\=/cs2014ss/application/edit/german/de-nat/)=application/edit_german_de-nat
document(path\=/cs2014ss/application/edit/german/de-other/)=application/edit_german_de-other
document(path\=/cs2014ss/application/edit/german/de-test/)=application/edit_german_de-test
document(path\=/cs2014ss/application/edit/german/german/)=application/edit_german
document(path\=/cs2014ss/application/edit/gsv/$)=application/edit_gsv
document(path\=/cs2014ss/application/edit/gsv/gsv/)=application/edit_gsv
document(path\=/cs2014ss/application/edit/gsv/gsv-document/)=application/edit_gsv_gsv-document
document(path\=/cs2014ss/application/edit/personal)=application/edit_personal
document(path\=/cs2014ss/application/file/)=application/file
document(path\=/cs2014ss/application/withdraw/)=application/withdraw
document(path\=/cs2014ss/auth/user/)=auth/user
document(path\=/cs2014ss/imprint/)=imprint
document(path\=/cs2014ss/review/$)=CLEAR_QUERY,review/overview
document(path\=/cs2014ss/review/#/$)=review/details
document(path\=/cs2014ss/review/##/$)=review/details
document(path\=/cs2014ss/review/###/$)=review/details
document(path\=/cs2014ss/review/####/$)=review/details
document(path\=/cs2014ss/review/#/view$)=review/details_view
document(path\=/cs2014ss/review/##/view$)=review/details_view
document(path\=/cs2014ss/review/###/view$)=review/details_view
document(path\=/cs2014ss/review/####/view$)=review/details_view
document(path\=/cs2014ss/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ss/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ss/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ss/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ss/review/admin/$)=review/admin
document(path\=/cs2014ss/review/admin/#$)=review/admin_details
document(path\=/cs2014ss/review/admin/##$)=review/admin_details
document(path\=/cs2014ss/review/admin/add)=review/admin_add
document(path\=/cs2014ss/review/admin/auth$)=review/admin_auth
document(path\=/cs2014ss/review/admin/auth/user)=review/admin_auth_user
document(path\=/cs2014ss/review/admin/deadline)=review/admin_deadline
document(path\=/cs2014ss/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/cs2014ss/review/distribute/)=review/distribute
document(path\=/cs2014ss/review/export/)=review/export
document(path\=/cs2014ss/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/cs2014ss/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2014ss/review/statistics)=review/statistics
document(path\=/cs2014ss/wizard/$)=wizard
document(path\=/cs2014ss/wizard/additional-degree/$)=wizard/additional-degree
document(path\=/cs2014ss/wizard/additional-degree/#/$)=wizard/additional-degree_details
document(path\=/cs2014ss/wizard/additional-degree/##/$)=wizard/additional-degree_details
document(path\=/cs2014ss/wizard/additional-university/#/$)=wizard/additional-university_details
document(path\=/cs2014ss/wizard/additional-university/##/$)=wizard/additional-university_details
document(path\=/cs2014ss/wizard/degree/)=wizard/degree
document(path\=/cs2014ss/wizard/de-nat/)=wizard/de-nat

197 B.1. Parsing Configuration for Case Study 1

document(path\=/cs2014ss/wizard/de-other/)=wizard/de-other
document(path\=/cs2014ss/wizard/de-test/)=wizard/de-test
document(path\=/cs2014ss/wizard/english/)=wizard/english
document(path\=/cs2014ss/wizard/en-nat/)=wizard/en-nat
document(path\=/cs2014ss/wizard/en-other/)=wizard/en-other
document(path\=/cs2014ss/wizard/en-test/)=wizard/en-test
document(path\=/cs2014ss/wizard/eu/)=wizard/eu
document(path\=/cs2014ss/wizard/german/)=wizard/german
document(path\=/cs2014ss/wizard/gsv/)=wizard/gsv
document(path\=/cs2014ss/wizard/gsv-document/)=wizard/gsv-document
document(path\=/cs2014ss/wizard/personal/)=wizard/personal
document(path\=/cs2014ss/wizard/university/)=wizard/university

document(path\=/cs2014ws/accounts$)=accounts
document(path\=/cs2014ws/accounts/activate/##/$)=accounts/activate
document(path\=/cs2014ws/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2014ws/accounts/password/change/)=accounts/password_change
document(path\=/cs2014ws/accounts/password/reset/$)=accounts/password_reset
document(path\=/cs2014ws/accounts/password/reset/confirm/##########################/$)=accounts/password_reset_confirm
document(path\=/cs2014ws/accounts/password/reset/confirm/###########################/$)=accounts/password_reset_confirm
document(path\=/cs2014ws/accounts/register/$)=accounts/register
document(path\=/cs2014ws/accounts/register/complete/)=accounts/register_complete
document(path\=/cs2014ws/adm)=adm
document(path\=/cs2014ws/application/$)=application
document(path\=/cs2014ws/application/edit/contact)=application/edit_contact
document(path\=/cs2014ws/application/edit/degree/$)=application/edit_degree
document(path\=/cs2014ws/application/edit/degree/additional-degree/$)=application/edit_degree_additional-degree
document(path\=/cs2014ws/application/edit/degree/additional-degree/#/)=application/edit_degree_additional-degree_details
document(path\=/cs2014ws/application/edit/degree/additional-degree/##/)=application/edit_degree_additional-degree_details
document(path\=/cs2014ws/application/edit/degree/additional-degree/###/)=application/edit_degree_additional-degree_details
document(path\=/cs2014ws/application/edit/degree/additional-university/#/)=application/edit_degree_additional-university_details
document(path\=/cs2014ws/application/edit/degree/additional-university/##/)=application/edit_degree_additional-university_details
document(path\=/cs2014ws/application/edit/degree/additional-university/###/)=application/edit_degree_additional-university_details
document(path\=/cs2014ws/application/edit/degree/degree/)=application/edit_degree
document(path\=/cs2014ws/application/edit/degree/eu/)=application/edit_degree_eu
document(path\=/cs2014ws/application/edit/degree/university/)=application/edit_degree_university
document(path\=/cs2014ws/application/edit/english/$)=application/edit_english
document(path\=/cs2014ws/application/edit/english/english/)=application/edit_english
document(path\=/cs2014ws/application/edit/english/en-nat/)=application/edit_english_en-nat
document(path\=/cs2014ws/application/edit/english/en-other/)=application/edit_english_en-other
document(path\=/cs2014ws/application/edit/english/en-test/)=application/edit_english_en-test
document(path\=/cs2014ws/application/edit/german/$)=application/edit_german
document(path\=/cs2014ws/application/edit/german/de-nat/)=application/edit_german_de-nat
document(path\=/cs2014ws/application/edit/gsv/$)=application/edit_gsv
document(path\=/cs2014ws/application/edit/gsv/gsv-document/)=application/edit_gsv_gsv-document
document(path\=/cs2014ws/application/edit/personal)=application/edit_personal
document(path\=/cs2014ws/application/edit/st/$)=application/edit_st
document(path\=/cs2014ws/application/edit/st/special-treatment/$)=application/edit_st_special-treatment
document(path\=/cs2014ws/application/edit/st/special-treatment-document/$)=application/edit_st_special-treatment-document
document(path\=/cs2014ws/application/withdraw/)=application/withdraw
document(path\=/cs2014ws/auth/user/)=auth/user
document(path\=/cs2014ws/imprint/)=imprint
document(path\=/cs2014ws/cs2014ws/review/$)=CLEAR_QUERY,review/overview
document(path\=/cs2014ws/review/$)=CLEAR_QUERY,review/overview
document(path\=/cs2014ws/review/#/$)=review/details
document(path\=/cs2014ws/review/##/$)=review/details
document(path\=/cs2014ws/review/###/$)=review/details
document(path\=/cs2014ws/review/####/$)=review/details
document(path\=/cs2014ws/review/#/view$)=review/details_view
document(path\=/cs2014ws/review/##/view$)=review/details_view
document(path\=/cs2014ws/review/###/view$)=review/details_view
document(path\=/cs2014ws/review/####/view$)=review/details_view
document(path\=/cs2014ws/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ws/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ws/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ws/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014ws/review/#/commit_history$)=review/details_history
document(path\=/cs2014ws/review/##/commit_history$)=review/details_history
document(path\=/cs2014ws/review/###/commit_history$)=review/details_history
document(path\=/cs2014ws/review/####/commit_history$)=review/details_history
document(path\=/cs2014ws/review/#/interview$)=review/details_interview
document(path\=/cs2014ws/review/##/interview$)=review/details_interview
document(path\=/cs2014ws/review/###/interview$)=review/details_interview
document(path\=/cs2014ws/review/####/interview$)=review/details_interview
document(path\=/cs2014ws/review/admin/$)=review/admin
document(path\=/cs2014ws/review/sdmin$)=invalid-page
document(path\=/cs2014ws/review/admin/#$)=review/admin_details
document(path\=/cs2014ws/review/admin/##$)=review/admin_details

B. Extension of GUI Models for Websites With DOM Ids 198

document(path\=/cs2014ws/review/admin/###$)=review/admin_details
document(path\=/cs2014ws/review/admin/add)=review/admin_add
document(path\=/cs2014ws/review/admin/deadline)=review/admin_deadline
document(path\=/cs2014ws/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/cs2014ws/review/distribute/)=review/distribute
document(path\=/cs2014ws/review/export/)=review/export
document(path\=/cs2014ws/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/cs2014ws/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2014ws/review/statistics)=review/statistics
document(path\=/cs2014ws/wizard/$)=wizard
document(path\=/cs2014ws/wizard/additional-degree/$)=wizard/additional-degree
document(path\=/cs2014ws/wizard/additional-degree/#/$)=wizard/additional-degree_details
document(path\=/cs2014ws/wizard/additional-degree/##/$)=wizard/additional-degree_details
document(path\=/cs2014ws/wizard/additional-university/#/$)=wizard/additional-university_details
document(path\=/cs2014ws/wizard/additional-university/##/$)=wizard/additional-university_details
document(path\=/cs2014ws/wizard/bologna/)=wizard/bologna
document(path\=/cs2014ws/wizard/degree/)=wizard/degree
document(path\=/cs2014ws/wizard/de-nat/)=wizard/de-nat
document(path\=/cs2014ws/wizard/de-other/)=wizard/de-other
document(path\=/cs2014ws/wizard/de-test/)=wizard/de-test
document(path\=/cs2014ws/wizard/english/)=wizard/english
document(path\=/cs2014ws/wizard/en-nat/)=wizard/en-nat
document(path\=/cs2014ws/wizard/en-other/)=wizard/en-other
document(path\=/cs2014ws/wizard/en-test/)=wizard/en-test
document(path\=/cs2014ws/wizard/eu/)=wizard/eu
document(path\=/cs2014ws/wizard/german/)=wizard/german
document(path\=/cs2014ws/wizard/gsv/)=wizard/gsv
document(path\=/cs2014ws/wizard/gsv-document/)=wizard/gsv-document
document(path\=/cs2014ws/wizard/special-treatment/)=wizard/special-treatment
document(path\=/cs2014ws/wizard/special-treatment-document/)=wizard/special-treatment-document
document(path\=/cs2014ws/wizard/personal/)=wizard/personal
document(path\=/cs2014ws/wizard/university/)=wizard/university

document(path\=/cs2014wsnb/accounts$)=accounts
document(path\=/cs2014wsnb/accounts/$)=accounts
document(path\=/cs2014wsnb/accounts/activate/##/$)=accounts/activate
document(path\=/cs2014wsnb/accounts/login/$)=CLEAR_QUERY,accounts/login
document(path\=/cs2014wsnb/accounts/login/CometBirdHTML%5CShell%5COpen%5CCommand)=invalid-page
document(path\=/cs2014wsnb/accounts/password/change/)=accounts/password_change
document(path\=/cs2014wsnb/accounts/password/reset/$)=accounts/password_reset
document(path\=/cs2014wsnb/accounts/password/reset/confirm/##########################/$)=accounts/password_reset_confirm
document(path\=/cs2014wsnb/accounts/password/reset/confirm/###########################/$)=accounts/password_reset_confirm
document(path\=/cs2014wsnb/accounts/register/$)=accounts/register
document(path\=/cs2014wsnb/accounts/register/complete/)=accounts/register_complete
document(path\=/cs2014wsnb/adm)=adm
document(path\=/cs2014wsnb/application/$)=application
document(path\=/cs2014wsnb/application/edit/contact)=application/edit_contact
document(path\=/cs2014wsnb/application/edit/degree/$)=application/edit_degree
document(path\=/cs2014wsnb/application/edit/degree/additional-degree/$)=application/edit_degree_additional-degree
document(path\=/cs2014wsnb/application/edit/degree/additional-degree/#/)=application/edit_degree_additional-degree_details
document(path\=/cs2014wsnb/application/edit/degree/additional-degree/##/)=application/edit_degree_additional-degree_details
document(path\=/cs2014wsnb/application/edit/degree/additional-degree/###/)=application/edit_degree_additional-degree_details
document(path\=/cs2014wsnb/application/edit/degree/additional-university/#/)=application/edit_degree_additional-university_details
document(path\=/cs2014wsnb/application/edit/degree/additional-university/##/)=application/edit_degree_additional-university_details
document(path\=/cs2014wsnb/application/edit/degree/additional-university/###/)=application/edit_degree_additional-university_details
document(path\=/cs2014wsnb/application/edit/degree/degree/)=application/edit_degree
document(path\=/cs2014wsnb/application/edit/degree/eu/)=application/edit_degree_eu
document(path\=/cs2014wsnb/application/edit/degree/university/)=application/edit_degree_university
document(path\=/cs2014wsnb/application/edit/english/$)=application/edit_english
document(path\=/cs2014wsnb/application/edit/english/english/)=application/edit_english
document(path\=/cs2014wsnb/application/edit/english/en-nat/)=application/edit_english_en-nat
document(path\=/cs2014wsnb/application/edit/english/en-other/)=application/edit_english_en-other
document(path\=/cs2014wsnb/application/edit/english/en-test/)=application/edit_english_en-test
document(path\=/cs2014wsnb/application/edit/german/$)=application/edit_german
document(path\=/cs2014wsnb/application/edit/german/de-nat/)=application/edit_german_de-nat
document(path\=/cs2014wsnb/application/edit/german/de-other/)=application/edit_german_de-other
document(path\=/cs2014wsnb/application/edit/german/de-test/)=application/edit_german_de-test
document(path\=/cs2014wsnb/application/edit/german/german/)=application/edit_german
document(path\=/cs2014wsnb/application/edit/gsv/$)=application/edit_gsv
document(path\=/cs2014wsnb/application/edit/gsv/gsv-document/)=application/edit_gsv_gsv-document
document(path\=/cs2014wsnb/application/edit/personal)=application/edit_personal
document(path\=/cs2014wsnb/application/edit/st/$)=application/edit_st
document(path\=/cs2014wsnb/application/edit/st/special-treatment/$)=application/edit_st_special-treatment
document(path\=/cs2014wsnb/application/edit/st/special-treatment-document/$)=application/edit_st_special-treatment-document
document(path\=/cs2014wsnb/application/file/)=application/file
document(path\=/cs2014wsnb/application/withdraw/)=application/withdraw
document(path\=/cs2014wsnb/auth/user/)=auth/user
document(path\=/cs2014wsnb/cs2014wsnb/accounts/login/)=CLEAR_QUERY,accounts/login

199 B.1. Parsing Configuration for Case Study 1

document(path\=/cs2014wsnb/cs2014wsnb/review/)=CLEAR_QUERY,review/overview
document(path\=/cs2014wsnb/imprint/)=imprint
document(path\=/cs2014wsnb/review/$)=CLEAR_QUERY,review/overview
document(path\=/cs2014wsnb/review/#/$)=review/details
document(path\=/cs2014wsnb/review/##/$)=review/details
document(path\=/cs2014wsnb/review/###/$)=review/details
document(path\=/cs2014wsnb/review/####/$)=review/details
document(path\=/cs2014wsnb/review/#/view$)=review/details_view
document(path\=/cs2014wsnb/review/##/view$)=review/details_view
document(path\=/cs2014wsnb/review/###/view$)=review/details_view
document(path\=/cs2014wsnb/review/####/view$)=review/details_view
document(path\=/cs2014wsnb/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014wsnb/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014wsnb/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014wsnb/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs2014wsnb/review/#/commit_history$)=review/details_history
document(path\=/cs2014wsnb/review/##/commit_history$)=review/details_history
document(path\=/cs2014wsnb/review/###/commit_history$)=review/details_history
document(path\=/cs2014wsnb/review/####/commit_history$)=review/details_history
document(path\=/cs2014wsnb/review/#/interview$)=review/details_interview
document(path\=/cs2014wsnb/review/##/interview$)=review/details_interview
document(path\=/cs2014wsnb/review/###/interview$)=review/details_interview
document(path\=/cs2014wsnb/review/####/interview$)=review/details_interview
document(path\=/cs2014wsnb/review/admin/$)=review/admin
document(path\=/cs2014wsnb/review/sdmin/$)=invalid-page
document(path\=/cs2014wsnb/review/admin/#$)=review/admin_details
document(path\=/cs2014wsnb/review/admin/##$)=review/admin_details
document(path\=/cs2014wsnb/review/admin/###$)=review/admin_details
document(path\=/cs2014wsnb/review/admin/add)=review/admin_add
document(path\=/cs2014wsnb/review/admin/deadline)=review/admin_deadline
document(path\=/cs2014wsnb/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/cs2014wsnb/review/distribute/)=review/distribute
document(path\=/cs2014wsnb/review/export/)=review/export
document(path\=/cs2014wsnb/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/cs2014wsnb/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs2014wsnb/review/statistics)=review/statistics
document(path\=/cs2014wsnb/wizard/$)=wizard
document(path\=/cs2014wsnb/wizard/additional-degree/$)=wizard/additional-degree
document(path\=/cs2014wsnb/wizard/additional-degree/#/$)=wizard/additional-degree_details
document(path\=/cs2014wsnb/wizard/additional-degree/##/$)=wizard/additional-degree_details
document(path\=/cs2014wsnb/wizard/additional-university/#/$)=wizard/additional-university_details
document(path\=/cs2014wsnb/wizard/additional-university/##/$)=wizard/additional-university_details
document(path\=/cs2014wsnb/wizard/bologna/)=wizard/bologna
document(path\=/cs2014wsnb/wizard/degree/)=wizard/degree
document(path\=/cs2014wsnb/wizard/de-nat/)=wizard/de-nat
document(path\=/cs2014wsnb/wizard/de-other/)=wizard/de-other
document(path\=/cs2014wsnb/wizard/de-test/)=wizard/de-test
document(path\=/cs2014wsnb/wizard/english/)=wizard/english
document(path\=/cs2014wsnb/wizard/en-nat/)=wizard/en-nat
document(path\=/cs2014wsnb/wizard/en-other/)=wizard/en-other
document(path\=/cs2014wsnb/wizard/en-test/)=wizard/en-test
document(path\=/cs2014wsnb/wizard/eu/)=wizard/eu
document(path\=/cs2014wsnb/wizard/german/)=wizard/german
document(path\=/cs2014wsnb/wizard/gsv/)=wizard/gsv
document(path\=/cs2014wsnb/wizard/gsv-document/)=wizard/gsv-document
document(path\=/cs2014wsnb/wizard/special-treatment/)=wizard/special-treatment
document(path\=/cs2014wsnb/wizard/special-treatment-document/)=wizard/special-treatment-document
document(path\=/cs2014wsnb/wizard/personal/)=wizard/personal
document(path\=/cs2014wsnb/wizard/university/)=wizard/university

document(path\=/cs/2015/suse/accounts$)=accounts
document(path\=/cs/2015/suse/accounts/activate/##/$)=accounts/activate
document(path\=/cs/2015/suse/accounts/login/$)=CLEAR_QUERY,accounts/login
document(path\=/cs/2015/suse/accounts/password/change/)=accounts/password_change
document(path\=/cs/2015/suse/accounts/password/reset/$)=accounts/password_reset
document(path\=/cs/2015/suse/accounts/password/reset/confirm/##########################/$)=accounts/password_reset_confirm
document(path\=/cs/2015/suse/accounts/password/reset/confirm/###########################/$)=accounts/password_reset_confirm
document(path\=/cs/2015/suse/accounts/register/$)=accounts/register
document(path\=/cs/2015/suse/accounts/register/complete/)=accounts/register_complete
document(path\=/cs/2015/suse/adm)=adm
document(path\=/cs/2015/suse/application/$)=application
document(path\=/cs/2015/suse/application/edit/contact)=application/edit_contact
document(path\=/cs/2015/suse/application/edit/degree/$)=application/edit_degree
document(path\=/cs/2015/suse/application/edit/degree/additional-degree/$)=application/edit_degree_additional-degree
document(path\=/cs/2015/suse/application/edit/degree/additional-degree/#/)=application/edit_degree_additional-degree_details
document(path\=/cs/2015/suse/application/edit/degree/additional-degree/##/)=application/edit_degree_additional-degree_details
document(path\=/cs/2015/suse/application/edit/degree/additional-degree/###/)=application/edit_degree_additional-degree_details
document(path\=/cs/2015/suse/application/edit/degree/additional-university/#/)=application/edit_degree_additional-university_details

B. Extension of GUI Models for Websites With DOM Ids 200

document(path\=/cs/2015/suse/application/edit/degree/additional-university/##/)=application/edit_degree_additional-university_details
document(path\=/cs/2015/suse/application/edit/degree/additional-university/###/)=application/edit_degree_additional-university_details
document(path\=/cs/2015/suse/application/edit/degree/degree/)=application/edit_degree
document(path\=/cs/2015/suse/application/edit/degree/done/)=application/edit_degree_done
document(path\=/cs/2015/suse/application/edit/degree/eu/)=application/edit_degree_eu
document(path\=/cs/2015/suse/application/edit/degree/university/)=application/edit_degree_university
document(path\=/cs/2015/suse/application/edit/english/$)=application/edit_english
document(path\=/cs/2015/suse/application/edit/english/english/)=application/edit_english
document(path\=/cs/2015/suse/application/edit/english/en-nat/)=application/edit_english_en-nat
document(path\=/cs/2015/suse/application/edit/english/en-other/)=application/edit_english_en-other
document(path\=/cs/2015/suse/application/edit/english/en-test/)=application/edit_english_en-test
document(path\=/cs/2015/suse/application/edit/german/$)=application/edit_german
document(path\=/cs/2015/suse/application/edit/german/de-nat/)=application/edit_german_de-nat
document(path\=/cs/2015/suse/application/edit/german/de-other/)=application/edit_german_de-other
document(path\=/cs/2015/suse/application/edit/german/de-test/)=application/edit_german_de-test
document(path\=/cs/2015/suse/application/edit/german/german/)=application/edit_german
document(path\=/cs/2015/suse/application/edit/gsv/$)=application/edit_gsv
document(path\=/cs/2015/suse/application/edit/gsv/gsv-document/)=application/edit_gsv_gsv-document
document(path\=/cs/2015/suse/application/edit/personal)=application/edit_personal
document(path\=/cs/2015/suse/application/edit/st/$)=application/edit_st
document(path\=/cs/2015/suse/application/edit/st/special-treatment/$)=application/edit_st_special-treatment
document(path\=/cs/2015/suse/application/edit/st/special-treatment-document/$)=application/edit_st_special-treatment-document
document(path\=/cs/2015/suse/application/file/)=application/file
document(path\=/cs/2015/suse/application/withdraw/)=application/withdraw
document(path\=/cs/2015/suse/auth/user/)=auth/user
document(path\=/cs/2015/suse/imprint/)=imprint
document(path\=/cs/2015/suse/review/$)=CLEAR_QUERY,review/overview
document(path\=/cs/2015/suse/review/#/$)=review/details
document(path\=/cs/2015/suse/review/##/$)=review/details
document(path\=/cs/2015/suse/review/###/$)=review/details
document(path\=/cs/2015/suse/review/####/$)=review/details
document(path\=/cs/2015/suse/review/#/view$)=review/details_view
document(path\=/cs/2015/suse/review/##/view$)=review/details_view
document(path\=/cs/2015/suse/review/###/view$)=review/details_view
document(path\=/cs/2015/suse/review/####/view$)=review/details_view
document(path\=/cs/2015/suse/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs/2015/suse/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs/2015/suse/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs/2015/suse/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/cs/2015/suse/review/#/commit_history$)=review/details_history
document(path\=/cs/2015/suse/review/##/commit_history$)=review/details_history
document(path\=/cs/2015/suse/review/###/commit_history$)=review/details_history
document(path\=/cs/2015/suse/review/####/commit_history$)=review/details_history
document(path\=/cs/2015/suse/review/#/interview$)=review/details_interview
document(path\=/cs/2015/suse/review/##/interview$)=review/details_interview
document(path\=/cs/2015/suse/review/###/interview$)=review/details_interview
document(path\=/cs/2015/suse/review/####/interview$)=review/details_interview
document(path\=/cs/2015/suse/review/admin/$)=review/admin
document(path\=/cs/2015/suse/review/admin/#$)=review/admin_details
document(path\=/cs/2015/suse/review/admin/##$)=review/admin_details
document(path\=/cs/2015/suse/review/admin/###$)=review/admin_details
document(path\=/cs/2015/suse/review/admin/add)=review/admin_add
document(path\=/cs/2015/suse/review/admin/deadline)=review/admin_deadline
document(path\=/cs/2015/suse/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/cs/2015/suse/review/distribute/)=review/distribute
document(path\=/cs/2015/suse/review/export/)=review/export
document(path\=/cs/2015/suse/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/cs/2015/suse/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/cs/2015/suse/review/statistics)=review/statistics
document(path\=/cs/2015/suse/wizard/$)=wizard
document(path\=/cs/2015/suse/wizard/additional-degree/$)=wizard/additional-degree
document(path\=/cs/2015/suse/wizard/additional-degree/#/$)=wizard/additional-degree_details
document(path\=/cs/2015/suse/wizard/additional-degree/##/$)=wizard/additional-degree_details
document(path\=/cs/2015/suse/wizard/additional-university/#/$)=wizard/additional-university_details
document(path\=/cs/2015/suse/wizard/additional-university/##/$)=wizard/additional-university_details
document(path\=/cs/2015/suse/wizard/bologna/)=wizard/bologna
document(path\=/cs/2015/suse/wizard/degree/)=wizard/degree
document(path\=/cs/2015/suse/wizard/de-nat/)=wizard/de-nat
document(path\=/cs/2015/suse/wizard/de-other/)=wizard/de-other
document(path\=/cs/2015/suse/wizard/de-test/)=wizard/de-test
document(path\=/cs/2015/suse/wizard/english/)=wizard/english
document(path\=/cs/2015/suse/wizard/en-nat/)=wizard/en-nat
document(path\=/cs/2015/suse/wizard/en-other/)=wizard/en-other
document(path\=/cs/2015/suse/wizard/en-test/)=wizard/en-test
document(path\=/cs/2015/suse/wizard/eu/)=wizard/eu
document(path\=/cs/2015/suse/wizard/german/)=wizard/german
document(path\=/cs/2015/suse/wizard/gsv/)=wizard/gsv
document(path\=/cs/2015/suse/wizard/gsv-document/)=wizard/gsv-document

201 B.1. Parsing Configuration for Case Study 1

document(path\=/cs/2015/suse/wizard/special-treatment/)=wizard/special-treatment
document(path\=/cs/2015/suse/wizard/special-treatment-document/)=wizard/special-treatment-document
document(path\=/cs/2015/suse/wizard/personal/)=wizard/personal
document(path\=/cs/2015/suse/wizard/university/)=wizard/university

document(path\=/csnb/2015/suse/a$)=invalid-page
document(path\=/csnb/2015/suse/accounts$)=accounts
document(path\=/csnb/2015/suse/accounts/activate/##/$)=accounts/activate
document(path\=/csnb/2015/suse/accounts/activate/##/$)=account\

s/activate
document(path\=/csnb/2015/suse/accounts/login/$)=CLEAR_QUERY,accounts/login
document(path\=/csnb/2015/suse/accounts/login/#Gottingen%20Uni#)=invalid-page
document(path\=/csnb/2015/suse/accounts/password/change/)=accounts/password_change
document(path\=/csnb/2015/suse/accounts/password/reset/$)=accounts/password_reset
document(path\=/csnb/2015/suse/accounts/password/reset/confirm/###########################/$)=accounts/password_reset_confirm
document(path\=/csnb/2015/suse/accounts/password/reset/confirm/##########################/$)=accounts/password_reset_confirm
document(path\=/csnb/2015/suse/accounts/register/$)=accounts/register
document(path\=/csnb/2015/suse/accounts/register/complete/)=accounts/register_complete
document(path\=/csnb/2015/suse/admin)=invalid-page
document(path\=/csnb/2015/suse/application/$)=application
document(path\=/csnb/2015/suse/application/edit/contact)=application/edit_contact
document(path\=/csnb/2015/suse/application/edit/degree/$)=application/edit_degree
document(path\=/csnb/2015/suse/application/edit/degree/additional-degree/$)=application/edit_degree_additional-degree
document(path\=/csnb/2015/suse/application/edit/degree/additional-degree/#/)=application/edit_degree_additional-degree_details
document(path\=/csnb/2015/suse/application/edit/degree/additional-degree/##/)=application/edit_degree_additional-degree_details
document(path\=/csnb/2015/suse/application/edit/degree/additional-degree/###/)=application/edit_degree_additional-degree_details
document(path\=/csnb/2015/suse/application/edit/degree/additional-university/#/)=application/edit_degree_additional-university_details
document(path\=/csnb/2015/suse/application/edit/degree/additional-university/##/)=application/edit_degree_additional-university_details
document(path\=/csnb/2015/suse/application/edit/degree/additional-university/###/)=application/edit_degree_additional-university_details
document(path\=/csnb/2015/suse/application/edit/degree/degree/)=application/edit_degree
document(path\=/csnb/2015/suse/application/edit/degree/eu/)=application/edit_degree_eu
document(path\=/csnb/2015/suse/application/edit/degree/university/)=application/edit_degree_university
document(path\=/csnb/2015/suse/application/edit/english/$)=application/edit_english
document(path\=/csnb/2015/suse/application/edit/english/english/)=application/edit_english
document(path\=/csnb/2015/suse/application/edit/english/en-nat/)=application/edit_english_en-nat
document(path\=/csnb/2015/suse/application/edit/english/en-other/)=application/edit_english_en-other
document(path\=/csnb/2015/suse/application/edit/english/en-test/)=application/edit_english_en-test
document(path\=/csnb/2015/suse/application/edit/german/$)=application/edit_german
document(path\=/csnb/2015/suse/application/edit/german/de-nat/)=application/edit_german_de-nat
document(path\=/csnb/2015/suse/application/edit/german/de-other/)=application/edit_german_de-other
document(path\=/csnb/2015/suse/application/edit/german/de-test/)=application/edit_german_de-test
document(path\=/csnb/2015/suse/application/edit/german/german/)=application/edit_german
document(path\=/csnb/2015/suse/application/edit/gsv/$)=application/edit_gsv
document(path\=/csnb/2015/suse/application/edit/gsv/gsv/$)=application/edit_gsv
document(path\=/csnb/2015/suse/application/edit/gsv/gsv-document/)=application/edit_gsv_gsv-document
document(path\=/csnb/2015/suse/application/edit/personal)=application/edit_personal
document(path\=/csnb/2015/suse/application/edit/st/$)=application/edit_st
document(path\=/csnb/2015/suse/application/edit/st/special-treatment/$)=application/edit_st_special-treatment
document(path\=/csnb/2015/suse/application/edit/st/special-treatment-document/$)=application/edit_st_special-treatment-document
document(path\=/csnb/2015/suse/application/file/)=application/file
document(path\=/csnb/2015/suse/application/submit/)=application/submit
document(path\=/csnb/2015/suse/application/withdraw/)=application/withdraw
document(path\=/csnb/2015/suse/auth/user/)=auth/user
document(path\=/csnb/2015/suse/imprint/)=imprint
document(path\=/csnb/2015/suse/login$)=invalid-page
document(path\=/csnb/2015/suse/r$)=invalid-page
document(path\=/csnb/2015/suse/review/$)=CLEAR_QUERY,review/overview
document(path\=/csnb/2015/suse/review/#/$)=review/details
document(path\=/csnb/2015/suse/review/##/$)=review/details
document(path\=/csnb/2015/suse/review/###/$)=review/details
document(path\=/csnb/2015/suse/review/####/$)=review/details
document(path\=/csnb/2015/suse/review/#/view$)=review/details_view
document(path\=/csnb/2015/suse/review/##/view$)=review/details_view
document(path\=/csnb/2015/suse/review/###/view$)=review/details_view
document(path\=/csnb/2015/suse/review/####/view$)=review/details_view
document(path\=/csnb/2015/suse/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/csnb/2015/suse/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/csnb/2015/suse/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/csnb/2015/suse/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/csnb/2015/suse/review/#/commit_history$)=review/details_history
document(path\=/csnb/2015/suse/review/##/commit_history$)=review/details_history
document(path\=/csnb/2015/suse/review/###/commit_history$)=review/details_history
document(path\=/csnb/2015/suse/review/####/commit_history$)=review/details_history
document(path\=/csnb/2015/suse/review/#/interview$)=review/details_interview
document(path\=/csnb/2015/suse/review/##/interview$)=review/details_interview
document(path\=/csnb/2015/suse/review/###/interview$)=review/details_interview
document(path\=/csnb/2015/suse/review/####/interview$)=review/details_interview
document(path\=/csnb/2015/suse/review/admin/$)=review/admin

B. Extension of GUI Models for Websites With DOM Ids 202

document(path\=/csnb/2015/suse/review/admin/#$)=review/admin_details
document(path\=/csnb/2015/suse/review/admin/##$)=review/admin_details
document(path\=/csnb/2015/suse/review/admin/###$)=review/admin_details
document(path\=/csnb/2015/suse/review/admin/add)=review/admin_add
document(path\=/csnb/2015/suse/review/admin/deadline)=review/admin_deadline
document(path\=/csnb/2015/suse/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/csnb/2015/suse/review/distribute/)=review/distribute
document(path\=/csnb/2015/suse/review/export/)=review/export
document(path\=/csnb/2015/suse/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/csnb/2015/suse/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/csnb/2015/suse/review/statistics)=review/statistics
document(path\=/csnb/2015/suse/wizard/$)=wizard
document(path\=/csnb/2015/suse/wizard/additional-degree/$)=wizard/additional-degree
document(path\=/csnb/2015/suse/wizard/additional-degree/#/$)=wizard/additional-degree_details
document(path\=/csnb/2015/suse/wizard/additional-degree/##/$)=wizard/additional-degree_details
document(path\=/csnb/2015/suse/wizard/additional-university/#/$)=wizard/additional-university_details
document(path\=/csnb/2015/suse/wizard/additional-university/##/$)=wizard/additional-university_details
document(path\=/csnb/2015/suse/wizard/bologna/)=wizard/bologna
document(path\=/csnb/2015/suse/wizard/degree/)=wizard/degree
document(path\=/csnb/2015/suse/wizard/de-nat/)=wizard/de-nat
document(path\=/csnb/2015/suse/wizard/de-other/)=wizard/de-other
document(path\=/csnb/2015/suse/wizard/de-test/)=wizard/de-test
document(path\=/csnb/2015/suse/wizard/english/)=wizard/english
document(path\=/csnb/2015/suse/wizard/en-nat/)=wizard/en-nat
document(path\=/csnb/2015/suse/wizard/en-other/)=wizard/en-other
document(path\=/csnb/2015/suse/wizard/en-test/)=wizard/en-test
document(path\=/csnb/2015/suse/wizard/eu/)=wizard/eu
document(path\=/csnb/2015/suse/wizard/german/)=wizard/german
document(path\=/csnb/2015/suse/wizard/gsv/)=wizard/gsv
document(path\=/csnb/2015/suse/wizard/gsv-document/)=wizard/gsv-document
document(path\=/csnb/2015/suse/wizard/special-treatment/)=wizard/special-treatment
document(path\=/csnb/2015/suse/wizard/special-treatment-document/)=wizard/special-treatment-document
document(path\=/csnb/2015/suse/wizard/personal/)=wizard/personal
document(path\=/csnb/2015/suse/wizard/university/)=wizard/university

document(path\=/itis/201$)=invalid-page
document(path\=/itis/2013/suse$)=invalid-page

document(path\=/itis/2013/wise/$)=invalid-page
document(path\=/itis/2013/wise/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2013/wise/accounts/password/reset/)=accounts/password_reset
document(path\=/itis/2013/wise/review/)=review/overview

document(path\=/itis2014/$)=/
document(path\=/itis/2014$)=/
document(path\=/itis/2014/$)=/

document(path\=/itis/2014/application/)=application

document(path\=/itis/2014/sose/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2014/sose/accounts/password/change/)=accounts/password_change
document(path\=/itis/2014/sose/accounts/password/reset/)=accounts/password_reset
document(path\=/itis/2014/sose/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/2014/sose/review/#/$)=review/details
document(path\=/itis/2014/sose/review/##/$)=review/details
document(path\=/itis/2014/sose/review/###/$)=review/details
document(path\=/itis/2014/sose/review/####/$)=review/details
document(path\=/itis/2014/sose/review/#/view$)=review/details_view
document(path\=/itis/2014/sose/review/##/view$)=review/details_view
document(path\=/itis/2014/sose/review/###/view$)=review/details_view
document(path\=/itis/2014/sose/review/####/view$)=review/details_view
document(path\=/itis/2014/sose/review/#/commit_history$)=review/details_history
document(path\=/itis/2014/sose/review/##/commit_history$)=review/details_history
document(path\=/itis/2014/sose/review/###/commit_history$)=review/details_history
document(path\=/itis/2014/sose/review/####/commit_history$)=review/details_history
document(path\=/itis/2014/sose/review/admin/)=review/admin
document(path\=/itis/2014/sose/review/finalized/)=CLEAR_QUERY,review/finalized
document(path\=/itis/2014/sose/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/itis/2014/sose/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2014/sose/review/notified/)=CLEAR_QUERY,review/notified

document(path\=/itis/2014/suse$)=/
document(path\=/itis/2014/suse/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2014/suse/application)=application
document(path\=/itis/2014/suse/review$)=review/overview
document(path\=/itis/2014/suse/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/2014/suse/review/login/)=CLEAR_QUERY,accounts/login

203 B.1. Parsing Configuration for Case Study 1

document(path\=/itis/2014/wise/accounts$)=accounts
document(path\=/itis/2014/wise/accounts/$)=accounts
document(path\=/itis/2014/wise/accounts//$)=accounts
document(path\=/itis/2014/wise/accounts/activate/##/)=accounts/activate
document(path\=/itis/2014/wise/accounts/active/######################################/)=accounts/activate
document(path\=/itis/2014/wise/accounts/active/#######################################/)=accounts/activate
document(path\=/itis/2014/wise/accounts/active/##/)=accounts/activate
document(path\=/itis/2014/wise/accounts/create/)=CLEAR_QUERY,accounts/create
document(path\=/itis/2014/wise/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2014/wise/accounts/password/change/)=accounts/password_change
document(path\=/itis/2014/wise/accounts/password/reset/$)=accounts/password_reset
document(path\=/itis/2014/wise/accounts/password/reset/confirm/##########################/)=accounts/password_reset_confirm
document(path\=/itis/2014/wise/accounts/password/reset/confirm/###########################/)=accounts/password_reset_confirm
document(path\=/itis/2014/wise/accounts/register/$)=accounts/register
document(path\=/itis/2014/wise/accounts/register/complete/)=accounts/register_complete
document(path\=/itis/2014/wise/accounts/signup/$)=accounts/register
document(path\=/itis/2014/wise/accountss/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2014/wise/accounts/user)=invalid-page
document(path\=/itis/2014/wise/application/$)=application
document(path\=/itis/2014/wise/application//)=application
document(path\=/itis/2014/wise/application/%5C)=application
document(path\=/itis/2014/wise/application/edit/additionalinformation/)=application/edit_additionalinformation
document(path\=/itis/2014/wise/application/edit/contact)=application/edit_contact
document(path\=/itis/2014/wise/application/edit/degree/$)=application/edit_degree
document(path\=/itis/2014/wise/application/edit/degree/degree/)=application/edit_degree
document(path\=/itis/2014/wise/application/edit/degree/university/)=application/edit_degree_university
document(path\=/itis/2014/wise/application/edit/financialarrangement/)=application/edit_financialarrangement
document(path\=/itis/2014/wise/application/edit/language/$)=application/edit_english
document(path\=/itis/2014/wise/application/edit/language/english/)=application/edit_english
document(path\=/itis/2014/wise/application/edit/language/en-nat/)=application/edit_english_en-nat
document(path\=/itis/2014/wise/application/edit/language/en-study-work/)=application/edit_english_en-study-work
document(path\=/itis/2014/wise/application/edit/language/en-study-work-files/)=application/edit_english_en-study-work-files
document(path\=/itis/2014/wise/application/edit/language/en-test/)=application/edit_english_en-test
document(path\=/itis/2014/wise/application/edit/personal)=application/edit_personal
document(path\=/itis/2014/wise/application/edit/researchfocus/)=application/edit_researchfocus
document(path\=/itis/2014/wise/application/edit/study/$)=application/edit_study
document(path\=/itis/2014/wise/application/edit/study/further-degree/$)=application/edit_degree_additional-degree
document(path\=/itis/2014/wise/application/edit/study/further-degree/#/$)=application/edit_degree_additional-degree_details
document(path\=/itis/2014/wise/application/edit/study/further-degree/##/$)=application/edit_degree_additional-degree_details
document(path\=/itis/2014/wise/application/edit/study/further-university/#/$)=application/edit_degree_additional-university_details
document(path\=/itis/2014/wise/application/edit/study/further-university/##/$)=application/edit_degree_additional-university_details
document(path\=/itis/2014/wise/application/edit/work/$)=application/edit_work
document(path\=/itis/2014/wise/application/edit/work/opt-work-exp/$)=application/edit_work
document(path\=/itis/2014/wise/application/edit/work/opt-work-exp/#/$)=application/edit_work_details
document(path\=/itis/2014/wise/application/edit/work/opt-work-exp/##/$)=application/edit_work_details
document(path\=/itis/2014/wise/application/file/)=application/file
document(path\=/itis/2014/wise/applicationuniassist)=invalid-page
document(path\=/itis/2014/wise/application/withdraw/)=application/withdraw
document(path\=/itis/2014/wise/imprint/)=imprint
document(path\=/itis/2014/wise/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/2014/wise/review/#/$)=review/details
document(path\=/itis/2014/wise/review/##/$)=review/details
document(path\=/itis/2014/wise/review/###/$)=review/details
document(path\=/itis/2014/wise/review/####/$)=review/details
document(path\=/itis/2014/wise/review/#/view$)=review/details_view
document(path\=/itis/2014/wise/review/##/view$)=review/details_view
document(path\=/itis/2014/wise/review/###/view$)=review/details_view
document(path\=/itis/2014/wise/review/####/view$)=review/details_view
document(path\=/itis/2014/wise/review/#/commit_history$)=review/details_history
document(path\=/itis/2014/wise/review/##/commit_history$)=review/details_history
document(path\=/itis/2014/wise/review/###/commit_history$)=review/details_history
document(path\=/itis/2014/wise/review/####/commit_history$)=review/details_history
document(path\=/itis/2014/wise/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2014/wise/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2014/wise/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2014/wise/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2014/wise/review/admin/$)=review/admin
document(path\=/itis/2014/wise/review/admin/#$)=review/admin_details
document(path\=/itis/2014/wise/review/admin/##$)=review/admin_details
document(path\=/itis/2014/wise/review/admin/###$)=review/admin_details
document(path\=/itis/2014/wise/review/admin/deadline)=review/admin_deadline
document(path\=/itis/2014/wise/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/itis/2014/wise/review/distribute/)=review/distribute
document(path\=/itis/2014/wise/review/finalized/)=CLEAR_QUERY,review/finalized
document(path\=/itis/2014/wise/review/file/701)=invalid-page
document(path\=/itis/2014/wise/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/itis/2014/wise/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2014/wise/review/notified/)=CLEAR_QUERY,review/notified

B. Extension of GUI Models for Websites With DOM Ids 204

document(path\=/itis/2014/wise/review/statistics/)=review/statistics
document(path\=/itis/2014/wise/review/universities/)=review/universities
document(path\=/itis/2014/wise/rewiew)=invalid-page
document(path\=/itis/2014/wise/wizard/$)=wizard
document(path\=/itis/2014/wise/wizard/additional/)=wizard/additional
document(path\=/itis/2014/wise/wizard/degree/)=wizard/degree
document(path\=/itis/2014/wise/wizard/english/)=wizard/english
document(path\=/itis/2014/wise/wizard/en-nat/)=wizard/en-nat
document(path\=/itis/2014/wise/wizard/en-study-work/)=wizard/en-study-work
document(path\=/itis/2014/wise/wizard/en-test/)=wizard/en-test
document(path\=/itis/2014/wise/wizard/finance/)=wizard/finance
document(path\=/itis/2014/wise/wizard/further-degree/$)=wizard/additional-degree
document(path\=/itis/2014/wise/wizard/further-degree/#/$)=wizard/additional-degree_details
document(path\=/itis/2014/wise/wizard/further-degree/##/$)=wizard/additional-degree_details
document(path\=/itis/2014/wise/wizard/further-university/#/$)=wizard/additional-university_details
document(path\=/itis/2014/wise/wizard/further-university/##/$)=wizard/additional-university_details
document(path\=/itis/2014/wise/wizard/opt-work-exp/$)=wizard/opt-work-exp
document(path\=/itis/2014/wise/wizard/opt-work-exp/#/$)=wizard/opt-work-exp_details
document(path\=/itis/2014/wise/wizard/opt-work-exp/##/$)=wizard/opt-work-exp_details
document(path\=/itis/2014/wise/wizard/personal/)=wizard/personal
document(path\=/itis/2014/wise/wizard/research-focus/)=wizard/research-focus
document(path\=/itis/2014/wise/wizard/university/)=wizard/university

document(path\=/itis/2015$)=/
document(path\=/itis/2015/$)=/

document(path\=/itis/2015/sose/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/sose/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/2015/sose/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/sose/review/notified/)=CLEAR_QUERY,review/notified

document(path\=/itis/2015/suse/$)=/
document(path\=/itis/2015/suse/accounts$)=accounts
document(path\=/itis/2015/suse/accounts/$)=accounts
document(path\=/itis/2015/suse/accounts//$)=accounts
document(path\=/itis/2015/suse/accounts/activate/#######################################/)=accounts/activate
document(path\=/itis/2015/suse/accounts/activate/##/)=accounts/activate
document(path\=/itis/2015/suse/accounts/lcreate)=invalid-page
document(path\=/itis/2015/suse/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/suse/accounts/password/change/)=accounts/password_change
document(path\=/itis/2015/suse/accounts/password/reset/$)=accounts/password_reset
document(path\=/itis/2015/suse/accounts/password/reset/confirm/##########################/)=accounts/password_reset_confirm
document(path\=/itis/2015/suse/accounts/password/reset/confirm/###########################/)=accounts/password_reset_confirm
document(path\=/itis/2015/suse/accounts/register/$)=accounts/register
document(path\=/itis/2015/suse/accounts/register/complete/)=accounts/register_complete
document(path\=/itis/2015/suse/accounts/signup/$)=accounts/register
document(path\=/itis/2015/suse/accountss/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/suse/accounts/user)=invalid-page
document(path\=/itis/2015/suse/application/$)=application
document(path\=/itis/2015/suse/appplication/$)=invalid-page
document(path\=/itis/2015/suse/application/edit/additionalinformation/)=application/edit_additionalinformation
document(path\=/itis/2015/suse/application/edit/contact)=application/edit_contact
document(path\=/itis/2015/suse/application/edit/degree/$)=application/edit_degree
document(path\=/itis/2015/suse/application/edit/degree/degree/)=application/edit_degree
document(path\=/itis/2015/suse/application/edit/degree/university/)=application/edit_degree_university
document(path\=/itis/2015/suse/application/edit/financialarrangement/)=application/edit_financialarrangement
document(path\=/itis/2015/suse/application/edit/language/$)=application/edit_english
document(path\=/itis/2015/suse/application/edit/language/english/)=application/edit_english
document(path\=/itis/2015/suse/application/edit/language/en-nat/)=application/edit_english_en-nat
document(path\=/itis/2015/suse/application/edit/language/en-study-work/)=application/edit_english_en-study-work
document(path\=/itis/2015/suse/application/edit/language/en-study-work-files/)=application/edit_english_en-study-work-files
document(path\=/itis/2015/suse/application/edit/language/en-test/)=application/edit_english_en-test
document(path\=/itis/2015/suse/application/edit/personal)=application/edit_personal
document(path\=/itis/2015/suse/application/edit/researchfocus/)=application/edit_researchfocus
document(path\=/itis/2015/suse/application/edit/study/$)=application/edit_study
document(path\=/itis/2015/suse/application/edit/study/further-degree/$)=application/edit_degree_additional-degree
document(path\=/itis/2015/suse/application/edit/study/further-degree/#/$)=application/edit_degree_additional-degree_details
document(path\=/itis/2015/suse/application/edit/study/further-degree/##/$)=application/edit_degree_additional-degree_details
document(path\=/itis/2015/suse/application/edit/study/further-university/#/$)=application/edit_degree_additional-university_details
document(path\=/itis/2015/suse/application/edit/study/further-university/##/$)=application/edit_degree_additional-university_details
document(path\=/itis/2015/suse/application/edit/work/$)=application/edit_work
document(path\=/itis/2015/suse/application/edit/work/opt-work-exp/$)=application/edit_work
document(path\=/itis/2015/suse/application/edit/work/opt-work-exp/#/$)=application/edit_work_details
document(path\=/itis/2015/suse/application/edit/work/opt-work-exp/##/$)=application/edit_work_details
document(path\=/itis/2015/suse/application/result)=invalid-page
document(path\=/itis/2015/suse/application/submit/)=application/submit
document(path\=/itis/2015/suse/application/withdraw/)=application/withdraw
document(path\=/itis/2015/suse/imprint/)=imprint

205 B.1. Parsing Configuration for Case Study 1

document(path\=/itis/2015/suse/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/2015/suse/review/#/$)=review/details
document(path\=/itis/2015/suse/review/##/$)=review/details
document(path\=/itis/2015/suse/review/###/$)=review/details
document(path\=/itis/2015/suse/review/####/$)=review/details
document(path\=/itis/2015/suse/review/#/view$)=review/details_view
document(path\=/itis/2015/suse/review/##/view$)=review/details_view
document(path\=/itis/2015/suse/review/###/view$)=review/details_view
document(path\=/itis/2015/suse/review/####/view$)=review/details_view
document(path\=/itis/2015/suse/review/#/commit_history$)=review/details_history
document(path\=/itis/2015/suse/review/##/commit_history$)=review/details_history
document(path\=/itis/2015/suse/review/###/commit_history$)=review/details_history
document(path\=/itis/2015/suse/review/####/commit_history$)=review/details_history
document(path\=/itis/2015/suse/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/suse/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/suse/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/suse/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/suse/review/admin/$)=review/admin
document(path\=/itis/2015/suse/review/admin/deadline)=review/admin_deadline
document(path\=/itis/2015/suse/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/itis/2015/suse/review/distribute/)=review/distribute
document(path\=/itis/2015/suse/review/finalized/)=CLEAR_QUERY,review/finalized
document(path\=/itis/2015/suse/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/itis/2015/suse/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/suse/review/notified/)=CLEAR_QUERY,review/notified
document(path\=/itis/2015/suse/review/universities/)=review/universities
document(path\=/itis/2015/suse/wizard/$)=wizard
document(path\=/itis/2015/suse/wizard/additional/)=wizard/additional
document(path\=/itis/2015/suse/wizard/degree/)=wizard/degree
document(path\=/itis/2015/suse/wizard/english/)=wizard/english
document(path\=/itis/2015/suse/wizard/en-nat/)=wizard/en-nat
document(path\=/itis/2015/suse/wizard/en-study-work/)=wizard/en-study-work
document(path\=/itis/2015/suse/wizard/en-test/)=wizard/en-test
document(path\=/itis/2015/suse/wizard/finance/)=wizard/finance
document(path\=/itis/2015/suse/wizard/further-degree/$)=wizard/additional-degree
document(path\=/itis/2015/suse/wizard/further-degree/#/$)=wizard/additional-degree_details
document(path\=/itis/2015/suse/wizard/further-degree/##/$)=wizard/additional-degree_details
document(path\=/itis/2015/suse/wizard/further-university/#/$)=wizard/additional-university_details
document(path\=/itis/2015/suse/wizard/further-university/##/$)=wizard/additional-university_details
document(path\=/itis/2015/suse/wizard/opt-work-exp/$)=wizard/opt-work-exp
document(path\=/itis/2015/suse/wizard/opt-work-exp/#/$)=wizard/opt-work-exp_details
document(path\=/itis/2015/suse/wizard/opt-work-exp/##/$)=wizard/opt-work-exp_details
document(path\=/itis/2015/suse/wizard/personal/)=wizard/personal
document(path\=/itis/2015/suse/wizard/research-focus/)=wizard/research-focus
document(path\=/itis/2015/suse/wizard/university/)=wizard/university

document(path\=/itis/2015/wise/$)=/
document(path\=/itis/2015/wise/account/login$)=invalid-page
document(path\=/itis/2015/wiseaccounts/$)=invalid-page
document(path\=/itis/2015/wise/accounts$)=accounts
document(path\=/itis/2015/wise/accounts/$)=accounts
document(path\=/itis/2015/wise/accounts//$)=accounts
document(path\=/itis/2015/wise/accounts/activate/##/)=accounts/activate
document(path\=/itis/2015/wise/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/wise/accounts/login/#)=invalid-page
document(path\=/itis/2015/wise/accounts/new-user/)=invalid-page
document(path\=/itis/2015/wise/accounts/password/change/)=accounts/password_change
document(path\=/itis/2015/wise/accounts/password/reset/$)=accounts/password_reset
document(path\=/itis/2015/wise/accounts/password/reset/confirm/##########################/)=accounts/password_reset_confirm
document(path\=/itis/2015/wise/accounts/password/reset/confirm/###########################/)=accounts/password_reset_confirm
document(path\=/itis/2015/wise/accounts/password/reset/confirm/############################/)=accounts/password_reset_confirm
document(path\=/itis/2015/wise/accounts/register/$)=accounts/register
document(path\=/itis/2015/wise/accounts/r/egister$)=invalid-page
document(path\=/itis/2015/wise/accounts/register/complete/)=accounts/register_complete
document(path\=/itis/2015/wise/application/$)=application
document(path\=/itis/2015/wise/application/edit/additionalinformation/)=application/edit_additionalinformation
document(path\=/itis/2015/wise/application/edit/contact)=application/edit_contact
document(path\=/itis/2015/wise/application/edit/degree/$)=application/edit_degree
document(path\=/itis/2015/wise/application/edit/degree/degree/)=application/edit_degree
document(path\=/itis/2015/wise/application/edit/degree/university/)=application/edit_degree_university
document(path\=/itis/2015/wise/application/edit/financialarrangement/)=application/edit_financialarrangement
document(path\=/itis/2015/wise/application/edit/language/$)=application/edit_english
document(path\=/itis/2015/wise/application/edit/language/english/)=application/edit_english
document(path\=/itis/2015/wise/application/edit/language/en-nat/)=application/edit_english_en-nat
document(path\=/itis/2015/wise/application/edit/language/en-study-work/)=application/edit_english_en-study-work
document(path\=/itis/2015/wise/application/edit/language/en-study-work-files/)=application/edit_english_en-study-work-files
document(path\=/itis/2015/wise/application/edit/language/en-test/)=application/edit_english_en-test
document(path\=/itis/2015/wise/application/edit/personal)=application/edit_personal

B. Extension of GUI Models for Websites With DOM Ids 206

document(path\=/itis/2015/wise/application/edit/researchfocus/)=application/edit_researchfocus
document(path\=/itis/2015/wise/application/edit/study/$)=application/edit_study
document(path\=/itis/2015/wise/application/edit/study/further-degree/$)=application/edit_degree_additional-degree
document(path\=/itis/2015/wise/application/edit/study/further-degree/#/$)=application/edit_degree_additional-degree_details
document(path\=/itis/2015/wise/application/edit/study/further-degree/##/$)=application/edit_degree_additional-degree_details
document(path\=/itis/2015/wise/application/edit/study/further-university/#/$)=application/edit_degree_additional-university_details
document(path\=/itis/2015/wise/application/edit/study/further-university/##/$)=application/edit_degree_additional-university_details
document(path\=/itis/2015/wise/application/edit/work/$)=application/edit_work
document(path\=/itis/2015/wise/application/edit/work/opt-work-exp/$)=application/edit_work
document(path\=/itis/2015/wise/application/edit/work/opt-work-exp/#/$)=application/edit_work_details
document(path\=/itis/2015/wise/application/edit/work/opt-work-exp/##/$)=application/edit_work_details
document(path\=/itis/2015/wise/application/submit/)=application/submit
document(path\=/itis/2015/wise/application/withdraw/)=application/withdraw
document(path\=/itis/2015/wise/imprint/)=imprint
document(path\=/itis/2015/wise/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/2015/wise/review/#/$)=review/details
document(path\=/itis/2015/wise/review/##/$)=review/details
document(path\=/itis/2015/wise/review/###/$)=review/details
document(path\=/itis/2015/wise/review/####/$)=review/details
document(path\=/itis/2015/wise/review/#/view$)=review/details_view
document(path\=/itis/2015/wise/review/##/view$)=review/details_view
document(path\=/itis/2015/wise/review/###/view$)=review/details_view
document(path\=/itis/2015/wise/review/####/view$)=review/details_view
document(path\=/itis/2015/wise/review/#/commit_history$)=review/details_history
document(path\=/itis/2015/wise/review/##/commit_history$)=review/details_history
document(path\=/itis/2015/wise/review/###/commit_history$)=review/details_history
document(path\=/itis/2015/wise/review/####/commit_history$)=review/details_history
document(path\=/itis/2015/wise/review/#/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/wise/review/##/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/wise/review/###/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/wise/review/####/same_university$)=CLEAR_QUERY,review/details_same_university
document(path\=/itis/2015/wise/review/admin/$)=review/admin
document(path\=/itis/2015/wise/review/admin/deadline)=review/admin_deadline
document(path\=/itis/2015/wise/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/itis/2015/wise/review/distribute/)=review/distribute
document(path\=/itis/2015/wise/review/finalized/)=CLEAR_QUERY,review/finalized
document(path\=/itis/2015/wise/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/itis/2015/wise/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/2015/wise/review/notified/)=CLEAR_QUERY,review/notified
document(path\=/itis/2015/wise/review/universities/)=review/universities
document(path\=/itis/2015/wise/wizard/$)=wizard
document(path\=/itis/2015/wise/wizard/additional/)=wizard/additional
document(path\=/itis/2015/wise/wizard/degree/)=wizard/degree
document(path\=/itis/2015/wise/wizard/english/)=wizard/english
document(path\=/itis/2015/wise/wizard/en-nat/)=wizard/en-nat
document(path\=/itis/2015/wise/wizard/en-study-work/)=wizard/en-study-work
document(path\=/itis/2015/wise/wizard/en-test/)=wizard/en-test
document(path\=/itis/2015/wise/wizard/finance/)=wizard/finance
document(path\=/itis/2015/wise/wizard/further-degree/$)=wizard/additional-degree
document(path\=/itis/2015/wise/wizard/further-degree/#/$)=wizard/additional-degree_details
document(path\=/itis/2015/wise/wizard/further-degree/##/$)=wizard/additional-degree_details
document(path\=/itis/2015/wise/wizard/further-university/#/$)=wizard/additional-university_details
document(path\=/itis/2015/wise/wizard/further-university/##/$)=wizard/additional-university_details
document(path\=/itis/2015/wise/wizard/opt-work-exp/$)=wizard/opt-work-exp
document(path\=/itis/2015/wise/wizard/opt-work-exp/#/$)=wizard/opt-work-exp_details
document(path\=/itis/2015/wise/wizard/opt-work-exp/##/$)=wizard/opt-work-exp_details
document(path\=/itis/2015/wise/wizard/personal/)=wizard/personal
document(path\=/itis/2015/wise/wizard/research-focus/)=wizard/research-focus
document(path\=/itis/2015/wise/wizard/university/)=wizard/university
document(path\=/itis/2015/wsse/accounts/login/)=CLEAR_QUERY,accounts/login

document(path\=/itis/2016$)=/

document(path\=/itis/2016/wise/accounts/login/)=CLEAR_QUERY,accounts/login

document(path\=/itis/accounts/$)=accounts
document(path\=/itis/accounts/activate/##/)=accounts/activate
document(path\=/itis/accounts/create/)=CLEAR_QUERY,accounts/create
document(path\=/itis/accounts/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/accounts/password/reset/$)=accounts/password_reset
document(path\=/itis/accounts/password/reset/confirm/###########################/)=accounts/password_reset_confirm
document(path\=/itis/application/$)=application
document(path\=/itis/application/withdraw/)=application/withdraw
document(path\=/itis/imprint/)=imprint
document(path\=/itis/master)=master
document(path\=/itis/review/$)=CLEAR_QUERY,review/overview
document(path\=/itis/review/#/$)=review/details
document(path\=/itis/review/##/$)=review/details

207 B.1. Parsing Configuration for Case Study 1

document(path\=/itis/review/###/$)=review/details
document(path\=/itis/review/####/$)=review/details
document(path\=/itis/review/#/view$)=review/details_view
document(path\=/itis/review/##/view$)=review/details_view
document(path\=/itis/review/###/view$)=review/details_view
document(path\=/itis/review/####/view$)=review/details_view
document(path\=/itis/review/#/commit_history$)=review/details_history
document(path\=/itis/review/##/commit_history$)=review/details_history
document(path\=/itis/review/###/commit_history$)=review/details_history
document(path\=/itis/review/####/commit_history$)=review/details_history
document(path\=/itis/review/csv/)=CLEAR_QUERY,review/csv
document(path\=/itis/review/distribute/)=review/distribute
document(path\=/itis/review/finalized/)=CLEAR_QUERY,review/finalized
document(path\=/itis/review/incomp/)=CLEAR_QUERY,review/incomp
document(path\=/itis/review/login/)=CLEAR_QUERY,accounts/login
document(path\=/itis/review/notified/)=CLEAR_QUERY,review/notified
document(path\=/itis/review/statistics)=review/statistics
document(path\=/itis/review/universities/)=review/universities

document(path\=/itis/suse/2015$)=invalid-page
document(path\=/itis/suse/2015/$)=invalid-page

###
create ids for those page parts, where the differences are
###

body=

#body/div/div/div/form=

document(path\=/$)/html/body/div[0]/div[1]=content_root

document(path\=invalid-page)/html/body/div[0]/div[1]=invalid_page_content

document(path\=accounts)/html/body/div[1]=CLEAR_INDEX
document(path\=accounts)/html/body/div[0]/div[1]=content_accounts
document(path\=accounts/activate)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_activate
document(path\=accounts/create)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_create
document(path\=accounts/login)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_login
document(path\=accounts/login)/html/body/div[0]/div(htmlId\=content_accounts)/div(htmlId\=content_accounts_login)/form=
document(path\=accounts/login)/html/body/div[0]/div(htmlId\=content_accounts)/div(htmlId\=content_accounts_login)/form[0]/div[3]=login-actions
document(path\=accounts/login)/html/body/div[0]/div(htmlId\=content_accounts)/div(htmlId\=content_accounts_login)/form[0]/div[4]=login-actions
document(path\=accounts/new)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_new
document(path\=accounts/password_change)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_password_change
document(path\=accounts/password_change)/html/body/div[0]/div(htmlId\=content_accounts)/div(htmlId\=content_accounts_password_change)/form=
document(path\=accounts/password_reset$)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_password_reset
document(path\=accounts/password_reset_confirm)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_password_reset_confirm
document(path\=accounts/register$)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_register
document(path\=accounts/register$)/html/body/div[0]/div(htmlId\=content_accounts)/div(htmlId\=content_accounts_register)/form=
document(path\=accounts/register_complete)/html/body/div[0]/div(htmlId\=content_accounts)/div[0]=content_accounts_register_complete

document(path\=adm$)/html/body/div[0]/div[1]=content_adm

document(path\=application$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_contact$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_degree$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_degree_additional-degree$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_english$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_english_en-study-work$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_english_en-test$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_financialarrangement)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_gsv)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_personal)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_study)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_researchfocus)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_work$)/html/body/div[1]=CLEAR_INDEX
document(path\=application/edit_work_details)/html/body/div[1]=CLEAR_INDEX
document(path\=application)/html/body/div[0]/div[1]=content_application
document(path\=application$)/html/body/div[0]/div(htmlId\=content_application)/div[0]=content_application_overview
document(path\=application/edit_)/html/body/div[0]/div(htmlId\=content_application)/div[0]=content_application_edit
document(path\=application/edit_)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form=
document(path\=application/edit_additionalinformation)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edi\

t)/form[0]/div[1]=content_application_edit_additionalinformation
document(path\=application/edit_contact)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div\

[1]=content_application_edit_contact
document(path\=application/edit_degree$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div\

[1]=content_application_edit_degree

B. Extension of GUI Models for Websites With DOM Ids 208

document(path\=application/edit_degree_additional-degree$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application\
_edit)/form[0]/div[1]=content_application_edit_degree_additional-degree

document(path\=application/edit_degree_additional-degree_details)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_appl\
ication_edit)/form[0]/div[1]=content_application_edit_degree_additional-degree_details

document(path\=application/edit_degree_additional-university_details)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_\
application_edit)/form[0]/div[1]=content_application_edit_degree_additional-university_details

document(path\=application/edit_degree_eu)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/d\
iv[1]=content_application_edit_degree_eu

document(path\=application/edit_degree_university)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/f\
orm[0]/div[1]=content_application_edit_degree_university

document(path\=application/edit_degree_done$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0\
]/div[1]=content_application_edit_degree_done

document(path\=application/edit_english$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/di\
v[1]=content_application_edit_english

document(path\=application/edit_english_en-other)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/fo\
rm[0]/div[1]=content_application_edit_english_en-other

document(path\=application/edit_english_en-test)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/for\
m[0]/div[1]=content_application_edit_english_en-test

document(path\=application/edit_english_en-nat)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form\
[0]/div[1]=content_application_edit_language_en-nat

document(path\=application/edit_english_en-study-work$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_ed\
it)/form[0]/div[1]=content_application_edit_language_en-study-work

document(path\=application/edit_english_en-study-work-files)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_applicati\
on_edit)/form[0]/div[1]=content_application_edit_language_en-study-work-files

document(path\=application/edit_financialarrangement)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit\
)/form[0]/div[1]=content_application_edit_financialarrangement

document(path\=application/edit_german$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div\
[1]=content_application_edit_german

document(path\=application/edit_german_de-nat)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[\
0]/div[1]=content_application_edit_german_de-nat

document(path\=application/edit_german_de-other)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/for\
m[0]/div[1]=content_application_edit_german_de-other

document(path\=application/edit_german_de-test)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form\
[0]/div[1]=content_application_edit_german_de-test

document(path\=application/edit_gsv$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div[1]\
=content_application_edit_gsv

document(path\=application/edit_gsv_gsv-document)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/fo\
rm[0]/div[1]=content_application_edit_gsv_gsv-document

document(path\=application/edit_language$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/d\
iv[1]=content_application_edit_language

document(path\=application/edit_personal)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/di\
v[1]=content_application_edit_personal

document(path\=application/edit_researchfocus)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[\
0]/div[1]=content_application_edit_researchfocus

document(path\=application/edit_st$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div[1]=\
content_application_edit_st

document(path\=application/edit_st_special-treatment$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edi\
t)/form[0]/div[1]=content_application_edit_st_special-treatment

document(path\=application/edit_st_special-treatment-document)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_applica\
tion_edit)/form[0]/div[1]=content_application_edit_st_special-treatment-document

document(path\=application/edit_study)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div[1\
]=content_application_edit_study

document(path\=application/edit_work$)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0]/div[1\
]=content_application_edit_work

document(path\=application/edit_work_details)/html/body/div[0]/div(htmlId\=content_application)/div(htmlId\=content_application_edit)/form[0\
]/div[1]=content_application_edit_work_details

document(path\=application/file)/html/body/div[0]/div(htmlId\=content_application)/div[0]=content_application_file
document(path\=application/submit)/html/body/div[0]/div(htmlId\=content_application)/div[0]=content_application_submit
document(path\=application/withdraw)/html/body/div[0]/div(htmlId\=content_application)/div[0]=content_application_withdraw

document(path\=auth/user)/html/body/div[0]/div[1]=content_auth_user
document(path\=imprint)/html/body/div[1]=CLEAR_INDEX
document(path\=imprint)/html/body/div[0]/div[1]=content_imprint
document(path\=paths)/html/body/div[0]/div[1]=content_paths

document(path\=review)/html/body/div[0]/div[1]=content_review
document(path\=review/admin$)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_admin
document(path\=review/admin_add)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_admin_add
document(path\=review/admin_auth$)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_admin_auth
document(path\=review/admin_auth_user)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_admin_auth_user
document(path\=review/admin_deadline)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_admin_deadline
div(htmlId\=content_review_admin_deadline)/div[1]=CLEAR_INDEX
document(path\=review/admin_details)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_admin_details
document(path\=review/csv)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_csv
document(path\=review/details$)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_details
document(path\=review/details_history)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_details_history
document(path\=review/details_interview)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_details_interview
document(path\=review/details_same_university)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_details_same_university

209 B.1. Parsing Configuration for Case Study 1

document(path\=review/details_view)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_details_view
document(path\=review/distribute)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_distribute
document(path\=review/export)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_export
document(path\=review/finalized)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_finalized
document(path\=review/incomp)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_incomp
document(path\=review/notified)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_notified
document(path\=review/overview)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_overview
document(path\=review/statistics)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_statistics
document(path\=review/universities)/html/body/div[0]/div(htmlId\=content_review)/div[0]=content_review_universities

document(path\=wizard/additional$)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/additional-degree$)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/de-test)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/personal)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/english)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/en-test)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/en-study-work)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/eu)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/finance)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/german)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/gsv)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/research-focus)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/opt-work-exp$)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/opt-work-exp_details)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard/university)/html/body/div[1]=CLEAR_INDEX
document(path\=wizard)/html/body/div[0]/div[1]=content_wizard
div(htmlId\=content_wizard)/div[0]/form=
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[2]=content_wizard_buttons
document(path\=wizard$)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_personal
document(path\=wizard/additional$)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_additional
document(path\=wizard/additional-degree$)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_additiona\

l-degree
document(path\=wizard/additional-degree_details)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_ad\

ditional-degree_details
document(path\=wizard/additional-university_details)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizar\

d_additional-university_details
document(path\=wizard/bologna)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_bologna
document(path\=wizard/degree)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_degree
document(path\=wizard/de-nat)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_de-nat
document(path\=wizard/de-other)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_de-other
document(path\=wizard/de-test)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_de-test
document(path\=wizard/english)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_english
document(path\=wizard/en-nat)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_en-nat
document(path\=wizard/en-other)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_en-other
document(path\=wizard/en-study-work)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_en-study-work
document(path\=wizard/en-test)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_en-test
document(path\=wizard/eu)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_eu
document(path\=wizard/finance)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_finance
document(path\=wizard/german)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_german
document(path\=wizard/gsv$)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_gsv
document(path\=wizard/gsv-document)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_gsv-document
document(path\=wizard/special-treatment$)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_special-t\

reatment
document(path\=wizard/special-treatment-document)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_s\

pecial-treatment-document
document(path\=wizard/opt-work-exp$)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_opt-work-exp
document(path\=wizard/opt-work-exp_details)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_opt-wor\

k-exp_details
document(path\=wizard/personal)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_personal
document(path\=wizard/research-focus)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_research-focus
document(path\=wizard/research-focus)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div(htmlId\=content_wizard_research\

-focus)/fieldset[0]/div=CLEAR_INDEX
document(path\=wizard/university)/html/body/div[0]/div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[1]=content_wizard_university

body/p/small/a=imprint-link

body/div[0]/ul=breadcrumbs
document(path\=accounts)/html/body/div[0]/ul/li[1]/a=breadcrumb_login-link
document(path\=wizard)/html/body/div[0]/ul/li[1]/a=breadcrumb_logout-link
document(path\=wizard)/html/body/div[0]/ul/li[2]/a=breadcrumb_change-password-link
document(path\=application)/html/body/div[0]/ul/li[1]/a=breadcrumb_logout-link
document(path\=application)/html/body/div[0]/ul/li[2]/a=breadcrumb_change-password-link
document(path\=review)/html/body/div[0]/ul/li[1]/a=breadcrumb_logout-link
document(path\=review)/html/body/div[0]/ul/li[2]/a=breadcrumb_change-password-link

document(path\=accounts/login)/html/body/div[0]/div[1]/div[0]/form/p/a=password-reset-link
document(path\=accounts/login)/html/body/div[0]/div[1]/div[0]/form/div/button[0]=login-btn
document(path\=accounts/login)/html/body/div[0]/div[1]/div[0]/form/div/button[1]=create-account-btn

B. Extension of GUI Models for Websites With DOM Ids 210

document(path\=accounts/login)/html/body/div[0]/div[1]/div[0]/form/div/a[0]=create-account-link

document(path\=accounts/password_change)/html/body/div[0]/div[1]/div[0]/form/div[4]/button[0]=change-password-btn

document(path\=accounts/password_reset$)/html/body/div[0]/div[1]/div[0]/form/div[2]/button[0]=reset-password-btn

#################### application side

div(htmlId\=content_application_edit)/form[0]/div[2]/div[0]/button[0]=confirm-btn
div(htmlId\=content_application_edit)/form[0]/div[2]/div[0]/a[0]=back-btn

div(htmlId\=content_application_withdraw)/form[0]/div[2]/div[0]/button[0]=confirm-btn
div(htmlId\=content_application_withdraw)/form[0]/div[2]/div[0]/a[0]=back-btn

div(htmlId\=content_wizard)/div[0]/form/div[2]/div[0]/button[0]=reset-btn
div(htmlId\=content_wizard)/div[0]/form/div[2]/div[0]/button[1]=next-btn
div(htmlId\=content_wizard)/div[0]/form/div[2]/div[0]/a[0]=first-step-btn
div(htmlId\=content_wizard)/div[0]/form/div[2]/div[0]/a[1]=previous-step-btn

div(htmlId\=div_id_university)/div[0]=university-selector
div(htmlId\=div_id_degree_type)/div[0]=degree-type-selector

div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[0]=wizard-steps-headline
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[1]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[2]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[3]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[4]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[5]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[6]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[7]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[8]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[9]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[10]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[11]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[12]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[13]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[14]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[15]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[16]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[17]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[18]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[19]=wizard-steps-navigation
div(htmlId\=content_wizard)/div[0]/form[0]/div[1]/div[0]/ul/li[20]=wizard-steps-navigation

li(htmlId\=wizard-steps-navigation)/a=wizard-steps-navigation-link

document(path\=wizard$)/html/body/div[1]=CLEAR_INDEX,date-chooser-wizard
document(path\=wizard$)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=wizard$)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=wizard$)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=wizard$)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=wizard$)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=wizard/additional-degree_details)/html/body/div[1]=CLEAR_INDEX,date-chooser
document(path\=wizard/additional-degree_details)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=wizard/additional-degree_details)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=wizard/additional-degree_details)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=wizard/additional-degree_details)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=wizard/additional-degree_details)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=wizard/degree)/html/body/div[1]=CLEAR_INDEX,date-chooser-wizard-degree
document(path\=wizard/degree)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=wizard/degree)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=wizard/degree)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=wizard/degree)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=wizard/degree)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=wizard/en-test)/html/body/div[2]=CLEAR_INDEX,date-chooser

document(path\=wizard/opt-work-exp_details)/html/body/div[1]=CLEAR_INDEX,date-chooser-wizard-opt-work-exp_details
document(path\=wizard/opt-work-exp_details)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=wizard/opt-work-exp_details)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=wizard/opt-work-exp_details)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=wizard/opt-work-exp_details)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=wizard/opt-work-exp_details)/html/body/div[6]=CLEAR_INDEX,date-chooser
document(path\=wizard/opt-work-exp_details)/html/body/div[7]=CLEAR_INDEX,date-chooser

document(path\=wizard/personal)/html/body/div[2]=CLEAR_INDEX,date-chooser

211 B.1. Parsing Configuration for Case Study 1

document(path\=wizard/personal)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=wizard/personal)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=wizard/personal)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=wizard/personal)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=application/edit_degree$)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree$)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree$)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree$)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree$)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=application/edit_degree_additional-degree_details)/html/body/div[1]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree_additional-degree_details)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree_additional-degree_details)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree_additional-degree_details)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree_additional-degree_details)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=application/edit_degree_additional-degree_details)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=application/edit_personal)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=application/edit_personal)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=application/edit_personal)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=application/edit_personal)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=application/edit_personal)/html/body/div[6]=CLEAR_INDEX,date-chooser

document(path\=application/edit_work_details)/html/body/div[2]=CLEAR_INDEX,date-chooser
document(path\=application/edit_work_details)/html/body/div[3]=CLEAR_INDEX,date-chooser
document(path\=application/edit_work_details)/html/body/div[4]=CLEAR_INDEX,date-chooser
document(path\=application/edit_work_details)/html/body/div[5]=CLEAR_INDEX,date-chooser
document(path\=application/edit_work_details)/html/body/div[6]=CLEAR_INDEX,date-chooser

div(htmlId\=date-chooser)/div[0]=date-chooser_day
div(htmlId\=date-chooser)/div(htmlId\=date-chooser_day)/table[0]=date-chooser_day-table
div(htmlId\=date-chooser)/div[1]=date-chooser_month
div(htmlId\=date-chooser)/div(htmlId\=date-chooser_month)/table[0]=date-chooser_month-table
div(htmlId\=date-chooser)/div[2]=date-chooser_year
div(htmlId\=date-chooser)/div(htmlId\=date-chooser_year)/table[0]=date-chooser_year-table

table(htmlId\=date-chooser_year-table)/thead[0]/tr[0]/th[0]/i[0]=date-chooser_prev-years
table(htmlId\=date-chooser_year-table)/thead[0]/tr[0]/th[2]/i[0]=date-chooser_next-years

table(htmlId\=overview)/tbody[0]/tr/td/form=

form(htmlId\=index_table)/div/table/tbody[0]/tr=CLEAR_INDEX
table(htmlId\=overview)/tbody[0]/tr=CLEAR_INDEX
table(htmlId\=overview)/tbody[0]/tr/td[0]=app_overview-left
table(htmlId\=overview)/tbody[0]/tr/td[0]/a=app_overview_edit-link
table(htmlId\=overview)/tbody[0]/tr/td[1]=app_overview
table(htmlId\=overview)/tbody[0]/tr/td[2]=app_overview

td(htmlId\=app_overview)/a=app_view-uploaded-file-link
td(htmlId\=app_overview)/form[0]/input_submit(htmlId\=submit-id-submit)=app_upload-file-btn

div(htmlId\=content_application_overview)/form=submit_form
form(htmlId\=submit_form)/div[2]/div[0]=submit_div
form(htmlId\=submit_form)/div[4]=submit_div
form(htmlId\=submit_form)/div[6]=submit_div
div(htmlId\=submit_div)/button[0]=submit-btn

########################### reviewer side

document(path\=review/overview)/html/body/div[0]/div[1]/div[0]/div[0]/div[0]/form(htmlId\=index_table)/div[0]/table[0]/tbody[0]/tr[0]/td[1]/\
a[0]=rev_overview_applicant-link

document(path\=review/incomp)/html/body/div[0]/div[1]/div[0]/div[0]/div[0]/form(htmlId\=index_table)/div[0]/table[0]/tbody[0]/tr[0]/td[1]/a[\
0]=rev_incomp_applicant-link

document(path\=same_university)/html/body/div[0]/div[1]/div[0]/div[0]/div[0]/form(htmlId\=index_table)/div[0]/table[0]/tbody[0]/tr[0]/td[1]/\
a[0]=rev_same-uni_applicant-link

div(htmlId\=personal_data-wrapper)=
div(htmlId\=degree_data-wrapper)=
div(htmlId\=gsv_data-wrapper)=
div(htmlId\=english_native_data-wrapper)=
div(htmlId\=english_test_data-wrapper)=
div(htmlId\=german_none_data-wrapper)=
div(htmlId\=st_data-wrapper)=

div(htmlId\=edit-personal_data)=

B. Extension of GUI Models for Websites With DOM Ids 212

div(htmlId\=edit-degree_data)=
div(htmlId\=edit-gsv_data)=
div(htmlId\=edit-english_native_data)=
div(htmlId\=edit-english_test_data)=
div(htmlId\=edit-german_none_data)=
div(htmlId\=edit-st_data)=

table(htmlId\=personal_data)=
table(htmlId\=degree_data)=
table(htmlId\=gsv_data)=
table(htmlId\=english_native_data)=
table(htmlId\=english_test_data)=
table(htmlId\=german_none_data)=
table(htmlId\=st_data)=

tr(htmlId\=profile__photo)/td[1]/a[0]=rev_details_photo-link
tr(htmlId\=profile__cv)/td[1]/a[0]=rev_details_cv-link
tr(htmlId\=degree__certificate_tos)/td[1]/a[0]=rev_details_certificate-tos-link
tr(htmlId\=english__en-test__certificate)/td[1]/a[0]=rev_details_english-test-link

div(htmlId\=personal-profile__photo)/a[0]=rev_details_edit-photo-status-btn
div(htmlId\=review_edit-language-status-details)/a[0]=rev_details_edit-language-status-btn
div(htmlId\=grade-degree)/a[0]=rev_details_edit-degree-status-btn
div(htmlId\=grade-degree__cgpa)/a[0]=rev_details_edit-degree-cgpa-status-btn
div(htmlId\=file-degree__certificate_tos)/a[0]=rev_details_edit-certificate-tos-status-btn
div(htmlId\=gsv-gsv)/a[0]=rev_details_edit-certificate-tos-status-btn
div(htmlId\=none-german__de-none)/a[0]=rev_details_edit-german-status-btn
div(htmlId\=file-english__en-test__certificate)/a[0]=rev_details_edit-english-file-status-btn
div(htmlId\=langtest-english__en-test)/a[0]=rev_details_edit-english-status-btn

div(htmlId\=full-personal-profile__photo)=rev_details_edit-status-details
div(htmlId\=full-none-german__de-none)=rev_details_edit-status-details
div(htmlId\=full-grade-degree)=rev_details_edit-status-details
div(htmlId\=full-grade-degree__cgpa)=rev_details_edit-status-details
div(htmlId\=full-file-degree__certificate_tos)=rev_details_edit-status-details
div(htmlId\=full-gsv-gsv)=rev_details_edit-status-details
div(htmlId\=full-file-english__en-test__certificate)=rev_details_edit-status-details
div(htmlId\=full-langtest-english__en-test)=rev_details_edit-status-details

div(htmlId\=rev_details_edit-status-details)/form[0]/div=
div(htmlId\=rev_details_edit-status-details)/form[0]/div/div[0]=rev_details_status-selector-wrapper
div(htmlId\=rev_details_edit-status-details)/form[0]/div/div[0]/select=rev_details_status-selector
div(htmlId\=rev_details_edit-status-details)/form[0]/div/div[0]/textarea=rev_details_status-comment
div(htmlId\=rev_details_edit-status-details)/form[0]/input_button(htmlId\=button-id-submit)=rev_details_submit-status_btn

table(htmlId\=review_data)/tbody[0]/tr[1]/td[0]/button[0]=rev_details_edit-overall-rev-btn
table(htmlId\=review_data)/tbody[0]/tr[1]/td[2]/div[0]/div/div[0]/select(htmlId\=id_status)=rev_details_overall-status-selector
table(htmlId\=review_data)/tbody[0]/tr[2]/td[1]/div[0]/div/div[0]/select(htmlId\=id_reviewer)=rev_details_reviewer-selector

table(htmlId\=furtherdegree_data)/tbody[0]/tr(htmlId\=block__furtherdegree__#__certificate_tos)=block__furtherdegree__X__certificate_tos

div(htmlId\=div_id_base_workmembership-letter-#)=div_id_base_workmembership-letter-X
div(htmlId\=div_id_base_workmembership-letter-##)=div_id_base_workmembership-letter-X
div(htmlId\=div_id_base_workmembership-letter-###)=div_id_base_workmembership-letter-X

input_file(htmlId\=id_base_workmembership-letter-#)=id_base_workmembership-letter-X
input_file(htmlId\=id_base_workmembership-letter-##)=id_base_workmembership-letter-X
input_file(htmlId\=id_base_workmembership-letter-###)=id_base_workmembership-letter-X

input_checkbox(htmlId\=base_workmembership-letter-#-clear_id)=base_workmembership-letter-X-clear_id
input_checkbox(htmlId\=base_workmembership-letter-##-clear_id)=base_workmembership-letter-X-clear_id
input_checkbox(htmlId\=base_workmembership-letter-###-clear_id)=base_workmembership-letter-X-clear_id

div(htmlId\=div_id_base_studymembership-letter-#)=div_id_base_studymembership-letter-X
div(htmlId\=div_id_base_studymembership-letter-##)=div_id_base_studymembership-letter-X
div(htmlId\=div_id_base_studymembership-letter-###)=div_id_base_studymembership-letter-X

input_file(htmlId\=id_base_studymembership-letter-#)=id_base_studymembership-letter-X
input_file(htmlId\=id_base_studymembership-letter-##)=id_base_studymembership-letter-X

213 B.1. Parsing Configuration for Case Study 1

input_file(htmlId\=id_base_studymembership-letter-###)=id_base_studymembership-letter-X

div(htmlId\=div_id_base_bachelormembership-letter-#)=div_id_base_bachelormembership-letter-X
div(htmlId\=div_id_base_bachelormembership-letter-##)=div_id_base_bachelormembership-letter-X
div(htmlId\=div_id_base_bachelormembership-letter-###)=div_id_base_bachelormembership-letter-X

input_file(htmlId\=id_base_bachelormembership-letter-#)=id_base_bachelormembership-letter-X
input_file(htmlId\=id_base_bachelormembership-letter-##)=id_base_bachelormembership-letter-X
input_file(htmlId\=id_base_bachelormembership-letter-###)=id_base_bachelormembership-letter-X

input_checkbox(htmlId\=base_bachelormembership-letter-#-clear_id)=base_bachelormembership-letter-X-clear_id
input_checkbox(htmlId\=base_bachelormembership-letter-##-clear_id)=base_bachelormembership-letter-X-clear_id
input_checkbox(htmlId\=base_bachelormembership-letter-###-clear_id)=base_bachelormembership-letter-X-clear_id

div(htmlId\=div_id_base_bachelormembership_#-letter)=div_id_base_bachelormembership_X-letter
div(htmlId\=div_id_base_bachelormembership_##-letter)=div_id_base_bachelormembership_X-letter
div(htmlId\=div_id_base_bachelormembership_###-letter)=div_id_base_bachelormembership_X-letter

input_file(htmlId\=id_base_bachelormembership_#-letter)=id_base_bachelormembership_X-letter
input_file(htmlId\=id_base_bachelormembership_##-letter)=id_base_bachelormembership_X-letter
input_file(htmlId\=id_base_bachelormembership_###-letter)=id_base_bachelormembership_X-letter

p(htmlId\=hint_id_base_bachelormembership_#-letter)=hint_id_base_bachelormembership_X-letter
p(htmlId\=hint_id_base_bachelormembership_##-letter)=hint_id_base_bachelormembership_X-letter
p(htmlId\=hint_id_base_bachelormembership_###-letter)=hint_id_base_bachelormembership_X-letter

div(htmlId\=div_id_base_studymembership_#-letter)=div_id_base_studymembership_X-letter
div(htmlId\=div_id_base_studymembership_##-letter)=div_id_base_studymembership_X-letter
div(htmlId\=div_id_base_studymembership_###-letter)=div_id_base_studymembership_X-letter

input_file(htmlId\=id_base_studymembership_#-letter)=id_base_studymembership_X-letter
input_file(htmlId\=id_base_studymembership_##-letter)=id_base_studymembership_X-letter
input_file(htmlId\=id_base_studymembership_###-letter)=id_base_studymembership_X-letter

div(htmlId\=div_id_base_workmembership_#-letter)=div_id_base_workmembership_X-letter
div(htmlId\=div_id_base_workmembership_##-letter)=div_id_base_workmembership_X-letter
div(htmlId\=div_id_base_workmembership_###-letter)=div_id_base_workmembership_X-letter

input_file(htmlId\=id_base_workmembership_#-letter)=id_base_workmembership_X-letter
input_file(htmlId\=id_base_workmembership_##-letter)=id_base_workmembership_X-letter
input_file(htmlId\=id_base_workmembership_###-letter)=id_base_workmembership_X-letter

p(htmlId\=hint_id_base_workmembership_#-letter)=hint_id_base_workmembership_X-letter
p(htmlId\=hint_id_base_workmembership_##-letter)=hint_id_base_workmembership_X-letter
p(htmlId\=hint_id_base_workmembership_###-letter)=hint_id_base_workmembership_X-letter

div(htmlId\=div_id_base_languagetest_#-certificate)=div_id_base_languagetest_X-certificate
div(htmlId\=div_id_base_languagetest_##-certificate)=div_id_base_languagetest_X-certificate
div(htmlId\=div_id_base_languagetest_###-certificate)=div_id_base_languagetest_X-certificate

input_file(htmlId\=id_base_languagetest_#-certificate)=id_base_languagetest_X-certificate
input_file(htmlId\=id_base_languagetest_##-certificate)=id_base_languagetest_X-certificate
input_file(htmlId\=id_base_languagetest_###-certificate)=id_base_languagetest_X-certificate

p(htmlId\=hint_id_base_languagetest_#-certificate)=hint_id_base_languagetest_X-certificate
p(htmlId\=hint_id_base_languagetest_##-certificate)=hint_id_base_languagetest_X-certificate
p(htmlId\=hint_id_base_languagetest_###-certificate)=hint_id_base_languagetest_X-certificate

div(htmlId\=div_id_base_workingexperience_#-reference_letter)=div_id_base_workingexperience_X-reference_letter
div(htmlId\=div_id_base_workingexperience_##-reference_letter)=div_id_base_workingexperience_X-reference_letter

B. Extension of GUI Models for Websites With DOM Ids 214

div(htmlId\=div_id_base_workingexperience_###-reference_letter)=div_id_base_workingexperience_X-reference_letter

input_file(htmlId\=id_base_workingexperience_#-reference_letter)=id_base_workingexperience_X-reference_letter
input_file(htmlId\=id_base_workingexperience_##-reference_letter)=id_base_workingexperience_X-reference_letter
input_file(htmlId\=id_base_workingexperience_###-reference_letter)=id_base_workingexperience_X-reference_letter

p(htmlId\=hint_id_base_workingexperience_#-reference_letter)=hint_id_base_workingexperience_X-reference_letter
p(htmlId\=hint_id_base_workingexperience_##-reference_letter)=hint_id_base_workingexperience_X-reference_letter
p(htmlId\=hint_id_base_workingexperience_###-reference_letter)=hint_id_base_workingexperience_X-reference_letter

div(htmlId\=div_id_base_applicantprofile_#-photo)=div_id_base_applicantprofile_X-photo
div(htmlId\=div_id_base_applicantprofile_##-photo)=div_id_base_applicantprofile_X-photo
div(htmlId\=div_id_base_applicantprofile_###-photo)=div_id_base_applicantprofile_X-photo

input_file(htmlId\=id_base_applicantprofile_#-photo)=id_base_applicantprofile_X-photo
input_file(htmlId\=id_base_applicantprofile_##-photo)=id_base_applicantprofile_X-photo
input_file(htmlId\=id_base_applicantprofile_###-photo)=id_base_applicantprofile_X-photo

p(htmlId\=hint_id_base_applicantprofile_#-photo)=hint_id_base_applicantprofile_X-photo
p(htmlId\=hint_id_base_applicantprofile_##-photo)=hint_id_base_applicantprofile_X-photo
p(htmlId\=hint_id_base_applicantprofile_###-photo)=hint_id_base_applicantprofile_X-photo

div(htmlId\=div_id_base_applicantprofile_#-cv)=div_id_base_applicantprofile_X-cv
div(htmlId\=div_id_base_applicantprofile_##-cv)=div_id_base_applicantprofile_X-cv
div(htmlId\=div_id_base_applicantprofile_###-cv)=div_id_base_applicantprofile_X-cv

input_file(htmlId\=id_base_applicantprofile_#-cv)=id_base_applicantprofile_X-cv
input_file(htmlId\=id_base_applicantprofile_##-cv)=id_base_applicantprofile_X-cv
input_file(htmlId\=id_base_applicantprofile_###-cv)=id_base_applicantprofile_X-cv

p(htmlId\=hint_id_base_applicantprofile_#-cv)=hint_id_base_applicantprofile_X-cv
p(htmlId\=hint_id_base_applicantprofile_##-cv)=hint_id_base_applicantprofile_X-cv
p(htmlId\=hint_id_base_applicantprofile_###-cv)=hint_id_base_applicantprofile_X-cv

div(htmlId\=div_id_base_degree_#-certificate_tos)=div_id_base_degree_X-certificate_tos
div(htmlId\=div_id_base_degree_##-certificate_tos)=div_id_base_degree_X-certificate_tos
div(htmlId\=div_id_base_degree_###-certificate_tos)=div_id_base_degree_X-certificate_tos

input_file(htmlId\=id_base_degree_#-certificate_tos)=id_base_degree_X-certificate_tos
input_file(htmlId\=id_base_degree_##-certificate_tos)=id_base_degree_X-certificate_tos
input_file(htmlId\=id_base_degree_###-certificate_tos)=id_base_degree_X-certificate_tos

p(htmlId\=hint_id_base_degree_#-certificate_tos)=hint_id_base_degree_X-certificate_tos
p(htmlId\=hint_id_base_degree_##-certificate_tos)=hint_id_base_degree_X-certificate_tos
p(htmlId\=hint_id_base_degree_###-certificate_tos)=hint_id_base_degree_X-certificate_tos

div(htmlId\=div_id_base_furtherdegree_#-certificate_tos)=div_id_base_furtherdegree_X-certificate_tos
div(htmlId\=div_id_base_furtherdegree_##-certificate_tos)=div_id_base_furtherdegree_X-certificate_tos
div(htmlId\=div_id_base_furtherdegree_###-certificate_tos)=div_id_base_furtherdegree_X-certificate_tos

input_file(htmlId\=id_base_furtherdegree_#-certificate_tos)=id_base_furtherdegree_X-certificate_tos
input_file(htmlId\=id_base_furtherdegree_##-certificate_tos)=id_base_furtherdegree_X-certificate_tos
input_file(htmlId\=id_base_furtherdegree_###-certificate_tos)=id_base_furtherdegree_X-certificate_tos

div(htmlId\=div_id_compscience_gradingsystemvalidationdocument_#-document)=div_id_compscience_gradingsystemvalidationdocument_X-document
div(htmlId\=div_id_compscience_gradingsystemvalidationdocument_##-document)=div_id_compscience_gradingsystemvalidationdocument_X-document
div(htmlId\=div_id_compscience_gradingsystemvalidationdocument_###-document)=div_id_compscience_gradingsystemvalidationdocument_X-document

input_file(htmlId\=id_compscience_gradingsystemvalidationdocument_#-document)=id_compscience_gradingsystemvalidationdocument_X-document
input_file(htmlId\=id_compscience_gradingsystemvalidationdocument_##-document)=id_compscience_gradingsystemvalidationdocument_X-document
input_file(htmlId\=id_compscience_gradingsystemvalidationdocument_###-document)=id_compscience_gradingsystemvalidationdocument_X-document

p(htmlId\=hint_id_compscience_gradingsystemvalidationdocument_#-document)=hint_id_compscience_gradingsystemvalidationdocument_X-document

215 B.2. Parsing Configuration for Case Study 2

p(htmlId\=hint_id_compscience_gradingsystemvalidationdocument_##-document)=hint_id_compscience_gradingsystemvalidationdocument_X-document
p(htmlId\=hint_id_compscience_gradingsystemvalidationdocument_###-document)=hint_id_compscience_gradingsystemvalidationdocument_X-document

div(htmlId\=div_id_base_otherlanguageproof_#-document)=div_id_base_otherlanguageproof_X-document
div(htmlId\=div_id_base_otherlanguageproof_##-document)=div_id_base_otherlanguageproof_X-document
div(htmlId\=div_id_base_otherlanguageproof_###-document)=div_id_base_otherlanguageproof_X-document

input_file(htmlId\=id_base_otherlanguageproof_#-document)=id_base_otherlanguageproof_X-document
input_file(htmlId\=id_base_otherlanguageproof_##-document)=id_base_otherlanguageproof_X-document
input_file(htmlId\=id_base_otherlanguageproof_###-document)=id_base_otherlanguageproof_X-document

p(htmlId\=hint_id_base_otherlanguageproof_#-document)=hint_id_base_otherlanguageproof_X-document
p(htmlId\=hint_id_base_otherlanguageproof_##-document)=hint_id_base_otherlanguageproof_X-document
p(htmlId\=hint_id_base_otherlanguageproof_###-document)=hint_id_base_otherlanguageproof_X-document

div(htmlId\=div_id_base_nativespeaker_#-document)=div_id_base_nativespeaker_X-document
div(htmlId\=div_id_base_nativespeaker_##-document)=div_id_base_nativespeaker_X-document
div(htmlId\=div_id_base_nativespeaker_###-document)=div_id_base_nativespeaker_X-document

input_file(htmlId\=id_base_nativespeaker_#-document)=id_base_nativespeaker_X-document
input_file(htmlId\=id_base_nativespeaker_##-document)=id_base_nativespeaker_X-document
input_file(htmlId\=id_base_nativespeaker_###-document)=id_base_nativespeaker_X-document

p(htmlId\=hint_id_base_nativespeaker_#-document)=hint_id_base_nativespeaker_X-document
p(htmlId\=hint_id_base_nativespeaker_##-document)=hint_id_base_nativespeaker_X-document
p(htmlId\=hint_id_base_nativespeaker_###-document)=hint_id_base_nativespeaker_X-document

B.2. Parsing Configuration for Case Study 2

For the second case study, two parsing configuration files were created, one for the old, and
one for the new version of the website. This was required, as the website does not make
much use of DOM element ids, and because the old and the new version were too similar
to be able to configure the parsing with only one configuration file. The configuration files
had the following content:

B.2.1. Parsing Configuration for the Old Website Version
##################### Mapping of document paths
document(path\=/awards$)=awards/overview
document(path\=/awards/index.php$)=awards/overview
document(path\=/awards/###############)=awards/details
document(path\=/certified-tester)=other/certified-tester
document(path\=/emc-academic-alliance)=other/emc-academic-alliance
document(path\=/external-academic-services/######)=staff/external-academic-services/details
document(path\=/external-academic-services-taxonomy/######)=admin/staff/external-academic-services/taxonomy
document(path\=/filter/tips)=admin/help/filter/tips
document(path\=/former-staff)=staff/former/overview
document(path\=/help/facetapi_bonus/README.txt)=admin/help/facetapi_bonus
document(path\=/how-to-find-us)=home/how-to-find-us
document(path\=/import)=admin/import
document(path\=/imprint)=other/imprint
document(path\=^/index.php$)=/
document(path\=/ingo-tributh)=CLEAR_QUERY,staff/details
document(path\=/internal-academic-services/######)=staff/internal-academic-services/details
document(path\=/jobs$)=staff/jobs/overview
document(path\=/jobs/index.php$)=staff/jobs/overview
document(path\=/jobss$)=staff/jobs/overview
document(path\=/jobss/$)=staff/jobs/overview
document(path\=/jobss/######)=staff/jobs/details
document(path\=/lectures$)=lectures/overview
document(path\=/lectures/$)=lectures/overview

B. Extension of GUI Models for Websites With DOM Ids 216

document(path\=/lectures/######)=CLEAR_QUERY,lectures/details
document(path\=/news$)=CLEAR_QUERY,home/news/overview
document(path\=/news/$)=CLEAR_QUERY,home/news/overview
document(path\=/news/######)=CLEAR_QUERY,home/news/details
document(path\=/news/index.php$)=CLEAR_QUERY,home/news/overview
document(path\=/node/$)=admin/nodes/recently-added
document(path\=/node/####$)=publications/details
document(path\=/our-research$)=research/overview
document(path\=/publications$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/######)=CLEAR_QUERY,publications/details
document(path\=/publications-recent$)=CLEAR_QUERY,publications/recent/overview

document(path\=/publications/A-98-04/Report-A-98-04.ps.gz$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/BZ_DV_IS_HN_JG/main.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/BZ_HN_JG_DE_PB/trex.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/EE/Masterarbeit_SRE_Eduard_Enriquez_28072008-1.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ER_IS_JG/SAM2000RudolphEtAll.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ER_JG_PG/SDL99-Harmonization.ps.gz$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/EW_JG_ST_BZ/WSTestFramework_main.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/FBT98/FBT98.ps.gz$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/HN_BZ_JG_PB_DE/stvr_quality_assurance_for_ttcn3_test_specifications.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/HN_BZ/wrt_ecoop2007.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/HN_MB/ttcn3codesmells_testcom2007.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/IS_ZD_JG_AR/TestCom2003_UTP_Final.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/JG_ER/MSC-Survey93.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/JG/Grabowski.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/JK/bmsc_thesis_kemnade.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/MB/bisanz_mastersthesis.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/PB_ZD_JG_ME_GK_IS_PG/U2TP-CONQUEST-2004.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ST/WebServiceTestFrameworkWithTTCN-3.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/TR_AA_JM_FV/rings-gb74.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/TR_HN_JG/rings-testingGridApplication.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ZD_JG_HN_HP/jzus.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ZD_JG_HN_HP/testcom2004_from_design_to_test_with_uml.pdf$)=CLEAR_QUERY,publications/all/overview

document(path\=/research$)=CLEAR_QUERY,research/overview
document(path\=/research/######)=research/project-details
document(path\=/search/node/)=search-results
document(path\=/semester/ws2014)=admin/taxonomy/list

document(path\=^/staff$)=CLEAR_QUERY,staff/current/overview
document(path\=^/staff/$)=CLEAR_QUERY,staff/current/overview
document(path\=^/staff/index.php$)=CLEAR_QUERY,staff/current/overview
document(path\=^/staff/#######)=CLEAR_QUERY,staff/details
document(path\=^/staff/single_staff/index.php)=CLEAR_QUERY,staff/current/overview

document(path\=/start$)=/
document(path\=/taxonomy/term/#)=admin/taxonomy/term/details
document(path\=/teaching$)=CLEAR_QUERY,teaching/overview
document(path\=/teaching-all$)=CLEAR_QUERY,teaching/overview
document(path\=/teaching/writing-and-presenting)=teaching/writing-and-presenting
document(path\=/user$)=CLEAR_QUERY,user/login
document(path\=/user/login$)=CLEAR_QUERY,user/login
document(path\=/user/logout$)=CLEAR_QUERY,user/logout
document(path\=/user/password$)=CLEAR_QUERY,user/password
document(path\=/user/reset/###/##)=user/password-reset
document(path\=/users/$)=admin/users/overview
document(path\=/users/admin$)=admin/users/overview
document(path\=/users/sadhatarao$)=admin/users/details
document(path\=/users/students$)=admin/users/details
document(path\=/users/vhonsel$)=admin/users/details

document(path\=/we-wish-you-all-merry-christmas-and-happy-new-year$)=/
document(path\=/we-wish-you-merry-christmas-and-happy-new-year$)=/

document(path\=/compscience/accounts/$)=CLEAR_QUERY,invalid-page
document(path\=/compscience/accounts/login/)=CLEAR_QUERY,invalid-page
document(path\=/compscience/application/)=CLEAR_QUERY,invalid-page
document(path\=/edu$)=CLEAR_QUERY,invalid-page
document(path\=/edu/$)=CLEAR_QUERY,invalid-page
document(path\=/edu/eval.php)=CLEAR_QUERY,invalid-page
document(path\=/edu/lv.php)=CLEAR_QUERY,invalid-page
document(path\=/edu/notes/index.php)=CLEAR_QUERY,invalid-page
document(path\=/favicon.ico)=CLEAR_QUERY,invalid-page
document(path\=/intranet/bibo/index.php)=CLEAR_QUERY,invalid-page
document(path\=/itis/2015/suse/accounts/login/)=CLEAR_QUERY,invalid-page
document(path\=/itis/2015/suse/application/)=CLEAR_QUERY,invalid-page
document(path\=/itis/accounts/login/)=CLEAR_QUERY,invalid-page

217 B.2. Parsing Configuration for Case Study 2

document(path\=/itis/accounts/password/change/)=CLEAR_QUERY,invalid-page
document(path\=/itis/accounts/password/reset/)=CLEAR_QUERY,invalid-page
document(path\=/itis/application/)=CLEAR_QUERY,invalid-page
document(path\=/itis/imprint/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/$)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/41/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/500/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/78/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/login/)=CLEAR_QUERY,invalid-page
document(path\=/itis/wizard/)=CLEAR_QUERY,invalid-page
document(path\=/lecture$)=CLEAR_QUERY,invalid-page
document(path\=/lectures/exam-ss2014)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ss2014)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ws2003)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ws2013)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ws2014)=CLEAR_QUERY,invalid-page
document(path\=/notes/$)=CLEAR_QUERY,invalid-page
document(path\=/notes/SS2004/Grabowski/I-Einfuehrung-6-auf-1.pdf)=CLEAR_QUERY,invalid-page
document(path\=/notes/SS2007/grabowski/0-Allgemeines-Organisatorisches-6-auf-1.pdf)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2004/$)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2004/neukirchen/$)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2004/neukirchen/case-tools_Noedler.pdf)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2008/bzeiss/51/07collectiveownership.pdf)=CLEAR_QUERY,invalid-page
document(path\=/pubs/pub_liste/pub_anzeige.php)=CLEAR_QUERY,invalid-page
document(path\=/pubs/single_pub/index.php)=CLEAR_QUERY,invalid-page
document(path\=/research/main_projects/projects/single_projects/index.php)=CLEAR_QUERY,invalid-page
document(path\=/se$)=CLEAR_QUERY,invalid-page
document(path\=/sites/all/themes/samara/styles/custom.css)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/pages/)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/DissertationGrabowski.pdf)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/main1.pdf)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/PhD_wafi.pdf)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/pictures/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/pictures/IMG_0466.JPG%3Fitok%3DJSPAGeSr)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/pictures/verena10_0.JPG%3Fitok%3Dgm4kHYS0)=CLEAR_QUERY,invalid-page
document(path\=/theses/criteria.php)=CLEAR_QUERY,invalid-page
document(path\=/theses/index.php)=CLEAR_QUERY,invalid-page
document(path\=/trac$)=CLEAR_QUERY,invalid-page
document(path\=/trac/wiki/TracIni)=CLEAR_QUERY,invalid-page

##################### Mapping major page contents
document(path\=/$)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=main)/div(htm\

lId\=page)=page_root
document(path\=admin/help/facetapi_bonus)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/di\

v(htmlId\=main)/div(htmlId\=page)=page_admin_help_facetapi_bonus
document(path\=admin/help/filter/tips)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(h\

tmlId\=main)/div(htmlId\=page)=page_admin_help_filter_tips
document(path\=admin/import)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=mai\

n)/div(htmlId\=page)=page_admin_import
document(path\=admin/nodes/recently-added)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/d\

iv(htmlId\=main)/div(htmlId\=page)=page_admin_nodes_recently-added
document(path\=admin/staff/external-academic-services/taxonomy)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(ht\

mlId\=main-wrapper)/div(htmlId\=main)/div(htmlId\=page)=page_admin_staff_external-academic-services_taxonomy
document(path\=admin/taxonomy/list)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_admin_taxonomy_list
document(path\=admin/taxonomy/term/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/\

div(htmlId\=main)/div(htmlId\=page)=page_admin_taxonomy_term_details
document(path\=admin/users/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_admin_users_details
document(path\=admin/users/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htm\

lId\=main)/div(htmlId\=page)=page_admin_users_overview
document(path\=awards/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=m\

ain)/div(htmlId\=page)=page_awards_details
document(path\=awards/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=\

main)/div(htmlId\=page)=page_awards_overview
document(path\=home/how-to-find-us)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_home_how-to-find-us
document(path\=home/news/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_home_news_details
document(path\=home/news/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlI\

d\=main)/div(htmlId\=page)=page_home_news_overview
document(path\=lectures/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\\

=main)/div(htmlId\=page)=page_lectures_details
document(path\=lectures/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

B. Extension of GUI Models for Websites With DOM Ids 218

\=main)/div(htmlId\=page)=page_lectures_overview
document(path\=other/certified-tester)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(h\

tmlId\=main)/div(htmlId\=page)=page_other_certified-tester
document(path\=other/emc-academic-alliance)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/\

div(htmlId\=main)/div(htmlId\=page)=page_other_emc-academic-alliance
document(path\=other/imprint)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=ma\

in)/div(htmlId\=page)=page_other_imprint
document(path\=publications/all/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/di\

v(htmlId\=main)/div(htmlId\=page)=page_publications_all_overview
document(path\=publications/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htm\

lId\=main)/div(htmlId\=page)=page_publications_details
document(path\=publications/recent/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)\

/div(htmlId\=main)/div(htmlId\=page)=page_publications_recent_overview
document(path\=research/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_research_overview
document(path\=research/project-details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div\

(htmlId\=main)/div(htmlId\=page)=page_research_project-details
document(path\=search-results)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=m\

ain)/div(htmlId\=page)=page_search-results
document(path\=staff/current/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(h\

tmlId\=main)/div(htmlId\=page)=page_staff_current_overview
document(path\=staff/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=ma\

in)/div(htmlId\=page)=page_staff_details
document(path\=staff/external-academic-services/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=m\

ain-wrapper)/div(htmlId\=main)/div(htmlId\=page)=page_staff_external-academic-services_details
document(path\=staff/former/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(ht\

mlId\=main)/div(htmlId\=page)=page_staff_former_overview
document(path\=staff/internal-academic-services/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=m\

ain-wrapper)/div(htmlId\=main)/div(htmlId\=page)=page_staff_internal-academic-services_details
document(path\=staff/jobs/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlI\

d\=main)/div(htmlId\=page)=page_staff_jobs_details
document(path\=staff/jobs/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_staff_jobs_overview
document(path\=teaching/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_teaching_overview
document(path\=teaching/writing-and-presenting)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapp\

er)/div(htmlId\=main)/div(htmlId\=page)=page_teaching_writing-and-presenting
document(path\=user/login)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=main)\

/div(htmlId\=page)=page_user_login
document(path\=user/logout)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=main\

)/div(htmlId\=page)=page_user_logout
document(path\=user/password)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=ma\

in)/div(htmlId\=page)=page_user_password
document(path\=user/password-reset)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_user_password-reset

##################### Overall
body
div(htmlId\=logo)/a(htmlId\=logo_home)/img=logo_img
body[0]/div(htmlId\=skip-link)/a=skip_link

##################### Start page
div(htmlId\=page)/div/ul[0]/li[0]/a[0]=admin_view
div(htmlId\=page)/div/ul[0]/li[1]/a[0]=admin_edit
div(htmlId\=page)/div/ul[0]/li[2]/a[0]=admin_log

div(htmlId\=node-startpage)/div[0]/div[0]/div[0]/div[0]/div[0]/a[0]=start_staff_link
div(htmlId\=node-startpage)/div[0]/div[0]/div[0]/div[0]/div[1]/a[0]=start_mail

div(htmlId\=node-startpage)/div[0]/div[1]/div[0]/div=CLEAR_INDEX
div(htmlId\=node-startpage)/div[0]/div[1]/div[0]/div/div[0]/span[0]/a[0]=start_newslink

##################### Menu
div(htmlId\=navigation)/ul[0]/li[0]/a=menu_home
div(htmlId\=navigation)/ul[0]/li[0]/ul[0]/li[0]/a=menu_how-to-find-us

div(htmlId\=navigation)/ul[0]/li[1]/a=menu_staff
div(htmlId\=navigation)/ul[0]/li[1]/ul[0]/li[0]/a=menu_staff_current
div(htmlId\=navigation)/ul[0]/li[1]/ul[0]/li[1]/a=menu_staff_jobs
div(htmlId\=navigation)/ul[0]/li[1]/ul[0]/li[2]/a=menu_staff_former

div(htmlId\=navigation)/ul[0]/li[2]/a=menu_research

div(htmlId\=navigation)/ul[0]/li[3]/a=menu_publications
div(htmlId\=navigation)/ul[0]/li[3]/ul[0]/li[0]/a=menu_publications_all
div(htmlId\=navigation)/ul[0]/li[3]/ul[0]/li[1]/a=menu_publications_recent

div(htmlId\=navigation)/ul[0]/li[4]/a=menu_awards

219 B.2. Parsing Configuration for Case Study 2

div(htmlId\=navigation)/ul[0]/li[5]/a=menu_teaching
div(htmlId\=navigation)/ul[0]/li[5]/ul[0]/li[0]/a=menu_teaching_lectures
div(htmlId\=navigation)/ul[0]/li[5]/ul[0]/li[1]/a=menu_teaching_writing-and-presenting

##################### Toolbar
ul(htmlId\=toolbar-home)/li[0]/a[0]=toolbar_home
ul(htmlId\=toolbar-user)/li[0]/a[0]=toolbar_userlink
ul(htmlId\=toolbar-user)/li[1]/a[0]=toolbar_logout
div(htmlId\=toolbar)/div[0]/a[0]=hidden_link
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[0]/a[0]=toolbar_add-content
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[1]/a[0]=toolbar_find-content
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[2]/a[0]=toolbar_install-module
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[3]/a[0]=toolbar_taxonomy
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[4]/a[0]=toolbar_feeds
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[5]/a[0]=toolbar_content-types

##################### Other common stuff
div(htmlId\=closure)/div(htmlId\=info)/ul(htmlId\=navlist2)/li[0]/a[0]=closure_imprint
div(htmlId\=closure)/div(htmlId\=info)/ul(htmlId\=navlist2)/li[1]/a[0]=closure_login

div(htmlId\=branding)/div(htmlId\=logo)/a=logo_home
div(htmlId\=branding)/div(htmlId\=name-and-slogan)/div(htmlId\=site-name)/a=slogan_home
div(htmlId\=branding)/div(htmlId\=name-and-slogan)/div(htmlId\=site-slogan)/a[0]=link_ifi
div(htmlId\=branding)/div(htmlId\=name-and-slogan)/div(htmlId\=site-slogan)/a[1]=link_unigoe
div(htmlId\=logo-title)/a=logo_home
div(htmlId\=name-and-slogan)/h1(htmlId\=site-name)/a=slogan_home

##################### Sidebars
div(htmlId\=block-facetapi-dii7dzt2w202fmxdxuz3k6zkhahv17pd)=block-facetapi
div(htmlId\=block-facetapi-ba870gqlmgxg3kakttxrq2y1paet88yj)=block-facetapi
div(htmlId\=block-facetapi-8fztyvn1a9ayhbbsvwslsqun2oz84k0z)=block-facetapi
div(htmlId\=block-facetapi-jsbyxjgad7ybezm3vzrmtaitmhzm21ru)=block-facetapi
div(htmlId\=block-facetapi-08o0hn2r9xl8lxj01sb93yxggnz6cv5i)=block-facetapi
div(htmlId\=block-facetapi)/div=CLEAR_INDEX
div(htmlId\=block-facetapi)/div/div[0]/a[0]=filter_showmore_link
div(htmlId\=block-facetapi)/a=block-facetapi_configure_link
div(htmlId\=block-facetapi)/div/a=block-facetapi_configure_link
div(htmlId\=block-facetapi)/div/ul/li[0]/a=block-facetapi_configure_display
div(htmlId\=block-facetapi)/div/ul/li[1]/a=block-facetapi_configure_dependencies
div(htmlId\=block-facetapi)/div/ul/li[2]/a=block-facetapi_configure_filters
div(htmlId\=block-facetapi)/div/ul/li[3]/a=block-facetapi_configure_block

div(htmlId\=block-current-search-standard)/div=CLEAR_INDEX
div(htmlId\=block-current-search-standard)/div/a=block-current-search_configure_link
div(htmlId\=block-current-search-standard)/div/ul/li[0]/a=block-current-search_configure_items
div(htmlId\=block-current-search-standard)/div/ul/li[1]/a=block-current-search_configure_block

div(htmlId\=block-views-projects-block-2)=block_ongoing_projects
div(htmlId\=block_ongoing_projects)/h2/a=block_project_header
div(htmlId\=block_ongoing_projects)/div[0]=block_project_list
div(htmlId\=block_ongoing_projects)/div[1]=block_project_list
div(htmlId\=block-views-projects-block-1)=block_past_projects
div(htmlId\=block_past_projects)/h2/a=block_project_header
div(htmlId\=block_past_projects)/div[0]=block_project_list
div(htmlId\=block_past_projects)/div[1]=block_project_list

div(htmlId\=block_project_list)/a=block_admin_link
div(htmlId\=block_project_list)/ul[0]/li[0]/a=block_admin_edit-view_link
div(htmlId\=block_project_list)/ul[0]/li[1]/a=block_admin_configure-view_link
div(htmlId\=block_project_list)/div[0]/div[0]/div[0]/ul[0]/li=CLEAR_INDEX
div(htmlId\=block_project_list)/div[0]/div[0]/div[0]/ul[0]/li/div[0]/span[0]/a[0]=project_link

##################### Login page
div(htmlId\=page_user_login)/div=CLEAR_INDEX
div(htmlId\=page_user_login)/div/ul/li[0]/a=login_edit-submit_or_view-link
div(htmlId\=page_user_login)/div/ul/li[1]/a=login_request-new-password_or_edit
div(htmlId\=page_user_login)/div/ul/li[2]/a=login_shortcuts

##################### Root page
div(htmlId\=page_root)/div=CLEAR_INDEX

##################### News details page
div(htmlId\=page_home_news_details)/div=CLEAR_INDEX
div(htmlId\=page_home_news_details)/div/div=node-news-details

##################### News overview page

B. Extension of GUI Models for Websites With DOM Ids 220

div(htmlId\=page_home_news_overview)/div[1]/div[0]/div[0]/div=CLEAR_INDEX
div(htmlId\=page_home_news_details)/div[1]/div[0]/div/div=node-news-list-entry

##################### Lectures details page
div(htmlId\=page_lectures_details)/div=CLEAR_INDEX
div(htmlId\=page_lectures_details)/div/div=node-lectures-details

##################### External Academic Service details page
div(htmlId\=page_staff_external-academic-services_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_external-academic-services_details)/div/div=node-external-academic-services-details
div(htmlId\=page_staff_external-academic-services_details)/div/ul/li=CLEAR_INDEX

##################### External Academic Service details page
div(htmlId\=page_admin_staff_external-academic-services_taxonomy)/div[1]/div=node-external-academic-services-details

##################### Staff details page
div(htmlId\=page_staff_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_details)/div/div=node-staff-details

##################### Publications details page
div(htmlId\=page_publications_details)/div=CLEAR_INDEX
div(htmlId\=page_publications_details)/div/div=node-publication-details

##################### Awards page
div(htmlId\=page_awards_overview)/div[1]/div[0]/div[0]/div[0]/ul[0]/li=award-description

##################### Search results page
div(htmlId\=page_search_results)/div=CLEAR_INDEX
div(htmlId\=page_search_results)/div/ol[0]/li=search-result

##################### Staff list
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr=CLEAR_INDEX
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td=CLEAR_INDEX
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[0]/div[0]/a[0]=stafflist_imglink
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[0]/div[0]/a[0]/img=stafflist_img
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[1]/span[0]/a[0]=stafflist_namelink
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[3]/div[0]/span=stafflist_telno
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[3]/div[0]/span/span=
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[3]/div[0]/span/span/span=
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[4]/div[0]/a[0]=stafflist_email
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[4]/div[0]/p[0]/a[0]=stafflist_email

##################### Jobs details page
div(htmlId\=page_staff_jobs_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_jobs_details)/div/div=node-jobs-details

##################### Jobs overview page
div(htmlId\=page_staff_jobs_overview)/div[1]/div[0]/div[0]/div=CLEAR_INDEX

##################### Teaching list
div(htmlId\=page_teaching_overview)/div[1]=node-teaching-overview
div(htmlId\=page_teaching_overview)/div[2]=node-teaching-overview
div(htmlId\=page_teaching_overview)/div[3]=node-teaching-overview
div(htmlId\=node-teaching-overview)/div[0]/div[0]/div=course-entry
div(htmlId\=course-entry)/div[0]/h4/a=course-link
div(htmlId\=course-entry)/div[1]/span/a=course-staff-link
div(htmlId\=node-teaching-overview)/div[0]/div[1]/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-teaching-overview)/div[0]/div[1]/ul[0]/li/a=pager-link

ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-semester)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-semester)/li/a=teachlist_term_filter
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-staff)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-staff)/li/a=teachlist_staff_filter

##################### Publication list
div(htmlId\=page_publications_all_overview)/div=CLEAR_INDEX
div(htmlId\=page_publications_all_overview)/div/div=node-publication-overview
div(htmlId\=page_publications_all_overview)/div/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-publication-overview)/div[1]/div=publication-type-group
div(htmlId\=node-publication-overview)/div[2]/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-publication-overview)/div[2]/ul[0]/li/a=pager-link

div(htmlId\=publication-type-group)/div=publication-entry
div(htmlId\=publication-type-group)/ul/li=CLEAR_INDEX
div(htmlId\=publication-entry)/ul[0]/li=CLEAR_INDEX
div(htmlId\=publication-entry)/ul[0]/li/div[0]/a=author-link
div(htmlId\=publication-entry)/ul[0]/li/span[0]/em/a=publication-link
div(htmlId\=publication-entry)/ul[0]/li/span[1]/span[0]/a=publication-medium-link

221 B.2. Parsing Configuration for Case Study 2

div(htmlId\=page_publications_recent_overview)/div[1]/div[0]/div[0]/div=publication-entry

ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-year)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-year)/li/a=publist_year_filter
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-author)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-author)/li/a=publist_author_filter
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-doc-type)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-doc-type)/li/a=publist_doc-type_filter

##################### Staff details
div(htmlId\=node-staff-details)/div[1]/div[0]/div[0]/div[0]/img=staff_image

div(htmlId\=node-staff-details)/div[2]/div=CLEAR_INDEX
div(htmlId\=node-staff-details)/div[2]/div/div[0]/div[0]/div/div[0]/p[0]/a[0]=staff_email
div(htmlId\=node-staff-details)/div[2]/div/div[0]/div[0]/div/div[0]/a[0]=staff_telno

div(htmlId\=node-staff-details)/div[3]/div[0]/div[0]/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-staff-details)/div[3]/div[0]/div[0]/ul[0]/li/a=staff_verticaltab_selection

fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/a=publist_admin_link
fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/ul[0]/li/a=publist_navigation_link

fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/div=CLEAR_INDEX,publist_publication_type_group

fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[0]/a=teachlist_admin_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[0]/ul[0]/li[0]/a=teachlist_admin_edit-view_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/div/div[0]/h4[0]/a=teachlist_teaching_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/div/div[1]/span[0]/a=CLEAR_INDEX,teachlist_staff_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[2]/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[2]/ul[0]/li/a=teachlist_teaching_link

fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[0]/div/div[0]/h4[0]/a=teachlist_teaching_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[0]/div/div[1]/span[0]/a=CLEAR_INDEX,teachlist_staff_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/ul[0]/li/a=teachlist_teaching_link

fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div/div/ul/li=CLEAR_INDEX

fieldset(htmlId\=node_staff_full_group_staff_awards)/div[0]/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_awards)/div[0]/div[0]/div/div[0]/ul/li=CLEAR_INDEX

fieldset(htmlId\=node_staff_full_group_staff_projects)/div[0]/div[0]=ongoing_projects
div(htmlId\=ongoing_projects)/div[0]=project_list
div(htmlId\=ongoing_projects)/div[1]=project_list
fieldset(htmlId\=node_staff_full_group_staff_projects)/div[0]/div[1]=past_projects
div(htmlId\=past_projects)/div[0]=project_list
div(htmlId\=past_projects)/div[1]=project_list

div(htmlId\=project_list)/a=project_list_admin_link
div(htmlId\=project_list)/ul[0]/li[0]/a=project_list_admin_edit-view_link
div(htmlId\=project_list)/div=CLEAR_INDEX
div(htmlId\=project_list)/div/div[0]/h4/a=project_link

##################### Research overview page
div(htmlId\=page_research_overview)/div[1]=node-research-overview
div(htmlId\=page_research_overview)/div[2]=node-research-overview

##################### Research details
div(htmlId\=page_research_project-details)/div=CLEAR_INDEX
div(htmlId\=page_research_project-details)/div/div=node-project-details
div(htmlId\=page_research_project-details)/div/ul/li=CLEAR_INDEX,project_related_publication

div(htmlId\=node-project-details)/div[0]/div/div[0]/a[0]=admin_link
div(htmlId\=node-project-details)/div[0]/div/div[0]/ul[0]/li[0]/a[0]=admin_edit-view_link

div(htmlId\=node-project-details)/div[0]/div[0]/div/div[0]/div[0]/span[0]/a=CLEAR_INDEX,research_staff_link
div(htmlId\=node-project-details)/div[0]/div/div[1]/div[0]/a=research_details_link
div(htmlId\=node-project-details)/div[0]/div[4]=node_project_details_publications
div(htmlId\=node-project-details)/div[0]/div[5]=node_project_details_publications

B. Extension of GUI Models for Websites With DOM Ids 222

div(htmlId\=node-project-details)/div[0]/div[6]=node_project_details_publications
div(htmlId\=node-project-details)/div[0]/div[7]=node_project_details_publications
div(htmlId\=node_project_details_publications)/div[0]/div[0]/div[0]/div[0]/div[0]/ul[0]/li/a=research_project_link
div(htmlId\=node_project_details_publications)/div[0]/div[0]=publist_publication_type_group
div(htmlId\=node_project_details_publications)/div[0]/div[1]=publist_publication_type_group

div(htmlId\=node_project_full_group_project_details)/div[0]/div[1]=CLEAR_INDEX
div(htmlId\=node_project_full_group_project_details)/div[3]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[4]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[5]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[6]=node_project_details_list
div(htmlId\=node_project_details_list)/div[0]=node_project_details_list2
div(htmlId\=node_project_details_list)/div[1]=node_project_details_list2
div(htmlId\=node_project_details_list2)/div[0]/ul/li=CLEAR_INDEX

##################### Teaching details
div(htmlId\=node-lectures-details)/div[0]/div[0]=lecture-details-staff
div(htmlId\=lecture-details-staff)/div=CLEAR_INDEX
div(htmlId\=lecture-details-staff)/div/div[0]/div[0]/span[0]/a=CLEAR_INDEX,teaching_staff_link

div(htmlId\=node-lectures-details)/div[0]/div[1]=lecture-details-description
div(htmlId\=node-lectures-details)/div[0]/div[2]=lecture-details-description

div(htmlId\=node-lectures-details)/div[0]/div[3]=lecture-details-files
div(htmlId\=node-lectures-details)/div[0]/div(htmlId\=node_lecture_full_group_lecture_files)=lecture-details-files
div(htmlId\=lecture-details-files)/div=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/ol[0]/li=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/ol[0]/li/span[0]/a[0]=lecture-details-file-link
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/div[0]/ol[0]/li=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/div[0]/ol[0]/li/span[0]/a[0]=lecture-details-file-link

##################### Publication details
div(htmlId\=node-publication-details)/div[0]/div[0]/div[0]/div[0]/div[0]/span[0]/a=CLEAR_INDEX,publication_author_link
div(htmlId\=node-publication-details)/div[0]/div[0]/div[1]/div[0]/div[0]/span[0]/a=CLEAR_INDEX,publication_author_link
div(htmlId\=node-publication-details)/div[0]/div[4]/div[0]/div[0]/ul[0]/li[0]/span/span[0]/a=publication_details_link
div(htmlId\=node-publication-details)/div[0]/div[6]/div[1]/div[0]/span[0]/a[0]=publication_file_link
div(htmlId\=node-publication-details)/div[0]/div[6]/h2[0]/span[0]/a[0]=publication_bibtex_link
div(htmlId\=node-publication-details)/div[0]/div[6]/div[0]/div[0]/div[0]/div[0]/pre[0]/a=publication_bibtex_details_link
div(htmlId\=node-publication-details)/div[0]/div[7]/h2[0]/span[0]/a[0]=publication_bibtex_link
div(htmlId\=node-publication-details)/div[0]/div[7]/div[0]/div[0]/div[0]/div[0]/pre[0]/a=publication_bibtex_details_link
div(htmlId\=node-publication-details)/div[2]/ul/li=CLEAR_INDEX
div(htmlId\=node-publication-details)/div[2]/ul/li/a=publication_author_link

div(htmlId\=node_publication_full_group_publication_further_infos)/div[4]/div=

##################### Common replacements
div(htmlId\=publist_publication_type_group)/ul[0]/li=CLEAR_INDEX
div(htmlId\=publist_publication_type_group)/ul[0]/li/a=publist_navigation_link
div(htmlId\=publist_publication_type_group)/ul[0]/li/span=CLEAR_INDEX
div(htmlId\=publist_publication_type_group)/ul[0]/li/span/span=CLEAR_INDEX
div(htmlId\=publist_publication_type_group)/ul[0]/li/span/span/a=publist_author_link

##################### Other pages
div(htmlId\=page_admin_nodes_recently-added)/div[1]/div=
div(htmlId\=page_staff_former_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr=CLEAR_INDEX
div(htmlId\=page_staff_former_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td=CLEAR_INDEX

B.2.2. Parsing Configuration for the New Website Version
##################### Mapping of document paths
document(path\=/awards$)=awards/overview
document(path\=/awards/index.php$)=awards/overview
document(path\=/awards/###############)=awards/details
document(path\=/certified-tester)=other/certified-tester
document(path\=/emc-academic-alliance)=other/emc-academic-alliance
document(path\=/external-academic-services/######)=staff/external-academic-services/details
document(path\=/external-academic-services-taxonomy/######)=admin/staff/external-academic-services/taxonomy
document(path\=/filter/tips)=admin/help/filter/tips
document(path\=/former-staff)=staff/former/overview

223 B.2. Parsing Configuration for Case Study 2

document(path\=/help/facetapi_bonus/README.txt)=admin/help/facetapi_bonus
document(path\=/how-to-find-us)=home/how-to-find-us
document(path\=/import)=admin/import
document(path\=/imprint)=other/imprint
document(path\=^/index.php$)=/
document(path\=/ingo-tributh)=CLEAR_QUERY,staff/details
document(path\=/internal-academic-services/######)=staff/internal-academic-services/details
document(path\=/jobs$)=staff/jobs/overview
document(path\=/jobs/index.php$)=staff/jobs/overview
document(path\=/jobss$)=staff/jobs/overview
document(path\=/jobss/$)=staff/jobs/overview
document(path\=/jobss/######)=staff/jobs/details
document(path\=/lectures$)=lectures/overview
document(path\=/lectures/$)=lectures/overview
document(path\=/lectures/######)=CLEAR_QUERY,lectures/details
document(path\=/news$)=CLEAR_QUERY,home/news/overview
document(path\=/news/$)=CLEAR_QUERY,home/news/overview
document(path\=/news/######)=CLEAR_QUERY,home/news/details
document(path\=/news/index.php$)=CLEAR_QUERY,home/news/overview
document(path\=/node/$)=admin/nodes/recently-added
document(path\=/node/####$)=publications/details
document(path\=/our-research$)=research/overview
document(path\=/publications$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/######)=CLEAR_QUERY,publications/details
document(path\=/publications-recent$)=CLEAR_QUERY,publications/recent/overview

document(path\=/publications/A-98-04/Report-A-98-04.ps.gz$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/BZ_DV_IS_HN_JG/main.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/BZ_HN_JG_DE_PB/trex.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/EE/Masterarbeit_SRE_Eduard_Enriquez_28072008-1.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ER_IS_JG/SAM2000RudolphEtAll.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ER_JG_PG/SDL99-Harmonization.ps.gz$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/EW_JG_ST_BZ/WSTestFramework_main.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/FBT98/FBT98.ps.gz$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/HN_BZ_JG_PB_DE/stvr_quality_assurance_for_ttcn3_test_specifications.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/HN_BZ/wrt_ecoop2007.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/HN_MB/ttcn3codesmells_testcom2007.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/IS_ZD_JG_AR/TestCom2003_UTP_Final.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/JG_ER/MSC-Survey93.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/JG/Grabowski.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/JK/bmsc_thesis_kemnade.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/MB/bisanz_mastersthesis.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/PB_ZD_JG_ME_GK_IS_PG/U2TP-CONQUEST-2004.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ST/WebServiceTestFrameworkWithTTCN-3.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/TR_AA_JM_FV/rings-gb74.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/TR_HN_JG/rings-testingGridApplication.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ZD_JG_HN_HP/jzus.pdf$)=CLEAR_QUERY,publications/all/overview
document(path\=/publications/ZD_JG_HN_HP/testcom2004_from_design_to_test_with_uml.pdf$)=CLEAR_QUERY,publications/all/overview

document(path\=/research$)=CLEAR_QUERY,research/overview
document(path\=/research/######)=research/project-details
document(path\=/search/node/)=search-results
document(path\=/semester/ws2014)=admin/taxonomy/list

document(path\=^/staff$)=CLEAR_QUERY,staff/current/overview
document(path\=^/staff/$)=CLEAR_QUERY,staff/current/overview
document(path\=^/staff/index.php$)=CLEAR_QUERY,staff/current/overview
document(path\=^/staff/#######)=CLEAR_QUERY,staff/details
document(path\=^/staff/single_staff/index.php)=CLEAR_QUERY,staff/current/overview

document(path\=/start$)=/
document(path\=/taxonomy/term/#)=admin/taxonomy/term/details
document(path\=/teaching$)=CLEAR_QUERY,teaching/overview
document(path\=/teaching-all$)=CLEAR_QUERY,teaching/overview
document(path\=/teaching/writing-and-presenting$)=teaching/writing-and-presenting
document(path\=/teaching/writing-and-presentings)=CLEAR_QUERY,teaching/overview
document(path\=/user$)=CLEAR_QUERY,user/login
document(path\=/user/login$)=CLEAR_QUERY,user/login
document(path\=/user/logout$)=CLEAR_QUERY,user/logout
document(path\=/user/password$)=CLEAR_QUERY,user/password
document(path\=/user/reset/###/##)=user/password-reset
document(path\=/users/$)=admin/users/overview
document(path\=/users/admin$)=admin/users/overview
document(path\=/users/sadhatarao$)=admin/users/details
document(path\=/users/students$)=admin/users/details
document(path\=/users/vhonsel$)=admin/users/details

document(path\=/we-wish-you-all-merry-christmas-and-happy-new-year$)=/

B. Extension of GUI Models for Websites With DOM Ids 224

document(path\=/we-wish-you-merry-christmas-and-happy-new-year$)=/

document(path\=/compscience/accounts/$)=CLEAR_QUERY,invalid-page
document(path\=/compscience/accounts/login/)=CLEAR_QUERY,invalid-page
document(path\=/compscience/application/)=CLEAR_QUERY,invalid-page
document(path\=/edu$)=CLEAR_QUERY,invalid-page
document(path\=/edu/$)=CLEAR_QUERY,invalid-page
document(path\=/edu/eval.php)=CLEAR_QUERY,invalid-page
document(path\=/edu/lv.php)=CLEAR_QUERY,invalid-page
document(path\=/edu/notes/$)=CLEAR_QUERY,invalid-page
document(path\=/edu/notes/index.php)=CLEAR_QUERY,invalid-page
document(path\=/favicon.ico)=CLEAR_QUERY,invalid-page
document(path\=/intranet/bibo/index.php)=CLEAR_QUERY,invalid-page
document(path\=/itis/2015/suse/accounts/login/)=CLEAR_QUERY,invalid-page
document(path\=/itis/2015/suse/application/)=CLEAR_QUERY,invalid-page
document(path\=/itis/accounts/login/)=CLEAR_QUERY,invalid-page
document(path\=/itis/accounts/password/change/)=CLEAR_QUERY,invalid-page
document(path\=/itis/accounts/password/reset/)=CLEAR_QUERY,invalid-page
document(path\=/itis/application/)=CLEAR_QUERY,invalid-page
document(path\=/itis/imprint/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/$)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/41/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/500/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/78/)=CLEAR_QUERY,invalid-page
document(path\=/itis/review/login/)=CLEAR_QUERY,invalid-page
document(path\=/itis/wizard/)=CLEAR_QUERY,invalid-page
document(path\=/lecture$)=CLEAR_QUERY,invalid-page
document(path\=/lectures/exam-ss2014)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ss2014)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ws2003)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ws2013)=CLEAR_QUERY,invalid-page
document(path\=/lectures/ws2014)=CLEAR_QUERY,invalid-page
document(path\=/ectures/software-testing-ws2014)=CLEAR_QUERY,invalid-page
document(path\=^/notes/$)=CLEAR_QUERY,invalid-page
document(path\=/notes/SS2004/Grabowski/I-Einfuehrung-6-auf-1.pdf)=CLEAR_QUERY,invalid-page
document(path\=/notes/SS2007/grabowski/0-Allgemeines-Organisatorisches-6-auf-1.pdf)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2004/$)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2004/neukirchen/$)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2004/neukirchen/case-tools_Noedler.pdf)=CLEAR_QUERY,invalid-page
document(path\=/notes/WS2008/bzeiss/51/07collectiveownership.pdf)=CLEAR_QUERY,invalid-page
document(path\=/pubs/pub_liste/pub_anzeige.php)=CLEAR_QUERY,invalid-page
document(path\=/pubs/single_pub/index.php)=CLEAR_QUERY,invalid-page
document(path\=/research/main_projects/projects/single_projects/index.php)=CLEAR_QUERY,invalid-page
document(path\=/se$)=CLEAR_QUERY,invalid-page
document(path\=/sites/all/themes/samara/styles/custom.css)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/pages/)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/DissertationGrabowski.pdf)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/main1.pdf)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/publications/PhD_wafi.pdf)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/pictures/$)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/pictures/IMG_0466.JPG%3Fitok%3DJSPAGeSr)=CLEAR_QUERY,invalid-page
document(path\=/sites/default/files/styles/thumbnail/public/staff/pictures/verena10_0.JPG%3Fitok%3Dgm4kHYS0)=CLEAR_QUERY,invalid-page
document(path\=/theses/criteria.php)=CLEAR_QUERY,invalid-page
document(path\=/theses/index.php)=CLEAR_QUERY,invalid-page
document(path\=/trac$)=CLEAR_QUERY,invalid-page
document(path\=/trac/wiki/TracIni)=CLEAR_QUERY,invalid-page
document(path\=/ina-schieferdecker)=CLEAR_QUERY,invalid-page
document(path\=/ingo-tributh)=CLEAR_QUERY,invalid-page
document(path\=^/node/)=CLEAR_QUERY,invalid-page
document(path\=/publica%20tions/)=CLEAR_QUERY,invalid-page
document(path\=/semester/ws2014)=CLEAR_QUERY,invalid-page
document(path\=/svn/phd/fglaser)=CLEAR_QUERY,invalid-page
document(path\=/swetrac)=CLEAR_QUERY,invalid-page
document(path\=/swz.png)=CLEAR_QUERY,invalid-page
document(path\=^/system/files/)=CLEAR_QUERY,invalid-page
document(path\=/theses/criteria.php)=CLEAR_QUERY,invalid-page

##################### Mapping major page contents
document(path\=/$)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=main)/div(htm\

lId\=page)=page_root
document(path\=admin/help/facetapi_bonus)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/di\

v(htmlId\=main)/div(htmlId\=page)=page_admin_help_facetapi_bonus
document(path\=admin/help/filter/tips)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(h\

225 B.2. Parsing Configuration for Case Study 2

tmlId\=main)/div(htmlId\=page)=page_admin_help_filter_tips
document(path\=admin/import)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=mai\

n)/div(htmlId\=page)=page_admin_import
document(path\=admin/nodes/recently-added)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/d\

iv(htmlId\=main)/div(htmlId\=page)=page_admin_nodes_recently-added
document(path\=admin/staff/external-academic-services/taxonomy)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(ht\

mlId\=main-wrapper)/div(htmlId\=main)/div(htmlId\=page)=page_admin_staff_external-academic-services_taxonomy
document(path\=admin/taxonomy/list)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_admin_taxonomy_list
document(path\=admin/taxonomy/term/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/\

div(htmlId\=main)/div(htmlId\=page)=page_admin_taxonomy_term_details
document(path\=admin/users/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_admin_users_details
document(path\=admin/users/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htm\

lId\=main)/div(htmlId\=page)=page_admin_users_overview
document(path\=awards/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=m\

ain)/div(htmlId\=page)=page_awards_details
document(path\=awards/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=\

main)/div(htmlId\=page)=page_awards_overview
document(path\=home/how-to-find-us)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_home_how-to-find-us
document(path\=home/news/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_home_news_details
document(path\=home/news/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlI\

d\=main)/div(htmlId\=page)=page_home_news_overview
document(path\=lectures/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\\

=main)/div(htmlId\=page)=page_lectures_details
document(path\=lectures/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_lectures_overview
document(path\=other/certified-tester)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(h\

tmlId\=main)/div(htmlId\=page)=page_other_certified-tester
document(path\=other/emc-academic-alliance)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/\

div(htmlId\=main)/div(htmlId\=page)=page_other_emc-academic-alliance
document(path\=other/imprint)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=ma\

in)/div(htmlId\=page)=page_other_imprint
document(path\=publications/all/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/di\

v(htmlId\=main)/div(htmlId\=page)=page_publications_all_overview
document(path\=publications/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htm\

lId\=main)/div(htmlId\=page)=page_publications_details
document(path\=publications/recent/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)\

/div(htmlId\=main)/div(htmlId\=page)=page_publications_recent_overview
document(path\=research/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_research_overview
document(path\=research/project-details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div\

(htmlId\=main)/div(htmlId\=page)=page_research_project-details
document(path\=search-results)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=m\

ain)/div(htmlId\=page)=page_search-results
document(path\=staff/current/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(h\

tmlId\=main)/div(htmlId\=page)=page_staff_current_overview
document(path\=staff/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=ma\

in)/div(htmlId\=page)=page_staff_details
document(path\=staff/external-academic-services/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=m\

ain-wrapper)/div(htmlId\=main)/div(htmlId\=page)=page_staff_external-academic-services_details
document(path\=staff/former/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(ht\

mlId\=main)/div(htmlId\=page)=page_staff_former_overview
document(path\=staff/internal-academic-services/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=m\

ain-wrapper)/div(htmlId\=main)/div(htmlId\=page)=page_staff_internal-academic-services_details
document(path\=staff/jobs/details)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlI\

d\=main)/div(htmlId\=page)=page_staff_jobs_details
document(path\=staff/jobs/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_staff_jobs_overview
document(path\=teaching/overview)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\

\=main)/div(htmlId\=page)=page_teaching_overview
document(path\=teaching/writing-and-presenting)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapp\

er)/div(htmlId\=main)/div(htmlId\=page)=page_teaching_writing-and-presenting
document(path\=user/login)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=main)\

/div(htmlId\=page)=page_user_login
document(path\=user/logout)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=main\

)/div(htmlId\=page)=page_user_logout
document(path\=user/password$)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(htmlId\=m\

ain)/div(htmlId\=page)=page_user_password
document(path\=user/password-reset)/html/body/div(htmlId\=main-columns-wrapper)/div(htmlId\=main-columns)/div(htmlId\=main-wrapper)/div(html\

Id\=main)/div(htmlId\=page)=page_user_password-reset

##################### Overall
body
div(htmlId\=logo)/a(htmlId\=logo_home)/img=logo_img
body[0]/div(htmlId\=skip-link)/a=skip_link

B. Extension of GUI Models for Websites With DOM Ids 226

##################### Start page
div(htmlId\=page)/div/ul[0]/li[0]/a[0]=admin_view
div(htmlId\=page)/div/ul[0]/li[1]/a[0]=admin_edit
div(htmlId\=page)/div/ul[0]/li[2]/a[0]=admin_log

div(htmlId\=node-startpage)/div[0]/div[0]/div[0]/div[0]/div[0]/a[0]=start_staff_link
div(htmlId\=node-startpage)/div[0]/div[0]/div[0]/div[0]/div[1]/a[0]=start_mail

div(htmlId\=node-startpage)/div[0]/div[1]/div[0]/div=CLEAR_INDEX
div(htmlId\=node-startpage)/div[0]/div[1]/div[0]/div/div[0]/span[0]/a[0]=start_newslink

##################### Menu
div(htmlId\=navigation)/ul[0]/li[0]/a=menu_home
div(htmlId\=navigation)/ul[0]/li[0]/ul[0]/li[0]/a=menu_how-to-find-us

div(htmlId\=navigation)/ul[0]/li[1]/a=menu_staff
div(htmlId\=navigation)/ul[0]/li[1]/ul[0]/li[0]/a=menu_staff_current
div(htmlId\=navigation)/ul[0]/li[1]/ul[0]/li[1]/a=menu_staff_jobs
div(htmlId\=navigation)/ul[0]/li[1]/ul[0]/li[2]/a=menu_staff_former

div(htmlId\=navigation)/ul[0]/li[2]/a=menu_research

div(htmlId\=navigation)/ul[0]/li[3]/a=menu_publications
div(htmlId\=navigation)/ul[0]/li[3]/ul[0]/li[0]/a=menu_publications_all
div(htmlId\=navigation)/ul[0]/li[3]/ul[0]/li[1]/a=menu_publications_recent

div(htmlId\=navigation)/ul[0]/li[4]/a=menu_awards

div(htmlId\=navigation)/ul[0]/li[5]/a=menu_teaching
div(htmlId\=navigation)/ul[0]/li[5]/ul[0]/li[0]/a=menu_teaching_lectures
div(htmlId\=navigation)/ul[0]/li[5]/ul[0]/li[1]/a=menu_teaching_writing-and-presenting

##################### Toolbar
ul(htmlId\=toolbar-home)/li[0]/a[0]=toolbar_home
ul(htmlId\=toolbar-user)/li[0]/a[0]=toolbar_userlink
ul(htmlId\=toolbar-user)/li[1]/a[0]=toolbar_logout
div(htmlId\=toolbar)/div[0]/a[0]=hidden_link
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[0]/a[0]=toolbar_add-content
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[1]/a[0]=toolbar_find-content
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[2]/a[0]=toolbar_install-module
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[3]/a[0]=toolbar_taxonomy
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[4]/a[0]=toolbar_feeds
div(htmlId\=toolbar)/div[1]/div[0]/ul[0]/li[5]/a[0]=toolbar_content-types

##################### Other common stuff
div(htmlId\=closure)/div(htmlId\=info)/ul(htmlId\=navlist2)/li[0]/a[0]=closure_imprint
div(htmlId\=closure)/div(htmlId\=info)/ul(htmlId\=navlist2)/li[1]/a[0]=closure_login

div(htmlId\=branding)/div(htmlId\=logo)/a=logo_home
div(htmlId\=branding)/div(htmlId\=name-and-slogan)/div(htmlId\=site-name)/a=slogan_home
div(htmlId\=branding)/div(htmlId\=name-and-slogan)/div(htmlId\=site-slogan)/a[0]=link_ifi
div(htmlId\=branding)/div(htmlId\=name-and-slogan)/div(htmlId\=site-slogan)/a[1]=link_unigoe
div(htmlId\=logo-title)/a=logo_home
div(htmlId\=name-and-slogan)/h1(htmlId\=site-name)/a=slogan_home

##################### Sidebars
div(htmlId\=block-facetapi-dii7dzt2w202fmxdxuz3k6zkhahv17pd)=block-facetapi
div(htmlId\=block-facetapi-ba870gqlmgxg3kakttxrq2y1paet88yj)=block-facetapi
div(htmlId\=block-facetapi-8fztyvn1a9ayhbbsvwslsqun2oz84k0z)=block-facetapi
div(htmlId\=block-facetapi-jsbyxjgad7ybezm3vzrmtaitmhzm21ru)=block-facetapi
div(htmlId\=block-facetapi-08o0hn2r9xl8lxj01sb93yxggnz6cv5i)=block-facetapi
div(htmlId\=block-facetapi-0h5tt9na1lb6gstmitjntvydp9xjr481)=block-facetapi
div(htmlId\=block-facetapi)/div=CLEAR_INDEX
div(htmlId\=block-facetapi)/div/div[0]/a[0]=filter_showmore_link
div(htmlId\=block-facetapi)/a=block-facetapi_configure_link
div(htmlId\=block-facetapi)/div/a=block-facetapi_configure_link
div(htmlId\=block-facetapi)/div/ul/li[0]/a=block-facetapi_configure_display
div(htmlId\=block-facetapi)/div/ul/li[1]/a=block-facetapi_configure_dependencies
div(htmlId\=block-facetapi)/div/ul/li[2]/a=block-facetapi_configure_filters
div(htmlId\=block-facetapi)/div/ul/li[3]/a=block-facetapi_configure_block

div(htmlId\=block-current-search-standard)/div=CLEAR_INDEX
div(htmlId\=block-current-search-standard)/div/a=block-current-search_configure_link
div(htmlId\=block-current-search-standard)/div/ul/li[0]/a=block-current-search_configure_items
div(htmlId\=block-current-search-standard)/div/ul/li[1]/a=block-current-search_configure_block

227 B.2. Parsing Configuration for Case Study 2

div(htmlId\=block-views-projects-block-2)=block_ongoing_projects
div(htmlId\=block_ongoing_projects)/h2/a=block_project_header
div(htmlId\=block_ongoing_projects)/div[0]=block_project_list
div(htmlId\=block_ongoing_projects)/div[1]=block_project_list
div(htmlId\=block-views-projects-block-1)=block_past_projects
div(htmlId\=block_past_projects)/h2/a=block_project_header
div(htmlId\=block_past_projects)/div[0]=block_project_list
div(htmlId\=block_past_projects)/div[1]=block_project_list

div(htmlId\=block_project_list)/a=block_admin_link
div(htmlId\=block_project_list)/ul[0]/li[0]/a=block_admin_edit-view_link
div(htmlId\=block_project_list)/ul[0]/li[1]/a=block_admin_configure-view_link
div(htmlId\=block_project_list)/div[0]/div[0]/ul[0]/li=CLEAR_INDEX
div(htmlId\=block_project_list)/div[0]/div[0]/ul[0]/li/div[0]/span[0]/a[0]=project_link
div(htmlId\=block_project_list)/div[0]/div[0]/div[0]/ul[0]/li=CLEAR_INDEX
div(htmlId\=block_project_list)/div[0]/div[0]/div[0]/ul[0]/li/div[0]/span[0]/a[0]=project_link

div(htmlId\=block-views-news-block-1)/div=CLEAR_INDEX
div(htmlId\=block-views-news-block-1)/div/a=block_admin_link
div(htmlId\=block-views-news-block-1)/div/ul[0]/li[0]/a=block_admin_edit-view_link
div(htmlId\=block-views-news-block-1)/div/ul[0]/li[1]/a=block_admin_configure-view_link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/ul/li=CLEAR_INDEX,news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/div=CLEAR_INDEX
div(htmlId\=block-views-news-block-1)/div/div[0]/div/div/ul/li=CLEAR_INDEX,news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/div/div[0]/h3/a=news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/div/div[0]/h4/a=news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/div/div[0]/p/a=news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/div/p/a=news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div=CLEAR_INDEX
div(htmlId\=block-views-news-block-1)/div/div[0]/div/a=news-link
div(htmlId\=block-views-news-block-1)/div/div[0]/div/p/a=news-link

div(htmlId\=block-views-teaching-block-1)/div=CLEAR_INDEX
div(htmlId\=block-views-teaching-block-1)/div/a=block_admin_link
div(htmlId\=block-views-teaching-block-1)/div/ul[0]/li[0]/a=block_admin_edit-view_link
div(htmlId\=block-views-teaching-block-1)/div/ul[0]/li[1]/a=block_admin_configure-view_link
div(htmlId\=block-views-teaching-block-1)/div/div[0]/div/ul=CLEAR_INDEX
div(htmlId\=block-views-teaching-block-1)/div/div[0]/div/ul/li=CLEAR_INDEX
div(htmlId\=block-views-teaching-block-1)/div/div[0]/div/ul/li/a=teaching-link
div(htmlId\=block-views-teaching-block-1)/div/div[0]/div=CLEAR_INDEX
div(htmlId\=block-views-teaching-block-1)/div/div[0]/div/a=teaching-link
div(htmlId\=block-views-teaching-block-1)/div/div[0]/div/p/a=teaching-link

##################### Login page
div(htmlId\=page_user_login)/div=CLEAR_INDEX
div(htmlId\=page_user_login)/div/ul/li[0]/a=login_edit-submit_or_view-link
div(htmlId\=page_user_login)/div/ul/li[1]/a=login_request-new-password_or_edit
div(htmlId\=page_user_login)/div/ul/li[2]/a=login_shortcuts

##################### Root page
div(htmlId\=page_root)/div=CLEAR_INDEX

##################### News details page
div(htmlId\=page_home_news_details)/div=CLEAR_INDEX
div(htmlId\=page_home_news_details)/div/div=node-news-details

##################### News overview page
div(htmlId\=page_home_news_overview)/div[1]/div[0]/div/div=node-news-list-entry
div(htmlId\=page_home_news_overview)/div[1]/div[0]/div[1]/ul/li=CLEAR_INDEX
div(htmlId\=page_home_news_overview)/div[1]/div[0]/div[1]/ul/li/a=pager-link

##################### Lectures details page
div(htmlId\=page_lectures_details)/div=CLEAR_INDEX
div(htmlId\=page_lectures_details)/div/div=node-lectures-details

##################### External Academic Service details page
div(htmlId\=page_staff_external-academic-services_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_external-academic-services_details)/div/div=node-external-academic-services-details
div(htmlId\=page_staff_external-academic-services_details)/div/ul/li=CLEAR_INDEX

##################### External Academic Service details page
div(htmlId\=page_admin_staff_external-academic-services_taxonomy)/div[1]/div=node-external-academic-services-details

##################### Internal Academic Service details page
div(htmlId\=page_staff_internal-academic-services_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_internal-academic-services_details)/div/div=node-internal-academic-services-details
div(htmlId\=page_staff_internal-academic-services_details)/div/ul/li=CLEAR_INDEX

B. Extension of GUI Models for Websites With DOM Ids 228

##################### Internal Academic Service details page
div(htmlId\=page_admin_staff_internal-academic-services_taxonomy)/div[1]/div=node-internal-academic-services-details

##################### Staff details page
div(htmlId\=page_staff_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_details)/div/div=node-staff-details

##################### Publications details page
div(htmlId\=page_publications_details)/div=CLEAR_INDEX
div(htmlId\=page_publications_details)/div/div=node-publication-details

##################### Awards page
div(htmlId\=page_awards_overview)/div[1]/div[0]/div[0]/div[0]/ul[0]/li=award-description

##################### Search results page
div(htmlId\=page_search-results)/div[1]/ol/li=CLEAR_INDEX
div(htmlId\=page_search-results)/div[1]/ol/li/h3/a=search_result_link

##################### Staff list
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr=CLEAR_INDEX
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td=CLEAR_INDEX
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[0]/div[0]/a[0]=stafflist_imglink
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[0]/div[0]/a[0]/img=stafflist_img
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[1]/span[0]/a[0]=stafflist_namelink
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[3]/div[0]/span=stafflist_telno
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[3]/div[0]/span/span=
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[3]/div[0]/span/span/span=
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[4]/div[0]/a[0]=stafflist_email
div(htmlId\=page_staff_current_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td/div[4]/div[0]/p[0]/a[0]=stafflist_email

##################### Jobs details page
div(htmlId\=page_staff_jobs_details)/div=CLEAR_INDEX
div(htmlId\=page_staff_jobs_details)/div/div=node-jobs-details

##################### Jobs overview page
div(htmlId\=page_staff_jobs_overview)/div[1]/div[0]/div[0]/div=CLEAR_INDEX

##################### Teaching list
div(htmlId\=page_teaching_overview)/div[1]=node-teaching-overview
div(htmlId\=page_teaching_overview)/div[2]=node-teaching-overview
div(htmlId\=page_teaching_overview)/div[3]=node-teaching-overview
div(htmlId\=node-teaching-overview)/div[0]/div[0]/div=course-entry
div(htmlId\=course-entry)/div[0]/h4/a=course-link
div(htmlId\=course-entry)/div[1]/span=CLEAR_INDEX
div(htmlId\=course-entry)/div[1]/span/a=course-staff-link
div(htmlId\=node-teaching-overview)/div[0]/div[1]/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-teaching-overview)/div[0]/div[1]/ul[0]/li/a=pager-link

ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-semester)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-semester)/li/a=teachlist_term_filter
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-staff)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-staff)/li/a=teachlist_staff_filter
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-type)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apilecture-index-block-field-lecture-type)/li/a=teachlist_type_filter

##################### Publication list
div(htmlId\=page_publications_all_overview)/div=CLEAR_INDEX
div(htmlId\=page_publications_all_overview)/div/div=node-publication-overview
div(htmlId\=page_publications_all_overview)/div/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-publication-overview)/div[1]/div=publication-type-group
div(htmlId\=node-publication-overview)/div[2]/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-publication-overview)/div[2]/ul[0]/li/a=pager-link

div(htmlId\=page_publications_recent_overview)/div[1]=publication-list
div(htmlId\=page_publications_recent_overview)/div[3]=publication-list
div(htmlId\=publication-list)/div[0]/div[0]/div=publication-type-group

ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-year)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-year)/li/a=publist_year_filter
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-author)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-author)/li/a=publist_author_filter
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-doc-type)/li=CLEAR_INDEX
ul(htmlId\=facetapi-facet-search-apipublication-index-block-field-pub-doc-type)/li/a=publist_doc-type_filter

##################### Staff details
div(htmlId\=node-staff-details)/div[1]/div[0]/div[0]/div[0]/img=staff_image

div(htmlId\=node-staff-details)/div[2]/div=CLEAR_INDEX

229 B.2. Parsing Configuration for Case Study 2

div(htmlId\=node-staff-details)/div[2]/div/div=CLEAR_INDEX
div(htmlId\=node-staff-details)/div[2]/div/div/div=CLEAR_INDEX
div(htmlId\=node-staff-details)/div[2]/div/div/div/div[0]=staff_academic_degree
div(htmlId\=node-staff-details)/div[2]/div/div/div/div[1]=staff_position
div(htmlId\=node-staff-details)/div[2]/div/div/div/span[0]=staff_email
span(htmlId\=staff_email)/a[0]=staff_email_link
div(htmlId\=node-staff-details)/div[2]/div/div/div/div[2]=staff_phone
div(htmlId\=node-staff-details)/div[2]/div/div/div/div[3]=staff_room
div(htmlId\=node-staff-details)/div[2]/div/div/div/div[4]=staff_officehours

div(htmlId\=node-staff-details)/div[3]/div[0]/div[0]/ul[0]/li=CLEAR_INDEX
div(htmlId\=node-staff-details)/div[3]/div[0]/div[0]/ul[0]/li/a=staff_verticaltab_selection

fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/a=publist_admin_link
fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/ul[0]/li/a=publist_navigation_link

fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_publications)/div[0]/div[0]/div/div=CLEAR_INDEX,publist_publication_type_group

fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/a=teachlist_admin_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/ul[0]/li/a=pager_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/h3=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/div/div[0]/h4[0]/a=teachlist_teaching_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div/div/div[1]/span[0]/a=CLEAR_INDEX,teachlist_staff_link
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_teaching)/div[0]/div[0]/div[1]/ul[0]/li/a=teachlist_teaching_link

fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div/ul[0]/li=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_as)/div[0]/div/div/div/ul/li=CLEAR_INDEX

fieldset(htmlId\=node_staff_full_group_staff_awards)/div[0]/div[0]/div=CLEAR_INDEX
fieldset(htmlId\=node_staff_full_group_staff_awards)/div[0]/div[0]/div/div[0]/ul/li=CLEAR_INDEX

fieldset(htmlId\=node_staff_full_group_staff_projects)/div[0]/div[0]=ongoing_projects
div(htmlId\=ongoing_projects)/div[0]=project_list
div(htmlId\=ongoing_projects)/div[1]=project_list
div(htmlId\=ongoing_projects)/div[2]/ul/li=CLEAR_INDEX
div(htmlId\=ongoing_projects)/div[2]/ul/li/a=pager_link
fieldset(htmlId\=node_staff_full_group_staff_projects)/div[0]/div[1]=past_projects
div(htmlId\=past_projects)/div[0]=project_list
div(htmlId\=past_projects)/div[1]=project_list
div(htmlId\=past_projects)/div[2]/ul/li=CLEAR_INDEX
div(htmlId\=past_projects)/div[2]/ul/li/a=pager_link

div(htmlId\=project_list)/a=project_list_admin_link
div(htmlId\=project_list)/ul[0]/li[0]/a=project_list_admin_edit-view_link
div(htmlId\=project_list)/div=CLEAR_INDEX
div(htmlId\=project_list)/div/div[0]/h4/a=project_link

##################### Research overview page
div(htmlId\=page_research_overview)/div[1]=node-research-overview
div(htmlId\=page_research_overview)/div[2]=node-research-overview
div(htmlId\=page_research_overview)/div[3]=node-research-overview
div(htmlId\=page_research_overview)/div[4]=node-research-overview

##################### Research details
div(htmlId\=page_research_project-details)/div=CLEAR_INDEX
div(htmlId\=page_research_project-details)/div/div=node-project-details
div(htmlId\=page_research_project-details)/div/ul/li=CLEAR_INDEX,project_related_publication

div(htmlId\=node-project-details)/div[0]/div/div[0]/a[0]=admin_link
div(htmlId\=node-project-details)/div[0]/div/div[0]/ul[0]/li[0]/a[0]=admin_edit-view_link

div(htmlId\=node-project-details)/div[0]/div[0]/div/div[0]/div[0]/span[0]/a=CLEAR_INDEX,research_staff_link
div(htmlId\=node-project-details)/div[0]/div/div[1]/div[0]/a=research_details_link
div(htmlId\=node-project-details)/div[0]/div[4]=node_project_details_publications
div(htmlId\=node-project-details)/div[0]/div[5]=node_project_details_publications
div(htmlId\=node-project-details)/div[0]/div[6]=node_project_details_publications
div(htmlId\=node-project-details)/div[0]/div[7]=node_project_details_publications
div(htmlId\=node_project_details_publications)/div[0]/div[0]/div[0]/div[0]/div[0]/ul[0]/li/a=research_project_link
div(htmlId\=node_project_details_publications)/div[0]/div[0]=publist_publication_type_group

B. Extension of GUI Models for Websites With DOM Ids 230

div(htmlId\=node_project_details_publications)/div[0]/div[1]=publist_publication_type_group

div(htmlId\=node_project_full_group_project_details)/div[0]=project_staff
div(htmlId\=node_project_full_group_project_details)/div[1]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[2]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[3]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[4]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[5]=node_project_details_list
div(htmlId\=node_project_full_group_project_details)/div[6]=node_project_details_list
div(htmlId\=project_staff)/div[0]/div[0]/div[0]/span/a=project_staff_link
div(htmlId\=node_project_details_list)/div[0]=node_project_details_list2
div(htmlId\=node_project_details_list)/div[1]=node_project_details_list2
div(htmlId\=node_project_details_list2)/div[0]/ul/li=CLEAR_INDEX,publication-entry
div(htmlId\=node_project_details_list2)/div[0]/div[0]/div[0]/div[0]/ul/li=CLEAR_INDEX
div(htmlId\=node_project_details_list2)/div[0]/div[0]/div[0]/div[0]/ul/li/a=related_project_link

##################### Teaching details
div(htmlId\=node-lectures-details)/div[0]/div[0]=lecture-details-staff
div(htmlId\=lecture-details-staff)/div=CLEAR_INDEX
div(htmlId\=lecture-details-staff)/div/div=CLEAR_INDEX
div(htmlId\=lecture-details-staff)/div/div/div[0]/span[0]/a=CLEAR_INDEX,teaching_staff_link
div(htmlId\=lecture-details-staff)/div/div/a=CLEAR_INDEX,teaching_staff_link
div(htmlId\=lecture-details-staff)/div/div/p/a=CLEAR_INDEX,teaching_staff_link
div(htmlId\=lecture-details-staff)/div/div/ul/li=CLEAR_INDEX
div(htmlId\=lecture-details-staff)/div/div/ul/li/a=teaching_staff_link

div(htmlId\=node-lectures-details)/div[0]/div[1]=lecture-details-description
div(htmlId\=node-lectures-details)/div[0]/div[2]=lecture-details-description

div(htmlId\=node-lectures-details)/div[0]/div[3]=lecture-details-files
div(htmlId\=node-lectures-details)/div[0]/div(htmlId\=node_lecture_full_group_lecture_files)=lecture-details-files
div(htmlId\=lecture-details-files)/div=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/ol[0]/li=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/ol[0]/li/span[0]/a[0]=lecture-details-file-link
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/div[0]/ol[0]/li=CLEAR_INDEX
div(htmlId\=lecture-details-files)/div/div/div/div[0]/div[0]/div[0]/ol[0]/li/span[0]/a[0]=lecture-details-file-link

##################### Publication details
div(htmlId\=node-publication-details)/div[0]/div[0]/div=CLEAR_INDEX
div(htmlId\=node-publication-details)/div[0]/div[0]/div/div[0]/div[0]/span[0]/a=CLEAR_INDEX,publication_author_link
div(htmlId\=node-publication-details)/div[0]/div[4]/div[0]/div[0]/ul[0]/li[0]/span/span[0]/a=publication_details_link
div(htmlId\=node-publication-details)/div[0]/div[6]/div[1]/div[0]/span[0]/a[0]=publication_file_link
div(htmlId\=node-publication-details)/div[0]/div[6]/h2[0]/span[0]/a[0]=publication_bibtex_link
div(htmlId\=node-publication-details)/div[0]/div[6]/div[0]/div[0]/div[0]/div[0]/pre[0]/a=publication_bibtex_details_link
div(htmlId\=node-publication-details)/div[0]/div[7]/h2[0]/span[0]/a[0]=publication_bibtex_link
div(htmlId\=node-publication-details)/div[0]/div[7]/div[0]/div[0]/div[0]/div[0]/pre[0]/a=publication_bibtex_details_link
div(htmlId\=node-publication-details)/div[1]=publication_authors
div(htmlId\=node-publication-details)/div[2]=publication_authors
div(htmlId\=publication_authors)/ul/li=CLEAR_INDEX
div(htmlId\=publication_authors)/ul/li/a=publication_author_link
div(htmlId\=publication_authors)/div=CLEAR_INDEX
div(htmlId\=publication_authors)/div/ul/li=CLEAR_INDEX
div(htmlId\=publication_authors)/div/ul/li/a=publication_author_link
div(htmlId\=publication_authors)/div/ul/li/div/span/a=publication_author_link
div(htmlId\=publication_authors)/div/ul/li/span/em/a=publication_author_link
div(htmlId\=publication_authors)/div/ul/li/span/span/a=publication_author_link

div(htmlId\=node_publication_full_group_publication_further_infos)/div[0]=publication_document_type
div(htmlId\=node_publication_full_group_publication_further_infos)/div[1]=publication_other_info
div(htmlId\=node_publication_full_group_publication_further_infos)/div[2]=publication_other_info
div(htmlId\=node_publication_full_group_publication_further_infos)/div[3]=publication_other_info
div(htmlId\=node_publication_full_group_publication_further_infos)/div[4]=publication_other_info
div(htmlId\=node_publication_full_group_publication_further_infos)/div[5]=publication_other_info

div(htmlId\=publication_other_info)/div=CLEAR_INDEX
div(htmlId\=publication_other_info)/div/div[0]/span[0]/span[0]/div[0]=publication_related_projects
div(htmlId\=publication_other_info)/div/div[0]/div[0]/div[0]/div[0]=publication_related_projects
div(htmlId\=publication_related_projects)/ul/li=CLEAR_INDEX
div(htmlId\=publication_related_projects)/ul/li/a=publication_related_project_link

##################### Common replacements
div(htmlId\=publist_publication_type_group)/ul[0]/li=CLEAR_INDEX,publication-entry
div(htmlId\=publication-type-group)/ul/li=CLEAR_INDEX,publication-entry

231 B.2. Parsing Configuration for Case Study 2

li(htmlId\=publication-entry)/div[0]/span/a=author-link
li(htmlId\=publication-entry)/span[0]/em/a=publication-link
li(htmlId\=publication-entry)/span[1]/span[0]/a=publication-medium-link

div(htmlId\=sidebar-first)=sidebar
div(htmlId\=sidebar-second)=sidebar

##################### Other pages
div(htmlId\=page_admin_nodes_recently-added)/div[1]/div=
div(htmlId\=page_staff_former_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr=CLEAR_INDEX
div(htmlId\=page_staff_former_overview)/div[1]/div[0]/div[0]/table[0]/tbody[0]/tr/td=CLEAR_INDEX

div(htmlId\=page_user_password)/div[1]=user_password_form
div(htmlId\=page_user_password)/div[2]=user_password_form

div(htmlId\=page_other_imprint)/div[1]=CLEAR_INDEX
div(htmlId\=page_other_imprint)/div[2]=CLEAR_INDEX

div(htmlId\=page_awards_details)/div[1]=CLEAR_INDEX
div(htmlId\=page_awards_details)/div[2]=CLEAR_INDEX

div(htmlId\=page_staff_current_overview)/div[1]=current_staff_table
div(htmlId\=page_staff_current_overview)/div[2]=current_staff_table
div(htmlId\=page_staff_current_overview)/div[3]=current_staff_table

C. Optimization for the Generation of Task
Trees

A challenge for the implementation of the sequence detection described in Section 4.4.2 was
the determination of n-grams in task instance lists that occur multiple times. The reason for
this is, that for large amounts of input data, many different n-grams exist. Moreover, these
n-grams may occur at many diverse positions in the task instance lists. To handle this,
we utilized a data structure provided by AutoQUEST, which is called a trie [108]. A trie
is a tree structure from natural language processing, which usually represents n-grams of
character combinations and the number of their occurrences in texts. In our work, we use it
to represent n-grams of task instances. A trie has a root node, which represents the empty
n-gram, i.e., an n-gram with n = 0. The children of the root node are n-grams of length
one, the grandchildren n-grams of length two, the great-grandchildren n-grams of length
three, and so on. The n-gram represented by a node is determined by the path of the node
in the trie starting from the root node. An example of a trie is shown in Figure C.1b. It was
generated for the task instance list in Figure C.1a. The nodes of the trie contain a reference

a

(3)

Trie root

Sequence 1

(3)

Iteration 1

(2)

b

(1)

c

(1)

a Sequence 1 Iteration 1 b

a) Input task instance list:

a Sequence 1 Iteration 1 c d a Sequence 1 d

d

(2)

b) Corresponding trie with depth 3:

a

(1)

a

(1)

Sequence 1

(3)

Iteration 1

(2)

Iteration 1

(2)

b

(1)

b

(1)

c

(1)

d

(1)

d

(1)

d

(1)

b

(1)

c

(1)

a

(1)

d

(1)

Sequence 1

(1)

a

(1)

Sequence 1

(1)

Figure C.1.: Example of a trie (b) generated based on a task instance list (a).

C. Optimization for the Generation of Task Trees 234

to the action or task that is the last element of the represented n-gram. Moreover, the nodes
contain the number of occurrences of the depicted n-gram. For example, the node in the
trie marked with the black arrow (Figure C.1b) represents the n-gram surrounded with the
dotted boxes (Figure C.1a). This n-gram occurs twice.

A trie has a certain depth. The depth defines the maximum length of the n-grams repre-
sented by the trie. The depth of the trie in Figure C.1b is three, as the longest representable
n-gram has a length of three.

For the sequence detection, we directly determine from the try the n-gram of the task
instance list, that has a minimum length of two and occurs most often. For example, the trie
in Figure C.1b shows, that the n-gram {a, Sequence 1} occurs three times and is, therefore,
the single n-gram to be considered for the sequence detection.

When calculating a trie for a task instance list, we only calculate it with a certain depth. If
the longest n-gram that occurs most often is as long as the depth of the trie, then there may
be an even longer n-gram that occurs the same amount of times. In this case, we drop the
trie and create a new one with a larger depth. We repeat the trie creation with larger depths
until the trie is able to identify the longest n-gram that occurs most often. As there may
be several n-grams matching this criterion, the subsequent choosing process will determine,
which of these n-grams need to be handled in the sequence detection.

D. Transformation of Task Models to Other
Standards

As mentioned in Section 3.4, the task trees generated by our approach are one of many
existing variants of task modeling. There are other techniques utilizing tree structures, e.g.,
ConcurTaskTrees [53, 25], that could also be used as format for task trees in our approach.
ConcurTaskTrees are the basis for several usability evaluation methods. For ConcurTask-
Trees, there is a tool called ConcurTaskTrees Environment, which allows for modeling of
task trees as well as their visualization [109]. In addition, the execution of task trees can
be simulated. To support the utilization of our task trees in other usability evaluation ap-
proaches, as well as to be able to utilizes the visualization and simulation capabilities of
the ConcurTaskTrees Environment, we implemented a transformation of our task tree struc-
tures to ConcurTaskTrees. This transformation is described in this subsection. We start
the description by introducing the required concepts of ConcurTaskTrees. Afterwards, we
show how we mapped our task trees to these concepts. Finally, we show an example of a
transformed task tree visualized with the ConcurTaskTrees Environment.

ConcurTaskTrees are task trees with a structure similar to the task trees generated by
our approach. In ConcurTaskTrees, any tree node represents a task. A task can have one
of four different types depending on its semantics. These four types are abstraction task,
interaction task, application task, and user task. Abstraction tasks help to structure a task
tree into logical subparts, which is similar to parent nodes in our approach. Interaction tasks
are actions a user performs on the system, which corresponds to the leaf nodes in our task
trees. Application tasks describe tasks fully executed by the system, and user tasks are fully
executed by the user without interacting with the system. The latter two concepts are not
considered by our task trees.

To define temporal relationships, ConcurTaskTrees utilize operators between the children
of a task. For example, there is an operator called enabling, which defines for two children
c1 and c2, that c2 is enabled by c1. This means that c2 is executed after c1. Furthermore,
there is an operator called choice defining, that only one of two children connected with the
operator can be performed. If a task has more than two children, different operators between
the different children pairs can be used. In addition, ConcurTaskTrees allow to define for a
child if it is repeated multiple times and if it is optional. To map our task tree structures to
ConcurTaskTrees, we applied the following rules:

• Sequences in our task trees become abstract tasks in ConcurTaskTrees, whose chil-
dren are connected using only the enabling operator.

D. Transformation of Task Models to Other Standards 236

• Selections in our task trees become abstract tasks in ConcurTaskTrees, whose chil-
dren are connected using only the choice operator.
• Iterations or optionals in our task trees do not become nodes in ConcurTaskTrees.

Instead their single child is added at the position of the iteration or optional in the
parent task and marked as repeating or optional using the respective notation in Con-
curTaskTrees.
• Actions in our task trees become interaction tasks in ConcurTaskTrees without having

children.

An example of a task tree for a sequence called sequence 2082653 generated by our
approach and visualized by AutoQUEST is shown in Figure D.1a. Sequence 2082653 has
two children, the first being an iteration of a mouse click, the second being a selection of
either an optional text input or a scroll. This visualization is similar to the display of task
trees as introduced in this thesis. The same task tree transformed into the ConcurTaskTree
notation is shown in Figure D.1b. Also here, Sequence 2082653 is the root node and it has
two children. The children are interconnected with the enabling operator >>, which means
that the first child is executed before the second child. The first child is the mouse click,

a) Task tree as generated by our approach:

b) Task tree transformed into ConcurTaskTree:

Figure D.1.: Example of a task tree in the notation of our approach (a) and its transformed
variant in ConcurTaskTrees visualized using the ConcurTaskTree Environ-
ment (b).

237

which can be iterated. This is indicated through the star at the end of its name. The second
child is the selection, which has two children connected with the choice operator []. This
means either of the children of the selection is executed. The first child of the selection
is the text input, which is iterated (indicated through the star at the end of the name), and
which is optional as indicated through the brackets around the name. The second child of
the selection is the repeatable scrolling.

E. Additional Plots for Case Study 1

E.1. Sequence Coverage Plots for Case Study 1

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

C
u

m
u

la
ti

ve
 a

ct
io

n
 i

n
st

a
n

ce
 c

o
ve

ra
g

e
 i

n
 %

 o
f

a
ll

re
co

rd
e

d
 a

ct
io

n
 i

n
st

a
n

ce
s

20,4

85,2

95,8

Figure E.1.: Plot for the cumulative action instance coverage of the merged sequences of
the reviewer portal data set of the first case study (black) and five subsets for
the subset sizes 2.5% (grey), 10% (red), and 40% (cyan).

E. Additional Plots for Case Study 1 240

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100
C

u
m

u
la

ti
ve

 a
ct

io
n

 i
n

st
a

n
ce

 c
o

ve
ra

g
e

 i
n

 %
 o

f
a

ll
re

co
rd

e
d

 a
ct

io
n

 i
n

st
a

n
ce

s

20,5

86,0

95,1

Figure E.2.: Plot for the cumulative action instance coverage of the unmerged sequences of
the applicants portal data set of the first case study (black) and five subsets for
the subset sizes 2.5% (grey), 10% (red), and 40% (cyan).

241 E.1. Sequence Coverage Plots for Case Study 1

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

C
u

m
u

la
ti

ve
 a

ct
io

n
 i

n
st

a
n

ce
 c

o
ve

ra
g

e
 i

n
 %

 o
f

a
ll

re
co

rd
e

d
 a

ct
io

n
 i

n
st

a
n

ce
s

20,0

86,3

95,1

Figure E.3.: Plot for the cumulative action instance coverage of the merged sequences of
the applicants portal data set of the first case study (black) and five subsets for
the subset sizes 2.5% (grey), 10% (red), and 40% (cyan).

E. Additional Plots for Case Study 1 242

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100
C

u
m

u
la

ti
ve

 a
ct

io
n

 i
n

st
a

n
ce

 c
o

ve
ra

g
e

 i
n

 %
 o

f
a

ll
re

co
rd

e
d

 a
ct

io
n

 i
n

st
a

n
ce

s

20,3

85,7

95,3

Figure E.4.: Plot for the cumulative action instance coverage of the unmerged sequences of
the overall data set of the first case study (black) and five subsets for the subset
sizes 2.5% (grey), 10% (red), and 40% (cyan).

243 E.1. Sequence Coverage Plots for Case Study 1

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

C
u

m
u

la
ti

ve
 a

ct
io

n
 i

n
st

a
n

ce
 c

o
ve

ra
g

e
 i

n
 %

 o
f

a
ll

re
co

rd
e

d
 a

ct
io

n
 i

n
st

a
n

ce
s

20,2

86,1

95,3

Figure E.5.: Plot for the cumulative action instance coverage of the merged sequences of
the overall data set of the first case study (black) and five subsets for the subset
sizes 2.5% (grey), 10% (red), and 40% (cyan).

E. Additional Plots for Case Study 1 244

E.2. Matches Plots for Case Study 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

Most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full reviewer portal data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure E.6.: Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the reviewer portal data set in the
first case study.

245 E.2. Matches Plots for Case Study 1

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

Most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full applicants portal data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure E.7.: Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the applicants portal data set in
the first case study.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

Most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full applicants portal data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure E.8.: Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the applicants portal data set in
the first case study.

E. Additional Plots for Case Study 1 246

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full overall data set:
Ra

tio
 o

f c
ov

er
ed

/m
at

ch
ed

 a
ct

io
n

in
st

an
ce

s
in

 p
er

ce
nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure E.9.: Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the overall data set in the first
case study.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full overall data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure E.10.: Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the overall data set in the first
case study.

F. Additional Plots for Case Study 2

F.1. Sequence Coverage Plot for Case Study 2

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

C
u

m
u

la
ti

ve
 a

ct
io

n
 i

n
st

a
n

ce
 c

o
ve

ra
g

e
 i

n
 %

 o
f

a
ll

re
co

rd
e

d
 a

ct
io

n
 i

n
st

a
n

ce
s

20,2

58,0

73,9

Figure F.1.: Plot for the cumulative action instance coverage of the merged sequences of the
new website version (black) and five subsets for the subset sizes 2.5% (grey),
10% (red), and 40% (cyan).

F. Additional Plots for Case Study 2 248

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_3_1

tasktree_subset_40_3_2

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100
C

u
m

u
la

ti
ve

 a
ct

io
n

 i
n

st
a

n
ce

 c
o

ve
ra

g
e

 i
n

 %
 o

f
a

ll
re

co
rd

e
d

 a
ct

io
n

 i
n

st
a

n
ce

s

20,5

57,0

73,8

Figure F.2.: Plot for the cumulative action instance coverage of the unmerged sequences of
the old website version (black) and five subsets for the subset sizes 2.5% (grey),
10% (red), and 40% (cyan).

249 F.1. Sequence Coverage Plot for Case Study 2

tasktree

tasktree_subset_2.5_1

tasktree_subset_2.5_2

tasktree_subset_2.5_3

tasktree_subset_2.5_4

tasktree_subset_2.5_5

tasktree_subset_10_1

tasktree_subset_10_2

tasktree_subset_10_3

tasktree_subset_10_4

tasktree_subset_10_5

tasktree_subset_40_1_1

tasktree_subset_40_1_2

tasktree_subset_40_2_1

tasktree_subset_40_2_2

tasktree_subset_40_3_1

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 100

Sequences ordered by coverage in % of sequences

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

6 5

7 0

7 5

8 0

8 5

9 0

9 5

100

C
u

m
u

la
ti

ve
 a

ct
io

n
 i

n
st

a
n

ce
 c

o
ve

ra
g

e
 i

n
 %

 o
f

a
ll

re
co

rd
e

d
 a

ct
io

n
 i

n
st

a
n

ce
s

20,2

57,0

73,8

Figure F.3.: Plot for the cumulative action instance coverage of the merged sequences of the
old website version (black) and five subsets for the subset sizes 2.5% (grey),
10% (red), and 40% (cyan).

F. Additional Plots for Case Study 2 250

F.2. Matches Plot for Case Study 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full new version data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure F.4.: Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the new website version data set
in the second case study.

251 F.2. Matches Plot for Case Study 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full old version data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure F.5.: Plot for the action instances matched by parsers, which were generated from
unmerged task trees for a specific subset size of the old website version data set
in the second case study.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1% 2,5% 5% 10% 20% 30% 40% 50% 100%

most prominent Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c m c m c m c m c m c m c m c m

1% 2,5% 5% 10% 20% 30% 40% 50%

a) Matches in other subsets of same size: b) Matches in full old version data set:

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Ra
tio

 o
f c

ov
er

ed
/m

at
ch

ed
 a

ct
io

n
in

st
an

ce
s

in
 p

er
ce

nt

Subset sizes; c = coverage in subsets of same size;
m = matches in subsets of same size

Subset sizes

Figure F.6.: Plot for the action instances matched by parsers, which were generated from
merged task trees for a specific subset size of the old website version data set in
the second case study.

	Introduction
	Motivation
	Scope of the Thesis
	Goals and Contributions
	Impact
	Structure of the Thesis

	Foundations
	GUIs, Actions, and Events
	Task Trees
	Usability Engineering

	Related Work
	Automation in Usability Evaluation
	Utilizing GUI Events for Usability Evaluation
	Recording of Action Instances
	Usage-based Generation of Task Trees
	Automation in Usability Issue or Smell Detection
	Summary and Research Delta

	Automated Field Usability Evaluation Using Generated Task Trees
	A Framework for Automated Field Usability Evaluation
	General Structure
	Framework Instantiation for this Thesis

	Recording of Action Instances
	GUI Model Derivation
	Usage-based Task Tree Generation
	Overall Process
	Iteration and Sequence Detection
	Merging of Similar Sequences
	Complexity Analysis

	Usage and Task-Tree-Based Usability Evaluation
	Approach
	Detection of Usability Smells Based on Task Trees
	Detection of Usability Smells Based on Action Instances

	Implementation
	Recording of Action Instances
	Post-Processing of Events
	Harmonization of GUI models
	Generation of Task Trees
	Verification of the Task Tree Representativeness

	Case Studies
	Case Study Setup
	Data Post-Processing and Task Tree Generation
	Merging of Most Prominent Sequences
	Verification of the Task Tree Representativeness
	Usability Evaluation Analysis
	Reasons for the Case Study Selection

	Case Study 1: Master Application Portal
	Case Study Facts
	Task Tree Generation Results
	Task Tree Representativeness
	Usability Evaluation Results
	Result Validation: Application of a User-oriented Usability Test

	Case Study 2: Research Website
	Case Study Facts
	Task Tree Generation Results
	Task Tree Representativeness
	Usability Evaluation Results
	Result Validation: Application of a User-oriented Usability Test

	Case Study 3: BORG Calendar App
	Case Study Facts
	Task Tree Generation Results
	Usability Evaluation Results
	Result Validation: Application of a User-oriented Usability Test

	Additional Experiments

	Discussion
	Answers for Research Questions Concerning the Task Tree Generation
	Answers for Research Questions Concerning the Usability Smell Detection
	Strengths and Limitations
	Ethical Aspects

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Acronyms
	Glossary
	List of Definitions
	List of Figures
	List of Algorithms and Listings
	List of Tables
	AutoQUEST Commands for Post-Processing Recorded Events
	Extended AutoQUEST Commands
	AutoQUEST Command Application

	Extension of GUI Models for Websites With DOM Ids
	Parsing Configuration for Case Study 1
	Parsing Configuration for Case Study 2
	Parsing Configuration for the Old Website Version
	Parsing Configuration for the New Website Version

	Optimization for the Generation of Task Trees
	Transformation of Task Models to Other Standards
	Additional Plots for Case Study 1
	Sequence Coverage Plots for Case Study 1
	Matches Plots for Case Study 1

	Additional Plots for Case Study 2
	Sequence Coverage Plot for Case Study 2
	Matches Plot for Case Study 2

