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Motivation

Turbulence is a physical state of a fluid far from equilibrium. In turbulent flows, a

huge number of degrees of freedom is excited and a wide range of interacting scales

determines the flow characteristics. Turbulent flows are nonlinear and non-local.

They exhibit chaotic spatial and temporal dynamics and extreme events are likely

to occur. The air we breath is turbulent, the tea we drink is turbulent and the wind

we feel is turbulent. Turbulent flows play an important role for earth’s magnetic

field (Batchelor 1950), for the climate (Bodenschatz et al. 2010) as well as for

the formation of stars (Krummholz & McKee 2005). Knowledge of turbulence is

needed to build bridges that do not collapse (Lin & Ariaratnam 1980) and to build

planes that fly (Kuchemann 1965).

Scientific research on turbulence started many centuries ago, with Leonardo da

Vinci drawing detailed pictures of the characteristics of a turbulent flow (see, e.g.,

Argyris et al. (2010, p. 618)). The equations of motion still used today to describe

turbulent flows were derived by Navier (1827) and Stokes (1845). Over the centuries,

many renowned and excellent physicists and mathematicians investigated turbulence

in great detail. However, up to today, there is no unified theory of turbulence, very
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Motivation

few exact predictions from the governing equations are available and the precise

predictability of the behavior of turbulent flows is limited.

For example, we can not precisely predict how long it takes for a turbulent flow in

a stirred coffee cup to come to rest once the stirring has stopped. We know that the

turbulent kinetic energy in this decaying flow gets eventually dissipated into heat.

Yet, we do not know the exact statistics of key flow parameters like the velocity

field during the decay process. We also do not precisely know the statistics of the

physical process dissipating turbulent kinetic energy into heat. Additionally, we do

not know exactly, how these quantities depend on the turbulent flow’s vigorousness

that is given by the so-called Reynolds number.

Chapter 1 introduces the equations of motion of turbulent flows, as well as

the fundamental theoretical frameworks to describe the statistical properties of

turbulence. In chapter 2, the experimental setup and measurement techniques are

explained. The large-scale based decay of turbulence and its dependence on the

Reynolds number is investigated in chapter 3. In chapter 4, the scaling properties

of turbulence at the intermediate scales are discussed. Chapter 5 addresses the

small-scale statistics of turbulence. The results are summarized in chapter 6, in

which an outlook to future research possibilities on questions beyond the scope of

this thesis is given as well.

Parts of this thesis have been published in Review of Scientific Instruments

(Bodenschatz, Bewley, Nobach, Sinhuber & Xu 2014) and Physical Review Letters

(Sinhuber, Bodenschatz & Bewley 2015).
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1 Introduction and Theory

In this chapter, I present the theoretical background of turbulence research based

upon the detailed descriptions in the widely known textbooks by Argyris et al.

(2010), Davidson (2004), Frisch (1995), Monin & Yaglom (2007) and Pope (2000),

as well as from the original publications wherever appropriate. The aim of this

chapter is to focus on the concepts and frameworks that predict the behavior of

statistical quantities at different length-scales of a turbulent flow. Section 1.1

introduces the governing equations of a turbulently moving fluid, whereas section

1.2 presents a statistical approach to turbulence, including the famous theory of

Kolmogorov (1941b) and its rich predictions. Section 1.3 explains the concepts of

self-similarity and briefly derives the properties of velocity increment statistics. In

section 1.4, the most prominent predictions on the decay of turbulence are reviewed.

1.1 The Equations of Motion

Let us consider an everyday fluid of finite volume in a cylindrical container: a glass

of water. The classical approach to this physical problem in the spirit of Newton
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1 INTRODUCTION AND THEORY

would be to describe the motion of the fluid by writing and solving the equations

of motion of the individual water molecules, obtaining complete knowledge about

the dynamics of the system. Assuming that a typical glass contains 300 ml of

water, this translates into the trajectories of O
(
1025) water molecules along with

their respective initial conditions and interactions. One can easily see that even by

completely neglecting ions, additives and interactions with the atmosphere, solving

this problem is not feasible. However, as the smallest scales produced by stirring

the water would be of the order of 10−4 m (Wang et al. 2014) and the interaction

distance between the water molecules themselves are several orders of magnitude

smaller, in the nanometer range (Mortimer 2001), one can treat the fluid space as

continuous and the discrete interactions between the individual molecules do not

matter. This is the so-called continuum approximation, which allows for a field

description of fluid motion. The same holds true for gases, as long as the mean free

path of the molecules is much shorter than the smallest scales of the flow geometry.

This is true for virtually all gases under standard conditions.

1.1.1 The Navier-Stokes Equations

The equations of motion for a fluid can be derived from the basic conservation laws,

the conservation of mass and the conservation of momentum. Consider a continuous

fluid with a density distribution ρ (x,t) and pressure p(x,t). Here, x denotes a

position in space and t the time. The motion is described by the velocity field u(x,t).

Conservation of mass can be expressed in terms of the continuity equation (Argyris

et al. 2010, p. 463),
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1.1 The Equations of Motion

∂ρ

∂ t
+∇ · (ρu) = 0. (1.1)

At low velocities, u, compared to the speed of sound, c, and thus low Mach

numbers, u/c, most liquids and gases can be considered to be incompressible and

of constant density in space and time. This holds true as long as the dimensions of

the flow are small enough for gravitational density variations to be neglected. With

this, equation (1.1) simplifies to the incompressibility condition

∇ ·u = 0. (1.2)

Unless stated otherwise, a constant density ρ (x,t) = ρ is assumed throughout

this thesis and all fluids are assumed to satisfy equation (1.2). Obeying Newton’s

Second Law, the total momentum of an element of an incompressible fluid can only

change due to surface forces and volume forces acting on it, such that

ρ

(
∂

∂ t
+u(x,t) ·∇

)
u(x,t) = ρf(x,t)+∇ ·σ (x,t) . (1.3)

Here, f(x,t) denote the volume force acting on the fluid element due to, e.g.,

gravity. The stress tensor σ (x,t) contains all information about the surface forces on

the given fluid element due to pressure and molecular friction. For an incompressible
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1 INTRODUCTION AND THEORY

fluid with constant dynamic viscosity µ , the stress tensor is given by

∇ ·σ (x,t) =−∇p(x,t)+µ∆u(x,t) . (1.4)

Inserting equation (1.4) into equation (1.3), using the incompressibility condition

in equation (1.2) and dividing by ρ yields the Navier-Stokes equations,

(
∂

∂ t
+u(x,t) ·∇

)
u(x,t) =− 1

ρ
∇p(x,t)+ν∆u(x,t)+ f(x,t) , (1.5)

where ν = µ/ρ is the kinematic viscosity. For convenience, it is useful to intro-

duce dimensionless quantities based upon the characteristic scales of the turbulent

motion. With the characteristic length L, characteristic time T and velocity U = L/T ,

one can rescale equation (1.5) by replacing u, t, x, p, f and the differential operators

by their dimensionless counterparts to obtain the Navier-Stokes equations in their

well-known dimensionless form (Navier 1827, Stokes 1845):

(
∂

∂ t
+u(x,t) ·∇

)
u(x,t) =−∇p(x,t)+

1
Re

∆u(x,t)+ f(x,t) . (1.6)

The dimensionless Reynolds number Re = UL
ν

(Reynolds 1883) is a measure of

the ratio of inertial to viscous forces and gives information about how vigorous the

turbulence is.
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1.2 A Statistical Approach to Turbulence

Together with a full set of initial and boundary conditions, the Navier-Stokes

equations are a set of nonlinear partial differential equations that describe the motion

of a fluid. Furthermore, the equations are non-local due to the pressure gradient, a

quantity that couples to the velocity field over an infinitely extended space. This

can be seen by computing the divergence of the Navier-Stokes equations, yielding a

Poisson equation for the pressure, which can be solved in terms of Green’s functions

(Argyris et al. 2010, p. 624):

p(x,t) =
∫ 1

4π |x−x′|∑i, j
∂ui (x′,t)

∂x j

∂u j (x′,t)
∂xi

dx′. (1.7)

Obtaining the pressure at a single point in space demands the knowledge of the

velocity field at every point in space, resulting in the non-locality of the Navier-

Stokes equations.

1.2 A Statistical Approach to Turbulence

The combination of nonlinearity and non-locality makes the Navier-Stokes equations

notoriously difficult to tackle and very few exact results and predictions are available.

The equations are purely deterministic, yet, due to the nonlinearity and the involved

degrees of freedom, they exhibit a strong dependence on minute variations in the

initial conditions, thus leading to deterministic chaos. As a matter of fact, as of today

there is not even a strict mathematical proof for the existence of smooth solutions

for the Navier-Stokes equation given arbitrary initial and boundary conditions of
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1 INTRODUCTION AND THEORY

sufficient regularity. This problem is deemed to be so important that it is on the

list of Millennium Problems of the Clay Mathematics Institute1. Despite the open

mathematical question as to whether the Navier-Stokes equations are meaningful

descriptions of nature, there is no hint that they are not an adequate tool to precisely

describe the motion of a real fluid within the limitations given above. As mentioned,

small variations in initial conditions have drastic effects on the outcome of an

individual realization of an experiment due to the deterministic, chaotic behavior

of turbulent flows. However, statistical quantities as, e.g., averages or probability

density functions are remarkably reproducible in turbulent flows and have been

proven to be useful tools in understanding the underlying processes (Argyris et al.

2010, p. 654). Treating a turbulent flow similar to a random field, one can introduce

statistical ensemble averaging to obtain meaningful averages. Let xn be a random

variable that can be measured in an experiment. The ensemble average 〈x〉 can the

be calculated by independent repetitions of the experiment as

〈x〉= lim
N→∞

1
N

N

∑
n=1

xn. (1.8)

Since independent repetitions of a single experiment are usually not realistically

feasible, the averaging process in equation (1.8) is often replaced with a time average

over the measurement time T for the measurement variable x(t) via

1http://www.claymath.org/millenium-problems/
navier-stokes-equation (as of 23.1.2015, 15:20)
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1.2 A Statistical Approach to Turbulence

〈x(t)〉= lim
T→∞

1
T

∫ T

0
x
(
t + t ′

)
dt ′. (1.9)

Obviously, measurement times are not infinite, so for equation (1.9) to be valid,

the limit must converge even for finite T . If this is the case, then the turbulent flow

in question is stationary.

1.2.1 The Kolmogorov 1941 Framework

Since exact predictions from the Navier-Stokes equations are rare, turbulence re-

search must rely on thoughtful hypotheses and careful modeling. One of the most

prominent concepts for the structure of turbulence dates back to Richardson (1922).

Analyzing atmospheric data using Fourier methods, he envisioned turbulence con-

sisting of a multitude of overlapping eddies, flow structures with characteristic

length scales carrying a certain amount of kinetic energy. In his description, energy

that is injected at a large scale L of a three-dimensional system produces eddies of

that size which carry the kinetic energy. These high Reynolds number structures

will turn unstable, break up and create more eddies of smaller size, which will then

carry the kinetic energy. These eddies will become unstable as well, producing

even smaller eddies. This process continues with an energy transfer rate ε until the

size of the eddies becomes so small that viscous dissipation becomes important and

dissipates the kinetic energy into heat at a length scale η . This concept is known as

the energy cascade. It is the basis of the famous turbulence theory by Kolmogorov
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1 INTRODUCTION AND THEORY

(1941b) and is still widely accepted in its core predictions. Kolmogorov (1941b) re-

fined Richardson’s cascade model based upon three hypotheses. His first hypothesis

is based upon the observation that during the cascade process, turbulent structures

seem to lose information about their genesis and obtain special symmetries. This is

formulated in Kolmogorov’s hypothesis of local isotropy, which can be restated in

the following way (Pope 2000, see p. 184):

Given sufficiently high Reynolds numbers, the motion of the small

scales in turbulence is statistically homogeneous and isotropic.

This must be understood as follows. Let A(x,t) be an arbitrary quantity and x

and x′ be positions in space. This quantity is called homogeneous if its ensemble

average does not depend on x and thus fulfills: 〈A(x,t)〉= 〈A(x′,t)〉. A two-point

quantity B(x,x′,t) is called isotropic if its ensemble average does not depend on the

direction of the vector x−x′ and therefore follows: 〈B(x−x′,t)〉= 〈C(|x−x′| ,t)〉

The second and third hypotheses of Kolmogorov’s theory concern the universality

of turbulent flows and the flow parameters that characterize them. His first similarity

hypothesis formulates the disconnection between the turbulent flow at small scales

and the large scales L (following Pope (2000, p. 185)):

In a turbulent flow of large Reynolds numbers, the statistics of the

small scales r << L have a universal form only dependent on the

kinematic viscosity ν and the energy dissipation rate ε .

With this hypothesis and the use of dimensional analysis, one is able to define

length, time, and velocity scales of the small structures of the turbulent motion, the

10



1.2 A Statistical Approach to Turbulence

so-called Kolmogorov microscales. These scales are the size (η), the characteristic

velocity (uη ) and the turn-over time (τη ) of the smallest eddies in the turbulent flow

(Pope 2000, p. 128),

η =
(
ν

3/ε
)1/4

, (1.10)

uη = (εν)1/4 , (1.11)

τη = (ν/ε)1/2 . (1.12)

With these quantities one is able to construct the Reynolds number defined over

the smallest scales Reη =
uη η

ν
= 1. Empirically, one finds that the separation of

the small and the large scales increases with Reynolds number as L/η ∼ Re3/4.

For very large Reynolds numbers, this led Kolmogorov to the hypothesis that there

exists a range of scales which is neither affected by the large nor by the small scales,

the so-called inertial range. It is formulated in Kolmogorov’s second similarity

hypothesis (following Pope (2000, p. 186)):

At very high Reynolds numbers, there exists a range of scale η <<

r << L at which the statistics of the turbulent motion have a uni-

versal form which does uniquely depend on ε and not on ν .

In this framework by Kolmogorov (K41), high-Reynolds number turbulence is

pictured as the energy cascade which is fed by energy injection at large scales L.

The cascade transfers energy with an energy dissipation rate ε towards smaller

scales. At the intermediate scales, the statistics of the K41 turbulence are solely

11



1 INTRODUCTION AND THEORY

determined by ε , whereas at the small scales dissipation starts to affect the statistics

(see figure 1.1).

Figure 1.1: A sketch of the energy cascade in the K41 picture following Frisch
(1995).

The K41 framework, despite its simplicity, is a powerful tool in predicting

statistical behavior of turbulent flows. For example, one can get the shape of the

energy spectrum E (k) in the inertial range with simple dimensional arguments. Let

r be a length scale and k = 2π/r its corresponding wavenumber. The kinetic energy

Eab between two wavenumbers ka and kb is then defined as
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1.2 A Statistical Approach to Turbulence

Eab =
∫ kb

ka

E (k)dk. (1.13)

From Kolmogorov’s second hypothesis, it follows that in the inertial range, E (k)

is solely a function of the energy dissipation rate ε and the wavenumber k itself. As

the energy spectrum has the dimensions m3/s2, [ε] = m2/s3 and [k] = 1/m, there is

only one functional form for E (k) which follows Kolmogorov’s second similarity

hypothesis:

E (k)∼ ε
2/3k−5/3. (1.14)

Following K41, the energy spectrum should have a clear power-law behavior in

the inertial range.

1.2.2 The Integral Length Scale

Thus far, the scale L was assumed to be the scale at which energy is injected

into the system. In a stirred glass of water, e.g., the energy injection scale would

be equivalent to the scale of the stirring. As this scale is neither well defined

nor measurable (e.g. in atmospheric turbulence) the definition of an equivalent

but computable quantity is needed. This is possible from the statistics of the

turbulent flows itself. The size of the largest eddies in a turbulent flow, the largest

13



1 INTRODUCTION AND THEORY

distances over which velocity fluctuations are spatially correlated, are connected to

the energy injection scale. In a homogeneous, isotropic turbulent flow, one can use

the one-component, longitudinal autocorrelation function C (r)= 〈u(x+ r,t)u(x,t)〉

to define the largest scales. Here u is the velocity component along the separation

vector r. C (r) is a measure for the correlation between the velocity component at

the positions x and x+ r. As the turbulent flow is assumed to be isotropic, C (r)

can only depend on the scalar separation r = |r|, which leads to C (r) = R(r)C (0).

The large scale in the turbulent flow, the integral length scale, is then defined by

means of the integral over the correlation function. Empirically, one finds that the

correlation decays exponentially, making it possible to define the integral length

scale as (Argyris et al. 2010, p. 660)

L =
∫

∞

0

C (r)
C (0)

dr. (1.15)

One can easily see that it is not possible to measure infinite separations, but as

the autocorrelation function decays quickly, it is possible to estimate the influence

of large separations and the above definition remains useful.

1.2.3 The Taylor Length Scale

As dissipation already affects turbulent flows at scales somewhat larger than the

Kolmogorov scale η , it is useful to define a length scale at which dissipation effects

vanish. In an effort to systematically define such a length scale, Taylor (1935)

14



1.2 A Statistical Approach to Turbulence

constructed a length scale from the velocity autocorrelation function intended to

give an estimate for the extent of the influence of dissipative effects. He defined

the Taylor length scale λ as the intersection between a parabolic fit to the peak of

the autocorrelation function and 0. Though this artificial quantity has no precise

physical meaning, it serves as a useful tool for estimating the lower bound of the

inertial range due to dissipative effects. One can show that the Taylor length scale

can be computed from velocity derivatives of one velocity component u along one

direction x as (Frisch 1995, p. 61)

u′2

λ 2 =

〈(
∂u
∂x

)2
〉
, (1.16)

with u′ being the root mean square of this velocity component. The most common

use of the Taylor length scale is to define a Reynolds number that only depends on

flow characteristics, the Taylor Reynolds number, given by

Rλ =
u′λ
ν

. (1.17)

For isotropic, homogeneous turbulence, this Reynolds number is unambiguously

determined by the physics of the flow itself. Compared to the Reynolds number

based on the larges scales ReL, the Taylor Reynolds number scales as

Rλ ∝
√

Re. (1.18)
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1 INTRODUCTION AND THEORY

1.2.4 Taylor’s Frozen Flow Hypothesis

Many of the predictions for turbulent flows concern the statistical behavior of

velocity increments δu, defined as

δu(x,r,t) = u(x+ r,t)−u(x,t) , (1.19)

for a spatial separation vector r. However, many experimental setups are only

able to measure velocity increments in time, defined as

δu(x,t,τ) = u(x,t + τ)−u(x,t) . (1.20)

A measurement of the above quantity can for example be realized by one station-

ary measurement probe measuring at a single position for long times. A priori, it is

unclear whether these two quantities share any statistical similarities. According to

Taylor (1938), it is possible to translate spatial and temporal measurements given

some specific flow conditions. For a flow with a velocity field u(x,t) which consists

of a strong mean flow U = 〈u(x,t)〉 and small velocity fluctuations u′ (x,t), such

that u(x,t) = U+u′ (x,t), then, one can translate spatial separations r into temporal

separations ∆t via

16



1.2 A Statistical Approach to Turbulence

r = U∆t, for |U|2 >> 〈
∣∣u′∣∣2〉. (1.21)

The basic consideration here is (see figure 1.2) that if a patch of turbulence is

swept over a measurement device, as long as the mean speed of this sweeping is

much larger than the turbulent velocities, by the time the patch has fully passed

the measurement device, its internal flow structure has not changed at all. A

measurement in time can thus be translated into a spatial measurement (Monin &

Yaglom 2007, p. 363).

Figure 1.2: A sketch of Taylor’s Frozen Flow Hypothesis. A patch of turbulence
is swept over a measurement device (depicted in blue) at position x0 with a
mean speed U. If the mean speed U is much larger than the fluctuating velocity
u′, then the patch does not change significantly while being swept over the
measurement device.

17



1 INTRODUCTION AND THEORY

1.3 Scaling and Intermittency

Among the few exact results derived from the Navier-Stokes equations, one concerns

the behavior of the longitudinal structure functions (Frisch 1995, p. 139):

Sn (r) = 〈δun〉 :=
〈(

(u(x+ r,t)−u(x,t)) · r
|r|

)n〉
. (1.22)

These are the moments of the velocity increment component along the longitu-

dinal direction. For homogeneous, isotropic turbulence, Sn (r) can only depend on

the absolute value of the separation vector r = |r|. One can relate the longitudinal

structure function to the probability density function of the longitudinal velocity

increments f (δu,r) with

Sn (r) =
∫

δun · f (δu,r)dδu. (1.23)

The probability density function contains all information about the statistics of the

velocity increments, whereas the structure functions are connected to the statistics

of increments within a certain band of magnitudes, while the statistics of increasing

order n are increasingly biased towards the extreme events.

1.3.1 Kolmogorov’s Four-Fifths Law

Kolmogorov (1941a) reformulated an exact equation derived by de Kármán &

18



1.3 Scaling and Intermittency

Howarth (1938) from the energy balance of the Navier-Stokes equations (1.5) in

terms of the longitudinal structure functions under the assumptions of stationary,

homogeneous, isotropic turbulence,

S3 (r)−6ν
d
dr

S2 (r) =−
4
5
〈ε〉r+q(r) . (1.24)

Here, q(r) is a source term containing the information about the energy injection

at scale r. Within the limit of negligible viscosity, ν → 0, the second term on

the left hand side of the equation vanishes as long as the derivative remains finite.

Additionally, in the inertial range, there is no energy injection into the system,

therefore q(r) is zero as well. One thereby obtains Kolmogorov’s famous four-fifths

law for the behavior of the third-order structure function in the inertial range,

S3 (r) =−
4
5
〈ε〉r. (1.25)

This result predicts a remarkably simple form of the third-order structure function

considering the deterministically chaotic nature of turbulent flows. Referring back

to the introduction of section 1.2, although the instantaneous velocity field eludes

any concrete prediction, statistical measures like the third-order structure function

are surprisingly robust quantities that follow relatively simple laws.
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1 INTRODUCTION AND THEORY

1.3.2 Self-Similarity in Turbulence

One early observation in the study of turbulent flows was their apparent self-

similarity. Figuratively speaking, a turbulent flow observed at a certain scale shows

the same features as the same flow observed at a much larger or much smaller

scale. This can for example by seen in high-resolution pictures of large atmospheric

clouds, the shapes observed at the very small scales resemble the ones at the larger

scales. Using the not-so-far-fetched assumption that turbulent flows are indeed

self-similar, one can generalize Kolmogorov’s four-fifths law (1.25) for arbitrary

orders n. Following the elegant description in Argyris et al. (2010), one needs to

define self-similarity in a mathematically correct way (Argyris et al. 2010, p. 678):

Definition 1 (Self-Similarity) Let δu(r) be a field and f (δu,r) its probability

density function. Additionally, δ ũ(r) = λ ζ δu(λ r) is a rescaled field with its

probability density function f̃ (δu,r) = λ ζ f
(

λ ζ δu,λ r
)

. δu(r) is self-similar if

there exist an exponent ζ so that for all λ > 0 the probability density functions f

and f̃ are identical. So f has to fulfill f (δu,r) = λ ζ f
(

λ ζ δu,λ r
)

.

Assume that f (δu,r) is the probability density function of velocity increments of

a fully self-similar turbulent velocity field. Then, without loss of generality, one can

write f in terms of an unknown function g as

f (δu,r) =
1

(εr)ζ
g

(
δv

(εr)ζ

)
. (1.26)
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The probability density function defined this way obeys the demands of self-

similarity in definition 1 by construction, as one can easily check:

λ
ζ f
(

λ
ζ

δu,λ r
)
= λ

ζ 1

(ελ r)ζ
g

(
λ ζ δv

(ελ r)ζ

)
= f (δu,r) . (1.27)

Inserting equation (1.27) into the relation given in equation (1.23), the behavior

of the nth-order structure function can be expressed as:

Sn (r) =
∫

δun · f (δu,r)dδu =
1

(εr)ζ

∫
δun ·g

(
δv

(εr)ζ

)
dδu. (1.28)

Using the substitution w = δv/(εr)ζ , this can be further simplified to

1

(εr)ζ

∫
δun ·g

(
δv

(εr)ζ

)
dδu = (εr)nζ

∫
wn ·g(w)dw =Cn (εr)nζ . (1.29)

In the last step, the integration constant was denoted with Cn and is not of

interest at this point. The still unknown scaling exponent ζ can be determined

using Kolmogorov’s four-fifths law in equation (1.25). As the third-order structure

function S3 (r) scales as r1 in the inertial range, the only possible choice for the

order-independent factor ζ is 1/3, resulting in
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Sn (r) =Cn (εr)n/3 . (1.30)

This expression is one of the central predictions of the K41 framework, as it fully

describes the statistics of velocity increments in the inertial range. In principle, the

complete probability density function of velocity increments can be calculated using

equation (1.30) and equation (1.23) as long as the coefficients Cn are known as well.

1.3.3 Limitations of K41

In the K41 framework, turbulence is considered to be a self-similar process, with

velocity increment probability density functions being preserved over scales. In real

turbulence, however, the statistics of the flow depend greatly on the scale. While

for large separations, the probability density function of the velocity increments

resembles a Gaussian distribution, it develops increasingly heavier tails for smaller

separations. In other words, extreme events in turbulence are much more likely

to emerge for small separations than for large separations, an effect known as

intermittency.

Furthermore, in the derivation of the scaling of structure functions, the energy

dissipation rate ε was assumed to be a global constant. The first to note that the

energy dissipation rate is indeed a locally strongly fluctuating quantity were Landau

& Lifschitz (1959). These findings contradict the assumptions in subsection 1.3.2

and led to a refined theory of scaling in turbulence (K62) by Kolmogorov (1962). By
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1.4 The Decay of Turbulence

replacing the constant energy dissipation rate with a log-normal-distributed quantity,

one gets an improved prediction for the scaling exponents, now denoted with ζn,

given by the nonlinear function

ζn =
n
3
− µ

18
n(n−3) . (1.31)

The constant parameter µ in this equation is the so-called intermittency parameter.

It is a measure for the deviation from perfect self-similarity. For a review of the

current state of theoretical research on intermittency, see section 4.1.

1.4 The Decay of Turbulence

Thus far, stationary turbulence has been considered that is stationary in the sense

that there is a balance between the amount of energy injected into the system and

the amount of energy dissipated at small scales. This balance leads to a statistical

stationarity of ensemble and time averages (see section 1.2). Statistical quantities,

such as the aforementioned structure functions or energy spectra, are pure quantities

of space with no time dependence. However, the situation in many real flows is

quite different. Consider again the glass of stirred water as in section 1.1. In the

picture of K41, as long as the stirring continues, an energy cascade exists. The

large-scale eddies arising from the stirring will break down into smaller and smaller

eddies and will ultimately dissipate into heat. Now consider stopping the stirring.

With this, there is no additional energy input in the system anymore, yet the cascade
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process still continues. At some point, the fluid will come to rest, but the statistics of

the flow until then are strongly time dependent. The most basic question of interest

here is how fast the kinetic energy decays. The first prediction on the rate of decay

dates back to de Kármán & Howarth (1938) who derived a power-law dependence

of the turbulent kinetic energy on time, yet weren’t able to calculate the exponent of

this power-law.

1.4.1 Kolmogorov’s Theory of Decay

Unlike the statistics predicted by the K41 framework, which only depend on the

small and intermediate scales of turbulent motion, the decay of turbulence is gov-

erned by the large scales. In the classical description, Kolmogorov (1941c) com-

puted the relation of the energy E, dissipation rate ε and fluctuating velocity u to be

independent of Reynolds number:

dE
dt

=
3
2

du2

dt
=−ε =−Cε

u3

L
. (1.32)

Here, Cε is a Reynolds-number independent constant and L the integral length scale.

The isotropic energy spectrum is related to the velocity correlations 〈u ·u′〉(r) with

a separation r = x−x′ by

E (k) =
1
π

∫
∞

0
〈u(x,t) ·u(x+(r,t)〉kr sin(kr)dr. (1.33)
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1.4 The Decay of Turbulence

For a sufficiently quickly decaying correlation function, this expression can be

expanded into a Taylor series for small k and one obtains for the low wavenumber

part of the energy spectrum (Davidson 2004, p. 346)

E (k) =
k2

4π2

∫ 〈
u ·u′

〉
dr− k4

24π2

∫
r2〈u ·u′〉dr+ · · · . (1.34)

The two integrals appearing in this equation are known as the Loitsyanskii integral

I =
∫

r2〈u ·u′〉dr and the Saffman integral L=
∫
〈u ·u′〉dr.

Relying on the finding by Loitsyanskii (1939) that the integral I is an invariant

constant for an isotropic turbulent flow, Kolmogorov (1941c) calculated a relation-

ship between the fluctuating velocity and the integral length scale given by

u2L5 = const. (1.35)

This expression allows for the integration of equation (1.32), resulting in the

decay exponent for the turbulent kinetic energy and the integral length scale given

by

u2
∝ t−10/7, (1.36)

L ∝ t2/7. (1.37)
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Note that the constancy of the Loitsyanskii integral I implies a quickly decaying

correlation function such that L = 0. As a direct consequence, turbulence of

Kolmogorov’s type posses a low-wavenumber spectrum of the shape E (k) ∝ k4.

This type of spectrum is generally referred to as the Batchelor spectrum due to

the important contributions on the decay of turbulence by Batchelor & Townsend

(1948a,b)

1.4.2 Saffman’s Theory of Decay

The invariance of the Loiststyanskii integral was questioned and shown to be

generally not fulfilled (Proudman & Reid 1954) to the extent that it is generally

divergent (Saffman 1967a). Saffman (1967b) noted that there exists a different

invariant in isotropic turbulence, the Saffman integral L. Following an argument

analogous to that of Kolmogorov, one can show that the turbulent kinetic energy

possesses a different relation between the fluctuating velocity and the integral length

scale, as well as a different law of decay, namely

u2L3 = const, (1.38)

u2
∝ t−6/5, (1.39)

L ∝ t2/5. (1.40)

The low wavenumber part of the energy spectrum can be shown to grow as

E (k) ∝ k2. All these results concern decaying turbulence at high Reynolds numbers,
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1.4 The Decay of Turbulence

hence known as the initial period of decay. For very large times, where the Reynolds

number becomes small, the exponent of the power-law increases. Viscous effects

begin to dominate the dynamics, resulting in a predicted decay rate for the final

period of decay of u2 ∝ t−2.5 for Kolmogorov turbulence and u2 ∝ t−1.5 for Saffman

turbulence (Batchelor & Townsend 1948b).

1.4.3 Physical Picture

It is possible to relate the existence of the decay invariants to the internal structure of

turbulence (Landau & Lifschitz 1959, Saffman 1967b, Davidson 2004). In the frame

of Kolmogorov turbulence, Landau considered a patch of turbulence of Volume

V with a net angular momentum H and vanishing linear momentum L. The latter

one can be constructed by limiting the patch of turbulence to a closed domain,

which enforces L =
∫

udV = 0. It can be shown that the angular momentum of the

turbulent patch,

H =
∫

V
x×udV, (1.41)

can be directly related to Loitsianskii’s integral I via

〈H2〉
V

=−
∫
〈u ·u′〉dr = I. (1.42)
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Assuming I to be an invariant, Kolmogorov’s theory corresponds to an underlying

structure of turbulent patches carrying significant angular moment but negligible

linear momentum. For Saffman’s theory, one can show that it is possible to rewrite

the Saffman integral by exchanging volume and ensemble averages as

L=
∫
〈u ·u′〉dr =

1
V

〈[∫
udV

]2
〉
. (1.43)

This conserved quantity is a measure of the net linear momentum of the turbulent

patch. Depending on whether the patch carries a significant amount of linear

momentum, the Saffman integral L becomes non-vanishing. Note that a non-

vanishing Saffman integral automatically enforces a divergence of the Loitsianskii

integral. Turbulence in Saffman’s theory, therefore, consists of patches carrying

nontrivial amounts of linear momentum with vanishing angular momentum (see

figure 1.3).
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1.4 The Decay of Turbulence

Figure 1.3: a) In the picture of Batchelor, turbulence consists of patches carrying a
significant amount of angular momentum Hp and negligible amount of linear
momentum. b) Saffman’s theory corresponds to turbulence of patches of net
linear momentum Lp with virtually vanishing angular momentum. (The sketch
is following Davidson (2004).)
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2 Experimental Methods

The results of this thesis are based upon turbulence data obtained in two different

wind tunnels. The data from the Variable Density Turbulence Tunnel (VDTT) at the

Max-Planck-Institute for Dynamics and Self-Organization makes up the major part.

Additional velocity time series were obtained in the scope of the ESWIRP project,

“Investigation of the small-scale statistics of turbulence in S1MA", at the ONERA

wind tunnel in Modane, France. The Göttingen facility is described in section 2.1

and the Modane facility in section 2.2. All turbulence data has been collected by

means of a classical measurement technique called hot-wire anemometry. The

details of this technique and of the Nano-Scale Thermal Anemometry Probes

(NSTAPs) used are given in section 2.3. In section 2.4, the individual datasets

and respective experimental setups are described. Parts of section 2.1 have been

published in the Review of Scientific Instruments in greater detail (Bodenschatz,

Bewley, Nobach, Sinhuber & Xu 2014).
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2 EXPERIMENTAL METHODS

2.1 The Variable Density Turbulence Tunnel

At high Reynolds numbers, turbulence is assumed to exhibit universal features (see

chapter 1), such as predictable scale separation and the development of an inertial

range. To investigate the statistical behavior of turbulent flows at high Reynolds

numbers, one could directly measure natural, atmospheric flows. These flows tend

to possess extremely high Reynolds numbers of Rλ ∼
(
104) (Siebert et al. 2006).

However, one would also like to have precisely controlled conditions for the flow,

which is only possible to a very limited extent in natural flows. The question, how the

Reynolds number Re =UL/ν determines the statistical behavior of a turbulent flow

in a given geometry, can not in particular be answered from the in situ observation

of atmospheric flows alone. Wind tunnels provide an important experimental tool

for producing nearly homogeneous, isotropic turbulence, despite being unable to

achieve atmospheric Reynolds numbers. Limits to the mean speed and the length

scales arise from the construction and operational costs of the experiments. To

balance the need for high Reynolds numbers and well-controlled conditions, one

strategy is to build an extremely large wind tunnel like the S1MA in Modane.

This comes at the disadvantage of steep operational costs and inflexibility of the

experimental setup, being limited to the use of air. The second approach is to make

use of pressurized gases in a smaller wind tunnel. Since the dynamic viscosity µ

of a gas only weakly depends on pressure, the kinematic viscosity ν = µ/ρ can be

adjusted over a wide range by changing the density, i.e. pressure, of the gas. Using

heavy gases at high pressures, one can obtain high Reynolds numbers in a wind
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2.1 The Variable Density Turbulence Tunnel

tunnel of moderate size, the approach chosen with the VDTT.

2.1.1 Historical review of pressurized wind tunnels1

For over a century, pressurized wind tunnels have proven to be important tools

in researching aerodynamic questions because of their ability to independently

adjust flow Reynolds number and Mach number by independently changing the

pressure and mean speed of the working fluid. Without the possibility of running

numerical simulations on computers, conducting wind tunnel experiment was the

only way to test small-scale aerodynamic models before production. Even today, the

limited computational power of even the most modern computers still necessitates

the testing of models in wind tunnels at high Reynolds numbers. The first wind

tunnel in which the working gas could be pressurized to adjust the Reynolds number

was the "Variable Density Wind Tunnel of the National Advisory Committee for

Aeronautics" (VDT) built by Munk (1921) at the Langley Research Center in

Virginia. This tunnel, finished in 1923, was able to pressurize air up to 21 bar,

reaching Reynolds numbers ReWT = 0.1
√

AU/ν = 5.4 ·106 based upon the cross

section of the tunnel A and the mean speed U (Munk & Miller 1926). This wood

recirculating tunnel of the Göttingen type (Oswatitsch & Wieghardt 1987) was

destroyed in a fire in 1927 and rebuilt in 1930 (Jacobs & Abbot 1933). Because it

produced high turbulence intensities, the limitations of the flow quality in the VDT

were deemed to be too severe. This lead to the design of the 44.5 m long “Langley

1This subsection follows the longer historical review in Bodenschatz, Bewley, Nobach, Sinhuber &
Xu (2014).
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two-dimensional low-turbulence pressure tunnel" in 1938, which reached ReWT =

6.1 ·106 using of compressed air at 10 bar (von Doenhoff & Abbott 1947). The

tunnel successfully provided a high quality aerodynamic research tool for decades

(McGhee et al. 1984, Choudhari et al. 2002) until demolition began in 20062. The

first variable density turbulence tunnel built in Europe was the “Compressed Air

Tunnel" at the National Physical Laboratory in Taddington in 1931 (Pankhurst

1972). Using compressed air at 25 bar, the tunnel reached ReWT = 8 ·106. In

Germany, the first low pressure variable density tunnel was built at the Deutsche

Forschungsanstalt für Luftfahrt in 1956 (Schlichting 1956). The “Variable density

high speed cascade wind tunnel" was able to operate at pressures between 0.1 bar

and 1 bar air to reach Reynolds numbers up to ReWT = 4 ·106. Despite the numerous

high-quality, variable-density turbulence tunnels built and operated over the span of

40 years, essentially none were used to conduct fundamental turbulence research.

The first reported study on the topics of turbulence produced by a classical grid

was published by Kistler & Vrebalovich (1966). The authors used the immense

“Southern California Co-operative Wind Tunnel" before its closing (Millikan et al.

1948). After the initial results from Kistler and Vrebalovich, several pressurized

wind tunnels were built to focus on fundamental turbulence questions. In Jülich,

a high-pressure wind tunnel running Helium at 40 bar was used to investigate

the flow behind spheres at ReWT = 3.1 ·105 (Achenbach 1972). At the German

Aerospace Center in Göttingen, the “High Pressure Wind Tunnel" operating at

air up to 100 bar was constructed and, e.g., used to investigate the flow around

2See http://crgis.ndc.nasa.gov/historic/Low_Turbulence_Pressure_
Tunnel (As of 06.02.2015, 10:20) for a history of the Low Turbulence Pressure Tunnel.

34

http://crgis.ndc.nasa.gov/historic/Low_Turbulence_Pressure_Tunnel
http://crgis.ndc.nasa.gov/historic/Low_Turbulence_Pressure_Tunnel


2.1 The Variable Density Turbulence Tunnel

cylinders (Försching et al. 1981). The most recent variable density tunnels before

the construction of the VDTT were the Princeton/DARDPA-ONR SuperPipe Facility

and the Princeton/ONR High Reynolds Number Testing Facility (Zagarola & Smits

1997). These facilities run with air pressurized to over 200 bar, reaching Reynolds

numbers of up to ReWT = 9.6 ·106 in the latter case. In 2009, the Variable Density

Turbulence Tunnel was inaugurated at the Max Planck Institute for Dynamics and

Self-Organization. The key concept in this tunnel was to use pressurized Sulfur-

Hexafluoride as a working gas, reaching Reynolds numbers up to ReWT = 4.4 ·106

in a relatively small tunnel at low mean speeds (Bodenschatz et al. 2014). The

technical details of this tunnel and of the turbulent flow within, from which the

major part of the data of this thesis stems from, will be covered in the following

subsections.

2.1.2 Geometric Details

The VDTT is is a pressure vessel capable of being pressurized up to 15 bar with

non-combustible gases. Using of Sulfur Hexafluoride (SF6) as a working gas allows

for adjustable and extremely high Reynolds numbers due to its high density relative

to air. As the kinematic viscosity, ν , for most gases is inversely proportional to

their density, one is able to adjust the Reynolds number by changing the pressure

of the gas without changing the mean speed of the flow or the tunnel geometry. At

15 bar, SF6 reaches roughly one tenth of the density of water, whereas at 1 bar it is

still 5 times denser than air (see table 2.1). This way, variations of two orders of

magnitude in Reynolds number can be achieved without changing the mean speed
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of the gas. At the same time, due to the relatively small diameter and wind speed of

the VDTT in comparison to an hypothetical air wind tunnel operating at the same

Reynolds number, the operational costs can be kept low. Additionally, the moderate

flow parameters facilitate the use of Lagrangian measurement techniques.

Gas p [bar] ρ

[
kg
m3

]
ν

[
m2

s

]
·10−7

Air 1 1.2 152
SF6 1 6.1 24.8
SF6 2 12.3 12.2
SF6 4 25.2 5.99
SF6 8 53.5 2.86
SF6 15 114.3 1.39

Table 2.1: Pressure and viscosity of the working gases at selected pressures and
20 ◦C, estimated from the experiments by Hoogland et al. (1985)

Albeit non-toxic, SF6 is a strong greenhouse gas that is damaging for the en-

vironment and, being heavier than air, it can lead to suffocation. The VDTT is

constructed as a recirculating Göttingen-type wind tunnel, keeping the working gas

in a closed loop. This design conserves energy and allows to record arbitrarily long

datasets.

The VDTT is a 18.2 m long and 5.3 m tall stainless steel high-pressure vessel

with a total volume of 88 m3 (see figure 2.1). The two straight sections, the upper

one containing the test section, have inner diameters of 1.84 m and a circular

cross sections. The elbows have an inner diameter of 1.54 m. The fan (covered

in subsection 2.1.3) is located at the downstream position of the lower straight

section and there is a heat exchanger that is responsible for the temperature control

(see subsection 2.1.4) at the upstream end of the upper straight section. The heat
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Figure 2.1: Photograph of the Variable Density Turbulence Tunnel

exchanger is 1.27 m wide and 0.96 m high. Extensive details on the construction,

gas handling system, safety systems and filter bypass can be found in Bodenschatz,

Bewley, Nobach, Sinhuber & Xu (2014).

Downstream of the heat exchanger, the inner cross section is expanded to a height

of about 1.5 m and a width of 1.3 m with cut edges to form a roughly octagonal

shape (see figure 2.3). The 8.8-meter-long measurement section is separated from

the round inner tunnel walls by steel sheets with plexiglass windows. Behind

these inner walls, cables, tubes as well as supplementary electronics are lead to the

downstream end of the measurement section where the measurement probes are

located (see figure 2.2). For a description of the individual setups, see section 2.4.

37



2 EXPERIMENTAL METHODS

Figure 2.2: Simplified sketch of the Variable Density Turbulence Tunnel, also see
Bodenschatz, Bewley, Nobach, Sinhuber & Xu (2014)

2.1.3 Turbulence Production

The working gas is set in motion by means of a 20-blade fan driven by a 210 kW

electric motor with a 40 kW water cooling system. The fan and the motor are located

at the end of the lower straight section and are able to produce constant mean flow

velocities between 0.5 m/s and 5.3 m/s. Turbulence is produced at the upstream

end of the upper test section by a classical bi-planar grid of crossed rectangular bars

(see figure 2.4). This is classical in the sense that grids of crossed bars have been

used frequently throughout the last century to produce turbulence of low intensity

and high flow quality concerning isotropy and homogeneity (Simmons & Salter

1934, Taylor 1935, Dryden et al. 1937, Corrsin 1942, Batchelor & Townsend 1947,

Comte-Bellot & Corrsin 1966, Kistler & Vrebalovich 1966). The incoming flow is

disturbed by the stationary bars, producing turbulent wakes that extend downstream.

As a rule of thumb, turbulence has developed into a homogeneous and isotropic state,
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Figure 2.3: Simplified schematic of the cross section of the test section, see also
Bodenschatz, Bewley, Nobach, Sinhuber & Xu (2014)

20 mesh lengths downstream of the grid, provided the absence of shear. For the

majority of the experiments, the mesh spacing of the grid was 180 mm with a grid

bar diameter of 40 mm, blocking 38% of the cross section of the tunnel. For several

experiments, a smaller grid with a mesh spacing of 106.6 mm was installed in the

tunnel. Details on modifications to the grid geometry in several special experiments

can be found in section 2.4.

One of the main advantages of using a passive grid, apart from flow quality,

simplicity of construction and ease of maintenance, is that the produced turbulence

has remarkably low turbulence intensities u′/U , making it possible to apply Taylor’s

Frozen Flow Hypothesis to convert temporal data into spatial information (see

subsection 1.2.4). Once generated by the grid bars, there is no external energy input

into the downstream-swept turbulence and it freely decays as described in section

1.4. Table 2.2 gives a short summary of the basic flow parameters of a few selected

experiments using SF6.
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Figure 2.4: Photograph of the-turbulence generating grid, viewing upstream.

With the use of SF6, the Reynolds numbers obtainable in the VDTT exceed those

of any comparable experiment, including the highest Reynolds number classical grid

experiment by Kistler & Vrebalovich (1966). Note that the increase in Reynolds

number and the scale separation manifest through a shrinking of the small scales,

as expected for turbulence generated by a passive grid. The integral length scale

and turbulence intensity is mainly fixed by the geometry of the grid. Increasing

the pressure and thus the Reynolds number, therefore, leads to smaller and smaller

Kolmogorov scales. It is on one hand advantageous that the large-scale structures

of the flow remain essentially constant between experiments at different conditions,

but it is disadvantageous on the other, as resolving the smallest structures in the flow

demands for highly specialized measurement techniques to be covered in section

2.3.
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Pressure p [bar] 2.5 6.5 8 12 14.5
Mean speed U [m/s] 4.12 4.20 4.20 4.32 4.33

Turbulence intensity u′/U 3.04% 3.09% 3.12% 3.13% 3.11%
Integral length scale L [mm] 123.9 127.0 128.2 130.0 129.5

Kolmogorov length scale η [µm] 91 43 36 25 22
Reynolds number Rλ 500 880 1000 1300 1450

Table 2.2: Basic flow parameters for a few selected experiments.

2.1.4 Temperature Control3

All mechanical energy injected into by the motor into the turbulent flow is dissipated

into heat. In order to ensure temperature stability, a 280 kW heat exchanger is

installed at the upstream end of the upper test section. It consists of two sets

of water-cooled plates. The cooling water is supplied by the institute’s cooling

water system at a constant flow rate. Temperature control is accomplished via a

proportional-integral-derivative (PID) controller that mixes the cooling water with

the warm return flow water from the heat exchanger.

The cooling system automatically turns on when the fan is started. After an initial

adjustment time, the length of which depends on the working gas and its pressure

(usually of the order of several tens of minutes for air at atmospheric pressure

and of a few minutes for SF6 at high pressures), the PID controller stabilizes

the temperature of the mean flow with an accuracy of about ±0.15 K. A typical

temperature time series can be seen in figure 2.5. The oscillation in the mean

temperature with a period of approximately 2 minutes is slower than any observable

3The thermocouple data presented in this subsection was sampled at 40 Hz using a 0.076 mm
thermocouple housed in a ceramic insulation. It was done with the gracious help of Holly Capello,
who built the probes, wrote the measurement code and supported the measurement process.
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Figure 2.5: Time series of temperature information at the end of the measurement
section at the centerline. The fan was turned on at t < 0. The data was obtained
in air at 1 bar.

turbulent signal and does therefore not influence the measurements in a significant

way. The data shown was obtained in air and thus at low motor power consumption.

The initial adjustment time decreases drastically when gases of higher density

are used. The experimental protocol is such that no data is taken before the PID

controller has settled into a controlled state.

As discussed in section 2.3, hot-wire probes react sensitively to temperature

changes. If the fluctuations in the temperature are either too large or too fast,

distinguishing between turbulent velocity signals and temperature fluctuations be-

comes difficult. Figure 2.6 shows the probabilty distribution function of velocity

fluctuations. Once the oscillations in the data from figure 2.5 are removed using a

high-pass software filter, one obtains the distribution of the instantaneous tempera-

ture fluctuations. These fluctuations turn out to be Gaussian distributed and an order

of magnitude smaller than the mean-temperature-stability quality for the core part
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Figure 2.6: Probability distribution function of the temperature deviations T −T0
from the mean temperature, T0. The same data as in figure 2.5 was restricted to
the time after the PID controller settled into a controlled state; the slow temper-
ature drifts were removed by a software high-pass filter to obtain information
about the temperature fluctuations. A Gaussian fit to the black data is given in
red.

of the distribution. The outer tails of the distribution that concern events four orders

of magnitude more unlikely than events in the core part of the distribution functions

still cover temperature events only half as large as the mean temperature stability

of 0.1 K. Even for small temperature deviations, there might be the possibility of

an intermittent distribution of temperature increments with heavy tails which will

influence the measurement of the statistics of the extreme turbulent events in the

velocity statistics. Therefore, it is imperative to verify the smallness of temperature

increments. In figure 2.7, the temperature increment probability density functions

for different time increments τ are shown. The smallest time increment measured

here, τ = 0.025s corresponds to structures of the size of 1.6 cm and, thus, to inertial
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range structures. Independent of the increment, the probability density function

does not show measurable intermittent effects. The measured probability of extreme

events drops off quickly, ensuring that the temperature fluctuations in the VDTT

do not influence the velocity measurements. In principal, intermittent effects in the

distribution of temperature increments are expected (Warhaft 2000). However, from

the results from figure 2.7, a temperature increment of 0.01 K would translate into a

velocity increment of 10−8 m/s. The temperature effects can, thus, be assumed to

be smaller than the accuracy of the measurement device and, as a consequence, do

not influence the velocity measurements in the VDTT.

Figure 2.7: Probability distribution function of the temperature increments.

The long time temperature stability of the tunnel is also maintained by the cooling
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system over arbitrary times. Figure 2.8 shows the evolution of the mean temperature

in the VDTT obtained with a standard Dantec Dynamics temperature sensor in a

flow at 15 bar of SF6. The drift in the mean temperature is negligible as it is smaller

than the fluctuations of the temperature themselves. This negligibility is ensured by

the results from figure 2.13.

Figure 2.8: Long time evolution of the mean temperature in the tunnel for a mea-
surement at 15 bar of SF6. Shown is the temperature measured with a Dantec
Dynamics, averaged over 50 s intervals, as a function of time. There is only a
negligible trend in the mean temperature.

2.1.5 Flow Properties

As discussed in chapter 1, the fundamental study of homogeneous, isotropic turbu-

lence is considered here. With that in mind, great effort was undertaken to improve

the properties on the flow to the best possible extent (Bodenschatz, Bewley, Nobach,

Sinhuber & Xu 2014). These measures include, among others, the fin design of

the heat exchanger to remove possible large scale Görtler vortices, stemming from
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the flow passing the curvature of an elbow (Görtler 1940, Hawthorne 1951), the

inclusion of four meshes with fine grid spacing in the expansion behind the heat ex-

changer to homogenize the flow (Schubauer & Spangenberg 1948, Laws & Livesey

1978), as well as a slightly inclinated test section to counteract growing boundary

layers. To further improve the homogeneity of the flow, the width of the top and

bottom grid bars were reduced by 4 mm. The resulting turbulent flow at the end of

the test section has a virtually constant mean flow profile in the bulk of the wind

tunnel with a constant turbulence intensity profile, negligible shear and a low, but

in grid turbulence unavoidable (Lavoie et al. 2007), isotropy ratio4 of less than

1.1. It thus provides a flow quality comparing favorably to the most sophisticated

experiments (see e.g. Comte-Bellot & Corrsin (1966), Lavoie et al. (2007) or

Krogstad & Davidson (2010)). Further details on the flow properties can be found

in Bodenschatz, Bewley, Nobach, Sinhuber & Xu (2014).

2.2 The S1MA

While most of the data presented in this thesis stems from the VDTT, some experi-

ments were conducted at an atmospheric wind tunnel in Modane, France. The S1MA

is an atmospheric open wind tunnel operated by ONERA, the french aerospace lab5.

This gigantic wind tunnel has an outer length of 155 m and a width of 40 m.

The flow is driven by two fans of a total of 88 MW, which are directly driven

mechanically by hydro power via Pelton turbines. The test section has an inner

4The isotropy ratio is defined as the ratio of streamwise to transverse velocity fluctuations.
5http://windtunnel.onera.fr/ (as of 12.2.2015, 11:20)
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2.2 The S1MA

Figure 2.9: Photograph of the S1MA wind tunnel at ONERA, the French aerospace
lab, located in Modane, France.

diameter of 8 m, allowing for the testing of large-scale models. In contrast to the

VDTT, the S1MA is designed to reach high wind speeds up to Mach numbers of

1, focusing on aerospace engineering studies. Figure 2.9 shows a photograph of

the wind tunnel and experimental building. Unfortunately, photography is strictly

prohibited on-site and inside the tunnel due to confidentiality regulations, so no

further pictures can be provided here. A sketch of the facility is shown in figure

2.10.

Being designed for industrial applications, the S1MA is not usually available

for scientific purposes, mainly due to the steep operational costs of the rentable

wind tunnel. The experiments presented here were made possible in the scope of

the European Project FP 7: European Strategic Wind tunnels Improved Research
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Figure 2.10: Sketch of the S1MA. Taken from ONERA’s homepage
http://windtunnel.onera.fr/sites/windtunnel.onera.
fr/files/illustrations/S1MA-aerodynamic-circuit.jpg
(as of 08.04.2015, 15:20).

Potential (ESWIRP6). In the project “Investigation of the small-scale statistics of

turbulence in S1MA", an inflatable grid with a diameter of 10 m and a mesh spacing

of 0.625 m, blocking 34.7% of the cross-section, was installed in the contraction

upstream of the test section to produce homogeneous, isotropic turbulence. The aim

of this campaign was to investigate the small scales of turbulent motion with the

greatest possible variety of measurement techniques. Due to the size of the grid and

the test section, the small scales were expected to be measurable without spatial

6http://www.eswirp.eu/ (as of 12.02.2015, 11:30)
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filtering effects. The experiments, in which I participated along with over 30 other

scientists with over a dozen different measurement techniques, were conducted in

the week between July 7th and July 11th, 2014 7. By the time of submission of this

thesis, the ESWIRP project had concluded8 and a database with the collected data

from all collaborators was being created, making the processed experimental data

publicly accessible by the 1st of September, 2017.

2.3 Hot-Wire Anemometry

Since the beginning of the 20th century, hot-wires were to become an important tool

for measuring mean wind velocities and, with the advent of adequate electronics

from the 1920s on, for the precise measurement of velocity fluctuations (see Comte-

Bellot (1976)). Over the decades, the quality of the probes themselves and that of

the supporting electronics has improved immensely, making thermal anemometry

the most potent non-optical measurement technique to observe turbulent flows. As

this thesis heavily relies on the use of specialized hot-wires, their basic working

principles shall be presented in this section.

2.3.1 Working Principle

A hot-wire is a thin, cylindrical metallic wire of a length l of between usually

0.5 mm and 2 mm and of a diameter d between 0.5 µm and 5 µm (Tropea et al.
7http://www.onera.fr/en/news/great-s1ma-wind-tunnel (as of 12.02.2015,
11:40)

8http://www.eswirp.eu/PDF/Press-Release-ESWIRP-completion.pdf (as
of 12.02.2015, 12:20)
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2007, Jørgensen 2001). In most cases, the wire material is platinum or tungsten due

to their steep, linear temperature dependence of resistivity (Comte-Bellot 1976).

The wire is welded to prongs which ensure mechanical stability of the wire and

connect the wire to the measurement electronics. A sketch of a hot-wire probe can

be seen in figure 2.11.

Figure 2.11: Sketch of a typical hot-wire

The wire is heated by the measurement electronics to a temperature significantly

higher than the ambient temperature of the working gas. The fluid is advected with

a mean speed U and small velocity fluctuations u (streamwise), v and w (transverse)

over the heated wire, thereby cooling the wire. In a typical wind tunnel flow, the
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velocity fluctuations are much smaller than the mean speed and the streamwise

velocity component U+u dominates the contribution to the total heat loss from the

transverse fluctuations v and w. Thus, if placed normal to the mean flow, a hot-wire

essentially reacts solely to the streamwise velocity component. One can write a heat

balance equation for the wire-fluid system (Tropea et al. 2007), as follows:

mwcw
dTw

dt
= RwI2

w− (Tw−Ta)Φ. (2.1)

Here, mwcw is the thermal capacity of the wire, Tw its temperature and Rw its

resistance. Iw is the electrical current through the wire and, thus, RwI2
w the heating

rate. The cooling rate due to forced convection, Φ, depends on the temperature

difference of the wire and on the ambient temperature, Ta. The wire material is

chosen to react linearly to temperature changes around the operating temperature.

One can thus easily relate the wire resistance to its temperature as

Rw = R0 [1+χ (Tw−T0)] , (2.2)

Ra = R0 [1+χ (Ta−T0)] , (2.3)

where Ra is the resistance of the wire at ambient temperature, T0 is a reference

temperature usually chosen to be identical to the ambient temperature and χ is the

temperature coefficient of resistivity. It is useful to define the overheat ratio, aw,

which is a measure of the temperature difference between the wire and the ambient
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fluid based upon the electronic properties of the wire:

aw =
Rw−Ra

Ra
. (2.4)

Together with equations (2.2) and (2.3), one obtains a relation between the

temperature and the resistance of the wire in the convenient form

Tw−Ta

Ta
= aw

1+χ (Tw−T0)

χTa
. (2.5)

2.3.2 Constant Temperature Anemometer

In order to actually measure turbulent velocities via the cooling rate Φ, one can

exploit the relation in equation (2.1) by designing an electrical circuit that keeps

the resistance Rw of the hot-wire and, thus, its temperature Tw, constant, yielding a

simple relation to determine the heat loss:

RwI2
w = (Tw−Ta)Φ. (2.6)

A change in the velocity directly leads to a change of the cooling rate Φ and

thus to a measurable change in the heating current Iw. This can be achieved by

placing the sensor in one arm of a Wheatstone bridge and using an operational
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feedback amplifier to feed the output current back to the bridge to restore the wire

resistance. This is advantageous compared to a circuit in which the current is kept

constant. While being significantly simpler to built, a Constant Current Anemometer

is limited in frequency response by the thermal inertia of the wire. Using a Constant

Temperature Anemometer (CTA) is, thus, preferable. A basic circuit of a Constant

Temperature Anemometer is shown in figure 2.12.

Figure 2.12: Sketch of a typical hot-wire circuit. This circuit transfers the cooling
rate of the hot-wire into a measurable voltage signal E. The bridge ratio BR of
the resistances Rs is typically 20 for standard hot-wires and 1 for NSTAPs. The
resistance Rdecade has to be Rdecade = BR · (1+aw) ·R0 to balance the bridge.

As mentioned in subsection 2.1.4, a well-controlled ambient temperature is vital

to conduct hot-wire measurements. This immediately becomes clear from equation

(2.6). If the ambient temperature Ta changes at the same time scales and magnitude
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as the cooling rate, due to the change of velocity, a CTA system is unable to

distinguish the two effects. Figure 2.13 shows the temperature dependence of a CTA

signal. There is a linear dependence of the CTA signal on the ambient temperature

as expected via equation (2.6). With the temperature control capabilities of the

VDTT (see subsection 2.1.4), the effect of temperature fluctuations on the velocity

measurements can be neglected throughout. Even for fluctuations as large as 0.1 K,

which are much larger than those expected for the VDTT (see figure 2.7), the relative

change of the response of the CTA system will be significantly smaller than 0.1%.

Figure 2.13: Typical temperature response for a NSTAP. The dependence of the
voltage response from the CTA system on ambient temperature of the working
gas is given. The data was taken at 8 bar with SF6 flowing at a constant mean
speed. Black circles represent time averages over the turbulent signal measured
by the NSTAP; the black line shows a linear fit to the data.

2.3.3 The Nano Scale Thermal Anemometry Probes

Considering that the size of the smallest eddies produced in the VDTT can be as

small as 20 µm, it is clear that even the smallest of the commercially available
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hot-wires, having a length of about 500 µm, are insufficient for sophisticated mea-

surements of smaller scales in the VDTT. The effect of eddies smaller than the

sensor will be spatially averaged along the length of the wire so that no information

about those structures can be gained. Therefore, nano scale thermal anemometry

probes (NSTAPs) developed at the Department of Mechanical and Aerospace En-

gineering at Princeton University in the group of Alexander Smits (Bailey et al.

2010, Vallikivi et al. 2011) are used. These probes are significantly smaller than

any other hot-wire available, with dimensions of either 100 nm by 2 µm by 60 µm

or 100 nm by 2 µm by 30 µm. In contrast to standard hot-wires, which are usually

cylindrical wires produced in a Wollaston process (Wollaston 1813), the NSTAPs

are produced from a silicon wafer, along the lines of standard semiconductor and

microelectromechanical systems techniques. The resulting platinum probes are flat

plates that are mounted onto standard hot-wire prongs to be compatible with the

existing CTA equipment. Having a higher resistance (approximately 80 Ω to 150 Ω)

than classical hot-wires (about 5 Ω), several modifications to the CTA bridge are

needed to operate the probes. The bridge ratio is limited to 1 for electrical stabil-

ity of the feedback loop. The maximum possible overheat for NSTAPs of about

1.4 is significantly lower than that of standard hot-wires of about 1.8. Due to the

high resistance of the NSTAPs, it is necessary to operate the CTA system with a

temperature-stable external resistor. The resistor, along with its connecting cable,

has to be carefully impedance-matched to the hot-wire and its connecting cable.

Extensive studies on the behavior of NSTAPs have been conducted by Bailey et al.

(2010), Vallikivi et al. (2011), Hultmark et al. (2012), and Ashok et al. (2012), all of
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them confirming the validity of the wire response and concluding that the NSTAPs

provide data comparable to classical hot-wires at large scales, while offering a

significantly improved spatial and temporal resolution at small scales. Recent

developments in the NSTAP technology include the production of crossed wires to

extract two-dimensional flow information (Smits & Hultmark 2014) and the design

of nano-scale temperature probes (Arwatz et al. 2015).

2.4 Experimental Setup and Datasets

The turbulent velocity time series of this thesis are measured with the aforemen-

tioned hot-wires, located at the downstream end of the test section as discussed in

section 2.1. The details of the experimental setup, the calibration procedure and

the individual datasets are covered in the following section. The data in this thesis

is based upon seven distinct datasets, containing several individual experiments

each. The datasets named Decay, Decay_Modified and Decay_Near are used in the

study of decaying turbulence in chapter 3. The datasets Statistic_Medium, Statis-

tic_Large and Statistic_Huge are long time series, used to investigate the scaling

behavior of turbulence in chapter 4, and the dataset S1MA is for the study of the

small scale statistics of turbulence in chapter 5.

2.4.1 Experimental Setup

The VDTT data of this thesis were obtained with two principal experimental con-

figurations. In configuration A, hot-wire probes were placed on a two-dimensional
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transverse linear motion system installed to traverse the tunnel cross section 7.1 m

behind the 180 mm mesh-size passive grid. The traverse system was utilized to

investigate the quality of the flow regarding homogeneity. For the dataset Statis-

tic_Medium, the probes were located around the centerline of the tunnel to ensure

the best possible flow conditions. In configuration B, from which the remaining

datasets stem, the two-dimensional traverse was removed and an 8-meter long

streamwise linear traverse on the tunnel floor was used to position the probes at

arbitrary distances between 1.5 m and 8.3 m behind the grid. The traverse consisted

of a threaded rod driven by a stepmotor that is controlled by the measurement

computer outside of the tunnel. A picture of the probe configuration can be seen in

figure 2.14 and a picture of the measurement section including the linear traverse in

figure 2.15.

Figure 2.14: The left photograph shows probe configuration A, probes positioned
on a two-dimensional traverse system. The right picture is a photograph of
probe configuration B, with the probes fixed in space in the transverse plane.
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Figure 2.15: Downstream view on the probes and the linear traverse. The traverse
is positioned at the nearest position to the grid.

Three types of probes were used to obtain the turbulent time series. The first two

probe types were classical hot-wires produced by Dantec Dynamics9, one with a

length of 1.25 mm and a wire diameter of 5 µm, dubbed from here on as ‘P11’10.

The second probe by Dantec Dynamics has a length of 450 µm and a diameter of

2 µm and is dubbed as ‘Mini’. The major part of the data stems from NSTAPs

with a length of 60 µm and 30 µm, respectively, as discussed earlier. The probes

9http://www.dantecdynamics.com/ (as of 17.02.2015, 14:30)
10https://www.dantecdynamics.com/miniature-wire-probe-straight (as

of 17.02.2015, 14:40)
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are connected with 20 m of double-shielded RG223 BNC cables via feedthroughs

in the wind tunnel walls to a Dantec Dynamics StreamLine 90N10 frame located

outside of the VDTT. The frame is equipped with five CTA modules 90C10 and a

temperature module to simultaneously gather data from up to five hot-wires. For the

use of the NSTAPs with the Dantec CTA system, it is mandatory to use an external

low noise resistor. The house-built “decade box” is adjusted individually to ensure

an overheat ratio of 1.2 to 1.4. The CTA modules are equipped with hardware

signal conditioners including a hardware low-pass filter set to filter the signal at

the Nyquist frequency. The data is digitized using a 12-bit National Instruments

DAQCard-6062E11 and a 16-bit National Instruments NI-USB-6341 X Series Data

card 12, respectively. The experiment is controlled via a LabView13 code originally

designed by Florian Köhler and heavily modified by myself. Analysis of the data is

done via a Matlab14 code originally written by Gregory P. Bewley and modified,

extended and adjusted by myself.

2.4.2 Calibration Procedure

Hot-wires connected to a CTA circuit result in a voltage signal which is related to

the velocity of the turbulent flow field. In general, the dependence of the voltage

signal on the instantaneous velocity at the hot-wire is nonlinear. It can be shown

(King 1914) that for relatively small velocity ranges, as in the VDTT, King’s Law is

11http://www.ni.com/pdf/manuals/370724c.pdf (as of 17.02.2015, 15:30)
12http://sine.ni.com/nips/cds/view/p/lang/de/nid/209069 (as of

17.02.2015, 15:50)
13http://www.ni.com/labview/ (as of 17.02.2015, 16:00)
14http://www.mathworks.com/ (as of 17.02.2015, 16:05)
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a sufficient approximation of the probe response, resulting in the relation

E2 = a+b ·Un. (2.7)

Here, E is the resulting voltage signal from the CTA output, U the velocity and a, b

and n are free parameters. The parameters in this equation are no universal constants

but rather strongly depend on probe geometry, material, resistance, ambient and

working temperature, overheat ratio and the conductivity of the working gas. In

order to ensure the correct conversion of voltages into velocities, it is necessary

to calibrate each individual probe prior to each experiment, using an independent

measure of the velocity. This is done by the use of a pressure-based velocity

measurement technique, using Pitot tubes (or rather by a combination of static and

dynamic pressure tubes (Tropea et al. 2007)). Bernoulli’s equation,

dp
ρ

+UdU = 0, (2.8)

holds in a steady flow, where p is the pressure, ρ the density of the fluid and U its

velocity. Assuming an incompressible fluid with ∇ ·u, separation of variables leads

to

p0− p =
1
2

ρU2. (2.9)
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In this relation, p0 is the pressure of the resting fluid (static pressure) and p the

pressure of the moving fluid (dynamic pressure). In the VDTT, the pressure differ-

ence p0− p is measured by static and dynamic pressure tubes that are connected to

a pressure transducer located outside of the tunnel. With knowledge of the density

of the working gas, it is possible to compute the flow velocity from this pressure

difference as long as the turbulent fluctuations are small compared to the mean

speed. By changing the speed of the fan, it is also possible to obtain the voltage

response of the wires over a range of velocities to calibrate the probes with a fit to

King’s Law. A typical calibration curve at high pressure can be seen in figure 2.16.

Figure 2.16: A typical calibration curve of a NSTAP at 13 bar SF6.

The calibration procedure is automated so that the measurement computer con-

trols the tunnel fan along with the data acquisition. The signal from the pressure

transducer is digitized using the same data acquisition card as for hot wire mea-

surements. Between each measurement point, there is a time delay to allow the

temperature control of the tunnel to stabilize.
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2.4.3 Datasets

The data in this thesis relies on three major classes of datasets. The results on

the decay of turbulence are based upon the datasets Decay, Decay_Modified and

Decay_Near. The largest dataset of these, the dataset Decay, consists of 36 in-

dividual experiments at different pressures, between air at 0.5 bar with a 12 Hz

tunnel fan frequency and SF6 at 15 bar with a 20 Hz fan frequency, spanning mesh

size Reynolds number ReM between 104 and 5 ·106. For each Reynolds number,

turbulence statistics were acquired using NSTAPs, P11 and Mini probes at 50

logarithmically spaced distances between 1.5 m and 8.3 m from the grid. At each

position, 5 minutes of data, or 1.8 ·107 samples, were measured.

Dataset Decay
Probes P11, Mini, NSTAP

Distance from the grid [m] 1.5 to 8.3
Sampling rate [kHz] 60

# of positions 50
# samples per position 1.8 ·107

Working gas Air, SF6
p [bar] 0.5 to 15

ν [m2/s2] 1.4 ·10−7 to 3.3 ·10−5

U [m/s] 2.45 to 4.95
u′/U 1.58% to 3.56 %

ε [m2/s3] 3.45 ·10−3 to 1.77 ·10−2

Rλ 21 to 1450
η [µm] 21 to 1600
λ [mm] 1.57 to 20.3
L [mm] 115 to 254

Table 2.3: Conditions of the decay measurements for the dataset Decay. The
magnitude of the derived quantities changes with distance from the grid. Given
are the quantities at the largest distance from the grid, obtained with NSTAPs.
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The three probes were located around the centerline of the tunnel and positioned

by the streamwise linear traverse. For each measurement, the passive 180 mm grid

was installed to produce turbulence. For an overview of the experimental conditions,

see table 2.3.

The grid was modified for the dataset Decay_Modified in the following ways. In

one iteration, steel wires with a diameter of 5 mm were wrapped along the transverse

faces of the three central grid bar segments to locally change the detachment of

turbulent wakes from the grid bars. For this modification, 6 of the above experiments

haven been conducted between air at 1 bar and SF6 at 15 bar. One additional

experiment at air at 1 bar was done using a grid modification with half-circles 40 mm

in diameter placed along the streamwise direction of the grid bars. Photographs of

the modifications can be seen in figure 2.17.

Figure 2.17: The left photograph shows the modification of the central grid gaps
via steel wires, the right photograph the rounded grid.
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For the dataset Decay_Near, the probe setup was changed such that the minimum

distance to the grid was altered, using a forward extension of the traverse wagon.

The measurements were conducted in air at 1 bar at distances between 34 mm and

1.86 m behind the grid, using two P11 probes at 14 different distances from the grid.

The experimental conditions for the datasets Decay_Modified and Decay_Near are

summarized in table 2.4.

Dataset Decay_Modified Decay_Near
Probes P11, Mini, NSTAP P11

Grid distance [m] 1.5 to 8.3 0.034 to 1.86
Sampling rate [kHz] 60 60

# positions 50 14
# samples per position 1.8 ·107 1.8 ·107

Working gas Air, SF6 Air
p [bar] 1 to 15 1

ν [m2/s2] 1.4 ·107 to 1.55 ·10−5 1.55 ·10−5

U [m/s] 4.2 to 4.3 3.9
u′/U 1.0% to 3.4% 4%

ε [m2/s3] 0.002 to 0.02 0.1
Rλ 70 to 1500 80

η [µm] 20 to 1250 430
λ [mm] 1.5 to 20 7.4
L [mm] 124 to 138 70

Table 2.4: Conditions of the decay measurements for the datasets Decay_Modified
and Decay_Near. Given are the quantities at the largest distance from the grid.

The data from the dataset Statistic_Medium is a collection of NSTAP data ac-

quired with the 106.6 mm and the 180 mm grids, 7.1 m behind the grid. The 42

individual datasets are between 5 and 28 minutes long, measured at a constant posi-

tions along the transverse direction of the tunnel in configuration A (see subsection

2.4). An summary of the experimental conditions is given in table 2.5.
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Dataset Statistic_Medium
Probes NSTAP

Grid distance [m] 7.1
Sampling rate [kHz] 60 and 200

# samples 1.8 ·107 to 2.0 ·108

Working gas Air, SF6
p [bar] 1 to 15

ν [m2/s2] 1.4 ·10−7 to 1.5 ·10−5

U [m/s] 1.32 to 4.31
u′/U 1.99% to 4.38%

ε [m2/s3] 0.0003 to 0.035
Rλ 50 to 1600

η [µm] 17 to 1080
λ [mm] 1.44 to 18.7
L [mm] 72.7 to 150

Table 2.5: Experimental conditions of the dataset Statistic_Medium

The datasets Statistic_Large and Statistic_Huge were gathered in conjunction

with the experiments corresponding to the dataset Decay, with the linear traverse

being in the far downstream position 8.3 m behind the grid (with the exception of

one measurement at 15 bar SF6 of the dataset Statistic_Huge, which was acquired

6.9 m behind the grid). Statistic_Large consists of 14 measurements of the turbu-

lent velocity between 6 and 9 hours long, whereas Statistic_Huge consists of 4

measurements between 2 and 3 days long. The datasets consist of simultaneous

measurements with a P11, a Mini and an NSTAP. The experimental conditions of

these datasets can be found in table 2.6.
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Dataset Statistic_Large Statistic_Huge
Probes P11, Mini, NSTAP P11, Mini, NSTAP

Grid distance [m] 8.3 6.9 and 8.3
Sampling rate [kHz] 60 60

# samples 1.3 ·109 to 1.9 ·109 1.0 ·1010 to 1.5 ·1010

Working gas Air, SF6 SF6
p [bar] 1 to 14.5 1 to 15

ν [m2/s2] 1.5 ·10−7 to 1.55 ·10−5 1.4 ·10−7 to 2.6 ·10−6

U [m/s] 3.46 to 5.11 4.01 to 4.34
u′/U 1.57% to 3.45% 2.7% to 3.6%

ε [m2/s3] 0.003 to 0.015 0.012 to 0.024
Rλ 110 to 1450 300 to 1600

η [µm] 22 to 1030 19 to 191
λ [mm] 1.61 to 21.1 1.45 to 6.73
L [mm] 103 to 138 126 to 129

Table 2.6: Experimental conditions of the datasets Statistic_Large and
Statistic_Huge.

The data from the dataset S1MA was acquired in the S1MA wind tunnel in the

scope of the ESWIRP project presented in section 2.2. The dataset S1MA consists

of measurements with a 30 µm NSTAP at 1 bar of air at mean flow speeds of 21 m/s

and 43 m/s, respectively. A summary of the flow parameters is given in table 2.7.

All tables with experimental conditions in this subsection are additionally given

in Appendix A.

2.4.4 Post-Processing

The hot-wire voltage data is continuously written to the measurement computer hard

disk in a 2 byte binary file format in individual files of 6 megabyte size. Every file

thus contains 3 ·106 samples of the hot-wire voltage signal. In the post-processing,
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Dataset S1MA
Probes NSTAP

Sampling rate [kHz] 200
# samples 4.4 ·108 to 9.6 ·108

Working gas Air
p [bar] 1

ν [m2/s2] 1.5 ·10−5

U [m/s] 21 to 43
u′/U 1.2% to 1.7%

ε [m2/s3] 0.26 to 0.75
Rλ 250 to 320

η [µm] 260 to 330
λ [mm] 9 to 10
Le [mm] 129 to 148

Table 2.7: Experimental conditions of the measurements conducted in the S1MA.

the voltage data is converted into velocities by applying King’s Law (see equation

(2.7)). The parameters for King’s Law are obtained by a nonlinear least square fit

(Seber & Wild 2003) to the calibration curve using the built-in Matlab function

nlinfit. CTA systems generally suffer from significant electric noise at high

frequencies (Hutchins et al. 2012). To remove spurious high frequency signals, the

velocity data is filtered with an 8th-order Butterworth filter. The filter frequency is

chosen to cut the signal at the frequency at which the small scale part of the energy

spectrum starts to grow in an unphysical way. The growth of the spectrum at very

large scale can be attributed to the electrical noise stemming from the CTA system.

An unfiltered energy spectrum is shown in figure 2.18.
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Figure 2.18: A one-dimensional energy spectrum from an unfiltered velocity signal
from the dataset Statistic_Huge at 1 bar SF6. The cutoff frequency ffilter,
depicted in blue, is chosen to be at the frequency at which electric noise starts
to dominate the probe response.

In the VDTT, the cutoff frequency ffilter can be estimated by the purely empirical

formula

ffilter =
8√

ν · s
m2

e0.776−0.0938 d
m

1
s
, (2.10)

where d is the distance from the grid and ν the kinematic viscosity of the working

fluid. In case the automated estimation exceeds the Nyquist frequency, the cutoff

frequency is chosen such that the filter range does not exceed the Nyquist frequency.
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2.4.5 Computation of Flow Properties

From the filtered velocity data, structure functions and spectra are computed via his-

tograms for a finite number of separations. Unless otherwise stated, Kolmogorov’s

equation (1.24) is used to calculate the mean energy dissipation rate ε from the

structure functions, so that (neglecting the source term)

ε = max
r

(
−5

4

(
S3 (r)−6ν

d
dr

S2 (r)
))

. (2.11)

The derivative in this equation is approximated by the use of finite differences.

The energy dissipation rate can then be used to calculate the Taylor length scale λ ,

the Taylor Reynolds number Rλ and the Kolmogorov length scale η in the isotropic

approximation using

λ =

√
15ν

ε
u′, (2.12)

Rλ =
u′λ
ν

, (2.13)

η =
(
ν

3/ε
)1/4

. (2.14)

The integral length scale L is a quantity obtained from the velocity autocorrelation

function (see subsection 1.2.2). As it is impossible to integrate over infinite times,

and because noise prevents the autocorrelation to be identically zero at large scales,

approximations must be employed. The common approximation uses exponential
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tail fitting to obtain the integral length scale. The autocorrelation function is

continued by an exponential fit from a point where it crosses a threshold (chosen

to be 0.05, unless stated otherwise). The contribution of the large-scale part to

the integral in equation (1.15) can then be calculated analytically from the fitted

exponential decay. A second method for obtaining a large scale quantity closely

related to the integral length scale is to define a length scale Le as the length scale

where the autocorrelation function drops below 1/e of its maximum value. This

measure gives a quantity systematically smaller than the integral length scale, while

preserving its scaling properties.
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3 Decay of Turbulence

I this chapter, I investigate how quickly a turbulent flow decays once it has been

produced and which quantities govern its internal structure. In section 3.1, I address

the fundamental question as to how fast turbulent kinetic energy decays after being

produced by a passive grid. Section 3.2 considers a turbulence-intrinsic description

of the decay. To generalize the results from the single passive grid decay studies, I

conducted experiments with modified grid geometries whose results are covered in

section 3.3. The chapter concludes with remarks on the measurement uncertainties

in section 3.4. Parts of this chapter have been published in Physical Review Letters

(Sinhuber, Bodenschatz & Bewley 2015).

3.1 The Decay of Turbulent Kinetic Energy

As introduced in section 1.4, turbulence dissipates kinetic energy. This causes, in

the absence of energy input into the flow, the turbulent motion to come to rest after

a finite time. The answer to the seemingly simple question of how fast this process

happens is not yet precisely known. It is neither known whether the theoretical
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3 DECAY OF TURBULENCE

predictions of Saffman (1967b) or Kolmogorov (1941c) hold true, nor, if they do,

under what circumstances. There is no theoretical framework which accurately

predicts the rate of decay for an arbitrary flow geometry. It is as a matter of fact even

notoriously difficult to measure the rate of decay in experiments (Mohamed & Larue

1990, Skrbek & Stalp 2000, Hurst & Vassilicos 2007, Krogstad & Davidson 2010).

The exact physics that control the decay are unknown, as is in particular whether or

how the fundamental parameter of turbulent flows, the Reynolds number, affects the

decay process. The original theoretical frameworks by Saffman and Kolmogorov

do not include an explicit Reynolds-number dependence. In these theories, the rate

at which turbulent kinetic energy decays should solely be governed by the large

scales of the motion (Eyink & Thomson 2000, Davidson 2011, Meldi et al. 2011).

The line of thinking is that the initial structure at the time of production of the flow

defines the decay rate (George 1992, Lavoie et al. 2007, Thormann & Meneveau

2014). Numerous experimental studies agree with this physical picture (see figure

3.10), with many, but not all, of the results being along the lines of Saffman’s

prediction. These predictions break down once Reynolds numbers become very

small (Ling & Huang 1970, Perot & de Bruyn Kops 2006), once the final period

of decay is reached (Batchelor & Townsend 1948b), or once side-wall effects start

to dominate the flow (Stalp et al. 1999, Skrbek & Stalp 2000). In Taylor-Couette

flows (Huisman et al. 2012) and Rayleigh-Bénard convection (He et al. 2012), a

transition to an asymptotic scaling behavior in extreme regimes of the flow has

been observed, the so-called ultimate regimes. In the same spirit, for decaying

turbulence, there are arguments for the existence of a self-similar decay at high
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3.1 The Decay of Turbulent Kinetic Energy

Reynolds numbers, during which turbulence proceeds to remain self-similar to itself

during the decay process, resulting in a constant Reynolds number during the decay

combined with a power-law decay of energy with an exponent of −1 (Dryden 1973,

Lin 1948, George 1992, Speziale & Bernard 1992, Burattini et al. 2006, Lavoie

et al. 2007, Kurian & Fransson 2009). The theory is motivated by the fact that, a

priori, neither Kolmogorov’s nor Saffman’s prediction can be proven to describe real

flows. In fact, one can show that decaying turbulence can exhibit scaling quantities

with the general form u2Lm, with m = 5 (Batchelor turbulence) or m = 3 (Saffman

turbulence). Using this to integrate equation (1.32),

3
2

du2

dt
=−Cε

u3

L
, (3.1)

one obtains a general power-law decay of the form

u2

U2 =

(
1+

m+2
2m

C · t
)−2m/(m+2)

, (3.2)

with an initial velocity U and a constant C. Here, u2 is a measure of the turbulent

kinetic energy, E. It has been suggested that Saffman turbulence, corresponding

to m = 3, is a physical minimum of the decay exponent (Davidson 2009). The

arguments supporting this claim, however, rely heavily on the applicability of the

central limit theorem, which has to be reconsidered critically due to the loss of

statistical independence from the non-locality of the Navier-Stokes equations. In

73



3 DECAY OF TURBULENCE

the special case m = 2, one obtains a self-similar decay of kinetic energy with

u2 =C (t− t0)
−1 , (3.3)

E (k) ∝
k→0

k, (3.4)

Rλ (t) = const. (3.5)

While Batchelor-type decay is connected to turbulence consisting of turbulent

patches with significant conserved angular momentum and Saffman’s theory to

turbulence is governed by patches of non-negligible conserved linear momentum,

self-similar turbulence would correspond to turbulence with conserved viscous

contributions (George 1992). Especially, the results from the highest Reynolds

number grid turbulence data available before the VDTT experiments by Kistler &

Vrebalovich (1966) and by Bewley et al. (2007) (in liquid helium) hint towards a

decay exponent of −1 and thus self-similar decay. One must note, however, that

the turbulence in the wind tunnel used by Kistler and Vrebalovich was of unusually

high anisotropy. Furthermore, studies over a limited range of intermediate Reynolds

numbers (George 1992, Speziale & Bernard 1992, Burattini et al. 2006, Kurian &

Fransson 2009) show the tendency towards a slower decay with a possible limit of

m = 2, and thus n =−1. The experimental ability to adjust the Reynolds number

in the VDTT independent of the outer flow geometry or mean speed facilitates the

investigation into the possibility of an approach to self-similar decay in great detail.

Especially, as the VDTT can reach Reynolds numbers significantly higher than
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3.1 The Decay of Turbulent Kinetic Energy

those reported by Kistler & Vrebalovich (1966), without the disadvantages of high

anisotropy, and can cover a wider range of Reynolds numbers than in the studies of

Kurian & Fransson (2009).

3.1.1 On the Power-Law Decay of Turbulence

The most straightforward way to obtain information about the decay rate and the

corresponding internal structure of turbulence is to investigate the decay of turbulent

kinetic energy. As discussed in section 1.4, the decay of turbulent kinetic energy

should follow a power-law of the form

u2

U2 =C
(
(t− t0)

U
M

)n

. (3.6)

Here, U is the extrapolated mean velocity at the position of the passive grid, t0 the

virtual origin, n the decay exponent and C a prefactor. The offset of the power-law,

the virtual origin, is the hypothetical position back in time where the energy would

have been infinite, assuming a power-law decay for all times. To translate the spatial

information of the data in the dataset Decay into temporal information, a simple

Galilean transformation can be used to convert the distance from the grid x/M in a

time of decay t by t = x/U via the mean speed U . In total, as discussed in section

2.4.3, the dataset Decay contains 99 decay curves, spanning more than two orders of

magnitude in mesh size Reynolds number, 104 < ReM =UM/ν < 5 ·106, gathered

with P11, Mini and NSTAP hot-wires. Each individual measurement consists of
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time series of the turbulent velocity at 50 logarithmically spaced distances from

the grid. Figure 3.1 shows the decay curves from Mini probes at several Reynolds

numbers.

Figure 3.1: The decay of the normalized turbulent kinetic energy at six distinct
Reynolds numbers measured by a Mini probe (◦). The kinetic energy is
normalized using the extrapolated mean speed at the grid position; the time
is normalized by the mean speed over the mesh size. The offset t0 of the
abscissa is the virtual origin averaged over all 99 curves (see figure 3.2). The
straight line is a global average over all Reynolds numbers and all probes. The
Mini data is shifted incrementally for better visibility, with the bottom curve
being unshifted. The Reynolds numbers of the curves are (from bottom to top)
29 ·103, 41 ·103, 83 ·103, 17 ·104, 20 ·104 and 48 ·104.

Despite spanning a wide range of Reynolds numbers, the individual curves are all

consistent with the theorized power-law behavior in equation (3.6), as well as having

virtually the same scaling over all experiments. The offset of time in figure 3.1 is the

averaged virtual origin obtained from a three-parameter fit to the data. Figure 3.2

shows the virtual origin for all measurements of the dataset Decay. The resulting

virtual origins show no trend with Reynolds number and scatter around the mean
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value of t0U/M = 3.66. The independence of Reynolds number is expected, as the

virtual origin is presumably related to the geometry of the turbulence producing

grid and the way wakes detach from the grid bars. Only different grid geometries

should therefore lead to different virtual origins (Lavoie et al. 2007, Thormann &

Meneveau 2014, Comte-Bellot & Corrsin 1966). Circular grid bars undergo the

so-called drag crisis at Reynolds numbers of about 3 ·106 at which a drastic change

of the drag coefficient occurs and the detachment behavior of wakes significantly

changes (Schewe 1983). This feature is absent for rectangular grid bars (Schewe

2013), so that it is reasonable to assume that the virtual origin is independent of the

Reynolds number.

Figure 3.2: The resulting virtual origins from three-parameter fits to the decay
curves in a semilogarithmic plot for P11 (�), Mini (◦) and NSTAP (4) data.
The data scatters around its mean value t0U/M = 3.66 with no apparent trend
in Reynolds number.

The scatter in the virtual origin does however have a significant impact on the

results directly derivable from a three-parameter fit to the data. As the virtual origin
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and the exponent in equation 3.6 are coupled quantities, their determination with

a nonlinear least square algorithm would produce ambiguous results. Figure 3.3

shows the results for the decay exponents nfree from a three-parameter fit as function

of the Reynolds number.

Figure 3.3: The resulting decay exponents from three-parameter fits to the decay
curves. Due to the scatter in the virtual origin, the extracted decay exponents
scatter significantly. The error bars correspond to the 95% confidence intervals.

This coupling of the decay exponent and the virtual origin be seen in figure 3.4.

Although there is random scatter in the data, a clear dependence of the obtained

decay exponent on the virtual origin and vice versa can be observed. The strong

correlation between the decay exponent and the virtual origin prevents a precise

analysis of a possible Reynolds-number dependence and further effects from a

straightforward three-parameter fit. More sophisticated methods must be employed

to extract meaningful physical information.
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3.1 The Decay of Turbulent Kinetic Energy

Figure 3.4: The dependence of the decay exponent on the virtual origin in a three-
parameter Levenberg-Marquardt algorithm. Despite the scatter in the data,
there is a distinct dependence of the exponent on the virtual origin. The error
bars correspond to the 95% confidence intervals.

The physical meaning of the virtual origin lies in the near-field behavior of the

flow directly behind the turbulence-producing grid. Figure 3.5 shows data from

the Dataset Decay_Near, obtained with P11 probes as close as 3.4 cm downstream

of the grid. The blue squares correspond to data obtained directly behind an open

space of the grid, whereas the red data corresponds to data directly behind a grid bar.

This leads to the behavior of the mean speed shown in the left figure. Initially, the

mean speed behind an open space is much higher than behind a grid bar blocking

the flow. Far away from the grid, however, the spreading of turbulent wakes leads

to a homogeneous mean velocity profile across the cross-section of the tunnel.

Analogous behavior can be found in the development of the kinetic energy, shown

in the right plot in figure 3.5. Behind an open space, turbulent kinetic energy first

builds up until some distance after the grid, due to the influence of growing wakes,
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while behind the grid bar, disturbances are initially high and decay directly. The

global virtual origin depicted in these two figures as a black vertical line can be given

a physical meaning in the following sense: The virtual origin for the classical grid

used in these experiments is not directly related to the peak in the build-up of energy,

but instead corresponds to the distance from the grid at which the differences in mean

speed and turbulent kinetic energy between positions directly downstream of grid

bars and open spaces vanish. The flow at this point thus has small spanwise shear

contributing to the decay of energy. The virtual origin is therefore a measurable

quantity, marking the beginning of freely decaying turbulence. Note that this applies

to the classical grid of rectangular bars used in the datasets Decay and Decay_Near;

other grids with greatly modified geometries like round grid bars, active grids or

fractal grids might have a different relation between the virtual origin and the flow

characteristics. This will have to be investigated in greater detail. Far downstream

of the grid, the dependence of the flow characteristics on the near-field behavior

vanishes (see figure 3.6).

80



3.1 The Decay of Turbulent Kinetic Energy

Figure 3.5: Decay measurements in the vicinity of the grid from the near-field
dataset Decay_Near (see table 6.2). The top left figure shows the development
of the mean speed directly downstream of a grid bar (red squares) and directly
downstream of an open space (blue squares). The top right figure shows the
decay of normalized turbulent kinetic energy for the same dataset. The bottom
figure show the respective ratios. As expected, one observes a build-up of
kinetic energy behind the open space due to turbulent mixing before the energy
decays. The black vertical lines indicate the globally averaged virtual origin
(see subsection 3.1.2)

.
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Figure 3.6: Decay measurements downstream of the grid from the dataset Decay
(see table 6.1) at 2 bar SF6. The top figure shows the development of the ratio
of the measured mean speeds obtained by a Mini probe and by an NSTAP at a
different spanwise location. The bottom figure shows the ratio of the decay of
normalized turbulent kinetic energy for the same experiment. Small deviations
from unity can be attributed to slight uncertainties in the calibration procedure.
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3.1.2 The Decay Exponent

As the virtual origin does not depend on the Reynolds number and is connected

to the tunnel geometry and that of the grid, both of which do not change between

experiments, one way to improve the estimation of the decay exponent is to fix the

virtual origin to its mean value. With this physically supported argument, the needed

three-parameter fit of equation 3.6 to the data reduces to a two-parameter second-

step fit after the mean virtual origin has been determined. The resulting two fit

parameters, the prefactor C and the exponent n, are now significantly more reliable

quantities than in the three-parameter fit. Figure 3.7 shows the resulting decay

exponents. All individual resulting exponents are close to Saffman’s prediction

of n = −1.2, despite the Reynolds number spanning more than two orders of

magnitude. The mean decay exponent of the accumulated data is slightly bigger,

with n=−1.18±0.02. Neither the predictions for Batchelor turbulence nor those of

a self-similar decay are compatible with the presented data. There is particularly no

apparent trend towards a slower decay at high Reynolds numbers and no approach to

a self-similar decay with an exponent of n =−1, contrary to earlier suggestions (see

also figure 3.10 for a comprehensive comparison to earlier experimental findings).

However, to be more precise, there is a negligible trend with Reynolds number.

Fitting a line to the data of figure 3.7 in the semi-logarithmic coordinates shows

an intersection with n =−1 at a Reynolds number of ReM = 1050. For such a high

Reynolds number, the largest scales of the flow needed to be of the size of a large

galaxy with the smallest scales of the size of an atom. In other words, it categorically

cannot be realized. Even though these findings cannot rule out a hypothetical sharp
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transition towards a self-similar decay at Reynolds numbers even higher than the

experimentally observed Reynolds numbers of ReM ≈ 5 ·106, none of the existing

data supports such a transition.

Figure 3.7: Resulting decay exponents from a two-parameter fit to the data with
the virtual origin fixed to its mean value, t0U/M = 3.66. The horizontal lines
represent the theoretical predictions for self-similar decay (blue), for Saffman
turbulence (red) and for Kolmogorov turbulence (green). The mean value of
the data is n = −1.18, with a standard deviation of 0.02, close to Saffman’s
prediction, with no significant trend in Reynolds number.

In order to study the constancy of the decay exponent with Reynolds number

without needing to rely on the choice of a certain value of the virtual origin, a

second method of analysis is applied to the data. For this, one assumes that the

decay of turbulent kinetic energy Ei (Rei, t) follows a general power-law at a certain

Reynolds number Rei,

Ei (Rei, t) =Ci (Rei)(t− t0)
ni(Rei) , (3.7)
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where Ci (Rei) is a prefactor that might depend on the Reynolds number and

ni (Rei) is the Reynolds number dependent decay exponent. The idea is that for fixed

boundary conditions, and thus constant virtual origin t0, one can relate the decay of

energy Ei (t,Rei) at a Reynolds number Rei to the decay of energy E j
(
t,Re j

)
at a

different Reynolds number Re j in a formal way, such that

Ei (Rei, t) = f
(
E j
(
t,Re j

)
,Rei, t

)
. (3.8)

Together with equation (3.7) at Reynolds numbers Rei and Re j, one obtains

Ei (Rei, t) =
Ci (Rei)

C j
(
Re j
)E j (Rei,t)

ni(Rei)
n j(Re j) . (3.9)

By calculating the logarithmic derivative of this expression, a relative decay

exponent nr
(
Rei,Re j

)
is obtained with

nr
(
Rei,Re j

)
=

∂ logEi

∂ logE j
=

ni (Rei)

n j
(
Re j
) . (3.10)

With this technique, it is possible to extract relative information about the

Reynolds-number dependence of the decay exponent without a priori knowledge

about the virtual origin, therefore removing the ambiguity in the determination.

Note that this technique does not demand that individual decay curves strictly follow
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power-laws; generalized power-laws with an arbitrary cutoff function g(t) of the

form Ei (Rei, t) =Ci (Rei)g(t)(t− t0)
ni(Rei) produce the same results.

Figure 3.8: The relative decay exponents as in equation (3.10) in a linear plot.
These relative exponents are invariant in the Reynolds number.

The relative decay exponents shown in figure 3.8 are computed choosing E j to

be the averaged curve over all decay curves (see figure 3.1) and by using a finite

difference formula for unequal sub-intervals (Singh & Bhadauria 2009) to calculate

the derivative in equation (3.10). The invariance in Reynolds number of the relative

decay exponent independently confirms the findings of figure 3.7. Scattering around

nr = 1, the relative decay exponent supports the argument that there is no general

influence of the Reynolds number on the rate of decay. In the classical theories,

the prefactor C in the decay should be a constant of Reynolds number as well.

Following Batchelor & Townsend (1948a), the prefactor should solely depend on

the grid geometry and its drag per unit area. Experimental studies at lower Reynolds

numbers and for several fixed grid geometries, however, find that C is indeed a

decreasing function of Reynolds number for ReM < 104 (Kurian & Fransson 2009).
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The data from the dataset Decay in figure 3.9, however, shows a Reynolds number

trend of an increasing C until a possible saturation at high Reynolds numbers. This

is consistent with the picture that the constant Cε in equation (1.32) only reaches a

constant value for high Reynolds numbers.

Figure 3.9: The prefactor of the decay of turbulent kinetic energy corresponding to
the two-parameter fits and decay exponents in figure 3.7. At lower Reynolds
numbers, a distinct trend towards larger prefactors can be observed which
seems to saturate for ReM & 106.

As discussed earlier, previous experimental results implied that there might be

an approach to self-similar decay at high Reynolds numbers. A dependence of

the decay exponent on the Reynolds number has also been observed in numerical

simulations (Burattini et al. 2006, Ishida et al. 2006, Perot 2011). Figure 3.10 shows

the gathered experimental data previously obtained in combination with the VDTT

results from figure 3.7.

Judging only from the previous experimental data, which is subject to significant

scatter, the assumptions of a trend towards a slower decay rate at higher Reynolds

numbers is not unreasonable. Combined with the new results from dataset Decay,
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Figure 3.10: Comparison of the Reynolds number dependence of the decay ex-
ponents n of the dataset Decay (black symbols, data as in figure 3.7) with
published experimental data from previous experiment Batchelor & Townsend
(1948a) (◦), Wyatt (1955) (�), Uberoi (1963) (+), Comte-Bellot & Corrsin
(1966) (4), Kistler & Vrebalovich (1966) (5), Uberoi & Wallis (1966) (C),
Van Atta & Chen (1968) (B), Warhaft & Lumley (1978) (◦), Sreenivasan et al.
(1980) (�), Sirivat & Warhaft (1983) (4), Mohamed & Larue (1990) (5),
Yoon & Warhaft (1990) (C), Makita (1991) (B), Mydlarski & Warhaft (1996)
(◦), van Doorn et al. (1999) (�), Poorte & A. (2002) (+), White et al. (2002)
(4), Antonia et al. (2003) (5), Bewley et al. (2007) (C), Lavoie et al. (2007)
(B), Kurian & Fransson (2009) (◦), Krogstad & Davidson (2011) (�), Valente
& Vassilicos (2011) (4) and Thormann & Meneveau (2014) (5).

however, it becomes evident that the generic high Reynolds number limit is most

probably not the self-similar decay. However, the data suggest a transition from

Batchelor to Saffman turbulence at very low Reynolds numbers.

3.2 Turbulence-Intrinsic Description

So far, the study of the decay of turbulence was performed in a straightforward way

by means of the time-dependence of a global quantity, the turbulent kinetic energy.
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While this approach already provides meaningful insight on the Reynolds-number

dependence of the decay process, it lacks a direct connection to the underlying

physics of the decay process. As described in section 1.4, the internal, large-scale

structure of a turbulent flow is believed to determine its behavior when freely

decaying. Conserved quantities are responsible for the persistence of turbulence. A

description of the decay of turbulence based upon its intrinsic quantities, e.g., its

length scales and dissipation rate, therefore seems to be a more natural approach

to understanding the physics of turbulent decay and it shall be discussed in this

section. Of further advantage is that the description based upon turbulence itself

eliminates the need of determining a virtual origin completely, as the statistics of

the instantaneous flow properties are real physical quantities that do not depend on

an arbitrary time offset.

3.2.1 The Large-Scale Flow Structure

The classical theory by Kolmogorov (1941c) predicts the energy dissipation rate

ε = −(3/2)du/dt = Cεu3/L to be constant with regards to time and Reynolds

number. As long as the Reynolds number is high enough, Cε indeed approaches

a constant value of order one in many flows (Sreenivasan 1998). As described in

section 1.4, assuming a power-law relation between the integral length scale L and

the energy u2, one is able to integrate the equation above to obtain the power-law

decay of energy in the form u2 ∼ (t− t0)
n. By investigating the relation between L

and u2 directly, it is possible to independently characterize the type of turbulence,

as the classical theories demand L ∝ (u2)k with k = −1/2 for self-similar decay,
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k =−1/3 for Saffman type turbulence and k =−1/5 for Batchelor turbulence.

Figure 3.11: Logarithmic plot of the normalized integral length scale L/M versus
the normalized turbulent kinetic energy u2/U2. The gray point are calculated
from the turbulent velocity signal at each position and each Reynolds number
from the Dataset Decay without discrimination regarding any quantity. Here,
Le is calculated as the length scale where the velocity autocorrelation drops
to 1/e of its maximum value. The black curve is the median of all curves,
calculated in logarithmically spaced bins, the blue line is the corresponding
prediction for a self-similar decay, the red line is that of Saffman’s prediction
and the green line is that of Kolmogorov’s theory.

Figure 3.11 shows the resulting relation between the integral length scale based

upon the scale at which the velocity autocorrelation function drops to 1/e of its

maximum value and the turbulent kinetic energy. Note that the lower right part of

the figure corresponds to small times, i.e., short distances from the grid, and the

upper left part to large times. The resulting black median curve over all experiments

is compatible with the predictions for Saffman’s turbulence. The deviations from

a power-law behavior for large times can be attributed to the tunnel’s side walls,
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affecting the flow at very large distances from the grid. Neither the predictions of

self-similar decay nor those of Batchelor type turbulence are compatible with the

data. A power-law fit to the data gives L ∝ (u2)−0.35, which is close to Saffman’s

L ∝ (u2)−1/3 and precisely reproduces a decay exponent of n =−1.18, as found in

figure 3.7. There is no apparent approach towards a self-similar decay with high

Reynolds numbers, which confirms the finding in figure 3.10. Note that the analysis

presented here is completely independent of the one in section 3.1 and, explicitly,

does not depend on the virtual origin. Figure 3.12 shows the individually fitted

exponents k in the relation L ∝ (u2)k. The results are consistent with the findings

from section 3.1.2, independently of the virtual origin.

Figure 3.12: Virtual origin independent decay exponents k from the turbulent-
intrinsic description L ∝ (u2)k. The colored lines represent the predictions of
the classical decay models.

Even though the decay process is largely dominated by the structure of the large

scales, the physics is closely related to the small-scale structure of the flow. This can
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easily be seen by going back one step to the classical equation (1.32). It relates the

behavior of the large scale L to the energy dissipation rate ε , which is by definition

a quantity of the small scales,

ε =
ν

2 ∑
i, j

(
∂ui

∂x j
+

∂u j

∂xi

)2

. (3.11)

Figure 3.13 shows the constant Cε = εL/u3 for all experiments in the dataset

Decay. To calculate the energy dissipation rate, the left-hand side of equation (1.32),

3
2

du2

dt =−ε , was used, the derivative was estimated by means of the aforementioned

finite difference formula for unequal sub-intervals, as applied to the individual

fitted power-laws of the decay curves. This circumvents the need to compute

velocity derivatives directly, which is not feasible for significant parts of the taken

measurements, where the probe size is larger than the Kolmogorov length scale (see

table 2.3).

In figure 3.13, one can see that Cε is a constant of order one, varying only slowly

with the distance from the grid. The individual curves scatter around the median

curve, plotted as a bold black line, without any apparent trend in Reynolds number.

The scatter arises from the difficulty of obtaining the energy dissipation rate and

integral length scale for the short datasets having relatively limited statistics. The

classical predictions of Kolmogorov (1941c) hold reasonably well, justifying the

analysis in figure 3.11 and thus the Reynolds number independence of the decay of

turbulence.
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3.2 Turbulence-Intrinsic Description

Figure 3.13: Semilogarithmic plot of the constant Cε versus the distance from the
grid x/M. The light gray points represent experimental data from the dataset
Decay, the bold black line the non-discriminated median over logarithmically
spaced bins. Cε is only a slowly varying variable with time and is of order one.
The lowest Reynolds-number experiments give substantially different values
for Cε , originating in the difficulty to determine the precise values of Le and ε

especially with P11 probes in experimental conditions at very low Reynolds
numbers. These experiments are thus excluded from this figure.

3.2.2 The Energy Spectrum

In the previous section, it was shown that there is a close connection between

the decay, dominated by the large scales, and the energy dissipation, a small-scale

quantity. A more detailed investigation of this connection can be done using the time

progression of the energy spectrum E (k,t), covering all scales of motion. Single-

wire hot-wires are not able to measure more than one velocity component, in these

experiments the longitudinal velocity component, so that the three-dimensional

energy spectrum is not directly measurable. However, using Taylor’s hypothesis,
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is it at least possible to compute the longitudinal velocity correlation function

C (r) = 〈u(x+ r)u(x)〉, from which the one-dimensional energy spectrum

E11 (k1) =
2
π
〈u2〉

∫
∞

0
C (r)cos(k1r)dr (3.12)

can be computed (Taylor 1938, Pope 2000). In the inertial range, the one-

dimensional energy spectrum scales identically as the three-dimensional spectrum,

with E11 (k1) ∝ k−5/3. For large scales, i.e. k→ 0, the one-dimensional longitudinal

energy spectrum becomes a constant of k, E11 (k1) ∝ k0. Figure 3.14 shows the

compensated longitudinal energy spectra at different distances from the grid for an

intermediate-Reynolds-number experiment measured with an NSTAP.

In the inertial range, all spectra indeed approach the expected scaling of E11 (k1)∝

k−5/3, corresponding to a horizontal line in the compensated representation. Being

independent on the distance from the grid, this behavior is universal during the

decay process. Two distinct features can be observed on the far ends of the spectrum,

both of them highlighted in figure 3.15.

The general shape of the spectrum at the large scales is preserved during the

decay, agreeing with the common theories. The time-dependent growing local

maximum in the left part of figure 3.15 might be related to boundary effects starting

to affect the flow at very large scales at the end of the wind tunnel. As visible in the

right part of figure 3.15, the drop-off of the energy spectrum moves to larger length

scales with time, indicating that the small scales react first during the decay process.
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Figure 3.14: The compensated one-dimensional longitudinal energy spectra on a
log-log plot for one decay measurement at 5 bar SF6. The data was acquired
with an NSTAP. The figure shows the energy spectra for all 50 logarithmically
spaced distances from the grid, colored from blue (furthest downstream posi-
tion, large times) to red (closest position to the grid, short times). Note that L
is a quantity of time, as it grows during the decay. The abscissa is normalized
by the time dependent integral length scale based upon equation (1.15).

This has to be understood in a statistical manner. Close to the grid, there is a certain

distribution of scales in the turbulent flow. While being swept downstream of the

tunnel and decaying, the distribution of scales changes such that the smallest scales

are removed from the distribution by dissipation. This leads to a shrinking inertial

range.

This effect can directly be seen in the development of the scales of turbulent

during the decay. Figure 3.16 shows the normalized evolution of the integral length

scale, Le, and the Kolmogorov length scale, η , as a function of the distance from

the grid. The Kolmogorov length scale grows significantly faster than the integral

length scale, consistent with the description above.
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Figure 3.15: The energy spectra from figure 3.14 are shown zoomed into the large
scale (left) and small scale (right) time dependent features of the curves. Color
coding is analogous to as in figure 3.14.

This has been independently measured by, e.g., di Lorenzo (2014), who measured

the real-time evolution of decaying turbulence in the so-called Lagrangian Explo-

ration Module (Zimmermann et al. 2010). The turbulent flow in this icosahedron-

shaped water container is driven by twelve individually controllable propellers. By

measuring the trajectories of Lagrangian particles after turning off the turbulence-

producing propellers, di Lorenzo was able to explicitly show that in a freely decaying

turbulent flow, the small scales dissipate energy faster than the rate at which energy

is injected into them from the larger scales. While the large scales determine how

fast the energy decays, the conservation of large-scale physical quantities like, e.g.,

the linear or angular momentum results in a decay that reacts at the small scales

first.

The major theories on decaying turbulence utilize conserved quantities of motion

in order to relate the decay exponent to the large-scale part of the three-dimensional
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Figure 3.16: The normalized integral length scale (blue circles) and the Kolmogorov
length scale (green squares) as a function of the distance from the grid. The
Kolmogorov length scale grows significantly faster than the integral length
scale.

energy spectrum. Analyzing instead the large-scale part the one-dimensional longi-

tudinal energy spectrum is not useful, as it follows the trivial large-scale scaling of

E11 (k1) ∝ k0. Furthermore, even obtaining an accurate estimation of the large-scale

part of the spectrum E11 (k1) is highly non-trivial, as this quantity is calculated as

an integral over the velocity autocorrelation function, which is subject to increas-

ing statistical noise at large separations. Disregarding problematic noise, it is in

principle possible to calculate the full three-dimensional energy spectrum from

knowledge of the one-dimensional longitudinal energy spectrum alone under the

assumptions of isotropy. The three-dimensional spectrum is found to be related to

the one-dimensional spectrum via a modified second derivative (Pope 2000, p. 227):
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E (k) =
1
2

k3 d
dk

(
1
k

dE11 (k)
dk

)
. (3.13)

As mentioned above, the statistical noise in the large-scale part of the one-

dimensional longitudinal energy spectrum is not negligible, so calculating the

three-dimensional energy spectrum directly from equation (3.13) produces a highly

noise-dominated curve without meaningful information at the large scales. With

the data from the VDTT it is however possible to extract this information. The

individual computations of the energy spectrum from the decay measurements,

which are each 5 minutes long and thus contain 1.8 ·107 individual samples of the

velocity, are not long enough to get reliable large-scale information. But, as the

quantity of interest is not the whole three-dimensional energy spectrum but rather

only its large-scale behavior, is a possibility to get an adequate estimation of its

scaling properties. Along the lines of the results from figures 3.7, 3.11, 3.13 and

3.14, the large-scale part of the energy spectrum can be assumed not to change

significantly with either the Reynolds number or the distance from the grid. It

is therefore possible to combine the whole time series of the dataset Decay into

one three-dimensional large-scale energy spectrum. Assuming that only statistical

noise causes problems in calculating equation (3.13), following the representation

in figure 3.11, by calculating the three-dimensional spectra from the individual

one-dimensional spectra, one produces an ensemble of noise-dominated three-

dimensional spectra. The median of the noise-dominated three-dimensional energy
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spectra then gives an estimation of the physics of the large-scale part of the flow.

By doing this, the amount of available data can be increased by almost four orders

of magnitude from 1.8 ·107 samples of the velocity to 6.5 ·1011 samples by using

the data from all pressures, probes1 and distances. This amount of data exceeds

any comparable grid turbulence experiment by at least one order of magnitude. For

example, the experiments from Krogstad & Davidson (2010) only consisted of a

total of approximately 107 samples of the velocity. Figure 3.17 shows the results

from computing (3.13) for the available P11 and NSTAP data.

Figure 3.17: Three-dimensional energy spectra computed from the measured one-
dimensional longitudinal energy spectra in a logarithmic plot. The abscissa is
normalized by the integral length scale of the individual measurements. The
color code indicates the distance from the grid. Kolmogorov’s prediction of
E (k) ∝ k−5/3 in the inertial range is give as well as the predicted large-scale
behavior of E (k)∝ k1 (self-similar decay), E (k)∝ k2 (Saffman) and E (k)∝ k4

(Batchelor). The solid black line is the median over all individual curves.

1The data from the Mini probe is excluded from the plot as it shows wall effects at scales larger
than the integral length scale. The probe is located closer to the tunnel floor than the other probes.
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In the inertial range, the averaged spectrum agrees with the classical prediction

of Kolmogorov’s theory. At a scale of approximately 2L, a transition towards a

positive scaling exponent can be seen. From classical theory, given a decay exponent

of n = 1.18, the energy spectrum should scale with m = (2n)/(2−n)−1 = 1.88,

which, in contrast to the theoretical predictions, is not visible in figure 3.17. The

change in scaling at scales starting at 10L towards a shallower spectrum must be

attributed to side wall effects. Structures of the size of 10L at the end of the test

section are of the length scale of the tunnel diameter itself, so the assumptions

of homogeneity and isotropy break down for these sizes. As the conditions are

needed to derive equation (3.13), the computed three-dimensional spectrum does

not reflect physical reality. Within the limited accuracy, the degree of isotropy and

the amount of data, the classically predicted connection between the large-scale part

of the spectrum and the decay exponent seems to be not very well fulfilled. This is

regardless of the Reynolds number or the distance from the grid, thereby possibly

putting in question the picture of conserved large-scale conservation quantities

determining the energy decay rate.

3.2.3 Inertial-Range Effects

The previous findings support the picture that large-scale structures govern the

energy decay rate. Energy is removed from the system at the small scales where

dissipation happens, while keeping the large-scale energy spectrum intact during

the decay process. The intermediate inertial-range scales in this picture should not

be affected by the decay of turbulence as long as the Reynolds number does not
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become too small. This can be confirmed using Kolmogorov’s four-fifths law for

the third-order structure function (see equation 1.25). The normalized third-order

structure functions for a decay measurement in SF6 at 7 bar is shown in figure 3.18.

Figure 3.18: Normalized third-order structure functions measured in SF6 at 7 bar
with an NSTAP. The abscissa is normalized by the Kolmogorov length scale η

at the respective distance from the grid. The color code contains information
about the distance of the measurement to the grid. The extending inertial range
stems from the decrease of Reynolds number with increasing distance from
the grid.

From figure 3.18 there is an apparent widening of the inertial range with decreas-

ing distance to the grid. This feature must be attributed to the change of Reynolds

number during the decay alone. As the decay is not self-similar, the Reynolds

number does decrease during the decay process, in this case from Rλ = 1200 close

to the grid down to Rλ = 930 at the end of the measurement section. Figure 3.19

shows the decay of Reynolds number as a function of distance from the grid for the

101



3 DECAY OF TURBULENCE

same measurement in SF6 at 7 bar as above. This significant change in Reynolds

number causes the broadening of the structure functions. Apart from this, there is

no apparent feature emerging during the decay. Thus, the picture that only the large

scales determine the conditions of the decay is supported. Details as to how well

Kolmogorov’s four-fifths law is fulfilled in general will be discussed in chapter 4.

Figure 3.19: Decay of the Taylor scale Reynolds number as a function of distance
from the grid for an NSTAP measurement in SF6 at 7 bar.

3.3 Effect of Grid Modifications

The Navier-Stokes equations are a set of nonlinear differential equations, describ-

ing the time evolution of a turbulent velocity field u(x,t) in a domain Ω. Given

initial conditions u(x,0) = u0 for x ∈Ω, boundary conditions on the surface of Ω,

u(x|δΩ,t) = uδ (t), and the Reynolds number Re, the equations predict the behavior

of the velocity field for all times. In real flows, confined by solid walls, the boundary
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conditions are of Dirichlet type, so that u(x|δΩ,t) = 0 for all times. As the details

of the initial condition u0 are not controllable in experiments, the deterministically

chaotic nature of turbulence will produce inherently different time evolutions of the

flow for even the slightest variations of u0. Initial conditions are only able to be

reproduced in a statistically averaged sense, which is done in the VDTT based upon

the mean speed of the flow. The analysis of the decay process, so far, has focused

on a disentanglement of the Reynolds number and boundary conditions by only

changing the viscosity between experiments and keeping the averaged initial con-

dition constant to the best possible extent. This approach resulted in a description

of decaying turbulence, focusing purely on the Reynolds-number dependence and

finding that this parameter does not influence the rate at which energy decays. As

there is a tight connection between the large-scale structure of the flow and the rate

of decay, a change in the production of turbulence might lead to a different type of

decay.

Figure 3.20: Schematic of the grid modifications. a) Standard grid bars. b) Wire-
wrapped grid bars. c) Rounded grid bars.

This change of production is realized by a change of grid geometry, and thus, in

a mathematical description, by a change of δΩ of the fluid domain. In contrast to

the one-dimensional, Reynolds number, the surface of the fluid domain is a quantity

with infinite degrees of freedom, obviously not accessible as a fully controllable
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experimental parameter. It is, however, possible to test the results on the Reynolds-

number dependence of decaying turbulence regarding their robustness to changes

in δΩ. Altering the shape of the grid bars, for example, changes the way turbulent

wakes detach from them and can significantly alter the flow. A schematic of the

modifications of the grid bars is shown in figure 3.20. The classical grid in dataset

Decay used rectangular grid bars. The grids of the dataset Decay_Modified used

partially wire-wrapped grid bars and rounded grid bars (see section 2.4.3).

Figure 3.21: The decay of turbulent kinetic energy for different grid geometries at
various Reynolds numbers. The data was obtained using a Mini probe, black
circles correspond to the classical grid, red triangles to wire-wrapped grid bars,
green squares to rounded grid bars. The top four curves are shifted vertically
for better visibility. The Reynolds numbers are (from bottom to top) are ReM =
6.0 ·104,2.9 ·104,3.1 ·105,5.8 ·105,1.2 ·106,2.4 ·106 and ReM = 4.8 ·106.

For the wire-wrapped grid, decay measurements were conducted between 1 bar of

air and 15 bar of SF6 to investigate a possible change in Reynolds number behavior.

With the rounded grid bars, the decay rate of air turbulence at atmospheric pressure

was measured to test the robustness of the intrinsic structure of the turbulent flow
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with respect to the production process. Figure 3.21 shows selected decay curves

obtained with a Mini probe. Like with the original grid, the decay of energy seems

to follow a power-law with no apparent Reynolds-number dependence. Note that

the turbulence intensity of the grid with rounded bars is significantly lower than

that of the wire-wrapped grid. A change in the way the wakes detach from the

grid bar might, in principle, influence the time needed to form a homogeneous,

isotropic flow. This could, then, result in a changed virtual origin with a possible

Reynolds-number dependence due to effects equivalent to a drag crisis.

Figure 3.22: Virtual origin from a three-parameter fit to the data. The black symbols
correspond to the original data from figure 3.2, red symbols to data from the
wire-wrapped grid and green symbols to the rounded grid bars.

Figure 3.22 shows the results from three-parameter power-law fits to the decay

curves, analogous to the procedure in section 3.1.2. The black symbols correspond

to the results from the classical grid and the colored symbols to the modified grid

geometries. The virtual origin obtained for the flow behind the wire-wrapped grid

are of the same order as the ones of the original grid, with no apparent Reynolds-
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number dependence. The virtual origins for the measurements behind the grid with

rounded grid bars are slightly smaller than the global mean of x0 = 3.66, hinting

towards a change of turbulence production. This is in agreement with the significant

drop in turbulence intensity shown in figure 3.21. Applying the same analysis as in

section 3.1.2, a two-parameter fit to the decay curves using the globally averaged

virtual origin results in the decay exponents shown in figure 3.23.

Figure 3.23: The decay exponents from a two-parameter fit to the data with fixed
virtual origin. The results from the wire-wrapped grid are represented by red
symbols, from the rounded grid with green symbols, black symbols correspond
to the data in figure 3.7 from the classical grid.

The modification towards a wire-wrapped grid has little influence on the rate of

decay, which is still independent of Reynolds number. Within the scatter of the data,

the results of both the classical and the wire-wrapped grid, give agreeing results

of a decay exponent in the vicinity of Saffman’s prediction. The exponents of the

decay measurement behind the rounded grid bars are notably lower, lying between

Saffman’s prediction of n = −1.2 and Kolmogorov’s prediction of n = −10/7.
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However, the large scatter between the three hot-wire probes, stemming from the

low turbulence intensity produced by this modified grid, make a definite statement

about the type of decay for the rounded grid bars difficult from this analysis alone.

Along the lines of the arguments in section 3.1.2, the large-scale structure of the flow

will determine the rate of decay. Figure 3.24 shows the normalized integral length

scale versus the normalized turbulent kinetic energy in a logarithmic plot analogous

to figure 3.11. Black symbols correspond to the data from the original classical

grid in figure 3.11, red symbols to the wire-wrapped grid and green symbols to the

rounded grid. This figure shows that the large-scale structure of the flow and its

Reynolds-number independence is robust towards changes of the boundary δΩ in

the sense that non-negligible changes of the grid geometry do not result in drastically

different large-scale behavior. The flow behind the partially wire-wrapped grid

behaves identically to the classical grid flow with respect to the Reynolds number.
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Figure 3.24: Logarithmic plot of the normalized integral length scale versus the nor-
malized turbulent kinetic energy for all three grid variations. The data from the
wire-wrapped grid (red) and the classical grid (black) show identical intrinsic
large-scale behavior. The rounded grid (green) produces a significantly lower
turbulence intensity along with a slightly shallower power-law dependence of
L with regards to u2 due to the low Reynolds number.

The low turbulence intensity and the low Taylor-scale Reynolds number of the

flow behind rounded grid bars shifts the green data in the L vs u2 curves to the

left and leads to a slightly shallower relation between u2 and L. This can be

understood in the expected low-Reynolds number approach towards more negative

decay exponents (see figure 3.10). As mentioned earlier, the dependence of the

decay exponent on the boundary conditions, i.e., the geometry of the grid, is by

definition an infinite-dimensional problem which cannot be solved in full detail

by either experiment or numerical simulation. The results from the VDDT decay

experiments, however, strongly support Saffman-type turbulence as the generic,

high-Reynolds-number type of turbulence for the flow behind passive grids along

with absence of an approach towards a self-similar decay.
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3.4 Measurement Uncertainties

To conclude this chapter, some remarks on the uncertainties in determining the decay

exponent are necessary. As seen, e.g., in figure 3.7, the obtained decay exponents

scatter moderately around their mean value of n = 1.18±0.02. The corresponding

prefactors in figure 3.9 show significantly larger scatter. To explain this difference,

one has to separate the effects of random errors and systematic errors. Random

errors can be calculated directly from the fitted model parameters themselves to give

an impression about the statistical noise in the data. Figure 3.25 gives the standard

errors and the 95% confidence intervals of the fitted exponents of the dataset Decay,

assuming normal distributed errors. The standard errors are defined as the square

root of the trace of the variance-covariance matrix of the fitted parameters. The

scatter of the data around its mean value is of the order of the errors of the individual

exponents for the bulk of the data, with several exceptions deviating significantly

further from the mean than their error bars.

An independent method of estimating the quality of the fitted parameters is to

use a method similar to bootstrapping (Efron 1979). This can be done by randomly

removing individual points in the energy versus distance curve and refitting the

sparser data using the same routine as with the full dataset. If iterated for multiple

different random removals and number of randomly removed points, it is possible

to extract information about the significance of the amount of available data. This is

applied in figure 3.26. For an NSTAP dataset at ReM = 2 ·106, between 1 and 45

of the 50 measurement points where randomly removed from the dataset and the

109



3 DECAY OF TURBULENCE

Figure 3.25: Direct computation of uncertainties from the fitting algorithm in semi-
logarithmic plots. The left figure shows the standard errors (see section 4.5)
of the individually fitted exponents for all decay experiments in the dataset
Decay. The right figure gives the corresponding 95% confidence intervals. The
scatter of the data is slightly larger than the confidence intervals. The colored
horizontal lines represent the predictions of self-similar, Saffman and Batchelor
turbulence as in figure 3.7.

nonlinear least squares algorithm was used to extract the decay exponents of the

shortened datasets. This was repeated 20 times for each number of removed points.

The resulting decay exponent is given in figure 3.26.

It can be observed first of all that the scatter in the resulting decay exponents

grows with the number of removed points, as it has to be expected. Furthermore,

for a small number of removed points, the scatter in the resulting exponents is

significantly smaller than the computed standard errors in figure 3.25. Additionally,

there is no trend in the mean resulting exponent with respect to the number of

removed points and there is thus no spurious effect on the exponents due to a

possibly insufficient number of data points. It has to be noted, however, that the

scatter in the exponent is non-zero and thus non-negligible even for a small number
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Figure 3.26: Scatter by random removal of measured points in the decay curves
for a NSTAP measurement at ReM = 2 ·106. Shown is the result of the two-
parameter fit for the decay exponent by randomly removing a set number
between 1 and 45 of the 50 points. The procedure was iterated 20 times for
each number of removed points to give a measure of the noise due to the limited
amount of data.

of removed points. Even though the scatter is small, it contributes to the scatter

in figure 3.7. This effect could be reduced by repeating the experiment at an even

larger number of distances from the grid.

A priori, it is unclear whether systematic errors influence the measurement of the

decay exponents. The most likely systematic error to influence the measurements of

the decay rate is a faulty calibration. An incorrect calibration will lead to incorrect

measurements of the magnitude of the velocity and thus velocity fluctuations and
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Figure 3.27: Effect of altered calibrations on the decay of non-normalized, com-
pensated turbulent kinetic energy. Black circles correspond to the original
calibration of a NSTAP measurement at ReM = 2 ·106. The colored trian-
gles are results for the same measurement with artificially altered calibrations.
Upwards triangles correspond to an increase of the corresponding parameter,
downwards triangles to a decrease. Blue triangles correspond to calibrations in
which the signal from the pressure transducer was changed by 10%. For the
green triangles, the prefactor b in King’s Law in equation (2.7) was changed
by 10% after computing the coefficients. The red triangles correspond to a
changes exponent in King’s Law. The decay exponent is virtually invariant
towards such changes in the calibration procedure.

the kinetic energy. Along this line of thought, mistakes in the calibration procedure

should transfer to the measurement of the decay rate. To test the effects of the

calibration on the computed fit parameters, several artificial modifications have

been applied to an existing calibration at ReM = 2 ·106 to estimate the extent of

the importance of the calibration for the fit parameters. Figure 3.27 shows the

resulting compensated decay curves for specific alterations of the calibration. The

curves are compensated by the results from the power-law fit to the original black
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curve. Blue triangles assume an incorrect measurement of the differential pressure

by the pressure transducer. This directly corresponds to a change in the additive

term in King’s Law. The measured pressure difference of the pressure transducer

was increased (upwards triangles) or decreased (downwards triangles) by 10% to

simulate a significantly erroneous pressure transducer. The resulting curves are

shifted due to a change of mean speed and thus changed magnitude of velocity

fluctuations. This shift does, however, not come with a change in the slope. The

resulting decay exponent is invariant towards this change in the pressure transducer

signal. For the green triangles, the slope b in the fitted King’s Law in equation (2.7)

was changed by 10% a posteriori. This still only results in a shift of the decay curve.

As an estimate for the upper bound of uncertainty due to an erroneously estimated

exponent in King’s Law, the exponent was changed by 10% a posteriori as well

for the red triangles. Like the other alterations, no change in the decay exponent

can be observed. The decay exponent n is, thus, a robust quantity with respect to

the calibration. Systematic errors in the calibration procedure do not influence the

results in figure 3.7 in a significant way. The calibration does, however, have a

strong effect in terms of the prefactor in figure 3.9, which is sensitive to a shift in the

measured decay curve. The amount of scatter in the determination of the prefactor

can therefore be attributed partially to potential errors in the calibration.
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4 Scaling in Turbulence

In this chapter, I investigate the statistical properties of turbulence in the inertial

range and discuss the absence of scaling in real flows. Section 4.1 gives an overview

over the current state of theoretical modeling of inertial range statistics. In section

4.2, I explore the Reynolds number behavior of the inertial range statistics in terms

of the structure functions. I apply the technique of Extended Self-Similarity in

section 4.3 and discuss the limitations regarding well-defined scaling properties

of turbulent flows in section 4.4. The measurement uncertainties are discussed in

section 4.5.

4.1 Scaling in Inertial-Range Statistics

One of the key features of turbulent flows is the deviation of its statistics from

Gaussian behavior. It is well known that turbulent flows produce extreme events

significantly more often than expected from Gaussian statistics. Yet as of today, an

exact prediction or description of these deviations is still missing. The occurrence

of extreme events, such as wind gusts, is connected to the tails of the probability
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density function of the velocity increment that can be descried in terms of structure

functions of increasing order. As discussed in section 1.3, the only exact result from

the Navier-Stokes equations predicts the behavior of the third-order longitudinal

structure function S3 (r) = 〈(u(x)−u(x+ r))3〉 (Kolmogorov 1941a). Assuming a

self-similar internal structure of the flow, the scaling behavior of any arbitrary struc-

ture function with regard to the separation r can be shown to behave as Sn (r)∼ rn/3.

Even though turbulent flows are not self-similar but rather intermittent with strong

deviations from Gaussianity, the existence of scaling properties of the structure

functions with a scaling exponent ζn is commonly agreed on in virtually all existing

theoretical models. The first refined scaling model, already presented in subsection

1.3.3, was Kolmogorov’s K62 framework (Kolmogorov 1962). It allowed for inter-

mittency by a log-normal distributed energy dissipation rate. The resulting scaling

exponents in the K62 model, ζn =
n
3 −

µ

18n(n−3), are nonlinear functions in the

order parameter n and depend on the intermittency parameter µ . Over the years,

numerous additional models for the structure functions have been developed and

shall be briefly recaptured here.

1. The β -model by Frisch et al. (1978) solely bases upon the inertial range

statistics itself by applying concepts of fractal dimensions to turbulent flows.

It does not take into account small-scale quantities, such as the distribution of

energy dissipation rate. The line of thinking here is that there are active eddies

during the decay that only occupy a fraction of the whole fluid space and

passive eddies that do not contribute. The space-filling does depend on the

size of the active eddies. With introduction of the ’self-similarity dimension’
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4.1 Scaling in Inertial-Range Statistics

D that measures the space-filling, the authors obtain a linear model for the

scaling exponents:

ζn =
1
3
(3−D)(3− p) . (4.1)

2. The linear β -model was refined by Benzi et al. (1984) into the random β

model. The space-filling factor, which is a global constant of the β -model,

is replaced with a random variable at each cascade step. This gives a set of

scaling exponent depending on the distribution of β via

ζn =
n
3
− log2

[
β
(1−n/3)

]
. (4.2)

3. A more sophisticated model that is based on the assumption of fractality

was developed by Meneveau & Sreenivasan (1987a,b). The authors assume

that during the cascade process an eddy of certain size breaks down into 2d

smaller eddies. In contrast to classical modeling, in the multifractal model

the energy is not distributed equally between all of the smaller eddies. Instead

a fraction p1 of the energy is distributed equally between one half of the 2d

eddies and the remaining fraction p2 = 1− p1 equally among the other half

of the eddies. The resulting scaling exponents can be calculated from the

generalized dimension Dq with
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ζn =
(n

3
−1
)

Dn/3 +1, (4.3)

Dq = log2
(

pq
1 + pq

2
)1/(1−q)

. (4.4)

4. The γ-model by Andrews et al. (1989) is a refinement of the K62 model. The

authors find that a log-normal distribution of the energy dissipation rate is not

fully justified as it fails to agree with several experimental findings. In the

construction of their model, they instead assume the energy dissipation rate to

follow a γ-distribution. Defining 1+1/c = (L/r)µ , with the integral length

scale L and the intermittency parameter µ , they obtain the scaling exponents

ζn =
1
3

n−µ

log
[
Γ(c+n/3)/cn/3Γ(c)

]
log [1+1/c]

. (4.5)

5. A similar approach was chosen by Kida (1991), who assumed a stable distri-

bution for the energy dissipation rate instead of a log-normal or γ-distribution.

The parameter 0 < α < 2 determines the shape of the probability density

function with α = 2 corresponding to a normal distribution. The resulting

scaling exponents of the log-stable model are given by

ζn =
n
3
−µ

(n/3)α −n/3
2α −2

. (4.6)
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6. A parameter-free model based upon the small-scale fluctuations in turbulence

was developed by She & Lévêque (1994). The energy dissipation field is

modeled by a hierarchy of dissipation moments down to the size of filaments

in the fluid flow. Using dimensional arguments and anomalous scaling for

the energy dissipation moments, the authors obtain the parameter-free scaling

exponents of the She-Leveque model

ζn =
n
9
+2

[
1−
(

2
3

)n/3
]
. (4.7)

7. Dubrulle (1994) found that the distribution of energy in the She-Leveque

model corresponds to a log-Poisson statistic of the local energy dissipation

rate. In a generalization of the She-Leveque model, using the space filling

factor of the random-β model and a parameter ∆, connected to the codimen-

sion of the dissipative structures, the scaling exponents can be calculated with

regards to the third-order scaling exponent in the Dubrulle model as

ζn

ζ3
= (1−∆)

n
3
+

∆

1−β

(
1−β

n/3
)

(4.8)

This wide variety in models for the statistics of turbulent flows in the inertial

range reflects the lack of precise knowledge of the underlying physics. It is not clear,

which of the presented models are an adequate description of the scaling behavior
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of structure functions. All of these models have in common that they predict scaling

properties of the structure functions in the inertial range. However, the role of the

key parameter in turbulence, the Reynolds number, is not directly included in any

of the above models. This is in contradiction to several experiments that do find an

explicit dependence of the scaling exponents on low Reynolds numbers (see Antonia

et al. (2000)), making a careful study of the Reynolds-number effects obligatory.

4.2 The Third-Order Structure Function

As Kolmogorov’s fourth-fifth law gives an exact result for the inertial range behavior

of the third-order structure function in the limit of high Reynolds numbers, an

investigation of the Reynolds number dependence of measured third-order structure

functions can provide further insight. It seems to be a natural first step before

considering the general scaling behavior of structure functions of arbitrary order.

Figure 4.1 shows third-order structure functions from the dataset Statistic_Large

obtained with NSTAPs between Reynolds numbers Reλ = 110 and Reλ = 1450.

The structure functions are normalized using the cube of the velocity fluctuations,

u′3, and the integral length scale obtained from the velocity autocorrelation function,

L, to collapse the curves at large separations. Qualitatively, a scaling according

to Kolmogorov’s four-fifth law can be observed to emerge in the inertial range

with increasing Reynolds number. Once collapsed at the large scales, the inertial

range extends to the even smaller scales with increasing Reynolds number, keeping

the core shape of the curves preserved. A quantity closely related to the third-
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4.2 The Third-Order Structure Function

Figure 4.1: Normalized third-order structure functions versus the separation for the
dataset Statistic_Large, measured with NSTAPs. By normalizing the abscissa
by the integral length scales, the structure functions collapse at large scales.
The curves stem from measurements at Rλ = 1450 (red), Rλ = 920 (orange),
Rλ = 610 (green), Rλ = 260 (blue) and Rλ = 110 (purple).

order structure function, the third-order structure function of the absolute value

S3a = 〈|δu|3〉, is shown in figure 4.2. The third-order structure function of the

absolute value does not have a direct physical meaning but serves as a useful tool in

section 4.3 and, thus, shall be introduced briefly here. S3a preserves the emerging

inertial-range scaling of the third-order structure functions with increasing Reynolds

number, but also shows a converging, non-vanishing value at the large scales, due

to its definition.

Typically, in order to better visualize the approach to the predicted inertial range

scaling, the third-order structure function is plotted in a compensated way as S3/r.

This approach shall not be used here. While improving the estimate of whether

scaling behavior emerges, such an approach can only be understood qualitatively
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Figure 4.2: Normalized third-order structure functions of the absolute value versus
the separation from the dataset Statistic_Large. The underlying data and
color-coding is identical to figure 4.1.

and does not provide any quantitative insight. To extract quantitative information

about the approach to scaling behavior in an inertial range, it is useful to introduce

the logarithmic derivative of the third-order structure function. If the third-order

structure function follows a power-law behavior, S3 (r) = c ·rζ , then the logarith-

mic derivative returns the exponent of this power-law, (dlogS3 (r))/(dlogr) = ζ .

In the special case of Kolmogorov’s four-fifths law, ζ would be identically one.

Figure 4.3 shows the logarithmic derivative of the third-order structure function at

various Reynolds numbers from the datasets Statistic_Large and Statistic_Huge.

The increased statistics form the longer datasets, in contrast to the dataset Statis-

tic_Medium, is needed to collapse the large scales without noise contributions. The

derivatives are computed with the same second-order finite differences algorithm as

in chapter 3 (Singh & Bhadauria 2009), so no a-priori smoothing oder modeling

was applied. This prevents the occurrence of spurious information.
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Figure 4.3: Logarithmic derivative of the third-order structure functions in a
semi-logarithmic plot. The shown data are from measurements at Rλ = 300
(red, Statistic_Huge), Rλ = 610 (green, Statistic_Large), Rλ = 860 (blue,
Statistic_Large) and Rλ = 1320 (purple, Statistic_Large) and measured with
NSTAPs. The curves approach a dissipation-range scaling of 3, as expected. A
plateau of value 1 in the inertial range would confirm K41 scaling, whereas
a plateau of an arbitrary value would correspond to a power-law scaling with
another exponent. Neither of these can be observed at any Reynolds number.

At the smallest scales, where the velocity field is smooth, the logarithmic deriva-

tives approach the expected dissipation range scaling of S3 ∼ r3. At the large scales,

regardless of Reynolds number, the curves collapse due to the normalization by

the integral length scale L. At the intermediate scales, a power-law scaling of the

third-order structure function would be represented by a plateau of the logarithmic

derivatives. This feature is absent for even the highest Reynolds numbers. Instead,

the logarithmic derivatives approach a curve with a systematic negative slope with

increasing Reynolds number. As a consequence, there is no true power-law scaling

in the third-order structure function even at the highest Reynolds numbers measured.

And disregarding a possible transition towards different physics at even higher

Reynolds numbers, an approach to such an power-law scaling seems improbable.

The lack of a proper scaling behavior also implies that it is not possible to extract
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well-defined scaling exponents from the third-order structure function. This lack of

scaling is not unique to the third-order structure function, but also carries on to other

orders similarly. Figure 4.4 shows the logarithmic derivatives of the fourth-order

structure function for the same datasets as in figure 4.3. In the K41 framework,

self-similarity would demand a well-defined plateau at a value 4/3, whereas the

various models presented in section 4.1 would by confirmed by a plateau at their

corresponding predicted value.

Figure 4.4: Logarithmic derivative of the fourth-order structure functions measured
with NSTAPs. The shown data and color-coding is identical to that in figure
4.3. The curves approach a dissipation-range scaling of 4. A plateau of value
4/3 in the inertial range would be expected in the K41 framework. As in figure
4.3, there is no clear scaling of any exponent at any Reynolds number.

As with the logarithmic derivative of the third-order structure function, no such

plateau or even approach towards a plateau can be observed. Identical observations

can be made for any arbitrary structure function. The absence of scaling is thus

not a feature limited to the third-order structure function but a general intrinsic

feature of turbulence. In order to capture the deviation from the ideal scaling

in a quantitative manner, it is useful to compute the derivative of the curves in

figure 4.3 with regards to the separation, d2 log(S3)/d(log(r))2. This derivative

124



4.2 The Third-Order Structure Function

gives local information about the slope of the logarithmic derivatives of the third-

order structure function. For this quantity, a value of zero would correspond to

a local power-law scaling with an arbitrary exponent, whereas non-zero values

correspond to a drift in the scaling exponents with increasing Reynolds number.

Figure 4.5 shows the minimal local deviation from a power-law scaling in the inertial

range, defined as δ = min|
[
d2 log(S3)/d(log(r))2] | versus the Reynolds number

for all measurements in the datasets Statistic_Large and Statistic_Huge. Due to

the limited amount of statistical information in the dataset Statistic_Medium, the

results from this datasets are excluded, as an unbiased second derivative of the

third-order structure functions carries too high statistical noise in the large scales to

reliably extract information about the minimum deviation. The information from

this dataset might be recovered using smoothing techniques, an approach not applied

here in order to prevent any a-priori modeling influencing the results.

Figure 4.5: Deviation from local power-law scaling in the inertial range as a function
of the Reynolds number. Blue symbols correspond to measurements in the
dataset Statistic_Large and red symbols to the dataset Statistic_Huge.
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The minimal deviations δ can be fitted with a power-law as δ = 0.67 ·R−0.23
λ

.

Assuming that this trend continues without and with no transition to a new regime

at higher Reynolds numbers, this extremely slow algebraic approach to ideal scaling

means that there are no natural turbulent flows which obey true scaling. Defining

a still noticeable local deviation of δ = 0.01 as sufficiently small to speak of ideal

scaling behavior, one would need a flow with an extrapolated Reynolds number of

Rλ > 108 to realize such a deviation. The deviations from ideal scaling for structure

functions of other orders behave in a similar way. This finding is of importance in

modeling extreme events in turbulence. As the scaling exponents are connected

to the occurrence of extreme events, like, e.g., wind gusts, models using scaling

properties of turbulent flows to predict these events might over- or under-predict

their rate. The occurrence of these extreme events does play, e.g., an important role

in the design of wind turbines.

4.3 Extended Self-Similarity

Apparently, the structure functions do not exhibit scaling in the sense of Kol-

mogorov’s predictions. Empirically, however, it has been found by Benzi et al.

(1993) that it is possible to identify scaling-like behavior in the nth-order structure

function Sn, if one does not search for scaling with respect to the separation, but

rather with respect to structure functions of different order. This approach is known

as Extended Self-Similarity (ESS). The proposal was that there might be scaling in

the sense of the structure functions themselves according to
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Sn ∼ Sζn,m
m . (4.9)

Here, ζn,m is a relative scaling exponent, connecting the structure functions of

orders n and m. It turns out that choosing the aforementioned third-order structure

function of the absolute values, S3a = 〈|δu|3〉, to be Sm in the above equation

provides the best results for unveiling scaling properties. Additionally, even-order

structure functions seem to follow this proposed relationship more closely than

odd-order ones. In the original publication, the authors chose to plot the nth-order

structure function against the third-order structure function of the absolute values.

From power-law fits to this relation, they obtained information about the scaling

properties. If one assumes ζ3a = 1, one can relate the scaling exponents in the sense

of ESS with the classically defined scaling exponents. As a consequence, one can

formulate ESS by other means. If scaling in the sense of Extended Self-Similarity

holds true, the structure functions of nth-order scale as generalized power-laws of

the form

Sn ∼ ( f (r) ·r)ζn . (4.10)

ESS claims that the unknown function f (r) is independent of the order and thus

drops out when investigating the relation between structure functions of different

order. The approach of plotting structure function of different order against each
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other in order to extract relative scaling exponents is feasible. However, a more direct

way of investigating the relation is again to compute the logarithmic derivatives of

equation (4.9) with

d logSn

dlogSm
= ζn,m. (4.11)

The latter approach was chosen in figure 4.6. This figure compares the direct

scaling as in figure 4.4 with the scaling in the sense of ESS.

Figure 4.6: Logarithmic derivative of the fourth-order structure function with re-
gards to the separation r (dashed lines) and to the third-order structure function
of the absolute value S3a (solid lines). The data shown is identical to that in
figure 4.4. The Reynolds number of the measurements are Rλ = 300 (red)
Rλ = 610 (green), Rλ = 860 (blue) and Rλ = 1320 (purple). Applying Ex-
tended Self-Similarity greatly improves the scaling properties of the structure
function.
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A direct comparison yields favorable results for Extended Self-Similarity at all

Reynolds number over a wide range of scales. The deviations from strict scaling are

significantly lower, using the empirical methods of ESS. The standard procedure,

once ESS has been applied, would be to directly compute the scaling exponents

from figure 4.6 and continue with a literature comparison. However, a detailed view

on the ESS curves uncovers limitations of the applicability of this method in its very

basics. Figure 4.7 shows the logarithmic derivatives of the fourth-order structure

function by the third-order structure function of the absolute value; figure 4.8 of the

sixth-order by the second-order, respectively. The data shown is identically to that in

figure 4.6, thus spanning Reynolds numbers between Reλ = 300 and Reλ = 1320.

Several distinct features can be observed, regardless of Reynolds number. At

the small scales, between dissipation range and the intermediate scales, the curves

show an oscillatory transition with a distinct mininum. This near-dissipation range

effect was already observed by, e.g., Frisch & Vergassola (1993), Herwijer & van de

Water (1995) and Chevillard et al. (2005) along the lines of the multifractal models.

However, despite popular belief, from figures 4.7 and 4.8 it becomes apparent that

dissipative effects do not only influence the statistics up to 20η but significantly into

the intermediate range of scales. At about 110η , a secondary oscillatory maximum

emerges independently of Reynolds number and order of the investigated structure

functions. At scales larger than 100η , in contrast to the expectations from Extended

Self-Similarity, there is no plateau emerging. Instead, even at the highest Reynolds

numbers, there is a systematic positive slope.
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Figure 4.7: Detailed view on the scaling behavior in terms of extended self-
similarity of the fourth-order structure function. Shown are the same curves as
above, normalized by the large scales (top) and small scales (bottom). Regard-
less of Reynolds number, Extended Self-Similarity does not uncover scaling
properties. Dissipative effects penetrate the inertial range up to roughly 100η .
For r > 100η there is a systematic slope indicating the absence of ideal scaling
along the lines of Extended Self-Similarity.
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Figure 4.8: Analogous calculation to figure 4.7 by computing the logarithmic
derivative of the sixth-order structure function with regards to the second-order
structure function. The extent of dissipative effects and the absence of scaling
is reproduced for any combination of structure functions, meaning that these
feature are not unique to the third-order structure function of the absolute value
but universal for turbulence.
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This feature only becomes visible due to the amount of recorded data in the

datasets Statistic_Large and Statistic_Huge. For shorter datasets, the fine details

of the inertial range behavior is succumbed by noise. The drift in the local slope

indicates the absence of strict scaling in the sense of ESS, just as there was no strict

scaling in the classical sense. As a consequence, neither the existence of a true

inertial range can be observed even at the highest Reynolds numbers nor is there an

unambiguous definition of scaling exponents at all.

The effect of dissipation on the intermediate scales can be understood by going

back to Kolmogorov’s equation (1.24). Usually, the viscosity-dependent term on

the left-hand side of the equation is neglected in the inertial range and believed to

not matter once the Reynolds number is high enough. However, several studies

investigated the Reynolds-number effects on Kolmogorov’s equation at Rλ < 100,

finding that dissipative effects only vanish slowly with increasing Reynolds number

(Zhou & Antonia 2000, Antonia & Burattini 2006). There is also a line of thought

that the general concept of an inertial range is ill-defined (Kholmyansky & Tsinober

2009). Figure 4.9 shows the relative importance of dissipation as a function of

scale in terms of the ratio of the viscous term of the second-order structure function

to the third-order structure function for a wide range of high Reynolds numbers.

The curves correspond to measurements at Reynolds numbers between Rλ = 110

(cyan) and Rλ = 1450 (red). Normalized by the Kolmogorov length scale, the

curves collapse very well and can be approximated by a two-component power-law,

a ·(r/η)b+c ·(r/η)d . At the smallest scales, the ratio follows the trivial dissipation-

range scaling of r−2. For scales larger than 26r/η , the ratio transitions into a shallow
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scaling with r−1.2, independently of Reynolds number. This finding implies that the

influence of dissipative effects is completely universal with regards to the Reynolds

number and only decays slowly with scale. Independent of the Reynolds number,

the statistics of turbulent flows are affected in a non-negligible way by dissipation

at significantly large scales, resulting in the difficulty of observing a clear inertial

range.

Figure 4.9: Relative importance of the dissipative term in Kolmogorov’s equation
in a log-log plot. The data shown is from NSTAP measurements from the
dataset Statistic_Large at Reynolds numbers Rλ = 110 (cyan), Rλ = 610
(green), Rλ = 920 (purple) and Rλ = 1450 (red). The effect of dissipation is
completely universal with regards to the small scales and decays algebraically
slow with with scale. The deviations at the large scale end of the curves stem
from statistical noise at those scales and limitations of isotropy due to the
tunnel size. The dashed line is an empirical two-exponent power-law fit to the
data, excluding the large scale deviations, of the form a ·(r/η)b + c ·(r/η)d .
The horizontal black line denotes the length scale at which the contribution of
both parts of the fitted power-law is equal and can be understood as a transition
length scale between the dissipation range and the inertial range.
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4.4 Effective Scaling Exponents

Even though ESS was shown to fail to uncover scaling in turbulence, it is useful

do define ‘effective’ scaling exponents to comment on the previous findings in

the literature and investigate Reynolds number influences. As shown earlier, an

unambiguous definition of a scaling exponent is impossible by the absence of real

scaling. One way to define an effective scaling exponent is to find a range of

scales over which the local slope is averaged. The resulting scaling exponent will

obviously depend on the choice of the interval, as there is no plateau corresponding

to strict scaling. In this work, the lower bound of the averaging interval is chosen

to be at a scale two times larger than the scale of the secondary maximum near the

dissipation range and the large scale limit is fixed at the integral length scale with

r/L = 1. To estimate up to which order of exponent a definition is still meaningful,

it is mandatory to check for statistical significance in terms of the cumulants of the

velocity increment probability density functions. For a certain scaling exponent to

have physical meaning, the respective cumulant of the velocity increment probability

density function needs to be still resolved. Figure 4.10 shows the cumulants up

to order 16 of the probability density functions of velocity increments for a fixed

separation of 100η . While for small cumulants, it does not matter whether 8 or

56 hours long datasets are used to compute the exponents, for higher cumulants,

the short datasets lose a significant part of shape information due to noise. This

demands for the large amount of statistics in the dataset Statistic_Huge to extract

meaningful high-order scaling exponents.
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Figure 4.10: Non-normalized cumulants of the probability density functions of
velocity increments with a separation of 100η . The dataset shown was mea-
sured with an NSTAP at Rλ = 1600 between -10 and 10 standard deviations of
the velocity increments, σ (δu). The blue curves correspond to 8 hours, the
red curves to 56 hours long times series. The differences in the quality of the
statistics is negligible for low moments of the probability density functions,
but becomes significant at higher orders.
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Figure 4.11 shows the ratio of the so-defined effective scaling exponents to their

expected K41 values. For high Reynolds numbers, the effective scaling exponents

assume a constant value, making it possible to compute precise values under the

assumption ζ3a = 1. For the low order structure functions, the thresholding effect

has been observed by Antonia et al. (2000). However, the VDTT results offer an

extended interpretation. The Reynolds number only influences the behavior of the

effective scaling exponents as long as they have not reached an order-dependent

threshold. Low-order effective scaling exponents become constant at much lower

Reynolds numbers than higher-order exponents. Thus, it is not only necessary to

measure extremely long datasets to extract meaningful effective scaling exponents,

it is also necessary to conduct the experiments at high Reynolds numbers. Averaging

over all those individual results of an effective scaling exponents that are in the

Reynolds number independent region, the results from figure 4.11 yield ζ2 =

0.6911±0.0001, ζ4 = 1.2845±0.0002, ζ6 = 1.7827±0.0009, ζ8 = 2.190±0.002,

ζ10 = 2.509±0.005 and ζ12 = 2.74±0.02. The errors given here a purely statistical

standard errors of the mean. For a more detailed analysis, see section 4.5.

In order to compare the data with previous results, it is necessary to define

relative scaling exponents ζm,n as ζm−ζn. This has to be done since the theoretical

models enforce ζ3 = 1 and most experimental studies assume ζ3a = 1. This is not

in agreement with the findings presented in section 4.2. By investigating relative

scaling exponents, any dependence on the value of the third-order scaling exponent

cancels out.
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Figure 4.11: Deviation
of the obtained
even-order relative
scaling exponents
ζrn to the value
n/3 predicted by
K41 between n = 2
(black) and n = 16
(purple), assuming
ζ3 = ζ3a. The
scaling exponents
are completely
Reynolds num-
ber independent
once a threshold,
depicted by an
empirical black
line is reached.
Triangles corre-
spond to the dataset
Statistic_Huge,
circles to the dataset
Statistic_Large
and squares to
the dataset Statis-
tic_Medium. The
error bars are
computed as the
standard error of
the mean, assuming
uncorrelated local
measurements of
the exponents.
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Figure 4.12 and tables 6.6 to 6.8 in the Appendix give a comparison of the mea-

sured effective relative scaling exponents with results from earlier experiments,

direct numerical simulations and theoretical models. In the theoretical models, all

occurring parameters were assumed to be free and were fitted to the VDTT data to

obtain the most favorable agreement. No physical restriction has been applied to

these parameters. There has been an extensive amount of effort over the previous

decades to precisely and accurately measure and predict scaling exponents. Espe-

cially the question, which model accurately describes the statistical behavior of

turbulence in the inertial range, is of significant interest. For example, a working

model for scaling exponents could be used as a tool to predict the rate of extreme

events in connection to the higher-order exponents. Neither experiments nor numeri-

cal simulations were able to prove or disproof the viability of the more sophisticated

models. While this has been seen as a lack of quality of data by either too short

statistics or too low Reynolds numbers, the results from this chapter support a

different interpretation.

In figure 4.12, the black error bars denote the systematic error in the definition

of the scaling exponents and give a measure on how ill-defined a scaling exponent

of that order is due to the absence of strict scaling. In the following, these will be

referred to as boundaries of ill-definition. For an exact definition see section 4.5.

The predictions of the older scaling models by Kolmogorov (1941b), Frisch et al.

(1978), Benzi et al. (1984) and Meneveau & Sreenivasan (1987a) do not lie within

the boundaries of ill-definition of the exponents measured in the VDTT. Thus, these

models can be ruled out as working predictions for scaling exponents.
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However, the differences in the predictions of the more recent models by Kida

(1991), She & Lévêque (1994) and Dubrulle (1994) are significantly smaller than

the ambiguity in the definition of an effective scaling exponents due to the inherent

absence of scaling. It is, thus, impossible to distinguish between these individual

models.

The resulting exponents from numerical simulations by Cao et al. (1996), Boratav

& Pelz (1997), Toschi et al. (1999) and Gotoh (2013) lie within the boundaries

of ill-definition. In contrast, the experimental results from the literature scatter

significantly more and partly exceed the boundaries of ill-definition. This can be

partly attributed to the effect of low Reynolds numbers as seen in figure 4.11 and

problems of statistical convergence. Notably two of experimental studies yield

scaling exponents that differ substantially from the results obtained in the VDTT.

The experiments by Belin et al. (1996) were conducted in liquid Helium, imposing

challenges for a direct comparison. The underlying physical effects will have to

be studied in greater detail to ensure that a direct comparability of the results is

possible. van de Water & Herweijer (1999) used a stretched exponential method to

predict the shape of the tails of the probability density functions. These results are

thus not directly data-driven but rather data-supported models. It is a priori unclear

whether the deviations in the results stem from the data or from the chosen analysis.

To find a deeper understanding of the statistics and physics in the inertial range,

more sophisticated models, not relying on the historically grown but non-existing

properties of scaling are needed.
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4.5 Measurement Uncertainties

4.5 Measurement Uncertainties

Two major contributions of uncertainty affect the estimation of the effective scaling

exponents: The statistical noise in the structure functions, due to under-resolved

probability density functions, as shown in figure 4.10, and the principal inability

to define scaling exponents, due to the lack of scaling. The error bars shown in

figure 4.11 and the values given in the corresponding text represent the statistical

uncertainties. Each individual measurement at a Reynolds number is influenced by

statistical noise, resulting in scattered individual effective scaling exponents over

which a global average is conducted. At a given Reynolds number Rλ i and for a

given probe, one obtains one scaling exponent ζ (Rλ i). If one assumes that every of

the N data points in the averaging range is a independent measurement, ζ j, of the

scaling exponent with a random error, one can calculate the mean according to

ζ (Rλ i) =
1
N

N

∑
j=1

ζ j. (4.12)

If one further assumes that the individual errors are normal distributed, the

uncertainty uζ (Rλ i)
of the mean can be calculated as

uζ (Rλ i)
=

√√√√ 1
N (N−1)

N

∑
j=1

(
ζ j−ζ (Rλ i)

)2
. (4.13)

These are the error bars shown in figure 4.11. The assumptions of independent
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4 SCALING IN TURBULENCE

measurements and normal distributed errors are most certainly not fulfilled, but

rather give a computable estimate of the statistical error. To compute the globally

averaged Reynolds number-independent effective scaling exponent of nth-order, ζn,

the M individual results ζ (Rλ i) are averaged, so that

ζ =
1

MT

M

∑
i=1

t j ·ζ (Rλ i) , (4.14)

where t j is the length of the datasets and T = ∑
M
j=1 t j. Each of the individual

ζ (Rλ i) has its uncertainty calculated as above. So the uncertainty uζ of the mean ζ

is

uζ =

√(
∂ζ

∂ζ1
·uζ1

)
+

(
∂ζ

∂ζ2
·ζ2

)
+ ... (4.15)

=

√( t1
MT

uζ1

)2
+
( t2

MT
uζ2

)2
+ ... (4.16)

=
1

MT

√
M

∑
i=1

(
tiuζi

)2
. (4.17)

These are the errors given in the text and in table B in Appendix B. As shown

in section 4.4, however, the definition of the scaling exponent itself is problematic,

as there is no strict scaling in the sense of ESS. The logarithmic derivatives of

the structure functions with respect to the structure functions of different order

show a systematic drift over the intermediate scales. This leads to an ill-defined

effective scaling exponent which depends on the magnitude of the drift along the
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4.5 Measurement Uncertainties

averaging interval. To quantify the extent of ill-definition, the systematic error in

the determination of the effective scaling exponents can be defined in the following

way. For every individual measured logarithmic derivative of the structure functions,

a linear fit in logarithmic coordinates is applied in the averaging region. The change

of value of the fitted line along the averaging interval gives an estimation of the

systematic error in determination of the effective scaling exponents. For this chapter,

the systematic error was taken to be half of the change of value of the fitted line.

Figure 4.13 gives an example of the definition of the systematic error for a NSTAP

measurement from the dataset Statistic_Huge at Rλ = 1600. In contrast to the

statistical error, which can be reduced by measuring longer datasets, this systematic

error is due to the underlying physics of turbulence and the absence of scaling. The

average over all individual systematic uncertainty was used in figure 4.12 as error

bars to emphasize the general inability to distinguish between models assuming

scaling properties, since the arbitrariness in the definition of the scaling exponents

is bigger than the differences in most of the model predictions.

4.5.1 Probe Size Effects

Up to this point, only data obtained with NSTAP probes has been considered.

The reason for this is that, even though the measurements of the effective scaling

exponents are measurements of the intermediate length scales, the size of the

hot-wire does become important at higher Reynolds numbers. In figure 4.11, the

effective scaling exponents reached a constant value with Reynolds number once

an order-dependent threshold was reached. Figure 4.14 shows the effective scaling
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4 SCALING IN TURBULENCE

Figure 4.13: Systematic uncertainty due to the absence of scaling in the sense of
ESS. Shown is the logarithmic derivative of the sixth-order structure function
with respect to the third-order structure function of the absolute value in a
semi-logarithmic plot from NSTAP data at Rλ = 1600. The averaging interval
to determine the effective scaling exponent is denoted with dashed lines. The
red line shows a fit to the data (black). The altitude of the fitted line is taken as
a definition for twice the systematic error on the scaling exponents, ∆. This
uncertainty is an order of magnitude larger than the statistical uncertainty.

exponents for all three probe types: NSTAP, Mini and P11. While the NSTAP

data shows the aforementioned plateau, Mini and, even more so, P11 probes show

significant deviation from this behavior. While for low Reynolds numbers, the

measured exponents of the three probes agree within the uncertainties, deviations

become apparent at high Reynolds numbers. Once the relevant scales become

small, the size of the probes becomes relevant, too, since important information is

spatially averaged. Using Mini or P11 probes to investigate the Reynolds number

dependence of the scaling exponents will lead to the spurious conclusion that for

higher Reynolds number, the deviations from K41 scaling becomes smaller. This

finding, however, only arises from the lack of spatial resolution at higher Reynolds
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4.5 Measurement Uncertainties

numbers. This finding complicates the estimation of high-order effective scaling

exponents regardless of the systematic ill-definition. While figure 4.11 implies that

the measurement has to be conducted at as high Reynolds numbers as possible, the

results from figure 4.14 limit the investigable range of Reynolds numbers by the size

of the measurement device. Even with arbitrarily long time series, these findings

limit the maximal obtainable order of effective scaling exponents by Reynolds

number and probe size.
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4 SCALING IN TURBULENCE

Figure 4.14: Effect of
the size of the mea-
surement probes on
the effective scaling
exponents. Black
symbols correspond
to NSTAP data,
blue symbols to
Mini data and red
symbols to P11
data. Triangles
correspond to
the dataset Statis-
tic_Huge, circles
to the dataset
Statistic_Large
and squares to
the dataset Statis-
tic_Medium. The
NSTAP data is
identical to that
in figure 4.11.
While the NSTAP-
obtained exponents
reach a constant
value with high
Reynolds numbers,
Mini and, even
more so, P11 data
exhibits a spurious
Reynolds number
dependence, due to
limitations of the
probe size.
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5 Statistics of the Small Scales

In this chapter, I investigate the statistics of the small scales of turbulent flows, using

data acquired in the S1MA at Onera in Modane, France, in the scope of the ESWIRP

project “Investigation of the small-scale statistics of turbulence in S1MA". Section

5.1 gives an overview over the flow properties in the wind tunnel. The statistics of

the velocity derivatives are discussed in section 5.2 and in section 5.3, I discuss the

build-up of intermittency towards the smallest scales in the turbulent flow.

5.1 Flow Properties

As discussed in section 2.2, the S1MA is a gigantic wind tunnel with an outer length

of 155 m, a width of 40 m and a diameter of the test section of 8 m. Turbulence is

produced by an inflatable grid with a mesh spacing of 0.6 m and round grid bars.

The mean wind speed for the two experiments analyzed in this chapter was 21 m/s

and 43 m/s, respectively. As the wind tunnel uses atmospheric air as a working gas

and does not have a heat exchanger comparable to the one in the VDTT, the mean

temperature in the tunnel depends on the ambient temperature. As discussed in
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5 STATISTICS OF THE SMALL SCALES

subsection 2.3.2, the response of an NSTAP in a CTA circuit crucially depends on

the temperature of the working gas. The non-constancy of the outside temperature

leads to a drift in the mean signal of the NSTAP used to measure the turbulent time

series in the S1MA. An additional temperature effect arose from the experimental

setup. As the CTA system, including the external resistor decade, was placed outside

of the test section in a non-temperature-controlled environment, changes in the mean

temperature of the working gas did not equivalently translate into changes of the

temperature of the CTA system. As a consequence, the temperature of the external

resistor decade and the mean temperature of the working gas were decoupled, thus

resulting in a non-constant overheat ratio. This effect contributes to the measured

variation mean wind speed. Figure 5.1 shows the measured mean speed, averaged

over 15 s intervals, for an experiment of the dataset S1MA (black). There is a

significant downwards drift in the signal of about 0.7 m/s over the course of just

over one hour of measurement time.

This drift, however, can be approximated by a quadratic fit (red curve). As

the actual mean speed of the tunnel was kept constant throughout the experiment,

the fitted curve was used to remove the drift in the NSTAP signal by division of

the signal with respect to the fitted curve. The resulting time series of averaged

velocities is shown in blue. For all further analysis, the data in the dataset S1MA

was detrended in this manner to remove spurious information from the time series.

The use of a grid with round grid bars results in turbulence intensities significantly

lower, compared to the use of a grid with rectangular grid bars of the same dimen-

sions (see section 3.3). As a consequence, the measured turbulence intensities in
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5.1 Flow Properties

Figure 5.1: Mean velocity averaged over 15 s intervals as a function of measurement
time. The original data (black) shows a significant trend due to changes in the
mean temperature. The red curve is a fit to the data to detrend the signal (blue).

the S1MA, u′/U , only reached values between 1.2% and 1.7% and thus were about

a factor of 2 lower than the turbulence intensities in the VDTT. The Taylor-scale

Reynolds numbers in the S1MA experiments were between 250 and 320, along

with Kolmogorov scales between 260 µm and 330 µm. The use of a 30 µm NSTAP

ensured that there were no spatial filtering effects on the velocity signal. Temporal

filtering, due to increasing electric noise, occurred at scales rcut =U/(2π fcut). Here,

fcut is the cut-off frequency due to high-frequency noise in the energy spectrum. For

the measurements in the dataset S1MA, the cut-off scale was about 1.3η , yielding

unfiltered access to the major part of the dissipation range. As a comparison, the

cut-off scale in the VDTT in the datasets Statisic_Large, due to a combination of

temporal and spatial filtering, was between η and 6η at Reynolds numbers above

300. The data in the dataset S1MA, thus, provides a comparable, if not even slightly
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5 STATISTICS OF THE SMALL SCALES

improved, access to the dissipation range.

Figure 5.2: Compensated energy spectrum at Rλ = 320 as a function of frequency.
The data significantly affected by electric noise, stemming from power supplies,
lights and computers located in the direct vicinity of the signal cables and
measurement probes. Additionally, there is a large-scale defect in the energy
spectrum.

Due to the gigantic size of the wind tunnel, the limited access to the test section

and the amount of participating experiments in the ESWIRP project, an experimental

setup was chosen in which the signal cables of the individual experiments were led

to the measurement computers in close proximity to each other, to power cables and

to computer power supplies. This resulted in a strong corruption of the measured

signals at the utility frequency of 50 Hz. This can be observed in the compensated

energy spectrum in figure 5.2, in which a distinct sharp peak at 50 Hz emerges.

The low-frequency defect in the spectrum might be related to pollution of the flow

with small organic fibers settling on the measurement probes. Even though no

contamination of the probes could be observed after the experiments, dampening of
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5.1 Flow Properties

the signal by small objects of the corresponding size during the experiment cannot

be ruled out as a potential cause of the energy defect.

Nevertheless, these large-scale problems in the measurement do not influence

the small scales of interest here. With the given unfiltered access to the dissipation

range, the energy dissipation rate can be estimated directly from the energy spectrum

instead of relying on the structure functions. In an isotropic turbulent flow, the

energy dissipation rate is given by (Batchelor 1953)

ε = 15ν

∫
∞

0
k2

1 ·E11 (k1)dk1. (5.1)

Figure 5.3 shows the dissipation spectrum for a measurement in the dataset S1MA.

As the dissipation range is well resolved, the spectrum drops to zero before noise

starts to influence the shape of the small scale part in a significant way. Note that the

plot is in semi-logarithmic coordinates, so that the peak at 50 Hz does not contribute

significantly to the value of the integral in equation (5.1).

The dissipation rate obtained from the spectrum can then be used to test the

estimation from the structure functions. Figure 5.4 shows the energy dissipation rate

estimated by different means. While the estimation from Kolmogorov’s equation

agrees well with the direct computation from the dissipation spectrum, an estimation

from the third-order structure function alone leads to a significant underestimation.

Thus, to compute the energy dissipation rate in measurements that do not resolve

the dissipation range, the corrected third-order structure function should be used.
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5 STATISTICS OF THE SMALL SCALES

Figure 5.3: The one-dimensional energy dissipation spectrum. The integral over
this spectrum is equivalent to the energy dissipation rate under the assumption
of isotropy. The peak at k1 ≈ 7 m−1 stems from the aforementioned electric
noise.

Figure 5.4: Comparison of the different methods of obtaining the dissipation rate.
An estimation from the third-order structure function (blue) underestimates the
value of ε . The results from the corrected third-order structure function (red)
and from the dissipation spectrum (black) agree.
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5.2 Statistics of the Velocity Derivatives

Many features of turbulent flows, such as the decay of energy or the scaling proper-

ties of structure functions, can be investigated by means of velocities and velocity

increments alone. However, one of the key quantities in turbulence, the instanta-

neous energy dissipation rate, is inherently a quantity of the velocity derivatives

via ε = ν

2 ∑i, j

(
∂ui
∂x j

+
∂u j
∂xi

)2
. The distribution of the energy dissipation plays an

important role in, e.g., modeling structure functions, as discussed in section 4.1. It

is well known since Landau & Lifschitz (1959) that the energy dissipation rate is a

highly intermittent quantity. This can be seen directly in time series of turbulent

velocity and of turbulent velocity derivatives. Figures 5.5 and 5.6 show times series

of mean-substracted velocity and the approximated derivatives from the dataset

S1MA, normalized by their standard deviations. The derivatives were computed

by means of finite differences with a time difference ∆t = 10−5 s. In contrast to

the turbulent velocity, the velocity derivative time series and the time series of its

squares show strong intermittent bursts. Periods of relative quiescence alternate with

sharp peaks. Additionally, the time series of the squares of the velocity derivatives

is of interest. Using Taylor’s hypothesis, temporal derivatives can be transformed

into spatial derivatives. Thus, the square of the temporal velocity derivative can be

seen as a surrogate for the energy dissipation rate ε = 15ν〈(∂u/∂x)2〉. Hence, the

rate at which energy is dissipated in turbulence is strongly intermittent as well. The

strong intermittent bursts in measurements of the energy dissipation rate have been

investigated carefully by Tsinober et al. (1992).
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Figure 5.5: Short time series of velocity, velocity derivative and square of the veloc-
ity derivative at Rλ = 250, normalized by their mean and standard deviations.
The derivative time series show strong intermittent bursts comparable to those
reported by Tsinober et al. (1992).
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Figure 5.6: Short time series of velocity, velocity derivative and square of the veloc-
ity derivative at Rλ = 320, normalized by their mean and standard deviations.
The derivative time series show strong intermittent bursts comparable to those
reported by Tsinober et al. (1992).
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In turbulent flows, single-point velocities are distributed close to a Gaussian

distribution. Figure 5.7 shows the non-normalized distribution functions for the

same datasets as in figures 5.5 and 5.6. The black dashed lines represent Gaussian

fits to the colored data. The fit and the data agree. Deviations from a Gaussian

behavior at large standard deviations from the mean might be attributed to the

finite amount of the underlying statistics. Thus, no information about possible non-

Gaussianity can be obtained from this data. Extreme events in the velocity itself are

unlikely to occur in turbulent flows. Following figures 5.5 and 5.6, to find a velocity

four standard deviations higher or lower than the mean is almost four orders of

magnitude more unlikely than to find a velocity of the mean speed. This Gaussianity

is well-known and discussed in the standard textbooks (see, e.g., Davidson (2009)).

Velocity increments, however, show significant deviations from Gaussian behavior

for small separations (see, e.g., Castaing et al. (1990), Peinke et al. (1996), Friedrich

& Peinke (1997), Renner et al. (2001)). The shape of the probability density function

of velocity increments, ∆u = u(t +∆t)− u(t), sensitively depends on the choice

of the time difference, ∆t. For ∆t → 0, the velocity differences, ∆u/∆t, become

identical to the velocity derivative. Figures 5.8 and 5.9 show the non-normalized

distribution functions for the velocity differences and their squares for varying

time differences ∆t. For large ∆t, the distribution functions are virtually Gaussian.

However, for small time differences, one can observe a significant deviation from

Gaussian behavior. The distributions have pronounced heavy tails indicating an

increased likelihood for the occurrence of extreme events. The increasing skewness

indicates a build-up of asymmetry of the increments with decreasing scale.
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Figure 5.7: Non-normalized distribution function of velocity for a Rλ = 250 (blue)
and Rλ = 320 (red) measurement from the dataset S1MA. The dashed black
lines are Gaussian fits to the data.
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Figure 5.8: Non-normalized distribution function of velocity increments, for time
increments between ∆t = 5 ·10−6s and ∆t = 1 ·10−2s. For better visibility,
the curves are shifted vertically with decreasing increments. The top figure
corresponds to a measurement at Rλ = 250, the bottom figure to a measurement
at Rλ = 320.
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Figure 5.9: Non-normalized distribution function of the squared velocity increments
used as a surrogate for the dissipation rate, for time increments between
∆t = 5 ·10−6s and ∆t = 1 ·10−2s. The top figure corresponds to a measurement
at Rλ = 250, the bottom figure to a measurement at Rλ = 320.
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5.3 The Build-Up of non-Gaussianity

To quantify the build-up of non-Gaussiantiy of the velocity differences with decreas-

ing ∆t towards the velocity derivatives, it is useful to investigate ratios of structure

functions. By the use of Taylor’s hypothesis, temporal and spatial derivatives can

be converted into each other. Thus, a description on how the skewness and flatness

changes with scale is equivalent to a description on how they change with time.

Key quantities to describe the non-Gaussianity of the distribution functions of the

velocity derivatives are skewness, S, and flatness, F , given by

S =

〈(
∂u
∂x

)3
〉/〈(

∂u
∂x

)2
〉3/2

, (5.2)

F =

〈(
∂u
∂x

)4
〉/〈(

∂u
∂x

)2
〉2

. (5.3)

For a Gaussian distribution, the skewness and the flatness can be shown to be

zero and three, respectively.

One can now write skewness of the velocity derivative distribution in terms of

structure functions via

S3

S3/2
2

=
r3 · 〈(u(x+ r)−u(x))3〉

r3 · 〈(u(x+ r)−u(x))2〉3/2
r→0
= S. (5.4)

Here, shifting the pre-multiplied factor of one, given in terms of r3/r3, is shifted
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5.3 The Build-Up of non-Gaussianity

into the respective averages and the limit of r→ 0 is taken.

The flatness can be analogously written as

S4

S2
2
=

r4 · 〈(u(x+ r)−u(x))4〉
r4 · 〈(u(x+ r)−u(x))2〉2

r→0
= F. (5.5)

A variation in the ratio of the structure functions with respect to the scale thus

provides quantitative information about the change of shape of the distribution func-

tions with scale. Figure 5.10 shows the ratio −S3/S3/2
2 as a function of separation,

normalized by the Kolmogorov length scale. For large separations, the skewness

approaches its Gaussian value of zero.

Figure 5.10: Dependence of the ratio of the third-order structure function to the
second-order structure function to the power of 3/2. For large separations, the
ratio reaches the Gaussian value of 0. For r→ 0, the ratio is equivalent to the
skewness of the velocity derivatives.
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In the near-dissipation range, at r/η ≈ 20, there is a significant increase of

skewness. For r/η < 10, the skewness approaches a constant value, the velocity

derivative skewness. The resulting skewness is in agreement with the results from

Van Atta & Antonia (1980).

The scale-dependent ratio S4/S2
2 shown in figure 5.11 behaves in a similar manner.

For large separations, it assumes the Gaussian value of three, while at r/η ≈

20, there is a rapid build-up of intermittency with scale. For the smallest scales,

r/η < 10, the scale-dependent flatness reaches a constant value, the flatness of the

velocity derivatives. This build-up of intermittency is in agreement with a model

by Chevillard et al. (2005) that links inertial range intermittency to the dissipation

range by the use of an amplification law.

Figure 5.11: Dependence of the ratio of the fourth-order structure function to the
square second-order structure function. For large separations, the ratio reaches
the Gaussian value of three. For r→ 0, the ratio is equivalent to the velocity
derivative flatness.
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5.3 The Build-Up of non-Gaussianity

These findings can be used to understand the change of shape of the velocity

increment distribution functions in figure 5.8. The red and purple curves, corre-

sponding to separations in the inertial range with r/η > 20, resemble Gaussian

distributions. With the green and cyan curves, the near-dissipation range is reached.

The shape of the distributions rapidly develops heavy tails with strong deviations

from Gaussian behavior. In the far-dissipation range (brown and black), the shape of

the distributions does not change significantly with scale, agreeing with the findings

in figure 5.11.
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6 Discussion and Outlook

Albeit of fundamental importance for the prediction of extreme events, aerodynam-

ics and numerical modeling, the influence of the Reynolds number on many aspects

of turbulent flows is not precisely known. In my thesis, I used the ability of the

Variable Density Turbulence Tunnel at the Max-Planck-Institute for Dynamics and

Self-Organization in Göttingen to change the Reynolds number over a wide range.

Thus, I was able to experimentally investigate its role in key aspects of turbulence.

In chapter 3, I addressed the question whether the rate of decay of turbulent

flows depends on the Reynolds number. There is a line of thought that at very high

Reynolds numbers, a self-similar decay with constant Reynolds number emerges.

With the results from chapter 3, this type of decay can be ruled out for realistically

obtainable Reynolds numbers. Rather than the self-similar decay, the high-Reynolds

number limit of decaying turbulence seems to be Saffmann’s turbulence, originally

connected to patches of turbulent with conserved linear momentum dominating the

flow properties. This picture might have to be adjusted, as the large-scale structure

of the energy spectrum in the experiments I conducted possibly disagrees with

the predicted one. Two aspects of the results from chapter 3 are promising to be
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investigated in future research. While there is no approach to self-similar decay

at high Reynolds numbers, there seems to be an approach towards Batchelor’s

turbulence at low Reynolds numbers. Even though the VDTT is a wind tunnel

designed for high Reynolds number experiments, low Reynolds numbers can be

realized using Helium as working gas in combination with a smaller grid with round

grid bars. This lowers the minimal obtainable Reynolds number by at least one order

of magnitude, making it possible to investigate a potential transition of Saffman’s

turbulence towards Batchelor’s turbulence. The connection between the large-scale

part of the three-dimensional energy spectrum and the rate of decay will have to be

investigated in detail. This is to test the original theoretical predictions of conserved

quantities being responsible for the rate of decay. A useful experimental method

for this will be to use an active grid to be built in the VDTT that is capable of

modifying the large-scale structure of the turbulent flow at will. With the long-time

measurement abilities of the VDTT, a thorough investigation on this matter will be

possible. The use of a to-be-developed three-wire nano-scale hot-wire might give

direct access to the three-dimensional spectrum.

In chapter 4, I investigated the statistics of velocity increments in the inertial

range and the predictions of scaling behavior in the structure functions. I found that

neither scaling in the classical sense nor in the sense of Extended Self-Similarity

is present in turbulent flows. There is a systematic deviation from scaling in

turbulence. Dissipative effects extend much further into the inertial range than

expected, completely universal with Reynolds number. The commonly used models

for the shape of structure functions assume scaling properties. This line of thought
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has to be improved, models including the systematic deviations are needed. A

more promising approach to describe the statistics of velocity increments might

be by means of the velocity increment probability density functions instead of the

structure functions. As these functions contain the complete statistical information

about the velocity increments, using them to investigate the absence of scaling

might be more fruitful.

In chapter 5, I used the data from the measurement campaign in Modane to

investigate the build-up of intermittency towards the small scales. As spatial filtering

did not play a role in the measurements, a large part of the dissipative range could

be investigated. The general temporal limitations of CTA systems regarding electric

noise at high frequencies, however, prevented an unfiltered access to the sub-

Kolmogorov scales. With improved, to-be-developed electronics, such as a constant

current anemometer specifically built to work with extremely small nano-scale

probes, the temporal resolution the measurements could be improved such that

sub-Kolmogorov-scale statistics might be fully accessible in the VDTT at moderate

Reynolds numbers. This would also give complete access to velocity derivative

statistics.
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Appendix

A Experimental Conditions

Dataset Decay
Probes P11, Mini, NSTAP

Distance from the grid [m] 1.5 to 8.3
Sampling rate [kHz] 60

# of positions 50
# samples per position 1.8 ·107

Working gas Air, SF6
p [bar] 0.5 to 15

ν [m2/s2] 1.4 ·10−7 to 3.3 ·10−5

U [m/s] 2.45 to 4.95
u′/U 1.58% to 3.56 %

ε [m2/s3] 3.45 ·10−3 to 1.77 ·10−2

Rλ 21 to 1450
η [µm] 21 to 1600
λ [mm] 1.57 to 20.3
L [mm] 115 to 254

Table 6.1: Conditions of the decay measurements for the dataset Decay. The
magnitude of the derived quantities changes with distance from the grid. Given
are the quantities at the largest distance from the grid, obtained with NSTAPs.
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Dataset Decay_Modified Decay_Near
Probes P11, Mini, NSTAP P11

Grid distance [m] 1.5 to 8.3 0.034 to 1.86
Sampling rate [kHz] 60 60

# positions 50 14
# samples per position 1.8 ·107 1.8 ·107

Working gas Air, SF6 Air
p [bar] 1 to 15 1

ν [m2/s2] 1.4 ·107 to 1.55 ·10−5 1.55 ·10−5

U [m/s] 4.2 to 4.3 3.9
u′/U 1.0% to 3.4% 4%

ε [m2/s3] 0.002 to 0.02 0.1
Rλ 70 to 1500 80

η [µm] 20 to 1250 430
λ [mm] 1.5 to 20 7.4
L [mm] 124 to 138 70

Table 6.2: Conditions of the decay measurements for the datasets Decay_Modified
and Decay_Near. Given are the quantities at the largest distance from the grid.

Dataset Statistic_Medium
Probes NSTAP

Grid distance [m] 7.1
Sampling rate [kHz] 60 and 200

# samples 1.8 ·107 to 2.0 ·108

Working gas Air, SF6
p [bar] 1 to 15

ν [m2/s2] 1.4 ·10−7 to 1.5 ·10−5

U [m/s] 1.32 to 4.31
u′/U 1.99% to 4.38%

ε [m2/s3] 0.0003 to 0.035
Rλ 50 to 1600

η [µm] 17 to 1080
λ [mm] 1.44 to 18.7
L [mm] 72.7 to 150

Table 6.3: Experimental conditions of the dataset Statistic_Medium
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Dataset Statistic_Large Statistic_Huge
Probes P11, Mini, NSTAP P11, Mini, NSTAP

Grid distance [m] 8.3 6.9 and 8.3
Sampling rate [kHz] 60 60

# samples 1.3 ·109 to 1.9 ·109 1.0 ·1010 to 1.5 ·1010

Working gas Air, SF6 SF6
p [bar] 1 to 14.5 1 to 15

ν [m2/s2] 1.5 ·10−7 to 1.55 ·10−5 1.4 ·10−7 to 2.6 ·10−6

U [m/s] 3.46 to 5.11 4.01 to 4.34
u′/U 1.57% to 3.45% 2.7% to 3.6%

ε [m2/s3] 0.003 to 0.015 0.012 to 0.024
Rλ 110 to 1450 300 to 1600

η [µm] 22 to 1030 19 to 191
λ [mm] 1.61 to 21.1 1.45 to 6.73
L [mm] 103 to 138 126 to 129

Table 6.4: Experimental conditions of the datasets Statistic_Large and
Statistic_Huge.

Dataset S1MA
Probes NSTAP

Sampling rate [kHz] 200
# samples 4.4 ·108 to 9.6 ·108

Working gas Air
p [bar] 1

ν [m2/s2] 1.5 ·10−5

U [m/s] 21 to 43
u′/U 1.2% to 1.7%

ε [m2/s3] 0.26 to 0.75
Rλ 250 to 320

η [µm] 260 to 330
λ [mm] 9 to 10
Le [mm] 129 to 148

Table 6.5: Experimental conditions of the measurements conducted in the S1MA.
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B Scaling Exponents Comparison

Reference ζ4,2 ζ6,2 ζ8,2 ζ10,2 ζ12,2
VDTT data 0.5934 1.092 1.499 1.82 2.05

Statistical uncertainty ±0.0003 ±0.001 ± 0.002 ± 0.01 ± 0.02
∆ ±0.0074 ±0.027 ±0.063 ±0.1 ±0.14

Cao et al. (1996) 0.584 1.077 1.493
Toschi et al. (1999) 0.58 1.08

Boratav & Pelz (1997) 0.5867 1.0778 1.4903 1.8463 2.1673
0.5887 1.0873 1.5192 1.9069 2.2683
0.5846 1.0749 1.4896 1.8513 2.1817
0.5888 1.0873 1.5182 1.9033 2.2598
0.5845 1.0737 1.4850 1.8394 2.1568

Vincent & Meneguzzi (1991) 0.64 1.13 1.52 1.90 2.23
Gotoh (2013) 0.604 1.108 1.524

Table 6.6: Relative scaling exponents measured in the VDTT compared to DNS.
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Reference ζ4,2 ζ6,2 ζ8,2 ζ10,2 ζ12,2
VDTT data 0.5934 1.092 1.499 1.82 2.05

Statistical uncertainty ±0.0003 ±0.001 ± 0.002 ± 0.01 ± 0.02
∆ ±0.0074 ±0.027 ±0.063 ±0.1 ±0.14

Kolmogorov (1941a) 0.6667 1.333 2.000 2.67 3.00
Kolmogorov (1962) 0.5963 1.099 1.508 1.82 2.04

Andrews et al. (1989) 0.6247 1.086 1.473 1.80 2.08
Frisch et al. (1978) 0.4510 0.902 1.353 1.80 2.25
Benzi et al. (1984) 0.9154 1.266 1.541 1.74 1.89

Kida (1991) 0.5928 1.092 1.500 1.82 2.05
Meneveau & Sreenivasan (1987a) 0.5702 1.041 1.445 1.81 2.15

She & Lévêque (1994) 0.5838 1.082 1.515 1.90 2.24
Dubrulle (1994) 0.5936 1.093 1.500 1.82 2.05

Table 6.7: Relative scaling exponents measured in the VDTT compared to theoreti-
cal models. The parameters in the models were used to fit the models to the
VDTT data.
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Reference ζ4,2 ζ6,2 ζ8,2 ζ10,2 ζ12,2
VDTT data 0.5934 1.092 1.499 1.82 2.05

Statistical uncertainty ±0.0003 ±0.001 ± 0.002 ± 0.01 ± 0.02
∆ ±0.0074 ±0.027 ±0.063 ±0.1 ±0.14

Benzi et al. (1993) 0.56 0.95 1.44
Benzi et al. (1995) 0.58 1.08 1.53

Sreenivasan & Dhruva (1998) 0.55 1.00 1.34 1.67
Stolovitzky & Sreenivasan (1993) 0.55 1.02 1.42 1.82 2.20

0.58 1.09 1.53 1.95 2.36
Shen & Warhaft (2002) 0.59 1.08 1.52

0.59 1.08 1.49
Antonia & Pearson (1997) 0.60 1.10 1.53

0.59 1.03 1.31
Belin et al. (1996) 0.56 1.01 1.38 1.60 1.8

Anselmet et al. (1984) 0.62 1.09 1.56 1.93 2.23
0.62 1.09 1.56 1.89 2.03
0.62 1.09 1.51 1.88 2.13

Maurer et al. (1994) 0.6 1.1 1.3
van de Water & Herweijer (1999) 0.57 1.01 1.31 1.50 1.62

0.57 1.02 1.36 1.62 1.82

Table 6.8: Relative scaling exponents measured in the VDTT compared to experi-
mental data.
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