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Abstract 

This thesis investigates the timing and causes of the transition between two different magmatic 

regimes during the evolution of the Central Andean uplift. The first volcanic regime is represented by 

Miocene lava shields, which form low-angle, large-volume flows and are succeeded by considerable 

different more evolved, steep sided, low-volume stratovolcanoes. 

 

Chapter 2: Constraints on P-T conditions of crystallization and rates of magma formation before and 

after crustal thickening in the Central Andes 

Miocene volcanoes in the Central Andes typically overlie regionally extensive plateau-

forming ignimbrites (22 – 20 Ma) (Thouret et al., 2007; Noble and Farrar, 1979). These “early” lavas 

typically form low-angle, large-volume volcanic shields with long single lava flows with length up to 

20 km (ranging from 0.03 to 9 km3 per lava flow with an average of 1.85 km3), and have compositions 

varying from andesites to dacites. These volcanic shields are succeeded by younger (“late”) and more 

evolved steep-sided stratocones that presently characterize much of the CVZ active volcanic front. The 

young Pliocene-Quaternary stratovolcanoes are commonly characterized by amphibole phenocrysts.  

In this chapter I present estimates for crystallization conditions through time and space in the 

Central Andes using multiple geothermo-baro-hygrometry methods on compositions ranging from 50 

wt % SiO2 to 65 wt % SiO2. The analysis of a similar silica composition shows no significant 

differences in mineral compositions and therefore neither in crystallization temperatures in space and 

time. Furthermore there is no difference in crystallization pressure regimes through time suggesting 

the Andean uplift had no significant influence on the transition of Miocene lava shields to the 

Pliocene/Quaternary stratovolcanoes, even though the younger lavas had to pass through much thicker 

crust.  

On the other hand, a clear decrease in HREE isotopes and yttrium with time shows a strong 

dependency on crustal thickening, leading to an increase in crystallization pressure through time. The 

main difference between the barometry and rare earth elements is the depth of crystallization, where 

the barometry indicates the final evolution of crystallization and REE´s deep mantle wedge conditions. 

Therefore the final evolution of magma crystallization must become decoupled from the deep mantle 

and mantle wedge and lower crustal signatures. Thus complex mafic recharge, differentiation, 

assimilation, fractionation and magma mixing between two or multiple end members creates similar 

chemical andesites (which are the most common composition within the Central Andes) and therefore, 

they are only a final product of the magmatic evolution. 

However, the high abundance of amphibole phenocrysts within the Pliocene/Quaternary 

samples shows low crystallization temperatures (< 950 °C) it seems therefore that the pathway of the 

young magmas is slower (has more time to cool down) compared to the Miocene magmas where 

amphibole are uncommon. The slower magmatic system during the Pliocene and Quaternary ensured 

lower magmatic minimum temperatures and by implication the higher viscosities and lower effusion 
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rates created the small compound lava flows and leading to the clear distinction between the young 

stratovolcanoes and the Miocene lava shield, which is a fast system. Therefore, the rate of effusion and 

by implication, magma production and upper crustal stress regime rather than eruption temperature are 

the primary factors that influenced flow length and flow field type. 

 

Chapter 3: Temporal changes in mantle wedge geometry and magma generation processes in the 

Central Andes: Towards linking petrological data to thermomechanical models 

Volume and eruption rates are calculated for a compilation of 220 Miocene to Quaternary 

volcanic centers in the Central Andes. For the northern and central Altiplano the eruptive volumes are 

higher for Miocene volcanic centers (respectively 4681 in 15 Ma and 5466 km3 in 11 Ma) compared to 

Pliocene/Quaternary stratovolcanoes (respectively 2110 and 2973 km3 both in 5 Ma), while for the 

southern Altiplano the eruption rates are higher for the younger stratovolcanoes (11470 in 10 Ma 

compared to 12077 km3 in 5 Ma). Thus when calculating the eruption rates there is an overall 

intensification in eruption rate through time and space; for northern Altiplano 0.59 to 0.8 km3/Ma/km; 

central Altiplano 1.46 to 1.75 and for the southern Altiplano 1.45 to 3.06 and is linked to an already 

thickened crust in the south.  

To evaluate chemical variations of lava through time and estimate the amount of mantle vs 

crustal melt thermodynamic models are fundamental tools, here I use a combination of MELTS for 

major elements and EC-RAxFC for trace elements and isotopes to advance the understanding of rates 

of magma formation and eruptions in the Central Andes. In general there is a poor agreement between 

the two models and analyzed samples; this is probably due to the unique place of the Central Andes 

where simple recharge, assimilation and mixing models are insufficient to explain chemical trends or 

make estimations about the amount of mantle or crustal melts. 

To link petrological data to thermomechanical models, data of thermo- baro- and hygrometry, 

volumetric, eruption rates, intrusion : extrusion rates and even crustal contaminant are essential. Until 

now there is no thermomechanical model that combines petrology, fluid flow and upper crustal 

convection in a 3D model and link this to the evolution of the slab and mantle wedge geometry, 

tectonics and to towards the timing of crustal thickening. I believe based on previous 

thermomechanical modeling and petrological data that the time frame of especially crustal thickening 

is than much faster than previous assumed.  

 

Chapter 4: Systematic compositional variation of magma compositions through time and space at the 

Central Andean Orocline 

In this chapter I analyzed temporal and compositional patterns of major elements and trace 

elements using multivariate statistics. The statistical technique, known as cluster analysis using k-

means, is used to correlate and integrate information about relations between major and trace 

elements. Here I try to test the hypothesis that not only do trace elements show a distinct signature 
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through time in the Central Andes, but the major elements as well. Groups of major elements are 

formed based on their age and geochemical characteristics and are afterwards compared to the 

traditional classifications. Comparing these groups through time it becomes clear that major elements 

are not at all homogeneous for given silica content and through time distinct changes are shown. It 

thus seems that crustal thickening, by means of contamination, not only controls trace elements, but 

major elements as well.  
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Zusammenfassung 

Diese Arbeit beschäftigt sich mit dem zeitlichen Verlauf und den Gründen des Wechsels zwischen 

zwei magmatischen Regimen während der Hebung der Zentralen Anden. Das ältere vulkanische 

Regime wird durch miozäne Schildvulkane repräsentiert, die voluminöse Lavaströme hinterließen. 

Das zweite Regime besteht aus differenzierteren, steilen Stratovulkanen, mit einem weitaus geringeren 

Eruptionsvolumen. 

2. Kapitel: P-T Bedingungen der Kristallisation und Magmenbildungsraten vor und nach der 

Krustenverdickung in den Zentralen Anden 

In diesem Kapitel werden die Kristallisationsbedingungen in den Zentralen Anden präsentiert. 

Dafür werden multiple geothermo-baro-hygrometrische Methoden auf Proben mit 50 Gew. % SiO2 bis 

65 Gew. % SiO2 angewendet. Die hier analysierten Proben zeigen keinen zeit- oder raumabhängigen 

Unterschied in ihrer mineralogischen Zusammensetzung und deshalb auch keine 

Temperaturunterschiede. Weiterhin gibt es keine zeitabhängige Veränderung des Druckregimes, was 

dafür spricht, dass die Hebung der Anden keinen signifikanten Einfluss auf die Veränderung des 

vulkanischen Regimes hat. Andererseits zeigt die Abnahme der HREE und der Y-Isotope eine starke 

Abhängigkeit von der Krustenverdickung (bzw. der Druckzunahme). Aus diesem Grund muss die 

finale Entwicklung der Magmenkristallisation vom tiefen Mantel und dem Mantelkeil entkoppelt 

werden. Durch komplexe mafische Magmenzufuhr, Differentiation, Assimilation, Fraktionierung und 

Magmenmischung zwischen zwei oder mehreren Endkomponenten, entstehen chemisch sehr ähnliche 

Andesite. Diese repräsentieren also nur das  Endprodukt einer komplexen magmatischen Entwicklung 

in den Zentralen Anden. 

Allerdings lässt sich anhand der Themo- und Barometrie ein deutlicher Unterschied in der 

Dauer der beiden Magmensysteme erkennen. Das langsamere magmatische System während des 

Pliozäns und Quartärs führte zu niedrigeren magmatischen Temperaturen und sich daraus ergebenden 

höheren Viskositäten und geringeren Effusionraten. Diese führten zur Bildung der gering-volumigen 

Lavaströme. Das miozäne magmatische System hingegen ist schneller und führt zur Bildung der 

weitläufigeren Lavaschilde. Die Größe und Form der Lavaströme wird also primär durch die 

Effusionsrate und dementsprechend die Magmenproduktion, sowie dem Spannungsregime in der 

oberen Kruste beeinflusst und nicht durch die Temperatur. 

 

3. Kapitel: Zeitliche Veränderungen in der Mantelkeilgeometrie und in Magmenbildungsprozessen in 

den Zentralen Anden. Verknüpfung von petrologischen Daten mit thermomechanischen Modellen 

 In diesem Kapitel wurden die Volumina und Eruptionsraten von 220 vulkanischen Zentren in 

den Zentralen Anden berechnet. Die Eruptionsvolumina im nördlichen und zentralen Altiplano sind 

während des Miozäns höher als während des Pliozäns/Quartär (4681 und 5466 km3 respektive). Im 

südlichen Altiplano hingegen sind die Eruptionsraten der jüngeren Stratovulkane deutlich höher 
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(12077 km3 im Vergleich zu 11470 km3 für Miozäne vulkanische Zentren). Bei der Berechnung der 

Eruptionsraten fällt auf, dass diese mit der Zeit und von Norden nach Süden zunimmt und mit der 

Subduktion des Juan Fernandez Rücken zusammenhängt. Im nördlichen Altiplano steigen die 

Eruptionsraten von 0,59 bis 0,8, im zentralen Altiplano 1,46 bis 1,75 und im südlichen Altiplano 1,45 

bis 3,06 km3/Ma/km. 

Für die Bewertung chemischer Variationen der unterschiedlichen Lavaproben, sind 

thermodynamische Modelle fundamentale Werkzeuge. In dieser Arbeit wird eine Kombination aus 

MELTS für die Hauptelemente und EC-RAxFc für die Spurenelemente und Isotope benutzt, um 

Magmenbildungs- und Eruptionsraten in den Zentralen Anden besser zu verstehen. Im Allgemeinen 

gibt es keine guten Übereinstimmungen zwischen den beiden Modellen und den analysierten Proben. 

Dies ist möglicherweise auf die Einzigartigkeit der Zentralen Anden zurückzuführen, da hier einfache 

Zufuhr, Assimilations- und Magmenmischungsmodelle unzureichend sind, um die chemischen 

Entwicklung zu erklären. 

Zur Verknüpfung von petrologischen Daten mit thermodynamischen Modellen, werden 

Informationen über Temperatur, Druck und Hygrometrie, sowie über Eruptionsraten, Intrusions- vs. 

Extrusionsraten und die krustale Verunreinigung benötigt. Bis jetzt gibt es kein thermomechanischen 

Modell, welches Petrologie, Fluidtransport und die Konvektion der oberen Kruste in einem 3D-Modell 

verbindet, um so die Geometrie der Platte und des Mantelkeils mit der Tektonik und der 

Krustenverdickung zu verknüpfen. Basierend auf früheren thermomechanischen Modellen und 

petrologischen Daten wird angenommen, dass der Zeitrahmen vor allem für die Krustenverdickung 

weitaus kleiner ist als bisher angenommen. 

 

4. Kapitel: Systematische zeit-und raumabhängige Unterscheidung der chemischen Zusammensetzung 

von Lavaproben in der Orokline der Zentralen Anden 

In diesem Kapitel werden Methoden der multivariaten Statistik eingesetzt, um die zeitliche 

Veränderung von Haupt- und Spurenelementzusammensetzung zu analysieren. Hierfür wurde die so 

genannte „Cluster Analyse“ benutzt, um Informationen über die Verbindung zwischen Haupt- und 

Spurenelemente zu korrelieren und zu integrieren. Ziel ist es die Hypothese zu testen, dass sich nicht 

nur die Spurenelementsignatur mit der Zeit verändert, sondern auch die Hauptelementsignatur. 

Weiterhin soll gezeigt werden, dass die Hauptelemente ein wichtiger Kontrollfaktor für die 

unterschiedlichen Spurenelementsignaturen sind. 

Die Hauptelemente werden anhand ihrer geochemischen Eigenschaften gruppiert und mit 

üblichen Klassifikationen verglichen. Bezieht man alle Hauptelemente auf den SiO2-Gehalt und 

vergleicht dann die zuvor eingeteilten Gruppen über die Zeit, so wird deutlich, dass nicht alle 

Hauptelemente homogen verteilt sind, sondern teilweise deutliche zeitliche Veränderungen zeigen. 

Aufgrund dessen komme ich zu dem Schluss, dass die Krustenverdickung und die Verunreinigung 

nicht nur die Spurenelemente, sondern auch die Hauptelementzusammensetzung verändert. 
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Chapter 1 

 

Introduction 

 

 

1.1. The Andean volcanic belt 

The Andes are the world’s longest continental mountain range. They consist of a continuous belt 

of highlands along the western continental margin of South America – about 8000 km long – and 

reach from Venezuela to the Tierra del Fuego. The range is between 200 and 700 km wide, at its 

widest between 18°S and 20°S, where the average elevation is 4 km above sea level. The Altiplano is 

the world’s second highest plateau, following the Tibetan Plateau. To the south, Aconcagua is the 

highest peak in the Andes at an elevation of 6,962m above sea level. 

The eastward subduction of the Nazca plate along the western edge of South America has 

produced an extensive orogeny with a continuous belt of igneous products that developed over at least 

the previous 26 Ma (Pardo-Casas and Molnar, 1987; Isacks, 1988; Coira et al., 1982). The link 

between trench collision of aseismic ridges and flat slab segments plays an important role in the 

volcanic activity. After a phase of flat subduction and no magmatism the volcanic arc has been linked 

to the steepening of the subducting slab and to influx of hot asthenosphere into the mantle wedge 

(Isacks, 1988; Wörner et al., 1994; Kay et al., 1999; James and Sacks (1999).  

At present the active volcanic arc is divided into three zones separated by inactive gaps.  

- The northern volcanic zone (NVZ) in Colombia and Ecuador between latitudes 5° and 2°S is 

a result of Mesozoic and Cenozoic collision of oceanic terranes, prior to the present Andean 

type setting (Bosch and Rodriguez, 1992) 

- The central volcanic zone (CVZ) largely in south Peru and northern Chile, 16° to 27°S has a 

long history of subduction and volcanic arc activity (Sérbrier and Soler, 1991; Isacks 1988; 

Allmendinger, 1997)  

- And the southern volcanic zone (SVZ) largely in southern Chile, 33° to 55°S recording the 

closing of a back arc oceanic basin (Ramos and Kay, 1992; Gorring et al., 1997) 

All three active zones correspond to relative steep dipping segments of subducting slabs, whereas 

the inactive areas correspond to segments with much shallower dips (10 to 15°) and relate to the 

segments of Bucaramanga (north of 5 °N), Peruvian 3 to 15 °S and the Pampean flat slab segment (27 



Chapter 1  - Introduction 

 
 

8 

to 33°S). In all flat segments the subducting plate descends with a maximum dip of 30° from the 

trench to a depth of approximately 100 -120 km and then flattens beneath the overriding lithosphere 

for several hundred kilometers before descending into the upper mantle lithosphere (Martinod et al., 

2010; Espurt et al., 2008).  

Around 17 - 18°S the Andes bends, here the angle of convergence between the subducting Nazca 

plate and the South American plate changes from nearly perpendicular in the south to a somewhat 

oblique in the north (Beck et al.,1993; Oncken et al., 2006). The link between trench collision of 

aseismic ridges and flat slab segments play an important role in the volcanic activity. The zones of low 

dip angle correspond roughly to places where thicker and less dense oceanic crust is being subducted. 

The extra thickness is attributed to the Nazca ridge and the Chile rise. In zones of low subduction dip 

the mantle wedge above the slab is much thinner, leaving only the shallow lithospheric mantle in the 

western portion with the lower asthenospheric component to the eastern portion (Barazangi and Isacks, 

1979). This lack of asthenosphere is the reason for the diminished volcanic activity and thus slab dip 

must play an important role in controlling whether or not magmatism occurs.  

The type and thickness of crust that comprises the continental plate differ among the three 

volcanically active zones of the Andes. The Northern Volcanic Zone is underlain by mafic oceanic 

crust that was accreted in the Late Cretaceous and Cenozoic (Gansser, 1973; Alemán and Ramos, 

2000; Jaillard et al., 2000). There, the crust is on the order of 30 to 45 km thick. Whereas in contrast to 

the NVZ, both the Central and Southern Andes are built on Paleozoic or older ensialic crust (Mpodzis 

and Ramos, 1990; Ramos, 2000; Jaillard et al., 2000; Hervé et al., 2000), these two volcanic zones are  

characterized by differences in their (1) pre-Andean basement ages, (2) Late Oligocene to Recent 

geologic evolution, (3) crustal thickness (thickest in the CVZ and variably thick in the SVZ), and (4) 

overall crustal composition (Lucassen et al., 2001; Tassara and Yáñez, 2003). 



Chapter 1  - Introduction 

 
 

9 

 

Fig.1. Plate-Tectonic settings of the Andes. The estimated subducted lengths topographic anomalies underneath the South 

American plate are shown in light grey areas. Red triangles mark active andesitic volcanism (Gutscher et al., 2006b). The 

profiles of the Nazca slab beneath the South American plate from earthquake epicenters showing the changes in slab dips in a 

N-S transect.  (modified from Espurt et al., 2008). 

1.2. The Central Volcanic Zone (CVZ) 

 

The Central Volcanic Zone forms the western boundary of the Altiplano in southern Peru and 

northern Chile. The CVZ is underlain by continental crust up ot 70 km thick, a rusult of crustal 

thickening that began approximately 25 Ma ago (Isacks, 1988). Within this zone of steep subduction, 

(16°S to 24°S), there exist 44 major and 18 minor active volcanic centers (Stern, 2004). Slab dips are 

more shallow on either side of the CVZ. To the north, the slab dip abruptly changes between 13° and 

16°S in southern Peru-Bolivia. South of 24°S, a smooth transition exists between 24° and 27°S in 

northern Argentina (Allmendinger et al., 1997). 
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1.2.1. The basement  

Paleoproterozoic (2.0 - 1.8 Ga) metamorphic and igneous rocks of the Arequipa terrane in the 

northern central Andes are the oldest basement underneath the Andean arc. The current Pacific margin 

of South America is widely considered to be an assemblage of allochthonous or parautochthonous 

terranes that accreted to Gondwana during the Late Proterozoic and/or during the Early to Mid-

Paleozoic (Ramos, 1988, 1995; Unrug, 1996; Astini et al., 1995). Metamorphic rocks with possible 

Paloeproterozoic protolith ages have been found in the southern central Andes at Cerro Uyarani on the 

Bolivian Altiplano, and in exposed basement at Belen, Chile. (Wörner et al., 2000a). Rocks with 

younger Grenvillian ages (1.3-1.0 Ga) protolith ages also are found at choja in northern Chile (Loewy 

et al., 2004). 

A tectonic scenario is that terrane exchange ensued between the South American (Gondwana) and 

North American (Laurentia) cratons succeeding Grenvillian collision which molded the hypothetical 

supercontinent Rodinia (Wasteneys et al., 1995; Tosdal, 1996; Dalziel, 1997). Consequently 

separation was preceded by a second collision between Laurentia and Gondwana during the Mid-

Ordovician Famatinian orogeny in the Andes and the Taconian orogeny in the Appalachians (Dalziel 

et al., 1994). An adjustment of the previous model places a small ocean between Laurentia and South 

America with arcs on or in front of the respective margins in the Early Ordovician. In Mid-Ordovician 

followed a probable collision of a continental platform derived from Laurentia including the Argentine 

Precordillera (Dalziel, 1997). In the Andes outcrops of metamorphic rocks are scarce but present the 

mountain chains from the Chilean Coast to their eastern slope. In north Chile continuous outcrops do 

not exist (Damm et al., 1990, 1994).  

1.2.2. The onset of magmatic systems 

The Mesozoic to Cenozoic arc is composed of a volcanic-clastic sequence that overlies a 

Proterozoic –Early Paleozoic complex of high-grade metamorphic rocks and granites. The oldest 

plutonic sequences are of Early Paleozoic (Miškovič et al., 2009; Chew et al., 2007; Miškovič and 

Schaltegger, 2009) and Carboniferous age and can be regarded as the evolution of the Proto-Andean 

margin on the edge of the Amazonas Craton (Chew at al., 2008 and references therein). The current 

magmatic system developed since the lower Jurassic due to the subduction of the Farallon-Nazca 

plate. During the Lower Jurassic (~190 Ma), volcanism of the Precordillera shifted ~200 km westward 

into the region of the present Coastal Cordillera and formed the Jurassic to Cretaceous arc system. The 

large volumes of Jurassic igneous rocks in the Coastal Cordillera are mantle derived (Rogers and 

Hawkesworth, 1989; Pichowiak et al., 1990; Lucassen and Thirlwall, 1998).  

 In the western Cordillera, Early Cretaceous plutons of the Coastal Batholith intruded folded 

Jurassic to Early Cretaceous volcanic-clastics, suggesting phase shortening in the Early Cretaceous 

(Jaillard and Soler, 1996; Soler and Bonhomme, 1990). The volcanic products consist out of thick 

beds of pillow lavas, sheet lavas and tuffs with a basaltic to intermediate composition occur. 
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According to geochemical data it has been proposed that the volcanics characterize mantle-derived 

magmas that conceivably formed in a back arc setting (Atherton et al., 1985). The Coastal Batholith of 

Peru extends over 1680 km along the coast.  

During the Late Cretaceous to Early Tertiary the eastward migration of the volcanic front took 

place (Ramos and Aleman, 2000). Volcanism increased again during this period and decreases during 

the Oligocene. Although volcanic activity decreases in the Oligocene intrusive activity is widespread 

and important during the Late Eocene and Oligocene (48-28 Ma). This period of waning volcanism 

coincides with a period of highly oblique convergence of the Nazca plate (Ramos and Aleman, 2000.  

Previous to 26 Ma, a period of at least 5 My of magmatic dormancy alongside the Peruvian 

margin occurred (Soler and Bonhomme; Soler, 1990). Except in the eastern Cordillera and the 

Altiplano of southern Peru are some extrusive and intrusive products (Sérbrier and Soler, 1991). Calc-

alkaline magmatic activity began again approximately at 26 Ma all along the western Cordillera and 

has sustained to the present.  

 

1.2.3. Subduction of the Nazca plate 

During the Oligocene the East Pacific rise reached the North American subduction zone being 

progressively subducted underneath the continental lithosphere (e.g. Hamilton, 1987; Crowell, 1987). 

This event appears to be the onset of major plate boundary reorganization in the Pacific basin, like the 

Late Oligocene breakup of the Farallon plate into the Nazca and Cocos plates (e.g. Herron and 

Heirtzler, 1967; Mammerickx and Klitgord, 1982). Coeval events in the southeast Pacific were the 

intensification in spreading rate, the change in spreading direction on the Pacific Farallon (Nazca) 

ridge (Mayes et al., 1990, Tebbens et al., 1997) and near 40° clockwise rotation of the Chile ridge axis 

(Tebbens and Cande, 1997).  

Early Cenozoic magmatism and deformation in the Central Andes were largely focused in the 

present fore-arc region, even though evidence of uplifted zones in the back-arc region has been 

reported (Kennan et al., 1995). The abrupt change of plate convergence kinematics during Late 

Oligocene is coeval with a widespread eastward shift and broadening of the locus of main tectonic 

activity, and onset of the formation of the modern Central Andes.  

A possibly strong acceleration of convergence during the Late Oligocene contributed to the 

mountain building in the Central Andean. The diminution of convergence rate since Late Miocene 

time approximately correlates with the last deformational phase in the orogeny and was characterized 

by the progressive end of internal deformation in the Altiplano-Puna region, acceleration of plateau 

uplift, and eastward jump of deformation to the Subandean and Sierras Pampeanas regions (Benjamin 

et al., 1987; Roeder, 1988; Isacks, 1988; Gubbels et al., 1993; Kley et al., 1997).  
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Fig.2. Mean convergence rate between the Nazca-Farallon oceanic plate and South America at around 22°S from 100 Ma to 

present (after Pardo-Casas and Molnar; 1987; Bohomme and Soler, 1990; Somoza, 1998; Sdrolias and Muller, 2006; 

Martinod et al., 2010). Rapture of the Rarallon plate at 23 Ma (Longsdale 2005). Flat subduction correlates with slower 

convergence rates.  

 

1.2.4. Movements of the Nazca and the Juan Fernandez ridge 

Nazca ridge  

The flattening of the slab in northern and central Peru has been proposed as a result of the 

subducting Nazca Ridge (Gutscher et al., 2000). The collision zone of the 1000 km long, 200 km wide 

and 1,5 km high Nazca Ridge and the Peruvian segment of the convergent South American margin 

between 14°S and 17°S resulted in the deformation of the upper plate and a few hundred meters of 

uplift of the fore-arcs. The ridge has a trend of N42°E at a region where the convergence direction is 

77° resulting in an oblique angle of subduction and southward ridge migration. The a-seismic 

submarine ridge formed at the Farallon spreading center in the Early Cenozoic (Pilger 1981; Pilger 

and Handschumacher, 1981; Woods and Okal, 1994; Hampel 2002), whereas the onset of ridge 

subduction began at 11.2 Ma at 11°S. The Nazca ridge is oblique with respect to both trench and 

convergence direction of the Nazca plate and travels southeastwards along the dynamic plate 

boundary. However, the lateral migration history alongside the Peruvian margin shows that the lateral 
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movement of the ridge has slowed through time (of ~75 mm/y before 10.8 Ma to 43 mm/y from 4.9 to 

present) due to a small portion of the relative convergence rate concerning the Nazca and South 

American plates is taken up by intra plate deformation in the Andean mountain belts (Hampel, 2002).    

 

Juan Fernández ridge  

In central Chile, the Nazca Plate and Juan Fernández Ridge subducts beneath the South American 

continental lithosphere from 30°S to 35°S and extents over 900 km. The Juan Fernández ridge a-

seismic ridge originates from the stationary Juan Fernández hot-spot. The Juan Fernández ridge began 

to form at 25 Ma and migrated southwards along the Peru-Chile trench. Reconstruction indicates rapid 

migration of the collision point along ~ 1400 km of the margin from 20 to 11 Ma. From 11 Ma to 

present the collision point has migrated at a slower rate along ~375 km of the margin. In contrast, 

during the early Miocene time of the intersection was an order of magnitude faster (Yáñez et al., 

2002). Ridge subduction has ever since caused a decrease of the subduction angle, considerable 

increase in the lithospheric thickness (Pardo et al., 2002) and as well effected the marginal erosion, 

shoreline indentation and crustal uplift (Fromm et al., 2004). Due to these multiple significant factors 

the understanding of the migration of the Juan Fernández Ridge is extremely important how it 

influences volcanic processes. 

 

 

 

 

 

 

 

 

 

 

Fig.2. Path of the Juan Fernández ridge during its 

N-S passage beneath the Central Andes in the past 

26 Ma: after Yáñez et al., 2002.  
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1.2.5. Uplift 

The history of Andean uplift is crucially important to climatic and tectonic studies, but also 

effects chemical variations in magma compositions. Despite the long lasting subduction, the uplift 

started not before the Eocene (Inciac deformation) in the Eastern Cordillera and yet, the start of the 

uplift at around 35 to 25 Ma in the western Cordillera was in absence of continental collision or 

terrane accretion (Isacks, 1988; Allmendinger et al., 1997; Sempere et al., 2008). However this first 

pulse of uplift and the reached elevation is still heavely debated (Anders et al., 2002; Gillis et al., 

2006; Gregor-Wodzicki, 2000; Sempere et al., 2008). The onset of uplift was probably due to low 

angle to nearly flat subduction, which thinned and thermally softened lithosphere (Coira et al., 1993; 

Kay et al., 1995). A second pulse of uplift has been recongnized around Late Mioceneage starting at 

approximately 10 Ma (Lamb and Hoke, 1997; Schildgen et al.., 2007; Thouret et al., 2007; Garzione et 

al., 2008; Sempere et al., 2008).  

In a convergence tectonic setting several processes can support elevated terranes. Thus despite 

the fundamental role of crustal thickening, the processes leading to the 70 km thick crust is still 

debated. Thickening of the crust is a combination of crustal shortening (Oncken et al., 2006), 

compression, crustal underplating, magmatic addition and ductile flow of the lower crust. Besides 

uplift can be caused by thermal anomalies due to magmatism and mantle plumes and very rigid crust 

or mantle lithosphere (Gregory-Wodzicki, 2000). Thinning of the lithosphere is a consequence of 

delamination (Kay and Malburg-Kay, 1991) and tectonic erosion and are a consequence of crustal 

thickening.  

Large amounts of shortening in the Eastern Cordillera and Altiplano can be accounted for 

between 80 and 90 % of the crustal thickness (Roeder, 1988; Sheffels, 1995; Allmendiger et al., 1997; 

Baby et al., 1997; Lamb et al., 1997). For the Western Cordillera, magmatic addition contributed 20 to 

40 % of the crustal thickness (Schmitz, 1994, Allmendiger et al., 1997; Lamb and Hoke, 1997), 

however low mean P-wave velocity of the Altiplano crust observed in seismic studies insinuates a 

felsic composition, which precludes magmatic addition as a major component of crustal thickening 

(Zandt et al., 1996) and suggests that crustal shortening as the main contribution to crustal thickening. 

Later Schmitz et al., 1997, rejected this conclusion again based on the observed mean, yet explaining 

more than 10 km uplift by magmatic addition seems a bit overestimated. Thus despite years of 

research still more than 20 % of the crustal thickening remains unexplained.  

The contribution of crustal shortening to crustal thickening is not equally distributed but varies 

along strike. In the Altiplano compression started in the Pliocene between 25 and 29 Ma and continued 

until about 10-6 Ma. Around 10 – 6 Ma deformation shifted to the east. (Sempere et al., 1990; 

Allmendinger et al., 1997; Jordan et al., 1997; Lamb et al., 1997). Eocene compression in the Puna 

region was almost absent in the southern flat slab domain and started much later between 15 and 20 

Ma and continued until 1-2 Ma (Allmendinger et al., 1997). However as previously mentioned other 
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processes are involved as well and so the estimates of surface uplift based on upper crustal shortening 

should be considered to have more or less large errors. 

Taking all estimates into account (volcanic history, marine and coastal facies, climate history 

inferred from vegetation, aridity, landscape development history and erosion history) the Western 

Cordillera reached no more than half of its present height by 18- 25 Ma (Gregory-Wodzicki, 2000). 

While for the Altiplano it attained about 25 -30 % of its modern elevation in the Early Miocene and 

had reached about half of its modern elevation by 10 Ma. These estimates proposes uplift rates of 0.1 

mm/yr in the early and middle Miocene and increasing to 0.2 – 0.3 mm/yr from the Miocene to the 

present (Gregory-Wodzicki, 2000).  

 

1.3. Hypotheses and open questions 

The main focus of this work is to gain insight into the relationship between Miocene lava shields 

and the younger Pliocene/Quaternary stratovolcanoes. I aim to understand the genesis of their melts 

and the evolution towards the end products by means of an integrated study on the petrogenesis of lava 

samples from the Central Andes. Several hypotheses are examined throughout the thesis in order to 

advance our understanding of the Central Andes with respect to tectonics, mantle wedge geometry, 

uplift and chemical variations. Some of these topics are already explained above, while others will be 

elaborated within the main chapters.  

The first hypotheses is; the transition between Miocene voluminous lava shields and small 

Pliocene/Quaternary stratovolcanoes magmatic regimes could be due to a change in (1) the mantle 

melting regime from decompression to flux melting, (2) rates in magma production and effusion, and 

(3) the P-T-regimes of magma evolution within the crust reflecting a change in crustal thickness (syn 

and post thickening). 

 The main questions that are asked are:  

 What are the precise volumetric differences between Miocene shields and 

Pliocene/Quaternary stratovolcanoes?  

 Is there a difference between the melting and crystallization conditions within the mantle, 

lower and upper crust? 

 The sequence of distinct magmatic regimes (plateau-ignimbrites, shield andesites and evolved 

stratovolcanoes) is diachronous during the past 26 Ma of Central Andean evolution: with ages 

younging from N to S, is there a deeper control? 

To answer these questions I studied Miocene to modern Central Andean volcanic rocks that 

represent a variety of ages, petrography, composition, and volcanic style in order to test 

differences in processes of magma generation. Based on a survey of 1112 chemical analyses 

(http://andes.gzg.geo.uni-goettingen.de/) I selected three representative sample types, all of which 

were identified before as important endmember magma type in the Central Andes. Using several 

http://andes.gzg.geo.uni-goettingen.de/
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geothermometers, hygrometers and MELTS modelling (Gulda et al., 2012), I will identify the P-T 

parameters at the time of crystallization. 

 

The second hypothesis is; Chemical differences through time are caused by crustal thickening. 

Although this hypothesis is not new, several new issues are addressed.  

 How much crustal contamination is needed to form the chemical signatures present in 

andesites? 

 What are the thermodynamic conditions of the recharge magma, assimilation and the pristine 

magma? And do these vary through time? 

 What are the constraints on volumes and eruption rates through time and space? 

 What control on chemical signatures has the slab dip, convergence rate, the movement of the 

overriding plate, strength of mechanical coupling between the subducting and overriding 

plates, lithospheric structure, magmatic pressure - temperature crystallization conditions, mass 

and heat fluxes from recharge magma, crustal thickening? 

To evaluate chemical variations of lava samples through time, thermodynamic models are vital tools; 

here I use a combination of MELTS for major elements and EC-RAxFC for trace elements and 

isotopes to advance the understanding of rates of magma formation and eruptions in the Central 

Andes. 

 

The third hypothesis is; Major elements can be used in order to differentiate andesites before and after 

crustal thickening. This hypothesis has been suggested by many authors e.g. (Davidson and de Silva, 

1992, 1995; Davidson et al., 1991; Kay et al., 1994, 1996; Wörner et al., 1988, 1992, 1994; Mamani et 

al., 2010) for trace elements, however by means of traditional diagrams it is hard to distinguish 

andesites before and after crustal thickening between the major elements.  

 Can multivariate statistics discern between effects of differences in end members or source, 

different degree of assimilation, differentiation, magma mixing and fractional crystallization 

with respect to before and after crustal thickening?  

Here multivariate statistics is tested in order to better understand the control of crustal thickening on 

major elements and correlate them with the trace element signature. The statistical technique, known 

as cluster analysis using k-means, is used to correlate and integrate information about relations 

between major and trace elements. Cluster analysis allows us to identify objectively the major 

common trends in chemical data and thus to reduce the information to a limited number of 

characteristic parameter combinations. 
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Constraints on P-T conditions of crystallization and rates of magma 

formation before and after crustal thickening in the Central Andes 

 

 

 

Abstract 

Miocene volcanoes in the Central Andes typically overlie regionally extensive plateau-forming 

ignimbrites (22 – 20 Ma) (Thouret et al., 2007; Noble and Farrar, 1979). These “early” lavas typically 

form low-angle, large-volume volcanic shields with long single lava flows up to 20 km (ranging from 

0.03 to 9 km3 per lava flow with an average of 1.85 km3), and have compositions varying from 

andesites to dacites, with plagioclase + pyroxene ± olivine as the most abundant phases. These 

volcanic shields are succeeded by younger (“late”) and more evolved steep-sided stratocones that 

presently characterize much of the CVZ active volcanic front. The younger Pliocene-Quaternary 

stratovolcanoes have individual lava flow volumues in a similar range from about 0.01 to 8.5 km3 

however, have a much lower average of 0.7 km3. In addition amphibole phenocrysts are more 

abundant at similar SiO2 contents. The transition between these magmatic regimes could be due to a 

change in (1) the mantle melting regime from decompression (hot and dry?) to flux melting (wet and 

lower T?), (2) rates in magma production and effusion, and (3) the P-T-regimes of magma evolution 

within the crust reflecting a change in crustal thickness (syn and post thickening).  

The sequence of distinct magmatic regimes (plateau-ignimbrites, shield andesites and evolved 

stratovolcanoes) is diachronous during the past 26 Ma of Central Andean evolution with ages for the 

triplet younging from N to S. This suggests control by “deeper” processes guided by the geometry of 

the slab, the thermal evolution of the upper plate during Andean orogeny, and the movement of the 

Juan Fernández Ridge. Critical factors, such as subduction parameters and magma production rates in 

the mantle wedge all change regionally and temporally during ongoing thickening of the Central 

Andean crust and the passage of the Juan Fernández Ridge. In addition, the upper plate reacts locally 

to these changes according to its thermal state at the time, crustal composition, and tectonic stress 

conditions.  

I studied Miocene to modern Central Andean volcanic rocks that represent a variety of ages, 

petrography, composition, and volcanic style in order to test differences in processes of magma 

generation. Based on a survey of 1112 chemical analyses (http://andes.gzg.geo.uni-goettingen.de/) I 

http://andes.gzg.geo.uni-goettingen.de/
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selected three representative sample types, all of which were identified before as important 

endmember magma type in the Central Andes (Banaszak, 2014). Using several geothermometers, 

hygrometers and MELTS modelling (Gulda et al., 2012; Asimow and Ghiorso, 1998; Ghiorso and 

Sack, 1995), I show that the P-T conditions of crystallization of these andesitic magmas remained 

surprisingly constant trough time and space in the Central Andes. For example, the depth of 

crystallization of phenocrysts in both Miocene to Present magmas took place between 9 and 3.5 km 

throughout Andean history, in spite of significant crustal thickening and trace element evidence for an 

increasing high pressure (garnet) signature during magma evolution in younger magmas (Kay et al., 

1991, 2005; Haschke et al., 2002; Mamani et al., 2010) Apparently, deep processes that control 

magma trace element signatures are completely decoupled from the conditions of phenocryst 

formation. These observations argue for a more general control on the differences in eruptive style 

between Miocene and Pliocene-Quaternary volcanic edifices, such as density, viscosity, and a general 

regime of magma mixing. The thickened upper crust not only serves as a chemical filter for mantle 

wedge magmas. Accordingly, any distinct regimes of magma formation in the mantle wedge are 

almost entirely dampened out during the passage through the crust. Only the rate of effusion and by 

implication, magma production and upper crustal stress regime remain as primary factors that may 

have influenced differences between Miocene and Recent magmatic products.  

 

2.1. Introduction  

 

The Andean orogenic chain forms the western margin of the South American continent, 

parallel to a subduction zone where the Nazca oceanic plate descends beneath the South American 

continental plate. The Central Volcanic Zone (CVZ) is part of this active margin, where subduction 

has taken place since late Jurassic times. During the Late Cretaceous, long-term compression seems to 

have been controlled by absolute trenchward motion of the overriding plate and to a minor extent, by 

the young age of the subducted lithosphere (Jaillard et al., 1996; Mpodzis et al., 2005; Quinteros and 

Sobolev, 2012), being almost parallel or highly oblique subduction to the continent.  

Throughout the Oligocene, a change in plate tectonic forces resulted from an abrupt increase 

in convergence rate and the change in the direction of subduction, (being more perpendicular to the 

continent) were not effective in sustaining the motion of the Farallon plate and created high intra-plate 

stresses (Soler and Bonhomme, 1988; Soler, 1990; Somoza, 1998). Approximately at the same time 

the Cocos and Nazca plates formed from the breakup of the Farallon plate (Herron and Heirtzler, 

1967; Mammerickx and Klitgord, 1982). At this time (30-26 Ma) the angle of the subducting slab was 

relatively shallow, < 30° (Kay and Coira, 2009; Allmendinger et al., 1997) at the Altiplano-Puna 

plateau and transitions into the Peruvian and Chilean flat slab. Consequently, magma production 

ceased completely because no hot mantle wedge existed between the subducting and overriding plate 

(Isacks 1988; Gutscher et al., 2000; Wörner et al., 2000; Wörner et al., 2002; van Hunen et al., 2004; 
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Trumbull et al., 2006; Manea et al., 2012). However, the Altiplano-Puna plateau formation and 

transitions into the Peruvian and Chilean flat slab were not synchronous due to the southward 

migration of the intersection of the trench and the Juan Fernández ridge (Yáñez et al., 2001, 2002).  

The increase in convergence rate continued until the Early Miocene and gradually slowed 

during the Late Neogene and can be roughly correlated with the last deformational phase in the 

orogeny. Besides an increase in convergence rate, a gradual increase of slab dip took place after 25 Ma 

(Coira et al., 1993; Allmendinger et al, 1997; Kay et al., 1999; Hoke and Lamb, 2007; Kay and Coira, 

2009).  

Because the type of volcanism can be strongly correlated to changes in convergence rate, slab 

and mantle wedge geometry, and because the thickness of the crust has increased trough time, the 

Central Andes are an excellent natural observatory to study the interaction between these parameters. 

Aside from numerous large volcanic lava fields and stratocones that have formed throughout the 

evolution of the Andean during the past 30 Ma, the CVZ includes one of the largest ignimbrite fields 

in South America. Plateau-forming events of large volumes of silicic ignimbrites were erupted in 

relatively short periods that punctuate the geological evolution of the Central Andes. Andesitic 

magmatism that followed the diachronous emplacement of these ignimbrites (> 20 to < 10 Ma) is 

characterised for several millions of years by intermediate composition lava flows which vary from 

basaltic andesites to dacites, with plagioclase + pyroxene ± olivine as the most abundant phases. 

Basalts and rhyolites are exceedingly rare. These Miocene volcanoes typically form large, low-angle 

andesite shield volcanoes and comprise a great number of poorly known, poorly accessible edifices 

(Fig. 1, 2 and 4). After this, volcanism became generally more silicic and more compositionally 

variable. Andesites in younger stratovolcanoes are often characterized by amphibole phenocrysts and 

dacites and rhyolites become more abundant. Together they form the steep-sided stratocones that 

characterize much of the CVZ active volcanic front today (Fig. 1, 2B and 4B) From this, two 

important observations can be made (1) a pattern of changing andesites eruption types (difference in 

volumes) following the ignimbrites and (2) a change within magma composition with a focus on the 

occurrence of amphiboles. Both observations are dichronous with a younging from north to south. In 

some rare well-studied volcanic centers (Grunder et al., 2008, Klemetti and Grunder, 2008, Matteini et 

al., 2002 and Gioncada et al., 2006), the transition in time from rather aphyric plag-px andesites to 

amphibole-bearing andesites has been documented in detail, at least locally. However, other examples 

of a reverse evolution have also been documented (Wörner et al., 1988; Hora et al., 2007). 

The transition between these magmatic regimes could be due to:  

(1) a change in the mantle melting regime from decompression to flux melting. The older 

Miocene samples could be considered more or less dry (lack amphibole) and hot (large volcanic 

fields), whereas the younger stratovolcanoes as wet (amphibole bearing) and colder (cover relative a 

small area). The formation of arc magmas is generally believed to be generated by the release of fluids 

by the subducting plate into, and melting of, the mantle wedge since fluids depress the solidus of the 
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mantle wedge and induce melting. However, low fluid concentrations have also been found in 

volcanic arc settings at the Cascades in the western USA and at Galunggung in Indonesia (Cameron et 

al., 2002) indicating that anhydrous melting due to decompression may also play a role. In such low 

volatile magmas the stability of amphibole is reduced and temperatures may be higher than in flux-

melted magmas for a given composition. Sisson et al., (1996) and Jagoutz et al., (2011) suggested that 

hydrous and anhydrous melts intrude at different depths and have two different fractionation trends: 

hydrous fractionation in the lower crust with high SiO2 and dry fractionation which are derived by 

dense mafic intrusions near the base of the crust. The transition from anhydrous to hydrous andesites 

in a subduction setting may be due to the change from mantle decompression resulting from 

subduction induced corner flow (Elkins-Tanton et al., 2001; Hasegawa and Nakajima, 2004) that is 

strongly enhanced due to the slab steepening, to partial melting in the mantle wedge, where primary 

mafic magmas form, by addition of H2O-rich fluids or melts released from the subducting slab (Ulmer  

2001; Grove et al., 2002).  

(2) Different rates in magma production and effusion: high effusion rates in the Miocene 

would lead to the extensive and simple lava flows, a decrease in effusion rate could explain the small 

compound lava flows which represent most of the Pliocene-Quaternary volcanism. The flow length 

can be linked to effusion rather than viscosity and seems to be the primary factor controlling not only 

flow length but also flow field type (Walker, 1973; Harris and Rowland, 2007). Higher effusion rates 

would lead to long simple flows, while lower effusion rates would create compound short flows that 

pile up around the vent. 

(3) A shift in P-T-regimes of magma evolution within the crust as a function of crustal 

thickness. Rare earth elements (HREE and Y) show depletion in Miocene to Pleistocene volcanic rock 

and are due to garnet-residual crustal assimilation in a thickened crust (Kay et al., 1994, 1996; 

Mamani et al., 2010) and thus suggest an increase in pressure regime with time.  

In order to get constraints on all three possible processes, the most significant parameters 

(temperature, pressure, H2O, density, viscosity, fO2 and volumes) that may control different flow types 

were determined by a range of geothermometers, hygrometers, barometers and thermodynamic models 

on olivines, ortho-, clinopyroxenes, plagioclase, amphiboles and oxides. Since the andesites typically 

contain a significant fraction of disequilibrium crystals, petrographic evidence indicative of 

mixing/mingling between silicic and mafic magmas, such as plagioclase crystal size distribution and 

compositions, were also analyzed in order to get a better understanding of how strongly magma 

mixing processes between end members can influence the above-mentioned parameters.  
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Fig. 1: Map of the Central Andes, indicating the geographic distribution of the profile locations shown in figures. 2- 5.  

Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS 

User Community. 

Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX,

Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User
Community
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Fig. 2A (left): Conspicuously flat-lying andesite lava shields and fields covering plateau-forming ignimbrites of different 

ages in southern Peru and northernmost Chile of Miocene age. (a) Mamuta, Chile. Ages range from 7.4 to 10.4 Ma (Mamani 

et al., 2010). (b) Caracelf, age of lavas Barosso. Samples YAH-00-16, MIO-12-39 and MIO-12-40 (c) Jello Jasa, Peru, age of 

lava Barosso, samples MIO-12-01 and MIO-12-02. 

Fig. 2B (right): Examples of steep-sided compound modern with compositions ranging from mafic andesite to rhyolite of 

different ages. (a) Parinacota Volcano. Erupted compositions range from basaltic andesite to amphibole andesites and 

rhyolitic domes (Wörner et al., 2000; Hora et al., 2007, 2009) Ages range from 180 Ka to present. (b) SaraSara Volcano. 

Compositions range from amphibole andesites and rhyolites (Mamani et al., 2008) Ages range between 1.2 Ma and ca 100 

Ka (Wörner et al., 2000; Kaneoka and Guevara, 1984). (c) El Misti Volcano. Composition range from mafic andesite to rare 

rhyolite and has ages from 120 Ka to present (Thouret at al., 2001). Note that the scale of images the same in both Fig. 2A 

and 2B, emphasizing the differences between post-ignimbrite lava fields and modern stratovolcanoes. 

 

 

 

Fig. 3. Profile locations of flat 

lying andesite lava shields 

(white) and steep sided 

stratovolcanoes (red) of figures 

2A and B. 
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Fig. 5. Profile locations of flat lying andesite lava shields (Left: white symbols) and steep sided stratovolcanoes (right: red 

symbols) of figures 3A and B. 

 

2.2. Methods 

2.2.1. Sample selection 

I studied samples that represent different ages, petrography, composition, and volcanic styles 

in order to test differences in processes of magma generation. I surveyed > 1112 chemical analyses of 

lava samples (http://andes.gzg.geo.uni-goettingen.de/) based on petrography, composition, and the 

distribution of SiO2, I selected three representative sample types of Miocene age. Mio-50, the most 

mafic samples ranging from 50-55 wt% SiO2, Mio-55 are the intermediate andesites with a silica 

content of 55-60 wt% and Mio-60 felsic samples with 60-65 wt% SiO2. Two more groups were 

selected of Pliocene - Quaternary age, Plio-55 and Plio-60, with approximately the same silica content 

as Mio-55 and 60 respectively. Due to a lack of basaltic samples of Pliocene – Quaternary age (Plio-

50) this group has only been included for geothermobarometry. For each group I have selected 

specimens representing different areas of the Andes (Fig. 6). The choice of samples was to compare 

rocks that are similar in major element composition but different in age and petrographic aspect (see 

below). 

Ampato

Sajama

Sara Sara

Sabancaya

Tacora

Yucamani

Ubinas

Isluga

Acotango

Irruputuncu

Tata Sabaya

Paniri

Canapa

Zapaleri

Uturuncu

Cerro del Azufre

Lascar0 140 280 420
km

75°W

2
4

°S
1
8

°S
1

2
°S

69°W 63°W

Ticllaccahua

Huajanae

Chulca

Cailloma

Cana Canari

Tarata

Huarancante

Familane

Choquelimpie
Fundicion

Characato

Chuzmiza

Huaitire

Palla

0 140 280 420
km

75°W

2
4

°S
1
8

°S
1

2
°S

69°W 63°W

http://andes.gzg.geo.uni-goettingen.de/


Chapter 2 – Constraints on P-T conditions of crystallization and rates of magma formation before and after crustal thickening 

in the Central Andes 

 
 

32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Map of the Central Andes, indicating the geographic distribution of the sample locations.  Source: Esri, DigitalGlobe, 

GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 

 

2.2.2 Single lava flow volume calculations  

Satellite images and profiles (Fig. 2, 4 and 5) show a significant difference between Miocene 

shields and Pliocene/Quaternary stratovolcanoes. However, when calculating the volume it is 

important to distinguish between effusion rate and eruption rate. Whereby (a) effusion rate is the 

volume flux of erupted lava that is feeding a flow at any particular point in time, and whereas (b) the 

eruption rate is the total volume of lava emplaced since the beginning of the eruption divided by the 

time since the eruption began. Thus effusion rate is the instantaneous lava flow output by a vent (high 

during the onset of eruption and then exponentially decreases towards the end), and eruption rate is the 

average lava output during a whole eruption, or as it is commonly used, during the lifetime of a 
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volcano. At the onset of a lava flow the waxing flow increases rapidly to a maximum effusion rate 

becoming thermally efficient, and defining its length.  

Since in this study no direct observations or measurement of time laps of the lava flows are 

calculated, it is therefore important to look at the eruption rates of individual lava flows (in volumes) 

as a rough estimate for the effusion rate using the assumption longer and more voluminous lava flow 

had higher effusion rates and that single lava flows are one event. Total volume calculations of shield 

– statovolcanoes and their eruption rates are given in chapter 3.   

I estimated the volumes of 120 lava flows of different lava-shields and stratovolcanoes of 

Miocene and Pliocene/Quaternary age within three different areas (see Fig. 5). Simple volume 

calculations were carried out using Google Earth. For each lava flow a polygon was carefully drawn 

for area calculations, an average thickness was then estimated. Despite most lava flows being well 

exposed, it is difficult to make accurate estimates of the volumes for multiple reasons: First, the bases 

of the lava flows are often not well exposed, making it sometimes challenging to estimate their total 

thickness. Second, flows often show multiple overlying lobes, making it difficult to determine the 

thickness of a particular flow event. Third, the thickness of a lava flow varies during its course. 

In spite of these difficulties, average thicknesses were found by approximating the thickness at 

different locations of the low and interpolating. Base-elevations were determined by using geological 

maps and plotting profiles through the lava flow, hereby averaging elevation values at bends in the 

slope. The top elevations were estimated using geological maps and Google Earth elevations.  

 

2.2.3. Major and trace elements 

In this study 51 new samples of basaltic to rhyolitic compositions from Southern Peru were 

analyzed for major and trace elements by X-ray fluorescence analysis (XRF) on a PANalytical AXIOS 

Advanced sequential X-ray spectrometer. For XRF 2.8 g of powdered sample were thoroughly mixed 

with 5.6 g Spectroflux A12 (66 % Dilithiumtetraborate Li2B4O7 and 34 % lithiummetaborate) and 0.64 

g of LiF and was melted to glass tablet by an automatic fusion device. The analytical precision is 

better than 1-2 % and detection limits vary from 3 to 0.5 ppm for the measured elements.  

Trace element and rare earth elements (REE) concentrations were determined using FISONS 

VG PQ STE ICP-MS with a VG UV Microprobe laser system (266 nm). 100 mg of powdered sample 

was dissolved under pressure in a mixture of 3 ml HClO4 using DAS30 system of Pico Trace GmbH 

also at the Geowissenschaftliche Zentrum of the University of Göttingen.   

 

2.2.4. Thermometry  

All the methods mentioned below assume that mixing between mafic and felsic magmas 

resulted in formation of a perfectly mixed magma without crystals and thus give mostly information 

about the final stage of crystallization. I estimate crystallization temperatures for 48 samples 

representing different ages (Miocene to Quaternary), petrography, compositions and volcanic styles 
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(see above). For comparison I have also analyzed one considerably older sample (APT-11) of Late 

Jurassic (133.1 Ma) age. Apt-11 is a glassy sample from the rind of a pillow basalt formed in a 

submarine setting. Mineral (Plagioclase, olivine, ortho- clinopyroxene, amphibole and oxides) 

compositions were obtained using a wavelength dispersive (WDS) detector on the JEOL JXA 8900 

electron microprobe, at the Geowissenschaftliche Zentrum of the University of Göttingen. Olivine, 

ortho- and clinopyroxenes, plagioclase, amphibole, and oxides were all measured using appropriate 

calibration programs. Olivine, ortho- clinopyroxene, plagioclase and amphibole were analyzed at 15 

kV accelerating voltage, 15 nA probe current and beam size of 10 µm. The oxides on the other hand 

were analyzed at 20 kV accelerating voltage, 20 nA probe current and beam size of 5 µm. Table 

measured elements for the minerals can be found in appendix 1.  

To acquire representative crystallization temperatures set of multiple thermometric 

calculations were considered (see detailed description below): (1) Fe-Ti-Oxides (Ghiorso and Evans, 

2008) including the equilibrium test of Bacon and Hirschmann, (1988), (2) amphibole-plagioclase 

(Holland and Blundy, 1994), (3) Two pyroxene (Putirka et al., 2008), (4) Clino-pyroxene-liquid 

thermometry (Putirka et al., 2003), (5) Ortho-pyroxene-liquid thermometry (Putirka et al., 2008), (6) 

Olivine-liquid thermometry (Putirka et al., 2007) and (7) olivine-augite geothermometer (Loucks, 

1996).  

 (1), The exchange of Fe2+Ti4+ - 2Fe3+ between ilmenite and titanomagnetite, modelled by 

Ghiorso and Evans (2008) is currently the most accurate oxide thermometer, but it is also important to 

note that oxides are also most sensitive to post crystallization diffusion. Oxides are temperature and 

compositional dependent long range cation ordering associated with the symmetry breaking phase 

transition. At elevated temperature, the idealized structure of rhombohedral oxide solid solution, 

where interfaces between hcp oxygen anions are occupied by randomly distributed cations (Fe3+, Fe2+, 

Ti4+). This configuration relate to the octahedral interstices on alternating layers. At low temperatures, 

the Fe2+ and Ti4+ cations form an ordered arrangement over these layers, and destroys the two-fold 

axes of symmetry and lowers the configurational entropy of solution. Together, the cation and 

magnetic ordering phenomena induce phase separation resulting in partitioning between disordered 

and partial ordered structures. Consequently, there are extensive miscibility gaps present in the series. 

At high temperatures or at oxygen fugacities Y NNO +1 results in an uncertainty of at least 50 °C.  

Using the method of Bacon and Hirschmann (1988) it’s possible to determine whether the two 

oxides are in equilibrium or not. Mg/Mn partitioning can indicate which phases may represent 

equilibrium pairs or whether analyses of exsolved phases reflect equilibrium with silicate liquid.  

(2) The amphibole-plagioclase (Holland and Blundy, 1994) thermometer is based on exchange 

of albite and anorthite (NaSi)(CaAl)-1 and edenite-richterite (NaSi)-1(CaAl) components. Dependent on 

the presence of quartz two different equations are given and the thermometer can also be applied on 

silica-undersaturated rocks. The two thermometers take into account non-ideal mixing in both 
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amphibole and plagioclase and are calibrated against an extensive dataset of both natural and synthetic 

amphiboles and has uncertainties of 35-40 °C. 

(3) Two pyroxene (Putirka et al., 2008). To examine phase relations of the two pyroxenes the 

Fo-SiO2 system, En-Diopside system or the breakdown of jadeite can be used in geothermometry and 

estimates of equilibration temperatures. The main two pyroxene thermometer is from Lindsey (1983) 

and Purtirka et al., 2008 using composition of the 2 pyroxenes isotherms plotted in En-Fs-Wo space 

and is based on the Ca content which decreases with increasing temperatures. The temperature 

estimated error is 60 °C.  

(4) The clinopyroxene thermobarometer was developed by Putirka et al. (2003) and uses the 

compositions of clinopyroxenes and coexisting liquid to determine the temperature (error of 26 °C) at 

which these two phases were last in equilibrium. Since the volume changes of jadite and 

calclium.tschermak into diopside hedenbergite are significant smaller and both the exchange equilibria 

are temperature dependent jadite and calclium.tschermak into diopside hedenbergite can be used as 

thermometers. The exchange equilibria are less sensitive to pressure. The thermodynamic basis and 

thermodynamic properties can be calculated from coefficients of the expressions. For a further 

thermodynamic approach see Putirka et al., 1996, 2003.   

(5) Ortho-pyroxene-liquid thermometry (Putirka et al., 2008). The algorithm used to calculate 

orthopyroxene is based on a normative scheme similar to that use for clinopyroxene. Here all liquid 

components are based on cation fractions and all orthopyroxene on the numbers of cations calculated 

on a 6 oxygen basis. 

(6) Olivine-liquid thermometry (Putirka et al., 2007) The temperature calculation from olivine-

liquid equilibria  uses Mg and Fe2+ partitioning between coexisting olivine and glass (error 27 °C). To 

obtain the estimate temperatures the following is required 1) the FeOliq of mantle equilibrated liquids 

or a FeO-MgO trend line along which liquids are olivine saturated, 2) the Fomax of olivines that 

equilibrate with parental liquid compositions, 3) the value for the Fe–Mg exchange coefficient 

between olivine and liquid, KD(Fe–Mg)ol-liq, and estimates of 4) the pressure (P) of olivine-liquid 

equilibration, and 5) ƒO2 conditions) (Putirka et al., 2007). Temperature can be calculated from these 

five variables alone, and if the composition independent thermometers of Putirka (2005) are applied. 

For more precise temperature estimates MgOliq for parental liquids (using FeOliq, KD(Fe–Mg)ol-liq and 

Fomax as input); and then reconstruct the SiO2
liq and Na2Oliq+K2Oliq for parental liquids as input into 

geothermometers. See for further thermodynamic basis Putirka et al., 2007. 

(7) olivine-augite geothermometer (Loucks, 1996). The problem with all the above methods 

(besides the two pyroxene) is that most samples lack fresh glass. Taking the bulk rock would be a 

solution, but creates a bigger error as well. An olivine-augite geothermometer might overcome these 

deficiencies (Loucks, 1996) and has a standard error of only 6 °C. The geothermometer uses Mg and 

Fe2+ partitioning between coexisting olivine and augite [Kd=(Fe/Mg)ol/(Fe/Mg)cpx] being a simple 

function of temperature. 
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Liquid composition were obtained by both mass balance calculations and modeled by 

MELTS. Mass balance calculations were done by subtracting the mineral composition, measured with 

EMPA, from the bulk rock which were measured with XRF. Another possibility would be measuring 

glass composition using the electron microprobe and use this as the liquid composition. However, the 

glass composition is the residue of final stage of crystallization that is thus different in composition as 

the liquid at the time of olivine, cpx and opx crystallization.  

 

2.2.5. MELTS 

MELTS is a software package aimed to facilitate thermodynamic modeling of phase equilibria 

in magmatic systems and is established upon the work of Ghiorso and Sack (1995) and Asimow and 

Ghiorso (1998). It provides the ability to compute equilibrium phase relations for igneous systems 

over the temperature range 500-2000 °C (can be overestimated as much as approximately 40 °C) and 

the pressure range 0-20 kbar. Differentiation for magmatic processes can be modeled with MELTS as 

a series of steps in temperature and pressure, temperature and volume, enthalpy and pressure or 

entropy and pressure (more on this in chapter 3). The main problem with MELTS is that the program 

is better calibrated in mafic systems and alkalic mafic magmas rather than andesitic compositions. 

Especially phase equilibria involving hornblende and biotite are challenging to model and 

consequently simulating the evolution of intermediate to silica-rich calc-alkaline systems as well.  

To gain the best results, pressure and water contents in the rhyolite-MELTS model (Gulda et 

al., 2012) were varied to best-fit natural samples, meaning to thermometry (see above) and hygrometry 

data (see below). Besides, MELTS results were matched to the corresponding measured EMPA 

mineral composition and their calculated crystallization temperatures (see above and Fig. 7). A 

consistent dataset is thus provided, however this might not be necessary the only possible solution. 

Water contents derived from MELTS were compared to the Plagioclase-liquid hygrometer 

(Lange et al., 2009). Changes in dissolved H2O drive significant variations in the composition of 

crystallization plagioclase. Water reduces the activity of Na2O relatively to CaO which would lead to 

the crystallization of more anorthite rich plagioclase. Also is there is a preferential formation of Si-OH 

bonds versus Al-OH bonds in magmatic liquids, the activity of NaAlSi3O8 will be even more reduced. 

See Lange et al., 2009 for the equations.  
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Fig. 7: Schematic of MELTS calculations (Gualda et al., 2012). To acquire the best results, pressure and water contents input 

parameters) were varied until a best fit with thermometry data and EMPA mineral measurements was obtained. MELTS 

results (blue boxes) were matched to the calculated crystallization temperatures using multiple thermodynamic models (grey 

boxes). MELTS results were also compared with measured mineral compositions. 

 

2.2.6. Arc Basalt Simulator (ABS) 

The ABS4 (Arc Basalt Simulator) was used to simulate high Mg# basalt geochemistry and P-T 

conditions in relatively cold subduction zones (Kimura et al., 2014). ABS4 is a geochemical mass 

balance model for arc magma genesis including calculations of slab dehydration/melting and 

fluid/melt-fluxed melting of peridotite using thermodynamically and experimentally petrogenetic grids 

for prograde metamorphism and melting of the slab, and fluid/melt-fluxed melting of peridotite in the 

mantle wedge (Kimura et al., 2010) 

ABS4 is a forward model that calculates a primary magma composition from slab and mantle 

petrological parameters. The user can vary these parameters and the resulting calculated magma 

composition compared to a target magma that is based on observations. Incompatible trace element, 

Sr-Nd-Hf-Pb isotope, and major element compositions are used in the comparison. Sedimentary 

compositions were used after Plank (2007) and Syracruse (2010). A Monte Carlo calculation is used to 

make a quantitative comparison in order to avoid artificial correlations between the parameters. 

Successful results are those in which calculated and observed compositions agree to within user-

defined limits. 

Furthermore the element behavior during slab dehydration is formulated at P and T conditions, 

on the basis of modeled slab surface P-T trajectories and prograde metamorphism. Using both mafic 

samples from fore- and back-arc the depth of the source and storage (reservoir depth) was modeled. To 

acquire high Mg# olivine was added to the samples after mass balance for the most mafic sample 

• MELTS output files

• Olivine • Cpx • Opx • Feldspar • All

• Olivine-Liq

(Putirka et al., 2007)

• Cpx-Liq

(Putirka et al., 2003)

• Opx-Liq

(Putirka et al., 2008)

• Feldspar-H2O

(Lange et al., 2009)

• EMPA

– Olivine

– Cpx

– Opx

H2O and PBulk composition,
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(BAR-00-20). The element behavior during slab dehydration is formulated at P and T on the basis of 

modeled slab surface PT trajectories.  

 

2.2.7. Barometry 

Other applied barometry methods were the Al in hornblende method of (Schmidt, 1992; 

Ridolfi and Renzulli, 2012) and the 2 pyroxene barometer of Putirka (2008). The Al-in-hornblende 

barometer uses equilibrium of the assemblage hornblende, biotite plagioclase, orthoclase, quartz and 

oxides and is dependent on bulk composition. The total Al content of hornblende in atoms per formula 

unit increase with pressure and temperature can be ascribed mainly to a tschermak exchange 

accompanied by minor plagioclase substitution. With a precision of 0.6 kbar this barometer might be 

quiet accurate however it is calibrated for more dacitic compositions rather than andesites and thus the 

precision must be treated with care.  

Ridolfi and Renzulli (2012) present five different barometric equations by using only the 

amphibole compositions and thus more suitable for andesitic compositions. Equations 1b and 1c are 

calibrated for low pressure (~130-500 MPa) and have low average standard and maximum errors of 37 

and 43 MPa and 69 and 116 MPa, respectively. In contrast, equations 1a, 1d, and 1e are calibrated for 

130 to 8 2200 MPa, 400 to 1500 MPa, and 930 to 2200 MPa, and they have higher average standard 

and maximum errors of ~141 to 175 MPa and 377 to 540 MPa. All equations are reliable under a 

certain pressure range with an overall statistic uncertainty of 11.5% on the pressure. Before the 

application of the 5 different equations it is necessary to calculate the amphibole formula using the 13-

cation method (Leake et al., 1997). Crystallization pressures of clino and orthopyroxene pairs were 

calculated by applying Putirka (2008). Pressure estimations have a standard error of 3.2 kbar. By 

comparing observed and experimentally determined Fe-Mg exchange coefficients equilibrium 

conditions between cpx and opx were tested. 

 
2.2.8. Crystal Size Distribution (CSD) 

CSD is a quantitative textural measurement, where the number of crystals of a mineral per unit 

volume with a series of defined size intervals and can provide information of fundamental 

petrographical parameters and processes, such as crystal growth rate and magma mixing. 

Representative CSD’s were determined on three to four samples for five different groups (see Table 1, 

below). The samples were selected according to abundance of fresh and euhedral plagioclase crystals. 

Thin sections were scanned using a Nikon Coolscan 4000ED with a resolution of 4000 dpi both under 

normal light and crossed polarizers. The images were then transferred to adobe Illustrator and 

Photoshop to create a binary image. Using the binary image plagioclase crystals could be quantified 

using the program ImageJ, which calculates dimensions of a best-fit ellipse to the crystal outlines and 

its orientation and position.   
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Group Sample Total abundance (%) Plagioclase abundance  (%)

Mio-50 MAM-24 9 4

MIO-12-39 32 20

MIO-12-41 8 5

Mio-55 MAM-11-3 10 7

MAM-14 10 8

MIO-12-40 8 6

BAR-00-28 10 6

Mio-60 YAH-00-16 5 4

BAR-01-83 10 6

MIO-12-01 25 23

Plio-55 BAR-00-33 7 4

LAS-07-05 7 5

PAR-03-38 7 4

Plio-60 LAR-07-05 10 8

MIS-99-04 15 8

BAR-00-19 8 4

BAR-00-31 15 13

The program CSDCorrections Higgins, 2000 was developed to transform two dimensional 

data from ImageJ to three dimensional crystal size distributions by incorporating corrections for the 

probability effect and cut-section effect. CSDCorrections version 1.4 was used in this study to convert 

2D measurements of the long axis of the best-fitting ellipse to 3D crystal size distributions. Based on 

visual inspection of the samples, a roundness factor of 0.2 was chosen, and when needed, a correction 

was made for vesicles or voids. Based on morphology and size, several plagioclase crystals of each 

sample were measured by the electron microprobe JEOL JXA 8900 at key locations along rim-core 

profiles to support the CSD results and assess the possibility of multiple stages of magma. Equilibrium 

melt compositions were calculated from trace and minor element compositions of plagioclase growth 

zones according to the method of Bindeman et al. (1988).  

 

Table 1: Estimated total mineral abundance and the plagioclase for used CSD samples. 

 

 

 

 

 

 

 

 

 

 

 

 

2.3. Results 

In order to get a better understanding of the above mentioned mantle wedge processes, 

petrology, chemistry, temperature, pressure, H2O, density, viscosity, fO2 and volumes that may have a 

primary control on flow types were determined by a range of geothermometers, hygrometers, 

barometers and thermodynamic models on olivines, ortho-, clinopyroxenes, plagioclase, amphiboles 

and oxides. Plagioclase crystal size distribution (CSD) and compositions were analyzed in order to 

grasp the degree to which magma mixing processes between end-members influence the above 

mentioned parameters. 

 

2.3.1. Petrography 

Table 2 summarizes some of the main petrographic observations of each group. All samples are 

commonly porhyritic and pilotaxitic with generally small phenocrysts of plagioclase, clino- and 

orthopyroxene. Olivine occurs only within the more mafic samples and amphibole within the felsic 

http://www.sciencedirect.com/science/article/pii/S0012821X10006333#bb0170
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Structure Phenocryst abundance (%) Chemistry Mg#

N Total range Average Olivine Average Amphibole Average Pyroxene Average Plagioclase Average Olivine Pyroxenes Pyroxenes

Mio-50 porhyritic/pilotaxitic 10 1-32 ~ 11 0-12 1.7 - - 0.37-7 2.7 0.4-20 6.6 Fo79-65Wo44-38En44-38-Fs24-13 0.78 - 0.74

Mio-55 porhyritic/pilotaxitic 26 1-35 ~ 8 0-1 0.2 0-5 0.3 0-8 1.7 0-20 5 Fo79-56Wo44-39En44-40-Fs22-13 0.78 - 0.70

Mio-60 porhyritic/pilotaxitic 20 2-25 ~ 10 - - 0-9 1.9 0-8 2.2 1-23 6.6 - Wo44-41En44-42-Fs15-13 0.77 - 0.74

Plio-55 porhyritic/pilotaxitic 3 7-10 ~ 9 0-2 0.7 0-3 2.1 1-3 2 4-5 4.3 Fo76 Wo43-32En44-43-Fs14-13 0.78 - 0.75

Plio-60 porhyritic/pilotaxitic 13  1-30 ~ 13 - - 1-9 3.3 0-5 1.7 1-28 8.3 - Wo44-40En44-41-Fs17-13 0.8 - 0.72

samples. Amphiboles are generally rare in Miocene group lavas and are mostly altered, with thick (up 

to 0.5 mm) reaction rims, which show the melt surrounding the amphiboles was not in equilibrium 

with them when it was erupted. The thick rim is likely an anhydrous reaction due to decompression 

(Browne and Gardner, 2006; Devine et al., 1998; Rutherford and Hill, 1993). For most amphibole 

containing of Miocene samples only a few phenocrysts are present. However towards the dacitic 

samples (Mio-60), when present, amphibole abundances are much higher (up to 9 %). Furthermore 

amphibole is common within the Pliocene groups; generally the phenocrysts are subhedral and up to 

0.5 mm in length. Most of them have no or only small reaction rims. The difference of amphiboles 

abundances between the Miocene and Pliocene/Quaternary samples is also clear when comparing the 

presence of amphibole in a certain sample. All samples of the Plio-60 group contains amphiboles (in 

various amount of abundances) while within the Mio-60 group only 60 % of the samples contains 

amphibole, with half of the samples containing amphiboles as traces. 

Quartz occurs in only three samples of the Mio-60 group and is very rare. The same holds for 

biotites, which occur in a few samples in low abundances and are extremely altered. Phenocryst 

abundances are slightly higher (by a few percent) within the Miocene groups. Additionally, the 

Pliocene samples show lower variability in phenocryst sizes and seem generally more coarse-grained 

(fewer phenocrysts smaller as 0.5 mm). Minimal variation in mineral chemistry is found within the 

groups. For petrographic photos see appendix omit.  

 

Table 2: Miocene and Pliocene lavas are characterized by surprisingly homogenous mineralogy comprising plagioclase, 

clino- and orthopyroxene and/or olivine and/or amphibole. Small variations between the Miocene and Pliocene groups can be 

seen the lower total abundances, and the presence of olivine and amphibole.  

 

2.3.2. Geochemistry 

The overall compositional variation of erupted magmas in the Central Andes over the past 30 Ma is 

trimodal (ranging from 45 wt% to 77 wt% SiO2, Fig. 8 and 10) based on 2181 samples. Furthermore, 

the rocks define a typical calc-alkaline trend as indicated on the standard AFM diagram (Fig. 9). The 

Mg# remains varies from 0.63 for the most mafic sample to 0.33 for dacitic samples. Major, trace and 

REE analyses of Miocene and Pliocene – Quaternary selected samples from southern Peru and 

northern Chile are given in Table 3 and 4. However, the majority of lava flows are remarkably 

restricted in composition with 80 % having SiO2 contents between 56 and 66 wt% (Fig.10) - true 

basalts are exceedingly rare.  
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Fig. 8: TAS diagram after Le Bas et al., (1986) showing the predominantly andesitic characteristics of the studied lava 

samples. Reference samples for the Central Andes (Mamani et al., 2008) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Calc-alkaline series of all analyzed samples projected on an AFM diagram 
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Fig. 10: Frequency distributions of all database samples for SiO2. 
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BAR-01-80
1

BAR-00-20
1

BAR-01-87
1

MIO-12-39 MIO-12-41 MAM-24
1

BAR-01-85
1

BAR-01-81
1

CUM-07
1

MIO-12-25 BAR-00-22
1

OIS-12  01 MIO-12-06 MIO-12-07 MIO-12-02 MIO-12-16 MIO-12-23 ARE-12 10 MIO-12-51

Group Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-50 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55

Latitude -71.239 -73.744 -71.369 -73.477 -14.638 -69.285 -71.288 -71.199 -69.121 -73.112 -74.329 -74.193 -71.740 -72.036 -74.371 -72.510 -73.039 -72.167 -72.176

Longitude -15.051 -15.171 -15.455 -15.498 -73.830 -19.086 -15.397 -15.127 -19.617 -15.175 -14.658 -14.144 -15.187 -15.262 -14.360 -14.812 -15.104 -15.052 -15.060

SiO2 49.60 50.70 51.90 52.89 53.12 53.16 53.30 53.40 53.52 54.21 54.60 54.80 49.38 50.42 54.62 55.25 55.44 55.25 55.65

TiO2 0.97 1.23 1.04 1.09 1.30 0.98 1.52 1.00 1.21 1.41 0.72 1.17 0.84 0.80 0.69 1.07 1.33 1.33 1.36

Al2O3 15.10 16.60 16.10 17.96 17.99 17.35 16.00 17.00 18.18 17.29 16.00 17.19 13.77 14.10 16.67 17.67 16.36 16.14 16.29

FeOt 9.10 9.52 8.47 8.94 8.82 8.39 8.14 8.16 8.65 8.14 6.39 8.11 4.86 4.71 6.26 7.69 8.26 6.73 7.25

MnO 0.15 0.13 0.14 0.14 0.12 0.14 0.13 0.14 0.11 0.12 0.08 0.12 0.07 0.07 0.10 0.10 0.11 0.09 0.10

MgO 7.34 6.62 6.34 5.14 3.96 5.57 3.07 3.93 5.07 3.43 2.83 5.77 2.29 2.10 3.35 2.09 4.11 3.22 3.84

CaO 9.26 9.09 8.10 8.20 7.81 8.57 7.65 7.46 7.95 6.71 5.79 7.85 4.81 4.71 6.26 6.23 6.95 5.98 6.71

Na2O 2.19 3.07 3.26 3.98 3.90 3.14 3.81 3.46 3.64 4.53 3.20 4.02 4.82 4.86 4.01 3.90 4.20 4.53 4.70

K2O 3.03 1.33 1.69 1.17 1.64 1.46 2.50 3.04 1.39 2.69 2.21 1.33 2.78 3.06 1.67 2.58 2.26 2.59 2.32

P2O5 0.34 0.22 0.29 0.29 0.31 0.24 0.52 0.40 0.30 0.63 0.19 0.25 0.46 0.44 0.19 0.41 0.44 0.63 0.62

total 97.08 98.51 97.33 99.80 98.97 99.00 96.64 97.99 100.02 99.16 92.01 100.61 84.07 85.26 93.82 96.99 99.47 96.49 98.84

Rb 123.9 40.9 58.5 20.8 49.9 26.9 73.4 115.9 39.9 79.3 109.6 37.3 108.0 110.0 57.7 102.0 75.4 67.5 54.1

Sr 633 728 554 321 329 563 1,138 789 857 511 450 252 501 508 272 264 416 591 634

Y 21.0 19.3 23.3 19.9 22.4 17.0 20.3 25.8 15.4 23.5 17.8 21.2 18.0 16.4 17.7 42.4 22.0 18.8 19.8

Zr 115 105 152 154 193 110 284 170 127 150 179 165 146 153 168 265 207 129 269

Nb 5.2 3.8 9.8 5.0 9.1 5.4 27.8 11.8 12.0 19.5 6.6 6.6 15.8 13.9 6.6 12.2 9.1 12.4 13.6

Ta 0.3 0.4 0.6 0.25 0.52 0.3 1.2 0.7 0.7 0.96 0.6 0.39 0.87 0.71 0.41 0.75 0.49 0.56 0.64

Ba 855 315 552 445 566 592 1,180 1,160 497 440 518 406 547 576 590 887 862 431 429

Pb 11.4 4.5 9.0 5.1 7.3 6.5 10.1 13.2 6.7 11.0 10.0 8.9 11.7 10.5 9.5 9.0 8.4 11.1 8.6

Hf 3.3 3.0 4.0 3.63 4.57 2.9 7.2 4.7 3.5 7.12 4.8 3.91 7.11 7.41 3.82 6.08 4.97 6.52 6.11

Th 5.1 4.9 6.0 1.82 4.85 2.3 8.8 6.7 1.8 7.30 17.1 2.95 9.36 16.40 4.68 12.00 8.14 6.89 5.76

U 1.4 1.4 1.3 0.31 1.07 0.5 1.6 1.9 0.2 1.03 4.5 1.29 2.94 2.00 1.02 2.11 1.11 1.04 0.89

Ni 62.4 85.6 117.7 42.9 20.8 46.4 65.0 19.1 65.3 17.7 16.7 69.8 23.1 14.2 19.8 12.9 44.2 26.0 37.5

La 18.2 13.0 23.3 19.2 29.7 15.2 59.7 26.8 18.9 67.7 20.7 25.8 80.3 88.5 25.2 47.1 43.4 73.8 79.1

Ce 38.0 31.8 47.8 43.3 62.7 32.6 121.4 55.2 44.2 133.0 44.2 49.8 55.0 60.0 47.6 89.6 90.9 51.5 158.0

Pr 4.90 4.63 5.88 5.34 7.38 4.31 14.20 6.83 5.82 14.60 5.59 6.12 15.60 16.60 5.55 10.40 10.40 16.00 17.40

Nd 21.3 21.1 24.3 22.7 29.7 18.2 54.0 28.2 26.2 53.9 21.9 25.2 54.2 56.3 21.2 40.0 40.8 58.2 64.4

Sm 4.70 4.86 5.18 4.95 6.01 3.76 9.01 5.98 5.36 8.94 4.40 5.20 8.14 8.12 4.02 7.77 7.51 8.95 10.20

Eu 1.50 1.43 1.51 1.44 1.72 1.08 2.43 1.73 1.72 2.46 1.04 1.54 2.12 2.07 1.14 2.01 1.97 2.36 2.67

Gd 4.60 4.46 5.12 4.15 5.10 3.38 7.87 5.74 4.99 6.94 3.96 4.37 6.28 6.15 3.44 6.93 5.87 6.77 7.39

Tb 0.70 0.64 0.81 0.67 0.80 0.47 1.00 0.89 0.63 0.94 0.57 0.67 0.76 0.73 0.53 1.13 0.85 0.82 0.94

Dy 4.10 3.83 4.67 3.73 4.31 2.79 4.62 5.14 3.25 4.53 3.48 3.50 3.41 3.11 2.95 6.54 4.19 3.58 4.17

Ho 0.80 0.74 0.92 0.71 0.81 0.55 0.79 1.02 0.54 0.83 0.69 0.67 0.61 0.54 0.58 1.34 0.77 0.63 0.72

Er 2.40 2.03 2.67 1.96 2.15 1.44 2.22 3.02 1.40 2.24 1.98 1.78 1.67 1.49 1.64 3.84 2.05 1.69 1.92

Tm 0.30 0.27 0.36 0.26 0.28 0.20 0.26 0.41 0.17 0.29 0.27 0.24 0.21 0.19 0.22 0.54 0.26 0.20 0.24

Yb 2.10 1.73 2.36 1.77 1.91 1.33 1.59 2.71 1.11 1.84 1.85 1.59 1.44 1.26 1.55 3.72 1.75 1.34 1.54

Lu 0.30 0.25 0.37 0.25 0.26 0.20 0.24 0.43 0.17 0.26 0.28 0.22 0.20 0.17 0.22 0.54 0.24 0.19 0.21

MIO-12-43 MIO-12-19 MIO-12-20 BAR-00-28
1

MIO-12-08 MAM-11-3
1

MAM-20
1

ARE-12 09 MIO-12-05 MAM-14
1

CUM-02
1

BAR-00-36
1

BAR-00-37
1

MIO-12-10 MIO-12-46 MIO-12-40 MIO-12-49 MIO-12-04 MIO-12-17

Group Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-55 Mio-60 Mio-60

Latitude -73.622 -72.702 -72.719 -72.632 -72.001 -69.372 -69.340 -72.167 -73.278 -69.382 -69.197 -70.681 -70.281 -72.591 -73.496 -73.477 -71.676 -74.326 -72.360

Longitude -14.420 -15.054 -14.919 -15.704 -15.149 -19.047 -19.010 -15.057 -14.560 -19.047 -19.681 -16.964 -17.144 -14.700 -14.551 -15.498 -15.410 -13.941 -14.935

SiO2 55.67 55.74 56.37 56.50 56.51 56.69 56.75 56.77 57.08 57.62 57.63 57.80 57.90 58.07 58.42 58.46 58.76 57.72 58.75

TiO2 1.50 1.11 1.07 0.89 1.22 0.71 0.95 1.41 1.14 0.67 0.96 0.73 0.80 1.13 1.10 0.88 1.22 1.23 0.94

Al2O3 16.59 16.29 16.31 16.80 17.11 17.64 17.75 16.89 16.41 19.06 18.54 18.30 17.40 16.66 17.01 17.36 16.80 15.99 15.97

FeOt 9.03 7.44 7.46 7.75 6.89 6.41 7.70 7.13 5.95 6.05 7.73 7.04 7.24 6.26 7.57 6.60 6.36 7.82 6.30

MnO 0.12 0.08 0.13 0.11 0.09 0.10 0.13 0.10 0.06 0.01 0.12 0.13 0.11 0.09 0.12 0.11 0.08 0.54 0.11

MgO 3.18 3.95 3.28 4.40 3.12 3.51 2.92 3.32 2.15 2.54 3.03 2.76 3.71 2.86 2.49 2.56 2.41 0.74 3.15

CaO 5.98 6.07 6.63 7.25 5.89 6.57 6.62 6.28 5.61 6.53 6.77 6.61 6.65 5.61 5.42 6.00 5.03 4.15 5.20

Na2O 4.15 4.04 3.94 3.51 4.56 4.32 3.92 4.69 4.66 4.41 3.90 4.18 3.85 4.64 4.12 4.37 5.00 4.37 3.90

K2O 2.48 2.70 2.73 1.73 2.42 1.45 1.82 2.51 2.14 1.45 1.83 1.31 1.88 2.74 2.81 2.03 2.82 3.21 3.23

P2O5 0.42 0.42 0.34 0.24 0.50 0.29 0.28 0.66 0.34 0.09 0.21 0.22 0.21 0.50 0.41 0.32 0.53 0.42 0.32

total 99.12 97.83 98.27 99.18 98.31 97.69 98.84 99.75 95.54 98.43 100.72 99.08 99.75 98.56 99.47 98.68 99.01 96.19 97.87

Rb 118.0 53.3 136.0 77.8 54.6 22.5 50.8 67.2 56.2 20.3 64.8 34.8 79.3 70.0 130.0 67.7 75.9 125.0 178.0

Sr 242 176 330 758 482 633 565 605 322 578 458 758 774 546 295 323 470 195 302

Y 30.7 12.2 27.9 45.6 18.7 12.2 17.6 20.5 14.7 13.8 21.5 19.6 17.2 18.0 27.0 21.2 16.4 41.3 26.0

Zr 144 143 132 216 172 121 135 241 119 116 151 148 142 136 150 214 194 174 159

Nb 13.2 6.9 14.7 8.5 11.7 4.4 6.8 12.6 8.8 4.1 6.7 4.6 7.2 12.7 13.2 8.6 13.1 18.3 15.2

Ta 0.81 0.39 1.00 0.5 0.62 0.3 0.5 0.58 0.44 0.3 0.5 0.2 0.5 0.65 0.79 0.50 0.62 1.10 1.01

Ba 643 451 782 816 426 639 717 434 792 602 573 679 810 449 832 761 433 795 874

Pb 8.7 10.6 18.7 12.9 12.5 7.7 8.5 10.1 9.6 7.6 9.0 9.5 11.4 12.2 11.7 9.1 11.0 18.4 15.7

Hf 7.57 3.21 6.94 5.9 6.05 3.0 3.5 5.41 6.19 3.0 3.9 3.9 4.1 6.59 7.58 4.95 6.90 8.94 8.23

Th 13.60 5.99 21.40 7.1 7.86 1.0 4.9 6.74 4.40 1.0 5.9 2.9 6.3 8.46 14.10 6.36 7.19 13.00 27.40

U 2.81 1.04 4.46 1.1 1.94 0.3 1.1 1.04 0.81 0.3 1.6 0.6 1.1 1.32 2.67 1.17 1.11 3.35 5.75

Ni 9.1 17.8 25.7 57.6 28.3 15.8 5.0 27.0 11.2 6.9 8.5 9.1 30.5 23.7 5.9 9.9 13.1 1.6 25.7

La 43.1 27.6 57.7 43.9 62.5 15.2 21.7 78.4 40.2 12.1 19.1 20.4 27.7 77.1 49.4 34.7 65.8 50.5 63.6

Ce 92.9 56.1 117.0 73.2 121.0 28.8 42.9 54.2 79.9 24.8 38.9 39.8 53.4 54.3 103.0 70.1 132.0 108.0 126.0

Pr 10.70 6.09 12.60 11.64 13.20 3.91 5.64 17.00 9.40 3.37 5.15 5.38 6.44 16.00 11.50 8.00 14.60 12.20 13.40

Nd 42.0 22.6 46.4 48.2 48.5 16.2 23.0 62.1 36.8 14.1 21.4 22.8 25.3 57.8 43.7 30.9 53.6 47.1 47.5

Sm 8.38 3.94 8.07 9.89 7.93 3.02 4.25 9.57 6.71 2.83 4.36 4.59 4.75 8.80 8.17 5.72 8.72 9.24 8.05

Eu 2.08 0.96 1.84 2.08 2.14 0.86 1.18 2.50 1.84 0.83 1.12 1.38 1.34 2.37 1.99 1.53 2.25 2.15 1.76

Gd 7.13 3.10 6.53 9.59 6.05 2.56 3.68 7.33 5.05 2.50 3.93 4.35 4.60 6.54 6.59 4.61 6.30 7.88 6.36

Tb 1.13 0.44 0.95 1.11 0.78 0.34 0.49 0.89 0.66 0.35 0.56 0.65 0.62 0.80 1.00 0.69 0.80 1.26 0.91

Dy 5.91 2.24 4.99 7.68 3.52 1.96 2.92 3.89 2.97 2.19 3.37 3.72 3.21 3.49 5.20 3.69 3.48 7.01 4.69

Ho 1.10 0.42 0.97 1.34 0.63 0.39 0.57 0.68 0.48 0.45 0.69 0.72 0.60 0.61 0.98 0.70 0.59 1.38 0.88

Er 2.89 1.16 2.71 4.61 1.66 0.97 1.46 1.82 1.21 1.20 1.84 2.08 1.69 1.65 2.57 1.97 1.54 3.80 2.47

Tm 0.38 0.15 0.37 0.53 0.21 0.14 0.21 0.22 0.14 0.18 0.27 0.29 0.22 0.20 0.35 0.26 0.19 0.52 0.34

Yb 2.51 1.04 2.51 3.92 1.40 0.94 1.41 1.43 0.89 1.21 1.81 1.87 1.36 1.35 2.29 1.80 1.23 3.53 2.31

Lu 0.34 0.14 0.36 0.53 0.19 0.15 0.22 0.20 0.12 0.18 0.27 0.31 0.21 0.18 0.32 0.26 0.17 0.50 0.32

Table 3: Major, trace and REE analyses of Miocene selected samples from southern Peru and northern Chile 
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MIO-12-42 MIO-12-01 MIO-12-26 MIO-12-48 BAR-01-83
1

MIO-12-14 MIO-12-11 MIO-12-50 BAR-02-11
1
HUY-94-165

1
YAH-00-16

1
MIO-12-18 CUM-12

1
MIO-12-27 MIO-12-15 MIO-12-45 MIO-12-44

Group Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60 Mio-60

Latitude -73.533 -74.407 -73.178 -71.701 -71.170 -72.698 -72.742 -71.400 -71.400 -69.674 -73.460 -72.351 -69.167 -73.194 -72.533 -73.740 -73.646

Longitude -14.306 -14.409 -15.178 -15.393 -15.306 -14.707 -14.755 -15.699 -15.699 -18.050 -15.508 -14.957 -19.608 -15.174 -14.727 -14.657 -14.564

SiO2 59.19 59.60 59.65 59.73 59.80 60.70 60.94 60.94 61.00 61.00 61.60 62.10 62.95 63.10 63.36 63.57 63.94

TiO2 1.06 0.51 0.91 1.08 0.90 0.96 0.84 0.86 0.88 0.53 0.77 0.81 0.62 0.86 0.54 0.87 0.68

Al2O3 17.41 17.09 16.96 16.75 16.40 16.36 15.86 15.89 15.80 17.60 17.00 16.42 17.25 16.42 14.94 16.53 16.49

FeOt 5.78 5.09 5.99 5.88 5.88 5.78 5.22 6.04 6.06 2.52 5.24 4.51 5.29 4.71 3.96 4.29 4.37

MnO 0.08 0.12 0.14 0.08 0.12 0.10 0.08 0.09 0.09 0.12 0.12 0.08 0.11 0.07 0.09 0.05 0.12

MgO 1.46 1.79 2.15 2.21 2.57 2.64 2.17 2.85 2.69 2.22 1.74 1.77 2.05 1.80 1.81 1.33 1.20

CaO 5.19 4.81 4.81 4.69 5.28 5.04 4.29 4.84 4.70 5.76 4.25 3.93 4.84 4.19 3.06 4.15 3.65

Na2O 4.11 4.44 4.33 4.88 3.48 4.47 4.34 3.73 3.52 3.45 4.49 4.41 3.89 4.96 3.94 4.84 4.98

K2O 3.48 2.15 2.66 3.01 3.46 3.16 3.35 3.86 3.91 2.06 3.28 3.75 2.84 2.95 3.76 2.76 2.86

P2O5 0.43 0.29 0.31 0.46 0.30 0.35 0.30 0.26 0.26 0.22 0.38 0.34 0.21 0.35 0.26 0.31 0.30

total 98.20 95.89 97.91 98.77 98.19 99.55 97.39 99.36 98.91 95.48 98.87 98.12 100.05 99.41 95.72 98.70 98.59

Rb 110.0 58.5 104.0 88.6 164.9 120.0 138.0 167.0 224.3 36.7 42.0 163.0 107.3 79.7 147.0 78.7 87.4

Sr 273 290 207 414 467 345 300 251 669 520 418 306 371 375 300 345 299

Y 70.8 18.0 32.6 15.9 19.2 21.3 21.8 20.3 24.8 13.8 20.4 24.2 16.6 13.5 16.7 13.0 22.3

Zr 298 211 250 140 222 261 229 280 291 134 247 143 163 253 77 193 283

Nb 24.9 8.2 9.5 12.3 14.8 13.9 15.0 13.7 16.8 6.0 8.4 16.3 8.5 9.8 11.8 10.0 12.5

Ta 1.54 0.49 0.61 0.62 1.1 0.92 1.12 0.93 1.3 0.4 0.5 1.09 0.8 0.51 0.95 0.61 0.71

Ba 776 687 690 428 877 344 863 824 1,159 1,123 856 1,040 608 385 358 915 1,030

Pb 21.1 10.9 7.3 12.4 11.4 13.6 15.2 14.8 21.4 8.5 10.6 14.9 11.7 12.5 18.7 14.1 13.5

Hf 14.70 4.63 5.92 7.06 5.5 6.11 5.50 6.63 8.4 3.5 6.4 7.32 4.3 5.92 2.39 4.76 6.45

Th 37.80 4.53 11.60 8.93 11.7 14.40 18.80 20.50 25.0 3.2 4.7 21.90 11.0 4.87 19.30 7.69 7.35

U 8.08 1.01 1.94 1.38 2.9 2.98 4.15 3.62 5.0 0.5 1.0 4.78 2.8 0.85 4.36 1.64 1.60

Ni 6.5 0.0 -0.2 10.5 17.1 26.1 18.9 21.6 36.5 77.5 4.4 2.8 4.8 9.0 6.6 4.9 1.6

La 114.0 30.2 37.0 63.8 32.3 57.3 51.9 53.6 59.5 18.0 24.6 62.6 20.0 45.0 42.9 47.3 46.5

Ce 66.5 57.8 77.9 128.0 64.4 111.0 99.6 106.0 114.7 37.4 52.4 122.0 42.0 92.2 79.4 95.1 95.8

Pr 23.50 6.60 8.89 13.70 7.50 11.80 10.60 11.00 13.22 4.40 6.76 12.90 5.05 10.20 8.14 10.60 10.40

Nd 88.9 24.9 35.3 49.9 27.8 42.4 37.9 39.2 49.8 16.8 26.5 45.0 19.6 38.1 28.6 39.4 39.0

Sm 15.30 4.49 7.27 8.04 5.24 7.07 6.47 6.61 8.44 3.10 5.55 7.41 3.67 6.50 4.74 6.67 6.79

Eu 2.90 1.31 1.88 2.07 1.34 1.78 1.61 1.52 1.87 0.85 1.35 1.73 0.83 1.70 1.29 1.73 1.89

Gd 13.40 3.69 6.21 5.81 4.58 5.56 5.14 5.24 7.69 2.82 5.04 5.90 3.19 4.65 3.83 4.76 5.38

Tb 1.97 0.55 1.03 0.74 0.63 0.77 0.75 0.75 0.98 0.40 0.67 0.83 0.44 0.61 0.54 0.61 0.80

Dy 10.30 2.93 5.83 3.31 3.65 3.88 3.84 3.84 4.95 2.41 3.51 4.21 2.69 2.70 2.82 2.66 4.14

Ho 2.06 0.58 1.15 0.56 0.70 0.73 0.73 0.71 0.93 0.49 0.68 0.82 0.53 0.46 0.56 0.45 0.79

Er 5.65 1.64 3.25 1.52 2.02 2.00 2.03 1.98 2.70 1.45 1.99 2.30 1.43 1.23 1.60 1.17 2.16

Tm 0.73 0.23 0.45 0.18 0.28 0.27 0.28 0.27 0.34 0.21 0.29 0.32 0.22 0.15 0.23 0.14 0.29

Yb 4.66 1.62 3.06 1.25 1.90 1.87 1.96 1.84 2.24 1.45 1.90 2.22 1.48 0.99 1.63 0.95 2.04

Lu 0.68 0.24 0.44 0.17 0.29 0.26 0.27 0.25 0.35 0.23 0.30 0.32 0.22 0.14 0.23 0.13 0.29

POM152
6

CEUV 1
6

PAR 225
6

ELR 1
6

ELR-N
6

LAS-07-12
2

BAR-00-33
1

LAS-07-11
2

PAR-03-38
3

BAR-00-19
1

BAR-00-31
1

Group Plio-50 Plio-50 Plio-50 Plio-50 Plio-50 Plio-55 Plio-55 Plio-55 Plio-55 Plio-60 Plio-60

Latitude -69.103 -68.165 -69.160 -68.614 -69.183 -67.751 -72.748 -67.751 -69.151 -73.738 -72.748

Longitude -18.100 -21.584 -18.209 -20.844 -18.487 -23.334 -15.614 -23.400 -18.175 -15.231 -15.614

SiO2 52.75 52.95 53.21 54.12 54.9 55.29 53.80 56.87 58 59.80 60.00

TiO2 1.76 1.42 1.64 1.67 1.69 0.83 1.09 0.94 1.32 0.93 0.67

Al2O3 16.47 17.15 15.9 15.55 15.86 16.64 16.80 17.01 16.5 17.20 17.40

FeOt 7.97 9.24 8.79 8.42 8.18 7.97 7.64 7.85 6.86 6.16 5.71

MnO 0.09 0.11 0.11 0.16 0.01 0.13 0.11 0.12 0.09 0.10 0.11

MgO 4.2 5.18 5.05 4.69 4.29 5.32 4.39 4.27 2.93 2.22 2.02

CaO 6.71 8.73 7.37 6.6 6.76 7.76 7.08 6.90 5.44 4.76 5.17

Na2O 4.15 3.57 4.29 3.97 4.27 3.43 3.70 3.62 4.31 4.70 4.26

K2O 2.46 1.5 2.67 2.66 2.51 1.18 2.57 1.54 2.94 2.49 2.57

P2O5 0.48 0.27 0.8 0.7 0.73 0.23 0.47 0.24 0.49 0.36 0.39

total 97.04 100.12 99.83 98.54 99.20 98.78 97.65 99.36 98.88 98.72 98.30

Rb 50.0 28.0 49.0 41.0 44.0 72.4 69.9 59.7 25.2

Sr 1025 796 1944 1298 1347 1363 989 573 646

Y 18.0 22.0 24.0 26.0 21.0 17.7 15.4 22.9 12.3

Zr 217 284 233 284 104 227 261 235 186

Nb 13.0 7.0 16.0 21.0 20.0 10.8 12.0 12.7 6.9

Ta 0.5 0.89 0.95 0.92 0.5 0.7 0.8 0.4

Ba 1164 386 1867 1408 1914 1314 1438 664 918

Pb 18.0 23.0 13.0 14.1 12.4 9.2

Hf 3.3 6.0 4.0 6.5 6.0 4.6

Th 1.49 2.28 3.51 3.19 4.1 6.5 4.7 7.1 8.1 4.3

U 0.9 0.79 0.85 0.54 1.1 1.1 1.3 0.9 2.1 0.8

Ni 34.0 30.0 24.0 71.0 81.0 48.2 19.5 1.8 4.8

La 15.0 53.0 60.0 18.0 54.8 18.0 47.0 24.5 26.0

Ce 40.0 108.0 117.0 38.0 114.0 49.0 93.2 55.8 51.9

Pr 13.45 11.55 6.64 6.45

Nd 29.0 57.0 60.0 22.4 53.1 25.3 45.5 27.2 23.6

Sm 6.10 9.00 10.70 5.10 8.42 5.60 7.62 5.71 4.33

Eu 1.50 2.50 2.80 2.19 1.99 1.40 1.19

Gd 6.50 8.40 7.28 5.87 5.40 3.79

Tb 0.74 0.76 0.90 0.85 0.66 0.75 0.47

Dy 3.70 3.20 4.32 3.95 3.30 4.03 2.24

Ho 0.69 0.59 0.77 0.43

Er 1.99 1.54 2.12 1.26

Tm 0.40 0.28 0.24 0.20 0.28 0.18

Yb 1.52 1.14 1.51 2.70 1.51 2.80 1.25 1.84 1.14

Lu 0.22 0.17 0.22 0.23 0.18 0.28 0.18

Table 3 (continued)  

 

1Mamani et al., 2010 

 

Table 4: Major, trace and REE analysis of Pliocene-Quaternary samples. APT-11-rock is of Late Jurassic age (133.1 Ma) 
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LAS-07-05
2

MIS-99-04
4

LAS-07-01
2

PAR-03-02
3

BAR-00-44
1

LAS-07-02
2

PAR-04-07
3

MIN 02
1

PAR-03-36
3

BAR-01-52
1

APT-11-rock
1,5

Group Plio-60 Plio-60 Plio-60 Plio-60 Plio-60 Plio-60 Plio-60 Plio-60 Plio-60 Plio-60

Latitude -67.808 -71.467 -67.816 -69.175 -69.770 -67.816 -69.129 -68.583 -69.141 -71.395 -18.47979476

Longitude -23.346 -16.433 -23.355 -18.187 -17.583 -23.353 -18.208 -21.183 -18.198 -16.001 -70.32545775

SiO2 60.40 60.50 60.97 61.00 61.30 61.50 61.60 61.70 61.70 64.30 54.58

TiO2 0.71 0.69 0.71 1.11 0.71 0.66 1.09 0.64 1.11 0.68 1.27

Al2O3 17.85 17.20 17.62 15.70 16.90 16.34 15.50 16.89 15.40 17.00 16.54

FeOt 5.67 5.60 5.63 5.73 5.41 5.57 5.36 5.25 5.41 4.39 9.75

MnO 0.10 0.10 0.10 0.08 0.09 0.10 0.07 0.08 0.07 0.10 0.13

MgO 2.50 2.68 2.49 2.73 2.33 2.84 2.24 2.78 2.26 1.39 3.68

CaO 5.95 5.35 5.85 4.83 5.03 5.24 4.21 4.98 4.29 3.86 9.15

Na2O 3.93 4.25 3.95 4.26 4.23 3.59 4.37 4.05 4.43 4.73 2.64

K2O 1.89 2.30 1.96 3.19 2.43 2.26 3.40 2.69 3.41 3.11 0.69

P2O5 0.24           0.24 0.14 0.24 0.21 0.43 0.20 0.44 0.28 0.35

total 99.24 98.67 99.52 98.77 98.67 98.31 98.27 99.26 98.52 99.84 98.78

Rb 42.7 65.9 55.8 63.0 78.8 87.9 18.3

Sr 772 567 796 613 860 736 459

Y 10.5 10.8 10.3 11.5 20.6

Zr 156 141 219 143 196 296 234

Nb 6.0 6.9 10.9 6.2 11.5 12.1 8.0

Ta 0.3 0.5 0.8 0.4 0.8 0.6

Ba 943 841 1355 837 1338 1276 260

Pb 14.3 12.1 14.8 11.7 15.7 18.6

Hf 4.6 4.1 4.5 3.8 4.0 5.6 3.6 5.2 7.7

Th 6.9 2.8 6.9 5.4 7.6 10.0 4.7 10.0 8.2

U 1.8 0.4 1.8 1.4 2.0 1.7 1.0 1.9 1.0

Ni 21.2 11.1 17.6 18.7 19.4 0.9 16.1

La 22.0 26.4 26.0 21.7 28.0 41.4 19.0 50.4 45.9 21.2

Ce 49.0 53.7 48.0 45.0 50.0 85.2 39.0 95.4 96.3 50.8

Pr 6.27 5.24 9.66 4.61 11.63 10.72 7.2

Nd 24.1 23.5 25.4 19.9 26.5 37.2 17.4 45.0 41.1 29.6

Sm 5.20 4.01 5.50 3.66 5.50 6.00 3.22 7.25 6.88 7.1

Eu 1.08 0.97 1.57 0.87 1.84 1.82 1.7

Gd 3.21 3.12 4.32 2.68 5.49 6.23 6.9

Tb 0.40 0.40 0.46 0.36 0.58 0.79 1.2

Dy 2.23 2.24 2.29 2.02 2.71 4.10 6.3

Ho 0.41 0.41 0.37 0.38 0.47 0.78 1.4

Er 1.10 1.15 0.67 1.01 1.20 2.27 3.8

Tm 0.15 0.16 0.12 0.14 0.16 0.31 0.6

Yb 2.60 0.99 2.40 1.06 3.20 0.73 0.89 0.94 2.01 3.6

Lu 0.15 0.16 0.11 0.14 0.14 0.32 0.6

Table 4 (continued)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Mamani et al., 2010; 2Banaszak et al., unpublished; 3Hora et al., 2007; 4 Wörner and Thouret, unpublished; 5Wörner et al., 

2000. 

 

Whereas the major elements with XRF only show minor variations within a certain group 

(Fig. 8-10), there are significant variations in incompatible trace elements (Fig. 11). They display a 

relative uniform typical arc signature characterized by a strong enrichment of Rb and Ba combined 

with the Nb – Ta trough probably reflecting large amount of crustal material. A Sr though occurs 

within only for the Miocene samples. The absence of a clear negative Eu anomaly indicates that 

plagioclase fractionation is insignificant even within the more evolved samples with abundant 

plagioclase phenocrysts. Only in the case of Mio-50 and Mio-55 there seem to be a few samples with a 

slight positive anomaly of Eu. Eu/Eu* ranges for Mio-50 between 0.12 - 0.17, for Mio-55 between 

0.11 – 0.16, for Mio-60 between 0.12 – 0. 16 and for the Pliocene/Quaternary samples Plio-55 

between 0.14 – 0.15 and for Plio-60 between 0.13 – 0.15 showing little to no variation.  

Having Mio-50 as the least evolved group as a reference it is easy to compare all five groups 

together. From Mio-50 to Mio-55 to Mio-60 and Plio-55 to Plio-60 a slight increase is displayed 

within the LILE and LREE and a stronger depletion of HREE occurs for most samples showing 

differentiation as one of the major processes. Furthermore Plio-55 and Plio-60 have steeper slopes as 

the Miocene groups, showing an increase of slope through time as HREE become more depleted than 

LREE.  
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Fig. 11: Trace element patterns normalized to primitive mantle (Sun and McDonough, 1989).  (a) Mio-50 compared to Mio-

55 showing a slight increase in LREE and a decrease in HREE for Mio 55. (b) A Further increase and decrease is shown for 

Mio-60. (c-d) Comparing Mio-50 to Plio-55 and Plio-60 shows no changes within the REE.  

 

2.3.3. Volumes through time 

Using volume calculations, the extent and volume of lava flows comparing Miocene and 

Pliocene/Quaternary lava flows for three different arc segments were estimated (Fig. 1). A clear 

distinction between Miocene (mean of 0.45 km3) and Pliocene/Quaternary (mean of 0.24 km3) 

volcanoes can be seen from figure 12 and tables 5 and 6. Where small lava flows are more abundant 

for the Pliocene/Quaternary volcanoes, the Miocene lava flows are generally larger. Within these 

calculations the amount of erosion has not been taken into account and thus are the present volumes. 

Since, especially the Miocene lava shields are partially eroded on the margins, erosion need to be 

considered as well. A method to estimate erosion was developed by Karátson et al, (2011), so the 

original volume can be calculated. However, this method is designed for entire volcanic edifices rather 

than for individual lava flows, but it can give an indication of the original volumes. In this case the 

Miocene is mean 0.80 km3 and Pliocene/Quaternary has a mean of 0.24 km3. 

  The results for the present and the original volume calculation for both Miocene and 

Pliocene/Quaternary flows are shown in table 5 and 6. Despite large uncertainties, especially for the 

Miocene flows, the averages clearly indicate higher volume lava flows during the Miocene. Besides 

volume also the covered area by a flow is much larger of the Miocene lava flows with a range of 0.78 

to 35 km2 with a median of approximately 7 km2, while for the Pliocene/Quaternary flows the range is 

0.21 to 33 km2 but with a median of approximately 4 km2 (see table 5 and 6).  

 Together these results provide important insights into different magmatic regimes leading to two 

different end products: (1) Miocene shields with voluminous long simple lava flows; (2) 
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Pliocene/Quaternary stratovolcanoes with many small compound lava flows (further explained within 

the discussion).  

 

 

 

Fig. 12: Frequency distribution of Miocene (blue) and Pliocene/Quaternary (red) lava flows for volume. (A) present volume 

histogram (without erosion). (B) original volumes calculated with the method of Karátson et al, (2011).  
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Table 5: Present (without erosion) and original volumes (with erosion) for Miocene individual lava flows including the used 

estimated volume erosion and the degree of denudation for the area between 14 °S and 25°S. For Areas see Fig. 1. 
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Table 6: Present (without erosion) and original volumes (with erosion) for Pliocene to Quaternary individual lava flows for 

the area between 14 °S and 25 °S. For Areas see Fig. 1. 
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2.3.4. Conditions of the final stage of the magmatic evolution 

 

2.3.4.1. Thermometry 

Comparison of thermometry results between the sample groups should be aided by the fact that 

wholerock compositions are similar. To further assure comparability, temperatures were estimated 

from crystal core and rim composition. Additionally, using 7 thermometers for different minerals 

should acquire representative crystallization temperatures. These results were subsequently compared 

with MELTS modeled crystallization temperatures. Table 7 compares MELTS data with 

geothermometry results. With an average difference of 9 °C comparing results MELTS with 

clinopyroxene-liquid thermometry, 15 °C for orthopyroxne – liquid thermometry and 20 °C for olivine 

thermometry, the results of both methods show an overall good agreement. An even better agreement 

between MELTS and geothermometry results are shown in Fig. 13. Here the temperature ranges 

between the two methods are equivalent. However it must be noted, that the MELTS model was fine 

tuned by changing water content and pressure to match the thermometers and EMPA mineral data. A 

consistent dataset is thus provided, although other solutions might be possible as well. On the other 

hand the results from MELTS, which show equilibrium mineral compositions, show good agreement 

with measured EMPA mineral compositions as well. However, this only applies for the major element 

components of clinopyroxene (SiO2, FeO, MgO, CaO), orthopyroxene (SiO2, FeO, MgO) and olivine 

(SiO2, MgO, FeO) (Fig. 15). The good agreement of MELTS with the thermometry data, hygrometer 

and EMPA mineral data suggests that MELTS gives a good overall representation of the 

crystallization conditions.  

Calculated crystallization temperatures results for Miocene and Pliocene/Quaternary samples are 

shown in Fig 13. As expected, the most mafic samples from Mio-50 have the highest crystallization 

temperatures. Olivine crystallizes first at temperatures ranging between 1058 and 1225 °C, followed 

by clinopyroxenes 1037 - 1180 °C, orthopyroxenes 1030 - 1169°C and oxides with cooling 

termperatures between 734 - 876 °C (oxides tend to re-equilibrate during cooling). Plio-50 show 

slightly lower average temperatures (< 8 °C), however these are insignificant when taking the 

thermometry errors into account. Plio-50 crystallization temperatures range between 1125 - 1156 °C 

for olivine’s followed by clinopyroxenes between 982 - 1121 °C. 

Thermometry data from Mio-55 gave temperatures of olivine 1040 - 1115 °C, clinopyroxenes 

between 982 - 1121 °C and orthopyroxenes 1010 - 1093 °C. Plio-55 of Quaternary age with similar 

SiO2 as Mio-55 unexpectedly yield average crystallization temperatures for olivine, clino- and 

orthopyroxenes that fall between Mio-50 and 55: 1122 °C, 1090 °C, and 1080 °C for olivine, clino- 

and orthopyroxene thermometry respectively. At lower temperatures, two pyroxenes and amphibole-

plagioclase are more or less equivalent to those of Mio-55. However Fig. 11 displays similar overall 

temperature ranges for Mio-55 and Plio-55. Comparing temperatures of Mio-60 to Plio-60, which is 

slightly higher in silica content, are all more or less similar as well. Fig. 13 shows the wide 
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crystallization temperature variation within each group, nevertheless the Miocene and 

Pliocene/Quaternary samples show a clear pattern of differentiation, with respect to temperature and 

silica content, from the most mafic (Mio, Plio-50) to the most felsic samples (Mio, Plio-60) due to 

crystal fractionation processes.  

Despite similar temperatures there is one big difference between the Miocene and Pliocene 

magmas and that is amphibole, being more abundant for Pliocene/Quaternary samples at the same 

silica content. Since amphibole crystallizes at relative at low temperatures (850 – 950 °C), the system 

during Pliocene/Quaternary appears to crystallize later at lower temperatures much more than 

throughout the Miocene. This can be confirmed in the petrography; more crystal rich and larger 

phenocrysts. This holds except for the oxide thermometry temperatures, due to fast diffusion of Fe and 

Ti at low temperatures (Freer and Hauptman, 1978) gives therefore equilibrium temperatures at final 

cooling. 

A closer look at the thermometry data of cpx-liq and opx-liq to 2px together with ol-cpx shows 

particular inaccurate temperatures. When comparing cpx-liq and opx-liq to the 2px the temperature 

difference is about 100 °C (higher temperatures for the thermometers using liquid compositions). The 

same holds for ol-cpx and ol-liq (higher temperatures for ol-cpx). It is likely that liquid compositions 

are less accurate, since they are calculated compositions by mass balance and modelled by MELTS 

(both methods give similar liquid compositions, and by implication crystallization results) rather than 

microprobe analyzed liquid compositions, 2 mineral phases is therefore more reliable. Comparing 

temperatures obtained from liquid compositions modelled by MELTS and calculated by mass balance 

are within the error of the applied thermometer. Since the temperatures between the mineral phases are 

different for the ol-cpx, ol-liquid and 2 px thermometers (Fig. 13), it is likely that olivine and 

clinopyroxene are not in equilibrium with each other and show therefore high ol-cpx temperatures. 

Besides it is also important to look at diffusion rates. Diffusion rates for olivine are indeed higher than 

clinopyroxene (Chakraborty, 2010; Cherniak, 2010), suggesting that the ol-cpx temperatures are 

influenced by clinopyroxene. This might explain the higher temperatures present for the ol-cpx 

thermometer compared to the ol-liquid thermometers.  

The main difference with the 2 px and the cpx-liq and the opx-liquid thermometers is the late 

crystallization of orthopyroxene (Grove et al., 1982), explaining the lower temperatures for the 2 px 

thermometer. It is thus extremely essential to explore at the diffusion rates before interpreting 

thermometry results. Furthermore no significant temperature variations were observed for crystal core 

– rim data pairs for different pyroxene growth stages of one sample.   
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Group Sample ∆wt% (Plg-MELTS) ∆T (Cpx/liq-MELTS) ∆T (Opx/liq-MELTS) ∆T (Ol/liq-MELTS)

Mio-50 BAR-01-87 0.10 6 19 20

Mio-50 BAR-01-80 1.06 10 0

Mio-50 BAR-00-20 0.58 7 22 14

Mio-50 MIO-12-41 0.40 0 13

Mio-50 MAM-24 1.00 17 5

Mio-55 BAR-00-37 0.37 11 17 28

Mio-55 MIO-12-40 0.91 5 1

Mio-55 MIO-12-23 0.15 10 5 37

Mio-55 BAR-00-36 0.51 10 6

Mio-55 BAR-00-28 0.90 20 2 5

Mio-55 MIO-12-05 0.05 6

Mio-55 CUM-02 0.30 10 4

Mio-55 MIO-12-25 0.67 3 32

Mio-55 MIO-12-08 0.44 6

Mio-55 BAR-00-22 0.26 1 28

Mio-55 MAM-11-3 0.39 39 0 12

Mio-60 MIO-12-11 0.79 4 1

Mio-60 YAH-00-16 0.24 3 12

Mio-60 BAR-02-11 0.11 6 18

Mio-60 BAR-01-83 0.00 4 25

Mio-60 MIO-12-01 0.50 8 11

Plio-50 PAR 225 0.4 9 32

Plio-50 ERL-N 0.24 3 39

Plio-50 ERL-1 0.13 5 33

Plio-50 POM125 0.96 3 14

Plio-50 CUEV-1 0.26 5 12

Plio-55 BAR-00-33 0.27 7 28

Plio-55 LAS-07-11 0.38 6 33

Plio-55 PAR-03-38 0.05 9 28

Plio-60 LAS-07-05 0.15 12 22

Plio-60 BAR-00-19 0.36 7 20

Plio-60 BAR-00-31 0.66 3 4

Plio-60 MIS-99-04 0.02 7 38

Plio-60 LAS-07-01 0.03 26 27

Plio-60 BAR-00-44 0.11 3 27

Plio-60 MIN-02 0.20 28 15

Plio-60 BAR-01-52 0.00 0

APT-11-rock 0.45 8 8

Average 0.38 9 15 20

Maximum 1.06 39 38 39

Table 7: Calculated average differences between H2O data from hygrometer (Lange et al., 2009) and from MELTS data 

(weighted by mass). Temperature differences comparing MELT data with geothermometry results. The table indicates an 

overall good agreement between two models, which is due to the circular approach by MELTS (Fig. 7). 
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Fig. 13: Calculated crystallization temperature ranges (in °C) for each group including averages (black line) using various 

thermometers. (1): Giorsho and Evans (2008), (2): Holland and Blundy (1993), (3): Putirka (2008), (4): Putirka et al., 2003, 

(5): Putirka et al., 2007. 

 

2.3.4.2. Hygrometry and barometry 

The relatively uniform mineral assemblage and composition in all samples as reflected in similar 

temperatures and thus I expect also similar pre-eruptive crystallization pressures. The validity of 
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different barometers (MELTS, amphibole barometry (Ridolfi and Renzulli, 2012 and Schmidt, 1992), 

2px and ABS) has been applied and tested.  

Using MELTS an estimate of the crystallization pressures from olivine, clino- and 

orthopyroxenes between 4 and 0.5 kbars was modelled (Fig. 14). These results were obtained 

indirectly from MELTS, here pressure and water content was varied until a good fit was found 

between crystallization temperatures obtained by MELTS and multiple geothermometrical models and 

analyzed mineral compositions (see above). Furthermore I derived an average H2O content of 0.94 

wt% for Mio-50, 2.47 for Mio-55 and 3.0 wt% for Mio-60 using the hygrometry model of Lange et al., 

2009. Water content for the younger Plio-55 group is slightly lower (1.23 wt%), but no distinction 

between Mio-50 - Plio-50 and Mio-60 - Plio-60 is observed.  

The main problem of MELTS is its inability to model amphiboles, since Margoles parameters for 

many components are poorly defined. Therefore MELTS has a preference of garnet over amphibole 

and is MELTS not a representative model to determine the crystallization history of amphiboles. This 

might also create inaccurate pressures (temperatures and compositions as well) as a consequence of a 

different crystallization path. Although it must be noted that amphibole crystallizes generally at a late 

stage thus the consequence of no amphibole crystallization can likely be ignored when considering the 

crystallization of plagioclase, olivine, cpx and opx.  

Besides the shallow crystallization conditions found by MELTS, deeper crystallization conditions 

are identified by using amphibole barometry (Schmidt, 1992) between 4 kbar and 8 kbar. When 

ignoring the two outliers, the pressure range becomes much smaller (5.9 to 6.6 kbar) (see Fig. 134). 

Since the Al-in-Hornblende barometer is for dacitic compositions and the data can be inaccurate it is 

therefore important to explore other barometers. Surprisingly, pressure data after Ridolfi and Renzulli 

(2012) lies exactly between MELTS and Al-in-Hornblende pressures (Schmidt, 1992), with a 

relatively narrow range from 3 to 5 kbar (Fig. 14). It is thus unclear so far at what depth amphibole 

crystallizes. From both barometers is seems that only the amphiboles crystallize at much deeper depths 

than olivines, clino- and orthopyroxenes and oxides crystals obtained pressures by MELTS, however 

there is no proof that these amphiboles are xenocrysts. Besides the amphibole phenocrysts with thick 

reaction rims results during magma ascent, especially slower decompression rates results in 

amphiboles with progressively thicker reaction rims (Rutherford and Hill, 1993). 

Interestingly, 2 px pressures after the model of Putirka (2008) indicates much higher pressures 

between 9 and 3 kbar and cover a much longer range than MELTS for the two pairs of pyroxenes. 

Comparing all four applied barometry methods (Fig. 14) suggests at least one of the three barometers 

is inaccurate. We shall discuss each of these barometers in turn in the discussion section.  
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Fig. 14: Range of pressure estimates including averages (black line) in kbar for each group using different barometers 

representing two different magmatic reservoirs. (1): MELTS (Gualda et al., 2012) (2): Al-in-Hornblende (Schmidt, 1992). 

Two Mio-55 samples fall outside the range shown by the two outliers (3): amphibole (Ridolfi and Renzulli, 2012) (4): 2 

pyroxene (Putirka, 2008) 

 

2.3.4.3. APT-11 

In order to characterize a distinct magmatic regime I included one Late Jurassic (APT-11) 

sample (SiO2 of 54.58 wt%), which is a pillow basaltic andesite formed in a extensional subaquatic 

tectonic setting, formed underneath a thin crust in the Central Andes. Due to the different magmatic 

regime I expect, for this sample, a different P-T path as for the Miocene and Pliocene/Quaternary 

lavas.  

Still, the obtained temperatures 1122 °C, 1053 °C for cpx-liquid (Putirka et al., 2003) and opx-

liquid (Putirka, 2008) thermometers and 1064 °C for the two pyroxene thermometer, are all relatively 

similar to the mafic Miocene samples (Mio-55) (Fig.14). Notable is that the H2O content, using the 

hygrometer (Lange et al., 2009) of 2.0 wt% is much higher than any given sample from Mio-50, as is 

the much higher modeled pressure of 4 kbar. 
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Fig.15: Calculated average difference for clinopyroxene (a,b) orthopyroxene (c,d) and olivine (e,f) compositions between 

EMPA measurements and opx from MELT data (weighted by mass differences taken into calculation). The figure indicates 

an overall good agreement between modelled major element compositions and measured compositions. However, this only 

applies for the major element components of clinopyroxene (SiO2, FeO, MgO, CaO), orthopyroxene (SiO2, FeO, MgO) and 

olivine (SiO2, MgO, FeO) 
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2.3.5. Plagioclase CSD and compositions  

   

As described above, the Miocene and Pliocene/Quaternary groups show no pronounced 

crystallization temperature distinctions even for samples with different major element composition 

(SiO2 from 52 – 62 wt. %). This might be because: 1) there are simply no temperature variations 

present or 2) magma mixing is extremely effective in producing similar final products during late 

stages of magma evolution or (3) crystallization of mineral pairs occurs at typical temperatures 

determined by phase relations. Plagioclase crystal size distribution (CSD) and compositions must 

resolve these two options.  

CSDs (Higgins, 2000) were performed on three to four samples for each group. Nearly all 

samples analyzed for crystal size distribution show similar characteristics and produce concave 

upward curved plots (Fig. 16). Instead of a linear CSD, the distributions of all samples show 

pronounced kinks in slopes at different steps in length. Two different kinks can be recognized, one at 

around 400-600 µm and the second at 1200 µm. Such kinked CSD’s are commonly considered to 

result from magma mixing (Higgins, 2000). In comparison to the Miocene and the Pliocene andesites, 

which look quite similar; the Pliocene samples have significantly smaller amounts of crystals (< 800 

µm, Fig. 16f). Beyond that, for crystal sizes larger than 800 µm, no distinction can be found between 

the Miocene and the Pliocene samples, showing typical magmatic phenocrysts of andesitic 

composition with a maximal crystal size of 3.5 mm. Even though crystal sizes of the analyzed samples 

never exceed 3.5 mm, larger phenocrysts are present in some of the lavas in the CVZ, but this is rarely 

the case. One well-known example of volcanic K-feldspar megacrysts up to 10 cm long occur in some 

of the dacitic lavas of Taapaca volcano, Chile (Clavero et al., 2004; Zellmer and Clavero, 2006; 

Freymuth, 2006) and provides therefore reference as a distinct petrographic endmember. In contrast, 

the El Misti lava samples provide a representative distinct endmember of aphyric lava (Wegner, 2002) 

(Fig. 16f).  

The interpretation of magma mixing is supported by differences in plagioclase morphology 

and composition. A decrease of Femelt that is correlated with anorthite contents indicates that the 

plagioclase crystallized from a more Fe depleted (i.e. evolved) melt. Multiple episodes of crystal 

transfer from mafic to silicic melts and back are reflected by the individual growth zones, in- and 

decrease in iron and anorthite content recording the succession of events which reflect chemical 

differences/changes within the magmatic system, due to recharge of mafic magma, mixing and 

mingling of different end members and/or crustal contamination. However, small rhythmic zones 

could also be a result of diffusion – boundary layer processes.  

To see if the compositions that mixed in the magmatic system crystallized from the same or 

different end members Femelt is plotted against anorthite content in Fig. 17. Plagioclase phenocrysts 

were divided into four populations based on their CSDs: Plg > 1200 µm, Plg 600-1200 µm, Plg < 

600µm and Plg > 1220 µm rim.  
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Figure 17 show that Femelt concentrations in general decrease with decreasing anorthite content 

indicating that anorthite-rich compositions crystallized from more mafic melts. In addition, the 

maximum anorthite content decreases with increasing silica content within the melt, however this 

seems to be only the case for the Miocene samples. Moreover, when comparing all 15 analyzed 

samples there seem to be three trends present. Represented by Mam-24 and Mio-12-01, 1) Plg > 1200 

µm crystallizes first, while crystal fractionation takes place both Femelt and anorthite content decreases. 

In a later stage Plg < 600 µm and the Plg > 1200 µm rim crystallizes. Magma mixing up to this point 

is not a dominant process. However the matrix composition, which has been determined by mass 

balance calculations of the bulk rock, indicates a more mafic composition. This leads to believe a 

mafic input and likely eruption took place, without any further crystallization.  

2) These samples (MIO-12-39, Mio-12-41, MAM-14, MIO-12-40, BAR-00-19, LAS-07-05 

and MIS-99-04) all show a clear crystal fractionation trend (decrease of anorthite content) although in 

contrast to 1) Plg >1200 µm does not crystallize first, but it rather seems all plagioclases crystallizes 

from different hybrid magmas and demonstrates that mixing of mafic and felsic magmas resulted in 

the juxtaposition of the two or more different plagioclases. 3) Within this group all plagioclases 

(Mam-11-3, Bar-01-83, YAH-00-16, BAR-00-33, LAS-07-11 and PAR-03-38) crystallized from 

similar hybrid magmas since there is limited variability in plagioclase composition. Similar to 1), 

matrix compositions show a mafic input after crystallization stops.   
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Fig. 16: Graphical display of the crystal size distributions of the five different analyzed groups on a classical diagram of 

ln(population density) versus crystal size. The grey areas reference to the petrographic endmembers dark grey: Taapaca 

megacrystic dacites and light grey: monotonous El Misti andesites. Data Taapaca and El Misti from (Freymuth, 2006 and 

Wegner, 2002) 
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Fig. 17: Equilibrium concentrations of iron in melt from which plagioclase growth zones crystallized. Analyses were done in 

representative portions of core to rim. The melt compositions were calculated according to the method of Bindeman et al. 

(1997) Plagioclase phenocrysts have been divided into four populations representing the groups found by CSD; Plg > 1200 

µm, Plg 600-1200 µm, Plg < 600µm and Plg > 1220 µm rim. End member are represented by the dashed black lines and the 

matrix composition is represented by the red dashed line 
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2.4. Discussion 

In the introduction of this chapter I explained the transition between two different magmatic regimes 

could be a result of (1) a change in the mantle melting regime from decompression to flux melting, (2) 

different P-T-regimes of magma evolution within the crust as a function of crustal thickness, and (3) 

different rates in magma production and effusion. Each of these hypotheses will be evaluated based on 

the obtained results.  

 

2.4.1. Formation of homogeneous intermediate magmas 

In the introduction I have argued that a change in the mantle melting regime from decompression 

melting leading to Miocene magmas which are hot and dry to flux melting during the Pliocene to 

Quaternary with higher H2O abundance and lower temperature magmas may be the principal process 

explaining the observed differences in eruptive style. However this hypothesis is not supported by our 

data. When I take all obtained results from the thermometry and hygrometry, the multiple 

thermometry techniques do not distinguish between the Miocene and Pliocene/Quaternary groups of 

similar composition. This suggests that any possible difference in the melting mechanism between 

Miocene and Pliocene magmas and thus a change in mantle melting regime cannot be discriminated 

by the P-T conditions of crystallization of the observed phenocrysts.  

To test the second hypothesis of different P-T-regimes of magma evolution within the crust as a 

function of crustal thickness, the APT-11 sample was included. This pillow basalt of Late Jurassic age 

represents the earliest phase of subduction magmatism in the Andes, which occurred in an extensional 

arc tectonic environment (Grocott et al., 1994). Here, thick beds of pillow lavas, sheet lavas and tuffs 

with basaltic to andesitic composition occur within the Morro-Solar and Casma groups and were 

intruded by the Coastal Batholith in a magmatic episode lasting from the Early Jurassic to the Early 

Paleogene (Mukasa, 1986; Mukasa and Tilton, 1985). During this time both the crustal thickness and 

the magmatic regime are not comparable to the Miocene and Pliocene/Quaternary. However, as seen 

by thermobarometry (Fig. 13) all andesitic temperatures (including APT-11) and pressures (besides 

amphibole) are rather constant for a given composition. Thus it seems even within a totally different 

tectonic setting the crystallization conditions appear to be the same for magmas of similar 

composition. This might be because: 1) there are simply no temperature variations present or 2) 

magma mixing is extremely effective in producing similar final products during late stages of magma 

evolution or (3) crystallization of mineral pairs occurs at typical temperatures determined by phase 

relations. Since magma mixing is a dominant process, among shown by CSD, it might affect the 

crystallization temperatures, however once phenocrysts crystallize and further cooling occurs, the 

initial temperatures are frozen into earlier phenocrysts and thus retain their high temperature heritage. 

Magma mixing should therefore have no influence on the crystallization temperatures. Unless 
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crystallization follows after the mixing, but in that case plagioclase and CSD calculations would show 

uniform results.  

As previously shown by the plagioclase CSDs and compositions, magma the mixing is extremely 

effective. Figure 18 indicates the andesitic composition is remarkably restricted with 80 % of all 

samples ranging from 56 to 65 SiO2 wt% emphasizing the possible role of magma mixing in 

generating intermediate compositions. Reubi and Blundy (2009) have also argued from melt 

inclusions that the liquids of the intermediate andesitic compositions are actually uncommon in arc 

volcanic systems, but rather the more mafic and felsic compositions are more frequent (Fig. 18). This 

leads me to believe that due to the effective mingling and mixing within upper crustal reservoirs, the 

bimodal (or even trimodal) composition of melts is masked after ascent from the lower crust. The lack 

of mafic lava samples is, besides magma mixing, a result of density barriers. The reduced abundances 

at 68 wt% SiO2 can be explained by the viscosity barrier after differentiation. Due to effective magma 

mixing processes in the upper crust together with the density and viscosity barriers, only magmas with 

intermediate compositions are able allowed to erupt. This might also explain similar P-T of 

crystallization a given andesitic composition.  

MELTS, thermometry and hygrometry data represent temperatures and H2O contents of well 

mixed final stage magmas instead of initial melt conditions and are rather independent of tectonic 

regime and crustal thickness. However, despite of the magma mixing, the depletion of HREE for the 

Pliocene/Quaternary samples compared to Miocene samples is still captured and can be explained by 

crustal thickening (Kay et al., 1994, 1996; Mamani et al., 2010). The presence of the same final crystal 

conditions but differences in rare earth elements suggest that the processes within the deep crust or 

mantle wedge must be decoupled from the mixing and crystallization processes during the final 

magma evolution at shallow levels. Besides the lack of a negative Eu anomaly (Fig. 11) even in the 

more evolved samples with abundant and large plagioclase phenocrysts are not reflecting the deeper 

and earlier magmatic processes and argues thus for decoupling. However, if the possibility exists that 

the initial melt condition would have been different in P-T (which cannot be seen) they must have 

been filtered out during the ascent within the thick crust.  
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Fig. 18: Frequency histogram showing all Andes database samples including the global melt inclusion compositions in arc 

magmas from Reubi and Blundy, 2009) 

 

2.4.2. Magma bodies  

Another topic that must be assessed is the high abundance of amphiboles in many of the 

Pliocene/Quaternary samples. In order to explain this I must look more carefully into a change of 

magmatic systems, magma mixing, and magma storage levels.  

Previously I have shown that mixing is very effective within the upper crust. Together with 

barometry (Fig. 19) data, I argue for multiple crystallization levels or even storage levels at different 

depths where homogenization of the end members takes place.  

MELTS barometry data suggest crystallization of olivines, pyroxenes, plagioclases and oxides 

takes place between 4 and 0.5 kbars, and would indicate very shallow crystallization conditions. As 

previously mentioned in the results section, a deeper crystallization region might be found by using 

aluminum in hornblende geobarometry (Schmidt, 1992), at pressures between 6 and 7 kbar, ~22 km 

(figures 14 and 19). Although the method of Schmidt (1992) show relative high pressure values of 

about 6 kbar compared to the Ridolfi and Renzulli 2012 amphibole barometer, with crystallization 

conditions between 3 to 5 kbar. The higher pressures of the Al in hornblende barometer (Schmidt, 

1992) could be due to the lack of the equilibrium caused by the absence of sanidine, quartz, and biotite 

among other phases, which need to co-crystallize with hornblende for the model. Besides lower 

pressures have been recorded in Central Andes using amphibole barometry also shown by (Banaszak, 

2014).  
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However to complicate the situation even further, when comparing pyroxene pressures 

obtained from MELTS (Fig. 11) and 2 Px after Putirka (2008) they are highly mismatched (Fig. 14). 

There are multiple possible explanations for these results: (1) Pressure ranges obtained by MELTS are 

true and the two px are false (Fig. 19). In this case amphibole crystallizes at higher pressures and with 

lower temperatures (same for both amphibole barometers) as the plagioclase, olivine, clino and 

orthopyroxenes and oxides. The low amphibole temperatures (~950 °C) suggests at this crystallization 

depth the magma must have cooled down after the large ignimbrite eruptions. Subsequently the 

presence of amphibole phenocrysts within the Pliocene and some Miocene samples demonstrates that 

some melts stall at 22 km depth, differentiate and mix further - inserting the amphibole phenocrysts 

within the hybrid as xenocrysts. This might also explain the higher amphibole abundances within the 

more differentiated samples (Mio-60 and Plio-60). The amphiboles crystallized thus from a different, 

older (system cooled down to 950 °C) melt as olivine, cpx, opx, and oxides. The higher abundance of 

amphiboles within the Pliocene and Quaternary samples suggests that the time frame of differentiation 

and stalling (Fig. 21) become larger and the magmas have more time for crystallization. Miocene 

eruptive products thus would become more aphyric and contain less amphibole than the Pliocene-

Quaternary eruptive products.  

MELTS barometry data indicated than that the final crystallization of these amphibole bearing 

magmas took place at between 0.5 and 4.0 kbar. The lack of an Eu anomaly (Fig. 11) mentioned above 

would preclude extensive low pressure plagioclase fractionation and suggests that these magmas 

ascended comparatively fast from deeper MASH zones without considerable fractionation at shallow 

crustal levels. One of the issues of these findings, it is questionable that during cooling down and 

crystallization of the “older” magma only amphibole crystallizes as a phase and/or is inserted as a 

xenocryst to the “younger” magma. Furthermore, there is no petrographic evidence that the 

amphiboles are xenocryst. The MELTS model thus needs to treated with care.      

(2) Pressure ranges obtained by 2 Px are true and MELTS pressures are false (Fig.19). These 

results can be explained again by two different (fast and slow) systems. Miocene magmas crystallize at 

pressures between 9 and 3 kbar. Suggesting crystallization conditions at different depths for each 

volcano rather than one or two distinct depths. Possibly due to a crustal thickness of approximately 40 

km (rather than 60-70 nowadays) the distance of ascend changed through time. The pathway of the 

Miocene magmas is thus much easier and therefore also faster. Consequently the system has less time 

to cool down to temperatures of 950 – 850 °C and is therefore unable to crystallize amphibole 

(Minimum temperature of Miocene system is generally > 950 °C (Fig.11). An argument against this 

idea would be that oxides with temperatures of < 900 °C or similar temperatures as amphiboles (Fig. 

13) crystallize from Miocene melt as well. The cause for low calculated temperature in oxides is that 

they have likely been reset by rapid diffusion while still in the magma reservoir and/or during post-

eruption cooling (Hammond and Taylor, 1982; Venezky and Rutherford, 1999). Oxide temperatures 

therefore very likely record eruption temperatures due to the late diffusive closure of Fe-Ti exchange 



Chapter 2 – Constraints on P-T conditions of crystallization and rates of magma formation before and after crustal thickening 

in the Central Andes 

 
 

66 

in oxides. Many open questions remain regarding correct pressures; therefore all barometry results 

need to be interpreted with caution.  

Based on ABS modeling the pressure of the slab where the liquid is derived is defined at 35 

kbar or 117 km, the melts then ascend to 20 kbar or 70 km where fluids and melt are continuously 

flowing into and out of the region. This MASH zone (a zone of melting, assimilation, storage and 

homogenization) (Hildreth and Moorbath, 1988) is just below the base of the crust this zone would be 

at ~ 70 km depth during the Quaternary just below the MOHO and is consistent with the average value 

of 70 km depth (Philips et al., 2012). The MASH zone is a relatively narrow zone in the lowermost 

crust or mantle-crust transition, where mixing between mantle derived melts and melting of crustal 

rocks takes place (Hildreth and Moorbath, 1988) and mixes with crustal melts to produce intermediate 

compositions. The few mafic lava flows found in the Andes can only ascend from this lower crustal 

zone after assimilation and fractional crystallization has lowered the magmatic density (McMillan et 

al., 1993). Magmas rose from the MASH zone and accumulated within the weakened upper crust 

resulting from the increase in convergence rates and subsequently the elevated geotherms.  

Despite of the unclear barometry data, the results of the homogenous mineral composition 

between volcanic rocks of the Miocene and Pliocene/Quaternary, the same P – T assemblage were 

obtained for the equilibrium of the mineral assemblages. Subsequently no deepening in the level of 

final crystallization is registered, despite the increase of crustal thickness. So it is possible that the 

depth of the magma chambers might have been controlled by the position of the brittle-ductile 

transition in the crust since the shortening takes mostly place at the lower curst (Litvak and Poma, 

2014).  
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Fig. 19: P-T diagram showing all obtained pressure data for Miocene (Square) and Pliocene/Quaternary samples (circles). 

Unlike might be indicted by this figure, it is important to keep in mind, amphiboles are rare for Miocene magmas. There are 2 

possible explanations for the wide range of obtained pressures. Option 1: Low amphibole temperatures (~950 °C) at 6 kbar 

or 4kbar suggest a magmatic body which is much older and cooled down after large ignimbrite eruptions. Buoyant melts 

from the MASH zone accumulate, merge, mix and differentiate further at this accumulate, inserting much older amphiboles 

within the magma as xenocrysts at ~6 kbar. This would be the slow process, a fast system (Miocene magmas) which 

bypasses the ~20 km zone and rise straight to a much shallower reservoir, shown by MELTS obtained pressures. Option 2: 

Fast system (Miocene) crystallization takes place between 3 and 9 kbar (2px). Slow system (Pliocene/Quaternary) crystallizes 

within the pressure range however the slow system has time to cool and crystallize amphibole at 6 kbar or 4 kbar.  

 

2.4.3. A change in effusion rate 

Besides composition, volatile content, and crystal and bubble content, temperature is one of 

the main factors in controlling the viscosity. As stated above, the crystallization temperatures and 

pressures are very similar for the Miocene lava shields and the Pliocene/Quaternary stratovolcanoes. 

The same holds for the H2O, viscosity, density and crystal content - which are all relatively constant 

for a given chemical composition during the final stage of magma evolution. The stratovolcanoes 

show generally a slightly higher crystal content at a given composition, however this is not the rule. So 
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far all parameters have been more or less the same for each group and both flux – decompression 

melting and different P-T regimes as a function of crustal thickness have been ruled out in order to 

explain the formation of the vast Miocene volcanic fields.  

Walker (1973) examined the emplacement of basaltic lava flows, where he primarily 

concentrated on the link between effusion rate and the flow length and verified that effusion rate, and 

not viscosity, is the primary aspect that influences not only flow length but also flow field type. Given 

a greater volume flux, the heat supplied to the flow is increased and thus creating a cooling-limited 

effect (Harris and Rowland, 2009). Since there is no obvious correlation between lava chemistry and 

morphology (Batiza et al., 1989), present morphological differences have been attributed to variations 

in eruption temperatures and effusion rates (Ballard et al., 1979, Luyendyk and Macdonald, 1985).  

This seems to be the case in the Central Andes. From barometry data and especially the late 

crystallization of amphibole I conclude that the Miocene magmas erupt in a fast system, compared to 

the Pliocene/Quaternary system, which may be due to crustal thickening. Therefore degassing occurs 

mostly during ascend and at the surface and effusion rates are likely to be higher in a fast system as 

well. Consequently due to high effusion rates a thick crust forms on top of the lava flow creating a 

very efficient style of lava flow emplacement with low cooling rates and producing lava shields 

composed of long flows, which comprises most of the Central Andes during the Miocene (Anderson et 

al., 1995; Harris et al., 2000, 2002. Another consequence of a faster system during the Miocene is that 

the system was slightly higher in minimum temperatures (about 100 °C, indicated by amphibole 

thermometry) leading to lower viscosities and allowing the lava to flow even more efficiently. If the 

amphiboles would have been identified as xenocrysts than no temperature differences are present, 

since ol, opc, cpx and plg crystallize all at the same temperatures and the argument for lower minimum 

temperatures leading to lower viscosities would not hold true.   

Not only the volume calculations but also area extent supports this. Individual lava flows in 

Miocene fields have a mean volume of about 0.8, while Pliocene stratovolcanoes are built from lava 

flows that have a mean volume of about 0.24 km3, approximately 3 times less voluminous (see Fig.12 

and tables 5 and 6). The total volume of a certain volcano would not tell us much about the effusion 

rates since it might take much longer to build up a Pliocene/Quaternary stratovolcano than a Miocene 

shield volcano. It is therefore important to look at individual lava flows and therefore the increase in 

magma production rate and by implication the effusion rate can explain the formation of vast lava 

fields. An overview of the total eruptive products (lava flows, pyroclastic materials, eruption and 

erosion rates) is shown in chapter 3, where I will go into more detail explaining the important 

differences between effusion and eruption rate.  

 

2.4.4. Erosion patterns 

Another parameter, which must be taken into account, is erosion. Miocene volcanoes are 

commonly just remnants of a volcano and a possible statovolcano might be unrecognizable 
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necessitating a discussion of erosional patterns to explain the shield morphology. Apart from the 

general arid climate, there is a precipitation gradient from north to south; the semi-humid in South 

Peru to the arid Altiplano to the hyperarid Puna (Pleczek et al., 2006). Miocene volcanoes display 

large volcanic fields some even with no obvious source area due to highly glaciated areas. Other 

volcanoes still show considerably eroded volcano remnants with prominent cones. Karátson et al. 

(2011) quantified the geomorphology of stratovolcanoes using Shuttle Radar Topography Mission 

data investigating erosion patterns. The initial state of morphology is an intact, highly circular 

volcano, resembling the Quaternary stratovolcanoes (Fig. 20a-b). Depending on the region, after 

approximately 1 Ma the volcano starts developing valleys on the flanks (Fig. 20c), subsequently after 

significant incision, only deeply eroded cones with the remnants are still intact (sample: BAR-00-44). 

The final stage is a valley stage remnant volcano (sample: MIO-12-45), where erosion and coalescence 

of large valleys result in a completely degraded, lowered summit as shown in figures 3 and 20d and is 

comparable to Karátson et al., (2011) findings.  

The high degree of denudation for old stratovolcanoes, due to uplift, weathering, and erosion 

by fluvial and glacial processes results in a change in morphology leading to reduced elevation and 

subdued relief of the Miocene volcanoes. Together with high effusion rates during the Miocene, these 

two processes can form low angle volcanic shields. 
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Fig. 20. Schematic step by step model of the evolution of Miocene stratovolcanoes. a-b) Formation of stratovolcanoes. They 

cover a relative large area (tables 6 and 7) and have not been subjected to erosion. c-d) A significant time span of uplift and 

erosion lead to a high degree of denudation creating over time shield like volcanoes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21: Summary of the thermomechanical constrains. Melting begins at ~115 km at the fore-arc. Influx from magma begins 

to pond beneath the crust-lithosphere boundary at a depth of ~70 km (I) due to developing of a density and rheological 

barrier. Differentiation leads to more evolved magmas rising to the ~22 km (II) and the 3 till 10 km boundary (III) within the 

upper crust from where they are erupted.  

 

2.5. Conclusions 

Although andesites are the most common composition within the Central Andes, they are only 

a final product of the magmatic evolution complex mafic recharge, differentiation, assimilation, 

fractionation and magma mixing between end members create thermal and chemical exchanges 

between magmas that affect physical properties of the new hybrid magma.  

I show that the most significant parameters that influences volcano morphology i.e. viscosity, 

temperatures and water contents are constant through time and are independent of crustal thickness 

and thus have no influence nor have any control in determining the shape of the volcanoes in Southern 
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Peru and Northern Chile. Therefore P-T conditions of magma crystallization and storage must be 

decoupled from the deep mantle and mantle wedge, which can be argued by the increased depletion in 

HREE and Y within the Pliocene/Quaternary lavas relative to the Miocene lavashields. Also the lack 

of a negative Eu anomaly in all samples even with abundant and large plagioclase phenocrysts argues 

for decoupling and reflecting the shallower and later magmatic processes. 

A slower magmatic system during the Pliocene and Quaternary, maybe due to crustal 

thickening ensured lower magmatic temperatures and by implication higher viscosities and low 

effusion rates created the small compound lava flows and leading to the clear distinction between the 

young stratovolcanoes and the Miocene shield-like volcanoes, which is a fast system.  

The initial high effusion rates controlled the formation of vast stratovolcanoes with long single 

lava flows up to 20 km. The final stage terminates into a shield volcano like morphology due to 

erosion, leaving the long single lava flows exposed. Therefore, the rate of effusion and by implication, 

magma production and upper crustal stress regime rather than eruption temperature are the primary 

factors that influenced flow length and flow field type. Subsequently, higher effusion rates leads to a 

smaller time fraction of differentiation and stalling at the all crystallization levels and has therefore 

less time for crystallization. The Miocene volcanic products consequently become more aphyric and 

contain less amphibole compared to the Pliocene-Quaternary eruptive products.  
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Abstract 

 

Data from 220 volcanic centers in the Central Andes are compared in terms of volume and eruption 

rates. Calculation of eruption rates or volumes is challenging due to bases of the lava flows not being 

exposed, thickness variations of lava flows during their course, unknown paleo-topography, and 

erosion. For the northern (~ 4681 km3) and central Altiplano (~ 5466 km3), eruptive volumes are 

higher for Miocene volcanic centers compared to Pliocene/Quaternary stratovolcanoes (respectively 

~ 2110 and ~ 2973 km3), while for the southern Altiplano the eruption rates are higher for the younger 

stratovolcanoes (11470 compared to 12077 km3). When calculating the eruption rates, there is an 

overall increase in eruption rate through time at a single latitude and from north to south along the arc; 

for northern Altiplano 0.59 (Miocene) to 0.8 km3/Ma/km (Quaternary); central Altiplano 1.46 

(Miocene) to 1.75 km3/Ma/km Quaternary) and for the southern Altiplano 1.45 (Miocene) to 3.06 

km3/Ma/km Quaternary) and is linked to pre-existing thicker crust in the south, since with crustal 

thickening the system is warmer and less energy is required for melting. These values do not consider 

ignimbrites and are in agreement with data from Francis and Hawkesworth (1994). 

To evaluate chemical variations of lavas and calculate the mantle derived vs crustal 

component through time, thermodynamic models are vital tools; here I use a combination of MELTS 

for major elements and EC-RAxFC for trace elements and isotopes to advance the understanding of 

rates of magma formation and eruptions in the Central Andes. Unfortunately there is an overall poor 

agreement between the two models and analyzed samples this is probably due to the uniqueness of the 

Central Andes where subduction and mountain-building processes interact resulting in extreme 

conditions. Simple recharge, assimilation and mixing models may therefore be insufficient to fully 

explain chemical trends. However a new study by Bohrson et al., 2014 combines EC-RAxFC with 

MELTS. The so called Magma Chamber Simulator tracks enthalpies, composition of both major, trace 

elements and isotopes and temperatures of melt, fluid and solids, however this model is still in 

development and might in the future improve the modeling of trace element signatures in the Central 
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Andes.  

To link petrological data to thermomechanical models, data from thermo- baro- and 

hygrometry, volumetric, eruption rates, intrusion : extrusion rates and even crustal contaminant are 

needed. To date, there is no existing thermomechanical model that combines petrology, fluid flow and 

upper crustal convection in a 3D framework that links these parameters to the evolution of the slab and 

mantle wedge geometry, tectonics and the timing of crustal thickening. From the thermomechanical 

models I believe it is obvious that an enhanced heat flow can significantly increase crustal 

temperatures, prompting the weakening of the crust and enhancing crustal thickening (Babeyko et al., 

2002; Gerya, 2014). When taking this aspect into consideration the timing frame between crustal 

thickening, slab steepening, heat input and crustal melting is much faster than previously assumed. 

 

3.1. Introduction  

 

The Altiplano-Puna plateau of the Central Andes is the second largest plateau in the world 

(after Tibet) and has an average elevation of about 4 km and an area of more than 500 000 km2. The 

plateau has resulted from about 300 km of late-Cenozoic crustal shortening at the western edge of the 

South American Plate. This shortening generated unusually thick, hot, and felsic continental crust 

(Isacks, 1988; Allmendinger and Gubbels, 1996; Allmendinger et al., 1997; Lamb et al., 1997; Kley 

and Monaldi 1998; Giese et al., 1999, Lucassen et al., 2001; Yuan et al., 2000, 2002; Beck and Zandt, 

2002; Lamb and Davies, 2003; Oncken et al., 2006; Kay et al., 2009). The Central Andes result from 

subduction of the oceanic Nazca plate underneath the South American continent (Isacks, 1988; 

Allmendinger et al., 1997). Despite numerous publications (Isacks, 1988; Mégard et al., 1984; Pardo-

Casas and Molnar, 1987, Somoza, 1988; Russo and Silver, 1994; Lamb and Davies, 2003, 

Allmendinger and Gubbels, 1996; Whitman et al., 1996, Koulakov et al., 2006, Babeyko et al., 2002; 

Springer and Förster, 1998; Yuan et al., 2000; Kay and Kay, 1993; Pope and Willet, 1998; Gephart, 

1994; Oncken et al., 2006; Sobolev et al., 2006) about subduction dynamics and the origin of the 

Andean orogeny, many open questions remain. It is still unclear why and how that despite subduction 

and Western Cordillera tectonics beginning as early as the Cretaceous period, ~ 140 Myr ago 

(Mpodozis and Ramos, 1990), widening to the Eastern Cordillera and Bolivian orocline formation did 

not start until the Eocene, ~ 45 Myr ago (Arriagada et al., 2008) and why the deformation then leaped 

500km to the Eastern Cordillera, and why and how it affected the plateau region much later. Also the 

timing of crustal thickening needs to be better constrained, since it varies from north to south and from 

west to east. Uplift began around 25 Ma in the Altiplano segment and between 15 and 20 Ma in the 

Puna as a result of flat subduction thinning and thermally softening the lithosphere underling the area 

that was to become the plateau (Isack, 1988; Allmendinger et al., 1997; Coira et al., 1993; Kay et al., 
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1995). Between 12 and 6 Ma shortening shifted towards the east and ceased in the Altiplano, while 

continuing in the Puna segment until 1 – 2 Ma (Allmendinger et al., 1997).  

Plate convergence and subduction have been ongoing since the Triassic, however 

compressional deformation related to significant uplift in the Central Andes only began in Eocene 

times with minimal deformation (Lamb et al., 1997). Deformation accelerated during 29 – 25 Ma, a 

time that correlates with an increase in plate convergence rate (Allmendinger et al., 1997), and 

subsequently causing a near doubling of crustal thickness. Timing is therefore the key in 

understanding the origin of the Central Andean orogeny. This difference in timing is created by 

different magmatic conditions, structures, deformation style and composition (Allmendiger and 

Gubbels, 1996; Kley and Monaldi, 1988, Oncken et al., 2006; Mamani et al., 2008, 2010). A 

complicating aspect is that several processes can produce a thickened crust: crustal shortening due to 

compression (Roeder, 1988; Sheffels, 1995; Allmendinger et al., 1997; Baby et al., 1997; Lamb et al., 

1997; Gotberg et al., 2010), crustal underplating (Watts et al., 1995; Beck et al., 1996; Whitman, 

1999; Sobolev et al., 2006), magmatic addition (Schmitz, 1994; Allmendinger et al., 1997; Lamb and 

Hoke, 1997; Gotberg et al., 2010; Gerya, 2014) ductile flow of the lower crust, thinning of the mantle 

lithosphere due to delamination (Sobolev et al., 2007; Garzione et al., 2006, 2007, 2008; Molnar and 

Garzione, 2007) and/ thermal anomalies - weakening (Allmendinger et al., 1997; Babeyko et al., 

2002).  

Also trace elements (HREE and Y depletions and high 18O and 87Sr/86Sr isotopic ratios) 

reflect different degrees of crustal contamination in the Central Andes (Davidson and de Silva, 1992, 

1995; Davidson et al., 1991; Kay et al., 1987; 1994, 1996; Wörner et al., 1988, 1992, 1994; Mamani et 

al., 2010) during Neogene crustal thickening. The main assimilation of crustal material takes place at 

high pressures near the MOHO (chapter 1) and is related with melting, assimilation, storage and 

homogenization processes at the crustal mantle boundary (MASH, Hildreth and Moorbath, 1988). 

Furthermore, during ascent from the mantle crust boundary magmas are further contaminated with 

crustal material. Freymuth et al. (in revision) suggests that the heavy oxygen isotopic ratios, relative to 

mantle values, in the Central Andes can be explained due to the assimilation of a few percent of 

crustal material. 

To understand the complexity of the Central Andes it is important to consider the slab 

geometry, mantle wedge geometry, position of the Juan Fernandez ridge and the evolution of the 

Andean crust all together through time and understand how this influences the initial magmatic 

conditions, P-T conditions within the mantle and crust, crustal thickening, magmatic compositions, 

eruption rates and volumes all together. Consequently, a link between petrological data and 

thermomechanical models is needed. Unfortunately no such model exists yet and the large diversity of 

the suggested hypotheses reflects the complexity of the processes responsible for the Andean orogen, 

and furthermore shows the shortage of understanding of these processes. One way to improve such 
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understanding is to study the temporal correlation between tectonic shortening and those processes 

that possibly contribute to the deformation of the upper plate. Therefore I will discuss variations in 

slab dip, convergence rate, relative movement of the overriding plate, strength of mechanical coupling 

between the subducting and overriding plates, lithospheric structure, magmatic conditions, mass, heat 

fluxes and crustal thickening and try link them to petrological and volumetrical observations. Even 

though no new thermomechanical model is developed within this chapter, it can be still very important 

to evaluate the multiple existing models (Sobolev et al., 2006; Babeyko et al., 2002; Gerya, 2014; 

Wilson et al., 2014) with reference to the petrological and volumetric data presented below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: Map of the Central Andes, indicating the geographic distribution of the Quaternary – Pliocene stratovolcanoes 

(yellow) and Miocene shields (red).  Source: Esri, DigitalGlobe, GeoEye, i-cubed, USDA, USGS, AEX, Getmapping, Aerogrid, 

IGN, IGP, swisstopo, and the GIS User Community. 
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3.2. Methods 

3.2.1. Volume calculations 

For modeling it is important to investigate how eruptive volumes varied through time. In 

Chapter 2, I show a well-defined decrease in effusion rate from the Miocene to Pliocene - Quaternary. 

However direct observation and measurements of time elapsed is not available and besides an increase 

in effusion rate does not necessarily means an increase in eruption rate. Whereby (a) effusion rate is 

the volume flux of erupted lava that is feeding a flow at any particular point in time. The effusion rate 

is generally high during the onset of eruption and then exponentially decreases towards the end, and 

whereas (b) the eruption rate is the total volume of lava emplaced since the beginning of the eruption 

divided by the time since the eruption began. Eruption rate is thus the average lava output during a 

whole eruption or mostly used is, the lifetime of a volcano. 

To estimate the volumes I looked at 419 volcanoes/volcanic centers of both Miocene (216) 

and Pliocene/Quaternary (203) age within three different areas (see Fig. 1) between 14 °S and 26 °S. 

The chosen areas are based on differing morphologies of the Miocene shieldvolcanoes, caused by a 

difference in climate (more arid towards the south). Simple volume calculations were carried out using 

Google Earth and geological maps.  

For each shield volcano or stratovolcano, a polygon was carefully drawn for area calculations, 

and then average thickness was estimated. Outlining the polygons was challenging for older volcanoes 

as outlines based on morphological criteria (e.g. slope) is arbitrary due to erosion and common 

overprinting by younger units. For southern Peru geological maps (IGNEMET) specify additional 

information making the outlining process more precise. For Chile and Bolivia geological maps are not 

available for this study, but due to high aridity the outlines of the volcanoes are relatively easily 

determined. Furthermore, volcanoes in close proximity tend to merge as they evolve. Thus, in many 

cases, several volcanic edifices were combined in one feature as a volcanic complex.  

Plotting several profiles through the volcanoes and averaging elevation values at the base of 

the slope determined the base-elevations. In particular, volcanoes located along the western 

escarpment tend to have lower base elevations on the western side than on the eastern flank. And thus 

despite that most lava flows are well exposed, it is difficult to make a good estimate of the volumes for 

multiple reasons, this holds especially for Miocene lava shields: First, the bases of the lava flows are 

often not exposed, thus it is problematic to estimate their total thickness. Second, the thickness of a 

lava flow varies during its course. Third, unknown paleo-topography, and fourth most show evidence 

of erosion, which makes it difficult to establish the original volume. The shape of the 

Pliocene/Quaternary stratovolcanoes is commonly conical. In these cases much easier volume 

calculations were carried out assuming a perfect cone.  

Moreover, it is also possible to estimate the original thickness or volume of the Miocene lavas 

shields and the Pliocene/Quaternary stratovolcanoes, taking the amount of erosion and the degree of 
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denudation (erosion/original volume) into account (Karátson et al., 2011). Nevertheless, estimating the 

degree of denudation brings another problem. The degree of denudation is mostly dependent on age 

(or rather average age) and precise ages of many Miocene volcanoes are lacking. Besides, the 

uncertainty in denudation increases with age. Age data for all three segments are based on the Andean 

dataset (Mamani et al., 2010) and geological maps (IGNEMET). The erosion volumes and rates can be 

calculated using the initial volume of a volcanic complex (erosion/(denudation factor/100)) and the 

present volume plus the erosion, both values are equal. The equation is as follows: 

erosion/(denudation factor/100) = present volume + erosion. Here the amount of erosion is varied until 

both values are equal.  

Eruption rates have been calculated using the total volume of an area (km3) divided by the 

time span (km3/Ma). Since volcanism started in Southern Peru and moved south through time, due to 

the southward migration of the intersection of the trench and the Juan Fernández ridge (Yáñez et al., 

2001, 2002), the time span is different for all three areas. Based on radiogenic data from the Andean 

database (http://andes.gzg.geo.uni-goettingen.de) and the geological maps (IGNEMET) a time span 

for Miocene volcanoes have been chosen for area 1 to be 15 Ma (Fig.1), area 2 11 Ma and for area 3 

10 Ma. The used time span for Pliocene and Quaternary volcanoes is 5 Ma for all three areas. The time 

of duration of activity has not been measured, due to a lack of radiogenic data (especially at Miocene 

volcanoes in remote areas) and without ages it is impossible to make and estimation of the duration of 

activity. Furthermore, since all three areas cover different arc length it is also important to calculate 

the eruption rates per arc length for comparison (km3/Ma/km).  

3.2.2.  Magma differentiation and assimilation: MELTS 

Determining the pressures and temperatures under which magma bodies reside in the crust and 

crystallize is a crucial parameter that influences phase assemblage, volatile exsolution and therefore 

also the eruption style. The pressures and temperatures calculated in chapter 2 are here tested using 

MELTS (Gualda et al., 2012) in an attempt to understand the history and evolution of magmatic 

systems in the Central Andes. Besides the amount the assimilant (in percentage) needs to be 

constrained on order to determine the amount of mantle magma vs. crustal magma. However, due to 

pressure limitations (up to 20 kbar) some careful consideration need to be taken, the MASH zone 

(Hilbreth and Moorbath, 1988) is calculated at 20 kbar as well (chapter 2) and is therefore an absolute 

upper limit, since the error increases with higher pressures. Another problem with MELTS is that most 

of the andesites in the Andes are a mixture of different magmas and trends do not always follow 

magmatic differentiation but rather magma mixing trends (Banaszak, 2014) and MELTS is unable to 

model mixing of different end members. However, differentiation cannot be excluded and is a 

dominant process in fractionating magmas. MELTS might thus be able help to understand the history 

and evolution of magmatic systems in the Central Andes a bit better. More on magmatic 

differentiation is described in chapter 4.  

http://andes.gzg.geo.uni-goettingen.de/
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I chose the parent composition; based on one of the most mafic samples present in the Central 

Andes (Bar-00-20) and calculated melt composition via mass balance. The parental composition in 

MELTS models is shown in Table 1. Even though this sample is likely already a product of minor 

differentiation, assimilation and mixing, based on the Andean database this sample is likely close in 

composition to the true parental melt. The daughter melt composition is taken after the first run of the 

parental melt based on end member analysis (Banaszak, 2014) and Figure 10 (Chapter 2) and is 

crystallized under various conditions (Table 6). Further assumptions are that both parent and daughter 

are melts (liquid without crystals, cumulates or enclaves). 

The goal of model 1 (Mfrac) is to test how well the major and trace element changes between 

parental and daughter can be explained if they are due only to fractional crystallization of phenocryst 

phases, whereas model 2 (Mass) includes assimilation as well. A satisfactory model should explain the 

chemical evolution of the magma and phenocrysts. Besides the chemical evolution, the volume of 

intrusions can be estimated with the combined results from the volume calculations (extrusion).  

 

Table 1. Parental composition used for MELTS 

 

 

 

3.2.3 Energy constrained model: EC- RAxFC 

Magmatism is an important mechanism for transport of energy and matter within the mantle 

and between mantle and crust. It is therefore also important to get good constraints on energy and 

mass balance in a magmatic system. The Energy constrained recharge, assimilation and fractional 

crystallization (EC-RAxFC) model follows the trace element and isotopic evolution of a batch of 

magma undergoing assimilation and fractional crystallization and has been created by Spera and 

Bohrson (2001, 2002 2004) and Bohrson and Spera (2001, 2003, 2007). EC-RAxFC models a 

magmatic composite system adiabatically sealed from its surroundings. The composite system 

includes the wall rock, a resident magma body and a recharge melt and are separated by diathermal 

and osmotic boundaries that allow heat exchange and partial chemical species exchange during an 

event of recharge, mixing and differentiation. The model tracks the system as magma cools and 

crystallizes whereas wall rock heats up and partially melts. A set of coupled non-linear differential 

equations describing the conservation equations are solved incrementally until magma and wall rock 

reach thermal equilibrium. Mechanisms of heat transport involve heat conduction into wall rock by 

hydrothermal convection and advection related with the recharge of fresh magma into an existing 

magma body. Fig. 2 illustrates the evolution path of the EC-RAxFC model.  

Input is required in five different categories: thermal conditions (Table 2), melting functions, 

recharge, assimilant and initial conditions (Table 3). Besides the trace element and isotopic 
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composition of country rock, pristine magma and recharge magma need to be specified (table 4). 

Furthermore, variable additions of anatectic melt (amount of contamination) and recharge can be 

chosen. The output specifies the isotope and trace elements trajectory, the energy balance and material 

changes to the cooling crystallizing magma body. The model stops when the final magma body 

temperature is close to equilibrium temperature and is similar to the final country rock temperature. 

The model thus might give a good representation for estimation of the amount of mantle magma vs. 

crustal magma, which is an important constraint for any thermomechamical model. 

For strontium, I used four different systems (Table 3) in order to get an overview of possible 

geochemical trends. In the first two systems I assume the initial concentrations of the magmatic 

reservoir are the same as for the recharge magma. System 1: The lower endmember with both initial 

strontium concentration of the magma and recharge of 500 ppm. System 2: The upper limit with 

strontium concentrations of 1800 ppm in both the magma and recharge conditions. System 3 and 4 are 

a combination of system 1 and 2. System 3 has a recharge of 1800 ppm and initial magmatic strontium 

concentration of 500 ppm. In this case basaltic magma intrudes lower crust of intermediate 

composition. In system 4, the recharge magma has a strontium concentration of 500 ppm and an initial 

strontium magma concentration of 1800 ppm, i.e. intermediate magma intrudes into the lower crust of 

mafic composition. All four system have been modeled using various Mro (recharge) and X 

(assimilant) ranges from 0 – 1. For 87Sr/86Sr, 18O, Y, Yb and Sm input parameters see table 3 and 4.  

In the upper crust, magma is intruded at a near-liquidus temperature of 1250 °C into a crust 

that has an initial temperature of 1000 °C (70 km) (Giese, 1994) and a liquidus of 950 °C. The local 

solidus temperature of the magma is 900 °C. The parameters correspond to values typical of upper 

crust found by Taylor and McLennan, 1985 and thermometry data, chapter 2. The more primitive 

recharge magma has a liquidus of 1250 °C. Later on these parameter were varied in order to obtain the 

best fit (Table 4). 
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Fig.2. Schematic illustration of the EC-RAxFC model after Spera and Bohrson (2004). (a) the initial state is of the 

country rock, a pristine batch of chemically homogeneous isothermal melt, and a compositionally distinct recharge melt 

reservoir. (b) Recharge melt is added to the magma body at a prescribed rate. Formation of enclaves and mixing of recharge 

and pristine melts takes place. Heating of the country rock generates an x amount of anatectic melt and contaminates the melt 

within the magma body. (c) Final thermal state where Tmelt = Tanatetic-melt = Tequilibrium. 

 

Table 2. Selected thermal input parameters for integral calculations. Based on Giese (1994) and Bohrson and Spera (2001, 

2003, 2007) and thermometry (Chapter 2). 
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Table 3. Used compositional parameters. Compositions based on the Central Andes database (http://andes.gzg.geo.uni-

goettingen.de) and on the geochemical earth refence model (GERM), (http:/earthref.org). Partition coefficients are within the 

experimental range (http:/earthref.org) 

 

Table 4. Used compositional ranges of the parameters. See abbreviation table 2 

 

3.3. Areal extent, volumes and eruption rates: comparison of Miocene lava shield and 

Pliocene/Quaternary stratovolcanoes 

 

3.3.1 Quality of data 

Extensive ignimbrite sheets dominate large portions of the topography of the Central Andes 

(especially for the western cordillera and Altiplano/Puna), whereas andesite volcanoes are small 

edifices and cover only small areas. I identified more than 400 edifices by using the combined dataset 

from the Andean database (Mamani et al., 2010), geological maps (IGNEMET) and Google earth. 

Estimates for the areal extent, volume, eruption rates and erosion rates (Table. 5) are given for three 

different segments (see Fig. 1).  

 However these data must be treated with care, due to large uncertainties in calculating the 

erosion rates, estimating the denudation factor and in estimating the time frame for the eruption rates, 

http://andes.gzg.geo.uni-goettingen.de/
http://andes.gzg.geo.uni-goettingen.de/


Chapter 3 - Temporal changes in mantle wedge geometry and magma generation processes in the Central Andes: Towards 

linking petrological data to thermomechanical models 

 

 89 

as discussed in the method section. Aside from this, the duration of activity is different for each 

volcano, especially comparing compositionally distinct volcanoes. A period of 103 years may be 

relatively long for a basaltic shield volcano, but only captures a part of an edifice-building cycle at a 

rhyolitic volcano. Therefore eruption rates for three larger areas (Fig. 1) are averaged over a longer 

period of time also due to a lack of radiometric ages.   

 Another parameter that should be considered is density. Since basalt is denser (2.8 – 3.0 

g/cm3) than rhyolite (2.4 – 2.6 g/cm3) and it can be a fundamental parameter in volume calculations. 

Since volcanic edifices are often comprised of both basaltic, andesitic and dacitic or even rhyolitic 

lava flows, and the ratios are unknown, the density can therefore be discarded within the volume 

calculations. 

Due to the large uncertainties involved, calculated volumes and eruption rates must be treated 

with care and are considered minimum values. Table 5 shows the volcanic output rates for Miocene 

and Pliocene/Quaternary volcanoes for the three areas (Fig.1). Besides a few Miocene shields and 

Pliocene/Quaternary stratovolcanoes were compared to earlier published data. For instance, Cerro 

Jatunpunco has a calculated volume of 64 km3 – literature 67 km3 (Karátson et al., 2011), El Misti 

calculated volume is 77 km3 - literature 80 km3 (Ruprecht and Wörner, 2007), Ubinas 58 km3 – 

literature 56 km3 (Thouret et al., 2005). Area 2; Cerro Anallasji 114 km3 – literature 107 km3 

(Karátson et al., 2011), Parinacota calculated 41 km3– literature 41-51 km3 (Hora et al., 2007). Area 3; 

Incacamachi 51 km3– literature 39 km3 (Karátson et al., 2011), Lascar calculated 58 km3 – literature 

30-40 km3 (Gardeweg et al., 1998) showing a relative good agreement with each other.  

 

Table 5. Volume calculation results and average eruption and erosion rates estimates  
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3.3.2 Volumes and eruption rates for Miocene lava shields and Pliocene/Quaternary 

stratovolcanoes trough time  

The Central Andes volumes for both Miocene and Pliocene/Quaternary volcanic products 

comprise a minimum of 38770 km3 (Table 5). Miocene lava-shields have for area 1 (4681 km3) and 2 

(5466 km3) in total a lager volume as Pliocene/Quaternary stratovolcanoes (respectively 2110 and 

2973 km3). However for area 3 Miocene shields are less abundant and have therefore a lower volume 

(11470 km3) as Quaternary volcanoes (12077 km3). Looking at the average volume per volcano, it is 

surprising to see that there is no difference between Miocene and Pliocene/Quaternary average volume 

in area 1, however there is a clear difference for area 2 and 3 in average volume (larger for Miocene 

shields) and increases towards to south. However, these estimates do not include the tephra material 

ejected and lost during eruptions. Miocene erosion volumes for all three areas have been estimated to 

be approximately 2111 km3 for area 2097 km3 for Area 2 and 3984 km3 for area 3 (Table 5). For the 

Pliocene/Quaternary volcanoes the total erosion volume have been estimated to be approximately 128 

km3 for area 253 km3 for Area 2 and 1469 km3 for area 3.  

Besides the erupted volumes the eruption rate increases towards the south as well; for the 

Miocene volcanoes from 0.59 km3/Ma/km (area 1) to 0.46 km3/Ma/km (area 2) and to 1.45 

km3/Ma/km (area 3), for Pliocene and Quaternary volcanoes from 0.80 km3/Ma/km (area 1) to 1.75 

km3/Ma/km (area 2) to 3.06 km3/Ma/km (area 3). Moreover these values indicate a clear increase in 

eruption rate with time (see table 5). These values are in agreement with data from Francis and 

Hawkesworth (1994). They calculated eruption rates for volcanoes younger as < 1 Ma to be 3.74 

km3/Ma/km and all volcanoes < 10 Ma to be 1.59 km3/Ma/km for the Central Volcanic Zone. I obtain 

almost the same value of 1.6 km3/Ma/km for all volcanoes < 20 Ma.  

 Several explanations can be given for the difference in eruption rates. One of the main factors 

in controlling the style of eruption and magnitude is the rate of the westward drift of the South 

American plate (Kay and Coira, 2009; Oncken et al., 2006), but also the changing geometry of the 

Nazca plate is important. Moreover, as previously mentioned, the southward migration of the Juan 

Fernández ridge could be related to deformation patterns and periods of amagmatism prior to 24 Ma in 

Southern Peru (Yáñez et al., 2001, 2002). Besides, plate motion predictions have shown that the Juan 

Fernández ridge only moved 2.5° in latitude southward (275 km) in the last 12 Myr, while during 

Miocene times the migration was an order of magnitude faster (200 km/Myr). During this period, 

fluids derived from the oceanic plate during flat subduction pre-condition the crust for later melting 

(James and Sack, 1999). The crust in the southern CVZ therefore had more time to be hydrated above 

a shallow subduction zone. With the steepening of the subducting slab, renewed asthenospheric mantle 

flow created the ideal conditions for high magma production rates. The corresponding increase in 

eruption rate of andesites is moreover consistent with ignimbrite eruptions (Kay and Coira, 2009; 
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Coira et al., 1993; Mamani et al., 2010; Brandmeier, 2014). A thicker and warmer crust, requiring less 

energy for melting during the Pliocene/Quaternary, might partly explain the difference with age.  

 

3.3.3 Fractionation and/or assimilation 

Since a satisfactory model should explain the chemical evolution of the magma and 

phenocrysts in order to see how well a certain model fits the chemical composition of minerals 

(olivine, opx and cpx) I characterized two different systems. For system 1 (Mfrac) I tested how well the 

major and trace element changes between the parental melt (20 kbar) and daughter can be explained if 

they are due only to fractional crystallization of phenocryst phases. With Mfrac 1 different models have 

been run with an initial 1, 2 or 3 H2O wt % and pressures of 1, 2, 4 or 6 kbar. Fractional crystallization 

allows the magma to differentiate to rhyolite composition of only at low pressures (< 1 kbar) At higher 

pressures, 6 kbar, silica content reaches only about 64 wt% SiO2. Nevertheless a good match between 

the modeled and observed mineralogy is problematic to model since for most runs one of the three 

(olivine, cpx and opx) minerals did not crystallize, and where olivine is more abundant with low 

pressures clinopyroxene only tends to crystallize with pressure higher than 4 kbar. Conditions that 

produce the best match for andesitic magma and mineral composition are with an initial water content 

of 1 H2O wt % (Table 6). Mineral compositions (chapter 2, appendix) for olivine has the lowest 

deviation when comparing EMPA data with the modeled mineral composition by MELTS when using 

a pressure of 1 kbar while opx and cpx have the best match at 6 kbar (see table 6). Besides the high 

crystallization temperatures of opx at 4 and 6 kbar are unrealistically high (up to 1230 °C). The low 

olivine and high opx, cpx crystallization pressures predicted by MELTS suggest that the model lacks 

an additional chemical input.  

For system 2 (Mass) I added an assimilant as an additional source of melt. During the 

crystallization of the parental melt at 20 kbar, dacite is added as the assimilant at different proportions 

(Table 7). At the second stage, daughter dacitic composition is being added (up to 5 %) between 1 and 

6 kbar as an assimilant. The dominance for lower crustal processes instead of upper crustal processes 

is based on Hildreth and Moorbath 1988; Davidson et al. 1991. Nevertheless even with an additional 

source, a good match is difficult to obtain (Table 7), here the measured EMPA mineral composition – 

the modeled MELTS mineral compositions are shown and indicating the deviation between analytical 

and the modeled obtained compositions. Unlike Sfrac some runs were able to crystallize olivine, 

clinopyroxene and orthopyroxene, but only at 4 kbar and H2O of 2 wt%. However, a satisfactory 

model should explain the chemical evolution of the magma and phenocrysts in order to see how well a 

certain model fits the chemical composition of minerals (olivine, opx, cpx and feldspar). The main 

problem for olivine modeling is the overestimation of MgO and underestimation of FeO, while for 

clinopyroxene CaO is underestimated and Fetot and MgO overestimated. MgO seems a general 

problem since it is also overestimated for orthopyoxene. There exists a similar problem is for CaO, 
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which is being underestimated in clinopyroxene and in feldspar (Table 7). When adjusting the 

assimilant parameters (mass, temperature and increments of added assimilant) only minor variations 

occur within the chemical composition of the minerals (Table 7).  

Since almost none of the modeled chemical mineral compositions are comparable to the 

measured EMPA mineral compositions, the model does not seen to work either for just fractionation 

or with the addition of an assimilant. This is actually not surprising since I also showed and discussed 

in chapter 2 that mixing of is an dominant processes as well and since most andesites in the Andes are 

a mixture of different end members. However it is still important to analyze the MELTS results. The 

best model or fit is run nr. 5 (lowest total deviation), and crystallizes all present phases in andesites. 

The model proposes a magmatic reservoir or MASH zone at 20 kbar with an water content of 2 wt% 

and 20 % addition of an assimilant. The used crustal temperature of 900 °C at 20 kbar is actually to 

low according to the P-T models of Giese (1994) in the Central Andes. However, models using crustal 

temperatures of 1100 °C give higher deviations (Table 7). 20 % of crustal materials also seems slightly 

on the lower side, Freymuth et al. (in revision) calculated the fraction of crustal material of 28 % and 

is based on O isotopes. From the MASH zone the magma than ascends to 4 kbar where most of the 

crystallization takes place. This crystallization pressure is higher than previous modeled pressures by 

MELTS (chapter 2; average 2 kbar) confirming that pressure calculations by MELTS are not reliable 

for the Central Andes.       

 

Table 6. Runs by MELTS for Mfrac. Composition is compared to measured EMPA minerals of similar bulk composition as 

model-measured.  
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Table 7. Runs by MELTS for Mass. Composition is compared to measured daughter EMPA minerals of similar bulk 

composition as model-measured. 

 

3.4. EC-RAxFC 

 

3.4.1. Geochemical trends 

The relative mass fractions of crystals, assimilant and recharge magma as well as the 

composition of the assimilant and recharge component are important in defining how open a system is 

and how it evolves. Here, I present the results of EC-RAxFC to demonstrate the effect of assimilation 

and recharge on chemical signatures (trace element and isotopic). Since input is required in five 

different categories, it is first important to understand the effect of each parameter. This is especially 

true for the variables recharge (Mro) and the fraction of anatectic melt (X), which both can vary 

between 0 – 1. The chosen value of recharge during the simulation is the total mass of recharge 

magma involved in the simulation and is the same value of the total mass of the magma body at the 

start of the simulation. For example, with a recharge mass (Mro) chosen value of 0.5, the mass of 

recharge that enters the magma chamber is half of the mass of the magma chamber at the start of the 

simulation. For the anatectic melts, energy conservation controls the amount of melt that forms in the 

country rock, however the user-input variable X defines the fraction of this partial melt that enters the 

magma body, relative to the amount generated. The remaining non-mixed fraction remains within the 

country rock sub system.  

In figures 3 and 4 the effect of the relative fraction of anatectic melt (X) and relative fraction 

of recharge (Mro) on 87Sr/86Sr vs. strontium and are shown in a diagram for all four systems. System 

1: The lower endmember with both initial strontium concentration of the magma and recharge of 500 

ppm. System 2: The upper limit with strontium concentrations of 1800 ppm in both the magma and 

recharge conditions. System 3 has a recharge of 1800 ppm and initial magmatic strontium 

concentration of 500 ppm and on system 4, the recharge magma has a strontium concentration of 500 

ppm and an initial strontium magma concentration of 1800 ppm. The effect on increasing mass of 



Chapter 3 - Temporal changes in mantle wedge geometry and magma generation processes in the Central Andes: Towards 

linking petrological data to thermomechanical models 

 

 94 

assimilation and recharge on the melt composition is quite straightforward. With an increase in X, 

strontium concentration decreases and 87Sr/86Sr increases for all four systems, while with an increase 

in Mro, strontium concentration increases and 87Sr/86Sr increases for all four systems. 

Overall, in all four systems, 2 stages can be defined (1) strontium concentration initially 

increases above the initial concentration due to fractionating magma. Since the recharge magma has 

the same strontium concentration as the initial magma, the recharge will at the same time decrease the 

strontium concentration (Fig. 4), thus with increasing amount of recharge in the increase of strontium 

concentration less well defined (used parameters shown in table 2 and 3). (2) Fractional crystallization 

of feldspar dominates and strontium concentration in the melt decreases. As for stage 1, fractionation 

(decreases strontium concentration) and recharge (increases strontium concentration) are competing, 

thus with increasing amounts of recharge, strontium concentration is higher (Fig. 4). 

Initially no anatectic melt forms as the country rock still needs to heat up to its solidus 

temperature and although assimilation does not initially affect geochemistry, heat is being transferred 

from the magma body to the country rock. When the country rock reaches its solidus, partial melt is 

produced and a portion (depending on x: x = 0, no assimilation; x = 1, all anatectic melt enters the 

magma body) gets mixed into the magma decreasing the strontium concentration even further, while 

87Sr/86Sr becomes more radiogenic. This is consistent with the compatible nature of strontium in both 

country rock and magma and with incorporation of more radiogenic assimilant. It is also noteworthy 

that there is no obvious difference in strontium and 87Sr/86Sr between systems 1 (initial magmatic 

strontium concentration 500 – recharge strontium concentration 500 ppm) and 3 (initial magmatic 

strontium concentration 500 – recharge strontium concentration 1800 ppm) and between system 2 

(initial magmatic strontium concentration 1800 – recharge strontium concentration 1800 ppm) and 

system 4 (initial magmatic strontium concentration 1800 – recharge strontium concentration 500 

ppm).  

But how reliable are these models? The main problem is that the mathematical functions 

within the model allow small amounts of country rock being melted below the solidus and being 

added to the magma body and these additions of course create small deviations of 87Sr/86Sr between 1-

20, compared to the value that the magma should have if the anatectic melt melted at the solidus of the 

country rock, the error is therefore small and within typical analytical uncertainty. Still, when the 

radiogenic isotope ratio of country rocks and uncontaminated magma are very different, deviations 

will be larger (~ 400 ppm) than typical analytical uncertainty because small degree of fractional melt 

have higher concentrations of Sr in the first increment of melt (Bohrson and Spera, 2007). In spite of 

higher deviations, they are still small compared to the total result isotope range after the simulation 

Another interesting way to look at mixing between the assimilant and the magma are 87Sr/86Sr 

and 18O isotopes. Crustal contamination of the magma produces the opposite effect (Fig. 5): 87Sr/86Sr 

initially stays constant and increases only at higher amount of anatectic melts and 18O increases at 
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low amount of anatectic , rather than staying constant. The curves are thus convex (e.g. Davidson et 

al., 1991; Vroon et al., 1993; Freymuth et al, in revision).  Increasing amount of anatectic melt (X) 

advances the end product further along the mixing trend, but does not change the concavity of the 

trend.  

 

 

Fig.3 Comparison of Sr vs 87Sr/86Sr results of EC-RAxFC model calculations with a constant Mro = 0.3 showing with 

increasing X an increase in 87Sr/86Sr and decrease in strontium for four different systems. System 1: The lower endmember 

with both initial strontium concentration of the magma and recharge of 500 ppm. System 2: The upper limit with strontium 

concentrations of 1800 ppm in both the magma and recharge conditions. System 3 has a recharge of 1800 ppm and initial 

magmatic strontium concentration of 500 ppm and on system 4, the recharge magma has a v concentration of 500 ppm and 

an initial strontium magma concentration of 1800 ppm. 
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Fig. 4. Sr vs 87Sr/86Sr for different amount of Mro (recharge) 0.3, 0.7 and 1 for system 2. The assmimilant has been kept 

constant at X=1 System 1: The lower endmember with both initial strontium concentration of the magma and recharge of 500 

ppm. System 2: The upper limit with strontium concentrations of 1800 ppm in both the magma and recharge conditions. 
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Fig. 5. 87Sr/86Sr vs d18O for different amounts of mixing of the anatectic melt with the standing magma comparing four 

different systems.  . System 1: The lower endmember with both initial strontium concentration of the magma and recharge of 

500 ppm. System 2: The upper limit with strontium concentrations of 1800 ppm in both the magma and recharge conditions. 

System 3 has a recharge of 1800 ppm and initial magmatic strontium concentration of 500 ppm and on system 4, the recharge 

magma has a strontium concentration of 500 ppm and an initial strontium magma concentration of 1800 ppm. 

 

3.4.2. Crustal contamination – HREE depletion  

 

Within the crustal contamination model, besides X and Mro, all parameters were kept constant and 

since there are only minor variations for systems 3 and 4 (System 3 has a recharge of 1800 ppm and 

initial magmatic strontium concentration of 500 ppm; system 4, recharge magma with a strontium 

concentration of 500 ppm and an initial strontium magma concentration of 1800 ppm) henceforth only 

system 1 (The lower endmember with both initial strontium concentration of the magma and recharge 

of 500 ppm) and system 2 (The upper limit with strontium concentrations of 1800 ppm in both the 

magma and recharge conditions) will be used unless otherwise noted. I thus compared two different 

systems indicating large variations with different initial and recharge melt concentrations (500 - 500 

and 1800 – 1800 strontium ppm respectively). Variations of strontium concentrations of the anatectic 

melt on the other hand also contribute to variations of melt composition. It is therefore important to 

0.70 0.740.730.720.71

7

9

11

13

5
0.70 0.740.730.720.71

7

9

11

13

5

0.70 0.740.730.720.71

7

9

11

13

5
0.70 0.740.730.720.71

7

9

11

13

5

a) System 1

 d) System 4c) System 3

b) System 2

87Sr/86Sr 

d
1
8

O

87Sr/86Sr 

d
1
8

O
 

87Sr/86Sr 

d
1

8
O

87Sr/86Sr 

d
1

8
O

X=1
X=0.7
X=0.5
X=0.3



Chapter 3 - Temporal changes in mantle wedge geometry and magma generation processes in the Central Andes: Towards 

linking petrological data to thermomechanical models 

 

 98 

compare modeled data to experimentally obtained data, not only for strontium and oxygen, but also 

rare earth elements need to be consistent. 

For comparison of the oxygen and strontium data I use the dataset from Freymuth et al. (in 

revision) and Kay et al., 2010. They show most oxygen values are higher than mantle values, e.g. 

continental rocks are heavier in 18O. Andesitic strontium isotopic ratios have a narrow range 

compared to ignimbrite values in most Neogene magmas, furthermore a division can be made for the 

northern Altiplano and the APVC (Altiplano Puna Volcanic Center) ignimbrites, with higher 87Sr/86Sr 

isotope values of the APVC suggesting different crustal domains (Mamani et al., 2008; 2010). The 

magma was thus contaminated by Andean crust of distinct chemical and isotopic compositions 

implying a difference in crustal thickness (thicker in the south). 

For the model I tried to see what the possible chemical ranges are for anatectic melt but also 

recharge and the pristine melt compositions in order to obtain a representative dataset. To test the 

anatectic melt composition four different models have been run with strontium concentration of 

anatectic melt of 250, 500, 800 and 1400 ppm for system 1 and 2, while the amount of recharge and 

anatectic melt are kept constant. For system 1 (Fig.6a), only strontium values lower than 250 ppm for 

the anatectic melt are reasonable, since most of samples lie above the 250 Sr ppm run (red). This 

suggests low strontium anatetic melt concentrations, which could be the case for the upper most crust 

(ignimbrite values ∿ 100 ppm). For system 1 (Fig. 6a) the maximum value of strontium would than be 

250 pmm. All strontium concentration higher as 250 ppm in the anatectic melt don’t correspond with 

the measured strontium concentration and isotope values for the andesites or the northern Altiplano 

and the APVC ignimbrites. System 2 is slightly different (Fig.6b) showing a more representative 

model for crustal contamination. It seems with system 2, which are high values, all sample data can be 

explained by just varying strontium values of the anatectic melt from 250 ppm to 1400 ppm. Strontium 

concentrations of 1400 ppm in an anatectic melt is relatively high, and would suggest a deeper and 

more mafic crust (Mamani et al., 2010). 

Besides modeling 18O and 87Sr/86Sr, also the mass of the melt in magma and anatectic melt 

added to the magma body is calculated, and thus the amount of contamination can be estimated. I use 

model 2 (Fig. 6b), due to its better match with analyzed lava samples. Using a strontium concentration 

within the anatectic melt of 250 ppm (red) the maximum amount of crustal contamination for 

andesites is 60 %, for 500 ppm 45 % (orange), for 800 33 % (blue) and for 1400 ppm strontium a 

maximum of 28 % crustal contamination is calculated (green). However all these values seem to be 

overestimated.  
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Fig. 6. Oxygen and Sr isotope variations in Central Andean ignimbrites compared to stratovolcanoes and the EC-RAxFC 

model. (a) System 1: The lower endmember with both initial Sr concentration of the magma and recharge of 500 ppm. (b) 

System 2: The upper limit with Sr concentrations of 1800 ppm in both the magma and recharge conditions. Sr ass = strontium 

concentration used in the anatectic melt. Andesites (Mamani et al., 2008), Northern Altiplano ignimbrites (Freymuth and 

Wörner, InRev) APVC ignimbrites (Kay et al., 2010). Mro = amount of recharge relative to the initial mass of the pristine 

magma and X is the amount of anatectic melt relative to the initial mass of the pristine magma are kept constant; Mro = 0.3, 

X = 0.5.  

 

Now it is important to see how both models correspond to other elements. The model itself 

allows 3 additional elements (Sm, Yb and Y) to be involved in the calculation. As for strontium and 

oxygen, I choose for the elements a representative database created by Mamani et al., 2010). They and 

other authors (Davidson and de Silva, 1992, 1995; Davidson et al., 1991; Kay et al., 1987; 1994, 1996; 

Wörner et al., 1988, 1992, 1994) show that HREE and Y depletions relate to the crustal structure and 

evolution of the Central Andean orocline. Since Sr/Y ratios are sensitive to plagioclase fractionation it 

is also important to look at Sm/Yb that are less affected by fractionation processes.       

  To model Sr/Y vs Sm/Yb based on geochemistry data is challenging due to its dependency on 

many parameters. For all four elements good constraints are needed on the chemical composition of 

the initial magma, recharge magma and the assimilant and of course there is a strong dependency on 

the amount of recharge (Mro) and anatetic melt (X). Figure 7 shows again the two different systems, 

however unlike the 18O, 87Sr/86Sr data (Fig. 6) the model seems to give unrealistic values for system 

2, while system 1 fits here much better. In spite of a relative good correlation of system 1 with Sr/Y, 

Sm/Yb and system 2 with 18O, 87Sr/86Sr, it seems that the two extremes do not give a good 

representation the evolution of 18O, 87Sr/86Sr isotopes and Sr, Y, Sm and Yb trace elements. Both 

models are thus unreliable and consequently the models cannot track the presence of higher-pressure 

minerals as amphibole and garnet in the lower crust, which might have suggested that crustal thickness 

has grown through time. However both systems show (with exception of assimilant composition with 
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Sr 250 ppm), as for the database samples, an increase in Sm/Yb (with time, as shown by Mamani et 

al., 2010) and reflect increasing lithostatic pressure where differentiation and crustal assimilation take 

place and is thus indirectly a consequence of crustal thickening. It should be noted that low Sm/Yb 

ratios did occur at any given time, demonstrating that low-pressure signatures continued even after the 

crust had significantly thickened. Aside from an increase in crustal thickness, seen as HREE depletion 

through time, there are of course many factors involved such as the depth and amount of assimilation, 

which is again related to temperature and composition of magma, country rock, and recharge magma. 

Additionally magma mixing plays an important role. These factors are schematically demonstrated in 

Fig.7 with respect to Sr/Y and Sm/Yb ratios. Low Sr/Y and Sm/Yb ratios characterize stability of 

clinopyroxene and/or amphibole, whereas high Sr/Y and low Sm/Yb suggest garnet bearing and 

plagioclase free (ecolgite) residues. The models conversely show rather a decrease in Sr/Y values after 

Sm/Yb > 4 suggesting a more felsic crust and the fractionation of plagioclase. 

  

 

Fig.7. Sr/Y and Sm/Yb variations for all lava samples < 23 Ma in the Central Andes. (a) System 1: The lower endmember 

with both initial Sr concentration of the magma and recharge of 500 ppm. (b) System 2: The upper limit with Sr 

concentrations of 1800 ppm in both the magma and recharge conditions. Sr ass = strontium concentration used in the 

anatectic melt. Mro = amount of recharge relative to the initial mass of the pristine magma; X is the amount of anatectic melt 

relative to the initial mass of the pristine magma. Sr/Y and Sm/Yb values are based on Farmer, 2004; Rudnick and Gao, 

2004; Plank and Langmuir 1998. 

 

As indicated by Fig. 6 and 7 a model reconstruction is not easy and still needs some fine-

tuning. The main problem lies with the thick Andean crust (up to 80 km), upper crustal compositions 

based on Farmer, 2004; Rudnick and Gao, 2004 and Plank and Langmuir 1998 are therefore probably 

incorrect for an estimation of the Andean crust. Accessing the Andean database and trial and error 

(Table 4) give slightly better estimates than shown by Fig. 8. Unfortunately, none of the runs gives an 

unambiguous solution for all modeled isotopes. Changing thermal parameters has the same effect on 
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composition as changes in X and Mro and thus does not provide a solution - therefore the EC-RAxFC 

model is unable to explain all chemical features.  

At present it is not possible to identify a single parameter responsible for the mismatch 

between models and analyzed samples, but it does indicate that the Central Andes is unique place 

where even more complicated chemical models do not seem to work. The EC-RAxFC model takes 

recharge, assimilation and mixing (recharge, pristine magma and assimilant) into consideration, 

however Banaszak (2014) showed there are 3 different end members mixing needed in order to 

explain the chemical compositions (mostly andesites) of lava samples, a level of complexity that 

cannot be adequately accommodated by current models.  

 In a relatively new study by Bohrson et al., 2014 the capabilities of EC-RAxFC have been 

combined with MELTS. The so called Magma Chamber Simulator is a computational tool that tracks 

enthalpies, composition of both major, trace elements and isotopes and temperatures of melt, fluid and 

solids, however this model is still in development and might in the future be able to improve the 

modeling of trace element signatures in the Central Andes.  

 

 

Fig.8. 87Sr/86Sr vs d18O and Sr/Y and Sm/Yb variations for all lava samples < 23 Ma in the Central Andes. Figure similar to 

Fig. 6 and 7 but using different parameters. See table (4). Mro = amount of recharge relative to the initial mass of the pristine 

magma; X is the amount of anatectic melt relative to the initial mass of the pristine magma. Srm = used strontium 

concentration in the pristine magma and recharge magma; Srass =  used strontium concentration for the assimilant.  

 

3.5. Evaluation of Andean orogeny models 

 

The uplift history of the Altiplano started at approximately 60 Ma, at sea level (Sempere et al., 

1997). Based on paleoelevation approximations from crustal shortening (Isacks, 1988; Masek et al., 

1994) and the Chucal and Jakokkota floras (Marshall et al., 1993; Charrier et al., 1994; Munoz and 

Charrier, 1996), the plateau reached about 25 % – 30 % of its modern elevation in the early Miocene. 
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By 10 Ma the uplift was no more than 50 % of its modern elevation. The uplift then increased to 

higher rates in the last 10 Ma, lifting the Altiplano and Eastern Cordillera up by 2300 to 3500 m (Van 

der Hammen et al., 1973; Kennan et al., 1997) and because the Altiplano has experienced little erosion 

since the Miocene, it can be assumed that most of the rock uplift represents surface uplift. 

Most estimates of crustal thickness range between 59 and 80 km beneath the Western and 

Eastern Cordilleras and Altiplano, with an average value of 70 km (Cunningham and Roecker, 1986; 

Zandt et al., 1994; Beck et al., 1996; Myers et al., 1998; Baumont et al., 2001; Beck and Zandt., 2002; 

Yuan et al., 2002; McGlashan et al., 2008; Lloyd et al., 2010). The crust in the Altiplano is 

isostatically balanced through crustal thickening (Whitman et al., 1993) and the crustal shortening due 

to compression generated by plate coupling contributes to a significant amount of the crustal thickness 

(Kley and Monaldi, 1998; Gotberg et al., 2010). Gotberg et al., (2010) modeled a required 240 – 300 

km of shortening to explain the 70 km of thickness in the Andes. Other important mechanisms that can 

contribute to crustal thickening are magmatic additions or shortening that are covered by the volcanic 

arc (Gotberg et al., 2010), thermal weakening or underthrusting of the Brazilian shield (Whitman et 

al., 1993). Multiple thermo-mechanic models explaining the evolution of the Central Andes are 

evaluated below.  

 

3.5.1. Upper plate conditions 

A critical part of modeling is the issue of timing. The age of the ignimbrite activity in the APVC 

implies that at approximately 10 Ma the anomalous thermal structure of the crust in the region was 

established. The timing of tectonic shortening, the passage of the Juan Fernandez Ridge and the 

steepeining of the slab after its passage are less well defined in time. For a good time constraint on the 

tectonic shortening, it is essential to find the relationship of tectonic shortening to the thermal state of 

the crust, and examine the cause of the crustal heating. One model investigating this is by Babeyko et 

al., 2002. Several causes that must be considered for crustal heating are: (1) increased radiogenic 

heating caused by crustal thickening, (2) shear heating due to deformation, (3) heating by intrusion of 

magma and (4) heating as a result of increased mantle heat flow at the base of the crust due to 

asthenospheric upwelling.  

Shear heating can explain an increase in crustal temperatures and the onset of magmatism in strike-

slip shear zones earlier in the collision history. Even though the temperature increase might be minor, 

shear heating might be able to induce strain localization, leading to additional heat needed to produce 

partial melting (Leloup et al., 1999; Kincaid and Silver, 1996). However, Babeyko et al., 2002 show in 

a 2D model that the middle crust becomes actually colder during stacking of the crust because cold 

crust is thrust below hot crust. The result is a downward displacement of the isotherms and a 

shallowing of the temperature gradient with depth. This may overshadow the effects of the heat 

produced from both radiogenic and shear heat sources. Even though the abundance of radiogenic 
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elements within the crust per unit surface area increases due to crustal thickening the overall 

temperature increase due to radiogenic heating at 20 – 25 km depth is extremely slow and after 15 Myr 

of shortening is less than a few tens of degrees (Babeyko et al., 2002).  

Shear heating is even less important within their model and is smaller than the radiogenic heat 

production (Babeyko et al., 2002). High strain rates are highest at fault zones in the upper and middle 

crust and is a region with lower crustal flow, While in the upper crust and the uppermost mantle high 

stresses occur outside the fault zone. Shear heating is therefore more pronounced but locally restricted 

within fault zones in the brittle upper crust and in the mantle just below the Moho and is less effective 

in the ductile lower crust.  

Before the model by Babeyko et al. (2002) the idea of partial melting in a thickening crust was 

thought to be due to heating from intruding magmas from the mantle wedge with large volume 

ignimbrites being the consequence in some areas (de Silva, 1989, Laube and Springer, 1998). The 

model of Babeyko et al., 2002 is more advanced as a fully thermomechanical model including active 

deformation and internal heating, but did not include advective heat by magma intruding into the crust 

from the mantle. However magma ascending to a depth of 25 – 20 km into the middle crust with 

observed plutonic dimensions with lengths varied from 0.5 to 5 km and the thicknesses varied from 50 

to 500 m (after McCaffrey and Petford 1997) show, similar to the radiogenic and shear heating, only 

minor temperature increase (approx. 100 °C) even at a maximum magmatic input of 60 km3/Ma/km. If 

the magma input rate into the crust is too low (less than 60 km3/Ma/km) the intrusions will cool faster 

than the crust has time to heat up.  

The partial melting model by Babeyko et al., 2002 uses the relationship between melt fraction and 

temperature found in experiments on vapor free melting of felsic muscovite biotite and biotite gneisses 

(Gardien et al., 1995). Melt accumulation and subtraction is modeled using the model of percolation 

thresholds (Petford et al., 2000; Vigneresse et al., 1996). The melt leaves the rock matrix when its 

fraction exceeds the second percolation threshold and is entirely intruded into the 20 – 25 km magma 

reservoir. The procedure continues until the melt fraction in the lower crustal reservoir falls below the 

first percolation threshold. Using crustal convection the middle crust increases in temperature to an 

average of around 700 °C within 10 - 20 My after initiation of tectonic shortening due to 

asthenospheric upwelling and magmatic underplating. Furthermore, the model shows that partially 

molten lower crustal material is advected into the middle crust through narrow channels and then 

spreads laterally. Thus convection increases the temperatures in the middle crust to near solidus 

conditions.  

 

3.5.2. Plume induced crustal convection 

Gerya (2014) presents a new 3D thermomechanical model based on the mantle plume movement 

into warm and thin lithosphere on Venus. Even though the tectonic (much warmer lithosphere and 
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thinner crust) and chemical (mafic crust) setting is not comparable to the Central Andes, the model 

gives us some insights into the convection within the crust. On Venus pre nova (nova are radially 

fractured centers, 100 - 300 km in diameter) is characterized by the plume lithosphere interaction and 

produces surface uplift. Heat loss from the plume leads to intense lower crustal melting. The buoyancy 

of the melt then initiates a localized crustal convection cell that pierces and fractures the thin brittle 

upper crust, consequently leading to focused surface uplift at the center. Thus unlike the 2D model of 

Babeyko et al., 2002 it seems magma intrusions can have, on a local scale, a major influence on 

convection within the crust and therefore uplift as well.   

 

3.5.3. Mantle wedge and slab geometry 

Using the thermo-mechanical, numerical modeling of the dynamic interaction between subducting 

and overriding plates, the model of Sobolev et al., (2006) examines the factors that control the 

intensity of the tectonic shortening. The model is based on the initial crustal structures expected for the 

Central and Southern Andes at 35 Ma with a thick (40 - 45 km) felsic upper crust and thinner, mafic, 

lower crust. The crustal thickness thus assumes an already significant amount of crustal shortening. 

However, earlier subduction history may be crucial to understanding the evolution of the Central 

Andes since subduction has been taking place since the Jurassic (Rogers and Hawkesworth, 1989; 

Pichowiak et al., 1990; Lucassen and Thirlwall, 1998). Besides, a crustal thickness of 40- 45 km at 35 

Ma seems a bit thick since crustal thickening started at around 25 My ago (Isacks, 1988). For the 

lithosphere a relatively thin 100 – 130 km was chosen. The slab dip remained consistent to the present 

day in the Central Andes. The movement of the overriding plate and subduction were created by 

pushing the overriding plate at its boundary and by pulling the slab from below and the obtained 

velocities were taken from plate tectonic reconstructions after Somoza, 1988; Silver et al., 1998. The 

surface temperature in the Sobolev et al., (2006) – model was kept constant at 0 °C and at the lower 

boundary at 1350 °C, no horizontal heat flow was taken into consideration. The variable parameter 

within the model is the friction coefficient in the subduction channel. Using a friction coefficient of 

0.05 the model shows that 58 % of the westward drift of South America is accommodated by trench 

roll-back, tectonic shortening, 37 % and subduction erosion 5 % of the South American margin.  

From the model, constrained by geological and geophysical observations, the most important factor 

controlling the intensity of the tectonic shortening was the fast and accelerating (from 2 to 3 cm yr-1) 

westward drift of the South America Plate, also an increase in compression stress in the overriding 

plate is observed when the subduction angle is decreases, whereas possible increase in the subduction 

rate does not intensify shortening in the overriding plate. The lack of correlation between the 

convergence rate and the shortening rate can be explained by the roll back of the trench due a negative 

buoyancy driven by slab pull, since an increase in subduction rate also leads to an increase in trench 

roll-back (Christensen, 1996). However others (Yanez and Cembrano, 2004) suggested that the 
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development of the Andes was favored by the reduction of convergence rate. Their model shows a 

stronger inter-plate coupling due to the older subducting plate at the trench and the slow down in the 

convergence velocity, implying larger downward bending and extension of the forearc region and at 

the same time larger compression in the arc-foreland region 

Other important factors are the crustal structure of the overriding plate, since the middle lower 

crust is generally weak and felsic in composition. Consequently high stresses created by the tectonic 

shortening in the curst cannot be maintained. Another important factor within the model is 

delamination of the mantle lithosphere and mafic lower crust. During crustal thickening pressure 

regimes change within the crust and within the mafic lower crust garnet is formed, leading to an 

overall density increase. Therefore the denser fragments of the crust and mantle tend to descend into 

the asthenosphere. The cool, delaminated material in turn blocks the asthenosphere wedge and 

increases viscous coupling between the plates. However in Southern Peru and the Altiplano region no 

magmatic products of typical delamination processes are found (Hartely et al., 2007). Besides in order 

to allow delamination to occur significant amounts of crustal thickening should have heralded to allow 

density instabilities.  

 The main problems with this model is (1) only the last 35 Ma of subduction evolution were 

considered, although earlier subduction history may be crucial for understanding the Andean orogeny; 

(2) Fluid flow is neglected in this model, including the fluids will create changes in the upward fluid 

flow and lead to different thermal states of the mantle and crust (Wilson et al., 2014); (3) There are no 

constrains on the upper crustal thermal state through time. Crustal convection cells and advection may 

lead to an increase in uplift as well and thus need to be considered (Gerya, 2014); (4) 3D model is 

needed in order to model the corner flow of the asthenosphere. Especially flat subduction is hard to 

model in 2D because the slab gets pulled into the crust due to the lack of corner flow of the 

asthenosphere.  

 

3.5.4. Fluid flow 

It is well known that fluids play a crucial role in subduction evolution. For example, excess 

mechanical weakening along tectonic interfaces, due to excess fluid pressure, may enable oceanic 

subduction. Hence, the fluid content seems to be a critical parameter for subduction initiation. Studies 

have also shown a correlation between the location of slab dehydration and intermediate seismic 

activity. Furthermore, expelled fluids from the subduction slab affect the melting temperature, 

consequently, contributing to partial melting in the wedge above the down- going plate, and resulting 

in chemical changes in earth interior and extensive volcanism. Fluids thus have a great impact on 

tectonic processes and therefore should be incorporated into geodynamic numerical models. However, 

this is what most of the thermomechanical subduction models still lack. One major problem is that 

most subduction models either disregard fluid transport or use buoyancy driven estimates (Cagnioncle 
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et al., 2007; Wada et al., 2011). A new subduction model by Wilson et al., 2014 includes the fluid 

flow and is based on older models after Syracuse et al., 2010 and van Keken et al., 2011.  

Pressure gradients, caused by variations in fluid flux interacting with the permeability and viscosity 

structure of the solid mantle are extremely important within the model. When these gradients are 

ignored high permeability systems are controlled by buoyancy and fluid flow is mainly vertical. 

However, when pressure gradients are built-in, compaction pressure has three different effects: (1) 

enhancement of upslope flow within high permeability layers in the slab caused by local dehydration 

reaction, (2) deflection of fluids along the sloping rheologically strengthening region in the upper 

thermal boundary layer and (3) production of nonlinear porosity waves that locally control the flow of 

fluids and can allow significant temporary accumulation of fluids. Estimates of compaction pressures 

inserted to thermomechanical models can explain about 10 % of the flux melting.  

 

3.6. Towards linking petrological data to thermomechanical models 

The most important observations from petrological data from the Miocene to Quaternary are: 

no change in the final crystallization pressures and temperatures through time for andesites; magmatic 

system gets slower trough time; decrease in effusion rates; increase in eruption rates and increase in 

magma production (see chapter 2 and above). Besides the sequence of distinct magmatic regimes 

(plateau-ignimbrites, shield andesites and evolved stratovolcanoes) is diachronous during the past 26 

Ma of Central Andean evolution with age’s younging from north to south. So how can these findings 

be linked to thermomechanical models? 

The first stage of deformation and uplift are well documented after 26 Ma. Big ignimbrite 

eruptions occurred in the wake of the subducting Juan Fernadez Ridge; a period of steepening slab 

(~22 Ma and ~14 Ma), with large-scale melting of the conditioned crust (Sandeman, 1995; Yanez et 

al., 2001; Kay and Coira, 2009). Backward migration of the arc is reflected in local pyroclastic 

eruptions and stratovolcanoes of Huaylillas (24-10 Ma) and Barroso age (6-3 Ma). After 14 to 10 Ma 

another stage of uplift occurred, documented by high incision rates (Thouret et al., 2007). Due to this 

immense uplift the magmas of Quaternary age intrude and traverse trough a continental crust up to 70 

km, while for Miocene magmas the ascend trough the crust was much shorter (Mamani et al., 2010), 

and can explain the slower magmatic system during Quaternary times and subsequently lead to an 

decrease in effusion rate (Chapter 2). By itself it might seems contradictory that an increase in 

eruption rate can occur at the same time as a decrease in effusion rate and slowing down of the 

magmatic system. However combining slab steepening, an increase in heat input and subsequently an 

increase of crustal melting the increase in eruption rates with age can be explained, while the increase 

in eruption rate from north to south can partly be explained by the thicker crust itself, since with 

crustal thickening the system is warmer and less energy is requiring for melting.  



Chapter 3 - Temporal changes in mantle wedge geometry and magma generation processes in the Central Andes: Towards 

linking petrological data to thermomechanical models 

 

 107 

After the period of flat subduction (e.g. passing of the Juan Fernandez Ridge) the overall 

increasing thermal input along with ongoing arc magmatism and crustal thickening thermally prepared 

the crust (elevated geotherm), resulting in extensive crustal melting. Additionally the renewed 

asthenospheric mantle flow created melting above the steepening slab. ), and increase in volatile flux 

in the mantle wedge and delamination (Isacks, 1988; Bird, 1979; Kay and Kay, 1993, Kay et al., 1995) 

could have increased the heat flux. Besides the overall increase in heat flow over time, the increase of 

magma intrusions promotes convection within the crust (Gerya, 2014). This is also the main difference 

between the models by Babeyco et al. (2002) and Gerya (2014) that intrusions can, on a local scale, 

have a major influence on convection within the crust. Buoyancy of molten rocks initiates a localized 

crustal convection cell, which pierces the crust. From the thermomechanical models it is thus clear that 

an enhanced heat flow can significantly increases crustal temperatures, prompting the weakening of 

the crust and enhancing crustal thickening (Babeyko et al., 2002; Gerya, 2014). When taking this 

aspect into consideration the timing between crustal thickening, slab steepening, heat input and crustal 

melting should be much less as previous assumed in the above-mentioned thermomechanical models.  

One important constraint which is still lacking for linking petrology to any thermomechanical 

model is the amount of mantle magma vs crustal magma (crustal contamination). The EC-RAxFC 

model gives ranges between 30 to 60 % of crustal contamination, while the best model by MELTS a 

value of 20 % of crustal contamination was obtained, but as shown above these values are highly 

unreliable since both thermodynamic models do not ensue the magmatic evolution within a thick crust. 

Thus in the future the amount of crustal and mantle magma still need to be better thermodynamically 

constrained trough time in order to link petrological data to thermomechanical models.  

Since none of the previous models linked petrological data, thermo- and baro- and hygrometry 

data to the thermomechanical observations. I do believe, when combing all of the data, these models 

can be much more accurate. Since no model exists for the Central Andes which combines, 3D 

modeling, fluid flow, effect of magma intrusions, upper crustal conditions for the last 80 Ma it is 

likely that all models have incorrect constraints on timing of events. It is therefore very possibly with 

combing these matters might then lead to a much faster uplift, crustal heating and melting than 

previous assumed 

 

3.7. Conclusions 

I have tested the hypothesis that chemical differences in magmas through time are caused by 

crustal thickening. Unfortunately existing codes of conventional igneous geochemical models 

(MELTS and EC-RAxFC) cannot explain yet all variations of andesite compositions. It is therefore 

challenging to model any chemical variations through time in the Central Andes. The problem 

probably lies with the complicated magmatic evolution in the Central Andes that cannot be adequately 
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captured by these models. The large amount of crustal contamination, mixing of different end 

members at different levels, recharge and eruption all play a major role on magma composition and 

thus the initial magma composition cannot be simply used to model differentiation and assimilation 

alone. On the other hand it is clear that the timing of volumes and eruption rate of andesites can be 

linked to the structural and thermal state of the Andean crust based on the obvious north to south 

younging of the large-volume magmatism and an overall increase in eruption rate trough space and 

time.  

 While many observations in the Central Andes can currently be explained, still answers to 

many questions remain open or are unclear. Better models integrating both geochemical and 

thermomechnical aspects of arc volcanism, that combine petrological data together with fluid flow and 

convection within the upper crust in a 3D model are needed. 
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Chapter 4 

 

Systematic compositional distinction of lava samples through time and 

space at the Central Andean Orocline 

 

Abstract 

I have investigated the potential of combining major elements and multivariate statistics as a 

method for characterizing groups of magmas based on ages and chemical compositions. The statistical 

technique, known as cluster analysis using k-means, is used to correlate and integrate information 

about relations between major and trace elements. Cluster analysis allows us to identify objectively the 

major common trends in chemical data and thus to reduce the information to a limited number of 

characteristic parameter combinations. The application of this procedure to major and trace element 

data sets is a powerful tool for discerning between effects of differences in end-members or source, 

different degrees of assimilation, contamination, differentiation, magma mixing and fractional 

crystallization and the underlying basement. I observe that compositions of andesites erupted before 

and after crustal thickening are significantly different, not only in trace element compositions (which 

has been reported before) but also in major elements and are correlated to the progression of Andean 

orogeny. More importantly, clear correlations of major and trace elements to crustal thickening show 

that the LREE enrichment and HREE depletion with thick crust are actually controlled by the minor 

elements (phosphorous and titanium). 

 

4.1. Introduction 

The Andean orogenic chain spans the western coast of the South American continent, parallel to a 

subduction zone where the Nazca plate descends beneath the South American plate. The CVZ (Central 

Volcanic Zone) is characterized by continental crust that reaches a thickness of approximately 70 km 

mostly a result of crustal shortening and lower crustal flow, where the main crustal thickening 

occurred between 29 – 15 Ma (Allmendinger et al., 1997; Beck et al., 1996, Yuan et al., 2002, Yuan et 

al., 2000; Wörner et al., 2000). A second and major episode of surface uplift developed in the Late 

Miocene (ca. 10 -6 Ma Gazione et al., 2006, 2008; Schildgen et al., 2007; Thouret et al., 2007). 

Despite the typical arc signature of magmas, significant geochemical variation can be seen due to 

crustal contributions (Davidson and DeSilva, 1992; Delacour et al., 2007; Mamani et al., 2010; 
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Wörner et al., 2000). In particular, lavas younger than 5 Ma from the CVZ have compositional 

characteristics that indicate a higher degree of crustal contamination compared with similar andesitic 

magmas in regions where the crust was/is thinner upon eruption (Davidson et al, 1990; Haschke et al., 

2002). Trace elements (HREE and Y and high isotopic ratios) reflect different degrees of crustal 

contamination (Davidson and de Silva, 1992, 1995; Davidson et al., 1991; Kay et al., 1994, 1996; 

Wörner et al., 1988, 1992, 1994; Mamani et al., 2010). This difference has been linked to the role of 

garnet as a stable residual phase during magmatic differentiation and/or assimilation processes under 

high pressure conditions within the deep crust (Haschke, 2002; Haschke et al., 2006; Mamani et al., 

2010). The main assimilation of crustal material takes place at high pressures near the MOHO (chapter 

1) and is related with melting, assimilation, storage and homogenization (MASH, Hildreth and 

Moorbath, 1988). Besides, during ascent from the mantle crust boundary magmas are further 

contaminated with crustal material. Thus, contamination at the crust mantle boundary and assimilation 

of crustal material give distinctive geochemical and isotopic characteristics. 

Aside from the typical arc signature I have shown in chapter 2, a clear distinction can also be 

made between individual lava flow volumes of Miocene lava shields and Pliocene/Quaternary 

stratovolcanoes. Flow volumes vary as a consequence of an increase in convergence rates leading to 

an increase in melt production rates and effusion rates during the Miocene, followed by a decrease in 

convergence rate during the Pliocene and Quaternary. Furthermore I showed that through magma 

mixing, the final conditions of the magma evolution are extremely similar for the Miocene and 

Pliocene/Quaternary lava. The same holds for the major (andesites representing 80 % of the data; 56-

66 % SiO2) and most trace elements showing very uniform compositions trough time. In chapter 3 I 

have tested the hypothesis that chemical differences through time are a cause of crustal thickening. 

Unfortunately existing codes of conventional igneous geochemical models (MELTS and EC-RAxFC) 

cannot explain yet all variations of andesite compositions, especially trough time. Multivariate 

statistics may be able to solve these problems.  

Multivariate statistics on compositional data reveals systematic differences in major elements and 

most trace elements with age that have not been previously discussed in literature. These differences in 

composition can be the result of several factors; differences in end-members or source, different 

degrees of assimilation, contamination, differentiation, magma mixing and fractional crystallization. 

Additonally, the underlying basement can influence the composition of the lavas. By using a statistical 

approach, this study shows differences in the nature of arc andesites erupted in the same crustal 

segment before (Miocene) and after (Pliocene/Quaternary) crustal thickening and explains what these 

differences reveal about the processes of crustal evolution in the magmatic arc.  
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4.2. Tectonic setting 

The Central Andes formed in a long lived convergent setting in which, since Jurassic time, several 

oceanic plates were subducted and resulted in the formation of a magmatic arc which has migrated 

about 200 km eastward since 120 Ma (Stern, 2004). However, the tectonic evolution of the Central 

Andes has been strongly influenced by fluctuations in the plate convergence rate, obliquity, dip, and 

rollback of the subducting plate (Somoza, 1998). Subduction was for a long time almost parallel or 

highly oblique to the continental margin. With the abrupt increase in convergence during the 

Oligocene, the direction of subduction became more perpendicular to the continent. This appears to be 

coeval to a major plate boundary reorganization in the Pacific basin initiating the break up of the 

Farallon Plate and formed Cocos and the Nazca Plate.  

In addition, understanding the influence of the migration of the Juan Fernández Ridge on volcanic 

processes is extremely important. The Juan Fernández ridge began to subduct at 25 Ma at the northern 

portion of the Peru – Chile trench, and since then, the position of the ridge has migrated southward 

relative to the continental margin. Reconstruction indicates rapid migration of this point along ~ 1400 

km of the margin from 20 to 11 Ma. Ridge subduction decreases the subduction angle, and has led to 

considerable increase in the lithospheric thickness (Pardo et al., 2002), marginal erosion, shoreline 

indentation, and crustal uplift (Fromm et al., 2004). Moreover, the structural and morphological 

heterogeneities both in the subducting and overriding plates, the geometrical and thermal evolution, 

and the growing thickness of the continental crust have all played important roles in the evolution of 

this magmatic arc.  

 

4.3. Methods 

4.3.1. Multivariate statistics on compositional data 

To test the compositional differences in both major and trace elements between Miocene and 

Pliocene/Quaternary lava samples I use a number of multivariate statistic methods including cluster 

analysis and time series. The used dataset (chemical analyses and ages) is based on the Andes database 

(http://andes.gzg.geo.uni-goettingen.de). In any case, before starting multivariate statistics all sample 

data, using the Andean database, must be converted to centered log transformations, which were done 

in GoDaPack. The transformed data was then transferred into Statistica for further analysis.  

Using statistical (K means) cluster analysis, I classified subjects post hoc into four clusters 

based on major elements. The term cluster analysis includes a number of different classification 

algorithms to organize data into meaningful structures or clusters. Or in other words cluster analysis 

aims to identify groups of individuals that are comparable to each other but different from individuals 

in other groups. This tool thus aims to cluster the data in a way that the degree of association between 

the two objects is maximal if they belong to the same group. Beforehand it is unknown which samples 

http://andes.gzg.geo.uni-goettingen.de/
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will fall in which cluster and even the numbers of clusters are unknown. Nevertheless, k-means 

clustering in Statistica produces exactly k different clusters of highest possible dissimilarity.    

To better constrain whether any compositional distinctions through time can be made, I use 

time series data, where sequences of observations are showed ordered in time. I use both methods to 

test whether Miocene and Pliocene/Quaternary lava samples have a distinct compositional signature. 

The geochemical data set on which the results and discussion is based comprises about 1000 usable 

lava samples for multivariate statistics. For the first set of analyses, I selected four representative 

sample types of Miocene age. Mio-50, the most mafic samples ranging from 50-55 wt% SiO2, Mio-55 

are the intermediate andesites with a silica content of 55-60 wt%, Mio-60 felsic samples with 60-65 

wt% SiO2 and Mio-65, the most felsic lava samples ranging from 65-70 Wt% SiO2. Four more groups 

were selected of Pliocene - Quaternary age, Plio-50, Plio-55, Plio-60 and Plio-65 with approximately 

the same silica content as the Miocene samples for a good comparison. Since only rocks with < 65wt 

% SiO2 are used the effect of plagioclase fractionation is excluded.  

 

4.3.2. Cluster analysis (statistics) vs traditional graphics  

Cluster analysis is relatively new in earth sciences, however not uncommon (e.g. Degaetano, 

1996; Gong and Richman, 1995, Pacheco, 1998; Steinhorst and Williams, 1985) and was first used by 

Tryon, 1939. In spite of being more traditional the classical TAS diagram was developed later by 

(MacDonald and Katsura, 1964). One of the main reasons for using the traditional ways over cluster 

analysis is probably the ease of use. In general, data can be plotted, untransformed, into TAS, spider, 

Harker or any other diagram and can immediately yield results without much effort. However for any 

statistical analysis you need a good understanding of statistics and is much more time consuming. So 

why use any statistcal analysis? 

 The main problem with x-y plots of untransformed chemical data is that all variables are 

dependent on one another. For example, major elements all are summed to 100 %, and when one 

element decreases in concentration all other elements will generally increase in concentration. 

Therefore in simple x-y plots, correlations between two elements might be “false”. This does not apply 

to trace elements in the same way and even more, trace element ratios are independent of this problem 

and therefore are widely used in geochemistry. For major elements, this problem can be overcome 

with transformations. One very important effect of using transformation is that all spurious 

correlations are eliminated. Besides, transformed data also contains information about unexpected 

correlations. A practical advantage of transforming data it can process the whole dataset at once.   

 To get back to cluster analysis, an important problem in the application is the decision 

regarding how many clusters should be derived from the data. Sometimes, it is already known broadly 

how the data should be parsed, however, usually the exact number of clusters is unknown. On one 

hand, you want as few clusters as possible to make them easy to understand and interpretable. On the 

other hand, having many clusters allows you to identify more segments and more subtle differences 
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between segments. To indicate the usefulness of cluster analysis on transformed data I compare in this 

chapter the data to the more traditional plots.  

 

4.4. Results and Discussion 

 

4.4.1 Major elements 

Instead of typical TAS or AFM diagrams, the transformed data are now displayed in a so-

called biplot in order to understand the relationship between the major elements. In Fig. 1 the two 

Principal Components (PC’s) were calculated for major elements and are displayed in a compositional 

biplot explaining 72 % of the total variability. The sample distribution between the two principal 

components shows a strong distinction between the most mafic samples (on the left side, dark colors) 

indicated by the MgO, Fetot, CaO vectors close to the first principal component and the most felsic 

samples (right side, light colors) indicated by K2O, Na2O and SiO2 vectors. On first sight, this might 

indicate a typical arc signature suggesting differentiation as the main processes without any clear 

distinction between the Miocene (Mio) and the Pliocene/Quaternary (Plio) samples. However, P2O5, 

TiO2, MnO, Al2O3 vectors show no correlation with MgO, Fetot, CaO or the K2O, Na2O and SiO2 

vectors suggesting other factors than differentiation might play an important role.  
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Fig. 1: Compositional biplot (1st and 2nd PC) showing clustering results for the major elements 

 

4.4.2. Cluster analysis on major elements   

The next logical step is to divide all data into clusters rather than predefined groups (e.g. Mio-, Plio). 

Cluster analysis in Fig.2 subdivides the samples into four predefined clusters. The reason 4 clusters are 

chosen is that without any group or cluster the data seems rather arbitrary, being just one set of data 

without any correlation to be seen. 2 clusters on the other hand will as on the first principal axes 

(Fig.1) make a distinction between basaltic/andesitic samples and dacitic samples indicating nothing 

more than differentiation processes. Only when using more than 3 or more clusters other processes are 

revealed as shown below in figure 2. On the left side first principal component cluster 2 indicating the 

strongest influence of MgO, Fetot, CaO and in lesser extension MnO with respect to K2O, Na2O Al2O3 

and SiO2 indicating the most mafic samples. On the opposite side of the first principal component, 

cluster 4 includes the most felsic samples with the strongest influence of K2O, Na2O Al2O3 with 

respect to MgO, Fetot, CaO. Clusters 1 and 3 can be subdivided on the second principal component 

representing samples mostly out of the intermediate or andesitic range. Cluster 3 has the highest 

abundances from the Plio-60 and Plio-65 group (Table 1) and is strongly influenced by P2O5 and TiO2 

compared to cluster 1. However it is important keep in mind that there might not be an absolute 

concentration difference concerning the Miocene and Pliocene/Quaternary samples, since the data 

points are no longer in terms of wt. % due to clr-transformations.  
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 As shown in figure 2, statistical cluster analysis of the major elements results reveals two 

different correlations defined by the two principal components and indicates two different processes: 

(1) differentiation shown by PC-1 from cluster 2 (most mafic samples) to cluster 4 (most felsic 

samples). Since 50 % of the analysis can be explained with PC-1 differentiation is therefore the most 

dominant process. However, some other process must explain the other 50% of the statistical 

variability. (2). Both cluster 1 (weak dependence) and 3 (strong dependence) show a major 

dependency with P2O5 and TiO2 explaining another 22 % of the chemical variations. Also when 

comparing P2O5 cluster results to a P2O5-SiO2 Harker diagram the same clear distinction is present 

between the four clusters (Fig. 5). Cluster 3 is thus enriched and cluster 1 depleted and shows a 

distinctive elements signature (see also below), strongly suggesting that crustal thickness played a key 

role in the processes that fractionated the minor elements (Hildreth and Moorbath, 1988). Comparable 

temporal variations are shown by Haschke et al. (2003). Wörner et al. (1988), Davidson et al. (1991), 

and McMillan et al. (1993) showed that at 18°S, arc lavas younger than 7 Ma have unusually high Sr 

concentrations, have consistent enrichment levels of barium through titanium and show a depletion in 

HREEs compared to the older (>7 Ma) magmatic products. These authors took this observation to 

indicate higher pressure of assimilation in the crust resulting from crustal thickening prior to that time. 

Further correlation between phosphorous and REE is discussed below. The interaction of mantle 

derived arc magmas with mature composite crust during different stages of crustal thickening is thus 

likely indicated by PC-2. Furthermore it is noteworthy that only andesites show the enriched signature 

and not the mafic and dacitic lavas, this can be due to the fact that these compositions lie close to the 

end members defined in the Central Andes (Banaszak and Wörner, 2012) and are thus less effected by 

MASH zone processes (homogenization, assimilation) (Hildreth and Moorbath, 1988). 

No significant correlation was found when plotting sample locations the clusters in a digital 

map (Fig. 3), with the exception of the enriched cluster 3. Figure 3 indicates multiple regions where 

cluster 3 is more abundant, which is an indication of higher interaction of magma with the lower 

garnetiferous crust even though the crustal thickness is more or less similar within the whole area. The 

difference may then also reflect the effect of variable crustal compositions, being more mafic in the 

enriched regions.   
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Fig.2: a: Compositional biplot (1st and 2nd PC) showing the results for 4 different clusters. b: Centered compositions of P2O5, 

K2O and Fetot. All data are clr-transformed.  

 

 

 

Table 1: An overview of the number of used samples from each group and cluster for both Miocene and Pliocene/Quaternary 

age.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Group n samples Group n samples

Cluster 1 Mio-50 1 Plio-50 -

Mio-55 30 Plio-55 52

Mio-60 54 Plio-60 131

Mio-65 - Plio-65 1

Cluster 2 Mio-50 30 Plio-50 22

Mio-55 30 Plio-55 68

Mio-60 3 Plio-60 3

Mio-65 - Plio-65 -

Cluster 3 Mio-50 7 Plio-50 14

Mio-55 12 Plio-55 146

Mio-60 11 Plio-60 87

Mio-65 - Plio-65 2

Cluster 4 Mio-50 1 Plio-50 -

Mio-55 1 Plio-55 -

Mio-60 14 Plio-60 70

Mio-65 12 Plio-65 102

total 206 698
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Fig. 3: Cluster 2 (red) is the mafic group and cluster 4 (yellow) the evolved group. Cluster 1 (blue) is depleted and cluster 3 

(green) enriched both clusters are of intermediate composition No spatial correlation can be seen for results of cluster 

analysis, with exception for the enriched cluster 3.  

4.4.3. Cluster analysis or traditional classifications   

Comparing the clr transformation and cluster analysis results to more traditional geochemical 

classifications, it is clear although not very pronounced, that all four obtained clusters analysis can be 

distinguished in a TAS diagram (Fig.4) due to the fact that the degree of association between two 

objects is maximal if they belong to the same group and minimal when otherwise. However without 

cluster analysis it is impossible to make this distinction. It is apparent from this figure, like figure 2, 

that differentiation is the most dominant process. Using traditional plots, a distinction can be made 

between cluster 1 and 3 with higher Na2O and K2O concentrations in cluster 3. Or in other words, on 

average, Pliocene/Quaternary samples should have higher Na2O and K2O concentrations than Miocene 

samples.  

A major advantage of Harker diagrams (Fig. 5) is that they can be used to identify 

fractionating phases like olivine, pyroxenes, plagioclase, apatite, magnetite and ilmenite. Harker 

diagrams show a much broader range in chemical compositions in cluster 3 when compared to cluster 

1 however both clusters overlap, except for P2O5. Phosphorus shows, as in biplot (Fig. 2) a clear 

distinction between cluster 1 and 3. It should be noted that fractionation processes as indicated by the 

Harker diagrams give only a simple impression, since most andesites from likely through magma 

mixing (Chapter 2) making the system much more complex. Thus both clr-transformation results and 
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the traditional classifications indicate the same results, however in a biplot all elements and their 

relation can be shown at once in a more prominent manner. 

 

 

 

 

Fig. 4 TAS classification after Le Bas et al., (1986) showing the predominantly andesitic characteristics of the studied lava 

samples.  
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Fig. 5: Harker diagram showing the elemental variations versus SiO2 and indicating the four obtained clusters displaying 

fractionation trends. Ol=Olivine, Plg=Plagioclase, Px=Pyroxene, Cpx=Clinopyroxene, Ilmenite, Mt=Magnetite. 
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4.4.4 major elements through time   

To model or identify patterns in time series data ARIMA (Auto Regressive Integrated Moving 

Average model) was used. Even though patterns of data are often unclear and individual observations 

involve considerable error, ARIMA allows uncovering hidden patterns. The used dataset contains 182 

usable ages from lava samples and were taken from the Andes database. Unfortunately, the time series 

diagrams show a wide scale jagged transformed chemical data (Fig.6). However, there are general 

trends visible like the increase in Na2O, K2O and P2O5 and decrease in MgO, CaO and MnO with age 

indicating a differentiation with time. The variations in Na2O, K2O, MgO and CaO can be explained 

by differentiation and crystal fractionation processes since the younger samples are often higher in 

silica, however no increase in silica can be seen from the time series diagram neither in TiO2, Fetot and 

Al2O3 and thus the time series data must be treated with care. In spite of the noisy data, P2O5 seems to 

increase with time, which is the opposite of expected behavior when differentiation takes place (P2O5 

decreases with increasing SiO2). Thus as shown by cluster analysis differentiation seems not to control 

P2O5. What actually counts is the difference in P2O5 (and other enriched trace elements) at the same 

silica content, which is already partially described above and will be elaborated in the next section.  

 The noisy or jagged pattern is probably due to variation in chemical compositions not related 

with age. In this plot compositions from basaltic andesites to dacites are plotted, having of course 

distinct chemical compositions. Therefore it is important not to look in too much detail, but visualize a 

general pattern with age.  

So far I can explain most of the trends within the major elements with differentiation or an 

enrichment of P2O5 through time and is the result of an increase of contamination as consequence of 

crustal thickening. The only element not linked to the four cluster or the 2 principal components is 

MnO (Fig.2) however, manganese shows in figure 6 the clearest correlation with age of all elements. 

Unfortunately, the role of manganese can be attributed to different processes. Manganese is relatively 

abundant with an average upper crustal abundance of 600 ppm and has a bulk continental crust 

average of 1400 ppm (McLennan and Taylor, 1996), besides its widely distributed as a minor element 

in olivine, pyroxene, amphibole and garnet. In theory the decrease of Manganese can thus very well be 

explained by either differentiation, or more precisely, increase of silicic magmas with age and a 

thickened crust. However the combination with the time-series data and cluster analysis, this 

hypothesis is not proven and thus must be treated with care.  
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Fig.6: Major element patterns of two series across time showing noisy data, however the general differentiation trend over 

time reflected by the data is clear.  
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4.4.5 Trace element signatures 

Comparisons between the major and trace elements were made using the previously 

mentioned cluster analysis on the major elements. The clusters thus remain the same (each data point 

remains within the same cluster), only here the corresponding trace elements are plotted. A striking 

result appears when plotting the four clusters obtained by cluster analysis in a trace element biplot 

(Fig.7a). Within this plot the four clusters can be redivided into three groups can be distinguished 

responding to LREE, MREE and HREE (1) Ho, Er, Gd and Dy with mostly Pliocene/Quaternary 

andesitic samples (or cluster 3), (2) Ce, La, Pr, Nd, Sm, Eu or LREE with mostly Pliocene/Quaternary 

dacitic samples (or cluster 4) and (3) Lu, Yb Tm and Y with Miocene basaltic andesites / andesites and 

in lesser extent Pliocene/Quaternary basalitic andesites / andesites (a combination of cluster 1 and 2). 

However, when plotting the four clusters in a trace element ternary diagram (Nd, Ho, Yb) a distinction 

between cluster 1 and 2 can be made as well (Fig. 7b).  

Taken together, these results suggest that there is a strong association between major and trace 

elements, since no cluster analysis have been performed on the trace elements themselves. In the 

introduction I already mentioned that lavas younger than 5 Ma from the CVZ have compositional 

characteristics that indicate a higher degree of crustal contamination (reflected in the HREE and Y 

trace elements) compared with similar andesitic magmas older than 5 Ma where the crust was thinner 

upon eruption (Davidson, 1990; Haschke et al., 2002). This increase and high degree of crustal 

contamination is so far only found in trace elements and minor elements (McMillan et al., 1993; Kay 

and Mpodozis, 2001; Haschke, 2002; Kay et al., 2005; Haschke et al., 2006; Mamani et al., 2010), 

however cluster analysis thus shows a correlelation between major, minor and trace elements which 

has never been reported before.  

As for the major elements I can compare the trace element clr-transformed data to more 

traditional classifications. When plotting all samples of all four clusters in a spiderdiagram a clear 

separation can be made between the four clusters. LREEs most enriched within cluster 3, the young 

andesitic group, but also Gd, Dy, Ho and Er are more enriched for cluster 3 and 4 and due to a lack of 

Miocene dacitic/rhyolitic samples (Table 1) both clusters represent mostly Pliocene/Quaternary lava 

samples. HREEs, Tm, Yb and Lu are on the other hand more depleted in cluster 3 and 4 as in cluster 1 

and 2, however this is not the rule for all samples due to a wider range in trace element compositions 

shown by the reference of cluster 3.  

Mamani et al. (2010) showed very high Dy/Yb and Sm/Yb ratios for volcanic rocks younger 

than 3 Ma point to a garnet signature as the only major residual phase controlling REE. The steep 

gradient for cluster 3 and 4 due to enrichment in LREE and depletion in HREE can exactly be seen in 

figures 7 and 8. Figure 9 shows again how well major elements are linked to the trace elements. The 

steep REE patterns for the younger samples suggest high-pressure source mineralogy. However it 

must be noted, as shown by table 1, that clusters 3 and 4 are not restricted to only Pliocene/Quaternary 

samples. 
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Despite of many arguments for tectonic thickening of the Andean crust, also (1) subduction of 

a young oceanic crust and (2) the subduction erosion of forearc crust (Stern, 1990; Kay et al., 2005) 

can produce the REE signatures or also called adakite signatures. However, (1) the subducting Nazca 

plate is relatively old and cold, (2) the amount of material that got subducted into the magma source 

region or was underplated below the fore-arc is a matter of debate (Stern, 1990, 1991; Clift and 

Hartley, 2007). It is unlikely that significant amounts of sediments have been subducted into the 

source region due to the Coastal Cordillera acting as a barrier and limits sediment transport into the 

ocean (Allmendinger et al., 2005). Strong support for REE signatures comes from the positive 

correlation between the REE and patterns of crustal thickening due to partial melting of granulitic to 

eclogitic facies continental crust (Hildreth and Moorbath, 1988; Wörner et al., 1988, 1992; Davidson 

et al., 1990; Trumbull et al., 1999; Mamani et al., 2008, 2010) 

However, even within the Pliocene/Quaternary samples, low LREE/HREE can be found even 

though the modern crust which around 60 km thick is. In these cases, the lack of a garnet signature can 

be explained by either variations in the bulk composition of the lower crust that can vary on a rather 

local scale or crustal contamination at shallower levels (above the stability limit of garnet; ca 30 km). 

Another option might be that the equilibration of melts with crustal garnet may be relatively slow 

given its sluggish diffusion and that magma ascent rate as discussed in chapter 2 (higher during 

Miocene times) might be as important as the abundance of garnet in the lower crust. However, it 

cannot be taken away that volcanoes on thick crust are enriched in LREE (Hildreth and Moorbath, 

1988). Even when the garnet is stable in the lower crust, the influence on andesite composition will 

depend on the abundance of garnet and the degree of equilibration with arc magmas.  

In summary, the cluster analysis of four groups based on major elements shows dependence of 

trace elements on major elements. The strongest chemical signatures displayed by the major elements 

(MgO, CaO, Fetot, K2O, Na2O, SiO2 and Al2O3) can be explained by differentiation. Secondly, crustal 

thickening or higher-pressure mineralogy seems to control P2O4 and TiO2 shown by cluster 3. The 

dependency of those two elements of crustal thickening can be proven when plotting trace elements as 

clusters. Cluster 3 shows indeed the steepest REE signature (enriched in LREE and depleted in 

HREE), which is typical for a thickened crust (Hildreth and Moorbath, 1988, Kay et al., 1991; 

Mamani et al., 2010).   
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Fig.7 (a) compositional biplot for trace elements with clustering data of major elements. (b) centered ternary plot showing the 

highest variability between the four clusters.  
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Fig. 8: Chondrite normalized (McDonough and Sun, 1995) REE pattern of the four obtained clusters. Cluster 3 is used as a 

reference sample for easy comparison.  

 

 

 

 

 

 

Fig. 9: Plot of Sm/Yb vs clr 

transformed Yb for four 

clusters. The plot illustrates 

the steep REE signature with 

increasing pressure 

crystallization. This increase 

correlates well with the 

thickening of the Andean 

crust.  
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4.4.6. Trace elements through time   

In comparison with major elements, the trace elements signature over time is less noisy. Clear trends 

are visible showing an overall increase of all LREE: La, Ce, Pr, Nd, Sm and Eu (Fig. 10) and a 

decrease of the HREE: Dy, Ho, Er Tm, Yb and Lu (Fig.10). Again, it is important keep in mind that 

the data points are no longer in terms of wt. % due to clr-transformations. Another important 

observation that can be made is that the LREEs and HREEs these seem to be anti-correlated. The 

junction of an increase or decrease lies exactly within the MREE or Gd and Tb. Surprisingly, no 

variations can be seen in Sr or Rb which has been identified before and explained by an increase of 

crustal thickness which started ~ 25 Ma (Mamani et al., 2008, 2010). As mentioned before constraints 

on the timing of crustal thickening (and amount) and on the source region can be seen from the 

temporally changing REE signatures of magmatic arc. However it should not be concluded, since it 

does not necessary mean that the magma displays changing REE signatures formed before, during and 

after crustal thickening. My data and data by Mamani et al. (2010) and Kay et al. (2005), show many 

types of lava without any high-pressure signature even in a thick crustal setting and indicate that the 

corresponding magmas did not interact significantly with lower crustal lithologies. Most important 

here is that the timing of crustal thickening can be seen from the maximum values of the REE, 

possibly reflecting different degrees of crustal contamination (Mamani et al., 2010), however all data 

used for time series are combined, therefore maximum values are not shown in the same way. The 

general increase in LREE and decrease of HREE (with decreasing ages) has also been reported by 

Thorpe, 1979; Kay et al., 1991, 1994, 1999; Hawkesworth, 1988; Haschke et al., 2002, 2003; Mamani 

et al., 2010 indicating the strong role of crustal thickening fractionating HREE from LREE. However, 

a heretofore unmentioned point is that the Central Andes is not a single entity and that the timing of 

uplift and thickening most likely varied from north to south and east to west and can cause distorted 

variations in an age vs y diagram.   
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Fig. 10: LREE, HREE, MREE, Rb and Sr patterns of two series across time. Examination shows a general increase of LREE 

and decrease of HREE through time.  
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4.5. Conclusions 

 

This chapter has given an account of reasons for the widespread use of multivariate statistics. I have 

used cluster analysis on clr-transformed of major and trace element data to group andesites according 

to their geochemical characteristics and compared our results to traditional classifications. This 

investigation has shown that unexpected correlations in one single geochemical datasets can be found 

and is statistical correct compared to the traditional classification diagrams. However, one should 

always use the combination of both methods, as a comparison and traditional classification diagrams 

still give a lot of additional information, as for example, about fractional crystallization.   

The results of this research support the idea that Early Miocene to Quaternary volcanic centers 

in the main arc reveal systematic differences in trace elements and isotope ratios with age that reflect 

different degrees of crustal contamination, shown in the biplots and comparison of four found 

distinctive clusters. However, one of the more significant finding to emerge from this study is that 

crustal thickening and contamination has a control on the major and minor elements, especially 

phosphorous and lesser amount titanium, which is then again displayed in trace element signatures.  
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