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Abstract

Branched flow is a universal phenomenon of random focusing that occurs in wave or particle
flows that propagate in weakly scattering, correlated random media. The consecutive effect of
small random forces leads to regions of strong focusing which have the appearance of branches
and originate from the formation of random caustics. This phenomenon has been experimentally
and theoretically studied in various systems, ranging from experimental observations in electronic
microdevices on the micrometer scale to theoretical predictions for the propagation of sound
waves in the ocean, on the scale of thousands of kilometers.
Reconstructions of the tsunami of March 2011 exhibited strong fluctuations in the tsunami
height, associated with a filamentation of the flow, reminiscent of the structures observed for
example in electron flows in semiconductor microstructures. This raises the question, to what
extent are the same mechanisms at play in these very different physical systems and what impact
do they have for tsunami predictions. Developing a theory of random caustics and branching in
tsunami waves is the main purpose of this thesis.

We will start by showing that tsunamis indeed exhibit strong focusing even when propagating
over a weakly scattering region of the ocean floor. We will therefore develop the stochastic theory
for the characteristic length scale on which random caustics appear in the propagations of
tsunamis described by ray equations. We then confirm that the focusing regions of tsunami waves
follow the scaling predicted by stochastic ray dynamics with respect to the parameters of the
bathymetry. We thus show that tsunamis are indeed subject to the phenomenon of branched flow.
We will furthermore demonstrate that, due to the fact that already tiny bathymetry fluctuations
can be a source of branched flow, bathymetry has a severe impact on the predictability of
tsunami heights. Small uncertainties in the knowledge of the ocean’s bathymetry can lead to
drastically wrong predictions.

Because the ocean floor bathymetry is known to exhibit anisotropies and to be correlated on
several length scales due to the various geological processes contributing to its formation, we later
extend the general theory of branched flows to systems where the random medium is correlated
on more than one single length-scale, both for tsunami waves and Hamiltonian rays, as it is also
relevant to many other systems. We calculate how such correlations affect the typical length scale
of branching. Our theory is then applicable to a large variety of correlation functions, either
anisotropic or isotropic with multiple correlation lengths.
We conclude with a proposal for an experiment which scales a tsunami event down to the size of
a tank in a laboratory to study the focusing effect of bathymetry structures. Such a tool could be
useful in tsunami studies and forecasting and it would allow us to experimentally verify our
theoretical and numerical results on random focusing of tsunami waves.
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Chapter 1

Introduction

Figure 1.1: This reconstruction of the tsunami induced by the Tohoku earthquake of 2011 shows
the maximal wave amplitude during the entire propagation time. We can clearly see that the
wave is not propagating homogeneously, but instead shows a filamentation of the flow with high
intensity fluctuations, with local amplifications up to four times the local average of the maximal
amplitude. source: NOAA

A little more than a decade ago, one of the most destructive natural disasters of our times
occurred. On December 26, 2004, the Sumatra-Andaman earthquake produced the deadliest
tsunami in recorded history, leading to more than 283,000 deaths [1]. This catastrophic event led
the scientific community to an increased effort to improve our understanding of the physics of
tsunamis, with many international collaborations, as discussed in reference [2]. Great efforts have
been put into the development of tsunami forecasting techniques by improving our models and
increasing the accuracy and speed of numerical simulations. One of the main focuses of such
studies has been the understanding of the importance of nonlinearity in tsunami physics,
especially in order to understand the run-up of waves approaching coasts. However, along most of
its propagation path - as long as it propagates over the deep ocean - the tsunami is well-described
by linear wave equations. Large libraries of their solutions in the measured topography of the
ocean are the basis of planned real time tsunami warning systems.
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A little more than six years later, on March 11, 2011, the Tohoku earthquake, which occurred not
far from the coasts of Japan, generated another powerful tsunami which was tremendously
destructive, leading to more than 15,000 deaths [3] and the catastrophic events at the Fukushima
nuclear power plant. A numerical reconstruction of this tsunami was produced by the National
Oceanic and Atmospheric Administration (NOAA) using their forecast tools (MOST model [4]
and DART source inference [5]) and is shown in Fig.1.1.
This plot strongly suggests that some mechanisms leads to correlated multiple focusing events. A
single focusing mechanism has been studied by Berry [6] who considered the effect of an isolated
large underwater structure such as a volcano on the evolution of tsunami waves in the linear
regime. He showed that such underwater structures can focus the wave, in the same fashion as
lenses focus light in optics. Furthermore, a recent work by Kanoglu et al. [7] studied the impact
of the shape of the source on the propagation of the tsunami wave and it was found that some
geometries could indeed be the source of focusing on their own. The complexity of the strong
focusing patterns visible in Fig.1.1, however, suggests that a more elaborate theory is needed to
explain it.

Figure 1.2: TOP - The density of 2D electron waves emitted by quantum point contact propagating
in a semiconductor. The random disorder potential created by donor atoms in the semiconductor
is responsible for the branching of the flow. source: [8]. BOTTOM - The intensity of microwaves
propagating in a 2D cavity with a field of random weak scatterers [9]. The flow exhibits high
intensity fluctuations in this typical branch-like fashion. source: [10].

Random focusing has been studied for many years and is considered to explain many phenomena,
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including light in optical fibers that is focused by small perturbations [11] and freak waves in the
ocean appearing due to small fluctuations in the wave velocity [12–20]. The filamentation of the
flow that can be observed in Fig.1.1 led us to consider the possibility that tsunami waves could
be affected by the phenomenon called branched flow, which was first observed no more than 15
years ago by Topinka et al. [8] in the electron flow of semiconductor heterostructures, as
illustrated in the top panel of Fig.1.2. The term branched flow has come to describe a general
phenomenon that affects particle or wave flows propagating through weakly scattering, correlated
random media. In such systems, the consecutive effect of weak scattering events that are
correlated in space leads to strong focusing in branch-like patterns, connected to the formation of
random caustics, which are regions where the flow is focused. Examples of this phenomenon
include the random focusing of electrons in semiconductors [8, 21–24] and microwaves
propagating in cavities with weak scatterers [9], as shown in Fig.1.2, and it is considered to
explain the twinkling of starlight due to its propagation through the slightly inhomogeneous
atmosphere [25–29], as well as the focusing of sound waves in the ocean due to water density
variations [30–36]. All those phenomena can be modeled using Schrödinger-type equations, which
can then be studied using Hamiltonian rays. This is, however, not the case for shallow water
waves. A theory of branched flows of tsunami waves was thus still lacking.
As the phenomenon of branched flow and the emergence of random caustics lead to strong
intensity fluctuations (i.e. extreme events), its relevance for tsunami propagation is a topic of
great interest and will be the main subject of this thesis, which will be organized as follows:

In the two introductory chapters 2 and 3, we will recapitulate some of the theoretical foundations
of this thesis.
In chapter 2, we will present the theoretical basis of random caustics and branched flow in the
framework of two-dimensional Hamiltonian systems. We will focus on the tools that will be used
later in this thesis and show the derivations of important results, such as the mean distance to
the first caustics, which is the characteristic length scale of the branched flow phenomenon.
In chapter 3, we will derive the linear shallow water equations, which are the relevant model for
tsunami propagation in deep ocean conditions, i.e. far from the coasts. Furthermore, as most of
the tools developed in chapter 2 use ray equations, since caustics are a classical phenomenon
well-defined in the ray picture, we will also derive the associated shallow water ray equations
which will be at the center of our theoretical considerations.

In the main part of the thesis, we will extend the theory of branched flow to tsunami waves and
derive new general results on random focusing.
Chapter 4 is the heart of this work. Using the tools from chapter 2 and 3, we will answer the
questions posed above, whether tsunami waves are affected by branched flow, and discuss its
impact on tsunami forecasting. To this aim, we will develop the theory of random caustics for
shallow water rays.

So far, all theories of branched flow, including chapter 4, have characterized the random medium
by a single scaled isotropic correlation function. However, the fluctuations of the ocean floor’s
topography, in most areas, are anisotropic and usually correlated on several length scales,
because of the interplay between various geological mechanisms. In chapter 5, we will therefore
answer the following question: what impact does the inclusion of a second correlation length and
anisotropy have on the theory of branched flow? We will confirm our results with numerical
simulations. We do this not only for the shallow water equations, but for Schrödinger-type wave
equations as well, having in mind applications to e.g. the electron transport in semiconductors
with anisotropic mass or the scattering by many isolated scatterers as in [9], where the size of the
scatterer and the distance between the scatterers are naturally two distinct length scales.

In chapter 6, we will finally pose the question of whether it is possible to study the focusing of
tsunami waves in a laboratory experiment. We give theoretical estimates that lead us to propose
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an experimental setup.
Chapter 7 summarizes all results and gives an outlook, summarizing the new research directions
in which the results are pointing.
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Chapter 2

Caustics and branched flows

The main purpose of this work is to study the appearance of random focusing in tsunami waves,
through a phenomenon called branched flow. This phenomenon has already been studied for
classical Newtonian rays in quantum systems (in the semi-classical limit), such as electron
propagation in semi-conductors [8, 21–23] or microwaves scattering [9], and we believe that the
best approach is to first lay down the theoretical basis and previous relevant results that
influenced the way this research was conducted. The purpose of this section is to introduce the
reader to the concept of focusing by random caustics and its impact on wave propagation in
disordered media, as well as the methods and tools used in order to quantify it. Previous results
that concern quantum systems will be derived here, as they will serve as a reference when
studying tsunami waves. Furthermore, some of the analytical tools developed for such systems
will be used later on in this work. We will first give a phenomenological description of branched
flows in order to establish the framework of this chapter. Then, we will explain what is meant by
focusing and how this phenomenon is understood in a ray picture, in term of the curvature of the
action and the Hamilton-Jacobi equation, associated with the concept of Lagrangian manifold.
Furthermore, we will introduce some elements of stability analysis in order to understand the
appearance of focus points and develop an approximation that allows us to treat the system
stochastically. Finally, we will use tools from stochastic theory to compute a fundamental
quantity in the study of branched flows, which is the mean distance that separates the source
from the first caustics. Most of the content of this section was covered in details in [37], therefore
this introductory chapter will mainly be a summary of what was done in this previous work.

2.1 The phenomenology of branched flow

The phenomenon of branched flow emerges from the appearance of random caustics in wave fields
propagating through correlated random media. When waves or particles propagate through a
correlated random medium, the random focus points tend to be aligned in space in branch-like
patterns, which actually take the geometry of catastrophes known as folds and cusps [38, 39]. As
it seems straightforward to understand how caustics might appear in a strongly scattering
medium, it is less so when the medium is only weakly scattering, with a potential typically
varying on a scale that is on the order of a percent of the energy of the particles. Nevertheless,
relatively recent experiments [8, 9] showed that even small disorders in the potential can lead to
very strong fluctuations in the particle flow intensity. This suggest the idea that the consecutive
effects of small focusing events that are correlated in space tend to build up to produce strong
intensity fluctuations, which happen to take the shape of branches, as illustrated in Fig.2.1. In
this figure, we can also see that the first branches, corresponding to the first caustics, are the
most intense, thus the ones we want to know the most about. Furthermore, as was studied
in [23], the time to the first caustics is very important in the determination of the universal
statistics of the density of branches, which gives us even more motivations to be interested in this
quantity. The rest of this chapter will be dedicated to the characterization of these random
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Figure 2.1: An illustration of the intensity of a wave flow propagating from left to right on a random
potential (not shown). The intensity has been normalized to the average intensity, meaning that
we have wave intensities more than six times higher than the mean (actually, the highest intensity
is eleven times higher than the mean, but the color map was cut off at six to highlight the details
of the structure of the flow). We see that the strongest intensities appear in the first generation of
caustics and branches.

caustics in systems that can be described using Hamiltonian dynamics. Throughout this thesis,
we will often refer to such systems in terms of classical rays.

2.2 Caustics in Lagrangian manifold

We will be studying classical Hamiltonian systems without interactions, that can be generally
described by Hamiltonian functions H of the form

H(t, ~x, ~p) =
1

2
~p · ~p+ V (~x) , (2.1)

where ~x and ~p are the usual space and momentum variables, V (~x) is the static, space-dependent
potential, assumed to be smooth, and we set the mass to unity without loss of generality
(w.l.o.g). It is well known from classical mechanics that, in such systems, we can write the
momentum in terms of the classical action S with

~p =
∂S

∂~x
, (2.2)

which allows us to write the Hamilton-Jacobi equation in the following form

∂

∂t
S(t, ~x) +H

(
t, ~x,

∂S

∂~x

)
= 0 . (2.3)

The H-J equation is a first-order nonlinear partial differential equation (PDE) which can be
solved by the method of characteristics [40–42]. The characteristics found by this method will
correspond to the physical trajectories, which, whenever the system is non-trivial, will eventually
cross in position space after a finite time, corresponding to multivalued solutions of the H-J
equation. This crossing of the trajectories is at the very origin of the appearance of caustics.
Let us consider a ray bundle which spans a 2n-dimensional phase space made of all the couples
(~x, ~p). Thanks to Eqs.(2.2), which bring n constraints on the phase space, the system is forced
onto an n-dimensional manifold defined by the couples (~x, ~p(~x)). This hypersurface is called the
Lagrangian manifold L and satisfies some differential constraints due to its derivation from a
scalar in Eqs.(2.2).
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2.2 Caustics in Lagrangian manifold

As the Lagrangian manifold L is a n-dimensional object, it can be parametrized using a new set
of n variables (s1, ..., sn), such that ~x = ~x(~s) and ~p = ~p(~s). Furthermore, this description is

unique and, as long as the determinant of its Jacobian, det
[
∂xi
∂sj

]
, is non-zero, the transformation,

~x = ~x(~s), is invertible, such that we can map all the points of the manifold with (~x, ~p(~s(~x)). Of
course, once we approach a point in L at which the determinant of the Jacobian is zero, this is no
longer the case and the matrix (Einstein’s summation convention is implied.)

∂pi
∂xj

=
∂pi
∂sk

∂sk
∂xj

(2.4)

will behave singularly (for m = 1, it will simply diverge, as ∂p
∂s cannot be zero at the same time as

∂s
∂x . For m > 2, however, the exact behavior will depend on the various ∂pi

∂sk
[43, 44]). All the

points where ∂xi
∂sk

= 0 form a set called the singular set, the projection of which onto configuration
space corresponds to the location of the caustics. In Fig.2.2, we illustrate this effect in the
paraxial approximation, which is presented in details in the section 2.5 about the quasi-2D
approximation. For this illustration, it is only needed to know that the paraxial approximation
consist in the idea that the propagation direction (here, x) is assumed to grow linearly in time
(so, we neglect the forces in x) and all the dynamics occurs in the transverse direction y. We can
see that, at the turning points of the Lagrangian manifold (bottom panel), two rays coalesce and
therefore, from here on, the momentum and the action are multivalued.
The condition for the appearance of caustics can also be formulated in terms of the curvature of
the action uij , defined by

uij :=
∂S

∂xi∂xj
=
∂pi
∂xj

, (2.5)

which corresponds to the same as in Eq.(2.4). This matrix has of course a set of eigenvalues {λi},
which are then called the principal curvatures of the action [45]. Whenever one of these
eigenvalues becomes infinite, a caustic occurs. We will use the properties of the curvature in
order to investigate the appearance of caustics in random potentials at the end of this chapter.

2.2.1 Intensity along trajectories

We want to find an expression for the classical intensity of the rays, to show that it diverges at
the location of the caustics, which will help us to formulate an analytical condition for a caustic.
Let us start with a simple case, with a beam of rays in a plane wave initial condition
(propagating in x with an initial momentum p0, as we will most often chose in this work), which
is parametrized by xk(0) = 0, yk(0) = k, px,k = p0 and py,k = 0. We will compute the density of
the ray beam ρ(~x, t) at the location ~rk(t) = (xk(t), yk(t)) along the trajectory with parameter k.
In order to establish a density, we will first need to define an initial uniform density ρ0 in an
initial surface element in phase space, which can be defined as ∆t~p0 × ~δ0, with ~δ0 a vector along
the Lagrangian manifold L in position space, with length δ0. Of course, this surface element has
a weight of ρ0∆tp0δ0. The density simply evolves in time and space according to

ρ(t, ~x) =
∑
traj

ρ0∆tp0δ0∣∣∣∆t~p(t)× ~δ(t, ~x)
∣∣∣ =

∑
traj

ρ0p0∣∣∣~p(t)× ∂~x
∂k′

∣∣∣ ∂k′∂k

, (2.6)

where we sum over all the trajectories which cross the point (t, ~x) and k′ parametrizes the
manifold at time t. In the paraxial approximation, where we have x = t and p0 = 1, such that the
dynamical direction is y, this transforms into

ρparaxial =
∑
traj

ρ0

∂y
∂k′

∂k′

∂k

. (2.7)
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2.3 Caustics in Lagrangian manifold

Figure 2.2: The upper panel shows the density (in gray scale) of a ray bundle with initial conditions
corresponding to a plane wave flow propagating over a random potential (in yellow-green scale).
The bottom panel shows the corresponding Lagrangian manifold. This picture was made in a
paraxial approximation, such that the manifold is one-dimensional. We can clearly see how the
caustics in the branches correspond to the turning points of the LM (purple). This figure was
taken from [37]

This means that a divergence of the density could have two different origins. First, when the
projection of the manifold into real space ∂y

∂k′ goes to zero. When the stretching of the manifold

along the direction of its parametrization ∂k′

∂k goes to zero, it diverges as well. Considering that
the length element δk′ can be written as

δk′ =
√
δy2 + δp2

y , (2.8)

we can compute

δk′

δy
= δy−1

√
δy2 + δp2

y =

√
1 +

δp2
y

δy2
=
√

1 + u2 , (2.9)

where the last equality comes from Eq.(2.5) in one dimension (paraxial approximation). We can
now insert this into the paraxial density to find

ρparaxial =
∑
traj

ρ0
∂k

∂k′

√
1 + u2 . (2.10)

This means that, for large curvatures u, the density scales linearly in u. When the curvature
diverges, so does the density. We illustrate the densities of Fig.2.2 at time t4 and t7 in Fig.2.3.
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2.3 Stability analysis, monodromy and caustics

Figure 2.3: The upper panel shows the densities ρ, facing their corresponding Lagrangian manifolds
in the bottom panel. This picture was also made in the paraxial approximation, such that the
manifold is one-dimensional. At the turning points, the density is classically infinite. Between the
turning points, we can see that the density is approximately three times the outer value, since the
region is covered by three trajectories (three layers of the Lagrangian manifold).This figure was
taken from [37]

2.3 Stability analysis, monodromy and caustics

The monodromy or stability matrix M is an essential tool in the study of dynamical systems that
describes the time evolution of a small phase space volume. In m dimensions, a phase space
element ~φ = (~x, ~p) is a 2m-dimensional object, that is simply evolved in time by the 2m× 2m
stability matrix M with

~φ(t) = M(t)~φ(0) , M(0) = I2m×2m , (2.11)
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2.3 Stability analysis, monodromy and caustics

where I2m×2m is the identity in 2m× 2m dimensions. In Hamiltonian systems, the time evolution
of the monodromy matrix is then given by

Ṁ(t) =

(
0 I2m
−I2m 0

)(
∂2H
∂φi∂φj

)
M(t) =: K(t)M(t) . (2.12)

The time evolution of stability matrices without a Hamiltonian will be discussed in section 4.2,
where the ray equations cannot be formulated in such terms.
The stability matrix is strongly related to the description of the dynamics of the system and can
be associated with the well-known concept of Lyapunov exponents. We can use it to study the
appearance of caustics and to compute flow densities by considering a small section of the
manifold, as in Eq.(2.6). Indeed, the small section ~δ corresponds to the projection of the
time-evolved ~δ0 onto position space, meaning that we can write it in terms of a projection
~δ(t) = Ppos.sp.

(
M(t)~δ0

)
, with the operator Ppos.sp. that projects onto position space. We can

then compute the flow density

ρ(t, ~x) =
∑
traj

ρ0∆tp0δ0∣∣∣∆t~p(t)× ~δ(t, ~x)
∣∣∣ =

∑
traj

ρ0p0δ0

~p(t)× Ppos.sp.
(
M(t)~δ0

) , (2.13)

where we sum over all the trajectories, as in Eq.(2.6). As we discussed in the previous section,
the conditions for a caustic to occur is that the density diverges, which for m = 2 yields

~p(t)× Ppos.sp.
(
M(t)~δ0

)
= (−px, py, 0, 0)TM ~δ0 = 0 . (2.14)

This general condition for the appearance of caustics in two dimensions will be very useful, as it
allows us to precisely locate the caustics in the fully two dimensional ray simulations. We will
now derive specific conditions in the case of plane waves and point sources, which are the two
types of initial conditions that we will use throughout this thesis.
We will use Mij , which are the elements of the monodromy matrix M , to write simple conditions
in order to locate the caustics in two dimensions, which we will use in the simulations. The
elements have the forms

Mij(t) =
∂φi(t)

∂φj(0)
, (2.15)

where once again φi,j are phase space variables.

2.3.1 Plane wave

In Eq.(2.14), the only thing we still need to specify is the initial vector ~δ0. For plane wave initial
conditions with x defined as the propagation direction, we have δp0

y = 0 and δx0 = 0.
Furthermore, we use the constant energy shell condition H = E, with E fixed. When we expand
the energy in small deviations δ~φ 0 = (δ~x 0, δ~p 0), it yields

1

2
(p0
x + δp0

x)2 +
1

2
(p0
y)

2 + V
(
x0, y0 + δy0

)
' 1

2
(p0
x)2 + p0

xδp
0
x +

1

2
(p0
y)

2 + V
(
x0, y0

)
+Vy

(
x0, y0

)
δy0 +O(δφ0

i δφ
0
j )

=
1

2
(p0
x)2 +

1

2
(p0
y)

2 + V
(
x0, y0

)
, (2.16)

where Vy = ∂
∂yV . We can reformulate this equation to get rid of one variable

δp0
x = −

Vy
(
x0, y0

)
p0
x

δy0 ≡ νpwδy0 . (2.17)
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2.4 The curvature equation

This will now be used when we compute the caustic condition Eq.(2.14), with

M~δ0 = M


0
δy0

νpwδy
0

0

 = δy0


M12 +M13νpw
M22 +M23νpw
M32 +M33νpw
M42 +M43νpw

 , (2.18)

we find

(−px, py, 0, 0)TM ~δ0 = −pyδy0(M12 +M13νpw) + pxδy
0(M22 +M23νpw) = 0 . (2.19)

where we can obviously divide out the δy0.

2.3.2 Point source

We use a very similar derivation for the point source, the only difference lies in the initial
conditions, which are now δx0 = 0 and δy0 = 0 with the fixed energy H = E. When we expand
the energy in small deviations, it yields

(p0
x + δp0

x)2 + (p0
y + δp0

y)
2 ' (p0

x)2 + (p0
y)

2 + 2
(
p0
xδp

0
x + p0

yδp
0
y

)
+O(δφiδφj)

⇒ δp0
x = −

p0
y

p0
x

δp0
y ≡ νpsδy0 . (2.20)

This will now be used when we compute the caustic condition Eq.(2.14), with

M~δ0 = M


0
0

νpsδp
0
y

δp0
y

 = δp0
y


M14 +M13νps
M24 +M23νps
M34 +M33νps
M44 +M43νps

 , (2.21)

thus it gives

(−px, py, 0, 0)TM ~δ0 = −pyδp0
y(M14 +M13νps) + pxδp

0
y(M24 +M23νpw) = 0 . (2.22)

where, once again, we can divide by δp0
y.

The conditions given by equations Eq.(2.19) and Eq.(2.22) are used in all our numerical
simulations for rays in order to find the caustics. Some illustrations are given in chapter 4.

2.4 The curvature equation

While discussing the flow density and its divergence earlier in the chapter (section 2.2.1), we
showed that we can link the appearance of caustics with the divergence of the curvature of the
action, which was defined as uij = ∂2S

∂xi∂xj
. As was already mentioned before, the classical action’s

time evolution satisfies the H-J equation

∂

∂t
S(~x, t) +

1

2

(
∂S

∂~x

)2

+ V (~x) = 0 , (2.23)

when we consider systems with a simple Hamiltonian as introduced in Eq.(2.1). By taking two
spatial derivatives in xi and xj in the previous equation, we can find a PDE for the curvature of
the action (

∂

∂t
+ pk(t, ~x)

∂

∂xk

)
uij(t, ~x) + uik(t, ~x)ukj(t, ~x) +

∂

∂xi∂xj
V (t, ~x) = 0 , (2.24)
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2.5 The quasi-2D approximation

where once again the summation convention is implied.
We note that, when considering the characteristic d~x

dt = ~p, which is then simply the velocity field,
the term in the brackets can be understood as the convective derivative. This can be changed
into a total derivative by changing from an Eulerian to a Lagrangian framework [46,47]. This
implies that, in the Lagrangian view, i.e. along the characteristics, we have

d

dt
uij(t, ~x) + uik(t, ~x)ukj(t, ~x) +

∂

∂xi∂xj
V (t, ~x) = 0 . (2.25)

This equation will be the starting point of our analytical study in our effort to compute the mean
distance to the first caustics in the case of branched flow, i.e. when studying the propagation of
classical rays over a weakly scattering, correlated random potential. The next step is now to
reduce the dimensionality of the dynamics by making a set of approximation, which we will call
the quasi-2D approximation.

2.5 The quasi-2D approximation

As we stated above, our goal is to study Eq.(2.25) in the presence of weak random potentials. By
this, we mean that the standard deviation of the potential ε =

√
〈V 2〉, i.e. the typical size of its

fluctuations, has to be well below the energy of the particles E � ε , as illustrated in Fig.2.4.

Figure 2.4: The left panel shows a random potential below the energy level of the particles, shown
in orange. The right panel shows a ray simulation over a random potential, with its random
caustics. Below is the distribution of the potential height compared to the energy of the particle.
The potential is clearly weak compared to the energy of the particle, here normalized to one. This
figure was taken from [37]

There are two main technical challenges that come with this objective. First, the curvature
equation Eq.(2.25) is an intricate set of nonlinear PDEs whenever the dimension of the system is
larger than one. This is always the case in this thesis, as we will be interested in two dimensional
systems, as tsunami waves are typically described as surface waves, see chapter 3. Second, solving
this equation for a generic random potential is generally impossible. Ideally, we would instead
like to deal with an equation that is one-dimensional and can be treated stochastically, such that
it would only require the knowledge of the main properties of the potential without the specifics
of one realization. What we define as the quasi-2D approximation gives us exactly what we want
and is a consequence of the weakness of the potential.
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2.6 The quasi-2D approximation

The first part consists of a paraxial approximation, meaning that we consider that the rays have
so much momentum in the propagation direction, compared to the weak potential, that we can
neglect the small fluctuations in the propagation direction. Without the forces due to the
potential, the motion of the rays in the propagation direction is simply proportional to time. For
plane waves, we usually chose x = t (when the velocity is v = 1).
The second part concerns the potential itself. The idea is to replace it by simple white noise with
a prefactor that captures the properties of the potential. The reasoning behind this is that a
particle propagates so fast over the potential that it covers more than one correlation length in
the propagation direction during a typical time unit. s such it essentially sees the potential as
uncorrelated. Practically, we achieve this by the replacement

∂2

∂y2
V −→ σ2Γ(t) , (2.26)

where Γ(t) is a Gaussian white noise with 〈Γ(t)Γ(t′)〉 = 2δ(t− t′), which corresponds to
approximating the dynamics by a diffusion process. We can understand the constant σ2 in the
following way: Even though the goal of this procedure is to assume a delta-correlated noise in the
propagation direction x = t, we want to capture the properties of the random potential in the
transverse direction y. We can achieve this by keeping the integral over the correlation functions
constant, as it is related to the normalization of the potential, see [48–53] for more details. We
will explain this in a simple one-dimensional picture. Let us consider a correlation function
c(x− x′) that we want to approximate using white noise

c(x− x′) −→ δ(x− x′) , (2.27)

but we also want to conserve the integral of the correlation function. We can achieve this by
considering

c(x− x′) −→ δ(x− x′)
+∞∫
−∞

dx′′c(x′′) , (2.28)

since this choice gives the same integral on both side of this equation. For our random potential,
which is assumed to be a Gaussian random field (which allows us to take the derivatives outside
of the correlation, see [54]), as discussed in appendix A, it means that the transition to white
noise gives

〈∂yyV (x, y)∂y′y′V (x′, y′)〉 = ∂yy∂y′y′c(x− x′, y − y′) −→ 2σ2
2δ(x− x′) . (2.29)

This means that we find

σ2
2 =

1

2

+∞∫
−∞

dx

[
∂4

∂y4
c(x, y)

] ∣∣∣∣∣
y=0

. (2.30)

Of course, this process does work for any derivative of the potential, as will be needed in chapters
4 and 5, as the method shown above can be applied to any randomly fluctuating term. As it will
be needed later, we give here the straightforward generalization to the n-th derivative

σ2
n =

(−1)n

2

+∞∫
−∞

dx

[
∂2n

∂y2n
c(x, y)

] ∣∣∣∣∣
y=0

. (2.31)

Using our transformed potential and studying only the transverse direction y, we can now rewrite
the curvature equation Eq.(2.25) as

d

dt
u(t) + u2(t) + σ2Γ(t) = 0 , (2.32)
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2.6 The mean distance to the first caustics

which is now an ordinary stochastic differential equation (OSDE). An OSDE with such a
structure is better known as a Langevin equation. This allows us to use standard tools from
stochastic calculus, including the well-known Fokker-Planck equation (F-P). This is the purpose
of the next section, where these will lead us to find the mean distance that separates the first
caustics from the source.

2.6 The mean distance to the first caustics

As earlier work [23] has shown that branch flows have a characteristic length scale that is
proportional to the mean time to the first caustic, we are interested in computing the average
distance that separates the source to the first caustics along a given ray or trajectory.
Mathematically, the problem is to find when the solution to Eq.(2.32) will become infinite for the
first time, as a function of its initial value. This kind of problem can be handled by solving a
mean first passage time problem (MFPT) with appropriate boundary conditions, which requires
the introduction of an F-P equation [55]. This equation is presented in detail in appendix B and
basically describes the time evolution of a probability density P , either backward or forward. In
our case, the forward F-P equation has the form

∂

∂t
P (u, t) =

[
∂

∂u
u2 +

∂2

∂u2
σ2

2

]
P (u, t) . (2.33)

First, we have to understand what happens at the boundaries u = ±∞. The easiest way to
obtain a simple understanding of these values is to first look at the curvature equation without
the potential. With σ2 = 0, Eq.(2.32) has a simple solution

u(t) =
1

t+ u−1
0

, (2.34)

such that it is straightforward to observe that with a negative u0 < 0, u(t) will reach −∞ in the
finite time t = −u−1

0 , after which it will reemerge from +∞. On the other hand, a positive initial
curvature u0 > 0, the solution will simply flatten over time, leading to u→ 0. Now adding the
random potential, which can diffuse the system from a positive to a negative curvature, from
which it will quickly reach a caustic [49], we can better understand what are the relevant
boundary conditions to solve the MFPT problem. As it is often the case with such problems, it is
actually easier to solve the complementary question: What is the probability of not having a
caustic until the time t, at which we would have u→ −∞? In order to answer this question, we
classify the boundary u = −∞ as a so-called exit boundary, opposite to an entrance boundary for
u = +∞, according to the terminology of Feller [55,56]. This implies the boundary conditions

P (u, t|u0)→ 0 for u→ −∞ , (2.35a)

J(u, t)→ 0 for u→ +∞ , (2.35b)

with J(u, t) the probability flow as defined in appendix B, which for our F-P Eq.(2.33) is given by

J(u, t) =

[
u2 − ∂

∂u
σ2

2

]
P (u, t) . (2.36)

Now, what is the probability of no singularity appearing until the time t and the process stopping
there? Considering that P (u, t|u0) satisfies the above-mentionned boundary conditions Eq.(2.35),
the probability would be

G(t|u0, t0) =

+∞∫
−∞

duP (u, t|u0) , (2.37)
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2.7 The mean distance to the first caustics

and the probability of a caustic appearing at t would be 1−G. We define the probability density
of this event pf by

pf (t|u0) = −∂t

+∞∫
−∞

duP (u, t|u0) . (2.38)

This quantity satisfies the backward F-P equation (see appendix B for details)

∂

∂t
pf = −u2

0

∂

∂u0
pf + σ2

2

∂2

∂u2
0

pf , lim
t→0,t→∞

pf = 0 . (2.39)

The average time needed for u0 to reach u→ −∞ is the time to the first caustics tf and is given
by

〈tf (u0)〉 =

+∞∫
0

dt tpf (t|u0) . (2.40)

We want to obtain a solvable equation for 〈tf (u0)〉 and we achieve this by multiplying Eq.(2.39)
by t and integrating. The right hand side (r.h.s) does not contain any derivatives with respect to
time and is therefore trivial. The left hand side (l.h.s), however, can be integrated immediately
and yields

+∞∫
0

dt t∂tpf (t|u0) = tpf (t|u0)
∣∣∣∞
0
−

+∞∫
0

dt pf (t|u0) = 0− 1 = −1 . (2.41)

We can therefore write

− 1 = −u2
0

d

du0
〈tf (u0)〉+ σ2

2

d2

du2
0

〈tf (u0)〉 , lim
u0→−∞

〈tf (u0)〉 = 0 , lim
u0→∞

〈tf (u0)〉 = finite . (2.42)

This is a straightforward second order ODE that can be integrated as follows. We first define new
variables x := u0 and y = d

du0
〈tf (u0)〉. With these new variables, we have the first order ODE

σ2
2y
′ = x2y − 1 , (2.43)

which can be solved easily by the method of the variation of the constant, yielding

y = Cex
3/σ2

2 − ex
3/3σ2

2

σ2
2

+∞∫
x

e−z
3/3σ2

2dz . (2.44)

We set C = 0 to satisfy the boundary conditions and we can integrate once more to obtain the
solution for the time to the first caustics (once we have transformed back to our previous
variables)

〈tf (u0)〉 =
1

σ2
2

u0∫
−∞

ew
3/3σ2

2

+∞∫
w

e−z
3/3σ2

2dzdw . (2.45)

These integrals can be calculated numerically depending on the needed initial condition, typically
0 or ∞, respectively for plane waves and point sources. It is given by [49,57] as

〈tf (0)〉 = 3.31σ
−2/3
2 and〈tf (∞)〉 = 4.97σ

−2/3
2 . (2.46)

As the velocity was chosen to be v = 1, this time to the first caustic also corresponds to the
distance to the first caustics.
This analytical result was confirmed numerically in fully two-dimensional simulations in [37].
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2.7 Conclusion

2.7 Conclusion

In this chapter, we presented the basics of the theory of caustics and branched flow by studying
the emergence of multivalued solutions to the Hamilton-Jacobi equation, leading to a divergence
of the curvature of the action. We also showed that the curvature is closely related to the flow
density, which classically diverges at the focus points. The study of the curvature equation in the
so-called quasi-2D approximation allowed us to derive an analytical prediction for the distance to
the first caustics in the case of weak random focusing. We explained why this quantity is crucial
in the study of branched flow, as it corresponds to the location where the intensities are the
strongest and it is the characteristic length-scale of this phenomenon, with which many
important quantities scale.
With the help of these methods, we will now study the emergence of branched flows in tsunami
propagation, as can be anticipated from Fig.1.1. Before we can apply all these theoretical tools,
we will first need to lay down the basics about tsunami modeling, in order to find a good
common framework, namely ray equations. This is the purpose of the next chapter.
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Chapter 3

Modeling tsunami waves

In the previous chapters, we presented the phenomenology and theory of branched flow and
explained why we believe it to be relevant in tsunami studies, through the simulation produced
by the NOAA in 2011 (see Fig.1.1). In order to obtain a theoretical understanding of how
random focusing affects tsunami propagation, we need a mathematical description of tsunami
waves and, in order to study the appearance of caustics, the associated rays. This is the purpose
of this chapter.

3.1 Phenomenology

Tsunami waves are gigantic water waves induced by very powerful geological disasters like
earthquakes or landslides [58]. Even though there are records of small tsunami events happening
in the Mediterrean sea, most tsunamis of interest occur in the ocean. Their wavelength is
considered to range from a few tens to a few hundreds of kilometers [58], with a period of several
tens of minutes, and the amplitude is typically of the order of 1 meter [58] far from the shore,
before the run-up occurs (see section 3.3). As those waves are relatively long compared to the
average depth of the ocean, which is around 4 kilometers, the shallow water approximation
applies.
We note here that due to the fact that they propagate on a spinning Earth, tsunami waves are
subject to the Coriolis force. Also, the curvature of the Earth has to be considered for long range
propagation. However, we will neglect these two effects throughout this work, as is done in many
tsunami studies. Indeed, the Coriolis force is very weak, even at the latitudes were it is the
strongest. An estimate of its importance is given in [59], where they evaluate the error made to
10−4. As for the curvature, neglecting it leads to an error that increases with the propagation
distance. An estimate can be made considering that the usual flat metric should be replaced by a
spherical metric [59]

dx2 + dy2 −→ rdθ2 + r cos2(θ)dφ2 , (3.1)

meaning that, when considering propagation over a couple of thousands of kilometers, the errors
made on distances is only of a few percent [59].

3.2 The shallow water equations

The shallow water approximation, also know as the long wave approximation, is based on the
idea that the typical horizontal scale of the wave λ (the wavelength) is much larger than the
typical vertical scale of the system H0 (the average depth of the fluid). This condition is largely
met when dealing with tsunami waves, as we typically have λ/H0 ≈ 100km/4km = 25� 1. It
can be shown that when the ratio λ/H0 � 1, the hydrostatic equilibrium approximation applies
in the vertical direction z and we have [60,61]
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3.2 The shallow water equations

Figure 3.1: This is a scheme of the fluid under consideration. The bottom sheet (brown) represents
the floor (bathymetry) and the top sheet (blue) represents the surface of the fluid. The volume V is
framed by the bottom surface ΣB, the top surface ΣT and the lateral surface ΣL. The values h̄ and
B̄ are respectively the average level of the surface of the fluid (its position at rest) and the average
elevation of the floor. The difference between these two values therefore defines the average depth
H0. The function h(x, y, t) describes the surface elevation. B(x, y) is the bathymetry, measured
from h̄. H(x, y, t) = h(x, y, t)−B(x, y) is the actual height of the fluid column. Here ~x stands for
the horizontal space (x, y).

p(x, y, z, t) = ρg [h(x, y, t)− z] , (3.2)

where p(x, y, z, t) is the pressure, ρ is the density of the fluid (assumed to be constant), g is the
gravitational acceleration and h(x, y, t) is the function describing the surface of the fluid.
Another consequence of the hydrostatic equilibrium approximation, along with the
incompressibility of the fluid, is that the fluid velocity ~u = (u, v, w) is independent of z and its
vertical component w = 0, see [61] for details.
Even though the shallow water equations are well-known and have been studied in many papers
(not necessarily related to tsunami waves), we will present here their derivation, based on
conservation laws, following [60], because we will have to study variations of it later in this thesis,
when dealing with the prospect of the experiment (see chapter 6).
We start by considering a single layer of incompressible fluid that is bounded by the ocean floor
or bathymetry B(x, y) from the bottom and by the ocean surface h(x, y) from the top. We
consider a column of fluid of volume V , that is bounded by a surface Σ = ΣB ∪ ΣT ∪ ΣL, as
shown in Fig. 3.1. This volume is subject to conservation of mass

∂t

∫
V

ρdV =

∫
Σ

ρ~u · ~ndS , (3.3)

with ~n the unit outward normal vector to Σ. We use the symbolic differentials dV for volume
integration, dS for surface integration and finally dγ for curvilinear integration. As the velocity
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3.3 Dimensionless form and linearization

has to be tangential to the floor and the surface of the fluid by definition, the surface integrals for
ΣT and ΣB will vanish. After getting rid of the constant density ρ, we can integrate over z to
obtain

∂t

∫
D

H(x, y, t)dS =

∮
∂D

H(x, y, t)~u⊥ · ~n⊥dγ , (3.4)

where D is the projection of ΣB (and ΣT by extension) on the xy-plane, ∂D is the boundary of
the domain D, ~u⊥ is the horizontal velocity, ~n⊥ is the horizontal unit vector in the outward
direction of ∂D and H(x, y, t) = h(x, y, t)−B(x, y) is the height of the water column, as can be
seen in Fig.3.1.
This volume is also subject to conservation of momentum, which reads

∂t

∫
V

ρ~u⊥dV = −
∫
ΣL

(ρ~u⊥)~u · ~ndS −
∫
ΣL

p(x, y, z, t)~n⊥dS −
∫
ΣB

p(x, y, z, t)~n⊥dS , (3.5)

where the constant pressure term from the top surface was set to zero, since we define the
pressure to be zero at this level. We note that the pressure won’t be constant and can’t be simply
set to zero at the surface when dealing with surface tension, see chapter 6. The vertical forces are
neglected, as they are assumed to balance due to the hydrostatic equilibrium hypothesis [61]. We
can now use the expression for the pressure defined in Eq.(3.2) and integrate over z to obtain

∂t

∫
D

ρH~u⊥dS = −
∮
∂D

(ρH~u⊥)~u⊥ · ~n⊥dγ −
∮
∂D

1

2
ρgH2~n⊥dγ −

∫
D

ρgH∇⊥BdS , (3.6)

with ∇⊥ := (∂x, ∂y)
T . In the last integral, the gradient of B comes from the reparametrization

that occurs when while changing the integral domain from ΣB to D, H comes from the fact that
H = h− z on ΣB. We dropped the dependencies on the variables in order to keep it concise. We
can once again divide out the constant density ρ.
Using Stoke’s theorem in Eq.(3.4) and Eq.(3.6) and going from integral to differential form, we
obtain the well-known shallow water equations

∂tH + ∂x(Hu) + ∂y(Hv) = 0 , (3.7a)

∂t(Hu) + ∂x

(
Hu2 +

1

2
gH2

)
+ ∂y(Huv) = −gH∂xB , (3.7b)

∂t(Hv) + ∂x(Huv) + ∂y

(
Hv2 +

1

2
gH2

)
= −gH∂yB . (3.7c)

3.3 Dimensionless form and linearization

Now that we have the shallow water equations Eqs.(3.7), we want to write them with
dimensionless quantities, as it will render them less unwieldy and will simplify the comparison
between the different terms. We achieve this by canceling out one of the main parameters of the
system, namely the average ocean depth H0. We therefore define the fractional surface elevation

η(x, y, t) = H−1
0 h(x, y, t) , (3.8)

and the reduced bathymetry β, which is the centered, normalized version of B (which, we remind
the reader, is measured from the sea level and is therefore negative in the ocean)

β(x, y) = H−1
0 [B(x, y) +H0] , (3.9)
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3.3 Dimensionless form and linearization

as can be seen in Fig.3.2. We note that η is a very small quantity, as the typical wave height h is
of the order of one meter and the depth of the ocean, H0, is typically of the order of few
kilometers, meaning that η ∼ 10−4. Also, we will restrict ourselves to the cases where β < 1, i.e.
there are no islands, as we want to study the linear regime far from the coasts. With those new

1

(x,y,t)

β(x,y)

Figure 3.2: This scheme defines the new dimensionless variables. The average ocean depth is now
1 and β is positive when above the average depth.

variables, the total height of the water column H(x, y, t) is given by

H(x, y, t) = H0 (1 + η(x, y, t)− β(x, y)) . (3.10)

Of course, as the wavelength λ is much larger than the ocean depth H0, the spatial derivatives of
η will also be very small, as will be its time derivative. Looking at Eq.(3.7a) with this new set of
variables, we have:

H0∂tη = H0(1 + η − β)∇ · ~u+H0~u · ∇(η − β) , (3.11)

where we define ~u = (u, v)T , the two-dimensional velocity, and we recall that we are now working
in two spatial dimensions. We can divide by H0 and neglect the nonlinear terms that contain a
factor of η or its derivatives to obtain

∂tη = (1− β)∇ · ~u− ~u · ∇β . (3.12)

In order to get an estimate of the strength of the terms in ~u, let’s consider β = 0, i.e. a flat ocean
floor,

∂tη = ∇ · ~u . (3.13)

We see that the velocity terms are on the same order as the wave height terms, we therefore
assume that they are small as well. With this, we can linearize Eqs.(3.7) to obtain

∂tη = −∇ · [(1− β)~u] , (3.14a)

∂t~u = −c2
0∇η , (3.14b)

where we introduced the celerity of the linear waves c0 =
√
gH0, which is typically of the order

of 200 m/s in a 4 km deep ocean. Those equations can of course be combined to form a single
wave equation

∂2
t η = c2

0∇ · [(1− β)∇η] . (3.15)

As we will see in the next section, it is common to work in the geometrical optics limit, which is
an approximation in which we assume that the medium term (here, the reduced bathymetry β) is
slowly varying in space compared to the wave. This can be justified by the fact that the scale at
which the variations in the bathymetry produce wave focusing will be larger than the wavelength
λ, as a first approximation. We compared the intensity of waves propagating over bathymetries
that have a typical length scale which is either shorter or longer than the wavelength and we see
much higher wave intensities when the bathymetry varies on a scale larger than the wavelength,
see Fig.3.4. Formally, we consider λ� lc, where lc is the correlation length of the bathymetry, i.e.
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3.4 Shallow water rays

its typical horizontal length scale. As we will also be considering weakly scattering ocean floors,
β � 1, the spatial derivatives of the bathymetry will thus be very small. Under these
considerations, Eq.(3.15) becomes

∂2
t η = c2

0 [1− β] ∆η . (3.16)

We can now see an obvious similarity with optics, where the term C(~x) = c0

√
(1− β(~x)) can be

seen as a space-dependent celerity where n(~x) = (1− β(~x))−1/2 would act as a refractive index.
This wave equation structure leads to the so-called run-up, that is illustrated in Fig.3.3. This
effect explains how tsunamis change from meter-high waves in the middle of the ocean to
10-meter-high (or even higher) waves on the coast. As this mechanism amplifies the size of the
wave, it is still very important to known how high the waves are going to be when this
amplification starts. It is of course also very relevant to know where the highest waves are to be
expected, because, once amplified, these are the waves that are going to be the most destructive.
It is one of the questions we will answer in this work.

Figure 3.3: The run-up - As a tsunami wave is approaching the shore (1), the bathymetry becomes
higher and higher, therefore making the effective celerity C(~x) smaller and smaller. The evolution
of C(~x) is represented in the length of the arrows. The fact that the back part of the wave ”catches
up” with the front part of the wave results in the compression of the wave (2). Eventually, the wave
will become high enough and the fluid shallow enough for the nonlinearity to become important,
resulting in the well-known breaking of the wave(3).

Furthermore, large underwater structures, such as volcanoes and ridges, will act as lenses,
scattering and eventually focusing the waves, as was studied in [6]. Our goal in this thesis is to
study the effect that a random field of weak scatterers in the bathymetry would have on the
intensity of the tsunami waves, as random focusing in weakly scattering, correlated media is
known to lead to branched flows. In order to investigate it, we need to understand the emergence
of caustics in the wave flow. As explained in chapter 2, this problem is well-defined in the
associated ray picture. In the next section, we shall, therefore, derive the ray equations
associated with Eq.(3.15).

3.4 Shallow water rays

When waves propagate through a medium which varies on several length scales, there will be
different types of scattering, depending on the relative size of the wave and the scatterer.
Typically, when a wave encounters a scatterer the size of which is smaller than the wavelength,
the wave will be diffused and the scatterer will become the source of a new wave. Considering a
random field of such scatterers would lead to a random superposition of waves, therefore leading
to a Rayleigh distributed wave intensity, as predicted by Longuet-Higgins’ theory [62]. On the
other hand, when the size of the scatterer is larger than the wave length, we are in the geometrical
optics limit and we all know by experience that waves will tend to be bent and focused.
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3.4 Shallow water rays
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Figure 3.4: On the second bottom panel, we can see a random bathymetry (gray colormap), on
which we evolved two plane waves with different wave lengths, the intensities of which can be seen
on the two top panels. On this bathymetry, the correlation length lc (cyan), the short wave length
λs = lc/10 (green) and the long wave length λL = 10lc (red) are drawn. The top panel shows the
normalized integrated intensities for the experiment with a wave length λL � lc. We see that the
patterns are very blurry and the highest intensities are of the order of 4 times the average, as can
be seen in the color bar. The second top panel shows the same experiment, but this time with
a short wavelength λs � lc. In this case, the branched flow patterns appear very clearly and we
observe intensities as high as 18 times the average! The bottom shows the distribution of intensities
for both experiments, the green dots corresponding to the λs case and the red dots corresponding
to the λL case. The black dashed curve represents the Rayleigh distribution predicted by the
Longuet-Higgins model, as a reference. We can clearly see that the tail is much heavier for the
short wavelength case.
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3.4 Shallow water rays

As the ocean floor is known to have multiple length scales [63], both effects will be present.
Nevertheless, as the diffused waves will contribute Rayleigh noise to the system (as a first
approximation), we will only consider the fluctuations of the ocean floor that are on scales larger
than the wavelength, because they are the ones responsible for the focusing of the wave and
therefore the appearance of the biggest intensities, see Fig.3.4.
Starting from our wave equations in the geometrical optics limit (Eq.(3.16)), we will derive ray
equations by looking at vectors orthogonal to the wave front, following [59]. The wave equation
can be written as (

∂2
t − c2

0(1− β(~x))∆
)
η(~x, t) = 0 . (3.17)

Because the space-dependent celerity C(~x) = c0

√
1− β(~x) is time-independent, the solution is a

linear combination of waves with specific frequencies and amplitudes, which can be formulated in
the following way [59]

η(~x, t) = A(~x) cos(L(~x)− ωt) , (3.18)

where ω is a frequency and A and L are functions of space. The function Φ(~x, t) = L(~x)− ωt
defines the phase of the wave, and locations in space with equal phases will represent a wave
front. We want to identify a specific wave front, so let us choose the one at Φ = 0, such that

L(~x) = ωt . (3.19)

Since we want to find the vectors orthogonal to the wave front, we will need the same wave front
at a short time δt later, as sketched in Fig.3.5. We pick ~xr(t) a point of this wavefront at time t

y

x

x0(t)

x0(t+ t)

xr(t)

xr(t+ t)

n(xr(t))

Figure 3.5: We can here see the sets of points of phase zero at time t, ~x0(t) = {~x ∈ R2|Φ(~x, t) = 0},
and its updated version at time t+ δt. We choose a point ~xr(t) ∈ ~x0(t) and then define ~xr(t+ δt)
as the point at which the straight line defined by the normal ~n(~xr) intersects ~x0(t+ δt).

L(~xr(t)) = ωt , (3.20)

so the normal ~n(~xr(t)) to the wave front at this point is given by

~n(~xr(t)) = ∇L|~x=~xr(t) . (3.21)

As shown in Fig.3.5, we now consider the point ~xr(t+ δt) that is at the intersection of ~x0(t+ δt)
and the line defined by ~n. Then we can write

ω(t+ δt) = L (~xr(t+ δt)) = L (~xr(t) + δln̂(~xr(t))) = L (~xr(t)) + δln̂(~xr(t)) · ~n(~xr(t)) , (3.22)
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3.4 Shallow water rays

where δl is the infinitesimal displacement made and n̂(~xr(t)) is the unit vector in the direction of
~n(~xr(t)). With this, we can define the ray celerity Cr, which is given by

Cr(~xr(t)) :=
δl

δt
=

ω

|~n(~xr(t))|
, (3.23)

thus giving
d

dt
~xr = Cr(~xr(t))n̂(~xr(t)) . (3.24)

The knowledge of Φ is the only thing needed to compute ~n(~xr(t)). One can understand Eq.(3.24)
as describing a ray traveling at the speed Cr(~xr(t)).
Now, we can insert our ansatz Eq.(3.18) in Eq.(3.17) in order to find the function L, which is the
only thing needed to find Φ. As discussed earlier, the amplitude A of the wave is very small, as
are its derivatives. We will therefore neglect those terms. This yields

|∇L|2 =
ω2

C2
, (3.25)

where we recall that C(~x) = c0

√
1− β(~x). This shows that

Cr(~xr) = C(~xr) , (3.26)

using Eq.(3.23). Of course, with a given floor β, we could try to solve Eq.(3.25), but this is often
not possible. Instead, we can obtain ray equations by using Eq.(3.25) in Eq.(3.24) to write

ω

C2

d

dt
~xr = ∇L(~xr) , (3.27)

since

n̂(~xr(t)) =

(
∇L
|∇L|

) ∣∣∣
~x=~xr(t)

and |∇L| = ω

C
. (3.28)

Eq.(3.27) can be differentiated with respect to time

d

dt

ω

C2

d

dt
~xr =

d

dt
∇L(~xr) . (3.29)

In order to find an expression for the r.h.s. that does not need to be solved for L, we can
differentiate Eq.(3.25) to find

2∇L ·
(
d

dt
∇L
)

=
d

dt
|∇L|2 = ω2 d

dt

[
C−2

]
= −2ω2

C2

(
d

dt
~xr

)
· (∇ lnC) . (3.30)

Together with Eq.(3.27), it yields
d

dt
∇L = −ω∇ lnC . (3.31)

With this, we can write
d

dt
C−2 d

dt
~xr = −∇ lnC , (3.32)

which can be rewritten as a set of first order ordinary differential equations, where, from now on,
we will use ~x instead of ~xr for simplicity,

d

dt
~x = C2~q , (3.33)

d

dt
~q = −∇ lnC . (3.34)
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3.5 Conclusion

Finally, using our definition of C = c0
√

1− β, we find

d

dt
~x = c2

0(1− β(~x))~q , (3.35)

d

dt
~q =

∇β(~x)

2(1− β(~x))
. (3.36)

We note here that the variable ~q, which acts as a momentum in the ray equations, has the unit of
a slowness [q] = sm−1. In order to fix this unnatural choice, we define the momentum ~p = c2

0~q,
which yields

d

dt
~x = (1− β(~x))~p , (3.37a)

d

dt
~p =

c2
0∇β(~x)

2(1− β(~x))
. (3.37b)

3.5 Conclusion

In this chapter, we derived the linearized shallow water equations in order to model tsunami
propagation, using a few approximations. This gave us a fairly simple wave equation in terms of
our dimensionless variables. As one would do in optics, we studied the evolution of vectors
perpendicular to the wavefront in order to derive ray equations, which are the basis of our
analysis of the appearance of caustics. With these equations, we can investigate the emergence of
branched flow in this system, the length scale on which this phenomenon takes place and its
impact on tsunami forecasts. It is the topic of our next chapter.
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Chapter 4

Branching of tsunami waves

Now that we have introduced an appropriate model to describe tsunami waves in deep ocean
conditions and recapitulated the theory of random caustics and branched flow, we can finally
enter the heart of this thesis: How are tsunami waves affected by the phenomenon of branched
flow?
We first show that small bathymetry fluctuations indeed lead to focusing of the tsunami wave in
a branched structure. We will then develop the theory of random caustics for tsunami rays and
calculate the typical length scale at which the first caustics appear. We will show that strong
height fluctuations of tsunami waves indeed appear on this length scale and that the random
focusing of tsunami waves is in fact caused by the phenomenon of branching described in
chapter 2. We conclude by questioning our current capacity to forecast tsunami disasters: by
studying the impact of uncertainties in bathymetry data on the predictability of branching
patterns, we show that the current knowledge of the ocean floor topography is not accurate
enough for reliable tsunami forecasts.

4.1 Branching on a real floor

In chapter 1, we showed the results of a numerical reconstruction of the tsunami that occurred in
March 2011 in the Pacific ocean (see Fig.1.1). We pointed out that the tsunami intensities
exhibited strong fluctuations and a filamentation of the flow and discussed the possibility that
this phenomenon could be related to the emergence of random caustics leading to the branching
of the flow, described in more details in chapter 2. As we know from the previous chapter that
shallow water waves, which is the model used to describe tsunamis, are scattered by underwater
structures, we could conclude that the filamentation of the flow that is observed in Fig.1.1 is due
to the fluctuations in the bathymetry. However, as this simulation covers a vast region of the
Pacific ocean which is filled with bathymetry structure of all sizes, ranging from flat valleys to
sharp islands, it is difficult to know what type of scattering process is responsible for the
variations in the flow intensity. The origins of this filamentation are probably various and it is
therefore difficult to impute the observed branch-like patterns to actual branched flow, i.e. to
weak and correlated random focusing.
In order to show whether or not shallow water waves do exhibit actual branched flow and
therefore are strongly focused by weak fluctuations in the bathymetry, we wanted to simulate a
tsunami event in a region of the ocean where there would be no doubt that, if there is a
filamentation of the flow, it is due to random focusing by small structures. We were therefore
looking for a region that is both relevant for tsunami propagation (typically, in the Indian or
Pacific ocean) and weakly scattering (i.e. has no large vertical structure like islands), as we want
to see if the patterns of intensity fluctuations can be imputed to weak random focusing. We
decided to use the GEBCO database [64], which contains the known topography of the Earth,
both for the surface (continental) and the ocean floor (bathymetry), and is publicly available. We
found a region in the Indian ocean with a standard deviation in the elevation, i.e. the typical
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4.1 Branching on a real floor

vertical size of the underwater structures, of only ∼ 7%. Its location is shown in Fig.4.1. When
we look at this region in a three-dimensional picture, as in Fig.4.2, we see that only a few hills
reach heights bigger than 15% of the ocean depth. The largest structure is a well within -60%.
We had to plot this region with a powerful magnification of the vertical direction, because
plotting it up-to-scale would produce a depth-profile that would seem totally flat, as the
horizontal scales at which the structure varies are much larger than the vertical scales.
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Figure 4.1: The right panel shows the ocean floor topography of the highlighted region (in the
red square) on the Earth, on the left panel. The coordinates of this region ranges from 8°20’ S to
20°50’ S in latitude and from 73°20’ E to 85°50’ E in longitude. The blue square in the bottom
right corner relates to Fig.4.2. Sources: Google Earth and GEBCO

Physically, a tsunami is typically produced by the relatively fast motion of a large portion of the
ocean floor, the energy of which is transmitted to the surface of the ocean and excites surface
waves. As the modeling of the impact of earthquakes on the water surface is a complicated and
vast topic, we believe that it is out of the scope of this study and would actually not substantially
contribute to our understanding of the focusing by small bathymetry structures. In all
simulations, we will therefore model the source of the tsunami as a non-flat initial condition of
the surface which then put the water in motion through the action of gravity. We do, however,
show that our results do not rely on a particular choice of wave form for the source by studying
different sources at the end of this chapter, see section 4.7. For our first numerical experiment,
we model the source as an idealized point source. The geometry of real sources can be more
complicated, which can lead to focusing on its own, as investigated in [7], but could be described
by the superposition of many point sources. We use a model-source function that has a definite
wavelength and is inspired by quantum mechanics, as presented in [65]. Our model use the
following expression

ψ(r) =
e−r

2/(2a2)ea
2k20/4

a
√
πI0(a2k2

0/2)
J0(k0r) , (4.1)

where r =
√
x2 + y2, k0 = 2π/λ is the norm of the wave vector with the wavelength λ, a is a

constant scaling factor and I0 and J0 are Bessel functions. We chose a wavelength λ = 20km for
the sake of spatial resolution, because it turned out to be very complicated to find a region big
enough that still fitted the requirements in terms of absence of islands and weak fluctuations that
were discussed above. Nevertheless, we also verified that the same kind of fluctuations still appear
with larger wavelengths (typically, 100km), as stronger earthquakes tend to produce tsunamis
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4.1 Branching on a real floor

Figure 4.2: A 3D view of the ocean floor in the blue square of Fig.4.1. The vertical scale is
magnified in order to see the variations. The unit on the z-axis means that the scale is given in
multiples of the average depth H0 = 4.19km, i.e. the plane at z = 1 represents the surface of the
ocean and z = 0 is the average depth. Source: GEBCO

with larger wavelength, which are therefore of higher interest due to their potentially greater
destructive power. The figure corresponding to the 100 km wavelength is presented in section 4.7.
In order to quantify the outcome of such a simulation, we need to define a good measure of the
tsunami strength. Inspired by quantum mechanics, we use a time integrated intensity that we
define as

I(~x) =

T∫
0

[η(~x, t)]2 dt , (4.2)

where η(~x, t) is the wave height and the tsunami is excited at time t = 0 and the upper
integration limit t = T is chosen such that the wave has left the region of interest (i.e. we neglect
reflections, e.g. from the coasts of continents, that are returning at longer times, which is
reasonable in all shown examples). I(~x) is a measure of the potential energy of the wave that has
been propagating through ~x. Because we can, to good accuracy, assume equipartition of kinetic
and potential energy of the propagating tsunami wave [66], I(~x) is an adequate measure of the
total energy flux in x.
The result of the simulation can be seen in Fig. 4.3 and we clearly see the high intensity
fluctuations typical of branched flow, with waves focused up to five times the average intensities.
As we have now shown that tsunami waves do exhibit branched flow, we want to develop a
general theory that describes the appearance of random caustics and therefore strongly focused
waves. Since this phenomenon is random in its nature, we cannot produce any general argument
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4.2 Stability analysis and caustics
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Figure 4.3: On the right panel, we can see the integrated intensity of a tsunami event propagated
over the region of the ocean floor shown in Fig.4.1. We can clearly see the typical intensity
fluctuations in branching patterns (the whiter the higher). On the left panel, we show several cuts
in the intensity, which are made at various distances r from the source at the south-western corner
of the region. Each cut is then normalized by its own mean, such that we do not have to worry
about the approximate 1/r decay inherent to point source propagation. We can clearly see the
emergence of strong branches, that can grow as high as five times the local mean after 1100 km of
propagation.

by studying the system in a few specific bathymetries taken from the data base. We will thus
study the ray equations related to tsunami propagation with β(~x) as a correlated random field, in
order to obtain statistical quantities that will depend only on a small number of parameters that
allow us to model a large variety of bathymetries.

4.2 Stability analysis and caustics

In chapter 2, we presented a method to study the occurrence of caustics using the properties of
the curvature of the action in the so-called quasi-2D approximation, described in section 2.5.
Thanks to the fairly simple structure of the stochastic equations, we were able to calculate the
mean time to the first caustics analytically, showing a simple scaling law, given in Eq.(2.46). In
the case of the ray equations associated with shallow water waves, however, the system cannot be
described by a Hamiltonian, as is shown in appendix D. Because of this, we cannot directly apply
the results shown in chapter 2. There is, however, the possibility to use a quantity that would be
the equivalent of this curvature of the action, even though there won’t be an associate
Hamilton-Jacobi equation. Indeed, we can use the simple definition from Eq.(2.5)

u =
∂p

∂x
, (4.3)

to write u in terms of the elements of the stability matrix M(t), which is always well-defined. We
develop this argument in one dimension for the sake of simplicity. Considering that, for a phase
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4.2 Stability analysis and caustics

space element δ~φ(t) = (δx(t), δp(t)), the time evolution is given by

δ~φ(t) = M(t)δ~φ(0) , (4.4)

we can write

δx(t) = M11(t)δx(0) +M12(t)δp(0) , (4.5)

δp(t) = M21(t)δx(0) +M22(t)δp(0) . (4.6)

With these, the curvature u(t) can be written as

u(t) =
δp(t)

δx(t)
=
M21(t)δx(0) +M22(t)δp(0)

M11(t)δx(0) +M12(t)δp(0)
=
M21(t) +M22(t)u(0)

M11(t) +M12(t)u(0)
. (4.7)

Of course, it does not make so much sense to call it the curvature of the action anymore. We can,
however, understand this quantity as the curvature of the equitemporal lines in phase space.
With this in mind, we see that we will need to compute the stability matrix elements in order to
pursue this computation. We start from the ray equation derived in the previous chapter

d

dt
~x = (1− β(~x))~p , (4.8a)

d

dt
~p =

c2
0∇β(~x)

2(1− β(~x))
(4.8b)

where β(~x) is the reduced bathymetry and will be considered as a weakly scattering, correlated,
random field. For now, we will only look into bathymetries that are only correlated on a single
length scale, called the correlation length lc. We will extend the results to multiple-length-scale
media in chapter 5. It is interesting to notice that, compared to classical Newtonian rays that are
used in chapter 2, shallow water rays exhibit a multiplicative noise term −~pβ(~x) in Eq.(4.8a).
This complication will actually prevent us from solving the mean first passage time problem.
However, we believe it is worth showing where the method fails and it is still useful to go through
it, as it will lead us to compute useful quantities, such as the stability matrix elements that will
be used to locate the caustics numerically.
Even though we will derive the analytical result in the quasi-2D approximation, therefore using
only the one-dimensional ray equations, we will compute the two-dimensional stability matrix,
because we need its elements to find the caustics numerically, according to the caustic conditions
described in section 2.3. As we cannot find a Hamiltonian for these ray equations, we cannot
derive a Hamilton-Jacobi equation and we need to find another way to obtain an equivalent to
the curvature equation. As we have shown above, we will need the stability matrix in order to
find the curvature of the equitemporal lines. We expand the ray equations Eq.(4.8) with
infinitesimal displacement in phase space in order to find the equation for the the time evolution
of the stability matrix. We call the phase space variable ~φ = (x1, x2, p1, p2)T and we expand them
with ~φ→ ~φ+ δ~φ, which gives, once inserted in the ray equations Eq.(4.8),

~̇x+ δ~̇x = (1− β)~p− ~p(δ~x · ∇)β + (1− β)δ~p+O(δ~x · δ~p) , (4.9a)

~̇p+ δ~̇p =
c2

0∇β(~x)

2(1− β(~x))
− c2

0δ~x ·
[
∇(∇β)

2(1− β)
−∇β ∇β

2(1− β)2

]
+O(δ~x · δ~x) , (4.9b)

where we omitted the dependencies, i.e. β = β(~x). The first terms on each side of the two above
equations are the original ray equations Eq.(4.8) and therefore cancel each other. We neglect the
nonlinear terms O(δφiδφj). With this, we find the matrix K(t) that will evolve the stability
matrix

˙(
δ~x
δ~p

)
=

(
−G (1− β)I
c20

2(1−β)B 0

)(
δ~x
δ~p

)
=: K(t)

(
δ~x
δ~p

)
(4.10)
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4.2 Stability analysis and caustics

where we defined

Gij = pi∂jβ ; Bij = ∂ijβ −
∂iβ∂jβ

(1− β)
; i, j = 1, 2 , (4.11)

and I is the two dimensional identity matrix.
The stability matrix M is defined as the matrix that evolves the infinitesimal phase-space
elements in time

δ~φ(t) = Mδ~φ(0) (4.12)

and is itself evolved in time by the matrix K(t) found above

Ṁ(t) = K(t)M(t) . (4.13)

Indeed, when taking the time derivative of Eq.(4.12), we find

˙
δ~φ(t) = Ṁ(t)δ~φ(0) . (4.14)

The l.h.s is then given by Eq.(4.10), which leads to

Ṁ(t)δ~φ(0) = K(t)δ~φ(t) = K(t)M(t)δ~φ(0) , (4.15)

from which we can deduce the matrix equation Eq.(4.13), which will be used in the condition for
a caustic in the shallow water ray simulations, where we solve numerically the stability matrix
ODEs and use the conditions from section 2.3. The result is illustrated in Fig.4.5.
In order to investigate analytically the average time to the first caustics, we will again work in
the quasi-2D approximation presented in section 2.5, therefore using the one-dimensional version
of this matrix

˙(
δx
δp

)
=

(
−pβ′ (1− β)

c20
2(1−β)

[
β′′ − (β′)2

1−β

]
0

)(
δx
δp

)
, (4.16)

where now the prime denotes the derivative in space (i.e. transverse direction). We know from
Eq.(4.13) that this matrix evolves the stability matrix in time, leading to the following equations
of motion for the stability matrix elements

˙(
M11 M12

M21 M22

)
=

(
−pβ′ (1− β)

c20
2(1−β)

[
β′′ − (β′)2

1−β

]
0

)(
M11 M12

M21 M22

)
. (4.17)

As in chapter 2, we will approximate the medium terms by white noise, and this for β, β′ and β′′

reads

β(i) −→ σiΓi(t) , (4.18)

with

σ2
i =

(−1)i

2c0

+∞∫
−∞

dx
[
∂2i
y c(x, y)

] ∣∣∣
y=0

, (4.19)

and the Γ’s are white noise with

〈Γi(t)Γj(t′)〉 = 2δijδ(t− t′) . (4.20)

For now, we will consider isotropic correlation functions that have a single length scale lc and can
be written as

c(x, y) = ε2f

(
x2 + y2

l2c

)
, (4.21)
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4.2 Stability analysis and caustics

where ε =
√
〈β2〉 will be the standard deviation of the bathymetry generated by c(x, y) and is

assumed to be very small, i.e. ε� 1. The function f : R −→ R, with f(0) = 1, can be very
general, as long as it is four times differentiable and that the integrals

κi :=

+∞∫
−∞

dzf (i)(z2) (4.22)

are convergent. Commonly used correlation functions, such as power laws and Gaussians, respect
these conditions and the integrals are given in Tab.4.1. Typically, a Gaussian correlation function

κ0 κ1 κ2

f(x) = e−x
√
π −

√
π

√
π

f(x) = (1 + x)−ν I(ν) −νI(ν + 1) ν(ν + 1)I(ν + 2)

f(x) = cosh−1(
√
x) π -1.16624 0.76548

Table 4.1: This table contains the expressions for the values of the κi with Gaussian and power law

correlation functions. Here ν > 1
2 and 0 < I(ν) =

∫
R
dz(1 + z2)−ν =

√
π

Γ(− 1
2

+ν)

Γ(ν) < ∞ , ∀ ν > 1
2 ,

where we use the Γ-function.

is described with f(r) = e−r. With this defintions, we find

σ2
0 =

ε2lc
2c0

κ0 , (4.23a)

σ2
1 = − ε2

lcc0
κ1 , (4.23b)

σ2
2 =

6ε2

l3cc0
κ2 . (4.23c)

Now that our approximation for the β(i)’s is well-defined, we just need to insert their new
definitions into Eq.(4.17). Unfortunately, we have the problematic terms

β′′

2(1− β)
− (β′)2

2(1− β)2
−→ σ2Γ2

2(1− σ0Γ0)
− (σ1Γ1)2

2(1− σ0Γ0)2
. (4.24)

We have to deal with fractions of white noise. Our way around this is to consider that, as
ε −→ 0, the combination σ0Γ0 ∼ ε is also very small. Indeed, when we look at Eqs.(4.23), we see
that σ2

0 depends on a time scale given by τc := lc/c0, which is the time that the wave needs to
propagate over one correlation length lc and is assumed to be smaller than our typical time scale
t in order for us to be able to approximate the random field by a white noise (see the quasi-2D
approximation, section 2.5). We can therefore expand the fractions as

σ2Γ2

2(1− σ0Γ0)
− (σ1Γ1)2

2(1− σ0Γ0)2
' 1

2
σ2Γ2

(
1 + σ0Γ0 +O(σ2

0Γ2
0)
)
− 1

2
(σ1Γ1)2(1 + 2σ0Γ0 +O(σ2

0Γ2
0)) .

(4.25)
As σ2 ∼ σ1/lc � σ1 ∼ σ0/lc � σ0, we can neglect all the terms O(σiσjΓiΓj) and insert the result
in the equations for the stability matrix elements Mij

Ṁ11 = −pσ1Γ1M11 + (1− σ0Γ0)M21 , (4.26a)

Ṁ12 = −pσ1Γ1M12 + (1− σ0Γ0)M22 , (4.26b)

Ṁ21 =
c2

0

2
σ2Γ2M11 , (4.26c)

Ṁ22 =
c2

0

2
σ2Γ2M12 . (4.26d)
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4.2 Stability analysis and caustics

The first important thing to notice is that the equations for M11 and M21 are coupled with each
other and decoupled from the other two variables M12 and M22, and vice versa. We note here
that, according to Eq.(4.7), the curvature for the plane waves initial condition (u(0) = 0) is given
by

upw(t) =
M21(t)

M11(t)
, (4.27)

and we have

ups(t) =
M22(t)

M12(t)
, (4.28)

for point source initial conditions, as we have u(0) =∞. Looking at the extremely symmetric
structure of Eqs.(5.16), those two cases have exactly the same expression (up to a swap of the
variable names)! From now on, we are going to develop the argument for the plane wave case,
keeping in mind that the result is also valid for point sources. We will therefore want to merge
Eq.(5.16a) and Eq.(5.16c) together to find a stochastic differential equation (SDE) for u(t).
Also, M11 is also coupled to p, which is not a constant. Its stochastic dynamics can be derived
from the ray equations by using the same transformation for β and its derivatives as above and
performing the same expansion in O(σiσjΓiΓj). This yields

ṗ =
c2

0

2
σ1Γ1 . (4.29)

The SDE for the curvature u can be obtained by differentiating its definition

u̇ =
d

dt

(
M21

M11

)
=
M11Ṁ21 − Ṁ11M21

M2
11

, (4.30)

and using the Eqs.(5.16), yielding

u̇ =
c2

0

2
σ2Γ2 + puσ1Γ1 − (1− σ0Γ0)u2 . (4.31)

The two equations Eq.(4.29) and Eq.(4.31) form a system of Langevin equations, which can be
written in a more compact form (the summation convention applies)

ξ̇i = hi

(
~ξ
)

+ gij

(
~ξ
)

Γj−1(t) , (4.32)

with i = {1, 2}, j = {1, 2, 3} (the index j − 1 of the Γ is due to the fact that we labeled them with
{0, 1, 2}). ~ξ = (u, p) and the functions hi and gij are given by

h1 = −ξ2
1 ; h2 = 0 , (4.33)

and

g11 = σ0ξ
2
1 (4.34a)

g21 = g23 = 0 (4.34b)

g12 = σ1ξ1ξ2 (4.34c)

g22 =
c2

0σ1

2
(4.34d)

g13 =
1

2
c2

0σ2 . (4.34e)

Such a system of Langevin equations can be associated with a Fokker-Planck equation, as
described in appendix B. We will need to compute the drift and diffusion coefficients of the
backward F-P equation in order to calculate the mean first passage time to the first caustics, as is
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4.2 Stability analysis and caustics

already described in section 2.6 for classical rays. The drift coefficients D
(1)
i and the diffusion

coefficients D
(2)
ij are generally given by [55]

D
(1)
i = hi + gkj∂kgij , (4.35)

D
(2)
ij = gikgjk , (4.36)

where once again the summation convention applies. In our case, the coefficients are

D
(1)
1 (~ξ) = −ξ2

1 + 2σ2
0ξ

3
1 + σ2

1ξ
2
2ξ1 +

1

2
c2

0σ
2
1ξ1 (4.37a)

D
(1)
2 = 0 (4.37b)

D
(2)
11 (~ξ) = σ2

0ξ
4
1 + σ2

1ξ
2
2ξ

2
1 +

1

4
c4

0σ
2
2 (4.37c)

D
(2)
12 (~ξ) = D

(2)
12 =

1

2
c2

0σ
2
1ξ1ξ2 (4.37d)

D
(2)
22 =

1

4
c4

0σ
2
1 . (4.37e)

As explained in detail in section 2.6, the probability density for a first focusing to happen at
time t considering initial conditions ~γ = (u0, p0) is called pf (t|~γ) and satisfies the backward F-P
equations (see Eq.(Bx))

∂tpf (t|~γ) = −D(1)
i (~γ)

∂

∂γi
pf (t|~γ) +D

(2)
ij (~γ)

∂2

∂γi∂γj
pf (t|~γ) . (4.38)

We are trying to find an equation for the mean time to the first caustics 〈tc(~γ)〉, which is defined
by the expectation value of the time variable t with the probability density pf

〈tc (~γ)〉 =

+∞∫
−∞

dt tpf (t|~γ) . (4.39)

If we multiply Eq.(4.38) by t and integrate, we will obtain a PDE for 〈tc(~γ)〉. As shown in section
2.6 (see Eq.(2.41)), the l.h.s. will simply give −1. When we insert the drift and diffusion
coefficients computed in Eq.(4.37), we find

−1 = −
(

2σ2
0γ

3
1 − γ2

1 + σ2
1γ1γ

2
2 +

c2
0σ

2
1

2
γ1

)
∂

∂γ1
〈tc(~γ)〉

+

(
σ2

0γ
4
1 + σ2

1γ
2
1γ

2
2 +

1

4
c4

0σ
2
2

)
∂2

∂γ2
1

〈tc(~γ)〉

+ c2
0σ

2
1γ1γ2

∂2

∂γ1∂γ2
〈tc(~γ)〉+

c4
0σ

2
1

4

∂2

∂γ2
2

〈tc(~γ)〉 . (4.40)

This is the point where we have to stop this calculation, as this equation is an incredibly
complicated nonlinear PDE which is most likely unsolvable. Further simplifications, like keeping
only the strongest terms, would lead to non-physical solutions. We do not exclude, though, that
solving this equation can be done, given some extra expertise and technique, and this would be a
great addition to this work, as it would give us the missing analytical prefactor to the result we
derive later and thus a complete analytical expression.
There is a detail worth mentioning, though. This equation, unlike its equivalent for classical rays,
is a PDE that has not only the initial curvature γ1 = u0 as an independent variable, but also the
initial momentum variable γ2 = p0. Even though it is possible that this extra dependency comes
from the fact that this variable is directly related to the potential in its definition, this feature is

41



4.3 Scaling law

definitely not present in the classical ray case. However, as we are mainly interested in two
well-defined types of source, namely plane waves and point source, the inital transverse
momentum will always be constant with value zero. As we will need to numerically estimate the
prefactor for the scaling law later on, this dependency will be included in the prefactor we will
find.
Of course, this setback is not going to stop us here. We will now use another approach in order to
estimate the mean distance to the first caustics, based on an idea developed by Kaplan [22]. Even
though we will be able to find the scaling law for the distance to the first caustics, this method
unfortunately does not allow us to find the exact prefactor.

4.3 Scaling law

The argument that will be used is illustrated in Fig.4.4 and goes as follows. A caustic occurs at a
location where the Lagrangian manifold has a turning point, as explained in chapter 2. Therefore,
the manifold must have a second fold, meaning that two trajectories cross at this point. The idea
is that, to be able to cross, they must have experienced different forces along their respective
paths, so their initial positions must have been separated by a distance on the order of the
correlation length. We can flip this construction around by saying that, in order for a trajectory
to reach its first caustic, it needs to have traversed at least one correlation length in the
transverse direction. In order to formulate this argument, we want to quantify the displacement
∆y(t) = y(t)− y(0) of one ray in the transverse direction and compare it to the correlation length
lc at the time of the first caustics tf . We will use the one dimensional ray equations Eq.(4.8) in
the quasi-2D approximation, thus replacing the reduced bathymetry β and its derivative by white
noise, as we did for the stability matrix equations, with Eqs.(4.18-4.23). This yields

d

dt
y = (1− σ0Γ0)p , (4.41a)

d

dt
p =

c2
0σ1Γ1

2
. (4.41b)

Even though the exact solution for y(t) is not known, we can compute the moments, using the
Fokker-Planck equation associated with the Langevin equations (4.41). Once again, we define the
vector ~ξ = (y, p) to write the equations in a compact form

ξ̇i = hi

(
~ξ
)

+ gij

(
~ξ
)

Γj−1(t) , (4.42)

with i, j = {1, 2} and the functions hi and gij are given by

h1

(
~ξ
)

= ξ2 ; h2 = 0 , (4.43)

and

g11

(
~ξ
)

= −σ0ξ2 (4.44a)

g12 = g21 = 0 (4.44b)

g22 =
1

2
c2

0σ1. (4.44c)

With the definitions given above in Eq.(4.36), we find the drift and diffusion coefficients

D
(1)
1 (~ξ) = ξ2 (4.45a)

D
(1)
2 = 0 (4.45b)

D
(2)
11 (~ξ) = σ2

0ξ
2
2 (4.45c)

D
(2)
12 = D

(2)
12 = 0 (4.45d)

D
(2)
22 =

1

4
c4

0σ
2
1 . (4.45e)
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Figure 4.4: The upper part of the figure is presented in the phase space under the paraxial ap-
proximation, where we can see the Lagrangian manifold L at time t = 0 on the left and at the
time of the first caustic t = tf on the right. As we can see, at the moment of the caustic, one
of the trajectories (the orange one) is at the turning point of the Lagrangian manifold, while the
other trajectory (the blue one) is at the other value of the manifold for the same position in space
yc. Those points are separated by the green region along the Lagrangian manifold. In order for
the two parts of the manifold to have such different dynamics, the forces they were subject to had
to be significantly different along their paths, which means that the potential was therefore very
different. Such difference can only occur on distances larger than the correlation length lc. The
lower panel shows the projection of this onto position space, where in the paraxial approximation
x ∼ t. Here, n� 1, which symbolizes the fact that the rays move much faster in the propagation
direction.

Now, the probability density P (t, ~ξ) satisfies the forward F-P equation (see appendix B) given by

∂tP (t, ~ξ) =

[
− ∂

∂ξi
D

(1)
i +

∂2

∂ξi∂ξj
D

(2)
ij

]
P (t, ~ξ) , (4.46)

which gives, with Eqs.(4.45),

∂tP (t, ~ξ) = −ξ2
∂

∂ξ1
P (t, ~ξ) + σ2

0ξ
2
2

∂2

∂ξ2
1

P (t, ~ξ) +
1

4
c4

0σ
2
0

∂2

∂ξ2
2

P (t, ~ξ) . (4.47)
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As the white noise terms are statistically symmetric, we can assume that the means 〈y〉 and 〈p〉
will be zero. We are therefore going to look at the variance, which will be given by the second
moment

〈y2(t)〉 =

∫
R2

dydp y2P (t, y, p) , (4.48)

where P (t, y, p) satisfies the F-P equation Eq.(4.47). We compute this by differentiating
Eq.(4.48) with respect to time

d

dt
〈y2(t)〉 =

d

dt

∫
R2

dydp y2P (t, y, p) =

∫
R2

dydp y2∂tP (t, y, p) , (4.49)

where the second equality comes from the fact that the boundaries do not depend on time. Using
the forward F-P equation Eq.(4.47) in the integral, we obtain

d

dt
〈y2(t)〉 =

∫
R2

dydp y2

[
−p∂y + p2∂2

y +
1

4
c4

0σ1∂
2
p

]
P (t, y, p) . (4.50)

We can integrate each term by parts, yielding∫
R2

dydp y2p∂yP = −
∫
R

dp p

y2P |+∞−∞ − 2

∫
R

dy yP


= 2

∫
R2

dydp ypP = 2〈py〉 (4.51a)

σ2
0

∫
R2

dydp y2p2∂2
yP = σ2

0

∫
R

dpp2

y2∂yP |+∞−∞ − 2

∫
R

dy y∂yP


= 2σ2

0

∫
R

dp p2

−yP |+∞−∞ +

∫
R

dyP


= 2σ2

0

∫
R2

dpdyp2P = 2σ2
0〈p2〉 (4.51b)

1

4
σ2

1

∫
R2

dydp y2∂2
pP =

1

4
σ2

1

∫
R

dy y2∂pP |+∞−∞ = 0 , (4.51c)

where the boundary terms have been considered to be zero because P is a probability
distribution which therefore vanishes at ±∞. Using Eqs.(4.51), we can write

d

dt
〈y2(t)〉 = 2

[
〈py(t)〉+ σ2

0〈p2(t)〉
]
. (4.52)

We can now find similar ODEs for 〈py(t)〉 and 〈p2(t)〉 using the same method, which brings

d

dt
〈py〉 = 〈p2〉 , (4.53a)

d

dt
〈p2〉 =

1

2
c4

0σ
2
1 . (4.53b)

The system of ODEs formed by Eqs.(4.52-4.53) is closed and can be integrated, starting from
Eq.(4.53b)

〈p2(t)〉 =
1

2
c4

0σ
2
1t+A . (4.54)
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Since the initial variance is zero because of the initial conditions, A = 0. With this, we can
integrate 〈py(t)〉, yielding (again, neglecting the integration constant for the same reasons)

〈py(t)〉 = c4
0σ

2
0t

2 , (4.55)

which leads to

〈y2(t)〉 = c4
0

[
1

6
σ2

1t
3 +

1

2
σ2

1σ
2
0t

2

]
. (4.56)

We say that, at the time of the first caustics tf , the variance should be similar to the correlation
length lc squared

〈y2(tf )〉 ∼ l2c . (4.57)

As σ0 is very small, we can neglect the terms in t2 in Eq.(4.56) and write

1

6
c4

0σ
2
1t

3
f ∼ l2c , (4.58)

which, using the definition of σ1 in Eq.(4.23), gives the average time to the first caustics

tf ∼ −lcε−2/3c−1
0 κ

−1/3
1 . (4.59)

As the propagation direction x is proportional to time with x = c0t, we find the distance to the
first caustics df

df = −Cws
(

6

κ1

)1/3

lcε
−2/3 . (4.60)

We note that the negative sign comes from the definition of σ1 in Eq.(4.23) and is canceled by the
sign of κ1, see table 4.1 for examples. We define Cws as the geometrical factor for water rays that
depends on the source s, which can be either for a plane wave Cwpw or a point source Cwps. Also,
we note that we verified how good was the approximation from Eq.(4.56) to Eq.(4.58) by solving
the third degree algebraic equation in t and found that the error made by neglecting the term in
σ2

0t
2 is very small, on the order of 0.5% for ε = 0.1. We also note that all the properties of the

correlation function lie in the factor κ
−1/3
1 . Even though this kind of dependency was confirmed

for classical rays in [37], we so far failed to verify it numerically for water rays. The prefactor
found for another correlation function (see appendix E) was different by around 20%. We cannot
exclude that we omitted a numerical artifact, but it might also be a more profound effect, which
would deserve more investigation. More details on this matter can be found in appendix E.
Even though we do not have an exact analytic solution for the distance to the first caustics, as
the prefactor is missing, we can still check that this scaling law is correct. In the next section, we
will look at 2D simulations of the ray equations Eqs.(4.8) in random bathymetries with different
standard deviations ε and correlation lengths lc in order to verify our theoretical scaling law. In
the subsequent section, we will study the scaling numerically with wave simulations.

4.4 Ray simulations

We simulate the two-dimensional ray equations Eq.(4.8) on random bathymetries generated using
the method shown in appendix A. We use a standard fourth-order Runge-Kutta solver to evolve
the rays and stability matrix elements in time. We find the caustics using the stability matrix
elements of the two-dimensional ray equations given in Eqs.(4.17) and the conditions presented in
section 2.3, in Eq.(2.19) and Eq.(2.22). The result of such a simulation can be seen in Fig.4.5,
where the caustics are shown as they are detected by the above-mentioned conditions. First, we
want to confirm that the scaling law we derived in Eq.(4.60) is correct. We will therefore look at
the mean distance to the first caustics for several hundred realizations of the potential, varying
the standard deviation ε and the correlation length lc. We can do this both for plane waves and
point sources, therefore numerically establishing the prefactor of the scaling in those two cases.
These results are shown in Fig.4.6 and Fig.4.7, where we show an excellent agreement between the
simulations and the theory. All the simulations were done in Gaussian correlated bathymetries.
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Figure 4.5: In black, we show ray trajectories (corresponding to a plane wave initial condition)
propagating over a weakly scattering random potential which can be seen in the background with
a green-yellow color map. Using the caustics conditions Eq.(2.19), we find the caustics, which
are highlighted with red stars in this plot. We see that the caustics align in these characteristic
branch-like structures and we clearly see the cusps and folds. When doing the statistics of the
position of the first caustics, we stop the rays after the first caustic and we compute the mean
distance traveled in the propagation direction until it is reached.

4.4.1 Plane waves

We started with plane wave initial conditions. We simulated tsunami rays with seven different
values for ε and six different correlation lengths lc over 200 different randomly generated
bathymetries. Then, we averaged the distance to the first caustics over all the rays and
realizations of the random field with the same parameters. The results we obtained are presented
in Fig.4.6. We can see on the right panel that all the points nicely collapse around the same line
when we scale out the dependencies that we expected from Eq.(4.60). These simulations were
done using a Gaussian correlation function. If we scale out the other factors, i.e. the integral of
the correlation function, we can determine the actual prefactor of our scaling law, which only
depends on the geometry of the source. We find a prefactor of Cwpw ' 2.55.

4.4.2 Point source

The point source statistics were done in a very similar fashion to the plane wave. The only
changes are in the initial condition, that is now set to point source, which means that the distance
has to be measured using the two-dimensional norm d2 = x2 + y2. Of course, we expect a different
prefactor, as in the classical ray case. The result can be seen in Fig.4.7. We find Cwps ' 3.78

4.5 Waves simulations

Now that we have established that our analytical scaling law is valid for the two-dimensional
rays, we need to verify that the random focusing of the tsunami waves actually follows the same
scaling law. We will compare our analytical prediction to the occurence of the highest waves in
shallow water simulations, where we will need to fit the prefactors, as the highest fluctuations in
the intensity do not necessarily coincide with the first caustics, but should scale in the same way
with the standard deviation and the correlation length. We used a finite-difference, leap-frog
scheme to numerically integrate Eqs.(3.14) [67].
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Figure 4.6: The left panel shows different theoretical lines in ε−2/3 for different values of lc, which
were fitted to the numerical data (dots) with the constant prefactor found on the right panel.
We find that Cwpw ' 2.55. The right panel shows how we obtained the missing prefactor in the
theoretical prediction Eq.(4.60) for plane waves: After we ran simulations with various values of
lc and ε on several hundred bathymetries, we computed the average distance to the first caustics
for each couple (lc, ε). Each dot (in both panels) corresponds to one of these couples. We then
divided the numerically obtained df (lc, ε) by the theoretical value taken from Eq.(4.60), without
the prefactor Cwpw. If our theory is correct, all the dots should collapse on the same value for the
prefactor Cwpw, which is the case here, up to small statistical fluctuations as all the points are in
the window 2.55± 0.1. The units for the distance are arbitrary.
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Figure 4.7: This plot was produced in the same way as Fig.4.6, but for point sources instead of
plane waves. We find Cwps ' 3.78, with fluctuation on the order of 0.05. The units for the distance
are arbitrary.

The first problem that arises when dealing with wave simulations is that we do not have a
well-defined mathematical condition for a caustic. The tool we will use to study the spatial
dependences of the wave focusing numerically is called the scintillation index, which will be
presented in the next section.
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4.5.1 Scintillation index

Caustics are classically defined as the coalescence of ray trajectories which can be very well
described with the help of the stability matrix elements and the curvature of the action. These
features are not easily translated into the wave picture. The simple fact that the ray density
diverges in the classical case, unlike the wave intensity, shows that these descriptions do not
compare well at caustics. It is then obvious that we need a new way to find the region of strong
focusing.
Let us consider a tsunami wave propagating in the x direction in a plane wave initial condition
over a correlated random medium. The transverse direction will be called y. After some time, the
wave is going to be focused in some locations (caustics) due to the branching of the flow. After
that first generation of focusing, the wave will keep branching. Branches will overlap and
interferences will start to dominate the intensity fluctuations, leading to the so-called saturated
regime. This process can be seen in Fig.4.8. We want to find an efficient way to measure the
strength of the intensity fluctuation in the wave flow. A good measure of this can be obtained by
calculating the variance of the intensity I(x, y) in the transverse direction and normalize it with
the mean squared, in case there is decay, e.g. for point sources. This measure is called the
scintillation index Σ and can be written as

Σ(x) =
〈I2(x, y)〉y − 〈I(x, y)〉2y

〈I(x, y)〉2y
, (4.61)

where the index y in the k-th moment indicates that it is taken along the transverse direction y

〈Ik(x, y)〉y =
1

b− a

b∫
a

dyIk(x, y) . (4.62)

Of course, this measure can also be written in polar coordinate for point sources, where the
propagation direction is r and the tranverse direction is the angle θ

Σ(r) =
〈I2(r, θ)〉θ − 〈I(r, θ)〉2θ

〈I(r, θ)〉2θ
, (4.63)

where, once again, the index θ in the k-th moment indicates that they are taken along the
transverse direction θ

〈Ik(r, θ)〉θ =
1

2π

π∫
−π

dθIk(r, θ) . (4.64)

As can be seen in Fig.4.8, the scintillation index peaks at the first caustics, and then falls off to
an asymptote with Σ(∞) −→ 1 due to interferences. We will use this tools to estimate the
distance to the first caustics for every simulation and compute the average location of the first
peak, relating it to the distance to the first caustics.

4.5.2 Scaling with respect to ε

As the wave simulations are significantly more demanding than their ray counterparts, we only
ran them for one fixed correlation length and varied the standard deviation ε, since, as long as
the wavelength is much shorter than the correlation length, the role of the latter appears to
consist in just setting a spatial scale (linear dependency). As the measure of the position of the
caustics is the scintillation index, we note that our theoretical prediction should hold, but the
prefactor found for rays is likely to be inaccurate, as the peak in the variance is not located at
the first caustics. The results of our simulations are presented in Fig.4.9. We can see the
excellent agreement of the scaling of the distance to the first peak with the prediction of ε−2/3.
We realize in these scaling plots that even for tiny fluctuations in the bathymetry, of the order of
a couple of percent, the distance to the strongest fluctuations is actually on the order of a couple
of thousands of kilometers, which is very relevant for tsunami propagation.
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Figure 4.8: The upper panel show the time-integrated intensity of a plane wave propagating from
left to right over a random bathymetry (not shown), in a blue-white color map (see color bar).
We divided the intensities by the mean intensity to show how strong the brightest branches are
(more than seven times the mean). We can clearly see that the first branches are the most intense
ones. Then, we enter the saturated regime, on the right of the plot. The bottom panel shows the
corresponding scintillation index in blue, which peaks around the location of the first branches.
In dashed black, one can see an average scintillation index, obtained by averaging the scintillation
indices from two hundred realizations of the bathymetry. The dotted gray curves are examples of
other realizations, for illustration purposes.

4.6 Impact on tsunami forecasts

With such a sensitivity to small fluctuations, concerns about the precision of the bathymetry
measurements arise. We will show in this section that the current knowledge of the ocean floor
topography is not accurate enough for reliable tsunami forecast due to the sensitivity of the
branching patterns to the small fluctuation of the ocean floor. We will start by presenting the
measurement methods used in order to map the bathymetry.

4.6.1 Echo-sounding

The first and most accurate method used to measure the ocean floor topography is
echo-sounding. Ships, equipped with sonar, scan the ocean floor under their path and reference
the measured values on a map, now using GPS location tracking. However, in more than five
decades, we still lack more than 90% of coverage of the ocean floor by this method, see Fig.4.10.
It is estimated that a systematic survey of the ocean floor using this technique would take 200
ship-years and cost billions of dollars [68,69]. It appears that a complete mapping of the
bathymetry using this method is not an option at the time of writing, both economically and
time-wise. In order to solve this issue, a faster and cheaper method was developed, based on the
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Figure 4.9: Here we have various numerical points (dots) for the average distance to the first peaks
of the scintillation index, both for plane wave initial condtions (left) and point source (right).
The theoretical prediction is fitted to the data with an extra prefactor of 0.7. We start to see
deviations from the theoretical line for the highest value of ε, which is coming from the breaking
of the quasi-2D approximation.

Figure 4.10: Here we see a map of the Earth, with the lines that were covered by echo-sounding
ships shown in black. We can see how sparse those measurements are, especially in regions very
relevant to tsunami forecasts, such as the Indian ocean. source: [69]

gravitational deformation of the ocean surface by underwater structures, measured from space.
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4.6.2 Satellite data

The idea behind this kind of measurement is that the ideally spherical surface of the ocean is
distorted by the presence of mountains or valleys in the ocean depth-profile, as is sketched in
Fig.4.11. This effect is actually fairly weak, as a 2000-meter-high peak below sea level would only
produce a 20-centimeters-high deviation from the spherical surface [68]. By measuring the
deflection angle of a light beam by the surface of the ocean, we can find the surface deformation
and reverse-engineer the shape and size of the underwater structure.

Figure 4.11: The presence of a bump in the bathymetry produces a variation in the surface gravity,
leading to a slight deformation of the ocean surface. This deformation can be measured by a satellite
which measures the deflection angle of a light beam sent to be reflected by the surface. From the
surface deformation, an algorithm based on the theory of gravity can be used to reverse-engineer
the size of the bump. source: [68]

It is obvious that this method is subject to a lot of errors, first from the fact that the ocean
surface is never at rest and therefore there is a lot of noise (which can, to some extent, be
statistically removed). Furthermore, the process of deducing the shape and size of the
underwater structure from its impact on the ocean surface is nonlinear and complicated, which
can easily enhance small errors in the measurements.
Of course, we can use the more precise sonar measurements as a skeleton of the worldwide
bathymetry map, then adjust the satellite-derived measurements and use interpolation to fill the
holes in order to get a coherent bathymetry database. However, some problems can arise due to
incompatible resolutions between data sets, as is discussed in [69]. Also, errors will tend to
propagate in a intricate way, due to interpolation. Overall, the average absolute error in the
database obtained by these combined methods is estimated between 100m [69] and 250m [68].
Considering the average depth of the ocean H0 = 4km, we find a relative error approximately
between 100/4000 = 2.5% and 250/4000 = 6.25%. This is well within the range where branching
is important.
Even though the noise enters the wave and ray equations as a multiplicative, thus nonlinear,
term, we can assume that such errors can strongly change the wave intensity patterns. This is
investigated in the next section.
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4.6.3 Inacurrate forecasts due to uncertainties in the bathymetry database

Now that we know that the bathymetry database is affected by some error that has an average
size of somewhere between 100 and 250 meters, we want to see how much it will affect tsunami
propagation and forecasts. In order to investigate this, we built a numerical experiment in the
following way: we asked ourselves what would happen to the branching pattern if the bathymetry
was slightly different, with variations from the original one that would be typically on the scale of
160 meters? The importance of the branching pattern is of course crucial, as it indicates the
location of the highest, thus most destructive waves.
We considered the same bathymetry that was already studied in section 4.1 and added an error
field of 4% standard deviation (160/4000=4%), that we chose to be power-law correlated, because
we do not know exactly how the error propagates through the interpolation process. In this way,
we have a scale-free 4% error field. The original and modified bathymetries can be seen in
Fig.4.12. Now, we evolve two tsunamis with identical sources over these bathymetries and

Figure 4.12: On the left panel is the original bathymetry, as taken from the GEBCO database
and as we used it in section 4.1. On the right panel is the same bathymetry, but with an added
power-law correlated error field of 4% standard deviation. They look very similar. The white
dashed lines are related to Fig.4.13 and show where the cuts were made.

compare the integrated intensities, to see whether the outcome looks similar or not. We find that
the branching patterns look very different, both in the location of the branches and their
intensities. This result can be seen in Fig.4.13. Of course, we tested this procedure with different
realizations and strength of the random error field and we also tested several exponents for the
power-law. We found the effect to be robust against changes in most of the parameters.
From this experiment, we can conclude that with an error of only a few percent in the
bathymetry database, it is impossible to confidently predict the location of the strongest waves,
thus strongly challenging our current capacity to accurately forecast tsunami disasters.
Of course, point sources with a 20 km wavelength are rather idealized tsunami waves. However,
our conclusions are not sensitive to the nature of the source, as can be seen in the next section.

4.7 Alternative sources

So far, the numerical simulations in real bathymetries we showed involved waves produced by
idealized sources, i.e. localized point sources with a well-defined wavelength of 20 km. This
comparatively short wavelength was chosen because of the limited size of the island-free
bathymetry region. There are, however, a couple of concerns that can be formulated with respect
to this choice. The purpose of this section is to adress these concerns and to show that the effect
we describe is robust against changes in the wavelength or in the geometry of the source.
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Figure 4.13: On the upper left panel is the intensity of the wave propagating over the original
bathymetry, exactly as in Fig.4.3. On the upper right panel is the intensity of the tsunami propa-
gating over the modified bathymetry. We clearly see that the branching pattern is very different.
Furthermore, the bottom panel shows the relative intensities along the green and orange cuts taken
from the upper panels. Some branches, that were very strong in one case (up to 6 times the average
height) simply disappear, whereas some new branches just come out of nowhere. The difference is
striking, considering that the two floors that we used only differ by an average 4% error field.

4.7.1 Larger wavelength

The first thing that can be disputed here is our choice of wavelength of only 20 km, which is at
the very lower end of the tsunami window. Typical tsunamis of interest have wavelengths that
are rather longer, of the order of 100 km. We therefore show new simulations with a larger
wavelength of λ = 100 km as well, even though the branching patterns are harder to visualize.
However, cuts at different propagation distances reveal the same kind of strong fluctuations
observed for short wavelengths. We present calculations on the exact same original floor (from
Fig.4.1), along with two other simulations on slightly modified floors, in the same fashion as
Fig.4.13. The result of these simulations can be seen in Fig.4.14 and shows that the phenomenon
we describe is robust against changes in the wavelength.

4.7.2 Fault-like source

Another matter is the question of the geometry of the source. Indeed, real tsunamis are produced
by earthquakes, which can have various geometries, such as a fault shape. As discussed at the
beginning of this chapter, the study of realistic tsunami sources opens a wide field that goes
beyond the scope of the present work. However, we decided to run some simulations using a
dip-slip fault-like source, as described in appendix C, as an example. The results can be seen in
Fig.4.15 and also show the expected branching patterns, confirming that the effect is robust
against changes in shape.
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Figure 4.14: The three right panels show the integrated intensities of our three experiments,
without errors (top) and with two different realizations of the noise (middle and bottom). We can
clearly see important differences in the wave intensity patterns, both in strength and location. The
left panels show some radial cuts in the intensities for the three experiments, at various distances
from the source. The blue cuts represent the intensities on the original bathymetry. The green
cuts correspond to the middle right panel and the red ones correspond to the bottom right panel.
We can clearly see the large deviations described earlier. It is also interesting to notice that the
intensities are very similar at the beginning (so, closer to the source) and progressively diverge
from each other.

4.8 Conclusion

In this chapter, we showed the relevance of branched flow to the propagation of tsunami waves
with a numerical experiment using real ocean floor data. Developing the theory of branched flow
and first caustics statistics in the case of shallow water rays, we were able to estimate the mean
distance from the source to the first caustics in terms of the fundamental parameters of the
bathymetry, namely its standard deviation ε and its correlation length lc. We confirmed this
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Figure 4.15: The right panel shows the integrated intensities for a fault-like source. We clearly see
the branching patterns, which can also be seen in the cuts on the left panel. The relative intensities
are given with respect to the mean along the cuts.

scaling law with extensive numerical simulations, which helped us to determine the missing
prefactor in our analytical results. From our scaling analysis, we realized that small fluctuations
in the ocean floor topography, typically within the error margin with which the bathymetry is
known, are sufficient to completely change the branching patterns, therefore making it very
difficult to predict the location of the most dangerous waves in case of a tsunami disaster. This
effect is robust against changes in the source parameters.
Our theoretical analysis so far describes a very ideal case of a tsunami evolving over an isotropic
bathymetry with a single correlation length. Real bathymetries, however, exhibit clear
anisotropies, e.g. underwater ridges, and tend to be correlated on many-scales, as the geological
processes responsible for their structure are many-fold. In the next chapter, we will therefore
extend our theory to the case of such random fields. We will deal with anisotropic potentials,
both for classical rays and shallow water waves, and also multi-length-scale media, once again for
both systems. These new theories will of course be supported by extensive numerical simulations.
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Chapter 5

Branched flow in media with multiple
correlation lengths

In the previous chapters of this thesis, we developed the stochastic theory of branching of tsunami
rays and shallow water waves in the simplest possible random bathymetries, i.e. isotropic random
fields correlated on a single length scale. Even though this model already allowed us to draw
interesting conclusions on the impact of branched flow on tsunami waves, it is clear that most real
systems will exhibit some anisotropies, e.g. ridges in the ocean floor topography, semiconductors
with anisotropic effective mass or anisotropic turbulent air flows. Furthermore, most real systems
exhibit correlations on several length scales, e.g. ocean floors are affected by various geological
process occurring on different scales. We are therefore also interested in the statistics of random
caustics in media that are correlated on several length scales. In this chapter, we want to quantify
the effect of anisotropy and multi-length-scale correlations on the distance to the first caustics.
Even though those two properties are likely to be both present, we will study them separately, as
it will make the analysis more clear and the interplay between them is straightforward.

5.1 Global anisotropy

We want to model systems that are evolving in globally anisotropic random media, which we will
assume to be homogeneous. As all the statistical properties of the random potential we are
modeling lie in the correlation function (see appendix A), it seems appropriate to model a global
anisotropy in its definition. In two dimensions, the transformation giving rise to global
anisotropies is a combination of rotations and stretching in correlation space, which can be
written as the consecutive effects of a rotation matrix TR and a stretching matrix TS acting on
the space variable ~x in the correlation function c(~x)

~x −→ ~x′ = T ~x ; T = TSTR , (5.1)

with TR and TS respectively defined by the one- and two-parameter matrices

TR(α) =

(
cosα sinα
− sinα cosα

)
and TS(a, b) =

(
a 0
0 b

)
. (5.2)

Even though we will be considering transformations of the form described in Eq.(5.1-5.2), we
won’t restrict ourselves to this specific class of transformations in the derivations and we will
consider a linear transformation T that can be very general up to some constraints described
below. We start by considering a transformation from ~x −→ ~x′ = T ~x. In previous chapters, we
restricted ourselves to the general case of correlation functions c(~x) = ε2f(~x · ~x/lc), which
depended only on the scalar product and a single correlation length lc. In our new system,
however, the scalar product will be changed by the transformation T and we decide to absorb the
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5.1 Global anisotropy

correlation length in the definition of TS , as it is not unique anymore. Considering this, we have
c(~x′) = ε2f(~x′ · ~x′) = ε2f((T ~x) · (T ~x)), where the scalar product now yields

~x′ · ~x′ = ~xTT TT ~x =M11x
2 + 2Maxy +M22y

2 , (5.3)

with the Mij being the elements of M = T TT with

Ma =
1

2
(M12 +M21) . (5.4)

The Mij can be very general in what follows, as long as M11 6= 0. The case M11 = 0 does not
make much sense anyway considering that, for instance, it implies a = b = 0 in the case of
Eqs.(5.1-5.2), which means that the correlation function is flat, i.e. the random potential is flat.
The function f : R→ R, that we will require to be up to four times differentiable for some cases
presented below, needs to have the following property

+∞∫
−∞

dzf (n)(z2) =: κn <∞ (5.5)

for n = {0, 1, 2}, as can already be understood from section 4.3. The function f(~x · ~x) is now the
correlation function (up to a factor of ε2) with f(0) = 1. Here, we need to realize that the only
differences between the isotropic and the anisotropic case lie in the definition of the correlation
function and the fact that the explicit choice of the propagation direction now matters. Indeed,
the procedure shown in chapters 2 and 4 makes use of the random potential when going in the
quasi-2D approximation, transforming it into a white noise term with strength σm, defined by

σ2
m =

(−1)m

2

+∞∫
−∞

dx

[
∂2mc(x, y)

∂y2m

] ∣∣∣∣∣
y=0

, (5.6)

where we had defined x as the propagation direction and y as the transverse direction. This
choice was absolutely straightforward in the isotropic case, as the correlation function would be
the same in every choice of axis, as the scalar product is invariant under rotations. Now, we have
an extra term in the correlation function, coming from the matrix M, which will be different in
each choice of axis except for very few special cases. We will maintain that x is the propagation
direction and y is the transverse direction, but then we will need to adapt the form of the matrix
M to these new axis, depending on their orientation with respect to the anisotropy. The angle α
in Eq.(5.2) describes this orientation, by defining what is the angle of the propagation direction
for the ray under consideration, in our specific model (which also explains why we decided to
describe the transformation in this fashion). We have

c(x, y) = ε2f(~x′ · ~x′) = ε2f(M11x
2 + 2Maxy +M22y

2) ≡ ε2f(R) (5.7)

where we defined R =M11x
2 + 2Maxy +M22y

2 to make everything shorter afterwards. The
impact of the transformation in the form of Eqs.(5.1-5.2) on the correlation function and the
random potential can be seen in Fig.5.1.
We now have a well-defined way to write the correlation function in terms of the angle defined by
the propagation direction, which means that the integrals in Eq.(5.6) for the σi are well defined
and now depend on the couple of stretching factors (a, b) and the propagation orientation α,
instead of simply lc. Of course, we could also use any other kind of transformation, the matrix of
which would then need to be changed into the base of the new coordinate system of appropriate
propagation/transverse direction. We will do most of the derivations below considering a
transformation M as general as possible but in the right basis according to the orientation with
respect to the direction of the ray under consideration. Only in the end will we make use of the
definitions in Eq.(5.1-5.2). This represents the main change from the isotropic case, but there will
be an extra difference in the shallow water case, as will be shown in section 5.1.2.
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Figure 5.1: The upper left panel shows an isotropic correlation function, which spans the random
potential shown in the lower left panel. The upper right panel shows the same correlation function,
after we applied a transformation of the type Eq.(5.1-5.2), with the values a = 1, b = 3 and α = 1.
The random potential that spans from this correlation function can be seen in the bottom right
panel. We can see how this transformation leads to a strong anisotropy in the potential, which
takes the chosen orientation defined by α.

5.1.1 Classical rays

From section 2.6, we know that we compute the distance to the first caustics by looking at the
curvature equation and by finding the mean first passage time through the value u = −∞,
starting from some initial value u0 that typically takes the value u0 = 0 for plane waves and
u0 = +∞ for point sources. In quasi-2d, the curvature equation became the Langevin equation
given by

d

dt
u(t) + u2(t) + σ2Γ(t) = 0 , (5.8)

where we immediately notice that the only difference with the isotropic case will be the value of
σ2. This means that we can reuse the result from section 2.6, simply with a different σ2 that is
given by

σ2
2 =

1

2

+∞∫
−∞

dx

[
∂4c(x, y)

∂y4

] ∣∣∣∣∣
y=0

=
ε2

2

+∞∫
−∞

dx

[
∂4

∂y4
f(R(x, y))

] ∣∣∣∣∣
y=0

. (5.9)

The derivatives are straightforward and yield

59



5.1 Global anisotropy

∂4

∂y4
f(R) = f (4)(R)[2Max+2M22y]4 +12M22f

(3)(R)[2Max+2M22y]2 +12M2
22f

(2)(R) , (5.10)

where once again, f (n)(R) = dn

dRn f(R). Inserting this into the integral for σ2 and using the fact
that R

∣∣
y=0

=M11x
2 gives

σ2
2 =

ε2

2

+∞∫
−∞

dx
[
16M4

ax
4f (4)(M11x

2) + 48M2
aM22x

2f (3)(M11x
2) + 12M2

22f
(2)(M11x

2)
]
. (5.11)

This contains three types of integrals, which in the end will all produce the same integral.
Indeed, the first term can be integrated by parts

+∞∫
−∞

dxx4f (4)(M11x
2) =

[
x3 1

2M11
f (3)(M11x

2)

] ∣∣∣∣∣
+∞

−∞

− 3

2M11

+∞∫
−∞

dxx2f (3)(M11x
2) . (5.12)

The boundary term vanishes (odd function) and therefore we are left with an integral of the same
type as in the second term of Eq.(5.11), which can also be integrated by parts

+∞∫
−∞

dxx2f (3)(M11x
2) =

[
x

1

2M11
f (2)(M11x

2)

] ∣∣∣∣∣
+∞

−∞

− 1

2M11

+∞∫
−∞

dxf (2)(M11x
2) . (5.13)

Once again, the boundary term vanishes and we are left with the same integral as the last term
of Eq.(5.11), which yields

+∞∫
−∞

dxf (2)(M11x
2) =

1√
M11

+∞∫
−∞

dzf (2)(z2) =
κ2√
M11

, (5.14)

where κ2 is the constant defined Eq.(5.5), which is independent of the parameters of the
transformation, and we used the change of variable z =

√
M11x. These calculations explain why

we needed f(R) to be four times differentiable and M11 6= 0.
We therefore showed that, as long as the correlation function has the above-mentioned
properties, we find

σ2
2 =

6κ2ε
2

M5/2
11

[
M4

a − 2M2
aM22M11 +M2

11M2
22

]
. (5.15)

Going back to our well-defined case of rotations and stretching from Eq.(5.1-5.2), in which the
matrix elements Mij are defined as

M11 = a2 cos2 α+ b2 sin2 α , (5.16a)

M12 = M21 =Ma = (a2 − b2) sinα cosα , (5.16b)

M22 = a2 sin2 α+ b2 cos2 α , (5.16c)

we find, after some straightforward trigonometric manipulations,

σ2
2 =

6κ2ε
2a4b4

M5/2
11

=
6κ2ε

2a4b4

(a2 cos2 α+ b2 sin2 α)5/2
. (5.17)

Using the result for the time to the first caustics found in section 2.6 (Eq.(2.46) and the new σ2,
we find
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5.1 Global anisotropy

〈tf 〉 = Ccs (6κ2)−1/3 ε−2/3a−4/3b−4/3(a2 cos2 α+ b2 sin2 α)5/6 , (5.18)

where Ccs is the constant for the classical ray case and depends on which initial condition
s = {pw, ps} we use. We have Ccpw = 3.31 for plane waves and Ccps = 4.97 for point sources [23].
We note that, if we go back to the isotropic case a = b = l−1

c , we exactly recover the result from
chapter 2.
In order to verify this result numerically, we fixed the value of a = const, which basically defines
a scale for the whole system. Then, we did simulations with various values for b and α over 400
different potentials. The results are plotted in figure Fig.5.2 and Fig.5.3. We can see an excellent
agreement with the theoretical result derived above. We can see in Fig.5.3 that the angular
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Figure 5.2: These curves show the analytical results for the distance to the first caustics df as
functions of b, as predicted by Eq.(5.18). The dots are the average values we obtained from
numerical simulations. Each color corresponds to one angle α, as can be seen in the legend. These
results were obtained with plane wave initial conditions. The units for the distance are arbitrary.

distribution of the distance to the first caustics in anisotropic potentials exhibits a characteristic
peanut-like shape.

5.1.2 Shallow water waves

Since we showed in section 4.2 that the method using the curvature equation does not work for
water waves, we will have to do the computation from the ray equations. As in the previous
section, we start from the associated Langevin equations obtained in section 4.3

ẏ = (1− σ0Γ1(t))p , (5.19)

ṗ =
c2

0σ1Γ2(t)

2
. (5.20)

This means that we have to compute σ0,1 from Eq.(5.6), which gives rise to two integrals

σ2
0 =

ε2

2

+∞∫
−∞

dxf(R(x, y))|y=0 =
ε2

2

+∞∫
−∞

dxf(M11x
2) =

ε2

2M1/2
11

κ0 , (5.21)

σ2
1 = −ε

2

2

+∞∫
−∞

dx∂2
yf(R(x, y))|y=0 = −ε2

+∞∫
−∞

dx
[
2f (2)(R) [Max+M22y]2 +M22f

(1)(R)
]
,(5.22)
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Figure 5.3: The black curve shows the analytical result for the distance to the first caustics as
a function of α with a fixed b = 0.5, as predicted by Eq.(5.18). The blue dots are the average
distance to the first caustics we obtained from numerical simulations by considering the initial
angle of each ray. The red dots show the same quantity, except that we sorted the data point by
the average angle of the whole trajectory, from its start to the caustic. We see that both measures
give excellent agreement. These results were obtained from point source initial conditions and we
used bins to discretize the angles. The units for the distance are arbitrary.

the second of which needs similar treatment to that in section 5.1.1, using

+∞∫
−∞

dxx2f (2)(M11x
2) =

[
x

1

2M11
f (1)(M11x

2)

]+∞

−∞
− 1

2M11

+∞∫
−∞

dxf (1)(M11x
2) . (5.23)

Since the boundary term vanishes, all the integrals in Eq.(5.22) are of the same order and we find

σ2
1 =

ε2κ1

M3/2
11

[
M2

a −M11M22

]
. (5.24)

Using the definition of the Mij in Eq.(5.16), along with a little trigonometry, we find

σ2
1 =

ε2κ1a
2b2

M3/2
11

. (5.25)

We now have the two σi that were necessary for the computation in section 4.3. Our previous
derivation from section 4.3 went as follows: we considered that, at the time of the first caustics
tf , the typical deviation of the ray in the transverse direction, which can be estimated with
〈y2(t)〉, should scale with the correlation length lc〈

y2(tf )
〉
∼ l2c . (5.26)

Solving for 〈y2(t)〉 follows the exact same computation, using the two new σ0,1 that we just
computed. Our problem comes from the fact that there is no unique correlation length lc
anymore. Instead, we have to use an effective correlation length that will depend on the angle α
and the stretching factors a and b, as it will depend on the choice of the transverse direction. In
order to understand how these parameters will impact this effective correlation length, let us
consider the simplest case where α = 0, then M = diag(a2, b2). In this case, the correlation
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5.1 Global anisotropy

function would be c(x, y) = ε2f(a2x2 + b2y2), which, when compared to the isotropic case of
c(x, y) = ε2f(x2/l2c + y2/l2c ), means that these two stretching factors are to be understood as
inverse correlation lengths, one for each direction. When a 6= b and for any angle α, the value of
this inverse correlation length will be given by the radius rab(α) of an ellipse with axes a and b

rab(α) =
ab(

a2 sin2 α+ b2 cos2 α
)1/2 , (5.27)

This expression gives us the radius of the ellipse for the angle α, which is the angle describing the
propagation direction. This means that, if we want to have the length in the transverse direction,
we need to add π/2 to the angle, which simply exchanges the sine and the cosine in the formula,
such that we have

r⊥ab(α) =
ab(

a2 cos2 α+ b2 sin2 α
)1/2 , (5.28)

where r⊥ab(α) is now the radius of the ellipse in the transverse direction. Fig.5.4 illustrates the
procedure we just described. We note that its denominator is none other than M11. As r⊥ab(α)
represents an inverse correlation length, we can deduce that the effective correlation length in the
transverse direction le is given by

le =
1

r⊥ab(α)
. (5.29)

Then, considering our previous argument

a

b

+ /2

rab( )

rab( + /2)

Figure 5.4: The ellipse described by the two main axis a and b in correlation space. The distances
in this space are to be thought of as inverse correlation lengths.

〈
y2(tf )

〉
∼ l2e =

[
1

r⊥ab(α)

]2

, (5.30)

and using the result from section 4.3 for 〈y2(t)〉 with the small σ0 approximation (see Eq.(4.58))
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5.1 Global anisotropy

〈y2(t)〉 ≈ 1

6
c4

0σ
2
1t

3 , (5.31)

we find

〈tf 〉 = −Cws c−1
0 ε−2/3

(
6

κ1

)1/3

a−4/3b−4/3(a2 cos2 α+ b2 sin2 α)5/6 , (5.32)

where Cws is the constant for the water ray case and depends on which initial condition
s = {pw, ps} we use. We have Ccpw ' 2.55 for plane waves and Ccps ' 3.78 for point sources, as was
obtained numerically in section 4.4. We note once again that, if we go back to the isotropic case
a = b = l−1

c , we recover the exact result from chapter 4. We also note that, up to the prefactor,
the dependency on the different parameters ε, a, b and α is exactly the same as for classical rays.
As in the previous section, we will numerically verify the scaling in b and α by setting a = const
in the simulations for rays. The results can be seen in Fig.5.5 and Fig.5.6.
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Figure 5.5: Here we have scaling curves for five different angles (see legend), plotting the distance
to the first caustics df with respect to the anisotropy factor b, when a = 1. The lines correspond
to the theory predicted by Eq.(5.32) and the dots are the average distance to the first caustics
from numerical simulations. We see an excellent agreement between numerics and analytics. The
deviations for the small values of b and df are a numerical artifact. Indeed, when b is very small,
the effective correlation length in the propagation direction can sometimes be very long (for the
points with short df ), meaning that there are not enough correlation lengths per potential, as we
produce a small potential that we repeat in periodic paving. The potential therefore does not have
the exact correlation function that we inserted. The units for the distance are arbitrary.

Furthermore, we will also verify that the height fluctuations of shallow water waves in anisotropic
random bathymetries follow the predictions of the ray calculations. As those simulations are
computationally very demanding, we only looked at the angular distribution around point
sources with a fixed b = 0.5 and compared the results to the isotropic case b = 1. Instead of using
the scintillation index integrated in the transverse as in section 4.5, we used a scintillation index
that integrates the intensities over the realizations, in 2D. The reason for this is that we cannot
integrate over the angles anymore when dealing with the peanut-shape described in the ray case.
This scintillation index is computed over the n realizations with intensity In(x, y) as follows

Σ(x, y) =

1
n

n∑
j=1

I2
j (, x, y)− Ī2(x, y)

Ī2(x, y)
, (5.33)
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Figure 5.6: Here we have the polar distribution for the distance to the first caustics in anisotropic
potentials for water rays, with b = 0.6 and a = 1, in the same fashion as in Fig.5.3. The dots are
of course the average distance to the first caustics from the numerical experiments and the black
line is the theory from Eq.(5.18). Once again, there is excellent agreement. The deviations at the
extremes could be explained by a lack of points for the statistics or a numerical artifact in the
counting of the caustics via our binning system. The slight overall shift indicates a small error in
the binning system. The units for the distance are arbitrary.

where Ī(x, y) is the average intensity at the position (x, y). We ran wave simulations in 200
randomly generated isotropic bathymetries (b = 1), with a fixed standard deviation ε = 0.08 and
correlation length lc = 100km, and computed the two-dimensional scintillation index, which is
ensemble averaged over the realizations, according to Eq.(5.33). The result is plotted in Fig.5.7
and we can see that the highest fluctuations are concentrated around a nice circle. We integrated
this scintillation index over the angles in order to obtain the average radius of the first peak of
the scintillation index, which gave us the missing prefactor for the scaling law, that we used in
the anisotropic plot in Fig.5.8, which was produced in the same fashion. We can see that the
predicted angular distribution for the distance to the highest fluctuations (the red peanut-shaped
curve) lies in the region were the scintillation index is maximal. This confirms that our theory for
anisotropic potentials also applies to tsunami waves.

5.2 Correlation on several length-scales

We want to see how a multiple length-scale potential would affect the average distance to the
first caustics. Of course, most systems could probably be well-approximated with only a handful
of length-scales, but we will derive a formula for an arbitrary number of correlation lengths and
then look at more practical examples. We choose to model the various correlations with distinct
correlation functions that we will then sum to obtain the overall correlation function, as follows

c(x, y) =
1

N

n∑
i=1

(−1)siε2i fi
(
r2/l2i

)
, (5.34)

with n the number of length-scales, r2 = x2 + y2 for isotropy, εi the strength of the correlation on
the length-scale li with correlation function fi(r

2/l2i ) and si ∈ {0, 1} the parameter that
determines whether there is correlation or anti-correlation on the associated length-scale li.
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Figure 5.7: In shades of blue is the 2D scintillation index computed using Eq.(5.33) over 200
realizations for the bathymetry. We see that the location where it peaks forms a circle, that fits
very well with our theoretical prediction from chapter 4, which is shown in red.

x [km]

y 
[k

m
]

 

 

5000 10000

5000

10000

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Figure 5.8: In shades of blue is the 2D scintillation index computed using Eq.(5.33) over 200
realizations for the bathymetry. We see that the location where it peaks forms the typical peanut
shape discussed in the previous section that fits very well with our theoretical prediction, which is
shown in red.
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5.2 Correlation on several length-scales

Indeed, it is fairly common to see potentials or bathymetries that are positively correlated on
some scales and then start to be anti-correlated (so, negatively correlated) on others. As in
previous sections, fi : R −→ R has to be four times differentiable and we require similar
convergence properties for some integrals, as in Eq.(5.5) and Eq.(5.39). N is a normalization
factor that ensures that c(0, 0) = ε2 (see a little later when all εi are given in terms of a single ε
and some relative strength factor γi, as described in Eq.(5.41)).
We have to be careful with this formulation, though, as some choices of parameters could lead to
functions that cannot be correlation functions. Indeed, we have to remember that, originally, the
random potential is the physical object from which we extract a correlation function, not the
other way around. The way we produce potentials (which is explained in appendix A) is
somewhat artificial, in that sense. First, we have to be sure that the correlation is maximal and
positive at the origin. Anything different would be non-sense, because it would mean that there
are locations which are more correlated to other locations in the potential than to themselves.
Second, the Fourier transform of the correlation function must be non-negative, because the
Wiener-Khinchin theorem states that the Fourier transform of the auto-correlation is the power
spectrum of the potential [55], which is an integral over a function squared.
As in section 5.1, the only thing that we change here, compared to the simpler cases presented in
chapter 2 and 4, is the correlation function, which means that the main change is going to come
from the σm, which is again defined in the following fashion

σ2
m =

1

2

+∞∫
−∞

dx
[
∂2m
y c(x, y)

] ∣∣∣
y=0

, (5.35)

where again y is the transverse direction. Since we are working here with isotropic potentials,
this choice is trivial. Considering our model in Eq.(5.34), we can write

σ2
m =

1

2N

n∑
i=1

(−1)siε2i

+∞∫
−∞

dx

[
∂2m
y fi

(
x2 + y2

l2i

)] ∣∣∣∣∣
y=0

. (5.36)

In order to go forward, we need to consider the cases separately, as for the anisotropic case.

5.2.1 Classical rays

As in section 5.1.1, the curvature equation is what needs to be worked on and it involves σ2.
According to Eq.(5.36), we have

σ2
2 =

1

2N

n∑
i=1

(−1)siε2i

+∞∫
−∞

dx

[
∂4
yfi

(
x2 + y2

l2i

)] ∣∣∣∣∣
y=0

, (5.37)

which requires the fourth derivatives of the fi functions and that yields[
∂4
yfi

(
x2 + y2

l2i

)] ∣∣∣∣∣
y=0

= 12
1

l4i
f

(2)
i (x2/l2i ) , (5.38)

where once again f
(n)
i = dn

dzn fi(z). We will require each of the following integrals to be convergent

+∞∫
−∞

dzf
(n)
i (z2) =: κin <∞ , (5.39)

such that we can write (after a change of variable z = x/li)

σ2
2 =

6

N

n∑
i=1

(−1)si
ε2i
l3i
κi2 . (5.40)

67



5.2 Correlation on several length-scales

It would seem easier to write all the εi and li using proportionality constants, in the following
fashion

ε2i = γiε
2
1 and li = λil1 , ∀i ∈ {2, .., n} . (5.41)

In this way, the parameters of the system are one main standard deviation ε1 and one main
correlation length l1 which we choose to be the shortest one without loss of generality (i.e.
λi ≥ 1 , ∀i > 1), along with the relative strength of the corresponding parameters in the other
functions, which are then dimensionless. With this, we can finally write

σ2
2 =

6ε21
Nl31

(
(−1)s1κ1

2 +
n∑
i=2

(−1)si
γiκ

i
2

λ3
i

)
. (5.42)

This is the general result for σ2 in multi-length-scale potentials, according to our model in
Eq.(5.34). The only thing that we need to do then is to insert this expression in our previous
result for the distance to the first caustics.
As an example, we consider the simpler case of two length-scales and two Gaussian correlated
fields with s1 = 0 and s2 = 1, which yields

σ2
2 =

6
√
πε2

Nl3

(
1− γ

λ3

)
, (5.43)

where N = 1− γ in this case.
We note that cases where the contents of the brackets in Eq.(5.43) go to zero or negative values
are prohibited by the fact that the power spectrum needs to be non-negative, as is explained at
the beginning of section 5.2. Indeed, we can prove it by looking at the Fourier transform of the
correlation function to find the power spectrum and impose a constraint on the parameters. The
correlation function is given by

c(x, y) =
ε2

1− γ

[
e
−x

2+y2

l2c − γe−
x2+y2

λ2l2c

]
, (5.44)

so its Fourier transform, which will be the power spectrum of the associated potential, can be
written as

F (~k) =
ε2

2π(1− γ)

∫
R2

d~x

[
e
−x

2+y2

l2c − γe−
x2+y2

λ2l2c

]
eikxx+ikyy . (5.45)

With the change of variable ~x→ lc~x in the first two integrals and ~x→ lcλ~x in the last two
integrals and using the fact that the integrals in x and y are separable, we can write

F (~k) =
ε2l2c

2π(1− γ)

∫
R

dxe−x
2
eikxxlc

∫
R

dye−y
2
eikyylc − γλ2

∫
R

dxe−x
2
eikxxlcλ

∫
R

dye−y
2
eikyylcλ

 .

(5.46)
We deal with these integrals in the following way. Let us compute the first one

∫
R

dxe−x
2
eikxxlc =

∫
R

dxe−(x− i
2
kxlc)

2− 1
4
k2xl

2
c = e−

1
4
k2xl

2
c

∫
R

dxe−(x− i
2
kxlc)

2

=
√
πe−

1
4
k2xl

2
c , (5.47)

where the last equality comes from the fact that even complex Gaussians have the same integral
as real Gaussians, due to Cauchy’s theorem. Each of these four integrals can be treated in the
same way, such that we can write

F (~k) =
ε2l2c

2(1− γ)

[
e−

1
4
l2ck

2 − γλ2e−
1
4
λ2l2ck

2
]
, (5.48)
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where k2 = k2
x + k2

y. Calling the first Gaussian G(k) = e−
1
4
k2l2c , we find

F (~k) =
ε2l2c

2(1− γ)
G(k)

[
1− γλ2[G(k)]λ

2−1
]
. (5.49)

As previously stated, the Wiener-Khinchin theorem says that F (k) is the power spectrum of the
random potential associated with our correlation function and therefore needs to be non-negative.
As 0 ≤ G(k) ≤ 1 because it is a Gaussian, we have to find a condition on γ and λ such that

(1− γ)−1(1− γλ2[G(k)]λ
2−1) ≥ 0 . (5.50)

With λ ≥ 1, the worst case is when G(k) = 1, which leads to

(1− γ)−1(1− γλ2) ≥ 0 . (5.51)

There are two possible cases here. First, we can have (1− γ) > 0 (i.e. γ < 1), which leads to

γλ2 ≤ 1 . (5.52)

For σ2
2 to become negative in Eq.(5.43), we would need(

1− γ

λ3

)
< 0 . (5.53)

This is equivalent to

1 <
γ

λ3
=
γλ2

λ5
≤ 1

λ5
< 1 , (5.54)

which is a contradiction, therefore showing that Eq.(5.53) is never true. The second inequality
comes from Eq.(5.52) and the last one comes from our hypothesis of λ ≥ 1.
For the second case, i.e. γ ≥ 1, we have

γ ≥ 1

λ2
, (5.55)

which is automatically fulfilled as λ ≥ 1. Generalizing this argument to the general formula
would give some very complicated expression that would probably be too intricate to be of any
use, but we hypothesize that this argument is generally valid.
Now that we have made sure that σ2

2 is always positive for potentials that make sense, we can
find the theoretical distance to the first caustics

df = Ccs

(
(1− γ)

6
√
π

)1/3

ε−2/3l
(

1− γ

λ3

)−1/3
. (5.56)

There is of course no way to actually verify the general result numerically, as the number of
parameters in potentially boundless. Instead, we want to test numerically the result obtained in
Eq.(5.56). Because of condition Eq.(5.52), we decided to vary the combination γλ2 instead of γ,
such that it is easier to satisfy the said condition. The result can be seen in Fig.5.9 and shows an
excellent agreement with the theory. Even if we cannot show it in the general case, we take this
successful prediction as a good sign that our theory is valid.

5.2.2 Water rays

We now want to apply a similar theory to the case of the water waves and their associated rays.
As for the anisotropic case, the derivation will be slightly different than for the rays, as the
argument leading to the scaling law works differently. We can, however, mimic the process we
developed in section 5.1.2 to find the distance to the first caustics. Again, we will start from the
variance in the transverse direction, that was given in Eq.(5.31) by

〈y2(t)〉 ≈ 1

6
c4

0σ
2
1t

3 , (5.57)
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Figure 5.9: The scaling of the distance to the first caustics with respect to the product γλ2 for
various values of λ, here for classical rays. We see that the plain lines representing the theoretical
expectation given by Eq.(5.56) fit the numerical values (dots) quite well. For this fit, we had to
slightly shift the theoretical prefactor from Ccpw = 3.31 to Ccpw = 3.23, meaning that there is a
2.5% deviation. Still, the functional dependency is very well predicted. The units for the distance
are arbitrary.

where we can now use the new σ1, which can be obtained with Eq.(5.36) and a straightforward
computation

σ2
1 =

1

N

n∑
i=1

(−1)si
ε2i
li
κi1 . (5.58)

Now, we want to use the same argument as before, which was already used in Eq.(5.30) and reads〈
y2(tf )

〉
∼ l2e , (5.59)

where le is an effective correlation length in the transverse direction. We actually do not know
how to produce a general formula for this effective correlation length. However, we expect each
correlation length li to have a sort of weight in the expression for le, since they are associated
with correlations of different strengths. We believe the best approach here is to try to understand
the simpler case already discussed at the end of the previous section, with two Gaussian
correlated contributions, with one anti-correlated, leading to

σ2
1 =

√
πε2

(1− γ)l

(
1− γ

λ

)
. (5.60)

As we were not sure about how to attack this problem and we had a strong suspicion that the
scaling would be exactly the same as for classical rays (since, so far, it has always been the same,
up to the prefactors), we decided to run simulations first to verify our intuition. We plot the
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5.2 Correlation on several length-scales

result in Fig.5.10, where we used the empirical prefactor for water rays Cwpw = 2.55 determined in
chapter 4 instead of the prefactor for classical rays. We see that the fit is incredibly good. Now,
we can compute le starting from this result. Indeed, we have, on the one hand, the result from
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Figure 5.10: The scaling of the distance to the first caustics df with respect to the product γλ2

for various values of λ, in the case of water rays. We see that the plain lines representing the
theoretical expectation given by Eq.(5.56) fit the numerical values (dots) quite well. For this fit,
we had to slightly shift the theoretical prefactor from Ccpw = 2.55 to Ccpw = 2.57, meaning that
there is a 1% deviation, which shows a rather impressive agreement. The units for the distance
are arbitrary.

the numerics

df,numerics = Cws

(
6(1− γ)√

π

)1/3

ε−2/3l
(

1− γ

λ3

)−1/3
, (5.61)

and on the other hand, our argument suggests that we have

σ2
1d

3
f,theory ∼ l2e . (5.62)

We can now compare df,numerics = df,theory in order to figure out what is actually le. This yields
(once we divided out all the prefactors)

df,numerics ∼ ε−2/3l(1− γ)1/3
(

1− γ

λ3

)−1/3
= l2/3e l1/3ε−2/3(1− γ)1/3

(
1− γ

λ

)−1/3
∼ df,theory .

(5.63)
We can divide out the common factors and reorganize the terms to obtain

l2/3e = l2/3
(

1− γ

λ3

)−1/3 (
1− γ

λ

)1/3
, (5.64)

which can be simplified into

le = l

√
1 + γ

1− λ2

λ3 − γ
. (5.65)

As of now, we do not know how to interpret this effective correlation length, as the correction in
the square root (which is what distinguishes this le from the main l) looks relatively intricate.
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5.3 Conclusion

Even though we cannot understand this scaling law theoretically, we believe that it is useful to
verify if this empirical scaling law given in Eq.(5.61) still holds for waves. The result can be seen
in Fig.5.11.
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Figure 5.11: Two scaling curves with λ = 1.15 on the left and λ = 1.3 on the right. For each
curve, we have a fitted theoretical curve from Eq.(5.56) in plain blue (we fitted the prefactor) and
two dashed curves corresponding to the fitted curve ± one wavelength. Even if there are slight
deviations, we can see an overall good agreement between the numerical data point (dots) and the
theoretical scaling. These deviations could be due to a lack of statistics and resolution issues in
the creation of the potential.

5.3 Conclusion

In this section, we investigated how more complicated random media would affect the statistics of
random caustics and branched flows by computing the distance to the first caustics in two main
cases, that we decided to separate for the sake of clarity.
Globally anisotropic potentials bring a characteristic angular dependence (the peanut shape) for
the distance to the first caustics, both for classical rays and water waves. Even though the
argument used in the derivations were quite different, we found again the same scaling law for
both cases.
Potentials that are correlated on several length scales proved to be more challenging, as we were
unable to actually find a good argument in the case of the water waves. We did, however, show
that the scaling law is the same for classical rays and water waves with extensive numerical
simulations.
Although we have decided not to include it here, we are confident that the combination of these
two types of correlations is a straightforward extension of the theory presented here and we leave
this calculation to the interested reader. The general expression that we expect for such cases is
intricate and we believe that it wouldn’t be very illuminating, considering what was already
shown here.
This chapter closes the main body of this thesis, which was the theoretical study of the caustic
statistics in tsunami waves. In the next chapter, we will present some theoretical estimates that
we calculated in the prospect of an experimental laboratory study of the focusing of tsunami
waves.
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Chapter 6

Can we study tsunami focusing in the
laboratory?

Our study, so far, has been based on theoretical arguments and has been confirmed with
numerical simulations. As valuable as these methods are, there is no better way to confirm the
relevance of a result than with an experiment.
We want to find a way to verify our results in a real system, which has the same behavior as a
tsunami wave, but can fit in a laboratory. This means that we need to scale down our system to a
size ranging from the centimeter scale to the meter scale. However, the use of water is out of the
question, as the viscosity and surface tension can become problematic, as will be shown below.
Fortunately, our institute is equipped with a high pressure facility, which allows us to consider
the use of liquified gases. The experimentalists suggested the use of sulfur hexafluoride SF6, the
surface tension and viscosity coefficients of which are substantially smaller than of water.
The purpose of this chapter is to first lay down the theoretical basis of this experiment and give
the relevant estimates that justify our approach. Afterwards, we will present the actual concept
of the setup we intend to use for the experiment, which at the time of the writing is still under
preparation.

As the idea is to scale down a tsunami wave to the size of our container, the latter will of course
be the main restrictive parameter of our experimental setup. The setup we will use for the first
exploratory experiment provides a maximal propagation distance of about 10 centimeters. Even
when considering a single deterministic scatterer, we need at least five to ten wavelengths in
order to see a proper focusing pattern. This means that our wavelength can be at best 2
centimeters long. From [58], we know that the shallow water approximation is reasonable for
wavelengths larger than 3 times the depth of the fluid. In order to make sure that we are in the
shallow water regime, we will restrict this ratio to be larger than 5, meaning that the fluid depth
should be at most 0.4 centimeter. Next we want to discuss the restrictions to the amplitudes of
the waves. Throughout this works, we have been working with the linearized shallow water
equations, which apply very well to tsunamis. However, we have to keep in mind that they are
only valid if the amplitude, compared to the depth of the fluid, is small enough. For real
tsunamis, this ratio is between 10−3 and 10−4. Considering that we would apply such a ratio to
our experiment, this would lead to waves with micrometer-high amplitudes, which seems very
difficult to measure. Estimating the error made by using the linear approximation is not
straightforward, as it requires one to solve the nonlinear shallow water equations. In order to
investigate this, we produced a few one-dimensional nonlinear wave simulations and compared
them to linear simulations, to see at what point the nonlinearity started to be important enough
to produce a substantial change in the waves. We are aware that this is a hand-waving method,
but the idea was to obtain a quick estimate on that matter. We observed that the waves show
almost no differences between the linear and nonlinear simulations, as long as the amplitude of
the wave was below 5% of the depth of the fluid. To be on the safe side, we will consider 2.5% of
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6.2 Dispersion relation

the depth of the fluid, which leads to 100 µm in amplitude. With this in mind, we provide, in
Tab.6.1, the numerical values for the parameters of the experiment setup that will be presented
later in this chapter, along with the values for tsunami waves, for comparison purposes.

Tsunami SF6

Average depth H0 4 · 103m 4 · 10−3m

Surface tension coefficient σ 7.2 · 10−2 N/m 6 · 10−5 N/m

Viscosity coefficient µ 9 · 10−4 Pa·s 6 · 10−5 Pa·s
Fluid density ρ 103kg/m3 0.982 · 103kg/m3

Wavelength λ 105m 2 · 10−2m

Table 6.1: The numerical values for our two fluids. Water is given at normal conditions (25°C, 1
bar) for tsunamis and SF6 is given at tank conditions (44°C, 36.2 bars).source: [70]

6.1 Dispersion relation

When studying wave equations, it is often useful to consider a quantity called the dispersion
relation ω(k), which gives the dependency of the frequency ω of the wave with respect to the
wavenumber k, which is directly related to the wavelength λ = 2π/k. Typically, we would look at
the linearized shallow water wave equation with a flat bathymetry

(∂2
t − c2

0∆)η(~x, t) = 0 , (6.1)

and use a wave ansatz
η(~x, t) = Aei

~k·~x+iωt . (6.2)

Inserting Eq.(6.2) into Eq.(6.1) yields

(ω2 − c2
0k

2)ei
~k·~x+iωt = 0 −→ ω±(k) = ±c0k , (6.3)

where k =
√
~k · ~k. This is the dispersion relation for linear shallow water waves, which we will

refer to as gravity waves, since they are only generated by the force of gravity.
The idea now is to add viscosity and surface tension terms to the shallow water equations in
order to see how much they modify the dispersion relation, i.e. to see how strong the extra terms
will be compared to the gravity term. For the sake of simplicity and keeping in mind that our
objective is to make estimates, we will consider viscosity and surface tension separately.

6.2 Surface tension

As its name suggest, the surface tension is an effect that acts on surfaces and is associated with
minimizing the tensile energy, which can be understood in terms of the curvature of the surface,
e.g. soap bubbles tend to form spheres. According to [71], the surface tension can be modeled
through a pressure term at the interface of the fluid with the atmosphere that is proportional to
the second derivatives of the surface, i.e. the curvature. This means that, compared to what was
done in chapter 3, the pressure at the surface h(x, y, t) of the fluid won’t be set to zero, but
instead will be written as

p(x, y, z, t)|z=h = −σ∆h(x, y, t) . (6.4)

As a reminder of the quantities used in the derivation, we show again the scheme of chapter 3 in
Fig.6.1. Considering the new pressure terms from Eq.(6.4), the overall pressure from the
hydrostatic equilibrium hypothesis now reads

p(x, y, z, t)|z=h = ρg(h(x, y, t)− z)− σ∆h(x, y, t) . (6.5)
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6.2 Surface tension

Figure 6.1: This is a scheme of the fluid under consideration. The bottom sheet (brown) represents
the floor (bathymetry) and the top sheet (blue) represents the surface of the fluid. The volume V is
framed by the bottom surface ΣB, the top surface ΣT and the lateral surface ΣL. The values h̄ and
B̄ are respectively the average level of the surface of the fluid (its position at rest) and the average
elevation of the floor. The difference between these two values therefore defines the average depth
H0. The function h(x, y, t) describes the surface elevation. B(x, y) is the bathymetry, measured
from h̄. H(x, y, t) = h(x, y, t)−B(x, y) is the actual height of the fluid column. Here ~x stands for
the horizontal space (x, y).

Considering that the only change compared to the simple gravity case is in the pressure, the mass
conservation equation does not change, which means that the first equation from the linearized
shallow water equations stays the same

∂tη = −∇ · [(1− β)~u] , (6.6)

where we remind the reader that we use the dimensionless quantities η(x, y, t) = H−1
0 h(x, y, t) and

β(x, y) = H−1
0 [B(x, y) +H0]. The interesting thing comes in the momentum equations, that were

written

∂t

∫
V

ρ~u⊥dV = −
∫
ΣL

(ρ~u⊥)~u·~ndS−
∫
ΣL

p(x, y, z, t)~ndS−
∫
ΣB

p(x, y, z, t)~n⊥dS−
∫
ΣT

p(x, y, z, t)~ndS , (6.7)

where the same terminology as in chapter 3 applies. We note that there is now an extra pressure
term at the top boundary because the pressure is no longer zero there. All the terms are treated
as in chapter 3 and each pressure integral contains a new term
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6.2 Surface tension

∫
ΣT

p(x, y, z, t)~ndS =

∫
ΣT

(ρg(h(x, y, t)− z)− σ∆h(x, y, t))~ndS

=

∫
D

σ∆h(x, y, t)~∇⊥hdS , (6.8)

∫
ΣL

p(x, y, z, t)~ndS =

∫
ΣL

(ρg(h(x, y, t)− z)− σ∆h(x, y, t))~ndS

=

∮
∂D

[
1

2
ρgH2 −Hσ∆h(x, y, t)

]
~n⊥dγ (6.9)

∫
ΣB

p(x, y, z, t)~ndS =

∫
ΣB

(ρg(h(x, y, t)− z)− σ∆h(x, y, t))~ndS

=

∫
D

ρgH − σ∆h(x, y, t)~∇⊥BdS , (6.10)

where ~n is generally an outward unit vector normal to the surface of integration, ~n⊥ is the unit
vector pointing in the outward direction normal to ∂D, which is the curvilinear boundary of the
domain D, which is the projection of ΣT (and ΣB, by definition) on the xy-plane. For the first
integral, at the surface, the hydrostatic pressure term is of course zero and the ∇⊥h in the last
equality comes from the reparametrization of the domain, as in the bottom integral (see chapter
3). For the second integral, we integrate over z in order to get the integral over the edge of the
domain D. We note here that, since the capillary pressure term is not proportional to ρ, it will
get a ρ−1 factor when we divide it out. Again, we can use Stokes theorem to put the surface and
curvilinear integrals together in order to obtain the full shallow water equations with surface
tension

∂tH + ∂x(Hu) + ∂y(Hv) = 0 , (6.11a)

∂t(Hu) + ∂x

(
Hu2 +

1

2
gH2 − σ

ρ
H∆h

)
+ ∂y(Huv) = −

(
gH − σ

ρ
∆h

)
∂xB +

σ

ρ
∆h∂xh ,(6.11b)

∂t(Hv) + ∂x(Huv) + ∂y

(
Hv2 +

1

2
gH2 − σ

ρ
H∆h

)
= −

(
gH − σ

ρ
∆h

)
∂yB +

σ

ρ
∆h∂yh ,(6.11c)

As in chapter 3, we will reduce Eq.(6.11) to their linear and dimensionally simplified form using
the expansion h = H0(1 + η − β). After some simplifications, we obtain

∂tη = −∇ · [(1− β)~u] , (6.12a)

∂t~u = −c2
0∇η +

σ

ρ
H0∇∆η , (6.12b)

Once again, we can bring these equations back into a single wave equation for η, in the
geometrical optics limit,

∂2
t η =

[
c2

0(1− β)− σ

ρ
H0∆

]
∆η . (6.13)

Now, in order to look at the dispersion relation, we set β = 0 and we use the wave ansatz
Eq.(6.2) which yields[

ω2(k)− c2
0k

2 +
σ

ρ
H0k

4

]
= 0 −→ ω±(k) = ±c0k

√
1− σ

gρ
k2 . (6.14)
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6.3 Viscosity

So, in order to have a good approximation by neglecting the surface tension, we need the second
term in the square root of Eq.(6.14) to be as small as possible, as it is the deviation from the
simple gravity case. Using the numerical values from Tab.6.1, we find that real tsunamis are
incredibly well-approximated when we neglect the surface tension, as we find

(
σk2

gρ

)
tsunami

=

(
σ(2π)2

gλ2ρ

)
tsunami

' 2.8 · 10−14 , (6.15)

which is extremely small. On the other hand, the same ratio for water with the wavelength of 2
cm needed for the tank experiment would lead to a value of 0.7, which is far above anything
acceptable. It also fits our everyday experience that, on small scales, the behavior of water
surface waves is observably affected by capillarity. For SF6, however, we find(

σk2

gρ

)
SF6

=

(
σ(2π)2

gλ2ρ

)
SF6

' 1.5 · 10−4 , (6.16)

which, even though it is much higher than the real tsunami case, should still be small enough to
allows us to neglect surface tension in the experiment, therefore expecting the wave behavior to
be mainly associated with gravity waves.

6.3 Viscosity

Unlike the surface tension, the viscosity term, which is associated with friction and dissipation,
cannot be derived from conservation laws, as it goes against the idea of conservation in its
essence. In order to make our estimate, we will use the viscous shallow water equations, as given
in [72] in one dimension

∂tH + ∂x(Hu) = 0 , (6.17a)

∂t(Hu) + ∂x

(
Hu2 +

1

2
gH2

)
= −gH∂xB + CH0∂x(H∂xu) , (6.17b)

which we simply extend to two dimensions

∂tH + ∂x(Hu) + ∂y(Hv) = 0 , (6.18a)

∂t(Hu) + ∂x

(
Hu2 +

1

2
gH2

)
+ ∂y(Huv) = −gH∂xB + C∂x(H∇ · ~u) , (6.18b)

∂t(Hv) + ∂x(Huv) + ∂y

(
Hv2 +

1

2
gH2

)
= −gH∂yB + C∂y(H∇ · ~u) . (6.18c)

By dimensional analysis, we realize that the constant C before the extra viscosity term is
actually given by C = µ/ρ, with µ the viscosity coefficient, as given in Tab.6.1, and ρ is of course
the density. Indeed, the units of the viscosity term are

[C∂x(H∇ · ~u)] = [C] ·m−1 ·m ·m−1 ·ms−1 = [C] · s−1 , (6.19)

while the units of the l.h.s of the equation are

[∂tHu] = s−1 ·m ·ms−1 = m2s−2 . (6.20)

This means that [C] = m2s−1. Considering that we want it to be proportional to the viscosity
factor [µ] = Pa · s = kg ·m−1s−1, we find that the quantity that connects them is

[C] · [µ]−1 = m3kg−1 = [ρ]−1 , (6.21)
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6.3 Viscosity

which explains our conclusion that C = µ/ρ.
As we did throughout this work, we want to study the linearized equations, using the expansion
H = H0(1 + η − β) for very small η and ~u, see chapter 3. When we neglect all the nonlinear
terms, we find

∂tη +∇ [(1− β)~u] = 0 , (6.22a)

∂t~u−
µH0

ρ
∇ [∇ · ~u] = −gH0∇η . (6.22b)

As in the previous section, we want to look at the dispersion relation, to quantify how much it
diverges from the simple gravity case. For this, we consider a flat bathymetry β = 0 and we look
for a single wave equation for η, which is

∂2
t η −

µH0

ρ
∂t∆η − gH0∆η = 0 . (6.23)

Once again, we can use our wave ansatz from Eq.(6.2) to find

ω2 − iµH0

ρ
k2ω − gH0k

2 = 0 . (6.24)

This is a simple second degree algebraic equation, which has the solution

ω±(k) = c0k

[
iµH0k

2ρc0
±

√
1− µ2H0k2

4ρg

]
, (6.25)

where we remind the reader that we used c0 =
√
gH0. So, there are two terms that we have to

investigate, the one in the square root and the complex one. Let us start with the term in the
square root. For the tsunami case, using the parameter values from Tab.6.1, we find(

µ2H0k
2

4ρg

)
tsunami

= 3.2 · 10−16 , (6.26)

which, once again, explains why we do not need to consider viscosity in the real tsunami case. On
the other hand, in our SF6 experiment, we find(

µ2H0k
2

4ρg

)
SF6

= 3.6 · 10−11 , (6.27)

which is also very negligible.
The complex term, outside of the square root, accounts for the damping due to viscosity, bringing
a term of the kind e−t/τ in front of the oscillatory function. We will only be looking at its norm,
to see if the damping has a significant effect or not. For the tsunami case, we have(

µH0k

2ρc0

)
tsunami

= 5.7 · 10−10 = τ−1(c0k)−1 , (6.28)

leading to τ = 1.4 · 1011s, which is approximately 4404 years, so we can say that the damping is
really negligible, considering that the typical period of a tsunami wave is of the order of tens of
minutes and the propagation speed is around 700km/h, meaning that the longest tsunamis might
propagate for something like fifteen hours and therefore the damping will occur at the shores.
Now, computing the same term in the SF6 experiment, we obtain(

µH0k

2ρc0

)
SF6

= 1.9 · 10−7 , (6.29)
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leading to τ = 8.4 · 104s, which is approximately 23 hours, meaning that it is also negligible, for
the same reasons.
Interestingly, choosing water for the lab experiment wouldn’t be so bad regarding viscosity, as the
deviation from the gravity case (in the square root of Eq.(6.25)) would be around 8 · 10−9 and the
damping term (complex) would have a norm of 2.8 · 10−6, both being perfectly negligible as well.
It is however not surprising that the surface tension is much more of a problem than viscosity.
Indeed, the main thing that changed here is the scale of the system, leading to changes in the
wavelength and the depth of the fluid. These changes go towards an increase in the curvature of
the surface, and thus the surface tension.

6.4 Experimental setup

Figure 6.2: The left panel shows our experimental setup from the side and the right panel shows it
from the top. Even though it is not very well represented here, we have to keep in mind that the
whole setup is a high pressure tank. On the lateral view, we can see at the bottom the mirror M
that will reflect the light coming from the shadowgraph S above, in the same fashion as in Fig.6.3.
The piezoelectric device P that will be the source of the waves is mounted at the bottom of the
container (for details on the piston, see Fig.6.4). The bathymetry structure is represented by the
bump B. On the upper view, where we omitted the shadowgraph S for obvious reasons, we can see
the position of the source P at d/3, with d being the diameter of the container. This was chosen
to maximize the propagation distance before having backscattering issues. The rings around the
source represent propagating waves.

We will first attempt to make a preliminary “proof of principle” experiment in a small
high-pressure tank which has a diameter of around 15 cm. The experiment will study the
patterns in the surface waves focused by an isolated bathymetry structure, as described by
Berry [6]. The experimental setup is presented in Fig.6.2. We will excite waves on the surface
with a small piston embedded in the floor of the container, which will be moved by a small
piezoelectric crystal which can vibrate when we apply the appropriate voltage. Then, we let the
wave propagate over a scatterer molded in the floor of the tank (as can be seen in Fig.6.2) and we
measure the intensity patterns on the surface. In order to do so, we will use a tool called a
shadowgraph. The principle behind a shadowgraph is to project a beam of parallel light rays
through a medium and measure the intensity of the light beam at some distance after it passed
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Shadowgraph Sample Mirror

1 324

SKETCH EXAMPLE

Figure 6.3: LEFT - The principle of the shadowgraph we will use - The shadowgraph sends a beam
of parallel light rays (1) represented by the orange arrows. The rays then traverse the sample and
are distorted by its irregular interface or its inhomogeneities (2). The light is reflected by the
mirror (3) and traverses the sample again (4) to finally be measured by the shadowgraph, which
uses some optics algorithm to reverse-engineer the properties of the sample. RIGHT - An example
of a shadowgraph output, where we can see the fluctuation in the light intensity. This shows
convection patterns. Source: [73]

through the said medium, see Fig.6.3. If the medium is homogeneous, but has a non-flat interface
with the outer propagation medium (and has a different refractive index), there will be some
focusing of the light beam (caustics) that can be measured and interpreted by a computer. From
the shape and intensity of those caustics, it is possible to reverse-engineer the shape of the
interface. In our experiment, the medium that the light will travel through will contain several
layers. First, the light will go through the fluid layer. Then, it will traverse the bathymetry layer,
which will probably be made out of some resin. Ideally, the bathymetry layer has the exact same
refractive index as the fluid, because otherwise there will also be some focusing due to the shape
of the interface between the bathymetry and the fluid. Finally, the light will be reflected by the
mirror at the bottom of the tank and will come back to the shadowgraph through the
bathymetry and the fluid.
When this experiment is shown to be functional, we will move to a bigger tank, at the meter
scale, to study propagation in extended random bathymetries in order to observe branching.

6.5 Conclusion

In this chapter, we presented the theoretical ground upon which we intend to build a
miniaturized tsunami experiment that could fit in a small tank. By making simple estimates of
the surface tension and the viscosity of such an experiment, we were able to confirm that this
idea should be realizable. The success of such an experiment will of course firstly allow us to
confirm our theoretical findings about the branching of tsunami waves. Secondly, this could be
used in the near future as a way to do tsunami forecasts. Indeed, considering the propagation
speed of the waves in the lab experiment, one run of such a scaled-down tsunami event would be
a matter of minutes. Assuming that we have a precise enough model of the bathymetry at hand
and that the parameters of the tsunamigenic earthquake are known, such an experiment could
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Figure 6.4: On the left is a 3D view of the piston activated by the piezoelectric crystal. On the
right, we can see how the piston is constructed. There is a piezoelectric crystal sheet in the center
that is embedded in the cylindrical structure (polycarbonate). When it vibrates due to electrical
excitations, it makes the piston move. This whole cylindrical device will be embedded in the
bottom of the tank. Source: [74]

Figure 6.5: Some photographs of the actual material we will use. On the left, we can see the tank
in which the experiment will take place (grey cylinder). In the middle, a close up on the interior of
the tank, with the window through which the shadowgraph will send and receive the light. Finally,
on the left, each of these big black cylindrical boxes is a shadowgraph that can be plugged on top
of the tank.
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6.5 Conclusion

beat computer simulations for early hazard forecasts. We should, of course, remain cautious, as
there is much work to be done before reaching this point.
We are only at the very early stages of this experiment. The idea is to first verify that it works
according to our expectation and then work our way to a fully functional experiment. The first
step will be to verify how well we can excite the waves with the piezoelectric source. This is
currently under investigation by our experimental collaborators. A focusing experiment over a
deterministic scatterer will be the second step. We could then compare the experimental data
with numerical simulations to see if they sufficiently agree. Once these two tests have been made
and passed, we can consider going for a random bathymetry to observe branched flows.
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Chapter 7

Conclusion and outlook

In this thesis we have studied the emergence of branched flows in tsunami waves and have
developed an appropriate model which allowed us to quantify the mean distance to the first
caustics, which is the characteristic length-scale of this phenomenon. We have studied the impact
of random focusing on tsunami forecasts and realized that the branching patterns exhibit a high
sensitivity to the uncertainties in bathymetry measurements, strongly challenging our current
ability to make reliable tsunami forecasts.
Furthermore, we have enriched the theory of two-dimensional branched flows with a study of the
effect of more complex correlations, both for classical rays and shallow water waves, showing
highly non-trivial dependencies on the relative anisotropies and the length scale ratio. All the
results presented in this work are well supported by extensive numerical simulations.
Finally, we proposed an experiment to reproduce tsunami events on laboratory scales. It would
allow us to verify our results experimentally. We gave various theoretical estimates which
convinced us that realistic tsunami dynamics should indeed be observable in the proposed setup.

Chapter 4 presented the primary results of this thesis. We have shown that tsunamis can be
strongly focused by small structures in the bathymetry (i.e. the topography of the ocean floor).
First we simulated a tsunami event in the measured bathymetry of the Indian Ocean, in an
island-free region where the standard deviation of the bathymetry fluctuations is less than 7% of
the ocean depth. through this we have demonstrated in a realistic model that weak scattering
can indeed focus tsunamis to a multitude of their average intensity. We explained these findings
by showing that tsunamis are subject to branching of the flow. To this aim, we developed a
theory for the emergence of random caustics in shallow water waves. It allowed us to determine
the characteristic branching length, which scales with the main parameters of the bathymetry,
namely the fluctuation strength and the correlation length. This is surprisingly the same as for
Hamiltonian rays, even though the ray equations are very different, as tsunami rays contain a
multiplicative noise term unlike classical rays. We have performed extensive numerical
simulations in computer generated random bathymetry to support our theoretical results and
have shown that shallow water waves indeed follow the predicted scaling behaviour. We found
that even bathymetry fluctuations of only 2% standard deviation lead to focusing on the order of
a couple of thousands of kilometers, i.e. scales very relevant for tsunami forecasts. That led us to
study what impact branching could have on tsunami forecast. We found that the branching
patterns are highly sensitive to the uncertainties in bathymetry measurements, which can be as
high as 6% of the ocean depth. The induced variability in the position of the focused regions
therefore reduces considerably our current ability to forecast tsunami events.

In chapter 5, we extended the general theory of branched flow to random media that cannot be
described by a correlation function with a single length scale, which is true for many physical
systems, especially the ocean floor topography. We studied anisotropic media and media with
multi-length-scale correlations and we quantified how the interplay of two different length scales
in these random media affect the statistics of random caustics in Hamiltonian systems and in
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tsunami waves. As our results were derived for global anisotropies and very general combinations
of correlations, they can be applied to a large variety of systems. We obtained analytical
expressions for the characteristic length scale of branching, which exhibit highly non-trivial
dependencies on the ratio of the length scales and the propagation direction. For the anisotropic
case, we showed analytically that the scaling law for the average distance to the first caustics is
the same for classical and tsunami rays, as was already the case in isotropic media (derived in
chapter 4) and we confirmed these results with numerical simulations. In the case of media which
are isotropic but correlated on more than one length scale, we were able to compute a general
scaling law for the same quantity in classical rays, which was confirmed with numerical
simulations in the special case of two correlation lengths. Even though we were unable to find the
distance to the first caustics analytically for water waves, we numerically showed that they
respect the same scaling as classical rays in the case of two correlation lengths.
In chapter 6, we developed theoretical arguments to support our project of testing our results on
tsunami focusing in a laboratory experiment by computing the impact of surface tension and
viscosity on the dispersion relation of the linear shallow water wave equation. We showed that, to
a reasonably good approximation, the propagation of surface waves in sulfur hexafluoride SF6 at
high pressure should exhibit the same behavior as tsunami waves in the ocean, with the
advantage that it could be observed below the meter scale.

In this work, we built a theory for branching in tsunami waves and showed the importance of this
effect in tsunami studies. This opens a wide field of further investigations to improve our
understanding of this phenomenon. First of all, a systematic study on how small bathymetry
fluctuations on top of larger bathymetry fluctuations can influence the focusing patterns to
quantify the reliability of prediction is needed.
Also, the analytical results we derived here were mainly related to the mean distance to the first
caustics. This quantity is of great importance in the theory of branched flow, as is gives the
characteristic scale of the phenomenon and it also appears in other quantities, such as the
average density of branches as a function of the propagation distance from the source, which was
computed for classical rays in [37]. It could be interesting to see if such a result can also be
computed for tsunami rays. Other interesting statistical quantities, such as the overall amplitude
distribution, could also be investigated for tsunamis.
In chapter 3, we introduced the shallow water equations, which are the common model for
tsunami propagation in deep ocean conditions. We decided to neglect the Coriolis force, as it is
very weak and not fluctuating. This approximation is generally accepted in the tsunami
literature. On the other hand, neglecting the curvature of the Earth can be much more
problematic. Indeed, the error on the estimate of lengths grows with distances, meaning that a
correction term should be considered when dealing with very long distance propagation
(> 2000km). It would be interesting to include the curvature in our calculation, either as a
simple correction factor on the distances, or by trying to derive ray equations from the shallow
water wave equations in spherical coordinates, which can be found e.g. in [75].
As this work studied the focusing of the tsunami waves far from the coasts, in the linear regime,
it would of course also be of interest to extend the theory to nonlinear waves, where the interplay
between the focusing we describe in this thesis and the nonlinearities could only improve our
understanding of the run-up.
The theory we developed for anisotropic media has a large range of applicability, e.g. for the
transport properties of semiconductors with anisotropic crystals structures or the dynamics of
sound wave in anisotropic turbulent flows.
As we already mentioned, branched flow is a universal phenomenon that was studied in many
systems over a large range of magnitudes in size, from the micrometer scale in quantum systems
to the megameter scale in tsunami waves. In the frame of geophysics, we believe that such a
theory could be successfully applied to seismic waves, which would be a good motivation for the
study of three-dimensional systems. On a more imaginative note, gravitational waves might also
be subject to branching when scattered by massive clouds and/or clusters, the focusing

84



7.0

properties of which might be exploited to improve the possibilities of measurements.

With this work, we believe we have contributed to the general theory of branched flow and to the
improvement of tsunami physics. We hope that our study will help the tsunami community to
improve their forecasting abilities and encourage scientists outside this community to join the
effort to improve our understanding of this phenomenon.
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Appendix A

Modeling the random potentials

Throughout this thesis, we study the effect of random focusing on wave and particle flows in the
frame of branched flow. Most of our analytical results are supported by extensive numerical
simulations, which most of the time require computer generated random potentials or
bathymetries. The purpose of this appendix is to show how we generated them.
The general model used for those random fields is a two dimensional Gaussian random field with
a correlation function. The constraints that are common to every case is the fact that we want to
be able to model the correlation function c(x, y) by

c(x, y) = 〈V (x′, y′)V (x′ + x, y′ + y)〉 = ε2f(x, y) , (A.1)

with f(0, 0) = 1 and ε is therefore the effective standard deviation of the Gaussian point process
at any location (x, y). Depending on the type of study we make, the potential can have more
than one correlation length, as in chapter 5. We require c(x, y) to be up to four times
differentiable in some cases and its Fourier transform has to be non-negative in all cases, as the
Wiener-Khinchin theorem states that the Fourier transform of the autocorrelation of a field
corresponds to the power spectrum of said field, which cannot be negative.

Figure A.1: On the left panel, we can see a typical two dimensional isotropic correlation function
(here, a Gaussian), and on the right panel, a potential generated from this correlation function
using the methods explained in Eq.(A.2).

The random field is constructed in the following way: we start by taking the Fourier transform of
the correlation function and take its square root. We then multiply by phases e2iπϕ(x,y), with
ϕ(x, y) distributed uniformly between [0, 1). Finally, we Fourier transform back into real space.
Mathematically, it can be written
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V (x, y) = FT −1
[√
FT [c(x, y)]e2πiϕ(x,y)

]
, (A.2)

where FT denotes the Fourier transform. This procedure produces a Gaussian random field
V (x, y) because of the central limit theorem, as the Fourier transform is here a sum of
independent random variables. The result of this process is illustrated in Fig.A.1.
Numerically, we calculate the potential on a grid and points in-between are interpolated using 2D
splines (code developed in [76]).
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Appendix B

The Fokker-Planck equation

In this appendix, we will show the derivation of the Fokker-Planck equation starting from a
general stochastic differential equation, as this equation is central in our stochastic analysis. This
presentation will be very similar to the one in [37], as it serves the same purpose. More classical
references are [55,77].
Let us consider a stochastic dynamical system ξ(t) (a generalization of the results to vectors will
be given later) which satisfies

ξ̇(t) = h(ξ, t) + g(ξ, t)Γ(t) , (B.1)

where h(ξ, t) and g(ξ, t) are deterministic and Γ(t) is a Gaussian white noise with〈
Γ (t) Γ

(
t′
)〉

= 2δ(t− t′) . (B.2)

The goal is to calculate the probability density P (x, t) based on the initial probability density
P (x0, t0) and Eq.(B.1). We can write

P (x, t+ τ) =

∫
T (x, t+ τ |x′, t)P (x′, t)dx′ , (B.3)

where T (x, t+ τ |x′, t) is the transition probability from (x′, t) to (x, t+ τ), with τ > 0. As the
integral sums over all possible starting points x′, this equation corresponds to the conservation of
probability. We can obtain a differential equation for P (x, t) by Taylor-expanding the integrand
of the previous equation in small spatial deviations ∆x = x− x′, such that we have

T (x, t+ τ |x′, t)P (x′, t) = T (x−∆x+ ∆x, t+ τ |x−∆x, t)P (x−∆x, t)

=

∞∑
n=0

(−1)n

n!
(∆x)n

∂n

∂xn
P (x+ ∆x, t+ τ |x, t)P (x, t) . (B.4)

This expression can be used in Eq.(B.3), which then yields

P (x, t+ τ) =

∫ ∞∑
n=0

(−1)n

n!
(∆x)n

∂n

∂xn
P (x+ ∆x, t+ τ |x, t)P (x, t)dx′ . (B.5)

Using the moments Mn (n ≥ 1) defined by

Mn(x′, t, τ) = 〈[ξ(t+ τ)− ξ(t)]n〉 |ξ(t)=x′ =

∫
(x− x′)nT (x, t+ τ |x′, t)dx , (B.6)

we can write the time variation as

P (x, t+ τ)− P (x, t)

τ
=

1

τ

∫ ∞∑
n=1

(−1)n

n!
(∆x)n

∂n

∂xn
P (x+ ∆x, t+ τ |x, t)P (x, t)dx′

=
1

τ

∞∑
n=1

(−1)n

n!

∂n

∂xn
Mn(x, t, τ)P (x, t) . (B.7)
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We can also Taylor-expand the moments to first order, as we want to go to the limit τ −→ 0. It
yields

Mn(x, t, τ)

n!
= D(n)(x, t)τ +O

(
τ2
)
, (B.8)

which can be used to write

∂

∂t
P (x, t) = lim

τ−→0

P (x, t+ τ)− P (x, t)

τ
=
∞∑
n=1

(−1)n
∂n

∂xn
D(n)(x, t)P (x, t) . (B.9)

In our current case of δ-correlated noise (white noise), the moments for n > 2 vanish and so we
obtain

∂

∂t
P (x, t) =

[
− ∂

∂x
D(1)(x, t) +

∂2

∂x2
D(2)(x, t)

]
P (x, t) , (B.10)

the well-known as the Fokker-Planck equation.
For the extension to higher dimensions, we will give the F-P equation for the probability
P (~x, t|~x0, t0) with initial condition

P (~x, t0|~x0, t0) = δn
(
~x− ~x′

)
. (B.11)

For this, let us consider a vector equation similar to Eq.(B.1) (summation convention implied)

ξ̇i(t) = hi

(
~ξ, t
)

+ gij

(
~ξ, t
)

Γj(t) , (B.12)

containing now multiple white noise with〈
Γi (t) Γj

(
t′
)〉

= 2δijδ(t− t′) . (B.13)

The associated F-P equation is then given by [55,77]

∂

∂t
P (~x, t|~x0, t0) =

[
− ∂

∂xi
D

(1)
i (~x, t) +

∂2

∂xj∂xj
D

(2)
ij (~x, t)

]
P (~x, t|~x0, t0) , (B.14)

with the drift and diffusion coefficients generally given by

D
(1)
i (~x, t) = hi(~x, t) + gkj(~x, t)

∂

∂xk
gij(~x, t) , (B.15a)

D
(2)
ij (~x, t) = gik(~x, t)gjk(~x, t) . (B.15b)

(B.15c)

It is also worth mentioning that the F-P equation can be understood as a conservation law for
the probability current J defined by (in on dimension)

J =

[
D(1)(x, t)− ∂

∂x
D(2)(x, t)

]
P (x, t) , (B.16)

such that we can write
∂

∂t
P +

∂

∂x
J = 0 . (B.17)

Finally, we also need to mention that there is a backward F-P equation in opposition to the
forward equation presented earlier. The forward equation describes the time evolution of the
probability density P, starting from a set of initial condition (x0, t0), for later times t > t0. In
some situations, however, one would like to know how the initial distribution depends on fixed
final conditions, as it happens to be the case for the mean first passage time calculation used in
chapter 2. For such cases, on can write a reverse time evolution equation with a backward F-P
equation which is given by

∂

∂t0
P (~x, t|~x0, t0) =

[
−D(1)

i (~x0, t0)
∂

∂x0
i

+D
(2)
ij (~x0, t0)

∂2

∂x0
j∂x

0
j

]
P (~x, t|~x0, t0) , (B.18)

associated with the final condition

P (~x, t|~x0, t) = δn
(
~x− ~x′

)
. (B.19)
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Appendix C

Modeling a Fault source

At the end of chapter 4, we needed to model a tsunami source that had a geometry closer to
what we would find in the case of a dip-slip earthquake, which usually occurs on a fault. This
topic has been studied in [78] and they propose a method that allows one to transpose the
deformation of the ocean floor onto the surface of the ocean. As we used this kind of initial
condition throughout this thesis, we will apply this method here, using the geometry of the
source that they suggest. Considering that the fault’s main axis is in the y-direction, i.e. the
main propagation direction of the wave will be x, the complete expression we used is

η(x, y, t = 0) = η0

[
arctan

(x
d

)
− arctan

(
x

d− L

)
− (d− L)x

x2 + (d− L)2
+

d x

x2 + d2

]
×

[
1 + tanh

(
y −D
a

)
tanh

(
−D − y

a

)]
. (C.1)

where η0 gives the initial amplitude of the wave, d and L are the parameters of the fault (as
described in [78])(here d=4 and L=2), D is half of the length of the fault (here 400) and a is
steepness factor for the edge of the fault (here a=20). The first brackets contain the fault
function described in [78], as shown in Fig.C.1. The second bracket is a combination of smooth
step functions (hyperbolic tangents) which define the length of the fault. A 3d view of this initial
condition can be seen in Fig.C.2.
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Figure C.1: The profile of the fault function.
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Figure C.2: A 3D view of the fault initial condition that we used. The units in z are arbitrary
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Appendix D

Hamiltonian for shallow water rays

When we needed to derive the equations for the time evolution of the stability matrix elements
for the shallow water rays in chapter 4, our first idea was to find a Hamiltonian and follow what
we did in chapter 2. Furthermore, we could have used this Hamiltonian in order to study the
evolution of the curvature of the action through the Hamilton-Jacobi equation, which would have
probably made most of our derivations much easier. This, however, appears impossible with the
variables (~x, ~p), as we would be looking for a Hamiltonian function H(~x, ~q), such that

~̇x =
∂H
∂~p

, (D.1)

~̇p = −∂H
∂~x

. (D.2)

This can be transformed into a set of PDEs, using the known ray equations derived in chapter 3,

∂H
∂~p

= (1− β(~x))~p , (D.3)

−∂H
∂~x

=
c2

0∇β(~x)

2(1− β(~x))
. (D.4)

From the first equation, we could already say that

H(~x, ~p) =
1

2
(1− β(~x))(~p · ~p) + F (~x) , (D.5)

where F (~x) is an arbitrary function of ~x. This is unfortunately not compatible with the second
equation, which leads to

c2
0∇β(~x)

2(1− β(~x))
= −1

2
∇β(~x)(~p · ~p) +∇F (~x) , (D.6)

which is unsolvable since F (~x) is only a function of ~x and there is a ~p · ~p term left.
Our inability to write the shallow water ray equations in terms of a Hamiltonian has strongly
complicated our analysis throughout chapter 4.
This simple calculation does not exclude, however, that there might exist a pair of canonically
conjugated variables (~χ(~x, ~p), ~ψ(~x, ~p)) for which there is a Hamiltonian formulation to this
problem. Our attempts at finding such variables failed.
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Appendix E

Remarks on the numerical
simulations and open questions

Most of the theoretical work presented in this thesis is supported by numerical simulations that
confirmed the analytical results. As the numerics are omnipresent in this thesis and actually
needed a lot of care, we believe that it is relevant to give some comments on our procedures.
Even though the ray simulations were calculated using methods that were sensibly different from
the ones needed for the wave simulations, there was a key component that was common to both,
which is the random potential. We used the same code for both kinds of simulation and we refer
the reader to appendix A for details concerning our model and the relevant references. One of the
biggest challenges coming with such a tool is that we are working with a finite size grid, meaning
that the correlation functions are truncated at the boundaries. This fact can lead to troubles
when dealing with heavy-tailed correlation functions, such as power-laws. Indeed, as a significant
part of the correlation function is cut off by the boundaries of the grid, the actual correlation
function of the output potential is not the same as the one we input in the code. Typically, once
we have a random potential, we can reverse-engineer the correlation function by inverting
Eq.(A.2) in the following way

c(x, y) = FT −1
[
|FT (V (x, y))|2

]
. (E.1)

Fortunately, most of the present work was done using Gaussian correlation functions, which
decay sufficiently fast such that we avoid this problem. We have to mention, though, that we had

problems when we tried to confirm the correlation function factor κ
−1/3
1 in the scaling for the

distance to the first caustics from Eq.(4.60) as even the alternative correlation function
c(r) = cosh−1(r/lc) did not give the same result for the prefactors Cws , with values differing by
20%. We have so far failed to explain why. Another issue, which is however far less problematic,
comes from the fact that enough grid points per correlation length are needed in order to have a
high enough resolution of the correlation function. We typically found that a minimum of 12 grid
points per correlation length is needed.
On the topic of correlation function, we realized that the expression for σ2 given in chapter 2 can
sometimes be problematic. Indeed, with σ2

2 given by

σ2
2 =

6ε2

l3cc0
κ2 , (E.2)

and κ2 defined as

κ2 :=

+∞∫
−∞

dzf (2)(z2) , (E.3)
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we sometimes obtain negative values for σ2
2, e.g. for c(r) = ε2e−r

4/l4c , as we have

κ2 :=

+∞∫
−∞

dz[4z4 − 2]e−z
4
< 0 . (E.4)

We so far failed to find a proper general constraint on the correlation functions for the diffusion
approximation to be valid, but it appears that there are functions that do not allow it.
For the classical ray simulations, we used the same code that was used for [37], which we also
adapted to the water ray simulations, mainly by changing the ray equations and the stability
matrix equations. This code produces potentials of a finite size, which are then repeated in a
periodic paving. This can lead to problems when trajectories travel over long distances, as they
cover several times the same potential, which can bias the statistic of the first caustics, as we
observed many times when we produced the plots.
For the wave simulations, the whole grid consists in a single potential, so we did not have to
concern ourselves with this issue. However, another problem is recurrent with the wave
simulations, which is the resolution. In order for the waves to be smooth and to behave like
waves, we need to have a minimal resolution in the wave profile. Again a minimum of 12 grid
points per wavelength appears to be a good choice. Furthermore, in order to work in the
geometrical optics limit and easily visualize branching patterns, the correlation length should be
sufficiently larger than the wavelength, typically 10 times larger. However, branching and the
associated heavy tailed intensity distribution are still present with λ ∼ lc. Finally, considering the
above-mentioned problem of the number of correlation lengths per grid and the fact that caustics
usually emerge after a few correlation lengths, this constrains us to using grids that have at least
1000× 1000 grid points and sometimes manymore (up to 11000× 11000 for the scaling in the
point source case). This explains why we mentioned many times how demanding the wave
simulations are.
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