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V. Abstract 

Root-knot nematodes (Meloidogyne sp.) present a constant threat to agriculture worldwide. 

When present in the field, they can infect roots and cause a distorted root structure. This strongly 

reduces crop production and cause crop losses worth billions of dollars annually. Due to recent 

banning of many front-line nematicides and the limited number of naturally of resistant plant 

cultivars, it is essential to understand how these pathogens are able to infect host plants and 

establish their feeding sites so that we can engineer novel resistance strategies. Nematodes can 

secrete proteins during the infection process to help them manipulate plant responses and 

establish feeding sites. We call these proteins “effectors.”  Recent publications have shown that 

root-knot nematodes potentially secrete hundreds of effectors. Unfortunately, root-knot 

nematodes are a challenging pathogen to study, and all but a handful of root-knot nematode 

effectors have been characterized. To characterize novel nematode effectors, I employed a rapid 

screen that delivers effectors into the plant cell using the type three secretion system of 

Pseudomonas syringae pv. tomato DC3000. This screen was called the “effector detector 

vector” (EDV) screen. Seven effector candidates were identified from a bioinformatic search 

of the M. hapla proteome and were used in this EDV screen. Two candidates that could enhance 

bacterial growth on wild type Arabidopsis were prioritized for additional study. One candidate 

effector, called Mh270, became the focus of my thesis. Mh270 showed an increase in gene 

expression in the pre- and early stages of the nematode life cycle, which hinted at a role in 

parasitism. Mh270 encodes a transthyretin-like protein (TTR) whose transcript hybridized to 

chemosensory pores (the amphids) of the nematode. TTR proteins are often found the 

excretory/secretory products of parasitic nematodes, but their roles are unknown. Transgenic 

Arabidopsis lines ectopically expressing Mh270 were tested for altered nematode susceptibility 

and PAMP-triggered immunity (PTI). Several different elicitor-induced PTI responses were 

studied in the Mh270 transgenic plants (ROS burst, callose deposition, root growth inhibition, 

PTI-marker gene expression). The transgenic lines did not show altered susceptibility to root-

knot nematode nor were they affected in any of the PTI responses that were tested. In addition, 

only when Mh270 was delivered by Pst DC3000 and not by less virulent Pseudomonas strains, 

which lacked certain effectors, could Mh270 enhance bacterial growth, suggesting Mh270 may 

work in conjunction with other proteins in the virulent bacteria in order to help enhance 

virulence. To gain even more information about the function of Mh270, the subcellular 

localization of Mh270 in plants was studied. A C-terminal GFP tagged Mh270 showed 

cytoplasmic localization in the roots while in the leaves, it showed chloroplastic localization. 

Meanwhile, a yeast-two-hybrid screen revealed that Mh270 can interact with a mitochondrial 
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membrane-localized Arabidopsis thaliana voltage dependent anion channel (AtVDAC3) in 

yeast. Possible explanations regarding Mh270’s differential in localization in roots and leaves 

and in regards to its interaction with an AtVDAC-partner will be discussed 
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1. Introduction 
 

1.1 The importance of root-knot nematodes – Meloidogyne sp. 
 

Root-knot nematodes (RKN) are small round worms belonging to the phylum Nematoda, which 

have adapted a plant parasitic life-style. As soil borne pathogens they infect root tissue, 

manipulate the plant to form a feeding site, and cause root swelling. This abnormity of the root 

is termed a gall, and it inhibits water and nutrient transport to the shoot (Figure 1.1). In addition, 

fitness reduction of infected plants often leads to secondary infections by other pathogens 

(Barker et al., 1994). Overall, nematode infections result in a reduced productivity of infected 

plants and a subsequent crop losses for farmers. It is expected that RKN cause up to 5 % of all 

crop losses worldwide and are the most damaging group of plant parasitic nematodes (Perry et 

al., 2009). 

 

With a demand for food is increasing, mainly due to a growing world population, food 

production and security is becoming ever more important. It is estimated that the world’s 

population will reach 8 billion in 2020 and that the demand for food will rise even more (FAO, 

2014). To ensure food security, efficient methods to control RKNs will become all the more 

important. With bans on many front-line nematicides (Gowen, 1992), a broad host range that 

may preclude crop rotation, and a paucity of natural resistance genes, scientists are looking for 

new approaches for controlling RKN. 

Figure 1.1: Tomato roots heavily infected with M. incognita. Infection of the tomato roots by the southern root-knot 

nematode M. incognita causes intense swelling of the root (right) in comparison to a uninfected tomato root (left). Galling 

causes problems for the plant including a reduction of water uptake and nutrients (from Mitokowski, 2001). 
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Generally, most research has focused on RKNs which possess a broad host range. Nematodes 

such as M. incognita, M. javanica, and M. hapla have host ranges that include  most vascular 

plants, including major food crops (Trudgill and Blok, 2001). For example, Meloidogyne hapla, 

the northern root-knot nematode, can reproduce on most dicotelydons including the model 

organism Arabidopsis thaliana, and M. hapla infections have been reported on all continents 

where agriculture is present (Figure 1.2). Some RKN species have a more limited host range.  

For example, the rice root knot nematode M. graminicola has a relatively narrow host range 

and is primarily a parasite of grasses. However, the fact that it can devastate rice, a major food 

crop, means that it receives a lot of attention (Choi-Pheng and Birchfield, 1979). While only 

the genomes of two root-knot nematodes (M. incognita (Abad et al., 2008) and M. hapla  

(Opperman et al., 2008)) have been sequenced and annotated, extensive work has been done to 

generate proteomic and gene expression datasets for several other species which will help 

contribute to broad our knowledge of these important root pathogens (Fosu-Nyarko et al., 2009; 

Haegeman et al., 2013; Mbeunkui et al., 2010; Roze et al., 2008). 

  

Figure 1.2 : Worldwide distribution of M.hapla. Black dots indicate the presence of M.hapla, blue dots indicate a 

widespread contamination and yellow dots show only an occasional contamination (from CABI.org, 2015)  
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1.2 Meloidogyne sp. biology 
 

 

The life cycle of root-knot nematodes 

The nematode begins life inside an egg, within which a stage 1 juvenile develops and 

subsequently moults to reach the infective juvenile 2 stage (J2). Hatching of J2 is mainly 

influenced by temperature and soil moisture content. Additionally, J2 will hatch faster if root 

exudates are present. These root exudates also allow the J2 to locate and move towards their 

host plant root system. The amphids, chemosensory organs located at the head of the nematode, 

are mainly thought to be involved in detection of molecules that lead the nematodes to the plant 

root (Chitwood and Perry, 2009). Although the identity of the nematode attractants in the root 

exudate are not fully known, previous studies have shown  that pH gradients and indole-acetic 

acid (IAA) can attract J2 to the roots (Bird, 1959; Curtis, 2008). It was also shown that the most 

attractive part of the root for J2 is the elongation zone directly behind the root tip (Bird, 1959).  

Plant parasitic nematodes secrete enzymes, such as cellulases, that soften cell walls and allow 

them to enter and move intercellularly through the root without causing significant root damage 

Figure 1.3 : The life cycle of Meloidogyne sp. Stage 1 juveniles moult within the egg. Infective J2 hatch and move towards 

the root, enter and migrate to the vascular cylinder to establish a feeding site. After manipulation and feeding is complete they 

moult twice and subsequently become adult males or females. While males leave the root, the females continue feeding and 

finally lay eggs in a gelatinous matrix (from Mitokowski, 2001). 
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(Wubben et al., 2010). The infective juveniles first migrate towards the root tip in order to 

bypass the Casparian strip and enter the vascular cylinder. Subsequently, they migrate up 

through the vascular cylinder. It is within the vascular cylinder that the nematode stops 

migrating and tries to establish a feeding site. These feeding sites contain of up to 12 cortical 

cells which undergo mitoses without cytokinesis. The resulting hypertrophied, multinucleated 

feeding site is called a giant cell. The giant cells act as nutrient sinks within the plant, and the 

nematode uses them to obtain the necessary nutrients to moult and develop. Depending on 

nematode and host, swelling of the plant tissue that surrounds the feeding sites and nematodes 

leads to the formation of the gall. The J2 feed and then moult into stage 3 and stage 4 juveniles. 

The J4 will eventually perform one last moult to be become either adult male or female. 

Depending on the stress conditions and nematode species, the ratio of male to females can vary 

drastically. Generally, Meloidogyne sp. males are observed during unfavorable conditions for 

nematode feeding. Adult males leave the root without feeding while females start to feed again 

to eventually lay their eggs (Starr et al., 2009). Adult females produce eggs in a gelatinous 

matrix either outside or inside swollen and infected root tissue (Figure 1.3). The matrix 

surrounding the eggs is thought to be mainly made of glycoproteins, which keep the eggs 

together in an egg mass. The egg mass can protect the individual eggs against abiotic stresses 

and predation (Starr et al., 2009). Furthermore, it has been shown that the egg mass matrix 

possesses antimicrobial characteristics which protect the eggs against attacks by 

microorganisms (Orion et al., 2001). 

For the establishment of the feeding sites, the nematode uses a straw-like, protractible stylet to 

pierce the plant cell wall and form a hole in the plasma membrane. It does not ingest from the 

cytoplasm directly, but forms a proteinaceous feeding tube in the plant cytoplasm, which is 

presumed to act as a sieve to filter the cytoplasm (Eves-van den Akker et al., 2014a). The 

nematode feeds on the amino acids and solutes in the giant cells.  

As the nematode migrates and feeds esophageal secretions are released from the nematode 

through the stylet. There are three esophageal glands in RKNs that can produce secretions 

through the stylet: two subventral and one dorsal. Two subventral glands secrete proteins during 

root invasion and migration, whereas the dorsal gland secretes proteins during the formation of 

the feeding sites (Davis et al 2008). In addition to the esophageal glands, the nematode has 

amphids, which are chemosensory organs at the head of the nematode. The amphidal pocket is 

open to the outside, and secretions made in the amphid may diffuse into plant apoplast (Goverse 

and Smant, 2014). In addition, the nematode can secrete proteins from its surface cuticle 
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(Davies and Curtis 2011). Since cuticle secretions are in direct contact with the plant, they may 

be important for parasitism. Only a few studies have actually looked at the localization of 

nematode secretions in planta. Previous studies have shown that certain nematode proteins, 

when secreted in planta by the nematode, can accumulate in the plant’s apoplast, the cell wall, 

and within the giant cell itself (Jaouannet et al., 2012; Rosso et al., 2011; Vieira et al., 2011). 

Overall, secretions from the stylet, amphids, and cuticle are thought to play key roles as 

effectors. Nematode effectors can alter host cell physiology, generate a feeding site, and 

suppress the immune response. 

Manipulation of the host plant by Meloidogyne sp. 

RKNs are entering the plant and secreting effectors that alter root cell morphology and help to 

form the feeding site (Figure 1.4). If the generation of giant cells fails, the nematode is not able 

to finish its life cycle. Interestingly, due to the wide host range of some RKN species, it is 

thought that RKN effectors target and manipulate conserved plant pathways involved in defense 

and development (Trudgill, 1997). The understanding of this manipulation of the plant may 

hold the key to engineer plant defenses against nematodes.  

  

Figure 1.4: Schematic of a root-knot nematode manipulating a plant cell.  The head of the nematode is directed 

towards the plant cell. Secretions are translocated towards the plant cell directly via the amphids or coming from the 

dorsal or esophageal gland through the stylet. Secreted molecules are thought to act at the in the apoplast or inside the 

plant cell to manipulate the plant cell towards becoming a feeding site while potentially downregulating defense 

mechanisms (from Williamson and Hussey, 1996). 
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Giant cells undergo drastic changes during their transition from standard vascular cells to  

mature feeding sites (Kyndt et al., 2013), and several investigations have been performed to 

understand the transcriptional alterations that are happening during the giant cell development. 

Analyses of laser dissected giant cells in rice, tomato, and Arabidopsis showed intense 

alterations in comparison to non-infected vascular cylinder cells. Transcriptome analysis of 

microdissected Arabidopsis giant cells at 3 dpi revealed that 1161 genes were differently 

regulated in comparison to control roots, with the majority down-regulated (Barcula et al, 

2010). Interestingly, gene expression in the giant cells was shown to have significant overlap 

with genes regulated during infection with the root biotroph Agrobacterium tumefaciens 

(Barcala et al., 2010). Laser dissected giant cells at 4 and 7 dpi in tomato also showed that major 

transcriptional changes were occurring. These changes included an upregulation of genes in 

general metabolism and protein synthesis and turnover (Fosu-Nyarko et al., 2009). The 

differences in the gene expression profiles between these Arabidopsis and tomato may be a 

result of the different plants studied or it may be a result of the nematode influencing different 

plant genes at early (3 dpi) and later (4 and 7 dpi) time points of infection. In summary, it can 

be stated that strong transcriptional reprogramming precedes the physical development of the 

feeding site. 

 

Considering that auxin is a phytohormone that is involved in turning plant tissue into tumors, it 

is not too surprising that enhanced auxin levels have been seen in developing gall tissue 

(Gheysen and Mitchum, 2011). Evidence for the important role of auxin comes from the fact 

that auxin signaling mutants are much less susceptible to root-knot nematodes (Goverse et al., 

2000). Using the artificial DR5 promoter, which contains auxin responsive elements, scientists 

have seen strong DR5::GUS and DR5::ER-GFP expression in the roots infected by RKNs 

(Absmanner et al., 2013; Karczmarek et al., 2004). Due to the recent availability of 

transcriptomic datasets of giant cells, it could also be shown that auxin responsive genes are 

manipulated during feeding site formation. For example, two auxin responsive factor genes 

(ARF) and one auxin responsive gene (IAA8) are upregulated in the 3 dpi giant cell (Barcula et 

al 2010). Interestingly, cyst nematodes have the ability to manipulate the polar auxin transport 

by manipulating the basal and temporal expression of PIN auxin transporters (Grunewald et al 

2009). Cyst nematodes generate a feeding cell that is very morphologically different to that of 

RKNs and the role of PIN auxin transporters in giant cells is still unknown (Grunewald et al., 

2009). 
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Salicylic acid (SA) is a phytohormone known to be involved in stimulating plant defense 

responses (Nicaise et al., 2009). Although SA is classically associated with the resistance to 

biotrophic pathogens, no evidence has been found to directly connect SA-induced responses 

with an effect on the RKN-plant compatible interaction. In contrast, the antagonistically acting 

hormone jasmonic acid (JA) has been found to negatively influence RKN infection of 

susceptible plants. Exogenous jasmonic acid application (Nahar et al., 2011) or JA-induced by 

wounding (Snyder et al., 2006) induces nematode resistance. The nature of this resistance is not 

known, but it may be linked to JA causing a decrease in the attractiveness of the roots. It has 

also been shown that the hormone ethylene (ET), that often has a close association with JA 

signaling, is involved in RKN infection, and it also affects root attractiveness to nematodes. 

The testing of ethylene biosynthesis and signaling mutants in Arabidopsis showed that to ET 

overproducing mutants presented a nematode repellent phenotype (Fudali et al., 2012). 

Ethylene-dependent lignification of the roots may also limit nematode penetration (Fujimoto et 

al., 2015). 

1.3 The plant defense system and pathogen effectors 
 

Root-knot nematodes can enter a prolonged, intimate interaction with host plants and yet, they 

do not seem to activate host immune responses in a compatible interaction. Since plants are 

generally resistant to most pathogens (Staskawicz et al., 2001) it is important to understand the 

layers of plant defense and how the nematode may be manipulating these responses. 

During evolution plants have develop different mechanism and layers of defense to fight off 

pathogens. Constitutive defenses are physical barriers that are able to block most potential 

threats which include cell walls and waxy epidermal cuticles. If physical barriers fail, plants 

also have inducible defense responses which can lead to production of toxic compounds, 

specific cell wall strengthening or cell death to prevent further development of the pathogen. 

These responses are tightly regulated to not interfere with normal plant growth and development 

(Freeman and Beattie, 2008). 

The first inducible layer of plant defense 

The most conserved and first layer of inducible defense is based on the recognition of pathogen 

derived molecules that are essential for their life style as flagellin from bacteria or chitin from 

fungi (Postel and Kemmerling, 2009). These molecules are termed pathogen associated 

molecular patterns (PAMP). The recognition of these molecules is performed by plasma 

membrane bound pattern recognition receptors (PRRs). This recognition leads to several 
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downstream events that, if successful, lead to PAMP triggered immunity (PTI) (Zipfel, 2008). 

PRRs in plants are either receptor kinases or receptor-like proteins with different ligand 

ectodomains that have the ability to bind to pathogen derived molecules. As soon as these 

receptors bind to their respective target, the cytosolic domain activates a signaling cascade. One 

of the most researched receptor complexes is the PRR flagellin sensing 2 (FLS2) which 

recognizes the bacterium derived flagellin proteins and the peptide flagellin22 (flg22). FLS2 

possesses an external leucine-rich-repeat (LRR) domain and a cytosolic kinase domain. After 

recognition of flg22 FLS2 associates with the co-receptor BR1- associated receptor kinase 

(BAK1) which in turn leads to downstream signaling of the internal kinase domains (Zipfel, 

2014). Subsequent responses of the plant cell include calcium flux into the cell (Tuteja and 

Mahajan, 2007) and an apoplastic burst of reactive oxygen species (ROS) (Wojtaszek, 1997). 

Additionally, transcriptional changes can be observed that lead to the production of 

antimicrobial compounds and to the deposition of callose that the plant uses to stop pathogens 

from entering the cell (Clay et al., 2009; Vidhyasekaran, 2013). 
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Effector triggered susceptibility and plant derived R-genes 

Because pathogens need to overcome the induced plant defenses to successfully colonize the 

host, they acquired a diverse range of proteins that try to control plant defenses. These proteins 

are called effectors and support the pathogen in the compatible interaction in what is termed 

effector triggered susceptibility (ETS). To counteract these effectors plants acquired resistance 

(R) proteins that enable them to detect effectors and react to pathogen infections, leading to 

effector triggered immunity (ETI). Resistance genes (R-genes) that confer resistance on a gene 

for gene basis are often nucleotide-binding leucine rich repeat (NB-LRR) proteins and classified 

into two groups, depending on their N-terminal domain. One group contains a toll-interleukin-

1 receptor (TIR) while the other a coiled-coil (CC) domain (Elmore et al., 2011). Activation of 

either R-gene variant causes a strong defense response including the generation of ROS with 

subsequent cell death (Jones and Dangl, 2006). Thus, ETI  is generally known to cause a much 

stronger defense response than PTI and often results in a hypersensitive responsive (HR) (Cui 

et al., 2015). Depending on how a pathogen is suited to infect a certain host plant, the presence 

of pathogen effectors and their respective plant resistance gene will determine the success of 

the infection (Figure 1.5). 

Figure 1.5 : Zig-Zag model – coevolution of defense mechanism with pathogen derived effectors. Plants use PRRs to 

recognize conserved molecules derived from pathogens causing PAMP triggered immunity. Effectors secreted by pathogens 

allow them to overcome plant defenses and establish a compatible interaction leading to effector triggered susceptibility. If 

an R-gene is present to detect the secreted effector, defense responses are triggered leading again to resistance due to effector 

triggered immunity and hypersensitive response. Pathogens effector efficiently targeting R-gene mediated resistance can 

subsequently establish a compatible interaction once more (Jones and Dangl. 2006) 
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RKNs and their impact on PTI  

While PAMPs of bacterial or fungal pathogens were identified relatively early, PAMPs of plant 

parasitic nematodes have remained elusive. Just recently, a newly identified PAMP of 

nematodes, a pheromone called ascaroside, was shown to trigger defense reactions in plants 

(Manosalva et al., 2015). Plants treated with a plant-parasitic nematode specific ascaroside were 

less susceptible to diverse pathogens, including Pseudomonas syringae pv. tomato, 

Phytophtora infestans and the sedentary cyst nematode Heterodera schachtii as well as the 

root-knot nematode M. incognita. In line with the reduced susceptibility against various 

pathogens, ascaroside treatment caused MAP kinase activation and induced PTI marker gene 

expression (Manosalva et al., 2015). Ascarocides were identified to be conserved among 

nematodes influencing behavior as attraction and avoidance, and plants may have evolved to 

recognize this conserved nematode signature (Choe et al., 2012). 

Although a nematode PAMP has been recently identified, in the compatible plant-nematode 

interaction, there is no evidence, yet, for basal defenses triggered by nematode infection. This 

suggests that the nematode may be actively suppressing PTI by secreting effectors. The RKN 

may also have to suppress basic plant defenses to efficiently establish their feeding sites.  

Because nematode effectors are a key element of to the plant-nematode interaction, many 

approaches have been taken to identify nematode effectors. For example transcriptomic analysis 

on gland tissue cytoplasm has been performed (Wang et al., 2001). More recently, a proteomic 

analysis of M. incognita gland secretions has provided useful peptide information about 

possible effectors secreted through the nematode stylet (Bellafiore et al., 2008). The completion 

of the genomic sequence of two root-knot nematodes (M. incognita and M. hapla) and a cyst 

nematode species, has also aided the identification of nematode effectors (Abad et al., 2008; 

Cotton et al., 2014; Opperman et al., 2008)). T 

Most current effector research has been performed in the cyst nematode-plant pathosystem 

because it is an easy nematode in which to work. In cyst nematodes several effectors and their 

respective targets were identified. Effects like the modification of cell walls a by cellulose 

binding protein (Hewezi et al., 2008), suppression defense responses by annexin-like 4F01 

(Patel et al., 2010), or the alteration of cell fate by a CLAVATA3-like (CLE) proteins (Replogle 

et al., 2011) are examples on how cyst nematode effectors can manipulate the plant host. In 

fact, cyst nematode CLE peptides are particularly interesting since it was shown that they are 

secreted directly into the plant cell where they are recognized by plant machinery and undergo 
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plant-mediated protein modifications. The processed peptides are then delivered to the apoplast 

where they act as mimics of plant CLE peptides, triggering signaling pathways that somehow 

promote parasitism (Chen et al., 2014; Mitchum et al., 2012). Another example of an effector 

from cyst nematode is the venom allergen-like protein (VAP). Expression of the cyst nematode 

Gr-VAP1 in Arabidopsis resulted in a suppression of basal immune responses and enhanced 

susceptibility to several, unrelated pathogens (Lozano-Torres et al., 2014). 

So far, only 6 root-knot nematode effectors have been identified and characterized. For 

example, a protein secreted by RKN called Mj-FAR-1 identified to influence defense signaling 

cascades by manipulating lipid based signaling. Mj-FAR secreted from the cuticle of the 

nematode influenced JA responses by potentially binding lipid precursors. Although, FAR 

could not increase infection rate of RKN, gall development was enhanced and more J2 became 

adult females (Iberkleid et al., 2013). 

The root-knot feeding cells are highly metabolically active. Therefore, it was not surprising that 

an effector was discovered that may affect metabolic status of host cells. RKN secrete 

chorismate mutases into the plant cell (Doyle and Lambert, 2003). Chorismate mutase catalyzes 

the conversion of chorismate to prephenate. Chorismate is the precursor for salicylic acid and 

auxin. Soybean hairy roots expressing the nematode derived chorismate mutase exhibited a 

phenotype with less lateral roots and distorted vascular tissue. This lead to the conclusion that 

RKN might secrete these proteins to alter plant cell fate and establish their feeding site (Doyle 

and Lambert, 2003). Interestingly, smut fungi also secrete chorismate mutase into the plant cell, 

which leads to a reduction of available chorismate for salicylic acid biosynthesis (Djamei et al., 

2011). 

In RKNs, a M. incognita effector – calreticulin (CRT) – was identified to suppress PAMP 

triggered responses. PAMP induced gene expression was nearly completely abolished in plants 

expressing Mi-CRT. Furthermore, when the Mi-CRT transgenic Arabidopsis plants were treated 

with an elicitor, elf18, there was reduced callose deposition compared to the controls. 

Correspondingly, pathogen infection assays with M. incognita and Phytophthora arabidopsidis 

revealed an increased susceptibility of Mi-CRT expressing plants in comparison to the wild type 

control (Jaouannet et al., 2013). 

So far, the only RKN effector with an effect on basal plant immunity identified thus far is Mi-

CRT. Other effectors have been identified, but their mode of action is still unknown. For 

example, M. javanica derived NULG was able to positively influence the success of RKN 
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parasitism when expressed in planta. When the M. incognita effector 7E12 was expressed in 

tobacco plants, the plants were also more susceptible to nematodes (Souza et al 2011).   

Nematode effectors and ETI 

There are a handful of natural resistance genes against plant parasitic nematodes. For example, 

Gpa2 confers resistance in potato to the potato cyst nematode. In tomato, the gene Mi-1 confers 

resistance to the tropical and apomictic species M .incognita, M .arenaria and M. javanica but 

fails to protect the plant against other RKN species including M. hapla (Liu and Williamson, 

2006; Vos et al., 1998). Another nematode R gene, Ma makes Prunus cerasifera highly resistant 

to all RKN (Lecouls et al., 1999) and Me confers resistance to M. incognita, M. arenaria and 

M. javanica in pepper (Djian-Caporalino et al., 2007). Researchers are interested in the cognate 

avirulence proteins in the pathogen that is recognized by these R genes particularly because 

resistance breaking nematode strains have already been observed for Mi-1 (Ornat et al., 2001) 

in tomato and R MC1 in potato (Janssen et al., 1998). So far, only two root-knot nematode 

effectors have been identified that are associated with nematode resistance responses, and in 

particular, the resistance mediated by Mi-1. CG1 was shown to be involved in the recognition 

by Mi-1 since silencing the gene resulted in resistance-breaking nematodes; MAP1 was only 

found in avirulent M. incognita strains, suggesting that it may be recognized by Mi-1 (Gleason 

et al., 2008; Semblat et al., 2001). 

In cyst nematodes an effector called SPRYSEC-19 was shown to inhibit cell death mediated by 

CC-NB-LRR proteins and therefore preventing ETI (Postma et al., 2012). Although no effector 

has been identified in RKN to suppress ETI this finding shows that sedentary plant parasitic 

nematodes do possess the ability to act against this layer of defense and that further research 

will potentially reveal similar effectors in RKN. 
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1.4 Goal of this thesis  
 

RKN are an important plant pathogen. To engineer novel resistance strategies to these pests, 

we must first understand the compatible plant-nematode interaction. I focused on the species 

M. hapla, which is suited for temperate climates and found in organic farms in Germany (J. 

Hallmann et al., 2007). This thesis focused on the potential effectors involved in the early stages 

of M. hapla infection with the special interest on effectors potentially downregulating plant 

defenses, in particular PTI. The first aim of my thesis was to identify several novel effector 

candidates from the M. hapla proteome which had no previously known function. 

Unfortunately, RKN are challenging pathogens on which to work. Because they cannot be 

transformed, there are limited options for the functional analysis of their genes, such as 

generating stable transgenic lines. To speed up effector discovery, the second goal of my thesis 

was to develop a novel screen to quickly and easily determine if those candidates, when 

expressed in bacteria, could increase bacterial virulence in plants. 

In this screen, candidate genes introduced into this vector are directed towards the type three 

secretion system (TTSS) by the N-terminal attachment of a signal peptide deriving from 

avrRPS4. The TTSS gives Pseudomonas syringae the ability to directly translocate effectors 

into the plant cell, and effects on bacterial virulence can be quantified. After an initial screen of 

several M. hapla effector candidates in a bacterial system, I focused on one candidate in 

particular called Mh270. Mh270 encodes a transthyretin-like protein, which has been found in 

the secretions of other parasitic nematodes. The transcript was localized to the head of the 

nematode and possibly secreted during parasitism.  Because Mh270 affected bacterial growth 

in planta, I hypothesized it may be affecting basal plant defenses.  Thus, the third goal of this 

thesis was to determine, what, if any, effects Mh270 expression in the plant might have on plant 

basal immune responses. Ectopic expression in Arabidopsis followed by a series of PTI-assays, 

including callose deposition, ROS burst, and PTI- marker gene expression assays, were 

performed, However, no effects of Mh270 on these PTI-readouts were detected A yeast-two-

hybrid was then performed to identify the plant target. This assay gave tantalizing possibility 

that mitochondrial-based cell death pathways may be a target of Mh270, although additional 

experiments are needed. Based on these assays, I have gained a better understanding Mh270 

and have ruled out many possibilities for its role in the plant-nematode interaction. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Devices 

Listed below are the all the used devices that were used during the different experiments of this 

thesis (table 2.1). 

Table 2.1 : Equipment used during the experiments of this thesis. Device type, model and producer are listed. 

Device Model Source 

Autoclave 3870 ELV Tuttnauer 

Autoclave VX95 Systec 

Balance Extend Sartorius 

Balance SPO51 Scaltec 

Blotting Device (semi-dry)  University Göttingen 

Blotting Device (wet) Criterion Blotter BioRad 

Chambers for PAGE  University Göttingen 

Chambers for PAGE Mini-PROTEAN® 

tetra cell 

BioRad 

Chambers for DNA-gel  University Göttingen 

Chemocam  Intas 

Confocal microscope SP5 DM6000  Leica 

Cooling centrifuge Sorvall RC6+ DuPont 

Cooling centrifuge Rotina 38R Hettich 

Cooling micro centrifuge Fresco17 Thermo Scientific 

Counting chamber Thoma  

Electroporator Gene Pulser® II BioRad 

Fluorescence microscope DM5000 B Leica 

Gel documentation device  MWG Biotech 

Heating block TH26 HLC 

Heated shaker MHR11 HLC 

Heated stirrer IKA® RH basic 2 IKA 

Ice machine  Ziegra 
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Incubator Certomat BS-1 Sartorius stedim 

biotech 

Microcentrifuge Pico17 Thermo Scientific 

Microscope DM5000B Leica 

Luciferase Camera ImageEM Hamamatsu 

Luminometer 96 well reader Centro XS3LB960 Berthold Technologies 

PCR Cycler MyCycler BioRad 

pH -Meter pH211 Hanna Instruments 

Photometer Libra S11 Biochrom 

Photometer for microtiter plates Synergy HT BioTek 

qRT-PCR cycler iCycler BioRad 

RNA-/DNA-Calculator NanoDrop 2000 Thermo Scientific 

Sonication device Soniprep 150 MSE 

Clean bench Heraguard Thermo Scientific 

Clean bench SAFE 2020 Thermo Scientific 

Water deionization device arium® pro DI Sartorius 

Vacuum pump Cyclo 1 Roth 

Vortex Vortex Genie 2 Scientific Industries 
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2.1.2 Consumables 

Products that are used generally only once are list in the table below. The product specification 

and the producer are indicated (table 2.2). 

Table 2.2 : Disposable materials used. Product type and producer are presented. 

Product Producer 

Blotting paper 3MM Whatman 

Cover slips Roth 

Filter paper Miracloth Calbiochem 

Kim-Tech-Science (KimWipes) Kimberly-Clark 

Leukopor® BSNmedical 

Micotiter plates 96-wells  Greiner bio-one 

Object plates Roth 

Parafilm M Pechiney Plastic Packaging 

Plastic one-way material Biozym, Eppendorf, Greiner, 

Roth, Sarstedt 

PVDF membrane Immobilon-P Milipore 

Tissue Culture Plate  Square Sarstedt 

Tissue Culture Plate 6 well Sarstedt 

 

2.1.3 Chemicals 

The chemicals used in buffers and media are list in the table below. The name of the chemical 

compound and the corresponding manufacturer are indicated. In the material and method parts 

of this thesis only the chemical name is stated (table 2.3). 

Table 2.3 : Chemical compounds that were used in the different experiments. Chemical description and producer are 

presented. 

Chemical Source 

30 % (w/v)  Acrylamide: N,N´-methylenebisacrylamide 

(37.5:1) 

Roth 

Agarose Biozym 

Ampicillin (Amp) AGS 

Anti-GFP antibody Roche 
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Anti-rabbit antibody Amersham Pharmacia 

Biotech 

APS (Ammonium persulfate) Biometra 

BCIP AppliChem 

Beef extract BD Biosciences 

Bromophenol blue Roth 

Blocking reagent Boehringer 

BSA Serva 

Commercial bleach  Dan Klorix 

Daishin Agar Duchefa Direct 

dNTPs MBI 

DIG PCR labeling mix Roche 

Deionised foramid Roth 

EDTA Applichem 

Ethidiumbromide Roth 

Fat-free milk powder  

Ficoll Type 400 Sigma Aldrich 

Fish sperm DNA Roche Diagnostics 

Fluoresceine BioRad 

GELRITE Duchefa 

Gentamycine (Gent) Duchefa 

Hypochloric solution Sigma Aldrich 

Kanamycine (Kan) Sigma 

Luminol Sigma Aldrich 

Maleic acid Roth 

beta-Mercaptoethanol Roth 

MES Roth 

Murashige and Skoog medium (MS medium) Duchefa 

NBT AppliChem 
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Orange G Sigma 

Peptone BD Biosciences 

Phenol Sigma 

Ribunucleic acid from Yeast AppliChem 

Rifampicine (Rif) Duchefa 

PVP Sigma 

Select Agar Life Technologies 

Select yeast extract Gibco BRL 

SDS Roth 

Sucrose Roth 

SYBR Green I Cambrex 

TEMED Roth 

Tryptone Oxoid 

Tween20 Roth 

 

  



19 

 

2.1.4 Media 

In the tables below all the media and their compositions used in this thesis are listed. All media 

were autoclaved to ensure sterility (table 2.4-2.16). 

MS plant media 

Table 2.4 : Composition Murashige and Skoog plant media. Ingredients and corresponding quantities are presented. 

Ingredient Amount 

MS basalt salt mixture incl. Vitamins 2.2 g 

Sucrose 10 g 

Adjust pH to 5.7 - 

Fill up to 500ml with H2O  

Add Gelrite 3.4 g 

 

KNOPs media (Sijmons et al., 1991) 

Table 2.5 : Composition KNOPs media. Ingredients and corresponding quantities are presented. 

Ingredient Amount 

10x KNOPs stock 50 ml 

Sucrose 5 g 

Adjust pH to 6.4 - 

Fill up to 500ml with H20  

Add Daishin agar 3.4g 

 

KNOPs 10x salt stock  

Table 2.6 : Composition of the 10x salt stock for KNOPs. Ingredients and corresponding quantities are presented. 

Ingredient Amount 

MgSO4 0.488 g 

Ca(NO3)2 4H2O 2.999 g 

KH2PO4 2.041 g 

KNO3  1.28 g 

72mM FeEDTA 2.77 ml 

2000x micronutrient stock 5 ml 

Fill up to 1l with H2O - 

 

2000x micronutrient stock (KNOPs) 

Table 2.7 : Composition of the 2000x micronutrient stock for KNOPs. Ingredients and corresponding quantities are 

presented. 

Ingredient Amount 

MnSO4 0.55 g 

ZnSO4 0.080973 g 

CuSO4 0.029962 g 

CoCl2 6H2O 0.011422 g 

H3BO3 1.11294 g 

Na2MoO4 H2O 0.0510 g 
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MgCl2 6H2O 0.69122 g 

NaCl 0.226747 g 

KCl 0.33 g 

Fill up to 1l - 

 

Arbaidopsis thaliana culture medium (ATM) (Estelle and Somerville, 1987) 

Table 2.8 : Composition of the Arabidopsis thaliana culture medium. Ingredients and corresponding quantities are 

presented. 

Ingredient Volume (end concentration) 

1 M KNO3 5 ml (5 mM) 

1M MgSO4 2 ml (2 mM) 

1M Ca(NO3)2 2 ml (2 mM) 

20 mM Fe-Na-EDTA 2.5 ml (50 µM) 

Micronutrient stock 1 ml 

Adjust ph to 5.5  

Fill up to 1l with H2O   

 

Micronutrient stock (ATM) 

Table 2.9 :  Composition of ATM micronutrient stock. Ingredients and corresponding quantities are presented. 

Ingredient Amount (end concentration) 

H3BO3 4.32 g (70 mM) 

MnCl2-4H2O 2.77 g (14 mM) 

CuSO4 80 mg (0.5 mM) 

ZnSO4-7H2O 288 mg (1 mM) 

NaMoO4-2H2O 48 mg (0.2 mM) 

NaCl 0.58 mg (10 mM) 

CoCl2-6H2O 2.38 mg (0.01 mM) 

Fill up to 1l with H2O  

 

Kings B medium 

Table 2.10 : Composition of Kings B medium. Ingredients and corresponding quantities are presented. 

Ingredient Content (end concentration ) 

Proteose-Pepton No 3 10 g 

K2HPO4 1.5 g 

Glycerol (86%), 15 g 

Adjust pH to7.0  

Fill up to 1l with H2O to 1l and autoclave  

MgSO4 – liquid and sterile (1M) 2 ml (2 mM) 
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LB medium 

Table 2.11 : Composition of LB medium. Ingredients and corresponding quantities are presented. 

Ingredient Content (end concentration ) 

Tryptone 10 g 

Yeast extract 5 g 

NaCl 10 g 

Adjust pH to 7  

Fill up to 1l with H2O to 1l and autoclave  

 

YEB medium 

Table 2.12 : Composition of YEB medium. Ingredients and corresponding quantities are presented. 

Ingredient Content (end concentration ) 

Beef extract 10 g 

Yeast extract 2 g 

Peptone 5 g 

Sucrose 5 g/L sucrose 

Adjust pH to 7.0  

Fill up to 1l with H2O to 1l and autoclave  

MgSO4 – liquid and sterile (1M) 2 ml (2 mM) 

 

YPAD (500 ml) 

Table 2.13 : Composition of YPAD medium. Ingredients and corresponding quantities are presented. 

Ingredient Amount 

Difco peptone 10 g 

Yeast extract 5 g 

adenine 50 mg 

Adjusted pH to 5.8 with KOH  

Added H2O to 450 ml  

Select agar (for solid media) 9 g 

Autoclave at 121°C for 15 minutes  

40% sucrose(added when the media 

temperature is around 55°C) 

50 ml 

 

Yeast transformation medium 

Table 2.14 : Composition of the yeast transformation medium. Ingredients and corresponding quantities are presented. 

Ingredient Amount 

50 % PEG4000  (filter sterilized) 240 µl 

1M LiAC pH 7.5 (filter sterilized) 36 µl 

Single-stranded DNA(denatured by boiling 

at 100 °C for 10 minutes) from  fish sperm 

(2mg/ml) 

25 µl 

Plasmid  250-500 ng 
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Semi-solid SC (synthetic complete) drop out medium for Y2H screen (SC –LWH) 

Table 2.15 : Semi-solid SC media composition. Ingredients and corresponding quantities are presented. 

Ingredient Amount Final concentration 

Difco yeast nitrogen base 3.35 g  

CSM -Ade - His -Trp -Leu  0.305 g  

Adenine 60 mg   

Added H2O to 450 ml   

Autoclave at 121°C for 15 

minutes 

  

1% gelrite (autoclaved and 

immediately added to SC drop 

out media) 

25 ml 0.05 % 

40% sucrose(added when the 

media temperature is around 

55°C) 

50 ml 2 % 

1 M 3-amino-1,2,4-triazole 

solution ( if required) 

2.5 ml  5 mM 

Ampicilin stock conc. 

100mg/ml (if required) 

500 µl 100 µg/µl 
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Synthetic Complete dropout (SC dropout) medium (500 ml) 

Table 2.16 : Composition SC dropout media for yeast. Ingredients and corresponding quantities are presented. 

Ingredient Amount Final concentration 

Difco yeast nitrogen base 

(W/O amino acid) 

3.35 g  

*General list of amino acid, 

specific drop out medium can 

be made by leaving out the 

amino acid of choice 

  

Arginine 25 mg  

Aspartic acid 40 mg  

Histidine 10 mg  

Isoleucine 25 mg  

Leucine 50 mg  

Lysine 25 mg  

Methionine 10 mg  

Phenylalanine 25 mg  

Threonine 50 mg  

Tryptophan 25 mg  

Tyrosine 25 mg  

Uracil 10 mg  

Valine 70 mg  

Serine 10 mg  

Adenine  60 mg  

**Alternatively use 

commercially available amino 

acid dropout mixtures 

  

Adjust pH to 5.6 with KOH   

Added H2O to 450 ml   

Selected agar (for solid media) 9 g  

Autoclave at 121°C for 15 

minutes 

  

40% sucrose (added when the 

media temperature is around 

55°C) 

50 ml  2% 

1 M 3-amino-1,2,4-triazole 

solution ( if required) 

2.5 ml  5mM 
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2.1.5 Buffers 

Below listed in tables are all buffers used for the experiment of this thesis (table 2.17-2.29).  

Alkaline Phosphatase Buffer – staining buffer 

Table 2.17 : Composition of alkaline phosphatase buffer used for in situ hybridization. Ingredients and corresponding 

quantities are presented. 

Ingredient/concentration of stock Amount (end concentration) 

1M Tris-HCL pH9.5 100 ml (100 mM) 

NaCl 5.85 g (100 mM) 

MgCl2 10.17 g (50 mM) 

Fill up to 1l with H2O - 

 

Böhringer blocking reagent 10% 

Table 2.18 : Composition of Böhringer blocking reagent mix used for in situ hybridization. Ingredients and corresponding 

quantities are presented. 

Ingredient/concentration of stock Amount (end concentration) 

Blocking reagent 10 g (10%) 

Fill up and dissolve in 100ml maleic acid 

buffer 

- 

 

Denhardts 50x (100ml) 

Table 2.19 : Composition of Denhardts (50x) buffer mix used for in situ hybridization. Ingredients and corresponding 

quantities are presented. 

Ingredient Amount 

Ficoll (400kDa) 1.25 g 

PVP 1.25 g 

BSA 1.25 g 

Fill up to 100ml with H2O - 

 

Hybridization buffer (200ml) 

Table 2.20 : Composition of hybridization buffer used for in situ hybridization. Ingredients and corresponding quantities 

are presented. 

Ingredient Amount (end concentration) 

Deionised formamid 100 ml (50%) 

SSC 20x 40 ml (4x) 

Böhringer blocking reagent 10% 20 ml (1%) 

SDS 20% 20 ml (2%) 

Denhardts 50x 4 ml (1x) 

EDTA pH8 0.5M 0.4 ml  

Fish sperm DNA 10mg/ml 4 ml (200 µg/ml) 

tRNA Yeast (28mg/ml – 500 units) 1.25 ml ( 3.125 U/ml) 

Fill up to 200ml with H2O - 
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Maleic acid buffer (100ml) 

Table 2.21 : Composition of the maleic acid buffer used for in situ hybridization. Ingredients and corresponding quantities 

are presented. 

Ingredient Amount (end concentration) 

Maleic acid  11.61 g (100 mM) 

NaCl 8.76 g (150 mM) 

Adjust pH to 7.5 with NaOH - 

Fill up to 100ml with H2O  

 

Callose staining buffer 

Table 2.22 : Composition of the callose staining buffer. Ingredients and corresponding quantities are presented. 

Ingredient Content (end concentration ) 

K2HPO4 26.127g (150mM) 

Adjust pH to 9.5  

Adjust to 1l with H20 and autoclave  

Add 0.01% (w/v) aniline blue to stain 

mixture 

 

 

Immunoprecipitation extraction buffer (50 ml) 

Table 2.23 : Composition of the immunoprecipitation extraction buffer. Ingredients, amounts and the final concentration 

of the corresponding ingredient are presented. 

Ingredient Amount Final concentration 

1 M Tris-HCl 2.5 ml  50 mM 

5 M NaCl 1.5 ml  150 mM 

0.5 M EDTA 100 µl  1 mM 

1 M Dithiotheritol (DTT) stock 250 µl  5 mM 

NP40 100 µl  0.2 % 

100x Protease inhibitor  

(excluded Protease inhibitor for 

wash buffer) 

100 µl  1x 

Added H2O to 50 ml   

 

Acrylamide gel for Western blot 

Table 2.24 : Acrylamide gel composition used to run SDS-PAGE. Ingredients, amounts and the final concentration of the 

corresponding ingredient are presented. 

Ingredient Amount Final concentration 

Acrylamide  2.68-13.3 ml 4-20% 

1.5 M Tris-HCl pH 8.8 5 ml 375 mM 

H20 11.9 – 1-28 ml  

10% APS 200 µl 1 % 

10% SDS 200 µl 1 % 

TEMED 20 µl  
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Ingredient Amount Final concentration 

Acrylamide  670 µl 4% 

1 M Tris-HCl pH 6.8 625 µl  0.125 mM 

H20 3.6 ml  

10% APS 50 µl 1 % 

10% SDS 50 µl 1 % 

TEMED 5 µl  

 

 

Blocking buffer 

Table 2.25 : Composition of the blocking buffer for Western blot. Ingredients, amounts and the final concentration of the 

corresponding ingredient are presented. 

Ingredient Amount Final concentration 

Skimmed milk powder  

(Sucofin ®) 

0.4 g 2 % 

Added TBST to 20 ml   

First or secondary antibody 

(if needed) 

4 µl 1:5000 

 

Transfer buffer (1L) 

Table 2.26 : Composition of the transfer buffer used for Western blot. Ingredients, amounts and the final concentration 

of the corresponding ingredient are presented. 

Ingredient Amount Final concentration 

Tris 5.82 g 48 mM 

Glycin 2.93 g 39 mM 

20% SDS 2 ml 0.04% 

MeOH 200 ml 20% 

Added H2O to 1 liter   

 

10X running buffer (1L) 

Table 2.27 : Composition of concentrated running buffer for SDS-PAGE. Ingredients, amounts and the final 

concentration of the corresponding ingredient are presented. 

Ingredient Amount Final concentration 

Tris 30.24 g 250 mM 

Glycin 142.75 g 1.9 M 

20% SDS 50 ml 1 % 

Added H2O to 1 liter   
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10xTBS (1L) 

Table 2.28 : Composition of concentrated 10xTBS buffer. Ingredients, amounts and the final concentration of the 

corresponding ingredient are presented. 

Ingredient Amount Final concentration 

Tris 24.2 g 200 mM 

NaCl 80 g 1.37 M 

Adjust pH to 7.6 with HCl   

Added H2O to 1 liter   

 

1x TBST 

Table 2.29 : Composition of TBS working solution. Ingredients, amounts and the final concentration of the corresponding 

ingredient are presented. 

Ingredient Amount Final concentration 

10X TBS 100 ml 1x 

Tween 20 1 ml 0.1% 

Added H2O to 1 liter   

2.1.6 Primers 

This section presents the primers used for qRT-PCR (table 2.30) and cloning (table 2.31). 

Primers for qRT-PCR were designed using Primer3 (Rozen and Skaletsky, 1998). 

Oligonucleotides qRT-PCR 

Table 2.30 : Sequence list of used qRT-PCR primers in the direction 5`-3`. Name of the primer and the corresponding 

sequence are presented. 

Name of nucleotide Sequence 5`- 3` 

Mh265 Forward Primer ATTGGACAAACTAGCTGCTG 

Mh265 Reverse Primer CAAGCATCCTCCAAAATAGA 

Mh270 Forward Primer GCAATTTGCCGACGTCGTAGT 

Mh270 Reverse Primer AACCTCATTCTCCCCACCCCT 

AtWRKY22 Forward Primer ATCTCCGACGACCACTATTG 

AtWRKY22 Rerverse Primer TCATCGCTAACCACCGTATC 

AtWRKY33 Forward Primer CAAAGGAAAGGAGAGGATGG 

AtWRKY33 Reverse Primer GTAGACTGAGGTTTAGGATGG 

AtWRKY53 Forward Primer GCAACGAAACAAGTCCAGAG 

AtWRKY53 Reverse Primer GTCTTTACCATCATCAAGCCC 
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AtUbq5 Forward Primer GACGCTTCATCTCGTCC 

AtUbq5 Reverse Primer GTAAACGTAGGTGAGTCCA 

AtGST1 Quantitec 

AtFRK1 Quantitec 

AtCYP81F2 Quantitec 

Mi18S Forward Primer ACCGTGGCCAGACAAACTAC 

Mi18S Reverse Primer GATCGCTAGTTGGCATCGTT 

MhActin Forward Primer ACACGCCAGCCATGTATGTTGCT 

MhActin Reverse Forward AAATCACGTCCAGCCAAGTC 

 

Oligonucleotides for cloning and control amplifications (excluding Att sites) 

Table 2.31 : List of primers used for cloning. Name of the primer and the corresponding sequence are presented. 

Name of nucleotide Sequence 5`- 3` 

Mi – PG1 Forward Primer AAGGCTGAAGTTGAGGAAGA 

Mi- PG1 Reverse Primer ATTATGTGTTCCTCCGTTAG 

Mh270 – SP Forward Primer ATGGAGCAACAAATATAACAGTTCGAG 

Mh270 – SP Reverse Primer TTAATCATCACACGTTTCTTTGTCTC 

Mh270 for hairpin construct 

Forward Primer 

CGACGTCGTAGTGTTAAAGGA 

Mh270 for hairpin construct 

Reverse Primer 

CGTTTCTTTGTCTCTATGTCCAG 

Mh270 no stop Reverse Primer ATCATCACACGTTTCTTTGTCTCTA 

AT3G17390  

Methionine adenosyltransferase, 

MAT4 

Forward Primer 

ATGGAATCTTTTTTGTTCACATCTG 

Reverse Primer TCAAGCTTGGACCTTGTTAGACTTG 

AT4G36980  

Unknown protein 

Forward Primer 

ATGTGGCACGAAGCGAGAAGATCGG 

Reverse Primer TCAGTGCCTTGACCTGCTGCTTCTT 
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AT5G28150 

Plant protein of unknown function 

(DUF868) 

Forward Primer 

ATGAAGGATTTTCCTTCTTGCTTTG 

Reverse Primer CTACTCGCTCTTCCAAGCGTACAGA 

AT5G08450 

Histone deacetylation complex 1, 

RXT3-LIKE, HDC1 

Forward Primer 

ATGAGTGGTGTTCCAAAGAGATCTC 

Reverse Primer TTAGTTGGGGGAGAGAAAATGAACA 

AT2G21850 

Cysteine/Histidine-rich C1 

domain family protein 

Forward Primer 

ATGGCAGAGCTCAAGCATTTCTCCC 

Reverse Primer TTATAACACCTCCAAGAGATGACGC 

AT5G37740 

Calcium-dependent lipid-binding 

(CaLB domain) family protein 

Forward Primer 

ATGGAGAATCTTGTAGGTCTTCTTC 

Reverse Primer CTAAATACCCCTTGAACCCGGGACA 

AT4G13195 

CLAVATA3/ESR-related 44, 

CLE44 

Forward Primer 

ATGGCAACTACAATTGATCAAACCA 

Reverse Primer CTAGTTGGAGATAGGGTTTGGACCA 

AT4G35830 

Acotinase 1, ACO1 

Forward Primer 

ATGGCTTCCGAGAATCCTTTCCGAA 

Reverse Primer TTATTGTTTGATCAAGTTCCTGATA 

AT5G47690 

Unknown protein 

Forward Primer 

ATGGCTCAGAAGCCGGAGGAACAGT 

Reverse Primer CTATATTGCTGTCCTCGAGATTGAC 

AT4G11420 

Eukaryotic translation initation 

factor 3A, ATEIF3A-1 

Forward Primer 

ATGGCGAATTTTGCCAAACCAGAGA 

Reverse Primer TCAACGCTGTGTTGGCCTGGGCCTG 

AT5G15090 

Arabidopsis thaliana voltage 

dependent anion channel 3, 

ATVDAC3  - Forward Primer 

ATGGTTAAAGGTCCAGGACTCTACA 
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Reverse Primer TCAGGGCTTGAGAGCGAGAGCAATC 

AT4G31800 

Arabidopsis thaliana WRKY 

DNA-binding 18, ATWRKY18 

Forward Primer 

ATGGACGGTTCTTCGTTTCTCGACA 

Reverse Primer TCATGTTCTAGATTGCTCCATTAAC 

AT2G02180 

Tobamovirus multiplication 

protein 3, TOM3 

Forward Primer 

ATGAGAATCGGCGGCGTCGAGGTTA 

Reverse Primer TCAGCGAATCTGATGGTATTGTGTA 

AT1G02500 

S-adenosylmethionine synthetase  

1, ATSAM1 

Forward Primer 

ATGGAGACTTTTCTATTCACATCTG 

Reverse Primer TTAAGCTTGAGGTTTGTCCCACTTG 
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2.1.7 Organisms 

This section lists the organisms used during this thesis. If applicable selection resistance is also 

mentioned (table 2.32). 

Table 2.32 : Organisms used during the experiments of this thesis. Name of organism, resistance conditions, and the use of 

the specific organism are presented. 

Organism Selection resistance 

(µg/ml) 

Use 

Agrobacterium tumefaciens – 

GV3101 

Rif (25), Gent (25) Stable transformation of 

Arabidopsis 

Meloidogyne hapla – VW9 - Infection, RNA extraction, in 

situ hybridization 

Meloidogyne incognita – 

“Morelos” 

- In situ hybridization 

Arabidopsis thaliana 

-Col-0 

  

Solanum lycopersicum – “Green 

Zebra” 

 Nematode rearing 

Yeast “AH109” - Library screen 

Yeast “PJ69-4a” - Double transformations 

Yeast “Y178” (provided by 

Joachim Uhrig) 

 Yeast-two-library screen 

Pseudomonas syringae pv. tomato 

DC3000 – LUX  (provided by 

Jonathan Jones – Sainsbury 

Laboratory Norwich) - 

Rif (25), Kan (25) EDV screen, infection assays 

Pseudomonas syringae pv. tomato 

DC3000 ∆CEL 

Rif (25), Kan (25) Infection assays 

Pseudomonas syringae pv. tomato 

DC3000 ∆AvrPto/∆AvrPtoB 

Rif (25), Spec (50) Infection assays 
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2.1.8 Plasmids 

Below all plasmids are listed that were used either for cloning or directly for experiments. 

Plasmid name, use, and selection resistance are shown. 

Table 2.33 : Plasmids that were used for cloning or experimental procedures. Plasmid name, its use, and the resistance for 

selection in bacteria and plant are presented. 

Plasmid Use Resistance 

pDonr201 Entry vector Kan  

pB2GW7 Expression vector for 

Arabidopsis transformation 

Spec/Basta 

pUBN-YFP Expression vector fusing 

YFP to the N-terminal 

Spec/Basta 

pUBC-GFP Expression vector fusing 

GFP to the C-terminal 

Spec/Basta 

pEDV6 – (provided by Jane 

Parker – MPI Cologne) 

Expression of candidates in 

Pst DC3000 - EDV 

Gent 

pEDV containing 

ATR13Emco5 (provided by 

Jane Parker – MPI Cologne) 

Reference for Pst DC3000 – 

EDV screen 

Gent 

pB7GWIWG2(II) RNAi – hairpin vector for 

Arabidopsis transformation 

Spec 

pASII Bait vector for yeast-two-

hybrid 

Amp 

pGAD Fish vector for yeast-two-

hybrid 

Amp 

2.1.9 Kits 

The table below presents the kits used during the creation of this thesis. 

Table 2.34 : List of kits used during this thesis. Kit name and producer are presented. 

Kit name Producer 

NucleoSpin Gel and PCR Clean Up Macherey & Nagel 

NucleoSpin Plasmid Macherey & Nagel 
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2.2 Methods 

 

2.2.1 General molecular methods 

 

Phusion DNA polymerase reaction – High fidelity amplifications 

Amplification was performed according to the manufacturer’s protocol. An example reaction 

is presented in the table below. An example cycler protocol to amplify a fragment of less than 

500bp is presented. 

Table 2.35 : Contents of a standard phustion taq amplification mix. Components and corresponding quantities are 

presented. 

Stock component Volume in 40 µl reaction 

Buffer (HF/GC) 5x 8 µl 

dNTPs 40mM (10 mM each) 0.8 µl 

Forward primer (10 µM) 2 µl 

Reverse primer (10 µM) 2 µl 

Template  1 µl (~50ng) 

Polymerase 0.2 

H2O 24.6 

 

Table 2.36 : Standard PCR cycler program to amplify a fragment of 500b. Cycle step, temperature and cycle numbers are 

presented. 

Cycle step  Temperature and duration Cycles 

Initial denaturation 98°C ,30 sec 1 

Denaturation 98°C, 30 sec  

40 

 
Annealing (adjust to primer) 55°C, 30 sec 

Extension 72°C, 30 sec 

Final extension 72°C,  5 min 1 

 

Measurement of DNA and RNA concentrations 

The concentration of nucleic acids was determined by measuring their absorption in a 

NanoDrop 2000 at a wave length of 260 nm (maximum nucleic acid absorption value, due to 

the π-electron systems of the heterocycles of the nucleotides). Absorption at 280 nm (due to the 

presence of aromatic rings from amino acids and phenol compounds) was used for references 

of the purity of the DNA or RNA samples. The optimal ratio of OD260/OD280 for RNA is from 

1.9-2.0 and for DNA 1.8. 

Separation of DNA on agarose gels 

The DNA was separated by electrophoresis in horizontal 1 % agarose gels with 1x TAE buffer. 

The agarose gel concentration was either 2 % agarose (< 500 kb) or 1.0 % agarose (< 4000 bp), 



34 

 

depending on the size of the DNA fragments to be separated. DNA samples were mixed with 

1/10 volume of 10x DNA loading buffer, loaded in separate lanes and run at 120 V for 45 min. 

The gels were stained in ethidium bromide solution (0.1 % w/v) for 15 min, and the detection 

of the DNA was performed on an UV-transilluminator (260 nm). The signals were documented 

with a gel-documentation station. For elution of DNA fragments from the gel the visualization 

was done with larger wavelength UV-light (320 nm) and the DNA fragments in the gel slices 

were eluted with the NucleoSpin® Gel and PCR Clean-up Kit (Macherey-Nagel). 

Gateway cloning 

The Gateway® technology is based on the site specific recombination of bacteriophage lambda 

and thereby provides a fast method to exchange DNA fragments between multiple vectors 

without the use of conventional cloning strategies (Hartley et al., 2000; Landy, 1989). All 

cloning steps done with the Gateway® system were performed as described in the Invitrogen 

manual, Version E, September 22, 2003.  Briefly, the Gateway BP II Clonase enzyme kit was 

used according to the manufacturer’s instructions to transfer PCR fragments into the entry 

vector pDONR207.  For introduction into the destination vectors, LR reactions were composed 

of the entry clone, the destination vector (150 ng/ µl) and 2 µl LR Clonase II.   After a 1 hour 

incubation at room temperature, the reaction was used to transform E. coli DH5ɑ. 

Isolation of high-quality plasmid DNA 

High-purity plasmid DNA was isolated for sequencing, cloning and transformation according 

to the manufacturer instructions of the Macherey-Nagel Mini, Midi and Maxi KitNucleoSpin 

Kits. 

Sequencing of DNA 

Sequencing of plasmid DNA was performed with SeqLab. Minimum 600 ng plasmid DNA was 

mixed with 20 pmol required primer and water was added to a final volume of 7 µL. 

Transformation of E. coli 

The transformation of chemical competent E. coli DH5ɑ cells was done with the heat shock 

method according to (Hanahan, 1983). An aliquot of competent cells (200 µL) was thawed for 

10 min on ice, 50 ng of plasmid DNA were added and the mixture was incubated for 30 min on 

ice. The cells were shocked at 42°C for 90 sec. The cells were then placed on ice for 2 min 

before 800 µl dYT medium were added. The transformed cells were incubated for 1h at 37°C 

with shaking. The cells were streaked on plates containing LB medium and the required 

antibiotics. Incubation took place overnight at 37°C. 
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Transformation of A. tumefaciens 

Electrocompetent A. tumefaciens GV3101 cells were transformed by electroporation method. 

Thawed cells were mixed with high-quality plasmid DNA, an electric pulse (2.5 kV, 25 µF, 

400 Ω) was applied for 5 s and the cells were immediately incubated with 1 mL YEB medium 

for 2 h at 30°C. The transformed cells were spread on selective YEB plates and incubated for 

2-3 days at 30°C. For plasmid extraction, clones were individually picked and placed in 25 mL 

YEB liquid medium with the appropriate antibiotics at 30°C with shaking, overnight. 5 mL 

aliquots of the overnight cultures were used for plasmid extraction (3.2.1.1.1.2) to check for 

positive clones by PCR. 1 ml of overnight culture was mixed with 1 ml 87% glycerol and stored 

at -80°C for storage. 

Transformation of Pseudomomas syringae strains 

Electrocompetent Pseudomonas syringae cells were transformed by electroporation method. 

Thawed cells were mixed with high-quality plasmid DNA, an electric pulse (2.5 kV, 25 µF, 

400 Ω) was applied for 5 s and the cells were immediately incubated with 1 mL Kings B 

medium for 2 h at 30°C. The cells were spread on Kings B media containing the appropriate 

antibiotics and incubated for 2-3 days at 30°C. 

Agrobacteria-mediated Arabidopsis transformation 

The transformation of Arabidopsis is based on the floral dip method (Clough and Bent, 1998).  

Briefly, six weeks old Arabidopsis thaliana Col-0 (or otherwise stated) were grown under long 

day conditions (22°C/ 18°C, 80-100 µmol photones/m2/s, 16h light/8h dark, 60 % humidity). 

An overnight Agrobacteria culture was grown in 500 mL YEB media with appropriate 

antibiotics.  After centrifugation (4000 rpm in swing bucket centrifuge, 20 min), the pellet was 

resuspended in 5% sucrose solution + 0.01% Sylvet77 to OD600 = 0.8. The inflorescence were 

dipped in Agrobacterium tumefaciens GV3101 cultures, and covered with a plastic lid 

overnight.  Plants were allowed to set seed in the long day chamber.   
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2.2.2 Plant growth conditions  

 

Arabidopsis thaliana seed sterilization 

Seeds were surface sterilized by vortexing in 1ml 70% ethanol for 10 min in a 1.5ml Eppendorf 

tube. The seeds were then washed with 100% ethanol and allowed to dry under the laminar 

airflow. 

Growth of plants on substrate 

Surface sterilized seeds were sown on steamed soil (Archut, Fruhstorfer Erde, T25, Str1 fein) 

supplemented with Confidor (50 mg/L) and fertilizer (0,5 ml/L Wuxal) and stratificated at 4°C 

for two days. The plants were grown under short day conditions (22°C/ 18°C, 80-100 µmol 

Photones/m2/s, 8h light/16h dark, 60 % humidity), long day conditions (22°C/ 18°C, 80-100 

µmol photones/m2/s, 16h light/8h dark, 60 % humidity) or 12h/12h-light cycle conditions 

(22°C/ 18°C, 80-100 µmol photones/m2/s, 12h light/12h dark, 60 % humidity). 

Plant growth on axenic plates 

Surface sterilized seeds were sown on MS-MES plates under the clean bench and sealed with 

Leukopor®. After stratification of 2 days at 4°C the plants grown under 14h/10h-light cycle 

conditions (22°C/ 18°C, 80-100 µmol Photones/m2/s, 14h light/10h dark, 60 % humidity) for 

12 to 14 days. 

Selection of transgenic plants on axenic plates using BASTA 

Seeds were surface sterilized by vortexing in 1ml 70% ethanol for 10 min in a 1.5ml Eppendorf 

tube. The seeds were then washed with 100% ethanol and allowed to dry under the laminar 

airflow. Seed were put on MS plates containing BASTA-PPT (Phosphinothricin/Glufosinate 

Ammonium – 250 µl/500 ml MS) and grown until plant responded to selection via whitening 

of cotyledons and growth reduction. 

2.2.3 Pathogen assays 

 

Cultivation of Pseudomonas syringae 

Glycerol stocks frozen at -80°C were used for preparing freshly grown colonies on King´s B 

agar plates with appropriate antibiotics. The streaked bacteria were incubated overnight at 

30°C. For infection of A. thaliana plants, 20 mL King´s B with 100 µL 1 M MgSO4 and the 

required antibiotics were inoculated with a single colony of bacteria. The bacteria were 

incubated overnight at 30°C and 220 rpm. The overnight cultures were centrifuged for 10 min 
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at 4000 rpm and the pellet was washed 2 times with 20 mL 10 mM MgCl2. The OD600 of the 

washed cells were measured and the required OD600 was prepared by dilution with 10 mM 

MgCl2. 

Pst-lux infection assay measuring bioluminescence  

Four week old Col-0 wild type plants were grown under short day conditions (8 h day/14 h 

night) on peat substrate were put under high humidity conditions for at least 1 h. Next plants 

were sprayed with a bacterial suspension of OD600=0.2 supplemented with 10 mM MgSO4 and 

0.05% Silwet L-77. 10 mL of bacterial suspension were sprayed on 5 individual plants. Plants 

were kept for 1h under high humidity conditions. Subsequently, plant leaves were allowed to 

dry and put back into a short day growth chamber for 3 additional days. On day 3 luciferase 

activity was measured. Plants were put into the CCD digital camera (Hamamatsu) chamber 

and kept in the dark for 5 minutes. Photos were taken with the following settings:  EM gain: 

1200, Exposure time: 300 sec, Image acquisition: slow. Signal intensity was analyzed using 

HOKAWO software. After pictures were taken plant leafs were cut and above ground fresh 

weight was measured.  

Pst infection assay measuring colony forming units 

Four week old Col-0 wild type plants grown under short day conditions (8 h day/14 h night) on 

peat substrate were leaf infiltrated with bacteria OD = 0.0001 (Pst-LUX) or OD600 = 0.001 (Pst 

ΔCel and Pst ΔAvrPto/ΔPtoB) in 10 mM MgSO4. Leaves were punched out after 1 h and 3 days. 

Leaf discs were vortexed for 10 min in 10 mM MgSO4 containing 0.05% Silwet L-77. Dilution 

series were performed using 10 mM MgSO4 buffer and 10 µl of the dilutions were aliquoted 

onto Kings B media containing the appropriate antibiotics. Plates were incubated for two days 

at 28°C and colonies were counted at each dilution. Next, colony forming units (CFU) was 

calculated relative to dilution and leaf disc surface. 

Nematode egg sterilization 

Infected tomato (Solanum lycopersicum cultivar green zebra) roots were mixed vigorously for 

4 min in a 10% sodium hypochlorite solution and then poured through two sieves (250 and 25 

m sequentially). The eggs were then collected and centrifuged at 4000 rpm for 5 min in a 

swing bucket centrifuge. The eggs were then surface sterilized by applying 10% sodium 

hypochlorite for 5 min with continuous shaking. at the eggs were pelleted by centrifugation at 

4000 rpm for 5 min (repeated twice). The eggs were then washed with sterile H2O 3 times, 

centrifuged and then re-suspended in CT solution (water with 1% SDS and 2% Plant Protection 
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solution). The egg containing CT solution was then transferred to a small beaker containing 4 

layers of Kimwipes sitting over 50 mL CT solution.  The eggs were placed on the Kimwipes 

and allowed to hatch for 3 days. Hatched juveniles migrate through the Kimwipes and settle in 

the solution at the bottom of the beaker.  

Nematode infection and penetration assay 

Plants grown for seven days on axenic MS plates were transferred onto six well plates 

containing 3ml MS media. After one week plants were infected with 200 sterile root-knot 

juveniles and incubated in the dark for 4 weeks at room temperature.  Galls were visually 

counted under the stereomicroscope.  To estimate penetration of nematodes, infected roots were 

stained with acid fuchsin 5-7 days after inoculation. 

Acid Fuchsin staining (Byrd et al., 1983) 

Plants to be stained were placed into sodium hypochlorite solution for 2 min. the plants were 

rinsed with H2O and then placed into a boiling, 1/30 diluted, acid fuchsin staining solution (35 

mg / 100 mL). The plants were incubated in the boiling solution for at least 1 min. The stained 

plants were shortly rinsed in H2O and observed under a microscope. 

2.2.4 RNA extraction and gene expression analysis 

 

RNA extraction 

TRIZOL method (Chomczynski 1993) was used to extract RNA from plant tissue. 

Phenol/chloroform (dichloromethane) extraction dissolves RNA in the aqueous phase while 

other compounds like chlorophyll or proteins are solved in the hydrophobic chloroform phase. 

RNAse activity is inhibited by two thiocyanate compounds in the extraction buffer. Deep frozen 

fine powder (~200 mg) of ground plant tissue (2 mL reaction tube) was dissolved in 1.3 mL 

extraction buffer (380 mL/L phenol saturated with 0.1 M citrate buffer pH 4.3, 0.8 M 

guanidinthiocyanate, 0.4 M ammoniumthiocyanate, 33.4 mL 3 M Na-acetate pH 5.2, 5 % 

glycerol) and shaked for 15 min at RT. Chloroform (260 µL) was added to each sample and 

after an additional shaking step of 15 min at RT the samples were centrifuged for 30 – 40 min 

at 12.000 rpm and 4°C. The clear supernatant (~ 900 µL) was transferred into a new 1.5 mL 

reaction tube and 325 µL of precipitation buffer (HSB, 1.2 M NaCl, 0.8 M Na-citrate) and 325 

µl of 2-propanol were added, the samples inverted and incubated for 10 min at RT. After 

centrifugation for 20 min at 12.000 rpm and 4°C the supernatant was discarded, the pellets were 
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washed two times with 70 % ethanol and afterwards dried at RT. The pellets were dissolved in 

20-60 µL water (ultra-pure). 

cDNA synthesis 

RNA samples were treated with DNase (DNase I, RNase free; 1U/µl, 1000U). The 10l solution 

contained 0.5-1 µg total RNA,1 l of DNase buffer (Buffer DNase I + MgCl2; 10X reaction 

buffer) and 1 l of DNase containing solution. The reaction mixture was then incubated at 37C 

for 30 min followed by adding 1 l of 25mM EDTA. The mixture was then incubated at 65C 

for 10 min. 

cDNA synthesis was performed by adding 0.2 l of 100 M oligo dT primers and 1 l of 

200M random monomer to the reaction solution. The mixture was then incubated at 70C for 

10 min. 4 l RT buffer (5X reaction buffer for reverse transcriptase), 2 l of 10 mM dNTPs, 

0.3 l Reverse Transcriptase (RevertAid H Minus Reverse Transcriptase; 200 U/l, 10000 U) 

and 1.5 l H2O were added and the solution was incubated at 42C for 70 min and finally at 

70C for 10 min. 

Quantitative Realtime -PCR (qRT-PCR) 

For quantification of cDNA qRT-PCR was performed and fluorescence intensity was measured 

with the iCycler from BioRad. Reaction mix and cycler protocol are presented in table 2.37 and 

table 2.38. Calculations were performed using the ∆∆Ct method (Livak and Schmittgen, 2001). 

Table 2.37 : Standard reaction mix for qRT-PCR using biolione taq polymerase. Stock component as well as the volume 

for a 25µl reaction are presented. 

Stock component Volume in a 25 µl reaction 

10X NH4 reaction buffer 2.5 l 

MgCl2 50 mM 1 l 

dNTPs 40 mM (10 mM each) 0.25 l 

F and R primers (each 4 mM) 2.5 µl 

Sybr Green (1/1000) 0.25 µl 

Flourescein (1 mM) 0.25µl 

Biotaq DNA polymerase (2500 U) 0.05 µl 

cDNA template (~0.05µg) 1 µl 

 

Table 2.38 : Program of qRT-PCR cycler using bioline taq polymerase. Cycle step, temperature and cycle numbers are 

presented. 

Cycle step and repeats Temperature and duration Cycles 

Initial denaturation 95°C ,90 sec 1 

Denaturation 95°C, 20 sec  

39 Annealing 55°C, 20 sec 
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Extension 72°C, 40 sec  

Final extension 72°C,  4 min 1 

 

Generation of melt curve 

95°C,  1 min 1 

55°C,  1min 1 

55°C, 10 sec (+0.5°C/cycle) 81 

 

 

2.2.5 PAMP associated assays  

 

Root growth inhibition assay 

Sterilized seeds were put on square ATM plates and grown vertically under long day conditions. 

On day seven plants were transferred on ATM plates either lacking or containing 100nM flg22. 

Location of main root was marked and plants were grown upright in the long day chamber for 

an additional five days. Subsequently, pictures were taken and root length was measured using 

the length measurement tool in Image J. 

PAMP induction assay for gene expression 

Roughly 20 sterile seeds were grown fully immersed (4 ml / well) in 24 well plates in liquid 

AT media containing 0.5% sucrose. After 9 days of growth under short day conditions (8 h 

day/14 h night) media was replaced. On day 10 half of the media was removed and fresh media 

added containing or lacking 150 nM flg22.After 1.5h plants were harvested and quick frozen 

for subsequent RNA extraction. 

ROS-burst assay 

Plants were grown under short day conditions (8 h day/14 h night) for four weeks on peat 

substrate. Leaf discs were punched out and transferred into a 96 well plate containing 100 µl 

sterile water. The plate was sealed and put in the dark overnight. Next, water was replaced with 

50 µl of a HRP (horse radish peroxidase) and luminol containing mixture (table 2.39). Shortly 

before the plate was placed into the reader, 100 nM flg22 or buffer only was added to each well. 

Measurements of relative light units were taken each minute for 1 h using a luminometer 

(Centro X3 LB920, Berthold Technologies). 

Table 2.39 : Reactive oxygen species detection mix. Ingredients and amounts including end concentration are presented for 

a master mix of 6ml. 

Content Amount (end concentration) 

Horse radish peroxidase (1 mg/ml) 6µl (10 µg/ml) 

Luminol  (17 mg/ml) 6µl ( 17 µg/ml) 
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Fill up to 6ml using H2O - 

 

 

Callose deposition 

Four week old Col-0 wild type plants grown under short day conditions (8h days/ 16h nigh) 

were infiltrated with bacterial suspensions of an OD600=0.2. Twenty four hours after infiltration, 

the leaves were de-stained using 100% ethanol for 4-6h under constant agitation. Next, the 

solution was replaced with 70% ethanol and left overnight again with agitation. The ethanol 

was replaced with callose staining buffer containing 0.01 % (w/v) aniline blue, and incubated 

overnight at room temperature, in the dark. Leaves were placed on glass slides and callose 

deposition was analyzed by using an ultraviolet epifluorescence microscope. Microscopic 

images were saved in JPEG format.  The numbers of bright spots (corresponding to callose 

deposits) per microscopic field in the photograph were counted using Image J software.  

 

2.2.6 In situ hybridization on Meloidogyne sp. 

 

DIG labeled probe generation for In situ hybridization  

Probes were generated using the standard PCR amplification protocol of Phusion polymerase 

New England Biolabs). Firstly, PCR using non-tagged dNTPs was performed using plasmid 

DNA a template. Primer dimers were removed from the PCR product using the NucleoSpin Gel 

and PCR Clean-up Kit, following the manufacturer’s instructions (Macherey-Nagal). The PCR 

product was then used as a template for Asymmetric PCR (one-primer PCR) that incorporated 

digoxigenin (dig)-labeled dUTP into the product. An example reaction is presented in table 

2.40. 

Table 2.40 : Phustion polymerase mix to amplify DIG-labeled DNA probes. Content and volume in a 40µl reaction are 

shown. 

Content Volume in µl 

Buffer 8 

DIG-dNTPs 4 

Primer 10 

Template (minimum 50ng) 2 

Phusion polymerase 0.2 



42 

 

Water 15.8 

Total 40 

 

Probes were precipitated adding 1/10 of 3M sodium acetate and 3x the volume of 100% 

ethanol. Subsequently, mixture was kept at -80°C for at least 1h. Probes were pelleted and re-

suspended in 200 µl hybridization buffer for 10 min at 37°C. Probes were subsequently kept 

at -20°C for storage. 

In situ hybridization on Meloidogyne sp. (de Boer et al., 1998) 

On day 1 hatched nematodes (3 days old) were pelleted.  This and all subsequent pellet steps 

were performed using the microcentrifuge at 13,300 rpm.  The juveniles were fixed in 1ml of 

3.7 % formaldehyde in 1x PBS solution and kept at 4°C over night. The next day nematodes 

were pelleted and all but 50-100 µl of the liquid was removed. The pellet was resuspended in 

1x PBS and the nematodes were transferred onto a glass slide. Nematodes were then cut with a 

vibrating razor blade for 30 seconds until most of the juveniles were seen to be cut in half. 

Nematodes halves were collected in 1x PBS and washed twice more with 1ml PBS: 

Subsequently, pelleted nematodes were incubated in 1x PBS containing 1mg/ml proteinase K 

at 37°C for 1h under constant agitation. Next, nematodes were washed three times with 1ml of 

1x PBS and then pelleted nematodes were stored at -80°C for 15 minutes. After storage at -

80C° the pellet was re-suspended in cold methanol (-80°C) via vortexing and kept at room 

temperature for 2 minutes. Methanol was removed and nematodes re-suspended in cold acetone 

(-80°C) and stored at -80°C for 15 minutes. The acetone was removed and the pellet washed 

with preheated 500 µl hybridization buffer (50°C). Next, nematodes were pre-hybridized in 500 

µl hybridization buffer (50°C) for 30 min at 50°C under constant agitation. Subsequently, 

hybridization buffer was removed and 100 µl hybridization buffer containing denatured probes 

was added to nematodes. Probes are denatured by keeping them at 100°C for 5 minutes and 3 

min on ice. Hybridization was performed over night at 40°C under agitation. The next day 

nematodes were washed with 1 ml 4x SSC and 0.1% SDS at room temperature under agitation 

for 10 minutes. Next, a washing step with 1ml 0.1 SSC with 0.1 % SDS at 50°C with shaking 

was performed. Then, nematodes were washed with 1ml 1x maleic acid buffer for 30 seconds. 

After that, nematodes were incubated at 37°C for 30 minutes in 1x Boeringer blocking reagent 

in 1x maleic acid buffer. After removing the blocking solution, nematodes were incubated for 

3h in 1ml of anti-body solution which contained 1x Boeringer blocking reagent in 1x maleic 

acid buffer with the addition of 1:500 anti-DIG antibody at 37°C. After the antibody solution 
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was removed, nematodes were washed three times for 15 minutes in 1ml of 1x maleic acid 

buffer at 37°C. Nematodes were washed once in 1 ml alkaline phosphatase buffer. Signal was 

revealed in 1ml of alkaline phosphatase buffer over night at 4°C by adding 50 mg /ml BCIP 

and 77mg /ml NBT. Staining was observed using a light microscope. 

2.2.7 Subcellular localization of fluorescence tagged proteins 

Fluorescence tagged proteins expressed in Arabidopsis were analyzed using confocal 

microscope Leica SP5-DM6000 (Leica GmbH).  Leaf discs from fully expanded leaves of four 

week old plants were used for analysis. Appropriate filter set was used to distinguish between 

the different fluorophores and auto-fluorescence. Z-stack pictures were taken to obtain a better 

view on subcellular localization. Pictures were acquired and analyzed using Leica’s LAS - AF 

and LASAF lite. 

Table 2.41 : Excitation and detection values in nm for YFP, GFP and autoflourescence for fluorescence microscopy. 

The excitation and detection wavelengths of YFP, GFP, and the autoflourescence of chloroplast are presented. 

Fluorophore/signal Excitation in nm Detection in nm 

YFP 514 525-600 

GFP 488 500-540 

Autoflourescence of 

chloroplasts 

561 680-700 

 

2.2.8 Protein analysis using Western blot 

 

Co-immunoprecipitation 

 

Frozen leaf tissue from Arabidopsis was ground to powder. The leaf powder was extracted by 

adding Co-IP extraction buffer in ratio 2:1 (buffer: powder). Samples were centrifuged using 

FiberLite® F13-14x50cy fixed angle rotor at 10,000 rpm at for 15 minutes and clear 

supernatants were transferred into 2ml Eppendorf tubes. Immunoprecipitation was performed 

by adding 10 ml of GFP-trap M beads (Chromotec) to 2ml of supernatant and incubating the 

samples for 2 hours at 4 ˚C on a rotation wheel. The magnetic beads were separated from the 

solution by using magnetic rack.  The purified beads were washed 3 more times with co 

immunoprecipitation washing buffer before adding 45ml of 1x Laemmli buffer containing 5% 

β-mercaptoethanol. Beads were boiled at 95 ̊ C for 8 minutes. The samples were loaded directly 

onto SDS-PAGE gels or stored at -20 C. 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 
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In this study, separating gels used ranging from 4 to 20 % and were overlaid with 4% stacking 

gels. In short, the preferred separating gels were poured between 1.5mm glass slide and then 

overlaid with Isopropanol. When the separating gels were completely solidified, isopropanol 

was removed and a 4% stacking gel was poured on top. Combs suitable for 1.5mm spaced glass 

was inserted and the gel was left at room temperature until completely polymerize. Polymerized 

SDS-PAGE gels can be either used directly or wrapped with wet towel papers in a box and 

stored at 4 degree. SDS-PAGE-gels were placed in Mini Protean tetra cell (BioRad) chambers 

and loaded with 1xSDS-running buffer according to the manufacturer protocol. The combs 

were removed and samples were loaded. Gels were run at 100 to 160 Volts for approximately 

1-2 hours or until the Page ladder reach the bottom of the gel. 

 

Western blot analysis 

 

The samples from finished SDS-PAGE gel were blotted onto activated polyvinylidene fluoride 

membrane covered by 3 layers of Whatmann paper wetted with 1x transfer buffer in semi blot 

chamber (homemade, University of Göttingen). The transfers of the protein were carried out 

for 90 minutes at 1mA/cm2. After proteins were successfully transferred, the membranes were 

washed briefly in 1x transfer buffer and blocked in 2% nonfat milk powder in TBS-T for at 

least 30 minutes. After blocking, the first primary antibody (ɑGFP) was applied and incubated 

at room temperature for 120 minutes or 4 ˚C overnight. After the first antibody incubation, the 

membranes were washed to remove unattached antibody with 1xTBS-T for 10 minutes at room 

temperature 3 times. The secondary antibodies were added and incubated for 120 minutes at 

room temperature. After the incubation, the secondary antibodies were removed by washing 

with 1xTBST for 5 minutes for 5 times. The membranes were developed by using Super 

Signal™ West Femto Maximum Sensitivity Substrate and chemiluminescence was visualized 

using the Intras ChemoCam camera.  

 

2.2.9 Protein interaction assays using yeast  

 

Yeast transformation 

Overnight culture of yeast strain AH109 in YPAD was sub-cultured into new YPAD media and 

incubated at 28 °C until the OD600 was between 0.6 - 1.2. Yeast cells were collected and wash 

with sterile H2O by centrifugation at 4000 rpm for 5 minutes at room temperature in 50 ml 

falcon tube. The cells were resuspended in 1 ml of water and transferred into a sterile Eppendorf 



45 

 

tube before briefly centrifuging at 13,000 rpm to pellet the cells. Cells were resuspended in 550 

µl of 100 mM LiAc pH 7.5 and were distributed into 11 x 50µl sterile tubes. Supernatant was 

removed by brief centrifugation followed by adding a transformation mix containing 240µl of 

50% PEG 4000, 36 µl of 1M LiAc pH 7,5, 25 µl single stranded DNA and 250-500 ng of 

plasmid. The mixture was vortexed vigorously to resuspend the cells. Next, the mixture was 

incubated at 30 °C for 25 minutes with occasional shaking. Transformation was performed by 

heat shock. The yeast was incubated at 42 °C for 25 minutes. Subsequently, cells were 

centrifuged at 4000 rpm for 10 seconds and supernatant was removed. Yeast cells were 

resuspended in 200 µl of sterile water. Aliquots were spread onto suitable selective drop out 

media. Plates were allowed to air dry and incubated at 30 °C for 3 days or until the colonies 

developed.  

For double transformation to confirm interactions, the full length coding sequence of potential 

interaction candidates were amplified from either Arabidopsis root/leaf/flower cDNA and 

cloned into the plasmid (pGAD1) vector system using Gateway technology. Mh270 was 

cloned into pASII. The fish and Mh270 (bait) plasmids were co-transformed into yeast  

Yeast library screening 

To screen for potential interaction partners, yeast libraries containing cDNA fragments from 

Arabidopsis thaliana root and cell line were provided by Joachim Uhrig. 

cDNA libraries containing fish plasmids (pGADI),were quickly thawed in  a water bath at 42 

°C and resuspended in YPAD for 1 hour at 30 °C 200 rpm or until the OD600 =1.2. The AH109 

containing bait plasmid (pASII-effector candidate) was cultured overnight at 30 °C at 200 rpm 

in SC-W. 1.85*108 yeast cells (Y187) of each library were 1.85*108 yeast cells (AH109) 

containing the bait construct. Cell were pelleted by centrifugation and resuspended in 10 ml of 

YPAD containing 20% PEG6000 and transferred into a 100 ml Erlenmeyer flask. The mixture 

was incubated over night with 80rpm at 30°C. The next day, mixture was pelleted by 

centrifugation at 4000rpm for 4 minutes in 50 ml tubes and resuspended in 500ml SC –LWH 

containing 0.05% gelrite, 5mM 3`-AT and ampicillin. Mating efficiency was determined by 

spreading 10µl of the mixture onto SC –LW plates. Colonies for mating efficiency were 

observed after 2 days of incubation and after 10-14 days of incubation for interaction. Colonies 

developing in the interaction media were transferred on new selection plates and inserts were 

amplified using PCR. 
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3. Results 

3.1 Bioinformatic screen reveals seven potential effector proteins in M. hapla 
 

To discover new effector candidates a pipeline was created to identify candidates from 

Meloidogyne hapla using publically available resources (Figure 3.1). The first step was to look 

at the published M. hapla proteome (Mbeunkui et al., 2010). This publication lists 516 non 

redundant proteins that were identified via a bioinformatic analysis of the M. hapla genome and 

then confirmed through LC/MS analysis of M .hapla J2 proteins. The 516 proteins had been 

annotated by a BLASTp search of the Uniprot database and protein domains via a search of the 

Pfam22 database, which provided initial annotations that could be visually screened for 

potential proteins of interest. Since I was interested in novel M. hapla proteins, the list was first 

screened for proteins that were described as a “protein with unknown function”. Effectors with 

no conserved domain or no significant homology to anything in the database would be quite 

interesting pioneer effectors to study. This search provided a list of 57 candidates. 

 

Figure 3.1 : Pipeline for the identification of potential M.hapla candidates for subsequent testing. Initial candidate list 

was taken from the M.hapla proteome. Subsequent extraction of full length CDS from the M. hapla genome followed and 

bioinformatics analyses revealed 7 candidates to be tested in the lab. 
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In order to identify new nematode effectors that affect plant immunity, the published list of 

proteins was also screened for candidates that contain conserved domains potentially involved 

in plant defense responses. This included proteins with predicted functions in the regulation of 

gene expression, detoxification or in binding of signaling molecules as lipids or calcium. With 

these criteria, I picked an additional 54 candidates, leading to 111 protein candidates in total 

(Supplemental table 1). 

Each peptide listed in the Mbeunkui et al. (2010) paper contained the corresponding gene’s 

contig location in the M. hapla genome database. Using the M. hapla GBrowse interface, 

sequence information for each protein of interest, including predicted introns and exons, could 

be found but for all but seven candidates. For these 7 candidates, no complete open reading 

frame could be found and they were excluded them from further analyses. 

Because nematode effectors are predicted to be secreted from the nematode, I hypothesized that 

nematode effectors should contain a secretory signal and no transmembrane domain. The 

nematode gland secretions are proteins and peptides that are released in small vesicles from the 

nematode stylet. SignalP, (Petersen et al., 2011) which predicts both the probability of a 

classical secretion signal and the chance of a signal anchor, was used to predict the presence of 

a secretion peptide in the candidates. Only candidates that presented both a classical secretion 

signal with D-cutoff value higher than 0.450 and which had no predicted signal anchor were 

kept for further analyses. Additionally, a TMHMM algorithm (Krogh et al., 2001) which 

predicts potential transmembrane domains, was also used to remove candidates with a predicted 

transmembrane domain in the mature protein. Twenty eight protein sequences with predicted 

secretion signals and no transmembrane domains remained for further analysis.  

Candidates were going to be expressed in a bacterial system, and production of eukaryotic 

proteins can be hindered by the lack of correct post-translational modifications in bacteria 

(Tokmakov et al., 2012). Proteins can undergo multiple post-translational modifications, and 

after phosphorylation, glycosylation and acetylation are the two most common post-

translational modifications (Khoury et al., 2011). In fact, some effectors need appropriate 

glycosylation to be functional (Chen et al., 2014). First, GlycoEP (Chauhan et al., 2013) was 

used to check for potential eukaryotic glycosylation sites with a standard SVM threshold of 0.0. 

Seven candidates did not have predicted glycosylated sites, and they were kept for further 

analysis. Using the publically available tool from the ExPASy Bioinformatics Research Portal, 

an additional search was performed on the seven remaining candidates to exclude proteins with 

predicted acetylated sites. NetAcet was used with default setting for prediction of prediction of 
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N-terminal acetylation sites (Kiemer et al., 2005), and none of the seven proteins were predicted 

to be acetylated.   

From the remaining seven candidates three were originated from the list of “unknown proteins” 

while four came from the list of potentially interesting candidates with homology to known 

proteins. To retrieve more specific and potentially newly published information about the 

candidates, a new BLASTp search of the non-redundant protein database in NCBI was 

performed. The BLASTp analysis of the protein sequences of the remaining candidates showed 

that six out of the seven candidates had similarity to proteins in other nematodes. Interestingly, 

five of the candidates had similarity to proteins in animal parasitic nematodes (Table 3.1). Two 

of the candidates had low amino acid identity (31 and 32% respectively) to Pristionchus 

pacificus, which is a free living nematode, and the plant burrowing nematode Radopholous 

smilis. 

Table 3.1 : List of remaining candidates after all bioinformatic analyses were performed. Final list of candidates that were 

chosen for subsequent testing. Designation as well as highest hit with pairwise identity found in an NCBI protein BLAST using 

standard settings including E-Values are presented. Detectable conserved domains are also shown.  

 

Mh7 and Mh270 show a similarity to transthyretin-like proteins in other nematodes and contain 

a conserved DUF-290 (domain of unknown function 290). These proteins are nematode specific 

and show a higher presence in parasitic nematodes with a focus on the parasitic life stages 

(Jacob et al., 2007). So far, the potential involvement of these proteins in nematode-host 

interaction remains unknown. 

Mh222 displays a 41% similarity to a chondroitin proteoglycan in the animal parasitic nematode 

Ascaris suum. In general, chondroitin proteoglycans have a core protein with one or more 

covalently attached chondroitin chains. They are found in many organisms, including C. 

elegans, where they play a role in embryonic development and vulval morphogenesis (Olson et 

al., 2006). 

Candidate Mh247 revealed no significant similarity to other proteins in the NCBI database.  



49 

 

A hypothetical protein from the free-living nematodes Pristionchus pacificus was found to be 

the most similar protein to Mh257. The protein with the second highest homology was found 

in the free living nematode Caenorhabditis remanei. 

Mh265 did not show significant similarity to other known protein. However, it is noted that the 

top hit showed low homology (32% identity of 88 aa, E=0.1) to a fatty-acid retinoid (FAR) 

binding protein of Ancylostomona duodenale. This is interesting because FAR proteins have 

been shown to be involved in both the infection of cyst (Prior et al., 2001) and root-knot 

nematodes (Iberkleid et al., 2015). 

The last candidate, Mh309, contains an Ef-hand domain and presents significant identity with 

reticulocabin-2 from the dog roundworm Toxocara canis. These proteins are known to bind 

calcium ions which could suggest a role in affecting calcium dependent signaling pathways. In 

C.elegans reticulocalbin was shown to be associated with neuronal activity (Hobert, 2013). 
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3.2 Two effector candidates are able to increase virulence of Pst DC3000 on Arabidopsis 

thaliana 

In order to functionally characterize the effector candidates, an “Effector Detector Vector” 

(EDV) system was employed in which effectors are delivered into plants cells via the type three 

secretion system of Pseudomonas syringae. pv tomato DC3000 (Pst DC3000). This screen was 

adapted for nematode effectors as method to quickly screen the large list of nematode effectors 

from section 3.1 for possible effects on plant immunity. Effectors which help significantly 

enhance bacterial growth compared to the control, were kept for further studies. 

The full length coding sequences of effector candidates, minus their signal peptides, were 

amplified from M. hapla cDNA and cloned into the pEDV6 vector, which contains a signal to 

direct bacterial secretion of the candidate via the type three secretion system. The constructs 

were introduced into Pst DC3000 harboring a luciferase operon - luxCDABE (Pst-LUX) which 

allows the estimation of bacterial abundance by measuring the bacterial bioluminescence (light 

units/fresh weight). Successful bacteria transformation was confirmed by colony PCR, and no 

influence on bacterial growth on rich growth media could be observed due to the presence of 

the transgene (data not shown). 

The effector ATR13Emco5 from Hyaloperonospora arabidopsidis has been shown to increase 

the virulence of Pst-LUX in the EDV system (Fabro et al 2011). Pst-LUX expressing either 

pEDV6-ATR13Emco5 or pEDV6-YFP (control) were spray inoculated onto Col-0 plants and the 

bioluminescence (light units/fresh weight) was measured at 3 dpi. ATR13Emco5 significantly 

Figure 3.2 : ATR13 and some nematode effector candidates can promote Pst-LUX growth in planta. A: Pst-LUX 

delivering YFP or ATR13 were spray inoculated onto 4 week old Col-0 plants. Pst-LUX growth was measured at 3dpi as 

bioluminescence (light units / g fresh weight), and converted to a percentage relative to the LU / g fresh weight of Pst-LUX 

YFP at 3 dpi. Bars present the mean +/- SEM of two independent experiments (n=16). Asterisk indicate a significant difference 

using student t-test (p<0.05). B: Summary of Pst-LUX growth upon delivery of effector candidates into Col-

0.Bioluminescence (LU/ g fresh weight) was measured and then converted to a percentage relative to the bioluminescence of 

the YFP control at 3 dpi.  The experiment was performed twice, as shown.  The dotted line shows the set threshold for 

candidates significantly enhancing bacterial growth in the plants. Error bars represent the SEM (n=6-12). 
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increased bacterial growth in planta compared to YFP in two independent experiments (Figure 

3.2 A). Due to variability in the amount of bioluminescence that is produced by the bacteria at 

3 dpi between experiments, we defined positive EDV effector candidates as those which could 

enhance bacterial growth over 200% in comparison to YFP control in each experiment. 

Two independent clones of Pst-LUX expressing candidate constructs [pEDV6-Mh7, pEDV6-

Mh222, pEDV6-Mh247, pEDV6-Mh257, pEDV6-Mh265, pEDV6-Mh270, and pEDV6-

Mh309] were spray inoculated on Col-0 plants and bioluminescence (light units/fresh weight) 

was measured at three days post inoculation. Only Mh265 and Mh270 could increase bacterial 

growth in planta over the set threshold of 200% increase in bioluminescence at 3 dpi (Figure 

3.2.B).  

For Pst-LUX expressing pEDV6-Mh265 and pEDV6-Mh270, the level of bacterial 

bioluminescence was compared to the bacterial numbers (colony forming units (cfu)/cm2) in 

planta at 3 dpi. Pst-LUX expressing pEDV6-Mh265 and pEDV6-Mh270 exhibited higher 

numbers of bacteria at 3dpi (Figure 3.3 A and B). This confirmed that the increase in bacterial 

luminescence correlated to an increase in the bacterial population. 

 

  

Figure 3.3 : Mh265 and Mh270 can increase Pst-LUX bioluminescence and this correlates with enhanced bacterial 

populations in planta. A: Col-0 plants were spray inoculated with a bacterial suspension of Pst-LUX (OD600=0.2) expressing 

YFP, Mh265, or Mh270.  Bioluminescence (LU / g fresh weight) was measured at 3dpi. . The bioluminescence of the YFP control 

at 3 dpi is set to 100%.  Bars present the mean +/- SEM (n=15). Asterisk indicate a significant difference to YFP control using 

student t-test (p<0.05). B: Transgenic Pst-LUX expressing YFP, Mh265, or Mh270 were infiltrated (OD600=0.0001) into fully 

expanded leaves of 4 week old Col-0 plants. Bacteria were extracted from leaf disks at 1h and 3 days after infiltration to determine 

the number of bacteria in the plant. Bars present the mean CFU / cm2 of three biological replicates at 0 and 3 dpi. Error bars 

present SEM. Asterisks indicate a significant difference at 3 dpi as calculated by student t-test (p<0.05). 
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3.3 Mh265 and Mh270 exhibit enhanced gene expression in the pre- and early 

infection stages of Meloidogyne hapla 
 

Because genes involved in pathogenicity may be upregulated during the parasitic life stages of 

the nematode, qRT-PCR was performed to measure gene expression of Mh265 and Mh270 in 

egg, J2 and parasitic nematodes (i.e. gall tissue from infected Col-0 wild type plants at 6, 10, 

and 14dpi) (Figure 3.4). Acid fuchsin staining of roots revealed that at 6 dpi J2 were still 

migrating or establishing a feeding site while at 14 dpi most nematodes were sedentary and had 

started to moult (Supplemental figure 1).For the qRT-PCR analysis, the transcript levels were 

normalized to the geometric mean of the expression of the reference genes Mh18S and MhActin. 

Expression analysis showed that compared to the egg stage, there is enhanced gene expression 

in the J2 and in nematodes at 6 dpi for both Mh265 and Mh270. At later stages of infection (10 

and 14 dpi), the gene expression was similar to that of the egg stage. These results show that 

relative expression of the candidate genes is higher during the pre-infective (J2) and early 

infection stages. 

Figure 3.4 : qRT-PCR expression analysis of Mh265 and Mh270 over different life stages of M. hapla. The relative 

transcript abundance for Mh265 and Mh270 was determined for M. hapla eggs and pre-parasitic J2, and for parasitic M. hapla 

in Arabidopsis roots.  For the parasitic nematodes, Col-0 was infected with J2 and gall tissue was collected at 6, 10, and 14 dpi. 

The transcripts were normalized using the geometric mean of the expression levels of two endogenous reference genes, Mh18S 

and MhActin.  Each reaction was done in triplicate on two independent biological replicates.  The bars represent the arithmetic 

mean of two independent samples +/- SEM (n=2). Expression in egg stage was set to 1. Letters indicate a significant difference 

in between groups using one-way ANOVA analysis (p<0.05). J2= preparasitic Stage 2 juvenile, dpi = days post infection. 

Both Mh265 and Mh270 have successfully passed through the initial stages of the effector 

candidate identification pipeline (EDV screen and qRT-PCR in nematode life-stages). Due to 

limitations in time, I decided to focus solely on characterizing Mh270, while Mh265 was further 

characterized by another member of the lab. 
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3.4 In situ localization of candidate effector Mh270 shows labelling of the amphid 

region of the nematode 
 

A potential effector is likely secreted from the nematode into the plant. Because the stylet is 

connected to the esophageal glands, transcripts that localize to glands are thought to encode 

proteins that are secreted via the stylet. However, the nematode contains many secretory organs 

such as the cuticle, amphids, or anus of the nematode, and secreted proteins may also be 

produced in these organs. To test where Mh270 transcript hybridizes in the nematode juveniles, 

digoxigenin (DIG) labeled DNA probes were generated via one primer PCR spanning the full 

coding sequence of Mh270. Additionally, DNA probes for Mi-PG-1, a polygalacturonase, 

which had been previously shown to show localize to the subventral gland of M. incognita, was 

also made (Danchin et al., 2013). Hybridization of the probes on J2 nematodes was visualized 

by using an anti-DIG antibody coupled to alkaline phosphatase which generates a blue 

precipitate when NBT (nitro-blue tetrazolium chloride) and BCIP (5-bromo-4-chloro-3'-

indolyphosphate p-toluidine salt) are present. 

The anti-sense probe for Mi-PG1 intensely labeled the subventral gland of M. incognita 

juvenile, confirming the previously published report (Danchin et al., 2013). The anti-sense 

Figure 3.5: In situ hybridization shows localization of Mh270 and Mi-PG1 in pre- parasitic juveniles. Digoxigenin labelled 

DNA probes for Mh270 and Mi-PG1 were hybridized to fixed juveniles of M .hapla and M. incognita for Mh270 and Mi-PG1, 

respectively. Antisense probe staining shows target transcript presence. Sense probe presents potential background stain. 

Cartoon presents the RKN anatomy with arrows indicating organs associated with ingestion and secretion (modified from 

Hussey, 1989). 
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probe of candidate Mh270 hybridized to a head region of the nematode where the chemosensory 

organs called amphids are located (Figure 3.5). The sense probes for Mi-PG1 and Mh270 sense 

probe did not show any non-specific hybridization to the whole mount J2. 

3.5 Mh270 expression in plants does not affect flg22-induced PTI responses 
 

Upon recognition of conserved PAMPs, PTI is elicited in plants. Although our knowledge of 

the molecular mechanisms of PTI is relatively limited, we have several signaling outputs that 

can be measured after PAMP perception. Typical readouts of PTI in leaves include measuring 

elicitor induced oxidative burst, the accumulation of callose deposits, and defense marker gene 

expression. This chapter will focus on the potential effect of Mh270 expression in planta on 

these PTI outputs after induction by the elicitor flg22. 

Mh270 (coding sequence minus the signal peptide) under the control of the CaMV-35S 

promoter was introduced to Col-0 plants. Four homozygous T3 lines were tested for their 

expression of Mh270 by qRT-PCR. The lines Mh270 13-2 and Mh270 16-3 were chosen for 

further experiments due to their relatively high expression of Mh270 (Figure 3.6). None of the 

homozygous lines showed an obvious altered growth phenotype in comparison to Col-0 (data 

not shown). 

  

Figure 3.6 : Homozygous, stable transgenic Arabidopsis lines express Mh270. qRT-PCR was performed on four T3, 

homozygous Arabidopsis lines, each with single Mh270 insertion. The expression of Mh270 transgene was determined in 

relation to the Arabidopsis housekeeping gene AtUbq5.  Bars represent the mean of two independent biological replicates +/- 

SEM (n=2). 
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3.5.1 The early PAMP response ROS-burst is not altered in Mh270 transgenic plants 
 

Shortly after the recognition of PAMPS such as flg22, an oxidative-burst is triggered in the 

apoplastic space of plants, largely due to the activity of the NADPH oxidases (Torres et al., 

2006). To test whether Mh270 expression affects elicitor-induced production of reactive oxygen 

species (ROS), leaf discs of Col-0 and transgenic plants were challenged with or without 100nM 

flg22 and the subsequent ROS-bursts were measured via a luminol based assay. The buffer-

only treatments did not induce ROS production in either Col-0 or Mh270 transgenic lines at 

any time point. ROS production in the flg22-treated Col-0 leaf disks peaked at 15 min after 

elicitor treatment and then dropped to basal levels within 25 minutes. Leaf disks from transgenic 

plants expressing Mh270 exhibited no differences in the amplitude and duration of the flg22-

induced ROS burst compared to Col-0 (Figure 3.7).  

 

 

 

 

 

  

Figure 3.7 Flg22-induced ROS production is not affected in Mh270 transgenic lines. Leaf discs from Col-0 and Mh270 

transgenic lines were incubated in buffer with and without 100nM flg22. ROS production was measured as relative light units 

in a time course, with measurements taken every minute for 50 minutes. n=24 for flg22 treated samples, n = 3 for buffer only 

samples. Values are mean +/- SEM.  Experiment was repeated four times with similar results. 
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3.5.2 Mh270 transgenic lines do not show altered flg22-induced gene expression 
 

Next, Mh270 transgenic plants were examined for altered. PTI-marker gene expression after 

flg22 treatment. WRKY22, WRKY33, WRKY53, GST1, FRK1, and CYP81F2 have been well-

studied and their expression can be induced in Col-0 leaves usually within 1-2 hours after flg22 

treatment (Asai et al., 2002; Clay et al., 2009; Jacobs et al., 2011). Using qRT-PCR gene 

expression analysis, it was observed that the basal expression of these marker genes was not 

affected in the Mh270 transgenic plants (Figure 3.8). After 1.5 h treatment of flg22, gene 

expression analysis showed no significant differences between Col-0 and the two Mh270 

transgenic lines for 6 of the PTI-marker genes (WRKY22, WRKY53, GST1, FRK1, and 

CYP81F2). Although Mh270 16-3 exhibited slighter lower flg22-induced expression of 

WRKY33, this reduced expression was only seen in this one transgenic lines and, thus, not 

Figure 3.8 : Flg22 responsive genes were expressed at similar levels in Col-0 and transgenic M270 lines. Transcript 

abundance for the PTI marker genes was determined via qRT-PCR in 10 day old seedlings flooded in buffer with or without 

150 nm flg2 for 1.5 hr. AtUbq5 was used as the reference gene. Expression was set relative to flg22-treated Col-0. Bars represent 

the arithmetic mean of 6 biological replicates +/-SEM (n=6). Letters indicate a significant difference between groups calculated 

using two-way ANOVA (p<0.05) 
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reproducible between independent transgenic lines 

3.5.3 Flg22-induced root growth inhibition is not affected in Mh270 transgenic plants 

Root growth inhibition is another flg22-induced response (Ranf et al., 2011). If Mh270 can 

suppress PTI, it may also suppress elicitor-induced root growth inhibition. To test if Mh270 

expression in plants could alter this response, seven day old Arabidopsis seedlings were placed 

on media with and without 100 nM flg22. After five days of growth on the new media, the 

length of the primary roots was measured. On media without flg22, root lengths between Col-

0 and the Mh270 lines were not significantly different, confirming that Mh270 expression in 

plants does not alter root growth. When Col-0 and transgenic Mh270 (13-2 and 16-3) seedlings 

were grown on flg22, both showed similar levels of pronounced growth retardation (Figure 

3.9). 

 

 

 

 

 

 

 

  

Figure 3.9: Flg22-induced root growth inhibition is the same in Col-0 and Mh270 transgenic lines. Seven day old plants 

were transferred to AT media with and without 100nM flg22.  Five days later, the length of the primary root was measured.  

Bars show the arithmetic mean of three independent experiments +/- SEM.  The control condition (Col-0 root length on media 

without flg22) was set to 100. (n=27-34). No significant difference could be seen between treatment conditions using student 

t-test (p<0.05). 
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3.6 The susceptibility of Mh270 transgenic lines to diverse pathogens is similar to 

that of wildtype plants 
 

3.6.1 Penetration assays reveal no difference in number of nematodes entering the root 

between transgenic and Col-0 plants 

To address a potential influence of Mh270 in planta expression on plant susceptibility to 

nematodes, I performed pathogen assays with M. hapla. Plants with enhanced nematode 

susceptibility may exhibit one or more of the following three scenarios: 1) enhanced nematode 

penetration (more nematodes successful in finding/penetrating the root), 2) enhanced galling 

(more nematode able to initiate the feeding site and subsequent division of surrounding cells) 

and 3) enhanced egg production (conditions in which the female has greater reproductive 

capacity). Because we found that root-knot nematodes do not often complete their lifecycles 

and produce eggs in our axenic cultures, we focused on measuring nematode penetration and 

galling. 

To address whether the initial number of nematodes penetrating the root is affected by Mh270 

expression, the number of nematodes inside the root at 4 dpi was counted. Acid fuschin staining 

of the roots revealed that at 7 dpi, the nematodes were all still in the migratory J2 stage, 

indicating that at 7 dpi, feeding site formation had not yet begun. The transgenic lines contained 

the same number of juveniles (J2) per root as Col-0 (Figure 3.10). Based on this data, the in 

planta expression of Mh270 has no effect on the attraction or penetration ability of the 

nematodes. 

Figure 3.10: Nematode attraction and penetration were not affected in the Mh270 lines. Penetration was measured by 

counting the number of juveniles at one week post-infection inside the plant root.  The number of nematodes inside of the root 

in two transgenic Arabidopsis lines expressing Mh270 was compared to the number inside Col-0 and the stable transgenic 

Arabidopsis line expressing the M. incognita effector candidate Mi7853.  To visualize the nematodes, the roots were stained 

with acid fuchsin. The number of J2 inside Col-0 was set to 100.  Bars present the arithmetic mean of three independent 

replicates +/- SEM (n=24).  
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In addition to the Mh270 transgenic lines, a homozygous transgenic line for a putative M. 

incognita effector candidate Mi7853 was generated in the Gleason lab. Presence of the Mi7853 

transgene had been confirmed by PCR and sequencing, and no developmental defects were 

observed in seedlings of this transgenic line (data not shown). Previous work in the lab had 

shown that Mi7853 transgenic lines were not affected in nematode susceptibility (C, Gleason 

personal communication), but they had not been tested for nematode penetration. The 

transgenic line Mi7853 also had similar number of J2 / root at the Col-0. Thus, Mi7853, which 

was later used as a control in galling assays, had no effect on nematode penetration (Figure 

3.10). 

3.6.2 Mh270 transgenic lines are not altered in nematode susceptiblity 
 

Next, an infection assay tested whether the Mh270 transgenic lines have altered nematode 

susceptibility, which is quantified as the number of galls per root system, Fourteen days old 

seedlings Col-0 and the Mh270 transgenic lines were infected with 200 surface sterilized M. 

hapla J2. The number of galls per plant was counted at 4 weeks post-inoculation. The transgenic 

line Mi7853 had been previously shown to have wild type-like susceptibility to RKN (C. 

Gleason, personal communication), and this line was used as an infection control. There was 

no significant difference in the galling between Col-0, Mi7853 transgenic line, and the Mh270 

transgenic lines, indicating that Mh270 has no effect on nematode susceptibility (Figure 3.11). 

 

  

Figure 3.11:  Mh270 transgenic lines were not affected in nematode susceptibly. Susceptibility was measured by counting 

the number of galls per plant at 4 weeks post-infection. Galling of the root systems of two transgenic Arabidopsis lines 

expressing Mh270 was compared to that of Col-0 and the stable transgenic Arabidopsis line expressing the M. incognita 

effector candidate Mi7853.  The number of galls in Col-0 was set to 100.  Bars present the arithmetic mean of three experiments 

combined +/- SEM (n=30). 
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3.6.3 Susceptibility to M. hapla is not altered in lines expressing a RNAi hairpin 

construct specifically targeting Mh270 

Although the ectopic expression of Mh270 in plants did not alter their susceptibility to 

nematodes, silencing Mh270 in the nematode may lead to a visible phenotype in plants, such as 

reduced susceptibility. Thus we used host induced silencing (HIGS) in an attempt to knockdown 

Mh270 and see if the knockdown has an effect on nematode infection success. For HIGS a 

Mh270 RNAi construct is expressed in plants, and when the Mh270 dsRNA is ingested by the 

nematodes, Mh270 is presumably silenced via RNA interference mechanisms in the nematode.  

Two homozygous lines were generated and tested for the expression of the Mh270 RNAi 

hairpin construct (Figure 3.12 B). When these RNAi lines were tested in infection assays, no 

change in galling could be observed between Col-0, the two RNAi lines (Mh270 RNAi 9-4 and 

Mh270 RNAi 17-1) and the two ectopically expressing lines (Mh270 13-2 and Mh270 16-3) 

(Figure 3.12 A). Thus, expressing the Mh270 hairpin construct in Arabidopsis did not alter the 

plant’s susceptibility to nematodes. 

 

  

Figure 3.12 Expressing an RNAi-Mh270 construct in Arabidopsis had no effect on plant susceptibility. A: An RNAi 

construct targeting Mh270 transcript was transformed into Arabidopsis. Col-0 and transgenic seedlings from four independent 

lines were infected with 200 M. hapla J2 per plant. The number of galls per root system was counted at 4 weeks post-inoculation. 

Galling in the Col-0 control was set to 100.  Bars present the arithmetic mean of three independent experiments+/- SEM (n=30). 

B: PCR confirms expression of the hairpin construct in the RNAi lines. NTC = no template control. 
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3.6.4 Mh270 expressing plants have no altered susceptibility to Pst-LUX 
 

When Mh270 was expressed in Pst-LUX, it could enhance the bacterial growth in wild-type 

plants. To determine if this phenotype persists when Mh270 is stably expressed in Col-0, four 

week old Mh270 transgenic plants were spray inoculated with a bacterial suspension of Pst-

LUX and bacteria populations were measured at three days post-inoculation. No difference in 

bacterial growth in planta could be observed in between the transgenic Mh270 lines and Col-0. 

The positive control eds1-2 (enhanced disease susceptibility), which is a known hyper-

susceptible mutant, showed higher bacterial growth (Figure 3.13 A). To confirm these results, 

Pst-LUX growth was also assessed by measuring bacterial numbers (colony forming units 

(cfu)/cm2) 0 and 3 dpi in the Col-0 and Mh270 transgenic lines. The transgenic lines did not 

show any difference in bacterial growth in planta at 3 dpi compared to the Col-0 (Figure 3.13 

B). 

 

  

Figure 3.13: Arabidopsis plants expressing Mh270 did not exhibit enhanced Pst-LUX growth. A: Four week old plants 

were spray inoculated with a bacterial suspension of Pst-LUX.  At 3 dpi, bioluminescence (light units per gram fresh weight) 

was measured. Bars show the arithmetic mean of three biological replicates. Error bars represent the SEM (n=3). Asterisk 

indicate a significant difference in comparison to Col-0 using student t-test (p<0.05) Experiment was repeated twice with 

similar results. eds1-2 = hyper-susceptible mutant “enhanced disease susceptibility 1-2.” B: Fully expanded leafs of four week 

old plants were infiltrated with a Pst-LUX suspension (OD600=0.0001). Bacteria were extracted from leaf disks at 1h and 3 

days after infiltration to determine the number of bacteria in the plant. Bars present the mean CFU / cm2 of three biological 

replicates at 0 and 3 dpi +/- SEM. 
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3.6.5 Transgenic Mh270 lines were not more susceptible to less virulent strains of 

Pseudomonas syringae 
 

As the Pst-LUX strain is highly virulent, it may be difficult to assess if Mh270 only causes a 

small enhancement in bacterial growth. As a result, assays with less aggressive bacterial strains 

may show larger differences in bacterial growth and a more robust phenotype conferred by 

Mh270. The bacterial strain Pst ∆CEL contains a mutation in conserved effector loci (CEL) 

and cannot suppress the formation of callose deposits (DebRoy et al., 2004). Pst 

∆AvrPto/∆AvrPtoB can infect Arabidopsis but shows less virulent growth because it also lacks 

effectors that help it downregulate basal plant defenses. These two strains were tested on Mh270 

transgenic lines to see if Mh270 could enhance bacterial pathogenicity. 

Pst ∆CEL and Pst ∆AvrPto/∆AvrPtoB  strains were leaf infiltrated into four week old wild type 

and transgenic plants. Bacterial abundance was measured on day 0 and three days post-

infection. Plants expressing Mh270 did not show enhanced growth in planta at 3 dpi for either 

Pst ∆CEL or Pst ∆AvrPto/∆AvrPtoB compared to Col-0 plants (Figure 3.14 A and B). 

 

  

Figure 3.14 : Arabidopsis plants expressing Mh270 did not exhibit enhanced growth of either Pst ∆CEL or Pst ∆AvrPto/∆ 

AvrPtoB Four week old plants grown on substrate and under short day conditions were leaf infiltrated with a bacterial suspension 

(OD600=0.01) of either Pst ∆CEL or Pst ∆AvrPto/∆AvrPtoB.  Bacteria were extracted from leaf disks at 1h and 3 days after 

infiltration to determine the number of bacteria in the plant. Bars present the mean CFU / cm2 of five biological replicates at 0 

and 3 dpi +/- SEM (n=5). Experiments were repeated once with similar results A:  Pst ∆CEL B: Pst ∆AvrPto/∆ AvrPtoB.   
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3.7 Expression of Mh270 in less virulent Pseudomonas syringae strains does not 

enhance bacterial growth 
 

Mh270 expression in planta did not influence bacterial growth for either Pst-LUX or the less 

virulent mutant strains Pst ∆CEL and Pst ∆AvrPto/∆AvrPtoB. However, it was originally 

observed that pEDV6-Mh270 expression in Pst-LUX resulted in enhanced bacterial growth in 

Col-0 plants. It is possible enhanced susceptibility may be linked to the bacterial expression of 

the effector. For example, the quantity of the effector secreted via the TTSS or the timing of the 

effector secretion during pathogenesis may be contributing to the enhanced bacterial virulence 

in the plant. If this hypothesis is correct, expression of Mh270 in Pst ∆CEL and Pst 

∆AvrPto/∆AvrPtoB may enhance bacterial growth on susceptible plants. Thus, both strains were 

transformed with pEDV6 containing either YFP, ATR13 or Mh270. Positive clones were 

confirmed by colony PCR.  

The bacterial strains carrying pEDV6-YFP, pEDV6-ATR13 and pEDV6-Mh270 were infiltrated 

into the leaves of Col-0, and bacterial growth was measured at 0 and 3 dpi. Neither the 

expression of ATR13 nor Mh270 could increase bacterial growth in either Pst ∆CEL or Pst 

∆AvrPto/∆AvrPtoB (Figure 3.15 A and B). This was surprising since pEDV-ATR13 in Pst 

∆CEL has been previously reported to enhance bacterial growth in planta (Sohn et al., 2007). 

Figure 3.15 : Transgenic Pst ∆CEL and Pst ∆AvrPto/∆AvrPtoB expressing Mh270 or ATR13 did not have altered growth 

on Col-0 leaves.  Bacterial suspensions (OD600=0.01) of Pst ∆CEL or Pst ∆AvrPto/∆AvrPtoB expressing YFP, ATR13 or 

Mh270 were leaf infiltrated into four week old Col-0 leaves. Bacteria were extracted from leaf disks at 1h and 3 days after 

infiltration to determine the number of bacteria in the plant. Bars present the mean CFU / cm2 of five biological replicates at 0 

and 3 dpi +/- SEM (n=5). Experiment was repeated twice with similar results. A. Pst ∆CEL transformed to deliver YFP, ATR13 

or Mh270 B.: Pst ∆AvrPto/∆AvrPtoB transformed to deliver YFP, ATR13 or Mh270. 
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Because Pst ΔCEL cannot suppress callose deposition, leaves infected with Pst ΔCEL show an 

enhanced number of callose deposits. To test if Mh270 could suppress the callose deposition 

induced by Pst ΔCEL, leaves were infiltrated with Pst ΔCEL carrying pEDV6-YFP, pEDV6-

ATR13 or pEDV6-Mh270. Aniline blue staining of callose deposits showed that none of the 

constructs could suppress callose deposition induced by Pst ΔCEL in Col-0 (Figure 3.16). 

  

Figure 3.16 : The enhanced callose deposition caused Pst ∆CEL infection was not suppressed in Mh270 transgenic 

bacteria. Four week old Col-0 grown under short day conditions were leaf infiltrated with bacterial suspensions (OD600=0.2) 

of Pst ∆CEL or MgSO4 (Mock). One day after infiltration, the leaves were callose deposits were stain stained with aniline 

blue.  The number of callose deposits in the field of view was determined using Image J software. Measurements were taken 

in triplicates. Bars present the arithmetic mean of three experiments +/- SEM (n=10). Asterisk indicate a significant difference 

in comparison to Pst ∆CEL harbouring pEDV6 – YFP (p<0.05). 
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3.8 Fluorescently-tagged Mh270 stable transgenic Arabidopsis lines were 

generated 
 

Sub-cellular localization gives an insight into where a candidate protein localizes within the 

plant cell. The coding sequence of Mh270 (minus signal peptide) was cloned in frame to with 

either an N-terminal YFP or a C-terminal GFP. Both pUbq::YFP-Mh270 and pUbq::Mh270-

GFP were introduced into Col-0 to generate stable transformed lines with constructs driven by 

the plant ubiquitin promoter. Generated lines were visually screened for fluorescent signal 

intensity by fluorescence microscopy and the four lines with the strongest signal were chosen 

for further analysis. 

3.8.1 Western blot analysis of fluorescently-tagged Mh270 expressed in Arabidopsis 

reveals instability of the N-terminal construct 
 

To detect the Mh270 fusion proteins in the transgenic lines, Western blot analysis with GFP 

antibody the four transgenic Mh270 tagged lines was performed. In plants containing pUbq: 

Mh270-GFP construct, a protein of the expected size of Mh270-GFP fusion (40 kDa) was 

detected. However, in the plants containing the pUbq::YFP-Mh270 construct, only a 25kD band 

could be detected with the anti-GFP antibody. This size is similar to that of soluble GFP, 

suggesting that the YFP has been cleaved from Mh270 in these lines (Figure 3.17). 

  

Figure 3.17 :  Western blot analysis indicates that Mh270-GFP and not YFP-Mh270 produces a stable, tagged protein in 

transgenic Arabidopsis.  Proteins from transgenic Arabidopsis lines expressing GFP, YFP-Mh270, or Mh270-GFP driven by 

the 35S promoter were separated on an SDS-PAGE gel and blotted onto PVF membranes. GFP and YFP were detected using the 

ɑGFP antibody. Predicted size of Mh270 fluorescently tagged proteins is 40.13kDa. Size of GFP is 27kDa. Red square indicates 

the size of the predicted Mh270-tagged proteins. 
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3.8.2 Mh270-GFP localizes to the chloroplast of Arabidopsis leaves 
 

Roots of one week old plants expressing the pUbq::Mh270-GFP construct were analyzed for 

the subcellular localization of Mh270 using confocal microscopy. Mh270-GFP was observed 

in the roots of the transgenic plants (Figure 3.18). Mh270-GFP was seen in the cytoplasm of 

the root cells, similar to the distribution of GFP in Arabidopsis cells, when GFP is not fused to 

a specific plant protein (“free GFP”). 

Next, leaves of plants expressing the pUbq::Mh270-GFP construct were analyzed by confocal 

microscopy. Mh270-GFP appeared to localize to the chloroplasts since the green fluorescence 

was co-localized with the red autoflourescence of chlorophyll in leaves (Figure 3.19). In plants 

expressing pUbq::YFP-Mh270, only a protein the size of YFP could be detected on the Western 

blot, and the plants had a ubiquitous fluorescent signal, similar to that of plants expressing 

p35S::GFP, in both roots and leaves (Supplemental figure 3). 

 

 

 

 

Figure 3.18: C-terminally tagged Mh270 is localised in the cytoplasm of Arabidopsis roots. One week old roots from 

stably transformed Arabidopsis plants with either p35S::GFP or pUbq10::Mh270-GFP were analyzed by confocal microscopy. 

Localization was observed in two independent lines. 
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Figure 3.19: Localization of Mh270-GFP in Arabidopsis leaves. Leaves of seven day old plants were analysed for 

fluorescence signal using confocal microscopy under the use of the appropriate filter set. Localization was observed in two 

independent lines. With these optical filters, the chloroplasts exhibited autoflourescence. Brightfield and an overlay of all 

channels are also presented. 
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3.9 A yeast-two-hybrid screen reveals a potential plant interaction partner for 

Mh270 
 

To find potential plant targets for Mh270, a yeast-two-hybrid screen was performed.  First, 

Mh270 without signal peptide was introduced into the yeast two hybrid pASII vector and 

transformed into the yeast strain AH109. To test for potential auto-activation, yeast harboring 

the Mh270 construct were grown on synthetic complete media lacking leucine or synthetic 

complete media lacking the amino acids leucine and histidine with an addition of 5 mM 3-AT 

(3-Amino-1,2,4-triazole). While growth on control media was normal, it was completely 

abolished on double knock-out media, indicating that Mh270 does not cause an auto activation 

of the reporter gene (Supplemental figure 2).  

Two different libraries were used to screen for potential interaction partners. An Arabidopsis 

root library and a cell line library, both provided by Joachim Uhrig, were mated with yeast 

containing Mh270 in pASII. The libraries contained cDNA fragments of RNA generated from 

Arabidopsis roots or cells that was introduced into pGAD and transformed into yeast strain 

Y190. Approximately 10-14 days after mating, colonies were picked from semi liquid drop out 

media deficient in leucine, tryptophan, and histidine supplemented with 5 mM 3-AT. 

Additionally, sc plates lacking leucine and tryptophan were prepared with mated yeast to 

estimate mating efficiency. This resulted in 2.6 million and 7.8 million mating events for root 

and cell line library, respectively.  

Using vector specific primers, the inserts of 65 picked colonies were amplified and sequenced 

(Supplemental table 2). Five ribosomal and one mRNA binding protein were removed from the 

list of interacting partners since they commonly occur in the libraries and are likely false-

Table 3.2 : List of positive candidates derived from both root and cell line library. Amplified sequences were analysed 

and candidates were compaired with TAIR database available sequences. Redundant candidates and candidates presenting a 

frameshift were excluded from further testing. Working number, AGI code, gene name, if applicable, according to the TAIR 

database and the library in which the candidate was identified are presented.Occurence indicates how often a candidate was 

identified in the screen. 
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positives (Joachim Uhrig, personal communication, 2014). A list of 40 non-redundant 

candidates remained and their sequences were analyzed in more detail. Because the prey 

libraries were made from cDNAs that may or may not be full-length, an important criteria was 

that the start codon of the prey protein must be produced in frame in yeast. When the out-of-

frame clones were excluded, 13 candidates remained as possible interaction partners of Mh270 

(Table 3.2). 

In order to confirm the interaction, a double transformation between the full-length sequence 

of the candidates from the original screen (13 in total) and Mh270 were performed. An entry 

clone for candidate Y40 was not made because it was not possible to amplify the corresponding 

Figure 3.20 : The interaction between full-length Mh270 and AtVDAC3was confirmed in double-transformed yeast. 

Yeast AH109 were transformed with the following constructs: empty vector EV + Mh270, EV + AtVDAC3, or Mh270 + 

AtVDAC3.  They were grown three days at 28 °C on either on non-selective control plates (SC-W) or selective plates (SC-

LWH +5 mM 3-AT).  Two independent transformants were picked for empty vector controls and three for Mh270+AtVDAC3 

double transformations. 
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full length cDNA. Double transformation experiments confirmed that out of the 12 full length 

candidates, only Y49 could interact with Mh270 in yeast. Clone Y49 contains the open reading 

frame for At5g15090, which encodes a voltage-dependent anion channel AtVDAC3 (Figure 

3.20). 
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4. Discussion 

4.1 The pros and cons of the “effector detector vector” screen for identifying 

nematode effectors 

It is widely assumed that root-knot nematodes are secreting effectors during the early stages of 

parasitism that help the nematode suppress plant immunity and/or help establish their feeding 

sites in the root. Several approaches have been undertaken to identify these secreted effectors. 

For example, Roze et al. (2008) studied M. chitwoodi effectors by generating EST (expressed 

sequence tags) datasets of three different nematode life stages. Subsequent bioinformatic 

analyses of these libraries identified proteins expressed in the parasitic stages with signal 

peptides, which was indicative of stylet secretion. To confirm that these proteins were indeed 

secreted from the nematode, the group then did in situ localization, and found that most of their 

candidates were localized to nematode organs involved in secretion (Haegeman et al., 2013). 

Finding that a majority of the predicted secreted proteins were localized to the glands validated 

their bioinformatic approach to identify nematode secreted proteins with possible roles in 

parasitism. Danchin et al. (2013) mined the genomes of several plant parasitic nematodes for 

genes with secretion signals that are present in parasitic worms but absent from non-target 

species (plants, chordates, annelids, insects, and mollusks). This allowed them to identify 

potential nematode-specific effectors that could be targets for host-induced gene silencing. 

Taking a more direct approach, Bellafiore et al. (2008) used mass spectrometry together with 

bioinformatic analyses to identify proteins from the M. incognita stylet secretions. Overall, they 

uncovered that are nearly 500 proteins secreted from M. incognita, which may or may not be 

involved in parasitism (Bellafiore et al., 2008). 

Although there are hundreds of potentially secreted proteins from root-knot nematodes, only a 

few have been intensively studied. Unfortunately, RKN present many challenges to researchers. 

They are obligate pathogens, they have a complex genome organization, and they cannot be 

transformed. Therefore, experiments looking at effector function require quite labor intensive 

studies using RNA interference or making stable transgenic plants expressing the nematode 

gene of interest. To speed-up the effector discovery and functional analysis, I decided to adapt 

the “Effector-Detector Vector” (EDV) screen for nematode effectors. I could study seven 

putative effector candidates from M. hapla in an easy, bacterial assay to determine if expressing 

nematode effector candidates in Pseudomonas syringae affected bacterial growth in the plant. 

If the effector candidate could enhance bacterial growth, it would suggest that candidate is 

targeting conserved aspects of plant immunity, such as PTI. I could then prioritize the 
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candidates and focus on those which are likely to play key roles in the plant-nematode 

interaction. Despite the ease of the assay, there were drawbacks to the bioinformatic and EDV 

screen that should be considered. 

In the bioinformatic screen that was performed on the M. hapla dataset, a search algorithm for 

predicted classical secretion signals was performed. Although the presence of signal peptide is 

a typical feature used to define secreted proteins, some secreted proteins lack a canonical 

secretion signal and are secreted via an unconventional secretion system (Nickel, 2003). In 

Brugia malayi, 4.4% of the 2572 excretory/secretory proteins identified in the secretome were 

classified as non-classically secreted and the M. incognita secretome also presented proteins 

that lack a secretion signal (Bellafiore et al., 2008; Garg and Ranganathan, 2012; Suh and 

Hutter, 2012). Recently, non-classical secretion of isochorismatases as effectors required for 

pathogenicity has been described for filamentous plant pathogens (Liu et al., 2014). These 

results reveal the potential for phytopathogens to use both classical and non-classical secretion 

to deliver effectors (Liu et al., 2014). The alternate secretory routes in phyto-nematodes have 

yet to be uncovered, but by excluding non-conventionally secreted proteins from root-knot 

nematodes in our initial bioinformatic analysis, we may have missed potential nematode 

effectors. 

In addition to running candidates through search programs for signal peptides, I also used a 

search program for predicted glycosylation sites. Candidates with predicted glycosylation sites 

were removed in order to ensure that chosen candidates could be correctly produced by the 

plant pathogenic bacteria Pseudomonas syringae pv. tomato DC3000, which was used to 

deliver proteins to the plant cell in the EDV screen. However, many of the effector candidates 

had predicted glycosylation sites, and were excluded from the EDV-screen. In addition, 

glycosylation is just one of many potential post-translation modifications that could affect 

protein function. The fact that proteins that undergo post-translational modifications may not 

be suitable for the EDV screen is a major drawback of the system. 

Another drawback to the EDV system is that it is necessary to consider that Pst DC3000 is a 

bacterial plant pathogen that infects leaf tissue while RKN are animals parasitizing root tissue. 

Additionally, Pst DC3000 is a hemibiotrophic pathogen which causes severe damage on the 

leaves. In contrast, RKN are biotrophic and establish a very intimate interaction with the 

respective host while causing virtually no visible phenotypes, except swelling of the root. 

Although it was shown that roots can respond to PAMPs in a similar manner to leaves, (Millet 

et al., 2010) it is still important to note the differences of these two infection systems and 
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possible differences in defense responses (i.e. root vs leaf). The discrepancy between life style 

and tissue specificity might lead to either false positive or to the exclusion of true positive 

candidates in the EDV screen. Nonetheless, further investigations of positive candidate 

effectors as gene expression analysis and in situ hybridization can be used as subsequent tests 

to confirm their potential involvement in nematode-plant interaction. In summary, the EDV 

system allowed a high throughput testing of selected candidate effectors for their bacterial 

growth enhancing capabilities in Pst DC3000– plant interaction, and these candidates had the 

potential to be involved in suppressing plant immunity. 

 

The expression of candidates Mh270 and Mh265 is up-regulated in pre and early-parasitic 

life-stages, suggesting roles in parasitism 

Gene expression analysis allows the estimation of transcript abundance of a specific target gene. 

In the case of nematodes it is important to note that the different life stages can have an effect 

on reference gene expression, which can ultimately affect relative gene expression. To account 

for this, I used a technique described by Iberkleid et al (2013) in which the geometric mean of 

two different reference genes is used to reduce the life-stage effect on the relative gene 

expression calculation. Although an increase in specific gene expression in the infective and 

motile stages of the nematode does not necessarily indicate an involvement in pathogenicity, it 

can be used as definite exclusion criteria to ensure that the target gene has a higher importance 

in a certain life stage in comparison to non-infective or sedentary stages. Generally, the analysis 

of gene expression is a well-established method to identify genes potentially involved in the 

plant-pathogen interaction (Fabro et al., 2011; Lin et al., 2013; Roze et al., 2008). Using gene 

expression as a second criterion for possible effectors candidates after the EDV screen, both 

Mh270 and Mh265 showed enhanced expression in the pre- and early parasitic stages of the 

nematode, which is enticing evidence that they may be involved in parasitism. Because Mh270 

and Mh265 were effector candidates that 1) enhanced bacterial growth in the EDV system and 

2) had enhanced gene expression in parasitic stages, they were prioritized for further studies. 

Mh270 is a transthyretin-like protein localized to the amphids 

Mh270, as the main candidate for this thesis, was identified to belong to the transthyretin-like 

protein group harboring a DUF290 – a transthyretin like domain. Transthyretin-like genes are 

part of a large gene family and are a nematode specific group of proteins.  

Transthyretin-like proteins (TTLs) have similarity at the protein level to transthyretins (TTR), 

which have a transthyretin domain (PF00576) and are specifically found in vertebrates. The 
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initially identified transthyretin proteins in humans have been mostly studied for their ability to 

transport thyroxin and for their involvement in Vitamin A metabolism. In vitamin A 

metabolism, TTRs act as carrier proteins that bind to retinol-binding proteins (Yamamoto et al., 

1997). Mutations in a TTR gene can cause amyloidosis which causes the aggregation of 

proteins. The aggregates become insoluble in intercellular space of the human body causing 

several different disease symptoms depending on which organ is affected (Hamilton and 

Benson, 2001). 

In addition to the TTLs, there are transthyretin-related proteins (TRPs), which contain a 

transthyretin domain (PF00576) and a characteristic C terminal motif (Y-[RK]-G-[ST]) (Pessoa 

et al., 2010). TRPs are found in a broad range of organisms, including plants. In Arabidopsis, 

the TRPs are involved in in brassinosteroid signaling and modulating plant growth. The 

Arabidopsis TRP acts as substrate of the BRASSINOSTEROID-INSENSITIVE 1 (BRI1), a 

Leucine-rich-repeat (LRR) receptor kinase (Nam and Li, 2004). Although sequence similarities 

exist between TRPs from fungi, plants, and animals, they have evolved many different 

functions, from their role in BR-signaling in plants to acting as a 5-hydroxyisourate hydrolase 

in zebrafish (Pessoa et al., 2010; Zanotti et al., 2006). 

Nematode specific transthyretin-like proteins are found in both non-parasitic (C. elegans) and 

parasitic nematodes. In plant parasitic worms, they have been found in Xiphinema index, M. 

incognita, H. glycines and Radopholous similis, but their role in plant parasitism is unknown. 

In animal parasitic nematodes, such as Ostertagia ostertagi, TTLs were identified to be 

expressed from the free-living stage onwards. It has also been found in the excretory-secretory 

(ES) products of Ostertagia ostertagi, Brugia malayi, and Haemonchus contortus, which 

suggests a role in the secretions during the parasitic stages of the worms (Saverwyns et al., 

2008). Unfortunately, RNAi-mediated knockdowns of TTLs have led to little insight to their 

function (Wang et al 2010). In C. elegans, only RNAi knockdowns of 4 out of 53 TTLs tested 

showed any aberrant phenotype, such as hyperactivity, increased fat content, and maternal 

sterility (Wang et al., 2010). Knockdowns of the TTLs in the burrowing nematode Radopholous 

(Rs-TTL-1 and Rs-TTL-2) also did not have any phenotype, leaving few clues as to their 

biological roles (Jacob, 2009). Localization studies do provide some information about the 

possible function of the TTLs in nematodes. For example, one of the C. elegans TTL was 

localized to the nervous system and hypodermis (Wang et al 2010). In addition, the plant 

parasitic Radopholous similis Rs-TTL-1 and Rs-TTL-2 were localized to the central nerve cord 

and the vulva, respectively (Jacob et al., 2007). Because the TTLs are a multigene family of 
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secreted proteins with expression in the nervous system, Jacob et al. (2007) hypothesize that 

Rs-TTLs share characteristics with neuropeptides.   

Interestingly, in situ hybridization determined that Mh270 transcript was localized to the 

amphids of the J2 nematode. The amphids are two open pores on the head of the nematode that 

function as chemosensory sensilla (sense organs). The amphids contain a glandular sheath cell, 

a socket cell, and dendritic processes that are bathed in secretions (Perry, 1996). Because the 

amphids are open to the environment, the secretions generated by the glandular sheath cells can 

be released by the nematode. Recent work has identified plant-parasitic nematode effectors that 

localize to the amphids and are likely secreted to the plant apoplast. For example, in Globodera 

pallida a novel group of hyper-variable extracellular effectors were localized to the amphids. 

Silencing these effectors reduced the nematode success in infecting the plant, and these proteins 

were detectable during plant infection by immunochemistry in the plant apoplasm (Eves-van 

den Akker et al., 2014b). In RKN, the putative avirulence factor MAP-1 was also shown to be 

secreted from the amphids during infection, and these secretions also localized to the apoplast 

during infection (Vieira et al 2011).  

It is interesting to speculate that Mh270 may be associated with the nerves or the amphid 

secretions that surround the nerves. The localization in the amphids would suggest that Mh270 

is initially secreted into the apoplast during infection. However, we observed that when Mh270 

was delivered by Pst-LUX into the plant cell via the TTSS, it enhanced bacterial virulence in 

the plant. This suggests that Mh270 functions in the plant cytoplasm. Therefore, we speculate 

that if Mh270 were secreted into the apoplast, it would have to be delivered into the plant cell 

by some mechanism. Unlike oomycete effectors that have a conserved RXLR-uptake motif that 

is required for effector translocation into the plant cell (Morgan and Kamoun, 2007), there are 

no known nematode translocation motifs. In the future, immunolocalization of Mh270 during 

infection may shed light on its destination compartment within the plant after nematode 

secretion. 
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4.2 Transgenic lines expressing Mh270 do not show an altered infection phenotype 

for M. hapla and Pseudomonas syringae strains 
 

The EDV screen identified two effector candidates which enhanced bacterial growth in plants, 

and I focused my research on one of these effector candidates, Mh270. To test the effects of 

Mh270 on plant susceptibility, stable transgenic lines expressing Mh270 were generated. These 

lines were tested for enhanced nematode susceptibility by studying both penetration and galling. 

Penetration assays test nematode abundance in infected roots, and a changed penetration 

phenotype could be due to many factors, including root morphology and root attractiveness. A 

root system that is altered in size could lead to a different number of nematodes in the root due 

to differences in availability of penetration sites. For example, a peptide from M. incognita , 

termed 16D10, could significantly enhance root growth when ectopically expressed in 

Arabidopsis and tomato hairy roots, and these hairy roots were more susceptible to nematodes 

(Huang et al., 2006). However, the Mh270 transgenic lines did not show any obvious 

morphological phenotype, which precludes the possibility of increased penetration sites. 

Overall, there was no change in the number of nematodes at 7 dpi in the transgenic lines 

compared to the control, suggesting that the nematode penetration is not affected by Mh270. 

Next, infection was assays were performed to test for an effect of Mh270 expression on 

nematode susceptibility. Several effectors have been identified to increase nematode 

susceptibility when expressed in the host plant. For example, RKN effectors. Mi-CRT, Mi-

NULG1a. and 8D05 were able increase the number of galls, indicating enhanced nematode 

susceptibility (Iberkleid et al., 2013; Jaouannet et al., 2013; Lin et al., 2013; Xue et al., 2013). 

Unfortunately, Mh270 transgenic plants did not have altered galling, and overall, they were just 

as susceptible to M. hapla as Col-0.  

The transgenic Mh270 lines were also tested with Pst-LUX to see if ectopic Mh270 expression 

in plants could affect bacterial susceptibility.  Fabro et al. (2011) reported that when nine Hpa 

Emoy2 HaRxLs effectors where constitutively expressed in Col-0 plants, six gave results 

consistent with the EDV phenotype. This suggests that effectors which enhanced bacterial 

growth in the EDV screen should also enhance bacterial growth when the effectors 

constitutively expressed in plants. Unfortunately, when Mh270 was expressed in plants, its 

presence did not have a positive effect on Pst-LUX growth. Mh270 transgenic plants were also 

inoculated with less virulent strains of Pseudomonas syringae: Pst∆CEL and 

Pst∆AvrPto/∆AvrPtoB. There was no enhanced bacterial growth in the transgenic plants for 

either Pst∆CEL or Pst∆AvrPto/∆AvrPtoB. These results are surprising since only one of the 
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nine effectors presented in the Fabro paper that enhanced bacterial growth in the EDV screen 

did not have the same effect when the effector was expressed in plants. The transgenic plants 

expressing this effector also exhibited smaller leaves and enhanced callose deposition, and these 

plant phenotypes may have contributed to the bacterial phenotype (Fabro et al 2011). In 

contrast, the Mh270 transgenic lines did not present an altered growth phenotype nor did they 

have altered callose deposition, so the lack of increased Pst-LUX growth phenotype in the 

Mh270 lines cannot be linked to these responses. 

Although Mh270 transgenic lines were not more susceptible to nematodes and they did not 

exhibit enhanced Pst-LUX susceptibility, it does not completely rule-out Mh270 as an effector 

candidate. One possibility is that the amount of Mh270 protein in the transgenic plants was too 

low to have an effect on nematode and Pst-LUX susceptibility. Since only the Mh270 transcript 

level was measured in the transgenic plants, no clear statement can be given about the Mh270 

protein levels in these lines. Because protein tags could potentially interfere with protein 

function (Terpe, 2003) we initially transformed only constructs with untagged Mh270 into 

Arabidopsis. Subsequent generation of homozygous, N-terminal YFP tagged constructs showed 

that only soluble YFP was present, suggesting that the Mh270 had been cleaved from its 

fluorescent tag. The C-terminal tagged Mh270 GFP lines were only recently generated, which, 

according to the Western blot analysis, have stable, GFP-tagged Mh270. Unfortunately, due to 

time limitations, these were not tested with nematodes or other pathogens as part of the thesis, 

but they will be tested in the future. 

4.3 Expression of an RNAi construct in plants did not affect nematode 

susceptibility  

Although the ectopic expression of Mh270 did not increase virulence of M. hapla the 

importance of the candidate effector could still be detected via an RNAi silencing approach. If 

a candidate effector has a crucial importance in the infection process and it is efficiently 

silenced, an impact on nematode infection should be visible. In general, two methods are used 

to silence genes in RKNs. The first is to soak juvenile nematodes in a dsRNA solution. The 

silencing construct should passively enter the nematode, be processed, and target the specific 

gene for silencing nematodes (Lozano-Torres et al., 2014; Niu et al., 2012). Unfortunately, 

soaking nematodes in dsRNA often has low penetrance due to the thick nematode cuticle and 

results can be highly variable. Furthermore, Dalzell et al.(2009) reported aberrant phenotypes 

from soaking plant parasitic nematodes in non-nematode dsRNA, suggesting that soaking can 

lead to non-specific effects. Due to these observations, we decided to use host-induced gene 
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silencing (HIGS), which has been used to silence different genes in RKN and cyst nematodes 

(Iberkleid et al., 2013; Jaouannet et al., 2013; Lin et al., 2013). For this method we created 

transgenic plants producing an RNAi hairpin construct targeting Mh270 transcripts. The RNAi 

construct was detected in the generated homozygous lines. However, determination of a 

potential reduction of Mh270 transcript in the nematode was not performed. Unfortunately, it 

is technically difficult to measure RNAi-mediated knockdowns of nematode genes during 

parasitism. First, the initial amount of Mh270 transcript was very low, and since the infections 

were not synchronized, it meant that infections contained a mixture of both feeding and non-

feeding nematodes, which would have also diluted any knock-down effects on Mh270 transcript 

levels. Nevertheless, I predicted that silencing of Mh270 in nematodes could lead to reduced 

galling in the plants. Unfortunately, the nematode bioassays did not reveal any effect of the 

RNAi construct on M. hapla galling. Since the nematodes will potentially take up the dsRNA 

only when they feed on the plant cell, the knockdown of Mh270 could have happened after 

Mh270 already fulfilled its function in pathogenicity. We also cannot rule out that Mh270 may 

work in coordination with other parasitism genes, and thus, targeted silencing of one gene 

would have limited effects. The lack of phenotype in the Mh270 RNAi lines highlights the 

drawbacks of HIGS. It should be noted that while RNAi had once been touted as a technique 

for elucidating gene function in plant parasitic nematodes, the nematode community has begun 

to lose confidence RNAi due to high variability between experiments and the lack of significant, 

targeted effects for most genes tested (Lilley et al., 2012). 

4.4 Mh270 expression has no effect on flg22 triggered responses 
 

PTI is the first line of active defense responses against pathogens, and host plants have to 

constantly cope with effectors which can affect this basal line of defense. When Mh270 was 

delivered by Pst-LUX, the bacterial growth was enhanced in the plants, and therefore, I 

hypothesized that this effector candidate may be affecting very general immune responses that 

affects diverse pathogens, including bacteria and nematodes. In other words, it may have an 

effect on PTI. Several effectors from different pathogens have been identified to affect PTI. For 

example, in Pseudomonas syringae, HopAI1 is an effector that influences map-kinase 

signaling, resulting in reduced PTI defense gene expression and consequently less callose 

deposition (Zhang et al., 2007). Another example for an effector directly targeting plant 

defenses is Pep1 from Ustilago maydis. This effector inhibits apoplastic peroxidases to reduce 

the ROS burst generated during immune responses (Hemetsberger et al., 2012). 
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Even though the importance of basal defenses in RKN-plant interaction is not well researched, 

different effectors are being identified which affect PTI associated responses. Most 

prominently, Mi-CRT was shown to down-regulate the expression of the PTI marker genes 

FRK1 and CYP81F2. Additionally, less elf18-induced callose could be detected after treatment 

in the Arabidopsis lines ectopically expressing Mi-CRT (Jaouannet et al., 2013). This indicates 

that RKN effectors suppress at least some PTI responses to successfully manipulate the plant 

host. 

In the case of Mh270, I tested several PTI readouts. Because at the time of the experiments no 

nematode PAMP had been identified, flg22 was used to induce PTI in the transgenic plants. 

Unfortunately, the Mh270 transgenic plants were not compromised in flg22-induced callose 

deposition, ROS-burst, or PTI-marker gene expression. They were also not affected in flg22-

induced root growth inhibition. Altogether, any effect of Mh270 in the plant-nematode 

interaction is probably not associated with PTI suppression. However, additional tests with the 

newly generated Mh270-GFP tagged lines will hopefully confirm this conclusion.  
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4.5 Mh270 did not enhance the virulence of Pst∆CEL and Pst∆AvrPto/∆Avr PtoB 

When pEDV6-Mh270 was expressed in Pst-LUX, the bacteria showed more growth in planta 

compared to the controls. However, Pst-LUX is a virulent pathogen, and it may be easier to 

detect enhancement of bacterial virulence using less virulent bacteria. Thus, Pst∆CEL and 

Pst∆AvrPto/PtoB were transformed to express either pEDV6-YFP, pEDV6-Mh270 or pEDV6-

ATR13. Unfortunately, neither Pst∆CEL nor Pst∆AvrPto/∆AvrPtoB showed an enhanced 

growth when expressing Mh270 or ATR13 in comparison to YFP. For Mh270 we cannot rule 

out the possibility that it works in combination with other Pst DC3000 effectors in order to 

contribute to significantly enhance bacterial growth. Thus, the full complement of Pst DC3000 

effectors is necessary to see the enhanced bacterial growth conferred by Mh270. In addition, 

neither ATR13 nor Mh270 were able to reduce callose deposition when delivered by Pst∆CEL. 

The results for ATR13 were surprising since ATR13 had previously been shown increase 

bacterial growth in planta; it is also supposed to suppress PAMP-triggered callose deposition 

when delivered by Pst∆CEL (Sohn et al., 2007). The reasons for the discrepancy between our 

data and published data may be due to differences in the experimental set-ups. For example, 

Sohn et al. inoculated Col-0 with 5 × 105 cfu/mL Pst∆CEL carrying pEDV3 -ATR13Emoy2, 

whereas I inoculated more of these bacteria into the leaves, 5 × 106 cfu/mL Pst∆CEL carrying 

pEDV3 -ATR13Emco5 for the bacterial growth assays. The denser bacterial suspensions used in 

our lab may have led to stronger disease symptoms and masked any subtle differences in 

virulence and callose deposition due to the expression of ATR13. 
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4.6 A GFP-tagged Mh270 shows different sub-cellular location in roots versus 

leaves. 
 

Based on the fact that Pst-LUX delivery of Mh270 into the plant enhanced bacterial growth, we 

presumed that nematode-secreted Mh270 is also destined for the plant cell cytoplasm. To 

determine where it may localize in the plant cell, stable transformed Arabidopsis lines 

expressing Mh270 tagged at the C-terminus with GFP (Mh270-GFP) were generated. The 

plants produced a GFP signal with nucleo-cytosolic localization in the roots. In contrast, in leaf 

tissue, Mh270-GFP showed a chloroplastic localization. Subsequent Western blot analyses of 

transgenic lines revealed that only Mh270-GFP is a stable protein fusion, in which full-length 

Mh270 was fused C-terminally to GFP. Transgenic plants expressing full-length N-terminal 

fusion of YFP to Mh270 were also made, but the tagged Mh270 was not detectable on the 

Western blot. Only a band of the size of GFP was present on the blot, suggesting that Mh270 

had been degraded or cleaved from the tag.  

The TargetP algorithm did not predict chloroplast transit peptide for Mh270. However, its 

chloroplastic localization in leaves suggests that Mh270 can be targeted to the chloroplast and 

that it may have a novel N-terminal transit peptide. The instability of the N-terminal fusion 

suggests the presence of a cleavable peptide. As chloroplast transit peptides often have cleavage 

sequences, the N-terminal transit peptide and the N-terminal fluorescent tag may both be 

cleaved from the protein (Nielsen et al., 1997; Petre et al., 2015).  

In general, chloroplasts present interesting targets for pathogens as they are not only providing 

the plant with energy and, thus, having a strong impact on metabolism but they are also involved 

in the synthesis of plant hormones. The initial steps of the JA biosynthetic pathway are situated 

in the chloroplast (Bell et al., 1995). Additionally, the shikimic acid pathway in the chloroplast 

produces chorismate, which is a precursor for the defense signaling molecule salicylic acid 

(Mano and Nemoto, 2012; Wildermuth et al., 2001). There are examples of pathogens that 

contain effectors that target the chloroplast to manipulate the host to their advantage. 

Pseudomonas syringae pv. maculicola secretes an effector termed HopI1 that localizes to the 

chloroplast to suppress SA associated responses (Jelenska et al., 2007). Additionally, 

Pyrenophora tritici-repentis uses ToxA and ToxB to alter the chloroplasts of wheat to induce 

ROS which allows the pathogen to cause disease on infected plants (Ciuffetti et al., 2010). 

These examples show that pathogens may secrete effectors that are targeted to the chloroplast 

to efficiently manipulate the plants to their advantage. 
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4.6 Mh270 interacts with AtVDAC3 in a yeast-two-hybrid assay 

To understand the function of a potential effector candidate it is helpful to understand if the 

effector targets a host protein. Thus, a yeast-two-hybrid assay was performed using two 

different libraries and identified AtVDAC3 as an interaction partner of Mh270 in yeast.  

VDAC proteins present interesting interaction candidates for effectors. VDACs have been most 

prominently researched in mammalian cells, where they have been shown to control the flux of 

metabolites, ions, nucleotides, and calcium across the outer mitochondrial membrane to the 

cytosol. The structure of VDAC is typically a porin-type β-barrel diffusion pore with an 

estimated size of 30kDa (Benz, 1994). The VDACs normally localize to the highly permeable 

outer membrane of mitochondria (OMM), and in mammalian cells, the VDACs are important 

in apoptosis because they are involved in the release of apoptotic proteins (Brenner and Grimm, 

2006) e.g. cytochrome c, which triggers a cascade that leads to cell death (Adrain and Martin, 

2001). The importance of VDACs in cell metabolism was confirmed in silencing experiments 

where a VDAC1 knockdown disrupted energy production and cell growth in human cell lines 

(Arif et al., 2014). 

There has been less research regarding the role of VDACs in plants. In Arabidopsis thaliana 

five different VDAC isoforms are known (Lee et al., 2009), and they all localize to 

mitochondria (Hoogenboom et al., 2007). Expression of 4 of these AtVDACs can be induced by 

environmental stresses such as high salt (Lee et al., 2009; Zhang et al., 2015), and there is also 

evidence for Arabidopsis VDACs involvement in plant defense. For example, four of the VDAC 

genes were up-regulated in Arabidopsis inoculated with Pst DC3000 (Lee et al., 2009). 

Moreover, in Nicotiana benthamiana, NbVDAC1 and NbVDAC2 expression was upregulated 

after Pseudomonas cichorri infection, and silencing of these VDACs compromised plant 

defenses against this pathogen (Tateda et al., 2008). It has been speculated that plant VDACs 

are playing a role in plant defense through their involvement in mitochondria-mediated cell 

death. In fact, features of the hypersensitive response (HR) that occurs in plants after pathogen 

attack bear hallmarks of apoptosis (Gilchrist, 1998). Thus, VDACs may be a conserved 

mitochondrial element in both plant and animal programmed cell death. Evidence for this 

conservation in function lies in data showing that expression of a rice VDAC (osVDAC4) in the 

Jurkat T-cell line induced apoptosis (Godbole et al., 2003). In addition, four of the Arabidopsis 

VDACs, including the Mh270 interacting partner VDAC3, could functionally complement the 

yeast VDAC mutant, suggesting that VDAC function is conserved between plants and yeast. In 

yeast, VDAC has a role in mediating apoptotic changes in yeast mitochondria. Exactly how the 
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VDACs may be regulating plant cell death (and plant defense) is unknown, but (Tateda et al., 

2008) showed that H202 production was reduced in NbVDAC1-silenced N. benthamiana plants 

infected with Pseudomonas cichorii, compared to the controls, suggesting that plant VDACs 

may regulate cytosolic ROS levels. In summary, plant VDACs are thought to be localized to 

the outer mitochondrial membrane, where, after pathogen stress, they may be involved in 

opening the mitochondrial permeability transition pore. This may lead to an increase in 

cytosolic ROS levels and cell death, which could contribute to plant defense (Kusano et al., 

2009). 

In the leaves containing fluorescently tagged Mh270 is localized to the chloroplasts, not to the 

mitochondria. Although Mh270 does not seem to localize specifically to mitochondria, an 

interaction between AtVDAC3 and Mh270 cannot be excluded. For example, Mh270 could be 

targeted to both the mitochondria and the chloroplast, as a “dually targeted protein.” This 

scenario is similar to the rust fungal effector CTP1, which is targeted to both the plant 

mitochondria and the chloroplast, although its accumulation in the mitochondria is weak (Petre 

et al 2015). Moreover, transit peptides of chloroplasts and mitochondria contain similar traits 

(Carrie and Small, 2013) which could lead to a unspecific targeting of Mh270 to chloroplasts 

in leaves (Petre et al., 2015). As a result, Mh270 is possibly mis-localized to the chloroplasts, 

and its cytoplasmic localization, as seen in roots, represents its true sub-cellular localization. 

This sort of mis-localization in the aereal chloroplasts was previously documented in 

Arabidopsis expressing the binding domain of glucocorticoid receptor fused to GFP 

(GFP/BDGR) (Brockmann et al., 2001). These proteins were cytoplasmically localized in the 

roots, but were incorrectly targeted to the plastids in the leaves. Such mis-localization was 

explained by suggesting that the fusion proteins may be sequestered to the chloroplast through 

a leaf-specific chaperone (Brockmann et al., 2001). Dual localization or bifluorescence 

complementation studies must be performed confirm the in planta interaction of Mh270 and 

AtVDAC3 and its subcellular localization. 

Because VDAC3 is a membrane-associated protein, it was surprising to see an interaction 

between it and Mh270 in yeast. However, recent publications have shown that when VDAC3 

is used as a bait in a traditional yeast-two-hybrid screen, it can interact with the plant-specific 

kinesin KP1 and with chloroplast protein thioredoxin m2 AtTRXM2 (AT4G03520) (Yang et 

al., 2011; Zhang et al., 2015). Arabidopsis VDACs can accumulate to a small degree in the 

cytosol, which may explain these interactions in the yeast screens (Lister et al., 2007). In 

addition, work in human cells suggests any modification of the N-terminus, including 
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placement into a yeast vector for a yeast-two-hybrid screen, may inhibit the expression of 

VDAC1 at the cell membranes (Schwarzer et al., 2002). This would mean that VDACs used in 

yeast work would likely be mis-localized to the cytoplasm. Therefore, while the interaction 

between Mh270 and VDAC3 may be real in our yeast-two-hybrid assay, additional experiments 

as a co-immunoprecipitation assay will be needed to confirm that this interaction takes place in 

planta, and is not an artifact of the yeast system used.   

Assuming that the interaction between Mh270 and VDAC3 in planta can be confirmed, it is 

tempting to speculate about the protein-protein interaction and how that may affect the plant-

nematode interaction. In addition from influencing cell death, the potential involvement of 

VDAC in ROS production and cell death presents a promising area to look at in more detail. 

ROS as a signal compound has received a lot of attention in the last few years. It has been 

shown that ROS are involved in both stress (Baxter et al., 2013) and pathogen (Torres et al., 

2006) associated signaling. A direct impact of ROS altered signaling has been found for the 

cyst nematode Heterodora schachtii. NADPH (reduced form of nicotinamide adenine 

dinucleotide phosphate) oxidase double mutant lines rbohD and rbohF are impaired in the 

production of apoplastic ROS and this alters the plant responses to pathogens (Torres et al 

2006). Plants with loss-of-function mutations in rbohD or rbohD and rbohF (rbohD/F), were 

less susceptible to cyst nematodes infection. It seems that the cyst nematode need an initial ROS 

burst to successfully manipulate the plant to create a feeding site. It may be using ROS to 

suppress the spread from the initial feeding site of SA-mediated signals that trigger plant 

defense responses (Siddique et al., 2014). RKN also seem to depend on the presence of 

functional NADPH oxidase since M. incognita had less success infecting Arabidopsis robohd/F 

mutant line (C. Gleason, personal communication). Thus, nematodes seem to be using ROS 

levels to fine-tune the plant responses during parasitism.  

Overall, there are several possible ways as to how Mh270’s interaction with VDAC3 might 

contribute to M. hapla infections. Interaction of Mh270 with VDAC3 could be a positive 

interaction, in which Mh270 influences the opening the mitochondrial permeability transition 

pore, resulting in increased cytosolic ROS levels. With the evidence that the nematode needs a 

transient elevation of ROS to prevent the spread of SA-defense signals from its feeding site 

(Siddique et al 2014), Mh270 could induce short-lived ROS production in the early stages of 

infection. However, ROS is a double-edged sword that can also induce cell death, and in the 

later stages of the feeding site formation, it is thought that the nematode is actively trying to 

suppress ROS production and cell death. With this in mind, Mh270 may block the opening of 
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the mitochondrial permeability transition pore and prevent the leakage of compounds that can 

lead to cell death. In this scenario, the nematode is trying to avoid triggering a cell death 

response in the feeding cells. Future work on Mh270 and VDAC3 will hopefully continue to 

shed light on their possible roles in the plant-nematode interaction. 
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5. Appendix 

 

Supplemental Table 1 : Effector candidates extracted from the M. hapla proteome.  Effector candidates that were chosen 

in an initial, visual screen of the proteome of Mbeunkui et al 2010 are presented. “Prot. Nr.,” indicates the number given to the 

peptide, as indicated in this proteome paper. Highest similarity of the proteins after a BLASTp search of the nr database is 

shown.  SP  indicates a presence or absence of classic secretion signal, FL ORF , indicates whether a complete open reading 

frame could be found in the M. hapla genome, Glycosylation, indicates whether predicted glycosylation sites are present using 

GlycoEP, Trans.Domain , indicates the presence or absence of predicted transmembrane domains. 
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Supplemental Figure 1 : Representative photographs of M. hapla in Col-0 roots stained with acid fuchsin.  Wild type 

Col-0 plants were infected with 200 surface sterilized M. hapla and galls were allowed to develop for 6 dpi (top) and 14 dpi 

(bottom). Roots were stained using acid fuchsin. Arrows indicate either nematodes, developing or mature galls dpi= days post 

infection. 
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Supplemental Figure 2: Mh270 does not cause autoactivation of the yeast reporter gene. Yeast grown on selective plates 

for pASII showed normal growth on control plates (SC-W). Yeast did not grow on media lacking histidine and containing 

additionally the enzymatic inhibitor 3-AT (SC-WH +5 mM 3-AT). 
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Supplemental Table 2 : Complete list of interactors found in the yeast-two-hybrid screen. Working number, the library in 

which the candidate was identified the AGI code, and the gene name (“Protein”) according to TAIR. 
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Supplemental Figure 3 : Subcellular localization of YFP-Mh270. Stable transformed Arabidopsis plants were grown on MS 

media for one week. Fluorescence was observed using confocal microscopy with the appropriate filter set. YFP-270 localization 

in leaves (top) and roots (bottom) are presented. 
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