
 
Nanoscale organization and dynamics of 

SNARE proteins in the presynaptic membranes 
 
 
 
 
 

 
 

Dissertation 
for the award of the degree 
“Doctor rerum naturalium” 

of the Georg-August-Universität Göttingen 
 
 

within the doctoral program Molecular Biology 
of the Georg-August University School of Sciences (GAUSS) 

 
 
 
 

submitted by 
 

Dragomir Milovanović 
 

from Belgrade 
 
 
 

 
 
 
 

 

 
Göttingen, 2015 

 
 



 

 

 

 

 

 

Thesis Advisory Committee: 

 

Prof. Dr. Reinhard Jahn 
Department of Neurobiology, Max Planck Institute for Biophysical Chemistry 
 
Prof. Dr. Stefan W. Hell 
Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry 
 
Prof. Dr. Andreas Janshoff 
Institute of Physical Chemistry, University of Göttingen 
 
Ass. Prof. Dr. Geert van den Bogaart 
Department of Tumor Immunology, Radboud University Medical Center 

 

 

Extended Evaluation Committee (alphabetically): 

 

Prof. Dr. Ulf Diederichsen 
Institute of Organic and Biomolecular Chemistry, University of Göttingen  
 
Prof. Dr. Stefan Jakobs  
Department of Neurology, University of Göttingen Medical Center 
 
Prof. Dr. Claudia Steinem  
Institute of Organic and Biomolecular Chemistry, University of Göttingen 
 

 

 

 

 

Oral examination: October 5th, 2015 



                    TABLE OF CONTENTS 

_____________________________________________________________________________________________ 

 

  i 

TABLE OF CONTENTS 
 
 
Acknowledgements ………………………………………………………………. iii 
Declaration in the Lieu of Oath ……………………………………………….… iv  
Summary …………………………………………………………………………… v            
 
1. Introduction     
 
1.1 Biochemical properties of the lipid bilayer …………………………………. 3 
1.1.1 Composition of the lipid bilayer …………………………………………… 3 
1.1.2 Phase separation in the lipid bilayer ………………………………………. 6 
1.1.3 Cholesterol affects the lipid bilayer properties …………………………… 9 
 
1.2 Characteristics of the cellular membranes …………………………………... 10 
1.2.1 Cellular membranes are rich in different protein and lipid species …….. 10 
1.2.2 Proteins and lipids generate membrane curvature ……………………….. 12 
1.2.3 Lipid asymmetry in cellular membranes ………………………………….. 15 
1.2.4 Phase separation in cellular membranes …………………………………... 16 
1.2.5 Cytoskeleton and scaffolding proteins fine-tune the plasma membrane 
structure ……………………………………………………………………………... 19 
 
1.3 SNAREs as tools to understand the physical principles behind membrane 
patterning …………………………………………………………………………... 23 
1.3.1 Segregation within the hydrophobic core of the membrane ……………. 24 
1.3.2 Segregation caused by interactions at the hydrophobic-hydrophilic 
boundary ……………………………………………………………………………  28  
1.3.3 Segregation due to interactions in the hydrophilic space ……………….. 30 
 
1.4 Functional relevance of SNARE clustering …………………………………. 31 
 
1.5 Aims of this Thesis …………………………………………………………….. 35  
 
2. Material and Methods 
 
2.1 Peptides and lipids …………………………………………………………….. 38 
2.2 Membrane reconstitutions …………………………………………………….. 39 
2.2.1 Polymer supported membranes ……………………………………………. 39 
2.2.2 Stacked lipid bilayers ………………………………………………………... 40 
2.2.3 Large unilamellar vesicles …………………………………………………...  41 
2.2.4 Giant unilamellar vesicles …………………………………………………... 42 
2.3 Dynamic light scattering ………………………………………………………. 43 



TABLE OF CONTENTS             

_____________________________________________________________________________________________ 

 ii 

2.4 Cell culture and immunofluorescence ………………………………………. 44 
2.5 Superresolution stimulated emission depletion (STED) nanoscopy ……... 46 
2.6 Fluorescence correlation spectroscopy ……………………………………… 50 
2.7 Förster resonance energy transfer …………………………………………… 52 
 
3. Results 
 
3.1 Hydrophobic mismatch between the lipid bilayer and the transmembrane 
domains drives SNARE clustering ……………………………………………….. 55 
3.2 Hydrophobic mismatch shapes syntaxin clusters together with the surface 
ionic interactions and specific protein-protein interactions ……………………. 64 
3.3 Calcium acts as a charge bridge that connects multiple syntaxin 
1/PI(4,5)P2 clusters into larger mesoscale domains …………………………….. 72 
 
4. Discussion 
 
4.1 Difference between membrane thickness and the length of the TMDs can 
drive clustering of membrane proteins …………………………………………... 81 
4.2 Cholesterol increases membrane thickness and thereby increases 
hydrophobic mismatch …………………………………………………………….. 82 
4.3 Electrostatic interactions, protein-protein interactions and hydrophobic 
mismatch all modulate lateral organization of SNAREs ……………………….. 84 
4.4 Ca2+ acts as a charge bridge that connects multiple syntaxin 1/PI(4,5)P2 
clusters into larger mesoscale domains …………………………………………... 87 
4.5 Physiological significance of SNARE clustering in the plasma membrane  88  
 
5. Conclusions and Perspectives …………………………………………………. 92 
 
6. References ……………………………………………………………………….. 94 
 
7. Appendices   
7.1 Information on peptide synthesis ………………………………………….... 117 
7.2 Information on imaging ellipsometry ………………………………………. 118 
7.3 Information on atomic force microscopy measurements …………………. 119 
 
8. List of Figures …………………………………………………………………... 120 
 
9. List of Abbreviations ………………………………………………………….. 123 
 
10. Curriculum vitae with the List of Publications …………………………....125 
 
 



                    ACKNOWLEDGEMENTS 

_____________________________________________________________________________________________ 

 

  iii 

ACKNOWLEDGEMENTS 
 

These wonderful years in Göttingen are marked by many diverse 
personalities that were source of my motivation and inspiration. I am in debt to 
all people who shaped my professional and personal time and here I specially 
thank to: 

 

• Reinhard Jahn for the curiosity driven research and for being a true mentor 
who took care of my comprehensive professional development.  

• Geert van den Bogaart for his engagement, support and many great hours we 
have spent together in the lab.  

• Stefan W. Hell for the support and freedom to use different, exciting setups 
while tackling my biological questions. Overall, the Department of 
NanoBiophotonics is an amazing blend of physicists, chemists and biologists, 
and I enjoyed learning from all of them. 

• Alf Honigmann for teaching me how to use the setups and sharing my daily 
excitements while doing the experiments. Also, to Fabian Göttfert with 
whom I enjoyed discussing different setups. 

• Andreas Janshoff for his input during our vivid discussions and suggestions 
for experiments that strengthened this work.  

• Ulf Diederichsen for contributing with the expertise in peptide synthesis that 
was important for many experiments performed within this work.  

• Claudia Steinem for her immense engagement in providing the stimulating 
platform for people passionate about the biological membranes.  

• Iwan Schaap and Mitja Platen for our great venture into atomic force 
microscopy of biomembranes.  

• Helmut Grubmüller and Herre Jelger Risselada for inspiring discussions and 
modeling of domain formation. 

• Stefan Jakobs for taking part in the evaluation of this work. 

• My colleagues from the Department of Neurobiology for the wonderful 
atmosphere and stimulating discussions. Particularly to my dear students: 
Nathan Pagano, Vedran Vasić and Sebastian Sydlik, all of whom I worked 
with pleasure.  

• Scientists whose input I always highly valued: Christian Griesinger, Christian 
Eggeling, Silvio Rizzoli, Lukas Tamm, Aki Kusumi, Gerhard Schütz, Mary 
Osborne, Vesna Niketic, Ratko Jankov, Stephan Ferneding. 
 

• My MolBio Family, especially my fellows from the class 2011/2012: it was such 
a remarkable year! Also, to Steffen Burkhardt and Kerstin Grüniger for taking 
care that all the elements run smoothly; and to colleagues from the GGNB 
Office for the nice time during my term as a student representative.  

 

• Without listing, I am thankful to all my Family and Friends, especially to my 
parents Petra & Dragan, and to Christian, for immense support and making 
the time of graduate studies unforgettable and my life emotionally fulfilled!  



Declaration in the Lieu of Oath             

_____________________________________________________________________________________________ 

 iv 

 

 
 
 

Declaration in the Lieu of Oath 
 

 

 

   

Herewith I declare, that I prepared the Doctoral Thesis:  

 

Nanoscale organization and dynamics of SNARE proteins in the presynaptic 

membrane 

 

on my own and with no other sources and aids than quoted. 

 

 

 

 

 

 

Göttingen, August 7th 2015                Dragomir Milovanovic 

       



                    SUMMARY 

_____________________________________________________________________________________________ 

 

  v 

SUMMARY 
 

 

The specific organization of proteins and lipids in functional domains 

in biological membranes allows localization and segregation of specific 

physiological activities. Mechanisms that underlie the formation of these 

domains include hydrophobic and ionic interactions with membrane lipids as 

well as specific protein-protein interactions.  

Using plasma membrane-resident SNARE proteins as a model, I show 

that cholesterol-induced hydrophobic mismatch between the transmembrane 

domains and the membrane lipids not only suffices to induce clustering of 

proteins, but can also lead to the segregation of structurally closely 

homologous membrane proteins in distinct membrane domains. Domain 

formation is further fine-tuned by interactions with polyanionic 

phosphoinositides and proteins. Furthermore, Ca2+ acts as a charge bridge 

that connects multiple syntaxin 1/PI(4,5)P2 complexes into larger domains.  

Segregating SNARE proteins into distinct clusters at the plasma 

membrane has three key functional implications for exocytosis: (i) clusters act 

as the local hot spots for the vesicle recruitment, (ii) the local enrichment 

provides sufficient number of proteins necessary for the fast, evoked synaptic 

release, (iii) closely homologous SNARE proteins such as syntaxin 1 and 4 are 

segregated in non-overlapping membrane domains which is essential for their 

distinct roles in regulated (syntaxin 1) and constitutive (syntaxin 4) 

exocytosis.  

Overall, the findings presented in this thesis demonstrate that the 

structural organization of membranes is governed by a hierarchy of 

interactions with hydrophobic mismatch emerging as one of the fundamental 

principles. 
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1. INTRODUCTION 
 

Early concepts on the plasma membrane structure date back to the 

beginning of twentieth century when Langmuir described the molecular 

nature of a lipid monolayer spread at the air/water interface as a result of 

lipids containing both hydrophobic regions (acyl chains) oriented towards the 

air and polar (head-groups) facing the aqueous environment (Langmuir, 

1917). His assay pioneered by Agnes Pockels in Braunschweig, to later be 

adapted to what is now known as the Langmuir-Blodgett assay, helped to 

further characterize the properties of the lipid bilayer (Blodgett, 1935; Pockels, 

1891; 1894; Rayleigh, 1899). Using similar assay, Gorter and Grendel 

compared the surface occupied by lipids extracted from erythrocytes with the 

average size of erythrocyte and they concluded that the naturally occurring 

membranes are composed of the lipid bilayer (Gorter & Grendel, 1925).  

 

The saga of membrane research kept evolving, especially with the 

development of the electron microscope. Initial micrographs where the lipid 

bilayer was lightly stained in contrast to aqueous boundary led to the concept 

of tri-striata (three layer) organization of the plasma membrane. Here, the 

lipid bilayer sandwiched with the proteins at both cytosolic and extracellular 

facets (Danielli & Davson, 1935; Robertson, 1960; 1963). However, further 

studies of the hydrophobic interactions between proteins and lipids (Lenard 

& Singer, 1966; Wallach & Zahler, 1966) indicated that the plasma membrane 

is not fully covered by proteins, but rather contains proteins that either span 

the entire membrane (integral) or are embedded in the single monolayer 

(peripheral). Also, these proteins were shown to undergo lateral diffusion in 

the membrane (Frye & Edidin, 1970). Altogether this has led to the refinement 

of the plasma membrane organization into the so-called fluid-mosaic model. 

In this model, the plasma membrane is a dynamic structure in which all 

components are able to diffuse laterally, with the membrane proteins 

“floating like icebergs in a sea” of membrane lipids (Singer & Nicolson, 1972). 
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Although the fluid-mosaic model still forms the foundation of our 

present understanding of the biological membranes, it is becoming evident 

that lipids and proteins form subdomains within the membrane whose 

properties are slowly emerging (Fig. 1.1). Here I start by describing the 

general properties of the lipid bilayers (Chapter 1.1). Biophysical approaches 

and membrane reconstitutions substantially contributed to membrane biology 

and I present some of the key parameters that underlie the complexity of 

cellular membranes (Chapter 1.2). Particularly the soluble NSF-attached 

protein receptor (SNARE) family of proteins has served as an excellent 

paradigm to look at the mechanisms that shape the structure of the plasma 

membrane and these major mechanisms are presented in Chapter 1.3. Using 

SNAREs as an example, in Chapter 1.4 I present the functional significance of 

protein/lipid domains in the plasma membrane. This also leads us to the 

Aims and the main hypothesis of this Thesis (Chapter 1.5).  

 

 
Figure 1.1. Evolving view on the plasma membrane organization. A. The 
scheme of the initial fluid-mosaic model of membrane organization. The 
membrane contains proteins that span both layers (integral) or are embedded 
in a single layer (peripheral). B. Evolved view on the plasma membrane 
structure demonstrates multiple protein/lipid domains as well as the 
underlying cytoskeleton. Adapted from Nicolson, 2014; Singer & Nicolson, 
1972. 
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1.1 BIOCHEMICAL PROPERTIES OF THE LIPID BILAYER 

 

1.1.1 Composition of the lipid bilayer  

 

The lipid bilayer is composed of two layers of glycerophospholipids 

which acyl chains are oriented toward each other generating the hydrophobic 

core and polar head groups that are exposed to the aqueous environment 

(Nagle & Tristram-Nagle, 2000; Zaccai, Blasie, & Schoenborn, 1975). The 

backbone of glycerophospholipids is made of the alcohol glycerol where fatty 

acids are esterified at positions 1 and 2 and at position 3 a polar head-group is 

attached vis a phosphate group (e.g. choline, ethanolamine, serine). The close 

association of phospholipids is mediated by non-covalent, hydrophobic 

interactions (Bagatolli, Ipsen, Simonsen, & Mouritsen, 2010). The stability of 

the simple phospholipid bilayer is generally determined by three parameters: 

(i) repulsion between the neighboring head-groups, (ii) attractive interaction 

of neighboring lipids to minimize the contact area between the hydrophobic 

tails and the surrounding water molecules and (iii) repulsion of neighboring 

lipids due to collisions of flexible acyl chains. The pressure along the bilayer 

(Fig. 1.2) can be disrupted by different lipids (i.e. sterols) or proteins, which 

can lead to changes in membrane shape and make the bilayer more or less 

prone to remodeling (Bagatolli et al., 2010; Kozlov et al., 2014). 

 

 
Figure 1.2. Scheme of the lipid bilayer. The contribution of individual region 
of the lipid bilayer to the lateral pressure is indicated. Adapted from  Bagatolli 
et al., 2010. 
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 Apart from phospholipids, another family of lipids often found in 

membranes is the sphingolipids. In contrast to glycerophospholipids, 

sphingolipids contain the 18-C amino alcohol with a trans double bond as a 

backbone. Attachment of a fatty acid to amino group generates ceramide and 

further attachment of polar (phospho)head-group (i.e. ethanolamine, PE; 

choline, PC) gives rise to sphingomyelin (SM). Sphingomyelin is the most 

abundant sphingolipid and accounts for an average of 20 mol% of total 

plasma membrane lipids. 

Both acyl chains and the head-groups of phospholipids can vary in 

their structure. Acyl chains can either be completely saturated alkyls or they 

can contain one or more double bonds (mono- and polyunsaturated lipids). 

The existence of even a single double bond can alter the bilayer (Feller, 2008). 

The double bond is more polar than a single C−C bond and it also introduces 

a change in the conformational freedom of the acyl chain. The saturated acyl 

chains are in all trans form. However, a double bond induces a gauche 

conformation and one gauche conformation (120°) is followed by another 

gauche conformation (−120°) of either of the two neighboring bonds 

generating a so-called ‘kink’ in the acyl chain(Brandenburg et al., 2006). This 

directly affects the spatial packing of the acyl chain by increasing the area 

occupied per lipid (Fig. 1.3; Niemelä, Hyvönen, & Vattulainen, 2006). On the 

other hand, saturation increases the thickness of the lipid bilayer due to tight 

hydrophobic packing of the acyl chains (Li, Vorobyov, & Allen, 2012).  
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Figure 1.3. Schemes and Newman projections of acyl-chains with all bonds in 
trans (top) and mixture with one cis bond (bottom). Even a single cis bond 
causes two subsequent gauche conformations, which results in a kink within 
the acyl chain. Adapted from Brandenburg et al., 2006. 
 

Head-groups are always polar, but their charge can vary (Fig. 1.4). 

Phosphatidyl-choline (PC) and phosphatidyl-ethanolamine (PE) head-groups 

have their pKa around 14 and 8, respectively. This implies that in the cell 

(pH~7.35) these head-groups will be positively charged. However, due to the 

negative charge of the phosphate group in the neck region of the 

phospholipid the overall charge of these phospholipids will be zero. 

Phosphatidyl-serine (PS) contains both ternary amino group (pKa~9) and the 

carboxyl group (pKa~3); this together with the phosphate group from the 

neck region makes phosphatidyl-serine derivatives carrying a single negative 

charge at physiological pH. The most interesting are the lipids with the 

phosphoinositide head-groups that can be mono- and polyphosphorylated at 

the 3’, 4’ and 5’ positions (McLaughlin & Murray, 2005; McLaughlin, Wang, 

Gambhir, & Murray, 2002). The charge of these lipids varies in the range 

between −3 and −7 at physiological pH, making these lipids the main 

modulators of the bilayer electrostatics.  
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Figure 1.4. Formulas of the major lipid classes. Charge of the polar head-
groups at pH 7.4 is indicated.  
 

1.1.2 Phase separation in the lipid bilayer  

 

Phase transition is the change of a substance from one thermodynamic 

state to another and it mostly refers to the change between solid, liquid or 

gaseous states (Fig. 1.5; Atkins & de Paula, 2014). All the elements and 

substances can transition from one phase to another at the specific 

temperature and pressure. By the general Gibbs phase rule, the total number 

of coexisting phases in a system of fixed thermodynamic variables is 

determined by the number of components in the system. If we assume a one-

component system, a single phase would be present if there is no variation in 

pressure and temperature. At the phase boundary, two phases coexists and in 

the case of zero degrees of freedom we would have a single, triple-point 

(coexistence of three phases; Atkins & de Paula, 2014). 
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Under constant pressure, the lipid bilayer can undergo three distinct 

phases depending on the temperature (Fig 1.6A). Each of these membrane 

phases has a characteristic local order (chain conformation) and crystallinity 

(two dimensional deposition of molecules on the membrane plane). The first 

is the gel phase, also called solid ordered phase (So). In So phase lipids are 

mostly ordered in all-trans and arranged in two dimensional triangular lattice. 

The diffusion of lipids is very slow in this phase (~0.5 µm2s-1; Bacia et al., 

2004). The second phase is the liquid ordered phase (Lo, also called ripple 

phase). The Lo phase is a partially melted lipid phase with a lower average 

degree of chain ordering than in the So phase. The diffusion of lipids is faster 

(~1 µm2s-1) than in So phase although the acyl chains still have a high order. 

The third characteristic phase is liquid disordered phase (Lα, also known as 

fluid phase). In Lα phase the acyl chains are mostly disordered and the lipid 

diffusion is fast (~1µm2s-1) and acyl chains are disordered. 

 

 
Figure 1.5. Scheme of the classical phase diagram for a given substance under 
different pressure and temperature. Gray lines indicate the conditions at 
which two states of the substance coexist; phase transition occurs as the lines 
are crossed. Triple point is a condition at which a particular substance 
coexists in all three phases. 
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In the 1980’s Tamm and McConnell measured the lateral diffusion 

coefficients of fluorescently labeled lipids in a reconstituted lipid bilayer 

(Tamm, 1985; McConnell, Tamm, & Weis, 1984). Already in this simple 

monolipid mixture, it was clear that temperature increase changes the phase 

(Fig. 1.6B). Indeed, apart from the chemistry of lipid bilayer (level of acyl 

chain saturation, number of components), temperature affects the phase 

transition of lipid bilayer. As a rule of thumb, fluidity increases with the 

degree of unsaturation and with the rise of temperature.  

 

 
 
Figure 1.6. Three characteristic phases of the lipid bilayer: solid (So), liquid 
ordered (Lo) and liquid disordered (Lα) phases. A. Schematic representation 
of different phases. Lo phase is characterized with a higher order of acyl chain 
(similar to So) and a fast lateral diffusion (similar to Lα). B. The lateral 
diffusion coefficient of NBD-PE in DPPC bilayer. Two thermal transitions 
occur leading to the change from So to Lo phase (at ~32°) and from Lo to Lα 
(at ~40°). Adapted from Tamm, 1985. 
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For a two-component system (binary lipid mixtures), another degree of 

freedom is opened and a two-phase region can occur. In this case, as the 

critical melting temperature for a particular lipid membrane is present where 

the transition from a solid to the more liquid phase occurs (Veatch & Keller, 

2005). For a three component systems the phase diagram can be plotted as a 

prism (Komura, Shirotori, Olmsted, & Andelman, 2004). The most commonly 

used ternary lipid mixtures include cholesterol (C), unsaturated (U) and 

saturated (D) phospholipids. In this phase prism, for a given temperature we 

can get the phase-transition triangle with two-phase and three-phase 

coexisting regions (Fig. 1.7). 

 
Figure 1.7. Phase transition in model lipid membranes. A. Phase prism of a 
ternary lipid system consisting of saturated lipid (S), unsaturated lipid (U), 
and cholesterol (C) at varying temperatures. On the triangle plane for the 
given temperature we can see light gray (two-phase) and dark gray (three-
phase) regions. B. Example of a triangle phase plane at 25°C. Phase separation 
that was observed in GUVs (DOPC, SM and cholesterol) included uniform 
phases (white circles/liquid, white squares/solid), coexisting So and Lo 
phases (gray squares) and Lo and La (black circles). Representative images of 
GUVs are shown. Adapted from Komura et al., 2004; Veatch & Keller, 2005. 

 

1.1.3 Cholesterol affects the lipid bilayer properties 

 

Cholesterol is a planar, polycyclic compound with a single 3’-OH 

group. The size of cholesterol allows it to span one bilayer in the membrane, 

with its OH-group oriented towards the aqueous side and the planar 

polycyclic region intercalating the acyl chains. Interestingly, the effects of 

cholesterol depend substantially on the chemical nature of the surrounding 

acyl chains (Lindblom, Orädd, & Filippov, 2006; Marsh & Smith, 1973; Reich 
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et al., 2008; Rubenstein, Smith, & McConnell, 1979). In case of lipids with 

mono- or polyunsaturated acyl chains, cholesterol will increase the thickness 

of the bilayer, and decrease the area per lipid making the bilayer overall less 

fluid. For saturated acyl chains, cholesterol will disturb the all-trans 

arrangements, decreasing the thickness and increasing the area per lipid. 

 In the context of lipid phases, cholesterol will be the prime component 

to generate the Lo phase (i.e. it may condense the bilayer; Marsh & Smith, 

1973; Rubenstein et al., 1979; Krause, Daly, Almeida, & Regen, 2014). In a 

single-component lipid mixture, the phospholipid head-groups occupy 

approximately half of the surface area whereas the other half are partially 

hydrated alkane groups of the acyl chain (Aittoniemi, Niemelä, Hyvönen, 

Karttunen, & Vattulainen, 2007). By introducing cholesterol in the membrane, 

these partially hydrated (‘wet’) alkane groups are replaced by −OH group of 

cholesterol. This increases downstream hydrophobic contact between the acyl 

chains and strengthens the packing of the bilayer.  

 

1.2 CHARACTERISTICS OF THE CELLULAR MEMBRANES 

 

1.2.1 Cellular membranes are rich in different protein and lipid species 

  

Lipid synthesis occurs mostly in the ER, Golgi and mitochondria. 

Three main mechanisms account for the dynamic exchange of lipids between 

different organelles and the plasma membrane. First, vesicular trafficking 

along the secretory pathway sorts not only proteins, but also the 

accompanying lipids from a donor to a target membrane. Second, membrane 

contact sites, mostly mediated by ER, are zones where lipids can diffuse freely 

between different membrane compartments. Third, specific classes of soluble, 

cytosolic proteins are specialized for lipid transfer between the membranes. 

The best described are oxysterol-binding protein (OSBP) and its related 

proteins (ORPs). Humans and yeast contain sixteen and seven ORPs, 

respectively (Schulz & Prinz, 2007). Structural analyses of yeast ORP – Osh4p 

indicated that it contains hydrophobic pocket that can accommodate a sterol 

molecule. Hence, Osh4p has been proposed to bind to cholesterol in ER and 

exchange it for PI4P in the plasma membrane (Mesmin, Antonny, & Drin, 

2013; Schulz & Prinz, 2007). Similarly, tricalbins in yeast (E-Syts in 
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mammalian cells) constitute a family of tethering proteins that contain a SMP 

domain, which binds phospholipid acyl-chains and allows their transfer 

between ER and the plasma membrane (Giordano et al., 2013; Manford, 

Stefan, Yuan, Macgurn, & Emr, 2012; Stefan, Manford, & Emr, 2013).  

Also, the presence of specific kinases and phosphatases at particular 

membranes generates the specific polyphosphoinositide profile along the 

trafficking path. The best know example is the PI(4,5)P2 involvement in 

synaptic vesicle cycle (Di Paolo & De Camilli, 2006; Di Paolo et al., 2004). 

PI(4,5)P2 appears to be enriched in regions where synaptic vesicles dock and 

eventually fuse (Honigmann et al., 2013; James, Khodthong, Kowalchyk, & 

Martin, 2008; Milosevic et al., 2005). In addition downstream PI(4,5)P2 

together with membrane proteins signals for the recruitment of adaptor 

proteins (i.e. AP2) that will initiate clathrin-formation and membrane 

engulfment (Jung et al., 2007). Finally, upon the cleavage of the phosphate 

groups of PI(4,5)P2 by 4’,5’ phosphatase - synaptojanin 1, newly endocytosed 

vesicles release their coat (Jung & Haucke, 2007). This shows that the lipid 

cycle is tightly coupled to the protein cycle during exo- and endocytosis 

(Haucke, Neher, & Sigrist, 2011). 

In addition to a large variety of lipids, the plasma membrane contains 

thousands of different protein species. It is especially important to note the 

high protein occupancy of the bilayer volume (~20 %), as indicated by the 

analysis of organelles (Takamori et al., 2006) and plasma membranes (Dupuy 

& Engelman, 2008). Also, many of the membrane proteins have substantially 

large cytosolic domains and hence the membrane surface coverage goes 

between 45 − 60 % (Wilhelm et al., 2014). Due to such a high abundance and 

versatility of proteins and lipids, a simple, two-component system such as 

with a liquid ordered and liquid disordered phase does not provide a 

satisfactory explanation of membrane structure. Moreover, it seems 

reasonable to look at the proteins as an integral membrane “phase”. 

Additional factors that affect the structure and dynamics of cellular 

membranes are discussed below. 
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1.2.2 Proteins and lipids generate membrane curvature  

 

The relative extension of the polar head-group in relation to the acyl-

chains defines the overall shape of a lipid species (Fig. 1.8A). Small head-

groups lead to a cone shaped lipid that favors concave membranes. Similarly, 

large head-groups lead to inverted cones that favor convex curvature. During 

membrane bending (Fig. 1.8B) inverted-cone lipids will be enriched at the 

outer leaflet (positive curvature) and cone lipids at the inner leaflet (negative 

curvature; Cooke & Deserno, 2006; Frolov, Shnyrova, & Zimmerberg, 2011).  

 

 
Figure 1.8. Different lipid shapes underlie spontaneous membrane curvature. 
A. Molecular shape of lipids depends on the area occupied by the polar-head 
group and acyl chain: inverted cone (polar head-group occupies larger area), 
cylindrical (similar area occupancy of both head-group and acyl chain) and 
cone shaped (acyl chain occupies larger area). B. Inverted cone lipids stabilize 
positive curvature (outer leaflet) and cone-shaped lipids stabilize negative 
curvature (inner leaflet). Adapted from Boukh-Viner & Titorenko, 2006. 
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In the context of cellular membranes, proteins can enhance or reduce 

curvature in several ways. Proteins such as clathrin, COPI and COPII 

coordinate the generation of scaffolds around the membrane regions which 

generates the vesiculation of membranes. Also, protein crowding in 

membranes induces local destabilization of the bilayer. Amphipathic protein 

domains that can locally and asymmetrically insert into the lipid bilayer can 

further induce or enhance curvature formation (Kirchhausen, 2012).  

The main molecular cues that would recruit specific proteins scaffolds 

on the membrane are lipid packing defects and accumulation of charged 

lipids (Fig. 1.9; Bigay & Antonny, 2012). Membranes of the intracellular 

organelles (ER, cis–Golgi) where most of the lipid synthesis takes place are 

characterized by loose lipid packing and larger fluidity. This is a consequence 

of low cholesterol amounts and abundant polyunsaturated acyl-chains. 

Therefore, insertion of amphipathic helices causes curvature of these 

membranes. On the other hand, the inner leaflet of the plasma membrane is 

rich in negatively charged lipids (i.e. PS, PI4P, PI(4,5)P2) which makes these 

membranes strongly negatively charged. Two main families of curvature 

sensors are (i) BAR domain containing proteins that interact with the 

negatively charged membranes through their positive surface patches (Mim & 

Unger, 2012) and (ii) ALPS motifs which are amphipathic helices that contain 

non-polar side chains on their hydrophobic surface used to screen lipid 

packing defects (Bigay & Antonny, 2012). Proteins containing BAR and ALPS 

motifs further stabilize the curved membrane regions. It is important to note 

that many intracellular organelles also contain negatively charged lipids 

mostly from phosphoinositide family (Di Paolo & De Camilli, 2006). These 

lipids are especially important in signaling and recruitment of specific 

cytosolic proteins that require protein and lipid signal for binding to the 

membrane, the so-called ‘coincidence detection’. 
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Figure 1.9. Different biochemical properties of lipids generate two major 
membrane territories in cell. First is the territory of lipid packing defects: ER 
and cis-Golgi contain more unsaturated lipids with less charged head-groups. 
Second is the territory of electrostatics: trans-Golgi and plasma membrane 
contain more saturated lipids which head-groups are charged. Adapted from 
Bigay & Antonny, 2012. 
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1.2.3 Lipid asymmetry in cellular membranes 

 

Apart from rotational and lateral diffusion, lipids in cellular 

membranes are distinctly distributed between two leaflets (Fig. 1.10A). In the 

plasma membrane of eukaryotic cells, PC and SM are present predominantly 

in the outer leaflet. On contrary, PE, different PIPs and PS are concentrated in 

the inner leaflet (van Meer, Voelker, & Feigenson, 2008). The transfer of 

different lipid species between two leaflets is called flip-flop diffusion. In 

protein-free bilayers, spontaneous flip-flop diffusion leads to equilibration of 

lipid components (Gurtovenko & Vattulainen, 2007).  

In cellular membranes phospholipid scramblases do not require energy 

and stimulate bi-directional movements of lipids thereby counteracting the 

asymmetry (Fig. 1.10B). In contrast, two classes of integral membrane proteins 

maintain the bilayer asymmetry. First are ATP-binding cassette (ABC) 

transporters that use ATP to move lipids from the inner, cytosolic to the outer 

leaflet. Second are aminophospholipid translocases (APLTs) that selectively 

pump PS and PE from the outer to the inner leaflet maintain the bilayer 

asymmetry (Daleke, 2008).  

Segregation of lipid biosynthesis/turn-over enzymes at different 

membranes contributes as well to their asymmetric distribution (i.e. 

glycolipid synthesis in the outer leaflet and PI(4,5)P2 turn-over in the inner 

leaflet of the plasma membrane). Hence, PIs are localized at the 

membrane/cytosol interface where can be recognized by a variety of cytosolic 

proteins through PI-interacting domains. Also, PIs have a unique distribution 

throughout the cell and large number of PI-kinases and PI-phosphatases are 

necessary to maintain organelle identity in respect to distinct PI species (Di 

Paolo & De Camilli, 2006).  
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Figure 1.10. Lipid asymmetry in the plasma membrane. A. Relative 
abundance of different phospholipids: PC and SM are mostly distributed in 
the outer leaflet, PE, PS and PI are mostly in the inner leaflet. B. The 
asymmetry of the plasma membrane is mediated by (i) phospholipid 
scramblases, (ii) ATP-binding cassette (ABC) transporters and (iii) 
aminophospholipid translocases. Adapted from (Fadeel & Xue, 2009; Daleke, 
2008). 

 

1.2.4 Phase separation in cellular membranes 

 

The first idea that biological membranes contain adjacent phases under 

physiological conditions came from the difference in solubility of certain lipid 

species during detergent extraction (Simons & van Meer, 1988). Certain 

proteins preferentially accumulated in these ‘detergent-resistant’ lipid patches 

during extraction with non-ionic detergents (Brown & Rose, 1992; Schroeder, 

London, & Brown, 1994). It was then proposed that these complexes represent 

specific lipid domains in the plasma membrane, so-called lipid rafts, to which 

certain proteins preferentially associate (Fig. 1.11A; Simons & Ikonen, 1997).  

Further characterization of protein separation in reconstituted 

membranes showed that most of the proteins partition into the Lα phase and 

that a minor subset of proteins accumulate in the Lo-phase/rafts (R. F. M. de 

Almeida, Fedorov, & Prieto, 2003; R. de Almeida et al., 2004). However, such 

a detergent treatment has inherited problems: (i) extraction at low 

temperature induces lipid phase transition, (ii) detergents severely disrupt the 

membrane structure since it solubilizes particular lipids rupturing the 

membrane, (iii) dehydration of the membrane interface ruins the hydrogen 

bonding at the surface (i.e. electrostatic repulsion between polyionic patches 

of proteins and/or lipid head-groups becomes stronger) which does not affect 
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all domains at the same extent (R. F. M. de Almeida et al., 2003; Heerklotz & 

Seelig, 2002; Jesús Sot, M Isabel Collado, José L R Arrondo, Alicia Alonso, & 

Goñi, 2002; E. London & Brown, 2000; Silvius, del Giudice, & Lafleur, 1996). 

Therefore, proteins that accumulate in these detergent resistant regions 

should be seen as potential candidates associating in domains, rather than the 

proof of such association. Some proteins such as GPI-anchored thymocyte 

antigen 1, ganglioside GM-1 and the membrane spanning linker for activation 

of T cells are all enriched when purified using DRMs, but all of these proteins 

are shown to form distinct clusters in the plasma membrane (Lichtenberg, 

Goñi, & Heerklotz, 2005; Wilson et al., 2004).  

Nonetheless, the concept of specific protein/lipid domains in the 

membrane was instrumental in establishing the significance of the lateral 

organization in the cellular context. Moreover, increasing evidence indeed 

show that particular lipids would segregate around certain domains in order 

to best accommodate (“lubricate”) the integral proteins which thicknesses can 

vary greatly (Fig. 1.11B; Anderson & Jacobson, 2002).  

Recent assays showed phase transitions in vesicles formed from blebs 

of the plasma membrane, so-called giant plasma membrane derived vesicles 

(GPMVs) supporting the idea that lipid phase partitioning is a major factor in 

generating subdomains within the membrane plane (Levental, Grzybek, & 

Simons, 2011; Sezgin et al., 2012). However, in GPMVs we have a loss in lipid 

asymmetry between the leaflets. Also, cytoskeleton elements are detached 

from the membrane allowing for large-scale lipid mixing (Charras, Yarrow, 

Horton, Mahadevan, & Mitchison, 2005). Rafts are currently envisioned to be 

much smaller in size (few dozen nm) with faster protein and lipid exchange 

(Lingwood & Simons, 2010; Pike, 2006). Using stimulated emission depletion 

(STED) nanoscopy in combination with fluorescence correlation spectroscopy 

(for more details look at Materials and Methods), GPI-anchored proteins were 

observed to be trapped in domains of ~20 nm for around 10 ms (Eggeling et 

al., 2009). Moreover, owing to the development of superresolution optical 

microscopy, it is becoming clear that solely a phase-transition model cannot 

explain that many nanometer-sized clusters alone but that multiple different 

mechanisms shape the protein and lipid lateral distribution in the plasma 

membrane (Saka et al., 2014; Sieber et al., 2007; Wilhelm et al., 2014). 

 



1. INTRODUCTION             

_____________________________________________________________________________________________ 

 18 

 
Figure 1.11. Lipid phases in the plasma membrane. A. Lipid rafts enriched in 
cholesterol and SM sequester GPI-anchored proteins and certain TMDs. These 
nanoscale rafts coalesce into larger raft phases that may resemble the Lo 
phases in reconstituted membranes. B. TMDs of particular thickness will 
sequester lipids with that would best accommodate these TMDs, thereby 
generating nanoscale domains. Adapted from Lingwood & Simons, 2010 and 
Anderson & Jacobson, 2002. 
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1.2.5 Cytoskeleton and scaffolding proteins fine-tune the plasma membrane 

structure  

Single particle tracking and fluorescence correlation spectroscopy 

experiments suggested that the formation of any large protein-lipid phase is 

prevented in the plasma membranes (D. M. Owen, Williamson, Rentero, & 

Gaus, 2009). This may partially be due to an underlying actin meshwork that 

acts as a fence together with some of the membrane proteins docked into this 

meshwork as pickets, the so-called picket-fence model (Fig. 1.12A; Dietrich, 

Yang, Fujiwara, Kusumi, & Jacobson, 2002; Fujiwara, Ritchie, Murakoshi, 

Jacobson, & Kusumi, 2002; Jacobson, Hou, Derzko, Wojcieszyn, & 

Organisciak, 1981). Indeed, in electron microscopy images of the plasma 

membrane it is clear that cytosolic meshwork generates the membrane 

regions of maximally 300 − 400 nm in size (Fig. 1.12B; Morone et al., 2006).  

The plasma membrane of most eukaryotic cells is underlined with the 

spectrin-based protein network that affects cell shape and elastic properties. 

Spectrin is a flexible, rod-shaper antiparallel heterotetramer composed of α- 

and β- spectrin (Bennett & Baines, 2001). Spectrin connects filamentous actin 

(F-actin) with the proteins that structurally support the plasma 

membrane/interact with integral proteins (e.g. ankyrin, protein 4.1, adducing, 

catenin). F-actin fibers organize the cortical actin that both provides the cell 

stability as well as allows the formation of tissue by coupling to the 

extracellular matrix (Clark & Brugge, 1995; Pantaloni, Le Clainche, & Carlier, 

2001). For instance, on the cytosolic side F-actin interacts with the cytosolic 

adaptor proteins (such as vinculin, talin, a-actinin) that associate with the 

integrins; on the extracellular side integrins attach to the extracellular matrix 

molecules. These adaptor proteins also directly bind to the inner leaflet lipid 

PI(4,5)P2 (Gilmore & Burridge, 1996). 

Another way of F-actin interaction with the plasma membrane is 

through ERM family of proteins (ezrin, radixin and merlin) (Bretscher, 

Edwards, & Fehon, 2002). These proteins attach to the membrane through 

their N-terminal and crosslink F-actin via the C-terminal. Lipids such as 

PI(4,5)P2 induce the transient conformational opening of the ERM molecules 

(separation of N- and C-terminals) and ERMs are further stabilized in the 

open conformation by phosphorylation at their C-terminal (Fehon, 

McClatchey, & Bretscher, 2010).   
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Figure 1.12. Picket-fence model of the plasma membrane organization A. 
Scheme of the cortical actin underlying the plasma membrane. Certain 
proteins in the plasma membrane (pickets) interact to the actin network 
directly or through adaptor proteins. Actin network prevents coalescence of 
smaller domains into larger phases. B. EM images (inside-out) of the actin 
network that lines up the inner leaflet of the plasma membrane. Scale bar 200 
nm. Adapted from Kusumi, Suzuki, Kasai, Ritchie, & Fujiwara, 2011 and 
Morone et al., 2006. 
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 Spectin and actin networks are just the examples how cytosolic scaffold 

proteins can alter the membrane structure. Some membranes such as pre- and 

postsynaptic neuronal membranes depend less on the actin meshwork. In the 

presynapse, specific scaffolding proteins (such as Rab3-interacting molecule 

(RIM), piccolo, bassoon and ELKS/Rab6-interacting/CAST family (ERC), 

MINT1, liprin α) define the region of synaptic vesicle tethering, docking and 

subsequent release sites (Ziv and Garner, 2004; Fernández-Busnadiego et al., 

2013; 2010; Imig et al., 2014). For instance, in mammalian synapses RIM 

interacts with the synaptic vesicle proteins Rab3 and synaptotagmin, as well 

as with calcium channels in the plasma membrane. This mechanism thus 

results in a indirect association of the synaptic vesicle to the calcium channel 

(Fernández-Busnadiego et al., 2013; Rosenmund et al., 2002) and ensures a 

tight spatial coupling between calcium influx and NT release (Fig. 1.13). 

Further molecular details of the precise organization of the presynaptic active 

zone are still emerging. In parallel, the organization of receptors in the 

postsynapse depends again on specific protein scaffolds such as PSD 95 in 

excitatory (Cline, 2005; de Bartolomeis & Tomasetti, 2012) and gephyrin in 

some inhibitory postsynapses (Papadopoulos & Soykan, 2011).  

The presynapse and postsynapse are not isolated entities, but rather 

actin rearrangements at the postsynapse can influence the organization and 

release efficiency in the presynapse (Cheadle & Biederer, 2012; Dean & 

Dresbach, 2006; Ziv and Garner, 2004). Synaptic formation can be triggered by 

the presynaptic (axonal) membrane, postsynaptic (dendritic) membrane or by 

both membranes simultaneously contacting each other. Postsynaptic adhesion 

molecules have been shown to play a key role in synapse maturation (El-

Husseini, Schnell, Chetkovich, Nicoll, & Bredt, 2000; Wittenmayer et al., 2009) 

and activity (Regalado, Terry-Lorenzo, Waites, Garner, & Malenka, 2006; 

Woolfrey et al., 2009). Adhesion molecules thus modulate signaling across the 

synaptic cleft (Futai et al., 2007) thereby acting as both structural and 

information bridges between the postsynapse and presynapse. Thus the 

cytoskeleton and scaffolding proteins in the cytosol modulate the plasma 

membrane structure and dynamics, and this not only holds for neurons but 

for many cell types.  
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Figure 1.13. Organization and coupling of the excitatory pre- and 
postsynapse. Presynaptic scaffolding proteins organize synaptic vesicles and 
Ca2+–channels. Presynapse and postsynapse are coupled through the 
interactions of β-neurexins/neuroligins, ephrinB/Eph and N-cadherins. 
Adapted from Ziv and Garner, 2004. 
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1.3 SNAREs AS TOOLS TO UNDERSTAND THE PHYSICAL 

PRINICIPLES BEHIND MEMBRANE PATTERNING  

 

Section 1.3 was published in:  
Milovanovic, D. & Jahn, R. (2015). Frontiers in Physiology 6:89 
http: // doi: 10.3389/fphys.2015.00089 

 

Proteins involved in synaptic vesicle release have served as excellent 

models for analyzing the patterning of the plasma membrane. Synaptic 

vesicle release itself is a well-orchestrated process where a neurotransmitter-

loaded vesicle attaches to the plasma membrane (a process known as 

docking), after which the fusion machinery enters a  ‘preparatory’ phase 

(known as priming) and then, once there is a calcium influx, the vesicle fuses 

with the plasma membrane (Südhof, 2004). Membrane fusion, the key step in 

neurotransmitter release, is mediated by the interaction between protein 

members of the soluble NSF-attached protein receptor (SNARE) family that 

reside in the donor membrane with their cognate partners in the target 

membrane (Hong & Lev, 2014; Jahn & Scheller, 2006).  

SNARE proteins posses a central 60-70 AA-long motif (SNARE domain) 

that forms a coiled coil upon the interaction with the cognate SNARE 

partners. This coiled coil is connected by sixteen layers of interacting amino 

acid side chains that are hydrophobic (the flanking are all polar or charged) 

except of the amino acids in the central layer, which are either glutamine (Q) 

or arginine (R). Generally, the coiled-coil SNARE complex has three domains 

that contain glutamine together with one that contains arginine (QabcR) 

(Antonin, Fasshauer, Becker, Jahn, & Schneider, 2002; Stein, Weber, Wahl, & 

Jahn, 2009; Sutton, Fasshauer, Jahn, & Brunger, 1998). The SNAREs involved 

in neuronal exocytosis include the plasma membrane residents syntaxin 1A 

(Qa) and SNAP 25 that contributes with two SNARE motifs (Qbc), and 

synaptobrevin 2 at the synaptic vesicle (R). Other SNARE complexes mediate 

intracellular traffic steps such as early and late endosomal fusion (Fig. 1.14). 
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Figure 1.14. SNARE proteins catalyze membrane fusion. A. Scheme of the 
vesicle (with R-SNARE) approaching the plasma membrane (with Qabc 
SNAREs). Helical motifs form QabcR SNAREs zipper in N- to C- terminal 
direction forming the four-helical bundle. B. Examples of some cognate 
SNARE proteins involved in neuronal, early and late endosomal fusion. 
 
 

In recent years, an increasing body of evidence has revealed that SNAREs 

form clusters in both plasma membranes and intracellular membranes. 

Multiple approaches have yielded an increasingly refined picture of the forces 

and of the other biophysical parameters responsible for SNARE clustering, 

which will be discussed in the following chapters. 

 

1.3.1 SEGREGATION WITHIN THE HYDROPHOIBC CORE OF THE 

MEMBRANE  

 

Clustering induced by lipid phases. As discussed above, lipid-based domain 

segregation was first postulated based on the observation that certain proteins 

tend to associate with specific lipid species (most conspicuously with 

cholesterol and sphingomyelin) and resist extraction by some nonionic 

detergents. Although initial studies reported enrichment of SNAREs within 

DRMs (Chamberlain & Gould, 2002; Chamberlain, Burgoyne, & Gould, 2001; 

Lafont et al., 1999; S. A. Predescu, Predescu, Shimizu, Klein, & Malik, 2005; 

Salaün, Gould, & Chamberlain, 2005), it soon became clear that by applying 

different detergents, SNAREs were not co-floating with the classical DRM 

markers (Lang et al., 2001; Ohara-Imaizumi, Nishiwaki, Kikuta, et al., 2004a). 
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However, similar to DRMs cholesterol is required for the integrity of SNARE 

clusters (Lang, 2007; Lang et al., 2001). Furthermore, cholesterol depletion 

inhibits exocytosis in both neuronal (Lang et al., 2001) and non-neuronal cells 

such as epithelial (Chintagari et al., 2006) and endothelial cells (S. A. Predescu 

et al., 2005), but it is still unclear whether dispersal of SNARE clusters and 

inhibition of fusion are causally related. Beyond neurotransmitter release, 

SNARE clusters are shown to be the release sites for cytokines at the 

phagocytic cup (Kay, Murray, Pagan, & Stow, 2006) and insulin (Ohara-

Imaizumi, Nishiwaki, Kikuta, et al., 2004a; Ohara-Imaizumi, Nishiwaki, 

Nakamichi, et al., 2004b). Additionally, in vitro reconstitution of neuronal 

SNARE proteins into giant unilamellar liposomes capable of undergoing 

phase segregation suggested that SNAREs distribute in the liquid disordered 

phase (unsaturated phospholipids, cholesterol depleted regions), rather than 

in the liquid ordered phases (rich in saturated phospholipids and cholesterol). 

Although such simple phase-separation may not reflect phase partitioning in 

the plasma membranes, these studies confirmed that SNAREs do not 

associate with sphingomyelin and saturated phospholipids (Bacia, Schuette, 

Kahya, Jahn, & Schwille, 2004; Saslowsky, Lawrence, Henderson, & 

Edwardson, 2003). On the other hand they demonstrate that SNARE proteins 

are sensitive to such phase partitioning, raising the possibility that phase 

heterogeneity may contribute to SNARE segregation. 

 

Clustering induced by hydrophobic mismatch. Hydrophobic mismatch 

occurs when the length of the protein transmembrane domains (TMDs) does 

not match the bilayer thickness (Fig. 1.15). In this case, it is energetically 

favorable to cluster the TMDs of similar length in the same region rather than 

to accommodate each of the TMDs separately. In a theoretical paper, 

Mouritsen and Bloom proposed that proteins may cluster in order to 

minimize membrane mismatch (Mouritsen & Bloom, 1984). Pioneering 

research showed that certain enzymes have the highest activity when 

reconstituted in bilayers of particular thickness, whereas in both thinner and 

thicker bilayers the activity drops (Johannsson et al., 1981a; Johannsson, 

Smith, & Metcalfe, 1981b; Kusumi & Hyde, 1982). This implied that 

hydrophobic mismatch affects enzyme conformation that subsequently 

reduces its activity. Moreover, the aggregation state of some of these proteins 
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such as rhodopsin is shown to depend on the acyl-chain length of lipids that 

were used for the reconstitution (Kusumi & Hyde, 1982). More recently, it 

was shown that the overlap between the TMD length of the perfringolysin O, 

a multispanning barrel protein, and the width of lipid bilayer also affects the 

proteins’ distribution and functionality in proteoliposomes (Lin & London, 

2013). Protein clustering driven by hydrophobic mismatch was first shown 

directly for synthetic TMD peptides (de Planque et al., 1998; Sparr et al., 2005). 

The phospholipid acyl-chains are flexible and their lateral organization 

depends on the neighboring lipid molecules (i.e. cholesterol restricts the 

flexibility due to the pronounced hydrophobic planar structure). Hence, lipids 

can adapt to a range of different thicknesses (Killian & Nyholm, 2006). On the 

other hand, proteins exhibit less flexibility in length distortion in the case of 

membrane mismatch (Petrache et al., 2002; Zaccai, 2000). Caution is needed 

when interpreting experiments based on altering acyl chain lengths because 

these changes also affect the lipid packing, curvature and surface charge 

distribution. Hence, the protein function may be affected by many of these 

parameters (Anderson & Jacobson, 2002).  

Hydrophobic mismatch appears to play a role in defining the final 

destination of membrane components in intracellular trafficking. It is well 

established that sorting of proteins and lipids in polarized, epithelial cells is 

mediated by both the lipid environment and the cytoskeleton, and that lipid 

domains coalesce prior to vesicle formation (Brown & Rose, 1992; Lipowsky, 

1993; Roux et al., 2005; Yoshimori, Keller, Roth, & Simons, 1996). 

Additionally, altering the TMD length of peptides affected their trafficking 

from ER, Golgi to the plasma membrane. Considering that the average 

thickness of the membrane increases from ER (~3.75 nm) to the plasma 

membrane (~4.25 nm; Mitra, Ubarretxena-Belandia, Taguchi, Warren, & 

Engelman, 2004), it is reasonable to expect that proteins destined to the 

plasma membrane have longer TMDs. Indeed, when the TMD of plasma 

membrane syntaxin 3 was truncated to be 17 instead of endogenous 23 AA, 

syntaxin 3 was retained in the cis-Golgi (Watson & Pessin, 2001). Also, in a 

comprehensive screen of the TMDs sequences from different species, Sharpe 

et al. demonstrate that an average length of TMDs is about 5 amino acids 

shorter for proteins destined to ER compared to the proteins of the plasma 

membrane (Sharpe, Stevens, & Munro, 2010).  
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Figure 1.15. Effects of hydrophobic mismatch between lipids and proteins. A. 
Lipids will stretch acyl chains next to the longer TMD (positive mismatch). B. 
Disordering of the acyl chains of lipids next to the shorter TMD (negative 
mismatch). C. In the complex mixture of lipids, TMD sequesters the lipids 
that best match its thickness. Adapted from Killian & Nyholm, 2006. 
 

Palmitoylation modulates attachment of soluble proteins to the membrane. 

Posttranslational modifications further modulate SNARE patterning (for 

detailed review see (van den Bogaart, Lang, & Jahn, 2013)). Most attention has 

been paid to palmitoylation, i.e. the covalent addition of the acyl chain 

palmitate (C16:0) to a cysteine residue in the protein. For instance, the Qbc 

SNAREs SNAP 23 and 25 are palmitoylated at five and four cysteine residues, 

respectively, which is required for membrane attachment (Prescott, Gorleku, 

Greaves, & Chamberlain, 2009). Proteomics analyses suggested that many 

other synaptic proteins undergo palmitoylation including proteins containing 

TMDs (Kang et al., 2008), among these are the SNAREs syntaxin 1 and 
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synaptobrevin 2. It has been suggested that SNAREs are reversibly targeted to 

cholesterol and sphingomyelin rich regions via palmitoylation (Y. Fukata & 

Fukata, 2010; Levental, Lingwood, Grzybek, Coskun, & Simons, 2010), which 

would add another mechanism contributing to cluster formation. Support for 

this concept is provided by the recent finding that a fraction of amyloid 

precursor is palmitoylated, which further modulates its association with 

cholesterol-rich regions in the presynaptic membrane (Bhattacharyya, Barren, 

& Kovacs, 2013).  

 

1.3.2 SEGREGATION CAUSED BY INTERACTIONS AT THE 

HYDROPHOBIC-HYDROPHILIC BOUNDARY  

 

Clustering of SNAREs is influenced by electrostatic interactions 

between positively charged side chains adjacent to the hydrophobic TMD 

with negatively charged polyphosphoinositides (Di Paolo & De Camilli, 2006; 

Do Heo et al., 2006; van den Bogaart et al., 2011). Tamm and colleagues 

showed that diffusion of syntaxin 1 decreases upon incorporation of PI(4,5)P2 

in the lipid monolayer (Wagner & Tamm, 2001). PI(4,5)P2 is enriched in 

regions of the plasma membrane where secretory vesicles dock (Aoyagi et al., 

2005; Laux et al., 2000), and it is essential for exocytosis (Hay & Martin, 1993; 

James et al., 2008; Milosevic et al., 2005; Wen, Osborne, & Meunier, 2011). 

Although PI(4,5)P2 comprises only 1% of total lipids of the plasma membrane 

(Di Paolo & De Camilli, 2006), it can reach concentrations of more than 80% of 

total lipids in clusters (van den Bogaart et al., 2011). Association between 

syntaxin 1 and PI(4,5)P2 was clearly shown both in vitro reconstituted systems 

(Murray & Tamm, 2009; 2011) and in cells (van den Bogaart et al., 2011). 

Responsible for this strong interaction is a cluster of positively charged 

arginines and lysines directly adjacent to the TMD of syntaxin 1 (Fig. 1.16; 

(Khuong et al., 2013; van den Bogaart et al., 2011)).  
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Figure 1.16. Syntaxin 1A interacts with PI(4,5)P2 in the membrane. Side view 
(A), top view (B) and scheme (C) of a coarse-grained molecular dynamics 
simulation (64 copies of syntaxin 1A peptide incorporated in the DOPC:DOPS 
mixture (4:1 molar ration); simulation time 6 µs). PI(4,5)P2 interacts with the 
polybasic patch of syntaxin 1A that is juxtaposed to its TMD. Adapted from 
van den Bogaart et al., 2011. 

 

Ionic interactions between macromolecules are strongly influenced by 

mobile ions. The ionic composition at the surface of a membrane is highly 

complex (Y.-H. Wang et al., 2012; Y.-H. Wang, Slochower, & Janmey, 2014), 

rendering it difficult to quantify the influence of ions on domain formation. 

Ions present at high concentrations on the cytoplasmic surface (K+, Mg2+, 

glutamate, ATP; (Beis & Newsholme, 1975; Hess, Metzger, & Weingart, 1982; 

R. E. London, 1991)) are able to shield the charge of both lipid head-groups 

and proteins involved in exocytosis (Park et al., 2012). It is worth noting that 

calcium increases SNAREs clustering in the plasma membrane of PC12 cells 

(Zilly et al., 2011), and this mechanism might involve the interaction with 

negatively charged lipids. Polybasic clusters on the cytoplasmic face adjacent 

to transmembrane proteins are common among many membrane proteins 

(Heijne, 2006). Thus it is possible that such ionic interactions play a major role 

in patterning of the plasma membrane and possibly also of intracellular 

membranes.  
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1.3.3 SEGREGATION DUE TO INTERACTIONS IN THE HYDROPHILIC 

SPACE  

 

Both homophilic and heterophilic interactions have been described for 

Qa SNARE family members. For instance, syntaxin 1 and syntaxin 4 are 

involved in regulated and constitutive exocytosis, respectively. Interactions 

between the SNARE motifs at the cytoplasmic surface has been suggested to 

contribute to the segregation of these proteins into distinct domains (Fig. 1.17; 

(Sieber, Willig, Heintzmann, Hell, & Lang, 2006)). Hence, in case of syntaxin 

isoforms homotypic protein interactions contribute to the functional 

segregation. Similarly, in non-neuronal cells, syntaxin isoforms segregate in 

different regions of the membrane. In highly polarized epithelial cells, 

syntaxin 3 and syntaxin 4 are trafficked distinctly to the apical and basolateral 

membrane, respectively. Even the deletion of the targeting signal of syntaxin 

3 does not eliminate its distinct segregation from syntaxin 4 enriched regions 

(Low et al., 2006).  

 

 
Figure 1.17. Supramolecular syntaxin clusters reconstituted in silico. Two 
possibilities exist for the shape of clusters: bunchlike (left) and cylindrical 
(right). The bunchlike organization is more feasible, since the overexpression 
does not change the size of cluster, but increases their number. Adapted from 
Sieber et al., 2007. 
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Heterotypic protein interactions are important for both the spatial 

sorting of proteins in the presynapse, as well as for catalyzing the fusion 

reaction. For instance, some presynaptic membrane proteins bind to the actin 

meshwork (for details please look at Introduction 1.2.5; (Torregrosa-Hetland et 

al., 2013; 2011; Villanueva et al., 2012)). This binding to the cytoskeleton can 

be direct as in the case of syntaxin 4 (Jewell, Luo, Oh, Wang, & Thurmond, 

2008; Woronowicz et al., 2010) and SNAP 25 (Torregrosa-Hetland et al., 2013). 

Alternatively, binding to actin can be mediated by adaptor proteins such as 

myosin V that connects syntaxin 1 to actin (M. Watanabe et al., 2005), and α-

fodrin that connects syntaxins 3 and 4 to actin (Nakano, Nogami, Sato, 

Terano, & Shirataki, 2001). Another example for heterotypic interactions 

includes binding of regulatory proteins to SNAREs. The SM-protein Munc 18 

that binds to syntaxin 1 is not only essential for exocytosis (Verhage et al., 

2000) but also necessary for trafficking of syntaxin 1 to the plasma membrane 

(Kurps & de Wit, 2012; Voets et al., 2001; X. Yang, Xu, Xiao, Xiong, & Xu, 

2006). Indeed, if syntaxin 1 clusters serve as reservoir of the protein for fusion, 

Munc 18 may be needed to pry an individual syntaxin 1 molecules away from 

the cluster (Bar-On et al., 2012). Munc 18 bound syntaxin 1 is able to recruit 

SNAP 25 in the cell lawns and synaptobrevin 2 containing vesicles can bind to 

this complex (Zilly, Sørensen, Jahn, & Lang, 2006). 

 

 

1.4 FUNCTIONAL RELEVANCE OF SNARE CLUSTERING 

 

Section 1.4 was published in:  
Milovanovic, D. & Jahn, R. (2015). Frontiers in Physiology 6:89 
http: // doi: 10.3389/fphys.2015.00089 
 

SNAREs clustering may be important for exocytosis. First, the high 

local concentrations of SNAREs at the plasma membrane may provide the 

functional pools of proteins necessary for the formation of SNARE complexes 

(Fig. 1.18). Clustering of SNAREs may also prevent nonproductive side-

reactions of the highly reactive SANREs such as the formation of so-called 

“dead-end” complexes between syntaxin 1 and SNAP 25 incapable of fusion 
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(Fasshauer & Margittai, 2004). It has been shown that the plasma membrane 

of chromaffin cells lacks these dead-end complexes (Halemani, Bethani, 

Rizzoli, & Lang, 2010). Along the same line, removal of cholesterol does not 

only affects the clustering of SNAREs, but also reduces the number of 

functionally active syntaxin 1/SNAP 25 complexes ready for ternary complex 

formation with synaptobrevin 2 (Rickman et al., 2010). Second, Q-SNARE 

domains (together with PI(4,5)P2) may represent docking platforms for 

vesicles (de Wit et al., 2009; Imig et al., 2014; James et al., 2008). PI(4,5)P2 was 

shown to be enriched at the sites of vesicle fusion, and altering the amount of 

PI(4,5)P2 affects the release capacities (de Wit et al., 2009; Milosevic et al., 

2005). Therefore, PI(4,5)P2 domains have been proposed to act as molecular 

beacons for vesicle recruitment to the membrane. Indeed, synaptotagmin 1, 

the main calcium sensor at the synaptic vesicle, binds to syntaxin 1/PI(4,5)P2 

domains in the plasma domains (Honigmann et al., 2013).  

Finally, clustering may help overcoming the energy barrier that needs 

to be overcome for membrane fusion in two ways. First, clustering alters the 

line tension around clusters in the plasma membrane which generates regions 

in the membrane more susceptible for membrane fusion and budding 

(Boucrot et al., 2012; Kozlov et al., 2014; Risselada, Bubnis, & Grubmüller, 

2014). Hence, the total number of SNARE complexes needed fur fusion is 

reduced (Hernandez, Kreutzberger, Kiessling, Tamm, & Jahn, 2014; 

Mohrmann, de Wit, Verhage, Neher, & Sørensen, 2010; van den Bogaart et al., 

2010). Secondly, while initial experiments were overemphasizing the role of 

syntaxin 1 and synaptobrevin 2 TMDs in overcoming the energy barrier for 

fusion (Fdez, Martínez-Salvador, Beard, Woodman, & Hilfiker, 2010; Grote, 

Baba, Ohsumi, & Novick, 2000; Han, Wang, Bai, Chapman, & Jackson, 2004), 

recent data indicate that TMDs might be critical for fast, evoked membrane 

fusion, whereas for spontaneous fusion the structural requirements for 

membrane anchorage appear to be less strict (Zhou, Bacaj, Yang, Pang, & 

Südhof, 2013). Interestingly, disruption of SNARE clusters by bioactive 

molecules such as anesthetics reduces the release capacities of chromaffin 

cells (Herring et al., 2011; Herring, Xie, Marks, & Fox, 2009; Xie et al., 2013). 

Clustered SNAREs are in dynamic exchange with the surrounding 

membrane, and diffusion of SNARE molecules between clusters is rather high 

(Barg, Knowles, Chen, Midorikawa, & Almers, 2010; Knowles et al., 2010; 
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Sieber et al., 2007). The precise structure of the fusion site remains to be 

established. As discussed above, syntaxin clusters may serve as docking sites 

but the assembly of fusion competent SNARE complexes may take place 

adjacent to the clusters (Bar-On et al., 2012; Gandasi & Barg, 2014; Rickman, 

Hu, Carroll, & Davletov, 2005).  

 
Figure 1.18. Scheme of the synaptic vesicle cycle. Details of the cycle are 
explained in the text. SNARE domains are indicated to play a role in vesicle 
docking. After fusion SNAREs either remain clustered or are re-clustered 
prior to endocytosis. During endocytosis (especially bulk retrieval) SNAREs 
may act as markers of membrane integrity and determine the subsequent 
sorting. Adapted from Milovanovic & Jahn, 2015. 

 

SNARE clustering may be important for endocytotic retrieval of 

vesicles. Neurotransmitter release is a rapid and repetitive process. In order 

to maintain membrane balance vesicle fusion and fission have to be tightly 

spatially and temporally coupled (Figure 18). During endocytosis, vesicle-

specific proteins are selectively retrieved while plasma membrane residents 

are excluded. Even during sustained, high activity, the composition of 

synaptic vesicles needs to remain constant. While some flexibility may be 

tolerated for abundant proteins such as synaptobrevin 2 (~70 copies/vesicle) 
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some of the functionally essential proteins are present only 1 – 2 

copies/vesicle, e.g. the vacuolar ATPase required for neurotransmitter uptake 

(Takamori et al., 2006). Using STED microscopy, Willig et al. proposed that SV 

proteins remain clustered after exocytosis (Willig, Rizzoli, Westphal, Jahn, & 

Hell, 2006). Alternatively, SV proteins may be sorted and re-clustered prior to 

endocytosis (Hua et al., 2011). Interestingly, a study that combined the 

electron microscopy and the STED nanoscopy showed that synaptic vesicle 

proteins such as synaptotagmin remain clustered even within the early 

endosome, thus being a marker for synaptic vesicle retrieval (Hoopmann et 

al., 2010).  

Generally, there appear to be at least two main pathways for vesicle 

endocytosis: (i) slow, clathrin-mediated endocytosis (CME), and (ii) fast, 

mostly clathrin-independent, endocytosis. CME has been extensively studied 

(Dittman & Ryan, 2009; Jung & Haucke, 2007). The relatively slow kinetics of 

CME (~20 seconds) cannot fully explain fast vesicle turnover at the synaptic 

bouton (Gandhi & Stevens, 2003; Heuser & Reese, 1973). Using a combination 

of optogenetics and high-pressure freezing electron microscopy, Jorgensen 

and colleagues showed that a second type of endocytosis co-exists in neurons 

that can be very rapid (~30 ms) but is likely to be less accurate than CME, 

resulting in endocytotic membrane vesicles larger than SV (S. Watanabe, 

Lehmann, et al., 2014a; S. Watanabe, Liu, et al., 2013a; S. Watanabe, Rost, et 

al., 2013b). Apart from speed, the availability of endocytotic machinery might 

be the limiting step in CME during the sustained SV release. Indeed, 

quantitative analysis of the synaptic bouton showed that there are about five 

folds less endocytotic than exocytotic proteins (Wilhelm et al., 2014). This 

problem may be overcome by fast, bulk endocytosis that requires fewer 

proteins to be involved in vesicle engulfing (S. Watanabe, Rost, et al., 2013b).  

It is still debated to which extent endocytosed vesicles need to pass 

through an additional endosomal sorting step before re-entering the SV pool. 

It is conceivable that the fate of the endocytosed membrane is determined by 

its protein and lipid components (Rizzoli, 2014). Shortly after exocytosis the 

protein content of the synaptic vesicle either remains clustered (Willig et al., 

2006), or it diffuses in the plane of the membrane which is followed by 

immediate re-clustering (Hua et al., 2011; Wienisch & Klingauf, 2006). Specific 

adaptor proteins such as AP2, stonin and AP 180 specifically bind to synaptic 
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vesicle proteins such as synaptobrevin 2 (AP 180) (Granseth, Odermatt, Royle, 

& Lagnado, 2006) or synaptotagmin 1 (AP2, stonin) (Collins, McCoy, Kent, 

Evans, & Owen, 2002; Jung et al., 2007), ensuring their clustering in a coated 

pit (Glyvuk et al., 2010). It is conceivable that a clathrin-coated vesicle 

separating from the plasma membrane matches the membrane composition of 

synaptic vesicles (as already suggested earlier; Maycox, Link, Reetz, Morris, & 

Jahn, 1992), allowing for immediate re-use after uncoating without an 

intermediate sorting step. In contrast, it is highly unlikely that vesicles 

retrieved from the plasma membrane by ultrarapid endocytosis are sorted 

with similarly high accuracy (Watanabe, Rost, et al., 2013b). It is conceivable 

that these vesicles need to “proof-read” by cytoplasmic factors after 

endocytosis (Figure 17). If the protein and lipid content of such an 

endocytosed vesicle meet the requirements for a functional synaptic vesicle, 

the vesicle might be loaded with NT and can be immediately used for the next 

round of the release. Otherwise, the vesicle is targeted to recycling endosomes 

for further sorting (Watanabe, Trimbuch, et al., 2014b). The precise sorting 

mechanism is far from understood and the sorting signals involved in vesicle 

recycling and the maintenance of the vesicle identity still need to be 

identified. 

 

 

1.5. AIMS OF THIS THESIS 

 

As explained above, the presence of many structurally and funstionally 

different domains in the plasma membrane with distinct compositions cannot 

be explained by only one, or just a few, parameters. Therefore, during my 

graduate studies, I worked on a broad range of concepts that consider 

electrostatic interactions, protein-protein (homo- and heterotypic) 

interactions, and hydrophobic interactions between bilayer core and protein 

transmembrane domains as parameters that contribute to segregation of 

proteins and lipids in distinct domains. Using SNAREs as an exquisite model 

to look at different clustering mechanisms, I focused on three specific topics. 

First, I looked at the effect of hydrophobic mismatch on SNARE 

clustering. The crystal structure of the neuronal SNARE complex revealed 

that the TMD of syntaxin 1 may be too short to span the entire plasma 
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membrane (Stein et al., 2009). In comparison to syntaxin 1 (involved in 

calcium regulated exocytosis), syntaxin 4 (involved in the constitutive 

exocytosis) has a slightly (1-2 residues) longer TMD (Fig. 1.19). As shown 

previously, the length of the TMDs plays an important role in trafficking 

different syntaxins to the particular organelles (Watson & Pessin, 2001). 

However, for syntaxin 1 and 4 the TMD lengths are respectively 2 and 3 

amino acids shorter than the average TMD length of other plasma membrane 

proteins (Sharpe et al., 2010). Therefore, I addressed if these shorter TMDs 

contribute to clustering of syntaxin isoforms in the plasma membrane. Also, I 

examined if the 1-2 residue difference in the TMD length between syntaxins 1 

and 4 attribute to the lateral segregation of these SNAREs into distinct 

domains.  

 
Figure 1.19. Plasma membrane SNAREs may be too short to span the entire 
membrane. A. Crystal structure of the full length neuronal SNARE complex. 
Neither the TMD of syntaxin 1 nor synaptobrevin 2 are long enough to span 
the average thickness of the plasma membrane. B. Sequence alignment of 
syntaxin 1 and syntaxin 4 with the TMDs marked in pink and polybasic patch 
highlighted in red. Adapted from Stein et al., 2009 and Milovanovic et al., 
2015. 

 

Second, I studied the interplay between different clustering 

mechanisms on SNARE domain formation. Homologous protein-protein 

interactions between SNARE motifs have been convincingly shown to cluster 

syntaxin 1 and 4 into distinct domains (Sieber et al., 2006). In addition, both 
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syntaxin 1 and 4 contain the polybasic amino acid patch juxtaposed to the 

TMD that interacts with PI(4,5)P2 in the plasma membrane (van den Bogaart 

et al., 2011). In this context, I addressed the contribution of hydrophobic 

mismatch on syntaxin clustering by varying the bilayer thickness in the 

presence of PI(4,5)P2. I further looked at several mutants where the difference 

in TMD length between syntaxin 1 and 4 was either eliminated or enhanced. 

Together these data show the effect of hydrophobic mismatch in the context 

of the plasma membrane.  

Third, I wanted to decipher how calcium ions affect syntaxin clusters.  

For SNAREs, it has been shown that an increased calcium concentration 

promotes formation of larger domains (Zilly et al., 2011). For the proteins 

with a dominant negative charge at the cytosolic surface this is explained by 

direct ionic interactions between calcium and the carboxyl groups of the 

amino acid side chains or C-terminus. However, syntaxin has a polybasic 

patch at the cytosolic surface and calcium is still able to induce ~200 nm sized 

domains even of truncated syntaxin 1 mutants with anionic residues deleted. 

In this part I show that calcium acts as a charge bridge that connects multiple 

syntaxin 1 proteins into larger, mesoscale domains through PI(4,5)P2 

Overall this Thesis emphasizes that multiple mechanisms contribute to 

the lateral distribution of proteins and lipids in clusters at the plasma 

membrane. It is becoming apparent that these plasma membrane domains can 

represent local hot spots that are essential for the functional segregation of 

distinct cellular processes and can also contribute to vesicle tethering at the 

plasma membrane (see for instance Honigmann et al., 2013), discussed in 

details in Chapter 1.4).  
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2. MATERIALS AND METHODS  
 

2.1 PEPTIDES AND LIPIDS 

 

Peptides used for the reconstitution experiments were synthesized 

using Fmoc solid phase synthesis by the group of Prof. Ulf Diederichsen, 

University of Göttingen. The fluorescent dyes Atto647N NHS-ester (Atto-Tec) 

and Rodamine red succinimidyl ester (Life Technologies) were coupled to the 

N-termini of syntaxin transmembrane domain (sx TMD). The detailed 

synthesis is described in the Appendix 11.1.  

 

Precisely, the peptides used were: 

(i) syntaxin 1 TMD (residues 266–288; sx-1 TMD) from Rattus norvegicus;  

(ii) syntaxin 4 TMD (residues 262-297; sx-4 TMD) from Homo sapiens;  

(iii) syntaxin 1 TMD mutant (sx-1 TMD with the following mutations: M267A, 

C271A, I279A); 

(iv) syntaxin 1 polybasic patch mutant (sx-1 TMD mutant with the following 

mutations: K264A, K265A). 

 

Lipids used in this study are: 

(a) C18:1 PC (1,2-dioleoyl-sn-glycero-3-phosphocholine),  

(b) C14:1 PC(1,2-dimyristoleoyl-sn-glycero-3-phosphocholine),  

(c) C16:1 PC (1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine),  

(d) C20:1 PC (1,2-dieicosenoyl-sn-glycero-3-phosphocholine),  

(e) brain PI(4,5)P2 (PI(4,5)P2 isolated from porcine brain),  

(f) doPI(4,5)P2 (1,2-dioleoyl-sn-glycero-3-phosphatidyl-(1’-myo-inositol-4’,5’-

bisphosphate)), 

(g) brain PS (L-α-phosphatidylserine isolated from porcine brain), 

(h) cholesterol. Lipids a-h were purchased from Avanti Polar Lipids.  

(i) The lipophilic fluorescent probe DiO (3,3'-dilinoleyloxacarbocyanine 

perchlorate) was from Life Technologies. 

(j) doPI(4,5)P2 labeled with Atto647N at the SN2 position. 

(k) C16-ceramide labeled with Atto590. Lipids j and k were kindly provided 

by Dr. Vladimir Belov of the Max Planck Institute for Biophysical 

Chemistry and described in (Kolmakov et al., 2010). 
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2.2 MEMBRANE RECONSTITUTIONS 

 

2.2.1 Polymer supported membranes 

 

Polymer supported membranes are used to generate a single lipid 

bilayer on glass cover slides used in microscopy (Fig. 2.1; Roder et al., 2011). 

First, the surface of glass slides was cleaned using fresh piranha solution 

(mixture of concentrated sulfuric acid and hydrogenperoxide in a 2:1 volume 

ratio) for 20 min. The cleaned coverslips were extensively rinsed with distilled 

water in order to entirely remove the piranha solution and bath sonicated in 

distilled water for 5 min. Coverslips were then dried with a stream of 

nitrogen gas.  

Activation of the glass surface was done using pure GOPTS ((3-

glycidyloxypropyl)-trimetoxysilane; Sigma). The reaction was performed in a 

pyraniaclean dish by placing one coverslip to the bottom. One drop of GOPTS 

was added (carefully, with a syringe) and a ‘sandwich’ was made by 

positioning another cover slip on top of the GOPTS. The coverslips with the 

GOPTS were incubated for 50 min at 75°C. This is a crucial step where the 

surface of the glass was activated. GOPTS introduces the highly reactive 

epoxide group at the glass surface by silanization. Meanwhile, 1 g (the tip of a 

spatula) of DAPEG (diaminopolyethylene glycol; Rapp Polymer Tu ̈bingen) 

was preheated for 10 min at 75◦C. DAPEG was taken out of the freezer before 

use and warmed to room temperature to prevent its condensation (especially 

important since it is a hygroscopic substance).  

After activation the glass slides were washed with acetone to remove 

excess GOPTS and then placed on pre-melted DAPEG to incubate overnight 

at 75°C. DAPEG has two functional amino groups at its ends. One amino 

group of DAPEG can interact with the epoxide groups at the glass surface 

leaving the amino group on other end of DAPEG free to react with the 

anchoring molecule. The phospholipid membranes were tethered to these 

amino groups by C16 acyl chains. For this purpose, the DAPEG coated glass 

slides were covered with 0.5 M palmitic acid (Sigma) in DMSO and 

diisopropylcarbodiimide (Sigma) in a 2:1 volume ratio for 45 min incubation 

at room temperature.  
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Finally, the membranes were successfully spin-coated on the coverslip 

(at 100 xg). For the spin-coating, I prepared a mixture with a 2:1 molar ratio of 

phospholipids to cholesterol, the lipid label (DiO, 0.01 mol%) and the sx-1 

TMD labeled with Atto647N (Atto Tech) in a 1/10,000 molar ratio. Total 

concentration of spin-coated lipids was 1 mg/ml in chloroform. After spin-

coating the lipid film was rehydrated in 1,000 µL of 50 mM HEPES buffer that 

contained 150 mM KCl (pH at 7.4).  

 
Figure 2.1. Scheme of the assay for preparation of PSM. A. Activation of the 
glass surface and functionalization with DAPEG (polymer, blue) and palmitic 
acid (anchoring molecule, red). B. Vesicles are loaded to the functionalized 
glass surface and captured by the palmitate group. C. After incubation and 
washing away the excess of vesicles, an extended polymer-supported bilayer 
is formed. Please note that this step I perform by spin-coating the vesicles on 
the activated glass surface. Adapted from Roder et al., 2011. 
 
2.2.2 Stacked lipid bilayers 

 

Glass cover slides used in microscopy were prepared by vigorous 

cleaning in ethanol as described in (Mennicke & Salditt, 2002) and the 

supported lipid bilayer was generated by spin-coating. For the spin-coating 

(at 100 xg) we prepared a 40 mM lipid mixture consisting of different lipid 
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mixtures (indicated in each of the experiments) in chloroform:ethanol (1:1 

volume mixture). The molar ratio of syntaxin TMDs to phospholipids was 

1:10,000. After spin-coating 10 µL of the lipid solution, the lipid film was 

rehydrated in 1 mL of 25 mM HEPES buffer with 150 mM NaCl (pH at 7.4). 

The spin-coated cover slips were rehydrated in a sample chamber with 1,000 

µl of buffer (25 mM HEPES, 150 mM NaCl, pH 7.4). When indicated, calcium 

and EDTA were added directly into the sample chamber and the samples 

were mixed by gentle pipetting prior to STED imaging. 

 

2.2.3 Large unilamellar vesicles 

 

Large unilamellar vesicles (LUV) were prepared from PC of different 

acyl-chain lengths (C14:1, C16:1, C18:1, and C20:1) with or without 30 mol% 

cholesterol and/or 1 mol% PI(4,5)P2. Lipid mixtures were prepared at a total 

concentration of approximately 30 mM lipids in chloroform as described in 

(Schuette et al., 2004). After removal of the chloroform with a rotary 

evaporator (Buchi Rotavapor R-124), the lipid film was resuspended to 

40 mM in methanol and fluorescently labeled peptides were added in 2,2-

trifluoroethanol (protein-to-lipid ratios are given at each of experiments). The 

organic solvents were then evaporated and the dried lipid film resuspended 

to 8 mM total lipid concentration in 25 mM HEPES buffer with 150 mM KCl 

(pH 7.4) unless otherwise indicated (i.e. NaCl, ATP, MgCl2). Multilamellar 

vesicles, which are generated by resuspending the lipid film, were then 

extruded through polycarbonate filters with 100 nm pore diameter (Fig. 2.2) 

(Avanti Polar Lipids). Vesicle sizes were confirmed by dynamic light 

scattering (Wyatt Technologies). 
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Figure 2.2. Scheme of LUVs generation by extrusion. The mixture of 
multilamellar vesicles is pushed through the polycarbonate filter with pore 
size of 100 nm diameter. 
 

2.2.4 Giant unilamellar vesicles 

 

Large µm-range diameter giant unilamellar vesicles (GUVs) are 

suitable for directly observing phase separation by microscopy. Their large 

diameter also imply low curvature, hence all the effects observed are 

decoupled from curvature stress. Two main methods for GUV formation are 

passive swelling and electroformation (Doeven et al., 2005; Ramadurai et al., 

2009; van den Bogaart et al., 2011). Passive swelling relies on the repulsion 

between charged polar heads of the phospholipids, whereas electroformation 

uses an AC electric field that interacts with the dipole moments of the lipid 

molecules and causes its agitation. The precise lipid mixtures used are 

indicated for each of the experiments. DiO was used for fluorescent labeling 

of the lipid phase (0.01 mol%) and sx-1 TMD was used in 1:1,000 protein-to-

lipid ratio. For passive swelling, 1 µL of the sx-1 TMD/lipid mixture was 

dried on a preheated glass slide at 55°C and rehydrated in 100 µL of pre-

warmed ddH20 for 20 min. Electroformation was performed by drying 1 µL 

sample on an ITO-coated glass slide at 55°C. A silicone O-ring was then 

placed around the dried sample on the glass slide and rehydrated with 500 µL 

of pre-warmed ddH20. The rehydration suspension was positioned between 

two ITO-coated glasses for current conduction. Electro-formation was 

performed for 45 min at 1.2 V/10 Hz (Function Generator FG250D, Conrad). 
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2.3 DYNAMIC LIGHT SCATTERING  

 

Dynamic light scattering (DLS) is a technique used to determine the 

size distribution of particles in suspension (Berne & Pecora, 2000). Here 

monochromatic light (i.e. laser) goes through the polarizer to the sample. 

Particles in the sample diffract the light in all directions and this light goes 

through the second polarizer to the photomultiplier.  

The speckle pattern at the photomultiplier (light regions: positive 

interference, dark region: negative interference) is analyzed for the intensity 

change over time. From the autocorrelation function of the time dependent 

intensity change, diffusion coefficients (D) are calculated. The Stokes-Einstein 

relationship: Dh = kBT/3pηDt (Dh is the hydrodynamic diameter (i.e. particle 

size); kB is the Boltzman constant; η the solvent viscosity; Dt is the 

translational diffusion coefficient obtained by DLS) was used to estimate the 

hydrodynamic radius, Dh (nm). In my case diffusion coefficients were 

measured at 25 ºC at a laser wavelength of 830 nm and scattering angle of 90º 

using a DynaPro Titan DLS.  

To illustrate the application of DLS for determining the vesicle size, the 

distribution of LUVs with an average vesicle radius of 54.5 ± 7.3 nm is shown 

in Fig. 2.3 (preparation of LUVs according to the protocol in 2.2.3; three 

independent reconstitutions, ten measurements each).  

 
Figure 2.3. DLS measurement of the average radius (54.5 ± 7.3 nm) of LUVs 
prepared by extrusion procedure described in Materials and Methods 2.2.3. 
Data are generated from three independent reconstitutions, ten 
measurements each. 



2. MATERIALS AND METHODS             

_____________________________________________________________________________________________ 

 44 

2.4 CELL CULTURE AND IMMUNOFLUORESCENCE 

 

In this study, I used the pheochromocytoma cell line PC12 from Rattus 

norvegicus (Greene & Tischler, 1976; Heumann, Kachel, & Thoenen, 1983). 

Lipofectamin LTX reagents from Life Technologies were used for transfection 

and cells were analyzed 24 hours posttransfection. Native membrane sheets 

were generated by gentle sonication (Sieber et al., 2007; van den Bogaart et al., 

2011) and sonication buffer contained 20 mM K-HEPES pH 7.4, 120 mM 

K-gluconate, 20 mM K-acetate, 2 mM ATP and 0.5 mM DTT (note: fresh ATP 

and DTT were added prior to sonication) (Fig. 2.4).  

  

 
Figure 2.4. Preparation of cell sheets. A. Scheme of preparation of cell sheets 
using a short sonification pulse (for details pleas see text). B. Example of PC12 
membrane sheet immunostained against syntaxin 1 (HPC-1 IgG1; shown in 
yellow). The inner leaflet of the plasma membrane is accessible for both 
immunostaining and imaging.  
 

 Primary antibodies used for immunohistochemistry experiments were: 

1. syntaxin 1 HPC-1 IgG1 (Sigma, clone HPC-1);  

2. syntaxin 1 rabbit polyclonal antiserum (Synaptic Systems, cat. number 

110.302);  

3. syntaxin 4 mouse monoclonal IgG1 (Synaptic Systems, clone number 139.2, 

cat. number 110.041);  

4. mouse IgM antibodies against PI(4,5)P2 (Echelon, clone Z-A045);  

5. mouse monoclonal IgG2a anti-mCherry (Abcam, clone 1C51, cat. number 

ab125096); 

6. rabbit polyclonal anti-EGFP (Abcam, cat. number ab290).  

 



                    2. MATERIALS AND METHODS 

_____________________________________________________________________________________________ 

  45 

  Secondary antibodies against IgG and IgM were labeled with Alexa 

Fluor 488C5-maleimide (Life Technologies) or KK114-maleimide (gift from 

Vladimir Belov, MPI-BPC, Göttingen, Germany, described in (Honigmann et 

al., 2013)).  

For transfection of PC12 cells we used synthetic chimeric constructs 

(Genscript) in the KpnI-HindIII restriction sites of pCEP4. The sequences for 

syntaxin 1A (sequence from Rattus norvegicus 262-297) N-terminally tagged 

with mCherry or mEGFP are given in Table 1. The constructs coding for 

mCherry-tagged sx-1 TMD-IFG (residues 257-285) and sx-1 TMD+VG (residues 

257-288 with two additional amino acids at the C-terminus: V289, G290) were 

generated from the wild-type construct by Quick Change mutagenesis 

(Agilent Technologies). 

 

Table 1 | Syntaxin 1A and syntaxin 4 sequences used for PC12 cell 
transfections. 
 
1. Syntaxin 1A (sequence from Rattus norvegicus, residues 257-288)  
N-terminally tagged with mCherry 
5’ATGGTGAGCAAGGGCGAGGAGGACAACATGGCCATCATCAAGGAGTTCATGAGGT
TCAAGGTGCACATGGAGGGCAGCGTGAACGGCCACGAGTTCGAGATCGAGGGCGAG
GGCGAGGGCAGGCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTGACCAAGG
GCGGCCCCCTGCCCTTCGCCTGGGACATCCTGAGCCCCCAGTTCATGTACGGCAGCA
AGGCCTACGTGAAGCACCCCGCCGACATCCCCGACTACCTGAAGCTGAGCTTCCCCG
AGGGCTTCAAGTGGGAGAGGGTGATGAACTTCGAGGACGGCGGCGTGGTGACCGTG
ACCCAGGACAGCAGCCTGCAGGACGGCGAGTTCATCTACAAGGTGAAGCTGAGGGG
CACCAACTTCCCCAGCGACGGCCCCGTGATGCAGAAGAAGACCATGGGCTGGGAGG
CCAGCAGCGAGAGGATGTACCCCGAGGACGGCGCCCTGAAGGGCGAGATCAAGCAG
AGGCTGAAGCTGAAGGACGGCGGCCACTACGACGCCGAGGTGAAGACCACCTACAA
GGCCAAGAAGCCCGTGCAGCTGCCCGGCGCCTACAACGTGAACATCAAGCTGGACA
TCACCAGCCACAACGAGGACTACACCATCGTGGAGCAGTACGAGAGGGCCGAGGGC
AGGCACAGCACCGGCGGCATGGACGAGCTGTACAAGGGCGGCCACAGGTGGATCTA
CCAGAGCAAGGCCAGGAGGAAGAAGATCATGATCATCATCTGCTGCGTGATCCTGG
GCATCGTGATCGCCAGCACCGTGGGCGGCATCTTCGCC3’ 

2. Syntaxin 1A (sequence from Rattus norvegicus, residues 257-288)  
N-terminally tagged with mEGFP 
5’GGTACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGCGTGGTGCCCATCCTGGT
GGAGCTGGACGGCGACGTGAACGGCCACAAGTTCAGCGTGAGCGGCGAGGGCGAGG
GCGACGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAAGCTGC
CCGTGCCCTGGCCCACCCTGGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCA
GGTATCCCGACCACATGAAGCAGCACGACTTCTTCAAGAGCGCCATGCCCGAGGGCT
ACGTGCAGGAGAGGACCATCTTCTTCAAGGACGACGGCAACTACAAGACCAGGGCC
GAGGTGAAGTTCGAGGGCGACACCCTGGTGAACAGGATCGAGCTGAAGGGCATCGA
CTTCAAGGAGGACGGCAACATCCTGGGCCACAAGCTGGAGTACAACTACAACAGCC
ACAACGTGTACATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAG
ATCAGGCACAACATCGAGGACGGCAGCGTGCAGCTGGCCGACCACTACCAGCAGAA
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CACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAGCACCCA
GAGCAAGCTGAGCAAGGACCCCAACGAGAAGAGGGACCACATGGTGCTGCTGGAGT
TCGTGACCGCCGCCGGCATCACCCTGGGCATGGACGAGCTGTACAAGGGCGGCCAC
AGGTGGATCTACCAGAGCAAGGCCAGGAGGAAGAAGATCATGATCATCATCTGCTG
CGTGATCCTGGGCATCATCATCGCCAGCACCATCGGCGGCATCTTCGGCTAGTAAAA
GCTT3’ 
3. Syntaxin 4 (sequence from Rattus norvegicus, residues 262-297)  
N-terminally tagged with mEGFP. 

5’ATGGTGAGCAAAGGCGAAGAACTGTTTACCGGCGTGGTGCCGATTCTGGTGGAACT
GGATGGCGATGTGAACGGCCATAAATTTAGCGTGAGCGGCGAAGGCGAAGGCGATG
CGACCTATGGCAAACTGACCCTGAAATTTATTTGCACCACCGGCAAACTGCCGGTGC
CGTGGCCGACCCTGGTGACCACCCTGACCTATGGCGTGCAGTGCTTTAGCCGCTATCC
GGATCATATGAAACAGCATGATTTTTTTAAAAGCGCGATGCCGGAAGGCTATGTGCA
GGAACGCACCATTTTTTTTAAAGATGATGGCAACTATAAAACCCGCGCGGAAGTGAA
ATTTGAAGGCGATACCCTGGTGAACCGCATTGAACTGAAAGGCATTGATTTTAAAGA
AGATGGCAACATTCTGGGCCATAAACTGGAATATAACTATAACAGCCATAACGTGTA
TATTATGGCGGATAAACAGAAAAACGGCATTAAAGTGAACTTTAAAATTCGCCATAA
CATTGAAGATGGCAGCGTGCAGCTGGCGGATCATTATCAGCAGAACACCCCGATTGG
CGATGGCCCGGTGCTGCTGCCGGATAACCATTATCTGAGCACCCAGAGCAAACTGAG
CAAAGATCCGAACGAAAAACGCGATCATATGGTGCTGCTGGAATTTGTGACCGCGGC
GGGCATTACCCTGGGCATGGATGAACTGTATAAAGGCGGCCATCGCTGGATTGCGCT
GGAAAACCAGAAAAAAGCGCGCAAAAAAAAAGTGCTGATTGCGATTTGCGTGAGCA
TTACCGTGGTGCTGCTGGCGGTGATTATTGGCGTGACCGTGGTGGGC3’ 
 
 

 

2.5 SUPERRESOLUTION STIMULATED EMISSION DEPLETION (STED) 

NANOSCOPY  

 

Due to the wave-properties of light, it is not possible to focus it to an 

infinitely small single point. The focus intensity functions of fluorophores 

within a certain minimal distance will overlap and cannot be well 

distinguished from each other. In this context, resolution is the minimal 

distance at which a microscope can distinguish two fluorophores. Resolution 

is often confused with magnification or precision (i.e. calculating the position 

of the center of a single PSF). In the 19th century, the famous Abbe’s principle 

was formulated explaining that the resolution limitation is a direct 

consequence of diffraction (Abbe, 1873). In conventional microscopy, the 

resolution is determined by the wavelength applied, the refractive index and 

the semiaperture of the objective (discussed in Hell, 2007). Since the shortest 

wavelength used for optical microscopy is around 400 nm (near-UV) and the 

largest semiaperture in objectives reaches 68°, the Abbe’s principle shows that 

the best resolution accessible with conventional microscopy is around 180 nm. 
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This resolution is even lower in the axial direction of light propagation, where 

the resolution reaches only about 500 nm.  

The realization that fluorescence molecules can exist in two states (for 

instance, on-state: fluorescent, off-state: non-fluorescent, dark) was the key to 

surpass the diffraction barrier (Hell & Kroug, 1995; Hell & Wichmann, 1994; 

Klar, Jakobs, Dyba, Egner, & Hell, 2000). In STED microscopy, a focused 

excitation laser beam excites fluorophores (Fig. 2.5A). In the very short time 

(~ns) where the excited electrons are occupying the vibrational state of the 

higher energy level, a second so-called depletion laser provides light with a 

wavelength that matches the transition from the excited (S1) to the ground (S0) 

state which forces the stimulated emission of photons (Fig. 2.5B). This 

stimulated depletion (STED) laser is red shifted, so that it does not excite the 

fluorophores in the ground state. 

If the intensity of the depletion beam is larger, the higher is the 

probability that an electron will be pushed down to the S0 state when it 

reaches the excited state. In this case, obviously there would be no signal 

detected if the depletion laser were applied to the entire specimen. In STED 

microscopy, however, the depletion laser first passes through a phase plate to 

convert the shape of the focused profile into the shape of a ring (sometimes 

also referred to as a doughnut; Klar et al., 2000). Since the center of this region 

has zero light intensity, fluorophores do not get switched off in this position 

and fluorescence induced by the excitation laser can be detected (Fig. 2.5C,D). 

These two paradigms: molecular switching (distinct states) and phase plate 

modulation of the depletion laser, are the bases of stimulated emission 

depletion (STED) nanoscopy. 

The most important consideration when employing STED nanoscopy 

for biological applications (Hell, 2007) is the selection of appropriate dyes and 

good labeling strategies. The dye wavelengths should be suitable for STED, 

which means that the STED beam is sufficiently far with respect to the 

excitation maximum. Also, the lifetime of the excited state of fluorophore 

should be long enough to allow for stimulated depletion. Thus, careful 

selection of dyes is required in terms of photostability and spectral properties.  

Throughout my studies, I used three different STED microscopes from 

the Department of NanoBiophotonics. The first was a homemade beam-

scanning microscopy setup (built by Dr. Veronika Mueller, Dr. Alf 
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Honigmann and Dr. Christian Eggeling) (Mueller et al., 2011). The setup 

contained two pulsed diode excitation lasers at 488 nm and 633 nm 

(PicoQuant). Superresolution was achieved using a STED laser (770 nm OPSL 

CW, Coherent). In combination with a 2π vortex phase plate (RPC Photonics, 

USA) and a λ/4 plate the typical “doughnut” shaped focal intensity 

distribution with its central zero was produced. The emission filters were 540 

± 20 nm for the green channel and 670 ± 30 nm for the red channel. We used a 

100x oil objective with a 1.42 numerical aperture (Leica). The excitation 

intensity was between 5–8 µW at a diffraction limited diameter of 250 nm (for 

633 nm excitation) and 190 nm (for 488 nm excitation). The average STED 

power was 180 mW at 770 nm. The resolution in the STED channel was 

around 50 nm (determined from imaging fluorescent beads).  

The second setup was a two-color STED setup (built by Fabian 

Göttfert) (Göttfert et al., 2013). This setup had pulsed excitation at 595 nm and 

640 nm. The fluorescence was collected from 600-640 nm and 660-720 nm by 

avalanche photo diodes (Micro Photon Devices, Italy). Superresolution was 

achieved using a STED laser (775 nm, 20 MHz pulsed fiber laser, IPG 

Photonics). Pulse energies from 3 to 8 nJ in the objectives back aperture yield 

a resolution of down to 30 nm. Using the same STED beam for both dyes 

inherently ensures a colocalization accuracy far below the resolution limit. As 

we record both color channels quasi simultaneously we do not have to correct 

for drift or channel misalignment.  

The third setup employed was a commercially available two-color 

STED setup (Abberior Instruments, Göttingen). This setup has two pulsed 

excitation lasers at 594 nm and 640 nm. For superresolution a pulsed STED 

laser at 775 nm was used. The setup has a QUAD beam scanner (Abberior 

Instruments, Göttingen). A resolution of around 30 nm was obtained.  

The data acquisition was done using ImSpector software 

(http://www.imspector.de). The density of clusters was analyzed using the 

particle analysis plugin in the Fiji software and the cluster correlation was 

obtained using Pearsons correlation analysis from the Fiji software tools 

(Schindelin et al., 2012).  
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Figure 2.5. Principles of STED. A. Scheme of STED nanoscopy setup. An 
excitation laser activates all the fluorescent molecules that are in focus (blue). 
Superresolution is achieved by de-excitation (switching off) from S1 to S0 using 
a stimulated depletion (STED) light beam. The phase plate generates a ring-
shape STED beam, so that only fluorophores from the middle of the focus are 
excited and can be detected (green). B. Scheme of electronic states of a 
fluorophore. Upon absorption (blue arrow), the electrone goes to the excited 
S1 state. After internal relaxation to the lowest vibrational energy, the electron 
(orange arrow) goes back to the ground (S0) state emitting a photon (green 
arrow). However it is possible to force the electron to the ground state by 
stimulated emission (red arrow). C. Lateral cross section of the point spread 
functions (PSFs) at the focal plane of the excitation beam (blue), STED beam 
(red) and resulting fluorescence (green). Note that intensities of these 
functions are not to scale (i.e. the STED beam has order of magnitude higher 
intensity than the excitation beam). D. The probability to switch off 
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fluorophores increases with increasing STED power, resulting in a reduced 
size of the excitation spot. Hence, by increasing the STED power (red) the 
volume with fluorescence emission (green) decreases. Modified Abbe’s 
equation for STED microscopy: λ is the wave length of the excitation light, n is 
the refractive index of the medium, α is half-angle of the incoming light. I is 
applied STED intensity, Isat is a threshold intensity needed to be applied in 
order to force the electrons from the excited to the ground state (it is dye and 
setup specific constant). Inspired by schemes from Hell, 2007 and Eggeling et 
al, 2015.  
 

 

2.6 FLUORESCENCE CORRELATION SPECTROSCOPY 

 

Fluorescence correlation spectroscopy (FCS) analyses fluorescence 

fluctuations in a focal spot generated by focused laser beams, the so-called 

confocal volume (~fL) (Magde, Elson, & Webb, 1974; Ries & Schwille, 2012). 

For FCS measurements I used a home-built confocal beam-scanning 

microscopy setup with two-color excitation by pulsed-diode lasers at 485 nm 

(pulse length 80 ps; LDH-P-635, PicoQuant) and 635 nm (pulse length 80 ps 

LDH-P-485B, PicoQuant). Emission filters were 540 ± 20 for the green channel 

and 670 ± 30 for the red channel (setup was built by Dr. Veronika Mueller, Dr. 

A. Honigmann and Dr. C. Eggeling, Department of NanoBiophotonics) 

(Honigmann et al., 2013; Mueller et al., 2011). Avalanche single photon 

counting detectors (APD, SPCM-AQR-13-FC, Perkin Elmer Optoelectronics) 

and a 100x oil objective with 1.42 NA (Leica Microsystems) were used. 

 

Given that fluorescent molecules are sparse enough (i.e. highly diluted), 

the motion of these molecules through the confocal volume results in 

intensity fluctuations (Bacia, Haustein, & Schwille, 2014; Ries & Schwille, 

2012). These intensity traces F(t) are self-correlated in time to generate the 

autocorrelation curve G(τ):  
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where F is the fluorescent intensity in time t, τ is the lag time and the angular 

brackets refer to time averaging. Within this work, I studied the lateral 
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diffusion of sx-1 TMD and lipids in the membranes, hence the autocorrelation 

curve was fitted with the following two-dimensional diffusion model (Magde 

et al., 1974; Vukojević et al., 2005): 
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where N is the average number of fluorescently labeled molecules in the 

detected volume and p is the fraction of labeled molecules which convert to 

the dark triplet state, τd is the average transit time of molecule moving 

through the observation volume and τT is the average time the labeled 

molecule remain in the triplet state. Finally, the diffusion coefficient D was 

calculated from the diffusion time τd: 
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where ω is the lateral width of the focal volume where the measured 

fluorescence drops e2 times relative to the maximum and was 200 and 250 nm 

for DiO and Atto647N, respectively. In the experiments the bars represent the 

range of data obtained from two independent reconstitutions each consisting 

of four to seven measurements.  

 
Figure 2.6. Principles of FCS. Fluorescent molecules diffuse through the 
detection volume of a confocal microscope generating signal fluctuations. The 
correlation curve is calculated as the autocorrelation of the intensity 
fluctuations. The amplitude of the curve corresponds to the inverse number of 
fluorescence molecules in the detection volume. The inflection point at the 
fitted curve decay is proportional to the diffusion time (i.e. time that a 
fluorescent molecule needs to diffuse through the detection volume). 
Adapted from Ries & Schwille, 2012. 
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2.7 FÖRSTER RESONANCE ENERGY TRANSFER 

 

 Förster resonance energy transfer (FRET) is a photophysical 

phenomenonon where within the very small distances a fluorophore can 

transfer its energy to a neighboring fluorophore and induce that fluorophore 

to fluoresce. The donor fluorophore that is excited by the initial excitation 

wavelength (provided by a controlled excitation source) contains electrons 

that are excited to a higher energy state. These electrons can relax to the 

ground state, and the energy released by their relaxation can result in 

fluorescence emission. In FRET, instead of these electrons returning to the 

ground state, they can transfer their energy to a nearby fluorophore. This 

fluorophore is termed the “acceptor” fluorophore, while the initial 

fluorophore is called the “donor” fluorophore.  

 Förster theory explains FRET as a consequence of the dipole-dipole 

interactions between the neighboring molecules (Lakowicz, 2013) where the 

energy transfer efficiency (i.e. quantum yield of energy transfer transition, E) 

depends on the proximity of fluorophores (r), it is proportional to the sixth 

power of the distance between donor and acceptor:  
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where r is the distance between the two fluorophores, and R is the distance at 

which 50% energy transfer takes place (typically 2 – 7 nm). R reflects the 

properties of a particular donor/acceptor pair and depends on: quantum 

yield of dyes, the extent of spectral overlap between donor emission and 

acceptor excitation and the relative spatial orientation (flexibility) of the 

dipoles of the donor and acceptor fluorophores (Lakowicz, 2013).  

 Most importantly, FRET only functions if the emission spectrum of the 

donor fluorophore overlaps with the excitation spectrum of the acceptor 

fluorophore. Thus, an experimental design must contain two fluorophores 

that meet this requirement, while also minimizing the overlap between the 

excitation spectra of the two fluorophores. This is very important, because the 

most essential premise of FRET is that excitation and fluorescence of the 
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acceptor fluorophore is mostly stimulated by the excited donor fluorophore 

being in close proximity. If both fluorophores were sufficiently excited by the 

initial excitation wavelength, the monitored fluorescence would not be 

dependent on the distance between donor and acceptor fluorophores.  

 

 

 
 
Figure 2.7. Jablonski diagram of the electronic states of donor (left) and 
acceptor (right) molecules in FRET. When a fluorophore absorbs light (blue 
arrow), electrons are excited from S0 to S1 state. Within a few ps, the 
fluorophore relaxes to the lowest vibrational level of the S1 state (orange 
arrow). Subsequently, it can either relax back to the ground state emitting a 
photon (generating fluorescence, green arrow) or it may undergo non-
radiative energy transfer (i.e. donor) to a neighboring fluorophore, thereby 
inducing the excitation of that fluorophore (i.e. acceptor) to S1 state (gray 
dashed lines). The relaxation of the acceptor to the S0 state generates 
fluorescence (red arrow). Adapted from Lakowicz, 2013.  
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In this study, I used the previously established FRET-pair (Murray & 

Tamm, 2009; 2011). Rhodamine Red coupled to sx TMDs (donor) and 

Atto647N coupled to sx-TMDs (acceptor). The protein-to-lipid ratio in my 

FRET measurements was 1:1,000. The reconstituted LUVs prepared with 

fluorescently labeled sx-TMDs were diluted 1:10 in a quartz cuvette with 25 

mM HEPES buffer, containing 150 mM NaCl, pH 7.4 (additional components 

added to some mixtures are specified in the Results section). Excitation was at 

560 nm, and the emission spectra were collected from 570 to 700 nm with 2 

nm slit widths on a FluoroMax-2 (Horiba). I corrected for cross-talk residing 

from acceptor excitation with samples containing only the acceptor 

fluorophore. The obtained FRET spectra were normalized to the maximum 

donor emission at 580 nm. The FRET efficiency was calculated as the ratio of 

emission intensities at 660 nm (acceptor maximum) over 580 nm (donor 

maximum): E=EAD660/EAD580. The experiments were conducted in triplicate 

(three independent reconstitutions). 
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3. RESULTS 
 

3.1 HYDROPHOBIC MISMATCH BETWEEN THE LIPID BILAYER AND 

THE TRANSMEMBRANE DOMAINS DRIVES SNARE CLUSTERING  

 

Aiming to understand the lateral organization of plasma membrane 

SNAREs, I first wanted to understand if hydrophobic mismatch contributes to 

the clustering of syntaxin 1, a plasma membrane SNARE involved in 

exocytosis. Plasma membrane SNAREs syntaxin 1 and syntaxin 4 are 

particularly suitable to study the influence of hydrophobic mismatch on the 

lateral distribution of membrane proteins for two reasons.  

First, both syntaxins 1 and 4 are single spanning membrane proteins 

which TMD lengths (21-23 AA) appear to be shorter than that needed to fully 

span the average hydrophobic core of the plasma membrane. This is also clear 

from the crystal structure of the neuronal SNARE complex (Stein et al., 2009) 

where the TMD segments of the SNAREs synaptobrevin 2 and syntaxin 1 

seem indeed not sufficiently long to traverse the average thickness of plasma 

membrane of eukaryotic cells (~4 nm; Mitra et al., 2004). In a simulation, this 

resulted in defects in lipid packing, hence these SNAREs might prefer, or 

even organize, membrane regions of lipids with matching thicknesses. This 

means that in the plasma membrane syntaxin 1 transmembrane domain (sx-1 

TMD) is exposed to the negative mismatch (Fig. 3.1A). In the case of negative 

mismatch, I speculated it would more energetically favorable to cluster 

syntaxins and that the membrane would adapt around the cluster generating 

a line tension (Fig. 3.1B).   

Second, these two syntaxins segregate in separate clusters although 

they are homologous and structurally very similar to each other. While it was 

shown previously that segregation depends in part on homophilic 

interactions between the cytoplasmic domains (Sieber et al., 2006), it is 

conceivable that the small differences in the length of the TMD segments may 

contribute to this segregation. To isolate the effects on clustering within the 

membrane space from “secondary” effects caused by protein-protein 

interactions in the hydrophilic space, I employed truncation mutants of 

syntaxins 1 and 4 with their cytoplasmically oriented domains deleted.  
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Figure 3.1. Hydrophobic mismatch between the transmembrane domain 
(TMD) of proteins and the surrounding lipid environment. A. The length of 
the TMD can match the thickness of the bilayer, be longer (positive mismatch) 
or shorter (negative mismatch) than the thickness of the surrounding lipid 
bilayer. B. It is more energetically favorable that the membrane adjusts its 
thickness to a cluster, rather than separately adjusting for each of the 
individual TMDs. 

To test whether syntaxin clustering is dependent on membrane 

thickness, I employed an assay based on Förster resonance energy transfer 

(FRET) as described in Materials and Methods. More precisely, two sx-1 TMD 

populations labeled with spectrally separated fluorophores (RhodamineRed – 

donor fluorophore and Atto647N – acceptor fluorophore) were mixed and 

incorporated into 100 nm-sized liposomes. In case of cluster formation 

between sx-1 TMDs, the FRET signal would increase (Fig. 3.2A). I varied the 

membrane thickness by increasing the acyl chain length of PC (i.e. C14:1, 

C16:1, C18:1 and C20:1) and found that the FRET efficiency of sx-1 TMD was 

lowest (i.e. the least protein clustering) in membranes composed of C16:1 PC 

(Fig. 3.2B, green).   

In an independent approach, I employed fluorescence correlation 

spectroscopy (FCS) in stacked supported lipid bilayers to assess the lateral 

mobility of sx-1 TMD. The lateral mobility correlates inversely with cluster 

formation. Indeed, I obtained a profile very similar to the FRET 

measurements (Fig. 3.2B, blue), with the highest mobility of sx-1 TMD in 

membranes of C16:1 PC. Together, these data show that syntaxin 1 clustering 

was lowest in membranes composed of C16:1 PC.  
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Figure 3.2. Hydrophobic mismatch clusters syntaxin 1 TMD (sx-1 TMD) in 
lipid bilayers. A. Scheme of FRET-based assay to measure the peptide 
clustering in different LUVs. Syntaxin TMDs N-terminally labeled with either 
Rhodamine Red or Atto647N were reconstituted in 100 nm-sized liposomes 
(protein-to-lipid ratio was 1:1,000). B. Clustering determined by FRET in 
liposomes composed of PC of increasing acyl chain lengths (green) and FCS of 
sx-1 TMD labeled with Atto647N (protein/lipid ration 1:10,000) normalized to 
the lipid diffusion (blue). Error bars: range from two independent 
reconstitutions, three technical repeats each. Adapted from Milovanovic et al., 
2015. 

Syntaxin 4 has a 1-2 amino acids longer TMD than syntaxin 1, and this 

length difference is conserved in mammalian species (Introduction Fig. 1.19). 

Since I showed that the sx-1 TMD length determines the hydrophobic 

matching with the surrounding lipid environment, I expected that optimal 
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matching (i.e. lowest clustering) requires a thicker bilayer for syntaxin 4 than 

syntaxin 1. To this end, I performed a FRET-based clustering assay using an 

analogous syntaxin 4 TMD peptide (sx-4 TMD), labeled at the N-terminal 

with the same FRET pair as sx-1 TMD (RhodamineRed and Atto647N). As 

shown in Fig. 3.3, the local minimum of sx-4 TMD was observed in C18:1 PC 

membranes. FRET data for both sx-1 and sx-4 TMD clustering fit well with a 

quadratic curve (ax2 + bx + c). In this empirical model, - b/(2a) reflects the acyl 

chain lengths with the lowest clustering which are 16.5 and 17.3 for sx-1TM 

and sx-4TM, respectively.  

 

 
Figure 3.3. Sx-1 TMD (green) and sx-4 TMD (magenta) clustering determined 
by FRET assay. Sx-4 TMD with a longer transmembrane domain has a 
matching hydrophobic moiety shifted to bilayers composed of longer acyl 
chains (C18:1 PC) in contrast to syntaxin 1 (C16:1 PC). Data are fitted with 
quadratic curves (solid lines). Error bars: range from two independent 
reconstitutions, three technical repeats each. Adapted from Milovanovic et al., 
2015. 
 

Further, I employed imaging ellipsometry to determine the exact 

membrane thicknesses where hydrophobic matching occurs. Imaging 

ellipsometry assay is based on polarization changes of monochromatic light 

upon reflection on a bilayer (for details please see Appendix 1). Here, I 

determined that the bilayer thickness increases by 0.15 nm for each carbon 

unit added to the acyl chain. Based on the quadratic fit, sx-1 TMD and sx-4 

TMD have a matching membrane thickness of 3.6 nm and 3.7 nm, 
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respectively. My data indicate that clustering of TMDs can be indeed driven 

by hydrophobic (mis)matching with the local lipid environment. Even a 

single amino-acid longer TMD results in a shift towards an approximately 1 Å 

thicker membrane. Despite this difference, both syntaxins are expected to 

cluster since the plasma membrane has an average thickness of around 4 nm 

(Mitra et al., 2004), which would result in pronounced sequestering of these 

proteins to regions of decreased thickness. 

The effect of cholesterol on SNARE clustering has been controversially 

discussed. It has been shown that SNAREs do not segregate in the Lo state 

induced by cholesterol, SM and saturated PC, but still the removal of 

cholesterol from the plasma membrane can disperse syntaxin clusters 

(Chamberlain et al., 2001; Lang et al., 2001; Salaün et al., 2005). Here, I wanted 

to address the effect of cholesterol on hydrophobic mismatch. Hence, I 

prepared ~100 nm sized large unilamellar vesicles (LUVs) composed of 

unsaturated phosphatidylcholine (PC) with a stepwise increase of the acyl 

chain length (similarly as described above), either in the absence or in the 

presence of 30 mol% cholesterol. The thickness of these membranes was 

determined by imaging ellipsometry measurements (Fig. 3.4A). The inclusion 

of 30 mol% cholesterol increased the membrane thickness by approximately 

0.8 nm, independently of the acyl chain length. Next, I wanted to see if 

cholesterol driven membrane thickening could affect sx-1 TMD clustering. For 

this I used a similar FRET-based assay as described above. Indeed, in the 

presence of cholesterol clustering of sx-1 TMD was strongly enhanced (about 

50% increase in FRET efficiency). In fact, FRET efficiencies were similar when 

related to membranes with the same thickness without cholesterol (Fig. 3.4B).  
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Figure 3.4. Cholesterol increases thickness of the lipid bilayer and further 
enhances hydrophobic mismatch. A. The thickness of supported lipid bilayers 
was determined by imaging ellipsometry. Lipid composition was C14:1, 
C16:1, C18:1 and C20:1 PC with and without 30 mol% cholesterol (three 
independent experiments ± SD). The linear regression analyses (solid lines) 
have slopes of 0.15 and 0.25 for membranes without and with cholesterol, 
respectively. B. Clustering determined by FRET and FCS from Fig. 3.2, but 
now also with membranes containing 30 mol% cholesterol. Data are plotted as  
a function of bilayer thicknesses (bottom x-axis). Error bars: range from two 
independent reconstitutions, three technical repeats each. Adapted from 
Milovanovic et al., 2015. 
 

To directly visualize syntaxin clustering in dependence of cholesterol, I 

used two imaging assays where sx-1 TMD was reconstituted in giant 

unilamellar vesicles (GUVs) and polymer supported membranes (PSMs). Both 

GUVs and PSMs were prepared with C18:1 PC without or with 30 mol% 

cholesterol. Here sx-1 TMD labeled with Atto647N was used to monitor its 

distribution and the membrane was stained with the green fluorescent lipid 

analogue DiO (3,3'-dilinoleyloxacarbocyanine). Clustering was clearly 

observable in the cholesterol-containing membranes and it was much less 

conspicuous in the absence of cholesterol (Figs. 3.5 and 3.6). This is in 

agreement with our FRET results described above.  
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Figure 3.5. Visualizing sx-1 TMD clustering in GUVs. A. Sx-1 TMD (labeled 
with Atto647N, red) does not form large domains in GUVs composed of C18:1 
PC. B. Cholesterol induces sx-1 TMD clustering in GUVs composed of C18:1 
PC and 30 mol% cholesterol. Protein-to-lipid ratio was 1:1,000. DiO (0.01 
mol%) was used as lipophilic membrane marker (green). C, D. Fluorescence 
intensity along yellow lines in A and B, respectively. Scale bars, 1 µm. 
 

From both FRET assays and membrane reconstitution experiments, I 

clearly see that syntaxin clustering is not due to cholesterol-induced phase 

separation of membrane lipids since none of the membrane systems 

contained lipids with saturated fatty acids required for the partitioning into 

Lo and Ld phases. Rather, my data demonstrate that the effect of cholesterol 

increases the membrane thickness, which results in syntaxin clustering due to 

increased hydrophobic mismatch.  
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Figure 3.6. Reconstitution of sx-1 TMD in polymer supported membranes. A. 
Sx-1 TMD (Atto647N, red) does not form domains in C18:1 PC membranes. B. 
The mixture of C18:1 PC and 30 mol% cholesterol induces sx-1 TMD domain 
formation. Protein-to-lipid ration was 1:10,000. DiO (0.01 mol%, green) was 
used as lipophilic membrane marker. C, D. Fluorescence intensity along 
yellow lines in A and B, respectively. Scale bars, 2 µm. Adapted from 
Milovanovic et al., 2015. 
 

To further understand the interaction between sx-1 TMD and the lipid 

bilayer, I characterized the influence of homotypic TMD interactions on 

clustering. Previously, it has been shown that syntaxin 1 TMDs homodimerize 

in membranes. This homodimerization depends on specific protein-protein 

interactions in the hydrophobic phase that can be disrupted by alanine 
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substitutions of three hydrophobic side chains within the TMD (M267A, 

C271A, I279A) (Fig. 3.7A; Laage, Rohde, Brosig, & Langosch, 2000). To 

examine if this homodimerization contributes to homophilic clustering during 

hydrophobic mismatch, I reconstituted the corresponding sx-1 TMD mutant 

peptides and measured clustering by FRET.  

 
Figure 3.7. Specific protein-protein interactions of TMDs do not affect 
clustering in case of positive and negative mismatch. A. Scheme of syntaxin 1 
domain organization with the part of the sequence (residues 253 to 288). 
Mutated residues within TMD are marked in purple. B. Comparison of sx-1 
TMD clustering between wild-type and mutant sequence in liposomes 
composed of C14:1 and C18:1 PC. Error bars: range from two independent 
reconstitutions, three technical repeats each. Adapted from Milovanovic et al., 
2015. 
 

In membranes composed of C14:1 PC and C18:1 lipids (i.e. both thinner 

and thicker than required for optimal hydrophobic matching of syntaxin 1), 

the dimerization mutant clustered comparably to the wild-type (Fig. 3.7B), 

indicating that at these conditions homotypic interactions of the TMDs were 

not required for clustering. These results demonstrate that even if there is a 
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specific protein-protein interaction at the TMD region, hydrophobic mismatch 

can further enhance the clustering. This is especially important given that the 

plasma membrane is a system with pronounced negative mismatch 

environment. 

 

 

3.2 HYDROPHOBIC MISMATCH SHAPES SYNTAXIN CLUSTERS 

TOGETHER WITH THE SURFACE IONIC INTERACTIONS AND 

SPECIFIC PROTEIN-PROTEIN INTERACTIONS  

 

Syntaxin 1 contains a polybasic motif juxtaposed to its TMD (shown in 

red, Fig. 3.7A) that is known to interact with PI(4,5)P2 and/or PI(3,4,5)P3  

(Aoyagi et al., 2005; Khuong et al., 2013; Murray & Tamm, 2009; van den 

Bogaart et al., 2011). Both phosphoinositides are highly accumulated in at 

least a fraction of syntaxin 1 clusters in the plasma membrane (Aoyagi et al., 

2005; James et al., 2008; Murray & Tamm, 2011; van den Bogaart et al., 2011).  

Two-color super-resolution STED microscopy imaging of 

neuroendocrine PC12 plasma membrane sheets confirmed the enrichment of 

PI(4,5)P2 in syntaxin 1 clusters (Fig. 3.8A). Syntaxin 4 also contains a similar 

polybasic motif and PI(4,5)P2 was also enriched in syntaxin 4 clusters (Fig. 

3.8B). The overall density of PI(4,5)P2 clusters (13.9 ± 1.6 clusters/µm2) was 3 

times higher than the cluster density of syntaxin 1 (4.5 ± 0.4 clusters/µm2) and 

syntaxin 4 (5.4 ± 0.7 clusters/µm2). This is not surprising considering that 

PI(4,5)P2 interacts with many other proteins in cells (Di Paolo & De Camilli, 

2006; McLaughlin et al., 2002).  
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Figure 3.8. Two color STED images of syntaxin 1 and 4 colocalization with the 
PI(4,5)P2 in the plasma membrane sheets of PC12 cells. The plasma membrane 
sheets were immunostained for PI(4,5)P2 (green) and either syntaxin 1 (A, red) 
and syntaxin 4 (B, red). The graphs represent fluorescence line profiles as 
indicated in the images. Yellow highlights show the position of the domains. 
Scare bars, 2 µm. Adapted from Milovanovic et al., 2015. 
 

Next I wanted to see if PI(4,5)P2 increases co-clustering of syntaxins 1 

and 4. Hence, I measured FRET between sx-1 TMD labeled with Rhodamine 

Red (donor fluorophore) and sx-4 TMD labeled with Atto647N (acceptor 

fluorophore) in LUVs (Fig. 3.9A). Indeed, the presence of 1 mol% PI(4,5)P2 in 

LUVs composed of brain PC caused an increase of the FRET efficiency, 

indicating that the TMDs of the two syntaxin isoforms co-clustered in the 

membrane when PI(4,5)P2 was present. To check if electrostatic interactions at 

the surface are not abolished when cholesterol is present (i.e. pronounced 

negative hydrophobic mismatch), I measured FRET in the presence of both 

PI(4,5)P2 and cholesterol (Fig. 3.9B). The clustering was present in the mixture 

that contained both PI(4,5)P2 and cholesterol indicating that electrostatic 

interactions corroborate with hydrophobic mismatch. 
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Figure 3.9. Cholesterol and PI(4,5)P2 both induce clustering of syntaxin TMDs. 
A. Scheme of the FRET-based clustering assay with PI(4,5)P2 and cholesterol 
incorporated in 100 nm liposomes. Sx-1 and sx-4 TMDs are labeled with 
Rhodamine Red and Atto647N, respectively. B. Sx-1 and sx-4 TMDs 
coclustering is enhanced by both PI(4,5)P2 and cholesterol. FRET was 
measured in LUVs composed of porcine brain PC without or with 1 mol% 
PI(4,5)P2, and/or 30 mol% cholesterol (± range from two independent 
reconstitutions, three technical repeats each). Adapted from Milovanovic et 
al., 2015. 
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In order to dissect how the electrostatic repulsion between the 

polybasic linker regions affects clustering by hydrophobic mismatch, I 

repeated the FRET assay in the presence of high concentrations of NaCl. High 

concentrations of ions could counterbalance the charged amino acids. Indeed, 

membrane clustering of sx-1 TMD was enhanced when electrostatic 

interactions were screened (buffer with 1 M NaCl). This finding indicates that 

the repulsion of the polybasic linkers of syntaxins under physiological ionic 

strength (i.e. 150 mM) can counteract hydrophobic mismatch and partially 

limit clustering even in the presence of PI(4,5)P2 (Fig. 3.10).  

 
Figure 3.10. Determining the charge screening effect on sx-1TMD and 
PI(4,5)P2 association by FRET assay. Clustering of sx-1 TMD was measured by 
FRET in the presence or absence of 150 mM or 1 M NaCl; and in DOPC 
liposomes without or with 3 mol% PI(4,5)P2. Error bars: range from two 
independent reconstitutions, three technical repeats each. Adapted from 
Milovanovic et al., 2015. 
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Further, I analyzed whether the varying thicknesses of the membrane 

bilayer could at least partially segregate syntaxins 1 and 4 considering the 

mismatch in length between their TMDs. It is well known that syntaxin 1 and 

4 segregate into distinct domains in the plasma membrane (Fig. 3.11) and this 

has been largely contributed to homophilic interactions between SNARE 

motifs (Barg et al., 2010; Sieber et al., 2006; 2007). To address if the TMDs 

contribute to this conspicuous segregation, I first reconstituted sx-1 TMD and 

sx-4 TMD in liposomes composed of a mixture of PC with different acyl chain 

lengths (C14:1 to C20:1) and measured clustering by FRET. Clustering of sx-1 

TMD with sx-4 TMD, but not of sx-1 TMD to sx-1 TMD and sx-4 TMD to sx-4 

TMD, was lower compared to liposomes containing only C18:1 PC (Fig. 3.12). 

This demonstrates that syntaxin TMDs preferentially clusters in regions 

containing lipids with matching hydrophobic thickness. 

 

 
Figure 3.11. Two-color STED microscopy of PC12 membrane sheets 
immunostained against syntaxins 1 (red) and 4 (green). Endogenous 
syntaxins 1 and 4 segregate into distinct membrane domains in the complex 
plasma membrane environment. Scale bars 2 µm. Adapted from Milovanovic 
et al., 2015. 
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Figure 3.12. Clustering of sx-1 TMD and sx-4 TMD measured by FRET assay 
in liposomes composed of either C18:1 PC (left; top: scheme, bottom: data) or 
an equimolar mixture of C14:1, C16:1, C18:1 and C20:1 PC (right; top: scheme, 
bottom: data). All liposomes contained 1 mol% PI(4,5)P2. Reduced clustering 
of TMDs was observed in liposomes that contained a mixture of acyl chains 
with different lengths (i.e. varying thickness). Error bars: range from two 
independent reconstitutions, three technical repeats each. Adapted from 
(Milovanovic et al., 2015). 
 

To address if the TMDs of syntaxins 1 and 4 would also contribute to 

their segregation in the complex plasma membrane environment, I 

transfected PC12 cells with truncation mutants of both syntaxins (sx-1TM and 

sx-4TM, similar to the fragments used in abovementioned experiments). 

These syntaxin 1 and 4 mutants were N-terminally fused to GFP and 

mCherry, respectively. When membrane sheets from these cells were 

analyzed by two-color superresolution STED microscopy, segregation of the 

two mutants in separate clusters was observed (Fig. 3.13A). PC12 membrane 

sheets were fixed and immunostained against GFP and mCherry tags as 



3. RESULTS             

_____________________________________________________________________________________________ 

 70 

described in Material and Methods. Expression of constructs coding for either 

full-length syntaxins as well as for only the TMDs showed similar clustering 

(Fig. 3.13B). It has been shown previously that sx-1TM does not colocalize 

with the full-length syntaxin 1 (Sieber et al., 2007).  
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Figure 3.13. Differences in the length of the TMDs contribute to segregation of 
syntaxin 1 and 4 into distinct domains in the plasma membrane. A. Top: Two-
color STED images of PC12 cell sheets expressing sx-1TM (fused with 
mCherry, red) and sx-4TM (fused with EGFP, green). Bottom: Two-color 
STED images of PC12 membrane sheets expressing sx-1TM fused to mCherry 
(red) and EGFP (green) as a control experiment with high colocalization 
coefficients. B. Comparison of average cluster density between endogenously 
expressing syntaxin 1 and transfected with syntaxin 1 full length (sx-1 FL), sx-
1TM and sx-4TM. C. Pearson correlation coefficient shows the extent of 
overlap of clusters in PC12 membrane sheets transfected with various 
syntaxin TMD mutants (sx-1 FL and sx-4 FL; full length constructs of syntaxin 
1 and syntaxin 4 respectively); Each analysis included at least 10 sheets from 
three independent transfections (***p<0.001, two-sided, unpaireded t-test, 
error bars show s.e.m). Scale bar, 2 µm. Adapted from Milovanovic et al., 
2015. 
 

To test the hypothesis that syntaxin 1 and syntaxin 4 segregation into 

distinct domains was due to the difference in length of the TMDs, I generated 

syntaxin 1 TMDs that were either two amino acids longer (sx-1TM+VG) or 

three amino acids shorter (sx-1TM-IFG) than the wild type. In line with the 

hydrophobic mismatch hypothesis, clusters of the shorter sx-1TM-IFG strongly 

segregated from sx4-TM clusters (Fig. 3.13C). In contrast, the longer sx-

1TM+VG, with a similar length of TMD as sx-4 TMD, showed significantly 

more co-localization with sx-4 TMD. Overall, data presented here show that 

increasing or reducing hydrophobic mismatch by altering the length of TMDs 

by only a few residues contributes to both the extent of protein clustering as 

well as to the segregation into separate clusters.  
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3.3 CALCIUM ACTS AS A CHARGE BRIDGE THAT CONNECTS 

MULTIPLE SYNTAXIN 1/PI(4,5)P2 CLUSTERS INTO LARGER 

MESOSCALE DOMAINS  

 

In the final part of the project I addressed the surface chelating effect of 

multivalent cations such as Ca2+ on syntaxin clustering. Previously Ca2+ was 

shown to increase clustering of SNAREs in the plasma membrane including 

syntaxin 1 (Zilly et al., 2011). This effect was explained by the overall negative 

surface charge (i.e. sum of all lysines and arginines minus sum of glutamates 

and aspartates) of plasma membrane SNAREs. Here, Ca2+ would chelate the 

carboxyl groups of the side chains at the protein surface. However, Ca2+ can 

also enhance clustering of syntaxin 1 that contains a series of polybasic 

residues juxtaposed to the TMD, just at the membrane surface (total charge of 

+5). I first confirmed the previously reported finding that elevated Ca2+ 

promotes clustering of syntaxin 1 in the plasma membrane. Using STED 

microscopy I obtained high-resolution images of PC12 plasma membranes 

immunolabeled for syntaxin 1 (Fig. 3.14A). After analyzing at least ten cell 

sheets from three different experiments, I observed that the average cluster 

density of syntaxin 1 increased from 3.3 ± 0.3 clusters/µm2 to 4.1 ± 0.4 

clusters/µm2 upon the addition of 150 µM Ca2+ (Fig. 3.14B).  

Apart from the increase in density, Ca2+ shifts the size of domains to 

the slightly larger values (average domain diameter was ~90 nm and ~105 nm 

before and after Ca2+, respectively; Fig. 3.14C). Of course, these are upper 

estimates of domain sizes since these experiments are based on antibody 

staining, and so-called umbrella effect may result in a larger apparent domain 

sizes (Sieber et al., 2007)._______________________________________________
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Figure 3.14. Calcium promotes clustering of syntaxin 1 in the plasma 
membrane of PC12 cells. A. STED images of the plasma membrane 
immunostained against syntaxin 1 before (left) and after (right) addition of 
150 µM Ca2+. Scale bar 1 µm. Note the appearing of new syntaxin domains 
upon addition of Ca2+. B. Density of syntaxin 1 clusters increases ~25 % after 
addition of Ca2+. Error bars: range from three independent experiments with 
at least ten sheets analyzed. (** P<0.01, two-sided, unpaired t-test). C. Size of 
syntaxin 1 domains in the plasma membrane without (pink) and with 
(purple) 150 µM Ca2+. 
 

 

 



3. RESULTS             

_____________________________________________________________________________________________ 

 74 

 
Figure 3.15. Calcium promoted syntaxin clustering requires PI(4,5)P2. A. 
Domain organization of syntaxin 1. The polybasic patch juxtaposed to the 
transmembrane domain is marked in red. B. Two-color STED images of 
reconstituted membranes composed of 97 mol% DOPC and 3mol% PI(4,5)P2; 
sx-1 TMD labeled with Atto647N (magenta) and ceramide-Atto594 
(membrane dye, green). Sx-1 TMD was added to a total of 1:10,000 protein-to-
lipid ratio; buffer contained 500 µM Ca2+. C. Same as panel B, but now with a 
membrane composed of pure DOPC. D. Same as panel B, but now with a 
membrane composed of 80 mol% DOPC and 20 mol% DOPS. E, F, G. 
Fluorescence intensity profiles from B, C and D, respectively. Scale bar, 1µm.  
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I then wanted to delineate the role of calcium on syntaxin clustering in 

precisely controllable model membranes. I employed sx-1 TMD that does not 

contain its entire cytosolic domains apart from the polybasic linker (Fig. 

3.15A), which allows us to exclude any effect of calcium on SNARE or Habc 

domains on syntaxin clustering. The lipid mixtures used for membrane 

reconstitutions contained DOPC without cholesterol with a thickness of 

approximately 3.5 nm which displays minimal clustering caused by 

hydrophobic mismatch. Hence I could focus on the effect of calcium on 

interactions between sx-1 TMD and PI(4,5)P2. In stacked lipid bilayers, 500 

µM of Ca2+ clustered reconstituted sx-1 TMD provided PI(4,5)P2 was present 

in the membrane (Figure 3.15B). I could not observe clustering of syntaxin in 

membranes composed of pure DOPC or a mixture of DOPC and DOPS (Fig. 

3.15C,D). This implies that PI(4,5)P2 was essential for Ca2+ induced clustering. 

In order to determine whether the observed clusters were really lateral 

membrane domains and not small membrane vesicles, I used atomic force 

microscopy (AFM) in collaboration with the group of Iwan Schaap. For these 

measurements, I prepared supported lipid bilayers with sx-1 TMD on plasma-

treated glass surfaces (Fig. 3.16A). When the membrane was composed of 

pure DOPC, scanning showed a homogenously flat surface regardless on the 

presence of calcium (Fig. 3.16B,D). In contrast, and comparable to the 

fluorescence data, clustering was clearly observed when the membranes 

contained 3 mol% PI(4,5)P2 (Fig. 3.16C,D). Here the circular sx-1 TMD 

domains had a similar size distribution as sx-1 TMD domains from the STED 

images with an average size of 157 ± 2.7 nm (Fig. 3.16E). That these sx-1 TMD 

clusters were lateral membrane domains, as the average height of the patches 

was only 4 nm, which is far too small for any membrane vesicle. These 

experiments demonstrate that calcium clusters sx-1 TMD in the presence of 

PI(4,5)P2, which is consistent with my hypothesis.  

Next, I analyzed the specificity and reversibility of calcium-triggered 

sx-1 TMD domain formation. To this end I reconstituted sx-1 TMD in 

membranes that contained 3 mol% PI(4,5)P2 and recorded a series of STED 

images of the same membrane regions, while changing the components of the 

buffer (Fig. 3.17A). The addition of a final concentration of 1 mM Mg2+ did not 

cause any clustering of the sx-1 TMD. However, the addition of 500 µM Ca2+ 

immediately triggered sx-1 TMD clusters formation with sizes between 70 
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and 200 nm (Fig. 3.17B). These domains were dependent on the presence of 

Ca2+ ions, since chelating the calcium with 0.5 M EGTA fully reversed sx-1 

TMD clustering. If the Ca2+ induced clustering of sx-1 TMD occurs through 

PI(4,5)P2, the addition of 500 µM Ca2+ should triggered clustering of PI(4,5)P2 

itself. Indeed, when I reconstituted a PI(4,5)P2 homolog with its acyl chain 

labeled with Atto647N I could see detect similar calcium-induced clustering  

(Fig. 3.18). Together, these data clearly show that Ca2+ reversibly clusters 

syntaxin 1 through PI(4,5)P2. 

 

 
Figure 3.16. Sx-1 TMD/PI(4,5)P2 domains reconstituted in lipid bilayers 
observed by AFM. A. Stacked lipid bilayers reconstituted on glass supports. 
Scale bar, 2 µm. B. Magnification of membrane region with sx-1 TMD 
(1:10,000 protein-to-lipid ratio) reconstituted in bilayers composed of pure 
DOPC. Scale bar, 0.3 µm. C. Same as panel B, but now with bilayers 
containing 3 mol% PI(4,5)P2. D. Line profiles from panels B (pink curve) and 
C (green). E. Size distribution of sx-1 TMD domains from PI(4,5)P2 containing 
membranes. Data are analyzed from at least ten independent reconstitutions. 
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Figure 3.17. Reversible clustering of syntaxin 1/PI(4,5)P2 domains by Ca2+. A. 
Series of STED images of reconstituted membranes composed of 97 mol% 
DOPC and 3 mol% PI(4,5)P2 with sx-1 TMD (protein-to-lipid ration was 
1:10,000; magenta) and membrane dye (green). The same membrane area is 
shown before and after addition of 1 mM Mg2+, 500 µM Ca2+, and 0.5 M 
EGTA, respectively. Scale bar, 4 µm. B. Size distribution of sx-1 TMD domains 
from the membranes with 500 µM Ca2+ (purple: size distribution, green: 
Gaussian distribution fit).  
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Figure 3.18. Ca2+ induces PI(4,5)P2 clustering in the lipid independently of sx-
1 TMD. Membranes were composed of 97 mol% DOPC, 3 mol% unlabeled 
PI(4,5)P2, 0.1 mol% PI(4,5)P2 labeled with Atto647N (magenta), and 0.1 mol% 
DOPE-OG (green). A and B are without and with 500 µM Ca2+, respectively. 
Scale bar, 1 µm. 
 

In order to characterize the molecular interaction between sx-1 TMD 

and the polar head group of PI(4,5)P2, I reconstituted sx-1 TMDs (labeled with 

a FRET pair: RhodamineRed and Atto647N) in LUVs. I measured the 

emission spectra in samples before and after the addition of 150 µM Ca2+ (Fig. 

3.19A). As expected, the polybasic patch of sx-1 TMD interacted with PI(4,5)P2 

resulting in protein clustering, and this interaction was significantly increased 

after the addition of Ca2+ (Fig. 3.19B). To confirm the specific interaction of the 

polybasic patch of sx-1 TMD with PI(4,5)P2, I mutated two lysine residues 

located at the polybasic patch (K264A, K266A). Indeed, this sx-1 TMD mutant 

showed a reduced association with PI(4,5)P2 and the Ca2+ effect was also 

diminished. Syntaxin clustering required the presence of polyvalent PI(4,5)P2, 

as monovalent phosphatidylserine (one negative charge) did not cluster sx-1 

TMD, regardless of the presence of Ca2+. Also, association between sx-1 TMD 
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and PI(4,5)P2 was not disrupted in the presence of PS indicating a strong 

electrostatic interaction between the polybasic patch and polar head-group of 

PI(4,5)P2.  

 

 
Figure 3.19. Calcium acts as charge bridge that connects multiple syntaxin 
1/PI(4,5)2 complexes.  A. Scheme of the FRET assay. Sx-1 TMD is labeled with 
Atto647N or Rhodamine Red and reconstituted in LUVs. The emission 
spectra were recorded before and after addition of 150 µM Ca2+. B. FRET 
assay shows that 150 µM Ca2+ significantly increased oligomerization of sx-1 
TMD in LUVs that contain 3 mol% PI(4,5)P2, but not in LUVs that contained 
20 mol% DOPS. Mutation of the sx-1 TMD (K264A, K265A) significantly 
reduced oligomerization both with and without Ca2+. Error bars: range from 
three independent reconstitutions, two technical repeats each. 
 

In the final set of experiments, I analyzed the effect of Mg2+ and ATP 

on syntaxin clustering. These polyvalent molecules are present in the cell at 

relatively high concentration (0.5 – 10 mM Mg2+ and 1–2 mM ATP; Beis & 

Newsholme, 1975; Hess et al., 1982; R. E. London, 1991), and they potentially 

could screen the charges of Ca2+, PI(4,5)P2 and sx-1 TMD. Indeed, both Mg2+ 

and ATP decreased the association between sx-1 TMD and PI(4,5)P2 which is 

indicative for the screening of charges by these compounds (Fig. 3.20). 

However, Ca2+ was able to overcome this screening effect and clearly 
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increased syntaxin clustering even in the presence of Mg2+ and ATP. Taken 

together, I conclude that Ca2+ can act as a charge bridge that brings together 

multiple sx-1 TMD/PI(4,5)P2 complexes into larger membrane domains. 

 

 
Figure 3.20. Effect of the charge screening effect on sx-1 TMD clustering in the 
absence and presence of Ca2+ measured by FRET. Similar to Fig. 19, FRET was 
measured in buffer that was supplemented with 5 mM Mg2+, 5 mM ATP 
(disodium salt) or both. Finally, 150 µM Ca2+ was added to the mixture. Error 
bars: range from three independent reconstitutions, two technical replicates 
each. (*** P<0.001, two-sided, unpaired t-test). 
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4. DISCUSSION  
 

Throughout this work, I focused on understanding the organization 

and dynamics of SNARE proteins in the presynaptic membrane. I employed 

both in vitro membrane reconstitution techniques (LUVs, GUVs, polymer 

supported membranes) and analysis in PC12 plasma membrane sheets. First, I 

demonstrated that hydrophobic mismatch drives SNARE clustering and 

contributes to the segregation of syntaxin 1 and 4 in distinct domains in the 

plasma membrane. Further, I went on to integrate hydrophobic mismatch 

with other clustering mechanisms previously shown to contribute to SNARE 

clustering (i.e. protein/protein interactions and ionic protein/lipid 

interactions). Finally, using syntaxin clustering as a model, I elucidated a 

molecular mechanism of calcium-induced mesoscale domain organization.   

 

4.1 Difference between membrane thickness and the length of the TMDs 

can drive clustering of membrane proteins 

 

Membranes of cellular organelles have unique biochemical properties 

(for more details see Introduction 1.2) and some parameters such as membrane 

thickness vary substantially. The ER membrane is only about 3 nm thick, 

whereas the plasma membrane can be as thick as 6 nm (Mitra et al., 2004). The 

increase of membrane thickness along the secretory pathway was suggested 

to drive protein sorting (Munro, 1991; 1995a; 1995b). Increasing the TMD 

length of some resident Golgi and ER proteins causes their missorting into the 

plasma membrane. For instance, when the TMD of plasma membrane 

syntaxin 3 was truncated to be 17 instead of endogenous 23 amino acids, 

syntaxin 3 was retained in the cis-Golgi (Watson & Pessin, 2001). A broad 

systems biology analysis of TMD length for many eukaryotic proteins 

indicates the clear tendency that proteins that reside in ER have a length of 

17-18 amino acids and proteins in the plasma membrane contain 25-27 amino 

acids in their TMDs (Sharpe et al., 2010). Interestingly, plasma membrane 

SNAREs have 3–4 amino acids shorter TMD although their localization at the 

plasma membrane is critical for their physiological roles. Data presented here 

show that this hydrophobic mismatch between the TMD of syntaxins and the 

surrounding membrane is already sufficient to induce protein clustering (also 
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see Milovanovic et al., 2015). Of course, SNARE clustering native membranes 

is multifactorial and strongly influenced by specific protein-protein and 

protein-lipid interactions as will be further discussed below.  

It is important to emphasize that the thickness of a particular 

membrane is not uniform, but minor alteration in lipid distribution affects the 

thickness. Indeed the imaging ellipsometry data indicate that subtle increase 

of the acyl chain for 2 methylene groups (e.g. C14:1, C16:1, C18:1 to C20:1) 

increases the thickness for 0.15 nm. Syntaxins are able to ‘sense’ this 

difference as my data show that syntaxin 1 TMD (23 amino acids long) has 

minimum propensity to cluster in 3.4 nm thick membranes, whereas syntaxin 

4 TMD (24 amino acids length) has the local minimum at 3.5 nm. Hence, the 

plasma membrane, with an average thickness between 4.5 and 6 nm, can be 

expected to be an environment with an overall pronounced negative 

mismatch for syntaxins (Mitra et al., 2004; Stein et al., 2009). Moreover, 

because of the complex lipid composition and varying thicknesses of the 

plasma membrane, the difference in TMD lengths between syntaxin 1 and 

syntaxin 4 could at least partially contribute to their segregation into distinct 

regions (Sieber et al., 2006), as it will be further discussed below.  

 

4.2 Cholesterol increases membrane thickness and thereby increases 

hydrophobic mismatch 

 

The role of cholesterol in protein clustering is controversially 

discussed. SNAREs were suggested to segregate into the 

cholesterol/sphingomyelin rich regions, so-called detergent resistant 

membranes (DRM) (Chamberlain et al., 2001; Chamberlain & Gould, 2002; 

Lafont et al., 1999; S. A. Predescu et al., 2005; Salaün et al., 2005). However, 

careful screening of different detergents indicated that SNAREs do not cluster 

with classical DRM markers (Lang et al., 2001; Ohara-Imaizumi, Nishiwaki, 

Nakamichi, et al., 2004b). Moreover, the entire concept of detergent isolation 

was challenged due to harsh treatments required for this procedure of low 

temperatures that induce phase transitions, membrane damages, and 

potential dehydration effects (R. F. M. de Almeida et al., 2003; Heerklotz & 

Seelig, 2002; Jesús Sot et al., 2002; E. London & Brown, 2000; Silvius et al., 

1996). Nonetheless, DRMs may be indicative of clustering tendency for 
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membrane proteins and they helped evolving the concept of the so-called 

membrane or lipid rafts (Brown & Rose, 1992; Schroeder et al., 1994; Simons & 

Ikonen, 1997; Simons & van Meer, 1988). Lipid rafts were envisioned to 

represent a cellular analogue of the lipid phase-separations in model 

membranes (for details see Introduction 1.3). However, evidence that phase-

separation is not necessary for SNARE clustering came from analysis of 

syntaxin 1 and synaptobrevin 2 diffusion in model membranes composed of 

classical ‘lipid-raft’ mixtures (i.e. sphingomyelin, cholesterol and saturated 

phospholipids) (Bacia et al., 2004; Saslowsky et al., 2003). Here, SNAREs were 

shown to segregate completely into Ld phase.  

However, the presence of cholesterol is essential for stability of SNARE 

clusters in the plasma membrane (Lang et al., 2001; Ohara-Imaizumi, 

Nishiwaki, Kikuta, et al., 2004a); and cholesterol extraction disrupts clusters 

and decreases vesicle docking (Chintagari et al., 2006; Lang et al., 2001; 

Ohara-Imaizumi, Nishiwaki, Nakamichi, et al., 2004b; S. A. Predescu et al., 

2005). Furthermore, even 10 mol% of cholesterol was shown to start inducing 

clustering of syntaxin 1 in LUVs and this clustering is saturated as cholesterol 

reaches 30 mol%, which corresponds to the amount present in the plasma 

membrane (Murray & Tamm, 2009). These findings corroborate with results 

presented in this Thesis that show that cholesterol and monounsaturated 

phospholipids are sufficient to induce clustering of syntaxin TMDs in non-raft 

mixtures (i.e. without sphingomyelin and saturated phospholipids). I further 

show that the clustering propensity correlates not only with the inclusion of 

cholesterol, but also with the increase of bilayer thickness. For instance, sx-1 

TMD clustering in C20:1 liposomes without cholesterol (thickness of 3.8 nm) 

is similar to the clustering observed in C16:1 liposomes supplemented with 30 

mol% cholesterol (thickness of 4.0 nm). Also, inclusion of 30 mol% cholesterol 

generally increases the membrane thickness with about 0.3 nm (for details see 

Milovanovic et al., 2015). These results prove that cholesterol can cluster 

syntaxins by increasing the overall thickness of the membrane. This does not 

exclude other effects of cholesterol, but at least demonstrates that cholesterol-

induced hydrophobic mismatch could be the driving force for the cholesterol 

dependency of SNARE clusters.  
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4.3 Electrostatic interactions, protein-protein interactions and hydrophobic 

mismatch all modulate lateral organization of SNAREs  

 

PI(4,5)P2 is the dominant phosphoinositide lipid present in the plasma 

membrane (Di Paolo & De Camilli, 2006; McLaughlin et al., 2002). Although it 

compromises only 1 mol% of total plasma membrane lipids, it is highly 

enriched in particular regions of the membrane where it represent a dominant 

lipid (>80%) (van den Bogaart et al., 2011). Generally, polyphosphoinositides 

are structurally unique since their head-groups carry polyvalent negative 

charges (between –4 and –7 at physiological pH) (McLaughlin et al., 2002). 

Early reconstitution experiments in membrane monolayers showed that the 

presence of PI(4,5)P2 significantly decreased the diffusion coefficient of 

syntaxin 1 (Wagner & Tamm, 2001). Considering that syntaxin has a polybasic 

patch juxtaposed to its TMDs, it was suggested that PI(4,5)P2 associates with 

this region.  

Reconstitution of syntaxin in liposomes that contained both cholesterol 

and PI(4,5)P2 initially gave results (Murray & Tamm, 2009; 2011) that seemed 

to conflict my findings. While it was clear that cholesterol alone induced 

syntaxins clustering, these clusters seemed to partially disperse when 

PI(4,5)P2 was also present in the membrane, whereas I observed increased 

clustering. The reason for this may be the labeling of the syntaxin molecules: 

in these studies syntaxin was labeled at its C-terminus with Alexa 488 dye 

which carries a negative charge (–2) at physiological pH (Murray & Tamm, 

2011). Considering that PI(4,5)P2 can be expected to locate in both leaflets of 

the liposome bilayers, the repulsion between C-terminally labeled TMDs 

would compete with the association of PI(4,5)P2 with the polybasic patch of 

syntaxin at the N-terminus. In my system, I used Rhodamine Red (no charge) 

and Atto647N (+1) that were both coupled to the N-terminus of the sx TMD. 

Hence, the overall charge balance was not disrupted and I observed that 

syntaxin clustering was enhanced in the presence of both cholesterol and 

PI(4,5)P2. This is primarily an electrostatic effect, since an increase of ionic 

strength of the buffer screened the charge on both PI(4,5)P2 and syntaxin 1. 

This corroborates with biochemical and cell biology data in which the 

polybasic patch of syntaxin was identified as critical region for association 

with polyphosphoinositides (Khuong et al, 2013; van den Bogaart et al, 2011). 
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In a complex plasma membrane environment, specific protein-protein 

interactions of the SNARE domains segregate syntaxins 1 and 4 into distinct 

domains (Sieber et al., 2006). However, in this study it was already clear that 

TMDs of syntaxin 1 and 4 have the capacity to cluster in a cholesterol 

dependent manner. In this Thesis, I further addressed this issue and I now 

show that clustering of the TMDs is driven by negative hydrophobic 

mismatch and that the difference of the TMD lengths contributes to the 

segregation of syntaxin 1 and 4. In fact, increasing the mismatch between sx-1 

and sx-4 TMDs to 5 amino acids difference segregates these constructs apart 

to a similar extent as the full-length constructs (see also Milovanovic et al., 

2015).  This implies that the ionic interactions and the average plasma 

membrane thickness (i.e. between 4–6 nm) induce a strong propensity for 

clustering of syntaxin isoforms. However, specific protein-protein interactions 

and the slight differences in the TMD lengths can segregate syntaxins apart 

(Fig. 4.1).  

 

 
Figure 4.1. Synergistic model of syntaxin clustering in the membrane. The 
lateral organization of SNAREs is modulated by hydrophobic mismatch, 
electrostatic interactions and protein-protein interactions. Adapted from 
Milovanovic et al., 2015. 
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It is important to emphasize that SNARE clusters are heterogeneous in 

their composition. For instance, syntaxin 1 associates with 

polyphosphoinositides (Khuong et al., 2013; van den Bogaart et al., 2011) as 

well as with SNAP 25 (Bar-On et al., 2012; Rickman et al., 2010) and many of 

the accessory proteins (Barg et al., 2010; Gandasi & Barg, 2014). Also, proteins 

and lipids diffuse freely between these clusters (Barg et al., 2010; Knowles et 

al., 2010; Sieber et al., 2007). According to Saffman-Delbrück (SD) lateral 

diffusion model (Saffman & Delbrück, 1975), doubling the radius of a protein 

in a bilayer decreases its lateral diffusion coefficient only by approximately 

20%. Although SD model was initially developed to explain the protein 

mobility in the membrane (Weiß et al., 2013), experiments and calculations 

showed that it can be further used for following the diffusion of membrane 

inclusions (i.e. clusters) (Cicuta, Keller, & Veatch, 2007; Petrov & Schwille, 

2008).  

In a very sensitive assay where GUVs were spread on porous substrate 

generating free standing membranes (so-called pore spanning membranes; 

developed by group of Prof. Steinem, University of Göttingen), we observed 

that the diffusion coefficients of full length syntaxin 1 (~2.3 µm2s–1) decrease 

comparing to the sx-1 TMD (~3.4 µm2s–1) for about 40% (Schwenen et al, 

2015). Since the lipid mixtures in this assay contained cholesterol (i.e. the 

membranes had a substantial hydrophobic thickness), we conclude that 

clustering is not only driven by hydrophobic thickness but that protein-

protein interactions further increase the clustering. Given the structural 

heterogeneity of the SANRE clusters, it is exactly the competition between 

different protein and lipid interactions that leads to their dynamic 

equilibrium (i.e. constant remodeling) and allows the proteins and lipids to 

freely diffuse between the clusters. 
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4.4 Ca2+ acts as a charge bridge that connects multiple syntaxin 1/PI(4,5)P2 

clusters into mesoscale domains 

 

 It was recently shown that calcium ions increase clustering of SNAREs 

in the plasma membrane (Zilly et al., 2011). This calcium induced increase of 

protein clustering and formation of larger domains of sizes above 200 nm (so-

called mesoscale domains) was suggested to be a consequence of overall 

negative net charge of SNAREs. The suggested mechanism indicated that 

Ca2+ could crosslink aspartate and glutamate residues at the surface of 

SNAREs (Zilly et al., 2011). However, it is well established that Ca2+ can also 

cluster PI(4,5)P2 by acting as charge bridge, connecting multiple PI(4,5)P2 

molecules together (Carvalho, Ramos, Roy, & Picart, 2008; Ellenbroek et al., 

2011; Levental et al., 2009; Y.-H. Wang et al., 2012; 2014). Therefore, I 

hypothesized that calcium would promote syntaxin 1 domain formation 

through the interactions with PI(4,5)P2. Indeed, my data show that calcium 

clusters truncated mutants of syntaxin lacking almost the entire cytoplasmic 

domain, but only provided PI(4,5)P2 is present in the membrane.  

Interestingly, only Ca2+ and not Mg2+ promote membrane clustering of 

syntaxin 1/PI(4,5)P2. These findings correlate well with several chemistry 

studies that characterized the interactions between divalent cations and 

PI(4,5)P2 and showed that Ca2+ specifically causes PI(4,5)P2 domain formation 

(Levental et al., 2009; Y.-H. Wang et al., 2012). In contrast to these studies, my 

data show that Ca2+/PI(4,5)P2 association also occurs at physiological 

concentrations of PI(4,5)P2 and Ca2+. The Ca2+ specificity is due to the charge 

density distribution and matching of chelating properties between Ca2+ and 

the polynegative head-group of PI(4,5)P2 (Sarmento, Coutinho, Fedorov, 

Prieto, & Fernandes, 2014; Y.-H. Wang et al., 2012; 2014). This implies that 

Ca2+ acts as the electrostatic bridge that connects syntaxin 1 molecules 

indirectly via PI(4,5)P2 (Fig. 4.2). Indeed, the surface interactions between 

syntaxin 1 and PI(4,5)P2 are of electrostatic nature since they are strongly 

sensitive to the presence of ATP and Mg2+. These molecules non-specifically 

screen the charges on the polybasic patch of syntaxin 1 and the head-group of 

PI(4,5)P2, thereby reducing the surface interactions between lipids and 

proteins (similarly as in Park et al., 2012). Despite this screening, Ca2+ can still 
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cause clustering of syntaxin 1/PI(4,5)P2, further demonstrating that this must 

be a specific electrostatic interaction. Altogether, these results confirm that 

Ca2+ can specifically and reversibly induce mesoscale domains of syntaxin 1 

and PI(4,5)P2 in the plasma membrane. 

 
Figure 4.2. Model of calcium-induced syntaxin domain formation. Ca2+ acts as 
a charge bridge that connects multiple syntaxin 1/PI(4,5)P2 oligomers into 
clusters. 
 

4.5 Physiological significance of SNARE clustering in the plasma 

membrane 

 

SNARE clusters in the plasma membrane can act as local hot spots for 

vesicle docking, they may promote vesicle fusion and help in maintaining the 

organelle identity during endocytosis and subsequent vesicle sorting.  

 Attachment of synaptic vesicles to the plasma membrane is a broadly 

discussed topic and intensive research efforts indicate that there may be more 

than one tethering/docking determinant (for detailed discussion of current 

models, see: Chapman, 2008; Hong & Lev, 2014; Imig et al., 2014; Jahn & 
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Fasshauer, 2012; Rizo & Südhof, 2012). For instance, synaptotagmin 1, the 

main calcium sensor of exocytosis, has been proposed the to contribute to 

docking of vesicles (de Wit et al., 2009; Milosevic et al., 2005). Synaptotagmin 

1 is a single spanning vesicular protein that contains two C2 domains (C2A 

and C2B) that bind to three and two Ca2+ ions, respectively (Chapman, 2008; 

Fernandez et al., 2001; Radhakrishnan, Stein, Jahn, & Fasshauer, 2009). 

Additionally, the C2B domain contains the polybasic patch that could bind to 

negative regions at the membrane surface (Araç et al., 2006; Bai, Tucker, & 

Chapman, 2004; Herrick, Sterbling, Rasch, Hinderliter, & Cafiso, 2006; Stein, 

Radhakrishnan, Riedel, Fasshauer, & Jahn, 2007; Vennekate et al., 2012).  

Indeed, we showed that synaptotagmin 1 binds to syntaxin1/PI(4,5)P2 

patches in calcium-independent manner (Honigmann et al., 2013). Here, the 

calcium-binding pockets were free to bind to acidic phospholipids in either 

the vesicular or plasma membrane and PI(4,5)P2 was shown to increase 

synaptotagmin 1  affinity for Ca2+ (van den Bogaart, Meyenberg, 

Diederichsen, & Jahn, 2012), which may partially explain the high calcium 

sensitivity at the exocytotic sites (Sakaba, Schneggenburger, & Neher, 2002; 

Schneggenburger & Neher, 2005).  

Alternatively, synaptotagmin 1 has been suggested to transiently bind 

to the negative surface of SNARE complex in a calcium-independent manner 

(Araç et al., 2006; Brewer et al., 2015; Rizo, Chen, & Araç, 2006). In this case, 

synaptotagmin 1 could putatively interrupt the full zippering of a SNARE 

complex (Bhalla, Chicka, Tucker, & Chapman, 2006; Tang et al., 2006) and 

only upon calcium entry and its displacement the full zippering would be 

allowed. However, most of these data are obtained under non-physiological 

ion strength (i.e. low salt conditions) and deeper biochemical characterization 

needs to be done under physiological conditions (for discussion see Jahn & 

Fasshauer, 2012; Rizo & Südhof, 2012).  

It is important to emphasize that the neuronal synapses contain 

precisely organized active zone (Fernández-Busnadiego et al., 2010; 2013; 

Harlow, Ress, Stoschek, Marshall, & McMahan, 2001; Szule et al., 2012) in 

contrast to PC12 cells where the vesicle release occurs  over the entire 

membrane. Hence, although syntaxin 1/PI(4,5)P2 domains may act as 

‘molecular beacons’ and recruit vesicle to the membrane of PC12 cells (de Wit 

et al., 2009; Honigmann et al., 2013), in neuronal exocytosis synaptotagmin 1 
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recognition of syntaxin 1/PI(4,5)P2 may be dispensable (Imig et al., 2014). 

Accessory proteins such as Munc 18 are able to peal syntaxin molecules from 

the clusters and further engage in vesicle recruitment (Bar-On et al., 2012; 

Gandasi & Barg, 2014) as well as in fusion complex formation (Ma, Su, Seven, 

Xu, & Rizo, 2013). 

SNARE clusters may also facilitate the fusion reaction. Although a 

single (Mohrmann et al., 2010; Shi et al., 2012; van den Bogaart et al., 2010) or 

just a few (Mohrmann et al., 2010; Sinha, Ahmed, Jahn, & Klingauf, 2011) 

SNARE complexes are needed for fusion of synaptic vesicles, sustained 

exocytosis would require a pool of easily accessible proteins. Here, SNARE 

clusters are the protein buffer for fusion complex formation. Additionally, it is 

emerging that the fusion of tightly docked vesicles could be triggered by lipid 

fluctuations (Risselada et al., 2014; Risselada & Grubmüller, 2012). Our 

molecular dynamics simulations (collaboration with Herre Jelger Risselada 

and Helmut Grubmüller) show that cholesterol-induced hydrophobic 

mismatch causes a corresponding free energy penalty proportional to the 

protein-lipid interface (Milovanovic et al., 2015). Assuming that the effective 

TMD extension of the mismatch interface is constant, the length of protein-

lipid interface determines the free energy penalty. Such an energy penalty-

per-TMD length, also referred to as line tension, makes the surrounding lipids 

more susceptible to fluctuation between the bilayers (Kozlov et al., 2014; 

Risselada et al., 2014). Given that the plasma membrane contains lipids of 

different shape (for details see Introduction), enhanced lipid fluctuations 

makes the remodeling of the plasma membrane easier.  

SNARE clustering may further be important for maintaining the 

organelle identity during the vesicle cycle. Detailed quantitative analyses of 

protein and lipid components in synaptic vesicles and synapses shows that 

SNAREs are highly abundant proteins (i.e. >20,000 copies of syntaxin 1 and 

SNAP 25 in the entire synapse) (Wilhelm et al., 2014). Some proteins at 

synaptic vesicles are abundant such as synaptobrevin 2 (~70 copies/vesicle) 

whereas some are present at only 1 – 2 copies/vesicle, e.g. the vacuolar 

ATPase required for neurotransmitter uptake (Takamori et al., 2006). 

Considering that synaptic vesicle release requires only two synaptobrevin 2 

molecules (Mohrmann et al., 2010; Shi et al., 2012; Sinha et al., 2011), some 

flexibility in the copy-number of SNAREs in the vesicle may be tolerated. 
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However, the repetitive and fast process of neurotransmitter release requires 

fast membrane turnover (Rizzoli, 2014). Upon exocytosis, SNAREs were 

shown to either remain clustered (Willig et al., 2006) or quickly re-cluster 

prior to the endocytosis (Hua et al., 2011). Based on previous observations 

from our lab (Zilly et al., 2011) and data presented here that calcium 

stimulates syntaxin clustering, it is tempting to speculate that these clustering 

mechanism may help plasma membrane SNARE sorting to facilitate fast 

endocytosis.  

Moreover, synaptic vesicle proteins such as synaptotagmin remain 

clustered even within the early endosome (Hoopmann et al., 2010), where 

they serve as a marker for synaptic vesicle retrieval (S. Watanabe, Trimbuch, 

et al., 2014b). In case of clathrin mediated endocytosis specific adaptor 

proteins assure that synaptic vesicle components cluster in a coated pit 

(Collins et al., 2002; Glyvuk et al., 2010; Jung et al., 2007; for details see 

Introduction 1.4). The protein and lipid content of these endocytic 

compartments might well match that of synaptic vesicles, which would allow 

their direct reuse. However, especially in case of sustained synaptic activity 

which would ultrafast endocytosis (S. Watanabe, Liu, et al., 2013a; S. 

Watanabe, Rost, et al., 2013b) or clathrin-independent uptake, the freshly 

engulfed membranes would have to be proofed in order to determine 

whether the vesicle has to undergo additional sorting in the endosome or 

whether it may directly re-enter the SV pool. For a better understanding of 

vesicle turnover, the sorting signals and proofreading components in the 

membrane need to be better determined. Based on my findings, I propose that 

protein/lipid clusters may well be important to segregate plasma membrane 

proteins apart from synaptic vesicle proteins, as well as for the proofreading 

whether newly endocytosed vesicles meet the requirements for functional 

synaptic vesicles.  
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5. CONCLUSIONS and PERSPECTIVES 
 

From this study I can conclude that a single mechanism cannot explain 

the diversity of different clusters in the membrane. It is the interplay, and one 

would dare to say – the competition, between different mechanisms that 

establishes particular clustering pattern (Fig. 5.1). Also, some parameters (for 

instance, protein-protein interaction in the case of SNAREs) may be dominant 

for segregation of these proteins in particular clusters despite of the local 

thermodynamic properties of the membrane. Additionally, cytosolic factor 

(e.g. ions and charged small molecules) can further fine-tune the 

protein/protein and protein/lipid interactions in the membrane.  

Cellular membranes should not be envisioned as smooth structures, 

but rather their thickness varies according to the local lipid and protein 

environment. The high abundance of proteins in the membrane (i.e. more that 

20 mol% of the total bilayer volume are TMDs; Dupuy & Engelman, 2008; 

Takamori et al., 2006) warrants them to be seen as a phase itself and 

biochemical properties of these TMDs may substantially contribute to 

membrane structure. Finally, protein and lipid clusters are in constant 

dynamic equilibrium with the proteins that freely diffuse between these 

clusters. In fact, it is exactly these regions between the clusters that may act as 

hot spots for biological processes such as exo- and endocytosis. Beyond their 

role in the vesicle cycle, SNAREs are the main targets of Clostridial 

neurotoxins (Rossetto, Pirazzini, & Montecucco, 2014) and even the general 

anesthetics appear to disrupt their organization (Herring et al., 2011; Xie et al., 

2013).  

In this Thesis, SNAREs were used as a paradigm to understand the 

structure and dynamics of membrane domains. Described principles may 

apply to the other proteins and lipids. It is important to foster our knowledge 

on membrane structure and dynamics, because membranes play a critical role 

for a range of cellular functions such as adhesion, tissue formation, cell 

proliferation, migration, as well as in intracellular trafficking and organelle 

cross talk.   
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Until now understanding of membrane domains was largely confined 

to the plasma membrane. In the future it will be interesting to understand if 

the same protein and lipid organizing principles also apply to organelles 

where they may play a role in processes such as sorting during trafficking 

and in organelle biogenesis.  

 

 

 

Figure 5.1. Biological membranes are modular systems: different mechanisms 
contribute to the lateral organization of the membrane and allow for the 
dynamic instability of protein and lipid domains. Adapted from Milovanovic 
& Jahn, 2015. 
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7. APPENDICES 
 

 

7.1 Information on peptide synthesis  

 

Peptides were synthesized by Group of Prof. Ulf Diederichsen 

(University of Göttingen). Fmoc solid phase synthesis was done on preloaded 

Fmoc-Gly-Wang resin LL with chain elongation performed on the microwave 

assisted automatic peptide synthesizer Liberty with an additional module 

(Discover, CEM Corporation) that provided microwave energy of 2,45 MHz. 

Deprotection was performed with 20% piperidine in NMP (N-methyl-2-

pyrrolidone) and amino acids were prepared as 0.2 M solutions in NMP. 

Coupling was done with 0.5_M HBTU/HOBt (HBTU-based_1-

hydroxybenzotriazole) in DMF, 0.2 M amino acids in NMP and 2 M DIPEA 

(N,N-diisopropylethylamine) in NMP. Deprotection (two steps of 30 and 180 

s respectively), coupling (300 s at 75°C) and capping were performed with 

microwave energy and N2 mixing. The fluorescent dyes Atto647N NHS-ester 

(Atto-Tec) and Rhodamine Red (Invitrogen) were coupled to the N-terminus 

to the peptides on solid support using an excess of dye at room temperature 

for 12 hours. After coupling, the resin was washed with DCM and 

diethylether and dried in a high vacuum overnight. Cleavage from the solid 

support was carried with a mixture of TFA:H2O:EDT:TES (94:2.5:2.5:10; 10 

ml/g resin) for 2 hours. Subsequently the resin was filtered off, the solution 

concentrated and the peptides were precipitated from cold MTBE, centrifuged 

and lyophilized. Since the fluorophore is coupled to the N-terminal at the 

very end of synthesis, only complete peptides were fluorescently labeled. All 

peptides were verified by electrospray ionization mass spectroscopy ESI-MS.  
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7.2 Information on imaging ellipsometry  

 

Imaging ellipsometry measurements were done by Group of Prof. 

Andreas Janshoff (University of Göttingen). Lipid stock solutions (clipid = 1-10 

mg/ml) were prepared in chloroform and transformed into lipid films by 

removal of the solvent in a nitrogen stream followed by 3h drying in vacuum. 

Multilamellar vesicles (MLV) were produced by resuspending the lipid films 

in buffer (50 mM HEPES pH 7.4 with 3 mM Ca2+) at a concentration of 1 

mg/ml. MLVs were transformed into small unilamellar vesicles (SUV) by 

sonication (50 W, 0.4 s pulse, 30 min) in a vessel resonator (Sonoplus HD 

2070). Average vesicle size was 30-50 nm as determined by dynamic light 

scattering. Si-Wafers were cleaned in H2O2/NH3/H2O 1:1:5 at 70°C for 15 min 

and afterwards hydrophilized for 1 min in O2-plasma. For preparing the lipid 

bilayer, freshly prepared SUVs were spreaded for 10-30 min on a 

hydrophilized Si-Wafer at a concentration of 0.2 mg/ml in 50 mM HEPES 

pH 7.4 with 3 mM Ca2+. Measurements were carried out in the same buffer in 

a closed fluid chamber. Ellipsometry experiments were performed using an 

imaging ellipsometer EP3-SW from Accurion as described previously (Faiss et 

al., 2007; Schuy et al., 2008). This method offers the possibility to measure thin 

layer thicknesses in real time within a convective flow at defined temperature. 

The principal angle del determined by this method is proportional to layer 

thicknesses for sufficiently thin dielectric layers (h < 30 nm). Absolute height 

changes resulting from spreaded solid supported membranes (SSM) were 

computed from the angle del which is linearly related to the height for thin 

layers (1 nm ≈ 0.91° del) and assuming a refractive index of 1.5 for the all used 

lipids. 
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7.3 Information on atomic force microscopy measurements 

 

Atomic force microscopy (AFM) measurements were done by Group of 

Dr. Iwan Schaap (University of Göttingen). The glass coverslips were cleaned 

using the Plasma cleaner Fempto timer with 40 kHz/100 W generator (Diener 

electronic, Germany) and a lipid/sx-1 TMD bilayer was generated by spin-

coating (10 s at 100xg). The reconstituted bilayers were imaged with a 

Cervantes Full Mode AFM System (Nanotec, Spain) using AC40TS cantilevers 

(ω0 = 110 kHz, k = 0.1 N/m; Olympus, Japan) similarly as in (Li et al., 2011, 

Schaap et al., 2012). Calibration of the cantilevers was accomplished by using 

the thermal noise spectrum. We employed the jumping mode plus (jump off 

100 nm, sample points 50), which allows scanning at controlled vertical forces 

between 0.2 nN and several nN.  
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Photography, debate clubs, improvisational theater, hiking and running. 
 
 
LANGUAGE SKILLS 
 
Serbian: native; 
English: proficiency level (C2); 
German: advanced level (C1); 
French: intermediate level (B1). 
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