
 

 

 

 

 

The STRIPAK complex and its role in fruiting-body 

development of the filamentous fungus Sordaria macrospora 

 

 
 

Dissertation 

for the award of the degree 

“Doctor rerum naturalium” 

of the Georg-August-Universität Göttingen 

 
 

within the doctoral program Molecular Biology of Cells 

of the Georg-August University School of Science (GAUSS) 

 

 

submitted by 

Stefan Frey 

from Leer (Ostfriesland) 

 

 

Göttingen, 2015 

 
 



Thesis Committee 

Prof. Stefanie Pöggeler  
Department of Genetics of Eukaryotic Microorganisms  
Institute of Microbiology and Genetics  
 
Prof. Gerhard Braus  
Department of Microbiology and Genetics  
Institute of Microbiology and Genetics  
 
Prof. Blanche Schwappach 
Department of Molecular Biology 
University Medical Center Göttingen 
 
Members of the Examination Board 

Referee:  
Prof. Stefanie Pöggeler  
Department of Genetics of Eukaryotic Microorganisms  
Institute of Microbiology and Genetics  
 

2nd Referee:  
Prof. Gerhard Braus  
Department of Microbiology and Genetics  
Institute of Microbiology and Genetics  
 
Further members of the Examination Board 

Prof. Blanche Schwappach 
Department of Molecular Biology 
University Medical Center Göttingen 
 
Prof. Rolf Daniel 
Department of Genomic and Applied Microbiology 
Institute of Microbiology and Genetics  
 
Prof. Kai Heimel  
Department of Microbial Cell Biology  
Institute of Microbiology and Genetics  
 
PD Dr. Michael Hoppert  
Department of General Microbiology  
Institute of Microbiology and Genetics  
 

Date of the oral exam: 05.03.2015 

i 
 



Table of Contents 
 

Affirmation  

 
I hereby declare that this thesis was written independently and with no other sources and aids 

than quoted.  

 

Göttingen, 23.01.2015  
 

 

 

 

Stefan Frey 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii 
 



Table of Contents 
 

This doctoral study was performed in the group of Prof. Stefanie Pöggeler in the Department of 

Genetics of Eukaryotic Microorganisms at Institute of Microbiology and Genetics, Georg-August-

University Göttingen.  

 

Some parts of the results section of this doctoral study were peer-reviewed by the journal “Molecular 

Microbiology” (and are currently under revision) and some results are submitted for publication in 

the journal “Eukaryotic Cell”. 

 

 

Stefan Frey, Yasmine Lahmann, Stefanie Pöggeler. Deletion of Smgpi1 encoding a GPI-anchored 

protein suppresses sterility of the STRIPAK mutant ΔSmmob3 in the filamentous ascomycete 

Sordaria macrospora. Molecular Microbiology (in revision) 

 

Author contributions to this publication:  

Planned experiments: SP, SF, YL  

Performed experiments: SF, YL 

Analyzed data: SF, SP  

Contributed reagents or other essential material: SP 

Wrote the paper: SF, SP 

 

 

Stefan Frey, Stefanie Pöggeler. Germinal Center Kinases SmKIN3 and SmKIN24 are associated 

with the Sordaria macrospora Striatin-interacting phosphatase and kinase (STRIPAK) complex. 

Eukaryotic Cell (submitted) 

 

Author contributions to this publication:  

Planned experiments: SP, SF 

Performed experiments: SF 

Analyzed data: SF, SP  

Contributed reagents or other essential material: SP 

Wrote the paper: SF, SP 

iii 
 



Table of Contents 

 

List of Tables .............................................................................................................................. viii 

List of Figures ............................................................................................................................... ix 

List of Abbreviations ................................................................................................................... xi 

Summary ........................................................................................................................................ 1 

Zusammenfassung......................................................................................................................... 3 

1. Introduction ........................................................................................................................... 5 

1.1 Striatins in mammals ..................................................................................................................... 5 

1.1.1 Striatin ................................................................................................................................... 7 

1.1.2 SG2NA .................................................................................................................................. 8 

1.1.3 Zinedin .................................................................................................................................. 9 

1.2 Striatin homologs in other eukaryotes .......................................................................................... 9 

1.3 Striatin-family complexes ........................................................................................................... 10 

1.3.1 Function of STRIPAK components .................................................................................... 13 

1.3.1.1 Protein phosphatase 2A ................................................................................................... 13 

1.3.1.2 MOB3 ............................................................................................................................. 15 

1.3.1.3 CCM3 .............................................................................................................................. 16 

1.3.1.4 The GC III kinases MST4, STK24 and STK25 .............................................................. 19 

1.3.1.4.1 MST4 ........................................................................................................................ 20 

1.3.1.4.2 STK24 ....................................................................................................................... 21 

1.3.1.4.3 STK25 ....................................................................................................................... 21 

1.3.1.5 MINK1 ............................................................................................................................ 22 

1.3.1.6 STRIP1/2 ......................................................................................................................... 22 

1.3.1.7 SLMAP ........................................................................................................................... 23 

1.3.1.8 CTTNBP2/NL ................................................................................................................. 24 

1.3.1.9 SIKE ................................................................................................................................ 26 

1.3.1.10 FGFR1OP2.................................................................................................................. 27 

1.3.2 STRIPAK in signaling ........................................................................................................ 27 

1.4 GPI-anchoring ............................................................................................................................. 30 

1.5 Sordaria macrospora: A model for fruiting-body development ................................................. 33 

1.6 Aim of this study ......................................................................................................................... 35 

iv 
 



Table of Contents 
 

2. Material and Methods ......................................................................................................... 36 

2.1 Strains ......................................................................................................................................... 36 

2.2 Plasmids ...................................................................................................................................... 40 

2.3 Primers ........................................................................................................................................ 42 

2.4 Chemicals and Materials ............................................................................................................. 46 

2.5 Enzymes ...................................................................................................................................... 48 

2.6 Kits .............................................................................................................................................. 48 

2.7 Media and Solutions ................................................................................................................... 49 

2.7.1 Solutions ............................................................................................................................. 49 

2.7.1.1 Amino-acid stock solutions ............................................................................................. 49 

2.7.1.2 Transformation ................................................................................................................ 49 

2.7.1.3 Solutions regarding DNA ................................................................................................ 50 

2.7.1.4 Protein regarding solutions ............................................................................................. 50 

2.7.2 Media .................................................................................................................................. 51 

2.8 Strains and culture conditions ..................................................................................................... 53 

2.8.1 Preparation and transformation procedures ........................................................................ 53 

2.8.2 DNA methods ..................................................................................................................... 55 

2.8.2.1 Plasmid isolation from E. coli and S. cerevisiae ............................................................. 55 

2.8.2.2 Isolation of RNA and genomic DNA from S. macrospora ............................................. 56 

2.8.2.3 PCR ................................................................................................................................. 56 

2.8.2.4 Purification of amplified DNA........................................................................................ 57 

2.8.2.5 cDNA synthesis............................................................................................................... 57 

2.8.2.6 Hydrolysis of nucleic acids. ............................................................................................ 57 

2.8.2.7 Ligation of DNA fragments ............................................................................................ 57 

2.8.2.8 Separation of nucleic acids by gel electrophoresis.......................................................... 58 

2.8.2.9 Southern blotting ............................................................................................................. 58 

2.8.3 Protein methods................................................................................................................... 59 

2.8.3.1 S. macrospora protein extraction .................................................................................... 59 

2.8.3.2 Protein concentration measurement ................................................................................ 59 

2.8.3.3 Immuno Blotting ............................................................................................................. 59 

2.8.3.4 Yeast Two-Hybrid studies .............................................................................................. 60 

2.8.3.5 Co-IP ............................................................................................................................... 61 

v 
 



Table of Contents 
 

2.8.3.6 Differential centrifugation ............................................................................................... 61 

2.8.4 Crossbreeding of S. macrospora ......................................................................................... 61 

2.8.5 Generation of S. macrospora single-knockout strains ........................................................ 62 

2.8.6 Generation of S. macrospora double-knockout strains ....................................................... 63 

2.8.7 Generation of S. macrospora complementation strains ...................................................... 63 

2.8.8 Analytic procedures ............................................................................................................ 63 

2.8.8.1 Light and fluorescence microscopy investigations ......................................................... 63 

2.8.8.2 Sequence analysis and oligonucleotide synthesis ........................................................... 65 

2.8.8.3 Phylogenetic analysis ...................................................................................................... 65 

2.8.9 Measures of safety .............................................................................................................. 66 

3. Results ................................................................................................................................... 67 

3.1 The GPI-anchored protein SmGPI1 ............................................................................................ 67 

3.1.1 A two-hybrid screen identified a GPI-anchored protein as an interaction partner of 
STRIPAK SmMOB3........................................................................................................... 67 

3.1.2 SmGPI1 interacts physically with SmMOB3 ..................................................................... 70 

3.1.3 SmGPI1 binds to the cell wall and is partially secreted ...................................................... 72 

3.1.4 SmGPI1 localizes to the cell wall and mitochondria .......................................................... 75 

3.1.5 Deletion of Smgpi1 restores fertility and hyphal fusion of sterile ΔSmmob3 ..................... 78 

3.1.6 ΔSmgpi1 forms more fruiting bodies that are small but normally shaped .......................... 88 

3.2 The GCKs SmKIN3 and SmKIN24 ............................................................................................ 92 

3.2.1 S. macrospora encodes two kinases similar to the mammalian STRIPAK-associated 
kinases STK24, STK25, MST4 and MINK1. ..................................................................... 92 

3.2.2 SmKIN3 interacts physically with PRO11 ....................................................................... 100 

3.2.3 Deletion of Smkin3 or Smkin24 impairs vegetative growth but only ΔSmkin24 is sterile 102 

3.2.4 SmKIN3 and SmKIN24 localize to septa and influence septum formation...................... 107 

3.2.5 ΔSmkin3 protoplasts recover significantly faster than wt protoplasts .............................. 109 

4. Discussion ........................................................................................................................... 111 

4.1 The GPI-anchored protein SmGPI1 .......................................................................................... 111 

4.1.1 SmGPI1 is a GPI-anchored protein ................................................................................... 111 

4.1.2 SmGPI1 is a dual targeted protein .................................................................................... 112 

4.1.3 STRIPAK protein SmMOB3 interacts physically with SmGPI1...................................... 117 

4.1.4 SmGPI1 is a positive regulator of fruiting-body number .................................................. 118 

vi 
 



Table of Contents 
 

4.1.5 Smgpi1 deletion partially bypasses vegetative growth, hyphal fusion and fruiting-body 
development defects in ΔSmmob3 .................................................................................... 119 

4.2 The GCKs SmKIN3 and SmKIN24 .......................................................................................... 121 

4.2.1 Are SmKIN3 and SmKIN24 STRIPAK-associated kinases? ........................................... 122 

4.2.2 SmKIN3 and SmKIN24 affect growth velocity, sexual development and septum formation  
 ........................................................................................................................................... 125 

4.2.3 The STRIPAK (-like) complex in S. macrospora ............................................................. 126 

5. References ........................................................................................................................... 128 

6. Acknowledgement .............................................................. Fehler! Textmarke nicht definiert. 

7. Curriculum vitae................................................................ Fehler! Textmarke nicht definiert. 

vii 
 



List of Tables 

List of Tables 
 

Table 1. Mammalian STRIPAK components that associate with the complex or subcomplexes .............. 11 
Table 2. Strains generated and used for this study ..................................................................................... 36 
Table 3. Plasmids generated and used for this study .................................................................................. 40 
Table 4. Primers used for this study ........................................................................................................... 42 
Table 5. Average growth value of ΔSmgpi1, complemented ΔSmgpi1, ΔSmmob3 and the double 

knockout ΔSmgpi1/ΔSmmob3 in mm/day .................................................................................... 80 
Table 6. BLASTP search of the human STRIPAK associated GC kinases against the S. macrospora 

proteom .......................................................................................................................................... 92 

viii 
 



List of Figures 

List of Figures 
 
Figure 1. Schematic overview of mammalian Striatins ............................................................................... 6 
Figure 2. Mammalian STRIPAK complex(es) with its core components and additional proteins ............ 11 
Figure 3. 3D structure of the heterotrimeric PP2A complex ...................................................................... 14 
Figure 4. Sequence alignment of human MOB1 with homologs from other species ................................ 15 
Figure 5. CCM3 functions in MST4 recruitment ....................................................................................... 18 
Figure 6. Aa sequence alignment, of mammalian GC III kinases .............................................................. 20 
Figure 7. Function of SIKE in IKKε and TBK1-mediated innate immune response ................................. 26 
Figure 8. Schematic overview about the STRIPAK core complex in signaling ........................................ 28 
Figure 9. Schematic model of GPI-anchored protein precursors ............................................................... 31 
Figure 10. Structure of yeast and mammalian GPI-anchors ...................................................................... 32 
Figure 11. Schematic model of the S. macrospora life cycle .................................................................... 34 
Figure 12. Schematic illustration of the SmGPI1 precursor ...................................................................... 68 
Figure 13. Multiple sequence alignment and aa identity of SmGPI1 with putatively homologue       

proteins from other Ascomycota .................................................................................................... 69 
Figure 14. Yeast two-hybrid analysis of the interaction of SmGPI1 and SmMOB3 ................................. 70 
Figure 15. Co-Immunoprecipitation of SmGPI1 and SmMOB3 with anti-FLAG and anti-eGFP   

antibodies combined with Western blot analysis ........................................................................... 71 
Figure 16. Western blot analysis of SmGPI1 after differential centrifugation of cellular components ..... 72 
Figure 17. Schematic overview of SmGPI1 versions used for Western blot ............................................. 73 
Figure 18. Western blot analysis of SmGPI1 aa 1-492 and aa 28-492 using cell-free supernatants          

and crude extracts of the mycelium ............................................................................................... 74 
Figure 19. Localization of SmGPI1-eGFP ................................................................................................. 76 
Figure 20. Localization of SmMOB3 in ΔSmgpi1 and SmGPI1 in ΔSmmob3 ......................................... 77 
Figure 21. Generation of a ΔSmgpi1/ΔSmmob3 double-deletion strain.................................................... 78 
Figure 22. Verification of ΔSmgpi1/ΔSmmob3 via PCR and Southern blot ............................................. 79 
Figure 23. Sexual development of ΔSmgpi1, ΔSmmob3 and ΔSmgpi1/ΔSmmob3 .................................. 81 
Figure 24. Phenotypic analysis of ΔSmgpi1/ΔSmmob3 complemented with full-length Smgpi1 or 

Smmob3 using microscopy ............................................................................................................ 82 
Figure 25. Generation of a ΔSmgpi1/Δpro11 double-deletion strain. ........................................................ 83 
Figure 26. Generation of a ΔSmgpi1/Δpro22 double-deletion strain. ........................................................ 84 
Figure 27. Generation of a ΔSmgpi1/Δpro45 double-deletion strain. ........................................................ 85 
Figure 28. Generation of a ΔSm3978/ΔSmmob3 double-deletion strain. .................................................. 86 
Figure 29. Deletion of Smgpi1 in a sterile ΔSmmob3 background restores hyphal fusion. ....................... 87 
Figure 30. Number of fruiting bodies produced by ΔSmgpi1, ΔSmmob3 and ΔSmgpi1/ΔSmmob3        

and complemented strains compared to wt. ................................................................................... 89 
Figure 31. Deletion of Smgpi1 results in smaller mature fruiting bodies................................................... 90 
Figure 32. Quantitative evaluation of perithecia size from wt, ΔSmgpi1 and ΔSmgpi1 expressing the full 

length Smgpi1, ΔSmgpi1/ΔSmmob3 and wt expressing an additional copy of Smgpi1. ............... 91 
Figure 33. Multiple sequence alignment and aa identity of mammalian kinases identified as        

STRIPAK members with putative homologues from Ascomycota ............................................... 93 

ix 
 



List of Figures 

Figure 34. RT-PCR analysis of Smkin3. (A) Schematic illustration of Smkin3 ......................................... 95 
Figure 35. RT-PCR analysis of Smkin24 ................................................................................................... 96 
Figure 36. Alignment of aa sequences encoded by alternatively spliced Smkin24 transcripts .................. 97 
Figure 37. Identity of aligned aa sequences of mammalian kinases identified as STRIPAK           

members with putative homologues from Ascomycota in pair-wise comparison. ........................ 98 
Figure 38. Unrooted neighbor-joining tree of human GCKs MST4, STK24, STK25, MINK1                

and their orthologs in ascomycetes ................................................................................................ 99 
Figure 39. SmKIN3 and SmKIN24 interact physically with PRO11....................................................... 101 
Figure 40. Co-IP of SmKIN3-FLAG and PRO11-HA. ............................................................................ 102 
Figure 41. Generation of ΔSmkin3 and ΔSmkin24 deletion strains.. ...................................................... 103 
Figure 42. Macroscopic and microscopic analysis of the sexual development of wt, ΔSmkin3,   

ΔSmkin24 and ΔSmkin3/ΔSmkin24 ............................................................................................ 104 
Figure 43. Macroscopic and microscopic analysis of the sexual development of wt, complemented 

ΔSmkin3, complemented ΔSmkin24 and partially complemented ΔSmkin3/ΔSmkin24.. ......... 105 
Figure 44. Microscopic investigation of hyphal fusion in wt, ΔSmkin3, ΔSmkin24 and 

ΔSmkin3/ΔSmkin24. ................................................................................................................... 106 
Figure 45. Localization of SmKIN3-eGFP and SmKIN24-eGFP in S. macrospora. .............................. 107 
Figure 46. Analysis of septal development in wt, ΔSmkin3, ΔSmkin24 and ΔSmkin3/ΔSmkin24 and 

complemented mutants ................................................................................................................ 108 
Figure 47. Quantitative analysis of septal development in wt, ΔSmkin3, ΔSmkin24 and 

ΔSmkin3/ΔSmkin24 and complemented mutants........................................................................ 109 
Figure 48. Investigation of protoplast recovery and vegetative growth of ΔSmkin3, ΔSmkin24 and 

ΔSmkin3/ΔSmkin24 .................................................................................................................... 110 
Figure 49. SmGPI1 exhibits regions of disorder ...................................................................................... 115 
Figure 50. Dual targeting of SmGPI1 in S. macrospora .......................................................................... 116 
Figure 51. Schematic model of the genetic interplay between SmGPI1 and SmMOB3 and the    

STRIPAK complex in wt, single and double mutants ................................................................. 121 
Figure 52. Schematic model for the interplay between STRIPAK and SIN in S. macrospora................ 124 
Figure 53. Schematic model of STRIPAK complex in S. macrospora .................................................... 127 
 
 

 

 

 

  

 

x 
 



List of Abbreveations 

List of Abbreviations  

aa   amino acids  

a. dest.   aqua destillata 

CMS   complete medium with saccharose 

co-IP  co-immunoprecipitation 

bp   base pair  

BMM   biomalt maize medium  

BLAST  basic local alignment search tool  

cDNA   complementary DNA  

d   days 

DIC   differential interference contrast  

DsRED  encodes red fluorescence protein of Discosoma sp  

ER   endoplasmic reticulum  

eGFP   enhanced green fluorescence protein of Aequorea Victoria  

gDNA   genomic DNA  

GPI  glycosylphosphatidylinositol 

kDa   kilo Dalton  

ORF   open-reading frame  

PAGE   polyacrylamide gel electrophoresis  

PBS   phosphate buffered saline  

PCR   polymerase chain reaction  

RT-PCR  real-time PCR  

SD   selective dropout 

ssi   single spore isolate  

SWG   Sordaria Westergaards medium  

RT  Room temperatur 

Y2H   yeast two-hybrid 

wt   wild type  

 

 

Common abbreviations and units of measurement are not enlisted

xi 
 



Summary/Zusammenfassung 

Summary 

The mammalian Striatin-interacting phosphatase and kinase (STRIPAK) complex consist of 

many proteins, among them Striatin as scaffold, the putative kinase activator monopolar spindle-

one-binder 3 (MOB3), serine/threonine phosphatase PP2A subunits A and C, the Striatin-

interacting protein (STRIP)1 and STRIP2, sarcolemmal membrane-associated protein (SLMAP) 

and the germinal center kinases (GCK) MST4, STK24, STK25 and MINK1. In this study, we 

used the filamentous ascomycete Sordaria macrospora as model organism to analyze the role of 

the STRIPAK complex in fruiting-body development. S. macrospora is coprophytic fungus 

which solely undergoes a sexually lifecycle and does not require a mating partner for sexual 

reproduction. 

In S. macrospora, the STRIPAK complex is required for fruiting-body development and hyphal 

fusion. Hyphal fusion is a process that results in mixed cell contents of involved cells without 

lysis. In filamentous ascomycetes, hyphal fusion occurs at different stages of vegetative growth 

and sexual reproduction. 

The STRIPAK complex in S. macrospora contains homologs to mammalian Striatin (PRO11), 

MOB3 (SmMOB3), subunits A and C of PP2A (SmPP2AA and C), STRIP1/2 (PRO22) and 

SLMAP (PRO45). However, fungal STRIPAK-associated kinases have not been characterized to 

date. 

This study is divided into two parts, one comprises the characterization of SmGPI1, a GPI-

anchored protein, identified as interaction partner of SmMOB3 in cross-species microarrays, and 

the other part is about identification of potential STRIPAK-associated kinases. Interaction 

between STRIPAK-associated SmMOB3 and SmGPI1 was successfully verified by co-

Immunoprecipitation (co-IP) and yeast two-hybrid (Y2H) using S. macrospora cDNA. Deletion 

of Smgpi1 was the next step to investigate its impact on fruiting-body development; in contrast to 

Δpro11, Δ pro22, ΔSmMOB3 and Δpro45, ΔSmgpi1 underwent hyphal fusion and was fertile, 

but generated more fruiting bodies, which were smaller but normal in shape compared to wt.  

Interestingly deletion of Smgpi1 in a sterile ΔSmmob3 deletion background restored the 

phenotypes caused by Smmob3 deletion. As already mentioned, ΔSmmob3 is sterile and not 

capable of hyphal fusion. In contrast, the double-deletion strain ΔSmgpi1/ΔSmmob3 is fertile 

and underwent hyphal fusion. This effect was Smmob3 specific and did not occur in other 
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STRIPAK-specific double-deletion strains, e.g. ΔSmgpi1/Δpro11, ΔSmgpi1/Δpro22 and 

ΔSmgpi1/Δpro45. Moreover, fluorescence microscopy and differential centrifugation of SmGPI1 

revealed a dual targeting; SmGPI1 localizes at the cell wall and the mitochondria.  

Regarding the identification of STRIPAK-associated kinases in S. macrospora, two kinases were 

identified to be homologous to the mammalian STRIPAK-associated kinases MST4, STK24, 

STK25 and MINK1 by BLASTP search and were named SmKIN3 and SmKIN24. Phylogenetic 

analysis revealed a conservation of these kinases among ascomycetes. Interaction of SmKIN3 

and SmKIN24 with S. macrospora Striatin homolog PRO11 was shown via Y2H and for 

SmKIN3 and PRO11 also by means of co-IP. Fluorescence microscopy of SmKIN3 and 

SmKIN24 revealed localization to the septa, whereas SmKIN3 localizes at the outer part of the 

septum and SmKIN24 to the septal pore.  

Deletion of Smkin3 or Smkin24 to analyze their impact on fruiting-body development showed 

only ΔSmkin24 to be sterile. However, ΔSmkin3 and ΔSmkin24 were reduced in vegetative 

growth and exhibited impaired septa formation; whereas ΔSmkin3 displayed greater distances 

between adjacent septa compared to wt, deletion of Smkin24 resulted in numerous closely-

packed septal bundles of abnormal shape. Although phenotypically distinct, both kinases appear 

to function independently because the double-knockout strain ΔSmkin3/ΔSmkin24 displayed the 

combined phenotypes of each single-deletion strain. Moreover, we discovered that protoplasts 

harboring the ΔSmkin3 deletion background recover faster than protoplasts obtained from wt. 

Based on the results of this study and findings in N. crassa that homologs to SmKIN3 and 

SmKIN24 are implicated in septation initiation network (SIN) we assume STRIPAK to function 

aside from sexual development and hyphal fusion, also in regulation of fruiting-body number via 

SmMOB3-SmGPI1 interaction and suggest a crosstalk between SIN and STRIPAK in S. 

macrospora. 
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Zusammenfassung 

Der STRIPAK (für engl. „Striatin-interacting phosphatase and kinase”)-Komplex in Säugetieren 

umfasst unter anderem die Proteine Striatin als Gerüsteinheit, Phosphatase 2A, Untereinheit A 

und C, STRIP (für engl „Striatin-interacting protein“) 1 und 2, den putativen Kinaseaktivator 

MOB3 und die GC (für engl. „germinal center“) Kinasen MST4, STK24, STK25 und MINK1, 

sowie SLMAP (für engl. „sarcolemmal membrane-associated protein“). Im Rahmen dieser 

Arbeit wird S. macrospora als Modellorganismus für die Analyse der Funktion des STRIPAK 

Komplexes auf die Entwicklung von Fruchtkörpern verwendet. S. macrospora ist ein koprophiler 

selbstfertiler Schlauchpilz (Ascomyzet), der lediglich einen sexuellen Lebenszyklus aufweist. 

Der STRIPAK-Komplex in S. macrospora ist beteiligt an verschiedenen Prozessen, darunter die 

sexuelle Entwicklung und die Hyphenfusion. Die Hyphenfusion beschreibt die Verbindung von 

zwei Zellen, ohne dabei zu lysieren. In S. macrospora wurden bisher Homologe zu den in 

Säugern identifizierten Proteinen Striatin (PRO11), MOB3 (SmMOB3), PP2AA und C 

(SmPP2AA und C), STRIP1/2 (PRO22) und SLMAP (PRO45) identifiziert, jedoch wurden 

bisher noch keine beteiligten Kinasen identifiziert. 

Diese Arbeit befasst sich mit zwei Hauptthemen: Der Charakterisierung von SmGPI1, ein GPI-

geankertes Protein, welches als Interaktionspartner von SmMOB3 identifiziert wurde und der 

Identifizierung und Charakterisierung potentieller STRIPAK-Kinasen. 

Im Rahmen dieser Arbeit konnte die Interaktion zwischen SmGPI1 und SmMOB3 erfolgreich 

mittels Y2H und co-IP bestätigt werden. Zur Untersuchung des Einflusses von Smgpi1 auf die 

Fruchtkörperentwicklung, wurde das Gen deletiert. Im Unterschied zu Stämmen, die aus der 

Deletion von Genen, welche für Proteine des STRIPAK-Komplexes codieren, hervorgingen, ist 

ΔSmgpi1 fertil und fähig zur Hyphenfusion. Im Vergleich zum Wildtyp, sind die Fruchtkörper 

von ΔSmgpi1 zwar kleiner, aber normal geformt.  

Interessanterweise, führt die Deletion von Smgpi1 in der sterilen Deletionsmutante ΔSmmob3 zu 

einer Unterdrückung des ΔSmmob3 Phänotyps. Während ΔSmmob3 steril ist und keine 

Hyphenfusion zeigt, ist ΔSmmob3/ΔSmgpi1 fertil und befähigt zur Hyphenfusion. Dieser Effekt 

ist spezifisch und tritt nur in der Deletionsmutante ΔSmmob3/ΔSmgpi1 auf. 

Des Weiteren wurde durch Fluoreszenzmikroskopie und differenzieller Zentrifugation gezeigt, 

daß SmGPI1 dual lokalisiert ist: SmGPI1 wurde sowohl an der Zellwand, als auch in den 

Mitochondrien gefunden.  
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Bezüglich der Identifikation von STRIPAK-Kinasen, wurden zwei potentielle Homologe zu den 

in Säugern identifizierten STRIPAK-Kinasen mittels BLASTP-Suche identifiziert, namentlich 

SmKIN3 und SmKIN24. Die Interaktion von SmKIN3, SmKIN24 und dem S. macrospora 

Striatin-Homolog PRO11 wurde mittels Y2H bestätigt, die Interaktion von SmKIN3 mit PRO11 

zusätzlich auch durch co-IP. Fluoreszenzmikroskopie der eGFP markierten Proteine SmKIN3 

und SmKIN24 ergab eine Lokalisierung dieser an den Septen. Die Deletion der beiden Gene 

Smkin3 und Smkin24 zeigte, daß lediglich SmKIN24 an der Fruchtkörperentwicklung beteiligt 

ist, was sich in Sterilität der Deletionsmutante ΔSmkin24 zeigte. Der Stamm ΔSmkin3 war 

weiterhin fertil. Interessanterweise zeigten beide Stämme einen Defekt in der Entwicklung von 

Septen und dem vegetativen Wachstum. Während die Abstände zwischen 

nebeneinanderliegenden Septen in ΔSmkin3 im Verhältnis zum Wildtyp vergrößert waren, führte 

die Deletion von Smkin24 zu vielen, dicht gepackten und deformierten Septen. Dennoch 

scheinen beide Proteine unabhängig zu fungieren, da der Doppel-Knockout ΔSmkin3/ΔSmkin24 

die Phänotypen beider Einzelnockouts zeigt. Des Weiteren zeigten Protoplasten, welche den 

ΔSmkin3 Deletionshintergrund besaßen, einen deutlich erhöhten Regenerationseffekt. 

Basierend auf den Ergebnissen dieser Studie kann dem STRIPAK-Komplex in S. macrospora 

neben der sexuellen Entwicklung und der Hyphenfusion auch eine Funktion in der Regulierung 

der Fruchtkörperanzahl zugewiesen werden. Zusätzlich vermuten wir eine Verbindung zwischen 

STRIPAK-Komplex und des Netzwerkes, welches die Septierung einleitet (SIN, für engl. 

„septation initiation network“). 
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Introduction 
 

 Introduction 1.

Organisms underlie many environmental changes and pressures, such as different salt 

concentrations, changing nutrient conditions, pheromones, oxidative stress or pH values (Maller, 

2003, Martindale & Holbrook, 2002). Thus, it is necessary to respond appropriately to the 

incoming stimuli and to generate respective responses. On molecular level, the response to 

different stimuli is facilitated by signaling pathways. To date, many signal transduction pathways 

have been identified, partially connected to each other. Normally, incoming signals are detected 

by receptors on the cell surface, which modulate the signal and transmit it to the cell lumen. 

These signals can be enhanced and transduced by many modifications, for example 

phosphorylation or protein cleavage (Li & Hristova, 2006, Lieber et al., 1993). In general, signal 

transduction ends in changed translation pattern of genes, needed for the appropriate response to 

the stimulus (Lalli & Sassone-Corsi, 1994). Dysfunctions in signal transduction and responses to 

environmental changes can cause severe diseases such as cancer (Wu et al., 2010).  

In the recent years, Striatins have been identified to be regulators of various differentiation 

processes and thus, it might have a key role in these processes (Benoist et al., 2006). 

 

 Striatins in mammals 1.1

In mammals, the group of Striatins comprises the three proteins Striatin, SG2NA and Zinedin 

(Figure 1). These proteins are highly similar in their protein domain structure and localization. 

Functional and structural homologs were discovered in many other organisms like Drosophila 

melanogaster, Schizosaccharomyces pombe, Neurospora crassa, Saccharomyces cerevisiae and 

Sordaria macrospora (Bloemendal et al., 2012, Lisa-Santamaria et al., 2012, Pöggeler & Kück, 

2004, Simonin et al., 2010, Tanabe et al., 2001). Mammalian Striatins are characterized by a 

caveolin-binding side, a Ca2+-Calmodulin binding side, a coiled-coil domain and tryptophan-

aspartate (WD) repeat (hereafter WD40) repeats (Benoist et al., 2006). 

Caveolins are small integral membrane proteins and the main component of the caveolae; 

cholesterol-rich, sack shaped, invaginated lipid rafts in the plasma membrane of cells (Parton & 

Simons, 2007). Caveolins interact with many signaling proteins. This is facilitated by an about 

20 aa comprising motif at their N-terminus (Li et al., 1996). The consensus sequence of 
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caveolin-interaction motifs as present in Striatins is ФXXXXФXXФ, where Ф represents an 

aromatic aa and X represents random aa (Couet et al., 1997, Benoist et al., 2006). 

Calmodulin-binding motifs are protein domains necessary for interaction of proteins with 

Calmodulin. Calcium-modulated protein (Calmodulin), is a calcium-binding messenger protein 

expressed in all eukaryotic cells. Interaction with its target proteins is modulated by calcium-ion 

binding and thus, Calmodulin (CaM) converts calcium concentrations into further signals (Chin 

& Means, 2000, Stevens, 1983). CaM is highly conserved and consists of approximately 148 aa 

with a molecular weight of 16.7 kDa. It contains four motifs for Ca2+-ion binding. The tertiary 

structure shows two globular domains representing the N- and C-terminal domain, separated by a 

flexible linker region (Chin & Means, 2000) 

 

 

Figure 1. Schematic overview of mammalian Striatins; shown are the structural domains of Striatin, 

SG2NA isoform α and β, and Zinedin. cv = caveolin binding domain, cc = coiled-coil domain, cm = Ca2+- 

calmodulin binding domain, N = N-terminus, C = C-terminus. Domains shown for SG2NA and Zinedin 

are predicted and not experimentally proved. Aa in total is given at the end of each protein (according to 

Hwang & Pallas (2014)). 

 

Coiled-coil domains are motifs of 2-7 alpha helices that are coiled together like rope strands. The 

common types are dimers and trimers (Liu et al., 2006). Coiled-coil motifs facilitate 

oligomerization of many proteins (Burkhard et al., 2001). The consensus sequence of coiled-coil 

motifs is the repeated pattern HxxHCxC, with H = hydrophobic aa and C = charged aa, referred 

  WD40 repeat C N    CC 

cm cv 

  WD40 repeat C N    

  WD40 repeat C N    

  WD40 repeat C N    

Striatin 

SG2NAα 

SG2NAβ 

Zinedin 

780 aa 

713 aa 

797 aa 

753 aa 
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to as heptad repeat (Mason & Arndt, 2004). For Striatin, oligomerization was shown to be crucial 

for some interactions with other proteins (Chen et al., 2012, Gaillard et al., 2006).  

The WD40 domain is formed by 4 to 16 structurally conserved WD40 repeats (Li & Roberts, 

2001, Smith et al., 1999). WD40 repeats consist of 44-60 aa, containing tryptophan-aspartic 

acid (W-D) dipeptides at the C-terminus and a glycine-histidine pair at 11-24 aa positions from 

their N-terminus (Neer et al., 1994, van der Voorn & Ploegh, 1992). The WD40 domain forms a 

propeller-like structure of interlocked beta sheets that serves for protein complex assembly 

(Hwang & Pallas, 2014, Li & Roberts, 2001). 

 

 Striatin 1.1.1

Striatin was first identified in rat brain and named after the striatum, a part of the cerebrum, 

where it was found most abundantly (Castets et al., 1996). In neural tissues, Striatin was also 

identified throughout the central and peripheral nervous system but mostly in the striatum and 

motoneurons. Moreover, Striatin is also expressed in many other tissues, among them fibroblasts, 

lymphocytes, lung, liver, kidney, skeletal and cardiac muscles (Benoist et al., 2006, Castets et 

al., 1996, Castets et al., 2000, Moqrich et al., 1998, Moreno et al., 2000). Striatin full-length 

protein comprises 780 aa and consists of the 4 characteristic domains for interaction; a caveolin-

binding motif, a coiled-coil region, a CaM-binding motif and a WD40 repeat domain (Figure 1). 

Until today only little is known about the function of Striatin-caveolin interaction. Since Striatin 

was shown to interact with Caveolin-1 (CAV-1), which may act as a scaffolding protein within 

caveolar membranes, this interaction was hypothesized to facilitate Striatin localization to 

Caveolin-1 rich domains in dendric spines (Gaillard et al., 2001). 

The Ca2+-CaM binding domain of Striatin comprises aa 149-166 and is crucial for Striatin-CaM 

interaction in a Ca2+-dependent manner. Until today, it is still unknown, how Striatins function in 

Ca2+ signaling. One hypothesis is that Striatin functions as Ca2+ sensor that reacts to changing 

Ca2+ concentrations (Benoist et al., 2006). This is among others based on results showing that 

physiologically relevant calcium concentrations increase presence of cytosolically located 

Striatin as well as findings, that Striatin distribution in cytosolic, detergent soluble and insoluble 

fractions of brain tissue depends on calcium presence or absence during lysis (Bartoli et al., 

1998, Gaillard et al., 2001). Furthermore, the CaM-binding motif of Striatin appears to function 
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in protein-protein interaction of Striatin; deletion of its CaM-binding motif enhances interaction 

of Striatin with germinal center kinases (GCK) mammalian STE20-like protein kinase 4 (MST4) 

and serine/threonine-protein kinase (STK) 24. By this, Ca2+-CaM binding could regulate MST4 

and STK24 binding to Striatin by modifying the subcellular localization of Striatin. However, 

interaction with other tested proteins was not affected (Gordon et al., 2011). 

Additionally, it was shown that Striatin hetero-oligomerizes through its coiled-coil domain with 

Zinedin, but also homo-oligomerizes (Gaillard et al., 2006). The coiled-coil domain of Striatin 

comprises aa 64-120, but with the possibility that even parts of the caveolin binding domain 

belongs to it. Moreover, a trigger sequence necessary for successful coiled-coil interaction is 

assumed to be located at the N-terminus of Striatin (Gordon et al., 2011). 

Striatin contains a WD40 domain composed of 6 or 7 WD40 repeats. It was shown that deletion 

of this region abolishes interaction of Striatin with other proteins, among them the kinase 

activator monopolar spindle-one-binder 3 (MOB3)/phocein (Baillat et al., 2001, Moreno et al., 

2001).  

Striatin is absent from axons but highly concentrated in dendric spines. Based on the Ca2+-CaM 

binding motif, it is likely regulated by Ca2+-dependent signaling in postsynaptic neurons (Castets 

et al., 1996).  

 

 SG2NA 1.1.2

SG2NA was first reported to localize to the nucleus. It is named after its expression levels which 

have their maximum during the S and the G2 phase of the cell cycle (Muro et al., 1995). Later it 

was shown to localize predominantly to the cytosol or membranes. SG2NA displays the highest 

expression in cerebellum and cortex where it, similar to Striatin, localizes to somato-dendritic 

spines with high concentration in dendric spines. However, it is also present in other tissues 

(Castets et al., 2000, Moreno et al., 2001). As shown in Figure 1, SG2NA protein domains 

resemble Striatin. Similarly, it consists of a caveolin-binding domain from aa 71-79, a Ca2+-CaM 

binding domain from aa 166-183, a coiled-coil domain ranging from aa 77-136 and a WD40 

domain of 6 WD40 repeats. SG2NA was shown bind CaM in a Ca2+-dependent manner. This 

Striatin variant homo-oligomerizes and hetero-oligomerizes with Zinedin and Striatin by their 

coiled-coil domains. The coiled-coil domain of SG2NA was shown to be necessary but not 
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sufficient to target the protein to dendric spines (Gaillard et al., 2006). Two major isoforms of 

SG2NA are known; SG2NAα with 713 aa and SG2NAβ with a length of 797 aa (Figure 1) 

(Benoist et al., 2006). However, minor isoforms do also exist; SG2NAγ was identified 

previously in rat brain tissue. It lacks all but one WD40 repeats and localizes to the nucleus. 

SG2NAγ was shown to organize an estrogen-inducible complex of protein phosphatase 2A 

(PP2A) and estrogen receptor α (ERα) (Tan et al., 2008). Moreover, SG2NA exhibits 

transcriptional activation activity (Zhu et al., 2001). Among Striatins, SG2NA is the most 

conserved one (Tanti et al., 2014). 

 

 Zinedin 1.1.3

Zinedin was first identified by search for Striatin homologs (Castets et al., 2000). The canonical 

full-length isoform comprises 753 aa. Similar to Striatin and SG2NA, Zinedin exhibits the four 

characteristic domains for protein interaction (Figure 1). Zinedins caveolin-binding domain 

comprises aa 71-79, its Ca2+-CaM binding domain aa 165-182. Zinedin hetero-oligomerizes with 

SG2NA and binds similar to Striatin and SG2NA CaM in a Ca2+-dependent manner. Zinedin 

exhibits 7 WD40 repeats ranging from aa 436 to 752. It is most abundantly expressed in the 

hippocampus and localizes to somato-dendritic spines with high concentration in dendric spines 

but is also found in various other tissues (Benoist et al., 2008, Gaillard et al., 2006, Gordon et 

al., 2011). Within the cell, Zinedin localizes cytosolically (Blondeau et al., 2003, Castets et al., 

2000). 

 

 Striatin homologs in other eukaryotes 1.2

Additionally to the mammalian Striatins, homologs have been identified in other animals and 

lower eukaryotes, among them the isoforms SG2NAα and SG2NAα+ from goldfish, 

D. melanogaster “connector of kinase to AP-1” (CKA), Caenorhabditis elegans “CKA and 

Striatin homolog family member” (CASH-1), S. cerevisiae “Factor arrest protein 8” (FAR8), 

S. pombe FAR8/CSC3p, N. crassa “hyphal anastomosis mutant 3” (HAM-3), S. macrospora 

PRO11 (protoperithecia mutant 11), Fusarium graminearum “Fusarium 

verticillioides Striatin ortholog 1” (FSR1) and Aspergillus nidulans “A  nidulans Striatin” 
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(STRA). All these proteins harbor characteristic domains as described for Striatins (Bloemendal 

et al., 2012, Chen et al., 2002, Ma et al., 2009, Pöggeler & Kück, 2004, Simonin et al., 2010, 

Shim et al., 2006).  

Deletion of genes encoding for Striatin homologs have a high impact on developmental 

processes; deletion of pro11 in S. macrospora, fsr1 in F. graminearum, strA in A. nidulans and 

ham-3 in N. crassa lead to sterility. Moreover, the deletion strains S. macrospora Δpro11 and 

N. crassa Δham-3 and were not capable of hyphal fusion (Bernhards & Pöggeler, 2011, 

Bloemendal et al., 2012, Shim et al., 2006, Simonin et al., 2010, Wang et al., 2010). 

Furthermore, decreases deletion of fsr1 in F. graminearum its virulence. Cell fusion, which is 

also named hyphal fusion in filamentous fungi, occurs in organisms from eukaryotic microbes to 

multicellular plants and animals and results in mixed cell contents of involved cells without lysis. 

In filamentous ascomycetes, hyphal fusion occurs at different stages of vegetative growth and 

sexual reproduction (Rech et al., 2007, Fleißner et al., 2008, Read et al., 2010, Bloemendal et 

al., 2012). This emphasizes the importance of Striatins (Hwang & Pallas, 2014). Interestingly, 

sterility of the S. macrospora pro11 mutant can be complemented with Striatin cDNA from 

mouse, showing an evolutionary conservation of Striatins function in signaling (Pöggeler & 

Kück, 2004). Recent studies revealed that Striatins have evolved from prokaryotic counterparts, 

but acquired domains exclusive for metazoans. Within this process, SG2NA might be the earliest 

evolved Striatin (Tanti et al., 2014).  

 

 Striatin-family complexes 1.3

Striatins have been shown to interact with a broad number of proteins, among them Ca2+-CaM, 

CAV-1 and monopolar spindle-one-binder 3/phocein (MOB3) (Baillat et al., 2001, Castets et al., 

2000, Gaillard et al., 2006, Moreno et al., 2001). Moreover, based on their WD40 domain, 

Striatins are assumed to function as a scaffolding unit for protein interactions (Moreno et al., 

2000, Pöggeler & Kück, 2004). Striatin-family members have been shown to interact with the 

structural (A) and catalytic (C) subunit of PP2A, germinal center kinases (GCK) and other 

proteins. This led to the name Striatin-interacting phosphatase and kinase (STRIPAK) for protein 

complexes consisting of Striatins as scaffolding unit, PP2A and kinases (Goudreault et al., 2009, 

Hyodo et al., 2012). Moreno et al. (2001) postulated regarding the PP2A-Striatin interaction that 
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Striatin functions as novel B’’’ family of PP2AB-type regulatory subunits by interaction with the 

PP2A heterodimer. The mammalian STRIPAK complex is a multi-protein complex. Its core 

components are Striatin as scaffold, PP2A subunit A and C, MOB3, the Striatin-interacting 

proteins (STRIP)1 and STRIP2 (formerly named Fam40a and Fam40b), cerebral cavernous 

malformation 3 (CCM3; also called programmed cell death 10, PDCD10) and the 

mammalian sterile 20-like (MST) kinase, subclass GCK III, MST4, serine/threonine-protein 

kinase (STK) 24 and STK25 (Goudreault et al., 2009) (Table 1).  
 

                
Figure 2. Mammalian STRIPAK complex(es) with its core components and additional proteins. The 
Striatin-family proteins comprise Striatin, SG2NA or Zinedin. Core components are the PP2A 
heterodimer with subunit A and C, MOB3, STRIP1 and STRIP2 as well as kinases of the GC III class, 
MST4, STK24 and STK25 recruited by CCM3. It is still unknown weather Mishappen-like kinase 1 
(MINK1) and Mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) are also recruited by 
CCM3. Some proteins bind mutually exclusive to Striatin-family members (e.g. CTTNBP2/NL, SLMAP 
and SIKE) resulting in STRIPAK subcomplexes. These interactions are indicated by arrows. The 
simultaneous interaction of MINK1, MAP4K4 and GCK III has not been proven and thus is assumed to 
be bind in a mutually exclusive manner. The interaction partners of Striatins are described in the text 
(according to Hwang & Pallas (2014)). 
 

Table 1. Mammalian STRIPAK components that associate with the complex or subcomplexes 

Protein name Full name/description Reference 

Striatin, 
SG2NA, 
Zinedin 

Striatin, putative regulatory subunit B’’’ of 
protein phosphatase 2A 

(Moreno et al., 2000) 

PP2AA, PP2AC 
 

Structural (A) and catalytic (C) subunits of 
protein phosphatase 2A 

(Moreno et al. 2000) 

 Striatin-family protein 

 STRIP1/2 

 PP2A 
A  C 

 CCM3 

  GCK III 
 MINK1 

 MAP4K4 

 SIKE 

 SLMAP 

 CTTNBP2/NL  MOB3 
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MOB3 Monopolar spindle-one-binder 3/phocein (Baillat et al., 2001, Moreno et 
al., 2001) 

CCM3 Cerebral cavernous malformation 3/ 
programmed cell death 10 

(Goudreault et al., 2009) 

MST4 Mammalian sterile 20-like kinase 4, subclass 
of GC III kinases 

STK24 Serine/threonine-protein kinase 24 
STK25 Serine/threonine-protein kinase 25 
STRIP1/2 Striatin-interacting protein 1 and 2, formerly 

Fam40a and Fam40b 
SLMAP Sarcolemmal membrane-associated protein 
CTTNBP2/NL Cortactin-binding protein 2/cortactin-binding 

protein 2, N-terminal-like 
SIKE Suppressor of inhibitor-κB kinase ε 
FGFR1OP2 Fibroblast growth factor receptor 1 oncogene 

partner 2 
MINK1 Misshapen-like kinase 1 (Hyodo et al., 2012) 
 
 
As shown in Figure 2, several interaction partners bind mutually exclusive to the Striatin core 

complex. Goudreault et al. (2009) showed that either a cortactin-binding protein 2 family 

members (CTTNBP2 or CTTNBNL) or sarcolemmal membrane-associated protein (SLMAP) 

with suppressor of inhibitor-κB kinase ε (SIKE) bind simultaneously to Striatin. This binding 

behavior results in STRIPAK subcomplexes, which are similar in its core components but differ 

in its additional interaction partners (Hwang & Pallas, 2014). 

Moreover, STRIPAK-like complexes have been identified. These complexes contain at least 

Striatin as a scaffolding unit and the PP2A subunits PP2AA and PP2AC; however, in most cases, 

the presence of kinases has not been demonstrated. STRIPAK-like complexes have been 

identified in mammals (see 1.3.2), D. melanogaster, yeast and filamentous ascomycetes. (Frost et 

al., 2012, Simonin et al., 2010, Xiang et al., 2002, Ma et al., 2009, Chen et al., 2002, Ribeiro et 

al., 2010, Singh et al., 2011, Hwang & Pallas, 2014, Bloemendal et al., 2012, Dettmann et al., 

2013).  

The D. melanogaster STRIPAK complex contains homologs of Striatin, PP2A, MOB3, STRIP, 

fibroblast growth factor receptor 1 oncogene partner 2 (FGR10P2)/SIKE and CCM3. 

Additionally, the GC kinase Hippo (HPO) was identified as part of this complex. HPO is a 

homolog to mammalian MST1 and MST2, which are not STRIPAK-associated in mammals 

(Ribeiro et al., 2010). However, STRIPAK-like complexes have also been identified in D. 
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melanogaster, involved in processes, such as activation of mitogen-activated protein kinases in 

the c-Jun N-terminal kinase (JNK) pathway (Ribeiro et al., 2010, Chen et al., 2002). JNKs are 

mitogen-activated protein kinase that respond to stress stimuli (Ip & Davis, 1998). 

The STRIPAK-like complex in S. cerevisiae is named Factor arrest (FAR) complex and consists 

of proteins which are homologous to Striatin, SLMAP, STRIP and PP2As subunits A and C 

(Frost et al., 2012, Lisa-Santamaria et al., 2012). S. cerevisiae does not encode a MOB3 

homolog. 

In filamentous fungi, such as N. crassa and S. macrospora, STRIPAK-like complexes without 

homologs of mammalian kinases have been identified. These complexes contain proteins 

homologous to Striatin, PP2AA, PP2AC STRIP, SLMAP and MOB3 (Bloemendal et al., 2012, 

Dettmann et al., 2013, Nordzieke et al., 2014, Simonin et al., 2010, Xiang et al., 2002). 

 

  Function of STRIPAK components  1.3.1

Numerous proteins have been identified to be members of the mammalian STRIPAK complex or 

to interact with its subunits. Proteins that have been identified as part of the complex or 

subcomplexes are enlisted in Table 1 and explained in detail in this section.  

 

1.3.1.1 Protein phosphatase 2A 

Mammalian PP2A is a herotrimeric serine/threonine phosphatase that contains a 65 kDa 

scaffolding A subunit, a 36 kDa catalytic C subunit and a regulatory B (separated in B, B’, B’’ 

and B’’’) subunit (Dettmann et al., 2013). Subunit A of PP2A contains 15 tandem repeats of a 

conserved 39-residue sequence called HEAT (Huntingtin, elongation factor 3 (EF3), PP2A, and 

the yeast kinase TOR1) that forms rod-like helical structures which function in intracellular 

transport (Andrade & Bork, 1995). The C subunit is postranslationally methylated or 

phosphorylated. The methylation of the C subunit alteres binding of the regulatory B subunit but 

does not affect protein association (Yu et al., 2001). As mentioned before, Striatins appear to 

function as B’’’ family of PP2AB-type regulatory subunits. This is deducted from the lack of 

other regulatory PP2A subunits in the Striatin-PP2A complex and an altered substrate specify of 

STRIPAK-associated PP2A. To date, 17 regulatory subunits and 2 isoforms of the scaffolding 
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and the catalytic subunit of PP2A are known (Cho & Xu, 2007, Xu et al., 2006). In general, 

PP2A functions in various cellular processes e.g. translation and transcription, cell signaling and 

cell-cycle regulation (Lechward et al., 2001). This variety of functions is mediated by its 

regulatory B subunits, which guide the phosphatase to its target complex and modulate its 

activity (Moreno et al., 2000). To date, nearly all Striatin-family complexes contain PP2A 

subunits A and C, whereas other components are additional. Many of the STRIPAK components 

are phosphoproteins (Goudreault et al., 2009; Moreno et al., 2001). Moreno et al., (2001) 

demonstrated that among others Striatin, SG2NA and MOB3 are highly phosphorylated if PP2A 

is inactivated. This led to the assumption, that STRIPAK-bound PP2A is the relevant 

phosphatase. This hypothesis is supported by data of Gordon et al. (2011); a point mutation in 

the striatin gene that decreases Striatin-PP2A binding causes hyperphosphorylation of the 

STRIPAK-associated GCK III STK24 (Goudreault et al., 2009) (1.3.1.4). Additionally, STK25 

was shown to be dephosphorylated and partially inactivated by PP2A in vitro as well as MST4 

showed a gel-shift pattern similar to hyperphosphorylation after PP2A inactivation (Gordon et 

al., 2011, Pombo et al., 1996).  

 

Figure 3. 3D structure of the heterotrimeric PP2A complex. Shown are the scaffolding subunit (green), 
the regulatory subunit (yellow) and the catalytic subunit (blue). The red circle in the center marks the 
absence of interactions involving the C-terminus of subunit C, shown are aa 1-294. (according to Cho and 
Xu (2007).  

14 
 



Introduction 
 

1.3.1.2 MOB3 

One of the first identified interaction partners of Striatins was the 225 aa comprising MOB3 in 

Rattus norvegicus (Baillat et al., 2001). Similar to Striatins, MOB3 localizes primarily to 

somato-dendritic spines (Baillat et al., 2001, Bailly & Castets, 2007, Trammell et al., 2008). 

MOB3 belongs to the group of MOB (monopolar spindle one binder) proteins. This protein 

group is characterized by a Mob domain, which is highly conserved and comprises 180-200 aa of 

the MOB protein (Baillat et al., 2001, Luca et al., 2001, Ponchon et al., 2004) (Figure 4). 

Crystal-structure analysis of human MOB1 protein revealed the tertiary setup of Mob domains in 

general (Stavridi et al., 2003). The conserved Mob domain consists of 9 helices and a hairpin, 

which form 2 antiparallel beta sheets. The protein forms a globular structure with a core of 4 

bundled helices and the hairpin, accompanied by tetrahedrally coordinated zinc atom (Stavridi et 

al., 2003). 

 

Figure 4. Sequence alignment of human MOB1 with homologs from other species. Aa-sequence 
alignment of human MOB1A (Mob1A_h, accession Q9H8S9) and MOB1B (Mob2B_h, Q7L9L4) aa 33-
216 with S. cerevisiae MOB1p (Mob1_sc, E7Q517) aa 132-314, S. pombe MOB1p (Mob1_sp, O94360) 
aa 31-210 and MOB2p (Mob2_sp, O74558) aa 62-243, mouse Mob2 (Mob2_mm, Q8VI63) aa 32-212 
and rat phocein (Phoc_rn, Q9QYW3) aa 46-222. Human MOB1 secondary structures are displayed above 
the aa sequences. Residues conserved in all MOB proteins are colored in magenta, residues conserved in 
MOB1 and MOB2, but not MOB3 family members are colored green, MOB1-specific residues are shown 
in blue. The cysteine and histidine residues that surround the zinc atom are shown in gold. The asterisks 
below the aa sequences indicate the residues targeted by the S. cerevisiae MOB1 mutant alleles (modified 
according to Stavridi et al. (2003)). 
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One function of the Mob domain is to activate NDR (nuclear Dbf2-related) kinases. NDR 

kinases are essential components of cellular processes, such as cytokinesis, cell proliferation, 

mitotic exit and apoptosis (Chow et al., 2010). In particular, each MOB protein interacts with 

NDR kinases through a NDR-kinase specific, conserved N-terminal regulatory domain. This has 

been shown in yeast, D. melanogaster and human cell lines (Jones & Varela-Nieto, 1998). 

Moreover, MOB proteins are necessary for localization of the kinases NDR1/2 in yeast and 

“large kinase suppressor kinase 1” (LATS 1) in D. melanogaster (Hergovich et al., 2005, 

Robinson, 1997). According to phylogenetic analysis of Vitulo et al. (2007) are MOB proteins 

divided into the 5 groups MOB1, MOB2, MOB3, MOB4 and MOBp proteins. The fruitfly 

D. menalogaster and the filamentous ascomycete N. crassa exhibit genes coding for 4 MOB 

proteins, the human genome contains genes encoding for 7 MOB proteins (Chow et al., 2010, 

Maerz et al., 2009, Trammell et al., 2008). Each of them exhibits a gene that encodes a MOB3 

protein, whereas a MOB3 homolog is absent in yeast. In contrast to proteins of the other MOB 

subgroups has MOB3 a versatile function. This is mainly based on its identified interaction 

partners; aside from Striatins and NDR kinases, MOB3 also interacts with epidermal growth 

factor receptor substrate 15 (EPS15) and GTPase Dynamin I involved in endocytosis and 

vesicular trafficking (Baillat et al., 2002). Thus, MOB3 is assumed to has a regulatory function 

in these processes (Hwang & Pallas, 2014). Additionally was shown, that the MOB3 homolog in 

D. melanogaster is involved in spindle focusing, microtubule organization, neuronal transport 

and formation of synapses (Schulte et al., 2010, Trammell et al., 2008). Moreover, deletion of 

mob3 in the filamentous ascomycetes S. macrospora and N. crassa, led to sterility and hyphal 

fusion defects (Bernhards & Pöggeler, 2011, Dettmann et al., 2013, Maerz et al., 2009). The 

phenotype of Δmob3 in N. crassa was independent from NDR-kinases activity (Maerz et al., 

2009). Thus, MOB3 has a fundamental role in developmental processes. 

 

1.3.1.3 CCM3 

CCM3 (cerebral cavernous malformation 3) also named PDCD10 (programmed cell death 10) 

was first identified in a premyeloid cell line and was upregulated after induced apoptosis 

(Bergametti et al., 2005). The name CCM3 is deducted from previous findings that mutations in 

this gene can cause cerebral cavernous malformations (CCM). CCMs are vascular lesions in the 
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brain that are characterized by dilated vessels, abnormal in shape. These vessels lack intervening 

brain parenchyma and thus contain only a monolayer of endothelial cells. The symptoms caused 

by this malformation vary from headache to stroke (Siegel et al., 2005, Verlaan et al., 2005). 

The prevalence of these symptoms have been estimated to be 0.1%-0.5% (Otten et al., 1989). 

Three CCM-related genes have previously been identified, named CCM1, CCM2 and CCM3. 

All three genes are connected to CCM lesions (Bergametti et al., 2005). The ccm3 gene encodes 

3 isoforms that only differ in their 5’ region (Li et al., 2010). CCM3 is an adaptor protein of 25 

kDa and functions among others in response to oxidative stress, vascular development, vascular 

endothelial growth factor signaling (VEGF) and apoptosis (Guclu et al., 2005, He et al., 2010). 

VEGF is a crucial factor for embryonic circulatory system development (Yla-Herttuala et al., 

2007, Fidalgo et al., 2012). CCM3 is optionally acetylated at lysine residue Lys179 and exhibits 

a C-terminal focal adhesion targeting (FAT)-homology domain for protein-protein interaction 

(Choudhary et al., 2009, Li et al., 2010). CCM3 interacts with CCM2 and forms a ternary 

complex with CCM1 (Voss et al., 2007). Moreover, CCM3 interacts with proteins involved in 

cell adhesion and bound to membranes such as VEGF receptor 2 (He et al., 2010, Li et al., 

2010). Furthermore, CCM3 interacts with the mammalian kinases MST4, STK24 and STK25 

(Goudreault et al., 2009). MST4, STK24 and STK25 are members of the GC III kinases, a 

subgroup of sterile-20-like kinases (Pombo et al., 2007) (Figure 5). The interaction between the 

GC III kinases and CCM3 are important to prevent CCM lesions (Zheng et al., 2010). The 

GC III kinases function in important cellular processes such as modulation of cell death, 

proliferation and regulation of the cytoskeleton and Golgi morphology (Dan et al., 2002, Huang 

et al., 2002, Nogueira et al., 2008, Preisinger et al., 2004). CCM3 is assumed to be important for 

the shift of GC III kinases from the cis Golgi to the STRIPAK complex, because silencing of 

ccm3 reduces GCK III binding to the STRIPAK complex and increases their binding to the Golgi 

matrix protein GM130 (Preisinger et al., 2004). Moreover, CCM3 is essential for MST4 

activation after oxidative stress; MST4 phosphorylates ERM proteins (named after their close 

relation to the paralogs ezrin, radixin and moesin), that crosslink actin filaments with plasma 

membranes, to protect cells from death. This process is impaired by inactivation of CCM3 

(Lankes et al., 1988, Tsukita et al., 1997, Fidalgo et al., 2012). CCM3 was shown to be 

phosphorylated by STK25 and dephosphorylated by FAS-associated phosphatase FAP-1 in vitro 

(Voss et al., 2007). CCM3 interacts aside of Striatin and the STRIPAK-associated kinases 
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MST4, STK24 and STK25 also with other proteins of this complex such as MOB3, 

CTTNBP2NL and STRIP1 (Goudreault et al., 2009) (Figure 2 and Figure 5). CCM3 is part of 

the mammalian STRIPAK core complex (Kean et al., 2011) .  

 

 

 

Figure 5. CCM3 functions in MST4 recruitment. (A) 3D structure of CCM3 forms a homodimer through 
its dimerization domain (blue). The FAT domain of CCM3 is shown in purple, the linker (aa 71-97) 
between these domains folds into a helix and is colored in red. The second CCM3 protein is colored in 
yellow. (B) CCM3 forms a heterodimer with MST4, mediated by their dimerization domains. CCM3s 
linker region undergoes a conformational change; its helical structure partially changes into a flexible 
loop in the CCM3-MST4 heterodimer. The dimerization domain of MST4 is shown in light green 
(according to Zhang et al. (2013)). (C) GC III kinases are bound to SG2NA via CCM3. PP2AA and the 
FAT domain of CCM3/PDCD10 interact with homo-oligomerized SG2NA. SG2NA-PP2AA interaction 
requires the caveolin-binding domain and some of the coiled-coil domain of SG2NA; CCM3 interacts 
with SG2NA at aa 291-305. Although SG2NA is shown, essentially the same findings apply to Striatin 
and presumably Zinedin (according to Kean et al. (2011)). 

 

C 
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1.3.1.4 The GC III kinases MST4, STK24 and STK25 

Mammalian GCKs regulate various cellular processes, such as polarization, migration, cell 

growth, neuronal differentiation, apoptosis and stress response (Sugden et al., 2013, Delpire, 

2009). Moreover, fungal GCKs are involved in the regulation of cytokinesis, hyphal growth and 

differentiation of asexual structures (Boyce & Andrianopoulos, 2011). Based on their structural 

similarity to the S. cerevisiae Sterile-20 protein kinase, GCKs are members of the Ste20-related 

group of protein kinases. Ste20-like kinases are subclassified into p21-activated kinases (PAK) 

family and a GCK family depending on the location of their kinase domain (Hanks & Hunter, 

1995). The kinase domain of PAKs is located C-terminally to the regulatory domain, whereas the 

catalytic domain of GCKs is at the N-terminus (Dan et al., 2001). GCKs share a highly 

conserved catalytic domain and a poorly conserved regulatory C-terminus (Hanks & Hunter, 

1995, Dan et al., 2001). The GCK family can be further subdivided into eight families, GCK I to 

GCK VIII (Dan et al., 2001). 

In mammals, the GC III kinases MST4, STK24, STK25 are identified as components of the 

STRIPAK complex (Kean et al., 2011, Gordon et al., 2011, Goudreault et al., 2009) (Figure 2). 

CCM3 has recently been shown to act as an adaptor to recruit GC III kinases to the Striatins 

(Kean et al., 2011, Gordon et al., 2011, Goudreault et al., 2009). The role of CCM3 is to bring 

GC III kinases in proximity to Striatin-connected phosphatase PP2A (Gordon et al., 2011) 

(Figure 5) It is thought that the PP2A holoenzyme including Striatin dephosphorylate GCKs and 

thereby reducing the catalytic activity of GCKs associated with the STRIPAK complex (Gordon 

et al., 2011). MST4 and STK24 have been shown to possess high basal activity (Qian et al., 2001, 

Schinkmann & Blenis, 1997) but are also activated by phosphorylation. This process is 

facilitated by autophosphorylation and/or mitogen activated kinases cascades of a threonine 

residue at the activation loop (Dan et al., 2002, Huang et al., 2002, Lu et al., 2006), but only 

little is known about their entire regulation so far. Moreover, deletion of the Ca2+-CaM binding 

domain of Striatin increases the binding of MST4, STK24 and STK25, whereas binding of 

MOB3 was unaffected (Gordon et al., 2011).  
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Figure 6. Aa sequence alignment, of mammalian GC III kinases. Shown are MST4 (accession number: 
Q9P289), MST3/STK24 (Q9Y6E0) and STK25 (O00506). The respective tertiary structure elements are 
shown under the aa sequence. The pink barrels mark alpha-helices; the yellow arrows represent beta-
sheeds. The red box frames the conserved Asp residue that is involved in in ATP coordination (according 
to Record et al. (2010)).  

 
1.3.1.4.1 MST4 

The canonical isoform of human serine/threonine-protein kinase comprises 416 aa with a 

molecular weight of approximately 26.5 kDA. The mst4 gene is alternatively spliced resulting in 

3 isoforms. The kinase domain of the canonical isoform is located at position 24-274, with its 

active side at aa 144. The ATP binding is mediated by aa 30-38. MST4 is autophosphorylated at 

Thr178 (Preisinger et al., 2004) (Figure 6). MST4 localizes to the Golgi apparatus and is 

activated by binding of Golgi matrix protein GM130, possibly as a consequence of 

autophosphorylation caused by stabilization of dimer formation (Preisinger et al., 2004). 

Moreover, MST4 is activated by the adaptor molecule MO25 (Hao et al., 2014). MO25 is 

conserved from yeast to man. In S. pombe, MO25 has been shown to play an essential role in 
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polarized growth and accumulation of F-actin at the cell tip during S and G2 phases (Mendoza et 

al., 2005).  

Additionally, MST4 is assumed to function in apoptotic pathways because it is cleaved by 

caspase-3 in vitro. MST4 functions with CCM3 in cell growth via modulating the ERK pathway 

(Lin et al., 2001, Ma et al., 2007) and interacts with Striatin, CCM3, CTTNBP2, SG2NA, 

CTTNBP2NL and STRIP1 (Goudreault et al., 2009). 

 
1.3.1.4.2 STK24 

Human serine/threonine-protein kinase 24 (STK24) is a protein of approximately 49 kDa. stk24 

is alternatively spliced resulting in 2 isoforms with only slight differences. The canonical form 

(isoform A) comprises 443 aa in total. The kinase domain is located at position 36-286, the 

residues responsible for Mg2+-binding are Ala161 and Ala174.  

STK24 is activated by phosphorylation either via cAMP-dependend protein kinase A (PKA) at 

aa 320 or autophosphorylation at aa 190. Solely, isoform B is activated by PKA (Zhou et al., 

2000). These residues were verified by mutagenesis (Zhou et al., 2000, Lu et al., 2006, Olsen et 

al., 2006). STK24 exhibits a nuclear export signal and a bipartite nuclear localization signal 

(Huang et al., 2002).  

Moreover, STK24 is processed by caspases; this results in kinase activation, nuclear 

translocation of the processed protein and induction of apoptosis (Huang et al., 2002). Similar to 

MST4, STK24 localizes to the Golgi apparatus where it appears to regulate cell adhesion, protein 

transport and neuronal migration (Matsuki et al., 2013). Furthermore, STK24 act as a major 

regulator of axon regeneration (Lorber et al., 2009) and interact with STRIPAK proteins Striatin, 

SG2NA and Zinedin, CCM3, MOB3, SLMAP, PP2A, CTTNBP2NL and STRIP1 (Ewing et al., 

2007, Goudreault et al., 2009). 

 

1.3.1.4.3 STK25 

Human serine/threonine-protein kinase 25 is a protein of 426 aa with a molecular mass of 48 

kDa. The kinase is activated by autophosphorylation at Thr178 and ATP binding is mediated by 

residue 26-34 (Figure 6). Further has been shown that mutagenesis of aa 49 and 159 impairs its 

kinase activity (Preisinger et al., 2004). Similar to MST4, STK25 is assumed to be activated by 
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MO25 (Hao et al., 2014). STK25 is activated by oxidative stress and thus, might play a role in 

response to environmental stress conditions. Similar to MST4 and STK24, STK25 localizes to 

the Golgi apparatus where it appears to regulate cell adhesion, protein transport and neuronal 

migration (Matsuki et al., 2013). 

 

1.3.1.5 MINK1 

Misshapen-like kinase 1 (MINK1) is a serine/threonine kinase of the class of GC IV kinases. The 

canonical isoform of human MINK1 comprises 332 aa with a molecular weight of about 150 

kDa. 5 isoforms are known, resulting from alternative splicing (Bechtel et al., 2007, Ota et al., 

2004). All isoforms were found in brain tissue but with different amounts. However, isoform 1 is 

most abundant in skeletal muscles, isoform 2 is more abundant in brain tissue and isoform 3 and 

4 are ubiquitously expressed (Hu et al., 2004). Mammalian MINK1 functions in fundamental 

biological processes, such as activation of mitogen-activated protein kinases in the JNK pathway, 

Ras-mediated p38 MAPK activation, cytoskeletal organization, cell motility and regulation of 

senescence (Dan et al., 2000, Hu et al., 2004, Kaneko et al., 2011, Nonaka et al., 2008). 

However, the explicit function of MINK1 is still unknown. Knockdown of MINK1 or Zinedin in 

HeLa cells resulted in multinucleated cells, caused by abnormal abscission. Moreover, PP2A-

mediated dephosphorylation of MINK1 is enhanced by Zinedin in vitro (Hyodo et al., 2012). 

Thus, Zinedin may regulate MINK1 inactivation by PP2A, similar to GC III kinases by Striatin 

(Gordon et al., 2011, Hwang & Pallas, 2014). Based on gel-shift experiments were hypothesized 

that this process might be required for proper MINK1 function in abscission. Furthermore, the 

D. melanogaster homolog of MINK1 and the Striatin homolog CKA were shown to function 

among other biological processes in dorsal closure (Su et al., 2000, Chen et al., 2002). 

 

1.3.1.6 STRIP1/2 

Human Striatin-interacting protein 1 (formerly FAM40A) comprises 837 aa with a molecular 

weight of approximately 96 kDa. The respective gene is alternatively spliced resulting in 4 

isoforms (Bechtel et al., 2007, Ota et al., 2004). Its paralog STRIP2 (FAM40B) comprises 834 

aa with a molecular weight of about 95 kDa. The strip2 gene is alternatively spliced and to date, 
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2 isoforms of STRIP2 are known (Bechtel et al., 2007, Ota et al., 2004). STRIP1/2 are 

membrane bound and localize to the Golgi, where they are assumed to bridge (in combination 

with SLMAP) the centrosome and the nuclear envelope (Frost et al., 2012). In mammals, 

STRIP1 and 2 were shown to interact with STRIPAK components Striatin, CTTNBP2NL and 

MST4 (Goudreault et al., 2009). 

STRIP1/2 have a role in cytoskeletal organization, cell morphology and migration (Bai et al., 

2011). Knockdown of strip1 and strip2 genes in PC3 prostate cancer cells showed different 

phenotypes; strip1 knockdown resulted in changed actin formation and reduced cell spreading, 

strip2 knockdown resulted in altered microtubule organization and induced cell elongation. 

Thus, STRIP1 and 2 might function in targeting STRIPAK complexes to regulate cytoskeletal 

function and organization (Hwang & Pallas, 2014). Moreover, knockdown of strip1 in HeLa 

cells caused increased DNA content and resulted in binuclear cells. Furthermore, these nuclei 

were dysmorphic and fragmented. These findings indicate that STRIP1/2 function with 

STRIPAK components in mitotic progression and cytokinesis (Frost et al., 2012). 

In N. crassa, the STRIP1/2 homolog HAM-2 functions in sexual development and hyphal fusion 

(Xiang et al., 2002). Deletion or mutation of ham-2 resulted in decreased growth velocity, 

shorter aerial hyphae, female sterility, and hyphal fusion defects. Furthermore was hypothesized 

that functional HAM-2 is needed to produce a yet unknown chemical attractant to attract conidial 

anastomosis tubes for hyphal fusion (Roca et al., 2005). In N. crassas close relative 

S. macrospora, STRIP1/2 homolog PRO22 was shown, aside from sexual development and 

hyphal fusion, to be necessary for septa formation in protoperithecia (Bloemendal et al., 2010, 

Rech et al., 2007).  

 

1.3.1.7 SLMAP 

The canonical isoform of human sarcolemmal membrane-associated protein comprises 828 aa 

with a molecular mass of 95 kDa. It contains a transmembrane domain, three coiled-coil domains 

and a forkhead-associated domain, which is a phosphopeptide recognition domain found in many 

regulatory proteins (Hofmann & Bucher, 1995). To date, 8 isoforms of SLMAP are known 

(Wielowieyski et al., 2000, Bechtel et al., 2007, Ota et al., 2004). Isoform 1 and 2 are 

predominantly found in cardiac slow twitch and smooth muscles (Guzzo et al., 2004, 
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Wielowieyski et al., 2000). Each SLMAP isoforms contain one or two transmembrane domains, 

which are crucial for subcellular targeting (Byers et al., 2009). It is not known, which of these 

isoforms are STRIPAK-associated. However, based on their localization, several SLMAP 

isoforms have the potential to be STRIPAK-associated (Hwang & Pallas, 2014). Guzzo et al. 

(2004) showed that SLMAP functions in myoblast fusion. Myoblasts are embryonic preliminary 

skeletal muscles. Differentiation of myoblasts induces expression of a new SLMAP isoform, 

whereas SLMAP isoform 1 and 3 inhibit myoblast fusion. SLMAP localization is isoform-

dependent (Frost et al., 2012, Guzzo et al., 2005). Moreover, a SLMAP isoform is assumed to be 

involved in glucose uptake (Chen & Ding, 2011). SLMAP localizes primarily to the outer 

nuclear envelope, some endoplasmatic reticulum structures and to centrosomes (Frost et al., 

2012, Guzzo et al., 2005, Guzzo et al., 2004). Further has been speculated, that STRIPAK 

components, including SLMAP have an important role in proper subcellular localization of 

mammalian tumor suppressor adenomatous polyposis coli (APC) (Breitman et al., 2008, Tran et 

al., 2013). SLMAP knockdown in HeLa cells causes slightly increased cellular DNA content and 

increased the amount of pericentrin foci in cells during interphase (Frost et al., 2012). Pericentrin 

is a component of the centrosome that serves as a multifunctional scaffold (Delaval & Doxsey, 

2010). Thus, SLMAP might function in coordination of mitotic progression and cytokinesis.  

Moreover, yeast SLMAP homolog FAR9 is required for secretion of pheromone factor α and has 

been shown to function in proper sorting of proteins to the vacuole (Bonangelino et al., 2002). 

SLMAP has been shown to interact with Striatin, SG2NA, subunit A of PP2A, MST4, STK25 

SIKE, STRIP1/2 and FGFR1OP2 (Goudreault et al., 2009). 

 

1.3.1.8 CTTNBP2/NL 

Human cortactin-binding protein 2 exists in two natural variants (Cheung et al., 2001). 

CTTNBP2 consists of 1663 aa with a molecular weight of 181 kDa. It contains a coiled-coil 

domain for oligomerization and 6 ankyrin repeats. These domains are common for protein-

protein interaction in nature (Mosavi et al., 2004). CTTNBP2 N-terminal-like (CTTNBP2NL) 

consists of 639 aa with a molecular weight of about 70 kDa and contains a coiled-coil domain. 

CTTNBP2/NL are cortactin-binding proteins. Cortactin, named after cortical actin-binding 

protein, is a monomeric, cytoplasmatically localized protein that promotes polymerization and 
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rearrangement of the actin cytoskeleton (Cosen-Binker & Kapus, 2006). CTTNBP2 and 

CTTNBP2NL target cortactin to different populations of actinfibers; CTTNBP2 co-localizes 

with cortactin at the cell cortex, whereas CTTNBP2NL localizes to cortactin at stress fibers, with 

higher affinity than CTTNBP2 does (Chen et al., 2012). In contrast to CTTNBP2NL, CTTNBP2 

is highly expressed in brain tissues where it regulates dendric spine density and targeting of 

Striatin and Zinedin to dendric spines (Chen et al., 2012). Furthermore was shown, that 

overexpression of cortactin but not of CTTNBP2NL or mutated CTTNBP2 impaired in cortactin 

binding, rescues the CTTNBP2 knockdown phenotype and thus, both proteins might have 

different functions (Chen et al., 2012, Chen & Hsueh, 2012). It is further assumed that 

CTTNBP2 and CTTNBP2NL might guide the STRIPAK complexes to different subcellular 

compartments. Moreover was shown, that N-Methyl-D-aspartate (NMDA) receptor-based 

synaptic signaling alters the localization of Striatin and Zinedin to dendric spines but not of 

CTTNBP2. NMDA is an aa derivate that binds to NMDA receptors where it mimics results of 

glutamate binding. NMDA receptors are ion channels, that facilitate flow of small amounts of 

Ca2+ ions into the cell (Dingledine et al., 1999).  
Treatment with NMDA resulted in decreased amounts of Striatin and Zinedin complexed with 

CTTNBP2, but did not affect CTTNBP2 concentrations in total (Chen et al., 2012). Activation of 

NMDA receptors leads to an increase of calcium concentrations in the cell. Hwang & Pallas 

(2014) hypothesized on these data, that this might also cause increased CaM-Ca2+ Striatin 

binding. CTTNBP2 and CaM-Ca2+ share the N-terminus of Striatins for interaction and thus, 

CaM-Ca2+ might reduce CTTNBP2 binding to Striatin. CTTNBP2 and CTTNBP2NL associate 

with the APC-deubiquitinating enzyme Trabid (Tran et al., 2013). In addition, Striatins have 

been shown to be necessary for proper subcellular localization of APC (Breitman et al., 2008, 

Tran et al., 2013). Thus, STRIPAK might regulate APC localization and function together with 

Trabid (Hwang & Pallas, 2014). CTTNBP2NL interacts with kinase MAP4K4 (Herzog et al., 

2012). MAP4K4 is a negative regulator of myoblast differentiation and fusion (Wang et al., 

2013). SG2NA and Zinedin were also shown to interact with MAP4K4. Thus, CTTBNBP2NL 

was speculated to regulate MAP4K4 function in complex with Striatins (Hwang & Pallas, 2014). 

Furthermore, CTTNBP2/NL were shown to interact with each other, Striatin, MOB3, MST4, 

STK24, STRIP1 and PP2A subunit A and C (Goudreault et al., 2009). 
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1.3.1.9 SIKE 

The canonical isoform of human SIKE comprises 207 aa with a molecular weight of 

approximately 24 kDa. To date, 2 slightly different isoforms are known, both contain 2 coiled-

coil domains for oligomerization. SIKE is named after suppressor of IKKε, IKKε stands for 

inhibitor-κB kinase ε (Huang et al., 2005). IKKε and TANK-binding kinase 1 (TBK1) are 

kinases that phosphorylates interferon regulatory factor 3 (IRF-3), which is important for 

systemic responses to viral infections. SIKE binds to the IKK-related kinases, IKKε and TBK1, 

and inhibits their ability to interact with the adaptor proteins TRIF and interferon regulatory 

factor 3 (IRF-3), and the sensor protein retinoic acid-inducible gene 1 (RIG-1). TRIF is a 

signaling component that acts upstream of IKKε and TBK1 in toll-like receptor 3 (TLR3)-

mediated signaling (Huang et al., 2005).  

 

Figure 7. Function of SIKE in IKKε and TBK1-mediated innate immune response. TLR3 is activated by 
double-stranded RNA (dsRNA), which is generated during virus replication. This leads to interaction 
between TRIF and the kinases IKKε and TBK1, which phosphorylate IRF3. Phosphorylated IRF3 
translocates into the nucleus, where it activates as dimer a special set of promotors. SIKE inhibits 
interaction between TRIF and IRF3 with IKKε and TBK1; moreover it inhibits interaction between RIG-1 
and both kinases. RIG-1 functions in intracellular dsRNA recognition and activates similar to TRIF, IKKε 
and TBK1 (according to Cardenas (2010) and Ariumi (2014)). 

26 
 



Introduction 
 

RIG-1 functions as recognition receptor for virus detection (Pichlmair et al., 2006). Activation of 

TLR3 significantly reduces interaction between SIKE and TBK1 interaction (Huang et al., 

2005). It is not known, if interaction of SIKE with Striatin works independently to inhibition of 

IKKε and TBK1. SIKE is present in various tissues, among them brain, colon, heart, lung and 

kidney (Huang et al., 2005). 

 

1.3.1.10 FGFR1OP2 

The canonical isoform of human fibroblast growth factor receptor 1 oncogene partner 2 

(FGFR1OP2) comprises 253 aa with a molecular mass of 29.5 kDa and contains 2 coiled-coil 

domains. To date, 3 isoforms are known, resulting from alternative splicing (Bechtel et al., 2007, 

Ota et al., 2004). FGFR1OP2 is a paralog of SIKE and was first identified in gingiva wound 

healing (Sukotjo et al., 2002). FGFR1OP2 is induced in wounded oral fibroblasts (Sukotjo et al., 

2002). Further was shown, that FGFR1OP2 generally contributes to the ability of wound healing 

in fibroblasts and is important for fibroblast-cell migration (Lin et al., 2010). FGFR1OP2 is not 

induced in skin wounding but was shown to contribute, if endogenously expressed, to this 

process (Lin et al., 2010). To date, it is not known, if the STRIPAK complex functions in this 

process. SIKE and FGFR1OP2 are likely mutually exclusive STRIPAK members (Hwang & 

Pallas, 2014). 

 

 STRIPAK in signaling 1.3.2

The STRIPAK complex functions in various processes among them apoptosis, cell-cycle control, 

signaling, Golgi assembly and vesicular trafficking, cell migration and polarity, cardiac function 

as well as neural and vascular development (Hwang & Pallas, 2014). The STRIPAK core 

complex consists of several proteins, which function in many signaling pathway ( see 1.3.1) and 

interact with proteins, that in turn, functions in further pathways. Based on broad range 

interaction studies of the recent years, a complex model has developed (Hwang & Pallas, 2014). 

Figure 8 sums up STRIPAK functions in signaling, as partially discussed under 1.3.1. Additional 

pathways are described in the text. 
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Figure 8. Schematic overview about the STRIPAK core complex in signaling. Shown is the core complex 
in the center and the signaling pathways it functions in indicated with arrows. The pathways are described 
in the following text or have been described above (according to Hwang and Pallas (2014)). 
 

The STRIPAK-associated protein MOB3 was shown to interact with components of the clathrin-

dependent endocytosis, such as epidermal growth factor receptor substrate 15 (EPS15), 

nucleoside-diphosphate kinase (NDPK) and Dynamin I. MOB3 was shown to co-localize with 

Dynamin I in neurons (Baillat et al., 2002). Generally, NDPK, EPS15, and Dynamin I function 

in membrane dynamics and thus, in endocytosis. EPS15 is an adaptor protein that has a role in 

ligand-induced receptor endocytosis of receptor-tyrosine kinases (Fazioli et al., 1993). Further 

was shown, that EPS15 interacts with Dynamin I physically and genetically (Baillat et al., 2002, 

Salcini et al., 2001). Dynamin I is a GTPase that functions in secession of clathrin-coated 
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vesicles from the plasma membrane during endocytosis (Hwang & Pallas, 2014). NDPK also 

physically interacts with Dynamin I (Baillat et al., 2002). Based on these findings and further 

research in D. melanogaster, NDPK is assumed to function in endocytosis by generating GTP for 

Dynamin I (Krishnan et al., 2001). Thus, the STRIPAK complex is hypothesized to be involved 

in endocytosis via MOB3 interactions. This assumption is further supported by findings in 

D. melanogaster, where the MOB3 homolog has a role in axonal transport, microtubule 

organization, neurite growth and branching and synapse assembly (Schulte et al., 2010, Sepp et 

al., 2008). Furthermore, the STRIPAK complex is also suggested to function in caveolae-

dependent endocytosis. This has already been described in section 1.1.1. 

Moreover, the STRIPAK complex is implicated in regulating and targeting estrogen receptor α 

(ERα) to membranes. This is based identification of a STRIPAK-like complex containing ERα, 

the heterotrimeric guanine nucleotide binding protein subunit Gαi and endothelial nitric oxide 

synthetase (eNOS). Estrogens mediate cellular functions via receptor signaling (O'Lone et al., 

2004). Genomic, ERα-mediated signaling takes place at the nucleus, where ERα functions in 

transcription. Nongenomic signaling of estrogens is facilitated by caveolae-associated ERα and 

in endothelial cells including enzymes such as eNOS for rapid activation (Chambliss et al., 2000, 

Raz et al., 2008).  

The STRIPAK complex serves as scaffolding unit for PP2A and ERα in nongenomic and 

genomic estrogen-mediated ERα signaling (Tan et al., 2008). In rat was shown, that a SG2NA 

splice variant localizes to the nucleus (see also 1.1.2). This isoform forms an STRIPAK-like 

complex containing PP2A and ERα and is induced by estrogens. This complex regulates ERα 

activity by PP2A-dependent dephosphorylation (Tan et al., 2008). However, a STRIPAK 

complex involved in nongenomic ERα signaling is facilitated by direct Striatin-ERα interaction. 

Lu et al. (2004) showed that aa 1-203 of Striatin and aa 183-253 of ERα are sufficient for 

Striatin-ERα complex formation and aa 176-253 of Striatin are needed for estrogen-induced 

nongenomic eNOS activation.  

Additionally, the STRIPAK complex is involved in APC-mediated organization of tight 

junctions via SIKE and CTTNBP2NL as described previously under 1.3.1.9 and 1.3.1.8. Tight 

junctions are small ribbons of membrane proteins especially found in epithelial cells, which 

function mainly as diffusion barrier (Bauer et al., 2014). Moreover, observation in many CCM 

lesions led to the hypothesis, that CCM1, CCM2 and CCM3 are important for stability or 
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assembly of cell-junctions of endothelial cells (Burkhardt et al., 2010, Clatterbuck et al., 2001, 

Schneider et al., 2011). Mammalian Striatin and SG2NA have been identified as interaction 

partners of GAIP-interacting protein, C terminus (GIPC) (Varsano et al., 2006). The GTPase 

activating protein GAIP functions in vascular endothelial growth factor receptors 2 (VEGFR2) 

signaling, endocytosis and trafficking (Varsano et al., 2006). VEGFR2 in turn, is necessary for 

formation of the circulatory system (Holmes et al., 2007). Thus, the STRIPAK complex is 

assumed to function similar to MOB3-EPS15 interaction, in endocytosis of cell surface receptors 

(Hwang & Pallas, 2014). The signaling pathways including GC III kinases and Ca2+ have already 

been mentioned in section 1.1 and 1.3.1.4. 

The STRIPAK complex was shown to modulate signaling in the cell lumen in many ways, 

depending on the incoming signal, such as changed Ca2+ concentrations (Figure 8). However, 

incoming signals from environmental changes are first detected by receptors, which are localized 

at the exterior of the cell. Thus, cellular mechanisms are required that mediate signal 

transduction from the recognized signal at the cell exterior to the cell lumen. This process could 

be mediated by glycosylphosphatidylinositol (GPI)-anchored proteins, a group of proteins that 

are attached to the outer leaflet of the cell by a glycolipid anchor (Kinoshita, 2014). To function 

in this process, the GPI-anchor act as an intermediary for communication between cell exterior 

and internal signaling (Robinson, 1997, Jones & Varela-Nieto, 1998). Using antibody cross-

linking, some GPI-anchored proteins have been shown to effect activating or inhibitory signals, 

such as phosphorylation or Ca2+ influx (Robinson, 1997, Jones & Varela-Nieto, 1998). Even 

though the GPI-anchored protein might not pass the cell membrane completely, it transduces 

incoming signals by interaction with other transmembrane proteins, such as, integrins or protein 

kinases (Simons & Toomre, 2000). 

 
 GPI-anchoring  1.4

Eisenhaber et al. (2001) previously calculated that 0.5-1% of the total number of proteins 

encoded in the eukaryotic genome are GPI-anchored. Further is known that 10-20% of 

eukaryotic membrane proteins are attached to the cell surface by GPI-anchoring (Orlean & 

Menon, 2007). These proteins are various in function such as enzymatic reactions, signal 

transduction, bacterial infection and cell to cell interaction (Ilangumaran et al., 2000). Further 

has been shown that metabolites of GPI-anchored proteins serves as second messenger in 

30 
 



Introduction 
 

hormonal pathways (Young & Moss, 2000) or mediate protein and glycoprotein endocytosis and 

turnover (Guo, 2013). GPI-anchors are complex glycolipids posttranslationally linked to a 

certain aa at the C-terminus of a group of specifically structured proteins (Eisenhaber et al., 

1999) (Figure 9). 

  

Figure 9. Schematic model of GPI-anchored protein precursors. GPI-anchored proteins are synthesized as 
precursors and consists of two characteristic domains, an N-terminal signal sequence and a region for 
GPI-anchor attachment. The signal sequence consists of hydrophobic aa and is removed by cleavage. The 
region for GPI-anchor attachment consists of a linker region, the ω-residue, followed by a polar spacer 
and a hydrophobic region to the C-terminal end. The ω-residue is the aa, where the GPI-anchor, a 
glycolipid for membrane anchoring,  is attached to. GPI-anchor attachment requires transamidase 
cleavage of the precursor between position ω and ω+1. The residues ω+1 and ω+2 are crucial but 
unknown in function. ω-1 and ω-2 are assumed to function in cell-wall anchoring. The Linker region 
separates the mature protein from the GPI-anchor (modified according to Mayor and Riezman (2004)). 
 

The precursor of a GPI-anchored protein consists of two characteristic domains; an N-terminal 

signal sequence and a C-terminally located region for GPI-anchor attachment (Mayor & 

Riezman, 2004) (Figure 9). The signal sequence commonly comprises 5-30 aa (Blobel & 

Dobberstein, 1975) and serves for the transport to the ER (Rapoport, 2007). In the ER the protein 

precursor is processed (Orlean & Menon, 2007) and the synthesis as well as the covalent 

attachment of the glycolipid anchor to the target proteins takes place (Pittet & Conzelmann, 

2007). The glycolipid is attached to a special residue within the sequence of the protein 

precursor, named ω-residue. Prior to the attachment, the ω-residue is exposed by transamidase 

cleavage (Eisenhaber et al., 1999). According to present-day research, the region for GPI-anchor 

attachment comprises approximately aa ω-10 up to the C-terminal end of the protein precursor 

(Pierleoni et al., 2008). As already mentioned, the ω-residue is exposed by cleavage. It has been 

shown that aa ω-1 to ω+2 are part of the transamidase cleavage side (Eisenhaber et al., 1998, 
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Paladino et al., 2008). Efficient cleavage depends also on the polar spacer region and the 

hydrophobic tail. The spacer region encompasses the aa from position ω+3 to ω+9 and consists 

of polar residues (Pierleoni et al., 2008), the hydrophobic tail comprises aa ω+10 to the C-

terminal end, represented by hydrophobic aa (Mayor & Riezman, 2004). According to Galian et 

al. (2012) the hydrophobic tail was described to be “less hydrophobic than type II 

transmembrane anchors and more hydrophobic than the most hydrophobic segments found in 

secreted proteins”. After successful cleavage and glycolipid attachment to the proteins ω-residue, 

the aa ω-12 to ω-1 are assumed to serve as linker between the GPI-anchor and the protein and are 

characterized by a low amount of secondary structure (Pierleoni et al., 2008). The region for 

GPI-anchor attachment might also influence the destination of the protein; aa ω-1 and ω-2 were 

previously shown to be necessary for optional cell-wall attachment in yeast (Frieman & 

Cormack, 2003) and Aspergillus fumigatus (Ouyang et al., 2013). Various structures of GPI-

anchors have been identified (Thomas et al., 1990, Paulick & Bertozzi, 2008, Guo, 2013) sharing 

the core structure of 3 mannose residues, ethanolamine, glucosamine and phosphoinositol bound 

to fatty acids (Paulick & Bertozzi, 2008) (Figure 10). 

 

Figure 10. Structure of yeast and mammalian GPI-anchors. GPI-anchors in chemical detail are shown on 
the right, the schematic model is shown on the left. GPI encompasses a core of 3 mannose residues, 
glucosamine (GlcN), and Phosphatidylinositol (PI). The mannose residues are named Man. Man-1 is the 
residue linked to glucosamin (GlcN). The third mannose residue is modified with an ethanolamine 
phosphate (Etn-P). GalNAc = N-acetylglucosamin, NANA = N-acetylneuraminic acid (according to 
Orlean & Menon (2007)).   
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 Sordaria macrospora: A model for fruiting-body development 1.5

The haploid filamentous ascomycete S. macropsora is an established model organism to study 

multicellular fruiting-body development (Teichert et al., 2014). Under natural conditions, 

S. macrospora grows on herbivore dung (Esser, 1992). It is self-fertile (homothallic) and lacks 

an asexual life cycle, meaning it solely undergoes a sexual life cycle without need for a mating 

partner (Pöggeler et al., 1997, Lord & Read, 2011). Thus, mutations can be directly tested on 

their influence on fruiting-body formation. 

Its 39.8 Mb comprising genome is entirely sequenced, allowing easy identification of orthologs 

known from other organisms (Kück et al., 2009, Nowrousian et al., 2010). Further advantages 

are its haploidy and its largely-sized ascospores, which allow classical genetic experiments and 

the isolation of homokaryotic mutants after mutagenesis. The formation of multicellular fruiting 

bodies is an essential step in sexual reproduction of filamentous fungi and involves highly 

controlled cellular differentiation programs (Pöggeler et al., 2006). After the ascospores 

germinate, the fungus grows as two-dimensional mycelium. At day 3 of development the sexual 

life cycle starts with formation of ascogonia, representing female gametangia. At day 4, these 

hyphal coils develop into pre-fruiting bodies, called protoperithecia. Karyogamy, meiosis, and 

postmeiotic mitosis occur in mature fruiting bodies (perithecia) resulting in asci with 8 linearly 

ordered ascospores. These spores are released from the perithecia by increased turgor pressure at 

day 7 as shown in Figure 11 (Engh et al., 2010, Lord & Read, 2011).  

Several PRO proteins essential for fruiting-body formation were identified in a forward genetic 

screen (Bloemendal et al., 2010, Dirschnabel et al., 2014, Engh et al., 2007, Masloff et al., 1999, 

Nowrousian et al., 2007, Nowrousian et al., 2012, Pöggeler & Kück, 2004). Pro mutants, 

including pro11, are characterized by a life-cycle arrest at the stage of protoperithecia formation. 

The S. macrospora pro11 gene encodes a homolog to mammalian Striatin (Pöggeler & Kück, 

2004). Striatin proteins are scaffolding units of the recently identified supramolecular STRIPAK 

complex (Goudreault et al., 2009) (1.3). In filamentous ascomycetes, several of the yet identified 

homologs of mammalian STRIPAK components have been identified and are essential for 

fruiting-body development and cell fusion (Bloemendal et al., 2010, Maerz et al., 2009, Pöggeler 

& Kück, 2004, Shim et al., 2006, Simonin et al., 2010, Xiang et al., 2002) 
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Figure 11. Schematic model of the S. macrospora life cycle. The life cycle starts with ascospore 
germination which further develops to a two-dimensional mycelium. At day 3 of development the sexual 
life cycle starts with formation of ascogonia. These hyphal coils develop into pre-fruiting bodies, called 
protoperithecia at day 4. The mature fruiting body, named perithecium contains asci with 8 linearly 
ordered ascospores, resulting from karyogamy, meiosis, and postmeiotic mitosis. Under laboratory 
conditions, the life cycle is completed after 7 day (according to Kück et al. (2009)). 
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1.6 Aim of this study 

The central aim of this thesis was to get more insight in the role of the STRIPAK complex in the 

filamentous ascomycete S. macrospora. This comprised the characterization of Smgpi1, gene 

coding for a GPI-anchored protein which was first identified as interaction partner of SmMOB3, 

and the identification of potential STRIPAK-associated kinases. The potential kinases should be 

identified by a BLAST search against the S. macrospora genome using the respective 

mammalian kinases MST4, STK24, STK25 and MINK1 as query. Subsequently, the potential 

homologs should be tested for interaction with Striatin homolog PRO11. Moreover, the genes 

Smgpi1, and these encoding for the putative homologs of STRIPAK-associated kinases should be 

replaced by an hph resistance cassette to investigate their impact on sexual development and 

vegetative growth. The respective strains are supposed to be complemented with full-length 

genes and in case of ΔSmgpi1, also with truncated gene versions encoding proteins comprising 

or lacking the signal sequence for ER targeting and the region for GPI-anchor attachment. 

Moreover, localization studies with fluorescence marker eGFP should be used to identify their 

cellular localizations. Localization of SmGPI1 should be performed with several constructs, 

similar to the complementation analysis but tagged with eGFP. Furthermore, generation of 

double-knockout strains are supposed to be generated including deletion of Smgpi1 in 

combination with other genes coding for STRIPAK-associated proteins PRO11 (Striatin 

homolog), PRO22 (STRIP1/1 homolog, SmMOB3 and PRO45 (SLMAP homolog). 
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 Material and Methods 2.

2.1 Strains 

Table 2 contains the strains used and generated for this study, ordered by organism. 

Table 2. Strains generated and used for this study 

Name Genotype Source 

Escherichia coli 
Mach1 

   
 

ΔrecA139 endA1 tonA Φ80(lacZ)ΔM15 ΔlacX74 hsdR(rK- 

mK+), recipient strain for vector amplification 

Invitrogen, Germany  

Saccharomyces cerevisiae 
PJ69-4A MATa trp1-901 leu2-3_112 ura3-52 his3_200 ga14Δ 

ga18OΔ LYS2::GALl-HIS3 GAL2-ADE2 met2::GAL7- 

lacZ 

James et al.,1996 

Y187 

 

MATα; ura3-52; his3-200; ade2-101; trp1-901; leu2-3, 

112; gal4Δ; metΔ; gal80Δ; MEL1; URA3::GAL1UAS- 

GAL1TATA-lacZ 

Clontech, Mountain View, 

USA 

 

AH109 MATa; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2- 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS-MEL1TATA - 

lacZ; MEL1 

Clontech, Mountain View, 

USA 

 

Y187 + pBD-SmGPI1 aa 

1-253 

MATα; ura3-52; his3-200; ade2-101; trp1-901; leu2-

3,112; gal4Δ; metΔ; gal80Δ;MEL1;URA3::GAL1UAS-

GAL1TATA-lacZ; GAL4-binding domain N-terminally 

fused SmGPI1 from Smgpi1 cDNA encoding aa 1-253 

under control of adh promoter 

this study 

Y187 + pBD-SmGPI1 aa 

28-227 

MATα; ura3-52; his3-200; ade2-101; trp1-901; leu2-

3,112; gal4Δ; metΔ; gal80Δ;MEL1;URA3::GAL1UAS-

GAL1TATA-lacZ; GAL4-binding domain N-terminally 

fused SmGPI1 from Smgpi1 cDNA encoding aa 28-227 

under control of adh promoter 

this study 

Y187 + pBD-SmGPI1 aa 

1-100 

MATα; ura3-52; his3-200; ade2-101; trp1-901; leu2-

3,112; gal4Δ; metΔ; gal80Δ;MEL1;URA3::GAL1UAS-

GAL1TATA-lacZ; GAL4-binding domain N-terminally 

this study 
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fused SmGPI1 from Smgpi1 cDNA encoding aa 1-100 

under control of adh promoter 

Y187 + pBD-SmGPI1 aa 

101-253 

MATα; ura3-52; his3-200; ade2-101; trp1-901; leu2-

3,112; gal4Δ; metΔ; gal80Δ;MEL1;URA3::GAL1UAS-

GAL1TATA-lacZ; GAL4-binding domain N-terminally 

fused SmGPI1 from Smgpi1 cDNA encoding aa 101-253 

under control of adh promoter 

this study 

AH109 + pAD-

SmMOB3  

MATa; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2 - 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS -MEL1TATA- 

lacZ; MEL1; GAL4-activation domain N-terminally fused 

to SmMOB3 from Smmob3 cDNA coding for SmMOB3 

full-length under control of adh promoter 

this study 

AH109 + pAD-

SmMOB3 aa 1-144 

MATa; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2- 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS-MEL1TATA- 

lacZ; MEL1; GAL4-activation domain N-terminally fused 

to SmMOB3 from Smmob3 cDNA coding for SmMOB3 

aa 1-144 under control of adh promoter 

this study 

AH109 + pAD11 aa 

282-845 

 

MATa; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2- 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS-MEL1TATA- 

lacZ; MEL1; GAL4-activation domain N-terminally fused 

to PRO11 from pro11 cDNA encoding aa 282-845 under 

control of adh promoter 

this study 

AH109 + pAD11FL MATa; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2- 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS-MEL1TATA- 

lacZ; MEL1; GAL4-activation domain N-terminally fused 

to PRO11 from pro11 full-length cDNA under control of 

adh promoter 

this study 

Y187 + pBD-SmKIN3 MATα; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2- 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS-MEL1TATA- 

lacZ; MEL1; GAL4-binding domain N-terminally fused to 

SmKIN3 from Smkin3 full-length cDNA under control of 

adh promoter 

this study 
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Y187 + pBD-SmKIN24 MATα; trp1-901; leu2-3, 112; ura3-52; his3-200; ade2- 

101; gal4Δ; gal80Δ; LYS2::GAL1UAS-GAL1TATA-HIS3; 

GAL2UAS-GAL2TATA-ADE2; URA3::MEL1UAS-MEL1TATA- 

lacZ; MEL1; GAL4 activation domain N-terminally fused 

toSmKIN24 from Smkin24 full-length cDNA under control 

of adh promoter 

this study 

Sordaria macrospora 
S48977  wild type  U. Kück, Bochuma 

S66001  Δku70::natR; fertile  Pöggeler & Kück, 2006 

S23442  mutation in fus1-1 gene; brownish ascospores  Nowrousian et. al., 2012 

S67813  mutation in gene r; pink ascospores  U. Kück, Bochuma 
 

ΔSmkin3 ΔSmkin3::hygR, ssi, fertile this study 

ΔSmkin3/R2 ΔSmkin3::hygR, pink ascospores, ssi, fertile this study 

ΔSmKIN3::pRS-

SmKIN3+ 

ΔSmkin3::hygR, pRS-SmKIN3+ect, ssi, fertile this study 

ΔSmkin3::pDS-

SmKIN3ngfp 

ΔSmkin3::hygR, pDS-SmKIN3ngfpect, ssi, fertile this study 

ΔSmkin24 ΔSmkin24::hygR, ssi, sterile this study 

ΔSmkin24/R2 ΔSmkin24::hygR, pink ascospores, ssi, sterile this study 

ΔSmkin24::pRS-

SmKIN24+ 

ΔSmkin24::hygR, pRS-SmKIN24+ect, ssi, fertile this study 

ΔSmkin24::pDS-

SmKIN24ngfp 

ΔSmkin24::hygR, pDS-SmKIN24ngfpect, ssi, fertile this study 

ΔSmkin3/ΔSmkin24 ΔSmkin3::hygR, ΔSmkin24::hygR, ssi, sterile this study 

S48977::pHA11 natR, pHA11ect, ssi, fertile this study 

S67813::pFLAG-

SmKIN3 

pink ascospores, hygR, pFLAG-SmKIN3ect, ssi, fertile this study 

S48977::pFLAG-

SmKIN3, 

S48977::pHA11 

pFLAG-SmKIN3ect, pHA11ect, natR, hygR, ssi, fertile this study 

ΔSmgpi1 ΔSmgpi1::hygR, ssi, fertile Bernhards 2010 

ΔSmgpi1/r2 ΔSmgpi1::hygR, pink ascospores, ssi, fertile this study 

ΔSmmob3 ΔSmmob3::hygR, ssi, sterile Bernhards & Pöggeler, 
2011 

ΔSmmob3/r2 ΔSmmob3::hygR, pink ascospores, ssi, sterile this study 

ΔSmgpi1/ΔSmmob3 ΔSmgpi1::hygR, ΔSmmob3::hygR, ssi, fertile this study 
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ΔSmgpi1/ΔSmmob3/r2 ΔSmgpi1::hygR, ΔSmmob3::hygR, pink ascospores, ssi, 

fertile 

this study 

ΔSm3978 ΔSm3978::hygR, ssi, fertile this study 

ΔSmmob3/ΔSm3978 ΔSmmob3::hygR, ΔSm3978::hygR, ssi, sterile this study 

Δpro11 Δpro11::hygR, ssi, sterile Bernhards & Pöggeler, 
2011 

ΔSmgpi1/Δpro11 ΔSmgpi1::hygR, Δpro11::hygR, ssi, sterile this study 

Δpro22 Δpro22::hygR, ssi, sterile Bloemendal et al., 2012 

ΔSmgpi1/Δpro22 ΔSmgpi1::hygR, Δpro22::hygR, ssi, sterile this study 

Δpro45 Δpro45::hygR, ssi, sterile U. Kück, Bochuma 

ΔSmgpi1/Δpro45 ΔSmgpi1::hygR, Δpro45::hygR, ssi, sterile this study 

ΔSmgpi1:: 
pRS-SmGPI1-egfp aa 1-
492 

ΔSmgpi1::hygR, pRS-SmGPI1-egfp aa 1-492ect, natR, ssi, 

fertile 

this study 

ΔSmgpi1::pRS-
SmGPI1-egfp aa 28-492 

ΔSmgpi1::hygR, pRS-SmGPI1-egfp aa 28-492ect, natR, ssi, 

fertile 

this study 

ΔSmgpi1::pRS-
SmGPI1-egfp aa 1-466 

ΔSmgpi1::hygR, pRS-SmGPI1-egfp aa 1-466ect, natR, ssi, 

fertile 

this study 

ΔSmgpi1::pRS-
SmGPI1-egfp aa 28-466 

ΔSmgpi1::hygR, pRS-SmGPI1-egfp aa 28-466ect, natR, ssi, 

fertile 

this study 

ΔSmgpi1::pRS-
SmGPI1-egfp aa 1-27 

ΔSmgpi1::hygR, pRS-SmGPI1-egfp aa 1-27ect, natR, ssi, 

fertile 

this study 

ΔSmgpi1::pRS-
SmGPI1-egfp aa 1-27-
KDEL 

ΔSmgpi1::hygR, pRS-SmGPI1-egfp aa 1-27-KDELect, 

natR, ssi, fertile 

this study 

ΔSmgpi1::pRS-SmGPI1 
aa 1-253 

ΔSmgpi1::hygR, pRS-SmGPI1 aa 1-253ect, natR, ssi, fertile this study 

ΔSmgpi1::pRS-SmGPI1 
aa 28-253 

ΔSmgpi1::hygR, pRS-SmGPI1 aa 28-253ect, natR, ssi, 

fertile 

this study 

ΔSmgpi1::pRS-SmGPI1 
aa 1-227 

ΔSmgpi1::hygR, pRS-SmGPI1 aa 1-227ect, natR, ssi, fertile this study 

ΔSmgpi1::pRS-SmGPI1 
aa 28-227 

ΔSmgpi1::hygR, pRS-SmGPI1 aa 28-227ect, natR, ssi, 

fertile 

this study 

S48977::p1783 S48977, p1783ect, hygR, ssi, fertile Voigt & Pöggeler, 2013 

S48977::pMOB3-FLAG 
S48977::pRS-SmGPI1-
egfp aa 1-492 

S48977, pMOB3-FLAGect, pRS-SmGPI1-egfp aa 1-492ect, 

hygR, natR, ssi, fertile 

this study 

S48977::pMOB3-FLAG S48977, pMOB3-FLAGect, hygR, ssi this study 

 S48977::pRS-SmGPI1-
egfp aa 1-492 

S48977, pRS-SmGPI1-egfp aa 1-492ect, natR, ssi, fertile this study 

S48977::p1783-1 
S48977 ::pFLAG Mob3 

S48977, p1783-1ect, pFLAG Mob3, hygR, ssi this study 

S48977::pFLAGN1 
S48977::pRS-SmGPI1-

S48977, pFLAGN1, hygR, pRS-SmGPI1-egfp aa 1-492ect, this study 
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egfp aa 1-492 natR, ssi, fertile 

ΔSmgpi1/ΔSmmob3:: 
pRS-SmGPI1 aa 1-253 

ΔSmgpi1::hygR, ΔSmmob3::hygR, pRS-SmGPI1 aa 1-

253ect, natR, ssi, sterile 

this study 

ΔSmgpi1/ΔSmmob3:: 
pRS-SmGPI1 aa 28-253 

ΔSmgpi1::hygR, ΔSmmob3::hygR, pRS-SmGPI1 aa 28-

253ect, natR, ssi, sterile 

this study 

ΔSmgpi1/ΔSmmob3:: 
pRS-SmGPI1 aa 1-227 

ΔSmgpi1::hygR, ΔSmmob3::hygR, pRS-SmGPI1 aa 1-

227ect, natR, ssi, sterile 

this study 

ΔSmgpi1/ΔSmmob3:: 
pRS-SmGPI1 aa 28-227 

ΔSmgpi1::hygR, ΔSmmob3::hygR, pRS-SmGPI1 aa 28-

227ect, natR, ssi, sterile 

this study 

ΔSmgpi1/ΔSmmob3:: 
pRS-SmGPI1 aa 1-253 

ΔSmgpi1::hygR, ΔSmmob3::hygR, pRS-SmGPI1 aa 1-

253ect, natR, ssi, sterile 

this study 

ΔSmgpi1/ΔSmmob3:: 
pMobFL 

ΔSmgpi1::hygR, ΔSmmob3::hygR, pMobFLect, natR, ssi, 

fertile 

this study 

Δpro11/ΔSmkin3 Δpro11::hygR, ΔSmkin3::hygR, ssi, sterile this study 

Δpro11/ΔSmkin24 Δpro11::hygR, ΔSmkin24::hygR, ssi, sterile this study 

ect = ectopically integrated, FL = full-length, nat = nourseothricin-cassette, hph = hygromycin-cassette, pt = primary transformant, ssi = 
single spore isolate, hygR = hygromycin resistant, natR

 = nourseothricin resistant, ampR = ampicillin resistant, kanR= kanamycine 
resistant a Institute of Biochemistry, University of Stuttgart, Germany. 
 
 

2.2 Plasmids 

Table 3 contains the plasmids used and generated for this study with the respective features.  

Table 3. Plasmids generated and used for this study 

Plasmid Feature Source 

pDS23-egfp 
egfp under control of gpd promoter 
and trpC terminator, ura3, nat-
cassette 

Teichert et al., 2012 

pRSnat ura3, nat cassette, ampR Klix et al., 2010 
pRShyg  ura3, hph cassette, ampR Bloemendal et. al 2012 
pFLAGN1  his-3::ccg-1(p)::3xFLAG Kawabata & Inoue, 2007 
pHAN1  his-3::ccg-1(p)::HA Kawabata & Inoue, 2007 
pGBKT7  trp1, GAL4-BD, kanR Clonetech 
pGADT7 leu2, GAL4-AD, ampR Clonetech 

p1783-1 
egfp under control of gpd 
promoter and trpC terminator, hph-
cassette 

Pöggeler et. al, 2003 

pRS-Smkin3+ Smkin3 bp -1038 to 3811 in pRSnat this study 

pDS-Smkin3ngfp Smkin3 bp 1 to 2755 in pDS23, egfp 
is fused upstream to Smkin3 this study 

pRS-Smkin3cgfp Smkin3 bp 1 to 2755 in pRSnat, egfp 
is fused downstream to Smkin3 this study 

pRS-Smkin24+ Smkin24 bp -1036 to 4023 in pRSnat this study 
pDS-Smkin24ngfp Smkin24 bp 1 to 2947 in pDS23, this study 
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egfp is fused upstream to Smkin24 

pRS-Smkin24cgfp 
Smkin24 bp 1 to 2947 in pRSnat, 
egfp is fused downstream to 
Smkin24 

this study 

pRS-KoSmkin3 

1038 bp of the upstream region and 
1016 bp of the downstream region of 
Smkin3 interrupted by the hph-
cassette in pRSnat 

this study 

pRS-KoSmkin24 

1036 bp of the upstream region and 
756 bp of the downstream region of 
Smkin24 interrupted by the hph-
cassette in pRSnat 

this study 

pKOSm3978 

988 bp of the downstream region 
and 962 bp of the upstream region of 
Sm3978 interrupted by the 
hph-cassette in pRSnat 

this study 

pRS-SmGPI1_pre 

Smgpi1 bp -986 to 903 fused to egfp, 
followed by Smgpi1 bp 904 to 980 
under control of trpC terminator in 
pRSnat 

this study 

pRS-SmGPI1-egfp aa 1-492 

Smgpi1 bp -986 to 869 fused to egfp, 
followed by Smgpi1 bp 870 to 980 
under control of trpC terminator in 
pRSnat 

this study 

pRS-SmGPI1-egfp aa 28-492 

Smgpi1 bp -986 to +3 fused to 
Smgpi1 bp 82 to 901 fused to egfp, 
followed by Smgpi1 bp 902 to 980 
under control of trpC terminator in 
pRSnat 

this study 

pRS-SmGPI1-egfp aa 1-466 

Smgpi1 bp -986 to 901 fused to egfp, 
followed by Smgpi1 bp 902 to 980 
under control of trpC terminator in 
pRSnat 

this study 

pRS-SmGPI1-egfp aa 28-466 
Smgpi1 bp -986 to 901 fused to egfp, 
under control of trpC terminator in 
pRSnat 

this study 

pDS23-SmGPI1ngfp Smgpi1 full-length in pDS23, egfp is 
fused upstream to Smgpi1 

this study 

pRS-SmGPI1-egfp aa 1-27 
Smgpi1 bp 1 to81 fused to egfp, 
under control of gpd promotor and 
trpC terminator in pRSnat 

this study 

pRS-SmGPI1-egfp aa 1-27-KDEL 

Smgpi1 bp 1 to 81 fused to egfp, 
followed by a short sequence 
encoding the ER retention signal 
KDEL under control of gpd 
promotor and trpC terminator in 
pRSnat 

this study 

pRS-SmGPI1 aa 1-253 Smgpi1 bp -986 to1535 in pRSnat this study 

pRS-SmGPI1 aa 28-253 Smgpi1 bp -986 to 1 fused to Smgpi1 
bp 82 to 1535 in pRSnat 

this study 

pRS-SmGPI1 aa 1-227 Smgpi1 bp -986 to 681 fused to 
Smgpi1 bp 981 to 1535 in pRSnat 

this study 

pRS-SmGPI1 aa 28-227 
Smgpi1 bp -986 to 1 fused to Smgpi1 
bp 82 to 961 fused to Smgpi1 bp 981 
to 1535 in pRSnat 

this study 

pMOBFlag 3xFLAG fused to Smmob3 under Bloemendal et al., 2012 
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control of ccg1 promotor in pRShyg 
pMOBFL Full-length Smmob3 in pRSnat Bernhards & Pöggeler, 2011 

pBD-SmGPI1 aa 1-253 Smgpi1 cDNA bp 1 to 762 fused to 
GAL4-BD in pGBKT7 

this study 

pBD-SmGPI1 aa 28-227 Smgpi1 cDNA bp 82 to 762 fused to 
GAL4-BD in pGBKT7 

this study 

pBD-SmGPI1 aa 1-100 Smgpi1 cDNA bp 1 to 300 fused to 
GAL4-BD in pGBKT7 

this study 

pBD-SmGPI1 aa 101-253 Smgpi1 cDNA bp 301 to 762 fused 
to GAL4-BD in pGBKT7 

this study 

pBD-SmKIN3 SmKIN3 cDNA bp 1-2463 fused to 
GAL4-BD in pGBKT7 this study 

pBD-SmKIN24 SmKIN24 cDNA bp 1-2616 fused to 
GAL4-BD in pGBKT7 this study 

pBD11 aa 282-845 pro11 cDNA bp 843 to 2538 fused 
to GAL4 BD in pGBKT7 this study 

pAD-SmMOB3 aa 1-144 Smmob3 cDNA bp 1 to 432 fused to 
GAL4-AD in pGADT7 

this study 

pAD-SmMOB3 Smmob3 cDNA bp 1 to 1992 fused 
to GAL4-AD in pGADT7 this study 

pAD11FL pro11 full-length cDNA fused to 
GAL4-AD in pGADT7 this study 

gpd promoter, glycerin aldehyde 3-phosphate dehydrogenase promoter; trpC terminator, anthranilate synthase terminator from A. 
nidulans; ampR, ampicillin resistance; kanR, kanamycin resistance; hph, hygromycin B phosphotransferase; nat, nourseothricin N-
acetyl transferase 
 

2.3 Primers 

Table 4 contains the oligonucleotides used for amplification, verification or RT-PCR for this 
study. Primer sequences are stated in 5’-3’ direction, restriction restriction recognition sequences 
are shown in italics. 
 
Table 4. Primers used for this study 

Name Sequence (5’-3’) Binding position 

Localization, overexpression or multiple usage 
Smkin3_5F GACTGCCCCGGCGCGGCAGC Smkin3 bp -929 to -910 
Smkin3_3R CAACGTAGGTATGTACGTAG Smkin3 bp 3641 to 3660 
Smkin24_F ATGGCCGACCGCGAATATGA Smkin24 bp 1 to 20 
Smkin24_R TCATGTTCCTTGTTTCATTC Smkin24 bp 2928 to 

2947 
Smkin3_F ATGGCCGACGAAGGAGTCGC Smkin3 bp 1 to 20 
Smkin3_R CTAAGATCCGGCAACAGCCC Smkin3 bp 2736 to 2755 
3int 1-3_R TGCTTAATGACCTCGGGAGCCA Smkin3 bp 822 to 841 
24int 1-3_R TGCTTAATGACCTCGGGAGCCA Smkin24 bp 540 to 563 
24int 4_F CCTTCGATGCTCTATCACCAGC Smkin24 bp 1801 to 

1822 
24int 4_R CCAGCTTATACACCAACTTGCGTATC Smkin24 bp 2436 to 

2458 
Smkin3ngfp_F TCACTCTCGGCATGGACGAGCTGTACAAGATGGCCGAC

GAAGGAGTCGC 
Smkin3 bp 1 to 20, 
overhang to egfp 
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Smkin3ngfp_R GTTTGATGATTTCAGTAACGTTAAGTGGATCATCTGTTC
ACCTTCTCTT 

Smkin3 bp 2736 to 2755, 
overhang to trpC 
terminator 

Smkin24ngfp_F TCACTCTCGGCATGGACGAGCTGTACAAGATGGCCGAC
CGCGAATATGA 

Smkin24 bp 1 to 20, 
overhang to egfp 

Smkin24ngfp_R GTTTGATGATTTCAGTAACGTTAAGTGGATCATGTTCCT
TGTTTCATTC 

Smkin24 bp 2928 to 
2947, overhang to trpC 
terminator 

kin3_pBD_inf_F AGGAGGACCTGCATATGGCCGACGAAGGAGTCGC Smkin3 bp 1 to 20, 
overhang to pGBKT7 

kin3_pBD_inf_R GGATCCCCGGGAATTCTCATCTGTTCACCTTCTCTT Smkin3 bp 2736 to 2755, 
overhang to pGBKT7 

kin24_pBD_inf_F  AGGAGGACCTGCATATGGCCGACCGCGAATATGA Smkin24 bp 1 to 20, 
overhang to pGADT7 

kin24_pBD_inf_R 
GGATCCCCGGGAATTCTCATGTTCCTTGTTTCATTCCC 

Smkin24 bp 2928 to 
2947, overhang to 
pGADT7 

kin3_FLAG_F ATTACAAGGATGACGATGACAAGGGTTCAATGGCCGAC
GAAGGAGTCGC 

Smkin3 bp 1 to 20, 
overhang to FLAG 

TtrpC_F TCCACTTAACGTTACTGAAAT trpC terminator bp 1 to 
21 

pRS426GFPrev GCGGATAACAATTTCACACAGGAAACAGCTCGAGTGGA
GATGTGGAGTG 

trpC terminator bp 749 
to 768, overhang to 
pRS426 

pRSccg1 GTAACGCCAGGGTTTTCCCAGTCACGACG 
TAGAAGGAGCAGTCCA 

ccg1 promotor bp 1 to 
21, overhang to pRS426 

Gpi1_5_inf_F2 CGGGCCCCCCCTCGAGGGTCTCTGCTGCGAACCTTT Smgpi1 bp -967 to -948, 
overhang to pRS426 

pRS4269375-4F GTAACGCCAGGGTTTTCCCAGTCACGACGAGGTACAAG
TAGTCGGCGTG 

Smgpi1 bp -1123 to 
1103, overhang to 
pRS426 

5utr-GPI1oh-R GGGAATGCGACTGCTGATTATCATGACGGCAAATCTGT
ATTGCT 

Smgpi1 bp -20 to -1, 
overhang to Smgpi1 
ORF 

SmGPI1core5’oh_
F CACCTTCCAAGCAATACAGATTTGCCGTCATGCAACAA

CCGTTCCTGCCCG 

Smgpi1 bp 82 to101, 
contains an additional 
start codon, overhang to 
Smgpi1 promotor 

GFP_r_TtrpCoh_R 
GTTTGATGATTTCAGTAACGTTAAGTGGATTACTTGTAC
AGCTCGTCCAT 

egfp bp 694 to 713 
(lacks a stop codon), 
overhang to trpC 
terminator 

Omega-gfp_inf_F 
GACGAGCTGTACAAGAGCGGCTTCTACTTTGGCA 

egfp bp 1 to 20, 
overhang to Smgpi1 870 
to 888 

Core-gfp_inf_R2 GCCCTTGCTCACCATAGGCGCACCCGTGCCAAAGT Smgpi1 bp 879 to 899, 
overhang to egfp 

Gpi1_5_R2 GACGGCAAATCTGTATTGCT Smgpi1 bp -20 to -1 
GFP_F ATGGTGAGCAAGGGCGAGGAGC egfp bp 1 to 22 
GFP_R CTTGTACAGCTCGTCCATGCCGAGAGTG egfp bp 717 to 689 
TtrpCKDEL-F 

TGGACGAGCTGTACAAGGACGAGCTCTAAGATCCACTT
AACGTTAC 

trpC terminator bp 749 
to 768, contains bases 
encoding for ER 
retention signal KDEL 

GFP9375ss-R GTGAACAGCTCCTCGCCCTTGCTCACCATAGCGTGGACG
GACAAGACCA 

Smgpi1 bp 62 to 81, 
overhang to egfp 
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9375_o_R TTGATGATTTCAGTAACGTTAAGTGGATCTCAGAGAAG
ACCTGACACCG 

Smgpi1 bp 961 to 980, 
overhang to trpC 
terminator  

Knockout and verification 
Smkin24_1k_5F GTAACGCCAGGGTTTTCCCAGTCACGACGCAGTGAGCT

AAGTGCTAACC 

Smkin24 bp -1019 to -
1038, overhang to 
pRS426 

Smkin24_5F GACATGCCTGCCCCACAAAT Smkin24 bp -1053 to      
-1072 

Smkin24_5R GTAACGCCAGGGTTTTCCCAGTCACGACGCGATTAAGG
AGGCTGGCCTG 

Smkin24 bp -20 to -1, 
overhang to hph 

Smkin24_3F GAGTAGATGCCGACCGGGAACCAGTTAACTAGTTAGAG
GACTTGCATAT 

Smkin24 bp 2945 to 
2964, overhang to hph 

Smkin24_1k_3R GCGGATAACAATTTCACACAGGAAACAGCGACAGTGTA
AGGGTACCTAC 

Smkin24 bp 4004 to 
4023, overhang to 
pRS426 

Smkin24_2k_3R ACTTTGATGGAAGGCTTGGTG Smkin24 bp 4924 to 
4945 

Smkin3_1k_5F GTAACGCCAGGGTTTTCCCAGTCACGACGCGACTCGAC
AGGCATGCGAA 

Smkin3 bp -1038 to -
1019, overhang to 
pRS426 

Smkin3_5R CAAAAAATGCTCCTTCAATATCAGTTAACCTTTTGGTTA
CAGAAGGGTG 

Smkin3 bp -20 to -1, 
overhang to hph 

Smkin3_3F GAGTAGATGCCGACCGGGAACCAGTTAACTAGTGAGGT
GATGAATGGTG 

Smkin3 bp 2756 to 2775, 
overhang to hph 

Smkin3_1k_3R GCGGATAACAATTTCACACAGGAAACAGCATCGCTTCA
TGACTCCCCGG 

Smkin3 bp 3792 to 3811, 
overhang to pRS426 

Smkin3_2k_3R CTTTTCCCTTTTCTTCAACCA Smkin3 bp 4736 to 4755  
Hph_F GTTAACTGATATTGAAGGAGCATTTTTTGG hph bp 1 to 29  
Hph_R GTTAACTGGTTCCCGGTCGGCATCTACTC hph bp 1414 to 1386  
TC1 CACCGCCTGGACGACTAAACC hph bp 273 to 292 
H3 GTACTCGCCGATAGTGGAAAC hph bp 955-974  
Smgpi1_3R GCGGATAACAATTTCACACAGGAAACAGCTTCGTTGTC

AGTCTAGATGG 
Smgpi1 bp 1516 to 1535, 
overhang to pRS426 

Smgpi1_5F GTAACGCCAGGGTTTTCCCAGTCACGACGGGTCTCTGCT
GCGAACCTTT 

Smgpi1bp -986 to -967, 
overhang to pRS426 

Pho1-14F CCCCGACATATCGAATCCAGC Smmob3 bp -225 to -205 
Pho1-2R CCCCTAATGATGCCTCTACGC Smmob3 2166 to 2146 
11-21 AAGCGCGCTTGCCAGTCGCTGC pro11 bp -783 to -762 
11-Kor ACGATCAGCCTCGGAAAGACCGC pro11 bp 3564 to 3586 
Pro22_ver_F GAAGTTCGGTGGGCGATGCC pro22 bp -801 to 820 
Pro22_ver_R CAAGAAGGGTCGAGATAAAG pro22 bp 4154 to 4184 
Pro45_ver_F GGACCAAAGCAACGGAACGT pro45 bp -1092 to -1111 
Pro45_ver_R ATACAAACCCGCTGTCGTGA pro45 bp 3534 to 3553 
3978_5F TGGCGCGGCAAGCTGCGAGCGTAACGCCAGGGTTTTCC

CAGTCACGACG 
Sm3978 bp -962 to -943, 
overhang to pRS426 

3978_5R CAAAAAATGCTCCTTCAATATCAGTTAACATCGGAAGG
CGGCAGAAA 

Sm3978 bp -20 to -1, 
overhang to hph 

3978_3F GAGTAGATGCCGACCGGGAACCAGTTAACAGGCCTGAT
GCCTAGTCTTT 

Sm3978 bp 4213 to 
4232, overhang to hph 

3978_3R GCGGATAACAATTTCACACAGGAAACAGCCAAAGAGG
GAGAGGAGGTCG 

Sm3978 bp 5201 to 
5220, overhang to 
pRS426 
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3978_5F2 CCAAGGCCGCAAGGCGGGCA Sm3978 bp -1143 to -
1103 

3978_3R2 TCGAGGGGTGCCTGGGGTCG Sm3978 bp 5305 to 5324 

Yeast two-hybrid 
Sm9375_Y2H_ges
_F CATATGGATAATCAGCAGTCGCA Smgpi1 bp 1 to 20, NdeI 

recognition sequence 
Sm9375_Y2H_ges
_R GAATTCTCAGAGAAGACCTGACACCG 

Smgpi1 bp 961 to 980, 
EcoRI recognition 
sequence 

Sm9375_Y2H_5’_
2R GAATTCTCAGCCGGTGCAGACGGCAT 

Smgpi1 cDNA bp 283 to 
303, NdeI recognition 
sequence 

Sm9375_Y2H_3’_
F CATATGAATGCCGTCTGCACCGGCAC 

Smgpi1 cDNA bp 304 to 
323, NdeI recognition 
sequence 

Sm9375_Y2H_ 
oSigseq_F CATATGCAACAACCGTTCCTGCCCGT 

Smgpi1 bp 82 to 101, 
NdeI recognition 
sequence 

Sm9375_Y2H_ 
oSigseq_2R GAATTCTCAAGGCGCACCCGTGCCAA 

Smgpi1 cDNA bp 665 to 
684, EcoRI recognition 
sequence 

Mob3_Y2H_F CATATGTCGCTTCCTCTAAGC Smmob3 bp 1 to19, NdeI 
recognition sequence 

Mob3_Y2H_R 
GAATTCCTAGTCCACCTTTGGGGCCT 

Smmob3 bp 2078 to 
2061, EcoRI recognition 
sequence 

Mob3_as1-144_R 
GAATTCGCA GGG CGG CTC ATC AAA CA 

Smmob3 bp 499 to 518, 
EcoRI recognition 
sequence 

Pro11_Y2H_F CATATGGGCACCAACGGCGTTCA pro11 bp 1 to 20, NdeI 
recognition sequence 

Pro11_Y2H_R GAATTCTCACCTCGCATACACCTTGACC pro11 bp 2696 to 2716, 
recognition sequence 

Pro11_WD40_Y2H
_R CATATGGGACAACAGCTACACGATATTC 

pro11 bp 968 to 986, 
NdeI recognition 
sequence 

Southern hybridization 
Pho1-3F AGCACAGCGAACACAAGAGG Smmob3 bp 2748 to 

2762 
Pho1-3R AGCCTAGTCCACCTTTGGGGCCT Smmob3 bp 2748 to 

2762 
9375_Sprobe_F CCGGTCTCGCGGGCACCAAC Smgpi1 bp -432 to -413 

Kin3_probe_F GGTGATGAATGGTGAAGAGA Smkin3 bp 2761 to 2780 

Kin3_probe_R GTGATGAGAAAAGCGTGAATAG Smkin3 bp 448 to 467 

Kin24_probe_F GTTAAAGGGGGACACCGGGG Smkin24 bp 2976 to 
2996 

Kin24_probe_R GACAAGAGGACAGTAGGTACACG Smkin24 bp 559 to 536 
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2.4 Chemicals and Materials 

Acetic acid (Roth GmbH, 3738.2), acrylamide (Rotiphorese® Gel 40 37,5:1) (Roth GmbH, 

3029.1), adenine (Sigma-Aldrich, 01830-50G), AEBSF (4-(2-aminoethyl)benzen- 

sulfonylfluorid) (AppliChem, A1421,0001), agar-agar (Roth GmbH, 5210.2), agar-agar SERVA 

high gel-strength (SERVA, 11396.03), agarose (Biozym Scientific GmbH, 840004), ammonium 

chloride (VWR International, BDH0208-500G), ammonium sulfate (AppliChem, A1032,1000), 

ampicillin (Sigma-Aldrich, A9518-25G), arginine (AppliChem, A3709,0250), ammonium 

persulfate (APS) (Roth GmbH, 9592.3), aprotinin (AppliChem, A232,0025), bacto-yeast-extract 

(Oxoid LTD., LP0021), ß-glycerophosphat (AppliChem, A2253,0100), benzamidine 

(AppliChem, A1380,0005), bio malt maize extract (Brau-Partner Kling, 115), biotin (Sigma-

Aldrich, B4501-1G), bismaleimidohexane (Thermo Scientific, 22330), boric acid (Roth GmbH, 

6943.1), bromophenol blue (AppliChem, A3640,0005), caffeine anhydrous (Roth GmbH, 

N815.3), calcium chloride (Roth GmBH, CN92.1), calcium chloride dihydrate (Roth GmbH, 

5239.1), chloroform (Merck Millipore, 1024451000), citric acid monohydrate (Roth GmbH, 

3958.1), copper (II) sulfate 5-hydrate (Roth GmbH, P024.1), Corning® Spin-X® UF 

concentrators (Corning, 431489), coomassie brilliant blue G-250 (Roth GmbH, 9598.1), 

coomassie brilliant blue R-250 (Roth GmbH, 3862.1) CSM-Ade-His-Leu-Trp-Ura (MP 

Biomedicals, 4550-122), DAPI (4'-6-diamidino-2-phenylindole) (AppliChem, A1001,0010), 

deoxycholic acid sodium (Roth GmbH, D6750), desoxynucleotid triphosphate (dNTPs) (Thermo 

Scientific, R0191), Difco™ skim milk (BD Biosciences, 232100), Difco™ Yeast Nitrogen Base 

w/o amino acids and ammonium sulfate (BD Biosciences, 233520), dimethylformamide (Roth 

GmbH, T921.1), di-sodium hydrogen phosphate (Merck-Millipore, 1065855000), DMSO 

(dimethyl sulfoxide) (Merck Millipore, 1029310500), DTT (1,4-dithiothreitol) (AppliChem, 

A1101,0025), EDTA (ethylenediamine tetraaceticacid disodium salt dihydrate) (Roth GmbH, 

8043.2), electroporation cuvettes (VWR International, 732-1137), ethanol (VWR International, 

20821.321), ethidium bromide (Sigma-Aldrich, 46065), Flat Optical 8-Cap Strip 0.2 ml 

(Biozym, 712100), FM 4-64 (Invitrogen, F34653), formaldehyde (Roth GmbH, 4979.2), 

formamide (Sigma-Aldrich, 47670), formic acid (Merck Millipore, 1002641000), Gene Ruler 

DNA Ladder Mix (Thermo Scientific, SM0331, GeneScreen Hybridization Transfer Membrane 

(PerkinElmer Lifesciences, NEF988001PK), GfpTrap_A (Chromotek, gta-20), glass beads Ø 

0.25-0.5 mm (Roth GmbH, A553.1), glass beads Ø 2.85-3.45 mm (Roth GmbH, A557.1), 
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glucose (AppliChem, A3617,1000), glycine (Roth GmbH, 0079.1), glycerine (VWR 

International, 24388.295), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonicacid) (Roth 

GmbH, 9105.4), histidine (Merck Millipore, 1.04351.0025), hydrochloric acid (Roth GmbH, 

4625.2), hydrogen peroxide 30% (H2O2) (Merck Millipore, 8.22287.2500), hygromycin B 

(Merck-Millipore, 400051-10MU), IPTG (isopropyl-β-D-galactopyranoside) (Roth GmbH, 

2316.3), iron (II) chloride (Roth GmbH, 231-753-5), iron(II) sulfate heptahydrate (Sigma-

Aldrich, 31236), imidazole (Roth GmbH, X998.1), isopropanol (AppliChem, A0900,2500GL), 

kanamycin sulfate (Sigma-Aldrich, 60615), leucine (AppliChem, A1426,0100), leupeptin (N-

acetyl-L-leucyl-L-leucyl-L-argininal) (AppliChem, A2183,0025), lithium acetate (Roth GmbH, 

5447.1), maize flour (Mühle Levers, Bochum, Germany), magnesium chloride hexahydrate 

(Merck Millipore, 1.05833.1000), magnesium sulfate heptahydrate (Roth GmbH, P027.2), 

manganese (II) chloride tetrahydrate (Roth GmbH, T881.1), manganese (II) sulfate monohydrate 

(Roth GmbH, 4487.1), menadione sodium bisulfite (Sigma-Aldrich, M5750), methanol (VWR 

International, 20864.320), n-dodecyl-ß-D-maltoside (AppliChem, A0819,0500), MitoTracker® 

Red FM (life technologies) M22425, MOPS (3-(N-Morpholino)-propane sulfonic acid) 

(AppliChem, A2947,0500), Nitrocellulose Transfer Membrane Protran® BA (Whatman, 

10401196), Nonident® P40 (AppliChem A2239,0025), nourseothricin (WernerBioAgents, 

5004000), PEG 6000 (Sigma-Aldrich, 81255), pepstatin A (AppliChem, 2205,0025), phenol 

(AppliChem, A1153,0500), phosphoric acid (Roth GmbH, 6366.1), PMFS 

(phenylmethylsulfonylfluoride) (Sigma-Aldrich, P-7626), potassium acetate (Merck Millipore, 

1.04820.1000), potassium chloride (AppliChem, A3582,1000), potassium dihydrogen phosphate 

(Merck Millipore, 1.04873.1000), potassium hydroxide (Roth GmbH, 6751.1), potassium nitrate 

(Merck Millipore, 1.05063.1000), potassium nitrite (Sigma-Aldrich, 31443), RNA Loading Dye 

(2x) (Thermo Scientific, R0641), Rotiphorese Gel 40 (Roth GmbH, 3030.2), SDS (sodium 

dodecyl sulfate) (Roth GmbH, 4360.2), sepharose A (GE Healthcare, 17-0780-01), sodium 

acetate (Roth GmbH, 6773.2), sodium chloride (AppliChem, A3597,1000), sodium dihydrogen 

phosphate monohydrate (Merck Millipore, 1.06346.1000), sodium fluoride (AppliChem, 

A0401,0100), sodium hydroxide (VWR International, 28244.295), sodium molybdate-dihydrate 

(Sigma-Aldrich, 31439), sodium orthovanadate (AppliChem, 2196,0005), sorbitol (Roth GmbH, 

6213.1), β-mercaptoethanol (Roth GmbH, 4227.1), sterile filter 0.45/0.2 μm (Sarstedt, 

83.1826/83.1826.001), sucrose (AppliChem, A4734,1000), TEMED (N,N,N',N'-
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tetramethylethylenediamine) (Roth GmbH, 2367.3), theophylline (Sigma-Aldrich, T1633), 

thiourea (Roth GmbH, HN37.1), Tris (Tris-hydroxymethyl-aminomethane) (Roth GmbH, 

AE15.2), Tris/HCl (Roth GmbH, 9090.3), Triton X-114 (Sigma-Aldrich, X114), Trizol 

(Invitrogen,15596026), tryptone/peptone (Roth GmbH, 8952,2), tryptophan (MP Biomedicals, 

4061-012), Tween 20® (AppliChem, A4974,0100 ), uracil (MP Biomedicals, 4061-212), urea 

(Roth GmbH, 2317.3), Whatman Paper B002 580x600 mm (Schleicher & Schuell, 88-3852), X-

Gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside) (Thermo Scientific, R0404), X-ray 

films (Fujifilm, 4741019236), xylene Cyanol (AppliChem, A4976,0005), yeast extract (Roth 

GmbH, 2904.1), zinc chloride (Sigma-Aldrich, 14424), zinc sulfate heptahydrate (Roth GmbH, 

K301.1) 

 

2.5 Enzymes 

Calf Intestine Alkaline Phosphatase (CIAP) (Thermo Scientific, EF0341), DNase I (Thermo 

Scientific, EN0521), natuzym (Schliessmann, 5090), HotstarTaq MasterMix (Qiagen, 203443), 

lysozyme (SERVA, 28262.03), Moltaq (Molzym GmbH and Co, P-010-1000), Phospholipase C 

(Invitrogen, P6466), Pfu polymerase (Promega GmbH, M7741), Phusion® Hot Start High-

Fidelity DNAPolymerase (New England Biolabs, M0530S), restriction endonucleases (Thermo 

Scientific), RNase A (AppliChem, A2760,0100), T4 DNA ligase (Thermo Scientific, EL0011) 

 

2.6 Kits 

CloneJET PCR Cloning Kit (Thermo Scientific, K1231), High Prime DNA Labelling and 

Detection Starter Kit II (Roche, 1585614), HiSpeed Plasmid Midi Kit (Qiagen, 12643), In-

Fusion® HD Cloning Kit (Clontech, 639648), Protein Deglycosylation Mix (NEB, P6039S), 

Qiagen PCR Cloning Kit (Qiagen, 231124), QIAprep Spin Miniprep Kit (Qiagen, 27106), 

QIAquick Gel Extraction Kit (Qiagen, 28704), QIAquick PCR Purification Kit (Qiagen, 28104), 

Substrat HRP Immobilon Western (Merck Millipore WBKLS0500), Transcriptor High Fidelity 

cDNA Synthesis Kit (Roche, 05091284001)  
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2.7 Media and Solutions 

2.7.1 Solutions 

2.7.1.1 Amino-acid stock solutions 

Adenine: 0.02% (w/v) adenine in H2O 

Histidine: 1% (w/v) histidine in H2O 

Leucine: 1% (w/v) leucine in H2O 

Tryptophan: 0.02% (w/v) tryptophan in H2O 

Uracil:  0.02% (w/v) uracil in H2O 

 
Trace-element stock solution: 

5% (w/v) citric acid (C6H8O7 monohydrate), 5% (w/v) ZnSO4 heptahydrate, 1% (w/v) 

Fe(NH4)2(SO4)2 hexahydrate, 0.25% (w/v) CuSO4 pentahydrate, 0.05% (w/v) MnSO4 

monohydrate, 0.05% (w/v) H3BO3, 0.05% (w/v) Na2MoO4 dihydrate 

 
Biotin stock solution:   0.01% (w/v) biotin, 50% (v/v) ethanol  
 

2.7.1.2 Transformation 

S. cerevisiae 

Lithium Acetate (10x):  1 M lithium acetate, pH 7.5  

TE(D) (10x):    10 mM Tris/HCl, 1 mM EDTA, pH 7.2  

DTT:     1M DTT in H2O  

Sorbitol:    1M sorbitol in H2O 

 
S. macrospora 

Protoplast buffer (PPB):  45 mM KH2PO4, 13 mM Na2HPO4, 0.6 M KCl, pH 6.0  

Transformation buffer (TPS): 1 M sorbitol, 80 mM CaCl2, pH 7.4  
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2.7.1.3 Solutions regarding DNA 

Plasmid isolation (Birnboim & Doly, 1979)  

B&D I:  50 mM glucose, 25 mM Tris/HCl, 10 mM EDTA, 0.2% lysozyme  

B&D II:  0.4 M NaOH, 2% (w/v) SDS  

B&D III:  3 M potassium acetate, 1.8 M formic acid  

 

Southern Blot 

Buffer I:    0.25 M HCl  

Buffer II:    0.5 M NaOH, 1.5 M NaCl  

Buffer III:    1.5 M NaCl, 0.5 M Tris  

Washing buffer I:  2 M urea, 0.1% SDS, 50 mM NaH2PO4 x H2O pH 7, 150 mM 

NaCl, 1mM MgCl2, 0.2% blocking reagent  

Washing buffer II (20x):  1 M Tris pH 10, 2 M NaCl, 1 mM MgCl2 

 

DNA-loading dye (6x):  0.25% (w/v) xylene cyanol FF, 0.25% (w/v) bromophenol blue,  

 40% (w/v) sucrose  

dNTP mix:    10 mM dATP, dCTP, dGTP, dTTP separately solved in a. dest.  

EtBr solution:   10 mg/ml ethidium bromide in H2O 

MOPS buffer (10x):   0.2 M MOPS pH 7.0, 50 mM sodium acetate, 10 mM EDTA  

TBE (10x):    1 M Tris/HCl, 1 M boric acid, 20 mM EDTA, pH 8.3 

S.macrospora lysis buffer:  100 mM NaCl, 10 mM Tris/HCl, 1 mM EDTA, 2% SDS, pH 8.0 

Yeast lysis buffer:   100 mM NaCl, 2% (v/v) Triton X-100, 1% (w/v) SDS, 10 mM 

Tris (pH 8.0), 1 mM EDTA 

 

2.7.1.4 Protein regarding solutions 

Coomassie: 0.02% (w/v) coomassie brilliant blue R250, 0.02% (w/v) 

coomassie brilliant blue G250, 42.5% (v/v) ethanol 0.5% (v/v) 

methanol 10% (v/v) acetic acid  

Destaining solution:   45% (v/v) ethanol, 10% (v/v) acetic acid  
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Loading dye (5x):  125 mM Tris/HCl pH 6.8, 50% (v/v) glycerine, 2% (w/v) SDS, 

0.01% (w/v) bromophenol blue, 0.01% (w/v) β-mercaptoethanol  

Lysis buffer:    20 mM imidazole, 300 mM NaCl, 50 mM NaH2PO4  

PBS (10x):  1.4 M NaCl, 27 mM KCl, 101 mM Na2HPO4, 17.6 mM KH2PO4, 

pH 7.4  

TAP buffer: 100 mM Tris, 200-300 mM NaCl, 2 mM EDTA, 10% glycerol, 

0,1-0,5% (v/v) Nonident® P40, 2 mM DTT, 1 mM PMSF  

TBE (10x):    1 M Tris/HCl, 1 M boric acid, 20 mM EDTA, pH 8.3 

Transfer buffer:   192 mM glycine, 25 mM Tris, 20% (v/v) methanol 

SDS-PAGE-running buffer:  1.5% (w/v) Tris pH 8.3, 9.4% (w/v) glycine, 20% (w/v) SDS  

 

2.7.2 Media 

E. coli  

LB: 1% (w/v) tryptone/peptone, 0.5% NaCl, pH 7.2; 0.5% yeast extract, 1.5% (w/v) agar-agar 

for solid medium; optional ampicillin (100 μg/ml) or kanamycin (60 µg/ml) for selection.  

 
SOB: 2% (w/v) tryptone, 0.5% (w/v) yeast extract, 10 mM MgCl2, 10 mM MgSO4, 10 mM 

NaCl, 2.5 mM KCl, pH 7.5.  

 
TB: 1.86% (w/v) KCl, 0.66% (w/v) MnCl2 tetrahydrate, 0.3% (w/v) HEPES, 0.22% (w/v) CaCl2 

dihydrate, pH 6.7.  

 
S. cerevisiae  

YEPD: 2% (w/v) tryptone, 2% (w/v) glucose, 1% (w/v) yeast extract, pH 5.8; 1.5% (w/v) agar-

agar SERVA for solid medium.  

 
YEPDA: YEPD + 0.003% (w/v) adenine, pH 6.5; 1.5% (w/v) agar-agar SERVA for solid 

medium.  

 
SD: 0.17% (w/v) Difco™ Yeast Nitrogen Base w/o amino acids and ammonium sulfate, 2% 

(w/v) glucose, 0.064% (w/v) CSM-Ade-His-Leu-Trp-Ura (0.002% (w/v) L-methionine, 0.005% 

(w/v) L-arginine hydrochloride, L-isoleucine, L-lysine hydrochloride, L-phenylalanine, L-
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tryptophan, L-tyrosine, uracil, each 0.008% (w/v) L-aspartic acid, 0.01% (w/v) L-leucine and L-

threonine, 0.014% (w/v) L-valine), pH 5.8; 1.5% (w/v) Agar-Agar SERVA for solid medium. 

Selection of transformants is facilitated by exclusion of respective amino acid(s). 

 
S. macrospora 

BMM: 0.8% bio malt maize extract and maize flour (25 g/l), pH 6.5; 1.5% (w/v) agar-agar for 

solid medium; optional: addition of hygromycin B (110 U/ml) and/or nourseothricin dihydrogen 

sulfate (50 μg/ml) for selection. 

 
BMM + sodium acetate: BMM + 0.5% (w/v) sodium acetate (sporulation induction). 

 
CMS: 1% (w/v) glucose, 0.2% (w/v) tryptone/peptone, 0.2% (w/v) yeast extract, 0.15% (w/v) 

KH2PO4, 0.05% (w/v) KCl, 0.05% (w/v) MgSO4 heptahydrate, 0.37% (w/v) NH4Cl, 10.8% 

(w/v) sucrose, 0.01% (v/v) trace element-stock solution (10 mg/l ZnSO4, 10 mg/l Fe(II)Cl2, 10 

mg/l MnCl2), pH 6.5; 1.5% (w/v) agar-agar for solid medium. 

 
MM + starch: 0.1% (w/v) soluble starch, 1.8 mM KH2PO4, 1.7 mM K2HPO4 trihydrate, 8.3 mM 

urea, 1 mM MgSO4 heptahydrate, 0.01% (v/v) trace element-stock solution, 5 mM biotin, pH 

6.6-6.8; 1.5% (w/v) SERVA-agar for solid medium. 

 
SWG: 1x Westergaard´s (0.1% (w/v) KNO3, 0.1% (w/v) KH2PO4, 0.05% (w/v) MgSO4 

heptahydrate, 0.01% (w/v) NaCl, 0.01% (w/v) CaCl2, 0.01% (v/v) trace element-stock solution 

[5% (w/v) citric acid (C6H8O7 monohydrate) 5% (w/v) ZnSO4 heptahydrate, 1% (w/v) 

Fe(NH4)2(SO4)2 hexahydrate, 0.25% (w/v) CuSO4 pentahydrate, 0.05% (w/v) MnSO4 

monohydrate, 0.05% (w/v) H3BO3, 0.05% (w/v) Na2MoO4 dihydrate] 0.1% (v/v) chloroform), 

2% (w/v) glucose, 0.1% (w/v) arginine, 0.1% (v/v) biotin-stock solution (0.01% in 50% ethanol), 

pH 6.5; 1.5% (w/v) agar-agar for solid medium; addition of hygromycin B (110 U/ml) or 

nourseothricin dihydrogen sulfate (50 μg/ml) for selection. 
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2.8 Strains and culture conditions 
 
All strains used in this study are enlisted in Table 2. 

 
E. coli Mach1 strain was used for amplification of generated plasmids. The respective strains 

were grown in liquid LB medium at 37°C and 200 rpm, supplemented with antibiotics depending 

on the amplified plasmid.  

 
S. cerevisiae strains were inoculated in liquid or on solid YEPD(A) or SD minimal medium 

supplemented with appropriate aa for selection. Strains were incubated at 30°C. Cultures in 

liquid medium were shaken at 150 rpm (Amberg et al., 2005). 

 
S. macrospora was grown on BMM, complete medium containing 10.8% saccharose (CMS) and 

fruiting-body development inducing SWG medium at 27°C. For DNA extraction, transformation 

or protein extraction, S. macrospora strains were grown in liquid medium containing petri dishes 

(Nowrousian & Cebula, 2005). 

 
Basic methods have been conducted according to Sambrook et al. (2001) and were not separately 

described. 

 
2.8.1 Preparation and transformation procedures  

E. coli 

For preparation of chemo-competent E. coli cells, strain Mach1 was grown in liquid SOB 

medium at 20-30 rpm to an OD600 of 0.6. Subsequently, cells were incubated on ice for 10 min 

and harvested by centrifugation at 2500 g at 4°C. The cell pellet was resuspended in TB and 

incubated for additional 10 min on ice, followed by a centrifugation step at 2500 g for 10 min at 

4°C. Afterwards the cell pellet was resuspended in TB and DMSO, incubated for 10 min on ice, 

aliquoted in 150 µl samples and frozen in liquid nitrogen. Cells were stored at -80°C. 

Transformation was done according to Sambrook et al. (2001). For transformation, cells were 

thawed at RT, mixed with plasmid DNA and incubated on ice for 20 min, followed by an 

incubation for 1 min at 42°C and subsequently again for 10 min on ice. Then, liquid LB was 

added to the cells and the samples were incubated for 20-40 min at 37°C at 200 rpm. Finally, the 

cells were transferred to LB medium supplemented with respective antibiotics. 
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S. cerevisiae 

For preparation of electro-competent S. cerevisiae cells, yeast strains were grown to an OD600 of 

1.0-1.2 in YPD medium, centrifuged for 5 min at 8000 g and resuspended in a LiAc/TE(D)/H2O 

solution in the ratio 1:1:8. This step was followed by incubation at 30°C on a shaker with 100 

rpm. After 45 min, DDT was added, and the incubation was prolonged for additional 10 min. 

Cells were harvested by centrifugation, washed once with H2O and once with 1M sorbitol. After 

final uptake in 1 M sorbitol, transformation was carried out by electroporation using an 

Eppendorf Electroporator 2510 (Eppendorf) with 1.5 kV. Samples were mixed as followed: 40 μl 

of competent cells and the respective DNA fragments were added to an electroporation cuvette, 

shocked and resuspended in 600 μl sorbitol and plated on solid SD medium lacking the 

respective aa for selection (Becker & Lundblad, 2001). 

 
S. macrospora  

Protoplastation of S. macrospora strains was achieved according to Pöggeler et al. (1997). 

Cultures of S. macrospora were grown for 3-4 days in petri dishes as described above. Strains 

were harvested, transferred to PPB containing 20 mg/ml natuzym and incubated for 3 hours at 

27°C and 125 rpm. Protoplasts were isolated using a frit (ROBU glass, pore size 1) into a 50 ml 

tube. Protoplasts were washed twice with 10 and 5 ml PPB by centrifugation at 4.400 rpm for 5.5 

min. Protoplasts were resuspended in 100 μl TPS. For each transformation sample, 100 µl 

protoplasts were added to 20 µg DNA and incubated on ice for 10 min. A PEG6000 solution 

(25% [w/v] PEG6000 in PPB) was added to the transformation samples and gently mixed by 

inverting the reaction tube. After 20 min incubation at RT, the protoplast suspension was spread 

on solid CSM medium and incubated for 24 h at 27°C. Regenerated protoplasts were covered 

with hygromycin or nourseothricin supplemented top-agar (4.7% [w/v] NaCl and 0.8% [w/v] 

SERVA-agar) for selection. The final concentration of antibiotics was 50 μg/ml nourseothricin 

dihydrogen sulfate or/and 110 U/ml hygromycin B. 
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2.8.2 DNA methods 

2.8.2.1 Plasmid isolation from E. coli and S. cerevisiae 

E. coli 

Plasmids were isolated using either the QIAprep Spin Miniprep Kit, the HiSpeed Plasmid Midi 

Kit or the plasmid extraction protocol according to Birnboim and Doly (Birnboim & Doly, 

1979). Plasmid extraction kits were used according to the manufacturer’s protocol. Plasmid 

extraction protocol according to Birnboim & Doly (1979) was applied to 50 ml LB E. coli 

cultures. Cells were grown over night at 37°C at 200 rpm and harvested by centrifugation at 

4000 g for 15 min. The cell pellet was resuspended in 2 ml B&D I solution containing 10 µg 

freshly added RNase and incubated at RT for 5 min. Afterwards 2 ml B&D II solution were 

added and the sapmle mixed by vortexing and incubated for 5 min at RT. After addition of 2 ml 

B&D III solution, the sample was mixed by inverting the tube and centrifuged for 15 min at max 

rpm. The supernatant was transferred to a new tube and mixed with 7.5 ml isopropanol and 

incubated for 20 min at -20°C for DNA precipitation. The precipitated DNA was collected by 

centrifugation and washed with 5 ml of 70% ethanol. The residual ethanol was removed and the 

pellet was air dried. The DNA pellet was resuspended in 1-2 ml a. dest depending on its 

concentration. 

 
S. cerevisiae 

Plasmids were isolated using either the QIAprep Spin Miniprep Kit or the Smash and Grab 

protocol according to Hoffman and Winston (1987). Plasmid extraction kits were used according 

to the manufacturer’s protocol with minor changes. Additionally 0.3 g of glass beads (Ø 0.25-0.5 

mm) were added to the P1 buffer in the tube to disrupted cell walls mechanically by vortexing. 

The Smash and Grab protocol was applied to yeast cultures grown <16 h in 5-20 ml liquid 

medium and harvested by centrifugation for 3 min at 8000-12000 g. The cell pellet was 

resuspended in 0.5-1 ml H2O and centrifuged again at 12000 g for 2 min. The supernatant was 

discarded and the cell pellet resuspended in residual liquid through vortexing. 200 μl lysis buffer, 

200 μl phenol/chloroform solution and 0.3 g of glass beads (Ø 0.25-0.5 mm) were added and the 

sample was vortexed in a thermomixer (Eppendorf) for 8 min at 1,400 rpm at 4°C. The content 

was centrifuged for 15 min at 12000 g. Subsequently, 250 μl of the upper, aqueous layer were 
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transferred in a fresh reaction tube. DNA was precipitated with isopropanol to remove residual 

phenol. 
 

2.8.2.2 Isolation of RNA and genomic DNA from S. macrospora  

RNA isolation: RNA isolation was done according to Elleuche and Pöggeler (2009) with minor 

changes. The mycilium was harvested, dried and grounded in liquid nitrogen. About 1 g of 

powdered mycelium was mixed with 1 ml Trizol and centrifuged for 10 min at 13000 rpm and 

4°C. The supernatant was transferred to a new tube and mixed with 200 μl chloroform. After 

centrifugation, the chloroform-generated upper phase was transferred to a new tube mixed with 

the same amount of isopropanol and after 10 min of incubation at RT centrifuged for 10 min at 

13000 rpm and 4°C. The obtained pellet was dried under an outlet and resuspended in 120 μl 

RNA free H2O. Finally, the sample was incubated for 30 min at 1000 rpm and 60°C in a 

thermomixer (Eppendorf). 

  
DNA extraction: gDNA isolation was done using phenol/chloroform extraction according to 

Lecellier and Silar (1994). The mycelium was harvested, transferred to a 2.0 ml reaction tube and 

frozen at -80°C for 30 min. The frozen pellet was taken up in 600 μl S. macrospora lysis buffer. 

8-10 glass beads (Ø 2.85-34.45 mm) were added to the tube to (finally) mechanically disrupt the 

cell wall in a TissueLyser (Eppendorf) for 5 min at 30 Hz. The sample was mixed with 500 μl 

phenol, briefly vortexed and centrifuged at 13000 rpm for 10 min. The upper (aqueous) phase 

was transferred to another 2.0 ml reaction tube and mixed with 1 ml phenol/chloroform by 

vortexing. After another centrifugation step, the aqueous layer was transferred to a new 2.0 ml 

reaction tube and mixed with 1 ml chloroform followed by centrifugation. Again, the aqueous 

layer was transferred into a 1.5 ml reaction tube. The DNA was precipitated by adding 

isopropanol and incubation for 15 min at RT. After a final centrifugation step, the DNA pellet 

was dried under an outlet and resuspended in an appropriate amount of H2O.  

 
2.8.2.3 PCR  

Amplification of S. macrospora cDNA and gDNA as well as verification of strains via PCR or 

colony PCR on E. coli or S. cerevisiae plasmid DNA was achieved with HotStarTaq Master Mix 

Kit (Qiagen), Molzyme MolTaq polymerase (Molzym GmbH & Co. KG), Pfu polymerase 
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(Promega GmbH) or Phusion High-Fidelity DNA polymerase (New England Biolabs). All 

polymerases were used according to the manufacturer’s protocol.  
 

2.8.2.4 Purification of amplified DNA  

Gel extraction 

DNA extraction from agarose gels was done using the QIAquick Gel Extraction Kit (Qiagen) 

according to the manufacture’s protocol.  

 
Micro-dialysis membranes 

Dialysis of nucleic acids after PCR amplification was conducted to get rid of salts present in 

reaction buffers. Nucleic acids were pipetted on membranes (Millipore, 0.02 μm pore size) 

floating on a. dest. in a petri dish and incubated for 10 min at RT. The desalted DNA was 

removed from the membranes via pipetting and used for further experiments. 
. 

2.8.2.5 cDNA synthesis 

To ensure that the template RNA contained no remaining gDNA, it was treated with DNaseI 

according to the manufacturer’s protocol. Reverse transcription reaction was done with 

Transcriptor High Fidelity cDNA Synthesis kit according to the manufacturer’s 

recommendations. 2 μg of RNA were conducted as template for reverse transcriptase reaction. 

Each reaction was made twice, once with and once without reverse transcriptase. The sample 

without template served after RNase treatment as control for final exclusion of gDNA remnants 

by PCR.  
 

2.8.2.6 Hydrolysis of nucleic acids.  

DNA for southern blot analysis, ligation after gel extraction or plasmid verification was done by 

hydrolysis with restriction enzymes according to the manufacturer’s protocol. The sample size 

depended on further use or experimental setup (generally ranging from 5-75 µl).  
 

2.8.2.7 Ligation of DNA fragments 

Fragments were ligated into the respective vectors using either QIAGEN PCR Cloning Kit 

(Qiagen), T4 ligase (Thermo Scientific) or In-Fusion® HD Cloning Kit (Clontech). QIAGEN 
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PCR Cloning Kit and Clontech In-Fusion® HD Cloning Kit were used according to the 

manufacture’s recommendations.  

T4 ligase reactions were set up as follows: 1 μl T4 ligase, 2 μl 10x ligation buffer, 1-2 μl vector 

DNA and 15-16 μl dialyzed PCR fragment. The sample was incubated at 30 or 37°C for 30 min 

or overnight at 16°C. Before ligation with T4 ligase, the hydrolyzed vectors were 

dephosphorylated with calf intestine alkaline phosphatase (CIAP, Thermo Scientific). The 

general setup contained 2.5 μl 10x CIAP buffer, 1 μl CIAP and 21.5 μl vector DNA, with 

incubation at 37°C for 10 min followed by 10 min at 75°C to inactivate the enzyme. 
. 

2.8.2.8 Separation of nucleic acids by gel electrophoresis  

DNA 

DNA fragments contained after PCR or digestion were mixed with 6x loading dye and separated 

in 0.8-1% agarose gels (1% [w/v] agarose in 1x TBE buffer) in a gel electrophoresis chamber at 

a voltage of 50-135 V. 0.5x TBE buffer was used as electrophoresis buffer. The gel, containing 

the separated DNA was incubation in a 1 μg/ml ethidium bromide solution for 10-20 min and 

visualized under UV light.  
 

RNA 

RNA fragments were separated in agarose gels containing 1.2% 1x MOPS and 5% formaldehyde 

at 80-100 V in a gel electrophoresis chamber. Prior, the respective RNA was mixed in a ratio 1:1 

with 2x RNA loading dye already containing ethidium bromide and incubated for 10 min at 

65°C. 1x MOPS was used as electrophoresis buffer. Similar to DNA, RNA was visualized under 

UV light, Gene Ruler DNA Ladder Mix served as marker. 
 

2.8.2.9 Southern blotting 

Total gDNA of the respective strains for Southern blotting was isolated as described above. 

Depending on the final concentrations, about 25 µl of the obtained gDNA was hydrolyzed and 

separated by gel electrophoresis. The gel was washed in buffer I (0.25 M HCl) for 10 min, in 

buffer II (0.5 M NaOH) for 25 min and finally in buffer III (1.5 M NaCl, 0.5 Tris, pH 7.4) for 30 

min. The DNA was transferred to a GeneScreen Hybridization Transfer Membrane 

(PerkinElmer) by capillary blotting technique and cross-linked to the membrane via exposure to 
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UV light for 5 min. DNA-DNA hybridization and detection reaction were done with High Prime 

DNA Labeling and Detection Starter Kit II (Roche) according to the manufacturer’s protocol. 

After adding the detection agent to the membrane, the X-ray films were exposed for a minimum 

of 30 min to a maximum of 6 hours. 

 

2.8.3 Protein methods 
 

2.8.3.1 S. macrospora protein extraction  

S. macrospora strains were grown in liquid BMM or SWG medium at 27°C for 3-6 days, 

optional with additives hygromycin B (80 U/ml) and/or nourseothricin dihydrogen sulfate (35 

μg/ml). The mycelium was harvested, dried and grounded in liquid nitrogen. 560 µl protein 

buffer were added to 1 g pulverized mycelium. The samples were centrifuged for 15 min at 

8000-12000 g (depending on the sample size), the supernatant was transferred into a new tube, 

mixed with an appropriate amount of loading dye and heated up for 5-10 min at 95°C (Laemmli, 

1970). For analysis of protein secretion, liquid medium was filtered with filter papers (Sartorius 

FT-3-303-185, 3 hw) and proteins were concentrated using Spin-X UF concentrator (Corning, 

Germany).  

2.8.3.2 Protein concentration measurement 

Protein concentrations were measured by a Bradford assay (Bradford 1976). Prior to adding 

loading dye to the protein extracts, 10 μl of the extraction was mixed with 990 μl of Bradford 

reagent and incubated for 5 min at RT. The concentration was measured at 595 nm with a Libra 

S12 (biochrom, UK) spectrophotometer in 1 ml cuvettes. 

2.8.3.3 Immuno Blotting 

For detection of proteins S. macrospora protein extracts were separated in 10-15% SDS-PAGE 

and transferred onto a PVDF or nitrocellulose membrane by Western blot (Bloemendal et al., 

2012, Laemmli, 1970, Towbin et al., 1979). For immunodetection monoclonal mouse anti-eGFP 

antibody (Santa Cruz Biotechnology, sc-9996, 1:4000), anti-FLAG (Sigma-Aldrich, F3165, 

1:12000), anti-HA (Sigma-Aldrich, H9658, 1:3000) or monoclonal anti-Actin antibody (Novus 

Biochemicals, NB100-74340, 1:2000) combined with a secondary HRP-linked goat anti-mouse 

antibody (Dianova, 115-035-003, 1:10000) were used (except for eGFP-antibody, this one is 

59 
 



Material and Methods 

already labeled). Signals were detected by the Immobilon Western Kit (Millipore, 

WBKLS0500). Membranes were stripped in a solution of 0.2% Ponceau S dissolved in 3% TCA 

for 1h at RT and washed with 5% skim milk containing PBS or TBS. 

2.8.3.4 Yeast Two-Hybrid studies 

Two hybrid analysis in S. cerevisiae was conducted by using Matchmaker two-hybrid system 3 

(Clontech). For protein interaction studies in S. cerevisiae, strain MATα Y187 was transformed 

with plasmids pBD-SmGPI1 aa 1-253, pBD-SmGPI1 aa 28-227, pBD-SmGPI1 aa 1-100, pBD-

SmGPI1 aa 101-253 and pBD11 aa 282-845, pBD-SmKIN3 or pBD-SmKIN24. To generate 

pBD-SmGPI1 aa 1-253, Smgpi1 was amplified from cDNA with primer Sm9375_Y2H_ges_f 

and Sm9375_Y2H_ges_r, subcloned in vector pJET (Thermo Scientific K1232), hydrolyzed with 

NdeI and EcoRI and ligated into vector pGBKT7. Similarly, plasmid pBD-SmGPI1 aa 28-227 

was generated by using primers Sm9375_Y2H_oSigseq_f and Sm9375_Y2H_oSigseq_2r. 

Plasmids pBD-SmGPI1 aa 1-100 and pBD-SmGPI1 aa 101-253 were constructed by using 

primer Sm9375_Y2H_ges_f and Sm9375_Y2H_5’_2r or Sm9375_Y2H_3’_f and 

Sm9375_Y2H_ges_r, respectively. pGBKT7 constructs were transformed into yeast strain Y187. 

pBD-SmKIN3 or pBD-SmKIN24 were generated by using In-Fusion HD Cloning Kit 

(Clontech). Smkin3 was amplified from cDNA with primers kin3_pBD_inf_F and 

kin3_pBD_inf_R, Smkin24 was amplified from cDNA with primers kin24_pBD_inf_F and 

kin24_pBD_inf_R and inserted into vector pGBKT7. Yeast strain MATa AH109 was 

transformed with pAD-SmMOB3, pAD-SmMOB3 aa 1-144 or pAD11FL. For construction of 

plasmid pAD-SmMOB3, Smmob3 was amplified from cDNA using primer Mob3_Y2H_f and 

Mob3_Y2H_R. Plasmid pAD-SmMOB3 aa 1-144 was generated by ligation of Smmob3 cDNA 

amplified with primers Mob3_Y2H_f and Mob3_as1-144_r into pGADT7. pAD11FL was 

constructed by ligation of pro11 full-length cDNA amplified with primers Pro11_Y2H_F and 

Pro11_Y2H_R into pGADT7. The respective Y187 and AH109 strains were mated as described 

previously (Bendixen et al., 1994) and selected on solid SD medium lacking leucine (leu) and 

tryptophan (trp). Positive colonies from SD medium without leu and trp were used for drop plate 

assays. A serial dilution of cells was spread on SD agar plates without leu, trp and adenine (ade). 

To prove whether the respective genes in vector pGBKT7 were expressed properly, a test based 
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on RanBPM was used (Tucker et al., 2009). Each construct was additionally checked for self-

activation as described by Jacobsen et al. (2002). 

 
2.8.3.5 Co-IP 

Co-Immunoprecitation was conducted as described previously by Bloemendal et al. (2012) with 

minor changes. Interaction studies of SmKIN3 and PRO11 were done with additional use of thiol 

cross-linking reagent bismaleimidohexane BHM (Thermo Scientific, 22330) solved in DMSO at 

a concentration of 20 mM. The cross-linker was used in a final concentration of 0.2 mM. The 

reaction was stopped after incubation for 2 h at 4°C by adding DTT in a final concentration of 25 

mM as recommended in the manufacturers protocol.  

 
2.8.3.6 Differential centrifugation 

Pulverized mycelium was mixed with extraction buffer and centrifuged at 3000 g for 3 min. The 

obtained crude extract was centrifuged for additional 15 min at 8000 g. The remaining pellet was 

used as sample containing cell detritus, including the cell wall. An aliquot of the supernatant of 

this sample served as crude extract. The remaining supernatant was centrifuged for 1 h at 4000 g 

followed by an ultracentrifugation step for 1.5 h at 90000 g. The supernatant containing the 

cytosol obtained by ultracentrifugation as well as the pellet containing membranes were both 

used as sample for distribution analysis.  

 
2.8.4 Crossbreeding of S. macrospora  

The respective S. macrospora strains were crossed, usually with a spore-color mutant, by 

inoculating them directly towards each other on a petri dish with solid SWG medium. The plates 

were incubated for 10-12 days at 27 °C until the crossing front was formed in the middle of the 

petri dish. This crossing front represents the genetic assembly of the crossed strains and thus, 

contained the recombinant crossing perithecia. In case of using spore-color mutant, these 

contained spores with 2 colors in a typical pattern based on segregation (Esser, 1992). To obtain 

single spore isolates crossing perithecia were broken on preparation agar (5% agar-agar in H2O). 

The spores were separated and spread on solid BMM sodium acetate medium optionally 

supplemented with hygromycin B (110 U/ml) or nourseothricin dihydrogen sulfate (50 μg/ml) 

for selection. 
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2.8.5 Generation of S. macrospora single-knockout strains 

For generation of the ΔSmkin3, ΔSmkin24 and ΔSm3978 single-deletion strains, 5’ flanking 

regions and 3’ flanking regions of the respective genes were fused to the hph hygromycin 

resistance cassette and integrated into plasmid backbone pRSnat (Klix et al., 2010) by 

homologous recombination in the yeast strain PJ69-4A (Colot et al., 2006). 5‘ regions of Smkin3, 

Smkin24 and Sm3978 were amplified with primer combinations Smkin3_1k_5F x Smkin3_5R, 

Smkin24_1k_5F x Smkin24_5R and 3978_5F x 3978_5R. The 3’ flanking regions of Smkin3, 

Smkin24 and Sm3978 were amplified with primer pairs Smkin3_3F x Smkin3_1k_3R, 

Smkin24_3F x Smkin24_1k_3R or Sm3978_3F x Sm3978_3R. Each amplified flanking region 

had an overhang to hph amplified with primers hph_F x hph_R from plasmid pCB1003 (Carroll 

et al., 1994). This resulted in deletion constructs consisting of the hph resistance cassette 

surrounded by the 5’ and the 3’ flanking region of the gene of interest. After homologous 

recombination in yeast, the plasmids were isolated and the deletion constructs were amplified 

from the respective plasmids, purified and transformed into S. macrospora strain Δku70 

(Pöggeler & Kück, 2006). The Δku70 background (nourseothricin resistance) was eliminated by 

crossing primary transformants to spore-color mutant r2 (Teichert et al., 2014). Hygromycin 

resistant, nourseothricin sensitive single-spore isolates were selected. The constructed single 

deletion strains were verified by PCR and Southern blot. For PCR verification, gDNA was 

isolated and presence of the deletion cassette at the correct gene locus was ensured by 

amplification with primers binding upstream of the 5’ region or downstream of the 3’ region and 

within the hph resistance cassette. Thus, primers binding outside of the flanking regions used for 

the deletion cassette and within the hph gene verified that the gene of interest was disrupted by 

the hph gene. Any deletion cassette was amplified in total with primers binding outside the 

flanking regions or each flanking region in particular. The complementary primers for flanking-

region amplification bound within the hph cassette. The amplicons obtained from the knockout 

strains were compared to amplicons with the same primer combinations from wt. Insertion of 

multiple deletion constructs at various locations was excluded by southern blot.  
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2.8.6 Generation of S. macrospora double-knockout strains 

Double-deletion strains were obtained by crossing the respective single-deletion strains as 

described above. Usually, at least one of the single deletion strains used for crossing was 

previously crossed with a spore-color mutant to identify crossing perithecia easily. After crossing 

perithecia were broken, entire asci were separated and all 8 included spores were spread on solid 

BMM sodium acetate medium. After germination, the isolated single spore isolates were verified 

by PCR as described for single-knockout strains and via southern blot. 

 
2.8.7 Generation of S. macrospora complementation strains 

To verify whether observed phenotypes were based on the respective gene deletion, each deleted 

gene was inserted ectopically in the genome of the respective single- or double-knockout strain 

by transformation. The complementation constructs were generated by using the forward 5’ 

flanking region and the reverse 3’ flanking region primer for PCR on wt gDNA. This resulted in 

amplicons, equal in flanking regions to the deletion constructs but also containing the ORF of the 

deleted genes. Similar to gene deletion, integration of the complementation constructs was 

verified by PCR. The obtained, genetically complemented strains were subsequently 

phenotypically analyzed for phenotypic complementation. By this, phenotypes could be 

dedicated to gene deletions. Additionally, eGFP-constructs were checked for complementation 

and thus to be functional.  

 
2.8.8 Analytic procedures 

2.8.8.1 Light and fluorescence microscopy investigations  

To localize SmGPI1 and to verify the predicted signal sequence and the region for GPI-anchor 

attachment, several eGFP constructs were generated. Plasmid pRS-SmGPI1-eGFP aa 1-492 

represents the eGFP-tagged full-length construct of SmGPI1. To generate pRS-SmGPI1-eGFP aa 

1-492, the sequence encompassing bp -967 to 869 was amplified using primer Gpi1_5_inf_F2 

and Core-gfp_inf_R2. In the next step, egfp was amplified with GFP_f and GFP_r from plasmid 

p1783-1 (Pöggeler et al., 2003) and the region for GPI-anchor attachment encompassing bp 870-

980 using primer pair Omega-gfp_inf_F and 9375_o_r. Finally, the trpC terminator of 

A. nidulans was amplified from plasmid p1783-1 using primer TrpC_F and pRS426GFPrev. All 
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fragments were ligated using In-Fusion HD Cloning Kit into pRSnat in the same order, as listed. 

This resulted in plasmid pRS-SmGPI1-eGFP aa 1-492 encoding for an eGFP-tagged version of 

SmGPI1 consisting of aa 1-217 of SmGPI1 fused to eGFP, fused to the region for GPI-anchor 

attachment from ω-10 to the C-terminal end of SmGPI1 under control of the native promoter and 

the trpC terminator. For construction of pRS-SmGPI1-eGFP aa 1-466 Smgpi1 was amplified 

with primer Gpi1_5_inf_F2 and Core-gfp_inf_R2, egfp. The native promoter and the trpC 

terminator were amplified as described above. These fragments were ligated into pRSnat 

resulting in a plasmid encoding SmGPI1 aa 1-227 fused to eGFP under control of its native 

promoter and the trpC terminator. Plasmid pRS-SmGPI1-eGFP aa 28-492 encodes eGFP-tagged 

SmGPI1 without the signal sequence at position aa 1-27 and was generated by amplifying the 

promoter of Smgpi1 separately with primer pair Gpi1_5_inf_F2 and 5utr-GPI1oh-r. Fragments 

consisting of bp 82-900 of the Smgpi1 ORF, egfp, the putative omega region and the trpC 

terminator were amplified from pRS-SmGPI1_pre aa 1-492 using Omega-gfp_inf_F and 

pRS426GFPrev. Plasmid pRS-SmGPI1-eGFP aa 28-466 lacking N-terminal and C-terminal 

processing sites was generated by ligation of amplified fragments from pRS-SmGPI1-eGFP aa 

28-492 with primer pair Gpi1_5_inf_F2 and Core-gfp_inf_R2 to the trpC terminator amplified 

from pRS-SmGPI1-eGFP aa 1-466 with primer GFP_F and pRS426GFPrev. To localize 

SmKIN3 and SmKIN24 in S. macrospora, N-terminally eGFP tagged constructs were generated 

and traced in the respective deletion strain. Plasmids coding for SmKIN3-eGFP and SmKIN24-

eGFP were constructed by amplifying the full length genes Smkin3 or Smkin24 and inserting 

them into NotI digested pDS23-egfp vector (Teichert et al., 2012) via homologous recombination 

in yeast. For light and fluorescence microscopic analysis, S. macrospora strains were inoculated 

on solid BMM medium slightly overlapping to a piece of cellophane at 27°C for 1 or 2 days or 

were grown on BMM covered glass slides. For microscopy, the cellophane sheet with the 

mycelium was transferred to a glass slide. Glass slides with cellophane or BMM were covered 

with water and a cover slip for microscopic analysis. For the visualization of hyphae or sexually 

developed structures, an AxioImager M1 microscope (Zeiss, distributed by Visitron Systems 

GmbH) combined with a Photometrics CoolSNAP2 HQ camera (Roper Scientific, Photometrics) 

was used. The obtained pictures were processed with Metamorph (version 6.3.1; Universal 

Imaging) and GIMP 2.8.2. (GNU Image Manipulation Program, The GIMP Development Team) 

as well as Illustrator CS2 (Adobe). To display eGFP, DsRED or DAPI fluorescence chroma filter 
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set 49002, 49005 and 49000 were used, respectively. DAPI staining was conducted by adding 

20-50 µl DAPI (AppliChem, A1001,0010), dissolved in fixing solution (3.7% formaldehyde, 

0.2% Triton X-100, 50 mM phosphate buffer pH 7.0, 1 M K2HPO4, 1 M KH2PO4, diluted 1:1 

with H2O) directly on the mycelium. Staining with FM 4-64 (Invitrogen, F34653) was 

performed by adding 20-50 μl of a FM 4-64 (1 μg/ml a. dest.) solution similar to DAPI staining. 

MitoTracker Red (Life Technologies, M22425) was used in a concentration of 25 nM diluted in 

DMSO according to the guidelines of the manufacturer. Calcofluor white staining was conducted 

by adding 40 µl calcofluor white (Sigma-Aldrich, 18909), freshly diluted 1:1 with 10% KOH 

solution and directly applied on the mycelium. 

 
2.8.8.2 Sequence analysis and oligonucleotide synthesis  

Primers used in this study were purchased at MWG Biotech AG and are listed in Tab 3. DNA 

sequencing was done by the G2L-sequencing service of the “Göttinger Genom Labor” (Georg-

August-University Göttingen). Molecular weights, isoelectric points of proteins and domain 

predictions were done with programs from the ExPASy Proteomics Server 

(http://www.expasy.org). Protein sequence alignments were performed using the ClustalX2 

program as described by Larkin et al. (2007) and visualized using GeneDoc (Nicholas et al., 

1997). Protein and nucleotide sequences were obtained from the public databases at NCBI 

(http://www.ncbi.nlm.nih.gov/entrez/) or by BLAST searches of the complete sequenced 

genomes at the Broad Institute (http://www.broad.mit.edu/annotation/fungi/fgi/). 

 
2.8.8.3 Phylogenetic analysis 

Multiple protein sequence alignments were performed using the ClustalX2 program (Larkin et 

al., 2007). Phylogenetic analysis were made with programs from package PHYLIP version 3.6 

(http://evolution.genetics.washington.edu/phylip.html). Distance matrices were calculated using 

the program PRODIST and afterwards used for constructing phylogenetic trees with the 

neighbor-joining (NJ) program NEIGHBOR. To evaluate the statistical significance a bootstrap 

analysis with 1000 iterations of bootstrap samplings and reconstruction of trees was performed. 

A majority rule consensus tree was subsequently generated with the program CONSENSE, 

viewed using the program TreeView 1.6.6 (Page, 1996) and saved for graphical representation 

using Adobe Illustrator.  
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2.8.9 Measures of safety  

Genetic engineering experiments of security level 1 have been conducted according to the guide 

lines of the genetic engineering law (GenTG) stated on 16.12.1993 (recently altered by Art. 42 

Abs. 1 G on 09.12. 2010). 

66 
 



Results 

 Results 3.

3.1 The GPI-anchored protein SmGPI1 

3.1.1 A two-hybrid screen identified a GPI-anchored protein as an interaction partner of 

STRIPAK SmMOB3 

S. macrospora is more closely related to N. crassa than any other previously sequenced 

filamentous fungus, with 90% nucleic acid identity in coding regions of orthologous genes 

(Nowrousian, 2010, Nowrousian et al., 2004). Previously, cross-species microarrays with 

S. macrospora cDNA hybridized on N. crassa microarrays have been performed successfully 

(Nowrousian et al., 2005, Pöggeler et al., 2006). To identify new interaction partners of the 

STRIPAK protein SmMOB3, we performed cross-species yeast two-hybrid (Y2H) screens with a 

Matchmaker Two-Hybrid System 3 (Clontech) and an N. crassa cDNA library (S. Seiler, pers. 

comm). Using Smmob3 cDNA as bait, the N. crassa NCU09375 protein was identified as an 

interaction partner of SmMOB3. A BLASTP search of the S. macrospora proteome identified 

SMAC_12074 as NCU09375 homolog. The ORF of SMAC_12074 (F7W197) is 980 bp with two 

introns of 96 and 122 bp at positions 285-380 and 677-798, respectively. Intron splicing was 

verified by cDNA sequencing (data not shown). The calculated molecular mass of the 253 aa  

protein SMAC_12074 is 26 kDA with an isoelectric point of 5. In silico analysis using SignalP 

(Petersen et al., 2011) revealed a signal sequence at aa 1-27. In addition, a region for 

posttranslational modification with a GPI-anchor was identified using big-PI Predictor 

(Eisenhaber et al., 1998, Eisenhaber et al., 1999, Eisenhaber et al., 2000, Sunyaev et al., 1999). 

The GPI-anchor is linked to a C-terminal residue after a proteolytic cleavage at the ω-residue. In 

SMAC_12074, the ω-residue is predicted to be Asn228. The surrounding region of the predicted 

ω-residue has the general features of GPI-anchored proteins such as an upstream linker region, 

characterized by a low amount of predicted secondary structures, small side-chain residues at 

positions ω-1 to ω+2, a spacer region between positions ω+3 and ω+9; and a hydrophobic tail 

from ω+10 to the C-terminus (Pierleoni et al., 2008) (Figure 12). Thus, SMAC_12074 appeared 

to encode a pre-protein posttranslationally cleaved at the N-terminal and C-terminal regions and 

modified by attachment of a C-terminal GPI-anchor.  
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Figure 12. Schematic illustration of the SmGPI1 precursor. N-terminally located grey colored signal 
sequence was predicted by SignalP (Bendtsen et al., 2004, Emanuelsson et al., 2007). C-terminally grey 
colored region for GPI-anchor attachment was predicted by big-PI-Predictor (Eisenhaber et al., 1998, 
Eisenhaber et al., 1999, Eisenhaber et al., 2000, Sunyaev et al., 1999). Putative processing sides are 
indicated by arrows. The black boxed omega residue is predicted to be aa 228. This aa is exposed for 
GPI-anchor attachment by a GPI transamidase (Mayor & Riezman, 2004). 

 
Based on these findings, SMAC_12074 was named Smgpi1 to indicate that it encodes the first 

described GPI-anchored protein in S. macrospora. Sequence alignment of SmGPI1 with 7 

putative homologs from other fungi revealed conservation of this protein among filamentous 

ascomycetes (Figure 13A).  

All identified proteins were predicted to have a signal sequence and a region for GPI-anchor 

attachment. Based on aa sequences, N. crassa NCU09375 shared the highest level of identity to 

SmGPI1 (91%), followed by Podospora anserina with (49%), Magnaporthe oryzae and 

Chaetomium globosum (45%) (Figure 13B). 
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Figure 13. Multiple sequence alignment and aa identity of SmGPI1 with putatively homologue proteins 
from other Ascomycota. (A) Alignment was made using ClustalX2 (Larkin et al., 2007). Sm, Sordaria 
macrospora, F7W197; Nc, Neurospora crassa, Q7SCN6; Mo, Magnaporthe oryzae, G4MNK5; Cg, 
Chaetomium globosum, Q2HAL9; Pa, Podospora anserina, B2AM33; Fg, Fusarium graminearum 
I1RCP4; At, Aspergillus terreus, Q0CT61; An, Aspergillus nidulans, Q5B70. Total numbers of aa are 
given in brackets. For alignment only aa sequences downstream of the putative signal sequence up to the 
omega site were used. (B) Identity of the aligned aa sequences in pair-wise comparison.  
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3.1.2 SmGPI1 interacts physically with SmMOB3  

Using the Y2H system we confirmed that SmGPI1 physically interacted with SmMOB3 in 

S.  cerevisiae (Figure 14). Full-length and truncated Smgpi1 cDNAs were cloned into the GAL4 

DNA-binding domain of the Y2H vector pGBKT7. Plasmid pAD-SmMOB3 encoding Smmob3 

full-length protein, and its derivative pAD-SmMOB3 aa 1-144 encoding for the N-terminally 

truncated version, were used as prey vectors. Plasmids were transformed into yeast strains MATa 

Y187 (pGBKT7 constructs) or MATα AH109 (pGADT7 constructs). The pGBKT7-SmGPI1 

bait-constructs were checked for transactivation activity by mating Y187 transformants with 

yeast strain AH109 carrying the empty pGADT7 plasmid (data not shown). A strain carrying 

both empty plasmids served as negative control. Interaction of PRO11 and SmMOB3 served as 

positive control (Bloemendal et al., 2012). Expression of GAL4 fusion proteins from pGBKT7-

SmGPI1 plasmids was also checked by mating Y187 transformants with AH109 carrying pAD-

RanBPM (Tucker et al., 2009) (data not shown).  

 

Figure 14. Yeast two-hybrid analysis of the interaction of SmGPI1 and SmMOB3. Serial dilutions of 
diploid yeast strains obtained after mating spread on SD medium lacking tryptophan (trp) and leucine 
(leu) or trp, leu and adenine (ade) to verify the interaction of both proteins. Full-length and truncated 
versions of SmGPI1 and SmMOB3 were tested. BD = DNA-binding domain of GAL4, AD = activation 
domain of GAL4. GAL4 binding domain was fused to SmGPI1, GAL4 activating domain to SmMOB3. 
Reverse application of activation and binding domain was not possible due to transactivation of 
SmMOB3. Yeast transformants carrying pAD-SmMOB3 (SmMOB3) and pBD11 aa 282-845 (PRO11) 
served as positive control (Bernhards and Pöggeler, 2011). As negative control a diploid strain carrying 
empty vectors pGADT7 (AD) and pGBKT7 (BD) was used. 
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Y2H results demonstrated interaction between SmGPI1 and SmMOB3 (Figure 14). Neither the 

signal sequence nor the region for GPI-anchor attachment was necessary for SmGPI1/SmMOB3 

interaction. The N-terminal regions of SmGPI1 (aa 28-100) and SmMOB3 (aa 1-144) mediated 

interaction (Figure 14). To verify physical interaction of SmMOB3 and SmGPI1 in vivo, we 

performed co-Immunoprecipitation (co-IP) studies in S. macrospora. We expressed functional, 

N-terminally tagged FLAG-SmMOB3 (Bloemendal et al., 2012) and an eGFP-tagged full-length 

SmGPI1 in S. macrospora. As SmGPI1 was predicted to be posttranslationally cleaved at the N-

terminus and C-terminus, we fused eGFP upstream of the linker of the GPI attachment region 

between aa position 217 and 218 (SmGPI1-eGFP aa 1-492) (Figure 12). Tagged versions of the 

proteins were separately expressed and co-expressed in S. macrospora wt transformants. Co-IP 

confirmed the physical interaction of SmGPI1-eGFP aa 1-492 and full length FLAG-SmMOB3 

(Figure 15). 

 

     

 

Figure 15. Co-Immunoprecipitation of SmGPI1 and SmMOB3 with anti-FLAG and anti-eGFP antibodies 
combined with Western blot analysis. Separately expressed constructs and SmGPI1 co-expressed with 
FLAG or SmMOB3 co-expressed with eGFP served as control. Shown are SmMOB3-FLAG, fished with 
SmGPI1-eGFP and vice versa. 
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3.1.3 SmGPI1 binds to the cell wall and is partially secreted 

SmGPI1 was predicted to have a signal sequence and a region for GPI-anchor attachment (Figure 

12). To verify this prediction, plasmids encoding SmGPI1-eGFP aa 1-492 and SmGPI1-eGFP aa 

1-466, lacking the GPI-anchor attachment region (Figure 16A) were transformed into a 

S. macrospora wt strain. Crude extracts were fractionated by differential centrifugation and 

analyzed by Western blot (Figure 16B).  

 

 

Figure 16. Western blot analysis of SmGPI1 after differential centrifugation of cellular components. (A) 
Schematic overview of SmGPI1 versions used in this analysis. SmGPI1-eGFP aa 1-492 consists of 
SmGPI1 aa 1-216 fused to eGFP followed by the region for GPI-anchor attachment ω-10 to ω+25 of 
SmGPI1. The ω-residue is predicted to be aa 228 when eGFP is introduced between position 217 and 218 
it changes to aa position 466. SmGPI1-eGFP aa 1-466 lacks the C-terminal region for GPI-anchor 
attachment (ω-ω+25). (B) Western blot using eGFP antibody. SmGPI1-eGFP aa 1-492 is predominantly 
found in the cell detritus containing remnants of the cell wall. SmGPI1 aa 1-466 is mainly present in the 
cytosolic supernatant (sn) after ultracentrifugation. Samples were separated on 15% SDS-PAGE, blotted 
on nitrocellulose membranes and probed with anti-eGFP antibody. 
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supernatant but not in the fraction containing the cell detritus (Figure 16B). Thus, SmGPI1 

seemed to be mainly localized to the cell wall. 

Three further SmGPI1-eGFP versions were used to analyze the functionality of the predicted 

signal sequence (Figure 17A). SmGPI1-eGFP aa 28-492 lacked the signal sequence for secretion. 

The signal sequence of SmGPI1 was fused to eGFP in SmGPI1-eGFP aa 1-27. The version 

SmGPI1-eGFP aa 1-27-KDEL carried the C-terminal ER retention signal Lys-Asp-Glu-Leu 

(Pelham, 1990).  
 

 

Figure 17. Schematic overview of SmGPI1 versions used for Western blot (see also Figure 16). SmGPI1-
eGFP aa 28-492 consists of SmGPI1 aa 28-216 fused to eGFP followed by the region for GPI-anchor 
attachment ω-10 to ω+25 of SmGPI1. SmGPI1-eGFP aa 1-27 consists of aa 1-27 of SmGPI1 fused to 
eGFP. SmGPI1-eGFP aa 1-27-KDEL carries additionally the ER retention signal KDEL. 
 

Protein extracts from mycelium ground in liquid nitrogen and cell-free supernatants from strains 

expressing genes encoding SmGPI1-eGFP aa 1-492, SmGPI1-eGFP aa 28-492 and SmGPI1-

eGFP aa 1-466 were analyzed by Western blot (Figure 18B). SmGPI1-eGFP aa 28-492 was seen 

only in the mycelium sample, whereas SmGPI1-eGFP aa 1-492 and SmGPI1-eGFP aa 1-466 

were also detected in cell-free supernatant. Two signals were observed in the liquid medium of 

transformants expressing full-length SmGPI1-eGFP aa 1-492. The faster migrating signal was 

the size of free eGFP (27 kDa) and was probably a degradation product of the full-length 

SmGPI1-eGFP aa 1-492 fusion protein that appeared as a protein of 52 kDa (Figure 18B). To 

ensure cell-free supernatants we used anti-actin antibody as control. 
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Figure 18. Western blot analysis of SmGPI1 aa 1-492 and aa 28-492 using cell-free supernatants and 
crude extracts of the mycelium. (A) Total cellular (mycelium) and total secreted (liquid medium) proteins 
were separated by SDS-PAGE and visualized by Western blotting using an anti-eGFP antibody. For the 
Western blot of the mycelial crude extracts the protein extract of the wt was used as a negative control 
and wt expressing egfp as a positive control. Actin served as loading control and was visualized anti-actin 
antibody was used. In addition, anti-actin antibody was used to verify that no cellular proteins are present 
in the liquid medium. Total protein extract of the wt served as a positive control for anti-Actin antibody. 
(B) Western blot analysis of the functionality of SmGPI1 signal sequence. SmGPI1 aa 1-27 was fused to 
eGFP optionally tagged with ER-retention signal KDEL and visualized by anti-eGFP antibody. Actin was 
used as a loading control and visualized by an anti-Actin antibody. 

 
To further investigate the functionality of the predicted signal sequence, the coding sequence of 
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was C-terminally tagged with the ER retention signal KDEL (SmGPI1-eGFP aa 1-27-KDEL). 

Western blot showed that only eGFP N-terminally tagged with the signal sequence and lacking 

Sm
GPI

1-
eG

FP

aa
 1

-4
92

Sm
GPI

1-
eG

FP

aa
 2

8-
49

2
Sm

GPI
1-

eG
FP

aa
 1

-4
66

wt

wt-e
GFP

Mycelium

Anti-eGFP

Sm
GPI

1-
eG

FP

aa
 1

-4
92

Sm
GPI

1-
eG

FP

aa
 2

8-
49

2
Sm

GPI
1-

eG
FP

aa
 1

-4
66

wt (
M

yc
eli

um
)

wt-e
GFP

Liquid medium

Anti-eGFP

55 kDa
55 kDa

27 kDa

27 kDa

27 kDa

Sm
GPI

1-
eG

FP
aa

 1
-2

7
Sm

GPI
1-

eG
FP

aa
 1

-2
7-

KD
EL

Sm
GPI

1-
eG

FP
aa

 1
-2

7
Sm

GPI
1-

eG
FP

aa
 1

-2
7-

KD
EL

wt-e
GFP

Anti-eGFP

Mycelium Liquid medium Control
(Mycelium)

Anti-Actin

Anti-Actin

Anti-Actin

A 

 

 

 

 

 

 

 

 

                           B 

74 
 



Results 

the ER retention signal was detected in cell-free supernatants. After tagging this construct with 

an ER retention signal it no longer appeared in the cell-free supernatant (Figure 18C). Thus, the 

signal sequence of SmGPI1 was sufficient to mediate eGFP secretion. 

 

3.1.4 SmGPI1 localizes to the cell wall and mitochondria 

Fluorescence microscopy was performed to determine the localization of SmGPI1 in vivo. 

Strains expressing genes coding for SmGPI1-eGFP aa 1-492, SmGPI1-eGFP aa 28-492, 

SmGPI1-eGFP aa 1-466 and SmGPI1-eGFP aa 28-466 were analyzed (Figure 16 and Figure 17). 

SmGPI1-eGFP aa 1-492 was detected at the cell wall and intracellular structures resembling 

mitochondria. For verification, hyphae were co-stained with the membrane dye FM 4-64 or 

MitoTracker Red (Figure 19). SmGPI1-eGFP aa 1-492 co-localized with the membrane dye FM 

4-64 and MitoTracker Red. MitoTracker Red co-staining was displayed by focusing into the 

intracellular lumen. In contrast to the localization of the full-length protein, the N-terminally 

truncated SmGPI1-eGFP aa 28-492 and SmGPI1-eGFP aa 28-466 were diffusely distributed 

within the cytosol and did not co-localize with FM 4-64 or MitoTracker Red. However, 

SmGPI1-eGFP aa 1-466, containing the putative N-terminal secretion signal, localized to 

mitochondria but not to the cell wall.  

Localization of SmGPI-eGFP did not change in ΔSmmob3. The protein localized to the plasma 

membrane and mitochondria. Similarly, the distribution of SmMOB3-eGFP to the nuclear 

envelope and cytoplasm did not change in ΔSmgpi1, as shown in Figure 20. 
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Figure 19. Localization of SmGPI1-eGFP. Deletion of the omega side aborts localization to the cell wall 
but maintained localization to mitochondria. Deletion of the signal sequence results in cytosolic 
localization. For visualization was focused either to the cell wall or to the cytoplasm. 
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Figure 20. Localization of SmMOB3 in ΔSmgpi1 and SmGPI1 in ΔSmmob3. (A) SmMOB3 localizes to 
the nuclear envelope in ΔSmgpi1. (B) SmGPI1 localizes to the cell membrane and mitochondria in 
ΔSmmob3. For visualization of cell membranes cells were stained with FM 4-64, mitochondria were 
stained with MitoTracker Red as described in material and methods. DAPI was used for nuclei staining. 
Scale bar as indicated. 
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3.1.5 Deletion of Smgpi1 restores fertility and hyphal fusion of sterile ΔSmmob3 

Previous studies of the S. macrospora STRIPAK complex including SmMOB3 revealed that it is 

intracellularly localized (Bernhards & Pöggeler, 2011, Bloemendal et al., 2012). To analyze the 

interplay of the intracellular protein SmMOB3 and the GPI-anchored protein SmGPI1 in more 

detail, a single ΔSmgpi1 mutant and a double ΔSmgpi1/ΔSmmob3 mutant were generated. 

Smgpi1 was replaced with a hygromycin-resistance cassette via homologous recombination in a 

Δku70 strain (Pöggeler & Kück, 2006) (Figure 21).  

 

 

Figure 21. Generation of a ΔSmgpi1/ΔSmmob3 double-deletion strain. Schematic illustration of the 
Smgpi1 and Smmob3 locus before and after homologous integration of the deletion cassette. Primers used 
for the verification of the respective gene deletion are shown by arrows. Sizes of PCR fragments as well 
as for the probe used for Smmob3 Southern hybridization are given. 
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by PCR and Southern blot hybridization (Figure 22). Subsequently, ΔSmgpi1 was 

phenotypically analyzed with regard to sexual development. ΔSmgpi1 was fertile and completed 

the life cycle within 7 days (Figure 23). Similar to wt, first ascogonia were visible after 3 days, 

developing to non-pigmented protoperithecia at day 4 and pigmented protoperithecia at day 5. 

Two days later, mature fruiting bodies containing ascospores were formed.  

 

 

Figure 22. Verification of ΔSmgpi1/ΔSmmob3 via PCR and Southern blot. (A) Verification of the 
deletion using PCR. Shown are the calculated fragment sizes for wt and the gene deletions. (B) Southern 
hybridization (Sambrook & Russell, 2001) for Smmob3 confirmed the successful integration of the 
deletion cassette via gene-specific probe. 
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conditions on Smgpi1, we performed growth tests on supplemented solid media. The ΔSmgpi1 

strain showed no sensitivity to cell wall stress agents calcofluor white and caffeine or to the cell 

wall degrading enzymes polygalacturonase or arabanase as present in Natuzym (data not shown). 

In addition, ΔSmgpi1 was as sensitive as wt to different types of stresses induced by NaCl, KCl, 

sorbitol, menadione, SDS, H2O2 or low and high pH (data not shown). Growth velocity was 

tested in race tubes with fructification medium over 10 days. The average growth of ΔSmgpi1 

was 29 ± 4 mm/day which is similar to wt growth (29 ± 5 mm/day) (Table 5).  

 

Table 5. Average growth value of ΔSmgpi1, complemented ΔSmgpi1 (Smgpi1+), ΔSmmob3 

and the double knockout ΔSmgpi1/ΔSmmob3 in mm/day, measured over 10 days on SWG 

medium. 

Strain Growth velocity (mm/day) 

wild type 29,5 ± 5 

ΔSmgpi1 29,4 ± 4 

ΔSmgpi1+ 30,7 ± 6 

ΔSmmob3 8 ± 3 

ΔSmgpi1/ΔSmmob3 25,5 ± 5 

 

The double deletion strain ΔSmgpi1/ΔSmmob3 was constructed by crossing the single-deletion 

strains ΔSmgpi1 and ΔSmmob3 (Bernhards & Pöggeler, 2011) (Figure 23). In S. macrospora 

and N. crassa, MOB3 is required for hyphal fusion and fruiting-body development (Bernhards & 

Pöggeler, 2011, Fu et al., 2011, Maerz et al., 2009). Deletion of Smgpi1 in the sterile ΔSmmob3 

deletion background restored fertility (Figure 23). In contrast to the single-deletion strain 

ΔSmmob3, ΔSmgpi1/ΔSmmob3 completed the life cycle but after a prolonged time of 13 days. 

Thus, the double-deletion mutant was fertile, but had delayed sexual development (Figure 23). 

Transformation of ΔSmgpi1/ΔSmmob3 with the Smgpi1 wt gene resulted in sterility (Figure 24); 

therefore, fertility of the double-deletion mutant was caused by deletion of Smgpi1 in the sterile 

ΔSmmob3 background.  
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Figure 23. Sexual development of ΔSmgpi1, ΔSmmob3 and ΔSmgpi1/ΔSmmob3. Shown are the 
respective deletion strains compared to wt. The wt strain generates ascogonia after 3 days, which develop 
to protoperithecia at day 5 and within 7 days to mature perithecia containing the ascospores. ΔSmgpi1 
completes the life cycle within 7 days, whereas ΔSmmob3 develops only protoperithecia. Fruiting-body 
development in the ΔSmgpi1/ΔSmmob3 mutant is delayed. Strains were inoculated on solid SWG 
medium. 

Wild type ∆Smgpi1 ∆Smmob3
∆Smgpi1/
∆Smmob3

no pigmented
protoperithecia

no perithecia

no ascospores

    

3 d

50 µm

50 µm

600 µm

300 µm

4 d

5 d

7 d

7 d

8 d

13 d

13 d

20 µm

81 
 



Results 

To ensure that the observed genetic interaction between Smmob3 and Smgpi1 is specific, 

additional double-deletion mutants lacking genes encoding other STRIPAK components such as 

Δpro11 (Bernhards & Pöggeler, 2011, Bloemendal et al., 2012), Δpro22 (Bloemendal et al., 

2012) or Δpro45 (Nordzieke et al., 2014) and ΔSmgpi1 (Figure 25, Figure 26 and Figure 27) 

were generated by crosses.  

 

 
 
Figure 24. Phenotypic analysis of ΔSmgpi1/ΔSmmob3 complemented with full-length Smgpi1 or 
Smmob3 using microscopy. ΔSmgpi1/ΔSmmob3 + Smmob3 completes the life cycle within 8 days 
whereas ΔSmgpi1/ΔSmmob3 + Smgpi1 only develops protoperithecia. Smgpi1 and Smmob3 were under 
control of their native promotor and terminator. Both complemented double-deletion strains are 
phenotypically identical to the respective single-deletion strain. 

 

Similar to deletion of Smmob3, mutation or deletion of pro11 or pro22 led to sterility of S. 

macrospora (Bernhards & Pöggeler, 2011, Bloemendal et al., 2012, Bloemendal et al., 2010, 

Pöggeler & Kück, 2004). The double-deletion mutants ΔSmgpi1/Δpro11 (Figure 25), 

ΔSmgpi1/Δpro22 (Figure 26) or ΔSmgpi1/Δpro45 (Figure 27) did not reverse the sterile 

phenotype as ΔSmgpi1/ΔSmmob3. Furthermore, a double-deletion ΔSMAC_03978/ΔSmmob3 

strain, lacking Smmob3 and SMAC_03978, an unrelated gene encoding a hypothetical GPI-

anchored protein, was generated. Deletion of the unrelated gene did not suppress the sterile 

phenotype of ΔSmmob3 (Figure 28). Thus, suppression of ΔSmmob3 by deletion of Smgpi1 is a 

specific effect and suggested genetic interaction.  
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Figure 25. Generation of a ΔSmgpi1/Δpro11 double-deletion strain. (A) Phenotype of ΔSmgpi1/Δpro11, 
respective single-knockout strains and wt with focus on fruiting-body development. (B) Schematic 
illustration of the pro11 locus (Pöggeler and Kück, 2004) before and after homologous integration of the 
deletion cassette. Primers used for verification of the deletion strain are shown by arrows. PCR-fragment 
sizes are given. (C) Verification of gene deletions in the ΔSmgpi1/Δpro11 using PCR. Shown are the 
calculated fragment sizes for wt and the respective gene deletion. Strains were obtained by crossing 
single-deletion strains ΔSmgpi1/r2 and Δpro11. 
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Figure 26. Generation of a ΔSmgpi1/Δpro22 double-deletion strain. (A) Phenotype of ΔSmgpi1/Δpro22, 
respective single-knockout strains and wt with focus on fruiting-body development. (B) Schematic 
illustration of the pro22 (Bloemendal et al., 2010) locus before and after homologous integration of the 
deletion cassette. Primers used for verification of the deletion strain are shown by arrows. PCR fragment 
sizes are given. (C) Verification of gene deletions in ΔSmgpi1/Δpro22 using PCR. Shown are the 
calculated fragment sizes for wt and the respective gene deletion. Strains were obtained by crossing the 
respective single-deletion strains ΔSmgpi1/r2 and Δpro22. 
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Figure 27. Generation of a ΔSmgpi1/Δpro45 double-deletion strain. (A) Phenotype of ΔSmgpi1/Δpro45, 
respective single-knockout strains and wt with focus on fruiting-body development. (B) Schematic 
illustration of the pro45 locus (Nordzieke et al., 2014) before and after homologous integration of the 
deletion cassette. Primers used for verification of the deletion strain are shown by arrows. PCR fragment 
sizes are given. (C) Verification of gene deletions in ΔSmgpi1/Δpro45 using PCR. Shown are the 
calculated fragment sizes for wt and the respective gene deletion. Strains were obtained by crossing the 
respective single-deletion strains ΔSmgpi1/r2 and Δpro45. 

hph

Tc1 H3

pro45

1206 bp 1212 bp

4664 bp

3626 bp

Pro45_ver -F

Pro45_ver -F

Pro45_ver-F

Pro45_ver- R

Pro45_ver- R

Pro45_ver-R

No ascospores

W ild type ΔSm gpi1 Δpro45 ΔSm gpi1/Δpro45

Bar =
600 µm

Bar =
300 µm

Ko9375_4F
Ko9375_4R

Ko9375_4F
Tc1

       H3
Ko9375_4R

Pro45_ver_F
Pro45_ver_R

Pro45_ver_F
Tc1

        H3
Pro45_ver_R

3 kb

1 kb

∆S
mgp

i1

wt ∆S
mgp

i1

wt ∆S
mgp

i1

wt ∆p
ro4

5

wt ∆p
ro4

5

wt ∆p
ro4

5

wt

A

B

C

85 
 



Results 

 

Figure 28. Generation of a ΔSm3978/ΔSmmob3 double-deletion strain. (A) Fruiting body and ascospores 
development of ΔSm3978/ΔSmmob3, respective single-knockout strains and wt. (B) Schematic 
illustration of the Sm3978 locus before and after homologous integration of the deletion cassette. Primers 
used for verification of the deletion strain are shown by arrows. Sizes of PCR fragments are given. (C) 
Verification of Sm3978 deletion using PCR. Shown are the calculated fragment sizes for wt and the 
respective gene deletion. Strains were obtained by crossing single deletion strains ΔSm3978 and 
ΔSmmob3/r2. 
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Previously, Maerz et al. (2009) demonstrated in N. crassa that MOB3 is essential for hyphal 

fusion under vegetative growth conditions. Similarly, disruption of Smmob3 impairs hyphal 

fusion in S. macrospora (Bernhards & Pöggeler, 2011). These findings raised the question 

whether the double mutant ΔSmgpi1/ΔSmmob3 underwent hyphal fusion. Hyphal fusion was 

investigated under two conditions. First, vegetative hyphae of wt, ΔSmgpi1, ΔSmmob3 and 

ΔSmgpi1/ΔSmmob3 were microscopically observed (Figure 29A). Vegetative hyphae of wt and 

ΔSmgpi1 were capable of hyphal fusion. Hyphal fusion events were detected two days after 

inoculation.  

 

Figure 29. Deletion of Smgpi1 in a sterile ΔSmmob3 background restores hyphal fusion. (A) Microscopic 
investigation of hyphal fusion in wt, ΔSmgpi1, ΔSmmob3 and ΔSmgpi1/ΔSmmob3. Hyphal fusion events 
are marked with circles; hyphal contacts without fusion are indicated by asterisks. Pictures were taken at 
subperiphal regions 10 mm from the growth front. Hyphal fusion was investigated 2-3 days past 
inoculation. ΔSmgpi1/ΔSmmob3 is delayed in hyphal fusion. First fusion was visible after 3 days. (B) 
Wt, ΔSmgpi1, ΔSmmob3 and ΔSmgpi1/ΔSmmob3 were crossed to r2 spore-color mutants with the same 
deletion background. Crossing perithecia were isolated after 10 days and 13 days past inoculation, 
respectively. ΔSmmob3 did not develop fruiting bodies at all. Crossing perithecia of wt, ΔSmgpi1, 
ΔSmmob3 and ΔSmgpi1/ΔSmmob3 contain spores allocated in typical 4:4 pattern of successful crossing 
events of red and black spored strains. 
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As described previously, ΔSmmob3 was impaired in hyphal fusion (Bernhards & Pöggeler, 

2011). Even after 10 dpi, no hyphal fusion was visible. The mutant ΔSmgpi1/ΔSmmob3 rarely 

formed hyphal fusions and did so after a prolonged time of three days. After this time hyphal 

fusion events were not detectable under the microscope because of extensive aerial hyphae 

formation. Therefore, recovery of the hyphal fusions in ΔSmgpi1/ΔSmmob3 was verified by 

crosses with spore-color mutants. S. macrospora is a self-fertile fungus that produces perithecia 

without crossing. Thus, the distinction between self-fertile and hybrid perithecia is difficult. To 

circumvent this problem, we crossed the spore-color mutant r2 with the mutant strains ΔSmgpi1, 

ΔSmmob3 and ΔSmgpi1/ΔSmmob3 for red-spored strains ΔSmgpi1/r2, ΔSmmob3/r2 and 

ΔSmgpi1/ΔSmmob3/r2. The mutant r2 produces red ascospores because of a mutation in a 

pigment biosynthesis gene (Teichert et al., 2014). Successful hyphal fusion events resulted in 

black-spored and red-spored asci of hybrid perithecia in the contact zone. The r2 strain, 

ΔSmgpi1/r2, ΔSmmob3/r2 and ΔSmgpi1/ΔSmmob3/r2 were self-crossed with respective black-

spored strains (Figure 29). Similar to crosses wt x r2 and ΔSmgpi1 x ΔSmgpi1/r2, selfing of 

ΔSmgpi1/ΔSmmob3 x ΔSmgpi1/ΔSmmob3/r2 resulted in hybrid perithecia with typical 4:4 

segregation of black and red spores. No hybrid perithecia were formed after selfing of sterile 

ΔSmmob3 strains (Figure 29). 

The vegetative growth defect of ΔSmmob3 was also suppressed in the double-deletion strain 

ΔSmgpi1/ΔSmmob3. In contrast to the drastically impaired growth of ΔSmmob3 (8 ± 3 mm/d) 

the growth of ΔSmgpi1/ΔSmmob3 was similar to wt (25 ± 5 mm/d) (data not shown).  

 

3.1.6 ΔSmgpi1 forms more fruiting bodies that are small but normally shaped 

To analyze the function of Smgpi1 and the reason for its suppression of ΔSmmob3, the ΔSmgpi1 

phenotype was studied in detail. Counts of fruiting bodies revealed that ΔSmgpi1 produced 

152% ± 6.3 fruiting bodies per cm2 compared to the wt strain, the double-deletion mutant 

ΔSmgpi1/ΔSmmob3 formed only half of the number of perithecia (55% ± 5.9) compared to the 

wt (Figure 30).  
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Figure 30. Number of fruiting bodies produced by ΔSmgpi1, ΔSmmob3 and ΔSmgpi1/ΔSmmob3 and 
complemented strains compared to wt. Wt and ΔSmgpi1 were grown for 8 days at 27 °C on solid SWG 
medium, ΔSmgpi1/ΔSmmob3 for 14 days, respectively. Data for the respective strains was obtained by 
counting the number of perithecia produced on an area of 5 cm2 at the edge of the plate. Bars represent 
the mean value calculated from 10 strains (n=10) for each data set. Ratio of each strain compared to the 
wt (wt was set 1). Error bars (SD) are given as indicated. Grey bars indicate fertile perithecia containing 
ascospores; white bars represent sterile perithecia without ascospores. Asterisks indicate significance 
according to Student’s t-test. Thus, values of grey colored bars were compared to wt number of 
perithecia; white colored bars significance was calculated compared to ΔSmgpi1/ΔSmmob3. 
P-value < 0.0003. 

 
The increased number of perithecia returned to wt levels when ΔSmgpi1 was complemented by 

full-length construct SmGPI1 aa 1-253 but not by versions lacking the N-terminal signal 

sequence (SmGPI1 aa 28-253), the C-terminal processing region for GPI-attachment (SmGPI1 

aa 1-227) or both regions (SmGPI1 aa 28-227) (Figure 30). Overexpression of Smgpi1 in wt 

decreased the total number of produced perithecia per cm2 to 51% ± 3.5 compared to wt (Figure 

30). To determine whether localization of SmGPI1 plays a role to suppresses ΔSmmob3 sterility, 

Smgpi1 variants encoding SmGPI1 aa 1-253, SmGPI1 aa 28-253, SmGPI1 aa 1-227 or SmGPI1 

aa 28-227 were transformed into ΔSmgpi1/ΔSmmob3 (Figure 30). All ΔSmgpi1/ΔSmmob3 
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incubation, these never contained asci or ascospores. No fruiting bodies were produced from 

strain ΔSmgpi1/ΔSmmob3 transformed with Smgpi1 full-length. The higher number of fruiting 

bodies produced by ΔSmgpi1 led us to inspect the size and shape of the fruiting bodies in detail. 

Similar to the wt, ΔSmgpi1 produced pear-shaped fruiting bodies; however, they were smaller 

(Figure 31A). ΔSmgpi1 perithecia contained a similar number of asci and ascospores compared 

to wt (Figure 31B). The decreased size of ΔSmgpi1 fruiting bodies was complemented by full-

length Smgpi1 (SmGPI1 aa 1-253), with or without egfp fusion (SmGPI1-eGFP aa 1-492). 

 
 

Figure 31. Deletion of Smgpi1 results in smaller mature fruiting bodies. (A) Microscopic analysis of 
fruiting-body size of wt, ΔSmgpi1, ΔSmgpi1 complemented with the full length Smgpi1 (SmGPI1 aa 1-
253) or Smgpi1-egfp (SmGPI1 aa 1-492), ΔSmgpi1/ΔSmmob3 and wt expressing an additional copy of 
Smgpi1. Fruiting bodies were isolated at day 8 after inoculation. Complementation of the gene deletion 
restores normal size of fruiting bodies. (B) Ascus rosette from wt perithecium compared to perithecium of 
ΔSmgpi1. Both strains produce an equal number of asci and ascospores. 
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Truncated versions of Smgpi1 (SmGPI1 aa 28-253, 1-227 and 28-227) did not restore fruiting-

body size (data not shown). Quantitative analysis revealed a different distribution of fruiting-

body diameters in the deletion mutant ΔSmgpi1 (Figure 32). Compared to wt, ΔSmgpi1 

developed more mature fruiting bodies with a diameter of 0.2-0.3 mm and fewer with a diameter 

of > 0.4 mm. This effect was complemented by full-length Smgpi1. Overexpression of Smgpi1 in 

wt slightly increased perithecia diameter (Figure 32). Fruiting bodies in the double-deletion 

strain ΔSmgpi1/ΔSmmob3 were slightly smaller than in ΔSmgpi1 (Figure 31).  

 

 
Figure 32. Quantitative evaluation of perithecia size (diameter) from wt, ΔSmgpi1 and ΔSmgpi1 
expressing the full length Smgpi1 (SmGPI1 aa 1-253), ΔSmgpi1/ΔSmmob3 and wt expressing an 
additional copy of Smgpi1. Bars represent the mean value calculated from data obtained from 
100 measured fruiting bodies of three biological replicates, respectively. Error bars (SD) are 
given as indicated (n=100). Scale bar as indicated. 
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3.2 The GCKs SmKIN3 and SmKIN24 

3.2.1 S. macrospora encodes two kinases similar to the mammalian STRIPAK-associated 

kinases STK24, STK25, MST4 and MINK1. 

In mammals three members of the GCK III subfamily of the Ste20 kinases (STK24, STK25, and 

MST4); and one member of the GCK IV family (Mishappen-like kinase 1, MINK1) are associated 

with the STRIPAK complex (Goudreault et al., 2009, Hyodo et al., 2012). To date, no 

STRIPAK-associated kinases have been identified in filamentous fungi so far.  

Therefore, we performed a BLASTP search using mammalian kinases STK24, STK25, MST4 

and MINK1 as query against the S. macrospora proteome (http://blast.be-

md.ncbi.nlm.nih.gov/(Nowrousian, 2010)) to identify putative S. macrospora homologs of the 

mammalian kinases. This search revealed the putative germinal center kinases SMAC_01456 

(F7VQV9) and SMAC_04490 (F7VYS5) to be orthologous to the mammalian GCKs (Table 6).  

 
Table 6. BLASTP search of the human STRIPAK associated GC kinases against the S. 
macrospora proteom 

Type Human 
(accession number) 

S. macrospora 
best hit (e-value) 

GCK III MST3, STK24 
(Q9Y6E0.1) 

SMAC_01456 (5e-136) 
SMAC_04490 (9e-126) 

GCK III MST4,MASK 
(Q9P289.2) 

SMAC_01456 (4e-136) 
SMAC_04490 (6e-125) 

GCK III STK25, SOK1, YSK1 
(O00506.1) 

SMAC_01456 (3e-134) 
SMAC_04490 (4e-123) 

GCK IV MINK1 
(NP_722549.2) 

SMAC_01456 (8e-75)  
SMAC_04490 (2e-69) 
 
 

The open reading frame (ORF) of SMAC_04490 comprises 2758 bp and contains three putative 

introns: 96 bp at position 53-148, 117 bp at position 217-333 and 82 bp at position 502-583 

(Figure 34). The calculated molecular weight (MW) of the encoded 820 aa protein is 91.4 kDa 

with an isoelectric point (pI) of 9.47. It showed a high sequence identity to the serine/threonine-

protein kinase 3 of Neurospora crassa (locus tag NCU04096, gene symbol prk-9) (Figure 33) 

and was therefore named SmKIN3.  
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Figure 33. Multiple sequence alignment and aa identity of mammalian kinases identified as STRIPAK 
members with putative homologues from Ascomycota. Protein sequences were aligned with ClustalX2 
(Larkin et al., 2007) and visualized with GeneDoc (Nicholas et al., 1997). MST4, mammalian STE20-like 
protein kinase 4 (Accession number: Q9P289); STK24, mammalian STE20-like protein kinase 3 
(Q9Y6E0); STK25, mammalian serine/threonine-protein kinase 25 (O00506); MINK1, 
mammalian misshapen-like kinase 1 (Q8N4C8); SmKIN24, putative serine/threonine-protein kinase 24 
from S. macrospora (F7VQV9), NcSTK-6, serine/threonine-protein kinase 24 from N. crassa (V5IQF9); 
Fg ESU11740, serine/threonine-protein kinase 24 from F. graminearum (I1RNY7); Pc21g04360, putative 
STE20-like protein kinase from P. chrysogenum (B6HMA9); Af EDP48273, putative STE20-like kinase 
from A. fumigatus (BA78_1793), SmKIN3, putative serine/threonine-protein-kinase 3 from 
S  macrospora (F7VYS5); NcPRK-9, serine/threonine-protein-kinase 3 from N. crassa (V5INC1); Af 
EDP51073, putative Ste20-like kinase from A. fumigatus (B0Y2A3); Pc21g14960, putative 
serine/threonine-protein kinase from P. crysogenum; (B6HJ11); Fg07344, putative serine/threonine-
protein kinase from F. graminearum (A0A016PPL3); SpSID1, serine/threonine-protein kinase from 
Schizosaccharomyces pombe, (O14305); ScKIC1, serine/threonine-protein kinase from S. cerevisiae, 
(P38692); SpPPK11, serine/threonine-protein kinase from S. pombe, (O14047); ScSPS1, sporulation-
specific protein 1 from S. cerevisiae (P08458). Total numbers of aa are given in brackets. Regions of the 
aligned N-terminal domain of the protein sequences are indicated in brackets at the end of the alignment. 
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ATP-binding side, catalytic loop, Mg-binding sequence, activation loop and region for substrate binding 
are marked with red lines. The entire activation segment is underlined in green. Filled box indicate the 
threonine residue (Thr190 in in MST4, Thr182 in STK24, and Thr174 in STK25), phosphorylated during 
activation. Total numbers of aa are given in brackets at the beginning of the alignment. Aligned N-
terminal domains of the protein sequences are given at the end of the alignment. 

 
Two variants have been reported for N. crassa NCU04096 protein: a long version resulting from 

a transcript after splicing of three introns, and a short version derived from a transcript retaining 

intron 3 and following initiation of translation at a down-stream ATG codon 

(http://www.broadinstitute.org/annotation/genome/neurospora/). The position of all three introns 

is conserved in Smkin3 and prk-9, but we identified splicing of all three introns in Smkin3 using 

RT-PCR and cDNA sequencing, and splicing of intron 3 did not appear to be optional (Figure 

34). In addition, the position of the down-stream start codon is conserved in Smkin3. Initiation of 

translation from this ATG codon would lead to an N-terminally truncated SmKIN3 version of 

663 aa with an MW of 74.3 kDa. The second ORF (SMAC_01456) encoding a putative homolog 

of mammalian GC III and GC IV kinases, encompasses 2947 bp and is predicted to be disrupted 

by four introns: 107 bp at position 77-183, 76 bp at position 215-290, 51 bp at position 608-658 

and 64 bp at position 2413-2476. The calculated MW of the encoded protein of 882 aa is 98.3 

kDa with an isoelectric point (pI) of 7.70.The closest homolog of this protein 

was serine/threonine-protein kinase 24 of N. crassa (locus tag NCU00772, gene symbol stk-6 

alias mst-1). The S. macrospora protein was therefore designated SmKIN24.  

94 
 



Results 

 

Figure 34. RT-PCR analysis of Smkin3. (A) Schematic illustration of Smkin3. Introns are indicated as 
grey boxes, positions of primers used for analysis of intron splicing are indicated by arrows. (B) Results 
of the RT-PCR analysis. Shown are the obtained amplicons for respective primer pairs from cDNA and 
gDNA. (C) Schematic illustration of Smkin3 transcripts. 

 
Similarly to NCU04096, two gene products have been identified for NCU00772: a long version 

resulting from splicing of three introns at same positions as the first three introns of Smkin24, 

and a short version resulting from skipping of intron 1 and translation initiation at a down-stream 

ATG start codon. This downstream start codon is conserved in Smkin24. RT-PCR and cDNA 

sequencing of Smkin24 revealed that, like NCU0772, splicing of the first intron was optional. 

Additionally, sequencing of full length RT-PCR products showed optional splicing of intron 4, 

which is not present in NCU0772 (Figure 35).  
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Figure 35. RT-PCR analysis of Smkin24. (A) Schematic illustration of Smkin24. Introns are indicated as 
grey boxes, positions of primers used for analysis of intron splicing are indicated by arrows. (B) Results 
of the RT-PCR analysis. Shown are the obtained amplicons for respective primer pairs from cDNA and 
gDNA. (C) Schematic illustration of Smkin24 transcripts identified by cDNA sequencing. 

 
Thus, in addition to the full-length protein two further variants are encoded by Smkin24. 

Skipping the splicing of intron 1 and initiation of translation at the downstream ATG codon 

would result in a 789 aa protein with a MW of 88 kDa, whereas skipping intron 4 splicing would 

lead to a C-terminal truncated version of 729 aa with a MW of 82 kDa (Figure 36). 
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Figure 36. Alignment of aa sequences encoded by alternatively spliced Smkin24 transcripts. Smkin24 
without introns results in a protein of 882 aa and thus representing the largest protein. Expression of 
Smkin24 with remaining intron I but removed intron II-IV results in a protein comprising aa 94-882 of the 
protein derived from Smkin24 without introns. Smkin24 with spliced intron I-III but remaining intron IV 
results in a protein comprising aa 1-729. The numbers I-III at the beginning of the aa acid sequences for 
each Isoform refers to Figure 35.  

 
In mammalian GC III and IV kinases the regulatory domain lies C-terminal to the catalytic 

domain and is heterogeneous in sequence (Record et al., 2010). A search for conserved domains 

at CCD http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi (Marchler-Bauer et al., 2011) 

revealed that both SmKIN3 and SmKIN24 exhibit a typical STKc MST3-like catalytic domain of 

mammalian Ste20-like kinase 3 serine/threonine-protein kinases (accession cd06609, E-value 

SmKIN3 =1.13e-177, E-value SmKIN24 =0.0 ) at the N-terminal part of the protein. As shown in 
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Figure 33, SmKIN3 and SmKIN24 possess a conserved ATP-binding site [GXGX(F)GX16K], a 

catalytic loop sequence [HRDIK], a Mg2+-coordinating sequence [DFG], a substrate binding 

motif [GTPFWMAPE] and a critical threonine residue, phosphorylated during activation, at the 

end of the activation loop (Sugden et al., 2013, Delpire, 2009). Based on an aa alignment of the 

N-terminal catalytic domain, S. macrospora SmKIN3 and SmKIN24 share a high level of 

sequence identity with the N-terminus of MST4 (67%/67%), STK24 (68%/68%), STK25 

(67%/68%) and MINK1 (46%/46%). However, the C-terminally located regulatory domains are 

structurally different to GCKs from other filamentous ascomycetes, as well as S. cerevisiae and 

S. pombe (less than 20%) (Figure 37).  

 

 
Figure 37. Identity of aligned aa sequences of mammalian kinases identified as STRIPAK members with 
putative homologues from Ascomycota in pair-wise comparison.  

 

Phylogenetic analysis revealed that SmKIN3 and SmKIN24 were strictly separated and cluster 

together with putative homologs from other filamentous ascomycetes (Figure 38). 
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Figure 38. Unrooted neighbor-joining tree of human GCKs MST4, STK24, STK25, MINK1 and their 
orthologs in ascomycetes. Orthologs were identified by BLAST search using the listed human GCKs as 
template. Catalytic domains proteins were aligned with ClustalX2 (Larkin et al., 2007). The phylogenetic 
tree was made with programs included in PHYLIP 3.695 (Felsenstein, 2013). The human GCKs are 
displayed in yellow, the orthologs from the yeasts S. cerevisiae and S. pombe in orange. KIN3-like 
kinases and KIN24-like kinases from filamentous ascomycetes are shown in light green. The respective 
accession numbers of the proteins are given in Figure 33 except of the Aspergillus nidulans kinases 
AnSEPL (C8V5Z7) and An56574 (Q5B1A6).. The tree is divided into four branches, comprising the 
human GCKs MST4, STK24, and STK25, the KIN24-like group of filamentous ascomycetes, the KIN3-
like group of filamentous ascomycetes, and MINK1 with SPS1 and KIC1 from S. cerevisiae as well as 
S. pombe PPK11 from. SID1 from S. pombe is separately positioned, near the SmKIN3-like group. The 
numbers at the nodes indicate bootstrap support. 
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Mammalian GC III kinases contain putative nuclear export signals (NES) and bipartite nuclear 

localization sequences (NLS) (Lee et al., 2004). A putative NES at aa position 493-509 was 

predicted for SmKIN3 by NetNES1.1 (la Cour et al., 2004) and a bipartite NLS by the program 

cNLS (Kosugi et al., 2009) for SmKIN3 at position 463-490 (score 4.1) and SmKIN24 at 

position 783-817 (score 3.8). 

 

3.2.2 SmKIN3 interacts physically with PRO11 
 

Striatin is the scaffold of mammalian STRIPAK complex kinases MST4, STK24, STK25 and 

MINK1 (Hyodo et al., 2012, Goudreault et al., 2009). PRO11 was previously shown to be the S. 

macrospora homolog of mammalian Striatin (Pöggeler & Kück, 2004). The sequence similarity 

between SmKIN3 and SmKIN24 and the mammalian GC III and GC IV kinases (Figure 36) led 

us to inspect whether both S. macrospora kinases can interact with PRO11 in a Y2H system. 

Full-length cDNAs of Smkin3 and Smkin24 were cloned into the Y2H vector pGBKT7 that 

contains the GAL4 DNA-binding domain. Plasmid pAD11FL encoding full-length PRO11 

served as prey vector. Plasmids were transformed into yeast strains Y187 (pGBKT7 constructs) 

or AH109 (pGADT7 constructs). Strains carrying pBD-SmKIN3 and pBD-SmKin24 plasmids 

were checked for transactivation activity by mating with yeast strain AH109 containing 

pGADT7. A strain carrying pGBKT7 and pGADT7 was used as negative control. Expression of 

GAL4 fusion proteins from pBD-SmKIN3 and pBD-SmKIN24 was checked by interaction with 

the yeast protein RanBPM (Tucker et al., 2009). Previously, we showed that the Mob domain 

protein SmMOB3, the mammalian phocein homologue, is a strong interaction partner of PRO11 

(Bloemendal et al., 2012, Bernhards & Pöggeler, 2011). We therefore tested the interaction of 

both kinases with SmMOB3. Using the Y2H system we confirmed that both SmKIN3 and 

SmKIN24 could physically interact with PRO11 but not with SmMOB3 (Figure 39).  
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Figure 39. SmKIN3 and SmKIN24 interact physically with PRO11. Yeast two-hybrid analysis of 
interaction between SmKIN3 and PRO11 (A) as well as SmKIN24 and PRO11(B). For Y2H analysis, 
serial dilutions of diploids obtained after mating spread on medium lacking tryptophan (trp) and leucine 
(leu) or trp, leu and adenine (ade). BD = DNA-binding domain of GAL4, AD = activation domain of 
GAL4. GAL4 binding domain was fused to SmKIN3 (BD-SmKIN3) or SmKIN24 (BD-SmKIN24), 
GAL4 activation domain was fused to PRO11 full-length (AD-PRO11). A diploid strain carrying empty 
pGADT7 (AD) and pGBKT7 (BD) served as negative control. Expression of the GAL4-BD fusion 
protein from pBD-SmKIN3 (BD-SmKIN3) and pBD-SmKIN24 (BD-SmKIN24) plasmids were checked 
by mating Y187 transformants with AH109 carrying pAD-RanBPM (AD-RanBPM) (Tucker et al., 2009) 
 

To test whether PRO11 and GCKs SmKIN3 and SmKIN24 could interact in vivo, we performed 

co-IP studies in S. macrospora. We expressed N-terminally FLAG-tagged SmKIN3 as well as 

SmKIN24 and HA-tagged PRO11 (Bloemendal et al., 2012) in S. macrospora. We were not able 

to express FLAG-tagged SmKIN24 in S. macrospora in amounts suitable for co-IP, under 
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control of either the native or ccg1 promoter. All obtained viable transformants expressed 

Smkin24 in low amounts (data not shown). We therefore concluded that SmKIN24 is highly 

instable. However, tagged SmKIN3 and PRO11 could be expressed separately and co-expressed 

in wt S. macrospora. Pull-down experiments without adding a cross-linker did not result in 

precipitation of PRO11 (data not shown). Since protein kinases often interact weakly and 

transiently their substrate, we performed sulfhydryl cross-linking with bismaleimidohexane 

BHM which confirmed the physical interaction of full length SmKIN3 and PRO11 (Figure 40). 
 

 

Figure 40. Co-IP of SmKIN3-FLAG and PRO11-HA. The Western-blot was performed with anti-FLAG 
and anti-HA antibody, respectively. Protein extract of the wt, separately expressed constructs and co-
expression of each construct with complementary empty vectors served as controls. 

 

3.2.3 Deletion of Smkin3 or Smkin24 impairs vegetative growth but only ΔSmkin24 is 
sterile 

In order to investigate the functional role of Smkin3 and Smkin24, we generated single and 

double deletion strains ΔSmkin3, ΔSmkin24 and ΔSmkin3/ΔSmkin24 (Figure 41). The 

respective genes were replaced by homologous recombination in the S. macrospora Δku70 

(Pöggeler & Kück, 2006) strain (Figure 41A). The Δku70 background was removed afterwards 

by crossing the homokaryotic deletion strains with S. macrospora spore-color mutant r2 

(Teichert et al., 2014) and the obtained single-spore isolates were verified by PCR (Figure 41B) 

and Southern blotting (Figure 41C). 
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Figure 41. Generation of ΔSmkin3 and ΔSmkin24 deletion strains. (A) Schematic illustration of the 
Smkin3 and Smkin24 loci before and after homologous integration of the respective deletion cassette. 
Primers used for verification of the deletion strains are indicated by arrows. Sizes of PCR fragments and 
probes used for Southern hybridization are given. (B) Verification of the respective deletion using PCR. 
Sizes of amplicons and positions of the primers as indicated in (A). (C) Integration of the deletion cassette 
was verified by Southern hybridization (Sambrook et al., 2001). Positions of the respective probes are 
indicated in (A). ΔSmkin3 (left) was verified using a hygromycin specific probe that only binds within 
the deletion cassette. ΔSmkin24 (right) was verified using a probe binding at the 3’ region of Smkin24. In 
this case, the successful integration is represented by a band shift. 
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Microscopic analysis of the knockout strains revealed that only ΔSmkin3 was fertile and able to 

generate fruiting bodies with ascospores within 7 days (Figure 42).  

 
Figure 42. Macroscopic and microscopic analysis of the sexual development of wt, ΔSmkin3, ΔSmkin24 
and ΔSmkin3/ΔSmkin24. The wt strain produces ascogonia after 3 days which develop to unpigmented 
protoperithecia at day 4 and pigmented protoperithecia at day 5. After 7 days mature perithecia with asci 
and ascospores are formed. Like the wt, ΔSmkin3 completes the lifecycle within 7 days and produces 
germinable ascospores. Development of ΔSmkin24 and the double-deletion strain ΔSmkin3/ΔSmkin24 is 
arrested at the stage of late protoperithecia formation. Scale bars as indicated. 
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The deletion strain ΔSmkin24 was halted during late protoperithecia maturation and thus failed to 

develop mature fruiting bodies (Figure 42). Additionally, ΔSmkin3 produced more aerial hyphae on 

solid SWG fructification medium compared to wt (Figure 42).  
 

 
Figure 43. Macroscopic and microscopic analysis of the sexual development of wt, complemented 
ΔSmkin3 (ΔSmkin3+), complemented ΔSmkin24 (ΔSmkin24+) and partially complemented 
ΔSmkin3/ΔSmkin24. The wt strain produces ascogonia after 3 days which develop to unpigmented 
protoperithecia at day 4 and pigmented protoperithecia at day 5. After 7 days mature perithecia with asci 
and ascospores are formed. Similar to the wt ΔSmkin3+ and ΔSmkin24+ and ΔSmkin3/ΔSmkin24 + 
Smkin24 completed the lifecycle within 7 days and produced mature ascospores. Development of 
ΔSmkin3/ΔSmkin24 + Smkin3 is arrested at stage of late protoperithecia formation, similar to ΔSmkin24. 
Scale bars as indicated. 
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The double-deletion strain was generated by crossing the single deletion strains, and 

ΔSmkin3/ΔSmkin24 exhibited a phenotype that was a combination of the phenotypes of both single 

deletion strains (sterility and increased aerial hyphae on solid SWG medium). Each of the described 

phenotypes could be complemented by inserting a copy of the deleted gene ectopically as shown in 

Figure 43. 

Sterility of STRIPAK mutants pro11, pro22 and ∆Smmob3 is accompanied by defects in hyphal 

fusion (Bernhards & Pöggeler, 2011, Bloemendal et al., 2012). However, in contrast with these 

previously characterized mutants, fusion of vegetative hyphae was not affected in ∆Smkin3 and 

∆Smkin24 (Figure 44). Furthermore, deletion of Smkin3 and Smkin24 impaired vegetative 

growth of S. macrospora: Growth velocity experiments revealed that ΔSmkin3 (1.70 ± 0.24 

cm/d), ΔSmkin24 (1.82 ± 0.41 cm/d) and ΔSmkin3/ΔSmkin24 (1.54 ± 0.28 cm/d) grew more 

slowly than wt (3.09 ± 0.37 cm/d) (Figure 44). 

 
Figure 44. Microscopic investigation of hyphal fusion in wt, ΔSmkin3, ΔSmkin24 and 
ΔSmkin3/ΔSmkin24. ΔSmkin3, ΔSmkin24 and ΔSmkin3/ΔSmkin24 are capable of hyphal fusion. 
Hyphal fusion events are highlighted with circles. Pictures of hyphal fusion events were taken at 
subperiphal regions 10 mm behind the growth front. Hyphal-fusion was investigated 2-3 days past 
inoculation. 
 

Furthermore, the deletion of Smkin3 and Smkin24 impairs vegetative growth of S. macrospora. 

Measuring growth velocity in race tubes over ten days revealed that ΔSmkin3 (1.70 ± 0.24 

cm/d), ΔSmkin24 (1.82 ± 0.41 cm/d) and ΔSmkin3/ΔSmkin24 (1.54 ± 0.28 cm/d) display a 

reduced growth velocity than wt (3.09 ± 0.37 cm/d).  
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3.2.4 SmKIN3 and SmKIN24 localize to septa and influence septum formation 
 
In order to determine the localization of SmKIN3 and SmKIN24 in vivo, fluorescence 

microscopy was performed. Genes coding N-terminally eGFP-tagged full-length SmKIN3 or 

SmKIN24 were expressed in the respective S. macrospora deletion strains, which show that both 

kinases were localized at the septa (Figure 45). However SmKIN3 was localized mainly at the 

outer part of the septum, whereas SmKIN24 was localized at the middle (Figure 45) and this was 

verified by co-staining with calcofluor white (Figure 45).  

 
Figure 45. Localization of SmKIN3-eGFP and SmKIN24-eGFP in S. macrospora. SmKIN3-eGFP and 
SmKIN24-eGFP localize to septa. For visualization of cell walls and septa, hyphae were co-stained with 
calcofluor white. Scale bars as indicated. 
 

These findings lead us to quantify septum formation in the ΔSmkin3, ΔSmkin24 and 

ΔSmkin3/ΔSmkin24 strains by staining with calcofluor white after 18 or 32 h of growth (Figure 

46).  
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Figure 46. Analysis of septal development in wt, ΔSmkin3, ΔSmkin24 and ΔSmkin3/ΔSmkin24 and 
complemented mutants. Distribution of septa was investigated under the microscope after 18 h and 32 h 
past inoculation. Septa were stained with calcofluor white. 

 
Furthermore, we quantified the distances between adjacent septa in wt and deletion mutants after 

24 h of growth (Figure 47). Septa were distributed in a uniform manner in wt with hyphal 

compartment length between 31-70 µm (Figure 47). In contrast ΔSmkin3 exhibited larger 

distances between adjacent septa (>71 µm), although this effect begun to revert after 24 h of 

growth (Figure 46). Strikingly, ΔSmkin24 developed numerous closely-packed septal bundles of 

abnormal shape, with much smaller hyphal compartments of 0-30 µm (Figure 47). ΔSmkin3 

produced about half the total number of septa within a distance of 18 mm than wt, while 

ΔSmkin24 produced 20% more than wt after 24 h of growth. With respect to septation, the 

double deletion mutant ΔSmkin3/ΔSmkin24 displayed a similar phenotype to the ΔSmkin24 

single deletion strain. Ectopic integration of the respective wt gene into deletion mutants restored 

septal formation to wt level (Figure 46 and Figure 47). 
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Figure 47. Quantitative analysis of septal development in wt, ΔSmkin3, ΔSmkin24 and 
ΔSmkin3/ΔSmkin24 and complemented mutants. For quantification, distances between adjacent septa 
were measured over a distance of 18 mm per strain 24 h past inoculation. The total distance of 18 mm 
was divided into 30 segments of 600 µm. Measurements were binned into five different compartment 
lengths: 0-30 µm, 31-50 µm, 51-70, 71-100 mm, and more than 100 µm. The number of analysed 
compartments was normalized to 100%. Error bars (SD) are given as indicated (n=30). ∆Smkin3+, 
∆Smkin24+ complemented mutants carrying an ectopic copy of the respective wt gene. 
 

3.2.5 ΔSmkin3 protoplasts recover significantly faster than wt protoplasts 

We observed an increased growth rate in ΔSmkin3 protoplasts compared to wt, therefore we 

isolated protoplasts from wt, ΔSmkin3, ΔSmkin24 and ΔSmkin3/ΔSmkin24 strains using a 

previously described protocol (Nowrousian et al., 1999, Pöggeler et al., 1997) and adjusted the 

protoplast concentration to 4 x 104 protoplasts/ml. The protoplasts were spread on solid complete 

medium with 10.8% saccharose (CMS) (Nowrousian et al., 1999) and microscopically and 

macroscopically analyzed after 24, 4 and 72 h of growth (Figure 48). After 24 h, wt protoplasts 

developed a slightly branched mycelium expanded further after 48 h (Figure 48). Mycelia were 

only faintly visible without magnification on agar plates after 72 h. Regeneration of protoplasts 

from ΔSmkin24 resembled those of wt. In contrast, protoplasts from ΔSmkin3 and 

ΔSmkin3/ΔSmkin24 recovered markedly faster within the first days than wt and mycelia 

generated by ∆Smkin3 protoplasts were much denser and clearly visible with the naked eye after 

72h. Increased aerial hyphae were also present with ∆Smkin3 and this effect was complemented 
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by ectopically integrated wt copy of Smkin3 in the ∆Smkin3 mutant (Figure 48). The accelerated 

growth rate of ∆Smkin3 vegetative mycelium disappeared after five days. 
 

 
Figure 48. Investigation of protoplast recovery and vegetative growth of ΔSmkin3, ΔSmkin24 and 
ΔSmkin3/ΔSmkin24. Protoplasts of the respective strains were obtained as described by Nowrousian et 
al. (1999) and spread on solid CMS agar plates. Microscopic pictures were taken after 24 h, 48 h past 
inoculation, pictures of agar plates 72 h past inoculation. Compared to wt, protoplasts obtained from 
ΔSmkin3 and ΔSmkin3/ΔSmkin24 recovered and grew faster within the first 2-3 days. Recovery and 
vegetative growth of protoplasts obtained from ΔSmkin24 is equal to wt ∆Smkin3+, ∆Smkin24+ 
complemented mutants carrying an ectopic copy of the respective wt gene. Scale bars as indicated. 
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 Discussion 4.

In animals and fungi, STRIPAK and STRIPAK-like complexes are implicated in various cellular 

processes such as signaling, cell-cycle control, apoptosis, vesicular trafficking, Golgi assembly, 

cell polarity, cell migration and fusion, neural development and cardiac function (Hwang & 

Pallas, 2014). In the filamentous ascomycete S. macrospora, the STRIPAK-like complex 

contains the Striatin homolog PRO11, the STRIP1/2 homolog PRO22, the SLMAP homolog 

PRO45, the phocein homolog SmMOB3 and structural and catalytic subunits of the protein 

phosphatase PP2A. Components of the STRIPAK complex are required for S. macrospora 

sexual differentiation and cell fusion (Bernhards & Pöggeler, 2011, Bloemendal et al., 2012, 

Bloemendal et al., 2010, Pöggeler & Kück, 2004, Nordzieke et al., 2014).  

 

4.1 The GPI-anchored protein SmGPI1 

4.1.1 SmGPI1 is a GPI-anchored protein 

SmGPI1 was first discovered in a Y2H screen using SmMOB3 as bait. In silico analysis of 

SmGPI1 using SignalP (Petersen et al., 2011) and big-PI Predictor (Eisenhaber et al., 1998, 

Eisenhaber et al., 1999, Eisenhaber et al., 2000, Sunyaev et al., 1999) revealed a putative signal 

sequence and a region for GPI-anchor attachment (Figure 12). Posttranslational attachment of the 

GPI-glycolipid at the C-terminus of proteins generally results in anchoring to the plasma 

membrane outer leaflet (Fujita & Kinoshita, 2012, Singh et al., 2011). The signal sequence is 

necessary, because synthesis and attachment of the GPI-anchor occur in the ER. Many proteins 

have been shown to contain a signal sequence for ER translocation, which generally consists of 

5-30 aa at the N-terminus of proteins (Rapoport, 2007, Blobel & Dobberstein, 1975). Signal 

sequences tend to form a single alpha-helix (Rapoport, 2007). Further in silico analysis with 

Quick_2D (Biegert et al., 2006) predicted a single alpha-helix for SmGPI1s putative signal 

sequence. Moreover, the putative signal sequence of SmGPI1 has been shown to be sufficient to 

transport eGFP to the ER and in case of an added ER-retention signal, to remain there. Thus, the 

signal sequence is functional (Figure 18). In contrast to proteins with other destinations after ER 

translocation, GPI-anchored proteins have a structured region for GPI-anchor attachment.  
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Analysis of various GPI-anchored proteins revealed that the region for GPI-anchor attachment 

generally share identical features; it consists of an ω-residue for GPI-anchor attachment, a polar 

spacer region between ω+3 to ω+9 and a hydrophobic tail from ω+10 to the C-terminal end of 

the protein (Caro et al., 1997, De Groot et al., 2003, Mayor & Riezman, 2004, Pierleoni et al., 

2008). The presence of small side chain residues at position ω+1, ω+2 and ω+3 is assumed to be 

necessary for transamidase cleavage (Pierleoni et al., 2008). The ω-residue of SmGPI1 is 

predicted to be aa 228, aa ω+1 is arginine, ω+2 is alanine and ω+3 is serine; alanine and serine 

are small side-chain aa. However, aa ω+1 is arginine, which is a large aa. The polar spacer of 

SmGPI1 at position ω+3 to ω+10 has the aa sequence SSKRGFTG and thus, contains indeed 

with serine, threonine and glycine 50% polar aa. Regarding the fact that two polar aa particularly 

enclose the polar region it is likely, that residue ω+10 is also part of the polar spacer. Residues 

ω+11 to ω+25 represent with the sequence LLVAAVVVATVSGLL the hydrophobic tail. This 

aa sequence contains with leucine, valine and alanine about 87% hydrophobic aa (Figure 12). It 

was shown, that deletion of the region for GPI-anchor attachment of SmGPI1 impaired 

localization to the cell wall or membrane of the cell (Figure 16). Moreover, inspection of 

SmGPI1s aa sequence showed a sequence pattern similar to previously identified CFEM 

(common in several fungal extracellular membrane proteins) domains. These domains are 

primarily found in fungal GPI-anchored proteins bound to cell walls. CFEM domains are 

approximately 60 aa long and contain 8 spaced cysteine residues usually near the N-terminus of 

the respective protein (Vaknin et al., 2014, Kulkarni et al., 2003). SmGPI1 exhibits 14 cysteine 

residues, which are conserved among SmGPI1-orthologs in ascomycetes (Figure 13). Thus, it is 

likely, that these residues have a function similar to these of the CFEM domains. In addition, 

each predicted ortholog has a putative signal sequence and a putative region for GPI-anchor 

attachment, but these differ in their sequence. SmGPI1 is not homologous to the recently 

described N. crassa GPI-anchored protein HAM-7, which is involved in fruiting-body formation 

and hyphal fusion (Fu et al., 2011, Maddi et al., 2012).  

 

4.1.2 SmGPI1 is a dual targeted protein 

GPI-anchored proteins normally localize to the outer leaflet of the plasma membrane (Fujita & 

Kinoshita, 2012, Singh et al., 2011). In S. cerevisiae, the region ω-1 to ω-5 can support 

membrane localization (Caro et al., 1997, Frieman & Cormack, 2003, Hamada et al., 1999, 
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Stefanova et al., 1991). Moreover, GPI-anchored proteins in ascomycetes can also be covalently 

bound to the cell wall (Gilbert et al., 2012). The switch between localization to the membrane or 

cell wall depends among other factors, on the presence or absence of dibasic residues at position 

ω-1 or ω-2 (Stefanova et al., 1991, Ouyang et al., 2013). Absence of dibasic residues at position 

ω-1 and ω-2 support localization of the anchored protein to the cell wall (Stefanova et al., 1991, 

Ouyang et al., 2013). Fluorescence microscopy and Western blot analysis of eGFP-tagged 

SmGPI1, however, showed localization at the plasma membrane or cell wall, a fluorescence 

pattern similar to mitochondrial localization and partial secretion (Figure 16, Figure 18 and 

Figure 19).  

A high content of serine and threonine residues in GPI-anchored proteins was shown to support 

cell-wall attachment of GPI-anchored proteins, approximately 70% of S. cerevisiae cell-wall 

bound GPI-anchored proteins contain more than 30% serine/threonine residues (Frieman & 

Cormack, 2004). 

Sequence analysis of SmGPI1 revealed a serine/threonine content of 20% in total, compared to 

the average in proteins of 7.6% for serine and 6% for threonine (Bruice, 2004), the serine content 

of SmGPI1 (12.7%) but not the threonine (7.2%) is significantly increased. These results indicate 

that the final destination of GPI-anchored proteins is mediated by several factors. For example, 

De Sampaio et al. (1999) showed for the glucanosyltransferase GAS1p in S. cerevisiae 

localization to the cell wall, although it contains a dibasic residue at position ω-1 and ω-2. 

SmGPI1-eGFP localizes to structures, resembling the plasma membrane or the cell wall (Figure 

19). Moreover, after differential centrifugation, SmGPI1 was mainly found in the cell detritus, 

but in case of deletion of the predicted region for GPI-anchor attachment, it appears mainly in 

the cytosol (Figure 16). The cell detritus contained remnants after early centrifugation, such as 

parts of the cell wall. Thus, the region containing the ω-residue might be crucial for localization 

of SmGPI1 to the outer leaflet of the plasma membrane. This data is also supported by eGFP 

localization of SmGPI1 without the GPI-anchor attachment region (Figure 19), which was no 

longer present at the cell wall or membrane (Figure 19). These findings are consistent with many 

studies, made with other organisms. Ouyang et al. (2013) showed recently that only the signal 

sequence and the region for GPI-anchor attachment comprising ω-10 to the C-terminal end of 

cell-wall protein Mp1p, glucanosyltransferase Gel1 and Ecm33, which function in maintaining 

fungal cell-wall integrity and virulence, are sufficient for proper localization to the cell 
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membrane or the cell wall. In their experiments, they fused the respective signal sequences and 

omega regions to eGFP and thus, mediated eGFP localization to the cell wall and membrane. In 

contrast to De Sampaio et al. (1999), Ouyang et al. (2013) showed that mutation of the residues 

ω-1 and ω-2 can alter the protein localization. Cryptococcus neoformans chitin deacetylase 2 is 

an enzyme that converts chitin to chitosan and is an established virulence factor for 

C. neoformans infection. Gilbert et al. (2012) showed that the protein is bound to membranes 

and non-covalently associated to cell walls. Interestingly, cell wall association was independent 

from its GPI-anchor. 

SmGPI1 full-length protein also appears in the cell-free medium (Figure 18). Deletion of its 

omega region not only impairs cell-wall localization, but slightly decreases secretion of the 

protein. Secretion of GPI-anchored proteins in general is well documented (Low, 1989, Mayor & 

Riezman, 2004, Paulick & Bertozzi, 2008). Djordjevic et al. (2005) showed that C. neoformans 

virulence factor phospholipase B1 localizes (Plb1) to the cell wall, membrane structures and was 

also detectable in the cell-free medium. Furthermore, that this localization pattern was GPI-

anchor dependent. Similar to SmGPI1, deletion of the GPI-anchor led to an increased secretion 

of the protein. Moreover, SmGPI1 was shown to localize to structures resembling mitochondria 

(Figure 19). This was confirmed by co-staining with MitoTracker Red and likely caused the 

signal detected for the membrane fraction after differential centrifugation (Figure 16). In 

eukaryotes, dual targeting of a single proteins to more than one subcellular compartment is well 

documented (Raza, 2011, Ben-Menachem et al., 2011, Dinur-Mills et al., 2008, Yogev et al., 

2011). These examples include GPI-anchored proteins such as S. cerevisiae β-1,3-

glucanosyltransferase GAS1, which plays as a GPI-anchored cell-wall protein a role in the 

formation and maintenance of the cell wall and when targeted to the nucleus, in regulation of 

transcriptional gene silencing and rDNA stability. When targeted to the cell wall, GAS1 

elongates and arranges 1,3-glucan side chains, which are linked to glucan, chitin and proteins, 

and in sum, form the main layer of cell walls. The sub population of GAS1 detected in the 

nucleus interacts with the histone deacetylase SIR2 and increases rDNA silencing in a SIR2-

dependent manner (Koch & Pillus, 2009, Bauer et al., 2014). Pfeiffer et al. (2013) demonstrated 

that ER signal peptides of the GPI-anchored prion-like Shadoo, the neuropeptide hormone 

somatostatin, and the amyloid precursor protein mediate alternative targeting to mitochondria. 

This effect is mediated by structural features within the nascent chain; the signal sequences of 

114 
 



Discussion 

each protein promotes proper ER import of the nascent chain containing alpha-helical domains, 

but unstructured polypeptides are targeted to mitochondria. Increased transport to mitochondria 

causes unproductive transport to the ER lumen, and vice versa. By this, they presented a novel 

mechanism of dual targeting of proteins to the ER or mitochondria, facilitated by structural 

features in the nascent chain. 

In silico analysis using GlobPlot2 (Linding et al., 2003) revealed extended intrinsic disorder 

regions within SmGPI1 (Figure 49). The signal sequence of SmGPI1 seemed to be necessary for 

mitochondrial localization because N-terminally eGFP-tagged SmGPI1 (data not shown) and 

SmGPI1 with its first 27 aa deleted led to a diffuse localization to the cytosol. In contrast, 

removal of the C-terminal GPI-signal sequence slightly increased mitochondrial localization 

(Figure 19).  

 

 
Figure 49. SmGPI1 exhibits regions of disorder. Shown is the protein precursor aa 1-253. The omega 

residue is marked in black. Grey boxes and italic letters in the aa sequence below represent N-terminal 

and C-terminal signal sequences. Arrows and grey capital letters in the aa sequence below represent 

disorder regions predicted by GlobPlot2 (Linding et al., 2003). 

 

Similarly, Pfeiffer et al. (2013) showed that loss of the C-terminal GPI-signal sequence interferes 

with efficient ER import and increased mitochondrial import of mammalian GPI-anchored prion 

proteins. In this study was shown, that the C-terminal alpha-helical structure of Shadoo, which 

lies within the region for GPI-anchor attachment, can mediate ER import of the intrinsically 

disordered protein. In silico analysis with Quick_2D (Biegert et al., 2006) predicted for SmGPI1 
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a single alpha-helical structure at the C-terminus. However, deletion of the C-terminal signal 

sequence of SmGPI1 did not completely impaired secretion but changed localization to the cell 

wall as shown by differential centrifugation and fluorescence microscopy (Figure 16 and Figure 

19). The summarized mechanism of dual targeting of SmGPI1 in S. macrospora is shown in 

Figure 50. 
 

 
Figure 50. Dual targeting of SmGPI1 in S. macrospora. Features within the nascent chain determine the 
destination of SmGPI1, which is targeted to the cell wall and the mitochondria. Alpha-helical regions 
within the nascent chain facilitate transport to the ER and inhibit targeting to the mitochondria. 
Unstructured regions within the nascent chain regulate this process vice versa. For localization to the cell 
wall, the protein precursor is processed in the ER and transported via vesicles to the final destination. 
Based on the model presented by Pfeiffer et al. (2013). 
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4.1.3 STRIPAK protein SmMOB3 interacts physically with SmGPI1 

The GPI-anchored protein SmGPI1 was first identified as an interaction partner of SmMOB3 in a 

Y2H screen using a N. crassa cDNA library (Bernhards, 2010). This interaction was verified 

using S. macrospora cDNA and in a Y2H as well as by means of co-IP (Figure 14 and Figure 

15), defined as a 144 aa N-terminal region of SmMOB3 and a 100 aa N-terminal region of 

SmGPI1. This region of SmMOB3 has recently shown to physically interact with the WD 

domain of Striatin homolog PRO11 in S. macrospora (Bloemendal et al., 2012). Since SmMOB3 

was shown not to homodimerizes, it was suggested that the predicted alpha-helix of SmMOB3 

mediates the SmMOB3-PRO11 interaction (Bernhards, 2010). Regarding that MOB3 interacts 

with several proteins via its N-terminus, it is possible that interaction between SmMOB3 and 

PRO11 might alter SmMOB3-SmGPI1 binding and vice versa. This could be further investigated 

by co-IP analysis of SmMOB3-PRO11 interaction in strains with ΔSmgpi1 background 

compared to strains with wt background. Or, more appropriate, measuring binding kinetics of 

PRO11-SmMOB3 interaction in vitro before and after adding SmGPI1. Moreover, it would be 

interesting to analyze if these proteins exist in a tertiary complex, to gain a better understanding 

about the function of SmGPI1-SmMOB3 interaction. 

As mentioned above, the final destination of fungal GPI-anchored proteins is the plasma 

membrane or the cell wall (Ouyang et al., 2013), but fungal MOB3/phocein homologs do not 

contain transmembrane domains (Maerz et al., 2009, Bernhards & Pöggeler, 2011). Therefore, 

localization of SmGPI1 and SmMOB3 suggested that physical interaction of the proteins is 

prevented by their presence in different cell compartments. However, N. crassa MOB3 localizes 

at the nuclear envelope. This process requires HAM-2 (PRO22 homolog) and HAM-3 (PRO11 

homolog) for membrane localization (Dettmann et al., 2013). Similarly, in S. macrospora, eGFP-

tagged SmMOB3 was detected at the nuclear envelope and in diffuse cytosolic patches (Figure 

20).  

Nordzieke et al. (2014) recently demonstrated that PRO45, a homolog of the mammalian 

STRIPAK core component SLMAP, interacts with PRO11 and SmMOB3 in S. macrospora. 

Moreover, PRO45 localizes at the mitochondria, showing that STRIPAK proteins in 

S. macrospora are mitochondria-associated (Nordzieke et al., 2014).  

Mammalian SG2NA was detected in multiple cellular compartments including the plasma 

membrane, ER and mitochondria. SG2NA was shown to recruit protein kinase B (Akt) and the 
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antioxidant protein DJ-1 into mitochondria and membranes (Tanti & Goswami, 2014). Since 

SmMOB3 is a strong interaction partner of the S. macrospora Striatin homolog PRO11 

(Bernhards & Pöggeler, 2011, Bloemendal et al., 2012), one hypothesis is that PRO11 might 

mediate also SmMOB3 translocation to the mitochondria, where SmGPI1 was also shown to 

localize (Figure 19). 

Under these conditions, portions of SmGPI1 and SmMOB3 share a common sub-cellular 

localization that allows direct physical interaction. This hypothesis could be further proved by 

isolation of mitochondria in strains, expressing tagged versions of SmGPI1 and SmMOB3 

combined with Western blot analysis. 

 

4.1.4 SmGPI1 is a positive regulator of fruiting-body number 

In filamentous fungi, the development of multicellular fruiting bodies requires highly conserved 

differentiation processes and is essential for sexual reproduction (Pöggeler & Kück, 2006). 

Various proteins function directly or indirectly in this process to determine the structure of the 

multicellular tissue of the fruiting bodies (Lord & Read, 2011). In S. macrospora, deletion or 

mutation of genes encoding STRIPAK-associated proteins such as PRO11, PRO22, PRO45 or 

SmMOB3 cause sterility and thus, have a high impact on fruiting-body development (Bernhards 

& Pöggeler, 2011, Bloemendal et al., 2012, Bloemendal et al., 2010, Nordzieke et al., 2014, 

Pöggeler & Kück, 2004). Interestingly, all these mutants are capable of forming protoperithecia, 

suggesting that the main regulation of fruiting-body formation occurs after day three of 

development. In contrast, deletion of Smgpi1 did not lead to sterility, but increased the number of 

fruiting bodies although they were slightly reduced in size (Figure 30, Figure 31 and Figure 32). 

The deletion mutant completed the life cycle similar to wt after 7 days (Kück et al. 2009). This 

result suggested that SmGPI1 functions as a negative regulator of perithecia number and likely 

also as a positive regulator of perithecia size. Thus, SmGPI1 functions in this process but is not 

crucial for fertility and proper fruiting-body development. These results are confirmed by 

findings, that Smgpi1 overexpression decreased the number of perithecia per cm2 but these were 

slightly larger (Figure 32). Schindler & Nowrousian (2014) previously reported about the 

S. macrospora polyketide synthase gene pks4. Deletion of the respective gene causes a 

developmental arrest at the stage of protoperethecia formation, but overexpression resulted in 

mount-like fruiting bodies, which kept growing even after 14 days, whereas perithecia growth in 
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wt stops after 7 days. These mount-like fruiting bodies did not contain an increased number of 

ascospores, which is consistent with findings for ΔSmgpi1. Although, the perithecia of ΔSmgpi1 

were slightly smaller in this mutant, they contained equal numbers of spores compared to wt 

(Figure 31). In S. macrospora, energy and nutrients required to form multicellular fruiting bodies 

are at least partially supplied by the mycelium (Nowrousian et al., 1999, Voigt & Pöggeler, 

2013). The increased number of fruiting bodies of deletion mutant ΔSmgpi1 probably exhausted 

the mycelium and resulted in smaller perithecia. And referring to Smgpi1 overexpression that 

fewer fruiting bodies were supplied with more nutrients and grew slightly larger. Finally, based 

on these data a model for fruiting-body development in S. macrospora could be hypothesized. 

An initial input or signal leads to development of first sexual structures. After this step, a major 

checkpoint is reached, involving several gene products directly or indirectly by their function in 

signaling pathways. Afterwards, protoperithecia develop further to mature fruiting bodies. 

During the process of ripening, tissue-size control is mediated by proteins like PKS4 and 

SmGPI1. Moreover, only full-length version of the Smgpi1 could rescue perithecia number and 

size phenotypes, demonstrating that N-terminal and C-terminal signal sequences, and thus proper 

localization is required for SmGPI1 function in this process (Figure 30, Figure 31 and Figure 

32).  

 

4.1.5 Smgpi1 deletion partially bypasses vegetative growth, hyphal fusion and fruiting-
body development defects in ΔSmmob3 

 
Deletion of Smmob3 leads to sterility, reduced vegetative growth and defects in hyphal fusion in 

the filamentous ascomycete S. macrospora (Bernhards & Pöggeler, 2011). This is consistent 

with other phenotypes of STRIPAK-deletion strains, such as Δpro11, Δpro22 and Δpro45 

(Bloemendal et al., 2010, Bloemendal et al., 2012, Nordzieke et al., 2014). In contrast to this, 

deletion of Smgpi1 does neither affect vegetative growth and hyphal fusion nor sexual 

development. (Figure 23). Interestingly, deletion of Smgpi1 in a sterile ΔSmmob3 deletion 

background partially reverted the defects in vegetative growth, hyphal fusion and fertility and 

thus acted as an intergenic suppressor of Smmob3 deletion. However, deletion of Smgpi1 does 

not restore fertility of S. macrospora STRIPAK mutants Δpro11, Δpro22 and Δpro45 (Figure 25, 

Figure 26 and Figure 27). The gene pro11 encodes the central STRIPAK component Striatin; 
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pro22 encodes the STRIP1/2 homolog, whereas PRO45 is homologous to STRIPAK component 

SLMAP. In N. crassa, PRO11 and PRO22 are essential for assembly and function of the 

STRIPAK complex at the nuclear envelope. MOB3 and HAM-4/PRO45 are only peripheral 

subunits of the complex (Dettmann et al., 2013). Thus, genetic interaction between Smgpi1 and 

Smmob3 is specific since even the deletion phenotype of a second peripheral subunit of the 

STRIPAK complex could not be bypassed by Smgpi1 deletion.  

Thus, the impact of pro11 and pro22 deletion on developmental processes in S. macrospora 

occurs in many ways compared to SmMOB3. The summarized findings offer for SmMOB3-

SmGPI1 interplay the model that SmMOB3 amplifies an incoming signal and SmGPI1 

negatively regulates the SmMOB3-dependent signal required for fruiting-body development 

(Figure 51). The signal is probably derived from the cell wall, the plasma membrane or 

mitochondria and is transmitted to the STRIPAK complex, which modulates it further. Direct 

interaction between intracellularly localized SmGPI1 and SmMOB3 might modulate the signal 

or SmGPI1 in the plasma membrane or cell wall compartment might interact with undefined 

transmembrane proteins that transduce the signal. Referred to the different phenotypes of 

ΔSmgpi1 and ΔSmmob3 single- and double-deletion strains, we assume the following scheme: 

in the ΔSmgpi1 mutant, the incoming signal is amplified, resulting in an increased number of 

fruiting bodies. In ΔSmmob3, the signal negatively regulated by SmGPI1 is too weak to activate 

the SmMOB3-depleted STRIPAK complex. In the double-deletion mutant, the amplified signal 

is sufficient to activate the SmMOB3-depleted STRIPAK complex and fruiting-bodies develop 

although fewer than in the wt, caused by absence of the negative regulator SmGPI1 (Figure 51). 

Similar to the above mentioned regulation, SmGPI1 might not only negatively regulate fruiting-

body formation, but also hyphal fusion and vegetative growth. Thus, it seems that SmMOB3 and 

SmGPI1 are regulators of developmental processes in S. macrospora. To further elucidate this, 

we have to increase our knowledge about the genetic interplay of signaling pathways, which in 

sum, might function as major regulators of fundamental processes. The interesting question that 

remains is, why does deletion of Smgpi1 in a sterile ΔSmmob3 background reclaim aside of 

fruiting-body development, also hyphal fusion and vegetative growth? The model outlined in 

Figure 51 explains only the bypassed sterility. This is based on data, that SmGPI1 functions in 

regulation of perithecia size and probably also in their number. However, ΔSmgpi1 does not 

grow faster than wt or tend to form more hyphal fusions. For these processes, the outlined model 
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seems not to be appropriate. One reason might be that proteins not involved in fruiting-body 

development function in this processes and down regulate hyphal fusion and vegetative growth 

to a level as present in wt. 

 

Figure 51. Schematic model of the genetic interplay between SmGPI1 and SmMOB3 and the STRIPAK 
complex in wt, single and double mutants. Double arrow indicates a direct physical interaction between 
SmGPI1 and SmMOB3. The thickness of arrows reflects the strength of the transmitted signal. Plus and 
minus symbols indicate the number of formed fruiting bodies 
 

4.2 The GCKs SmKIN3 and SmKIN24 

In mammals, the GCKs III MST4, STK24, STK25 and the GCK IV MINK1 are identified as 

components of the STRIPAK complex, but presence of STRIPAK-associated kinases has not yet 

been shown in filamentous fungi (1.3.1.4). To identify STRIPAK kinases in S. macrospora we 

performed a BLASTP search with the mammalian STRIPAK kinases MST4, STK24, STK25 and 

MINK1 against the S. macrospora genome. This identified SmKIN3 and SmKIN24 as putative 

homologs of mammalian STRIPAK-associated kinases. 
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4.2.1 Are SmKIN3 and SmKIN24 STRIPAK-associated kinases? 

The N-terminal part of the mammalian STRIPAK kinases is conserved among ascomycetes 

(Figure 33). GCKs have their enzymatic active region at the N-terminus, whereas the kinase 

domain of PAKs is located C-terminally (Dan et al., 2002, Delpire, 2009). Moreover, the 

phylogenetic allocation of MST4, STK24, STK25 and MINK1 with their orthologs in 

ascomycetes revealed two groups (SmKIN3-like and SmKIN24-like) of putative STRIPAK-

associated GCKs in filamentous fungi (Figure 38). Thus, it seems that presence of these two GC 

kinases is conserved among ascomycetes. Interestingly, all identified putative homologs in yeast 

share the highest similarity with MINK1 except SID1 from S. pombe, which functions in the 

septation initiation network (SIN). The SIN is a signal transduction network required for proper 

coordination of mitosis and cytokinesis (Krapp & Simanis, 2008). S. pombe SID1 seems to share 

slight similarity with the SmKIN3-like group, represented by its branching directly before the 

SmKIN3-like group (Figure 38). 

We showed interaction of SmKIN3 and SmKIN24 with PRO11 in an Y2H system (Figure 39) 

and interaction of SmKIN3 and PRO11 by means of co-IP (Figure 40). However, successful co-

IP results required crosslinking and thus, indicate weak interaction. Since we were not able to 

overexpress Smkin24 properly, we assume this to be lethal as previously described for other 

proteins (Hein et al., 1997, Mahlert et al., 2006). In N. crassa, the GCK III NcPRK-9 (SID-1) 

(homolog of SmKIN3) is part of the fungal SIN, whereas NcSTK-6 (MST-1, homolog of 

SmKIN24, hereafter NcSTK-6) has a dual role in SIN and the morphogenesis Orb6 network 

(MOR). Following cytokinesis the morphogenesis network MOR is essential for cell-polarity 

control and septum formation (Kanai et al., 2005, Verde et al., 1998, Heilig et al., 2013, Heilig et 

al., 2014). The GCK III  NcSID1 (hereafter NcPRK-9) has been shown to phosphorylate DFB-2 

and thus trigger its activity during SIN formation (Heilig et al., 2013). The SmKIN24 homolog 

NcSTK-6 is needed for septal actomyosin ring formation and modulates MOR activity during 

septum formation in an antagonistic manner (Heilig et al., 2014).  

NcPRK-9 and NcSTK-6 both localize to the septa and spindle-pole bodies (SPB) (Heilig et al., 

2013, Heilig et al., 2014). In S. pombe, SIN components bind to a coiled-coil scaffold SID4 

(Morrell et al., 2004). However, a clear homolog of the SIN scaffold SID4 has not been 

identified in ascomycetes so far (Heilig et al., 2013). Based on interaction studies, STRIPAK 

PRO11 may serve as scaffold for SmKIN3 and SmKIN24 and thus we hypothesized also 
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interplay between STRIPAK and SIN in S. macrospora. This is supported by findings in fission 

yeast. SLMAP is a component of the mammalian STRIPAK complex (Goudreault et al., 2009) 

(1.3.1.7). The fission yeast SLMAP homolog CSC1p was shown to negatively regulate SIN and 

promotes SIN asymmetry (Singh et al., 2011). In addition, in D. melanogaster Ribeiro et al. 

(2010) showed that STRIPAK components negatively regulate HIPPO signaling, which is 

homologous to the fungal SIN network (Hergovich & Hemmings, 2012). The HIPPO pathway is 

a central element of tissue-size control in D. melanogaster and higher organisms. It consists of 

an upstream kinase HPO (MST1/2 in mammals), the tumor suppressor mob family protein 

MATS and respective scaffolding units (Wei et al., 2007, Zhao et al., 2011). Based on 

interaction of HPO with homologs of MOB3 and Striatin, the D. melanogaster STRIPAK 

complex was identified as the negative regulator of HIPPO signaling and HPO was determined 

as homolog of mammalian STRIPAK kinases MST4, STK24 and STK25 (Ribeiro et al., 2010). 

A BLASTP analysis with HPO, MST1 and MST2 protein sequences revealed SmKIN3 and 

SmKIN24 as orthologs of these kinases in S. macrospora (data not shown). However, SmKIN3 

and SmKIN24 did not interact with SmMOB3 in a Y2H (Figure 39). Recently, Dettmann et al. 

(2014) identified an interaction between NcSTK-6, the N. crassa homolog of SmKIN24, and 

components of the MAK-2 mitogen-activated protein kinases module (MAPKKK) NRC-1 and 

(MAPKK) MEK-2, involved in fungal communication between germinating spores (Dettmann et 

al., 2012, Fleissner et al., 2009). All three kinases of the MAK-2 MAPK module were shown to 

be weakly associated with STRIPAK components PP2A-A, PP2A-C, Striatin and MOB-3 in 

N. crassa (Dettmann et al., 2014). Thus, STRIPAK components and the SmKIN24 homolog 

function together in at least one cascade in N. crassa. In mammals, CCM3 recruits the GC 

kinases MST4, STK24 and STK25 but not MINK1 to Striatin (Goudreault et al., 2009, Gordon 

et al., 2011, Kean et al., 2011). However, a clear homolog of CCM3 has so far not been 

identified in ascomycetes. Thus, we assume that STRIPAK-associated kinases in S. macrospora 

are not recruited by other proteins to PRO11.  

We showed that Smkin24 is alternatively spliced and has at least 3 isoforms (Figure 35). This is 

consistent with the mammalian MST4, which also has 3 identified isoforms (Greenman et al., 

2007, Ota et al., 2004, Qian et al., 2001). The first three introns of Smkin24 are localized at the 

region coding for the kinase domain. These three introns are conserved among ascomycetes 

(Data not shown). Possibly, expression of different SmKIN24 variants might serve for modified 
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substrate specificity as shown for other kinases (Wansink et al., 2003) and thus, could help to 

explain a crosstalk between SIN and STRIPAK. The hypothesized crosstalk between SIN and 

STRIPAK is shown in Figure 52. However, interaction between PRO11, SmKIN3 and SmKIN24 

should be verified by other methods to state these GCK III are clearly STRIPAK-associated 

kinases.  

 
Figure 52. Schematic model for the interplay between STRIPAK and SIN in S. macrospora. SmKIN3 
and SmKIN24 physically interact with PRO11, which functions as scaffold. Two subcomplexes are 
assumed, one containing PRO11, SmMOB3, PP2AA and PP2AC, PRO45, PRO22 and one or both 
kinases SmKIN3 and/or SmKIN24. This complex functions in vegetative and sexual development. The 
second complex contains PRO11, PP2AA and PP2AC and one or both kinases SmKIN3 and/or 
SmKIN24. This complex might function in SIN and MOR pathways.  

 
The N. crassa homologs of SmKIN3 and SmKIN24 are components implicated in SIN and MOR 

pathways. Our data suggest an additional role of these GC kinases shown by a possible 

interaction with S. macrospora Striatin homolog PRO11. To close this knowledge gap, the 

interaction between PRO11 and SmKIN3 or SmKIN24 has to be tested by other in vivo methods, 

e.g. bimolecular-fluorescence complementation coupled with high-resolution microscopy, which 

could also give more information about the localization of a possible interaction. In addition, 

interactome studies that are capable to identify also short time interaction partners will help 
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unravel how the crosstalk between signal pathways and their modulation by complexes is 

achieved. 

 

4.2.2 SmKIN3 and SmKIN24 affect growth velocity, sexual development and septum 
formation 

Deletion of Smkin3 does not impair fertility but leads to an increased formation of aerial hyphae 

and reduced growth velocity. In contrast, the deletion strain ΔSmkin24 is sterile and its lifecycle 

halted at later protoperithecia development and is also impaired in vegetative growth (Figure 42). 

A global phenotypic analysis of serine/threonine-protein kinase deletion mutants in N. crassa 

revealed that the N. crassa Smkin3 homolog prk-9 has an impact on asexual and sexual 

development as well as on vegetative growth and aerial hyphae formation (Park et al., 2011). 

S. macrospora undergoes only sexual development, so it is not possible to comment on asexual 

reproduction. We confirmed the results of Park et al. (2011) with respect to the reduced growth 

rate of the deletion mutant ΔSmkin3 but in contrast to their findings, deletion of Smkin3 did not 

impair fruiting-body development and fertility. Heilig et al. (2013) reported that N. crassa wt x 

∆prk-9 crosses resulted in no abnormalities during sexual development. Deletion of stk-6 

(homolog of Smkin24) in N. crassa resulted in reduced aerial hyphae and slightly reduced 

macroconidia production (Dvash et al., 2010). Similar to the S. macrospora ∆Smkin24 mutant 

which is halted at later protoperithecia development, in N. crassa ∆stk-6/∆stk-6 crosses resulted 

in empty perithecia containing no ascospores. In contrast to the S. macrospora ∆Smkin24 the 

mycelial extension rates were not impaired in the N. crassa ∆stk6 mutant (Heilig et al., 2014). 

N. crassa mutant ∆prk-9 and ∆stk6 mutants showed hyphal tip swelling, bursting of hyphal tips 

followed by cytoplasmic leakage (Dvash et al., 2010, Heilig et al., 2013). This phenotype could 

not be observed in the S. macrospora ∆Smkin3 and ∆Smkin24 mutants. Similar to N. crassa, 

deletion of Smkin3 and Smkin24 causes defects in septa formation (Heilig et al., 2014, Heilig et 

al., 2013, Dvash et al., 2010). Consistent to the homologs in N. crassa, SmKIN3 and SmKIN24 

localize to the septa (Figure 45), but could not be observed at spindle-pole bodies (Heilig et al., 

2014, Heilig et al., 2013). 

ΔSmkin3 strains exhibited less septa compared to wt and thus, formed elongated hyphal 

compartments (Figure 46 and Figure 47). This phenotype reverted, most probably due to the 

accumulation of suppressor mutations, after about 24 h of growth. This is similar to the N. crassa 
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∆prk-9 mutant producing initially aseptate germlings that formed septa at later stages of colony 

development (Heilig et al., 2013). In addition, germlings derived from ΔSmkin3 protoplasts 

grow faster than germlings of wt protoplasts (Figure 48). We hypothesized that nutrients, 

normally provided for septa formation, can be used for initial growth in the deletion strain and 

thus, may cause the increased initial growth velocity. ΔSmkin24 displays a contrary septation 

phenotype to ΔSmkin3; it generates more septa, partially gathered in bundle-like structures and 

abnormal in shape (Figure 46). Septal actomyosin tangel assembly, cortical actomyosin ring 

(CAR) assembly and CAR constriction are three consecutive stages of septum formation in 

N. crassa (Delgado-Alvarez et al., 2014). The septa observed in ΔSmkin24 resemble unfinished 

septa at early stages of septum formation, visualized by MYO-2 eGFP localization during SAT 

and CAR assembly in N. crassa (Delgado-Alvarez et al., 2014). Thus, SmKIN24 is required for 

proper CAR assembly as recently shown by Heilig et al. (2014) in N. crassa. Despite their 

contrary phenotypes, SmKIN3 and SmKIN24 function independently in S. macrospora. This was 

shown by the double-deletion mutant ΔSmkin3/ΔSmkin24, which exhibits the phenotypes of 

both single-deletion strains, however, with respect to septum formation it resembles the 

∆Smkin24 mutant (Figure 46 and Figure 47).  

 

4.2.3 The STRIPAK (-like) complex in S. macrospora 

In filamentous fungi, development of multicellular fruiting bodies requires highly conserved 

differentiation processes and is essential for sexual reproduction (Pöggeler et al., 2006). For the 

ascomycete S. macrospora Bloemendal et al. (2012) recently showed that the STRIPAK 

complex, a multiprotein complex, functions in this process. The STRIPAK complex in mammals 

is known to be a major determinant in signaling (Figure 8). Deletion of genes, encoding for the 

STRIPAK-associated proteins PRO11 (Striatin homolog), PRO22 (STRIP1/2 homolog), PRO45 

(SLMAP homolog) and SmMOB3 not only impair sexual development, but also hyphal fusion 

(Bernhards & Pöggeler, 2011, Bloemendal et al., 2012, Bloemendal et al., 2010, Nordzieke et 

al., 2014). Thus, it seems that PRO11 in S. macrospora functions in developmental processes 

and serves in signaling concerning fruiting-body development and hyphal fusion. Today, 

evidence of STRIPAK-associated kinases in ascomycetes is still missing. This led to the name 

STRIPAK-like complexes, since presence of kinases was eponymous for the supramolecular 

complex (Frost et al., 2012, Goudreault et al., 2009). Based on interaction studies, we found 
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indications for GC kinases linked to PRO11, making the STRIPAK-like complex to a full 

STRIPAK complex (Figure 39 and Figure 40). The following model is based on interaction and 

localization studies as well as gene characterization and presents todays knowledge combined 

with our data and indications about the STRIPAK complex in the filamentous fungus 

S. macrospora. Shown are several complexes found at the nuclear envelope, the ER, the Golgi or 

mitochondria. The displayed functions of the proteins are based on phenotypical analysis after 

gene deletion or characterized interaction partners, e.g. EPS15, which is implicated in vesicular 

trafficking. 

 

Figure 53. Schematic model of STRIPAK complex in S. macrospora. The multi-protein complex 
functions in hyphal fusion and fruiting-body development. It also might have a function in controlling the 
number and size of fruiting bodies as well as in vesicular trafficking. This model is based on the results 
gathered in this study and according to (Bernhards, 2010, Bernhards & Pöggeler, 2011, Bloemendal et al., 
2012, Nordzieke et al., 2014, Pöggeler & Kück, 2004). 
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