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yTA EfKA my� rAZA\ nAgAZA\ mZyo yTA ।
t�d̂ v�dA½fA-/AZA\ gEZt\ m� D
En E-Ttm̂ ॥

— v�dAR̂>yoEtqAtFl �ok 35 mD�
bdl k!n bnvl�lA �ok

As the (beautiful) crests (on the heads) of the peacocks and the (precious) stones (on the hoods) of the
(holy) cobras, Mathematics resides at the topmost position among all of the Vedangas—the auxiliary

disciplines1 of Vedas.

— A modi�ed Verse 35 in Vedangajyotish2

1“Vedangas” or “Vedangashatrani” are the six auxiliary disciplines associated with the studies of Vedas.
2 http://gretil.sub.uni-goettingen.de/gretil/1_sanskr/6_sastra/8_jyot/lagrvvju.htm

http://gretil.sub.uni-goettingen.de/gretil/1_sanskr/6_sastra/8_jyot/lagrvvju.htm
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eET?ŝ ’ Efklo� p� YFl vAVcAlFt (yAcA mlA nÃFc PAr upyog hoIl� þb\D sEmtFmDFl ‘ r�PrF ’ ho�yAcF tyArF

(yA\nF df
vlF� yA sv
c bAbF\sAWF mF (yA\cA aEtfy �ZF aAh��

ir�-ms m� �X� s QyA “y� roiE�XyA ” n� Edl�lF Ef	yv� �F , “g}Aj� eVFn kolFg 1493 ” n� Edl�lF Ef	yv� �F aAEZ

þA�mAyr y\nF k�l�lF mdt yA\m� �� mlA jm
nFt rAh� n EfkZ� , aEDv�fnA\nA jAZ� , itr gEZ(yA\nA B�VZ� , vAcn -sAEh(y

Evkt G�Z� i(yAdF fÈ JAl�� yA svA
 s\-TA aAEZ &yÄF\c� (yA\nF k�l�SyA aAET
k mdtFb�l aABAr�

mA$yA aAI -bAbA\nF yA kA�At mlA aEtfy molAcF sAT EdlF� d� r as� nhF , mlA kDFc ekV� vAV� Edl� nAhF�

mAJA rAg n̂ lhrFpZA (yA\nF fA\tpZ� shn k�lA� aAIn� k�l�SyA k£A\m� �� mF fA�A -kA�l�jAt jAU fklo� bAbA\nF

mlA EckAVF EfkvlF� yA doGA\nF k�l�l� k£ aAEZ (yA\cF EfkvZ yA\nF mlA þEtk� l prFE-TtFt p� Y� jAt rAh�yAsAWF

b� Edl�� aApSyA dAdAcA a<yAs nFV &hAvA , (yAlA a<yAsAlA jA-t v��A Em�vA MhZ� n GrAcF jbAbdArF aApSyA

KA\�Avr G�ZAyA
 mA$yA CoÔA tAIcF , p� jAcF uZFv yA v��F stt jAZvt��

mAJ� P`y�
sn mDFl Ef"k XA�� Ev� Ev�aAcAy
 yA\c� vZ
n k�v� “gA�XPAdr ” yA i\g}jF s\kSpn�n�c krtA y�Z� fÈ

aAh�� (yA\nF mlA Efkvl�l� gEZt aAEZ &yvhrâAn do�hF mlA PAr molAc� vAVt�� (yA\QyA mAg
df
nb�l aAEZ þ�mAb�l

mF (yA\cA �ZF aAh�� XA��aAcAy
 aAEZ �F�XF� &hF�k� lkZF
 jr mlA P`y�
snmD� B�Vl� nst� , tr mF iTvr y�Z� fÈc
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Abstract

Let G and H be locally compact, Hausdor� groupoids with Haar systems. We de�ne a topological
correspondence from G to H to be a G-H bispace X carrying a G-quasi invariant and H-invariant
family of measures. We show that such a correspondence gives a C∗-correspondence from C∗(G) to
C∗(H). If the groupoids and the spaces are second countable, then this construction is functorial. We
show that under a certain amenability assumption, similar results hold for the reduced C∗-algebras.
We apply this theory of correspondences to study induction techniques for groupoid representations,
construct morphisms of Brauer groups and produce some odd unbounded KK-cycles.
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Introduction

A C∗algebraic correspondence H from a C∗-algebra A to B is an A-B-bimodule which is a Hilbert
B-module and A acts on H via the adjointable operators. Let A = C∗(G,α) and B = C∗(H,β)
where the ordered pairs (G,α) and (H,β) consist of a locally compact Hausdor� groupoid and
a Haar system for it. Given a G-H-bispace carrying a G-quasi-invariant and H-invariant family
of measures, we show that if the H-action is proper, then Cc(X) can be completed into a
C∗-correspondence from C∗(G,α) to C∗(H,β).

If G is a locally compact groupoid and α is Haar system for G, we call the ordered pair (G,α)
a locally compact groupoid with a Haar system.

Morita equivalence of C∗-algebras is de�ned by the existence of an imprimitivity bimodule, a
special kind of C∗-correspondence. The starting point of my work is the well-known result that a
Morita equivalence between two locally compact groupoids with Haar system induces a Morita
equivalence between the groupoid C∗-algebras [28]. The imprimitivity module is constructed
directly from a bispace giving the Morita equivalence of the two groupoids. Which extra structure
or conditions are needed for a bispace to give only a C∗-algebraic correspondence instead of a
Morita equivalence?

In general, we need a measure on the bispace as extra structure to get started. In the Morita
equivalence case, a measure on the bispace appears automatically. The measure must be invariant
for the right action and quasi-invariant for the le� action. We also need that the right action is
proper. Then a variant of the construction in [34] gives a C∗-correspondence between the groupoid
C∗-algebras.

Two C∗-algebraic correspondences H from A to B and K from B to C may be composed to a
correspondence H ⊗̂B K from A to C. In [9], Buss, Meyer and Zhu explain why the operation is
associative and unital up to natural isomorphism. They prove that the C∗-correspondences form a
bicategory C. We construct the groupoid analogue of the category C and call it the bicategory of
topological correspondences, denoted by T. To construct T, we need to describe the process of
composition of two topological correspondences. One of the most important constructions in this
thesis is the construction of a composite of topological correspondences.

Let (X,λ) and (Y, µ) be topological correspondences from (G,α) to (H,β) and (H,β) to (K,κ),
respectively. Then the construction of the composite G-K-bispace is well-known— the bispace
is the quotient space (X ×H(0) Y )/H . We show how to compose the families of measures on X
and Y to get a G-quasi-invariant and K-invariant family of measures on the composite bispace.
However, the composite of families of measures is de�ned only up to isomorphism. This helps us
to form the bicategory of topological correspondences T. We show that the assignment that a

xv



xvi INTRODUCTION

topological correspondence goes to a C∗-correspondence is a homomorphism from T to C.
We give many examples of topological correspondences. A continuous map f : X → Y between

spaces gives a topological correspondence from Y to X , see Example 3.1.1. A continuous group
homomorphism φ : G→ H gives a topological correspondences from G to H , see Example 3.1.5.
These examples explain why the C∗-functor is contravariant for spaces and covariant for groups.
If φ in the above examples is proper, we get a correspondences from H to G (3.1.6).

Let E1 and E2 be locally compact, Hausdor� and second countable spaces and let s, r : E1 → E0

be continuous maps. Let λ = {λe}e∈E0 be a continuous family of measures along s. Then r : E1 → E0

gives a correspondence from E0 to E1 as in Example 3.1.1. And s : E1 → E0 give a correspondence
from E1 to E0, as in Example 3.1.2. These correspondences together produce a correspondence
from E0 to itself. In fact, just by applying the de�nition of a topological correspondence it is
straightforward to check that s, r and λ give a topological correspondence from E0 to itself.
This correspondence is called a topological quiver by Muhly and Tomforde [29, De�nition 3.1].
They construct a C∗-correspondence associated to a topological quiver in [29, Section 3.1], and
the construction in [29] is exactly the construction of a C∗-correspondence from a topological
correspondence. Muhly and Tomforde de�ne the C∗-algebra associated to a topological quiver
( [29, De�nition 3.17]) which includes a vast class of C∗-algebras: graph C∗-algebras, C∗-algebras
of topological graphs, C∗-algebras of branched coverings, C∗-algebras associated with topological
relations are all associated to a topological quiver [29, Section 3.3]. We are thankful to Ralf Meyer
for bringing it to our notice that a topological quiver is a topological correspondence.

A locally compact, Hausdor� space is a groupoid with a Haar system, and so is a locally compact
Hausdor� group. A well-know fact about groupoid equivalence is that two spaces are equivalent if
and only if they are homeomorphic and two groups are equivalent if and only if they are isomorphic.
But since any continuous map between spaces gives a topological correspondence and so does a
group homomorphism, a topological correspondence is far more general than an equivalence.

In Chapter 1, we discuss some examples which mark the di�erence between topological
groupoids and locally compact groups. Every locally compact group has a le� (or equivalently
right) invariant measure— the Haar measure. Moreover, this measure is unique up to a scaling
factor. However, a locally compact Hausdor� groupoid does not always come with a canonical Haar
system (Example 1.3.13 and 1.3.14). Example 1.3.14 shows that even a compact groupoid need not
have a Haar system. In Example 1.3.15, we discuss a groupoid with many Haar systems. We are
thankful to Ralf Meyer for Example 1.3.15.

In [39], Seda shows that if the range map is not open, then a groupoid cannot have a Haar
system. Seda gives an example of a groupoid with range map not open, so the groupoid cannot
have a continuous, invariant family of measures with full support. We came across this example
a�er formulating the counterexamples above. Dana Williams and Ralf Meyer conveyed me the paper.
The groupoids in our examples also do not have open range maps. However, we must mention
that we did not intend to prove a general fact as Seda. A more recent literature survey showed
that Ramsay discusses Example 1.3.14 in [32].

The �rst nice application of the theory of topological correspondences is due to Renault [35].
Renault proves that a topological correspondence (X,λ) from (G,α) to (H,β) induces a functor
Rep(H)→ Rep(G) between the categories of representations of H and G.

An equivalence of groupoids is an invertible arrow in T. This fact along with the functoriality
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of our construction implies the famous result of groupoid equivalence in [28], which says that the
C∗-algebras of two equivalent locally compact, Hausdor�, second countable groupoids with Haar
systems are strongly Morita equivalent.

The KK-theory of Kasparov [20] has proved a valuable tool in the study of C∗-algebras. Since
groupoid C∗-algebras cover a huge class of C∗-algebras, it is very natural to look for geometrical
or topological �avours of KK-theory for groupoid C∗-algebras. Such attempts are made in the
literature. For example, [22] develops a groupoid equivariant theory for Banach bundles to prove
some cases of the Baum-Connes conjecture. Macho Stadler and O’uchi [25] give a de�nition of
topological correspondences and show that when certain conditions are satis�ed, a topological
correspondence from (G,α) to (H,β) gives an element in KK(C∗(G,α),C∗(H,β)). Tu [42] proves
a similar result for non-Hausdor� groupoids. The correspondences de�ned by Macho Stadler and
O’uchi are special cases of the topological correspondences we de�ne, see Example 3.1.8. Given a
groupoid G with a Haar system α and a groupoid homomorphism c : G→ R∗+, we use topological
correspondences to produce some unbounded KK-cycles between certain subgroupoids of G.

Let G be a groupoid endowed with a Haar system α. Given a groupoid homomorphism G→ R∗+,
Mesland [26] produces an R-equivariant unbounded KK-cycles from C∗(G,α) to C∗(ker(c), κ), where
κ is a given Haar system on the subgroupoid ker(c) ⊆ G. We generalise this result by producing a
similar KK-cycle from C∗(H,β) to C∗(ker(c), κ), where H ⊆ G is an open subgroupoid and β is a
Haar system on H .

We mention spatial hypergroupoids. Though hypergroupoids are not an application of cor-
respondences, we came across them while studying topological correspondences. Furthermore,
spatial hypergroupoids produce the compact operators on the Hilbert module that a proper
H-space carrying an invariant family of measures produces, see Proposition 2.2.20.

The relation between the Brauer group of a groupoid and groupoid equivalence is studied
in [21] by Kumjian, Muhly, Renault and Williams. We show that a Hilsum–Skandalis morphism from
a groupoid H to G induces a homomorphism Br(G)→ Br(H).

Now we talk about the hypotheses, motivations and techniques. We work with locally compact,
Hausdor� groupoids. Let (H,β) be a pair consisting of a locally compact, Hausdor� groupoid
with a Haar system. The construction of a Hilbert module from a proper H-space carrying a
continuous, invariant family of measures works when the space and the groupoid is locally compact
and Hausdor�. However, the main result of constructing a C∗-correspondence from a topological
correspondence holds for paracompact, locally compact, Hausdor� spaces, and locally compact
and Hausdor� groupoids. This is because we use Lemma 1.3.28 to prove that the representation of
the le� groupoid on the Hilbert module is non-degenerate (Lemma 2.3.1). And Lemma 1.3.28 needs
paracompactness. Since we wish to prove the functoriality of this constructions, the functoriality
discussion assumes that all the groupoids and the spaces are second countable, locally compact
and Hausdor�. The second countability hypothesis can be replace by paracompactness.

We also assume that the measures are positive Radon. We use the Radon-Nikodym derivatives
every now and then and hence we need that all the measures are σ-�nite. Many results (especially in
the �rst chapter) are valid with fewer assumptions, hence we mention hypotheses in the beginning
of the chapter or section or beginning of a discussion.

For groupoid actions we do not assume that the momentum maps are open or surjective.
Neither do we demand a family of measures along a continuous open map f : X → Y to have full
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support in each �bre. Since we work with groupoids with Haar systems, most of the times the
source map (equivalently the range map) of a groupoid is automatically open.

All the Hilbert spaces in this thesis are separable.
Our notion of C∗-correspondence (De�nition 1.7.3) is wider, in the sense that many authors

demand that the Hilbert module involved in a C∗-correspondence is full, or for some authors a
C∗-correspondence is what we call a proper correspondence (see Section 1.7.2).

The process of constructing a C∗-correspondence from a topological correspondence is divided
into two main parts: constructing the Hilbert module and de�ning the representation of the le�
groupoid C∗-algebra on this Hilbert module. For the �rst part, we use the representation theory
of groupoids and the transverse measure theory introduced by Renault in [34]. For the second
part, our motivation and techniques come from the theory of quasi-invariant measures for locally
compact groups.

Most of the examples of topological correspondences are topological analogues of standard
examples of C∗-correspondences.

Our main references for unbounded bivariant K-theory are the original work of Baaj and
Julg [2] and Mesland’s work [26].

The main reference for bicategories is Bénabou’s report [3]. The relatively modern report [24],
also provides a good categorical structure to our work. Readers should keep in mind that the
direction of arrows in the commutative diagrams in Bénabou’s book is opposite to our standard
conventions.

Chapterwise description of the contents

Chapter 1: In this chapter we discuss the analysis on locally compact groupoids, proper actions
of groupoids and the cohomology theory for groupoids. We discuss the preliminaries regarding
topological and Borel groupoids, actions of groupoids and invariant families of measures. In the
literature, the experts assume many results about proper actions without proving them. We write
detailed proofs of some of these important results which are necessary for our work. We prove
that the quotient of a locally compact, Hausdor� (second countable) space by a proper action
inherits the nice topological properties, that is, the quotient is also locally compact, Hausdor�
(second countable, respectively) provided that the source map of the groupoid is open.

Let G be a groupoid, f : X → Y a G-map and λ a G-equivariant continuous family of measures
along f . We prove that λ induces a continuous family of measures on the quotient spaces
[f ] : X/G→ Y/G.

We write a brief introduction to the cohomology theory for groupoids introduced by West-
man [43]. One of the main results shows that for a proper groupoid the �rst Borel (as well as
continuous) cohomology group with real coe�cients is trivial, see Proposition 1.4.10. We thank
Renault for this result. Then we discuss quasi-invariant measures.

In the last part of this chapter we discuss the representation theory of locally compact groupoids
with a Haar system. The fundamental work in the representation theory of groupoids is Renault’s
thesis [33], in which he proves the �rst version of his famous disintegration theorem for locally
compact groupoids. Renault uses quasi-invariant measures on the space of units of the groupoid to
integrate a representation of the groupoid. The disintegration of representations is concerned with
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proving the existence of a suitable quasi-invariant measure on the space of units. The proof of the
disintegration theorem in [33] needs a technical condition, namely, if (G,α) is the groupoid, then G
should have su�ciently many non-singular G-sets (see [33, De�nition 1.3.27]).

Renault overcomes this technical assumption in the next work [34], where a much more general
version of the disintegration theorem is proved. This version of the disintegration theorem does
not need the existence of su�ciently many non-singular G-sets. Furthermore, the theorem is
proved for locally Hausdor� groupoids. Renault uses the theory of transverse measures to prove
this �avour of the disintegration theorem. We discuss this version of the disintegration theorem
a�er discussing the one in [33]. Since transverse measures play an important role here, we explore
the theory of transverse measures from Appendix 1 of [1]. The appendix is self-contained and
complete, but, a young student like me found it very brief. Hence we take it as an exercise to write
all computations involved in this appendix in detail.

A quick review of some notions of amenability of groupoids from [1] follows the discussion of
representation theory. We sketch the well-known fact that the full and reduced C∗-algebras of an
amenable topological groupoid are isomorphic.

The chapter ends with a short list of de�nitions related to C∗-correspondences.

Chapter 2: This chapter contains the main construction. The following is our de�nition of a
topological correspondence.

De�nition (Topological correspondence, De�nition 2.1.1). A topological correspondence from a locally
compact Hausdor� groupoid with a Haar system (G,α) to a locally compact Hausdor� groupoid
with a Haar system (H,β) is a pair (X,λ) where:

i) X is a locally compact, Hausdor�, second countable G-H-bispace;

ii) λ = {λu}u∈H(0) is an H-invariant continuous family of measures along the momentum map
sX : X → H(0);

iii) the action of H is proper;

iv) ∆ is a continuous function ∆ : G n X → R+ such that for each u ∈ H(0) and F ∈
Cc(G×sG,G(0),rX

X)∫
Xu

∫
GrX (x)

F (γ−1, x) dαrX(x)(γ) dλu(x) =
∫
Xu

∫
GrX (x)

F (γ, γ−1x) ∆(γ, γ−1x) dαrX(x)(γ) dλu(x).

Immediately a�er the de�nition of topological correspondence, we discuss the role of the
adjoining function. Then we write the formulae of the action of Cc(G) and Cc(H) on Cc(X)
and the formula of a Cc(H)-valued inner product on Cc(X). Lemma 2.1.11 shows that Cc(X)
is a Cc(G)-Cc(H)-bimodule and that the formula for the the inner product indeed de�nes a
Cc(H)-conjugate bilinear map on Cc(X). Now we have to extend this setup to the C∗-algebras to
get the C∗-correspondence.

We complete this setup to a C∗-correspondence in two parts: constructing a C∗(H,β)-Hilbert
module H(X) and de�ning a representation of C∗(G,α) on this Hilbert module.
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When the action of H on X is free, it is not hard to construct the Hilbert module H(X) using
the theory of groupoid equivalence. This construction does not need sophisticated machinery but
only the observation that (X ×H(0) X)/H is a groupoid with a Haar system. We �rst construct
H(X) in this case.

Then we turn our attention to the general case, that is, when the action of H is not free. Using
representation theory and the theory of transverse measures, we construct H(X). This technical
construction requires the disintegration theorem.

In the latter part we de�ne a representation of C∗(G,α) on H(X) using the adjoining function ∆.
To check that this representation is continuous we use the disintegration theorem.

We advise the reader to jump to Section 3.1 (Chapter 3) a�er the discussion that follows De�ni-
tion 2.1.1 and then come back. Section 3.1 contains many examples of topological correspondences,
ranging from continuous maps to generalised induction and restriction correspondences.

The notion of topological correspondence does not carry over to the reduced C∗-algebras
directly. We are very thankful to Ralf Meyer for pointing out this fact and correcting it. If the
action of the le� groupoid is amenable, then a topological correspondence from (G,α) to (H,β)
produces a C∗-correspondence from C∗r(G,α) to C∗r(H,β). Lemma 1.3.29 shows that a proper
action of a groupoid with a Haar system is amenable. Hence if the le� action is proper, a topological
correspondence produces a C∗-correspondence between the reduced C∗-algebras.

The middle part of Chapter 2 discusses the process of composing correspondences. We thank
Renault a lot for sharing his deep insight in the theory of groupoids, which helped us to construct
the family of measures on the composite correspondence.

The end of the Chapter is devoted to the bicategory of topological correspondences and the
functoriality of the assignment X 7→ H(X). Many results in the section are intuitively obvious, but
the detailed proofs are very technical and complicated. In this document, the functoriality is the
most technical part of writing, and hence for reading, too.

Chapter 3: This chapter contains many examples of topological correspondences. We mention
the induction of representations of groupoids, discussed in Renault’s recent work [35]. Renault
discusses how the induction process for groupoids works for groups. One of the important results
of ours in this chapter is the explicit construction of the induction correspondence using pull-backs
of certain subsets of the space of the units along the source or the range maps which leads us to
Proposition 3.2.2. This theorem relates our theory of correspondences to the classical induction
process; which becomes a corollary to this Theorem. That is, we get

Corollary (Theorem 6.13, in [15]). Suppose G is a locally compact group and H is a closed subgroup,
with modular functions ∆G and ∆H . Let µ be a pseudomeasure of positive type on H , let σµ be the
associated unitary representation of H , and let ν be the injection of

√
∆G/∆H µ into G, that is, the

pseudomeasure on G de�ned by

ν(f) =
∫
H

√
∆G(ξ)
∆H(ξ) f(ξ) dµ(ξ).

Then ν is of positive type, and the associated unitary representation πν of G is unitarily equivalent
to the induced representation Π = indGH(σµ).
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For a locally compact Hausdor� space X , Folland calls a continuous linear functional on Cc(X)
a pseudomeasure. However, because of the Riesz representation theorem we prefer calling it a
measure.

In Section 3.3 we brie�y introduce our work in [17] on spatial hypergroupoids. Hypergroups are
well-known in analysis. There are two equivalent notions of hypergroup: Jewett’s [18] de�nition
of a hypergroup is similar to that of a group except that the product of two elements of the
hypergroup is a probability measure on the set, rather than an element of the set. Equivalently,
in [19] a hypergroup is de�ned as a certain convolution algebra of measures on a space. Renault [35]
adopts the latter notion of hypergroups and de�nes hypergroupoids accordingly. He proves a
disintegration theorem for representations of hypergroupoids.

The �rst example of a hypergroupoid that we came across is called a spatial hypergroupoid. It
is well-known that if X is a free and proper right H-space, then G := (X ×sX ,H(0),sX

X)/H is a
topological groupoid where sX : X → H(0) is the anchor map. Furthermore, X gives an equivalence
between G and H . The fact that the action of H is free plays an important role to de�ne the
composition on G. When the action of H is not free, the product of two elements in G is not an
element of the set. If X carries an H-invariant family of measures, however, then it is possible to
de�ne a *-algebra structure on Cc(G). Assume that β is a Haar system on H . Then we complete
the *-algebra Cc(G) to a C∗-algebra C∗(G) using the representations of (H,β). Our construction
shows that Cc(X) can be completed to a C∗(G)-C∗(H)-Hilbert bimodule.

In this case, G is a spatial hypergroupoid. The H-invariant family of measures on X produces
an invariant family of measures for G. Thus we get the �rst example of a hypergroupoid.

In Section 3.4 we discuss morphisms of Brauer groups. Kumjian, Muhly, Renault and Williams
de�ne the Brauer group for a locally compact Hausdor� groupoid in [21] and show that the Brauer
groups of two equivalent groupoids are isomorphic. If G and H are groupoids, then we show
that a Hilsum–Skandalis morphism from H to G induces a homomorphism from the Brauer group
Br(G) to Br(H).

In Section 3.5 we give an application of topological correspondences in KK-theory. We extend
a result of Mesland [26]. Let G be a groupoid and α a Haar system for G. Let c : G → R∗+ be
a homomorphism. Assume that κ is a Haar system for ker(c). Then Mesland ( [26]) proves that
c produces an unbounded KK-cycle from C∗(G,α) to C∗(ker(c), κ). We generalise this result of
Mesland by replacing C∗(G,α) by C∗(H,β), where H ⊆ G is an open subgroupoid and β is a Haar
system on H . At the end of the section we discuss a few examples of this result.

The thesis in a glance

De�nitions

De�nition (2.1.1 Topological correspondence). A topological correspondence from a locally compact
Hausdor� groupoid with a Haar system (G,α) to a locally compact Hausdor� groupoid with a Haar
system (H,β) is a pair (X,λ) where:

i) X is a locally compact, Hausdor�, second countable G-H-bispace;
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ii) λ = {λu}u∈H(0) is an H-invariant continuous family of measures along the momentum map
sX : X → H(0);

iii) the action of H is proper;

iv) ∆ is a continuous function ∆ : G n X → R+ such that for each u ∈ H(0) and F ∈
Cc(G×sG,G(0),rX

X)∫
Xu

∫
GrX (x)

F (γ−1, x) dαrX(x)(γ) dλu(x) =
∫
Xu

∫
GrX (x)

F (γ, γ−1x) ∆(γ, γ−1x) dαrX(x)(γ) dλu(x).

De�nition (2.1.8 and 2.1.9). The le� and right actions, and the inner product] For φ ∈ Cc(G),
f ∈ Cc(X) and ψ ∈ Cc(H), de�ne functions φf , fψ on X as follows:

(φ · f)(x) :=
∫
GrX (x)

φ(γ)f(γ−1x) ∆1/2(γ, γ−1x) dαrX(x)(γ),

(f · ψ)(x) :=
∫
HsX (x)

f(xη)ψ(η−1) dβsX(x)(η).

For f, g ∈ Cc(X) de�ne the function 〈f, g〉 on H by

〈f, g〉(η) :=
∫
XrH (η)

f(x)g(xη) dλrH(η)(x).

De�nition (2.4.18 Composition). For correspondences (X,α) : (G1, λ1) → (G2, λ2) and (Y, β) :
(G2, λ2)→ (G3, λ3) the composite correspondence (Ω, µ) : (G1, λ1)→ (G3, λ3) is de�ned by:

i) the space Ω := (X ×sX ,G2(0),rY
Y )/G2,

ii) a family of measures µ = {µu}u∈G(0)
3

on Ω that li�s to {bα×βu}u∈G(0) on Z := X×sX ,G2(0),rY
Y

for a cochain b ∈ C0
G3

(Z ×π,Ω,π Z,R∗+) satisfying d0(b) = ∆. Here π : Z → Ω is the quotient
map, the �bre product Z ×π,Ω,π Z is thought of as the groupoid of the equivalence relation
induced by π on Z and ∆ is a 1-cocycle Z ×π,Ω,π Z → R∗+ given by

((x, y), (xγ, γ−1y)) 7→ ∆2(γ, γ−1y),

where ∆2 is the adjoining function for (Y, β).

We brie�y describe the terms in (ii) above: {α× βu}u∈G2(0) is a continuous family of measures
on the �bre product Z = X ×sX ,G2(0),rY

Y (see Lemma 2.4.8). For f ∈ Cc(Z)∫
f α× βu :=

∫
X

∫
Yu
f(x, y) dαrY (y)(x) dβu(y).

There is a continuous 0-cocycle b : Z → R∗+ such that ∆ = b◦π2
b◦π1

= d0(b), where πi for i = 1, 2
is the projection on the ith factor Z ×π,Ω,π Z → Z (see Lemma 2.4.9). Remark 2.4.13 says that for
u ∈ G3

(0) and f as above, there is measure µu on Ω with∫ (∫
f(xγ, γ−1y) dλrY (y)

2 (γ)
)

dµu[x, y] =
∫
f(x, y)b(x, y) dαry(y)(x) dβu(y).

The family of measures {µu}u∈G3(0) is the required family of measures (see Proposition 2.4.14).
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De�nition (3.4.1, Hilsum–Skandalis morphism). A Hilsum–Skandalis morphism from a groupoid H
to a groupoid G is an H-G-bispace X such that

i) the action of G is free and proper;

ii) the le� momentum map induces a bijection from X/G to H(0).

Results

Proposition (1.2.19). Let X be an H-space and rH open. If H acts properly, then the quotient space,
X/H , is locally compact Hausdor�.

Proposition (1.3.27). LetX and Y be properH-spaces, let π : X → Y be a continuous surjection and
let λ := {λy}y∈Y be a continuous family of measures along π. Then the induced family of measures,
[λ] := {[λ][y]}[y]∈Y/H , is a continuous family of measures with full support along [π].

Proposition (1.4.10). Let G be a proper groupoid and α a Haar system on G. Then every R-valued
1-cocycle is a coboundary, that is, H1(G;R) = 0.

Theorem (2.2.19). Let (H,β) be a Hausdor�, locally compact groupoid with a Haar system and let X
be a locally compact, Hausdor�, proper right H-space carrying an H-invariant continuous family of
measures λ. Then using Formulae (2.1.8) and (2.1.9) the right Cc(H)-module Cc(X) can be completed
to a C∗(H)-Hilbert module H(X).

Proposition (2.2.20). Let (H,β) be a Hausdor�, locally compact groupoid with a Haar system and
let X be a locally compact, Hausdor� proper right H-space carrying an H-invariant continuous
family of measures λ. Then using Formulae (2.1.8) and (2.1.9) the right Cc(H)-module Cc(X) can be
completed to a C∗r(H)-Hilbert module Hr(X).

Lemma (2.3.1). Let (X,λ) be a topological correspondence from (G,α) to (H,β), where the topologies
on the groupoids are locally compact and Hausdor�. Then the action of Cc(G) on Cc(X) de�ned by
De�nition 2.1.8 extends to an action of C∗(G) on the C∗(H)-Hilbert module H(X) by adjointable
operators.

Lemma (2.3.2). In the situation of the lemma above, assume, in addition, that the transformation
groupoid GnX is amenable, that is, the action of G on X is amenable. Then the action of Cc(G)
on Cc(X) de�ned by De�nition 2.1.8 extends to an action of C∗r(G) on the C∗r(H)-Hilbert module
Hr(X) by adjointable operators.

Theorem (2.3.3). Let (G,α) and (H,β) be locally compact, Hausdor� groupoids with Haar systems.
If (X,λ) is a correspondence from (G,α) to (H,β) then using the family of measures λ the space
Cc(X) can be completed to a C∗-correspondence H(X) from C∗(G) to C∗(H).

Proposition (2.3.4). Let (G,α) and (H,β) be locally compact, Hausdor� groupoids with Haar systems.
Let (X,λ) be a correspondence from (G,α) to (H,β). If the action of G on X is amenable, then using
the family of measures λ the space Cc(X) can be completed to a C∗-correspondence Hr(X) from
C∗r(G) to C∗r(H).
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Corollary (2.3.5). Assume the same hypotheses as in Theorem 2.3.3. If the action of G is proper, then
Cc(X) can be completed to a C∗-correspondence Hr(X) from C∗r(G) to C∗r(H).

Theorem (2.4.19). Let (X,α) : (G1, λ1) → (G2, λ2) and (Y, β) : (G2, λ2) → (G3, λ3) be topological
correspondences between locally compact, Hausdor� groupoids. Let (Ω, µ) : (G1, λ1)→ (G3, λ3) be
a composite of the correspondence. Then H(Ω) and H(X) ⊗̂C∗(G2)H(Y ) are isomorphic correspon-
dences from C∗(G1, λ1) to C∗(G3, λ3).

Proposition (2.5.13). Topological correspondences form a bicategory with the composition from
Theorem 2.4.19 and some (obvious) associativity and identity isomorphisms. The groupoids are
assumed to be locally compact, Hausdor�, second countable groupoids with Haar systems.

Theorem (2.5.19). The assignment X 7→ H(X) is a bifunctor from the bicategory of topological
correspondences T to the bicategory of C∗-correspondences C.

Proposition (3.2.2). Let (G,α) be a locally compact, Hausdor� groupoid with a Haar system and
H ⊆ G a closed subgroupoid. Let β be a Haar system for H . Then the G-H-bispace GH(0) gives
a topological correspondence from (G,α) to (H,β). Here GH(0) = s−1

G (H(0)) ⊆ G with a measure
family induced by the Haar system of G as in Example 3.1.8.

Proposition (3.3.6 ). Let X be a locally compact, Hausdor� proper H-space for a locally compact,
Hausdor� groupoid with a Haar system (H,β). Let λ be an invariant family of measures on X .
Let C∗(X ∗ X/H) be the completion of the *-algebra Cc((X ∗ X)/H) as in Theorem 3.3.3. Then
C∗(X ∗X/H) ' K(H(X,λ)).

Theorem (3.4.15). A Hilsum–Skandalis morphism from a groupoid H to a groupoid G induces a
homomorphism from Br(G) to Br(H).

Theorem (3.5.10). Let (G,λ) be a second countable locally compact Hausdor� groupoid with a Haar
system, let c be a real exact cocycle onG and letH be an open subgroupoid of G such thatH(0) = G(0).
Let α be a Haar system for H . If for each e ∈ G(0), the measure λ−1

e is (H,α)-quasi-invariant, then
the operator D in Proposition 3.5.9 makes the R-equivariant correspondence (H(G), D) into an odd
R-equivariant unbounded KK-bimodule from C∗(H) to C∗(K).

Proposition (3.5.11). Assume that we have the same data as in Theorem 3.5.10 and the same
hypotheses. If the le� action is amenable, then a similar result as in Theorem 3.5.10 holds for
(Hr(G), Dr) from C∗r(H) to C∗r(K).



Chapter 1

Locally compact Hausdor� groupoids

In this chapter we shall discuss basic notions and notation about topological groupoids. The chapter
discusses three main topics: actions of groupoids, some measure theoretic prerequisites, and a few
other basic notions which we need for our work.

The discussion of groupoid actions is concerned with proper actions of groupoids and the
topology on the corresponding quotient spaces. The measure theory part is concerned with spaces
with groupoid invariant families of measures and the behaviour of the families of measures under
proper actions. And the third part discusses various topics in the theory of groupoids, which
include the representation theory of groupoids and groupoid C∗-algebras, groupoid cohomology, a
brief survey of de�nitions of amenability for groupoids, and a very short collection of de�nitions
regarding C∗-algebraic correspondences.

We prove most of the claims in the �rst and the second part, namely, in Section 1.2, Proper
actions and quotients and Section 1.3, Proper actions and families of measures. There are many
facts about proper actions and invariant families of measures which are used in the literature
very o�en, however the proofs are le� as an exercise most of the times. Or the experts assume
that readers are familiar with the proofs. We take this as an exercise and write down the proofs
which we could not �nd explicitly written in the literature. If a claim is proved already, we cite the
corresponding literature.

In the last part, which discusses various topics in the theory of groupoids, all the material
is well-known and well-written. Hence we merely cite the main literature, most of which is the
work of J. Renault. The only di�erently written section is the Subsection 1.6.2, where we discuss
transverse measures. This is based on Appendix I in [1]. The appendix is short and contains many
ideas. Being a beginner, we take this also as an exercise and write down thorough proofs of the
claims in [1, Appendix I].

In the last section, we choose our de�nitions for a C∗-correspondence and its morphisms. The
main two reasons to write these well-known de�nitions are: (i) some authors do not di�erentiate
between proper C∗-correspondences and C∗-correspondences and (ii) some authors assume that
the Hilbert module involved in a C∗-correspondence is full.

1
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1.1 Basics, notation and conventions

Notation and general conventions for all of the text: The symbols ≈ and ' stand for homeo-
morphism and isomorphism, respectively. Let X be a Borel space, then B(X) and B+(X) denote
the sets of Borel functions and positive Borel functions on X , respectively. Due to the Riesz
representation theorems ( [38, Theorem 2.14, Theorem 6.19]), we abuse the notation for a measure
in the following fashion: if µ is a Borel measure on X , then for f ∈ B(X) we write µ(f) as well
as
∫
f dµ to denote the integral of f with respect to µ. Let X be a topological space, then C(X),

Cc(X) and C0(X) denote the sets of complex valued continuous function, continuous functions with
compact support and continuous functions vanishing at in�nity de�ned on X , respectively. When
the sets Cc(X) and C0(X) are discussed as topological spaces, we assume Cc(X) is bestowed with
the inductive limit topology ( [15, Beginning of Section 6.3] or [4, Proposition 5, No. 4, §4, II]) and
C0(X) is bestowed with the || ||∞-topology. Let G be a group(oid), X a set. Let G act on X from
the le� (or right), see De�nition 1.2.1. Then G\X (respectively, X/G) denotes the quotient space for
the action, except in Section 1.6.2, where we write X/G for the quotient by a le� action.

De�nition 1.1.1. A groupoid is a small category in which every arrow is invertible.

For a groupoid G, we denote the set of objects by G(0) and call it the base of G or the set
of units of G. For a topological groupoid G, the word set will be replaced by space. The set of
arrows is denoted by G(1). A popular convention that we adopt is to write G itself for the set of
arrows.

Each γ ∈ G = G(1) has a domain (or source) and a range, which we denote sG(γ) and rG(γ),
respectively. If γ ∈ G(0), then sG(γ) = rG(γ), which can be identi�ed with γ itself. The set of units
of G sits inside G via the unit map UtG : G(0) ↪→ G.

An arrow γ goes from its source sG(γ) to its range rG(γ). By de�nition, γ is invertible. Denote
the inverse of γ by invG(γ). The map γ 7→ invG(γ) is a bijection from G to itself. Using the de�nition
of an invertible arrow in a category, it is easy to see that invG(invG(γ)) = γ. A nicer way to denote
the inverse of γ is γ−1. As an element and its inverse are composable, we have sG(γ) = rG(γ−1)
and rG(γ) = sG(γ−1). By de�nition, γγ−1 = sG(γ−1) = rG(γ) and γ−1γ = rG(γ−1) = sG(γ).

It is clear from the de�nition that, in general, two arrows in G need not be composable. Two
arrows γ and γ′ are composable if and only if sG(γ) = rG(γ′). The set of composable arrows is
denoted by G(2) or G ∗ G. In particular, rG(γ) and γ are composable, and so are γ and sG(γ).
Furthermore, rG(γ)γ = γsG(γ) = γ.

Below is the list of important maps which are related to a groupoid:

• the inverse map: invG : G→ G, this is a bijection with inv2
G = idG;

• the range map: rG : G→ G(0), this is a surjection;

• the source map: sG : G→ G(0), this is a surjection;

• the unit map: UtG : G(0) → G, this is an injection;

• the multiplication map: m : G(2) → G sending (γ, γ′) to their product γγ′.
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The relations between sG, rG and invG are:

i) rG = sG ◦ invG,

ii) sG = rG ◦ invG.

A notation: Let G be a groupoid. For A,B ⊆ G(0) de�ne

GA = {γ ∈ G : rG(γ) ∈ A} = r−1
G (A),

GA = {γ ∈ G : sG(γ) ∈ A} = s−1
G (A),

GAB = GA ∩GB = {γ ∈ G : rG(γ) ∈ A and sG(γ) ∈ B},
G|A = GA ∩GA.

Note that G|A is a groupoid. We call it the restriction of G to A. When A = {u} and B = {v} are
singletons, we write Gu, Gv and Guv instead of G{u}, G{v} and G

{u}
{v} , respectively. For u ∈ G

(0), Guu
is a group. It is called the isotropy group at u.

De�nition 1.1.2. The following are the de�nitions of topological and Borel groupoids:

1. a topological groupoid is a groupoid G with topologies on the sets G and G(0) such that all
the maps listed above are continuous maps;

2. a Borel groupoid is a groupoid G with Borel structures on the sets G and G(0) such that all
the maps described above are Borel maps.

Since G(0) ↪→ G is a topological (or Borel) embedding, we view G(0) as a topological (or Borel)
subspace of G. We give a few examples of topological groupoids. With some obvious changes, they
can be used as examples of Borel groupoids.

Example 1.1.3. Let G be a topological group and let e ∈ G denote the identity element in G. The
group G is a topological groupoid. For this groupoid, G(0) = {e}, G(1) = G and the composition of
arrows is the group multiplication.

Example 1.1.4. A space X is a groupoid. In this groupoid, X(0) = X and if x, y ∈ X(0) are units then
there is no arrow from x to y if x 6= y. The only arrows are the identity arrows.

Example 1.1.5 (Example 1.2.a in [33]). For a right action of a topological group G on a space X , the
transformation group XoG is a topological groupoid. It is also called a transformation groupoid for
a group action. In XoG, the space of units is (X oG)(0) = X×{e}. Very o�en X×{e} is identi�ed
with X . We also do so. Two arrows (x, γ), (y, η) ∈ X ×G are composable if and only if xγ = y,
and then (x, γ)(xγ, η) = (x, γη). The inverse of (x, γ) is (xγ, γ−1), and sXoG((x, γ)) = (xγ, e),
rXoG((x, γ)) = (x, e).

Example 1.1.5 can be modi�ed for a le� G-space X to get GnX .



4 CHAPTER 1. LOCALLY COMPACT HAUSDORFF GROUPOIDS

1.2 Proper actions and quotients

Let X , Y and Z be spaces and let f : X → Z and g : Y → Z be maps. The �bre product of X and
Y on Z along the maps f and g is the set {(x, y) ∈ X × Y : f(x) = g(y)}, which is denoted by
X ×f,Z,g Y or X ×f,g Y , when the space Z is clear from the context.

De�nition 1.2.1 (Le� action of a groupoid on a set). Let G be a groupoid and let X be a set. A le�
action of G on X is given by a pair (rX , a), where rX : X → G(0) is a map and a : G×sG,rX X → X
is a map from the �bre product over G(0) for the source map sG and rX such that

i) a(γ, x) = x for all γ ∈ G(0);

ii) if (γ, γ′) ∈ G(2) and (sG(γ′), rX(x)) ∈ G×sG,rX X , then (γ, a(γ′, x)) ∈ G×sG,rX X and

a(γ, a(γ′, x)) = a(γγ′, x).

The map rX is called the momentum map or the anchor map for the action. When (γ, x) ∈
G×sG,rX X we call γ and x composable.

When G is a topological (or Borel) groupoid, X is a topological (respectively, Borel) space and
rX and a are continuous (respectively, Borel) maps, the action is called a continuous (respectively
Borel) action and we say that X is a le� G-space. A right (set-theoretic, continuous or Borel)
action of G on X can be de�ned similarly, and then we call X a right G-space.

Our work uses continuous actions most of the time. Hence the word action will stand for a
continuous action from now on. We shall explicitly mention when the action is not continuous.

Remark 1.2.2. In the literature, the momentum map for a continuous action is o�en assumed to be
surjective or open. We ask for none of these conditions.

A convention: Since we shall not come across any case where there are more than one di�erent
le� (right) action of a groupoid G on a space X , we denote the momentum map by rX (respectively,
sX ). When we write ‘X is a le� (right) G-space’ without specifying the momentum map, the
above convention will be tacitly assumed and then in such instances, the momentum map is rX
(respectively, sX ).

A notation: Let X , Y and Z be spaces and let f : X → Z and g : Y → Z be maps. When the
maps f and g are obvious from the context, we denote the �bre product X ×f,Z,g Y either by
X ∗Z Y or by X ∗ Y . The sets G×sG,rX X and X ×sX ,rG G in the discussion above will be written
as G ∗X and X ∗G, respectively.

A notation: Let X be a le� G-space and let A ⊆ G(0). De�ne

XA = {x ∈ X : rX(x) ∈ A} = r−1
X (A).

If X is a right G-space, then we de�ne

XA = {x ∈ X : sX(x) ∈ A} = s−1
X (A).

If A = {u} is singleton, then we write Xu and Xu for X{u} and X{u}, respectively.
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A notation: Let X be a le� G-space. For subsets K ⊆ G and A ⊆ X with sG(K) ∩ rX(A) 6= ∅,
de�ne KA = {γx : γ ∈ K,x ∈ A and (γ, x) ∈ G ∗ X}. If sG(K) ∩ rX(A) = ∅, then AK = ∅. By
an abuse of notation, for x ∈ X we write Kx instead of K{x}. The meaning of γA for γ ∈ G is
similar. For a right action, we de�ne AK , xK , Aγ similarly.

De�nition 1.2.3. Let G be a groupoid, X and Y le� G-spaces and π : X → Y a map. We call π a
G-map or a G-equivariant map if, for all (γ, x) ∈ G ∗X , (γ, π(x)) ∈ G ∗ Y and π(γx) = γπ(x).

Recall that a map f : X → Y is proper if the inverse image of every compact set in Y under f
is a compact set in X .

De�nition 1.2.4. Let X be a le� G-space.

i) The action of G on X is proper if the map Ψ: G ∗X → X ×X , (γ, x) 7→ (γx, x), is proper.

ii) The action is free if the map Ψ above is injective.

When the action of G on X is proper, we call X a proper G-space.

De�nition 1.2.5 (Bispace). Let G and H be groupoids. A G-H-bispace is a space X with a le�
action of G and a right action of H such that for all γ ∈ G , x ∈ X and η ∈ H with sG(γ) = rX(x)
and sX(x) = rH(η) we have sX(γx) = sX(x), rX(xη) = rX(x), and

(γx)η = γ(xη).

Note that in De�nition 1.2.5, the momentum maps rX and sX are part of the data. These
momentum maps come with the actions of G and H .

Example 1.2.6. Let G be a group and let X be a space. If G is given its groupoid structure as
in Example 1.1.3, then De�nition 1.2.1 reduces to the usual de�nition of an action of the group G
on X . Conversely, assume that a group G acts on X from the le�. Let e ∈ G be the identity
element. Take the constant map from X to e as the momentum map and de�ne a : G×X → X by
a(γ, x) = γ · x. This data satis�es the conditions in De�nition 1.2.1. Thus for a group G, an action
of G as a group and groupoid means the same.

Example 1.2.7. If Y and X are spaces and Y is thought of as a groupoid as in Example 1.1.4, then
an action of Y on X is a continuous map sX : X → Y with an action map a. As Y has only the
identity arrows, the only choice for a : Y ∗X → X is a(y, x) = x. Now an easy claim to prove is:
an action of the groupoid Y on X is same as a continuous map from X to Y .

Example 1.2.8. Let G be a groupoid. Then the multiplication from the le� by γ ∈ G on GsG(γ) is
an action of G on itself. Clearly, the momentum map for this action is rG. This is called the le�
multiplication action. The right multiplication action is de�ned similarly. The space G equipped
with the le� and right actions is a G-G-bispace.

Example 1.2.9. G acts on G(0) from the right (and le�). The momentum map for the action is the
identity map on G(0). The action is rG(γ)γ = sG(γ) (or γsG(γ) = rG(γ), respectively). However,
G(0) is not a G-G-bispace with these actions.
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Example 1.2.10. If G is a groupoid and X is a right G-space, then similar to the group case as in
Example 1.1.5, one can construct the transformation groupoid XoG. The base space of this groupoid
is X ∗G(0), which is homeomorphic to X via the map (x, sX(x)) 7→ x. The arrow space is X ∗G.
Two arrows (x, γ), (y, η) ∈ X ×G are composable if and only if xγ = y, and (x, γ)(xγ, η) = (x, γη).
The inverse of (x, γ) is (xγ, γ−1). It can be checked now that sXoG((x, γ)) = (xγ, sG(γ)) and
rXoG((x, γ)) = (x, rG(γ)). Example 1.1.5 is a special case of this construction.

Let H be a topological groupoid and X a le� H-space. When the action of H is proper, the
quotient space X/H inherits many good topological properties from X . We discuss this inheritance
of properties in the rest of the section. The quotient map X → X/H will be denoted by pX .

A subset of a topological space is relatively compact if the closure is compact.

Hypothesis: For the rest of the section, all the groupoids are topological groupoids and actions
are continuous actions. Furthermore all topological spaces, including topological groupoids, are
locally compact and Hausdor�, unless stated otherwise.

Lemma 1.2.11. Let X , Y be spaces and f : X → Y an open surjection.

i) For a compact K ⊆ Y , there is a compact K ′ ⊆ X with f(K ′) = K.

ii) Let {yi}i∈I be a net in Y with yi → f(x). Then there is a subnet {yTm}m∈M and a net {xm}m∈M
indexed by the same set which converges to x in X , and which satis�es f(xm) = yTm .

Proof. (i). Let {Uα} be a covering of f−1(K), where each Uα is a relatively compact open set.
Then {f(Uα)} is an open cover of K. Let f(Uαi), . . . , f(Uαn) be a �nite cover of K. Then(⋃n

i=1 Uαi

)
∩ f−1(K) is the required compact set K ′.

(ii). See [44, Proposition 1.15]. The proposition is a stronger result which states that if (ii) holds
for a map f : X → Y , then f is open.

Let X be a right H-space. De�ne Ψ: X ∗H → X ×X by Ψ(x, η) = (x, xη).
Remark 1.2.12. For A ⊆ X , AH is called the saturation of A for the action of H . If B ⊆ X and
B = BH , then B is called a saturated subset. Note that p−1

X (pX(A)) = AH . Also, by the de�nition
of the quotient topology, pX(A) ⊆ X/H is open (or closed) if and only if AH ⊆ X is open (or
closed, respectively).

Lemma 1.2.13. Let H be a groupoid. Then the range map rH : H → H(0) is open if and only if for
every right H-space X the quotient map pX : X → X/H is open.

Proof. Let U ⊆ X be open. We show that X − UH is closed. If X − UH = ∅, we are done. So
assume X −UH 6= ∅ and let {xi}i∈I be a convergent net in X −UH . We show that the net cannot
converge to a point in UH .

Assume the contrary, that is, say, xi → xη and xη ∈ UH . Due to the continuity of the momentum
map, sX(xi)→ sX(xη) = sG(η). Since sG is an open surjection, there is a convergent net {ηj}j∈J
with sG(ηj) = sX(xj) for a subnet {xj} of {xi} and ηj → η. Then by Lemma 1.2.11, xjη−1

j → x ∈ U .
As U is open, {xjη−1

j }j∈J is ultimately in U . By an abuse of notation, instead of taking a tail of
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J , we write that {xjη−1
j }j∈J is in U . But then {(xjη−1

j )ηj = xj(η−1
j ηj)}j∈J is a subnet of {xi}i∈I ,

which is in UH . This contradicts our hypothesis. Hence the limit of {xi}i∈I must be in X − UH .

Conversely, let pX : X → X/H be open for any right H-space X . Speci�cally for the right
multiplication action of H on itself, pH : H → H/H is open. The quotient H/H here is obtained
from the equivalence relation x ∼ y if and only if xη = y for some η ∈ H .

The range map, rH : H → H(0) induces an equivalence relation: x ∼′ y if and only if rH(x) =
rH(y). If x ∼ y, then x ∼′ y. Conversely, if x ∼′ y, then x(x−1y) = y and hence x ∼ y. Hence the
quotient map induced by ∼ and ∼′ is the same map, namely, pH .

Let [rH ] : H/H → H(0) be the (continuous) bijection induced by rH . We claim that [rH ] is a
homeomorphism, which will imply that it is an open map. To see this, we observe that the unit
map UtH : H(0) → H is continuous and pH ◦UtH is the inverse of [rH ], which is clearly continuous.
But [rH ] ◦ pH = rH . Hence rH is open.

Remark 1.2.14. The proof of Lemma 1.2.13 does not need that the momentum map sX is a surjection.

Remark 1.2.15. Let H be a groupoid and β a Haar system on H (see De�nition 1.3.3), then
Corollary 1.3.5 says that the range and source maps for H are open. Thus the hypothesis for
Lemma 1.2.13 is satis�ed. Hence if X is an H-space, the quotient map X → X/H is open.

Lemma 1.2.16. LetX be anH-spaceΨ: X∗H → X×X be the map (x, η) 7→ (x, xη). The conditions
(i)–(iv) are equivalent and (i) implies (v), where:

(i) the action is proper;

(ii) the transformation groupoid X oH is a proper groupoid;

(iii) given a compact subset K ⊆ X , the set Ψ−1
2 (K) = {η ∈ H : K · η ∩K 6= ∅} is compact;

(iv) for all compact sets K ⊆ X , Ψ−1
2 (K) is relatively compact in H ;

(v) Ψ is a closed map.

Proof. (i)⇐⇒ (ii) is a direct consequence of the de�nition of a proper action.

(i) =⇒ (iii): We note that Ψ−1
2 (K) = Ψ−1(K ×K), hence it is compact.

(iii) =⇒ (i): Let K ⊆ X be compact and let pi be projections on the i-th factor of X ×X for
i = 1, 2. Due to the continuity, Ψ−1(K) is closed and Ψ−1(K) ⊆ Ψ−1

2 (p1(K) ∪ p2(K)), which is
compact.

(iii) =⇒ (iv) is obvious.

(iv) =⇒ (iii): Let Ψ−1
2 (K) be relatively compact for K ⊂ X compact. Due to the continuity of Ψ,

Ψ−1
2 (K) is closed. Hence Ψ−1

2 (K) = Ψ−1
2 (K) is compact.

This proves that the conditions (i)–(iv) are equivalent.

(i) =⇒ (v): Let F ⊆ X ∗H be a closed set and πi the projection on the i-th factor from X ∗H for
i = 1, 2. Let a ∈ X ×X \Ψ(F ). We want to �nd a neighbourhood of a disjoint from Ψ(F ). Let K
be an open neighbourhood of a with K compact. Such K exists because X ×X is locally compact.
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Then Ψ−1(K) is compact, so F ∩Ψ−1(K) ⊆ X ∗H is a compact set. Now Ψ(F ∩Ψ−1(K)) ⊆ X×X
is compact and hence closed. But Ψ(F ∩Ψ−1(K)) = Ψ(F ) ∩K . Hence K \ (Ψ(F ) ∩K) is an open
neighbourhood of a.

Remark 1.2.17. (ii) of Lemma 1.2.16 gives that G is proper if and only if the action of G on G(0) from
Example 1.2.9 is proper.

Lemma 1.2.18. If X is a proper H-space, then KH ⊆ X is closed for all K ⊆ X compact.

Proof. Let K ⊆ X compact and let x ∈ X −KH . Let V ⊆ X be an open neighbourhood of x
with V compact; such a neighbourhood exists since X is locally compact and Hausdor�. Let
Ψ: X∗H → X×X be as in Lemma 1.2.16. Since the action of H on X is proper, Ψ−1(K×V ) ⊆ X∗H
is compact. Ψ−1(K × V ) = ∅ implies that KH ∩ V = ∅, hence V is an open neighbourhood of x
which is disjoint from KH .

Now assume that Ψ−1(K × V ) 6= ∅. Let πH : X ∗H → H be the projection. Then πH(Ψ−1(K ×
V )) ⊆ H is compact, since the projection πH is continuous and Ψ is closed (Lemma 1.2.16). Now the
continuity of the action gives that K · π−1

H (Ψ−1(K × V )) ⊆ X is compact and hence closed. Thus
x ∈ V −K · π−1

H (Ψ−1(K × V )) 6= ∅ is an open neighbourhood of x which is disjoint from KH .

Proposition 1.2.19. Let X be an H-space and rH open. If H acts properly, then the quotient space,
X/H , is locally compact Hausdor�.

Proof. First we show that X/H is Hausdor�. Let [x], [y] ∈ X/H be distinct points. Choose
representatives x, y ∈ X of these points, respectively. Let U ′, V ′ ⊆ X be open and disjoint
neighbourhood of x and y, respectively. As xH and yH are closed in X (see Lemma 1.2.18), we can
replace U ′ by U ′ − yH and V ′ by V ′ − xH and assume that U ′ does not intersect the orbit of y
and V ′ does not intersect the orbit of x. Let U ⊆ U ′ and V ⊆ V ′ be open and relatively compact
neighbourhoods of x and y, respectively, with U ⊆ U ′ and V ⊆ V ′. Then U and V are disjoint
compact sets.

Note that x /∈ V H , because if it is, then (xH ∩ V ) 6= ∅. But (xH ∩ V ) ⊆ (xH ∩ V ′) = ∅. De�ne
A = (UH − V H). Then x ∈ A 6= ∅, and A is open by Lemma 1.2.18. Using a similar argument we
can see that B := (V H − UH) is an open neighbourhood of y.

A ∩ V H = ∅ by de�nition, and B ⊆ V H , so A ∩B = ∅.
We have proved that AH ∩ BH = ∅. Lemma 1.2.13 implies that pX(A) and pX(B) are open

neighbourhoods of [x] and [y], and AH ∩BH = ∅ is equivalent to pX(A) ∩ pX(B) = ∅.

Now we prove that X/H is locally compact. For a given [x] ∈ X/H we produce an open
neighbourhood of [x] whose closure is compact. Let U ⊆ X be a relatively compact open
neighbourhood of x ∈ X . Then pX(U) is an open neighbourhood of [x]. We prove that pX(U) =
pX(U), where the latter set is compact. Thus pX(U) is the required neighbourhood of [x].

The continuity of pX gives pX(U) ⊆ pX(U). We prove the converse inclusion. Due to
Lemma 1.2.18, p−1

X (pX(U)) = UH ⊆ X is closed, hence pX(U) is closed, by the de�nition of a
closed set in X/H . But pX(U) ⊇ pX(U), hence pX(U) ⊇ pX(U).

Corollary 1.2.20. If X is second countable, then under the same hypotheses as in Proposition 1.2.19,
X/H is second countable and paracompact.
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Proof. The open image of a second countable set is second countable. And every second countable
locally compact Hausdor� space is paracompact. Here is a proof for the claim that every second
countable locally compact Hausdor� space is paracompact: Let X be a locally compact Hausdor�
second countable space. Then X is regular. To see this, let x ∈ X be a point and let C ⊆ X be a
closed set that does not contain x. Then X − C is an open neighbourhood of x. Since X is locally
compact, Hausdor� there is an open neighbourhood U ⊆ X −C of x with U compact. Thus U and
X − U are open neighbourhoods of x and C which are disjoint.

Urysohn metrization theorem ( [30, Theorem 34.1]) says that every regular space with countable
basis is metrizable, hence X is metrizable. By the theorem of Stone ( [40, Corollary 1]) we conclude
that X is paracompact.

1.3 Proper actions and families of measures

The analogue of the Haar measure on a locally compact group is given by a Haar system in the
theory of groupoids. A Haar system on a groupoid is a special type of continuous family of measures
along the range map. We discuss continuous families of measures in the beginning of this section.
The latter part of the section deals with the behaviour of families of measures under quotients
by proper actions. If X and Y are proper H-spaces and λ is a continuous family of measures
along a continuous map π : X → Y , which need not be surjective, then we show that λ induces a
continuous family of measures along the map [π] : X/H → Y/H . This result is proved for a free
and proper action in [34].

In the last part, given a proper groupoid with a Haar system, we construct an invariant
continuous family of probability measures along the range map, but this family need not have full
support. A group G is a proper groupoid if and only if G is compact. Hence the Haar measure
on G may be modi�ed to a probability measure. The result we prove is an analogue of this fact.

In the literature, invariance of families of measures means le� invariance. However, our main
theorems are concerned with right invariance. Hence we discuss right invariant families of measures.
Indeed, similar results hold for le� invariant families of measures. We shall use the le� invariant
analogues of our de�nitions while discussing representation theory.

A hypothesis and a convention: All the measures we deal with are assumed to be σ-�nite
positive Radon measures. We do not di�erentiate between a measure on a space X and the
corresponding Riesz functional on Cc(X). We use the same notation for both.

De�nition 1.3.1 (Invariant continuous family of measures). Let X and Y be right H-spaces for a
groupoid H and let π : X → Y be an H-equivariant continuous map. An H-invariant continuous
family of measures along π is a family of Radon measures λ = {λy}y∈Y such that1:

i) each λy is de�ned on π−1(y);

ii) (invariance) for all composable pairs (y, η) ∈ Y ∗H , the condition λyη = λyη holds;

iii) (continuity condition) for f ∈ Cc(X) the function Λ(f)(y) :=
∫
π−1(y) f dλy on Y is continuous.

1Indeed, for Xy = ∅ we assume that λy is the empty measure.
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We clarify that in the above de�nition the measure λyη is given by
∫
f dλyη =

∫
f(xη) dλy(x)

for f ∈ B+(X).
Let X and Y be Borel spaces, let H be a Borel groupoid, let the actions be Borel and let π be

a Borel map. Then λ is called an H-invariant Borel family of measures if the continuity condition
above is replaced by the condition

iii’) for every compactly supported f ∈ B+(X), the function Λ(f) is Borel.

(For the continuous case as well as the Borel case) if for each y ∈ Y , supp(λy) = π−1(y), we
say the family of measures λ has full support. Depending on the case, if there is a continuous or
Borel function f on X with Λ(f) = 1 on π(X), we say that λ is proper. Lemma 1.1.2 in [1] says
that in the continuous case λ is proper if and only if λy 6= 0 for all y ∈ Y . Hence if λ is continuous
and has full support, then λ is proper.

In the whole document we assume that given a family of measures λ = {λu}, each λu 6= 0. In
the continuous case this means that λ is proper. Some of the results in this chapter hold without
this assumption. But we do not assume that they have full support.

Let Pt be the trivial point group(oid). If X and Y are spaces and π : X → Y is a continuous map,
then π is a Pt-equivariant map between Pt-spaces. A continuous Pt-invariant family of measures
along π is simply called a continuous family of measures along π. The nomenclature for the Borel
case is analogous.

Most of the families of measures we come across are continuous. Hence we drop the word
continuous and simply say that λ is an H-invariant family of measures. We shall write it explicitly
when a family of measures is Borel.

If X and Y are le� H-spaces and π is an H-equivariant map from X to Y , then we can de�ne
an H-equivariant family of measures {λy}y∈Y in a similar fashion.

Remark 1.3.2. When π is a continuous surjection and λ has full support, some of the de�nitions of
a continuous family of measures in the literature demand that Λ: Cc(X)→ Cc(Y ) is a surjection.
This assumption is redundant because of Lemma 1.3.16 below.

A convention: We denote families of measures by small Greek letters. For a given family of
measures, the corresponding integration function that appears in the continuity condition in
De�nition 1.3.1 will be denoted by the Greek upper case letter used to denote the family of measures.
For α, β and µ it will be A, B and M , respectively. Proposition 2.4.14 is the only exception to this
convention, where (by mistake) we have (ended up in denoting) two families of measures by m and
µ and we write M and µ for the corresponding functions induced between the function spaces.

De�nition 1.3.3. 1. Let H be a groupoid, X a le� H-space. An H-invariant continuous family
of measures along the momentum map rX is called a le� H-invariant continuous family of
measures onX . A rightH-invariant continuous family of measures onX is de�ned analogously.

2. For a groupoid H , a Haar system on H is a le� H-invariant continuous family of measures
with full support on H for the le� multiplication action of H on itself.

Unlike the group case, a second countable, locally compact, Hausdor� groupoid need not carry
a Haar system, and Haar systems are usually not unique (see Examples 1.3.13 and 1.3.14).
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Nearly a year a�er formulating De�nition 1.3.1, we came across Renault’s paper [34], where he
de�nes the same notion. Renault calls it ‘π-système’.

If β is a Haar system on H , we call the pair (H,β) ‘a groupoid with Haar system’. We shall be
working with groupoids with Haar systems most of the time.

Lemma 1.3.4. Let H be a groupoid, let π : X → Y be a continuous H-map between the H-spaces X
and Y and let λ be a continuous family of measures along π. If λy has full support for all y ∈ π(X),
then π is an open map onto its image.

Proof. Consider the map π : X → π(X) and then the proof is same as the proof of Proposition
2.2.1 in [31].

Corollary 1.3.5. If (H,β) is a groupoid with a Haar system, then the range and source maps are
open.

Proof. Lemma 1.3.4 implies that the range map rH is open. Since sH = rH ◦ invH and invH is a
homeomorphism, sH is open.

We give a few examples of groupoids with Haar systems and invariant families of measures.

Example 1.3.6. Let G be a locally compact group. Then a Haar measure on G is a Haar system
on G.

Example 1.3.7. If a space X is thought of as a groupoid, then the set of Dirac delta measures at
each point {δx}x∈X is a Haar system for the groupoid X .

Example 1.3.8. For a group H and an H-space X , any H-invariant measure on X is an H-invariant
family of measures on X .

Example 1.3.9. Here is a special case of the previous example: let (X,λ) be a measure space. Then
λ is a system of measures for the action of the point groupoid {Pt} on X .

Example 1.3.10. Let H be a locally compact group with a Haar measure β, let X be a right H-space
and let X oH be the corresponding transformation groupoid discussed in Example 1.1.5. Then
(X oH)x = H for all x ∈ (X oH)(0) and the measure β along each �bre is a Haar system for
X oH .

Example 1.3.11. Let (G,α) be a pair consisting of a groupoid and a Haar system for it. Let X be a right
G-space. Let X oG be the transformation groupoid as in Example 1.2.10. For x ∈ X = (X oG)(0)

de�ne the measure ᾱx on (X oG)x = GsX(x) by∫
(XoG)x

f dᾱx =
∫
GsX (x)

f(x, γ) dαsX(x)(γ)

for f ∈ Cc(X oG). Then ᾱ = {ᾱx}x∈X is a Haar system for X oG.

Example 1.3.12. Let G be a groupoid and α a Haar system on G. We get a right invariant family
of measures on G using α. This family is denoted by α−1. For u ∈ G(0) and f ∈ Cc(G), α−1

u is
de�ned as follows: ∫

Gu
f dα−1

u =
∫
f ◦ invG dαu =

∫
Gu
f(γ−1) dαu(γ).

When G is a group, we have α−1 = ∆G α, where ∆G is the modular function of G.
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Example 1.3.13 (A groupoid that does not have a Haar system). Let G = [0, 1/2]×R∪ [1/2, 1]×{0} ⊆
[0, 1]× R. We equip G with the subspace topology from R2 and de�ne the groupoid structure on
G by:

i) G(0) = [0, 1]× {0} ≈ [0, 1];

ii) rG = sG = π1, where π1 : G→ [0, 1] is the projection map (note that for u ∈ [0, 1], r−1
G (u) =

s−1
G (u) is either R or {0});

iii) for (u, x), (u, y) ∈ G, de�ne (u, x)(u, y) = (u, x+ y).

Then G is a topological groupoid.
Let L = {(x, x) : x ∈ R} ∩ G. Denote the Euclidean metric on G ⊆ R2 by d and let

B(L, 1/10) = {γ ∈ G : d(γ, L) < 1/10}. Being a closed subset of the normal space R2, G is normal.
Using this normality, extend the constant function 1 on L to a non-negative function f in Cc(G)
with f = 0 outside B(L, 1/8).

Let λ = {λu}u∈[0,1] be any family of measures along rG with full support. Then

Λ(f)(u)
{
> 0 if u ≤ 1/2
= 0 if u > 1/2.

Thus λ(f) is not continuous at u = 1/2, at least, since limu→1/2− Λ(f) = 0 6= Λ(f)(1/2) > 0.
Here limu→1/2− λ(f) stands for the limit of λ(f) from the right.

Example 1.3.14 (A compact groupoid that does not have a Haar system). Let Z/2Z = {0, 1} be the
cyclic group of order 2. Let G = [0, 1/2]× Z/2Z ∪ [1/2, 1]× {0} ⊆ R2 be subspace. We make G
into a groupoid using the following data and operations

i) G(0) = [0, 1]× {0} ≈ [0, 1];

ii) rG = sG = π1, where π1 : G→ [0, 1] is the projection map;

iii) for u ∈ [0, 1], r−1
G (u) = s−1

G (u) is either Z/2Z or {0}. Using the group structure on the �bres
for (u, x), (u, y) ∈ G, de�ne (u, x)(u, y) = (u, x+ y).

This is a bundle of groups with �bre either Z/2Z or the trivial group. Then G is a compact
topological groupoid.

Let λ be any invariant continuous family of measures with full support. Then λu is a Haar
measure on r−1

G (u), hence λu is the discrete measure with the weight Λ(c)(u) 6= 0 where c is the
constant function 1. The continuity of λ gives that Λ(c) is continuous. Thus Λ(c) is a continuous
positive function of G.

Since G is compact, Cc(G) = C(G). Let A = [0, 1]×{0} and B = [0, 1/2]×{1}. Then χA and χB
which are the characteristic function of A and B, respectively, are continuous on G. Furthermore,
χA + χB = χG. Due to the continuity of λ, Λ(χA),Λ(χB) and Λ(χG) are continuous functions on
[0, 1] = G(0) with Λ(χG)(u) > 0 for all u ∈ [0, 1]. It can be checked that

1
2Λ(χG)(u) = Λ(χA)(u) = Λ(χB)(u) for u ∈ [0, 1/2], and
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1
2Λ(χG)(u) = Λ(χA)(u) and Λ(χB)(u) = 0 for u ∈ (1/2, 1].

But now Λ(χB) is not continuous at 1/2, since limx→1/2−(Λ(χB)) = 0 6= Λ(χB(1/2)) > 0. This
is a contradiction which arose because we assumed that λ is an invariant continuous family of
measures with full support.

Example 1.3.15 (A groupoid with many Haar systems). Let X be a space and let µ and ν be two non-
equivalent Radon measures on X . Construct the groupoid G of the trivial equivalence relation on
X . Then G(0) = X , G(1) = X ×X , sG = π2 and rG = π1, where π1 and π2 are the projection maps
from X ×X to X on the �rst and the second factors, respectively. The arrows (x, y), (w, z) ∈ G
are composable if and only if y = w and (x, y)(y, z) = (x, z). For (x, y) ∈ G, (x, y)−1 = (y, x).

For u ∈ G(0), r−1
G (u) = X . For each u ∈ X put λu1 = µ and let λ1 = {λu1}u∈X . Then (X,λ) is a

groupoid with Haar system. Similarly (X,λ2) is a groupoid with Haar system, where λu2 = ν for
all u ∈ X . For no x ∈ G(0), λu1 ∼ λu2 .

Let X and Y be right H-spaces and π : X → Y an H-equivariant map. As before, we denote
the quotient of X by the action of H by X/H . For x ∈ X the equivalence class of x in X/H is
denoted by [x]. The map π induces a map from X/H to Y/H , which we denote by [π].

Lemma 1.3.16 (Lemma 1.1, [34]). Let X and Y be spaces, let π : X → Y be an open surjection and let
λ be a family of measures with full support along π. For every open U ⊆ X and for a non-negative
function g ∈ Cc(π(U)), there is a non-negative function f ∈ Cc(U) with Λ(f) = g.

Lemma 1.3.17 (Lemma 1.2, [34]). Let X , Y and Z be spaces, let π and τ be open surjections from X
and Y to Z , respectively. Let π2 denote the projection from the �bre product X ∗ Y onto the second
factor Y . Assume that for each z ∈ Z , there is a measure λz on π−1(z). For each y ∈ Y de�ne the
measure λ2y = λτ(y) × δy , where δy is the point-mass at y. Then λ is continuous if and only if λ2 is
continuous.

Lemma 1.3.18 (Lemma 1.3, [34]). Let X and Y be right H-spaces, let both actions of H be free and
proper and let π : X → Y be an open surjection.

i) An H-invariant continuous family of measures λ along π induces a continuous family of
measures [λ] along the induced map [π] : X/H → Y/H , where [λ] is given by the formula∫

f d[λ][y] =
∫
f([x]) dλy(x).

Let [Λ] denote the corresponding integration function.

ii) Conversely, given a continuous family of measures τ along [π], there is a unique H-invariant
continuous family of measures λ along π with τ = [λ].

One of the goals of this section is to prove (i) of Lemma 1.3.18, when the action is proper but
not free and π is not an open surjection.

Let (H,β) be a groupoid with a Haar system and X a right H-space. For x ∈ X de�ne the
measure β̃xX on X ×HsX(x) by∫

X×HsX (x)
f(v, η) dβ̃xX(v, η) =

∫
HsX (x)

f(v, η) dβsX(x)(η), (1.3.19)
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for f ∈ Cc(X ∗H). This is a special case of the family of measures on the �bre product X ∗ Y in
Lemma 1.3.17.

Lemma 1.3.20. Let (H,β) and X be as above.

(i) For F ∈ Cc(X ∗H), the function BX(F ) : x 7→
∫
F (x, γ) dβsX(x)(γ) is in Cc(X).

(ii) Let πX : X ∗H → X be the projection on X . Then the family of measures β̃X := {β̃xX}x∈X
along πX is continuous.

(iii) If X is a proper H-space and f ∈ Cc(X), then the function x 7→
∫
f(xη) dβsX(x)(η) is in

Cc(X/H).

Proof. (i): We observe that due to the Stone-Weierstraß Theorem, the subalgebra of Cc(X ∗H)
generated by the set D := {f · g : f ∈ Cc(X), g ∈ Cc(H)} is dense in Cc(X ∗H) in the inductive
limit topology. Hence it is su�cient to check the claim for a function in D. Let f · g = F ∈ D. Let
h ∈ Cc(X) be a function with h|supp(f) = 1. Then hF ∈ Cc(X ∗H) and

BX(hF )(x) =
∫
f(x)g(η) dβsX(x)(η) = f(x)B(g)(sX(x)),

where B(g) ∈ Cc(H(0)) by the continuity of β. Since f ∈ Cc(X) and B(g) ◦ sX ∈ C(X), the
product is in Cc(X). Here B : Cc(H)→ Cc(H(0)) is the integration map in the continuity condition
in De�nition 1.3.1.

(ii): This is a consequence of (i) above.

(iii): Given f ∈ Cc(X), de�ne F (x, γ) = f(xγ). Since the action is proper, (iii) of Lemma 1.2.16
says that the set Ψ−1

2 (supp(f)) ⊆ H is compact. But supp(F ) ⊆
(
supp(f)×Ψ−1

2 (supp(f))
)
, and

the latter set is compact. Hence F ∈ Cc(X ∗H). Now we apply (i) of this lemma to F to see that
the function h : x 7→

∫
f(xη) dβsX(x)(η) is continuous on X . It is not hard to see that h(x) = h(xη),

due to the invariance of the family β. If p : X → X/H is the quotient map, then h ◦ p is continuous
on X/H . Also supp(h ◦ p) ⊆ p(supp(h)), and p(supp(h)) ⊆ X/H is compact.

Proposition 1.3.21. Let (H,β) be a groupoid with a Haar system and X a proper right H-space.
For [x] ∈ X/H de�ne a measure β[x]

X on xH ⊆ X by∫
f dβ[x]

X =
∫
f(xη) dβsX(x)(η). (1.3.22)

Then βX := {β[x]
X }[x]∈X/H is a well-de�ned continuous family of measures with full support along

the quotient map pX : X → X/H .

Proof. Let xγ be a representative in the orbit of x. Then∫
f((xγ)η) dβsX(xγ)=sG(γ)(η) =

∫
f(xη) dβrG(γ)=sX(x)(η)

due to the invariance of β. Hence [β̃X ][x] is well-de�ned for each [x] ∈ X/H .
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The continuity of βX follows from Lemma 1.3.20.
Now we check that the support of β[x]

X is exactly the orbit of x. We use the contra-positive of

Lemma 1.3.23 below. For every open neighbourhood x ∈ V ⊆ xH , we show that β[x]
X (V ) > 0. Let

W ⊆ X be open with V = W ∩ xH . Let f ∈ Cc(W ) be non-negative with f(x) > 0. Extend f by
zero outside W , so f ∈ Cc(X). Due to the properness of the action, the function φ : HsX(x) → C
de�ned by φ(η) = f(xη) lies in Cc(HsX(x)). Note that φ is non-zero because φ(sX(x)) = f(x) > 0.
Now ∫

V
f dβ[x] =

∫
f dβ[x] =

∫
HsX (x)

φ dβsX(x) > 0.

The �rst equality is because f = 0 outside W . The last inequality is due to the full support of
βsX(x).

Lemma 1.3.23 (Characterisation of the support of a measure; Proposition 8, §2.3 Chapter III in [6]).
Let µ be a measure on a locally compact (Hausdor�) space X . For every function f ∈ Cc(X) that is
zero on supp(µ), µ(f) = 0.

Let (H,β) be a groupoid with a Haar system, X and Y proper H-spaces, π : X → Y a
continuous map which need not be surjective. Let λ := {λy}y∈Y be a continuous family of measures
along π. We list the information we have:

i) a continuous family of measures along π, namely, λ := {λy}y∈Y .

ii) Due to Lemma 1.3.20, we have the families of measures β̃X and β̃Y along the projections
πX : X ∗H → X and πY : Y ∗H → Y , respectively.

iii) The H-invariant map π induces an obvious H-map π × IH between the �bre products
X ∗H → Y ∗H , (π × IH)(x, η) = (π(x), η). This map carries a family of measures λ× δ =
{λy × δη}(y,η)∈Y ∗H , where ∫

f d(λy × δη) =
∫
f(x, η) dλy(x)

for f ∈ Cc(X ∗H). A density argument as in Lemma 1.3.20 can be used to see that this is
a continuous family of measures. Let Λ ×∆ denote the integration function Cc(X ∗H) →
Cc(Y ∗H) induced by this family.

All this data is put in the diagram in Figure 1.1. In this diagram, the symbols below the function
arrows stand for families of measures and the symbols on the top indicate the function.

Lemma 1.3.24. The diagram in Figure 1.1 commutes at the level of measures, that is, for f ∈ Cc(X∗H),

B̃Y (Λ×∆(f)) = Λ(B̃X(f)).

Proof. The proof is a direct calculation and uses Fubini’s Theorem.

B̃Y (Λ×∆(f))(y) =
∫

Λ×∆(f)(x, γ) dβsY (y)=rH(γ)(γ)

=
∫∫

f(x, γ) dλy(x) dβsX(x)=sY (y)=rH(γ)(γ).
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X ∗H Y ∗H

X Y.

π×IH
λ×δ

πX β̃X πY β̃Y
π

λ

Figure 1.1

Applying Fubini’s Theorem, the last term becomes∫∫
f(x, γ) dβsX(x)=rH(γ)(γ) dλy(x) =

∫
B̃X(f)(x) dλy(x)

= Λ(B̃X(f))(y).

We take the quotient by the H-action of each space in the commutative square in Figure 1.1 and
the corresponding induced maps. We analyse the quotient spaces, maps and families of measures
below.

Bottom horizontal arrow: In Figure 1.1, the bottom horizontal arrow of the square induces the map
[π] : X/H → Y/H . The family of measures λ induces the family of measures [λ] = {[λ][y]}[y]∈Y/H ,
where ∫

f d[λ][y] :=
∫
f([x]) dλy(x). (1.3.25)

We check that the integral on the le� is well de�ned. Take yη ∈ [y], then the invariance of λ
gives λyη = λy . If xη ∈ [x], then using the H-invariance of λ again, we get∫

f dλyη =
∫
f([x]η) dλy(x) =

∫
f([xη]) dλy(x) =

∫
f([x]) dλy(x) =

∫
f dλy.

Le� vertical arrow: The function [x, η] 7→ xη induces a homeomorphism between (X ∗ H)/H
and X . The inverse of this map is x 7→ [x, sX(x)]. Thus a�er taking the quotient by the H-action,
we get a map [πX ] : X → X/H . With this identi�cation, for x ∈ X we get

[πX ](x) = [πX ]([x, sX(x)]) = [πX ]([xη, sH(η)]) = [xη] = [x] = pX(x).

Thus [πX ] = pX , the quotient map.
As discussed earlier, the family of measures β̃X induces a family of measures {[β̃X ][x]}[x]∈X/H ,

which we denote by [β̃X ], along [πX ] = pX . We check that this family is exactly βX . Here βX is the
family of measures along the quotient map X → X/H de�ned in Proposition 1.3.21. For f ∈ Cc(X),

∫
f([xη, sH(η)]) d[β̃X ][x]([xη, sH(η)]) =

∫
f([xη, sH(η)]) dβsX(x)(η)

=
∫
f(xη) dβsX(x)(η) =

∫
f dβ[x]

X . (1.3.26)
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From Proposition 1.3.21, we know that [β̃X ] = βX is a continuous family of measures. Since
pX is open and surjective (Remark 1.2.15) and βX has full support (Proposition 1.3.21), Lemma 1.3.16
shows that the integration map [B̃X ] = BX : Cc(X)→ Cc(X/H) is surjective.

Right vertical arrow: Due to the similarity with the le� vertical arrow, analogous results hold for
the right vertical arrow in Figure 1.1 and we get

i) [πY ] = pY ,

ii) [β̃Y ] = βY ,

iii) [B̃Y ] = BY : Cc(Y )→ Cc(Y/H) is surjective.

Top vertical arrow: We quotient the top horizontal arrow of the square and identify (X∗H)/H ≈ X ,
(Y ∗H)/H ≈ Y as mentioned earlier. This gives [π × IH ] = π : X → Y and [λ× δ] = λ.

These computations give us Figure 1.2, which is obtained by taking the quotients of all spaces,
maps and families of measures in Figure 1.1.

X Y

X/H Y/H.

π

λ

pX=[πX ] βX pY =[πY ] βY
[π]

[λ]

Figure 1.2

Proposition 1.3.27. Let X and Y be proper H-spaces, let π : X → Y be a continuous surjection and
let λ := {λy}y∈Y be a continuous family of measures along π. Then the induced family of measures,
[λ] := {[λ][y]}[y]∈Y/H , is a continuous family of measures. If λ has full support, then so does [λ].

Proof. From the previous discussion, it is clear that [λ] := {[λ][y]}[y]∈Y/H is a well-de�ned family of
measures. We need to check the continuity. That is, for f ∈ Cc(X/H), the function [Λ](f) ∈ Cc(Y/H)
is continuous.

Let f ∈ Cc(X/H) and let F ∈ Cc(X) be a function with [BX ](F ) = f .
Then

[Λ](f)([y]) = [Λ]([BX ](F ))([y]) =
∫∫

F (z) d[β̃X ][x](z) dλ[y]([x]).

A careful computation yields [β̃Y ◦ (λ× δ)] = [β̃Y ] ◦ [λ ◦ δ] and [λ ◦ β̃X ] = [λ] ◦ [β̃X ]. Using this
fact with the commutativity of the measures in Lemma 1.3.24, we get

[Λ]([B̃X ](F )) = [B̃Y ](Λ(F )) = BY (Λ(F )).
The last one clearly is continuous, as both λ and βY are continuous.
It is not hard to see that [λ] has full support if λ has. This uses the commutativity of Figure 1.2

and the fact that βX and βY both have full support.
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Here is one more result that tells us how to reduce a Haar system on a proper groupoid to a
family of probability measures. But the families of probability measures which we get using this
method need not have full support.

Lemma 1.3.28 (Lemma 1, Appendix I in [7]). Let X be a locally compact space, R an open equivalence
relation in X , such that the quotient space X/R is paracompact; let π be the canonical mapping of
X onto X/R. There is a continuous real-valued function F ≥ 0 on X such that:

i) F is not identically zero on any equivalence class with respect to R;

ii) for every compact subset K of X/R, the intersection of π−1(K) with supp(F ) is compact.

Lemma 1.3.29. If (G,α) is a Hausdor�, locally compact, second countable proper groupoid with a
Haar system, then there is a le� invariant continuous family of probability measures on G (which
need not have full support).

Proof. Since G has a Haar system, the range map of G is open. Lemma 1.2.13 shows that the quotient
map π : G(0) → G\G(0) is open. Since G is proper, G\G(0) is paracompact by Corollary 1.2.20.
This satis�es the hypotheses for Lemma 1.3.28, and gives us a function F on G(0) such that F is
not identically zero on any G-orbit in G(0) and, for every compact K ⊆ G\G(0) the intersection
supp(F ) ∩ π−1(K) is compact. De�ne h : G(0) → R+ by,

h(u) =
∫
F ◦ sG(γ) dαu(γ).

Property (ii) of F from Lemma 1.3.28 and the full support condition of αu give h(u) > 0. To see
that h(u) <∞, notice that supp(F ◦ sG) ∩Gu ⊆ G is compact:

γ ∈ supp(F ◦ sG) ∩Gu ⇐⇒ γ ∈ supp(F ◦ sG) and γ ∈ Gu =⇒ sG(γ) ∈ supp(F ) and rG(γ) = u.

Thus if ũ denotes the orbit of u ∈ G(0), then supp(F ◦ sG) ∩Gu ⊆ (s−1
G × r

−1
G )(supp(F |ũ)× {u}).

Property (ii) of F from Lemma 1.3.28 says that suppF |ũ is compact. As G is a proper groupoid, the
set (s−1

G × r
−1
G )(supp(F |ũ)× {u}) is compact. Hence supp(F ◦ sG) ∩Gu is compact.

The function h is constant on the orbits of G(0). Put F ′ = F/h, then∫
F ′ ◦ sG(γ) dαu(γ) = 1. (1.3.30)

Denote (F ′ ◦ sG)αu by pu, then p := {pu}u∈G(0) is a family of probability measures on G. For
f ∈ Cc(G) de�ne ∫

Gu
f dpu =

∫
Gu
f(γ)F ′ ◦ sG(γ) dαu(γ).

The invariance of α makes p a G-invariant family of measures. Let η ∈ G, then a change of
variables shows that
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∫
f(ηγ) dpsG(η)(γ) =

∫
f(ηγ) F ′ ◦ sG(γ) dαsG(η)(γ) =∫

f(γ) F ′ ◦ sG(η−1γ) dαrG(η)(γ) =
∫
f(γ) F ′ ◦ sG(γ) dαrG(η)(γ) =

∫
f(γ) dprG(η)(γ)

for f ∈ Cc(G) because sG(η−1γ) = sG(γ).

Remark 1.3.31. Lemma 1.3.29 implies that every proper groupoid with a Haar system is topologically
amenable. See Section 1.7.1 for the discussion. [1, Proposition 2.2.5] implies this lemma. But the
proposition is a much more general statement than the lemma, and both proofs are very di�erent.

1.4 Cohomology for groupoids

A notion of cohomology for Borel groupoids is introduced in [43]. In [33], a continuous version of
the same cohomology is discussed. For our purposes, we need an equivariant continuous version
of this cohomology. In the present section, we develop equivariant cohomology for Borel and
continuous groupoids. However, in the following discussion the groupoids are assumed to be Borel
groupoids and the maps are Borel maps. The whole discussion goes through when the Borel
properties are replaced by the continuous properties. Which means, the discussion makes sense
when the groupoids are topological groupoids and all the maps involved are continuous.

De�nition 1.4.1 (Action of a groupoid on another groupoid). A le� action of a groupoid G on another
groupoid H is given by maps rH,G : H → G(0) and a : G ∗ H → H which satisfy the following
conditions:

i) if η, η′ ∈ H are composable, γ ∈ G with sG(γ) = rH,G(η) = rH,G(η), then a(γ, η), a(γ, η′) ∈ H
are composable and

a(γ, ηη′) = a(γ, η)a(γ, η′);

ii) if u ∈ G(0), then a(u, η) = η for all η ∈ H ;

iii) if γ, γ′ ∈ G are composable, then (γ, a(γ′, η)) ∈ G ∗H and

a(γγ′, η) = a(γ, a(γ′, η)).

To simplify the notation, we write γ · η or simply γη for a(γ, η). Then (i) and (ii) above read
γ · (ηη′) = (γ · η)(γ · η′) and (γγ′) · η = γ · (γ′ · η), respectively. We call the map rH,G the momentum
map for the action and a the action map. When the momentum map and the action map are
continuous (or Borel) the action is called continuous (or Borel, respectively).

As a subgroupoid H(0) ⊆ H is nothing but a space. And it is not hard to see that G acts on H(0),
in the sense of De�nition 1.2.1. The momentum map in this case is rH,G|H(0) and the action map is
a|G∗H(0) . It is then clear that GH(0) ⊆ H(0) because an element u in a groupoid is a unit if and only
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if u is composable with itself and u2 = u. Hence if u ∈ H(0), then γ · u = γ · (uu) = (γ · u)(γ · u).
Thus γ · u ∈ H(0).

When G is a group, our de�nition matches De�nition 1.7 in [33, Chapter 1], which is the action
of a group on a groupoid by invertible functors. A proof of this fact is below.

Lemma 1.4.2. When G is a group, an action of G on H as in De�nition 1.4.1 above is the same as the
action in [33, De�nition 1.7, Chapter 1], that there is a homomorphism φ : G→ Aut(H) which gives
the actions where Aut(H) is the set of all invertible functors from H to itself.

Proof. For γ ∈ G de�ne φ(γ)(η) = γ · η.
We �rst prove that each φ(γ) is a functor from H to itself.
Note that an element u in a groupoid is a unit if and only if u is composable with itself and u2 = u.

If u ∈ G(0), then φ(γ)(u) = φ(γ)(uu) = φ(γ)(u)φ(γ)(u) = (φ(γ)(u))2. Hence for each unit u ∈ H(0),
φ(γ)(u) ∈ H is a unit. (i) of De�nition 1.4.1 gives that for each γ ∈ G, φ(γ)(ηη′) = φ(γ)(η)φ(γ)(η′).
This proves that φ(γ) is functor for each γ ∈ G.

Now we show that each of the φ(γ) is invertible. (ii) of De�nition 1.4.1 gives that γ 7→ φ(γ) is a
homomorphism. Use (iii) of De�nition 1.4.1 to see that φ(γ) is invertible:

φ(γ)φ(γ−1)(η) = φ(γγ−1)(η) = φ(rG(γ))(η) = η = IdH(η).

Similarly, φ(γ−1)φ(γ) = IdH . Thus φ(γ)−1 = φ(γ−1). Hence φ(γ) ∈ Aut(H).
It is routine to prove the converse, that is, an action of the group G on the groupoid H as

in [33, De�nition 1.7, Chapter 1] satis�es De�nition 1.4.1.

A continuous (and Borel) version of Lemma 1.4.2 can be proved along similar lines, merely by
adding continuity (or Borelness) of the action map and the momentum map and the continuity
(Borelness) of the group homomorphism φ.

Example 1.4.3. Let G be a groupoid and H a space. Then as action of G on H is the same as an
action of G on H viewed as a groupoid. In this case, condition (i) in De�nition 1.4.1 is irrelevant
and De�nition 1.2.1 and De�nition 1.4.1 match.

Example 1.4.4. Let π : V → X be a group bundle. The bundle can be viewed as a topological
groupoid H as follows: H(0) := X , H(1) := V and the source and range maps are π. For x ∈ X ,
r−1
H (x) = s−1

X (x) = π−1(x) is a group. For v, v′ ∈ π−1(x) de�ne the inverse of v to be v−1 and the
composition of v and v′ to be v.v′. Also, the unit element section embeds H(0) into H(1).

Example 1.4.5. Since a vector bundle π : V → X is a group bundle , the previous example implies
that a vector bundle is a groupoid. If X is a G-space, then the statement that the vector bundle
π : V → X is G-equivariant is equivalent to the statement that the groupoid G acts on groupoid of
the vector bundle.

Example 1.4.6. Let G and H be groupoids and let X be a G-H-bispace. De�ne an action of G on
the transformation groupoid X oH by γ(x, η) := (γx, η). The momentum map for this action is
(x, η) 7→ rX(x) ∈ G(0). Let (xη, η′), (x, η) ∈ X oH be composable elements then (γxη, η′)(γx, η)
are composable and

γ · (x, η) · γ (xη, η′) = (γx, η)(γxη, η′) = (γx, ηη′) = γ(x, ηη′).
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This veri�es (i) of De�nition 1.4.1. The other conditions are easy to check. Thus H acts on the
groupoid GnX in our sense. This is the main example for us.

Let H be a Borel groupoid and assume that H acts on a Borel groupoid G. Let G(0) and G(1)

have the usual meaning. For n = 2, 3, . . . de�ne

G(n) = {(γ0, . . . , γn−1) ∈ G×G× · · · ×G︸ ︷︷ ︸
n-times

: s(γi) = r(γi+1) for 0 ≤ i < n− 1}.

De�nition 1.4.7. Let G, H be Borel groupoids, let A be an abelian Borel group and let H act on
G. The A-valued H-invariant Borel cochain complex (BC•H(G;A), d•) is de�ned as follows:

i) The abelian groups BCn
H are:

(a) BC0
H(G;A) := { f : G(0) → A: f is an H-invariant Borel map};

(b) for n > 0 BCn
H(G;A) := {f : G(n) → A : f is an H-invariant Borel map and

f(γ0, . . . , γn−1) = 0 if γi ∈ G(0) for some 0 ≤ i < n− 1},

ii) the coboundary map d is:

(a) d0 : BC0
H(G;A)→ BC1

H(G;A) is d0(f)(γ) = f(sG(γ))− f(rG(γ)),
(b) for n > 0, dn : BCn

H(G;A)→ BCn+1
H (G;A) is

dn(f)((γ0, . . . , γn)) = f(γ1, . . . , γn)

+
n∑
i=1

(−1)if(γ0, . . . , γi−1γi, . . . , γn) + (−1)n+1f(γ0, . . . , γn−1).

The n-th cohomology group of this complex is the n-th H-invariant Borel cohomology of G for
n ≥ 0, and it is denoted by Hn

Bor,H(G;A). By adding the action of H to all the maps and spaces,
the machinery and the results in [43, §1 and §2] can be generalised to our setting.

Remark 1.4.8. Any H-invariant Borel function f on G(0) is a 0-cochain. A cochain f ∈ BC0
H(G;A) is a

cocycle i� d0(f) = 0 which is true i� f is constant on the orbits of G(0). A cochain k ∈ BC1
H(G;A)

is a cocycle i� k(γ0)− k(γ0γ1) + k(γ1) = 0 for all composable γ0 and γ1, which means that k is an
H-invariant Borel groupoid homomorphism.

We drop the su�xes B and Bor and write merely C0
H(G;A) and Hn

H(G;A).
Remark 1.4.9. Let b, b′ ∈ C0

H(G;A) and ∆ ∈ C1
H(G;A) with d0(b) = d0(b′) = ∆. Put c = b − b′.

Then for all γ ∈ G,

d0(b)(γ) = d0(b′)(γ)
b(sG(γ))− b(rG(γ)) = b′(sG(γ))− b′(rG(γ))
b(sG(γ))− b′(sG(γ)) = b(rG(γ))− b′(rG(γ))

c(sG(γ)) = c(rG(γ))

Thus b− b′ is a function on G(0)/G.
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Proposition 1.4.10. Let G be a proper groupoid and α a Haar system on G. Then every R-valued
1-cocycle is a coboundary, that is, H1(G;R) = 0.

Proof. Since G is a proper groupoid with a Haar system, Lemma 1.3.29 gives a family of probability
measures p = {pu}u∈G(0) . For a 1-cocycle c : G→ R the function

b(u) =
∫
c(γ) dpu(γ), u ∈ G(0),

satis�es c = b ◦ r − b ◦ s. To see this, let η ∈ G and compute:

(b ◦ r − b ◦ s)(η) =
∫
c(γ) dpr(η)(γ)−

∫
c(γ) dps(η)(γ)

=
∫
c(ηγ) dps(η)(γ)−

∫
c(γ) dps(η)(γ)

=
∫

(c(ηγ)− c(γ)) dps(η)(γ)

=
∫

(c(η) + c(γ)− c(γ)) dps(η)(γ)

= c(η)
∫

dps(η)(γ)

= c(η).

Remark 1.4.11. Since p is a continuous family of measures, the proof works for both Borel and
continuous cohomology.

1.5 Quasi-invariant measures

Let (G,α) be a (locally compact Hausdor�) groupoid with a Haar system. Then α is an invariant
family of measures along the range map. Using α we get a right invariant family of measures α−1

along the source map by
∫
f(γ) dα−1

u (γ) =
∫
f(γ−1) dαu(γ) for all f ∈ Cc(G). Let X be a le�

G-space and let µ be a measure on X . We de�ne a measure µ ◦ α−1 on the space G ∗X by∫
G∗X

f d(µ ◦ α−1) =
∫
X

∫
GrX (x)

f(γ−1, x) dαrX(x)(γ) dµ(x)

for f ∈ Cc(G ∗ X) Due to the Riesz representation theorem, we also write µ ◦ α−1(f) for the
integral

∫
G∗X f d(µ ◦ α).

De�nition 1.5.1 (Quasi-invariant measure). Let (G,α) be a groupoid with a Haar system and X
a G-space. A measure µ on X is called (G,α)-quasi-invariant if µ ◦ α and (µ ◦ α) ◦ invGnX are
equivalent.

In the above de�nition, invGnX is the inverse function on the transformation groupoid GnX .
Thus for f ∈ Cc(G ∗X),

(µ ◦ α) ◦ inv(f) =
∫
X

∫
GrX (x)

f(γ, γ−1x) dαrX(x)(γ)dµ(x).
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Remark 1.5.2. It is a somewhat technical fact that a (G,α)-quasi-invariant measure µ is G-invariant
if and only if the Radon-Nikodym derivative d(µ ◦ α)/d(µ ◦ α−1) = 1 µ ◦ α-almost everywhere on
G ∗X . A proof can be written using a density argument as in Lemma 1.3.20 and using Lemma 1.3.16.

Remark 1.5.3. Let u ∈ H(0) and let x ∈ X be such that s(x) = u. As in [1] or [8], it can be shown
that the Radon-Nikodym derivative d(µ ◦ α)/d(µ ◦ α−1) is a µ ◦ α-almost everywhere a groupoid
homomorphism from the transformation groupoid GnX to R∗+.

Let µ be a measure on G(0). Then for the le� action of G on G(0) we get the measure µ ◦ α on
the whole of G:

µ ◦ α(f) =
∫
G(0)

∫
Gu
f(γ) dαu(γ) dµ(u).

When the groupoid with the Haar measure (G,α) in the discussion is �xed, the standard
convention is that the phrase ‘µ is a quasi-invariant measure’ means that µ is a (G,α)-quasi-
invariant measure on G(0). When the Haar system on G is �xed, saying that µ is a G-quasi-invariant
measure has the same meaning.

De�nition 1.5.4 (A measured groupoid). A measured groupoid is a triple (G,α, µ) where G is a
groupoid, α is a Haar system on G and µ is a quasi-invariant measure on G(0).

De�nition 1.5.5 (Modular function). The modular function of a measured groupoid (G,α, µ) is the
Radon-Nikodym derivative d(µ ◦ α)/d(µ ◦ α−1).

The reason to use the article the for the modular function is that if ∆ and ∆′ are two modular
functions on G, then ∆ = ∆′ µ ◦ α-almost everywhere. Due to Remark 1.5.3 the modular function
is µ ◦ α-almost everywhere homomorphism of groupoids from G to R∗+. Let ∆G,µ denote the
modular function for a measured groupoid (G,α, µ).
Remark 1.5.6. Remark 1.5.3 says that ∆G,µ is a µ ◦ α-almost everywhere homomorphism on G ∗X .
Furthermore, there is a Borel set U ⊆ G(0) with µ(G(0) − U) = 0 such that ∆G,ν |GUU is a strict
Borel homomorphism, see [1, Appendix I.b].

Lemma 1.5.7. Let µ be a quasi-invariant measure on G(0). If µ′ ∼ µ, then µ′ is also quasi-invariant
and

∆G,µ′ =
(dµ′

dµ ◦ rG
)
·∆G,µ ·

(dµ′

dµ ◦ sG
)−1

.

Proof. For the above value of ∆G,µ′ one can directly compute that
∫
f d(µ′ ◦α−1) =

∫
f ∆G,µ′d(µ′ ◦

α).

1.6 Representations of groupoids and groupoid C∗-algebras

De�nition 1.6.1 (Borel Hilbert bundle). Let X be a space, H = {Hx}x∈X a family of separable
Hilbert spaces and p : H → X the projection map. We call (H, π) a Borel Hilbert bundle over X if

i) H carries a Borel structure and the projection map p is a Borel map,
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ii) there is a sequence of sections {ζn} such that

a) the map ζ̄n : H → C sending (x, h) 7→ 〈ζn(x) , h〉 is Borel for each n;

b) the map x 7→ 〈ζn(x) , ζm(x)〉 is Borel for each n and m;

c) the functions ζ̄n and π separate points of H.

The sequence {ζn} is called a fundamental sequence for the bundle (H, p). Two Borel Hilbert
bundles (H, p) and (H′, p′) are said to be isomorphic if there is a Borel isomorphism φ′ : H → H′
such that for each x ∈ X , φ′ : Hx → H′x is a unitary operator.

A section ζ is called Borel if the function x 7→ 〈ζn(x) , ζ(x)〉 is Borel for all n. Let µ be a (Borel)
measure on X . Then the set

L2(X,µ ;H) = {ζ ∈ Γ(X;H) : ζ is measurable and µ(〈ζ , ζ〉) <∞}

is a Hilbert space under the obvious operations. We call this space the Hilbert space of µ-square-
integrable sections of (H, p). An element of L2(X,µ ;H) is called a µ-square-integrable section.

Let (G,α) be a groupoid with Haar system. Denote G ∗G = G×sG,rGG and let α2 denote the
family of product measures {α−1

u × αu}u∈G(0) on G ∗G.

De�nition 1.6.2 (Borel G-Hilbert bundle, De�nition 1.6 Chapter II [33]). For a groupoid with a Haar
system (G,α) a Borel G-Hilbert bundle is a triple (H, p, π), where (H, p) is a Borel Hilbert bundle
over G(0) and π is an assignment π : γ 7→ π(γ) ∈ U(Hs(γ),Hr(γ)) satisfying the following conditions:

i) for u ∈ G(0), π(u) = IdHu ;

ii) if γ and γ′ are composable then π(γγ′) = π(γ)π(γ′) α2;

iii) π(γ)∗ = π(γ−1) α;

iv) γ 7→ 〈π(γ)(ζ ◦ s(γ)) , η ◦ r(γ)〉 is Bore for every pair of Borel sections ζ and η.

Now let µ be a quasi-invariant measure on G(0). Then we de�ne µ-measurable Hilbert bundles
over G(0) and µ-measurable G-Hilbert bundles in a similar fashion; we replace “Borel” by “µ-
measurable” everywhere in De�nitions 1.6.1 and 1.6.2 and require the identities in De�nition 1.6.2 to
only hold almost everywhere with respect to the appropriate measure µ, µ ◦ α−1, or µ ◦ (α−1 ∗ α),
where α−1 ∗ α is the family of measures α−1

u × αu for u ∈ G(0) along the map G ∗ G → G(0),
(γ, η) 7→ sG(γ) = rG(η). Moreover, an isomorphism between two µ-measurable G-Hilbert bundles
is only required to be de�ned and well-behaved almost everywhere.

We call two µ-measurable G-Hilbert bundles (H, p, π) and (H′, p′, π′) isomorphic if there is an
isomorphism φ : H → H′ such that π′(γ) · φ ◦ s(γ) = φ ◦ r(γ) · π(γ) µ ◦ α-almost everywhere.

Now we discuss the representation theory for groupoids. More precisely, the representation
theory for locally compact groupoids with Haar system. For this discussion, our main references
are [33] and [34]. Though in both of them Renault proves a disintegration theorem for groupoids,
the topological hypotheses are drastically di�erent. In [33], the topology on the groupoids is
Hausdor�, locally compact ( [33, Page 16, Chapter 1, Section 2] and second countable ( [33, Page
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64, Chapter 2, Section 1]). There is a very technical assumption about the Borel structure of the
groupoids. We discuss this theory in Subsection 1.6.1.

In the later work [34], Renault gets rid of the technical assumption, the second countability and
he worked with locally Hausdor� spaces. Thus this is a very general setting and it is a strong
result. We discuss this theory in Subsection 1.6.3.

We use the latter form [34] of the disintegration theorem. Hence the reader might �nd some
hypotheses and cross references in Subsection 1.6.1 not matching with the original reference,
namely, [33]. But still all the results are valid.

1.6.1 The representation theory-I

De�nition 1.6.3 (Representation of a groupoid, De�nition 2.1.6 [33]). A representation of a groupoid
with Haar system (G,α) is a quadruple (µ,H, p, π) where µ is a (G,α)-quasi-invariant measure
on G(0) and (H, p, π) is a µ-measurable G-Hilbert bundle.

Two representations (µ,H, p, π) and (µ′,H′, p′, π′) are equivalent if µ is equivalent to µ′ and
(H, p, π) and (H′, p′, π′) are isomorphic G-Hilbert bundles µ (and hence µ′)-almost everywhere. If
φ implements the isomorphism between (H, p, π) and (H′, p′, π′), then there is an isomorphism
Φ: L2(G(0), µ ;H)→ L2(G(0), µ′ ;H′) given by

Φ(ζ)(u) = φ(u)(ζ(u))
√
µ

µ′
(u). (1.6.4)

When G is a group thought of as a groupoid, we have G(0) = {e}, here e is the identity in G.
Hence a measurable G-Hilbert bundle is a unitary representation of G. In this case, the point mass
δe at the unit e of G is a (G,α)-quasi-invariant measure and the modular function of the measured
groupoid (G,α, δe) is exactly the modular function of G. In this case, De�nition 1.6.3 gives us a
measurable unitary representation of G.

A convention: Most of the time, we drop the projection map of the G-Hilbert bundle and write
‘(µ,H, π) is a representation of (G,α)’, instead of ‘(µ,H, p, π) is a representation of (G,α)’.

One of the most important features in the theory of representations of groups is that given a
unitary representation of G there is a non-degenerate *-representation of the convolution algebra
Cc(G). This is one of the most important facts in the study of C∗-algebras as well, since it allows
to study the representations of G in terms of those of Cc(G) and vice versa. We establish an
analogue of the same fact in groupoid representation theory. This lets us de�ne the C∗-algebra
of G in a fashion similar to the group case. For this purpose one needs to de�ne the convolution
algebra Cc(G). We do it below.

Let (G,α) be a groupoid with a Haar system. De�ne a convolution and an involution on Cc(G)
as follows:

f ∗ g(γ′) =
∫
Gr(γ′)

f(γ)g(γ−1γ′) dαrG(γ′)(γ) , (1.6.5)

f∗(γ) =f(γ−1). (1.6.6)
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For f ∈ Cc(G) de�ne the I-norm ||·||I using the le� norm ||·||l and the right norm ||·||r:

||f ||r := sup
u∈G(0)

{∫
Gu
|f | dαu

}
,

||f ||l := sup
u∈G(0)

{∫
Gu
|f | d(α−1)u

}
,

||f ||I := max {||f ||r, ||f ||l} .

Using the continuity of the Haar system, it can be shown that all the terms above are �nite. We
wish to make two important remarks regarding the involution and the I-norm.

Remark 1.6.7. The formula for the involution (1.6.6) for groupoids di�ers from the usual formula
for the involution for groups, in which a power of the modular function appears. Assume G is a
group and denote the *-algebra of G thought of as a groupoid by Cc(G)′. Let Cc(G) denote the
*–algebra of G as a group as in [11, Chapter VII]. The map f 7→ f

√
∆G,α induces an isomorphism of

*-algebras Cc(G)′ → Cc(G). A similar claim is true for the reduced C∗-algebras.

Remark 1.6.8. The topology de�ned by the I-norm on Cc(G) is coarser than the inductive limit
topology on Cc(G), see [31, Prposition 2.2.2]. Hence if U ⊆ Cc(G) is open in the topology induced
by the I-norm, then U is open in the inductive limit topology also. As a consequence of which, if
π : Cc(G)→ X is a continuous map when Cc(G) has the the topology induced by the I-norm, then
π is also continuous when Cc(G) has the inductive limit topology. This fact is used extensively
while studying the representations of Cc(G).

Proposition 1.6.9 (Theorem 2.2.1 [31]). Let (G,α) be a locally compact Hausdor� groupoid with a
Haar system. Then Cc(G) is a separable, normed *-algebra under the convolution product and the
I-norm, and the involution is an isometry.

A non-degenerate *-representation of the *-algebra Cc(G) is a *-homomorphism π : Cc(G)→
B(H) for a separable Hilbert space H such that the set {π(f)ζ : f ∈ Cc(G), ζ ∈ H} ⊆ H is dense.
We call π continuous if it is continuous when Cc(G) is given the inductive limit topology and
B(H) has the weak operator topology. Two representations π : Cc(G)→ H and π′ : Cc(G)→ H ′

of Cc(G) are equivalent if there is a unitary operator φ : H → H ′ that intertwines π and π′.

The relation between the unitary representations of (G,α) (De�nition 1.6.3) and the non-
degenerate representations of Cc(G) is given by the following two theorems.

Theorem 1.6.10. (Integration of a representation) Let (G,α) be a locally compact, Hausdor� groupoid
with a Haar system.

i) A representation (µ,H, π) of (G,α) induces a non-degenerate *-representation of Cc(G) on the
Hilbert space L2(G(0), µ ;H). This representation is continuous in the inductive limit topology
and is bounded in the I-norm.

ii) If two representations of (G,α) are equivalent, then the representations of Cc(G) which they
induce are also equivalent.

Proof. See Proposition 2.1.7 of [33].
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The representation that (µ,H, π) induces on Cc(G) is called the integrated form of (µ,H, π). If
(µ,H, π) is a representation of G, the operator π̄µ(f) for f ∈ Cc(G) on L2(G(0), µ ;H) is de�ned by

〈π̄µ(f)ζ , ψ〉 =
∫
G
f(γ) 〈π(γ)(ζ ◦ s)(γ) , ψ ◦ r(γ)〉

√
d(µ ◦ α−1)
d(µ ◦ α) (γ) d(µ ◦ α)(γ). (1.6.11)

When G is a group, this formula matches the usual formula for the integrated representation
with the exception of the factor of the modular function. Remark 1.6.7 explains how both the
formulae give isomorphic C∗-algebras.

Theorem 1.6.12 (Disintegration theorem). Let (G,α) be a locally compact, Hausdor�, second count-
able groupoid with a Haar system.

i) Every non-degenerate continuous representation of the convolution *-algebra Cc(G) into a
separable Hilbert space H is the integrated form of a representation of the groupoid (G,α).

ii) The process of integration establishes an equivalence between the category of unitary repre-
sentations of (G,α) on Hilbert bundles with separable �bres and the category of continuous,
non-degenerate representations of Cc(G) on separable Hilbert spaces.

Proof. For the proof of (i), take σ to be the cocycle σ(γ, γ′) = 1 in [33, Theorem 2.1.21]. And (ii) is
Corollary 2.1.23 in [33].

Remark 1.6.13. The original proof of Theorem 2.1.21 in [33] needs the existence of su�ciently many
non-singular G-sets. But as we mentioned in the introduction, Renault removed this requirement
in [34], which allows us to write the theorem.

Corollary 1.6.14 (Corollary 2.1.22, [33]). If (G,α) satis�es the assumptions for Theorem 1.6.12, then
every continuous non-degenerate representation of Cc(G) on a separable Hilbert space is bounded
for the I-norm.

Here Cc(G) has the inductive limit topology and if H is the Hilbert space in the corollary then
B(H) has the weak operator topology.

The process of obtaining a representation of (G,α) from one of Cc(G) is called disintegration
of the representation.

Due to the integration and the disintegration theorems, we can use the term ‘a representation
of G for a representation of G on a measurable G-Hilbert bundle or a *-representation of Cc(G).
Corollary 1.6.14 allows us to de�ne the C∗-norm on Cc(G).

De�nition 1.6.15 (C∗-algebra of a groupoid). For a groupoid with a Haar system (G,α) de�ne the
universal C∗-norm ||·|| on Cc(G) as

||f || := sup{||L(f)|| : L is a non-degenerate continuous *-representation of Cc(G)}.

The completion of Cc(G) in this norm is a C∗-algebra, which is called the C∗-algebra of (G,α).
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Note that the C∗-algebra of G depends on the Haar system α. Hence we denote this C∗-algebra
by C∗(G,α).

For a groupoid with a Haar measure (G,α), as in the group case, one can take the le�
regular representation of Cc(G) and complete Cc(G) with respect to the norm of the le� regular
representation. This gives the reduced C∗-algebra of (G,α), which we denote by C∗r(G,α) or
C∗r(G). For more details, Chapter 2 of [33] is a good reference.

Example 1.6.16. If X is a space with delta Dirac measures as Haar system, then its groupoid
C∗-algebra is C0(X).

Example 1.6.17. If G is a locally compact group then its groupoid C∗-algebra is the group C∗-algebra.
See Remark 1.6.7.

Example 1.6.18. If G is a group acting on a space X , then the C∗-algebra of the transformation
groupoid GnX is isomorphic to the crossed product Gn C0(X).

1.6.2 Transverse measures

Following A. Connes’ idea of non-commutative integration in [10], Renault develops the general
theory of transverse measures, discussed in [34]. The motivation, important results and examples
of the theory are discussed in Appendix I of [1]. Let X be a proper (G,α)-space with a family of
measures. The theory of transverse measures gives a process of inducing an equivalence class of
measures on the quotient space X/G. Each induced equivalence class of measures is ‘symmetric’
in a certain sense, see Proposition 1.6.33. When X = G and the family of measures is α itself,
this process of inducing classes of measures gives distinct equivalence classes of quasi-invariant
measures on G/G = G(0).

Use of the transverse measure theory allows us to write many results in a compact fashion.
We use the transverse measure theory in Chapter 2 to construct a Hilbert C∗-module and the
composition of topological correspondences. In Chapter 3, we use this theory to discuss the
example of a spatial hypergroupoid. Use of transverse measure classes reduces the pains of checking
and writing lots of small isomorphism results.

The present subsection is based on Appendix I of [1]. All the de�nitions and results are copied
from the same source. But we elaborate many constructions and give details of most of the
arguments there.

In the following discussion (G,α) is a pair consisting of a locally compact, Hausdor� groupoid
and a Haar system on it. We assume that G acts on X (or Y ) from the le�, as mentioned earlier
rX (rY , respectively) are the momentum maps, and the actions are continuous. The momentum
maps for the actions are continuous, but need not be surjective or open2. Only in this section, we
write the quotient by a le� or right action as X/G instead of G\X or X/G, respectively.

In this section a ‘G-invariant family of measures’ on X means a ‘G-invariant continuous proper
family of measures along the momentum map rX ’. For a Borel space X , let B(X) and B+(X)
denote the sets of Borel and non-negative Borel functions on X , respectively.

2If the space carries a continuous family of measures with full support, then the momentum maps are open.
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Let π : X → Y be a continuous G-map between G-spaces and let λ be a G-invariant family
of measures along π. Recall that λ is proper if there is e ∈ B+(X) with λ(e) = 1 on π(X). In
the continuous case , a family of measures is proper if and only if each measure in the family is
non-zero by [1, Lemma 1.1.2].

Remark 1.6.19. Our hypotheses, proofs and computations of results [1, Appendix 1] are milder than
the original ones, though, the de�nitions are the same. In the original work G and X are Borel
spaces, the invariant families of measures are Borel but the actions are proper actions. The main
result, namely, Proposition 1.6.33 (which is [Proposition A.1.20 [1]]) is stated for proper invariant
families of measures. However, the discussion below goes through when the continuity is replaced
by Borelness. Since we have been working in the continuous setting and we plan to do so even
later, we write the proof in the continuous setting. This will also allow us to redirect the reader in
latter chapters to this section for some computations.

De�nition 1.6.20 (De�nition A.1.13, [1]). Let ∆→ X be a Borel R∗+-principal bundle. We de�ne a
∆-measure as a map µ from the Borel sections of ∆ to [0,∞] such that, for some Borel section σ,
there is a measure µσ on X with µ(fσ) = µσ(f) for all positive Borel functions f on X .

The measure µσ for a section σ gives a measure µτ for every section τ . For a section τ and a
non-negative Borel function f on X we have,

µτ (f) = µ(fτ) = µ

(
f
τ

σ
· σ
)

= µσ(f τ
σ

).

Hence µτ = τ
σ µσ. Thus a ∆-measure µ gives a family of measures {µσ}σ∈Γ(X;∆), such that

any two measures µσ and µτ are equivalent and dµτ/dµσ = τ/σ. Conversely, if ν is a measure
equivalent to µσ and f is a positive function, then dν

dµσ σ is a section of ∆→ X and

ν(f) = µσ(f dν/dµσ) = µ dν
dµσ

σ(f).

Thus a ∆-measure de�nes the equivalence class of a measure.

Given a measure ν on a space X , let ∆ = X × R∗+ be the trivial R∗+-principal Borel bundle.
We construct a ∆-measure µ on X as follows: Let µ : Γ(X; ∆)→ [0,∞] be µ(σ) =

∫
X σ dν for a

section σ. Then for a non-negative Borel function f on X , we get µ(fσ) =
∫
fσ dν. In this case,

for each section σ the measure µσ is σν.

Lemma 1.6.21. Let X be a space.

i) Any measure ν on X comes from an R∗+-principal bundle ∆→ X and a ∆-measure.

ii) Given a ∆-measure µ on X and two sections σ, σ′ of ∆ → X , the measures µσ, µσ′ are
equivalent.

For σ ∈ Γ(X; ∆), µσ is called the measure de�ned by σ for µ or simply the measure de�ned
by σ. We call the measure class {µσ}σ∈Γ(X;∆) the measure class de�ned by µ.

By Proposition 1.3.27, if X,Y are proper G-spaces, π : Y → X is a G-map and β is a continuous
invariant family of measures along π, then β induces a family of continuous measures [β] along
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[π] : Y/G→ X/G. In Proposition 1.3.27, if the continuity properties are replaced by Borel properties,
a similar claim holds. The proof can be written along the same lines as the proof of Proposition 1.3.27.

Let ∆→ G(0) be a G-equivariant Borel R∗+-principal bundle. Given a proper G-space X , we
have the G-equivariant R∗+-principal pull-back bundle r∗X(∆)→ X . For γ ∈ G and (x, t) ∈ r∗X(∆),
γ(x, t) = (γx, γt). Let ∆X = (r∗X(∆))/G, which is a bundle over X/G. Note that ∆G = ∆.

De�nition 1.6.22 (Transverse measure, De�nition A.1.15 in [1]). Let G be an analytic Borel groupoid
and let ∆→ G(0) be a G-equivariant Borel R∗+-principal bundle. A ∆-transverse measure T is a
coherent assignment (X,λ) 7→ T(λ) where

i) (X,λ) is a proper (le�) G-space with an invariant family of measures,

ii) T(λ) is a ∆X-measure on X/G,

iii) coherence means that for every invariant Borel G-map π : Y → X , where X,Y are proper
analytic Borel G-spaces, every invariant Borel system of measures β along π and every
invariant Borel system λ for rX we have T(λ ◦ β) = T(λ) ◦ [β].

We recall from the introduction of this section that in this section all the actions are le� actions
but we denote the quotient by X/G. When ∆ is the graph of a homomorphism δ : G → R∗+, a
∆-transverse measure is also called a transverse measure of module δ.

We discuss an example of a transverse measure. Given a quasi-invariant measure ν on G(0),
we construct a transverse measure. We know that ∆G,ν : G→ R∗+ is a ν ◦ α-almost everywhere
homomorphism. Chose a ν-conull Borel set U ⊆ G(0) such that ∆G,ν |GUU is a strict homomorphism.
Let ∆ be the Borel R∗+-bundle associated with the graph of ∆G,ν |GUU . As a space, ∆ is merely

U × R∗+. De�ne an action of R∗+ on ∆ as (u, t)t′ = (u, tt′). Then ∆→ G(0) is a Borel R∗+-principal
bundle. De�ne an action of GUU on this bundle by γ(sG(γ), t) = (rG(γ),∆G,ν(γ)t). This makes ∆ a
Borel G-bundle. Thus we have a G-equivariant Borel R∗+-bundle over G(0).

Let αX be the family of measures along the quotient map pX : X → X/G as in Proposition 1.3.21.

Lemma 1.6.23. The integration map AX : Γc(X, r∗X(∆)) → Γc(X/G; ∆X) as in Proposition 1.3.21,
sending f 7→

∫
f(γx) dαrX(x)(γ), is a surjection.

Proof. Let f ∈ Γc(X/G; ∆X) be given. Using Lemma 1.3.16 we get a function gXf ∈ Γc(X, r∗X(∆))
with αX(gXf ) = 1 on supp(f). Then f = αX(f ◦ pX · gXf ).

Note that AG = A where AG : Γc(G, r∗G(∆)) → Γc(G(0); ∆) is the integration map as in the
statement of the lemma and A : Γc(G, r∗G(∆))→ Γc(G(0); ∆) is the map induced by the integration
map Cc(G)→ Cc(G(0)) that occurs in the de�nition of the Haar system α.

Now we de�ne the ∆X-transverse measure T(λ). Let f ∈ Γc(X/G; ∆X) then

T(λ)(f) :=
∫
G(0)

∫
Xu

f([x]) gXf (x) dλu(x) dν(u) (1.6.24)
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with gXf ∈ Γc(X; r∗X(∆)) as in the proof of Lemma 1.6.23. It is a slightly complicated but straight-
forward computation to check that T does not depend on the choice of gXf . The reader may refer
to a similar computation that we do in (iii) of Proposition 2.4.3. The proof uses a commutative
diagram as in Figure 1.2.

For �xed f ∈ Γ(X/G,∆X) de�ne T(λ)f : Γc(X/G)→ [0,∞) by the formula

T(λ)f (k) = T(λ)(f · k) =
∫∫

k([x])f([x]) gX(x) dλu(x) dν(u), (1.6.25)

where k ∈ Γc(X/G). Then T(λ)f is continuous in the inductive limit topology (in fact, T is
continuous when the convergence in Γc(X/G) is Lebesgue’s dominated convergence). Due to the
Riesz representation theorem, T(λ)f induces a positive Radon measure on X/G, which we denote
by T(λ)f . If g ∈ B+(X/G), then T(λ)f (g) = T(λ)(gf). To announce thatT(λ) is the required
∆X-transverse measure on X/G, we need to check that the assignment T is coherent.

Y X G(0)

Y/H X/H.

π

β

pY αY pX αX

rX

λ

[π]

[β]

Figure 1.3

To check the coherence we redraw Figure 1.2 �lling in the present data to get Figure 1.3. The
coherence follows easily from the commutativity of the square in Figure 1.3. Let f ∈ Γc(Y/G; ∆Y ),
then

T(λ)([B](f)) = ν
(
Λ
(
[B](f) ◦ pX · gX[B](f)

))
= ν

(
Λ
(
B
(
f ◦ pX · gYf

)
gX[B](f)

))
= ν

(
Λ ◦B

(
f ◦ pX · gYf

)
gX[B](f)

)
= T(λ ◦ β)(B(f))

The above computations are sketchy. Writing them with integration symbols makes things much
clearer. We avoid it due to its length and complexity.

We discuss an interesting fact now. We constructed the transverse measures T using the
quasi-invariant measure ν on G(0). What is the relation between T and ν?

For the answer, check what happens when (X,λ) = (G,α), f = ∆G,ν and k ∈ Γc(G(0),∆) in
Equation 1.6.24. In this case, note that f is a G-equivariant section of ∆G,ν . This is the point where
we use the de�nition of ∆G,ν and now we compute

T(α)∆G,ν
(k) =

∫∫
k(u) gGk (γ) dαu=rG(γ)(γ) dν(u) =

∫
k(u) dν(u),

where we use that ∆G,ν(γ)f(γ)|G(0)= 1 and
∫
G g

G
k dαu = 1 on supp(k). Thus T(α)∆G,ν

= ν.
The above construction of a transverse measure using a quasi-invariant measure is the �rst

half of Proposition 1.6.26 below.
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Proposition 1.6.26 (Proposition A.1.15 [1]). Let (G,α) be an analytic Borel groupoid with a Borel
family of measures and let δ : G → R∗+ be a Borel homomorphism. Then there is a one-to-one
correspondence between

i) quasi-invariant measures µ for (G,α) with d(µ ◦ α−1)/d(µ ◦ α) = δ almost everywhere;

ii) transverse measures T for G of module δ.

The measure µ and the transverse measure T are related by µ = T(α)δ .

We are going to prove the second half of the above proposition. We show that given a
∆-transverse measure T for (G,α) of module δ : G→ R∗+,

a) the measure class de�ned by T(α) consists of quasi-invariant measures on G(0);

b) there is a measure µ in the measure class de�ned by T(α) with d(µ ◦ α−1)/d(µ ◦ α) = δ
µ ◦ α-almost everywhere.

Let ∆→ G(0) be the G-equivariant Borel principal R∗+-bundle corresponding to the graph of δ
and let T be a ∆-transverse measure. For (X,λ) = (G,α) we have ∆G = ∆, which gives us a
∆-measure T (α) on G(0). Fix a section σ of ∆. Let T(α)σ be the corresponding measure on G(0).
We show that this measure is quasi-invariant.

For G×rG,rG G, let πi, i = 1, 2 be the projections on the �rst and the second factor, respectively.
De�ne the family of measures αi along πi for i = 1, 2 by∫

f(γ, γ′) dαγ1(γ, γ′) =
∫
f(γ, γ′) dαrG(γ)(γ′), (1.6.27)∫

f(γ, γ′) dαγ
′

2 (γ, γ′) =
∫
f(γ, γ′) dαrG(γ′)(γ) (1.6.28)

for a non-negative Borel function f .

The family α2 induces a family of measures along [π2] : (G ×rG,rG G)/G → G/G. Identify
(G×rG,rG G)/G with G via the map (γ, γ′) 7→ γ−1γ′. And G/G is identi�ed with G(0) via the map
γ 7→ rG(γ). Then [π2]([γ, γ′]) = [π2]([rG(γ′), γ′]) = π2([γ′]) = rG(γ′). Thus [π2] = rG : G→ G(0).

We compute [α2] now. Take a non-negative Borel function f on G. Then∫
f([rG(γ′), γ′]) d[α2]rG(γ′)([rG(γ′), γ′]) =∫

f(γ′) dα[π2]([rG(γ′),γ′])=rG(γ′)(γ′) =
∫
GrG(γ′)

f dαrG(γ′). (1.6.29)

Thus [α2] = α along the range map rG.

A similar computation shows that [π1] = sG : G→ G(0) and [α1] = α−1 along sG. Replace non-
negative Borel functions by functions in Cc(G). A simple computation shows α◦α1 = α◦α2 = α×α.
Hence T(α ◦ α1) = T(α ◦ α2). But the coherence of T gives T(α) ◦ [α1] = T(α) ◦ [α2], that is,
T(α) ◦ α = T(α) ◦ α−1. Thus T(α)σ ◦ α,T(α)σ ◦ α−1 ∈ T(α) ◦ α1 = T(α ◦ α1). But all the measures
de�ned by T(α ◦ α1) are equivalent, hence T(α)σ ◦ α ∼ T(α)σ ◦ α−1.
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The discussion in the last paragraph proves that for every section σ ∈ Γ(G(0),∆) the measure
T(α)σ is quasi-invariant. Denote the measure T(α)δ by µ.

Recall that ∆→ G(0) is G-equivariant and the action of G is given by γ(sG(γ), t) = (rG(γ), δ(γ)t).
Now we prove that T(α)δ = ∆G,µ almost everywhere. We need to keep the action in mind. We
use Lemma 1.6.23; Let f ∈ Γc(G, r∗G(∆)), then A(f) ∈ Γc(G(0),∆) and we may write

T(α)δ(A(f)) =
∫
G(0)

(∫
u
f(γ) dαu(γ)

)
dµ(u)

=
∫
G(0)

(∫
u
f(γ−1) δ(γ−1) dαu(γ)

)
dµ(u). (1.6.30)

But µ is quasi-invariant, hence δ(γ) = ∆G,ν(γ−1) = d(ν◦α−1)
d(ν◦α) (γ) µ ◦ α-almost everywhere.

From Equation 1.6.30 it is clear that graph(δ) ' graph(∆G,µ) µ ◦ α-almost everywhere. Hence
the corresponding G-equivariant R∗+-principal Borel bundles are Borel isomorphic. We do not
distinguish between both bundles and denote them by ∆→ G(0) itself.

Denote the transverse measure on ∆ → X obtained from the graph of ∆G,µ by T′ (see
Equation (1.6.25) for the construction). To prove the claim of Proposition 1.6.26 we need to show
that T and T′ are the same function. From the computation involving Equation 1.6.30 we can see
that T(α) = T′(α). We sketch the proof that T(λ) = T′(λ) for all pairs (X,λ) consisting of a proper
G-space and an invariant family of measures below.

Let X be a proper G-space and let λ be a G-invariant family of measures on X . Let
π1 : G×rG,rX X → G and π2 : G×rG,rX X → X be the projection maps and let λ1 and α2 be the
following families of measures along π1 and π2, respectively:∫

f dλγ1 =
∫
XrG(γ)

f(γ, x) dλrG(γ)(x),∫
f dαx2 =

∫
GrX (x)

f(γ, x) dαrX(x)(γ), for f ∈ Cc(G×rG,rX X).

i) A small computation involving Fubini’s Theorem with functions in Cc(G×rG,rX X) shows that
α ◦ λ1 = λ ◦ α2.

ii) The family of measures along [π1] is [λ1] = λ and the one along [π2] is [α2] = αX . Here for
f ∈ B+(X),

∫
f dα[x]

X =
∫
f(γ−1x) dαrX(x)(γ).

The above two facts, the coherence of T and T′ and the fact that T(α) = T′(α) show that

T(λ) ◦ αX = T(λ ◦ α2) = T(α ◦ λ1) = T(α) ◦ λ
= T′(α) ◦ λ = T′(α ◦ λ1) = T′(λ ◦ α2) = T′(λ) ◦ αX (1.6.31)

The equality of measure classes in Equation 1.6.31 says that for measures ν ∈ T(Λ) and ν ′ ∈ T′(Λ)
we have ν ◦ αX ∼ ν ′ ◦ αX . For f ∈ Γc(X/G,∆X) we choose gXf as in Lemma 1.6.23 to see that

ν(f) = ν ◦ αX(f ◦ pX · gXf ) = ν ′ ◦ αX
( dν ◦ αX

dν ′ ◦ αX
f ◦ pX · gXf

)
= ν ′

(
f ◦ pX ·

dν ◦ αX
dν ′ ◦ αX

· αX
(
gXf

))
= ν ′

(
f ◦ pX ·

dν ◦ αX
dν ′ ◦ αX

)
.
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Hence ν ∼ ν ′ with dν
dν′ = dν◦αX

dν′◦αX . But then Lemma 1.6.21 gives T(α) = T′(α).

De�nition 1.6.32 (Transverse measure class, De�nition A.1.19 [1]). For a Borel groupoid G a transverse
measure class m on G is a coherent assignment (X,λ) 7→ m(λ), where

i) X is a proper G-space and λ is a G-invariant family of measures on X ;

ii) m(λ) is a measure class on X/G;

iii) coherence of the assignment means: for every Borel G-map π : Y → X between proper
Borel G-spaces X and Y , every G-invariant Borel family of measures λ′ for π and every
G-invariant Borel family of measures λ for rX : X → G(0), one has m(λ ◦ λ′) = m(λ) ◦ [λ′].

Note that a transverse measure T de�nes a transverse measure class m such that for a proper
G-space X and an invariant family of measures λ on X , m(λ) is the measure class de�ned by
T(λ).

Proposition 1.6.33 (Proposition A.1.20 [1]). Let G be a Borel groupoid.

i) For every transverse measure class m and every G-space X with an invariant family of
measures, the measure class m(λ) ◦ [α1] on (X ∗ X)/G is invariant under the symmetry
(x, y) 7→ (y, x).

ii) Conversely, given a proper G-space (X,λ) with an invariant family of measures λ and a
measure class [µ] on X/G such that the measure class [µ ◦ [α1]] on (X ∗X)/G is symmetric,
there is a unique transverse measure class m with [y] = m(α).

Corollary 1.6.34. Let G be a Borel groupoid and α a Borel family of measures for G.

i) Every quasi-invariant measure µ on G(0) induces a transverse measure class m.

ii) Conversely, given a transverse measure class m, there is a quasi-invariant measure µ ∈ m(α)
such that the transverse measure class induced by µ is m.

Proof. (i): Given a quasi-invariant measure µ, Proposition 1.6.26 gives a transverse measure T of
module d(µ ◦ α−1)/d(µ ◦ α) = ∆−1

G,µ. The transverse measure T de�nes a transverse measure class
m such that for (X,λ), m(λ) is the measure class de�ned by T(λ).

(ii): Let m be a transverse measure class for G. Let µ ∈ m(α). Then (i) of Proposition 1.6.33 says
that the measure m(α) ◦ [α1] is invariant under the symmetry. Hence m(α) ◦ [α1] = m(α) ◦ [α2].
But from the discussion on Page 32 we have [α1] = α and [α2] = α−1. Thus if ν ∈ m(α), then
ν ◦ α ∼ ν ◦ α−1.

If T is the transverse measure induced by ν, then Proposition 1.6.26 shows that m is the
transverse measure class de�ned by T.
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1.6.3 Representation theory II

Corollary 1.6.34 shows that there is a bijection between the classes of quasi-invariant measures on
G(0) and transverse measure classes for (G,α). This enabled Renault to rewrite the representation
theory in a new language in [34].

We know that a representation of (G,α) is given by a (G,α)-quasi-invariant measure µ on
G(0) and a µ-measurable G-Hilbert bundle. Let (µ,H, π) be a representation of (G,α). If µ′ is
equivalent to µ then µ′ is also quasi-invariant (see 1.5.7). Then (µ,H, π) and (µ′,H, π) are equivalent
representations. From Equation (1.6.4) we see that the Hilbert spaces of square-integrable sections
of H for µ and µ′ are unitarily isomorphic. Thus for a �xed measurable G-Hilbert bundle H, a
representation depends only on the equivalence class of µ. Using the transverse measure theory
one can work with the equivalence class of µ at once. The trick is to replace the Hilbert space of
µ-square integrable sections by a Hilbert space that represents the square-integrable sections for
the class of µ.

We are going to rewrite the representation theory of groupoids with quasi-invariant measures
replaced by transverse measure classes.

Let (µ,H, π) be a representation of (G,α). If m is the transverse measure class induced by µ
(see Corollary 1.6.34), then we replace L2(G(0), µ;H) by the Hilbert space of half-densities:

L2(G(0),m ;H) = {ζ
√
ν : ν ∈ m and ζ ∈ L2(G(0), ν ;H)}.

The inner product of ζ
√
ν, ξ
√
µ ∈ L2(G(0), µ;H) is de�ned by

〈
ζ
√
ν , ξ
√
µ
〉

=
∫
〈ζ(u) , ξ(u)〉

√
ν

µ
(u)µ(u).

De�nition 1.6.35 (Representation of a groupoid, De�nition 3.4 [35]). A representation of a groupoid
with Haar system (G,α) is a quadruple (m,H, p, π), where m is a transverse measure class for
(G,α) and (H, p, π) is a µ-measurable G-Hilbert bundle on G(0).

Two representations are equivalent if there is a unitary that intertwines the Hilbert bundles as
described in the previous section. As before, we drop the projection map from our notation and
call (m,H, π) a representation of (G,α).

We de�ne non-degenerate representations of the *-algebra Cc(G) to be continuous in the
inductive limit topology as in [34]. One can de�ne what it means for two representations of Cc(G)
to be equivalent.

The relation between the unitary representations of (G,α) (De�nition 1.6.35) and the non-
degenerate representations of Cc(G) is given by the following two theorems.

Proposition 1.6.36 (Integration of representation, Proposition 3.5, [34]). Let (G,α) be a groupoid
with a Haar system.

i) A representation (m,H, π) of (G,α) as in De�nition 1.6.35 induces a non-degenerate *-
representation of Cc(G) on the Hilbert space of m(α)-square integrable sections of the bundle
H. This *-representation is continuous in the inductive limit topology and bounded in the
I-norm.
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ii) If two representations of (G,α) are equivalent, then the representation of Cc(G) which they
induce are also equivalent.

For a representation (m,H, π) of G and f ∈ Cc(G), the operator π̄(f) on L2(G(0), µ ; H) is
given by

〈
π̄(f)ζ

√
ν , ψ
√
µ
〉

=
∫
G
f(γ) 〈π(γ)(ζ ◦ s)(γ) , ψ ◦ r(γ)〉

√
d(ν ◦ α−1)
d(µ ◦ α) (γ) d(µ ◦ α)(γ). (1.6.37)

From the symmetry-related claim of (i) of Proposition 1.6.33 we know that m(α)◦α = m(α)◦α−1.
Hence ν ◦ α−1 ∼ µ ◦ α and thus the Radon-Nikodym derivative d(ν◦α−1)

d(µ◦α) in Equation (1.6.37) makes
sense.

The representation that (m,H, π) induces on Cc(G) is called the integrated form of (m,H, π).
The process of inducing the representation is called integration of the representation (m,H, π).

Theorem 1.6.38 (Disintegration theorem, Theorem 4.1, [34]). Let (G,α) be a locally compact,
Hausdor� groupoid equipped with a Haar system.

i) Every non-degenerate continuous representation of the convolution *-algebra Cc(G) into a
separable Hilbert space H is the integrated form of a representation of (G,α) of the form in
De�nition 1.6.35.

ii) The process of integration establishes an equivalence between the category of representations
of (G,α) de�ned as in De�nition 1.6.35 and the category of continuous, non-degenerate
representations of Cc(G) on separable Hilbert spaces.

Now we can go through the same arguments as in the last subsection to construct C∗(G,α).

1.7 Some more de�nitions

1.7.1 Amenability

In this short section we quickly review some ideas of amenability of groupoids from [1]. Anan-
tharaman Delaroche and Renault introduced the notions of amenability for a measured Borel
groupoid ( [1, De�nition 3.2.8]), measurewise amenability for a Borel groupoid ( [1, De�nition
3.3.1]) and topological amenability for a locally compact topological groupoid ( [1, De�nition 2.2.7]).
In [1, Proposition 3.3.5], they prove that topological amenability implies measurewise amenability.
The de�nition of measurewise amenability implies that if G is measurewise amenable, then for
any Borel Haar system on G and a quasi-invariant measure for the Haar system, G is an amenable
measured groupoid.

One of the most important results for us is [1, Theorem 6.1.4]. The above discussion along with
this theorem yields the following result:

Lemma 1.7.1. Let G be a locally compact, second countable Hausdor� groupoid and α a Haar system
for G. If G is topologically amenable, then C∗(G,α) ' C∗r(G,α).
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Proof. Since G is topologically amenable, [1, Proposition 2.2.5] gives that for any quasi-invariant
measure µ the measured groupoid (G,α, µ) is amenable. Now (ii) of Theorem 6.1.4 [1] says that for
any quasi-invariant measure µ, the trivial representation of (G,α, µ) is weakly contained in the
regular representation. This proves the claim.

Corollary 1.7.2. Let G be a proper groupoid. Given a Haar system α on G, C∗(G,α) ' C∗r(G,α).

Proof. Follows from Lemma 1.3.29 and Lemma 1.7.1.

1.7.2 C∗-correspondences

We shall be working with separable C∗-algebras only. We shall use the theory of Hilbert modules
and assume that the reader is familiar with it. For the theory of Hilbert modules the book of
Lance [23] is a good reference.

De�nition 1.7.3 (C∗-correspondence). Let A and B be C∗ algebras. A C∗-correspondence from A
to B is a Hilbert B-module H with a homomorphism A→ BB(H).

A special type of C∗-correspondence is called an equivalence or an imprimitivity bimodule. A
Hilbert B-module H is full if the linear span of the image of H×H under the inner product map
is dense in B.

De�nition 1.7.4. An imprimitivity bimodule from A to B is an A-B-bimodule H such that

i) H is a full le� Hilbert A-module with an inner product ∗〈,〉;

ii) H is a full right Hilbert B-module with an inner product 〈,〉∗;

iii) (H, ∗〈,〉) is a correspondence from B to A;

iv) (H, 〈,〉∗) is a correspondence from A to B;

v) for a, b, c ∈ H a 〈b , c〉∗ = ∗〈a , b〉c.

In [36], Rie�el shows that an A-B-imprimitivity bimodule induces an isomorphism between
the representation categories of B and A.

In general, if H is a C∗-correspondence from A to B and H is a Hilbert B-module, then H
induces a functor from Rep(B), the representation category of B, to the one of A.

In Section 2.5.2, we shall study bicategories. The reader may refer to Section 2.2 of [9], where
the authors prove that C∗-correspondences form a bicategory.

We shall call a C∗-correspondence H from A to B a proper correspondence if A acts on H by
compact operators, that is, the action of A is given by a homomorphism A→ KB(H).

De�nition 1.7.5. Let A and B be two C∗-algebras and let H and H′ be two C∗-correspondences.
A homomorphism of C∗-correspondences from H to H′ is a map φ : H → H′ such that

i) φ is a homomorphism of Hilbert B-modules,
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ii) φ intertwines the actions of A on the Hilbert B-modules H and H′.

De�nition 1.7.6. Let H and H′ be two C∗-correspondences from A to B. An isomorphism of
C∗-correspondences from H to H′ is a homomorphism φ of C∗-correspondences such that φ is
unitary.

If there is an isomorphism of C∗-correspondences from H to H′, we call H and H′ isomorphic.



Chapter 2

Topological correspondences

We de�ne topological correspondences in this chapter. Let (G,α) and (H,β) be locally compact
Hausdor� groupoids with Haar systems. Then a correspondence from (G,α) to (H,β) is a G-H-
bispace where the H-action is proper and X carries a certain family of measures. X is locally
compact, Hausdor� and second countable. This chapter deals with three topics:

constructing a C∗-correspondence from a topological correspondence: this topic has two main
sections, namely, constructing a C∗(H,β)-Hilbert module using X and λ, and de�ning an
action of (G,α) on this Hilbert module. Finally, both these results are put together to get a
C∗-correspondence from C∗(G,α) to C∗(H,β);

composing topological correspondences;

proving the functoriality of the assignment that sends a topological correspondence to a C∗-
correspondence.

The Integration and Disintegration Theorems (Proposition 1.6.36, Theorem 1.6.12) are the main
ingredients for the construction of a C∗-correspondence from a topological correspondence.

Composition of correspondences turns out to be a bit involved. Composition also needs that the
correspondences are second countable. We shall use the method of pushing a family of measures
on the quotient, which is similar to methods discussed in Section 1.6.2 on transverse measures.

Eventually, we show that topological correspondences form a bicategory and that the assignment
that sends a topological correspondence to a C∗-correspondence is a morphism of bicategories.
We give detailed calculations to construct the bicategory and the homomorphism between the
bicategories.

In this chapter, all the groupoids and spaces considered are locally compact, Hausdor�. The space
involved in a topological correspondences is locally compact, Hausdor� and second countable. In
the latter half of the chapter, when we start with the composition of correspondences (Section 2.4.1),
we assume that the groupoids are also second countable. All the groupoids carry a Haar system.
In fact, most of the families of measures are continuous families of measures which are invariant for
the right action. Hence we usually call an proper invariant proper continuous family of measures
merely a family of measures.

39
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2.1 Construction of topological correspondences

Recall De�nition 1.7.3, which says that a C∗-correspondence H from a C∗-algebra A to a C∗-algebra
B is an A-B-bimodule with some extra structure and some conditions on the action. Similarly,
we de�ne a topological correspondence from a groupoid with Haar system (G,α) to a groupoid
with Haar system (H,β) as a G-H-bispace X with some extra structure and certain conditions
on the actions.

Let G be a groupoid equipped with a Haar system α and X a le� G-space. Let GnX denote
the transformation groupoid. Its space of arrows is G ∗X := {(γ, x) ∈ G×X : sG(γ) = rX(x)}.

De�nition 2.1.1 (Topological correspondence). A topological correspondence from a locally compact,
Hausdor� groupoid G with a Haar system α to a locally compact, Hausdor� groupoid H equipped
with a Haar system β is a pair (X,λ), where:

i) X is a locally compact, Hausdor�, second countable G-H-bispace,

ii) λ = {λu}u∈H(0) is an H-invariant proper continuous family of measures along the momentum
map sX : X → H(0),

iii) the action of H is proper,

iv) ∆ is a continuous function ∆ : GnX → R+ such that for each u ∈ H(0) and F ∈ Cc(G ∗X),
∫
Xu

∫
GrX (x)

F (γ−1, x) dαrX(x)(γ) dλu(x)

=
∫
Xu

∫
GrX (x)

F (γ, γ−1x) ∆(γ, γ−1x) dαrX(x)(γ) dλu(x).

If ∆′ is another function that satis�es condition (iv) in De�nition 2.1.1, then ∆ = ∆′ λu ◦α-almost
everywhere for each u ∈ H(0). As both ∆ and ∆′ are continuous, we get ∆ = ∆′. We call the
function ∆ the adjoining function of the correspondence (X,λ).

Remark 2.1.2. Note that we do not need that the momentum maps sX and rX are open surjections.
We also do not demand that the family of measures λ has full support. Hence the Hilbert module
in the resulting C∗-correspondence need not be full. This C∗-correspondence need not be proper.

Remark 2.1.3. Referring to De�nition 1.5.1, we can see that Condition (iv) in De�nition 2.1.1 says that
the measure α× λu on G ∗Xu is (G,α)-quasi-invariant for each u ∈ H(0).

In short, “A topological correspondence from G to H is a pair (X,λ) where X is a G-H-bispace
and λ is an H-invariant and G-quasi-invariant family of measures on X indexed by H(0).”

Remark 2.1.4. Let u ∈ H(0) and let x ∈ X be such that sX(x) = u. As in [1] or [8] it can be shown
that ∆ restricted to G ∗Xu is αrX(x) × λu-almost everywhere a groupoid homomorphism for all
u ∈ H(0). So the function ∆ in (iv) of De�nition 2.1.1 is a continuous 1-cocycle on the groupoid
GnX . We shall use this fact in many computations.
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Remark 2.1.5. Example 1.4.6 gives a right action of H on GnX . In [8], Buneci and Stachura use
an adjoining function. Their topological correspondences is a special case of our construction
(Example 3.1.11). They show that the adjoining function in their case is H-invariant (see [8, Lemma
11]). In the similar fashion we may prove that ∆H is H-invariant under the right action of H , that is,

∆(γ, xη) = ∆(γ, x)

for all composable triples (γ, x, η) ∈ G∗X ∗H . Thus, in fact, ∆: GnX/H → R∗+. Now Remark 2.1.4
can be made �ner by saying that ∆ is an H-invariant continuous 1-cocycle on the groupoid GnX .

Important conventions: As we shall see later, the adjoining function ∆ plays a vital role while
constructing a C∗-correspondence from a topological correspondence. Hence sometimes in Chap-
ter 2 we denote a topological correspondence by a triple (X,α,∆). By this convention, we do
not intend to mean that a topological correspondence is a triple, but we wish to emphasis the
importance of the adjoining function.

Use of the adjoining function: In the following discussion we explain the role of the adjoining
function. Let (X,λ) be a topological correspondence from (G,α) to (H,β) with ∆ as the adjoining
function. We make Cc(X) into a Cc(H)-module using the same formulae as in [28] or [25]. To
make Cc(X) into a C∗(H,β)-pre-Hilbert module, we need to de�ne a Cc(H)-valued inner product
on Cc(X). The formula for this inner product cannot be copied directly from either [28] or [25].
This formula has to be modi�ed, and it uses the family of measures λ.

Talking about the le� action, for φ ∈ Cc(G) and f ∈ Cc(X) [28] and [25] de�ne φ · f ∈ Cc(X)
by

(φ · f)(x) =
∫
G
φ(γ)f(γ−1x) dαrX(x)(γ). (2.1.6)

For our de�nition of topological correspondence, the action of Cc(G) on the C∗(H,β)-pre-
Hilbert module Cc(X) de�ned by formula 2.1.6 is not an action by adjointable operators. For φ
and f as above we de�ne the le� action by

(φ · f)(x) :=
∫
G
φ(γ)f(γ−1x) ∆1/2(γ, γ−1x) dαrX(x)(γ). (2.1.7)

We shall see that the adjoining function gives a nice scaling factor for the action of Cc(G) ⊆
C∗(G,α) on Cc(X) and makes this action a *-homomorphism to the C∗-algebra of adjointable
operators. This is the reason we call ∆ the adjoining function.

Two examples of topological correspondences are: an equivalence between groupoids ( [28] or
see De�nition 2.2.1) and the correspondence of Marta–Stadler and O’uchi ( [25] or see Example 3.1.8).
For equivalences and Macho Stadler-O’uchi correspondences the adjoining function is the constant
function 1, and then formulas (2.1.6) and (2.1.7) match. To understand the role of ∆ the reader may
have a look at Lemma 2.3.1.

To support the necessity of the adjoining function, consider a toy example: when a locally
compact Hausdor� group G is acting on a space X with a measure λ on X . The le� multiplication
action of Cc(G) on Cc(X) ⊆ L2(X,λ) de�ned by Equation (2.1.6) is not necessarily bounded. To
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make this action bounded, it is su�cient that λ is G-quasi-invariant, which brings the adjoining
function into the picture. Then the le� action of Cc(G) given by Equation (2.1.7) becomes a
*-representation. This motivated us to introduce Condition (iv) in De�nition 2.1.1. Buneci and
Stachura [8] also use the adjoining function.

For the le� multiplication action of G on G/K , where K is a closed subgroup of G, the space
G/K always carries a G-quasi-invariant measure λ. Hence there is a representation of G on
L2(G/K, λ). Quasi-invariant measures and the corresponding adjoining functions are studied very
well in the group case, for example, see Section 2.6 of [15].

Readers may peep into Section 3.1 to see some examples of adjoining functions. In Section 3.1,
we list most of the de�nitions of correspondences which have appeared in the literature and show
how our de�nition of topological correspondences generalises these various notions.

2.1.1 De�nitions of actions and inner product

We start with the main construction now. For φ ∈ Cc(G), f ∈ Cc(X) and ψ ∈ Cc(H) de�ne
functions φ · f and f · ψ on X as follows:

(φ · f)(x) :=
∫
GrX (x)

φ(γ)f(γ−1x) ∆1/2(γ, γ−1x) dαrX(x)(γ),

(f · ψ)(x) :=
∫
HsX (x)

f(xη)ψ(η−1) dβsX(x)(η).
(2.1.8)

For f, g ∈ Cc(X) de�ne the function 〈f, g〉 on H by

〈f, g〉(η) :=
∫
XrH (η)

f(x)g(xη) dλrH(η)(x). (2.1.9)

Most of the times we write φf and fψ instead of φ · f and f · ψ.

Lemma 2.1.10. The functions φf , fψ and 〈f , g〉 de�ned above are continuous compactly supported
functions on their domains.

Proof. Showing that φf and fψ are continuous, compactly supported is a direct application of (i)
of Lemma 1.3.20. To see that φf ∈ Cc(X), rewrite the lemma for a le� action with (G,α) as the
groupoid and X as the space, then put

F (γ, x) = φ(γ)f(γ−1x)∆1/2(γ, γ−1x)h(x)

where h ∈ Cc(X) with h|supp(f)= 1. Then F is continuous with a compact support. Apply the
rewritten lemma to F now to see that φf ∈ Cc(X). Using the original settings of the lemma it is
easy to see that fψ ∈ Cc(X).

We claim that η 7→
∫
F (x, η) dλrH(η)(x) is in Cc(H) for every F ∈ Cc(X ∗ H). An argument

using the Stone-Weierstraß Theorem as in (i) of Lemma 1.3.20 proves this claim. Hence to show
that 〈f , g〉 ∈ Cc(H), we need to show that the function F (x, η) = f(x)g(xη) is in Cc(X ∗H).

For K ⊆ X let Ψ−1
2 (K) = {η ∈ H : K · η ∩ K 6= ∅} as in Lemma 1.2.16. Now F is clearly

continuous. If K = supp(f) ∪ supp(g), then supp(F ) ⊆ K ∗ Ψ−1
2 (K) ⊆ X ∗H , which is compact

because the action is proper.
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Both Cc(G) and Cc(H) are *-algebras. Denote the convolution product on them by ∗.

Lemma 2.1.11. Let φ, φ′ ∈ Cc(G), ψ,ψ′ ∈ Cc(H) and f, g, g′ ∈ Cc(X). Then

(φ ∗ φ′)f = φ(φ′f), (2.1.12)

f(ψ ∗ ψ′) = (fψ)ψ′, (2.1.13)

(φf)ψ = φ(fψ), (2.1.14)

〈f, g + g′〉 = 〈f, g〉+ 〈f, g′〉, (2.1.15)

〈f , g〉∗ = 〈g , f〉, (2.1.16)

〈f , g〉ψ = 〈f , gψ〉, (2.1.17)

〈φf , g〉 = 〈f , φ∗g〉. (2.1.18)

Proof. Let γ ∈ G, x ∈ X and η ∈ H . The following are the detailed computations which prove the
equations in the lemma.
Equation (2.1.12):

((φ ∗ φ′)f)(x) =
∫
GrX (x)

(φ ∗ φ′)(γ)f(γ−1x)∆(γ, γ−1x)1/2 dαrX(x)(γ)

=
∫
GrX (x)

∫
GrG(γ)

φ(ζ)φ′(ζ−1γ)f(γ−1x)∆(γ, γ−1x)1/2 dαrG(γ)(ζ) dαrX(x)(γ).

First we apply Fubini’s theorem and then change the variable γ 7→ ζ−1γ and use the invariance
of α to see that the last term equals∫

GrG(γ)

∫
GrX (x)

φ(ζ)φ′(γ)f(γ−1ζ−1x)∆(ζγ, γ−1ζ−1x)1/2 dαrX(x)(γ) dαrG(γ)(ζ).

We observe that (ζγ, γ−1ζ−1x) = (ζ, ζ−1x)(γ, γ−1ζ−1x) in the transformation groupoid GnX .
This relation, Remark 2.1.4 and the associativity of the le� action together allow us to write the
previous term as∫

GrG(γ)

∫
GrX (x)

φ(ζ)φ′(γ)f(γ−1ζ−1x)∆(ζ, ζ−1x)1/2∆(γ, γ−1ζ−1x)1/2 dαrX(x)(γ) dαrG(γ)(ζ)

=
∫
GrG(γ)

φ(ζ)
(∫

GrX (x)
φ′(γ)f(γ−1ζ−1x)∆(γ, γ−1ζ−1x)1/2 dαrX(x)(γ)

)
∆(ζ, ζ−1x)1/2 dαrG(γ)(ζ)

=
∫
GrG(γ)

φ(ζ) (φ′f)(ζ−1x) ∆(ζ, ζ−1x)1/2 dαrG(γ)(ζ)

= (φ(φ′f))(x).

Equation (2.1.13): This computation is similar to the above computation for Equation (2.1.12) except
that we do not need the adjoining function.
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Equation (2.1.14): See the computation below. We apply Fubini’s theorem at the third step and the
H-invariance of ∆:

((φf)ψ)(x) =
∫
HsX (x)

(φf)(xη)ψ(η−1) dβsX(x)(η)

=
∫
HsX (x)

(∫
GrX (x)

φ(γ)f(γ−1xη) ∆(γ, γ−1xη)1/2 dαrX(x)(γ)
)
ψ(η−1) dβsX(x)(η)

=
∫
GrX (x)

φ(γ)
(∫

HrX (x)
f(γ−1xη)ψ(η−1) dβsX(x)(η)

)
∆(γ, γ−1x)1/2 dαrX(x)(γ)

=
∫
GrX (x)

φ(γ) (fψ)(γ−1x) ∆(γ, γ−1x)1/2 dβsX(x)(η)

= (φ(fψ))(x).

Equation (2.1.15):

〈
f , g + g′

〉
(η) =

∫
XrH (η)

f(x)(g + g′)(xη) dλrH(η)(x)

=
∫
XrH (η)

f(x)g(xη) dλrH(η)(x) +
∫
XrH (η)

f(x)g′(xη) dλrH(η)(x)

= (〈f , g〉+
〈
f , g′

〉
)(η).

Equation (2.1.16):

〈f , g〉∗ (η) = 〈f , g〉 (η−1) =
∫
XrH (η−1)=sH (η)

f(x)g(xη−1) dλsH(η)(x)

We change the variable xη−1 7→ x and then use the right invariance of the family of measures λ
and compute further:

L. H. S. =
∫
XrH (η−1)

f(xη)g(x) dλsH(η)(x) = 〈g , f〉 (η).

Equation (2.1.17):

(〈f , g〉ψ)(η) =
∫
HrH (η)

〈f , g〉 (ξ)ψ(ξ−1η) dβrH(η)(ξ)

=
∫
HrH (η)

∫
XrH (ξ)

f(x) g(xξ)ψ(ξ−1η) dλrH(ξ)(x) dβrH(η)(ξ).

Change the variable ξ 7→ ηξ and use the le� invariance of β to see that the last term becomes

∫
HsH (η)

∫
XrH (η)

f(x) g((xη)ξ)ψ(ξ−1) dλrH(η)(x) dβsH(η)(ξ).
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Now we apply Fubini’s theorem to the above term and compute further:∫
XrH (η)

f(x)
∫
HsH (η)

g((xη)ξ)ψ(ξ−1) dβsH(η)(ξ) dλrH(η)(x)

=
∫
XrH (η)

f(x)(gψ)(xη) dλrH(η)(x)

= 〈f , gψ〉 (η).

Equation 2.1.18:

〈φf, g〉(η) =
∫

(φf)(x)g(xη) dλrH(η)(x) (2.1.19)

=
∫∫

φ(γ) f(γ−1x)g(xη) ∆1/2(γ, γ−1x) dαrX(x)(γ) dλrH(η)(x)

=
∫∫

f(γ−1x)φ(γ)g(xη) ∆1/2(γ, γ−1x) dαrX(x)(γ) dλrH(η)(x).

Make a change of variables (γ, γ−1x) 7→ (γ−1, x). Then we use the fact that ∆ is almost
everywhere groupoid homomorphism (see Remark 2.1.4). Due to Remark 2.1.5, we know that ∆ is
H-invariant. Thus computing further we see

〈φf, g〉(η) =
∫∫

f(x)φ(γ−1)g(γ−1xη) ∆1/2(γ, γ−1xη) dαr(x)(γ) dλrH(η)(x)

=
∫∫

f(x)φ(γ−1)g(γ−1xη) ∆1/2(γ, γ−1x) dαrX(x)(γ) dλrH(η)(x)

= 〈f, φ∗g〉(η).

Remark 2.1.20 (Some remarks on the identities in Lemma 2.1.11). Equations (2.1.12), (2.1.13) and (2.1.14)
show that Cc(X) is a Cc(G)-Cc(H)-bimodule. Equations (2.1.12), (2.1.13) and (2.1.14) show that the
map 〈 , 〉 : Cc(X)× Cc(X)→ Cc(H) is a Cc(H)-conjugate bilinear map. And Equation (2.1.18) says
that Cc(G) acts on Cc(X) by Cc(H)-adjointable operators.

Remark 2.1.21. Using Lemma 2.1.10, it can be seen that the le� and the right action and the map
〈 , 〉 are continuous in the inductive limit topology.

2.2 The right action—construction of the Hilbert module

In this section, we describe how to construct a C∗(H,β)-Hilbert module H(X), where X is a
proper H-space and λ is an H-invariant family of measures. Indeed, writing H(X,λ) would be
more than writing H(X). But we shall not come across any case which involves the same space
with di�erent families of measures. Hence we write H(X).

First we discuss the case when the H-action is free as well as proper. Later we shall consider
the case when the action is proper but not free. Indeed, the latter case implies the �rst one. But
when the action is free, the techniques of constructing H(X) are discussed in the famous theory of
groupoid equivalence introduced in [28]. The proofs and techniques for this case are di�erent and
interesting in their own right.
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When the action is not free but just proper, we appeal to the theory of representations of
groupoids. The techniques for this case di�er drastically from those used for the case of free and
proper actions. Thanks to [34] we can waive the second-countability assumption on the groupoid
topology.

2.2.1 Case of free and proper actions

De�nition 2.2.1 (Equivalence of groupoids, a slight modi�cation of De�nition 2.1 [28]). Let G and H
be groupoids. A locally compact Hausdor� space X is a G-H-equivalence if

i) X is a le� principal G-space;

ii) X is a right principal H-space;

iii) the momentum maps rX and sX are open;

iv) the actions of G and H commute;

v) the le� momentum map rX : X → G(0) induces a bijection of X/H onto G(0);

vi) the right momentum map sX : X → H(0) induces a bijection of G\X onto H(0).

For f, g ∈ Cc(X), φ ∈ Cc(G) and ψ ∈ Cc(H) de�ne φ · f, f · ψ : X → C, 〈f , g〉∗ : H → C and

∗〈f , g〉 : G→ C by

(φ · f)(x) =
∫
G
φ(γ)f(γ−1x) dαrX(x)(γ),

(f · ψ)(x) =
∫
HsX (x)

f(xη)ψ(η−1) dβsX(x)(η),

〈f, g〉∗(η) =
∫
GrX (x)

f(γ−1x)g(γ−1xη) dαrX(x)(γ),


(2.2.2)

∗〈f, g〉(γ) =
∫
HsX (x)

f(γ−1xη)g(xη) dβsX(x)(η). (2.2.3)

Theorem 2.2.4 (Theorem 2.8 [28]). Suppose that (G,α) and (H,β) are second countable, locally
compact, Hausdor� groupoids with Haar systems. Then for any G-H-equivalence X , Cc(X) with
the above Cc(G)-Cc(H)-bimodule structure and inner products can naturally be completed into a
C∗(G,α)-C∗(H,β)-imprimitivity bimodule. In particular, C∗(G,α) and C∗(H,β) are strongly Morita
equivalent.

Lemma 2.2.5. Let X be an equivalence from (G,α) to (H,β) and let the topological hypotheses be
as in Theorem 2.2.4.

1. There is a canonical H-invariant family of measures λ on X such that (X,λ) is a topological
correspondence and the adjoining function for (X,λ) is the constant function 1.
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2. The action and inner product formulae in the set of equations in (2.2.2) match those in
Equation (2.1.9) and (2.1.8).

Proof. For (1) see Example 3.1.10. And (2) is a direct computation.

Example 2.2.6. Let (G,α) be a groupoid with a Haar system. Then the le� and the right actions
of G on itself make G into a (G,α)-(G,α)-equivalence. It can be seen that H(G) = C∗(G,α) as
a C∗-correspondence. The computations in Example 3.1.8 for this special case show that the
right-invariant family of measures on G is α−1 (see Example 1.3.12).

Example 2.2.7. Let G be a groupoid and let α and α′ be two Haar systems on G. Then G is a
(G,α)-(G,α′)-equivalence. Hence C∗(G,α) and C∗(G,α′) are Morita equivalent.

Equation (2.2.3) gives a C∗(G,α)-valued inner product on Cc(X) which produces the imprimi-
tivity bimodule in Theorem 2.2.4. We do not need a C∗(G,α)-valued inner product.

Remark 2.2.8 (Techniques used to prove Theorem 2.2.4). The hardest thing to prove here is to that
the bilinear map 〈 , 〉 is positive. In [28] the main ingredient used to show this fact is the existence
of good approximate identities for the *-algebras Cc(G) and Cc(H). Creating these approximate
identities needs that the groupoid actions are free.

The technique of approximate identities is used earlier in [16], [37] and [33]. At the end of [37],
Rie�el gives the calculations where he uses this approximate identity to prove the positivity of the
bilinear map. The earliest appearance of this technique that we found is an article by P. Green [16].

As mentioned earlier, the existence of good approximate identities needs that the groupoid
actions are free. Hence when X has a free and proper action of H , we can prove the following
statement.

Proposition 2.2.9. Let (H,β) be a locally compact Hausdor� second countable groupoid endowed
with a Haar system and X a locally compact, Hausdor� right H-space with sX open and surjective.
Let λ be an H-invariant family of measures on X . If the action of H on X is free and proper, then
Cc(X) can be completed to a C∗(H)-Hilbert module using the operations de�ned in Equation (2.2.2)
or equivalently in Equations (2.1.9) and (2.1.8).

Proof. It is su�cient to produce a groupoid G and Haar measure α for it such that X is a
G-H-equivalence, then we appeal to Theorem 2.2.4 to get a C∗(G,α)-C∗(H,β)-imprimitivity
bimodule H(X). Then H(X) is the required C∗(H,β)-Hilbert module. We construct the groupoid
(G,α) now and show that X is a G-H-equivalence.

Construction of (G,α): Since the right action is free and proper, the space (X ∗X)/H is a locally
compact, Hausdor� groupoid (see [28, page 5]), where we write X ∗X = X ×sX ,sX X . Denote this
groupoid by G. Then G(0) = X/H .

Let π2 : X ∗X → X be the projection onto the second factor. Then δ×λ = {δx×λsX(x)}x∈X is a
family of measures along π2. The actions of H on X ∗X and X are proper. Hence Proposition 1.3.27
shows that [δ × λ] is a continuous family of measures along [π2]. Write α for [δ × λ] and α[x] for
[δ × λ][x]. For [x] ∈ G(0) and f ∈ Cc(G), we have∫

f dα[x] =
∫
f [x, z] dλs(x)(z).
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It is not hard to see that α is invariant under the le� multiplication action of G on itself. Thus
(G,α) is a locally compact, Hausdor� groupoid with a Haar system.

Proof that X is a G-H-equivalence: There is a natural le� action of G on X . The momentum
map rX for the action is the quotient map X → X/H = G(0). Lemma 1.2.13 shows that rX is an
open map. The action is given as: [x, y]z = xγ, where γ ∈ H is the unique element with z = yγ.
The action is well de�ned because if [x′, y′] = [x, y], then x′ = xη and y′ = yη for some unique
η ∈ H . And hence z = yγ = yη(η−1γ) = y′(η−1γ). Then [x′, y′]z = x′η−1γ = xγ = [x, y]z. It is not
hard to check that this action is free and proper.

The right source map sX : X → H(0) induces a homeomorphism from the quotient space G\X
to H(0). And rX clearly induces a homeomorphism X/H → G(0) = X/H , which is nothing but the
identity map.

This proves that X is an equivalence between G and H .

Corollary 2.2.10. Let (H,β) be a groupoid endowed with a Haar system and X a right H-space.
Let the action of H on X be free and proper. Assume the same topological hypotheses as in
Proposition 2.2.9 and let (G,α) be the groupoid with Haar system in the proof of Proposition 2.2.9.
Then C∗(G,α) is isomorphic to the algebra of compact operators on the C∗(H,β)-Hilbert module
H(X).

2.2.2 Case of proper actions

Proposition 2.2.11. Let (H,β) be a groupoid equipped with a Haar system, X a proper le� H-space
and λ an invariant family of measures on X . Then the bilinear map de�ned by Equation (2.1.9) is a
Cc(H)-valued inner product on Cc(X).

We only need to prove that the bilinear map is positive. The other required properties of 〈,〉
are clear from Lemma 2.1.11.

Our strategy is the following: for every (non-degenerate) representation π̃ : C∗(H,β)→ B(K),
we show that π̃(〈f , f〉) ∈ B(K) is positive. Due to the Disintegration Theorem, we work with
representations of (H,β) and prove the same fact there. We shall use the �avour of representation
theory that uses transverse measures, see Section 1.6.3.

X ∗H H

X H(0).

λ2

π2

β̃X π1 rH β

λ

sX

Figure 2.1

Remark 2.2.12. In Figure 2.1, πi for i = 1, 2 are the projections on the ith component, λ2 is as in
Lemma 1.3.17 and β̃X is as in Equation (1.3.19). Clearly, β ◦ λ2 = λ ◦ β̃X . Let m be a transverse
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measure class on H . We take the quotient of each space in Figure 2.1 and the corresponding
induced maps and families of measures.

i) The coherence of m gives m(β) ◦ [λ2] = m(λ) ◦ [β̃X ].

ii) A computation very similar to Equation 1.6.29 gives [λ2] = λ.

iii) Equation 1.3.26 gives [β̃X ] = βX , where βX is as in Equation (1.3.22).

iv) (i), (ii) and (iii) together say that m(β) ◦ [λ] = m(λ) ◦ [βX ].

Hence if µ ∈ m(β) and ν ∈ m(λ), then µ ◦ λ ∼ ν ◦ βX .
Proposition 2.2.11 follows from Lemma 2.2.17 and Lemma 2.2.18 below. In the following discussion,

we shall write 〈f , f〉Cc(H) instead of 〈f , f〉 for f ∈ Cc(X).
Let (m,H, π) be a representation of (H,β) where m is a transverse measure class for H ,

H → H(0) is a measurable H-Hilbert bundle which has separable �bres and π is the action of
H on �bres of H. The �bre product X ∗ H carries the diagonal action of H , that is, (x, h)η =
(xη, π(η−1)h). A�er taking the quotient by this action, we get the measurable Hilbert bundle
πX : (X ∗ H)/H → X/H where πX([x, h]) = [x]. Denote (X ∗ H)/H by HX . For each [x] ∈ H(0),
there is a unitary isomorphism HX[x] ' HsX(x).

By de�nition, the transverse measure class m induces a measure class m(λ) on X/H (see
De�nition 1.6.32). We �x µ ∈ m(β) and ν ∈ m(λ), that is, µ is a measure on H0 and ν is a measure
on X/H . Furthermore, let λX : Cc(X)→ Cc(H0) and βX : Cc(X)→ Cc(X/H) be the integration
operators for the families of measures (λu)u∈H0 and (β[x])[x]∈X/H . Remark 2.2.12 shows that ν ◦βX
and µ ◦ λX are equivalent measures on X . Let β̃X be the family of measures along the map
X ∗H → X , (x, h) 7→ x, de�ned by∫

f dβ̃xX =
∫
f(x, h) dβsX(x)(h)

for f ∈ Cc(X ∗H).

Lemma 2.2.13. The measure ν ◦ βX on X is H-invariant.

Proof. We must prove that the measure νβX β̃X on X ∗H de�ned by

f 7→
∫
X/H

∫
HsX (x)

∫
HsH (η)

f(xη, h)dβsH(η)(h)dβsX(x)(η)dν[x]

for f ∈ Cc(X ∗H) is invariant under the inversion map (x, h) 7→ (xh, h−1). For this, we substitute
η−1h for h and write

νβX β̃X(f) =
∫
X/H

∫
HsX (x)

∫
HsX (x)

f(xη, η−1h)dβsX(x)(h)dβsX(x)(η)dν[x];

now replacing f by f ◦ inv replaces f(xη, η−1h) by f(xηη−1h, (η−1h)−1) = f(xh, h−1η). The
substitution that switches h↔ η shows that the integrals over f and f ◦ inv are the same.
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Since µ ◦ λ is equivalent to ν ◦ β, this measure on X must also be quasi-invariant. We compute
its Radon-Nikodym derivative. Let f ∈ Cc(X ∗H), then we get

µ ◦ λ ◦ β̃X(f) =
∫
H0

∫
Xu

∫
Hu

f(x, h)dβu(h)dλu(x)dµ(u)

=
∫
H0

∫
Hu

∫
Xu
f(x, h)dλu(x)dβu(h)dµ(u)

by Fubini’s Theorem. When we replace f by f ◦ inv and use the H-invariance of λ, we get

µ ◦ λ ◦ β̃X(f ◦ inv) =
∫
H0

∫
Hu

∫
Xu
f(xh, h−1)dλu(x)dβu(h)dµ(u)

=
∫
H0

∫
Hu

∫
XsH (h)

f(x, h−1)dλsH(h)(x)dβu(h)dµ(u)

=
∫
H0

∫
Hu

∫
XrH (h)

f(x, h)dλrH(h)(x)dβ−1
u (h)dµ(u),

where the last step uses the substitution h 7→ h−1. In terms of the integration operator λ2 : Cc(X ∗
H)→ Cc(H) along π2, we may rewrite this as µ◦β−1(λ2(f)), whereas µ◦λ◦ β̃X(f) = µ◦β(λ2(f)).
Thus the Radon-Nikodym derivative is

d inv∗(µ ◦ λ ◦ β̃X)
d(µ ◦ λ ◦ β̃X)

(x, h) = d(µ ◦ β−1)
d(µ ◦ β) (h).

Now let

M(x) = d(µ ◦ λ)
d(ν ◦ β) .

Lemma 2.2.14. Let x ∈ X and h ∈ H1 satisfy sX(x) = rH(h). Then

M(xh) = M(x)d(µ ◦ β−1)
d(µ ◦ β) (h).

Proof. Let g ∈ Cc(X ∗H) and let f = β̃X(g), that is, f(x) =
∫
Hx f(x, h)dβx(h). By de�nition of

the Radon-Nikodym derivative, we have∫
X
f(x)d(ν ◦ β) =

∫
X
f(x)M(x)−1 d(µ ◦ λ).

Thus ∫
X
g(x, h)d(ν ◦ β ◦ β̃X) =

∫
X
g(x, h)M(x)−1 d(µ ◦ λ ◦ β̃X).

Since the measure ν ◦ β is H-invariant, the le� hand side is invariant under replacing g by g ◦ inv.
Hence so is the right-hand side, that is,∫

X
g(x, h)M(x)−1 d(µ ◦ λ ◦ β̃X) =

∫
X
g(xh, h−1)M(x)−1 d(µ ◦ λ ◦ β̃X)

=
∫
X
g(xh, h−1)M(xh)−1M(xh)

M(x) d(µ ◦ λ ◦ β̃X).
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Letting g′(x, h) = g(x, h)M(x)−1, we see thatM(xh)/M(x) has to be the Radon-Nikodym derivative

M(xh)
M(x) = d(inv∗µ ◦ λ ◦ β̃X)

d(µ ◦ λ ◦ β̃X)
(x, h) = d(µ ◦ β−1)

d(µ ◦ β) (h).

Let H = (Hx)x∈X be a µ-measurable �eld of Hilbert spaces over H0 equipped with a represen-
tation π of H . The Hilbert space L2(H0, µ,H) consists of all µ-measurable sections ξ : H0 → H
such that ∫

H0
‖ξ(x)‖2Hx dµ(x) <∞.

This norm comes from an inner product on L2(H0, µ,H), of course.
We pull back H to a �eld s∗XH of Hilbert spaces over X along sX : X → H0. Then we take the

induced �eld of Hilbert spaces HX over X/H whose µ◦λ-measurable sections are those sections ζ
of s∗H that satisfy πh(ζ(xh)) = ζ(x) for all x ∈ X , h ∈ H with sX(x) = rH(h). For ν as above, we
de�ne the Hilbert space L2(X/H, ν,HX) to consist of those sections ζ of HX with

∫
X/H
‖ζ(x)‖2HsX (x)

dν[x] <∞.

The function ‖ζ(x)‖2HsX (x)
is constant on H-orbits and thus descends to X/H because πh(ζ(xh)) =

ζ(x) and the operators πh are unitary. The norm de�ning L2(X/H, ν,HX) comes from an obvious
inner product. Notice that an element of L2(X/H, ν,HX) is not a function on X/H .

Now we de�ne the operator |f〉〉 from L2(H0, µ,H) to L2(X/H, ν,HX) and its adjoint 〈〈f |.
Let ξ ∈ L2(H0, µ,H) and ζ ∈ L2(X/H, ν,HX). Computations by Renault which are discussed in
Section 3.3.1 lead to the following formulas for 〈〈f | and |f〉〉:

(|f〉〉ξ)(x) =
∫
HsX (x)

f(xη)πη(ξ(sH(η)))
√
M(xη)dβsX(x)(η), (2.2.15)

(〈〈f |ζ)(u) =
∫
Xu
f(x)ζ(x) 1√

M(x)
dλu(x). (2.2.16)

Notice that

πh(|f〉〉ξ(xh)) =
∫
HsX (x)

f(xhη)πhη(ξ(sH(η)))
√
M(xhη)dβsX(x)(η) = |f〉〉ξ(x)

by the substitution hη 7→ η because β is le�-invariant. Thus |f〉〉ξ is a section of HX . If we pick
ξ and ζ of compact support, then |f〉〉ξ and 〈〈f |ζ also have compact support in X/H and H0,
respectively. Hence our operators |f〉〉 and 〈〈f | are at least well-de�ned on dense subspaces.

Lemma 2.2.17. Let ξ and ζ have compact support. Then 〈ζ, |f〉〉ξ〉 = 〈 〈〈f |ζ, ξ〉, that is, 〈〈f | is formally
adjoint to |f〉〉.
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Proof. On the one hand,

〈ζ, |f〉〉ξ〉 =
∫
X/H
〈ζ(x), |f〉〉ξ(x)〉dν(x)

=
∫
X/H

∫
HsX (x)

〈ζ(x), f(xη)πηξ(sH(η))〉
√
M(xη)dβsX(x)(η)dν[x]

=
∫
X/H

∫
HsX (x)

〈ζ(xη), ξ(sH(η))〉f(xη)
√
M(xη)dβsX(x)(η)dν[x]

=
∫
X/H

∫
HsX (x)

〈ζ(x), ξ(sX(x))〉f(x)
√
M(x)d(ν ◦ β)(x),

where we used πhζ(xh) = ζ(x), the unitarity of πh, and the de�nition of the measure ν ◦ β on X .
On the other hand,

〈 〈〈f |ζ, ξ〉 =
∫
H0
〈 〈〈f |ζ(u), ξ(u)〉dµ(u)

=
∫
H0

∫
Xu
〈f(x)ζ(x)

√
M(x)

−1
, ξ(u)〉dλu(x)dµ(u)

=
∫
X
〈ζ(x), ξ(sX(x))〉f(x)

√
M(x)

−1
d(µ ◦ λ)(x)

=
∫
X
〈ζ(x), ξ(sX(x))〉f(x)

√
M(x)

−1d(µ ◦ λ)
d(ν ◦ β)(x)d(ν ◦ β)(x).

Now the de�nition of M shows that this is the same as the previous integral.

The convolution algebra Cc(H) acts on L2(H0, µ,H) by

L(f)ξ(u) =
∫
Hu

f(η)πηξ(sH(η))
√

d(µ ◦ β−1)
d(µ ◦ β) (η)dβu(η).

This is a ∗-representation.

Lemma 2.2.18. Let ξ be compactly supported. Then 〈〈f |◦|f〉〉(ξ) = L(〈f, f〉Cc(H))(ξ). Hence 〈〈f |◦|f〉〉
extends to a bounded operator with norm at most ‖〈f, f〉‖C∗(H). It follows that |f〉〉 and 〈〈f | extend to
bounded operators between the Hilbert spaces L2(H0, µ,H) and L2(X/H, ν,HX) which are adjoints
of one another.

Proof. We compute

〈〈f | ◦ |f〉〉(ξ)(u) =
∫
Xu
f(x)|f〉〉(ξ)(x)

√
M
−1(x)dλu(x)

=
∫
Xu

∫
Hu

f(x)f(xη)πη(ξ(sH(η)))
√
M(xη)

√
M
−1(x)dβu(η)dλu(x)

Now we use Lemma 2.2.14 to identify M(xη)/M(x) with the function

δ(η) = d(µ ◦ β−1)
d(µ ◦ β) (η).
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Then we use Fubini’s Theorem and continue the computation:

〈〈f | ◦ |f〉〉(ξ)(u) =
∫
Hu

∫
Xu
f(x)f(xη)πη(ξ(sH(η)))

√
δ(η)dλu(x)dβu(η)

=
∫
Hu
〈f, f〉Cc(H)(η)πη(ξ(sH(η)))

√
δ(η)dβu(η) = L(〈f, f〉Cc(H))(ξ).

Since L(〈f, f〉Cc(H)) is bounded, it follows that 〈〈f | ◦ |f〉〉 extends to a bounded operator on
L2(H0, µ,H). Let C > 0 be its norm. Then

‖|f〉〉ξ‖2 = |〈ξ, 〈〈f | ◦ |f〉〉ξ〉| ≤ C‖ξ‖2

by Lemma 2.2.17 for all compactly supported ξ. Hence |f〉〉 extends to a bounded operator from
L2(H0, µ,H) to L2(X/H, ν,HX). A similar estimate shows that 〈〈f | extends to a bounded operator
from L2(X/H, ν,HX) to L2(H0, µ,H).

Proof of Proposition 2.2.11. Follows from Lemma 2.2.18.

The last proposition shows that Cc(X) is a C∗(H,β)-pre-Hilbert module. Let H(X) denote
the C∗(H,β)-Hilbert module obtained by completing Cc(X). Note that we did not use the second
countability of X anywhere in the construction of H(X).

Theorem 2.2.19. Let (H,β) be a Hausdor�, locally compact groupoid with a Haar system and let X
be a locally compact, Hausdor� proper right H-space carrying an H-invariant continuous family of
measures λ. Then using Formulae (2.1.8) and (2.1.9) the right Cc(H)-module Cc(X) can be completed
to a C∗(H)-Hilbert module H(X).

In the whole discussion above we worked with all representations of (H,β). The same argument
used for the le� regular representation of (H,β) produces the following result for the reduced
C∗-algebras:

Proposition 2.2.20. Let (H,β) be a Hausdor�, locally compact groupoid with a Haar system and
let X be a locally compact, Hausdor� proper right H-space carrying an H-invariant continuous
family of measures λ. Then using Formulae (2.1.8) and (2.1.9) the right Cc(H)-module Cc(X) can be
completed to a C∗r(H)-Hilbert module Hr(X).

2.3 The le� action

Now we turn our attention to the le� action. We wish to extend the action of Cc(G) on Cc(X) to an
action of C∗(G) on H(X). For a groupoid equivalence the adjoining function vanishes (Lemma 2.2.5),
that is, it becomes the constant function 1, and the formulae for the le� actions in De�nition 2.1.8
and (2.2.2) match. In this case, Cc(G) acts on Cc(X) by C∗(H,β)-adjointable operators. Our proof
for the non-free case runs along the same lines as in [28].

Lemma 2.3.1. The action of Cc(G) on Cc(X) de�ned by De�nition 2.1.8 extends to a non-degenerate
*-homomorphism from C∗(G) to BC∗(H)(H(X)).
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Proof. We claim that the map

T : Cc(X ∗G)→ Cc(X), (Tf)(x) =
∫
GrX (x)

f(γ, γ−1x)∆(γ, γ−1x) dαrG(x)(γ).

is surjective. The range map of G is open and we appeal to Lemma 1.2.13 to see that the map
m : G ∗X → X sending m : (γ, x) 7→ γx is open. Now we appeal to Lemma 1.3.28 to get a function
W : G ∗X → [0,∞) such that supp(W ) ∩ G ∗K is compact for any K ⊆ X compact. Now the
function F (x) :=

∫
W (γ, γ−1x)∆(γ, γ−1x)dαrG(x)(γ) > 0 for each x ∈ X and hence the function

w(γ, γ−1x) := W (γ,γ−1x)
F (x) satis�es∫

w(γ, γ−1x)∆(γ, γ−1x) dαrX(x)(γ) = 1

for all x ∈ X . This process is same as what we did in the proof of Lemma 1.3.29.
Then the operator

S : Cc(X)→ Cc(X ∗G), S(f)(γ, x) = f(γx) · w(γ, x),

satis�es T ◦ S = IdCc(X). This proves the claim we made at the beginning of the proof.
Equation (2.1.18) says that the action of Cc(G) on Cc(X) is a *-homomorphism. Now we check

that the action is also bounded.

Let ε be a state on C∗(H). Then ε(〈 , 〉) makes H(X) into a Hilbert space, say H(X)ε. Take
the subspace Vε of this Hilbert space generated by {ζf : ζ ∈ Cc(G), f ∈ Cc(X)}. De�ne a
representation L of Cc(G) on Vε by L(ζ)f = ζf .

i) The representation L is a non-degenerate representation of Cc(G) on Vε. Non-degenerate
means that the set {ζf : ζ ∈ Cc(G), f ∈ Cc(X)} is dense in Vε. This is true because
Cc(G) ⊗ Cc(X) is dense in Cc(G ∗ X) and the map Cc(G ∗ X) → Cc(X), (f, ζ) 7→ fζ , is
surjective.

ii) The continuity of the operations in Lemma 2.1.11 in the inductive limit topology implies that
L is continuous: for f, g ∈ Cc(X), Lf,g(ζ) = 〈f, L(ζ)g〉 is a continuous functional on Cc(G)
when Cc(G) is given the inductive limit topology.

iii) L preserves the involution, that is, 〈ζf, g〉 = 〈f, ζ∗g〉. This is proved in Equation 2.1.18 in
Lemma (2.1.11).

Proposition 4.2 of [34] says that L is a representation of G on Vε, that is, bounded with respect to
the norm on C∗(G). Thus ε(〈 ζf, ζf〉) ≤ ||ζ||C∗(G) ε(〈 f, f〉) for all f ∈ Cc(X) and ζ ∈ Cc(G). As the
state ε was arbitrary, the inequality holds for all states. Hence for all f ∈ Cc(X) and ζ ∈ Cc(G) we
get

〈 ζf, ζf〉 ≤ ||ζ||C∗(G) 〈 f, f〉.

This shows that the action of Cc(G) on Cc(X) is bounded in the topology induced by the norm
of the inner product 〈 , 〉. Hence the action can be extended to C∗(G). The proof also shows that
Cc(G)H(X) ⊆ H(X) is dense, so the representation of C∗(G) is non-degenerate.
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Recall the de�nition of Hr(X) from Corollary 2.2.20. One can work with the le� regular
representations of (G,α) and (H,β) to get the following result:

Lemma 2.3.2. Assume that the transformation groupoid GnX is amenable, that is, the action of
G on X is amenable. Then the action of Cc(G) on Cc(X) de�ned by De�nition 2.1.8 extends to an
action of C∗r(G) on the C∗(H)-Hilbert module Hr(X) by adjointable operators.

Proof. Take the faithful representation of C∗r (H) on the continuous �eld of Hilbert spaces L2(H1)
over H0. Then the C∗-algebra of adjointable operators on Hr(X) is represented faithfully on the
induced continuous �eld H(X)⊗C∗(H) L

2(H1); the �bre of this �eld at u ∈ H0 is L2(Xu, λu). This
carries a multiplication action of C0(X), which is covariant with the action of C∗(G) to give a
representation of the crossed product algebra GnC0(X) or, equivalently, the groupoid C∗-algebra
C∗(GnX) of the transformation groupoid. We check this covariance.

As in Example 1.3.11, let ᾱ be the Haar system for G n X which is obtained using the Haar
system α. Fix u ∈ H(0). For f ∈ Cc(GnX) de�ne the operator π(f) : L2(Xu, λu)→ L2(Xu, λu) by

π(f)(ξ)(x) =
∫
f((γ−1, x)−1)ξ((γ−1, x)x)∆1/2(γ, γ−1x) dᾱx((γ−1, x))

=
∫
f(γ, γ−1x)ξ(γ−1x)∆1/2(γ, γ−1x) dαrX(x)(γ),

where ξ ∈ L2(Xu, λu). We use the obvious action of G n X on X given by (γ, x)x = γx to
de�ne the above operator. If ζ, ξ ∈ L2(Xu, λu), then a computation similar to that in the proof of
Equation (2.1.18) of Lemma 2.1.11 gives

〈π(f)ζ , ξ〉L2(Xu,λu) = 〈ζ , π(f∗)(ξ)〉L2(Xu,λu) .

In detail,

〈π(f)ζ , ξ〉 =
∫
Xu

∫
G
f(γ, γ−1x) ζ(γ−1x)ξ(x) ∆(γ, γ−1x)1/2 dαr(x)(γ)dλu(x)

Change the variable (γ, γ−1x) 7→ (γ−1, x) and use the (G,α)-quasi-invariance of λu to see that
the last term equals∫

Xu

∫
G
f(γ−1, x) ζ(x)ξ(γ−1x) ∆(γ, γ−1x)1/2 dαr(x)(γ)dλu(x)∫

Xu

∫
G
ζ(x) f(γ−1, x)ξ((γ−1, x)x) ∆(γγ−1x)1/2 dαr(x)(γ)dλu(x)

= 〈ζ , π(f∗)(ξ)〉

Similar to the proof of Equation (2.1.12) of Lemma 2.1.11, it can be proved that π(f1)π(f2) =
π(f1 ∗ f2) for f1, f2 ∈ Cc(GnX). Thus π is a *-representation of Cc(GnX) on L2(Xu, λu). And
this proves the G-covariance of the multiplication action of C0(X) on L2(Xu, λu).

Now if GnX is amenable, then C∗(GnX) = C∗r (GnX). Hence the morphism C∗(G)→ C∗(Gn
X) vanishes on the kernel of C∗(G)→ C∗r (G). Since the action of C∗(G) on H(X)⊗C∗(H) L

2(H1)
factors through C∗(G nX), it descends to C∗r (G). And since this is a faithful representation of
the adjointable operators on the reduced version Hr(X) of H(X), we get the desired le� action
of C∗r (G) on H(X).
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Now we are ready to state the main theorem of the present chapter.

Theorem 2.3.3. Let (G,α) and (H,β) be locally compact, Hausdor� groupoids with Haar systems.
If (X,λ) is a correspondence from (G,α) to (H,β) then using the family of measures λ the space
Cc(X) can be completed to a C∗-correspondence H(X) from C∗(G,α) to C∗(H,β).

Proof. Follows by putting Proposition 2.2.19 and Lemma 2.3.1 together.

In Theorem 2.3.3, we do not need that either X or H are second countable.

Proposition 2.3.4. Let (G,α) and (H,β) be locally compact, Hausdor� groupoids with Haar systems.
Let (X,λ) be a topological correspondence from (G,α) to (H,β). If the action of G on X is amenable,
then using the family of measures λ the space Cc(X) can be completed to a C∗-correspondence
Hr(X) from C∗r(G,α) to C∗r(H,β).

Proof. Follows by putting Proposition 2.2.20 and Lemma 2.3.2 together.

In Proposition 2.3.4, we do not need that either X or H is second countable.

Corollary 2.3.5. Assume the same hypotheses as in Theorem 2.3.3. If the action of G on X is proper,
then Cc(X) can be completed to a C∗-correspondence Hr(X) from C∗r(G) to C∗r(H).

Proof. Since the action of G is proper, the transformation groupoid GnX is a proper groupoid.
The Haar system of G also gives a Haar system for GnX . Now we apply Lemma 1.3.29 to GnX
to see that it is an amenable groupoid.

An instance when the hypothesis of Corollary 2.3.5 holds, is when X is second countable.
We need neither rX not sX to be open surjection.

2.4 Composition of correspondences

2.4.1 Preparation for composition

Let Z , Ω be spaces, let π : Z → Ω be a surjection and λ a family of measures along π. Let
X ∗X := X ×π,π X and let π1, π2 be the projection maps from Z ∗ Z to the �rst and second copy
of Z , respectively. The family of measures λ induces families of measures λ2 and λ1 along π1 and
π2, respectively, as in Lemma 1.3.17. For x ∈ Z the measure λ1x on π−1

1 (x) is given by δx × λπ(x).
And λ1x is de�ned similarly. This data gives Figure 2.2

Observation 2.4.1. The composite families of measures λ ◦ λ2 and λ ◦ λ1 on Z ∗ Z are the same
family of measures along π ◦ π1 = π ◦ π2 : Z ∗ Z → Ω. We denote this family of measures by λ× λ,
where {(λ ◦ λ)u = λu × λu}u∈Ω, that is, for u ∈ Ω, f ∈ Cc(X ∗X),∫

f d(λ× λ)u =
∫
f(x, y) dλu(x) dλu(y).

Observation 2.4.2. Let f1, f2 ∈ B+(Z) and let m be a measure on Z. By an abuse of notation
we write f1 ⊗ f2 for the restriction of f1 ⊗ f2 to Z ∗ Z. Then m ◦ λ1(f1 ⊗ f2) = m ◦ λ2(f1 ⊗ f2)
means m(λ(f1)f2) = m(f1λ(f2)). In this situation, we say that λ1 and λ2 are symmetric with
respect to m.
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Z ∗ Z Z

Z Ω

λ2

π2

π1λ1 λπ

λ

π

Figure 2.2

Notice that we are a bit loose with the notation in Observation 2.4.2 because m(λ(f1)f2) =
m(f1λ(f2)) means m((λ(f1) ◦ π)f2) = m(f1(λ(f2) ◦ π)).

Proposition 2.4.3. Let Z , Ω be spaces, π : Z → Ω a surjection and λ a π-family of measures on Z .
Let π1, π2 be the projection maps from Z ∗ Z onto the �rst and the second copy of Z.

i) Let µ be a measure on Ω. Then λ1 and λ2 are symmetric with respect to m = µ ◦λ in the sense
of Observation 2.4.2.

ii) Let m be a measure on Z. If λ1 and λ2 are symmetric with respect to m and there is a
non-negative Borel function e on Z with λ(e) = 1, then there is a measure µ on Ω with
µ ◦ λ = m.

iii) The measure µ in (ii) with µ ◦ λ = m is unique.

Recall from the discussion that followed De�nition 1.3.1 that we work with proper families of
measures only. Thus we always have a function e as in (ii) above.

Proof. (i): If µ ◦ λ = m then λ1 and λ2 are symmetric with respect to m because m ◦ λ2 =
(µ ◦ λ) ◦ λ2 = µ ◦ (λ ◦ λ2) = µ ◦ (λ ◦ λ1) = (µ ◦ λ) ◦ λ1 = m ◦ λ1. The equality λ ◦ λ2 = λ ◦ λ1 follows
from Observation 2.4.1.

(ii): For g ∈ B+(Ω) de�ne µ(g) := m((g ◦ π) · e). In Observation 2.4.2 let f1 = f , λ(e) = 1 and
take g = λ(f) in the de�nition of µ in the previous sentence. Then

m(f) = m(f · λ(e)) = m((λ(f) ◦ π) · e) = µ(λ(f)) = µ ◦ λ(f).

(iii): Let µ′ be another measure on Ω which satis�es the condition µ′ ◦ λ = m. Since λ is a
proper family of measures, the integration map Λ: Cc(Z)→ Cc(Ω) is surjective. So µ ◦ λ = µ′ ◦ λ
implies µ = µ′.

For π : Z → Ω the �bre product Z ∗ Z is the groupoid of the equivalence relation de�ned by
x ∼ y if and only if π(x) = π(y). For an equivalence groupoid relation (x, y)−1 = (y, x), sX∗X = π2
and rX∗X = π1. Now we study the case when the measures λ1 and λ2 are not symmetric, but
weakly symmetric. The measures λ1 and λ2 are called weakly symmetric if there is a continuous
homomorphism ∆ : Z ∗ Z → R∗+ with m ◦ λ2 = ∆ · (m ◦ λ1). In Section 1.4, we saw that a
homomorphism from a groupoid G to an abelian group R is also called an R-valued 1-cocycle.
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It is a well-known fact that Z ∗Z is a proper groupoid (see Lemma 2.4.9 for the proof). Assume
that the measures λ1 and λ2 are weakly symmetric. Let ∆ : Z ∗ Z → R∗+ be the R∗+-valued
1-cocycle that implements the weak equivalence. Then log ◦∆ : Z ∗Z → R is an R-valued 1-cocycle.
Proposition 1.4.10 says that log ◦∆ = b ◦ s− b ◦ r for some continuous function b : Z → R. Thus

∆ = eb◦s

eb◦r .

Write b = eb, then b > 0 and

∆ = eb◦s

eb◦r = eb ◦ s
eb ◦ r = b ◦ s

b ◦ r
= b ◦ π2
b ◦ π1

.

Now we have m ◦ λ2 =
(
b◦π2
b◦π1

)
m ◦ λ1, which is equivalent to (b ◦ π1)(m ◦ λ2) = (b ◦ π2)(m ◦ λ1).

An easy calculation shows that (b ◦ π1)(m ◦ λ2) = (bm) ◦ λ2 and (b ◦ π2)(m ◦ λ1) = (bm) ◦ λ1. Thus
we get

Proposition 2.4.4. Let Z , Ω, π and λ be as in Proposition 2.4.3 and let m be a measure on Z with
respect to which λ1 and λ2 are weakly symmetric. Let ∆ be the R∗+-valued 1-cocycle that implements
the weak equivalence. Then there is a function b : Z → R∗ with

i) b(y)
b(x) = ∆(x, y) for all (x, y) ∈ Z ∗ Z ;

ii) λ1 and λ2 are symmetric with respect to the measure bm, that is, bm ◦ λ1 = bm ◦ λ2.

2.4.2 Composition of topological correspondences

Let (X,α,∆1) and (Y, β,∆2) be correspondences1 from (G1, λ1) to (G2, λ2) and from (G2, λ2) to
(G3, λ3), respectively. This is pictured in Figure 2.3

X Y

(G1, λ1) (G2, λ2) (G3, λ3)

∆1
α

∆2
β

Figure 2.3

We need to create a G1-G3-bispace Ω equipped with a G3-invariant and G1-quasi-invariant
family of measures µ = {µu}u∈H(0)

3
. The C∗(G1)-C∗(G3)-Hilbert module H(Ω) should be isomorphic

to the Hilbert module H(X)⊗C∗(G2) H(Y ).
Let Z := X ∗ Y be the �bre product over G(0)

2 for the maps sX and rY . Then Z carries the
diagonal action of G2. Since the action of G2 on X is proper, its action on Z is proper. De�ne the
space Ω = Z/G2.

1See the paragraph ‘Important Conventions 2.1’ on page 41.
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Observation 2.4.5. The space Z is a G1-G3-bispace. The momentum maps are rZ(x, y) = rX(y)
and sZ(x, y) = sY (z). For (γ1, (x, y)) ∈ G1 ∗Z and ((x, y), γ3) ∈ Z ∗G3, the actions are γ1 · (x, y) =
(γ1x, y) and (x, y) · γ3 = (x, yγ3), respectively. These actions make Ω into a G1-G3-bispace.

Lemma 2.4.6. The obvious right action of G3 on Ω is proper.

Proof. See [42, Proposition 7.6].

The quotient map π : Z → Ω carries the family of measures λ2Z as in Proposition 1.3.21. We
write λ = {λω}ω∈Ω instead of λ2Z = {λ2

ω
Z}ω∈Ω. Recall that for f ∈ Cc(Z),∫

f dλω=[x,y] :=
∫
G
rY (y)
2

f(xγ, γ−1y) dλrY (y)
2 (γ).

Proposition 1.3.21 shows that λ is a continuous family of measures with full support.

For a �xed u ∈ G(0)
3 we de�ne a measure mu on the space Z as follows: for f ∈ Cc(Z),∫

Z
f dmu =

∫
Y

∫
X
f(x, y) dαrY (y)(x) dβu(y). (2.4.7)

Lemma 2.4.8. The family of measures {mu}u∈G(0)
3
is a G3-invariant continuous family of measures

on Z.

Proof. The G3-invariance of the family of measures β makes {mu}u∈G(0)
3

G3-invariant.

Let f ∈ Cc(X) and g ∈ Cc(X), then∫
f ⊗ g dmu = B((A(f) ◦ rY ) g)(u).

Using a density argument as in the proof of Lemma 1.3.20 we conclude that {mu}u∈G(0)
3

is a

continuous family of measures.

We wish to prove that up to equivalence {mu}u∈G(0) can be pushed down from Z to Ω to
a G3-invariant family of measures {µu}. Before we proceed we prove a small lemma. Denote
X ∗G2 ∗ Y := {(x, γ2, y) ∈ X ×G2× Y : sX(x) = rG(γ2) = rY (y)}. And let X ∗G2 = X ×sX ,rG2

G2
and G2 ∗ Y = G2 ×rG2 ,rY

Y .

Lemma 2.4.9. Let (X,α,∆1) and (Y, β,∆2) be correspondences from (G1, λ1) to (G2, λ2) and from
(G2, λ2) to (G3, λ3), respectively. Let Z , Ω, λ, mu, λi for i = 1, 2 be as discussed above. For each
u ∈ G(0)

3 there is a function bu on Z such that λ1 and λ2 are symmetric with respect to bu · mu.
Furthermore, b satis�es b(x, y) b(xγ, γ−1y)−1 = ∆((x, y), (xγ, γ−1y)) = ∆2(γ, γ−1y).

We shall write b instead of bu. We work with a single µu at a time, so we prefer to drop the
su�x u.

Proof. The proof follows in the steps below:

i) λ1 and λ2 are weakly symmetric with respect to mu for each u ∈ G(0)
3 .
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ii) Z ∗ Z is a proper groupoid.

iii) Appeal to Proposition 2.4.4 and get the result.

(i): Now we show that λ1 and λ2 are weakly symmetric families of measures. Figure 2.4 shows all
maps and the families of measures along the maps:

Z ∗ Z Z

Z Ω

λ2

π1

λ1 π2 λπ

λ

π

Figure 2.4

Let f ∈ Cc(Z ∗ Z), then

(mu ◦ λ2)(f) =
∫∫

f((x, y), (xγ, γ−1y)) dλrY (y)
2 (γ) dmu(x, y)

=
∫∫∫

f((x, y), (xγ, γ−1y)) dλr(y)
2 (γ) dαrY (y)(x) dβu(y).

Change variables (xγ, γ−1y) 7→ (x, y). Recall that the family α is G2-invariant and β is G2-quasi-
invariant. Now calculating further:

R. H. S. =
∫∫∫

f((xγ−1, γy), (x, y)) ∆2(γ−1, γy) dλr(y)
2 (γ) dαrY (y)(x) dβu(y)

= (mu ◦ λ1)(f ·∆2 ◦ invG2nY ),

where invG2nY is the inverse function on the groupoid G2 n Y .
(ii): Observe that rZ∗Z × sZ∗Z : Z ∗ Z → Z × Z is the inclusion map. Hence to show that

Z ∗ Z is proper, it su�ces to prove that Z ∗ Z ⊆ Z × Z is closed. To see this, we observe
that Ω is Hausdor�, hence dia(Ω) := {(ω, ω) : ω ∈ Ω} is closed in Ω × Ω. Since π is continuous,
(π × π)−1(dia(Ω)) ⊂ Z × Z is closed where π × π : Z × Z → Ω× Ω is the canonical map.

(iii): Due to (i) and (ii), we may apply Proposition 2.4.4 which gives a function b : Z → R∗ such
that λ1 and λ2 are symmetric with respect to bmu.

Remark 2.4.10. The cocycle ∆: Z ∗ Z → R∗, ∆((x, y), (xγ, γ−1y)) = ∆2(γ, γ−1y), implements the
weak symmetry between λ1 and λ2. We observe:

i) since ∆ does not depend on x, ∆ is G1-invariant;

ii) ∆2 is de�ned on G2 ∗ (Y/G3) (see Remark 2.1.5). Hence ∆((z, z′)γ3) = ∆(zγ3, z
′γ3) = ∆(z, z′)

with sZ(z) = sZ(z′) = rG3(γ3), γ3 ∈ G3. Thus ∆ depends only on γ and [y].
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The function b appearing in Lemma 2.4.9 can be computed explicitly. Let p = {pz}z∈Z be a
family of probability measures on Z ∗ Z as in Lemma 1.3.29. Then Corollary 2.4.4 gives

b(z′) = exp(b)(z′) = exp
(∫

log ◦∆((z, z′)) dpz′(z)
)
. (2.4.11)

This implies that b is continuous on Z.

Remark 2.4.12. i) The G1-invariance of ∆ from Remark 2.4.10 and Equation 2.4.11 clearly implies
that b is G1-invariant.

ii) The G3-invariance of ∆ (Remark 2.4.10 and Equation 2.4.11) implies b is G3-invariant. Indeed,
for γ3 ∈ G3

b(z′γ3) = exp
(∫

log ◦∆(zγ3, z
′γ3) dpz′(γ)

)
= exp

(∫
log ◦∆(z, z′) dpz′(γ)

)
= b(z′).

Remark 2.4.13. Once we have bmu ◦λ1 = bmu ◦λ2, (ii) in Proposition 2.4.3 gives a measure µu on Ω
which li�s to bmu on Z via λ. {µu}u∈Ω is the required family of measures. For f ∈ Cc(Ω)∫

f dµu =
∫∫

f ◦ π(x, y)e(x, y) b(x, y) dαrY (y)(x) dβu(y).

Due to Proposition 2.4.3 the measure µu is independent of the choice of the function e. Sometimes
we abuse notation and write f instead of f ◦ π. We think of f as a function on Z itself.

Recall that Ω is a G1-G3-bispace (see Observation 2.4.5).

Proposition 2.4.14. The family of measures {µu}u∈G(0)
3
is a G3-invariant continuous family of

measures on Ω along the momentum map sΩ.

Proof. We check the invariance �rst and then check the continuity. Let f ∈ Cc(Ω) and γ ∈ G3, and
let e be a non-negative Borel function on Z = X ∗ Y with λ(e) = 1. Then∫

f [x, yγ′] dµrG3 (γ′)[x, y]

=
∫ (

(f ◦ π) · e dλ[x,y]
)
bdmrG3 (γ′)

=
∫∫∫

f([x, yγ′])e(xγ, γ−1yγ′)b(x, y) dλsX(x)
2 (γ) dαrY (y)(x) dβrG3 (γ′))(y).

Change yγ′ → y and use the G3-invariance of the family β and that of the function b to get

R. H. S. =
∫∫∫

f([x, y])e(xγ, γ−1y)b(x, y) dλsX(x)
2 (γ) dαrY (y)(x) dβsG3 (γ′)(y)

=
∫∫ (

f · e dλ[x,y]
)
bdmsG3 (γ′)

=
∫
f [x, y] dµsG3 (γ′)[x, y].
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Thus {µu}u∈G3(0) is G3-invariant.
Now we check that µ is a continuous family of measures. Let M,µ and Λ denote the integration

maps which the families of measures m,µ and λ induce between the corresponding spaces of
continuous compactly supported functions. By the construction itself, M : Cc(Z)→ Cc(G(0)

3 ) is the

composite of Cc(Z) Λ−→ Cc(Ω) µ−→ Cc(G(0)
3 ). Due the de�nition of µ the following diagram commutes:

Cc(Z)

Cc(Ω)

Cc(G(0)
3 ).

Λ

M

µ

Lemma 2.4.8 shows that M is continuous, Proposition 1.3.21 shows that Λ is continuous and
surjective. Hence µ is continuous.

The family of measures µ on Ω is the required family of measures for the composite corre-
spondence. We still need to show that it is G1-quasi-invariant. Let f ∈ Cc(G1 n Ω) and u ∈ G(0)

3 ,
then ∫

f(η−1, [x, y]) dλrΩ([x,y])
1 (η) dµu[x, y]

=
∫∫∫

f(η−1, [x, y]) e(xγ, γ−1y) b(x, y) dλrX(x)
1 (η) dλsX(x)

2 (γ) dαrY (y)(x) dβu(y).

We apply Fubini’s Theorem to the last step to get

dλrX(x)
1 (η) dλsX(x)

2 (γ) dαrY (y)(x) 7→ dλrX(x)
1 (η) dαrY (y)(x)dλsX(x)

2 (γ).

Now we change (η−1, [x, y]) 7→ (η, [η−1x, y]). Then

dλrX(x)
1 (η) dαrY (y)(x) 7→ ∆1(η, η−1x) dλrX(x)

1 (η) dαrY (y)(x).

We incorporate this change and apply Fubini’s theorem again to get the same sequence of the
integrals and compute further:∫∫∫

f(η, [η−1x, y]) e(η−1xγ, γ−1y) b(η−1x, y) ∆1(η, η−1x) dλrX(x)
1 (η) dλsX(x)

2 (γ) dαrY (y)(x) dβu(y)

=
∫∫∫

f(η, [η−1x, y]) b(η
−1x, y)
b(x, y) ∆1(η, η−1x) e(η−1x, y)b(x, y) dλrX(x)

1 (η) dαrY (y)(x)λsX(x)
2 (γ) dβu(y).

But e(η−1xγ, γ−1y) dλrX(x)
1 (η) = 1 and b(x, y) dαrY (y)(x) dβu(y) = dµu[x, y]. the last term equals∫∫
f(η, [η−1x, y]) b(η

−1x, y)
b(x, y) ∆1(η, η−1x) dλrΩ([x,y]

1 (η) dµu[x, y].

Thus if ∆1,2 : G1 n Ω→ R∗+ is de�ned as

∆1,2(η−1, [x, y]) = b(η−1x, y)−1∆1(η−1, x)b(x, y), (2.4.15)
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then the above computation gives∫
f(η−1, [x, y]) dλ1(η) dµu[x, y] =

∫∫
f(η, [η−1x, y]) ∆1,2(η, η−1[x, y]) dλ1(η) dµu[x, y],

for all u ∈ G(0)
3 . One must check that the function ∆1,2 makes sense. We prove the following lemma

for this purpose.

Lemma 2.4.16. The function ∆1,2 de�ned in Equation (2.4.15) is a well-de�ned R∗+-valued continuous
1-cocycle on the groupoid G1 n Ω.

Proof. Let (xγ, γ−1y) ∈ [x, y], then

∆1,2(η−1, [xγ, γ−1y]) = b(η−1xγ, γ−1y)−1∆1(η−1, xγ)b(xγ, γ−1y)

= b(η−1x, y)−1∆1(η−1, x)b(x, y)
(

b(η−1x, y)
b(η−1xγ, γ−1y)

b(xγ, γ−1y)
b(x, y)

)
= ∆1,2(η−1, [x, y])

(
∆2(η−1, γ−1y)∆2(γ−1, γ−1y)−1

)
= ∆1,2(η−1, [x, y]).

In the above computations, to get the third equality, we used the last claim in Lemma 2.4.9. Due
to the continuity of b and ∆1, ∆1,2 is continuous. Checking that ∆1,2 is a groupoid homomorphism
is a routine computation.

Proposition 2.4.17. The family of measures {µu}u∈G(0)
3
isG1-quasi-invariant. The adjoining function

for the quasi-invariance is given by Equation (2.4.15).

Proof. Clear from the discussion above.

De�nition 2.4.18 (Composition). For correspondences

(X,α,∆1) : (G1, λ1)→ (G2, λ2) and

(Y, β,∆2) : (G2, λ2)→ (G3, λ3),

their composite correspondence (Ω, µ,∆1,2) : (G1, λ1)→ (G3, λ3) is de�ned by:

i) a space Ω := (X ∗ Y )/G2,

ii) a family of measures µ = {µu}u∈G(0)
3

that li�s to {bα × βu}u∈G(0) on Z for a cochain b ∈
C0
G3

(Z ∗ Z,R∗+) satisfying d0(b) = ∆.

The ∆ above is the one in Remark 2.4.10. C0
G3

is the zeroth cochain group of the G3-invariant
R∗+-valued continuous cochain complex of X ∗X (see De�nition 1.4.7). For a composite correspon-
dence the adjoining function ∆1,2 is the one given by Equation (2.4.15).

Theorem 2.4.19. Let (X,α) : (G1, λ1) → (G2, λ2) and (Y, β) : (G2, λ2) → (G3, λ3) be topological
correspondences. Assume that the topologies are locally compact, Hausdor� and second count-
able. Let (Ω, µ) : (G1, λ1) → (G3, λ3) be a composite of the correspondences. Then H(Ω) and
H(X) ⊗̂C∗(G2)H(Y ) are isomorphic correspondences from C∗(G1, λ1) to C∗(G3, λ3).
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We make a remark before commencing the proof of the theorem.

Remark 2.4.20. The function ∆ in Remark 2.4.10, is a cocycle in C1
G3

(Z∗Z;R+
∗ ), and b ∈ C0(Z∗Z;R+

∗ )
is a cochain. Remark 2.4.12 says that b ∈ C0

G3
(Z ∗ Z;R+

∗ ), and Corollary 2.4.4 gives that ∆ = d0(b).
Let H(Ω, b) denote the C∗(G3, λ3)-Hilbert module obtained using {µu = e · b · α× βu}u∈G(0)

3
. Let b′

be another G3-equivariant 0-cochain with ∆ = d0(b′) and let H(Ω, b′) be the C∗(G3, λ3)-Hilbert
module obtained by using {µ′u = e · b′ · α × βu}u∈G(0)

3
as family of measures. Corollary 2.5.18

gives an isomorphism from the C∗-correspondence H(Ω, b) to H(Ω, b′). Hence in the statement of
Theorem 2.4.19 we need not refer to a certain �xed 0-cochain. In the proof of the theorem, we
work with a �xed cochain b ∈ C0

G3
(Z ∗ Z;R+

∗ ).

Proof of Theorem 2.4.19. We need to prove that H(Ω) and H(X) ⊗̂C∗(G2)H(Y ) are isomorphic
C∗(G3, λ3)-Hilbert modules and the representations of C∗(G1, λ1) on H(Ω) and H(X) ⊗̂C∗(G2)H(Y )
are isomorphic. We divide the proof into two parts: the �rst dealing with the isomorphism of
Hilbert modules and the other dealing with the isomorphism of representations.

Due to the Stone-Weierstraß Theorem, the set A := {f ⊗ g : f ∈ Cc(X) and g ∈ Cc(Y )} is
linearly dense in Cc(Z) in the inductive limit topology, where (f ⊗ g)(x, y) = f(x)g(y). We observe
the following two facts:

i) The Hilbert module H(X) ⊗̂C∗(G2)H(Y ) is the completion of A ⊆ Cc(Z) with respect to the
norm given by the inner product 〈f ⊗ g, f × g〉Cc(G3) := 〈g, 〈f, f〉H(X) g〉H(Y ).

ii) As λ is a (proper) continuous family of measure along π : Z → Ω, we have a surjection
Λ′ : Cc(Z)→ Cc(Ω) given by

Λ′(F )[x, y] = Λ(Fb−1/2)[x, y] =
∫
G2
F (xγ, γ−1y) b−1/2(xγ, γ−1y) dλsX(x)

2 (γ)

for F ∈ Cc(Z).

For b as in Proposition 2.4.4, the multiplication by b−1/2 is an isomorphism from Cc(Z) to
itself. Then Λ is a surjection from Cc(Z) to Cc(Ω), since {λu}u∈G(0)

3
is a continuous family of

measures. Thus the composite Λ′ : Cc(Z) b−1/2
−−−→ Cc(Z) Λ−→ Cc(Ω) is a continuous surjection.

Let f, f ′ ∈ Cc(X), g, g′ ∈ Cc(Y ) and ψ ∈ Cc(G3). Then Λ′(f⊗g+f ′⊗g′) = Λ′(f⊗g)+Λ′(f ′⊗g′).
Furthermore,

We show that Λ′ is an isomorphism of pre-Hilbert modules, hence it extends to an isomorphism
of Hilbert modules. Later we show that Λ′ also intertwines the representations.

The isomorphism of Hilbert modules: Now we compute the norm of f⊗g ∈ H(X) ⊗̂C∗(G2)H(Y ).
In the calculation below, the inner product on the le� is taken in H(X) ⊗̂C∗(G2)H(Y ), and
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subscripts to other inner products tell in what space the inner product is de�ned. For γ ∈ G3,

〈f ⊗ g, f ⊗ g〉Cc(G3)(γ)
:= 〈g, 〈f, f〉H(X) g〉H(Y )(γ)

=
∫
g(y)

(
〈f, f〉H(X) g

)
(yγ) dβrG3 (γ)(y)

=
∫
g(y)

(∫
〈f, f〉H(X)(γ) g(γ−1yγ)∆1/2

2 (γ, γ−1yγ) dλrY (y)
2 (γ)

)
dβrG3 (γ)(y)

=
∫∫

g(y)
(∫

f(x)f(xγ) dαr(y)(x)
)
g(γ−1yγ) ∆1/2

2 (γ, γ−1yγ) dλrY (y)
2 (γ) dβrG3 (γ)(y)

=
∫∫∫

f(x)g(y) f(xγ)g(γ−1yγ) ∆1/2
2 (γ, γ−1yγ) dαrY (y)(x) dλrY (y)

2 (γ) dβrG3 (γ)(y).

Now we calculate the norm of Λ′(f ⊗ g · b−1/2) in Cc(Ω):

〈Λ′(f ⊗ g · b−1/2),Λ′(f × g · b−1/2)〉(γ)

:=
∫

Λ′(f ⊗ g · b−1/2)[x, y] Λ′(f ⊗ g · b−1/2)[x, yγ] dµrG3 (γ)[x, y].

A�er plugging in the de�nitions, the last term of the above equation becomes∫ (∫
f(xγ∗)g(γ−1

∗ y)b−1/2(xγ∗, γ−1
∗ y) dλrY (y)

2 (γ∗)
)

(∫
f(xγ)g(γ−1yγ)b−1/2(xγ, γ−1yγ) dλrY (y)

2 (γ)
)

dµrG3 (γ)[x, y]

=
∫∫

f(xγ∗)g(γ−1
∗ y)b−1/2(xγ∗, γ−1

∗ y)(∫
f(xγ)g(γ−1yγ)b−1/2(xγ, γ−1yγ) dλrY (y)

2 (γ)
)

dλrY (y)
2 (γ∗) dµrG3 (γ)[x, y]

=
∫∫

f(x) g(y)b−1/2(x, y)(∫
f(xγ)g(γ−1yγ)b−1/2(xγ, γ−1yγ) dλrY (y)

2 (γ)
)
b(x, y) dαrY (y)(x) dβrG3 (γ)(y).

The last equality is due to Lemma 2.4.9, which says that

dλrY (y)
2 (γ∗) dµrG3 (γ)[x, y] = b(x, y) dαrY (y)(x) dβrG3 (γ)(y).

Continuing further,

L. H. S. (2.4.21)

=
∫∫

f(x) g(y)
(∫

f(xγ)g(γ−1yγ)b−1/2(xγ, γ−1yγ) dλrY (y)
2 (γ)

)
b1/2(x, y) dαrY (y)(x) dβrG3 (γ)(y)

=
∫∫∫

f(x) g(y)f(xγ)g(γ−1yγ)
(

b(x, y)
b(xγ, γ−1yγ)

)1/2

dαrY (y)(x) dλrY (y)
2 (γ) dβrG3 (γ)(y).
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Using Remark 2.4.12 we add a factor of γ in b(x, y). The previous term equals

∫∫∫
f(x)g(y)f(xγ)g(γ−1yγ)

(
b(x, yγ)

b(xγ, γ−1yγ)

)1/2

dαrY (y)(x) dλrY (y)
2 (γ) dβrG3 (γ)(y). (2.4.22)

By Lemma 2.4.4 we relate the factors of b to see that last equation is equal to∫∫∫ (
f(x)g(y)f(xγ)g(γ−1yγ)

)
∆2

1/2(γ, γ−1yγ) dαrY (y)(x) dλrY (y)
2 (γ) dβrG3 (γ)(y). (2.4.23)

Finally, we apply Fubini’s Theorem to λrY (y)
2 and αrY (y) to get

〈Λ′(f ⊗ g · b−1/2),Λ′(f × gb−1/2)〉(γ)

=
∫∫∫ (

f(x)g(y)f(xγ)g(γ−1yγ)
)

∆2
1/2(γ, γ−1yγ) dλrY (y)

2 (γ) dαrY (y)(x) dβrG3 (γ)(y).

Comparing the values of both inner products, we conclude that

〈f ⊗ g, f ⊗ g〉Cc(G3) = 〈Λ′(f ⊗ g · b−1/2), Λ′(f ⊗ gb−1/2) 〉Cc(G3). (2.4.24)

The isomorphism of representations: We denote the actions of C∗(G1, λ1) onH(X) ⊗̂C∗(G2)H(Y )
and H(Ω) by ρ1 and ρ2, respectively, that is, ρ1 : C∗(G1, λ1) → B(H(X) ⊗̂C∗(G2)H(Y )) and
ρ2 : C∗(G1, λ1) → B(H(Ω)) are the *-homomorphisms that give the C∗-correspondences from
C∗(G1, λ1) to C∗(G3, λ3). We are going to show that Λ′ intertwines ρ1 and ρ2.

Let φ ∈ Cc(G1), f, g ∈ Cc(X), then

(ρ2(φ)Λ′)(f ⊗ g)[x, y]
= (φ ∗ Λ′(f ⊗ g))[x, y]

=
∫
G1
φ(η)Λ′(f ⊗ g))[η−1x, y] ∆1/2

1,2 (η, [η−1x, y]) dλrX(x)
1 (η)

=
∫∫

φ(η)f(η−1xγ)g(γ−1y) b−1/2(η−1xγ, γ−1y) ∆1/2
1,2 (η, [η−1x, y]) dλrX(x)

1 (η) dλsX(x)
2 (γ).

Equation (2.4.15) gives ∆1,2(η, [η−1x, y]) = ∆1,2(η, [η−1xγ, γ−1y]) = ∆1(η, η−1xγ) b(η
−1xγ,γ−1y)
b(xγ,γ−1y) .

Thus

R. H. S. =
∫ (∫

φ(η)f(η−1xγ) ∆1/2
1 (η, η−1xγ) dλrX(x)

1 (η)
)
g(γ−1y) b−1/2(xγ, γ−1y) dλsX(x)

2 (γ)

=
∫

(φ ∗ f)(xγ)g(γ−1y) b−1/2(xγ, γ−1y) dλsX(x)
2 (γ)

= Λ′((φ ∗ f)⊗ g)[x, y]
= Λ′(ρ2(φ)(f ⊗ g))[x, y].
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2.5 Bicategory of correspondences

It is clear from the de�nition of a composite of topological correspondences (De�nition 2.4.18)
and Theorem 2.4.19 that the isomorphism classes of topological correspondences form a category.
But Remark 2.4.20 gives a subtler idea, namely, topological correspondences are likely to form a
bicategory.

This section explores categorical aspects of our construction. We show that groupoid corre-
spondences form a bicategory. We follow Bénabou’s notation from [3] on bicategories. We also
adopt his terminology. A bicategory is biequivalent to a 2-category (for a proof see [24]). Bénabou’s
convention for composition is the other way round than the standard one.

2.5.1 Bicategory

De�nition 2.5.1 (Bicategory). A bicategory S is determined by the following data:

i) a set S0 called set of objects or vertices;

ii) for each pair (A,B) of objects, a category S(A,B);

iii) for each triple (A,B,C) of objects of S a composition functor

c(A,B,C) : S(A,B)×S(B,C)→ S(A,C);

iv) for each object A of S an object IA of S(A,A) called identity arrow of A (the identity map
of IA in S(A,A) is denoted iA : IA =⇒ IA and is called identity 2-cell of A);

v) for each quadruple (A,B,C,D) of objects of S, a natural isomorphism a(A,B,C,D) called
associativity isomorphism between the two composite functors making the following diagram
commute:

S(A,D)

S(A,B)×S(B,D)S(A,B)×S(B,C)×S(C,D)

∼
a(A,B,C,D)

S(A,C)×S(C,D)

Id× c(B,C,D)

c(A,B,C)× Id

c(A,C,D)

c(A,B,D)

vi) for each pair (A,B) of objects of S, two natural isomorphisms l(A,B) and r(A,B), called
le� and right identities such that the following diagrams commute:

1×S(A,B) S(A,A)×S(A,B)

S(A,B)

l(A,B)

IA × Id

canonical ∼ c(A,A,B)
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S(A,B)× 1 S(A,B)×S(B,B)

S(A,B)

r(A,B)

Id× IB

canonical ∼ c(A,B,B)

This data satis�es the following conditions:

vii) associativity coherence: If (S, T, U, V ) is an object of S(A,B)×S(B,C)×S(C,D)×S(D,E),
then the following diagram commutes:

S ◦ ((T ◦ U) ◦ V )

(S ◦ (T ◦ U)) ◦ V((S ◦ T ) ◦ U) ◦ V

S ◦ (T ◦ (U ◦ V ))

a(S ◦ T,U, V )

(S ◦ T ) ◦ (U ◦ V )

a(S, T, U) ◦ IdV

a(S, T, U ◦ V ) IdS ◦ a(T,U, V )

a(S, T ◦ U, V )

viii) identity coherence: If (S, T ) is an object of S(A,B)×S(B,C), then the following diagram
commutes:

(S ◦ IB) ◦ T S ◦ (IB ◦ T )

S ◦ T

a(S, IB, T )

r(S) ◦ IdT
IdS ◦ l(T )

In modern literature, a vertex, an arrow (or a 1-cell) and a 2-cell are called an object, a 1-arrow
and a 2-arrow, respectively. Let A and B be two objects and let t, u be two arrows in the category
S(A,B). Then we call the rule of composition of t and u in S(A,B) the vertical composition
of 1-arrows. The composite functor c in (iii) above gives the horizontal composition of 2-arrows.
Let (S, T ) and (S′, T ′) be two objects in S(A,B)×S(B,C), respectively, and let s : S → S′ and
t : T → T ′ be 2-arrows. Then s and t induce a 2-arrow s ·h t : S ◦ T → S′ ◦ T ′. The 2-arrow s ·h t
is called the vertical composite of the 2-arrows s and t.

Example 2.5.2 (C∗-correspondences). In Section 2.2 of [9] Buss, Meyer and Zhu form a bicategory
of C∗-algebraic correspondences. In this bicategory the objects are the C∗-algebras, 1-arrows
are the C∗-algebraic correspondences and 2-arrows are the equivariant unitary intertwiners of
C∗-correspondences.



2.5. BICATEGORY OF CORRESPONDENCES 69

De�nition 2.5.3 (Morphisms of bicategories). Let S and S′ be bicategories. A morphism V = (V, v)
from S to S′ consists of:

i) a map V : S0 → S′0 sending an object A to V (A);

ii) a family of functors V (A,B) : S(A,B)→ S′(V (A), V (B)) sending a 1-cell S to V (A) and a
2-cell s to V (s);

iii) for each object A of S, a 2-cell vA ∈ S(V (A), V (B))

vA : IV (A) ⇒ V (IA);

iv) a family of natural transformations

v(A,B,C) : c(V (A), V (B), V (C)) ◦ (V (A,B)× V (B,C))→ V (A,C) ◦ c(A,B,C).

If (S, T ) is an object of S(A,B)×S′(B,C), the (S, T )-components of v(A,B,C)

v(A,B,C)(S, T ) : V (S) ◦ V (T )⇒ V (S ◦ T )

shall be abbreviated v or v(S, T ).

This data satis�es the following coherence conditions:

v) If (S, T, U) is an object of S(A,B)×S(B,C)×S(C,D) the diagram in Figure 2.5 is com-
mutative.

V (S ◦ (T ◦ U))

V (S) ◦ V (T ◦ U)

V (S) ◦ (V (T ) ◦ V (U)) (V (S) ◦ V (T )) ◦ V (U)

V (S ◦ T ) ◦ V (U)

V ((S ◦ T ) ◦ U)

v(S, T ◦ U)

IdV (S) ◦ v(T,U)

a(V (S), V (T ), V (U))
∼

v(S, T ) ◦ IdV (U)

v(S ◦ T,U)

V (a(S, T, U))
∼

Figure 2.5: Associativity coherence for a transformation between bicategories

vi) If S is an object of S(A,B) then the diagram in Figure 2.6, for the right identity commutes.

A similar diagram for the le� identity commutes.
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V (S) V (S ◦ IB)

V (S) ◦ IV (B) V (S) ◦ V (IB)[swap]v(S, IB)

∼

Id◦φB

∼

Figure 2.6: Coherence of the right identity (and a similar diagram is drawn for the the le� identity)

2.5.2 The bicategory of topological correspondences

In this subsection, we show that topological correspondences between groupoids endowed with
Haar systems form a bicategory. To two groupoids equipped with Haar systems (G,α) and
(H,β), we associate the category of topological correspondences. A morphism between topological
correspondences is a measure-preserving equivariant homeomorphism. Then we show that
sending a topological correspondence to a C∗-correspondence is a homomorphism of bicategories.
We start the discussion by explaining what it means if two systems of measures are equivalent.

De�nition 2.5.4. Let π : X → Y be an open surjection and λ, λ′ families of measures along π. We
call λ and λ′ equivalent if λy ∼ λ′y for each y ∈ Y and the Radon-Nikodym derivative dλy/dλ′y is
continuous.

When λ and λ′ are equivalent, we write λ ∼ λ′. In fact, De�nition 2.5.4 de�nes a continuous
equivalence. Since we are not going to deal with the non-continuous case, we prefer to drop the
adjective continuous.

De�nition 2.5.5 (Isomorphism between correspondences). Let (X,λ,∆) and (X ′, λ′,∆′) be two
correspondences from (G,α) to (H,β). An isomorphism from (X,λ,∆) to (X ′, λ′,∆′) is the function
φ : X → X ′ such that:

i) φ is a G-H-equivariant homeomorphism;

ii) the families of measures λ′ and λ ◦ φ−1 on X ′ are equivalent, that is, λ′ ∼ λ ◦ φ−1.

Remark 2.5.6. Let (X,B, µ) be a measure space. In [41, De�nition 2.2], Sundar de�nes an automor-
phism of (X,B, µ) as a B-measurable function T : X → X such that there is another B-measurable
function T−1 : X → X with T ◦ T−1 = T−1 ◦ T = IdX µ-almost everywhere. in De�nition 2.5.4,
when G and H are trivial groups and X = X ′, λ and λ′ become Borel measures on X . When
λ = λ′, a function φ is an automorphism of the Borel measure space X . Sundar shows that if H is
a separable Hilbert space, then the automorphisms of (X,B, µ) form a group, and this group has a
unitary representation on L2(X,µ;H) (see [41, Proposition 2.4]).

Lemma 2.5.7 (Chain rule). For i = 1, 2, 3, let πi : Xi → Z be surjections and λi families of measures
along πi. Let ai : Xi → Xi+1 be two functions which make the following diagram commute:

X1 X2 X3

Z
π1

a1

π2

a2

π3
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If λi ◦ a−1
i is equivalent to λi+1 for i = 1, 2, then λ1 ◦ a−1

1 ◦ a
−1
2 is equivalent to λ3 and, for all

z ∈ Z , and
d(λz1 ◦ a−1

1 ◦ a
−1
2 )

dλz3
=
(

d(λz1 ◦ a−1
1 )

dλz2
◦ a−1

2

)
d(λz2 ◦ a−1

2 )
dλz3

.

Proof. This is a straightforward computation. Let f be a measurable function on X3 and let z ∈ Z .
Then∫
f

(
d(λz1 ◦ a−1

1 )
dλz2

◦ a−1
2

)
d(λz2 ◦ a−1

2 )
dλz3

dλz3 =
∫
f ◦ a2

(
d(λz1 ◦ a−1

1 )
dλz2

)
dλz2

=
∫
f ◦ a2 ◦ a1 dλz1

=
∫
f d(λz1 ◦ a−1

1 ◦ a
−1
2 ).

Remark 2.5.8. Since φ is a homeomorphism, Condition (ii) in De�nition 2.5.5 is equivalent to saying

λ ∼ λ′ ◦ φ. To see this, apply the chain rule in Lemma 2.5.7 to (X,λ) φ−→ (X ′, λ′) φ−1
−−→ (X,λ).

This gives d(λu)
d(λ′u◦φ) = d(λ′u)

d(λu◦φ−1) ◦ φ for all u ∈ G(0). Thus φ−1 : Y → X is an isomorphism of
correspondences.

When we composed correspondences we observed that the composite is de�ned up to a
positive function b on Z . We show that given two composites, the corresponding correspondences
are isomorphic.

To state and prove the following proposition, recall the terminology introduced in Subsec-
tion 2.4.2 on composition.

Proposition 2.5.9. Let

(X,α) : (G1, λ1)→ (G2, λ2)
(Y, β) : (G2, λ2)→ (G3, λ3)

be correspondences. Let
(Ω, µ), (Ω, µ′) : (G1, λ1)→ (G3, λ3)

be two composites of these correspondences li�ing bm and b′m for 0-cochains b and b′, respectively.
Then (Ω, µ) and (Ω, µ′) are isomorphic correspondences.

Proof. We use the same notation as for the composition of correspondences and let Z := X ∗
G

(0)
2
Y

and let π : Z → Ω be the projection map. Since b, b′ ∈ C0
G3

(Z,R∗+) with d0(b) = d0(b′) = ∆,
Remark 1.4.9 gives a positive function c : Ω→ R∗+ with b′ = (c ◦ π)b. Since π is open, the continuity
of b, b′ implies that c is continuous. Let f ∈ Cc(Ω), then∫

f [x, y] dµ′u([x, y]) =
∫
f ◦ π(x, y)e(x, y) b′(x, y) dαrY (y)(x) dβu(y)

=
∫
f ◦ π(x, y)e(x, y) c ◦ π(x, y)b(x, y) dαrY (y)(x) dβu(y)

=
∫
f [x, y]c[x, y] dµu([x, y])
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Thus µ′u ∼ µu with dµ′u
dµu = c, where c : Ω→ R∗+ is such that b′ = (c ◦ π) · b.

Given three correspondences (Xi, λi) for i = 1, 2, 3 from (G,α) to (H,β) and isomorphisms
φi : Xi → Xi+1 for i = 1, 2, the composite φ2 ◦ φ1 : X1 → X3 gives an isomorphism from (X1, λ1)
to (X3, λ3). To see this, we need to check that λ1 ◦ φ−1

1 ◦ φ
−1
2 ∼ λ3. We �rst prove the following

simple lemma and then show that λ1 ∼ λ3 ◦ φ−1
1 ◦ φ

−1
2 .

Lemma 2.5.10. Let f : X → Y be an open surjection and let λ and λ′ be measures on X . If λ ∼ λ′
then λ ◦ f−1 ∼ λ′ ◦ f−1.

Proof. Let U ⊆ Y . Then

λ ◦ f−1(U) = 0 ⇐⇒ λ(f−1(U)) = 0
⇐⇒ λ′(f−1(U)) = 0 (because λ ∼ λ′)
⇐⇒ λ′ ◦ f−1(U) = 0

We continue the discussion we started before Lemma 2.5.10. Since φ1 is an isomorphism
of correspondences, λ1 ◦ φ−1

1 ∼ λ2. Fix u ∈ H(0) and use Lemma 2.5.10 �brewise to see that
λ1u ◦ φ−1

1 ◦ φ
−1
2 ∼ λ2u ◦ φ−1

2 . Since φ2 is an isomorphism of correspondences, λ2u ◦ φ−1
2 ∼ λ3u. The

transitivity of equivalence of measures gives λ1u ◦ φ−1
1 ◦ φ

−1
2 ∼ λ3u.

Remark 2.5.11. Let (X,λ) and (X ′, λ′) be correspondences from (G,α) to (H,β) and (Y, κ) and
(Y, κ) be correspondence from (H,β) to (K,µ). If φ : X → X ′ and φ′ : Y → Y ′ are isomorphisms
of correspondences, then it can be checked that φ⊗ φ′ : X ∗ Y/H → X ′ ∗ Y ′/H is an isomorphism
of correspondences, where φ⊗ φ′([x, y]) = [φ(x), φ′(y′)].
Remark 2.5.12. Let (G,α) and (H,β) be groupoids with Haar systems. It is easy to see that
isomorphism of correspondences is an equivalence relation on the set of correspondences from
(G,α) to (H,β). Let (X,λ1), (Y, λ2) and (Z, λ3) be correspondences from G to H .

Re�exivity: the identity function from X to X gives re�exivity.

Symmetry: if φ is an isomorphism from (X,λ1) to (Y, λ2), then φ−1 is an isomorphism from (Y, λ2)
to (X,λ1), see Remark 2.5.8.

Transitivity: Follows from the discussion just before this remark.

We form a bicategory of topological correspondences:

Objects or vertices: second countable, locally compact, Hausdor� groupoids with Haar system.

1-arrows or edges: topological correspondences with locally compact, Hausdor�, second countable
topologies.

2-arrows or 2-cells: isomorphisms of topological correspondences (De�nition 2.5.5).

Vertical composition of 2-arrows: vertical arrows are merely functions between spaces. Their
composition is the usual composition of functions.

1-identity arrow: the identity 1-arrow on (G,α) is (G,α).
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2-identity arrow: the identity 2-arrow on a correspondence (X,µ,∆) is the identity map

IdX : X → X.

Composition of 1-arrows: composition of correspondences as in De�nition 2.4.18.

Horizontal composition of 2-arrows: with the data in Remark 2.5.11, we call φ⊗ φ′ the horizontal
product of φ and φ′.

The associativity isomorphism: Proposition 2.5.13 below.

The identity isomorphism: described in Proposition 2.5.13 below.

We need to describe associators and le� and right identities. We also need to verify that this
data satis�es the coherence conditions.

Proposition 2.5.13. There are (obvious) associativity and identity isomorphisms, which along with
the above data form the bicategory T of topological correspondences.

Proof. We have the data required in i–iv in De�nition 2.5.1. We de�ne the associativity isomorphism
and the identity isomorphism. Then we check the coherence conditions. We explain the notation
used in the proof �rst.

In the proof we denote a groupoid with Haar system by (Gi, αi) for i = 1, 2, . . . , 5. We
assume that (Xi, λi) is a correspondences from (Gi, αi) to (Gi+1, αi+1) for i = 1, 2, 3, 4. We

denote the composite
(
Xi ∗G(0)

i+1
Xi+1

)
/Gi+1 by Xi ◦ Xi+1. The 0-cochain on Xi ∗ Xi+1 that

appears in Proposition 2.4.4 will be denoted by bi i+1. When there are too many X ’s, G’s or b’s
we adopt the following notations, we write X1((23)4) for X1 ◦ (X2 ◦X3) ◦X4) and similarly for
groupoids and 0-cochains. For example, b1(23) means the b-function in Corollary 2.4.4 for the space
X1(23) = X1 ◦ (X2 ◦X3), and so on. Note that b1(23) is the product of b and b23 for X1 ◦X23. Since
i = 1, 2, 3, 4, X12 means the composite of X1 and X2 and not the twel�h space. Since we do not
have a two digit index, this notation does not cause any confusion.

v) Associativity isomorphism: Let (Gi, αi) be four objects for i = 1, 2, 3, 4 and let (Xi, λi,∆i,i+1)
for i = 1, 2, 3 be correspondences from Gi to Gi+1. The spaces Xi for i = 1, 2, 3 are locally
compact, Hausdor� and the action of the groupoid Gi+1 on the space Xi is proper for i = 1, 2.
Hence the induced action of Gi+1 on Xi ∗Xi+1 is proper. Similarly, the obvious action of
Gi ×Gi+1 on Xi−1 ∗Xi ∗Xi+1 is proper. De�ne

a′(X1, X2, X3) : (X1 ∗X2 ∗X3) /(G2 ×G3)→ (X1 ◦X2) ◦X3,

sending
[x1, x2, x2] 7→ [[x1, x2], x3]

and
a′′(X1, X2, X3) : (X1 ∗X2 ∗X3) /(G2 ×G3)→ X1 ◦ (X2 ◦X3),

sending
[x1, x2, x2] 7→ [x1, [x2, x3]].
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We claim that both a′ and a′′ are homeomorphisms. We prove that a′ is a homeomorphism,
and the claim for a′′ can be proved similarly. First we check that a′ is well-de�ned. Let
p : X1 ∗X2 ∗X3 → (X1 ◦X2) ∗X3 and p′ : (X1 ◦X2) ∗X3 → (X1 ◦X2) ◦X3 be the quotient
maps. Then p ◦ p′ is a well-de�ned continuous surjection. For (x1, x2, x3) ∈ X1 ∗X2 ∗X3 and
appropriate (γ1, γ2) ∈ G1 ×G2,

p′(p(x1γ1, γ
−1
1 x2γ2, γ

−1
2 x3)) = [[x1γ1, γ

−1
1 x2γ2], γ−1

2 x3]
= [[x1γ1, γ

−1
1 x2]γ2, γ

−1
2 x3] = [[x1, x2]γ2, γ

−1
2 x3] = [[x1, x2], x3] = p′(p(x1, x2, x3)).

Hence by the universal property of the quotient, p′ ◦ p induces a continuous map

(X1 ∗X2 ∗X3) /(G2 ×G3)→ (X1 ◦X2) ◦X3,

which is nothing but a′. Let a′[x1, x2, x3] = a′[y1, y2, y3], that is, [[x1, x2], x3] = [[y1, y2], y3].
Then there is γ2 ∈ G2 with ([x1, x2γ2], γ−1

2 x3) = ([x1, x2]γ2, γ
−1
2 x3) = ([y1, y2], y3). This in

turn gives γ1 ∈ G1 with (x1γ1, γ
−1
1 x2γ2, γ

−1
2 x3) = (y1, y2, y3). Thus [x1, x2, x3] = [y1, y2, y3] ∈

(X1 ∗X2 ∗X3) /(G2 ×G3). Hence a′ is a bijection.

Let π : X1 ∗ X2 ∗ X3 → (X1 ∗X2 ∗X3) /(G2 × G3) be the projection map and let U ⊆
(X1 ∗X2 ∗X3) /(G2×G3) be open. Then π−1(U) is open. From Lemma 1.2.13 and Remark 1.2.15,
we infer that p and p′ are open maps. The universal property of the quotient implies
π(U) = p′(p(π−1(U))), where the latter is an open set. Hence a′ is an open map. Hence a′ is
a homeomorphism.

It is not hard to see that a′ and a′′ are G1-G4-invariant. De�ne

a(X1, X2, X3) = a′′(X1, X2, X3) ◦ a′−1(X1, X2, X3).

Then a(X1, X2, X3) sends [[x1, x2], x3] to [x1, [x2, x3]]. Whenever the Xi are clear, we write
a instead of a(X1, X2, X3). This a is the required associativity isomorphism. We need to
show that a(X1, X2, X3) satis�es (ii) of De�nition 2.5.5 to conclude that it is an isomorphism
of correspondences. The proof is below.

This is a pretty long computation and we recall what we need. For i = 1, 2, 3,

i) (Xi, λi.∆i) is a correspondence from (Gi, αi) to (Gi+1, αi+1);
ii) Xi(i+1) denotes the quotient Xi ∗X(i+1)/Gi+1 for i = 1, 2;
iii) (X12 ◦X3, µ(12)3) and (X1 ◦X23, µ1(23)) are given composites;

a) b(12)3 and b1(23) are cochains in C0(X12 ∗X3,R∗+) and C0(X1 ∗X23,R∗+), respectively,
which give µ(12)3 and µ(12)3, respectively (then we have d0(b(12)3) = ∆3 in a suitable
sense, and similarly for b1(23));

iv) (Xi(i+1), µi(i+1)) denotes a composite of (Xi, λi) and (Xi+1, λi+1) used to get the given
composites for i = 1, 2.
a) bi(i+1) is the cochain in C0

Gi+1
(Xi ∗Xi+1,R∗+) that gives µi(i+1) (hence d0(bi(i+1)) =

∆i+1 in a suitable sense);
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b) ei(i+1) is an e-function as in Proposition 2.4.3 for the quotient mapXi∗Xi+1 → Xi(i+1)
for i = 1, 2.

Note that (i), (iii), (iii)a, (iv) and (iv)a is given data, (iv)b is derived information from (iv), and (ii)
is a notation. Proposition 2.4.3 says that a composite does not depend on the choice of the
e-function.

Our �rst observation is that

e(12)3([x, y], z) :=
∫
G2

e12(xγ, γ−1y)e23(γ−1y, z) dαrX2 (y)
2 (γ),

e1(23)(x, [y, z]) :=
∫
G3
e12(x, yη) e23(yη, η−1z) dαsX2 (y)

3 (η)

are e-functions for the quotient maps X12 ∗ X3 → X12 ◦ X3 and X1 ∗ X23 → X1 ◦ X23,
respectively.

Remark 2.4.12 shows that b23 is G2-invariant, that is, b23(γ−1y, z) = b23(y, z). Thus ([x, y], z) 7→
b23(y, z) is a well-de�ned function X12 ∗X3 → R∗+. By abuse of notation, we say that b23 is
a cochain in C0

G4
(X12 ∗X3,R∗+). Clearly, d0(b23) = ∆3. Let µ′(12)3 be the family of measures

induced by b23 using the function e(12)3 above on X12 ◦ X3. Then (X12 ◦ X3, µ
′
(12)3) is a

composite of (X12, µ12) and (X3, λ3).

Since d0(b23) = d0(b(12)3) = ∆3, Remark 1.4.9 gives c : X12 ◦X3 → R∗+ with b(12)3 = (c◦π) ·b23.
Here π : X12 ∗ X3 → X12 ◦ X3 is the projection map. Now Proposition 2.5.9 says that

(X12 ◦X3, µ(12)3) and (X12 ◦X3, µ
′
(12)3) are isomorphic correspondences with

µu(12)3
µ′u(12)3

= c for

u ∈ G(0)
4 .

Use a similar notation and argument to get the composite (X1 ◦ X23, µ
′
1(23)), where the

family of measures µ′1(23) on X1 ◦ X23 is induced by the cochain b12 using e1(23). Then

(X1 ◦X23, µ
′
1(23)) is isomorphic to (X1 ◦X23, µ1(23)). And

µ′u1(23)
µu1(23)

= c′ for c′ : X1 ◦X23 → R∗+

with b12 = (c′ ◦ π′) · b1(23) and u ∈ G(0)
4 . Here π′ : X12 ∗X3 → X12 ◦X3 is the projection map.

Before we go to the main computations, we introduce some more notation. Without this
notation the computation would be very complicated and long.

i) Let f ∈ Cc(X2 ◦ X3) and u ∈ G(0)
4 , then λ2 × λ3(f)(u) :=

∫∫
f(y, z) dλrX3(z)

2 (y)dλu3(z).
De�ne λ1 × λ2, λ1 × µ23 and other possible combinations and triple integrals similarly.

ii) For i = 1, 2, along the projection map Xi∗Xi+1 → Xi◦Xi+1 there is a family of measures
αi+1Xi∗Xi+1

as in Equation 2.4.2. We write α̇i+1 for αi+1Xi∗Xi+1
. For f ∈ Cc(Xi ∗Xi+1)

and [a, b] ∈ Xi ◦Xi+1 de�ne ᾱi+1(f)[a, b] =
∫
f dα̇[a,b]

i+1 .

Indeed, we keep in mind that all λi and αk are families of measures and not a single measure.
We have to keep track of the �bres in the computations, which is not obvious in the above
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notation. This notation reduces the complexity and size of the actual computations, but also
introduces a bit of naiveness.

From Lemma 2.4.9 we know that bi(i+1) implements the symmetry between (λi×λi+1)◦(α̇i+1)1
and (λi × λi+1) ◦ (α̇i+1)2 for i = 1, 2. Observation 2.4.2 gives λi × λi+1(bi(i+1)fᾱi+1(g)) =
λi × λi+1(bi(i+1)ᾱi+1(f)g) for f ∈ Cc(Xi) and g ∈ Cc(Xi+1).

µ1(23)(f)(u) = (λ1 × µ23)(f b1(23) e1(23))(u)
= λ1 × (λ2 × λ3)(f b23b1(23) e23e1(23))(u)

= λ1 ×
(
(λ2 × λ3)(f b23b1(23) e23 ᾱ3(e12e23))

)
(u)

= λ1 ×
(
(λ2 × λ3)(b23ᾱ3(f b1(23) e23) e12e23)

)
(u).

The previous line is due to the symmetry of the measures b23λ2 × λ3 with respect to α23.
Observe that f and b1(23) are G3-invariant. Hence

R.H.S. = λ1 ×
(
(λ2 × λ3)(b23ᾱ3(f b1(23) e23) e12e23)

)
(u)

= λ1 ×
(
(λ2 × λ3)(f b1(23) b23 ᾱ3(e23) e12e23))

)
(u).

Now we use ᾱ3(e23) = 1(u) and also introduce the identity homeomorphism a in the further
computations. Hence the previous term equals

λ1 ×
(
(λ2 × λ3)(f b1(23) b23 e12e23)

)
= (λ1 × λ2)× λ3

(
f ◦ a−1 · (c′ ◦ a−1) ◦ π

c ◦ π
b12 b(12)3 e12e23

)
(u).

Now we introduce e12 using the relation ᾱ2(e12) = 1. Then in later steps we use the symmetry
of b12λ1 × λ2 with respect to α2. Hence

R.H.S. = (λ1 × λ2)× λ3

(
(f ◦ a−1) · (c′ ◦ a−1) ◦ π

c ◦ π
b12 ᾱ2(e12) b(12)3 b23 e12e23

)
(u)

= (λ1 × λ2)× λ3

(
(f ◦ a−1) c′ ◦ a−1 ◦ π

c ◦ π
b12 e12 ᾱ2(b(12)3 e12 e23)

)
(u)

= (λ1 × λ2)× λ3

(
f ◦ a−1 · (c′ ◦ a−1) ◦ π

c ◦ π
b12 e12 b(12)3 ᾱ2(e12 e23)

)
(u).

The last step is due to the G2-invariance of b(12)3. Now apply Fubini’s Theorem and compute
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further:

= λ3 ×
(

(λ1 × λ2)
((

f ◦ a−1 · (c′ ◦ a−1) ◦ π
c ◦ π

b(12)3 e(12)3

)
b12 e12

))
(u)

= λ3 × µ12

(
f ◦ a−1 · (c′ ◦ a−1) ◦ π

c ◦ π
b(12)3 e(12)3

)
(u)

= µ(12)3

(
f ◦ a−1 · (c′ ◦ a−1) ◦ π

c ◦ π

)
(u).

Thus µu1(23) ∼ µu(12)3 for all u ∈ G
(0)
4 with the Radon-Nikodym derivative

dµu1(23)
dµu(12)3◦a

−1 =
(c′◦a−1)

c ◦ π.

vi) Identity isomorphisms: Let (Gi, αi) be groupoids for i = 1, 2 and let (X,λ) be a correspondence
from G1 to G2. There is a homeomorphism

l(G1, G2) : (G1 ∗X)/G1 → X, [γ, x] 7→ γ−1x.

The inverse of this homeomorphism l(G1, G2) sends x 7→ [rX(x), x]. Then l(G1, G2) is the
le� identity coherence arrow. We need to check that (G1 ∗X)/G1 is equipped with the family
of measure Λ.

The �bre product G1 ∗X carries the family of measures {α1 ◦ λu}u∈G2(0) which we denoted
by {µu}u∈G2(0) in Proposition 2.4.14. The map G1 ∗ X → (G1 ∗ X)/G1 ≈ X carries a

family of measures α−1G1∗X
1 induced by α−1

1 which is de�ned by α−1G1∗X
1 (f)[rX(x), x] =∫

f(γη, η−1x) d(α−1
1 )rX(x)(η) for f ∈ Cc(G1 ∗X). In Proposition 2.4.14, we denoted α−1G1∗X

1
by λ. Using the right invariance of α−1

1 it can be checked that

µ(f) = λ(α−1G1∗X
1 (f)) (2.5.14)

for f ∈ Cc(G1 ∗ X). Now we may draw a diagram similar to the one in Figure 2.2 and
use Equation 2.5.14 to see that the families of measures (α−1G1∗X

1 )1 and (α−1G1∗X
1 )2 in this

new diagram are weakly symmetric with respect to the measure µu for each u ∈ G2 and
then Proposition 2.4.3 along with the de�nition of composite of topological correspondences
(De�nition 2.4.18) gives that λ is the family of measures on the composite (G1 ∗X)/G1.

Similarly, the map r(G1, G2) : (X ∗ G2)/G2 → X sending [x, γ] 7→ xγ is the right identity
coherence.

vii) Horizontal composition of 2-arrows: Let (Xi, λi), (X ′i, λ′i) be correspondences from (Gi, αi)
to (Gi+1, αi+1) for i = 1, 2 and let φi : Xi → X ′i be isomorphisms of correspondences. Let
(X1 ◦X2, µ) and (X ′1 ◦X ′2, µ′) be the composites. And assume that b and b′ are the cochains
which produce µ and µ′, respectively.

Since φi is a Gi-Gi+1-equivariant homeomorphism for i = 1, 2, φ1 and φ2 induce a G1-
G3-equivariant homeomorphism φ1 ·h φ2 : X1 ◦X2 → X ′1 ◦X ′2. We claim that φ1 ·h φ2 is the
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horizontal product of φ1 and φ2. To prove the claim, we need to check µu◦(φ1 ·hφ2)−1 ∼ µ′u for
each u ∈ G(0)

3 . Before we proceed, note that φ1 ·hφ2 is induced by φ1×φ2 : X1 ∗X2 → X ′1 ∗X ′2.
As φ1 and φ2 are isomorphisms of correspondences, (λ1 × λ2)u ◦ (φ1 × φ2)−1 ∼ (λ′1 × λ′2)u
on X ′1 ∗ X ′2, for all u ∈ G

(0)
3 . But then (b ◦ (φ1 × φ2)−1) · ((λ1 × λ2)u ◦ (φ1 × φ2)−1) =

(bλ1×λ2)u ◦(φ1×φ2)−1 ∼ b′(λ′1×λ′2)u on X ′1 ∗X ′2. But b◦(φ1×φ2)−1 ∈ C0
G3

(X ′1 ∗X ′2,R∗+). As
in the proof of Proposition 2.5.9, we get b◦ (φ1×φ2)−1 · (λ1×λ2)u ◦ (φ1×φ2)−1 ∼ b′(λ′1×λ′2)u
on X ′1 ∗X ′2. Now use Proposition 2.5.9 to see that µu ◦ (φ1 ·h φ2)−1 ∼ µ′u on X ′1 ◦X ′2 for each
u ∈ G(0)

3 .

viii) Associativity coherence : Let (Gi, αi) be groupoids equipped with Haar systems for i = 1, . . . , 5
and let (Xi, λi) be a correspondence from Gi to Gi+1 for i = 1, . . . , 4.
The associativity coherence says that the pentagon in Figure 2.7 commutes:

X1 ◦ ((X2 ◦X3) ◦X4)

(X1 ◦ (X2 ◦X3)) ◦X4((X1 ◦X2) ◦X3) ◦X4

X1 ◦ (X2 ◦ (X3 ◦X4))

(X1 ◦X2) ◦ (X3 ◦X4)

a(X1 ◦X2, X3, X4)

a(X1, X2, X3 ◦X4) Id ◦ a(X2, X3, X4)

a(X1, X2 ◦X3, X4)

a(X1, X2, X3) ◦ Id

Figure 2.7: Associativity coherence

Let x((12)3)4 be a point in X((12)3)4 := (X1 ◦X2) ◦X3) ◦X4. Following the le� top vertex of
the pentagon along the right top sides till the vertex at the bottom, an element x((12)3)4 :=
[[[x1, x2], x3]x4] goes to x1(2(34)) := [x1, [x2, [x3, x4]]].

The lower le� path between the same vertices gives the same map.

ix) Identity coherence : Let (Xi, λi) be topological correspondences from (Gi, αi) to (Gi+1, αi+1)
for i = 1, 2. We need to show that the following diagram is commutative:

(X1 ◦G2) ◦X2 X1 ◦ (G2 ◦X2)

X1 ◦X2

a(X1, G2, X2)

r(X1) ◦ IdX2 IdX1 ◦ l(X2)

For [[x1, γ], x2] ∈ (X1 ◦G2) ◦X2

IdX1◦l(X2)(a(X1, G2, X2)([[x1, γ], x2])) = [x1, γx2] = [x1γ, sG2(γx2)] = r(X1)◦IdX2([[x1, γ], x2]).

This proves all the axioms.
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Convention: Let (X,λ,∆X), (Y, τ,∆Y ) be correspondences from (G,α) to (H,β) and let t : X →
Y be an isomorphism between the correspondences. Let d(λu◦t−1)

dτu = Mu, u ∈ H(0). Write
M(y) = MsY (y)(y) for sY (y) ∈ H(0).

Lemma 2.5.15. Let (X,λ,∆X), (Y, τ,∆Y ) be correspondences from (G,α) to (H,β) and let t : X →
Y be an isomorphism between the correspondences.

i) M is H-invariant, that is, M(yη) = M(y) for all (y, η) ∈ Y ∗H .

ii) ∆X(γ, x) = (M ◦ t)(γx) ∆Y ◦ (Id ◦ t)(γ, x) (M ◦ t)(x)−1.

Proof. (i): Use the invariance of the families of measures λ and τ :

M(yη) =
d(λsH(η) ◦ t−1)

dτsH(η)
(yη) =

d(λrH(η) ◦ t−1)
dτrH(η)

(y) = M(y).

(ii): t induces an obvious homeomorphism Id ∗ t : G ∗ X → G ∗ Y . For f ∈ Cc(G n X) and
u ∈ H(0) we have∫

f(γ−1, x) dαrX(x)(γ) dλu(x)

=
∫
f(γ−1, t−1(y)) dαrY (y)=rX(x)(γ) dλu(t−1(y))

=
∫

(f ◦ (Id ◦ t−1))(γ−1, y) dαrY (y)(γ) d(λu ◦ t−1)(y))

=
∫

(f ◦ (Id ◦ t−1))(γ−1, y)M(y) dαrY (y)(γ) dτu(y)

=
∫

(f ◦ (Id ◦ t−1))(γ, γ−1y) ∆Y (γ, γ−1y)M(y) dαrY (y)(γ) dτu(y)

=
∫

(f ◦ (Id ◦ t−1))(γ, γ−1y) ∆Y (γ, γ−1y)M(y)M(γ−1y)−1 dαrY (y)(γ)λu ◦ t−1(y)

=
∫
f(γ, γ−1x) ∆Y (γ, γ−1t(x))M(t(x))M(t(γ−1x))−1 dαrX(x)(γ)λu(x).

Thus ∆X(γ, x) = (M ◦ t)(γ−1x) ∆Y ◦ (Id× t)(γ, x) (M ◦ t)(x)−1 λu ◦ α-almost everywhere on
G ∗ Xu. But ∆X , ∆Y and M are continuous functions, and λu as well as all measures αv for
v ∈ G(0) are regular. Hence ∆X(γ, x) = (M ◦ t)(γ−1x) ∆Y ◦ (Id× t)(γ, x) (M ◦ t)(x)−1.

Proposition 2.5.16. Let (X,λ,∆X), (Y, τ,∆Y ) be correspondences of groupoids from (G,α) to (H,β)
and let t : X → Y be an isomorphism between the correspondences. Then t induces an isomorphism
from H(X) to H(Y ).

Proof. Denote d(λu ◦ t−1)/dτu = Mu and let M be as above. De�ne T : Cc(X) → Cc(Y ) by
T(f) = (f ◦ t−1) ·M1/2 for f ∈ Cc(X).
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Right side: We �rst prove that T extends to a unitary operator H(X)→ H(Y ). Let ψ ∈ Cc(H)
and f, g ∈ Cc(X). Clearly T(f + g) = T(f) + T(g). Furthermore,

T(fψ)(y) = (fψ)(t−1(y))M1/2(y)

=
∫
f(t−1(y)η)ψ(η−1)M1/2(y) dβsX(x)(η)

=
∫
f(t−1(y)η)ψ(η−1)M1/2(yη) dβsX(x)(η)

=
∫

T(f)(yη)ψ(η−1)βsY (y)(η).

In the third equality above, we used the H-invariance of M , which is proved in Lemma 2.5.15.
Thus T is Cc(H)-linear.

De�ne T∗ : Cc(Y ) → Cc(X) by T∗(g) = (g ◦ t)M̄1/2 for g ∈ Cc(Y ) where M̄ = d(τu ◦ t)/dλu.
Then a routine computation shows that T∗ is the adjoint of T; half of the computations are written
below, the other half are similar. An argument similar to the one in Lemma 2.3.1 proves the
continuity of T and T∗.

Let f ∈ Cc(X), then

T∗(T(f))(x) = T(f) ◦ t(x) · M̄1/2(t(x))
= f(x) · M̄1/2(t(x)) ·M1/2(x) (now we use the chain-rule for t−1 ◦ t = IdX )

= f(x).

Similarly, T ◦ T∗ = IdCc(Y ).

Le� side: Let π1 : C∗(G,α) → B(H(X))C∗(H,β) and π2 : C∗(G,α) → B(H(Y ))C∗(H,β) denote the
representations that gives the correspondences H(X) and H(Y ). Now we show that T intertwines
π1 and π2. It su�ces to show that T ◦ π1(ψ)(f) = π2 ◦ T(f) for ψ ∈ Cc(G) and f ∈ Cc(X).

π2(ψ)(T(f))(y)

=
∫
ψ(γ)T(f)(γ−1y) ∆1/2

Y (γ, γ−1y) dαrY (y)(γ)

=
∫
ψ(γ)f ◦ t(γ−1x)M1/2(γ−1t(x)) ∆Y (γ, γ−1y)1/2 dαrY (y)(γ)

=
∫
ψ(γ)f ◦ t(γ−1x)

(
M1/2(γ−1t(x)) ∆Y (γ, γ−1y)1/2M−1/2(t(x))

)
M1/2(t(x))dαrY (y)(γ)

=
∫
ψ(γ)f ◦ t(γ−1x) ∆X(γ, γ−1y)1/2dαrY (y)(γ)M1/2(t(x)) (using Lemma 2.5.15)

= (π1(ψ)f ◦ t(x))M1/2(t(x))
= T(π1(ψ)f)(y).

Example 2.5.17. We can explain Example 2.2.6 using isomorphisms of correspondences. Let (H,β)
be a groupoid endowed with a Haar system. Then C∗(H,β) is the identity correspondence from
C∗(H,β) to itself. But remember, as a correspondence C∗(H,β) is a Hilbert module and not a
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C∗-algebra. Let Cc(H,β) denote the continuous compactly supported functions on H . This is a
*-algebra as in Proposition 1.6.9. We get the identity correspondence on the C∗-algebra C∗(H,β)
from this *-algebra. The involution is used to get the C∗(H,β)-valued inner products. Let H be the
identity equivalence from the groupoid with the Haar system (H,β) to itself and let Cc(H) denote
the space of continuous compactly supported functions on H . Equation (2.2.2) and Equation (2.2.3)
de�ne operations on Cc(H). The main di�erence in Cc(H,β) and Cc(H) is that the operations on
Cc(H,β) use the le� invariant Haar system β, whereas Cc(H) uses the right invariant Haar system
β−1. Then the identity map IdH : H → H gives an isomorphism of correspondences. It is not hard
to see that invH is an isomorphism of correspondences. Hence C∗(H,β) and H(H) are isomorphic
correspondences from C∗(H,β) to C∗(H,β).

Corollary 2.5.18. Let

(X,α) : (G1, λ1)→ (G2, λ2),
(Y, β) : (G2, λ2)→ (G3, λ3)

be correspondences and let (Ω, µ), (Ω, µ′) : (G1, λ1) → (G3, λ3) be two composites of them. Then
H(Ω, µ) and H(Ω, µ′) are isomorphic C∗-correspondences.

Proof. Follows directly from Proposition 2.5.9 and Proposition 2.5.16.

Denote the bicategory of topological correspondences by T. The bicategory of C∗-correspondences
is denoted by C.

Now we prove that the assignment X 7→ H(X) is functorial.

Theorem 2.5.19. The assignment X 7→ H(X) is a bifunctor from T to C.

Proof. Recall De�nition 2.5.3. We de�ne the bifunctor F = (F, φ) as the following assignment from
T to C:

Object: F ((G,α)) = C∗(G,α) (Data (i) in De�nition 2.5.3)

1-arrow: map a 1-arrow (X,λ) from (G,α) to (H,β) to the arrow F ((X,λ)) = H(X,λ) in
C(C∗(G,α),C∗(H,β)). (Data (ii) in De�nition 2.5.3)

2-arrow: map a 2-arrow t in T((G,α), (H,β)) to the isomorphism of C∗-correspondences F (t) in
C(C∗(G,α),C∗(H,β) as in Proposition 2.5.16. Note that F is a functor from T((G,α), (H,β))
to C(C∗(G,α),C∗(H,β)). (Data (ii) in De�nition 2.5.3)

Identity 2-morphism: The isomorphism of C∗-correspondences in Example 2.2.6 , φH(G): C∗(G,α)→
H(G). More precisely, φH(G) is the isomorphism induced by the identity map IdH as in Ex-
ample 2.5.17. (Data (iii) in De�nition 2.5.3)

Natural transformation between composites: Let (X,λ) be a 1-arrow from (G,α) to (H,β) and let
(Y, µ) be a 1-arrow from (H,β) to (K, ν). Then Λ′ is the natural transformation

φ((G,α), (H,β), (K, ν)) : H(X)⊗C∗(H,β) H(Y )→ H(X ◦ Y )

de�ned in Theorem 2.4.19.
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Claim: the pair (F, f) = F is a morphism from the bicategory T to the bicategory C.
Checking that Figure 2.5 is commutative is a complicated but straightforward computation.

In this diagram, the maps denoted by v(S, T ) are the maps Λ′ de�ned in Theorem 2.4.19, which
integrates with respect to the middle action.

We check coherence for the right identity. The coherence for the le� identity can be checked
similarly. Let (X,λ) be a correspondence from (G,α) to (H,β) and let (H,β−1) be the identity cor-
respondence from (H,β) to itself. Checking the coherence translates to checking the commutativity
of Figure 2.8.

H(X)⊗C∗(H,β) C
∗(H,β) H(X)⊗C∗(H,β) H(H)

H(X ◦H)H(X)

IdH(X) ◦ φH

φ(X, IdH)

F (T(r)H)

C(r)C∗(H,β)

Figure 2.8: Coherence of the right identity

We �rst explain the maps in Figure 2.8.

Bottom: The map of C∗-correspondences φH : C∗(H,β)→ H(H) is induced by the identity map
IdH : H → H (see Example 2.5.17).

Right: φ(X, IdH) is the map Λ′ in Theorem 2.4.19. Λ′ integrates over the middle action to go from
the �bered product to the quotient.

Top: The map F (T(r)H) is induced by the quotient homeomorphism [x, η] 7→ xη inverse to
x 7→ [x, sX(x)].

Le�: The algebraic map C(r)C∗(H,β) comes from the tensor product of C∗-correspondences. In
this case, C(r)C∗(H,β)(f, g) takes the convolution product of the element f ∈ H(X) and
g ∈ C∗(H,β).

We show that the diagram commutes at the level of continuous compactly supported functions.
Let f ⊗ g ∈ Cc(X)⊗ Cc(H,β). Then starting from the bottom of the diagram to the right top, the
element travels as

f ⊗ g 7→ f ⊗ (g ◦ invH) 7→ Λ′(f ⊗ (g ◦ invH)).
Denote M = Λ(f ⊗ (g ◦ invH)) ∈ Cc(X ◦H). Then

M [x, η] =
∫
f(xγ)g(γ−1η) dβu(γ) = M [xη, sH(η)].

Hence

F (T(r)H)(M)(x) = M [x, sX(x)] =
∫
f(xγ)g(γ−1) dβsX(x)(γ) = f ∗ g(x) = C(r)C∗(H,β)(f ⊗ g)(x).



Chapter 3

Applications of the theory

This chapter discusses examples and applications of the theory we have developed so far. First of
all, we give a few examples of topological correspondences and also relate our work with previous
de�nitions of correspondences between groupoids.

A C∗-algebraic correspondence from A to B induces a functor from the representation category
of B to that of A. Analogously, a topological correspondence from G to H induces a functor between
the representation categories of the groupoids.

While working with groupoid actions, we came across examples and questions which lead to
the notion of a spatial hypergroupoid. We discuss it brie�y here.

In [21] the authors de�ne the Brauer group for locally compact groupoids and prove two
isomorphism theorems concerned with it. Given two groupoids, we construct correspondences
between groupoids which induce one-way homomorphisms between the Brauer groups of the
groupoids.

As the last application, we establish a tiny link between our theory of correspondences and
KK-theory. Given a groupoid G and some more data, we produce a KK-cycle between certain
subgroupoids of G.

3.1 General examples

Example 3.1.1. Let X and Y be spaces, and let f : X → Y be a continuous function. We view X
and Y as groupoids with Haar systems consisting of Dirac measures on X and Y δX = {δx}x∈X
and δY = {δy}y∈Y , respectively, as in Example 1.3.7. We write X ′ for the space X . We use this
notation to avoid confusing the space and the groupoid structures.

The function f is the momentum map for the trivial le� action of Y on X ′, that is, Y ∗X =
Y ×IdY ,f X and f(x) · x = x for all x ∈ X (in fact, this is the only possible action). There is an
obvious proper right action of X on X ′, namely, the trivial action. The momentum map for this
action is sX′ = IdX , the �bre product X ′ ∗X = {(x, x) : x ∈ X} and the action is x · x = x for all
x ∈ X . The family of Dirac measures δX mentioned above is an X-invariant family of measures on

83
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X ′. If h ∈ Cc(Y ∗X ′), then∫∫
h(y, x) d(δY )b d(δX)a = h(f(a), a) =

∫∫
h(y−1, yx) d(δY )b d(δX)a.

Therefore δX is Y -invariant. Thus (X ′, δX) is a topological correspondence from Y to X with
the constant function 1 as the adjoining function. The action of Cc(X) on Cc(X ′) as well as the
Cc(X)-valued inner product on Cc(X ′) are the pointwise multiplication of two functions. For
h ∈ Cc(Y ), k ∈ Cc(X ′), (h · k)(x) = h(f(x))k(x).

Let g : Y → Z be another map. Then it is not hard to see that the composite (Y ′, δY ) ◦ (X ′, δX)
from X to Z is isomorphic to the correspondence obtained from the map g ◦ f : X → Z.

Example 3.1.2. Let X , Y , X ′ and f be as in Example 3.1.1. Let λ = {λy}y∈Y be a continuous family
of measures along f . We make X ′ into a proper X-Y -bispace as follows: the momentum maps
are rX′ = IdX , sX′ = f and both actions are the trivial actions as in Example 3.1.1 above. For
h ∈ Cc(X ∗X ′),

∫∫
h(x−1, xz) d(δX)x(z) dλy(x) =

∫∫
h(x, z) d(δX)x(z) dλy(x) =

∫
h(f(x), x) dλy(x).

The �rst equality above is due to the triviality of the action. Hence λ is X-quasi-invariant and
the modular function is the constant function 1. Thus (X ′, λ) is a correspondence from X to Y .

Example 3.1.3. Let X,Y,X ′ be as in Example 3.1.1. Let f, g : X → Y be continuous maps and let λ
be a continuous family of measures along f . For g : X → Y in Example 3.1.1 de�ne a le� action of
Cc(Y ) on Cc(X). For f : X → Y use the family of measures λ and the formulae in Example 3.1.2 to
de�ne a right action of Cc(Y ) on Cc(X). It is straightforward to check that (X ′, λ) is a topological
correspondence from Y to itself. When the spaces are second countable, the quintuple (Y,X, s, r, λ)
is called a topological quiver [29].

The reader may check that (X ′, λ) is the product of (X ′, δX) : Y → X and (X ′, λ) : X → Y ;
these are the correspondences in the previous two examples.

Remark 3.1.4. In [29], Muhly and Tomforde discuss topological quivers. We have talked about
this paper in the introduction. Topological quivers justify our use of families of measures in our
construction. At a �rst glance, the families of measures and their quasi-invariance for the le� action
might look arti�cial. However, as discussed on page 41, the quasi-invariance of families of measures
is natural to ask for. And topological quivers justify the use of families of measures.

Example 3.1.5. Let G and H be locally compact groups, φ : H → G a (continuous) group homomor-
phism and α and β the Haar measures on G and H , respectively. The right multiplication action is
a proper action of G on itself. The measure α−1 is invariant under this action. Using φ de�ne an
action of H on G as ηγ = φ(η)γ for (η, γ) ∈ H ×G. We claim that α−1 is H-quasi-invariant for
this H-action. Let δG and δH be the modular functions of G and H , respectively. The modular
functions allow to switch between the le� invariant Haar measures α and β and the right invariant
ones α−1 and β−1, respectively. The relations are α−1 = δ−1

G α and β−1 = δ−1
H β. If Rγ : G→ G is

the right multiplication operator, then∫
G
Rγf dα = δG(γ)−1

∫
G
f dα
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for f ∈ Cc(G) and a similar reasoning holds for g ∈ Cc(H). Now let f ∈ Cc(G×H),∫∫
f(η, φ(η)−1γ) δH(η)

δG(φ(η)) dβ(η) dα−1(γ)

=
∫∫

f(η−1, φ(η)γ) 1
δG(φ(η)) dβ(η) dα−1(γ) (by sending η to η−1 in H )

=
∫∫

f(η−1, γ) dβ(η) dα−1(γ) (by removing φ(η)−1 in G).

If one compares the �rst term of the above computation with the equation in (iv) De�ni-
tion 2.1.1, and uses that the adjoining function is a groupoid homomorphism, then one can see that
∆(η, η−1γ) = δH(η)

δG◦φ(η) . Hence ∆(η−1, γ) = ∆(η, η−1γ)−1 = δG◦φ(η)
δH(η) . Thus a group homomorphism

φ : H → G gives a topological correspondence (G,α−1) from (H,β) to (G,α) and δH◦φ
δG

is the
adjoining function.

Let ψ : G → K be another homomorphism and let τ be the Haar measure on K. Then the
composite (K, τ−1) ◦ (G,α−1) from (G,α) to (K, τ) is isomorphic to the correspondence obtained
from the homomorphism ψ ◦ φ : G→ K.

Example 3.1.6. Let G, H , α, β, δH and φ be as in Example 3.1.5. Additionally, assume that φ : H → G
is a proper function. For the time being, assume that the action of H on G given by γη := γφ(η)
for (γ, η) ∈ G×H is proper, which is a fact and we prove it towards the end of this example. With
this action of H and the le� multiplication action of G on itself, G is a proper G-H-bispace. α−1

is an H-invariant measure. The adjoining function of this action is the constant function 1. To see
this, let f ∈ Cc(G×G),correspondences then∫∫

f(γ−1, η) dα(γ)dα−1(η) =
∫∫

f(γ, η) δG(γ)−1dα(γ)dα−1(η) (because α−1 = δ−1α)

=
∫∫

f(γ, γ−1η) dα(γ)dα−1(η) (because Lγα−1 = δ(γ)α−1).

Now we prove that the action of G on H is proper, that is, the map Ψ: H ×G→ H ×H sending
(γ, η) 7→ (γ, γφ(η)) is proper. The maps

IdH × φ : H ×G→ H ×H and

m : (γ, γ′) 7→ (γ, γγ′) from H ×H → H ×H

are proper, and Ψ = m ◦ (IdH × φ). Hence Ψ is proper.

Example 3.1.7. Let (G,α), (H,β) and (K, τ) be locally compact, Hausdor� groups with Haar
measures, and let φ : H → H and ψ : K → G be continuous homomorphism with ψ proper. Using
Example 3.1.5 we get the correspondences (G,α−1) from (H,β) to (G,α) and using Example 3.1.6
we get the correspondence (G,α−1) from (G,α) to (K, τ). In the composite correspondences from
(H,β) to (K, τ), the space is G, the actions of H and K are the le� and right multiplication via φ
and ψ, the K-invariant family of measures on G is α−1, and the adjoining function for this action
is δG

δH◦φ which can be checked as in Example 3.1.5.
An interesting situation is when H,K ⊆ G are subgroups, K is closed, and φ and ψ are the

inclusion maps. Then (G,α−1) is a correspondence from (H,β) to (K, τ) where G is made into an
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H-K bispace using the le� and right multiplications, respectively. The adjoining function in this
case is δG

δH
.

Example 3.1.8 (Macho Stadler and O’uchi’s correspondences). In [25], Macho Stadler and O’uchi
present a notion of groupoid correspondences. We change the direction of correspondence in their
de�nition to �t our construction and reproduce the de�nition here:

De�nition 3.1.9. A correspondence from a groupoid with Haar system (G,α) to a groupoid with
Haar system (H,β) is a G-H-bispace X such that:

i) the action of H is proper and the momentum map for the right action sX is open,

ii) the action of G is proper,

iii) the actions of G and H commute,

iv) the right momentum map induces a bijection from G\X to H(0).

Like us, Macho Stadler and O’uchi do not assume that the le� momentum map is open.
Macho Stadler and O’uchi do not require a family of measures on the G-H-bispace X . We

show that a correspondence of Macho Stadler and O’uchi carries a canonical H-invariant family of
measures λ. ∫

Xu
f dλu :=

∫
G
f(γ−1x) dαrX(x)(γ) for f ∈ Cc(X),

where u = sX(x). An application of Proposition 1.3.21, for a le� action gives that this is a continuous
G-invariant family of measures along the quotient map X → G\X and G\X is in bijection with
H(0). This also gives us that ∆ = 1.

Thus (X,λ) is a topological correspondence from (G,α) to (H,β) in our sense.
To show that λ is a continuous family of measures, we need that sX induces a homeomorphism

from G\X → H(0). But from Proposition 8 in [5, Chapter I, §3, no. 5], for this map to be a
homeomorphism, it is su�cient (an necessary) that X → G\X is open. But as G has a Haar system,
this condition is satis�ed by Lemma 1.2.13. Hence, we need not ask that sX is open.

Macho Stadler and O’uchi prove that such a correspondence from (G,α) to (H,β) induces a
C∗-correspondence from C∗r(G,α) to C∗r(H,β), which is clear to us from Corollary 2.3.5. Since the
le� action is proper in this case, the groupoid G×X is amenable and to Corollary 2.3.5 applies.

Example 3.1.10 (Equivalence of groupoids). Equivalences of groupoids as de�ned by Muhly-Renault-
Williams in [28] are a special case of Macho Stadler-O’uchi correspondences. Hence equivalences of
groupoids are topological correspondences as well. Furthermore, an equivalence of groupoids is an
invertible correspondence.

Example 3.1.11 (Generalised morphisms of Buneci and Stachura). Buneci and Stachura de�ne gener-
alised morphisms in [8]. We modify this de�nition to �t our conventions and repeat it here:
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De�nition 3.1.12. A generalised morphism from (G,α) to (H,β) is a le� action Θ of G on the space1

H with rGH as the anchor map, the action commutes with the right multiplication action of H on
itself and there is a continuous positive function ∆Θ on G×sG,rGH H such that∫∫

f(γ, γ−1η) ∆Θ(γ, γ−1η) dαrGH(η)(γ) dβ−1
u (η) =

∫∫
f(γ−1, η) dαrGH(η)(γ)dβ−1

u (η)

for all f ∈ Cc(G×sG,rGH H) and u ∈ H(0).

If Θ is a generalised morphism from (G,α) to (H,β) then (H,β−1) is a topological correspon-
dence from (G,α) to (H,β), where β−1 is the family of measures∫

G
f d(β−1)u =

∫
f(η−1) dβu(η)

for f ∈ Cc(G) and u ∈ H(0). It is obvious from the de�nition itself that ∆Θ is the adjoining function
for this correspondence.

In [8], Buneci and Stachura prove that a generalised morphism induces a *-homomorphism
from C∗(G,α) toM(C∗(H,β)). This is a C∗-correspondence from C∗(G,α) toM(C∗(H,β)) with
the underlying Hilbert module C∗(H,β).
Example 3.1.13. Let X be a right G-space for a locally compact Hausdor� group G and let λ be the
Haar measure on G. Let H and K be subgroups of G. Assume that K is closed and let α and β
be the Haar measures on H and K , respectively. Then X oH and X oK are subgroupoids of
X o G. Denote these three transformation groupoids by H, K and G, respectively. Then G is
an H-K-bispace for the le� and the right multiplication actions, respectively. We bestow H and
K with the families of measures {αy}y∈X and {βz}z∈X , respectively, where αy = α and βz = β
for each y, z ∈ X (see Example 1.3.10). If λ−1

x = λ−1 for all x ∈ X , then the family of measures
{λ−1

x }x∈X is K-invariant. We show, that this family is H-quasi-invariant with the adjoining function
δG/δH . To see this, we do this example.

For ((x, γ), (y, κ)) ∈ G o K we have y = xγ, hence the map (x, γ, y, κ) 7→ (x, γ, κ) gives an
isomorphism between the groupoids G o K and X o (G×K). Using this identi�cation, it can be
checked that the right action of K on G is proper, which is implied by the fact that K ⊂ G is
closed. Another quicker way to see this is to observe that K ⊆ G is a closed subgroupoid.

Let f ∈ Cc(H ∗G), u ∈ K(0) = G(0) ≈ X . Let (uγ−1, γ) ∈ s−1
G (u) ⊆ G. If (uγ−1, η) ∈ H, then

(uγ−1, η)−1 = (uγ−1η, η−1) is composable with (uγ−1, γ) and (uγ−1, η)−1(uγ−1, γ) = (uγ−1η, η−1γ).
Now a computation similar to that in Example 3.1.5 shows that∫∫

f((uγ−1, η), (uγ−1η, η−1γ)) δH(η)
δG(η) dαrG(uγ−1,γ)(uγ−1, η) dλ−1

u (uγ−1, γ)

=
∫∫

f((uγ−1, η), (uγ−1η, η−1γ)) δH(η)
δG(η) dα(η) dλ−1(γ)

=
∫∫

f((uγ−1, η−1), (uγ−1η−1, ηγ)) 1
δG(η) dα(η) dλ−1(γ) (by changing η 7→ η−1).

1In the section on Cohomology for groupoids in Chapter 1, we de�ned an action of a groupoid on another groupoid,
which is di�erent.
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Now we change γ 7→ η−1γ. Then we use the relation dλ−1(η−1γ) = dλ−1(γ)
δG(η) . Thus the previous

term equals∫∫
f((uγ−1η, η−1), (uγ−1, γ)) dα(η) dλ−1(γ)

=
∫∫

f((uγ−1, η)−1, (uγ−1, γ)) dα(uγ−1) dαrG(uγ−1,γ)(uγ−1, η) dλ−1
u (uγ−1, γ).

Example 3.1.14. Let G be a locally compact Hausdor� group, α the Haar measure on G and let X
be a proper le� G-space. Let λ be a strongly G-quasi-invariant measure on X , that is, there is a
continuous function ∆ : G×X → R+ such that d(gλ)(x) = ∆(g, x)dλ(x) for every g in G. In this
setting, (X,λ) is a correspondence from (G,α) to (Pt, δPt), with ∆ as the adjoining function. The
C∗-algebra for Pt is C, the Hilbert module C∗(X,λ) is the Hilbert space L2(X,λ) and the action of
C∗(G) on this Hilbert module is the representation of C∗(G) obtained from the representation of G
on Cc(X).

An example of this situation is: when X is a homogenous space for G, X carries a G-strongly
quasi-invariant measure. For details, see Section 2.6 in [15].

Example 3.1.15 (An example of composition). Let G be a locally compact group, let H and K be
closed subgroups of G and let λ, µ and β be the Haar measures on G,H and K , respectively. Let
(X,α) be a le� K-space carrying a strongly K-quasi-invariant measure α. Let δG, δH and ∆ be
the modular functions of G and H and the Radon-Nikodym derivative of gα with respect to α,
respectively. Then

(
G,λ−1) is a correspondence from H to K with δG

δH
as adjoining function, as in

Example 3.1.7. And (X,α) is a correspondence from K to Pt with ∆ as adjoining function, as in
Example 3.1.14. The topological space in the product of (G,λ−1) and (X,α) is (G×X)/K , which
we denote by Z. In this example, writing the measure ν on Z concretely is not always possible.
However, when (X,α) = (K,β), we get Z ≈ G and ν = λ−1.

The correspondence (X,α) gives a representation of K on L2(X,α) and the product corre-
spondence is the representation of H induced by this representation of K.

Example 3.1.16 (The induction correspondence). Let (G,α) be a groupoid with Haar system, H a
closed subgroupoid of G and β a Haar system for H . Let X = GH(0) := s−1

G (H(0)). Then X is a
G-H-bispace, where the le� and right actions are multiplication from the le� and right, respectively.
Both actions are free. We claim that the actions of G and H are proper.

First of all, we observe that X ⊆ G is closed, hence X ×X ⊆ G×G is closed. Let Ψ: X ∗H →
X ×X be the map Ψ(x, η) = (x, xη). Since H ⊆ G is closed, X ∗H ⊆= G×sG,rG G is closed. Now
we notice that Ψ is the restriction of the map corresponding to the right multiplication action
of G on itself to closed subspaces. Since the right multiplication is a proper action, Ψ is proper.
Similarly, the le� action of G on X is proper.

It is not hard to see that G\X ≈ H(0). By Example 3.1.8, X produces a topological correspon-
dence from (G,α) to (H,β).

Remark 3.1.17. In Example 3.1.16 , both actions are free and proper. However, the correspondence is
not a groupoid equivalence, since it might fail to satisfy Condition (v) of De�nition 2.2.1.
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3.2 Induced representations

A convention: In this section, we work with right H-spaces carrying right invariant families of
measures. However, in the original works, namely, [17] and [35] the spaces are le� spaces, carrying
le� invariant families of measures.

In the theory of representations of groups, the induction process introduced by Mackey is an
important technique. In one of his famous works [36], Rie�el introduces an induction process for
representations of C∗-algebras. Let B be a C∗-algebra and let H be a Hilbert B-module. If a
C∗-algebra A acts on H from the le� by adjointable operators in a non-degenerate fashion, then H
induces a functor from Rep(B) to Rep(A). If H is an imprimitivity bimodule, then it induces an
equivalence from Rep(B) to Rep(A).

If G and H are groupoids, then in [28] Muhly, Renault and Williams de�ne when an H-G-bispace
X is an equivalence. If the groupoids are equipped with Haar systems then an equivalence between
H and G gives a C∗(H,β)-C∗(G,α)-imprimitivity bimodule, where β and α are Haar systems on
H and G, respectively. Though the proof is not written, using groupoid representation theory [34],
it can be seen that a groupoid equivalence induces an isomorphism from Rep(G) to Rep(H).

If X is a topological correspondence from H to G, then X induces a C∗-correspondence from
C∗(H) to C∗(G). At the C∗-algebraic level, this gives a functor from Rep(C∗(G)) to Rep(C∗(H)).
Due the the construction itself Rep(G) ∼= Rep(C∗(G)). Hence X induces a functor from Rep(G) to
Rep(H). In his very recent work [35], Renault discusses this functor in detail. He describes the
induction functor topologically, and his techniques form a topological analogue of Rie�el’s induction
process. This shows that topological correspondences form an analogue of C∗-correspondence in
the theory of topological groupoids.

We do not give details of this construction of Renault’s here. Interested readers can refer to [35].
One of the main theorems in the paper says:

Theorem 3.2.1 ( [35]). If (X,λ) is a topological correspondence from a groupoid with Haar system
(H,β) to a groupoid with Haar system (G,α) then a representation (m,H) of (G, β) induces a
representation (m′,H′) of (H,β), and this construction generalises the classical construction of
induced representations of groups.

The following result of ours, namely, Proposition 3.2.2, is a nice example of induction techniques
in [35].

Proposition 3.2.2. Let (G,α) be a locally compact, Hausdor� groupoid with a Haar system and
H ⊆ G a closed subgroupoid. Let β be a Haar system for H . The G-H-bispace GH(0) gives a
correspondence from (G,α) to (H,β).

Proof. See Example 3.1.16.

The following Corollary is copied from [15], and we do not explain the terminology used in it,
since it is the standard terminology used in the representation theory of locally compact groups.
Interested readers can refer to the original book for details. Unlike us, for a locally compact
Hausdor� space X , Folland calls a continuous linear functional on Cc(X) a pseudomeasure and not
a measure.
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Corollary 3.2.3 (Theorem 6.13, in [15]). Let G be a locally compact group and H a closed subgroup,
with modular functions ∆G and ∆H . Let µ be a pseudomeasure of positive type on H , let σµ be the
associated unitary representation of H , and let ν be the injection of

√
∆G/∆H µ into G, that is, the

pseudomeasure on G de�ned by

ν(f) =
∫
H

√
∆G(ξ)
∆H(ξ) f(ξ) dµ(ξ).

Then ν is of positive type, and the associated unitary representation πν of G is unitarily equivalent
to the induced representation Π = indGH(σµ).

Since Corollary 3.2.3 is a classical result discussing induction and is implied by Proposition 3.2.2
and 3.2.1, the induction process or Renault in [35]] is an appropriate generalisation of the classical
induction process.

3.3 Spatial hypergroupoids

Let X be a le� free and proper H-space. Let β be a Haar system for H and λ an invariant family
of measures on X . The proof of Proposition 2.2.9 shows that (X ∗ X)/H is a groupoid with
a Haar system. Denote this groupoid by G. The Haar system α on G is constructed using λ.
Furthermore, X is an equivalence between (G,α) and (H,β). Corollary 2.2.10 is a consequence of
Proposition 2.2.9, which says that C∗(G,α) ' K(H(X)).

The key ingredient here is the groupoid structure of X ∗X/H . What happens if freeness is
dropped?

In that case, X ∗ X/H need not be a groupoid. However, Theorem 2.2.19 says that if X is
a proper H-space with an invariant family of measures λ, then we still have a C∗(H,β)-Hilbert
module H(X). However, we could not �nd an analogue of Corollary 2.2.10 in the literature.

We describe how to generate a C∗-algebra for the object X ∗X/H . An observation of Renault is
that X ∗X/H need not be a groupoid but is a spatial hypergroupoid. Spatial hypergroupoids gave
rise to the theory of representations of locally compact hypergroupoids with Haar system and their
C∗-algebras. This theory generalises the representation theory of locally compact groupoids. The
representation theory of locally compact hypergroupoids with Haar system is discussed in [17]. In
this section, we review a special and �rst case of hypergroupoids, namely, spatial hypergroupoids.
The content of the present section is from our work in [17].

3.3.1 A C∗-category of groupoids

For a groupoid H equipped with a Haar system β de�ne a *-category (see [43]) as follows:

Objects: Objects are pairs (X,λ) where X is a proper right H-space and λ is an H-invariant
family of measures.

Arrows: An arrow from (X,λ) to (Y, µ) is a triple (λ, f, µ) where f ∈ Cc((X ∗ Y )/H). Note that
the set of arrows between two objects is a complex vector space under pointwise addition
and scalar multiplication.
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Composition: The product of (λ, f, µ) and (µ, g, ν) is (λ, f ∗µ g, ν) where f ∗µ g is the convolution

(f ∗µ g)[x, z] :=
∫
f [x, y]g[y, z] dµsX(x)(y),

which is in Cc((X ∗ Y )/H).

Involution: For (λ, f, µ) the adjoint is (λ, f, µ)∗ = (µ, f∗, λ) with f∗[x, y] = f [y, x].

We denote this category by Cc(H).
To check that the convolution above is well-de�ned, it is enough to check that for �xed

x ∈ X the integral is taken over a compact set. We check this now. For �xed x ∈ X , let
φx : Y sX(x) → (X ∗ Y )/H be the map y 7→ [x, y]. This map is proper. The reason is the following:
if K ⊆ (X ∗ Y )/H is compact, then choose K ′ ⊆ X ∗ Y compact such that K ′/H = K. This can
be done, since the action of H on X ∗ Y is proper. But X ∗ Y ⊆ X × Y and Y sX(x) ⊆ Y are
closed, hence the map φ̄x : Y sX(x) → X ∗ Y , y 7→ (x, y) is proper. Now it can be checked that
(φx)−1(K) = (φ̄x)−1(K ′) ⊆ Y sX(x) where (φ̄x)−1(K ′) is compact. Thus the function y 7→ f [x, y] is
compactly supported, which implies that the integral in the de�nition of the convolution is taken
on a compact set.

The above operations generalise all of the formulae which appear for le� and right actions and
inner products in the theory of topological correspondences.

Identify (X ∗H)/H with X via the map [x, γ] 7→ xγ−1. Thus we identify H with (H ∗H)/H and
H(0) with H/H . Fix an object (X,λ) in Cc(H). Then i) the le� and right actions of Cc((X ∗X)/H)
and Cc(H) on Cc(X) , and ii) the Cc(H)-valued inner product on Cc(X) can be seen as product
in Cc(H). The following tables show the correspondence between action-inner product and
composition of arrows in Cc(H). The computations in these table need the above identi�cations
and sometime they resemble the computations we did on page 16 for the computation for the
family of measures βX (see Equation (1.3.26)), and the one on page 32 in Equation (1.6.29) where
we compute the family of measures along the quotient map (H ∗H)/H → H/H .

Below ∗〈,〉 and 〈,〉∗ denote the le� and right inner products, respectively. For h ∈ Cc(H) =
Cc((H ∗H)/H) and ξ, ζ ∈ Cc((X ∗H)/H) we make Table 3.1.

ξh(x) =
∫
ξ(xη−1)h(η) dβs(x)(η) ↔ ξh[x, s(x)] =

∫
ξ[x, η]h[η, s(η)] dβ−1

s(x)(η)
〈ξ , ζ〉∗ (η) =

∫
ξ(x)ζ(xη) dλr(η)(x)↔〈ξ , ζ〉∗ [η, s(η)] =

∫
ξ∗[η, x]ζ[x, s(η)] dλs(η)(x)

Table 3.1: Equivalence of operations

In general, f ∈ Cc((X ∗ X)/H) is composable with ζ ∈ Cc(X) = Cc((X ∗ H)/H) and the
composite f ∗λ ζ ∈ Cc(X) = Cc((X ∗H)/H). When the action of H is free, the composite f ∗λ g is
a very well-know formula in the theory of groupoid equivalences. We discuss it ahead.

Assume that the action of H on X is free, then (X ∗X)/H is a groupoid with a Haar system
(Proposition 2.2.9) which we denote by (G,α). The Haar system α is derived from λ. If f ∈ Cc(G)
and ζ ∈ Cc(X), then f ∗λ ζ is the le� action of Cc(G) on Cc(X) as in Equation (2.2.2). The
C∗(G)-valued inner product on Cc(X) is also a special case of composition of arrows in Cc(H).
Table 3.2 gives the correspondence between these operations. In Table 3.2, ξ, ζ ∈ Cc((X ∗H)/H)
and f ∈ Cc(X ∗X/H) = Cc(G).
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fζ(x) =
∫
f [x, y]ζ(y) dλs(x)(y) ↔ fζ[x, s(x)] =

∫
f [x, y]ζ[y, s(y)] dλs(x)(y)

∗〈ξ , ζ〉[x, y] =
∫
ξ(xη−1)ζ(yη−1) dβ−1

sX(x)(η)↔∗〈ξ , ζ〉[x, y] =
∫
ξ[x, η]ζ∗[η, y] dβ−1

sY (y)=s(x)(η)

Table 3.2: Equivalence of operations

The equation ∗〈ξ , ζ〉[x, y] =
∫
ξ(xη−1)ζ(yη−1) dβ−1

sX(x)(η) in Table 3.2 needs an explanation. The
inner product formula in Equation 2.2.3 is meant for the le� invariant families of measures and le�
Haar systems. Now we are using the right invariant settings. Hence the appropriate version of
Equation 2.2.3 for the right invariant families of measures is

∗〈ξ , ζ〉(γ) =
∫
ξ(γtη−1)ζ(tη−1) dβ−1

sX(t)(η), (3.3.1)

where f, ζ are as in the table, γ ∈ G, x ∈ X and η ∈ H . As usual, t can be replace by any element in
the H-orbit of t. Recall the action of [x, y] ∈ G on z ∈ X from Proposition 2.2.9, that is, [x, y]z = xγ
where γ ∈ H is the unique element with z = yγ. Substituting γ = [x, y] in Equation (3.3.1) and then
choosing y as the representative in the H-orbit of y (we can choose y, see the comment below
Equation (3.3.1) which is due to discussion at end of page 11 of [28]), we get

∗〈ξ , ζ〉[x, y] =
∫
ξ([x, y]yη−1)ζ(yη−1) dβ−1

sY (y)(η) =
∫
ξ(xη−1)ζ(yη−1) dβ−1

sY (y)=sX(x)(η).

Now we come back to the case when the action of H on X is proper but not free. For
f, g ∈ Cc(X∗X/H) the convolution f ∗λg ∈ Cc(X∗X/H) de�nes a convolution and f∗[x, y] = f [y, x]
de�nes the involution. The convolution and the involution makes Cc((X ∗X)/H) into a *-algebra.
This is an important observation. For a free H-space X , these operation give the convolution
*-algebra Cc(G) for the groupoid G = (X ∗X)/H . To see this note that [x, y]−1 = [y, x] in G.

Lemma 3.3.2 ( [17], Lemma 2.1). The operations on Cc(G) described above are well de�ned and
they make Cc(G) into a *-category.

Here is a small comment on the above lemma: As seen at the beginning of this section, the
properness of the action makes the operation well-de�ned. An important observation is that for
f ∈ Cc((X ∗ Y )/H), the arrow f∗ ∈ Cc((Y ∗X)/H) produces the conjugate arrow.

Plan: Our plan is to de�ne a C∗-norm on this category and complete it to a C∗-category.
We extend the technique used in the proof of Theorem 2.2.19. We recall what we did there.
Given a proper H-space X and an invariant family of measures λ on X , we showed 〈f , f〉 is
positive in C∗(H,β). To do this, given a representation (m,H, π) of (H,β), we de�ne an operator
|f 〉〉 : L2(H(0),m(β),H)→ L2(X/H,m(λ),HX) and its adjoint 〈〈f |. Here m is a transverse measure
class. Finally, we showed that 〈f , f〉 = 〈〈f | ◦ |f〉〉 is a positive operator on L2(H(0),m(β),H). We
generalise this setup. Let (X,λ) and (Y, µ) be two objects in Cc(H). If f is an arrow from (X,λ) to
(Y, µ) and (m,H, π) is a representation of (H,β), we de�ne operators |f 〉〉 : L2(X/H,m(λ),HX)→
L2(Y/H,m(µ),HY ) and 〈〈f | : L2(Y/H,m(µ),HY ) → L2(X/H,m(λ),HX). Then we show that
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they are adjoints of each other. Using the positivity of 〈〈f | ◦ |f〉〉 for every representation we de�ne
a C∗-norm.

We proceed to the concrete formulation of the above plan now. Let (m,H, π) be a representation
of (H,β), where m is a transverse measure class for H , H → H(0) is a measurable Hilbert bundle
with separable �bres and π is an action of H on H. Let X be a proper right H-space carrying an
invariant family of measures λ. We know that m induces a measure class m(λ) on X/H . Let HX
denote the Hilbert bundle s∗X(H)/H → X/H , similar to the one in Section 2.2.2. For an arrow
(λ, f, µ) : (X,λ)→ (Y, β), de�ne the operator L(λ, f, µ) : H(λ)→ H(µ) by

〈
ζ
√
δ , L(λ, f, µ)η

√
κ
〉

=
∫
f [x, y] 〈ζ[x] , η[y]〉

√
d(δ ◦ [µ1])
d(κ ◦ [λ2])d(κ ◦ [λ2])([x, y]).

Here µ1 and λ2 are de�ned like α1 and α2 in Equation (1.6.27). Fubini’s Theorem implies
λ◦µ1 = µ◦λ2, and then the coherence of m gives that δ ◦ [µ1] ∼ κ◦ [λ2]. Hence the Radon-Nikodym
derivative above makes sense.

This satis�es the Cauchy-Schwarz inequality (see page 80 of [34]):

||L(λ, f, µ)|| ≤ max
(

sup
x

∫
|f [x, y]| dµsX(x)(y), sup

y

∫
|f [x, y]| dλsY (y)(x)

)
.

Note that the term on the right side of the above equality is �nite, since both µ and λ are continuous
families of measure and f is continuous with a compact support. De�ne the I-norm of f as the
term max

(
supx

∫
|f [x, y]|dµsX(x)(y), supy

∫
|f [x, y]|dλsY (y)(x)

)
.

Theorem 3.3.3 (Theorem 2.2, [17]). 1. Let (H,m) be a unitary representation of a locally com-
pact groupoid G. Then the above formulae de�ne a representation L of the *-category Cc(H),
called integrated representation, which is continuous for the inductive limit topology and
bounded for the I-norm.

2. Let (G,α) be a second countable locally compact groupoid with Haar system. Every repre-
sentation of the *-algebra Cc(G,α) in a separable Hilbert space that is non-degenerate and
continuous for the inductive limit topology is equivalent to an integrated representation.

Remark 3.3.4. Let (X,λ), (Y, µ) and (Z, ν) be objects in Cc(H,β). Then the formulae above along
with Theorem 3.3.3 imply that each C∗(X ∗X/H) is a C∗-algebra and that C∗(X ∗Y/H) is a Hilbert
C∗(X ∗X/H)-C∗(Y ∗ Y/H)-bimodule.

We know that X ∗X is a proper H-space. We observe that for f, g ∈ Cc(X ∗X), f ∗β g =
BX∗X(f ⊗ g), where BX∗X is the integration function associated with the family of measures βX∗X
along the quotient map X ∗X → X ∗X/H (see Proposition 1.3.21). Since BX∗X is a continuous
surjection, which follows from Proposition 1.3.21, the set of function I := {f ∗β g : f, g ∈ Cc(X)} ⊆
Cc((X ∗X)/H) is dense. But the second entry of Table 3.2 says that I = {∗〈f , g〉 : f, g ∈ Cc(X)}.
Hence we may conclude that H(X) is full as le� Hilbert C∗((X ∗X)/H)-module.

Let A and B be C∗-algebras. An A-B-bimodule H is called a Hilbert A-B-bimodule if H is a
right Hilbert A-module, le� Hilbert B-module, A acts on H by B-adjointable operators and B
acts on H by A-adjointable operators and ∗〈x , y〉z = x 〈y , z〉∗, where x, y, z ∈ H and ∗〈,〉 and 〈,〉∗
have the obvious meaning.
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Remark 3.3.5. Theorem 2.2.19 is a consequence of Theorem 3.3.3 now. This can be seen by the
identi�cations in Table 3.1.

Proposition 3.3.6. Let X be a proper H-space and let λ be an invariant family of measures on
X . Let C∗(X ∗X/H) be the completion of the *-algebra Cc((X ∗X)/H) as in Theorem 3.3.3. Then
C∗(X ∗X/H) ' K(H(X,λ)).

Proof. Remark 3.3.4 gives that C∗((X ∗ X)/H) is a C∗-algebra, and Remark 3.3.5 gives that
C∗((X ∗H)/H) ' H(X). Putting this together and looking at the *-algebras Cc((X ∗X)/H) and
Cc(H ∗H)/H) = Cc(H) one can conclude that C∗(X ∗X/H) ' K(H(X,λ)).

Proposition 3.3.6 answers the question we raised at the beginning of this section.

3.3.2 Hypergroupoids

Motivation: Hypergroups are structures which resemble groups, except that the product of two
elements is not an element, but a probability measure on the set ( [18]). Equivalently, a hypergroup
is a convolution algebra of measures on a space with certain properties, see [19]. We adopt the
latter notion that a hypergroup is a convolution algebra of measures on a space. The representation
theory of hypergroups is studied thoroughly, for example, in [13].

For a hypergroup L with a Haar system, the space of compactly supported functions Cc(L) is a
convolution algebra. A similar convolution can be de�ned on Cc(X ∗X/H) for a proper H-space X .
The notion of hypergroupoid is conceptually important, since it o�ers the explanation for the
*-algera structure of Cc(X ∗X/H) and the C∗-algebra it gives as in Theorem 3.3.3. Remark 3.3.4
shows that the space Cc(X ∗X/H) carries a convolution and an involution structure. The category
Cc(H,β) gives Cc(X ∗X/H) these structure. The category Cc(H,β) also gives Cc(X) a pre-Hilbert
Cc(X ∗X/H)-Cc(H)-bimodule structure. The completion of Cc(H,β) completes Cc(X ∗X/H) into
C∗-algebra. While this all is happening in the algebraic settings, it is a good question to ask, if
there is any geometric object whose C∗-algebra is C∗(X ∗X/H). The answer looks a�rmative,
because if X is a free H-space, then we know that X ∗X/H is a groupoid with Haar system and
C∗(X ∗X/H) is a groupoids C∗-algebra.

The answer to the question above is that yes, there is a geometrical object called hypergroupoid
with Haar system which gives rise to the C∗-algebra C∗(X ∗X/H). We introduce this structure
brie�y. The remaining part of the section is based on [35].

Following the approach in [19], this convolution structure can be abstractly interpreted as a
hypergroupoid structure on X ∗X/H .

De�nition 3.3.7 (Hypergroupoid; De�nition 4.1 in [35]). A locally compact hypergroupoid is a
pair (H,H(0)) of locally compact spaces with continuous open surjective range and source maps
r, s : H → H(0), a continuous injection i : H(0) → H such that r ◦ i and s ◦ i are the identity map, a
continuous involution inv : h→ h∗ of H such that r ◦ inv = s, and a product map m : H(2) → P (H),
where H(2) is the set of composable pairs, such that

i) the support of m(x, y) is a compact subset of Hr(x)
s(x) ;

ii) for all (x, y, z) ∈ H(3) ∫ m(x, ·) dm(y, z) =
∫
m(·, z) dm(x, y);
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iii) for all x ∈ H , m(r(x), x) = m(x, s(x)) = δx;

iv) for all (x, y) ∈ H(2), m(x, y)∗ = m(y∗, x∗) where m(x, y)∗ is the image of the measure m(x, y)
by the involution;

v) x = y∗ if and only if the support of m(x, y) meets i(H(0));

vi) for all f ∈ Cc(H) and ε > 0 there exists a neighbourhood U of i(H(0)) in H such that
|f(x)− f(y∗)| ≤ ε if the support of m(x, y) meets U ;

vii) for all x ∈ H the le� translation operator L(x) is de�ned by

(L(x)f)(y) = f(x∗ ∗ y) =
∫
f dm(x∗, y).

sends Cc(HsX(x)) to Cc(HrX(x)).

De�nition 3.3.8 (Haar system for a hypergroupoid; De�nition 4.3 [35]). A Haar system on a locally
compact hypergroupoid H is a system of Radon measures λ = {λu}u∈H(0) for the range map such
that

i) for all f ∈ Cc(H), u ∈ H(0) the map u 7→
∫
f dλu is continuous;

ii) for all f, g ∈ Cc(H) and all x ∈ H ,∫
f(x ∗ y)g(y) dλs(x)(y) =

∫
f(y)g(x∗ ∗ y) dλr(x)(y);

iii) for all f, g ∈ Cc(H), x ∈ H , the map x 7→
∫
f(x ∗ y)g(y) dλs(x)(y) is continuous with compact

support.

Here
f(x ∗ y) :=

∫
f dm(x, y).

In [35], for a hypergroupoid with a Haar system, Renault introduces the integration-disintegration
techniques, and studies the representation theory of hypergroupoids with a Haar system. Eventually,
he uses this machinery to construct C∗-algebras for hypergroupoids with Haar systems. We state
the result which was mentioned in the motivating discussion at the beginning of this subsection.

Theorem 3.3.9 (Theorem 4.5 [35]). Let (H,β) be a locally compact groupoid endowed with a Haar
system and let (X,λ) be a proper right H-space with an H-invariant family of measures. Then
X ∗X/H is a locally compact hypergroupoid with a Haar system.

Main ideas involved in the theorem are as follows: we call [x, y], [w, z] ∈ X ∗X/H composable
if and only if y = w, and then the product is the probability measure de�ned as follows: Two pairs
([x, y], [y, z]), ([x′, y′], [y′, z′]) ∈ X∗X/H are equal if and only if there is a pair (η, γ) ∈ H(y)×sH ,rHH
with x′ = xη, y′ = yη and z′ = zγη. Here H(y) := {γ ∈ H : yγ = y}. Clearly, if there is such a pair,
then [x, y]− [x′, y′]] and y′ = yη = γη. Hence [y, z] = [y′z′]. Conversely, [x′, y′] = [x, y] implies that
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there is η ∈ H with x′ = xη and y′ = yη, and [y, z] = [y′, z′] implies that there is τ with y′ = yτ
and z = zτ . Then γ = τη−1 ∈ H(y) and z′ = zτ = zγη. The isotropy group H(y) is compact,
because if Ψ: X ∗H → X ×X is the proper map (x, η) 7→ (x, xη), then H(y) = Ψ−1({y} × {y}).
Let κy be the le� invariant probability measure on H(y). Then for [x, y], [y, z] ∈ X ∗X/H and
f ∈ Cc(X ∗X/H) de�ne ∫

f dm[x,y][y,z] =
∫
f [xγ, z] dκy(γ).

This makes X ∗X/H into a hypergroupoid.
The family of measures λ is used to de�ne the Haar system λ̄ on X ∗X/H . For f ∈ Cc(X ∗X/H)∫

f dλ̄[x] =
∫
f([x, y]) dλsX(x).

We conclude the description of the hypergroupoid structure of X ∗X/H here, which is the
answer to the question we asked at the beginning of this section, namely, what is the geometric
object that gives rise to C∗((X ∗ X)/H) which obtained by completing the category Cc(H,β)
abstractly.

3.4 The Brauer group of a groupoid

The set of isomorphism classes of certain equivariant continuous bundles over the space of units of
a groupoid G can be made into a group. This group is denoted by Br(G) and is called the Brauer
group of G. Elements of the Brauer group of G are equivalence classes of equivariant continuous
trace C∗-algebras C0(G(0),A) with spectrum G(0).

In [21], the authors de�ne the Brauer group for locally compact groupoids and prove two
isomorphism theorems for it. The �rst isomorphism, which is our point of attention, says that
an equivalence X from H to G produces an isomorphism from Br(G) to Br(H). We show that a
Hilsum–Skandalis morphism from H to G gives a homomorphism from Br(G) to Br(H).

Important convention: In this section we shall work with locally compact, Hausdor�, second
countable groupoids which need not have Haar systems. Only the topological properties of the
groupoids will be used. We shall work with Hilsum–Skandalis morphism in this section and not
the topological correspondences we have beed discussing so far. Since the right anchor map in a
Hilsum-Skandalis morphism is not required to be open, there usually cannot be any continuous
invariant family of measures with full support. So Hilsum-Skandalis morphisms are quite di�erent
from the topological correspondences introduced here. The following results show, therefore, that
Brauer groups and groupoid C*-algebras are functorial for very di�erent kinds of morphisms of
groupoids.

3.4.1 The Brauer group

De�nition 3.4.1 (Hilsum–Skandalis morphism). A Hilsum–Skandalis morphism from a groupoid H
to a groupoid G is an H-G-bispace X such that
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i) the action of G is free and proper;

ii) the le� momentum map induces a bijection from X/G to H(0).

This is a bibundle functor in the notation of Meyer and Zhu [27]. The terminology ‘Hilsum–
Skandalis morphism’ is originally from geometry and we continue using it.

If the action of H is proper and sX is open, then an Hilsum–Skandalis morphism is a corre-
spondence in the sense of Macho Stadler and O’uchi as in Example 3.1.8.

De�nition 3.4.2 (Upper semicontinuous Banach bundle). An upper semicontinuous Banach bundle
over a topological space X is a topological space A together with a continuous open surjection
πX : A → X and complex Banach space structures on each �bre Ax := p−1(x) satisfying the
following axioms:

i) if A ∗ A := {(a, b) ∈ A×A : p(a) = p(b)}, then (a, b) 7→ a+ b is continuous from A ∗ A to A;

ii) for each λ ∈ C, the map A → A sending a 7→ λa is continuous;

iii) if {ai} is a net in A, with p(ai)→ x and ||a|| → 0, then ai → 0 ∈ Ax;

iv) the map a 7→ ||a|| is upper semicontinuous from A to R+.

We abbreviate the phrase “upper semicontinuous” as u. s. c.. We call A the total space of the
u. s. c. Banach bundle, X the base space and πX the bundle projection of the bundle. In the fourth
condition, if the norm function is continuous instead of being u. s. c., then the bundle is called
a continuous Banach bundle. In this section, we shall be working with continuous Banach bundles
only.

De�nition 3.4.3. A C∗-bundle over X is a Banach bundle πX : A → X such that each �bre is a
C∗-algebra satisfying, in addition to all axioms in De�nition 3.4.2, the following axioms.

v) The map (a, b) 7→ ab is continuous from A ∗ A → A.

vi) The map a 7→ a∗ is continuous from A → A.

An elementary C∗-algebra is a C∗-algebra which is isomorphic to the compact operators on a
Hilbert space.

De�nition 3.4.4 (Elementary C∗-bundle). A C∗-bundle is called elementary if every �bre is an
elementary C∗-algebra.

De�nition 3.4.5 (Fell’s condition). An elementary C∗-bundle over a space X satis�es Fell’s condition
if each x ∈ X has a neighbourhood U such that there is a section f for which f(y) is a rank-one
projection for each y ∈ U .

Proposition 10.5.8 of [12] says that an elementary C∗-bundle satis�es Fell’s condition if and only
if its algebra of sections vanishing at in�nity is a continuous trace C∗-algebra.
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De�nition 3.4.6 (Right action of a groupoid on a continuous Banach bundle). Let πX : E → X be a
Banach bundle, let G be a groupoid acting on X on the right. A G-action on E is a G-action on X
by isometric isomorphisms αx,γ : Exγ → Ex for each γ ∈ G such that

i) αx,s(x) = idEx for each s(x) ∈ G(0);

ii) if γ and γ′ are composable then αγγ′ = αγ ◦ αγ′ ;

iii) α makes E into a continuous le� G-space.

There is a similar de�nition for a le� G-space X . When G acts on a Banach bundle E , then we
say that E is a G-bundle.

De�nition 3.4.7 (C∗-G-bundle). A G-C∗-bundle is a pair (A, α) where πG(0) : A → G(0) is a
G-bundle and α is an action of G on A by *-isomorphisms.

De�nition 3.4.8. For a groupoid G, let Br(G) denote the collection of continuous C∗-G-bundles
(A, α), where A is an elementary C∗-bundle with separable �bres and which satis�es Fell’s
conditions.

Let H and G be groupoids, let X be a Hilsum–Skandalis morphism from H to G and let
(p : A → G(0), α) be a G-C∗-bundle. We induce an H-bundle AX as follows: De�ne the �bre
product s∗X(A) := {(x, a) ∈ X ×A : sX(x) = p(a)}. De�ne an action of G on this �bre product by

(x, a)γ = (xγ, αγ−1(a)).

Then s∗X(A) becomes a principal G-space. Let AX denote the quotient of s∗X(A) by the
G-action, and denote the class of (x, a) ∈ s∗X(A) in the quotient by [x, a]. We show that AX is an
H-C∗-bundle.

The C∗-bundle: The assignment [x, a] 7→ rX(x) de�nes a surjection from AX to H(0). If rX is
an open map, then this surjection is also open [21, the discussion a�er De�nition 2.14]. The map
a 7→ [x, a] de�nes an isomorphism from AsX(x) to AXx showing that each �bre of the surjection
pX : AX → H(0) is a C∗-algebra.

H-action: For η ∈ H de�ne αXη : AXx → AXηx) by

αXη [x, a] := [ηx, a].

Proposition 3.4.9. Let H and G be groupoids and let X be a Hilsum–Skandalis morphism from H
to G. If (A,α) ∈ Br(G), then (AX , αX) ∈ Br(H).

Proof. The proof is the same as the proof of Proposition 2.15 in [21]. To prove continuity of the
addition on AX the freeness of the G-action and condition iii) in the de�nition of a Hilsum–Skandalis
morphism in De�nition 3.4.1 are used.

The following is De�nition 3.1 in [21]
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De�nition 3.4.10 (Morita equivalence of G-C∗-bundles). Two G-C∗-bundles (A, α) and (B, β) are
Morita equivalent if there is an A-B-imprimitivity bundle πX : X → X with an action V of G by
isomorphisms such that

A 〈Vγ(x) , Vγ(y)〉 = αγ(A〈x , y〉),
〈Vγ(x) , Vγ(y)〉B = βγ(〈x , y〉B).

In this case, we say that (X , V ) implements a Morita equivalence between (A, α) and (B, β) and
write (A, α) ∼(X ,V ) (B, β). Morita equivalence is an equivalence relation of G-C∗-bundles [21, Lemma
3.2].

De�nition 3.4.11 (The Brauer group). The set Br(G) of Morita equivalence classes of bundles in
Br(G) is called the Brauer group of G.

Let A and B be elementary C∗-bundles over G(0). For every (u, v) ∈ G(0) ×G(0), let T ′(u,v) :=
Au⊗Bv , where Au⊗Bv is the minimal tensor product. For φ ∈ Γ0(G(0);A) and ψ ∈ Γ0(G(0);A) the
map (u, v) 7→ ||φ(u)⊗ψ(v)|| is continuous. The set {φ(u)⊗ψ(v) : φ ∈ Γ0(G(0);A), ψ ∈ Γ0(G(0);B)}
is dense in T(u,v) for each (v, u) ∈ G(0) ×G(0). We appeal to Theorem II.13.18 [14], which ensures
that there is a Banach bundle T ′ over G(0) × G(0) that has �bres T ′(u,v) so that the functions

(u, v) 7→ φ(u) ⊗ ψ(v) generate Γ0(G(0) × G(0); T ′). We identify G(0) inside G(0) × G(0) via the
diagonal embedding u 7→ (u, u) and denote the restriction of the bundle T ′ to G(0) by T . To get a
better idea about the �bres of the bundles, we denote the bundle T ′ by A⊗ B and the bundle T
by A⊗G(0) B.

The bundle A⊗ B and its restriction A⊗G(0) B are both elementary C∗-bundles. If A and B
satisfy Fell’s condition, then so do A⊗ B and A⊗G(0) B.

Restriction of the action α⊗ β = {αu ⊗ βv}u,v∈G(0) to G(0) gives an action of G on A⊗G(0) B.
The continuity of the action is shown in [21, page 18].

De�nition 3.4.12 (Conjugate Banach bundle). Let (p : A → G(0), α) be a G-C∗-bundle. The conjugate
G-C∗-bundle of (A, α) is given by (p̄ : Ā → G(0), ᾱ) where

i) Ā = A as a topological space;

ii) id : A → Ā is the identity map, p̄ : Ā → G(0) is de�ned by p̄(id(a)) = id(p(a)), the �bre
Āid(p(a)) is identi�ed with the conjugate of Ap(a);

iii) ᾱγ(id(a)) := id(αγ(a));

If (A, α) ∈ Br(G) then (Ā, ᾱ) ∈ Br(G).
Let I denote the trivial line bundle G(0)×C with the G-action I given by (s(γ), z)γ = (r(γ), z).

Theorem 3.4.13. The binary operation

[A, α][B, β] = [A⊗G(0) B, α⊗G(0) β], (3.4.14)

is well de�ned on Br(G). Furthermore, Br(G) can be made into an abelian group where
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a. the addition is de�ned by (3.4.14);

b. the identity element is the class [I, I];

c. the inverse of [A,α] is given by [Ā, ᾱ].

Proof. Use Proposition 3.6 and Theorem 3.7 of [21].

Theorem 3.4.15. If X is a Hilsum–Skandalis morphism from H to G then [A,α] 7→ [AX , αX ] is a
homomorphism from Br(G) to Br(H).

Proof. The proof of Theorem 4.1 in [21] goes through.

3.5 Correspondences and KK-theory

A result of Renault from [33] says that a real 1-cocycle c, that is, an element of Z1(G;R) gives
an automorphism of C∗(G). In [26], Mesland shows that this automorphism along with the
C∗-correspondence H(G) from C∗(G) to C∗(ker(c)) obtained by the obvious actions, gives an
element of KKR(C∗(G),C∗(ker(c)).

In this section, we extend this result of Mesland using our de�nition of topological correspon-
dences.

Mesland uses the theme that (G, IdG) is a topological correspondence from G to ker(c). We
shall assume that an open measured subgroupoid H ⊆ G is given, such that the Haar system of G
is H-quasi-invariant and there is a real continuous 1-cocycle c on G. Out of this data, we shall
construct an R-equivariant unbounded KK-cycle going from C∗(H) to C∗(ker(c)). In this section,
cocycle means a continuous 1-cocycle, unless stated otherwise.

3.5.1 Unbounded KK-theory and construction of odd KK-cycles

Let R be a group, let A and B be C∗-algebras.

De�nition 3.5.1 (Equivariant Hilbert module). If B is an R-C∗-algebra, then a Hilbert B-module H
is called R-equivariant if H is equipped with a strictly continuous R-action satisfying

i) t(eb) = (te)tb,

ii) 〈te1 , te2〉 = t 〈e1 , e2〉

for all t ∈ R, e, e2, e2 ∈ E and b ∈ B.

In this case, we call H a Hilbert R-B-module.
Let A and B be C∗-algebras and let H be a C∗-correspondence from A to B. Assume that

A and B are R-C∗-algebras and that H is a Hilbert R-B-module. Let θHA : A → BB(H) be the
*-homomorphism which makes H into a C∗-correspondence from A to B. Let aAR : R→ Aut(A) be
the homomorphism that gives the action of R on A and let UHR : R→ UH(H) be the homomorphism
that gives the action of R on H.
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De�nition 3.5.2. The action of A on H is R-equivariant if for every t ∈ R and every a ∈ A we
have

θHA (aAR(t)(a)) = UHR (t) θHA (a)UHR (t)−1.

De�nition 3.5.3. Let A and B be R-C∗-algebras. An R-equivariant C∗-correspondence from A to
B is a C∗-correspondence H from A to B such that

i) H is a Hilbert R-B-module,

ii) the action of A on H is R-equivariant.

In this case, we call H an R-C∗-correspondence from A to B or simply an equivariant
C∗-correspondence from A to B, when the group is obvious.

De�nition 3.5.4 (Regular operator [2]). Let H be a Hilbert B-module. A densely de�ned closed
operator D : Dom(D)→ E is called regular if

i) D∗ is densely de�ned in H,

ii) 1 +DD∗ has dense range.

Such an operator is automatically B-linear, and Dom(D) is a B-submodule of H. There are two
bounded operators related to D, which are called the resolvent2 of D and the bounded transform.

They are given as follows:
the resolvent: r(D) := (1 +D∗D)−1/2.

the bounded transform: b(D) := D(1 +D∗D)−1/2.

De�nition 3.5.5. An R-equivariant odd unbounded bimodule (or an odd unbounded KK-cycle)
from an R-algebra A to an R-algebra B is a pair (E,D), where H is an R-C∗-correspondence
from A to B together with an unbounded regular operator D on H such that:

i. [D, a] ∈ B(E) for all a in a dense sub-algebra of A;

ii. a · r(D) ∈ KB(E) for all a in a dense sub-algebra of A;

iii. the map g 7→ D − gDg−1 is a strictly continuous map R→ B(E).

Let (G,λ, σ) be a measured groupoid, let c ∈ Z1(G,R) and let K denote the kernel of the
cocycle, that is, K := {γ ∈ G : c(γ) = 0}. Then K is a closed subgroupoid of G with G(0) = K(0)

which acts on G from the le� as well as from the right by multiplication. The momentum maps for
these actions are the range map and the source map from K to G(0) = K(0), respectively.

We recall some of Mesland’s de�nitions:

De�nition 3.5.6. A cocycle c ∈ Z1(G;R) is regular if ker(c) := H admits a Haar system, and c is
exact if it is regular and the map

r × c : G→ G(0) × R,
γ 7→(r(γ), c(γ))

is a quotient map onto its image.
2This is not a good terminology, since the terms resolvent and resolvent set are used in the elementary theory of

C∗-algebras . But we adopt the terminology that Mesland created. Baaj and Julg [2] do not name the operators.
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The term exact is not an appropriate term here, because it means something di�erent in the
groupoid cohomology. I am not aware if these two meanings are related to each other. But we
shall stick to the terminology in [26] in this section.

An important observation regarding exact cocycles is:

Lemma 3.5.7 ( [26] Lemma 3.1.3). If c is an exact real cocycle on G, then the map γ 7→ (r(γ), c(γ))
from G/K to G(0) × R is a homeomorphism onto its image.

Assume that c is a regular cocycle and let β be a Haar system on the subgroupoid ker(c) = K .
Then (G,λ−1) is a right K-space with the right multiplication action and λ−1 is a continuous
K-invariant family of measures. The inner product of f, g ∈ Cc(G) is simply (f∗ ∗ g)|K . Proposi-
tion 5.1 in [33] says that for each t ∈ R̂ = R a cocycle c ∈ Z1(G,R) gives an automorphism ut of
the *-algebra Cc(G) by the formula

ut(f)(γ) = eit c(γ)f(γ).

Furthermore, the proposition also says that this automorphism extends to an automorphism of
C∗(G). Proposition 5.3 in the same book says that the group of automorphisms {ut}t∈R is inner
if c ∈ B1(G,R). Similar statements hold when C∗(G,λ) is replaced by C∗r(G,λ). Since K is a
subgroupoid of G, the cocycle c can be restricted to a cocycle of K , which we denote by c
again (instead of c|K ). Since cK = 0, ut|Cc(K) = Id for all t ∈ R gives a 1-parameter group of
automorphisms of C∗(K). Thus C∗(G) and C∗(K) become R-algebras.

Since K ⊆ G is closed, G is a proper right K-space (see Example 3.1.16). λ−1 is a right
K-invariant family of measures on G. Complete the right Cc(K,β)-module Cc(G,λ−1) into a
Hilbert C∗(K,β)-module, which we denote by H(G). Proposition 3.6 of [26] shows that for each
t ∈ R the operator ut : Cc(G)→ Cc(G) de�ned above extends to a 1-parameter group of unitaries
in BC∗(K)(H(G)) (or in BC∗r(K)(Hr(G)).

Let H be an open subgroupoid of G such that G(0) = H(0) and let α be a Haar system
for H . Furthermore, assume that λu is (H,α)-quasi-invariant for each u ∈ G(0). Let ∆u be
the modular function for the quasi-invariance λu. For notational convenience we shall drop the
su�x u and simply write ∆. Let H act on G by le� multiplication. Then (G,λ,∆) is a topological
correspondence from H to K. The family {ut}t∈R is a 1-parameter group of automorphisms of
C∗(H), as described previously. We abuse the notation and keep writing ut for the actions of R on
Cc(H), C∗(H) or C∗r(H).

Since H,K ⊆ G, in the computations below the subscripts to the sources and the range maps
do not matter a lot.

Proposition 3.5.8. Let (G,λ), (H,α), c and ut be as above. Then ut extends to a 1-parameter group
of unitaries in C∗(H) (or C∗r(H)). Furthermore,H(G) (respectively,Hr(G)) is an R-C∗-correspondence
from C∗(H,α) to C∗(K,β). A similar statement holds for the reduced C∗-algebras.

Proof. The �rst claim is a direct consequence of Proposition 5.1 in [33]. We check that the conditions
in De�nition 3.5.3 hold.
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Let f ∈ Cc(G) and ψ ∈ Cc(K), then the following calculations con�rm that Condition (i) in
De�nition 3.5.3 holds.

(ut(fψ))(γ) = eitc(γ)
∫
f(γζ)ψ(ζ−1) dβsG(γ)(ζ)

=
∫

eitc(γζ)f(γζ) eitc(ζ−1)ψ(ζ−1) dβsG(γ)(ζ)

= (ut(f)ut(ψ))(γ).

If f, g ∈ Cc(G), then

〈ut(f) , ut(g)〉 (κ) =
∫
ut(f)(γ)ut(g)(γ−1κ) dλrK(κ)(γ)

=
∫

eitc(γ)f(γ) eitc(γ−1κ)(γ−1κ) dλrK(κ)(γ)

= eitc(κ)
∫
f(γ)(γ−1κ) dλrK(κ)(γ)

= eitc(κ) 〈f , g〉 (κ)
= ut(〈f , g〉)(κ)

Now we check Condition (ii) in the de�nition. We use a, θ and U instead of aC
∗(H,α)

R , θHC∗(H,α)
and UHR , respectively. Let φ ∈ Cc(H) and f ∈ Cc(G), then

(θ (a(t)(φ)) f) (γ) =
∫

a(t)(φ)(η) f(η−1γ) ∆1/2(η, γ) dαrG(γ)(η)

=
∫

eitc(η)φ(η) f(η−1γ) ∆1/2(η, γ) dαrG(γ)(η)

= eitc(γ)
∫
φ(η) eitc(γ−1η)f(η−1γ) ∆1/2(η, γ) dαrG(γ)(η)

= eitc(γ)
∫
φ(η)

(
U(t)−1(f)

)
(η−1γ) ∆1/2(η, γ) dαrG(γ)(η)

= eitc(γ)θ(φ)
(
U(t)−1(f)

)
(γ)

= U(t)
(
θ(φ)U(t)−1(f)

)
(γ).

We need an equivariant operator on H(G) which we get from the cocycle c as follows:

Proposition 3.5.9. Let G, c and K be as above. Then the operator

D :Cc(G)→ Cc(G);
D :f(γ) 7→ c(γ)f(γ),

is a Cc(K)-linear derivation of Cc(G) considered as a bimodule over itself. Moreover, it extends to
a self-adjoint regular operator on the C∗(K)-Hilbert module H(G).

Proof. Similar to the proof of Proposition 3.8 in [26]. The only di�erence is that we have to plug-in
the adjoining function for the le� action.
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Finally, all these pieces are put together in the following theorem:

Theorem 3.5.10. Let (G,λ) be a second countable locally compact Hausdor� groupoid with a Haar
system, let c be a real exact cocycle onG and letH be an open subgroupoid of G such thatH(0) = G(0).
Let α be a Haar system for H . If for each e ∈ G(0), the measure λe is (H,α)-quasi-invariant, then
the operator D in Proposition 3.5.9 makes the R-equivariant correspondence (H(G), D) into an odd
R-equivariant unbounded KK-bimodule from C∗(H) to C∗(K).

Proof. Given φ ∈ Cc(H), we use Proposition 3.5.9 to see that [D,φ]g = D(φ) ∗ g for all g ∈ Cc(G).
Hence using the same proposition for each φ, we can see that the commutator [D,φ] is bounded.

Next we show that φ(1 + DD∗)−1 has a C∗(K)-compact resolvent. φ(1 + DD∗)−1 acts on
g ∈ Cc(G) as:

φ(1 +DD∗)−1 ◦ g(ω) =
∫
G
f(γ)(1 + c2(γ−1ω))−1 ∆(γ, γ−1ω) dαr(ω)(γ).

Here ∆ is the adjoining function.
The action of K on G is free and proper. Using the standard theory of Morita equivalence we

can see that C∗(GnG/K) = KC∗(K)(H(G)). The action of Ψ ∈ Cc(GnG/K) on g is given by

Ψg(ω) =
∫
GnG/K

Ψ(γ′, [γ′′])g(γ′−1
ω) dλ2(γ′, [γ′′]),

where λ2 is the Haar system on GnG/K induced by λ on G. Since GnG/K is a transformation
groupoid, this Haar system can be found easily and the entries in the previous equation can be
simpli�ed. A�er the simpli�cation, the equation becomes:

Ψg(ω) =
∫
G

Ψ(γ, [γ−1ω])g(γ−1ω) dλr(ω)(γ).

Note that, since the measure on G is GnG/K-invariant, the adjoining function is the constant 1.
Looking at the simpli�ed version of the action of a compact operator, it is enough if for each
φ ∈ Cc(H) ⊆ Cc(G) the kernel

kφ(γ, [ω]) := φ(γ)(1 + c2(ω))−1 ∆(γ, ω)

is a norm limit of elements in Cc(GnG/K). In the rest of the proof, we write k instead of kφ.

The cocycle c induces a homomorphism c̄ : G/K → R. Lemma 3.5.7 identi�es G/K with its
image in G(0) × R. Using these facts, for n ∈ N de�ne subsets Kn of G/K as

Kn = rG(supp(φ)× R) ∩ c̄−1([−n, n]).

Then K0 ⊆ K1 ⊆ K2 ⊆ . . . is an increasing covering of rG(supp(φ)× R) ∩G/K by compact
sets. We can assume that the image of c is not a bounded subset of R and that Kn 6= Kn+1 for
any n. If Kn = Kn+1 for some n, then just renumber them. Since the action of K on G is free
and proper, we can take functions en ∈ C(G/K, [0, 1]) such that en = 1 on Kn and 0 outside Kn+1.
De�ne

kn(γ, [ω]) := en[ω]k(γ, [ω]).
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We show that the sequence {kn} is a Cauchy sequence in the I-norm. Then the sequence will be
Cauchy for the reduced C∗-norm and the full C∗-norm as well. Let n > m be natural numbers.

||kn − km|| = sup
[ω]∈G/K

∫
GnG/K

|kn(γ, [ω])− km(γ, [ω])|dλ[ω]
2 (γ, [ω])

= sup
[ω]∈G/K

∫
G
|kn(γ, [ω])− km(γ, [ω])|dλrG(ω)(γ)

= sup
[ω]∈G/K

∫
G
|(en − em)[ω] φ(γ)(1 + c2[ω])−1 ∆(γ, ω)|dλr(ω)(γ)

≤ m

1 +m2 sup
[ω]∈G/K

∫
G
|f(γ)|dλrG(ω)(γ)

<
1
m
||f ||I,r

Here ||||I,r is the right I-norm. One can work with λ−1 and prove a similar result for the le�
I-norm and �nally conclude that

||kn − km|| < 1
m
||f ||I .

By construction φ(1 +D2)−1∆ is the limit of this sequence.

It is clear that D is a generator of the R-action on H(G). Hence D commutes with the R-action,
so this KK-cycle is R-equivariant.

Proposition 3.5.11. Assume that we have the same data as in Theorem 3.5.10 and the same hy-
potheses. A similar result as in Theorem 3.5.10 holds for (Hr(G), Dr) from C∗r(H) to C∗r(K).

We developed this theorem keeping Example 3.1.7 and Example 3.1.13 in mind. Hence transfor-
mation groupoids of group actions provide good examples of this theorem.

Example 3.5.12. In Example 3.1.7, if K is the kernel of a homomorphism from G to R and H ⊆ G is
open, then we get an element of KKR(C∗(H),C∗(K)). If G is a discrete group, then H can be any
subgroup of G.

A concrete example is: let S1 oθ Z be the groupoid corresponding to the noncommutative
2-torus Aθ for an irrational θ ∈ R. Then the projection map onto the second factor π2 : S1nθZ→ Z
is an R-valued cocycle. For n ∈ N, this projection gives us an element of KKR(C∗(S1oθnZ), C0(S1)).
Example 3.5.13. Now we generalise the previous example using Example 3.1.13. Let G,H,K and X
be as In Example 3.1.13. Recall that G = X oG,H = X oH and K = X oK . If H ⊆ G is open and
K = ker(c) for a homomorphism from K→ R, then we get an element of KKR(C∗(H),C∗(K)).
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