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I  | General Introduction 

1.1 Economic importance of soil-borne phytopathogens 

Soil-borne plant pathogens, in particular fungi, pose a global threat to crop production (Péchy-

Tarr et al. 2008; Raaijmakers et al. 2009; Philippot et al. 2013). Plant species can be affected by 

various diseases such as root rot, root blackening, wilt, stunting or seedling damping-off and 

new diseases constantly appear (Haas & Defago 2005). An average yield loss of 7-15% was 

estimated for the most important food-crops maize, potato, rice, soybean and wheat (Oerke 

2006). Well known aggressive pathogens such as Fusarium, Pythium or Rhizoctonia can even 

cause losses up to 20-35% (Cook 1987; Cook, Schillinger & Christensen 2002; Smiley et al. 

2005), underlining the necessity for soil-borne disease control.  

Since pathogenic fungi are susceptible to heat, heat-steaming was a common practice in 

greenhouses to improve vegetable yields, but this technique got restricted due to increasing 

energy-costs (Raaijmakers et al. 2009). Chemical pesticides are rarely effective in controlling 

root diseases sustainably and besides high costs, concern for the environment and human 

health restricts their application (Baehler et al. 2005; Lugtenberg & Kamilova 2009). However, 

some more harmless pesticides are still in use, while their application has uncontrolled side-

effects on the whole microbial community (both, harmful and beneficial microorganisms are 

affected), e.g., their composition and development (Raaijmakers et al. 2009). Consequently, the 

interest in former cultural-practices such as crop rotation and tillage became renewed in order 

to reduce disease severity in a more sustainable and environmentally friendly way (Janvier et 

al. 2007). Crop rotation with non-hosts is effective for the suppression of rather specialist 

pathogens with a low saprophytic survival capacity (Cook et al. 2002; Janvier et al. 2007). 

Further, specific tillage practices (Sturz, Carter & Johnston 1997; Pankhurst et al. 2002), 

intercropping (Trenbath 1993) as well as residue destruction (Baird, Watson & Scruggs 2003) 

and organic amendments (Tilston, Pitt & Groenhof 2002) have decreased disease severity. 

Interestingly, also long-term mono-cropping accompanied by severe disease outbreaks can 

result in increased pathogen suppression (Weller et al. 2002; Postma, Scheper & Schilder 2010; 

Mendes et al. 2011). However, the link between cultural practices and disease suppression is 
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rarely made and it still remains challenging to unravel mechanisms linking crop management 

to the disease suppressive potential of soils (Janvier et al. 2007; addressed in Chapter 2.4). 

1.2 The potential of soils to suppress phytopathogens 

Suppressive soils are soils in which plant-disease severity is reduced or plants even resist certain 

diseases, although disease-causing pathogens are present (Haas & Defago 2005). In those soils, 

pathogens have low fitness, grow poorly and thus cause little damage to plants (Baker & Cook 

1974; Weller et al. 2002). Virtually all soils have the potential to suppress diseases to some 

extent, which is due to the overall activity of the autochthonous soil microbial community. 

Whereas, specific pathogen suppression is rather caused by a distinct biological mechanism 

(Weller et al. 2002). 

Most prominently, plant-pathogen antagonistic rhizobacteria have been discussed in respect of 

their potential to suppress pathogens (Garbeva, van Veen & van Elsas 2004; Janvier et al. 2007; 

van der Heijden, Bardgett & van Straalen 2008). Further, in addition to biotic factors, abiotic 

factors have been shown to alter disease suppressiveness of soils (Garbeva et al. 2004; Berg & 

Smalla 2009; Philippot et al. 2013). Pathogenic as well as pathogen antagonistic microbial 

organisms have specific pH-optima and therefore react specifically sensitive to changes in soil 

pH (Rousk et al. 2010). Further, soil-water content affects microorganisms, with some being 

more resistant to drought or, on the other extreme, oxygen-deficiency then others (Hinsinger 

et al. 2009; Bardgett & van der Putten 2014). In addition, macro- and micronutrients as well as 

physicochemical soil characteristics have been shown to influence soil suppressiveness (Janvier 

et al. 2007). However, the importance of abiotic factors is far from being clear, which might be 

due to the fact that they are often intercorrelated, and the complexity of mechanisms driving 

soil properties (Janvier et al. 2007; addressed in Chapter 2.3).  

1.3 The rhizosphere as habitat of microorganisms 

The rhizosphere is the narrow soil-zone around the root-surface that is influenced by the plant 

(Bais et al. 2006; Lugtenberg & Kamilova 2009; Raaijmakers et al. 2009). Here, the abundance 
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and activity of soil microorganisms is much higher compared to surrounding bulk-soil (Hiltner 

1904). Plants provide a carbon-rich environment, 5–21% of the fixed carbon is secreted as root 

exudates or enters the soil as other root-derived resources summarized as rhizodeposits 

(Marschner 2011). Root exudates provide a cocktail of amino-acids, fatty-acids, nucleotides, 

organic-acids, sugars and phenolic compounds and other nutritional compounds that attract 

microorganisms (Uren 2007; Lugtenberg & Kamilova 2009). Rhizodeposits also contain toxic 

compounds that restrict microbial colonization (Bais et al. 2006). Further, soil pH, which is an 

important driver of soil microbial communities, can change up to two units due to root-

secretion or uptake of ions (Hinsinger et al. 2009). Interestingly, electric potentials in plant-

roots have been shown to attract spores of pathogenic oomycetes to swim towards hosts (van 

West et al. 2002). Plants further affect microbial growth in the rhizosphere via influencing a 

soils oxygen status which might be indirectly driven by soil properties such as soil aggregation 

and soil-water contend (Hinsinger et al. 2009). Thereby, plants essentially form the habitat of 

plant-beneficial as well as plant-pathogenic microorganisms (Raaijmakers et al. 2009; 

addressed in Chapters 2.1 and 2.3). 

1.4 Phytopathogens and plant-pathogen antagonistic microbes 

Phytopathogens and plant-pathogen antagonistic microbes are natural competitors for 

nutrients and niches. Therefore, rhizosphere competence is one of the most important issues 

for plant-infection by pathogens as well as suppression of pathogens by antagonistic microbes 

(Haas & Defago 2005; Lugtenberg & Kamilova 2009). Rhizosphere microorganisms have evolved 

strategies to improve their competitiveness, some grow in tight biofilms thereby preventing 

competitors to capture a site (Rudrappa et al. 2008), others show high mobility which enables 

them to rapidly colonize new sites (Czaban, Gajda & Wroblewska 2007). Some bacteria have 

evolved ingenious strategies to take-up resources more quickly, thereby outcompeting other 

root-colonizers (e.g., iron-chelators; Schippers, Bakker & Bakker 1987). Interestingly, some 

bacteria are able to interfere communication of their competitors (AHL-signal degredation; 

Dong & Zhang 2005). Further, exoenzymes such as chitinases and proteases that damage fungal 

cell-walls contribute significantly to the antifungal activity of bacteria (Haas & Keel 2003; Kielak 

et al. 2013). However, the most effective strategy in pathogen suppression presumably is the 
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synthesis of antibiotic compounds (Haas & Defago 2005). Streptomyces spp., Bacillus spp. and 

Pseudomonas spp. are known to produce highly effective antibiotics (Weller et al. 2002). In 

particular, Pseudomonas spp. have been intensively studied (Weller 2007). Pseudomonads are 

ubiquitous rhizosphere colonizers, easy to isolate and cultivate, and can be modified 

genetically. Thus, Pseudomonads represent ideal model organisms for investigating mutualistic 

interactions between plants and rhizosphere bacteria (Lugtenberg, Dekkers & Bloemberg 

2001). Their ability to suppress pathogens is mainly ascribed to the production of antibiotic 

compounds including phloroglucinols, phenazines, pyoluteorin, pyrrolnitrin, lipopeptides, and 

hydrogen cyanide (Haas & Keel 2003). These antibiotics present antihelminthic, antifungal and 

antibacterial activities (Raaijmakers, Vlami & de Souza 2002), and contribute to plant protection 

by directly inhibiting pathogens (Haas & Defago 2005) and eliciting plant defenses (induced 

systemic resistance; Iavicoli et al. 2003). Despite their capability to suppress pathogens, in most 

cases, bacteria have been shown to be ineffective when applied to the field, arguing for the 

existence of additional mechanisms and regulators of the suppressive-ability of bacteria 

(Lugtenberg & Kamilova 2009; addressed in Chapters 2.1 and 2.3). 

1.5 The role of predation in disease suppression 

To be a successful root-colonizer, bacteria do not only need to compete with other 

microorganisms but also to escape predation by indigenous microfauna (Lugtenberg & 

Kamilova 2009). Predation by protozoa exerts a high pressure on bacterial communities in the 

rhizosphere, and causes up to 50% productivity loss (Foissner 1999). Since grazing on bacteria 

is selective, protozoa feed mainly medium-sized bacterial cells that lack defense-mechanisms, 

they essentially shape microbial communities and their functioning (Rønn et al. 2002; Jousset 

et al. 2009). Especially nutrient cycling and the ability to suppress pathogens by bacteria are 

affected by protozoan grazing (Bonkowski 2004; Müller, Scheu & Jousset 2013). However, the 

role of predation in plant-growth and health promotion by bacteria is only beginning to be 

understood (Dubuis, Keel & Haas 2007; addressed in Chapter 2.4). 
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1.6 The role of plant diversity in shaping microbial communities 

Diverse plant communities are generally more productive than monocultures, an effect that 

strengthens through time (Cardinale et al. 2007). This phenomenon has been extensively 

studied over the last decades, but the underlying mechanisms are not yet fully resolved (van 

der Heijden et al. 2008; Reich et al. 2012; Ebeling et al. 2014; Tilman, Isbell & Cowles 2014). 

The increasing probability of including and becoming dominated by species with a high impact 

on a given function with increasing diversity levels (sampling-effect; Aarssen 1997; Tilman, 

Lehman & Thomson 1997; Huston 1997) and a more complementary resource-use or species 

facilitation (complementarity-effect; Loreau et al. 2001) have been most prominently 

discussed. To predict complementarity effects between species, functional traits, i.e. 

morphological, phenological or physiological characteristics affecting the performance of 

organisms, have been used (Ebeling et al. 2014). However, it remains unresolved which trait 

differences matter, if species number can be used to summarize those differences, or if 

functional group affiliation or phylogenetic relatedness is providing additional information 

(Tilman et al. 2014).  

Plant community composition and diversity shape belowground microbial communities 

(Kowalchuk, de Souza & van Veen 2002; Zul et al. 2007). Generally, plant diversity increases the 

diversity, abundance and activity of soil microorganisms (Stephan, Meyer & Schmid 2000; Zak 

et al. 2003; Liu et al. 2008; Eisenhauer et al. 2010a). Effects of soil microorganisms on plant 

growth, such as positive effects through nutrient provisioning or negative effects through 

pathogen pressure, have been suggested to be plant diversity dependent (Mitchell 2003; 

Schnitzer et al. 2011; Eisenhauer, Reich & Scheu 2012). Soil enzyme activities that reflect the 

ability of microorganisms to contribute to soil health and quality are increased in diverse 

grasslands (Bandick & Dick 1999). In addition, bacteria involved in pathogen suppression are 

more abundant in diverse plant communities and likely contribute to decreased disease 

severity observed associated with diverse grassland systems (Garbeva et al. 2006; Weller 2007; 

Latz et al. 2012). 

Generally, effects of plant diversity on microbial communities have been suggested to be due 

to increased plant productivity accompanied by increased resource quantity (Spehn et al. 2000; 

Zak et al. 2003; de Deyn, Quirk & Bardgett 2011). On the other hand, specific ecosystem 

functions are assumed to depend on resource composition and the quality of specific 



12 
 

resources, driven by variation in plant species richness and identity (de Deyn et al. 2011; Latz 

et al. 2012, 2015). However, the exact patterns driving plant diversity effects on rhizosphere 

microbial communities need further investigation (addressed in Chapters 2.1 and 2.3). 

1.7 Plant identity and soil suppression 

The importance of plant species identity in shaping rhizosphere microbial communities is 

receiving increased attention. Some microbial species are highly specific in their association 

with specific plant groups or even single plant species. Rhizobia-legume as well as pathogen-

host interactions represent examples of high specificity (Long 2001; Bais et al. 2006).  

Root exudates that are highly plant-species specific may be the driving force for this 

phenomenon, but the role of single compounds is only beginning to be understood (Berg & 

Smalla 2009). Certain root exudates prevent colonization by pathogenic microorganism while 

attracting others, or attract a couple of microorganisms with differing consequences to the 

plant (Bais et al. 2006). For example, flavonoids in soybean root exudates attract a pathogen as 

well as its antagonist (Tomasi et al. 2008). Plants growing in nutrient-poor environments have 

been shown to attract nutrient-acquiring microorganisms (Dakora & Phillips 2002). Further, 

plants shape the rhizosphere microbial community via exudation of toxic compounds. As a 

consequence, specific microbes resistant to the toxin(s), or microbes that are able to degrade 

the toxin(s) colonize the roots (Kowalchuk, Hol & van Veen 2006; Bressan et al. 2009).  

In addition, root morphology and plant biomass effects have been shown to be plant species 

specific and drive rhizosphere microbial communities (de Deyn et al. 2011; Philippot et al. 

2013). Notably, the root surface is only fragmentally colonized by bacteria. Bacterial 

populations preferentially grow in root-zones that are especially rich in root exudates (Bais et 

al. 2006). Borders between epidermal cells and side-root bifurcations are popular sites for 

bacterial colonization (Dubuis et al. 2007). 

Interestingly, growth and resource allocation of plants growing without competitors (for 

resources and niches) differ markedly from plants growing in competition with other species 

(Semchenko, Hutchings & John 2007). In the presence of competitors, plants invest more in 

root exudates provide certain functions, such as nutrient foraging, facilitative plant-plant 

communication and allelopathy, which on the other hand likely shape the rhizosphere microbial 
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community (Bais et al. 2006).  

Indeed, not only plant induced shifts in the microbial community (Garbeva et al. 2004; Bakker 

et al. 2012; Mendes, Garbeva & Raaijmakers 2013), but also plant induced changes in the 

activity of bacteria in producing antifungal compounds (de Werra et al. 2008; Rochat et al. 

2010) alters soil suppressiveness. However, if the production of antibiotics observed in 

dependence on specific plant species also occurs in multi-species plant communities, remains 

to be investigated (Latz et al. 2015; addressed in Chapter 2.1).  

1.8 Objectives and chapter outline 

In this thesis, I investigated the role of plant diversity in driving disease suppression (Figure 1). 

First, I analysed whether plant diversity per se or plant functional group affiliation, plant identity 

or interaction effects are the main drivers of biocontrol bacteria and their activity in producing 

antifungal compounds. Second, I investigated abiotic factors and protozoan predators as 

mediators of plant community composition effects on plant-disease suppression.  

 

 

Figure 1. Interactions taking place in the rhizosphere of plants. Plant-pathogenic fungi cope with the antagonism 
of biocontrol bacteria. Bacteria are influenced by plants and their community composition is driven by protozoan-
predation. The whole system is influenced by the plant-roots surrounding soil. 

Soil

Biocontrol bacteria

Exudation

Antagonism

Infection

Predation

Protozoa

Competition/Facilitation

Plant-pathogenic fungi
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In RESEARCH CHAPTER 1 the role of plant diversity in driving the expression of antifungal traits 

by biocontrol bacteria is evaluated. I measured the effect of plant diversity on the expression of 

genes responsible for the production of the most important antifungal compounds (2,4-

diacetylphloroglucinol [DAPG], Pyrrolnitrin [PRN] and hydrogen cyanide [HCN]) in strain 

Pseudomonas protegens CHA0 grown in gnotobiotic cultures. Further, I related the expression 

of genes to biomass effects that I expected to increase with plant diversity and in turn increase 

bacterial activity in producing antifungal compounds. I hypothesised plant diversity to increase 

plant productivity and assumed this effect to increase bacterial abundances that in turn increase 

their activity and thereby contribute to increased disease suppression. Results of this study 

showed expression to be driven mainly by plant identity, an effect that persisted along the plant 

diversity gradient for all tested genes. While the expression of the gene coding for DAPG 

showed to be primarily directly driven by plant identity effects, expression of the genes coding 

for PRN and HCN were more pronounced indirectly driven by high density microbial 

communities. Interestingly, the effect-direction of certain plant identities varied between the 

three tested genes, indicating a selective impact of plant species on bacterial gene expression. 

This study shows that the presence of certain plant species within a community 

disproportionately impact biocontrol traits expressed by rhizosphere bacteria, providing new 

insight into our understanding of the patterns driving plant health and productivity. 

 

In RESEARCH CHAPTER 2 a newly developed two-pathogen infection model is presented. 

Bioassays are a standard method to evaluate plant-breeding or pesticide-application efficacy, 

and further are used to estimate the potential of natural-soils to suppress soil-borne plant 

diseases. Generally, in such assays, plants are exposed to a pathogen and infections are rated 

over time. Using natural soils causes the problem that additional infections might be caused by 

a naturally occurring pathogen, which might bias the exact estimation of infection rates. The 

developed model enables to evaluate disease suppression in natural soils by allowing to 

incorporate infection rates of control treatments. Further, the model makes infection start and 

infection rate measures in different soils comparable. 

 

In RESEARCH CHAPTER 3 the role of plant diversity in driving the composition of microbial 

communities with antifungal activity is evaluated and their abundances are related to disease 

suppression. I used cultivation dependent methods to investigate if plant diversity promotes 
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the abundance of Pseudomonas, Streptomyces and Bacillus spp, the three main groups of 

biocontrol bacteria in natural soil. Further, I related the abundances of the biocontrol groups 

to abiotic soil properties and investigated their impact on disease suppression by conducting a 

standardized infection assay and determined the infection start by using the two-pathogen 

infection model (CHAPTER 2.2). I hypothesised plant diversity to increase plant productivity and 

assumed this effect to increase bacterial abundances thereby contributing to increased disease 

suppression. Further, I assumed plant diversity to affect abiotic soil parameters that in turn 

influence the biocontrol microbial community and thereby the disease suppressive potential of 

soils. The results indicate that among an important indirect role of plant communities in 

shaping soil-disease suppression (e.g., via changes in root biomass, soil pH and the abundance 

of important biocontrol groups), plants interactively, directly affect the suppressive potential of 

soils. This study represents an important step in understanding the complexity of mechanisms 

linking plant community composition and disease suppression.  

 

In RESEARCH CHAPTER 4 the role of intercropping and predation pressure by protozoa in driving 

plant-growth promoting enzyme activities and therewith plant productivity is assessed. 

In cooperation with the Universidad Nacional de Quilmes (Buenos Aires, Argentina) I used a 

soybean-maize intercropping system and scrutinized the links between crop richness, soil 

enzymes involved in pathogen suppression and nutrient supply, and yield. Further, I related 

enzymatic activities to abundances of the three main taxa of protozoan-predators amoeba, 

ciliates and flagellates. I hypothesized intercropping to increase protozoan abundance and to 

improve enzyme activity, thereby increasing crop yield. I observed that indeed mixing soybean 

and maize increased crop yield. In addition, this study provides first evidences that cropping 

regime interactively with soil protozoa shapes soil functioning by influencing soil enzyme 

activities and thereby crop yield.  

 

AIM OF THIS THESIS 

This thesis aimed at a mechanistic understanding of the effect of plant diversity and plant 

community structure on the abundance and activity of soil bacteria responsible for soil-borne 

plant disease suppression.



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

II  | Research Chapters 
 

2.1 Research Chapter 1 Plant identity drives the expression of 

biocontrol factors in a rhizosphere bacterium across a plant 

diversity gradient 

PLANT IDENTITY DRIVES THE EXPRESSION OF BIOCONTROL 
FACTORS IN A RHIZOSPHERE BACTERIUM ACROSS A PLANT 

DIVERSITY GRADIENT 
 

 

Ellen Latz, Nico Eisenhauer, Stefan Scheu and Alexandre Jousset 

 

 

 

 

 

 

 

 

 

 

 

 

 

Functional Ecology, DOI: 10.1111/1365-2435.12417



18 
 

2.1.1 | Summary 

Plant performance is influenced by root-associated bacteria that provide important services to 

the host plant, such as pathogen suppression. Suppression of pathogens is known to be context 

dependent and to vary between plant species, yet, the significance of plant identity in shaping 

rhizosphere bacterial functioning in multi-species communities is largely unknown. 

We questioned whether the activity of a rhizosphere bacterium in producing biocontrol 

compounds varies with plant identity in a plant diversity gradient. We set up a gnotobiotic 

microcosm experiment with the model rhizosphere bacterium Pseudomonas protegens CHA0, 

an important biocontrol agent, and investigated the effects of plant identity and diversity on its 

production of biocontrol compounds. Using GFP-based reporter fusions, we assessed gene 

expression linked to the production of the biocontrol compounds 2,4-diacetylphloroglucinol, 

pyrrolnitrin, and hydrogen cyanide. 

The expression of genes coding for biocontrol compounds was driven to a large extent by plant 

identity and persisted along the plant species richness gradient for all tested genes. Notably, 

the effect of certain plant identities varied between the three tested genes, indicating a 

selective impact of plant species on bacterial gene expression. However, some plant species, 

such as Lolium perenne, consistently stimulated bacterial gene expression irrespective of the 

diversity of the plant community.  

Our results indicate that the presence of certain plant species within a community 

disproportionately impact biocontrol traits expressed by rhizosphere bacteria, providing new 

insight in the patterns driving plant health and productivity.  
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2.1.2 | Introduction 

Plant performance is driven to a large degree by plant-microbe interactions. Soil 

microorganisms influence plant nutrient acquisition (Chapman et al. 2006; van der Heijden et 

al. 2008; Bardon et al. 2014), enhance plant immune responses (Pineda et al. 2013) and stress 

tolerance (Schardl, Leuchtmann & Spiering 2004), and directly as well as indirectly enhance 

plant growth (Bais et al. 2006; Raaijmakers et al. 2009). In agriculture, a special group of 

rhizosphere bacteria has gained particular attention due to their potential to protect plants 

against soil-borne fungal pathogens (Weller et al. 2002). Fluorescent pseudomonads form a 

dominant and one of the best characterized groups of bacteria responsible for natural plant 

protection against pathogens (Haas & Defago 2005), and are particularly relevant in agricultural 

systems as well as grasslands (Mendes et al. 2011; Latz et al. 2012). Several strains produce 

broad spectrum antibiotic compounds, such as 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin 

(PRN), and hydrogen cyanide (HCN; Raaijmakers et al. 2002; Haas & Keel 2003; Haas & Defago 

2005; Weller 2007). However, the expression of the factors that promote plant health are 

subject to complex regulation, and respond to microbe-microbe interactions, numerous 

environmental factors, as well as plant-derived cues (Dubuis et al. 2007). 

The selectivity of plant species in shaping microbial communities in the rhizosphere has been 

studied intensively. So far, effects of plants on the efficacy of biocontrol bacteria have been 

shown to be mediated by 1) plant-induced shifts in the rhizosphere microbial community 

(Garbeva et al. 2004; Bakker et al. 2012; Mendes et al. 2013) and 2) plant-induced changes in 

the activity of biocontrol bacteria in producing antifungal compounds (de Werra et al. 2008; 

Rochat et al. 2010). However, information on plant-microbe interactions is mainly based on 

plant monocultures, and plant identity effects have rarely been studied in multi-species plant 

communities. 

In grasslands, high plant diversity is associated with increased primary production (Hooper et 

al. 2005; Cardinale et al. 2012), but the mechanisms underlying this relationship are not yet 

fully resolved (van der Heijden et al. 2008; Reich et al. 2012; Ebeling et al. 2014). Diverse 

communities are suggested to be able to capture limiting resources in a complementary and 

thereby more efficient way (Loreau et al. 2001). 

Effects of soil microorganisms on plant growth, such as positive effects through nutrient 

provisioning or negative effects through pathogen pressure, are suggested to be plant diversity-
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dependent (Schnitzer et al. 2011; Eisenhauer et al. 2012). In case of plant-pathogen 

interactions, biocontrol bacteria play a crucial role in promoting plant productivity by reducing 

pathogen pressure, an effect likely to be more pronounced in species rich plant communities 

(Garbeva et al. 2006; Weller 2007; Latz et al. 2012). Plant diversity has been shown to increase 

plant root biomas (Craine et al. 2003; Reich et al. 2012; Mueller et al. 2013; Ravenek et al. 

2014), and it has been suggested that plant diversity drives microbial density via increasing 

plant biomass (Spehn et al. 2000; Zak et al. 2003; de Deyn et al. 2011), thereby increasing 

habitat and resources of root-associated bacteria. Since cell-cell signalling becomes more 

important at high population densities (Dubuis et al. 2007; Pierson & Pierson 2007; Lapouge et 

al. 2008), the production of biocontrol compounds by bacteria is likely to be enhanced in more 

diverse plant communities. In order to understand the functioning of plant communities and 

improve intercropping as well as break-cropping strategies (Li et al. 2014), it is essential to link 

plant community composition and the activity of biocontrol bacteria. However, it has not yet 

been investigated if the expression of antifungal genes in biocontrol bacteria is modified by the 

presence of neighbouring plant species in multi-species plant communities.  

In addition to plant diversity, the presence of certain functional groups, such as grasses and 

legumes, has been shown to affect primary productivity in grassland and pasture systems 

(Spehn et al. 2000; Hedlund et al. 2003; Zak et al. 2003; Milcu et al. 2008). Grasses have highly 

branched roots with a higher biomass than other plant functional groups (Bessler et al. 2009, 

2012; Pérès et al. 2013), thereby providing more habitat for root-associated bacteria (Lange et 

al. 2014), but also increasing the area for the attack by pathogenic fungi (Sikes, Cottenie & 

Klironomos 2009; Kulmatiski et al. 2014). Therefore, grasses are likely to rely heavily on the 

activity of bacteria antagonistic to fungal pathogens and to benefit from dense bacterial 

populations protecting their roots. Indeed, in experiments with gnotobiotic systems 

Pseudomonas spp. reached up to ten times higher densities on the roots of monocots than on 

those of dicots (Lugtenberg, Dekkers & Bloemberg 2001). However, whether the expression of 

genes coding for biocontrol compounds is increased in multi-species plant communities 

containing grasses remains to be investigated. 

We investigated the impact of plant diversity and identity on the expression of genes coding 

for biocontrol compounds in a root-associated bacterium in a gnotobiotic microcosm 

experiment. To separate plant diversity and identity effects we set up a full factorial species 

richness gradient including two grass and two legume species. Plant seedlings were inoculated 
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with the representative biocontrol strain Pseudomonas protegens CHA0. Three different GFP 

reporter fusions were used for measuring the expression of the genes phlA, prnA, and hcnA, 

responsible for the production of DAPG, PRN, and HCN, respectively (Baehler et al. 2005; 

Rochat et al. 2010). Bacterial gene expression was determined via flow cytometry, after three 

weeks of plant growth. In addition to linear regression analyses, we used structural equation 

modelling (Grace 2006) to be able to unravel direct and indirect pathways driving the 

expression of genes coding for bacterial biocontrol compounds.  

According to the observations mentioned above, we expected bacterial gene expression to 

increase with plant diversity. We expected grasses to increase and legumes to decrease the 

expression of genes coding for biocontrol compounds.  Further, we expected plant species to 

differ in their effects on bacterial gene expression.  

2.1.3 | Materials and Methods 

Bacterial strains, plasmids, and culture conditions. By using GFP-based reporter fusions, we 

integrated bacterial response over the duration of the experiment (de Werra et al. 2008). The 

expression of DAPG, PRN, and HCN biosynthetic genes has been shown to adequately reflect 

the production of these biocontrol compounds in P. protegens (Baehler et al. 2005; Rochat et 

al. 2010). Bacteria and plasmids used in this study are listed in Table 1. All chemicals were 

purchased from Merck (Darmstadt, Germany), unless noted otherwise. Pseudomonad strain 

stocks were stored in glycerol at  -80°C and pre-grown on Luria Broth (LB) agar plates with the 

appropriate antibiotics (125 µg ml-1 tetracycline hydrochloride). Subsequently, bacteria were 

grown at 22°C in 5 ml 1/3 King´s B (KB; BactoTM Protease Peptone No. 3, BD, Le Pont de Claix, 

France) liquid medium (King, Ward & Raney 1954; McSpadden Gardener et al. 2001) with 

agitation for 12 h, harvested by centrifugation (4500 g, 4°C, 10 min) and washed twice in 0.85% 

NaCl. We used slowly grown (low temperature) early exponential phase cultures to avoid GFP 

accumulation in the cells prior to microcosm inoculation (Rochat et al. 2010). 200 µl of the 

overnight culture were grown in 30 ml KB liquid medium at 25°C to an optical density (OD) of 

0.1-0.15. Bacterial cells were harvested, washed twice in 0.85% NaCl and adjusted to an OD of 

0.1 in 1⁄5 Long Ashton nutrient solution (Hewitt 1966). 
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Table 1. Strains and plasmids. 

Strain / plasmid 

 

Properties 

 

Reference 

 
Strains 

 

  

 Pseudomonas  
 protegens 
 

CHA0 Wild type, biocontrol strain 

 

Voisard et al. (1994)  

Plasmids 

 

  

 pME7100  

 

phlA-gfp transcriptional fusion;  
reporter for 2,4-diacetylphloroglucinol biosynthetic gene expression; Tcr 
 

Baehler et al. (2005) 

 pME7116  

 

prnA-gfp transcriptional fusion;  
reporter for pyrrolnitrin biosynthetic gene expression; Tcr 
 

Baehler et al. (2005) 

 pME7156  

 

hcnA-gfp transcriptional fusion;  
reporter for hydrogen cyanide biosynthetic gene expression; Tcr 
 

Rochat et al. (2010) 

Tcr, tetracycline resistant 

 

Plants. Four plant species, two from each functional group, grasses and legumes, were used. 

Upscaling the maximum of four plants species per 0.077 m x  0.077 m equals approximately 60 

species per 20 m x 20 m (according to species area relationships for generalist European 

grassland species; Krauss et al. 2004), which is the maximum diversity per area in The Jena 

Experiment (Roscher et al. 2004). Grasses included Lolium perenne L. (Lolium) and Dactylis 

glomerata L. (Dactylis), and legumes Lotus corniculatus L. (Lotus) and Trifolium repens L. 

(Trifolium; Appels Wilde Samen GmbH, Darmstadt, Germany). It has been shown that nutrient 

uptake strategies and other functional traits differ considerably between these species 

(Roscher et al. 2004). 

Grass seeds were incubated in 62% H2SO4 on a magnetic stirrer (approximately 250 rpm) to 

remove the husks (Lolium: 3.8 g seeds in 50 ml acid for 35 min; Dactylis: 3 g seeds in 60 ml acid 

for 32 min), washed in 50 ml distilled water under reduced speed for 15 min and subsequently 

sterilized by softly swivelling in 50 ml 2% AgNO3 solution on an orbital shaker for 10 min. Silver 

ions were removed by washing nine times for 10 min alternating sterile distilled water and 1% 

NaCl solution (adapted from Henkes et al. 2008). Legume seeds (2 g each) were shaken in 10 

ml 70% ethanol for 2 min, surface sterilized with 10 ml 1% NaClO for 15 min and washed six 

times in sterile water by orbital shaking (adapted from Hensel et al. 1990). All seeds were 

vernalised overnight at 4°C and pre-incubated until germination (40 g liter-1) on moisturised, 

2% water agar at 25°C (grasses up to 30 h; legumes up to 6 h). Germinated seeds were stored 

at 4°C until use on the same day. 
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Microcosm construction and inoculation. Magenta boxes (0.077 x 0.077 x 0.097 m) were filled 

with 50 g of 2-5 mm prewashed expanded clay (FiboExClay Deutschland GmbH, Lamstedt, 

Germany), watered with 15 ml 1⁄5 Long Ashton nutrient solution and autoclaved. Plant 

communities of twelve germinated seeds per microcosm were planted and each seed was 

inoculated with 50 µl bacterial suspension. 

 

Experimental setup. We set up a substitutive, full factorial plant species richness gradient 

ranging from one to four plant species. Two blocks per bacterial treatment (P. protegens 

inhabiting plasmid pME 7100, pME 7116 and pME 7156, respectively) were set up, each with 

two replicates per plant species richness level, resulting in four replicates. Additionally, four 

plant monocultures inoculated with the P. protegens wild-type strain per block served as 

control (Supplementary Figure 1). The microcosms were incubated at 18-22°C with a 12 h 

photoperiod (photon flux density: 150 µmol m-2 s-1) and randomized every 2-3 days over the 

total experimental time of 20 days. 

 

Sampling. The microcosms were destructively sampled at the end of the experiment. Bacteria 

were extracted by horizontally shaking total roots in 6 ml of cold phosphate-buffered saline for 

30 min (PBS; Sambrook & Russell 2001) and immediately examined by flow cytometry (see 

below). Total root biomass (fresh weight) was measured for each microcosm. 

 

Bacterial quantification. Bacterial counts were performed with a C6 flow cytometer (Accuri, Ann 

Harbor, MI, USA) in 100 µl of the root-wash suspension (25,000 events in a maximum time of 

2 min were recorded; threshold on FSC-H 5,000; threshold on SSC-H 2,000). By gating on the 

basis of log-scaled fluorescence signals (FL1-A x FL2-A), we measured the density of active 

bacteria (counted events) and bacterial per capita gene activity (emitted fluorescence per 

bacterium). In addition to the measured variables, we calculated total bacterial activity as 

related to the plant communities, but irrespective of the bacterial treatment (P. protegens 

CHA0 with either phlA, prnA, or hcnA gene reporter fusions) by normalizing the measures of 

the different reporter fusions (from each bacterial per capita gene activity measure we 

subtracted its mean and divided this by its variance).  

 

Statistical analyses. Data were analysed using the statistical software R (R Core Team 2014) with 
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the packages nlme (Pinheiro et al. 2014) and lavaan (Rosseel 2012). To test whether the block 

had an effect on investigated variables, we used linear models with each measure as explained 

by plant diversity (continuous) and block (factorial). To measure plant identity effects 

independent of diversity, we used a sequential statistical approach (Bell et al. 2009). In a first 

step, we used linear mixed effect models with block as a random effect for analysing the effect 

of plant diversity on bacterial density [log10 (active bacteria groot
-1)], total bacterial activity [log10 

(total gene expression groot
-1)], and hcnA gene activity [log10 (gene expression bacterium-1)]. 

Due to estimated Pearson´s product moment correlations between root biomass and bacterial 

density (cor = 0.33; P < 0.001), as well as root biomass and bacterial activity (cor = 0.31; P < 

0.001), bacterial density and activity were normalized by root biomass. As the block had no 

effect on gene expression of phlA and prnA [log10 (gene expression bacterium-1)], these 

variables were fitted using linear models. In a second step, the residuals of the first step in the 

analyses were fitted against the explanatory variables Lolium, Dactylis, Lotus, and Trifolium 

(presence/absence coded; factorial) using linear models. In a third step, the residuals of the 

second step were fitted against plant interaction effects. The significance of slopes was 

determined via t-tests.  

To separate plant community effects via root biomass and bacterial density from other 

mechanisms, we used structural equation modelling, which allows the analysis of variables in 

a multivariate approach (Grace 2006). We used plant identities (exogenous variables), as well 

as the explanatory variables root biomass and bacterial density (endogenous variables), as 

potential indirect pathways affecting bacterial gene activities. Models were performed with the 

respective residuals of linear models including the explanatory variables as influenced by block. 

After fitting the full model, the most parsimonious model was derived by removing non-

significant pathways using Bayesian information criterion (BIC; Burnham & Anderson 2004) as 

well as χ2 tests (P > 0.05; Grace 2006). 

2.1.4 | Results 

Sequential analysis. The density of active bacteria (bacterial density), as well as total bacterial 

gene expression (bacterial activity), increased with plant diversity (Figure 2 a, b; Table 2); 

however, the per capita gene expression was not significantly affected by plant diversity (Figure 
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2 c-e). The presence of the grass Lolium significantly increased the density of active bacteria, 

total bacterial gene expression and per capita gene expression of all tested genes (Figure 2 f-j; 

Table 2). On the other hand, the presence of the grass Dactylis significantly decreased bacterial 

density, total bacterial gene expression and per capita expression of phlA and prnA and 

marginally affected the expression of hcnA (Figure 2 f-j; Table 2). Fitting Lolium before diversity 

in the sequential analyses eliminated the marginally significant plant diversity effect on active 

bacterial density (slope -0.01, P = 0.303) as well as its significant effect on bacterial gene 

expression (slope -0.03, P = 0.278), suggesting that the observed plant diversity effects were 

due to the presence of Lolium and the increased probability of including this species in more 

diverse communities. The legume Trifolium significantly decreased the density of active 

bacteria, total bacterial gene expression and per capita expression of all tested genes (Figure 2 

f-j; Table 2). The legume Lotus significantly decreased active bacterial density and marginally 

impacted total bacterial gene expression (Figure 2 f-g; Table 2). As indicated by the third step 

of the sequential analyses, plant-plant interactions did not significantly affect bacterial gene 

expression (all P > 0.1). 
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Figure 2. Effect of plant species richness on log10-transformed (a) density of active bacteria per root biomass, (b) total bacterial gene expression per root biomass, (c) phlA 
expression per bacterium, (d) prnA expression per bacterium, and (e) hcnA expression per bacterium (upper panel), and the effect of plant identity on log10-transformed (f) 
density of active bacteria per root biomass, (g) total bacterial gene expression per root biomass, (h) phlA expression per bacterium, (i) prnA expression per bacterium, and (j) 
hcnA expression per bacterium [lower panel; analysis based on partial residuals (res.) after fitting of species richness]. Solid regression line: P ≤ 0.05; dashed regression line: P 
≤ 0.1; dotted regression line: not significant.  Blue dots represent microcosms containing Lolium. 
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Table 2. Effects of plant community composition on biocontrol bacteria (Pseudomonas protegens) as indicated by sequential analyses (see text for details). 

 Bacterial density  Bacterial activity  phlA expression prnA expression hcnA expression 

1. step Estimate S.E. t-value  Estimate S.E. t-value  Estimate S.E. t-value  Estimate S.E. t-value  Estimate S.E. t-value  
Intercept 7.112 0.22 31.83  *** -0.467 0.34 -1.39  3.649 0.10 36.08  *** 3.765 0.10 36.07  *** 3.231 0.24 13.74  *** 

Plant 
diversity 

0.083 0.04 1.86  . 0.222 0.10 2.16  * 0.058 0.04 1.32  0.056 0.05 1.23  -0.001 0.05 -0.02  

DF/R2 167/- 167/- 56/0.03                         53/0.03 58/- 

2. step                     
Lolium 0.582 0.05 11.62  *** 1.430 0.11 13.38  *** 0.305 0.05 6.26  *** 0.367 0.05 7.65  *** 0.245 0.07 3.41  ** 

Dactylis -0.195 0.05 -3.91  *** -0.640 0.11 -6.02  *** -0.211 0.05 -4.37  *** -0.238 0.05 -5.05  *** -0.140 0.07 -1.94  . 

Trifolium -0.239 0.05 -4.82  *** -0.573 0.11 -5.41  *** -0.118 0.05 -2.44  * -0.135 0.05 -2.89  ** -0.179 0.07 -2.48  * 

Lotus -0.144 0.05 -2.86  ** -0.204 0.11 -1.89  . 0.013 0.05 0.26  0.022 0.05 0.46  0.083 0.07 1.15  

DF/R2 170/0.46 170/0.54 54/0.48 51/0.58 57/0.25 
The tables were generated with the R-function summary(), showing the probability of a variable to be zero (two-tailed t-test). Asterisks denote the level of significance: P ≤ 

0.1; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. DF, degrees of freedom; R2, coefficient of determination. 
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Structural equation models. The structural equation model explained 49% of the variance in 

phlA gene expression. The initial model (BIC = 816.26; Figure 3 a) could be improved by 

removing non-significant paths (BIC = 797.37; Figure 3 b). The chi-square test indicated that 

our model adequately represents the data (χ2
6 = 5.48; P = 0.484). Expression of phlA was 

directly increased by the presence of Lolium and decreased by the presence of Dactylis, while 

it was not significantly influenced by bacterial density. Bacterial density increased in presence 

of Lolium, but was negatively affected by the presence of Trifolium. Root biomass increased 

significantly in the presence of Lolium and Lotus, respectively, and decreased in the presence 

of Trifolium (Figure 3 b; Supplementary Table 1).  

The structural equation model explained 77% of the variance in prnA gene expression. The 

initial model (BIC = 731.03; Figure 3 a) could be improved by removing non-significant paths 

(BIC = 709.51; Figure 3 c). The chi-square test indicated that our model adequately represents 

the data (χ2
7 = 6.53; P = 0.480). In the final model, expression of prnA was directly increased by 

the presence of Lolium and Lotus, but decreased in the presence of Dactylis. In addition, it 

significantly increased with the density of active bacteria. Active bacterial density was positively 

related to the presence of Lolium and was significantly driven by root biomass. Root biomass 

increased in the presence of Lolium and decreased in the presence of Trifolium (Figure 3 c; 

Supplementary Table 1). 

The structural equation model explained 62% of the variance in hcnA gene expression. The 

initial model (BIC = 899.24; Figure 3 a) could be improved by removing non-significant paths 

(BIC = 777.14; Figure 3 d). The chi-square test indicated that our model adequately represents 

the data (χ2
4 = 3.02; P = 0.554). In contrast to the expression of phlA and prnA, hcnA expression 

was only affected by the presence of Lolium, but here the grass decreased gene expression. As 

in the case of prnA, the expression of hcnA significantly increased with the density of active 

bacteria. Active bacterial density increased in the presence of Lolium and decreased in the 

presence of Trifolium. As in the case of phlA, root biomass significantly increased in the 

presence of Lolium and Lotus, and decreased in the presence of Trifolium. As Dactylis presence 

played no appreciable role, it was removed from the model (Figure 3 d; Supplementary Table 

1). 
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Figure 3. Structural equation models (see (a) for initial model) of direct and indirect (through changes in root 
biomass and bacterial density) effects of plant identity on (b) phlA expression, (c) prnA expression, and (d) hcnA 
expression. Exogenous variables (plant identity) are given in white boxes, endogenous, explanatory variables in 
grey and black boxes. The data did not significantly deviate from the respective models (see main text for model 
fits). Normal arrows represent causal relationships, and double-headed arrows indicate undirected correlations. 
Numbers on arrows are standardized path coefficients. Blue arrows indicate positive and red negative estimates; 
bold arrows indicate significant (P ≤ 0.05) and thin arrows non-significant (P > 0.05) estimates. Circles in (a) indicate 
error terms (e1 – e3). Percentages close to endogenous variables indicate the variance explained by the model 
(R2).  

2.1.5 | Discussion 

Plants rely on their associations with soil microbes, and positive plant-soil microbe interactions 

are suggested to be more pronounced in species-rich plant communities (Schnitzer et al. 2011; 

Latz et al. 2012; Eisenhauer et al. 2012). On the other hand, root-associated microbial 

composition and functioning in diverse plant communities is suggested to be driven by specific 

plant species within a community (Kowalchuk et al. 2002; Eisenhauer et al. 2010a; de Deyn et 

al. 2011). Unfortunately, however, the mechanisms involved in the association and facilitation 

of root-associated bacteria with a specific function like plant growth promotion are virtually 

unknown in species-rich plant communities. We demonstrate that grassland plant species 
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selectively impact the expression of genes coding for biocontrol compounds in P. protegens 

CHA0, and that this effect persists in more diverse plant communities, highlighting the 

importance of plant species identity for soil microbial functioning. Especially Lolium perenne 

played a key role by significantly influencing each of the three measured genes coding for 

important biocontrol compounds. We suggest that the presence of specific plant species within 

a community may be essential for sustainable and environmentally friendly plant protection, 

which is one of the today’s biggest issues in agricultural management. 

 

Effect of plant diversity. The results showed that increasing plant diversity not only enhanced 

the density of active bacteria, but further enhanced the expression of genes coding for 

biocontrol compounds protecting plants from fungal pathogens. This supports reports of higher 

suppressive abilities against a soil-borne fungal pathogen in species-rich grasslands than in crop 

monocultures (Garbeva et al. 2006). Interestingly, effects of plant diversity were not 

pronounced when considering the bacterial genes separately, possibly because of the reduced 

sample size. However, the results may also indicate that more diverse plant communities are 

able to support higher activities of multiple genes respectively higher ecosystem 

multifunctionality (Hector & Bagchi 2007; Isbell et al. 2011). Nonetheless, the observed 

diversity effect likely was due mainly to a sampling effect; that is, the greater chance of a species 

(Lolium) with a disproportionate effect on ecosystem function properties being present at 

higher diversity levels (Huston 1997). Supporting this conclusion, the diversity effect 

disappeared when fitting the presence of Lolium before plant diversity, but remained when 

separately fitting the other species before plant diversity in the sequential analyses. Therefore, 

this study does not support a general positive effect of plant diversity on gene expression of 

biocontrol bacteria due to plant-plant interactions. However, it has been suggested that 

diversity effects are more pronounced in the long-term (Eisenhauer et al. 2012); whether this 

also applies to bacterial gene expression patterns remains to be investigated.  

 

Effects of plant identity. Generally, our results highlight the importance of plant species identity 

in eliciting bacterial gene expression. This is in line with studies where soil microbial functioning 

was attributed to the role of single plant species (Stephan et al. 2000; Eisenhauer et al. 2010a; 

de Deyn et al. 2011).  

The grass Lolium exerted the strongest positive effect, increasing the density of active bacteria 
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as well as the total and per capita expression of the three investigated genes as seen in the 

sequential analyses. Interestingly, although the number of Lolium individuals decreased with 

increasing plant diversity due to the substitutive design, the positive effect of Lolium remained 

throughout the diversity gradient. The effect, however, was dampened at higher plant diversity, 

but it remains unclear to what extend this was driven by the presence of the other species or 

by a lower number of Lolium individuals.  

Structural equation models showed that Lolium increased root biomass as well as the density 

of active bacteria in each of the models. Notably, in contrast to the other two genes, hcnA was 

additionally directly negatively affected by Lolium, probably explaining its less pronounced 

positive effect in the sequential analyses.  

In contrast to the overall strong positive effect of Lolium, the presence of the grass Dactylis 

decreased the density of active bacteria and total gene expression. The observed decrease in 

the per capita expression of phlA and prnA in the sequential analysis was reflected in the 

structural equation models, where Dactylis presence directly decreased phlA and prnA 

expression, but not that of hcnA. The contrasting effects of the two grass species are in line 

with results from experimental grasslands (Latz et al. 2012), where the presence of grasses in 

plant communities positively affected PRN producers, but this effect vanished with increasing 

grass species richness, suggesting that only specific species were responsible for the observed 

effect.  

In the structural equation model, the expression of hcnA was not directly increased by any plant 

species and down-regulated in the presence of Lolium. It was previously shown that plants up-

regulate the production of biocontrol compounds in bacteria in the presence of pathogens 

(Barret et al. 2009; Jousset et al. 2011). Due to the potential phytotoxic side effects of 

biocontrol compounds, such as DAPG and HCN (Rudrappa et al. 2008; Brazelton et al. 2008), 

susceptible plants may only benefit from enhancing their production in the presence of 

pathogens and may therefore suppress their production when pathogens are absent. Future 

studies are needed to understand how the observed plant community-induced bacterial gene 

expression patterns are affected by the presence of pathogens or other soil organisms. 

The two legume species also had contrasting effects on biocontrol gene expression. In the 

sequential analyses, the presence of Trifolium decreased all tested parameters, whereas Lotus 

did not affect the per capita gene expression by the bacteria. In the structural equation models, 

the presence of Lotus increased root biomass in the models on phlA and hcnA gene expression. 
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It remains unclear why Lotus did not significantly influence root biomass in the model on prnA 

expression, where root biomass directly positively influenced gene expression. The effect of 

Trifolium was mainly driven by its negative effect on root biomass, in addition to a less 

pronounced negative effect on the density of active bacteria in the case of the phlA and hcnA 

model. Interestingly, Trifolium was the only plant species that did not directly affect the 

expression of any of the studied genes, and future studies should investigate the dependence 

of this legume species on biocontrol bacteria.  

The overall negative effect of legumes on both the density of active bacteria and per capita 

gene expression matches well with observed decreases in the abundance of DAPG and PRN 

producers in the presence of legumes in grassland plant communities (Latz et al. 2012). These 

authors speculated that their results may be due to the production of biocontrol compounds 

by the plant, such as saponins and coumarin, providing plant-derived defence against root 

diseases and inhibiting DAPG producers, respectively (Djordjevic et al. 1987; Landa et al. 2002; 

Bergsma-Vlami, Prins & Raaijmakers 2005a). Consequently, the general positive effects of 

legumes on plant community productivity due to N fixation may be counterbalanced to some 

extent by a reduction of soil suppressiveness. 

 

Effect of root biomass. In the structural equation models, root biomass increased the density of 

active bacteria in the case of prnA. Interestingly, in this case, root biomass did not increase in 

the presence of Lotus. This in turn suggests that an enhanced proportion of Lotus roots that 

occurred in the models on phlA and hcnA expression negatively affected the density of active 

bacteria. This may explain the observed negative effect of the legume on bacterial densities in 

the sequential analyses (see above). The results support the conclusion that root biomass is an 

important determinant of the density of active bacteria (Spehn et al. 2000), but they 

furthermore suggest that the strength and direction of effects depend on the presence of 

certain plant species.  

 

Effect of active bacterial density. As bacterial gene expression is driven by cell population 

density-dependent patterns (Lapouge et al. 2008), it is not surprising that the density of active 

bacteria strongly increased the per capita expression of prnA and hcnA in the structural 

equation models. Interestingly, although an auto-inducing function is known for DAPG 

(Schnider-Keel et al. 2000; Baehler et al. 2005), the density of active bacteria did not increase 
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the per capita expression of phlA in our study. Auto-induction of DAPG can be counteracted by 

bacterial and fungal metabolites (Schnider-Keel et al. 2000), and our results suggest that 

unknown plant metabolites may also be involved in modifying the expression of biocontrol 

compounds in bacteria.  

 

Conclusion. This study emphasizes the importance of plant identity for the expression of genes 

coding for biocontrol compounds in bacteria associated with multi-species plant communities. 

Expression patterns varied between genes, but some plant species, such as Lolium consistently 

impacted the expression of biocontrol traits. The results suggest that plants can steer specific 

microbial activities in the rhizosphere with important consequences for plant health. Similar to 

legumes improving plant productivity via symbiosis with nitrogen-fixing bacteria, we propose 

that certain plant species may contribute to community productivity by stimulating biocontrol 

gene expression in root-associated bacteria. Increased plant biomass production in more 

diverse communities might therefore in part be due to reduced pathogen load caused by the 

presence of certain plant species. Further studies are needed to evaluate the magnitude of the 

effect of single plant species in dampening pathogen pressure on plant communities. We 

conclude that management systems might benefit from taking the biocontrol-enhancing 

capabilities of certain plant species within a community into account.  
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2.2.1 | Summary 

Pathogen infection assays are a standard method for estimating plant resistance to a specific 

pathogen. In natural soils, however, alternative pathogens might also simultaneously infect 

plants of the experiment hindering the estimation of the focal pathogen's infection rate. Here 

we present a method in R correcting for these unwanted effects by developing a two pathogen 

monomolecular infection model. We fit the model to data using an integrative approach by 

combining a numerical simulation of the two pathogen monomolecular infection model and an 

iterative maximum likelihood fit. Our method will be particularly useful for exploring resistance 

of natural soils (e.g., biodiversity experiments) from different sites because it allows for 

different naturally occurring pathogens while estimating comparable infection parameters. 
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2.2.2 | Introduction 

Pathogen infection assays (bioassays) are a standard method for estimating plant resistance to 

pathogens, induced systemic resistance in plants, the effect of artificial or natural plant 

protectants (e.g., plant beneficial bacteria), and the suppressive potential of soils. Generally, 

bioassays are performed using just a single point in time (Maurhofer et al. 1994; Pierson & 

Weller 1994; Postma et al. 2008) or multiple points in time (Postma et al. 2008; Hanse et al. 

2011; Latz et al. 2012). In the latter case, often only one single point in time is chosen for 

evaluation (e.g., Postma et al. 2008; Hanse et al. 2011; Latz et al. 2012), or the increase from 

one to the next point in time is evaluated (Kushalappa & Ludwig 1982). However, disease 

progression is more precisely described by classical growth curve models (Neher & Campbell 

1992). Out of the plethora of growth models (Paine et al. 2012), the monomolecular model has 

often been used to describe bioassays with soil-borne pathogens (Stanghellini et al. 2004; 

Wilson et al. 2008). The monomolecular infection model describes the disease progression (the 

change of infections over time) with an initial linear increase of infections (the infection rate), 

followed by a saturation (given by the maximum number of infectable plants, also known as 

carrying capacity or asymptotic growth). 

 

 

 

Figure 4. Two different possible setups for infection treatments. The circular setup with a centered pathogen 
surrounded by plants (a) may lead to a steep linear infection scenario as all plants are probably infected by the 
source pathogen at more or less the same time. Only the linear spatial assembly (b) allows for a consecutive 
infection of plants resulting in a linear increase that can be modelled by the monomolecular infection model. 

 

 

The infection rate seems to be the most important parameter for determining pathogenicity 

(Raaijmakers et al. 2009). However, when estimating the suppressive potential of soils, the time 
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until infections occur (resistance time) might be even more important since pathogen inhibition 

occurs largely during pathogen growth. Actually, only a few experimental setups allow the 

investigation of both, infection rate and resistance time. To measure an infection rate it is 

necessary to use a system with multiple plant individuals (Figure 4) where plants can be 

infected one after another (i.e. measuring a time-series). In such experiments, the pathogen 

inoculant can be applied in different ways: (i) equally distributed application, i.e. 

homogeneously mixed in the soil or growth-substrate, or (ii) single point application (where 

pathogen spread can be assessed; Figure 4). If a pathogen is homogeneously distributed in the 

plant growth substrate, it is possible to measure the number of infected plants over time. The 

measured infection rate, however, would not represent the infection rate per se but rather the 

resistance variance of the plant community to the pathogen. The same problem occurs if a 

pathogen is applied to one location in the substrate and plants are planted at equal distances 

around the inoculum (Figure 4 a). Linear spatial designs (Figure 4 b) have the potential to 

estimate the correct infection rate in addition to the resistance time, whereas the further 

mentioned approaches solely allow to estimate the resistance time. Hence, it is important to 

keep in mind that the design determines the hypothesis that can be tested. 

Another difficulty in performing pathogen infection assays occurs if natural field soils are used 

as substrate (e.g., Mendes et al. 2011; Latz et al. 2012). Here, in addition to the applied 

pathogen, other unknown pathogens may already exist in the soil and may increase infection 

in the plants. To cope with this problem, control treatments may be used to reveal the 

occurrence of natural soil inhabiting pathogens. If controls show infections, (i) these infections 

might be ignored if they are evaluated as statistically not relevant, (ii) the treatments where the 

corresponding controls showed infections could be excluded from further analyses, (iii) the 

treatments may be linearly corrected by simply subtracting the total amount of infectable 

plants by the infections that occurred in the control, which may lead to erroneous results in 

non-linear analyses as shown for functional response models (McCoy, Stier & Osenberg 2012). 

None of these approaches are desirable as they may lead to a bias in single infection rate 

measures (due to ignoring or wrongly correcting infections of a naturally occurring pathogen) 

and the loss of data (exclusion of treatments where the corresponding control was infected).   

Here, we present an alternative approach that incorporates infections caused by any additional 

pathogens in the system by using a two-pathogen monomolecular infection model inspired by 

the competition model for logistic growth (Lotka 1925; Volterra 1926). This two pathogen 
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monomolecular model is an ordinary differential equation system with two equations. Systems 

with two equations are hardly analytically integrable to a single equation describing the 

progress of infections over time, therewith preventing the use of standard non-linear fitting 

functions in R, (e.g., nls()). To overcome this limitation, we applied a numerical integration 

routine (Soetaert, Petzoldt & Setzer 2010) combined with a maximum likelihood optimizer 

(Bolker & R Development Core Team 2014) to fit our model to data. 

Our method allows for the use of natural soils (i) already contaminated with naturally occurring 

pathogens, and (ii) from different origins and habitats, while allowing for accurate evaluation 

of pathogenicity and plant resistance patterns in the field. 

2.2.3 | The Model 

The monomolecular infection model (Raaijmakers et al. 2009; Paine et al. 2012) describes the 

increase of infections in a (plant) community over time, dI dt-1, by: 

 

𝑑𝐼

𝑑𝑡
= 𝑟(𝐼𝑚𝑎𝑥 − 𝐼)         Equation 1 

 

with r [time-1] being the infection rate and Imax [Infected (Plants) Area-1] being the maximum 

number of potentially infectable plants. The infection of the first plant is not necessarily 

instantaneous, but depends on the resistance of the soil and the plants to the pathogen, 

leading to a lag phase at the beginning of the experiment. To account for this mechanism, we 

extend the monotonic infection model by the time to the first infection, t0: 

 

𝑑𝐼

𝑑𝑡
= {

0, 𝑡 < 𝑡0
𝑟(𝐼𝑚𝑎𝑥 − 𝐼), 𝑡 ≥ 𝑡0

        Equation 2 

 

Below t0 new infections are zero whilst above the occurrence of new infections follows the 

monomolecular infection model. In experiments using natural soils, alternative pathogens may 

be responsible for infections in the bioassay. To correct for these "wrong" infections, we extend 

the monomolecular model, inspired by the two-species competition growth model (Lotka 

1925; Volterra 1926), to a two-species monomolecular infection model:  
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𝑑𝐼𝑝

𝑑𝑡
= {

0, 𝑡 < 𝑡0,𝑝
𝑟𝑝(𝐼𝑚𝑎𝑥 − (𝐼𝑝 + 𝐼𝑐)), 𝑡 ≥ 𝑡0,𝑝

      Equation 3a 

𝑑𝐼𝑐

𝑑𝑡
= {

0, 𝑡 < 𝑡0,𝑐
𝑟𝑐(𝐼𝑚𝑎𝑥 − (𝐼𝑝 + 𝐼𝑐)), 𝑡 ≥ 𝑡0,𝑐

       Equation 3b 

 

where Ip is the number of infected plants due to the pathogen, Ic are the number of infected 

plants in the control; rp and rc are the infection rates of the pathogen and the control treatment, 

respectively; and t0,p and t0,c are the resistance time of the pathogen and the control treatment, 

respectively. 

2.2.4 | Application 

Before starting the analyses, the packages deSolve (Soetaert et al. 2010) and bbmle (Bolker & 

R Development Core Team 2014) must be loaded using library() or require(); the 

source files (infection.models.r and infection.nll.r) must be loaded using source(). 

 

Parameter estimation. First, the control treatment (Figure 5 a) must be fitted using the 

monomolecular model including a lag phase (Eqn. 2) using the mle2() function for general 

maximum likelihood fits from the package bbmle (Bolker & R Development Core Team 2014). 

The mle2() is used to minimize the negative likelihood function 

mon.inf.lag.1p.nll() from the infection.nll.r source file (see Bolker 2014 for detailed 

information on using the mle2() function). We need to supply the arguments start, 

containing a list of r and t0 (the start values of the optimization process); data, a list with 

the headers nI (the number of infected plants in the experiment), tps (the timepoints from 

the experiment), and Imax (if the number of total plants differs between experimental units); 

fixed, a list containing the headers steps (the length of a time step that should be simulated 

by the integration routine; this is set to 0.1 as default and does not have to be supplied), Imax, 

(a single value for the maximum of potentially infectable plants in the experiment, only needed 

if not supplied as data), and tracing (if set to 1, the trace including the negative likelihood 

and the parameters is displayed in the console, useful for error checking, default to 0): 
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R> fit.control = mle2(mon.inf.lag.1p.nll, 

+    start = list(r = 1, t0 = 1), 

+    data = list(nI = y, tps = x1, Imax = x2), 

+    fixed = list(steps = .1, Imax = x2, tracing = 0) 

+  ) 

 

Note that the initial values are just placeholders and might be adapted, but see section 

Examples for details. Imax must only appear once, either in the data list or in the fixed list in 

dependence if Imax is only a fixed single value or a set of data of the same length as y and 

x1. 

Second, after estimating the infection parameters r and t0 for the control, the two-pathogen 

monomolecular infection model can be fitted to the data with the experimentally added 

pathogen (Eqn. 3). Again we use the mle2() function, but now using the 

mon.inf.lag.2p.nll() function to be minimized. The estimates of the control 

treatment are assigned to rc and t0c in the fixed argument list. The target infection 

parameters are still placed in the start argument but now called rp and t0p: 

 

R> fit.treatment = mle2(mon.inf.lag.2p.nll, 

+    start = list(rp = 1, t0p = 1), 

+    data = list(nI = y, tps = x1, Imax = x2), 

+    fixed = list(steps = 1, 

+      Imax = x2, 

+      rc = coef(fit.control)[[1]], 

+      t0c = coef(fit.control)[[2]] 

+    ) 

+  ) 

 

One can investigate the fitting results and statistics using the generic summary() function 

applied on the object containing fitting results (here: fit.control & fit.treatment). 

2.2.5 | Examples 

R code and data files are provided as supplementary information on CD; how to use the R code 
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is discussed below. 

The files infection.frontend1.r and infection.frontend2.r are the front-end files containing the 

adaptable examples we will discuss below. These files load the source files, infection.models.r 

and infection.nll.r, containing all underlying functions. We begin with a detailed description of 

the front-end files which should be sufficient to apply our fitting method to data. Moreover, we 

kindly invite you to continue reading the descriptions of the source files later in section 

Underlying Functions. 

Please extract all required files from the zip-folder into one folder and keep the provided folder 

structure. If you prefer different organization of data and files you have to adapt the paths 

described below in the code.  

Before getting started, use e.g. install.packages() to install the required packages 

deSolve (Soetaert et al. 2010) and bbmle (Bolker & R Development Core Team 2014), but see 

introductory R books and manuals for details (Bolker 2008; Crawley 2012). We first discuss the 

case of a constant number of plants in the experimental units (infection.frontend1.r). 

 

Required packages and data. First, the required packages, the source files and the data must be 

loaded: 

 

R> library("deSolve") 

R> library("bbmle") 

R> setwd("/path/to/your/folder/") #please replace this according to your path 

R> source("source/infection.models.r") 

R> source("source/infection.nll.r") 

R> sample.data = read.csv("data/sample.data.csv") 

 

To investigate the data structure we use the generic str() function: 

 

R> str(sample.data) 

'data.frame': 40 obs. of  3 variables:  

 $ treatment      : Factor w/ 2 levels "control","treatment": 1 1 1 1 1 ...  

 $ time.days      : int  1 2 3 4 5 ...  

 $ number.infected: int  0 0 1 1 3 ... 

 

The data comprises three variables, (1) the factorial variable treatment determining if the data 
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belongs to the control or the experimental treatment. The variable time.days contains the 

time of the measurement in days (you can switch the temporal resolution, the unit here 

determines the unit of the infection rate), and the variable number.infected contains the 

information of how many plants are infected (note that this must be an integer as we apply a 

binomial distribution later on; but see [Crawley 2012] and [Bolker 2008] for a detailed 

description on this topic). The data represents single experimental units (independent 

replicates, each data point represents the last measurement of a time series). Before 

continuing, we separate the data into two sub data sets containing just the control or just the 

treatment data using the subset function. 

 

R> data.control = subset(sample.data, treatment == "control") 

R> data.treat = subset(sample.data, treatment == "treatment") 

 

Subsequently, we investigate the data graphically. For a better overview we set the graphical 

device to display two plotting regions using the par() function (the argument mfrow is set 

to c(1,2), generating 2 horizontal adjacent plotting regions). Within the plot() functions 

we fix the y-axes ranges to create comparable plots (ylim = c(0,10)) and display the 

number of infections (y-axis) depending on the experimental time (x-axis): 

 

R> par(mfrow=c(1,2)) 

R> plot(data.control$time.days, 

+    data.control$number.infected, 

+    ylim=c(0,10), 

+    xlab="days", 

+    ylab="infections control") 

R> plot(data.treat$time.days, 

+    data.treat$number.infected, 

+    ylim=c(0,10), 

+    xlab="days", 

+    ylab="infections treatment") 

 

The control without an experimentally added pathogen shows an early increase (day 3) of 

infected plants over time (Figure 5 a), but not all plants are infected during the experimental 

trial. The treatment with the experimentally added pathogen shows the first infections at day 
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4, but the increase in new infections is much steeper than in the control, and all plants might 

be infected (Figure 5 b). 

 

 

 

Figure 5. Simulated data of an infection bioassay. The data is simulated based on equations 2 and 3 using the 

functions mon.inf.lag.1p() and mon.inf.lag.2p(). After simulating the numeric average we applied 

a random number generator (rbinom()) using Imax as size of the binomial distribution and the floating average 

of the simulation divided by by Imax as probability. The control data (a) was simulated using r = 0.025, Imax = 

10 and t0 = 1 and the experimental treatment (b) was simulated using rp =  0.19, rc = 0.025, t0p = 5.5, t0c = 

1 and Imax = 10. 

 

 

Analysis of the data "wrong" approach. First, we analyse the experimental data using the 

standard monomolecular growth model (Raaijmakers et al. 2009; Paine et al. 2012). This model 

ignores the fact that not only the experimentally added pathogen but, in addition, other soil 

inherent pathogens may infect plant individuals and will be named "wrong method" 

(fit.treatment.wrong(), note that this method is valid if the medium chosen for the 

bioassay is sterile or does not contain any alternative pathogens). To fit the model to the data 

we use the mle2() function from the bbmle package by Ben Bolker (Bolker 2008; Bolker & R 

Development Core Team 2014). The mle2() function requires (1) a negative log-likelihood 

function, here the function mon.inf.lag.1p.nll() discussed in section Underlying 

Functions; (2) a list containing the model parameters that should be estimated (here the 

infection rate, r, and the resistance time, t0); (3) a list containing the data the model should 

be fitted to, here the first element of the list must be named nI (the number of infected plants) 

and the second element must be named tps (timepoints, the time of the experimental data); 

(4) we also submit a fixed value to mle2(), again in a list object, containing the maximum 
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number of potentially infected plants (all plants in the experimental unit). Note that Imax does 

not have to be a fixed value but can also be assigned in the data list if the different replicates 

contain different numbers of plants (see subsection “Analysing data with multiple Imax”). Here, 

we start the fitting optimization with the initial guessed values of r = 1 and t0 = 1 (note 

that these values are just place-holders and might be adapted by the user, see subsection 

"What to do if…" below, moreover these values will be changed during the fitting algorithm by 

the optimizer mle2(); note also that the initial t0 must be equal or smaller than the 

experimental resistance time, which according to Figure 5 is at day 4); we set Imax = 10 (the 

maximum number of plants in the experiment). 

 

R> fit.treatment.wrong = mle2(minuslogl = mon.inf.lag.1p.nll, 

+    start = list(r = 1, t0 = 1), 

+    data = list(nI = data.treat$number.infected, 

+      tps = data.treat$time.days), 

+    fixed = list(Imax = 10) 

+  ) 

 

After the fitting procedure, we investigate the data using the generic summary() function: 

 

R> summary(fit.treatment.wrong) 

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.1p.nll, start = list(r = 1, t0 = 1),  

    fixed = list(Imax = 10), data = list(nI = data.treat$number.infected,  

        tps = data.treat$time.days))  

 

Coefficients:  

   Estimate Std. Error z value     Pr(z)     

r  0.170595   0.021636  7.8849 3.148e-15 ***  

t0 3.461684   0.392051  8.8297 < 2.2e-16 ***  

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

-2 log L: 49.99375 
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The output provides information on the estimates of the model, as well as statistical indicators 

such as standard errors and p-values (but see Bolker 2008 for a detailed discussion of the 

underlying statistics). The infection rate, r, is estimated to be ~0.171 +/- 0.022 infections per 

day, and the resistance time, t0, is estimated to be ~3.46 +/- 0.39 days. These values 

underestimate both model parameters compared to the simulation parameters (t0simulation = 

5.5 days, rsimulation = 0.19 infections per day). 

 

Analysis of the data - correct approach. Next, we apply the two-pathogen approach to the data, 

taking the infections of the control treatment into account. In the first step we analyze the 

control data similarly to the treatment data shown above only with exchanging the data supply 

from the experimental to the control data and decreasing the starting values for the model 

parameters (we already saw that the first infections occurred earlier and the slope is less step 

than for the treatment data). 

 

R> fit.control = mle2(mon.inf.lag.1p.nll, 

+    start = list(r = 0.5, t0 = 0.5), 

+    data = list(nI = data.control$number.infected, 

+      tps =  data.control$time.days), 

+    fixed = list(Imax = 10) 

R> ) 

R> summary(fit.control) 

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.1p.nll, start = list(r = 0.5, t0 = 0.5),  

    fixed = list(Imax = 10), data = list(nI = data.control$number.infected,  

        tps = data.control$time.days))  

 

Coefficients:  

    Estimate Std. Error z value     Pr(z)     

r  0.0292603  0.0075671  3.8668 0.0001103 ***  

t0 0.4666304  2.0573508  0.2268 0.8205705     

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  
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-2 log L: 56.46962 

 

The fitting algorithm revealed that the infection rate, r, is ~0.029 +/-0.0076, and the resistance 

time, t0, is ~0.47 +/-2.057. Both values are not significantly different from the simulated value. 

We will use the infection rate and the resistance time of the control to parameterize the two-

pathogen model using the mon.inf.lag.2p.nll() function (see section Underlying 

Functions for details). Using mon.inf.lag.2p.nll() requires some reformulation of the 

code, the infection rate, r, and the resistance time, t0, for the treatment "pathogen" are now 

called rp and t0p and both appear in this spelling in the list of starting parameters. In addition 

to Imax, the list of fixed parameters contains here the infection rate of the control pathogen, 

rc, and the resistance time of the control, t0c. We call this values directly using the coef() 

function. 

 

R> fit.treatment = mle2(mon.inf.lag.2p.nll, 

+    start = list(rp = 0.5, t0p = 5), 

+    data = list(nI = data.treat$number.infected, 

+      tps = data.treat$time.days), 

+    fixed = list(Imax = 10, 

+      rc = coef(fit.control)[[1]], 

+      t0c = coef(fit.control)[[2]]) 

+  ) 

R> summary(fit.treatment) 

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.2p.nll, 

 start = list(rp = 0.5, t0p = 5), 

 fixed = list(Imax = 10, rc = coef(fit.control)[[1]], 

      t0c = coef(fit.control)[[2]]), 

 data = list(nI = data.treat$number.infected, 

      tps = data.treat$time.days))  

 

Coefficients:  

    Estimate Std. Error z value     Pr(z)     

rp  0.193377   0.035434  5.4574 4.831e-08 ***  
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t0p 5.831930   0.614306  9.4935 < 2.2e-16 ***  

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

-2 log L: 48.21475 

 

The values estimated by the two pathogen monomolecular model match the simulated values 

better than the results from the uncorrected fit. The estimated infection rate is measured to 

be ~0.193 +/- 0.035 (rpsimulation = 0.19) and the first infection time is estimated to be ~5.83 +/- 

0.61 (t0psimulation = 5.5). 

 

Adding lines to the plot. The graphical representation of data and model fits is common practice. 

Simple linear regressions can be added as line to an existing plot using e.g. the generic 

abline() function. Our example is slightly more complex, but not much. First we have to 

create a vector containing values for the x-axis (time in days in our case) which will later be used 

to display a line in the plot. Note that non-linear lines need many values to create a smooth 

appearance of the line. Here we choose to create 100 x-values ranging from t=0 to t=20, the 

end of our experiment using the seq() function with the third argument set to length = 

100 (which creates 100 evenly distributed values ranging from the minimum to the maximum 

value). To simulate the corresponding y-values we use the lsoda() function from the package 

deSolve (Soetaert et al. 2010). The lsoda() function builds a complex object including 

background information on the simulation run not needed for our purpose. To get rid of this 

information, we save the object created by lsoda() as a data frame by applying the 

data.frame() function on the lsoda() function. lsoda() requires the starting density 

of the infected plants as first argument, y, here c(I = 0); the second argument is the 

sequence of time points the number of infected plants should be calculated for; the third 

argument requires the ordinary differential equation model that should be applied 

(mon.inf.lag.1p(), see below for detailed discussion); and fourth, the parameters of the 

model must be supplied, here the results of our model fit. 

 

R> xvalues = seq(0,20,length=100) 

R>  

R> control.est =  data.frame(lsoda(y = c(I = 0), 

+    times = xvalues, 
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+    func = mon.inf.lag, 

+    parms = c(r = coef(fit.control)[[1]], 

+      t0 = coef(fit.control)[[2]], 

+      Imax = 10) 

+  )) 

 

To simulate the regression line for the correct treatment fit, we must extend the code described 

above to incorporate both the control as well as the treatment pathogen parameters. We again 

use the lsoda() function, but now call the mon.inf.lag.2p() function that allows to 

model two pathogens. Also, we have to provide two starting densities for the infected plants 

(zero infected plants by the treatment pathogen, Ip = 0, and zero infected plants by the 

natural occurring (control) pathogens, Ic = 0). Moreover, the parameter list must now 

contain five parameters, both infection rates (rp and rc), both resistance times (t0p and 

t0c) and again the maximum reachable number of infected plants, Imax. 

 

 

 

Figure 6. Infection bioassay as in Figure 5. The control (a) shows less infections starting earlier in the time series 
compared to the treatment with the experimentally added pathogen (b). This leads to a low infection rate 
combined with a low resistance time visualized by the black line in (a). The early infections in the treatment are 
due to infections by the natural pathogen, leading to a slight increase of the fitted curve (b), at t ~ 6, the treatment 
pathogen leads to a steep increase of the infection curve. 

 

 

R> treat.est =  data.frame(lsoda(y = c(Ip = 0, Ic = 0), 

+    times = xvalues, 

+    func = mon.inf.lag.2p, 

+    parms = c(rp = coef(fit.treatment)[[1]], 

+      t0p = coef(fit.treatment)[[2]], 
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+      rc = coef(fit.treatment)[[3]], 

+      t0c = coef(fit.treatment)[[4]], 

+      Imax = 10) 

+  )) 

 

To add the lines to the plot, we again call plot() from above and subsequently lines(). 

Note that we have to sum both densities of infected plants (due to the treatment pathogen 

and the natural occurring (control) pathogen) to plot correct line (Figure 6) for the treatment 

data. 

 

R> par(mfrow=c(1,2)) 

R> plot(data.control$time.days, 

+    data.control$number.infected, 

+    xlim=c(0,20), 

+    ylim=c(0,10), 

+    xlab="days", 

+    ylab="infections") 

R> mtext(side=3,"(a)",line=-1.5,adj=0.03) 

R> lines(control.est$time, control.est$I) 

R>  

R> plot(data.treat$time.days, 

+    data.treat$number.infected, 

+    xlim=c(0,20), 

+    ylim=c(0,10), 

+    xlab="days", 

+    ylab="infections") 

R> mtext(side=3,"(b)",line=-1.5,adj=0.03) 

R> lines(treat.est$time, treat.est$Ip+treat.est$Ic) 

 

What to do if... 

... I get the 

 

Warning message: 

In dbinom(x = nI, prob = Isim/Imax, size = Imax, log = TRUE) : 

  NaNs produced 

 

Keep calm, this is just a warning message, not an error and the fitting algorithm still succeeded. 
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Let us perform an example using the control treatment from the infection.frontend1.r (line 107 

ff). We change the initial infection rate to 3, a rather high starting value: 

 

R> fit.control.warning = mle2(mon.inf.lag.1p.nll, 

+    start = list(r = 3, t0 = 0.5), 

+    data = list(nI = data.control$number.infected, 

+      tps =  data.control$time.days), 

+    fixed = list(Imax = 10) 

+ ) 

 

Warning messages:  

1: In dbinom(x = nI, prob = Isim/Imax, size = Imax, log = TRUE) : 

  NaNs produced 

2: In dbinom(x = nI, prob = Isim/Imax, size = Imax, log = TRUE) : 

  NaNs produced 

 

R> summary(fit.control.warning)  

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.1p.nll, start = list(r = 3, t0 = 0.5),  

     fixed = list(Imax = 10), 

     data = list(nI = data.control$number.infected,  

        tps = data.control$time.days))  

 

Coefficients:  

    Estimate Std. Error z value     Pr(z)     

r  0.0292636  0.0075801  3.8606 0.0001131 ***  

t0 0.4656128  2.0637430  0.2256 0.8215003     

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

-2 log L: 56.46962 

 

The warning message appears twice, but the fit still succeeded. But we can have a closer look 

at the problem. To do so, we can have a look at the trace log of the fit. 
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... I want to see the trace of the integrative fitting process? 

We continue the example by adding the element tracing to the fixed list. This allows to track 

the iteration steps in which the NaNs occurred and the values of the infection parameters that 

have been used in these steps: 

 

R> fit.control.tracing = mle2(mon.inf.lag.1p.nll, 

+    start = list(r = 3, t0 = 0.5), 

+    data = list(nI = data.control$number.infected, 

+      tps =  data.control$time.days), 

+    fixed = list(Imax = 10, tracing = 1) 

+  )  

 

Running this code a list of negative likelihood values and infection parameters appears in the 

console, getting longer the more the fitting advances (to save space here in the text we 

truncated the output, you might have to scroll up a little in your console output to see the 

same): 

 

... 

[1] "negLL:  28.2629342646186 r:  0.0277248134455506 t0:  0.248536802570284"  

[1] "negLL:  28.2627221727419 r:  0.0277248134455506 t0:  0.246536802570284"  

[1] "negLL:  NaN r:  54.3011142347463 t0:  0.141490864217889"  

[1] "negLL:  NaN r:  10.8824026977057 t0:  0.226327614899805"  

[1] "negLL:  2897.85108207059 r:  2.19866039029758 t0:  0.243294965036188"  

[1] "negLL:  582.147373888558 r:  0.461911928815957 t0:  0.246688435063465" 

... 

 

Clearly, the NaNs are produced when extremely high infection rates (r ~ 50.3 and r ~ 10.88) 

are tested by the optimization algorithm. This causes the lsoda() to fail as the increase in 

new infected plants is much larger than the step size of the numeric integration routine (we set 

the default to 0.1, which corresponds here to 0.1 days). Therefore (1) the warning message can 

be ignored as it applies only to unlikely high infection rates; a change in the starting parameters 

may avoid that the optimization algorithm picks randomly these high rates (the main example 

did not show any warnings); or the step size of the numerical integration routine can be 

decreased to increase the temporal resolution of the simulation. 
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... I want to change the step size of the numerical integration routine? 

 

R> fit.control.steps = mle2(mon.inf.lag.1p.nll, 

+    start = list(r = 3, t0 = 0.5), 

+    data = list(nI = data.control$number.infected, 

+      tps =  data.control$time.days), 

+    fixed = list(Imax = 10, steps = 0.01) 

+  ) 

R> summary(fit.control.steps)  

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.1p.nll, 

 start = list(r = 3, t0 = 0.5), 

 fixed = list(Imax = 10, steps = 0.01), 

 data = list(nI = data.control$number.infected, 

   tps = data.control$time.days))  

 

Coefficients:  

    Estimate Std. Error z value     Pr(z)     

r  0.0292641  0.0076073  3.8468 0.0001197 ***  

t0 0.4656282  2.0725455  0.2247 0.8222400     

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

-2 log L: 56.46962 

 

By decreasing the temporal resolution of the underlying integration of the infection model, we 

got rid of the warning messages, but at the cost of speed (it will take much longer to run the 

model function with this settings). 

 

Analysing data with multiple Imax. In bioassays using plant seeds instead of plants not all seeds 

may germinate. This leads to different Imax in the different replicates. You find the example in 

infection.frontend2.r. As for the above mentioned example, we first have to set the working 

directory, load the required packages, source files and data: 
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R> library("deSolve") 

R> library("bbmle") 

R> source("source/infection.models.r") 

R> source("source/infection.nll.r") 

R> sample.data2 = read.csv("data/sample.data2.csv") 

R> str(sample.data2)  

 

'data.frame': 60 obs. of  4 variables:  

 $ treatment      : Factor w/ 2 levels "control","treatment": 1 1 1 1 1 ...  

 $ time.days      : int  1 2 3 4 5 ...  

 $ number.infected: int  0 0 0 1 2 ...  

 $ total.number   : int  10 10 10 12 9 ... 

 

You might notice that the data set now includes the additional variable total.number 

containing the information which experimental unit has which Imax. We continue with 

separating the data sets as above: 

 

R> data2.control = subset(sample.data2, treatment == "control") 

R> data2.treat = subset(sample.data2, treatment == "treatment")  

 

As above we begin by fitting the control treatment as discussed above. Additionally we set the 

step length of the numerical integrator to 0.01 to avoid NaNs: 

 

R> fit.control = mle2(mon.inf.lag.1p.nll, 

+    start = list(r = 0.02, t0 = 0.5), 

+    data = list(nI = data2.control$number.infected, 

+      tps =  data2.control$time.days, 

+      Imax = data2.control$total.number), 

+    fixed = list(steps = 0.01) 

+  ) 

R> summary(fit.control)  

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.1p.nll, 

 start = list(r = 0.02, t0 = 0.5), 

 fixed = list(steps = 0.01), 
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 data = list(nI = data2.control$number.infected, 

   tps = data2.control$time.days, 

   Imax = data2.control$total.number))  

 

Coefficients:  

    Estimate Std. Error z value   Pr(z)   

r  0.0060132  0.0024244  2.4803 0.01313 *  

t0 2.8417380  6.3979722  0.4442 0.65693   

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

-2 log L: 47.61573 

 

The most important change is that we supply the information for Imax to the data list instead 

of the fixed list. In total the fit takes longer as in the example above. This is due to the fact 

that a numerical integration of a time series for each Imax must be calculated which is rather 

time consuming. We provide more details on this below. 

After fitting the controls we follow the procedure explained above and fit the treatments: 

 

R> fit.treatment = mle2(mon.inf.lag.2p.nll, 

+    start = list(rp = 1, t0p = 1), 

+    data = list(nI = data2.treat$number.infected, 

+      tps = data2.treat$time.days, 

+      Imax = data2.treat$total.number), 

+    fixed = list(steps = 0.01, 

+      rc = coef(fit.control)[[1]], 

+      t0c = coef(fit.control)[[2]]) 

+  ) 

R> summary(fit.treatment)  

 

Maximum likelihood estimation  

 

Call:  

mle2(minuslogl = mon.inf.lag.2p.nll, 

 start = list(rp = 1, t0p = 1), 

 fixed = list(steps = 0.01, 

   rc = coef(fit.control)[[1]], 

   t0c = coef(fit.control)[[2]]), 
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 data = list(nI = data2.treat$number.infected, 

   tps = data2.treat$time.days, 

   Imax = data2.treat$total.number))  

 

Coefficients:  

    Estimate Std. Error z value    Pr(z)     

rp   0.60307    0.26499  2.2758  0.02286 *   

t0p  8.27764    1.15717  7.1533 8.47e-13 ***  

---  

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1  

 

-2 log L: 9.043275 

2.2.6 | Underlying Functions 

Negative Likelihood Functions (infection.nll.r). The fitting algorithm used above, mle2(), 

requires a negative log-likelihood (nll) function that will be minimized (see Bolker 2008 for a 

detailed introduction). The nll()-function for the monomolecular infection model can be 

written as: 

 

R> mon.inf.lag.1p.nll = function(nI,tps,r,t0,Imax,steps=0.1,tracing=0){ 

+    if(r <= 0 || t0 <= 0 || t0 >= min(tps[nI>0])){ return(Inf) } 

+    Isim = sim.inf.1p(tps, r, Imax, t0, steps) 

+    negLL = -sum(dbinom(x = nI, 

+      prob =  Isim / Imax, 

+      size = Imax, 

+      log = TRUE)) 

+    if(tracing == 1) print(paste("negLL: ",negLL,"r: ",r,"t0: ",t0)) 

+    return(negLL) 

+ }  

 

The function includes seven arguments: the experimentally measured number of infected 

plants, nI; the corresponding time estimates from the experiment, tps (timepoints); the 

infection rate, r; the resistance time, t0; the maximum number of infections possible, Imax, 

(i.e. the maximum number of host plants in the experimental unit); the desired step length of 

the numerical integration, steps, by default set to 0.1; and the tracing argument which is 
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deactivated by default. First the function checks if either r or t0 are below zero or t0 is greater 

than or equal to the minimum time of an infection in the real data. If any of these queries is 

true, the function returns infinity. Next, the model predictions for each experimentally 

measured value are simulated using sim.inf.1p() (see subsection “ODE functions”). 

Finally, the function calculates the negative likelihood using the binomial density function 

dbinom() and returns it. We choose the binomial distribution as our data is binomially 

distributed (integer values for infections have a clear defined minimum and maximum number 

of infections, but see Bolker (2008) for a detailed introduction on this topic). 

The two-pathogen variant, mon.inf.lag.2p.nll(), is similar to the above described 

function and we will only discuss the differences. As this function is created to estimate the 

negative log-likelihood of a two pathogen system, the model parameters consist of rp, rc, 

t0p and t0c. Moreover, the function sim.inf.2() is used to calculate the number of 

infections from the model simulation. Also a more complex if-statement is added to ensure that 

at least one of t0p or t0c falls below the time the first infection occurred in the experiment 

(otherwise NaNs may be produced): 

 

R> mon.inf.lag.2p.nll = function(nI, tps, rp, t0p, rc, 

+    t0c, Imax, steps = 0.1, tracing = 0){ 

+    if(rp <= 0 || t0p <= 0 || rc <= 0 || t0c <= 0){ return(Inf) } 

+    if(t0p >= min(tps[nI>0]) && t0c >= min(tps[nI>0])){ return(Inf) } 

+    Isim = sim.inf.2p(tps, rp, rc, Imax, t0p, t0c, steps) 

+    negLL = -sum(dbinom(x = nI, 

+      prob = Isim / Imax, 

+      size = Imax, 

+      log = TRUE)) 

+    if(tracing == 1) print(paste("negLL: ",negLL, "r: ",r, "t0: ",t0)) 

+    return(negLL) 

+ }  

 

The function sim.inf.1() first creates an empty numeric vector (Iout) to store the 

calculated values for infection in. If Imax is only a single value we apply the lsoda() function 

to simulate a single time series of plant infections according to the assigned parameter values 

(parms = c(r = r, Imax = Imax, t0 = t0)) and a starting density of infected 

plants of unity (y = c(I = 0)). The numerical simulation of the integration process needs 
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a vector of consecutive points in time. This vector consists of a sequence of consecutive values 

from zero to the maximum time value (seq(0, max(tps), steps)), and the 

experimental time values, tps. As no duplicate values should appear in the vector and the time 

vector should increase consecutively, we first apply the unique() function on the vector to 

delete duplicates and second sort the vector by the sort() function. The ordinary differential 

equation system that should be integrated is given by the function mon.inf.lag.1p(). 

Please read into Soetaert and Herman (2008) to get a general introduction into the topic 

"solving ordinary differential equation systems in R using deSolve". After the integration the 

number of estimated infections are saved according to their appearance in the experimental 

time series using a for-loop. 

If the experimentally data consist of more than one single value for Imax, the else part of the 

if/else-statement is activated. First, we create three empty numeric vectors to store the 

number of infected plants, the time, and the maximum number of infectable plants in 

(mres.I, mres.time, mres.Imax). Second we use a for-loop to calculate the number 

of infected plants for each Imax. Third, we save the results to Iout as described above using 

a for-loop, with additionally separating for each Imax. 

 

R> sim.inf.1p = function(tps, r, Imax, t0, steps) { 

+    Iout = numeric() 

+    if(length(Imax) == 1){ 

+      mres = data.frame(lsoda(y = c(I = 0), 

+      times = sort(unique(c(seq(0, max(tps), steps), tps))), 

+      func = mon.inf.lag.1p, 

+      parms = c(r = r, 

+        Imax = Imax, 

+        t0 = t0))) 

+      for(tps.i in 1:length(tps)){ 

+        Iout[tps.i] = mres$I[mres$time == tps[tps.i]] 

+      } 

+    } else { 

+      mres.I = numeric() 

+      mres.time = numeric() 

+      mres.Imax = numeric() 

+      for(Imax.i in 1:length(unique(Imax))){ 

+        mres = data.frame(lsoda(y = c(I = 0), 

+          times = sort(unique(c(seq(0, max(tps), steps), tps))), 
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+          func = mon.inf.lag.1p, 

+          parms = c(r = r, Imax = unique(Imax)[Imax.i], t0 = t0))) 

+        mres.I = c(mres.I,mres$I) 

+        mres.time = c(mres.time,mres$time) 

+        mres.Imax = c(mres.Imax, 

+          rep(unique(Imax)[Imax.i], length(mres$time))) 

+      } 

+      for(tps.i in 1:length(tps)){ 

+    Iout[tps.i]=mres.I[mres.time == tps[tps.i] & mres.Imax == Imax[tps.i]] 

+      } 

+    } 

+    return(Iout) 

+  }  

 

The function sim.inf.2() is similar to the function sim.inf.1() but models the two-

pathogen system. The differences are: model parameters consist are rp, rc, t0p and t0c;  

lsoda() needs two starting values for infections at time = 0 (c(Ip = 0, Ic = 0)); the 

ordinary differential equation system is given by the function mon.inf.lag.2p(). The 

results for the total infected plants, estimated by the model, are now calculated by 

(mres$Ic+mres$Ip). 

 

R> sim.inf.2p = function(tps, rp, rc, Imax, t0p, t0c, steps) { 

+    Iout = numeric() 

+    if(length(Imax) == 1){ 

+      mres = data.frame(lsoda(y = c(Ip = 0, Ic = 0), 

+        times = sort(unique(c(seq(0, max(tps), steps), tps))), 

+        func = mon.inf.lag.2p, 

+        parms = c(rp = rp, 

+          rc = rc, 

+          Imax = Imax, 

+          t0p = t0p, 

+          t0c = t0c))) 

+        for(tps.i in 1:length(tps)){ 

+          Iout[tps.i] = (mres$Ip+mres$Ic)[mres$time == tps[tps.i]] 

+        } 

+      } else { 

+        mres.I = numeric() 

+        mres.time = numeric() 
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+        mres.Imax = numeric() 

+        for(Imax.i in 1:length(unique(Imax))){ 

+          mres = data.frame(lsoda(y = c(Ip = 0, Ic = 0), 

+            times = sort(unique(c(seq(0, max(tps), steps), tps))), 

+            func = mon.inf.lag.2p, 

+            parms = c(rp = rp, 

+              rc = rc, 

+              Imax = unique(Imax)[Imax.i], 

+              t0p = t0p, 

+              t0c = t0c))) 

+          mres.I = c(mres.I, mres$Ip+mres$Ic) 

+          mres.time = c(mres.time, mres$time) 

+          mres.Imax = c(mres.Imax, 

+            rep(unique(Imax)[Imax.i], 

+            length(mres$time))) 

+        } 

+        for(tps.i in 1:length(tps)){ 

+    Iout[tps.i]=mres.I[mres.time == tps[tps.i] & mres.Imax == Imax[tps.i]] 

+        } 

+      } 

+    return(Iout) 

+  }  

 

ODE Functions (infection.models.r). The monomolecular infection model (Raaijmakers et al. 

2009; Paine et al. 2012) with an additional lag phase can be written as: 

 

R> mon.inf.lag.1p = function(t, x, parms){  

+    with(as.list(parms),{  

+      if (t < t0) { dI = 0 

+      } else { dI = r * (Imax - x[1]) } 

+      return(list(dI)) 

+    }) 

+  } 

 

The function contains three arguments, the first argument is the time t, the second argument, 

x, is a list of densities that occur in the differential equation system and the third argument, 

parms, is a list of constant parameters. We activate the headers of the parms list by using 

the with() function. Within the with() function the change of infections over time is 
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calculated. We use an if/else-statement to discriminate between zero growth (before the 

first infections occur, t < t0) and positive new infections above this boundary. Lastly, the 

function returns a list containing the change of infected plants, dI. 

The two pathogen monomolecular infection model can be written as: 

 

R> mon.inf.lag.2p = function(t, x, parms){  

+    with(as.list(parms),{  

+      if (t < t0p) {dIp = 0 

+      } else { dIp = rp * (Imax - (x[1]+x[2])) } 

+      if (t < t0c) {dIc = 0 

+      } else { dIc = rc * (Imax - (x[1]+x[2])) } 

+      return(list(c(dIp,dIc)))  

+    })  

+  } 

 

The differences to mon.inf.lag.1p() are: Within the with() function, the change of 

infections over time is calculated following the two pathogen infection model the function 

returns a list containing the change in infected plants over time of the experimentally pathogen, 

dIp, and the naturally (control) occurring pathogen, dIc. 
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2.3.1 | Summary 

Soil-borne plant diseases cause dramatic yield losses worldwide. Current disease control 

strategies can be deleterious for the environment and human health and foster the need for 

alternative disease control. Some soils harbour microorganisms that can efficiently suppress 

pathogens. The main taxa are well characterised, but uncovering mediators driving their 

functioning in the field still remains challenging.  

We set up plant microcosms to experimentally test the Rhizoctonia-suppressive potential of 

soils in dependence on previous plant community composition. Our results indicate that plant 

communities shape soil-disease suppression via changes in root biomass, soil pH, and the 

abundance of the bacterial groups Actinomyces, Bacillus and Pseudomonas, and further stress 

the significance of plant-plant interactions for the suppressive potential of soils.  

Using structural equation modelling, we provide a mechanistic framework showing how the 

complex interactions between plants, soil and microorganisms jointly shape soil 

suppressiveness. Our results stress the importance of plant community composition in 

affecting abiotic and biotic rhizosphere properties, suggesting that plant community 

composition is an important predictor of the disease suppressive potential of soils.  
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2.3.2 | Introduction 

Soil-borne plant pathogens, in particular fungi, cause important yield losses all over the world 

(Weller et al. 2002; Raaijmakers et al. 2009). An average yield loss of 7-15% was estimated for 

the most important crops maize, potato, rice, soybean and wheat (Oerke 2006), and some 

especially aggressive pathogens such as Fusarium, Pythium and Rhizoctonia can cause losses of 

up to 20-35% (Cook 1987; Cook et al. 2002; Smiley et al. 2005). Current control methods are 

based on heavy pesticide application, which, beside of being highly polluting, provide only 

partial protection (Weller et al. 2002; Haas & Defago 2005).  

Many soil microorganisms have the potential to suppress diseases to some extent, and 

pathogen suppression occurring in disease suppressive soils operates through distinct 

biological mechanisms (Weller et al. 2002). Bacteria of the genera Pseudomonas, Actinomyces 

and Bacillus are particularly important for the suppressiveness of soils (Weller et al. 2002; 

Mendes et al. 2011), and their targeted application is offering the opportunity for 

environmentally friendly control of plant diseases (Weller et al. 2002; Haas & Defago 2005). 

However, often disease suppressive bacteria perform poorly when applied to the field 

(Lugtenberg & Kamilova 2009; Raaijmakers et al. 2009). Despite of extensive research on the 

molecular mechanisms involved in disease suppression by bacteria (Mazzola, Funnell & 

Raaijmakers 2004; Haas & Defago 2005; Berg & Smalla 2009; Mendes et al. 2011), there is still 

a lack of knowledge on drivers affecting their survival and functioning in the soil (Philippot et 

al. 2013). 

Plant community composition, soil abiotic properties, and pathogen antagonistic microbial 

communities are linked, and thought to jointly determine the suppressive potential of soils 

(Garbeva et al. 2004; Berg & Smalla 2009; Philippot et al. 2013). Soil-moisture is an abiotic 

component that varies with plant communities and shapes soil microbial communities 

(Hinsinger et al. 2009). Further, plants specifically impact plant-pathogenic as well as pathogen-

antagonistic microorganisms via rhizodeposits (Bais et al. 2006; Bardgett & van der Putten 

2014), and their composition shapes nutritional and pH conditions in the rhizosphere (Uren 

2007; Hinsinger et al. 2009). However, the importance of abiotic factors is far from being clear, 

which might be due to their correlative relationships, and the complexity of mechanisms driving 

soil properties (Janvier et al. 2007). 

Plant diversity affects a variety of ecosystem functions and services (Hooper et al. 2005; 
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Cardinale et al. 2012), and drives the composition of bacterial communities antagonistic to 

plant pathogens (Garbeva et al. 2006; Latz et al. 2012). Plant biodiversity further affects the 

expression of bacterial traits linked to pathogen suppression (Latz et al. 2015). Beside plant 

diversity, the functional composition of plant communities is important for the structure and 

functioning of biocontrol bacteria. For instance, legumes and grasses have been shown to affect 

biocontrol bacteria, and the pathogen suppressive potential of the soil (Latz et al. 2012).  

Generally, effects of plant diversity on microbial communities are suggested to be due to 

increased plant productivity, accompanied by increased resource quantity exudated by plant-

roots (Spehn et al. 2000; Zak et al. 2003; de Deyn et al. 2011). On the other hand, specific 

ecosystem functions are suggested to be dependent on resource composition and the quality 

of specific resources, driven by variation in plant species richness and identity (de Deyn et al. 

2011; Latz et al. 2012, 2015). The link between plant diversity and belowground microbial 

community composition is little studied (Lange et al. 2014), and to our knowledge, studies on 

mechanisms linking plant community composition with the functionality of soil microbes, such 

as plant pathogens and plant pathogen antagonists, are lacking entirely. 

We hypothesised that abiotic and biotic properties of the rhizosphere jointly shape the 

pathogen suppressive potential of soils. We assumed changes in the rhizosphere environment 

(root biomass, soil C/N ratio, pH, soil moisture) to vary with plant community composition and 

in turn affect the abundance and composition of biocontrol bacterial communities, thereby 

altering pathogen suppression (Supplementary Table 1). We tested this hypotheses by setting 

up an experimental grassland plant diversity gradient and investigated plant effects on abiotic 

and biotic soil properties at close to natural conditions. To allow unravelling mechanistic 

linkages we used a structural equation modelling approach (see Figure 7 and figure legend for 

details). 
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Figure 7. Grassland plant communities consisting of one to eight species were set up in a substitutive diversity 
gradient. To increase plant community effects on soil parameters, plant succession was simulated in growth cycles. 
After the fifth growth cycle, soil parameters were measured, plant roots were weighed and biocontrol bacteria 
(Actinomyces, Bacillus and Pseudomonas) enumerated. Subsequently, the soil was planted with sugar beet 
seedlings and infested with the model pathogen Rhizoctonia solani, and pathogen suppression was assessed. 
Mechanisms linking plant community composition and pathogen suppression were unravelled via structural 
equation modelling. In addition, plant-plant interaction effects on pathogen suppression were assessed (see 
methods for details).  

2.3.3 | Materials and Methods 

Plants. We used a total of eight plant species, four from the two functional groups grasses and 

legumes that are representatives of central European mesophilic grassland Arrhenatherion 

communities (Roscher et al. 2004). Grasses included Bromus erectus Huds. (Bromus), Dactylis 

glomerata L. (Dactylis), Festuca pratense Huds. (Festuca), Lolium perenne L. (Lolium), and the 

legume species were Lotus corniculatus L. (Lotus), Medicago lupulina L. (Medicago), Trifolium 

pratense L. (Trifolium p.), and Trifolium repens L. (Trifolium r.; Appels Wilde Samen GmbH, 

Darmstadt, Germany). It has been shown that nutrient uptake strategies and other functional 

traits differ considerably between these species (Roscher et al. 2004). 
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Microcosm construction. Microcosms (PVC tubes; diameter 10 cm, height 18 cm) were filled 

with 680 g of fresh soil obtained from a bare ground area close to the field site of the Jena 

Experiment (Roscher et al. 2004). Prior to plantation, the soil was sieved (2 mm) to remove 

macrofauna, roots, and stones. Subsequently, the soil was mixed with 170 g 2 - 5 mm expanded 

clay; 20% of total volume (Fibo ExClay Deutschland GmbH, Lamstedt, Germany) to ensure 

constant humidity. Upscaling the maximum of 8 plants species per 0.00785 m2 equals 

approximately 60 species per 20 m x 20 m (according to species area relationships for generalist 

European grassland species; Krauss et al. 2004), which is the maximum diversity per area in the 

Jena Experiment (Roscher et al. 2004). For each plant to be established three seeds were placed 

per sowing-spot; superfluous plant seedlings were removed after emergence.  

 

Experimental setup. Plant diversity was varied independently of functional group affiliation in a 

substitutive gradient ranging from one to eight species by using the random partitions design 

(Bell et al. 2009). Every species was drawn at random from the species pool without 

replacement, such that each species was selected once at each level of diversity. Drawing was 

replicated three times resulting in three partitions, each containing of eight plant 

monocultures, eight two-species mixtures, four four-species mixtures, and one eight-species 

mixture. One microcosm without plants per experimental block served as control 

(Supplementary Figure 2). We used a well-established accelerated cycle design, in which plants 

were harvested and the microcosms planted again with the same plant communities in a three 

week cycle with five cycles in total. This design allowed simulating plant succession cycles in 

reduced time course, and has been used to investigate the effect of plants on the structure of 

bacterial communities before (Landa et al. 2003; Mazzola et al. 2004; Bergsma-Vlami et al. 

2005b). Plant communities were grown in a climatic chamber (18 - 22°C; photoperiod 12 h; 150 

µmol m-2 s-1 photon flux density), and watered and randomized twice a week.  

 

Sampling and measurements. Plant communities were harvested after the completion of the 

fifth growth cycle. Roots of plant communities were weighed and the soil was homogenized 

and stored at 4°C until further use. To quantify cultivable bacteria with biocontrol function, 

total bacteria were recovered from the root systems by horizontally shaking in 20 ml cold 1/10 

phosphate-buffered saline for 0.5 h (PBS; Sambrook & Russell 2001). We focused on the 

bacterial genera Actinomyces, Bacillus, and Pseudomonas, known to have high suppressive 
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potential against the chosen model pathogen Rhizoctonia solani (Garbeva et al. 2006; Mendes 

et al. 2011). Starch Casein Agar (SCA) containing 100 µg ml-1 cycloheximide (Hirsch & 

Christensen 1983) was used for the enumeration of actinomycetes in diluted rhizosphere-soil 

suspensions (2 × 10⁴ - 2 × 10⁶ -fold). Bacillus spp. were isolated by incubating the rhizosphere-

soil suspension at 85°C for 0.5 h, and dilutions (2 × 10³ - 2 × 10⁴ -fold) were plated on 1/10 

Tryptic Soy Agar (TSA; Stevenson & Segner 1992). Pseudomonads were isolated by dilution-

plating (2 × 10⁴ - 2 × 10⁶ -fold) on 1/3 King´s B agar containing 40 µg ml-1 ampicillin, 13 µg ml-1 

chloramphenicol, and 100 µg ml-1 cycloheximide (Simon & Ridge 1974; McSpadden Gardener 

et al. 2001). Bacterial colonies were counted after four and additional colonies after six days 

(Actinomyces), two and three days (Bacillus), and three and four days (Pseudomonas) of growth 

at 20°C. For further analyses plate counts from soil dilutions resulting in 50 - 500 bacterial 

colonies per plate were chosen.  

The pH of 2 g soil was determined in a 1:10 dilution with 0.01 M CaCl2. The gravimetric water 

contend was measured by drying soil at 65°C for three days. Thereafter, dried soil samples were 

ball-milled (MM 400; Retsch GmbH, Haan, Germany) for analysis of total carbon (C) and 

nitrogen (N) concentrations in an element analyser (Vario EL ΙΙΙ, Elementar, Hanau, Germany).  

 

Soil suppressiveness assay. In order to analyse the effects of previous plant community 

composition on pathogen suppression in the following crop, we carried out a standardized 

infection assay with sugar beet seedlings (Beta vulgaris L.; variety BELINDA, Rhizoctonia 

susceptible, KWS SAAT AG, Einbeck, Germany) and the model pathogen Rhizoctonia solani Kühn 

(AG 2–2 IIIB; IfZ, Göttingen, Germany), as described elsewhere (Postma et al. 2008; Mendes et 

al. 2011; Latz et al. 2012). Briefly, four Magenta boxes per experimental plot (7.7 × 7.7 × 9.7 

cm; Sigma-Aldrich, St. Louis, MO, USA) were filled each with 100 g of sieved soil. One barley 

corn infested with R. solani was placed in the centre of three boxes, the fourth box remained 

inoculum as control. Eight sugar beet seeds (germination rate 93%) were added to each box 

about 0.5 cm below soil surface. The jars were incubated at 21°C and 12 h photoperiod (photon 

flux density: 120 µmol m-2 s-1) and randomised every two days over a total experimental time 

of ten days. Dead seedlings were counted at day 2, 4, 6, and 10, and pathogen suppression was 

calculated as the time span until the first infection of sugar beet seedlings occurred (see 

statistical analyses for details). 

 



70 
 

Statistical analyses. To estimate the disease suppressive potential of the soils after being 

exposed to different plant community compositions, we analysed every experimental unit 

separately using a monomolecular infection model (Raaijmakers et al. 2009; Paine et al. 2012 

Rall & Latz, in prep.) describing the change of infected plants (dI) over time (dt) by an infection 

rate, r, and first infection occurrence, t0: 

 

𝑑𝐼

𝑑𝑡
= {

0, 𝑡 < 𝑡0
𝑟(𝐼𝑚𝑎𝑥 − 𝐼), 𝑡 ≥ 𝑡0

        Equation 4 

 

If controls were not infected by any pathogen being present in the soil, we estimated infection 

parameters according to the classic monomolecular model (Eqn. 4). Whereas, to correct for the 

occurrence of pathogens whose presence was detected in the control, we fitted the 

monomolecular model (Eqn. 4) to the control data, and subsequently used the results of this 

fitting for parameterization of a two pathogen monomolecular infection model (Rall & Latz, in 

prep.):  

 

𝑑𝐼𝑝

𝑑𝑡
= {

0, 𝑡 < 𝑡0,𝑝
𝑟𝑝(𝐼𝑚𝑎𝑥 − (𝐼𝑝 + 𝐼𝑐)), 𝑡 ≥ 𝑡0,𝑝

      Equation 5a 

𝑑𝐼𝑐

𝑑𝑡
= {

0, 𝑡 < 𝑡0,𝑐
𝑟𝑐(𝐼𝑚𝑎𝑥 − (𝐼𝑝 + 𝐼𝑐)), 𝑡 ≥ 𝑡0,𝑐

       Equation 5b 

 

The differential equation includes two types of infected plants, plants infected by the 

experimentally added pathogen, p, and plants infected by pathogens in the control treatment, 

c (Eqn. 5).  

The models were fitted to the data by using a numerical integration routine (lsoda() from 

the deSolve package in R [Soetaert et al. 2010; R Core Team 2014]) combined with the 

maximum likelihood optimizer mle2() from the package bbmle (Bolker & R Development Core 

Team 2014). To ensure the estimation of high infection rates, we chose a step size for the 

numerical integration routine (lsoda()) of 0.025 (default is 0.1) and allowed the maximum 

likelihood optimizer (mle2()) to try at maximum 10,000 iteration steps (control = 

list(maxit=10000); default is 100). Integrative maximum likelihood estimations of non-

linear models may result in local optima that lead to biased results or, in dependence of the 

starting parameters, fail completely (Bolker 2008). To cope with this problem, we repeated each 
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analyses 100 times with starting parameters randomly sampled out of a uniform distribution 

with: 0.0001 ≤ r ≤  3; 0.0001 ≤  t0 ≤  0.8 x min(tInfectedcontrol>0); 0.01 ≤  rp ≤  15; 0.001 ≤  t0p ≤  0.8 

x min(t Infectedtreatment>0).  

We checked for the quality of the fitted parameters in each experimental unit by (1) selecting 

all model fits out of the hundred fittings where the ΔAIC was below 2, and (2) we calculated 

the coefficient of variation for t0 of the remaining model fits. Only if the coefficient of variation 

was below 0.05, we rated the fit as trustful. Subsequently, we chose the value for t0 of the fit 

with the lowest AIC for further analyses.  

Subsequent analyses were performed using the statistical software R (R Core Team 2014) using 

the packages car (Fox & Weisberg 2011), lavaan (Rosseel 2012) and semTools (Pornprasertmanit 

et al. 2014).  

In order to unravel mechanisms responsible for plant community effects on soil suppression, 

we used structural equation modelling, which allows the analyses of variables in a multivariate 

approach (Grace 2006). All variables were continuously coded. The initial model contained the 

exogenous variables plant diversity, presence of grasses, and presence of legumes in addition 

to the endogenous variables root biomass (g fresh weight; log10-transformed), the abiotic 

factors pH, total C and N content, and soil moisture (% data; logit-transformed) as well as the 

abundance of Actinomyces, Bacillus, and Pseudomonas (colony forming units [cfu] per root 

system; log10-transformed) as potential variables explaining soil suppression against R. solani 

(initial infection occurrence (t0); log10-transformed;  

 

 

Supplementary Table 2; Figure 8 a). This model was improved by: (i) separately analysing each 

endogenous variable and its dependencies in a linear regression and selecting the most 

parsimonious models via using the stepAICc() function (Scherber 2009), respectively. 

Subsequently, each of those separately predefined paths were used to create a second SEM. 

(ii) checking model modification indices for potential additional paths and undirected 

correlations that might not have been considered in the second model (iii) deriving the most 

parsimonious model by removing non-significant pathways. Model selection was conducted by 

comparative fitting (Eisenhauer et al. 2015) and using corrected Akaike´s Information Criterion 

(AICc; Akaike 1974; Burnham & Anderson 2004) and absolute goodness of fit was determined 

by using χ2 tests (P > 0.05; Grace 2006).  
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To account for additional plant effects, we performed a linear model with the residuals of the 

SEM fit (after fitting of abundance of Actinomyces, Bacillus, and Pseudomonas, pH, plant 

diversity and legume presence) as being dependent on the presence and 2nd order interactions 

of the plant species. We selected the most parsimonious model via AICc. Significance of slopes 

were determined via t-tests. 

2.3.4 | Results 

Structural equation model (SEM). Structural equation modelling revealed pathogen suppression 

to be affected by multiple mechanisms that are shaped by plant community composition. The 

initial model (χ2
11

 = 65.30; P < 0.001; Figure 8 a; Supplementary Table 2) could be improved by 

(i) using linear models to separately predefine each endogenous variable and its main 

dependencies to set up a second SEM (AICc = -1640.10; χ2
22

 = 27.64; P = 0.130), (ii) checking 

model modification indices, and (iii) removing non-significant pathways (AICc = -1649.73; χ2
21

 

= 17.22; P = 0.698). The final model explained 32% of the variance in pathogen suppression 

Figure 8 b; Supplementary Table 3).  

Plant diversity increased root biomass production as well as soil pH, thereby indirectly 

increasing the abundance of Bacillus and thereby increasing pathogen suppression (although 

the effect being small). In addition, the abundance of Bacillus increased in presence of grasses, 

while grasses slightly decreased root biomass. Root biomass, in turn, indirectly decreased the 

abundance of Bacillus via decreasing soil moisture. Further, soil pH decreased pathogen 

suppression. Despite the identified indirect pathways, a direct positive effect of plant diversity 

on pathogen suppression remained in the final model. The presence of legumes increased the 

abundances of Pseudomonas and Actinomyces and furthermore, directly decreased pathogen 

suppression. While being positively correlated, the abundance of Pseudomonas and 

Actinomyces decreased with root biomass and in presence of grasses. Pathogen suppression 

increased with increasing abundance of Actinomyces, whereas it marginally decreased with 

increasing abundance of Pseudomonas (Figure 8 b, Supplementary Table 3).  
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Figure 8. Structural equation model (see (a) for initial model) of (b) direct and indirect (through changes in soil pH, 

root biomass, soil moisture, and bacterial abundances) effects of plant community composition on pathogen 
suppression. Exogenous variables (plant diversity and functional group affiliation) are given on top, endogenous 
variables below. The data did not significantly deviate from the respective models (see main text for model fits). 
Single-headed arrows represent causal relationships and double-headed arrows indicate undirected correlations. 
Numbers on arrows give standardized path coefficients. Blue arrows indicate positive and red negative 
relationships; bold arrows indicate significant (P ≤ 0.05), medium size arrows indicate marginally significant (P ≤ 
0.1), and thin arrows non-significant (P > 0.1) estimates. Circles indicate error terms (e1 – e8). Numbers close to 
endogenous variables indicate the variables variance explained by the model (R2; percent). 

 

 

Plant-plant interaction analyses. Analysing the residuals of the final SEM fit revealed that beyond 

plant diversity and legume presence, specific plant-plant interactions play an important role in 

influencing the pathogen suppressive potential of soil (Figure 9). Here, the most parsimonious 

model included the species pairs Medicago-Lolium and Dactylis-Festuca that increased 

pathogen suppression (Figure 9 a, d), and Medicago-Dactylis and Lolium-Festuca that 

decreased pathogen suppression (Figure 9 b, c). Further, the species pair Festuca-Trifolium r. 

remained in the most parsimonious model and slightly decreased pathogen suppression 

(Figure 9 e). Interestingly, the positive effect of Medicago-Lolium and Dactylis-Festuca was most 

obvious at plant diversity level 2, whereas the negative effect of the species pair Festuca-Lolium 

and Festuca-Trifolium r. was most pronounced at diversity level 4 (Figure 9 f). Interactions 

explained additional 32% of the remaining variance (after fitting the SEM) in pathogen 

suppression, resulting in 64% explained variance in total. 

Pathogen 
suppression

pH

Diversity

4

32

0.450.14

-0.23

-0.360.45

-0.33

-0.41 -0.32

0.310.21

0.31 -0.39

0.33

-0.50

0.29

0.27

-0.62

-0.23

0.42

Diversity Grasses

Actinomyces

C/NpH

Moisture

Pathogen 
suppression

Pseudomonas

Legumes

RootBM

Bacillus 

e1 e2

e4

e5

e6

e7

e8

(a) (b)

Bacillus

39

Moisture

39

0.29

Legumes

-0.28

0.53

Actinomyces

51

RootBM

10

Grasses

0.30

0.61

Pseudomonas

48

e3



74 
 

 

Figure 9. Partial residuals of log10-transformed pathogen suppression (according to the most parsimonious model 
of the interaction analyses) as affected by (a) Medicago and Lolium, (b) Medicago and Dactylis, (c) Lolium and 
Festuca, (d) Dactylis and Festuca, (e) Festuca and Trifolium r.. First box per graph indicates both plant species being 
absent “0”; second and third box indicate named plant species being present and the other being absent; fourth 
box indicates both plant species being present “2” (left to right). Interaction effects were tested against zero (two-
tailed t-test). Asterisks denote the level of significance: *P ≤ 0.05, **P ≤ 0.01, ***P < 0.001. (f) Partial residuals of 
log10-transformed pathogen suppression (according to the most parsimonious SEM fit) as affected by plant 
diversity. 

 

 

Additional analyses. Interestingly, when investigating whether the plant diversity effect was due 

to the presence of single species (sampling-effect; Aarssen 1997; Tilman et al. 1997; Huston 

1997) by fitting the presence of Bromus, Dactylis, Festuca, Lolium, Lotus, Medicago, Trifolium 
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p. and Trifolium r. separately in a linear regression and fitted the residuals of the respective 

analyses against plant diversity (Latz et al. 2015; Weidner et al. 2015), the plant diversity effect 

only remained when fitted after the presence of some legume species (Supplementary Table 

4). Further, the diversity effect disappeared when fitted after both the number of legume and 

the number of grass species (Supplementary Table 4). 

2.3.5 | Discussion 

Sustainable agriculture aims at optimizing crop yield while minimizing deleterious impacts on 

the environment and human health. Microbial communities that inhibit plant pathogens 

represent a promising tool to achieve this goal (Mendes et al. 2013; Philippot et al. 2013). Soil 

microbial consortia are driven by soil properties and plant community composition (Garbeva et 

al. 2004; Berg & Smalla 2009; Philippot et al. 2013). However, so far research neglected the 

complex linkages taking place in the rhizosphere when predicting or manipulating the 

suppressive potential of soils. In the present study we provide a mechanistic framework 

showing how the complex interactions between plants, soil and microorganisms jointly shape 

soil suppressiveness. 

In the present study, pathogen suppression is influenced by a complex set of abiotic as well as 

biotic rhizosphere properties that are in turn linked, directly or indirectly, to plant community 

composition. Plant community composition affected pH and the abundance of Actinomyces 

(positively correlated with Pseudomonas abundance), that both significantly affected the 

suppression against R. solani. Further, certain interactions between plant species explained a 

large proportion of pathogen suppression in addition to the presence of plant functional groups 

and plant diversity per se. This suggests that plant community effects on soil abiotic and biotic 

properties alter microbial consortia in the rhizosphere and interactions therein, which need to 

be taken into account for predicting and manipulating the disease suppressive potential of soils. 

 

Effects of plant diversity. Generally, our results underline the importance of plant diversity as an 

important driver of soil suppression. This is supported by studies showing (1) soil 

suppressiveness to rapidly vanish during the conversion of grasslands to monocultures, which 

was ascribed to biocontrol microbes being associated to diverse grasslands (Garbeva et al. 
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2006); (2) soils from species-rich grasslands to host high abundances of bacteria associated 

with pathogen suppression, which in turn improved disease suppression (Latz et al. 2012), and 

(3) diverse plant communities supporting higher abundances of bacteria being active in 

producing antifungal compounds (Latz et al. 2015).  

The SEM approach revealed that part of the plant diversity effect on the community structure 

and functioning of biocontrol bacteria was mediated by increased root biomass and soil pH. 

This is in line with a recent field study on experimental grassland, showing that plant diversity 

increases root biomass and soil pH, and thereby microbial biomass in soil (Eisenhauer et al. 

2013).  

 

Effects of plant functional groups. The presence of functional groups (grasses and legumes) also 

predicted suppressiveness and again the effects were partly mediated by changes in root 

biomass and microbial communities. Generally, plant functional groups inconsistently affected 

the three groups of biocontrol bacteria. While grasses increased the abundance of Bacillus, 

they decreased the abundance of Pseudomonas and Actinomyces. Interestingly, via decreasing 

root biomass the presence of grasses in parallel also increased the abundance of Pseudomonas 

and Actinomyces. In addition, the abundance of Pseudomonas and Actinomyces was increased 

in presence of legumes. In an earlier study legumes and grasses also shaped biocontrol 

Pseudomonas communities, but legumes detrimentally and grasses beneficially affected their 

abundance (Latz et al. 2012). However, effects of legumes and grasses also have been shown 

to be species specific (Latz et al. 2015), and functional group effects on biocontrol bacteria 

therefore might be dependent on the respective species pool.  

 

Effects of root biomass associated by effects of soil moisture. Root biomass increased the 

abundance of Bacillus but decreased that of Pseudomonas and Actinomyces. Root morphology 

differs considerably between plant species and shapes rhizosphere microbial communities 

(Berg & Smalla 2009). In accordance, inconsistent results of root biomass effects on bacterial 

abundances in diverse grassland communities were recently suggested to be driven by species 

identity (Latz et al. 2015). Species-specific analyses showed strong effects of the presence of 

Medicago on root biomass (data not shown), suggesting that a higher proportion of Medicago 

roots might foster Bacillus while decreasing the abundance of Pseudomonas and Actinomyces. 

Further, via decreasing soil moisture root biomass also decreased the abundance of Bacillus, 
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but this neither affected the abundance of Pseudomonas and Actinomyces nor soil suppression. 

Generally, soil moisture is an important driver for soil microbial communities (Eisenhauer et al. 

2013; Lange et al. 2014), and our results show that different microbial groups differ in their 

sensitivity to soil moisture. 

 

Effect of soil pH. Soil pH significantly increased the abundance of Bacillus and further directly 

decreased pathogen suppression. The lack of effects of soil pH on the abundances of 

Actinomyces and Pseudomonas is not surprising since variations in pH were small (7.60 - 7.85) 

and close to the optimum of most bacterial consortia (Rousk et al. 2010). However, the 

increased abundance at higher pH suggests that Bacillus has a slightly higher pH optimum then 

the other two bacterial groups. The decreasing effect of pH with higher pH levels on pathogen 

suppression might have been due to the low pH optimum of R. solani AG3 (Ritchie, Bain & 

McQuilken 2009).  

 

Effects of biocontrol bacterial communities. Bacillus abundance only marginally increased 

pathogen suppression. This supports the observation that Bacillus diversity rather than their 

abundance drives suppression against R. solani (Garbeva et al. 2006). Nevertheless, other 

pathogens than R. solani might have been affected by Bacillus abundance, and therefore the 

importance of this path in driving pathogen suppression should not be underestimated.  

Interestingly, Pseudomonas and Actinomyces were positively correlated, and Actinomyces were 

the only bacterial group significantly increasing pathogen suppression. In a study on crop 

management effects on soil bacterial populations of Actinomyces, Pseudomonas and Bacillus, 

pseudomonads and Bacillus turned out to be the most important biocontrol agents associated 

with Rhizoctonia-suppressive soil (Garbeva et al. 2006). Further, another study identified 

Pseudomonas as main drivers of suppression, but other taxa, such as Actinomyces, were also 

associated to disease suppressiveness against R. solani (Mendes et al. 2011). These findings 

underline that soil pathogen suppression likely is not only due to the presence of certain 

antagonistic bacterial groups, but to facilitative interactions among bacterial groups or taxa 

(Mendes et al. 2011). This is also supported by the observation that bacterial strains can gain 

antagonism against pathogens when growing in bacterial consortia (Garbeva et al. 2011).  

 

Effects of plant-plant interactions. In addition to the SEM approach, we evaluated the role of 
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plant species interactions as drivers of pathogen suppression. Identified plant interactions 

explained additional 32% of the remaining variance (after fitting the SEM) in pathogen 

suppression, showing that pathogen suppression is strongly influenced by plant-plant 

interactive effects. Further, sequential analyses suggest that the direct positive diversity and 

the negative legume effect on pathogen suppression, we observed in the SEM, were driven by 

those plant-plant interactions (Supplementary Figure 3). In presence of competitors plants 

increase root exudation and alter exudate composition, thereby affecting rhizosphere microbial 

communities (Bais et al. 2006; Semchenko et al. 2007). In addition, different plant species are 

suggested to use resources in a complementary way, thereby contributing to ecosystem 

functioning (Loreau et al. 2001; Eisenhauer 2012). Signaling adaptations in plants to pathogens 

results in differential responses in root-associated bacteria (de Werra et al. 2008), and may 

require adequate resource availability. Therefore, an importance of resource complementarity 

in plant community resistance to pathogens is likely. However, whether the observed plant-

plant interaction effects on pathogen suppression were due to complementary resource 

acquisition, or plant competition driven changes in root exudation, will need further evaluation. 

Remarkably, in the sequential approach, we observed high pathogen suppressiveness at 

diversity levels 2 and 8. Interestingly, these positive effects likely were due to synergistic effects 

of plant species being in close proximity, i.e. were arranged side by side. Further, in each of the 

4 species treatments and in one 8 species treatment positive interacting plant individuals were 

either not arranged side by side or accompanied by negatively interacting species, which might 

explain their low pathogen suppression (Supplementary Figure 2). Unfortunately, due to design-

limitations we were not able to directly test for 3rd order interactions. Microbial communities 

generally are suggested to respond with a time lag to plant community changes (Eisenhauer et 

al. 2010a). Our design, in which each plant community composition was harvested and the 

same plant community planted again (but differentially spatially arranged), might have 

uncovered that plant-plant interaction effects on specific soil functions, such as soil 

suppression, are rather short-term effects. Further studies are needed to disentangle spatial 

and temporal effects of plant communities on the rhizosphere-environment and their 

implications for specific microbial functions. 

 

Conclusion. Results of our study support the assumption that plant community composition, 

soil abiotic properties, and microbial communities being antagonistic to soil pathogens are 
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linked and interactively shape the suppressive potential of soils (Garbeva et al. 2004; Berg & 

Smalla 2009; Philippot et al. 2013). In addition to plant community induced changes in soil pH, 

root biomass, and abundances of biocontrol bacteria, plant-plant interactions were of major 

importance in driving the disease suppressive potential of soils. Therefore, to mechanistically 

understand the functioning of microbial communities involved in pathogen suppression and 

enabling to predict and manipulate the suppressive potential of soils, it is necessary to take the 

environment shaping potential of a plant community into account. The results represent an 

important step in understanding the complexity of mechanisms linking plant community 

composition and plant disease suppression. 
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2.4.1 | Summary 

Intercropping systems, in which different crop species are sown together in the same field, are 

increasingly being investigated as a sustainable, high yield agricultural practice. A better 

understanding of soil processes linked to higher productivity of mixed cultures is an important 

tool to apply intercropping in an efficient way.  

We used a soybean-maize intercropping system and scrutinized the links between crop 

richness, soil enzymatic profiles and yield. We gave a special attention to protozoa, a group of 

microbial predators exerting a strong control on the structure and function of bacterial 

communities but often overlooked in agricultural research.  

We observed that mixing soybean and maize increased crop yield. Further, we provide first 

evidences that cropping regime interactively with soil protozoa shapes soil functioning by 

essentially influencing soil enzyme activities and thereby influences yield.  

We suggest that resident key soil biota (protozoa) that regulate important soil functions should 

be taken into account in order to predict the effect of agricultural practices on soil fertility and 

plant yield. 
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2.4.2 | Introduction 

The growing human population and dwindling resources call for new strategies to secure 

agricultural yields while reducing fertilizer input and thereby minimizing negative impacts on 

the environment (Tilman et al. 2002). Current agricultural systems usually rely on 

monocultures, with or without crop rotation. While optimizing the use of mechanized 

management strategies, monocultures tend to be vulnerable to diseases and require high 

fertilizer input to reach a given yield (Tilman et al. 2002). The use of intercropping, in which 

multiple crop plants are sown on the same field, appears as a promising method to sustainably 

increase yields (Li et al. 2014). Mixed plant communities often show a higher yield than 

monocultures, an effect that might be due to promotion of beneficial soil (Eisenhauer et al., 

2012).  

Intercropping cereal fields with legumes that, due to their association with rhizobia increase 

nitrogen supply, results in an increased cereal yield (Chu, Shen & Cao 2004). Monocots on their 

side enhance global yield by supporting beneficial bacteria, such as biocontrol pseudomonads, 

which suppress phytopathogens (Mazzola 2007; Latz et al. 2012). Further, some grasses, 

support aerial fungal endophytes that protect neighboring legumes from aphid herbivory 

(García Parisi, Grimoldi & Omacini 2014). Thus, setting up appropriate plant mixtures 

promoting the activity of beneficial soil organisms may help to reach high agricultural yields 

while reducing agrochemical input. 

Soybean and maize are two of the most relevant crops in temperate and subtropical areas. In 

Argentina, a total of 25 million hectares have been devoted to soybean and maize crops in the 

2012/2013 campaign (SIIA 2014). The productivity of maize and soybean together reached 81 

million of tons in 2013, with 32 million of tons of maize and 49 million of tons of soybean (SIIA 

2014). Interestingly, first studies on maize and soybean intercropping reported to increase 

yields in terms of land-use efficiency (Verdelli, Acciaresi & Leguizamon 2012; Ariel et al. 2013) 

and enhanced soil-quality (Regehr 2014). However, the short-term impact of maize-soybean 

intercropping on soil biota and microbial functionality as well as their impact on yield have not 

yet been explored.  

In this study, we followed the effect of intercropping soybean and maize on soil functioning and 

crop yield. We measured enzymatic activity patterns to estimate microbial traits involved in 

nitrogen, carbon and phosphorus cycling as well as suppression of soil borne pathogens. Soil 
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enzymes are important bioindicators of soil health (Burns & Strauss 2012) as they reflect the 

ability of soil microorganisms to transform nutrients from the soil organic material into forms 

available for uptake by plants. In addition, lytic exoenzymes such as chitinase or proteases play 

an important role in pathogen suppression (Haas & Defago 2005; Kielak et al. 2013). In addition, 

we measured the abundance of protozoa, a key soil taxon that structures soil microbial 

community composition and functioning (Rosenberg et al. 2009; Jousset 2012), particularly in 

relation to nutrient cycling and pathogen suppression (Bonkowski 2004; Müller et al. 2013). We 

expected intercropping to increase protozoa abundance and improve enzymatic activity either 

by a sampling effect, that is, increasing the chance that at least one of the species will be 

particularly supportive to a given function (Huston 1997). Alternatively, interaction between 

the two sown plant species may result in a higher belowground population growth and activity 

(Eisenhauer et al. 2010a, 2013), which may positively affect fertility. Interplay between plant 

composition, soil communities and subsequent soil fertility are often difficult to separate 

(Eisenhauer et al. 2010b). Thus, we used a structural equation modelling approach (Grace 

2006) that enables to unravel direct and indirect pathways driving the effect of intercropping 

on soil functioning and yield. 

2.4.3 | Materials and Methods 

Field site. The field site is located near the city of Monte Buey (Córdoba province, Argentina). 

The climate in the region is characterised as Pampean Temperate (subhumid), with an average 

temperature of 23°C and a total of 445 mm of rainfall during the period of the experiment (13 

November 2012 to 16 May 2013). Soil is characterized as a Typic Argiudoll of silt loam texture. 

Prior to the experiment, maize has been grown at the whole field site. Soybean (DM3810) and 

maize (DK692RR) seeds were sown in November 2012. Planting was done mechanically using 

a John Deere 1740 planter. Triplicate plots of 65 × 18 m each were sown with soybean alone 

(40 seeds per m2), with maize alone (7.6 seeds per m2), or with soybean and maize as 

alternating individual sowing lines (20 seeds per m2 for soybean and 3.8 seeds per m2 for 

maize). In all plots, the distance between rows was 52 cm. Maize was fertilized at the moment 

of sowing with 90 kg/ha of mono ammonium phosphate and re-fertilized with 235 kg/ha urea-

ammonium nitrate (32% of N) at the V5 stage. Soybean seeds were coated with a commercial 
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inoculant containing Bradyrhizobium japonicum in addition to fungicides (thiram and 

carbendazim) according to the instructions of the supplier (Rhizopack 101; Rizobacter 

Argentina S.A.) 

 

Sampling. Soil samples were taken in March 2013. At each plot, three sites (subplots) were 

randomly chosen excluding each the outer 2 meters to prevent border effects of neighboring 

fields. At each site we sampled three soil cores to a depth of 5 cm using a metal corer (inner 

diameter 7 cm) within one row, within the neighboring row, and in-between the two rows 

(resulting in three positions per subplot), respectively. The three cores per position were 

pooled, homogenized and sieved (2 mm) to remove macrofauna, roots and stones and stored 

at 4°C until analyses.  

 

Harvest. Plants were harvested mechanically in May 2013 with John Deere 9650 harvest 

equipment. In intercropping plots, maize was harvested in a first pass at 50 cm height, and then 

soybean was harvested in a second pass at 3 cm height. As this procedure leads to soybean 

grain loss due to machine trampling, the observed yield is lower than the real one. Thus, 

soybean yield from intercropping plots was corrected by multiplying by 1.33, a correction factor 

previously determined by comparison to manual harvesting (Romagnoli, J.; pers. comm.). Yield 

was calculated as g applied seed-1. 

 

Enzyme tests. Extracellular chitinase, ß-glucosidase and phosphatase were measured in a 

microplate reader (BMG LABTECH POLARstar Omega; Ortenberg, Germany) via fluorogenic 

assays (Marx, Wood & Jarvis 2001), using the software associated with the equipment (BMG 

LABTECH MARS data analysis). For each sample, 0.1 g of soil (fresh weight) were dissolved in 

10 ml 0.1 M MES buffer (2-[N-Morpholino]ethanesulfonic acid, pH 6.1) and homogenized with 

a IKA Ultra Turrax Tube Drive (Staufen im Breisgau, Germany). Enzyme activity was measured 

at a substrate concentration of 40 µM, corrected for quenching effects of soil particles on the 

fluorescence intensity of MUB and calculated as enzyme activity min-1 gsoil
-1. 

 

Protozoan abundance. Numbers of protozoa were determined by the most-probable-number 

(MPN) method based on an established protocol (Rønn, Ekelund & Christensen 1995). Briefly, 

0.2 g of air-dried soil were dissolved in 20 volumes of autoclaved distilled water, and then 
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shaken vigorously at room temperature for 20 min in a 15-ml Falcon tube containing 3 stainless-

steel beads (4 mm of diameter), to liberate the protozoa from soil particles. The soil samples 

were distributed in 96-well microtiter plates (four samples per plate; Cellstar®, Greiner Bio-

One, Frickenhausen, Germany) by using four replicates and six threefold dilutions in modified 

Neff’s amoeba saline (Page, 1988) supplemented with 0.3 g L-1 tryptic soy broth (Oxoid, 

Basingstoke, UK). Plates were incubated at 22°C in the dark and examined for the presence of 

protozoa (flagellates, amoebae and ciliates) after 8 days using an inverted microscope (200× 

magnification, phase contrast). A freely distributed Excel sheet (Jarvis, Wilrich & Wilrich 2010) 

was used to convert the microtiter plate patterns to the MPN of fast-growing flagellates and 

total protozoa (individuals g-1 soil). 

 

Statistical analyses. Data were analyzed using the statistical software R (R Core Team 2014) with 

the packages nlme (Pinheiro et al. 2014) and lavaan (Rosseel 2012). To be able to compare 

soybean and maize yields, both were normalized by dividing each measure by the respective 

treatments mean (norm. yield). The effect of treatment on norm. yield was analysed in pairwise 

comparisons by using Tukey´s Honest Significance Difference (Tukey´s HSD). In order to unravel 

the linkages between crop richness, protozoa, soil enzymatic profiles and yield we used 

structural equation modelling (SEM), which allows analysing variables in a multivariate 

approach (Grace 2006). In the initial model we used the exogenous variable crop richness as 

potential variable explaining norm. yield, presence of amoeba and ciliates, abundance of 

flagellates as well as chitinase, phosphatase and ß-glucosidase activity. The endogenous 

variables presence of amoeba and ciliates and abundance of flagellates were used as variables 

potentially explaining chitinase, phosphatase and ß-glucosidase activity. Further, the 

endogenous variables presence of amoeba and ciliates, abundance of flagellates as well as 

chitinase, phosphatase and ß-glucosidase activity were used as variables potentially explaining 

yield (continuous data were log10-transformed). Model modification indices were checked for 

potential additional paths that initially have not been considered in the model. Subsequently, 

model selection was conducted via using Bayesian information criterion (BIC; Burnham & 

Anderson 2004) as well as χ2 tests (P > 0.05; Grace 2006).  

We completed this approach by using linear mixed effect models fitted by restricted maximum 

likelihood (REML) with subplot and position (factorial) as random effects to account for spatial 

differences between samples. Here, we estimated effects of protozoa, namely flagellate 
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abundance (continuous, log10(individuals g-1 soil)), amoeba presence (factorial) and ciliates 

presence (factorial), on chitinase, phosphatase and ß-glucosidase activity (log10(enzyme activity 

min-1 gsoil
-1)) crop independently, in soybean, and maize monocropping-rows and in interrows 

(here, only subplot was used as random effect), where we expected plant root interactions to 

take place. 

2.4.4 | Results 

Tukey´s HSD indicates that intercropping maize with soybean increases maize yield up to 50%, 

whereas soybean yield was not significantly affected by intercropping (Figure 10). The clear-cut 

stimulation of maize yield in intercropping with soybean compared with maize alone was not 

accompanied by overall significant changes in a set of chemical soil indicators, such as total 

nitrogen content, extractable phosphorus content, total organic carbon content, soluble 

carbohydrate and total carbohydrate content (Supplementary Table 5). 

 

 

 

Figure 10. Yield (g applied seed-1) of (a) maize and (b) soybean in monoculture (Maize, Soybean) and in 
intercropped fields (I-Maize, I-Soybean); (c) normalized yield, which is the respective yield divided by the 
treatments mean. *yield in I-Maize is significantly higher than in Maize (Tukey´s HSD; P < 0.05). 

 

 

Structural equation modelling (SEM) revealed that yield is affected by multiple mechanisms, 

including crop richness and enzymes activities that in turn were influenced by protozoa. The 

initial model (BIC = -215.24; χ2
6 = 19.99; P = 0.003) could be improved by removing non-
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significant paths (BIC = -242.81; χ2
14 = 9.82; P = 0.775; Figure 11). The final model explained 

76% of the variance in yield.  

Crop richness increased the activity of ß-glucosidase and directly increased yield, while 

protozoa weren't affected. ß-glucosidase activity and phosphatase activity decreased in 

presence of ciliates, but increased with increasing flagellate abundance. By contrast, chitinase 

activity, which also increased with flagellate abundance, was decreased in presence of amoeba. 

Further, amoeba and ciliate presence were correlated and amoeba presence was also 

correlated to flagellate abundance. In addition, amoeba directly increased yield. Chitinase 

activity decreased yield as so did ß-glucosidase activity that, although its effect was not 

significant, remained in the final model. While being marginally significant, phosphatase 

activity was the only enzyme activity having a positive effect on yield. 

 

 

 

Figure 11. Final structural equation model showing effects of crop richness, protozoa abundance/presence and 
enzyme activities on normalized yield (see main text for model fit). Normal arrows indicate directed regressions 
and double-headed arrows indicate undirected correlations. Numbers on arrows indicate standardized path 
coefficients. Solid arrows indicate positive and dashed negative estimates; bold arrows indicate significant (P ≤ 
0.05) thinner arrows marginally significant (P ≤ 0.1) and thinnest arrows non-significant (P > 0.1) estimates. 
Percentages close to endogenous variables indicate the variance explained by the model (R2). 
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Generally, SEM results could only partially be rediscovered in the mixed effect models (Table 

3). While we couldn’t underline the observed positive effects of flagellates on enzyme activities, 

we could observe negative effects of amoeba on chitinase activity (PF = 0.030) and ciliate 

presence on phosphatase activity (PF = 0.032) that were independent of the cropping-regime 

in the mixed effect models. Further, ciliates decreased chitinase activity, an effect we only 

observed in maize-rows (PF = 0.047; Table 3).



 
 

 
 
 
Table 3. Effects of Flagellate abundance, Amoeba presence and Ciliate presence on chitinase, ß-glucosidase and phosphatase activities as indicated by Mixed Effects Models. 

    Chitinase activity   
    crop independently     in maize-rows     in soybean-rows     in inter-rows  

 DF Estimate S.E. t-value  DF Estimate S.E. t-value  DF Estimate S.E. t-value  DF Estimate S.E. t-value  

Intercept 36 0.418 0.09 4.59 *** 17 0.620 0.31 2.01  17 0.423 0.09 4.50 *** 25 0.343 0.29 1.19  

Flagellate 
abundance 

17 0.009 0.01 0.86  8 -0.015 0.04 -0.39  8 0.009 0.01 0.80  25 0.018 0.04 0.51  

  DF 
Mean 
absent 

Mean 
present 

F-
value 

  DF 
Mean 
absent 

Mean 
present 

F-value   DF 
Mean 
absent 

Mean 
present 

F-value   DF 
Mean 
absent 

Mean 
present 

F-value  

Ciliates 17 0.510 0.474 1.78  8 0.539 0.436 5.52 * 8 0.488 0.506 0.18  25 0.503 0.468 0.42  

Amoeba 17 0.510 0.432 5.65 * 8 0.522 0.440 2.85  8 0.500 0.463 0.33  25 0.507 0.409 2.25  

    beta-Glucosidase activity   

    crop independently     in maize-rows     in soybean-rows     in inter-rows  

 DF Estimate S.E. t-value  DF Estimate S.E. t-value  DF Estimate S.E. t-value  DF Estimate S.E. t-value  

Intercept 36 0.756 0.09 8.43 *** 17 0.584 0.29 2.05 ˙ 17 0.836 0.11 7.63 *** 25 0.416 0.27 1.53  

Flagellate 
abundance 

17 0.009 0.01 0.84  8 0.029 0.03 0.84  8 -0.003 0.01 -0.20  25 0.055 0.03 1.62  

  DF 
Mean 
absent 

Mean 
present 

F-
value 

  DF 
Mean 
absent 

Mean 
present 

F-value   DF 
Mean 
absent 

Mean 
present 

F-value   DF 
Mean 
absent 

Mean 
present 

F-value  

Ciliates 17 0.849 0.804 2.95  8 0.838 0.796 0.91  8 0.836 0.789 0.99  25 0.879 0.818 1.38  

Amoeba 17 0.834 0.814 0.34  8 0.827 0.807 0.17  8 0.821 0.774 0.39  25 0.861 0.826 0.27  

    Phosphatase activity   

    crop independently     in maize-rows     in soybean-rows     in inter-rows  

 DF Estimate S.E. t-value  DF Estimate S.E. t-value  DF Estimate S.E. t-value  DF Estimate S.E. t-value  

Intercept 36 1.524 0.07 21.45 *** 17 1.566 0.14 11.14 *** 17 1.494 0.12 12.14 *** 25 1.558 0.16 9.75 *** 

Flagellate 
abundance 

17 0.001 0.01 0.16  8 -0.001 0.02 -0.08  8 0.002 0.02 0.12  25 -0.002 0.02 -0.11  

  DF 
Mean 
absent 

Mean 
present 

F-
value 

  DF 
Mean 
absent 

Mean 
present 

F-value   DF 
Mean 
absent 

Mean 
present 

F-value   DF 
Mean 
absent 

Mean 
present 

F-value  

Ciliates 17 1.555 1.508 5.45 * 8 1.569 1.528 4.27 ˙ 8 1.537 1.474 1.61  25 1.554 1.523 1.17  

Amoeba 17 1.538 1.526 0.19  8 1.562 1.533 1.47  8 1.514 1.460 0.43  25 1.542 1.538 0.01  
Flagellates: significances of slopes were generated with the R-function summary(), showing the probability of an estimate to be zero (two-tailed t-test). Ciliates and amoeba: significances of factors were 

determined via analyses of variance (ANOVA). Asterisks denote the level of significance: ˙P ≤ 0.1; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. DF: degrees of freedom. 
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2.4.5 | Discussion 

While intercropping strategies are receiving increasing interest, it remains a challenge to 

unravel the pathways linking cropping treatment to yield. By using the structural equation 

modelling approach, we were able to separate direct effects of crop richness, different soil 

protozoa and soil inherent enzyme activities from indirect pathways connecting the 

investigated variables to crop yield. Protozoa are considered to be a keystone soil taxon 

regarding plant growth. As predators of bacterial communities, they select for species and 

functional genes responsible for plant growth (Bonkowski & Brandt 2002; Müller et al. 2013) 

and enhance nutrient cycling (Uikman, Jansen & van Veen 1991; Bonkowski 2004). Here, we 

provide first evidences that cropping strategy interactively with soil protozoa shapes soil 

functioning and thereby influences yield.   

In the present study, crop richness had an important positive effect on normalized yield, which 

was mainly driven by an enhanced yield of maize in intercropping treatments (Figure 10 and 

Figure 11). We suggest that the maize plants benefitted of the nitrogen fixing property of 

rhizobia in their association with the legume, which is in line with other experiments where 

intercropping with legumes increased yields (Chu et al. 2004). In addition, different plant 

species can exploit different soil fractions and have different affinities for nutrients allowing for 

complementarity between species (Loreau et al. 2001; Eisenhauer 2012), an affect already 

suggested to improve yields in intercropping regimes (Bedoussac et al. 2015). 

The SEM approach revealed that intercropping further directly increased ß-glucosidase activity, 

an enzyme linked to carbon cycling (Marx et al. 2001). We could, however, not connect the 

activity of this enzyme to plant yield, suggesting that this enzyme may have more long-term 

effects on plants.  

Our approach revealed that protozoa may play a central role in linking plant diversity to soil 

fertility, and that the effect may be functional group-specific. Flagellates, ciliates and amoeba, 

which represent the three main functional types of protozoa in agricultural soils, (Ekelund & 

Rønn 1994), responded differently to the cropping regime, had contrasting effects on enzymatic 

activity and plant yield. According to the mixed effect model, amoebae decrease chitinase 

activity independently of the crop diversity. By contrast, the negative effects of ciliates on 

chitinase and phosphatase observed in the SEM, might have been driven by the presence of 

maize as indicated by the mixed effect models and might be powered by specific compounds 
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exuded by maize roots. Root exudates are suggested to play an important role in driving plant-

specific effects on soil microbial communities (Bais et al. 2006; Berg & Smalla 2009). 

Amoeba, affected both enzymatic activity and directly promoted crop yield, indicating that they 

may affect plant yield via other mechanisms independent from enzymatic activity. Amoeba are 

known to support plant-growth-promotion by bacteria (Bonkowski & Brandt 2002), an effect 

that might also have played a role in the present study.  

Flagellates appeared as the functional group with the strongest effect on enzyme activity, 

stimulating the activity of all tested enzymes. The discrepancies between the SEM and the 

mixed effect model might be at least partially explained by the correlation effects between the 

three protozoan groups that we could not account for in the mixed effect models. However, by 

using mixed effect models in addition to the SEM we were able to account for differences 

between crop identities that we were not able to address in the SEM (due to the small sample 

size accompanied by limiting degrees of freedom).  

With this study, we provide first evidence that agricultural treatment and soil biota may 

interactively explain the increased plant yield in intercropping systems. In this study we focused 

on a restricted number of organisms and functions. Due to the large number of soil organisms 

shaping soil fertility and plant health, we propose that our approach could be refined by 

including more functional groups, from bacteria to macrofauna across a higher number of sites 

to achieve a sufficient explanatory power. We suggest that combining those studies with the 

SEM approach will enable to disentangle the complex biotic interactions linking cropping 

regime to soil functioning and yield and may help developing agricultural practices that 

enhance soil fertility and yield sustainably. 
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III  | General Discussion 

 

Microbial communities producing antifungal compounds are crucial drivers of naturally 

occurring disease suppression in soil (Weller et al. 2002; Haas & Defago 2005), and soil 

microbial consortia are interactively driven b 

y soil properties and plant community composition (Garbeva et al. 2004; Berg & Smalla 2009; 

Philippot et al. 2013). However, there are still significant gaps in our understanding of the 

mediators that structure rhizosphere microbial functioning that prevent successfully improving 

plant growth and health (Bakker et al. 2012; Mendes et al. 2013). 

This thesis demonstrated that (1) plant species within a diverse community exert a strong 

impact on antifungal traits of bacteria, (2) plant community composition affects soil abiotic and 

biotic properties and thereby drives the suppressive potential of soils, (3) plant-plant 

interactions exert a strong impact on disease suppression, and (4) cropping regime interactively 

with soil protozoa shapes soil microbial functioning.  

The results underline that the abundance, activity and diversity of root-associated bacteria is 

affected by biotic and abiotic properties of the rhizosphere environment (Berg & Smalla 2009). 

Therefore, to mechanistically understand the functioning of microbial communities involved in 

pathogen suppression and enabling to predict and manipulate the suppressive potential of 

soils, it is necessary to consider the potential of plant communities to shape microbial 

communities in soil. 

3.1 Effects of plant species diversity 

In the experiments presented in Chapters 2.1 and 2.3 plant species richness significantly 

affected soil microbial functioning. This is in line with studies identifying plant diversity as 

important driver of the diversity, abundance and activity of soil microorganisms (Stephan et al. 

2000; Zak et al. 2003; Liu et al. 2008; Eisenhauer et al. 2010a). Further, the importance of plant 

diversity in driving microbial communities involved in pathogen suppression is highlighted 

(Garbeva et al. 2006; Weller 2007; Latz et al. 2012).  
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Bacterial population density turned out to be a distinct mediator of plant diversity effects on 

bacterial gene activities (Chapter 2.1; Latz et al. 2015). Effects of plant diversity on microbial 

density were observed in several studies (Chapter 2.3; Garbeva et al. 2006; Weller 2007; Latz 

et al. 2012), and density dependent gene activity was also observed previously (Rochat et al. 

2010). Further, soil pH and plant root biomass mediated plant diversity effects on a plant 

pathogen and on groups of bacteria antagonistic to plant pathogens (Chapter 2.1 [root 

biomass], Chapter 2.3 [root biomass and pH]), underlining their role in mediating plant diversity 

effects on microbial communities (Eisenhauer et al. 2013).  

However, the observed diversity effects turned out to be mainly driven either by the presence 

of specific plant species (Chapter 2.1) or specific plant species interactions (Chapter 2.3). 

Therefore, although species richness measures often cover significant plant community effects 

on ecosystem functions, they might be not adequate to mechanistically understand plant 

community driven effects on given ecosystem functions (Loreau et al. 2001; Ebeling et al. 2014). 

3.2 Effects of plant functional groups 

Effects of plant functional groups on microbial abundances and functioning were non-

consistent throughout the experiments of this thesis. Grasses and legumes were previously 

suggested as key plant functional groups for soil microbial communities (Spehn et al. 2000; 

Milcu et al. 2008; Eisenhauer et al. 2010a), and also turned out to shape Pseudomonas 

communities producing antifungal compounds (Latz et al. 2012). In the experiment presented 

in Chapter 2.3, grasses mediated effects on pathogen suppression mainly via increasing the 

abundance of Bacillus, and decreasing abundances of Pseudomonas and Actinomyces. 

Interestingly, the presence of grasses also partly increased the abundance of the latter two 

bacterial groups by decreasing root biomass. In addition, legumes mediated effects on 

pathogen suppression via increasing the abundance of Pseudomonas and Actinomyces. These 

results were unexpected, since legumes have been shown to decrease and grasses to increase 

Pseudomonas communities (Latz et al. 2012). In the experiment reported in Chapter 2.1, 

however, effects of the two grass respectively the two legumes species contrasted each other, 

with one species increasing and the other decreasing Pseudomonas density and/or gene 

expression patterns (Latz et al. 2015). Here, plant species identity turned out to be the most 
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important driver of Pseudomonas functioning, suggesting that functional group effects on 

biocontrol bacteria depend on the respective species pool. Understanding differences in 

functional properties of plant species may be essential for understanding diversity–ecosystem 

functioning relationships, but the importance of specific species traits may differ depending on 

a given ecosystem function (Cadotte, Albert & Walker 2013). Results of this thesis underline 

that important species differences are not adequately covered by traditional functional group 

assignments (Ebeling et al. 2014), at least regarding differences in drivers of biocontrol 

microbial functioning.  

3.3 Effects of plant species identity 

Results of the experiment presented in Chapter 2.1 support the role of plant species identity in 

eliciting bacterial gene expression. This is in line with studies where the production of 

antifungal compounds by bacteria has been shown to be plant species and also plant cultivar 

specific (de Werra et al. 2008; Rochat et al. 2010). As shown by Rochat et al. (2010), the 

expression of genes coding for DAPG and HCN is associated with higher numbers of P. protegens 

CHA0 (prior known as P. fluorescens CHA0) colonizing the roots. Results of the experiment 

presented in Chapter 2.1, however, unraveled that bacterial density is not the only driving force 

in shaping bacterial gene expression, but unknown plant mediators (e.g., specific exudates) 

drove bacterial density and/or gene expression (Latz et al. 2015). Interestingly, not higher 

biomass of plant roots per se, which was suggested to increase habitat and resource availability 

(Spehn et al. 2000; Zak et al. 2003; de Deyn et al. 2011), but an enhanced root-biomass of 

specific species mediated plant effects on bacterial abundances (Chapter 2.1; Latz et al. 2015). 

This species-specific plant root biomass effect was supported by results of the experiment 

presented in Chapter 2.3. Here, Medicago was primarily accountable for increased root 

biomass (data not shown) that in turn increased the abundance of Bacillus, while it decreased 

that of Pseudomonas and Actinomyces. The importance of plant species identity for the 

community composition of rhizosphere bacteria was also supported by results of the study on 

intercropping, where ciliates decreased the activity of chitinase in presence of maize plants (an 

enzyme involved in the suppression of fungal pathogens; Loper et al. 2012; Chapter 2.4). 

Remarkably, Lolium perenne that enhanced bacterial densities and activities in the gnotobiotic 
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system (where only P. protegens CHA0 was present) turned out to non-specifically foster 

microbial densities in natural soil, as indicated by increased colony forming units on non-

selective media in presence of that grass species (Chapter 2.3; data not shown). Since gene 

activities have been shown to be partly density dependent (Rochat et al. 2010; Latz et al. 2015), 

this suggests that observations regarding bacterial gene activities in gnotobiotic systems may 

not be transferable to natural soil systems and have to be interpreted with care. Gene activities 

could not be measured in the experiment presented in Chapter 2.3, and possibly specific 

species drove gene activities. However, the presence of specific species had no important effect 

at least on the investigated host-pathogen system.  

3.4 Plant-plant interaction effects 

In the experiment presented in Chapter 2.3, direct effects of specific plant-plant interactions 

rather than plant species identity effects turned out to be essential drivers of pathogen 

suppression. It was shown that plant-plant competition increases the amount of exudates 

released by plant roots, an effect likely influencing microbial communities (Bais et al. 2006). 

Enhanced root exudation might also explain the increased enzymatic activity of the ß-

glucosidase (which is involved in sugar degredation; Marx et al. 2001) in response to 

intercropping (Chapter 2.4). In the same experiment, crop species richness increased crop 

yield, presumably due to a positive effect of soybean on maize. Maize plants likely benefitted 

from the nitrogen fixing property of rhizobia in association with legumes, which is in line with 

other experiments where intercropping with legumes increased crop yields (Chu et al., 2004). 

In addition, different plant species can exploit different soil fractions and have different 

affinities for nutrients allowing for species complementarity (Loreau et al. 2001; Eisenhauer 

2012), an effect suggested to improve crop yields in intercropping systems (Bedoussac et al. 

2015). Signaling adaptations in plants to pathogens, that results in differential responses in 

root-associated bacteria (de Werra et al. 2008), may require adequate resource availability. 

Therefore, resource complementarity of plant species is likely to play a role in plant community 

resistance to pathogens. However, the experiment presented in Chapter 2.3 was rather short-

termed and effects of complementary resource use or facilitative resource acquisition generally 

increase with time (Eisenhauer 2012). Whether the effect of plant-plant interactions on 
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pathogen suppression, observed in the experiment presented in Chapter 2.3, was due to 

complementary resource acquisition or plant competition driven changes in root exudation 

needs further investigation. 

3.5 Conclusion  

The use of microbes for biological control of plant diseases represents an environmentally 

friendly and promising approach. Biocontrol bacteria are natural antagonists to pathogens and 

act on a local scale, thereby alleviating environmental pollution that is a problem of artificial, 

chemical pathogen control (Lugtenberg & Kamilova 2009). However, for developing effective 

biocontrol agents, bacteria not only need to produce antibiotics in sufficient amounts, but also 

successfully compete for nutrients and niches on the root surface, and escape predation 

(Lugtenberg & Kamilova 2009). Soil conditions and plant communities essentially impact the 

composition, dynamics and functions of rhizosphere microbial communities (Garbeva et al. 

2004, 2006; Berg & Smalla 2009). However, the extent to which each mediator impacts 

rhizosphere microbial functioning is not fully understood (Bakker et al. 2012; Mendes et al. 

2013). Further, since many of the driving forces involved in disease suppression are interwoven, 

disentangling the mechanisms driving rhizosphere microbial functioning is essential (Philippot 

et al. 2013). 

Despite underlining the role of plant diversity in driving soil disease suppression (Garbeva et al. 

2006; Latz et al. 2012, 2015), results of this thesis show that plant diversity (and functional 

group) effects likely are mediated by specific plant identity and plant-plant interaction effects. 

Further, results of this thesis proved plant community induced changes in soil pH, root biomass 

and abundances of biocontrol bacteria to be important determinants of pathogen suppression. 

The results underline the assumption that plant community composition, soil abiotic properties 

and microbial communities being antagonistic to soil pathogens are linked and interactively 

shape the suppressive potential of soils (Garbeva et al. 2004; Berg & Smalla 2009; Philippot et 

al. 2013). Choosing specific plant communities may enable to manipulate rhizosphere 

environmental conditions, thereby fostering microbial establishment in the rhizosphere and 

increase the disease suppressive potential of soils. 

Overall, results of this thesis represent an important step in unravelling the complexity of 
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mechanisms linking plant community composition and plant disease suppression. 

3.6 Perspectives  

Although having identified distinct mechanisms and unravelled indirect effects of plant 

community composition as drivers of the pathogen suppressive potential of soils, there is the 

need to investigate the rhizosphere system in more detail. In addition to abiotic soil conditions, 

plant protective bacteria and protozoa, the role of other (micro-) organisms need to be 

considered.  

New methodologies, such as next-generation sequencing or non-invasive two-dimensional 

imaging, allow the assessment of the roles of organisms within communities thereby 

uncovering unknown microorganisms and genes and their functioning in rhizosphere 

interactions (Mendes et al. 2013; Philippot et al. 2013). This may enable to identify (micro-) 

organisms needed to fulfil specific ecosystem functions (Mendes et al. 2013). However, more 

important than knowing which microbial consortia are needed to fulfil specific functions might 

be knowledge on how their functioning can be maintained. 

Plants essentially shape the rhizosphere environment (Raaijmakers et al. 2009), and the use of 

specific (sets of) plant traits as promising predictors of plant community effects on soil 

functions has been proven (Duffy 2008; Ebeling et al. 2014). However, the set of traits being 

important predictors may differ depending on the respective ecosystem function (Cadotte et 

al. 2013), probably explaining why previously used morphological, physiological and 

phenological traits failed in adequately predicting abundances of biocontrol bacteria (Latz et 

al. 2012). Identifying distinct plant traits is essential in order to predict and manipulate 

ecosystem functions mediated by plant effects on microbiota. 

Root exudates are primarily discussed in mediating plant effects on microbiota in the 

rhizosphere (Bardgett & van der Putten 2014). Therefore, understanding differences in plant 

exudation properties, and being able to relate them to environmental conditions, cropping 

regimes and plant traits is crucial to be able to successfully promote plant growth and health 

(Philippot et al. 2013).  

The results of this thesis suggest that setting up plant communities selected for traits that 

support specific microbial communities in the rhizosphere can be used, in order to prepare the 
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soil for subsequent crops. This would allow both the promotion of specific functions of 

microbial communities as well as induction of multifunctionality (since in managed systems 

multiple functions and services may be of primary importance; Duffy 2008). 

I suggest that (1) additional (micro-) organisms involved in pathogen suppression and their 

drivers need to be identified, and (2) knowledge on plant traits that predict and maintain 

community functioning is needed, in order to improve environmentally friendly plant 

protection strategies and ensure the long term stability of crop yield. 
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V  | Supplementary Material 

 

In addition to the complete thesis, published papers and supplementaries for all research 

chapters, original R data and code files as supplementary information to Research Chapter 2, 

can be found as digital copy on CD. 

 

 

 

Supplementary Figure 1. Experimental setup of the substitutive, full factorial plant species richness gradient. 
Displayed is one of the six blocks. Each small square represents one plant individual; each main square represents 
one plant community. We set up two blocks per bacterial treatment (Pseudomonas protegens inhabiting plasmid 
pME 7100, pME 7116 and pME 7156, respectively). Each with two replicates per plant species richness level, 
resulting in a total of four replicates. Four plant monocultures inoculated with P. protegens wild-type strain per 
block served as control (GFP negative control).  
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Supplementary Figure 2. Experimental setup of the substitutive plant species richness gradient. Plant diversity was 
varied independently of functional group affiliation by using the random partitions design (Bell et al. 2009). 
Displayed is the spatial arrangement of the last plant growth cycle (fifth). Each small square represents one plant 
individual; each main square represents one plant community. 
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Supplementary Figure 3. To test for plant identity and interaction effects independent of diversity, we used a 
sequential statistical approach (Bell et al. 2009). In a first step, we used linear regression models to analyse the 
effect of plant diversity (continuously coded) on pathogen suppression (log10 [pathogen suppression]). In a second 
step, the residuals of the first step in the analyses were fitted against the explanatory variables Bromus, Dactylis, 
Festuca, Lolium, Lotus, Medicago, Trifolium p. and Trifolium r. (presence [1] / absence [0], continuously coded; 
intercept = 0). In a third step, the residuals of the second step were fitted against plant diversity (factorially coded; 
intercept = 0). Additionally, to identify explanatory interactions, the residuals of the second step were fitted against 
2nd order interactions in a linear regression approach. In the interaction fitting, the most parsimonious model was 
selected using the stepAICc() function (Scherber 2009). 
Diversity increased pathogen suppression (slope = 0.010, P < 0.05), whereas none of the plant identities showed 
a significant influence on suppression (all P > 0.1). Interestingly, pathogen suppression was decreased on diversity 
level four (slope = -0.036, P < 0.05) and increased on diversity level eight (0.057, P < 0.05) indicating that interactive 
effects of plants drive the diversity pattern. 
Analyses (instead of the third step) using interactions up to the 2nd order revealed that the species combinations 
Festuca-Dactylis (red dots) and Lolium-Medicago (yellow stars) increased pathogen suppression. The negative 
effect of the species pair Festuca-Lolium (blue-circle) was most obvious at diversity level 4, where it might have 
hampered the positive effect of Dactylis-Festuca (red dot and blue circle) and Medicago-Lolium (yellow star and 
blue circle). In addition, while only being marginally significant, Lolium-Dactylis (grey, crossed triangles) and 
Dactylis-Medicago (pink triangle) might have hampered the positive effect of Lolium-Medicago.  
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Supplementary Table 1. Results of path analyses of Dactylis, Lolium, Lotus and Trifolium presence on 
root biomass, active bacterial density and gene expression. 

      Estimate S.E. C.R.   

(A) phlA        

Root biomass ← Lolium presence 0.852 0.16 5.44 *** 

 ← Trifolium presence -0.719 0.16 -4.61 *** 

 ← Lotus presence 0.519 0.16 3.34 ** 

Bacterial density ← Lolium presence 0.690 0.08 8.86 *** 

 ← Trifolium presence -0.198 0.08 -2.55 * 

phlA expression ← Lolium presence 2.994 0.83 3.63 *** 

 ← Dactylis presence -1.442 0.55 -2.65 ** 

 ← Bacterial density 0.932 0.87 1.07  

(B) prnA        

Root biomass ← Lolium presence 1.022 0.21 4.89 *** 

 ← Trifolium presence -0.987 0.21 -4.72 *** 

Bacterial density ← Root biomass 0.093 0.03 3.04 ** 

 ← Lolium presence 0.444 0.07 6.82 *** 

prnA expression ← Lolium presence 1.447 0.62 2.34 * 

 ← Lotus presence 1.129 0.39 2.86 ** 

 ← Dactylis presence -1.847 0.39 -4.68 *** 

 ← Bacterial density 5.189 0.87 5.95 *** 

(C) hcnA        

Root biomass ← Lolium presence 0.743 0.13 5.76 *** 

 ← Trifolium presence -0.452 0.13 -3.53 *** 

 ← Lotus presence 0.601 0.13 4.70 *** 

Bacterial density ← Lolium presence 1.061 0.13 8.46 *** 

 ← Trifolium presence -0.285 0.13 -2.27 * 

hcnA expression ← Lolium presence -2.704 0.83 -3.24 ** 

  ← Bacterial density 4.931 0.56 8.81 *** 
Given are non standardized path coefficients (estimates), standard error of regression weight (S.E.) 
and the critical value for regression weight (C.R.; z = estimate/ S.E.). Asterisks denote the level of 
significance: . P ≤ 0.1; *P ≤ 0.05; **P ≤ 0.01; ***P < 0.001. For more information of exogenous and 
endogenous variables as well as on model fit see main text. 
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Supplementary Table 2. Hypotheses liable for the initial structural equation model (see methods for details). 

Dependent variables Expected effect Independent variables Reference 

Pathogen suppression  Actinobacteria / Bacillus / Pseudomonas Garbeva et al. (2006), Mendes et al.(2011), Latz et al. (2012) 
  Soil moisture Janvier et al. (2007) 

  Soil pH Janvier et al. (2007) 

  C/N ratio Janvier et al. (2007) 

Microbial Biomass*  Plant diversity Eisenhauer et al. (2010a, 2013), Latz et al. (2012) 

     Legumes / Grasses Eisenhauer et al. (2010a), Latz et al. (2012) 

  Root biomass Spehn et al. (2000), Zak et al. (2003), de Deyn et al. (2011), Eisenhauer et al. (2013) 

  Soil moisture Eisenhauer et al. (2013), Lange et al. (2014) 

  Soil pH Eisenhauer et al. (2013), Philippot et al. (2013) 

  C/N ratio Kühn et al. (2009), Eisenhauer et al. (2013), Pérès et al. (2013) 

Soil moisture  Plant diversity Eisenhauer et al. (2013), Lange et al. (2014) 

     Legumes / Grasses Lange et al. (2014) 

  Root biomass Eisenhauer et al. (2013) 

Root biomass  Plant diversity Spehn et al. (2000), Eisenhauer et al. (2013), Pérès et al. (2013) 

     Legumes / Grasses Pérès et al. (2013), Bessler et al. (2009, 2012) 

Soil C/N  Plant diversity Steinbeiss et al. (2008), Einsenhauer et al. (2013) 

  Legumes / Grasses Pérès et al. (2013), Lange et al. (2014) 

  Root biomass Steinbeiss et al. (2008), Einsenhauer et al. (2013) 

Soil pH  Plant diversity Eisenhauer et al. (2013) 

  Legumes / Grasses no reference found 

*likely, equivalently Pseudomonas, Actinomyces, Bacillus and pathogen abundance. Dashed arrows indicates negative, solid arrow indicates positive coherences. Grey arrows indicate assumed 
but not proofed effects or effects that gave inconsistent results. 
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Supplementary Table 3. Results of the final structural equation model (X2
21 = 17.22; P-value = 0.698), 

showing effects of direct and indirect (through changes in soil pH, root biomass, soil moisture and 
bacterial abundances) effects of plant community composition on pathogen suppression. 

        Estimate S.E. C.R.   

Regressions        

Soil pH ← Plant diversity 0.077 0.05 1.66 . 

Soil moisture ← Root biomass -0.207 0.03 -6.19 *** 

Root biomass ← Plant diversity 0.478 0.20 2.41 * 

 ← Grass presence -1.333 0.74 -1.79 . 

Bacillus  ← Soil pH  0.645 0.22 3.00 ** 

 ← Soil moisture 0.443 0.19 2.28 * 

 ← Root biomass 0.308 0.07 4.73 *** 

 ← Grass presence 0.797 0.30 2.66 ** 

Pseudomonas ← Root biomass -0.057 0.01 -5.26 *** 

 ← Grass presence -0.272 0.07 -4.05 *** 

 ← Legume presence 0.192 0.07 2.83 ** 

Actinomyces ← Root biomass -0.047 0.02 -3.02 ** 

 ← Grass presence -0.323 0.10 -3.33 ** 

 ← Legume presence 0.529 0.10 5.38 *** 

Pathogen suppression ← Plant diversity 0.149 0.04 3.74 *** 

 ← Legume presence -0.442 0.18 -2.47 * 

 ← Soil pH  -0.291 0.10 -2.86 ** 

 ← Pseudomonas -0.428 0.27 -1.60  

 ← Actinomyces 0.547 0.20 2.71 ** 

 ← Bacillus  0.057 0.05 1.15  

Covariances        

Actinomyces ↔ Pseudomonas 0.000 0.00 3.00 ** 

Plant diversity ↔ Grass presence 0.002 0.00 2.32 * 

 ↔ Legume presence 0.003 0.00 2.46 * 

Grass presence ↔ Legume presence -0.001 0.00 -2.82 ** 
Given are non standardized path coefficients (estimates), standard error of regression weight (S.E.) and the 
critical value for regression weight (C.R.; z = estimate/ S.E.). Asterisks denote the level of significance: . P ≤ 
0.1; *P ≤ 0.05; **P ≤ 0.01; ***P < 0.001. For more information of exogenous and endogenous variables as 
well as on model fit see main text.  
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Supplementary Table 4. Effects of plant community composition on pathogen suppression as indicated by additional, sequential analyses (see text for details). 

  Number of grasses   Bromus erectus   Dactylis glomerata   Festuca pratense   Lolium perenne   

1. step Estimate S.E. t-value  Estimate S.E. t-value  Estimate S.E. t-value  Estimate S.E. t-value  Estimate S.E. t-value  

Intercept 0.578 0.010 58.74 *** 0.591 0.008 71.99 *** 0.589 0.008 71.82 *** 0.591 0.008 71.13 *** 0.589 0.008 72.54 *** 
Plant number / 

identity 
0.016 0.006 2.50 * 0.018 0.016 1.17  0.026 0.015 1.75 . 0.018 0.015 1.16  0.025 0.015 1.64  

DF/R2 59/0.10       59/0.02       59/0.05       59/0.02       59/0.04       

2. step                     

Intercept -0.005 0.114 -0.47  -0.018 0.011 -1.58  -0.016 0.011 -1.39  -0.018 0.011 -1.60  -0.016 0.011 -1.41  

Plant diversity 0.002 0.004 0.58  0.008 0.004 1.96 . 0.007 0.004 1.73 . 0.008 0.004 1.98 . 0.007 0.004 1.74 . 

DF/R2 59/0.01       59/0.06       59/0.05       59/0.06       59/0.05       

 Number of Legumes   Lotus corniculatus   Medicago lupulina   Trifolium pratense   Trifolium repens   

1. step Estimate S.E. t-value   Estimate S.E. t-value   Estimate S.E. t-value   Estimate S.E. t-value   Estimate S.E. t-value   

Intercept -0.016 0.011 -1.41  0.593 0.008 70.87 *** 0.588 0.008 71.88 *** 0.595 0.008 71.67 *** 0.594 0.008 70.85 *** 
Plant number / 

identity 
0.007 0.004 1.74 . 0.011 0.015 0.70  0.027 0.015 1.79 . 0.005 0.016 0.33  0.009 0.015 0.61  

DF/R2 59/0.05       59/0.01       59/0.05       59/0.00       59/0.01       

2. step                     

Intercept -0.013 0.012 -1.08  -0.020 0.011 -1.77 . -0.015 0.011 -1.38  -0.022 0.011 -1.91 . -0.021 0.011 -1.81 . 

Plant diversity 0.005 0.004 1.45  0.009 0.004 2.20 * 0.007 0.004 1.71 . 0.009 0.004 2.36 * 0.009 0.004 2.24 * 

DF/R2 59/0.03       59/0.08       59/0.05       60/0.06       59/0.08       
The tables were generated with the R-function summary(), showing the probability of a variable to be zero (two-tailed t-test). Asterisks denote the level of significance: . P ≤ 0.1; *P ≤ 
0.05; **P ≤ 0.01; ***P < 0.001. DF, degrees of freedom; R2 coefficient of determination. 
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Supplementary Table 5. Chemical soil properties were determined according to Duval et al. (2013). 

Chemical indicator Soybean Maize Soybean/Maize 

Organic carbon content (%w/w) 2.10 ± 0.14 2.24 ± 0.01 2.12 ± 0.08 

COPc (%w/w) 0.30 ± 0.03 0.33 ± 0.03 0.30 ± 0.09 

COPf (%w/w) 0.26 ± 0.04 0.28 ± 0.03 0.25 ± 0.01 

MOC (%w/w) 1.54 ± 0.11 1.63 ± 0.05 1.56 ± 0.06 

Nitrogen (%w/w) 0.17 ± 0.02 0.17 ± 0.01 0.17 ± 0.01 

Extractable phosphorus (mg/kg) 46.4 ± 8.5  47.3 + 7.1 49.0 ± 7.4 

Soluble carbohydrates (mg/kg) 117.48 ± 7.7 111.3 ± 7.5 111.49 ± 17.3 

Total carbohydrates (mg/kg) 846.5 ± 29.8 1235.5 ± 119.6* 983.7 ± 19.1 

*, total carbohydrate content of maize plots was significantly higher than those of soybean alone or intercropped 
plots (Tukey´s HSD; P < 0.05). POCc: coarse fraction (105-2000 µm) containing coarse particulate organic carbon; 
POCf: medium fraction (53-105 µm) containing fine particulate organic carbon; MOC: fine fraction (<53 µm) 
containing mineral associated organic carbon.  
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