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CHAPTER I 

Introduction 

        Biomaterials seem to be the center of interest for medical surgical procedures in the near 

future. Biomaterials are used in medicine in several surgical applications such as in 

orthopedics with hip replacement, knee prosthesis, shoulder prosthesis, stabilization of 

fragmented bone with plates and in many other applications that restore the damaged body 

area. Biomaterials are also used in cardiovascular surgery, like the stent application and also 

for the heart valve replacement. The biomaterials are used in ophthalmology, in dentistry and 

also in otorhinolaryngology with cochlear implants. 

        Very important, is the use of biomaterials in orthopedic surgery. In this dissertation a 

new candidate implant material is introduced, the so-called Reinforced Ring Mesh (RRM). 

This material makes use of commercially available ring mesh, produced for general safety 

applications. To most of the readers, ring mesh is known from antique armour: chain mail. 

The principle of the mesh is the interconnection of rings; a common pattern is the “1-to-4-

mesh” where every single ring is connected with four others. This experimental work is the 

first fundamental experiment to demonstrate the realization of the principal idea and it 

describes a laser welding process to modify the flexible ring mesh into a rigid strap of 

interwoven rings. Precise welding of the contact points between these rings is a prerequisite 

for any clinical application. The welding area quality and the tensile properties of the product 

are investigated to prove the possible applications of the RRM on the skeletal system. The 

idea and patent of the RRM comes from the orthopedic department of the university medical 

hospital Göttingen in Germany by the contribution of Buchhorn G.H., Schultz W. and 

Wellnitz J: Offenlegungsschrift (Patent number) DE 10 2005 055 432 A1:/ 2008.05.29 

“Bauteil aus Geflechtelementen” – “Components made of braided elements” (see Annex).  

        The RRM implant device, sets as a goal to support and restore structural bone defects 

such as skull bone tumors, bone gaps after trauma and in general, all bone fractures. The 

replication of the anatomical bone structures shall allow refixation of bone fragments, support 

function and provide structures for application of additional functional components. The main 

goal of RRM is the protection of soft tissues, for example the brain under the restored skull 

bone, as well as restoration in a pleaseing aesthetic character, which will leave no unwanted 

postoperative deformities to the patient’s bone. The RRM could be applied in craniofacial 

trauma or in craniosynostotic congenital disorders or some other examples could be the distal 
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humeral fractures, radial head fractures and proximal ulna fractures as well as the fragmented 

femoral and proximal tibia fractures.  

 

1.1 The aim and the contribution of the project in medicine 

        The RRM is proposed to be used in disciplines like orthopedic and craniofacial surgery 

traumas, where in some cases a quarter of the skull is splintered and the use of plates cannot 

be the best decision to heal the fractured bone. In this case, a mirror image of the rest half of 

the skull can be taken and an implant made of RRM can be modelled according to the exact 

dimensions of the skull shape and then can be surgically applied on the fractured half. 

        Furthermore, this project can contribute also in situations where congenital skull 

deformities are present. Such occasions are the non-syndromic craniosynostosis, which it 

takes a percentage of 80-85% among a prevalence of 1:2500 of the different craniosynostotic 

deformities (Van Veelen-Vincent et al. 2010). The non-syndromic craniosynostosis is 

associated with a lot of functional problems such as high intracranial pressure, developmental 

delay and visual disturbances (Van Veelen-Vincent et al. 2010).  

 

        In order to follow a procedure and experiments on something new, some problematic 

reasons and some disadvantages of the already applied medical devices and methods must 

exist, which guide the scientists to invent something innovative. In this instance, RRM seems 

to have many more advantages than disadvantages as a new idea. Moreover it also seems to 

have fewer disadvantages if it is compared with other medical devices that are nowadays 

applied in orthopedic and craniofacial surgery.  

 

        The fields that we are interested in are orthopedic and craniofacial surgery. The use of 

plates in both disciplines restricts the application of the plate on the fractured bone and 

according to some studies “rigid plates may evoke stress-forces within the callus during its 

formation and in the mass of the bone causing ischaemia under the area of the plate” 

(Lazaridis et al. 1998, p.227). This important disadvantage is overcome with RRM. In 

orthopedics the implants are formed more or less in the dimensions of the bone but the need 

for prebending of the plate is essential in order for the implant to be fixed on the bone (Leung 

1994). The important reasons for the application of RRM are to overcome the stiffness of the 

plates, which cannot easily take the shape of the bone, and to apply in some of these situations 
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the formable RRM. The other reason is to achieve a quick osseointegration within the bone 

gap or the multifragmented fracture due to the micro movements allowed by the mesh. 

Another benefit of the RRM is the avoidance of postoperative removal of the biomaterial 

because of its biocompatible character, where this can be profitable for the patient. 

Furthermore, the RRM with its aesthetic form will leave postoperative no unwanted bone 

deformities and the difference that could made in contrast to the already applicable titanium 

mesh is the possibility to be designed and manufactured in a hospital using only the Nd-YAG 

laser with the necessary welding energy. Moreover, because of its form and formable shape 

the application of RRM causes less irritation of tendons and muscle tissues, which means 

minimal inflammation postoperatively. 

 

        The contribution of this project is to test the tensile strength of the RRM and thus, to 

express whether the welded RRM quality is good enough to produce a medical device, which 

will probably avoid those functional problems and also to its aesthetically pleasing character 

without the need for removal. 

 

1.2 Research questions 

        This project sets out to establish the need and a probable future contribution of the RRM 

in medicine and to perform a number of experiments to evaluate the quality and tensile 

properties of the welded RRM. For validity purposes, the project will engage aspects 

concerning the disciplines of physics, chemistry and biomechanics to analyze better and in 

detail the concept of the study. Particularly these experiments intend to examine the following 

research questions: 

• Is it at all possible to provide a medical device using the welded RRM designed to the 

bone dimensions? 

• Does laser welding process work effectively to provide a stable medical device? 

• What is the optimum energy that should be applied on the contact points?  

• Do the optimum laser parameters provide reliable mechanical properties results? 

• Are there are any significant tensile strength differences between the welded and non-

welded specimens?  

 

 



9 
 

CHAPTER II 

Literature review  

2.1 History of metal alloys for orthopedic and craniofacial medical devices 

        The history of biomaterials and especially the history of metal alloys for orthopedic and 

craniofacial medical devices are very important for the evolution of new medical devices in 

these fields of study. 

        In the late 18th until 19th century they were used various metal devices to fix bone 

fractures, which were generally unsuccessful as a result of infections. The use of biomaterials 

became practical in the 1860s, where Dr. J. Lister developed aseptic surgical techniques and 

he introduced also metal wires to fix even closed fractures since 1870. The first fracture 

fixation with metal plates in the body had been used in 1886 by the German surgeon H. 

Hansmann. Another contributor to the use of internal fixation in the fracture treatment, was 

the Scottish surgeon WA Lane.  In 1893 until 1912 W.A. Lane, was the first who developed 

systems of metal plates and steel screws for internal bone fixation. (Lesić et al. 2012; Park 

2000). According to Park (2000) bone plates were used in early 1900s to fix long bone 

fractures. Many of these early plates broke, because their mechanical design was too thin and 

had stress corners. Furthermore, the chosen material such as vanadium steel has good 

mechanical properties. Despite that it corroded rapidly in the body and caused adverse effects 

on the healing processes. Due to that, they were followed better medical device designs and 

biomaterials.  

        Later on, in 1926 stainless steel was applied in orthopaedic implant devices as a 

corrosion resistant material, but it took not so long for the introduction of another metal alloy 

the cobalt chrome, which was first used by Drs C.S. Venable and W.G. Stuck. The innovation 

brought in 1950 the first use of titanium alloy with its extraordinary biocompatible properties 

(Park 2000). Until then, the most biocompatible metal used for implants was the commercial 

pure titanium (CP Ti) and titanium alloy (Ti6Al4V). Furthermore, titanium was first 

discovered in 1791 by the British chemist Reverend William Gregor. Thus, at first titanium 

was named gregorite. Titanium was at the same time discovered by the German chemist M.H. 

Klaproth in 1793. He gave it the name titanium according to the Titans of the greek 

mythology, “the incarnation of natural strength”. Four years later the German chemist realized 

that the titanium he discovered, was the same element as that of the British chemist William 

Gregor (WizCom Technologies Ltd 2007). 

http://www.ncbi.nlm.nih.gov/pubmed?term=Lesić%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=23654001
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        On the earth crust titanium is the fourth most abundant structural element.  Titanium 

exists only in chemical combinations. In addition, the concentrated sources of titanium in 

earth crust are the minerals ilmenite, titanomagnetite, rutile, anatase and brookite. (Welsch et 

al. 2007) 

        The first titanium craniofacial implant was a mesh used in the Vietnam war in 1968 

(Costantino et al. 2009). Since then the use of Titanium as a biomaterial is considered the 

most biocompatible biomaterial and the titanium plates and also titanium mesh are in use 

today. 

 

2.2 Biomaterial requirements 

        First of all the terms “biomaterial” and “biocompatibility” should be defined. The 

definition of these two words is important as they are the core for the production of any 

medical device. The definition of the word “biomaterials” is: 

 “A biomaterial is a nonviable material used in a medical device, intended  

to interact with biological systems” (Williams 1987)   

The word “biocompatibility” is defined as follows: 

 “Biocompatibility is the ability of a material to perform with an appropriate 

 host response in a specific application” (Williams 1987) 

        By taking into consideration the definitions of those two words it is much easier to 

understand the use of medical devices and the approach of scientists to conceive suitable 

implants. 

        New biomaterials, need for their development an interdisciplinary effort, the cooperation 

of scientists from different disciplines like material scientists, engineers, biomedical 

engineers, pathologists and clinicians to raise the potential of researching, developing 

biomaterials already in use or even to invent new medical devices which will contribute to a 

new era in medicine.  

        There are a variety of properties that are required for the medical application of the 

biomaterials. Physical properties that are required are tensile strength, elastic modulus 

(Young’s Module) elongation, yield strength and hardness (Kumar, Patel 2013).  
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        Furthermore, the physical properties are not the only requirement for the medical 

devices. The medical implants should fulfill some important essential aspects for human 

health and ethical considerations. This dissertation sets as a goal to examine the tensile 

properties of the material with which through experiments will illustrate the quality of the 

welded material, whereas the other subjects are part of further studies. 

 

2.3 The spectrum of biomaterials 

        The spectrum of biomaterials used in medicine is divided into four major categories. 

There are, polymers, ceramics, metals and natural materials. Obeying the manifold 

requirements scientists tend to select biomaterials for special applications according to their 

optimum material property. A differentiation has to be made e. g. between short- and long-

term implants, stable or resorbable materials, high or low mechanical demand, articulation or 

firm implant – tissue bonds and others. It is accepted practice to compose modular devices 

where special materials requirements need to be fulfilled. Thus, compromises become 

necessary to select special material qualities for the best performance. Despite the focus of 

this dissertation on metallic biomaterials, it is necessary to understand the principles of each 

category and how it contributes in medicine with the best possible results on medical devices. 

        Polymers denote the largest category of biomaterials. They are derived either from 

natural sources or synthetic organic processes. Polymers, have the advantage of being stable 

and at the same time flexible, thus they are suitable for low friction articulating surfaces like 

joint replacement. Polymers are used in medicine as intraocular lenses, sutures and hernia 

repair, catheters, vascular grafts, heart valves, tubing and blood storage bags, breast implants, 

finger joints, ear, chin and nose reconstruction and also for insulation for pacemaker leads. 

These medical applications are some of the wide spectrum of polymers applied in medicine 

and contribute in medicine at its maximum (Cooper et al. 2004).  

        Ceramics are solid biomaterials that are made of polycrystalline compounds composite 

usually from inorganic elements including either metallic oxides or non-metallic oxides and 

also ionic salts. Soluble, (bone substitute material (hydroxyapatite, calciumphosphate 

ceramics)) / insoluble ceramics (Aluminium oxide (ISO 6474), Y-stabilized zirconium oxide 

(ISO 13356)) and ceramic composites (ISO 6474-2). Their hardness and wear resistance bring 

bioceramics in a position of a broad use in medicine. Ceramics are used in applications such 

as femoral heads, bone screws and bone plates. Due to their characteristics they perform a 
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structural-supporting role (Billotte 2000).  

        Metal alloys are also one of the most used materials of medical devices. The widely used 

metals are stainless steel (e.g. 316L grade 2), cobalt-based alloys, and titanium-based alloys. 

Due to their molecules metallic bonding, metal alloys have the ideal properties to be used in 

the body to stabilize bone fractures and thus, to withstand heavy loads and to help in this way 

in the daily life of the people (e. g. walking, chewing etc.) In their majority metals are used in 

orthopedics and craniofacial surgery, with the use of femoral stems, bone plates and screws. 

They are also used in cardiovascular surgery as stents and pacemaker sheathings / 

encapsulations. (Brunski 2004) 

 

2.4 Metallic Biomaterials 

        According to section 2.3 the metallic biomaterials play an important role in the medical 

prosthetics. From the very old days, the scientists used to be in a persistent search for metals 

that will be biocompatible. The most commonly used metallic biomaterials are stainless steel 

316L grade 2, cobalt-based alloys and commercial pure (CP) titanium and titanium based 

alloys.  

        Stainless steel is provided in different types, which enable their use as medical implants. 

Despite that, the most commonly used stainless steel type for short-term applications is 316L 

(ASTM F138, F139, ISO 5832-1) grade 2. The chemical composition of this type is low of 

carbon. The advantage of these low amounts of carbon is that it reduces the possibility of 

corrosion in vivo. Stainless steel 316L is composite predominantly from iron (60-65%) with 

significant alloy additions of chromium (17-20%) and nickel (12-14%), furthermore other 

elements in low amounts, but with a significant role in the chemical properties of the material 

are nitrogen, manganese, molybdenum, phosphorus, silicon and sulfur. The use of chromium 

in the material performs a key role for the corrosion resistant property of the stainless steel by 

forming a strongly adherent surface oxide (Cr2O3) (passivation). In addition to that chromium 

tends to stabilize the ferritic phase of iron. Moreover, silicon and molybdenum work as 

ferritic stabilizers like chromium. For long-term applications (e. g. femoral endosteal stems) 

high nitrogen alloys with minimal content of nickel (1 – 2 %) (ASTM F1586, ISO 5832-9) are 

preferred. (Brunski 2004) 

 

        Cobalt is a well-known element in the manufacture of medical devices and aerospace 
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industries. Cobalt based alloys include the “grandfather material” Hayness-Stellite 21 and 25 

(ASTM F75, ISO 5832-4 and F90, ISO 5832-5 respectively), and modern cast and forged Co-

Cr-Mo alloys (ASTM F799). The frequency of multiphase (MP) alloy MP35N (ASTM F562, 

ISO 5832-6) applications was reduced as the high content of nickel (35 vol%) raised some 

concern (Brunski 2004). The Co-based alloys are selectively manufactured to provide various 

physical and mechanical properties required for the different medical applications. The 

special features of this material, such as the corrosion resistance, high stiffness and the high 

wear resistance made it extraordinary in high demand long-term applications. Thus, they are 

used for a variety of dental, orthopedic, neurological, and cardiovascular applications. (Disegi 

et al. 1999) 

        Interesting in the physical, mechanical and chemical properties which make the titanium 

and its alloys a favorite material for medical devices are the low density (60% less than that of 

steel), it transfers heat well and is nonmagnetic and it has a high melting point (1650°C), 

higher than steel (WizCom Technologies Ltd 2007). Titanium, is at the time the best 

biocompatible metal element. 

        Titanium exists in two main crystal structures, either pure (with some additional 

elements for stabilization) or alloy form. In one, the atoms are arranged in a close-packed 

hexagonal array, the so-called alpha-phase and in the other crystal structure the atoms are 

arranged in a body-centered cubic array, which is called the beta-phase. Furthermore, titanium 

is divided into two more types apart from the a-phase and b-phase. It is divided into the near 

alpha and a+b phase.  

        Alpha and near alpha alloys demonstrate the best corrosion resistance and weldability, 

whereas the a+b alloys provide an excellent combination of strength and ductility. In addition 

to that they are stronger than alpha or beta alloys. Well worth to mention is the ability of an 

alpha alloy in the presence of certain additional elements and under heat treatment (about 

880°C) to be developed into an a+b alloy. On the other hand beta alloys are metastable; this 

means that they tend to achieve a balance in their structure (Donachie 2000).  

         

        For the experimental project, is important to be aware that the CP Titanium Grade 4 

(alpha-phase) has a very good weldability (Donachie 2000). 

        Commercial pure titanium is an alpha phase alloy and due to its properties is assumed to 
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be the best material that can be used for the production of the RRM medical device. 

Representative of alpha phase is CP-Ti (unalloyed Ti) whereas Ti6Al4V is most often used 

among the alpha-beta alloys for clinical applications in need of high flexural strength. 

(Donachie 2000) 

 

2.5 The RRM (Reinforced Ring Mesh) made of commercial pure (CP) titanium grade 4 

is proposed as a possible biomaterial solution 

        CP titanium grade 4 is the best choice of a material to be used for this experimental 

project. It is obvious that the commercial pure titanium is an alpha phase material with the 

best corrosion resistance and the best weldability. (Donachie 2000) The goal of the project is 

to weld the contact points of rings with precision and with no alteration (impairment) of the 

mechanical properties, whereas the good weldability and corrosion resistance of CP titanium 

is expected to lead to very good results.  

 

        Furthermore, the grade 4 titanium has the best tensile strength 550 MPa among the 

unalloyed materials, whereas grade 1 has 240 MPa, grade 2 340 MPa, grade 3 450 MPa, grade 

7 340 MPa and grade 11 240 MPa (Donachie 2000).  On the other hand very important for the 

project is that this material has minimal additives of elements which means that in high 

temperatures reaching the melting point, the welded joint and some area around the welded 

region is turned physically from alpha phase to the alpha + beta phase. Compared to the basic 

material this transition in crystalline structure would result in a stronger bonding of the 

welded region if the laser parameters achieve the best possible results. According to this 

important information the experiment proceeds to be done with the material CP titanium 

grade 4.  
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2.6 Laser 

        One of the most important technical discoveries of the 20th century was the invention and 

the development of laser. The abbreviation laser means Light Amplification by Stimulated 

Emission of Radiation. The name laser has a long history, starting from 1900 with the work 

published by the German scientist Max Plank who provided the idea that light is a form of 

electromagnetic radiation. This perception was the source of understanding how later laser 

works. Seventeen years later, in 1917 Albert Einstein described the theory of stimulated 

emission, which moves a step forward in the explanation of how a laser could work. At the 

time these two scientists could not imagine their contribution in science that the invention of 

laser depended on their theories. Around 1950 scientists like Charles Townes, Arthur 

Skawlow, Joseph Weber, Alexander Prokhorov and Nikolai Basov were working 

independently from each other, towards the creation of the so-called MASER. In 

abbreviation, MASER means Microwave Amplification by the Stimulated Emission of 

Radiation. MASER works with the same technology like laser with the difference that it emits 

instead of light radiation, a microwave radiation. In 1960 Theodore Maiman invented the ruby 

laser, but despite that, there is a misunderstanding of who really is the first inventor of the 

LASER. Gordon Gould the doctoral student of Charles Townes at the Columbia University 

was actually the first man who named the light emission LASER (Townes 1999). After 

Theodore Maiman, the manner of laser development was raised incredibly from many 

scientists. Nowadays, we use different types of lasers for a variety of applications, from 

welding and building heavy industry like airplanes, cars, ships etc. and to tiny welding 

procedures constructing pacemakers and welding titanium used in dentistry. What makes laser 

to be extraordinary equipment are the qualities intensity, directionality, coherence and 

monochromaticity (Hecht 1998). Laser is nowadays the equipment that can be used almost 

everywhere either for welding or cutting due to its properties and precision on the working 

piece. 

 

2.6.1 Use of Nd-YAG Laser 

        As it is mentioned in 2.6 there are nowadays a lot of different types of lasers which can 

be used each one for different reasons. There are mainly three types of solid state lasers: the 

ruby, neodymium glass, and the neodymium yttrium aluminium garnet (Nd-YAG). Between 

the three types the neodymium yttrium aluminium garnet is more appropriate for welding 

procedures, where high quality welding production is required (Dawes 1992). Consequently, 
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for the experimental project of the RRM an Nd-YAG laser is used for the best possible 

results.  

        In addition to that, it is important to understand the physics and the function of the Nd- 

YAG laser. The functional principle is as follows, a pumping source excites the electrons of 

the medium in the glass container. According to quantum physics the relaxing electrons 

release the surplus energy named photons. These photons are repeatedly reflected from the 

mirrors at both edges and are emitted as soon as they achieve a coherent phase as a laser beam 

passing the partially reflecting mirror at one of the two sides. Nd-YAG lasers work with 

Neodymium as active laser medium. Reflectors and mirrors enhance the laser beam, Nd YAG 

lasers emit beams of 1.06 μm wavelength and the laser itself is submerged in a cooling water 

chamber. (Dawes 1992)   

 

2.6.2 Welding procedure on commercial pure (CP) titanium surface 

        The laser welding method is divided into two types: (a) the heat conducting welding and 

(b) the deep penetration welding. 

        In heat conducting welding method the laser beam energy is absorbed by the two metal 

components. After conflux of the melts and extinction of the beam, the solidifying melt joins 

the two metal pieces. This procedure is done for metals around 1.5mm thick. The deep 

penetration welding is applied for metals with thickness on a scale from some tenths of 

millimetres to 20mm, in some cases more than 20mm. For the deep penetration welding 

procedure, the laser beam hits with a certain amount of energy the point of bonding. Melting 

the contact area of the two metals, the proceeding laser beam displaces the molten material 

forming a so-called keyhole. The hole behind the beam is filled with the solidifying melt. A 

plasma cloud of gaseous material surrounds the laser beam (Wolf 2011). 

 

2.7   Tensile testing of materials 

        The tensile testing of materials is an important step for the selection of a material for a 

specific purpose, whether this is for the building of an aircraft or for the creation of a medical 

device like the medical implant of RRM. Mechanical properties derived from a tensile test are 

used as information in the specification of a material in a standardized composition and 

manufacturing process to ensure its quality. 
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        Mechanical properties, indicate how the material reacts to forces being applied e.g. in 

tension. Tensile test is a mechanical test that is performed on a prepared specimen, where it is 

loaded in a controlled manner while the applied load and elongation of the specimen are 

measured over some distance. The tensile test can provide to the scientist useful information 

by determining the Young’s modulus, elastic limit, proportional limit, reduction in area, yield 

point, tensile strength and yield strength. However, the most important outcome is the stress-

strain curve, where every material creates its own stress-strain curve.  

        Furthermore, it is important to know with what equipment the tests are performed. For 

the performance of a tensile test two types of testing machines are used. The one is the 

electromechanical machine and the other is the hydraulic machine. The first one, the 

electromechanical machine has the advantage in contrast to the hydraulic that is capable of a 

wider range of test speeds and also longer crosshead displacements. The hydraulic machine is 

used much more when high forces must be applied. Electromechanical machines, are 

assembled from a variable speed electric motor, a gear reduction system, and one, two or four 

screws that move the crosshead upwards and downwards. Thus, the machine is able to 

perform tests of either compression or tension.   

        On the other hand hydraulic machines work in a different manner: Basically, a single or 

dual-acting piston moves the crosshead upwards or downwards and thus exerts greater forces 

on the specimen (Davis 2004). 

 

2.7.1 Mechanical properties of a device derived from a tensile test 

        Tensile test is significant for the characterisation of the structural strength of a medical 

device. The tensile properties derived out of it, are needed for the quality improvement of a 

biomaterial or for the confirmation of a biomaterial quality. From the mechanical properties 

that are used for the description of a material (see subchapter 2.7) the tensile strength, yield 

strength, Young’s module and ductility (elongation at break) will be described in detail. These 

will be used for the quality examination of the RRM as a candidate implant material and 

comparison with these properties of the non-welded specimens. Other mechanical properties 

(e. g. fatigue bending strength) are also important and should also be taken into consideration 

in a further investigation. 
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Tensile strength 

        The definition of tensile strength is “The ultimate tensile strength (UTS) or, more 

simply, the tensile strength, is the maximum engineering stress level reached in a tension 

test”. That means that brittle materials have tensile strength values near to the elastic limit and 

ductile materials have tensile strength values in the plastic portion of the stress-strain curve. 

Tensile strength values are qualified to determine the material type and also are useful for 

quality control of the materials. (NDT Resource Centre 2012)   

 

Yield strength 

        Until yield point on a stress-strain graph a material obeys the Hooke’s Law (see Annex), 

where any elongation until yield point is reduced to its original value after the removal of the 

load without a permanent deformation. Yield point, is the point where a material changes 

from elastic to plastic deformation. Yield strength must not be mistaken for the yield point. 

“Yield strength is the stress required to produce a small-specified amount of plastic 

deformation. The yield strength obtained by an offset method is commonly used for 

engineering purposes because it avoids the practical difficulties of measuring the elastic limit 

or proportional limit”. (NDT Resource Centre 2012) 

 

Young’s modulus 

        Young’s modulus is an important value, because it characterizes the stiffness of a 

material. Young’s modulus is defined as “the slope of the initial linear portion of the stress-

strain curve”. (Davis 2004) Within the linear portion deformations are elastic, thus, the term 

modulus of elasticity is also used. 

 

Ductility 

        Ductility is the elongation a material can withstand by deforming until fracture. 

Elongation and reduction of cross sectional area of the specimen are important values to state 
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whether a material is brittle or ductile. Elongation or reduction in area is measured in percent 

and elongation is represented by the x-axis of a stress-strain graph. 

        Ductility can provide us with three main pieces of information: (a) what values a 

material can be extended and deformed without fracturing, (b) an indication of the flow of the 

material in plastic deformation before fracturing and (c) an indication of any impurities of the 

material or of any processing conditions which altered the structure of the material (Davis 

2004).  
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CHAPTER III 

Materials and Methods 

        The current experimental project took place in the medical university of Göttingen from 

February 2010 until February 2014 under the supervision of the biomaterial research sector of 

the orthopedic department. A pilot study was taken prior the valid experimental research. The 

materials used and the research design is described in detail below in this section. 

 

3.1 Material description 

        The rectangular specimens used, were cut from a custom-made strap of ring mesh (F. 

Münch, Mühlacker, Germany). They were made of commercial pure (CP) titanium grade 4 

and manufactured with a pattern of “4 in 1” where each ring holds four neighboring rings 

(Figure 2). The semi-finished product is a round wire with a thickness of 0.5 mm. Each ring 

has the following dimensions: outer diameter 4 mm, inner diameter 3mm.  Important to say is 

that the circular form and the pattern of the rings are made after the bending of segments of 

wire and their two ends are welded by the manufacturer. A welded area is characterized by a 

small overlap and multicolored oxidation zone. Each ring weighs about 1 mg.  Each specimen 

tested consisted of 138 rings and weighs around 1,4g. Furthermore the specimens have the 

following pattern: width 6 rings at the outside and five at the inside and also its length 

consists of 13 rings outside and 12 inside (Fig. 1). The contact area between the rings that was 

laser welded had the dimensions of 1,9mm length and 1mm width and about 1mm thickness 

and due to that it is considered to set the spot diameter of the laser at 1,9mm in order to apply 

the same energy to the contact area. 

                           Figure 1                                                                          Figure 2 

        

 

 

   

 
         Each ring is connected with four other rings Non-welded specimen 
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3.2 Material preparation  

        The specimens are prepared to have the same number of rings and thus the same 

dimensions. In pilot study, the samples were chemically cleaned in order to remove the alpha 

case (titanium oxide layer formed physiologically due to oxidation of the material) from the 

rings but the results of the pilot study indicated that the material was eroded and the welding 

procedure had as a consequence a porous welded region which was unable to withstand any 

tensile stress. With these observations the concerns about the influence of the alpha case in 

the material mechanical properties, were negligible if the material was not at all chemically 

cleaned. Thus, the experimental research of the specimens did not undergo any cleaning 

processes. The dimensions of the specimens were arbitrarily chosen to allow for an area of 

welded rings with balanced welding quality and to limit the number of welding points to a 

minimum. The assumption was made that the welding would weaken the tensile strength of 

the rings. Thus, failure of the non-welded rings would be less probable than failure within the 

welded area.  

 

        It was important to take into consideration the manufactured welding point (Figure 3) 

within a ring, where in a specimen these welding points have been accidentally distributed in 

the specimen. This played an important role in the mechanical properties of the material 

examined and is described in the results section of this dissertation.  

 

      Figure 3 

 

 

 

 

 

Example of a manufactured welded point 
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3.3 Experimental equipment 

        The main equipment that was used in the experimental study was the Nd-YAG laser 

(Tanaka Laborlaser TLL 7000 Plus, Tanaka dental, Friedrichsdorf, Germany) and the 

universal test machine (Zwick 1446 with software testXpert Version 12.1, Zwick GmbH & 

Co. KG, Ulm, Germany).  

        The laser is equipped with a light tight housing, a protective argon gas supply is directed 

with hose pipes to the working place and a binocular lens focused on the intersection of two 

pointer laser beams directing to the working spot.                                      

The laser beam can be configured by the parameters: current of the laser generator (A), 

duration of laser beam (msec), and diameter of laser beam at the working spot (mm). The 

actual energy applied to the welding site (J) depends on these parameters, as well as on the 

cleanliness of the optical elements. After inspection and service of the machine (Tanaka 

dental) the energy output was measured, and a short description is given in the subchapter 

research protocol.  

        Some modifications were made on these two equipment machines in order to perform 

the experiment correctly. The pilot tests, revealed that the original laser chamber was too 

large and the flow of protective argon gas via the hose pipes proved to be ineffective to 

prevent oxidation of the melt. On the laser equipment, was attached the modified part of the 

laser chamber, which was a nylon bag with a plexiglas opening at the bottom and an 

aluminum supporter at the top in order to hang on the laser equipment and the nylon bag to 

cover the x-y table with the lifting platform and the specimen. On both sides of the aluminum 

support, two connecting tubes allowed the argon gas from the laser to flow into the internal 

part. Thus, oxygen was minimized and the argon gas could cover and protect the welding area 

(Fig. 5). Furthermore the specimens were held vertically to the laser beam with a stretching 

device (Fig. 7), which could be orientated in all directions (lifting table and x-y table) (Fig. 6). 

The whole system was centralized in the laser chamber using magnets to keep it always 

centralized in the same position.  

        On the other hand, the opposing clamps of the tensile test machine were complemented 

with pairs of custom-made bronze brackets. These were characterized by a row of steel pins 

joined in the first and corresponding recesses in the second bracket. Each pin secured a ring of 

the non-welded first and final row.  After closure of the clamp the recesses in the counter 

bracket supported the steel pins against bending (Fig. 4). The settings of the tensile test 
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machine are listed in the Annex. 

 

 

 

 

                               

 

 

 

 

 

 

 

 

 

 

 

Welded mesh specimen held for testing in the clamps of 
the testing machine. Arrows point to the custom made 
bronze pieces  

Additional device (curtain and fixation plate) 
to allow continually flow of argon gas in the 
welding area. The stretching device and the 
tables are enclosed by the curtain. 

Figure 4 

Modified clamp-brackets of the Zwick 
tensile test machine 

Figure 5 

 Laser chamber additional part with 
lift and cross table 



24 
 

 

Figure 6 

The x-y table combined with the lift table and the stretching device 

 

 

 

 

 

 

 

                                 Figure 7              Figure 8 

 

 

 

The stretching device with magnified view of the attached points 
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3.4 Research protocol 

        As already mentioned, this experimental project has been preceded by a pilot study 

where the specimens were chemically cleaned. The idea behind this action was to remove the 

oxide layer that is made on the surface of the titanium. The welding process, during the pilot 

study was done prior to the modification of the laser chamber. In total 50 specimens were 

cleaned and welded. The results, experiential macroscopically derived from the pilot study 

were important to observe that the cleaning of the titanium played an erosive role in the 

quality of the metal. In particular, macroscopically the welding points had no consistency, but 

they had porosity. In addition, the pilot study showed that another essential factor that 

influenced these results was the absence of a proper laser chamber and consequently the 

presence of oxygen that influenced the welding process. 

Therefore, based on the results of the pilot study, the specimens were not cleaned in 

the experimental research in order to protect the quality of the metal. Secondly, a modification 

was necessary in the laser chamber, in order to avoid any presence of oxygen during the 

welding process and the flowing of inert argon gas, which is used originally from the laser to 

protect the material from the oxidation during the welding process. Each specimen has been 

treated equally under the same circumstances. The process is as follows: Firstly the specimen 

is tensioned with a special device until all the rings are stretched to make the whole length of 

the specimen. Then, it was adjusted on a lifting platform that was centralized on an x-y axis 

table in the middle of the laser chamber (this position was kept constant). Before the start of 

each welding procedure, the argon gas was allowed to flow for about two minutes, in order to 

remove the oxygen. During the welding procedure, the argon gas flows continuously until the 

last welding point. The specimens have been welded at room temperature. The spot diameter 

was kept constant at 1.9 mm, which are the dimensions of the contact points. The industrial 

production welding points in a ring, which is made during the manufacture of the mesh, are 

taken into consideration as they probably have undergone altered crystalline structure. These 

were kept randomly distributed in the specimen, where they either intersect in some points 

with the welded area between the rings or not.  The specimens were welded with a unique 

technique, where every second row was welded. This process was done for two reasons. The 

first reason is to avoid the overheating of the one central ring and also to give it the necessary 

cooling time. The second reason was to not change the height of the specimen since the form 

of the specimen is a zig-zag shape if it is seen from a transverse section angle. Thus, the 

centralization and the calibration were not changed and it was used identically for every 
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single welding point. Due to the fact, that the contact points had a diameter of 1 mm, the 

welding process followed was a heat conduction welding, whereas this type of welding is 

used for micro welding of metals less than 2mm. The same process was applied also for the 

other side of the specimen. The reason for welding the specimen from both sides is to control 

the heat conduction welding instead of giving a huge energy to the welding area (deep 

penetration welding). It is worth mentioning, that during all research procedures, the 

specimens were welded from both sides with one laser shot in every contact area. Only the 

rows at each end of the specimen were not welded for attachment of the specimen on the 

bronze clamp parts of the tensile test machine. 

 

        This procedure has been done under the use of the binocular lens and the consistency of 

the extension, position and mirror surface of all welded points was microscopically evaluated. 

The high adjustability range of the laser parameters, such as the current and impulse duration 

was the most challenging part in the experimental work. In order to find out, which 

combination between these two parameters would provide the best results, the following mind 

scheme was made. The experimental work, was divided into four phases: the Phase A which 

was subdivided into Part 1 and Part 2, Phase B, Phase C (step 1 and step 2) and Phase D. 

Phase A intended to indicate the range for optimum laser parameters (Energies) that results in 

acceptable welding status for the RRM. Using an energy diagram in Phase B aimed to assess 

the energy values and to confirm high quality welding results. In Phase C, the aim was to 

compare in step 1 the mechanical properties between the lower energy values found in Phase 

B with the non-welded specimens and in step 2 to compare if there are any differences 

between laser parameters providing the same energy values. Phase D was the last step of the 

experiment, which compared the mechanical properties between different energy levels. 

        In Part 1 of the Phase A, the independent variables used were the current (independent 

variable 1) and the impulse duration (independent variable 2), where the current was kept 

constant at 210A, which is the median value of the range given (100A – 320A). The 

independent variable 2, namely the impulse duration, was changed every one unit starting 

from 1ms to 15ms. Therefore, in Part 1 a total of fifteen specimens (815 welding points) were 

welded by using these variable values. Then the welded specimens were tested individually 

and underwent the sequent examinations.  
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        The test examined the following four dependent variables: dependent variable 1 was 

‘Tensile Strength’, dependent variable 2 was ‘Elongation at break’ (Ductility), dependent 

variable 3 was ‘Young’s modulus’ and dependent variable 4 was ‘Yield strength’.  

        In Part 2 of the Phase A, the controlled experiment was performed like in Part 1 with the 

only difference that the independent variable 2 was kept constant at 8ms (median value of the 

range 1ms-15ms). The independent variable 1 was changed every 20 units from 100A to 

320A but at the range of 160A to 180A (which was the range with the acceptable welding 

energy values) was changed every 5 units to optimize the results. Totally in Part 2 also fifteen 

specimens (815 welding points) were welded. As in Part 1, the ‘acceptable welded’ specimens 

undertook tensile test and the following dependent variables were tested: dependent variable 1 

‘Tensile Strength’, dependent variable 2 ‘Elongation at break’ (Ductility), dependent variable 

3 ‘Young’s modulus’ and dependent variable 4 ‘Yield strength’. The tensile test results of 

Phase A were compared with the control group (non-welded specimens).  

        In Phase B, the energy values given from the laser manufacturer (Mr. Turek,Tanaka 

laser, Ulm) were extrapolated in an energy graph and it was used to confirm, whether the 

energy values derived from Phase A were within the expected range. For each dataset of 

energy values at given time pulse and current registered by the Laser manufacturer, a linear 

dependence between Energy and Current for a given time pulse was observed. Therefore, a 

linear regression approach, the chi-square method was used to fit and extrapolate the observed 

data. Using the fitting results one can derive information at higher energies. These energy 

values were not provided by the manufacturer, due to the fact that the joule meter could not 

withstand higher energy values.  

        The quantity χ2/NDoF is used as the goodness of fit of the linear model and characterizes 

how well the set of observations is fit. More specifically, the output of the chi square (χ2) is 

normalized to the number of degrees of freedom (NDoF), in our case the number of the 

experimental points of each dataset. 

        An attempt has been made to extract values for times that the manufacturer did not 

provide (Fig. 14). So for times 5ms–12ms the lines of the graph are drawn based on 

interpolation of the fit data. However, the interpolations are associated by large uncertainties 

and therefore are not exclusively used to make final decisions. 

        The error on the energy was calculated using propagation of errors of the chosen 

working points (see equation annex). 



28 
 

        Furthermore, Phase C was subdivided into two steps. In step 1, the goal was to compare 

the mechanical properties between the lowest energy value and the non-welded specimens. 

Step 2 was done to compare, whether the tensile results of parameter combination for the 

same energy level could give the same statistical results. 

         

        On the other hand in Phase D, what was tested was the statistical difference of the tensile 

results between specimens of the highest and lowest energy values.     

        For the procedure the Statistical Package for the Social Sciences (SPSS) (IBM Corp. 

2012) was employed to analyze the primary quantitative data of the study. In particular, the 

independent t-test was used to identify statistical significant differences.  
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CHAPTER IV 

Results 

4.1 Phase A 

        In Part 1 of Phase A, the current was kept constant at 210A (the median value of the 

given current range) and the time was increased one unit (1ms) every time starting from 1 ms 

to 15ms. Of the total of fifteen specimens only two of them were acceptably welded. In 

particular, acceptable welding was achieved at 5ms and 6ms. The remaining thirteen were 

‘unacceptably welded’ (textured welding area). Therefore, they were excluded from the 

tensile test. As can be seen in Table 1, there are not huge differences regarding the mechanical 

properties of the two acceptable welded specimens of Part 1.   
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Table 1 

Results of the tensile test in Phase A- Part 1 

Current 

(A) 

Impulse 

duration 

(ms) 

Welding 

status 

Tensile 

strength 

(MPa) 

Elongation 

at break 

(%) 

Young’s 

modulus 

(MPa) 

Yield 

strength 

(MPa) 

210 

1 1 - - - - 

2 1 - - - - 

3 1 - - - - 

4 1 - - - - 

5 2 62,80 8,39 2157 17 

6 2 64,05 9,91 2026 17 

7 3 - - - - 

8 3 - - - - 

9 3 - -- - - 

10 3 - - - - 

11 3 - - - - 

12 3 - - - - 

13 3 - -- - - 

14 3 - - - - 

15 3 - - - - 

 815 welding points including the two samples with acceptable welding energy. Welding status: 

1=low energy thus no weld, 2=optimum energy for acceptable weld, 3= very high energy that 

leads to separation of the material.  
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Figure 10 

Stress-strain curve 

 

Figure 9 

Stress-strain curve 

 

Phase A - Part1 210A-6ms welded 

 

 

Phase A - Part1 210A-5ms welded 
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In the second part of Phase A, the impulse duration was kept constant at 8ms (the 

median of the given time range) and as already mentioned, the current was increased 20 units 

every time; however, in the range of 160A – 180A with the most optimal laser energy the 

current was increased every 5 units. As in Part 1, only two of the fifteen specimens were 

‘acceptably welded’, thus the remaining specimens were excluded from the tensile test. The 

‘acceptable welded’ specimens were welded at current values 170A and 175A accordingly. 

From the tensile test results, as shown in Table 2, the mechanical properties of the specimens 

of the two parts fluctuated in the same range.  

 

 

Figure 11 

Stress-strain curve 

 

 Phase A - Part1 non-welded 
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Figure 12 

Stress-strain curve 

Figure 13 

Stress-strain curve 

Phase A - Part2 170 A - 8 ms welded 

 

Phase A – Part 2 175 A 8 ms welded 
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Table 2 

 

Results of the tensile test in Phase A- Part 2 

Current 

(mA) 

Impulse 

duration 

(ms) 

Welding 

status 

Tensile 

strength 

(MPa) 

Elongation 

at break 

(%) 

Young 

module 

(MPa) 

Yield 

strength 

(MPa) 

100 

8 

1 - - - - 

120 1 - - - - 

140 1 - - - - 

160 1 - - - - 

165 1 - - - - 

170 2 60,48 8,53 1959 18 

175 2 61,80 9,39 2144 16 

180 3 - - - - 

200 3 - - - - 

220 3 - - - - 

240 3 - - - - 

260 3 - - - - 

280 3 - - - - 

300 3 - - - - 

320 3 - - - - 

 815 welding points including the two samples with acceptable welding energy. Welding status: 

1=low energy thus no weld, 2=optimum energy for acceptable weld, 3= very high energy that 

leads to separation of the material.  
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4.2 Phase B 

        From the observations extracted in Phase A, the hypothesis arose that there was a 

fluctuation of energy values regarding the different laser parameters. In order to verify this 

hypothesis, it was necessary to find out the energy values by different laser parameters. As 

stated in subchapter Research protocol a joule meter was used. A graph was plotted of Energy 

(J) versus Current (A) at different impulse durations (ms). The laser parameters determined in 

Phase A were found to be in the field of Energy versus Current graphs with appropriate 

energies in the range of 12 to 15J (see Fig. 14). It was then verified with experimental work 

and microscopic evaluation, using different laser parameters in between 12J and 15J whether 

there was an acceptable or a non-acceptable welding status. From the experiments, it is 

proved that acceptable welding status fluctuates in the energy range 12J and 15J. 

        It is worth mentioning that Figure 21 was designed using the data given by the direct 

registration of some values collected by the joule meter from the laser manufacturer in my 

presence. Nevertheless, the manufacturer provides data only regarding the impulse durations 

(time) between 1-4ms.  

        For each dataset, a linear dependence between Energy and Current for a given time was 

observed. Therefore, a linear regression approach, the chi-square method was used to fit and 

extrapolate the observed data. Using the fitting results one can derive information at higher 

energies. The manufacturer did not provide these energy values, due to the fact that the joule 

meter could not withstand higher energy values.  

        The quantity χ2/NDoF is used as the goodness of fit of the linear model and characterizes 

how well the set of observations is fit. More specifically, the output of the chi square (χ2) is 

normalized to the number of degrees of freedom (NDoF), in our case the number of the 

experimental points of each dataset. 

        In figure 21, an attempt has been made to extract values for times that the manufacturer 

did not provide. So for times 5ms–12ms the lines of the graph are drawn based on 

interpolation of the fit data. However, the interpolations are associated with large 

uncertainties and therefore are not exclusively used to make final decisions. 

        The error on the energy was calculated using propagation of errors of the chosen 

working points (see equation annex). Consequently, for the purposes of the following 

procedures, impulse durations were used close to 4 ms, in order to minimize the errors.  
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      Figure 14 

        Energy diagram 

 

 

Figure 14: Experimental data provided by the manufacturer are represented with open circles 

at different times and indicated by different colors. Each experimental data set is fit by a 

linear model shown with dashed lines. The lines lacking overlaid data are simply 

interpolations.   
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4.3 Phase C 

        Phase C, attempted to assess the consistency and reliability of quality results by 

comparing the welded specimens with non-welded specimens, as well as by comparing two 

groups of welded specimens that received the same laser energy values, but with a different 

set of laser parameters.    

        In the first part of the third phase, the Experimental Group was recruited consisting of 

four specimens (1600 welding points) that were welded with the energy value of 12J and 

specifically by using the combination of current 210A and impulse duration 5ms. The four 

specimens of the experimental group as well as the four non-welded specimens comprising 

the control group, underwent the tensile test and resulted in the findings that are shown in 

Table 3 and Figure 15.  

 

Table 3 

Results of the tensile test in experimental & control group 

 Experimental Group – Welded 

(210A-5ms) 

Control Group – Non-welded 

Specimen No./ 

Mechanical 

Properties  

1 2 3 4 1 2 3 4 

Young’s 

Modulus 

(MPa) 

2125 2255 2038 2156 1287 1234 1208 1299 

Tensile 

Strength 

(MPa) 

62.58 65.04 63.05 61.92 60.41 57.26 62.12 61.09 

Elongation at 

break (%) 
7.4 7.8 8.0 7.7 14.96 13.53 12.72 15.11 
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        In addition, using the statistical software SPSS, the mechanical properties of the four 

welded specimens were statistically compared with the mechanical properties of the four non-

welded specimens (control group). Firstly, the normality of the data was tested. The Shapiro – 

Wilk test (see Table 4) revealed that the Young’s modulus, tensile strength and elongation at 

break are normally distributed for each group of the independent variable (see also the normal 

Q-Q Plots, Plots 1 - 6 in Annex). The yield strength was excluded from the following research 

procedures because the value for all specimens was 17MPa where this was not an essential 

factor to analyze. 

 

                                                                   Figure 15 

                       Stress-strain curve of the experimental group (210A – 5ms) 

 

                       

 

 

 

 

 

 

 

 

 

 

The graphs are shifted for visual purposes 
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Table 4 

Test of Normality  

 Control Group or 

Experimental Group 

Shapiro-Wilk 
 Statistic df Sig. 

Young' s Modulus (MPa) 
Control Group ,910 4 ,484 
Experimental Group ,989 4 ,954 

Tensile Strength (MPa) 
Control Group ,906 4 ,461 
Experimental Group ,911 4 ,489 

Elongation at break (%) 
Control Group ,887 4 ,368 
Experimental Group ,982 4 ,911 

Test of Normality (Shapiro – Wilk test, SPSS  statistical software)    

 

 

 

        Then, the independent t-test (see Tables 5 - 6) was employed to identify possible 

statistically significant differences between the two groups. As was expected, the test revealed 

that there were statistically significantly higher values regarding the parameter of Young’s 

modulus in the experimental group (2143.5 ± 89.86 MPa) than in the control group (1257 ± 

43.18 MPa) (t(6)= 17.833, p=0.00).  Furthermore, statistically significantly lower values were 

recorded regarding the elongation at break in the experimental group (7.72 ±0.25%) than in 

the control group (14.08 ± 1.15%) (t(3.282)= 10.774, p = 0.001).  These results, were not 

unexpected, because the welded specimens did not retain their elasticity that they had before 

welding. The findings also indicated that there was no statistically significant difference 

between welded and non-welded specimens regarding the tensile strength, t(6)= 2.352, 

p=0.057. Therefore, the results were in favor of experimental group (experimental group: 

63.15 ±1.34 MPa and control group: 60.22 ±2.09 MPa).  
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Group Statistics 
 Group N Mean Std. Deviation Std. Error Mean 
Young' s Modulus 

(MPa) 

Control Group 4 1257,0000 43,18179 21,59089 
Experimental Group 4 2143,5000 89,55631 44,77816 

Tensile Strength 

(MPa) 

Control Group 4 60,2200 2,09480 1,04740 
Experimental Group 4 63,1475 1,34411 ,67205 

Elongation at break 

(%) 

Control Group 4 14,0800 1,15288 ,57644 
Experimental Group 4 7,7250 ,25000 ,12500 

 

 

 
 

 

 

 

 
 

Table 5 

Group statistics: Welded (Experimental)-Non-Welded (Control)  

 

Table 6 

Independent samples test: Welded- Non-welded 
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        The second part of Phase C aims to compare two groups of specimens that were welded 

with the same energy value, but by using different set of laser parameters. Particularly, two 

sets of parameters were used: current 210A and impulse duration 5ms (as already used in 

Part1) and the combination of: current 280A and impulse duration 3ms, which both result 

energy of 12J. The results of tensile test of both combinations are illustrated in Table 7. As 

can be seen in the table below, there are no large discrepancies between the two groups, 

especially regarding Young’s modulus and Tensile strength.  

 

Table 7 

Results of the tensile test in two groups of laser energy 12J 

 

 Laser Energy of 12J 

 Welded with 210A-5ms Welded with 280A-3ms  

Specimen No./ 

Mechanical 

Properties  

1 2 3 4 1 2 3 4 

Young’s 

Modulus 
2125 2255 2038 2156 2117 2235 2271 2221 

Tensile 

Strength 
62.58 65.04 63.05 61.92 62.23 57.52 64.15 57.69 

Elongation at 

break 
7.4 7.8 8.0 7.7 8.80 8.21 8.63 8.08 
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        After assessing that the dependent variables were normally distributed in each 

combination of laser parameters (see: Table 8 and Plots 7-12 in Annex), the independent t-test 

(see Tables 6-7) was used to detect possible statistically significant differences between the 

two groups. The Tables 9 and 10 depict that there were not statistically significant differences 

between the two combinations regarding the mechanical properties of Young’s modulus and 

Tensile strength (p>0,05). There were observed statistically significantly higher values of 

Elongation at break in the group of specimens welded with the laser combination of 280A-

3ms (8,43±0,34%) than in the group welded with 210A-5ms (7,73±0,25%), proving that the 

former has generally more elasticity than the latter (t (6)=3.338, p=0,016).  Compared to the 

non-welded specimen the RRM produced with 280 A and 3 ms (12 J) in principle did not 

differ from those RRM produced with lower current and longer pulse duration.  

 

                                                      Table 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test of Normality  

 Combinations at 12J Shapiro-Wilk 
 Statistic df Sig. 

Young' s Modulus 

(MPa) 

210A-5ms (12J) ,989 4 ,954 
280A-3ms (12J) ,892 4 ,394 

Tensile Strength 

(MPa) 

210A-5ms (12J) ,911 4 ,489 
280A-3ms (12J) ,854 4 ,238 

Elongation at break 

(%) 

210A-5ms (12J) ,982 4 ,911 
280A-3ms (12J) ,917 4 ,519 
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Group Statistics 

 Combinations at 12J N Mean Std. Deviation Std. Error Mean 
Young' s Modulus (MPa) 210A-5ms (12J) 4 2143,5000 89,55631 44,77816 

280A-3ms (12J) 4 2211,0000 66,11102 33,05551 
Tensile Strength (MPa) 210A-5ms (12J) 4 63,1475 1,34411 ,67205 

280A-3ms (12J) 4 60,3975 3,31913 1,65957 
Elongation at break (%) 210A-5ms (12J) 4 7,7250 ,25000 ,12500 

280A-3ms (12J) 4 8,4300 ,34049 ,17024 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 9 

Group statistics: 12J (210A-5ms) – 12J (280A-3ms) 

 

Table 10 

Independent samples test: 12J (210A-5ms) – 12J (280A-3ms) 
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4.4 Phase D 

        Finally, the last phase intended to compare specimens that were welded with different 

laser energies. Particularly, specimens were used that were welded with the minimum 

‘acceptable’ welding energy of 12J as well as with the maximum ‘acceptable’ energy of 15J.  

Regarding the energy of 12J, the laser combination of 280A and 3ms and for the group of 15J 

the laser combination 320A and 3ms was used. These combinations, were chosen because 

based on the energy diagram illustrated in Phase B at impulse duration 3ms it was possible to 

take a set of laser parameters that could have the least propagation of error. The propagation 

of error at 280A/3ms is (12.06J ±2.19) and for 320A/3ms is (14.57 ±2,81). Four specimens of 

each group were tensile tested and the findings are represented in the Table 11.  

 

Table 11 

Results of the tensile test in the groups of laser energy 12J and 15J 

 Laser Energy of 12J Laser Energy of 15J 

 Welded with 280A-3ms Welded with 320A-3ms  

Specimen No./ 

Mechanical 

Properties  

1 2 3 4 1 2 3 4 

Young’s 

Modulus 
2117 2235 2271 2221 2204 2126 1994 2252 

Tensile 

Strength 
62,23 57,52 64,15 57,69 44,17 54,17 50,63 49,62 

Elongation at 

break 
8,80 8,21 8,63 8,08 6,39 7,87 7,36 7,30 

 

        Subsequently, the independent t-test was run to determine if there were differences in the 

mechanical properties between the specimens welded with 12J and 15J. As assessed by 

Shapiro Wilk test (p>0,05) the three mechanical properties were normally distributed for each 

laser energy level (see Table 12 and Plots 13-18, Annex). It can be seen from the data in the 

tables 13 and 14 that there was no statistically significant difference between the two groups 
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regarding Young’s modulus. However, concerning the Tensile strength and Elongation at 

break, there were recorded statistically significantly higher values in the group of the 

specimens welded with 12J (60,40 ±3,32 MPa and 8,43 ±0,34%, respectively) than those with 

15J (49,65 ±4,14MPa and 7,23 ±0,62%, respectively) . (For Tensile strength: t(6)=4.052, 

p=0.007 and for Elongation at break: t(6)=3,411, p=0.014).  The results demonstrate that the 

specimens welded with 12J were in general harder and more elastic than the specimens that 

received welding energy 15J.     

 

 

                                                    Table 12 

Test of Normality 
 12J - 15J Shapiro-Wilk 
 Statistic df Sig. 

Young's Modulus (MPa) 
280A-3ms (12J) ,892 4 ,394 
320A-3ms (15J) ,951 4 ,720 

Tensile Strength (MPa) 
280A-3ms (12J) ,854 4 ,238 
320A-3ms (15J) ,964 4 ,804 

Elongation at break (%) 
280A-3ms (12J) ,917 4 ,519 
320A-3ms (15J) ,928 4 ,582 

 
 

 

 

 

 

 

 

 

 

 



46 
 

 

 

 

 

 
Group Statistics 

 12J or 15J N Mean Std. Deviation Std. Error Mean 
Young's Modulus (MPa) 280A-3ms (12J) 4 2211,0000 66,11102 33,05551 

320A-3ms (15J) 4 2144,0000 112,67653 56,33826 
Tensile Strength (MPa) 280A-3ms (12J) 4 60,3975 3,31913 1,65957 

320A-3ms (15J) 4 49,6475 4,14013 2,07007 
Elongation at break (%) 280A-3ms (12J) 4 8,4300 ,34049 ,17024 

320A-3ms (15J) 4 7,2300 ,61563 ,30781 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Table 13 

Group statistics: 12J & 15J  

 

Table 14 

Independent samples test: 12J & 15J  
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        All the specimens were investigated after the tensile test and all of them follow the same 

breakage attribute.  A broken RRM specimen after the tensile strength test is shown in Figure 

16. As can be seen, the welded regions are sufficiently welded and the fractures were 

predominantly located at non-welded parts of the rings. Neither the industrially formed welds 

of single rings, nor the experimentally produced welds of contact areas were of mechanical 

strength inferior to the wire material.   

         

        Besides that, the rings seem to gain in length and deform in such an extent without easily 

breaking. The contact area welds appear to maintain their geometry and their concave 

oriented deformation occurs on the longitudinal directed parts of a ring. Lengthening of the 

specimen predominantly occurs on the traversely orientated parts of the rings. This aspect 

indicates the elasticity of the material and the ability of the welded region to withstand great 

forces. 

 

Figure 16 

 

A welded specimen after a tensile strength test. 
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CHAPTER V 

Discussion 

        It is a fact that titanium mesh is used in maxillofacial reconstructive surgery.  According 

to Lazaridis et al.: ‘Titanium mesh has proved a useful material for semi-rigid fixation and 

reconstruction of craniofacial defects’. In addition, it is stated: ‘The semi-rigid fixation 

achieved by the malleable titanium mesh improves bone healing because of the micro 

movements at the fractured ends while rigid plates may evoke stress-forces within the callus 

during its formation and in the mass of the bone causing ischaemia under the area of the plate’ 

(1998, p. 227). Other benefits for using titanium mesh are that it does not produce many 

artefacts in CT scan and also it does not migrate because connective tissue grows through and 

around its lattice structure (Lazaridis et al. 1998). 

        The RRM also has advantages over already existing titanium mesh.  Despite that, the 

already existing mesh mentioned above differs from the RRM in that the RRM has the ability, 

due to its elastic character to be tucked during surgery and be applied in complex anatomical 

bone areas, which would be impossible for any other medical device. In addition, the RRM 

can be manufactured in a variety of medical devices in which the variation of the material 

cross-sectional area gives an alteration to the tensile strength more than the variation of the 

ring diameter. This production possibility gives an advantage to the RRM in contrast to the 

already existing 2D plates.  

        At the beginning of this experimental project, five research questions were raised which 

have been answered at the end of this experimental work. The first research question was the 

following: (a) Is it at all possible to provide a medical device using the RRM? The RRM 

introduces an idea of how every bone defect and not only maxillofacial traumata can be 

surgically treated. The difficult part was to provide a medical device, which with required 

mechanical properties can give the flexibility and at the same time the strength needed to 

stabilize the damaged area. At present the RRM used has arbitrary dimensions and are an 

example for future applications. Similar to the experiments presented here the welding 

parameters will have to be adjusted to differently dimensioned rings and modifications of the 

mesh pattern. According to the results it will be possible to shape the RRM according to a 

given anatomical structure by laser welding and apply it as an implant in the human body.      

        The second research question was: (b) Does the laser welding process work effectively 

to produce a stable medical device? According to the literature review done prior to the 
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experimental work, the latest method used for welding process not only in different 

disciplines in the field of sciences but predominantly in routine manufacturing is the use of 

laser equipment. Using this knowledge the Nd-YAG laser was used to weld the specimen’s 

contact points. The specimens were welded with a unique technique, where every second row 

was welded. This process was done for two reasons. The first reason is to avoid the 

overheating of the one central ring and also to give it the necessary cooling time. The second 

reason was to not change the height of the specimen since the form of the specimen is a zig-

zag shape if it is seen from a transverse section angle. Thus, the centralization and the 

calibration were not changed and it was for every single welding point identically used. Due 

to the fact that the contact points had a diameter of 1mm the welding process followed was a 

heat conduction welding, whereas this type of welding is used for micro welding of metals. 

The same process was applied also for the other side of the specimen. The reason for welding 

the specimen from both sides is to control the heat conduction welding instead of giving a 

huge energy to the welding area (deep penetration welding). Intermittent and two-sided 

welding of the stretched RRM resulted in two-dimensional devices free of distortion. Though 

the character of the flexible RRM has been completely changed towards a stiffer device, only 

the welding process has produced a material applicable to stabilization procedures for 

surgery. This approach to the welding process was theoretically investigated prior to any 

experimental work. This theoretical model with the intention to achieve a sufficient welding 

area was verified with the results of the experimental work. Thus, it comes to the conclusion 

that this experimental approach is needed to produce the same good quality of any future 

work with rings of different dimensions.    

        In addition, another question that rises in the considerations of the project was the 

following: (c) What is the optimum energy applied on the contact points? This part of the 

study was the most challenging. The variable laser parameters, such as current and impulse 

duration should be varied in such a way in order to find the best combination of the two 

parameters that should present the best welding results with macroscopic and microscopic 

homogeneity and optimum mechanical properties. The goal of the process was to achieve also 

a conduction heat welding and not deep penetration welding process. That means, for a single 

welding point is needed a sum of energy 24J-30J since the specimens are welded from both 

sides. Using the mind scheme, explained in the method section of this dissertation, it is 

confirmed by the results of the study that the mind scheme is correct and assigned the best 

results. On the other hand, using this method for welding the medical device could answer 

automatically also the fourth research question revealed at the beginning of the study, which 
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was: (d) Does the optimum laser parameters provide reliable mechanical properties results? 

The findings support the predictions, that the mechanical properties results using the laser 

parameters that provide energies between 12J and 15J (one side welding) under the same 

conditions (centralization of the cross table and time of argon flow at room temperature) 

disclose the best possible axial tensile test results. Well worth mentioning is the avoidance of 

using energy values from the energy graph, which are above the 4ms. Those values, above 

4ms are an interpolation of the energy diagram for demonstration reasons of the energy. The 

reason for that is the considerable wide range of the standard error that would lead to false 

welding energy values. It is also to perceive, that in any future experimental work there is no 

need to descale (remove the alpha-case) or clean in any chemical way the RRM specimens, 

where such an action would may lead to erosion of the metal and thus to false tensile strength 

results. Another question that was recorded at the beginning of the experimental project was, 

if there are any differences between the tensile strength of the welded and non-welded 

specimens. In the literature review the molecular structure of titanium was studied in detail 

and it was noticed that the metallographic properties of pure titanium is of alpha phase, 

defined as “Alpha alloys“. “These are non-heat treatable and are generally very weldable. 

They have low to medium strength, good notch toughness, reasonably good ductility and have 

excellent properties at cryogenic temperatures” (Materials Information Service 1995) and at 

temperatures of about 882⁰C changes its metallographic properties to alpha-beta phase which 

is defined as “Alpha-Beta alloys“. “These are heat treatable to varying extents and most are 

weldable with the risk of some loss of ductility in the weld area. Their strength levels are 

medium to high” (Materials Information Service 1995). And a beta phase is defined as “Beta 

alloys“. “Beta or near beta alloys are readily heat treatable, generally weldable, and offer high 

strength up to intermediate temperature levels” (Materials Information Service 1995). Having 

this scientific knowledge in mind one struggled to find the “golden mean” in order to not use 

laser parameters to such an extent that could result in raising the temperature of welding 

points around 882⁰C during the welding process. According to the results of the project, the 

welded and non-welded specimens do not differ from each other and from the results it is 

possible to say that the welded specimens reached temperatures around 882⁰C, where that 

made a possible crystallographic change of the material to a metallographic state of alpha-beta 

alloys, where there is some loss of ductility and the strength levels are medium to high.  

 

        Inspection of the welding points revealed no significant variabilites, though the shifting 

table was manually driven. Fractures were predominantly located at non-welded parts of the 
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rings. Neither the industrially formed welds of single rings, nor the experimentally produced 

welds of contact areas were of mechanical strength inferior to the wire material.  This is 

believed to be based on the transformation from alpha to alpha + beta structure due to the 

welding. 

        Besides that, the rings seem to gain in length and deform in such an extent without easily 

breaking. The contact area welds, appear to maintain their geometry and concave oriented 

deformation occurs on the longitudinal directed parts of a ring. Lengthening of the specimen 

predominantly occurs on the traverse-orientated parts of the rings. This aspect indicates the 

elasticity of the material and the ability of the welded region to withstand great forces. 

Important to mention is that the non-welded RRM undertook the same deformation shape as 

the welded RRM. That indicates the similarity of the physical properties of the two groups 

and the ability of the RRM to be used as a medical device. 

        The findings from the research illustrate, that the RRM can be a medical device with the 

advantage to be produced in every hospital, just with using an Nd-YAG laser machine. Apart 

from that further study is recommended of the use of a microidentation device (Diez-Perez et 

al. 2010) to take from different bone, mechanical properties values and try to examine the idea 

of using the same RRM but with different welding techniques or alloys of the same material 

with the aim to produce a stiffer or a ductile medical device that could be probably used on 

the different bone areas.    

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Diez-Perez%20A%5BAuthor%5D&cauthor=true&cauthor_uid=20200991
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Conclusion  

        The experimental project demonstrates the possibility of the RRM to be used as a 

medical device for surgical applications. This is confirmed by the results of the axial tensile 

test, which give mechanical properties of the laser-welded specimens competent against the 

non-welded specimens. On the other hand, it should be noticed that in the project have been 

limitations, such as the welding process was done by an operator and not from a robot 

machine, where that could have as consequence some even better results. In addition, a further 

study of bending test should be performed using the same laser parameters and welding 

method in order to establish the ability of the medical device not only in axial tensile test but 

also in bending test. It could be important for further study the x-ray crystallography of the 

welded area to confirm any changes in the metallographic structure of the welded region. 
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Annex 

 

1. Universal Test Maschine Zwick 1446 with Software testXpert Version 
12.1 

General data 

Force transducer: 10KN 

Position sensor: Traverse 

Specimen holder: Artikel-Nr. 8121 500N 

Test area: Bottom (Tension space) 

Top soft stopper at 800mm 

Bottom soft stopper at 265mm 

Recommended force limits: ±950N 

No tolerance limits 

 

Pre-load settings 

Pre-load: 2MPa 

Pre-load speed: 10mm/min 

Pre-load time reached: 60s 

Kept pre-load time: 5s  

Force zeros after pre-load reached 

 

Young’s modulus settings 

Established through the tangent in the graph 

Start at 50 MPa 
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Tensile test data 

Test-speed: 60mm/min 

Power-operated shut-down at 80% Fmax (Tensile strength) 

 

After test settings 

Specimen released 

Speed of release: 10mm/min 

 

 

2. Hooke‘s Law of elasticity 

Definition  

“The force F applied to a spring is directly proportional to the spring’s extension or compression, x, 
provided the elastic limit is not exceeded.” k = constant = Young’s modulus 

F=-kx 

 

 

3. Statistical analysis  
 
The ROOT Data Analysis Framework was used for the statistical analysis. 
 
 

The data are fit by a first order polynomial function   using a linear 
regression approach for modeling the experimental data. The fit method provides the errors Δα 
and Δb  
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One way in which a measure of goodness of fit statistic can be constructed, in the case where the 
variance of the measurement error is known, is to construct a weighted sum of squared errors: 
 

 
where χ2 is the known variance of the observation, O is the observed data and E is the theoretical 
data. 
 
 
 
The errors Δα and Δb are used to calculate the errors on the energy at a given Current (I) with the 
propagation of errors, as follows: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



59 
 

Patent of the university medical hospital Göttingen 
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4. Normal Q-Q Plot Graphs 
Control Group: Non-welded specimens 
Experimental Group: Welded specimens 

Plot 1 

 
 

Plot 2 
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Plot 3 

 
 

 
 

Plot 4 
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Plot 5 

 
 

 

 

Plot 6 
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Plot 7 

 
 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

Plot 8 
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Plot 9 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

Plot 10 

 
 

 
 

 

 

 

 

 

 

Plot 11 
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Plot 11 

 
 

 
 

 

 

 

 

 

 

 

Plot 12 
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Plot 13 

 
 

 
 

 

 

Plot 14 

 

  

 

 

 

 

 

 

 

Plot 14 
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Plot 15 

 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

Plot 16 
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Plot 17 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Plot 18 
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