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Abstract 

Deoxyribonucleoside and nucleotide kinases are key enzymes that catalyze the critical 

phosphorylation steps in the conversion of antiviral and anticancer nucleoside analogs to their 

corresponding cytotoxic nucleoside triphosphates for incorporation into DNA. In this work, I 

characterized three enzymes: Human guanylate kinase (hGMPK), human mitochondrial 

thymidine kinase (hTK2), and E.coli guanosine-inosine kinase (ecGSK). They were 

recombinantly produced and kinetically characterized. A series of mutations were introduced to 

understand the catalytic roles of specific residues. The enzymes were structurally characterized 

for substrate-induced conformational changes, and two novel assays were devised to study their 

kinetics. Our main aim was to provide a basis for their potential use in cancer chemotherapy. 

The hGMPK was recombinantly produced in catalytically active form although it was previously 

reported to be inactive upon production in E.coli. In order to explain the role of certain residues 

in catalysis, a series of point mutations were introduced in hGMPK by rational design applying 

the structural information of mouse GMPK, which is 88% identical to hGMPK allowing us to 

build a homology model. Interestingly, it was found that a single hydrogen bond between the 

active site S37 and the carbonyl oxygen of guanine in GMP substrate is critical for binding of 

GMP and catalysis. Disturbing this single hydrogen bond in the form of the S37A mutation 

adversely affected the catalytic activity. Besides its catalytic role, S37 is required for the 

dynamics of the hinge part that connects two structural regions designated as NMP-binding 

region (NMP-BR) and the CORE region. Its mutation to proline (S37P), which is the least 

flexible amino acid in terms of sterically allowed conformations, reduced the catalytic efficiency 

of hGMPK by about 10
3
-fold making the molecule more like the non-enzymatic guanylate 

kinase domain of MAGUKs (membrane-associated guanylate kinase homologs). Similarly, the 

bidentate interaction of T83 with the carbonyl oxygen of guanine in GMP is required for 

catalysis. Y81 interacts with the phosphate of GMP and has a role in binary complex 

stabilization. We demonstrated in cell culture experiments that hGMPK, which catalyzes the 

second phosphorylation step in the final conversion of the antileukemic drug 6-thioguanine (6-

TG) to 6-thioGTP/6-thiodGTP for incorporation into RNA and DNA, is the bottleneck enzyme 

in the metabolic activation of 6-TG, enhancing its cytotoxicity by several fold when 

overexpressed in HEK293 cells. 
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Analyzing the SAXS structures of hGMPK in different conformational states, in particular in the 

open (unliganded) and completely closed (with two bound nucleotides) forms, revealed large 

conformational changes that occur during catalysis. The open-to-closed conformational transition 

of hGMPK induced by binding of ligands supports the model of the induced fit mechanism.  In 

addition, we optimized the higher yield production of isotope-labeled (
15

N, 
15

N/
13

C) hGMPK for 

its structural analysis by NMR. GMP-induced 
15

N-
1
H HSQC (Heteronuclear Single Quantum 

Coherence) chemical shift changes for hGMPK mapped onto its open form confirmed our 

findings by SAXS studies that hGMPK undergoes substrate-induced conformational changes. 

In order to develop novel and advanced approaches for studying the catalytic properties of 

deoxyribonucleoside and nucleotide kinases, we devised two assays. In one assay, we used a 

CdS/ZnS quantum-dot (QDs)-modified gold electrode for the detection of hGMPK-catalyzed 

reaction in an enzyme-coupled assay based on the electrochemical sensing of NADH in a GMP 

concentration-dependent way. We also demonstrated the proof of concept of a light-controlled 

sensor for hGMPK immobilized on CdS/ZnS QDs-modified gold electrode. Similarly, we 

established an Amplex Red-based spectrophotometric and fluorometric enzyme-coupled assay 

for hGMPK as an alternative to the conventional NADH-dependent spectroscopic assay. Our 

new assay overcomes the overlapping wavelength problem associated with strong absorption of 

6-thioguanine nucleotides at 340 nm, and it has the advantage of being usable both in the 

absorbance and fluorescence modes. 

We investigated the hGMPK loading capacity of calcium carbonate microparticles of different 

shapes. It was found that ellipsoidal microparticles with loaded hGMPK exhibited higher 

specific activities, after coating with polyelectrolytes, as compared to microparticles of all other 

shapes including spherical, rhomboidal, star and cube-like particles. Thus, ellipsoidal particles 

turned out to be more appropriate for drug loading and cellular targeting experiments. 

We determined the mitochondrial localization of hTK2 by expressing it in HEK293 cells as a 

fusion with C-terminal EGFP, and observed its subcellular localization by confocal microscopy. 

In addition, we solved the aggregation problem associated with hTK2 upon overexpression in 

E.coli. Our optimized protocol is based on the expression of hTK2 as a fusion with N-terminal 

His14-MBP-SUMObr tag (~60 kDa) under optimum conditions. Similarly, we generated a C- and 

N-terminal truncated form of hTK2 with improved catalytic activity as compared to wild-type 

hTK2, and optimized experimental conditions for its crystallization. Additionally, through 
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directed evolution using error-prone PCR and subsequent screening of mutants against antiviral 

and anticancer nucleoside analogs, we found that two mutants designated M5 and M17 increased 

the sensitivity of the TK-deficient KY895 E.coli strain to gemcitabine by 25-fold and fourteen 

mutants by a factor of 10. Similarly, five mutants enhanced the sensitivity of KY895 to AZT by 

3-fold. 

A unique property was explored for the recombinantly produced ecGSK that phosphorylates the 

nucleoside form of the clinically used antileukemic drug 6-thioguanine. To determine its 

structure-function relationship, experimental conditions were optimized for the crystallization of 

ecGSK. 
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1. Introduction 

1.1 General characteristics of nucleoside monophosphate kinases  

Nucleoside monophosphate kinases (NMPKs) catalyze the reversible phosphoryl transfer 

reaction by which monophosphates (NMPs) are converted to their corresponding diphosphate 

forms (NDPs). Ribonucleotides are synthesized by two pathways, the de novo pathway and the 

salvage pathway. In the de novo pathway, the nucleosides are synthesized from small molecules 

to ribonucleoside monophosphates, and subsequently phosphorylated by NMPKs to 

ribonucleoside diphosphates and by nucleoside diphosphate kinases (NDPKs) to nucleoside 

triphosphates. The ribonucleoside diphosphate can be reduced to the corresponding 

deoxyribonucleoside diphosphate catalyzed by ribonucleotide reductase [44]. Nevertheless, in 

the salvage pathway, preformed (deoxy)ribonucleosides are imported into cells by nucleoside 

transporters. The (deoxy)ribonucleosides are then phosphorylated to their corresponding 

triphosphates in three consecutive phosphorylation steps, catalyzed by (deoxy)ribonucleoside 

kinases, NMPKs, and NDPKs (Fig. 1.1) [42, 45]. Nucleoside analog prodrugs are 

phosphorylated to their corresponding active triphosphate forms via the salvage pathway [43]. In 

humans, the NMPK family includes four types of enzymes: guanylate kinase (hGMPK), 

adenylate kinase (hAMPK), uridylate/cytidylate kinase (hUMP-CMPK) and thymidylate kinase 

(hTMPK). The names are given according to their preferred substrates, (d)GMP, (d)AMP, 

(d)UMP/(d)CMP and dTMP [46]. Humans have seven isoforms of guanylate kinase (hGMPK), 

six AMPKs (hAMPK1–6), two UMP-CMPKs (hUMP-CMPK), and one thymidylate kinase 

(hTMPK). In addition, a putative mitochondrial thymidylate kinase has also been reported [47, 

75]. The hGMPK, hAMPK1, hUMP-CMPK, and hTMPK are located in the cytosol while 

hAMPK2 is found in mitochondria. Similarly, hGMPK, hAMPK1, hAMPK2 and hUMP-CMPK 

are monomers whereas hTMPK is a homo-dimeric molecule [46]. Amino acid sequence 

identities of human NMPKs are very low: hUMP-CMPK is 40, 21 and 20% identical to 

hAMPK1, hTMPK and hGMPK, respectively. The hGMPK and hTMPK are less sequence-

related to other NMPKs. However, all have the same highly conserved three-dimensional (3D) 

fold [48]. 
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Fig. 1.1. De novo and salvage synthesis of ribo- and deoxyribonucleotides. (a) Key steps 

in the ribonucleoside and deoxyribonucleoside metabolism. (b) Detailed steps in the 

ribonucleoside and deoxyribonucleoside metabolism. A, adenine; C, cytosine; CDA, 

cytidine/deoxycytidine deaminase; CP, carrier protein; CTP-S, CTP synthase; dNK, 

deoxyribonucleoside kinase; dUTPase, deoxyuridinetriphosphatase; G, guanine; NP, 

purine/pyrimidine nucleoside phosphorylase; 5´NT, 5´-nucleotidase; PRT, phosphoribosyl 

transferase; rNK, ribonucleoside kinase; T, thymine; U, uracil [45]. 

  a. 

  b. 
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NMPKs have generally three structural parts, a CORE region, a LID region, and an NMP-

binding region. The CORE includes the ATP binding P-loop, the NMP-binding region binds the 

(d)NMP substrate, and the LID region provides catalytic residues for the reaction (Fig. 1.2) [46, 

49]. The NMP substrate is mainly bound to the NMP-binding region, however it also interacts 

with some residues of the CORE [11, 50]. These three regions are interconnected by hinges. 

NMPKs are known to undergo large conformational changes upon binding of their substrates 

[51]. The enzyme attains the open conformation in the absence of any substrate. When the 

substrates bind, the NMP-binding and the LID parts undergo large hinge-bending motions that 

make the subunit switch from an open to a closed conformation [9]. These conformational 

changes were first described for adenylate kinase, and a two-state model of induced-fit 

mechanism was suggested in which the substrates, in particular AMP, can easily trigger the 

change between two stable conformations. The B conformation related to the structure of free 

enzyme, and the A conformation corresponded to the enzyme conformation after an induced-fit 

[49, 52]. NMP kinases can be inhibited by bisubstrate analogs which occupy both the phosphate 

donor site and the phosphate acceptor site: for instance, Ap5G inhibits E.coli, yeast, mouse and 

human GMPKs, and Ap5A is an inhibitor for hAMPK1 (Fig. 1.2). These bisubstrate analogs 

occupy the binding positions of both substrates, NMP and ATP, with a linker of four or five 

phosphates in between [46]. 

 

 

 

 

 

 

 

 

 

 

a. b. 

Fig. 1.2. The NMPK monomer fold. (a) Human AMPK1 complexed with Ap5A (P
1
-(5´-

adenosyl) P
5
-(5´-adenosyl) pentaphosphate), an inhibitor that occupies both the donor 

nucleotide site on the left and the acceptor site on the right. (b) Human TMPK (PDB 1E9E) 

in complex with TMP and an ATP analog (AMPPNP, Adenylyl-imidodiphosphate). UMP-

CMPK and GMPK adopt the same fold as AMPK and TMPK [46]. 
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1.1.1 Guanylate kinases 

Guanylate kinase (GMPK, ATP:GMP phosphotransferase) is a member of the family of 

ATP:NMP phosphoryltransferases (nucleoside monophosphate kinases; NMP kinases; NMPKs; 

EC 2.7.4.8) which catalyzes the reaction (d)GMP + ATP ↔ (d)GDP + ADP [25]. The reaction 

and biological function of GMPKs closely resemble that of adenylate kinases which use (d)AMP 

as a phosphoryl group acceptor [53]. There is a glycine-rich P-loop in the N-terminus of GMPKs 

(11-18 amino acids in mouse GMPK, and 9-16 residues in yeast GMPK) and adenylate kinases 

that binds α and β phosphates of ATP. Nevertheless, besides similar ATP binding sites, the chain 

fold motifs of the GMP binding domain of GMPKs and AMP binding domains of adenylate 

kinases are totally different [53]. As mentioned before, the 3D fold of NMP kinases is highly 

conserved. But there are also structural differences: for instance, the NMP-binding region of 

GMPKs consists of a four-stranded β-sheet and only a short helix [11, 53], whereas the NMP-

binding domains of other NMP kinases are α-helical [10]. GMPKs have been studied from 

several organisms, and many functional and structural details are known, for example, the X-ray 

structures of E.coli GMPK (ecGMPK) [54], Mycobacterium tuberculosis GMPK (mtGMPK) 

[59], Staphylococcus aureus GMPK (saGMPK) [60], yeast GMPK (yGMPK) [10, 53, 55] and 

mouse GMPK (mGMPK) [11]. Analysis of these structures indicates that GMPKs have common 

structural features including the CORE domain that carries the ATP β-phosphate binding 

glycine-rich P-loop, NMP-binding domain for binding GMP, and LID domain which interacts 

with the adenine base of ATP and provides catalytic residues for the phosphoryl transfer reaction 

[54]. In the absence of any substrate, GMPKs attain an extended open conformation in which the 

NMP-binding and LID regions are at higher distance from each other and more mobile allowing 

full access to the ATP and GMP binding sites [10]. GMP binding induces partial closure of the 

GMPK molecule, and complete closure is achieved by the binding of both substrates, ADP (or 

non-hydrolysable ATP-analog) and GMP [10, 11]. Up to now, there is no structural data 

available for human GMPK (hGMPK). Therefore, the three-dimensional structure elucidation of 

hGMPK will be of great relevance for understanding its structural and functional characteristics. 

The hGMPK enzyme is 197 amino acids in length  and is 88% identical to mGMPK, 51% 

identical to yGMPK, 41% identical to ecGMPK, 35% identical to saGMPK and 31% to the 

guanylate kinase-like domain of hDlg (MAGUK from Homo sapiens, UniProt identifier Q12959) 
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(Fig. 1.3). The ecGMPK and saGMPK molecules are multimeric unlike Mycobacterium 

tuberculosis, yeast and mammalian GMPKs which are monomers [35, 58, 60]. 

     

 

 

 

 

 

 

 

                           
                           

                                                                  
hGMPK         --MSGPRPVVLSGPSGAGKSTLLKRLLQ-EHSGIFGFSVSHTTRNPRPGEENGKDYYFVT 57 

mGMPK         --MAGPRPVVLSGPSGAGKSTLLKKLFQ-EHSSIFGFSVSHTTRNPRPGEEDGKDYYFVT 57 

ecGMPK        --MAQGTLYIVSAPSGAGKSSLIQALLKTQPLYDTQVSVSHTTRQPRPGEVHGEHYFFVN 58 

saGMPK        MDNEKGLLIVLSGPSGVGKGTVRKRIFE-DPSTSYKYSISMTTRQMREGEVDGVDYFFKT 59 

yGMPK         ----MSRPIVISGPSGTGKSTLLKKLFA-EYPDSFGFSVSSTTRTPRAGEVNGKDYNFVS 55 

hDlg          -----TRPVIILGP---MKDRINDDLIS-EFPDKFGSCVPHTTRPKRDYEVDGRDYHFVT 51 

                                                   * *    * 

                                                    

 

                     

                         
hGMPK        -REVMQRDIAAGDFIEHAEFSGNLYGTSKVAVQAVQAMNRICVLDVDLQGVRNIKAT-DL 115 

mGMPK        -REMMQRDIAAGDFIEHAEFSGNLYGTSKEAVRAVQAMNRICVLDVDLQGVRSIKKT-DL 115 

ecGMPK       -HDEFKEMISRDAFLEHAEVFGNYYGTSREAIEQVLATGVDVFLDIDWQGAQQIRQK-MP 116 

saGMPK       -RDAFEALIKDDQFIEYAEYVGNYYGTPVQYVKDTMDEGHDVFLEIEVEGAKQVRKK-FP 117 

yGMPK        -VDEFKSMIKNNEFIEWAQFSGNYYGSTVASVKQVSKSGKTCILDIDMQGVKSVKAIPEL 114 

hDlg         SREQMEKDIQEHKFIEAGQYNNHLYGTSVQSVREVAEKGKHCILDVSGNAIKRLQIA-QL 110 

                                     ** 

                                     

                                          

                                      

                                    
hGMPK        RPIYISVQPPSLHVLEQRLRQRNTETEESLVKRLAAAQADMESSKEPGLFDVVIINDSLD 175 

mGMPK        CPIYIFVQPPSLDVLEQRLRLRNTETEESLAKRLAAARTDMESSKEPGLFDLVIINDDLD 175 

ecGMPK       HARSIFILPPSKIELDRRLRGRGQDSEEVIAKRMAQAVAEMSHYA---EYDYLIVNDDFD 173 

saGMPK       DALFIFLAPPSLEHLRERLVGRGTESDEKIQSRINEARKEVEMMN---LYDYVVVNDEVE 174 

yGMPK        NARFLFIAPPSVEDLKKRLEGRGTETEESINKRLSAAQAELAYAET-GAHDKVIVNDDLD 173 

hDlg         YPISIFIKPKSMENIMEMNKRLTEEQARKTFERAMKLEQEFTEHFT-----AIVQGDTLE 165 

 

               

               
hGMPK        QAYAELKEALSEEIKKAQRTGA------------ 197 

mGMPK        KAYATLKQALSEEIKKAQGTGHA----------- 198 

ecGMPK       TALTDLKTIIRAERLRMSRQKQRHDALISKLLAD 207 

saGMPK       LAKNRIQCIVEAEHLKRERVEAKYRKMILEAKK- 207 

yGMPK        KAYKELKDFIFAEK-------------------- 187 

hDlg         DIYNQVKQIIE----------------------- 176 

P-loop 

    3     4 

    5  6  3 

 2 

 7  4 

 8  5  6  9 

 7  8 

NMP-BR 

NMP-BR 

L D region 

Fig. 1.3. Sequence alignment of bacterial and eukaryotic GMPKs. From top to bottom, 

GMPK amino acid sequences are from human, mouse (88% identity), E.coli (41% identity), 

Staphylococcus aureus (35% identity), yeast (51% identity) and human GK domain (31% 

identity). Conserved residues are shown with orange background. On the top of the sequences 

are indicated the mGMPK secondary structures. The CORE region and hinges include all 

regions outside NMP-binding region (NMP-BR) and LID region. Below the sequences are 

indicated the residues (*) which were mutated for kinetic characterization in hGMPK.     

 * 
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1.1.1.1 Escherichia coli guanylate kinase 

Gunaylate kinase (GMPK, ATP:GMP phosphotransferase, EC 2.7.4.8) from Escherichia coli 

(ecGMPK) was preliminarily characterized by Oeschger and Bessman in 1966 [39]. It is 207 

amino acids in length (UniProt ID P60546) having 23,462 Da molecular mass of the monomer as 

determined by electrospray ionization-mass spectrometry (ESI-MS) [60]. Like other GMP 

kinases, ecGMPK uses both GMP and dGMP as substrates. The guanylate kinase reaction using 

dGMP as a substrate is stimulated by K
+ 

and NH4
+
 ions

 
[58]. The ecGMPK was found to exist in 

equilibrium between various oligomeric species (dimeric, tetrameric and hexameric) in solution 

depending on the ionic strength and protein concentration [60]. As its catalytic activity is similar 

to that of monomeric GMPKs and shows no cooperativity for the GMP substrate, it is likely that 

its active sites are essentially independent in the oligomers. The crystal structure of ecGMPK 

was reported in nucleotide-free form, in complex with GMP, GDP [60], with the monophosphate 

of the antiherpes drug ganciclovir (GCV-MP), and with the bi-substrate inhibitor Ap5G [54]. It 

was crystallized as a hexamer. The ecGMPK subunit shares the same characteristic 3D fold with 

monomeric yeast GMPK and mouse GMPK consisting of CORE, LID and NMP-binding 

domains (Fig. 1.4) [10, 11]. The binding of substrates induces domain closure in ecGMPK from 

a fully open conformation when no nucleotides are bound (apo-ecGMPK) to a partially closed 

NMP-binding domain in the presence of GDP (ecGMPKGDP), and essentially closed LID and 

NMP-binding domains in the presence of both GMP and sulfate ions (ecGMPKGMP.SO4
2-

) [60]. 

The ATP-binding site remains partially obstructed by inter-subunit interactions in all the 

presented crystal structures, indicating that either local conformational changes or dissociation of 

the hexamer are required. The conserved arginine residues for example R138LID and R45NMP 

play an important role in transition state stabilization. The R138 (R137 in mGMPK) which 

interacts with α and β phosphates of ADP may bridge the ADP leaving group and the transferred 

phosphates at the transition state (TS) (Fig. 1.4b), whereas R45 (R44 in mGMPK) which binds α 

phosphate of GMP may bridge the GMP to the transferred phosphoryl group in TS. The 

R149LID (R148 in mGMPK) which binds to the α-β bridging oxygen atom of GDP may rather 

be involved in stabilizing the GMP substrate in the ground state. It is because charges at this 

atom are expected to decrease in the TS and hence the contribution of this residue to the 

stabilization of the TS [60]. 

 



26 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unlike the eukaryotic orthologs including yeast, mouse and human GMPKs, the ecGMPK has a 

unique C-terminal extension. The C-terminal extension has a role in forming the basic dimeric 

folding unit of the hexamer, and the tyrosine insertion in the CORE domain is a specific feature 

of the trimeric interface. Most of the enterobacterial and the Vibrio cholerae GMPKs are highly 

related to ecGMPK with respect to these signature regions. Therefore, the oligomeric nature of 

ecGMPK in solution and its hexameric arrangement in the crystal serve as a model for the 

quaternary structure of GMPKs from these bacteria including human pathogens such as 

Salmonella typhimurium, Yersinia pestis and V. cholerae. Being an essential enzyme of bacteria, 

GMPK is a potent drug target. As none of the ecGMPK structures was able to bind ATP due to 

blockage of the adenine-binding site by subunit interactions at the trimeric interface, this auto-

inhibited conformation could be specifically stabilized for bacterial cells. By doing so, the 

CORE- 

domain 

Fig. 1.4. E.coli guanylate kinase. (a) Dimeric interface of ecGMPK. The CORE domain is 

shown in grey, the NMP-binding domain in blue, the LID domain in green, hinges in yellow and 

the C-terminal extension in red. GDP is shown in red ball-and-stick. One monomer is contoured 

with its van der Waals surface. (b) A model of catalytic interactions of conserved arginine 

residues. Overlay of GDP (red) from the ecGMPK
GDP 

structure onto GMP in the closed 

conformation of ecGMPK
GMP.SO4

2-
 (in yellow), based on the superposition of the NMP-binding 

domain. Candidate hydrogen bonds of the conserved arginine residues to the phosphate groups 

are shown as dotted lines. ADP, GMP and the invariant arginine residues from the 

mGMPK
GMP.ADP

 structure are superposed to show the equivalence of the sulfate ion with the β-

phosphate group of ADP (in blue) [60]. 

a. 
b. 
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pathogenic bacteria could be targeted with the designed stabilizing inhibitor. Similarly, the non-

substrate GDP binding site at the trimeric interface in ecGMPK interferes with both ATP binding 

and LID domain closure and can be used as a potential drug target [60].  

1.1.1.2 Yeast guanylate kinase  

Yeast guanylate kinase (yGMPK, GUK1, ATP:GMP phosphotransferase, EC 2.7.4.8, UniProt ID 

P15454) is 187 amino acids in length and has 20,637 Da molecular weight. Its primary structure 

contains one cysteine and one tryptophan residue. It is a monomeric protein, and has the N-

terminally located phosphate-binding loop (GXXGXGKS, 9-16 aa, GPSGTGKS) [15, 25]. The 

enzyme was purified to homogeneity by Berger et al in 1989 [25], and one year later the three-

dimensional structure (crystal structure) was determined in complex with GMP by Stehle and 

Schulz [55]. The steady-state kinetic parameters for both forward and reverse reactions were 

determined by Li et al in 1996 [35]. The kcat (turnover number) was 394 s
-1 

for the forward 

reaction (formation of ADP and GDP) and 90 s
-1 

for the reverse reaction (formation of ATP and 

GMP). The Km values were 0.20, 0.091, 0.017, and 0.097 mM for MgATP, GMP, MgADP, and 

GDP, respectively. It was observed that at concentrations above 0.22 mM, the initial velocity 

decreased with increasing GMP concentration and leveled off at ~50% of the apparent maximum 

velocity. This partial substrate inhibition was not competitive with MgATP and may be due to 

the formation of an abortive complex, yGMPK.MgADP.GMP [35]. Like other NMP kinases, 

yGMPK consists of three structural regions; the CORE, LID, and NMP-binding domains. The 

NMP-binding domain of yGMPK is composed of a four-stranded β-sheet (β3, β4, β5 and β6) and 

one α-helix (α2). It is unlike other NMP kinases whose NMP-binding domains are all α-helical 

[10]. The CORE domain of yGMPK consists of a five-stranded parallel β-sheet (β1, β2, β7, β8 

and β9) and six α-helices (α1, α3, α4, α5, α6 and α7) as shown in (Fig.1.5). The LID domain is 

composed of one loop (seven residues in length, 135-141 aa) which connects α5 and α6. The 

comparison of the crystal structures of apo-yGMPK (no bound nucleotide) and yGMPKGMP 

(bound GMP) revealed that the binding of GMP induces a major movement of the NMP-binding 

domain and a smaller movement of the LID domain. Remarkably, the NMP-binding domain 

moves toward the central CORE domain upon binding of GMP, the LID domain moves away 

from the CORE domain. The overall effect is the closing of the yGMPK molecule (partially 
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closed conformation). Helix3 which connects the CORE and NMP-binding domains was 

supposed to play an important role in the substrate-induced domain movements [10]. 

 

 

 

 

 

 

 

 

 

                                       

 

 

 

 

N-terminal acetylation is one of the most common co-translational covalent modifications of 

proteins in eukaryotes [62, 63]. It was suggested that one function of N-acetylation of cellular 

proteins is to prevent their degradation by the ubiquitin system [64, 65]. However, recombinant 

eukaryotic proteins produced in E.coli are not acetylated. The yGMPK is N-terminally acetylated 

when purified from its natural source, but its recombinant form was not acetylated. When both 

acetylated and non-acetylated structures were compared for any structural and functional 

consequences, there was no significant impact on the three-dimensional structure [10, 53]. 

Nevertheless, a smaller hydrogen bond distance was found between T94 and the N-terminus in 

native yGMPK (2.78 Å) as compared to the hydrogen bond distance of 3.19 Å in case of 

recombinant yGMPK. The stronger interaction in case of native yGMPK may have a role in its 

stability [10]. 

L D 

Fig. 1.5. Dynamic domains in apo-yGMPK. Three main structural regions of unliganded 

yGMPK (PDB IEX6), CORE, LID and NMP-binding domains are indicated. The NMP 

binding domain contains α2, β3, β4, β5, and β6; the CORE domain contains α1, α3, α4, α5, α6, 

α7, β1, β2, β7, β8, and β9; and the LID domain contains the loop between α5 and α6 [10]. 

http://en.wikipedia.org/wiki/Eukaryotes
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NMP kinases undergo large conformational changes upon binding of substrates as shown by 

comparing 17 crystal structures of NMPKs in various states [9]. These conformational changes 

were mainly attributed to the movements of two domains, NMP-binding domain and LID 

domain. In case of yGMPK, the unliganded enzyme and its complex with GMP were determined 

by X-ray crystallography [10]. By aligning the two structures, it was found that yGMPK indeed 

undergoes substrate-induced conformational changes from an unliganded open conformation to a 

liganded partially closed conformation. The large domain movement involved the rotation 

around the hinge axis parallel to helix3 which connects the NMP-binding domain and CORE 

domain. Hinges are normally flexible regions that connect NMP-binding and LID domains to the 

CORE domain. The rotation of the amphipathic helix3 alters interactions between helix3 and the 

CORE domain. GMP binding brings major mobility in the C-terminal part of helix 3 which is 

unlikely due to the loss of van der Waals interactions (vdw) between the helix and the CORE 

domain because most of the vdw contacts between the C-terminal part of helix3 and the CORE 

domain remain upon GMP binding. It is the N-terminal part of the helix that loses its contacts 

with the CORE domain. It was proposed that helix3 acts like a spring in the movements of the 

NMP-binding domain which may facilitate the binding of substrates and release of the products. 

GMP-binding also induces small movements of the LID domain which moves away from the 

active center to make the molecule slightly more open. It is unlike the NMP-binding domain that 

moves towards the active center of yGMPK making the molecule more closed. The net effect is 

the partial closing of the molecule. Such domain movements were also observed in case of 

mouse GMPK upon binding of GMP and ADP [11]. In case of E.coli adenylate kinase, as 

studied by the method of time-resolved fluorescence resonance energy transfer [66], AMP 

binding caused the closure of the LID domain. The distances between the excitation energy 

donors and acceptors attached to residues 73 at the CORE domain and 142 at the LID domain 

were shortened by 9 Å. This means that the LID domain moved towards the active center which 

is in contrast to what we see in case of yGMPK where GMP causes the LID domain to move 

away from the active center causing the ATP binding site to further open, and thus facilitating 

ATP binding [10]. 

The glycine-rich P-loop is located in the N-terminus of GMPKs (9-16 aa in yGMPK), adenylate 

kinases and UMP-CMP kinases, and binds α and β phosphates of ATP. The ATP-binding site is 

highly conserved among NMP kinases. Nevertheless, besides similar ATP binding sites, the 
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chain-fold motifs of the NMP-binding domain of GMPKs are totally different from those of 

adenylate and UMP-CMP kinases [53]. The NMP-binding domain of AMPKs and UMP-CMPKs 

is completely α-helical whereas in GMP kinases it consists of a four-stranded β-sheet and a short 

helix. Only two arginine residues are involved in binding the phosphate group of NMP in 

adenylate kinase or UMP/CMP kinase. The phosphate moiety of bound NMP in GMPKs 

interacts with a pair of arginine residues as well as a pair of tyrosine residues. When the Y78 in 

yGMPK was substituted by phenylalanine, the kcat was decreased by a factor of 131, and the Km 

value for GMP was increased by a factor of ~20 [61]. The Km for ATP was increased by only a 

factor of ~2. The conformational stability of the wild-type and Y78F yGMPK was studied by 

GdnHCl denaturation experiments [61]. The results showed that the hydroxyl group of the Y78 

side-chain contributes to the conformational stability by ~1.0 kcal/mol. A single mutation. Y78F. 

changed both the kinetic properties and conformational stability of yGMPK. However, these 

changes were not due to global structural perturbations as investigated by 2D NMR [61]. It is 

because the Y78F mutant was properly folded and its conformation was highly similar to that of 

the wild-type yGMGK. Also, the change in the kinetic properties of ATP was insignificant. The 

mutation, however, significantly changed the chemical shift of Y50 which like Y78 interacts 

with the phosphate of GMP [53]. The changes in the chemical shift of Y50 could be due to 

changes in the local microenvironment caused by the Y78F mutation. Similarly, the Y50F 

mutation also changed the chemical shift of Y78 in the GMP-bound form [67]. Nevertheless, 

Y78F or Y50F did not change the chemical shift of the other tyrosine residue in the unliganded 

state of yGMPK because both residues were no longer interacting. The changes in the kinetic 

properties were unlikely due to a decrease in the conformational stability because the mutant 

remained stable for days at room temperature. All these observations suggest that the changes in 

kinetic properties and conformational stability of Y78F mutant are due to the loss of a hydrogen 

bond between its side-chain hydroxyl group and the phosphate of the GMP substrate. It was 

estimated from the kinetic data that the hydrogen bond between Y78 and GMP phosphate 

stabilizes the binary complex by 1.7 kcal/mol, the ternary complex by 1.8 kcal/mol, and the 

transition state by 4.6 kcal/mol [61]. The Y50 also forms a hydrogen bond with GMP phosphate 

and contributes more (~0.5 kcal/mol) to the stability of binary and ternary complexes as 

compared to Y78 [67]. It is because this hydrogen bond is slightly shorter and a bit stronger than 

that between Y78 and GMP. It was reported that in comparison to Y50, the Y78 contributes 
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more to the stabilization of the transition state by 1.4 kcal/mol. Therefore, Y78 plays a more 

important role in the enzymatic catalysis of yGMPK. It also indicates that the hydrogen bond 

between Y78 and GMP becomes stronger than that between Y50 and GMP as the reaction 

proceeds to the transition state [67].  

1.1.1.3 Mouse guanylate kinase 

Mouse guanylate kinase (mGMPK, GUK1, ATP:GMP phosphotransferase, EC 2.7.4.8, UniProt 

Q64520) is a small polypeptide of 198 amino acids in length [36]. It is a monomeric protein with 

molecular weight of 21,917 Da as calculated from its amino acid sequence. The mGMPK is 11 

residues longer than yGMPK (187 aa), two of these amino acids are located at the N terminus 

and nine are located at the C-terminal part of the protein. It has two cysteine residues but no 

tryptophan, and has the characteristic N-terminal P-loop pattern (GXXGXGK, 11-18 aa, 

GPSGAGKS). Like other NMP kinases, GMP kinases undergo substrate-induced conformational 

changes as part of their catalysis [3, 10]. GMPKs are bi-substrate enzymes which catalyze the 

transfer of a phosphoryl group from ATP to GMP which acts as a phosphate acceptor. The 

binding of either substrate or their analogs induce conformational changes as studied by X-ray 

crystallography and NMR [10, 11, 13, 53-55, 60, 61]. Comparing the structures of nucleotide-

free GMPK to the binary complex in which one substrate is bound (ATP or GMP), and to the 

ternary complex in which both substrates are bound, indicated conformational changes. Such 

different conformational states are called open form with no bound nucleotide, partially closed 

form with one bound substrate and completely closed form with two bound substrates. These 

conformational changes are due to rigid body movements of the three structural regions CORE, 

LID, and NMP-binding regions (NMP-BR). The crystal structure of mGMPK (PDB 1LVG) in 

the closed conformation with bound GMP and GDP was reported by Sekulic et al in 2002 [11]. 

The fold of mGMPK is very similar to that of yGMPK consisting of three structurally and 

functionally distinct parts (Fig. 1.6) [10, 11]. These are CORE region (residues 5–31, 97–123, 

and 165–194; helices α1, α4, α7, and α8; strands β1, β7, β8, and β9), NMP-BR (residues 37–89; 

helices α2 and α3; strands β3, β4, β5, and β6) and LID region (residues 126–156; helices α5 and 

α6). The NMP-binding domain of yGMPK is composed of a four stranded β-sheet and one α-

helix, and in case of adenylate kinases it is all helical [10, 68]. The CORE region of mGMPK is 

connected to NMP-BR and LID region via four hinges. Hinge 1 (residues 32–36) and hinge 2 
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(residues 90–96; part of helix 3) connects CORE and NMP-BR, whereas hinge 3 (residues 124–

125) and hinge 4 (residues 157–164; part of helix 6) join CORE and LID region [11]. 

 

 

 

 

 

 

 

 

  

 

 

 

 

The closed conformation of mGMPKGMP.ADP (with bound GMP and ADP) was overlaid on the 

apo-yGMPK (with no bound nucleotide) and yGMPKGMP (with bound GMP) to see the effect of 

substrate binding on the conformation of GMPK. It was found that the NMP-BR and LID region 

move upon binding of substrates. The farthest distance between NMP-BR and LID region was 

found in the apo-yGMPK designated as open conformation [10]. GMP binding caused a 

significant movement of the NMP-BR towards the LID region with relatively small move of the 

LID in the same direction. The net effect was to bring the two regions closer for binding GMP 

and resulted in a partially closed conformation. The binding of two nucleotides, GMP and ADP, 

further pulled the two regions closer to each other and to the CORE region, forming a more 

compact closed conformation. 

L D 

NMP-BR 

CORE 

Fig. 1.6. Ribbon diagram of mGMPKGMP-ADP in closed conformation. Different regions of 

the enzyme are color-coded. cyan, CORE region; red, NMP-binding region (NMP-BR); green, 

LID region; yellow, interconnected with four hinges. The nucleotides ADP and GMP (red) and 

the potassium ion (green sphere) are also shown [11]. 
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The binding interactions of GMP in mGMPK and yGMPK are similar. The specificity of 

GMPKs for GMP is achieved by discriminating the guanine base of GMP from adenine of AMP. 

The active site residue S37 interacts with the carbonyl oxygen (an amino in adenine) of guanine 

at position 6 via a single hydrogen bond as shown in (Fig. 1.7a-d). 

  

    

 

 

 

 

 

 

Fig. 1.7. Binding sites of GMP and ADP.  a and b, distance map showing residues involved 

in binding of ADP (a) and GMP (b). For clarity, backbone atoms of the P-loop are shown in 

green. Residues that are making interactions not previously observed in the yGMPKGMP 

structure are shown in red. For example, the D101 interaction with the GMP ribose observed 

in the mGMPKADP.GMP complex is made possible by the additional closing of the structure as 

a result of ADP binding and is absent in the yGMPKGMP structure (D98 in yGMPK). The 

distances are in angstroms. c and d, ball-and-stick representation of the ADP-binding (c) and 

GMP-binding (d) sites [11]. 
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Similarly, the E72 carboxyl group forms two hydrogen bonds with guanine, one with protonated 

N1 (unprotonated in adenine) and the other with the amino group at position 2 (hydrogen in 

adenine). In contrast, the specificity for adenine in adenylate kinases is accomplished by 

glutamine (E72 in mGMPK) via a bidentate interaction with the amino group at position 6 and 

the N1 (as hydrogen bond acceptor) [69, 70]. The D101 interacts with the 2´ hydroxyl group of 

the ribose sugar in GMP; however, this interaction cannot be formed in the dGMP complex, and 

this explains why it was reported as poor substrate for yGMPK [35]. Like yGMPK, in 

mGMPKGMP.ADP the Y53 and Y81, and R41 and R44 interact with the phosphate of GMP. 

However, the hydrogen bond between R44 and phosphate in mGMPK is stronger (2.6 Å) than 

that in yGMPK (3.4 Å). Besides that, an additional R148 from the LID region also interacts with 

the phosphate of GMP, and this interaction does not exist in yGMPK. In analogy to the uridylate 

kinase structure where in a complex that mimics the transition state, it was found that the 

arginine that would correspond to R148 in mGMPK interacts with the transferred phosphoryl 

group. It means that in case of mGMPK the R148 would interact with the γ-phosphate of ATP on 

one side and with the α-phosphate of GMP on other side to facilitate the phosphoryl group 

transfer. It was reported that the mGMPK double mutant, E72Q/D103N, can phosphorylate AMP 

although this adenylate kinase activity was much less than that of wild-type adenylate kinases 

i.e., the specific activity of E72Q/D103N mutant was ~310 times less than the wild-type 

adenylate kinase [72]. In adenylate kinases, the glutamine analogous to E72 interacts with N1 

and the amino group at position 6 of adenine, however in the mouse double mutant 

E72Q/D103N, the interaction of glutamine with N1 is favorable, but binding with the amino 

group at position 6 is intervened by residues S37 and T83 [11]. As a result, the double mutant 

could not mimic its counterpart in adenylate kinase. Therefore, to achieve this goal, S37 and T83 

may also need to be mutated to residues whose side chains are not bulky like glycine for instance 

[11]. 

In case of yGMPK, it was found that GMP causes partial substrate inhibition, and at 

concentrations above 0.22 mM, the initial velocity of the reaction was decreased by increasing 

the GMP concentration [35]. This is due to the formation of an abortive complex yGMPKGMP.ADP 

which however does not arrest the release of ADP. The structure of this complex was determined 

in case of mGMPK as explained above [11]. ADP binds at the ATP binding site which is located 

between CORE and LID region. The glycine-rich P-loop which resides in between β1 and α1 
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(11-18 aa) in the CORE region binds the phosphates of ADP/ATP [71]. Moreover, K17 and S18 

from the P-loop interact with the β-phosphate, and R137 from the LID region interacts with both 

β and α-phosphates of ADP/ATP. T19 binds the α-phosphate. The latter residues could 

potentially bind the γ-phosphate of ATP to play their role in the phosphoryl group transfer 

reaction. As observed in other NMP kinases [53], the ADP/ATP-ribose is stabilized by water 

molecules and does not interact with any surrounding residues. The adenine base is bound by 

R133 by stacking interaction and through hydrogen bonds by N171 and D172 [11]. 

1.1.1.4 Human guanylate kinase  

1.1.1.4.1 Biological significance 

Guanylate kinase (GMPK, ATP:GMP phosphotransferase, EC 2.7.4.8) is an essential enzyme 

involved in guanine nucleotide metabolism of unicellular and multicellular organisms, which 

acts by catalyzing the reversible phosphoryl group transfer from ATP to (d)GMP resulting in 

(d)GDP and ADP [11-13]. These nucleotides are required for a variety of cellular metabolic 

processes, as well as for RNA and DNA synthesis [42]. Guanylate kinase activity was first 

reported by Klenow and Lichtler in 1957 [24], and was initially characterized from different 

sources including human erythrocytes, hog brain, mouse, yeast, Arabidopsis thaliana, and 

Escherichia coli [25-29, 37, 39]. It plays an important role in the recycling of second messenger 

(cGMP) via the cyclic GMP cycle (cGMP→GMP→GDP→GTP→cGMP), and thereby regulates 

the supply of guanine nucleotides to signal transduction pathways [14, 15, 36, 38]. Besides its 

physiological roles, the enzyme is required for intracellular activation of numerous antiviral and 

anticancer purine nucleoside analog prodrugs [11, 312]. Prominent examples are the FDA-

approved drugs azathioprine, 6-mercaptopurine, 6-thioguanine, ganciclovir and acyclovir. 

Azathioprine is commonly used as an immunosuppressive agent to prevent graft rejection in 

organ transplant patients and for treating autoimmune diseases [31]. 6-mercaptopurine and 6-

thioguanine are commonly prescribed for the treatment of acute lymphoblastic leukemia [17-19, 

31]. These two drugs are also effective against other diseases including colitis, psoriasis and 

rheumatoid arthritis [17]. In addition, the 2´-deoxy-guanosine analog prodrugs ganciclovir and 

acyclovir, which are used as efficient agents for the treatment of herpes infections, are first 

phosphorylated by viral thymidine kinase, and then converted to the diphosphate forms by 

cellular GMPK [11, 34]. Similarly, the anticancer drug 9-β-D-arabinofuranosylguanine (araG) 
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after initial phosphorylation by deoxynucleoside kinases is diphosphorylated by cellular GMPK 

before being converted into the pharmacologically active triphosphate form [41]. Guanylate 

kinases from microorganisms like Staphylococcus aureus and Mycobacterium tuberculosis offer 

new chemotherapeutic targets [32, 33]. It has been suggested that the GMPK enzyme evolved 

into a non-enzymatic GMPK domain of MAGUKs (membrane associated guanylate kinase 

homologs) which perform completely different functions (neo-functionalization) such as cell 

junction formation and mitotic spindle orientation [40]. Despite all these important roles, no 

structural data is available for the medically most relevant hGMPK enzyme. Therefore, it is of 

great interest to study the structure and function of hGMPK. 

1.1.1.4.2 General characteristics 

In human tissues, seven isozymes of guanylate kinase were found [75]. Three are primary 

isozymes called a, c and e. Four are secondary isozymes; b is secondary to a, d is secondary to c, 

and f & g are secondary to e. All three groups, a-b, c-d, e-f-g (GUKs 1-3) are differentiated by 

their tissue distribution, thermostability, and molecular masses [42, 75]. There are three separate 

gene loci coding for these isozymes. GUK1 codes for the e, f and g isozymes [38]. Up until now, 

only GUK1 (isoform 1 of human and mouse guanylate kinases) has been cloned [36], and most 

of the data concerning guanylate kinases have been derived from studies of isoform1. Human 

guanylate kinase (hGMPK, GUK1, GMK, ATP:GMP phosphotransferase, EC 2.7.4.8, UniProt 

Q16774) is an essential enzyme involved in guanine nucleotide metabolism [73]. The hGMPK 

was identified and partially purified from erythrocytes in 1971 [73]. Later, the cDNA sequence 

was determined, and the chromosomal localization was refined, 1q31-1q42 [38]. Its primary 

structure consists of 197 amino acids with a molecular mass of 21,725 Da as computed from the 

sequence [36]. It has one cysteine residue but no tryptophan and is a monomeric protein. Like 

other GMPKs, it has the N-terminal nucleotide binding pattern of GXXGXGK (11-18 aa, 

GPSGAGKS). The apparent Km values for GMP, dGMP and acyclo-GMP measured were 22 

µM, 72 µM and 330 µM, respectively [74]. 

The guanylate kinase domain (GK
dom

) of guanylate kinase enzymes (GK
enz

) is also found in the 

membrane-associated guanylate kinase (MAGUK) family of proteins. MAGUKs are scaffolding 

proteins which organize protein complexes at cell or synaptic junctions [76] and play an 

important role in cell signaling, regulation of synaptic structure, and function in mediating 
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specific interactions, and mitotic spindle orientation [40, 77, 79]. All MAGUKs have a 

multidomain structural architecture which consists of one or several PDZ domains (except 

CACNB, calcium channel β subunit), one Src homology 3 (SH3) domain (except for MAGI, 

membrane-associated guanylate kinase inverted) and a guanylate kinase domain (GK
dom

) [76]. 

The GK
enz

 is widely distributed throughout evolution from bacteria to animals and was evolved 

into the non-enzymatic GK
dom

 of MAGUKs which is restricted to only choanoflagellates and 

animals [76, 78]. The GK
dom

 of MAGUKs and GK
enz

 share high sequence and structure 

similarities, for instance hDlg (human discs large homolog, Uniprot Q12959) has sequence 

similarities with human GMPK (53%), mouse GMPK (54%), yeast GMPK (54%) and E.coli 

GMPK (47%). Nevertheless, their function is different as GK
enz

 catalyzes the phosphorylation of 

(d)GMP into (d)GDP using ATP as a phosphate donor while the MAGUK GK
dom

 has no 

phosphotransferase activity, but functions as a protein interaction domain. The MAGUK GK
dom

 

potentially binds GMP and ATP with varying affinities and may have a regulatory role by 

inducing different conformations between the nucleotide-free and the nucleotide-bound forms 

[77, 80]. Besides many similarities, there are also critical sequence differences between GK
enz

 

and GK
dom

 which may have given rise to their functional divergence. However, the mechanism 

by which this transition from a nucleotide kinase enzyme to a protein-binding domain occurred is 

not clear yet. One explanation was provided by introducing the point mutation S35P in yeast 

GMPK that converted the yeast GK
enz

 into a phosphoprotein binding GK
dom

 with spindle 

orientation activity of MAGUK as tested in an in vitro pull-down assay [40]. Although the P35 

mutant had lost kinase activity, it could still bind ATP and GMP. It was suggested that protein 

dynamics may play a role in switching between catalysis and spindle orientation function. The 

S35P mutant in yeast GMPK had a similar apo-form like the wild-type GMPK with a large cleft 

in between the ATP-binding LID and NMP-binding regions (GBD) as shown in (Fig. 1.8). 

Nevertheless, fluorescence quenching and NMR experiments confirmed that the S35P mutant 

although may bind GMP but failed to induce conformational closing upon binding of GMP [40]. 

As proline is least flexible in terms of sterically allowed conformations, therefore, its presence in 

the hinge part between CORE and GBD regions may hinder the closing movement of the two 

regions. This suggests that inhibition of substrate-induced guanylate kinase closing was 

sufficient for functional conversion of GK
enz

 into GK
dom

.  
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As stated in section 1.1.1.4.1, hGMPK is physiologically and medically the most relevant 

enzyme as compared to GMPKs of non-human origin, therefore studying its structural properties 

and conformational behavior in the presence of different nucleotides is crucial to explain its 

mechanism of action. It will help us to rationally design mutants and study their kinetics to 

understand its structure-function relationship. 

1.1.1.4.3 Substrate-induced conformational changes in hGMPK  

Substrate binding to an enzyme may cause an appreciable amount of changes in the protein 

structure bringing the catalytic groups into proper orientation for catalysis [1]. Substrate-induced 

conformational changes suggested by the induced-fit theory have been supported by the findings 

from numerous studies making use of different techniques such as X-ray crystallography, NMR, 

and  small angle X-ray scattering (SAXS) [2, 3, 23]. Kinases, in particular, have been reported to 

undergo large movements during catalysis [4], to shield their active center from water in order to 

avoid ATP hydrolysis. 

Fig. 1.8. Structure of the yeast guanylate kinase serine to proline mutant (S35P). (A) 

Structure of yeast guanylate kinase (GK
enz

) with the serine-to-proline mutation that confers 

spindle-orienting function. LID (blue), CORE (green), and GBD (red, NMP-binding region) 

regions are shown. The mutated residue is marked by its sequence number “35”. The hinge 

denotes residues that undergo large dihedral angle changes upon GMP-induced closing [9]. The 

arrow shows the extent of cleft opening between LID and GBD regions. (B) Structure of wild-

type apo GK
enz

 (PDB 1EX6) [10]. (C) Structure of GMP-bound GK
enz

 (PDB 1EX7) [10]. Note 

the proximity of the LID (blue) and GBD (red) domains compared with B, demonstrating the 

large GMP-induced conformational changes in the enzyme GK fold [40]. 
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The active centers of ATP:NMP phosphotransferases (nucleoside monophosphate kinases; NMP 

kinases; NMPKs) are assembled with large domain movements upon binding of both substrates 

[5]. The bi-substrate NMP kinases can exist in at least four forms: unliganded form (apo-form), 

an NMP-bound form, an ATP-bound form, and a ternary complex (closed form). Most of the 

information on the mechanism of domain movements of an NMP kinase can be extracted by 

comparison of its open and closed forms. Substrate-induced conformational changes were first 

identified by comparing the various forms of homologous adenylate kinases (AMP kinases; 

AKs) [6, 7]. It was observed that both ATP and AMP induce substantial conformational changes 

upon binding to the enzymes. Binding of AMP results in the closure of the NMP-binding 

domain, whereas binding of ATP causes the closure of the LID domain [8]. Analysis of 17 

crystal structures from the NMP kinase family confirmed the existence of large conformational 

changes which were mainly attributed to rigid body movements of a LID region and an NMP-

binding region with respect to a CORE region [9]. Although comparison of the structures of 

homologous proteins is informative, precise analysis of the domain movements is complicated 

by considerable sequence differences, including truncations, substitutions, insertions, and 

deletions [8]. Therefore, it is more reliable to compare structures of the same enzyme in different 

ligand-complexed forms. In case of yeast GMPKs, large movements of GMP-binding domain 

and smaller but significant movements of the LID domain have been reported by comparing 

yGMPKapo and yGMPKGMP. The conformational state of the apo-form of yGMPK is much more 

open than the substrate-bound closed form [10]. The mouse GMPK structure was previously 

determined in a fully closed form only, mGMPKGMP.ADP [11]. Like other nucleoside kinases 

(human deoxycytidine kinase) and NMP kinases (E.coli, yeast and human thymidylate kinases) 

that we structurally and functionally characterized, GMPKs share three distinctive structural 

parts termed NMP-binding region, LID region and CORE region connected by hinges. The 

substrate-induced conformational changes can be described by the movement of these regions 

making the molecule either more compact or extended depending on the presence or absence of 

substrates, respectively. 

Despite several important catalytic roles, no structural data is available for hGMPK. In addition, 

no mammalian GMPK structures have been determined in all four forms (apo-form, NMP-bound 

form, ATP-bound form, and ternary complex) that would reflect transitions between various 

conformational states. Therefore, we embarked on studying hGMPK structures in all four forms 
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by SAXS to unravel the conformational and dynamic behavior of this medically most relevant 

enzyme [20-22]. These conformational changes will help to delineate the catalytic reaction 

trajectory of hGMPK and will provide a basis for determining its high resolution structure. We 

evaluated our ab initio SAXS models by comparison with the available mGMPK crystal 

structure. As hGMPK is highly identical (88%) to mGMPK at the amino acid sequence level, a 

reliable homology model was constructed using the mGMPK structure as a template. 

1.1.1.4.4 Human GMPK as a critical enzyme for phosphorylation of thiopurines 

The FDA-approved thiopurine drugs 6-thioguanine (6-TG), 6-mercaptopurine (6-MP), and 

azathioprine (Aza) have been used as anti-cancer agents, as immunosuppressants, and in the 

treatment of inflammatory diseases. The metabolic activation of thiopurine prodrugs involves the 

action of several cellular enzymes converting thiopurines to 6-thioguanosine monophosphate (6-

TGMP). It is phosphorylated in a rate-limiting step catalyzed by hGMPK to form 6-

thioguanosine diphosphate (6-TGDP) which is further phosphorylated to thio-GTP and thio-

dGTP by NDPK and reductase enzyme. Both nucleotides are substrates for incorporation of 6-

TG into RNA and DNA. Once integrated into DNA, a fraction of DNA 6-TG undergoes non-

enzymatic methylation (6-meTG) probably by S-adenosyl-L-methionine. During replication, 6-

TG and 6-meTG base pair with thymine rather than cytosine. The aberrant 6-TG:T and 6-

meTG:T base pairs, which escape proofreading by DNA polymerases, activate the DNA 

mismatch repair (MMR) system. Incomplete processing due to excessive accumulation of 

incorrect base pairs ultimately leads to cell death [16-19, 31, 106, 107, 109, 110, 129, 254]. In 

addition to the MMR pathway, thiopurine treatment causes reduced expression of proteins in the 

electron transport chain of mitochondrial respiratory complex inducing mitochondrial 

dysfunction and elevated generation of oxidatively induced DNA lesions that may further 

contribute to cytotoxicity [19]. Thiopurine metabolic activation is shown below in Fig. 1.9. 
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It was demonstrated by in vitro experiments that certain point mutations at S37 in mGMPK 

(analogous to S37 in hGMPK) can cause resistance to phosphorylation of 6-TGMP to 6-TGDP 

which is a critical step in the metabolic activation of thiopurine prodrugs [16]. The wild-type 

mGMPK and its three mutants S37A, S37T and S37Y were recombinantly produced and their 

activities were determined by using the NADH-dependent enzyme coupled assay [16]. Only the 

wild-type mGMPK phosphorylated 6-TGMP to 6-TGDP although with catalytic efficiency 

~8,000 times lower than that for the natural substrate GMP [16]. All three mutants did not show 

Fig. 1.9. Thiopurines and their metabolism. Azathioprine is converted to 6-mercaptopurine 

(6-MP) by non-enzymatic activation. Hypoxanthine–guanine phosphoribosyltransferase 

(HPRT) catalyzes the conversion of 6-MP and 6-TG to their respective nucleoside 

monophosphates (TIMP and TGMP). Both free thiopurines (6-MP and 6-TG) and their 

monophosphates (TIMP and TGMP) are substrates for thiopurine S-methyltransferase (TPMT) 

which methylates them to Me6-MP, Me6-TG, MeTIMP and MeTGMP. In addition, xanthine 

oxidase (XO) converts 6-MP to 6-thiouric acid. Unlike MeTGMP, MeTIMP is an effective 

inhibitor of de novo purine biosynthesis. TIMP is metabolized to TGMP by successive action 

of inosine monophosphate dehydrogenase (IMPDH) and guanine monophosphate synthetase 

(GMPS). TGMP is phosphorylated by guanylate kinase (hGMPK) to TGDP, and further action 

by reductase and nucleoside diphosphate kinase to form thio-dGTP for incorporation into DNA 

[16-18]. 
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any activity for the drug. It was suggested that the steric hindrance between active site T83, 

bound GMP or 6-TGMP and the presence of certain residues at position 37 such as S37T and 

S37Y plays an important role in substrate-binding and catalysis. Similarly to the mutant S37A, 

the substrate may not be properly positioned due to inefficient side chain interactions. Moreover, 

the growth of wild-type and three mutants expressing conditional GMPK-deficient E.coli strain 

(TS202A(DE3)) was tested on anti-leukemic 6-TG containing plates and broth cultures. The 

conditional GMPK-deficient E.coli strain requires the presence of a functional, plasmid-borne 

guanylate kinase for growth under selective conditions. It was observed that the wild-type 

mGMPK expressing cells were non-viable due to utilization of the drug, however all three 

mutants grew well indicating lack of drug activation by the GMPK mutants [16, 108]. 

Due to very weak activity of GMPK for 6-TGMP, it will be of great relevance to engineer 

hGMPK for enhanced activity against the drug, such that it could be used as a suicide gene in 

cancer cell lines. Nevertheless, preliminary experiments for testing the effects of wild-type 

hGMPK in combination with 6-TG prodrug in mammalian cells such as HEK293 will provide a 

useful basis for advanced experiments with engineered hGMPK mutants. 

1.1.1.4.5 Electrochemical detection of guanosine monophosphate with a quantum dot-based 

biosensor modified with human GMPK 

Quantum dots (QDs) are semiconductor nanocrystals usually composed of atoms from groups II–

VI, III–V, or IV–VI of the periodic table [290-292]. QDs have small sizes of a few nanometers 

and have very high surface-to-volume ratios enabling better interactions between these surface 

atoms and the surrounding molecules. They have many advantages over organic fluorophores 

such as increased photostability, narrow emission bands and high brightness [293, 294]. Due to 

their unique optical and chemical properties they have been used in biological macromolecule 

sensors, organic small molecule sensors, inorganic ion sensors, biological labeling, cell labeling, 

animal imaging and therapy [295]. 

QDs have been investigated in the construction of light-addressable electrochemical sensors 

[284-289]. When light is illuminated on QDs surface, electron hole pairs are generated. The 

excited conduction band electrons can be transferred to an electrode or to an electron acceptor in 

solution. Electrons can also be transferred from an electrode or solubilized electron donor to 

valence band holes in QDs. An anodic or cathodic current can be generated depending on the 
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applied potential. The former is caused by the electron transfer from the conduction band of QDs 

to the electrode, and the latter one is produced by the electron transfer from the electrode to the 

valence band of QDs. In this way, a QDs layer on electrode surface facilitates the direct electron 

transfer between the enzyme redox center and the electrode. The redox reaction of QDs surface 

can be switched on and off by light [87, 88, 112, 113, 284, 296-300]. Different enzymes have 

been combined with QD-modified electrodes for making biosensors. Riedel et al [89] reported a 

photobioelectrochemical sensor for the detection of sarcosine with sarcosine oxidase (SOD) 

immobilized on QDs. Moreover, Khalid et al [87] presented an electrochemical sensor for p-

aminophenyl phosphate (pAPP) based on the electrochemical conversion of 4-aminophenol 

(4AP) to 4-quinoneimine (4QI) at QDs surface under light illumination. pAPP was converted to 

4AP catalyzed by alkaline phosphatase. As NADH is involved in many enzymatic reactions as 

co-substrate or co-product, it can be used for the indirect detection of the respective enzyme 

substrate. The electrochemical detection of NADH was reported by Schubert et al [88] using 

CdSe/ZnS QDs. They found that the change in photocurrent was proportional to the 

concentration of glucose utilized and to the production of NADH catalyzed by glucose 

dehydrogenase (GDH). NADH was detected in the concentration range of 20 µM to 2 mM. 

Here, we report on the use of QDs for the enzymatic detection of guanosine monophosphate 

(GMP) with hGMPK coupled to the utilization of NADH in an enzyme-coupled assay [99]. The 

products of the hGMPK-catalyzed reaction were coupled to the reactions catalyzed by pyruvate 

kinase (PK) and lactate dehydrogenase (LDH) as helper enzymes. During this process, LDH 

oxidized NADH (nicotinamide adenine dinucleotide, reduced form) to NAD
+
 in proportion to the 

hGMPK activity. Therefore, we borrowed the redox reaction of NADH for the indirect detection 

of GMP by hGMPK. The enzymatic reaction was detected with the QD-modified electrode [87, 

88]. In most cases, enzyme-catalyzed reactions are monitored using the enzyme protein in free 

form on the surface of electrode [88, 284]. However, we immobilized hGMPK on a QD-

modified electrode with polyelectrolyte multilayers using layer-by-layer assembly [87, 89]. The 

approach which we adapted for hGMPK can equally be applied to other therapeutically 

important nucleoside and nucleotide kinases. 
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1.1.1.4.6 A novel spectrophotometric and fluorometric enzyme-coupled assay for human 

GMPK 

Thiopurine prodrugs including 6-thioguanine (6-TG), 6-mercaptopurine (6-MP), and 

azathioprine have been widely used as antileukemic and immunosuppressive agents that are 

activated by cellular enzymes most importantly by the rate limiting hGMPK [17, 19, 310, 311]. 

6-thioguanosine monophosphate (6-TGMP) can be considered as the active metabolite of all 

thiopurines which is successively phosphorylated to 6-TGDP and TGTP by hGMPK and 

nucleoside diphosphate kinase, respectively, for incorporation into RNA and DNA [16, 18]. 

Unlike the canonical bases of RNA and DNA which all absorb light maximally in the UVC 

spectral region (~260 nm), thiopurines in the form of 6-TG and 6-TGMP are UVA 

chromophores having an absorbance maximum at approximately 340 nm (Fig. 1.10) [18]. The 

most commonly used assay for studying the steady-state kinetics of hGMPK and other 

nucleoside and nucleotide kinases is the NADH-dependent spectroscopic assay [84, 99, 100]. 

This assay is based on the maximum absorbance of NADH at 340 nm which unfortunately 

overlaps with that of the 6-TGMP. This spectrophotometric artifact was addressed by Miller et al 

[301], and they minimized the error associated with the assay by using a blue filter in the light 

path and monitored the absorbance at 373 nm rather than 340 nm, though it drastically reduced 

the sensitivity of the assay due to poor absorbance of NADH at 373 nm. Similarly, a number of 

radioisotopic assays have been reported for nucleoside kinases which are based on using 

radioactive substrates (nucleosides) and are mostly time consuming [302-304]. Such assays are 

not appropriate for in vitro evolution of hGMPK that aims to improve its catalytic efficiency 

against nucleoside analogs such as thiopurines. In addition, the limited sensitivity of absorption-

based spectroscopic assays [99, 100] could become a major problem when dealing with reduced 

volumes. For instance, high-throughput screening for directed evolution of proteins by droplet-

based microfluidics relies on reaction volumes of nanoliters and femtoliters [116, 317, 318]. 

In order to solve these problems, we developed a novel assay that can be used both in absorbance 

mode as well as in fluorescence mode at higher wavelengths than 340 nm with no background 

absorbance from the nucleotide analogs. In this four step assay (see section 2.2.8), the activity of 

hGMPK is determined by coupling the formation of nucleoside diphosphate (NDPs) products to 

the reactions catalyzed by pyruvate kinase (PK) and pyruvate oxidase (lpPOX) in the presence of 

phosphoenolpyruvate (PEP) and pyruvate, respectively. Hydrogen peroxide, which is produced 
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by the action of lpPOX [305-309], reacts with Amplex Red in the presence of horseradish 

peroxidase (HRP) to produce the red-fluorescent oxidation product, resorufin [135]. Resorufin 

has excitation and emission maxima of about 568 nm and 584 nm, respectively, and because of 

its high extinction coefficient (5.4 x 10
4
 M

-1
cm

-1
), the assay can be performed 

spectrophotometrically and fluorometrically [116]. 

                           

 

 

 

1.1.1.4.7 Human GMPK-catalyzed reactions in polyelectrolyte containers of various shapes 

and sizes 

A promising strategy to enhance the targeting efficacy in drug delivery systems is to mimic and 

manipulate the way molecules interact with each other that may enable us to design carrier 

structures of desired properties like with different shapes, sizes and surface modifications [255, 

256]. To date, spherical microparticles have been used extensively in research, and only few 

methods are available for controlled synthesis of non-spherical microparticles. Nevertheless, 

there is growing interest in developing non-spherical carriers with elongated or filamentous 

Fig. 1.10. Absorbance spectra of 6-TG and G. Canonical purines such as guanine (G) have no 

significant absorption at wavelengths longer than 300 nm. Substitution of 6-O atom by sulphur 

(e.g. 6-TG and 6TGMP) shifts the absorbance maximum into the UVA region (~340 nm) [18]. 
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morphologies [260] or anisotropic delivery systems [261] because conventional isotropic 

spherical drug carriers cannot satisfy the current demands [260]. In addition, non-spherical 

carriers are preferred for their distinctive properties such as anisotropic responses to external 

fields, large surface areas, and unique structure formation. Examples of anisotropic carriers 

include particles of various shapes such as ellipsoidal, rhomboidal, stars, cubes, rods, discs and 

triangles. They could be used to mimic anisotropic cells, to study self-assembly and packing of 

anisotropic colloids, and encapsulating macromolecules such as therapeutic enzymes to study 

their reactions and other properties [86, 257-259]. Moreover, the number of studies in the 

literature continually increases which report about the alteration of biological responses if 

particles with the same composition but different geometry enter the bio-distribution pathways 

[262-265]. Particle shape plays therefore a major role during cellular uptake of drug carriers 

[266]. 

Among the other popular drug carriers, e.g. nano- and microparticles, liposomes and red blood 

cells, polymeric capsules fabricated through the layer-by-layer (LbL) technique have attracted 

particular attention in the last decades because they offer a high degree of multifunctionality in 

drug delivery applications [267, 268]. The process of LbL assembly is based on the consecutive 

adsorption of oppositely charged polyelectrolytes around a preformed charged template core, 

which is chemically dissolved after the coating process. This technology enables the formation of 

shell-in-shell capsules, where multicompartments can be loaded with different functional 

biomolecules such as therapeutic enzymes and drugs [86, 269, 283]. Medically and biologically 

relevant macromolecules can be introduced into LbL films via non-covalent interactions under 

physiological conditions. The biological properties of the encapsulated macromolecules do not 

change significantly during loading. In case of loaded enzymes, their catalytic properties and 

structural stability may be maintained both in vitro and in vivo experiments. Microcapsules 

provide the possibility to study enzymatic reactions in confined volumes. Moreover, these 

capsules are not cytotoxic and can be made biodegradable, which makes them suitable 

candidates for cellular targeting with the loaded cargo proteins. As the LbL technology combines 

the versatility in manipulating the composition, surface chemistry, and dimensions of 

nanostructured LbL thin films with the easy functionalization of diverse therapeutics and/or 

biomolecules, it provides a powerful tool for the nanoscale synthesis of novel drug-delivery 

systems [86, 267-270]. 
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Due to their highly porous structure, bio-friendliness and ease of fabrication, CaCO3 particles are 

commonly used templates for LbL-engineered capsules in drug delivery applications [267]. The 

CaCO3 cores can easily be dissolved with EDTA after deposition of multilayer polyelectrolyte 

shells to produce hollow microcapsules with entrapped macromolecules. The shape of commonly 

used CaCO3 templates is spherical and their crystal structure usually is vaterite [271]. Among 

three polymorphs (calcite, aragonite, or vaterite) of CaCO3, vaterite is thermodynamically the 

least stable one [272]. However, for drug delivery applications, it is very attractive since vaterite 

molecules have high porosity and therefore can take up many molecules into their interior 

structure [270, 273, 274]. In other application areas such as biomineralization or nanomaterial 

processing, CaCO3 particles are utilized in a diverse range of shapes because their crystallization 

mechanism can be easily altered using organic additives [275-279]. If additives such as 

dipeptides [275], polypeptides [276], peptide type block copolymers [277] or inorganic binding 

peptides [278, 279] are added to the precipitation process of CaCO3, the shape and size of CaCO3 

particles can be varied from nanorods to mesocrystals. On the other hand, organic additives may 

cause unpredictable cytotoxic effects when they are used in drug delivery applications. 

In this study, we present anisotropic LbL containers templated on non-spherical vaterite CaCO3 

particles, which do not contain any organic additive. To obtain stable vaterite templates, the 

working pH range was chosen as 9.0-9.5 [280]. The size and shape of vaterite particles was 

controlled as a function of reaction time, the concentration of initial salt solutions, solubility of 

salts and mixing speed [281, 282]. Calcium carbonate microparticles in ellipsoidal, rhomboidal 

and spherical geometries were produced, by changing the concentration of initial salt solutions 

and the solubility of salts at constant pH, mixing speed and reaction time. Implications of the 

influence of initial salt solution concentration and the solubility of salts on the CaCO3 

precipitation kinetics are discussed in detail. These calcium carbonate templates were further 

used for capsules fabrication via LbL-assembly by using conventional polyelectrolytes. Capsules 

were loaded with hGMPK, and its catalytic activity was determined using the NADH-dependent 

spectroscopic assay. Our results have revealed that polyelectrolyte containers with different 

geometries exhibit promising applicability in drug delivery applications due to their high loading 

capacity, biocompatibility, and easy fabrication and handling. 
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1.2 General characteristics of deoxyribonucleoside kinases 

Deoxyribonucleoside kinases (dNKs) are key enzymes that catalyze the first step in the 

nucleoside salvage pathway by the transfer of a phosphoryl group from ATP (or other phosphate 

donor) to deoxyribonucleosides to form deoxyribonucleoside monophosphates (dNMPs) [193]. 

The dNMPs are finally converted to deoxyribonucleoside triphosphates (dNTPs) by the action of 

two other kinases called nucleoside monophosphate kinases (NMPKs) and nucleoside 

diphosphate kinases (NDPKs) [45]. As there are no carrier proteins in the cell membrane for the 

transport of (deoxy)ribonucleotides, they have to be synthesized within the cells either de novo 

or via the nucleoside salvage pathway [44, 45, 194]. In the de novo pathway, small molecules 

like amino acids, ribose-5´-phosphate, and CO2 are utilized for the synthesis of ribonucleotides. 

Deoxyribonucleotides are synthesized de novo at the diphosphate level by the reduction of NDP 

to the corresponding dNDP catalyzed by ribonucleotide reductase [193, 195-198]. However, the 

nucleosides or deoxyribonucleosides originating from food or degraded cells are transferred 

across the cell membrane through nucleoside transport proteins and are phosphorylated via the 

nucleoside salvage pathway [194]. In the salvage pathway, dNKs are usually rate-determining 

enzymes which add the first phosphate group to deoxyribonucleosides. Once phosphorylated, the 

deoxyribonucleotides are trapped intracellularly due to their negative charges [193]. In humans, 

there are four dNKs: the two cytoplasmic dNKs are thymidine kinase 1 (TK1, ATP:thymidine 

5´-phosphotransferase, EC 2.7.1.21) and deoxycytidine kinase (dCK, NTP:deoxycytidine 5´-

phosphotransferase, EC 2.7.1.74), and the two mitochondrial dNKs are thymidine kinase 2 (TK2, 

ATP:thymidine 5´-phosphotransferase, EC 2.7.1.21) and deoxyguanosine kinase (dGK, 

nucleoside triphosphate: deoxyguanosine 5´-phosphotransferase, EC 2.7.1.113) [151]. The four 

enzymes have distinct but overlapping specificities [46]. The nomenclature of dNKs is based on 

their preferred substrates. TK1 phosphorylates deoxythymidine (dThd) and deoxyuridine (dUrd) 

into their monophosphate forms using ATP as phosphate donor, however, it also accepts other 

phosphate donors [199, 200]. dCK phosphorylates the pyrimidine deoxycytidine (dCyd), and the 

purines deoxyadenosine (dAdo) and deoxyguanosine (dGuo) [84]. It uses several nucleotides as 

phosphate donors, but UTP has been reported to be a better phosphoryl group donor than ATP 

[201-203]. TK2 catalyzes the transfer of a phosphate group to the 5´-OH of dThd, dUrd, and 

dCyd using ATP as a phosphate donor [139]. dGK phosphorylates dGuo, dAdo, and dIno 

(deoxyinosine) [188, 204]. It uses several phosphate donors, but UTP is the preferred phosphoryl 
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group donor [205]. The four dNKs can be divided into two families based on their amino acid 

sequence similarities. The first family contains dCK, and the mitochondrial enzymes dGK and 

TK2 that share more than 40% sequence identities [46]. The Drosophila melanogaster 

deoxyribonucleoside kinase (Dm-dNK, nucleoside triphosphate: deoxyribonucleoside 5´-

phosphotransferease, EC 2.7.1.145) which uses all four nucleosides as substrates, and the viral 

HSV1-TK can be grouped in this family of dNKs [46, 206]. The sequence alignment of dCK, 

dGK, TK2, and Dm-dNK are shown below in Fig. 1.11. These enzymes are homodimers and 

have similar three-dimensional folds. The other family contains the cytosolic TK1 which is a 

homotetramer [207]. TK1 shows little sequence similarity to other dNKs, and is related to 

thymidine kinases from E.coli and poxviruses [214, 215]. 

 

  

 

 

Fig. 1.11. Sequence alignment of deoxyribonucleoside kinases. All four 

deoxyribonucleoside kinases have a conserved P-loop, the ERS motif and a LID region 

(boxed in blue). The conserved residues are shown red; and similar residues are yellow 

colored [208]. The abbreviations used are: hdCK, human deoxycytidine kinase; hdGK, 

human deoxyguanosine kinase; dNK, Drosophila melanogaster deoxyribonucleoside kinase; 

hTK2, human mitochondrial thymidine kinase. 
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Crystal structures of all human dNKs are known except TK2. The three-dimensional structure of 

dCK (PDB 2NOA) is shown below in Fig. 1.12 [46]. Each monomer has an α/β architecture 

which consists of five-stranded parallel β-sheet surrounded by ten α-helices [208]. There are 

three conserved motifs in dNKs: the P-loop, ERS motif, and LID region. The P-loop binds the 

phosphate of ATP, glutamate (E) of ERS contributes to Mg
2+

 binding, and arginine (R) plays a 

role in catalysis, whereas the LID region closes on the bound phosphoryl group donor and 

provides residues for ATP binding and catalysis [46]. Besides natural substrates, dNKs bind and 

phosphorylate nucleoside analogs. The common feature is the interaction of a conserved 

glutamate-arginine pair (E53 and R128 in dCK) with the 5´-OH of a nucleoside. In addition, the 

conserved tyrosine-glutamate pair interacts with the 3´-OH (Y86 and E197 in dCK) [208]. 

                                     

 

 

The mechanism of action of dNKs involves the activation of 5´-OH of the deoxyribonucleoside 

which facilitates the nucleophilic attack on the γ-phosphate of the phosphate donor as shown 

below in Fig. 1.13. The glutamate carboxyl group close to the 5´-OH at the active site of HSV1-

TK was suggested to act as a base in the reaction that deprotonates the 5´-OH [151, 216]. The 

arginine residues in the close proximity help in the deprotonation. The equivalent glutamate and 

Fig. 1.12. Human deoxycytidine kinase. The ribbon diagram of human dCK (PDB 2NOA) 

monomer is shown with bound 3TC (2´-deoxy-3´-thiacytidine, lamivudine) at the nucleoside 

acceptor site on the right and ADP at the nucleotide donor site on the left of the central cleft at 

the active site [46]. 
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arginine residues in other dNKs support this mechanism. dNKs require Mg
2+

 for their activity 

that interacts with the β- and γ-phosphates of the phosphate donor [69, 151]. dNKs are relatively 

poor catalysts. For instance, human dCK which has broad substrate specificity for purine and 

pyrimidine deoxyribonucleosides has a catalytic efficiency of only 4.8 × 10
3
 M

−1
 s

−1
 for dCyd 

with a low Km of 6.2 µM, and a turnover rate of 0.03 s
−1

 [208]. dCK also phosphorylates dAdo 

and dGuo with a lower catalytic efficiency than dCyd. The catalytic efficiency of UMP-CMPK 

(uridylate/cytidylate kinase), which belongs to the family of NMP kinases and catalyzes the 

second phosphorylation of dCMP, is about 10-fold higher, i.e. 7 × 10
4
 M

−1
 s

−1 
[46]. dNKs are 

inhibited by their end products (dNTPs) which act as competitive inhibitors for binding at the 

enzyme active site. Crystal structures of several dNKs have been solved as complexes with their 

respective dNTPs [46, 210]. 

             

 

 

dNKs are peculiar enzymes for their low enantioselectivity [211]. For example, dCK 

phosphorylates β-D-2'-deoxycytidine (D-dCyd) which is its natural substrate, and β-L-2'-

deoxycytidine (L-dCyd), its enantiomer, with the same efficiency [212]. Similarly, the human 

mitochondrial TK2 accepts both D and L enantiomers of dThd with almost equal efficiency [46]. 

It accepts L-dCyd, L-BVDU ((E)-5-(2-bromovinyl)-2'-deoxyuridine), and L-dUrd as substrates 

[199]. The dGK phosphorylates the L-dAdo more efficiently than D-dAdo and D-dGuo [213]. In 

Fig. 1.13. Mechanism of action of deoxyribonucleoside kinases. ATP as a phosphate donor is 

shown to the left and the phosphate acceptor dGuo to the right. It is suggested that glutamate 

(Glu) acts as a general base and Mg
2+

 as a counter ion [151]. 
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comparison to mitochondrial dNKs, the cytosolic human TK1 displays strict enantioselectivity 

and is limited to the D-enantiomers of thymidine and its analogs [46]. 

                              

 

 

The chemotherapeutic treatment of cancer and viral diseases depends largely on the action of 

dNKs that catalyze the first step in the conversion of innocuous nucleoside analogs (NAs) to 

their corresponding cytotoxic nucleoside triphosphates which are incorporated into cellular or 

viral DNA by DNA polymerase or a viral reverse transcriptase, as shown schematically above in 

Fig. 1.14. The presence of NAs in DNA causes stalling or premature termination of replication 

forks, and also offers resistance to proofreading exonucleases. Some of the NAs act by inhibiting 

the key enzymes (e.g., ribonucleotide reductase, thymidylate synthase, or dCMP deaminase) 

Fig. 1.14. Metabolic activation of nucleoside analogs (NA). The anticancer and antiviral 

nucleoside analogs require intracellular phosphorylation for gaining pharmacological activities. 

NAs are transported across the cell membrane, and are phosphorylated by cellular or viral 

kinases to their triphosphate forms for incorporation into DNA [45]. 
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involved in the generation of purine and pyrimidine nucleotides, RNA synthesis, and directly 

activate the caspase cascade. The overall effect is the inhibition of the DNA synthetic machinery 

and initiation of apoptosis [45, 217, 218]. Some of the clinically used anticancer NAs are 2-

chloro-2´-deoxyadenosine (Cladribine, CdA), 2-fluoro-9-β-D-arabinofuranosyladenine 

(Fludarabine, F-AraA), 1-β-D-arabinofuranosylcytosine (Cytarabine, Ara-C), and 2´,2´-

difluorodeoxycytidine (Gemcitabine, dFdC). The antiviral NAs comprise acyclovir, ganciclovir, 

2´,3´-dideoxyinosine (Didanosine, ddI), 2´,3´-dideoxycytidine (Zalcitabine, ddC), 2´-deoxy-3´-

thiacytidine (Lamivudine, 3TC), 3´-azido-2´,3´-dideoxythymidine (Zidovudine, AZT), BVDU 

(bromovinyldeoxyuridine or brivudin), 2´,3´-didehydro-3´-deoxythymidine (Stavudine, d4T), 

and abacavir (ABC) [45, 217]. Some of the structures of NAs are shown below in Fig. 1.15. 

 

 

        

 

 

 

 

Besides the essential role of dNKs in cancer and viral chemotherapy, deficiency or lack of dNKs 

activity leads to severe disorders like mitochondrial DNA depletion syndrome [219]. It is caused 

Fig. 1.15. Structures of purine and pyrimidine deoxyribonucleosides and their respective 

analogs. Abbreviations used: Ara-C, 1-β-D-arabinofuranosylcytosine or cytarabine; AZT, 3´-

azido-2´,3´-dideoxythymidine or zidovudine; BVDU, bromovinyldeoxyuridine or brivudin; 

Ara-T, 1-β-D-arabinofuranosylthymidine. 
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by mutations in a number of genes including dGK and TK2. Out of all four human dNKs, TK2 is 

the least studied enzyme from its structural perspective. In its family, human TK2 is the only 

enzyme whose structure is still missing, and thus it is very important to explore its structure-

function characterization. 

1.2.1 Human mitochondrial thymidine kinase  

1.2.1.1 Biological importance 

Besides playing an important role in providing dNTPs for mitochondrial DNA replication and 

maintenance, TK2 activates numerous antiviral and anticancer nucleoside analogs, including 

analogs of thymidine, deoxyuridine and deoxycytidine. Examples of thymidine analogs are 3´-

azido-2´,3´-dideoxythymidine (AZT), ara-T (arabinofuranosyl thymine), FLT (3´-fluoro-2´, 3´-

deoxythymidine) and ribothymidine. Deoxyuridine analogs comprise 2´-difluoro-2´-

deoxyuridine (dFdU), 5-Fluoro-2'-deoxyuridine (5-FdU), and 1-(2´-deoxy-2´-fluoro-β-D-

arabinofuranosyl)-5-iodouracil (FIAU) [140, 152, 157, 187, 199, 231]. The deoxycytidine 

analogs phosphorylated by TK2 are dFdC (2', 2'-difluorodeoxycytidine, gemcitabine) and ara-C 

(1-β-D-arabinofuranosylcytosine). Similarly, deoxycytidine analogs with 5-substituition such as 

5-(2-chloroethyl) and 5-(2-bromovinyl) are also accepted as substrates [152, 157]. The Km values 

determined for AZT and FLT were 4.5 µM and 6.5 µM, respectively, with efficiencies (Vmax/Km) 

2 and 3% to that of dThd [233]. AZT, 2´,3´-didehydro-2´,3´-dideoxythymidine (d4T), araT and 

FLT inhibited the phosphorylation of dThd. In contrast, the phosphorylation of dCyd was 

stimulated by AZT, d4T and FLT [233]. 

It has been reported that certain mutations in hTK2 cause a heterogeneous group of severe 

mitochondrial disorders of infancy and childhood, characterized by decreased mitochondrial 

DNA copy number, called myopathic mitochondrial DNA depletion syndrome (MDS) [229, 237, 

239-241]. Patients suffering from myopathic MDS show progressive weakness, hypotonia, and 

areflexia, and die of respiratory failure before the age of 1 year (congenital form) or before 10 

years (juvenile form) [234]. In addition, patients carrying TK2 mutations manifest neurological 

phenotypes, thus suggesting that TK2 deficiency results in neuronal dysfunction [242, 243]. 

Mutations which have been found in hTK2 obtained from different patients with MDS include 

I53M, T108M, Y112N, H121N, R130W, R130Q, R192K, and I212N [229, 234, 235, 238]. The 
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numbering used here is based on the full-length hTK2 sequence (265 aa, UniProt O00142-1), as 

TK2 sequences were numbered in the literature with shorter isoform of hTK2. 

1.2.1.2 General characteristics  

TK2 (ATP:thymidine 5´-phosphotransferase, EC 2.7.1.21) catalyzes the transfer of a γ-phosphate 

group from ATP (or other phosphate donor) to the 5´-OH group of a deoxyribonucleoside (dThd, 

dUrd or dCyd) [151, 157, 199]. The substrate specificity of TK2 overlaps with both TK1 by 

phosphorylating dThd and dUrd, and with dCK by phosphorylating dCyd [158]. TK2 is 

constitutively expressed in all tissues in proportion to the mitochondrial content of the cell types, 

and plays a critical role in providing dNTPs for the replication and maintenance of mitochondrial 

DNA [152, 159, 222]. TK2 contributes a small fraction to cellular TK levels in proliferating 

cells, however in nonproliferating cells it corresponds to the predominant fraction of TK activity 

[151]. The human TK2 gene is localized to chromosome 16q22 [153]. The primary structure of 

hTK2 is 46% identitical to Dm-dNK (Drosophila melanogaster deoxyribonucleoside kinase), 

36% and 33% to human dCK and dGK, respectively. However, the hTK2 amino acid sequence is 

quite different from TK1. Previously, submitochondrial fractionation experiments had revealed 

deoxythymidine kinase activity in mitochondria [155]. TK2 has an N-terminal mitochondrial 

import signal, and its mitochondrial location is supported by the fact that the full-length mouse 

TK2 was targeted to mitochondria when tested in mammalian cells [150]. Similarly, the in vitro 

translation and translocation experiments with purified rat mitochondria endorsed that the N-

terminal mitochondrial targeting signal in the full-length mouse TK2 (270 aa) directed its import 

into the mitochondrial matrix [140]. In addition, mutations in TK2 have been associated with the 

mitochondrial DNA depletion syndrome (MDS) [219]. 

Johansson and Karlsson [153] reported the cloning of hTK2 cDNA encoding a 234 amino acid 

protein, and recombinantly produced it in E.coli. Similarly, Wang et al [152] cloned a cDNA of 

hTK2 containing an ORF (open reading frame) of 232 residues and kinetically characterized it. 

TK2 phosphorylates dThd, dUrd, and dCyd using ATP or CTP as phosphate donors. It shows 

negative cooperativity for dThd and the anti-HIV drug AZT, but the phosphorylation of dCyd 

and dUrd follows Michaelis-Menten kinetics. The Km values determined for dThd, dCyd, dFdC 

and dFdU were 4, 7, 66, and 29 µM, respectively [152, 199]. Unlike TK1, TK2 has relaxed 

enantioselectivity and phosphorylates both L- and D-enantiomers, for instance L-dThd and L-
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dCyd are as efficiently phosphorylated as their D-enantiomers [46]. Moreover, other L-

nucleoside substrates include L-BVDU, L-FMAU (2´-fluoro-5-methyl-β-L-

arabinofuranosyluracil), and L-5-iodo-dU [220, 221]. The cDNAs of hTK2 reported were mostly 

incomplete as they do not contain the N-terminal mitochondrial targeting signal. Wettin et al 

[150] for the first time cloned a full-length mouse TK2, 270 amino acids in length, which was 

targeted to mitochondria when expressed as a fusion with C-terminal GFP in cancer cell lines. 

TK2 is predominantly found in mitochondria, but it may also be present in cytosol [139, 227, 

228]. In fact, hTK2 shows multiple transcripts in most tissues, and the two isoforms 

(mitochondrial and cytosolic) may originate by alternative splicing of the alternative first exons 

in the hTK2 gene which consists of more than 10 exons [139]. The full-length mouse TK2 and 

its two N-terminally truncated forms were recombinantly produced in E.coli, and it was found 

that the truncation did not change the Km values, but the Vmax values were increased for truncated 

forms [140]. 

Barroso et al [139] when cloning and expressing hTK2 (234 aa) as a fusion with MBP (maltose 

binding protein) in E.coli reported that it extensively aggregated with very low recovery of the 

soluble fraction. Nevertheless, they reduced the nonspecific aggregation of MBP-hTK2 by 

coexpression of GroEL/ES chaperonins and ethanol supplementation to the growth media. The 

hTK2 was obtained in several oligomeric forms with the dimer being the dominant form, i.e. 

dimer > tetramer > hexamer. Similar kinetic properties of dimers and tetramers of hTK2 revealed 

that the basic functional unit is the dimer. [139]. It was demonstrated that the unliganded hTK2 

had lower structural stability than the inhibitor (dTTP and dCTP)-bound enzyme, being more 

susceptible to aggregation, thermal denaturation, and limited proteolysis by trypsin [145]. It was 

found that ligand binding increases structural stability in the following order: dCyd < MgdCTP < 

dThd < dCTP < dTTP < MgdTTP. MgATP had rather destabilized hTK2. In addition, similar to 

NMP kinases, hTK2 was found to undergo distinct conformational changes upon binding of 

substrates and inhibitors as studied by far-UV circular dichroism, limited proteolysis, and 

intrinsic tryptophan fluorescence [145]. Some of the compounds such as 3´-C-branched p-

methylphenyl and 3-CF3-4-Cl-phenyl thiourea derivatives of β-dThd were found to be among the 

most potent inhibitors of TK2 [230]. Recombinantly produced hTK2 was purified with bound 

deoxyribonucleotides which are reported to be powerful inhibitors of the enzyme i.e. dTTP, 

dCTP and dATP [138, 139, 159, 199, 226]. Incubation of hTK2 with its substrate (dThd or 
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dCyd) resulted in the removal of the tightly bound inhibitory deoxyribonucleoside triphosphates. 

As the three-dimensional structure of hTK2 is unknown, a homology model was created using 

the SWISS MODEL computer algorithm applying Dm-dNK structure as a template [139]. The 

physiological substrates dThd and dCyd, the phosphate donor ATP, and the feedback inhibitors 

dTTP and dCTP were docked to the hTK2 model as shown below in Fig. 1.16. 

 

               

 

 

 

 

It was observed that the P-loop (strand-turn-helix motif, G26-T33) and the arginine-rich LID 

region (R161-E170) interact with the phosphates of ATP or dTTP and dCTP explaining their 

tight binding in the inhibitor complexes [139]. The dNTPs may act as bisubstrate analogues for 

dNKs and bind at the enzyme active site with high specificity. The deoxyribonucleoside group of 

Fig. 1.16. Human TK2 model with docked deoxyribonucleosides and nucleotides. The 

hTK2 model with docked pyrimidine natural substrates dThd (A) and dCyd (C), the phosphate 

donor ATP (A and C), and the feedback inhibitors dTTP (B) and dCTP (D) are shown. The 

W55 on top of the nucleoside/nucleotide base and F112 behind the base are represented as 

wires. The P-loop (G26-T33), the arginine-rich site called LID (R161-E170), and water 

molecules (W, in green) are shown. Hydrogen bonds are represented as black lines [139].   



58 
 

dNTP binds at the deoxyribonucleoside binding site, and the triphosphate moiety fits into the 

phosphate donor site [139, 223-225]. The inhibition of TK2 by the end products, which most 

likely act as bi-substrate analogs, is depicted in Fig. 1.17. 

 

 

                         

 

 

It was demonstrated that non-active site residues C189 and C264 of hTK2 were specifically 

glutathionylated by GSSG, but the process was reversed by the addition of dithiothreitol. In 

addition, the hydrogen peroxide-treated cells resulted in the reduction of TK2 activity and 

protein levels due to oxidative stress induced degradation of S-glutathionylated TK2 [179]. Two 

mutations in the hTK2 gene, H121N and I212N, were reported in patients with mitochondrial 

DNA depletion myopathy [229]. When these mutations were introduced in hTK2, the 

recombinantly produced mutants displayed altered kinetic properties [138]. The I212N mutant 

had less than 1% activity as compared to wild-type hTK2 with both dThd and dCyd. It showed 

100-fold lower Vmax with both dThd and dCyd, the Km value for dThd was similar to that of wt-

hTK2, but the Km value for dCyd was 50 times increased as compared to wt-hTK2. The H121N 

mutant showed activity similar to wt-hTK2 when dThd was used as a substrate. Nevertheless, 

with dCyd as a substrate the activity was about 3-fold decreased, but the Km was unchanged, and 

the Vmax was about 30% of that of wt-hTK2. The H121N mutant lost negative cooperativity with 

dThd as a substrate [138]. 

Fig. 1.17. Bisubstrate inihibition of TK2. The bisubstrate inhibition of TK2 by dNTP 

(deoxyribonucleoside triphosphate such as dCTP or dTTP) binding to the deoxyribonucleoside 

(dN) pocket is illustrated [232]. 
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1.2.2 E.coli guanosine-inosine kinase  

Guanosine-inosine kinase (ATP:guanosine 5´-phosphotransferase, ecGSK, gsk, UniProt 

P0AEW6, EC 2.7.1.73) catalyzes the phosphorylation of guanosine and inosine to their 

corresponding monophosphates [149, 186]. The sodium salts of inosine 5´-monophosphate (5´-

IMP) and guanosine 5´-monophosphate (5´-GMP) together with glutamate are used as flavor 

enhancer in food industry [250, 253]. The major industrial process of inosine 5´-monophosphate 

(5´-IMP) production is chemical phosphorylation of inosine [247]. But, Mori et al [248] 

demonstrated a novel process for producing 5´-IMP in two sequential bioreactions; the first was 

the fermentation of inosine by a mutant Corynebacterium ammoniagenes, and the second was 

ecGSK catalyzed conversion of inosine into IMP. 

Inosine kinase was first identified in Spirulina platensis as a distinct enzyme protein [245]. The 

guanosine kinase activity has been reported in few organisms including E. coli, Brevibacterium 

acetylicum, Exiguobacterium acetylicum, Streptococcus faecalis, Spirulina platensis, S. 

typhimurium and Trichomonas vaginalis. Guanosine and inosine nucleosides, provided 

exogenously or synthesized endogenously, are converted to their corresponding monophosphates 

by two pathways. The minor pathway involves the phosphorylation of these two nucleosides by 

guanosine-inosine kinase. In the major pathway, purine nucleoside phosphorylase catalyzes the 

conversion of guanosine and inosines to their corresponding nucleobases and ribose-1-

phosphate. Guanine and hypoxanthine are successively phosphoribosylated to their 

corresponding guanosine and inosine monophosphates by guanine and hypoxanthine 

phosphoribosyltransferases [149, 249-251]. 

The guanosine-inosine kinase gene was identified and mapped in E.coli chromosome to 11 min 

on the linkage map [186, 246]. The ecGSK gene which codes for a polypeptide of 433 amino 

acids with a molecular mass of 48,113 Da was cloned by Harlow et al [149]. It was 

overexpressed, and guanosine and inosine activities were determined. Mori et al [148] cloned 

and overexpressed a 434 amino acid ecGSK with a calculated molecular weight of 48.4 kDa. The 

enzyme was purified to homogeneity by ion exchange (DEAE Sepharose) and gel filtration 

(Sephacryl S-200) chromatography. The native protein was found to be a dimer. The PI 

determined by isoelectric focusing was 6.0. It was kinetically characterized. Guanosine, 

deoxyguanosine, inosine and xanthosine were phosphorylated by ecGSK, but adenosine, 

cytidine, deoxythymidine, and uridine were not accepted as phosphate acceptors. In addition to 
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ATP, UTP and CTP, dATP served as phosphoryl group donor. Unlike other nucleoside 

phosphotransferases, p-nitrophenyl phosphate did not act as a phosphate donor. ADP, AMP, 

GTP, acetylphosphate, tripolyphosphate, tetrapolyphosphate, PPi, and inorganic phosphate were 

also not accepted as phosphoryl donors. The Km values for guanosine (Guo) and inosine (Ino) 

were 6.1 µM and 2.1 mM respectively. The Vmax was 2.9 µmol/min/mg for Guo and 4.9 

µmol/min/mg for Ino. The Km values for ATP and dATP were 0.51 mM and 2.4 mM when Guo 

was used as a substrate. Similarly, Km values for ATP and dATP using inosine as phosphate 

acceptor were 0.71 mM and 0.66 mM, respectively. The efficiency (Vmax/Km) for Guo 

phosphrylation was ~206 times higher than for Ino. The efficiency of UTP as a phosphoryl donor 

was 20% of that of ATP. The optimum pH values were 6.9 and 8.2 for the inosine and guanosine 

kinase reactions, respectively. The optimum temperature for the inosine kinase reaction was in 

the range of 26-39 
o
C, and for the guanosine kinase reaction it was 38 

o
C. Magnesiun (Mg

2+
) and 

potassium (K
+
) ions were required for the enzymatic activity. In contrast, the addition of Cu

2+
 or 

Zn
2+ 

inhibited the ecGSK-catalyzed reactions. The enzyme activity was also inhibited by GDP 

and GTP. ecGSK follows an ordered Bi Bi mechanism in which Guo is the first substrate to bind, 

and GMP is the last product to be released. It was suggested that the guanosine kinase activity 

may be regulated by in vivo changes of nucleotide concentrations, and thus may have a role in 

modulating nucleotide levels [148, 252]. 

1.3 Aims of the present work and overview 

Deoxyribonucleoside and nucleotide kinases, besides their physiological role in the synthesis of 

purine and pyrimidine nucleotides for RNA and DNA metabolism, are required for the metabolic 

activation of numerous antiviral and anticancer nucleoside analog prodrugs. Three enzymes 

including human guanylate kinase (hGMPK), human mitochondrial thymidine kinase (hTK2) 

and E.coli guanosine-inosine kinase (ecGSK) are peculiar in this regard, and are the least studied 

in their family of enzymes from structure-function perspectives. Therefore, my studies aimed to 

biochemically characterize them in order to provide a basis for their potential use in cancer 

chemotherapy. 

Our preliminary goal was the cloning, expression and purification of these enzymes in 

catalytically active form. They were kinetically characterized. Nevertheless, due to certain 

limitations of the conventional NADH-dependent spectroscopic assay, it was highly demanded to 
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develop novel approaches for the detection and kinetic characterization of deoxyribonucleoside 

and nucleotide kinases. Thus, we developed two assays: a novel spectrophotometric and 

fluorometric enzyme-coupled assay for hGMPK, and the electrochemical detection of guanosine 

monophosphate with a quantum dot-based biosensor modified with hGMPK. 

In order to explain the role of certain residues in enzyme catalysis and structural dynamics, a 

series of enzyme variants were generated by site-directed mutagenesis, and all mutants were 

kinetically characterized. In addition, mutant libraries were generated by directed evolution using 

error-prone PCR and screened for catalytically efficient mutants against antiviral and anticancer 

nucleoside analogs. 

We optimized conditions for three-dimensional structure elucidation of these enzymes by X-ray 

crystallography and NMR, and determined the substrate-induced conformational changes by 

SAXS analysis. 

We synthesized calcium carbonate microparticles of different shapes and sizes to test their 

enzyme loading capacities, and to select the best candidates as therapeutic enzyme carriers for 

their potential use in cellular targeting. 
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2. Materials and Methods                     

2.1 Materials 

2.1.1 Plasmids 

Human guanylate kinase (hGMPK), human mitochondrial thymidine kinase (hTK2), and E.coli 

guanosine-inosine kinase (ecGSK) were cloned into the following plasmids used for the 

production of proteins with different tags; NdeI and BamHI restriction sites served for ligation at 

the 5´ and 3´ ends of the insert, respectively. 

Table 2.1 Plasmids used in this study 

Plasmid 

 

Description Source 

pET-14b E.coli expression vector with N-

terminal hexahistidine tag 

Novagen (Cat. No. 69660-3) 

 

 

 

pET-14bSUMO∆Thr 

 

E.coli expression vector with N-

terminal hexahistidine-SUMO tag 

pET-14b was modified by 

eliminating the thrombin 

cleavage site and introducing an 

additional N-terminal SUMO 

tag [84]  

pGEX-RB E.coli expression vector with N-

terminal GST tag 

R. Brundiers, Goettingen 

 

pJC20HisN E.coli expression vector with N-

terminal decahistidine tag 

T. Schüle, Goettingen 

pJC20HisC E.coli expression vector with C-

terminal hexahistidine tag 

T. Schüle, Goettingen 

pET-14bEGFP-N E.coli expression vector with N-

terminal EGFP tag 

C.S. Karamitros, et al. [86] 

pK49 E.coli expression vector with N-

terminal His14-MBP-SUMObr tag 

Steffen Frey and Dirk Görlich 

[82, 83] 

pET-14bMBPcyt E.coli expression vector with ∆23N 

cytosolic MBP version  

Stephan Ort, Goettingen [84] 

pET-14bMBPperi E.coli expression vector with N-

terminal MBP for periplasmic 

transport 

Stephan Ort, Goettingen [84] 

pET-14bSUMOPeriPep 

  

E.coli expression vector with N-

terminal SUMO periplasmic peptide 

leader 

C.S. Karamitros, Goettingen 

[86] 

pEGFP-N1 Mammalian expression vector with C-

terminal EGFP tag 

Theresa McSorley, et al. [85] 

pEGFP-C1 Mammalian expression vector with N-

terminal EGFP  tag 

 

Theresa McSorley, et al. [85] 
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2.1.2 Oligonucleotides 

All oligonucleotides used for the amplification and sequence verification of hGMPK, hTK2, 

ecGSK and lpPOX (pyruvate oxidase from Lactobacillus plantarum) were synthesized by IBA 

GmbH, Goettingen, Germany. The synthesis scale of the single-stranded DNA oligos was from 

0.01 to 0.05 µmol depending on the length of the primer. F and R mean forward and reverse 

oligos, respectively. 

Table 2.2 Oligonucleotides used in this study  

Oligos code 

 

Sequence (5'-3') Description 

hGMPK-F GGG AAT TCC ATA TGT CGG 

GCC CCA GGC CTG TGG 

5´ NdeI site 

hGMPK-R CGC GGA TCC TTA GGC GCC 

GGT CCT TTG AGC TTT CTT G 

3´ BamHI site 

hGMPK-R no stop CGC GGA TCC GGC GCC GGT 

CCT TTG AGC TTT CTT G 

3´ BamHI site with no stop 

codon 

hGMPK S37A-F CTT TGG CTT CAG CGT GGC 

CCA TAC CAC GAG GAA C    

Mutagenic primer for S37A 

point mutation  

hGMPK S37A-R GTT CCT CGT GGT ATG GGC 

CAC GCT GAA GCC AAA G   

Mutagenic primer for S37A 

point mutation 

hGMPK S37Y-F CTT TGG CTT CAG CGT GTA 

CCA TAC CAC GAG GAA CCC   

Mutagenic primer for S37Y 

point mutation 

hGMPK S37Y-R GGG TTC CTC GTG GTA TGG 

TAC ACG CTG AAG CCA AAG 

Mutagenic primer for S37Y 

point mutation 

hGMPK S37C-F CTT TGG CTT CAG CGT GTG 

CCA TAC CAC GAG GAA CC   

Mutagenic primer for S37C point 

mutation 

hGMPK S37C-R GGT TCC TCG TGG TAT GGC 

ACA CGC TGA AGC CAA AG   

Mutagenic primer for S37C point 

mutation 

hGMPK S37P-F CAT CTT TGG CTT CAG CGT 

GCC TCA TAC CAC GAG GAA 

CCC GAG 

Mutagenic primer for S37P point 

mutation 

hGMPK S37P-R CTC GGG TTC CTC GTG GTA 

TGA GGC ACG CTG AAG CCA 

AAG ATG    

Mutagenic primer for S37P point 

mutation  

hGMPK Y81F-F GTT CTC GGG GAA CCT GTT 

TGG CAC GAG CAA GGT G 

Mutagenic primer for Y81F 

point mutation 

hGMPK Y81F-R CAC CTT GCT CGT GCC AAA 

CAG GTT CCC CGA GAA C 

Mutagenic primer for Y81F 

point mutation 

hGMPK T83S-F GAA CCT GTA TGG CTC GAG 

CAA GGT GGC 

Mutagenic primer for T83S point 

mutation 

hGMPK T83S-R GCC ACC TTG CTC GAG CCA 

TAC AGG TTC 

Mutagenic primer for T83S point 

mutation 

hGMPK T83A-F GGA ACC TGT ATG GCG CGA 

GCA AGG TGG CG 

Mutagenic primer for T83A 

point mutation 

hGMPK T83A-R CGC CAC CTT GCT CGC GCC Mutagenic primer for T83A 
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Oligos code 

 

Sequence (5'-3') Description 

ATA CAG GTT CC point mutation 

hGMPK N42P-F GTC CCA TAC CAC GAG GCC 

TCC GAG GCC CGG CGA G 

Mutagenic primer for N42P 

point mutation 

hGMPK N42P-R CTC GCC GGG CCT CGG AGG 

CCT CGT GGT ATG GGA C 

Mutagenic primer for N42P 

point mutation 

pET-14bSUMO-F GGA GGA TAA CGA TAT TAT 

TGA GG 

pET-14bSUMO∆Thr sequencing 

primer (starts from the C-

terminus of the SUMO tag) 

pET-14b-R ATT AAC CCT CAC TAA AGG GA pET-14b sequencing primer (3´) 

pGEX-RB-F GGG CTG GCA AGC CAC GTT 

TGG TG 

pGEX-RB sequencing primer 

(5´) 

pGEX-RB-R CCG GGA GCT GCA TGT GTC 

AGA GG 

pGEX-RB sequencing primer 

(3´) 

pK49-F CAG ACC CCG GAT GAA CTG 

GAG 

pK49 sequencing primer  (5´) 

pK49-R CTG GAT CTA TCA ACA GGA 

GTC CA 

pK49 sequencing primer (3´)  

lpPOX-F GGG AAT TCC ATA TGG TTA 

TGA AAC AAA CAA AAC AAA 

CTA AC 

5´ NdeI site 

lpPOX-R CGC GGA TCC TTA AAA CCC 

ACC CTG TCC AAT TTG 

3´ BamHI site 

hTK2-F GGG AAT TCC ATA TGC TGC 

TGT GGC CTC TGC GTG G 

5´ NdeI site of full-length 

sequence-optimized hTK2  

hTK2-R no stop CGC GGA TCC GGG CAG TGT 

TTA CGG TTT TCC GGG G 

3´ BamHI site of full-length 

sequence-optimized hTK2 with 

no stop codon  

hTK2-R  CGC GGA TCC TTA CGG GCA 

GTG TTT ACG 

3´ BamHI site of full-length 

sequence-optimized hTK2  

hTK2-∆44N-F GGG AAT TCC ATA TGC AAG 

AGA AAG AAA AAA AAA GCG 

For truncation of 44 amino acids 

from N-terminus of hTK2 

hTK2-∆50N-F GGG AAT TCC ATA TGA GCG 

TGA TCT GTG TGG AAG GC 

For truncation of 50 amino acids 

from N-terminus of hTK2 

hTK2-∆8C-R CGC GGA TCC TTA GGT CAG 

AAT ACG GTC ACG GTT TTG C 

For truncation of 8 amino acids 

from C-terminus of hTK2 

hTK2-∆25C-R CGC GGA TCC TTA GTG ATG 

GTC CGC TTC GAT TAC C 

For truncation of 25 amino acids 

from C-terminus of hTK2 

ecGSK-F GGG AAT TCC ATA TGA AAT 

TTC CCG GTA AAC GTA AAT CC 

5´ NdeI site  

ecGSK-R no stop CGC GGA TCC ACG ATC CCA 

GTA AGA CTC TTC C 

3´ BamHI site with no stop 

codon 

ecGSK-R  CGC GGA TCC TTA ACG ATC 

CCA GTA AGA CTC TTC C 

3´ BamHI site  

ecGSK-∆30N-F GGG AAT TCC ATA TGA CCA 

GCG CTG CCT GGG TAG TG 

For truncation of 30 amino acids 

from N-terminus of ecGSK 

ecGSK-∆21C-R CGC GGA TCC TTA TGA ATG 

CTG GTT CAG TAC CTG ATA GC 

For truncation of 21 amino acids 

from C-terminus of ecGSK 
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2.1.3 Escherichia coli strains 

The following expression and non-expression strains of E.coli were used. 

Table 2.3 E. coli strains 

Strain                                     Genotype Source 

 

XL1-Blue 

 F
-
::Tn10/proA

+
B

+
lacI

q
∆(lacZ)M15/recA1endA1   

gyrA96(Nal
r
)thi

-
, hsdR17(rK

-
mK

+
)supE44 relA1 

lac 

Bullock, W.O., et al. 

[95] 

DH5α 
F

-
/endA1 hsdR17(rk

-
mk

+
) supE44 thi-l recA1 

gyrA(Nal
r
) relA1 ∆(lacZYA-argF)U169  (m80 

lacZ∆M15 )  

Gibco BRL 

(Eggenstein) 

BL21(DE3)  F
- 

ompT, hsdS(rB mB ) dcm gal λ(DE3)                 Studier, F.W., et al. 

[96] 

BL21(DE3)pLysS F
-
 ompT hsdS(rB

-
, mB

-
) dcm gal λ(DE3) [pLysS 

Cm
r
] 

Studier, F.W., et al. 

[96] 

C41(DE3) 
Same genotype as BL21(DE3) with an 

uncharacterized mutation that increases the 

overexpression of toxic proteins 

Miroux, B. and Walker, 

J.E. [97] 

Origami B(DE3) F
-
 ompT hsdSB(rB

-
 mB

-
) gal dcm lacY1 ahpC (DE3) 

gor522:: Tn10 trxB (Kan
R
, Tet

R
) 

Novagen  

Rosetta-gami 

B(DE3) 

F
–
 ompT hsdSB (rB

–
 mB

–
) gal dcm lacY1 ahpC (DE3) 

gor522::Tn10 trxB pRARE (Cam
R
, Kan

R
, Tet

R
) 

Novagen 

KY895 F
-
, tdk-1, ilv 

Christian Monnerjahn, 

Goettingen 

Igarashi, K., et al. [320]                         

2.1.4 Enzymes 

KAPAHiFi DNA polymerase was purchased from Peqlab Biotechnologie GmbH (Erlangen, 

Germany). Horseradish peroxidase, pyruvate kinase/lactic dehydrogenase were from Sigma-

Aldrich (St. Louis, USA). High Fidelity Phusion DNA polymerase, Taq DNA polymerase, 

restriction endonucleases and T4 DNA ligase were from New England BioLabs GmbH 
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(Frankfurt/Main, Germany). SUMO-protease from Saccharomyces cerevisiae was recombinantly 

produced in E. coli C41 [118]. 

2.1.5 Kits 

The NucleoSpin Gel and PCR Clean-up, NucleoSpin Plasmid DNA purification and NucleoBond 

Xtra Midi kits were purchased from Macherey-Nagel GmbH & Co. KG (Düren, Germany). 

Qiagen Plasmid Midi kit was from Qiagen GmbH (Hilden, Germany). KAPAHiFi PCR kit was 

from Peqlab Biotechnologie GmbH (Erlangen, Germany). 

2.1.6 Chemicals 

Chemicals used in this study were obtained from different suppliers including Merck, 

AppliChem and Sigma-Aldrich. Adenosine 5′-triphosphate (ATP), adenosine 5′-diphosphate 

(ADP), guanosine 5′-monophosphate (GMP), 2´-deoxyguanosine 5′-monophosphate (dGMP), 6-

thioguanine, 6-thioguanosine, D-glucose-
13

C6, ammonium-
15

N chloride, pyruvic acid, 

bromophenol blue, α-Lactose, chloramphenicol, Coomassie Brilliant Blue G 250, tris(2-

carboxyethyl)phosphine hydrochloride (TCEP), Na2SO4, Dulbecco’s Modified Eagle Medium 

(DMEM), RPMI 1640, 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide 

(MTT), (E)-5-(2-Bromovinyl)-2′-deoxyuridine (BVDU), 5-Fluorouracil, azidothymidine (AZT), 

ganciclovir, acyclovir, cladribine, (β-D-Arabinofuranosyl)cytosine (Ara-C) and 5-Fluoro-2′-

deoxyuridine were purchased from Sigma–Aldrich (St. Louis, USA). Gemcitabine was from 

Synchem UG & Co. KG (Germany). Agar, agarose, yeast extract, peptone (from casein), MnCl2, 

ethidium bromide, D-glucose, ampicillin, β-mercaptoethanol and dithiothreitol (DTT) were from 

AppliChem GmbH (Darmstadt, Germany). Na2HPO4, NaH2PO4, K2HPO4, KH2PO4, MgCl2, 

NaOH, HCl, sodium dodecyl sulfate (SDS), NaCl, triton X-100, glycerol and glycine were from 

Merck (Darmstadt, Germany). dNTPs master mix was from Fermentas. 1Kb GeneRuler DNA 

Ladder and PageRuler Unstained Protein Ladder were from Thermo Scientific (USA). Protino Ni-

IDA for affinity chromatography purification was from Macherey-Nagel GmbH & Co. KG 

(Düren, Germany). HEPES, acrylamide/bisacrylamide, isopropyl β-D-1-thiogalactopyranoside 

(IPTG), EDTA, inhibitor cocktail plus and imidazole were from Carl Roth GmbH + Co. KG 

(Karlsruhe, Germany). Nicotinamide adenine dinucleotide reduced (NADH) and 

phosphoenolpyruvate were from Roche Diagnostic GmbH (Manheimm, Germany). Adenosine-
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5´-[(β, γ)-imido] triphosphate (AMP-PNP), 6-thioGMP, Ap5G and 6-mercaptopurine-riboside-

5´-monophosphate were from Jena Bioscience GmbH (Jena, Germany). NH4Cl was from 

J.T.Baker B.V.-Deventer-Holland. Amplex red was from Cayman Chemical Company. Tris-

(hydroxymethyl) aminomethane was from VWR Chemicals (Leuvan, Belgium). L-glutamine and 

fetal calf serum (FCS) were purchased from PAA Laboratories GmbH (Cölbe, Germany). G418 

solution was from Carl Roth GmbH (Karlsruhe, Germany). FuGene1 HD Transfection Reagent 

and Cell Proliferation Reagent WST-1 were purchased from Roche (Mannheim, Germany). Anti-

GFP IgG antibody was gifted by Dr. Dieter Schmitt (MPI for Biophysical Chemistry, 

Goettingen). IgG antibodies conjugated to horseradish peroxidase were purchased from DiaNova 

(Hamburg, Germany).  

2.1.7 Consumables 

General glassware were from DURAN Group GmbH (Germany), polypropylene centrifuge tubes, 

serological pipettes, tissue culture plates, filter tips, tissue culture flasks, microtubes, and tissue 

culture dishes were from SARSTEDT AG & Co (Nümbrecht, Germany). Bottle top filters were 

from NALGENE (New York, USA). PCR tubes were from Sigma-Aldrich. Disposable plastic 

cuvettes were from Carl Roth GmbH+Co.KG (Germany). Slide-A-Lyzer mini dialysis units and 

disposable polypropylene columns were from Thermo Scientific (Rockford, USA). Vivaspin 

ultrafiltration spin columns and syringe filters were from Sartorius Stedim Biotech GmbH 

(Goettingen, Germany). Filter papers and nitrocellulose membranes were from Schleicher & 

Schuell (Dassel, Germany).  

2.1.8 General Instruments 

FP-8300 fluorescence spectrometer and V-650 UV/VIS spectrophotometer were from JASCO 

(Germany). UVIKON 943 UV/VIS spectrophotometer was from BIO-TEK (Neufahrn, 

Germany). NanoDrop UV/VIS spectrophotometer was from PeqLab Biotechnologie GmbH 

(Germany). ÄKTA prime plus was from GE Healthcare Life Sciences (Uppsala, Sweden). 

TPersonal thermocycler was from Biometra GmbH (Goettingen, Germany). Centrifuges used in 

this study were Eppendorf 5415D (Hamburg, Germany), SORVALL RC4 and SORVALL RC 

6+ from Thermo Scientific (Osterode, Germany), and Heraeus Megafuge 1.0R from Kendro 

(Germany). Innova 4230 Incubator Shaker was from New Brunswick Scientific (Edison, USA). 
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Branson Sonifier 250 was from G. Heinemann (Schwäbisch Gmünd, Germany). UV 

transilluminators, 312 nm and 366 nm were from Bachofer (Reutlingen, Germany). Leica TCS 

SP5 and Leica DMIRB were from Leica Microsystems (Germany). The electrophoresis power 

supply was from RENNER GmbH (Darmstadt, Germany). DNA gel chambers were custom-

made by the technical service department of the Max Planck Institute for Biophysical 

Chemistry (Goettingen, Germany). Mini-Protean precast gels and Mini Trans-Blot 

electrophoretic cell chambers were from BioRad (Richmond, USA). X-ray film developer: 

Gevamatik 60 was from AGFA (Hannover, Germany). The autoclave used was Systec VX-150 

(Wettenberg, Germany). Analytical balance was from Sartorius (Goettingen, Germany). Elutrap 

electroelution system was from Schleicher and Schuell (Dassel, Germany).  

2.1.9 Culture media 

2.1.9.1 Bacterial culture media 

LB (Luria-Bertani) medium: Tryptone/peptone (10 g/l), yeast extract (5 g/l) and NaCl (5 g/l). 

The pH of LB medium was adjusted to 7.5 with NaOH. It was autoclaved at 121 °C for 20 min. 

For LB plates, agar with final concentration of 1.5% (w/v) was added prior to autoclaving. The 

autoclaved medium was allowed to cool to 55 °C; for bacterial growth selection, the 

corresponding antibiotic (ampicillin 100 µg/ml, chloramphenicol 20 µg/ml, and kanamycin 30 

µg/ml working concentrations) was added. The medium and agar plates were stored at 4 °C. 

TB (Terrific Broth) medium: The following ingredients were added to 800 ml millipore water: 

Tryptone/peptone (12 g), yeast extract (24 g) and glycerol (4 ml). The volume was adjusted to 

900 ml with millipore water and sterilized by autoclaving. The media was allowed to cool to 

room temperature, and the final volume of 1000 ml was made by adding 100 ml of 0.17 M 

KH2PO4 and 0.72 M K2HPO4. 

LBE-5052 autoinducing medium: Trypton/peptone (10 g/l), yeast extract (5 g/l), glycerol (5 

g/l), glucose (0.5 g/l), lactose (2 g/l), Na2SO4 (0.7 g/l), NH4Cl (2.5 g/l), H2O to make it 900 ml, 

mixed well and autoclaved. The following solutions were added before use: 1 ml of sterile 2 M 

MgSO4, 1 ml of filter-sterilized 1000x metals mix, and 100 ml of filter-sterilized 50 mM 

potassium phosphate mix. 

50 mM potassium phosphate mix (100 ml): 10 ml of 1 M KH2PO4, 40 ml of 1 M K2HPO4 and 

50 ml H2O. 
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1000x metals mix (100 ml): 1 ml of 1 M MnCl2, 1 ml of 1 M ZnSO4, 1 ml of 0.2 M CoCl2, 1 ml 

of 0.2 M NiCl2, 46 ml H2O. All metal solutions were mixed together and filter-sterilized. 

Then, 50 ml of 0.1 M FeCl3 solution (in 0.1 M HCl) was mixed with the sterilized metal solution 

(50 ml) to make it 100 ml of 1000x metals mix. Upon 1000-fold dilution, the final concentrations 

of metals were 10 µM Mn, 10 µM Zn, 2 µM Co, 2 µM Ni and 50 µM Fe. The solution was 

stored at room temperature. 

M9 minimal growth medium (1 L): 200 ml of 5X M9 salts, 20 ml of D-glucose (20 g/100 ml) 

(0.2 µm filter sterilized)
*
, 1 ml of 2 M MgSO4 (autoclaved), 0.1 ml of 1 M CaCl2 (autoclaved), 1 

ml of  thiamine (1 mg/ml) (0.2 µM filter-sterilized), and 766 ml of H2O (autoclaved). 

5X M9 salts (autoclaved): KH2PO4 (15 g/l), Na2HPO4.7H2O (64 g/l), NaCl (2.5 g/l), and 

NH4Cl
*
 (pH adjusted to 7.2 with NaOH) (5.0 g/l) 

*
For isotopic labelling, 

13
C D-glucose and 

15
NH4Cl (Sigma-Aldrich) were substituted for 

unlabeled D-glucose and NH4Cl, respectively. The corresponding antibiotics (ampicillin 100 

µg/ml and chloramphenicol 20 µg/ml working concentrations) were added to the M9 minimal 

media for plasmid selection. 

2.1.9.2 Mammalian cell culture medium  

DMEM (Sigma-Aldrich) supplemented with 10% FCS (PAA), 1% L-glutamine and G418 (Carl 

Roth) was used for routine cell culture. The medium without antibiotics was used for transfection 

purposes. 

2.1.10 General buffers 

Lysis buffer A: 50 mM HEPES (or Na2HPO4), pH 8.0, 300 mM NaCl, 0.44 mM EDTA 0.5% 

Triton X-100, 5 mM DTT (added before use), and protease inhibitors cocktail (added before use) 

Lysis buffer B: 50 mM HEPES, pH 8.0, 500 mM NaCl, 4.4 mM MgCl2, 0.44 mM EDTA, 0.5% 

Triton X-100, 1 M urea, 5 mM DTT, and 1X cocktail of protease-inhibitors 

Wash buffer A: 50 mM HEPES (or Na2HPO4), pH 8.0, 300 mM NaCl, 10 mM imidazole, 5% 

glycerol, and 2 mM DTT (added before use) 

Wash buffer B: 50 mM HEPES (or Na2HPO4), pH 8.0, 300 mM NaCl, 5 mM imidazole 5% 

glycerol, and 2 mM DTT (added before use) 
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Wash buffer-1: 50 mM HEPES, pH 8.0, 290 mM NaCl, 4.4 mM MgCl2, 0.44 mM EDTA, 0.1% 

Triton X-100, 10 mM imidazole, 10% glycerol, and 3 mM DTT 

Wash buffer-2: 50 mM HEPES, pH 8.0, 10 mM MgCl2, 0.44 mM EDTA, 0.1% Triton X-100, 

10% glycerol, 5 mM ATP, and 3 mM DTT 

Wash buffer-3: 25 mM HEPES, pH 7.5, 4.4 mM MgCl2, 0.44 mM EDTA, 0.1% Triton X-100, 

10% glycerol, and 2 mM DTT 

Elution buffer A: 50 mM HEPES (or Na2HPO4), pH 8.0, 150 mM NaCl, 250 mM imidazole, 10 

% glycerol, 0.1% Triton X-100, and 2 mM DTT (added before use) 

Dialysis buffer A: 50 mM HEPES (or Na2HPO4), pH 8.0, 300 mM NaCl, 10 % glycerol, and 1 

mM DTT (added before use)  

Gel filtration buffer A: 50 mM HEPES (or Na2HPO4), pH 7.4, 300 mM NaCl, 5% glycerol, and 

1 mM DTT/TCEP (added before use) 

Buffer-A (2X): 200 mM Tris/HCl, pH 7.5, 200 mM KCl, and 20 mM MgCl2 

Phosphate-buffered saline (PBS) (1X): 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4, and the pH was adjusted to 7.4 with HCl. 

Laemmli sample buffer (2X): 65.5 mM Tris/HCl, pH 6.8, 2.1% (w/v) SDS, 26.3% (w/v) 

glycerol, 0.01% (w/v) bromophenol blue, and 50 µl β-mercaptoethanol per 950 µl 

DNA sample loading dye (10X): 50% glycerol, 0.25% bromophenol blue, and 0.25% xylene 

cyanol FF in 1X TAE buffer  

TAE (Tris-acetate-EDTA) buffer (1X): 40 mM Tris (pH 7.6), 20 mM acetic acid, and 1 mM 

EDTA  

TBE (Tris-borate-EDTA) buffer (1X): 89 mM Tris (pH 7.6), 89 mM boric acid, and 2 mM 

EDTA 

TE (Tris-EDTA) buffer (autoclaved): 10 mM Tris/HCl (pH 8.0) and 1 mM EDTA 

Competent wash buffer (pH 5.8): 15 ml of 1 M CH3COOK (pH 7.5) , 0.75 g of CaCl2, 6.1 g of 

RbCl, 4.95 g of MnCl2, 75 ml of glycerol, H2O up to a final volume of 500 ml, pH adjusted with 

0.2 M of CH3COOH. The buffer was filter-sterilized and prechilled on ice before use. 
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Competent freezing buffer (pH 6.8): 10 ml of 0.5 M Mops (pH 6.8), 5.5 g of CaCl2, 0.61 g of 

RbCl, 100 ml of glycerol, H2O up to final volume of 500 ml, pH adjusted with 0.2 M NaOH. The 

buffer was filter-sterilized and prechilled on ice before use. 

2.1.11 Bioinformatic tools 

Discovery studio 4.0 visualizer: For visualization and analysis of three-dimensional structures 

of proteins 

PyMOL molecular graphics system: For visualization and analysis of three-dimensional 

structures of proteins 

Gnuplot 5.0: For plotting functions and data points in both two- and three-dimensional plots 

BLAST (NCBI):  For basic local alignment of nucleotide and amino acid sequences 

Clustal W2: For multiple sequence alignment of nucleotide and amino acid sequences 

2.2 Methods 

2.2.1 Sterilization methods 

Culture media, buffer solutions, millipore water, microcentrifuge tubes, wooden toothpicks and 

pipette tips were sterilized by autoclaving at 121 °C for 20 min. All glassware was sterilized 

by heating at 200 °C in an oven (Memmert) for 4 h. Heat-labile solutions such as IPTG, 6-

thioguanine, and antibiotics were filter-sterilized using 0.2 µm filters (Sartorius). 

2.2.2 Preparation of E. coli culture glycerol stocks 

A single colony of a construct was picked from the LB agar plate to inoculate 1-3 ml of liquid 

LB containing the appropriate antibiotic. It was incubated at 37 °C with constant shaking (200–

250 rpm) preferably 12–16 h overnight. 1 ml of the culture was centrifuged, and the supernatant 

was discarded. The cells were resuspended in 0.5 ml of fresh LB, and glycerol was added to a 

final concentration of 30% (v/v). The cell suspension was gently vortexed, frozen in liquid 

nitrogen, and then stored at -80 
o
C. To recover bacteria from the glycerol stock for plasmid 

purification, formation of competent cells, or protein overexpression, some of the frozen bacteria 

were scrapped from the top with a toothpick and streaked on an LB agar plate. They were grown 

overnight at 37 
o
C to get isolated colonies. 
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2.2.3 Preparation of E. coli competent cells 

A single colony of E.coli cells (XL1-Blue or DH5α) was inoculated into 5 ml LB in 50 ml flask 

and incubated overnight at 37 
o
C with vigorous shaking.  

For preparation of chemically competent cells, fresh 50 ml LB medium was inoculated with 0.5 

ml of the overnight culture in 250 ml flask and incubated at 37 
o
C until the OD600 reached 0.3-0.5. 

The cells were transferred to a sterile Falcon tube, chilled on ice for 15 min, and then harvested 

by centrifugation at 3,000 x g for 10 min at 4 
o
C. The supernatant was discarded, and the cells 

were rinsed with 10 ml competent wash buffer (see section 2.1.10). The buffer was removed, and 

the cells were resuspended in 10 ml competent wash buffer and incubated on ice for 15 min. The 

cells were recovered by centrifugation at 2,300 x g at 4 
o
C for 5 min, and the supernatant was 

discarded. The cell pellets were resuspended in 3 ml competent freezing buffer (see section 

2.1.10) and aliquoted in microcentrifuge tubes (100-500 µl/tube). The competent cells were 

flash-frozen in liquid nitrogen and stored at -80 
o
C until use for transformation. 

For preparation of electro-competent cells, 500 ml LB was inoculated with the overnight culture 

and grown at 37 
o
C until an OD600 of 0.4-0.6. Cells were then cooled on ice and collected in 

sterile bottles by centrifugation at 3,000 x g for 15 min at 4 
o
C. The pellet was washed twice with 

500 ml ice-cold sterile water and twice with 200 ml ice-cold sterile 10% glycerol. The final cell 

pellet was resuspended in 5 ml ice-cold sterile 10% glycerol, aliquoted in cold microtubes, flash-

frozen in liquid nitrogen and stored at -80 
o
C.    

2.2.4 Cloning of human guanylate kinase 

2.2.4.1 PCR amplification 

The 591 bp open reading frame (ORF) of human guanylate kinase (UniProt entry Q16774, 

hGMPK, GUK1, or GMK), was amplified via polymerase chain reaction (PCR) using the 

template DNA obtained from Oliver Spangenberg [81]. NdeI and BamHI sites were incorporated 

into the forward (hGMPK-F) and reverse (hGMPK-R) primers, respectively (Table 2.2). The 

Phusion High-Fidelity DNA polymerase (New England BioLabs) was used according to the 

manufacturer’s instructions. The 50 µl PCR reaction mixture contained 1X Phusion HF buffer, 

200 µM dNTPs, 0.5 µM forward and reverse primers, 10 ng template DNA and 1.0 unit of 

Phusion HF DNA polymerase. Tm (melting temperature) values for the oligonucleotides were 
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calculated using the online NEB Tm calculator based on thermodynamic data from Breslauer et 

al. (1986) and the salt correction outlined in Owczarzy et al. (2004) [NEB webpage]. 

Thermocycling conditions were set to initial denaturation at 98 
o
C for 30 s, followed by 25 

cycles of denaturation at 98 
o
C for 7 s, primers annealing at 67 

o
C for 20 s, extension at 72 

o
C for 

15 s, and a final extension at 72 
o
C for 7 min. 

2.2.4.2 Agarose gel electrophoresis 

To separate and visualize the hGMPK PCR product for correct size, it was analyzed by agarose 

gel electrophoresis. Agarose gel of 1% (w/v) in TAE buffer (see section 2.1.10) was used. The 

PCR product was mixed with the 10X DNA loading dye. The PCR sample and 1 Kb GeneRuler 

DNA Ladder (Thermo Scientific) were loaded into the wells, and the gel was run at 75 volts power 

for about 2 h. The gel was stained in the appropriate volume of 0.5 µg/ml ethidium bromide (EtBr) 

for 15 min. After staining, the gel was briefly rinsed with Millipore water to remove any residual 

staining solution. To visualize and excise the hGMPK DNA band, the gel was placed on a 

transilluminator with UV light of 366 nm or 312 nm. The gel picture was taken, and the 591 bp 

hGMPK DNA band was excised with a clean scalpel for DNA extraction. 

2.2.4.3 DNA extraction from agarose gel 

The hGMPK DNA from the gel slice was extracted by using NucleoSpin Gel and PCR Clean-up 

kit (Macherey-Nagel). According to the manufacturer’s protocol, the gel slice was solubilized in 

the buffer NT1 (provided with the kit) and loaded on the NucleoSpin Gel and PCR Clean-up 

column. The column was washed with buffer NT3 (provided with the kit), and finally the 

hGMPK DNA was eluted in the TE buffer (see section 2.1.10). The purified hGMPK DNA 

sample was subjected to restriction enzyme digestion and ligation reactions. 

2.2.4.4 Ligation reaction 

For creating compatible sticky ends for ligation, the hGMPK DNA sample was treated with 10 

units of NdeI and BamHI-HF in 1X CutSmart buffer at 37 
o
C in a water bath for 1 h. The 

enzyme digest was cleaned by the NucleoSpin Gel and PCR Clean-up kit according to the 

manufacturer’s protocol. The purified hGMPK DNA fragment with sticky NdeI and BamHI ends 

was ligated into pET-14bSUMO∆Thr, pGEX-RB, pEGFP-N1, and pEGFP-C1 vectors using T4 

DNA ligase (Fig. 2.1). The molar ratio of 1:3 vector to insert was used. In a 20 µl reaction volume,  
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a. 

NdeI restriction site (628 CATATG 633) was 

introduced in between HindIII and EcoRI sites. 

b. 

NdeI restriction site (1357 TCA CAT ATG GCT 1368) 

was introduced in between HindIII and KpnI sites. 
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50 ng of linear plasmid, 18 ng of hGMPK DNA fragment, 1X T4 DNA ligase buffer and 400 

units of T4 DNA ligase were mixed. The reaction mixture was incubated at 16 
o
C overnight. The 

ligation mixture was used to transform E.coli competent cells. 

2.2.4.5 Transformation of chemically competent cells  

The XL1-Blue chemically competent cells were thawed on ice, and 50 µl was transferred to 1.5 

ml microcentrifuge tube. About 5 µl of the ligation mixture was added to the competent cells and 

mixed gently by flicking the tube a few times. The competent cells/DNA mixture was incubated 

on ice for 30 min. Heat shock was given at 42 
o
C for 35 s, and the tube was transferred to ice for 

2 min. 250 µl of LB medium was added to the tube and was incubated at 37 
o
C with vigorous 

shaking at 1000 rpm for 1 h. 25 µl of the cell suspension was spread on a pre-warmed ampicillin 

selection plate and was incubated at 37 
o
C overnight. The colonies obtained on the LB agar plate 

were screened for positive constructs by colony PCR. 

c. d. 

Fig. 2.1. Vector maps. (a) pEGFP-N1 is a mammalian cloning vector. An NdeI restriction 

site (CATATG) was introduced in between HindIII and EcoRI sites. NdeI and BamHI sites 

were used for ligation of insert followed by a C-terminal EGFP tag. (b) pEGFP-C1, a 

mammalian cloning vector was modified to introduce an NdeI restriction site in between 

HindIII and KpnI sites. The insert was ligated using NdeI and BamHI sites introducing an 

EGFP tag at the N-terminus of the insert. (c) pET-14bSUMO∆Thr, and (d) pGEX-RB are 

E.coli expression plasmids with His6-SUMO (small ubiquitin-related modifier) and GST 

(Glutathione-S-Transferase) tags, respectively. In both plasmids, the tag is N-terminal to the 

ligated insert. 

 

      Insert 
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2.2.4.6 Colony PCR 

Colony PCR was used to determine the presence or absence of hGMPK DNA insert in pET-

14bSUMO∆Thr constructs by using the transformed XL1-Blue colonies from the LB agar plates. 

The hGMPK specific primers were used to target the insert DNA to ensure the specificity and 

correct size of the inserted DNA. Alternatively, vector-specific primers were used for screening 

of multiple constructs simultaneously. Six colonies were selected from the ampicillin-containing 

LB agar plate. Each 50 µl reaction mixture contained 1X standard Taq reaction buffer, 200 µM 

dNTPs, 0.2 µM forward and reverse primers, a small amount of each colony, and 1.25 units of 

the standard Taq DNA polymerase. Thermocycling conditions were as follows: initial 

denaturation at 95 
o
C for 5 min, 30 cycles of denaturation at 95 

o
C for 25 s, annealing at 67 

o
C 

for 30 s and extension at 68 
o
C for 1 min, and a final extension at 68 

o
C for 7 min. The PCR 

products were tested by agarose gel electrophoresis. The colonies which manifested the presence 

of correct size inserts were considered as positive constructs. Positive colonies were used to 

inoculate 5 ml LB medium containing 100 µg/ml of ampicillin for plasmid purification by mini 

or midi prep. 

2.2.4.7 E. coli plasmid purification 

For small-scale preparation of highly pure hGMPK[pET-14bSUMO∆Thr], the NucleoSpin 

Plasmid kit was used (yield < 25 µg of plasmid). The 5 ml XL1-Blue culture preparation and 

plasmid purification were performed according to the manufacturer’s protocol. The purified 

plasmid was tested by restriction digestion with NdeI and BamHI-HF followed by agarose gel 

electrophoresis to ensure the presence of hGMPK insert, and ultimately sent to Seqlab 

(Goettingen, Germany) for DNA sequence verification. The final construct includes an N-

terminal hexahistidine tag, followed by the SUMO (small ubiquitin-related modifier; SUMO 

family protein SMT3 of 101 residues) tag, which was used to improve heterologous protein 

solubility and stability [98]. The concentration of hGMPK[pET-14bSUMO∆Thr] was 

determined by absorbance at 260 nm. 

2.2.4.8 Determination of DNA concentration and purity 

The DNA concentration of the hGMPK sample was calculated from its UV absorbance at 260 

nm where an absorbance of 1 (1 cm path length) is equivalent to 50 μg DNA/ml. The absorbance 
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was measured on a JASCO V-650 UV-Vis spectrophotometer in a 0.5 ml quartz cuvette with a 

path length of 1 cm. The measured absorbance was in between 0.1 and 0.7 in order to be in the 

linear part of Lambert-Beer´s law. Alternatively, the DNA concentration was measured by 

NanoDrop UV/VIS spectrophotometer. The plasmid purity was also checked by UV 

spectroscopy. A ratio of A260/A280 between 1.80–1.90 and A260/A230 around 2.0 indicates 

pure plasmid DNA. An A260/A280 ratio above 2.0 is a sign for too much RNA in the 

preparation, an A260/A280 ratio below 1.8 indicates protein contamination. The quality of the 

construct was tested by agarose gel electrophoresis. For overexpression and purification, the 

hGMPK[pET-14bSUMO∆Thr] was transformed into BL21(DE3)pLysS for tight regulation and 

expression control under the T7 promoter. 

2.2.5 Expression and purification of hGMPK 

For improved production of hGMPK, His6-SUMO- or GST tag-containing vectors were used. 

The maps of both vectors are shown in Fig. 2.1. Both constructs were transformed into the E.coli 

expression strain BL21(DE3)pLysS for tight regulation of expression. The hGMPK was 

expressed and purified as a fusion with His6-SUMO or GST tags.  

2.2.5.1 Expression and purification of His-tagged hGMPK 

One liter of lactose-containing auto-inducing media was inoculated with the starter culture of 

BL21(DE3)pLysS carrying the hGMPK[pET-14bSUMO∆Thr] plasmid. The culture was 

incubated at 37 °C with rapid shaking until the optical density at 600 nm reached about 0.7, and 

was then transferred to 21 °C for overnight induction. Cells were harvested by centrifugation at 

4,000 rpm for 30 min at 4 
o
C. For purification of hGMPK by affinity chromatography, the cell 

pellet was re-suspended in lysis buffer A (see section 2.1.10), and lysed by sonication. The lysate 

was cleared by centrifugation at 10,000 x g for 1 h at 4 °C and subjected to batch/gravity-flow 

purification by affinity chromatography. One gram of Protino Ni-IDA (Macherey-Nagel, Düren 

Germany) resin was added to the supernatant in a centrifugation tube, and the suspension was 

agitated on an orbital shaker for 3 h at 4 °C. The resin was washed two times with 40 ml of wash 

buffer A (see section 2.1.10) by incubating on an orbital shaker for 25 min in a cold room at 4 
o
C. 

Similarly, the sample was washed two times with 40 ml wash buffer B (see section 2.1.10) for 25 

min incubation on an orbital shaker at 4 °C. The resin was transferred to an empty 
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chromatography column (5 ml column bed, Thermo Scientific), and the protein was eluted with 

elution buffer A. This yielded 110 mg of His6-SUMO fusion protein, as determined by the 

Bradford dye-binding assay. The His6-SUMO tag was cleaved by SUMO-protease (1:100 molar 

ratios) at room temperature for 30 min. To remove imidazole from the sample, it was passed 

through a PD10 column (Sephadex-G25) using dialysis buffer A (see section 2.1.10). The His6-

SUMO tag was removed from the sample by adding 500 mg of Protino Ni-IDA resin and 

incubated for 30 min on an orbital shaker at 4 °C. The resin suspension was passed through an 

empty column (5 ml column bed, Thermo Scientific) with a filter frit to collect the purified 

hGMPK in the flow-through. To purify the enzyme to homogeneity, it was loaded onto a 

Superdex 75 10/300 GL gel filtration column (GE Healthcare) pre-equilibrated with gel filtration 

buffer A (section 2.1.10). The protein was eluted as a monomer as indicated by the elution 

profile of marker proteins (BioRad Gel Filtration Standard). The monomer peak was pooled, 

concentrated to 38 mg/ml, aliquoted, and stored at -80 °C. Protein concentration was determined 

by the Bradford dye-binding assay. 

2.2.5.2 Expression and purification of GST-tagged hGMPK 

For growing a starter culture, 50 ml LB having ampicillin and chloramphenicol antibiotics was 

inoculated with a single colony of hGMPK[pGEX-RB]-containing BL21(DE3)pLysS cells. It 

was grown overnight at 37 
o
C with vigorous shaking. The 50 ml starter culture was added to 950 

ml of TB (terrific broth) medium containing the two antibiotics as mentioned above. The main 

culture was grown at 37 
o
C with 250 rpm shaking until the OD600 reached ~0.7. For induction of 

protein expression, 0.5 mM IPTG was added to the culture medium and incubated at 21 
o
C 

overnight. The cells were harvested by centrifugation at 5,000 x g for 20 min at 4 °C. The 

expression level of GST-hGMPK was tested by heating a fraction of cell pellets in Laemmli 

sample buffer at 95 
o
C for 5 min and loading it on 12% SDS-PAGE. Once a high level 

expression was confirmed, the cell pellet was resuspended in lysis buffer A (see section 2.1.10) 

and sonicated for cell disruption. The lysate was centrifuged at 10,000 x g for 1 h at 4 °C, and the 

supernatant containing the soluble overexpressed GST-hGMPK was subjected to batch/gravity-

flow purification by using Glutathione Sepharose 4B. All purification steps were carried out at 

4 °C in a cold room. For 1000 ml culture, 10 ml volume of 50% Glutathione Sepharose 4B 

(Macherey-Nagel, Düren Germany) was pre-equilibrated in wash buffer B (see section 2.1.10). 
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The cleared supernatant was added to the equilibrated gel of Glutathione Sepharose 4B. The 

suspension was incubated on an orbital shaker for 3 h at 4 
o
C to allow proper binding to the 

matrix. A disposable polypropylene column (5 ml bed volume from Thermo Scientific) with a 

filter frit was fixed on a column holder, and the suspension was added to it. After the gel settled 

at the bottom of column, it was washed with 30 bed volumes of wash buffer B by gravity flow. 

The column outlet was closed with a cap, and 1.5 ml wash buffer B supplemented with 1 unit/ml 

thrombin (Serva Electrophoresis) was added into the column. The inlet of the column was closed, 

and the suspension was allowed to mix on an orbital shaker overnight at 4 
o
C. Thrombin cleaved 

the GST-hGMPK fusion protein releasing hGMPK protein into the solution and leaving the GST 

tag bound to the Glutathione Sepharose 4B. The buffer was allowed to flow through the column, 

and the eluate containing pure hGMPK was collected. The elution step was repeated at least 

twice, and the collected eluates were pooled. Protein concentration was determined by the 

Bradford dye-binding assay, and purity of the sample was tested on 12% SDS-PAGE. To get the 

enzyme in highly pure and homogeneous form, gel filtration chromatography was performed as 

described above in section 2.2.5.1. 

The activity of hGMPK was measured by the NADH-dependent spectroscopic assay, and by a 

novel electrochemical detection assay. 

2.2.6 NADH-dependent spectroscopic assay 

The activity of hGMPK was determined by the standard NADH-dependent enzyme-coupled 

assay using a JASCO V-650 UV-Vis spectrophotometer [99]. The formation of ADP and GDP 

by hGMPK was coupled to two additional reactions catalyzed by pyruvate kinase (PK) and 

lactate dehydrogenase (LDH), respectively. As shown in the reaction scheme below, each mole 

of phosphoryl group transferred from ATP produces two moles of NDPs, and consequently two 

moles of NADH are oxidized to NAD
+ 

[100]. The absorbance was monitored at 340 nm because 

NADH absorbs light at 340 nm whereas NAD
+
 does not. The time-dependent decrease in 

absorbance at 340 nm associated with NADH oxidation was measured spectrophotometrically. 
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All measurements were performed at 25 
o
C in buffer A (see section 2.1.10) containing 100 mM 

Tris, pH 7.5, 100 mM KCl, and 10 mM MgCl2. The hGMPK was used in 18 nM concentration in 

a reaction volume of 1 ml. For steady-state kinetics, the concentration of the physiological 

substrate, GMP, was varied in the range of 0-20 Km. Enzyme activity was calculated as given 

below. 

  

 

                                            ΔA340/Δt               

  Volume activity =                                                                                [U/ml] 

                                ε  × d  

 

                                    ΔA340/Δt = change in absorbance per unit time  

                                    ε = molar extinction coefficient of NADH at 340 nm is 6.22 mM
-1

cm
-1

     
 

                                    d = light path (cm) 

 

 

                                             volume activity (U/ml)                

  Specific activity =                                                                                [U/mg] 

                                 concentration of enzyme (mg/ml) 

 

 

                                       µmol (substrate)   

                       kcat =                                                                                 [s
-1

]        

                                            µmol (enzyme) x s                                                     

 

 

Turnover number (kcat) of the enzyme can be calculated from the specific activity if the 

molecular weight of the enzyme is known (e.g. hGMPK ~22 kDa). 
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All data points were the means of duplicate or triplicate measurements. Specific activity or kobs 

(steady-state rates) values were plotted against the respective substrate concentrations by Gnuplot 

5.0 software using the Michaelis-Menten equation. 

  

                                                                              

 

The kinetic parameters, Km and kcat, were calculated from the plot. 

2.2.7 Electrochemical detection assay  

A new approach has been developed to detect nucleotide kinase-catalyzed reactions based on the 

light-triggered electrochemical sensing of NADH in a three-step coupled-assay as shown 

schematically below. We demonstrated a proof of biosensor for hGMPK immobilized on 

CdS/ZnS quantum-dot modified gold electrode. 

In this work, which was done in collaboration with Prof. Dr. Wolfgang Parak and collaborators 

from Philipps University of Marburg, modified gold electrodes were used with self-assembled 

monolayer of stilbenedithiol as a substrate for spin coating of the semiconducting CdS/ZnS 

quantum dots (QDs) [87-89]. The CdS/ZnS QDs serve as switch for light-controlled detection of 

NADH which is an electron carrier. Electrochemical experiments were performed with a 

homemade potentiostat in 1 ml electrochemical cell with three-electrode arrangement consisting 

of the QDs working electrode, an Ag/AgCl reference electrode and a platinum wire as the 

counter electrode. Light pulses were produced periodically from a light source of Xenon arc 

lamp (emission spectrum, λem = 300-700 nm) to illuminate working electrodes from a fixed 

distance. All measurements were performed at room temperature in 100 mM HEPES buffer pH 

7.5 containing 100 mM KCl and 20 mM MgCl2. The following constituents of the coupled assay 

were used in fixed amounts: 18 nM of hGMPK, 4 mM ATP, 2 mM PEP (phosphoenolpyruvate), 

12 units of PK (pyruvate kinase), 1.2 mM NADH, and 15 units of LDH (lactate dehydrogenase). 

The first step in the three step-assay (this reaction scheme is identical to that of the NADH-

dependent spectroscopic assay, see section 2.2.6) was catalyzed by hGMPK in the presence of 

two helper enzymes in the reaction mixture, pyruvate kinase (PK) and lactate dehydrogenase 

(1) 
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(LDH), resulted into the oxidation of NADH to NAD
+
. The photocurrent “I” was recorded 

during light on-periods at fixed bias potential, U = +50 mV, in the absence and presence of 

hGMPK with different concentrations (50-1600 µM) of GMP substrate. Each experiment was 

performed in triplicate. It was observed that the change in photoelectric current was directly 

proportional to the GMP concentration. 

 

         

    

 

 

 

 

 

Fig. 2.2. Schematic representation of the electrochemical detection assay. GMP which is 

the substrate for hGMPK was detected indirectly by coupling it to NADH in the third redox 

reaction. NADH is an electron carrier and was sensed electrochemically in the reaction 

mixture at a constant bias voltage U applied to the Au (gold) electrode versus the Ag/AgCl 

reference electrode. The Au electrode was coated with CdS/ZnS (cadmium sulfide and zinc 

sulfide) quantum dots (QDs) via StDT (stilbenedithiol). The illumination of light on QDs 

generates electron hole pairs and causes the transfer of electrons from NADH to QDs which 

was detected as oxidation-dependent photocurrent. However, the addition of hGMPK to the 

reaction mixture depletes NADH in a GMP concentration-dependent way and therefore the 

photocurrent also changes. The CdS/ZnS QDs interlayer between the electrode and the redox 

system is used for the light triggered readout of the electron transfer reaction with the 

electrode [87, 88]. 
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2.2.8 A novel spectrophotometric and fluorometric enzyme-coupled assay for hGMPK 

We developed a spectrophotometric and fluorometric assay for deoxyribonucleoside and 

nucleotide kinases which can be used in absorbance mode as well as in fluorescence mode. The 

assay is based on the use of the nonfluorescent compound Amplex Red which is enzymatically 

oxidized to resorufin that has excellent absorbance as well as fluorescence properties. We used 

hGMPK and its physiological substrate GMP to optimize the assay. There are four coupled steps 

in the assay as shown below. In the first step, GMP is phosphorylated to GDP by hGMPK using 

ATP as a phosphoryl group donor. In the second step GDP and ADP are converted to GTP and 

ATP by pyruvate kinase (PK) using phosphoenolpyruvate (PEP) as a phosphate donor resulting 

in the formation of pyruvate. In the third step, pyruvate is converted by pyruvate oxidase (lpPOX) 

producing hydrogen peroxide (H2O2), CO2, and acetyl phosphate. In the fourth step, H2O2 is used 

by horseradish peroxidase (HRP) to oxidize Amplex Red to resorufin which has higher 

absorbance at approximately 570 nm and gives fluorescence  at  excitation wavelength, λex = 568 

nm, and emission wavelength, λem = 584 nm [116]. 

         

                          ATP + GMP                                                GDP + ADP 

                                   

             GDP + ADP + 2PEP                                                2 Pyruvate + ATP + GTP 

 

         2 Pyruvate + 2Pi + 2O2                                                2H2O2 + 2CO2 + 2 Acetyl phosphate 

        2H2O2 + 2 Amplex Red                                                2 Resorufin 

  

For establishing the assay, pyruvate oxidase (lpPOX) from Lactobacillus plantarum was cloned, 

and recombinantly produced in E.coli as discussed below in section 2.2.8.1 and 2.2.8.2. The 

assay was optimized in the absorbance mode at 570 nm. All four reactions in the coupled assay 

were optimized in a stepwise manner starting from reaction four, then combining reactions 3 and 

4, afterwards 2, 3 and 4, and finally all four reactions. In our assay conditions, the activities of 

the three auxiliary enzymes (PK, lpPOX and HRP) were kept higher than the enzyme of interest 

which catalyzes the first reaction. All measurements were performed at 25 
o
C in buffer-H (50 

mM HEPES pH 7.2, 10 mM MgCl2, 50 mM KCl and 25 mM potassium phosphate). The final 

reaction mixture contained 2 mM ATP, 5 nM hGMPK, 2 mM PEP, 1 unit of pyruvate kinase 

hGMPK 

PK 

lpPOX, TPP, FAD 

HRP 
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(PK), 1.2 µM of pyruvate oxidase (lpPOX), 0.2 mM thiamine pyrophosphate (TPP), 10 µM 

flavin adenine dinucleotide (FAD), 25 µM Amplex Red (resorufin, ε = 5.4 x 10
4
 M

-1
cm

-1
 at 570 

nm ) and 0.1 µM HRP in 200 µl total volume. The linearity of the reaction velocity in 

dependence of the hGMPK concentration was tested, and was found to be fulfilled in the 

concentration range of 0.5 nM to 18 nM without being limited by other reactions. For kinetic 

measurements, 5 nM of hGMPK was used, and the concentration of GMP was varied up to 20 

Km. Steady-state turnover rates (kobs) were calculated and the values were fit to the Michaelis-

Menten equation (see equation 1 in section 2.2.6) using Gnuplot 5.0 software. To validate our 

assay, the kinetics of hGMPK was also determined by the standard NADH-dependent enzyme-

coupled assay (see section 2.2.6). It was found that the kinetic parameters determined by both 

assays were in good agreement. Thus, our new assay is highly authentic and has the advantage to 

be applicable both in the absorbance and in the fluorescence mode. 

2.2.8.1 Cloning of pyruvate oxidase 

The plasmid containing the gene for pyruvate oxidase from Lactobacillus plantarum (lpPOX) 

was obtained from Prof. Dr. Kai Tittmann (Georg August University Goettingen, Germany). The 

open reading frame (ORF) of lpPOX (UniProt accession number P37063, pyruvate oxidase, POX 

or pox5) which is 1809 bp was amplified via polymerase chain reaction (PCR). NdeI and BamHI 

sites were incorporated in the two oligonucleotides (forward 5´-GGGAATTCCATATGGTTA 

TGAAACAAACAAAACAAACTAAC-3´ and reverse 5´-CGCGGATCCTTAAAACCCACC 

CTGTCCAATTTG-3´) targeting the 5′ and 3′ ORF ends, respectively. The PCR product was 

gel-purified, digested with NdeI and BamHI-HF (New England Biolabs), and ultimately ligated 

into the pJC20HisN vector using T4 DNA ligase (New England Biolabs). The ligation mixture 

was used to transform XL1-Blue cells. Positive clones were identified by colony PCR and by 

restriction digestion with NdeI and BamHI-HF enzymes. The entire gene insert was sequence 

verified (Seqlab, Goettingen). The final construct includes an N-terminal decahistidine tag for 

affinity purification. For the overexpression of lpPOX, BL21(DE3)pLysS cells were used. 

2.2.8.2 Expression and purification of pyruvate oxidase 

A starter culture was prepared by inoculating 20 ml LB with a single colony of BL21(DE3) 

pLysS carrying the lpPOX-containing plasmid and incubated at 37 °C with rapid shaking (200-
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250 rpm). One liter of lactose-containing auto-inducing media was inoculated with the starter 

culture. It was incubated at 37 °C with rapid shaking until the optical density at 600 nm reached 

about 0.7, and was then transferred to 21 °C for overnight auto-induction. Cells were harvested, 

and the pellet was resuspended in lysis buffer (100 mM potassium phosphate pH 6.0, 300 mM 

NaCl, 0.1 mM thiamine pyrophosphate (TPP), 0.01 mM FAD, 1 mM MgSO4, 5 mM DTT, and 

cocktail of protease-inhibitors), and lysed by sonication. The lysate was cleared by centrifugation 

at 10,000 x g for 1 h at 4 °C and subjected to batch purification by affinity chromatography. One 

gram of Protino Ni-IDA resin (Macherey-Nagel) was added to the supernatant in a centrifugation 

tube, and the suspension was agitated on an orbital shaker for 1 h at 4 °C. The resin was washed 

four times with 40 ml of buffer A (100 mM potassium phosphate pH 6.0 containing 300 mM 

NaCl, 0.1 mM TPP, 0.01 mM FAD, 1 mM MgSO4, 10 mM imidazole, and 1 mM DTT) each 

time with 25 min incubation on an orbital shaker at 4 °C. The resin was transferred to an empty 

chromatography column (5 ml column bed, Thermo Scientific), and the protein was eluted with 

buffer B (100 mM potassium phosphate pH 6.0, 150 mM NaCl, 0.1 mM TPP, 0.01 mM FAD, 1 

mM MgSO4, 250 mM imidazole, and 1 mM DTT). All fractions containing high amount of 

pyruvate oxidase were pooled yielding 50 mg of His10-lpPOX protein, as determined by the 

Bradford dye-binding assay. Imidazole was removed from the sample by dialysis against buffer 

C (100 mM potassium phosphate pH 7.0, 150 mM NaCl, 0.1 mM TPP, 0.01 mM FAD, and 1 

mM MgSO4) using 2 kDa MWCO membrane. The enzyme was further purified to homogeneity 

by gel filtration chromatography using a Superdex 200 column (GE Healthcare) pre-equilibrated 

with buffer C. It eluted as a homo-tetramer as indicated by the elution profile of marker proteins 

(BioRad gel filtration standard). The purified protein was concentrated by 3 kDa MWCO 

ultracentrifugal filter, aliquoted, and stored at -80 °C. Protein concentration was determined by 

the Bradford dye-binding assay and its purity was tested by 12 % SDS-PAGE. 

2.2.9 hGMPK-catalyzed reactions in polyelectrolyte containers of various shapes and sizes 

2.2.9.1 Synthesis of calcium carbonate particles 

Calcium carbonate (CaCO3) particles of different shapes (rhomboidal, ellipsoidal, spherical) 

were synthesized by rapid mixing of equal volumes of CaCl2 and Na2CO3 solutions added in 

specific molar ratios (1:1, 1:10 or 10:1) in the presence of varied amounts of ethylene glycol 

from 66.6 % to 80%. The reaction mixture was stirred at 500 rpm for 30 min, 60 min, or 90 min 
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at room temperature. The pH of CaCl2 and Na2CO3 solutions were 7.4 and 9.5, respectively. 

After precipitation, the particles were recovered by centrifugation at 2,000 rpm for 2 min. The 

supernatant was discarded, and the particles were washed 3 times in deionized water and in 50% 

ethanol to remove residual ethylene glycol and salts. The particles were dried in an oven at 70 °C 

for 1-2 h and were stored at room temperature. 

2.2.9.2 Protein loading 

Proteins can be loaded into particles either by the coprecipitation method or by physical 

adsorption [136]. In the coprecipitation method, a specific amount of protein is dissolved in the 

CaCl2 solution prior to mixing with Na2CO3 solution for particle synthesis. When the 

precipitation process is allowed to occur, the protein molecules are entrapped within the growing 

microparticles [131]. In contrast, in the physical adsorption method, the preformed particles are 

resuspended in the protein solution and put on a shaker at 600 rpm for ~15 min. The protein 

molecules are adsorbed in the pores of CaCO3 particles. 

2.2.9.3 Capsule fabrication 

The synthetic polyelectrolytes PAH (Poly(allylamine hydrochloride)) and PSS (Poly(sodium 4-

styrenesulfonate)) were dissolved in 20 mM Tris buffer pH 7.4 containing 150 mM NaCl at a 

final polymer concentration of 2 mg/ml [137]. Fabrication of microcapsules is shown 

schematically in Fig. 2.3. 1 ml of PAH was added to about 10 mg of particles, mixed by flicking 

few times, and agitated in the ultrasonic bath for 1 min. The suspension was then incubated by 

constant shaking at 1,000 rpm for 15 min.  It was centrifuged at 2,000 rpm for 2 min, and the 

supernatant was discarded. Microparticles were washed three times in the Tris buffer. Then next 

layer of PSS was deposited in the same way as PAH. The particles were coated with the desired 

number of polyelectrolyte layers. To obtain hollow capsules, the CaCO3 core was dissolved by 

dialysis against 20 mM Tris buffer pH 7.4 containing 150 mM NaCl and 20-50 mM EDTA. The 

hollow microcapsules with loaded hGMPK were used for activity measurements (see section 

2.2.6) and for further analysis. Microcapsules were stored at 4 
o
C for long term use. 

 



87 
 

                              

 

 

 

2.2.10 Site-directed mutagenesis of hGMPK 

The E.coli expression plasmid containing the hGMPK insert, hGMPK[pET-14bSUMO∆Thr], 

was used as a template for the introduction of eight amino acid substitutions at different positions 

in the active site (S37A, S37Y, S37C, S37P, Y81F, T83S and T83A) and in the hinge region 

(N42P) of the hGMPK molecule by the QuikChange site-directed mutagenesis procedure [101] 

using KAPAHiFi DNA polymerase (Fig. 2.4). Sixteen mutagenic oligonucleotides containing the 

desired point mutations were designed for this purpose, and were synthesized by IBA GmbH 

(Goettingen). All oligonucleotides were 25-45 bases in length, Tm greater or equal to 78 
o
C, and 

GC contents in the range of 40-60%. Each 50 µl reaction mixture contained 20 ng of 

hGMPK[pET-14bSUMO∆Thr] template (~5.5 kb), 1X KAPAHiFi Fidelity or GC buffer, 0.3 

mM dNTP Mix, 0.3 µM forward and reverse primers, and 1 unit of KAPAHiFi DNA polymerase. 

The cycling parameters used were initial denaturation at 95 
o
C for 2 min, followed by 16 cycles 

of denaturation at 95 
o
C for 20 s, annealing of primers at 57 

o
C for 30 s, and extension at 72 

o
C 

for 3 min and 20 s. The final extension was at 72 
o
C for 10 min. To check for sufficient 

amplification, 10 µl of the PCR product was loaded on 1% agarose gel. Once verified the 

Fig. 2.3. Scheme for fabrication of microcapsules and their packaging with 

macromolecules (hGMPK). (a) The protein was coprecipitated during the synthesis of 

calcium carbonate (CaCO3) microparticles from calcium chloride (CaCl2) and sodium 

carbonate (Na2CO3); (b-d), Microparticles were encapsulated in polyelectrolyte layers (PAH 

and PSS) in a consecutive way by applying the LbL (layer-by-layer) technique. (e) The CaCO3 

core was dissolved by treating the microcapsules with EDTA. 
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amplified product, 1 µl (10 units) of DpnI restriction enzyme was added to the remaining 40 µl 

PCR product, mixed well, and incubated at 37 
o
C for 2 h. The DpnI enzyme only digests the 

methylated template DNA (non-mutated), and does not cleave the PCR-amplified non-

methylated plasmid DNA (mutated). To remove the restriction enzyme and other contamination 

from the PCR product, it was cleaned by passing through the NucleoSpin Gel and PCR Clean-up 

columns according to the manufacturer’s protocol. For transformation of competent XL1-Blue 

cells, 5 µl of the purified PCR product was used according to the protocol as described in section 

2.2.4.5. After transformation, the XL1-Blue competent cells repair the nicks in the mutated 

plasmid. 50 µl of the transformed cells were spread on pre-warmed ampicillin-containing 

selection plates and were incubated at 37 
o
C overnight. For plasmid purification, two colonies 

were picked from each agar plate (out of 8 plates) and were used to inoculate 10 ml LB medium 

containing ampicillin, and incubated at 37 
o
C overnight with vigorous shaking at 250 rpm. The 

mutated plasmids were purified by NucleoSpin Plasmid kit according to the manufacturer’s 

protocol. To verify the desired eight mutations in the hGMPK inserts, one set of the 

corresponding plasmids were sent to Seqlab (Goettingen, Germany) for DNA sequencing. For 

protein expression and purification, the sequence-verified eight mutants of hGMPK were 

transformed into BL21(DE3)pLysS cells and were streaked on ampicillin- and chloramphenicol-

containing agar plates. The plates were incubated at 37 
o
C overnight. All mutants were expressed 

in autoinducing media, and the proteins were purified by affinity chromatography using Protino 

Ni-IDA resin as mentioned in section 2.2.5.1. Their purity was tested by 12 % SDS-PAGE, and 

the enzymes were kinetically characterized by using the NADH-dependent enzyme-coupled 

assay as described in section 2.2.6. 
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2.2.11 Optimizing the production of isotopically labeled (
15

N, 
15

N/
13

C) human GMPK for 

NMR structure elucidation 

Structure elucidation by NMR requires a large quantity and high quality of isotopically labeled 

recombinant protein (
15

N, 
15

N/
13

C), the production of which is costly and time-consuming. 

A low yield of hGMPK was observed in minimal growth media using the glycerol stock made 

with a selected colony. Therefore, the double-colony selection procedure was used to optimize 

the yield which is one of the most important factors for high-level protein production using high- 

cell-density bacterial expression methods [102]. Using this optimized protocol the hGMPK yield 

was increased 8-fold utilizing the unlabeled M9 minimal growth medium (see section 2.1.9.1). 

The hGMPK[pET-14bSUMO∆Thr] construct was transformed into the BL21(DE3)pLysS cells 

as described in section 2.2.4.5, and an ampicillin (100 µg/ml)/chloramphenicol (20 µg/ml)-

containing agar plate was streaked and incubated at 37 
o
C overnight. 5 ml LB containing 

ampicillin/chloramphenicol was inoculated with a single colony from the agar plate and cells 

were grown up to an optical cell density at 600 nm (OD600) of 0.7. Approximately 5 µl of the cell 

suspension was spread onto an agar plate with the corresponding antibiotics and incubated at 37 

o
C overnight. For 1

st
 colony selection, four colonies were selected from the LB agar plate, and 

 Fig. 2.4. QuikChange site-directed mutagenesis. Schematic overview of the QuikChange 

site-directed mutagenesis method, as described in the KAPA HIFi and Stratagene QuikChange 

protocol [101]. 
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each colony was inoculated into 5 ml LB containing ampicillin and chloramphenicol. They were 

incubated overnight at 37 
o
C with vigorous shaking at 250 rpm. 20 ml LB was inoculated with 

the 2 ml overnight cultures and incubated at 37 
o
C shaken at 250 rpm. Upon reaching OD600 of 

0.7, aliquots of 10 µl from each flask was stored at 4 
o
C for streaking purposes, and the rest of 

the cells were harvested by centrifugation at 5,000 x g for 25 min. The cell pellets were washed 

in 20 ml M9 salt solution (see section 2.1.9.1) to remove the LB medium left over and pelleted 

by centrifugation. For overexpression in minimal medium, each cell pellet was resuspended in 5 

ml (4-fold smaller volume) of M9 minimal medium and grown for 1 h at 37 
o
C. After 1 h 

incubation, protein expression was induced by adding 1 mM IPTG, and the cultures were left on 

vigorous shaking for 4 h at 37 
o
C. After 4 h induction, 200 µl of cell suspension was spun down 

at 6,000 x g for 5 min, and the supernatant was discarded. The cell pellets were resuspended in 

100 µl Laemmli sample buffer (see section 2.1.10) and heated at 95 
o
C for 5 min. SDS-PAGE 

was carried out for all four samples to check their levels of hGMPK expression. Only the colony 

which displayed the highest level of expression was selected for 2
nd

 round of selection. The 10 µl 

aliquot of highly expressed colony was used to streak an agar plate for overnight incubation at 37 

o
C. The procedure followed for the 2

nd
 selection was the same as for the 1

st
 selection. A 

permanent glycerol stock was made for the chosen colony from the 2
nd

 selection round and was 

used for any future overexpression of single-labeled (
15

N) and double-labeled (
15

N and 
13

C) 

production of hGMPK in labeled M9 minimal growth media. 

The optimized protocol developed for obtaining higher yield of isotope-labeled hGMPK was 

used to grow an overnight culture of hGMPK-expressing cells in 200 ml LB containing 

ampicillin and chloramphenicol at 37 
o
C shaken at 250 rpm [103]. The overnight 200 ml LB 

culture was added to 3,800 ml LB containing selection antibiotics making a final 4-litre culture. 

It was grown at 37 
o
C with rapid shaking until OD600 of ~0.7 was attained. The cells were 

harvested by centrifugation at 5,000 x g for 30 min. For excluding all nitrogen and carbon 

sources, the cells were washed and pelleted using M9 salt solution. The cell pellets were 

resuspended in 1 liter isotopically labeled (
15

N labeled, or 
15

N and 
13

C double-labeled) minimal 

growth medium at cell concentration fourfold (4X) greater relative to the cultures grown in LB 

medium. The M9 minimal medium employs 
13

C glucose for carbon labeling, and 
15

N ammonium 

chloride for 
15

N labeling. The minimal growth medium was simplified by replacing the 

commercially available Basal Vitamins Eagle Media [103] with thiamine vitamin only. The cells 
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were incubated at 37 
o
C on vigorous shaking for 1 h to allow the recovery of growth and 

clearance of unlabeled metabolites. After 1 h, the protein expression was induced by adding 1 

mM IPTG and incubating the cells for 4 h at 37 
o
C on constant shaking. The cells were harvested 

by centrifugation at 5,000 x g for 30 min and were either stored at -20 
o
C, or directly processed 

for protein purification as described in section 2.2.5.1. 

2.2.12 Enhancing cytotoxicity of 6-thioguanine by expressing human GMPK 

2.2.12.1 Cell-culture and stable HEK293 cell line 

To culture HEK293 cells, the standard complete DMEM medium was used which is DMEM 

supplemented with 10% heat-inactivated FCS and L-glutamine and maintained at 37 °C in 

humidified atmosphere containing 5% CO2. The HEK293 cells were seeded into 10 cm dishes 

and transfected with hGMPK[pEGFP-C1] and hGMPK[pEGFP-N1] using FuGene1 HD 

transfection reagent (Roche Mannheim, Germany) according to the manufacturer’s instructions. 

The standard complete DMEM medium was exchanged to complete DMEM supplemented with 

900 µg/ml of G418. The cells were observed after 7–10 days under an inverted light-microscope, 

and transferred to 12-well plates. After 2–3 days, the stable colonies were monitored using a 

fluorescence-microscope and further sub-cultured. The established stable cell lines were 

maintained in complete DMEM medium containing 300 µg/ml of G418 [85]. 

2.2.12.2 MTT cell proliferation/survival assay 

For 6-thioguanine (6-TG) dose-response analysis, HEK293 stable cell lines were seeded in 24 

well plates. 6-thioguanine (stock solution; 1.5 mM in sterile cell culture medium) in the range of 

0.001–1000 µM was added in triplicate for each concentration. After 48 h, the MTT proliferation 

assay was performed according to the supplier’s instructions (Sigma-Aldrich). MTT stock 

solution was prepared by dissolving MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) in RPMI-1640 without phenol red to a final concentration of 5 mg/ml. The stock 

solution was filtered through 0.2 µm filter and was added to each well being assayed, equal to 

one-tenth of the original culture volume, and incubated for 30 min to 3 h. At the end of the 

incubation period, the medium was removed, and the converted dye was solubilized in acidic 

isopropanol (0.04-0.1 N HCl in absolute isopropanol). Absorbance of converted dye was 

measured at a wavelength of 570 nm with background subtraction at 630–690 nm. The 
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measurements were performed by using a JASCO V-650 UV-Vis spectrophotometer. Results 

obtained at different concentrations of 6-TG were compared to the wells without 6-TG (control), 

and the percentage cell survival was plotted against concentration of 6-thioguanine. 

2.2.12.3 Confocal microscopy 

Cells were grown on Lab-Tek Chamber slides (Thermo Fisher Scientific), fixed with 4% 

paraformaldehyde for 10 min at room temperature, and incubated with DAPI (300 nM) for 2 min 

at room temperature. The cover-slips were mounted in Vectashield medium (Vector 

Laboratories). The images were taken with a 40x objective on a Leica SP5 confocal microscope. 

2.2.12.4 Western-blot analysis 

The stable HEK293 cells cultured in 24-well plates were washed with 1X PBS and lysed in lysis 

buffer A (see section 2.1.10). Cells were immediately scraped off the plate, transferred to 

microcentrifuge tubes and kept on ice. For complete cell lysis, the extract was sonicated 3 times 

for 10-15 s to shear the DNA and reduce sample viscosity. The lysates were spun down at 16,000 

x g for 20 min in a 4 
o
C pre-cooled centrifuge. Supernatants were transferred to fresh 

microcentrifuge tubes and placed on ice. Protein concentration was determined by the Bradford 

dye-binding assay. For SDS-PAGE, 20 µg of each sample was mixed with equal volume of 2X-

Laemmli sample buffer and heated at 95 
o
C for 5 min. The samples (about 20 µg of protein) were 

loaded on a 12.5% SDS-gel and run at 100-150 V for about 1 h. To transfer the proteins from 

SDS-gel to a nitrocellulose membrane, the transfer sandwich was assembled and the cassette was 

placed in the transfer tank. An ice block was placed on one side in the tank. Transfer buffer (25 

mM Tris pH 8.3, 190 mM glycine and 20% methanol) was added to the transfer tank, and protein 

transfer was performed at 10 mA constant current overnight in a cold room. The blot was rinsed 

in Millipore water and stained in Ponceau S solution (0.2% (w/v) Ponceau S and 5% glacial 

acetic acid) to check the transfer quality. Ponceau S stain was rinsed off by washing three times 

in TBST (Tris-buffered saline with Tween 20) solution (20 mM Tris pH 7.5, 150 mM NaCl and 

0.1% Tween 20). The nitrocellulose membrane was incubated in blocking buffer (5% (w/v) 

skimmed milk in TBST) for 1 h at room temperature. The membrane was incubated in the 

primary antibody solution (anti-GFP IgG antibody in 1% milk in TBST) for 2–3 h at room 

temperature. The blot was washed three times in TBST and incubated in the horseradish 
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peroxidase-conjugated anti-rabbit IgG in 1% milk for 1 h at room temperature. It was rinsed 3-5 

times in TBST. The membrane was incubated for one minute in a 1:1 mixture (1 to 2 ml each) of 

the two ECL solutions (Roche) and the chemiluminescent signals were captured by the Lumi-

Imager workstation (Boehringer). 

2.2.13 Expression and purification of human mitochondrial thymidine kinase  

The synthetic and codon-optimized DNA of the long isoform (UniProt O00142-1, 265 amino 

acids) of human mitochondrial thymidine kinase (hTK2) was obtained from GeneArt (Life 

Technologies). It had a prospective 38-amino acid N-terminal signal sequence (predicted by 

MITOPROT proteomics tool) for translocation into mitochondria. In order to remove the N-

terminal signal peptide and to study the effect of truncation on the localization, solubility, and 

activity of the enzyme, six truncated forms were generated using PCR amplification. NdeI and 

BamHI cloning sites were incorporated at the 5´ and 3´ ends of all fragments, respectively. Open 

reading frames (ORF), and the corresponding oligonucleotides used for the amplification of full-

length hTK2 and its truncated forms are shown in Table 2.2 (section 2.1.2) and Table 2.4.    

  Table 2.4 Truncated forms of hTK2 

             hTK2                    Description Oligonucleotides 

                                          

hTK2  
Synthetic full-length hTK2, 795 bp 

ORF, 265 amino acids (aa) in length 

hTK2-F and hTK2-R 

                                     

hTK2-Δ44N 
N-terminal 44 amino acids were 

truncated, 666 bp, 222 aa  

hTK2-∆44N-F and hTK2-R 

                                     

hTK2-Δ44N/Δ8C 
N-terminal 44 and C-terminal 8 amino 

acids were truncated, 642 bp, 214 aa  

hTK2-∆44N-F and hTK2-∆8C-

R 

                                     

hTK2-Δ44N/Δ25C 
N-terminal 44 and C-terminal 25 amino 

acids were truncated, 591 bp, 197 aa 

hTK2-∆44N-F and hTK2-

∆25C-R 

                                     

hTK2-Δ50N 
N-terminal 50 amino acids were 

truncated, 648 bp, 216 aa 

hTK2-∆50N-F and hTK2-R 

                                     

hTK2-Δ50N/Δ8C 
N-terminal 50 and C-terminal 8 amino 

acids were truncated, 624 bp, 208 aa 

hTK2-∆50N-F and hTK2-∆8C-

R 

                                     

hTK2-Δ50N/Δ25C 
N-terminal 50 and C-terminal 25 amino 

acids were truncated, 573 bp, 191 aa 

hTK2-∆50N-F and hTK2-

∆25C-R 
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The synthetic full-length hTK2 containing plasmid was used as a template in all cases. The 

Phusion High-Fidelity DNA polymerase (New England BioLabs) was used according to the 

manufacturer’s instructions. PCR amplification, restriction digestion and ligation reactions were 

carried out as described in sections 2.2.4.1 to 2.2.4.4. For improved expression and solubility, 

PCR fragments were cloned in a variety of E.coli expression plasmids having different fusion 

tags (Table 2.5). The positive clones of the six truncated hTK2 variants were confirmed by 

restriction enzyme digestion and sequence analysis (Seqlab, Goettingen). As it was found that 

hTK2 has little solubility and mostly forms inclusion bodies under native folding conditions 

when expressed in E.coli cells, different expression and purification conditions were tested for 

optimizing the solubility of hTK2. For that purpose, various E.coli expression strains and several 

experimental parameters were used as shown in Table 2.6 below. 

After a series of experiments, a protocol was optimized for the expression and purification of 

hTK2 in soluble and active form as described here in detail. A starter culture was prepared by 

inoculating 50 ml LB (having appropriate antibiotics) with a single colony of each hTK2 

construct and incubated overnight at 37 
o
C with rapid shaking (250 rpm). The starter culture was 

added to 950 ml LB containing the required antibiotics and incubated at 25 
o
C with rapid shaking 

at 250 rpm until the OD600 reached ~0.65. For protein induction, 0.4 mM IPTG was added, and 

the culture was incubated at 18 
o
C for 16 h on constant shaking. The cells were harvested by 

centrifugation at 4,000 rpm for 30 min at 4 
o
C and the pellet was resuspended in lysis buffer B 

(see section 2.1.10). The cells were lysed by sonication, and the lysate was cleared by 

centrifugation at 10,000 x g for 1 h at 4 °C. The purity and solubility of hTK2 was tested by 

SDS-PAGE which indicated improved solubility. For affinity chromatography purification, 500 

mg Protino Ni-IDA (Macherey-Nagel, Düren, Germany) was added to the supernatant and mixed 

on an orbital shaker for 3 h at 4 
o
C in the cold room. The resin was washed two times with 40 ml 

of wash buffer-1 (see section 2.1.10) in a Falcon tube which was rotating on an orbital shaker for 

30 min at 4 
o
C. The resin was then resuspended in wash buffer-2 (see section 2.1.10) and 

incubated on an orbital shaker at 37 
o
C for 15-30 min. This step was necessary to remove any 

tightly bound E.coli chaperones (e.g. GroEL). Finally, the resin was washed with wash buffer-3 

(section 2.1.10) for 30 min on an orbital shaker at 4 
o
C. The 60 kDa fusion tag “His14-MBP-

SUMObr” was cleaved by treating the fusion enzyme with SUMO-protease (yeast SUMO-
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protease to protein molar ratio, 1:100) for 2-3 h at room temperature. After on-beads cleavage, 

the enzyme was released into the solution.   

                 Table 2.5 E.coli expression plasmids used for cloning of hTK2 

  

 

Plasmid Fusion tag Cleavage site Cloning site 

pET-14b His6 LVPR/GS 

(Thrombin) 

NdeI-BamHI 

pET-14bSUMOThr His6-

SUMOThr 

SUMO-GG/ 

(SUMO protease 

or thrombin) 

NdeI-BamHI 

pET-14bSUMOΔThr His6-SUMO SUMO-GG/ NdeI-BamHI 

pET-14bSUMO- 

PeriPep 

His6-SUMO-

PL 

PL(22 aa)/ 

(E.coli protease) 

NdeI-BamHI 

pET-14bMBPcyt His6-MBPcyt LVPR/GS NdeI-BamHI 

pET-14bMBPperi His6-MBPperi LVPR/GS NdeI-BamHI 

pK49 His14-MBP-

SUMObr 

SUMO-GG/ 

(SUMO protease) 

NdeI-BamHI 

pGEX-RB GST LVPR/GS NdeI-BamHI 

pJC20HisN His10 DDDDK/ 

(Enterokinase) 

NdeI-BamHI 

pJC20HisC His6 

(C-terminal) 

None NdeI-BamHI 
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   Table 2.6 Conditions for improved solubility of hTK2 

E.coli expression strains Conditions used for improving solubility and yield 

of the recombinant hTK2 

 BL21(DE3) 

 BL21(DE3)pLysS 

 C41(DE3) 

 Origami B(DE3) 

 Rosetta-gami B(DE3) 

 

 Liquid media used: LB, TB and autoinducing 

media 

 Incubation temperature tested: 16 
o
C, 18 

o
C, 21 

o
C, 

25 
o
C & 37 

o
C 

 IPTG concentrations used.: 0.1 mM, 0.25 mM, 0.4 

mM, 0.5 mM & 1 mM 

 Duration of induction: 2 h, 3 h, 6 h, 16 h & 24 h 

 Detergents/reagents used for improving solubility: 

Triton X-100, urea, CHAPS, sarkosyl & L-arginine 

 

For high purity, hTK2 was further purified by anion exchange chromatography using DEAE-

Sepharose FF (GE Healthcare Life sciences, 1 ml prepacked column) connected to the 

‘ÄKTAprime plus’ system (GE Healthcare Life Sciences, Uppsala, Sweden). Buffer A (25 mM 

HEPES pH 7.5, 4.4 mM MgCl2, 5% glycerol, and 2 mM DTT) was used for column 

equilibration and binding of hTK2 to the resin. For elution of hTK2, a salt gradient of 0-1 M 

NaCl was applied in a total volume of 25 ml with flow rate of 0.5 ml/min. Fractions of 250 µl 

were collected, and their purity was tested by SDS-PAGE. Aliquots with highly pure hTK2 were 

pooled, concentrated by Amicon ultracentrifugal filter units (3 kDa MWCO). Using this protocol, 

a final yield of 4-8 mg/l culture was obtained. The activity was determined by the NADH- 

dependent spectroscopic assay (see section 2.2.6). 

2.2.14 Intracellular localization of hTK2 

Most mitochondrial proteins are first fully synthesized as precursor proteins in the cytosol and 

then translocated into mitochondria by a post-translational mechanism. One or more signal 

sequences direct all mitochondrial precursor proteins to their appropriate mitochondrial 

subcompartments. The full-length hTK2 (265 aa) has a putative 38-amino acid N-terminal signal 

sequence that directs its transport into the mitochondrial matrix space. For determining its 

subcellular localization in mammalian cells such as HEK293 cells, it was cloned into a 

mammalian vector pEGFP-N1 (4.7 kb). The two truncated forms of hTK2 which lack the N-
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terminal signal sequence i.e., hTK2-Δ44N and hTK2-Δ44N/Δ8C were cloned into another 

mammalian plasmid pEGFP-C1 (4.7 kb). The full-length hTK2 cloned into pEGFP-N1 was 

expressed as a fusion to the N-terminus of EGFP, while the two N-terminally truncated forms 

cloned into the MCS of pEGFP-C1 were expressed as fusions to the C-terminus of EGFP. All 

three plasmids were used to transfect HEK293 cell lines (see section 2.2.12.1), and after 24 h 

incubation at 37 
o
C the cells were fixed for analysis on a confocal microscope (see section 

2.2.12.3). The confocal images indicated that the full-length hTK2 was translocated into 

mitochondria whereas the two truncated forms without the N-terminal signal sequences remained 

in the cytosol. 

2.2.15 Immunodetection of hTK2 by Western blot 

For the immunodetection of hTK2 in mammalian cells, polyclonal antibodies were produced 

against hTK2-∆44N by Seqlab (Goettingen) by immunizing rabbits. HEK293 cells were 

transfected (see section 2.2.12.1) with full-length hTK2[pEGFP-N1]), and two truncated 

constructs i.e., hTK2-Δ44N[pEGFP-C1] and hTK2-Δ44N/Δ8C[pEGFP-C1]. After 24 h 

incubation at 37 
o
C, the cells were analyzed for the expression of hTK2 as EGFP fusion proteins. 

The cells were lysed and subjected to Western blotting (see section 2.2.12.4) using the 

polyclonal antibodies-containing serum for detection. 

2.2.16 Directed evolution and screening of hTK2 mutants with enhanced activity towards 

phosphorylation of antiviral and anticancer nucleoside analogs 

Directed evolution is a powerful tool for engineering enzymes to enhance their activity, and to 

explore their structure-function relationships. It is an important way to search for a large 

combination of sequences for rare molecules displaying specific predetermined functions. 

Although there are many ways to introduce genetic diversity, error-prone PCR is one of the most 

common methods for creating combinatorial libraries of a single gene [90]. DNA libraries of 

hTK2 mutants were generated using random mutagenesis by error-prone PCR. It was aimed to 

evolve hTK2 for increased activities against anticancer and antiviral nucleoside analogs such as 

gemcitabine and azidothymidine (AZT). One of the protocols [91] introduces an average error 

rate of ~3.5% per nucleotide per PCR reaction. Following that protocol, a total of 16 error-prone 

PCR reactions were carried out using conditions that reduce the fidelity of Taq DNA polymerase 
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during DNA synthesis. The whole procedure of mutagenesis and the two-step screening in a 

thymidine kinase-deficient KY895 E. coli strain is shown schematically below. 

                  

 

 

hTK2-∆44N/∆8C[pGEX-RB] was used as a template, and the PCR-amplified DNA fragments 

were treated with NdeI and BamHI-HF restriction enzymes to produce sticky ends. All fragments 

were cloned into the pGEX-RB vector via NdeI and BamHI cloning sites. The clones were used 

to transform a thymidine kinase-deficient (F
-
, tdk

-
, 1-ilv) E.coli strain, KY895 [92]. The 

transformed cells were plated onto TK selection plates (2% peptone, 0.5 % NaCl, 0.2% glucose, 

10 µg/ml 5-fluorodeoxyuridine, 2 µg/ml deoxythymidine, 12.5 µg/ml ribouridine, 1.5% agar and 

100 µg/ml ampicillin) for primary selection screening based on TK complementation efficiency 
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of mutants [92-94]. The TK-selection plates were incubated at 37 
o
C for 24 h. The colonies per 

plate were counted and re-streaked on TK-selection plates to confirm TK-complementation and 

phenotypes. About 200 colonies were selected and used for the purification of plasmids having 

hTK2-∆44/∆8C mutant inserts. They were labeled and used for secondary selection screening 

based on M9 plates containing the following nucleoside analogs: gemcitabine, AZT, Ara-C, 

GCV, BVDU and Ara-T. One-liter of M9 minimal growth medium (see section 2.1.9.1) was 

supplemented with 15 g of agar, 4 mg of Ile and Val. About 200 µl of the nucleoside analog 

solutions with varied concentrations were spread on the M9 agar plates. The plates were streaked 

with the mutant colonies from the 1
st
 screening. All M9 agar plates were incubated at 37 

o
C for 

24 h, and the sensitivity of mutants to the nucleoside analogs was identified in the form of no 

growth. The LD100 (the lowest concentration of a nucleoside analog that causes 100% lethality of 

KY895 strain transformed with hTK2 mutant in pGEX-RB vector) was calculated for all 200 

colonies. 

2.2.17 Expression and purification of E.coli guanosine-inosine kinase 

The E.coli guanosine-inosine kinase (UniProt P0AEW6-1, gsk, ecGSK, 434 aa) phosphorylates 

guanosine and inosine nucleosides to their respective monophosphates. The ORF (open reading 

frame) of full-length ecGSK (1302 bp) and its three truncated forms were PCR-amplified from 

E.coli XL1-Blue genomic DNA using Phusion High-Fidelity DNA polymerase (New England 

BioLabs). The truncated forms generated were ecGSK-∆30N (N-terminal 30 aa truncated, 1215 

bp), ecGSK-∆21C (C-terminal 21 aa truncated, 1239 bp), ecGSK-∆30N/∆21C (N-terminal 30 aa 

and C-terminal 21 aa truncated, 1152 bp). Oligonucleotides used for the ecGSK amplification are 

listed in Table 2.2 (section 2.1.2): the forward oligo ecGSK-F and reverse oligo ecGSK-R were 

used for the amplification of full-length ecGSK; oligo ecGSK-∆30N-F and oligo ecGSK-R for 

amplifying ecGSK-∆30N; oligo ecGSK-F and oligo ecGSK-∆21C-R for amplifying ecGSK-

∆21C; oligo ecGSK-∆30N-F and oligo ecGSK-∆21C-R for amplifying the double truncated 

construct, ecGSK-∆30N/∆21C. In all cases, NdeI and BamHI sites were incorporated into the 

forward and reverse primers, respectively. The four amplicons were treated with NdeI and 

BamHI-HF restriction enzymes to create sticky ends and were ligated into pET-14bSUMO∆Thr 

having an N-terminal His6-SUMO tag. The sequence-verified (Seqlab, Goettingen) recombinant 

plasmids were used to transform BL21(DE3)pLysS cells for expression. All four constructs were 
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expressed and purified by affinity chromatography using Protino Ni-IDA resin (see section 

2.2.5.1), anion exchange chromatography using DEAE Sepharose FF column, and finally by gel 

filtration chromatography using Superdex 200 column (GE Healthcare). Purity of the purified 

ecGSK was tested by 12% SDS-PAGE and the protein concentration was determined by the 

Bradford assay. The enzymatic activity was determined by the NADH-dependent spectroscopic 

assay (see section 2.2.6). The highly pure and homogeneous ecGSK protein was used for 

crystallization experiments and for limited proteolysis. Actually, the truncated forms generated 

for ecGSK as described above were based on the results of limited proteolysis, IUPred prediction 

and secondary structure prediction analysis. Limited proteolysis was used to identify and remove 

the highly flexible (e.g. loops) or unfolded regions from ecGSK to optimize the sample for 

crystallization [313]. In this method, ecGSK (~0.7 mg/ml) in separate microtubes was treated 

with different proteases such as chymotrypsin, Gluc-C, subtilisin, and thermolysin added in 1/10, 

1/100, and 1/1000 dilutions. All samples were incubated at 20 
o
C for 30 min. The reactions were 

stopped by adding Laemmli sample buffer and heated at 95 
o
C for 5 min. SDS-PAGE was 

performed to identify the cleavage products. 
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3. Results 

3.1 Biochemical characterization of human guanylate kinase 

3.1.1 Expression, purification, and kinetic characterization of wild-type hGMPK and site-

specific mutants 

To investigate the structural and functional properties of human guanylate kinase (hGMPK), the 

ORF (open reading frame) of full-length wild-type hGMPK (591 bp) was PCR-amplified from 

the template DNA gifted by Oliver Spangenberg [81]. It was previously reported that hGMPK, 

when purified as a recombinant protein produced in E.coli cells, was found to be catalytically 

inactive [16, 29, 34]. Therefore, our primary goal was to obtain hGMPK in catalytically active 

and highly pure form. For that purpose, it was cloned into the [pET-14bSUMO∆Thr] expression 

vector. In order to explain the critical role of certain residues in catalysis and domain movements, 

eight mutants were generated by QuikChange site-directed mutagenesis using the hGMPK-

containing pET-14bSUMO∆Thr plasmid as a template. These mutants were S37A, S37C, S37Y, 

S37P, N42P, Y81F, T83A, and T83S. The wild-type hGMPK and all mutant constructs were 

sequence-verified, and were transformed into the E.coli expression strain BL21(DE3)pLysS. The 

overexpression was induced in 1 liter lactose-containing auto-inducing media incubated 

overnight at 21 
o
C. Cells were harvested by high-speed centrifugation at 4 

o
C, and the pellets 

were lysed by sonication. Lysates were cleared by centrifugation and subjected to purification by 

affinity chromatography using Protino Ni-IDA resin. All purification steps were performed at 4 

o
C in the cold room. The purified fusion proteins carried N-terminal His6-SUMO tags which 

were cleaved by SUMO-protease added in 1:100 molar ratio of protease:protein and incubated 

for 30 min at room temperature. After cleavage, the His6-SUMO tag was removed from the 

respective hGMPK samples by adding Protino Ni-IDA resin to selectively bind the tag. Purity of 

the purified wild-type and mutant hGMPKs was tested by 12% SDS-PAGE (Fig. 3.1). To get the 

hGMPK in homogeneous form, it was further passed through a gel filtration column (Superdex 

75 10/300 GL, GE Healthcare). It eluted as a monomer when compared to the chromatogram of 

Bio-Rad gel filtration standard (Fig. 3.2). Protein yield from 1 liter-culture was in the range of 

10-15 mg. 

The wild-type hGMPK and all eight mutants were characterized by steady-state kinetics using 

the NADH-dependent enzyme coupled assay [84, 99, 100]. The GMP substrate concentration 
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was used in the range of 10-2500 µM keeping the hGMPK concentration constant at 18 nM. 

Turnover rates (kobs) were calculated, and the values were fit to the Michaelis-Menten equation 

(equation 1, section 2.2.6) using the command-driven interactive function plotting program 

Gnuplot 5.0. The kinetic parameters, Km and kcat, were calculated for all constructs from the plots 

(Fig. 3.3a-h); the data are summarized in Table 3.1. Seven mutants out of eight had decreased 

catalytic efficiency as compared to the wild-type hGMPK. Only one mutant, S37Y, was found to 

be catalytically inactive. Nevertheless, the recombinantly produced S37Y was a soluble and 

stable protein with no aggregation observed during its expression and purification. The loss of 

activity could be due to the disturbed microenvironment at the active site for binding the GMP 

substrate when serine was substituted with the aromatic tyrosine residue. 

  

 

 

 

 

 

 

 

 

                             

 

      

                                                                 

                                                                                                       

   

 

Fig. 3.1. SDS-PAGE of wild-type hGMPK and site-specific mutants. The wild-type 

hGMPK and its eight mutants were purified by affinity chromatography using Protino Ni-

IDA resin (Macherey-Nagel). The purity was tested by 12 % SDS-PAGE. Lanes: M, marker 

proteins (PageRuler Unstained Protein Ladder from Thermo Scientific); wt, wild-type 

hGMPK (~22 kDa); 1-8, S37A, S37Y, S37C, S37P, Y81F, T83S, T83A, and N42P mutants, 

respectively.  

hGMPK (~22 kDa) 
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Fig. 3.2. Monomeric form of hGMPK. (a) The protein eluted at a retention time (tR) of 

46.28 min when loaded on a Superdex 75 column (10/300 GL, 24 ml, GE Healthcare) using 

the buffer 50 mM HEPES pH 7.4, 300 mM NaCl, 5 % glycerol, and 1 mM DTT. The tR of 

46.28 min corresponds to the monomeric form (~22 kDa) of hGMPK when compared to the 

chromatogram of Bio-Rad’s gel filtration standard (data not shown). (b) 12 % SDS-PAGE of 

hGMPK after gel filtration chromatography. M, marker proteins (PageRuler Unstained 

Protein Ladder from Thermo Scientific) and S, hGMPK. 
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Table 3.1 Steady-state kinetic parameters for wild-type hGMPK and 

site-specific mutants. The kinetic parameters were calculated from the 

Michaelis-Menten plots given above. Values are represented as means ± 

standard deviation of duplicate measurements. nd, activity was not detected. 

 
      Enzyme Km (µM) for GMP    kcat (s

-1) kcat/Km (M-1 s-1) 
 

wt 25 ± 0.31 79 ± 0.02 316 x 10
4
 ± 0.06 

S37A  580 ± 0.51  14 ± 0.001  2.4 x 10
4
 ± 0.002 

S37C  260 ± 0.71     7 ± 0.002   3.0 x 10
4
 ± 0.003 

S37P 505 ± 0.85  2 ± 0.0001     0.3 x 10
4
 ± 0.0001 

S37Y  nd nd  nd 

N42P         50 ± 0.67    101 ± 0.003   202 x 10
4
 ± 0.004  

Y81F         290 ± 1.5    18 ± 0.005   6.0 x 10
4
 ± 0.002  

T83S         130 ± 0.78    171 ± 0.01 132 x 10
4
 ± 0.01  

T83A         110 ± 0.93    119 ± 0.006  108 x 10
4
 ± 0.006  

 

 

3.1.2 Substrate-induced conformational changes in hGMPK studied by small angle X-ray 

scattering  

To determine the four conformational states designated as open form (hGMPKapo), two partially 

closed forms (hGMPKPC), and completely closed forms (hGMPKclosed), we analyzed the low 

Fig. 3.3. Steady-state kinetic plots for wild-type hGMPK and site-specific mutants (a-

h). V/E versus [GMP] plot for (a) wild-type hGMPK and (b-h) mutants: b, S37A; c, 

S37C; d, S37P; e, N42P; f, Y81F; g, T83S and h, T83A. All measurements were 

performed at 25 
o
C in 1 ml of 100 mM Tris-HCl buffer pH 7.5, containing 100 mM KCl 

and 10 mM MgCl2. The enzyme concentration used was 18.4 nM in each case (0.4 µg of 

hGMPK with a molecular weight of ~22 kDa). Turnover rates (kobs) are expressed as a 

function of the GMP concentration. Error bars indicate standard deviation of duplicate 

measurements. The hyperbolic plots were prepared by the Gnuplot 5.0 software by non-

linear regression using the Michaelis-Menten equation (equation 1, section 2.2.6). 
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resolution structures of hGMPK by small angle X-ray scattering (SAXS) in the presence of 

different ligands. The SAXS measurements were done in collaboration with Prof. Simone 

Techert and Rohit Jain from the Structural Dynamics of (Bio)chemical Systems group at MPI-

bpc, Goettingen. 

For structural analysis of different conformations, SAXS measurements were performed at the 

third-generation cSAXS beamline (Paul Scherrer Institute, Swiss Light Source, Switzerland) in 

the presence of enzyme substrates and substrate analogs; GMP, AMP-PNP (non-hydrolyzable 

ATP-analog), GMP/AMP-PNP, GMP/ATP, and Ap5G (bi-substrate analog). The measured data 

was analyzed for conformational changes. There was no significant change in the activity of the 

enzyme after SAXS measurements (Table 3.2). Guinier analysis and the corresponding Rg 

(radius of gyration) values are shown in Table 3.3. As expected, the hGMPKapo molecule was 

bigger (~21 Å) in size than hGMPKclosed (~19 Å) and the two partially closed forms (19.7 Å & 

20.2 Å). It is also obvious that the product formation upon addition of ATP and GMP caused a 

small increase (~0.7 Å) in the hGMPKRO (reopened form) size as compared to that of closed 

forms. In agreement with the Guinier analysis, pair distance distribution function P(r) for 

different conditions indicated that the Dmax (maximum diameter from the pair-distance 

distribution function P(r)) of hGMPK decreased from 68 Å in the open form to ~55 Å in the 

closed form, and increased from ~55 Å to 63 Å in the reopened form after the enzymatic reaction 

(Table 3.3, and Appendix Fig. 1 & 2). Based on these observations, we conclude that the closed 

forms of hGMPK have more compact conformations than all other forms in solution: 

                                      hGMPKclosed > hGMPKPC ≥ hGMPKRO > hGMPKapo  

The scattering shapes of hGMPK in different conformations generated by GASBOR (program 

for ab initio reconstruction of protein structure) are shown in Fig. 3.4, and Appendix Fig. 2. The 

three-dimensional surface reconstruction of hGMPKapo in the absence of ligands is a globular 

domain with two projections originating from opposite sides of the molecule, large P1 and small 

P2. These two projections move with respect to the center of the enzyme molecule and become 

less conspicuous in the closed and reopened forms (Fig. 3.4, and Appendix Fig. 2). The 

superposition of closed and reopened forms of hGMPK onto its open form confirms the 

substrate-induced conformational changes due to domain movements (Fig. 3.4).  Major visible 

changes in the closed and reopened forms occur in the P1 and P2 regions (Fig. 3.4). 
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Table 3.2 Kinetic parameters of hGMPK at 25 
o
C 

 Substrate Km (µM) kcat (s
-1) kcat/Km (M-1 s-1) 

 

 

GMP 

 

 

25 

 

79 

 

316 x 10
4
 

 ATP  95 79  83 x 10
4
 

     

 

 

 

 

 

 

             

 

 

a 

a
 The kcat was calculated using the equation Vmax= kcat/[E] where [E] 

is total enzyme concentration and is based on one active site per 

monomer. Assay conditions are described in Materials and Methods, 

section 2.2.6. 

Table 3.3 Structural parameters for hGMPK in unliganded and nucleotide-

bound forms 
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The overall fold of hGMPK is very similar to other members of the NMP-kinases family, in 

particular to mouse and yeast GMPKs [10, 11, 117]. As the two mammalian enzymes share high 

amino acid sequence identity (88%), an in silico homology model was constructed for hGMPK 

Fig. 3.4. Superposition of the three-dimensional surface reconstruction of hGMPKapo on 

three other conformational forms of hGMPK. The open form (hGMPKapo) of hGMPK was 

overlaid on the two closed forms (hGMPKclosed1 and hGMPKclosed2) and one reopened form 

(hGMPKRO) using PyMOL to identify the structural regions that undergo main conformational 

changes upon binding of ligands. hGMPKapo is the unliganded form, hGMPKclosed1 is with 

bound GMP and AMP-PNP (non-hydrolyzable ATP analog), hGMPKclosed2 is with bound 

Ap5G (bi-substrate analog), and hGMPKRO is the form in the presence of GMP and ATP. P1 

and P2 are the two projections (structural regions) that move upon binding of nucleotides. 
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based on mGMPK as a template to highlight its structural features (Fig. 3.5). It has three 

dynamic structural regions called NMP-binding region (NMP-BR), CORE and LID regions 

interconnected by four hinges.                                           

 

               

 

 

 

 

 

To identify these three structural regions in the low resolution SAXS models of hGMPK, the 

SAXS structures of hGMPK were overlaid on the crystal structure of mGMPKclosed (PDB 1LVG), 

and regions were identified after manually aligning their surface topology (Fig. 3.6).  

 

Fig. 3.5. Ribbon diagram of hGMPK. The homology model for hGMPK was constructed 

using SWISS-MODEL (ExPASy server) based on the closely related (88% identical) mGMPK 

crystal structure (PDB 1LVG). The important structural regions designated as NMP-binding 

region (NMP-BR, blue), CORE (red) and LID (green), and the corresponding amino acid 

sequences are color coded. These three structural regions are interconnected by four dynamic 

hinges which are yellow color coded. The predicted secondary structures are 8 α-helices 

(orange bars) and 9 β-strands (blue arrows). The amino and carboxy termini are denoted by N 

and C, respectively. 
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Fig. 3.6. Comparison of the hGMPK SAXS structures with mGMPK crystal structure. 

Different SAXS models of human guanylate kinase (hGMPK, mesh representation) were 

overlaid on the crystal structure (PDB 1LVG) of mouse guanylate kinase (mGMPK, surface 

representation) using PyMOL (a-d). mGMPKADP+GMP is a closed form with bound ADP and 

GMP, hGMPKapo is unliganded form (open form), hGMPKAMP-PNP+GMP is a closed form with 

bound AMP-PNP (non-hydrolyzable ATP analog) and GMP, hGMPKAp5G is a closed form 

with bound Ap5G (bi-substrate analog), and hGMPKGMP+ATP is the reopened form attained 

after adding GMP and ATP substrates to hGMPK. The three distinctive structural regions in 

the mGMPK are color coded, and the two structural regions which undergo major 

conformational changes in hGMPK are labeled as P1 and P2 (a-d). 
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The P1 region in hGMPK aligns with the NMB-BR of mGMPK, whereas P2 aligns with the LID 

region. These two regions are highly prominent in the hGMPKapo (Fig. 3.6a) and become least 

conspicuous in the closed forms of hGMPK (Fig. 3.6b & c) due to their movements towards the 

center of the molecule for binding the substrates. Providing ATP and GMP to hGMPK, the 

reaction proceeds to produce GDP and ADP reversibly till equilibrium is established. When this 

catalytic reaction was allowed to occur, only P1 reappeared in the hGMPKRO (Fig. 3.6d), 

suggesting that the major movement is brought about by P1 (Fig. 3.6a-d). 

3.1.3 Structural characterization of hGMPK by NMR 

NMR spectroscopy is a powerful tool for determining the three-dimensional structure of proteins. 

Proteins are much closer to their natural state in NMR studies, which analyze proteins in solution, 

than they are in the crystalline form used for X-ray crystallography. Proteins which fail to 

crystallize like hGMPK as reported by Sekulic et al [11] are ideally studied by NMR for their 

structure-function characterization. The hGMPK which is a monomeric protein has the molecular 

mass of about 22 kDa (197 amino acids) and is within the size range (5-25 kDa) of proteins 

amenable to NMR studies. Nevertheless, structure elucidation by NMR requires a large quantity 

(0.5-1.5 mM in 260-550 µl volume) and high quality (>95% purity) of isotopically (
15

N, 
13

C) 

labeled recombinant protein, the production of which is a costly and time-consuming aspect of 

NMR studies. Therefore, I optimized a protocol for improved production of labeled hGMPK for 

its NMR structure determination. The work on NMR structure characterization of hGMPK has 

been done in collaboration with Dr. Donghan Lee and Dr. Thomas Michael Sabo from the 

Department of NMR-based Structural Biology, MPI-bpc Goettingen. 

3.1.3.1 Optimizing the yield of isotope-labeled (
15

N, 
15

N/
13

C) hGMPK 

A low yield of hGMPK (~1 mg/l culture) was observed when expressed in M9 minimal growth 

medium (see section 2.1.9.1) using a selected colony from its glycerol stock. One of the solutions 

to the problem was to use freshly transformed colonies for overexpression. However, this did not 

guarantee the reproducibility of higher yield. Sometimes it resulted in higher expression, other 

time very low expression. Such a situation becomes critical when dealing with the 

overexpression of isotopically labeled proteins. To solve this problem, I combined the protocols 

mentioned by Cai et al [105], Marley et al [103], and Sivashanmugam et al [102] with several 
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modifications to achieve higher yield of single- (
15

N) and double-labeled (
15

N and 
13

C) hGMPK. 

Our optimized protocol was based on the use of both the double-colony selection and the high 

cell-density method. The double-colony selection procedure was used to optimize the higher 

yield which is one of the most important factors for high-level protein production using high-

density bacterial expression methods [102, 103].       

3.1.3.1.1 Double-colony selection 

I combined double-colony selection with the high-density cell expression for the production of 

15
N- and 

13
C-labeled hGMPK. To avoid the loss of costly 

13
C-glucose and 

15
N NH4Cl, the 

method was first optimized using unlabeled M9 minimal growth medium (see section 2.1.9.1) 

and then applied to the recombinant production of single- and double-labeled hGMPK. I 

simplified the M9 minimal medium composition by omitting the commercially available “Basal 

Vitamins Eagle Media” and replacing it with only thiamine (1 µg/ml) ingredient [103]. No 

adverse effect was observed on the final yield of hGMPK. The hGMPK[pET-14bSUMO∆Thr] 

construct was transformed into BL21(DE3)pLysS cells and streaked on an agar plate. One of the 

colonies from the agar plate was used to inoculate LB medium for growing up to OD600 ~0.7, and 

was then spread on an agar plate for overnight incubation at 37 
o
C. For 1

st
 colony selection, four 

colonies were randomly selected and grown in enriched LB media up to the OD600 of ~0.7, and 

then the cultures were switched to fourfold smaller volume of M9 minimal media for induction 

with 1 mM IPTG for 4 h at 37 
o
C. Cells were harvested by centrifugation, and their level of 

hGMPK expression was tested by 12% SDS-PAGE (Fig. 3.7). 

One of the colonies (Lane-1, Fig. 3.7) displayed a comparatively higher level of hGMPK 

expression and was therefore used for the 2
nd

 round of selection. An aliquot of colony-1 was 

streaked on an agar plate for overnight incubation at 37 
o
C. Five colonies were chosen from the 

agar plate for hGMPK expression using M9 minimal media. The procedure followed for the 2
nd

 

selection was the same as for the 1
st
 selection. After expression in M9 minimal medium, cell 

pellets of the five selected colonies were subjected to SDS-PAGE (Fig. 3.8).  
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Fig. 3.8. 12% SDS-PAGE of hGMPK-expressing clones for the 2
nd
 colony selection. The 

expression was induced in M9 minimal medium (0.4% glucose and 0.1% NH4Cl) using 1 

mM IPTG at 37 
o
C for 4 h. Lanes: M, marker proteins; 1-5, five different colonies from the  

2
nd

 colony selection plate to check their levels of hGMPK expression as a fusion with N-

terminal His6-SUMO tag (~37 kDa). Colony-1(Lane-1) was selected for the next step of the 

3
rd

 colony selection. 

Fig. 3.7. 12% SDS-PAGE of hGMPK for the 1
st
 colony selection. The expression was 

induced in M9 minimal medium (0.4% glucose and 0.1% NH4Cl) using 1 mM IPTG 

incubating at 37 
o
C for 4 h. Lanes: M, marker proteins (PageRuler Unstained Protein Ladder, 

Thermo Scientific); 1-4, four different colonies picked up from the 1
st
 colony selection plate 

for testing their level of hGMPK expression as a fusion with N-terminal His6-SUMO tag (~37 

kDa); 5, control sample without IPTG-induction. Colony-1(Lane-1), due to its high level of 

hGMPK expression, was selected for the next step of the 2
nd

 colony selection. 
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If we compare the expression levels of the five colonies from Fig. 3.8, it is obvious that the 

colony corresponding to lane-1 has higher expression level for hGMPK; thus it was streaked on 

an agar plate for the 3
rd

 selection step. Six colonies were picked up from the 2
nd

 selection plate. 

The expression procedure followed was the same as for the 1
st
 selection process. After M9 

minimal expression for 4 h at 37 
o
C in the presence of 1 mM IPTG, the colonies were tested for 

their level of hGMPK expression (Fig. 3.9). 

 

 

                             

 

 

 

 

The SDS-PAGE profile of all six colonies was almost identical which means that no further 

improvement could be achieved after the 2
nd

 selection process. Therefore, 30% glycerol stock of 

the selected colony was prepared in LB and was stored at -80 
o
C for future use. In the next step, 

the high-expression colony was tested for the production of single (
15

N) and double-labeled (
15

N 

and 
13

C) hGMPK production using the high cell-density procedure given below. 

 

 

Fig. 3.9. 12% SDS-PAGE of hGMPK for 3
rd 

colony selection. The expression was induced 

in M9 minimal medium (0.4% glucose and 0.1% NH4Cl) using 1 mM IPTG at 37 
o
C for 4 h. 

Lanes: M, marker proteins; 1-6, six different colonies from the 3
rd

 selection plate. All colonies 

had almost identical levels of hGMPK after expression under similar conditions.  
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3.1.3.1.2 High cell-density method 

Protein yield is proportional to the cell-density of bacterial expression [102]. To attain high cell-

density, a rich medium like LB was used for the initial growth of E.coli cells to reach the mid- 

logarithmic phase (OD600 ~0.7) as shown schematically (Fig. 3.10). 

  

                              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Starting culture 

         (4 liters LB) 

OD
600

 ~0.7 

          Switch medium 

    (1 liter M9 minimal medium 

     
13

C-glucose and 
15

N NH
4
Cl) 

IPTG induction (1 mM) 
          OD

600 
~2.4 

Harvest cells 

       OD
600

 ~4.2 

                                  Protein purification 

                  (Affinity chromatography using Protino Ni-IDA resin and 
                    gel filtration chromatography using Superdex 75 column) 

37 oC 

37 oC, 1 h 

37 oC, 4 h 

Fig. 3.10. Schematic representation of the high cell-density method   
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At this point, the cultures were centrifuged, and the cells were resuspended in a fourfold smaller 

volume of M9 minimal medium as compared to the starting LB medium thereby attaining 

approximately four times higher OD600 ~2.4 [103]. After switching to M9 minimal growth 

medium, the bacterial cells were incubated at 37 
o
C for 1.0–1.5 h before IPTG-induction. This 

incubation period was essential for two reasons: First, to allow cells to clear unlabeled 

metabolites while preserving the labeled ingredients for protein synthesis after IPTG-induction; 

second, to let the cells adjust to the minimal medium conditions because the bacterial growth 

during the exchange period may slow down. After adding 1 mM IPTG, cells were incubated at 

37 
o
C for 4 h induction with rapid shaking at 250 rpm. The final OD600 obtained was ~4.2 

yielding an appreciable amount of hGMPK (~8 mg/l culture). Additionally, different 

experimental parameters were tested (data not shown) such as various incubation temperatures 

(21 
o
C, 25 

o
C, 30 

o
C, 37 

o
C), IPTG induction time (3 h, 4 h, 5 h, 6 h, overnight), IPTG 

concentrations (0.25 mM, 0.5 mM, and 1 mM). With all these modifications, I successfully 

optimized the protocol for high production of labeled hGMPK. 

Using the optimized protocol, ~8 mg of single/double-labeled (
13

C and 
15

N) hGMPK was 

reproducibly obtained from one liter of M9 minimal medium. This amount is 8 times higher than 

the traditional unmodified protocols. 

3.1.3.2 The
 15

N-
1
H HSQC spectra of 

15
N-labeled hGMPKapo (open form) and 

15
N-labeled 

hGMPKGMP (partially closed form) 

The 1 mM 
15

N-labeled hGMPK (~22 mg/ml) was titrated against increasing concentrations of 

the GMP substrate ranging from 3 mM to 18.6 mM. A significant change in the positions of 

residues was observed clearly indicating that the hGMPK molecule changes its conformation 

from a dilated open form (or apo-form) to a more compact partially-closed form (Fig. 3.11a). 

The magenta color in the Fig. 3.11a represents the apo-form of hGMPK whereas the cyan color 

represents the partially closed-form of the enzyme. 

3.1.3.3 The 3D HNCA and 3D 
15

N-resolved NOESY spectra of 
13

C/
15

N-labeled hGMPK 

About 177 residues out of total 197 amino acids of hGMPK have been identified from the 3D 

NMR spectra analysis. Of these, five C-terminal amino acids are shown in (Fig. 3.11b). Work is 

in progress for solving the three-dimensional structure of hGMPK. 
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a. 

b. 

Fig. 3.11. 
15
N-

1
H HSQC , 3D HNCA and 3D 

15
N-resolved NOESY spectra of hGMPK. (a) 

15
N-

1
H HSQC spectra of 1 mM 

15
N-labeled hGMPKapo (magenta) and 0.6 mM 

15
N-labeled 

hGMPK and 18.6 mM GMP (cyan) recorded at a proton frequency of 900 MHz and a 

temperature of 25 
o
C. Buffer conditions were 25 mM phosphate, pH 7.2, 10% D

2
O, 100 mM 

NaCl, and 1 mM TCEP. (b) Strips from a 3D HNCA and 3D 
15

N-resolved NOESY spectra of 1 

mM 
13

C/
15

N-labeled hGMPK recorded at a proton frequency of 800 MHz and a temperature of 

25 
o
C. Buffer conditions were 25 mM phosphate, pH 7.2, 10% D2O 100 mM NaCl, and 1 mM 

TCEP. The spectra were processed with NMRPipe software [314]. 
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3.1.4 Enhanced cytotoxicity of the antileukemic drug 6-thioguanine by expressing hGMPK 

in HEK293 cells 

6-Thioguanine is an FDA-approved antileukemic drug [107]. It is a prodrug that is activated 

intracellularly via the purine salvage pathway including the phosphorylation step catalyzed by 

nucleoside monophosphate kinase to produce 6-thioGDP from 6-thioGMP [18, 108]. After 

further phosphorylation to 6-thiodGTP, it is incorporated into DNA by DNA polymerases and 

exerts its cytotoxic effects in several ways, most importantly by stimulating the DNA mismatch 

repair system, producing DNA-damaging reactive oxygen species, and by causing mitochondrial 

dysfunction [17, 19, 109, 110]. Previously, it was reported that a conditional guanylate kinase 

deficient E.coli strain (TS202A(DE3)) when genetically complemented with wild-type mouse 

GMPK showed sensitivity to 6-TG. However, certain mutations in the GMPK caused resistance 

to the drug [16, 108]. This indicated the role of GMPK in the metabolic activation of 6-TG when 

tested in E.coli.  

We decided to use HEK293 cells as a model system as previously described for ganciclovir-

induced cell killing [111], and tested hGMPK in order to explore whether it would sensitize 

HEK293 cells in the presence of the medically most relevant prodrug 6-thioguanine. This 

question was important because if wild-type hGMPK increases the sensitivity of cells towards 6-

TG, then the next step would be testing an engineered enzyme to further reduce high doses of the 

drug required for cell killing. 

For that purpose, I generated two fusion constructs of hGMPK with N-terminal EGFP (EGFP-

hGMPK[pEGFP-C1]) and C-terminal EGFP (hGMPK-EGFP[pEGFP-N1]) as shown below: 
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3.1.4.1 Stable HEK293 cell lines expressing EGFP-hGMPK and hGMPK-EGFP 

The two constructs of hGMPK with N-terminal and C-terminal EGFP fusion tags were 

transfected into HEK293 cells to generate stable cell lines (see section 2.2.12.1). The C-terminal 

EGFP construct gave rise to very low transfection efficiency of hGMPK as compared to the N-

terminal EGFP. As the N-terminal EGFP had no adverse effects on the activity of the 

recombinantly produced hGMPK (using hGMPK[pET-14bEGFP-N] construct, data not shown), 

we decided to use the N-terminal EGFP fusion construct. The EGFP-hGMPK protein as 

observed by confocal microscope was highly expressed (Fig. 3.12a). Its stable cell lines were 

generated. The pEGFP-C1 plasmid expressing only EGFP was used as a control. Once stable 

transfection was achieved, expression levels of the whole cell lysates of EGFP-hGMPK and 

EGFP were analyzed by immunoblotting using polyclonal antibody against GFP (Fig. 3.12b). 

The immunoblot showed similar expression levels of EGP-hGMPK and EGFP. 

 

                      

                       

a. 
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3.1.4.2 Sensitivity of EGFP-hGMPK-expressing stable cell line to 6-thioguanine 

The sensitivity of stable cell lines expressing EGFP-hGMPK and EGFP was tested against varied 

concentrations of 6-thioguanine (6-TG) by using the MTT assay as described before (section 

2.2.12.2). All cell lines were treated with 6-TG in the range of 0.001-1000 µM in 24 well plates 

incubated at 37 
o
C for 48 h. Each concentration of 6-TG was tested in triplicate. The dose-

response curves were plotted for EGFP-hGMPK and EGFP by Gnuplot 5.0 software using a 

nonlinear regression (Fig. 3.13a & b). The EC50 value of EGFP-hGMPK was ~6 times lower 

than the control EGFP cells (Fig. 3.13c). Expression of hGMPK sensitized the cells even at 10 

nM concentration (3
rd

 data point in the plot) of 6-TG whereas the control EGFP-expressing cells 

were not affected at this concentration. 

 

 

 

Fig. 3.12. Confocal images and expression levels of EGFP–hGMPK and EGFP-

transfected HEK293 cell lines. (a) Confocal images were taken with Leica TCS SP5 with 40x 

objective. The nuclei were stained with DAPI. (b) Immunoblot of HEK293 cell lysates 

harboring EGFP-hGMPK and EGFP. Equal amounts (20 µg) of samples were loaded on 12.5 % 

SDS-PAGE. Proteins were transferred to a nitrocellulose membrane, and immunoblotting was 

performed using anti-GFP IgG antibody. 

b. 
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3.1.5 Electrochemical detection of guanosine monophosphate with a quantum dot-based 

biosensor modified with hGMPK 

A new approach has been developed to detect kinase-catalyzed reactions based on the light-

triggered electrochemical sensing of NADH in a three-step coupled-enzyme assay as described 

in section 2.2.7. We demonstrated the proof of concept of using a photochemical sensor for the 

HEK293 stable     

cell line                                  
6-TG EC50 ± SD 

       (µM) 

 

EGFP-hGMPK 

 

~10 ± 3 

EGFP ~62 ± 7 

a. 

c. 

b. 

Fig. 3.13. Sensitivity of EGFP-hGMPK and EGFP-expressing HEK293 stable cell lines to 

6-thioguanine. (a) & (b), 6-thioguanine (6-TG) dose-response curves of EGFP and EGFP-

hGMPK-expressing stable cell lines, respectively. Cell survival was measured by the MTT 

assay after 48 h incubation with 6-TG. Untreated samples (0 µM 6-TG) were set at 100% cell 

survival. Each data point (mean ± SD, n=3) is indicated as percentage of the value for control 

wells with no 6-TG. Sigmoidal curves were fitted to data points of stable cell lines over a 10
6
-

fold range of 6-TG concentrations (0.001-1000 µM) using Gnuplot 5.0 software (nonlinear 

regression fitting). (c) Determination of 6-TG EC50 for EGFP-hGMPK and EGFP HEK293 

stable cell lines. EC50 values are shown as mean ± SD.     
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electrochemical detection of a nucleotide kinase-catalyzed reaction. This novel technique senses 

the change in photocurrent in a GMP concentration-dependent way by a CdS/ZnS quantum dot 

(QD)-based electrode [87, 88]. 

First, we tested the validity of our approach for the control reaction between pyruvate (the 

product of pyruvate kinase in step 2) and NADH catalyzed by lactate dehydrogenase (LDH). The 

sensor electrode was composed of CdS/ZnS QDs which were layered on a gold electrode via 

stilbenedithiol (StDT). Varied concentrations of pyruvate substrate were used in the reaction 

buffer (100 mM HEPES pH 7.5, 100 mM KCl and 20 mM MgCl2) in a 1 ml electrochemical cell 

container. Electron hole pairs were generated upon illumination of QDs. The electron transfer 

takes place in between the CdS/ZnS QDs electrode and the NADH/NAD
+
 redox pair in solution. 

The current “I” was recorded before and after the reaction was completed at a constant bias 

voltage, U = +50 mV. It was found that the CdS/ZnS-modified gold electrode was acting as a 

transducer for the analysis of pyruvate which depletes NADH by oxidizing it into NAD
+
 in the 

LDH-catalyzed reaction. The change in pyruvate concentration was directly proportional to the 

change in photocurrent under pulsed illumination at a constant biased potential of +50 mV 

against Ag/AgCl (Fig. 3.14a & b). 

 

               

a. 

I 
(n

A
) 

[Pyruvate] (mM) 
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A linear relationship was observed between pyruvate concentration and the change in 

photocurrent. We coupled this control reaction to two other steps in the coupled assay as depicted 

in Materials and Methods section 2.2.7. In this case, the concentration of GMP (substrate of 

hGMPK) was altered in the range of 50 µM-1600 µM at constant concentrations of hGMPK and 

all other constituents of the assay. Each time, 5-10 min were provided for the reaction to 

complete. The change in photocurrent (∆I) was measured upon illumination of CdS/ZnS QDs 

before and after adding the GMP substrate to the reaction mixture. It was plotted against the 

respective GMP concentrations using OriginLab 8.1 software (Fig. 3.15a & b). The data showed 

Fig. 3.14. Dose-response curve for the detection of pyruvate in the control reaction. (a) 

Photocurrent detected before and after adding pyruvate (Py) to the reaction mixture. (b) The 

control reaction as shown below was catalyzed by lactate dehydrogenase (LDH) in a buffer 

(100 mM HEPES pH 7.5, 100 mM KCl and 20 mM MgCl2) containing 1.2 mM NADH at a 

constant bias potential of +50 mV and 25 
o
C. The concentration of pyruvate was varied from 

50 µM to 1600 µM. Before adding pyruvate to the reaction mixture, the current was recorded. 

Upon addition of pyruvate, the reaction was allowed to complete for 5-10 min. The current 

was detected again and the change in current “∆I” in nA was plotted against the respective 

pyruvate concentrations “c” in µM using the OriginLab software (version 8.1). Data points are 

represented as means ± standard deviation of triplicate measurements. 

 

 

 

b. 
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∆
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that GMP can be detected from a very low concentration like 50 µM to as high as 1200 µM 

under the specified experimental conditions. 

                           

                      

                         

 

 

 

a. 

Fig. 3.15. Dose-response curve for the detection of GMP in the electrochemical detection 

assay (see section 2.2.7). (a) Photocurrent detected before and after adding GMP to the 

reaction mixture. (b) The first reaction in the three-step coupled assay was catalyzed by 

hGMPK in the buffer (100 mM HEPES pH 7.5, 100 mM KCl and 20 mM MgCl2) at a 

constant bias potential of +50 mV and 25 
o
C. The current was recorded before adding the 

GMP substrate (50 µM-1600 µM) to the reaction mixture. The reaction was allowed to 

complete for 5-10 min and the current was detected again. The change in current “∆I” in nA 

was plotted against the respective GMP concentration in µM using the OriginLab 8.1 

software. Data points are represented as means ± standard deviation of triplicate 

measurements.  

b. 
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To shape our electrochemical detection system into a photosensor format, we immobilized the 

enzymes on the CdS/ZnS QDs electrode using layer-by-layer assembly of the polyelectrolytes, 

PSS (poly (styrene sulfonate)) and PAH (poly (allylamine hydrochloride)), as shown in Fig. 3.16 

[114, 115].  

 

 

 

 

 

 

                      

 

 

 

 

Human GMPK and two helper enzymes (PK and LDH) were deposited on the QDs electrode by 

two consecutive bilayers of PSS/PAH, with PAH forming the outermost layer. The overall 

structure of the assembled electrode can be expressed as (PSS/PAH)2/hGMPK;PK;LDH/QDs/ 

StDT/Au/Si. This geometry was used for the detection of the GMP-dependent oxidation current 

as shown in the dose-response curve in Fig. 3.17. 

 

 

 

 

Fig 3.16. Human GMPK immobilized on QDs/StDT/Au using polyelectrolyte bilayers. 

CdS/ZnS QDs were attached to the Au (gold) electrode surface via StDT (stilbenedithiol). The 

hGMPK and two helper enzymes (PK and LDH) were immobilized on the electrode surface by 

two bilayers of PSS (poly (styrene sulfonate)) and PAH (poly (allylamine hydrochloride)) 

polyelectrolytes using the layer-by-layer (lbl) assembly technique. 

 . 

PAH 

Enzymes 

QDs 

StDT 

Au electrode 

PSS 
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Fig 3.17. Dose-response curve for the detection of GMP by human GMPK 

immobilized on QDs/StDT/Au electrode surface. (a) Photocurrent detected before and 

after adding GMP to the reaction mixture. (b) The hGMPK enzyme was immobilized on 

the gold electrode surface at the bottom of the electrochemical cell using PSS and PAH 

polyelectrolytes bilayers (the specific geometry is shown in Fig. 3.16). The first reaction in 

the three-step electrochemical detection assay (see section 2.2.7) was catalyzed by hGMPK 

in the buffer (100 mM HEPES pH 7.5, 100 mM KCl, 20 mM MgCl2), and detected at a 

constant bias potential of +50 mV and 25 
o
C. The current was recorded before adding GMP 

to the reaction mixture. Various amounts of GMP (50 µM-1600 µM) were added to the 

reaction cell. The reaction was allowed to complete for 5-10 min, and the current was 

detected again. The change in current “∆I” in nA was plotted against the GMP 

concentration in µM using the OriginLab 8.1. Data points are represented as means ± 

standard deviation of triplicate measurements.  

 

a. 

b. 

 
I 

(n
A

) 

 [GMP] (µM) 

 

 [GMP] (µM) 

∆
I 

(n
A

) 



127 
 

The data revealed that the concentration of GMP can be detected within the range of 50 μM to 

800 µM by using this biosensor. Above 800 µM, the photocurrent response was saturated. The 

deposition of hGMPK in the above-mentioned setup successfully showed activity which is an 

important precondition for the sensor. However, the maximum current detected (37 nA) was 

comparatively lower than that of free enzyme in solution (45 nA). It may be due to the 

electrostatic interactions of the nucleotide substrates with the negatively (PSS) and positively 

(PAH) charged polyelectrolytes. The three dose-response curves mentioned above are compared 

in Fig. 3.18. 

  

              

           

 

 

 

Fig. 3.18. Comparison of the dose-response curves for the detection of GMP in the 

three-step electrochemical detection assay and pyruvate in the one-step control 

reaction. The change in current ∆I (nA) was plotted against the respective 

concentrations “C” of the substrate in µM: pyruvate as “Cpyruvate” and GMP as “CGMP” 

using the OriginLab 8.1 software. The control reaction is catalyzed by pyruvate kinase 

(PK). 
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3.1.6 Human GMPK-catalyzed reactions in polyelectrolyte containers of different shapes 

and sizes 

For the synthesis of calcium carbonate (CaCO3) microparticles of different shapes and sizes, the 

precipitation reaction was optimized by varying the concentrations of calcium chloride (CaCl2) 

and sodium carbonate (Na2CO3) solutions and stirring at 500 rpm for 30 min. To trigger the 

nucleation for anisotropic CaCO3 particles, initial salt concentrations and the ethylene glycol 

contents in the reaction medium were altered. Exterior and interior surface morphology, 

crystallinity, porosity and loading capacity of resulting CaCO3 particles were characterized. This 

work was done in collaboration with Dr. Andre Skirtach and Dr. Alexey Yashchenok from the 

Department of Interfaces, Max-Planck Institute of Colloids and Interfaces, Golm/Potsdam. 

As shown in Fig. 3.19, the initial salt concentration ratio plays a major role in the shaping 

process of CaCO3 particles. At a very high initial salt concentrations mixed in equal molar ratio 

(CaCl2: Na2CO3, 1 M: 1 M), the CaCO3 nuclei tend to form rhomboidal structures (Fig. 3.19a & 

d). The axis ratio of the fabricated structures varies between 1.68-1.75. The shape of the CaCO3 

particles shifted to elongated rhomboidal (or distorted ellipsoidal) when the amount of calcium 

ions are 10 times lower than the amount of carbonate ions (0.1 M: 1 M), (Fig. 3.19b & e). The 

axis ratio of these particles changes between 2.70-2.93. Spherical particles were obtained when 

the amount of carbonate ions was 10 times lower than the amount of calcium ions (1 M: 0.1 M), 

(Fig. 3.19c & f). 

Due to the rapid nucleation process, secondary nucleation was also observed which occured on 

the side surfaces resulting in irregular star-like, flower-like structures (Fig. 3.19a, b, g & h). 

However, we reduced the amount of these irregular structures from 35% to 15% by changing the 

solubility of salts via alteration of the ethylene glycol content (66.6-80%). 

In order to produce anisotropic layer-by-layer (LbL) capsules, particles were loaded with 

hGMPK enzyme. The enzyme-loaded particles were coated with consecutive LbL of positively 

charged PAH and negatively charged PSS (Fig. 3.20). The amount of protein loaded per particle 

was calculated by using Bradford dye-binding assay [147]. Actually, the protein loaded into the 

microparticles was determined indirectly by measuring the protein concentration and volume of 

the supernatant left after each protein loading step. By subtracting the amount of protein lost in 

the supernatant and during each washing step, the total protein entrapped in the particles was 
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calculated. The particles were counted in a hemocytometer to estimate the average amount of 

protein loaded per particle. In future work, more direct methods could be utilized like mass-

sensing with resonating microchannels due to its ability to measure single nanoparticle mass with 

sub-femtogram resolution [146]. The catalytic activity of the encapsulated enzyme was 

determined after coating with one and two bi-layers of polyelectrolytes using the standard 

NADH-dependent spectroscopic assay (see section 2.2.6). The specific activities for the 

hGMPK-loaded microparticles are summarized in Table 3.4. The highest loading capacity was 

observed for star particles, and the lowest was for cube particles. Nevertheless, after LbL coating, 

the activity of ellipsoidal microparticles was highly retained whereas that of other microparticles 

was decreased by increasing the number of coating layers up to four successive layers. 

 

               

 

 

 

 

Fig. 3.19. Scanning electron microscopy (SEM) images of calcium carbonate particles. 

The calcium carbonate particles were synthesized by mixing CaCl2 and Na2CO3 salts at 500 

rpm for 30 min in the presence of 66.6 % ethylene glycol (a-f), in 80 % ethylene glycol (g-l) 

medium. The bars on images (a-c) and (g-I) are 2 µm, (d-f) and (j-l) are 300 nm, respectively. 

Ca: CO3 at the upper left side of the figure represents the concentration ratios between CaCl2 

and Na2CO3 salts, respectively. 
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Polyelectrol-

yte layers 

0.5 µm 

spherical 

particles 

   (U/mg) 

3-5 µm 

spherical 

particles      

   (U/mg) 

     

Ellipsoidal 

particles 

    (U/mg) 

                

Star   

particles 

    (U/mg) 

                  

Cube    

particles 

    (U/mg)  

No layer, 

microparticles 

with adsorbed 

hGMPK 

 

4.55 

 

14.47 

 

14.1 

 

18.76 

 

0.58 

 

1
st
 layer 

coated 

(PAH) 

 

       1.69 

 

10.18 

 

13.8 

 

16.1 

 

0.44 

 

2
nd

 layer 

coated 

(PSS) 

 

4 layers coated 

(PAH→PSS→

PAH→PSS) 

 

0.54 

 

 

 

0.27 

 

4.82 

 

 

 

     3.22 

 

12.4 

 

 

 

      11.62 

 

8.0 

 

 

 

        5.1 

 

0.29 

 

 

 

        0.16 

Table 3.4. Specific activities of encapsulated human GMPK in polyelectrolyte 

containers of different shapes and sizes 
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The confocal and wide field images of rhomboidal, ellipsoidal and spherical calcium carbonate 

microparticles are shown in Fig. 3.20 a-e. 

                   

                           

 

      

                  

3.1.7 A novel spectrophotometric and fluorometric enzyme-coupled assay for human 

GMPK 

Human guanylate kinase (hGMPK), like other nucleoside/nucleotide kinases, is an important 

intracellular enzyme playing a critical role in the activation of several nucleoside analog 

prodrugs. The conventional assay used for activity measurements of nucleoside and nucleotide 

kinases is based on the absorbance of NADH at 340 nm [84, 99]. Nevertheless, there are certain 

disadvantages to this assay. One problem is that nucleoside/nucleotide analogs such as 6-

thioguanosine and 6-thioGMP absorb light at 340 nm making it aberrant to use the NADH-

dependent assay for monitoring phosphorylation of these nucleotides (Fig. 3.21). Besides that, it 

Fig. 3.20. Confocal and wide-field images of calcium carbonate microparticles. a, b & c 

are the confocal images of rhomboidal, ellipsoidal and spherical microparticles coated with 

polyelectrolytes (PAH and PSS) layers, respectively. d & e are the wide-field images of 

ellipsoidal and spherical microcapsules. 

d. e. 
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was highly useful to devise a more sensitive assay which could be used both in absorbance and 

fluorescence modes for the kinetic analysis of nucleoside/nucleotide kinases. For that purpose, 

we developed a four-step enzyme-coupled assay which can be used in absorbance mode at 570 

nm and in fluorescence mode at λex= 568 nm and λem= 584 nm (see Materials and Methods 

section 2.2.8).      

        

       

 

The assay was optimized by using the natural substrate of hGMPK, GMP. In the first step of the 

assay, GMP is phosphorylated to GDP by hGMPK using ATP as a phosphoryl group donor. In 

the second step, GDP and ADP are converted to GTP and ATP by pyruvate kinase using 

phosphoenolpyruvate as a phosphate donor resulting in the formation of pyruvate. The pyruvate 

is reacted with inorganic phosphate and oxygen in the third step catalyzed by pyruvate oxidase 

producing hydrogen peroxide (H2O2), carbon dioxide, and acetyl phosphate. In the fourth step, 

H2O2 is used by horseradish peroxidase (HRP) to oxidize nonfluorescent Amplex Red to 

resorufin which has excellent absorbance as well as fluorescence properties (see section 2.2.8). 

The pyruvate oxidase (lpPOX) used in this study was from Lactobacillus plantarum, and the 

lpPOX containing plasmid was kindly gifted by Prof. Kai Tittmann from the department of 

Bioanalytics, Georg-August-Universität Göttingen. I amplified the ORF (1809 bp) of the enzyme 

with the desired NdeI and BamHI restriction sites for cloning into the pJC20HisN expression 

vector. The protein was purified by affinity chromatography using Protino Ni-IDA resin 

Fig. 3.21. Absorbance maxima of 6-thioguanosine and NADH. Both 6-thioguanosine (6-

thioGuo) and NADH have λmax at 340 nm. 

 

 

 

 
Wavelength (nm) Wavelength (nm) 

Abs Abs 



133 
 

(Macherey-Nagel) and by gel filtration chromatography using a Superdex 200 column (GE 

Healthcare) (Fig. 3.22). 

 

                                                                 

 

 

 

 

 

All four reactions in the coupled assay were optimized in a stepwise manner starting from 

reaction 4, then combined reaction 3 and 4, afterwards 2, 3 and 4, and finally all four reactions 

(data not shown). The final reaction mixture for the standard assay in the absorbance mode 

contained 2 mM ATP, 5 nM hGMPK, 2 mM PEP, 1 unit of pyruvate kinase (PK), 1.2 µM of 

pyruvate oxidase (lpPOX), 0.2 mM thiamine pyrophosphate (TPP), 10 µM flavin adenine 

dinucleotide (FAD), 25 µM Amplex Red (resorufin, ε = 5.4 x 10
4
 M

-1
cm

-1
 at 570 nm) and 0.1 

µM HRP. The buffer-H (2X) used consisted of 100 mM HEPES pH 7.2, 20 mM MgCl2, 100 mM 

KCl and 50 mM potassium phosphate. The concentration of GMP was varied in a final reaction 

Fig. 3.22. SDS-PAGE of pyruvate oxidase. Pyruvate oxidase (lpPOX) from Lactbacillus 

plantarum was purified by affinity chromatography using Protino Ni-IDA resin (Macherey-

Nagel), followed by gel filtration chromatography using a Superdex 200 column (GE 

Healthcare). Purity of the homogeneous lpPOX was tested by SDS-PAGE (12%). Lanes: M, 

marker proteins (PageRuler Unstained Protein Ladder, Thermo Scientific), and S is lpPOX 

with N-terminal decahistidine tag (~69 kDa). 
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volume of 200 µl, and the absorbance was measured at 570 nm, 25 
o
C. As the reactions proceed, 

Amplex Red in the final step is converted into resorufin which gives high absorbance at 570 nm. 

Before determining the steady-state kinetic parameters, it was necessary to test the linearity of 

the reaction velocity as a function of the hGMPK concentration as shown in Fig. 3.23b.  It 

indicated that hGMPK can be used in the concentration range of 0.5 nM to 18 nM. Using 5 nM 

hGMPK, the concentration of GMP was varied up to 20 Km. Turnover rates (kobs) were calculated, 

and the values were fit to the Michaelis-Menten equation (see equation 1 in section 2.2.6) (Fig. 

3.23a) using Gnuplot 5.0 software. The Km calculated was 30 ± 5 µM, and kcat was 80 ± 4 s
-1

. 

These values are in good agreement with parameters determined by the standard NADH-

dependent spectroscopic assay (see section 2.2.6). The assay protocol as mentioned above can 

also be used in the fluorescence mode at excitation wavelength λex = 568 nm and emission 

wavelength λem = 584 nm [116]. 

 

 

 

  

 

                                                                                   

 

                                                       

 

Fig. 3.23. Validation of the spectrophotometric and fluorometric coupled-assay in 

absorbance mode. (a) Michaelis-Menten plot of hGMPK. Steady-state turnover rates (kobs) 

were measured for different concentrations of GMP using the newly developed 

spectrophotometric and fluorometric enzyme-coupled assay based on the use of Amplex Red. 

The Michaelis-Menten plot was generated by using Gnuplot 5.0 software. All measurements 

were performed at 25 
o
C in 50 mM HEPES pH 7.2, 10 mM MgCl2, 50 mM KCl and 25 mM 

potassium phosphate using 5 nM hGMPK. Error bars indicate ± standard deviation of 

triplicate measurements. (b) Different concentrations of hGMPK plotted versus the reaction 

rate in nM min
-1

.   

a. 
b. 
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3.2 Biochemical characterization of human mitochondrial thymidine kinase 

3.2.1 Cloning, expression, and purification of recombinant hTK2  

Five isoforms of human mitochondrial thymidine kinase (hTK2) are reported in the UniProt 

database among which the long isoform (UniProt O00142-1) is 265 amino acids (aa) in length 

[138]. For higher expression in E.coli, we used a synthetic and codon-optimized DNA of the 

long isoform of hTK2. Based on the comparison of hTK2 with the closely related nucleoside 

kinases from mouse (81% identity), rat (80% identity), and Drosophila melanogaster 

deoxyribonucleoside kinase (46% identity), and its IUPred (intrinsically unstructured proteins 

prediction tool) and secondary structure prediction analyses as indicated in Fig. 3.24, I generated 

a series of six truncated versions of hTK2 by PCR. These truncated forms were designated as 

hTK2-Δ44N (N-terminal 44 amino acids were truncated, 222 aa), hTK2-Δ44N/Δ8C (N-terminal 

44 aa and C-terminal 8 aa were truncated, 214 aa), hTK2-Δ44N/Δ25C (N-terminal 44 aa and C-

terminal 25 aa were truncated, 197 aa), hTK2-Δ50N (N-terminal 50 aa were truncated, 216 aa), 

hTK2-Δ50N/Δ8C (N-terminal 50 aa and C-terminal 8 aa were truncated, 208 aa) and hTK2-

Δ50N/Δ25C (N-terminal 50 aa and C-terminal 25 aa were truncated, 191 aa). The main purpose 

was to remove the N-terminal mitochondrial translocation signal peptide and to determine the 

effect of truncations on the solubility, stability, and activity of the enzyme [138, 140, 209, 210]. 

The truncation may also increase the chances of crystallization [143, 175, 177]. Nevertheless, in 

our hand, hTK2 (full-length and truncated forms) was insoluble and aggregated in inclusion 

bodies when produced as a fusion with only histidine-tag or with N-terminal His6-SUMO tag 

(SMT3, 101 aa) in BL21(DE3)pLysS cells.  

To get hTK2 protein in native soluble form, I followed a systematic protein expression and 

purification strategy. First, I tried to dissolve the inclusion bodies in detergents like Triton X-100, 

urea, CHAPS, sarkosyl, and L-arginine. However, refolding of hTK2 by dialysis against a native 

buffer did not recover thymidine kinase activity. Then, I ligated and expressed hTK2 in a variety 

of vectors with different N-terminal tags like His6, His6-SUMO, GST, His6-MBP, and His14-

MBP-SUMObr. In addition, a number of E.coli expression strains were tested including 

BL21(DE3), BL21(DE3)pLysS, C41(DE3), Origami B(DE3), and Rosetta-gami B(DE3). 

Moreover, expression conditions were varied, such as using different incubation temperature in 

the range of 16-37 
o
C, IPTG concentrations from 0.1 to 1 mM, induction time in the range of 2-
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24 h, and various liquid media including LB, TB, and lactose-containing auto-inducing media 

were used. After all these trials, finally, I succeeded in optimizing a protocol for obtaining hTK2 

in soluble and active form. This protocol is based on expressing hTK2 with N-terminal His14-

MBP-SUMObr tag (~60 kDa) in BL21(DE3)pLysS cells in LB medium for 16 h induction in the 

presence of 0.4 mM IPTG at 18 
o
C [82, 83]. It was observed that chaperones (GroEL/ES) were 

consistently copurified with the hTK2 fusion proteins [139]. For removal of these chaperones, I 

used one extra washing step in the presence of 5 mM ATP. After purification by affinity 

chromatography using Protino Ni-IDA resin (Macherey-Nagel), the His14-MBP-SUMObr tag 

was cleaved by SUMO-protease. The hTK2 was further purified by anion exchange 

chromatography using DEAE-Sepharose FF (GE Healthcare Life Sciences). The optimized 

protocol was applied to all six truncated forms of hTK2 as mentioned above. The final yield 

obtained was 4-8 mg/l culture. Purity and solubility of hTK2 were tested by 12 % SDS-PAGE as 

shown in Fig. 3.25 & 3.26 (only two truncated forms are shown). The activity was determined by 

the NADH-dependent spectroscopic assay (see section 2.2.6). It was found that the double-

truncated hTK2-Δ44N/Δ8C had higher catalytic efficiency (kcat/Km = 9.3 x 10
3
 M

-1
s

-1
) than the 

single-truncated hTK2-Δ44N (kcat/Km = 3.7 x 10
3
 M

-1
s

-1
). Nevertheless, no activity was detected 

for the rest of four truncated forms i.e., hTK2-Δ44N/Δ25C, hTK2-Δ50N, hTK2-Δ50N/Δ8C, and 

hTK2-Δ50N/Δ25C. The two truncated forms of hTK2 were screened for crystallization. After 

several screening trials, we obtained crystals for hTK2-Δ44N/Δ8C, but unfortunately the quality 

of the crystals was poor, and they diffracted badly. Besides that, we observed that the crystal 

formation was not reproducible, and also sometimes the protein tended to aggregate during 

purification. We hypothesized that hTK2 requires eukaryotic chaperones for proper folding and 

perhaps undergoes posttranslational modifications; therefore we opted for producing hTK2 in 

eukaryotic cells such as insect cells [144].  

In conclusion, we have developed an optimized protocol to produce hTK2 in soluble and active 

form in E. coli. In addition, we generated a shorter and more active form of hTK2. The 

crystallization experiments need to be further optimized. 
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Fig. 3.25. SDS-PAGE of the recombinant hTK2. Two truncated forms of hTK2 were 

expressed in BL21(DE3)pLysS and purified by affinity chromatography using Protino Ni-

IDA resin (Macherey-Nagel). Purity was tested by 12% SDS-PAGE. Lanes: 1, Molecular 

weight markers (in kDa); 2, cell lysate of  fusion hTK2-∆44N (~86 kDa); 3, cell lysate of 

fusion hTK2-∆44N/∆8C (~85 kDa); 4, supernatant of  fusion hTK2-∆44N ; 5, supernatant 

of fusion hTK2-∆44N/∆8C; 6, cell debris of  fusion hTK2-∆44N; 7, cell debris of fusion 

hTK2-∆44N/∆8C. 

The long isoform hTK2 (265 aa) 

was truncated into the following forms: 

1. hTK2-∆44N             (222 aa) 

2. hTK2-∆44N/∆8C     (214 aa) 

3. hTK2-∆44N/∆25C   (197 aa) 

4. hTK2-∆50N             (216 aa) 

5. hTK2-∆50N/∆8C     (208 aa) 

6. hTK2-∆50N/∆25C   (191 aa) 

Secondary structure prediction tools used: 

SOPM (Geourjon and Deléage, 1994)  

SOPMA (Geourjon and Deléage, 1995)  

HNN (Guermeur, 1997)  

MLRC (Guermeur et al., 1998)  

DPM (Deléage and Roux, 1987)  

DSC (King and Sternberg, 1996)  

Fig. 3.24. Truncations of hTK2. Six truncated forms of hTK2 were generated based on 

the IUPred and secondary structure prediction analysis.  

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopm.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_nn.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_mlr.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dpm.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dsc.html
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3.2.2 Intracellular localization of hTK2 

Most of the mitochondrial proteins which are translated in the cytosol have an N-terminal 

targeting signal sequence which directs the translocation of the protein into mitochondria. 

Although biochemical and cell fractionation experiments have shown that TK2 is localized in 

mitochondria [141], several published cDNA sequences of TK2 do not have N-terminal 

mitochondrial leader sequences [138, 142]. For mouse mitochondrial thymidine kinase (mTK2), 

in vitro translation and translocation experiments demonstrated that the N-terminal signal 

sequence directed the import of mTK2 into mitochondria. However, hTK2 as a fusion with GFP 

(TK2-GFP) when expressed in CHO (Chinese hamster ovary) cells, failed to be transported into 

mitochondria unlike mitochondrial deoxyguanosine kinase (dGK-GFP) [154]. The mitochondrial 

import signal was not identified in the predicted primary structure of hTK2. We asked the same 

question for hTK2, which has a putative 38-amino acid N-terminal signal sequence (MITOPROT, 

ExPASy server), to test its cellular localization. For that purpose, three constructs were generated, 

one full-length hTK2 (265 aa) cloned into pEGFP-N1 with C-terminal EGFP, and two N-

terminally truncated forms hTK2-∆44N and hTK2-∆44N/∆8C ligated into EGFP-C1 with N-

terminal EGFP for comparison. They were transfected into HEK293 cells, and the expression of 

fusion constructs was observed by confocal microscopy as shown in Fig. 3.27a-c. The full-length 

Fig. 3.26. SDS-PAGE of the purified hTK2. After purification by affinity chromatography, 

the N-terminal His14-MBP-SUMObr tag was cleaved by SUMO-protease and removed from 

the hTK2 samples. Lanes: 1, molecular weight markers; 2, hTK2-∆44N (26 kDa) after 

cleavage of the N-terminal tag; 3, hTK2-∆44N/∆8C (25 kDa) after SUMO-protease cleavage 

of the N-terminal tag; 4, 5, His14-MBP-SUMObr (~60 kDa) tag removed from the sample 

after cleavage. 
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hTK2 with the N-terminal mitochondrial signal sequence was translocated into mitochondria. In 

contrast, the two truncated forms were uniformly distributed in the cytoplasm. 

 

 

                                            

                                                                            

                          

 

 

 

 

3.2.3 Screening of hTK2 mutants for improved activity towards nucleoside analogs 

Seven libraries of hTK2 mutants were generated by error-prone PCR and were screened for their 

enhanced sensitivity towards anticancer and antiviral nucleoside analogs including gemcitabine, 

AZT (3´-azido-thymidine), Ara-C (arabinofuranosyl cytidine), BVDU (bromovinyldeoxyuridine), 

GCV (ganciclovir), cladribine, and 5-fluorouracil. All mutants were ligated into the pGEX-RB 

vector and were transformed into the TK-deficient E.coli strain KY895 [91, 92]. In the first 

screening step, all transformed colonies of mutants were plated on a TK-selection plate. Only 

a.  

Fig. 3.27. Subcellular localization of hTK2. Confocal images were taken with Leica TCS 

SP5 with 40x objective. The nuclei were stained with DAPI. (a) Mitochondrial translocation of 

full-length hTK2 by transfecting HEK293 cells with the fusion construct hTK2-EGFP 

[pEGFP-N1]. (b) Cytosolic localization of a single truncated hTK2 by transfecting HEK293 

cells with EGFP-hTK2-∆44N[pEGFP-C1]. (c) Cytosolic localization of a double-truncated 

hTK2 by transfecting HEK293 cells with EGFP-hTK2-∆44N/∆8C[pEGFP-C1].   

b.  c.  
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those mutants harboring thymidine kinase activity could grow on this plate. About 200 colonies 

were picked and used for streaking on M9 plates containing the nucleoside analogs as mentioned 

above with varied concentrations. The colonies with improved metabolic phosphorylation of 

nucleoside analogs would be more sensitive and could not grow. The LD100 (the lowest 

concentration of a nucleoside analog that causes 100% lethality of the KY895 strain transformed 

with a hTK2 mutant in pGEX-RB vector) was calculated for all 200 colonies, and it was found 

that mutants M5 and M17 showed 25 times enhanced sensitivity (LD100 of 5 µM) towards 

gemcitabine as compared to wild-type hTK2-∆44N/∆8C (LD100 of 125 µM). Similarly, fourteen 

mutants had 10 times higher sensitivity towards gemcitabine. Moreover, five mutants displayed 

three times lower LD100 values for AZT. Nevertheless, the amino acid distribution of these 

mutations needs to be determined by sequencing their ORF (open reading frames). In addition, 

these mutants will have to be produced as recombinant proteins and their activities on the 

corresponding nucleoside analogs need to be determined by the NADH-dependent spectroscopic 

assay [99]. 

3.3 Biochemical characterization of E.coli guanosine-inosine kinase  

3.3.1 Cloning, expression, and purification of recombinant E.coli guanosine-inosine kinase 

The E.coli guanosine-inosine kinase (ecGSK) uses both guanosine and inosine as substrates [148, 

149]. As the three-dimensional structure of ecGSK is not known, we aimed to recombinantly 

produce the enzyme and to crystallize it. For this purpose, the 1302 bp (434 aa) ORF (open 

reading frame) of ecGSK was amplified by PCR using the E.coli XL1-Blue genomic DNA as a 

template. It was cloned into our standard pET-14bSUMO∆Thr plasmid and expressed in 

BL21(DE3)pLysS. The enzyme was initially purified by affinity chromatography using Protino 

Ni-IDA resin, and then by anion exchange chromatography using DEAE Sepharose FF column 

and by gel filtration chromatography using Superdex 200 column. The purity of the enzyme was 

tested by 12% SDS-PAGE (Fig. 3.28). A good yield of ecGSK was obtained, about 20 mg/l 

culture. The activity was determined by the conventional NADH-dependent spectroscopic assay 

(see section 2.2.6) using guanosine as a substrate, resulting in Km of 55 µM and kcat of ~4 s
-1

. 
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3.3.2 Structural characterization of ecGSK 

The ecGSK with final concentration of 35 mg/ml (0.72 mM) containing 7 mM AMP-PNP and 

guanosine was screened for crystallization by using a 4-channel liquid handling robot (Genomic 

Solutions). Crystallization plates were stored in the monitoring system (Formulatrix) with 

automated imaging of the drops. Crystals were obtained after 5 days incubation as shown in Fig. 

3.29. This work was done in collaboration with Dr. Vladimir Pena and Dr. Tales Rocha de 

Moura from the Macromolecular Crystallography research group at the MPI-bpc, Goettingen. 

Unfortunately, the crystals diffracted badly, and the collected data was not good enough for 

three-dimensional structure analysis. In order to improve crystals quality, we used several 

approaches including the limited proteolysis method. The ecGSK was treated with proteases like 

chymotrypsin, Gluc-C, subtilisin and thermolysin that cut the protein normally at exposed 

regions such as loops and other highly flexible and disordered regions (Fig. 3.30).  

Fig. 3.28. SDS-PAGE of the purified ecGSK. The E.coli guanosine-inosine kinase (ecGSK) 

was purified by affinity chromatography using Protino Ni-IDA resin, followed by anion 

exchange chromatography using DEAE Sepharose FF (1 ml) and finally by gel filtration 

chromatography using Superdex 200 column. The purity was tested by 12 % SDS-PAGE. 

Lanes: M, marker proteins; S, ecGSK (48.45 kDa). 
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Fig. 3.29. Crystals of ecGSK. 

  

Fig. 3.30. Limited proteolysis of ecGSK. For limited proteolysis, 15 µl of ecGSK (0.7 

mg/ml, 48.45 kDa) was taken in 16 microtubes and 4 µl of chymotrypsin, Gluc-C, 

subtilisin and thermolysin in 1/10, 1/100, and 1/1000 dilutions were added to the respective 

tubes and incubated at 20 
o
C for 30 min. About 4 µl of Laemmli sample buffer (6X) was 

added to each tube and heated at 95 
o
C for 5 min. The samples were loaded on 12% SDS-

PAGE. Lanes: M, marker proteins ladder; 1, as a control and not treated with the protease; 

2-4, treated with chymotrypsin; 5, as a control; 6-8, treated with Gluc-C; 9, as a control; 

10-12, treated with subtilisin; 13, not treated with the protease; 14-16, treated with 

thermolysin.   
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As indicated in wells 11 and 14 in Fig. 3.30, a small fragment of ~2 kDa was removed from the 

ecGSK full-length protein. Taking this into consideration when analyzing the secondary structure 

by IUPred (Prediction of intrinsically unstructured proteins) (Appendix Fig. 5), it was found that 

there is a disordered structure at the C-terminus and a predicted random coil at the N-terminus. 

Based on these observations, I made three truncated constructs designated as ecGSK-∆30N (30 

amino acids truncated at the N-terminus), ecGSK-∆21C (21 amino acids truncated at the C-

terminus), and ecGSK-∆30N/∆21C (30 amino acids at the N-terminus and 21 amino acids at the 

C-terminus truncated) by PCR amplification. They were recombinantly produced in 

BL21(DE3)pLysS and purified to homogeneity by affinity chromatography followed by gel 

filtration chromatography using Superdex 200 column. The three truncated forms of ecGSK 

were tested for their enzymatic activities, but unfortunately they were found to be catalytically 

inactive although the recombinant proteins were soluble. Consequently we did not proceed with 

the crystallization trials of the truncated constructs. In the future, the crystallization of wild-type 

ecGSK will be optimized by testing different crystallization conditions. 
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4. Discussion 

4.1 Biochemical characterization of human guanylate kinase 

Guanylate kinase (GMPK) is an essential enzyme in purine nucleotide synthesis by catalyzing 

the phosphoryl group transfer from ATP to (d)GMP to form (d)GDP for RNA and DNA 

metabolism [11]. It has a critical role in the recycling of cGMP by converting GMP into GDP 

which is the first step in the cGMP cycle (cGMP→GMP→GDP→GTP→cGMP), and thereby 

regulates the supply of guanine nucleotides to signal transduction pathways [14, 15, 36, 38]. 

Besides its physiological role, the enzyme is required for the intracellular activation of several 

antileukemic and antiviral drugs including 6-thioguanine, azathioprine, 6-mercaptopurine, 9-β-

D-arabinofuranosylguanine (araG), acyclovir and ganciclovir [11, 17-19, 31, 34, 41]. In addition, 

guanylate kinases from pathogenic bacteria such as Staphylococcus aureus and Mycobacterium 

tuberculosis are potential chemotherapeutic targets [32, 33]. Membrane associated guanylate 

kinase (MAGUK) homologues are involved in complex multicellular functions like cell junction 

formation and mitotic spindle orientation, and it was reported that the guanylate kinase domain 

of MAGUKs, which lack kinase activity, has evolved from the guanylate kinase enzyme [40]. In 

spite of all these crucial roles, human guanylate kinase (hGMPK) is the least studied guanylate 

kinase in its family of enzymes with no structural information available. Therefore, I centered 

my work on the structural and functional analysis of this medically most relevant enzyme. 

4.1.1 Kinetic characterization of wild-type hGMPK and site specific mutants 

The hGMPK enzyme was produced as a recombinant protein with SUMO and GST tags, and 

was purified to high purity in enzymatically active form. This successful production is contrary 

to the published data reported by Brady et al [29], and Ardiani et al [16, 34] who obtained the 

hGMPK as inactive protein upon expression in E.coli. In our case, the fusion tags and the 

optimized expression and purification conditions might have played an important role in the 

stability and proper folding of hGMPK when produced in BL21(DE3)pLysS cells [98,118-120]. 

The hGMPK was found to be a monomer like Mycobacterium tuberculosis, yeast and 

mammalian GMPKs; in contrast, E.coli and Staphylococcus aureus GMPKs are multimeric [10, 

11, 33, 35, 58, 60]. Kinetic parameters determined for wild-type hGMPK were Km of 25 µM and 

kcat of 79 s
-1

 when GMP was used as substrate. These kinetic values are similar to those 
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previously reported for the human erythrocyte enzyme (Km of 15-24 µM) [121], but differ from 

the kinetics of the closely related mouse guanylate kinase (mGMPK) with Km of 59.02 µM and 

kcat of ~21 s
-1

 [16]. Our data suggest that hGMPK has about 9 times higher catalytic efficiency 

(kcat/Km of  316 x 10
4
 M

-1
s

-1
) than mGMPK (kcat/Km of 35 x 10

4
 M

-1
s

-1
), but is slightly less 

efficient than yeast GMPK which has a Km of 91 µM and kcat of 394 s
-1

 as reported by Li et al 

[35]. As the crystal structure of mGMPK (PDB 1LVG) was published in 2002 [11], and since 

this enzyme shares high sequence identity (88%) with hGMPK, we could directly apply the 

structural information of mGMPK to hGMPK in the form of a homology model that we used for 

designing a series of point mutations at multiple sites to analyze their roles in catalysis and 

domain movements [11]. Besides two carboxylic residues, S37 (which corresponds to S35 in 

yeast GMPK) plays an important role in substrate discrimination between GMP and AMP by 

making a single hydrogen bond with the carbonyl oxygen of guanine at position 6 [11, 53]. 

I introduced four point mutations at residue S37 (S37A, S37C, S37P, and S37Y) by site-directed 

mutagenesis to understand its role in binding GMP at the active site of hGMPK. Mutation of S37 

to alanine, having a nonpolar methyl group with no possibility of forming a hydrogen bond, 

reduced its catalytic efficiency (2.4 x 10
4
 M

-1
s

-1
) by a factor of 132 as compared to that of wild-

type hGMPK (316 x 10
4
 M

-1
s

-1
). Ardiani et al [16] suggested that this mutation makes the GMPK 

molecule resistant to the antileukemic drug metabolite 6-thioGMP. Similar results were obtained 

for the S37C mutant with kcat/Km of 3.0 x 10
4
 M

-1
s

-1
. In this case, the sulfhydryl group of cysteine 

may favor the sulfur at position 6 of 6-thioGMP instead of oxygen in case of GMP; however, this 

hypothesis needs to be tested by structural studies. I had chosen the S37P mutation based on 

multiple sequence alignment of hGMPK with other GMPKs and with guanylate kinase domains 

(GK
dom

) of MAGUKs which are catalytically inactive scaffolding proteins that organize protein 

complexes at cell or synaptic junctions [76]. Like S37 in GMPKs, proline is highly conserved at 

this position in MAGUKs. The S37P mutation reduced the catalytic efficiency by a factor of 

1,053 i.e., kcat/Km of 0.3 x 10
4
 M

-1
s

-1
. Johnston et al [40] had demonstrated that S35 in yeast 

GMPK (which corresponds to S37 in hGMPK) when mutated to proline transformed the 

guanylate kinase enzyme (GK
enz

) into a non-enzymatic phosphoprotein binding domain (GK
dom

) 

of MAGUKs with the gain of spindle-orienting activity. They further showed by X-ray 

crystallography, NMR and fluorescence quenching experiments that the loss of enzymatic 

activity was due to a change in the dynamics of the guanylate kinase. Actually, S37 resides in the 
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dynamic hinge region that connects the NMP-binding region (region that binds GMP) and the 

CORE region. Its mutation to proline, which is the least flexible amino acid in terms of sterically 

allowed conformations, prevented (or highly reduced) the GMP-induced closing movement of 

the NMP-binding domain of yeast GMPK and thus hindered an essential step in catalysis. They 

also found that the proline mutant could still bind ATP and GMP nucleotides like we observed in 

the form of highly reduced activity [77]. 

Like proline at position 37, there is another conserved proline residue at position 42 in MAGUKs 

which corresponds to N42 in hGMPK. We were curious to find out whether proline at this 

position would also drastically change the enzyme kinetics. Unexpectedly, our data showed that 

the N42P mutation increased the Km by a factor of only two, and the kcat was rather slightly 

increased. N42 is neither reported to interact with substrates nor is it located in the hinge region. 

It belongs to the NMP-binding region next to R41 that however interacts with the phosphate of 

GMP, and consequently the effect on catalysis was small. The most drastic effect was observed 

when we substituted tyrosine for S37 because it made hGMPK completely inactive. This was 

contrary to the results published by Ardiani et al [16], where this mutation resulted in ~7-fold 

decrease in the catalytic efficiency of mGMPK. The complete loss of enzymatic activity may be 

due to the fact that tyrosine has a bulky phenol side chain that may not be favorable owing to 

adjacent T83 and E72 residues. The T83 and E72 residues form bidentate interactions with the 

carbonyl at position 6, and with two hydrogen bond donors at positions N1 and the amine group 

at position 2 of guanine, respectively [11]. As the S37Y mutant did not aggregate and was a 

soluble protein, implying that it was properly folded, the mutation may have only disturbed the 

active conformation of hGMPK. High resolution NMR or X-ray crystallography structures of 

S37 variants in the presence of GMP or its analogs will provide detailed explanation for the 

effects of these substitutions on hGMPK kinetics. Comparing the four S37 mutants, we can rank 

the guanylate kinase activity as: wt-hGMPK > S37C > S37A > S37P. T83 in hGMPK 

corresponds to S80 in yeast GMPK, and when we introduced the T83S mutation, it showed 

indeed an improved kcat like yeast GMPK as reported by Li et al [35]. Nevertheless, the overall 

catalytic efficiency (132 x 10
4
 M

-1
s

-1
) was still lower than that of wt-hGMPK. The T83A mutant 

had decreased activity because the methyl group of alanine might not form a bidentate 

interaction like threonine as Sekulic et al had reported [11]. The Y81 is conserved among all 

GMPKs and in MAGUKs (e.g. hDlg). Both in mGMPK as reported by Sekulic et al [11] and in 
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yeast GMPK as shown by Stehle and Schulz [53], Y81 interacts with the α-phosphate of GMP 

via a single hydrogen bond. When we substituted Y81 with phenylalanine to disrupt this 

interaction, the Km was increased by a factor of 12 and kcat was reduced fourfold. Zhang et al [61] 

had demonstrated by NMR two-dimensional spectra analysis that the phenylalanine mutant of 

yeast GMPK was properly folded, and that its conformation was highly similar to that of wild-

type. They attributed the changes in kinetic parameters to the removal of the hydrogen bond 

between the hydroxyl group of tyrosine and the α-phosphate of GMP which has a role in 

stabilizing binary and ternary complexes. 

In conclusion, we have shown that a single hydrogen bond between S37 and the carbonyl oxygen 

of guanine in GMP is critical for GMP binding and for catalysis. Besides its catalytic role, S37 is 

required for the dynamics of the hinge region that facilitates the movement of the NMP-binding 

region upon binding of substrates. Its substitution with proline or tyrosine drastically affects 

hGMPK activity. Similarly, the bidentate interaction of T83 with the carbonyl oxygen of guanine 

in GMP is required for catalysis. Y81 interacts with the phosphate of GMP and has a role in 

binary complex stabilization. 

4.1.2 Substrate-induced conformational changes in hGMPK studied by small angle X-ray 

scattering 

NMP kinases (ATP:NMP phosphoryltransferases) undergo large domain movements upon 

binding of both substrates [5], as integral part of their catalysis [122]. These changes can be 

determined by comparing the enzyme structures in different conformational states [9]. We 

determined hGMPK in at least four forms designated as open form (hGMPKapo), two partially 

closed forms (hGMPKPC), and a completely closed form (hGMPKclosed) by small angle X-ray 

scattering (SAXS). Up until now, no GMPK structure has been analyzed in all of these four 

conformational states. Rg (radius of gyration) values suggested that the hGMPKapo molecule was 

bigger (~21 Å) in size than the hGMPKclosed (~19 Å) and the two partially closed forms (19.7 Å 

& 20.2 Å). It was observed that the product formation in the presence of ATP and GMP caused a 

small increase in the hGMPKRO (reopened form) size as compared to the closed forms. Based on 

Guinier and pair distance distribution function P(r) analysis, we concluded that the closed forms 

of hGMPK were more compact than all other forms in solution: 

                                      hGMPKclosed > hGMPKPC ≥ hGMPKRO > hGMPKapo 
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We found that the three-dimensional surface reconstruction of hGMPKapo was a globular domain 

with two projections originating from opposite sides of the molecule, termed large P1 and small 

P2 (Fig. 3.4a & 3.6a). These two projections moved with respect to the center of hGMPK 

molecule and became less conspicuous in the closed and partially reopened forms upon binding 

of nucleotides. The superposition of closed and partially reopened forms of hGMPK onto its 

open form indicated substrate-induced conformational changes due to movements of P1 and P2 

domains (Fig. 3.4b-d). Blaszczyk et al [10] observed significant movement of the NMP-binding 

domain and LID domain when they compared the crystal structures of yeast GMPK in 

unliganded and GMP-bound forms. Similarly, Johnston et al [40] demonstrated by NMR and 

fluorescence quenching experiments that yeast GMPK undergoes GMP-induced conformational 

changes. Sekulic et al [11] determined the crystal structure of mouse GMPK (mGMPK) in closed 

form (GMP and ADP bound), and overlaid it on the known structures of yeast GMPK in open 

(no bound substrate) and partially closed forms (GMP bound). They observed substrate-induced 

domain movements. Choi and Zocchi [13] used an allosteric spring probe to demonstrate GMP-

induced changes in GMPK from Mycobacterium tuberculosis. The overall fold of hGMPK is 

very similar to other members of the NMP-kinases family, in particular to mouse and yeast 

GMPKs [10, 11, 35]. As there is no high-resolution structure available for hGMPK, and 

crystallization of this enzyme failed [11], we decided to determine its low resolution SAXS 

structures. Moreover, an in silico homology model was constructed for hGMPK, based on the 

highly identical (88%) mGMPK (PDB 1LVG) structure used as a template, to highlight its 

structural features. It was predicted that hGMPK has three dynamic structural regions termed 

NMP-binding region (NMP-BR), CORE, and LID regions interconnected by four hinges. 

Our next step was to identify P1 and P2 projections (lobes) that we observed in the SAXS 

models of hGMPK. For that purpose, we superposed the hGMPK SAXS structures on the crystal 

structure of mGMPKclosed.  Interestingly, it was found that the P1 and P2 regions in the hGMPK 

aligned with the NMP-BR and LID regions of mGMPK, respectively (Fig. 3.6a-d). Similar 

results were obtained when we compared the SAXS structures of hGMPK with its homology 

models. Based on these comparative analyses, we concluded that the apo-form has much more 

open conformation than all other partially closed, completely closed and reopened forms [10, 11]. 

Binding of GMP to hGMPK causes a significant movement of the NMP-BR towards the LID 

region with comparatively smaller movement of the LID region in the same direction. Overall, 
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GMP binding brings the two regions closer to each other making the enzyme molecule relatively 

compact in the partially closed conformation [10]. The simultaneous binding of two nucleotides, 

such as GMP and an ATP-analog, brings the two regions even closer to each other, making the 

molecule adopt its most compact, fully closed conformation [11]. The open form is highly 

flexible whereas the closed form is the most rigid one [10, 11]. Nevertheless, besides the good fit, 

the closed forms of human and mouse GMPKs differ at certain positions which could partly be 

due to differences in their amino acid sequences, but also due to small structural variations 

between in-solution and crystal structures. 

In the course of catalysis, kinases undergo numerous rounds of open-to-closed conformational 

transitions [41], and we observed a mixed-state population of enzyme/substrate/product 

complexes designated as reopened form (hGMPKRO) when hGMPK was provided with its two 

natural substrates, ATP and GMP. The size of hGMPKRO is slightly bigger than the closed forms. 

This leads to the outward movement of P1 (NMP-BR) in the hGMPK structure as supported by 

the P(r) profile. For detailed analysis, time-resolved measurements would be performed in future 

studies. 

In summary, in this work, conformational analysis of hGMPK in its open, closed, partially closed 

and reopened forms have been presented. Comparing the SAXS structures of hGMPK in these 

different states revealed large conformational changes that occur during catalysis. The open-to-

closed conformational transition of the hGMPK molecule induced by binding of ligands supports 

the model of induced fit mechanism. The best fitting of the two closed forms from human and 

mouse GMPKs indicates the highly conserved three-dimensional fold in GMPKs. 

4.1.3 Structural characterization of hGMPK by NMR  

For optimizing the higher yield of isotope-labeled (
15

N, 
15

N/
13

C) hGMPK, the labeled enzyme 

was recombinantly produced in E.coli which is a convenient, rapid and economical host 

organism for producing isotopically labeled proteins [104]. Therefore, there is a huge demand to 

develop a variety of strategies for achieving high-level protein expression in E.coli. One of the 

basic approaches which we used was the pET expression system (Novagen) and the E.coli strain 

BL21(DE3)pLysS which contains the pLysS plasmid for tight regulation of the T7 promoter. The 

pET-14bSUMO∆Thr vector, used for cloning of hGMPK, had the SUMO (Small Ubiquitin-like 

Modifier) tag for enhanced expression, solubility and stability of hGMPK [98, 118]. The 
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hGMPK production was high (10-15 mg/l culture) when expressed in rich media such as TB 

(terrific broth) and autoinducing media (see section 2.1.9.1). Nevertheless, when expression was 

carried out in M9 minimal growth media for 
13

C and 
15

N labeling, a very low yield was observed 

(~1 mg/l culture). Structure elucidation by NMR requires a large quantity (0.5-1.5 mM in 260-

550 µl volume) and high quality (>95% purity) of isotopically (
15

N, 
15

N/
13

C) labeled 

recombinant protein, the production of which is costly and time-consuming. Thus, it was 

necessary to set up an optimized and simple protocol for higher production of single- and 

double-labeled hGMPK. I extracted information from the available protocols particularly those 

reported by Cai et al [105], Marley et al [103], and Sivashanmugam et al [102], and made several 

modifications to the existing protocols. For instance, the commercially available “basal vitamins 

eagle media” were omitted from the minimal growth media recipe as reported by Marley et al 

[103], and different expression conditions were tested, like varied induction time and 

temperature, while monitoring their effects on hGMPK yield. The final optimized protocol was 

mainly based on (1) double-colony selection, and (2) high cell-density method. The double-

colony selection procedure was used to optimize high-level protein production [102, 103]. The 

method was based on selecting several colonies from a freshly streaked agar plate containing the 

appropriate antiobiotics. They were expressed in minimal growth media, and the expression level 

was tested on SDS-PAGE. The colony which gave the highest protein production was selected 

and re-streaked on an agar plate for the second round of selection. The high-level expressing 

colony was then used for hGMPK expression by a modified high cell density method. In this 

method, the hGMPK-containing cells were grown in a rich medium like standard LB-broth up to 

OD600 of ~0.7 (mid log phase). The medium was then switched to fourfold smaller volume of the 

labeled minimal growth medium for the expression under optimum conditions. The cells were 

harvested and used for protein purification by affinity chromatography using Protino Ni-IDA 

resin; the protein was further purified by gel filtration chromatography using Superdex 75 

column. Our protocol, overall improved the single- and double-labeled hGMPK production by a 

factor of 8, and yielded about 8 mg/l culture of highly pure isotope-labeled enzyme. 

As preliminary NMR experiments, the 1 mM 
15

N-labeled hGMPKapo (open form) was titrated 

against increasing concentrations of GMP substrate to generate the enzyme species designated as 

15
N-labeled hGMPKGMP (partially closed form). The 

15
N-

1
H HSQC spectra obtained indicated 

significant changes in the positions of amino acid residues upon binding of GMP. These results 
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were complementary to our findings by SAXS analysis showing that hGMPK undergoes major 

conformational changes upon binding of its substrates. About 177 residues out of total 197 

amino acids of hGMPK have been identified from the analysis of the NMR 3D spectra. This is a 

collaborative work which is still in progress to solve the three-dimensional structure of hGMPK. 

It will enable us to understand the catalytic mechanism of hGMPK and to rationally design its 

catalytically more efficient mutants against the antileukemic 6-thioGMP. The engineered 

mutants may be tested for suicide gene therapy of acute lymphoblastic leukemic cells either 

alone or as a fusion partner with E.coli guanosine-inosine kinase (ecGSK) which phosphorylates 

6-thioguanosine to 6-thioGMP. 

To conclude, we optimized the production of isotopically labeled hGMPK for NMR structural 

elucidation. The 
15

N-
1
H HSQC spectra analysis indicated the GMP-induced conformational 

changes in hGMPK which were complementary to our findings by SAXS studies. 

4.1.4 Enhanced cytotoxicity of the antileukemic drug 6-thioguanine by expressing hGMPK 

in HEK293 cells                                                                                                                                                                        

The purine analog 6-thioguanine (6-TG) has been extensively used for the treatment of acute 

lymphoblastic leukemia [19]. It is readily transported into cells [123], and must be enzymatically 

converted to the nucleoside monophosphate form for further phosphorylations by nucleotide 

kinases [106]. We speculated that hGMPK, which catalyzes the second phosphorylation step in 

the conversion of 6-thioguanine to 6-thioGTP/6-thiodGTP, may be the bottleneck enzyme in the 

metabolic activation of this drug. Once incorporated into RNA and DNA, 6-thio-nucleotides 

exert their cytotoxic effects by triggering the post-replicative DNA mismatch repair system, 

mitochondrial DNA dysfunction, and reactive oxygen species formation [17-19]. 

Previously, Ardiani et al [16] reported that substitutions at S37 in mGMPK conferred genetic 

complementation to a conditional GMPK-deficient E.coli strain whereas the wild-type mGMPK-

expressing cells were sensitive to the clinically used 6-TG prodrug. These authors suggested that 

drug resistance to 6-TG may be due to point mutations in GMPK. Our aim was to investigate 

whether hGMPK would enhance the cytotoxicity of 6-TG when tested in mammalian HEK293 

cells. This will provide a basis for using the engineered hGMPK as a potential suicide gene for 

efficiently killing of cancer cells. 
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Yuan et al [31] reported that long-term use of 6-TG like many other chemotherapeutic agents is 

associated with several side effects including carcinogenicity. DNA containing 6-thioguanine 

once exposed to UVA light oxidizes 6-thioguanine to guanine-S
6
-sulfonic acid (

SO3H
G). The

 

SO3H
G blocks DNA polymerases and elicits ambiguous coding properties making the DNA 

highly mutagenic which is associated with increased skin cancer risks [129]. We hypothesized 

that this problem occurs because endogenous hGMPK inefficiently phosphorylates 6-thioGMP, 

and consequently high drug doses are required for prolonged periods of time to treat acute 

lymphoblastic leukemia. It has been demonstrated that the catalytic efficiency of GMPK for 6-

thioGMP is about 8,000 times lower than its catalytic efficiency for GMP as reported by Ardiani 

et al [16]. Thus, overexpression of hGMPK might overcome the bottleneck of metabolic 

phosphorylation by enhancing the activation of 6-TG at even low dose levels. For that purpose, I 

made two fusion constructs of hGMPK, one with N-terminal EGFP and the other with C-

terminal EGFP for fluorescence visualization in cells. Both fusion constructs along with a control 

EGFP were used to transfect HEK293 stable-cell lines. It was observed that the expression of 

hGMPK with C-terminal EGFP was very low as compared to the N-terminal EGFP construct as 

examined microscopically and by immunoblot analysis. We concluded that EGFP fused to the C-

terminus may have impaired the proper folding of hGMPK [125-128]. In contrast, the N-terminal 

EGFP did not adversely affect the activity of hGMPK as I verified by the NADH-dependent 

enzyme-coupled assay using the bacterially produced EGFP-hGMPK fusion protein. Therefore, 

the EGFP-hGMPK transfected HEK293 cells were tested for their sensitivity to varied 

concentrations of 6-TG (0.001-1000 µM) incubated for 48 h at 37 
o
C. Western blot analysis 

revealed similar expression levels for EGFP and EGFP-hGMPK. Cell viability of stable cell lines 

was determined by using the MTT assay [124]. The EC50 values derived from the dose-response 

curves indicated that EGFP-hGMPK-expressing stable cell lines were more sensitive (about six 

times lower EC50) to 6-TG than the EGFP-expressing stable cell lines serving as control. In 

conclusion, the overexpression of hGMPK increased the sensitivity of HEK293 cells to 6-TG 

due to enhanced activation of the prodrug. 
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4.1.5 Electrochemical detection of guanosine monophosphate with a quantum dot-based 

biosensor modified with hGMPK 

The aim of this study was to develop a novel approach for the detection of nucleotide kinase-

catalyzed reactions based on the electrochemical sensing of NADH in a multi-step coupled-

enzyme assay, and in addition, to demonstrate the proof of concept of a biosensor for hGMPK 

immobilized on CdS/ZnS quantum-dots (QDs) modified gold electrode. 

Schubert et al [88] reported that using the CdSe/ZnS QDs electrode, NADH addition to a buffer 

changes the photocurrent under illumination at a constant electrode potential. This indicates that 

electrons are transferred from NADH to the excited quantum dots under illumination. The 

NADH oxidation cannot simply be enhanced by the applied bias potential, rather it was 

determined by the catalytic properties of the semiconductor nanoparticles carrying the enzyme 

[88]. Thus, such a QDs-modified electrode system can be used for the electrochemical detection 

of NADH at a constant bias potential. It will provide a basis to construct biosensors for those 

enzymes which catalyze NADH/NAD
+
-dependent redox reactions directly or indirectly in a 

coupled assay. Using this principle, we decided to apply the NADH-dependent enzyme-coupled 

assay to the CdS/ZnS QDs-modified gold electrode system for monitoring the hGMPK-catalyzed 

reaction (see section 2.2.7) [99]. In the first step of the assay, hGMPK catalyzes the 

phosphorylation of GMP to GDP using ATP as a phosphoryl group donor [11, 29]. The formation 

of NDPs (ADP and GDP) is coupled to two additional reactions catalyzed by pyruvate kinase 

(PK) and lactate dehydrogenase (LDH), respectively. It was predetermined that the amount of 

NADH oxidized in the enzymatic reactions linearly depends on the concentration of GMP. This 

change in NADH concentration was sensed by the CdS/ZnS QDs-modified gold electrode under 

illumination for 5-10 sec. The electrode provided a stable light-switchable layer. 

First, a control experiment, which is basically the last reaction of our coupled assay as mentioned 

above, was performed. It is a redox reaction between pyruvate and NADH catalyzed by LDH to 

form NAD
+
 and lactate. All measurements were performed in 100 mM HEPES buffer pH 7.5 

containing 100 mM KCl and 20 mM MgCl2 at a constant bias potential of +50 mV at room 

temperature. The concentration of pyruvate was varied from 50 µM to 1600 µM keeping other 

constituents of the reaction mixture constant i.e., 1.2 mM NADH and 15 units of LDH. The 

current was recorded in the presence and absence of pyruvate upon illumination of the CdS/ZnS 

QDs electrode. A linear relationship was found between the change in photocurrent and pyruvate 
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concentration up to 1000 µM pyruvate, above which saturation started. Similar results were 

reported by Schubert et al [88] for the detection of NADH produced by the reaction between 

glucose and NAD
+
 catalyzed by glucose dehydrogenase. In that case, the formation of NADH 

was sensed at a constant bias potential of +50 mV (versus Ag/AgCl, 1 M KCl) using CdSe/ZnS 

QDs-modified gold electrode [88], and it was demonstrated that the change in current was 

dependent on the concentration of glucose. Khalid et al [87] determined a similar dose-response 

curve for the detection of 4AP (4-aminophenol) at constant bias potential of +200 mV using a 

CdS QDs electrode. 

Under our optimized assay conditions, the addition of GMP substrate to the reaction buffer in the 

absence of hGMPK showed no signal change in the potential range from -100 to +200 mV 

(versus Ag/AgCl, 3 M KCl) (data not shown). This means that unlike NADH, GMP cannot be 

oxidized at the QDs-modified gold electrode. However, in the presence of 18 nM hGMPK and 

all other constituents of the assay (as stated above), photocurrent changes were detected in the 

GMP-concentration dependent way. GMP was detected in the concentration range from 50 µM 

to 1200 µM, and saturation started above this value. Mora et al [130] developed an analytical 

method for the determination of AMP (adenosine 5´-monophosphate) coupled to 6-thioguanosine 

and a glassy carbon electrode with gold nanoparticles. In comparison, our approach is different 

because it is an enzyme-based detection of nucleotides which could be applied to any type of 

kinases in general, and can be used for studying their kinetics. 

To demonstrate a proof of sensor, we immobilized the assay enzymes (hGMPK, PK and LDH) 

on the CdS/ZnS QDs gold electrode using layer-by-layer assembly of polyelectrolytes, PSS (poly 

(styrene sulfonate)) and PAH (poly (allylamine hydrochloride)) [87, 89, 114, 115]. The 

photocurrent measurements were carried out at varied concentrations of GMP. The response 

curve obtained for GMP-to-GDP conversion was similar to that when hGMPK was free in 

solution, i.e. not immobilized on the QDs surface. The maximum current (37 nA) detected in 

case of immobilized hGMPK was slightly lower than that for free hGMPK (45 nA). These little 

variations may be due to electrostatic interactions of the nucleotide substrates with the negatively 

(PSS) and positively (PAH) charged polyelectrolytes. The aim of this study was to demonstrate 

the proof of concept of a biosensor for detecting hGMPK activity; building of a practical sensor 

will further need the optimization of reaction conditions, most importantly extending the half-life 
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of enzymes in use. Potentially, this assay may be applied to pathologically important kinases like 

creatine kinase in serum which is of considerable diagnostic significance [319]. 

In summary, a new technique for the detection of nucleotide kinase-catalyzed reactions in a 

coupled assay has been developed. This system demonstrates the functioning of a light-

controlled bioelectrochemical sensor for hGMPK. 

4.1.6 A novel spectrophotometric and fluorometric enzyme-coupled assay for hGMPK 

The conventional NADH-dependent spectroscopic assay has been used for the activity 

measurements of nucleoside and nucleotide kinases [84, 99]. In this assay, absorbance of NADH 

(ε = 6.22 mM
-1

cm
-1

 at 340 nm) in the reaction mixture is monitored at 340 nm, and it gradually 

drops down to zero upon oxidation of NADH to NAD
+
. Nevertheless, using this assay we 

encountered a serious problem when we were trying to use 6-thioGMP and 6-thioguanosine 

nucleotides in the assay conditions. Like NADH, both 6-thioGMP and 6-thioguanosine have 

absorption maxima at ~340 nm [18, 134]. To overcome this wavelength problem, we decided to 

develop an assay that can be used in absorbance mode at a wavelength without background 

absorbance, but also may be applicable in the fluorescence mode. 

Thus, we set up a four-step Amplex Red-based coupled assay in which the first reaction is 

catalyzed by the nucleotide kinase of interest producing nucleoside diphosphates (NDPs). The 

NDPs are coupled to phosphoenolpyruvate in the next step catalyzed by pyruvate kinase to form 

nucleoside triphosphates (NTPs) and pyruvate. In the third reaction, pyruvate is coupled to 

inorganic phosphate catalyzed by recombinant pyruvate oxidase (from Lactobacillus plantarum, 

~69 kDa) producing hydrogen peroxide (H2O2) and acetyl phosphate. In the last step, horseradish 

peroxidase uses H2O2 to oxidize the nonfluorescent Amplex Red to resorufin which has excellent 

absorbance as well as fluorescence properties with ε = 5.4×10
4
 M

-1
cm

-1
 at 570 nm [116, 135]. 

We optimized the assay in absorbance mode at 570 nm. About 5 nM of hGMPK was used with 

varied concentrations of GMP (0-500 µM). Steady-state turnover rates (kobs) were calculated, and 

the Michaelis-Menten plot was constructed by Gnuplot 5.0 software. Kinetic parameters were 

deduced from the plot with Km of 30 ± 5 µM and kcat of 80 ± 4 s
-1

. To validate our assay, the 

kinetic parameters for hGMPK were also determined by the conventional NADH-dependent 

spectroscopic assay. Kinetic values obtained from both assays were in very good agreement. As 
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resorufin is a highly fluorescent compound, the assay can be used in fluorescence mode as well 

[116]. 

In summary, we established the Amplex Red-based absorption spectrophotometric and 

fluorometric enzyme-coupled assay as an alternative to the conventional NADH-dependent 

spectroscopic assay. It overcomes the overlapping wavelength problem associated with strong 

absorption of 6-thioguanine nucleotides at 340 nm, and it has the advantage to be applicable both 

in absorbance and fluorescence modes. 

4.1.7 hGMPK-catalyzed reactions in polyelectrolyte containers of different shapes and                                                                                        

sizes 

We synthesized calcium carbonate (CaCO3) microparticles of different shapes and sizes, and 

loaded them with hGMPK to test their loading capacity and enzymatic activities. 

CaCO3 microparticles were synthesized by mixing CaCl2 and Na2CO3 solutions in the presence 

of ethylene glycol [131]. It was found that by increasing the ethylene glycol (EG) content from 

66.6% up to 80%, an enhanced density was provided in the reaction mixture, which reduced the 

stability of precipitated CaCO3 particles. Under these conditions, ellipsoidal particles with 

varying axis ratios were produced. Some ellipsoidal microparticles have round edges and 

resemble rod-shaped bacteria such as Bacillus; others have sharp ends and bear resemblance to 

Euglena. Our findings revealed that the solubility of salts is one of the key parameters for the 

shaping process of anisotropic CaCO3 particles. It was found that high concentrations and equal 

ratios of carbonate and calcium ions causes anisotropic rhomboidal geometry, whereas high 

carbonate and lower calcium ions resulted in anisotropic elliptical particles. However, low 

concentration of carbonate and high concentration of calcium ions produced isotropic spherical 

particles. 

Microparticles were loaded with hGMPK by incubation in 1 mg/ml stock solution on a shaker 

for 15 min. After one washing step with water, microparticles were counted in a hemocytometer, 

and the protein amount was determined by the Bradford dye-binding assay as reported by De 

Temmerman et al [131]. The particles were coated with consecutive layers of positively charged 

PAH and negatively charged PSS, and the enzymatic activity was determined by the NADH-

dependent spectroscopic assay [99, 133]. Comparison of the specific activities of the loaded 

microparticles revealed that ellipsoidal particles had highest protein-loading capacities as 
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compared to microparticles of all other shapes used in this study. We are on the way to further 

characterize these particles of different shapes for their loading capacity with Drosophila 

melanogaster deoxyribonucleoside kinase (Dm-dNK) and hGMPK fused to EGFP. Moreover, 

we will use biocompatible polyelectrolytes like poly L-arginine and dextran sulfate for biological 

applications [132]. 

In conclusion, ellipsoidal particles with loaded hGMPK demonstrated higher specific activities, 

after coating with polyelectrolytes, as compared to microparticles of all other shapes including 

spherical, rhomboidal, star and cube. 

4.2 Biochemical characterization of human mitochondrial thymidine kinase 

Human mitochondrial thymidine kinase (hTK2), which phosphorylates dThd, dCyd and dUrd to 

their corresponding monophosphates, is constitutively expressed in all tissues and is localized in 

the mitochondrial matrix providing dNTPs (deoxyribonucleoside triphosphates) for the 

replication and maintenance of mitochondrial DNA [151, 152, 157, 159, 199, 222]. Like mouse 

TK2, hTK2 has an N-terminal mitochondrial targeting signal for its translocation into 

mitochondria [138, 140, 150, 151]. Thymidine kinase activity has been detected in mitochondria 

[155-159]. Nevertheless, cytosolic forms of hTK2 were also reported [152, 153]. The cytosolic 

forms of hTK2 will affect the dNTPs pool in cytoplasm. Thus, hTK2 may play an important role 

not only in the mitochondrial but also in the nuclear DNA replication and repair system [139]. 

Wang and Eriksson [140] demonstrated by in vitro translation and translocation experiments that 

a 40 residues long N-terminal signal sequence directs the transport of mouse TK2 into 

mitochondria. In contrast, Johansson et al [154], when expressing TK2-GFP in CHO (Chinese 

hamster ovary) cell lines, observed that TK2-GFP fusion was not imported into mitochondria but 

remained in the cytoplasm. However, unlike TK2, the dGK-GFP (dGK, deoxyguanosine kinase) 

fusion protein was transported into mitochondria [154]. Besides that, these authors did not 

specify the mitochondrial import signal in hTK2 [154]. In this entire scenario, we were curious 

to perform similar experiments with the long isoform (265 amino acids) [138] of hTK2 as a 

fusion with GFP to determine its subcellular localization in HEK293 cells. There exist several 

isoforms for hTK2 that may have originated from alternative splicing of a single gene [138, 139]. 

We selected the long isoform containing the putative 38-amino acid N-terminal mitochondrial 

targeting signal as predicted by the MITOPROT tool (ExPASy server). The long isoform 
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(UniProt O00142-1), as previously reported by Wang et al [138], has 41 N-terminal amino acids 

different from the 10 N-terminal residues of the short isoform (UniProt O00142-2) but sharing 

the remaining 224 amino acids. When we overexpressed the long isoform in HEK293 cells, it 

indeed showed mitochondrial localization as a TK2-EGFP protein when examined by confocal 

microscopy. The pattern of mitochondrial appearance as a network of ovoidal structures was 

similar to the one observed for dGK-GFP [154]. Unlike the full-length hTK2, the N-terminal 

truncated forms were uniformly distributed in the cytoplasm. 

When hTK2 was produced recombinantly in BL21(DE3)pLysS cells as a fusion with an N-

terminal histidine tag, it extensively aggregated as inclusion bodies. Similar results were 

previously reported by Barroso et al [139] when they expressed hTK2 as a fusion with N-

terminal MBP (maltose binding protein) tag. Aggregation in inclusion bodies can be reversible 

and the protein may be recovered in native folded form [315, 316]. Therefore, I used several 

detergents including Triton X-100, urea, CHAPS, sarkosyl, SDS, and L-arginine to solubilize 

and subsequently refold the recombinant hTK2 by dialyzing against a native buffer [160-164, 

170, 171]. Nevertheless, all these efforts to regain the activity of denatured hTK2 were 

ineffective. Similarly, I used different E.coli expression strains, most importantly 

BL21(DE3)pLysS and C41(DE3) that are commonly recommended for the expression of 

proteins either toxic to cells or membrane-bound [165]. In addition, expression of hTK2 from a 

variety of vectors containing different tags and/or fusion partners was tested. It was accompanied 

by varying experimental conditions such as reducing the rate of protein synthesis by lowering the 

growth temperature or lowering inducer (IPTG) concentration. Moreover, the growth medium 

was changed by the addition of 1% glucose to repress protein induction, or ethanol was added to 

upregulate the synthesis of heat shock proteins [166-168]. Finally, I solved the aggregation 

problem by expressing hTK2 as a fusion with His14-MBP-SUMObr tag (~60 kDa) in 

BL21(DE3)pLysS cells using LB (Luria-Bertani) medium while inducing with low IPTG 

concentration (~0.4 mM) at low temperature (18 
o
C) [82, 83]. But, we observed that along with 

soluble hTK2, E.coli chaperonins (e.g., GroEL) of molecular weight ~60 kDa were also 

coexpressed and copurified when tested by SDS-PAGE, and identified by LC-MS/MS [173]. 

These heat shock proteins support the proper folding of proteins and are induced under stress 

conditions [169, 172]. They may prevent self-aggregation of incompletely folded proteins [139]. 
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We managed to get rid of GroEL after washing the sample with ATP/Mg
2+

 during the affinity 

purification step when hTK2 fusion protein was bound to the Protino Ni-IDA resin [174]. 

As hTK2 is the only human deoxyribonucleoside kinase (dNK) in its family of dNKs whose 

three-dimensional structure is missing, we decided to determine its crystal structure. For that 

purpose, I truncated the full-length hTK2 (265 aa) to make 6 constructs of variable lengths by 

deleting residues from both its N- and C-termini based on IUPred and secondary structure 

predictions [176, 178]. Graslund et al [175] reported that the multi-construct approach is a 

successful strategy to produce soluble recombinant proteins in E. coli and to enhance the chances 

of success for obtaining well-diffracting protein crystals. Similarly, Savitsky et al [177] 

demonstrated that more than 80% of the crystal structures which he obtained were derived from 

truncated proteins. For hTK2, two out of six truncated forms were catalytically active whereas 

the other four were inactive. The double-truncated hTK2-Δ44N/Δ8C (N-terminal 44 aa and C-

terminal 8 aa truncated) was a dimeric protein and had nearly 3-fold higher catalytic efficiency 

than the single-truncated hTK2-Δ44N (N-terminal 44 aa truncated). Only the double-truncated 

hTK2-Δ44N/Δ8C was successfully crystallized but unfortunately the crystals badly diffracted. 

As described above, hTK2 is prone to aggregation when recombinantly produced in E.coli which 

points to lack of proper folding that may give rise to poor sample quality. Based on these 

observations, we hypothesized that hTK2 requires eukaryotic chaperones and potentially post-

translational modifications for proper folding and structural stability. Thus, its expression in 

eukaryotic cells such as insect cells might yield samples amenable to crystallization. Sun et al 

[179] demonstrated that providing oxidizing or reducing agents to TK2 caused its modifications 

that led to large variations of the activity and stability in vitro. Similarly, Hazra et al [180] 

reported that post-translational phosphorylation of S74 in human deoxycytidine kinase modulates 

its kinetic properties. 

Directed evolution is a powerful tool to generate variants of desired properties and to study the 

relationship between sequence, structure and function of a protein [91, 181]. Therefore, we 

employed the method of error-prone PCR based on serial dilution steps of the hTK2 template 

DNA. It enabled us to control mutagenesis efficiency while simultaneously avoiding the PCR 

saturation problem [91]. Our aim was to use this technique to generate hTK2 variants for better 

activity against antiviral and anticancer nucleoside analogs [183]. The double-truncated hTK2-

Δ44N/Δ8C construct, which was catalytically more active than other forms, was selected as a 
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template for random mutagenesis and for establishing a screening procedure based on TK 

complementation of the TK-deficient E.coli strain KY895 [92-94, 182]. Gemcitabine (dFdC, 

2´,2´-difluorodeoxycytidine) which is an anticancer deoxyribonucleoside analogue, and the 

antiviral AZT (Zidovudine, 3´-azido-2´,3´-dideoxythymidine) are poor substrates of hTK2 [184]. 

Our low-frequency mutagenesis and subsequent screening method revealed two mutants (M5 

and M17) that increased the sensitivity of transformed KY895 to gemcitabine by 25 times and 

fourteen mutants by 10-fold. In addition, five mutants enhanced the sensitivity of KY895 to AZT 

by a factor of 3. However, the positions of these mutations in the hTK2 primary structure and 

their kinetic characterization need to be determined. Moreover, these mutants could potentially 

be tested as suicide genes in cancer cell lines. 

In summary, we demonstrated in cell culture experiments that the full-length hTK2 was 

translocated into mitochondria guided by its N-terminal mitochondrial targeting signal whereas 

the N-terminally truncated forms were localized in the cytoplasm. As hTK2 forms inclusion 

bodies upon expression in E.coli, therefore to solve this aggregation problem, we optimized an 

expression and purification protocol for the recombinant production of hTK2 in catalytically 

active and soluble form. The protocol is mainly based on the expression of hTK2 with an N-

terminal His14-MBP-SUMObr tag under optimum conditions. We also optimized conditions for 

the crystallization of hTK2. Through directed evolution using error-prone PCR followed by a 

two step screening procedure, we generated hTK2 mutants with several fold higher efficiency for 

phosphorylating nucleoside analog prodrugs like antiviral AZT and anticancer gemcitabine.   

4.3 Biochemical characterization of E.coli guanosine-inosine kinase 

The E.coli guanosine-inosine kinase (ecGSK, gsk, EC 2.7.1.73) has both guanosine and inosine 

kinase activities [185, 186]. The ecGSK gene was mapped on the E.coli chromosome by 

Jochimsen et al [185], and the guanosine and inosine kinase activities were identified. Harlow et 

al [149] and Mori et al [148] reported the cloning and characterization of the purified gene 

product. Its 434 amino acid primary structure is completely different from human 

deoxyguanosine kinase [187, 188]. We used the nucleotide sequence reported by Mori et al [148], 

and amplified it from the genomic DNA of E.coli XL1-Blue cells [95]. The enzyme was 

recombinantly produced in appreciable amount, and was purified to homogeneity by 

chromatographic techniques including affinity chromatography using Protino Ni-IDA resin, 
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anion exchange chromatography using DEAE Sepharose FF column, and by gel filtration 

chromatography using Superdex 200 column. We found that ecGSK, besides the physiological 

substrates Guo and Ino, also phosphorylates 6-thioguanosine which is the nucleoside form of the 

clinically used antileukemic drug 6-thioguanine (6-TG). This property is unique in the sense that 

commonly used nucleoside kinases (e.g., Dm-dNK and dCK) do not phosphorylate this 

nucleoside analog [184, 189, 190]. Therefore, our finding may open new possibilities of using 

ecGSK as a suicide gene in combination with 6-thioguanosine which is not accepted by 

endogenous human nucleoside kinases as a substrate. 

The three-dimensional structure of ecGSK is unknown, so its structure elucidation will provide a 

more detailed understanding of its function. We tried its crystallization by the vapor diffusion 

method [191, 192]. It crystallized in 100 mM Bis-tris buffer at pH 6.2, but unfortunately the 

diffraction data obtained was not good enough for solving its structure. In order to enhance the 

chances of getting well diffracting crystals, I truncated the disordered terminal regions from 

ecGSK, as predicted by IUPred, secondary structure prediction analysis and limited proteolysis. I 

recombinantly produced its N-and C-terminal truncated versions but unexpectedly they were 

catalytically inactive [175, 177]. This indicated that both termini of the ecGSK are either part of 

the active site or required for stabilization of the enzyme´s active conformation. Overall, the 

initial crystallization trials were satisfactory, but further efforts are needed to optimize 

crystallization conditions for getting better quality crystals for solving the ecGSK structure [191]. 

In conclusion, we recombinantly produced ecGSK which manifested a unique property of 

phosphorylating the nucleoside form of the antileukemic drug 6-thioguanine. In order to solve its 

three-dimensional structure, we optimized conditions for its crystallization. 
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Appendix 

Human guanylate kinase (hGMPK, GUK1, GMK, ATP:GMP phosphotransferase, EC 

2.7.4.8), UniProt identifier Q16774-1, 197 amino acids, and 591 bp ORF  

 1 

ATG TCG GGC CCC AGG CCT GTG GTG CTG AGC GGG CCT TCG GGA GCT GGG AAG AGC ACC 

 M   S   G   P   R   P   V   V   L   S   G   P   S   G   A   G   K   S   T 

CTG CTG AAG AGG CTG CTC CAG GAG CAC AGC GGC ATC TTT GGC TTC AGC GTG TCC CAT 

 L   L   K   R   L   L   Q   E   H   S   G   I   F   G   F   S   V   S   H 

ACC ACG AGG AAC CCG AGG CCC GGC GAG GAG AAC GGC AAA GAT TAC TAC TTT GTA ACC 

 T   T   R   N   P   R   P   G   E   E   N   G   K   D   Y   Y   F   V   T 

AGG GAG GTG ATG CAG CGT GAC ATA GCA GCC GGC GAC TTC ATC GAG CAT GCC GAG TTC 

 R   E   V   M   Q   R   D   I   A   A   G   D   F   I   E   H   A   E   F 

TCG GGG AAC CTG TAT GGC ACG AGC AAG GTG GCG GTG CAG GCC GTG CAG GCC ATG AAC 

 S   G   N   L   Y   G   T   S   K   V   A   V   Q   A   V   Q   A   M   N 

CGC ATC TGT GTG CTG GAC GTG GAC CTG CAG GGT GTG CGG AAC ATC AAG GCC ACC GAT 

 R   I   C   V   L   D   V   D   L   Q   G   V   R   N   I   K   A   T   D 

CTG CGG CCC ATC TAC ATC TCT GTG CAG CCG CCT TCA CTG CAC GTG CTG GAG CAG CGG 

 L   R   P   I   Y   I   S   V   Q   P   P   S   L   H   V   L   E   Q   R 

CTG CGG CAG CGC AAC ACT GAA ACC GAG GAG AGC CTG GTG AAG CGG CTG GCT GCT GCC 

 L   R   Q   R   N   T   E   T   E   E   S   L   V   K   R   L   A   A   A 

CAG GCC GAC ATG GAG AGC AGC AAG GAG CCC GGC CTG TTT GAT GTG GTC ATC ATT AAC 

 Q   A   D   M   E   S   S   K   E   P   G   L   F   D   V   V   I   I   N 

GAC AGC CTG GAC CAG GCC TAC GCA GAG CTG AAG GAG GCG CTC TCT GAG GAA ATC AAG 

 D   S   L   D   Q   A   Y   A   E   L   K   E   A   L   S   E   E   I   K 

AAA GCT CAA AGG ACC GGC GCC TAA 

 K   A   Q   R   T   G   A   *   

                         197     

  

               

 

   

 

Fig. 1. Human GMPK conformations upon binding of different nucleotides. (a) 

Kratky profiles, and (b) computed P(r) curves.  
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Fig. 2. Three-dimensional surface reconstructions of human GMPK in different 

conformational forms. (a) hGMPK in the unliganded form is represented as hGMPKapo, 

(b) with bound GMP and AMP-PNP as hGMPKGMP+AMP-PNP or hGMPKclosed1, (c) with 

bound Ap5G as hGMPKAp5G or hGMPKclosed2, and (d) in the presence of GMP and ATP 

as hGMPKATP+GMP  or hGMPKRO (reopened form). 
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Human mitochondrial thymidine kinase (hTK2, TK2, ATP:thymidine 5´-

phosphotransferase, EC 2.7.1.21), UniProt identifier O00142-1, synthetic and codon-

optimized gene for expression in E.coli, 265 amino acids in length,795 bp ORF  

 1 

atg ctg ctg tgg cct ctg cgt ggt tgg gct gct cgt gca ctg cgt tgc ttt ggt cct  

 M   L   L   W   P   L   R   G   W   A   A   R   A   L   R   C   F   G   P 

ggt tct cgt ggt agt ccg gct tct ggt cct ggt cct cgt cgt gtt cag cgt cgt gcc  

 G   S   R   G   S   P   A   S   G   P   G   P   R   R   V   Q   R   R   A 

tgg cct cct gat aaa gaa caa gag aaa gaa aaa aaa agc gtg atc tgt gtg gaa ggc  

 W   P   P   D   K   E   Q   E   K   E   K   K   S   V   I   C   V   E   G 

aat att gct agc ggc aaa acg aca tgt ctg gaa ttc ttc tcg aat gcc acc gat gtt  

 N   I   A   S   G   K   T   T   C   L   E   F   F   S   N   A   T   D   V 

gaa gtt ctg acc gaa ccg gtg agc aaa tgg cgt aat gtc cgt ggg cat aat cct ctg  

 E   V   L   T   E   P   V   S   K   W   R   N   V   R   G   H   N   P   L 

ggt ctg atg tat cat gat gct tcc cgc tgg gga ctg aca ctg cag act tat gta cag  

 G   L   M   Y   H   D   A   S   R   W   G   L   T   L   Q   T   Y   V   Q 

ctg acc atg ctg gat cgt cat aca cgt cct cag gtt tct agc gtt cgc ctg atg gaa  

 L   T   M   L   D   R   H   T   R   P   Q   V   S   S   V   R   L   M   E 

cgt tct atc cat agc gcc cgt tat atc ttc gtg gaa aat ctg tat cgt tct ggc aaa  

 R   S   I   H   S   A   R   Y   I   F   V   E   N   L   Y   R   S   G   K 

atg cct gaa gtt gac tat gtt gtg ctg tcc gaa tgg ttt gat tgg att ctg cgc aac  

 M   P   E   V   D   Y   V   V   L   S   E   W   F   D   W   I   L   R   N 

atg gat gtt agc gtg gac ctg att gtg tat ctg cgc acc aat ccg gaa aca tgc tat  

 M   D   V   S   V   D   L   I   V   Y   L   R   T   N   P   E   T   C   Y 

caa cgt ctg aaa aaa cgc tgc cgt gaa gag gaa aaa gtg atc cca ctg gag tat ctg  

 Q   R   L   K   K   R   C   R   E   E   E   K   V   I   P   L   E   Y   L 

gaa gcg att cat cat ctg cat gag gag tgg ctg att aaa ggt tcc ctg ttc cca atg  

 E   A   I   H   H   L   H   E   E   W   L   I   K   G   S   L   F   P   M 

gct gcc ccg gta ctg gta atc gaa gcg gac cat cac atg gag cgt atg ctg gaa ctg  

 A   A   P   V   L   V   I   E   A   D   H   H   M   E   R   M   L   E   L 

ttt gag caa aac cgt gac cgt att ctg acc ccg gaa aac cgt aaa cac tgc ccg taa 

 F   E   Q   N   R   D   R   I   L   T   P   E   N   R   K   H   C   P   *  

                                                                     265  

 

 

      

                

 

 

 

  

         

 
Fig. 3. Homology model of hTK2-∆44N/∆8C (by SW SS Model) 
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E.coli guanosine-inosine kinase (ecGSK, gsk, ATP:guanosine 5´-phosphotransferase, EC 

2.7.1.73), UniProt P0AEW6-1, 434 amino acids and 1302 bp in length  

 

 1 

atg aaa ttt ccc ggt aaa cgt aaa tcc aaa cat tac ttc ccc gta aac gca cgc gat 

 M   K   F   P   G   K   R   K   S   K   H   Y   F   P   V   N   A   R   D 

ccg ctg ctt cag caa ttc cag cca gaa aac gaa acc agc gct gcc tgg gta gtg ggt 

 P   L   L   Q   Q   F   Q   P   E   N   E   T   S   A   A   W   V   V   G 

atc gat caa acg ctg gtc gat att gaa gcg aaa gtg gat gat gaa ttt att gag cgt 

 I   D   Q   T   L   V   D   I   E   A   K   V   D   D   E   F   I   E   R 

tat gga tta agc gcc ggg cat tca ctg gtg att gag gat gat gta gcc gaa gcg ctt 

 Y   G   L   S   A   G   H   S   L   V   I   E   D   D   V   A   E   A   L 

tat cag gaa cta aaa cag aaa aac ctg att acc cat cag ttt gcg ggt ggc acc att 

 Y   Q   E   L   K   Q   K   N   L   I   T   H   Q   F   A   G   G   T   I 

ggt aac acc atg cac aac tac tcg gtg ctc gcg gac gac cgt tcg gtg ctg ctg ggc 

 G   N   T   M   H   N   Y   S   V   L   A   D   D   R   S   V   L   L   G 

gtc atg tgc agc aat att gaa att ggc agt tat gcc tat cgt tac ctg tgt aac act 

 V   M   C   S   N   I   E   I   G   S   Y   A   Y   R   Y   L   C   N   T 

tcc agc cgt acc gat ctt aac tat cta caa ggc gtg gat ggc ccg att ggt cgt tgc 

 S   S   R   T   D   L   N   Y   L   Q   G   V   D   G   P   I   G   R   C 

ttt acg ctg att ggc gag tcc ggg gaa cgt acc ttt gct atc agt cca ggc cac atg 

 F   T   L   I   G   E   S   G   E   R   T   F   A   I   S   P   G   H   M 

aac cag ctg cgg gct gaa agc att ccg gaa gat gtg att gcc gga gcc tcg gca ctg 

 N   Q   L   R   A   E   S   I   P   E   D   V   I   A   G   A   S   A   L 

gtt ctc acc tca tat ctg gtg cgt tgc aag ccg ggt gaa ccc atg ccg gaa gca acc 

 V   L   T   S   Y   L   V   R   C   K   P   G   E   P   M   P   E   A   T 

atg aaa gcc att gag tac gcg aag aaa tat aac gta ccg gtg gtg ctg acg ctg ggc 

 M   K   A   I   E   Y   A   K   K   Y   N   V   P   V   V   L   T   L   G 

acc aag ttt gtc att gcc gag aat ccg cag tgg tgg cag caa ttc ctc aaa gat cac 

 T   K   F   V   I   A   E   N   P   Q   W   W   Q   Q   F   L   K   D   H 

gtc tct atc ctt gcg atg aac gaa gat gaa gcc gaa gcg ttg acc gga gaa agc gat 

 V   S   I   L   A   M   N   E   D   E   A   E   A   L   T   G   E   S   D 

ccg ttg ttg gca tct gac aag gcg ctg gac tgg gta gat ctg gtg ctg tgc acc gcc 

 P   L   L   A   S   D   K   A   L   D   W   V   D   L   V   L   C   T   A 

ggg cca atc ggc ttg tat atg gcg ggc ttt acc gaa gac gaa gcg aaa cgt aaa acc 

 G   P   I   G   L   Y   M   A   G   F   T   E   D   E   A   K   R   K   T 

cag cat ccg ctg ctg ccg ggc gct ata gcg gaa ttc aac cag tat gag ttt agc cgc 

 Q   H   P   L   L   P   G   A   I   A   E   F   N   Q   Y   E   F   S   R 

gcc atg cgc cac aag gat tgc cag aat ccg ctg cgt gta tat tcg cac att gcg ccg 

 A   M   R   H   K   D   C   Q   N   P   L   R   V   Y   S   H   I   A   P 

tac atg ggc ggg ccg gaa aaa atc atg aac act aat gga gcg ggg gat ggc gca ttg 

 Y   M   G   G   P   E   K   I   M   N   T   N   G   A   G   D   G   A   L 

gca gcg ttg ctg cat gac att acc gcc aac agc tac cat cgt agc aac gta cca aac 

 A   A   L   L   H   D   I   T   A   N   S   Y   H   R   S   N   V   P   N 

tcc agc aaa cat aaa ttc acc tgg tta act tat tca tcg tta gcg cag gtg tgt aaa 

 S   S   K   H   K   F   T   W   L   T   Y   S   S   L   A   Q   V   C   K 

tat gct aac cgt gtg agc tat cag gta ctg aac cag cat tca cct cgt tta acg cgc 

 Y   A   N   R   V   S   Y   Q   V   L   N   Q   H   S   P   R   L   T   R 

ggc ttg ccg gag cgt gaa gac agc ctg gaa gag tct tac tgg gat cgt taa 

 G   L   P   E   R   E   D   S   L   E   E   S   Y   W   D   R   * 

                                                             434  

 

  

 



166 
 

               

 

 

  

 

                

 

 

 

 

 

 

 

 

Fig. 4. Molecular surface reconstruction of ecGSK determined by SAXS 

Secondary structure prediction tools: 

SOPM (Geourjon and Deléage, 1994)  

SOPMA (Geourjon and Deléage, 1995)  

HNN (Guermeur, 1997)  

MLRC (Guermeur et al., 1998)  

DPM (Deléage and Roux, 1987)  

 

Truncated forms of ecGSK (434 aa): 

1. ecGSK-∆30N             (405 aa) 

2. ecGSK-∆21C             (413 aa) 

3. ecGSK-∆30N/∆21C   (384 aa) 

 UPred 

∆21C 

Fig. 5. Truncations of ecGSK. Based on the IUPred, limited proteolysis and secondary 

structure prediction analysis, three truncated forms of ecGSK (434 aa) were generated 

and recombinantly produced in E.coli.  

∆30N 

http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopm.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_nn.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_mlr.html
http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_dpm.html
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