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Abstract VI 

 

Abstract 

Metastases are a major cause of morbidity and mortality in breast cancer patients. However, 

current treatments are of limited efficiency because so far very little is known about the 

colonisation of breast cancer cells into the metastatic organs, in particular the brain. It has 

been demonstrated that epithelial to mesenchymal transition (EMT) facilitates tumour 

metastasis with poor prognosis. Moreover, the tumour cell progression might properly be 

dynamic: EMT during invasion and a reversal (MET) during growth of metastasis. 

Consequently, EMT and MET might be a promising target as a possible therapeutic cancer 

treatment. Therefore, the aim of this study was to establish a syngeneic mouse model to 

investigate the colonization at the distant organs, in this case the brain, of metastatic breast 

cancer cells and the impact of EMT and MET on this part during the metastasis process.  

Furthermore, it has been demonstrated that dysregulation of Wnt signalling is associated with 

metastasis and also plays an important role in tumour genesis. Furthermore, the Wnt 

signalling pathway is known to induce EMT and MET and is dysregulated in several cancers, 

with different Wnt molecules being up regulated. If the Wnt pathway is important in cancer 

proliferation and metastasis, inhibitors of Wnts may be valuable for a therapeutic strategy. 

However, because of the multiple receptor combinations and no-central kinase activity the 

inhibition of the Wnt pathway is not trivial. Therefore, to inhibit the secretion of the Wnt-

molecules seemed a very promising strategy. One of the key enzymes during secretion is the 

membrane bound O-acetyltransferase Porcupine. Inhibition of Porcupine leads to the 

inhibition of Wnt palmitoylation and Wnt secretion, and therefore, indirect inhibition of 

receptor binding and activation of the pathway. One Porcupine inhibitor, LGK974, is believed 

to block initiation of tumours through this mechanism suggesting LGK974 is a good 

treatment approach for cancer patients. The second aim of this study was now to investigate 

the inhibitory effects of LGK974, not in tumour initiation, we wanted to study the effect 

during cerebral colonization in vitro and in vivo.  

Finally, we wanted to investigate the role of the immune system, microglia and astrocytes, 

during the invasion of breast cancer in the brain. The established immune-competed mouse 

model provides an opportunity to address this question. Here, the response of microglia and 

astrocytes to lipopolysaccharide (LPS) was used to trigger an immune response.  
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In conclusion, a syngeneic cerebral metastasis mouse model was established and different 

treatment strategies were proved on this. Moreover, the process of colonization of the brain, 

and the impact of the immune systems on in this progress were investigated. 
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1 Introduction 

1.1 Breast cancer and prognosis 

The World Health Organisation (WHO) documented that worldwide over 500.000 women 

die of breast cancer every year 

(http://www.who.int/cancer/detection/breastcancer/en/2015), thus it is the most common 

type of cancer. But not only women, men also suffer from breast cancer. Metastases of 

breast cancer cells are the main cause of death among patients with breast cancer related 

deaths. 10–15% of patients with breast cancer developed metastases within 3 years after 

the first diagnosis (Weigelt et al., 2005). During this time, cancer cells are already 

disseminating and are under dormancy conditions, which mean that pre-metastatic cells 

have already seeded the distant organs and are not active proliferating (Karrison et al., 

1999). In fact, migration of tumour cells away from the primary tumour is generally 

regarded as the first step in metastatic dissemination of breast cancer. Therefore, the basic 

steps of metastasis are - local invasion, intravasation, survival in the circulation, 

extravasation and colonization, which will be described later.  

 

1.2 The role of the environment 

However, the complex process of metastasis formation is not fully understood as of today. 

It is believed that this process is unidirectional, disseminating from the primary tumour 

cancer cell to the distant organ. The English surgeon Stephen Paget proposed first in 1889 

the important role of the microenvironment in metastasis formation. His idea was the “seed 

and soil” theory where cancer cells (=the seed) have an affinity for certain organs (=the 

soil), which offer a compatible microenvironment for tumour growth (Paget, 1989). 

Consequently, metastasis development is not possible when an incompatible “seed and 

soil” exist. This theory was supported and confirmed in several publications (Ribatti et al., 

2006) and believed until today. It was shown that a specific infiltration function of 

metastatic cells is required after disseminating from the primary tumour to make the cells 

organ specific. Furthermore, after the infiltration of a new tissue, cancer cells outcompete 

other cells of this tissue because of a more aggressive form of these cells. Moreover, 

general steps of metastasis might be the same in all types of tumours, however metastasis 

http://www.who.int/cancer/detection/breastcancer/en/2015
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to other tissues might be more specific and requires different sets of infiltration and 

colonization functions. Also, time periods of metastasis are variable depending on the new 

microenvironment (Nguyen et al., 2009). Therefore, the role of the tumour 

microenvironment for cancer progression and the organ-specific colonization should be 

considered for further investigations. Furthermore, tumour cells are able to create a niche 

by influencing the surrounding stroma cells during metastasis. The function of the stroma 

microenvironment in order to contribute to the breast cancer development needs to be 

addressed both in vivo and in vitro to better understand breast cancer metastasis 

(Bhowmick et al., 2004).  

 

1.3 The special situation of brain metastasis 

Metastasis of the central nervous system (CNS) was demonstrated as a late event with 

limitations for treatment therefore it is an indicator for poor prognosis in diagnosed 

patients (Bos et al., 2009) (Weil et al., 2005). Very little is known about the interactions 

between the brain and the metastatic cells. Moreover, the reason for brain metastasis being 

a late event might be the unusual environment of the brain for cancer cells. Additionally, 

the brain is protected by the Blood-Brain Barrier, which is tighter than the Blood-Organ 

Barrier (BBB). Therefore, extravasation takes longer into the brain than to other organs. 

Both, the unique brain microenvironment and the BBB were hypothesised to influence 

metastatic colonization. Furthermore, the parenchyma of the brain has non-vascular 

stromal basement membrane components. Without these components, cancer cells cannot 

bond to epithelial cells, which is a necessary step for their survival (Carbonell et al., 2009). 

Therefore, neurovasculature was identified as an important partner for metastasis in the 

brain.  

The organ specific immune response of the brain plays an important role in this process. 

Metastasis into the brain induces a neuro-inflammatory response which involves activated 

microglia and astrocytes, similar to what happens during mechanical lesions to the brain 

(Fitzgerald et al., 2008a). Metastatic tumour cells themselves could potentially alter the 

microglia, resulting in a unique interaction. Recently the initial steps of brain colonization 

were studied in vitro, however, when data were compared to the in vivo situation, the 

colonization of breast cancer cells into the brain was different to the in vitro situation. 
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Therefore, investigations of animal models are necessary to understand the complex 

mechanisms how cancer cells colonize the brain (Lorger et al., 2011).  

 

1.4 Available animal models in cancer research 

Fidler et al. showed that cancer cells with a high metastatic potential could be injected 

intravenously leading to spontaneous metastases to distant organs (Fidler and Kripke, 

1977). Another spontaneous mouse model was established from Kamino et al. (Kamino 

and Mohr, 1993). They injected lung carcinoma cells in the artery carotids, which lead to 

brain metastases. However, from the literature we know that not all cell lines are able to 

generate spontaneous metastases. If not depending on a spontaneous metastases model, 

intracranial injection of cancer cells is useful to study the role of the brain 

microenvironment and tumour dissemination. Intracranial Xenograft models were 

established in late 1980 (Kaye et al., 1986), when for the first time glioma cell lines were 

injected intracranially into mice. Over the years, also nude mice and severe combined 

immunodeficient (SCID) mice were compared and tested for intracranial injection of 

cancer cells (Taghian et al., 1993). However, only an immune-competent model is 

applicable for studies of immune-based therapeutic strategies. Moreover syngeneic 

BALB/C mouse models where 4T1 cancer cells were injected in the mammary fatpad, 

4T1-cells showed spontaneous metastatic outgrowth (Aslakson and Miller, 1992a). 

Nevertheless, not all cancer cell lines are able to metastize spontaneously, especially not 

into the brain. Therefore, investigation of a syngeneic mouse model for cerebral metastasis 

is necessary. 

 

1.5 Metastasis of cancer  

The metastatic cascade was investigated over the last decade: Tumour cells spread to 

distant organs and form a new tumour mass, which is described as organ-metastasis. 

Several steps of organ-metastasis make a therapy complex, however, when one of these 

steps is not completed, metastases cannot occur.  

The initial step is that cancer cells manage to enter the circulation were they would taken 

to a specific organ, which depends on the blood flow pattern (Chambers et al., 2000). 
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Cancer cells are able to leave the primary tumour and enter into the body circulation blood 

system. All cancer cells need the ability to survive in the circulation before they can 

extravasate into surrounding tissue of the distant organ. Once cancer cells have been 

seeded their colonization will depend on molecular interaction between cancer cells and 

the environment of the new organ, e.g. the brain. 

 

Fig 1: The metastasis cascade (linear model). 

Formation of the primary tumour, next tumour cells leaving the primary tumour (initiation and 

progression), and attack surrounding vessels (intravasation).Surviving cancer cells circulate and 

arrest in distant organ site before they exit the vessel (extravasation). Followed by seeding and 

dormancy in the brain. Afterwards metastatic cell colonize in the brain and perform 

micrometastasis. Micrometastasis grows to macroscopic metastases in the brain.  

 

Importantly, Chambers et al. described in her study that only 0,02% of injected cancer cells 

were able to colonize in the brain and leading in metastasis (Chambers et al., 2002). This 

was observed when they injected cancer cells in the vene of mice. Moreover, they 

investigate the most critical step for the metastatic cells were the colonization of the distant 
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organ, because the majority of the seeded cells undergo apoptosis, a programmed cell 

death. This findings have a clinically importance.  

Moreover, by the time a primary tumour is detected, it might be already have seeded 

metastatic cells to the to the secondary side. Therefore treatment of the primary tumour or 

the early steps of the metastatic cascade can be successful, however, metastasis might be 

already performed (Fig 2). This knowledge is very important to investigate treatment 

strategies for metastasis. 

  

Fig 2: EMT and MET in metastasis formation in the linear model. EMT induces the 

dissemination of cancer cells. 

Cancer cells intravasate into blood vessels, followed by a transport to distant organs. Cancer cells 

extravasate at secondary sites and can form metastasis through a mesenchymal-epithelial transition 

(MET). 

 

Moreover, it was demonstrated that cancer cells which survived in this foreign 

microenvironment were re-initiate efficient proliferative programs at the metastatic sites 

which leads to metastatic colonization (Valastyan and Weinberg, 2011). For cancer cells to 

adapt to the new environment they need to have the ability for transformation. Several 
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genes, which allow this transformation, were identified as so called metastasis initiation 

genes. These genes can promote epithelial-mesenchymal transition (EMT). EMT is a 

fundamental process that is essential for morphogenesis. Abnormal expression of 

developmental transcription factors such as Twist1, Twist2 and Snail might be able to 

trigger EMT (Nguyen et al., 2009) resulting in increased cancer cell dissemination from 

the primary tumour (Thiery, 2002).  

EMT may mediate the extravasation of cancer cells, which can then disseminate in the 

secondary environment. EMT is critical in the first steps of metastatic formation, however, 

MET is required for colonization of cancer cells revert at some point to their epithelial 

phenotype (Fig 2) (Ramakrishna and Rostomily, 2013).  

The transmembrane protein E-cadherin (Ecad) was identified as a marker of an epithelial 

phenotype. A lack of Ecad decreases cell adhesions and therefore promotes a switch to a 

mesenchymal phenotype, which is considered as a canonical indicator of metastatic EMT 

(Ramakrishna and Rostomily, 2013). The loss of Ecad in cancer cells is associated with 

upregulation of N-cadherin, which is known as the “cadherin switch”. Moreover, Ecad is 

highly expressed in various cancers including breast cancer (Thiery, 2002). Several 

transcription factors are known to regulate the expression of Ecad, e.g. Snail, Snail2 and 

Twist. Twist was found to be overexpressed in breast cancer tissue compared to normal 

breast tissue (Watanabe et al., 2004). A cross talk between cancer cells and the surrounding 

stroma indicates the importance of various genes in EMT (Mani et al., 2008). Summarised, 

EMT might be important in generating the initial metastatic phenotype.  

Many genes or pathways are necessary for the activation of cancer cells from the step of 

dormancy to the formation of brain metastases (Eichler et al., 2011a). It is important to 

understand the process in detail to identify new therapeutic strategies for brain metastasis. 

Thus, the canonical Wnt/ß-catenin pathway was recently identified to play an important 

role in EMT.  

 

1.6 The Wnt signalling pathway and its role in tumour progression 

The Wnt pathway is not only important for cell-cell communication during embryonic 

development and for normal tissue homeostasis. It is also involved in tumorigenesis. 19 

genes of the Wnt family were identified (Nusse, 2005). The canonical Wnt pathway is per 
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definition ß-catenin dependent. Here, Wnt binds to Frizzled (Fz) receptor a seven-

transmembrane molecule with a long amino-terminal extension containing a cystein-rich 

domain. Moreover, Wnt signalling requires also the low-density lipoprotein receptor-

related protein (LRP) family as co-receptor.  

The complex of Wnt, Fz and LRP5/6 recruits dishevelled and axin through the intracellular 

domains of Fz and LRP5/6. Thus, intracellular Fz interacts directly with dishevelled, which 

leads to the stabilisation β-catenin by inhibition of ß-catenin phosphorylation. ß-catenin 

translocates into the nucleus and subsequently binds to transcription factors of the T-cell 

factor/lymphocyte enhancer factor (TCF/LEF) family thereby activating target gene 

expression (Clevers and van de Wetering, 1997). Wnt inhibitory factor-1 and secreted 

Frizzled-Related Proteins can block Wnt signalling by direct binding to Wnt ligands. 

However, other inhibitors of Wnt, e.g. the Dickkopf family are blocking Wnt signalling by 

binding to the co-receptor LRP6 (Semënov et al., 2008). Two other Wnt signalling 

pathways were described within the ß-catenin depended pathway, the planar cell polarity 

(PCP) pathway and the Wnt/Ca
2+ 

pathway. Both non-canonical pathways, Wnt/Ca
2+

 and 

PCP, can be activated by the Wnt ligand Wnt5a (Yamanaka et al., 2002). Furthermore, the 

Wnt/Ca
2+

 pathway can also be activated via Wnt4 and Wnt11, both of which induce an 

intracellular Ca
2+

 release (Kühl et al., 2001).  

In the canonical pathway ß-catenin is involved in the regulation of transcription and also in 

cell adhesion. When Wnt3a or Wnt7a act on their cell-surface receptor, the cytoplasmatic 

ß-catenin translocates into the nucleus after release from the destruction complex. In the 

nucleus ß-catenin binds to TCF/LEF and drives the expression of different genes involved 

in EMT (Clevers and Nusse, 2012). Another important study shows that translocation of β-

catenin in the nucleus leads to break the cell-to-cell adhesion formed by β-catenin and E-

cadherin, as β-catenin was identified as a cadherin-binding protein (Schäfer et al., 2014a). 

 

1.7 Wnt and EMT 

Wnt was recently shown to be involved in EMT. EMT is accompanied with the down 

regulation of Ecad. The transcription factor Snail functions as a potent receptor of Ecad 

expression, which can induce EMT. Snail can act alone or with the Wnt/ß-catenin/ LEF. It 

was demonstrated that Wnt signalling could inhibit Snail phosphorylation and therefore 
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increase Snail protein levels, which is then driving EMT. Therefore, the Wnt signalling 

cascade was identified to activate Snail-driven transcriptional programs and Snail activates 

EMT regulated processes (Yook et al., 2005). In particular, Wnt was demonstrated to 

activate the Wnt/ß-catenin signalling and promote EMT-like phenotypes in breast cancer 

cells (Wu et al., 2012). These studies focused on ß-catenin. However, not many studies 

investigated the role of Wnt ligands on EMT so far. Nonetheless, EMT has been shown to 

be induced by Wnt in colon cancer cells. This was investigated in human colon cancer 

tissue, with focus on a specific member, Wnt3a. Low levels of Ecad and higher levels of 

Vimentin and ß-catenin were found in the Wnt3a expression group compared to the control 

group with no expression of Wnt. Additionally, Wnt3a is able to promote the expression of 

the EMT inducing transcription factors, e.g. Snail (Qi et al., 2014). These findings also 

confirm the importance of Wnt signalling and EMT for the microenvironment.  

Wnt genes are expressed in healthy tissues, including the breast. However, diseased breasts 

showed dysregulated expression of Wnt genes (Huguet et al., 1994a). Moreover, Wnt5a 

was shown to be overexpressed in many human cancers (Pukrop and Binder, 2008) and 

Wnt7a was also found to be overexpressed in breast cancers (Kirikoshi and Katoh, 2002). 

Wnt5a was not only expressed in cancer cells, but also in macrophages at the invasive 

front of the tumour. Therefore, Wnt genes might be involved in regulating tumour cell 

invasion induced by macrophages, especially Wnt5a (Pukrop et al., 2006).  

 

1.8 Wnt signalling during cerebral metastasis 

The Wnt pathway was identified in breast cancer patients as a contributing factor to 

facilitate breast cancer metastize into the brain (Smid et al., 2008). The importance of 

WNT signalling for breast cancer metastasis, especially into the brain was demonstrated in 

our group (Klemm et al., 2011). Importantly, not only the classical WNT/β-catenin 

pathway was shown to be involved, also the β-catenin-independent pathway was 

demonstrated to be relevant in breast cancer progression (Klemm et al., 2011). 

Furthermore it we showed that the Wnt pathway needs to be activated during microglia-

induced invasion (Pukrop et al., 2010a). On the other hand, Wnt genes are act on microglia 

and are involved in tissue protection in the central nervous system (CNS) (Halleskog and 

Schulte, 2013). Thus, Wnts are regulated by pro- and anti-inflammatory mechanisms, 

which also indicate the dual role of microglia in health and disease (Hanisch and 
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Kettenmann, 2007). Epithelial cells are capable of inducing a damage response following 

lesions to the brain and that microglia can have a protecting effect on this response 

inducing apoptosis (Chuang et al., 2013).  

In case of infiltration of the malignant cells into the adjacent brain parenchyma, the 

induction of apoptosis as a damage response is not efficient. Therefore, cancer cells can 

use the glial interaction to succeed in infiltrating the adjacent brain parenchyma. The exact 

mechanism how tumour cells can avoid this apoptotic step is not fully understood. 

However, Wnt signalling is involved in tumour progression rather than in tumour apoptosis 

and this is process is mediated by glia cells (Chuang et al., 2013). Further studies are 

required to identify the role of Wnts in the regulation of microglia and the CNS immune 

response and the role of Wnt in colonization of the distant organs, especially the brain. 

 

1.9 Wnt secretion and inhibition of Wnt secretion 

If the Wnt pathway is important in cancer proliferation and spread, the inhibition/the 

modulation of Wnts may be a good target for therapeutic strategies. However, 

manipulation at the receptor-level is not trivial because the receptor complexes are very 

heterogenous and therefore Wnts are not a clear target. The same is true for inhibiting the 

activating kinase activity. Since, the canonical Wnt pathway is based on the inhibition of a 

central kinase (GSK3ß), this simple strategy is also not constructive. Modification of the 

Wnt secretion seems a very rational treatment concept though. However, the mechanisms 

of Wnt secretion are not fully understood. A crucial step for Wnt secretions is the 

palmitoylation of Wnt protein, which is mediated by the enzyme Porcupine. This key 

enzyme belongs to the family of membrane-bound O-acetyltransferase (MBOAT) and is 

located in the membrane of the endoplasmic reticulum (Siegfried et al., 1994). Inhibition 

of Porcupine leads to the prevention of Wnt palmitoylation and thereby Wnt secretion 

(Kurayoshi et al., 2007). These findings and the knowledge of the influence on Wnt in 

tumour initiation and metastasis formation leads to the idea that inhibition of Porcupine in 

order to block Wnt secretion might have a beneficial effect on cancer treatment. 
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Fig 3: Porcupine is essential for Wnt secretion. 

The acyltransferase Porcupine in the endoplasmic reticulum is required for palmitoylation of Wnt 

proteins and therefore necessary for Wnt secretion (Mikels and Nusse, 2006). 

 

The idea of a promising inhibitory effect of Porcupine to block Wnt secretion was 

followed up over the last years.  

The important role of Porcupine for cell proliferation and activation of the Wnt pathway 

was shown in gastric cancer exhibiting high expression levels of Porcupine. By using a 

palmitoyltransferase inhibitor specific for Porcupine (inhibitors of Wnt production (IWP-

2)), the cell proliferation, migration and invasion was inhibited in gastric cancer cells. 

Furthermore, the Wnt/β-catenin signalling pathway activity was downregulated by IWP-2 

(MO et al., 2013). Chen and colleagues showed the ability of IWP compounds to 

selectively target a member of the MBOAT family of acetyltransferases (Chen et al., 

2009).  

Another Porcupine inhibitor Wnt-C57 (patented by Novartis), a small-molecule inhibitor, 

was shown to block Wnt palmitoylation, Wnt interaction with the carrier protein Wingless 

and the Wnt secretion. Wnt driven tumours growth was decreased by using Wnt-C57 in 

mice (Proffitt et al., 2013). The inhibitory effect of Wnt-C57 was evaluated for all ß-

catenin activating Wnts and in all noncanonical Wnts. Summarising, the Porcupine 

inhibitor, IWP-2, is highly potent and specific in inhibiting Wnt signalling in vitro (Chen et 

al., 2009) (Dodge et al., 2012). WNT-C59 was found to be effective in a Wnt-dependent 

mouse tumour model (Proffitt et al., 2013). However, pharmacological Wnt inhibitors 

result in high toxicity and thus have adverse effects at high doses (Chen et al., 2009). 
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A new and more specific Porcupine inhibitor LGK974 is believed to block tumour 

progression through inhibition of the Wnt signalling pathway. LGK974 was shown to be 

well tolerated at the effective doses (Liu et al., 2013a). Therefore, Porcupine inhibition 

seems a bona fide target for cancer treatment. Importantly, in a human based study tumour 

growth was decreased at well-tolerated doses of LGK974. These results supported the use 

of LGK974 for clinical use for the treatment of Wnt driven tumours, and Novartis began to 

use LGK974 in early-phase clinical trials. The study included patients with malignancies 

dependent on Wnt ligands, (https://clinicaltrials.gov/show/NCT01351103), however, the 

results from this study have not been published yet.  

 

Fig 4: Inhibition of Porcupine.  

LGK974 inhibit Porcupine and therefore palmitoylation of Wnt proteins and Wnt secretion 

(http://www.novartisoncology.com/ct/pipelineDetails?compound=LGK974&diseaseAcr=BC.) 

 

1.10 Immune response on tumour cell invasion 

The role of the tumour microenvironment has been frequently shown to be important in 

cancer. The malignancy can be suppressed by the immune response, however, most 

tumours are able to overcome this process and the metastatic potential can be increased, 

which was shown in mouse models (Joyce and Pollard, 2009). Furthermore, peripheral 

macrophages can promote the invasiveness of cancer cells. Usually, one role of 

https://clinicaltrials.gov/show/NCT01351103
http://www.novartisoncology.com/ct/pipelineDetails?compound=LGK974&diseaseAcr=BC
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macrophages is to destroy malignant cells, however, it has been shown that they are able to 

secrete factors necessary for cancer progression. Activation of tumour-associated 

macrophages (TAM) could result in a release of a vast diversity of growth factors, 

proteolytic enzymes, cytokines, and inflammatory mediators that may facilitate cancer 

metastasis (Chen et al., 2005). Additionally, tumour cells are able to attract and manipulate 

cells of the immune system, e.g. the TAM. Therefore, immune cells assist in tumour 

progression. This was confirmed when invasion inducing macrophages were blocked by 

using a Wnt inhibitor leading in a decrease or tumour progression (Pukrop et al., 2006). 

Infiltrating TAM were detected at the invasive front of mammary tumours in human 

samples. The environment of the brain reacts differently compared to other organs and the 

immune response of microglia might be different compared to the response of 

macrophages. Furthermore, astrocytes and microglia were highly activated after seeding of 

pre-metastatic tumour cells in the brain parenchyma (Lorger and Felding-Habermann, 

2010).  

 

1.11 The role of microglia and astrocytes in malignancies 

Microglia cells are resident mononuclear phagocytes that play a fundamental role in the 

protection of normal tissue homeostasis in the central nervous system. Under normal 

conditions, the immune response of microglia in the brain is mainly the repair of the CNS 

and the activation of microglia is normally reversible, hyperactivation of microglia often 

leads to neurotoxic effects (Nakamura, 2002). Microglia and astrocytes were activated in 

response to proinflammatory stimuli. Astrocytes are identified by the intracellulary 

expressed cell type-specific marker glial fibrillary acidic protein (GFAP), microglia by cell 

surface Fc receptors (CSFR) (Kennedy et al., 1980). Astrocytes play an important role in 

lending support of the Blood-Brain-Barrier (BBB) (Abbott et al., 2006) and regulating the 

immune response of the CNS. However, it was shown that astrocytes become activated in 

response to tumour progression, and the size of the tumour is directly correlated to the 

number of activated astrocytes (Langley et al., 2009). Additionally, microglia cells are 

regulated by the macrophage growth factor colony stimulating factor-1 (CSF1) which 

signals via the transmembrane tyrosine kinase receptor (CSFR1). CSFR1 was shown to be 

also upregulated in injured neurons. CSF1 upregulation also correlates with 

neurodegeneration and neuroinflammation (Luo et al., 2013). Furthermore, dysregulation 
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of microglia cells played a central role in cancer (Saijo and Glass, 2011). As the function 

of microglia cells can be protective but also cytotoxic (Zhang and Olsson, 1997), microglia 

might influence tumour cell survival. Moreover, microglia are extremely sensitive to 

changes in the brain microenvironment, which can be an exciting mechanism (Barron, 

1995). For experimental design, LPS can induce activations of microglia.  

Micrometastatic breast cancer cells are changing the brain microenvironment, which can 

lead to metastatic progression. The glia cell reaction induces an altered brain 

microenvironment by e.g. by the formation of a surrounding wall. This might provide the 

basis for glia-tumour cell interactions thereby influencing metastatic progression. The 

metastatic tumours cells might change glia cells by unknown mechanisms (Fitzgerald et 

al., 2008b). Furthermore, it is possible that microglia cells reduce the production of 

cytotoxic factors after contact with tumour cells allowing tumour cells to colonize. At the 

onset of brain metastases there is a balance between the protective and cytotoxic effect of 

microglia cells. This effect is likely to be influenced by signals of the seeded pre-metastatic 

tumour cells, including different factors (He et al., 2006a). A better understanding of the 

interactions between tumour cells, glia cells and epithelial cells could help to develop new 

therapeutic approaches. 

 

1.12 Therapeutic approaches and animal models of cerebral metastasis 

It is obvious that the brain microenvironment plays an important role in the formation of 

metastases. Furthermore, the role of the brain environment in order of breast cancer 

metastasis is different in comparison to other organs. The special environment of the brain, 

which includes the BBB and specific immune responses of the CNS, makes it a unique 

organ. The BBB is composed of a layer of endothelial cells and astrocytes, making the 

BBB impermeable for most cells. Moreover, the BBB can prevent the entrance of 

leukocytes and immunoglobulins from the blood. However, once tumour cells attack the 

BBB, the endothelial cells of the BBB and tumour cells can form a blood-tumour barrier 

(Fidler, 2011), which can lead to colonisation of tumour cells and therefore to metastasis 

formation. The leakage of the most cytotoxic agents through the BBB is usually limited, 

and treatments e.g. chemotherapy, are therefore complicated (Steeg et al., 2011). On the 

other hand, when the interaction of astrocytes and endothelial cells was disrupted the 

impermeability of the BBB seemed to be directly related to the uptake of chemotherapeutic 
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agents. Furthermore, the unique brain microenvironment impedes anti-tumour therapies, 

therefore it is challenging to develop efficient strategies to target brain metastasis (Eichler 

et al., 2011b).  

To investigate new therapeutic strategies and to understand all of the steps involved in this 

process, animal models for brain metastasis that are able to mimic the human disease are 

necessary. Unfortunately, progress in this field of research is still limited by the few 

spontaneous models available. The chance for metastatic cells to reach the brain is not 

100% given because - unlike epithelial cancers - metastatic cells often die before the brain 

is colonized. Furthermore, while the ability of tumour growth in immune-deficient mouse 

models gives extremely valuable results to understand tumour biology, the assistance of 

the immune cells and the lack of immune-signalling- which play an important role in brain 

metastases- cannot be analysed in these models 

(http://www.ncbi.nlm.nih.gov/books/NBK100378/). Therefore, a syngeneic mouse mode is 

more suitable. 

Furthermore, a combined treatment involving the stimulation of the immune system by e.g. 

LPS can further help to investigate the role of immune response on tumour colonization. It 

has been shown in vitro that LPS-activated microglia cells can destroy some metastatic 

cancer cells (He et al., 2006a). Interestingly, LPS was also found to be neuroprotective and 

reduced cell death (Bingham et al., 2011).  

In a brain slice model it was shown that microglia interact with tumour cells and thereby 

enhance the invasiveness of breast cancer cells. Moreover, a dense inflammatory infiltrate 

consisting of active microglia around the tumour mass was observed. Similar results were 

shown by He et al. (2006), suggesting that the degeneration of neurons can activate 

microglia, however, the link between neuronal deaths or degeneration and microglia 

activation could not be made clearly. Later, our group demonstrated that the Wnt pathway 

plays an important role in macrophage-induced tumour invasion in primary tumours 

(Pukrop et al., 2006). This was also confirmed in the distant organ, the brain, where Wnt 

inhibition leads to reduced tumour invasion in the brain slice model (Pukrop et al., 2006). 

In order to prove the proinvasive effect of microglia and the important role of Wnt 

signalling during this event, Han-Ning Chuang triggered a proinflammartory response by 

using LPS in brain slices after adding single tumour cells. Then she analysed gene 

expression patterns and found Wnt signalling to be one of the most misregulated pathways. 

http://www.ncbi.nlm.nih.gov/books/NBK100378/
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Furthermore Han-Ning demonstrated that LPS affects several Wnt related genes in 

microglia. Another regulated pathway was the Toll-Like Receptor (TLR) pathway. Also it 

was shown that TLR4 activation affected several Wnt related genes in microglia.  

In this study we built up on these previous results and we aimed to further define the role 

of the immune system and also the importance of Wnt signalling on tumour colonization. 

In order to elaborate this in greater detail the goals of this study were: 

1) To establish a syngeneic mouse model to investigate the colonization behaviour, the 

morphological metastatic patterns and analysed Wnt signalling and EMT-markers. EMT 

marker expression might be critical for tumour invasion. Therefore, we characterized 

suitable cancer cell lines and focused on epithelial and mesenchymal markers of all 

analysed cancer cell lines and investigated their colonization behaviour. 

2) To investigate whether Wnt secretion is important for colonization of the CNS and 

therefore might be a good therapeutic target. For this proposes, we tested the Porcupine 

inhibitor LGK974, which was suggested to block Wnt secretion and therefore tumour 

invasion.  

3) To further elaborate on several exciting findings that we had made in our group by in 

vitro studies on the role of microglia on tumour colonization. We wanted to transfer these 

in vitro findings to the established syngeneic cerebral metastasis mouse model, as this 

model is physiologically more similar to the human situation. 
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2 Materials und Methods  

2.1 Materials 

2.1.1 Biological material 

2.1.1.1 Cell Lines 

All cell lines used in this study are listed in Tab 1. 

Tab 1: Cancer Cell lines 

Cell line Cell type Characteristics Obtained 

from 

Culture Medium References 

410.4 murine 

Mamma- 

adenokarzinom

-cell line 

BalbC Prof. F. 

Balkwill, 

London, 

UK 

DMEM medium 

(Biochrim, 

Berlin)+10% Fetal 

calf serum  

(Miller, 

1983) 

4T1 murine 

Mamma- 

adenokarzinom

-cell line 

BalbC Prof. F. 

Balkwill, 

London, 

UK 

RPMI-1640 

medium (PAA, 

Cölbe, Germany) 

+10% Fetal calf 

serum (Sigma) 

(Aslakson 

and Miller, 

1992b) 

E0771 murine 

medullary 

breast 

adenocarcinom

a cell line 

C57BL/6  Jeffrey 

Pollard, 

University 

of 

Edinburgh  

RPMI-1640 

medium (PAA, 

Cölbe, Germany) 

+10% Fetal calf 

serum (Sigma) 

(Ewens et 

al., 2005) 

E0771LG murine 

medullary 

breast 

adenocarcinom

a cell line, 

isolated from 

experimental 

lung metastasis 

foci 

C57BL/6  Jeffrey 

Pollard, 

University 

of 

Edinburgh  

RPMI-1640 

medium (PAA, 

Cölbe, Germany) 

+10% Fetal calf 

serum (Sigma) 

Not 

published 
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2.1.2 Cell culture media and additives 

All media and additives used are listed in Tab 2. 

Tab 2: Cell culture media and additives 

Product Company 

DMEM medium Biochrim (Berlin) 

Fetal calf serum (FCS) Sigma (Munich) 

Penicillin/streptomycin (P/S) Biochrom (Berlin) 

RPMI-1640 medium PAA (Cölbe) 

Trysin Biochrome (Berlin) 
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2.1.3 Chemicals, Commercial kits and standards 

All chemicals, commercial kits and standards used are listed in Tab 3. 

 

Tab 3: Chemicals, Commercial kits and standards 

Product Company 

„Cell Proliferation Reagent“ WST-1 Roche Applied Science, (Mannheim)  

DNA ladder 100kb Fermentas (St. Leon-Rot) 

Extracellular matrix gel (ECM) Trevigen, R&D, (Wiesbaden-Nordenstadt) 

High Pure RNA Isolation kit Roche (Grenzach-Wyhlen) 

iScript cDNA synthesis kit Bio-Rad (München) 

Laemmli loading buffer, non-reducing, 4x bioPLUS (Mol, Belgium) 

Laemmli loading buffer Roti®-Load 1, 

reducing, 4x 

Roth (Karlsruhe) 

LGK974 powder Active Biochemicals (Hong Kong) 

LPS from Escherichia coli Enzo Life Sciences (Lörrach) 

Phenol/chloroform/isoamyl alcohol Roth (Karlsruhe) 

Phosphatase inhibitor PhosSTOP, 10x Roche (Grenzach-Wyhlen) 

Ponceau S Merck (Darmstadt) 

SYBR green Roche (Mannheim) 

MTT for MTT assay Sigma (München) 

100xProteaseinhibitor Cocktail Sigma (München) 

Phosphatase inhibitor “PhosStop” Roche (Mannheim) 

4x loading buffer "Roti-Load 1"  Roth (Karlsruhe) 

Precision Dual Color Protein Standard Biorad (München) 

Protein loading buffer bioPLUS Bio-world (USA)  

Hybond-C Extra membrane Amersham Biosciences (Freiburg) 

Ponceau S solution  Omnilab Krannich (Göttingen) 

Dnase I  Roche (Mannheim) 

"ECL Plus"  GE Healthcare (Freiburg) 
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2.1.4 Antibodies  

The antibodies used for Western Blot analyses are listed in Tab 4. 

Tab 4: Antibodies 

Product Host species Application  Company 

Wnt5a rat 1:2000 R&D (MAB645) 

Wnt7a/b mouse 1:250 SantaCruz (sc-

365459) 
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2.1.5 Oligonucleotides 

All used Oligonucleotides directed against mouse cDNA are listed in Tab 5. 

 

Tab 5: Oligonucleotides 

Name Sequence (5´-3´) 

mm-GAPDH fw CATCTTGGGCTACACTGAG 

mm-GAPDH rv CTGTAGCCGTATTCATTGTC) 

mm-RNA 18s fw GTAACCCGTTGAACC CCATT 

mm-RNA 18s rv  CCAT CCAATCGGTAG TAGCG 

mm-CSF1 fw GCGCTTTAAAGACAACACCC 

mm-CSF1 rv  ATGGAAAGTTCGGACACAGG 

mm-Vimentin fw CGGCTGCGAGAGAAATTGC 

mm-Vimentin rv  CCACTTTCCGTTCAAGGTCAAG 

mm-CSF1R fw  CACCATCCACTTGTATGTC 

mm-CSF1R rv  CTCAACCACTGTCACCTC 

mm-Ecad fw GGATATTAATGACAACGCTCC 

mm-Ecad rv  GCATTGACCTCATTCTCAG 

mm-CK8 fw ATGAACAAGGTGGAACTAGAG 

mm-CK8 rv  ATCTCCTCTTCATGGATCTG 

mm-CK19 fw CCTACAGATTGACAATGCTC 

mm-CK19 rv  GTGTTCTGTCTCAAACTTGG 

mm-GFAP fw AACCTGGCTGCGTATAGAC 

mm-GFAP rv  CCAGCGATTCAACCTTTCTC 

h/mmTwist2 fw TACATAGACTTCCTCTACCAGG 

h/mmTwist2 rv GGTCATCTTATTGTCCATCTCG 

mm Zeb2 fw CCACGATCCAGACCACAATTA 

mm Zeb2 rv TACTCTTCGATGCTCACTGC 

mm Snail1 fw TGAAGATGCACATCCGAAGC 
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Name Sequence (5´-3´) 

mm Snail1 rv CAGTGGGAGCAGGAGAATG 

mm-Wnt5a fw TTACACAACAATGAAGCAGG 

mm-Wnt5a rv ACACTCCATGACACTTACAG 

mm-LEF1 fw TCATCCAGCTATTGTAACACCT 

mm-LEF1 rv TGCTCCTTTCTCTGTTCGT 

mm-Zeb1 fw CAGTATTACCAGGAGGCA 

mm-Zeb1 rv CACACTCGTTGTCTTTCAC 

mm-ßcat fw TACGAGCACATCAGGACAC 

mm-ßcat rv CCAGTACACCCTTCTACTATCTC 

mm-Wnt6 fw GGTTCGAGAATGTCAGTTCC 

mm-Wnt6 rv ATTGCAAACACGAAAGCTG 

mm-Wnt5b fw GAGAAGAACTTTGCCAAGG 

mm-Wnt5b rv GACATCAGCCATCTTATACAC 

mm-Porc fw CTTGTCAAAGCGTTGTCTG 

mm-Porc rv CAAGTTTAAGGCTCGTACC 

mm-Wnt3a fw ATCTTTGGCCCTGTTCTG 

mm-Wnt3a rv TCACTGCGAAAGCTACTC 

mm-Twist1 fw GTACATCGACTTCCTGTACCA 

mm-Twist1 rv TTGCCATCTTGGAGTCCAG 

mm-Wnt7a fw CAGTTTCAGTTCCGAAATGG 

mm-Wnt7a rv GATAATCGCATAGGTGAAGG 

mm-Wnt10a fw AGATCTGATTGACATTCCTCC 

mm-Wnt10a rv TGAGCTAGGAACAGAAAGAG 

 

  



2 Materials und Methods 22 

 

2.1.6 Equipment 

All lab equipment used is listed in Tab 6. 

 

Tab 6: Equipment 

Product Company 

Analytical balance, Sartorius excellence Sartorius (GöttingenFC) 

Anatomical tweezers  Carl Teufel GmbH & Co (Liptingen) 

Autoclave Varioklav Thermo Scientific (Bonn) 

Axiovert 200M fluorescence microscope Zeiss (Jena) 

Bioanalyzer 2100 Agilent (Santa Clara, USA) 

Biolumineszenz Imager (VisiLuxx) Visitron Systems (Puchheim) 

Camera EOS 600D Canon 

CO2 incubator CB150 Binder (Tuttlingen) 

Embedding Center EG1160 Leica Microsystems (Wetzlar) 

Foreign Body tweezers Carl Teufel GmbH & Co (Liptingen) 

Gavage 0,8Ø   

Hamilton Microliter Syringes, 10μl 

(26s/51/2)  

Hamilton (Bonaduz, Schweiz) 

Iridectomy scissors Carl Teufel GmbH & Co (Liptingen) 

Microsurgery tweezers Carl Teufel GmbH & Co (Liptingen) 

Microtome Leica RM 2165 Leica (Wetzlar) 

Microwave Powerwave; Braun 

MilliQ water purification system Millipore (Schwalbach) 

NanoDrop ND-1000 spectrophotometer Peqlab (Erlangen) 

Neubauer Improved cell counting chamber LO Laboroptik (Friedrichsdorf) 

PH meter 761 Calimatic Knick Elektronische Messgeräte (Berlin) 

Pipetboy Integra biosciences (Femwald) 

Refrigerated microfuge SIGMA 1-15K Sigma Laborzentrifugen (Osterode am 

Harz) 
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Product Company 

ScanScopeXT Aperio/Leica (Wetzlar) 

Semi-enclosed Benchtop Tissue Processor 

TP1020 

Leica Microsystems (Wetzlar) 

Steamer Braun 

Stereotactic apparatus model 900 Kopf Instruments (Tujunga, California) 

Surgical lighting Hanaulux 2208 Medap, (Feldkirch) 

Sutures Seralon 7/0  DCV- INstrumente (Seitingen- Oberflacht) 

Thermal cycler T3000 Biometra (Göttingen) 

Vascular clamp Fine Science Tools (Heidelberg)  

Vortex shaker Genius 3 IKA Lab equipment (Staufen) 

Water bath Köttermann (Uetze, Hänigsen) 

Mini-gel electrophoresis system Biometra (Göttingen) 

Blotting system  Biometra (Göttingen) 

LAS 4000 Imager Fuji Film / GE Healthcare, (Freiburg) 

HT 7900 Real-Time PCR system Applied Biosystems, (Darmstadt) 

"Hybond-C Extra"  Amersham Biosciences, (Freiburg)  

"GB33Whatman paper B003"  Heinemann laboratory technology 

(Duderstadt) 

Mikropistill Faust (Schaffhausen, Scheiz) 

Motor for Mikro-Pistill Faust (Schaffhausen, Scheiz) 

Inverted microscope Axiovert 200M Zeiss (Göttingen) 

Microscope Leica DMLB Colorview Leica (Wetzlar) 
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2.1.7 Anaesthetics agent and antalgesic 

All anaesthetics agents an antalgesic used are listed in Tab 7. 

Tab 7: Anaesthetics agent and antalgesic 

Medication Company Dose 

Antisedan® 

(Atipamezolhydrochlorid)  

Pfizer  0,2 mg kg-1 Bodyweight 

 

Hostaket® 

(Ketaminhydrochlorid) 

Intervent 85 mg kg-1 Bodyweight 

Rimadyl®  Pfizer 5 mg kg-1 Bodyweight 

Domitor® 

(Xylazinhydrochlorid)  

Bayer 7,5 mg kg-1 Bodyweight 

 

 

2.2 Methods 

2.2.1 Cell culture methods 

2.2.1.1 Maintenance of cells 

Cells were grown at 37°C and 5% CO2 in a humidified incubator. Cells were first washed 

with 5ml PBS, separated by incubation in 1ml Trypsin for up to 15 min and splitted in a 

ratio of 1:10 for passage. In case of BAL17, the cells were centrifuged, washed and then 

splitted 1:10 daily. Contamination with Mycoplasma was tested frequently for all cell 

lines. To store cells over a longer period, they were frozen in DMSO +90% FCS and stored 

at -150°C. 

 

2.2.1.2 LGK974 preparation 

2-[5-Methyl-6-(2-methyl-4-pyridyl)-3-pyridyl]-N-(5-pyrazin-2-yl-2-pyridyl)acetamide 

(LGK974) was delivered as a powder with a molecular weight of 396.44g/mol. Stock 

solution of 10mM were prepared (3,96mg LGK974/mlDMSO) and frozen. For each 

experiment performed with LGK974, stock solution were used and diluted. 
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2.2.1.3 MTT assay 

Cell viability was measured by MTT assay (Mosmann, 1983). Treatment with or without 

inhibitor was tested to compare the viability of the cells. The assay is based on the 

conversion of the water-soluble, yellow tetrazolium salt 3-(4,5-Dimethylthiazol-2-yl)-2,5-

diphenyltetrazoliumbromid (MTT) to an insoluble, purple formazan. This reduction is 

mediated by NAD(P)H-dependent enzymes in the endoplasmic reticulum (Berridge and 

Tan, 1992) and therefore highlights apoptotic or necrotic cells which have an altered cell 

metabolism. 

For the MTT assay, 2x10
4
 cells of E0771LG, 4x10

4
 cells of 4T1, 4x10

4 
cells of 410.4, 

1x10
5
 human Mɸ per well were seeded in triplicate in a 24-well-plate and incubated with 

the LGK974 inhibitor at the indicated concentrations and time periods. Afterwards, the 

cells were incubated with 500μl equivalent culture medium +10% MTT (stock solution: 

5mg/ml) for 4h at 37°C and 5% CO2. The medium was aspired and cells lysed in 500μl 5% 

formic acid containing 63% isopropanol and 32% DMSO. The extinction at 540nm was 

measured in triplicate using a photometer and was normalized to the extinction of the 

untreated control. 

 

2.2.1.4 WST-1 test 

The WST-1-test measured the viability of cells. The principle of the reaction is the 

conversion of the tetrazolium salt WST-1 by succinate-tetrazolium reductase to formazan. 

The measured change in colour of the sample from light red to dark red is proportional to 

the amount of enzyme in the culture that will be used. For the WST-test 2,5x10
4
 microglia 

cells per well were seeded in triplicate in a 24-well-plate and incubated with the LGK974 

inhibitors at the indicated concentrations and time periods. Subsequently, the cells were 

incubated with 500μl culture medium for 24 hours before incubation in 500µl and 50µl 

WST 1 substrate for 2h at 37°C and 5% CO2. The extinction at 540nm was measured in 

triplicate using a photometer and compared to the extinction of the untreated control.  
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2.2.1.5 xCelligence 

As an additional method for real-time monitoring of cell viability and proliferation 

measurements the xCelligence system (RTCA DP Analyzer, Roche), an electronic 

impedance-based cell sensing measurement system, was used. Here, 5x10
3
 cells of 410.4, 

2,5x10
3
 cells of 4T1 and 2x10

3
 cells of E0771LG, respectively, were seeded per well in 

E16 plates (Roche) and stimulated with concentration of 2.5µM and 5µM of LGK974 for 

48h. The bottom of these wells is covered with a gold microelectrode, therefore, changes in 

electrical impedance can be measured when the cells attach and spread on the electrode 

surface. Consequently, cell growth and spreading result in increased impedance while 

detachment or rounding up of cells lead to a reduction. With this method, which is 

comparable to the MTT-assay and as well to the WST-test, the cell index is determined. 

 

2.2.1.6 Cell invasion assay (modified Boyden chamber) 

The microinvasion assay was performed with a modified Boyden chamber system, which 

has been described previously (Hagemann et al., 2004). The membrane consists of 

polycarbonate (pore diameter: 10μm, Pieper Filter) and was coated with 1:4 dilution 

extracellular matrigel (ECM) in serum-free RPMI-1640 medium. Cancer cell invasion was 

determined by counting the cancer cells in the lower chamber that invaded through the 

artificial basement membrane. In case of 410.4 cells, cells were cocultured with microglia. 

Cells were performed with cell culture inserts (BD, Heidelberg, Germany) in the upper 

chamber, without cell-to-cell contact to the cancer cells. The experiments were performed 

twice, once with pre-stimulation once without 24h pre-stimulation with LGK974. For all 

experiments 1x10
5 

cells were used. 
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Fig 5: Schema of Microinvasion assay. 

The invasive cancer cells were seeded in the upper well of the chamber. In case of 410.4, microglia 

cells were added. After 96h the numbers of invasive cells, which had degraded the ECM gel to the 

lower wells, were counted und compared with unstimulated cancer cells. 

 

2.2.2 Protein biochemistry 

2.2.2.1 Protein Isolation from cells 

For the isolation of total protein the generation of lysates, all used cell lines were seeded in 

6-well plates in a concentration of 1x 10
6
 cells per well. The possibility to adhere was 

given for at least for 4hours and then incubated with or without stimulation. After the 

indicated time points cells were washed once with cold PBS. Afterwards 100μl RIPA lysis 

buffer was added before cells were detached from the well with a cell scraper on ice, and 

transferred into 1,5ml tubes. After an incubation of 10-20min, lysates were centrifuged for 

5min at 20.000xg and 4°C to pellet cell debris and DNA. Supernatants were collected in 

1,5ml tubes and stored at -20°C. 

 

RIPA lysis buffer:  Tris, pH 7,2   50 mM  

     NaCl    150 mM  

     SDS     0,1%  

     Na-deoxycholat   0,55 % 

     Triton X-100  1%  

 

For protein lysates from cells, protease inhibitors (“100xProteaseinhibitor Cocktail”) as 

well as phosphatase inhibitors (“PhosStop”) were added to the lysis buffer according to the 

manufacturer’s instructions. 
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2.2.2.2 Protein quantification by Lowry assay 

Protein concentrations were determined by Lowry assay (DC protein assay, Bio-Rad) 

using a BSA standard curve. According to the manufacturer’s instructions all samples were 

diluted 1:10 in 10μl ddH2O. The Lowry assay is based on the colorimetric detection of 

copper (I) ions, which bind to Bicinchoninsäure (BCA). In the presence of proteins copper 

(II) ions are reduced to copper (I) in a concentration-dependent manner. The violet product 

was measured in a photometer at 750nm (Lowry et al., 1951). 

 

2.2.2.3 SDS Polyacrylamidgelelectrophoresis (SDS-PAGE) 

For detecting proteins in cell lysates by Western blot, SDS-PAGE (Laemmli, 1970) was 

used for size fractionation. Therefore, proteins pass through a polyacrylamide gel with two 

layers within an electric field. First the stacking gel (neutral pH) collects the proteins in 

one band before the resolving gel (basic pH) separates them. In order to allow their 

separation in an electric field, the protein lysate were mixed with the anionic surfactant 

SDS. This surfactant binds proteins proportional to their size based on their negative 

charges. Prior to electrophoresis, protein lysates were incubated with 4x loading buffer 

"Roti-Load 1" and boiled for 5min at 95°C to denature the proteins. The loading buffer 

contains ß-mercaptoethanol, which reduces the protein disulfide bonds. Also, the SDS 

binds to proteins and applying negative charge in proportion to their mass. The 

electrophoresis was performed in a vertical mini-gel electrophoresis system (Biometra) 

using Tris-Glycine running buffer. The focusing of proteins in the stacking gel was carried 

out for 30min at 90V, the subsequent separation in the resolving gel for approximately 

90min at 130V. For the determination of the protein sizes a standard was applied 

("Precision Dual Colour Protein Standard"). 

In the case of Wnt5a protein PAGE was performed under non-denaturing conditions with 

β-mercaptoethanol-free loading buffer (bioPLUS).  
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5% Stacking gel:   Tris + 2% SDS (1,5 M; pH 6,8)   630μl  

     Acrylamid/Bisacrylamid 30%  830μl  

     APS (10%)      50μl  

     TEMED      5μl  

     H2O (bidest.)     3,45ml  

 

10% Separating gel:     Tris + 2% SDS (1,5 M; pH 8,8)   5ml  

     Acrylamid/Bisacrylamid 30%   6,7ml  

     APS (10%)      200μl  

     TEMED      20μl  

     H2O (bidest.)     7,9ml 

 

 

1× Electrophoresis buffer: Tris      3g 

     Glycin    14,4g 

SDS     1g    

 H2O (bidest.)   ad 1l 

 

 

2.2.2.4 Western Blot 

Western blot analyses were used to transfer proteins from a gel onto a nitrocellulose 

membrane. Subsequently proteins were detected with antibodies (Towbin et al., 1979). A 

semi-dry blotting system was used for all proteins. 

The nitrocellulose membrane "Hybond-C Extra" (Amersham Biosciences) and 

"GB33Whatman paper B003" (Heinemann laboratory technology), were equilibrated for 

5min in transfer buffer before the membrane was put on three “Whatman paper”.  

Afterwards, the polyacrylamide gel was washed with transfer buffer and placed on the 

nitrocellulose membrane, and topped by three layers of “Whatman paper” soaked with 

transfer buffer "GB33 Whatman FilterB003". Then, the blot chamber was closed and the 

protein transfer was carried out at 10V for 75min. To verify a successful transfer, the 

nitrocellulose membrane was stained with Ponceau S solution, which stains all proteins. To 
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detect specific proteins, the nitrocellulose membrane was incubated with antibodies 

specific for the respective proteins. Therefore, the membrane was incubated for 1h in 

blocking solution at room temperature to prevent non-specific binding. Afterwards, the 

primary antibody was diluted according to the manufacturer's instructions in block solution 

and incubated with the membrane overnight at 4°C., followed by three washing steps for 

5min with TBS + 0.1% Tween. Next, the membrane was incubated with the secondary 

antibody for one hour at room temperature. The secondary antibody was conjugated to 

horseradish peroxidase (HRP), to visualize the proteins. After incubation with the 

secondary antibody, the membrane was washed again three times for 5min with TBS + 

0.1% Tween. The membrane was incubated for 5min with the detection reagent "ECL 

Plus" (GE Healthcare) according to the manufacturer's instructions. The substrate of the 

working solution and HRP are generating a light emitting precipitate, which binds to the 

antigen-antibody complex. This precipitate was visualized using the "LAS 4000 Imager". 

Blockingsolution: Tris   2,4g 

   NaCl   8g 

   H2O (bidest.)  ad 1l 

   Tween   0,1% 

   BSA   5% 

 

2.2.3 Gene expression analysis 

2.2.3.1 RNA isolation from cells 

The isolation of mRNA from cultured cells was carried out with the spin column- based 

High Pure RNA isolation kit (Roche**) according to the manufacturer’s instructions. 

Briefly, the cells were seeded at a concentration of 1x10
6
 cells per well in 6-well plates and 

stimulated as indicated. Subsequently, cells were washed once with PBS and lysed in 

400μl of the lysis- /binding buffer supplemented with 200μl PBS. While RNases are 

inactivated, the buffer also contains Triton X-100, which mediates the permeabilization of 

the cell membrane as well as guanidine hydrochloride, which induces protein denaturation. 

The samples were vortexed for 15sec to boost cell lysis and subsequently applied onto a 

TBS 
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spin column that consists of glass fiber fleece. Columns were centrifuged at 8000xg for 

15sec, which leads to the binding of the nucleic acids to the column, while proteins, salts 

and cellular debris are eluted. Contaminating DNA was digested directly on the column by 

incubation with DNase I for 15min. The remaining RNA was washed three times, before 

50μl nuclease-free water was added to the column to elute the RNA. Concentration and 

purity were measured with the NanoDrop ND-1000. 

 

2.2.3.2 RNA isolation from tissue 

RNA from tissue was isolated with a modified TRIzol method incorporating a Dnase I 

digestion step. 

For the isolation of total RNA from mice brain, tissue samples were treated with the 

TRIzol (Invitrogen) reagent. First, samples were homogenized, by a motor driven 

micropistille, in 1ml TRIzol in a 1,5ml eppendorf tube, before 200μl chloroform was 

added. This was followed by hand-shaking for 15seconds and incubation at room 

temperature for 5min. Tubes were then centrifuged at 20.000xg for 15min at 4°C which 

results in the formation of three phases with the RNA being present in the colourless upper 

aqueous phase. The upper phase was transferred to a new tube and 500μl isopropanol were 

added. For the precipitation of the RNA, the samples were incubated for 10min at room 

temperature followed by centrifugation at 13.000xg and 4°C for 30min. The pellets were 

washed in 1ml 70% ethanol and centrifuged at 20.000xg and 4°C for 10min. To remove 

DNA, the pellets were resuspended in 50μl DNA digestion mix and incubated for 20min at 

37°C. To purify the RNA, 150μl nuclease-free water and 200μl phenol/chloroform/isoamyl 

alcohol were added. The samples were vortexed for 30sec and subsequently centrifuged for 

2min at 20.000xg and 4°C. The upper aqueous phase, which contains the RNA, was 

transferred to a new tube. 20μl sodium acetate (3M, pH 4,8) and 200μl isopropanol were 

added and samples were incubated for 30min at 4°C to precipitate the RNA before 

centrifugation for 30min at 20.000xg and 4°C. The pellet was washed twice once with 1ml 

70% ethanol and once with 900µl 70% ethanol for 5min each followed by centrifugations 

at 20.000 g and 4°C. Finally pellets were air dried at 37°C for 15min and the RNA was 

resuspended in 20μl to 50μl (depending on the size of the pellet) nuclease-free water. The 

concentration and purity was determined using a NanoDrop ND-1000 spectrophotometer 

(Peqlab). 



2 Materials und Methods 32 

 

DNA digestion mix: 

5μl DNase I incubation buffer (10x, Roche) 

1μl DNase I (10U/μl, Roche) 

0,5μl RNase OUT (40U/μl, Invitrogen) 

Ad 50μl nuclease-free water 

 

2.2.3.3 Reverse transcription 

In the first step to analyse changes in gene expression by qRT-PCR, the isolated RNA was 

transcribed into complementary DNA (cDNA) by using reagents from the iScript cDNA 

synthesis kit, which includes reverse transcriptase, an RNA-dependent DNA polymerase. 

All mRNA´s were reverse transcribed using random hexamer oligonucleotides or 

oligo(dT) primers, the latter being complementary to the poly-A tail of eukaryotic mRNAs.  

Reaction mix: 

5x iScript reaction mix   4μl  

iScript reverse transcriptase   1μl  

RNA template (1μg)    xµl 

Nuclease-free water   xµl 

 

Total volume    20µl 

 

Standard program:   25°C    5min 

      42°C    30min 

      85°C   5min 

 

Each sample was diluted in a ratio of 1:5 with nuclease-free water and stored at -20°C. 

 

2.2.3.4 Quantitative real-time (qRT-PCR) 

For quantification of gene expression levels and changes in gene expression in tissue or 
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cell lysates qRT-PCR was used. This commonly used method for single gene expression 

consists of two reaction steps. In the first step the RNA is transcribed into cDNA in the 

second step this cDNA is used for amplification by PCR. For detection SYPR- Green was 

used. This fluorescence marker intercalates into dsDNA and therefore, the reaction product 

can be detected as the reaction progresses in real time For the qRT-PCR a thermo cycler 

was used with the capacity to illuminate samples with a beam of light of a specified 

wavelength and to detect such fluorescence. The method follows the general principles of 

the polymerase chain reaction: After activation of a hot-start polymerase, the protocol 

consists of 40 cycles each including three steps: Denaturation of nucleic acids double 

strand, annealing of the primers and DNA polymerization.  

 

10× PCR-Puffer:    Tris-HCl pH 8,8      0,75M  

      Ammoniumsulfat    0,2M  

      Tween-20      0,1% (v/v) 

 

SYBR-Green Master Mix:  10x PCR-Puffer      2,5ml  

      25 mM MgCl2      3ml  

      1:100 SYBR-Green     31,3μl  

      20mM dNTP-Mix     250μl  

      5 U/μl Taq-Polymerase    100μl  

      10% Triton X-100     652μl  

      1M Trehalose     7,5ml 

 

All dilutions were performed with DEPC-H2O and the Trehalose was diluted with Tris-

HCl (pH 8,0).  

 

PCR-Reactionmix:    SYPR-Green Master Mix     5,6 μl  

      fw-Primer (10μM)      0,3μl  

      rv-Primer (10μM)      0,3μl  

      cDNA 5ng/μl      2μl  

      H2O        1,8μl 
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Standard qRT-PCR program: 

   95°C  12min  Activation Taq-Polymerase 

    95°C  15sec  Denaturation   

    60°C  1min  Annealing/Elongation 

    95°C  15sec   

    60-95°C 2°C/min 

 

The reaction mix was placed in a 384-well plate. All qRT-PCRs were performed using the 

HT 7900 Real-Time PCR system. Gene expression was analysed by using the SDS 

software version 2.4 (Applied Biosystems) normalizing the expression to two reliable 

housekeeping genes, murine 18S ribosomal RNA and murine GAPDH. Fold changes or 

∆Ct values were plotted with GraphPad Prism for Windows or Mac (version 6.0e). For 

analysis the comparative cycle threshold (Ct) method was applied as described by Livak 

and Schmittgen, 2001 (Livak and Schmittgen, 2001): 

∆Ct = Ct of gene of interest – Ct of housekeeping gene 

∆∆Ct = ∆Ct of sample - ∆Ct of reference 

Fold change = 2
-∆∆Ct  

 

2.2.3.5 Establishing primers for qRT-PCR reaction 

All used primer pairs were designed with the software PerlPrimer version 1.1.21 (Marshall, 

2004) before they were tested for their efficiencies. The primer pairs were chosen from the 

database BioGPS (Wu et al., 2009). For primer testing, cDNA with a known concentration 

was used. Under optimal conditions each PCR cycle should results in a doubling rate of the 

die, which corresponds to an efficiency of 100% of the respective primer. Only primers 

within a range of 90%-110% efficiency were chosen for experiments. As described before, 

the Ct- values were measured and plotted against the amount of input cDNA. The slope of 

the resulting graph was calculated with SDS software version 2.4; a slope result of -3,33 

40x 
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equals a primer efficiency of 100%. The efficiency can be calculated using the following 

formula:  

10 
-1/slope of the line

 

Furthermore, to verify that a single gene product with the correct size was generated, the 

PCR-products of all used primer pairs were visualized on a 2% agarose gel. 

Primer sequences are listed in the supplementary Table 7.  

 

 

2.2.4 Histology 

2.2.4.1 Perfusion, Fixation and Tissue Processing 

Mice were anesthetized with ether before perfusion. Therefore, the skin of the abdomen 

was cut open quickly as well as the pericardium using scissors. A small hole was then cut 

into the right cardiac atrium through which the blood could leave the animal’s body. Then 

10ml phosphate buffered saline (PBS) was thoroughly injected into the left main heart 

chamber thereby pumping the blood out of the circulation system. Total brains were 

dissected out. The anterior part (Fig 6) of the brain (bulbus not included) was snap frozen 

in liquid nitrogen and stored at −80°C until homogenized for gene expression analysis. 

Furthermore, for fixation all tissues were stored for 48hours in 4% Paraformaldehyde (PFA 

at room temperature) at a ratio of fixative to tissue of 10:1. Tissues were stored in PBS 

before further processing. All fixed tissue were processed into a cassette, dehydrated and 

cleared automatically. 

  



2 Materials und Methods 36 

 

 

Fig 6: Schema of a mouse brain and tissue processing. 

The tissue between the red lines was snap frozen, right side (i) as the injected side with the 

injection hole and left side non- injected side (ni) as the control. 

 

Tab 8: Dehydration Protocol 

Time Substance 

3x60min 75% Ethanol 

2x90min 96% Ethanol 

3x75min 100% Ethanol 

2x120min Xylol 

 

Tissue were picked out of the cassette and embedded with pure molten paraffin. For 

microscopic analysis sections of 3µm thickness were cut with a microtome, floated on a 

warm water bath to help remove wrinkles before they were picked up with a glass 

microscopic slide. 

 

Tab 9: Deparaffinization Protocol 

Time Substance 

3x5min Xylol 

2x5min 100% Ethanol 

3min 96% Ethanol 

3min 80% Ethanol 

3min 70% Ethanol 

3min H2O 
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2.2.4.2 Histology staining 

To visualize the morphology haematoxylin and eosin staining, the gold standard was used 

for all samples.  

Tab 10: Hematoxylin - Eosin (HE) Protocol 

Time Substance 

3min Roti-Histol 

3min Roti-Histol 

3min Roti-Histol 

2min 100% Ethanol 

2min 100% Ethanol 

2min 96% Ethanol 

2min 70% Ethanol 

2min 50% Ethanol 

2min 30% Ethanol 

3min Aqua dest. 

5min Haematoxylin 

10min Tap water 

2min Aqua dest. 

3min 1% Eosin 

1sec Aqua dest. 

1min 70% Ethanol 

1min 80% Ethanol 

1min 90% Ethanol 

1min 96% Ethanol 

2min 100% Ethanol 

2min 100% Ethanol 

2min Roti-Histol 

2min Roti-Histol 

2min Roti-Histol 

 

2.2.4.3 Immunostaining 

Immunohistochemistry (IHC) was performed on all sections of 3μm thickness from 4% 

formalin-fixed, paraffin-embedded tissues.  
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2.2.4.3.1 Cytokeratin 8 (CK8) 

Sections were deparaffinised, unmasked in a steamer for 40min with Citrate buffer (Dako 

Real Target Retrieval Solution 1:10 dilution), washed, and then rinsed with PBS+H2O2 for 

20min before incubation overnight at room temperature with anti- Cytokeratin 8 (dilution 

1:100 Abcam ab 59434). Sections were washed with Tris Buffer and then incubated for 1h 

at room temperature with goat anti rabbit biotinylated antibody (dilution 1:250 Dianova 

111-065-144), washed in Tris buffer, incubated for 1h with Peroxidase (dilution 1:1000, 

Sigma ExtrAvidin – Peroxidase E-2886) and visualized with DAB substrate (DAB 500plus 

Zytomed).  

 

2.2.4.3.2 Ionized calcium binding adaptor molecule (IBA) 

Sections were deparaffinised, unmasked in a steamer for 40min with Citratbuffer (Dako 

Real Target Retrieval Solution 1:10 dilution), washed, and then incubated in PBS+H2O2 

for 20min before incubation overnight at room temperature with Rb Anti Iba-1 (dilution 

1:1000 Wako 019-19741). Sections were washed with Tris Buffer and then incubated at 

room temperature with goat anti rabbit antibodies (dilution 1:250 Biotinylated Dianova 

111-065-144), washed in Tris buffer, incubated for 1h with Peroxidase (dilution 1:1000 

Sigma ExtrAvidin – Peroxidase E-2886) and visualized with DAB substrate (DAB 500plus 

Zytomed).  

 

2.2.4.3.3 Ki67  

Sections were deparaffinised, unmasked in a steamer for 40min with Citrate buffer (Dako 

Real Target Retrieval Solution 1:10 dilution), washed, and then incubated in PBS+H2O2 

for 20min before incubation overnight at room temperature with Anti- Ki-67 antibody 

(dilution 1:200 Abcam ab15580). Sections were washed with Tris Buffer and then 

incubated for 1h at room temperature with goat anti rabbit antibodies (dilution 1:250 

Biotinylated Dianova 111-065-144), washed in Tris buffer, incubated for 1h with 

Peroxidase (dilution 1:1000 Sigma ExtrAvidin – Peroxidase E-2886) and visualized with 

DAB substrate (DAB 500plus Zytomed).  
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2.2.4.3.4 CD34 

Sections were deparaffinised, unmasked in a steamer for 40min with Citratbuffer (Dako 

Real Target Retrieval Solution 1:10 dilution), washing, and the incubated in PBS+H2O2 for 

20min before incubated overnight at room temperature with CD34 rat anti mouse (dilution 

1:500, Klon MEC14.7, Serotec MCA1825GA). Sections were washed with Tris Buffer and 

then incubated at room temperature for 1h with Rabbit Anti-Rat (dilution 1:500 

Biotinylated Dako E0468) washed in Tris buffer, visualized with 3,3’-diaminobenzidine 

(DAB) or either with DAB substrate (DAB 500plus Zytomed).  

 

2.2.4.3.5 Glial fibrillary acidic protein (GFAP) 

Sections were deparaffinised, unmasked in a steamer for 40min with Citratbuffer (Dako 

Real Target Retrieval Solution 1:10 dilution), washing, and the incubated in PBS+H2O2 for 

20min before incubated overnight at room temperature with anti-GFAP antibody (dilution 

1:200, Dako Z0334). Sections were washed with Tris Buffer. Afterwards they were 

incubated at room temperature with Alkaline Phoshatase/red/rabbit/mouse system for 

10min to 15min (Dako Real Detection System K5005).  

 

2.2.4.3.6 Myeloperoxidase (MPO) 

Sections were deparaffinised, unmasked in the microwave for 30min with Tris/EDTA (10x 

Dako S2367 Target Retrieval Solution pH 9), washing, and the incubated in PBS+H2O2 for 

20min before incubated overnight at room temperature with Anti-Myeloperoxidase (MPO) 

antibody (dilution 1:200, Abcam 9535). Sections were washed with Tris Buffer and then 

incubated at room temperature for 1h with goat anti rabbit biotinylated (dilution 1:250 

Dianova 111-065-144), washed in Tris buffer, incubated for 1h with Peroxidase (dilution 

1:1000 Sigma ExtrAvidin – Peroxidase E-2886) and visualized with DAB substrate (DAB 

500plus Zytomed).  

 

2.2.4.3.7 CD3 

Sections were deparaffinised, unmasked in the microwave for 30min with Citratbuffer 

(Dako Real Target Retrieval Solution 1:10 dilution), washing, and the incubated in 

PBS+H2O2 for 20min before incubated overnight at room temperature with Anti-CD3 
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antibody (dilution 1:150, DCS C1597C01). Sections were washed with Tris Buffer and 

then incubated at room temperature for 1h with goat anti rabbit biotinylated (dilution 1:250 

Dianova 111-065-144), washed in Tris buffer, incubated for 1h with Peroxidase (dilution 

1:1000 Sigma ExtrAvidin – Peroxidase E-2886) and visualized with DAB substrate (DAB 

500plus Zytomed).  

2.2.4.3.8 B220  

Sections were deparaffinised, unmasked in the microwave for 30min with Citratbuffer 

(Dako Real Target Retrieval Solution 1:10 dilution), washing, and the incubated in 

PBS+H2O2 for 20min before incubated overnight at room temperature with rat Anti-mouse 

CD45R antibody (dilution 1:200, BD Pharmingen 557390). Sections were washed with 

Tris Buffer and then incubated for 1h at room temperature with goat anti rat biotinylated 

(dilution 1:200 Sigma B7139), washed in Tris buffer, visualized with 3,3’-

diaminobenzidine (DAB) and nuclei counterstained with haematoxylin. 

 

Nuclei were counterstained with haematoxylin for all staining. 

 

2.2.5. Light microscopy 

For the documentation of all preparations the stereomicroscope (Leica Microsystems) was 

used to examined and photographed.  

 

2.2.6 Animal monitoring 

Before injection mice were monitored for their physical fitness. Sensory, or motor deficits 

in the animals that might interfere with their normal behaviour were checked before and 

after surgery. Therefore, all mice were tested for several parameters, including poor 

grooming, changes of the fur, bald patches in the coat, absence of whiskers, laboured 

breathing and body weight loss and abnormalities were recorded. The following tests were 

used to reveal neurological dysfunctions. 

2.2.6.1 Wire Hang Test 

This test is used to evaluate motor function: It investigates neuromuscular strength of 

animals. The mouse is placed on the wire cage lid and the lid is gently waved so that the 



2 Materials und Methods 41 

 

mouse grips the wire (Fig 7A). The lid is then turned upside down approximately 50cm 

above the surface of the bedding material. 

The latency to fall onto the bedding was recorded. This task was used as a measure of 

grasping ability and an indication for motor function deficiency.  

2.2.6.2 Rotarod Test 

This test is widely used to measure motor coordination and balance and can reveal ataxic 

behaviour. The rotarod measures the ability of the mouse to maintain balance on a rotating 

rod (Fig 7B). Performance is measured as “latency until drop-off”. There are two methods: 

Rotarod: Each mouse is placed on the rotating rod and the time until fall off is measured 

(cut-off time: 60sec). Different constant rotation speeds are used in this paradigm. 

Accelerod: An accelerating rotarod allows the rotation speed to be constantly increased 

from 4 to 40 revolutions per minute (rpm), over a five-minute period. 

Each mouse is placed on the rotarod at a constant speed (12rpm) for a maximum of 120sec 

and the latency and frequency to fall off the rotarod within this time period is recorded. 

 

Fig 7: Behaviour testing systems. 

(A) Wire Hang system and (B) Rotarod system for behaviour testing. 

 

2.2.7 Stereotaxis 

2.2.7.1. Animal use and intracranial cancer cell injection 

Mice, of approximately 20g body weight and eight weeks of age were bred in-house from 

animals purchased from JANVIER SAS and were used for all studies. Female mice were 
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group-housed in Macrolon cages, provided with nesting material without environmental 

enrichment. Mice were provided with water and phytoestrogen-free and soy-free food 

(ssniff Spezialdiäten GmbH), available ad libidum. Cages were held under standard 

conditions within a temperature- and humidity-controlled holding room (22°C; 55-60% 

relative humidity on a 12:12 hour light:dark schedule (lights phase: white light; 

illumination: ~80lx; dark phase: no light)) and housed for four weeks to acclimatise before 

they were used for experiments. Physical examinations were performed before and after 

surgery in an experimental room. Testing was commenced at least one hour after onset of 

the light phase. Thus, potential abnormalities, sensory, or motor deficits, which might 

interfere with data interpretation, would have been detected before the procedure. Mice 

with abnormalities were not used for further studies. 

At an age of 12 weeks, mice were anesthetized with ketamine 100mg/kg intraperitoneal 

(IP) ×1 and Domitor® 0,25mg/kg IP ×1 before injection. Mice were placed into a 

stereotactic frame (Fig 8). This frame employs two devices: a head holder and a 

thumbscrew driven ear-bar advance.  

 

 

Fig 8: Stereotaxis frame. 

Mouse was fixed in the front and also from the left and right side with ear-bar advance (Marchand 

and Riley, 1979). 

 

Different amounts of cells were tested and injected. 3µl (mixture 1:3 cells and extracellular 

matrix (ECM)) were stereotactically injected through a 0.5- 1mm burr hole by using a 

Hamilton 10µl syringe. Brain coordinates relative to bregma (Franklin KBJ, Paxinos G.; 

The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic Press; 1997. 

10.1111/j.1469-7580.2004.00264.x.), were posterior -2.0, lateral 1.0, ventral -3.5 and 
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dorsal +0.5 to the right hemisphere. The opening of the needle pointed to the left. The 

syringes remained in place for a period of 3min to minimize reflux through the needle 

track. Afterwards, the needle was removed under simultaneous rinsing with physiological 

saline solution from the brain. The burr hole was then closed with bone wax and the scalp 

stitched.  

Mice were weighed and checked on biweekly basis at minimum to monitor metastasis 

development. 

 

2.2.7.2 Cancer cell preparation for injection 

In case of adherent cells, cells were observed before for they had reached 70-80% 

confluency. Cells were washed with PBS and detached by incubation with 1ml Trypsin 

(1:5) for up to 15min. Cells were calculated in Neubauerzählkammer.  

 

2.2.7.3 Application of LGK974 

For application of LGK974 gavage (stomach tube) was used. LGK974 was diluted in 

sterile H2O 50µl to 60µl depending on the body weight were applied with a concentration 

of 3mg/kg body weight.  

 

2.2.8 Chorioallantoic Membrane (CAM) Assay 

This method is widely used as a method to study angiogenesis, cancer cell invasion and 

metastasis. Murphy (1912) used the fertilized chicken egg membrane as a respiratory organ 

and studied tumour invasion using this method. The advantage of this model are a highly 

nature vascularisation which can promote tumour cell growth, it is very reproducible and 

comparable to animal models with less but at lower costs. Furthermore, the CAM itself 

contains ECM and therefore mimics the physiological cancer cell environment.  

Here, cancer cells are placed on the developing embryo of a chicken egg at the tenth day 

after fertilisation. Alternatively cancer cells that have been treated with the substance to be 

tested can be used. The embryos are incubated for a desired time before the effects of the 

substance or tumour growth can be analysed. Specific pathogen free eggs were used, which 
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were purchased from Charles River (Sulzfeld). Eggs were incubated at 37°C and at a 

relative air humidity of 80%. To amenable access of the tumour cells to the CAM, eggs 

were windowed on the third day of incubation. Therefore eggs were sawed in the bubble, 

so that the air can escape from the egg and the embryo can descend and separate from the 

shell. Furthermore, a small opening was sawed into the shell above the embryo. Before the 

eggshell was lifted, a Locke's solution was used to separate the shell from the membrane. 

Next, the opening was covered with Leukosilk S (BSNmedicalGMBH, Hamburg) and eggs 

were incubated for another seven days. In the next step, different cancer cells or cancer 

cells plus inhibitor were placed on the CAM. In case of 410.4, 3×10
6
 cells in 40µl ECM (R 

& D Systems, Wiesbaden-north city) were resuspended and then placed directly on the 

CAM. Additional 1x10
5
 of 4T1 cell and 1x10

5
 E0771LG cell were resuspended in 40µl 

ECM and placed on the CAM. After covering with Leukosilk S, eggs were incubated for 

another seven days. For fixation CAM and tumour tissue was removed from the eggs and 

incubated overnight in 4%PFA. Afterwards the tissue was washed in stored in PBS before 

tissue Processing as described. 

 

Locke's solution:   NaCl (1,61M)   100ml 

     KCl (0,16M)   37ml 

     CaCl2 (0,14M)  21ml 

 

 

Fig 9: Preparation of CAM. 

(A) Opened Egg with tumour. (B) Membrane with tumour 
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2.2.9 Software analyses 

Aperio ImageScope viewing software from Leica practical on digital slide images, which 

can adjust enlargement and can compare different stains, interpret areas of interest, and 

perform image analysis. Analysis provides automated quantification for the exact 

evaluation of staining patterns. Therefore, slides were digitised on a scanner and volume of 

the tumours were measured and evaluated. 

 

2.2.10 Statistics  

GraphPad PRISMA® Version 6.0e software was used for the calculation of significance 

with the two-sided unpaired t-test. Results with a p-value <0.05 were considered 

significant. GraphPad PRISMA® Version 6.0e software was also used for the Kaplan 

Meier survival curves. All experiments were performed at least in biological triplicates. All 

data are displayed as means±SD (standard deviation). 
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3 Results 

3.1. Characterisation of cancer cell lines 

One of the major aims of this thesis was to establish a syngeneic mouse model to 

investigate the colonization of cancer cells in the central nervous system. Therefore, we 

first had to identify suitable breast cancer cell lines from mice, test their biological features 

and characterize their gene expression profile. 

One of the potential cell lines we came up with is the breast cancer cell line 410.4. This 

mamma- adenocarcinoma cell line was originally isolated from a single spontaneously 

arising mammary tumour from a BalbC mouse (Miller, 1983). The subclone 4T1 was 

derived from 410.4 after treatment with thioguanine, which resulted in a thioguanine-

resistent 4T1 cell line (Aslakson and Miller, 1992b). The 4T1 cancer cell line is able to 

metastasise spontaneously in the lungs and liver and appears to enter the blood stream 

without involvement of the lymph nodes while the metastatic potential of 410.4 has not 

been investigated yet. The third breast cancer cell line used in this study is the 

adenocarcinoma cell line E0771. EO771 was originally isolated from a spontaneous cancer 

of a C57BL/6 mouse. The E0771LG we used was provided by Jeffrey Pollard. This is a 

more aggressive subclone of the EO771. In the laboratory of Jeffrey Pollard, E0771 cells 

were injected intravenously into C57BL/6 mice, and the cells isolated from lung metastatic 

foci were cultured to obtain the highly metastatic subclone EO771LG (Ewens et al., 2005).  

 

3.1.1 Cell lines morphology  

First, to identify differences in cancer cell morphology, cancer cell lines 410.4, 4T1, 

E0771, and E0771LG were cultivated for 48hours until they had reached a confluency of 

70%. For documentation, pictures were taken with an inverted microscope. The cancer cell 

lines 410.4 and 4T1 grew with a comparable morphology and typical epithelial 

characteristics (Fig 10). The E0771 and E0771LG showed no differences, however, in 

contrast to 410.4 and 4T1, they revealed obvious mesenchymal morphology (Fig 10).  
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Cell line Morphology 

410.4 

The cells grow as a monolayer 

with epithelial morphology. 

Cells are polygonal in shape 

with more regular dimensions, 

and grow in patches/groups. 

 

4T1 

Cells grow similar to 410.4. 

4T1 cells grow as single cells 

before they grow in patches.  
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Fig 10: The morphology of the four breast cancer cell lines used in this study. 

The morphologies of the cancer cell lines 410.4, 4T1, E0771 and E0771LG are shown. 

 

3.1.2 Gene expression for the characterisation of cancer cell lines 

The morphology of the E0771 and E0771LG cell lines indicates a more mesenchymal 

phenotype as compared to the other lines implicating differences in the epithelial and 

mesenchymal characters of these cell lines (3.1.1). In order to examine this implication, 

further and to prove the impact of EMT and MET in metastasis, cancer cell lines were 

characterised for their gene expression patterns using Real-Time-quantitative-PCR. 

Typical markers were used for epithelial (Ecad) (Fig 11A) and for mesenchymal 

characterisation (Vimentin) (Fig 11B). 

Cell line Morphology 

E0771 

The cells grow as a monolayer. 

Fibroblast-like cells are bipolar 

or multipolar and have 

elongated shapes. 

 

E0771LG 

Cells grow similar to E0771 
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Fig 11: The expression level of E-cadherin (A) and Vimentin (B) revealed differences in the 

epithelial or mesenchymal character of the different breast cancer cell lines. 

The expression of E-cadherin (Ecad) and Vimentin was assessed by qRT-PCR from total RNA 

samples of the cancer cell lines 410.4, 4T1, E0771LG and E0771 (GOI = gene of interest, HK = 

housekeeper). Error bars show SD, values, statistics sign was tested using unpaired, two tailed 

students t-test. (A) Both, the 410.4 and the 4T1 showed high expression levels of Ecad compare to 

the both EO771 cell lines. (B) The 410.4 showed low expressions levels of Vimentin compare to 

all other cell lines. Interestingly, the 4T1 demonstrated significantly higher expression of Vimentin 

compared to 410.4 (p= <0.0001). 

 

Ecad as a marker for epithelial cells was highly expressed in the cancer cell lines 410.4 and 

4T1, which underlined the epithelial character of these cell lines. The expression level in 

all other cell lines was lower compared to 410.4 and 4T1 and therefore an indicator for a 

mesenchymal character. Vimentin, an intermediate filament protein, which is expressed in 

mesenchymal cells, is often used as a marker for cells undergoing EMT during normal 

development as well as during metastatic progression (Thiery, 2002). In our tests lowest 

significant expression of Vimentin was measured in the 410.4 cell line, and high 

expression was detected in 4T1, E0771LG and E0771. With respect to 410.4 it would be of 

interest, if these cell types differ in their colonization capacity in the planned in vivo 

experiments.  

To be able to demonstrate the presence of cancer cells in tissue samples obtained from 

mice later, after the injection of these carcinoma cells into the brain, we screened them for 

typical markers. Breast cancer cells often express increased levels of Cytokeratin 8 (CK8). 

Indeed, CK8 was highly expressed in all four cell lines and could therefore be used as a 

potent marker to measure the content of breast cancer cells in the brain tissue, which 

normally expresses low amounts of CK8 (Fig.12). 
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Fig 12: Gene expression of CK 8 in different cancer cell lines. 

The expression of CK8 was assessed by qRT-PCR from total RNA samples of the cancer cell lines 

410.4, 4T1, E0771LG and E0771 (GOI = gene of interest, HK = housekeeper), qRT-PCR for 

Cytokeratin 8 in murine mamma carcinoma cell line 410.4, 4T1, E0771LG and E0771. Statistics 

sign was tested using unpaired, two tailed students t-test Interestingly, there were no significant 

differences between the four breast cancer cells. 

 

After establishing CK8 as a suitable marker to identify tumour masses that may develop 

from the injection of breast cancer cell lines we plan to use in this study, we can now focus 

on the next step: establishing syngeneic in vivo models, which I will describe in the next 

section. 

 

3.2. Establishing of a syngeneic mouse model 

3.2.1 Investigation of cerebral metastasis development 

Cerebral metastasis is a severe clinical implication with mostly fatal outcomes for the 

patients. Almost 30% of metastasized breast cancer patients suffer from brain metastases 

and this incidence is increasing. However, animal models for brain metastases are limited. 

Furthermore, the immune cells and immune signalling play an important role during the 

colonization of the brain (Lorger and Felding-Habermann, 2010). In order to investigate 

the role of the resident innate immune cells, the microglia, during cerebral metastasis, the 

establishment of syngeneic mouse models is needed. Also, to test immune based 

therapeutic strategies in vivo as well as for a better understanding of the role of blood-

derived immune cells during the colonization of the brain, immune-competent mouse 

models are required. However, until now the majority of the investigations on metastatic 

diseases are performed using a Xenograft model, that is in immunocompromised mice 

(Morton and Houghton, 2007). 
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In order to establish syngeneic cerebral metastasis mouse models, different amounts of 

410.4, 4T1, E0771LG, and E0771 cancer cells were intracranially injected in immune-

competent BalbC or C57BL/6 female mice, respectively. After the procedure, all mice 

were observed carefully and behaviour tests (Hanging wire and Rotarod tests) as well as 

weight measurements were performed to screen and follow–up the injected mice (data not 

shown and Fig 7). Mice displaying abnormal neuronal deficiencies as revealed by the 

inability to successfully complete the Hanging wire or Rotarod tests, or losing weight 

(>20%), were dissected immediately. The inability to complete these tests was documented 

through movies and photos. After sacrificing, potential tumour mice, the brain tissues were 

dissected and macroscopically photographed to document the tumour growth (Fig 13). 

Furthermore, every mouse was catalogued by age, injection date and dissection date and 

based on this data survival curves for experimental groups were generated (Fig 14).  

 

Fig 13: Preparation of mouse brains after the colonization of different cancer cell lines. 

BalbC mice were injected with 410.4 and 4T1 cancer cells and compared with the control (CTL 

=injected only with ECM/medium without breast cancer cells). C57BL/6 mouse were injected with 

E0771LG. Injection whole was labelled with “x”. 

 

BalbC mice were injected with different amounts of 410.4, 4T1 and E0771LG embedded 

in ECM, and ECM alone as controls (CTL). 
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Fig 14: Kaplan Meier survival curves of mice.  

(A-C) Survival days of mice after injection of different amounts of cancer cell lines 410.4, 4T1 or 

E0771LG as well as a control. (A) Control (n=5) vs. 1x10
4
(n=4) or 2,5x10

4
(n=8) injected 410.4 

cells. (B) Control (n=5) vs. 1x10
3
 (n=2) or 2,5x10

3 
(n=3) or 5x10

3 
(n=3) injected 4T1 cells. (C) 

Control (n=3) vs. 500 (n=8) or 1x10
3 
(n=8) or 7,5x10

4
 injected E0771LG cells.  

 

In case of 1x10
4
 injected 410.4 cancer cells, only one out of four mice developed cerebral 

metastasis (n=4) while all mice developed metastasis after the injection of 2,5x10
4
 410.4 

cancer cells.  Interestingly, this finding indicated that there is a threshold regarding the 

amount of 410.4 cells for successful colonisation of the brain. 

In parallel, 1x10
3
 cells, 2,5x10

3
 cells, 5x10

3 
cells and 1x10

4
 cells (data not shown) of 

cancer cell line 4T1 embedded in ECM were injected in BalbC mice (Fig 14B). All 

injected mice with the 4T1 cancer cell line developed metastasis independently of the 

amount of injected cells. Furthermore, the amount of cells seemed also not to influence the 

overall survival of the mice. All mice died in the same range between day seven and 22. 

Therefore, we underlined the assumption that the subclone of the 410.4, 4T1 has a 

significant better ability to colonize the brain tissue. Here, injecting 1x10
3
 4T1 cancer cells 

is enough for cerebral metastasis development and can be used for further experiments.  
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To test the colonisation capacity of the EO771LG breast cancer cell line C57BL/6 mice 

were injected with 250 cells (data not shown), 500 cells, 1x10
3
 cells, 1x10

4
 cells (data not 

shown), 2,5x10
4
 cells (data not shown) and 7,5x10

4
 cells embedded in ECM (Fig 14C). 

Additionally, as a control (CTL), C57BL/6 mice were injected with ECM alone. All mice 

developed metastasis within 21 days. For this reason we decided to perform further 

experiments with 500 cells.  

Interestingly, the mean overall survival (OS) of mice injected with the cancer cell line 

410.4 was 50 days (Fig 14A), in comparison to the mean OS of 21days following injection 

with cancer cell line 4T1 (Fig 14B). C57BL/6 mice injected with lower amounts of the 

cancer cell line E0771LG survived 15days (Fig 14C). During and after dissection, brain 

tissues were macroscopically observed. We observed frequent bleedings in the E0771LG 

model in contrast to the 410.4 and 4T1 models (Fig 13). Even after the very short OS of 

the EO771LG injected mice, we could detect massive tumour cell colonization. In contrast 

to the 410.4 and 4T1, mice injected with the cancer cell line E0771LG died immediately 

after the first observation of behavioural symptoms. All injected BalbC mice - independent 

of the cancer cell line - showed first symptoms without the necessity to sacrifice the mice 

immediately. These first symptoms include motor function abnormalities e.g. 

hyperactivities or ambulation with at least one full 360° turn. There was a period of up to 

one week between observation of first symptoms and the failure of the described 

behaviour. 

In summary, four syngeneic cerebral metastasis mouse models were established by 

stereotactic injection of four different breast cancer cell lines. Additionally, the amount of 

cancer cells for metastasis development was experimentally determined and was used for 

the following studies. Significant differences in OS and the amount of cells for successful 

metastasis were detectable between 410.4 and 4T1. However, there were no differences 

between the cancer cell lines E0771LG and E0771. Moreover, different colonization 

patterns of the cancer cell lines were investigated. 

 

3.2.2 Histological investigation of colonized breast cancer cells metastasis 

To confirm the macroscopic results and to analyze the induced tumours in greater detail, 

histology, IHC and qRT-PCR from the brain tissue samples were performed. Therefore, 



3 Results 54 

 

tissue sections of each mouse were stained using the gold standard HE, to see whether they 

show the presence of colonized breast cancer cells in the brain.  

 

Fig 15: Cell lines derived from BalbC/C57BL/6 mice have metastatic potentials. 

Intracranial injection of 410.4 (2,5x10
4
cells), 4T1 (1x10

3
cells) and E0771LG (500cells) were tested 

for metastatic potentials in BalbC or in case of E0771LG in C57BL/6 mice. HE stained sections 

show the presence of colonized cancer cells in the brain.  

 

All HE stained sections displayed the presence of metastasis in the brain. Here, the 

differences of cancer cell lines on metastasis development are conspicuous (Fig.15). 

Most importantly, in contrast to previous reports we detected that the colonized cells not 

only form a macroscopic metastasis but also that colonizing cells detach from the 

metastatic mass and infiltrate into the adjacent brain tissue. This is in contrast to the 

current view that cerebral metastasis growth only displacing with a glial pseudo-capsule 

and without infiltration. This unexpected finding raised several questions, in particular, 

what is the biological consequence of these cells infiltrating brain parenchyma. 

Additionally, we detected carcinoma cells at the meningeal and in distinct samples also in 

the ventricles. These findings indicated that the cells are potential sources for further 

dissemination in the affected brains. In some experiments we detected contralateral to the 
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injection site also colonized metastatic cells confirming this hypothesis. Thus taken these 

findings together, it seems that metastasis have the potential to disseminate and metastasize 

again, at least in the brain. 

Moreover, the infiltration pattern into the adjacent brain parenchyma varied between the 

syngeneic models. While the 410.4 injected cancer cells showed cohort infiltration patterns 

(Fig 15). 4T1 cancer cells showed the same cohort infiltration pattern, however, with a 

significantly higher extent. In contrast, the E0771LG cancer cell line demonstrated single 

cell, diffuse infiltration into the adjacent brain parenchyma. To demonstrate the presence 

of colonized cancer cells in the brain and confirm previews findings, we used the marker 

CK8 (Fig 16). Therefore, CK8 staining was performed in one of each sectioned, injected 

mouse brain with 410.4, 4T1 and E0771LG cancer cells.  

 

Fig 16: Quantification of cancer cell lines and metastatic potentials. 

Intracranially injection of 410.4 (2,5x10
4
cells), 4T1 (1x10

3
cells) and E0771LG (500cells) were 

tested for CK8. CK8 staining was performed for sections with injected cancer cell lines 410.4, 4T1 

and E0771LG. CK8 staining show clearly the presence of colonized tumour cells in the brain.  

 

Here, it was possible to verify the gene expression results. These findings correlate well 

with the results of cancer cell gene expression obtained by qRT-PCR (Fig 12). CK8 was 
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highly expressed in the metastasis of the cancer cells 410.4 and 4T1. Expression of CK8 in 

E0771LG could also be detected, however with lower intensity. This important observation 

might be useful for the quantification of metastasis development in the brain. The slightly 

lower expression of CK8 in E0771LG could be explained by the fact that Cytokeratin 

expression in primary human mammary carcinomas correlates with clinicopathologic 

variables (Willipinski-Stapelfeldt et al., 2005). CK19 was highly expressed in E0771LG, 

however, CK19 showed low expression in the other cancer cell lines (data not shown). 

Therefore, CK8 was routinely used as a standard in further experiments. 

Fig 17: Representative examples for different infiltration patterns of cancer cell lines. 

CK8 stained sections reveal different infiltration patterns. (A) Infiltration of cancer cells over the 

hemisphere gab in the brain, (B) colonization decay of meningeal and (C) colonization decay of 

ventricle. 

 

After staining, the metastatic potential was investigated and histological sections were 

compared with the corresponding cell lines. In case of 410.4 injected cancer cells, 

metastasis were growing particularly over the gap to the other hemisphere (Fig 17A). 

Vascularisation of the metastasis was detectable. Metastasis enlarge as a cohort and 

therefore similar to the cell line-growth pattern. Also, lots of necrosis leads to lesions in the 

tissue. A metastasis growth pattern similar to that of 410.4 was observed after injecting of 

4T1 cancer cells (Fig 15). These metastases enlarge as cohort, with a more aggressive 

behaviour. They perform more vascularisations and grow rapidly through the brain over 

the hemisphere gap. A representative example was shown in Figure 17A. Metastasis 

resulting from the injection of E0771LG cells grows differently: Single colonized tumour 

cells or small groups of colonized tumour cells were detectable and vascularisation was 

performed. Colonized tumour cells attacked meningeal. An example for attacked 

meningeal was shown in Figure 17B. A representative example for attacked vessels and 

ventricles were shown in Figure 17C and were spread within the brain. Also, here the 

colonized tumour cells grow similar to the cell line. The differences in infiltration patterns 

are listed in Tab 11.  
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Tab 11: Differences in the infiltration behaviour of the syngeneic mouse models 

Cell line 

infiltration 

patterns 

410.4 4T1 E0771LG 

Single-cell-

infiltration 
yes yes yes 

Cohort 

colonization 
yes yes  

Colonization 

decay of 

Meningeal 

  yes 

Colonization 

decay of Vessels 
yes yes yes 

Hemisphere gab yes yes yes 

Colonization 

decay of 

Ventricle 

  yes 

 

In our group it was recently demonstrated that microglia are critical for the invasion of 

cancer cells into the brain. Moreover, Giulian already confirmed (1993) this finding and 

also that the brain responds to brain injuries with a glial reaction. Microglia and astrocytes 

are found next to the injured site where they build a “glial-wall”. To confirm these findings 

in our syngeneic models one section of each mouse brain was stained with a marker for 

astrocytes (GFAP), (Fig 18) and macrophages/microglia (IBA), (Fig 19). Additionally, in 

terms of an immune reaction CD3 and MPO were stained on consecutive brain sections. 
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Fig 18: Identification of immune reaction after injection of cancer cell lines (GFAP). 

Intracranial injection of 410.4 (2,5x10
4
cells), 4T1 (1x10

3
cells) and E0771LG (500cells) were 

immunologically tested for astrocytes activation with GFAP. GFAP staining was performed for all 

sections. All staining showed clearly the presence of astrocytes activation in the brain. 

 

GFAP was detected in all slices, which indicates the presence of activated astrocytes. 

Interestingly, there were differences in the localisation of the astrocytes. In the sections of 

the injected brain with cancer cell line 410.4, the metastasis was clearly separated from the 

astrocytes; they were able to build a wall around the metastasis. In case of injected brains 

with 4T1 cancer cells, astrocytes were also found partly in the metastasis, however 

astrocytes were able to build a wall around the metastasis and the infiltration was similar to 

the infiltration of 410.4 cancer cells. Indeed, in cancer cell lines E0771LG, astrocytes were 

found in the metastasis and around. No wall was built by the astrocytes here. Nevertheless, 

in all cases activation of astrocytes was found around the metastasis but much less in the 

non-injected healthy side. In a next step, the microglia activation was investigated on 

sections stained with the macrophages/microglia marker IBA. 
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Fig 19: Identification of immune reaction after injection of cancer cell lines (IBA). 

Intracranial Injection of 410.4 (2,5x10
4
cells), 4T1 (1x10

3
cells) and E0771LG (500cells) were 

immunologigally tested with the macrophages/microglia marker IBA. Staining was performed for 

all sections. All staining showed clearly the presence of microglia activation in the brain. 

 

All sections showed the presence of activated microglia cells/ macrophages (Fig 19). In 

contrast to the activation patterns of astrocytes, microglia cells were present around and 

between the colonized tumour cells. Furthermore, activated microglia were present in the 

brain, also in the healthy non-injected side. Microglia cells were found mostly close to 

vessels or colonized breast cancer cells.  

This leads us to suggest, that the immune response to colonized cancer cells is very 

diverse. First, injection of different cancer cells showed different localisation patterns of 

activated astrocytes and microglia. In particular, the localisation of astrocytes was 

different. Astrocytes were able to build a wall in case of metastasis developed from 410.4 

and 4T1 but not in metastasis developed from E0771LG. Second, microglia cells are 

located differentially: No wall was built by microglia comparable to that of astrocytes. 

This interesting finding will give the possibility to investigate the role of the glial response 

in different metastasis in more detail.  
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Furthermore, immunostaining with other markers such as Ki67 was performed (data not 

shown). Ki67 is a common marker for proliferation and is often correlated with clinical 

courses of cancer. Here, in all sections Ki67 was expressed (data not shown). In order to 

investigate differences in the proliferation of metastatic cells, Ki67 needs to be further 

quantified in the near future. Next, staining with CD34 (data not shown), which is 

established as a marker of microvascular structures in breast cancer (da Silva et al., 2009), 

was performed to investigate differences between metastasis. Further analyses need to be 

done to detect differences in the vascularisation induced by various cancer cells. In the 

near future, we plan to analyse these histological sections with the software “Definiens 

Tissue Studio”, which allows us to quantify the expression levels in great detail and to 

reveal potential variance.  

These results present previously unknown differences in colonization capacity, infiltration 

pattern into the adjacent brain parenchyma as well as in the glial reaction against breast 

cancer cells of various origins.  
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3.2.3 Gene expression in the metastasis and corresponding cancer cell lines 

In the first part of this thesis, various gene expression markers were established and 

investigated in the cancer cell lines by qRT-PCR. The first two markers, Ecad and 

Vimentin were used to investigate the epithelial and mesenchymal character. In order to 

investigate these characteristics after injection of the cancer cell lines into the brain, these 

genes were analysed in the parts of the brain tissues containing metastases (Fig 20). 

 

Fig 20: Gene expression of E-cadherin and Vimentin in cancer cells and metastasis. 

The expression of Ecad and Vimentin was assessed by qRT-PCR from total RNA samples of the 

cancer cell lines 410.4, 4T1 and E0771LG, also RNA samples from control brain and developed 

metastases of the cell lines (GOI = gene of interest, HK = housekeeper). Error bars show SD, 

values, statistics sign was tested using unpaired, two tailed students t-test. (A) Ecad is highly 

expressed in the cancer cell line 410.4 and 4T1. E0771LG show lower expression of Ecad. Injected 

brains with ECM were used for control (CTL), metastases (=met) developed from 410.4, 4T1 and 

E0771LG show high level on Ecad expression, the highest significant expression was demonstrated 

in metastasis developed from 410.4 compare to the control (B) Vimentin was highly expressed in 

cancer cell lines 4T1 and E0771LG and lower expression level in cancer cell line 410.4. Vimentin 

was expressed in the control, significantly higher expression in metastases developed from 410.4 

and 4T1. Vimentin was expressed in metastasis developed from E0771LG. 

 

When comparing the cell lines by using 410.4 as a reference, Ecad was significantly 

decreased in the cancer cell line E0771LG (p=<0.0001) (Fig 20A). Metastatic samples of 

410.4 expressed significantly more Ecad compare to the control tissue (p=0.0041) (Fig 

20A). Metastasis and corresponding cancer cell line 410.4 demonstrated significant higher 

expression levels of Ecad. However, there are no significant changes between metastatic 

tissue and the cell line. Interestingly, the cancer cell line E0771LG showed low expression 

levels of Ecad, while the metastasis expressed higher levels of Ecad. In a next step gene 

expression-studies of Vimentin were performed (Fig 20B). Metastatic samples of 410.4 

expressed significantly higher expression of Vimentin compared to the control tissue 

(p=0.0264) (Fig 20). When comparing the cell lines by using 410.4 as a reference, 

Vimentin was significantly increased in cell lines 4T1 (p=0.0009) and E0771LG (p=0.01) 
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(Fig 20B), and the corresponding metastasis also showed high expression levels of 

Vimentin, which were clearly higher than the control in all syngeneic models. Vimentin 

expression in metastatic samples of 4T1 was significantly higher (p=0.0246) (Fig 20B) as 

in control samples.  

The next gene expression analysis was to confirm Cytokeratin 8 as a quantification marker 

for tumours developed from the injection of cancer cell lines.  

 

Fig 21: Gene expression of Cytokeratin 8 for quantification in cancer cells and corresponding 

cerebral metastatic tissue. 

The expression of CK8 was assessed by qRT-PCR from total RNA samples of the cancer cell lines 

410.4, 4T1 and E0771LG, also RNA samples from control brain and developed metastases of the 

cell lines (GOI = gene of interest, HK = housekeeper). Error bars show SD, values, statistics sign 

was tested using unpaired, two tailed students t-test. CK8 is expressed in all cancer cell lines. 

Injected brains with ECM were used for control (CTL) shown low expression on CK8. Metastases 

(=met) of 410.4, met of 4T1 and met of E0771LG show high levels CK8 expression.  

 

Here, CK8 expression in the cancer cell lines was confirmed (Fig 21A) and metastasis of 

the cell lines 410.4, 4T1 and E0771LG show significant higher expression levels of CK8 

compared to the control. When comparing the cell lines by using 410.4 as a reference, CK8 

was significantly decreased in the cancer cell line 4T1 (p=0.0395) (Fig 21). In all 

metastatic samples, CK8 expression was significantly higher in comparison to the control 

sample (p=<0.0001) (Fig 21). Thus, expression of CK8 detected by qRT-PCR confirmed 

the findings of metastatic cells in the brain tissue and can be used for quantification. The 

results clearly showed that after injection of cancer cell lines, the corresponding 

developing metastasis can express characteristic genes – such as CK8- which can be used 

for quantification and are reproducible in subsequent experiments.  

All these results underline that a syngeneic cerebral metastasis mouse model for the study 

of cancer metastasis has been established here. This model is applicable for different 

cancer cell lines displaying different characteristics with respect to their epithelial and 
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mesenchymal character and therefore metastatic potential. All cell lines were able to 

colonize the brain and to develop cerebral metastasis. Colonized cancer cells can be 

quantified with CK8. Importantly, all developed metastasis present different colonization 

patterns, which might be related to differences in their phenotype as well as differences in 

their gene expression, we investigate the epithelial and mesenchymal character of 

colonized cancer cell.  

 

3.3. Application of a syngeneic cerebral metastasis mouse model 

In the next part of the thesis we aimed to use the new established syngeneic cerebral 

colonization models of breast cancer to study the impacts on innovative therapeutics. 

Current treatments are of limited efficiency in the treatment of CNS metastasis because of 

several reasons. One is that so far very little is known about how breast cancer cells and 

others colonize this well protected organ and which signalling cascades orchestrate this 

process. Previously, others and we have demonstrated that the dysregulation of Wnt 

signalling is associated with cerebral metastasis in breast cancer (Chuang et al., 2013) 

(Klemm et al., 2011) (Smid et al., 2008) (Pukrop et al., 2010b). In general, the Wnt 

pathway is known to play a role in various processes in cancer initiation, proliferation and 

the first steps of metastasis, thus inhibitors of the Wnt pathway may be valuable for a 

therapeutic strategy also during colonization of the CNS. Therefore we studied a Wnt 

inhibitor in our established syngeneic cerebral metastasis mouse models (4T1 and 

EO771LG) that has already entered clinical trials.  

 

3.3.1 Wnt expression levels of cancer cells  

In order to confirm that the Wnt inhibitor LGK974 has an impact on Porcupine and 

therefore on Wnt secretion, cancer cell lines 410.4, 4T1 and E0771LG were tested for gene 

expression levels of Wnt molecules. Additionally, Porcupine expression levels were 

analysed in these cancer cell lines. Identification of markers, which are specifically 

expressed in cancer cells, could prove the inhibitory effect of LGK974 on Porcupine in 

later experiments.  
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Fig 22: Gene and Protein expression level of cancer cells. 

(A) Gene expression level of Wnt5a, Wnt5b, Wnt7a, Wnt6, Wnt10a and Porcupine in cancer cell 

lines 410.4 (n=3), 4T1 (n=3) and E0771LG (n=3) (GOI = gene of interest, HK = housekeeper). 

Error bars show SD, values, statistics sign was tested using unpaired, two tailed students t-test. 

Wnt5a, Wnt5b, Wnt6 was highly expressed in cancer cell line E0771LG. Wnt7a was highly 

expressed in cancer cell lines 410.4 and 4T1. Wnt10 was expressed in cancer cell line 410.4. 

Porcupine was expressed in all tested cancer cell lines. (B) Protein expression levels of Wnt7a/b 

and Wnt5a in cancer cell lines 410.4, 4T1 and E0771LG. 410.4 and 4T1 show high expression of 

Wnt7a/b, Wnt5a was expressed in E0771LG. 

 

Wnt genes and Wnt pathway components were screened, by using the NanoString 

technology (http://www.nanostring.com) (data not shown). Out of the 105 tested genes in 

the cancer cell line E0771LG Wnt5a, Wnt5b and were highly expressed and therefore 

selected for further investigations. In order to investigate expression levels of Wnt5a, 

Wnt5b, Wnt7a, Wnt6, Wnt10a and Porcupine qRT-PCR were performed (Fig 22A). Wnt5a 

was significantly higher expressed in the cancer cell line E0771LG compared to the cancer 

cell lines 410.4 (p=0.0003) and 4T1 (p=0.0009) (Fig 22A). In contrast, Wnt7a was highly 

expressed in both 410.4 (p=0.0024) and 4T1 (p=0.0139) cancer cell lines (Fig 22A) 

compared to the cancer cell line E0771LG. This significant difference was confirmed on 

the protein level (Fig 22B). Furthermore, the potential therapeutic target Porcupine was 
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expressed in all tested cancer cell lines. These results provide the basis for targeting Wnt 

signalling in the above described established syngeneic cerebral metastasis models of these 

cell lines by inhibition of Porcupine.  

 

3.3.2 Investigation of treatment application  

In order to investigate the effect of the Porcupine inhibitor LGK974 on cellular viability, 

MTT measurements were performed with various cancer cells and different LGK974 

concentrations (Fig 23A): Additionally, some concentrations of LGK974 were tested in 

xCelligence measurements (Fig 23B). Here, cells were stimulated for 24hours before the 

xCelligence measurements (pre-treatment). Based on these testing’s we used 2,5µM and 

5µM LGK974 in further functional tests.  

 

Fig 23: Viability of cancer cells after treatment with different doses of LGK974. 

(A) MTT assay LGK974 treated for 96h of 410.4 (n=3), 4T1 (n=3) and E0771LG (n=3). Tested 

dose of LGK974 between 1µM and 100µM (0µM for control) and (B) 2,5µM and 5µM for all cell 

lines, xCelligence measurements of 410.4 (n=3), 4T1 (n=3) and E0771LG (n=3) pre-treated for 24h 

and treated for 48h with LGK974.  

 

The MTT results of the proliferation assay (data not shown) demonstrated, that an 

inhibitory effect of LGK974 was increased, when cancer cells were pre-stimulated with 

LGK974, without a toxic effect on these cells. Based on viability (Fig 23A) and 

proliferation tests (Fig 23B), an effective dose of 5µM of LGK974 for further experiments 
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was investigated. Moreover, a pre-treatment for 24hours with an LGK974 dose of 5µM 

was determined to be optimal.  

Next, to confirm the effects of Porcupine inhibition on the Wnt-release of the LGK974 

treated cells, cancer cells were treated with 2,5µM, 5µM and 10µM of the Porcupine 

inhibitor for 24h. Untreated cancer cell lines served as controls. A concentration of 5µM 

was used to test the time dependent effect of the Porcupine inhibitor LGK974 and cancer 

cells were stimulated for 0, 4, 12, 24 and 48hours. The control was the untreated cancer 

cell line at the corresponding time. To investigate the inhibitory effect of LGK974 on Wnt 

secretion, expression levels of Wnt7a/b and Wnt5a were analysed in the whole cell lysates 

of the treated cells.  

 

Fig 24: Effect of LGK974 on protein expression of Wnt7a/b and Wnt5a in cancer cells. 

(A) Westernblot: Comparison Wnt7a/b or Wnt5a expression with different concentration of 

LGK974 on cancer cells lines to the additional untreated control cell line (CTL). (B) Comparison 

of Wnt7a/b or Wnt5a expression with a concentration of 5µM LGK974 of different time points on 

cancer cell lines. 

 

Wnt5a expression was clearly decreased in E0771LG after LGK974 treatment; however, 

interestingly, the inhibitory effect of LGK974 on protein level seemed to cause an 

enrichment of the protein in 410.4 and 4T1 cancer cell (Fig 24A). These results were 

confirmed with the time dependent treatment strategy, when cancer cells were pre-

stimulated 24hours with 5µM LGK974 and afterwards also stimulated with the same 

concentration of LGK974. After 24hours and 48hours we detected the strongest effect of 

LGK974. Wnt7a/b was enriched in the cancer cells 410.4 and 4T1 treated with LGK974. 



3 Results 67 

 

Thus, the effect of LGK974 was clearly shown, and the Porcupine inhibitor influenced 

Wnt secretion as expected.  

 

Afterwards, we investigated the invasion capacity of various breast cancer cells after 

treatment with these two LGK974 concentrations and the stimulation for 24hours before. 

The results are demonstrated in Figure 25. 

 

Fig 25: Invasion of cancer cells after treatment with different doses of LGK974. 

Invasion assay of 410.4 were performed with microglia (MG) (n=3) to increase invasion of cell line 

410.4 and pre-treated 24h and treated 48h with 2,5µM and 5µM LGK974, 4T1 (n=3) and E0771LG 

(n=3) were pre-treated 24h and treated 48h with 2,5µM and 5µM LGK974. 

 

The expected inhibitory effect was detected in the 4T1 cell line with LGK974 (Fig 25). 

LGK974 were able to decrease 4T1 invasion in a dose-dependent manner (**p<0,01, 

***p< 0,001). Surprisingly, LGK974 did not significantly inhibit invasion of the cell lines 

410.4 or E0771LG. These results indicate that additional activities of the inhibitor beyond 

the Wnt pathway are possible. Therefore, further experiments were performed to prove this 

indication and to increase the N numbers. However, LGK974 was effective at a 

concentration of 5µM. To prove whether this effect is an inhibitory effect of the Wnt 

pathway needs to be investigated.  

 

3.3.3 CAM assay with LGK974 treatment 

In order to confirm the inhibitory effect of LGK974 on Wnt signalling and therefore an 

effect on colonization of tumour cells independently, Chorioallantoic Membrane Assays 

(CAM) were performed (Murphy, 1913). Cancer cells or cancer cells pre-treated for 24 
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hours with LGK974 were placed on the developing embryo of a chicken egg, on a special 

membrane. In case of 410.4, 3×10
6
 cells were re-suspended in 40µl ECM and then placed 

directly on the membrane. Additionally 1x10
5
 of 4T1 cells and 1x10

4
 E0771LG cells 

respectively were re-suspended in 40µl ECM and placed on the membrane. In this step, the 

different cancer cells or cancer cells pre-treated with LGK974 were placed on the 

membrane. Afterwards, eggs were covered with Leukosilk S and incubated for another 

seven days. Then, Leukosilk was removed and the membranes with the tumours were 

prepared and analysed. Tissues were fixed in PFA and sectioned. HE staining was 

performed in order to locate the tumour on the membrane. 

 

Fig 26: Effect of LGK974 by CAM assay. 

(A) Example for CAM assays, tumours of 410.4 cancer cells are shown (control) and (B) tumours 

of LGK974 treated 410.4 cancer cells. 

 

The histological sections of the CAM assays indicate differences between the tumours of 

the control group compared to the treatment group. A typical example is shown in Figure 

26. The amount of the tumour cells in the control group compared to the tumour of the 

treatment group was decreased. Also, in most cases tumours of the treatment group seemed 

significantly enlarged. It can be speculated, that in cancer cells stimulated with LGK974 

tumour cell colonization might be increased. In order to prove this finding, all sections 

were scanned by Image Scan and analysed with the basic software Image Scope. The 

tumour sizes of each scanned section were measured and tumours of the control group 

were compared with tumours of the treatment group.  
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Fig 27: Tumour enlargement by CAM assay. 

(A) CAM assays of cancer cell lines 410.4, (B) 4T1 and (C) E0771LG were shown. All tumour 

sizes of the control group were compared to tumour sizes of the treatment group. Error bars show 

SD, values, statistics sign was tested using unpaired, two tailed students t-test.  

 

Quantitative analysis of the HE stained sections revealed that tumours derived from the 

cancer cell line 410.4 treated with LGK974 (n=7) were significantly increased compare to 

the control group (n=9) (p=0.0149) (Fig 27A). This result verified the suggestion that the 

Porcupine inhibitor LGK974 support tumour cell colonization. However, tumours derived 

from cancer cell line 4T1 treated with LGK974 (n=7) were not significantly different in 

comparison to the control group (n=3) (p=0.4297). Also, the tumours derived from 

E0771LG (n=8) were not significant different to the control group (n=5) (p=0.5019).  

The effect of LGK974 needs to be clarified for a better understanding of this process. 

However, tumours developed from cancer cell line 4T1 or E0771LG treated with LGK974 

show no significant differences compared to the control group (Fig 27B and C). In case of 

4T1, the control group contained only a low number of samples (n=3) (Fig 27B). In order 

to investigate and prove the results, the number of CAM assays need to be increased and 

quantitative analyses of the tumour size need to be further improved to measure the exact 

sizes of the whole tumours. Furthermore, proliferation and angiogenesis need to be 

investigated; other histological staining for such markers will properly reveal further 

differences between these tumours in future studies.  

 

3.3.4 In vivo model with LGK974 treatment 

The established syngeneic mouse models for cerebral colonization of 4T1 and EO771LG 

were used to transfer the in vitro findings to an in vivo model. 

First, in order to use a non-toxic effective dose of LGK974, based on the study of Liu et 

al., we used a dose of 3mg/kg body weight (Liu et al., 2013b). Next, the application 
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method of LGK974 was tested in a pre-study as part of this work. These results were used 

to design a schedule (Fig 28). In order to do so, behaviour test were performed and mice 

were pre-treated with 3mg/kg body weight for five days with LGK974 (treatment group) or 

H2O (control group). For the application of LGK974, or H2O, gavages were used. 

Afterwards, mice were injected intracranially with the respective cancer cell lines. Mice 

were not treated on the day of surgery, or the day following surgery. Mice were weighed 

on the day of surgery and on recovery days, the day following surgery was the recovery 

day. Then, H2O or LGK974 was applied for another 35 days or until neurological 

symptoms became apparent. The weight of each mouse was measured daily. For a control, 

mice were pre-treated and treated with the same volume of H2O compared to LGK974, 

which was 50-60µl depending on the weight of the mouse.  

 

 

Fig 28: Schedule of experiment performance. 

Day -5 to -1 (five days) pre-treatment with LGK974 or H20 was performed. Cancer cells were 

intracranially injected on day 0. The day after surgery was the recovery day. Day 1 to day 35 

(35days) mice were treated with H20 (control group) or LGK974 (treatment group), followed by 

the observation of survived mice. 

 

First BalbC mice were pre-treated with 3mg/kg body weight LGK974 in the treatment 

group and with H2O additional for the control group over XY days (d-5 to d-1 before 

stereotactical injection d0). At day 0, mice were injected intracranially with 1x10
3
 cancer 

cells of 4T1. In a second experiment, mice were injected with a lower number of the 

cancer cell line 4T1 (1x10
2
). The survival of these mice is shown in Figure 28A-C as a 

Kaplan Meier diagram. In the following experiments (Fig 29 and Fig 30), H2O and 

LGK974 were applied daily for 35days accompanied with daily observation and weight 

measurements. Hanging wire and Rotarod test were performed as an additional indicator 

for developing cerebral metastasis. Mice with abnormalities in motor function or neuronal 

deficiencies as well as a weight loss of >20% were dissected immediately. Furthermore, 

every mouse was listed by age, injection date and dissection date and survival curves were 

calculated.  
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Fig 29: Kaplan Meier surviving curves after cancer cell line 4T1 injection and LGK974 

treatment. 

(A) Survival curves of 1x10
4
 or (B) 1x10

3
 injected 4T1 cancer cells with LGK974 treatment or 

additional in controls. (C) Survival curve of both experiments together ((A)+(B)) to increase the 

numbers of animals.  

 

After the injection of 1x10
4 

cancer cells of 4T1, all mice in the LGK974 treatment group 

(n=15) developed metastasis that were significantly more aggressive than in the control 

group (n=15) based on both size of the metastasis and survival of the mice (p=0.0334) (Fig 

29A). Even after the injection of 1x10
3
 cancer cells of 4T1, all mice treated with LGK974 

(n=8) developed metastasis within 21days (Fig 29B). In the control group (n=5) mice 

developed metastasis on average later and one mouse even survived until the end of the 

experiment. Differences between the treatment group and the untreated control group were 

significant (p=0.0292). The OS of mice injected with cancer cell line 4T1 and treated with 

LGK974 of both experiments together (Fig 29A and 29B) was significantly decreased 

compare to the control groups (p=0.0072) (Fig 29C). 

The next experiment was performed with the cancer cell line E0771LG. Here, C57BL/6 

mice were pre-treated for five days with H2O or 3mg/kg body weight LGK974 were 

injected intracranially with 250 cancer cells of E0771LG (Fig 30).  
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Fig 30: Kaplan Meier surviving curves after E0771LG cancer cell injection and LGK974 

treatment.  

Survival curve of 250 injected E0771LG cancer cells with LGK974 treated or additional control 

(n=9 in control and treatment group). 

 

After the injection of 250
 
cancer cells of E0771LG, all mice in the LGK974 treatment 

group (n=9) developed metastasis. Also, all mice in the control group (n=9) development 

metastasis. Unfortunately, there was no significant difference on survival between the 

treatment and control group (p=0.2425) (Fig 30). These results did not confirm the idea, 

that LGK974 underlines the results of the CAM assays and do not prevent tumour cell 

colonization, despite, in vitro studies showed an inhibitory effect of LGK974 on Wnt 

signalling.  

To test if colonization of the tumour cell resulting in metastasis were different, tissue 

sectioning and HE staining were performed next. 

 

 

Fig 31: HE staining on control vs. LGK974 treatment sections. 

Representative examples of developed (A) metastases after injection of cancer cell line 4T1 vs (B) 

4T1 with LGK974 treatment. 
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HE staining was performed on sections, however, no obvious differences in the metastasis 

could be detected microscopically at first glance. Therefore the effect of the Porcupine 

inhibitor in terms of limitation of survival in vivo could not be investigated with HE 

staining. 

Remarkably, the injection of the cancer cell line E0771LG and treatment of LGK974 had 

no effect on the survival (Fig 30). After HE staining of sections derived from respective 

metastasis also no obvious differences were detectable. The reason for this might be a 

different growth rate and colonization behaviour of tumour cells resulting in metastasis 

developed from E0771LG cell line compared to metastasis developed from 4T1 cell line 

and suggests that LKG974 has no effect on fast colonizing tumour cells. 

To gain more information about the role of LGK974 on Wnt signalling and colonization of 

tumour cells, we analysed selected brain tissue from mice injected with 4T1 cancer cells 

for their gene expression levels of EMT markers and their Wnt profile. First, to 

characterise the epithial charcater of metastasis, Ecad and Vimentin were analysed by 

qRT-PCR. Brains were separated into two halves, the injected side of the brain (i.) and the 

non- injected side (n.i.). Both sides were compared to each other and the control group was 

compared to the treatment group (Fig 32). 

In this study it was shown that indeed LGK974 inhibits Porcupine, which leads to changes 

in Wnt secretion (Fig 24). Consequently, gene analyses on the Wnt pathway were also 

performed. The injected (n=12) and the non- injected sides (n=12) of the control group 

were compared and the injected (n=12) and the non- injected (n=12) sides of the LGK974 

treatment group were compared (Fig 32). Both, the injected and the non- injected 

hemispheres of each group were then compared to the respective other group, either 

LGK974 treatment group or non-treatment control group. Based on previous analyses 

(3.3.1), we measured the Wnt family members, which were expressed in the breast cancer 

cell lines, Wnt5a, Wnt5b, Wnt7a, Wnt6 and Wnt10a as well as the target of the LGK 

inhibitor, Porcupine. 
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Fig 32: Analyses of developed metastasis from cancer cell line 4T1. 

(A) Ecad and Vimentin were evaluated to prove changes in epithelial or mesenchymal character of 

the cell line in metastasis (GOI = gene of interest, HK = housekeeper). (B) Wnt profile was used to 

detect eventual changes in the Wnt profile after LGK974 treatment (GOI = gene of interest, HK = 

housekeeper). Error bars show SD, values, statistics sign was tested using unpaired, two tailed 

students t-test. In all, expression of Ecad or Vimentin and Wnt analyses, 4T1 injected brains (4T1 

CTL i.) were compared to 4T1 injected brains with LGK974 (4T1+LGK974 i.) treatment. 

Additionally, 4T1 brain tissues of the non- injected side (4T1 CTL n.i.) were compared to 4T1 

brain tissues with LGK974 treatment of the non- injected side (4T1+LGK974 n.i.). The LGK974 

treatment group (4T1+LGK974 i/ni) were compared with the control group (CTL i/ni).  

 

These experiments did not support the notion that metastasis derived from the cancer cell 

line 4T1 - that had been treated with LGK974 - underwent EMT and MET. No differences 

in the epithelial (Ecad) or mesenchymal (Vimentin) character of the metastasis developed 

from 4T1 cell line were detectable when the treatment and the control groups were 

compared (Fig 32A). Furthermore, the inhibition of LKG974 on Porcupine and Wnt 

secretion could not be confirmed in the metastasis.  
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In the next step we investigated various Wnt ligands to test if they showed changes in the 

Wnt profil after the treatment with LGK974. We were not able to detect any significant 

differences in expression levels of Wnt5a, Wnt5b, Wnt6 or Wnt10a in the issue samples 

(Fig 32B). However, Wnt7a was significantly increased in the non- injected side after 

LGK974 treatment in comparison to the injected side (p=0.0021) (Fig 32B). Also, Wnt7a 

was increased in the non- injected side of the control group compare to the injected side of 

this group (p=0.0108) (Fig 32B). The expression of Wnt7a was increased in the injected 

side of the treatment group compared to the injected side of the control group, however the 

difference was not statistically significant (p=0.1087), (Fig 32B). Also, the expression of 

Wnt7a was not significantly increased in the non- injected side of the treatment group 

compared to the non- injected side of the control group (p=0.0050) (Fig 32B). 

Interestingly, the cancer cell line 4T1 expresses high levels of Wnt7a. However, metastases 

developed from 4T1 showed reduced expression levels of Wnt7a. Nevertheless, metastasis 

developed within 4T1 treatment group showed significant differences in their Wnt7a 

expression levels between the non- injected and the injected sides. The Wnt7a expression 

was significantly reduced in the injected side compared to the non- injected side, in both, 

treatment group and control group. We demonstrate that LGK974 might have an effect on 

Wnt7a expression by inhibiting Porcupine in metastasis derived from the 4T1 cell line or 

changing the composition of the metastatic cells and their microenvironment. To further 

elaborate on this interesting hypothesis and also to investigate EMT and MET on tumour 

cell colonization in greater detail, other markers for EMT and MET, e.g. those for specific 

transcriptions factors need to be established.  

Unexpectedly, the survival of the LGK974-treatment group was significantly decreased 

compared to the control group in the 4T1 trials. Therefore, it was suggested, that LGK974 

might induce EMT and MET thereby triggering tumour cell colonization and boosting the 

metastatic potential of these cells. However, Ecad and Vimentin were not regulated as 

indicators for EMT or MET. Therefore, we could not demonstrate that LGK974 induced 

EMT and MET yet.  

Suggestions that LGK974 impacts on Wnt signalling and that Wnt signalling could induce 

transcriptional changes, thereby driving EMT and MET need to be followed up. 

Consequently, additional EMT and MET markers need to be investigated. Therefore, we 

stimulated the cancer cell line 4T1 for 24hour and 48hours with LGK974. The 

unstimulated cancer cell line 4T1 was used as a control (Fig 33).  
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Fig 33: Expression level of EMT and MET markers of cancer cells +/- LGK974. 

(A) Ecad and Vimentin and (B) Twist2, Twist1, Snail, ZEB1, ZEB2 and expression of cancer cell 

line 4T1, 4T1 treated for 24hours with LGK974 and 4T1 treated for 48hours with LGK974 (GOI = 

gene of interest, HK = housekeeper). Error bars show SD, values, statistics sign was tested using 

unpaired, two tailed students t-test.  

 

After stimulating the cancer cell line 4T1 with LGK974, there were no significant 

differences in the epithelial (Ecad) or mesenchymal (Vimentin) characters of the 4T1 cell 

line treated with LGK974 compared to the control (Fig 33A). However, the expression of 

Twist2 was significantly increased, compared to the untreated control (Fig 33B). 

Furthermore, the stimulation with LGK974 for 48hours (p=0.0196) was more effective 

compared to that for 24hours (p=0.0329) revealing a time dependent effect of the 

treatment. However, for all other tested transcription factors relevant for EMT and MET, 

no significant differences are shown when 4T1 was stimulated with LGK974. This 

experiment needs to be repeated using higher N number and more time point’s stimulation. 

However, the preliminary data show significant differences in the expression of the 

transcription factor Twist2 after stimulation with LGK974 and the other data indicate the 
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possibility that the cancer cell line 4T1 underwent EMT and MET after treatment with 

LGK974. In the future gene expression analyses of the brain tissues from LGK974-treated 

mice might confirm this suggestion. 

In a brief summary, we found that the brain microenvironment reacts against the 

colonization of secondary malignancies, which has consequences on therapeutic strategies 

such as the application of drugs and the precise manipulation of important cancer 

pathways.  

 

3.3.5 In vivo model with LPS 

When we realized that interfering with the Wnt signalling by inhibiting Porcupine had 

unexpected treatment effects we searched for alternative treatment strategies. In our 

previous in vitro coculture-experiments we found that switching microglia into an acute 

inflammatory phenotype lead to improved treatment results. In brief, microglia-induced 

invasion was significantly reduced by treatment with Lipopolysaccharide (LPS) in 

modified Boyden chamber experiments (Pukrop et al., 2010b). To further elaborate on 

these in vitro findings the established syngeneic cerebral metastasis mouse model is ideal. 

First steps into this direction have already been performed as part of this study. Brain 

tissue from previous experiments - were we tested the right amount of cells for the 

metastatic potential (3.2.1) - was used for the gene analysis of immune-related markers. To 

investigate the impact of the immune response on tumour cell colonization, GFAP, CSF1 

and CSFR1 were used as markers for inflammation (Fig 34B-D). Additionally, CK8 was 

used as a marker for colonized tumour cells (Fig 34A). In case of the control group, ECM 

and medium were injected, and animals were sacrificed at the same time the last mouse of 

the group with injected cancer cells was sacrificed. Injected and non- injected side of the 

control or injected cancer cell group were compared. Additionally, the injected side of the 

control was compared to the injected side of the cancer cell group. Also, the non- injected 

side of the control group was compared to the non- injected side of the cancer cell group.  
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Fig 34: Analyses of developed metastasis from cancer cell line E0771LG. 

(A-D) The gene analysis was performed with three control samples and seven samples of the 

injected cancer cell line. Injected side of control (CTL i.) was compared to the control non- injected 

side (CTL n.i.). Injected side with E0771LG (E0771LG i.) was compared to the non- injected side 

of E0771LG (E0771LG n.i.). Control group was compared E0771LG group. Cancer cell line 

E0771LG was used and compared with the tissue (GOI = gene of interest, HK = housekeeper). 

Error bars show SD, values, statistics sign was tested using unpaired, two tailed students t-test. (A) 

CK8 was evaluated to prove the presence of colonized tumour cells. (B) GFAP as a marker for 

astrocytes was used and CSF1 (C) and CSFR1 (D) were used as marker for microglia cells.  

 

Consistent with the notion that colonized tumour cells express CK8 compared to the 

normal brain tissue, CK8 was significantly increased after cancer cell injection compared 

to controls (p=0.0014), (Fig 34A). The control, which was injected with ECM/medium 

showed significantly lower amounts of CK8. Interestingly, also the non- injected side of 

the cancer cell injected group, showed high levels of CK8, which was significantly 

increased compare to the non- injected side of the control group (p=<0.0001), (Fig 34A). 

However, the injected side showed significantly more CK8 expression as compared to the 

non- injected side (p=0.0206), (Fig 34A). The latter finding further underlined the previous 

finding that cells can disseminate also to the other, non-injected hemisphere 

Moreover, there was a significant increase of GFAP after the injection of E0771LG on the 

non-injected side in comparison to the non- injected side of the control (p=<0.0001), (Fig 
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34B). GFAP was significantly increased in the injected side of the control compared to the 

non- injected side (p=0.0258). GFAP was also highly expressed also in control brain 

tissue. Possibly, because of the high expression levels of GFAP in these samples, small 

differences in gene expression could not be discerned. However when we looked at the 

expression levels of CSF1, differences between the cancer cell-injected side and the non-

cancer cell-injected side were significant (p=0.0178), (Fig 34C). These results suggest that 

the injection of cancer cells activates microglia. However, analyses of CSFR1 could not 

confirm this conclusion (Fig 34D). Here, significant differences were only shown between 

the non- injected side of the control group and the non- injected side of the cancer-cell 

injected group, but not between the injected sides of both groups. These results could not 

demonstrate significant differences on the presence of microglia or astrocytes between 

control group and the cancer cell-injected group and further experiments are necessary 

including higher N numbers. However, sections stained against markers for microglia and 

astrocytes clearly show the presence and localisation of microglia cells (Fig 35A) or 

astrocytes (Fig 35B). It might be interesting to monitor the activation state of microglia, 

perhaps by having a closer look at their morphological appearance. 

 

Fig 35: Identification of immune reaction after injection of cancer cell line E0771LG. 

500 cells of cancer cell line E0771LG injected in the brain were immunologigally labelled with the 

macrophages/microglia marker IBA (A) and (B) with the astrocytes marker GFAP. The staining 

clearly showed the presence of microglia and astrocytes activation in the brain. Left side of the 

hemisphere=injected side, right side of the hemisphere= non- injected side. 

 

In comparison to the non- injected side, the injected side of these brains show a strong 

increased of activated microglia cells and astrocytes. Collected control brains, which were 

injected with ECM and medium alone, showed no expression of the immuno-markers (data 

not shown). It might be possible to use the stained sections in Fig 35 at higher 

magnification to analyse a possible morphologically detectable interaction between 

colonized tumour cells and immune cells in the future. 
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The effect of LPS had been tested in our group before and a dose of 1µg/µl was 

determined to be non-toxic for the E0771LG cancer cell line. These results can now be 

confirmed in the background of this syngeneic mouse model, using - in a first step - the 

E0771LG cancer cell line. 

Mice were injected intracranially with an amount of 500 E0771LG cancer cells as 

described before. For the treatment group 1µl of LPS was added to the mix of 

cells/medium/ECM. The control group was injected with cells/medium+1µl/ECM. 

Behaviour tests were performed before and after surgery and used as an indicator for the 

developments of metastases (Fig 36). 

 

Fig 36: Kaplan Meier surviving curve after E0771LG cancer cell injection +/- LPS. 

C57BL/6 mice were injected with cancer cell line E0771LG and treated (n=27) or not treated 

(n=28) with LPS. The survival of mice injected with E0771LG was significantly decreased 

compare to the survival of treatment group.  

 

All mice of the control group died within 50days. Surprisingly, mice treated with LPS 

were identified as long-term survivors. The surviving prognosis for the treatment group 

was significantly (p=0.0090) increased with 40% survival and no more mice from this 

group died within the next month when the experiment was stopped. These first results 

gained with this model indicate that LPS has a positive treatment effect (Fig 36). 

Specifically, LPS was shown to activate the immune response by activating the Toll-like 

receptor pathway. Especially, TLR4 is responding to LPS (Regen et al., 2011). Moreover, 

TLR4 signals in a MyD88- and TRIF-dependent way, adaptor molecules that are specific 

for the TLR signalling pathway (Hagemann et al., 2008). This indicates that two adaptors 

in TLR signalling, MyD88 and TRIF, which are responding differently to LPS, may 

regulate tumour progression via different mechanisms. MyD88 was shown to play a role in 

promoting metastasis, which was driven by macrophages. In order to investigate the role of 
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MyD88 and TRIF and the TLR signalling on tumour cell colonization, we designed 

experiments for an in vivo study. Three groups of mice were used to compare the survival 

prognosis with or without LPS treatment. WT mice, MyD88 knockout mice and TRIF 

knockout mice were intracraniallay injected as described before, with 500 cancer cells of 

E0771LG or 500 cancer cells of E0771LG and LPS. 1µl (1µg/µl) of LSP was added to the 

mixture of cells, medium and ECM. All mice and the respective cancer cell line E0771LG 

have a C57BL/6 background, which allows us to use them as a syngeneic mouse model for 

further analyses. Behaviour tests were performed before and after surgery and used as an 

indicator for metastasis development.  

 

Tab 12: Mean survival of different mice strains and +/- LPS treatment 

Mice strain Mean survival 

days without 

LPS treatment 

Mean 

survival 

days with 

LPS 

treatment 

Hazard Ratio 

untreated/treated  

P value 

WT injected 

with E0771LG 

19  29  2.027  

CI 95%  

[1.129-3.637] 

P=0.0179 

TRIF knockout 

injected with 

E0771LG 

18,5  15  0.7372 

CI 95% 

[0.2825-1.578] 

P=0.9382 

MyD88 

knockout 

injected with 

E0771LG 

16  16  0.8049  

CI 95% 

[0.3335-1.554] 

P=0.2200 

 

WT mice injected with the cancer cell line E0771LG and LPS survived much longer than 

all other tested mice here (Tab 12). In WT mice the protective effect of LPS could thus be 

confirmed. WT mice injected with the cancer cell line E0771LG and LPS (n=35) survived 

significantly longer than mice injected with E0771LG alone (n=33) (p=0.0179). MyD88 
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knockout mice injected with the cancer cell line E0771LG (n=12) or E0771LG and LPS 

(n=15) showed a slight difference regarding their survival (p=0.2200). However, here LPS 

showed no protective effect, the effect of LPS seems to have an adverse effect in Myd88 

knockout mice. The injection of TRIF knockout mice with the cancer cell lines E0771LG 

(n=12) or E0771LG and LPS (n=13), revealed no differences on survival (p=0.9382) 

either. These first preliminary results indicate the importance of Myd88 and TRIF for the 

protective effect of LPS and showed differences between MyD88 and TRIFF. In order to 

investigate the protective effect of LPS via TLR signalling in greater detail, available brain 

tissue from all experiments can be used for further analysed.   
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4 Discussion 

4.1 Characterisation of different cancer cell lines  

It is well accepted that not the primary tumour of breast cancer but its metastasis is the 

main cause of death in these patients. Until now has not been possible to safely predict the 

risk of metastasis development of the individual patient. Therefore, great efforts have been 

made the last decades to identify for example by gene-expression signatures of the primary 

breast cancers (Weigelt et al., 2005) prognostic markers to better predict the individual risk 

for metastasis. However, this is still not recommend for the daily routine to use this as 

decision instrument. Moreover, the manifestation of metastasis e.g. in the brain is not 

predictable. In order to detect metastatic tumour cells seeding specifically the brain, 

markers on (circulating) tumour cells were analysed in vivo experiments (Bos et al., 2009). 

One method others tried to investigate the CTCs, was the identification by Cytokeratin 

expression. In breast cancer CK8, CK18, CK5 and CK17 were typically expressed and 

therefore potential suitable markers to study successful colonization of breast cancer cells 

in the Cytokeratin negative brain tissue (Perou et al., 2000). In order to transfer these 

findings of the human studies to an experimental design for mice, first, we characterised 

available murine breast cancer cells in terms of their relevant gene expression levels. We 

identified typical characteristic markers of these cell lines and measured significant CK8 

expression in all murine breast cancer cell lines. So, CK8 gene expression was an ideal 

candidate to quantify the breast cancer metastatic load in the negative brain parenchyma. 

In the next step, we wanted to better understand biological process. Therefore, we first 

focused on EMT markers which have been demonstrated that these factors facilitate 

metastasis development and their expression in the primary tumour are correlated with 

poor prognosis (Thiery, 2002). Consequently, we analysed EMT markers on available 

murine breast cancer cell lines, which were differently expressed in the respective breast 

cancer cells. The hypothesis was now, that these features should influence the cerebral 

colonization capacity of three murine breast cancer cell lines.  

 

It was shown that activated Wnt signalling promotes EMT-like phenotypes in breast cancer 

cells (Wu et al., 2012) and Wnt signalling was also shown to play an important role in the 

cerebral metastatic process (Pukrop et al., 2010b) (Klemm et al., 2011) (Smid et al., 2008). 
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To confirm the role of Wnt signalling in cerebral metastasis development, we characterised 

the murine breast cancer cell lines with respect to their Wnt profile. The qRT-PCR and 

protein measurements revealed high expression levels of Wnt5a in the cancer cell line 

E0771LG, while high expression of Wnt7a was detected in the cancer cell line 410.4 and 

4T1. Our available cancer cells were later used to study the role of glia contact to 

colonized tumour cells in an in vivo model. Taken together, in the first step we 

characterised the murine breast cancer cells for their epithelial and mesenchymal character 

and Wnt profile bases for our further investigations in the functional in vitro tests and 

finally in vivo experiments. Importantly, the profiles of the murine cells were already 

detected in human breast cancer samples (Huguet et al., 1994b) (van de Vijver et al., 2002) 

(Perou et al., 2000). 

 

4.2 Establishing of an in vivo syngeneic cerebral metastasis model 

The impact of the tumour microenvironment in the primary tumour got more and more 

impact on outcome of the disease. We and others also described that the metastatic 

microenvironment has also significant impact on many features of the pre-metastatic cells 

seeded the distant organ, in particular the brain (Pukrop et al., 2010b) (Chuang et al., 

2013). However, the majority of the in vivo studies are performed in Xenograft models, 

which systematically exclude or at least massively influence this very important force 

during metastasis in comparison to the human situation. 

Thus, firstly only an immune-competent model reflects the real impact of the metastatic 

microenvironment and secondly is applicable for studies of immune-based therapeutic 

strategies. Moreover, it has been demonstrated, that the genetic background from which 

cancer arises also has an effect on the capacity of mouse mammary cancer cells to 

metastasis
 
and support the hypothesis that the genetic make-up of the host and background 

of the cancer cells need to be similar (Lancaster et al., 2005). With this knowledge our 

main goal was to establish a syngeneic cerebral metastasis mouse model to investigate 

colonization and involved interaction of the metastatic microenvironment. This is at least a 

prerequisite to develop new therapeutic targets in both, “seed and soil”, which might lead 

then to more successful intervention strategies for breast cancer metastasis. 
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Mammary fatpad of syngeneic mouse models injected with the cancer cell line 4T1, which 

originally derive from a spontaneous mouse mammary primary tumour of a BALB/C 

mouse, metastasise to the brain and therefore metastatic outgrowth can be studied 

(Aslakson and Miller, 1992a). Not all of our cancer cell lines are able to metastasize 

spontaneously. Therefore, we injected cancer cells intracranially considering the 

background of these cells and mouse strains. Very importantly, we used cancer cells that 

were embedded in extracellular matrix (ECM) before applied to the brain.  

Different types of cancer cells tested to develop metastasis here were used for further 

experiments and the establishment of in vitro markers. Importantly, all cell lines were able 

to develop metastasis caused by various amounts of injected cells and their colonization 

patterns. Interestingly, we found different infiltration patterns of the cancer cell lines. The 

cancer cell lines 410.4 and 4T1 showed cohort infiltration, whereas the cancer cell line 

E0771LG showed diffuse infiltration. Based on personal communication with L. Siam 

(manuscript on preparation), we know that those different infiltration patterns are relevant 

for the OS in patients with cerebral metastasis. Those patients with no infiltration have a 

much better prognosis than patients with cohort or diffuse infiltration. With this finding, 

we are able to investigate the biological consequence of the infiltration of the adjacent 

brain parenchyma. Until know, these features are not addressed at all.  

Quantification of the developed metastasis of cancer cell lines was performed with the 

marker CK8. Interestingly, an important finding was observed when CK8 was used to 

detect colonized tumour cells (Fig 30A). Unexpectantly, we found colonized tumour cells 

also in the non- injected side (other hemisphere of the brain) derived from the injected 

cancer cells. This finding indicates that the into the benign brain parenchyma infiltrating 

carcinoma cells are not only a surrogate parameter for worse OS but also a potential source 

for further metastasis in complete other regions of the affected organ. This would mean 

those established metastases are a potential source for new metastasis, at least in the same 

organ. Taken together, this is one of the very few in vivo results demonstrating that 

metastases metastasize.  
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Fig 37: Colonized tumour cells are able to disseminate. 

Colonized tumour cells perform metastasis. These cells can disseminate in the brain. 

 

So far we have identified different colonization patterns of metastatic cells. However, 

systematically analyses should be performed to further quantify the infiltration and new 

breast cancer colonies of the disseminated cells. Additionally, the amount and patterns of 

the affected menigeal and ventricles should also be measured. Therefore, we cooperate in 

future with Trevor Do, a group member of the research group at STTARR in Toronto, who 

routinely uses an analysing software which could measure these features. 

Further, we might be also able to identify the different zones of the metastatic tissue and 

there cellular composition. We therefore aim to investigate the astrocytes, microglia and 

immune responses in the core of the metastasis, at the interface to the benign brain 

parenchyma and infiltration zone. This is of major interest because we already see 

significant differences of at least the astrocytes and microglia, which accumulate at the 

interface. However, we detected differences in respect to the syngeneic models. For 

example, astrocytes and microglia were detectable around the metastasis of all injected 

cancer cell lines, but in case of cancer cell lines 4T1 and E0771LG also between the 

metastatic cells. Gene expression analyses also indicate differences in the three models. 

Further, we were able to quantify colonized tumour cells with CK8. Hence, we conclude 

that in terms of infiltration patterns of the carcinoma cells and the response of the brain 

tissue varies in dependency of the features of the carcinoma cells. Some features, in 
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particular the infiltration patterns of the carcinoma cells, might be related to differences in 

gene expression based on the role of EMT and MET in tumour cell colonization and 

metastasis development. Therefore, EMT and MET markers should be further investigated 

as EMT and MET changes can potentially be used for new therapeutic strategies. In 

summary, we established four syngeneic cerebral metastasis mouse models to study the 

colonization of the brain and the resulting response of the brain microenvironment against 

the metastatic progression, which can now be used for further experiments and intervention 

studies. 

 

4.2 Clinical applications 

Breast cancer metastasis indicate a poor survival prognosis due to limited treatment 

options and the lack of proven effectively targeted therapies. Recently new therapeutic 

strategies focused on the inhibition of the Wnt signalling pathway have been developed. 

One of these novel promising treatment strategies for Wnt manipulation might be the 

Porcupine inhibitor LGK974 of Novartis.  

Currently this inhibitor is in use in clinical Phase 1 trial in advanced cancer patients. The 

idea was that LGK974 might be a useful novel drug for the treatment of Wnt dependent 

cancer progression. Therefore, patients with triple-negative breast cancer have been also 

included in this study. Excluded from this study were patients with brain metastasis that 

had not been adequately treated. Novartis evaluated in cell-based models that LGK974 

inhibits the Wnt pathway by specifically binding Porcupine, a membrane-bound O-

acyltransferase that catalysis the palmitoylation of Wnt ligands and functions on Wnt 

secretion. Furthermore, in preclinical studies they found that inhibition of Porcupine with 

LGK974 is associated with anti-tumour activity. 

(http://www.novartisoncology.com/ct/pipelineDetails?compound=LGK974&diseaseAcr=B

C) 

This was confirmed by a study by Liu et al. (2013a). They showed the successful use of 

LGK974 as a potent, selective, and orally bioavailable Porcupine inhibitor on the initiation 

and development of primary tumours. This in vivo study demonstrated on a Wnt dependent 

murine breast tumour model (mouse mammary tumour virus-driven Wnt1 model), that the 

inhibition of Wnt signalling at well-tolerated doses is associated with a reduction of 

http://www.novartisoncology.com/ct/pipelineDetails?compound=LGK974&diseaseAcr=BC
http://www.novartisoncology.com/ct/pipelineDetails?compound=LGK974&diseaseAcr=BC
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tumour growth. In our study we investigated a tolerable dose of LGK974 in vitro and 

confirmed the effect of LKG974, to cause a reduced invasiveness of cancer cells in vitro, 

however, only for the cancer cell line 4T1 and with a positive trend in 410.4. However, this 

effect could not be confirmed for EO771LG cell line with the different Wnt profile, which 

mainly expresses Wnt5a. Therefore, these results indicate that the action of LGK974 might 

depend not only on Wnt secretion but also on a specific Wnt profile. We additionally 

detected differences in the inhibitory effect of LGK974 on the protein level using cancer 

cell lines 410.4, 4T1 and E0771LG. Interestingly, Wnt5a abolished in the cancer cell line 

E0771LG treated with LGK974. In contrast, Wnt7a/b seemed to accumulate in the cytosol 

of the cancer cell lines 410.4 and 4T1 as expected by the mechanism of action of the drug. 

Thus, this indicates that the inhibition of Porcupine can have different effects on Wnt 

proteins levels that might also depend on the type of the cancer cells. However, it could 

also be a technical effect when the missing palmitoylation of Wnt5a changes the tertiary 

form of Wnt5a, which could not be recognized by the antibody anymore. So, further 

analyses are required to explain why the cancer cell lines tested here react differently to the 

treatment with LGK974, which has potential therapeutic implications. Notably, Porcupine 

was investigated to be necessary for all of the Wnt pathways (Dodge et al., 2012) and as 

we detected an effect of LGK974 on both tested Wnts, we were able to confirm the Wnt 

inhibitory effect of LGK974. 

Next we proved effects of the LGK974 inhibition on Wnt signalling in vivo. The 

physiological conditions can have serious impacts and therefore it is important to address 

possible therapeutic treatment side effects on in vivo experiments. Therefore, we treated 

mice orally with LGK974 by using the established cerebral metastasis mouse models. 

Surprisingly, in further experiments on LGK974, we detected another effect of the 

inhibition of Porcupine with LGK974. In contrast to the in vitro experiments, the cancer 

cell line 4T1 in combination with LGK974 lead to a significant decrease of OS, 

independent from the amount of cancer cells that were injected in vivo. This effect was 

observed in all the in vivo experiments that were performed with the cancer cell line 4T1 in 

vivo. Also, this was confirmed via CAM assay where we found that cancer cells 410.4, 

with a comparable Wnt profile like 4T1, stimulated with LGK974 increased tumour cell 

colonization. The 4T1 showed the same trend, and more experiments have to be performed 

to underline this effect. However, in none of the functional and in vivo experiments we saw 

any treatment effect in the Wnt5a driven by EO771LG. So, our results significantly 
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underlined that Wnt ligand expression is not sufficient for treatment effects. Most 

important, here we demonstrate negative treatment effects in the 4T1 model. As described 

above, Liu et al demonstrated in their study a positive treatment effect of LGK974 in early 

stages of breast cancer. However, our model represents late stage of cerebral metastasis 

when the breast cancer cells colonized the brain tissue. Our finding demonstrates that 

biological treatments, which affect stem cell features or EMT, could lead in early stage in 

vivo models beneficial outcome but with an opposite effect on late stage tumour models 

(Fig 35). The conclusion of this study is that biological inhibitors seem to be not only 

dependent on the profile of the cancer cells but also stage dependent. 

 

 

Fig 38: Effect of LGK974 on primary tumour and colonized tumour cell. 

Treatment of LGK974 on primary tumour was successful but not on colonized tumour 

cells in a cerebral metastasis model. Most important, this biological treatment strategy 

could lead to progression of already seeded breast cancer cells in the distant organ while 

the primary tumour respond to the therapy and regress. Now, if seeding is really an early 

event in the process of metastasis, before diagnosis of the primary tumour, this finding 

have significant impact on all further treatment strategies affecting stem cell factors or 

EMT.   
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Remarkably, the injection of the cancer cell line E0771LG in combination with LGK974 

had no effect on survival. The reason for this might be Wnt dependent differences in the 

colonization capacity of tumour cells from cancer cell line E0771LG compared to 4T1. 

Cancer cells undergoing EMT and MET are capable of invasion, migration and 

proliferation and therefore promote tumour cell colonization. Recently, it was shown, that 

Wnt signalling induces EMT and MET (Qi et al., 2014),(Bo et al., 2013). The activity of β-

catenin as a cadherin-binding protein leads to a break of cell-to-cell adhesions built by β-

catenin and E-cadherin. An overexpression of E-cadherin and the reduction of 

mesenchymal markers leads to the downregulating of Wnt signalling (Schäfer et al., 

2014b). These findings also might explain our results: after injection of the cancer cell line 

410.4 metastasis development was much slower and subsequent demonstrated better OS 

compared to the injection of cancer cell line 4T1 or E0771G. Moreover, E-cadherin was 

highly expressed in metastasis developed from 410.4 compared to the other cancer cell 

lines used in this study, leading to suggest that high levels of E-cadherin in metastasis and 

corresponding cancer cell lines might give a better prognosis for survival. In contrast, loss 

of E-cadherin expression contributes to metastasis (Kalluri and Weinberg, 2009). Clearly, 

these circumstances need to be further analysed by investigating the interdependencies of 

Wnt signalling, EMT and MET by confirming that Wnt signalling is involved in tumour 

cell colonization and that Wnt can promote EMT and MET. To investigate the role of 

EMT and MET on tumour cell colonization in our model, transcription markers, e.g. Snail, 

Slug, ZEB1, ZEB2, Twist1 or Twist2, which are regulating EMT and MET, need to be 

investigated and analysed (Kalluri and Weinberg, 2009). 

Interestingly, Louie et al. (2013) found in the human breast cancer cell line MCF7, low 

levels of E-cadherin at the cell membrane and high levels of the transcription factor Snail 

in the nucleus, however, breast cancer cell lines selective to the brain showed low levels of 

E-cadherin and high levels of Snail, indicating that these cells underwent EMT (Louie et 

al., 2013). Furthermore, Wnt3a was found to promote the expression of the key 

transcription factor for EMT, Snail. Besides, Wnt3a increases metastasis (Qi et al., 2014). 

Hence, the microenvironment is important for the outcome of Wnt signalling and for EMT 

and MET. Consequently, we suggest, that LGK974 may lead to EMT and MET and 

therefore to tumour cell colonization and development of metastasis depending on the 

presence of activated, specific Wnt molecules in the microenvironment. The hypothesis 

that LGK974 impacts on Wnt signalling and that Wnt signalling could induce 
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transcriptional changes in order to drive EMT and MET should be followed up. In order to 

do this, the transcription factors Twist1, Twist2, ZEB1, ZEB2 and Snail need to be 

investigated. First in vitro experiments on this showed that cancer cell lines expressed 

different levels of transcription factors for EMT after stimulation of LGK974. Twist, was 

demonstrated to be upregulated in highly metastatic 4T1 cells but downregulated in non-

metastatic cells. Furthermore, Twist increased breast cancer metastasis by promoting EMT 

(Yang et al., 2004). The expression of the EMT and MET transcription marker Twist2 was 

significantly changed after treatment with LGK974 compared to the untreated control. 

Twist2 gene expression was increased after the stimulation with LGK974 leading to 

suggest, that LGK974 is increasing Twist2 expression and therefore EMT and MET. In 

order to prove this hypothesis, more experiments, with higher N numbers, need to be 

performed and confirmed on protein level. Further, developed metastasis of the cancer cell 

line 4T1 need to be analysed for their Twist2 expression patterns, to identify metastasis 

that are responsive to LGK974.  

The microenvironment was frequently investigated to play an important role in survival 

and growth of metastatic cells and the formation of metastasis (Quail and Joyce, 2013). 

Moreover, microglia cells were shown to be involved in tumour cell invasion (Lorger and 

Felding-Habermann, 2010). However, very little is known about the interaction between 

the brain environment and colonizing tumour cells. Interestingly, microglia activation was 

decreased in breast cancer cell lines selected from brain metastasis with a MET-like 

phenotype. By inducing an EMT-like phenotype in these cells, the number of activated 

microglia cells was increased (Louie et al., 2013). These findings underline close 

relationships between the immune response and metastatic formation by EMT. Moreover, 

it was shown that microglia cells in brain metastasis of breast cancers promote tumour cell 

colonization in human patients (Fitzgerald et al., 2008b). The therapeutic manipulation of 

the cytoprotective or cytotoxic response of microglia cells requires new targets and 

strategies to successfully interfere with tumour cell colonization in the brain. 

 

4.3 Immune response trigger by LPS and effects on cancer cell 

To investigate and manipulate the local defence system in the CNS and see the effects on 

tumour cell colonization, the established cerebral metastasis mouse model of the 
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EO771LG was used. In this study we have performed treatments with lipopolysaccharides 

(LPS) to stimulate locally the microglia response. 

However, before we started the intervention studies, we first proved by qRT-PCR that the 

glial cells and immune cells were activated after colonization of the cancer cell line 

E0771LG to the brain using the microglia markers CSF1 and CSFR1 and the astrocytes 

marker GFAP. Interestingly, CSF1 was significantly increased on the side that had been 

injected with cancer cells, compared to the non- injected side. This result indicates that 

microglia either reacted to the injection or to the presence of cancer cells. Furthermore, all 

markers were expressed in the control group where we injected only ECM. This result 

proved the presence of glia cells. However, control samples, showed no activated gene 

expression, especially, CSF1 and CSFR1 were not up-regulated despite the fact that mice 

underwent the same surgery as the cancer cell injected group. However, microglia and 

astrocytes staining clearly showed the absence of microglia and astrocytes in the control 

samples, but the presence and localisation in the cancer cell injected group. Nevertheless, 

we could not detect significant differences between control group and the cancer cell 

injected group in all analysed genes. Two reasons might explain this: In case of GFAP, due 

to the high expression levels of GFAP in these analyses it is possible that small differences 

could not be discerned. Secondly, only three control samples and seven samples with 

cancer cell injection were used until now. A higher N number of control samples need to 

be performed. Nevertheless, mice were sacrificed up to three weeks after the intracranial 

injection. The results showed expressions of all these genes, demonstrating the activation 

of glia cells in the presence of induced metastasis, while this glial activation might possibly 

be the cause of the injury during the injection (Loane and Byrnes, 2010). However, 

microglia and astrocytes staining clearly showed the presence and localisation of microglia 

cells and astrocytes in correlation with the injected side and the interaction with colonized 

tumour cells, which points to a colonized tumour cells-immune reaction. In comparison, 

the non- injected side of these brains showed a strong reduction of activated microglia cells 

and astrocytes.  

In summary, these results strongly suggest, that the observed glial activation is not merely 

triggered by the injury of the surgery. Thus, another advantage of our model is the 

presence of a non-injected control side that will prove helpful to address these questions 

during metastatic progression, as I have pointed out here. We could also quantify colonized 

tumour cells in the cancer cells injected brains with CK8. Furthermore, we can prove the 
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presence of microglia cells and astrocytes here. Therefore, this model can be used for 

further experiments addressing metastasis-immune related questions. 

LPS was recently shown to induce an immune response, which leads to the activation of 

microglia cells and astrocytes in the CNS (He et al., 2006b). Moreover, LPS-induced 

cytotoxicity on metastatic cancer cells were executed by microglia cells. This effect is 

dependent on time and concentration of LPS application. It was shown, that when using 

lower levels of LPS, cancer cells are insensitive to the microglial cytotoxicity. Therefore, 

apoptosis of cancer cells induced by microglia cells is dependent on the effect of LPS. 

Here, we wanted to investigate the role of LPS on tumour cell colonization as a potential 

trigger for the activation of glia cells in our newly established cerebral metastasis model.  

After the injection of cancer cells locally pre-treated with LPS into mice, their survival was 

highly significantly increased in comparison to the non LPS-treated group. These first 

preliminary results on survival indicate that LPS might have a protective effect, by giving 

an additional boost to the activation of microglia, and confirmed preliminary findings by 

Han-Ning Chuang (http://hdl.handle.net/11858/00-1735-0000-000D-F01F-7). She showed 

that LPS hindered microglia induced invasion of cancer cells, which was also confirming 

the study of He et al (2006). Furthermore, Wnt5a was shown to play an important role in 

tumour invasion (Pukrop et al., 2006). Han-Ning confirmed that Wnt5a expressed from 

microglia cells is essential for tumour cells to invade and colonize the brain parenchyma 

effectively. More experiments need to be performed for a better understanding of the 

colonizing behaviour of tumour cells and the role of microglia in this context. In order to 

do this, further analyses of the prepared brain tissue from the LPS experiment of our 

syngeneic cerebral metastasis mouse model can be performed. Immunstainings using, e.g. 

antibodies against GFAP and IBA might be useful to investigate the role of microglia in 

tumour cell colonization. Moreover, gene expression analyses can be performed to further 

test the role of Wnt in this context. In order to do this, brain metastasis tissue should be 

analysed for all established markers on the Wnt profile, shown here, as well as CSF1, 

CSF1R and GFAP. 

LPS was identified to activate microglia and cytokine induction by activating the Toll-like 

receptor (TLR) pathway, where TLR4 is responding to LPS (Regen et al., 2011). TLR4 is 

using the myeloid differentiation primary response gene 88 (MyD88) to drive 

inflammatory response. Another adapter is necessary for transferring TLR4 signalling, the 
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TIR-domain- containing protein (TRIF) (Kawai and Akira, 2009). The differences in the 

LPS response have been described as an early MyD88 depending response, which leads to 

the activation of nuclear factor-κB (NF-κB). Additionally, a later TRIF response to LPS 

leads to the late activation of NF-κB and to the induction of cytokines, chemokines, and 

other transcription factors (Mogensen, 2009). These findings demonstrate the different 

response of MyD88 or TRIF to LPS. 

Interestingly, MyD88 was shown to play a role in promoting metastasis (Hagemann et al., 

2008). Therefore, LPS activates TLR4 and signals in a MyD88- and TRIF-dependent way. 

This indicates that two adaptors in TLR signalling, MyD88 and TRIF, which are 

responding differently to LPS, may regulate tumour cell colonization via different 

mechanisms. By using microglia from Myd88 deficient mice, Han-Ning showed a 

reduction of microglia-induced invasion of cancer cells in her brain slices model. It can 

therefore be hypothesised that the adaptor MyD88 is required for tumour cell colonization, 

whereas the adapter TRIF causes the protective effects of TLR4 activation. Moreover, 

TRIF- and MyD88-deficient microglia can change the effects of LPS also on Wnt related 

genes, which also underlies the impact of MyD88 and TRIF on tumour cell colonization 

(http://hdl.handle.net/11858/00-1735-0000-000D-F01F-7). 

In order to further elaborate on these results and interpretations, the involved pathways in 

tumour cell colonization need to be investigated in more detail. Therefore, gene expression 

levels of MyD88 and TRIF need to be tested by using the prepared brain tissue from the 

LPS experiment. We suggest that high expression of MyD88 leading in tumour cell 

colonization and metastasis and high level of TRIF leading suppressing of tumour cell 

colonization. Moreover, there are several mouse strains available, e.g. MyD88 knockout or 

TRIF knockout mice and both models have a background strain of C57BL/6. These mice 

are ideal to address these questions in combination with the syngeneic mouse model by 

using the methods established here. In order to do this, the established cerebral metastasis 

mouse model of C57BL/6 should be used in combination with the cancer cell line 

E0771LG, which is derived from C57BL/6 mice. Interestingly, first own experiments 

showed that the application of LPS has no protective effect in a TRIF knockout mouse 

model, which is in support of the hypothesis stated above. TRIF knockout mice injected 

with the cancer cell line E0771LG with LPS treatment did not survive longer than TRIF 

knockout mice injected with the cancer cell line E0771LG without LPS treatment. This 

strongly indicates the importance of TRIF on the protective effect of LPS in tumour cell 
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colonization. In contrast, in the case of MyD88 knockout mice, we were not able to detect 

differences between MyD88 knockout mice injected with E0771LG without LPS treatment 

and MyD88 knockout mice injected with E0771LG with LPS treatment. However, in WT 

mice with induced metastasis in the absence of LPS survived a mean of 19days, while 

mice of the LPS treatment group survived almost a week longer. Thus, two independent 

metastasis mouse models with a disrupted TLR4-signalling pathway died earlier than WT-

controls, strongly suggesting that the protective effect of LPS requires intact TLR4 

signalling, in particular in microglia. 

This result demonstrates that TRIF and MyD88 are indeed necessary for the protective 

effect of LPS. Moreover, LPS application without intact MyD88 or TRIF-signalling even 

seems to have a detrimental effect on survival. We were able to address our established 

syngeneic cerebral metastasis mouse model to a different experimental design and could 

prove the protective effect of LPS in the WT mouse model. We supported in vivo the 

protective effect of LPS on breast cancer metastasis to the brain. 

In this study syngeneic cerebral metastasis mouse models were successfully established, 

which can be used to better understanding the role of the brain microenvironment on 

tumour cell colonization during different infiltration patterns. Furthermore, therapeutic 

treatment strategies claiming at the treatment of metastatic breast cancer can be applied 

using these different models.  
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5 Summary 

We characterised four murine cancer cells and investigated typical markers, which were 

similar to human cancer cells. We established syngeneic cerebral metastasis mouse 

models, methods to quantify the metastatic cancer cells in the brain parenchyma´s well as 

the metastatic capacity of these colonized tumour cells. We investigated the colonization 

behaviour of these cancer cell lines in vivo and demonstrated differences in tumour cell 

colonization and the reaction of the glia cells. Importantly, our results are consistent with 

human studies. Interestingly, we demonstrate that colonized tumour cells were able to 

further disseminate in the brain as source for new metastatic lesions. 

The Wnt profiles of the cancer cell lines were investigated and Wnt5a and Wnt7b were 

identified and provide the basis for targeting Wnt signalling for further experiments in the 

respective models.  

Furthermore, we investigate an effective dose of the Porcupine Inhibitor LGK974 in cell 

culture and prove the inhibitory effect of the LGK974 on Wnt secretion and functional 

effects on tumour invasion in vitro and could confirm previous findings of LGK974 on 

primary tumours. Moreover, we observed another effect of LGK974 and demonstrated that 

LGK974 appears to worsen the colonization in the 4T1 colonization model but not 

EO771LG. Therefore, the treatment of LGK974 on primary tumours seems to be a good 

treatment strategy, but not for metastatic cells. Also, the effects seem to be dependent on 

specific Wnt profiles. 

Additionally, we were able to address our established syngeneic cerebral metastasis mouse 

model to a different experimental design to investigate the role of microglia in tumour cell 

colonization. So far we could trigger an immune response with LPS and could prove the 

protective effect of LPS in the WT mouse model.  
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