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1. Summary 

Biofilms can be considered as one main lifestyle of many bacteria in their natural environment. A 

bacterial biofilm is a cell community that is surrounded by a self-produced extracellular matrix. This 

matrix usually consists of polysaccharides, protein, lipids and extracellular DNA. Within this matrix 

the cells are protected from harmful components in the environment such as antibiotics or from 

predators and phages. Furthermore, the biofilm matrix enables the cells to float on liquid surfaces as 

a community or to cover solid surfaces such as plant roots, human tissue or even medical devices. 

Thus, the formation of biofilms by pathogenic bacteria can also serve as a virulence factor and needs 

to be considered as a threat to human health. The Gram-positive model organism Bacillus subtilis 

also forms biofilms in its natural environment. In the laboratory environment it forms wrinkled 

colonies on agar plates and structured floating biofilms, so-called pellicles, on the top of liquid 

medium. The regulation of matrix gene expression is highly complex and was subject of many 

studies. The main protein components of the matrix are encoded in the tapA-sipW-tasA operon and 

the bslA gene, whereas the machinery for exopolysaccharide synthesis and export is encoded within 

the epsA-O operon. One aim of this work was to study the function of the first two genes of the  

epsA-O operon, namely epsA and epsB that encode a tyrosine kinase modulator and the cognate 

kinase in the regulation of exopolysaccharide production. In this work, it was shown that the EpsB 

kinase and its modulator directly interact with each other and that deletion of the two genes reduces 

the biofilm structure suggesting a defect in exopolysaccharide production. Simultaneous deletion of 

the genes for EpsB and the only other known tyrosine kinase PtkA led to a complete loss of complex 

colony formation due to impaired exopolysaccharide production. The same was observed in the 

absence of both modulator proteins demonstrating that tyrosine kinases are essential for the 

formation of biofilms in B. subtilis. The expression of biofilm matrix and motility genes is mutually 

exclusive in B. subtilis. In the absence of the YmdB protein biofilm matrix gene expression is inhibited 

and instead all cells express motility genes. Thus, the ymdB mutant does not form complex colonies 

and pellicles anymore. This phenotype is due to the phosphodiesterase activity of the YmdB protein. 

In this work, it was demonstrated that impaired biofilm formation is due increased amounts of the 

master regulator of biofilm formation SinR. Interestingly, the formation of spontaneous suppressor 

mutations within the sinR gene restored biofilm matrix gene expression and enabled the cells to 

switch between sessile and motile life styles. However, the target of the YmdB phosphodiesterase 

remains unclear but the interplay with the major endoribonuclease RNase Y seems to be important. 

RNA sequencing of the ymdB mutant revealed potential processing targets for further 

research.                                                   
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2. Introduction 

The statement „biofilms are everywhere and the predominant life form of microbes in their natural 

environment” summarizes the main message of a review by Costerton et al. that was published in 

the year 1995. This publication was one of the first statements that pointed out the importance of 

biofilm research.  

A microbial biofilm is a community of cells embedded in a self-produced extracellular matrix that 

allows them to attach to each other and often to surfaces. This matrix, usually composed of 

extracellular polysaccharides, proteins, nucleic acids and lipids (Flemming & Wingender, 2010), 

allows the attachment to surfaces and protects the cells form harmful environmental influences as 

antibiotics and predators (Costerton et al., 1995, Hall-Stoodley et al., 2004). Although bacterial 

biofilms are associated with e. g. chronic wound infections (Percival et al., 2012) and the colonization 

of the lung of patients that suffer from the genetic disorder cystic fibrosis (Costerton et al., 1999), 

basic research on bacterial biofilms has been neglected for quite some time. Researchers relied on 

cells cultivated in shaking flasks and tubes filled with rich medium under laboratory conditions. 

Under these conditions bacteria usually are present as single cells and “happily” consume the 

provided nutrients. These singular planktonic cells were used to understand basic mechanisms of 

gene expression and for cell biology. Without any doubt, early experiments with planktonic cells 

provided important insight into regulatory mechanism as for instance in a process that was called 

“diauxie” by Monod (1949) describing the preferred uptake of a carbon source that provide more 

energy to the cells and the switch to less preferred ones. However, biofilms show great phenotypical 

differences to planktonic cells and therefore are worth being studied to get a better understanding of 

all different bacterial life styles. 

2.1. Biofilm formation in Bacillus subtilis 

As an important model organism for Gram-positive bacteria, regulation of cell differentiation 

processes like sporulation has been studied intensively in Bacillus subtilis (e. g. Piggot & Hilbert, 

2004). First studies addressing biofilm formation in B. subtilis at the genetic level were published at 

the beginning of the 21th century (Branda et al., 2001; Hamon & Lazazzera, 2001). Since then, 

unraveling the complexity of B. subtilis biofilms has become a flourishing research field. 

 

The biofilm matrix 

B. subtilis forms structured macro-colonies (considered as simple biofilms) on special agar plates and 

floating biofilms on the top of a liquid surface, so called pellicles (see Fig. 2.1; Branda et al., 2001). 

Within these biofilms the cells are embedded in a self-produced extracellular matrix. This matrix is 
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complex colony floating biofilm (pellicle)

mainly composed of extracellular polysaccharides, proteins, nucleic acids and probably lipids 

(Marvasi et al., 2010; Cairns et al., 2014a). The machinery for synthesis and export of 

exopolysaccharides is encoded within the 15 gene epsA-O (eps) operon. Deletion of this operon leads 

to a loss of complex colony and pellicle formation (compare Fig. 4.3; López et al., 2010). However, 

with a few exceptions the protein products of the single genes have not been studied in detail. For 

example the epsE gene encodes a bifunctional protein that functions as a “molecular clutch” to 

inhibit flagella movement and as a glycosyltransferase for exopolysaccharide synthesis (Blair et al., 

2008; Guttenplan et al., 2010). In addition, a regulatory RNA element was identified upstream of the 

epsC gene that might be important to ensure expression of the whole eps operon by processive 

antitermination (Irnov & Winkler, 2010). Before the start of this work, the first two genes of the eps 

operon, epsA and epsB, were only annotated as a tyrosine kinase modulator and the respective 

kinase due to homology. Also, the actual composition of the matrix exopolysaccharides is not known 

in detail, but seems to depend highly on substrate availability (Cairns et al., 2014a).                 

 

Figure 2.1. Complex colony and  

pellicle formation of B. subtilis. The 

undomesticated B. subtilis wild type 

strain NCIB3610 forms structured 

colonies on biofilm-inducing MSgg 

medium and structured biofilms on the 

top of liquid MSgg medium. These 

floating biofilms are called pellicles 

(Branda et al., 2001). 

 

The main protein components of the matrix are encoded in the tapA-sipW-tasA (tapA) operon. 

Deletion of the respective genes also leads to reduced colony structure and pellicle formation but the 

effects are milder as for the deletion of the whole eps operon. The tasA gene encodes a protein that 

builds up amyloid-like structures that confer, in association with the exopolysaccharides, structure 

and stability to the matrix (Branda et al., 2006; Romero et al., 2010). TasA proteins interact with 

TapA proteins that functions as membrane anchors for the amyloid-like fibers and are required for 

fiber polymerization (Romero et al., 2011 and 2014). The third gene of the operon, sipW, encodes a 

signal peptidase that is required for processing TasA and TapA proteins and for their proper secretion 

(Stöver & Driks, 1999a, b). Another protein component of the biofilm matrix is the BslA protein. This 

protein is a hydrophobin that covers the surface of a biofilm and prevents wetting of the matrix 

(Kobayashi & Iwano, 2012; Hobley et al., 2013). Loss of the BslA protein reduces the wrinkled 

appearance of B. subtilis colonies on biofilm-inducing agar plates. Most likely this effect is due to a 

synergistic effect with the polysaccharide components of the matrix. At least the localization of BslA 
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to the surface of the biofilm depends on the exopolysaccharides (Ostrowski et al., 2011; Kobayashi & 

Iwano, 2012). 

2.2. Regulation of cell differentiation and biofilm formation in B. subtilis 

The Spo0A protein and the phosphorelay 

A central question of biofilm research is which external signals trigger the expression of factors 

required for the formation of complex and organized communities. An important system for sensing 

external signals in B. subtilis is the highly complex, two-component system-like “phosphorelay” 

(Burbulys et al., 1991). An initial step of the phosphorelay is the autophosphorylation of one of the 

five sensor kinases (KinA-E) on a histidine residue in response to external stimuli. Once 

autophosphorylated the sensor kinases phosphorylate the phosphocarrier protein Spo0F, which 

transfers the phosphate group to a histidine residue of a second protein called Spo0B. The function 

of Spo0B is the phosphorylation of the Spo0A protein which is the actual aspartate response 

regulator of the phosphorelay. The Spo0A protein binds to DNA and can function as a transcriptional 

activator or repressor. In principle, the stochastic phosphorylation state of the Spo0A protein 

determines if cells differentiate into a spore or become a matrix producer. High levels of 

phosphorylated Spo0A induce spore development, whereas medium levels lead to matrix production 

(Fujita & Losick, 2005; Fujita et al., 2005). In addition to the action of the kinases, several 

phosphatases directly or indirectly control the phosphorylation state of the Spo0A regulator. Several 

aspartyl phosphatases of the Rap protein family dephosphorylate the phosphocarrier protein Spo0F 

and thereby inhibit Spo0A phosphorylation or directly dephosphorylate Spo0A as shown for the 

Spo0E phosphatase (Perego & Hoch, 1991; Pottathil & Lazazzera, 2003; Ohlsen et al., 1994). Activity 

of histidine sensor kinases is controlled by several different signals such as the respiratory state of 

the cell sensed by KinA/ KinB (Kolodkin-Gal et al., 2013), the potassium concentration sensed by KinC 

(López et al., 2009) and sensing of the plant polysaccharides availability by interplay of KinC and KinD 

(Beauregard et al., 2013).  

The KinD kinase seems to play a unique role among the kinases of the Kin group. As proposed by 

Aguilar et al. (2010) the protein is a check point that couples biofilm formation and sporulation. The 

authors observed that a lack in matrix production (e.g. in an eps mutant) delays sporulation and this 

seems to be due to low levels of phosphorylated Spo0A. Interestingly, deletion of the gene for KinD 

suppressed the sporulation defect in a matrix mutant. In contrast, overexpression of the kinD gene 

delayed sporulation. This observation was explained by dual activity as a kinase and phosphatase. In 

this case the respective activity should be determined by the availability of the matrix. The idea was 

that KinD keeps Spo0A-P levels low until the matrix can be sensed that is required for sporulation. 

However, this model has never been proven and requires further studies. 
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Figure 2.2. Simplified schematic overview of the regulation of biofilm formation in B. subtilis. Expression of 

the biofilm matrix genes for extracellular polysaccharide (epsA-O), protein components (tapA-sipW-tasA, bslA) 

and poly-DL-γ-glutamic acid (pgs) production are highly regulated by different pathways. Arrows indicate 

activating effects; repressive effects (or dephosphorylation events in case of the Rap phosphatases) are shown 

with T-bars. Dashed lines show indirect effects. P = phosphoryl group (modified from Vlamakis et al., 2013). 

 

In addition to the complex activation of the Kin kinases, each of the Rap phosphatases is specifically 

inactivated by a cognate peptide (e.g. RapA by the PhrA-derived pentapeptide), that can also 

function as a quorum-sensing signal (Pottathil & Lazazzera, 2003). This highly complex regulatory 

network to control the phosphorylation state of the central regulator of cell differentiation Spo0A 

allows the integration of many different signals into the phosphorelay and underpins the importance 

of proper Spo0A phosphorylation (Bischofs et al., 2009).  

 

The SinR protein and its antagonists 

The central regulator of biofilm gene expression and of the switch between a sessile life style and 

motility is the SinR protein. Originally, the respective gene was studied due to a flagella-less and non-

motile phenotype of the mutant and lack of autolysin expression (Fein, 1979; Pooley & Karamata, 

1984; Sekiguchi et al., 1990). Later on the SinR protein was studied in more detail and termed the 

“master regulator for biofilm formation” (Kearns et al., 2005). In the same study the authors 

demonstrated that the eps operon for exopolysaccharide production is under negative control of the 

SinR protein and that, as stated before, the protein controls transition between a sessile and a motile 

Spo0A
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life style. Moreover, it was shown that mutations within the gene encoding the SinR protein can 

restore wild type like biofilm formation and cell chaining to mutants of the sinI, ylbF and ymcA genes 

that usually show a strong defect. At this time only the function of the sinI product was known. Once 

its expression is activated via the Spo0A-P regulator (compare Fig. 2.2), the SinI protein acts as an 

antagonist of the SinR protein and facilitates the switch between sessile and motile life style by 

interacting with SinR (compare Fig. 2.3). Later on the other two protein products were implicated in 

the control of the phosphorelay for Spo0A phosphorylation (Carabetta et al., 2013). 

 

Figure 2.3. A bistable switch of the 

SinR and its antagonists controls cell 

differentiation. Inhibition of SinR by 

SinI shifts the system from the low SlrR 

state to the high SlrR state and allows 

expression of biofilm genes. During this 

state motility and autolysin genes are 

repressed by the SinR-SlrR hetero-

complex. Arrows indicate activating 

effects; T-bars repressive effects 

(modified from Vlamakis et al., 2013). 

 

Further experiments also revealed the tapA-sipW-tasA operon encoding the main protein 

components of the biofilm matrix as a target of the SinR regulator. By studying gene expression by 

microarray experiments with cells grown in LB medium until exponential growth phase the genes 

spoVG, rapG, yvfV, yvfW, yvgN and ywbD were identified as further targets of SinR. Consequently 

also SinR binding motifs upstream of the genes were described (Chu et al., 2006). In 2013, 

Winkelman et al. showed that the RemA protein is required as an activator for the expression of the 

eps operon and tapA operon but is excluded (in case of the eps operon) from the DNA by the SinR 

regulator due to overlapping binding motifs. Therefore, the SinR protein functions as a repressor and 

anti-activator of biofilm matrix gene expression. Besides the SinR antagonist SinI, several other 

proteins that counteract the SinR regulator have been described. A well-studied example is the SlrR 

protein. The respective gene itself is under negative control of SinR (Chu et al., 2008). Thus, 

inactivation of SinR by interaction with the SinI protein is required to induce higher SlrR protein 

levels. However, when SlrR is more abundant it also interacts with the SinR regulator and inhibits its 

DNA binding ability to the operator regions upstream of e. g. biofilm matrix genes (Chai et al., 

2010b). The structural and thermodynamic details of the interaction of SinR with its antagonist were 

studied by Lewis et al. (1998), Colledge et al. (2011) and Newman et al. (2013). The authors showed 

that the SinR protein forms a tetramer and this tetramer is required for DNA binding. Once SinI is 
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bound to SinR the protein is present as a heterodimer and cannot bind its operator sequences on the 

DNA. SlrR seems to interact with SinR via the same domain as SinI (SinR75-111) and both proteins most 

likely form a hetero-dimer (Newman et al., 2013). Interestingly, the SinR-SlrR complex also harbors 

DNA binding ability but now the SlrR part binds the DNA and the complex shows affinity to operator 

sequences of motility and autolysin genes. Hence, SinR functions as a co-repressor for SlrR in this 

case (Chai et al., 2010b). This way the interaction between SinR and SlrR controls the switch between 

motile and sessile life styles. To put it simple, high levels of SlrR protein facilitate biofilm gene 

expression and repress motility and autolysin genes, whereas low levels lead to motility and inhibit 

biofilm formation (Vlamakis et al., 2013; Chai et al., 2010b; compare Fig. 2.3). In this context it is 

important to note that certain cell differentiation processes like biofilm formation and motility are 

mutually exclusive states (only one process at once) and that the described decision-making happens 

on single cell level. Within a community under laboratory conditions or a covered surface in the 

environment only a subgroup of cells express matrix genes, not all cells are motile, competent, or 

exoprotease producers (López & Kolter, 2010). 

A striking characteristic of the SlrR protein is its intrinsic instability. It contains a LexA-like 

autocleavage motif that makes it intrinsically instable. Furthermore, the ClpCP protease was 

implicated in degradation of the SlrR protein (Chai et al., 2010a). An alternative explanation for SlrR 

instability is the formation of SlrR aggregates that lead to degradation (Newman & Lewis, 2013). In 

general, instability of SlrR explains how cells can switch back from a sessile to a motile life style.  

As mentioned before, only a subgroup of cells of a community expresses matrix genes. This was 

explained by the observation that only medium levels of phosphorylated Spo0A lead to the 

expression of sufficient amounts of SinI protein that in turn inhibits enough SinR protein to allow 

expression of the second antagonist SlrR. This distinct situation seems to be present only in a subset 

of cells (Chai et al., 2008). The switch between sessile and motile state regulated by SinR and its 

antagonist SlrR and SinI was studied intensively using a so-called mother machine (Wang et al., 2010) 

that allows visualizing the growth and division of single cells under constant conditions over time. 

Due to the constant conditions, influences on cell differentiation by external signals could be 

excluded. Interestingly, the motile state showed no memory, whereas the sessile state was time 

limited (Norman et al., 2013). 

Another protein that was characterized as an antagonist of SinR is the SlrA protein. It is a paralog of 

the SinI protein and can also bind to the SinR repressor in order to inhibit it. Expression of the slrA 

gene is repressed by the YwcC protein. Under laboratory conditions this repression is relatively tight 

so that SlrA does not have a major impact on complex colony structure and pellicle formation 

(Kobayashi, 2008; Chai et al., 2009). In addition, several other proteins were implicated in the 

regulation of biofilm formation and the switch between motility and biofilm formation via SinR 

(compare e. g. Vlamakis et al., 2013). 
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Additionally regulatory pathways and mechanism 

Another pathway for the control of biofilm matrix component synthesis is a two-component system 

consisting of the histidine sensor kinase DegS and the aspartate response regulator DegU (Murray et 

al., 2009). DegS-DegU controls the expression of poly-γ-DL-glutamic acid that is required for the 

formation of submerged biofilms (Stanley & Lazazzera, 2005) and the hydrophobin BslA (Kobayashi & 

Iwano, 2012; Hobley et al., 2013). Interestingly, the DegQ protein is involved in the phosphate 

transfer from the sensor kinase to the response regulator. In the laboratory wild type 168 the 

respective gene carriers a promoter down mutation explaining the deficiency of this strain to express 

the machinery for poly-γ-DL-glutamic acid synthesis (Stanley & Lazazzera, 2005; McLoon et al., 2011). 

Moreover, the DegS-DegU system is involved in controlling several other processes like swimming 

and swarming motility, exoprotease production and even sporulation (Cairns et al., 2014a). 

The AbrB protein is beside the SinR protein the second prominent repressor of biofilm matrix and 

transition phase genes. Deletion of the abrB gene affects the expression of 39 genes, including 

several biofilm matrix genes like the eps operon. The sole number of affected genes demonstrates 

the global relevance of the regulator (Hamon et al., 2004). In order to activate the expression of 

genes repressed by AbrB, the Spo0A regulator represses the expression of the abrB gene itself 

(Strauch et al., 1990; Fujita et al., 2005). 

2.3. Regulation of cell differentiation by the second messenger c-di-GMP 

Second messengers like the intensively studied cyclic adenosine monophosphate (cAMP) are a 

distinct form of signaling molecules that are involved in a variety of cellular processes. They can be 

found in eukaryotes as well as in prokaryotic organisms. A well-known example from the eukaryotic 

kingdom is cell-cell communication via cAMP in the social amoeba Dictyostelium discoideum. Upon 

starvation the cells secrete cAMP which in turn is sensed by other cell to coordinate the formation of 

multicellular communities (Konijn et al., 1967; Loomis, 2014). In prokaryotes, cAMP is, for instance, 

involved in the regulation of carbon catabolite repression (Görke & Stülke, 2008). In this case the 

absence of a preferred carbon source induces the production of cAMP which binds to the cAMP 

receptor protein. Upon cAMP-binding, this protein activates the expression of genes for the 

utilization of alternative, less preferred carbon sources.  

Another second messenger that was studied intensively during the last decades is cyclic dimeric 

guanosine monophosphate (c-di-GMP). This molecule was identified for the first time in 1987 by Ross 

et al. as a factor involved in regulation of cellulose synthesis in the Gram-negative acetic acid 

bacterium Acetobacter xylinum. Since its discovery in bacterial cells, c-di-GMP was implicated mainly 

in the regulation of motility and biofilm formation, but also of cell cycle and virulence (Sondermann 

et al., 2012). The cellular homeostasis of c-di-GMP is regulated or maintained by interplay of c-di-

GMP synthesizing and degrading enzymes, called diguanylate cyclases (DGC) and phosphodiesterases 
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(PDE), respectively. Synthesizing enzymes are usually characterized by a GGDEF domain and 

degrading enzymes contain EAL or HD-GYP domains (Fig. 2.4), but there are also cases in which one 

protein contains more than one of these domains. Several DGCs and PDEs contain sensing domains in 

addition to their enzymatically active domain. This way sensing of external signals and transfer of the 

signal by affecting c-di-GMP homeostasis by production (or degradation) of the second messenger 

are directly coupled. The actual signal that is sensed by the cells, or more specific by the sensory 

enzymes, can be of different origin. For example, Klebsiella pneunomiae senses blue light via a 

sensory domain of the phosphodiesterase BlrP1. Upon photon absorption the EAL phosphodiesterase 

domain is activated via a conformational change of the protein (Barends et al., 2009; Winkler et al., 

2014). In addition, gas sensing c-di-GMP homeostasis proteins were described. Examples are the 

DosC and DosP cyclase/phosphodiesterase couple from E. coli which can sense oxygen availability 

(Tuckerman et al., 2009). 

 

 

Figure 2.4. Control of c-di-GMP homeostasis. The second messenger c-di-GMP is synthesized by diguanylate 

cyclases (DGC) that contain a characteristic GGDEF domain, whereas phosphodiesterases (PDE) degrade c-di-

GMP. These enzymes are characterized by EAL or HD-GYP domains. C-di-GMP binding proteins frequently 

contain a PilZ domain or non-functional EAL or HD-GYP domains (modified from Boyd & O’Toole, 2012)  

 

In Pseudomonas aeruginosa the exopolysaccharide PsI activates the DGCs SadC and SiaD. This 

represents a positive feedback loop that enhances exopolysaccharide production because c-di-GMP 

activates exopolysaccharide production. However, the sensing mechanism is not understood so far 

(Irie et al., 2012). 

A common way how c-di-GMP regulates cellular processes is on post-translational level by binding to 

receptor proteins. This binding influences e. g. protein-protein interaction abilities or the enzymatic 

activity of the enzyme itself. Receptor proteins usually harbor a so called PilZ motif but also 

degenerated GGDEF domains can serve as a c-di-GMP receptor motif (see Fig. 2.4; Sondermann et 

al., 2012). A well-studied example for a PilZ domain containing receptor protein and post-

translational regulation by c-di-GMP is the YcgR protein from E. coli. This protein can interact with 
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the flagella motor upon binding of c-di-GMP and thereby influences swimming motility (Paul et al., 

2010, Boehm et al., 2010).  

Besides post-translational control via c-di-GMP, there are also several examples for control on 

transcriptional or translational level. For instance, c-di-GMP can bind to the FleQ regulator protein 

from P. aeruginosa to impair its DNA binding. Thereby c-di-GMP activates flagella gene expression 

and inhibits extracellular polysaccharide expression (Hickman & Harwood, 2008; Sondermann et al., 

2012). Moreover, c-di-GMP can bind to regulatory element on the RNA (riboswitches) and thereby 

controls gene expression (Sudarsan et al., 2008).  

Due to its discovery in Gram-negative bacteria research initially focused on the function of c-di-GMP 

in members of this bacterial phylum, but c-di-GMP is also present in Gram-positive bacteria and 

recently several publications shed light on the related signaling processes. Recent studies on the role 

of c-di-GMP in the human pathogen Listeria monocytogenes (Chen et al., 2014) and the 

actinobacterium Streptomyces venezuelae (Tschowri et al., 2014) are of special interest to get further 

inside into c-di-GMP signaling in Gram-positives. Chen et al. (2014) proposed that in 

L. monocytogenes elevated amounts of c-di-GMP induce the production of a novel exopolysaccharide 

that does not account greatly to biofilm formation but inhibits motility probably due to clumping of 

the cells. On the molecular level, increased exopolysaccharide production was explained by 

activating binding of c-di-GMP to a receptor protein involved in exopolysaccharide production. In the 

actinobacterium S. venezuelae that naturally exists in two different forms, vegetative hyphae and 

aerial sporulation hyphae, c-di-GMP controls differentiation between the two cell forms. As shown 

by Tschowri et al. (2014) this regulation is controlled via the novel c-di-GMP binding transcription 

factor BldD. On the phenotypical level, overexpression of PDE induced formation of sporulation 

hyphae, whereas overexpression of DGC impaired sporulation. This could be explained by c-di-GMP 

promoted dimerization of BldD via its C-terminal end. Only as a dimer the BldD protein shows a DNA-

binding ability and inhibits the expression of sporulation genes. Interestingly, a tetramer of c-di-GMP 

is required to stabilize the BldD protein dimer. In comparison, three molecules of the closely related 

signaling factor c-di-AMP are required to stabilize formation of a DarA (c-di-AMP binding protein) 

trimere in B. subtilis (Sureka et al., 2014, Gundlach et al., 2014). 

In B. subtilis the function of c-di-GMP is still only barely understood. In 2012, Chen et al. made a first 

attempt to elucidate its role for biofilm formation and motility in the less domesticated wild type 

strain NCIB3610. Although c-di-GMP regulates the switch between sessile and motile life style in 

Gram-negatives, the authors could not show any effect for the simultaneous deletion of several DGCs 

or PDEs on biofilm formation, respectively. However, they observed that deletion of the 

phosphodiesterase encoding gene yuxH decreases swarming motility compared to the wild type. In 

addition, they identified the PilZ domain containing protein YpfA as a potential c-di-GMP binding 

protein that might sense elevated c-di-GMP amounts, e.g. in a yuxH deletion mutant, and thereby 
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wild type ∆ymdB

Biofilm:
PtapA-yfp (yellow)

Motility:
Phag-cfp (blue)

inhibits motility similar to the YcgR protein from E. coli (Paul et al., 2010, Boehm et al., 2010). 

Recently these observations and enzymatic activities of the protein involved in B. subtilis c-di-GMP 

homeostasis were further analyzed by Gao et al. (2013). Initially the authors were not able to detect 

c-di-GMP in the NCIB3610 wild type but deletion of the gene for the phosphodiesterase YuxH (new 

name PdeH) or overexpression of the potential DGCs YdaK, YtrP (DgcP), YhcK (DgcK), and YkoW 

(DgcW) in B. subtilis enabled the authors to detect c-di-GMP in case of the last three enzymes. In 

contrast, overexpression of YdaK did not lead to detectable c-di-GMP amounts but in vitro data and 

the presence of a degenerated GGDEF supports a function as a c-di-GMP receptor protein (Gao et al., 

2013). Also, in vitro studies with the three purified DGCs and the PDE confirmed the proposed 

enzymatic functions. Additionally, c-di-GMP binding assays with putative receptor protein YpfA 

(DgrA) and motility assays further supported its role as a c-di-GMP dependent regulator of motility in 

B. subtilis.   

2.4. The YmdB protein 

Initially, the protein aroused interest because the respective gene is located downstream and in the 

same operon with the gene encoding the major endoribonuclease RNase Y of B. subtilis (Lehnik-

Habrink et al., 2011a, b; Shahbabian et al., 2009). Strikingly, the ymdB deletion mutant showed a 

strong overexpression of a certain protein in an SDS-PAGE analysis of cell extracts. This 

overexpressed protein could be identified as Hag, the flagellin protein (Diethmaier et al., 2011). In 

addition, deleting the ymdB gene resulted in a strong biofilm defect. Colonies formed on biofilm-

inducing MSgg agar plates appeared smooth and shiny compared to the rough colonies of the wild 

type strain (see Fig. 2.5).  

 

Figure 2.5 Phenotype of the ∆ymdB mutant 

strain. Loss of the YmdB phosphodiesterase 

leads to a drastically reduces colony structure on 

biofilm inducing MSgg agar plates. Single cell 

fluorescent microscopy revealed that the 

deletion of the ymdB gene inhibits bistable gene 

expression of motility (blue cells) and biofilm 

genes (yellow cells). In contrast to the wild type 

strain, all cells of the ymdB mutant express 

motility genes (Diethmaier et al., 2011, 2014). 

These initial observations could also be confirmed on transcriptional level. As revealed by qRT-PCR, 

expression of sigD controlled motility genes, including the hag gene, was increased in the ymdB 
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deletion background, whereas the expression of biofilm matrix genes was decreased (Diethmaier et 

al., 2011). Moreover, these observations were also verified by microarray analysis (Diethmaier et al., 

2014). Global transcriptome and qRT-PCR analyses are a well-suited way to obtain general changes in 

gene expression for a large amount of cultivated cells, but they struggle to answer what is going on 

at single cell level. Therefore, Diethmaier et al. (2011) constructed biofilm matrix gene (PtapA-yfp) and 

motility gene (Phag-cfp) reporter fusion to visualize expression of these genes as an example for their 

regulons at single cell level. Strikingly, in the ymdB deletion mutant all cells expressed motility genes 

and no cell chains but single and relatively short cells were visible (Fig. 2.5).In contrast, the isogenic 

wild type strain (168 background) showed several different cell types. Most obviously, elongated 

cells that arranged in chains and expressed biofilm matrix genes were visible. Moreover, shorter 

single cells expressing motility genes could be observed. A third cell type was characterized by no 

expression of any of the two reporter fusion and relatively short cells. These observations explained 

the transcriptome data on single cell level and suggest that the YmdB protein is involved in the 

regulation of switching between biofilm and motility genes expression. This expression is bistable, 

meaning that a single cell can only expression one gene set at the same time (Vlamakis et al., 2013; 

Dubnau & Losick, 2006). 

Expression of biofilm matrix and motility genes is mainly controlled by the master regulator of 

biofilm formation SinR and the interaction with its antagonists, e.g. the proteins SinI and SlrR 

(compare 2.3.). Since transcription analyses revealed that the slrR is strongly repressed in the ymdB 

deletion mutant, Diethmaier et al. (2011) hypothesized that this might be the reason for the 

observed phenotypes and that overexpression of slrR could restore wild type phenotypes. Indeed, 

slrR overexpression restored complex colony formation to the ymdB mutant. In this context, a similar 

effect could also be observed for the deletion of the gene for the SinR protein in the ymdB deletion 

background, but in general it remained unclear how the YmdB protein influences the decision making 

between biofilm and motility gene expression. Novel insights were expected from studying 

suppressor mutants that appeared spontaneously and repaired the biofilm defect on the ymdB 

deletion mutant. Kruse (2013) was able to isolate several suppressor mutants and identified the 

origin for repaired colony structure within the sinR gene. Detailed analysis of the suppressor mutants 

showed that different point mutations within the sinR gene, but also deletion of the whole sinR gene 

and its genetic surrounding can restore biofilm matrix gene expression. The identified sinR mutations 

either lead to decreased SinR protein amounts or most likely affected the DNA binding or protein-

protein interaction properties of the SinR protein. Also, suppressor mutants with less obvious 

mutations were identified that required further research (e. g. SinR: Trp104Leu and a SinR: Pro42Pro 

silent mutation). 

In an attempt to identify the molecular function of the YmdB protein Diethmaier et al. (2014) 

characterized the protein structurally and enzymatically. The YmdB protein shares 44% sequence 
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identity with the 2’, 3’-cyclic AMP phosphodiesterase DR1281 from Deinococcus radiodurans that is a 

member of the calcineurin-like metallophosphoesterase family (Shin et al., 2008). Therefore it 

seemed likely that YmdB also acts as a phosphodiesterase. In vitro experiments demonstrated that 

YmdB cuts the test substrate bis-p-nitrophenyl phosphate but showed no phosphatase activity as 

also shown for some other members of the calcineurin-like protein group.  

To further understand the function of the YmdB protein the crystal structure was solved. As 

predicted, the obtained structure resembled the fold of a calcineurin-like metallophosphoesterase 

(phosphodiesterase) and consequently contains a dimetal cluster in its active site (probably Fe2+ and 

Fe3+). Size exclusion chromatography and the crystal structure itself further suggest that YmdB 

naturally occurs as a tetramer built up by two YmdB dimers. The crystal structure suggested that an 

oxygen atom of the carboxyl-group of the glutamate (E) residue 39 is required for the stabilization of 

the metal ions in the active center. To test this assumption the glutamate residue was exchanged 

against the isosteric glutamine (Q) residue. As hypothesized, the E39Q within the YmdB protein 

drastically reduced phosphodiesterase activity in vitro and also inhibited, once introduced into wild 

type B. subtilis cell, complex colony and pellicle formation. This suggested that the enzymatically 

active YmdB protein is essential for biofilm formation (Diethmaier et al., 2014). In addition to 

processing of bis-p-nitrophenyl phosphate, YmdB can also process 2’, 3’-cyclic AMP (as shown for 

DR1281 from D. radiodurans) and 3’, 5’-cyclic AMP but has no activity against c-di-GMP. However, 

the enzymatic constants of these reaction compared to values from the literature suggest that cyclic 

nucleotides are not the main target of the YmdB phosphodiesterase. 

2.5. Tyrosine phosphorylation  

A major task for living beings is to adapt to changing conditions and the stresses in their 

environment. This can be managed on the level of gene expression but also on post-translational 

level which is in many cases the fastest way. One prominent example for a post-translational 

modification is protein phosphorylation which can be found in all domains of life and often controls 

the enzyme activity or DNA binding ability of a protein (Pawson & Scott, 2005; Grangeasse et al., 

2007). A distinct kind of protein phosphorylation which is especially well-studied in eukaryotes is 

tyrosine phosphorylation. However, it can also be found in archaea and bacteria (Pawson & Scott, 

2005; Chao et al., 2014; Kennelly, 2014). Examples from eukaryotes are receptor tyrosine kinases 

which belong to the family of cell surface receptor protein and sense signals via their external ligand 

binding site. In response to the signal they transfer phosphate to the hydroxyl group of tyrosines of 

target proteins. This way receptor tyrosine kinases are involved in the regulation of many important 

processes like cell cycle, cell proliferation and cell differentiation (Schlessinger, 2000). Moreover, a 

deviant form of tyrosine kinases activity is characteristic for several human oncogenes, including the 
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chimeric BCR-ABL gene product that is involved a particular kind of chronic leukemia (Pawson & 

Scott, 2005).  

 

Bacterial tyrosine kinases in B. subtilis 

Bacterial tyrosine kinases make up an own protein class that can only be found in prokaryotes and 

lacks the typical Hanks-type motif of their eukaryotic counterparts (Chao et al, 2014; Cousin et al., 

2013). The structure of BY kinases is characterized by an N-terminal transmembrane loop (flanked by 

two transmembrane α-helixes) which is thought to have a sensory role and a cytosolic C-terminal 

domain which contains the catalytic sites. These sites usually include a Walker A, Walker A’ and a 

Walker B motif which are required for nucleotide binding and a C-terminal tyrosine cluster which is 

important for (auto-) phosphorylation (Grangeasse et al., 2010; Grangeasse et al., 2012). An 

important difference regarding the organization of tyrosine kinases in Gram-negative and Gram-

positive bacteria is that the transmembrane domain and the cytosolic membrane form a single 

protein in Gram-negatives, whereas in Gram-positive bacteria the two domains are present as 

separate proteins (Grangeasse et al., 2010). Although separate proteins, there are several examples 

from Firmicutes that the transmembrane domain affects kinase activity suggestion a modulator 

function (Mijakovic et al., 2003; Morona et al., 2003; Soulat et al., 2006; Elsholz et al., 2014). The 

genome of B. subtilis contains two genes encoding a BY kinase, namely ptkA and epsB. The PtkA and 

EpsB proteins also contain the characteristic Walker A, A’, B motifs and a C-terminal tyrosine cluster, 

respectively. Moreover, PtkA contains three tyrosine residues (Tyr-225, 227, 228) and EpsB contains 

two tyrosine residues (Tyr-225, 227) at the C-terminal end. In general, amino acid sequence 

comparisons show that EpsB is slightly truncated at the C-terminal end compared to PtkA (see 

Fig. 2.6). Initial studies on the function of the protein products, revealed that PtkA 

autophosphorylates on a tyrosine residue in vitro but failed to show this for EpsB. Only when purified 

from E. coli, the EpsB protein could be detected using anti-P-Tyr antibodies. The authors suggested 

that the lack in ability to autophoshorylate in vitro might be due to previous autophosphorylation or 

phosphorylation by E. coli tyrosine kinase during the purification process. This would block in vitro 

phosphorylation with radioactive ATP later on (Mijakovic et al., 2003). However, EpsB was not 

studied afterwards for a decade (Gerwig et al., 2014; Elsholz et al., 2014).  

Since the PtkA tyrosine kinase autophosphorylates in vitro, Mijakovic et al. (2003) wondered which 

residues were important for autophosphorylation. Using mutational analyses they were able to show 

that the Asp-81 und Asp-83 residues of the Walker A’ motif are essential for autophoshorylation and 

that the tyrosine residues in the C-terminal tyrosine cluster are required for effective 

autophosphorylation. Besides the autophosphorylation ability of PtkA, they also identified the UDP-

glucose dehydrogenase Ugd and TuaD as targets of the PtkA protein. Later on, tyrosine 70 residue of 

the Ugd protein was identified as the phosphorylated amino acid (Petranovic et al., 2009). 
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Supporting the view that the transmembrane domain and the cytosolic domain of tyrosine kinases 

from Gram-positives, although separate proteins, are functionally connected, it was shown that the 

cytosolic PtkA kinase requires its cognate transmembrane protein TkmA to phosphorylate the Ugd 

protein. Interestingly the phosphatase PtpZ, also encoded in the tkmA-ptkA-ptpZ-ugd operon, 

desphophorylates the Ugd protein and thereby inactivates it (Mijakovic et al., 2003). This 

demonstrated that the tkmA-ptkA-ugd-ptpZ operon forms a functional unit. 

 

 

Figure 2.6. Structure of the tyrosine kinases PtkA and EpsB as examples for Gram-positive bacteria. Tyrosine 

kinases from Gram-positive bacteria usually consist of a transmembrane modulator protein and a cytosolic 

protein that contains the active sites. The active sights of the PtkA kinase and its homolog EpsB are highly 

conserved, but the C-terminal tyrosine cluster of EpsB is truncated (adapted from Grangeasse et al., 2007). 

 

Other phosphorylation targets of the PtkA kinase are the single-stranded DNA-binding proteins SsbA 

and SsbB (Mijakovic et al., 2006; Petranovic et al., 2007). Tyrosine phosphorylation of the two 

proteins was shown to effect DNA replication and the bacterial cell cycle. Consequently, ptkA and 

ptpZ mutants showed a severe growth defect. Strikingly, Kiley & Stanley-Wall (2010) could not 

reproduce this growth defect and no difference in nucleoid localization in a ptkA or ptpZ mutant in 

the NCIB3610 background. Thus, the authors suggest that this discrepancy might be due to different 

cultivation conditions or due to use of different genetic backgrounds. However, the role of PtkA in 

DNA replication is unclear and remains to be further studied. A novel and attractive facet of tyrosine 

phosphorylation by the PtkA kinase was proposed by Jers et al. in 2010. The authors could show that 

tyrosine phosphorylation can influence the activity of several proteins, but also demonstrated an 

effect on the cellular localization of the target proteins, including the glycolytic enzyme enolase, the 

flagellar filament assembly protein YvyG, the apartate semialdehyde dehydrogenase Asd and several 
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other protein (InfA, Ldh, OppA, YjoA, YnfE, YorK). Recently, the FatR protein was identified as an 

interaction partner of PtkAs cognate transmembrane modulator TkmA. Further experiments 

demonstrated that phosphorylation of FatR, a regulator of polyunsaturated fatty acid synthesis, on 

the Tyr-45 residue decreases its DNA-binding ability (Derouiche et al., 2013). This presents an 

example how tyrosine phosphorylation regulates metabolism. Very recently, also the 

glycosyltransferase and motility inhibitor EpsE could be identified as the first known target of the 

tyrosine kinase EpsB (Elsholz et al., 2014).  

 

Functional relevance of bacterial tyrosine kinases in extracellular/ capsular polysaccharide 

synthesis and biofilm formation 

From the current state of research it is hard to propose “the” specific function BY kinases fulfill in 

bacterial cells and also the actual mechanism of their action need to be clarified. However, studies 

for several BY kinases show that these proteins are involved in capsular and extracellular 

polysaccharide production and thereby influence virulence and biofilm formation. Fitting perfectly to 

this assumption, tyrosine kinase genes often cluster with genes required for synthesis and export of 

capsule and extracellular polysaccharides as shown for the BY kinase encoding genes wzc from E. coli, 

capB2 from Staphylococcus aureus, and cpsD from Streptococcus pneunomiae (Wugeditsch et al., 

2001; Soulat et al., 2007; Morona et al., 2000). Moreover, there are several examples that directly 

connect tyrosine phosphorylation and extracellular and capsular polysaccharide production. For the 

Etk protein that is expressed in a subset of different pathogenic E. coli strains, Ilan et al. (1999) could 

demonstrate in vitro tyrosine kinase activity and proposed that protein tyrosine kinases of 

pathogenic E. coli are important for virulence and exopolysaccharide production. An example from 

Gram-positive bacteria is the protein tyrosine kinase CpsD from S. pneumoniae. In this case, 

autophosphorylation of CpsD negatively effects capsular polysaccharide production and the cognate 

CpsC protein is required for this effect (Morona et al., 2000).  

As shown for the BY kinase Wzc from E. coli, tyrosine kinases are part of a big complex for synthesis 

and export of extracellular polysaccharides but the Wzc protein is only required for assembly of 

capsular polysaccharides but not directly involved in synthesis (Wugeditsch et al., 2001; Whitfield, 

2006). One possibility function within this complex might be that of a scaffold protein that forms a 

membrane anchor for other subunits and controls the conformation of the whole complex 

depending on the own phosphorylation state (Whitfield, 2006; Olivares-Ilana et al., 2008; Grangeasse 

et al., 2012). In Gram-positive bacteria an octameric complex of the transmembrane modulator 

protein component might built up a transmembrane channel that serves for the export of 

polysaccharides. In Gram-negatives, like E. coli, where kinase and transmembrane domain form one 

single protein a second protein is required. This protein, called Wza forms an octameric channel that 

spans the inner and outer membrane and interacts with the BY kinase Wzc (Collins et al., 2007). 
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Besides known interactions of BY kinases with putative polysaccharide channels it is striking that they 

are structurally similar to polysaccharide co-polymerases (Morona et al., 2009). This further supports 

the hypothesis that at least some BY kinase determine polysaccharide length as co-polymerases and 

thereby influence polysaccharide production (Bechet et al., 2010; Whitfield, 2006). 

A first hint that tyrosine phosphorylation could affect biofilm formation in B. subtilis presented the 

regulation of the UDP-glucose dehydrogenase Ugd in vitro (Mijakovic et al., 2003; Petranovic et al., 

2009), because UDP-glucose is considered as a precursor molecule for exopolysaccharide synthesis 

(Chai et al., 2012). In 2010, Kiley & Stanley-Wall addressed the relevance of tyrosine phosphorylation 

and especially of the proteins encoded within the tkmA-ptkA-ptpZ-ugd operon in more detail. In their 

study they demonstrated that the deletion of the ptkA gene in the undomesticated NCIB3610 affects 

biofilm formation and that the kinase PtkA is required for effective sporulation under biofilm-forming 

conditions. In agreement with previous work, mutation of the Walker A’ motif (D81A, D83A) of PtkA 

resulted in the same biofilm and sporulation defect as deletion of the whole gene. Surprisingly, 

mutation of conserved residues in the C-terminal tyrosine cluster (Y255A, Y227A and Y228A) did not 

affect colony and pellicle structure, suggesting a minor role of these residues for biofilm formation 

(compare Fig. 2.6). This observation challenges the in vivo relevance of the in vitro results obtained 

by Mijakovic et al. (2003) showing that the mutated PtkA protein does not autophosphorylate. Kiley 

& Stanley-Wall (2010) also studied the other genes of the tkmA-ptkA-ptpZ-ugd operon. They showed 

that the kinase modulator protein TkmA is also required for biofilm formation but the phenotype of a 

deletion mutant is different from a ptkA deletion mutant. The authors explain this with a potential 

interaction of TkmA with other proteins, e. g. the EpsB kinase. Moreover, they demonstrated that the 

deletion of phosphatase encoding ptpZ leads to the same phenotype as a ptkA deletion mutant. In 

this case further studies are needed to understand the underlying mechanism. In an attempt to 

identify the biofilm-related phosphorylation target of PtkA, the authors deleted the genes for the 

several tyrosine phosphorylated proteins, including the ones for the PtkA targets Ugd and TuaD, but 

failed to show a connection to biofilm formation. Therefore, the mechanism how the PtkA kinase 

affects biofilm formation and its potential phosphorylation targets remains to be identified (compare 

5.3). 

Mechanistic insights how the second known B. subtilis tyrosine kinase EpsB influences biofilm 

formation or more precise extracellular polysaccharide (EPS) production was published recently 

(Elsholz et al., 2014). The authors propose that EPS production is subject to a self-enforcing feedback 

regulation involving the EpsB kinase and its modulator protein EpsA. The EpsA protein seems to 

sense EPS via its extracellular domain and stimulates autophosphorylation of the EpsB kinase in the 

absence of EPS. This autophosphorylation inactivates the kinase activity of EpsB. If EPS is present 

EpsB does not get autophosphorylated but instead transfers the phosphate residue to the 

glycosyltransferase EpsE which is involved in the synthesis of EPS and thereby activates the protein. 
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Inducing point mutations into EpsB the authors could confirm the results of Kiley & Stanley-Wall 

(2010) for the homologous PtkA kinase that the amino acids Asp-81 and Asp83 are important for 

biofilm formation and kinase activity. Exchanging the aspartate residues against alanines lead to the 

same less structure colonies and pellicles as observed for the epsB deletion mutant. Furthermore, 

mutating the residues Tyr-225 and Tyr-227 to a phenylalanine (blocking of phosphorylation) induced 

complex colony structure, whereas mimicking a phosphorylation by exchanging the two residues by a 

glutamate reduced complex colony structure similar to the deletion mutant (compare Fig. 2.6 and 

chapters 5.3 and 5.4).  

2.6. Objectives 

Biofilm formation and the differentiation into different cell types are of great importance for the 

well-being of the model bacterium B. subtilis. Therefore, the switch between e.g. motile and sessile 

life styles is highly regulated. One main objective of this work was to study the function of the 

putative tyrosine kinase EpsB and its cognate modulator EpsA in the regulation of biofilm formation 

and extracellular polysaccharide production. Since B. subtilis contains a second homologous tyrosine 

kinase modulator couple, the proteins PtkA and TkmA, which had been implicated in the regulation 

of biofilm formation and sporulation before (Kiley & Stanley-Wall, 2010), this works also aimed to 

elucidate if the two systems have overlapping function or can replace each other. For this purpose 

the respective tyrosine kinase and modulator genes were deleted on its own and in parallel to study 

phenotypical effects of a loss of the protein. 

The second main objective was to further elucidate the molecular mechanism by which the YmdB 

phosphodiesterase influences biofilm formation and cell differentiation. To identify the initial cause 

for reduced expression of the SinR antagonist and repression target SlrR, SinR protein amounts were 

determined in the ymdB mutant in comparison to the wild type. Furthermore, spontaneous 

suppressor mutants were isolated and characterized to gain novel insights into the mechanism of 

YmdB action. Since the YmdB protein was characterized as a phosphodiesterase before, YmdB might 

also act as an RNase. To address this hypothesis, RNA binding experiments with the YmdB protein 

and RNA sequencing were performed. 

Finally, it was tested if changes in c-di-GMP concentration influence biofilm formation in B. subtilis. In 

Gram-negative bacteria, this second messenger has been implicated in switching between sessile and 

motile life styles.  
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3. Materials and methods 

 

Materials: chemicals, aids, … and oligonucleotides are listed in the appendix. 

 

3.1. Bacterial strains and plasmids 

 
Bacterial strains and plasmids are listed in the appendix. 

 

3.2. Media  

Buffers, solutions and media were prepared with deionized water and autoclaved (20 min at 121°C 

and 2 bar). Thermolabile substances were dissolved and sterilized by filtration. Solutions are related 

to water, other solvents are indicated.  

 

Bacterial growth media and optional additives 

B. subtilis was grown in C-minimal, MSgg, YT or LB medium, supplemented with specific additives as 

indicated. CSE-Glc minimal medium was supplemented with 0.5% (w/v) glucose (Glc), sodium 

succinate (S) (final concentration 8 g/l) and potassium glutamate (E) (final concentration 6 g/l). 

Further variations of carbon sources are indicated. Basic media were supplemented with 1.7% (w/v) 

agar for solidification. MSgg minimal medium was solidified with 1.5% (w/v) Bacto (BD) agar (adapted 

from Pietack, 2010).  

 

5x C salts (1 l)    KH2PO4      20 g 

K2HPO4 x 3 H2O     80 g 

(NH4)2SO4     16.5 g 

 

III` salts (1 l)    MnSO4 x 3 H2O     0.232 g 

MgSO4 x 7 H2O     12.3 g 

 

10 x MN medium   K2HPO4 x 3 H2O     136 g 

    KH2PO4      60 g 

Sodium citrate x 2 H2O    10 g 
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1x C minimal medium  5x C salts      20 ml 

(100 ml)    Tryptophan (5 mg ml-1)     1 ml 

Ammonium iron citrate (2.2 mg ml-1)  1 ml 

III` salts      1 ml 

H2Odeion      ad 100 ml 

 

1x CSE medium   5x C salts      20 ml 

(100 ml)    Tryptophan (5 mg ml-1)     1 ml 

Ammonium iron citrate (2.2 mg ml-1)  1 ml 

III` salts      1 ml 

Potassium glutamate (40%)    2 ml 

Sodium succinate (30%)    2 ml 

H2Odeion      ad 100 ml 

 

SP medium    Nutrient Broth      0.8 g 

(1 l)     MgSO4 x 7 H2O      0.25 g 

KCl       1.0 g 

H2Odeion      ad 1 l 

autoclave, after cooling addition of: 

CaCl2 (0.5 M)      1 ml 

MnCl2 (10 mM)      1 ml 

Ammonium iron citrate (2.2 mg ml-1)  2 ml 

 

MNGE medium   1x MN medium     8.77 ml 

(10 ml)     Glucose (20%)      1 ml 

Potassium glutamate (40%)    50 μl 

Ammonium iron citrate (2.2 mg ml-1)  50 μl 

Tryptophan (5 mg ml-1)     100 μl 

MgSO4 x 7 H2O (1 M)     30 μl 

+/- CAA (10%)      100 μl 

 

LB medium    Tryptone     10 g 

(1 l)     Yeast extract      5 g 

Sodium chloride     10g 

 

YT medium    compare phage transduction (chapter 3.3.5.) 
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MSgg medium    compare biofilm methods (chapter 3.3.8.) 

 

Antibiotics 

Antibiotics were prepared as 1000-fold concentrated stock solutions. Ampicillin, spectinomycin, 

lincomycin and kanamycin were dissolved in deionized water, chloramphenicol, erythromycin and 

tetracyclin in 70% ethanol. All solutions were sterile filtrated and stored at -20°C. Autoclaved 

medium was cooled down to approximately 50°C. Then the antibiotics were added to their final 

concentration.  

 

Selection concentration for E. coli 

Ampicillin   100 μg ml-1 

Kanamycin  50 μg ml-1 

Streptomycin  100 μg ml-1 

 

Selection concentration for B. subtilis 

Chloramphenicol  5 μg ml-1 

Erythromycin1   2 μg ml-1 

Kanamycin   10 μg ml-1 

Lincomycin1   25 μg ml-1 

Spectinomycin   150 μg ml-1 

Tetracycline   12.5 μg ml-1 

 

1For selection on ermC a mixture of erythromycin and lincomycin was used in their respective 

concentration, see above. 

 

3.3. Methods 

3.3.1. General methods 

An overview of general methods that are described in the literature and were used for this work is 

presented in Tab. 3.1. on the next page. 
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Table 3.1. General methods 

Method Reference  

Absorption measurement Sambrook et al., 1989 

Ethidium bromide staining of DNA Sambrook et al., 1989 

Precipitation of nucleic acids Sambrook et al., 1989 

Gel electrophoresis of DNA  Sambrook et al., 1989 

Gel electrophoresis of proteins (denaturing) Laemmli, 1970 

Ligation of DNA fragments Sambrook et al., 1989 

Determination of protein amounts Bradford, 1976 

Plasmid preparation from E. coli Sambrook et al., 1989 

Sequencing according to the chain termination method Sanger et al., 1977 

3.3.2. Cultivation of bacteria 

Unless otherwise stated, E. coli was grown in LB medium at 37°C and 200 rpm in tubes and flasks. 

B. subtilis was grown in LB medium, CSE-Glc and MNGE medium at 37°C or 28°C in tubes and 

Erlenmeyer flasks. Fresh colonies from plates or glycerol cultures were used for inoculation. 

Furthermore, overnight liquid cultures were used. Growth was measured at a wavelength of 600 nm 

(adapted from Pietack, 2010).  

 

Storage of bacteria 

E. coli was kept on LB medium agar plates up to 4 weeks at 4°C. For long-term storage glycerol 

cultures were used. B. subtilis was cultured on YT and LB medium agar plates not longer than 3 days. 

SP agar plates and tubes were used for the long-term storage of B. subtilis. For the storage of 

bacteria in glycerol, 800 μl of a fresh overnight culture was gently mixed with 350 μl of 50% glycerol. 

Stocks were frozen and stored at -70°C (adapted from Pietack, 2010). 

3.3.3. Transformation of E. coli 

Preparation of competent E. coli DH5α and XL1 blue cells (Inoue et al., 1990) 

At first, 250 ml SOB medium within a 1 l flask was inoculated with a colony of E. coli DH5α or XL1 blue 

and incubated at room temperature and 200 rpm for at least 36 hours until an OD600 of about 0.6 was 

reached. Then the cells were incubated on ice for 10 minutes and centrifuged for 10 minutes at 

2,500 g and 4°C. The pellet was resuspended in 80 ml transformation buffer (TB). Again the cell 
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suspension was centrifuged as described before and resuspended in 20 ml TB. While pivoting the cell 

suspension, DMSO was added to a final concentration of 7% and the suspension was incubation on 

ice for further 10 minutes. Subsequently, the cells were frozen in liquid nitrogen as aliquots of 200 µl. 

The long-term storage of the competent cells was performed at -70°C (adapted from Pietack, 2010). 

 

SOB medium  20 g tryptone 

(1 l)    5 g yeast extract 

0.584 g NaCl 

0.188 g KCl 

2.032 g MgCl2 

2.064 g MgSO4 

 

TB (1 l)    3.04 g PIPES 

2.2 g CaCl2 x H2O 

18.64 g KCl 

10.84 g MnCl2 x H2O 

 

Preparation of competent E. coli BL21 cells using the CaCl2 method (Lederberg & Cohen, 1974) 

To prepare competent E. coli cells, 4 ml LB medium were inoculated with a single colony or with a 

cryoculture of E. coli BL21 and the culture was incubated with agitation over night at 37°C. In the 

morning, 100 ml LB medium (1 l flask) was inoculated to an OD600 of 0.05–0.1 and the culture was 

grown at 37°C until the culture had reached an optical density of about 0.3. Then the cells were 

transferred into two 15 ml falcon tubes and the cells were harvested by centrifugation for 6 min at 

5,000 rpm and 4°C. Afterwards, the supernatant was discarded and the cells were resuspended in 

5 ml of ice-cold CaCl2 solution. Subsequently, the cells were incubated for 30 min on ice and collected 

again by centrifugation as described before. Next, the cell pellet was resuspended in 1 ml of ice-cold 

CaCl2 (50 mM) solution. Now the cells were competent and ready for transformation (adapted from 

Rothe, 2012). 

 

Transformation of competent cells  

Competent cells were defrosted on ice if required, and 10–100 ng DNA was added to 200 μl cells. The 

suspension was mixed and incubated on ice for 30 minutes. The heat shock was performed at 42°C 

for 90 seconds. Afterwards, the samples were incubated for 5 minutes on ice. After addition of 600 μl 

LB medium, the samples were incubated for 60 minutes at 37°C (with shaking). 100 µl and the 

concentrated rest of the cells were plated on LB selection plates with ampicillin (adapted from 

Pietack, 2010). 
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3.3.4. Transformation of B. subtilis (Kunst & Rapoport, 1995) 

Preparation of competent cells 

Ten milliliters of MNGE medium containing 1% CAA were inoculated with an overnight culture of 

B. subtilis to an optical density of OD600 = 0.1. This culture was grown at 37°C with aeration until an 

OD600 of 1.3 was reached. Then the culture was diluted with 10 ml MNGE medium without CAA and 

incubated again for one hour. After the incubation step, the cells were directly used for 

transformation or harvested by centrifugation (5 min; 5,000 rpm; RT). In case of centrifugation, the 

supernatant was retained in a sterile falcon tube. The pellet was resuspended in 1/8 of the 

supernatant and supplemented with glycerol to a final concentration of 10%. Aliquots of 300 μl were 

frozen in liquid nitrogen and stored at -70°C (adapted from Pietack, 2010). 

 

Transformation of the competent cells 

The 300 µl cell aliquots were defrosted at 37°C and the following solution was added: 

1.7 ml   1 x MN 

43 μl   20% glucose 

34 μl   1 M MgSO4 

 

To 400 µl of this cell suspension 0.1 µg–1 µg was added and incubated for 30 minutes at 37°C (with 

shaking). Then 100 µl expression solution [500 µl yeast extract (5%), 250 μl CAA (10%), 250 μl deion. 

water and 50 μl tryptophan (5 mg/ ml)] was added and incubated for further 60 minutes at 37°C. 

Afterwards the cells were plated on selective medium (adapted from Pietack, 2010). 

3.3.5. SPP1 phage transduction (Kearns et al., 2005; Yasbin & Young, 1974) 

In contrast to the domesticated B.s. 168 strain, the less domesticated NCIB3610 strain does not take 

up foreign DNA by natural competence. Therefore, transfer of foreign DNA was mediated by SPP1 

phage transduction. 

 

Preparation of phage lysates 

To prepare a SPP1 phage lysate for transduction of NCIB3610 strains 10 ml YT medium 

(supplemented with antibiotics if needed) were inoculated with a fresh colony of the cells that carry 

the gene deletion (resistance marker) that is supposed to be transferred. The cells were cultivated at 

37°C and 200 rpm to an OD600 of 0.4–0.8. Then, a dilution series of the SPP1 phage (B. subtilis 168) 

was prepared in YT medium (10-1–10-9). For the infection with the phages 0.1 ml of the dilutions 

104-10-9 (e. g.) were mixed with 0.9 ml of the cultivated cells (use 15 ml falcon tubes) and the mixture 

was incubated for 15 min at 37°C without shaking. Next, 3 ml of pre-warmed/fluid (microwave) YT 
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soft agar was added and everything was mixed by vortexing. Then the soft agar mixture was poored 

on selective (with one or more antibiotics) YT plates and the plates were dried for 20 min followed by 

an over night incubation at 37°C. On the next day, a plate that showed clear lysis halos but no 

complete lysis of the cells (Fig. 3.1) was chosen and the phage-containing soft agar was removed by 

adding 3 ml of liquid YT medium and scratching with a pipette tip. The soft agar and the liquid 

medium were conveyed to a conic 50 ml falcon tube and vortexed to release the phages. Next, the 

mixture was centrifuged for 10 min at 5,000 rpm and the phage-containing supernatant was 

transferred to a new falcon tube.  

 

Figure 3.1. Overview of the agar plates for the preparation of phage lysate. In this example the dilution step 

10
-3

 was chosen for the preparation of phage lysate. This plate shows some remaing cells but clear lysis. In 

contrast, the lysis on the plate of the dilution step 10
-2 

is complete and only some (propably phage resistant) 

cells are growing. Also, the plate with the dilution step 10
-4 

should not be used for the preparation of phage 

lysate because the extent of cell lysis might be too small. 

 

To digest free DNA, 10 µl DNase I (25 µg/ ml) was added and the mixture was incubated for 10 min at 

RT. The digested supernatant was sterile filtrated (0.2 µm filter) and the phage lysate was stored at 

4°C. All phage work was performed under the laminar flow cabinet which was sterilized with 70% 

ethanol and by UV light irridation subsequent to the experiments (adapted from Diethmaier, 2011). 

 

Transduction of the recipient strain 

For transduction 10 ml YT medium was inoculated with a fresh colony of the NCIB3610 (derivative) 

recipient strain and incubated at 37°C and 200 rpm until the culture reached an OD600 of 0.4 to 0.8. 

For the infection 0.9 ml of the recipient strain was mixed with 0.1 ml of the phage lysate (10-1–10-2 

dilutions). Then, 9 ml liquid YT medium was added and the mixture was incubated for 30 min at 37°C 

without shaking. As a control the phages were incubated without the recipient strain and vice versa. 

After the incubation the mixture was centrifuged for 10 min at 5,000 rpm, the supernatant was 

discarded, and the cells were resuspended in the remaining volume. Next, the cell suspension was 

plated on selective YT medium plates containing sodium citrate and incubated over night at 37°C. On 

the next days, single antibiotic resistant colonies appeared on the selective plates. These cells were 
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streaked out several times on selective plates (sodium citrate containing YT medium and then on SP) 

to separate them from the phages. Once a single phage-free colony could be obtained, it was 

cultivated and chromosomal DNA was isolated to perform a check-PCR for the presence of the 

transferred DNA fragment. 

Please note: For some transductions, especially if a spectinomycin resistance marker was 

transferred, a cell plaque appeared on the selective plates on the next morning. This made it difficult 

to isolate transductants. Therefore, CSE-Glc 0.5% plates containing MgSO4 (1 M), MnSO4 (0.1 M), and 

sodium citrate (1 M) were used to suppress plaque growth (adapted from Ferrari et al., 1978). 

 

YT (1 l)   10 g tryptone 

5 g yeast extract 

5 g NaCl 

ad 1000 ml 

autoclave, after cooling addition of: 

10 ml MgSO4 (1 M)     

1 ml MnSO4 (0.1 M)  

only for selective plates:  

10 ml sodium citrate (1 M) 

   

Components that were added to the medium after sterilization were autoclaved as well. For the 

preparation of plates 1.5% (w/v) agar was added to the medium, for the preparation of soft agar 

0.5% (w/v) was used. Sodium citrate was only added to the plates for the selection of transductants 

to avoid hyperinfection of the phages. For transduction of tetracycline resistance markers no sodium 

citrate was added to the selective plates. To prepare CSE-Glc agar plates for phage transduction out 

of 500 ml medium 7.5 g Bacto agar was dissolved in 300 ml deion. water and autoclaved. After 

cooling the remaining sterile components, including MgSO4, MnSO4, sodium citrate, and enough 

water to fill up to 500 ml were added.  

3.3.6. Preparation and detection of DNA 

Preparation of plasmid DNA from E. coli  

Plasmid DNA was prepared from E. coli carrying the desired plasmid. An overnight culture (4 ml) with 

cells carrying the desired plasmid was harvested (2 min; 13,000 rpm). The plasmid DNA was isolated 

using the Mini Prep Kit (Macherey-Nagel, Düren, Germany) according to the manufacturer’s 

instructions. HPLC water was used for elution of the DNA from the columns. All steps were 

performed at room temperature (adapted from Pietack, 2010). 
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Isolation of genomic DNA of B. subtilis 

Genomic DNA of B. subtilis was isolated using the DNeasy Tissue Kit (Qiagen, Hilden, Germany). 

B. subtilis was grown overnight in LB medium and cells from 1.5 ml culture volume were harvested 

(2 min; 13,000 rpm; RT). The pellet was resuspended in 180 μl lysis buffer and incubated at 37°C for 

60 min. The further steps for the isolation of the genomic DNA were performed according to the 

manufacturer’s instructions (adapted from Pietack, 2010). 

 

Agarose gel electrophoresis 

For analytical separation of DNA fragments agarose gels containing 1 to 2% (w/v) agarose (according 

to the expected fragment size) were prepared in TAE buffer. The DNA samples were mixed with 5x 

DNA loading dye to facilitate loading and to indicate the migration of the samples in the gel. A 

voltage of about 120 V was applied until the color marker reached the last third of the gel. DNA 

fragments migrate towards the anode with a velocity that is proportional to the negative logarithm 

of their length. After electrophoresis, gels were incubated in ethidium bromide solution for 15 min 

and briefly rinsed with H2Odeion. Fluorescence of ethidium bromide bound to DNA was detected by 

excitation with UV light (λ = 254 nm) using a GelDoc Imager (BioRad, USA). For the estimation of the 

size of the DNA fragments, the GeneRulerTM DNA Ladder Mix and λ-DNA marker were used (adapted 

from Pietack, 2010).  

 

Sequencing of DNA 

Sequencing was performed based on the chain termination method (Sanger) with fluorescence 

labelled dideoxynucleotides. The sequencing reactions were conducted by SeqLab (Göttingen), LGC 

Genomics (Berlin) and the “Göttingen Genomics Laboratory” (G2L) of the Georg-August-University 

Göttingen. Whole genome sequence and assembly of the sequencing data to the NCIB3610 reference 

genome (accession number CM000488) was performed with a shotgun Illumina approach by the G2L.  

 

Digestion of DNA 

The digestion of DNA with endonucleases was performed with buffers recommended by the 

manufacturer. Reaction buffers, concentration of enzymes and DNA as well as incubation 

temperatures were chosen according to the manufacturer’s instructions. The digestion was allowed 

to proceed for up to 1 h and was, if possible, followed by heat inactivation of the restriction 

endonucleases. The DNA was purified using the PCR Purification Kit (Qiagen, Hilden, Germany) 

following the manufacturer’s instructions (adapted from Pietack, 2010). 
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Dephosphorylation of DNA 

To avoid re-circularization of a previously digested DNA vector, the 5’ phosphate groups of the 

linearized vectors were removed prior to the ligation reaction. The dephosphorylation of the 5’ prime 

end of DNA fragments was performed with the FastAP (alkaline phosphatase) (Thermo Scientific, 

Lithuania) with buffers supplied by the manufacturer. Approximately 10–20 ng/ μl DNA were mixed 

with 1 μl FastAP (1 U/ μl) and incubated at 37°C for 15 min. The FastAP was inactivated at 75°C for 

10 min (adapted from Pietack, 2010). 

 

Ligation of DNA 

DNA fragments were ligated using T4-DNA ligase (Thermo Scientific, Lithuania) with buffers supplied 

by the manufacturer. The ligation reaction contained 20–200 ng of vector DNA and an excess of the 

DNA fragment (insert to vector molar ratio of 3:1 to 5:1). The reaction was started by adding 5 U T4-

DNA ligase to a final volume of 20 μl. The ligation occurred for 2 h at RT or overnight at 16°C 

(adapted from Pietack, 2010). 

 

Polymerase chain reaction (PCR) 

The polymerase chain reaction was performed with chromosomal DNA or plasmid DNA as a 

template.  

 

Reaction mix for the Phusion polymerase (50 μl): 

1 μl  primer 1 (20 pmol) 

1 μl primer 2 (20 pmol) 

1 μl  template DNA (about 50 ng) 

10 μl  5 x Phusion HF buffer 

0.5 μl  Phusion polymerase (2 U μl-1) 

1 μl  dNTPs (12.5 μmol ml-1) 

35.5 μl deion. water 

 

Reaction mix for the Taq polymerase (50 µl): 

2 μl  primer 1 (20 pmol)  

2 μl  primer 2 (20 pmol)  

2 μl  template DNA (about 100 ng)  

5 μl  10 x Taq polymerase buffer  

1 μl  Taq polymerase (5 U μl-1)  

2 μl  dNTPs (12.5 μmol ml-1)  

36 μl  deion. water 
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The reaction mix was briefly vortexed, spun down, and then the reaction was performed in a 

Thermocycler with one of the following programs: 

 

Taq polymerase: 

    Number of cycles Reaction Temperature Duration/ cycle 

 initial denaturation 96°C 5 min 

30  { 

denaturation 96°C 1 min 

annealing 50–60°C 1 min 

elongation 72°C 0.5–4 min 

1 final elongation 72°C 10 min 

After the end of the program the reaction mix was cooled to 12°C. 

 

Phusion polymerase: 

Number of cycles Reaction Temperature Duration/ cycle 

1 initial denaturation 98°C 20 sec 

30  { 

denaturation 98°C 10 sec 

annealing 50–60°C 30 sec 

elongation 72°C 0.5–3 min 

1 final elongation 72°C 10 min 

After the end of the program the reaction mix was cooled to 12°C. 

 

Purification of PCR products 

PCR products were purified with the PCR-Purification Kit (Qiagen, Hilden, Germany). 

 

Solutions for working with DNA 

 

Agarose gel 1%    1% (w/v) agarose in 1x TAE 

For gel electrophoresis of DNA 

 

DNA color marker 5x   5 ml glycerol (100%) 

For gel electrophoresis of DNA  4.5 ml deion. water 

200 μl TAE (50x) 

0.01 g bromophenol blue 

0.01 g xylene cyanol 
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TAE buffer 50x    2 M Tris 

For gel electrophoresis of DNA  57.1 ml acetic acid (100%) 

100 ml EDTA (0.5 M, pH 8.0) 

 

TE buffer pH 8.0   10 mM Tris-HCl pH 8.0 

1 mM EDTA 

 

RNase A    20 mg/ml in deion. water, 

     inactivation of DNases by heating  

for 20 minutes at 85°C (Roche) 

 

Lysis buffer    50 mg lysozyme 

For isolation of chromosomal   50 μl Tris-HCl pH 8.0 (1 M) 

DNA from B. subtilis   10 μl EDTA pH 8.0 (0.5 M) 

2.5 ml deion. water 

 

Long flanking homology PCR (LFH-PCR) 

Deletion of a gene in B. subtilis was performed with the long flanking homology PCR (LFH-PCR) 

technique (Wach, 1996) that was adapted for use in B. subtilis. For this purpose, genes that mediate 

resistance against chloramphenicol, kanamycin, erythromycin, and spectinomycin were amplified 

from the plasmids pGEM-cat, pDG780, pDG1513 and pDG1726, respectively (Guerout-Fleury et al., 

1995). DNA fragments of about 1,000 bp flanking the target gene at its 5' and 3' ends were amplified. 

The 3' end of the upstream fragment as well as the 5' end of the downstream fragment extended 

into the target gene in a way that all expression signals of genes up- and downstream of the gene 

remained intact (usually about 150 bp). The joining of the two fragments to the resistance cassette 

was performed in a second PCR. Joining was allowed by complementary sequences of 25 bp that 

were attached to the single fragments by the respective primers. Thus, the 3` end of the upstream 

fragment was linked with the 5` end of the resistance cassette and the 3` end of the resistance with 

the 5` end of the downstream fragment. For the LFH joining reaction, about 150 ng of the up- and 

downstream fragments and 150 ng of the resistance cassette were used. The fused fragment was 

amplified by PCR using the forward primer of the upstream fragment and the reverse primer of the 

downstream fragment. B. subtilis was transformed with the PCR products and transformants were 

selected on plates. Clones were examined by check PCR for the integrity of the resistance cassette. 

The DNA sequence of the flanking regions was verified by sequencing (adapted from Tholen, 2009; 

Pietack, 2010).  
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Reaction mix for the LFH-PCR with Phusion polymerase (50 μl): 

4 μl  primer 1 (20 pmol) 

4 μl  primer 2 (20 pmol) 

3 μl  upstream flanking region (about 150 ng) 

3 μl  downstream flanking region (about 150 ng) 

3 μl  resistance cassette (about 150 ng) 

10 μl  5x Phusion HF buffer 

0.5 μl  Phusion polymerase (2 U μl-1) 

1 μl  dNTPs (12.5 μmol ml-1) 

21.5 μl deion. water 

 

Program for the LFH-PCR with Phusion polymerase: 

    Number of cycles Reaction Temperature Duration cycle 

1 initial denaturation 98°C 1 min 

10  { 

denaturation 98°C 10 sec 

annealing 50–60°C 30 sec 

elongation 72°C 1–2 min 

1 pause 12°C ∞ 

30  { 

denaturation 98°C 10 sec 

annealing 50–60°C 30 sec 

elongation 72°C 1–2 min1 

1 final elongation 72°C 5 min 

After the end of the program the reaction mix was cooled to 12°C. The primers were added during 

the pause, after the first ten cycles. 1Time for elongation increased 5 sec per cycle. 

3.3.7. Isolation of ∆ymdB suppressor mutants 

To get spontaneous mutants that suppress the ∆ymdB phenotype, the ymdB deletion strain GP1574 

was grown in 10 ml LB medium (with respective antibiotics) in a 100 ml flask shaking at 200 rpm and 

37°C. 100 µl of the culture were transferred into fresh 10 ml LB medium every morning and evening 

for about 2.5 days. The suspension was then plated on MSgg agar plates in dilutions of 10-4 to 10-6 

and incubated at 30°C over night and then at RT until biofilm forming papillae were visible. For a few 

day old cells, suppressor mutants could be identified by fluorescence microscopy using the SteREO 

Lumar.V12 stereo microscope (Carl Zeiss Microscopy). Suppressor mutants were streaked out 

repeatedly on MSgg or on SP plates containing appropriate antibiotics until all colonies had the same 

phenotype. In addition, suppressor mutants were isolated from several weeks old SP plates that 
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showed papillae growth on top of the origin strain. These papillae were separated from the origin 

strain as described before (adapted from Kruse, 2013). 

3.3.8. Biofilm methods 

Complex colony formation on agar plates  

To monitor complex colony formation a fresh single colony of B. subtilis was used to inoculate 4 ml of 

LB medium supplemented with the appropriate antibiotics and the cells were cultivated at 37°C and 

200 rpm until they reached an OD600 between 0.5 and 1.0 (mid-exponential growth phase). Then 

10 µl of the cells were dropped carefully on top of an MSgg medium agar plate. To ensure that the 

agar plates are nicely dried, the plates were placed under the laminar flow cabinet for 3 to 5 hours 

(while cells were growing). Next, the plate was incubated at 30°C for one day and at room 

temperature for another day. Complex colony structure was documented using a stereo fluorescence 

microscope (Carl Zeiss Microscopy, Göttingen) equipped with an AxioCam MRc digital camera. 

Images were taken at 9.6 fold magnification and processed with ZEN 2012 (blue edition) software 

(Carl Zeiss Microscopy). 

 

Biofilm assay in liquid medium (pellicle formation) 

Pellicle formation was analyzed in liquid MSgg medium. For this purpose, the cells were cultivated as 

described for the complex colony formation assay. When the cells reached mid-exponential growth 

phase, 8 µl of the cells were used to inoculate 8 ml of liquid MSgg medium within a well of a 6-well 

plate. Then, the plate was placed on black paperboard and incubated for 3 to 4 days at room 

temperature until the wild type strain showed a thick and structured (NCIB3610) pellicle. Finally, 

pellicle formation was documented by taking pictures with a Canon Powershot SX200 IS digital 

camera. 

 

Preparation of MSgg medium (Branda et al., 2001) 

Since it is not possible to autoclave a mixture of the different components of the MSgg medium, 

single components were sterilized first and mixed afterwards. For the preparation of plates 

1.5% (w/v) Bacto agar for minimal medium (BD, Heidelberg) was added to the medium. For the 

preparation of 500 ml medium, deion. water was added to 7.5 g agar to a total volume of 300 ml and 

the mixture was autoclaved. Next, the salts and the other components (preheated) were added to 

the warm agar to obtain a final volume of 500 ml. The single components are listed in Tab. 3.2. To 

avoid precipitation of the salts, the agar was mixed continuously prior to pouring the plates. To 

ensure reproducible colony phenotypes, exactly 25 ml medium were used for every plate. The plates 

were stored in the refrigerator at 4°C. 
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Table 3.2. Components of MSgg minimal medium 

 

Component Concentration 

(stock) 

Volume  

(ml) 

Final 

concentration 

Remarks 

potassium 

phosphate 

buffer pH 7.0 

1 M 2.5 5 mM  

MOPS pH 7.0 1 M 50 100 mM autoclaved, stored in 

the dark at 4°C  

glycerol 50% 5 0.5%  

thiamine 

(vitamine B1) 

20 mM 0.05 2 µM sterile filtrated, stored 

in the dark at -20°C  

potassium 

glutamate 

40% 6.25  0.5 %  

L-Trp/L-Phe 10 mg/ml per 

component 

2.5 50 µg/ml per 

component 

sterile filtrated, stored 

at 4°C 

MgCl2 1 M 1 2 mM  

CaCl2 700 mM 0.5 700 µM  

MnCl2 50 mM 0.5 50 µM  

FeCl3 x 6 H20 50 mM 0.5 50 µM prepared freshly in a 15 

ml tube, not sterilized  

ZnCl2 1 mM 0.5 1 µM  

H2Obidest  ad to a total volume of 500 ml  

3.3.9. Precipitation and staining of exopolysaccharides 

To analyse the formation of extracellular polysaccharides, precipitation and staining of polymers 

present in the culture supernatant was performed as described by Guttenplan et al. (2010). We used 

the sinR tasA mutant to enhance the production of extracellular polysaccharides and facilitate 

release from the cell. Initially, 10 ml YT medium (supplemented with 10 mM MgSO4 and 100 µM 

MnSO4 after autoclaving) were inoculated with a fresh colony and grown for 24 h at 37°C and 200 

rpm. Then cells were harvested by centrifugation at 8,500 rpm for 5 min. The supernatant of the cells 

(and for some strains none-pelleted slime) was transferred to a new falcon tube and put on ice. In a 

next step, 500 µl vortexed supernatant was mixed with 1.5 ml ice-cold ethanol (100%) in a 2 ml tube 

to precipitate exopolysaccharides within the supernatant. This mixture was centrifuged for 5 min at 

13,000 rpm and the supernatant was discarded. The precipitate was dried at room temperature until 

no liquid was visible anymore. Subsequently, the pellet was resuspended in 100 µl 1x SDS sample 
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buffer and 10 µl were loaded on a 12% SDS gel (extra-long stacking gel) and run for 30 min at 200 V. 

To stain exopolysaccharides with the Stains-All dye the stacking and resolving gel was fixed for 24 h 

in fixing solution and stained in 100 ml staining solution over night (light-tight box). Before the 

staining solution was applied to the gel, half of the resolving gel was cut off and the gel was rinsed in 

25% (v/v) isopropanol several times (3x 10 sec and 3x 10 min) to remove SDS and acetic acid. Please 

note that Stains-all precipitates in contact to SDS. Furthermore, it is light sensitive and the staining 

fades away when exposed to light! The stained gel was documented with a Canon CanoScan 8800F 

scanner. 

To precipitate EPS in a 24-well plate, 500 µl of the supernatant was mixed with 1.5 ml ethanol 

(100%). For a better visualization of the precipitate, glycerol was added to a final concentration of up 

to 17% (v/v). Pictures were taken with Zeiss SteREO Lumar.V12 Stereomicroscope (connected with 

AxioCam Mrc). The result can be improved by the use of 6-well or 12-well plates and higher sample 

volumes. 

 
Solutions for precipitation and staining of exopolysaccharides 

 

Fixing solution 25% (v/v) isopropanol  

3% (v/v) acetic acid 

  

Staining solution 

 

5 ml of 1 mg/ml Stains-All [AppliChem] in formamide  

50 µl β-mercaptoethanol 

95 ml Stains-All base solution  

store at 4°C in the dark 

  

Stains-All base solution 

 

16.6% (v/v) isopropanol  

5.5% (v/v) formamide 

1% 1.5 M Tris-HCl pH 8.8 

  

Washing solution 25% (v/v) isopropanol 

3.3.10. Work with proteins 

Western blot 

The blotting of proteins on PVDF membranes (BioRad, USA) was carried out with semi dry blotting 

equipment. After the electrophoresis, the gels were equilibrated in transfer buffer for 30 sec. The 

PVDF membrane was activated in methanol (100%) for a short time and subsequently incubated in 

transfer buffer for 5 minutes. Then the transfer of the protein was performed for one hour at 
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0.8 mA/ cm2. In order to block unspecific binding sites the membrane was incubated in skim milk 

blocking solution (Blotto) for 1–3 hours. In a next step, polyclonal antibodies against the protein of 

interest were applied onto the membrane. The antibodies against the FLAG-tag, the SinR and the HPr 

proteins were used as dilutions of 1:10,000 in Blotto (over night). After three washing steps of 30 

minutes each, the membrane was incubated with the second antibody (anti-rabbit IgG, coupled to an 

alkaline phosphatase) which was diluted 1:100,000 in Blotto. Then the membrane was washed twice 

for 20 min in Blotto and rinsed with deion. water. Before applying the substrate CDP* (Roche, 

Mannheim, Germany) on the membrane, the membrane was incubated in puffer III for 5 minutes to 

increase the pH value. The signal of the chemiluminescent substrate CDP* was detected with a 

ChemoCam imager (Intas, Göttingen, Germany) (adapted from Pietack, 2010). 

 

Quantitative Western blots for the determination of SinR amounts 

To determine SinR protein amounts quantitative Western blotting was applied. For this purpose, 4 ml 

LB medium was inoculated with a fresh colony and grown over day at 28 or 37°C and 200 rpm. This 

culture was used to inoculate another 4 ml LB medium culture for overnight growth at 28°C and 200 

rpm so that the cells had reached the late exponential (early stationary) growth phase in the 

morning. With this culture 15 ml LB medium supplemented with the appropriate antibiotics was 

inoculated to an OD600 of 0.1. The cells were cultivated at 37°C and 200 rpm until they reached an 

OD600 of about 2.5. Then, 2 ml aliquots of this culture were harvested by centrifugation at 13,000 rpm 

for 2 min. Cell pellets were stored at -20°C or directly disrupted with lysozyme. For this purpose, cell 

pellets were resuspended in 50 µl lysis buffer (100 µl LD/ DNase mix and 4 ml ZAP buffer) and 

incubated for 30 min at 37°C with occasional vortexing. Subsequently, samples were centrifuged for 

10 min at 13,000 rpm and 4°C to separate cell debris from the soluble cell contents. Supernatants 

were transferred to new reaction tubes and the protein content was determined as described by 

Bradford et al. (1976) (adapted from Kruse, 2013). Protein extracts (15 or 20 µg) were mixed with 5x 

PAP, heated for 15 min at 95°C and applied to 15% SDS-PAGE. Detection of the SinR proteins was 

performed with a specific antibody (gift of D. Kearns and Y. Chai). As a control the HPr protein was 

detected in aliquots from the same extraction that were applied to a separate gel for subsequent 

blotting with an HPr-specific antibody (laboratory collection). 

 

Determination of relative SinR protein amounts using ImageJ  

Quantification of the density (intensity) of Western blot signals was performed with the image 

processing program ImageJ (Schneider et al., 2012; http://imagej.nih.gov/ij/) as described at 

http://www.lukemiller.org/ImageJ_gel_analysis.pdf. In brief, a Western blot image derived from 

detection with a SinR-specific antibody was imported into ImageJ and the rectangular selection tool 

was used to measure signal intensity of each Western blot lane. For this purpose, the number “1” on 
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the keyboard was press to mark the first selection, by pressing “2” the rectangular selection field for 

every further lane was dublicated and by pressing “3” the profile plots for each lane where shown. 

Then, the straight line selection tool was used to separate the highest peak (main signal) from the 

background noise by creating a closed area. Next, the so-called wand tool was used to select the area 

of interest of every single signal by clicking into the closed area. Finally, the intensity values for every 

area appeared in a new window and were used for further calculations. The same procedure was 

performed for the Western blot signals with the HPr-specific antibodies. To normalize the resulting 

intensity values for SinR protein of a certain cultivation, they were divided by the respective values 

for HPr protein. Then, the mean of the normalized values of three biological replicates was calculated 

and the value for the reference strain was set to 1 by dividing all values by the value for the 

reference. Now changes in SinR intensity (protein amounts) of the strains of interest could be 

visualized in a bar chart. 

 

Overexpression of recombinant proteins in E. coli 

An overnight culture of E. coli BL21, carrying the relevant plasmid, was used to inoculate 500 ml of LB 

medium to an OD600 of 0.1. Cultures were grown at 37°C and 200 rpm until they had reached an 

optical density of 0.6 to 0.8. Expression of recombinant proteins was induced by the addition of 

isopropyl-β-D-thio-galactopyranoside (IPTG, final concentration: 1 mM) (Carl Roth, Karlsruhe). The 

cultures were cultivated for further three hours. To test the expression, small aliquots (sample [μl] = 

100/OD600) were taken before (t0) and every hour after induction (t1 to t3). The samples were boiled 

in SDS loading dye for 15 min and analyzed by SDS-PAGE. The main culture was harvested by 

centrifugation (10 min; 5,000 rpm; 4°C). After removing the supernatant the cells were washed in 

cold buffer W, transferred to a falcon tube and centrifuged again (5 min at 8,500 rpm and 4°C). Then 

the pellets were stored at -20°C (adapted from Pietack, 2010).  

 

Purification of proteins via a Strep-Tactin-Sepharose® column 

For the purification on proteins with a Strep-tagII sequence a Strep-Tactin-Sepharose® column (IBA, 

Göttingen) with a matrix volume of 0.5 ml was used for 500 ml culture. This matrix specifically binds 

a sequence of eight amino acids (WSHPQFEK). Furthermore, this binding can be reversed by applying 

D-desthiobiotin which displaces the Strep peptide. The specific binding of the peptide to the matrix 

allows the purification of tagged proteins out of a protein mixture. At first, the column was 

equilibrated with 10 ml buffer W. Then the whole crude extract was applied onto the column. The 

washing of the column was performed by applying 5 ml buffer W in fractions of 1.25 ml (W1 – W4). 

Subsequently, the bound protein was eluted with 1.75 ml buffer E in fractions of 250 µl (E1) and 

500 µl (E2 – E4). Then the protein content of the single fractions was determined as described by 

Bradford et al. (1976) (adapted from Pietack, 2010). 
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Cell disruption with the French press 

The precooled bomb was filled with the cell suspension and the remaining air was squeezed out 

before the bomb was locked. After closing the release valve the bomb was placed in the French press 

and set under pressure. The disruption took place with a pressure of 18,000 psi and was performed 

three times (adapted from Pietack, 2010). 

 

In vivo detection of protein-protein interactions 

The Strep-Protein Interaction Experiment (SPINE) was performed according to Herzberg et al. (2007). 

This experiment was used to identify potential interaction partners of recombinant B. subtilis 

proteins in vivo. This method combines the purification of recombinant proteins via their Strep-tagII 

and a cross-linking of adjacent proteins (~2 Å) by addition of formaldehyde. A treatment with 

formaldehyde leads to the reversible cross-linking of proteins via methylene bridges. These bridges 

can be reversed after purification by heating.  

For the experiment a preculture of B. subtilis harboring the overexpression plasmid (pGP380 and 

pGP382 derivatives) of the Strep-tagged protein of interest was cultivated for about 10 hours at 37°C 

in LB medium containing the appropriate antibiotics. This culture was used to inoculate 100 ml CSE 

medium (0.5% glucose) and was grown overnight at 28°C. One liter of the same medium was then 

inoculated with the second preculture to an OD600 of 0.1. When this culture had reached an OD600 of 

1.0 to 1.2, 500 ml were supplemented with formaldehyde (4% (w/v) in PBS pH 6.5) to a final 

concentration of 0.6%. This culture was incubated for additional 20 minutes. The cells of the 

untreated half of the culture and the formaldehyde treated cells were harvested by centrifugation 

(10 min; 5,000 rpm; 4°C) (Sorvall RC 6+, F9S 4x1000Y rotor). Then the cells were washed in 15 ml 

buffer W and harvested again. The cell pellets were stored at -20°C. For the preparation of the crude 

extract, the pellet was thawn and resuspended in 15 ml buffer W. Cell disruption was carried out 

using a French press. Subsequently, the cell extract was purified via a Strep-Tactin-Sepharose® 

column (IBA, Göttingen). Proteins that were cross-linked to the recombinant protein were coeluted 

during the purification. The resulting fractions were analyzed by denaturing gel electrophoresis. By 

heating the samples prior to electrophoresis cross-linking of the proteins was reversed. After 

electrophoresis, proteins were transferred to a PVDF membrane and potential interaction partners 

could be identified with specific antibodies (adapted from Meyer, 2009; Pietack, 2010).  

 

Separation of membrane and cytosolic proteins by ultracentrifugation 

Before the actual separation of membrane and cytosolic proteins, the B. subtilis strains of interest 

were grown in LB medium at 37°C and 200 rpm. When the cells reached an OD600 of 1.0 they were 

harvested by centrifugation and washed with ice-cold membrane buffer M. The cell pellets can be 

stored at -20°C or directly be used for the experiment. For protein separation cells were resuspended 
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in ice-cold membrane buffer M again and disrupted by using a French press (3x 18,000 psi). Next, the 

disrupted cells were centrifuged in a 50 ml falcon tube for 15 min at 8,500 rpm, the supernatant was 

transferred to a 15 ml falcon tube, and centrifuged again for 30 min at 8,500 rpm to get rid of cell 

debris. Then a sample of this supernatant was taken as crude extract (CE) sample and the remaining 

volume was transferred to a 35 ml ultracentrifugation tube. Ultracentrifugation was performed at 

100,000 x g and 4°C for 1 h. Afterwards a sample of the supernatant was taken and regarded as the 

cytosolic fraction. The rest of the supernatant was discarded and the pellet was dissolved with 500 µl 

membrane buffer M. Then the ultracentrifuge tube was refilled with ice cold membrane buffer M 

and a second ultracentrifugation step was performed at 100,000 x g and 4°C for 30 min. Again, the 

supernatant was discarded (but a sample was kept as a washing step in order to prove that all 

cytosolic proteins were removed) and the procedure was repeated. If applicable, another 

ultracentrifugation step was performed. Finally, the pellet was dissolved with 500 µl membrane 

buffer M containing 5% CHAPS. This sample was regarded as the membrane fraction.  

The protein amount in the CE, cytosolic and membrane fractions was determined as described by 

Bradford et al., (1976). For further analysis SDS-PAGE and Western blotting using an antibody for the 

detection of the target protein was performed. For the detection with α-FLAG antibodies 15 µg CE 

were loaded on the gels, for RNase Y detection 5 µg, and for CggR detection 10 µg were used. For the 

cytosolic and the membrane fraction 28 µl were used. In addition a second SDS-PAGE analysis was 

performed to analyze different protein patterns of cytosolic and membrane fractions. To verify the 

Western blot result for the protein of interest, it was important to use controls. For this, additional 

detections with α-CggR antibodies (control for the isolation of the cytosolic fraction; 1:10,000 in 

blotto) and α-RNase Y antibodies (control for the isolation of the membrane fraction; 1:50,000 in 

blotto) were performed. After blotting the membrane was cut into 3 parts and each part was 

incubated with the respective antibody (adapted from Mehne et al., 2013). 

 

Buffers for the separation of membrane and cytosolic proteins 

 

Buffer M   50 mM NaH2PO4  

50 mM Na2HPO4 pH 6.8 

if needed 5% (w/v) CHAPS was added 

 

Bacterial two-hybrid assay  

For the detection of primary protein-protein interactions the bacterial two-hybrid system (B2H) was 

used (see Fig. 3.2). Therefore, the genes for proteins of interest were fused to the C- and N-terminal 

domain of the adenylate cyclase from Bordetalla pertussis, respectively. For cloning four different 
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vectors were used. The high-copy vectors pUT18 and pUT18C allow the expression of proteins fused 

to the T18 domain of the B. pertussis adenylate cyclase, whereas the low-copy vectors p25-N and 

pKT25 allow the expression of proteins fused to the T25 domain. Furthermore, the vectors pUT18 

and p25-N are constructed for the expression of N-terminal fusions to the protein of interest and the 

vectors pUT18C and pKT25 allow the expression of C-terminal fusion proteins (Karimova et al., 1998, 

Claessen et al., 2008). DNA fragments for the genes of the proteins of interest were obtained by PCR. 

The PCR products were digested with KpnI and XbaI and cloned into the vectors of the two-hybrid 

system that had been linearized with the same enzymes. The resulting plasmids were used for 

cotransformations of E. coli BTH101 and the protein-protein interactions were then analyzed by 

placing 4 µl drops of the cells on LB plates containing ampicillin (100 µg/ml), kanamycin (50 µg/ml), X-

Gal (80 µg/ml) (5-bromo-4-chloro-3-indolyl-ß-D-galactopyranoside) and IPTG (0.5 mM) (isopropyl-ß-

D-thiogalactopyranoside), respectively. The plates were incubated for a maximum of 48 h at 30°C. 

Then, the plates were documented with a Canon CanoScan 8800F scanner. Interacting proteins were 

identified through cleavage of X-Gal and the resulting blue-colored cells. As a positive control the 

plasmids pKT25-zip and pUT18C-zip were also cotransformed. They encode subunits of a leucin 

zipper protein and show a strong interaction (adapted from Meyer, 2009; Lehnik-Habrink, 2011). 

 

 
 

Figure 3.2. Principle of the bacterial two-hybrid system. (A) The catalytic domain of the adenylate cyclase from 

B. pertussis constists out of two complementary fragments, T25 and T18, and is responsible for the synthesis of 

cAMP. (B) If the two fragments are separated the enzyme is inactive. (C) Fusion of the two fragments to 

interacting proteins X and Y allows reconstitution of the fragments and synthesis of cAMP. (D) Synthesis of 

cAMP allows transcription of reporter genes (e.g. lacZ). Interaction between hybrid proteins results in high β-

galactosidase activity (adapted from Meyer, 2009). 
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Denaturing gel electrophoresis of proteins (SDS-PAGE) 

Denaturing protein gels were prepared as described by Laemmli et al. (1970) and Garfin (2009). The 

gels consist of a stacking and a separating gel, which were poured to a thickness of 1 mm. Before 

applying the samples on the gel they were mixed with SDS sample buffer (5x) and heated for 15 min 

at 95°C. The separation of the proteins was performed at 120 to 150 V.  

 

Coomassie staining of polyacrylamide gels 

Protein gels were stained with Coomassie Brilliant Blue. For this purpose, the gels were incubated in 

coomassie staining solution (fixation of proteins in parallel) for about 10-15 minutes and the gels 

were destained until an optimal contrast between protein bands and background was reached. This 

step was usually performed over night at room temperature (adapted from Pietack, 2010). 

 

Solutions for coomassie staining of proteins 

 

Staining solution  0.5% (w/v) Coomassie brilliant blue 

    10% (v/v) acetic acid 

    45% (v/v) methanol 

 

Destaining solution  5% (v/v) acetic acid 

    20% (v/v) ethanol 

 

Silver staining of polyacrylamide gels 

The silver staining is a very sensitive method for staining polyacrylamide gels. Silver stainings are 

widely used to check the purity of protein extracts and to identify protein-protein interactions. One 

advantage is the high sensitivity with a detection limit of about 5 ng protein per band. A 

disadvantage of the silver staining is the pour reproducibility and the lack of quantification. This is 

linked to the physics of the accumulation of silver particles (Butcher & Tomkins, 1985). During the 

staining, silver ions build up complexes with the glutamate, aspartate and cysteine amino acid 

residues of the proteins and thereby get reduced to metallic silver. Therefore, the intensity of the 

silver staining depends on the amino acid sequence of the respective proteins and can vary 

considerably. The protein bands were stained according to method of Nesterenko (1994). For that 

purpose, the polyacrylamide gels were incubated on a shaker with the following reagents and in the 

stated order (adapted from Meyer, 2009). An overview of all steps is shown on the next page. 
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Step Reagent Duration 

Fixing Fixer 1 to 24 h 

Washing ethanol 50% 3 x 20 min 

Reduction Thiosulfate solution 1 min 30 sec 

Washing deion. water 3 x 20 sec 

Staining Impregnating 25 min 

Washing deion. water 2 x 20 sec 

Development Developer until suffiently stained 

Washing deion. water 20 sec 

Stoping Stop solution 5 min 

 

Solutions for working with proteins 

Blotto  

for Western blotting 

 1 x TBS 

2.5% skim milk powder 

 0.1% Tween 20 

   

Developer (100 ml) 

for silver staining 

6 g Na2CO3 

2 ml thiosulfate solution 

 50 µl formaldehyde 

 ad 100 ml H2Odeion 

   

Fixer (100 ml) 

for silver staining 

50 ml methanol (100%) 

12 ml acetic acid (100%) 

 100 µl formaldehyde (37%) 

 ad 100 ml H2Odeion 

   

4% Formaldehyde solution 

(for SPINE) 

 

 

40 g paraformaldehyde 

ad 1 l  1x PBS pH 6.5 
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Impregnator (100 ml) 

for silver staining 

0.2 g AgNO3 

37 µl formaldehyde (37%) 

 ad 100 ml H2Odeion 

   

10 x PBS 80 g NaCl 

 17.8 g Na2HPO4 x 2H2O 

 2.4 g KH2PO4 

  pH 6.5 adjusted with HCl 

 ad 1 l H2Odeion 

  
 

Buffer III 

for Western blotting 

0.1 M Tris 

0.1 M NaCl 

  pH 9.5 adjusted with HCl 

   

Buffer E 

for SPINE 

100 mM Tris-HCl pH 8 

150 mM NaCl 

 1 mM EDTA 

 2.5 mM Desthiobiotin 

   

Buffer W 

for SPINE 

100 mM Tris-HCl pH 8 

150 mM NaCl 

 1 mM EDTA 

   

Stacking gel 

for denaturing gel 

electrophoresis of proteins 

1.3 ml Acrylamide-Bisacrylamide (30%) 

1 ml Tris-HCl pH 6.8 

5.5 ml H2Odeion 

 80 µl SDS (10%) 
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 80 µl APS (10%) 

 8 µl TEMED 

   

5x SDS sample buffer  

for denaturing gel 

electrophoresis of proteins 

1.4 ml 1 M Tris-HCl pH 7  

3 ml Glycerol (100%) 

2 ml SDS (20%) 

 1.6 ml β-mercaptoethanol (100%) 

 0.01 g Bromophenol blue 

 2 ml H2Odeion 

 

Stop solution (100 ml) 

for silver staining 

1.86 g  EDTA 

ad 100 ml H2O 

   

10x TBS 60 g Tris 

 90 g NaCl 

  pH 7.6 adjusted with HCl 

 ad 1 l H2Odeion 

    

Thiosulfate solution  

(100 ml)  

for silver staining 

20 mg Na2S2O3 x 5 H2O 

ad 100ml H2O 

   

Transfer buffer 

for Western blotting on PVDF 

membranes 

15.2 g Tris 

72.1 g glycerol 

750 ml methanol (100%) 

 ad 5 l H2Odeion 
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Separating gel (12%) 

for denaturing gel 

electrophoresis of proteins 

4 ml acrylamide-bisacrylamide (30%) 

2.5 ml Tris-HCl pH 8.8 

3.3 ml H2Odeion 

 100 µl SDS (10%) 

 100 µl APS (10%) 

 4 µl TEMED 

   

Separating gel (15%) 

for denaturing gel 

electrophoresis of proteins 

5 ml acrylamide-bisacrylamide (30%) 

2.5 ml Tris-HCl pH 8.8 

2.3 ml H2Odeion 

 100 µl SDS (10%) 

 100 µl APS (10%) 

 4 µl TEMED 

 

LD/ DNase mix   100 mg lysozyme solved in 10 ml H2Odeion. 

(10 ml)    10 mg DNase I 

    the solution was stored as 500 µl aliquots at -20°C 

 

1x ZAP buffer    50 mM Tris-HCl pH 7.5  

200 mM NaCl 

 

3.3.11. Work with RNA 

In vitro transcription 

To detect certain RNAs within the elution fraction of protein purifications by dot blot, DIG labelled 

RNA probes were synthesized by in vitro transcription using Digoxygenin (DIG) labelled RNA probes. 

The probes are in vitro transcribed anti-sense RNAs with a length of about 200 bp that consist of 

labelled nucleotides which can be recognized by specific antibodies. A DNA template of the first 200 

bp of the transcript of interest was amplified by PCR using PhusionTM polymerase (Thermo Scientific). 

The fragment contained a T7 RNA polymerase promoter (underlined) and an overhang for better 

polymerase binding at the 5´end of the non-coding strand that was added by the reverse primer: 
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5 -́ ATATATCTAATACGACTCACTATAGGGAG-primer-3´ 

 

The DNA fragment was purified with the QIAquick PCR Purification Kit (Qiagen) and used as a 

template for in vitro transcription by T7 RNA polymerase. For in vitro transcription the following 

reaction was prepared: 

 

Reaction mixture for in vitro transcription (100 µl): 

DNA template with T7 promotor   15 μl 

NTP mix (25mM each)     20 μl 

10x transcription buffer    10 μl 

RNase inhibitor (40 U)    1 μl 

1 M DTT     2 μl 

T7 RNA polymerase (80 U)   4 μl 

RNase-free water    48 μl 

 

T7 transcription buffer, RNA polymerase, DIG RNA labelling mix and RNase inhibitor were purchased 

from Roche Applied Science. The reaction was incubated at 37°C for 2 h and then stopped by the 

addition of 1 μl 0.5 M EDTA (pH 8.0). RNA was precipitated by the addition of 12.5 μl 4 M LiCl and 

350 μl ice-cold ethanol (96%) and by overnight incubation at -80°C. RNA was sedimented by 

centrifugation (30 min; 13,000 rpm and 4°C), the pellet washed with 70% ice-cold ethanol and then 

dried at 60°C for 10 min or 30 min at RT to remove traces of ethanol. Then, RNA was eluted in 50 μl 

DEPC treated water containing 1 μl RNase inhibitor and stored at -80°C. To control the quality of the 

RNA probe, dilution series (in steps of 10-1) were prepared, 1 μl of each dilution step spotted onto a 

nylon membrane and luminescence was tested as described for dot blot experiments (adapted from 

Eilers, 2010). 

 

The amplification of RNA samples for electrophoretic mobility shift assays was conducted basically as 

described before but unlabeled nucleotides were used (Roche Applied Science). Furthermore, 

primers for the amplification of the DNA template for in vitro transcription contained the T7 RNA 

polymerase promoter at the 5’ end of the forward primer to produce no anti-sense RNA later on. 

 

Electrophoretic mobility shift assay (EMSA) 

To analyze RNA-protein interactions in vitro an Electrophoretic Mobility Shift Assay (EMSA) was 

applied. For this purpose a protein was incubated with the 5’ region of a certain RNA (potential 

regulatory region) and afterwards loaded onto a polyacrylamide gel to perform a gel electrophoresis 
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run. As free RNA runs faster than protein-bound RNA, the formation of a RNA-protein complex can 

be detected by a retardation of the RNA (“shift”). 

For the electrophoresis a 10% native Tris/acetate gel was prepared. To avoid contamination with 

RNases, the glass plates for the gels and all the components of the gel chamber were washed with 

70% ethanol wearing gloves. After polymerization of the gel all components of the gel chamber were 

assembled and filled with the cold 1x running buffer (25 mM Tris/acetate buffer). Before starting 

with the actual shift assay a pre-run (1 h, 90 V) was performed. For the shift assay the gels was 

loaded with the samples and electrophoresis was performed for 3 h at 100 V. The pre-run and the 

shift assay were carried out in the cold room at 4°C. After the run, the gel was stained in an ethidium 

bromide solution (freshly prepared) for 5 min and incubated in a water bath for another 5 min. The 

picture was taken with a Gel-doc (Bio-Rad-Laboratories, USA) (adapted from Schilling et al., 2006). 

 

Preparation of the samples for the shift assay:  

RNA (50 pmol)  x μl 

10x Tris-acetate buffer 2 μl 

NaCl (5 M)  1 μl 

RNase-free water ad 20 μl  

 1.) incubation at 95°C for 2 min  

 2.) incubation on ice for 5 min 

protein (10–50 pmol)  x μl 

glycerol (50%)    4 μl 

In addition, samples that contained only RNA or protein solution were prepared simultaneously. This 

way it is possible to discriminate between RNA and RNA-protein complexes and to test if the protein 

solution is free of RNA, respectively. To ensure equal volumes for all samples RNase-free water was 

added. 

Buffers and solution for the gel shift 

10% native Tris/acetate gel 

for 2 gels 

4 ml 30% polyacrylamide 

1.2 ml 250 mM Tris-acetate pH 5.5 

6.8 ml H2O 

200 µl 10% (w/v) ammonium persulfate (APS) 

10 µl TEMED 
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3 M sodium acetate pH 5.2 adjusted with acetic acid, autoclaved 

  

10x Tris/acetate electrophoresis 

buffer 

250 mM Tris-acetate 

pH 5.5 adjusted with acetic acid, autoclaved 

 

Co-elution experiments for the analysis of protein-RNA interaction  

The Strep-tag proteins were purified by affinity chromatography as described in 3.3.10. But in 

contrast to the SPINE experiment, only the samples cross-linked with formaldehyde were used. The 

isolation of RNA out of the elution fraction (E2) was performed by chloroform: isoamyl alcohol 

(24:1)/ phenol precipitation. For the isolation of RNA out of the elution fraction 2 (E2), 450 µl were 

mixed with 450 µl of a phenol/chloroform/isoamyl alcohol mixture (Roti-P/C/I; Carl Roth, Karlsruhe) 

and were strongly shaken for 1 minute. To avoid shearing of nucleic acids the samples were not 

vortexed. Then the samples were centrifuged for 15 minutes at room temperature to separate the 

phases. After the centrifugation the aqueous phase (400 µl) was removed and precipitated by 

addition of lithium chloride (4 M). Afterwards the RNA was resolved in 50 µl RNase-free water (Roth, 

Karlsruhe, Germany) for 10 minutes at 65°C and the concentrations were determined 

photometrically by using a NanoDrop® (PeqLab, Erlangen, Germany). For the analysis of the RNA 

from the elution fraction by dot blot, 20 µl of the RNA were applied to a nylon membrane and 

crosslinked by UV light for 90 sec using the GelcDoc Imager (adapted from Göpel et al., 2013; Gerwig, 

2011).  

 

Lithium chloride precipitation 

To 400 µl of the elution fraction, 40 µl 4 M lithium chloride and 1200 µl ice-cold ethanol (96%) were 

added. Then the samples were incubated over night at -20°C. Next, the samples were centrifuged for 

15 minutes at 0°C. Afterwards the liquid was removed and the pellet (visible) was washed with 

ethanol (70%) once and dried for 30 minutes at room temperature under the laminar flow cabinet 

(pellet not visible anymore). Then the RNA pellet was solved in RNase-free water as described above. 

 

DNase I digestion  

For the DNase I digestion the DNase I (RNase-free) from Roche (Thermo Scientific, Lithuania) was 

used. The reaction mix was prepared in accordance to the manufacturers’ instructions. The 

incubation time was extended to 60 min.  
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Reverse transcription quantitative real-time PCR (qRT-PCR) 

The iScript™ One-Step RT-PCR Kit with SYBR® Green (Bio-Rad, Hercules, USA) was used for the RT-PCR 

analysis. The reactions were performed with the following reaction protocol in 20 µl set ups in an 

iCycler (Bio-Rad) as specified by the manufacturer (Diethmaier et al., 2011). 

 

Reaction set up: 

2x SYBR Green RT-PCR reaction mix    10 μl 

Primer forward      1.2 μl 

Primer reverse       1.2 μl 

Nuclease-free H2O      x μl 

RNA template       x μl 

iScript reverse transcriptase     0.4 μl 

Total volume      20 μl 

Reaction Protocol:  

cDNA synthesis      10 min at 50°C 

iScript reverse Transcriptase inactivation  5 min at 95°C 

PCR cycling and detection (30 to 45 cycles)   10 sec at 95°C  

10 sec at 60°C 

Melt curve analysis (optional)    1 min at 95°C 

1 min at 55°C 

10 sec at 55°C  

            (80 cycles, increasing each by 0.5°C each cycle) 

 

Calculation of fold changes: 

Fold changes = 2-ΔΔct  

ΔΔCt = (Ct-Ctconst)RNA2 – (Ct – Ctconst.)RNA1  

Ct= Ct value of the respective gene  

Ctconst. = Mean of the Ct values of the internal control genes rpsE und rpsJ  

RNA1 = RNA of the respective reference strain (e.g. wild type)  

RNA2 = RNA of the mutant strains of interest 

 

Dot blot for RNA detection  

The nylon membrane with the cross-linked RNA (compare protein-RNA co-purification experiments) 

was incubated with 20 ml pre-hybridisation buffer at 68°C in a hybridisation oven for 1 h. Then the 

pre-hybridisation buffer was replaced with hybridisation buffer (25 μl DIG-labelled RNA probe solved 

in 15 ml hybridisation buffer) and incubated overnight at 68°C in the hybridisation oven. The next 
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day, the hybridisation buffer was transferred into a falcon tube and stored at -20°C until further 

usage. The membrane was washed twice for 15 min with 50 ml washing solution 0.1x SSC and twice 

with 50 ml washing solution 2x SSC, each at room temperature, to get rid of unbound RNA probes. 

Detection of RNA-RNA hybrids on the membrane followed directly after the hybridization step. All 

steps were performed at room temperature and with gentle shaking. The membrane was incubated 

with buffer DIG-P1 for 5 min and for 30 min with buffer DIG-P2. Then, anti-DIG antibodies (Roche 

Applied Science) coupled with alkaline phosphatase dissolved in buffer DIG-P2 (1:10,000) were added 

onto the membrane and incubated for 30 min. After this, the membrane was washed and 

equilibrated three times for 5 min with buffer III. For visualisation of RNA-RNA hybrids, the 

membrane was put between clear plastic foil and incubated with 2.5 μl CDP* (diluted in 500 ml 

buffer III) for 5 min. CDP* (Roche Applied Science) is a substrate of the alkaline phosphatase coupled 

to the anti-DIG antibody, resulting in chemo-luminescence as a coproduct of the reaction which can 

be visualized and quantified. Depending on the intensity of the chemo-luminescence, the membrane 

was exposed for 5 to 45 min in a ChemoCam imager (INTAS, Göttingen) (adapted from Eilers, 2010). 

 

Buffer and solutions for working with RNA 

 

Blocking solution 10% (w/v) blocking reagent in buffer Dig-P1  

autoclaved 

 

Killing buffer 20 mM Tris/HCl pH 7.5 

5 mM MgCl2  

autoclaved, then addition of 20 mM NaN3  

 

10x MOPS-Puffer  200 mM MOPS 

50 mM sodium acetate 

10 mM EDTA 

adjusted to pH 7.0 with NaOH 

sterile filtrated  

 

Sodium lauroyl sarcosinate 

 10% 

10% sodium lauroyl sarcosinate in H2Odeion 

autoclaved 
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5x buffer Dig-P1 1 M malic acid 

1.5 M NaCl 

adjusted to pH 7.5 with NaOH, autoclaved 

 

Buffer Dig-P2 1% blocking reagent in 1x buffer Dig-P1 

 

Buffer III 0.1 M Tris/HCl 

0.1 M NaCl 

pH 9.5, adjusted with HCl  

 

SSC (20x) 3 M NaCl 

0.3 M sodium citrate 

adjusted to pH 7.0 with HCl, autoclaved 

 

Prehybridization solution 

(500 ml) 

200 ml 100% formamide 

100 ml 20 x SSC 

8g  blocking solution 

4 ml 10% sodium lauroyl sarcosinate 

28 g SDS 

ad 500 ml with water, warm up to dissolve the 

compounds and store at -20°C 

 

Washing solution 0.1 x SSC 0.1 x SSC 

0.1% SDS 

 

Washing solution 2 x SSC 2 x SSC 

0.1% SDS 

3.3.12. Fluorescence microscopy 

The microscopy was performed as described by Diethmaier et al. (2011). An over-night culture of 4 

ml LB medium (with the appropriate antibiotics) was inoculated from a glycerol culture or a fresh 

single colony. In the morning, 10 ml LB medium in a 100 ml flask without a baffle were inoculated to 

an OD600 of 0.05. Then the cells were cultivated in the dark at 37°C and 200 rpm and harvested in the 

exponential (0.7–1.0) or late exponential (about 1.5) growth phase. To harvest the cells, 1 ml of the 

culture was centrifuged in a 1.5 ml reaction tube impermeable to light for 1 min at 13,000 rpm. 

Afterwards, the supernatant was discarded and the cells were resuspended in PBS buffer pH 7.5 (in a 
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volume that was 1/10 of the OD600 of the culture). The resuspended cells were kept on ice until 

microscopy. In the dark one drop of cell suspension (about 6 μl) was placed on a microscope slide 

covered with agarose (1% in water). This way, the cells were immobilized in order to prevent 

movement of the cells during microscopy. Fluorescence images were obtained with an Axioskop 40 

FL fluorescence microscope, equipped with an AxioCam MRm digital camera and the AxioVision Rel 

4.8.2 software was used for image processing (Carl Zeiss, Göttingen, Germany). For fluorescence 

microscopy the YFP HC filter set (BP 500/24, FT 520, LP 542/27; AHF Analysetechnik, Tübingen) and 

the Filterset 47 (BP 436/25, FT 455, BP 480/40; Carl Zeiss) were used for YFP and CFP detection, 

respectively. Images were taken at 2.0 sec exposure time (adapted from Diethmaier, 2011; Kruse, 

2013). 

3.3.13. Preparations for quantification of cyclic nucleotide monophosphates in B. subtilis (Sprangler 

et al., 2010) 

For measurement of c-di-GMP levels in B. subtilis cell extract, cultures were grown in MSgg or CSE-

Glc medium to an OD600 of 1. Two times 10 ml of these cultures were centrifuged for 20 min at 4°C 

and 2.55 × g. Pellets were resuspended in 800 μl extraction mix and 700 μg glass beads (0.1 mm) 

were added. Samples were immediately frozen in liquid nitrogen and then heated at 95°C for 10 min. 

Cells were disrupted mechanically in the Qiagen TissueLyserII for 7.5 min at 30 Hz. The suspension 

was centrifuged for 5 min at 4°C and 13,000 rpm. The supernatant was transferred into a fresh tube 

and stored on ice. The remaining pellet was dissolved in 600 μl extraction mix and incubated on ice 

for 15 min. Cell disruption and centrifugation was repeated. The remaining pellet was again mixed 

with 400 μl extraction mix and kept on ice for 15 min. After another centrifugation, all three 

supernatants were mixed and stored at -20°C over night. The next day, samples were centrifuged for 

10 min at 4°C and 13,000 rpm. Supernatants were transferred into a new reaction tube and steamed 

down to pellets using a Speed-Vac at 40°C. HPLC-MS/MS measurements to analyze c-di-GMP 

contents of the prepared samples were carried out at the mass spectrometry laboratory for low-

molecular weight bacterial and eukaryotic metabolites of the Hannover Medical School (adapted 

from Bötz & Kruse, 2013). To normalize the results, protein contents of 1 ml of the original cell 

cultures were determined. For this, 1 ml samples were taken simultaneously to the 10 ml samples. 

Cells were pelleted by centrifugation and then dissolved in 800 μl 0.1 N NaOH. Samples were boiled 

at 95°C for 15 min and then centrifuged for 5 min a 13,000 rpm. Protein amounts of the supernatants 

were determined as described by Bradford et al. (1976). The resulting values were used to estimate 

the protein content of the samples used for HPLC-MS/MS. 
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Solution for preparations of cNMP measurements 

Extraction mix  8 ml acetonitrile 

   8 ml  methanol 

   4 ml  deion. water 
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4. Results 

4.1. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation 

Protein phosphorylation is a versatile mechanism to control the activity of proteins. In B. subtilis 

protein phosphorylation on different amino acid residues controls important cell differentiation 

processes, like sporulation, competence development, motility, and biofilm formation (Macek et al., 

2007; Vlamakis et al., 2013). Recently, the tyrosine kinase PtkA and its cognate transmembrane 

modulator TkmA were implicated in controlling biofilm formation and sporulation but the role of the 

homologous tyrosine kinase EpsB and its transmembrane modulator EpsA remained unstudied (Kiley 

& Stanley-Wall, 2010). Therefore, we addressed the role of the putative tyrosine kinase EpsB and its 

modulator EpsA for biofilm formation in this work.  

4.1.1. In vivo interaction between EpsA and EpsB 

Co-purification experiments 

The EpsA and EpsB proteins are similar to the TkmA transmembrane kinase modulator and the PtkA 

protein tyrosine kinase of B. subtilis, respectively. It is well established that modulator proteins 

stimulate the activity of their cognate protein kinases by protein-protein interaction. To address 

whether this is also the case for EpsA and EpsB, we analyzed the potential interaction between these 

two proteins.  

For this pupose, the strain GP1589 carrying plasmid pGP2126 was used. In this strain, EpsA carries a 

C-terminal FLAG-tag and pGP2126 allows overexpression of EpsB fused to an N-terminal Strep-tag. 

Additionally, the gene for the anti-activator (and master regulator of biofilm formation) SinR was 

deleted to ensure a high expression level of EpsA. The isolation of protein complexes from B. subtilis 

cells was performed by using the SPINE technology (Herzberg et al., 2007; compare 3.3.10.).  

If the EpsA and EpsB proteins interacted with each other, one would expect that the FLAG-tag 

epitope bound to EpsA is detectable in the elution fractions containing Strep-EpsB. As EpsA contains 

two transmembrane domains and is likely to be a membrane protein, the possible interaction 

between EpsA and EpsB was fixed using formaldehyde as cross-linker. Strep-EpsB with its bound 

interaction partners was purified by its binding to Strep-Tactin columns. Both the cell extract and the 

elution fractions were analyzed by SDS-PAGE and subjected to Western blot analysis. As shown in 

Fig. 4.1A, EpsA-FLAG was present in the crude extract. Importantly, EpsA-FLAG co-eluted with EpsB in 

a protein preparation obtained with cross-linking. To ascertain the specificity of the binding of EpsA 

to EpsB, it was tested whether CggR, a cytoplasmic transcription factor, also co-purified with EpsB. As 

shown in Fig. 4.1B, CggR was expressed under the tested conditions. However, CggR did not co-elute 

with EpsB. Additionally, an empty vector control was used to ensure that EpsA-FLAG does not bind to 
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the Strep-Tactin columns unspecifically. In this case, EpsA-FLAG could also not be detected in the 

elution fractions. Therefore, the elution of EpsA is caused by a specific interaction with EpsB. These 

results demonstrate an interaction between the membrane protein EpsA and the putative protein 

kinase EpsB.  

 

Figure 4.1. The tyrosine kinase EpsB and its cognate modulator protein EpsA interact physically. (A) EpsA-

FLAG co-purifies with EpsB-Strep. To ensure high expression of EpsA-FLAG the gene for the anti-activator SinR 

was deleted in this strain. EpsB-Strep was purified in the absence (-) or presence (+) of the cross-linker 

formaldehyde. The different proteins were detected by Western blotting with specific antibodies. CE = crude 

extract, EF = elution fraction. (B) EpsA and EpsB interact in the bacterial two-hybrid system. The genes 

encoding EpsA and EpsB were cloned in vectors that allow the expression of EpsA and EpsB fused to the N- or 

C-terminus of the T18 or T25 domains of the B. pertussis adenylate cyclase, respectively. The E. coli 

transformants harboring both vectors were incubated on X-Gal containing plates. Degradation of X-Gal and the 

resulting blue color of the cells indicate interaction due to the presence of a functional adenylate cyclase.  

Bacterial two-hybrid studies 

Since the results from the co-purification experiments did not allow concluding whether the 

interaction between EpsA and EpsB is direct or indirect. To address this question, the interaction was 

studied using the bacterial two-hybrid (B2H) system. The B2H system is based on the interaction-

mediated reconstruction of adenylate cyclase (CyaA) activity from Bordetella pertussis in E. coli 

(Karimova et al., 1998). Proteins suspected to interact physically were fused with separated domains 

of the adenylate cyclase as described in chapter 3.3.10. As shown in Fig. 4.1B, EpsA and EpsB clearly 

interacted with each other in this heterologous E. coli system, whereas neither of the two proteins 

exhibited an interaction with the control protein (leucine zipper of yeast Gcn4p). Thus, EpsA and 

EpsB are capable of interacting specifically and directly with each other. 

A B pUT18/18c derivatives

p
K

T2
5

/p
2

5
-N

 d
e

ri
va

ti
ve

s

C-EpsA    N-EpsA    C-EpsB     N-EpsB      C-Zip  

N-EpsA

C-EpsB

N-EpsB

C-EpsA

C-Zip

EF 
(+)

CE 
(-)

EF 
(-)

α-CggR

Overexpression of EpsB-Strep

α-FLAG

α-FLAG

Empty plasmid control



4. Results 55 
 
4.1.2. Cellular localization of the tyrosine kinase EpsB and its modulator protein EpsA 

Since the transmembrane domain (modulator) and the enzymatically active domain of tyrosine 

kinases consist of two separate proteins in Gram-positive bacteria, an interaction between these two 

proteins is important in order to phosphorylate their target proteins (Mijakovic et al., 2003; 

Grangeasse et al., 2012). The interaction between the transmembrane protein EpsA and EpsB was 

shown in the chapter before. The question addressed here is whether the predicted transmembrane 

localization of the so far unstudied tyrosine kinase modulator protein EpsA can be demonstrated in 

vivo. Furthermore, a possible co-localization of the EpsB kinase with its modulator EpsA at the 

membrane was analyzed. Interestingly, it was proposed that localization of EpsB might be dynamic so 

that EpsB co-localizes with potential cytosolic target protein. Thus, identification of EpsB within the 

cytosol could further support this assumption (Jers et al., 2010). 

To confirm the predicted localization of the modulator EpsA in the membrane, the strain GP1589 

(compare 4.1.1.) containing an epsA-FLAG fusion within the chromosome was used. The cellular 

localization of the proteins was determined by ultra-centrifugation and Western blotting as 

described in 3.3.10. The results of this experiment are presented in Fig. 4.2.  

 

 

Figure 4.2. The kinase modulator EpsA is a membrane-bound protein, whereas the EpsB kinase is located in 

the cytosol. Separation of cytosolic (CYT) and membrane (ME) proteins form cell extracts (CE) of strains 

expressing EpsA-FLAG (GP1589) and EpsB-FLAG (GP1547) by ultracentrifugation. The experiments were 

performed in a sinR deletion background to ensure high expression of the eps operon. The different proteins 

were detected with respective antibodies. As prove of principle, the detection of RNase Y and CggR is only 

shown for strain GP1589.  

 

As controls, antibodies against the membrane-bound protein RNase Y and the cytosolic protein CggR 

were used to detect the proteins within the three different fractions of the cultivations of the epsA-

FLAG and epsB-FLAG strains, respectively. In accordance to previous work (Lehnik-Habrink et al., 

2011a; Mehne et al., 2013) RNase Y was mainly detected within the membrane fraction 

(contaminations in the cytosolic fraction) and the repressor protein of the glycolytic gap operon CggR 

was located within the cytosol. This supports the reliability of the applied ultracentrifugation 

method. 
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In the crude extract a signal at the size for EpsA-FLAG could be detected. This shows that EpsA-FLAG 

is expressed under the chosen conditions. Also, a clear signal in the membrane fraction but not in the 

cytosolic fraction could be obtained. Therefore, the predicted localization of EpsA within the 

membrane could be confirmed. 

Next, it was analyzed if the respective kinase EpsB also localizes to the membrane fraction as shown 

for its modulator. If this is the case it would support a model of a stable complex of EpsA and EpsB at 

membrane rather than a dynamic interplay between the two proteins. To address this question the 

epsB-FLAG containing strain GP1547 was used. Strikingly, EpsB-FLAG was detected within the 

cytosolic fraction but not in the membrane fraction (very weak signal, but also in control strain). This 

indicates that the interaction between the EpsB tyrosine kinase and its modulator EpsA is not stable 

enough to “survive” separation by ultracentrifugation. Therefore, it is tempting to speculate that the 

interaction between the modulator EpsA and the kinase EpsB is rather dynamic than stable and that 

EpsB co-localizes with its potential targets as suggested for the homologous tyrosine kinase PtkA by 

Jers et al. (2010). 

4.1.3. The role of tyrosine protein kinases and their modulators in complex colony and pellicle 

formation 

It is well established that BY-kinases are implicated in extracellular polysaccharide synthesis in many 

species (Grangeasse et al., 2012). The location of the epsA and epsB genes in the eps operon 

encoding the functions for extracellular polysaccharide formation in B. subtilis biofilms was highly 

suggestive of a role for these proteins in biofilm formation. To address the role of the putative BY-

kinase EpsB and its transmembrane modulator EpsA in biofilm formation, the respective genes were 

deleted in the undomesticated NCIB3610 wild type strain. Furthermore, a ptkA deletion mutant 

(NRS2544) was received from Nicola Stanley-Wall and the gene for the respective transmembrane 

modulator TkmA was deleted to study possible overlapping or additive functions of the homologous 

modulators and kinases. To demonstrate that the EpsB kinase and its cognate modulator EpsA work 

together in one functional process a double mutant was studied. 

In the laboratory strain, B. subtilis 168, the epsC gene carries a point mutation and encodes an 

inactive protein (McLoon et al., 2011). Any genetic transfer of constructed epsA and epsB alleles is 

likely to co-transfer this epsC mutation. Therefore we constructed the strains GP1540, GP1535 and 

GP1528 that carry a single deletion of epsA and epsB or a simultaneous deletion of epsAB in the 

background of the strain AM373, respectively. This strain carries the epsC wild type (epsC+) allele 

(McLoon et al., 2011) and is naturally competent. This allows the construction of mutants by 

transformation with LFH-PCR products (compare 3.3.6.). 
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Initially, the role of the BY-kinase EpsB in biofilm formation was addressed. For this purpose, complex 

colony formation of the epsB mutant strain GP1575 was compared with the respective control 

strains. In agreement with previous reports (Branda et al., 2001), the wild type strain formed well-

structured colonies (Fig. 4.3A) and thick and wrinkled pellicles (Fig. 4.3B). The isogenic epsB mutant 

GP1575 also formed structured colonies; however, the wrinkles resulting from exopolysaccharide 

accumulation were completely lost (Fig. 4.3A). Similarly, the pellicle formed by the epsB mutant 

strain was less structured than observed for the wild type (Fig. 4.3B).  

 

 

Figure 4.3. The deletion of tyrosine kinase genes in the wild type strain NCIB3610 leads to less structured 

colonies and pellicles. (A) Complex colony formation on MSgg agar plates. (B) Pellicle formation on top of liquid 

MSgg medium. Bars, 5 mm. 

 

The epsB deletion did, however, not have an impact as significant as the deletion of the entire epsA-

O operon; thus suggesting that exopolysaccharide biosynthesis was reduced but not completely lost 

in the epsB mutant. To rule out the possibility that the replacement of the epsB gene by an aphA3 

resistance cassette might have a polar effect on the expression of the downstream genes of the eps 

operon a resistance cassette lacking a transcription terminator downstream of the aphA3 gene was 

used. Moreover, the expression of the downstream epsC gene in the wild type strain 168 and the 

epsB mutant GP1518 was compared by qRT-PCR. The epsC expression was not abolished by the epsB 

deletion. 

To support the hypothesis that the transmembrane modulator EpsA is required for the function of 

the cognate EpsB protein, the epsA gene was deleted in the undomesticated NCIB3610 wild type 

strain resulting in the strain GP1600. As shown for the epsB mutant, the epsA mutant strain formed 

structured colonies but the wrinkles were lost (Fig. 4.4A). Also, the pellicle of the epsA mutant strain 

looked similar to pellicles formed by the epsB mutant (Fig. 4.4B). The observation that an epsA 

mutant has the same phenotype as an epsB mutant suggests that EpsA and EpsB act in one pathway 

of biofilm formation and supports the idea that the EpsA modulator is required for the function of 
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the EpsB protein. To further study the idea that EpsA and EpsB act in one pathway of biofilm 

formation the epsAB mutant GP1637 was constructed and its biofilm phenotype was analyzed. As 

expected, the epsAB double mutant showed the same phenotype as epsA and epsB single mutants 

supporting the initial idea that both proteins act in one pathway. 

 

Figure 4.4. The deletion of tyrosine kinase modulator genes in the wild type strain NCIB3610 leads to less 

structured colonies and pellicles. (A) Complex colony formation on MSgg agar plates. (B) Pellicle formation on 

top of liquid MSgg medium. Bars, 5 mm. 

Since EpsB and PtkA are the only BY-kinases in B. subtilis the question was addressed if both proteins 

have complementary function for biofilm formation. For this purpose, the effect of the inactivation 

of epsB to that of a ptkA mutation was compared and the phenotype resulting from a loss of both BY-

kinases was studied. As observed previously (Kiley & Stanley-Wall, 2010), the ptkA mutant NRS2544 

formed structured and strongly wrinkled colonies; however, these colonies lacked a rough outer 

region that is usually the area of sporulation and fruiting body formation (see Fig. 4.3A). The pellicles 

formed by the ptkA mutant were similar to those of the isogenic wild type strain (see Fig. 4.3B). The 

most severe phenotype was observed for the epsB ptkA double mutant GP1577. This strain was 

unable to form structured colonies, and was thus very similar to epsA-O or ymdB mutants (see 

Fig. 4.3, Diethmaier et al., 2011).  

Additionally, a complementation assay with the epsB ptkA mutant strains GP1634 was performed. 

This strain contained a functional copy of the epsB gene under the control of a xylose-induced 

promoter in the non-essential xkdE locus. Expression of the ectopic epsB gene upon addition of 

xylose to the biofilm medium restored the formation of a thick and structured pellicle (Fig. 4.5). In 

conclusion, the data support the idea of a role for the BY-kinases in biofilm formation.

Interestingly, the simultaneous deletion of the genes coding for the two kinase modulators EpsA and 

TkmA in the NCIB3610 strain (GP1611) leads to the same phenotype as the deletion of both BY-

kinases (see Fig. 4.4). As shown for the epsB ptkA mutant, the ectopic expression of epsA in the epsA 
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tkmA mutant (GP1636) also restored the formation of a thick and wrinkled pellicle (compare Fig. 4.6). 

Once again, this supports the idea that the two modulator proteins EpsA and TkmA are required for 

the function of their cognate BY-kinases, EpsB and PtkA, respectively.  

 

 

 

 

 

 

 

 

 

 

 

 

 

In summary, the results reported above clearly demonstrate the implication of EpsB and PtkA in 

biofilm formation and suggest distinct roles for the two enzymes in this process. As reported 

previously, PtkA seems to be required for the biofilm-associated sporulation whereas EpsB is mainly 

responsible for exopolysaccharide biosynthesis. 

 

4.1.4. Tyrosine kinases influence extracellular polysaccharide production 

Exopolysaccharides (EPS) are a major component of the biofilm matrix (Branda et al., 2001). The 

proteins for the synthesis and export of the EPS are encoded within the epsA-O operon. As shown in 
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Figure 4.6. Ectopic expression of epsA 

complements the phenotype of the epsA 

tkmA double mutant. Complex colony and 

pellicle formation on MSgg agar plates and 

on top of liquid MSgg medium. The 

expression of epsB was induced by addition 

of xylose to the medium. Bars, 5 mm. 
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Figure 4.5. Ectopic expression of epsB 

complements the phenotype of the epsB 

ptkA double mutant. Complex colony and 

pellicle formation on MSgg agar plates and 

on top of liquid MSgg medium. The 

expression of epsB was induced by addition 

of xylose to the medium. Bars, 5 mm. 
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Fig. 4.3, the deletion of the putative BY-kinase EpsB leads to a loss of the wrinkled colony and pellicle 

structure, which might indicate a loss of EPS production. The location of the epsB gene in the epsA-O 

operon supports this idea. To test our assumption that EpsB is involved in the production of EPS, we 

made use of a strain with deletions of the sinR and tasA genes to enhance the production and release 

of EPS from the cells. The resulting cells were cultivated and the EPS within the supernatant of the 

culture medium were precipitated by ethanol. As a positive control the sinR tasA deletion strain 

GP1622 was used and as a negative control an epsA-O deletion was introduced resulting in strain 

GP1629. As expected, EPS could be precipitated within the supernatant of strain GP1662, whereas 

the epsA-O deletion strain totally lacked EPS production. Surprisingly, no major effect on the amount 

of EPS was observed in the epsB deletion strain (Fig. 4.7).  

 

Figure 4.7. The deletion of tyrosine kinases affects exopolysaccharide production. All strains contain a ∆sinR-

tasA deletion to facilitate the release of exopolysaccharides into the culture medium. (A) Ethanol-precipitated 

supernatant from the indicated strains in the chambers of a 24-well plate. (B) Ethanol-precipitates resolved in 

the stacker of a SDS-PAGE gel stained with Stains-all dye.  

This finding suggests that the putative kinase activity of EpsB is dispensable for EPS production or 

that EpsB can be functionally replaced by the second BY-kinase, PtkA. However, in a recent 

publication using a more exact quantitative EPS assay, EPS amounts were reduced in epsB deletion 

mutant but not totally absent (Elsholz et al., 2014). Next, the implication of the second BY-kinase 

PtkA in EPS production was addressed. In agreement with the wrinkled colony and pellicle structure 

of the ptkA mutant, similar amounts of EPS as in the wild type were observed. Thus, PtkA is not 

directly involved in the regulation of EPS synthesis by the proteins encoded within the epsA-O 

operon. Interestingly, no EPS was detectable in the epsB ptkA double mutant. This observation is in 

perfect agreement with the complete lack of biofilm formation in the epsB ptkA double mutant and 

suggests that PtkA does also affect EPS production, at least in the absence of EpsB. Furthermore, 

production of the epsA and tkmA modulator single mutants and the epsA tkmA double mutant was 
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monitored. As shown for the respective BY-kinase mutants, the modulator single mutants are able to 

produce EPS, whereas the epsA tkmA mutant shows no EPS production (Fig. 4.7). This supports the 

requirement of EpsB and PtkA for their modulator proteins. 

4.2. The YmdB protein as a regulator for biofilm formation 

Biofilm formation in B. subtilis is highly regulated for instance by tyrosine kinases as shown in the 

previous chapter. Another protein involved in regulation is the phosphodiesterase YmdB. The 

deletion of the respective gene leads to highly reduced biofilm formation (Fig. 4.8A) and influences 

the expression of about 800 genes. Especially, transcripts for the main components of the biofilm 

matrix are less abundant, whereas expression of motility genes is induced (Diethmaier et al., 2011, 

2014). Although the deletion of the ymdB gene has a strong effect on cell differentiation it is not 

clear how the YmdB phosphodiesterase acts mechanistically to control biofilm formation and cell 

differentiation in general. Therefore, the aim of this work was to further understand how the YmdB 

protein acts as a regulator for biofilm formation. 

4.2.1. Deletion of the ymdB gene increases SinR protein levels 

Biofilm formation and motility are mutually exclusive processes in B. subtilis (Blair et al., 2008; 

Vlamakis et al., 2013). The switch between these two states is controlled by the SinR protein and its 

antagonists SinI and SlrR. The SinR protein is expressed constitutively (Gaur et al., 1988; Nicolas 

et al., 2012) and represses expression of biofilm genes and the gene for its antagonist SlrR. 

Repression of biofilm genes by SinR is relieved by binding of the antagonist SinI. When SinI is bound 

to SinR, SlrR protein is produced and can also bind SinR proteins. Upon binding of SlrR to SinR the 

repression of biofilm gene expression is prevented and SlrR inhibits, in complex with its co-repressor 

SinR, the expression of motility and autolysis genes (Chai et al., 2010b). This way it is ensured that a 

cell can only be a matrix producer or motile at the same time. Diethmaier et al. (2011) argued that 

reduced expression of the slrR gene is responsible for the biofilm defect of the ymdB mutant. At first 

sight, lack of the SinR antagonist SlrR can explain reduced biofilm formation, but it is not in line with 

the observation that SinR protein amounts are increased in the ymdB mutant (Wicht, 2010, this 

work). The SinR protein represses transcription of the slrR gene, whereas SlrR inhibits SinR-mediated 

repression by interacting with SinR. Therefore, elevated SinR amounts are the initial cause that 

explains decreased expression of the slrR gene resulting in a biofilm defect of ymdB mutant and 

changes in cell differentiation. Since the sinR gene is transcribed constitutively and transcript levels 

are not affected by the deletion of the ymdB gene, it is likely that YmdB controls SinR protein 

amounts on post-transcriptional or translational level.  
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To study the initial observation by Wicht (2010) in more detail, the SinR protein amounts in the 

undomesticated wild type NCIB3610 and the isogenic ymdB mutant strain GP921 (Diethmaier et al., 

2011) were determined by Western blot analysis. As shown in Fig. 4.8B, SinR proteins were barely 

detectable in the wild type strain. In contrast, the ymdB mutant strain showed a clear signal for SinR. 

Elevated SinR protein amounts could also be observed in the ymdB mutant in the background of the 

B. subtilis strain 168 and in the enzymatically inactive ymdB point mutant GP969 (Diethmaier et al., 

2014; compare Fig.7.1).  

 

 

Figure 4.8. SinR protein amounts are increased in the ymdB deletion mutant. (A) Complex colony formation of 

the NCIB3610 wild type and the ymdB deletion mutant GP921 on MSgg agar plates. Bars, 5 mm. (B) Detection 

of the SinR protein with a specific antibody within the NCIB3610 and GP921 strains by Western blot analysis. 

(C) Quantitative analysis of SinR protein amounts in the ymdB mutant GP1574 compared to the wild type 

GP1561 by Western blot. The SinR signals were normalized with the signals for HPr protein which was used as a 

loading control. Bars represent the relative mean (wild type set to 1) of the values for SinR protein determined 

by Image J. Error bars indicate standard deviations of 3 biological replicates. 

 

To further support these observations, the ymdB mutant strain GP1574 and the isogenic wild type 

strain GP1561 (compare chapter 4.2.2.) were used for densitometry experiments. For this purpose, 

the cells were cultivated as for the previous experiments and SinR protein amounts were analyzed by 

Western blotting. In parallel, HPr protein amounts were determined and used to normalize SinR 

amounts. As shown in Fig. 4.8C SinR protein amounts were about 10 times higher in the ymdB 

mutant than in the wild type strain supporting previous observations. Consequently, elevated protein 

amounts of the master regulator of biofilm formation in the ymdB mutant explain its biofilm defect. 

However, it remains to be elucidated if this effect is a direct or indirect effect of ymdB gene deletion. 
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4.2.2. Suppressor mutations in the ymdB mutant restore biofilm gene expression 

Generation of ymdB suppressor mutants and identification of their genetic variations  

In accordance to the observation of Diethmaier et al. (2011) that deletion of the sinR gene in the 

ymdB mutant restores complex colony structure, we observed that the ymdB mutant forms 

suppressor mutants in which biofilm matrix gene expression is restored (Kruse, 2013). The 

responsible suppressor mutations could be identified within the sinR gene. Interestingly, mutations 

at different positions led to amino acid exchange in the SinR protein affecting SinR protein properties 

(interaction with antagonist/ itself and DNA-binding ability) and protein stability. Unfortunately, 

these suppressor mutants were isolated from several different genetic backgrounds.  

To establish a versatile screening strain as a uniform background for the identification of further 

suppressor mutations, the ∆ymdB mutant strain GP1574 was constructed. This strain harbors an YFP 

reporter fusion for the expression of biofilm genes (PtapA-yfp) and a CFP reporter fusion for the 

expression of motility genes (hag-cfp). This way restored biofilm and bistable gene expression of 

potential suppressor mutants could be studied by using fluorescence microscopy. As controls, the 

isogenic wild type strain GP1561 and the ∆ymdB ∆sinR mutant strain GP1818 were constructed. By 

using these strains, the effects of suppressor mutants could be monitored in comparison to the wild 

type situation or to a strain lacking the SinR protein. 

Isolation of suppressor mutants of the ymdB deletion strain GP1574 was performed in different 

ways. An overview of the isolated suppressors and the generation procedure is shown in Tab. 4.1. 

After isolation of a suppressor mutant with an altered phenotype the sinR gene was sequenced to 

identify mutations. Interestingly, several different suppressors with a mutated sinR gene could be 

identified but also suppressor mutants with (partially) restored biofilm formation that carried a non-

mutated sinR gene were identified. To identify the mutation of the suppressor mutants GP1638, 

GP1639 and GP1646 that carried an intact sinR gene, chromosomal DNA was isolated and whole 

genome sequencing was performed in cooperation with the “Göttingen Genomics Laboratory” (G2L). 

This way a mutation in the SinR operator motif upstream of the epsA gene (and also upstream of the 

neighboring slrR gene) could be identified in the strain GP1638 (compare Fig. 4.9A). This mutation 

most likely inhibits binding of the SinR anti-activator to the operator and allows expression of the eps 

operon. In addition, this mutation seems to enable expression of the slrR gene because the tapA-

sipW-tasA operon is also relieved from repression as shown in Fig. 2.3 (Chu et al., 2006; Newman 

et al., 2013). Presence of all mutations was confirmed by Sanger sequencing (for primer compare 

Tab. 7.3).  

Furthermore, a mutation within the type III polyketide synthase encoding gene bpsA was identified. 

This gene was not implicated in biofilm formation so far and deletion of the gene did not affect 

sensitivity to cell-wall antibiotics and heat resistance (Nakano et al., 2009). In addition, it is mainly 
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expressed during sporulation (Nicolas et al., 2012). However, non-ribosomally synthesized peptides, 

as e. g. surfactin or spore killing factors, were shown to control cell differentiation processes (Marvasi 

et al., 2010; González-Pastor, 2011). Moreover, it was proposed that the Kin kinases respond to so 

far unknown signals to regulate differentiation of the inner and outer region of a colony (McLoon 

et al., 2011). Thus, the implication of the bpsA gene in biofilm formation appears worth studying.  

 

Table 4.1. Overview of the isolated suppressor mutants of the ymdB deletion strain GP1574. 

Strain Similar 

strains 

Mutation Isolation method 

GP1638 

 

 SinR operator between 

the epsA and slrR 

genes (TC) 

Cells were cultivation in LB medium for 1 day and dilution 

series were plated on MSgg agar plates to obtain single 

colonies. After incubation at 30°C for 1 day the plates were 

stored at RT for several days until suppressors appeared. GP1639 

 

 BpsA (BcsA): Val257Leu 

(GTG  CTG) 

type III polyketide 

synthase  

GP1646 

 

GP1647, 

GP1648 

not in the sinR gene 

(location unknown) 

Cells were streaked out on SP plates and stored at RT for 

several weeks. From this plate single papillae (suppressors) 

were isolated. 

GP1649 

 

 SinR: Trp104Arg  

(TGG AGG) 

(homo/hetero-

dimerization domain) 

compare GP1638, but cultivation for 60 h and every 

morning and every evening 100 µl of the growing culture 

was transferred to fresh 10 ml LB medium before plating 

the cells on MSgg plates. 

GP1650 

 

GP1801- 

GP1804, 

GP1806-

GP1808 

SinR: Ala85Thr 

(GCG  ACG) 

(homo/hetero-

dimerization domain) 

Separation streak out on SP plates (containing kanamycin, 

spectinomycin and chloramphenicol) and storage for 

several weeks. Separately grown papillae were streaked out 

repeatedly until all single colonies appeared homogeneous. 

GP1805 

 

GP1809 SinR: Leu99Ser  

(TTA  TCA) 

(unstable protein) 

 

Due to the mucoid appearance of the strain GP1646 it was hypothesized that the cells contain a 

mutated variant of the master regulator for cell differentiation Spo0A that induces poly-DL-γ-

glutamic acid production. Therefore, the spo0A gene was sequenced but unfortunately no mutation 

could be identified within the gene. In a next attempt to identify mutations that partially restored 

biofilm gene expression in the ∆ymdB background, whole genome sequencing was performed as 

described before. However, sequencing of the strain GP1646 was not successful and needs to be 

repeated.  

 

Characterization of the suppressor mutants of the ymdB deletion strain GP1574 

To characterize the different suppressor mutations in detail, pellicle and complex colony formation 

was tested. Moreover, expression of biofilm and motility reporter genes was visualized on colony 
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level and on single cell level. To assess if the SinR mutations in the different suppressor influence 

protein stability or if the other mutations indirectly affect SinR protein amounts Western blot 

analyses were performed. As references for the characterization, the wild type GP1561 and the ymdB 

mutant strain GP1574 were used. As described for the NCIB3610 strain in chapter 4.1.2., the wild 

type strain GP1561 formed thick and wrinkled pellicles on liquid MSgg biofilm medium and wrinkled 

colonies on agar plates (see Fig. 4.9A). Observation of the colony with a fluorescence stereo 

microscope revealed a strong expression of the biofilm reporter fusion (Ptap-yfp) and a weak 

expression of the motility reporter fusion (hag-cfp) that was only slightly more intense than the 

fluorescence observed for a wild type strain without a cfp-reporter fusion (results not shown). This 

suggests high levels of CFP auto-fluorescence on colony level. On single cell level, the wild type strain 

showed bistable expression of biofilm and motility genes. Chains of elongated cells expressed matrix 

genes, whereas shorter single cells expressed motility genes. In contrast, the ymdB deletion strain 

GP1574 did not form a pellicle on top of liquid MSgg medium and also the colonies appeared smooth 

and unstructured. On colony level, no expression of biofilm genes was visible but a strong expression 

of motility genes could be observed. Supporting previous results (Diethmaier et al., 2011) also no 

expression of biofilm genes was detected using single cell fluorescence microscopy. All cells 

expressed motility genes and were relatively short. Moreover, no cell chains appeared as it was 

described for the wild type strain, indicating expression of autolysis genes in the ymdB mutant.  

The suppressor mutant GP1649 carrying a mutation that leads to a SinR Trp104Arg protein variant, 

showed a similar phenotype as the wild type strain. The suppressor mutant also forms stable pellicle 

and structured colonies with a rough surface. However, the characteristic wrinkles of the wild type 

colony were not visible. Furthermore, colonies showed strong expression of biofilm and weak 

expression of motility genes. On single cell level, bistable expression of biofilm and motility genes 

could be observed, which is characteristic for the wild type strain. The SinR protein amounts in this 

suppressor mutant were comparable to the ymdB mutant strain, indicating that the Tyr104Arg 

mutation influences only the properties of the SinR protein and thereby restores expression of 

biofilm genes in the ymdB mutant. However, the further role of this specific amino acid needs to be 

further studied. Colledge et al. (2011) propose that amino acid 104 is part of SinR’s SinI binding 

domain, but in the structural data of Newman et al. (2013) this specific residue is not required for 

SinR-SinI interaction. Interestingly, this suppressor mutation was isolated quite frequently by Kruse 

(2013) from different ymdB deletion strains. Another mutation in SinR that was identified frequently 

led to an exchange of alanine 85 to threonine. As an example for a suppressor mutant that harbors 

this kind of mutation, strain GP1650 was studied in detail (see Fig. 4.9B). As shown for strain GP1649, 

the Ala85Thr mutation restored stable pellicle and complex colony formation in the ymdB mutant 

GP1574. Furthermore, fluorescence microscopy revealed expression of biofilm and motility genes as 

described for the wild type strain.  



66 4. Results 
 

 

Figure 4.9(A). Characterization of ymdB suppressor mutants. All strains harbor PtapA-yfp biofilm (green) and 

hag-cfp motility (blue) fluorescence reporter fusion. The suppressor mutant GP1649 was derived from the 

parental strain GP1574. Complex colony and pellicle formation was monitor on MSgg agar plates or with liquid 

MSgg medium. Fluorescence signals of the complex colonies were detected with an exposure time of 1.5 sec 

with the respective filter set. For the YFP signal of the strain GP1818 the exposure time was reduced (auto 

exposure) due to a very strong signal. Bars, 5 mm. The single cell images are overlays of the images for 

transmitted light (grey) and the images for the reporter fusions. Cells were cultivated in LB medium until mid-

exponential growth phase and images were taken with an exposure time of 1.5 sec. Bars, 10 µm. The bar chart 

shows the densitometry ratios of the SinR protein amounts (divided by HPr). The values were normalized so 

that the strain GP1574 had a value of 1. Error bars represent the standard deviation of three replicate Western 

blots. 

 

Looking at single level, several elongated cells building up chains but also some smaller cells were 

visible. Some of the elongated cells showed expression of biofilm genes, while the shorter cells 

expressed motility genes. 
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Figure 4.9(B). Characterization of ymdB suppressor mutants. All strains harbor PtapA-yfp biofilm (green) and 

hag-cfp motility (blue) fluorescence reporter fusion. The suppressor mutants GP1638, GP1639, GP1646 and 

GP1650 were derived from the parental strain GP1574. For the YFP signal of the strain GP1805 the exposure 

time was reduced (auto exposure) due to a very strong signal. Compare Fig. 4.8(A) for a detailed description. 

 

This indicates that the Ala85Thr mutation of the SinR affects bistable gene expression. However, SinR 

protein amounts were similar to the one in the ymdB mutant and higher than in the wild type strain. 

Therefore, it is likely that Ala85Thr mutation in the multimerization domain of SinR affect SinR-

tetramer formation or interaction with its antagonist as also concluded by Chai et al. (2010b). 

A third type of ymdB suppressor with a mutated SinR protein is the strain GP1805 that carries a 

Leu99Ser amino acid exchange. This strain shows slightly smaller colony as shown for the ∆ymdB and 

the ∆ymdB ∆sinR mutant but the colonies exhibited a rough and structured surface. Also, this 

mutation restored pellicle formation in the ymdB deletion background. Moreover, the strain showed 

a very high expression of biofilm genes on colony level (shorter exposure time used to avoid 

overexposed pictures) and only a weak signal for the CFP motility reporter gene. In addition, single 
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cell fluorescence microscopy revealed that the cells are highly elongated, build up cell chains and 

strongly express biofilm genes but no motility genes. This nicely fits the phenotype of the ∆ymdB 

∆sinR mutant strain GP1818, except that the cells of the suppressor mutant GP1805 are longer. In 

accordance, SinR densitometry also revealed that SinR protein amounts are decreased in the strain 

GP1805, indicating that the Leu99Ser mutation in SinR affects protein stability. 

Besides the ∆ymdB suppressor mutants that carry mutations in the sinR gene, three different types 

of suppressor mutants with (partially) restored biofilm biofilm matrix gene and bistabile expression 

of biofilm and motility genes could be identified. The suppressor mutant GP1638 (mutation in the 

SinR operator between the epsA and slrR genes, compare Fig. 4.10) and GP1639 (BpsA: Val257Leu) 

showed a very similar phenotype.  

 

Figure 4.10. Mutation in the SinR binding sequence between the slrR and epsA genes restores biofilm gene 

expression in the ∆ymdB suppressor mutant GP1638. The location of the mutations (TC) is marked with a 

triangle. The binding sequences of the SinR proteins are underlined. The promoter sequence and the 

transcription start of the epsA gene are in italics.                                                                                 

 

Both suppressors formed stable pellicles and structured colonies on agar plates but lacked the 

strongly wrinkled inner region of the colony. However, the pellicles of strain GP1639 appear thinner 

than the ones of GP1638 and the inner part of GP1639 colonies appeared rather shiny as the surface 

of the ∆ymdB mutant than rough as the respective part of GP1639 colonies. This observation was 

also reflected by the expression of the YFP biofilm gene reporter fusion on colony level. The whole 

colony of strain GP1638 expressed biofilm genes, whereas colonies of strain GP1639 only expressed 

biofilm genes in the outer region of the colony. In addition, both strains showed weak expression of 

the motility reporter fusion. On single cell level, both strains showed restored expression of biofilm 

genes compared to the ymdB mutant strain. In addition, small motility gene expressing cells and 

elongated biofilm gene expressing cells could be obtained. Furthermore, SinR protein amounts in 

both suppressors were not affected. Compared with all other suppressor mutants, the strain GP1646 

is very unique. Cells of this strain form no pellicle as it is typical for the ∆ymdB mutant but colonies 

appear more structured than ∆ymdB mutant colonies and the colony surface appears rather mucoid 
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than rough. Biofilm gene expression on colony level is only visible on the very edge, while motility 

genes seem to be weakly expressed all over the colony. On single cell level short and elongated cells 

are visible. Some of the short cells express motility genes as it was observed for the wild type strain. 

However, biofilm gene expression is hardly detectable because only very few cells show fluorescence 

when excited with light of the respective wavelength for YFP. As shown for the suppressors GP1638 

and GP1639, SinR protein amounts are comparable to amounts in the ymdB mutant strain GP1574. 

Unfortunately, it remains unclear which mutation is responsible for the observed phenotype. 

4.2.3. Overexpression of RNase Y in the ymdB deletion mutant does not restore complex colony 

structure 

The gene for the YmdB protein is located in one operon downstream of the rny gene which encodes 

the major B. subtilis endoribonuclease RNase Y. Furthermore, it was shown that RNase Y co-purifies 

with the YmdB protein suggesting a direct or indirect interaction and supporting the idea of a 

functional connection between the two proteins (Diethmaier, 2011). Interestingly, depletion of the 

expression of RNase Y stabilizes several transcripts including the one for the master regulator of 

biofilm formation SinR (Lehnik-Habrink et al., 2011b).  

To test that the effect of RNase Y on sinR transcript stability influences biofilm formation, the authors 

overexpressed RNase Y from the plasmid pGP1201 and monitored complex colony formation in the 

background of the 168 wild type strain. Indeed, overexpression of RNase Y led to more wrinkled 

colonies supporting a role of RNase Y in control of biofilm formation (Fig. 4.11).  

 

 

Figure 4.11. Overexpression of RNase Y does not induce complex colony structure in the ymdB mutant in 

contrast to the wild type strain. Complex colony formation of the ymdB mutant GP583 and the B. subtilis wild 

type 168 without a plasmid, containing the empty vector pBQ200 or the plasmid pGP1201 for RNase Y 

overexpression, respectively. Bars, 5 mm. 
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Assuming a functional connection between RNase Y and the YmdB protein in regulating biofilm 

formation, the effect of the overexpression of RNase Y should be different in the ymdB deletion 

mutant. To test this assumption, the ymdB deletion strain GP583 was transformed with the RNase Y 

overexpression plasmid pGP1201 and complex colony structure on erythromycin and lincomycin 

containing MSgg plates was analyzed. As a positive control the same procedure was performed for 

the 168 wild type strain in parallel. Indeed, overexpression of RNase Y did not induce complex colony 

formation in the ymdB deletion mutant, whereas the outer region of the wild type colony appeared 

more wrinkled upon RNase Y overexpression. This demonstrated that induced biofilm formation by 

RNase Y overexpression depends on the presence of the YmdB protein and suggests that both 

proteins have connected functions in controlling biofilm formation. To exclude that the presence of 

the overexpression plasmid had an effect on colony complexity the wild type and the ∆ymdB mutant 

strain were transformed with the empty plasmid pBQ200. Presence of the empty plasmid did not 

change the colony phenotype on biofilm agar plates (see Fig. 4.11). 

4.2.4. YmdB is a RNA-binding protein 

Regulation on post-transcriptional or translational level is a common mechanism to regulate protein 

amounts, for example by RNA-binding proteins that inhibit translation of the bound mRNA (Babitzke 

et al., 2009). As shown in chapter 4.2.1, the biofilm defect of the ymdB mutant is due to elevated 

SinR protein amounts compared to the wild type strain. Strikingly, microarray analysis revealed no 

difference in sinR mRNA levels between the two strains (Diethmaier et al., 2014). An attractive 

explanation for this observation is that SinR protein amounts are controlled on translational level. 

For instance, one could imagine that the YmdB protein binds the 5’ region of the sinR mRNA and 

thereby inhibits translation by blocking the Shine-Dalgarno sequence or serves as a road block for the 

ribosome. To test YmdB binding ability to sinR mRNA in vitro electrophoretic mobility shift assays 

(EMSAs) were performed. For this purpose, E. coli BL21 was transformed with the Strep-YmdB 

expression plasmid pGP1917. Cells were cultivated in LB medium and expression of the recombinant 

protein in the heterologous host was induced by addition of IPTG (for further information compare 

Lockhorn, 2014). The YmdB protein was then purified from the cell extract via its Strep-tag as 

described in chapter 3.3.10. In parallel, the first 200 ribonucleotides of the sinR transcript were 

amplified by in vitro transcription. A rather short fragment was chosen to ensure optimal shifting 

ability that can be impaired when using longer fragments. For the EMSA purified YmdB protein was 

mixed with sinR mRNA and loaded on a native polyacrylamide gel. After electrophoresis, RNA was 

detected by staining with ethidium bromide. If the YmdB protein binds to sinR mRNA, the RNA runs 

slower through the gel and a second band that runs higher (corresponding to the YmdB-sinR RNA 

complex) can be detected in the gel. 
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Figure 4.12. Strep-YmdB binds sinR 

RNA in vitro. Electrophoretic mobility 

shift assay to determine the RNA-

binding ability of the YmdB protein to 

sinR RNA. The first 200 bp of the sinR 

transcript were produced by in vitro 

transcription and incubated with 

increasing concentrations of Strep-

YmdB purified from E. coli BL21.  

 

 

As shown in Fig. 4.12, incubation of the sinR RNA with purified YmdB protein led to the formation of 

a second band that ran slower through the polyacrylamide gel, whereas the sinR RNA without the 

protein showed only the lower RNA-specific band. This suggested that the YmdB protein can bind to 

the first 200 ribonucleotides of the sinR transcript. To exclude that the purified YmdB protein 

contains any RNA contamination the protein was applied on the gel without RNA. In the respective 

lane no RNA was detectable.  

 

 

Figure 4.13. Strep-YmdB binds citZ 

RNA in vitro. Electrophoretic mobility 

shift assay to determine the RNA-

binding ability of the YmdB protein to 

citZ RNA as a negative control. The first 

200 bp of the citZ transcript (5’ UTR) 

were produced by in vitro transcription 

and incubated with increasing 

concentrations of Strep-YmdB purified 

from E. coli BL21.  

 

To test if the binding of the YmdB protein to the sinR transcript is specific, the first 200 

ribonucleotides of the citZ transcript were amplified and incubated with the YmdB protein as 

described before (Pechter et al., 2013). Incubation of the citZ RNA with the YmdB protein also 

retarded the migration of the RNA trough the gel (see Fig. 4.13).  

50 pmol citZ RNA

5010 20 50
YmdB
(pmol) 4030−

−

− 5010 20 50
YmdB
(pmol)

50 pmol sinR RNA

4030

−



72 4. Results 
 

 

Figure 4.14. Strep-YwjH does not bind 

sinR RNA in vitro. Electrophoretic 

mobility shift assay with sinR RNA and 

YwjH as a control protein to determine 

the specificity of the YmdB binding to 

sinR RNA. The first 200 bp of the sinR 

transcript were produced by in vitro 

transcription and incubated with 

increasing concentrations of Strep-

YwjH purified from E. coli BL21.  

 

This indicates that the YmdB protein binds RNA unspecifically. Furthermore, the Strep-tagged 

transaldolase YwjH was expressed in BL21 from the plasmid pGP819. The purified protein served as a 

control that sinR RNA does not interact with proteins in general or the Strep-tag used for protein 

purification. The results of the EMSA with YwjH and the sinR transcript are depicted in Fig. 4.14. 

In this case, addition of the Strep-YwjH to the sinR RNA did not lead to retardation of the sinR RNA. 

This further supports the idea that YmdB is a RNA binding protein and shows that the sinR RNA does 

not bind to proteins unspecifically. 

 

In vivo co-purification experiments  

The EMSAs could show that the YmdB protein binds RNA in vitro. However, no specificity towards a 

particular RNA was visible. Therefore, we wondered if this is different in vivo. To search for specific 

YmdB-RNA interactions the ymdB deletion strain GP583 was transformed with the plasmid pGP1920. 

This plasmid allows overexpression of Strep-tagged YmdB protein that carries an E39Q amino acid 

exchange within the active center. The YmdB E39Q protein variant is enzymatically inactive 

(Diethmaier et al., 2014) but still binds RNA in vitro (results not shown). Using this protein for RNA 

co-purification experiments ensured that bound RNA is not subject to any degradation by YmdB. The 

ymdB deletion strain GP583 harboring the overexpression plasmid was cultivated in CSE-Glc medium 

as described for the SPINE method in chapter 3.3.10. To detect transient YmdB-RNA interactions 

formaldehyde was used to cross-link interactions. After purification of Strep-YmdB from the cell 

extract, the RNA in the elution fraction (E2) was isolated. Then, drops of the total RNA in solution 

were placed on a nylon membrane. Subsequently, particular RNAs were detected by hybridizing with 

specific DIG-labelled RNA probes and detection with DIG-antibodies (Roche).  
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Figure 4.15. YmdB-RNA co-purification experiments. Dot blot analysis of RNA precipitated from the elution 

fractions of the purifications of Strep-tagged YmdB, YaaQ and CsrA variants from B. subtilis. The c-di-AMP 

binding protein YaaQ served as a negative control, the hag RNA-binding protein CsrA was used as a positive 

control. In addition, an empty vector control was used to test unspecific binding to the Strep-tactin matrix. Each 

dot represents 20 µl of RNA solution isolated from the respective purification dropped on a nylon membrane in 

2 µl steps. 

 

As a control the csrA deletion strain GP469 harboring the Strep-CsrA overexpression plasmid pGP381 

was employed. The CsrA protein regulates flagellin synthesis on translational level by binding to the 

flagellin encoding hag mRNA. Therefore, CsrA is an excellent positive control because it specifically 

binds hag mRNA. Moreover, it can easily be used as a negative control to exclude unspecific binding 

of certain RNAs, in this case sinR mRNA. Experimentally, sinR and hag probes were applied to detect 

the respective RNAs within the elution fractions of the two purifications. To exclude the unspecific 

binding of unrelated RNAs probes for the detection of the first 200 bp of the highly expressed ptsH 

and citZ transcripts were used. In addition, RNA from the ymdB deletion strain GP583 containing the 

empty plasmid pGP380 and the yaaQ (darA) deletion strain GP1712 overexpressing a Strep-tagged 

YaaQ protein (pGP2603) was detected with the same probes. As shown in Fig. 4.15, the hag 

transcript was enriched within the total RNA of the elution fraction from the CsrA overexpression 

indicating that the method allows identification of specific RNA-protein interactions. Moreover, the 

hag, sinR, citZ and ptsH transcripts were not enriched in the RNA from the elution fraction of the 

empty vector control. Next, the elution fraction from the YmdB purification was tested for the 

presence of the four transcripts. Strikingly, the sinR transcript as well as the three control transcripts 

could be detected with about the same intensity within the total RNA from the elution fraction. In 

agreement to the in vitro experiments (EMSAs), this shows that YmdB binds RNA unspecifically. 

sinR probe 
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YmdB YaaQ empty CsrAOverexpression:



74 4. Results 
 
However, the sinR and the citZ transcripts were also detectable within the total RNA isolated from 

the elution fraction of the purification of the c-di-AMP binding protein YaaQ. This protein most likely 

does not bind RNA. Therefore, the method comprises the unspecific co-purification of RNA probably 

due to cross-linking with formaldehyde during cultivation. To further study if YmdB binds the e. g. 

sinR RNA specifically in vivo it would be useful to repeat the experiments without cross-linking.  

4.2.5. Global and high-resolution analysis of the transcriptome in the ymdB deletion mutant by 

RNA sequencing 

RNA sequencing is a powerful tool to globally study changes in gene expression on transcript level. In 

addition, this method enables the identification of RNA turnover intermediates and minor RNA 

processing events at the 5’ or 3’ end of an mRNA. For example, by applying RNA sequencing Liu et al. 

(2014) identified the cggR transcript as a target for 3’-5’ processing by the polynucleotide 

phosphorylase PNPase. As hypothesized before (see 4.2.4.), the YmdB phosphodiesterase might be 

involved in processing of the sinR mRNA on a level that is not detectable by qRT-PCR or microarray 

analysis because only few ribonucleotides, e.g. containing the ribosome binding site, are cleaved off. 

This would inhibit translation of the mRNA and explain elevated protein amounts of the master 

regulator for biofilm formation SinR in the ymdB deletion strain. Moreover, this could explain why 

the enzymatic function of the phosphodiesterase and putative RNase YmdB is required for 

expression of biofilm matrix genes and complex colony formation (Diethmaier et al., 2014).  

To analyze the sinR transcript on single ribonucleotide level by RNA sequencing, the strain GP969 

encoding an enzymatically inactive YmdB protein and, as a reference, the isogenic wild type strain 

GP966 were cultivated in LB medium until they reached an OD600 of 2.5. From these cells total RNA 

was isolated and the overexpression of the hag gene and decreased expression of slrR and the tapA 

gene was confirmed by qRT-PCR. Moreover, elevated SinR protein amount were confirmed within 

total protein extract via Western blotting as described in 4.2.1 (compare Fig. 7.1). The remaining RNA 

was sent for RNA sequencing to the “Göttingen Genomics Laboratory” (G2L).  

The resulting data were analyzed with the TraV transcriptome browser (Dietrich et al., 2014). This 

browser allows visualizing the abundance of specific transcripts (cDNA reads) mapped to a reference 

genome. In Fig. 4.16 the abundance of the transcripts of the sinI-sinR region in the ymdB mutant 

strain GP969 and the wild type strain GP966 are compared. Interestingly, sinI transcript amounts are 

about 2-fold lower in the ymdB mutant than in the wild type strain. For the sinR transcript no 

difference in transcript abundance and length was detectable. This underlines that changes in sinR 

transcript abundance do not cause elevated SinR protein amounts in the ymdB mutant and is 

contradictory to our initial hypothesis that the YmdB protein performs minor 5’ or 3’ processing of 

the sinR mRNA. This suggests that YmdB influences SinR protein amounts indirectly, e. g. on the level 

of protein stability.  
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Figure 4.16. Strand-specific visualization of the RNA sequencing data of the sinI-sinR region with the TraV 

transcriptome browser. The blue line represents the transcript abundance (transcribed to cDNA) of wild type 

strain GP966 and the red line that for the ymdB mutant strain GP969 mapped to the genome of B.s. 168.  

 

Thus, it was hyphotesizes that the YmdB protein indirectly influences SinR protein amounts by 

affecting the stability of transcripts encoding proteins involved in proteolysis. To test this assumption 

the abundance and length of transcripts for proteolysis proteins of the ymdB mutant GP969 and the 

wild type strain GP966 was compared in the TraV transcriptome browser. An overview of the 

addressed transcripts and their fold changes is shown in Tab. 7.8. Interestingly, the transcript for the 

ClpX protease subunit was slightly more abundant in the ymdB mutant than in the wild type strain. 

Furthermore, the 5’ untranslated region of the clpX transcript was truncated in the ymdB mutant 

compared to the wild type (see Fig. 4.17).  

 

 

 

Figure 4.17. Strand-specific visualization of the RNA sequencing data of the clpX region with the TraV 

transcriptome browser. The blue line represents the transcript abundance (transcribed to cDNA) of wild type 

strain GP966 and the red line that for the ymdB mutant strain GP969 mapped to the genome of B.s. 168.  

 

This indicates that processing of the 5’ region in the ymdB protein is not functional and suggests a 

protective function of the YmdB protein or an indirect effect on transcriptional level due to 

sinI sinR tasA

wild type GP966 
ymdB mutant GP969

wild type GP966 
ymdB mutant GP969
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inactivation of YmdB. Since the 5’ region of mRNAs is often required for the regulation of translation 

initiation (Soper et al., 2010; Lay et al., 2013), a processing event might affect the abundance of the 

ClpX protein. However, the RNA sequencing results have to be reproduced in order to draw reliable 

conclusions. 

4.2.6. C-di-GMP and its influence on biofilm formation in B. subtilis  

C-di-GMP is a well-known regulator of cell differentiation in many Gram-negative bacteria like E. coli 

and the facultative human pathogen P. aeruginosa where it is important for the regulation of biofilm 

formation and switching between motile and sessile life styles (Hengge et al., 2009). The role of c-di-

GMP in Gram-positive bacteria is far less studied. At the beginning of this study, there was only one 

study about the role of c-di-GMP in B. subtilis (Chen et al., 2012). The authors identified four putative 

diguanylate cyclases (DGCs) due their characteristic GGDEF motif (YdaK, YhcK, YtrP, YybT), the YkoW 

protein that might function as a diguanylate cyclases or as a phosphodiesterase due to a GGDEF and 

a EAL domain, and the two putative phosphodiesterases YkuI and YuxH containing a EAL domain. To 

test if c-di-GMP is involved in the control of biofilm formation and motility in B. subtilis the authors 

constructed deletion mutants of the respective genes. 

Interestingly, they identified the PilZ domain containing protein YpfA as a c-di-GMP binding protein 

and proposed a c-di-GMP signaling pathway that controls motility but does not affect biofilm 

formation. However, the authors failed to delete the ydaK gene and hence no mutant lacking all 

known DGCs was tested for biofilm formation. Moreover, only the phenotype of the mutants was 

studied but c-di-GMP levels were not determined. Therefore, mutants lacking all putative DGCs 

(∆ydaK ∆ytrP ∆yybT ∆yhcK ∆ykoW) and PDEs (∆yuxH ∆ykuI ∆ykoW) were constructed and c-di-GMP 

levels in this mutant were determined by HPLC-MS/MS, respectively. Since the YkoW protein might 

function as a DGC or as a PDE the respective gene was deleted in both strains. In addition to the 

measurements, biofilm formation of the mutants was tested. 

Moreover, previous experiments (Diethmaier, 2011) revealed decreased c-di-GMP concentrations in 

the ∆ymdB mutant strain. A possible explanation could be overexpression of the phosphodiesterases 

YuxH and the putative phosphodiesterase YkoW (contains DGC and PDE domain) in the ymdB mutant 

as microarray data suggest (Diethmaier et al., 2014). Therefore, we constructed a strain lacking all 

putative PDEs in the ymdB deletion background and monitored biofilm formation.  

 

Loss of all diguanylate cyclases and phosphodiesterases affects c-di-GMP homeostasis 

To determine c-di-GMP levels in the strain GP1598 lacking all DGCs and in the strain GP1599 lacking 

all known phosphodiesterases, the cells were cultivated in CSE-Glc minimal medium to mid-

exponential growth phase. The construction of the used strains was described in detail by Blötz 

(2013). The isolation of c-di-GMP from cell extract was performed accordingly to 3.3.13. As shown in 
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Fig. 4.18, the deletion of all known DGCs in strain GP1598 (∆ydaK ∆ytrP ∆yybT ∆yhcK ∆ykoW) totally 

abolished production of c-di-GMP suggesting that there are no further c-di-GMP producing enzymes 

in B. subtilis than the deleted ones. Moreover, the c-di-GMP concentration in the PDE deletion strain 

GP1599 (∆yuxH ∆ykuI ∆ykoW) elevated c-di-GMP concentration compared to the wild type strain 

168.  

 

 

Figure 4.18. Deletions of diguanylate 

cyclases (DGCs) and phosphodiesterases 

(PDEs) affects cyclic di-GMP amounts. Bars 

show the mean of three biological 

replicates as c-di-GMP amounts in ng c-di-

GMP normalized by the total protein 

content in mg. Error bars indicate the 

standard deviation.                

 

 

In summary, simultaneous deletion of the known DGCs or PDEs can abolish or increase c-di-GMP 

concentration in B. subtilis, respectively. This supports the idea of a functional c-di-GMP signaling 

pathway proposed by Chen et al. (2012). Interestingly, Gao et al. (2013) were able to characterize the 

proteins YtrP, YhcK and YkoW as DGCs and YuxH as a PDE supporting our observation that deletion of 

the respective genes influences c-di-GMP homeostasis. Unfortunately, this work was published 

shortly after this project was totally completed. 

 

Complex colony and pellicle formation  

In contrast to the work of Chen et al. (2012) we were able to delete all putative DGCs in strain 

GP1598 and showed that this strain produces no c-di-GMP anymore. To test the hypothesis that 

changes in c-di-GMP levels influence biofilm formation in general and that elevated c-di-GMP levels 

in the ∆ymdB mutant can complement the biofilm defect of the mutant, biofilm tests were 

performed. Looking at colony and pellicle structure of the c-di-GMP defective mutant GP1598 and 

the overexpressing mutant GP1599, no changes in colony structure and stable pellicle formation 

could be observed compared to the wild type. All colonies showed a rough but unwrinkled surface as 

typical for the B. subtilis 168 laboratory strain and pellicles were stable but unstructured (Fig. 4.19A). 

Also, the simultaneous deletion of PDEs in the ∆ymdB mutant did not rescue the biofilm defect. The 

∆ymdB mutant strain GP583 and the ymdB PDEs deletion strain GP1595 (∆ymdB ∆yuxH ∆ykuI 

∆ykoW), were both not able to form a pellicle and colonies appeared smooth and unstructured as 

typical for the ∆ymdB mutant (Fig. 4.19B). 

0

5

10

15

20

25

wild type ΔDGCs ΔPDEs

n
g 

c-
d

i-
G

M
P

 /
 m

g 
p

ro
te

in

cyclic di-GMP amounts

B. s. 168             GP1598             GP1599



78 4. Results 
 

 

Figure 4.19. Simultaneous deletion of all diguanylate cyclase or phosphodiesterases has no effect on biofilm 

formation, respectively (A). Deletion of all phosphodiesterases in the ∆ymdB mutant does not restore biofilm 

formation (B). All strains used in this biofilm assays are derivatives of the B. s. laboratory wild type strain 168. 

Minor differences between the phenotypes of the wild type in A and B are due to different cultivation 

temperatures (room temperature). Bars, 5 mm. 

 

This implies that decreased c-di-GMP levels in the ∆ymdB mutant and the biofilm defect are just a 

non-functional correlation. In toto, changes in c-di-GMP concentration do not affect biofilm 

formation in the Gram-positive model organism B. subtilis although this second messenger is 

important for regulation of biofilm formation in Gram-negative bacteria. 
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5. Discussion 

Many bacteria depend on their ability to live together as multicellular communities in order to 

survive under harsh environmental conditions. In these communities, also referred to as biofilms, 

cells are embedded within a self-produced extracellular matrix that is mainly composed of 

polysaccharides and proteins (Hall-Stoodley et al., 2004). This matrix enables the cells to cover a solid 

surface or to float as a community and can protect them from harmful environmental substances 

such as antibiotics or from predators. Additionally, biofilm or matrix production can function as a 

virulence factor, as described for the genetic disorder cystic fibrosis that goes along with colonization 

of the lung by a P. aeruginosa biofilm (Costerton et al., 1999). In general, up to 80% of human 

bacterial infections are related to biofilm formation underlining the importance of research on 

biofilms (Römling & Balsalobre, 2012). In this work, the Gram-positive soil bacterium B. subtilis was 

chosen as a model system to study the control of biofilm formation and cell differentiation. During 

this work, it was demonstrated that tyrosine kinases are absolutely required for biofilm formation 

and exopolysaccharide production and that their activity depends on their cognate modulator 

proteins. Furthermore, elevated protein amounts of the SinR regulator protein in the biofilm-

defective ymdB mutant were identified as the cause of the defect. Interestingly, this defect was 

repaired in spontaneously arising suppressor mutation within e.g. the sinR gene. 

5.1. The story behind the biofilm and cell differentiation defect of the ymdB mutant 

Despite intense investigation of the molecular function of the YmdB protein in controlling biofilm 

formation, the target of YmdB could not be identified. Since the phosphodiesterase activity of YmdB 

is essential for biofilm formation, the target needs to contain a phosphodiester bond as it can be 

found in several different molecules such as DNA, RNA, cyclic nucleotides, cyclic dinucleotides and in 

phospholipids. Therefore, searching for YmdB processing targets is a challenging task. 

 

How does loss of YmdB increase SinR protein amounts? 

Loss or inactivation of the YmdB phosphodiesterase drastically reduces biofilm matrix production and 

inhibits bistable expression of biofilm and motility genes as it is characteristic for B. subtilis wild type 

cells. To address this strong phenotype, e.g. transcriptome levels were studied on global scale to 

identify novel factors and gain insight how the YmdB phosphodiesterase controls cell differentiation 

mechanistically. However, the mechanism of YmdB action is still not fully understood (Diethmaier 

et al., 2011 & 2014). This works adds another piece to the “puzzle of YmdB function” by 

demonstrating that elevated amounts of the master regulator of biofilm formation SinR explain the 

biofilm and cell differentiation defect. Therefore, the action of YmdB seems to be closely connected 



80 5. Discussion 
 
to the production or stability of the SinR regulator. However, the target of the YmdB protein is still 

unknown and the final picture of the “puzzle of YmdB function” remains unclear.  

Since there is no indication that sinR transcript amounts are affected by the loss of the YmdB protein, 

it appears very unlikely that YmdB is directly involved in the degradation of the sinR mRNA, e. g. in 

concert with the major endoribonuclease RNase Y that is encoded in the same operon. Thus, it was 

hypothesized that YmdB might process the 5’ (or even the 3’) end of the sinR mRNA and thereby 

inhibits translation and synthesis of SinR protein, respectively (compare Lockhorn, 2014).  

Specific processing of the 5’ end of an mRNA without affecting overall transcript amounts/ stability 

has been barely described in literature. Nevertheless, the RegB endoribonuclease from E. coli cuts, 

not exclusively, but with high specificity within the ribosome binding site of certain T4 bacteriophage 

mRNAs (Uzan et al., 1988; Sanson & Uzan, 1993). Thereby it destabilizes the mRNAs of early phage 

genes, by providing processing targets for other RNases like RNase E and G. In contrast, mRNAs of 

late stage phage genes are not fully degraded by RNases but translation initiation from the mRNAs is 

impaired due to non-functional ribosome binding sites (Durand et al., 2012b). Similar processes have 

not been described in B. subtilis before and YmdB shows no homology to the RegB protein or any 

other endoribonucleases. Moreover, RNA sequencing of the ymdB mutant strain revealed no 

processing or stabilization of the 5’ and 3’ of the sinR transcript compared to the wild type strain. 

This excludes no modification of the 5’ or the 3’ end of the sinR transcript but opposes the idea of 

impaired translation initiation by processing of the ribosome binding site. Endonucleolytic processing 

of mRNAs by RNase E in E. coli is more efficient when the target RNA exhibits a monophosphorylated 

5’ end for endonuclease binding and subsequent processing (Mackie, 1998). Since processing of an 

mRNA by RegB results in a 5’ OH-group any further efficient degradation by RNase E or G is impaired. 

Thus, In E. coli, the 5’ end of the RegB processing product is phosphorylated by an enzyme called 

polynucleotide kinase/phosphatase to ensure efficient degradation (Durand et al., 2012b). 

 Monophosphorylated 5’ ends are also required for efficient endo- and exoribonucleolytic processing 

of mRNAs by RNase Y and RNase J1 in B. subtilis (Shahbabian et al., 2009; Mathy et al., 2007). Since 

mRNAs usually contain a triphosphate at the 5’ end, Diethmaier (2011) hypothesized that YmdB 

might process the triphosphate end of certain mRNAs and generates monophosphorylated mRNA for 

further processing as it was described for the enzyme RppH (Richards et al., 2011). Although such a 

pre-processing would explain why overexpression of RNase Y does not induce biofilm formation in 

the absence of YmdB (compare 4.2.3) such interplay on sinR mRNA processing is not supported by 

the RNA sequencing result that showed no effect on sinR transcript length or stability. Furthermore, 

the activity of the RppH RNA pyrophosphohydrolase is nucleotide specific and prefers a guanosine 

residue in the second position of the mRNA which is not the case for the sinR mRNA (Gaur et al., 

1988; Hsieh et al., 2013; Piton et al., 2013). Deletion of the B. subtilis gene for RppH did not totally 

abolish pyrophosphohydrolase activity suggesting the presence of a functional homolog (Hsieh et al., 
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2013). Therefore, it is possible that the YmdB protein shows this activity on other targets and thereby 

indirectly affects SinR protein amounts. However, initial tests for a pyrophosphohydrolase acivity of 

YmdB were negative (Diethmaier, 2011). Hence, it needs to be studied if the YmdB protein and 

RNase Y work together in the processing of certain target RNAs. 

 

Small regulatory RNAs as the target molecules of the YmdB protein? 

Electrophoretic mobility shift assays and co-purification experiments with YmdB showed that YmdB is 

a RNA binding protein. It is well-known that RNA binding proteins like CsrA from B. subtilis or E. coli 

can inhibit translation initiation by blocking the ribosome binding sites of their target RNAs. 

Although, this binding can stimulate RNA turnover, the proteins are not directly involved in 

processing (Romeo et al., 2013). Since the enzyme activity of YmdB is required to fulfill its function in 

the cell and the inactive enzyme still binds RNA (results not shown), the YmdB protein does not act 

by simply blocking the ribosome binding site of the sinR or other mRNAs. 

Alternative molecules that can inhibit translation initiation are small (regulatory) RNAs. Similar to the 

CsrA proteins, small RNAs can also bind to the ribosome binding site of mRNAs and thereby inhibit 

translation initiation (Lay et al., 2013). Less often, small regulatory RNAs can even activate translation 

as e. g. described for the translation of the mRNA for the E. coli stress sigma factor RpoS. Upon their 

binding, inhibitory secondary structures within the 5’ untranslated region of the mRNA are resolved 

and translation can proceed (Soper et al., 2010; Lay et al., 2013). In E. coli, base-pairing of the small 

RNAs with the sequence of the target mRNA usually requires the RNA chaperone Hfq (Lay et al., 

2013). If YmdB is involved in processing of a small regulatory RNA that directly regulates sinR mRNA 

translation, this RNA must have an activating effect. Otherwise elevated SinR protein amounts in the 

absence of YmdB are not reasonable. Alternatively, a recent study in E. coli suggests that anti-

adaptor RNAs can counteract the degradation of regulatory RNAs by blocking their binding to 

adaptor protein that subject them to degradation by RNase E (Göpel et al., 2013). Thus, YmdB could 

also be involved in the processing of such an anti-adaptor RNA. Consequently, elevated amounts of 

the anti-adaptor RNA in an ymdB mutant would lead to increased amounts of the activating 

regulatory RNA and induce SinR expression. Since binding of small regulatory RNAs to the 5’ 

untranslated region of their target mRNA frequently involves the RNA chaperone Hfq, loss of Hfq 

should influence biofilm formation assuming sinR translation initiation is controlled by a small 

regulatory RNA. Interestingly, transcriptome analysis with a B. subtilis hfq deletion mutant revealed 

an up-regulation of genes from the GerE and ComK regulons for sporulation and competence genes, 

respectively (Hämmerle et al., 2014). Although, regulation of biofilm formation is closely connected 

to competence and sporulation, control of sinR mRNA translation involving Hfq appears unlikely. In 

general, the authors suggest a rather minor impact of B. subtilis Hfq on post-transcriptional 

regulation compared to E. coli, because the stability of only 6 out of more than 100 predicted small 
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regulatory RNAs was affected in the hfq deletion strain (Hämmerle et al., 2014). This suggests that 

small regulatory RNA based regulation is acchieved mainly without Hfq in B. subtilis, as also described 

for highly specific binding events in E. coli (Soper et al., 2010). In summary, direct (or indirect) 

regulation of SinR protein amounts by small RNA processing/ degradation by YmdB is an attractive 

idea. To further elucidate RNase activity of YmdB in vitro assays could be a first step. 

 

Does the YmdB protein indirectly control proteolysis? 

Since SinR protein amounts are elevated in the ymdB mutant while mRNA levels remain constant it 

seems likely that SinR protein amounts are regulated on post-translation level. Therefore, it is an 

attractive idea that SinR protein amounts are kept constant by proteolysis in wild type cells but 

(specific) proteolysis is impaired in the ymdB mutant. In general, protein degradation needs to fulfill 

two distinct functions: getting rid of the bulk of truncated and miss-folded proteins and controlling 

the amounts of certain proteins for regulatory reasons (Kirstein et al., 2009). In eukaryotes, protein 

degradation is performed by the interplay of the proteasome and SCF (Skp1, Cullin, F-box containing) 

complexes that poly-ubiquitinate certain proteins and thereby mark them for degradation. In this 

case the target specificity is mediated by the F-box protein that guides the complex to the 

degradation target (Laney & Hochstrasser, 2004). 

Protein degradation in prokaryotes has been mainly studied in the model organisms E. coli, B. subtilis 

and Caulobacter crescentus (Battesti & Gottesman, 2012). In these organisms protein degradation is 

mainly performed by complexes of energy-dependent proteases of the AAA+ family and Hsp100/Clp 

proteins. These proteases complexes can be involved in general and in regulatory protein 

degradation at the same time. For example, in B. subtilis the ClpXP protease complexes degrade 

truncated SsrA-peptide labelled proteins that resulted from ribosome stalling on the mRNA (Wiegert 

& Schumann, 2001). In a so called trans-translation mechanism a tmRNA that serves as a transfer and 

a messenger RNA at the same time removes the stalled ribosome from the mRNA. This is 

accomplished by an initial incorporating an alanine residue and by encoding a Stop codon containing 

peptide (SsrA) tag that labels the truncated protein for degradation (Kirstein et al., 2009). In contrast, 

degradation of specific targets is usually mediated by adaptor proteins that, comparable to the F-box 

proteins in eukaryotes, bind to the target proteins and guide them to the Clp proteases (Kirstein 

et al., 2009; Battesti & Gottesman, 2012).  

Effects of regulatory proteolysis of specific target proteins can be illustrated on the example of the 

ComK transcription factor for the expression of competence genes in B. subtilis. The ComK protein is 

degraded by the ClpCP protease complex during logarithmic growth. Degradation is mediated by the 

adaptor protein MecA that allows the assembly of the ClpCP complex and guides ComK to the 

protease complex (Turgay et al., 1998; Prepiak & Dubnau, 2007). Upon amino acid starvation and 

high cell density, quorum-sensing signals are produced that lead to the expression of the anti-
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adaptor protein ComS (Magnuson et al., 1994; Solomon et al., 1996; Lazazzera et al., 1997). This 

protein binds to MecA instead of ComK and relieves ComK from proteolysis allowing transcription of 

competence genes (Prepiak & Dubnau, 2007).  

Assuming that the SinR protein is a target of specific regulatory proteolysis the question arises which 

protease acts on SinR and which adaptor protein mediates proteolysis. So far proteolysis of SinR has 

not been considered, although the regulatory pathways it acts in are well studied. Therefore, it 

seems unlikely that SinR protein amounts are changed drastically by proteolysis but it sounds 

reasonable that regulated proteolysis keeps SinR protein amounts constant to prevent unwanted cell 

differentiation processes. For instance, regulated proteolysis of the RpoS sigma factor has been 

described as a mechanism to reduce the noisiness of stress response induction in addition to 

regulation by a negative feed-back loop on transcriptional level (El-Samad et al., 2006). If targeted 

proteolysis of the SinR aims to keep protein amounts constant, the loss of the YmdB protein could 

(indirectly) disrupt the mechanisms that balance SinR protein amounts and thereby induce a drastic 

phenotypic change. 

In general, regulation of cell differentiation (apart from competence development) by directed 

proteolysis is a common mechanism and well-studied in B. subtilis (Konovalova et al., 2014), but 

without any experimental evidence, e. g. from global protein-protein interaction studies with SinR it 

is difficult to assess which adaptor proteins and proteases might be involved in SinR proteolysis. 

However, proteolysis of the SinR protein might involve the protease ClpP and its cognate ATPases 

ClpC or ClpX. Since the deletion of the ClpP protease affects competence, sporulation and motility, 

processes which are also affected in a ymdB mutant, a functional connection is an attractive idea. 

Moreover, loss of the ClpP protease does not show the same phenotype as a MecA mutant indicating 

that additional targets exist (Msadek et al., 1998; Gottesman, 1999). These additional targets might 

even be regulators of biofilm formation, because the affected processes are closely connected. 

Moreover, the MecA homolog YpbH does also influence sporulation but is not involved in degrading 

ComK or ComS, suggesting alternative targets (Persuh et al., 2002). 

Proteolysis of SinR (or its putative cognate adaptor protein) by the ClpXP complex appears especially 

attractive because the RNA sequencing of the ymdB mutant and the wild type strain revealed that 

the long 5’ untranslated leader sequence (5’ UTR) of the clpX transcript (Irnov et al., 2010) is 

processed in the ymdB mutant (compare Fig. 4.17). This might indicate a regulatory event on mRNA 

level that influences translation efficiency and ClpX protein amounts later on (compare Fig. 5.1). 

Despite this interesting correlation, the influence of the YmdB protein on clpX transcript length and a 

functional connection between transcript length and ClpX protein amounts needs to be further 

studied, especially because Diethmaier et al. (2014) observed reduced clpX transcript amounts in 

microarray experiments whereas the RNA sequencing results in this study rather support a 

stabilization of the clpX transcript apart from the 5’ UTR. 
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If the SinR protein is directly degraded it would be in company with the Spx transcription factor that 

is also degraded by the ClpXP complex. Degradation of Spx is initiated by the YjbH adaptor protein 

and most likely prevented by the anti-adaptor protein YirB (Kommineni et al., 2011). Spx controls the 

expression of genes for high temperature tolerance. Consequently, deletion of the spx gene leads to 

tolerance of higher temperatures upon increased Spx levels. Interestingly, ClpX protein was also 

implicated in proteolysis of the sigma factor H (Spo0H) that plays a key role in regulating spo0A 

transcription and deletion of the gene for Spo0H reduces biofilm complexity (Branda et al., 2001; Liu 

et al., 1999). Furthermore, effects on Spo0H proteolysis might explain drastic changes in sporulation 

gene expression in the ymdB mutant (Diethmaier et al., 2014). However, to judge the functional 

connection between YmdB and Spo0H, further studies are required. 

 

 

Figure 5.1. Model how the YmdB phosphodiesterase indirectly influences SinR protein amounts.  

 

A further example for a putative control of biofilm formation and motility by proteolysis is the 

degradation of SinR antagonist SlrR by Clp proteases. Chai et al. (2010a) demonstrated that the SinR 

antagonist SlrR is stabilized upon deletion of the gene for ClpC protease component and Newman & 

Lewis (2013) proposed a model for SlrR instability that assumes SlrR self-interaction and aggregation 

leading to degradation by Clp proteases. Degradation of SlrR by the ClpCP protease would explain 

why motility is affected in the clpP mutant. However, it is tempting to speculate that the interplay 

between the two antagonists is also controlled by SinR proteolysis (e. g. by SlrR acting as an anti-

adaptor protein for SinR).  
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Despite the unclear role of the Clp proteases in the regulation of biofilm formation, for the FtsH 

protease a clear connection has been proposed (Yepes et al., 2012). In contrast to the Clp proteases, 

FtsH combines the ATPase and peptidase activity within one protein and requires, besides its 

interaction partner SpoVM, no further adaptor proteins for directed degradation. However, the 

interplay between the FtsH protein and SpoVM is not totally understood (Prajapati et al., 2000; 

Kirstein et al., 2009). 

FtsH seems to have a dual function in controlling biofilm formation. Activated by direct interaction 

with the flotillins FloT and FloA which are required for the formation of micro compartments (lipid 

rafts) it regulates the sensor kinase KinC that is at the starting point of the phosphorelay controlling 

biofilm formation and sporulation (Yepes et al., 2012). Moreover, FtsH can degrade the Spo0A 

phosphatase Spo0E and several Rap phosphatases that directly or indirectly decrease Spo0A 

phosphorylation and hence inhibit biofilm formation and sporulation (Le & Schumann, 2009; Mielich-

Süss et al., 2013). Although the biofilm defect of an ftsH mutant can be complemented by an 

additional deletion of the sinR gene (as shown for the ymdB mutant), the idea that SinR is a direct 

target of the FtsH protease is only partially in agreement with the published observation. Strikingly, 

even an abrB deletion complemented the ftsH deletion although this was only possible to a minor 

extent in the ymdB mutant.  

 

The interplay between YmdB and RNase Y in cggR-gapA mRNA processing 

Since the first experiments aiming to elucidate the cellular role of the YmdB protein, the idea of a 

functional connection between the YmdB protein and the major endoribonuclease RNase Y was 

present (compare 2.4). Due to the genetic organization of the respective genes in one operon and 

their direct or indirect interaction (Diethmaier, 2011) the idea of a functional connection is very 

promising and was discussed before (Diethmaier, 2011; Diethmaier et al., 2014). Thus, this chapter 

aims to discuss the less considered impact on cggR-gapA mRNA degradation. 

Regulating the abundance of the mRNA template for translation is an important factor to control 

protein amounts. The abundance of mRNAs can be controlled by varying transcription rates or by 

RNA degradation/ inactivation. Degradation is crucial to limit the half-life of mRNAs in order to allow 

fast adaptation to changing environmental conditions (Gerwig & Stülke, 2014a; Lehnik-Habrink et al., 

2012). RNA degradation is performed by interplay of endo- and exoribonucleases. In B. subtilis, the 

initial endoribonucleolytic processing is conducted by the major endoribonuclease RNase Y 

(Shahbabian et al., 2009). Subsequently, different exoribonucleases can degrade the resulting RNA 

fragments in 5’-3’ (mainly RNase J1) and in 3’-5’ direction (mainly PNPase) (Lehnik-Habrink et al., 

2012).   

The polycistronic cggR-gapA-pgk-tpi-pgm-eno operon and especially the bicistronic cggR-gapA 

transcript, encoding the glycolytic enzymes and the cognate repressor CggR, represent a well-studied 

http://www.ncbi.nlm.nih.gov/pubmed?term=Prajapati%20RS%5BAuthor%5D&cauthor=true&cauthor_uid=10913836
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model system for the concerted degradation of RNAs by different enzymes. Although located on one 

transcript, the mRNAs for the CggR and the GapA proteins are differently abundant. This is due to the 

combined action of RNase Y and PNPase in degrading the cggR transcript and due to the stabilization 

of the gapA transcript by its 5’ and 3’ secondary structures that prevent degradation (Ludwig et al., 

2001). Once RNase Y has performed its initial endonucleolytic cut between cggR and gapA 

(Commichau et al., 2009), PNPase degrades the cggR mRNA in 3’-5’ direction. Consequently, the 

cggR transcript is stabilized in a mutant missing the gene encoding PNPase (Liu et al., 2014) and in 

strains in which the gene for RNase Y is depleted (by a factor of 2 to 2.5) (Lehnik-Habrink et al., 

2011b; Laalami et al., 2013, Durand et al., 2012a). However, one draw-back of these studies is that 

the YmdB protein was neglected. Due to its location downstream of the gene for RNase Y and its lack 

of an own promoter, depletion (loss) of RNase Y also leads to depletion of YmdB. Hence, it is hard to 

distinguish between effects of RNase Y depletion and the ones connected to loss of the YmdB 

protein. Aware of this general problem, Lehnik-Habrink (2011) re-addressed the expression of several 

affected transcripts of microarrays with RNase Y depleted cells. For this purpose, the YmdB protein 

was expressed ectopically in cells lacking RNase Y and qRT-PCR was conducted to identify differences 

to the initial microarray data. Supporting the author’s assumption that YmdB plays a minor role in 

RNA processing or degradation the abundance of several transcripts affected by RNase Y depletion, 

including the tapA, the sunT and the trpEDCFBA operons did not differ substantially when the YmdB 

protein was expressed ectopically. However, the transcriptome data of the rny-ymdB depletion 

experiment was not compared to the transcriptome data of an ymdB deletion strain in detail.  

Strikingly, in ymdB deletion cells harvested from stationary growth phase, the cggR transcript is 

decreased by a factor of 5 compared to wild type cells (Diethmaier et al., 2014). In contrast, 

depletion of RNase Y increases the abundance of the cggR transcript by a factor of about 2.5 (Lehnik-

Habrink et al., 2011b) and also Northern blot experiments support transcript stabilization (Lehnik-

Habrink, 2011). This suggests that YmdB has a protective effect on the stability of the cggR transcript, 

whereas RNase Y has a negative effect. Taking the phosphodiesterase activity of the YmdB protein 

into account, YmdB might totally remove the triphosphate 5’ end of cggR-gapA transcript so that it is 

less accessible for the RNase Y endoribonuclease. Thus, the lack of RNase Y on its own should result 

in a higher stabilization of the cggR transcript than initially thought. In conclusion, results of the 

global RNase Y depletion transcriptome experiments have to be analyzed carefully with respect to 

polar effects of the simultaneous ymdB depletion.  

In summary, it remains unclear if the decreased cggR transcript abundance is related to changes in 

gene expression or due to increased degradation of the cggR transcript in the absence of the YmdB 

protein. However, it is striking that the abundance of the gapA transcript is not influenced in the 

ymdB mutant strain, although both genes are encoded in one operon. This supports the assumption 
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that RNA degradation causes decreased cggR transcript amounts. This observation can be a starting 

point to identify targets that are dually regulated by YmdB and RNase Y. 

5.2. Suppressor mutations – a bacterial way to evolve  

In biology, the term fitness describes how well an organism is adapted to its environment. When 

conditions frequently change, organisms that can quickly adapt have a higher fitness than other less 

flexible organisms. Certain abilities of an individual can by chance lead to better adaptation to 

changing conditions and higher fitness compared to the other members of the group. This allows 

e. g. survival and/or higher reproduction rates. One big advantage of sexual reproduction is the 

mixing of the genetically encoded characteristics of the parent generation. This results in new 

characteristics for the offspring and increases the variability within a group. However, in contrast to 

e. g. mammals, bacteria do not reproduce sexually but by cell division and hence descendants are 

clonal copies of the parent generation that possess the same characteristics. So how does genetic 

diversity arise within a bacterial community?  

A well described example to gain new abilities is horizontal gene transfer that implies transfer of 

genes between organisms of the same species but also between distant lineages (Koonin et al., 2001; 

Popa & Dagan, 2011). Some bacteria like B. subtilis even developed machineries for the uptake of 

foreign DNA that can be expressed under stress conditions. During this competence state cells can 

integrate foreign DNA into their own chromosome via homologous recombination or use the DNA as 

a nutrient source (Hamoen et al., 2003). This way, bacteria can exchange and gain certain 

characteristics which might be useful in the future.  

An alternative way to generate diversity within a bacterial community is the acqusition of mutations. 

During harmful conditions bacteria activate the SOS response and thereby induce the expression of 

alternative, so-called translesion polymerases. These special polymerases can cope with errors on 

the DNA and allow read-through but their replication fidelity is very low. Thus, errors are introduced 

into the genome and putative adaptive mutations are generated with a higher frequency. Although, 

mutations generate genetic diversity, they can also lead to genetic instability. Therefore, mutation 

frequency needs to be highly regulated (Denamur & Matic, 2006; Sale et al., 2012). However, even 

without induced mutation rates, not all replication errors or mutations caused by external influences 

are repaired and can thus by chance lead to new abilities. Early work by Luria & Delbrück (1943) 

supported the assumption that mutations arise independently from selection and by chance lead to 

advantageous abilities. Although this assumption is still prevailing, it has been discussed intensively. 

Initially, Cairns et al. (1988) pointed out a pitfall of the experiments by Luria & Delbrück (1943): in the 

respective experiments cells were pre-cultivated without any selective pressure and then a lethal 

selective pressure was applied to select for suppressor mutants that can survive. This method only 

detects mutations that were acquired randomly prior to selection but does not exclude that cells 
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induce mutagenesis in response to sublethal stresses. To further question the idea that mutations 

always appear randomly, the reversion of a frame-shift mutation in a gene for lactose metabolism 

was examined under selective conditions leading to the description of examples of so-called adaptive 

mutagenesis (Cairns et al., 1988; Cairns & Foster, 1991). However, the observed effects require 

special conditions (location of the mutated gene on a plasmid) and were RecA-dependent. Thus, a 

RecA-dependent amplification model in which the number of alleles determines the mutation 

frequency was proposed opposing the induction of mutation rates in response to selective pressure 

(Slechta et al., 2002, Roth et al., 2006). This gene amplification model was, for instance, applied to 

explain the evolution of antibiotic resistances which are a big threat for human health (Sandegren & 

Andersson, 2009; Andersson & Hughes, 2009). Especially, when sublethal doses of selective 

pressure/ antibiotic concentrations are applied antibiotic resistances can arise very quickly (under 

certain conditions even within 10 hours) and enable the resistant cells to cultivate new niches of 

higher selective pressure (Zhang et al., 2011). 

 

Suppressor mutations restore biofilm formation in the ymdB mutant 

As described above (compare 4.2.2), the biofilm-defective ymdB mutant acquires suppressor 

mutations that restore biofilm matrix gene expression. These mutations are mainly found within the 

gene for the master regulator of biofilm formation SinR. For the ∆ymdB suppressor mutations it has 

not been studied if these are a result of adaptive mutagenesis (and thus appear with higher 

frequency) or due to accidentally unrepaired replication errors that cause a phenotypical change in 

the ymdB deletion background. To answer the question if the observed mutations are advantageous 

for the cells and might even form with higher frequency as suggested by Cairns et al. (1988), it needs 

to be determined if there is a selective pressure that drives the ymdB mutant to restore biofilm 

matrix again. For instance, competition experiments between the ymdB mutant and wild type cells 

under the different conditions suppressor mutations were derived from could give answers. 

In general, ∆ymdB suppressor mutants with restored biofilm formation could be isolated from 

varying cultivation conditions that most likely cause different selective pressure. Thus, it was easier 

to observe biofilm forming ∆ymdB suppressor mutants under some conditions. Several suppressor 

mutants were isolated after growth in rich medium for several days followed by plating on minimal 

biofilm-inducing agar plates. In this system, suppressor mutants were selected due to a wrinkled and 

rough colony phenotype that clearly distinguished them from the smooth and shiny colonies of the 

parental strain. Unfortunately, it remains unclear if the majority of suppressor mutations appeared 

during pre-cultivation or on the selective plates itself, because it is difficult to determine if a single 

colony started off as a matrix-producing suppressor or gained this ability during growth on the 

selective agar plate. However, it seems more likely that the suppressor mutations were generated on 

the agar plates because it usually required several days until wrinkled colonies became visible. In 
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addition, ymdB mutant cells show no growth defect (MSgg medium) or only a slight (LB) growth 

defect in liquid medium with agitation (results not shown). Thus, it is unlikely that ∆ymdB suppressor 

mutants out-compete ymdB mutant cells. However, long-term cultivation experiments (up to 60 

days) with the undomesticated wild-type strain revealed that even this biofilm-forming strain 

acquires mutation in liquid cultures that increase matrix production when cultivated for more than a 

week. Hence, it was speculated that fine-tuning of matrix production might be of evolutionary 

advantage (Leiman et al., 2014). In this context, restored matrix production in the ymdB mutant 

might be a big advantage leading to a more rapid formation of suppressors. 

In further experiments, suppressor mutants were isolated (without any pre-cultivation) as papillae 

that appear after several weeks (or at least several days) and grew on top of a community of cells 

that were streaked out on an SP agar plate as it is frequently performed in the laboratory. In this case 

the mutations most likely appeared during growth on the agar plate because the papillae were not 

visible at the beginning. Moreover, on agar plates matrix formation might produce clear benefits 

because the matrix might prevent the cells from dehydration and is required for sporulation. 

Probably due to its lack in matrix production the ymdB mutant does not sporulate efficiently under 

biofilm-forming condition (results not shown; compare Aguilar et al., 2010). Therefore, restored 

matrix production also allows the cells to sporulate efficiently when nutrients get limiting. Mutations 

within the sinR gene might even be beneficial due to other regained abilities like restored motility. 

However, it has to be tested if these processes are affected in the ∆ymdB suppressor mutants. 

Furthermore, it was also possible to isolate ∆ymdB suppressor mutants from agar plates that carried 

an intact sinR gene but have a mutation in a so far unknown gene leading to the formation of mucoid 

colonies (compare GP1646). Strikingly, it was also possible to isolate mucoid suppressor mutants 

from other biofilm defective Bacillus mutant strains (compare Lockhorn, 2014). Therefore, it might 

be a common trait that defects in matrix production are compensated by the production of 

alternative extracellular substances like poly-γ-DL-glutamatic acid. 

A situation in which biofilm forming cells (suppressor mutants) seem to have a clear advantage 

compared to ymdB mutant cells is in non-agitated liquid medium. Under this condition (e. g. pellicle 

assay) ymdB mutant cells are not able to colonize the liquid surface and therefore show no growth, 

probably due to limited oxygen access. In contrast, ∆ymdB suppressor mutants colonize the air-liquid 

interface as observed for the wild type and thus have a clear growth advantage. In this context, the 

appearance of suppressor mutations that enable the ymdB mutant to form pellicles explains why the 

ymdB mutant seems to form pellicles after an (elongated) period of time (results not shown; Pozsgai 

et al., 2012). 
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Restored biofilm formation - you get what you select for 

In a recent publication, van Ditmarsch et al. (2013) aimed to study evolutionary aspects behind the 

motility of the facultative human pathogen P. aeruginosa. For this purpose, they subjected the 

bacteria to repeated rounds of swarming (movement over semisolid surfaces that requires flagella) 

and isolated suppressor mutants with a hyper-swarming phenotype. Under normal conditions 

P. aeruginosa exhibits only one polar flagellum, but the mutants produced several flagella. According 

to previous observations (Dasgupta & Ramphal, 2001), the reason for the hyper-swarming and multi-

flagellated phenotype could be mapped to mutations in the gene for the regulator of flagella 

synthesis FleN. Supporting the importance for FleN in controlling flagella synthesis, the same 

mutations were isolated from several independent experiments. The FleN protein is an anti-activator 

that interacts with the FleQ regulator (compare 2.3., binds c-di-GMP via Walker A motif) and thereby 

also control switching between sessile and motile state. Thus, competition experiments between the 

newly isolated hyper-swarmers and the original strain showed that the mutants are impaired in 

biofilm formation and not compatible with the wild type cells. Consequently, the authors interpreted 

their observations as an evolutionary trade-off between biofilm formation and motility. In a 

commentary by D. Kearns (2013) the interpretation of the results by van Ditmarsch et al. (2013) as 

experimental evolution was seriously questioned. In fact, the results would present a good example 

for classical forward genetics. For experimental evolution cells are cultivated for a long time and a 

rather low selective pressure is applied resulting in a diversity of acquired mutations, whereas 

selective pressure is rather strong in the case of forward genetics. This often leads to the isolation of 

one distinct mutation (Kearns, 2013). Obviously, this is the case for the work of van Ditmarsch et al. 

(2013).  

One main aim of this project was to isolate ∆ymdB suppressor mutants that show restored biofilm 

formation by using forward genetics. Studying the observed suppressor mutants in detail should help 

to shed light on the molecular origins of the biofilm defect of the ymdB deletion mutant. For this 

purpose, the cells were cultivated for a longer period of time and potential suppressor mutants were 

directly screened for changes in colony morphology (biofilm formation). As often the case in forward 

genetics experiments, mutations in the most obvious target, in this case the sinR gene, were isolated 

with high frequency. However, additional suppressors with mutations in SinR operator sequences 

and in so far unknown genes could be identified (compare 4.2.2.). Consequently, the design of the 

suppressor mutant screening allows the identification of additional, less obvious mutations but in 

summary “we got what we selected for” (Kearns, 2013)! 

 

SinR suppressor mutations – a common event 

Interestingly, several other authors also observed independently that suppressor mutations in the 

sinR gene can restore complex colony formation to biofilm-defective mutants. Loss of SinI, one main 
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antagonist of the SinR regulator, leads to drastically reduced complex colony structure (Bai et al., 

1993; Kearns et al., 2005). However, mutations within the sinR gene can restore complex colony 

structure to sinI deletion mutants. Similar observations were made for mutants of the ylbF and ymcA 

genes that also show a severe biofilm-defect similar to the one observed for a ymdB mutant (Kearns 

et al., 2005). These two genes encode proteins involved in the regulation of the phosphorelay for 

Spo0A phosphorylation and thereby also control SinI expression (compare 2.2) (Carabetta et al., 

2013). Mutations led to amino acid exchanges in the DNA-binding domain of the SinR protein (ylpF: 

SinR-P42S, ymcA: SinR-V50A) and to truncated or elongated SinR protein variants due to stop codon 

insertions or duplications of regions at the end of the sinR gene (sinI: SinR-aa 100) (Kearns et al., 

2005). In addition, Chai et al. (2010b) also isolated spontaneous ∆ymcA suppressor mutants within 

the sinR gene and studied these in detail. The authors isolated two different classes of suppressor 

mutations, several mutations concentrated in the DNA binding domain of the SinR protein (V26G, 

A27T) and others clustered in the interaction domain (D55Y, E67Y, E79K, D84G, D84N, A85T). In a 

next step, the mutations were transferred to the wild type background and effects on cell 

differentiation were studied on single cell level. Interestingly, the mutations induced matrix 

production and cell chaining. 

In this work, suppressor mutants were isolated that restore biofilm matrix gene expression and 

(partially) bistable gene expression. As shown before, an Ala85Thr mutation in the multimerization 

domain of SinR can restore biofilm matrix gene expression to defective mutants (Chai et al., 2010b). 

However, the authors observed chains of elongated cells (probably) due to repression of autolysin 

genes and overexpression of matrix genes when the mutation was transferred to the wild type 

background. This means that the Ala85Thr mutation inhibits SinR tetramer formation (and thereby 

matrix and slrR gene repression) but still allows SinR-SlrR hetero-complex formation that represses 

autolysin and motility genes. The same suppressor mutation was also observed several times in the 

∆ymdB background. However, in the ymdB mutant chains of elongated cells expressing matrix genes 

were visible as described before but also several short cells expressing motility genes were present. 

The simplest explanation is that this difference is due the absence of the YmdB protein. Most likely 

the SinR Ala85Thr still possess a residual ability to form a tetramer to repress the expression of its 

antagonist SlrR so that, due to elevated SinR protein amounts in the ymdB mutant, in some cells 

biofilm genes are still repressed and motility and autolysin genes are expressed. 

The same explanation might also apply to the Trp104Arg mutation in the SinR gene that also restored 

matrix gene expression and bistable gene expression and was identified by Kruse (2013) several 

times (SinR: Trp104Leu). However, this mutation was not described in the literature before and 

effects were never studied in the wild type background. Thus, transfer of the mutation into the wild 

type strain might be useful to get a deeper understanding of the effects of the mutation. Moreover, 

the ability of the SinR protein with a mutated Trp104 to interact with its antagonists needs to be 
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further analyzed in vitro and in vivo, because it was suggested that this amino acid, in contradiction 

to previous results (Colledge et al., 2011), is not involved in the interaction with the antagonist 

(personal communication, R. Lewis). Supporting this assumption, SinR: Trp104Leu was still able to 

interact with SlrR, SinI and itself in bacterial two-hybrid experiments in E. coli (see Fig. 7.2). However, 

this system does not provide any information about the multimerization state of the complexes. 

The SinR: Leu99Ser mutation was also not described before, but in contrast to the other SinR 

mutations, this mutation destabilizes the protein. Therefore, the phenotype of this mutant is very 

similar to that of the ymdB sinR mutant. However, it is difficult to explain why the cells do not 

express autolysin and motility genes at the same time although there is no SinR protein present. One 

possible explanation is that elevated SlrR levels (due to loss of SinR) repress motility and autolysin 

genes on its own. At least, the SlrR protein can bind to the operator upstream of lytE on its own but 

with a lower affinity than the SlrR-SinR complex and, moreover, deletion of the slrR gene increases 

expression of autolysin genes (Chai et al., 2010a). Strikingly, Kruse (2013) observed chains of not 

elongated cells in ymdB sinR mutant that expressed matrix and motility genes at the same time. 

Differences between the experiments might be due to different genetic backgrounds (NCIB3610 and 

168, respectively) or due to additional mutations that e. g. impair motility gene expression in the 

NCIB3610 background. Another possibility is that residual SinR protein, in complex with its co-

repressor SlrR still allows repression of motility and autolysin genes but SinR protein amounts are not 

sufficient to substantially repress expression of biofilm matrix genes and the gene for slrR. 

Beside the formation of complex biofilm-like colonies and pellicles, B. subtilis can form surface 

adhered biofilms. For this surface adherence the SipW protein, encoded in one operon with genes 

for the TapA and TasA biofilm matrix proteins, is required. Consequently, deletion of the gene for 

SipW impairs surface adherence but mutations in the sinR gene restore ability to form surface-

adhered biofilms to a sipW mutant. Interestingly, the well-studied signal peptidase activity (compare 

2.1.) is not required for surface adherence but SipW seems to be a bifunctional protein that also 

controls expression of the eps and tapA operons when surface attached biofilms are formed. Thus, 

the authors speculate that e.g. direct inhibition of the SinR regulator by the SipW protein might 

explain this observation. The regulatory role of SipW on SinR is further supported by the fact that 

exopolysaccharides, as a direct target of SinR repression/ anti-activation, are required for the effect 

of SinR suppressor mutation (Terra et al., 2012). As already observed by Kearns et al. (2005) changes 

in an alanine stretch at the of the sinR gene led to a frame-shift and a truncated SinR protein. Since 

the sipW gene (operon) is down-regulated in the ymdB mutant it is reasonable to assume that the 

ymdB mutant is also impaired in surface adherence. Although not tested, sinR mutations would 

probably also restore surface adherence to the ymdB mutant strain. Hence, the system described by 

Terra et al. (2012) seems suitable for the isolation of further, maybe different, sinR suppressor 

mutations. 
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Another case, in which suppressor mutations in the sinR gene were described is a study with mutants 

defective in galactose catabolism (Chai et al., 2012). As known for some time, the deletion of the 

gene encoding the GalE UDP-galactose-4-epimerase catalyzing the reversible conversion of UDP-

galactose to UDP-glucose is lethal in the presence of galactose (Krispin & Allmansberger, 1998). This 

is probably due to the accumulation of UDP-galactose that might be toxic for the cells. Chai et al. 

(2012) observed that mutations in the sinR gene (Trp78stop, Leu74Ser) that relieves the eps operon 

from repression and enhance exopolysaccharide production, allowed galE mutant cells to grow in the 

presence of galactose. This indicates that UDP-galactose can serve as a precursor for 

exopolysaccharide production and that enhanced EPS production can rescue galE mutant cells in the 

presence of galactose. However, mutations in the sinR gene could only be observed when a second 

copy of the galT gene encoding the UDP-galactose synthesizing protein was introduces into the 

chromosome. Otherwise, only mutations within the galT gene could be isolated. This indicates that 

mutations in galT are the most obvious ones and that the selection pressure for a galE mutant in the 

presence of galactose is too high to observe the formation of “minor” mutations within e. g. the sinR 

gene. As observed for the ymdB sinR suppressors the identified mutations cluster within the 

interaction domain but the locations differ from the ones identified in this work and Kruse (2013).  

Strikingly, Leiman et al. (2014) observed that not only biofilm defective mutants acquire mutations in 

the sinR gene but also the biofilm forming NCIB3610 strain does so when cultivated for a long period 

of time (at least 6 day in liquid agitated medium). Again, mutations in the interaction domain of SinR 

(Gly89Arg, Ser107Pro) were identified but also a silent mutation in the codon for serine 57 was 

discovered. This silent mutation (also compare Kruse, 2013) suggests that certain codons influence 

ribosome processing and thereby control SinR protein amounts as already suggested by 

Subramaniam et al. (2013). 

In summary, mutations in the gene for the master regulator SinR seem to be a common way to 

restore biofilm formation and surface attachment to biofilm-defective mutants. Since mutations in 

the sinR gene have severe effects on cell differentiation, especially the switch between sessile and 

motile life style, it appears unlikely that mutations within sinR are favorable under natural, frequently 

changing conditions.  

5.3. Tyrosine kinases control cell differentiation 

Novel regulatory tyrosine phosphorylation adds even more complexity to the regulatory network 

for cell differentiation 

Recent studies in B. subtilis suggest that tyrosine phosphorylation plays an important role in the 

regulation of biofilm formation and cell differentiation, in addition to known mechanisms of 

transcriptional regulation and protein-protein interactions (compare 2.2; Vlamakis et al., 2013, 

Mielich-Süss & Lopez, 2014; Mhatre et al., 2014). In Gram-positive bacteria, tyrosine kinases consist 
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of a transmembrane modulator protein and a cytosolic kinase protein (Grangeasse et al., 2012). 

B. subtilis encodes two protein tyrosine kinase/ modulator couples, PtkA/ TkmA and EpsB/ EpsA. 

Interestingly, the simultaneous deletion of either both kinase or modulator genes totally abolished 

extracellular polysaccharide production causing a biofilm defect. The single mutants did not 

phenocopy the kinase or modulator double mutants and were still able to produce 

exopolysaccharides. However, colony structure and pellicle formation was affected in the single 

mutants (Gerwig et al., 2014) suggesting that both kinase systems contribute in a distinct way to 

biofilm formation. The loss of the EpsB kinase reduced wrinkle formation and the production of 

extracellular polysaccharides, but did not destroy the rough colony surface, which is indicative of the 

formation of fruiting bodies for sporulation (Elsholz et al., 2014; Gerwig et al., 2014). Thus, EpsB does 

not seem to affect sporulation. In contrast, loss of the EpsB homolog PtkA did not affect extracellular 

polysaccharide production but instead drastically reduced sporulation in biofilm cells thus leading to 

a loss of the rough appearance of the outer region of the colonies (Kiley & Stanley-Wall, 2010; 

Gerwig et al., 2014). These observations indicate that the protein tyrosine kinases EpsB and PtkA 

influence cell differentiation of B. subtilis at different levels: EpsB acts downstream of the central 

regulator of cell differentiation, Spo0A, whereas PtkA is likely to act upstream of Spo0A (Fig. 5.2). 

 

How do the tyrosine kinases PtkA and EpsB influence cell differentiation? 

In order to influence sporulation efficiency as shown by Kiley & Stanley-Wall (2010), PtkA most likely 

has to affect the phosphorelay that governs the phosphorylation state of the Spo0A protein. Since 

PtkA is a tyrosine kinase it seems reasonable that this influence involves post-translational tyrosine 

phosphorylation rather than acting e.g. on transcriptional level. Unfortunately, the most difficult 

question has not yet been solved: what is the phosphorylation target of the PtkA kinase and how can 

we identify it?  

In order to explain altered biofilm formation and the sporulation defect of the ptkA mutant, 

Kiley & Stanley-Wall (2010) conducted an intensive search for possible phosphorylation targets but 

failed to identify one. Deletion of the long-known PtkA targets (the UDP-glucose dehydrogenases 

Ugd and TuaD) did not exert an effect on biofilm formation. Moreover, several other targets 

proposed by large-scale phosphoproteomics and other studies (Macek et al., 2007; Jers et al., 2010) 

were not of relevance. Therefore, it remains unclear how PtkA affects biofilm formation and 

sporulation. Unfortunately, a recent phosphoproteome study did not reveal obvious targets related 

to the phosphorelay (Ravikumar et al., 2014), except the regulator of transition phase genes AbrB 

which was found to be phosphorylated on a tyrosine. However, the physiological relevance of this 

phosphorylation is unclear, and serine phosphorylation of AbrB was observed in another study (Kobir 
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et al., 2014). Clearly, more work is required to dissect the potential control of AbrB activity by 

phosphorylation. 

 

Figure 5.2. Schematic overview how the bacterial tyrosine kinases PtkA and EpsB control cell differentiation 

at different levels. The PtkA kinase controls sporulation and biofilm matrix expression by acting upstream of 

the central regulator of cell differentiation Spo0A by an unknown mechanism. In contrast, the EpsB kinase acts 

downstream of the Spo0A protein and controls exopolysaccharide production by phosphorylation of the 

glycosyltransferase EpsE. Arrows indicate activating effects, T-bars inhibitory effects. EPS = extracellular 

polysaccharides, P = phosphate group. 

A more or less obvious problem for the identification of tyrosine phosphorylated proteins with the 

potential to be of regulatory relevance for control of biofilm formation and sporulation is that most 

of the experiments published so far were performed with cells from domesticated laboratory strains 

harvested from exponentially growing cultures and under non-biofilm inducing conditions. Thus, it 

seems reasonable that not all proteins relevant for biofilm formation and especially sporulation are 

expressed under the tested conditions. Furthermore, regulatory phosphorylations are considered as 

a fast way to adapt cellular processes to environmental changes. Thus, it is likely that not all 

phosphorylations are present permanently. Interestingly, all so far known tyrosine phosphorylations 

with functional relevance have been identified by attempts other than large-scale 

phosphoproteomics in the first run. Examples include the regulator of unsaturated fatty acid 

synthesis FatR (Derouiche et al., 2013), single stranded DNA-binding proteins (Mijakovic et al., 2006) 

and the glycosyltransferase EpsE, a target of the tyrosine kinase EpsB (Elsholz et al., 2014). All of 

these proteins, except the UDP-glucose dehydrogenase Ugd (by Macek et al., 2007), were not 

identified in the latest large-scale phosphoproteome experiments (Macek et al., 2007; Ravikumar et 
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al., 2014). An example for non-functional phosphorylation sites from B. subtilis is the FlgN (formerly 

YvyG) protein that was found to be phosphorylated on a tyrosine residue (Macek et al., 2007; Jers et 

al., 2010) and on an arginine residue (Elsholz et al., 2012). Furthermore, Jers et al. (2010) proposed 

that tyrosine phosphorylation regulated cellular localization of FlgN that is required for flagella 

assembly. Control of flagella assembly and motility by phosphorylation of FlgN was an attractive idea 

but mutational analysis of the phosphorylation sites rebutted a functional relevance (Cairns et al., 

2014b). Thus, results from large-scale phosphoproteomic experiments have to be considered 

carefully. 

In conclusion, identification of the PtkA phosphorylation target and explanation of the sporulation 

defect of the mutant remains elusive but it is tempting to speculate that the highly complex network 

for the control of Spo0A is affected by the PtkA kinase. Since cross-phosphorylation of kinases is an 

established concept in eukaryotes and hints supporting this idea in prokaryotes are emerging (Baer 

et al., 2014; Shi et al., 2014a, b) phosphorylation of phosphorelay proteins is a highly attractive 

hypothesis. 

The second level of regulatory tyrosine phosphorylation is provided by the EpsB kinase that 

phosphorylates the glycosyltransferase EpsE (Elsholz et al., 2014). The kinase and the 

phosphorylation target are both encoded in the eps operon for exopolysaccharide production. 

Hence, the regulation of the two corresponding genes is very similar. The eps operon is only strongly 

expressed if the SinR anti-activator protein is inhibited by either of its antagonists SinI and SlrR under 

biofilm forming conditions (Winkelman et al., 2013; Kearns et al., 2005; Newman et al., 2013). This 

observation implies that EpsB-mediated phosphorylation might not have a global effect and that the 

phosphorylated target is among the proteins expressed under biofilm forming conditions that are 

also subject to repression by SinR. Indeed, deletion of the epsB gene only affects exopolysaccharide 

production but leaves sporulation unaffected (Gerwig et al., 2014). Strikingly, deletion of the gene for 

the EpsE glycosyltransferase leads to a complete loss of exopolysaccharide production and complex 

colony formation, whereas deletion of the gene for the EpsB kinase has a milder effect (Guttenplan 

et al., 2010). Therefore, it is tempting to speculate that PtkA can partially take over the function of 

EpsB. However, this needs to be demonstrated experimentally. 

 

Functional cross-talk between tyrosine kinase/ modulator couples 

Straight signal transduction is an important issue for many conserved multi-component signal 

transduction system families and has been extensively studied for two-component regulatory 

systems and phosphotransferase system-controlled RNA-binding antitermination proteins. These 

systems have evolved in a way to avoid non-cognate interactions either by restricting the 

interactions with non-cognate proteins partners, ligands, and target molecules. Moreover, 

differential gene expression of the non-cognate components has been observed to prevent non-



5. Discussion 97 
 
productive cross-talk (Schilling et al., 2006; Szurmant & Hoch, 2010; Hübner et al., 2011; Podgornaia 

& Laub, 2013). However, this might be different for regulatory tyrosine phosphorylation, as 

suggested for the interplay between EpsB and PtkA. In yeast (Shi et al., 2014b) and bacterial two-

hybrid studies (our unpublished results) the TkmA modulator and the EpsB kinase interact with each 

other, whereas the EpsA modulator and the PtkA kinase do not interact. Additionally, a genetic 

analysis of a potential cross-talk in the background of the laboratory strain 168 revealed that 

simultaneous loss of PtkA and EpsA does not affect stable pellicle formation, whereas simultaneous 

deletion of the genes for EpsB and TkmA inhibited stable pellicle formation. These observations 

further support a functional connection between the two systems. However, confirmation of this 

result in the background of the NCIB3610 wild type strain was not successful (results not shown). 

Although the functional relevance of the TkmA/EpsB cross-talk remains unclear, similar observations 

come from Staphylococcus aureus that also contains two similar tyrosine kinase/ modulator couples. 

In this case, the Cap5A1 modulator protein of one couple and the Cap5B2 protein tyrosine kinase of 

the other couple show functional cross-talk suggesting that interplay between different tyrosine/ 

modulator couples might not be limited to B. subtilis (Soulat et al., 2007). 

5.4. Outlook 

Survival in frequently changing environments requires the ability to adapt to new conditions. This 

adaptation can be achieved on the genetic level by acquiring mutations or, without any mutations, 

on the level of gene expression and regulation. This work pointed out the relevance of tyrosine 

phosphorylation for the regulation of biofilm formation and addressed the function of the YmdB 

protein in the control of protein amounts of the SinR biofilm regulator. 

The identification of elevated SinR protein amounts in the ymdB mutant was a surprising observation 

but further explained the biofilm defect of the mutant. In order to test if the SinR protein is subject 

to regulatory proteolysis in the wild type strain deletion of the most promising protease genes (e.g. 

ClpX and ClpP) need to be constructed. Then the mutants have to be checked for a biofilm phenotype 

and in case of differences to the wild type for SinR protein amounts. 

In general, it remains to be further studied if elevated SinR protein amounts are really present under 

biofilm forming conditions or if they are induced in response to the cultivation conditions. For this 

purpose, protein extract from complex colony samples need to be isolated and tested for SinR 

protein amounts by Western blotting. In parallel, an elegant way to test if the biofilm defect of the 

ymdB mutant is solely due to increased SinR protein levels is the overexpression of SinR in the wild 

type background and assay of biofilm formation. Since SinR expression is considered to be constant, 

elevated SinR protein amounts in the ymdB mutant are an unusual event. However, Mandic-Mulec 

et al. (1995) found that overexpression of SinR inhibits induction of spo0A gene expression for the 

initiation of sporulation. Vice versa deletion of the sinR gene increased the induction of spo0A at the 
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initial state of sporulation. Decreased abundance of the Spo0A protein would explain decreased 

expression of the SinI antagonist and induced expression of the AbrB regulator leading to a biofilm 

defect. 

To further elucidate the function of the YmdB phosphodiesterase the in vivo RNA co-purification 

experiments need to be repeated without any cross-linking agents. This way, it should be possible to 

enhance the specificity of the method. To get a global view of the YmdB “RNA interactome” RNA 

sequencing approaches of the co-purified RNA could reveal novel targets. Especially small regulatory 

RNAs and RNAs encoding proteins involved in proteolysis might be promising candidates for YmdB 

processing. One challenging aspect of this experiment will be to ensure that the amount of co-

purified RNA is sufficient for RNA sequencing approaches. In this context it might be useful to 

perform in vitro RNase assays with the YmdB protein to show that the protein can in general degrade 

RNA. This way the interplay between YmdB and RNase Y could also be tested.  

Finally, identification of unknown mutation that partially restored matrix gene expression in the 

ymdB background will, hopefully, shed some additional light on the role of ymdB in biofilm 

formation. 

The detection of a regulatory interplay between protein tyrosine phosphorylation and classical 

sensing via the phosphorelay in the control of cell differentiation in B. subtilis is one of the most 

exciting results of recent studies. This is underlined by the observation of extensive links between the 

different signal transduction systems that involve post-translational modifications (Shi et al., 2014a, 

b; van Noort et al., 2012). One main task for future work is the identification of phosphorylation 

targets of the tyrosine kinase PtkA in order to get a better understanding of its implication in biofilm 

formation and sporulation. To demonstrate that PtkA affects cell differentiation upstream of the 

central regulator Spo0A, the phosphorylation state of Spo0A has to be analyzed in a ptkA deletion 

mutant. Furthermore, large-scale phosphoproteomics under biofilm-promoting conditions could help 

to identify potential tyrosine phosphorylated targets. Additional tasks are the identification of 

substances that can be sensed by the PtkA modulator protein TkmA and to further dissect the 

potential cross-talk between the two known tyrosine kinase/ modulator couples EpsB/ EpsA and 

PtkA/ TkmA in B. subtilis. One open question that arose from the publication of Elsholz et al. (2014) is 

how exactly autophosphorylation at the C-terminal tyrosine cluster of EpsB influences protein 

activity. The authors showed that mutations of the residues Tyr-225 and Tyr-227 to a phenylalanine 

induced complex colony structure, whereas mimicking a phosphorylation by exchanging the two 

residues by a glutamate reduced complex colony structure similar to the deletion mutant. This is 

controversy to the results obtained by Kiley & Stanley-Wall (2010) for the PtkA kinase and also for 

EpsB (personal communication Nicola Stanley-Wall). In their hands blocking the phosphorylation of 

the C-terminal tyrosine residues of EpsB and PtkA by exchanging them against alanine residues did 

not alter biofilm formation. Therefore, the stability of the mutated proteins needs to be tested to 
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assure that this is not affected. However, effects on protein instability are unlikely because this 

would lead to less structured colonies as shown for the deletion mutant. 
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7. Appendix  

7.1. Materials 

7.1.1. Chemicals 

Acrylamide Carl Roth, Karlsruhe 

Agar Carl Roth, Karlsruhe 

Agarose Peqlab, Erlangen 

Ammonium iron(III) citrate Sigma-Aldrich, Taufkirchen 

Ammonium persulfate Sigma-Aldrich, Taufkirchen 

Antibiotics Carl Roth, Karlsruhe 

Sigma-Aldrich, Taufkirchen 

Blocking reagent Roche Diagnostics, Mannheim 

β-mercaptoethanol Sigma-Aldrich, Taufkirchen 

Bromophenol blue Serva, Heidelberg 

Casein, acidic / hydrolysed Sigma-Aldrich, Taufkirchen 

CDP* Roche Diagnostics, Mannheim 

Coomassie Brillant Blue, R350 Amersham, Freiburg 

D(+)-Glucose Merck, Darmstadt 

D-Desthiobiotin IBA, Göttingen 

dNTPs Roche Diagnostics, Mannheim 

Ethidium bromide Sigma-Aldrich, Taufkirchen 

Paraformaldehyde Carl Roth, Karlsruhe 

Yeast extract Oxoid, Heidelberg 

Skim milk powder, fat-free Carl Roth, Karlsruhe 

Sodium dodecyl sulfate Serva, Heidelberg 

Stains all dye AppliChem, Darmstadt 

Nutrient broth Carl Roth, Karlsruhe 

Strep-Tactin SepharoseTM IBA, Göttingen 

Ni2+-NTA Sepharose IBA, Göttingen 

TEMED Carl Roth, Karlsruhe 

Tryptone Oxoid, Heidelberg 

Tween 20 Sigma, München 

X-Gal Peqlab, Erlangen 

Other chemicals were purchased from Merck, Serva, Sigma-Aldrich or Carl Roth. 
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7.1.2. Utilities 

6-well plates SPL Life Sciences, South Korea 

24-well plates TPP, Switzerland 

Single-use syringes (5 ml, 10 ml) Becton Dickinson Drogheda, Ireland 

Reaction tubes Greiner, Nürtingen 

Falcon tubes Sarstedt, Nürmbrecht 

Gene Amp Reaction Tubes (PCR) Perkin Elmer, Weiterstadt 

Glas pipettes  Brand, Wertheim 

Cuvettes (microlitre, plastic) Greiner, Nürtingen 

Petri dishes Greiner, Nürtingen 

Microlitre pipettes 

(2µl, 20µl, 200µl, 1000µl) 

Eppendorf, Hamburg & Gilson, Düsseldorf 

Nylon membrane, positively charged Roche Applied Science 

Pipette tips Sarstedt, Nürmbrecht 

Poly-Prep Chromatography Columns Bio-Rad Laboratories GmbH, München 

Polyvinylidene fluoride membrane (PVDF) Bio-Rad Laboratories GmbH, München 

Centrifuge cups Beckmann, München 

7.1.3. Equipment 

Fluorescence microscope Axioskop 40 FL + 

camera AxioCam MRm 

Carl Zeiss, Göttingen 

SteREO Lumar.V12 stereo microscope Carl Zeiss, Göttingen 

Steam autoclave Zirbus, Bad Grund 

Biofuge fresco Heraeus Christ, Osterode 

Blotting device VacuGeneTMXI Amersham, Freiburg 

ChemoCam Imager Intas, Göttingen 

High accuracy scale Sartorius, Göttingen 

Gel electrophoresis device Waasetec, Göttingen 

Heating bloc Dri Block DB3 Waasetec, Göttingen 

Horizontal shaker GFL, Burgwedel 

Refrigarated centrifuge PrimoR Heraeus Christ, Osterode 

Incubator shaker Innova 2300 New Brunswick, Neu-Isenburg 

Magnetic stirrer JAK Werk, Staufen 

Mikro-Dismembrator S Satorius, Göttingen 

pH meter Knick, Berlin 
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Nanodrop ND-1000 Thermo Scientific, Bonn 

French pressure cell press G. Heinemann, Schwäbisch Gmünd 

Standard power pac Bio-Rad Laboratories, California, USA 

Spectral photometer Ultraspec 2000 Amersham, Freiburg 

Thermocycler Tpersonal, LabCycler SensorQuest, Göttingen 

Ultracentrifuge Sorvall WX Ultra Pro 80 Thermoscientific, Bonn 

Scale Sartorius universal Sartorius, Göttingen 

Water desalination plant Millipore, Schwalbach 

7.1.4. Commercial systems  

Gene Ruler DNA ladder mix Thermo Scientific, St. Leon-Rot 

iScript One-Step RT-PCR kit with SYBR green Bio-Rad Laboratories GmbH, München 

Nucleospin Plasmid kit Macherey-Nagel, Düren 

QIAquick PCR-Purification kit Qiagen, Hilden 

DNeasy Blood&Tissue Kit (250) Qiagen, Hilden 

RNeasy Plus Mini Kit (50) Qiagen, Hilden 

Unstained Protein Marker Thermo Scientific, St. Leon-Rot 

Prestained Protein Marker Thermo Scientific, St. Leon-Rot 

7.1.5. Antibodies and enzymes 

Rabbit anti-FLAG polyclonal antibodies Sigma-Aldrich, Hamburg 

Secondary antibody anti-rabbit IgG-AP coupled Promega, Mannheim 

RNase A Roche Diagnostics, Mannheim 

DNase I  Thermo Scientific, Lithuania 

Lysozyme from chicken egg white Carl Roth, Karlsruhe 

PhusionTM DNA polymerase Finnzymes, Espoo Finland 

Restriction endonucleases Thermo Scientific, Lithuania 

FastAP alkaline phosphatase Thermo Scientific, St. Leon-Rot 

T4 DNA ligase Thermo Scientific, Lithuania 

Taq DNA polymerase Roche Diagnostics, Mannheim 
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7.2. Bacterial strains 

 

Table 7.1. B. subtilis strains constructed in this work 

1
arrows indicate construction by transformation, asteriks by SPP1 phage transduction 

Name Genotype Construction
1 

GP1517 trpC2 ∆epsA::aphA3 (w/o terminator) LFH  168 

GP1518 trpC2 ∆epsB::aphA3 (w/o terminator) LFH  168 

GP1519 trpC2 ∆epsAB::aphA3 (w/o terminator) LFH  168 

GP1520 trpC2 ∆ptkA::spc (w/o terminator) LFH  168 

GP1521 trpC2 ∆epsB::aphA3 ∆ptkA::spc GP1520  GP1518 

GP1522 trpC2 Pxyl-epsA-gfpmut1::amyE spc 

∆epsA::aphA3 

pGP2112  168  

GP1523 trpC2 Pxyl-epsB-gfpmut1::amyE spc 

∆epsB::aphA3 

pGP2113  168 

GP1524 trpC2 ∆epsA::aphA3  ∆ptkA::spc GP1517  GP1520 

GP1525 trpC2 ∆epsAB::aphA3 ∆ptkA::spc GP1519  GP1520 

GP1526 trpC2 epsA-FLAG 3x spc pGP2127  168 

GP1527 trpC2 ∆epsB::aphA3 ∆ptkA::spc  

amyE::(hag-yfp cat) 

BP496  GP1521 

GP1528 trpC2 sfp
+ 

ermC epsC
+
 swrA

+ 
degQ

+
 amyE::P-

rapP phrP cat (yvzG/yvyD Ωspc) ∆epsAB::aphA3  

GP1519  AM373 

GP1529 trpC2 ∆tkmA-ptkA::spc (w/o terminator) LFH  168 

GP1530 trpC2 ∆epsB ∆tkmA-ptkA::spc GP1529  GP1518 

GP1531 trpC2 ∆epsB::aphA3 ∆ptkA::spc  

lacA:: p(tapA-yfp ermC) 

DL714  GP1521 

GP1532 trpC2 ∆epsB::aphA3 ∆ptkA::spc xkdE::Pxyl-epsB 

ermC 

pGP2129  GP1521 

GP1533 trpC2 amyE::PepsA-epsA-FLAG 2x (!) cat pGP2128 (ScaI)  168 

GP1534 ∆epsA::aphA3 epsC
-
 GP1517  NCIB3610* 

GP1535 trpC2 sfp
+ 

ermc epsC
+
 swrA

+ 
degQ

+
 amyE::P-rapP 

phrP cat (yvzG/yvyD Ωspc) ∆epsB::aphA3  

GP1518  ALM373 

GP1536 trpC2 ∆epsA::aphA3 ∆tkmA-ptkA::spc GP1517  GP1529 

GP1537 trpC2 lacA::p(tapA-yfp ermC)  DL714  168 

GP1538 trpC2 ∆epsB::aphA3 lacA::p(tapA-yfp ermC) DL714  GP1518 

GP1539 trpC2 ∆ptkA::spc lacA::p(tapA-yfp ermC) DL714  GP1520 

GP1540 sfp
+ 

ermC epsC
+
 swrA

+ 
degQ

+
 amyE::P-rapP phrP 

cat (yvzG/yvyD Ωspc) ∆epsA::aphA3 

GP1517  ALM373 

GP1541 trpC2 epsB-FLAG 3x spc pGP2131  168 
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GP1542 trpC2 xkdE::(Pxyl-epsB ermC) pGP2129  168 

GP1543 trpC2 ∆epsB::aphA3 ∆ptkA::spc xkdE::(Pxyl-

empty ermC) 

pGP886  GP1521 

GP1544 trpC2 ptkA::ermC (w/o terminator) LFH  168 

GP1545 trpC2 lacA::(Pxyl- spo0F aphA3)  pGP2120  168 

GP1546 trpC2 ∆epsB::aphA3 ∆ptkA::spc  

∆sinR::tet 

GP736  GP1521 

GP1547 trpC2 epsB-FLAG spc 3x ∆sinR::tet GP736  GP1541 

GP1548 trpC2 abrB::ermC (w/o terminator) LFH  168 

GP1549 trpC2 epsAB::aphA3 epsC
+
 ptkA::ermC GP1528  GP1544 

GP1550 trpC2 epsAB::aphA3 epsC
+
 ptkA::ermC sinR::spc TMB079  GP1549 

GP1556 trpC2 ymdB::cat abrB::ermC GP1548  GP922 

GP1557 trpC2 ymdB::cat sinR::spc abrB::ermC GP1548  GP923 

GP1558 trpC2 ymdB::aphA3 (w/o terminator) LFH  168 

GP1559 trpC2 ymdB::aphA3 amyE::tapA-lacZ cat GP1558  GP993 

GP1560 trpC2 ymdB::spc lacA::(Pxyl- spo0F aphA3) 
 

pGP2120  GP583 

GP1561 amyE::p(tapA-yfp spc) bglS::(hag-cfp aphA3) BP494  DL382* 

GP1562 sinR::spc TMB079  NCIB3610* 

GP1563 trpC2 ∆sunA::aphA3 ∆sunA  168 

GP1564 trpC2 ∆sunA::aphA3 sinR::spc ∆sunA  TMB079 

GP1565 trpC2 ∆sunAI::aphA3 ∆sunA ∆sunI  168 

GP1566 trpC2 ∆tkmA::spc LFH  168 

GP1567 trpC2 ∆epsA::aphA3 ∆tkmA::spc  GP1566  GP1517 

GP1568 trpC2 ∆epsA::aphA3 ∆tkmA::spc  xkdE::Pxyl-epsA 

ermC 

pGP2147  GP1567 

GP1569 trpC2 epsA-gfp spc  pGP2148  168 

GP1570 trpC2 epsA-gfp spc ∆sinR::tet  GP736  GP1569 

GP1571 trpC2 ∆tasA::cat LFH  168 

GP1572 trpC2 ∆epsB::aphA3 ∆tkmA::spc GP1566  GP1518 

GP1573 trpC2 ymdB::aphA3  LFH  168 

GP1574 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

BP494  GP846* 

GP1575 ∆epsB::aphA3 epsC
+
 GP1535  NCIB3610* 

GP1576 trpC2 ymdB::aphA3 amyE::tapA-lacZ cat GP1573  GP993 

GP1577 ∆epsB::aphA3 ∆ptkA-markerless GP1535  NRS2544*  

GP1578 trpC2 ∆ymdB::spc ∆ltaSA::ermC GP1397 ∆ltaSA (yfnI)  GP583 

GP1579 trpC2 ∆ptkA::spc ∆epsB::aphA3 xkdE::Pxyl-ptkA 

ermC 

pGP2151  GP1521 
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GP1580 trpC2 lacA::Pxyl-spoVS aphA3 pGP2152  168 

GP1581 trpC2 ∆ymdB::spc lacA::Pxyl-spoVS aphA3 pGP2152  GP583 

GP1582 trpC2 xkdE::Pxyl-ykoW ermC pGP2153  168 

GP1583 trpC2 lacA::Pxyl-yuxH aphA3 pGP2154  168 

GP1584 trpC2 ∆sinR::spc amyE::PepsA-epsA-FLAG 2x (!) 

cat 

pGP2128  TMB079 

GP1585 trpC2 lacA::Pxyl-yuxH aphA3 xkdE::Pxyl-ykoW 

ermC 

GP1582  GP1583 

GP1586 ∆tasA::cat GP1571  NCIB3610* 

GP1587 trpC2 ∆ptkA::cat (w/o terminator) LFH  168 

GP1588 trpC2 ∆epsA::aphA3 epsB-FLAG 3x spc GP1517  GP1541 

GP1589 trpC2 epsA-FLAG 3x spc ∆sinR::tet GP1526  GP736 

GP1590 trpC2 ΔyuxH::aphA3 LHF  168 

GP1591 trpC2 ΔytrP::tet  LFH  168 

GP1592 trpC2 ΔydaK::aphA3 (w/o terminator) LFH  168 

GP1593 trpC2 ΔymdB::spc ΔykuI::tet ΔykoW::cat  GP1324  GP714 

GP1594 trpC2 ΔyybT::spc ΔyhcK::ermC ΔykoW::cat GP998  GP715 

GP1595 trpC2 ΔymdB::spc ΔyuxH::aphA3 ΔykuI::tet 

ΔykoW::cat  

GP1590  GP1593 

GP1596 trpC2 ΔytrP::tet ΔyybT::spc ΔyhcK::ermC 

ΔykoW::cat 

GP1591  GP1594 

GP1597 trpC2 ΔyuxH::aphA3 ΔykuI::tet GP1324  GP1590 

GP1598 trpC2 ΔydaK:: aphA3 ΔytrP::tet ΔyybT::spc 

ΔyhcK::ermC ΔykoW::cat 

GP1592  GP1596 

GP1599 trpC2 ΔykoW::cat ΔyuxH::aphA3 ΔykuI::tet  GP850  GP1597 

GP1600 ∆epsA::aphA3 epsC
+
 GP1540  NCIB3610* 

GP1601 trpC2 ∆spoVS::cat LFH  168 

GP1602 ∆tkmA::spc GP1566  NCIB3610* 

GP1603 ∆epsB::aphA3 ∆sinR::spc GP1562  GP1575 

GP1604 ∆ptkA ∆sinR::spc GP1562  NRS2544 

GP1605 ∆epsB::aphA3 ∆ptkA-markerless ∆sinR::spc GP1562  GP1577 

GP1606 ∆epsA-O::tet ∆sinR::spc GP1562  NRS2450 

GP1607 ∆epsB::aphA3 ∆tkmA::spc GP1602  GP1575 

GP1608 ∆ptkA ∆epsA::aphA3  GP1600  NRS2544 

GP1609 trpC2 ∆ptpZ::spc LFH  168 

GP1610 trpC2 ∆ptkA-ptpZ::spc LFH  168 

GP1611 ∆epsA::aphA3 ∆tkmA::spc GP1602  GP1600* 

GP1612 trpC2 amyE::PlutA-lacZ pGP2149  168 
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GP1613 trpC2 ∆sinR::spc amyE::PlutA-lacZ pGP2149  TMB079 

GP1614 trpC2 amyE::PywbD-lacZ pGP2150  168 

GP1615 trpC2 ∆sinR::spc amyE::PywbD-lacZ pGP2150  TMB079 

GP1616 ∆ptpZ::spc GP1609  NCIB3610* 

GP1617 ∆ptkA-ptpZ::spc GP1610  NCIB3610* 

GP1618 (ymdB- cat) GP966  NCIB3610* 

GP1619 ymdB
E39Q

- cat GP969  NCIB3610* 

GP1620 trpC2 tkmA-FLAG pGP2167  168 

GP1621 trpC2 ∆epsA tkmA-FLAG pGP2167  GP1517 

GP1622 ∆sinR-tasA::cat  GP1672  NCIB3610* 

GP1623 ∆epsB::aphA3 ∆sinR-tasA::cat GP1672  GP1575* 

GP1624 ∆ptkA-markerless ∆sinR-tasA::cat GP1672  NRS2544* 

GP1625 ∆epsB::aphA3 ∆ptkA-markerless ∆sinR-tasA::cat GP1672  GP1577* 

GP1626 ∆epsA::aphA3 ∆sinR-tasA::cat GP1672  GP1600* 

GP1627 ∆tkmA::spc ∆sinR-tasA::cat GP1672  GP1602* 

GP1628 ∆epsA::aphA3 ∆tkmA::spc ∆sinR-tasA::cat GP1672  GP1611* 

GP1629 ∆epsA-O::tet ∆sinR-tasA::cat GP1672  NRS2450* 

GP1630 trpC2 amyE::PepsA-epsB DxD-His-lacI cat 

∆sinR::spc 

TMB079  NRS3338 

GP1631 trpC2 amyE::PepsA-His-epsB DxD-lacI cat 

∆sinR::spc 

TMB079  NRS3339 

GP1632 trpC2 amyE::PepsA-epsB-His-lacI cat 

∆sinR::spc 

TMB079  NRS3589 

GP1633 trpC2 amyE::PepsA-His-epsB-lacI cat 

∆sinR::spc 

TMB079  NRS3590 

GP1634 ∆epsB::aphA3 ∆ptkA-markerless xkdE::Pxyl-epsB 

ermC 

GP1542  GP1577* 

GP1635 ∆epsB::aphA3 ∆ptkA-markerless amyE::PepsA-

epsB lacI cat 

NRS2543  GP1577* 

GP1636 ∆epsA::aphA3 ∆tkmA::spc xkdE::Pxyl-epsA ermC GP1568  GP1611* 

GP1637 ∆epsAB::aphA3  GP1528  NCIB3610* 

GP1638 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor (SinR operator 

between the epsA and slrR genes) 

GP1639 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

BpsA (BcsA): Val257Leu (GTG  CTG) 

GP1640 trpC2 ∆ymdB::spc PcomG-gfp cat IDJ046  GP583 

GP1641 amyE::PsspE-2G-gfp cat stJS01  NCIB3610* 

GP1642 ∆ymdB::spc amyE::PsspE-2G-gfp cat stJS01  GP921* 
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GP1643 PcomG-gfp cat IDJ046  NCIB3610* 

GP1644 ∆ymdB::spc PcomG-gfp cat IDJ046  GP921* 

GP1645 ∆ymdB::spc Pskf-gfp cat IDJ053 GP921* 

GP1646 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

(location not known) 

GP1647 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

(unknown location) 

GP1648 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

(unknown location) 

GP1649 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

SinR: Trp104Arg (TGG  AGG) 

GP1650 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor 

SinR: Ala85Thr (GCG  ACG) 

GP1801 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor 

SinR: Ala85Thr (GCG  ACG) 

GP1802 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

SinR: Ala85Thr (GCG  ACG) 

GP1803 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor 

SinR: Ala85Thr (GCG  ACG) 

GP1804 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor 

SinR: Ala85Thr (GCG  ACG)  

GP1805 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor 

SinR: Leu99Ser (TTA  TCA) 

GP1806 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

SinR: Ala85Thr (GCG  ACG) 

GP1807 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

SinR: Ala85Thr (GCG  ACG) 

GP1808 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor  

SinR: Ala85Thr (GCG  ACG) 

GP1809 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) 

GP1574 suppressor 

SinR: Leu99Ser (TTA  TCA) 

GP1810 trpC2 ∆ymdB::spc ∆pnpA::aphA3 GP584  GP583 

GP1811 trpC2 epsAB::aphA3 epsC
+
 ptkA::ermC 

∆mcsB::spc 

BP69  GP1549 

GP1812 ∆bslA::cat NRS2097 suppr. (unknown location) 

GP1813 ∆bslA::cat NRS2097 suppr. (unknown location) 

GP1814 ∆epsB::aphA3 ∆ptkA::spc GP1577 suppr. (unknown location) 

GP1815 ∆epsA-O::tet NRS2450 suppr. (unknown location) 

GP1816 ∆tasA::cat GP1586 suppr. (unknown location) 
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GP1817 ∆tasA::cat GP1586 suppr. (unknown location) 

GP1818 ∆ymdB::cat amyE::p(tapA-yfp spc) bglS::(hag-

cfp aphA3) ∆sinR::tet 

GP736  GP1574* 

GP1819 trpC2 ∆tasA::aphA3 LFH  168 

   

Table 7.2. Foreign strains used in this work 

Name Genotype Paper/ received from 

E. coli 
 

BTH101 F-, cya-99, araD139, galE15, galK16, rspL1 

(Strr), hsdR2, mcrA1, mcrB1 

Euromedex, BACTH-System 

(Karimova et al., 1998) 

BL21 F
-
,
 
lon ompT rBmB hsdS gal(cIts857 indI Sam7 

nin5 lacUV5-T7 gene1) 

(Sambrook et al., 1989) 

DH5α 80dlacZΔM15, recA1, endA1, gyrA96, thi-1, 

hsdR17(rK,mK+),supE44,relA1, 

deoR,ΔlacZYAargF)U169 

Woodcock et al., 1989 

XL1 Blue recA1 endA1 gyrA96 thi-1 hsdR17 supE44 

relA1 lac (F’ proAB lacI
q
 Z∆ (M15 Tn10 

(Tet
R
)) 

Stratagene 

B. subtilis  
 

AM373 sfp
+ 

ermC epsC
+
 swrA

+ 
degQ

+
 amyE::P-rapP 

phrP cat (yvzG/yvyD Ωspc) 

McLoon et al. (2011) 

BP69 trpc2 ∆mcsB::spc K. Gunka, AG Commichau 

BP494 trpC2 bglS::(hag-cfp aphA3) Bisicchia et al., 2010; lab collection 

BP496 trpC2 amyE::(hag-yfp cat)  Bisicchia et al., 2010; lab collection 

CJ1 ∆ptkA (w/o a marker) Carsten Jers/ Ivan Mijakovic; lab collection 

DL382 amyE::p(tapA-yfp spc) in NCIB3610 Daniel Lopez, Würzburg; lab collection 

DL714 trpC2 lacA:: p(tapA-yfp ermC) in CU1065  Daniel Lopez, Würzburg; lab collection 

GP583 trpc2 ∆ymdB::spc Diethmaier et al. (2011) 

GP584 trpc2 ∆pnpA::spc Pietack (2010) PhD thesis 

GP714 trpC2 ∆ykoW::cat ∆ymdB::spc K. Gunka 

GP715 trpC2 ∆yhcK::ermC ∆ykoW::cat K. Gunka 

GP736 trpC2 sinR::tet C. Herzberg 

GP846 amyE::p(tapA-yfp spc) ∆ymdB::cat K. Gunka 

GP850 trpC2 ∆ykoW::cat K. Gunka 

GP922 trpC2 ΔymdB::cat Diethmaier et al. (2011) 

GP923 trpC2 ΔymdB::cat ΔsinR::spc Diethmaier et al. (2011) 

GP966 trpC2 (ymdB-cat) Diethmaier et al. (2014) 

GP969 trpC2 ymdB
E39Q

- cat Diethmaier et al. (2014) 
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GP993 trpC2 amyE::(tapA-lacZ cat) Diethmaier et al. (2011) 

GP994 trpC2 amyE::(tapA-lacZ cat) ΔymdB::spc Diethmaier et al. (2011) 

GP1324 trpC2 ΔykuI::tet Mehne (2013) PhD thesis 

GP1397 trpC2 lacA::(pxylcdaSL44F aphA3) ΔgdpP::spc 

ΔyfnI::ermC 

Mehne (2013) PhD thesis 

GP1661 ∆ymdB::spc, SinR Trp104Leu (G311T) Kruse (2013)  

GP1672 trpC2 ∆sinR-tasA::cat Kruse (2013)  

IDJ046 trpC2 PcomG-gfp cat De Jong et al. (2012) 

Environ Microbiol. 14:3110-21 

IDJ053 trpC2 Pskf-gfp cat De Jong et al. (2012) 

Environ Microbiol. 14:3110-21 

NCIB3610 undomesticated wild type Branda et al. (2001); lab collection 

NRS2097  NCIB3610 bslA::cat Verhamme et al. (2009) 

Journal Bacteriol. 191:100–108 

NRS2450  NCIB3610 epsA-O::tet N. Stanley-Wall, Dundee; Branda et al. (2006) 

NRS2543 trpC2 amyE::PepsA-epsB lacI cat N. Stanley-Wall, Dundee 

NRS2544 NCIB3610 ptkA-markerless Kiley & Stanley-Wall (2010) 

NRS3338 trpC2 amyE::PepsA-epsB DxD-His-lacI cat N. Stanley-Wall, Dundee 

NRS3339 trpC2 amyE::PepsA-His-epsB DxD lacI cat N. Stanley-Wall, Dundee 

NRS3589 trpC2 amyE::PepsA-epsB-His-lacI cat N. Stanley-Wall, Dundee 

NRS3590 trpC2 amyE::PepsA-His-epsB lacI cat N. Stanley-Wall, Dundee 

stJS01 trpC2 amyE::PsspE-2G-gfp cat O. Kuipers, Groningen 

TMB079 trpC2 sinR::spc Torsten Mascher 

∆sunA-

∆yolF 

trpC2 ∆sunI-∆sunA::aphA3 Dubois et al. (2009) 

Antimicrob Agents Chemother. 53:651-61 

∆sunA trpC2 ∆sunA::aphA3 Dubois et al. (2009) 

 

7.3. Oligonucleotids 

The oligonucleotids were purchased from Sigma-Aldrich, Hamburg, Germany. 

 

Table 7.3. Oligonucleotids 

1
restriction sites are underlined, promoters are in italics 

Name Sequence
a
  Gene / purpose Characteristics 

JG51 CGACAGGCGGCTTGGCATAGG  

 

LFH for the deletion of epsA, 

upstream-forward 

 

JG52 CCTATCACCTCAAATGGTTCGCTGCCATA

ATAAGGGTGACGCCGATTGTG  

LFH for the deletion of epsA, 

upstream-reverse 

 

JG53 CGAGCGCCTACGAGGAATTTGTATCGGG

CAGCTCAGCGAGAGAACCG  

LFH for the deletion of epsA, 

downstream-forward 

 



126 7. Appendix 
 
JG54 CGGCAGCAGCTAAACCGACAATAC  

 

LFH for the deletion of epsA, 

downstream-reverse 

 

JG55 GACATACAAGCAATCCTCGGACTGG  

 

sequencing primer, detection of 

epsA deletion, forward 

 

JG56 GGTAAGCAGTAATGCTCCGGAGTC  

 

sequencing primer, detection of 

epsA deletion, reverse 

 

JG57 GGGAAGTGCAGTAAATTAGAGGAAAAT

CATG  

LFH for the deletion of epsB, 

upstream-forward 

 

JG58 CCTATCACCTCAAATGGTTCGCTGGTCCG

AATGGTGCGATATTGTTCCG  

LFH for the deletion of epsB, 

upstream-reverse 

 

JG59 CGAGCGCCTACGAGGAATTTGTATCGCC

GATACCGTTCTGAAAGCAAAAGATGC  

LFH for the deletion of epsB, 

downstream-forward 

 

JG60 GCTTACTCCGGTTCGCACACATTC  

 

LFH for the deletion of epsB, 

downstream-reverse 

 

JG61 GACGGATTCGTGTGAACGCCTC  

 

sequencing primer, detection of 

epsB deletion, forward 

 

JG62 CCTTTGATGCGGTTCGAAATTTCGCTAG  

 

sequencing primer, detection of 

epsB deletion, reverse 

 

JG63 GAGAACGTGACTGCCCGAATAAGAG  

 

LFH for the deletion of ptkA, 

upstream-forward 

 

JG64 CCTATCACCTCAAATGGTTCGCTGGCAA

ATTCTATATTCGTGCGAATCGTCCG  

LFH for the deletion of ptkA, 

upstream-reverse 

 

JG65 CGAGCGCCTACGAGGAATTTGTATCGGA

AAGAGGCGCTTGCAACGTGC  

LFH for the deletion of ptkA, 

downstream-forward 

 

JG66 CGGGTACAGCCTGTACAGATTTCTG  

 

LFH for the deletion of ptkA, 

downstream-reverse 

 

JG67 GATGCATGCACATGAAATTGGTGAGCA

G  

sequencing primer, detection of 

ptkA deletion, forward 

 

JG68 CACCTGTCACAAGACCGACATAGC  

 

sequencing primer, detection of 

ptkA deletion, reverse 

 

JG69 CGATACAAATTCCTCGTAGGCGCTCGGT

TTCCACCATTTTTTCAATTTTTTTATAATT

TTTTTAATCTG 

Amplification of the spc
R
 cassette 

from pDG1726, reverse 

without 

terminator 

spec rev o.T 

JG70 CTTGGCGAGCTGATTGTC qRT-PCR PCR primer epsC, 

forward 

 

JG71 AATACGGGTCCCTCCAATAG qRT-PCR PCR primer epsC, 

reverse 

 

JG72 AAATCTAGAGATGAATGAGAATATGAGT

TTCAAAGAATTATATGCG 

Amplification of epsA for BACTH, 

forward 

XbaI 

JG73 TTTGGTACCCGCTCCCCGAAATGTTTTAT

CCCGCG 

Amplification of epsA for BACTH, 

reverse 

KpnI, without 

stop codon 

JG74 AAATCTAGAGGTGATCTTTAGAAAAAAG

AAAGCAAGGCGAG 

Amplification of epsB for BACTH, 

forward 

XbaI 

JG75 TTTGGTACCCGGTAGGAATAGTGTTCCG

ATTTTTTCATTTTCTTTTTG 

Amplification of epsB for BACTH, 

reverse 

KpnI, without 

stop codon 

JG76 AAAGGTACCATGAATGAGAATATGAGTT

TCAAAGAATTATATGCG 

Amplification of epsA for 

pSG1154, forward 

KpnI 

JG77 TTTGAATTCCTCCCCGAAATGTTTTATCC

CGCG 

Amplification of epsA for 

pSG1154, reverse 

EcoRI, without 

stop codon 

JG78 AAAGGTACCGTGATCTTTAGAAAAAAGA

AAGCAAGGCGAG 

Amplification of epsB for 

pSG1154, forward 

KpnI 
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JG79 TTTGAATTCGTAGGAATAGTGTTCCGATT

TTTTCATTTTCTTTTTG 

Amplification of epsB for 

pSG1154, reverse 

EcoRI, without 

stop codon 

JG80 AAAGGATCCATGAATGAGAATATGAGTT

TCAAAGAATTATATGCG 

Amplification of epsA for 

pSG1729, forward 

BamHI 

JG81 TTTGAATTCTCACTCCCCGAAATGTTTTA

TCCCGC 

Amplification of epsA for 

pSG1729, reverse 

EcoRI 

JG82 AAAGGATCCGTGATCTTTAGAAAAAAGA

AAGCAAGGCGAG 

Amplification of epsB for 

pSG1729, forward 

BamHI 

JG83 TTTGAATTCCTAGTAGGAATAGTGTTCC

GATTTTTTCATTTTCTTTTTG 

Amplification of epsB for 

pSG1729, reverse 

EcoRI 

JG84 AAAGGATCCGTGATCTTTAGAAAAAAGA

AAGCAAGGCGAG 

Amplification of epsB for pGP380, 

forward 

BamHI 

JG85 TTTGTCGACCTAGTAGGAATAGTGTTCC

GATTTTTTCATTTTCTTTTTG 

Amplification of epsB for pGP380, 

reverse 

SalI 

JG86 AAACAATTGAAAGGAGGAAACAATCAT

GGATTACAAGGATGACGATGACAAGGA

TTAC 

Amplification of the FLAG-tag 

from pGP1331; cloning into pBP7; 

N-terminal fusion; forward 

MfeI, RBS, start 

codon 

JG87 TTTAGATCTGAATTCCCGGGGATCCCTTG

TCATCGTCATCCTTGTAATCCTTGTC 

Amplification of the FLAG-tag 

from pGP1331; cloning into pBP7; 

N-terminal fusion; reverse 

BglII, MCS with 

EcoRI, SmaI and 

BamHI 

JG88 AAACAATTGGAATTCCCGGGGATCCGAT

TACAAGGATGACGATGACAAGGATTAC 

Amplification of the FLAG-tag 

from pGP1331; cloning into pBP7; 

C-terminal fusion; forward 

MfeI, MCS with 

EcoRI, SmaI and 

BamHI 

JG89 TTTAGATCTTTATCACTTGTCATCGTCATC

CTTGTAATCC 

Amplification of the FLAG-tag 

from pGP1331; cloning into pBP7; 

C-terminal fusion; reverse 

BglII 

JG90 AAAGAATTCATGAATGAGAATATGAGTT

TCAAAGAATTATATGCG 

Amplification of epsA, forward EcoRI 

JG91 TTTGGATCCTCACTCCCCGAAATGTTTTA

TCCCGC 

Amplification of epsA, reverse BamHI 

JG92 GTGATCTTTAGAAAAAAGAAAGCAAGG

CGAG 

Amplification of epsB, forward  

JG93 CTAAGCGGAAGCGTGTTCCGATTTTTTC

ATTTTCTTTTTG 

Amplification of epsB, reverse mutagenesis 

Y225A, 

Y227A 

JG94 GAGCGGAACGAAAGAAAAAAGATTTCT

AGTGTCGCTTCACTCCCCGAAATGTTTTA

TCC 

LFH for the mutagenesis of the C-

terminal Y-cluster of epsB, 

upstream-reverse 

 

JG95 CAAAAAGAAAATGAAAAAATCGGAACA

CGCTTCCGCTTAGTTTTTGTAAAGGTGAT

GTCTCCTGACCTG 

LFH for the mutagenesis of the C-

terminal Y-cluster of epsB, 

downstream-forward 

 

JG96 TGTAAGCTTGGGAAGTGCAGTAAATTAG

AGGAAAATCATG 

cloning of epsB +/- 1000 bp into 

pBlueScript SK
-
 for MMR, forward 

HindIII 

JG97 ACAGAATTCGCTTACTCCGGTTCGCACA

CATTC 

cloning of epsB +/- 1000 bp into 

pBlueScript SK
-
 for MMR, reverse 

EcoRI 

JG98 GAAAGTACTGCTGGTGGCTGCCGCTTTA

AGAAAGCCGACCATC 

mutagenesis of the Walker A’ 

motif of epsB by CCR, 5’-

phosphoprimer 

Tm=71°C,  

D81A and D83A 

JG99 AAATCTAGACTCAACAGCCAGCTGATTA

ATAGAATAGCC 

Amplification of epsB +/- 1000 bp 

CCR, forward 

XbaI 

JG100 TTTGGTACCCCGGCAGTTCGTGTGCCAA Amplification of epsB +/- 1000 bp KpnI 
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GC CCR, reverse 

JG101 ACAGGATCCTCGCTTCACTCCCCGAAAT

GTTTTATCC 

Amplification of epsB upstream 

flank for markerless deletion, 

reverse 

BamHI 

JG102 TGTGGATCCTTTTTGTAAAGGTGATGTCT

CCTGACCTG 

Amplification of epsB 

downstream flank for markerless 

deletion, forward 

BamHI 

JG103 CAGACGGCAGCGTGCTCGTC  

 

Sequencing of epsB C-terminal Y-

cluster, forward 

 

JG104 CCGAATGGTGCGATATTGTTCCGC  

 

Sequencing of the epsB upstream 

region, reverse 

 

JG105 TTTGGTACCCGGGCGGAAGCGTGTTCCG

ATTTTTTCATTTTCTTTTTG 

Amplification of epsB for BACTH, 

reverse 

KpnI, 

mutagenesis 

Y225A, Y227A, 

w/o stop codon 

JG106 ACATCTAGAATGAATGAGAATATGAGTT

TCAAAGAATTATATGCG 

Amplification of the entire epsA 

gene for pGP1331, forward 

XbaI 

(cuts vector!) 

JG107 TGTCTGCAGCTCCCCGAAATGTTTTATCC

CGCG 

Amplification of the last 600 bp of 

the epsA gene for pGP1331, 

reverse 

PstI 

JG108 ACAGAATTCGTCGTTATTTCGTTCATTAT

AAGGAATTTTTCGTTC 

Amplification of epsA with its 

promoter for pAC5, forward 

EcoRI 

JG109 AAAGGATCCAAAGGAGGAAACAATCGT

GATCTTTAGAAAAAAGAAAGCAAGGCG

AG 

Amplification of epsB for pGP382, 

forward 

BamHI,  

gapA RBS 

JG110 TTTGTCGACGTAGGAATAGTGTTCCGAT

TTTTTCATTTTCTTTTTG 

Amplification of epsB for pGP382, 

reverse 

SalI, without a 

stop codon 

JG111 ACAGGATCCGGTCATTTCACCGACCTAC

CAGG 

Amplification of the last 600 bp of 

epsA for pGP1331, forward 

BamHI 

JG112 TTTGGTACCCGTCACTAGTAGGAATAGT

GTTCCGATTTTTTCATTTTCTTTTTG 

Amplification of epsB for pGP886, 

reverse 

KpnI, 2x stop 

codon 

JG113 TCATTGCGACACCTCATCAT qRT-PCR PCR primer ptpZ, 

forward 

 

JG114 CCTCGCCGTAGATTCTGATT qRT-PCR PCR primer ptpZ, 

reverse 

 

JG115 CCCACTCGCTCGAACATTGCATATAC LFH for the deletion of tkmA, 

upstream-forward 

 

JG116 CCTATCACCTCAAATGGTTCGCTGCTAAT

GAGTCCGCCGGCAGCAG 

LFH for the deletion of tkmA, 

upstream-reverse 

 

JG117 CGAGCGCCTACGAGGAATTTGTATCGCA

GTTTCCACCATTGCGAATGAGCAG 

LFH for the deletion of tkmA, 

downstream-forward 

 

JG118 CACACCGTTGTTATGATGAGGTGTCG LFH for the deletion of tkmA, 

downstream-reverse 

 

JG119 CTTCTGGCGTACGTGCCTGCC Sequencing primer, detection of  

tkmA deletion, forward 

 

JG120 CAAGGTCTTGTTCCACCTCGCC Sequencing primer, detection of 

tkmA deletion, reverse 

 

JG121 AAAGGATCCATGATTATTGCGCTGGATA

CTTACCTCGT 

Amplification of epsC for pGP380, 

forward 

BamHI 

JG122 TTTGTCGACCTAATGAACGCTGGCAGCC

GTC 

Amplification of epsC for pGP380, 

reverse 

SalI 
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JG123 GAAATGCCTTGCGTACAACA qRT-PCR PCR primer bslA, 

forward 

 

JG124 TCTCCGCACGGAAAGTATATG qRT-PCR PCR primer bslA, reverse  

JG125 ACAGGATCCCGCACCATTCGGACAAACA

TTGAGTTC 

Amplification of the last 600 bp of 

epsB for pGP1331, forward 

BamHI 

JG126 ACAGTCGACCTCAACAGCCAGCTGATTA

ATAGAATAGCC 

markerless deletion of epsB with 

pMAD, upstream-forward 

SalI 

JG127 TGTGAATTCCCGGCAGTTCGTGTGCCAA

GC 

markerless deletion of epsB with 

pMAD, downstream-reverse 

EcoRI 

JG128 CCGCTCAATATCAACGAGCTGAGTTTC LFH for the deletion of abrB, 

upstream-forward 

 

JG129 CCTATCACCTCAAATGGTTCGCTGGATA

GGAATAACTACACGTCCTAATTCATCAA

C 

LFH for the deletion of abrB, 

upstream-reverse 

 

JG130 CGAGCGCCTACGAGGAATTTGTATCGGA

AGGCGCTGAGCAAATCATCAGCG 

LFH for the deletion of abrB, 

downstream-forward 

 

JG131 GCGGAACAGCAAGGAGGCTGTATATG LFH for the deletion of abrB, 

downstream-reverse 

 

JG132 CGCGTATTTCCCCATGCGGAAG Sequencing primer, detection of 

abrB deletion, forward 

 

JG133 CAACAAAGCGGGAAGCTATGCAGG  Sequencing primer, detection of 

abrB deletion, reverse 

 

JG134 AAAGGATCCAAAGGAGGAAACAATCAT

GATTATTGCGCTGGATACTTACCTCGT 

Amplification of epsC for pGP382, 

forward 

BamHI, Shine 

dalgarno 

sequence 

(gapA) 

JG135 TTTGTCGACATGAACGCTGGCAGCCGTC

ATTTCTTC 

Amplification of epsC for pGP382, 

reverse 

SalI, without a 

stop codon 

JG136 AAATCTAGAGATGATTATTGCGCTGGAT

ACTTACCTCGT 

epsC for BACTH, forward XbaI 

JG137 TTTGGTACCCGATGAACGCTGGCAGCCG

TCATTTCTTC 

epsC for BACTH, reverse KpnI, without a 

stop codon 

JG138 GCAACGCGGGCATCCCGATG pMAD sequencing, forward  

JG139 CCCAATATAATCATTTATCAACTCTTTTAC

ACTTAAATTTCC 

 

pMAD sequencing, reverse  

JG140 AAAGGATCCAAAGGAGGAAACAATCAT

GTGGAGGGACCCGTATTTTATCCAGAG 

Amplification of a truncated epsC 

for pGP382, forward 

BamHI,  

gapA RBS 

JG141 TTTGGTACCCGTCACTAGGCGGAAGCGT

GTTCCGATTTTTTCATTTTCTTTTTG 

Cloning of epsB into pGP886, 

reverse 

KpnI, with two 

stop codons, 

mutagenesis 

Y225A/ Y227A 

JG142 AAATCTAGAGTTGGCGCTTAGAAAAAAC

AGAGGCTCG 

ptkA for BACTH, forward XbaI 

JG143 TTTGGTACCCGTTTTTGCATGAAATTGTC

CTTGGTTCCGTAATATC 

ptkA for BACTH, reverse KpnI, no stop 

codon 

JG144 AAATCTAGAGATGGGAGAATCTACAAGC

TTAAAAGAGATATTATC 

tkmA for BACTH, forward XbaI 

JG145 TTTGGTACCCGAGCGCCAAAATGTCCAC

TCCCC 

tkmA for BACTH, reverse KpnI, no stop 

codon 

JG146 TTTGGTACCCGTCACTACTCCCCGAAATG Amplification of epsA for pGP886, KpnI, 2x stop 
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TTTTATCCCGCG reverse codon 

JG147 GTCTGCTCATCCTGGTCCGGC Sequencing primer, detection of 

sinR deletion, forward 

 

JG148 CATATACTGGGCCGTCTCGATGG  Sequencing primer, detection of 

sinR deletion, reverse 

 

JG149 AAAGAATTCCATATACTGCACTCCTGGG

AGATCG 

Amplification of the lutA (yvfV) 

promoter for pAC5, forward 

EcoRI 

JG150 AAAGGATCCGGAACAAGACAAGTGACA

AAAAGTGAGACTTTCAT 

Amplification of the lutA (yvfV) 

promoter for pAC5, reverse 

BamHI 

JG151 AAAGAATTCGTTCGTGTGAGTGATGCGA

TCCTTC 

Amplification of the ywbD 

promoter for pAC5, forward 

EcoRI 

JG152 AAAGGATCCGGAGCGTGTGCTTTTTTTA

GGGTGAGTAGCTTCAT 

Amplification of the ywbD 

promoter for pAC5, reverse 

BamHI 

JG153 CGGCGATTCACTTTATAAAATTGAGACC

AAG 

LFH for the deletion of tasA, 

upstream-forward 

 

JG154 CCTATCACCTCAAATGGTTCGCTGGCTAA

TCCTAGTGCTGCAGAAGCAAC 

LFH for the deletion of tasA, 

upstream-reverse 

 

JG155 CGAGCGCCTACGAGGAATTTGTATCGCG

GCTTGACAATCAAAAAGGACCATACTG 

LFH for the deletion of tasA, 

downstream-forward 

 

JG156 CAGGCGCTGAAAACCTTGTATCAACC LFH for the deletion of tasA, 

downstream-reverse 

 

JG157 GTGGAAGTGGGAGCTTCATAAGCTTG Sequencing primer, detection of  

tasA deletion, forward 

 

JG158 GACTGGGCGGAACAGGCGGT Sequencing primer, detection of 

tasA deletion, reverse 

 

JG159 AAAGGTACCTCATTAGCGAGGCTCCACG

ATTAATTTAATCG 

Amplification of spoVS for 

pGP888, reverse 

KpnI, 2x stop 

codon 

JG160 AAAGGTACCTCATTATTTTTGCATGAAAT

TGTCCTTGGTTCCGTAATATC 

Amplification of ptkA for pGP886, 

reverse 

KpnI, 2x stop 

codon 

JG161 AAAGGTACCTCATTATTTTTGCATGAAAT

TGTCCTTGGTTCCGGCAGCTCCGGCTTCA

GAG 

Amplification of ptkA for pGP886, 

reverse 

KpnI, 2x stop 

codon, 

mutagenesis 

Y
225

A, Y
227

A, 

Y
228

A 

JG162 AAAGGTACCTCATTATTTTTGCATGAAAT

TGTCCTTGGTTCCGAAAAATCCGAATTCA

GAG 

Amplification of ptkA for pGP886, 

mutagenesis of Y225F/ 

Y227F/ Y228F, reverse 

KpnI, 2x stop 

codon 

JG163 AAATCTAGAGATGAGGGTGTTTGTTGCA

AGACAGCC 

Amplification of yuxH for pGP888, 

forward 

XbaI 

JG164 TTTGGTACCTCATCATTTTGCGTCCATAA

GATTATGACACCATTC 

Amplification of yuxH for pGP888, 

reverse 

KpnI, 2x stop 

codon 

JG165 CAGTAAGTCCTCATCTTGCGGATTTATTG

CA 

Sequencing primer yuxH, reverse   

JG166 GCCTTCTTACTTGTCGGAATCTCTC LFH for the deletion of ydaK, 

upstream-forward 

 

JG167 CCTATCACCTCAAATGGTTCGCTGGAGC

ACCTTCTGATTGCTGGGCTG 

LFH for the deletion of ydaK, 

upstream-reverse 

 

JG168 CGAGCGCCTACGAGGAATTTGTATCGGT

GTCGCTTACGTTCCACGTTTGC 

LFH for the deletion of ydaK, 

downstream-forward 

 

JG169 CAAATCCCTCTCCTGTTTCACTGTAGC LFH for the deletion of ydaK, 

downstream-reverse 
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JG170 CAGTCGGCGACAGAAGTGAATGCC Sequencing primer, detection of 

ydaK deletion, forward  

 

JG171 GGTTCAAGATAGCTGTGATAGGCTTGTT

C 

Sequencing primer, detection of 

ydaK deletion, reverse 

 

JG172 CGTTCAGGCATGCCGAACGCG LFH for the deletion of yuxH, 

upstream-forward 

 

JG173 CCTATCACCTCAAATGGTTCGCTGGATC

GCCGTCTTTAGCGCTATACAC 

LFH for the deletion of yuxH, 

upstream-reverse 

 

JG174 CGAGCGCCTACGAGGAATTTGTATCGGC

AACAACTGGGACACTTGCTCAGA 

LFH for the deletion of yuxH, 

downstream-forward 

 

JG175 CGTTTCTTTAATATCAAGTTCGAGTCGGA

ATAAC 

LFH for the deletion of yuxH, 

downstream-reverse 

 

JG176 CGCATGCGCTTGTGCAGGCTTAC Sequencing primer, detection of 

yuxH deletion, forward  

 

JG177 CTTGTTTCCAAGTCTTTTTCACGAAATTTT

CATTGC 

Sequencing primer, detection of 

yuxH deletion, reverse 

 

JG178 GCGCTTCGTTAATTTCCGGAGCAAGTT LFH for the deletion of ytrP, 

upstream-forward 

 

JG179 CCTATCACCTCAAATGGTTCGCTGCGAA

GTCAGCCATATGAAAGAGTCGG 

LFH for the deletion of ytrP, 

upstream-reverse 

 

JG180 CGAGCGCCTACGAGGAATTTGTATCGCT

GCGGTATCTCCTGCTGGACG 

LFH for the deletion of ytrP, 

downstream-forward 

 

JG181 GATATTGCTTGCCGCTGTTTCAAGCG LFH for the deletion of ytrP, 

downstream-reverse 

 

JG182 GGCCAGCAAGAGGCGAAAGCC Sequencing primer, detection of 

ytrP deletion, forward  

 

JG183 CGAGTTAATTGACGATGATTATGCTGAT

AGG 

Sequencing primer, detection of 

ytrP deletion, reverse 

 

JG184 TGGCGATGTATGCGGCTAAA qRT-PCR ykoW, forward  

JG185 GCGGCTGATAATGCAAGACAA qRT-PCR ykoW, reverse  

JG186 TTGAGAAGCTGACGGAAGGG qRT-PCR yuxH, forward  

JG187 TGCATCTAGAAATGAGGGCCG qRT-PCR yuxH, reverse  

JG188 GAGGAGCAGAAGGTTGTCGG qRT-PCR ykuI, forward  

JG189 GTCAAGAGCCTGGCGGATAA qRT-PCR ykuI, reverse  

JG190 CAGAAGAAATCAAGCGGGCG qRT-PCR ydaK, forward  

JG191 CGCTTGTCCTGATTTGCTGAC qRT-PCR ydaK, reverse  

JG192 GGTGAAGAATTTGCCGTGCTC qRT-PCR yhcK, forward  

JG193 ATGAGCGGCCCCTAGTGATA qRT-PCR yhcK, reverse  

JG194 AGTGTGCAGCGTTTGATTGG qRT-PCR gdpP, forward  

JG195 CCGTTCCTCCATGACGAGTG qRT-PCR gdpP, reverse  

JG196 GTGACATGGTCAAAGAATATGTACCAAA

GC 

LFH for the deletion of spoVS, 

upstream-forward 

 

JG197 CCTATCACCTCAAATGGTTCGCTGCTGCA

AGCGCACCTGCCACTG 

LFH for the deletion of spoVS, 

upstream-reverse 

 

JG198 CGAGCGCCTACGAGGAATTTGTATCGCG

GCTTTTACAGATATTCAAATCGATGGGG 

LFH for the deletion of spoVS, 

downstream-forward 

 

JG199 GCAAGCCTCAGCCTGTATTCATTCTTATC LFH for the deletion of spoVS, 

downstream-reverse 

 

JG200 GAGAGACTCGAGCCGTAGAGTATGC Sequencing primer, detection of 

spoVS deletion, forward  

 

JG201 CCTTCTCCACTCGTTAAAGCGCTTAC Sequencing primer, detection of  
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spoVS deletion, reverse 

JG202 AAATCTAGAGATGACGAAAAAGATATTG

TTTTGCGCGACTG 

Amplification of epsD for BACTH, 

forward 

XbaI 

JG203 TTTGGTACCCGTACGCTTTTCTCCTTTGT

ATCCATATCCATG 

Amplification of epsD for BACTH, 

reverse 

KpnI 

JG204 AAATCTAGAGATGAACTCAGGACCGAAA

GTTTCTGTCATTATG 

Amplification of epsE for BACTH, 

forward 

XbaI 

JG205 TTTGGTACCCGTTCATGCTTGACAAGCCC

TTCCTTTTGG 

Amplification of epsE for BACTH, 

reverse 

KpnI 

JG206 AAATCTAGAGATGAATAGCAGCCAAAA

GCGCGTGC 

Amplification of epsF for BACTH, 

forward 

XbaI 

JG207 TTTGGTACCCGTCGGTTATGGTCCTTTTC

CGTGCTG 

Amplification of epsF for BACTH, 

reverse 

KpnI 

JG208 AAATCTAGAGATGATTGTATATGCCGTC

AATATGGGGATTG 

Amplification of epsG for BACTH, 

forward 

XbaI 

JG209 TTTGGTACCCGCCGGGAAAAAATCGTTC

TGTAAGGCAG 

Amplification of epsG for BACTH, 

reverse 

KpnI 

JG210 AAATCTAGAGATGGAAACACCTGCGGTT

AGTCTGTTAG 

Amplification of epsH for BACTH, 

forward 

XbaI 

JG211 TTTGGTACCCGCCCTCTGTTTCTCATTTT

GTACTCGATCAC 

Amplification of epsH for BACTH, 

reverse 

KpnI 

JG212 AAATCTAGAGATGTCGTTACAATCGTTG

AAAATCAATTTTGCAGAATG 

Amplification of epsI for BACTH, 

forward 

XbaI 

JG213 TTTGGTACCCGTTGCGCTTCACCGCTGAT

TTTGTCAC 

Amplification of epsI for BACTH, 

reverse 

KpnI 

JG214 AAATCTAGAGATGATCCCGCTCGTCAGC

ATTATTGTC 

Amplification of epsJ for BACTH, 

forward 

XbaI 

JG215 TTTGGTACCCGTGCCTGCTTCGCACTGCC

TTTCATTC 

Amplification of epsJ for BACTH, 

reverse 

KpnI 

JG216 AAATCTAGAGATGAAATTCACGATAAAT

TTCAGCGCGAATCTC 

Amplification of epsK for BACTH, 

forward 

XbaI 

JG217 TTTGGTACCCGAAGATTCACAGCTCCTTT

CGTTTTTCGAAACC 

Amplification of epsK for BACTH, 

reverse 

KpnI 

JG218 AAATCTAGAGTTGATCCTGAAACGACTT

TTTGATCTGACGG 

Amplification of epsL for BACTH, 

forward 

XbaI 

JG219 TTTGGTACCCGTGAGGACACATCTCCGC

TTCCGG 

Amplification of epsL for BACTH, 

reverse 

KpnI 

JG220 AAATCTAGAGATGAAAAATGTGGCCATT

GTGGGTGACG 

Amplification of epsM for BACTH, 

forward 

XbaI 

JG221 TTTGGTACCCGTCCTTTGTTTGATGTTTG

AATGGAAGAAATGATGC 

Amplification of epsM for BACTH, 

reverse 

KpnI 

JG222 AAATCTAGAGATGCATAAAAAAATCTAC

TTATCTCCCCCTCATATG 

Amplification of epsN for BACTH, 

forward 

XbaI 

JG223 TTTGGTACCCGTCGAATGCTTGCTGTCCA

TTTCTTCACC 

Amplification of epsN for BACTH, 

reverse 

KpnI 

JG224 AAATCTAGAGATGGACAGCAAGCATTCG

ATGATCAGC 

Amplification of epsO for BACTH, 

forward 

XbaI 

JG225 TTTGGTACCCGCATGTGAGCAGGAAGGT

TTTCCTTCTTTG 

Amplification of epsO for BACTH, 

reverse 

KpnI 

JG226 GATTGGCGGGAAGCATCGGACTG LFH for the deletion of ptpZ, 

upstream-forward 
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JG227 CCTATCACCTCAAATGGTTCGCTGGCCAT

TTCTATGCTGTCGGCCGAATC 

LFH for the deletion of ptpZ, 

upstream-reverse 

 

JG228 CGAGCGCCTACGAGGAATTTGTATCGGC

TTCTCCTGCGGAATCAGACCATC 

LFH for the deletion of ptpZ, 

downstream-forward 

 

JG229 CCGCTTATCCTGTCCCATCCCG LFH for the deletion of ptpZ, 

downstream-reverse 

 

JG230 CAATGTCAGCATTCTGTCAAAAGCCGAG Sequencing primer, detection of 

ptpZ deletion, forward  

 

JG231 GGCAATTTGCACGAGGGCGTTTGTG Sequencing primer, detection of 

ptpZ deletion, reverse 

 

JG232 ACAGGATCCCAGATTCTGGTCAACCAAT

CGAAAAATGAACG 

Amplification of the last 600 bp of 

tkmA for pGP1331, forward 

BamHI 

JG233 TGTCTGCAGAGCGCCAAAATGTCCACTC

CCC 

Amplification of the last 600 bp of 

tkmA for pGP1331, reverse 

PstI, no stop 

codon 

JG234 AAAGGATCCATGAACTCAGGACCGAAA

GTTTCTGTCATTATG 

Amplification of epsE for pGP380, 

forward 

BamHI 

JG235 TTTGTCGACCTATTCATGCTTGACAAGCC

CTTCCTTTTG 

Amplification of epsE for pGP380, 

reverse 

SalI 

JG236 AAAGGATCCAAAGGAGGAAACAATC 

ATGAACTCAGGACCGAAAGTTTCTGTCA

TTATG 

Amplification of epsE for pGP382, 

forward 

BamHI,  

gapA RBS 

JG237 TTTGTCGACTTCATGCTTGACAAGCCCTT

CCTTTTGG 

Amplification of epsE for pGP382, 

reverse 

SalI, without a 

stop codon 

JG238 ATATCTAGAGATGATGAATGAAAAAATT

TTAATCGTTGATGATCAATACGGC 

Amplification of spo0F for 

pGP888, forward 

XbaI 

JG239 ATAGGTACCCGTTATCAGTTAGACTTCA

GGGGCAGATATTTTTTGAC 

Amplification of spo0F for 

pGP888, reverse 

KpnI, 2x stop 

codon 

JG240 GCGGCTCAACTTTTTCGTTGAGCC Sequencing primer artQ, forward  

JG241 CCTCACCCTCAGCGATTGTTGTTG 

 

Sequencing primer artQ, reverse  

JG242 CGGAATAACAAAAATGGAATGTTCCAAT

GATGAC 

Sequencing primer yddS, forward  

JG243 CCTTACTATAATAAATAGAAAAAGGAGG

TTCCGG 

Sequencing primer yddS, reverse  

JG244 GGTGTAAAAGTCTGGATCTATCGTGGAG Sequencing primer rplP, forward  

JG245 GCGAAGATTGAAAAGTTCTTCTTTAAG Sequencing primer rplP, reverse  

JG246 GTGGAAGCTTATCAGGAGATTATGAGA

ATGC 

Sequencing primer fliF, forward  

JG247 CTAACCCCAAGGAAATCATGAGAATGGC Sequencing primer fliF, reverse  

JG248 CTAAAAAACACGGTTCCGATCCTAAAAG

AACG 

Sequencing primer yozQ, forward  

JG249 GGGGTTGGCTACTTTTACTGTGGTTG Sequencing primer yozQ, reverse  

JG250 GATGGGAGATATCTTTGACATGCTTGAG

G 

Sequencing primer srfAC, forward  

JG251 CAGCCCGACCATATGTTCAACGCC Sequencing primer srfAC, reverse  

JG252 AAAGGTACCCGCTCCTCTTTTTGGGATTT

TCTCCGTTTTTG 

Amplification of sinR Trp104Arg 

for BACTH, reverse 

KpnI 

JG253 AAAGGTACCCGCTCCTCTTTTTGGGATTT

TCTCAATTTTTG 

Amplification of sinR Trp104Leu 

for BACTH, reverse 

KpnI 

JG254 GTATTGCATAAAAATGAGAAACTGTTTA

AAATACAAATTAACG 

Sequencing of artP, forward  
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JG255 AAATTCATAGCCTTTGTCTCCTTTTCTTAC

AGG 

Sequencing of artP, reverse  

JG256 GACTGCTTTAAAATAAGTAGTTAGAATA

GGAGTCTATG 

Sequencing of yddK, forward  

JG257 GAAACTAAATCAAATATGTCTTCTAAGA

ATAGATTTATGGG 

Sequencing of yddK, reverse  

JG258 GATGAGCGGGAAATTACCTTTACTGCTG Sequencing of tsaB, forward  

JG259 CGATTTCGTATACGTGATCTATATCTTCA

AGC 

Sequencing of tsaB, reverse  

JG260 GGAAAAAGTAAGGTATCCTAGTTCGTAC

AAAG 

Sequencing of ylmA, forward  

JG261 CAAACGGAGTCCGATGTACTCCGC Sequencing of ylmA, reverse  

JG262 GAAGACATCTCGATAAAAGAAATACAAA

GGTTGTG 

Sequencing of yoaG, forward  

JG263 CTGCGCCTTTATCCGCGGAGGAT Sequencing of yoaG, reverse  

JG264 GCAGCCAGAAGTCATACCG qRT-PCR primer sinI-sinR 

processing, forward 

 

JG265 ACTTCGCTACCCCAGCTTTT qRT-PCR primer sinI-sinR 

processing, reverse 

 

JG266 AAATTGAAAATGGCGGATTG qRT-PCR primer yqhG-sinI 

processing, forward 

 

JG267 GTCATTTGCCATTAAATCACCA qRT-PCR primer yqhG-sinI 

processing, reverse 

 

JG268 TGCGGCAAGCGCTGATAATAGCAAATTT

C 

Sequencing of NCIB3610 lutR 

promoter region, forward 

 

JG269 CCTTCAGATACGTGCCTTCTCCCTG Sequencing of NCIB3610 lutR 

promoter region, reverse 

 

JG270 CGGGGCGTTGTCATTGCTTATGATTC Sequencing of NCIB3610 pgcA 

middle region, forward 

 

JG271 GATGCCGAGGCGGTCAGCATC Sequencing of NCIB3610 pgcA 

middle region, reverse 

 

JG278 CTATGTAAGTTCTGATATCATGATAATAG

TTTGATTGTTG 

Sequencing of NCIB3610 ycgE  

bp 139662, forward 

 

JG279 GTAACTTGTACAATTTATTCGGGAACGG

GC 

Sequencing of NCIB3610 ycgE  

bp 139662, reverse 

 

JG280 GGCTACGATATTGCGGGAACAGGTAC Sequencing of NCIB3610 ylbL  

bp 554650, forward 

 

JG281 GTCTGTTCCGCTTGTCAGCAAACTGTC Sequencing of NCIB3610 ylbL  

bp 554650, reverse 

 

JG282 CGAAGTAGGCGGGGCTGTTACC Sequencing of NCIB3610 yrkH  

bp 1692999, forward 

 

JG283 CCCGACTTTTACCGGCTCTAAATGTTC Sequencing of NCIB3610 yrkH  

bp 1692999, reverse 

 

JG284 CTTTATTTGAGCGTTGCACTCATCGCAG Sequencing of NCIB3610 ytxG  

bp 2028278, forward 

 

JG285 GCTGTAGTGGCACCGATGATTCCC Sequencing of NCIB3610 ytxG  

bp 2028278, reverse 

 

JG286 GAA TAT GAG AAT GGT CCC GGT TGA 

AAC TG 

Sequencing of NCIB3610 cheA  

bp 1713474, forward 

 

JG287 CTGTCAATAACTGCTGTCTCAATGATTGA

AG 

Sequencing of NCIB3610 cheA  

bp 1713474, reverse 
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JG288 CGTCTTCATTTGTAAAGGCGTTCTTAATA

AAGG 

Sequencing of NCIB3610 kinB  

bp 3229205, forward 

 

JG289 GAATGGATAAGCTGTGAACGCAGGG Sequencing of NCIB3610 kinB  

bp 3229205, reverse 

 

JG290 CATACGGTCATGCTCAGTGGCGTC Sequencing of NCIB3610 skfF  

bp 218854, forward 

 

JG291 CTCACCTATCGCTTGAACAATTGTGATCT

C 

Sequencing of NCIB3610 skfF  

bp 218854, reverse 

 

JG292 CGGCTCACTTGGTTCCGATGACAA G Sequencing of NCIB3610 argC  

bp 1195324, forward 

 

JG293 CGGAGCAGCCTGAAAGTGGCTTTG Sequencing of NCIB3610 argC  

bp 1195324, reverse 

 

JG294 GGCGAATCAGAAGGTTATTCAGGCTTAC Sequencing of NCIB3610 flhP bp 

3745025, forward 

 

JG295 CTTGGACAACGCCAAGATTAAACCGC Sequencing of NCIB3610 flhP  

bp 3745025, reverse 

 

JG296 GACAGAAACAGCGGCGATTGGCAG Sequencing of NCIB3610 phoA 

lytE intergenic region  

bp 1018068, forward 

 

JG297 GTCGATCCTAAAACAACTGCTGTCGTAG Sequencing of NCIB3610 phoA 

lytE intergenic region  

bp 1018068, reverse 

 

JG298 GATCCCTCTTCACTTCTCAGAATACATAC

G 

Sequencing of spo0A, forward  

JG299 CTTAATATTCTTCTCCCATACTACAAATG

TCCC 

Sequencing of spo0A, reverse  

JG300 AAACATATGATTGGCCAGCGTATTAAAC

AATACCG 

Amplification of sinR Trp104Leu 

(GP1661) for pET24a, forward 

NdeI 

JG301 AAAGAATTCCTACTCCTCTTTTTGGGATT

TTCTCAATTTTTG 

Amplification of sinR Trp104Leu 

(GP1661) for pET24a, reverse 

EcoRI  

JG302 ATATATCTAATACGACTCACTATAGGGA

GATGGCCGGACTG 

GCTGAAATACATAAAC 

sinI RNA, forward T7 promotor + 

overhang 

JG303 CTGGCTGCCGGACCAGGATG sinI RNA, reverse  

JG304 ATATATCTAATACGACTCACTATAGGGA

GAAGGAAGGTGAT GACATTGAT 

TGGCCA 

sinR RNA, forward T7 promotor + 

overhang 

JG305 CAAAGTATGAACCGAGACGTCCAGAAC sinR RNA, reverse  

JG306 AAGGAAGGTGATGACATTGATTGGCCA sinR RNA, forward  

JG307 ATATATCTAATACGACTCACTATAGGGA

GCAAAGTATGAACCGAGACGTCCAGAA

C 

sinR RNA, reverse T7 promoter + 

overhang 

JG308 ATGGCCGGACTGGCTGAAATACATAAAC sinI RNA, forward  

JG309 ATATATCTAATACGACTCACTATAGGGA

GCTGGCTGCCGGACCAGGATG 

sinI RNA reverse T7 promoter + 

overhang 

JG310 TCCGATATTAATGATGTAGCCGGG hag RNA, forward  

JG311 ATATATCTAATACGACTCACTATAGGGA

GCTCCATGTTCTTTTGGCTCGC 

hag RNA, reverse T7 promoter + 

overhang 

JG312 CAGAAAACGCCTGGGAAACTAGGCG Sequencing of bslA, forward  

JG313 GTAACTGCAGATTCTGGAATCCATGCTC ptsH RNA, forward  

JG314 ATATATCTAATACGACTCACTATAGGGA ptsH RNA, reverse T7 promoter + 
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GGTTAAGAGCATCGTTTTCGTCAGCTCC overhang 

JG315 TAGGCTTAAACTTAAATAAGCTTATAAA

AATTTG 

citZ RNA, forward  

JG316 ATATATCTAATACGACTCACTATAGGGA

GCATATATAACATCTCCTTTTCAATAAAT

TTCC 

citZ RNA, reverse T7 promoter + 

overhang 

JG317 TTTGGTACCCGTCACTAAAAGGAGAAGT

GTTCCGATTTTTTCATTTTCTTTTTG 

Amplification of epsB for pGP886, 

mutagenesis of Y225F and 

Y227F, reverse 

KpnI, 2x stop 

codon 

 

    

Foreign oligonucleotides   

cat 

fwd 

CAGCGAACCATTTGAGGTGATAGGCGG

CAATAGTTACCCTTATTATCAAG 

Amplification of cat from pGEM-

cat, forward 

 

cat rev CGATACAAATTCCTCGTAGGCGCTCGGC

CAGCGTGGACCGGCGAGGCTAGTTACC

C 

Amplification of cat from pGEM-

cat, reverse 

 

CD76 CTGCAGATTCTGGAATCCATG qRT-PCR ptsH fwd  

CD77 CGCCTTTAGCGATACCTAAAG qRT-PCR ptsH rev  

CD90 AAATCTAGAAATGGAAATCTTAAAAGTT

TCAGCAAAATCGAG  

spoVS fwd for BACTH/ cloning 

into pGP886 

XbaI 

CD137 AAAGGATCCTTGATTGGCCAGCGTATTA

AACAATACC 

Amplification of sinR for pGP380, 

forward 

BamHI 

CD138 AAAGTCGACTTACTACTCCTCTTTTTGGG

ATTTTCTCC  

Amplification of sinR for pGP380, 

reverse 

SalI  

CD139 GGCATTGGCGCGAGAAGACAG  LFH upstream fwd, ΔsinR & sinI-

3xFLAG  

 

CD153 AAATCTAGAGTTGATTGGCCAGCGTATT

AAACAATACC  

sinR fwd BACTH  XbaI 

 

kan rev 5’CGATACAAATTCCTCGTAGGCGCTCGG Amplification of aphA3 from 

pDG780, reverse 

 

kan rev  

o. T. 

TTACTAAAACAATTCATCCAGTAAAATAT Amplification of aphA3 from 

pDG780 without a terminator, 

reverse 

 

kan 

check 

fwd 

5’CATCCGCAACTGTCCATACTCTG LFH-PCR, sequencing of the down 

fragment 

 

kan 

check 

rev 

5’CTGCCTCCTCATCCTCTTCATCC LFH-PCR, sequencing of the up 

fragment 

 

KG43 GTGTTGGGTTCACAATGTCG qRT-PCR primer rpsJ, reverse  

KG44 GCGTCGTATTGACCCAAGC qRT-PCR primer rpsE, forward  

KG45 TACCAGTACCGAATCCTACG qRT-PCR primer rpsE, reverse  

JS40 CGGATTGGCGGGAAGCATCGG Sequencing of ptkA, forward  

JS41 CCGAATCACCTGCCCCGTCATC Sequencing of ptkA, reverse  

JK68 GCTGGATGTCACTGAGATTCGAG Sequencing of intergenic region 

epsA-slrR, forward 

 

JK69 TTTTTCATACATCATTGTTTCTGCGTC Sequencing of intergenic region 

epsA-slrR, reverse 

 

JK74 TGTTCGTTTTGCCTGGCCA Sequencing of bcsA, forward  

JK75 GAAGAAAAAAATCAAATATACATAGAA
GAAACACT 

Sequencing of bcsA, reverse  
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ML85 CTCTATTCAGGAATTGTCAGATAG LFH-PCR, sequencing of the down 

fragment 

cat check fwd 

ML84 CTAATGGGTGCTTTAGTTGAAGA LFH-PCR, sequencing of the up 

fragment  

cat check rev 

ML82 CAGAAACAATGATGTATGAAAAAATCAG

C 

qRT-PCR slrR, forward  

ML83 GGTAAGAGGCAGTTTCAGG qRT-PCR slrR, reverse  

ML86 TGCTTACAATTTTCCGATGATACAAG qRT-PCR tapA, forward  

ML87 ATCTGATATGTGCAAATCACTTTGATC qRT-PCR tapA, reverse  

ML103 CTCTTGCCAGTCACGTTAC Sequencing of the up-fragment of 

a gene deletion, reverse 

spc check rev 

ML104 TCTTGGAGAGAATATTGAATGGAC Sequencing of the down-

fragment of a gene deletion, 

forward 

spc check fwd 

ML279 CAGGTGTTATATAAAGAATGTGTGCGAA

CC 

sequencing of epsC, reverse 

(mutation at bp 827 in B.s. 168) 

 

ML280 GATTGTGTTCCATTAAAGGCACATGCTT

A 

TG 

sequencing of epsC, reverse 

(mutation at bp 827 in B.s. 168) 

 

spc 

fwd 

CAGCGAACCATTTGAGGTGATAGGGACT

GGCTCGCTAATAACGTAACGTGACTGGC

AAGAG 

Amplification of spc from 

pDG1726, forward 

 

spc rev CGATACAAATTCCTCGTAGGCGCTC 

GGCGTAGCGAGGGCAAGGGTTTAT 

TGTTTTCTAAAATCTG 

Amplification of spc from 

pDG1726, reverse 

 

spc rev  

o. T. 

CGATACAAATTCCTCGTAGGCGCTCGGT

TTCCACCATTTTTTCAATTTTTTTATAATT

TTTTTAATCTG 

Amplification of spc from 

pDG1726 without a terminator, 

reverse 

 

ermC 

fwd 

CAGCGAACCATTTGAGGTGATAGGGATC

CTTTAACTCTGGCAACCCTC 

Amplification of ermC from 

pDG647, forward 

 

ermC 

rev 

CGATACAAATTCCTCGTAGGCGCTCGGG

CCGACTGCGCAAAAGACATAATCG 

Amplification of ermC from 

pDG647, reverse 

 

ermC 

rev 

o.T. 

CGATACAAATTCCTCGTAGGCGCTCG Amplification of ermC from 

pDG647, reverse 

CZ68,  

w/o terminator 

ermC 

check 

fwd 

CCTTAAAACATGCAGGAATTGACG Sequencing of the up-fragment of 

a gene deletion, forward 

 

ermC 

check 

rev 

GTTTTGGTCGTAGAGCACACGG 

 
Sequencing of the up-fragment of 

a gene deletion, reverse 

 

NP56 GCGTTCATGGCCTCCACCCAGATCTCATC LFH for the deletion of ymdB, 

upstream-forward 

 

NP57 CGATGACTATATTCGTGAGATGGGTGAG

CAAACGACA 

Sequencing primer, detection of 

ymdB deletion, forward 

 

NP58 CCTATCACCTCAAATGGTTCGCTGGCCC

GGTGAACCGACAACATCTCCG 

LFH for the deletion of ymdB, 

upstream-reverse 

 

NP59 CCGAGCGCCTACGAGGAATTTGTATCGG

ACATTGACGATCAAACGAAAAAAG  

LFH for the deletion of ymdB, 

downstream-forward 

 

NP60 GCAGACACATACTCTCCCACTTTTACACT

GCTGACAT 

LFH for the deletion of ymdB, 

downstream-reverse 
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NP61 AGTATTGGTACACACATGAGATTTTCCT

GTTAG 

Sequencing primer, detection of 

ymdB deletion, reverse 

 

pac5F 5’GCGTAGCGAAAAATCCTTTTC Sequencing of pac5 constructs  

7.4. Plasmids 

Table 7.4. Plasmids constructed in this work  

Name Vector Insert 

pGP2104 pUT18 epsA JG72/ JG73 XbaI + KpnI 

pGP2105 pUT18C epsA JG72/ JG73 XbaI + KpnI 

pGP2106 pKT25 epsA JG72/ JG73 XbaI + KpnI 

pGP2107 p25-N epsA JG72/ JG73 XbaI + KpnI 

pGP2108 pUT18 epsB JG74/ JG75 XbaI + KpnI 

pGP2109 pUT18C epsB JG74/ JG75 XbaI + KpnI 

pGP2110 pKT25 epsB JG74/ JG75 XbaI + KpnI 

pGP2111 p25-N epsB JG74/ JG75 XbaI + KpnI 

pGP2112 pSG1154 epsA JG76/ JG77 KpnI + EcoRI 

pGP2113 pSG1154 epsB JG78/ JG79 KpnI + EcoRI 

pGP2114 pET24a sinR (Trp104Leu) JG300/ JG301 NdeI + EcoRI 

pGP2115 pGP886 epsB (C-terminal Y-cluster mutated) JG74/ JG141 XbaI + KpnI 

pGP2116 pGP380 epsB JG84/ JG85 BamHI + SalI, overexpression did not work 

pGP2117 pKT25 epsE JG204/ JG205 XbaI + KpnI 

pGP2118 pKT25 epsL JG218/ JG219 XbaI + KpnI 

pGP2119 pUT18 sinR (Trp104Leu) CD153/ JG253 XbaI + KpnI 

pGP2120 pGP888  spo0F JG238/ JG239 XbaI + KpnI 

pGP2121 pUT18C sinR (Trp104Leu) CD153/ JG253 XbaI + KpnI 

pGP2122 pUT18 epsB (C-terminal Y-cluster mutated) JG74/ JG105  XbaI + KpnI 

pGP2123 pUT18C epsB (C-terminal Y-cluster mutated) JG74/ JG105 XbaI + KpnI 

pGP2124 pKT25 epsB (C-terminal Y-cluster mutated) JG74/ JG105  XbaI + KpnI 

pGP2125 p25-N epsB (C-terminal Y-cluster mutated) JG74/ JG105  XbaI + KpnI 

pGP2126 pGP382 epsB JG109/ JG110 BamHI + SalI 

pGP2127 pGP1331 epsA-FLAG 3x JG111/ JG107 BamHI + PstI 

pGP2128 pAC5 PepsA-epsA-FLAG 2x  JG108/ JG89 EcoRI + BamHI 

pGP2129 pGP886 epsB JG74/ JG112 XbaI + KpnI 

pGP2130 pGP380 epsC (AM373) JG121/ JG122 BamHI + SalI 

pGP2131 pGP1331 epsB-FLAG 3x JG125/ JG110 BamHI + SalI 

pGP2132 pKT25 sinR (Trp104Leu) CD153/ JG253 XbaI + KpnI 

pGP2133 pGP382 

 

epsC (AM373) JG140/ JG135 BamHI + SalI, point mutation, 

truncated epsC without putative transmembrane domains  

pGP2134 pKT25 epsM JG220/ JG221 XbaI + KpnI 
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pGP2135 pKT25 epsN JG222/ JG223 XbaI + KpnI 

pGP2136 pKT25 epsO JG224/ JG225 XbaI + KpnI 

pGP2137 p25-N epsC (AM373) JG136/ JG137 XbaI + KpnI 

pGP2138 p25-N sinR (Trp104Leu) CD153/ JG253 XbaI + KpnI 

pGP2139 pUT18 tkmA JG144/ JG145 XbaI + KpnI 

pGP2140 pUT18C tkmA JG144/ JG145 XbaI + KpnI 

pGP2141 pKT25 tkmA JG144/ JG145 XbaI + KpnI 

pGP2142 p25-N tkmA JG144/ JG145 XbaI + KpnI 

pGP2143 pUT18 ptkA JG142/ JG143 XbaI + KpnI 

pGP2144 pUT18C ptkA JG142/ JG143 XbaI + KpnI 

pGP2145 pKT25 ptkA JG142/ JG143 XbaI + KpnI 

pGP2146 p25-N ptkA JG142/ JG143 XbaI + KpnI 

Silent mutation at bp 576 (AAA  AAG) 

pGP2147 pGP886 epsA JG72/ JG146 XbaI + KpnI 

pGP2148 pGP1870 epsA-GFP JG111/ JG107 BamHI + PstI 

pGP2149 pAC5 lutA (yvfV) JG149/ JG150 EcoRI + BamHI 

pGP2150 pAC5 ywbD JG151/ JG152 EcoRI + BamHI 

pGP2151 pGP886 ptkA JG142/ JG160 XbaI + KpnI 

pGP2152 pGP888 spoVS  CD90/ JG159 XbaI + KpnI 

pGP2153 pGP886 ykoW from pGP1867 XbaI + KpnI 

pGP2154 pGP888 yuxH JG163/ JG164 XbaI + KpnI 

pGP2155 pGP1331 tkmA-FLAG 3x JG232/ JG233 BamHI + PstI 

 
 
Table 7.5. Plasmids used in this work 

Name purpose Reference/ received from 

pAC5 vector for the construction of translational lacZ 

fusions, integrates into the amyE site 

Martin-Verstraete et al. (1992) 

J Mol Biol. 226:85-99. 

pBQ200 constitutive overexpression of proteins in B. subtilis Martin-Verstraete et al. (1994) 

pDG647 template for erythromycin resistance cassette Guérout-Fleury et al. (1995) 

pDG780 amplification of the kanamycin resistance cassette  Guérout-Fleury et al. (1995) 

pDG1514 amplification of the tetracyclin resistance cassette Guérout-Fleury et al. (1995) 

pDG1726 amplification of the spectinomycin resistance 

cassette 

Guérout-Fleury et al. (1995) 

pET24a overexpression of proteins with an N-terminal T7-Tag 

or an optional C-terminal His-Tag in E. coli 

Novagen, received from Rick Lewis 

(Newcastle) 

pGEM-cat amplification of the chloramphenicol resistance 

cassette 

Torsten Mascher,  

laboratory collection 

pGP380 fusion with a N-terminal Strep-tag II, constitutive Herzberg et al. (2007) 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Martin-Verstraete+et+al.+%281992%29
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overexpression in B. subtilis 

pGP381 constitutive overexpression of CsrA-Strep in B. subtilis Dörrbecker (2007) Diploma thesis 

pGP382 fusion with a C-terminal Strep-tag II, constitutive 

overexpression in B. subtilis 

Herzberg et al. (2007) 

pGP819 overexpression of YwjH-Strep in E. coli Pietack (2007) Diploma thesis 

pGP886 allows overexpression of genes by the Pxyl-promoter, 

integrates into xkdE site 

Gerwig et al. (2014) 

pGP888 allows overexpression of genes by the Pxyl-promoter, 

integrates into ganA site 

Diethmaier et al. (2011) 

pGP1094 sinI in pUT18 (BACTH) Diethmaier et al. (2011) 

pGP1095 sinI in pUT18c (BACTH) Diethmaier et al. (2011) 

pGP1096 sinI in pKT25 (BACTH) Diethmaier et al. (2011) 

pGP1097 sinI in p25-N (BACTH) Diethmaier et al. (2011) 

pGP1098 slrR in pUT18 (BACTH) Diethmaier et al. (2011) 

pGP1099 slrR in pUT18c (BACTH) Diethmaier et al. (2011) 

pGP1201 constitutive overexpression of RNase Y in B. subtilis  Lehnik-Habrink et al. (2011b) 

pGP1331 chromosomal integration of a C-terminal Strep-tag II 

at the native locus in B. subtilis 

Lehnik-Habrink et al. (2010) 

Mol Microbiol. 77: 958-977. 

pGP1867 cloning of the ykoW gene Lehnik-Habrink (2011) PhD thesis 

pGP1870 integrative plasmid for B. subtilis, fusion of GFP tag to 

C-terminus of a proteins at the native locus  

Rothe et al. (2013)  

J Bacteriol. 195: 2146-2154 

pGP1901 slrR in pKT25 (BACTH) Diethmaier (2011) PhD thesis 

pGP1902 slrR in p25-N (BACTH) Diethmaier (2011) PhD thesis 

pGP1903 slrA in pUT18 (BACTH) Diethmaier (2011) PhD thesis 

pGP1904 slrA in pUT18c (BACTH) Diethmaier (2011) PhD thesis 

pGP1904 slrA in pKT25 (BACTH) Diethmaier (2011) PhD thesis 

pGP1906 slrA in p25-N (BACTH) Diethmaier (2011) PhD thesis 

pGP1916 overexpression of YmdB(E39Q)-Strep in E. coli Diethmaier (2011) PhD thesis 

pGP1917 Overexpression of YmdB-Strep in E. coli Diethmaier (2011) PhD thesis 

pGP1920 Overexpression of YmdB(E39Q)-Strep in B. subtilis Diethmaier (2011) PhD thesis 

pGP2603 Overexpression of YaaQ-Strep Kampf (2013) Master thesis 

pKT25 BACTH vector, C-terminal fusion of T25 domain Karimova et al. (1998) 

pKT25zip BACTH control plasmid with a leucine zipper fused to 

the T25 fragment of pKT25 

Karimova et al. (1998) 

pSG1154 Integration of a c-terminal gfpmut1 fusion gene into 

the amyE locus, allows overexpression by Pxyl 

Lewis & Marston (1999)  

Gene 227: 101-110 

pUT18 BACTH vector, N-terminal fusion of T18 domain Karimova et al. (1998) 

pUT18C BACTH vector, C-terminal fusion of T18 domain Karimova et al. (1998) 
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pUT18zip BACTH control plasmid with a Leucine zipper fused to 

the T18 fragment of pUT18 

Karimova et al. (1998) 

p25-N BACTH vector, N-terminal fusion of T25 domain Claessen et al., 2008 

7.5. Internet programs and software 

Table 7.6. Used internet programs 

URL Provider Usage 

http://www.ncbi.nlm.nih.gov/ National Institutes of 
Health, Bethesda, USA 

Literature research 

http://www.subtiwiki.uni-goettingen.de/ University of Göttingen Database for B. subtilis 

http://subtiwiki.uni-
goettingen.de/subtipathways.html 

University of Göttingen Database for metabolic 

pathways of B. subtilis 

http://genolist.pasteur.fr/SubtiList/ Institute Pasteur, Paris Sequence analysis B. subtilis 

http://bioinfo.ut.ee/primer3/ Whitehead Institute Primer design for 

qRT-PCR 

http://tools.neb.com/NEBcutter2/ New England Biolabs Restriction site analysis 

http://www.basic.northwestern.edu/ 

biotools/oligocalc.html 

Northwestern University, 
USA 

Calculation of oligonucleotide 
annealing temperatures 

http://biocyc.org/ SRI International, USA NCIB3610 genome browser  

 

Table 7.7. Used software 

Software Producer Usage 

ChemoCam Imager software Intas Analysis of chemiluminescence 
signals 

iCycler software Bio-Rad Data analysis qRT-PCR 

Genius Pro
TM

 4.7.6–7.1.3 Biomatters Ltd. Analysis of sequencing results, 
primer design 

ImageJ National Institutes of 
Health, Bethesda, USA 

Densitometry and image 
processing 

AxioVision Rel 4.8.2. Carl Zeiss, Jena, Germany Single cell fluorescence 
microscopy 

ZEN lite blue edition 2012 Carl Zeiss, Jena, Germany Image acquisition and processing 

Mendeley Desktop 1.12.3 Mendeley Ltd. Reference managment 

TraV transcriptome browser Dietrich et. al. (2014) RNA sequencing data analysis 

Microsoft Office 2007-2010 Microsoft Inc. Text and data processing 

http://www.ncbi.nlm.nih.gov/
http://genolist.pasteur.fr/SubtiList/
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7.6. Supplementary data 

 
Figure 7.1. Western blot analysis (A) and qRT-PCR (B) to test the cultivations of cells for RNA sequencing. The 

strains were cultivated in LB medium at 37°C and 200 rpm until early stationary growth phase. From a single 

culture samples for RNA isolation and protein extraction were taken. Before sending the RNA of the strain 

GP966 and GP969 for RNA sequencing, overexpression of the hag motility gene and repression of the slrR gene 

and the tapA biofilm gene was tested by qRT-PCR. In parallel, elevated SinR protein amounts in the ymdB 

mutants strain GP969 was confirmed by Western blot analysis with a SinR-specific antibody. A specific antibody 

against the constitutively expressed HPr protein was used as a (loading) control. 

 

Figure 7.2. Bacterial two-hybrid assay of the SinR: Trp104Leu variant with its known interaction partners SinI, 

SlrR and SlrA. The mutated sinR variant was amplified with the primer pair CD153/ JG253. Strain GP1661 

served as a PCR template.  
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Table 7.8. Abundance of transcripts encoding factors involved in proteolysis. 

1
NPKM = nucleotide activity per 

kilobase of exon model per million mapped reads (compare Wiegand et al., 2013 BMC Genomics 14:667). The 
NPKM values represent the transcript level of a certain gene and were generated with the TraV transcriptome 
browser. The gene names were extracted from the SubtiWiki database (http://subtiwiki.uni-
goettingen.de/wiki/index.php/Proteolysis). 
 

Gene BSU number NPKMs1 

GP966 WT 
NPKMs1 

GP969 YmdBE39Q 
Ratio 

(GP969/ GP966) 

ctsR BSU00830 61 133 2,18 

clpC BSU00860 220 630 2,86 

clpP BSU34540 742 1109 1,49 

clpE BSU13700 6 33 5,50 

clpX BSU28220 811 1166 1,44 

immA BSU04810 22 38 1,73 

rasP BSU16560 394 272 0,69 

yraA BSU27020 399 263 0,66 

ctpB BSU35240 2 1 0,50 

spoIIGA BSU15310 1 0 0,00 

epr BSU38400 67 522 7,79 

mecA BSU11520 525 781 1,49 

yjbH BSU11550 136 156 1,15 

ypbH BSU22970 66 149 2,26 

ipi BSU11130 114 265 2,32 

ctpA BSU19590 197 137 0,70 

bpr BSU15300 22 5 0,23 

ypwA BSU22080 104 99 0,95 

mlpA BSU16710 86 38 0,44 

lonA BSU28200 139 187 1,35 

clpQ BSU16150 422 383 0,91 

clpY BSU16160 632 588 0,93 

ftsH BSU00690 1492 1650 1,11 

spoIVFB BSU27970 6 3 0,50 

ispA BSU13190 3 10 3,33 

lonB BSU28210 1 2 2,00 

htrA BSU12900 102 110 1,08 

htrB BSU33000 105 98 0,93 

prsW BSU22940 164 199 1,21 

wprA BSU10770 3077 1193 0,39 

mpr BSU02240 98 182 1,86 

nprB BSU11100 5 5 1,00 

vpr BSU38090 16 93 5,81 

yabG BSU00430 0 1  

yirB BSU33029 144 198 1,38 

htpX BSU13490 511 473 0,93 

yqgP BSU24870 16 18 1,13 

yyxA BSU40360 83 62 0,75 
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