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1 Introduction

1.1 Sensory coding in olfactory systems

How the brain senses odors has long received attention from scientists. All the olfac-
tory processing starts in olfactory receptors which translate odor stimuli appearing
in the environment into odor signals in the form of electrical current [1]. The sen-
sory information encoded in electrical signals is transferred between neurons as if
neurons talk to each other in a forum. The study of sensory coding focuses on the
relationship between external stimuli and neuronal responses in neural ensembles,
and the interactions between neurons in a neuronal population or between neural
ensembles across hierarchical layers.

In this thesis, we focus on how the sensory information is encoded and processed
in the olfactory system. Visual information is represented on the dimension of light
wavelength in the visual system, and different types of photoreceptors detect the
light intensity at different wavelength bands [2]. Similarly, the sound received by ears
is represented on the dimension of frequency in the auditory system where different
types of hair cells sense the sound intensity at different frequency bands [1,3]. In
contrast to these two sensory modalities, the dimension of olfactory modality is
hardly described by any physical features [4,5], and the odor space is constructed
by different types of odorant receptors defining discrete input dimensions [6, 7].
The number of odorant receptor types can be up to one thousand [8], resulting
in extremely high dimensionality in the olfactory system as compared with any
other sensory systems. Therefore, this suggests the strategies used in the olfactory
modality may be different from those in other modalities.

Such distinct characteristics of olfactory processing particularly arouse our interest
so that in this thesis we investigate how the olfactory system encodes and processes
olfactory information represented in the sensory space with high dimensionality.
The odor signals are processed in a hierarchical neural networks from peripherals to
central nervous systems and are transformed several times across multiple layers [1].
How does the olfactory system exploit high-dimensional odor information across
layers to integrate useful messages to identify odor quality and quantity? How do
the high-dimensional signals support olfactory circuits to achieve specific olfactory
strategies? Such unique olfactory processing may provide new insight into the neural
mechanisms underlying sensory processing.
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1.2 Neurons in networks

The basic processing units in sensory systems are neurons. A neuron receives signals
from other neurons via its dendrite and sends out processed signals to other neurons
along its axon. A neuron can process and transmit information through electrical
and chemical signals. Sensory systems implement neural ensembles consisting of
large numbers of same or different types of neurons to process and represent sensory
information [1]. To understand how neural ensembles work for sensory processing is
a central topic in neuroscience.

The complexity of neuronal networks in terms of neuron number makes it difficult
in investigating the interactions between neurons in a larger neural ensemble. It
is indeed an arduous work to measure a simple relationship of neuronal responses
to the input from a neighboring neuron because a neuron simultaneously interact
with several neurons in networks. It is also difficult to simultaneously record the
signals of all neurons in a neural ensemble because neurons are so tiny, and it is
unlike to place electrodes on each neuron to measure their activity. If we can silence
or activate specific neurons in networks, it could help us know local interactions in
neuron pairs or specific connections.

Over the last decades, the research in neuroscience is advanced by the development
of several revolutionary techniques. Optical imaging recordings can simultaneously
measure the activity in large numbers of neurons [9,10]. Genetic tools allow experi-
mentalist to label the neurons they are interested in [11] or to disable the functions
of particular neurons [12]. In optogenetic approaches, light is used to activate or
inactivate specific neurons [13]. Scientists have implemented these tools to investi-
gate the olfactory system and gained great amount of valuable experimental data.
However, there is much effort to understand how the olfactory system works based
on these observations in experiments. The exact neural mechanisms underlying the
olfactory processing are hitherto unknown. In this study, we will propose a theoret-
ical model confined by biological constrains to interpret some principal functions of
the olfactory system.

1.3 Thesis overview

Here, we make an overview of what we will study in the thesis and what we will
investigate in each chapter. The reports in the field of neurophysiology, anatomy,
and theoretical neuroscience studying the olfactory systems of insects as well as
invertebrates will be largely cited in this study. We start with introducing the phys-
iological properties of olfactory neurons and the connectivity of olfactory networks
and proposing our mathematical model to describe the activity of neurons and neu-
ronal interactions (Chapter 2). On the basis of this model, we explain three distinct
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phenomena in the olfactory system that have not been clearly elucidated. Each
issue is discussed in individual chapters, and our main contribution in this study is
composed of these three chapters.

First, we explain how the olfactory system is robust against odor concentration
fluctuation and why the responses of animals to odors in different quantity but in the
same quality are similar (Chapter 3). Next, we ask how odor information of multiple
qualities is processed in the olfactory system and discuss why odor mixtures are
perceived holistically as configural odors, not as several mixed components (Chapter
4). Third, we show that the same neural circuits can generalize different odor
quality, whereas such results are distinct from the putative discrimination function
in sensory processing, and ask why this kind of counterintuitive function can emerge
and coexist with the discrimination function in the same wiring of connectivity
(Chapter 5). Finally, we make final discussion and conclusions of our study in the
olfactory system (Chapter 6).






2 Model of recurrent networks

2.1 Overview

In this study, we focus on the first stage of odor information processing in the olfac-
tory system: the antennal lobe in insects and the olfactory bulb in vertebrates. We
first describe the physiological properties and the connectivity of olfactory neurons
in the antennal lobe of insects. We also briefly talk about the architecture of the
olfactory bulb and compare it with the antennal lobe. Next, we propose a math-
ematical model to formulate the electrical activity of different types of neurons in
the antennal lobe and their interactions in recurrent networks. In this model, we
demonstrate the simulation results of the input-output function in a single unit and
show the properties of this function.

2.2 The antennal lobe in Drosophila

2.2.1 Olfactory sensory neurons

Three main types of neurons were discovered in the antennal lobe of an insect:
OSNs (olfactory sensory neurons) at the input layer, PNs (projection neurons) at
the output layer, and local neurons (LNs) [14,15] (Fig.2.1). The odorant molecule
detectors, odorant receptors, are located on the surface of the dendrites of OSNs
and evoked by odorant chemicals in natural environments. The odorant receptors
transfer the molecular structure of odorants into electrical signals and contribute to
the activation of OSNs. In Drosophila, nearly 60 types of odorant receptors have
been identified in OSNs in the antenna and maxillary palp, the olfactory sensory
organs of insects [16-19]. In contrast, another species of insects, honeybees, have
160~170 types of odorant receptors [20], and in mammal, the number of odorant
receptor types in mice, for example, is nearly up to one thousand [8]. Compared to
approximately two million OSNs in the olfactory system of a mouse [21], Drosophila
has only nearly 1300 OSNs in its antennal lobe [18,19,22-24]. The hugely reduced
numerical complexity makes the investigation of the olfactory system in Drosophila
easier than in other species. Therefore, many neurobiologists studying olfactory
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Figure 2.1: Schematic diagram of the antennal lobe. Different red symbols repre-
sent different types of olfactory sensory neurons (OSNs). The responses of different
OSN types to the same odor are distinct. The same type of OSNs converges their
axons to the same glomerulus. The projection neurons (PN) are the output neurons
of the antennal lobe and relay the results of olfactory processing in the antennal lobe
to the mushroom body and the lateral horn. PNs send their dendrites and make
synaptic connections with the OSNs projecting their axons onto the same glomeruli.
Local neurons (LN) laterally innervating several glomeruli receive excitatory input
from OSNs and inhibit PNs in these glomeruli. Note that the connectivity of each
LN is heterogeneous.

systems conducted experiments on Drosophila to understand the neurobiological
and anatomical facts of olfactory circuits. In this thesis, we propose our model on
the ground of the better-understood neural circuits of Drosophila.

A mapping in Drosophila from 45 odorant receptors to 38 OSNs was established by
several researchers [25,26], and it has been found that only six OSN types expressed
more than one receptor [25]. The general rule for this mapping indicates one neuron
expressing one receptor [27]. Interestingly, this rule also applies to mammals (mice)
[28-30]. For the output of OSNs, these neurons project their axons onto parallel
and stereotyped neuropil compartments called glomeruli (Fig.2.1). The number of
glomeruli in Drosophila is counted to about 50 [25,31,32]. In contrast to Drosophila,
the antennal lobe in honeybees is composed of 160~170 glomeruli [33, 34], and,
astonishingly, the olfactory bulb in mice consists of 1600~1800 glomeruli, 35 times
than the number of glomeruli in Drosophila [35].

The same OSN type expressing the same odorant receptor converges onto the same
glomeruli [25,26,30,36], and each glomerulus only receives the odor signals from one
OSN type [25,26]. It has been verified the connections between 38 glomeruli and
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corresponding OSN types [25]. Some studies showed that other ten OSN types ex-
pressing ionotropic receptors [37,38] are mapped to single and individual glomeruli,
and only one exception, IR64a OSN type, is mapped to two glomeruli [38]. A
nearly complete mapping from OSN types to glomeruli is then thoroughly explored
in Drosophila.

The responses of at least 33 OSN types to more than 120 natural or artificial chemical
odorants have been extensively recorded by either electrophysiological technique or
calcium imaging (24 OSN types in [39], 7 OSN types in [40], and 2 OSN types in [41]).
These studies suggest that each type of OSN could be activated by part of testing
odorant molecules, but not by all of them, and an odorant molecule could elicit
different responses for different OSN types in terms of spiking rates. Remarkably,
each odorant can evoke a unique activation pattern represented by a particular
combination of several OSN types. The distinct odor-evoked patterns encoding
corresponding olfactory information can provide meaningful and substantial cues to
downstream sensory circuits.

2.2.2 Projection neurons and local neurons

PNs are the output of the antennal lobe, and these neurons in each glomeruli make
synaptic connections with one particular type of OSNs projecting their axons onto
the same glomeruli (Fig.2.1). In other words, PNs receive olfactory signals from
their presynaptic OSNs in glomeruli where the terminals of the same OSN type
converge. Because of the parallel structure of glomeruli, PNs in each glomeruli
receive different odor-evoked responses from their presynaptic OSNs.

The synapses between OSNs and PNs are excitatory and very strong [12,42-45]. A
report indicated that the activation of PN could be driven by three nearly simulta-
neous arrival of spikes from OSNs [45]. As the output of neural circuits, PNs relay
the results of olfactory information processed in the antennal lobe to the mushroom
body and the lateral horn of the protocerebrum in insects [4,46].

LNs laterally innervate several glomeruli and inhibit PNs via these glomerular in-
nervations (Fig.2.1). The glomerular connections are reciprocal dendrodendritic
synapses, meaning that the activation of LNs is dependent on the OSN responses
sending out to the glomeruli where those LN lateral innervate. In other words, LNs
receive odor signals from different OSN types via several glomeruli and aggregate
partial odor information from specific part of glomeruli in the neural networks. The
PNs are inhibited by the LNs laterally innervating glomeruli where these PNs send
their dendrites. Therefore, the activation of LNs is determined by the excitatory
OSN activity projected onto glomeruli where the LNs connect, and the feedback
inhibition elicited by the activated LNs forms recurrent networks in the antennal
lobe. Unlike the direct interactions between OSNs and PNs confined in individual
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glomeruli, LNs perform interglomerular computation collecting odor signals from
multiple glomeruli and affecting the activity of PNs in several glomeruli. To sum-
marize, LNs interact with several OSN types and the postsynaptic PNs of these
OSNs in multiple glomeruli.

The inhibition from LNs onto PNs is suggested to be presynaptic, not postsynaptic
[47,48]. The presynaptic mechanisms targeting the synapses between input neurons
and output neurons were also found in the olfactory bulb of other species [49-52].
The presynaptic inhibition can modulate the strength of synapses transmitting the
neuronal signals from the axons of OSNs to the dendrites of PNs. We will include
such computational function in our model.

Remarkably, stronger input from OSNs does not promise stronger PN output in the
same glomerulus [12,48,53-55] . The comparison between the responses of synapti-
cally connected OSNs and PNs in the same glomerulus suggests that stronger input
from presynaptic neurons does not elicit stronger postsynatic output (Fig.2.2). For
example, in glomeruli VM2, the OSN responses to Ethyl acetate or Ethyl butyrate
are stronger than those to 1-Butanol, but the PN responses to Ethyl acetate or
Ethyl butyrate are weaker than those to 1-Butanol . Because the synapses between
OSNs and PNs are indeed excitatory and strong, another neuronal interactions or
neural mechanisms must be involved to affect the activity of PNs. We have not
talked much about the role of LNs in the neural circuits, and in the next section,
we will discuss the functions and connectivity of LNs in the antennal lobe.

2.3 The role of local neurons in recurrent networks

2.3.1 Heterogeneous interglomerular connections

The LNs interconnect several glomeruli, and the interglomerular connections can be
basically categorized into two types in insects. [32,56-61]. One LN type innervates
all glomeruli, and the other LN type connects only particular glomeruli forming
local recurrent networks [32,56-64]. The local connections of each LN to glomeruli
are different and heterogeneous [32,56-61,63]. In one antennal lobe, the number
of the LNs nearly connecting all glomeruli is more than the LNs locally connecting
glomeruli [32,59,61], and it seems that global LNs should play a role in the recurrent
circuits.

Surprisingly, in the presence of odors, the LNs globally innervating glomeruli de-
crease their responses whereas other LNs innervating fewer glomeruli largely in-
crease their neuronal activity [32]. These findings may suggest that global LNs are
not mainly involved in the odor processing. Moreover, measuring the LN responses
to odors reflected that the LN responses are odor specific [58,63,65]. If the LNs
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Figure 2.2: The responses of synaptically connected OSNs and PNs in the same
glomerulus (green and magenta respectively). Neurons were measured in seven
glomeruli in Drosophila. Different odors evoke different responses of OSNs in differ-
ent glomeruli. In the same glomerulus, stronger input from OSNs does not promise
stronger PN output. For example, in glomeruli VM2, the OSN responses to Ethyl ac-
etate or Ethyl butyrate are stronger than those to 1-Butanol, but the PN responses
to Ethyl acetate or Ethyl butyrate are weaker than those to 1-Butanol. Because
the synapses between OSNs and PNs are excitatory and strong, another neuronal
interactions or neural mechanisms must be involved to affect the activity of PNs.
Reprinted by permission from Macmillan Publishers Ltd: Nature neuroscience [53],
copyright (2007).
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receive neuronal signals from most of glomeruli and process odor information in the
network of global connectivity, the LN should respond to most odors, not specifically
to a few odors. In another study, an antagonist was used in glomeruli to suppress
the reaction of inhibition receptors to the inhibition from LNs [63]. The results show
that PNs in part of glomeruli increased their responses whereas the responses of PNs
in other glomeruli were intact when the inhibitory pathways were interrupted. It
may suggest that the effect of inhibitory LNs is glomerulus-specific, and LNs process
odor signals in local recurrent networks. The glomerulus-specific was also verified by
directly measuring the activity strength of LNs in several glomeruli [58,64]. Another
recent report showed that reducing the synapses of LNs caused behavioral change
on olfactory perception [66]; therefore, the activity of LNs indeed effects the odor
processing in the recurrent networks of the antennal lobe.

Recent studies in the olfactory bulb of vertebrates debated whether the interactions
between inhibitory neurons and output neurons are distance-dependent [52,67, 68]
or distant-independent [69, 70]. Notably, several works indicated that their results
in computational simulations are consistent with neurophysiological data by imple-
menting distance-independent inhibition [71,72]. Similarly, in insects, the strength
of inhibition between LNs and glomeruli cannot be predicted by their spatial dis-
tances either [32,56-61,63].

The inhibitory LNs [73] and their specific connectivity between glomeruli [74] are
suggested to play an important role in olfactory processing. Therefore, we assume
that the neural computation in the olfactory network mainly relies on local hetero-
geneous connections, not global ones.

2.3.2 Lateral connections — excitatory or inhibitory?

Although some experimental results indicated the lateral connections from LNs to
glomeruli are excitatory [42,43], another study repeating the same experiments but
making minor modification showed that the lateral inhibition is the main impact in
the antennal lobe [48]. The same study also reported that attenuating lateral input
by removing OSNs in other glomeruli can broaden the odor tuning of PNs [48]. If
lateral connections are excitatory, PNs can be activated via lateral connections by
evoked OSNs in other glomeruli although the presynaptic OSNs of these PNs do
not respond to the same odor. Eliminating the lateral connections will block the
lateral excitation to activate PNs and make PNs narrowly tuned. Conversely, if
lateral connections are inhibitory, attenuating lateral input causes PNs more easily
activated by their cognate OSNs and broadens their tuning. Therefore, on the basis
of their experimental results, lateral connections should be inhibitory.

A study found that the percentage of inhibited glomeruli increases as the function of
odor concentration from low to intermediate dose [64,75], suggesting that increasing

10
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sensory input can evoke much more inhibition than excitation either from direct
OSN input or lateral input until stimulus concentration reaching at intermediate
level. The increasing odor concentration also results in the inhibition of a subset
of PNs in specific glomeruli [12,76]. Moreover, the results that removal of OSNs in
other glomeruli increases PN responses indicates that the lateral mechanisms should
be inhibitory [48]. Another evidence showed that increasing OSN input in other
glomeruli can decrease the PN responses [55]. Such inhibitory and heterogeneous
architecture provide flexibility for specific interactions between parallel glomerular
units in the antennal lobe [77].

2.4 Conserved architecture between insects and
vertebrates

In the olfactory bulb of vertebrates, the output neurons mitral cells (MCs) are
responsible for relaying the results of olfactory processing to higher brain areas
[78]. Granule cells like LNs interconnect different MCs and mediate inhibition onto
the dendrites of MCs [79,80]. The olfactory bulb is divided into large numbers of
compartments, also called glomeruli, and these structures are the basic units in the
olfactory bulb [73]. The OSNs expressing the same odorant receptor converge their
axon terminals onto the same glomeruli in the olfactory bulb [81] as in the antennal
lobe. The responses of MCs connecting to the same glomerulus are similar [82].
Therefore, insects and vertebrates share striking similarities in the organization of
the olfactory pathways [46,83-86].

Drosophila provides an attractive model for studying the neurophysiology of olfac-
tory systems because of the large number of practicable genetic tools and its genome
sequence being better known than other animals. Until now there has been sub-
stantial progress in understanding the anatomy and neural mechanisms underlying
the olfactory processing based on the experiments in Drosophila. In this thesis, we
will use these solid and widely recognized findings in Drosophila to establish our
olfactory model. Most neurophysiological evidence stated in the thesis is found in
Drosophila if we do not specify the animals used in the experimental studies. How-
ever, the knowledge investigating the olfactory system based on Drosophila does not
mean that our results in Drosophila are not applicable to other animals. Conversely,
the similar ways of processing olfactory representations and animal behavioral out-
puts observed in experiments across different species, coupling with the conserved
olfactory architecture between insects and vertebrates suggest that the olfactory
systems of animals in several phyla may share common strategies for olfactory pro-
cessing [83-85].

In a recent theoretical study, a unifying network modeling the olfactory bulb and the
antennal lobe was implemented to investigate the olfactory processing [87]. Here, we

11
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implement our model based on the neural circuits of the antennal lobe in Drosophila,
but the conserved architecture between insects and vertebrates should allow us to
explain common olfactory strategies.

2.5 Model of antennal lobe

In this thesis, we propose a mathematical model limited by biological constrains yet
exhibiting the phenomena and the functions of the olfactory systems observed in
recent studies. We first model the OSNs as the input of the recurrent networks and
then describe the behavior of the second-order neurons PNs and other neurons LNs
interconnecting glomeruli.

2.5.1 Neuron spiking with the Poisson process

Olfactory receptors in OSNs transfer chemical stimuli into electrical spikes. The
spike rate (number of spikes per time) of an OSN indicates its preference for odor
stimuli and the strength of neuronal activation. Such resulting spike rates (or called
firing rates) to different odor stimuli were systematic recorded in neurophysiological
experiments and published in many reports [12,39,53,88-90]. Once knowing each
firing rate of different OSN types responding to different odors, we can then use
these data as the inputs in the networks of the antennal lobe in future experimental
and theoretical research.

A simple idea for simulating the neuron spiking for a given spike rate is to emit a
spike periodically with constant inter-spike intervals. For example, if the spike rate
of a neuron responding to an odor is set at 50Hz, we can represent this neuron that
emits a spike every 20 ms. However, the spiking of neurons is not normally periodic
but always noisy, and they actually behave in a stochastic way. Here, we express
a spike event as x(t), {z(t) : = {0,1},t € [0,00)} assuming that z(¢) = 1 means
a spike being emitted at time ¢, and x(¢f) = 0 means no spike at time ¢. Next, we
want to know the probability of emitting one or several spikes n at a time interval
At, and this probability can be denoted by P(X!T2!z(t) = 1orn). To obtain this
probability, we divide the time interval At equally into enough small k sub-intervals
where at most one spike occurs and assume that the probability that one spike occurs
during this sub-interval equals p. This is a typical form of a Bernoulli trial with
exactly two possible outcomes: one spike or no spike. Therefore, the probability of
n spikes at a time interval At can be given by the following equation:

t+At k'
P ((Z x(z)) = ”) = m?n(l —p)r (2.1)

i=t
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Figure 2.3: A. The probability mass function of Poisson distribution given different
spike rates A. Different colors represent the distribution with different spike rates.
The highest probability always occurs at the spike rate. B. Spike trains generated
by the Poisson process in different spike rates. Each row is one trial base on the
given spike rate, and each spike rate runs for five times. The small vertical lines
indicate spikes emitted by a neuron. Although the spike rate is identical, stochastic
Poisson process generates these spike trains with great variability.

If we get the firing rate A from experiments, the probability p of emitting a spike in
a sub-interval can be replaced by =% A4t Next, we further divide the time interval At
into an infinite number of mtervals and let k£ be approached to oo, the Eq. 2.1 can
be simplified into:

oA (AAL)"

n!

P(n; AAt) = (2.2)
The probability distribution of Eq.2.2 is known as Poisson distribution, and the
stochastic process we described above is named as homogeneous Poisson process [91].
When we observe a neuron response in one second (At = 1s), the mass probability
distributions as a function of spikes in one second at different firing rates are shown
in Fig. 2.3A. After knowing the probability function of generating n spikes within a
time interval At, we can then numerically generate spike trains. We demonstrate
simulations of generating spike trains using different firing rates, and in each different
rate, the spike trains are generated for five times in Fig. 2.3B. In simulation results,
each bar indicates a spike emitted by a neuron, and each row represents one trial.
The higher the firing rate, the more spikes the neuron will emit. Specifically, given
the same firing rate neurons will not generate exactly the same spike pattern because
of the stochasticity of neurons. The source of neuronal variability or noises in this
study only comes from this stochastic Poisson process.

The timing of the ith OSN spikes generated by the stochastic process is represented

by a series of number T;” = {Tff I T T k} The voltage trace or action
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Chapter 2 Model of recurrent networks

potential of the ¢th OSN can be formulated by:
VO (t) = ViP5 + 3 D alt = T)AV (2.3)
k
where «(n) is a unit function:

1, ifn=0
0, ifn#0

a(n) =

if we implement neuron activity in a discrete simulation. Here, AV indicates the
Voltage increase when a spike is emitted by the ith OSN, and V,?*Nrepresents the
resting voltage [92,93].

OSN activity modeled with Poisson statistics allows us to use firing rates elicited
by specific odors recording in experimental data to generate spike trains, and these
spike trains are then turned into the input to the antennal lobe. This Poisson
process is commonly utilized in investigating neural network dynamics, and it has
been likewise applied to model OSN activity as the input to olfactory systems in
several reports [94-96].

2.5.2 Conductance-Based spiking model

After formulating the spiking behavior of OSNs, we make use of fundamental knowl-
edge of electrical circuits to describe the neuronal electrical activity of PNs and LNs
in this section.

Neurons are surrounded by a huge number of ions, and the variation of ions along the
membrane or through the membrane channels causes the current flow. The current
flow can be driven by the electrical potential difference initiated by an external
input such as presynaptic current or spontaneous neuronal activation. First, we
suppose a neuron acts as a capacitor and is being charged from an external current
passing into it. If we set the neuron membrane capacitance C,,, membrane electrical
potential (or voltage) V(t), and an external current I.,.(t), we can get a basic
equation determining the voltage of this neuron as:
dV (t)

== = L(t). (2.4)

In this first order differential equation, the presence of external currents will charge
the neuron and increase the electrical potential of neuron membrane. However,
it is unlikely that the neuron capacitor boundlessly holds all electrical charge and
retains the potential difference between two sides of membrane without losing any
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2.5 Model of antennal lobe

O lo(t)

Figure 2.4: The electrical activity of a neuron can be interpreted by a resis-
tor—capacitor coupling circuit. The membrane electrical potential V' (¢) is driven
by an external current I.,(t) from synapses. Two electrophysiological parameters
R,, and C,, are the membrane resistance and the membrane capacitance of this
neuron respectively. V; is the resting potential of membrane. If the input current
I..+(t) disappears, V (t) will eventually return to the baseline V4.

charge to the places at a lower electric potential. A more realistic way to express
the neuronal dynamic is a resistor-capacitor circuit (RC circuit) shown in Fig.2.4.
Then we have the expression of neuronal voltage based on Kirchhoff’s current law

in this RC circuit: () v )
V(t Vi(t)—W
Chm =— Loy (t 2.5
dt 0 Tl (25)
where R,, and Vj are the resistance and the resting potential of neuron membrane
respectively. Next, if we multiple membrane resistance R,, on both sides of Eq. 2.5

and define R,,C,, as membrane time constant 7,,, the equation is then rewritten as:

- d‘;lft) — V() + Vi + B Lua(t) (2.6)

Eq. 2.6 is commonly named as leaky integrate-and-fire model [92,93,97]. The leaky
current results from the term —V(t) + V4 meaning that the neuron capacitor will
lose electrical charge when there is no or not enough external current to support
the potential difference. When it occurs, the membrane potential will exponentially
drop to the resting potential V. The decreasing rate is decided by the membrane
time constant, and it takes 7, to drop the voltage from V(¢') at time ¢’ to %tl) (e
is Euler’s number).

However, Eq. 2.6 cannot explicitly display all neuronal dynamics. When an external
current causes a neuron to depolarize and to reach the threshold potential V;;, the
neuron will emit a spike. After reaching the threshold, the membrane potential
will not adhere to Eq.2.6. The potential abruptly surges up and quickly plunges to
the resetting potential V,..s; below the resting potential. The probability of spiking
dramatically decreases to zero for a short period because neurons cannot densely
emit several spikes in a few milliseconds. This inactive period is called absolute
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Chapter 2 Model of recurrent networks

refractory period t,.. After the absolute refractory period, neurons are available to
emit the next spike, and its potential begins from resetting potential and again
follows the leaky integrate-and-fire equation (Eq2.6).

In the antennal lobe, LNs receive the external current from OSN axons innervating
glomeruli where those LNs laterally connect, and so the amplitude of the external
current to LNs results from the spike OSNs generate. Assuming that the strength of
the postsynaptic response to each spike is identical, the magnitude of I..,(t) equals
a constant value I?°¥when an LN receives a spike from the ith OSN. For a short
period, the LN membrane R, ;n barely changes; therefore, we get a constant value
R znIP%N to express the external input term in Eq. 2.6 when the ith OSN emits a
spike at t = Tfﬁ . In addition, the external input I..;(t) becomes zero when no spike
occurs. The lateral connectivity of the Ith LN is represented as wy_;, the weight
of the lateral connection to the xth glomerulus where the ith OSN projects. This
arrow in w,_,; indicates that OSN signals are transmitted from the xth glomerulus
to the {th LN. All these features characterize the membrane potential V() of this
[th LN modified from Eq. 2.6:

dVin(t)

Tm N~ = —Vin (@) + Vorn + D wersi R v Leat (1) (2.7)

where 7, 1n and Vp 1y are the membrane time constant and the resting potential of
the {th LN respectively [92]. Only the ith OSN projects its axons to the xth glomeruli
where the [th LN laterally innervates can send out encoding odor information to this
LN in the form of spike trains.

The PN dynamics is more complicated than LN’s because PNs receive both exci-
tatory input from OSNs and inhibitory input from LNs. In Eq. 2.6, we replace the
input term with a synaptic current I, (t) representing the interaction between exci-
tatory OSN input and presynaptic inhibition from LNs. If we define 7,,, py and Vj py
are the membrane time constant and the resting potential of a PN respectively, then
the membrane potential Vpy(t) of a PN is cast into the form:

dVpn(t)

Tm’PNT = —VPN(t) —+ Vb,p]v + [Syn(t) (28)

[87,94]. The input term I, (t) incorporates the constant R,, in Eq.2.6 into a
constant inside I,,,(¢) and will be interpreted in detail in the next subsection.

2.5.3 Presynaptic inhibition

In a glomerulus, the dendrites of PNs make a synaptic connection with the axons of
OSNSs. The reciprocal dendrodendritic synapses from LNs target onto the synapses
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2.5 Model of antennal lobe

between OSNs and PNs and apply presynaptic inhibition to the OSN-PN connec-
tions. The strength of feedback inhibition in the antennal lobe is related to the
LN potential governed by Eq.2.7. The LN equation Eq.2.7 characterizes a strong
association between the inhibition strength and OSN input from several glomeruli.
Therefore, via the recurrent connections, the PN responses are affected not only
by the presence of excitatory OSN spikes in the same glomeruli but also by the
inhibition activated by OSN input from multiple glomeruli.

First, we model the synaptic current Iy, () with a conductance g;*" of synapses
between the PN and the ith OSN in the same glomerulus through the equation :

Lyn(t) = 3 g (VIO () = V,sym) (2.9)

i

where Vg g is the reversal potential of synapses [94,98]. If we assume the resting
voltage of OSNs V25" is equal to the reversal potential of synapses Vg gyn, the Eq. 2.9
can be reduced by substituting V.V (¢) with Eq. 2.3 and expressed as follows:

Lyn(t) = 3.3 6" (a(t = TR)AV. (2.10)

[95]. Therefore, each spike from the ith OSN can generate a synaptic current to
stimulate its postsynaptic PNs and to initiate PN spiking.

Moreover, the spike from ith OSN to its postsynaptic PNs can increase synaptic
conductance g;*"(t) by N;¥"(t)pr¢(t)q. Here, N;¥"(t) is the number of releasable
vesicles, pi/(t) is the probability of vesicular release, and q is a quantal size rep-
resenting the postsynaptic response to a vesicle [92,94,99,100]. Because this spike
uses releasable vesicles to generate a synaptic current cross the synaptic cleft, the
amount of releasable vesicles N;¥"(t) is decreased by N;"(t)pi(t).

Conversely, when the ith OSN is silent, the ¢;¥"(t) decays exponentially with time
constant 7, following the equation:

syn
dg;"" (1) _ _ngfyn

y (t) (2.11)

[92,94,95]. At the same time, the synapse repackages releasable vesicles for the
next release, and this mechanism can be represented by an exponential recovery
with another time constant 7, and a maximal number of releasable vesicles Ny:

ANV (t

—— ®) = 7n(No — N;V"()) (2.12)
dt
[94].

The presence of spikes can increase the conductance of synapses but has to spend
some vesicles transmitting neural signals. As a result, the descending number of
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Chapter 2 Model of recurrent networks

available synaptic vesicles will decrease the incremental amount of synaptic con-
ductance resulting from the next spike for repetitive spiking. In contrast, although
the absence of arrival spikes reduces the synaptic conductance, the synapse regains
releasable vesicles at the axon terminal due to inactive neural transmission.

Next, the lateral inhibition is represented by decreasing the release probability ex-
ponentially proportional to the summation of spike rates of all LNs innervating the
rkth glomerulus. Because the lateral connections are via reciprocal dendrodendritic
synapses [15,101], these synapses transmit both feedforward signals from glomeruli
to LNs and feedback signals in the opposite direction. In other words, mediating
signals by the same synapses can allow us to assume that the weights of feedback
connections w;_,, are the same as the weights of feedforward connections wy_,;. Then
the release probability pi®(t) of a synapse from the ith OSN in the xth glomerulus
is governed by the equation of an exponential form:

Pi(t) = Prag exp(—a Y wis fron(t)) (2.13)
l

where P, is the maximum release probability, f; ,n(t) is the firing rate of the Ith
LN innervating the kth glomerulus , and « is a constant [94]. In this case, if presy-
naptic inhibition is applied to the synapse, the decrease of the release probability
will follow the exponentially decreasing function (Eq.2.13) and result in attenuating
the increase of synaptic conductance initiated by input spikes from OSNs.

In the absence of spikes from OSNs,; the synaptic conductance will keep decaying
exponentially. Therefore, the extremely low synaptic conductance implies the low
probability of postsynaptic PN spiking.

2.6 Input-output intraglomerular function

Before coming to the part of explaining how the olfactory system performs the
observed phenomena, we start with looking into the relationship between OSN re-
sponses and their postsynaptic PN responses in the networks and leave aside lateral
inhibition. Several recent reports indicated that the synapse between OSNs and
PNs is very strong and can vigorously amplify weak OSN responses [12,44,53]. One
reason of the strong connections is that glomeruli connect several dozens of OSNs
with a few PNs [19,23]. Even though the spike rates of OSNs responding to an
odor is low (e.g. 10Hz), the total spike number of an OSN population transmitted
to their postsynaptic PNs can be hundreds of spikes per second. With this high-
converged connectivity the odor weakly activating OSNs is still capable of causing
their postsynaptic PNs to spike.

Another reason explaining this input-output amplification is likely the high release
probability of vesicles at the synapses between OSNs and PNs. A recent study [44]
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2.6 Input-output intraglomerular function

Table 2.1: Parameters of intraglomerular transformation.

A. PN

Name Value Description

Tm,PN 51ms membrane time constant

Vo.pn -60mV resting potential

Vieset, PN -80mV resetting potential

Vin.pN -45mV threshold potential

tr PN 1ms absolute refractory period

B. Synapse

Name Value Description

AV 8 mV potential increase evoked by a neuron spike
Tq 2ms conductance decay time constant

TN 100 ms vesicle recovery time constant

q 1.07 quantal size

Ny 51 maximal number of releasable vesicles
Pos 0.79 maximum release probability

Q 0.032 constant for lateral inhibition

estimating this probability suggested that this value P,,,, could be up to 0.79 in
Drosophila, and the number of release sites was estimated to be about 51. Another
study also confirmed this unusually high release probability of OSN terminals in the
olfactory bulb of rats (P, > 0.8) [102].

According to the estimated parameters in Drosophila, we can calculate the number
of releasing vesicles triggered by a spike by the release probability times the number
of release sites. Therefore, an OSN spike can initiate the release of dozens of vesicles
from the axon terminals of an OSN to its postsynaptic PN dendrites and elicit
strong responses of the PN. In contrast, the excitatory synaptic contact in rat barrel
cortex probably only releases one vesicle when the activation from one presynaptic
fiber occurs [103]. Therefore, although an odor evoked weak responses from OSNs,
of which spiking rate is about 30 spikes/s, several experiments showed that the
responses of their postsynaptic PNs could spike at more than 100 spikes/s [44, 48,
53,55].

The available number of vesicles per synapse in a short period is limited. A high

release probability usually causes short-term synaptic depression because it is more
likely for these synapses to exhaust almost all releasable vesicles and to cause the
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Figure 2.5: Nonlinear intraglomerular transformation and the effect of its param-
eter a. A. The effect of different constants a on the releasing probability. In the
simulation we set constant o to 0.0032 instead of 0.035 for exhibiting moderate
and realistic inhibition. B. The input-output signal transformation in a glomeru-
lus. Each circle indicates a simulation trial. After running one thousand trials, we
clearly see that the relationship between OSN responses and PN responses in the
same glomerulus is nonlinear. Weak OSN responses can be boosted at the level of
PNs, but strong OSN responses only drive PNs to saturating responses.

depletion of vesicles when several subsequent presynaptic spikes arrive. This kind
of synaptic depression has been found in OSN-PN synapses when the presynap-
tic stimuli were presented at different rates from 15Hz to 50Hz [44]. The same
study suggested that the higher rate of stimuli leads to stronger depression, and the
synapse could not amplify input responses at high spiking rates as much as those
at low spiking rates. Therefore, the signal transformation of the input-output in a
glomerulus becomes nonlinear, and this intraglomerular nonlinearity was recognized
in several experiments [44, 47,48, 53, 55]. Through such OSN-PN signal transfor-
mation, weak OSN responses can be boosted at the level of PNs, but strong OSN
responses only drive PNs to saturating responses.

Now we already knew that this resulting nonlinear transformation is achieved by
two neuronal dynamics: abundant vesicles released at synapses for weak OSN input
and synaptic depression for strong OSN activation. Here we implement the model
proposed in Sec. 2.5 to exhibit this excitatory intraglomerular transformation with-
out including the effect of lateral inhibition. In this simulation, 30 OSNs and 3 PNs
are connected within a glomerulus according to the report of Root and his colleagues
studying the antennal lobe of Drosophila [12]. We list all used parameters of the
simulation in table2.1. Most values of parameters refer to the theoretical study re-
ported by Oizumi et al. [94], but we decrease one constant « from 0.35 in their report
to 0.032. Considering an exponentially decreasing function p™ = P, .. exp(—afry)
simplified from Eq.2.13, we get a very low vesicle releasing probability p"¢ at 0.03
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2.6 Input-output intraglomerular function

based on their constant a at 0.35, even though the spike rate of LN input f7y is set
to very low at only 10Hz. In other words, the input from LNs at any intensity can
tremendously inhibit PNs, and strong inhibition will always occur at the synapses
between OSNs and PNs. Because the inhibition in their experiments is too strong
and unrealistic, we use a at 0.032 instead so that vesicle releasing probability de-
creases to 0.04 when the input of spiking rate from LNs increases to 100 Hz. The
effect of different constants « is shown in Fig. 2.5A.

According to the results in electrophysiological experiments, the resting potential of
olfactory neurons is approximately 60mV in Drosophila [45,104] and, this value is
adopted in all neurons in our simulations. Other parameters including ¢, Ny, and
P4z are based the estimations suggested by Kazama and Wilson [44]. The sampling
rate is 5000Hz, and so the size of each time step in simulations yields 0.2ms.

We randomly select the spike rate of OSN responses from 0 to 200Hz as input
(sampling from a uniform distribution), measure the spike rates at the PN level,
and repeat this experiments for one thousand times. In concert with experimental
results [44, 48,53, 55], the relationship between OSN responses and PN responses
in our simulation is nonlinear at lower concentration input and becomes less cor-
related as the input increases to higher concentrations (Fig.2.5B). Such nonlinear
intraglomerular transformation controls the interaction between OSNs and PNs and
plays an important role in the olfactory processing. The simulation results consistent
with other experimental data confirm that the high release probability of vesicles at
the synapses between OSNs and PNs, together with the synaptic depression caused
by the vesicle depletion, can establish the nonlinearity in the input-output function
within a glomerulus.
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3 Concentration-invariant odor
representations

3.1 Overview

The odors in the external worlds are represented in the ways of diverse quality (the
chemical structures of odor molecules) and great disparity in quantity (odor concen-
trations or intensity). However, how animals efficiently recognize a large repertoire
of odors in terms of quality and quantity has not been reached a final conclusion.
In this chapter, we begin with discussing what phenomena have been captured in
the olfactory process for encoding quantitative information in the antennal lobe or
the olfactory bulb. Then we use our proposed model to show that the recurrent
networks with specific inhibition feedback is sufficient to account for the coding
strategies found in many neurobiological experiments. We also implement different
kinds of odor response profiles and change the weights and patterns of recurrent
connection to characterize the model by comparing the results of simulations. Fi-
nally, we show that the proposed model can serve as a basis for how the olfactory
system can encode odor quantity and distinguish odor quality simultaneously.

3.2 Encoding quantitative information in OSNs

Odor stimuli used for behavioral experiments in the olfactory system often range
over six orders of magnitude in concentration. All these stimuli from low to high
concentrations can drive animals to perform distinct behavioral responses including
attraction and aversion to given odors, and higher concentrations often elicit re-
sponses different from low concentrations [105-107]. In contrast to the responses of
animals in behavioral experiments over a broader concentration range, the dynamic
of OSN responses is limited in a narrower range of concentrations [39, 105, 108].
Specifically, the OSN response has become saturated since testing concentration has
increased to only approximately two or three orders from the intensity to which this
neuron started to respond. [39,105,108].
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Figure 3.1: Schematic illustration of odor representations at the OSN level. A.
Concentration—response profiles for two neurons preferring the same odor but having
different affinities. The dynamic ranges of OSNs are narrower than the concentra-
tion range of stimuli (horizontal direction). High-affinity neurons respond differently
only at lower concentrations (green dash line) whereas the responses of low-affinity
neurons are distinguishable only at higher concentrations (red solid line). Com-
bining both types of neurons can extend the dynamic range of olfactory receptive
field. B. Odor-evoked patterns for different concentrations (upper and lower) and
different odor qualities (left and right). Ten different OSN types are individually
represented by ten different color ellipses. A filled ellipse denotes this OSN being
evoked. These different patterns are several combinations of responses of different
OSN types and are thus called combinatorial codes. In the same odor quality, higher
concentration can activate more types of OSNs. In the same odor quantity, different
odor qualities are represented by different combinations of OSN types. The differ-
ence of odor-evoked patterns between qualities is much larger than the difference
between quantities.

How can the olfactory system relying on limited dynamic of an OSN (e.g. the concen-
tration response curve depicted as the green dash line in Fig.3.1A) represent odor
stimuli in much broader range of concentration (e.g. all possible concentrations along
the horizontal axis in Fig.3.1A)7 It might be that the activation of OSNs is merely
used for detecting if there is in presence of a particular odor. In this case, although
the olfactory system will lose part of quantitative information when the activity of
OSNs reaches saturation, the perception of smelling a specific odor still functions
in a straightforward way depending on whether one or several corresponding OSNs
are activated.

However, a recent study indicated that the mechanisms of olfactory coding are much

more complicated than the above assumption [105]. This study suggested that the
antennal lobe could use two types of OSNs preferring the same odor but having

24



3.2 Encoding quantitative information in OSNs

different affinities to establish a much wider concentration receptive field (e.g. two
neurons in Fig.3.1A). In other words, although one OSN type reaches saturating
responses, the differential responses from the other OSN type can still be capable of
encoding different odor concentrations into different patterns. Specifically, the OSN
type sensitive to weak odors is informative at lower concentrations (high-affinity
neuron, green dash line in Fig. 3.1A) because different odor quantities at lower con-
centrations can be reflected only by the discriminating responses of the high-affinity
OSNs. Similarly, the other type is much more informative at higher concentrations
(low-affinity neuron, red solid line in Fig.3.1A). If the olfactory system combines
both high-affinity and low-affinity types of OSNs together to represent stimulus in-
tensity, the dynamic range of olfactory receptive field can be largely extended. At
lower concentrations, low-affinity neurons are inactive, and the odor representations
will be highly dependent on the responses of high-affinity neurons whereas low-
affinity neurons are responsible for encoding the intensity at higher concentrations
where high-affinity neurons are not sensitive. Therefore, the quantitative informa-
tion can be jointly represented by the neuron responses of two different types. Here,
the strategy of recruiting multiple OSN types to encode odors is commonly called
combinatorial coding.

3.2.1 Combinatorial coding in quantity and quality

The combinatorial coding scheme utilizing two OSNs with different sensitivity to
concentrations effectively extends the range of encoding odor concentrations in the
antennal lobe. Different odor intensities are encoded into distinct patterns based
on different sensitivity ranges of two OSN types, and downstream neurons should
be capable of decoding intensity information from those distinguishable patterns.
Although the combinatorial coding indeed solves the problem caused by narrow
sensitivity ranges of OSNs, it could also bring the adverse effect, increasing the
complexity in the olfactory coding space.

It has been found that in the olfactory systems across species, different odors elicit
different activation patterns in OSN assemblies [10, 29, 75,108-113], and the odor
quality is thus preserved in the distinction between neural representations. There-
fore, odor qualitative information is encoded in the same way (combinatorial coding)
as odor quantitative information at the OSN level. The qualitative and quantitative
information is then mixed up in the input olfactory representations generated from
peripheral OSNs. As a consequence, higher brain areas have to solve another crucial
problem that judging the change of representations is initiated by the change of odor
quality or quantity. Could the new presence of a distinct representation mean an
arrival of a new odor or exactly the same odor but its concentration being altered?

The question can be replied by many studies suggesting that the difference of com-
binatorial codes between qualities is much larger than the difference between quan-
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tities (Fig.3.1B) [10,12,39,75,107]. An increasing concentration can often recruit
two or three more OSN types whereas different odors are encoded in a variety of
combinations out of large numbers of distinct OSN types, for example, about 50 for
Drosophila.

If the activity of one OSN type represents one dimension in olfactory space, the
high-dimensional olfactory coding space should be large enough to accommodate a
wide variety of olfactory quality and quantity. The dimension of olfactory space
in mammals is much larger than the dimension in insects. For example, in human
beings the dimension of OSN representations is several hundred [114,115] and up to
one thousand for mice and rats [8,116]. Such high dimensionality should be capable
of satisfying the demand for allocating all olfactory representations appearing in the
natural environment.

To sum up, OSN patterns are concentration dependent and are represented in com-
binatorial codes. Odors at a low concentration only elicit responses of a few types
of OSNs whereas most OSN types are inactive. The increasing spike rates of OSNs
with odor concentration progressively morph neuronal activity patterns. As concen-
tration increases, the responses of some OSN types reach saturation, and some new
OSN types may be recruited in the olfactory coding.

The response sensitivity to an odor depends on the ligand-receptor affinity of an
odor receptor, and different types of odor receptors contribute to different response
profiles of OSN types. An odor at low concentration can elicit the responses of OSNs
carrying the receptors with high ligand-receptor affinity while increasing odor con-
centration can progressively recruit OSN ensembles with low ligand-receptor affin-
ity. The dynamic range of high-affinity OSNs spans mostly over lower concentra-
tions, and low-affinity OSNs are more active at higher concentrations (Fig.3.1A).
Two OSNs with different affinity working together can integrate their concentra-
tion-response profiles to extend the dynamic range of encoding olfactory input.

In this chapter, we focus on how neural circuits process and encode quantitative
information, and how the antennal lobe uses the combinatorial codes to achieve spe-
cific schemes in olfactory processing. We will continue to cover the topics regarding
odor quality coding and discuss how the antennal lobe can distinguish odor quality
based on combinatorial codes in the following chapters.

3.3 Concentration-invariant coding

The odor signal travels through the medium of air or water to the peripheral ol-
factory system. Because the unstable properties of fluid, the signal transmission
medium is indeed unsteady with several kinds of turbulence of which structures
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3.3 Concentration-invariant coding

Figure 3.2: Odor concentration is discontinuously distributed in the air or water
space because of turbulent flow and stochastic odor molecule diffusion. Brighter
intensity indicates higher odor concentration. The arrow denotes an antennule of a
lobster exposed to this odor.!(Photographing image taken from [85])

vary in sizes. Odor signals are also transported and spread in the way of molecular
diffusion [117,118]. These varying physical factors always change how and how many
odor molecules are transported to the peripheral area of olfaction. The OSNs in the
peripheral area will therefore sense different scales of concentration fluctuation in
hundreds of milliseconds. Similarly, the odor concentration is discontinuously dis-
tributed in the air or water medium (Fig. 3.2), and when animals move around this
environment, the concentration their OSNs sense would always also vary. This con-
trasts with the visual modality where photoreceptors are often stimulated by nearly
constant light intensity of visual objects in normal environment. For example, the
light intensity of words you are currently reading almost keeps constant either on
the paper or on the screen. In general, most change of received odor signal strength
results from the effect of turbulence in transport medium and the stochastic odor
molecule diffusion instead of the concentration variation of odor sources.

We earlier talked about that combining two types of OSNs with different affinity
could extend the dynamic range of the system to respond to broader range of input
concentration. This means that OSN ensembles can mostly encode varying input
concentration and relay this concentration dependent information to higher brain
areas. However, if the olfactory system keeps tracking any tiny change of odor
concentration, neural systems would spend vast neural resource representing and
processing this quantitative information, and it could hugely increase the amount
of unnecessary and redundant sensory information in the brain. Even worse, most
varying concentration information is created by random diffusion of odor molecules
or turbulent flow and is unrelated to the true quantity of odor sources. In contrast

! Reprinted from Neuron, 48(3), B. W. Ache and J. M. Young, Olfaction: diverse species, conserved
principles, p418, Copyright (2005), with permission from Elsevier.
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Chapter 3 Concentration-invariant odor representations

to other modalities, the olfactory modality needs to solve this specific and onerous
issue when processing quantitative information.

3.3.1 Representation invariant to concentration fluctuation

How do the neural circuits filter out the input concentration fluctuation during the
olfactory processing? A solution found across different species in nature is that
odor stimuli in similar concentrations are generalized as the same representation
in olfactory computation. Many studies suggested that the representations can be
classified in the same clusters at the output of the antennal lobe or the olfactory bulb
even when the concentration of input odors fluctuates [72,75,76,106, 108, 119-124].
In one of these studies, Stopfer et al. used five concentrations over a 10,000-fold
range of three odors in experiments and recorded the responses of PNs in locusts.
Their data showed that the response patterns of PNs changed little within 10 or
100-fold concentration range of all testing odors [76]. How wide a range of input
odor concentrations (10 or 100-fold concentration) can be considered as similar odor
stimuli depending on which odor quality is presented.

Another report in investigating honeybees also indicated that the antennal lobe en-
coded odors into separated clusters at the PN level when the animals were stimulated
by odor concentrations diluted from 1077 to 10° [75]. Similar results of invariant out-
put responses have been also found in vertebrates. In the olfactory bulb of zebrafish,
the responses of output neurons (MCs) to 10 or 100-fold change in concentration were
similar, and the response patterns were generalized into two clusters visualized by a
linear dimensionality reduction method, principal component analysis (PCA) [125]
as input odor concentration was increased from 10~7 molar concentration (moles per
liter, M) to 107*M [119].

More evidence comes from the analysis of input odor-evoked patterns. In rats, sev-
eral reports suggested that although the raising of odor concentration could recruit
the activation of new OSNs and intensify the responses across activated OSNs tuned
to that odor, performing normalization on odor-evoked OSN patterns alleviated the
effect of increasing concentration, and these normalized patterns remained almost
constant across different concentrations [72,120,121]. The normalization operation
is calculated by the mean of odor-evoked signals (e.g. the mean of entire imaging
signals in their studies) subtracted from the value of each basic unit of signals (e.g.
the intensity of each pixel in an image), then divided by the variance of all signals:

oy = M (3.1)

Os

where s; is the signal for ith basic unit (e.g. for the ith pixel); us and o4 are the
mean and variance of signals respectively.
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3.3 Concentration-invariant coding

Consistent results have been shown in the olfactory bulb of turtles when the same
operation was applied to the images of input activity patterns. The normalized odor-
evoked patterns also changed little over at least a 200-fold concentration range [108].
The mechanism against concentration fluctuation may be therefore achieved by the
normalization operation. Such operation requiring the subtraction of the mean
from input strength implies that feedback inhibition should play a main role in the
olfactory processing of the recurrent systems.

Results of behavioral experiments also support the assumption of such concentration-
invariant strategy. A study indicated that the larva of Drosophila exhibited consis-
tent attraction to an odor from 60uM to 30 mM, and the concentration-invariant
behavior preserved over a concentration range up to 2.7 log units [106]. Another
study reported that honeybees behaved similarly between the conditioning odor and
the same odor in 100-fold concentration [123]. These honeybees were conditioned by
odors at an intermediate concentration, and after being conditioned, they learned
and preferred to extend their proboscises in the conditioning odors. Surprisingly,
the honeybees showed repulsive behaviors to the conditioned odors at a lower con-
centration as well as to novel odors at an intermediate concentration. The results of
their study suggests that the concentration-invariant recognition may be in a limited
concentration range.

Comparable results have also been observed in rats. The presence of a novel odor
raised significantly differential responses of rats than the presence of a habituating
odor did at a different concentration [121]. All these behavioral results suggest that
in olfactory systems, the quantitative information could be generalized for the same
odor quality, but it is likely to encode each odor quality as distinct representations.
Similarly, as rats could generalize the same odor at different concentrations, they
identified odor mixtures according to the ratios of components and had consistent
responses to over at least ten-fold range of concentration [122]. From neurophysio-
logical data to behavioral experiment results, it becomes clear that concentration-
invariant coding is well established in the neural computation of the antennal lobe
or the olfactory bulb incorporating feedback inhibition so that the olfactory system
can suppress any concentration fluctuation.

3.3.2 Concentration invariance within confined ranges

So far, many pieces of evidence corroborate that the olfactory coding can transform
olfactory information into stable representations independent of small concentration
variations. However, the odor intensity still reflects significant information from ex-
ternal environment and may convey vital messages such as the distances between
animals and their food sources or even their predators. Indeed, the odor inten-
sity is Gaussian-like distributed from the center of the odor source and decreases
symmetrically because of the way of odor molecule diffusion [106]. The olfactory
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Chapter 3 Concentration-invariant odor representations

Projection neurons

Figure 3.3: Concentration-invariant representations in discrete clusters. The neural
circuits categorize odors at five different concentrations into two discrete clusters at
output layer. Odors at lower concentrations are classified to one cluster, while odors
at higher concentrations are classified to the other. Within each cluster, the odor
representations are invariant to concentration change.?(Figure modified from [76])

modality should be capable of decoding sensory information to know the relative
distances from odor signals based on how much odor intensity is received. Moreover,
odor-evoked patterns in OSN ensembles already bear and encode quantitative infor-
mation, and it is unlikely that all of this useful information is thoroughly overlooked
in the olfactory processing. In contrast to the visual modality, measuring how far
nearby objects are from individual animals is basically based on the geometric size
of these objects instead of their light intensity. If animals want to exploit any clues
as to how far odor sources are from themselves, it is reasonable that they smell out
the relative distances from odor signals in environment based on the strength of
neuronal activation in odor-evoked patterns.

In fact, several studies in section 3.3.1 already showed that the antennal lobe or
the olfactory bulb generalizes the same odor at a series of concentrations into two
clusters [75,76,106,119]. One cluster represents lower concentration odors, and the
other accounts for odors at higher concentrations (Fig. 3.3) [76]. Some reports did
not mention similar phenomena in their data probably because the concentration
range they used for odor stimulation is narrower than the range one cluster gen-
eralizes. In addition, the idea, concentration invariance within a few clusters, is
supported by more evidence from the experiments in Drosophila and human be-
ings. One study investigated behavioral responses to different odor intensities in
Drosophila, showing that weak and strong concentrations of the same odor can
elicit attraction and aversion behavior respectively [107]. In human psychophysical

2 Reprinted from Neuron, 39(6), M. Stopfer, V. Jayaraman, and G. Laurent, Intensity versus
identity coding in an olfactory system, p995, Copyright (2003), with permission from Elsevier.
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experiments, subjects reported that they smelled dissimilar odors while the same
odor was presented at different concentrations [126,127]. For example, odors such
as civet and ambergris smell unpleasant and even fecal at high concentration, but
they become pleasant and are used to manufacture perfume when these odors are
diluted. Therefore, these data suggest that different quantitative information may
be encoded as different odor quality in the olfactory processing. As different odors
encoded into different representations, odors at higher concentrations and at lower
concentrations are likely generalized into respective representations, and higher brain
areas can still distinguish different intensities of the same odor.

Although the olfactory system implements the mechanism of concentration-invariant
coding, this mechanism is indeed partial and within a confined range of concentra-
tion. The same odors over a large concentration range are generalized into a few
clusters, composed of one representative for a strong odor and the other representa-
tive for a weak odor. This means that there are only a few distinct odor representa-
tions for one odor quality in olfactory output neurons; therefore, the generalization
mechanism may allow classification of odor intensity more efficient in higher brain
areas. Quantitative information represented at the OSN level can be still relayed to
higher processing areas in discrete and binary representations, and the brain can be
aware of odor quantity change from the olfactory peripheral.

In the next section, we will demonstrate how the odor representations can be in-
variant to the concentration of odor stimuli in the olfactory modality based on our
theoretical model. We will also show that how the neural circuits generalize similar
odor intensity and encode weak and strong odors into discrete representations.

3.4 Results in theoretical investigations

The antennal lobe in insects and olfactory bulb in vertebrates share conserved
architecture and implement similar signal transformation between intra- or inter-
glomeruli [46,84]. To show how sensory information is evolved and processed in the
olfactory system, here we demonstrate the olfactory computation in the antennal
lobe, and PNs are used as the output neurons instead of MCs.

3.4.1 Model setup

In all simulations, the antennal lobe network consists of 30 OSNs and 3 PNs per
glomerulus as the setting we used in section. 2.6 Several LNs are implemented to
build the recurrent connections, and totally 9 glomeruli compose the recurrent net-
works of the antennal lobe. The parameters of equations describing LN membrane
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Chapter 3 Concentration-invariant odor representations

Table 3.1: Parameters of LNs in the antennal lobe network.

LN

Name Value Description

Tm, LN 5ms membrane time constant

Vo.LN -60 mV resting potential

Vieset, LN -45mV resetting potential

VihLn -80mV threshold potential

tr LN 1ms absolute refractory period

Ry NI OSN 8mV external input when a spike arrives

potential are listed in Table 3.1. The values of parameters are the same as the pa-
rameters we use in the PN equations. During simulation, each neuron generates its
spike sequences based on equations in section 2.5. Because we focus on the olfac-
tory processing in terms of spatial information of evolving neural representations
and neuronal interactions within and across several glomeruli in this thesis, the re-
sponses of neurons are presented by spike rates. However, it does not mean the
temporal information is not important in the olfactory processing. Instead, our ap-
proach is a spike-based model and can be flexibly extended to demonstrate more
details in the temporal domain such as oscillatory synchronization [128,129).

The neuronal variability of OSN spiking comes from the Poisson process. To mini-
mize the effect of OSN spiking variability from each single trial, all results of neuron
responses we show in this study are presented by the averages over thirty trials. We
confirmed that the averaged data are consistent for each simulation. Moreover, the
central limit theorem states if the sampling size is large enough, typically the size of
thirty samples is sufficient, the sampling distribution will be approximately a nor-
mal distribution, and we can estimate the mean of the sampling distribution by the
mean of sampling data. Thus, we choose the sampling size as thirty because of the
balance between the statistical significance and the consumption of computational
resources.

3.4.2 Experiment: single odor quality

In all simulations, we implement nine glomeruli and several inhibitory LNs including
one or two LNs laterally connecting to part of glomeruli and one LN connecting to
all of glomeruli in the recurrent networks; therefore, the connectivity patterns of
LNs are heterogeneous. In the first simulation experiment, the response profiles
for each OSN type in corresponding glomerulus and their maximal responses to
odor A are listed in Table3.2 and illustrated in Fig.3.4A. The OSN activity is
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3.4 Results in theoretical investigations

Table 3.2: OSN responses to odor A in each glomerulus and LN lateral connections
to glomeruli.

Glomerulus No. 1 2 3 4 5 6 7 8 9
OSN;SZI;‘XISGS L 4 4 e 4+ e 4
LN1 connection® < < <
(WLN132-4>
LN2 connection®
(Wyn20.2) X X X X X X X X
LN2:U.

% The symbols represent the maximal response to odor A at the highest concentration: “e” 5
spikes/sec; “4” 50 spikes/sec; “4+7 100 spikes/sec; “+++" 150 spikes/sec.

® The “x” means the connection between the LN and this glomerulus. The weight of LN1 (Win1)
connecting to part of glomeruli is 2.4, and the weight of LN2 (W}, n2) connecting to all glomeruli
is 0.2.

assumed to increase linearly with concentration in logarithmic scale [65,75,130]. In
each glomerulus (each column of Table3.2), there are 30 OSNs of the same type
converging their axons onto their corresponding glomerulus, and 3 PNs receive the
odor signals from their 30 cognate OSNs in the same glomerulus. LN1 connects
to glomeruli No. 2, 4, and 9 meaning that LN1 only receives the neuronal activity
from the OSNs in glomeruli No. 2, 4, and 9 and specifically inhibits the PNs in same
glomeruli if this LN is activated.

The responses of OSNs and PNs to odor A at different concentrations are shown in
respective PCA spaces (Fig. 3.4B and 3.4C). The neuron responses are measured by
calculating the spike rates in the period of odor stimulation. OSN representations
at different concentrations are almost equally distributed along a line in the space
whereas PN representations are generalized into two clusters. The PN responses to
0.01 and 0.1 concentrations form a cluster, and the PN responses to higher concen-
trations are classified in the other cluster.

Another measurement we use here is Pearson correlation coefficient [131], which
measures the linear dependence of pairs between odor responses to different con-
centrations. This correlation coefficient index is remarkably irrelevant to response
magnitude. For natural signals, the correlation is between 0 and 1; 0 for no cor-
relation between pairs, and 1 for pairs being completely linearly dependent. The
Pearson correlation coefficient p, , between odor response patterns at concentrations
x and y is defined as:

~ Cov(R,, Ry)

O-Rxo-Ry

Pay (3.2)
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3.4 Results in theoretical investigations

where Cov is covariance, o is standard deviation, and R, and R, are the response
patterns at concentration x and y respectively. R, and R, are vectors, consisting of
the neuronal activity along glomeruli, and the neuronal activity in each glomerulus
is represented by the spike rates averaged over all neurons in individual glomeruli.
The correlation we refer in the thesis is Pearson correlation coefficient.

The correlation matrices in Fig. 3.4E depict the pairwise pattern similarity between
concentrations. The Pearson correlation coefficients between different concentra-
tions at the OSN level are close to one meaning that these OSN representations
are highly correlated. It is not surprising because all the patterns are linearly re-
lated based on the assumed response profiles of OSNs (Fig. 3.4A). Compared to the
highly correlated patterns at the level of input neurons, the antennal lobe decorre-
lates these pattern so that PN activity patterns representing higher concentrations
are separated from those representing lower concentrations. Although the decor-
relation indeed occurs, the antennal lobe still renders the concentration-invariant

Figure 3.4 (previous page): Olfactory information is separated into two clusters
at output PNs whereas the activity of input OSNs is continuous and dependent on
concentration. Lateral connection weights: Wiyyi1 = 2.4; Wirno = 0.2. A. Response
profiles for each OSN type. The OSN activity increases linearly with concentration
in logarithmic scale. B. OSN responses projected onto the space defined in the first
two principal components. C. PN responses projected onto the space defined in
the first two principal components explaining 98.8% variance of original data. The
PN responses are separated whereas the OSN responses in (B) are almost equally
distributed. Note that only when the generalization of data points appears in the
first two principal component space, we need to specify the variance of original data
represented in the first two principal components. This is because low variance could
indicate that the data points clustered in the space spanned by the first two prin-
cipal components disperse in other dimensions. Generally speaking, a PCA space
should explain at least 80% variance of original data to reflect the data structure.
D. Response matrices showing the responses (spike rates) of OSNs and PNs in each
glomerulus (column) to each concentrations (row). The represented responses are
the averaged responses of all neurons in the same glomeruli and normalized to the
highest response in the response matrices. Note that the responses of the PNs in
glomeruli No. 2 and No. 9 have abrupt transition over concentration. E. Correlation
matrices representing the pairwise similarity between OSN responses and between
PN responses to different concentrations. The two red blocks indicate that concen-
trations are separated into two clusters. The correlations between concentrations
within the same clusters are close to 1, and the correlations between concentrations
from two different clusters are much lower. F. A matrix showing the responses of
LNs (column) to each concentration (row). The responses are normalized to the
highest response in the response matrix.
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Chapter 3 Concentration-invariant odor representations

coding within confined ranges.

The abrupt transition between patterns at concentrations 0.1 and 1 attributes to the
activation of the LN (LN1) connecting part of glomeruli. When the LN is activated
due to concentration increase (Fig.3.4F), the strong lateral inhibition starts to act
on PNs in glomeruli No.2, 4, and 9. With the effect of inhibition, the activity of
these PNs becomes diminished, and these neurons no longer send information out
of the antennal lobe as much as they receive after the concentration of odor A ex-
ceeds 1 (Fig. 3.4D). In contrast, PNs in glomeruli No. 2 and No. 9 have intermediate
responses at concentrations 0.01 and 0.1. Therefore, such difference of PN responses
substantially transforms the output patterns when glomerulus-specific lateral inhibi-
tion begins involving in the olfactory processing. Surprisingly, the lateral inhibition
also generates invariant representations at the PN level because the PN activity
keeps stable and silent across higher concentrations in the effect of inhibition.

Moreover, the intraglomerular nonlinear transformation also plays a significant role
in concentration-invariant coding. Other PNs intact from the lateral inhibition such
as those in glomeruli No.1, 3, 5, 6, and 7 increase their responses not so much
as their cognate OSNs at concentrations from 1 to 100. This is because the PN
responses already approach saturation or become saturating at higher concentrations
whether their cognate OSNs have intermediate responses in glomeruli No. 1, 3, 6,
and 7 or stronger responses in glomerulus No.5. The nonlinear transformation is
already shown in Fig2.5B. As a consequence, invariant representations across higher
concentrations also stem from nearly stable activity of PNs in glomeruli No. 1, 3, 5,
6, and 7.

Interestingly, the intraglomerular signal transformation also helps the antennal lobe
generalize odors into two clusters. The low spike rates of OSNs in glomeruli No. 2
and No.9 at concentrations 0.01 and 0.1 are amplified at nonlinear transformation
glomeruli, and the activity of their postsynaptic PNs is highly boosted. When the
concentration is increased to 1, the activation of LN1 suppresses the responses of
PNs in glomeruli No. 2 and No. 9. Two opposite mechanisms of boosting activation
and suppression on the same PNs make response patterns more distinct between
lower concentrations and higher concentrations. Through the nonlinearity in the in-
traglomerular transformation coupling together with lateral inhibition, the antennal
lobe can separate two clusters even further and generate abrupt transition between
representations of linearly related input signals.

Results of the first experiment are consistent with the idea of concentration-invariant
coding. We have shown that the interglomerular inhibition and nonlinear intra-
glomerular transformation indeed achieve such strategy in the antennal lobe. The
activation of an LN is associated with the OSNs in the glomeruli where this LN
laterally innervates. Among all these OSNs, when an odor is presented, this LN
has more interaction with the OSN types preferring this odor. For example, given
the stimulation of odor A, the responses of LN1 highly depend on the OSNs in
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glomeruli No. 2 and No.9 than those in No. 4. Similarly, the responses of PNs are
stronger in glomeruli No. 2 and No. 9 than in No. 4. On this basis, if we increase the
concentration of odor stimulus from the lowest concentration, we can see that the
activity of PNs in glomeruli No. 2 and No. 9 quickly rises. After the concentration is
across a threshold of activating LN1, LN1 begins providing feedback inhibition. So
the responses of the same PNs diminish and become silent. The dramatic change of
PN responses in glomeruli No. 2 and No. 9 between lower and higher concentrations
results in abrupt transition between pattern morphing.

Which neurons will be involved in the neural computation is the collective conse-
quence of the interaction between the combinatorial odor-evoked OSN activity and
the lateral connectivity of LNs. Although the glomerulus No. 4 is laterally connected
by LN1, the low sensitivity of OSNs in glomerulus No.4 to odor A excludes these
OSN from joining the olfactory processing of odor A. The interaction between the
LN and specific OSNs, for example, OSNs in glomeruli No.2 and No.9 in this sim-
ulation, determines how the antennal lobe separates different odor concentrations
into clusters. Notably, such specific interaction will be further applied in the later
experiments.

PNs in other glomeruli are still important in olfactory coding. Most of them are also
responsible for generating representations independent of odor quantity at higher
concentrations because they already reach saturation.

3.4.3 Weights of lateral connections

To exam the effect of lateral connection strength in the antennal lobe network, we
use the same OSN response profiles and lateral connections of LNs as the previous
setting, and only change the weights of lateral connections in the following exper-
iments. First, we only raise the weights of LN1 connection from 2.4 to 3.2. The
increase of connection strength makes this LN more easily activated. The olfactory
network with new connection weights still generalizes the odor in different concen-
trations into two clusters (Fig.3.5A and 3.5C), but one olfactory representation is
shifted from one cluster to another. Due to the increased connection weights of LN1,
the response range of LN1 becomes broader and is across four orders of concentra-
tions instead of three orders in the previous experiment (Fig.3.5D). Therefore, the
response patterns of PNs at concentrations from 0.1 to 100 are generalized because
PN populations are inhibited by LNT1 in this concentration range.

In comparing Fig. 3.5B with Fig.3.4D, the responses of PNs in glomeruli No. 2, 4,
and 9 at concentration 0.1 in this experiment are lower than the responses in the
earlier experiment and are suppressed instead of being boosted. The point represent-
ing concentration 0.1 in PCA moves towards the cluster generalizing strong odors
because the recurrent network at concentrations from 0.1 to 100 is all dominated by
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Figure 3.5: One olfactory representation is shifted from one cluster to another
when the weights of the partially-connecting LN1 are increased from 2.4 in Fig. 3.4.
Lateral connection weights: Wiy = 3.2; Wyno = 0.2. A. PN responses in the PCA
space explaining 99.9% variance of original data. The representation of concentra-
tion 0.1 in PCA moves towards the cluster generalizing strong odors B. Matrices
showing the responses of OSNs and PNs, respectively. C. Correlation matrices rep-
resenting the pairwise similarity between OSN responses and between PN responses
to different concentrations. The PN outputs representing concentrations from 0.1 to
100 are highly correlated. D. A matrix showing the responses of LNs. Because the
increased weights cause LN1 activated starting from concentration 0.1, the output
cluster representing strong odors now include the odor at concentrations 0.1. Plot
representations are the same as Fig. 3.4.

the lateral inhibition. Therefore, this type of LN is responsible for quantitatively
categorizing odors, and whether an odor concentration is categorized into the group
standing for higher concentrations depends on if the LN is activated at this con-
centration. On the other hand, the strength of LN lateral connections determines
how much odor concentration LNs need to be activated, and the connection weights
indirectly modulate the separation line between two clusters.
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Figure 3.6: The concentration-invariant representations do not appear at the out-
put level when the weights of the fully-connecting LN2 are increased from 0.2 in
Fig.3.4. Lateral connection weights: Wiry1 = 2.4; Wirye = 0.8. A. PN responses
in the PCA space. B. Response matrices of OSNs and PNs. C. Correlation ma-
trices representing the pairwise similarity between OSN responses and between PN
responses to different concentrations. D. Response matrix of LNs. The activation
of LN2 provides feedback global inhibition. The concentration-invariant represen-
tations vanish at the output level when global inhibition is recruited by increasing
weights of fully-connecting local neurons. Plot representations are the same as

Fig.3.4.

Now we consider the antennal lobe as a dynamic system. Small concentration change
produces no qualitative change in representations at the output level until a critical
concentration is reached. At this critical point, the output representations change
qualitatively, and we can say that the antennal lobe has gone through a bifurcation
in terms of a dynamic system. Furthermore, according to the experimental results,
the bifurcation point is a function of the connection strength of partially-connecting
LNs.

Next, we retain all parameters the same as the first experiment, but only increase
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the weights of fully-connecting LN2 connection from 0.2 to 0.8 to see the effect of
increasing global inhibition. Because the number of glomeruli connected by LN2
is three times as many as those connected by LN1, the increase of input strength
to LN2 is more than that to LN1 given the same increase of input OSN spikes.
More specifically, if one more spike is emitted by one OSN per glomerulus, LN2
then receives nine more spikes times quadruple weights, and LN1 only receives three
more spikes times unchanged weights. Therefore, the global inhibition should be
more actively involved in the olfactory processing than previous experiments.

The concentration-invariant representations do not appear at the output level when
we enlist strong global inhibition by increasing the weights of fully-connecting LN2
(Fig.3.6A and 3.6C). The global inhibition is the negative feedback based on the
summation of all glomerular inputs, and the input from OSN responses increases
with the rise of odor concentration. Therefore, the inhibitory strength should be
also increased as odor concentration rises. The global inhibition results from the
activation activity of LN2, and the increasing responses of LN2 in Fig. 3.6D indicate
that the inhibition strength is indeed increased by odor concentration).

The negative effect of the global inhibition could be to suppress the PNs originally
boosted to saturation and kept in a stable status at higher concentrations. If the
strength of global inhibition changes little and is weak enough that PN responses
remain saturating, global inhibition would not interfere with the mechanisms for
transforming concentration dependent information into concentration-invariant rep-
resentation. However, the strength of the global inhibition rises as concentration is
increased, and makes PN responses different at higher concentrations (Fig3.6B).

Concentration invariance achieved by partially-connecting LNs is to suppress part
of PN responses completely, and these silent and stabilized PN neurons can result in
invariant representations. We then ask: is it possible that global inhibition performs
the same mechanisms as local inhibition by completely inhibiting PNs? Because this
kind of inhibition is global and aims at all glomeruli, the consequence for implement-
ing inhibition on all PNs will be no output representations at higher concentrations.
The idea of representing stronger stimuli with a silent response pattern is not feasi-
ble because it means that no odor stimulus will be encoded the same way as stronger
stimuli at the output level of the antennal lobe. Moreover, it would be impossible
for higher brain areas to distinguish stronger odors with different qualities when
all stronger odors are represented by silent response patterns. In contrast to the
first experiment, the little response of LN2 shows that the global inhibition is not
involved in the concentration-invariant coding (Fig. 3.4F).

Finally, we investigate the effect when both local inhibition and global inhibition
are intensified. In this experiment, we raise the weights of partially-connecting LN1
to 3.2 (the same as the second experiment in this section) and the weights of fully-
connecting LN2 to 0.8 (the same as the third experiment). Similar to the results
in the second experiment (Fig.3.5A), the antennal lobe decorrelates different odor
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Figure 3.7: The antennal lobe generalizes odors at concentrations from 0.1 to 100,
but the mechanisms of concentration invariance are attenuated when the weights of
the partially-connecting LN and the fully-connecting LN are increased from 2.4 and
0.2 in Fig. 3.4 respectively. Lateral connection weights: Wy, = 3.2; Wy = 0.8.
A. PN responses in the PCA space. B. Response matrices of OSNs and PNs. C.
Correlation matrices representing the pairwise similarity between OSN responses
and between PN responses to different concentrations. D. Response matrix of LNs.
The activation of LN2 provides feedback global inhibition. Odors at concentrations
from 0.1 to 100 are generalized because the weights of the partially-connecting LN
increase from 0.2 to 0.8, but the mechanism of concentration invariance is weakened
by the global inhibition. Plot representations are the same as Fig. 3.4.

concentrations and generalizes odors at concentrations from 0.1 to 100 (Fig. 3.7A).
However, the increased global inhibition implicitly attenuates the mechanisms of
concentration invariance, and the output representations in the stronger odor clus-
ter more spread out than the output representations categorized into the stronger
odor cluster in the second experiment (comparing Fig.3.7A with Fig.3.5A). The
correlation coefficients within the stronger odor cluster in Fig. 3.7C lower than those
within the stronger odor cluster in Fig. 3.5C also indicate that the mechanisms of
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generalizing higher concentrations are undermined. On the basis of all above ex-
periments in this section, we can conclude that global inhibition should not be the
candidate for achieving the concentration-invariant coding.

3.4.4 Empirical OSN response profiles

Table 3.3: OSN responses to odor B in each glomerulus and LN lateral connections
to glomeruli.

Glomerulus No. 1 2 3 4 5 6 7 8 9

OSN response v m v I IV VvV IV I I
profile to odor B*

LN1 connection®
(weight:2.4)
LN2 connection®
(weight:0.2)

@ Nine glomeruli have individual OSN types with five different response profiles (I to V) to odor B.
The details of response profiles over concentrations for each OSN types are depicted in Fig. 3.8A.

b The “x” means the connection between the LN and this glomerulus.

In the following experiments, we change the OSN response profiles from a simplified
linear relationship with logarithmic concentration to more realistic responses to con-
centration. On the basis of several neurophysiological data [10,39, 75,90, 105, 109,
112,130, 132], the response profiles of OSNs are generalized to have the following
features:

1. Not each OSN type with the same odor preference has the same dynamic
range. The dynamic range of high-affinity OSNs spans mostly over lower con-
centrations (e.g. OSNs in glomerulus No.4 in Fig. 3.8A) whereas low-affinity
OSNs are more active at higher concentrations (e.g. OSNs in glomerulus No. 9
in Fig. 3.8A).

2. Except for the OSN type preferring a given odor, other OSN types should
respond very little at low concentration and respond more at very high con-

centration because the olfactory receptors are strongly stimulated.

3. Some OSN response profiles can be described as a linear relationship with
logarithmic concentration, and some profiles can be fitted to a logistic function.
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Figure 3.8: Neuronal responses to odor B of which response profiles are based
on empirical data. Although a different odor is applied, the neural circuits with
the same recurrent connectivity as earlier experiments still perform concentration-
invariant coding and separate odors into two clusters at the output level. Lateral
connection weights: Wiry1 = 2.4; Wirno = 0.2. A. Response profiles for each OSN
type. B. OSN responses in the PCA space. C. PN responses in the PCA space
explaining 97.7% variance of original data. D. Response matrices of OSNs and PNs.
E. Correlation matrices representing the pairwise similarity between OSN responses
and between PN responses to different concentrations. F. Response matrix of LNs.
Plot representations are the same as Fig. 3.4.
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Chapter 3 Concentration-invariant odor representations

Nine OSN types with five different response profiles to odor B are listed in Table 3.3,
and their individual responses to concentrations are depicted in Fig.3.8A. All pa-
rameters in the model and connectivity patterns we use for this experiment are the
same as the first experiment in subsection 3.4.2. Without changing the connectivity
of lateral inhibition, the same antennal lobe network still performs concentration-
invariant coding and separates different concentrations into two clusters at the out-
put level (Fig. 3.8). The results do not mean that this particular lateral connectivity
can always successfully perform these olfactory strategies for all odors evoking di-
verse odor-evoked OSN patterns, but indicate that each lateral connectivity does
not function only for encoding one particular odor. The neural mechanisms shown
in previous experiments for categorizing odors with the same quality into lower and
higher concentration clusters still appear here. For example, an abrupt transition
of PN responses in glomerulus No. 4 occurs when the odor concentration increases
from 0.1 to 1 (Fig. 3.8D).

In earlier experiments, the odor-evoked OSN patterns across different concentrations
are highly correlated. Here the correlation of OSN activation patterns between the
lowest two and the highest concentration is not close to 1 but around 0.7 (Fig. 3.8E).
This is because some OSN types respond little to lower concentrations, but very
strong stimulus can activate them. Therefore, these results of correlation are in
concert with the second feature of presumed OSN response profiles.

For getting better results, we slightly modify the previously used connectivity pat-
tern in Table3.3. First, we set LN1 to connect one more glomerulus No.3. Then
we slightly reduce the weights of partially-connecting LN1 from 2.4 to 2, and raise
the weights of fully-connecting LN2 from 0.2 to 0.32. The results of output repre-
sentations after we slightly modified the lateral connectivity are shown in Fig. 3.9.
The distances between output representations within the lower concentration clus-
ter decrease in the PCA space (Fig.3.9A), and the odor generalization is improved.
Another enhancement is that the correlation between output representations within
clusters increases, and the correlation between output representations across clusters
decreases (Fig. 3.9C).

The results suggest that manipulating the connectivity patterns of recurrent net-
works can cause quantitative change of clustering and enhance the separation be-
tween clusters at the output level. Therefore, different species can develop their indi-
vidual inhibitory spatial connectivity to meet specific requirements such as encoding
specific odors related to their food or predators with more separable representations
between different concentrations via evolutionary and ecological processes.

Next, we show that weak global inhibition can be of benefit to the olfactory cod-
ing. We slightly raise the weights of all-connecting LN2 from 0.32 to 0.48. On the
basis of new connectivity, only the odor at the highest concentration can activate
LN2 (Fig. 3.10D). In the PCA space, the variance of output representations in the
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Figure 3.9: Neuronal responses in the antennal lobe to odor B when LN connec-
tivity is modified to get better results. Improvement includes the distances between
output representations within the lower concentration cluster decreasing in the PCA
space. Another enhancement is that the correlation between output representations
within clusters increases, and the correlation between output representations across
clusters decreases. Lateral connection weights: Wrny = 2; Wiye = 0.32. A. PN re-
sponses in the PCA space explaining 98.5% variance of original data.. B. Response
matrices of OSNs and PNs. C. Correlation matrices representing the pairwise simi-
larity between OSN responses and between PN responses to different concentrations.
D. Response matrix of LNs. Plot representations are the same as Fig. 3.4.

higher concentration cluster becomes less than that in the last experiment (com-
paring Fig 3.9A with Fig3.10A). The reason why the point representing the highest
concentrations moves closer to other points in the same cluster in the PCA space
is that the global inhibition suppresses the redundant responses evoked by the very
strong stimulus. Although some odors are not preferred by some OSN types, they
can actually activate these OSNs with very strong intensity. These OSNs may be
not highly activated by very strong stimuli, but these odor-evoked signals can be
intensified by nonlinear intraglomerular transformation. In this case, if the global
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Figure 3.10: Neuronal responses in the antennal lobe to odor B when weak global
inhibition at the highest concentration is recruited. The variance of the cluster
generalizing higher concentrations becomes lower because the global inhibition sup-
presses the redundant responses evoked by the very strong stimulus. Lateral con-
nection weights: Wiyy1 = 2; Wirno = 0.48. A. PN responses in the PCA space
explaining 98.9% variance of original data. B. Response matrices of OSNs and PNs.
C. Correlation matrices representing the pairwise similarity between OSN responses
and between PN responses to different concentrations. D. Response matrix of LNs.
Plot representations are the same as Fig. 3.4.

inhibition is weak and only occurs at very high concentration, such inhibition should
counterbalance these intensified odor-evoked signals. Therefore, the PN responses
at concentration 100 are much similar to the PN responses at concentration 10 when
the weak global inhibition is involved (comparing Fig3.9B with Fig3.10B).

In brief, in this subsection we have shown the results when our model applies to
more realistic OSN response profiles, how the resulting representations change given
different connectivity, and the explanation why the weak global inhibition can help
the concentration-invariant coding.
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3.4.5 Experiment: two odor qualities and more inhibitory LNs

Table 3.4: OSN responses to odor B and C in each glomerulus and LN lateral
connections to glomeruli.

Glomerulus No. 1 2 3 4 5 6 7 8 9

OSN response v m v I IV VvV IV 1 1
profile to odor B*

OSN response v v I vV \V4 I 11 v I11
profile to odor C*

LN1 connection®

X
(weight:2) * * *
LN2 connection® < <
(weight:2)
LN3 connection®
X X X X X X X X

(weight:0.48)

@ Nine glomeruli have individual OSN types with five different response profiles (I to V) to odor
B and C. The details of response profiles to odor B and C for each OSN types are depicted in
Fig.3.8A and Fig. 3.12A respectively.

® The “x” means the connection between the LN and this glomerulus.

Now we extend the recurrent networks of the antennal lobe to include one more
partially-connecting LN of which connectivity different from the previous LN1 and
measure PN responses to a new odor C. The lateral connectivity of three LNs and
the OSN response profiles to odor C are listed in Table 3.4. We implement recurrent
networks incorporating more complicated lateral inhibition and investigate the effect
of such connectivity on the output responses of antennal lobe network to different
input combinatorial codes.

The experimental results show that given the same odor B we previously used in
subsection 3.4.4, separating and generalizing odor representations still emerge in dif-
ferent connectivity at the output level (comparing Fig. 3.11 with Fig. 3.10) although
one more LN is included in recurrent networks. No responses in LN2 (Fig3.11D)
implies that activation of LNs is specific to odors. Odors evoke combinatorial OSN
responses in specific glomeruli, and only the LNs innervating to those activated
glomeruli are possibly evoked by these odors. Moreover, how much overlap between
the activated glomeruli and the glomeruli LNs innervate, and how strong the odor
signals sent to the innervated glomeruli from their presynaptic OSNs are also the
decisive factors for activating particular LNs. Therefore, the activation of each LN
is specific to respective odors, and the feedback inhibition from each LNs is also
specific to odors.
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Figure 3.11: Neuronal responses in the antennal lobe to odor B when more compli-
cated lateral connectivity is applied. Separating and generalizing odor representa-
tions still emerge in different connectivity at the output level although one more LN
is included in recurrent networks. Lateral connection weights:Wpn1 = 2; Wiy = 2;
Wins = 0.48. A. PN responses in the PCA space explaining 99.2% variance of
original data. B. Response matrices of OSNs and PNs. C. Correlation matrices rep-
resenting the pairwise similarity between OSN responses and between PN responses
to different concentrations. D. Response matrix of LNs. Plot representations are
the same as Fig. 3.4.

These results may answer the question: are PN responses still the same when more
LNs are added to the recurrent network of the antennal lobe? Because LNs selec-
tively respond to odors, if the added LNs do not respond to the odor stimulus as
LN2 in this experiment, no additional lateral inhibition will be recruited, and the PN
response patterns will be intact. There are about one hundred LNs in the antennal
lobe of Drosophila, and less than 40 percent of LNs are featured by glomerulus-
specific innervation [32]. The 50 glomeruli in Drosophila should allow 30~40 LNs to
establish characteristic innervation patterns and to respond to specific odors.

In another experiment, the neuron response patterns evoked by odor C are shown

48



3.4 Results in theoretical investigations

A B Olfactory sensory neurons
e J
100
B _ 0.5 10
3 g
E 5 ° 5
o
Q. =
= g of p1 S
€ 8 ° g
o 2 g
~ [ 51
1 _ k0.1 3
a > #9 0.5
10 . #6
1o ~
D, 1 7 T2 e = 0.01
/71} 0.1 g . #3 \0‘(\2 -1
Q’/b 0.01 #2 ) —
7 #1 -1 -0.5 0 0.5 1
1% component
C Projection neurons D Olfactory sensory neurons
1] 0.01
So1
s
e 1
0.5 § 1
IS S 10
g g 0100
Qo =
€ of ] Rl © I
IS = Projection neurons
© [}
° Q
2 2 .01
N S
-0.5 01 o o1
g
e 1
@
R 0.01 [ 0
_l 8
—
-1 -0.5 0 0.5 1 100
15t component #1 #2  #3  #A #5  #6  #7  #8  #9 glomerulus
Olfactory sensory neurons Projection neurons

Local neurons

001 01 1 10 100 001 01 1 10 100

o
o o
[ =

concentration
5
-

10

=
o
S

#1 #2 #3

Figure 3.12: Neuronal responses in the antennal lobe to odor C when complicated
lateral connectivity is applied. The same recurrent networks can still separate odor
C at different concentrations into two clusters representing weak and strong odors at
the output level. Lateral connection weights: Win1 = 2; Wrne = 2; Wirng = 0.48.
A. Response profiles for each OSN type. B. OSN responses in the PCA space.
C. PN responses in the PCA space explaining 99.3% variance of original data. D.
Response matrices of OSNs and PNs. E. Correlation matrices representing the
pairwise similarity between OSN responses and between PN responses to different
concentrations. F. Response matrix of LNs. Plot representations are the same as
Fig.3.4.
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Figure 3.13: The response patterns of odor B and odor C are jointly represented
in the same PCA space. A. The response patterns of odor B and odor C at the
OSN level in the PCA space. Two color gradients represent a series of different
concentrations for odor B and C, respectively. The distance between odor B and
odor C becomes more separated when odor concentration is increasing. B. The
response patterns of odor B and odor C at the PN level in the PCA space explaining
98.5% variance of original data. The recurrent networks can distinguish odor quality,
as well as categorizing odor quantity.

in Fig3.12. The odor C across different concentrations can be still encoded into
concentration-invariant representations although OSN response patterns evoked by
odor C are different from those evoked by odor B. At the output level, the identi-
cal recurrent networks separate odor C at different concentrations into two clusters
representing weak and strong odors. This may suggest that one set of lateral inhibi-
tion can perform the same olfactory strategies, concentration-invariant coding and
intensity categorization, to different odor qualities.

Surprisingly, both two partially-connecting LNs are involved in the olfactory pro-
cessing of odor C (Fig.3.12F). Although the lateral connectivity of LN1 and LN2
differ, they respond similarly across concentrations. Their similar responses result
from that both LNs connect to glomerulus No 3 where the OSN type has high affinity
for odor C. Strong odor-evoked signals activate both LNs through glomerulus No. 3
so that both LNs are simultaneously recruited in this olfactory processing. Both
LNs are guided by the same activating signals, and they coordinate to inhibit PN
response (Fig3.12D). So it is possible that the concentration-invariant coding and
odor generalization can be achieved by several coactive LNs. On the basis of the
last two experiment results, we point out that not only LN connectivity but input
odor-evoked patterns can contribute to the selectivity of LN activation.

Finally, the response patterns of odor B and odor C are jointly represented in the
same PCA space (Fig.3.13). The distances between the OSN response patterns at
lowest concentration are closer than those at higher concentrations in the PCA space
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Table 3.5: Summary of experiments in this chapter.

Figure Odor stimulus® Wint® Wina
Fig.3.4 odor A 2.4 0.2
Fig.3.5 odor A 3.2 0.2
Fig.3.6 odor A 2.4 0.8
Fig. 3.7 odor A 3.2 0.8
Fig.3.8 odor B 2.4 0.2
Fig. 3.9 odor B 2 0.32
Fig.3.10 odor B 2 0.48

@ The OSN response to odor A increases linearly with concentration in loga-
rithmic scale. The OSN response to odor B is based on the rules generalized
from empirical data.

b Win1 and Wyng are the weights of partially-connecting LN1 and fully-
connecting LN2 respectively.

Figure Odor stimulus®  Win®  Wina?  Wins’
Fig. 3.11 odor B 2 2 0.48
Fig.3.12 odor C 2 2 0.48

® The OSN response to odor B and odor C is based on the rules generalized from
empirical data.

b Wy n1 and Wi ne are the weights of partially-connecting LN1 and LN2 respec-
tively, and W3 is the weight of fully-connecting LN3.

(Fig.3.13A). Only a few OSN types with high affinity can respond to odor stimuli at
very low concentration meaning that merely a little amount of odor information can
be used to differentiate odor quality. More OSN types are progressively activated as
odor concentration is being raised. This causes odor representations more distinct
and separated between odor B and odor C at the same concentrations when more
OSN types exhibit differential responses to these two odors.

Invariant concentration representations at the PN level for both odor B and odor
C are revealed in the PCA results (Fig.3.13B) when both odors are reduced their
dimensionality on the same linear transformation basis. For each odor, the olfac-
tory processing categorizes their representations into weak and strong groups, re-
spectively. While the recurrent networks perform the mechanisms of concentration
invariance and odor intensity categorization into two clusters, each output represen-
tation still retains discriminable information for representing its corresponding odor
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identity in the antennal lobe. Therefore, our results show that this kind of recurrent
networks can distinguish odor quality, as well as categorizing odor quantity.

The neuron response patterns discretely represent distinct quantity as these pat-
terns encode different quality. When the representations of odor B and odor C are
separated at the PN level, the higher concentrations are also segregated from the
lower concentrations in the same odor. These clusters are situated at different loca-
tions in the odor space represented by PN responses. The evidence gathered in our
experiments confirms the conclusions of several behavioral studies, suggesting that
different quantity may be encoded as different quality in the olfactory processing.

The experiments demonstrated in this chapter are summarized in Table 3.5 for
comparing the results in different conditions.

3.5 Discussion

The olfactory systems across different species can perform conflicting strategies in
the same neuronal circuits simultaneously: being sensitive to intermediate concen-
tration change and robust against small concentration fluctuation. Our simulation
results provide evidence that the local lateral inhibition can primarily serve to per-
form these two functions in the same recurrent networks. The effect of lateral inhi-
bition can suppress PN responses at higher concentrations and separate them from
those at lower concentrations. Therefore, the same odors at different concentrations
are generalized into to respective clusters representing weak and strong odors. The
lateral inhibition also inhibits PN responses across higher concentrations and keeps
odor representations independent of concentration fluctuation. Although we verified
that global inhibition is not mainly responsible for the concentration-invariant cod-
ing, weak global inhibition can counterbalance the increasing responses of PNs at
higher concentrations, thereby stabilizing odor representations. For other uninhib-
ited PNs, the interglomerular nonlinear function boosts their responses into satura-
tion area at higher concentrations and partly results in concentration-invariant rep-
resentations. Overall, such sophisticated mechanisms within and between glomeruli
can grant the olfactory system sensitivity power for encoding the quantity of odors
and robustness against fluctuation.

It should be noted that the purpose of implementing the concentration-invariant
coding in the olfactory system is not to collapse all quantitative information. Al-
ternatively, olfactory networks still categorize odors into weak and strong signals
depending on their concentration information. Notably, this mechanism helps the
olfactory processing filter out the noise and concentration fluctuation unrelated to
true odor intensity.
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The specificity of inhibition depends on both the spatial patterns of LN innervation
and the combinatorial odor-evoked patterns of OSNs. In addition, the selectivity of
LN inhibition depends on the quantitative patterns of input OSN responses because
the activation of LN relies on sufficient input from OSNs through glomeruli. We
already showed that one LN can achieve the olfactory encoding for specific odors,
and the olfactory processing for one odor can be accomplished by several coactive
LNs.

However, how many odors and which quality of odors can be encoded as concentration-
invariant representations given a set of lateral inhibition are not fully understood.
We have not known yet the relationship between the strength of lateral connection
and the threshold of input intensity to shift one representation from one cluster to
the other. The bifurcation point where different concentrations are encoded into
different output representations should reflect the odor significance for animals. For
example, the antennal lobe should tag and categorize a significant odor as strong
signals when the odor appears at average concentration. If only higher concentra-
tions for this odor are categorized into strong signals, the higher brain centers may
not notice the presence of this odor at average concentration when such average
intensity is generalized with weak odors. To explore the parameter space of the
recurrent networks in the antennal lobe can help us understand more about the
olfactory system. To what extent these strategies depend on recurrent connectivity
should be investigated in future work.

A report published recently indicated that at least six sequentially mechanisms
including behavioral regulation and learning processing are required to achieve con-
centration invariance in the mammal olfactory system [124]. On the contrary, our
model based on merely two inherent olfactory principles should be more capable of
performing these conserved strategies across different species from the numerically
complicated olfactory circuits in mice to the network marked by numerical simplicity
in Drosophila.

In the antennal lobe of Drosophila, the numbers of OSNs and PNs are about 1300
and 150 respectively [9,12,19,23,90,107]. Another extreme ratio of input neurons
to output neurons has been identified in honeybees where 64000 OSNs are located
on each antenna projecting their axons to 800 PNs [14,133,134]. When the infor-
mation streams from the relatively large amount of OSNs to much fewer PN, it is
unlikely for PNs as the output of the antennal lobe to process and encode each piece
of information from OSNs. Therefore, in terms of channel capacity, the output of
the antennal lobe (i.e. the processing channel) turns into the bottleneck of signal
transmission in the olfactory system [31,135] if we think the whole antennal lobe as a
channel accommodating olfactory information flow. Interestingly, the findings in an-
other insect (locusts) suggested that the mean spike rates of PNs are nearly constant
and independent of concentration across different odors although the information
streams from OSNs increase with concentration [76]. If the interspike intervals carry
little information in the antennal lobe, the spike rate can be simply assumed as the
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amount of neural information. This assumption is likely to be true because the spike
rate is highly related to odor intensity in OSN populations [10,39,75,90,105,130,132].
Therefore, the mean spike rates of PN populations varying little across concentra-
tions just reflect the concentration-invariant representations in terms of information
amount.

Another idea is that the local lateral inhibition also engages in information compres-
sion in the antennal lobe. An odor information usually consists of several streams
flowing from OSNs to PNs in respective glomeruli. The local inhibition can re-
distribute the flow of streams among glomeruli and control their access to intra-
glomerular output. At low concentration, the amount of odor information is not
high, and it is not necessary for applying information compression to the anten-
nal lobe. The increase of concentration causes the amount of olfactory information
raised. Part of this information increase results from the OSN types with low-affinity
starting to respond from intermediate concentration. Therefore, more glomeruli are
used and new streams are created. Because selective inhibition is also activated by
the increase of concentration, part of glomeruli may stop transmitting or reduce the
amount of transmitting information streams. Some channel capacity is then released
from inhibited glomeruli and can be transferred to other uninhibited glomeruli. If
the OSNs types with low-affinity project onto these uninhibited glomeruli, the in-
formation streams sent from these OSN types can be transmitted via the released
channel capacity without largely increasing the usage of whole channel capacity.
Such mechanisms may also reduce the neuronal energy to transmit olfactory in-
formation. Briefly, lateral local inhibition can distribute channel capacity among
glomeruli to compress olfactory information at the PN level.

Take the experiment results in Fig. 3.10 as an example. At lower concentrations from
0.01 to 0.1, PNs in the glomeruli No. 4 spend much more channel capacity than PNs
in other glomeruli (the lower panel in Fig.3.10B) whereas the channel capacity is
relocated to glomeruli No. 1, and No.5~8 at higher concentrations from 1 to 100.
Therefore, relying on local inhibition the antennal lobe efficiently distributes the
finite channel capacity among glomeruli across different concentrations.

In this chapter, we study how the neural circuits perform the olfactory strategies
by the dynamics of neuronal interactions between different layers. The olfactory
system can filter out the noise from concentration fluctuation and focus on the effect
of quantitative change. In the environment, odors are also easily contaminated by
chemical noise. Therefore, the olfactory system faces another challenge of identifying
the odor quality when multiple odor qualities are mixed. We will move to this
issue how the olfactory system recognizes odor quality change and represents the
qualitative information of odor mixtures in the next chapter.
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4 Discrete representations of
odor mixtures

4.1 Overview

We have previously investigated how the olfactory system processes odors different
at concentrations but the same in quality. In this chapter, we turn to ask how the
odor information of multiple qualities is processed in the olfactory system. First,
we review recent studies of individual neuron responses to odor mixtures at the
OSN and PN layers and investigate possible interactions between these two layers
via recurrent networks. Then we continue to extend our view from the responses
of individual neurons to the collective representation of neuron ensembles. Finally,
we implement our model to interpret how the neural circuits generate clustered
representations at the output level and why the number of clusters generalizing
these representations results from the similarity between odor qualities in an odor
pair.

4.2 Mixture odors in olfactory processing

4.2.1 Responses of OSNs and PNs to odor mixtures

In the absence of lateral inhibition, the increase of OSN spike rates always raises
the spike rates of the presynaptic PNs for every glomerulus before PN responses
reach saturation. This is the case when only one odor quality is presented, and
the difference between evoked spike rates only reflects the quantity change (i.e.
concentration change) of odor stimulus. Next, we ask how olfactory neurons in the
antennal lobe respond to and process odor mixtures blending multiple odor qualities.

Interestingly, the responses of olfactory neurons to odor mixtures are not merely
the summation of their responses to constituent odors, but can be predicted by sev-
eral possible interactions between components. The interactions in OSNs between
constituent odors are generally defined in four categorizations: (1) additivity, if the
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Figure 4.1: Schematic graphs depicting the responses to odor mixtures and their
constituent odors in four interactions between components. The OSN responses to
the odor mixture (a+b) and its constituent odors (a and b) are shown in purple, red,
and blue bars, respectively. The maximum of responses to individual constituent
odors is the response to odor b in each case. A. Additivity: the response to the
odor mixture is equal to the sum of the respective responses to constituent odors.
B. Synergism: the response to the odor mixture is less than the sum of the respec-
tive response to constituent odors but larger than the maximum of the responses to
individual constituent odors. C. Hypoadditivity: the response to the odor mixture
is close to the maximum of the responses to individual constituent odors. D. Sup-
pression: the response to the odor mixture is much less than the maximum of the
responses to individual constituent odors.

response to an odor mixture is equal to the sum of the respective responses to con-
stituent odors alone (Fig4.1A); (2) synergism, if the response to an odor mixture is
less than the sum of the respective response to constituent odors but larger than the
maximum of the responses to individual constituent odors (Fig4.1B); (3) hypoaddi-
tivity, if the response to an odor mixture is close to the maximum of the responses
to individual constituent odors, and other less efficient or weaker components are
inactive (Fig4.1C); (4) suppression, if the response to an odor mixture is much
less than the maximum of the responses to individual constituent odors, and other
components attenuate the effect of the most efficient or the strongest component
(Fig4.1D) [136,137].
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4.2 Mixture odors in olfactory processing

It has been revealed in recent years that the ways of interactions in the responses
to odor mixtures are distinct at the levels of OSNs and PNs. In Drosophila, most
interactions between constituent odors in OSNs attribute to synergism or at least
hypoadditivity [54]. It has been little observed in Drosophila that the responses to
odor mixtures were less than the response to any components, and only two such
cases of odor mixtures were found in the same one glomerulus. In contrast, the
suppressed responses to odor mixtures are more commonly seen at the PN level
in Drosophila. Such suppression interaction of constituent odors occurred in all
glomeruli and appeared in at least two different odor mixtures for each glomerulus.
Comparable results have been also reported in honeybees where most PNs exhibited
suppression and hypoadditivity in the responses to odor mixtures, and almost no
synergism were found in PNs [138]. The number of glomeruli where PN exhibited
suppression responses was more than the number of glomeruli where OSN exhibited
suppression responses when the same odor mixtures were represented. Besides, the
interactions in hypoadditivity at the OSN level also occurred more frequently than
that at the PN level in honeybees. Likewise, more than 75% of PNs probed in the
moth study showed inhibitory or biphasic (i.e. a few spikes succeeded by a period
of inhibitory hyperpolarization) responses to odor mixtures [139].

Similar interactions between components of odor mixtures have been observed in
the OSNs and MCs of olfactory bulbs, respectively [136,140,141]. In zebrafish, a
model based on the sum of the response to the strongest component and a positive
interaction terms can predict the responses to odor mixtures at OSNs consistent
with the observations in experiments [140]. The results implicitly suggest that the
interactions between constituent odors at the OSN level can be classified as syn-
ergism. In rats, nearly 60% of OSN responses to odor mixtures were categorized
into hypoadditivity in terms of constituent interactions [136] whereas part of MC
responses to odor mixtures displayed suppression [141].

OSN responses to mixtures could be synergism, hypoadditivity or suppression (in
rare cases) depending on the interactions of constituent odors in OSNs. How con-
stituent odors interact with each other in OSNs may result from their competition to
bind the main or two overlapping receptor sites of olfactory receptors [142,143]. An-
other possible explanation of these interactions comes from noncompetitive effects
reshaping the properties of the main binding site at receptors [142]. However, until
now no general and deterministic rules have been found to predict the responses
of olfactory neurons at different layers to odor mixtures even though we know the
respective responses of olfactory neurons to individual components [138,139, 142].
Moreover, different combinatorial codes are applied to represent each odor quality
at the OSN level, but little is known about how the antennal lobe or the olfactory
bulb processes the more complicated combinatorial codes evoked by odor mixtures
in neural coding. These odor-evoked patterns are possibly composed of several
combinatorial codes representing respective components. In this chapter, we will
implement our proposed model to show how the olfactory system processes odor
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mixtures to perform particular olfactory strategies. Next, we will start from the
neuron interaction in networks to show how the information of odor mixtures prop-
agates.

4.2.2 Processing odor mixtures in recurrent networks

We have known that PN activity responding to odor stimuli can be increased with
afferent OSN input if the increasing input results from the rise in a single odor
quantity, and no lateral inhibition acts on PNs. Remarkably, PN responses are
usually attenuated by the increase of afferent input when this increase is mediated
by an odor stimulus incorporating new odor qualities [54,88]. Because the synapses
between OSNs to PNs in the same glomerulus are excitatory and strong [12,42-44],
the afferent OSN input is unlikely the reason for causing PNs inhibited. In the
recurrent networks of the antennal lobe, the possible and only possible mechanisms
to inhibit PNs at the output level should attribute to the lateral inhibition from
LNs.

The interactions of constituent odors at the PN level could be suppression, hy-
poadditivity, or synergism. According to the experimental results from several
recent studies, suppression occurred more frequently than synergism did in PNs
[54,138-141,144]. In honeybees, the increase number of constituents in odor mix-
tures attenuates PN activity and causes more PN responses suppressed [137,138].
The number of suppression increased in PN responses is not related to odor quality
but depends on the number of components.

The lateral inhibition should not be main effect in synergism because the neuron
activity increases at both input and output levels. In contrast, the lateral inhibition
may explain why the responses to odor mixtures are suppressed as compared with
the responses to each individual components. Different odor quality can activate
OSNs in different sets of glomeruli, and a mixture consisting of more odor qualities
can activate OSNs in more glomeruli. The activation of LNs results from the input
of OSN activity in glomeruli where these LNs laterally connect. The more glomeruli
receive odor-evoked signals, the more LNs will be activated. Therefore, an odor
mixture consisting of more components can activate more signals into glomeruli to
elicit more inhibition from LNs, and the increase strength of inhibition causes more
PNs inhibited to an odor mixture.

In Drosophila, more direct evidence was reported in using a receptor antagonist to
block the inhibition onto PNs [54]. Without the effect of inhibition, the suppressed
responses of PNs to odor mixtures change to synergism. The results suggested that
the interactions of constituent odors at the PN level are related to the inhibition
applied to PNs. Unlike the odor molecules of mixtures directly interacting in the
site of olfactory receptors at the OSN level, the interactions between different odor
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4.2 Mixture odors in olfactory processing

qualities at the PN level do not actually take place within PNs but through the
recurrent connections of networks. Briefly, the increase or decrease of PN responses
to odor mixtures compared with the responses to odor components depends on the
new responses of their cognate OSNs to odor mixtures and lateral inhibition if the
inhibition is recruited in the neural computation.

On the grounds of results in Chapter 3, the heterogeneity of inhibition connectivity
should also play a major role in processing odor mixtures. Indeed, suppression oc-
curs in part of neurons and in part of odor mixtures indicating that the inhibition
occurs specifically and locally, and such specific inhibition has been previously sug-
gested in the PNs of Drosophila [54] and moths [139], and in the MCs of rats [141].
Therefore, after the computation in the antennal lobe or the olfactory bulb, the in-
formation encoding multiple qualities is represented by the neuronal responses with
several interactions at the output level. Whether and how these olfactory repre-
sentations distinct from those representing the single quality of constituent odors
are dependent on the interactions between multiple molecules at receptors and the
intra- and interglomerular computation.

4.2.3 Representations of odor mixtures

To only observe the responses of neurons in one glomerulus and at separate layers
cannot help us comprehend the whole olfactory information processing. Now we
turn to focus on odor response patterns across glomeruli. In honeybees, the odor
representations of PN response patterns for odor mixtures are separated from those
for odor components in the PCA space [137,138]. The representation of a binary
mixture in the PCA space is not located on the straight line between two odor
component representations, but away from that line to form a triangle together
with odor component representations. The distances from the representation of a
binary mixture to those of constituent odors are not always equal. In some odor
mixtures, the representations are more close to one component than the other. The
same separation between odor mixtures and their components has also been found
in the PN responses of the antennal lobe in locust [144].

Similar observations have been reported in zebrafish where the mixture representa-
tions have same structural relationship with component representations in the PCA
space [119]. Furthermore, two findings in their report particularly arouse our inter-
est. First, this report suggested that although an odor was blended with another
odor in relative low intensity (ratio: 99 to 1), the representation of this odor mix-
ture was still generalized with the representation of a pure odor (ratio: 100 to 0) at
the output level (Fig4.2). When this ratio was decreased, the corresponding repre-
sentation abruptly shifted to the cluster standing for odor mixtures. This abrupt
transition also occurred again between 10/90 and 1/99, and the 1/99 mixtures and
the 0/100 pure odor were generalized. Notably, we have seen such generalization
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Figure 4.2: The representations in morphing between dissimilar odors projected
onto the first three principal components. The neuronal responses were measured
in the MCs of zebrafish. The representations of odor mixtures are separated from
those of two components. The mixtures in concentration ratios 100/0 and 99/1 are
generalized. The same generalization also occurs in ratios 0/100 and 1/99. Figure
adapted by permission from Macmillan Publishers Ltd: Nature [119], copyright
(2010)

and abrupt transition of representations in encoding different odor quantity. Sec-
ond, the representations of intermediate odor mixtures were separated from each
representation of components if the mixtures consisted of dissimilar odors (Fig4.2).
Surprisingly, all intermediate odor mixtures were generalized with one of components
if odor components are similar.

The first finding in zebrafish raises the question: how does the olfactory system
evaluate an odor consisting of multiple odor qualities as an odor blend or a pure
odor contaminated by chemical noise that has to be filtered out? If an odor mixture
is actually a major odor contaminated by other minor odors, how can olfactory
neural networks generalize this odor mixture with its major odor? The second
finding suggests that all odor mixtures and their components are encoded in different
numbers of discrete outputs — three for dissimilar odors and two for similar odors. If
the similarity of odor components determines the number of discrete clusters encoded
in the olfactory space, how does the olfactory bulb or antennal lobe perform these
features in neural circuits? In the next section, we will implement our proposed
model to explain these phenomena and to show how the recurrent networks process
odor information consisting of multiple odor qualities.
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4.3 Results in theoretical investigations

Although we reproduce the experimental results mainly observed in the vertebrates,
we still use the antennal lobe as the simulation basis for the consistency of all theoret-
ical experiments. Again, the fact of the conserved architecture between insects and
vertebrates in the first processing center should allow us to make this arrangement.

4.3.1 Model setup

Now we will implement the proposed model to demonstrate how the antennal lobe
generalizes odor mixtures and its components into a few discrete representations.
We will also use different odor pairs consisting of dissimilar odors or similar odors as
input to demonstrate how recurrent networks process multiple qualities to produce
different cluster numbers. After that, we will compare the neuronal responses in our
experiments with experimental data in zebrafish.

The electrophysiological parameters in the equations of our model are the same as
earlier experiments. The numbers of OSNs and PNs are still 30 and 3 per glomeruli
respectively. We still implement combinatorial codes that different odor stimuli
evoke different OSN types in different responses. There are dozens of LNs in the
antennal lobe, and LN activation is specific to odors because of their heterogeneous
lateral connections. Therefore, the lateral connectivity should be implemented dif-
ferently depending on the given odor-evoked patterns. Here, we emphasize again
that any lateral connectivity of LNs is not unique for encoding one particular odor
and only works for that odor as we showed in Chapter 3.

4.3.2 Experiment: Odor morphing between dissimilar odors

The first experiment is to demonstrate the olfactory processing in recurrent networks
for the pair of dissimilar odor D and odor E. Again, the networks consist of nine
glomeruli, and we have nine different types of OSNs. The odor D and odor E are
dissimilar, meaning that their OSN odor-evoked patterns are distinct. Therefore,
OSNs in glomeruli No. 1, 2, and 5 prefer odor D and respond strongly to odor D while
OSNs in glomeruli No.6, 7, and 9 prefer the odor E and are strongly activated by
odor E. The spike rates of nine OSN types to these two odors are listed in Table4.1,
respectively. The same OSN types projecting to the same glomeruli relay the odor
signals to their postsynaptic PNs in the same glomeruli.

Both LN1 and LN2 are partially-connecting LNs, and LN3 is a fully-connecting
LN. The connectivity is shown in Table4.1 where “x” means a connection between
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Table 4.1: OSN responses to odor D and E in each glomerulus and LN lateral
connections to glomeruli.

Glomerulus No. 1 2 3 4 5 6 7 8 9

OSNresponses to 159 150 50 5 100 5 50 5 5
odor D*

OSN response to 5 50 5 5 5 100 100 150 50
odor E*

LN1 connection®
(Wirn1:2.4)
LN2 connection®
(Win2:2.4)
LN3 connection®
(Win3:0.48)

a

(spikes/sec)

b The “x” means the connection between the LN and this glomerulus.

the LN in this row and the glomerulus in this column. The weights of partially-
connecting LN1 and LN2 are represented as Wy, and Wy, and both of them
are 2.4 while the weights of fully-connecting LN3 Wy y3 are 0.48. The LN1 laterally
connects to glomeruli No. 1, 2, and 4, and part of its connectivity overlaps with the
glomeruli where OSNs strongly respond to odor D (i.e. No. 1 and No. 2). Therefore,
LN1 can be activated and should be involved in the olfactory processing of odor
D. Similarly, the OSN patterns evoked by odor E can elicit the activation of LN2,
and LN2 should play an important role in processing odor E within the recurrent
networks.

It is likely to raise a question why we choose such specific connectivity overlapping
with glomeruli where strong OSN responses occur. This is because the LN response
is indeed specific to odors and is based on OSN odor-evoked patterns. For example,
another LN4 innervating to glomeruli No. 1, 10, and 11 would be irrelevant to this
experiment because neither odor D nor odor E can activate this LN if we extend
this recurrent networks to an actual antennal lobe consisting of 50 glomeruli in
Drosophila, and OSNs in glomeruli No. 10 and No. 11 do not respond to odor D or
odor E. Therefore, LN4 is excluded by the low proximity between the connectivity
of this LN and OSN response patterns evoked by odor D or odor E. Furthermore, in
all experiments of this study we do not selectively take the LNs producing favorable
results to support our model, but only show the LNs specifically responding to and
being enlisted in given odors. In this case, even though we include LN4 in this
recurrent networks, the experimental results will be the same as the results given
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Figure 4.3: The spike rate of an OSN in response to an odor as the function of
the percentage of this odor in mixtures. The linear relationship is governed by the
equation indicated on the figure, and the percentage of this odor in mixtures is
represented in a logarithmic scale. All responses of this OSN are normalized to its
response to this odor representing at 100% in the mixture.

by the networks excluding LN4.

As earlier results, we represent neuronal responses with the spike rates averaged
in the period of odor stimulation and visualize odor representations in a two-
dimensional space achieved by a linear dimensionality reduction PCA method. The
concentration of components in odor mixtures varies in different ratios of one con-
stituent odor to the other. OSN responses to an odor decrease when this odor is
mixed and diluted with other odors. If the OSN response to a component odor X
is expressed as R[X], we can formulate the relationship between the OSN response
to the diluted odor X R[X|mizture| and the percentage of odor X ¢ in this mixture
by the following exponentially decreasing function:

R[X|mixture] = 0.45 x R[X]logd + 0.1. (4.1)

To prevent getting the response R[X|mizture| less than zero from Eq.4.1, we set
the minimum value of R[X|mixture] to zero. We show the OSN responses to the
component at different ratios in mixtures normalized to its response to the same
component at 100% in a mixture (i.e. pure odor) in Fig4.3. When two odors are
blended in the same amount (50/50), and the respective responses to these two
components are assumed independent from each other, the OSN response to one
component in this mixture still holds 86% of the maximum response strength.

Although we can know the OSN responses to a single constituent odor depending
on constituent concentration diluted in a mixture, no general rule determines the
way of constituent interactions so that we cannot predict the OSN responses to a
whole odor mixture. The OSN responses to odor mixtures can attribute to several
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4.3 Results in theoretical investigations

possible interactions between constituent odors including additivity, synergism, and
hypoadditivity. Therefore, in the following experiments, we individually implement
each of three interactions at the OSN level and investigate the effect of different
interactions on processing the olfactory information of mixed stimuli in the antennal

lobe.

If the response to odor mixture is simply predicted by the summation of OSN re-
sponse to each component, we show the OSNs responses and PNs responses to
mixtures through a series of ratios morphing from odor D to odor E in Fig. 4.4C and
4.4D. The results in the response matrices are the averages of neuronal responses
of all neurons (OSNs or PNs) in the same glomeruli over 30 trials. We start the
mixture ratios from pure odor D (100/0), and simultaneously decrease odor D and
increase odor E in the same amount (e.g. 99/1, 96/4, 90/10, etc.) until the mixture
consists of only odor E. All mixture ratios can be found in Fig. 4.4A. Although the
input representations are sequentially distributed along a curve in the PCA space
(Fig.4.4A), the odor representations at the output level are generalized into three
discrete clusters (Fig. 4.4B). Two clusters represent odor D and odor E, respectively,
and the third cluster stands for the mixture of these two odors.

Consistent with the observations in honeybees and zebrafish [119,137,138], the repre-
sentations of odor mixtures are separated from those of their components. Remark-
ably, our theoretical work reproduces the experimental results reported by Niessing
et al. (Fig4.2), that the odor mixture, 99% odor D mixed with 1% odor E, is gen-
eralized with the pure odor D, and vice versa. The other analysis based on Pearson
correlation coefficient also shows consistent results. The linear relationship between

Figure 4.4 (previous page): Separating and generalizing the odor representations
in morphing between dissimilar odors when the interactions between components in
OSNs are addictive. The recurrent networks categorize the odor mixtures into three
discrete outputs. Lateral connection weights: Wyn, and Wiyo = 2.4; Win3 = 0.48.
A.B. OSN and PN representations across a series of mixture ratios in the PCA
space. The OSN representations are sequentially distributed along a curve whereas
the PN representations are generalized into three discrete clusters. The first two
principal components explain 94.0% variance of original PN data. C.D. Response
matrices showing the responses of OSNs and PNs in each glomerulus (column) to
each ratio of mixtures (row). The represented responses are the averaged responses
of all neurons in the same glomeruli and normalized to the highest response in
the response matrices. E. Correlation matrices representing the pairwise similarity
between OSN responses and between PN responses to mixtures in different ratios.
Three red blocks in the PN correlation matrix indicate the existence of three clusters
at the output level. F. A response matrix showing the responses of LNs (column)
to each ratio of mixtures (row). The represented responses are normalized to the
highest response in the response matrix.
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different mixture ratios is represented by Pearson correlation coefficient in the form
of matrices (Fig.4.4E). By comparing the correlation matrices between the input
and output levels of the antennal lobe, the recurrent networks generalize odor mix-
tures across different ratios from 10/90 to 90/10 and separate these intermediate
mixtures from unmixed odors. The agreement of results between experimental data
and our theoretical work provides further supports that our model should reflect
how the olfactory system processes the odor stimuli composed of multiple qualities.

An odor stimulus containing a little heterogeneous odorant may be considered as an
odor contaminated by chemical noise, and the olfactory networks can filter out this
noise and represent the stimulus with its main quality. Indeed, the olfactory stimuli
in natural environment are always mixtures of several quality, and such olfactory
strategies give the olfactory system to focus on and to extract main odor information
if the amount of other quality is little.

In addition, when the concentration fluctuation occurs in odor mixtures, the ratio
between components also varies. Generalizing odors consisting of a major quality
and a little amount of heterogeneous quality fluctuating in intensity can generate
an invariant pattern representing the primary quality. For example, although the
99.5/0.5 and 99.9/0.1 mixtures are different odor stimuli for input, their represen-
tations can be clustered with the 100/0 mixture (i.e. single quality) at the output
level by suppressing the concentration variance and accentuating the primary qual-
ity. Such generalization of multiple qualities in different ratios is similar to what we
have seen in the concentration-invariant coding.

How does the recurrent networks perform the olfactory processing for separating and
generalizing odor representations of mixtures in different ratios? The mechanisms
are similar to what we have shown in the Chapter 3, and thus the heterogeneous
connectivity of LNs may play a significant role to initiate these mechanisms. The
partially-connecting LNs with different connectivity respond to different ranges of
ratios. Odor D and odor E starting from 4% and above this percentage in mixtures
can activate LN1 and LN2 respectively (Fig.4.4F). The lateral connectivity of LN1
innervating glomeruli No. 1, 2, and 4 largely overlaps with the glomeruli where the
OSNs are strongly evoked by odor D. So the increasing amount of odor D in mixtures
can activate LN1 when the ratio exceeds the threshold between 1/99 and 4/96. On
the basis of the same principles, LN2 can be evoked by odor E when the ratio is
across the threshold between 99/1 and 96/4.

Then this feedback inhibition of LN1 results in abrupt change in PN responses
between the 1/99 and 4/96 mixtures (Fig.4.4D). The abrupt transition between PN
responses in glomeruli No. 1, 2, and 4 causes the representations of odor E (0/100
and 1/99) to be far separated from the cluster standing for intermediate mixtures.
Similarly, the feedback inhibition from LN2 separates the representations of odor D
from those of the intermediate mixtures via glomeruli No. 6, 7, and 9. Interestingly,
the simultaneous feedback inhibition from LN1 and LN2 causes PNs to be silent
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Figure 4.5: Separating and generalizing the odor representations in morphing be-
tween dissimilar odors when the interactions between components in OSNs are syn-
ergistic. Lateral connection weights: Wyn1 and Wiyo = 2.4; Wins = 0.48. A.B.
OSN and PN representations across a series of mixture ratios in the PCA space. The
first two principal components explain 95.8% variance of original PN data. C.D.
Response matrices showing the responses of OSNs and PNs, respectively. E. Cor-
relation matrices representing the pairwise similarity between OSN responses and
between PN responses to mixtures in different ratios. F. A response matrix showing
the responses of LNs. Plot representations are the same as Fig. 4.4.
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and unvaried in several glomeruli across the intermediate mixtures from the ratios
of 96/4 to 4/96, and thus generalizes the representations of these mixtures into one
cluster.

Here we sum up how the representation transitions occur from one odor morphing
into the other through a series of intermediate mixtures in the dynamics of recurrent
networks. First, odor D only activates LN1 because of the high proximity between
the connectivity of LN1 and the glomeruli where OSNs strongly evoked by odor D
project their axons. This rule also explains why odor E is specifically associated
with LN2. Then the representations of odor stimuli still preserve although odor D
is mixed with a little amount of odor E. When the percentage of odor E in mixtures
increases, and the quantity of odor E is enough to activate the LN2, the output PN
responses dramatically change because one more inhibitory LN2 is involved in the
olfactory processing. Therefore, the corresponding representations of intermediate
mixtures are distantly separated from the representations expressing the single odor
D identity. The two simultaneously coactivated LNs suppress the PN responses in
several glomeruli across a large range of different ratios and contribute to invariant
output representations. The progressively increasing odor E in the mixtures im-
plies the decreasing of odor D. Finally, when the percentage of odor D in mixtures
decreases so that odor D is too little to activate LN1, the output PN responses
dramatically change again. Therefore, the representations of the odor stimuli dom-
inated by the odor E quality are separated from the representations of intermediate
mixtures.

To test the effect of different interactions between constituent odors at the OSN level
on this morphing experiment, we change the way of OSN responses to components
in mixtures to synergism. For obtaining OSN responses to mixtures, we first set the
OSN responses to components, odor X and odor Y, as R[X] and R[Y] respectively.
The maximum and minimum of responses to individual constituent odors are repre-
sented by MAX(R[X], R[Y]) and MIN(R[X], R[Y]) respectively. Then we can get
the response to a mixture R[mixture] by the following assumption to calculate the
interactions between components in synergism:

R[mixture] = MAX(R[X], R[Y]) + 0.2 x MIN(R[X], R[Y]). (4.2)

By assuming that the OSN responses are in synergistic interactions between compo-
nents, we demonstrate the resulting OSN and PN responses to the odor mixtures in
different ratios in Fig.4.5C and 4.5D respectively. We find that despite the change
of component interactions in OSNs, the antennal lobe can still categorize the odor
mixtures into two clusters representing respective qualities and one cluster represent-
ing intermediate mixtures at the PN level (Fig.4.5B and 4.5E). The intermediate
mixtures across a large range of different ratios are also generalized into the same
cluster. The LN activity of the morphing series in this experiment resembling the
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Figure 4.6: Separating and generalizing the odor representations in morphing be-
tween dissimilar odors when the interactions between components in OSNs are hy-
poadditive. Lateral connection weights: Wpx; and Wrne = 2.4; Wiys = 0.48.
A.B. OSN and PN representations across a series of mixture ratios in the PCA
space. The first two principal components explain 93.9% variance of original PN
data. C.D. Response matrices showing the responses of OSNs and PNs, respectively.
E. The correlation matrices representing the pairwise similarity between OSN re-
sponses and between PN responses to mixtures in different ratios. F. A response
matrix showing the responses of LNs. Plot representations are the same as Fig. 4.4.
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Figure 4.7: The increase of the weights of partially-connecting LNs supporting the
neural circuits to generalize intermediate mixtures. Weights: Wyn1 and Wiy =
2.6; Wrns = 0.48. A. OSN and PN representations across a series of mixture
ratios in the PCA space. The first two principal components explain 96.8% variance
of original PN data. B. Correlation matrices representing the pairwise similarity
between OSN responses and between PN responses to mixtures in different ratios.
Plot representations are the same as Fig. 4.4.

results of LNs in the earlier experiment assures the similar outcomes of olfactory pro-
cessing to different types of interactions between components (comparing Fig. 4.4F
with Fig. 4.5F).

We next ask how the same recurrent network responds to the hypoadditivity, an-
other interaction way of components at the OSN level. According to the defi-
nition of hypoadditivity, the OSN response to a mixture R[mixture| is equal to
MAX(R[X], R[Y]) given two components, odor X and odor Y in the mixture. Al-
most all results of all neuronal responses to mixtures in different ratios, the odor
representations in the PCA space, and the linear dependence of pairs between differ-
ent ratios are similar to the earlier experiments in other interaction types (Fig.4.6).
Only the representations of the 96/4 and 4/96 mixtures are not close to other inter-
mediate mixtures within the cluster standing for odor mixtures.

The OSN responses to odor mixtures decrease in hypoadditivity compared to those
in additivity and synergism so that the strength of LN inhibition also decreases
(Fig. 4.6F). Indeed, as we showed in Chapter 3, the connectivity of LNs needs to be
modified for getting better performance in separating or generalizing representations
when different OSN response profiles are given. When we slightly raise the weights
of partially-connecting LN1 and LN2 from 2.4 to 2.6, the representations of the 96/4
and 4/96 mixtures shift towards and become close to other intermediate mixtures
by the strengthened inhibition (Fig.4.7). Therefore, the antennal lobe based on our
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Figure 4.8: The experiments in morphing between dissimilar odors conducted by
Niessing et al. to test the output pattern transition of the olfactory bulb in zebrafish.
The stimuli of odor mixtures consisted of a dissimilar odor pair, Arg and His, and
their ratios between two components were 100/0, 99/1, 90/10, 70/30, 50/50, 30/70,
10/90, 1/99, and 0/100. The odor application lasted for more than two seconds,
and the responses were measured by two-photon calcium imaging. A. Correlation
matrices representing the pairwise similarity between OSN responses and MC re-
sponses to the mixtures in different ratios. The olfactory information was generalized
and separated during the transformation from input OSN level to output MC level.
B. Response matrices showing the responses of all 141 MCs from seven fishes at
768ms after odor onset. The response arrays were ordered by the covariance with
the template below the response matrices. The MCs at the bottom of the right
matrix exhibited abrupt change of responses between the 10/90 and 1/99 mixtures
so that the representations of His were separated from the representations of inter-
mediate mixtures. The same mechanisms also applied to the left matrix. Adapted
by permission from Macmillan Publishers Ltd: Nature [119], copyright (2010)
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Figure 4.9: The PN responses in morphing between dissimilar odors based on
our theoretical model. The response matrix is the same as Fig.4.4D and is only
counterclockwise rotated.
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proposed model can exhibit consistent results in processing this dissimilar odor pair
regardless of what interactions between components occur in the site of olfactory
receptors.

The dissimilar odor pair used by Niessing et al. in their experiments was two amino
acid odors, Arginine (Arg) and Histidine (His) [119]. The correlation matrix from
their experimental results exhibited high similarity (red area) only along the di-
agonal at the OSN level meaning that the mixtures are only similar to others in
neighboring ratios (Fig.4.8A). This diagonal similarity results from the distinct re-
sponse patterns between dissimilar odors. In contrast to the OSN responses between
mixtures, three squares filled with red and orange colors along the diagonal can be
found in the correlation matrix (768ms) at the output MCs of the olfactory bulb.
Strong correlation between the MC response patterns to different mixtures within
the squares suggests clustered representations. Remarkably, by comparing Fig. 4.7B
and Fig 4.8A, our results are consistent with their findings.

Moreover, when looking more deeply and comparing our results with the data shown
by Niessing et al. at the neuron level [119], we find similar neuron activity across
mixture ratios. They suggested the abrupt transition between representations was
caused by the sudden change of activity in a subset of MC between the 99/1 and
90/10 mixtures and the 10/90 and 1/99 mixtures shown in Fig4.8B. Specifically, a
few MCs at the bottom lines of the right matrix had strong activity at the first two
columns from the right (the 1/99 and 0/100 mixtures) whereas their responses to
other mixtures significantly decreased. For clear comparison, the response matrix
of PNs morphing between a dissimilar odor pair based on our proposed model from
Fig.4.4D are counterclockwise rotated in Fig.4.9. Note that the output neuron PN
in the antennal lobe of insects is analogous to the output neuron MC in the olfactory
bulb of vertebrates. In Fig.4.9, the abrupt change of PN responses between the
4/96 and 1/99 mixtures (the third column and the second column from the right)
in glomeruli No.6, 7 and 9 is similar to the behavior of MCs at the bottom lines
of the right matrix in Fig4.8B. Likewise, the distinct PN responses between the
99/1 and 96/4 mixtures causing the separated representations between odor D and
intermediate mixtures are similar to how the MCs at the bottom lines of the left

matrix separate the representations of Arg from those of intermediate mixtures
(Fig4.2).

4.3.3 Experiment: Odor morphing between similar odors

After we used the mixtures composed of dissimilar components as the odor stimuli,
now we investigate how the neural circuits process olfactory information given mix-
tures made up of similar odor F and odor G. In this case, Niessing et al. reported
that the odor representations are separated into two clusters at the output level
when components in odor mixtures are similar (Fig.4.10) [119]. According to the
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Figure 4.10: The representations in morphing between similar odors projected
onto the first three principal components. The neuronal responses were measured
in the MCs of zebrafish. The representations of odor mixtures were separated into
two clusters, and most mixtures were generalized with one odor component (Trp).
Abrupt transition occurred between 90/10 and 70/30. Figure adapted by permission
from Macmillan Publishers Ltd: Nature [119], copyright (2010)

analysis of correlation matrices in their study, the relationship of odor-evoked pat-
terns between two similar amino acid, Phenylalanine(Phe) and Tryptophan(Trp),
is highly linear, and as a result, intermediate mixtures are also linearly correlated
across a large range of ratios (Fig. 4.11A). Therefore, the odor-evoked OSN responses
should have the following characteristics to suffice for this linear relationship among
mixtures morphing between similar odors:

1. For the different types of OSNs preferring both similar odors, the response of
all of them has to simultaneously increase or decrease from one odor to the
other.

2. If the OSN types do not respond to one of the similar odors, they will not be
activated by the other. Because these two odors are similar, the OSN types
should have the same preference to both odors.

On the basis of the above assumptions, we assume that the OSN responses to two
similar odors are represented in two vectors [10 40 50 0] and [50 120 150 0] in spike
rates, respectively, and the response patterns consist of four types of OSNs. Then
the correlation between these two patterns (i.e. vectors) will close to one (0.991).
Now we increase the spike rate in the first element to 100 for the pattern responding
to the first odor, and the response vector then becomes [100 40 50 0]. Response
decreasing in the first OSN types and increasing in other OSN types from the first
odor to the second odor reduces the correlation between two patterns to 0.251. Next,
we keep the responsive neuron in the first three elements intact, but the neuron in
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Figure 4.11: The experiments in morphing between similar odors conducted by
Niessing et al. to test the output pattern transition of the olfactory bulb in zebrafish.
The stimuli of odor mixtures consisted of a similar odor pair, Phe and Trp. Other
details are the same as in Fig. 4.8. A. Correlation matrices representing the pairwise
similarity between OSN responses and between MC responses to the mixtures in
different ratios. The olfactory information was generalized and separated during
the transformation from input OSN level to output MC level. B. Response matrices
showing the responses of all 156 MCs from nine fishes at 768ms after odor onset. The
response arrays were ordered by the covariance with the template below the response
matrix. In the bottom of the response matrix, the MCs exhibited abrupt change
of responses between the 99/10 and 70/30 mixtures (between the third column and
the fourth column from the left) so that the representations of Phe were separated
from those of other odor mixtures. Figures adapted by permission from Macmillan
Publishers Ltd: Nature [119], copyright (2010)

the last element is activated by the second odor. The OSN patterns to two odors
now become [1040 50 0] and [50 120 150 100], and the correlation decreases to 0.776.
Therefore, to represent the high linear relationship between two similar odors, the
OSN responses have to be grounded on our two assumptions.

For the input to the recurrent networks, we use the same series of ratios in the pair
of similar odors as the ratios used in the pair of dissimilar odors (Fig.4.12A). The
OSN responses to similar odor F and odor G are decided based on two assumptions
discussed above, and the odor-evoked responses are listed in Table4.2. We choose
the hypoadditivity as the way of interactions between constituent odors in the site
of receptors because it occurs more frequently than other interactions in OSNs [54,
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Table 4.2: OSN responses to odor F and G in each glomerulus and LN lateral
connections to glomeruli.

Glomerulus No. 1 2 3 4 5 6 7 8 9

OSN responses to 5 5 10 40 5 50 20 5 5
odor F*

OSN responses to 5 5 50 120 5 150 60 5 5
odor G¢

LN1 connection®
(Win1:2.4)
LN2 connection®
(Win2:2.4)
LN3 connection®

(WLN310.48)

a

(spikes/sec)

b The “x” means the connection between the LN and this glomerulus.

136,138,140], and we already showed that different interactions do not influence the
results of olfactory processing.

The activity of glomerular input from OSNs in the experiments of Niessing et al.
did not change abruptly. Their results suggested that if an OSN did not respond
to one odor, it would not respond to the other odor in the similar pair and to
the mixtures consisting of both odors. The first observation is consistent with the
results of OSN responses in our experiments (Fig.4.12C). Furthermore, the second
observation explicitly supports the second point in our assumptions to formulate
the OSN responses to a pair of similar odors. The correlation matrix in our results
indeed shows high linear correlation between mixtures in different ratios at the OSN
level (Fig.4.12E), consistent with the results of pairwise correlations reported by
Niessing et al. (Fig.4.11A).

Surprisingly, the PN activity patterns in our experiments exhibit abrupt change
(Fig. 4.12D) although the OSN input strength gradually varies or keeps silent from
one odor to the other. Such distinct PN responses result in different representations
causing the separation of odor F from other odor mixtures and odor G (Fig. 4.12B).
Similarly, in contrast to the high correlation between the odor mixtures in differ-
ent ratios at input, the odor activity patterns of odor F are decorrelated from the
patterns representing odor G and the intermediate mixtures at the output of the
recurrent networks (Fig. 4.12E). In addition, the inhibitory LN2 responding to a se-
ries of mixtures from 90/10 to 0/100 attributes to the feedback inhibition onto PNs
in glomeruli No. 6 and No. 7 (Fig. 4.12F). Only one LN is recruited in this morphing

75



Chapter 4 Discrete representations of odor mixtures

A Olfactory sensory neurons B Projection neurons
1 1]
0.5 0.5
€ IS
g g 96/4
9 30/70 100/0 IS 100/0
Qo Qo
IS | e o. [ ) ] IS | 30170 O
5] 50/50 70/30 90/10 96/4 99/1 o 70/30 . 99/1
© © 50/50 90/10
° °
c c
N N
-0.5 -0.5
-1 -1
-0.5 0 0.5 1 -0.5 0 0.5 1
1% component 15! component
Odor G » Odor G
e 6 6 ¢ 0 0 O e 6 6 ¢ 0 0 O
Olfactory sensory neurons Projection neurons
1 1
2 2
@ ©
@ e
3 3
= X
€ €
0 0
#1 #2 #3 #4 #5 #6 #7 #8 #9
glomerulus glomerulus

Olfactory sensory neurons Projection neurons Local neurons

OdorF Odor G OdorF Odor G n
1
H 0
#1 #2 #3

Figure 4.12: Separating and generalizing the odor representations in morphing
between similar odors when the interactions between components in OSNs are hy-
poadditive. The recurrent networks categorize the odor mixtures into two discrete
outputs. Lateral connection weights: Wpyy; and Wirne = 2.4; Wrysz = 0.48. A.B.
OSN and PN representations across a series of mixture ratios in the PCA space. The
first two principal components explain 99.5% variance of original PN data. C.D.
Response matrices showing the responses of OSNs and PNs, respectively. E. The
correlation matrices representing the pairwise similarity between OSN responses and
between PN responses to mixtures in different ratios. F. A response matrix showing
the responses of LNs. Plot representations are the same as Fig. 4.4.
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Table 4.3: Summary of experiments in this chapter.

Figure Odor pair Interactions Wint Winae Wins
in OSNs
Fig.4.4 dissimilar additivity 2.4 2.4 0.48
Fig.4.5 dissimilar synergism 24 24 0.48
Fig.4.6 dissimilar hypoadditivity 2.4 2.4 0.48
Fig. 4.7 dissimilar hypoadditivity 2.6 2.6 0.48
Fig.4.12 similar hypoadditivity 24 24 0.48

experiment so that the abrupt change of PN patterns only occurs once when the
stimuli morph from odor F to odor G through intermediate mixtures. Therefore,
the output patterns of all odor mixtures are only generalized into to two clusters.

As LNs regulate which odor quantity is categorized into weak odors and strong
odors, they also modulate what representations should be classified into the cluster
representing a single odor quality or another cluster representing odor mixtures.
According to the results of morphing experiments, one LN only can separate repre-
sentations into two clusters because the categorization of representations depends on
two states of LN activity, silence or activation. The LN activity determines whether
inhibition is applied to output neurons via recurrent connections. The number of
clusters where the output representations of odor mixtures are generalized depends
on how many LNs are recruited in the odor morphing. This explains why the pairs of
dissimilar odors and similar odors are generalized into different numbers of clusters.

Next, we then ask what factors decide how many LNs are utilized in the odor morph-
ing. Each LN receives odor signals and inhibits other PNs within individual and local
recurrent networks because of heterogeneous connectivity of LNs [32,56,59-64,106].
The activation of LN is determined by the interactions between input odor-evoked
patterns and the morphology of local recurrent networks. In morphing between two
dissimilar odors, two dissimilar qualities should evoke two distinct OSN response
patterns so that these two patterns should then activate two different LNs, the lat-
eral connectivity of which largely overlaps with respective OSN response patterns.
Therefore, the morphing between dissimilar odors should be associated with two dif-
ferent LNs or two different sets of inhibition (if there are coactive LNs). In contrast,
similar odor quality should elicit similar responses of OSNs in most glomeruli, and
the same glomerular activation should evoke the same LN via recurrent connections.
In other words, only one LN (or one set of coactive LNs) can be recruited in the
olfactory processing for morphing between similar odors.

Comparing the output responses of neural circuits between our experiments and the
experiments of Niessing et al., we again find resembling results in morphing between
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similar odors. The PNs in glomeruli No.6 and No.7 intensively respond to odor
F (the first three rows in Fig.4.12D), but their responses to other odor mixtures
are suddenly diminished. The same case occurs in the MCs at the bottom of re-
sponse matrix in Fig.4.11B. These neurons have strong responses to Phe (the first
three columns from the left) whereas their responses to the rest of odor mixtures are
abruptly decreased. The consistent output neuron responses in both theoretical and
experimental results confirm that our model based on lateral heterogeneous connec-
tivity and intraglomerular nonlinear transformation can fully explain the olfactory
processing in separating and generalizing representations.

The experiments demonstrated in this chapter are summarized in Table 4.3 for
comparing the results in different conditions.

4.4 Discussion

In this chapter, we have extended the study from the effect of quantity in a single
odor on the outcome of olfactory information processing to how the olfactory system
processes odor mixture consisting of binary components in different ratios. Our
results based on PCA and correlation matrices show that the representations of
each components are far separated and are decorrelated from the representations of
odor mixtures. In human psychophysical experiments, subjects reported they could
only recognize a new odor identity and were not able to individually identify the
components of odor mixtures when they were tested in the presentation of odor
mixtures made up of common and dissimilar odors [145,146]. The representations
of odor mixtures encoded differently from those of odor components may explain
why the subjects cannot easily recognize any individual components in testing odor
mixtures.

We also find another olfactory strategy similar to previous concentration-invariant
coding. The olfactory system may account for a small amount of odors in mixtures
as irrelevant noises and encode the mixtures into the representations invariant to
the concentration of minor odors. It is possible that the odor information processed
in the antennal lobe or the olfactory bulb is optimized to represent odor identity
(quality) instead of odor quantity. Our proposed model demonstrates how the ol-
factory system can suppress the concentration fluctuation either in a single odor or
in the minor part of odor mixtures. For example, an odorant accounting for 0.1%
or 0.01% of mixtures can be all filtered out during the olfactory processing in the
first stage of the olfactory system, and the main olfactory message from the odorant
dominating this odor mixture will be relayed to downstream circuits.

The separation of output representations shown in the odor morphing experiments
of Niessing et al. did not arise from the activity of large numbers of MC, but from the
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abrupt change of a small subset of coordinated MC responses [119]. They reported
that only 10% of MCs contributed to generate the representation separation. Indeed,
on the basis of our model, we suggest that local lateral inhibition mediates the
coordinated change of neural activity in one or a few specific ensembles of output
neurons (MCs or PNs). These neuron ensembles switching from activated state to
inhibited state morph one neural representation into another for separating odor
identities or mixtures. The selective tuning of a small subset of MCs therefore
underpins our model that the separation between representations is generated by
local networks.

A recent study examining the same topic characterized the responses of MCs to odor
mixtures in different ratios as being smooth instead of being discrete in rats [147]. A
possible explanation why they have not observed similar abrupt change in their MCs
may attribute to fewer numbers of MCs recorded by electrodes or their morphing
analysis only based on individual MC responses. The responses of PNs in our
experiments also exhibit smooth change across a large range of ratios, for example,
in glomeruli No. 3, 5, and 8 (Fig.4.4D). Considering that only a small subset of MC
is involved in the odor classification, sampling a large number of output neurons
should yield more complete and reliable results to reflect activity pattern change.

Another similar investigation in locusts, Shen and colleagues suggested that the out-
put representations of odor mixtures gradually shifted in the olfactory space [144].
These findings seem in disagreement with our results that the output representa-
tions are discretely clustered, but their argument applies to only intermediate odor
mixtures. Instead, both our and their studies consistently show that the representa-
tions of intermediate mixtures are converged within a subspace. Comparable results
of the separation between the representations of odor mixtures and those of their
components were still reported in their study. Moreover, their mixture ratios shifted
from 140/0 for a component to 140/30 (i.e. 1:0.21) for the next mixtures, and the
interval between their ratios is larger than the one Niessing et al. used in zebrafish:
100/0, 99/1, and 90/10 (i.e. 1:0.11) [119]. Niessing et al. reported that the gener-
alization occurred in a single quality (100/0) and a mixture (99/1), and the abrupt
transition between mixtures occurred in ratios from 99/1 to 90/10. Therefore, it is
unlikely to observe these similar results of generalization and separation in locusts
based on much larger intervals between mixture ratios.

Recent studies have not agreed on the prediction of the interactions between com-
ponents in PNs depending on odor qualities [138,139,142] Indeed, no general rules
should exist because PN activity depends on not only the input from their presynap-
tic OSNs but also the lateral inhibition via recurrent networks. We cannot predict
the PN response to odor mixtures merely relying on knowing OSN input without
having the information of the connectivity of recurrent networks. Interestingly,
several reports suggested that some PN (or MC) responses to odor mixtures were
dominated by one of components and were similar to the responses to the dominat-
ing component [140,141,144,148]. If the interactions between components at OSNs
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are hypoadditivity, it means that the OSN activity reflects the odor information only
representing one component. Therefore, the postsynaptic PNs only receive the odor
information of one component from their cognate OSNs so that the PN responses to
mixtures are similar to those to one component if no lateral inhibition is involved.
Moreover, hypoadditivity occurs more frequently than other interactions at the OSN
level, and it may explain why some PN responses to mixtures dominated by one of
components were reported.

However, other PN responses to mixtures cannot be predicted based on any com-
ponent responses or component quality. So back to the recurrent networks, several
interactions between PNs and other neurons affect PN responses. We need to know
the actual input strength from presynaptic OSNs, if the interactions are not hy-
poadditivity at OSNs, and the lateral inhibitory strength evoked by OSN activity
patterns, if LNs connecting to these PNs are activated. In conclusion, both exci-
tatory signals transformed by the intraglomerular function from OSNs and lateral
inhibition from LNs jointly determine the PN responses to odor mixtures.

In line with our findings, another theoretical work based on glomerular random net-
works indicated the significance of lateral inhibition from LNs for encoding odor mix-
tures [149]. Our study further demonstrates how the glomerular networks respond
in odor morphing through different ratios. In addition, because the connectivity of
LNs is heterogeneous, we show how this specific connectivity results in different PN
responses in different glomeruli such as abrupt response change in a subset of PNs.
This heterogeneity also explains how different numbers of representation clusters are
generated at the output of glomerular networks. Such specific relationship cannot
be demonstrated by a model using random connectivity.

Our model can explain most results in the neurophysiological study of Niessing et
al. [119] whereas the responses of MCs that suddenly changed their responses during
the morphing between dissimilar odors were not completely silent to intermediate
mixtures. It is difficult to use the model of the antennal lobe to predict the entire
behavior of neuronal responses in the olfactory bulb because these two olfactory sys-
tems still slightly differ. However, both systems implement combinatorial glomerular
codes to represent odors in parallel units, heterogeneous connectivity to relate spe-
cific parallel units, and interglomerular inhibition across specific parallel units to
shape odor representations. These underlying mechanisms shared by both of the
antennal lobe and the olfactory bulb allow us to interpret the fundamentals of how
olfactory information is processed.

Although we have not referred to nonlinear intraglomerular transformation in this
chapter, it does not mean that this mechanism is not important in processing odors
with multiple qualities. Instead, it still plays a role in generalizing representations
like in concentration-invariant coding. For example, the PN responses become sat-
urating, and the PNs have similar responses between mixtures 1/99 and 0/100 in
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glomerulus No. 2 (Fig.4.4D) whereas the responses of their cognate OSN differ in
these two mixtures (Fig. 4.4C).

In this chapter, we have demonstrated how the neural circuits decorrelate the rep-
resentations between odor mixtures and their components. Similarly, the antennal
lobe or the olfactory bulb has long been thought to decorrelate different quality and
increase the separation between the olfactory inputs from OSNs. Therefore, our
third question concerns how the olfactory system represents a large amount of odor
quality and modulates the distance between distinct qualities in the odor space. Are
inhibitory LNs still responsible for separating representations between different odor
qualities, or is another neural mechanism required to achieve it? We will discuss
this topic in the next chapter.
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5 Olfactory processing in
modulating separation
between odors

5.1 Overview

In this chapter, we will investigate how neural circuits modulate representations
between different odor qualities. First, we review recent studies focusing on the
separability between odors during olfactory processing and then summarize that
the antennal lobe or olfactory bulb is capable of separating sensory input repre-
sentations from two different odor signals. Next, we analyze the experimental data
from [150], and show that the same neural circuits can generalize different odor qual-
ity. The odor quality generalization is distinct from the idea commonly accepted in
the olfactory processing.

We then ask why this kind of counterintuitive generalization function can emerge
and coexist with the separation function in the same wiring of connectivity. Our
model will explain how neural circuits with specific heterogeneous connectivity can
separate representations of some odor pairs but generalize those of others.

5.2 Increasing separation between representations

Higher brain areas require distinct neural representations to differentiate distinct
sensory stimuli. The difficulty of identifying neural representations can arise when
representations are overlapping and similar. In combinatorial codes, odors activate
different types of olfactory receptors, and the olfactory information is encoded in
combinatorial responses of multiple OSN types [10,29,39,75,112]. However, these
odor-evoked patterns are not completely nonoverlapped. One OSN type can respond
to many odors, and the response of OSNs are not specific to a few odors. There-
fore, the odor representations at the input level are overlapping and correlated.
Some studies assume that one major function of the antennal lobe or the olfactory
bulb is to enhance odor discrimination and increase separation between olfactory
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Chapter 5 Olfactory coding in modulating separation between odors

inputs from OSNs [4,5,19,101,151]. The transformation of odor signals between
the first layer and the second layer reduces overlap between representations serving
as “decorrelation” in the sensory processing [151]. Such mechanisms accentuate the
difference between odor representations over commonness and enable higher brain
areas to extract information from nonoverlapping OSN responses.

Several experimental results confirmed that the antennal lobe took a role in increas-
ing separation between odor representations [53,58,138]. In Drosophila, whereas
most of odor-evoked responses at the OSN level were clustered in a subspace of the
odor space, the PN responses were separated from each other and redistributed more
uniformly than the OSN responses in the space [53]. Another study in Drosophila
suggested that the separation between odor representations increased during the ol-
factory processing from the input layer to the output layer in the antennal lobe [58].
PN response patterns being less correlated to each other than afferent input patterns
were also reported in honeybees [57,138].

How can the antennal lobe attenuate overlap between odor representations and
increase the separation between each other? Several theoretical works indicated that
the feedback inhibition of recurrent networks could perform such functions [55,94,
152-156]. Most of theoretical simulations implemented random feedback connections
to demonstrate how lateral inhibition helped recurrent networks decorrelate input
odor-evoked patterns. One of these works suggested that heterogeneous recurrent
networks leaded to better separation between representations than global feedback
networks when the response frequency of each OSN type was unequal [155]. In
this work, the inhibition strength onto the PNs in a glomerulus was related to
the similarities of OSN responses between this glomerulus and other glomeruli. In
other words, the inhibition strength needed to be tuned based on the OSN response
patterns. Interestingly, the frequency of one OSN type responding to odors is indeed
different from those of other types [39]. Some OSN types are evoked by many odors
whereas other OSN types respond to much fewer odors.

Another study suggested that the local and global feedforward inhibition performed
different functions in recurrent networks, and the former, not the latter, resulted
in decorrelation [152]. In addition, distinct LNs in local recurrent networks could
reduce different parts of overlap between a pair of odors by inhibiting output neurons
in confined and different sets of glomeruli [157]. The different inhibitory feedback
could contribute to various degrees of separation between representations, and the
neural circuits could get better resulting separation by selecting the activation of
specific LNs. All these studies make it clear that heterogeneous recurrent networks
play a significant role in separating representations and increasing the discrimination
between odors. In the next section, we will use these ideas to interpret the findings
in neurophysiological experiments.
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Figure 5.1: Calcium activity in the antennal lobes evoked by four different odors 3-
octanol (O), n-amylacetate (A), 4-methylcyclohexanol (M), and benzaldehyde (B),
respectively. A. The calcium imaging representing the neuronal activity at the OSN
layer. Images are averaged over eight individual flies and 3-5 trials. Each averaged
image is normalized to the maximum value of respective images. The signal strength
is indicated by a color bar. White contours define the outline of the antennal lobes.
B. The calcium imaging representing the neural activity at the PN layer. Image
representations are the same as (A.). Note that the neuronal activity in OSNs
evoked by 3-octanol and n-amylacetate is distinct whereas the neuronal activity in
PNs responding to 3-octanol and n-amylacetate is similar.

5.3 Imaging data analysis

The calcium concentration correlates with neuronal activity [158-160], and mea-
suring the calcium intensity reflects the dynamics in large numbers of neurons si-
multaneously. Recent advances in the use of two-photon microscopy coupling with
genetically encoded calcium-sensitive fluorescence protein can allow us to visualize
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calcium concentration change [9,10,161]. If a neuron type has a known genetic
identity, the large-scale neural activity of that particular type can be recorded by
imaging the neural circuits of live animals bearing transgenes based on that genetic
identity. For example, an odorant receptor gene, Or83b, is broadly expressed in
OSNs in Drosophila [25,30,162], and experimentalist can monitor the odor-evoked
responses of OSNs in Drosophila bearing the Or83b-Gal4 and the UAS-GCaMP
transgenes by two-photon microscopy [10,54,107,150].

In a set of two-photon imaging data recording the neuronal responses at the OSN and
PN levels in Drosophila [150], we find counterintuitive results of olfactory processing
in the antennal lobe. Four different odors, 3-octanol (O), n-amylacetate (A), 4-
methylcyclohexanol (M), and benzaldehyde (B), were used to stimulate animals
in the imaging experiments, and we show the resulting calcium activity of input
neurons and output neurons in the antennal lobes in Fig.5.1. Surprisingly, the
experimental data indicate that the neuronal signals of the pair, n-amylacetate and
3-octanol, are similar in the PN ensembles although the odorant-evoked patterns of
this pair in the OSN ensembles are distinct. The activity patterns at OSNs and at
PNs evoked by the other two odors, 4—methylcyclohexanol and benzaldehyde, are
different from those evoked by n-amylacetate or 3-octanol. Therefore, some odors
are still separated during the odor transformation from OSNs to PNs whereas one
particular pair (O and A) is generalized.

For further analyzing the patterns of odor-evoked calcium activity, we use thresh-
olding to define the regions of interest (ROI) in the calcium background images
of antennal lobes. The pixel intensity of background images is averaged across 8
individual flies and normalized between 0 and 1. After that, we choose the pixels
of which the normalized intensity is greater than 0.40 and 0.65 as the ROIs of cal-
cium images for OSNs and PNs respectively (white circumference lines in Fig. 5.1).
The threshold selection depends on the contours of ROIs capable of reflecting the
anatomical location of neurons of interest.

We use PCA to reduce high-dimensional calcium imaging data to the first three
dimensions that account for most of the variance. The principle components are
ranked according to their contribution to the total variance of original data. Only
the calcium signals within the ROIs are analyzed in PCA. Here, the calcium signals
in the ROIs (7575 data points for the OSN imaging and 5890 data points for the
PN imaging) are reduced to the three principle components that turn out to keep
nearly 90% of the variability of the original signals.

The neuronal responses to four odors represented by calcium images are projected
onto the space spanned by the first two principal components (Fig. 5.2A and 5.2B).
The pair of O and A is generalized at output PNs (Fig. 5.2B) whereas these two
odors are separated at input OSNs. Other all possible pairs out of four odors are
consistently separated during the olfactory processing in the antennal lobe. To re-
duce inter-individual variability between flies, we calculate the mean responses over
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Figure 5.2: Odor-evoked calcium activity across four odors measured in OSNs and
PNs projected onto the space spanned by the first two principal components. A.
Odor-evoked calcium activity in OSNs represented by the first two principle com-
ponents by using dimensional reduction PCA. Different markers indicate different
odors as indicated in the legend. Each single marker represents a measurement of
an individual animal (eight flies). B. Odor-evoked calcium activity in PNs repre-
sented by the first two principle components by using dimensional reduction PCA.
The first two components explain 81.5% variance of original calcium signals. C.D.
As in (A.)(B.), but inter-individual variability is removed by subtracting the mean
responses over four odors in each animal. The variance of responses to the same
odor becomes less after reducing inter-individual variability, suggesting that most
of response variability attributes to inter-individual variability. Note that in PN,
but not in OSNs, the activity patterns evoked by O and A are generalized.

four odors in each animal and subtract each mean response from the responses to
odors in corresponding animals. After the mean removal, the dimension of imaging
signals is again reduced by PCA and represented in the first two principal compo-
nents of PCA space (Fig.5.2C and 5.2D). The variance of responses to the same
odor becomes less after reducing inter-individual variability, suggesting that most of
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Figure 5.3: Relative Euclidean distances between the calcium activity patterns of
each odor pair. The distances based on the first three principal components for
each odor pair are combined across flies and are normalized to the highest median
distances among the odor pairs in OSNs and in PNs, respectively. The first three
components explain 89.6% variance of original calcium signals. The boxes from
pairs in PNs are shaded. For each box, the central red mark is the median, and
the edges of the box are the first and third quartiles. The ends of the whiskers
are calculated by the mean plus or minus 2.7 variance. Relative distances that
significantly differ between OSNs and PNs in one odor pair are represented with
asterisks (*: p<0.05; ***: P<0.0001; all pairwise comparisons are established by
Wilcoxon rank-sum tests). Note that the relative Euclidean distances distributed in
a narrow range (e.g. O&A in PNs) mean that some response variability to an odor
in Fig. 5.2 results from inter-individual variability.

response variability attributes to inter-individual variability. When inter-individual
variability is reduced, it is clear that the representations between O and A are in-
deed clustered, but they are separated from the representations of M and B at the
PN level (Fig.5.2D).

Next, we calculate Euclidean distances between the calcium activity patterns of each
odor pair based on the first three principal components. All distances are combined
across flies in each odor pair and are normalized to the highest median distances
among the odor pairs in OSNs and in PNs, respectively. The relative distances are
shown as a box plot in Fig. 5.3, and the boxes from pairs in PNs are shaded. The
relative distances of some pairs are significantly larger at the PN level than at the
OSN level (M&B: p < 0.05; O&M and O&B: P < 0.0001; Wilcoxon rank-sum tests,
n = 8). The increasing distances between OSN and PN levels suggest that the neural
circuits in the antennal lobe separate the representations further between these odor
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pairs. Consistent with the results of calcium singles projected onto the PCA space,
the relative distances of the pair O&A significantly decrease (P < 0.0001; Wilcoxon
rank-sum tests, n = 8). The relative Euclidean distances distributed in a narrow
range (e.g. O&A in PNs) mean that some response variability to the same odor in
Fig.5.2A and 5.2B results from inter-individual variability.

The generalization of odor representations is rarely reported, but the consistent re-
sults in behavioral experiments support that generalization occurring at the output
neurons is not an artifact of calcium signals [150]. Our analysis of the experimental
data suggests that the antennal lobe can both increase and decrease separability in
the same neural circuits. If the heterogeneous inhibitory feedback performs olfac-
tory computation and decorrelates odor-evoked patterns, could it also generalizes
distinct input patterns? Next, we will interpret how the heterogeneous connectivity
modulates separation in the antennal lobe based on our model.

5.4 Results in theoretical investigations

5.4.1 Effects of recurrent connectivity on separability

The feedback inhibition via different recurrent connectivity may modulate separation
between odor pairs. If the overlap between inputs is attenuated by lateral inhibition,
the outputs in the PN layer will become more separated. These are known facts,
and the studies we referred in the section 5.2 only focus on this aspect. However, it
is possible that inhibiting the differences of odor-evoked patterns and keeping their
commonness intact will generalize these representations.

We first demonstrate how the recurrent networks based on our model increase sep-
aration between odors in the antennal lobe. All model parameters are kept the
same as earlier experiments. The recurrent networks in this experiment consist of
50 glomeruli, and the numbers of OSNs and PNs are still 30 and 3 per glomeruli re-
spectively. The responses of OSN types to two odors along glomeruli are described
by Gaussian distribution centered in glomeruli No. 18 and No. 32 (solid blue and
green lines in Fig.5.4A). The spike rates in each glomerulus are the averages of
neuron responses in individual glomeruli across 30 trials and are then normalized to
the maximum spike rate.

Because the overlap of two input patterns is between the centers of the two bell
curves, local recurrent networks specifically inhibiting the overlap, not the differ-
ence (the OSN responses in glomeruli No. 1 to 18, and No. 32 to 50), should decor-
relate these patterns. We evaluate this assumption by giving higher strength of
inhibitory feedback connections to the glomeruli where two input patterns overlap.
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Figure 5.4: Effects of recurrent connectivity on separability. The responses of OSN
types to two odors along glomeruli are described by Gaussian distribution centered
in glomeruli No. 18 and No. 32, plotted in solid blue and green lines respectively.
All spike rates are normalized to the maximum spike rate. The weights of recurrent
connections are also characterized by Gaussian distribution and plotted in solid
red line. The weight at the center equals 0.6. All Gaussian curves have the same
variance 6. The dash lines represent the PN responses, and the curves in blue and
green indicate the neuronal activity evoked by corresponding odors. A. The local
recurrent networks specifically inhibit the overlap between input patterns (i.e. in
glomeruli No. 20 to 30), the response patterns in PNs are more separated than in
OSNs. B. The local recurrent networks specifically inhibit the differences between
input patterns (i.e. in glomeruli No.1 to 15), the response patterns in PNs are
less separated than in OSNs. C. The similarity between outputs as the function of
the center of recurrent connectivity. The similarity between the input pair is 0.26.
Shifting the center of recurrent connectivity with the same shape as in (A.) and
(B.) can modulate the similarity (or separation) between odor pairs at output.
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The weights of recurrent connections are characterized by Gaussian distribution cen-
tered in glomeruli No. 25, and the weight at the center equals 0.6 (solid red line in
Fig.5.4A). In the recurrent networks, one LN and all glomeruli are linked via feed-
forward and feedback connections, and the weights of reciprocal connections are the
same for each direction. As a result of inhibiting the overlap, the response patterns
in PNs (dash lines in Fig. 5.4A) are more separated than input patterns. Because of
nonlinear intraglomerular transformation, a few responses at OSNs can be boosted
at postsynaptic PNs (e.g. in glomeruli No. 3 or No.47).

For the same pair of input patterns, different recurrent connectivity could perform
another function in the antennal lobe. Local recurrent networks specifically inhibit-
ing the differences between input patterns should cause them similar. Now, we keep
the shape of inhibition strength the same and shift the center of the bell curve to
glomeruli No. 14 (solid red line in Fig.5.4B). The OSN responses in glomeruli No. 1
to 15 to one odor (solid blue curve in Fig. 5.4B) are stronger than those to the other
odor (solid green curve in Fig.5.4B). The LN specifically inhibiting the output neu-
rons in glomeruli from No. 1 to 15 can attenuate the differences between odors at the
output, and the resulting responses are depicted by the two dash lines in Fig. 5.4B.
Interestingly, such recurrent connectivity increases the overlap between odors, and
the PN responses to two odors in glomeruli No.19 to 23 are similar whereas the
responses of their cognate OSNs are different. Therefore, a pair of distinct odors
can be generalized at the output of neural circuits by recurrent inhibition. This
may explain why two odor qualities in calcium imaging experiments are clustered
at PNs.

To demonstrate how different connectivity modulates the separation between two
odors, we represent the similarity between two response patterns Ry, and Ry along
glomeruli as:

(R, Ry)

SMN = T
[ B[ || B

where (Rys, Ry) is the inner product of Ry and Ry, and ||Ry|| and ||Ry|| are the
norms of two vectors Ry, and Ry respectively [87,94]. When two odors are decor-
related in the recurrent networks, the similarity between odors will decrease. The
similarity between OSN response patterns in this experiment is 0.26. If the simi-
larity between outputs is lower than this value, it means that the overlap between
representations is reduced during the olfactory processing. Here, we retain the in-
hibition strength in the same bell shape and only shift its center along glomeruli
to see the effect of different connectivity on modulating the separation between two
inputs. We represent the relationship between the similarity of an output pair and
the center of recurrent connectivity in Fig.5.4C. When the center of recurrent con-
nectivity is located at glomeruli from No. 21 to 25, the lateral inhibition attenuates
the overlap between two inputs and then separates them. Therefore, these result-
ing similarities of output pairs are lower than that of the input pair. In contrast,
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Table 5.1: OSN responses to four odors in each glomerulus and LN lateral connec-
tions to glomeruli.

Glomerulus No. 1 2 3 4 5 6 7 8 9

OSN responses
to O¢

OSN responses
to A®

OSN responses
to M*

OSN responses
to B?

LN1 connection®
(WprN1:2.0)
LN2 connection®
(WLN222.O)

LN3 connection®
(WLN320.6)

+++ o + e e e 4f +f +

++ e e e 4+  +++ e 4+ +

e+ e e £ 44+ e 4+t

o 4+t e H+ +  H++ e 4+ e

@ The symbols represent the neuronal responses to odors: “e” 5 spikes/sec; “+” 50 spikes/sec;
“++47 100 spikes/sec; “++4" 150 spikes/sec.

b The “x” means the connection between the LN and this glomerulus.

the lateral inhibition acting on the differences between two inputs will increase the
similarity between output pairs.

The modulation of separation between odors depends on the recurrent connectivity
of inhibitory LNs. In these experiments, the pair of input patterns is the same, but
the output results can be either more separated or generalized. Different results
attribute to different connectivity. Based on the same idea, we will further explain
how the same wiring of neural circuits in the antennal lobe can simultaneously
increase and decrease separation between different pairs of odors.

5.4.2 Increasing and decreasing separation in the same wiring of
lateral connectivity

We again implement our model to investigate how the same wiring of recurrent con-
nectivity can decrease separation between some pairs of odors and increase separa-
tion between others simultaneously. We assume four odors evoking distinct response
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Figure 5.5: Modulating the separation between odors in the same wiring of lateral
connectivity. A. The OSN responses to four odors based on theoretical simulation
results. Each point represents a measurement of one trial. To simulate the noise
generated in experimental data, we add Gaussian noise in the spike trains of OSNs.
B. The PN responses to four odors based on theoretical simulation results. The
first two principal components explain 90.26% variance of original data. Two odors
O and A in PN ensembles are generalized although their odorant-evoked patterns
in (A.) are separated. Other odor pairs are separated both in OSNs and PNs. The
separation between odor representations can be either decreased or increased in the
same wiring of recurrent connectivity. C. A matrix showing the responses of LNs
(column) to each odor (row). The responses are normalized to the highest response
to all odors in all LNs.

w Z » O

patterns in OSNs (Table5.1), and thus odors are separated at the input level. Note
that A and odor A used in chapter 3 stand for different meanings. Here, the term
“A” is used to indicate n-amylacetate, and we want to reproduce the results that a
specific pair, O and A, are generalized at output whereas they are separated at the
input of the antennal lobe. Odor A is another odor we used in chapter 3 to show
how neural circuits encode odor quantity.

The recurrent networks consist of two partially-connecting LNs (LN1 and LN2) and
one fully-connecting LN (LN3). We set specific connectivity of inhibitory LN1 to
be capable of attenuating the differences between OSN responses patterns evoked
by O and A. To achieve this purpose, we inspect the input patterns and find the
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OSN types in glomeruli No.6 and No. 7 responding to O and A differently. If LN1
laterally inhibits both OSN types in glomeruli No. 6 and No. 7, such inhibition should
eliminate the differences between the representations of O and A. Therefore, we
make LN1 to specifically connect to glomeruli No. 6 and No. 7 and to have one more
arbitrary connection with glomeruli No. 1. The connectivity of LN2 is also arbitrarily
set because other theoretical studies have shown that the feedback inhibition via
random recurrent connections can increase separability of representations in the PN

layer. [55,152-156]. The connectivity of all LNs is listed in Table5.1.

Surprisingly, although most odor pairs are keeping separated during the olfactory
processing in the recurrent networks, the same wiring of connectivity can still gen-
eralize the pair of O and A as the experimental results in [150] (Fig. 5.5A and 5.5B).
In line with our hypothesis, the neural circuits in the predetermined connectivity
generalize the pair O and A in PN ensembles although their input odorant-evoked
patterns are separated. This odor pair is less separated in the PN activity than it
was in the OSN activity. When two odors O and A are presented, the activation
of LN1, not LN2, attributes to the generalization between O and A (Fig.5.5C).
The feedback from LNT1 inhibits the PN responses in both glomeruli No. 6 and No. 7
eliminating the differences between odor-evoked patterns from input. The neuronal
signals of OSNs seem less noisy than those of PNs, but this is not true. This is be-
cause the first two principal components only account for 60.57% variance of original
information of OSN signals, and most noise is represented in the third dimension
and upward.

These results conclude that patterns in distinct combinatorial codes evoked by dif-
ferent odor quality and heterogeneous recurrent connectivity are crucial factors in
modulating the separation between odors. OSN response patterns and connectivity
of recurrent networks determine which LNs will be activated and how much their
activation strength is. Similarly, the activation strength of these LNs and the same
connectivity of recurrent networks determine which PNs will be inhibited and how
much strength will suppress these PNs. The interaction between neurons and layers
coupling with the heterogeneous connectivity constructs the framework of network
dynamics in the antennal lobe. These collective mechanisms relocate odor iden-
tities in the odor space and thus modulate representations between different odor
qualities.

5.5 Discussion

We have demonstrated how the same antennal lobe circuit can serve conflicting
neuronal coding strategies — separation and generalization. The same inhibitory
connectivity can both increase the separation between some odor pairs and generalize
others. Local inhibition in recurrent networks can reduce the PN activity in specific
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glomeruli representing the overlap or the difference between odors. The feedback
inhibition on glomeruli in heterogeneous networks is selective and depends on the
OSN patterns evoked by different odor qualities and the connections of recurrent
networks.

A scenario for separating a pair of odor O and odor P is illustrated in Fig.5.6A.
Different colors represent neurons in different glomeruli. Ellipses and rectangles
denote OSN ensembles and PN ensembles in individual glomeruli respectively. Filled
symbols represent activated neural ensembles. We assume that OSN inputs in at
least two glomeruli are needed to activate LNs. The OSN patterns evoked by odor
O and odor P overlap in the orange and dark green OSNs. The glomeruli where the
orange and dark green OSNs project are laterally connected by the brown LN, and
the brown LN is then activated by OSN input. In contrast, the glomeruli laterally
connected by the gray LN are less overlapped with each OSN pattern, and thus the
gray LN cannot be activated by odor O or odor P. Finally, the responses of the
orange and dark green PNs are inhibited because of the feedback inhibition from
the brown LN. The patterns between odor O and odor P at the PN level do not
overlap, and these odors are more separated during the transformation between the
first-order and the second-order neurons.

Interestingly, LNs seem to compete to be activated during the olfactory process-
ing. The selection of winner (e.g. the brown LN in the separation scenario) depends
upon the proximity between the connectivity of LNs and OSN response patterns.
The overlap between the glomeruli where the brown LN laterally connects and the
glomeruli where the OSNs are evoked is more than the overlap between the con-
nectivity of the gray LN and OSN response patterns. As a result, the brown LN is
activated, dominating the processing of odor information and decorrelating the pair
of odor O and odor P.

We again use the same recurrent connectivity, but a different odor pair, odor Q and
odor R, to show how the generalization can occur in the same wiring of networks.
Odor Q evokes the yellow OSNs, not the light green OSNs, and the same OSNs
respond to odor R in the opposite way (Fig.5.6B). Therefore, the OSN pattern
evoked by odor Q is differentiated from that evoked by odor R. On the basis of
the same rules in earlier separation scenario, both odors can activate the gray LN,
and this LN inhibits the PNs in glomeruli where this LN locally connects. Because
of the feedback inhibition, the activity of the yellow PNs and the light green PNs
is suppressed. Both odors are now represented by the same pattern at the output
level and are thus generalized in neural circuits. Here, we use simple examples
to demonstrate how the same wiring of recurrent networks can perform conflict
functions — separation and generalization.

In the olfactory system, the representations at the OSN level are redundant (31,74,
88,163]. A study implementing PCA to analyze the OSN responses across different
species from insects to mammals, suggesting that merely the first two principal
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Figure 5.6: Schematic illustration of separation and generalization in the same
wiring of networks. Different colors represent neurons in different glomeruli (from
left to right: red, orange, yellow, dark green, light green, light blue, dark blue, violet).
The brown LN is on the left, and the gray LN is on the right. Ellipses and rectangles
denote OSN ensembles and PN ensembles in individual glomeruli respectively. Filled
symbols represent activated neural ensembles, and empty one means a silent neural
ensemble. In this illustration, we assume that OSN inputs in at least two glomeruli
are needed to activate LNs. A. Separation. The OSN patterns evoked by odor O and
odor P overlap in the orange and dark green OSNs. The feedback inhibition from the
activated brown LN eliminates the responses of the orange PNs and dark green PN,
thus causing this pair more separated. B. Generalization. The differences between
odor Q and odor R at input are represented in the yellow OSNs and the light green
OSNs. The feedback inhibition from the activated gray LN eliminates the responses
of the yellow PNs and light green PNs, thus causing this pair generalized.

——

components can explain half variance of OSN response to odors [164]. Besides,
in the same PCA analysis, the first principal component projection of randomly
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sampling 5% of OSN response data was highly correlated that of all OSN response
data. Another study in honeybees suggested that using nearly 25% of glomerular
input activity could predict what odors were given at 85% success rate [110]. These
studies imply that the olfactory system may duplicate response motifs in different
OSN types, and these similar responses across OSN types may arise from common
evolutionary origins [165]. Another report in Drosophila also showed that different
OSN types had highly correlated odor responses [53].

Indeed, odor identity encoded in the redundant combinatorial scheme at OSNs is
required for implementing heterogeneous inhibition in modulating separation be-
tween odors. The redundancy of encoding odors at OSNs contributes to overlap
between input patterns, and the olfactory system can modulate the amount of over-
lap between odor representations by specific inhibition to vary the distance between
identities in the odor space.

When inhibition plays an important role in recurrent networks, the sparse responses
of PNs are naturally the product of such inhibition mechanisms. In a recent report
studying Drosophila, the authors found that 8 out of 37 PNs were not activated
by any odors, and the stimuli set were composed of many and chemically diverse
odors [47]. The authors also indicated that in 64% of all odor responses, PNs were
suppressed below the baseline of spike rates. Similar results were found in moth,
suggesting that only one out of approximately 20 PNs could be activated by any
of seven testing odors [139]. Another report suggested that odors were represented
by sparse activity of PN ensembles [12]. The contrast between redundant OSN
responses and sparse activity of PNs verifies that the inhibition is active during
olfactory processing and serves as the main mechanism in recurrent networks.

Although in this chapter, we only discuss how neural circuits modulate the separa-
tion between single odor qualities, it has been found that the separation between
odor mixtures was also increased in PNs [138]. The underlying mechanisms of sep-
arating odor mixtures are likely similar to the mechanisms applying for single odors
because the odor mixtures are also represented in redundant combinatorial codes at
the OSN level.

Such olfactory processing in modulating the similarity between representations is the
collective consequence of interactions between odor-evoked OSN input and specific
feedback inhibition, and such specific inhibition is determined by the interactions
between the same above OSN input and the connectivity of local recurrent net-
works. Yet the morphological development of LN connectivity to specific glomeruli
is unknown. However, we argue that the antennal lobe can gain more freedom
from unrestricted design of inhibitory spatial patterns than from inherently limited
odorant receptor-ligand interactions in the neural computation.
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6.1 Discussion

6.1.1 Local computation in olfactory processing

Our theoretical results in this study demonstrate how heterogeneous lateral inhi-
bition and nonlinear interglomerular transformation simultaneously contribute to
three distinct functions in the olfactory processing. In concert with the morphology
of network connectivity and the physiological characteristics of olfactory neurons re-
cently discovered in the antennal lobe, our theoretical model for olfactory processing
enables putting a collective interpretation of mechanisms in concentration-invariant
odor representations, discrete representations for odor mixtures, and olfactory cod-
ing in modulating separation between odors.

Remarkably, the abrupt transition between representations at the PN level does not
attribute to the significant activity change across all PNs, but to the discontinuous
responses of a small subset of PNs. This assumption is supported by the evidence
from two different experiments investigating neuronal responses to odor quantity
change and to odor morphing in quality [76,119]. Different experiment design indi-
cating the same results of local response change at the PN level suggests that the
local inhibition should serve as the main mechanism in olfactory processing. If the
global inhibition plays an important role, the drastic change of responses should
occur in most PNs when inhibition starts to be involved in recurrent networks.
Moreover, the abrupt transition between representations for each odor does not
happen at the same concentration in increasing odor quantity, and it does not occur
for each odor pair at the same mixture ratio in odor morphing either. This may
suggest that inhibition strength is heterogeneous and dependent on the odor-evoked
patterns representing the quality of input odors or odor mixtures.

The odor information is encoded in different responses of OSN types as combinato-
rial codes. The odor signals distributed in a number of glomeruli or units allow the
antennal lobe to use specific recurrent connections to converge signals from specific
units to inhibit targeted output PNs. For example, pentyl acetate and 4-methyl
phenol elicit similar OSN responses in VM7 glomerulus, but the presynaptic PNs in
the same glomerulus respond distinctly to these two odors [48]. Interestingly, after
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attenuating lateral inhibition by removing the OSNs in other glomeruli, the PNs in
VM7 exhibit similar responses to both pentyl acetate and 4-methyl phenol. There-
fore, PNs in VM7 glomerulus receive similar feedforward excitatory inputs from their
cognate OSNs in two different odors, but the neural circuits can selectively apply
lateral inhibition onto these PNs only in a specific odor. This evidence supports
that the antennal lobe performs different computation to distinct odors at specific
glomeruli, and the inhibition specific to odors is actively implemented in olfactory
processing.

When odors are represented by a number of parallel glomeruli or units, the anten-
nal lobe can modulate the separation between odors. Reducing common units of
odor representations separates odors further more while attenuating different units
between odor representations can generalizes odors. The olfactory circuits may use
glomerulus-specific inhibition [57,58,63,163] to perform computation to modulate
the distance between a specific odor pair. Although how the morphological devel-
opment of LN innervation interconnects specific glomeruli is hitherto unknown, the
olfactory system should gain more freedom to reshape odor representations from un-
restricted design of recurrent connections than inherently limited odorant receptor-
ligand interactions.

In conclusion, the phenomena that olfactory computation occurs in specific and local
glomeruli via recurrent connectivity have been long neglected. The specific activa-
tion of local neurons inhibiting PNs at specific glomeruli regulates the dynamics of
olfactory circuits. Our results suggest that the local and specific inhibition could
better explain several underlying mechanisms in the olfactory processing than global
inhibition does.

6.1.2 Interglomerular interactions in olfactory circuits

There has been a debate on whether the antennal lobe or the olfactory bulb broadens
or sharpens the tuning of PNs compared with OSNs. Several studies suggested that
lateral inhibition narrowed the tuning of PNs or MCs [53, 57,58, 71, 166] whereas
one study held the opposite opinion [47]. Some reports indicated that the response
patterns at OSNs and PNs were similar and supported the neutral effects from the
functions of the antennal lobe [10,65]. If we extend our view from a single glomerulus
to more global interglomerular networks, we may answer why these studies appear
to contradict each other.

PNs not only receive excitatory input from their presynaptic OSNs but also receive
inhibitory input from LNs. For those OSNs responding to an odor, part of their
postsynaptic PNs in some glomeruli may respond to this odor while part of other
postsynaptic PNs in different glomeruli may be silent because of local inhibition.
Similarly, PNs may be faithful to reflect the responses from their presynaptic OSNs
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in some odors whereas they may be silent in other odors although they receive
excitatory input from their presynaptic OSNs. This is because these PNs are silenced
by inhibitory LNs, and the odor-specific inhibition from LNs abolishes the excitation
from their presynaptic OSNs in specific odors. The lateral inhibition thus sharpens
the tuning of PNs compared with their presynaptic OSNs.

In contrast, the nonlinear intraglomerular transformation contributes to broaden
the tuning of PNs. A few responses at OSNs can be highly boosted at their postsy-
naptic PNs in the same glomerulus, and thus PNs can respond to more odors than
OSNSs. Interestingly, different studies sampling different odor-glomerulus combina-
tions naturally saw partial facts of olfactory computation in the olfactory system.
We argue that to understanding the interactions between olfactory neurons, we have
to consider both intraglomerular and interglomerular relationships and not to only
focus on one or a few glomeruli.

6.1.3 More characteristics of olfactory processing

The redundancy of encoding odor identity in OSNs is a sine qua non for imple-
menting inhibition in olfactory processing. The amount of olfactory information is
reduced during the transformation between the first layer and the second layer in the
antennal lobe or the olfactory bulb, and the sparse representations in PNs [12,47,139]
are naturally the products of implementing inhibition in neural processing.

The olfactory system can be robust against concentration fluctuation, but at the
same time be sensitive to intermediate intensity change in a stimulus. We have
showed that the olfactory system can accomplish concentration invariant coding
and retrieve significant change in odor quantity, based on two underlying neural
mechanisms, nonlinear intraglomerular transformation and local lateral inhibition.
Some studies suggested that several fixed point attractors may divide the odor space
into several subspaces, and the trajectory of each odor representation converges to-
wards one of the attractors after odor onset [98,119,167]. The dynamics of olfactory
system is invariant to initial points (invariant to concentration fluctuation), and the
trajectories representing similar odors will converge to the same attractor, thus per-
forming concentration-invariant coding. The attractor model also exhibits similar
dynamics in odor mixtures so that odor mixtures converge to several attractors and
are separated into discrete clusters. Our investigation already indicated that sepa-
rating and clustering odors mainly result from the lateral inhibition. This implies
that the characteristics of attractors should be highly related to how the lateral
inhibition emerges in recurrent networks.

The implement of recurrent connectivity in other theoretical studies was based on
random networks [95,96, 98,155,156, 168]. To our knowledge, we are the first study
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to investigate the effect of specific connectivity patterns on the antennal lobe. Dif-
ferent connectivity could result in different outcomes in neural circuits. Previous
studies using random connectivity may not notice and compare the effect of differ-
ent connection patterns.

6.2 Conclusions

In this thesis, we implement two mechanisms — nonlinear intraglomerular transfor-
mation and heterogeneous connectivity of inhibitory LNs to interpret three distinct
olfactory strategies in the olfactory modality. The nonlinearity of signal transforma-
tion from input OSNs to output PNs is accomplished by the high release probability
of vesicles at the synapses between OSNs and PNs, coupling with the synaptic de-
pression caused by the vesicle depletion. Such transformation boosts PN responses
to saturation so that similar PN responses contribute to invariant representations.
The heterogeneity of local recurrent networks permits the antennal lobe to shape
odor representations in specific glomeruli and selectively activate LNs to regulate
the dynamics of olfactory circuits. Which LN can be activated depends on the
interactions between the input odor-evoked patterns and the connectivity of local
recurrent networks.

Although neuronal properties and network connectivity in the antennal lobe are
mostly explored, which neural mechanisms underlying the olfactory processing and
how the antennal lobe implementing the neural mechanisms remain obscure. Stud-
ies investigating the responses of animals to different odor quantity suggested that
concentration invariant coding might be implemented in the olfactory system [106,
121-123]. Other studies indicated that odor mixtures are perceived holistically as
configural odors, not as several mixed components [119, 138,145, 146]. The role of
sensory circuits has been thought to decorrelate input patterns to make efficient use
of coding space and to improve odor discrimination [4,5,19,101,151]. However, the
analysis of our experimental data indicated that the antennal lobe could generalize
patterns from distinct odors [150]. Considerable experimental data have revealed
the outcomes of olfactory coding, but the underlying mechanisms have not been well
explained.

In this study, on the basis of the known facts in olfactory circuits, our model provides
new perspectives to explain the observed outcomes of olfactory coding. First, our
theoretical results suggest that concentration-invariant representations arise from
two phases of PN responses. Inhibitory LNs suppress the activity of PNs when
these LNs are activated only at high odor concentrations, thus causing distinct
representations at PNs between low and high odor concentrations. In addition, the
nonlinear signal transformation between OSNs to their presynaptic PNs boosts PN
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responses to saturation, and the saturating and thus similar responses also contribute
to concentration-invariant representations in the olfactory processing.

Second, OSN patterns evoked by odor mixtures and their components could activate
different sets of LNs. Therefore, different sets of PNs are inhibited by these individ-
ual sets of LNs, and the representations between the mixtures and their components
in PNs are distinct and separated. Third, the heterogeneous recurrent connections
of networks may explain how conflicting neural coding strategies — separation and
generalization can be functioned in the same neural circuits. One odor pair at out-
put becomes more separated if both of them recruit the same feedback inhibition
attenuating the overlap between their input patterns. Conversely, another feedback
inhibition simultaneously recruited by an odor pair then suppressing the differences
between these odors can generalize their representations. Determining which LNs
are activated to inhibit PNs in selective glomeruli in which odors depends on the in-
teractions between the input odor-evoked patterns and the connections of recurrent
networks.

We try to answer a number of open questions in sensory coding. Our model is not
specifically constructed to account for one select data set or one particular mecha-
nism. Instead, our proposed model is capable of explaining three collective phenom-
ena of how olfactory circuits encode quantitative information in individual odors,
separate odor mixtures from their components based on qualitative information, and
modulate the separation between odor pairs. Finally, we promote the role of LNs
historically underrepresented. Together with the LN heterogeneous connectivity of
recurrent networks, the olfactory neurons can not only execute one of mysterious
olfactory functions but in fact generate all of them — the outcomes depending on
odor-evoked input patterns and the wiring of olfactory circuits.
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S1. Concentration-invariant representations at output neurons. Left: empirical
evidence from [76]; projection neurons in locusts. Right: theoretical evidence based
on our model.

The odor representations in sensory input (olfactory sensory neurons, OSNs) depend
on the quantity of stimuli. However, the odor signals in the output of the first
processing circuit (antennal lobe or olfactory bulb) are transformed into discrete
representations invariant to concentration change. The quantitative information is
only applied to categorize odors into two discrete clusters, and odors are classified
to one cluster representing lower concentrations and another cluster representing
higher concentrations. Our theoretical results suggest that such abrupt transition
between odor representations arises from the sudden response change of a subset of
output neuron (projection neuron, PN). Inhibitory local neurons (LNs) suppress the
activity of PNs when these LNs are activated only at higher odor concentrations,
thus causing the abrupt change of PN responses between lower and higher odor
concentrations. In addition, the nonlinear signal transformation between OSNs to
their presynaptic PNs boosts PN responses to saturation, and the saturating and
thus similar responses also contribute to concentration-invariant representations in
the olfactory processing.
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S2. Discrete representations of odor mixtures at output neurons. Left: empirical
evidence from [119]; mitral cell in zebrafishes (analogous to projection neurons in
insects). Right: theoretical evidence based on our model.

How does the olfactory system evaluate a stimulus consisting of multiple qualities
as an odor mixture or as a pure odor contaminated by chemical noise that has to be
filtered out in olfactory processing? Why are odor mixtures perceived holistically as
configural odors, not as several mixed components? The experimental results suggest
that the representations of odor mixtures are separated from those of components in
the odor space. The olfactory system considers an odor mixed with a little amount of
heterogeneous odorant to be this odor contaminated by chemical noise, and olfactory
circuits filter out this noise and represent this odor with its main quality. A possible
explanation is that the generalization between a component and this component
mixed with a little amount of the second component is because both odors at similar
concentration ratios activate the same inhibitory LNs, and PN responses are then
suppressed by the same specific inhibition. Therefore, the representations between
both odors in PNs are similar. On the ground of heterogeneous connectivity of
LNs, new inhibitory LNs will be recruited to suppress different PN ensembles when
the concentration of the second component in odor mixtures increases, and the
representations between the first component and intermediate mixtures in PNs are
thus distinct and separated.
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S3. Modulating separation between odors. Left: empirical evidence from [150];
olfactory sensory neurons and projection neurons in Drosophila. Right: theoretical
evidence based on our model.

It has long been thought that the antennal lobe or the olfactory bulb enhances
odor discrimination and increases separation between olfactory inputs from OSNs.
Such mechanisms may result from inhibitory recurrent networks. Our analysis of
experimental data suggests that the neuronal signals of one odor pair are similar in
PN ensembles although the odorant-evoked patterns of this pair in OSN ensembles
are distinct, and thus this odor pair is less separated in PN activity than it was in
OSN activity. The heterogeneous recurrent connections of networks may explain how
conflicting neural coding strategies — separation and generalization can be functioned
in the same neural circuits. One odor pair at output becomes more separated if both
of them recruit the same feedback inhibition attenuating the overlap between their
input patterns. Conversely, another feedback inhibition simultaneously recruited by
an odor pair then suppressing the differences between these odors can generalize
their representations. Determining which LNs are activated to inhibit specific PN
ensembles in which odors depends on the interactions between the input odor-evoked
patterns and the connections of recurrent networks.
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