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1. Abstract 

During genome replication, chromosomes undergo a progressive shortening of their ends. To 

counteract this loss, a complex named telomerase functions as a reverse transcriptase to 

elongate telomeres. In Saccharomyces cerevisiae, telomerase contains a non-coding RNA, 

TLC1, which serves as a scaffold for formation of the telomerase complex and the template 

for the reverse transcription to elongate the telomeres. Upon its synthesis, TLC1 undergoes a 

series of nuclear and cytoplasmic maturation steps. 

Here it has been shown that the TLC1 nuclear export is dependent on the classic mRNA 

export pathway in addition to the already known Crm1/Xpo1 pathway. The nuclear export 

defects that occur upon mutation of these pathways impair the formation of the telomerase, 

as well as its final localisation suggesting an essential role of TLC1 shuttling in telomerase 

assembly. Consequently, the TLC1 nuclear transport defect leads to telomeric shortening 

indicating a necessity of the TLC1 shuttling for telomere maintenance. Moreover, the nuclear 

RNA quality control system, composed of the TRAMP complex and nuclear exosome, might 

mediate the nuclear maturation of TLC1. Finally, it has also been pointed out that the 

localisation and maturation of the nuclear quality control system might be regulated by a 

nuclear importer, Mtr10, which is also involved in TLC1 nuclear import. 
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2. Introduction 

2.1 Telomeres and telomerase 

2.1.1 Telomeres 

The genome contains all cellular information important for its own synthesis, cell growth, 

differentiation and death. This information is transferred from generation to generation 

through chromosome replication. However, due to the mechanism of DNA replication the 

linear chromosomes of eukaryotes are not able to be fully duplicated leading to the loss of 

genomic content during each reproduction cycle (Olovnikov, 1971; Watson, 1972), 

consequently resulting in cellular defects, aging and death (Harley et al., 1990; Hayflick, 1979; 

Lundblad and Szostak, 1989). Besides, double-stranded DNA breaks (DSBs) are particularly 

harmful to the cell due to causing chromosome rearrangements. To distinguish DSBs from 

authentic chromosome ends is another challenge that an organism must face (Dewar and 

Lydall, 2012). To solve these critical problems cells evolved variable mechanisms including a 

special chromosome end nucleoprotein structure named the telomere, which is able to 

efficiently maintain the stability and integrity of the genome. 

2.1.1.1 The structure of telomeres 

Telomeres are conserved on their structure throughout the eukaryotic organisms. The 

structure of a yeast telomere is shown in figure 2.1A. The yeast chromosome ends consist of 

two subtelomeric regions, X and Y’ elements, and one telomeric region (reviewed in (Kupiec, 

2014; Wellinger and Zakian, 2012)). 

X elements, containing two subregions: Core X and subtelomeric repeated elements (Louis et 

al., 1994), are present in almost all chromosome ends with slight differences in size and 

sequence. Y’ elements are separated by telomeric repeats from X elements and present in 

0-4 tandem repeats (Chan and Tye, 1983). 
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The length of the telomeric region varies from yeast (ca. 350bp) to mammals (several kb). 

The yeast telomeric sequence is mainly composed of simple repeats that are usually 

described as C1-3A/TG1-3. In addition, these sequence repeats are also found at the border 

between X and Y’ element, as well as Y’ and Y’ elements. However, compared to those in X 

and Y’ elements, the repeats in the telomeric region are more important because deletion of 

these sequence results in a high genomic instability and the loss of chromosomes (Lundblad 

and Szostak, 1989; Shampay et al., 1984; Szostak and Blackburn, 1982). This telomeric region 

can be extended by a reverse transcriptase complex termed telomerase containing an RNA 

template. Unlike many other organisms, the telomeres of Saccharomyces cerevisiae are 

irregular and heterogeneous because only a partial RNA template of the telomerase is used 

for each elongation cycle and diverse short template regions are copied in different 

elongation rounds (Forstemann and Lingner, 2001). Furthermore, through sequencing it has 

been shown that the cells from a single colony contain exact identical sequences in the 

internal half of telomeric region; however, more dynamic combinations are found in the 

external half, which is therefore thought to be involved in degradation and elongation of the 

telomeres (Wang and Zakian, 1990). Moreover, a 3’-single strand G-rich tail is present at the 

very end of the chromosome. These G tails are usually 12-15 nucleotides long throughout 

the cell cycle except during a short period in late S/G1 phase in which it contains 30-200 

nucleotides (Larrivee et al., 2004; Wellinger et al., 1993a, b). 

 

2.1.1.2 Telomere binding proteins 

There are a number of proteins that bind to the subtelomeric or telomeric region, directly or 

indirectly, continuously or transiently, functionally or structurally. 

The intrinsic components of the telomeres (figure 2.1B) include Rap1 (Repressor Activator 

Protein), Rif complex (Rif1 and Rif2, Rap1-Interacting Factor), SIR proteins (Sir2, Sir3 and Sir4, 

Silent Information Regulator), the CST complex (Cdc13 (Cell Division Cycle), Stn1 (Suppressor 

of Cdc ThirteeN) and Ten1 (TElomeric pathways with STN1)) and the Ku heterodimer (Yku70 

and Yku80, Yeast Ku protein). 
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In wild type cells 15-20 copies of Rap1 bind to each single telomere with the distance of ca. 

20 base pairs and are the central factors in determining telomere length (Conrad et al., 1990; 

Gilson et al., 1993; Lustig et al., 1990; Ray and Runge, 1999a, b; Wright and Zakian, 1995). 

There are key interaction regions for Sir3/4 as well as for Rif1/2 binding present in the 

C-terminus of Rap1 (Hardy et al., 1992a; Hardy et al., 1992b; Moretti et al., 1994; Wotton 

and Shore, 1997). Both Rif1 and Rif2 function as negative regulators in telomere elongation 

(Hardy et al., 1992a; Hardy et al., 1992b; Wotton and Shore, 1997), probably through being 

involved in the telomere capping, which prevents the access of the double-stranded DNA 

breaks (DSBs) repair system through covering the telomeres with short telomeric repeats 

(Ribeyre and Shore, 2012). The SIR complex, composed of Sir2, Sir3 and Sir4, is mainly 

involved in telomeric silencing by interacting with histones (Gottschling et al., 1990; Pryde 

and Louis, 1999). Besides, the yeast Ku complex contains two proteins, Yku70 and Yku80, 

playing the central role in the non-homologous end-joining (NHEJ) machinery and the 

telomere maintenance (Bonetti et al., 2010a; Bonetti et al., 2010b; Gilson et al., 1993; 

Figure 2.1 Telomeric DNA 

structure and protein 

components in S. cerevisiae.  

(A) Schematic representation of 

the subtelomeric X and Y′ 

elements as well as the 

telomeric terminal repeat 

sequences. Red strand: G-rich 

strand with 3′ overhanging end. 

Blue strand: C-rich strand.  

(B) Schematic representation of 

the telomere bound proteins. 

Open circles represent 

nucleosomes.  

Figure adapted from (Wellinger 

and Zakian, 2012). 
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Palladino et al., 1993; Porter et al., 1996; Vodenicharov and Wellinger, 2007). The Ku 

complex participates in tethering the telomeres to the perinuclear region (Martin et al., 

1999). Furthermore, the Ku complex is able to interact with telomerase RNA (TLC1, 

TeLomerase Component) and assist the localisation of the telomerase in the nucleus (Gravel 

et al., 1998; Rathmell and Chu, 1994; Roy et al., 2004; Taccioli et al., 1994). However, the Ku 

complex might not recruit the telomerase onto the telomeres because of the recent study 

showing a mutually exclusive recruitment of TLC1 and telomeres by the Ku complex 

(Pfingsten et al., 2012). Moreover, the other conventional component on telomeres is the 

CST complex consisting of Cdc13, Stn1 and Ten1. The functions of Stn1 and Ten1 are poorly 

understood. The core component of the CST complex is Cdc13, which has high affinity and 

specificity to bind to single-stranded TG1-3 DNA in vitro (Hughes et al., 2000b; Lin and Zakian, 

1996; Mitton-Fry et al., 2002; Mitton-Fry et al., 2004; Nugent et al., 1996) and telomeres in 

vivo (Bourns et al., 1998; Tsukamoto et al., 2001) through its DNA binding domain (Hughes et 

al., 2000b). Besides, Cdc13 contains a recruitment domain on its N-terminal end, which 

interacts with Est1 of the telomerase complex and recruits it onto telomeres (Nugent et al., 

1996; Pennock et al., 2001; Wu and Zakian, 2011). 

In addition, some components are present on telomeres only transiently in given cell cycle 

phases, e.g. the telomerase complex. As mentioned above, the telomerase is able to be 

recruited onto the telomeres via an interaction of one of its components, Est1, with Cdc13 in 

late S phase of the cell cycle (Evans and Lundblad, 1999; Taggart et al., 2002). Furthermore, 

some DSB recognition factors are also involved in maintaining the telomere length, e.g. Tel1 

(TELomere maintenance) and the MRX complex (Mre11 (Meiotic REcombination), Rad50 

(RADiation sensitive), Xrs2 (X-Ray Sensitive)). Tel1 is recruited onto DSBs and telomeres via 

the MRX complex (Nakada et al., 2003; Shima et al., 2005). Lacking of Tel1 or of MRX 

components leads to short, however stable telomeres (Boulton and Jackson, 1998; Kironmai 

and Muniyappa, 1997; Tsukamoto et al., 2001). The functions of these factors are proposed 

to be to participate in the telomerase recruitment (Bianchi and Shore, 2007; Hector et al., 

2007; Mantiero et al., 2007; Sabourin et al., 2007).  
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2.1.2 Telomerase 

During DNA replication in eukaryotic cells, DNA polymerases extend short RNA primers 

composed of 8-12 nucleotides through adding nucleotides to their 3`-end. DNA polymerases 

extend one DNA strand in the direction of the growing replication folk (leading strand) and 

the other strand in a discontinuous fashion which requires many RNA primed Okazaki 

fragments (lagging strand). The RNA primers subsequently are removed and the gaps are 

filled and ligated (Olovnikov, 1971; Watson, 1972). However, this leaves two end-replication 

problems: first, removal of the very start RNA primers results in a shorter newly synthesised 

product (Watson, 1972); second, although there is an essentiality of 3’ single-stranded G-tails 

at the end of eukaryotic chromosomes, which is important for distinguishing the DSBs and 

chromosome ends, DNA polymerases generate 3’-blunt ends on the chromosomes created 

by the leading strands (Lingner et al., 1995). The telomerase has been evolved to solve the 

first problem through using its integrated RNA template to elongate the chromosome ends 

by a reverse transcription. 

 

2.1.2.1 Telomerase components 

The telomerase holoenzyme is composed of Est1, Est2, Est3 and the TLC1 RNA (Dandjinou et 

al., 2004; Hughes et al., 2000a; Zappulla and Cech, 2004). The name EST is an abbreviation of 

“ever shorter telomeres” from a screen for defective telomere function (Lundblad and 

Szostak, 1989). 

Est1 is a protein predicted with 699 amino acids in length (Lundblad and Szostak, 1989) and 

has the ability to bind both RNA and TG1-3 single strand DNA that contain 3’-OH ends in vitro 

(DeZwaan and Freeman, 2009; Virta-Pearlman et al., 1996). In its sequence three nuclear 

localisation signals have been identified that might interact with importin alpha, Srp1 

(Hawkins and Friedman, 2014). The expression level of EST1 is cell cycle regulated: it is low in 

the telomerase inactive G1 phase (ca. 20 molecules/cell) and high in the telomerase active 

late S/G2 phase (ca. 110 molecules/cell) (Taggart et al., 2002; Wu and Zakian, 2011). 
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Although the telomerase activity is independent of Est1 in vitro (Cohn and Blackburn, 1995), 

Est1 directly binds to a TLC1 stem loop (Seto et al., 2002) and contributes to the telomeric 

localisation of the telomerase (Chan et al., 2008) as well as to the telomerase-telomere 

recruitment via direct interaction with Cdc13 in vivo (Evans and Lundblad, 1999; Qi and 

Zakian, 2000; Wu and Zakian, 2011). In addition, Est1 is predicted to activate telomerase 

through recruiting Est3 onto the complex (Tuzon et al., 2011). 

Est2 confers the activity of the reverse transcriptase to the telomerase (Lingner et al., 1997). 

Est2 is composed of 884 amino acids and contains a long basic N-terminal region that 

includes three conserved aspartate residues essential for its activity (Friedman and Cech, 

1999; Lingner et al., 1997). In addition, the N-terminus of Est2 bears the ability to interact 

with TLC1 and Est3 (Friedman and Cech, 1999; Friedman et al., 2003; Talley et al., 2011). The 

expression level of EST2 is quite low (<40 molecules/cell) and TLC1 dependent (only ca. 50% 

in tlc1 strain) (Taggart et al., 2002). 

Unlike Est1 and Est2, synthesis of the functional Est3 protein needs a programmed 

translational frameshift (Morris and Lundblad, 1997). The functional, full-length Est3 is a 

protein with 181 amino acids; a truncated Est3 of 93 amino acids can be formed without the 

frameshift and its function has not been found yet (Morris and Lundblad, 1997). The full 

length Est2 interacts with Est1 directly and associates with the telomerase in an Est1 

dependent manner (Osterhage et al., 2006; Tuzon et al., 2011). Est3 has also the ability to 

bind to the long basic N-terminus of Est2 (Friedman et al., 2003; Talley et al., 2011) and to 

telomeres in G1 phase with yet unknown functions (Tuzon et al., 2011). 

TLC1 (TeLomerase Component) is a low abundant RNA (ca. 30 molecules/cell) longer than 

1000 nucleotides; TLC1 is utilised as a template for reverse transcription and a scaffold for 

the formation of the telomerase complex (Mozdy and Cech, 2006; Singer and Gottschling, 

1994). 

2.1.2.2 Telomerase function 

The telomerase carries out the addition of the telomere repeats using its reverse 
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transcriptase activity at the end of the S phase of the cell cycle (Raghuraman et al., 2001). 

The recruitment of the telomerase onto telomeres is shown in figure 2.2. During G1 and 

early S phase, only an Est2-TLC1 complex is recruited via the interaction between the Ku 

complex and a 48 bp stem loop on TLC1; however, this incomplete telomerase is inactive and 

elimination of the engagement of this complex to telomeres leads to only little telomere 

shortening (Fisher et al., 2004). Besides, this association is located at >100bp from the end of 

the chromosomes rather than at the very end of the chromosomes (Sabourin et al., 2007). 

The active telomerase holoenzyme associates with the telomeres in late S/G2 phase of the 

cell cycle (Chan et al., 2008). The association of this active telomerase with telomeres is 

Figure 2.2 Telomere replication. (a) In G1 phase, Est2-TLC1, an incomplete telomerase 

complex, is inactively present at the telomeres. (b) The chromosome end resection is performed 

by nucleases and helicases, which are activated by CDK1 and Tel1, to create single strand DNA 

platforms for association of the CST complex. (c) The telomerase holoenzyme is loaded via 

interactions between Est1 and the CST complex. (d) The active telomerase holoenzyme elongates 

the G-rich strand and the CST complex recruits the DNA polymerase alpha-primase, a subunit of 

the DNA polymerase alpha, to complete the DNA replication. 

Figure adapted from (Kupiec, 2014). 
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related to the interaction between Est1 and Cdc13. In late S/G2 phase the telomeric binding 

level of Cdc13 is dramatically increased for facilitating an enhanced recruitment of the 

telomerase holoenzyme onto the telomeres (Chan et al., 2008; Taggart et al., 2002). Upon 

association, the telomerase uses short stretches within the sequence 

5’-CACACACCCACACCAC-3’ in TLC1 as templates to elongate telomeres in a heterogeneous 

fashion (Forstemann and Lingner, 2001; Lin et al., 2004). 

 

2.1.2.3 TLC1 and the telomerase life cycle 

Around 90% of TLC1 is non-polyadenylated and consists of 1157 nucleotides (poly(A)- TLC1); 

Figure 2.3 TLC1 is a scaffold in constructing the telomerase. Yku80, Est2 and Est1 bind to 

TLC1. Est3 is involved in telomerase formation through interaction with Est2. However, Est3 is also 

able to interact with Est1. The Sm7 ring binds to the 3’-end of TLC1 important for its processing 

and stabilization. Besides, TLC1 contains a TMG Cap structure, which is common in RNA 

polymerase II produced non-coding RNA, and a core sequence (red part of TLC1), which is utilised 

as the template for reverse transcription. 
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however, 5-10% of TLC1 exists in longer polyadenylated forms that differ in the length of the 

3’-parts and polyadenylation tails (poly(A)+ TLC1) (Bosoy et al., 2003; Chapon et al., 1997; 

Noel et al., 2012). Only the form of poly(A)- TLC1 is incorporated in the mature telomerase 

(Bosoy et al., 2003). 

The active poly(A)- TLC1 is the scaffold for composition of the telomerase (figure 2.3). In 

addition to the core region, which includes the template for reverse transcription, TLC1 

contains a domain for association of the reverse transcriptase Est2 and a conserved 

pseudoknot domain with yet unknown function, which is however usually thought to be 

important for maintaining the secondary structure (Dandjinou et al., 2004; Lin et al., 2004; 

Livengood et al., 2002; Qiao and Cech, 2008; Zappulla and Cech, 2004). Furthermore, TLC1 

possesses three other duplex arms, termed Est1 arm, Ku arm and Sm arm. The Est1 arm is 

the interaction region of Est1, which is essential for the telomerase activity in vivo (Seto et al., 

2002). The Ku complex binds to the Ku arm and this interaction is essential for nuclear 

localisation of the telomerase and its telomeric recruitment in the G1 phase of the cell cycle 

(Fisher et al., 2004; Gallardo et al., 2008; Stellwagen et al., 2003; Vega et al., 2007). 

Nevertheless, compared to the telomerase RNA in ciliates (ca. 160 nucleotides) or 

mammalian cells (ca. 450 nucleotides), the size of the TLC1 of Saccharomyces cerevisiae is 

much larger (Singer and Gottschling, 1994) and an artificial 384-nucleotide TLC1 lacking most 

non-protein-binding regions is still able to maintain stable telomeres in vivo (Zappulla et al., 

2005). 

The life cycle of TLC1 and the telomerase is demonstrated in figure 2.4. TLC1 shares many 

features with some classes of small nuclear RNAs (snRNAs), which are involved in mRNA 

splicing. Similar to other RNA polymerase II products, e.g. mRNAs, snRNAs, etc., TLC1 is 

initially capped with 7-monomethyl guanosine (m7G) and tailed with poly-adenylates (Abou 

Elela and Ares, 1998; Chapon et al., 1997; Seipelt et al., 1999). However, like some classes of 

snRNAs but unlike mRNAs, the poly-adenylated TLC1 receives a seven-Sm protein (Smb1, 

Smd1, Smd2, Smd3, Sme1, Smx2 and Smx3, abbr. Sm7) ring that binds near its 3’ end and this 

association triggers two subsequent events: 5’ hypermethylation and 3’ degradation (Seto et 

al., 1999). In budding yeast, the hypermethylation converts the m7G cap into a 
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2,2,7-trimethylguanosin (TMG) cap in the nucleolus through the methyltransferase Tgs1 

(TrimethylGuanosine Synthase), which is also involved in the cap hypermethylation of 

snRNAs and small nucleolar RNAs (snoRNAs) (Franke et al., 2008). It must be noted that in 

higher eukaryotes snRNAs shuttle to the cytoplasm to acquire the Sm7 ring and to be 

hypermethylated due to the cytoplasmic localisation of the Sm proteins and Tgs1 and 

subsequently these modifications promote the nuclear re-import of snRNAs (reviewed in 

(Matera et al., 2007)). Also similar to snRNAs, in the 3’ end region of poly(A)+ TLC1 a Nab3 

(Nuclear polyAdenylated RNA-Binding) and an Nrd1 (Nuclear pre-mRNA Down-regulation) 

binding site have been identified (Noel et al., 2012) indicating that TLC1 undergoes 3’ 

modification through the Nrd1-Nab3-Sen1 pathway, which is one of the pathways that 

mediates RNA polymerase II transcription termination (Steinmetz et al., 2001; Vasiljeva et al., 

2008). This pathway is thought to trigger the nuclear RNA exosome to remove the poly(A)+ 

tail of TLC1 under the protection of the Sm7 complex (Coy et al., 2013; Noel et al., 2012). 

TLC1 undergoes a nucleo-cytoplasmic shuttling supposed to be important for maturation of 

the telomerase complex (Ferrezuelo et al., 2002; Gallardo et al., 2008). Similar to the snRNA 

transport in metazoan (reviewed in (Hopper, 2006)), the nuclear export of TLC1 has been 

identified to be mediated by the Crm1/Xpo1 pathway (Gallardo et al., 2008), which mainly 

uses the Ran/GTPase dependent exportin Xpo1 (EXPOrtin)/Crm1 (Chromosome Region 

Maintenance) to transport large macromolecules from the nucleus to cytoplasm (Neville et 

al., 1997; Stade et al., 1997). TLC1 cytoplasmic presence is thought to be important for the 

telomerase formation, where TLC1 assembles with the Est protein components (reviewed in 

(Gallardo and Chartrand, 2008)). After assembly of the Est proteins in the cytoplasm, TLC1 is 

re-imported into the nucleus via nuclear import receptors, Mtr10 (Mrna TRansport defective) 

and Pdr6/Kap122 (KAryoPherin) (Ferrezuelo et al., 2002; Gallardo et al., 2008). Interestingly, 

recent data show an unexpected Mtr10-independent nuclear import pathway for Est1, which 

is mediated by the importin alpha, Srp1 (Suppressor of RPb1), and these data suggest an 

alternative nuclear import pathway for telomerase components (Hawkins and Friedman, 

2014). 
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Figure 2.4 The life cycle of TLC1 and the telomerase. (1) TLC1 is synthesised by RNA polymerase II. 

(2) Immature TLC1 contains a poly(A)+ tail and m7G cap. On its 3’ part its Sm, Nab3 and Nrd1 binding 

sites are recognised by the Sm7 ring complex, Nab3 and Nrd1, respectively. (3) The association of the 

Sm7 complex and Nab1-Nrd1 transcription termination complex on TLC1 triggers a hypermethylation of 

the 5’-m7G cap by Tgs1 and a trimming of the 3’-poly(A)+ tail by the nuclear exosome. (4) Modified TLC1 

is exported into the cytoplasm via the Crm1/Xpo1 pathway, which is mediated by the exportin 

Xpo1/Crm1 with a so far unknown adaptor. (5) In the cytoplasm TLC1 associates with Est proteins and 

the complex is subsequently re-imported into the nucleus by Mtr10 and Pdr6/Kap122. (6) Est1 is also 

supposed to be independently re-imported by Srp1.  
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2.2 RNA nuclear processing and quality control 

2.2.1 RNA processing and export 

2.2.1.1 Non-coding RNA processing 

In yeast, the non-coding RNAs transcribed by RNA polymerase II have several classes 

including, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), stable unannotated 

transcripts (SUTs), cryptic unstable transcripts (CUTs), Xrn1 stabilised transcripts (XUTs), 

telomerase RNA (TLC1), etc. In contrast to the differentiation between non-coding RNA and 

mRNA in their promoter regions in mammalian cells (de Vegvar et al., 1986; Hernandez and 

Weiner, 1986; Richard and Manley, 2009), in yeast one of the differentiations between the 

non-coding RNA produced by RNA polymerase II and mRNA is in the way of how 

transcription termination takes place. Predominantly, snRNA, snoRNA, CUTs and TLC1 use an 

Nrd-Nab3-Sen1 pathway (also referred to NRD pathway) to mediate their termination and 

processing (Arigo et al., 2006; Noel et al., 2012; Steinmetz et al., 2001). Although only 

partially understood, these RNA are co-transcriptionally protected and stabilised by 

recruitment of the specific protein components: H/ACA or C/D-box proteins for snoRNA and 

Sm family proteins for snRNA and TLC1. Besides, the multi-heterodimer Nrd1 (Nuclear 

pre-mRNA Down-regulation)-Nab3 (Nuclear polyAdenylated RNA-Binding) complexes also 

bind to their recognition sites, the 5’-UCUUG-3’ motif for Nab3 and the 5’-(U/A)GUA(A/G)-3’ 

motif for Nrd1 (Carroll et al., 2004; Creamer et al., 2011; Morlando et al., 2002). This binding 

leads to a shortening of the 5’-end by Lsm2-8 (Kufel et al., 2004) and Rat1 and the 3’-end by 

the exosome (reviewed in (Slomovic and Schuster, 2011)).  

 

2.2.1.2 RNA nuclear export 

The nucleus is separated from the cytoplasm by the nuclear envelope. Nuclear transport 

occurs through the nuclear pore complex (NPC). RNA is packaged into a large 



14 
 

ribonucleoprotein complex (RNP) and leaves the nucleus through a series of interactions. 

Although in mammalian cells snRNA and snoRNA are exported to the cytoplasm via the 

CRM1 pathway (Hamm and Mattaj, 1990; Izaurralde et al., 1995; Ohno et al., 2000), whether 

these non-coding RNA do so in yeast still remains mysterious. 

Furthermore, in Saccharomyces cerevisiae, mRNA nuclear export is primarily mediated by 

the export receptor heterodimer Mex67 (MRNA EXport factor of 67 kDa)-Mtr2 (Mrna 

TRansport) (Segref et al., 1997), which is able to interact with the phenylalanine-glycine (FG) 

repeats in the NPC-proteins (Bachi et al., 2000; Grant et al., 2002; Gwizdek et al., 2006; 

Hobeika et al., 2009; Katahira et al., 1999; Suyama et al., 2000). On its N-terminus, Mex67 

possesses an RNP domain and next to it a leucine-rich region, both of which are required for 

its interactions with RNA and RNA adaptor proteins (Kang and Cullen, 1999; Liker et al., 

2000). The proper transcript-protein complexes pass through the NPC and reach its 

cytoplasmic side. At the cytoplasmic face of the NPC, Rat7 (Ribonucleic Acid 

Trafficking)/Nup159 (NUclear Pore) docks the ATP-dependent RNA helicase, Rat8/Dbp5 

(Dead Box Protein), at the NPC (Del Priore et al., 1997; Hodge et al., 1999; Weirich et al., 

2004). Both of Rat7/Nup150 and Rat8/Dbp5 are important for dissociation of mRNP factors, 

e.g. Mex67, from the mRNA and this dissociation is thought to create the directionality for 

mRNA export (reviewed in (Tieg and Krebber, 2013)). 
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2.2.2 RNA nuclear quality control 

Through investigation of the model organism, Saccharomyces cerevisiae, two complexes 

have been identified that are involved in the degradation of faulty mRNAs in the nucleus 

(LaCava et al., 2005; Van Hoof et al., 2000a; Vanacova et al., 2005), the TRAMP complex 

(LaCava et al., 2005) and the RNA exosome (Mitchell et al., 1997). In addition, these two 

complexes have been shown to contribute to the maturation of many non-coding RNAs 

(Allmang et al., 2000; Coy et al., 2013; Van Hoof et al., 2000a). 

 

2.2.2.1 The TRAMP complex 

In Saccharomyces cerevisiae, the TRAMP complex is composed of a nuclear 3’-5’ RNA 

helicase (Mtr4, MRNA TRansport), a protein containing zinc knuckle domains (Air1 or Air2, 

Arginine methyltransferase-Interacting RING finger protein) and a non-canonical poly(A) 

polymerase (Trf4 or Trf5, Topoisomerase one-Related Function), which gives the name of 

TRAMP4 or TRAMP5; the TRAMP complexes mark faulty RNAs by adding short poly(A)+ 

sequences on their 3’ tail and this polyadenylation supplies an extended single strand 

platform to load the nuclear exosome and trigger degradation (Dez et al., 2007; Egecioglu et 

al., 2006; Houseley and Tollervey, 2006; Kadaba et al., 2004; Kadaba et al., 2006; Paolo et al., 

2009; Wyers et al., 2005). 

Like the canonical poly(A) polymerase Pap1 (Poly(A) Polymerase), Trf4/5 contains a similar 

catalytic central domain (Vanacova et al., 2005), which allows an addition of 10-50 adenosine 

residues at the end of RNA that is shorter than the 60-80 nucleotides poly(A)+ tail obtained 

from Pap1 (reviewed in (Eckmann et al., 2011)). Mtr4 is a 3’-5’ RNA helicase that consists of 

an ATPase core of DExH helicase, which is defined by six conserved peptide motifs (de la Cruz 

et al., 1999), and a unique arch domain similar to some ribosomal proteins (Jackson et al., 

2010; LaCava et al., 2005; Weir et al., 2010). In the presence of Mtr4, the polymerase activity 

of Trf4/5 is suppressed and the poly(A)+ tail is limited to 3-5 adenosine residues (Jia et al., 

2011). Although Trf4/5 marks RNA with this short poly(A)+ tail, these proteins are lack of the 
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ability to associate with RNA, which is however supplied by Air1/2 in the TRAMP complex 

(Holub et al., 2012; van Hoof et al., 2000b). Air1/2 contains 5 conserved Zinc knuckle motifs, 

which are involved in both protein-protein and protein-RNA interaction (Fasken et al., 2011). 

These interactions bridge recognition and polyadenylation on the RNAs and facilitate the 

degradation of these substrates by the exosome (Fasken et al., 2011; Hamill et al., 2010; 

Holub et al., 2012). Strikingly, the interaction between Trf4/5 and Mtr4 is Air-independent 

but requires the helicase core of Mtr4 (Jackson et al., 2010; LaCava et al., 2005; Weir et al., 

2010). With this interaction, Trf4/5 is also able to promote the activity of Mtr4 to unwind the 

highly structured RNA and expose a 3’-ssRNA tail, which can be captured by the exosome 

(Vanacova et al., 2005).  

In addition to RNA degradation, the TRAMP complex has also been proposed to participate 

in some non-coding RNA transcription termination, e.g. SNR65 and SNR13 (Small Nucleolar 

RNA), by connecting the RNAs to the NRD pathway (Grzechnik and Kufel, 2008; Tudek et al., 

2014). 

Furthermore, although compositions vary, the differentiation between TRAMP4 and TRAMP5 

remains still unclear. Since there are slight differences in their localisations, TRAMP4 and 

TRAMP5 are proposed to preferentially work on the surveillance of diverse classes of 

substrates (Fasken et al., 2011; Huh et al., 2003; Paolo et al., 2009). 

Finally, some components of the TRAMP complex are able to function apart from the 

complex, e.g. Mtr4. Its association with the exosome leads to the processing of some 

non-coding RNA independently of the TRAMP complex (de la Cruz et al., 1998; Kadaba et al., 

2006; LaCava et al., 2005; Van Hoof et al., 2000a). 

 

2.2.2.2 The nuclear exosome 

The core RNA exosome complex contains 10 subunits, Csl4 (Cep1 Synthetic Lethal), Ski6 

(Super KIller), Rrp4, Rrp40, Rrp42, Rrp43, Rrp45, Rrp46 (Ribosomal RNA Processing), Mtr3 

and Dis3 (chromosome DISjunction). Six of them (Ski6, Rrp42, Rrp43, Rrp45, Rrp46 and Mtr3) 
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form a hexameric ring structure and three of them (Csl4, Rrp4 and Rrp40) constitute a 

trimeric cap, which is positioned on top of the hexameric ring and together termed Exo-9 

(Liu et al., 2006). Exo-9 possesses catalytic activity only if Dis3 is associated with the 

hexameric ring on the opposite side of the trimeric cap. Exo-9 together with associated Dis3 

is named Exo-10 (reviewed in (Das and Das, 2013)). Dis3 is the only catalytic unit in the core 

RNA exosome and contains both endo- and exo-ribonuclease activity (Mitchell et al., 1997). 

In the nucleus the core exosome complex associates with Rrp6, Lrp1 (Like RrP6) and Mpp6 

(M-Phase Phosphoprotein) to form the nuclear RNA exosome (Synowsky et al., 2009). 

The targets of the exosome include a quite wide spectrum of RNAs, comprising both coding 

and non-coding RNA produced by all three RNA polymerase I, II and III (Gudipati et al., 2012; 

Schneider et al., 2012). The exosome has been found to degrade most RNA substrates, e.g. 

mRNA, rRNA, snRNA, snoRNA, tRNA and CUT, etc., and this degradation occurs always 

together with an oligoadenylation (Schneider et al., 2012). Especially in the nuclear mRNA 

quality control, the nuclear exosome (Exo-10 with Rrp6, Lrp1 and Mpp6) participates in 

removing aberrant mRNAs, together with additional factors, e.g. Rat1, a nuclear 5’-3’ 

exoribonuclease (Bousquet-Antonelli et al., 2000; Burkard and Butler, 2000; Libri et al., 2002; 

Torchet et al., 2002; Zenklusen et al., 2002). 

 

 

  



18 
 

3. Materials and methods 

3.1 Materials 

3.1.1 Chemical and consumables 

All chemicals, solutions and consumables in this thesis were obtained from the following 

companies if not stated otherwise: 

AppliChem (Munich/Germany), BD Biosciences (Heidelberg/Germany), Carl Roth (Karlsruhe/ 

Germany), GE Healthcase (Freiburg/Germany), Invitrogen (Frankfurt am Main/Germany), 

Macherey-Nagel (Dueren/Germany), Merck (Darmstadt/Germany), New England Biolabs 

(Frankfurt am Main/Germany), OMNILAB GmbH (Bremen/Germany), Promega (Mannheim/ 

Germany), Peqlab (Erlangen/Germany), Roche Diagnostics (Mannheim/Germany), Sarstedt 

(Nuernbrecht/Germany), Serva Feinbiochemika (Heidelberg/Germany), Sigma-Aldrich 

(Munich/Germany), Thermo Fisher Scientific (Schwerte/Germany), Th. Geyer (Renningen/ 

Germany), VWR International (Darmstadt/ Germany) 

 

Chemical, Consumables Source 

Agarose NEEO Ultra Carl Roth, Karlsruhe/Germany 

Amersham Hybond-N+ Membran GE Healthcare, Freiburg/Germany 

Bacto Yeast nitrogen base Becton Dickinson, Franklin Lakes/USA 

Cy3-Oligo-dT50 Biospring, Frankfurt/Germany 

DAPI Merck, Darmstadt/Germany 

Deionised Formamide AppliChem, Munich/Germany 

DIG RNA labeling mix, 10x Roche Diagnostics, Mannheim/Germany 

dNTPs Thermo Fisher Scientific, Schwerte/Germany 

5-Fluoroorotic Acid (5-FOA) ApolloScientific, Stockport/UK 

Formaldehyde 37% (ACS reagent) Sigma-Aldrich, Taufkirchen/Germany 

Galactose Acros Organics, Geel/Belgium 

GFP-Trap_A ChromoTek, Martinsried/Germany 

Glass beads 0.2-0.5 mm Carl Roth, Karlsruhe/Germany 

IgG-Sepharose™ beads GE Healthcare, Freiburg/Germany 

Nitrocellulose Membran (Protran) PerkinElmer, Waltham/USA 

Poly-L-Lysine Sigma-Aldrich, Taufkirchen/Germany 

cOmplete Protease Inhibitor cocktail Roche Diagnostics, Mannheim/Germany 

Protease inhibitor cocktail for yeast Sigma-Aldrich, Taufkirchen/Germany 

Protein G Sepharose Applied Biosystems, Foster City/USA 

Raffinose  Serva, Heidelberg/Germany 

Rotiphorese Gel 30 Carl Roth, Karlsruhe/Germany 

Sucrose Carl Roth, Karlsruhe/Germany 
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Salmon sperm DNA  Sigma-Aldrich, Taufkrichen/Germany 

Sorbitol Carl Roth, Karlsruhe/Germany 

12-well microscope slide Thermo Fisher Scientific, Schwerte/Germany 

CSPD Roche Diagnostics, Mannheim/Germany 

Hoechst 33342 Sigma-Aldrich, Taufkirchen/Germany 

IgG Sepharose GE Healthcare, Freiburg/Germany 

tRNA Sigma-Aldrich, Taufkirchen/Germany 

Yeast extract Carl Roth, Karlsruhe/Germany 

Ribonucleoside vanadyl complexes Sigma-Aldrich, Taufkirchen/Germany 

Fujifilm Super RX Fujifilm, Tokyo/Japan 

  

Kits Source 

ECL Prime Western Blotting Detection Kit GE Healthcare, Freiburg/Germany 

DIG-High Prime DNA Labeling and Detection 

Starter Kit II 

Roche Diagnostics, Mannheim/Germany 

NucleoBond PC 100 Macherey-Nagel, Dueren/Germany 

NucleoSpin Plasmid Macherey-Nagel, Dueren/Germany 

peqGOLD Gel Extraction kit Peqlab, Erlangen/Germany 

GoTaq qPCR Master Mix Promega, Mannheim/Germany 

pGEM-T vector system Promega, Mannheim/Germany 

  

Size Standards Source 

Lambda DNA/EcoRI+HindIII DNA Ladder Thermo Fisher Scientific, Schwerte/Germany 

GeneRuler 1 kb DNA Ladder Thermo Fisher Scientific, Schwerte/Germany 

PageRuler Prestained Protein Ladder Thermo Fisher Scientific, Schwerte/Germany 

PageRuler Unstained Protein Ladder Thermo Fisher Scientific, Schwerte/Germany 
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3.1.2 Enzymes and antibodies 

All enzymes were used with the appropriate buffers according to the protocols of the 

manufactures. 

To be used in western blot (WB) analyses all antibodies were diluted in 1-2% milk 

powder/TBST. To be used in immunofluorescence (IF) or fluorescence in situ hybridization 

(FISH) experiments all antibodies were diluted in antibody blocking buffer (5-10% heat 

inactivated fetal bovine serum/PBST). To be used in southern blot (SB) analyses the antibody 

was diluted in 1Blocking reagent (1% blocking reagent in 1xMaleic acid buffer) 

 

Enzymes Source 

DreamTaq DNA Polymerase Thermo Fisher Scientific, Schwerte/Germany 

FastAP Alkaline Phosphatase Thermo Fisher Scientific, Schwerte/Germany 

Phusion High-Fidelity DNA Polymerase New England Biolabs, Frankfurt /Germany 

KAPAHiFi Polymerase Peqlab, Erlangen/Germany 

Restriction enzymes Thermo Fisher Scientific, Schwerte/Germany 

New England Biolabs, Frankfurt /Germany 

RiboLock Rnase Inhibitor Thermo Fisher Scientific, Schwerte/Germany 

RNase A AppliChem, Munich/Germany 

T4 DNA Ligase Thermo Fisher Scientific, Schwerte/Germany 

T7 RNA Polymerase Thermo Fisher Scientific, Schwerte/Germany 

Zymolase Seikagaku Corporation, Tokyo/Japan 

  

Antibodies Dilution Source 

Anti-mouse-HRP (goat) 1:5000-1:10000 (WB) Dianova, Hamburg/Germany 

Anti-rabbit-HRP (goat) 1:10000-1:20000 (WB) Dianova, Hamburg/Germany 

Anti-mouse AlexaFluor 488 (sheep) 1:1000 (IF) Invitrogen, Frankfurt/Germany 

Anti-rabbit AlexaFluor 488 (sheep) 1:1000 (IF) Invitrogen, Frankfurt/Germany 

Anti-GFP (mouse) 1:250 (IF), 1:1000 (WB) Santa Cruz, Heidelberg/Germany 

Anti-GFP (rabbit) 1:250 (IF), 1:1000 (WB) Santa Cruz, Heidelberg/Germany 

Anti-myc (mouse) 1:250 (IF), 1:1000 (WB) Santa Cruz, Heidelberg/Germany 

Anti-myc (rabbit) 1:250 (IF), 1:1000 (WB) Santa Cruz, Heidelberg/Germany 

Anti-Nop1 (rabbit) 1:5000 (IF and WB)  

Anti-Hem15 (rabbit) 1:5000 (WB) Gift from Roland Lill, Marburg 

Anti-Zwf1 (rabbit) 1:2500 (WB) Gift from Roland Lill, Marburg 

Anti-Mtr4 (rabbit) 1:1000 (WB)  

Anti-Digoxigenin-FITC 1:200 (FISH) Roche Diagnostics, Mannheim/ 

Germany 

Anti-Digoxigenin-AP 1:10000 (NB) Roche Diagnostics, Mannheim/ 

Germany 
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3.1.3 Instruments and software 

Instrument Company 

Fusion FX7 Peqlab, Erlangen/Germany 

FastPrep-24 MP Biomedicals, Illkirch/France 

Leitz Biomed Typ 020-507-010 Leica, Wetzlar/Germany 

Leica DMI6000B Leica, Wetzlar/Germany 

Leica DFC360FX Leica, Wetzlar/Germany 

Hamamatsu 1394 ORCA-ERA camera Leica, Wetzlar/Germany 

Rotor Gene Q Qiagen, Hilden/Germany 

Nikon Eclipse E400 Nikon, Duesseldorf/Germany 

Heraeus Pico 21 centrifuge Thermo Fisher Scientific, Schwerte/Germany 

Heraeus Fresco 21 centrifuge Thermo Fisher Scientific, Schwerte/Germany 

Heraeus Multifuge X3R centrifuge Thermo Fisher Scientific, Schwerte/Germany 

Heraeus B6060 Heraeus, Hanau/Germany 

Heraeus B6420 Heraeus, Hanau/Germany 

Optimax X-Ray Film Processor PROTEC, Oberstenfeld/Germany 

Vacuum Blot ITF, Marl/Germany 

Cross Linker Bio Link BLX 365 Peqlab, Erlangen/Germany 

Perfect Blue Semi dry Electroblotter Peqlab, Erlangen/Germany 

Gilson Pipetman P2/P10/P100/P1000 Gilson, Inc., Middleton/USA 

Intelli Scan 1600 Quato Technology, Braunschweig/Germany 

INTAS UV-system Intas, Göttingen/Germany 

MyCycler Thermal Cycler BioRad, Müchen/Germany 

NanoDrop2000 Thermo Fisher Scientific, Schwerte/Germany 

Milli-Q water purification Millipore, Eschborn/Germany 

  

Software Source 

Bio 1D Peqlab, Erlangen/Germany 

Image J http://imagej.net/ 

Leica LAS AF Leica, Wetzlar/Deutschland 

SilverFast v3.1.1 LaserSoft Imaging AG, Kiel/Germany 

Adobe Creative Suite Design Standard Adobe, San Jose/USA 

Microsoft office Microsoft, Redmond/USA 

ApE editor biologylabs.utah.edu/jorgensen/wayned/ape/ 

FileMaker FileMaker, Inc. 
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3.1.4 Strains, plasmids and oligonucleotides 

3.1.4.1 Strains 

E.coli strain 

Name Genotype Source 

DH5 fhuA2 lac(del)U169 phoA glnV44 Φ80' lacZ(del)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17 Krebber lab 

 

Yeast strains 

Number Genotype Source 

HKY36 Mat ura3-52 leu2∆1 his3∆200 (Winston et al., 1995) 

HKY46 Mata mtr10-1 ura3-52 lys2-301 ade2 (Liu et al., 1999) 

HKY82 Mat mtr10::HIS3 ura3 leu2 trp his3 ade2 + pURA-MTR10 (Senger et al., 1998) 

HKY97 Mat mtr10::HIS3 ura3 leu2 trp his3 ade2 + pURA-MTR10 Krebber lab 

HKY124 Mat rat7-1 ura3-52 leu2∆1 his3∆200 (Gorsch et al., 1995) 

HKY128 Mata rat8::HIS3 ura3-52 leu2∆1 trp1∆63 his3∆200 + pCS543 (YCplac33 rat8-3) LEU2 (Snay-Hodge et al., 1998) 

HKY130 Mata rat8-2 ura3-52 leu2∆1 trp1∆63 (Snay-Hodge et al., 1998) 

HKY145 Mat XPO1-GFP-TRP1 ura3 leu2 his3 Krebber lab 

HKY206 Mat xpo1::LEU2 ade2-1 his leu trp1-1 ura3-1 ade2-1 + pCEN TRP1 xpo1-1 (Taura et al., 1998) 

HKY209 Mata pdr6::HIS3 lys2 trp1 ura3-52 leu2∆1 Krebber lab 

HKY280 Mata PAB1-GFP-KAN leu2 trp1 ura3-52 pep4-3 pre1-407 prb1-1122 (Zenklusen et al., 2001) 

HKY305 Mata prp4-1 ura1 trp1 his7 ade1 ade2 Krebber lab 

HKY306 Mat prp16-2 ura3-53 lys2-801 his3∆200 ade2-101 tyr1 Krebber lab 

HKY316 Mata MTR10-9xMYC-TRP1 ura3-52 leu2∆1 trp1∆63 Krebber lab 
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HKY380 Mata npl3::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY381 Mat his3∆1 leu2∆0 ura3∆0 lys2∆0 Euroscarf 

HKY382 Mat rat8::HIS3 ura3-52 leu2∆1 trp1∆63 + pRAT8-MYC 2µ LEU2 Krebber lab 

HKY428 Mat mtr4-G677D ura3-52 leu2∆1 his3∆200 + pCEN-gbp2-S15A URA3 Krebber lab 

HKY446 Mat sup45-2 ura3-1 ade2-1 his5-2 can1-100 (Stansfield et al., 1997) 

HKY578 Mat TIF4631-3xMYC-HIS3 ura leu trp his ade (Knop et al., 1999) 

HKY644 Mat mex67::HIS3 ade2 his3 leu2 trp1 ura3 + pUN100-mex67-5 LEU2 CEN (Segref et al., 1997) 

HKY648 Mat mex67::HIS3 ade2 his3 leu2 trp1 ura3 + pUN100-MEX67-GFP LEU2 CEN (Segref et al., 1997) 

HKY661 Mat mex67::HIS3 ade2 his3 leu2 trp1 ura3 + pUN100-mex67-5 LEU2 CEN Krebber lab 

HKY948 Mat prp18::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1008 Mata prp8 908_909 ura3-52 his3Δ200 leu2Δ1 Krebber lab 

HKY1028 Mat rrp6::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1072 Mata est2::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1073 Mata yku70::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1074 Mata est1::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1075 Mata tel1::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1076 Mata est3::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1077 Mata mre11::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1078 Mata YKU70-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1079 Mata RAP1-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1081 Diploid TLC1/tlc1::LEU2 RAD52/rad52::TRP ura3-1 leu2-3 his3-11 trp1-1 ade2-1 (Gallardo et al., 2008) 

HKY1082 Mata RAP1-13xMYC-HIS3 ura3-1 leu2-3 his3-11 trp1-1 ade2-1 (Gallardo et al., 2008) 

HKY1094 Mata exo1::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1111 Mata swt1::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1112 Mata trf4::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1136 Mata RRP6-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1171 Mata TRF4-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 
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HKY1172 Mata RRP44-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1236 Mata trf5::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1237 Mata air1::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1238 Mata air2::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1240 Mata xrn1::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS Euroscarf 

HKY1242 Mata DBP5-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1266 Mata MEX67-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1267 Mata MTR4-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1290 Mata pGAL-3xHA-RRP44-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Schneider et al., 2009) 

HKY1291 Mata rrp44::kanMX4 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TRP LYS + pRS316/RRP44-szz URA (Schneider et al., 2009) 

HKY1292 Mata EST1–6xGLY–12xMYC 3xFLAG–12xMYC–6xGLY–Est2 leu2 trp1 ura3-52 prb  ̄prc  ̄pep4-3  (Lubin et al., 2012) 

HKY1293 Mat tlc1::HIS ura3-52 lys2-801 trp-Δ1 his3-Δ200 leu2-Δ1 + pCEN URA3 TLC1 (Lubin et al., 2012) 

HKY1294 Mat EST1–6xGLY–12xMYC 3xFLAG–12xMYC–6xGLY–Est2 tlc1::HIS leu2 trp1 ura3-52 prb  ̄prc  ̄pep4-3 + pCEN URA3 TLC1 (Lubin et al., 2012) 

HKY1302 Mat EST1–6xGLY–12xMYC 3xFLAG–12xMYC–6xGLY–Est2 xpo1::LEU2 leu2 trp1 ura3-52 prb  ̄prc  ̄pep4-3 + pCEN TRP xpo1-1 This study 

HKY1304 Mata TRF5-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1332 Mata EST1–6xGLY–12xMYC 3xFLAG–12xMYC–6xGLY–Est2 rat7-1 leu2 trp1 ura3-52 prb  ̄prc  ̄pep4-3 This study 

HKY1334 Mat EST1–6xGLY–12xMYC 3xFLAG–12xMYC–6xGLY–Est2 rat8-2 leu2 trp1 ura3-52 prb  ̄prc  ̄pep4-3 This study 

HKY1336 Mat EST1–6xGLY–12xMYC 3xFLAG–12xMYC–6xGLY–Est2 mex67::HIS leu2 trp1 ura3-52 + pUN100-mex67-5 LEU2 CEN This study 

HKY1353 Mata mex67::HIS3 xpo1::TRP1 ura + pUN100-mex67-5 LEU2 CEN + pxpo1-1::HIS3 (Brune et al., 2005) 

HKY1377 Mata XPO1-GFP-HIS3MX6 his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 (Huh et al., 2003) 

HKY1396 Mat rat8-2 yku70::kanMX4 ura leu trp This study 

HKY1397 Mat mex67::HIS3 yku70::kanMX4 ura leu trp + pUN100-mex67-5 LEU2 CEN This study 

HKY1398 Mat rat7-1 yku70::kanMX4 ura leu trp This study 

HKY1399 Mat mtr4-G677D- ura3-52 leu2∆1 his3∆200 Krebber lab 

HKY1444 Mat xpo1::LEU2 yku70::KanMX4 ade2-1 his leu trp1-1 ura3-1 + pCEN TRP1 xpo1-1 This study 

HKY1445 Mata mex67::HIS3 xpo1::TRP1 yku70::KanMX4 ura + pUN100-mex67-5 LEU2 CEN + pxpo1-1::HIS3 This study 

HKY1463 Mat EST1-3xMYC-kanMX4 his3∆1 leu2∆0 ura3∆0 lys2∆0 This study 
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HKY1464 Mat xpo1::LEU2 EST1-3xMYC-kanMX4 ade2-1 his leu trp1-1 ura3-1 + pCEN TRP1 xpo1-1 This study 

HKY1465 Mat mex67::HIS3 EST1-3xMYC-kanMX4 ade2 his3 leu2 trp1 ura3 + pUN100-mex67-5 LEU2 CEN This study 

HKY1466 Mata mex67::HIS3 xpo1::TRP1 EST1-3xMYC-kanMX4 ura + pUN100-mex67-5 LEU2 CEN + pxpo1-1::HIS3 This study 

HKY1467 Mat EST2-3xMYC-kanMX4 his3∆1 leu2∆0 ura3∆0 lys2∆0 This study 

HKY1468 Mat xpo1::LEU2 EST2-3xMYC-kanMX4 ade2-1 his leu trp1-1 ura3-1 + pCEN TRP1 xpo1-1 This study 

HKY1469 Mat mex67::HIS3 EST2-3xMYC-kanMX4 ade2 his3 leu2 trp1 ura3 + pUN100-mex67-5 LEU2 CEN This study 

HKY1470 Mata mex67::HIS3 xpo1::TRP1 EST2-3xMYC-kanMX4 ura + pUN100-mex67-5 LEU2 CEN + pxpo1-1::HIS3 This study 

HKY1471 tlc1::LEU2 rad52::TRP EST2-3XMYC-KanMX4 ura3-1 leu2-3 his3-11 trp1-1 ade2-1  This study 

HKY1472 tlc1::LEU2 rad52::TRP EST1-3XMYC-KanMX4 ura3-1 leu2-3 his3-11 trp1-1 ade2-1 This study 
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3.1.4.2 Plasmids 

Number Construct Source 

pHK12 CEN URA3 pADH-NLS-NES-GFP-GFP Krebber lab 

pHK20 CEN LEU2 pUN100-MEX67-GFP (Segref et al., 1997) 

pHK40 CEN HIS3 XPO1 Krebber lab 

pHK43 CEN URA3 XPO1-GFP Krebber lab 

pHK85 CEN pRS313-HIS3 (Sikorski and Hieter, 1989) 

pHK86 CEN pRS314-TRP1 (Sikorski and Hieter, 1989) 

pHK87 CEN pRS315-LEU2 (Sikorski and Hieter, 1989) 

pHK88 CEN pRS316-URA3 (Sikorski and Hieter, 1989) 

pHK260 2µ LEU2 RAT8-MYC (Snay-Hodge et al., 1998) 

pHK413 LEU2 ProtA-TEV-MTR10 (Senger et al., 1998) 

pHK453 CEN TRP1 mtr10-7 (Senger et al., 1998) 

pHK475 2µ URA3 pGAL1-GBP2-S13,15,17A-GFP Krebber lab 

pHK491 3xMYC-kanMX6 (Knop et al., 1999) 

pHK492 3xMYC-HIS3MX6 (Knop et al., 1999) 

pHK636 2µ LEU2 pGAL1-MYC-RAT8 Krebber lab 

pHK637 2µ TRP1 RAT8 Krebber lab 

pHK643 CBP-TEV-ProtA K.l.TRP1 (Puig et al., 2001) 

pHK644 CBP-TEV-ProtA K.l.URA3 (Puig et al., 2001) 

pHK645 pGal1-ProtA-TEV-CBP K.l.TRP1 (Puig et al., 2001) 

pHK648 2µ TRP1 pGAL1-RAT8-MYC Krebber lab 

pHK649 2µ URA3 pGAL1-RAT8-MYC Krebber lab 

pHK670 9xMYC kanMX4 (Gauss et al., 2005) 

pHK1238 2µ URA3 TRF4-2xMYC (Fasken et al., 2011) 
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pHK1239 2µ URA3 TRF5-2xMYC (Fasken et al., 2011) 

pHK1240 2µ URA3 MTR4-2xMYC (Fasken et al., 2011) 

pHK1336 2µ URA3 NLS-TRF4-2xMYC This study 

pHK1337 2µ URA3 NLS-MTR4-2xMYC This study 

pHK1351 URA3 RRP44-szz (Schneider et al., 2009) 

pHK1352 LEU2 RRP44-szz (Schneider et al., 2009) 

pHK1353 LEU2 RRP44-exo (Schneider et al., 2009) 

pHK1354 LEU2 RRP44-endo (Schneider et al., 2009) 

pHK1355 LEU2 RRP44-exo-endo (Schneider et al., 2009) 

pHK1411 URA3 NLS-RRP44-szz Krebber lab 

pHK1412 LEU2 NLS-RRP44-szz Krebber lab 
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3.1.4.3 Oligonucleotides 

The gene sequences are depicted in upper case letters, other regions, e.g. restriction sites, transcription sites, are indicated in lower case letters 

 

Number Sequence Description 

HK743 5'-TTTCGGCGCCTGAGCACCAT-3' TAP reverse 

HK744 5'-GTGGACAACAAATTCAACAAAGAACAACAA-3' TAP forward 

HK754 5'-ccgctcgagctATGGGTTCCAAAAGAAGATTCTC-3' XhoI+PRP43 forward 

HK755 5'-cgggatccCTATTTCTTGGAGTGCTTACTCT-3' BamHI+PRP43 reverse 

HK756 5'-ccgctcgagctATGGGTGAACAAAAGTTGATTTC-3' XhoI+9xMYC forward 

HK757 5'-cgggatccTTATCCGTTCAAGTCTTCTTCTGAGA-3' BamHI+9xMYC reverse 

HK804 5'-ccgctcgagctAATAAAACTAGAGAGGAAGATAGGT-3' XhoI+TLC1 forward 

HK805 5'-cgggatccTAAATATTAAGAGGCATACCTCCG-3' BamHI+TLC1 reverse 

HK890 5'-ggactagtAATAAAACTAGAGAGGAAGATAGGT-3' SpeI+TLC1 forward 

HK891 5'-ccggaattcTAAATATTAAGAGGCATACCTCCG-3' EcoRI+TLC1 reverse 

HK936 5'-CGTTTGAGTTTTCCATCATGC-3' TLC1 forward 

HK937 5'-taatacgactcactatagggCAGGCTATCAACTGAAAGATCA-5' T7 transcription site+TLC1 reverse 

HK938 5'-TTCCTGTTATTCCTTCTTCGTAC-3' TLC1 forward 

HK939 5'-taatacgactcactatagggGCTGTAACATTTGTGTGTGG-3' T7 transcription site +TLC1 reverse 

HK940 5'-ATGTGCCCCGTACATCG-3' TLC1 forward 

HK941 5'-taatacgactcactatagggCGCAAACCTAACCGATGC-3' T7 transcription site +TLC1 reverse 

HK942 5'-TGTATTGTAGAAATCGCGCG-3' TLC1 forward 

HK943 5'-taatacgactcactatagggGGCATACCTCCGCCTAT-3' T7 transcription site +TLC1 reverse 

HK1138 5'-AGGTAGGAGTACCCGCTGAA-3' 25S rRNA genes forward 

HK1139 5'-taatacgactcactatagggATGGAATTTACCACCCACTTAGAGC-3' T7 transcription site +25S rRNA genes reverse 

HK1140 5'-GTGAAACTGCGAATGGCTCATTAAAT-3' 18S rRNA genes forward 
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HK1141 5'-taatacgactcactatagggAATCGAACCCTTATTCCCCGTTA-3' T7 transcription site +18S rRNA genes reverse 

HK1142 5'-AAACTTTCAACAACGGATCTCTTGG-3' 5.8S rRNA genes forward 

HK1143 5'-taatacgactcactatagggAAATGACGCTCAAACAGGCATG-3' T7 transcription site +5.8S rRNA genes reverse 

HK1379 5'-CTTGATGTATATTTTTTGTATTGTA-3' TLC1 forward 

HK1380 5'-taatacgactcactatagggCAATTAAAAGCGCTTATAAAG-3' T7 transcription site +TLC1 reverse 

HK1396 5'-CATGGCCGTTCTTAGTTGGTGG-3' 18S rRNA genes forward 

HK1397 5'-ATTGCCTCAAACTTCCATCGGC-3' 18S rRNA genes reverse 

HK1404 5'-TCGCGAAGTAACCCTTCGTG-3' SNR6 forward 

HK1405 5'-AAACGGTTCATCCTTATGCAGG-3' SNR6 reverse 

HK1467 5'-ccaaaaaagaaaagaaaagttGATTCTACTGATCTGTTCGATGTTTTC-3' NLS +MTR4 forward 

HK1468 5'-aacttttcttttcttttttggCATCCTTCGTATATAATCTATATTTCTTGCAG-3' NLS +MTR4 reverse 

HK1469 5'-ccaaaaaagaaaagaaaagttGGGGCAAAGAGTGTAACAGC-3' NLS +TRF4 forward 

HK1470 5'-aacttttcttttcttttttggCATATTTCAAGTATAGTTCCCTTGCTTATTCA-3' NLS +TRF4 reverse 

HK1483 5'-ATGCCAAAAAAGAAAAGAAAAGTT-3' NLS forward 

HK1492 5'-taataggactcactatagggAAATAAATCTCTTTGTAAAACGGTTCATCC-3' T7 transcription site+SNR6 reverse 

HK1517 5'-ccaaaaaagaaaagaaaagttTCAGTTCCCGCTATCGCC-3' NLS sequence+DIS3 forward 

HK1518 5'-aacttttcttttcttttttggCATGTTGTTTTGGCCTGTATGATG-3' NLS sequence+DIS3 reverse 

HK1539 5'-DIG-CCACCACACACACCCACACCC-3' DIG labelled Telomere probe 

HK1742 5'-TGATTTGTTAAGTGACTCTAAGCCTGATTTTAAAACGGGAATATTATG-3' YKU70 forward 

HK1743 5'-AAATATTGTATGTAACGTTATAGATATGAAGGATTTCAATCGTCTTTA-3' YKU70 reverse 

HK1761 5'-Cy3-GCGCACACACAAGCATCTACACTGACACCAGCATACTCGAAATTCTTTGG-Cy3-3' Cy3 labelled TLC1 probe 

HK1787 5'-Cy5-CAATTAAAAGCGCTTATAAAGCGATATACAAGTAC-Cy5-3' Cy5 labelled TLC1 probe 

HK1788 5'-Cy5-CGCGCGATTTCTACAATACAAAAAATATACATCAAG-Cy5-3' Cy5 labelled TLC1 probe 

HK1789 5'-Cy3-CGATAAGATAGACATAAAGTGACAGCGCTTAGCACCGTCTGTTTGC-Cy3-3' Cy3 labelled TLC1 probe 

Hk1790 5'-Cy3-CCTACTCGTATTTTTCTCTGTCACATCGTTCGATGTACGGGGCACATTTGG-Cy3-5' Cy3 labelled TLC1 probe 

HK1830 5'-CAATTGATGCTGATGAGGACATCACCGTCCAAGTGCCAGATACTCCTACTcgtacgctgcaggtcgac-3' pHK491+EST1 forward 

HK1831 5’-TAATATATTTCATATTATGATTTTTTCCCTCACCATTACTTGTTCTCTCAatcgatgaattcgagctcg-3' pHK491+EST1 reverse 
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HK1845 5'-AAATTCAACACTTGCAAGCATATATATATATATATATACATATAGTTAATcgtacgctgcaggtcgac-3' pHK491+EST2 forward 

HK1846 5’-TTCCTTATCAGCATCATAAGCTGTCAGTATTTCATGTATTATTAGTACTAatcgatgaattcgagctcg-3' pHK491+EST2 reverse 
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3.2 Methods 

3.2.1 General methods 

3.2.1.1 Generation of strains, plasmids and oligonucleotides 

All S. cerevisiae and E. coli strains, plasmids, oligonucleotides used in this study are listed in 

the material part (see section 3.1.4). 

The plasmids pHK1336 and pHK1337 were created directly through PCR reactions, with 

which the gene sequence of the nuclear localisation signal (NLS) was incorporated into the 

plasmids with the specific primers that contain the NLS sequence. In the PCR reactions for 

generating pHK1336, pHK1238 was used as the template and HK1469 and HK1470 were used 

as the primer pair. In the PCR reactions for generating pHK1337, pHK1240 was used as the 

template and HK1467 and HK1468 were used as the primer pair. A routine PCR reaction was 

described in Polymerase chain reaction (PCR) (section 3.2.3.1). Subsequently, 1l DpnI 

(10u/l, Thermo Fisher Scientific) was directly added to the PCR reaction mixture and the 

mixture was incubated at 37°C for 1 hour and then used for E. coli transformation (see 

Transformation, section 3.2.4.1). DpnI recognized and digested 5’-GM-A^TC-3’ sites, which 

existed only in the template plasmids that were isolated from DH5 strain. Therefore, after 

transformation, only the transformed cells containing newly synthesized plasmids were able 

to grow on the selective plates.  

The yeast strains were generated by strains crossing or transformation. Strain crossing was 

described in Yeast sporulation and tetrad analysis (section 3.2.1.4). Homologous 

recombination was achieved through Transformation (section 3.2.4.1) of cells with 1ng PCR 

products (e.g. KanMX4, 3xMYC) that contained a homologous sequence of approximate 50 

nucleotides in length of the target genes on each side. 

The yeast strains HKY1302, HKY1332, HKY1334, HKY1336 were generated by crossing 

HKY206+HKY1292, HKY124+HKY1292, HKY582+HKY1292, HKY661+HKY1292, respectively. 

The haploid cells showing both temperature sensitivities (mutations) and expression of 
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EST1-MYC and EST2-MYC (detection see SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and western blot, section 3.2.2.4) were selected. 

The yeast strains HKY1396, HK1397, HK1398 were generated by crossing HKY582+HKY1073, 

HKY644+HKY1073, HKY124+HKY1073, respectively. The haploid cells showing both 

temperature sensitivities (mutations) and geneticin (200g/ml used in medium or plate) 

resistance (KanMX4 marker) were selected.  

The yeast strains HKY1444 and HKY1445 were created by transformation of HKY206 and 

HKY1353, respectively, with the PCR products that were generated from the gDNA of 

HKY1073 with the primer pair HK1742+HK1743. Through homologous recombination the 

YKU70 gene was replaced by the KanMX4 gene. Desired YKU70 knock-out strains showing 

geneticin resistance were selected. 

The yeast strains HKY1463, HKY1464, HKY1465, HKY1466, HKY1472 were created through 

transforming HKY381, HKY206, HKY644, HKY1353, HKY1081 respectively, with the PCR 

products that were generated from the plasmid pHK491 with the primer pair 

HK1830+HK1831. Through homologous recombination the 3xMYC:KanMX4 sequence was 

incorporated upstream of the stop codon of the EST1 gene. Desired MYC-tagged EST1 strains 

that showed geneticin resistance were selected. 

The yeast strains HKY1467, HKY1468, HKY1469, HKY1470, HKY1471 were created through 

transforming HKY381, HKY206, HKY644, HKY1353, HKY 1081 respectively, with the PCR 

products that were generated from the plasmid pHK491 with the primer pair 

HK1845+HK1846. Through homologous recombination the 3xMYC:KanMX4 sequence was 

incorporated upstream of the stop codon of EST2 gene. Desired MYC-tagged EST2 strains 

that showed geneticin resistance were selected. 

 

3.2.1.2 Media and plates 

All media were autoclaved before usage. Heat sensitive materials (antibiotics, some carbon 

sources and 5’-FOA, etc.) were filter-sterilised before being added to the autoclaved media. 
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Solid agar plates were made by adding 1.5% agar (for E. coli) or 1.8% agar (for yeast) to the 

autoclaved corresponding media. 

 

3.2.1.3 Cell cultivation 

Cells were grown in YPD, YP or selective media. YP medium is a full medium without a 

carbon source to which the carbon source (glucose, raffinose or galactose, etc.) is added 

separately. The selective media lack one or several amino acids or nucleobases, which allow 

the growth of the yeast strains that contain select markers in plasmids or in the genomes. 

Yeast cells were cultivated in the medium at 25°C and the cells were harvested at the 

middle-logarithmic phase (cell concentration: 1107 to 3107 cells/ml) if not indicated 

otherwise. Yeast cells were harvested through centrifugation at 2000-4000g and 4°C 

(Heraeus Multifuge X3R centrifuge) for 10 minutes (the cell culture volume>=5ml) or 

centrifugation at 10000-20000g and 4°C (Heraeus Fresco 21 centrifuge) or room temperature 

(Heraeus Pico 21 centrifuge) for 1 minute (the cell culture volume<5ml). 

 

YPD medium: 

1% (w/v) Yeast extract 

2% (w/v) Peptone 

2% (w/v) Glucose 

 

YP medium: 

1% (w/v) Yeast extract 

2% (w/v) Yeast extract 

1% (w/v) Peptone 

 

Selective media: 

2% (w/v) Drop-out mix 
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0.17% (w/v) Nitrogen base 

0.51% (w/v) Ammonium sulfate 

2% (w/v) Glucose 

Additional desired amino acids/bases  

 

Drop-out mix (-Ura -Leu -His -Lys -Ade -Trp): 

2g/l each of the following components: Alanine, Arginine, Asparagine, Aspartic acid, Cysteine, 

Glutamine, Glutamic acid, Glycine, Inositol, Isoleucine, Methionine, Phenylalanine, Proline, 

Serine, Threonine, Tyrosine, Valine. 

0.2g/l Para-aminobenzoic acid 

The following components were selectively added as desired: 

0.5g/l Adenine 

2g/l Histidine 

10g/l Leucine 

2g/l Lysine 

2g/l Tryptophan 

2g/l Uracil 

 

B-plates: 

0.17% (w/v) Nitrogen base 

0.51% (w/v) Ammonium sulfate 

0.3% (w/v) Agar 

2% (w/v) Glucose 

 

FOA plates (5’-Fluoro-oratic-acid): 

0.17% (w/v) Nitrogen base 

0.51% (w/v) Ammonium sulfate 

0.2% (w/v) Drop-out mix (all amino acids and bases included) 

0.3% (w/v) Agar 
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2% (w/v) Glucose 

0.1% (w/v) FOA 

 

LB medium is a standard nutrient-rich medium used for cultivating E. coli cells. E. coli cells 

were grown overnight at 37°C in LB medium with or without antibiotics. The addition of 

antibiotics allows the growth of the E. coli cells with the specific antibiotic resistances from 

the plasmids. E. coli cells were harvested through centrifugation at 4000g (Heraeus Fresco 

21 centrifuge) for 10 minutes (cell culture volume>= 5ml) or at 10000-20000g and room 

temperature (Heraeus Pico 21 centrifuge) for 1 minutes (cell culture volume <5ml). 

 

LB medium (pH7.5): 

1% (w/v) Tryptone 

0.5% (w/v) Yeast extract 

0.5% (w/v) NaCl 

 

Antibiotics: 

As desired, one or some of the following antibiotics are added : 

100g/ml Ampicillin 

20g/ml Kanamycin 

 

3.2.1.4 Yeast sporulation and tetrad analysis 

In Saccharomyces cerevisiae, diploid strains can be created by mating two haploid stains with 

different mating types (mating type a or ). Under the condition of nitrogen starvation and 

poor carbon source the yeast diploid cells undergo meiosis, sporulation and form asci. The 

genotypes of single spores (tetrads) were analysed through a series of genetic, biochemical 

and molecular biological methods.  

Two haploid strains with different mating types (a or ) were mixed and incubated on YPD 
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plates at 25°C for 2-3 days. The diploid cells were selected from the selectable markers 

(URA3, LEU2, KanMX4, etc.) or the phenotypes (temperature-sensitivity, etc.) from the 

haploid strains. The diploid strains were cultivated in 2ml SuperSpo medium for 3 days at 

25°C untill the asci became visible. The asci were collected by centrifugation at 10000g and 

room temperature for 1 minute. After washing once in 100l sterile H2O and centrifugation 

at 10000g and room temperature for 30 seconds, the cells were resuspended in 50l 

P-solution. The cell walls of the spores were digested by adding 2.5l zymolyase (10mg/ml, 

Sigma) at room temperature and the digestion were monitored under the microscope. After 

the cell walls were digested (around 5-10 minutes at room temperature), the spores were 

harvested by centrifugation at 10000g and room temperature for 30 seconds and washed in 

100l P-solution. The spores were again collected through centrifugation at 10000g and 

room temperature for 30 seconds and finally resuspended in 200l P-solution. 2.5l of cells 

were diluted in 100l sterile H2O and plated on YPD plates. By using the tetrad microscope 

with a micromanipulator (Nikon Eclipse E400) the four spores from a tetrad were separated. 

The spores were grown on YPD plates for 2-5 days at 25°C. The phenotype of the spores 

were identified through analyses of their select makers (URA3, LEU2, KanMX4, etc.) by 

incubating them on selective plates, or through verification of their protein tags (myc, GFP, 

etc.) by western blot, or through identification of their genome content (mutations, 

truncated genes, knock-out genes, etc.) by PCR, etc. 

 

SuperSpo medium: 

5g/l Yeast extract 

30g/l Potassium acetate 

1g/l Glucose 

80mg/l Adenine 

80mg/l Uracil 

80mg/l Tyrosine 

40mg/l Histidine 

40mg/l Leucine 
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40mg/l Lysine 

40mg/l Tryptophan 

40mg/l Methionine 

40mg/l Arginne 

200mg/l Phenylalanine 

700mg/l Threonine 

 

0.1M Potassium phosphate buffer (pH 6.5) 

3.3% (v/v) 1M K2HPO4 

6.7% (v/v) 1M KH2PO4 

 

P-solution (pH 6.5): 

0.1M Potassium phosphate buffer pH6.5 

1.2M Sorbitol 

 

3.2.1.5 Yeast cell lysis 

Cells were collected from 10ml-1000ml cell culture, which was grown to the 

middle-logarithmic phase if not indicated otherwise, by centrifugation at 4000g and 4°C for 

10 minute. The cells were washed once with 1ml sterile H2O and transferred to 2ml 

screw-cap tubes. The cells were washed once with the ice-cold appropriate buffer (according 

to applications, e.g. 1SDS sample buffer for western blot, PBSKMT for 

co-immunoprecipitation, RNA co-IP buffer for RNA co-immunoprecipitation). The cells were 

mixed with the same cell pellet volume of glass beads and double cell pellet volume of the 

ice-cold buffer. The mixture was vigorously shaken 2-3 times with the Fastprep machine (MP 

Biomedicals) at a speed of 4.0m/s for 20 seconds. The samples were cooled down on ice 

between shaking intervals. The cracked cells were finally centrifuged at 20000g for 5 

minutes at 4°C. The supernatants were carefully transferred to fresh 1.5ml or 2ml reaction 
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tubes and used in following experiments (Western blot analyses, protein precipitation, 

co-immunoprecipitation or RNA co-immunoprecipiation). 

 

1SDS sample buffer: 

33% (v/v) 3SDS sample buffer 

2.5% (v/v) -Mercaptoethanol 

 

3SDS sample buffer: 

0.3M Tris pH6.8 

30% (v/v) Glycerol 

6% (w/v) SDS 

0.01% (w/v) Brome phenol blue 

 

10PBS (pH7.4): 

137mM NaCl 

2.7mM KCl 

1.8mM KH2PO4 

10mM Na2HPO4 

Adjust pH to 7.4 

 

PBSKMT: 

1PBS 

3mM KCl 

2.5mM MgCl2 

0.1-0.5% (v/v) Triton-X100 

Before usage freshly add: 

1 cOmplete Protease inhibitor cocktail (Roche) 

 

RNA co-IP buffer: 
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150mM KCl 

25mM Tris pH7.0 

2mM EDTA 

0.1-0.5% (v/v) Triton-x100 

Before usage freshly add: 

1 cOmplete Protease inhibitor cocktail (Roche) 

1mM DTT 

0.01% (v/v) Ribonucleoside vanadyl complexes (Sigma) 

 

3.2.1.6 Preparation of microscope slides 

12-well slides (Thermo Fisher Scientific) were used in immunofluorescence or fluorescent in 

situ hybridization experiments. The wells were incubated with 3 l poly-L-lysine (100g/ml, 

Sigma) for 5 minutes and were air-dried at 42°C. Poly-L-lysine is positively charged and is able 

to enhance the attachment of negatively charged cell wall to the well surface. The wells were 

washed three times with sterile H2O and were air-dried at 42°C. The slides were stored at 4°C 

for weeks. 

 

3.2.1.7 Applications of the microscopes 

The light microscope (Leitz Biomed Typ 020-507-010) was used for counting the cell number 

and monitoring cell wall digestions (see Yeast sporulation and tetrad analysis, section 

3.2.1.4; Nucleo-cytoplasmic fractionation, section 3.2.2.3; Immuno-fluorescence (IF), 

section 3.2.4.2; RNA fluorescent in situ hybridization (FISH), section 3.2.4.3) .  

The tetrad microscope with a micromanipulator (Nikon Eclipse E400) was used to separate 

single spores from tetrads. 

The Fluorescence microscopes (Leica DMI6000B with Leica DFC360FX camera or Hamamatsu 

1394 ORCA-ERA camera) were used for capturing and analysing the fluorescent signals in 
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immunofluorescence or fluorescent in situ hybridisation experiments. If necessary, 

deconvolution was applied by using the Leica LAS AF software to acquire images with 

sharper contrast and higher intensity. In these cases cells were imaged through 6-10 z-stacks 

(0.2m/stack) followed by the blind deconvolution.  

 

3.2.1.8 Signal detection, quantification and statistical analyses 

The fluorescent signals from immunofluorescence and fluorescent in situ hybridization 

experiments were captured by the fluorescence microscopes as described in Applications of 

the microscopes (section 3.2.1.7). The chemiluminescent signals from western blot and 

southern blot analyses were detected by the Fusion FX7 system (Peqlab) or Super RX X-ray 

films (Fujifilm) and Optimax X-Ray Film Processor (PROTEC). Ethidium bromide incorporated 

nucleic acids were detected by the 312nm UV-light with the INTAS UV-system (INTAS). 

The intensity of chemiluminescent signals (western blot signals from protein expression 

analyses or co-immunoprecipitation experiments) was quantified by using the Bio1D 

software (Peqlab) or ImageJ software (http://imageJ.net). The intensity of fluorescent signals 

(immunofluorescence or fluorescent in situ hybridization) was quantified by using ImageJ 

software (http://imageJ.net). The intensity of the fluorescent signals from qRT-PCR 

experiments was quantified by the Rotor Gene Q system (Qiagen). 

In each case of this thesis at least three independent experiments were performed. Western 

signals were quantified from at least three independent experiments. Fluorescent signals 

were quantified from 20 to 50 cells. Figures in this thesis represent one experiment. All 

quantifications are the mean values ± standard deviations of at least 3 independent 

experiments. Error bars represent the standard deviations. The mean values and standard 

deviations were calculated by using Microsoft Excel. The p-values were calculated through 

paired or unpaired, two tailed t-test by using the Microsoft Excel (*: 0.01p0.05; **: 

0.001p<0.01; ***: 0.0001p<0.001; ****:0.00001p<0.0001).  

http://imagej.net/
http://imagej.net/
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3.2.2 Biochemical methods 

3.2.2.1 Protein extraction and precipitation 

According to the protocol Yeast lysis (section 3.2.1.5), cells of interest were lysed and 

centrifuged and the clear supernatants were obtained. The same volume 20% (w/v) 

Trichloroacidic acid (TCA) was added to the supernatants. After vigorously mixing (5-10 

seconds), the mixture was incubated on ice for 30 minutes. The mixture was further 

centrifuged at 20000g and room temperature for 15 minutes. After discarding the 

supernatant, the pellet was washed twice with 1ml 80% (v/v) acetone. After centrifugation at 

20000g and room temperature for 2 minutes, the supernatant was discarded and the pellet 

was air-dried. The pellet was dissolved in 1SDS sample buffer (recipe in section 3.1.5). The 

samples were either further used in western blot analyses or stored at -80°C 

 

3.2.2.2 Co-immunoprecipitation (IP or co-IP) 

Co-immunoprecipitation experiments were used to study interactions among proteins. In 

these assays proteins of interest were precipitated by using specific antibodies and 

immobilised beads. The interaction partners of target proteins were co-precipitated and 

analysed through western blot analyses (SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

and western blot, section 3.2.2.4). To precipitate proteinA tagged (TAP, SZZ, etc.) proteins, 

IgG SepharoseTM 6 Fast Flow (Roche) beads were used. To precipitate GFP tagged proteins, 

GFP-Trap_A beads (Chromotek), on which GFP antibodies were covalently bound, were used. 

To precipitate untagged or the other tagged (e.g. myc, HA, etc.) proteins, the appropriate 

antibodies (e.g. direct antibodies for untagged proteins, anti-myc for myc tagged proteins, 

etc.) and Protein G Plus agarose beads (Applied Biosystems) were used.  

Before co-immunoprecipitation experiments the beads (10l IgG Sepharose 6 Fast Flow, 8l 

GFP-Trap_A beads or 15l Protein G Plus agarose beads for one sample) were pre-washed 

with 1ml ice-cold PBSKMT buffer for 5 times, each time with centrifugation at 500g and 4°C 
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for 5 minutes. The beads were resuspended in 20l buffer and stored on ice untill usage. 

Cells from 200-500ml cell cultures (middle-logarithmic phase) were lysed in ice-cold PBSKMT 

buffer as described in Yeast lysis (section 3.2.1.5). To prevent proteins from digestion, the 

protease inhibitor cocktail (25, Roche) was added with a final concentration of 1. 

25-50l of the clear lysates was mixed with the same volume of the 2SDS sample buffer 

and used in western analyses as input controls. The rest of the clear lysates were incubated 

with corresponding beads and antibodies at 4°C for 3 hours to overnight on a rotator. If 

necessary, during the incubations 10mg/ml RNaseA was added to a final concentration of 

50g/ml to remove potential RNA-bridged indirect protein-protein interactions. 

Subsequently, the beads were precipitated by a centrifugation at 500g and 4°C for 5 

minutes. The beads were washed 5 times with 1ml cold PBSKMT and between washes a 

centrifugation at 500g and 4°C for 5 minutes was used to precipitate beads and to remove 

the buffer. After the last wash, the supernatants were carefully removed and the beads 

(samples) were resuspended in 20-50l 2SDS sample buffer. 

The input controls and samples were either stored at -20°C or used in western blot 

experiments. 

 

RNaseA: 

10mg/ml RNaseA 

10mM Tris pH7.5 

15mM NaCl 

Incubate at 100°C for 15 minutes 

 

PBSKMT: see section 3.2.1.5 

SDS Sample buffer: see section 3.2.1.5 
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3.2.2.3 Nucleo-cytoplasmic fractionation 

Cells from 200-500ml cell cultures (middle-logarithmic phase) were harvested through 

centrifugation at 4000g and 4°C for 10 minutes. The cell pellets were washed once with 

YPD/1M Sorbitol/2mM DTT. To digest cell walls, the cells were spheroplasted in 1-2ml 

YPD/1M Sorbitol with 0.1mg zymolyase per gram of cells at room temperature. The cell wall 

digestion was monitored under the phase contrast light microscope (Leitz Biomed Typ 

020-507-010). When 50% of the cells became dark, the cells were harvested with 

centrifugation at 1000g and 4°C for 5 minutes. After washing once with 1-2ml YPD/1M 

Sorbitol, the cells were recovered in 50-100ml YPD/1M Sorbitol for 30 minutes at 25°C. After 

recovery, the cells were shifted to the desired temperature for the indicated time if 

necessary. The cells were harvested again with centrifugation at 1000g and 4°C for 10 

minutes. 1/10 volume of the cell pellets were lysed (Yeast lysis, section 3.2.1.5) and the 

lysates were used as input controls. The rest of the cells were resuspended in cell lysis buffer 

with a volume of 0.5ml buffer/g cell pellets. To release the cell contents, cell buffer A was 

added with a volume of 1ml buffer/g cell pellets. The mixture was incubated for 5-10 

minutes at 4°C. Afterwards, the mixture was centrifuged at 1500g and 4°C for 15 minutes. 

The supernatant was carefully taken as the cytosolic extract. RNAs were obtained from the 

cytosolic extracts (Acidic phenol extraction, section 3.2.3.4) and used for qRT-PCR. Proteins 

were obtained from the extracts (Protein extraction and precipitation, section 3.2.2.1) and 

used for western blot analyses. 

 

YPD medium: see section 3.2.1.3 

 

Cell lysis buffer: 

18% (w/v) Ficoll 400 

10mM HEPES pH6.0 

 

Cell buffer A: 
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50mM NaCl 

1 mM MgCl2 

10mM HEPES pH6.0 

 

3.2.2.4 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and 

western blot 

Protein samples from protein precipitation, western blot, co-immunoprecipitation or RNA 

co-immunoprecipitation experiments were dissolved in 1SDS sample buffer. The samples 

were incubated at 95°C for 5 minutes followed by centrifugation at 20000g and room 

temperature for 1 minute. The clear supernatants were loaded onto the stacking gel. Protein 

ladders (5l pre-stained or 10l unstained PageRuler Protein ladder, Thermo Fisher Scientific) 

were loaded to indicate the protein size. SDS-PAGE was performed in 1SDS running buffer 

at 25mA for the stacking gel and 35mA for the resolving gel. Alternatively, a constant 6-8mA 

was used overnight.  

After SDS-PAGE, proteins were electrically transferred from the gel onto a nitrocellulose 

membrane. Western blot was performed by using a semi-dry electroblotter (Perfect Blue 

Semi dry Electroblotter, Peqlab). The SDS-polyacrylamide gel, a nitrocellulose membrane and 

four pieces of whatmann paper were presoaked with the transfer buffer. The transfer 

sandwich was assembled as follows (from the negative pole to the positive pole): two pieces 

of whatmann paper, the SDS-polyacrylamide gel, the nitrocellulose membrane, two pieces of 

whatmann paper. After removing the bubbles in the transfer sandwich, the western blot was 

performed at 0.8-1.2mA/cm2 for 90 to 105 minutes. After blotting, the transferred 

membrane was stained in the Ponceau S for 3 minutes followed by a washing step in H2O. 

The Ponceau S staining stained the blotted proteins and the unstained protein ladder, which 

was marked. After removing residual Ponceau S staining with 1TBST, the membrane was 

blocked in 5% (w/v) milk powder/1TBST at room temperature for 1 hour. Subsequently, the 

membrane was incubated with the primary antibodies (e.g. mouse anti-myc antibody, rabbit 
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anti-GFP antibody, rabbit anti-Mtr4 antibody, etc.) diluted in 2% (w/v) milk powder/1TBST 

for 2 hours at room temperature or overnight at 4°C. After four times over 15 minutes 

washing with 1TBST, the membrane was incubated with the secondary antibodies (e.g. goat 

anti-mouse-HRP, goat anti-rabbit-HRP, etc.) diluted in 2% (w/v) milk powder/1TBST for 1.5 

to 2 hours at room temperature. Chemiluminescent signals were generated by using the 

Amersham ECL prime Western Blotting Detection reagents (GE Healthcare) according to the 

manufacture’s instruction. The signals were detected by using the Fusion FX7 detection 

system (Peqlab). 

 

1SDS Sample buffer: see section 3.2.1.5 

 

5% Stacking gel: 

16.7% (v/v) Rotiphorese Gel 30 

(aqueous 30 % acrylamide and bisacrylamide stock solution at a ratio of 37.5:1) 

0.125M Tris pH6.8 (recipe in section 3.1.5) 

0.1% (w/v) SDS (sodium dodecyl sulfate) 

0.1% (w/v) APS (ammonium persulfate) 

0.01% (v/v) TEMED (N,N,N,N’-Tetramethylenediamine) 

 

8-12% Resolving gel: 

26.4%-39.6% (v/v) Rotiphorese Gel 30 

0.375M Tris pH8.8 (recipe in section 3.1.5) 

0.1% (w/v) SDS 

0.1% (w/v) APS 

0.04-0.08% (v/v) TEMED 

 

1SDS running buffer: 

25mM Tris Base 

0.1% (w/v) SDS 
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192mM Glycin 

 

Transfer buffer: 

192mMM glycine 

25mM Tris Base 

10%-20% methanol 

0.03%-0.05% SDS added if 10% methanol was used 

 

Ponceau S solution: 

0.2% (w/v) Ponceau S 

5% (v/v) acetic acid 

 

20TBS: 

1M Tris pH7.4 

3M NaCl 

 

1TBST: 

1 TBS 

0.1% (v/v) Tween-20 
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3.2.3 Molecular biological methods 

3.2.3.1 Polymerase chain reaction (PCR) 

PCR reaction parameters vary according to templates, products, and polymerases. The PCR 

reactions were usually set up as below: 

Component Final concentration 

Template Plasmid 100pg-10ng for 50-100l reaction  

or Genomic DNA 1g for 50-100l reaction 

10reaction buffer (polymerase specific) 1 

dNTP 0.2mM 

DNA polymerase 1unit for 50l reaction 

Forward primer 1M 

Reverse primer 1M 

To generate desired products, different DNA polymerases were used. For routine PCR 

reactions, DreamTaq DNA Polymerase (without proof-reading ability, Thermo Fisher Scientific) 

was used. For proof-reading PCRs (products used for e.g. sequencing, molecular cloning, etc.) 

either the Phusion High-Fidelity DNA Polymerase (New England Biolabs) or KAPAHiFi 

Polymerase (Peqlab) was used. 

The PCR procedures were set as below:  

Step Temperature Time 

Initial denaturation 95-98°C 30 seconds to 3 minutes 

20-40 cycles Denaturation 95-98°C 10-30 seconds 

Annealing 0-5°C below the Tm (DNA melting 

temperature) of the primers 

15-60 seconds 

Extension 68°C or 72°C 30-120seconds/kb 

Final extension 68°C or 72°C  5-10 minutes 

Hold 4°C  

 



48 
 

3.2.3.2 DNA gel electrophoresis and gel extraction 

To prepare agarose gel 0.8%-1.2% agarose (w/v) was dissolved in 1TAE buffer by cooking 

and mixing. Subsequently, once the agarose gels were cooled down to around 60°C, 

ethidium bromide was added to a final concentration of 0.5g/ml.  

6DNA loading dye was added to DNA samples to a final concentration of 1. To indicate the 

DNA size, 5-7 l DNA marker (0.5g/l, Lambda DNA/EcoRI+HindIII DNA Ladder or 

GeneRuler 1 kb DNA Ladder, Thermo Fisher Scientific) was also loaded. The DNAs were 

separated by agarose gelelectrophoresis at 100-120 Volts and room temperature for 20-30 

minutes. DNAs were detected by the 312nm UV-light with INTAS UV-system (INTAS). 

To obtain specific DNA samples, the DNA bands were cut from the gels. Desired DNAs were 

extracted from the gel by using the peqGOLD Gel Extraction Kit (Peqlab) according to the 

manufacture’s instruction. 

 

1TAE buffer (pH8.5): 

40mM Tris Base 

1mM EDTA 

0.114% (v/v) Acidic acid 

Adjust pH to 8.5 

 

6DNA loading dye: 

10mM Tris pH7.6 

0.03% (w/v) Brome phenol blue 

0.03% (w/v) Xylene carbol blue 

60% (v/v) Glycerol 

60mM EDTA 
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3.2.3.3 Genomic DNA extraction 

10ml yeast culture was grown to a concentration of >1108 cell/ml. The cells were harvested 

through centrifugation at 4000g and room temperature for 10 minutes. The cells were 

mixed with 500 µl detergent lysis buffer, 500 µl phenol and 300 µl glass beads and lysed by 

two vigorous shakes on the Fastprep machine at 6.0m/s for 20 seconds. 

The mixture was centrifuged at 20000g and room temperature for 5 minutes. The upper 

layer was carefully transferred to a fresh tube and the same volume of phenol was added. 

The mixture was shaken vigorously by vortexing and centrifuged at 20000g and room 

temperature for 5 minutes. This step was repeated twice, once replacing phenol with 

phenol/chloroform/isoamyl alcohol (25:24:1, Carl Roth) and once with chloroform/isoamyl 

alcohol (24:1, Carl Roth). Afterwards, 1/10 volume 3M sodium acetate pH5.3 and 3 times the 

volume of 100% ethanol were added to the extract and the mixture was incubated at -20°C 

for 15 minutes for precipitation. Genomic DNA (gDNA) pellet was obtained by a 

centrifugation at 20000g and 4°C for 20 minutes. The pellet was washed with 75% ethanol 

and centrifuged at 20000g and 4°C for 5 minutes. The gDNA pellet was air-dried at room 

temperature or 37°C and finally dissolved in nuclease-free H2O or TE buffer pH8.0. The 

gDNAs were either stored at -20°C or used for PCR or southern blot experiments. 

 

Detergent lysis buffer : 

2% (v/v) Triton X-100 

1% (w/v) SDS 

100mM NaCl 

10mM Tris Cl 

1mM EDTA 

 

TE buffer (pH7.5 or 8.0): 

10mM Tris pH7.5 or 8.0 

1mM EDTA 
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3.2.3.4 Acidic phenol RNA extraction 

Cells from 20-50ml cell cultures (logarithmic phase) were harvested through centrifugation 

at 4000g and 4°C for 10 minutes. The cells were mixed with 400µl AE buffer, 40µl 10% SDS, 

440µl aqua-phenol and incubated at 65°C for 5 minutes with occasional inversions. The 

mixture was frozen at -80°C for more than 30 minutes and subsequently centrifuged at 

20000g at room temperature for 5 minutes. The upper phase was carefully transferred to a 

fresh tube.  

The samples for RNA extraction were the extracts obtained as mentioned above or from the 

nucleo-cytoplasmic fractionation or RNA co-immunoprecipitation experiments. The same 

volume of aqua-phenol was added to the extract and the mixture was shaken vigorously by 

hand and centrifuged at 20000g and room temperature for 5 minutes. This step was 

repeated twice, once replacing aqua-phenol with aqua-phenol/chloroform /isoamyl alcohol 

(25:24:1, Carl Roth) and once with chloroform/isoamyl alcohol (24:1, Carl Roth). 1/10 the 

volume of 3M sodium acetate pH5.3 or 1/4 the volume of 4M DEPC treated lithium chloride 

and 3-time the volume of 100% ethanol were added to the extract and the mixture was 

incubated at -80°C for 30 minutes or at -20°C overnight for precipitation. RNA pellet was 

obtained by centrifugation at 20000g and 4°C for 30 minutes. The pellet was washed with 

75% -20°C ethanol made with DEPC-H2O and centrifuged at 20000g and 4°C for 15 minutes. 

The RNA pellet was air-dried on ice and finally dissolved in DEPC-H2O or TE buffer pH7.5 

made with DEPC-H2O. The RNAs were either stored at -20°C for weeks and at -80°C for 

months or used in qRT-PCR experiments. 

 

Diethypyrocarbonate (DEPC) treated solution: 

Add DEPC in solution with final concentration of 0.1%. Mix overnight and autoclave. 

Alternatively, prepare solution with DEPC-treated H2O 

 

AE buffer (pH 5.2): 

50 mM sodium acetate 
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10 mM EDTA 

Adjust pH to 5.2 

 

TE buffer (pH7.5): see section 3.2.3.3 

3.2.3.5 Probe synthesis 

A nucleic acid probe can be a DNA or an RNA molecule that is labeled with e.g. the 

fluorescent tag Cy3 or special chemicals like digoxigenin (DIG), etc. 

3’-end DIG-labelled single-strand DNA oligonucleotide probes (e.g. HK1539) for southern 

blot experiments were ordered from Sigma. The oligo probes were diluted in sterile H2O or 

TE buffer pH7.5 with a concentration of 100mM as stock solutions and stored at -20°C. 

The Cy3-labelled single-strand DNA oligonucleotide probes that were labelled at both the 3’ 

and the 5’ ends (e.g. HK 1761, HK1789, HK1790) for fluorescent in situ hybridisation were 

purchased from Sigma. The oligonucleotide probes were diluted in sterile H2O or TE buffer 

pH7.5 with a concentration of 10mM as stock solutions and stored at -20°C under light 

protection. 

DIG labeled RNA probes for fluorescent in situ hybridisation were produced through in vitro 

transcription. The templates were PCR products that contained T7 transcription sites 

upstream of the anti-sense strands of target genes and were generated by PCR (section 

3.2.3.1) and purified via DNA gel electrophoresis and gel extraction (section 3.2.3.2). The 

TLC1 probes were generated from the PCR products of primer pairs HK936+HK937, 

HK938+HK939, HK940+HK941, HK942+HK943 as templates. The 25S rRNA probes were 

generated from the PCR products of HK1138+HK1139. The 18S rRNA probes were generated 

from the PCR products of HK1140+HK1141. The U6 RNA probes were generated from the 

PCR products of HK1404+HK1492. To synthesize probes, 200-250ng of the PCR products 

were mixed with 1 T7 transcription buffer (Thermo Fisher Scentific), 1u RNase inhibitor 

(40u/l, Thermo Fisher Scentific), 5u T7 RNA polymerase (20u/l, Thermo Fisher Scentific) 

and 1 DIG RNA labeling mix (Roche) in a total volume of 20l. The 20l-mixture was 
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incubated at 37°C for 1.5-2 hours. Subsequently, the reaction was stopped by adding 1l 

0.5M EDTA pH8.0. The transcripts were precipitated by adding 10l tRNA (10mg/ml), 1/4 

volume 4M DEPC treated lithium chloride and 3 volume 100% ethanol. The mixture was 

incubated at -20°C overnight or at -80°C for at least 30 minutes. The RNAs were pelleted by a 

centrifugation at 20000g and 4°C for 30-60 minutes. The pellet was washed for 10 second 

by using 75% -20°C ethanol (made by DEPC-H2O) and centrifuged again at 20000g and 4°C 

for 15 minutes. The pellet was air-dried on ice. The RNAs were dissolved in 100l DEPC-H2O 

and stored at -20°C for weeks and at-80°C for months. 

 

TE buffer (pH7.5): see section 3.2.3.3 

 

3.2.3.6 Southern blot 

Genomic DNAs were extracted (genomic DNA extraction, section 3.2.3.3). To perform the 

southern blot experiments that detected telomeres, gDNAs were mixed with 1 buffer R 

(Thermo Fisher Scientific) and 10u XhoI (10u/l, Thermo Fisher Scientific) and incubated at 

37°C overnight. Digested gDNAs were separated overnight on 1.0-1.2% agarose gels (gel 

electrophoresis, section 3.2.3.2) at 2 volts/cm. Subsequently the DNA gels were depurinated 

in 0.25N HCl for 15 minutes, denatured in 0.5M NaOH/1.5M NaCl for 30 minutes, neutralized 

in 0.5M Tris pH7.5/1,5M NaCl for 30 minutes and equilibrated in 20SSC for 15 minutes. A 

capillary transfer (dry blot) was performed as follows (from bottom to top): a glass plate 

(supporter), the agarose gel facing down, a dry Hybond-N+ membran (GE Healthcare), three 

dry whatmann papers, 5-cm-thick paper-tower and 1kg weight on the top. Alternatively, a 

vacuum transfer was set from bottom to top: supporter, a 20SSC pre-soaked whatmann 

paper, a 20SSC pre-soaked nylon membrane, the gel facing up and the sealing frame. The 

capillary transfer usually took 4 hours to overnight and the vacuum transfer took 1-2 hours. 

After blotting, the membranes were cross-linked under UV light (312nm, Cross Linker Bio 

Link BLX 365) for 5 minutes and further baked at 80°C for 2 hours. The membranes were 
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pre-hybridised at 37°C for 1 hour in 10ml hybridization buffer. Subsequently, 0.1-1.0nmol 

probes (HK1539, 100mM) were added and the membranes were hybridised at 37°C for 4 

hours to overnight. After hybridization, the membranes were washed once with 2SSC/0.1% 

(w/v) SDS, 1SSC/0.1% (w/v) SDS at room temperature, twice with 0.5SSC/0.1% (w/v) SDS 

at 37°C, each for 15 minutes, respectively. The membranes were further washed with DIG 

washing buffer for 5 minutes and blocked in DIG blocking solution for 30 minutes at room 

temperature. The membranes were incubated with anti-DIG-alkaline phosphatase (Roche) 

diluted 1:10000 in DIG blocking solution for 30 minutes at room temperature. The 

membranes were washed twice with DIG washing buffer, each for 15 minutes at room 

temperature. The membranes were equilibrated in DIG detection buffer for 5 minutes at 

room temperature and incubated with the chemiluminescent substrate CSPD (Roche, 1:100 

diluted in DIG detection buffer) for 5 minute at room temperature. The CSPD was removed 

from the membranes and the membranes were sealed in autoclave bags and incubated at 

37°C for 15 minutes. The chemiluminescent signals were detected by using the Fusion FX7 

detection system (Peqlab) (if detection time 30 minutes) or Super RX films (Fujifilm) 

followed by being developed with Optimax X-Ray Film Processor (Protec) (if detection 

time >30 minutes). 

 

20SSC: 

3M NaCl 

300mM Sodium citrate 

Adjust pH to 7.0 

 

1M Sodium phosphate buffer (pH7.2): 

68.4% (v/v) 1M Na2HPO4 

31.6% (v/v) 1M NaH2PO4 

 

The hybridization buffer (pH7.2) for southern blot: 

0.5M sodium phosphate buffer pH7.2 (recipe in section 3.1.5) 
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7% (w/v) SDS 

1mM EDTA 

 

5Maleic acid buffer (pH7.5): 

0.5M Maleic acid 

0.75M NaCl 

Adjust pH to 7.5 

 

DIG washing buffer: 

1Maleic acid buffer 

0.3% (v/v) tween-20 

 

10DIG blocking buffer: 

1Maleic acid buffer 

10% (w/v) blocking reagent (Roche) 

 

DIG blocking buffer: 

1:10 dilute 10DIG blocking buffer in 1Maleic acid buffer 

 

DIG Detection buffer: 

0.1M Tris pH9.5 

0.1M NaCl 

 

3.2.3.7 RNA-co-immunoprecipitation (RNA-co-IP) 

The procedures of harvesting cells, lysing cells, precipitating desired proteins were similar as 

described in co-immunoprecipitation (section 3.2.2.2) but the PBSKMT buffer was replaced 

with the RNA co-IP buffer.  
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After the last washing step, the beads were divided into two portions. 1/10 volume of the 

beads were mixed with 10l 2SDS sample buffer and used for SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and western blot experiments as protein controls. The RNA was 

extracted from the rest 9/10 volume of the beads by using acidic phenol-chloroform 

extraction protocol (section 3.2.3.4). The extracted RNA was stored at -20°C for weeks or 

-80°C for months or was directly used for qRT-PCR experiments. 

 

RNA co-IP buffer: see section 3.2.1.5 

SDS sample buffer: see section 3.2.1.5 

 

3.2.3.8 Quantitative reverse transcriptase PCR (qRT-PCR) 

To synthesize cDNA, 1g RNA, 1random hexamer primer (from 20random hexamer primer, 

Thermo Fisher Scientifc), and nuclease-free H2O were mixed in a total volume of 11.5l. The 

mixtures were incubated at 65°C for 5 minutes and then chilled on ice for 5 minutes. 200u 

Maxima reverse transcriptase (Thermo Fisher Scientifc), 10u RNase inhibitor (Thermo Fisher 

Scientifc), 1 reverse transcription buffer (Thermo Fisher Scientifc) and 1 mM dNTP (Thermo 

Fisher Scientifc) were added to the mixture to a final volume of 20l and the mixture was 

incubated at 50-60°C for 30-45 minutes. The reaction was stopped by incubation at 95°C for 

5 minutes. The cDNA samples were either directly used in the qPCR reaction or stored at 

-20°C for days and -80°C for months.  

The 25l qPCR sample was composed of 5l 1:50 diluted cDNA, 0.2l 10mM reverse and 

forward primers, 12.5l 2 GoTaq PCR master mix (Promega) and nuclease-free H2O. The 

primers (HPLC purification level) were purchased from Sigma. The primers were diluted in 

nuclease-free H2O to 10mM and stored at -20°C. The primer pair HK1382+HK1384 was used 

to quantify the immature TLC1; the primer pair HK1385+HK1386 was used to quantify the 

total amount of TLC1; the primer pair HK1404+HK1405 was used to quantify the U6 snRNA; 

the primer pair HK1396+HK1397 was used to quantify the 18S rRNA. The PCR reactions were 
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performed on the Rotor Gene Q (Qiagen). The PCR reaction was initiated with one 95°C 

5-minute denature step. Afterwards, 40-50 cycles of two-step PCR reaction, which was 

composed of one 95°C 5-second denature step and one 60°C 20-second annealing and 

elongating step, were performed. A final melting step rising the temperature from 60°C to 

95°C was used to determine the specificity of the PCR products. 

Results output by Rotor Gene Q software (Qiagen) represented the Ct (cycle threshold) 

values, which meant the cycle number required for the fluorescent signal to cross the 

threshold (e.g. background level). Ctaverage values were calculated from three PCR reaction 

replicates. Ct values represented the difference of transcription level between RNAs and 

were calculated according to “Ct =CtaverageRNA1- CtaverageRNA2”. Usually RNA1 indicated the 

transcripts of interest (e.g. total TLC1, immature TLC1) and RNA2 indicated the reference 

transcripts (e.g. 18S rRNA, U6 snRNA). Ct values represented the different RNA 

transcription level between strains and were calculated according to “Ct =Ct Strain1- Ct 

Strain2”. Usually strain1 indicated the strain of interest (e.g. mutants, gene-tagged strains) and 

strain2 indicated the reference strain (e.g. wild type, non-tagged strains). A relative fold 

enrichment of target RNA transcription level of target strains compared to reference strains 

was finally calculated according to “fold change=2(-Ct)”. All these calculations were 

performed in Microsoft Excel (Microsoft). Calculations of standard deviations and P-values 

were described in Signal detection, quantification and statistical analyses (section 3.2.1.8).  
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3.2.4 Cell biological methods 

3.2.4.1 Transformation 

To prepare competent E.coli cells (DH5), a single E.coli colony was grown in 10ml LB 

medium at 37°C for overnight. Subsequently the pre-culture was further diluted in 250ml 

SOB medium and grown untill the OD600 reached 0.6. The culture was aliquoted into 50ml 

falcons and the aliquots were incubated on ice for 10 minutes. The E.coli cells were 

harvested through centrifugation at 4000g and 4°C for 15 minutes. The cells were washed 

once in 80ml ice-cold transformation buffer, incubated 10 minutes on ice and harvested 

through centrifugation at 4000g and 4°C for 15 minutes. The cells were resuspended in 

20ml ice-cold transformation buffer/7.5% (v/v) DMSO. The mixtures were incubated on ice 

for 10 minutes and aliquoted to 500µl before they were frozen in liquid nitrogen. These 

ultracompentent E.coli cells were stored at -80°C.  

To transform E.coli cells, plasmids were incubated with the ultracompentent cells on ice for 

30 minutes followed by a 2-minute heat shock at 42°C. The E.coli cells were subsequently 

shaken in 1ml LB medium for 45 minutes to 1.5 hours at 37°C. The cells were finally 

harvested at 20000g and room temperature for 1 minute and were grown on specific 

selective plates (e.g. LB plate containing ampicillin, etc.). 

 

LB medium: see section 3.2.1.3 

 

SOB medium: 

0.5% (w/v) Yeast extract 

2% (w/v) Peptone 

10mM NaCl 

2.5mM KCl 

10mM MgCl2 

10mM MgSO4 
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Transformation buffer: 

10mM HEPES pH 6.3 

15mM CaCl2 

55mM MnCl2 

250mM KCl 

 

To transform yeast cells, the cells from 10-20 ml cell culture (logarithmic phase) were 

harvested by a centrifugation at 4000g and room temperature for 10 minutes. The cells 

were washed once with 1ml sterile H2O and resuspended to 1109 cells/ml in lithium acetate 

(LiOAc)/TE buffer. 50µl yeast cells were mixed with 1µg DNA and 50µg SS-carrier DNA, which 

was boiled at 95°C for 5minutes and chilled on ice for 2 minutes before usage. 300µl 

PEG400/LiOAc/TE buffer was added to the mixtures and the mixtures were incubated at 

25°C for 30 minutes to 2 hours. The cells were heat-shocked at 42°C for 15 minutes and 

washed in 1ml sterile H2O. The cells were harvested with centrifugation at 10000g and 

room temperature for 1 minute and resuspended in 100µl H2O. The transformed cells were 

grown on the selective plates (e.g. URA- plates, LEU- plates according to the select markers). 

 

Lithium acetate (LiOAc)/TE buffer (pH7.5): 

100mM Lithium acetate 

10mM Tris pH7.5 

1mM EDTA 

 

PEG/ Lithium acetate (LiOAc)/TE buffe (pH7.5)r: 

40% (v/v) PEG4000 

100mM Lithium acetate 

10mM Tris pH7.5 

1mM EDTA 
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3.2.4.2 Immunofluorescence (IF) 

Cells were grown to the middle-logarithmic phase if not indicated otherwise. If necessary, 

the cells were shifted to the desired temperature (e.g. 16°C for some cold sensitive strains, 

37°C for some heat sensitive strains, etc.) for the indicated time (usually 30 to 60 minutes). 

The cells were subsequently fixed by adding formaldehyde (37%) to a final concentration of 4% 

(v/v). After fixation for 30 to 60 minutes, the cells were washed once with 1ml potassium 

phosphate buffer pH6.5 and twice with 1ml P-solution. The cells were resuspended and 

incubated in 100l P-solution/10mM DTT for 10 minutes. Furthermore, the cell walls were 

digested by adding 5l 10mg/ml zymolyase (Sigma). The cell wall digestion was monitored 

under the phase contrast microscope (Leitz Biomed Typ 020-507-010). When over 70% cells 

became dark, the spheroplasts were harvested by centrifugation at 500g and 4°C for 5 

minutes. The cells were washed twice with 500 l P-solution and resuspended in P-solution 

with a concentration of around 1109 cell/ml. On poly-L-lysine coated slides 30 l cells 

suspensions were incubated with the wells for 20 to 30 minutes at room temperature. After 

the cells were permeabilised in P-solution/0.5% (v/v) triton-X100, the cells were blocked in 

antibody blocking buffer for 1 hour at room temperature. Subsequently, the cells were 

incubated with the indicated primary antibodies (e.g. mouse anti-GFP antibody, rabbit 

anti-myc antibody, etc.), which were diluted in an appropriate concentration in antibody 

blocking buffer, for 2 hours at room temperature or overnight at 4°C. The primary antibodies 

were removed by washing for four times over 15 minutes with antibody blocking buffer. The 

cells were incubated with indicated secondary antibodies (e.g. sheep 

anti-mouse-AlexaFluor488 antibody, sheep anti-rabbit-AlexaFluor488 antibody, etc.), which 

were diluted to the appropriate concentration in antibody blocking buffer, at room 

temperature for 1.5-2 hours. Afterwards, the slides were washed with antibody blocking 

buffer for four times 15 minutes followed by washing twice for 30 minutes with 1PBT. The 

cells were incubated with hoechst 33342 (1:10000 diluted in 1PBS, Sigma) for 2-3 minutes 

to stain the DNA. Finally the slides were washed with 1PBS for 3 times 5 minutes and 

covered with mounting solution (recipe in section 3.1.5) and coverslips. The slides were 
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either immediately analysed under microscope or were stored at -20°C for months. 

 

Potassium phosphate buffer (pH6.5): see section 3.2.1.4 

P-solution: see section 3.2.1.4 

10PBS: see section 3.2.1.5 

 

1PBT: 

1PBS 

0.1% (v/v) Tween-20 

 

Antibody Blocking Buffer: 

5-10% (v/v) heat inactive fetal bovine serum 

1PBT 

 

Mounting solution: 

2% (w/v) n-Propyl gallate 

80% (v/v) Glycerol 

1PBS 

 

3.2.4.3 RNA fluorescent in situ hybridization (FISH) 

Cells were fixed, washed, zymolyase digested, immobilized on poly-L-lysine coated slides and 

permealized as described in immunofluorescence (section 3.2.4.2). The cells were 

pre-hybridised in hybridisation buffer at 37°C for 1 hour. After pre-hybridisation, the 

appropriate probes were diluted (1:20-1:40 for DIG labeled RNA probes, 1:400-1:4000 for 

Cy3 labeled oligo probes) in hybridisation buffer and were incubated on the cells at 37°C 

overnight. The cells were washed once with 2SSC for 1 hour at room temperature, once 

with 1SSC for 1 hour at room temperature, once with 0.5SSC for 30 minutes at 37°C and 
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once with 0.5SSC for 30 minutes at room temperature. 

If Cy3 labeled oligo probes were used, the cells were incubated with hoechst33342 (Sigma) 

diluted 1:10000 in 1PBS for 2-3 minutes and washed 3 times with 1PBS, each for 5 

minutes.  

Alternatively, if DIG labeled RNA probes were used, the cells were blocked in antibody 

blocking buffer for 1 hour at room temperature. The cells were incubated with anti-DIG-FITC 

antibodies (Roche), which were diluted 1:200 in antibody blocking buffer, at 4°C for 

overnight. Afterwards, the unbound antibodies were removed by washing the cells twice 

with antibody blocking buffer for 15 minutes, once with antibody blocking buffer for 30 

minutes and once with PBT for 30 minutes. The cells were incubated with hoechst33342 

(Sigma) diluted 1:10000 in 1PBS for 2-3 minutes and were washed 3 times with 1PBS, 

each for 5 minutes. 

The slides were finally covered with the mounting solution and coverslips and were either 

stored at -20°C or analysed under microscope. 

 

50Denhardt’s: 

1% (w/v) Ficoll 

1% (w/v) Polyvinylpyrorolidone 

1% (w/v) BSA 

 

20SSC: see section 3.2.3.6 

 

hybridisation buffer: 

50% (v/v) deionised formamide 

5 DEPC treated SSC 

1 Dehardt’s 

0.1mg/ml Heparin 

Made by DEPC treated H2O 
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1PBS: see section 3.2.1.5 

1PBT: see section 3.2.4.2 

Antibody Blocking Buffer: see section 3.2.4.2 

Mounting solution: see section 3.2.4.2  
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4. Results 

4.1 TLC1 Transport 

4.1.1 TLC1 nuclear export 

4.1.1.1 Fluorescent in situ hybridization experiments reveal that 

the nuclear export of TLC1 requires the mRNA export machinery 

As a non-coding RNA (ncRNA) and a product of the RNA polymerase II, TLC1 shares many 

features with the other ncRNAs from RNA polymerase II, e.g. snRNAs, snoRNAs etc. In 

mammalian cells, RNA polymerase II synthesised ncRNAs utilise CRM1 for their nuclear 

export (Kohler and Hurt, 2007). In Saccharomyces cerevisiae, TLC1 also utilises the 

Crm1/Xpo1 export receptor for its export (Gallardo et al., 2008). However, whether there are 

other factors involved in TLC1 nuclear export still remains unknown. Since an mRNA export 

factor, Mex67, is involved in rRNA export together with Crm1/Xpo1 (Faza et al., 2012; Gadal 

et al., 2001; Ho et al., 2000; Hurt et al., 1999; Stage-Zimmermann et al., 2000; Yao et al., 

2007), it is unclear whether this is the same case for TLC1 export. To further investigate TLC1 

nuclear export, fluorescent in situ hybridisation experiments were performed to identify 

TLC1 localisation in the mRNA export mutants mex67-5, rat7-1 and rat8-2 (figure 4.1.1).  

Prior to fluorescent in situ hybridisation experiments, the cell cultures of wild type (HKY381), 

xpo1-1 (HKY206), mex67-5 (HKY644), rat7-1 (HKY124) and rat8-2 (HKY130) strains were 

grown to the middle-logarithmic phase and the cells were shifted to 37°C for 1 hour. After 

the cells were spheroplasted, permeabilized and immobilized on slides, the cells were 

pre-hybridised. Afterwards, DIG labelled specific TLC1 RNA probes were applied and the 

hybridised TLC1 RNAs were subsequently detected by FITC conjugated anti-DIG antibodies.  
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The results (figure 4.1.1) show that in wild type cells, TLC1 signals are clustered in 8-10 foci 

around the nucleus as shown in previously published data (Gallardo et al., 2008) but the 

cytoplasmic background is relatively high, reflecting a low abundance of TLC1 in the 

cytoplasm due to its nucleo-cytoplasmic trafficking (Ferrezuelo et al., 2002; Gallardo et al., 

2008). Differently, the xpo1-1 mutant, in which TLC1 export is inhibited (Gallardo et al., 2008), 

shows a more concentrated TLC1 nuclear accumulation and the cytoplasmic signals are much 

weaker than those in wild type cells. Strikingly, in the mRNA export mutants, mex67-5, rat7-1 

and rat8-2, the phenotypes of TLC1 localisation are more similar to that in xpo1-1 than in 

wild type cells, suggesting a potential role of the mRNA transport pathway in TLC1 nuclear 

export. 

Nevertheless, due to the nature of the nucleo-cytoplasmic trafficking of TLC1 (Ferrezuelo et 

al., 2002; Gallardo et al., 2008), the localisation patterns of TLC1 in mex67-5, rat7-1 and 

rat8-2 cells can also be due to enhanced TLC1 nuclear re-import. To distinguish whether the 

nuclear accumulation of TLC1 in these mutants was due to nuclear export block or increased 

nuclear re-import, these mRNA export defective mutants were crossed with the yku70 

strain. In this background, TLC1 is retained in the cytoplasm after its nuclear export (Gallardo 

Figure 4.1.1 TLC1 localization patterns in the mRNA export defective mutants are 

similar to that seen in the xpo1-1 cells. To identify TLC1 localisation in mRNA export mutants, 

fluorescent in situ hybridization (FISH) experiments were performed in the indicated strains. All 

cells were grown to the logarithmic phase and shifted to 37°C for 1 hour. Subsequently, in-situ 

hybridisation was performed by using specific DIG labeled anti-sense RNA probes against TLC1 and 

the hybridised TLC1 molecules were detected with FITC labeled anti-DIG antibodies (green). The 

nuclei were stained with hoechst33342 (blue). The framed areas show enlarged single cells in the 

figures below. At least three independent experiments were done, one of which is shown here. 

Scale bars: 5m. 
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et al., 2008). 

Fluorescent in situ hybridisation experiments were performed as described above in wild 

type (HKY381), xpo1-1 (HKY206), yku70 (HKY1073), mex67-5 yku70 (HKY1397), rat7-1 

yku70 (HKY1398) and rat8-2 yku70 (HKY1396), to detect the localisation of TLC1 (figure 

4.1.2). Additionally, a Cy3 labelled oligo-d(T)50 probe was used to identify the localisation of 

poly(A)+ containing RNAs in these strains. Since the probes were labelled with the 

fluorescent dye Cy3, the fluorescent in situ hybridisation experiments without the antibody 

detection step were performed. 

Compared to the TLC1 distribution in the cytoplasm of the yku70 strain, TLC1 accumulates 

in the nuclei of the mRNA export mutants (HKY1397, HKY1398, HKY1396) (TLC1 in figure 

4.1.2). Besides, the localisation patterns of TLC1 in these mutants remained comparable to 

that seen in xpo1-1, confirming TLC1 nuclear export impairment in the mRNA export 

mutants. Besides, the fluoresecent in situ hybridisation experiments that detect poly(A)+ 

Figure 4.1.2 No TLC1 cytoplasmic retention is observed in the mRNA export defective 

mutants that contain the yku70 background. Fluorescent in situ hybridization (FISH) 

experiments were performed in the indicated strains. All strains were grown to the logarithmic 

phase and shifted to 37°C for 1 hour. Subsequently, in-situ hybridisation was performed by using 

specific DIG labeled anti-sense RNA probes against TLC1 and the hybridised TLC1 molecules were 

detected with FITC labeled anti-DIG antibodies (green). Poly(A)+ RNA was detected by using a CY3 

labeled oligo d(T)50 probe (red). The nuclei were stained with hoechst33342 (blue). The framed 

areas show enlarged single cells in the figures below. At least three independent experiments were 

done, one of which is shown here. Scale bars: 5m. 
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RNAs (poly(A)+ RNA in figure 4.1.2) showed that the poly(A)+ RNAs accumulate in the mRNA 

export mutants. Surprisingly, in the xpo1-1 mutant, poly(A)+ RNA nuclear export defect was 

observed. This phenotype was also mentioned in earlier published literature and was 

proposed as an indirect effect of the defective Xpo1 (AskjaerStade et al., 1997).  

Summed up, these results extend the previous knowledge that TLC1 is exported via 

Crm1/Xpo1 and suggest a possibility of TLC1 nuclear export via the mRNA export machinery.  
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4.1.1.2 Nucleo-cytoplasmic fractionation shows decreased 

cytoplasmic abundance of TLC1 upon blocking the mRNA export 

pathway 

Due to the TLC1 nucleo-cytoplasmic movement (Ferrezuelo et al., 2002; Gallardo et al., 

2008), its export block in the export mutants was proposed to reduce the amount of 

cytoplasmic TLC1. To examine this hypothesis, a cytoplasmic cell fractionation was 

performed and the amount of the cytoplasmic TLC1 was measured via qRT-PCR (figure 

4.1.3).  

The strains wild type (HKY381), sup45-2 (HKY446), xpo1-1 (HKY206), mex67-5 (HKY644), 

rat7-1 (HKY124) and rat8-2 (HKY130) were grown to the logarithmic phase. The cells were 

spheroplasted and further split into two equal portions. One portion was incubated at 25°C 

and the other portion was shifted to 37°C for 1 hour. Cells were lysed and subsequently 

fractionated. Zwf1 and Nop1 were used as the indicators of the cytoplasmic and nuclear 

fraction, respectively. Zwf1, a cytoplasmic glucose-6-phosphate dehydrogenase, and Nop1, a 

nucleolar histone glutamine methyltransferase, were detected through western blot 

analyses by using anti-Zwf1 or anti-Nop1 antibodies, respectively. The cytoplasmic RNAs 

were extracted from the cellular cytoplasmic factions. TLC1 was quantified using a specific 

TLC1 primer pair (HK1385+HK1386) through qRT-PCR. Wild type and the sup45-2 strain, a 

translation termination mutant that should not be involved in non-coding RNA transport, 

were used as the reference strains in these experiments. To evaluate the level of 

cytoplasmic TLC1, the amount of the cytoplasmic TLC1 was compared to that of the total 

TLC1. These ratios were set into relation to that of wild type at 25°C. 

The western blot analyses show an exclusive detection of Zwf1 but not Nop1 in the 

cytoplasmic factions (C in figure 4.1.3 upper panel) confirming a successful isolation of the 

cytoplasmic fractions. Furthermore, the qRT-PCR analyses show that in xpo1-1 and in the 

mRNA export defective mutants, the cytoplasmic TLC1 levels are as stable as those in 
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wild type and sup45-2 at 25°C (blue columns in figure 4.1.3). Nevertheless, compared to wild 

type and sup45-2, the cytoplasmic amount of TLC1 was largely reduced (∼80%-90%) in 

xpo1-1 and in the mRNA export defective mutants at 37°C (red columns in figure 4.1.3). 

These results provide a direct evidence that in the mRNA export mutants, nuclear export of 

TLC1 is also impaired, further suggesting the involvement of the mRNA export factors in 

TLC1 nuclear export.  

Figure 4.1.3 Analyses of the cytoplasmic fraction show a reduction of the cytoplasmic 

TLC1 level in the export defective mutants. The indicated strains were grown to the 

logarithmic phase. Half of the cells were shifted to 37°C for 1 hour and the other half was kept at 

25°C for 1 hour. The cytoplasmic fractions were extracted and confirmed through western blot 

analyses by detecting the cytoplasmic protein Zwf1 and the nuclear protein Nop1 (C in upper 

panel). The total cell lysates were used as the loading controls (T in upper panel). After RNA was 

extracted from the cytoplasmic fractions and the total cell lysates, cytoplasmic TLC1 and total TLC1 

were measured through qRT-PCR by using the primer pair HK1385+HK1386. The amount of 

cytoplasmic TLC1 was compared to that of the total TLC1. These ratios were set into relation with 

that of wild type at 25°C and shown in the diagram (25°C: blue column/dot; 37°C: red 

column/dot). At least three independent experiments were done. Error bars indicate the standard 

deviation. P-value was calculated using two-tailed, paired t-test (*: 0.01p0.05; **: 

0.001p0.01; ***: 0.0001p0.001) 
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4.1.1.3 The mRNA export factors physically interact with TLC1 

If the mRNA export factors were involved in TLC1 nuclear export, these factors should also 

physically interact with TLC1. To test this hypothesis, RNA co-IP experiments were 

performed (figure 4.1.4).  

Figure 4.1.4 TLC1 physically interacts with the mRNA export factors. All strains wild type 

(HK381), XPO1/CRM1-GFP (HKY145), EST1-MYC EST2-MYC (HKY1292), TIF4631/EIF4G-MYC (HKY578), 

MEX67-GFP (HKY1266) and RAT8/DBP5-GFP (HKY1242) were grown to the logarithmic phase. 

Proteins of interest were immuno-precipitated by using the mixture of anti-myc and anti-GFP 

antibodies and confirmed through western blot analyses (top panel). RNA bound to these proteins 

and the total RNA were extracted. TLC1 was quantified though qRT-PCR using the specific TLC1 

primer pair (HK1385+HK1386). The amount of protein bound TLC1 was compared to that of the total 

TLC1. These ratios were set into relation to that of wild type and shown in the diagram (bottom 

panel). At least three independent experiments were done. Error bars indicate the standard 

deviation. P-value was calculated according to two tailed, paired t-test (*: 0.01p0.05; **: 

0.001p0.01). 
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In these experiments the strain wild type (HKY381) and the genomically tagged strains 

XPO1/CRM1-GFP (HKY145), EST1-MYC EST2-MYC (HKY1292), TIF4631/EIF4G-MYC (HKY578), 

MEX67-GFP (HKY1266) and RAT8/DBP5-GFP (HKY1242) were cultivated to the 

middle-logarithmic phase. The cells were harvested and lysed. The myc or GFP tagged 

proteins were precipitated using specific antibodies (anti-myc or anti-GFP). The RNA bound 

to these proteins was eluted. Subsequently, TLC1 was quantified through qRT-PCR analyses 

(primer pair HK1385+HK1386) to reveal the physical interaction between TLC1 and the 

analysed factors. To evaluate the interaction levels between the factors and TLC1, the 

amount of TLC1 bound to these factors was compared to that of the total TLC1 and the 

ratios were set into relation to that of wild type. The precipitated proteins were controlled 

via western blot analyses. (figure 4.1.4 upper panel).  

As demonstrated in figure 4.1.4, Est1 and Est2 show a strongly enriched TLC1 binding 

(∼1000 fold) compared to the non-tagged background control, wild type (set as baseline 1). 

This suggests a specific and enduring interaction between the telomerase components and 

TLC1. On the other side, eIF4G, a translation initiation factor that is proposed to have no 

connection with non-coding RNA transport, shows an expected low TLC1 binding ability that 

is similar to the non-tagged wild type control. Furthermore, similar to Xpo1 (∼26 fold 

enrichment compared to the non-tagged wild type), two mRNA export factors, Mex67 as 

well as Dbp5/Rat8, showed a significantly enhanced TLC1 binding (∼39 fold for Mex67 and 

∼37 fold for Dbp5/Rat8), suggesting an interaction between TLC1 and these factors. 

Although there is no evidence for a direct interaction, the results suggest an involvement of 

the mRNA export factors in TLC1 nuclear export. Besides, together with previous results 

showing that TLC1 molecules accumulate in the nuclei of the mRNA export mutants, 

mex67-5, rat7-1 and rat8-2, it can also be concluded that TLC1 nuclear export does not only 

depended on a single factor, e.g. Mex67, but rather require several proteins, including 

Mex67, Rat8/Dbp5 and Rat7.   
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4.1.1.4 The TLC1 nuclear export block observed in mRNA export 

mutants is not due to impaired TLC1 transcription or maturation 

TLC1 needs a series of processing steps to reach maturation and some of these processing 

failures lead to a TLC1 nuclear mislocalisation, e.g. defect in hypermethylation of the m7G 

cap structure of TLC1 (Gallardo et al., 2008). Therefore, the nuclear accumulation of TLC1 

might also be caused by defective TLC1 transcription or processing. To exclude this 

possibility, qRT-PCR experiments were performed to examine TLC1 transcription and 

processing in these mRNA export mutants.  

The strains wild type (WT, HKY381), xpo1-1 (HKY206), rat7-1 (HKY124), rat8-2 (HKY130) and 

mex67-5 (HKY644) were grown to the logarithmic phase and subsequently shifted to 37°C 

for 1 hour. Total RNA was extracted from the cells. Specific primer pairs that detect 

unprocessed TLC1 (HK1382+HK1384) and total TLC1 (both processed and unprocessed, 

HK1385+HK1386) were designed as shown in figure 4.1.5A. As demonstrated in the figure, 

the primer pair for the total TLC1 (HK1385+HK1386) flanks the region that includes the 

template of reverse transcription for telomere elongation and a part of the Est2 binding 

domain. The products of the primer pair for unprocessed TLC1 (HK1382+HK1384) contain a 

part of the sequence, which will be post-transcriptionally removed during TLC1 maturation, 

and a part of the matured TLC1, which bears the Sm7 binding site. Besides, the primer pair 

HK1404+HK1405 was used to quantify the U6 snRNA, an RNA Polymerase III product, as a 

reference for the qRT-PCR experiments. To evaluate the transcription levels of TLC1, the 

amount of total TLC1 was compared to that of the snRNA U6 and the ratios were set into 

relation to that of the wild type. To evaluate TLC1 processing, the amount of unprocessed 

TLC1 was compared to that of the total TLC1 and the ratios were set into relation to that of 

the wild type. 
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The results show that the relative transcription levels of TLC1 compared to the U6 snRNA 

remain unchanged in all export defective mutants compared to the wild type (figure 4.1.5B). 

Furthermore, although the rates of unprocessed TLC1 show unexpected reductions in the 

mRNA export defective mutants (figure 4.1.5C), these reductions are similar within the 

mRNA export mutants and the known TLC1 export mutant, xpo1-1. These identical 

Figure 4.1.5 TLC1 nuclear export defect in mRNA export mutants is not due to impairments on its 

transcription and processing. (A) A brief illustration of the TLC1 structure and the schematic 

demonstration of the primer pairs. The primer pair (HKY1385+HK1386) for detecting total TLC1 

covers the TLC1 core region including the telomere template sequence. The primer pair 

(HK1382+HK1384) for detecting immature TLC1 flanks the 3`-end of mature TLC1 and the 5’-part 

of the region that is removed from immature TLC1 during processing steps. (B,C) All indicated 

strains were shifted to 37°C for 1 hour. Subsequently, total RNA was extracted from the cells. Total 

TLC1 and unprocessed TLC1 were quantified through qRT-PCR using their specific primer pair 

(HK1385+HK1386 and HK1382+ HK1394), respectively. The U6 snRNA, as the reference RNA, was 

quantified by using the specific primer pair (HK1404+HK1405). The amount of the total TLC1 was 

compared to that of the snRNA U6 and the ratios were set into relation to that of the wild type (B). 

The amount of the unprocessed TLC1 was compared to that of the total TLC1 and the ratios were 

set into relation to that of the wild type (C). At least three independent experiments were done. 

Error bars indicate the standard deviation. P value was calculated via two-tailed, paired t-test (**: 

0.001p0.01; ***: 0.0001p0.001; ****: p<0.0001). 
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phenotypes in the mRNA export mutants and xpo1-1 further suggest that these factors 

might possess similar functions on TLC1 in mediating its nuclear export. Moreover, these 

results are consistent with previous findings that the maturation of TLC1, including 

hypermethylation and 3’-trimming, occurs in the nucleus via the nuclear RNA modification 

machinery, e.g. Tgs1 (Franke et al., 2008) and the NRD pathway (Coy et al., 2013; Noel et al., 

2012). In addition, fluorescent in situ hybridisation experiments showing that TLC1 does not 

co-localise with the nucleolus in the export defective mutants (Daniel Becker and Heike 

Krebber) suggest an exit from the processing sites. All of these results support a model in 

which TLC1 undergoes the maturation steps prior to its nuclear export. 
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4.1.1.5 The TLC1 nuclear export is mediated through 

cooperation of Xpo1/Crm1 and the mRNA export factor 

The results above show that the TLC1 nuclear export is mediated not only by the Crm1/Xpo1 

export receptor, but also by the mRNA export factors. However, the relationship between 

these two pathways in the role of TLC1 translocation is still unclear. To determine whether 

Figure 4.1.6 The TLC1 export activities of Xpo1/Crm1 and Mex67 are connected. Wild type 

(HKY381) and the mex67-5 (HKY644) cells were transformed with a XPO1-GFP containing plasmid (pCEN 

URA3 XPO1-GFP, pHK43). Additionally, wild type (HKY381) and the xpo1-1 (HKY206) cells were 

transformed with a MEX67-GFP containing plasmid (pCEN LEU2 pUN100-MEX67-GFP, pHK20). All 

strains (HKY380+pHK43, HKY644+pHK43, HKY381+pHK20, HKY206+pHK20) were grown to the 

logarithmic phase and shifted to 37°C for 1 hour. Xpo1-GFP and Mex67-GFP were immuno-precipitated 

by using anti-GFP antibodies and identified by using western blot analyses (top panel). The RNA bound 

to these proteins and the total RNA were extracted. RNA was used to quantify the TLC1 amount with 

the primer pair HK1385+HK1386 by qRT-PCR. The protein bound TLC1 was compared to the total TLC1 

and these ratios were set into relation to that of wild type (mex67-5+pXPO1-GFP vs wild 

type+pXPO1-GFP, or xpo1-1+pMEX67-GFP vs wild type+pMEX67-GFP) (bottom panel). At least three 

independent experiments were done. Error bars indicate the standard deviation. P-value was calculated 

using two tailed, paired t-test (*:0.01p0.05). 



75 
 

these two machineries function independently or coordinately, RNA co-immunoprecipitation 

experiments were performed. With the experiments, the TLC1 recruitment was analysed on 

either Mex67 or Xpo1 in the genetic background of mutating the genes of the opposite 

factors (mex67-5 + pXPO1-GFP or xpo1-1 + pMEX67-GFP) (figure 4.1.6). 

Wild type (HKY381) and the mex67-5 (HKY644) cells were transformed with a XPO1-GFP 

containing plasmid (pXPO1-GFP, pHK43). Additionally, wild type (HKY381) and the xpo1-1 

(HKY206) cells were transformed with a MEX67-GFP containing plasmid (pMEX67-GFP, 

pHK20). All strains (HKY380+pHK43, HKY644+pHK43, HKY381+pHK20, HKY206+pHK20) were 

grown to the logarithmic phase and shifted to 37°C for 1 hour. GFP tagged Xpo1 or Mex67 

was precipitated by using anti-GFP antibodies. The precipitated proteins were identified 

through western blot analyses (figure 4.1.6 upper panel). The bound RNA was eluted from 

the precipitated proteins and the total RNA was extracted from the whole cell lysates. The 

RNA was used for qRT-PCR analyses and TLC1 was quantified from the RNA by using the 

primer pair HK1385+HK1386. To evaluate the interaction between the factors and TLC1, the 

protein bound TLC1 was compared to the total TLC1 and the ratios were set into relation to 

that of wild type (mex67-5+pXPO1-GFP vs wild type+pXPO1-GFP, or xpo1-1+pMEX67-GFP vs 

wild type+ pMEX67-GFP). 

The results (figure 4.1.6 bottom panel) show an enriched TLC1 binding to one factor in the 

case of the defect of the other RNA transport factor. This observation suggests that 

Xpo1/Crm1 and Mex67 are connected through TLC1 and defect of one export factor will 

affect binding of the other one. Therefore, together with the fluorescent in situ hybridisation 

experiments showing that defects of either of these two pathways lead to a TLC1 export 

block (figure 4.1.1 and 4.1.2), the results suggest a cooperative manner of these two factors 

in transporting TLC1. 

Taken together, these results clearly indicate an important role of the mRNA export pathway 

in TLC1 nuclear export. Besides, both the mRNA export factor and Crm1/Xpo1 work 

cooperatively on this RNA translocation. Finally, it also suggests that although the nuclear 

export pathway is blocked in the export mutants, TLC1 appears to undergo maturation.  
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4.1.2  A TLC1 export block affects telomerase formation 

4.1.2.1 TLC1 cytoplasmic deficiency leads to impaired localisation 

of the telomerase components 

The results shown above allow the conclusion that TLC1 utilises the mRNA export pathway 

for its export. Further experiments were performed to uncover the effects of impaired TLC1 

nuclear export on telomerase formation. Due to TLC1 nucleo-cytoplasmic trafficking and the 

telomerase formation in the cytoplasm (Ferrezuelo et al., 2002; Gallardo et al., 2008), it can 

be proposed that the cytoplasmic presence of TLC1 would be important for formation and 

localisation of the telomerase complex. To directly address the effects of the TLC1 nuclear 

retention on the telomerase formation and localisation, immunofluorescence experiments 

were performed to track the localisation of the telomerase components, Est1 and Est2 

(figure 4.1.7).  

The immunofluorescence experiments were carried out in strains producing myc tagged Est1 

and Est2 in the background of wild type, xpo1-1 or the mRNA export defective mutants 

(figure 4.1.7A). The strains EST1-12xMYC 3xFLAG-12xMYC-EST2 (wild type, HKY1292), 

EST1-12xMYC 3xFLAG-12xMYC-EST2 tlc1::HIS (tlc1, HKY1294), EST1-12xMYC 3xFLAG- 

12xMYC-EST2 xpo1::LEU2+pxpo1-1 (xpo1-1, HKY 1302), EST1-12xMYC 3xFLAG-12xMYC-EST2 

rat7-1 (rat7-1, HKY1332), EST1-12xMYC 3xFLAG-12xMYC-EST2 rat8-2 (rat8-2, HKY1334) and 

EST1-12xMYC 3xFLAG-12xMYC-EST2 mex67::HIS+pmex67-5 (mex67-5, HKY1336) were grown 

to the logarithmic phase. Half of the cells were kept at 25°C and the other half were shifted 

to 37°C for 1 hour. The localisations of Est1 and Est2 in the cells were detected by using 

mouse anti-myc antibodies and AlexaFluor488 conjugated goat anti-mouse secondary 

antibodies.  

The results (figure 4.1.7A) show a nuclear enrichment of Est1 and Est2 in wild type cells, 

representing the nuclear localisation of the telomerase components. In contrast, Est1 and 

Est2 are mislocalised to the cytoplasm in the absence of TLC1, indicating a failure of the 

telomerase assembly. Similarly, in the TLC1 export defective mutant, xpo1-1, a significant 
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reduction of nuclear Est1 and Est2 distribution was observed under the non-permissive 

condition (37°C). Although there was nuclear signal remaining, it can be explained by the 

presence of the pre-existing telomerase. Similar to xpo1-1, the mRNA export defective 

mutants, mex67-5, rat7-1 and rat8-2, also show a comparable distribution of the telomerase 

components in the cytosol compared to wild type at the non-permissive condition (37°C). 

Figure legend see next page 
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This suggests that due to the TLC1 cytoplasmic deficiency in these mutants, the Est proteins 

are not imported into the nucleus. Signal quantification (figure 4.1.7B) reveals the change of 

the telomerase component localisation through calculating the ratio between the nuclear 

and total signal (N/T ratio) (figure 4.1.7B). Compared to the wild type (∼60% N/T) and tlc1 

(∼21% N/T) strains, mex67-5 (∼29% N/T), rat7-1 (∼37% N/T) and rat8-2 (∼30% N/T) 

mutants show similar N/T ratios to xpo1-1 (∼36% N/T) at 37°C. Furthermore, comparing 

25°C to 37°C in a given strain, the export mutants show an obvious reduction of the nuclear 

localisation of the telomerase components, e.g. xpo1-1 (∼21% N/T ratio reduction), rat7-1 

(∼30% N/T ratio reduction), rat8-2 (∼26% N/T ratio reduction), and mex67-5 (∼20% N/T 

ratio reduction). Summed up, these results suggest that (1) Like Xpo1, the mRNA export 

factors also participate in transporting TLC1; (2) the model that the telomerase might be 

formed in the cytoplasm following the TLC1 nuclear export is further supported; (3) the 

conclusion that Est1 nuclear re-import is independent of TLC1 transport (Hawkins and 

Friedman, 2014) is however challenged. 

Figure 4.1.7 Telomerase components localisation is impaired due to TLC1 export defects. 

All indicated strains were grown to the logarithmic phase. The cells were split into two equal 

portions. One portion was kept at 25°C and the other portion was shifted to 37°C for 1 hour. (A) 

Myc tagged Est1 and Est2 were detected by using mouse anti-myc antibodies and AlexaFluor488 

anti-mouse antibodies (green). The nuclei were stained by hoechst33342 (blue). Scale bars: 5m. 

(B) The ratios of the nuclear signal to total cell signal were shown in the diagram. For each condition 

the ratios of 20 cells were calculated. At least three independent experiments were done, one of 

which is shown in figure A. Error bars indicate the standard deviation. P-value was calculated using 

two-tailed, unpaired t-test (****: p<0.0001) 
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Since Est1 and Est2 are mislocalised to the cytoplasm due to the TLC1 nuclear export block in 

the mRNA export mutants, the amount of Est1 and Est2 in the cytoplasm might also be 

increased in this case. To obtain further evidence, cytoplasmic fractionation experiments 

were performed (figure 4.1.8).  

Similar to the cell fractionation experiments in section 4.1.1.2, the strains mentioned above 

were fractionated and their cytoplasmic fractions were extracted. Zwf1 and Nop1, which 

were mentioned in section 4.1.1.2, were used as indicators to verify the fractionation 

experiments. As shown in the total cell lysates (T in figure 4.1.8), all Est1, Est2, Nop1 and 

Zwf1 were detectable; however, in the cytoplasmic fractions (C in figure 4.1.8), Nop1 was 

not detectable, suggesting the successful elimination of the nuclear fraction. Subsequently, 

the cytoplasmic amount of Es1+Est2 at 37°C was compared to that at 25°C and the ratios 

were set into relation to that of the wild type at 25°C (figure 4.1.8 bottom panel). In addition, 

the amount of the cytoplasmic Est1+Est2 in tlc1 at 25°C was also compared to that in wild 

type and the ratios were used as positive controls. 

The experiments (figure 4.1.8) clearly show a cytoplasmic retention of the telomerase 

components once TLC1 is unable to reach the cytoplasm to serve as the scaffold for the 

telomerase formation. The quantification indicates a dramatic cytoplasmic mislocalisation of 

the telomerase components in the absence of TLC1 (∼8 fold cytoplasmic enrichment 

comparing tlc1 to wild type). Moreover, in the TLC1 nuclear export defective mutants, 

xpo1-1 (∼4 fold cytoplasmic enrichment comparing 37°C to 25°C), mex67-5 (∼3 fold 

cytoplasmic enrichment comparing 37°C to 25°C) as well as rat8-2 (∼4 fold cytoplasmic 

enrichment comparing 37°C to 25°C), show a comparable mislocalisation phenotype of the 

telomerase components, suggesting that the nuclear re-import of the telomerase 

components is dependent on TLC1 nuclear export. 
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Figure 4.1.8 TLC1 cytoplasmic deficiency leads to the cytoplasmic enrichment of the 

telomerase components. All indicated strains were grown to the logarithmic phase. Half of the cells 

were kept at 25°C and the other half were shifted to 37°C for 1 hour. Cells were fractionated and the 

cytoplasmic fractions were isolated. The total cell extracts (T) and the cytoplasmic fractions (C) were 

analysed through western blot analyses (upper panel). Est1-myc and Est2-myc were detected using 

anti-myc antibodies. Zwf1 and Nop1 were used as the cytoplasmic and nuclear indicators and were 

detected using rabbit anti-Zwf1 and anti-Nop1 antibodies, respectively. The amount of Est1+Est2 at 

37°C was compared to that at 25°C. In addition, the amount of the cytoplasmic Est1 and Est2 in tlc1 

was compared to that in wild type. The ratios are shown in the diagram (lower panel). At least three 

independent experiments were done, one of which is shown in the upper panel. Error bars indicate the 

standard deviation. P-value was calculated using two-tailed, paired t-test (*: 0.01p0.05;**: 

0.001p0.01).  
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4.1.2.2 Less TLC1-Est2 interactions are formed due to the TLC1 

nuclear retention 

Since the results above show a mislocalisation of the telomerase components, which could 

be due to the reduction of the cytoplasmic presence of TLC1, a reduced physical interaction 

between TLC1 and the telomerase components would be expected. RNA 

co-immunoprecipitation experiments were performed to determine the association of TLC1 

to the telomerase component in the cytoplasm (figure 4.1.9).  

The strains (HKY1292, HKY1302, HKY1332, HKY1334 and HKY1336) that were used in section 

4.1.2.1 were also used in these experiments. The cells were grown to the logarithmic phase 

at 25°C. The cells were either retained at 25°C or shifted to 37°C for 1 hour. Est2 was 

precipitated by using anti-FLAG antibodies. The Est2 bound RNA was subsequently eluted 

from the precipitated proteins and the total RNA was extracted from the whole cell lysates. 

TLC1 was quantified through qRT-PCR by using the specific TLC1 primer pair 

(HK1385+HK1386). The Est2 bound TLC1 in a given strain was first compared to the total 

TLC1. This ratios at 37°C was further compared to that at 25°C in this strain. The ratios were 

finally set into relation to the wild type. 

The results show that the interactions between TLC1 and Est2 are reduced not only in xpo1-1 

(∼34% reduced), but also in the mRNA export mutants (∼36% in rat7-1, ∼33% in rat8-2 and 

∼41% in mex67-5). These results support the potential role of mRNA export factors in TLC1 

nuclear export and the model of cytoplasmic assembly of the telomerase complex 

(Ferrezuelo et al., 2002). 
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Figure 4.1.9 RNA co-immunoprecipitation experiments show a reduced association of 

TLC1 to Est2 in the export defective mutants. All indicated strains were grown to the 

logarithmic phase. Half of the cells were kept at 25°C and the other half were shifted to 37°C for 

1 hour. FLAG tagged Est2 was precipitated by using mouse anti-FLAG antibodies. RNA bound to 

Est2 the total RNA was extracted. TLC1 was quantified through qRT-PCR by using the specific 

TLC1 primer pair (HK1385+HK1386). The bound TLC1 was compared to the total TLC1. This ratio 

at 37°C was further compared to that at 25°C. They were finally set into relation with that of 

wild type. At least three independent experiments were done. Error bars indicate the standard 

deviation. The p-value was calculated using two-tailed, paired t-test (*: 0.01p0.05). 
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4.1.2.3 Reduction of the TLC1 cytoplasmic presence affects the 

interaction between the telomerase components 

The interaction between Est1 and Est2 is indirect and mediated by TLC1 (Lubin et al., 2012). 

Due to the scaffold function of TLC1 on composition of the telomerase complex, the 

components are not able to be assembled to build up the telomerase complex without TLC1. 

Therefore, since it has been concluded that telomerase formation might occur in the 

cytoplasm and this constitution needs cytoplasmic TLC1 presence, the decreased TLC1 

nuclear export might reduce the efficiency of telomerase assembly. Co-immunoprecipitation 

experiments were performed to examine the interaction between telomerase components, 

Est1 and Est2, to identify the telomerase assembly (figure 4.1.10).  

The strains (HKY1292, HKY1294, HKY1302, HKY1332, HKY1334 and HKY1336) that were used 

in section 4.1.2.1 were also used in these experiments. All strains were grown to the 

logarithmic phase and were either retained at 25°C or shifted to 37°C for 1 hour. FLAG tagged 

Est2 was precipitated with anti-FLAG antibodies. In addition, one of the wild type sample 

was treated with RNaseA (final concentration: 0.1mg/ml) to remove TLC1 and its mediated 

Est1-Est2 interaction. Both Est1 and Est2 were detected by using the anti-myc antibodies 

through western blot analyses. Besides, the total cell lysates were used as input controls and 

Hem15, a mitochondrial inner membrane protein, was used as loading control. Hem15 was 

detected by anti-Hem15 antibodies. The interactions between Est1 and Est2 were evaluated 

through calculating the ratios of the amount of Est2 to Est1. These ratios at 37°C were 

further set into relation to those at 25°C in a given strain. The protein levels of Est1 and Est2 

were evaluated through comparing the amount of Est1+Est2 from the input control to that of 

Hem15 from the loading control. These ratios were also set into relation to that of wild type. 

Apparently, decreased interactions of the telomerase components are observed in the TLC1 

export mutants (figure 4.1.10A). The quantification of the interactions (figure 4.1.10B) shows 

that ∼89% of the interaction between Est1 and Est2 is reduced if TLC1 is not present in tlc1 

strains. In wild type cells upon RNase treatment, ∼65% of the interaction is also reduced. 

Since Est1 and Est2 interact through TLC1, incomplete destruction of Est1-Est2 interaction 
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from this RNase treatment might be probably due to the compact clustering of the 

telomerase complex reported previously (Gallardo et al., 2011). Interestingly, the TLC1 

export defective mutants show only ∼53%, ∼58%, ∼64% and ∼67% of the Est1-Est2 

interactions remaining in xpo1-1, rat7-1, rat8-2 and mex67-5, respectively. In addition, the 

protein levels of Est1 and Est2 were also quantified to identify the effect of the RNA export 

defects on gene expression (figure 4.1.10C). Interestingly, stronger defect on producing of 

the telomerase components, especially Est2, is found in tlc1 and this is coincident to 

previous findings showing only 50% EST2 expression level in the tlc1 strain (Taggart et al., 

Figure 4.1.10 The interactions between Est1 and Est2 are impaired in the export 

mutants. All indicated strains were grown to the logarithmic phase. Half of the cells were kept at 

25°C and the other half were shifted to 37°C for 1 hour. One additional portion of the wild type 

sample was treated with RNaseA (final concentration: 0.1mg/ml). To precipitate FLAG tagged Est2, 

mouse anti-FLAG antibodies were used. (A) Precipitated Est2 and its interacted Est1 were detected 

through western blot analyses by using rabbit anti-myc antibodies. The whole cell lysates were 

used as input controls. Hem15 was used as loading control and was detected by using anti-Hem15 

antibodies. (B) The Est1-Est2 interactions were evaluated through calculating the ratios between 

the amount of Est2 and Est1. The ratios at 37°C were further set into relation to that at 25°C. The 

P-value is calculated using two-tailed, paired t-test (*:0.01p0.05; **:0.001p0.01). (C) The 

protein levels of the telomerase components were reflected by calculating the ratios of the total 

amount of Est1 and Est2 to Hem15. Error bars indicate the standard deviation. At least three 

independent experiments were done, one of which is shown in figure A. 
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2002). Why the expression level of telomerase components is dependent on TLC1 is still 

poorly understood and is supposed to be a consequence of an accelerated degradation of 

the unbound telomerase components.   

Furthermore, since the Ku-complex is related to TLC1 nuclear import (Gallardo et al., 2008) 

and to the recruitment of the telomerase onto telomeres (Fisher et al., 2004), the improper 

TLC1 localisation, which leads to a defect in telomerase formation, is proposed to reduce the 

binding of the telomerase components to the Ku components. This hypothesis was tested by 

performing co-immunoprecipitation experiments to identify the interaction between Est2 

and Yku70 (figure 4.1.11).  

All strains (HKY1292, HKY1294, HKY1302, HKY1332, HKY1334 and HKY1336) used above were 

grown to the logarithmic phase and were either retained at 25°C or shifted to 37°C for 1 hour. 

Est2 was precipitated by using anti-FLAG antibodies and Yku70 was detected through 

western blot analyses by using anti-Yku70 antibodies. Additionally, the total cell lysates were 

used as input controls; Zwf1 was used as loading control and was detected by using 

anti-Zwf1 antibodies. The ratio of Yku70 to Est2 at 37°C were primarily compared to that at 

25°C and subsequently set into relation with that of wild type. 

The result shows that, in the case of no TLC1 export defect, the interaction of Est2 with 

Yku70 is similar in the export defective mutants and the wild type at 25°C. However, this 

interaction is reduced upon a temperature shift (∼60% in xpo1-1, ∼41% in rat8-2 and ∼59% 

in mex67-5, respectively) suggesting that the TLC1 cytoplasmic deficiency leads to an 

impairment of the telomerase assembly in xpo1-1 and the mRNA export mutants. 
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Figure 4.1.11 The interactions between Est2 and Yku70 are reduced due to the TLC1 nuclear 

export block. All indicated strains were grown to the logarithmic phase and were either retained at 

25°C or shifted to 37°C for 1 hour. Est2 was precipitated through mouse anti-FLAG antibodies. Est2 and 

its interacted Yku70 were analysed via western blot analyses (upper panel). Est2 was detected by 

anti-FLAG antibodies and Yku70 was detected by anti-Yku70 antibodies. Total cell lysates were used as 

input controls. Zwf1 was detected by anti-Zwf1 antibodies and was used as the loading control. The 

amount of Est2 was compared to that of Yku70. These ratios were set into relation to that of the wild 

type and were shown in the diagram (lower panel). At least three independent experiments were done, 

one of which is shown in the upper panel. The error bars indicate the standard deviation. P-value was 

calculated using two-tailed, paired t-test (*: 0.01p0.05; **: 0.001p0.01)  
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4.1.3 Analyses of the mex67-5 xpo1-1 double mutant on TLC1 

nuclear export 

4.1.3.1 The mex67-5 xpo1-1 double mutant shows a stronger 

TLC1 nuclear accumulation and an increased rate of TLC1 

processing 

Since both of Crm1/Xpo1 and Mex67 were identified to mediate TLC1 nuclear export, an 

enhancement of the TLC1 nuclear export block would be expected if both pathways were 

simultaneously mutated. Fluorescent in situ hybridisation experiments were performed to 

identify the localisation of TLC1 in the mex67-5 xpo1-1 double mutant (figure 4.1.12). In 

addition, to distinguish the export block from an increased nuclear import of TLC1, the 

yku70 background mentioned in section 4.1.1.1 was also used in these experiments.  

All strains wild type (HKY381), yku70 (HKY1073), xpo1-1 yku70 (HKY1444), mex67-5 

yku70 (HKY1397) and xpo1-1 mex67-5 yku70 (HKY1445) were grown to the logarithmic 

phase at 25 °C before they were shifted to 37°C for 1 hour. TLC1 was detected by using Cy3 

labelled specific TLC1 oligo probe (HK1761, HK1789 and HK1790). The nuclear/total signal 

ratios (N/T) were calculated through comparing the nuclear signals to the total cellular 

signals of TLC1 and the ratios were subsequently set into relation to that of yku70.  

Strikingly, in the double mutant an increased level of TLC1 nuclear accumulation (∼2.4 fold 

N/T signal ratio compared to yku70) is observed in contrast to the mutant containing any 

defective single pathway (∼1.8 fold N/T signal ratio compared to yku70 in xpo1-1 and ∼1.9 

fold N/T signal ratio compared to yku70 in mex67-5) (figure 4.1.12). This result suggests a 

combined action of both factors on transporting TLC1. 

Furthermore, as mentioned in 4.1.1.4, although the TLC1 nuclear export block does not alter 

the procedure of the TLC1 processing, it changes the rate of the processing of TLC1. In the 

TLC1 export mutants, more TLC1 undergoes processing than in wild type. Therefore, an even 

higher rate of the processing of TLC1 would be expected in the double mutant xpo1-1 
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mex67-5 than in the single mutants. To test this, qRT-PCR analyses were performed to 

examine the effect of the double mutant xpo1-1 mex67-5 on the processing of TLC1 (figure 

4.1.13). 

All strains, wild type (HKY381), xpo1-1 (HKY206), mex67-5 (HKY644) and xpo1-1 mex67-5 

(HKY1353) were grown to the logarithmic phase and shifted to 37°C for 1 hour. RNA was 

extracted from the whole cell lysates. The total TLC1 and the unprocessed TLC1 were 

Figure 4.1.12 Fluorescent in situ hybridisation experiments show an increased nuclear 

mislocalisation of TLC1 in the double mutant xpo1-1 mex67-5. The indicated strains were 

grown to the logarithmic phase and were shifted to 37°C for 1 hour. TLC1 was detected by specific 

Cy3 labeled oligo TLC1 probes (HK1761, HK1789, HK1790) (red) (top panel). The nuclei were stained 

with hoechst33342 (blue). The ratios between nuclear TLC1 signal and total TLC1 signal were 

calculated. The ratios were set into relation to that of yku70 and were showed in the diagram 

(bottom panel). At least 20 cells were quantified for each condition. At least three independent 

experiments were done, one of which is shown in the upper panel. Error bars indicate the standard 

deviation. The P-value was calculated using two-tailed, unpaired t-test (***: 0.0001p0.001; ****: 

p0.0001). 
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quantified by qRT-PCR with specific primer pairs HK1385+HK1386 and HK1382+HK1384 as 

mentioned in section 4.1.1.4. Furthermore, as the reference, the U6 snRNAs were quantified 

by using the primer pair HK1404+HK1405. To evaluate the transcription levels of the total 

TLC1, the amount of the total TLC1 was compared to that of the U6 snRNA and the ratios 

were set into relation to that of the wild type (figure 4.1.13A). The processing of TLC1 was 

evaluated by comparing the amount of the unprocessed TLC1 to that of the total TLC1 and 

the ratios were also set into relation to that of wild type (figure 4.1.13B).  

The results (figure 4.1.13) indicate that in the mex67-5 xpo1-1 double mutant, the amount of 

the total TLC1 was slightly reduced (∼82% of the wild type amount). Nevertheless, the ratio 

of the unprocessed TLC1 to the total TLC1 is dramatically reduced (∼3% of the wild type 

level) in contrast to any one of the single mutants (∼17% in xpo1-1 and ∼30% in mex67-5, of 

the wild type level) (figure 4.1.13B). Considering that in wild type only 5-10% of the 

unprocessed TLC1 exists in the total TLC1, ∼3% unprocessed TLC1 of the wild type level in 

xpo1-1 mex67-5 indicates that the vast majority of TLC1 (more than 99%) undergoes 

processing in the xpo1-1 mex67-5 double mutants. These results point out that the xpo1-1 

mex67-5 double mutant shows a similar but even stronger phenotype on TLC1 processing 

than the single mutants, xpo1-1 or mex67-5. These results also suggest that the processing 

of TLC1 occurs prior to its nuclear export. 
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Figure 4.1.13 The xpo1-1 mex67-5 double mutant shows a higher TLC1 processing rate than 

the single mutants, xpo1-1 and mex67-5. All indicated strains were grown to the logarithmic phase 

and shifted to 37°C for 1 hour. The total TLC1 and the unprocessed TLC1 were quantified with specific 

primer pairs (HK1385+HK1386 for total TLC1, HK1382+HK1384 for unprocessed TLC1) through 

qRT-PCR. The U6 snRNA was quantified as reference by using the primer pair HK1404+HK1405. (A) The 

transcription levels of the total TLC1 were calculated through comparing the amount of the total TLC1 

to that of the U6 snRNA. The ratios were set into relation to that of the wild type. (B) The TLC1 

processing rates were calculated through comparing the amount of the unprocessed TLC1 to that of 

the total TLC1. The ratios were set into relation to that of the wild type. At least three independent 

experiments were done. Error bars indicate the standard deviation. P-value was calculated using 

two-tailed, paired t-test (*: 0.01p0.05) 
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4.1.3.2 The cytoplasmic mislocalisation of a telomerase 

component is increased in the xpo1-1 mex67-5 double mutant 

Since TLC1 export defect leads to cytoplasmic mislocalisation of the telomerase components, 

a stronger mislocalisation would be expected in the xpo1-1 mex67-5 double mutant. To test 

this hypothesis, immunofluorescence experiments were performed to examine the 

localisation of the telomerase component, Est1 (figure 4.1.14).  

All strains EST1-3xMYC (wild type, HKY1463), EST1-3xMYC xpo1-1 (HKY1464), EST1-3xMYC 

mex67-5 (HKY1465) and EST1-3xMYC xpo1-1 mex67-5 (HKY1466) were grown to the 

logarithmic phase and were subsequently either retained at 25°C or shifted to 37°C for 1 

hour. Myc tagged Est1 was detected by mouse anti-myc antibodies and sheep 

anti-mouse-AlexFluor488 secondary antibodies. In addition to the immunofluorescence 

experiments, the cells were imaged through 6-10 z-stacks (0.2m/stack) followed by 

deconvolution to acquire sharper and more focussed images .  

The results show that the Est1 proteins are localised to the nucleus at 25°C and 37°C in the 

wild type. In contrast to that, in xpo1-1, mex67-5 as well as the xpo1-1 mex67-5 double 

mutant, the Est1 proteins are distributed in the cytoplasm upon a temperature shift to 37°C. 

Furthermore, in contrast to ∼34% and ∼37% nuclear signal reduction in xpo1-1 and mex67-5, 

respectively, an increased reduction (∼58%) is found in the xpo1-1 mex67-5 double mutant 

upon the temperature shift to 37°C. This suggests an increased mislocalisation of the 

telomerase component in this double mutant. 



92 
 

 

  

Figure 4.1.14 The xpo1-1 mex67-5 double mutant shows stronger cytoplasmic mislocalisation 

of the telomerase component than the single mutants. All indicated strain were grown to the 

logarithmic phase and were either retained at 25°C or shifted to 37°C for 1 hour. With 

immunofluorescence experiments (top panel), Est1-myc was detected by using mouse anti-myc 

antibodies and AlexFluor488 anti-mouse antibodies (green). The nuclei were stained with hoechst33342 

(blue). The cells were imaged through 6-10 stacks (0.2m/stack) followed by deconvolution. To calculate 

the ratio of the nuclear signal of Est1, the nuclear Est1 signal was compared to that of the total Est1 

signals. These ratios at 37°C was further compared to those at 25°C in a given strains and were showed in 

the diagram (bottom panel). For each condition at least 20 cells were calculated. At least three 

independent experiments were done, one of which is shown in the upper panel. Error bars indicate the 

standard deviation. P-value was calculated according to two-tailed, unpaired t-test (****: p0.0001). 



93 
 

4.1.3.3 Telomere maintenance is impaired in the double mutant 

xpo1-1 mex67-5 

All of the findings shown above indicate that the xpo1-1 mex67-5 double mutant shows a 

stronger TLC1 nuclear export defect and an increased mislocalisation of the telomerase 

component. On the other side, these results additionally suggest a function of the mRNA 

export factor on TLC1 nuclear export. These results also support a coordination between the 

mRNA export pathway and the Crm1/Xpo1 pathway on TLC1 nuclear export. Although all 

these results support that TLC1 nuclear export utilises both the mRNA export and the 

Xpo1/Crm1 pathways, there is no telomere shortening found in any of the mutants of these 

export factors alone. Since the xpo1-1 mex67-5 double mutant shows a very strong TLC1 

export defect, it would be expected that telomere maintenance would also be impaired in 

this mutant. To test this hypothesis, southern blot experiments were performed to detect 

telomere length in this mutant (figure 4.1.15). 

The strains wild type (HKY381), yku70 (HKY1073), xpo1-1 (HKY206), mex67-5 (HKY644) and 

xpo1-1 mex67-5 (HKY1353) were used for the southern blot experiments. Importantly, the 

temperature sensitive mutants expose their phenotypes only under non-permissive 

conditions, which are lethal. Therefore, the semi-permissive temperature of 32°C, which was 

the highest temperature that allowed growth of the xpo1-1, mex67-5 double mutants, was 

used for cultivating the strains. Cells were initially grown at 25°C to the concentration of 

1108 cells/ml and were regarded as the 0th generations. The cells were diluted 1:1000 into 

fresh media and grown again to the concentration of 1108 cells/ml at 32°C. These cells were 

regarded as the cells that were grown for 10 generations. The cells were grown at 32°C for 0, 

30, 60 generations. The genomic DNA was extracted from the cells prior to an XhoI digestion. 

The digested genomic DNA was separated on 1.2% agarose gels and transferred onto nylon 

membranes. The telomeric DNA was hybridised to a specific DIG labelled telomeric probe 

(HK1539) and detected by using DIG-High Prime DNA Labeling and Detection Starter Kit II 

from Roche.  

Furthermore, to exclude the possibility that the telomere shortening phenotype in these 
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mutants might be caused by expression defects of the telomerase components, western 

analyses was carried out to examine the protein levels of the telomerase components. For 

western analyses, the strains EST1-3xMYC (wild type, HKY1463), EST1-3xMYC xpo1-1 

(HKY1464), EST1-3xMYC mex67-5 (HKY1465) and EST1-3xMYC xpo1-1 mex67-5 (HKY1466) 

were used for examining the protein levels of Est1. The strains EST2-3xMYC (wild type, 

HKY1467), EST2-3xMYC xpo1-1 (HKY1468), EST2-3xMYC mex67-5 (HKY1469) and EST2-3xMYC 

xpo1-1 mex67-5 (HKY1470) were used to examine the protein levels of Est2. All strains were 

grown to the logarithmic phase at 32°C. The protein levels of Est1 and Est2 were detected by 

using mouse anti-myc antibodies and anti-mouse-HRP antibodies. Hem15 that was also used 

in section 4.2.1.3 served as the reference and detect by rabbit anti-Hem15 antibodies and 

anti-rabbit-HRP antibodies. 

Strikingly, the southern blot experiments indicate that the xpo1-1, mex67-5 double mutant 

shows a clear telomere shortening after growing for about 30 generations at 32°C and this 

Figure 4.1.15 The xpo1-1 mex67-5 double mutant shows an impaired telomere 

maintenance at 32°C. (A) The indicated strains were used for the southern blot experiments. Cells 

that were grown to the concentration of 1108 cells/ml were diluted 1:1000 into fresh media and 

grown again to the concentration of 1108 cells/ml at 32°C. These cells were regarded as the cells that 

were grown for 10 generations. The cells were grown at 32°C for 0, 30, 60 generations. The genomic 

DNA was extracted and XhoI digested. With southern blot experiments, the DNA that was hybridised 

to the DIG labeled telomeric oligo probes (HK1539) was detected by anti-DIG-AP antibodies and CSPD 

(Roche). The figure shows telomeres containing Y’-subtelomeres. (B) The indicated strains were grown 

to the logarithmic phase at 32°C. The protein levels of Est1 and Est2 were detected by using mouse 

anti-myc antibodies and anti-mouse-Hrp antibodies. Hem15 was used as loading control and was 

detected by using anti-Hem15 antibodies. At least three independent experiments were done, one of 

which is shown here. 
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shortening is even enhanced after around 60 generations (figure 4.1.15A). In contrast to that, 

the mex67-5 mutant shows no telomere shortening and the xpo1-1 mutant shows very mild 

telomere shortening. Besides, the western blot experiments show that Est1 and Est2 are not 

degraded at 32°C in all strains (figure 4.1.15B). In addition, a stable TLC1 transcription level at 

32°C was also identified (Daniel Becker and Heike Krebber). These results indicate that the 

TLC1 export defects lead to defective telomere maintenance. From these experiments, 

genetic evidence is also obtained, supporting that the mRNA export pathway cooperates 

with Crm1/Xpo1 to mediate the nuclear export of TLC1. 
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4.1.3.4 Xpo1/Crm1 is directly involved in TLC1 nuclear export 

Since xpo1-1 indirectly leads to mRNA nuclear export defect (AskjaerStade et al., 1997), 

whether xpo1-1 leading to TLC1 nuclear accumulation is direct remains unclear. To answer 

this question, fluorescent in situ hybridisation and southern blot experiments were 

performed (figure 4.1.16). 

Overexpression of DBP5/RAT8 is able to rescue the mRNA export defect of xpo1-1 (Hodge et 

al., 1999). To identify the role of Xpo1/Crm1 on transporting TLC1, an overexpression plasmid 

of DBP5/RAT8 was used to rescue the mRNA nuclear export in xpo1-1. This plasmid 

contained the DBP5/RAT8 gene under control of a galactose promoter (pGAL1-RAT8-MYC, 2, 

URA3, pHK649) and was used for transforming the strains wild type (HKY381), yku70 

(HKY1073), xpo1-1 yku70 (HKY1444), mex67-5 yku70 (HKY1397) and xpo1-1 mex67-5 

yku70 (HKY1445). Fluorescent in situ hybridisation experiments were performed in the 

transformed strains (figure 4.1.16A). All strains were initially inoculated in raffinose 

containing media. Galactose or glucose is used as carbon source and for inducing or 

repressing the overexpression of DBP5/RAT8 from the plasmid, respectively. The induced or 

repressed strains were grown overnight to the logarithmic phase and shifted to 37°C for 1 

hour. Poly(A)+ RNA or TLC1 molecules were detected by using a Cy3-oligod(T)50 probe 

(Biospring) or Cy3 labelled specific TLC1 oligo probes (HK1761, HK1789, HK1790).  

In addition, southern blot experiments were carried out to identify the length of the 

telomeres in the double mutant xpo1-1 mex67-5 in the presence of overexpressed 

DBP5/RAT8 (figure 4.1.16B). All strains wild type (HKY381), yku70 (HKY1073), xpo1-1 

(HKY206), mex67-5 (HKY644) and xpo1-1 mex67-5 (HKY1353) were transformed with the 

plasmid pHK649 (pGAL1-RAT8-MYC, 2, URA3). Transformed strains were grown at 32 °C 

with addition of either glucose or galactose for about 60 generations. The cells were 

harvested and the southern blot experiments were performed as mentioned in section 

4.1.3.3. 

The fluorescent in situ experiments show that although defect of poly(A)+ RNA export is 

rescued in xpo1-1 by overexpression of DBP5/RAT8, the TLC1 nuclear mislocalisation still 
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remains, indicating that the defect of TLC1 translocation in xpo1-1 is due to its impaired 

Crm1/Xpo1 function rather than the improper regulation of mRNA export. The southern blot 

experiments show that suppression of the xpo1-1 phenotype does not rescue the defect in 

telomere maintenance caused by the xpo1-1, mex67-5 double mutants. These findings 

further provide evidence that unlike mRNA nuclear export, Crm1/Xpo1 is directly involved in 

TLC1 nuclear export.  

Figure legend see next page 
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Figure 4.1.16 Overexpression of DBP5/RAT8 does not rescue the TLC1 nuclear 

accumulation in xpo1-1 and the telomere shortening in the xpo1-1 mex67-5 double 

mutants. (A) All indicated strains were transformed with the plasmid pHK649 (pGAL1-RAT8-MYC, 

2, URA3). Fluorescent in situ hybridisation experiments were performed in the transformed strains. 

All strains were initially inoculated in raffinose containing media. Overexpression of DBP5/RAT8 was 

either induced or repressed in all strains overnight by adding galactose or glucose, respectively. The 

strains were grown to the logarithmic phase and shifted to 37°C for 1 hour. Poly(A)+ RNA or TLC1 

molecules (red) were detected by using Cy3-oligod(T)50 probe (Biospring) or Cy3 labelled specific 

TLC1 oligo probes (HK1761, HK1789, HK1790). The nuclei were stained with hoechst33342 (blue). 

(B) The cells were grown at 32 °C in the presence of either glucose or galactose for about 60 

generations. The genomic DNA was extracted and XhoI digested. With southern blot the DNA that 

was hybridised to the DIG labeled telomeric oligo probes (HK1539) was detected by anti-DIG-AP 

antibodies and CSPD (Roche). Figure shows telomeres containing Y’-subtelomeres. At least three 

independent experiments were done, one of which is shown here. 
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4.2 The processing of TLC1 

4.2.1 The transcription and processing defects of TLC1 in the 

mtr10 strain is not due to its effect on TLC1 transport 

Mtr10 is a nuclear import receptor that mediates TLC1 nuclear import (Ferrezuelo et al., 

2002). Previous investigation showed that the transcription level of TLC1 was greatly reduced 

in mtr10 (Ferrezuelo et al., 2002), suggesting a feedback effect of the nuclear import of 

TLC1 might regulate its transcription. To test this hypothesis, qRT-PCR experiments were 

performed in the TLC1 mislocalisation mutants (figure 4.2.1).  

In addition to the mtr10 strain, other knockout strains that showed cytoplasmic 

mislocalisation of TLC1 (Ferrezuelo et al., 2002; Gallardo et al., 2008) were also used in the 

experiments. All strains wild type (HKY381), est2 (HKY1072), yku70 (HKY1073), tel1 

(HKY1075), mre11 (HKY1077), mtr10 (HKY82) and pdr6 (HKY209) were grown to the 

Figure 4.2.1 Quantification of TLC1 transcription and processing in the mutants that show a 

cytoplasmic mislocalisation of TLC1. All indicated strains were grown to the logarithmic phase and the 

total RNAs were extracted. The amounts of the total TLC1, the unprocessed TLC1 and the U6 snRNA were 

measured via qRT-PCR by using specific primer pairs HK1385+HK1386, HK1382+HK1384 and 

HK1404+HK1405 respectively. (A) To evaluate the TLC1 transcription level, the amount of the total TLC1 was 

compared to that of the U6 snRNA and the ratios were set into relation with that of the wild type. (B) To 

evaluate TLC1 processing rates, the amount of the unprocessed TLC1 was compared to that of the total 

TLC1 and the ratios were set into relation with that of the wild type. At least three independent 

experiments were done. Error bars indicate the standard deviation. P-value was calculated according to 

two-tailed, paired t-test (**: 0.001p0.01; ***: 0.0001p0.001). 
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logarithmic phase and the total RNA was extracted from the cells. The amount of the total 

TLC1 and unprocessed TLC1 was quantified by using qRT-PCR with the primer pair 

HK1385+HK1386 and HK1382+HK1384, respectively. The U6 snRNA was quantified as a 

transcription control by using the primer pair HK1404+HK1405 as mentioned in section 

4.1.1.4. To evaluate the transcription levels of TLC1, the amount of the total TLC1 were 

compared to that of the snRNA U6 and the ratios were set into relation to that of the wild 

type. To evaluate the processing of TLC1, the amount of unprocessed TLC1 was compared to 

that of the total TLC1 and the ratios were set into relation to that of the wild type. 

Unexpectedly, the experiments show that although all these factors are involved in the TLC1 

nuclear import, Mtr10 is the only factor that affects the transcription of TLC1. Besides, the 

mtr10 strain possesses not only a TLC1 transcription level reduction, but also an impaired 

TLC1 processing. These defects are not found in the other mutants that affect TLC1 

localisation. Therefore, this result suggests a unique function of Mtr10 in TLC1 transcription 

and processing within these factors. Since Mtr10 is known as a nuclear import receptor 

(Senger et al., 1998), it can be proposed that unlike the other factors, Mtr10 might import 

not only the telomerase complex, but also factors necessary for TLC1 transcription and 

processing, into the nucleus. 
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4.2.2 The factors involved in TLC1 processing are identified by 

qRT-PCR analyses 

The results from section 4.1.1.4 and 4.1.3.1 suggest that TLC1 maturation might be 

completed in the nucleus. Therefore, it can also be concluded that TLC1 maturation is 

mediated by the nuclear RNA processing factors. To identify which factors mediate TLC1 

processing, qRT-PCR analyses were performed (figure 4.2.2).  

The experiments were performed by using the mutants of the nuclear RNA processing 

factors, e.g. components of the ribonuclease, components of the TRAMP complex and the 

splicing factors, etc. After all strains were grown to the logarithmic phase, wild type (HKY381) 

Figure 4.2.2 Potential TLC1 processing factors are identified by using qRT-PCR experiments. 

All indicated strains were grown to the logarithmic phase. Wild type (HKY381), mtr4-G677D (HKY428), 

prp4-1 (HKY305), prp16-2 (HKY306), prp8 908_909 (HKY1008) were shift to 37°C for 1 hour and rrp6 

(HKY1028), trf4 (HKY1112), trf5 (HKY1236), air1 (HKY1237), air2 (HKY1038), exo1 (HKY1094), 

swt1 (HKY1111) were incubated at 25°C. The total RNAs were extracted from the cells. The qRT-PCR 

analyses were performed to measure the amount of total TLC1 and unprocessed TLC1 with the primer 

pairs HK1385+HK1386 and HK1382+HK1384, respectively. To evaluate TLC1 processing, the amounts of 

unprocessed TLC1 were compared to those of the total TLC1 and the ratios were set into relation to the 

wild type. At least three independent experiments were done. Error bars indicate the standard 

deviation. P-value was calculated according to two-tailed, paired t-test (*: 0.01p0.05; **: 

0.001p0.01). 
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and the temperature sensitive mutants mtr4-G677D (HKY428), prp4-1 (HKY305), prp16-2 

(HKY306) and prp8 908_909 (HKY1008) were shifted to 37°C for 1 hour. The knockout strains 

rrp6 (HKY1028), trf4 (HKY1112), trf5 (HKY1236), air1 (HKY1237), air2 (HKY1038), 

exo1 (HKY1094), swt1 (HKY1111) and prp18 (HKY948) were incubated at 25°C. Total RNA 

was extracted from these strains and further used for the qRT-PCR analyses. In qRT-PCR, the 

primer pair HK1385+HK1386 was used to measure the total TLC1 and the primer pair 

HK1382+HK1384 was used to measure the unprocessed TLC1. To evaluate the processing of 

TLC1, the amount of the unprocessed TLC1 was compared to that of the total TLC1 and the 

ratios were set into relation to that of the wild type. 

The results indicate that unlike telomerase RNA in Schizosaccharomyces pombe (Box et al., 

2008) and Trypanosoma brucei (Sandhu et al., 2013), TLC1 does not undergo splicing in S. 

cerevisiae. In addition, Swt1, an RNA endonuclease involved in RNA turnover in the nucleus 

(Skruzny et al., 2009), and Exo1, an exonuclease mainly responsible for DNA recombination 

(Fiorentini et al., 1997; Tran et al., 2002), show no influence on the processing of TLC1. In 

contrast, clear defects of the processing of TLC1 are shown in the TRAMP component 

mutants (mtr4-G677D, trf4) as well as the nuclear exosome component knockout strain 

(rrp6). Consistently, recent published data also show that Rrp6 and Lrp1 are involved in the 

processing of TLC1 (Coy et al., 2013). 

The yeast nuclear exosome is composed of the exo-10 core complex, Rrp6 and Lrp1 

(Synowsky et al., 2009). So far, no data are available to show if the catalytic core component 

of the exo-10 complex, Dis3 (Mitchell et al., 1997), is involved in the processing of TLC1. 

Besides, since Dis3 possesses both endo- and exo-nuclease activities (Mitchell et al., 1997), it 

is also unclear which activity of Dis3 could be responsible for the processing of TLC1. To 

answer these questions, qRT-PCR experiments were performed (figure 4.2.3). 

Using the strain (GAL::dis3, HKY1290) in which the genomic DIS3 promoter was replaced by a 

GAL promoter, expression of DIS3 is able to be repressed by glucose (Schneider et al., 2009). 

The strain wild type (HKY381) and GAL::dis3 (HKY1290) were initially inoculated in galactose 

containing media. The GAL::dis3 culture was divided into two equal portions. One portion of 

the GAL::dis3 culture and the wild type culture were kept in galactose containing media and 
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grown for 24 hours to the logarithmic phase. Glucose was added to the other portion of the 

GAL::dis3 culture and it was also grown for 24 hours to the logarithmic phase. Total RNA was 

extracted from the cells. Total TLC1 and unprocessed TLC1 were quantified by qRT-PCR with 

the primer pairs HK1385+HK1386 and HK1382+HK1384, respectively. The U6 snRNA was 

used as the reference RNA and quantified with the primer pair HK1404+HK1405. TLC1 

Figure 4.2.3 Dis3 is involved in the processing of TLC1 and this activity might be mainly 

from its exonuclease activity. (A, B) The indicated strains were grown in galactose containing 

media. Half of the GAL::dis3 cells and the wild type cells were kept in galactose containing media 

and grown for 24 hours to the logarithmic phase. The other half of the GAL::dis3 cells were grown in 

glucose containing media for 24 hours to the logarithmic phase. Total TLC1 and unprocessed TLC1 

were quantified by qRT-PCR with the primer pairs HK1385+HK1386 and HK1382+HK1384, 

respectively. The U6 snRNA was used as the reference RNA and quantified with the primer pair 

HK1404+HK1405. TLC1 transcription levels were calculated through the ratios of the total TLC1 to 

the U6 snRNAs (A). The processing of TLC1 was evaluated through the ratios of the unprocessed 

TLC1 to the total TLC1 (B). (C, D) Wild type strain (HKY381) bearing empty vector (pRS315-LEU2, 

pHK87) and the strain GAL::dis3 (HKY1290) bearing empty vector (pHK87), or one of the three 

plasmids (pDIS3-exo, pHK1353; pDIS3-endo, pHK1354; pDIS3-exo-endo, pHK1355) were cultivated in 

galactose containing media. Subsequently expression of wild-typic DIS3 gene in GAL::dis3 strains is 

repressed by adding glucose for 24 hours. TLC1 transcription (C) and processing (D) were evaluated 

as mentioned above. At least three independent experiments were done. Error bars indicate the 

standard deviation. P-value was calculated according to two-tailed, paired t-test (**: 0.001p0.01; 

***: 0.0001p0.001). 
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transcription and processing were evaluated (figure 4.2.3 A,B) as mentioned in section 

4.1.1.4.  

Furthermore, three plasmids were used to identify the functional domain of Dis3 for the 

processing of TLC1. All three plasmids contain mutated DIS3 genes. One plasmid (pDIS3-endo, 

LEU2, pHK1354) produces defective Dis3 proteins without its endo-nuclease activity; one 

plasmid (pDIS3-exo, LEU2, pHK1353) produces defective Dis3 proteins without its 

exo-nuclease activity; and the third plasmid (pDIS3-exo-endo, LEU2, pHK1355) produces 

defective Dis3 proteins without both endo- and exo-nuclease activities (Schneider et al., 

2009). The wild type strain (HKY381) was transformed with the empty vector (pRS315-LEU2, 

CEN, pHK87) and the strain GAL::dis3 (HKY1290) was transformed with the empty vector 

(pHK87), or one of the three plasmids (pHK1353, pHK1354, pHK1355). All these transformed 

strains were initially inoculated in galactose containing media. Subsequently glucose was 

added to the cultures to repress the expression of the wild-typic DIS3 gene in the GAL::dis3 

strains. The strains were cultivated for 24 hours in this media and grown to the logarithmic 

phase. Total RNA was extracted from the cells. TLC1 transcription and processing were 

evaluated (figure 4.2.3 C,D). 

The qRT-PCR analyses show that the processing of TLC1 is defective upon repression of DIS3 

expression, suggesting a role of Dis3 in the processing of TLC1 (figure 4.2.3A, B). Furthermore, 

the results also indicate that only in the DIS3-exo mutants, the processing of TLC1 is impaired, 

suggesting the involvement of the exonuclease activity of Dis3 in this procedure (figure 

4.2.3C, D). In addition, the DIS3-exo mutant shows a similar level of impairment of the 

processing of TLC1 as shown in the DIS3-endo-exo strain and the DIS3 expression repressed 

strain (GAL::dis3 in glucose containing media), further pointing out that the catalytic function 

of Dis3 on the processing of TLC1 is specific from its exo-nuclease activity rather than the 

endo-nuclease activity. 
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4.2.3 The factors involved in the processing of TLC1 are 

mis-localised in the mtr10 mutant 

Previously published data (Coy et al., 2013) show that the nuclear exosome and the TRAMP 

complex might be involved in the processing of TLC1. This opinion is also supported by our 

results in section 4.2.2. Furthermore, the results from section 4.2.1 suggest that Mtr10 

might transport factors that are necessary for the processing of TLC1. Therefore, 

immunofluorescence experiments were performed to identify the localisation of the nuclear 

exosome components and the TRAMP complex components in mtr10 (figure 4.2.13).  

In the immunofluorescence experiments, wild type (HKY381) and mtr10 (HKY82) cells were 

Figure 4.2.4 Trf4 and Mtr4 are mis-localised in mtr10. The strains wild type (HKY381), mtr10 

(HKY82), npl3 (HKY380) and pdr6 (HKY309) bearing the plasmid pTRF4-MYC (pHK1238) or pMTR4-MYC 

(pHK1240) were grown to the logarithmic phase. Myc tagged Trf4 or Mtr4 was detected by mouse anti-myc 

antibodies and AlexaFluor488 anti-mouse antibodies (green). The nuclei were stained with hoechst33342 

(blue). Merged figures are used for co-localisation study. At least three independent experiments were 

done, one of which is shown here. 
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used. Besides, since Pdr6 is involved in TLC1 nuclear import and Npl3 is one of the Mtr10 

nuclear import targets, pdr6 (HKY309) and npl3 (HKY380) were also used in the 

experiments. The strains were transformed with pTRF4-MYC (pHK1238) or pMTR4-MYC 

(pHK1340) plasmids. Transformed strains were grown to the logarithmic phase. Myc tagged 

proteins were detected with mouse anti-myc antibodies and AlexaFluor488 sheep 

anti-mouse secondary antibodies. Nuclei were stained with hoechst33342.  

The results show that in the wild type, Trf4 and Mtr4 are located to the nucleus, indicating 

that they are nuclear proteins. In contrast, in the mtr10 strain these factors are 

mislocalised to the cytoplasm, suggesting that Mtr10 mediates their nuclear import. 

Furthermore, this mislocalisation is unique for mtr10 since the other nuclear receptors, e.g. 

Pdr6, or the Mtr10 transport target, Npl3, do not cause this mislocalisation. In addition, 

mislocalisation of Dis3 in mtr10 was also identified (Lea Steffen and Heike Krebber). These 

findings indicate a unique function for Mtr10 in transporting the nuclear exosome 

components and the TRAMP complex components. 
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4.2.4 Mtr10 physically interacts with factors that are involved 

in the processing of TLC1 

The studies of localisation of the TRAMP complex components and the nuclear exosome 

component show that these factors are mislocalised to the cytoplasm in mtr10. This finding 

suggests potential physical interactions between Mtr10 and these factors. To identify the 

interactions, co-immunoprecipitation experiments were performed (figure 4.2.5).  

The wild type strain (HKY381) and the DIS3-GFP (HKY1172) strain were transformed with the 

plasmids pMTR10-TAP (pHK413) and pTRF4-MYC (pHK1238). Transformed strains were 

grown to the logarithmic phase. Mtr10-TAP was precipitated using IgG coupled sepharose 

Figure 4.2.5 Mtr10 interacts with the TRAMP complex components and an exosome 

component. The strains wild type (HKY381) and DIS3:GFP (HKY1172) were transformed with 

the plasmids pMTR10-TAP (pHK413) and pTRF4-MYC (pHK1238). Mtr10-TAP was precipitated by 

using IgG coupled sepharose beads (GE Healthcare) in the presence of RNaseA (0.1mg/ml). Its 

interaction partners were analysed by western blots. The whole cell lysates were used as input 

controls. Dis3-GFP was detected by anti-GFP antibodies. Trf4-myc was detected by anti-myc 

antibodies. Mtr4 was detected by anti-Mtr4 antibodies. Mtr10 is detected by any of these 

antibodies. Zwf1 was used as loading and washing control and was detected by anti-Zwf1 

antibodies. At least three independent experiments were done, one of which is shown here. 
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beads (GE Healthcare). RNaseA (final concentration: 0.1mg/ml) was used during the 

experiments to remove potential RNA mediated interactions. The eluates were analysed by 

western blots. Dis3 was detected by using anti-GFP antibodies and Trf4 was detected by 

using anti-myc antibodies and Mtr4 was detected by using anti-Mtr4 antibodies and Mtr10 is 

detected by any of these antibodies. Zwf1, a cytoplasmic protein used in section 4.1.1.2, was 

used as the loading control and detected by using anti-Zwf1 antibodies. 

The results show physical interactions between Mtr10 and these exosome or TRAMP 

complex components. These findings support that both TRAMP complex components and an 

exosome component are transported via Mtr10. Moreover, these findings also indicate that 

the processing and transcription of TLC1 in mtr10 could be due to the transport defects of 

the TRAMP components and the exosome component. 
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4.3 Conclusions 

This thesis led to a better understanding of the life cycle of TLC1.  

Fluorescent in situ hybridisation experiments identified that TLC1 accumulates in the nucleus 

of the mRNA export mutants, suggesting that not only known Xpo1/Crm1, but also the 

mRNA export factors are involved in TLC1 nuclear export. This finding is further supported by 

the cell fractionation experiments showing cytoplasmic TLC1 deficiency in the mRNA export 

mutants and by the co-immunoprecipitation experiments showing physical interactions 

between TLC1 and the mRNA export factors. Furthermore, the RNA co-immunoprecipitation 

and qRT-PCR analyses indicate that the processing of TLC1 is completed in the nucleus and 

the subsequent nuclear export is mediated by the cooperation of Xpo1/Crm1 and the mRNA 

export factors. In addition, immunofluorescence and immunoprecipitation experiments 

show that the TLC1 nuclear export defect impairs the formation of the telomerase complex 

and the localisation of the telomerase components. Moreover, the xpo1-1 mex67-5 double 

mutant shows a stronger TLC1 nuclear export defect, an increased TLC1 processing rate and 

an enhanced mislocalisation of the telomerase components than in the single mutants, 

supporting a model in which Xpo1/Crm1 and the mRNA export factors cooperate to 

transport TLC1. In support of these findings, in the xpo1-1 mex67-5 double mutant a 

telomere maintenance defect is observed confirming the genetic interaction between 

Xpo1/Crm1 and Mex67. Finally, the fluorescent in situ hybridisation and southern blot 

experiments show that Xpo1/Crm1 is directly involved in TLC1 nuclear export. 

Furthermore, qRT-PCR experiments reveal the transcription and processing defects of TLC1 in 

mtr10 and propose that in addition to TLC1 transport, Mtr10 might possess a unique 

function in the transcription and processing of TLC1. QRT-PCR experiments further show that 

mutations of the genes of the TRAMP complex components and the exosome component 

lead to defects in the processing of TLC1, suggesting involvements of these factors in the 

processing of TLC1. Further immunofluorescence experiments show cytoplasmic 

mislocalisations of the TRAMP complex components and the exosome component in mtr10, 

logically connecting these proposals and suggesting a possibility of the transport of these 
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factors via Mtr10. In support of this hypothesis, the physical interaction studies reveal the 

interactions between Mtr10 and the TRAMP complex components or the exosome 

component. 

Taken together, our knowledge about the transport and maturation of TLC1 is extended and 

the model of the life cycle of TLC1 is demonstrated in figure 4.3.1. 

 

  

Figure 4.3.1 Model of the transport and maturation of TLC1. TLC1 is generated by RNA 

polymerase II with a m7G cap structure and a poly(A)+ tail. The binding of the Sm7 Ring complex to its Sm 

binding site triggers the hypermethylation of the cap structure by Tgs1. Besides, the Sm7 binding also 

leads to a 3’-end trimming performed through the combination of the Nrd1-Nab3 complex, the nuclear 

exosome and probably the TRAMP complex. After maturation, TLC1 is exported to the cytoplasm via the 

combination of the Crm/Xpo1 and mRNA export factors. In the cytoplasm, TLC1 assembles the 

telomerase components to form the telomerase complex. Telomerase is re-imported into the nucleus by 

Mtr10, which might also transport the factors necessary for TLC1 maturation. Finally, in the nucleus, 

telomerase elongates the shortened telomeres to maintain their length and to avoid senescence.   
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5. Discussion and Perspective 

5.1 The life cycle of the telomerase complex 

The life cycle of the telomerase complex begins with the synthesis of the telomerase RNA 

TLC1. TLC1 is generated by RNA polymerase II and polyadenylated like other RNA polymerase 

II products (reviewed in (Gallardo and Chartrand, 2008). However, the association of the Sm7 

complex to its binding site on the 3’ end leads to different processing events than those of 

the mRNAs (Seto et al., 1999). This Sm7 ring complex binding triggers two events: 

Hypermethylation of the 5’ cap structure of TLC1 (Franke et al., 2008) and shortening of its 3’ 

part through the Nab1-Nab3-Sen1 pathway (Noel et al., 2012). Our results have shown that 

mature TLC1 accumulates in the nucleus upon an export block, suggesting that the complete 

maturation of the TLC1 RNA occurs in the nucleus. Nevertheless, the sequential order of 

these two events remains unclear. The only deduction that can be made is that they do not 

occur simultaneously, since the hypermethylation factor, Tgs1, is located in the nucleolus 

(Mouaikel et al., 2002) while Nrd1 and Nab3 are located in the nucleus in Saccharomyces 

cerevisiae (Huh et al., 2003). Moreover, whether these two events are dependent on each 

other is also unknown. Measurement of the processing of TLC1 with qRT-PCR in tgs1 stains 

would help to answer this question. The 3’ processing of TLC1 is performed through a 

pathway that contains a recognition system, which includes the Nab1-Nab3-Sen1 

termination complex (Noel et al., 2012), and a degradation system, which contains the 

nuclear exosome (Coy et al., 2013). The boundary of the degradation is defined by the Sm7 

ring binding site (Coy et al., 2013). Although Dis3 is the only catalytic core component of the 

Exo-10, the remaining components in the Exo-9, are required to recognise the substrate (Das 

and Das, 2013). Which exact component is involved in this TLC1 recognition is another 

interesting topic. Furthermore, the TRAMP complex component knockout strains show TLC1 

processing defects, suggesting that they might be involved in TLC1 processing. This is 

consistent with the findings that the TRAMP complex interacts with the Nab1-Nab3-Sen1 

pathway and is involved in the maturation and degradation of non-coding RNAs (Grzechnik 
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and Kufel, 2008; Tudek et al., 2014).  

The nuclear export of TLC1 is initiated after full maturation. TLC1 export is mediated by the 

Crm1/Xpo1 pathway (Gallardo et al., 2008), and our results demonstrate that this nuclear 

export additionally requires the mRNA export pathway. Such coordination has also been 

reported in the transport of ribosomal subunits (Faza et al., 2012; Yao et al., 2007). Since 

Xpo1 interacts with proteins and needs adaptors to contact the RNA (reviewed in (Doye, 

2014)), such an adaptor for TLC1 nuclear export is unknown yet.  

Upon arrival of mature TLC1 in the cytoplasm, its secondary structure is recognised by the 

telomerase components. However, the serial events in formation of the telomerase 

holoenzyme remain unclear. A previous report has shown that the Est1-TLC1 interaction is 

Est2 and Est3 independent and the nuclear localisation of Est1 is mediated by Srp1, a 

karyopherin alpha (Hawkins and Friedman, 2014). This is different for TLC1, which is 

transported by Mtr10 (Ferrezuelo et al., 2002; Gallardo et al., 2008). It is possible that Est1 

and Est2-Est3-TLC1 might be imported into the nucleus separately and are subsequently 

assembled to form the telomerase holoenzyme. This hypothesis is supported by the 

observation that in the early G1 phase of the cell cycle Yku80 recruits the Est2-TLC1 

premature telomerase without Est1 on the subtelomeric region (Fisher et al., 2004). However, 

Est2 is in this context inactive and does not elongate the telomeres (Fischer et al., 2004), 

suggesting that this could only be a way for retaining the telomerase components in the 

nucleus. Our result showing that both Est1 and Est2 mislocailse to the cytoplasm in absence 

of TLC1 argues against this hypothesis and rather supports a model that formation of the 

telomerase holoenzyme might occur prior to the nuclear import. Certainly, there would be 

another possibility to explain that the Mtr10-independent nuclear localisation of Est1 is 

dependent on TLC1. Although Est1 is imported by Srp1, it needs bind to TLC1 for its nuclear 

retention. This hypothesis is similar to our previous proposal that the Est2-TLC1 complexes 

are anchored at chromosome ends in the G1 phase (Fischer et al., 2004) for their nuclear 

retention. The hypothesis can be examined by nucleo-cytoplasmic cell fractionation 

experiments. Two biogenesis models of telomerase have been proposed: 1) the shuttling 

model, in which TLC1 would be transported to the cytoplasm to be assembled to the 
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telomerase with the telomerase components and is then re-imported into the nucleus; 2) 

the processing enzyme model, in which the necessary factors that are required for the 

maturation of TLC1 and the telomerase complex are transported by Mtr10 (Ferrezuelo et al., 

2002). Our results suggest a hypothesis combining these two models. On the one side, TLC1 

would be exported to the cytoplasm and form the telomerase complex with the protein 

components there, followed by its re-import into the nucleus via Mtr10. On the other side, 

the maturation of TLC1 requires processing factors (the TRAMP complex, the nuclear 

exosome), some of which are imported into the nucleus by Mtr10. 

Telomerase defects lead to telomere shortening. So far, the genome wide screens that 

identified factors involved in telomere shortening mostly identified non-essential genes 

(Askree et al., 2004). Here we have shown that under a particular condition, e.g. at 

semi-permissive temperature, the mutants of essential genes could also lead to telomere 

shortening. This result largely expands our view of the factors involved in telomere 

maintenance. A similar observation has also been reported recently that at the 

semi-permissive temperature a SRP1 mutant, which encodes a defective karyopherin alpha, 

shows telomere shortening due to a failed nuclear import of Est1 (Hawkins and Friedman, 

2014). These observations suggest that the senescence phenotypes could also be caused by 

defects of essential genes and there might be more factors that are involved in telomere 

maintenance than expected. 

After elongation of the telomeres, it is still unclear how telomerase would be recycled. 

Telomerase RNA is one of the most stable transcripts in a given organism, e.g. the half-life of 

around 4 weeks in H1299 cells, which is currently the RNA with the longest lifetime identified 

so far (Bodnar et al., 1998; Yi et al., 1999). In Saccharomyces cerevisiae, the half-life of TLC1 

is longer than 60 minutes (Chapon et al., 1997). How the organism protects TLC1 from the 

access of the degradation machinery is unclear. One explanation might be that since TLC1 is 

the factor with the lowest abundance of all telomerase components (Mozdy and Cech, 2006), 

all RNA molecules are integrated into the telomerase complex and thus protected from 

degradation by the bound proteins.   
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5.2 RNA nuclear export 

As identified in this study, TLC1 utilises Xpo1/Crm1 and Mex67 for its export to the cytosol. 

However, why both factors contribute to the export remains unknown. Interestingly, Mex67 

is also involved in transporting pre-60S (Yao et al., 2007) and pre-40S ribosomes (Faza et al., 

2012) together with Xpo1/Crm1 (Ho et al., 2000; Johnson et al., 2002; Moy and Silver, 1999; 

Nissan et al., 2002). These observations suggest that cooperative use of Xpo1/Crm1 and 

Mex67 could be one of the ways for transporting certain RNAs. 

For most spliceosomal snRNAs, it has been shown that in human cells they are transported 

into the cytoplasm for certain maturation steps including the binding of the Sm ring complex, 

5’ cap hypermethylation, as well as 3’ trimming (reviewed in (Will and Luhrmann, 2001)). 

Nevertheless, in yeast these maturation steps mainly occur in the nucleus. However, yeast 

TLC1, as a non-coding RNA, requires the journey to the cytoplasm for the formation of the 

telomerase. In contrast, snRNAs are integrated into the spliceosomes in the nucleus 

(reviewed in (Will and Luhrmann, 2001)). Interestingly, a nucleo-cytoplasmic shuttling of 

some snRNAs and snoRNAs have nevertheless been observed in budding yeast by using 

heterokaryon assays, which has been suggested to be due to a global leakage or a molecular 

exchange between nuclei in this special cell type (Olson and Siliciano, 2003). Therefore, it will 

require further experiments to find out if these non-coding RNAs shuttle in yeast. Moreover, 

if this is the case, whether the nuclear export of the RNAs is also mediated by cooperation of 

Xpo1/Crm1 and Mex67 remains to be known. 
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5.3 Mtr10 and its cargoes 

Mtr10 has been first identified in a screen of mRNA transport-defective (mtr) mutants 

(Kadowaki et al., 1994). Later investigations have shown that the mRNA transport defects in 

the mtr10 mutant are probably not due to loss of the function of Mtr10 directly, but rather 

indirectly by mediating the nuclear re-import of the three mRNA adaptor proteins for 

Mex67-Mtr2, Hrb1, Gbp2 and Npl3 (Pemberton et al., 1997; Senger et al., 1998; Windgassen 

and Krebber, 2003). Here we have identified that, in addition to these mRNA-binding 

proteins, Mtr10 might transport the TRAMP complex components, Mtr4 and Trf4, and the 

exosome component, Dis3 (Lea Steffen and Heike Krebber), into the nucleus. These findings 

are also supported by the immunoprecipitation experiments that show a physical interaction 

between Mtr10 and these factors. Interestingly, several global analyses of protein complexes 

have uncovered the interaction of Srp1, a karyopherin alpha, with all of the exosome core 

components that supported a possible transport function for Srp1 (Collins et al., 2007; Gavin 

et al., 2002; Ho et al., 2002; Krogan et al., 2006; Peng et al., 2003; Synowsky et al., 2009). It 

still remains to be shown if indeed Srp1 participate in the Mtr10 mediated nuclear import of 

these factors. Interestingly, the telomerase component Est1 might be transported via Srp1 

(Hawkins and Friedman, 2014) but another telomerase component TLC1 is imported via 

Mtr10. Therefore, further experiments, including the investigation of a physical interaction 

and genetic interaction between Mtr10 and Srp1, would be necessary to verify this potential 

cooperation. In fact, although the deletion of MTR10 is lethal at higher temperatures (e.g. 

37°C), it shows only a strong growth defect at lower growth temperatures (23-30°C) 

(Pemberton et al., 1997; Senger et al., 1998). This suggests that although Mtr10 is an 

important karyopherin, it is not essential. Without Mtr10 its substrates are still transported, 

however with much lower efficiency. This is further supported by the observation that 

overexpression of TLC1 in mtr10 cells leads to a rescue of the telomere shortening 

(Ferrezuelo et al., 2002).  

Moreover, it is unclear if Mtr10 imports the exosome complex and the TRAMP complex 

components as single proteins or as a formed complex. The can be addressed by interaction 
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studies in mtr10 mutants.  
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