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Abstract 

 

Water resources have become scarcer in semi-arid regions of Iran due to increasing water use 

and recurrent drought. Any change to the hydrological cycle may have significant effects on the 

fragile ecosystems of Iran’s arid and semi-arid regions. Moreover, it can lead to land 

degradation. Therefore, water resources should be considered quantitatively for better planning 

and management.  

The main goal of this research was the impact assessment of climate and land use change on 

water resources (e.g. groundwater recharge, surface runoff, soil water content, actual 

evapotranspiration), and crop production in the Razan-Ghahavand Basin (RGB) in the central 

drainage basin of Iran. To attain this goal the objectives were: to model the availability of water 

resources components in temporal and spatial aspects, to estimate groundwater recharge (as 

groundwater is the main source of the water supply in RGB), to model crop yields in irrigated 

and rain-fed lands, to assess the relationship between water balance fluxes and land degradation. 

And, finally, to compare the results of actual evapotranspiration estimated by a remotely sensed 

process and a hydrological model.  

The first step of the research was a detailed quantification of the water balance components (e.g. 

percolation, evapotranspiration, soil water) of the RGB by means of hydrological modeling. To 

do this, a SWAT (Soil and Water Assessment Tools) physically based and spatially distributed, 

and an eco-hydrological model was conducted. The model was calibrated by SUFI-2 algorithm 

in two steps: Firstly, the model was calibrated based on the monthly river discharge. Then the 

calibrated model was recalibrated again by annual crop yield. The calibration of crop yield leads 

to  estimate the evapotranspiration term better, which consequently increased our knowledge of 

estimating other water fluxes such as aquifer recharge. 

The sensitive and uncertainty analyses were also applied to assess the model’s performance. The 

calibration period was from 1998 to 2001 and the validation period was from 2002-2008, both 

for river discharge and crop yield. The results were satisfactory for river basins and wheat yield 

in both calibration and validation periods. All water balance components were quantified at the 

sub basin level in monthly time intervals.  
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As groundwater is the main water resource in the RGB, the groundwater recharge specifically 

was estimated and the relationship between groundwater recharge, water level, and land 

degradation was evaluated. The results showed that there was not any significant change in 

groundwater recharge during the period 1998-2008. Therefore, a net withdrawal of groundwater, 

especially for the purpose of irrigation, leads to land degradation (e.g. land subsidence) in the 

area.  

In the next step, an ensemble of four Global Circulation Models (GCMs) under a fourth 

assessment report (AR4) by the Intergovernmental Panel on Climate Change (IPCC) in three 

emission scenarios (e.g. A1B, A2, B1) for the period 2046-2065, were developed. The data was 

downscaled by the LARS-WG model in all rain gages and synoptic stations. All data were fed 

into the calibrated hydrological model to analyze the future effects of climate on water resources, 

and wheat yield in the RGB. Finally, we interpreted the relationship between climate change and 

land degradation across the RGB. The results showed a substantial reduction in groundwater 

recharge and surface runoff, while in the basin surface runoff increased. Furthermore, the results 

showed that urbanization increasingly leads to surface runoff and flooding in the area.  

Assessing the wheat yield both in irrigated and rain-fed lands, a reduction of yield could be 

shown in rain-fed land due to decreasing soil moisture and rainfall leading to increasing water 

stress. The results also revealed that the risk of drought in the south and flooding in the north is 

high. The results highlighted the risk of land degradation by groundwater deterioration, soil 

salinization, and land subsidence in the basin.   

Finally, the estimation of the remotely sensed process of evapotranspiration (i.e. surface energy 

balance method) was done by the SEBAL (Surface Energy Balance Algorithms for Land) 

method. The estimation of ETa by remote sensing is comparable to the estimation of ETa by the 

hydrological model. The idea behind this part of research was that, if the ETa estimated by the 

surface energy balance method (i.e. remote sensing process) was the same as estimated by the 

hydrological model, remotely sensed data could further be used to calibrate the hydrological 

models, especially in the area with low data availability. The results of this part showed the good 

relevance between monthly ETa estimated by remote sensing and ETa estimated by the 

hydrological model.   
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CHAPTER 1 

Introduction  

1-1. Overview 

 

Although climate change occurs naturally, the growth of the human population and associated 

land use conversion (e.g. urbanization) have substantially accelerated the increase of greenhouse 

gases (Wu et al. 2012). The increase in urban, industrial and agricultural water demand will 

further increase the pressure on water resources. As surface water is limited in the arid and semi-

arid regions, groundwater plays a dominant role in water supply in this area. However, 

quantification of water components, especially groundwater recharge, is therefore essential for 

using and managing water resources efficiently. Furthermore, changes in climate and land use 

can significantly affect water resources and hydrological cycle.  

In Iran, a semi-arid country, the shortage of water is the main issue for the policy makers.  

The population of the country increased rapidly from 1950, reaching about 75 million by 2011. 

The population growth rate will continue to reach above 100 million by 2050 (U.S. Census 

Bureau: http://www.census.gov/population/international/data/idb) (Figure 1-1).   

Despite the water scarcity, agriculture is the largest water user in Iran. More than 90 % of the 

total water withdrawal is used in this sector. About 12% of the total area of Iran ( i.e. 19 million 

ha) is agricultural land. In most of the area in central Iran, water demand exceeds the internal 

renewable water availability. Therefore, huge volume of water is extracted from groundwater 

resources to meet the water demand (Faramarzi, 2010), which led to depletion of aquifers and 

land degradation in most of the area in central Iran. Hence, one of the biggest concerns for Iran’s 

water-based resources is the sustainability of the current and even future water resource 

allocation. As water becomes scarcer, the importance of how it is managed grows vastly. Finding 

a balance between what is needed by humans and animals and what is needed in the environment 

is an important step in the sustainability of water resources. Therefore, prediction of water 

balance components is useful for water resources analysis and management of watersheds such 

as enhancing food security, prevention of land degradation, estimation of water availability for 

irrigation or the calculation of the sustainable amount of groundwater withdrawal. 



2 
 

 

Figure 1-1.The population rate in Iran from 1950 to 2050 (U.S. Census Bureau) 

 

In this chapter, after research objectives and research questions, some general overview about 

land degradation, and climate change is explained. Then, the status of water resources in Iran 

have been described briefly. In addition, the roles of hydrological models, remote sensing and 

GIS in this research have been described.  

 

 

1-2. Research objectives  

 

The main goal of this research is to investigate the impact of climate and land use change on 

water resources and crop production in the semi-arid Razan-Ghahavand river basin (RGB) 

through hydrological modeling, remote sensing and GIS techniques, and to assess the 

relationship between changes of water components quantities, land use and land degradation in 

the area.  

 

To attain the main goal we specified the following objectives:  

- To analyze the SWAT (Soil and Water Assessment Tools) eco-hydrological model in order 

to quantify the hydrological conditions and climate change assessments in semi-arid regions 

like the RGB of Iran.  
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- To calibrate, validate and analyze uncertainty of the SWAT model based on the river 

discharges and crop yields; 

- To estimate water balance components (e.g. evapotranspiration, surface runoff, percolation, 

etc.) in spatial and temporal scales; 

- To estimate deep aquifer recharge and its relationship with the groundwater level in aquifer 

in general and particularly in subsidence areas. 

- To predict the water balance components and crop yields by single GCMs models and 

ensemble model, respectively during 2045-2065.  

- To estimate the actual evapotranspiration by the remotely sensed process, and compare the 

results with ETa estimated by the hydrological model.  

 

 

1-3. Research questions 

The research has tried to answer the following main questions: 

- What is the current and future condition of water resources in the RGB?   Will the RGB be 

drier or wetter than in the historical period in the mid-21st century?  

- What will the crop yield be both in irrigated and rain-fed lands in the RGB in the future? 

- What is the effect of climate change on water resources and crop production? 

- Whether remote sensing data can further be used to calibrate the hydrological models? 

 

1-4.Thesis outline 

This dissertation consists of seven chapters. The connection among research chapters can be 

described in the simplified flowchart (Figure 1-2).   

In chapter 1 general overview, objectives and research questions are mentioned followed by a 

general literature review of land degradation, climate change, water resources, the hydrological 

model and the role of remote sensing and GIS on the hydrological models. 

In chapter 2 the study area is explained in terms of climatology, hydrological conditions and 

geology.  

Chapters 3 to 6 have been written in the scientific manuscript structures which have either 

been published or are under review in international peer-review journals or book chapters.  



4 
 

Chapter 3 investigates the setup of the SWAT hydrologic model for the Razan-Ghahavand 

semi-arid region. Preparation of suitable data to feed into the SWAT model is presented in detail. 

Firstly, a land use map was created by remotely sensed data and supervised classification. A soil 

map was spatially mapped in the ArcGIS by soil profile data in each land types. In addition, a 

slope map was created based on digital elevation model (DEM). Then the calibration analysis 

from river discharge data and the uncertainty analysis of parameters are discussed respectively. 

Finally, the water components like soil moisture, surface runoff, and actual evapotranspiration 

are presented. 

Chapter 4 evaluates the estimation of deep groundwater recharge by SWAT. Then the 

relationship between groundwater recharge and groundwater fluctuation is discussed. To 

precisely estimate groundwater recharge, calibration was improved based on crop yield data. The 

process of crop yield calibration and uncertainty analysis is discussed in detail.  

Chapter 5 focuses on the Global Circulation Model (GCM) and its impact not only on water 

resources but also on crop production. Furthermore, land degradation affected by climate change 

is discussed. Four GCMs models with three CO2 emission scenarios have been included and 

analyzed. Then the ensemble model was developed from 2046-2065, because we would like to 

know the water availability in the mid of 21 century. On the other hand, data near to the 

historical period have lower uncertainty than the end of century. The method of downscaling, 

and its performance is also discussed.   

Chapter 6 investigates the remotely sensed method to estimate actual evapotranspiration 

(ETa). In this method ETa is a residual of surface energy balance model. SEBAL (surface energy 

balance techniques) (Bastiaanseen et al., 1998) was selected to estimate ETa. In addition, some 

equations from the METRIC model, a variant of SEBAL, were selected in order to improve the 

performance of the SEBAL model in mountainous areas. The idea behind this part of the 

research was that if ETa estimated by SEBAL was the same as the hydrologic model, the 

remotely sensed method could be used to further calibrate the hydrological models, especially in 

the area with low data availability. The method of ETa estimation by surface energy balance is 

discussed in detail. Finally, the average monthly temporal ETa estimated by SEBAL is compared 

to 95PPU band of ETa estimated by the SWAT hydrologic model.  
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Finally, in chapter 7, the summarized results and a discussion about all the results are 

presented. Additionally, some suggestions for future researches are given.  

 

 

 

 

Figure 1-2. The framework of the research 
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1-5. General Literature review 

1-5-1. Land degradation 

Land degradation is defined as any decrease in the capacity of biological or economic 

productivity of the land caused by human activities and/or natural processes and exacerbated by 

climate change effects (UNCCD, 2013). Land degradation includes soil erosion by water and 

wind, physical (e.g. compacting, crusting) and chemical soil deterioration (e.g. salinization), 

biological degradation (e.g. biomass  and vegetation cover decline) and water degradation (e.g. 

aridification) (Schwilch, 2012). Arid and semi-arid regions are very prone to land degradation 

and characterized by low rainfall, resulting in water scarcity, and periodic drought. The FAO 

mentioned that land degradation in arid, semi-arid and dry sub-humid areas is called 

desertification.  

According to the UNCCD (2013), degraded lands have noticeably increased from 15 % in 

1991 to 25 % by 2011. The FAO (2011) mentioned that 24 billion tons of fertile soil was eroded 

in the world’s croplands, and global food production may decrease by as much as 12 % with the 

current scenarios of land degradation over the next 25 years. This at a time when demand for 

food, energy and water will be increased by at least 50 %, 45% and 30 %  respectively, due to 

population growth and changing consumption patterns.  

The surface area of Iran is about 1.648.000 km
2
, and two thirds of the country is located in 

arid and semi-arid zones. Land degradation in Iran has accelerated during recent decades usually 

due to the rapid growth of the population over the last 30 years (urbanization), land use/cover 

change (especially the conversion of forest and rangelands into cultivated land), denuded soil by 

over- grazing of rangelands by livestock, or overutilization of wood and plants as a fuel source 

(exposing areas to wind erosion), overuse of water resources, and the traditional methods of 

agriculture and irrigation systems.    

In recent years, remote sensing has played a positive role in environmental monitoring such as 

for ecosystem variations and land degradation, especially in dry lands. Climate variations can 

significantly affect ecosystem variations and land degradation. Additionally, there are 

anthropogenic factors, ecosystem disparities and land degradation affected by climate variations 

such as drought and desiccation (Lambin & Ehrlich, 1996), oscillation of rainfall (Anymba et al., 

2001; Olsson et al., 2006) and rising of temperature (Xiao & Moody, 2004).  
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1-5-2. Climate change 

Climate change refers to any significant change in a climate variable (e.g. temperature, 

precipitation, or wind) for a decade or longer (IPCC, 2001). It might proceed from natural factors 

or human activities.  The term “global warming” is often used interchangeably with the term 

“climate change”. Global warming refers to the increasing average temperature which can 

contribute to global climate pattern variation. However, increasing temperatures are just one 

aspect of climate change.  

Human activities are adding to the concentration of greenhouse gases. The carbon dioxide 

(CO2) level has increased since the 1950s. Climate change due to temperature increases can have 

pernicious effects on the hydrological cycle through precipitation, evapotranspiration, and soil 

moisture. IPCC reports that the global mean surface temperature has raised 0.6 ± 0.2 
o
C since 

1861, and estimates an increase of 2 to 4 
o
C over the next 100 years. Global sea levels have 

increased between 10 and 25 cm since the late 19th century (Singh & Kumar, 2010).   

Climate change can affect water resources, crop production and the natural ecosystem. Most 

regions of the world are expected to experience a negative impact of climate change on water 

resources. However, the intensity and characteristics of the impact is different from region to 

region. 

Changes in precipitation, temperature, and CO2 concentration could have a significant impact 

on crop yields. In general, the yield of crops will increase with higher CO2 levels (Figure 1-3).  

In some crops like wheat or soybeans, the yield could increase by 30 % from the doubling of 

CO2 concentration. For other crops like corn, the increased yield is much smaller (CCSP, 2008). 

However, some factors may counteract these potential increases in yield. For instance, if the 

temperature increases to more than the crop’s optimal level, or if water and nutrients are not 

sufficient, then the yield increase trend may be reversed.  

Abbaspour et al. (2009) investigated the effect of climate change on crop yield in Iran on a 

large scale. The results showed small increases in the winter wheat yield in some areas of Iran 

probably due to soil moisture, temperature, and above all air CO2 concentration. Vaghefi et al. 

(2014) assessed the impact of climate change on wheat yield in Karkhe, a semi-arid river basin 
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of Iran. They found that the average irrigated wheat yield increased in the south of Karkhe basin 

up to 21%.  

 

Figure 1-3. Relation between CO2 concentration and yield changes in some selected crops (by CCSP, 2008) 

 

Various researchers have tried to assess the impact of climate change on water resources.  Faramarzi et al. 

(2013) mentioned the impact of climate change on water resources in Africa. They found an increase of a 

maximum temperature of between 1° and 3 °C on whole continent. The maximum temperature in South 

Africa increased more than in Central and West Africa.  Abbaspour et al. (2009) revealed an increase 

of precipitation in the northern and western parts of Iran in the period 2013-2039 by different 

GCM scenarios. However, the southern part of the country could experience a decrease in 

precipitation. They also mentioned a decrease of blue water resources from the north to the south 

and from the west to the east. Actual evapotranspiration slightly decreased in the north and west 

of Iran owing to the assumption that land use/cover will not change in the future. Vaghefi et al. 

(2014) assessed the impact of GCMs model in three CO2 emission scenarios on water resources 

and wheat yield in the Karkhe river basin in south west Iran. They found that in the northern part 

of the basin the fresh water availability will increase but in the southern part it will decrease by 

44 % for the period 2020-2040. Wu et al. (2012) assess the impact of greenhouse gas emission 

on the terrestrial hydrologic cycle and water quality in the semi-arid James River Basin (JRB) in 
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the mid-western United States. They mentioned that the substantial declining of precipitation and 

rising air temperature by the mid-21
st
 century could lead to a significant reduction in the water 

yield, soil water content and groundwater recharge.  

Hydrological response to climate change has been analyzed by Lirong and Jianyun (2012) in 

the subtropical monsoon area, Beijiang River Basin, by the SWAT model. They fed 15 set of 

climate change scenarios into the calibrated hydrological model. Results revealed that when the 

temperature keeps the same and rainfall increases, ET and water yield will increase. However, 

when rainfall stays the same and the temperature increases, ET will increase while water yield 

decreases. The consideration of the potential impact of climate change and global warming is 

very important for water resource managers, which could put further stress on water availability 

for human use, the environment or even livestock use on a large scale (Qi et al., 2009).   

 

1-5-3.Water resources in Iran 

Iran is located between 25˚ and 40˚ north latitude and 44˚-63˚ east longitude. The altitude which 

varies from -40m in the north to 5,670m in the Alborz ranges in the center of Iran, has a 

pronounced influence on the climate diversity ranging from a wet to a hyper arid climate. 

However, Iran has been known as a semi-arid country, and more than 85 percent of territory is 

located in arid and semi-arid regions. Annual precipitation varies from less than 50 mm in the 

central desert, in the center of Iran, to more than 2,000 mm in the northern part of country. 

Nevertheless, the country’s annual precipitation is about 250 mm per year, one third of the global 

average. The fresh water availability for the country is estimated around 2000 m
3
 per capita per 

year (Yang et al., 2003), and it may go below 1500 m
3
 per capita per year by 2030 because of 

population growth.  

Most of the territory suffers from the shortage of water resources. Figure 1-4 shows the 

distribution of blue water resources (the sum of the river discharge and the deep groundwater 

recharge) in the period 1980-2002 based on the population of 2005 (Faramarzi et al. 2009). 

Taking 1700 m
3
 per capita as the threshold of water scarcity, about 46 million people living on 

about 59 % of the regions were subjected to water scarcity.   
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The average water use in the agriculture sector of the world is 70 %, and in developing 

countries it is 82% (Figure 1-5), but in Iran more than 90 % of the water is used in the 

agricultural sector in terms of irrigation (Figure 1-6). However, due to the traditional method of 

irrigation and water conveyer systems, the water use efficiency is less than 35 %, which shows 

an average efficiency even lower than developing countries (45%), therefore a large amount of 

water is lost (Abbaspour et al., 2009; Panahi et al., 2009). Nevertheless, Iran has the seventh 

largest amount of irrigated land in the world (Figure 1-7), and although the irrigated land 

increased about 17 % from 2003 to 2008, the amount of water is constant. Therefore, more 

attention on water use efficiency is important and it should be noted for any future planning of 

the region. 
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Turkey Caspian 
Sea 

Turkmenistan 
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Figure 1-4. Per capita blue water resources distribution in the period of 1980-2002 – derived from (Abbaspour et 
al. 2009) 
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Figure 1-5. Comparing water usage in the world, developing and developed countries (UNESCO, 2003) 

 

 

Figure 1-6. Water use in different sectors in Iran, showing huge water consumption in the agriculture sector 

 

Figure 1-7. Ranking of countries in irrigated agriculture, Iran has the 7th   largest amount of irrigated land 

in the world (http://www.nationmaster.com) 

93% 

6% 1% 
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1-5-4. Hydrological models  

Hydrological models are valuable tools of study in this kind of research (e.g. climate change, 

water resources). Many studies show the ability of hydrological models to estimate water balance 

components and climate change assessment (e.g. Stonefelt et al., 2000; Abbaspour et al., 2007; 

Schuol et al., 2008). 

Hydrological models can be classified into deterministic and stochastic approaches. In the 

deterministic approach, a hydrologic model can be divided into empirical (black box), conceptual 

(grey box) or physical (white box) based. It can also be grouped into lumped or distributed based 

models. Stochastic approaches are derived from a time series analysis. Figure 1-8 shows the 

summary of hydrological classifications.  

Empirical models are based on mathematical equations. Constrained Linear Systems (CLS) 

models (Todini & Wallis, 1977) and the Antecedent Precipitation Index (API) model (WMO, 

1994) are examples of empirical models. In Lumped models, for the whole modeled area, the 

parameters are spatially averaged to one value. The Stanford modeling system (Crawford & 

Linsley, 1966) and HEC-HMS (U.S. Army Corps of Engineers) are lumped models for instance.  

In a distributed model, the parameters vary spatially. MIKE-SHE model (Refsgaard & Storm, 

1995), Precipitation runoff modeling system (PRMS) model (Leavesley et al.,1983), and soil and 

water assessment tools (SWAT) (Arnold et al., 1998) are some examples of these models.  
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1-5-4-1. Hydrological models and climate change 

Various hydrological modeling systems have been widely used in climate change assessment. 

For instance, HSAMI (Fortin, 2000), a lumped rainfall-runoff model used in a research study in 

Lawrence, Canada, revealed higher winter discharge under climate change, which may induce 

modification of hydrology and the geomorphological process to riparian ecosystem (Boyer et al., 

2010). The Hydrological Modeling System (HEC-HMS) was applied to the Siruana watershed, 

Spain and showed that local soil moisture conditions dramatically affect climate change impact 

on water resources (Candela et al., 2012). The hydrological Simulation Program-Fortan (HSPF) 

conducted in Western Turkey revealed that seasonal variations of precipitation and temperature 

are very important in predicting the future response of watersheds (Göncü & Albek, 2010).  

Faramarzi et al. (2013) used a soil and water assessment tools (SWAT) model in order to 

assess the impact of climate change on fresh water availability in Africa and used five GCMs 

models. The results showed that the mean total quantity of water resources in Africa is likely to 

increase. 

Classification of 

hydrologic models 

Empirical 

based models 

(Black box) 

Deterministic models Stochastic models 

Lumped-

Conceptual 

based models 

(Gray box) 

Distributed-

Physical 

based models 

(White box)  

Figure 1-8. The classification of hydrological models (after Refsgaard, 1996; represented by Alkhoury, 2011) 

http://onlinelibrary.wiley.com/doi/10.1029/2011WR010602/full#wrcr13124-bib-0015
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Surfleet et al. (2012) assessed three hydrological models for climate change assessment. They 

used the VIC model as a large scale approach, the PRMS model as a basin scale approach, and 

the GSFLOW model as a site-specific approach in different basins in USA. The results showed 

that appropriate parameterization of a model, estimates of uncertainty and understating the 

limitation of a model can change the interpretation of climate changes projections.  

Bae et al. (2011) used three different hydrological models (PRMS, SLURP and SWAT) for 

comparing differences of PET response to climate change in the Chungju Dam basin, Korea. In 

this research, 13 GCM models with three emission scenarios were put into the models. The result 

showed that during the historical calibration, all hydrological models had a similar performance 

of runoff simulation, but when future GCM outputs were put into the models different results 

were obtained.  Recently Soil and Water Assessment Tools (SWAT), have been widely used in 

the assessing of climate change on water resources, stream flow, and water quality (Abbaspour et 

al. 2009; Kim et al. 2013; Lirong and Jianyun 2012; Luo et al. 2013). In this study, SWAT is 

selected as a base model to represent the climate change effects on hydrology.  

 

1-5-4-2. SWAT hydrologic model 

SWAT is an eco-hydrological model developed by Arnold et al. (1998) to assess the quality and 

quantity of surface and groundwater and to predict the impact of land use, land management 

practice and climate change on the environment. It is a physically-based, semi-distributed and a 

continuous time scale model.  One of the advantages of SWAT is that in addition to the 

hydrological assessment, it can simulate crop growth and production by using an incorporated 

EPIC model (Sharpley and Williams, 1990) in it. “EPIC (Erosion-Productivity Impact 

Calculator) was originally developed to simulate the impact of erosion on crop productivity and 

has now evolved into a comprehensive agricultural management, field scale, nonpoint source 

loading model” (Neitsch et al., 2009). The various components inside the SWAT model consist 

of hydrology, sediment, crop growth, agricultural management nutrient, and pesticides. In 

SWAT, a watershed is divided into sub- basins, which are then further subdivided into 

hydrological response units (HRUs) with homogenous land use, soil and management 

characteristics. In each HRU, soil water balance is considered.  It contains four storage volumes: 

snow, the soil profile, the shallow aquifer and the deep aquifer. The soil profile can include 
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several layers. The soil water process contains infiltration, percolation, evaporation, plant uptake 

and lateral flow (Neitsch et al., 2009). 

The hydrological process simulates surface runoff using SCS curve number or Green-Ampt 

infiltration equation (see Neitsch et al., 2009 for more information). Percolation simulates with a 

layered storage routing technique combined with a crack flow model. Potential 

evapotranspiration can be estimated by the Hargreaves, Priestley-Taylor or Penman-Monteith 

methods. The SWAT model can also simulate erosion from the watershed using Modified 

Universal Soil Loss Equation (MUSLE) (Arnold et al., 1998).  

 

1-5-5. Remote sensing and GIS in hydrological modeling 

Nowadays, remote sensing has been used as an important source of data and information for 

hydrological modeling (Engman & Gurney, 1991). Remote sensing has a potential to estimate or 

to spatially measure precipitation, snow cover, evapotranspiration, runoff, soil moisture, and 

water quality. Furthermore, satellite images can provide information about watershed properties 

(e.g. topography, stream network properties).   

Precipitation is a key variable in the hydrological cycle and remote sensing has the potential 

to provide precipitation estimation where rain gage observations are limited. There are numerous 

remotely sensed methods to estimate the precipitation (e.g. Microwave-link methods). 

Nevertheless, remote sensing can contribute to estimate evapotranspiration. MODIS long-term 

data is useful data to estimate evapotranspiration temporally. Surface energy balance techniques 

have already been used to estimate actual evapotranspiration by the remote sensing process. 

Bastiaanseen et al. (1998) developed SEBAL model (Surface energy balance algorithm for land) 

to estimate actual evapotranspiration. In SEBAL all satellite images with thermal band (e.g. 

MODIS, ASTER, LANDSAT), can be used. The accuracy of ETa estimated by SEBAL is 

compared with lysimeter data, which shows a high accuracy of estimated ETa by satellite 

images. The SEBAL model was used in different areas (Bandara, 2006; Alexandridis, 2003; 

Tasumi et al., 2000). Allen et al. (2007) developed a METRIC model as a variant of SEBAL in 

Idaho.  
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Furthermore, the geographical information system (GIS) is widely used with remote sensing.  

GIS can analyze different sorts of data with the same geographic situation.  Remote sensing can 

provide required data for GIS, and then all analyses can be done in the GIS. Nowadays, many 

hydrological models have interfaced with GIS in order to analyze the data more easily. 

ArcSWAT is a SWAT interface with ArcGIS and provides more facilities for a hydrologist to 

deal with the hydrological problems. For example, spatial data such as DEM, soil and land use 

can feed into the interface model through the GIS.  
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CHAPTER 2 

Study area  

 

As characteristics in some parts of the study area were not well defined and  the future chapters 

are based on the  paper publications,  I have tried here to describe them in more detail. 

 

2-1. Climate data and TLAP and PLAPS calculations 

To use the weather data in the hydrological model, we selected 25 rain gages, synoptic and 

climatology stations. Among all, SWAT just used 9 rain gage, synoptic and climatology stations 

based on the nearest distance of centroid of sub-basins to the stations (Figure 2-1). The mean 

annual precipitation and temperature including altitude of stations is summarized in Table 2-1. 

 

Table 2-1. Climate stations include mean annual precipitation and temperature 

Station Lattitude  Longitude Elevation(m) Mean annual 

Precipitation(mm) 

Mean annual 

Temperature(°C) 

Sarab-

khomigan 

35.37111˚N 49.021394˚E 1868 280 - 

Zehtaran 35.257219˚N 49.134166˚E 1770 257 - 

Khanabad 35.236944˚N 49.51˚E 1836 332 - 

Famenin 35.099998˚N 48.9666659˚E  1660 262 - 

Omarabad 35.090001˚N 49.241662˚E 1620 248 - 

Ghahavand 34.861668˚N 49.003335˚E 1625 232 - 

Damagh 35.433327˚N 48.816662˚E 1790 311 - 

Hamedan 34.849992˚N 48.533331˚E 1749 308 11.7 

Nozheh 35.199998˚N 48.683327˚E 1679 327 11.2 

Dargazin 35.349999˚N 49.066661˚E  1870 360 11.4 

 

 

One of the important parameters in the SWAT model is the interval rate for temperature [°C/km] 

(TLAPS) and precipitation [mm H2O/km] (PLAPS) which can have a significant affect on 

precipitation and temperature in a mountainous area. As the Razan-Ghahavand basin is 

surrounded by mountains, especially in the northern basin, we wanted to understand the rate of 

change of precipitation and temperature with the rise in elevation of this area.  



24 
 

Generally, the temperature can decrease 6 °C per kilometer related to vertical movement and 

increase in altitude. Owing to paucity of temperature stations in the study area, we used TLAP 

equal to 6 °C. This value was also used in the surface energy balance model in order to estimate 

actual evapotranspiration in the montainous area based on the METRIC equitions presented by 

Allen et al. (2007). However, PLAPS was created by rain gage data (10 stations). Generally, with 

the increase of altitude, the precipitaion also increases with optimum elevation, which is about 

2,850 m in the study area (Mahdavi, 2011). 

The relation between precipitation and altitude shows an increase in precipitation. According 

to the equation, the PLAPS is equal to 283 mm (Figure 2-2). This rate was used in the SWAT 

model in order to precisely estimate precipitation in the mountainous parts of the basin.  

 

 

2-2. Hydrometric stations and hydrographs of rivers  

There are three hydrometric stations inside the basin, namely Omarabad, Sirab-Khomigan and 

Zehtaran. Therefore, the basin is delineated into three parts based on the area covered by 

hydrometric stations.  Each hydrometric station controls a specific area. Table 2-2 shows the area 

that drains into each hydrometric station.  Also, there is one hydrometric station outside the basin 

(Koshk-abad), which can be used to estimate the rate of discharge into the basin (Figure 2-3). 

Koshk-Abad station is used as an inlet in the SWAT model. The mean annual discharge at the 

Koshk-Abad hydrometric station is 2.25  m
3
s

-1
 based on a period of 30 years.   
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Figure 2-1. The meteorological stations in and around the basin 

 

 

Figure 2-2. The PLAPS estimation in the study area 
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Figure 2-3. The position of hydrometric stations inside and outside the basin 

 

 

Table 2-2. The area covered by each hydrometric station including the numbers of  sub-basins  

Stations Sub  basins* Area(km
2
) 

14 1,2,3,4,5,6,12,13,14 255 

41 23,26, 27,28,29,32, 33, 34, 

37,38,41 

420 

71 The rest subbasins  2425 

*The whole basin is delineated into 138 subbasins. 
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Zehtaran 

Sirab-Khomigan 

Koshk abad 
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 - Omarabad hydrometric station:  

This station is located at the outlet of the basin on the Gharehchay River. The geographical 

position  is 35° 5´ 46´´ latitude  and 49° 14´ 31´´ longitude. The altitude of the station is 1,590 m. 

This station controls the whole hydrological process in the basin. Gharehchay River is the main 

river in the basin with a 6.68 m
3
s

-1 
mean annual discharge at this outlet. Figure 2-4 shows the 

hydrograph of the river at this station. The figure shows some flood events, which reveal a peak 

flow of more than  40 m
3
s

-1
. The highest peak flow was in 1980 with 80 m

3
s

-1 
. The events in 

recent years (after 1997) seems lower than in previous years. However, snowmelts runoff are the 

most common type of flooding, which occurs through early spring in the basin.  Figure 2-5 

shows some photos of Gharehchay River and include the hydrometric station. 

 

 

 

Figure 2-4. Gharehchay River discharge at the Omarabad outlet 

 

 

 

 

 

 

 

 

 

 

Figure 2-5. The view of Gharehchay River including the Omarabad hydrometric station  
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- Zehtaran hydrometric station:  

Zehtaran hydrometric station is located at the Zehtaran River in the east of the basin. The 

geographical position  is 35° 15´ 35´´ latitude  and 49° 08´ 06´´ longitude.  The altitude of the 

station is 1,760 m. This station roughly controls 420 km
2
 of the area in the east of the basin. The 

mean annual discharge at this outlet is 0.66 m
3
s

-1
. Figure 2-6 shows the hydrograph of Zehtaran 

River at the outlet of Zehtaran from 1977 to 2008. The highest peak flow during this time is no 

more than 3 m
3
s

-1
. Same as with the Omarabad station, the hydrological characteristics of this 

river after 1997 also changed, probably due to anthropogenic factors. Figure 2-7 shows some 

photos of Zehtaran River and include the relevant hydrometric station.   

 

 

Figure 2-6. Zehtaran River discharge from 1977 to 2008 

 

 

 

 

 

 

 

 

 

Figure 2-7. The view of Zehtaran River with the hydrometric station. The irrigation channels could 

change the  hydrological characteristics in the basin.  
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- Sirab-Khomigan hydrometric station:  

Sirab-Khomigan hydrometric station is located at the Sirab-Khomigan River in the west of the 

basin. The geographical position is 35° 22´ 13´´ latitude and 49° 01´ 41´´ longitude. The altitude 

of the station is 1,860 m. This station controls approxmately 255 km
2
 of area in the west of the 

basin. The mean annual discharge  at this outlet is 0.33 m
3
s

-1
. Figure 2-8 shows the hydrograph 

of Sirab-Khomiagan River at the outlet from 1977 to 2008. The highest peak flow during this 

time is lower than 4m
3
s

-1
. As with the two previous stations, the hydrological characteristics of 

this river changed after 1997.  Figure 2-9 shows some landscape of the Sirab-Khomigan River.  

 

 

Figure 2-8. Sirab-Khomigan River discharge since 1977 

 

 

 

 

 

 

 

 

 

 

Figure 2-9. The view of Sirab-Khomigan River  
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hydrological conditions, part I and II , from 1977 to 2008.  The reason for this variation is 

probably due to some anthropogenic activities like irrigation channels to convey surace runoff, 

and  also due to the decrease in precipitation and drought in recent years. As the characteristics 

of calibration and validation periods should have the same hydrological condition, the duration 

from 1997 to 2008 was selected as a whole for the temporal assessment period.    

 

 

Figure  2-10. Different hydrological charachteristics in the hydrological process of the basin (e.g. Sirab-

Khomigan River discharge) 

 

2-3. Geology and stratigraphy 

Razan-Ghahavand is located in the Zagros geological zone. Razan-Ghahavand has specific 

conditions of bedrock which are the main cause of karst development. The thickness of alluvial 

fan in this area varies from 20 m to 120 m. The first layer of alluvial fan is clay and silt, after that 

sand and silt are deposited respectively. The lime bedrock with a thin layer of marly and high 

CaCo3  is apparent at the end of the alluvial fan in the west of the area, the place with sinkhole 

and land subsidence phenomena which belongs to the Eligomiosen duration. 

Figure 2-11 and Table 2-3 show the geological map and related information, respectively. 

Geologically, the plain can be divided into two parts, north and south. The northern part of the 

plain consists of young alluvial trace deposits and the southern part includes old alluvial trace 

deposits. The northern area consists of sandstone and shale and in some parts dactic and andestic 

volcanics are apparent. In the south west of the area there is bedded reefal limestone, while in the 

south east sandstone is evident. The west of the area is comprised of limestone.  

 

II 

I 
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Table 2-3 -Geological units in the study area 

Symbol Geological description 

EK Well bedded , green tuff and tuffaceous shale ( KARAJ FM ) 

Etvav Dacitic tuff 

Evai Dacitic and andesitic volcanic 

JSS Sandstone 

K1aml Grey , thick - bedded to massive orbitolina limestone 

K1c Sandstone and conglomerate 

K1dz Marl, shale, sandstone and limestone ( Darreh - Zanjir Fm . ) 

K1l Thick-bedded to massive, white to pinkish, orbitolina bearing limestone (TIZKUH FM.) 

L1m Limestone , argillaceous limestone ; tile red sandstone and gypsiferous marl 

OMl Massive to thick - bedded reefal limestone 

OMml Limestone 

OMviv Andestic volcanic 

Oiiv Durite 

Phh Phyllite, slate and meta-sandstone (Hamadan Phyllites) 

Qt1 High level piedmont fan and valley terraces deposits 

Qt2 Low level piedmont fan and valley terraces deposits 
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Figure 2-11. Geology map of the Razan-Ghavand area 
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CHAPTER 3 

Simulation of water balance components in a watershed located in central 

drainage basin of Iran1 

 

3-1-Introduction  

Water scarcity is one of the main problems in arid and semiarid regions. In Iran as a semiarid 

country, water resources have experienced raising pressures due to increasing demand and 

recurrent droughts. Considering climate change as projected by IPCC (IPCC, 2013) Iran faces 

severe water shortages in the next decades. Furthermore, the fresh water of the Razan-

Ghahavand watershed is exploited by Iran in ever-increasing demand for sanitation, drinking, 

manufacturing and agriculture. Successful management of any resources requires accurate 

knowledge of the resource available, the uses to which it may be put, the competing demands for 

the resource. Therefore, estimation of water balance is critical for water management and 

development planning in watersheds. Understanding of the water balance in the basin is 

necessary to achieve sustainable water management.  

The water balance is defined as “the balance between incoming water from precipitation and 

snowmelt and outgoing water by evapotranspiration, groundwater recharge and stream flow” 

(Dunne, 1978). Figure 3-1 shows the water balance concept. 

The main objective of this research is to assess the temporal and spatial variation of water 

resources in the semiarid river Razan-Ghahavand watershed based on hydrologic modeling. The 

second objective is to calibrate, validate, uncertainty and sensitivity analysis of SWAT 

hydrologic model of Razan-Ghavand basin based on river discharge. Finally, the calibrated 

hydrologic model is used for climate change and land use change assessment.   

                                                           
1 This paper is published as a chapter book in “Remote Sensing of the Terrestrial Water Cycle” (V. Lakshmi,  ed.). 

American Geophysical Union (AGU). Wiley & Sons, Inc. 
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Figure 3-1. Water balance concept 

 

3-2-Material and Methods  

3-2-1- Study area   

The study area is a watershed called Razan-Ghahavand with a surface area about 3100 km
2 

which is located in a central drainage basin of Iran (Figure 3-2). The difference between 

minimum and maximum elevation is 1265 meter with a maximum altitude of 2842 m and a 

minimum altitude of 1577 m. The watershed of Razan-Ghahavand can be seen as a 

representative case study in comparison to other watersheds in the central drainage basin of Iran. 

The watershed is not located at the headwater of the basin. The main river called Gharehchay, 

enters the watershed from an eastward direction and exits the watershed in a westward direction. 

Simultaneously, two branches (Sirab Khomigan and Zehtaran) of reach drain water enter the 

main river from north. The climate in this area is semiarid with an average annual precipitation 

about 290 mm and a mean annual temperature about 11 C. Most of the area is allocated by 

rangelands with different animal stocking capacity. Arable land (e.g. wheat, alfalfa, etc.) is 

located in the center of basin and covers 30% of the watershed. Groundwater is the main source 
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of irrigation in this part of watershed. According to the Soil Taxonomic classification (Soil 

Survey Staff, 2010), Aridisols and Entisols with typic Haplocalcids and lithic Xerorthents are the 

most frequent soils in the watershed. The soil moisture regimes inside the area vary from weak 

aridic to xeric, whereat the soil temperature regime of the area is mesic.  Figure 3-2  shows the 

rain gages, synoptic and hydrometric stations in the basin. Table 3-1 shows the characteristics of 

weather stations. Characteristics of soil’s properties are shown in Table 3-2.  

 

 

Figure 3-2. Razan-Ghahavand study area  
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Table 3-1. Overview of weather data availability 

No. Type Name Range of data 

availability 

Time scale 

1 Rain gage station Sarab-khomigan 1976-2008 Daily 

2 Rain gage Zehtaran 1982-2008 Daily 

3 Rain gage Khanabad 1983-2008 Daily 

4 Rain gage Famenin 1991-2007 Daily 

5 Rain gage Omarabad 1984-2008 Daily 

6 Rain gage Ghahavand 1982-2008 Daily 

7 Rain gage Damagh 1990-2008 Daily 

8 Synoptic station Hamedan 1979-2008 Daily 

 9 Synoptic station Nozheh 1976-2008 Daily 

 10 Climatology station Dargazin 1976-2008 Daily 



39 
 

Table 3-2. Soil characteristics in different land types a  

 

ID 

Soil 

Class 

HYD 

GRP 

Soil depth 

(mm) Texture 
b
 Layer 1 Layer 2 Layer 3  Layer 4 Layer 5 

 

      

 

Depth SOL_BD SOL_K Depth SOL_BD SOL_K Depth SOL_BD SOL_K Depth SOL_BD SOL_K Depth SOL_BD SOL_K 

1 I  B 100 SaL 0-100 1.45 9.5                         

2 II B 500 SiL-L 0-15 1.37 10.7 15-50 1.43 10.9 

      

      

3 III A 1300 L-SiCL-SiCL_SiC 0-19 1.34 5.9 19-39 1.3 4.2 39-84 1.27 2.9 84-130 1.23 2.8       

4 IV A 1100 L-SaCL-CL-L 0-10 1.42 7.3 10-26 1.38 4.1 26-46 1.32 2.7 46-110 1.35 5.2       

5 V B 1000 SiCL-SiCL-L 0-13 1.28 4.7 13-40 1.27 3.1 40-100 1.38 5.7             

6 VI C 1200 SiCL-SiC-SiC- 0-18 1.27 5.2 18-68 1.22 2.9 68-120 1.21 2.8             

7 VII C 1000 SiCL-SiC-SiC-SiC- 0-13 1.26 4.2 13-36 1.23 3 36-66 1.21 2.7 66-100 1.24 3.1       

8 VIII D 1450 L-CL-C-SiCL-C 0-11 1.35 5.1 11-30 1.31 2.9 30-60 1.24 2.1 60-117 1.27 3.3 117-145 1.2 2.2 

9 IX C 840 CL-CL-CL-CL- 0-10 1.34 4.9 10-25 1.29 2.6 25-54 1.29 2.5 54-84 1.31 2.4       

10 X D 1500 CL-C-C-C-C 0-10 1.36 4 10-30 1.29 1.7 30-60 1.25 2.1 60-120 1.28 1.6 120-150 1.23 2.2 

11 XI C 1200 SiCL-SiC-C-SiL 0-10 1.27 5.3 10-22 1.19 2.8 22-77 1.18 2.9 77-120 1.26 2.7       

12 XII D 1420 SaL-C-C-SiC 0-20 1.47 10.7 20-34 1.24 1.8 34-83 1.21 2.1 83-142 1.26 3.2       

13 XIII B 650 SiCL-C-CL- 0-15 1.31 5.9 15-37 1.23 2.4 37-65 1.32 2.6             

 

a HYDGRP: Soil hydrologic group ; Depth: Depth of soil layer (cm);  SOL_BD: Soil bulk density ( g/cm3); SOL_K : Saturated hydraulic conductivity 

(mm/hr) ; 

b Texture: Sa: Sandy; L:Loamy; Si: Silty, C: Clay (e.g. SiCL: silty clay loam) 
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3-2-2. Land use mapping 

Land use is one of the most important layers in hydrologic models and for the creation of 

hydrologic response units (HRU). To model surface runoff with the SCS-CN method, which is 

explained in the  section 3-3-3. , land use information is directly needed. Remotely sensed data 

from Landsat TM (year 2009; source: http://earthexplorer.usgs.gov/) are used to derive land 

use/land cover (LULC) information. Preprocessing is performed with auxiliary data including 

topographic map information at scale of 1 : 25.000 and ground control points (GCP’s) collected 

by GPS based field studies.  

After preprocessing of the remote sensing data such as georeferencing with GCP’s and 

fieldwork to check the various land cover/use in the landscape, a supervised land use 

classification is created. Figure 3-3 shows photos of typical areas with their dominant land 

use/cover.  

Seven land use/cover classes are defined for supervised classification of the remote sensing 

data: Agriculture, dry farming, rangeland in good, moderate or poor condition, bare lands and 

urban areas. Supervised classification using different algorithms is used in order to create the 

LU-map with highest accuracy. The maximum likelihood classification (MLC) is preferred, 

which produces a minimum error in classification under the assumption that in each class the 

spectral data are normally distributed. Generally more spectral confusion is found between 

various classes: usually there are similar classes with various spectral and different classes with 

the same spectral content. The capability of MLC in comparison to other algorithms is reported 

by (Mengistu & Salami, 2007; Reis, 2008; Diallo et al., 2009).  

The LU accuracy assessment will be thoroughly implemented by means of the error matrix 

and Kappa statistics. This is commonly accepted as a standard approach in remote sensing. Error 

matrices as cross tabulation of the mapped class versus the reference class is used to assess the 

classification accuracy. Randomly selected points are chosen as a reference class for the 

accuracy assessment. Overall accuracy, user’s and producer’s accuracies as well as the Kappa 

statistics is then derived from the error matrices (Congalton, 2004) 
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Figure 3-3. Typical land use types inside the watershed: a) bare land, b) rangeland good condition in north 

watershed, c) rangeland poor condition in south watershed, d) agriculture (e.g. alfalfa)  

 

3-2-3. Hydrological  Model 

In this study the physical based hydrologic model SWAT (Soil Water Assessment Tool, Arnold 

et al., 1998) is used.  SWAT can be applied in watersheds which vary from small surface areas to 

bigger surface areas. Many studies show the capability of this model in hydrological assessments 

(Schmalz et al., 2008; Rostamian et al., 2008; Schmalz & Fohrer, 2009; Srinivasan  et al., 2010, 

Betrie et al., 2011).  SWAT uses daily data as an input and delivers daily, monthly or yearly 

output. The local water balance represented in SWAT is based on four storage volumes: snow, 

soil profile (0–2 m), shallow aquifer (2–20 m), and deep aquifer (>20 m). The core for 

hydrological modeling builds the water balance equation:  

𝑆𝑊𝑡 = 𝑆𝑊0 +  ∑(𝑅𝑑𝑎𝑦

𝑡

𝑖=1

− 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝑎 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤) 

Where: SWt  is the final soil water content, SW0 is the initial soil water content, Rday is the 

amount of precipitation on day, Qsurf  is the amount of surface runoff, Wseep is the amount of 

percolation and bypass flow exiting the soil profile bottom on day, Ea is the amount of 

evapotranspiration on day, and Qgw is the amount of return flow on day.   

The water balance is calculated based on hydrological response units (HRU’s), which are 

created by integration of land use, soil type and slope class in terms of homogenous landscape 

units. All hydrological assessments are calculated on these HRU’s. In this research various water 

balance components such as surface runoff, evapotranspiration, and percolation are estimated.   
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Surface runoff is simulated by modification of the SCS curve number (CN) method from 

daily rainfall and based on land use, soil hydrological group and antecedent soil moisture (USDA 

soil conservation service, 1972).  The SCS curve number which is a watershed specific 

coefficient represents the runoff potential of particular land cover and soil. The SCS-CN method 

is based on the following relationship between rainfall and runoff (USDA-SCS, 1972):  

Q =
(R − 0.2 S)2

R + 0.8 S
                          R >  0.2 𝑆 

Q=0    R < = 0.2 S 

Where Q is the daily surface runoff (mm), R is the daily rainfall (mm), S is the retention 

parameter. The retention parameter (S) is related to curve number and this CN was calculated 

according to soil and land use condition by following equation:  

𝑆 = 254 (
100

𝐶𝑁
−  1) 

 The value of curve number is ranging from 0 to 100. A table of initial curve number (CN) is 

developed by SCS as a function of the soil type, land use and antecedent moisture condition 

(AMC). The soil condition was classified in four different categories, ranked A to D according to 

the potential of soils on runoff production. The difference of soil groups on surface runoff was 

discussed by Melesse & Shih (2002). Soil class A mostly consist of deep soil with well-drained 

sands and gravels, high infiltration, low runoff potential and high water transmission rates 

(greater than 0.30 in./hr.). Class B consist mostly of moderately deep to deep soil, moderately 

well to well drained soils with moderately fine to moderately coarse textures, the rate of water 

transmission is moderate (0.15 to 0.30 in./hr.). Soil class C has moderately fine to fine texture, 

with low infiltration and slow water transmission rate (0.05 to 0.15 in./hr.). Class D consists of 

clay soils with very slow infiltration rates and high runoff potential. They have a very low water 

transmission rate (0.00 to 0.05 in./hr.).  

The curve number is defined in three antecedent moisture conditions by USDA. AMC-I is the 

lower limit of moisture representing a dry condition, AMC-II is the average moisture condition, 

and AMC-III is the upper limit of moisture representing a wet condition. Usually AMC-II is used 
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for curve number value estimation. In this study the AMC-II class of soil moisture is applied to 

each land use pattern.  

Potential evapotranspiration (PET) is estimated using the Hargreaves method which requires 

daily precipitation, and minimum and maximum temperature (Hargreaves & Samani, 1985). 

After simulation of PET, actual evapotranspiration (AET) was estimated based on Ritchie (1972) 

methodology, according to leaf area index (LAI) simulated by crop-growth component inside 

SWAT. The Hargeaves equation is: 

𝜆𝐸0 = 0.0023 . 𝐻0 . (𝑇𝑚𝑥 − 𝑇𝑚𝑛)0.5. (𝑇𝑎𝑣 + 17.8) 

Where λ is the latent heat of vaporization (MJKg
-1

)
 
, E0 is the potential evapotranspiration 

(mm d
-1

) , H0 is the extraterrestrial radiation (MJm
-2 

d
-1

) , Tmx is the maximum air temperature 

for a given day (
0
C), Tmn is the minimum air temperature for a given day (

0
C), 𝑇𝑎𝑣 is the mean 

air temperature for a given date (
0
C).  

Percolation is derived from a storage routing technique combined with a crack-flow model to 

predict flow through each soil layer in the profile (Neitsch et al., 2009). The crack-flow model 

allows percolation of infiltrated rainfall. The storage routing technique is based on the following 

equation:  

𝑊𝑖 = 𝑆𝑊𝑜𝑖 (1 − 𝑒𝑥𝑝 [
−∆𝑡

𝑇𝑇𝑝𝑒𝑟𝑐
]) 

Where Wi is water percolation (mm), SWoi is drainable water (mm), ∆t is the length of time 

step (h), and TTperc is the travel time for percolation through the layer (h).    

 

3-2-4. Calibration and sensitivity analysis  

The SUFI-2 algorithm (Abbaspour, 2011) is used for calibration, validation and uncertainty 

analysis. In this algorithm all uncertainties such as uncertainty in parameter, conceptual model 

and input data are depicted into the parameter ranges, and the process tries to capture most of the 

measured data within the 95% prediction uncertainty (95PPU) band. To calibrate the model 

monthly river discharge at three hydrometric stations is used. Further the model is calibrated 
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from 2001 – 2008 including 2 years as a warm up period and validated for 1997 – 2000. Figure 

3-2 shows the position of hydrometric stations in the basin used for the calibration and sensitivity 

analysis.    

The uncertainty of the output is quantified by 95PPU which is calculated at the 2.5% and 

97.5% levels of cumulative distribution of an output variable. To assess the goodness of 

calibration and uncertainty performance two indices are used: the P-factor and R-factor. P-factor 

is the percentage of measured data bracketed by the 95PPU and R-factor is 95PPU divided by the 

standard deviation of measured data. P-factors around one, bracket most of data within the band, 

and R-factors near zero, narrowest band, are ideal.  Nash–Sutcliffe model efficiency (NS) and 

coefficient of determination (R
2
) were used to assess the SWAT model. The equation of NS is 

given as follows: 

2

1

2

1

))((/)(1 
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n

i
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n

i
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Where Qobs and Qsim  are the measured and simulated data, respectively, and n is the total 

number of data records. NS varies between minus infinity to 1. Usually when NS is more than 

0.5 the accuracy of the model is very good and negative values show the model is not suitable ( 

Zhi et al., 2009). The coefficient of determination, R
2
, is calculated as follows: 
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Where obsQ  and simQ  are the mean measured and simulated data, respectively.  

A weighted version of Nash-Sutcliffe coefficient (g) was used as an objective function to 

compare the monthly measured and simulated discharges in multiple discharge stations:  


n

i

ii NSwg  

Many studies show the capability of SUFI-2 for calibration and uncertainty analysis 

(Abbaspour et al., 2007; Schuol, et al., 2008;  Faramarzi et al.,  2009; Yang et al., 2008). 

 

 

 

 



45 
 

3-3. Results and Discussion  

3-3-1. Hydrological response unit 

The integration of land use, soil type and slope layers derive 831 HRU’s spread over 138 sub-

basins. At the following details of these single information layers (land use, soil, and slope 

information) for hydrologic modeling are discussed: 

 Land use is obtained by remotely sensed data (Landsat ETM) and field studies (GPS based 

land use mapping, soil samples and soil mapping). In case of land use mapping, the result shows 

an overall accuracy for the supervised classification of 71.4 % and Kappa Coefficient of 0.66 

which represents a reliable classification. Figure 3-4 shows the results of remotely sensed 

analysis to produce a land use map and table 3-3 presents the statistical results of each land use 

class. 

The second information layer is build up by soil mapping (deriving a soil map). The soil map 

is generated using soil profile information in each land type up to 5 layers. The soil map includes 

13 soil types (Figure 3-5 and Table 3-4). 

 

The last information layer needed for hydrologic modeling contents information about slope 

angle distribution (Figure 3-6). It is created by DEM analysis (DEM resolution: 15 m scale) 

inside ArcGIS (Vers. 9.3, Spatial Data Analyst) with an output of 3 classes. Slope values less 

than 2 percent are predominant in the basin (Table 3-5). These land parcels (slope < 2%) are 

mostly farmlands in the center of the watershed. The south of the watershed is marked by 

lowlands with degraded soils.  
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Figure 3-4. Land use map 
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Table 3-3. Statistical results of land use classes 

 

 

 

 

 

 

 

 

 

* G: Good, M:Moderate, P:Poor 

 

 

 

Table 3-4. Information of soil map 

  

 

 

 

 

 

 

 

 

 

 

 

 Agg. Land Use*  Area%  Area(km
2
)  

1  URBN  Urban  0.6  19 

2  AGRR  Agriculture 26  814 

3  HAY  Dry farming  5.0  156 

4  PAST  Rangeland_G  14.6  456 

5  RNGB  Rangeland_M  5.7 177 

6  SWRN  Rangeland_P  30.8  964 

7  BRLD  bareland_erosion  17.3  542 

   100.0  3128 

Soil class Soil depth(mm) No. of layers 

I 100 1 

II 500 2 

III 1300 4 

IV 1100 4 

V 1000 3 

VI 1200 3 

VII 1000 4 

VIII 1450 5 

IX 840 4 

X 1500 5 

XI            1200 4 

XII 1420 4 

XIII 650 3 

URBAN   - - 
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Figure 3-5- Soil  map 
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Figure 3-6. Slope map 

  Table 3-5. Information of Slope map 

 

 

 

 Class Area % 

1 0-2% 48.89 

2 2-5% 20.87 

3 > 5% 30.24 
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3-3-2. Model Calibration  

The Razan-Ghahavand watershed is calibrated using the parameters in Table 3-6. The parameters 

of Table 3-6 are including their initial and final ranges that are used in the calibration process. 

The first results of SWAT model did not present the stream flow correctly. The sensitivity 

analysis shows that some parameters are very sensitive against stream flow. Table 3-7 shows the 

most sensitive parameters based on their location in the watershed by assigning the sub-basin 

numbers to the parameters. The result from t-stat provides a measure of sensitivity (larger in 

absolute values are more sensitive) and p-values determine the significance of the sensitivity. A 

value closer to zero has more significance. According to sensitivity analysis, snow, soil, 

groundwater and infiltration parameters are the most sensitive parameters in the watershed. The 

most sensitive parameter (Curve number) is located in the sub basin with the hydrometric 

stations “Sirab Khomigan” (No. 41), and “Zehtaran” (No. 14) as their outlets. These stations are 

located in high elevation in comparison to Omarabad station (No.71) hydrometric station. 

Therefore CN2 is the most sensitive parameter at these stations. Second parameter after Curve 

Number is snow parameter (minimum melt rate for snow during the year). Snow melt is the most 

sensitive parameter due to the mountainous character of Razan-Ghahavand basin, where much of 

the stream flow is controlled by snow melt.  

Figure 3-7 shows the results of calibration and validation for three hydrometric stations. The 

Calibration results for Q (m³/sec.) are shown for measured/observed data, the 95% prediction 

uncertainty (95PPU) and the best fit of optimization. The grey curves represent the 95PPUs of 

the discharge simulation together with observed discharges (blue line) and best discharge 

simulation (red line) at three hydrometric stations (Q_14, Q_41 and Q_71). The three 

hydrometric stations are located at different rivers (Zehtaran, Sirabe-Khomigan and Gharehchay) 

and represent a large area of the catchment. The general trend of the discharge both for 

calibration and validation simulations for all stations look pretty good. The model simulated the 

variation in time of peaks quit well but the uncertainty interval at peaks in some stations (for 

instance in March 2005 at the Q_14 station)  is extremely large. In Table 3-8 the statistical 

results of this analysis are summarized, which show that the overall performance of the model is 

good. The R-factor at the outlet of the watershed is less than 1 shows a good calibration result. 

The p-factor is small revealed that the actual uncertainty is likely larger. Moreover the NS and R
2 

for all three stations are bigger than 0.5 that is acceptable and shows good calibration results.    
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Table 3-6. Parameters for river discharge calibration and their initial and final ranges 
a 

Parameter Name 
b
 Definition  Initial 

range 

Final 

range 

r__CN2.mgt  SCS runoff curve number for moisture condition II -0.5    0.5 -0.13   0.14 

v__GW_DELAY.gw  Groundwater delay time (days) 0.0     500 302    401 

v__ALPHA_BF.gw Baseflow alpha factor (days) 0        1 0.56   0.68 

v__REVAPMN.gw Threshold water in shallow aquifer 0        500 0.22   0.30 

v__GW_REVAP.gw Revap coefficient 0.02    0.2 0.18   0.20 

v__RCHRG_DP.gw Aquifer percolation coefficient 0       1 0.90   0.96 

v__GWQMN.gw Threshold water level in shallow aq. for baseflow 0       5000 3900  4050 

r__SOL_AWC().sol Available water capacity factor -0.5     0.5 0.24   0.49 

r__SOL_K().sol Saturated hydraulic conductivity -0.95   0.95 -0.90  -0.86 

r__SOL_BD().sol Soil bulk density -0.5    0.5 -0.34  -0.29 

v__SOL_ALB().sol Moist soil albedo 0        0.25 0.14   0.16 

v__EPCO.hru plant uptake compensation factor 0.01    1 0.36   0.42 

v__ESCO.hru Soil evaporation compensation factor 0.01     1 0.01   0.42 

v__SLSUBBSN.hru Average slope length (m) 10       150 134   150 

v__OV_N.hru Manning's n value for overland flow 0        0.8 0.46   0.80 

r__CH_N2.rte Manning's n value for main channel 0        0.3 0.04   0.11 

v__CH_K2.rte Effective hydraulic conductivity in main channel alluvium 0       150 92    100 

v__ALPHA_BNK.rte Base flow alpha factor for bank storage (days) 0       1 0.22   0.48 

r__HRU_SLP.hru Average slope steepness -0.95   0.95 0.19   0.68 

v__SFTMP.bsn Snowfall temperature -5       5 -4.7       4 

v__SMTMP.bsn Snow melt base temperature (ºC) -5      5 3.3        5 

v__SMFMX.bsn Melt factor for snow on 21 Jun 0      10 1.8        5 

v__SMFMN.bsn Melt factor for snow on 21 Dec 0      10 0.004    5.5 

v__TIMP.bsn Snow pack temperature lag factor 0.01     1 0.05   0.70 

v__SURLAG.bsn Surface runoff lag coefficient 1         24 3.5     20 

a The final ranges are based on the parameters in the outlet station (Omarabad station) 

b  r__: refers to rational changes; v__: refers to substitute changes 
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Table 3-7. The most Sensitive parameters including their t-value and p-value 

Parameter Name t-Value p-Value 

r__CN2.mgt________23,26,27,28,29,32,33,34,37,38,41* -44.67 0.00 

r__CN2.mgt________1,2,3,4,5,6,12,13,14 -15.06 0.00 

v__SMFMN.bsn -11.31 0.00 

v__ALPHA_BNK.rte________1,2,3,4,5,6,12,13,14 -9.39 0.00 

v__ALPHA_BNK.rte________23,26,27,28,29,32,33,34,37,38,41 -9.27 0.00 

r__SOL_AWC().sol________23,26,27,28,29,32,33,34,37,38,41 7.3 0.00 

v__SMFMX.bsn -4.93 0.00 

v__TIMP.bsn -4.89 0.00 

v__CH_K2.rte________23,26,27,28,29,32,33,34,37,38,41 2.47 0.01 

V__GW_DELAY.gw________1,2,3,4,5,6,12,13,14 2.34 0.02 

v__GWQMN.gw________23,26,27,28,29,32,33,34,37,38,41 2.02 0.04 

r__SOL_AWC().sol________1,2,3,4,5,6,12,13,14 1.97 0.05 

v__GW_REVAP.gw________23,26,27,28,29,32,33,34,37,38,41 1.78 0.07 

r__CH_N2.rte________1,2,3,4,5,6,12,13,14 -1.66 0.10 

v__SMTMP.bsn 1.72 0.09 

V__GW_DELAY.gw________7-11,15-

22,24,25,30,31,35,36,39,40,42-138 

1.64 

 

0.10 

* sub basin numbers 
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Figure 3-7. Calibration (2003-2008) and validation (1998-2002) of river discharge 

 

 

Table 3-8. Statistical result of calibration and validation 

 Calibration (2003-2008) Validation (1998-2002) 

Station P-factor  R-factor  R
2
 NS P-factor   R-factor  R

2
 NS 

14 0.66 1.41 0.68 0.63 0.44 0.36 0.91 0.72 

41 0.60 1.99 0.70 0.53 0.51 1.33 0.78 0.42 

71 0.30 0.79 0.62 0.60 0.45 1.02 0.69 0.66 
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3-3-3. Quantification of components  

For the extraction of water components the average monthly 95PPUs of water components and 

average annual components (2003-2008) were simulated. As pointed out in figure 3-8, 

precipitation in April is highest with an amount around 50 mm and precipitation in September is 

lowest (0.2 mm).  

Figure 3-8 (a-c) shows the average monthly values of actual evapotranspiration (AET), 

surface runoff (SURQ) and soil water content (SW). The trend of 95PPUs for actual 

evapotranspiration is similar to precipitation and their uncertainty values are not high. In April 

the rate of AET is high, due to highest precipitation and also because of more transpiration by 

crops due to growth and development of vegetation (both in arable and rangelands). In 

September AET is low, due to the end of growing season of crops and decreasing precipitation. 

On the other hand surface runoff is highest in January, February and March. Soil water content 

during summer is lowest and during winter is highest. Surface runoff in summer is lowest due to 

decreasing precipitation in this period of time. Moreover, soil water content in February is 

highest because of low evapotranspiration and pretty high precipitation.  

The assessment of spatial distribution of evapotranspiration (ET) shows that the annual 

average values of ET vary from 238 mm in the South to 425 mm in the North of the watershed.  

The range of precipitation varies from 245 mm in the South to 413 mm in the North. The yearly 

average of surface runoff varies from 1 mm to 160 mm in various sub basins at which soil water 

varies from 13 mm to 206 mm in whole watershed. The highest average percolation is 134 mm 

in the North East of the watershed. In Figure 3-9 the spatial distribution of these components 

together with their spatial pattern in the watershed are presented.  
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Figure 3-8-a,b,c. Average monthly 95PPU (2003-2008) of actual evapotranspiration (AET), surface runoff 

(SURQ) and soil water content (SW) against with precipitation (PERCIP)  
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Figure 3-9. Average spatial distribution of yearly average of precipitation (PRECIP), actual 

evapotranspiration (AET), Percolation (PERC), Surface runoff (SURQ) and Soil water content (SW) for the 

years 2003 to 2008. 
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3-4. Conclusion 

Based on Digital Elevation Model analysis inside GIS, land use classification and soil 

information the applicability of the SWAT model in this central drainage basin of Iran is tested. 

A GIS-based model for the Razan-Ghahavand watershed is now available and can be developed 

step by step into the future (e.g. integration of new and more precise base data). The river 

discharge data from 1997 to 2008 are used for model calibration and validation and the 

extraction of water balance components. The general trend of the discharge simulations (both for 

calibration and validation) looks pretty good for all stations, but the uncertainty interval at single 

stations is quite large.  Overall, the research results show that water balance components like ET, 

Surface Runoff and Percolation can be modeled with a hydrological model like SWAT and the 

model output produces robust information for watershed management.  This information can be 

used for adjusted planning and management of the watershed to meet the requirements for better 

water harvesting, finding initial suitable places for artificial aquifer recharge and future land 

rehabilitation by adapted rangeland management.  
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CHAPTER 4 

Estimation of groundwater recharge and its relation with land 

degradation: Case study of a semi-arid river basin in Iran 
2 

 

 

Abstract 

Groundwater extraction is one of the most important criteria of land degradation especially 

land subsidence in arid and semi-arid areas. Understanding the relationship between water 

extraction and recharge of groundwater can lead to better watershed management. For the 

estimation of groundwater recharge in Razan-Ghahavand watershed in Central Iran the Soil 

and Water Assessment Tools (SWAT) was used. Model calibration was done by using 

SUFI-2 based on monthly river discharge and annual crop yield, where crop yield was used 

to better estimate the evapotranspiration term, which consequently increased our 

knowledge on estimating aquifer recharge. The calibration results were satisfactory: The 

Nash-Sutcliffe model efficiency ranged from 0.53 to 0.63 for calibration and from 0.42 to 

0.72 for validation. The results showed that, although the groundwater level was decreasing 

about 1 meter per year, the groundwater recharge did not change significantly leading to a 

net withdrawal causing land subsidence over time.  

 

 

 

 

 

 

 

                                                           
2 This paper is under review in “Environmental Earth Sciences Journal”.  Springer, Inc. 
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4-1. Introduction 

Groundwater is the main source of water supply in arid and semi-arid regions (Awan & Ismaeel, 

2014). Exploitation of ground water resource exceeding the recharge, and consequently decrease 

in the water table is a major cause of land degradation, especially land subsidence and ecological 

problems such as change of vegetation composition in these regions. An estimation of 

groundwater recharge can help stakeholders and policy-makers to develop sustainable 

management of semi-arid regions in Iran. However, the precise prediction of ground water 

recharge in this area is very complex. Therefore, we simulated the groundwater recharge in a 

semi-arid region of Iran by SWAT model and we used an innovative technique to calibrate the 

model. 

Although the same hydrological rules apply in both semi-arid and humid areas, physical 

characteristics are often different (Wisler & Brater, 1959). In arid and semi-arid regions the 

unsaturated zone has a key role on the rate of groundwater recharge. Generally, the separation of 

rainfall into surface runoff and infiltration is controlled by the unsaturated zone (Raneesh & 

Thampi, 2013). The infiltration of water may move the unsaturated zone through 

evapotranspiration, and may also percolate through aquifer as a groundwater recharge. To 

develop good estimate of groundwater recharge, the physical soil properties of unsaturated zone, 

land use/cover characteristics as well as the climate conditions must be considered.   

Groundwater recharge can be simulated by various methods including physical, chemical, 

isotope or numerical techniques (Scanlon & Alan, 2002). A hydrologic model (rainfall/runoff) as 

a numerical model is used to estimate recharge rates over large areas. Gehrels et al. (2001) 

revealed that groundwater recharge is an important variable in hydrological models. Singh 

(1995) reviewed many hydrologic models, which generally estimate groundwater recharge as a 

residual term in the water-budget equation. Furthermore, various researchers have discussed 

processes of groundwater recharge estimation based on the water balance concept (Arnold & 

Allen, 1999; Yeh et al., 2007; Barthel et al., 2012). However, the spatial resolution of recharge 

estimation is different in various watershed models (Scanlon & Alan, 2002). Some of them 

called lumped models provide a single recharge estimation for the entire catchment (Kite, 1995), 

while others are spatially distributed into hydrological response units (HRU’s) (Arnold et al., 

2000).   
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Desertification today is seen as a broad phenomenon of environmental degradation and its 

interaction with human populations (Kappas et al., 2013). Land degradation is defined the loss of 

biological or economic productivity and is based on the framework of ecosystems services 

(Adeel et al., 2005). Drivers of land degradation are different from regions to regions. Therefore, 

land degradation may be appearing in different forms in various areas (e.g. salinization, land 

subsidence, soil erosion, and biodiversity loss) (Lu et al., 2007). Land degradation could also 

change hydrological conditions. Removing vegetation cover leads to soil surface expose to the 

impact of raindrops. The rainfall infiltration into the soil then reduces, soil moisture decreases, 

runoff increases, flooding occur, water quality deteriorates and groundwater level drops. 

Desertification is a major hazard for Iran. Three-fourth of the country has experienced 

desertification (Amiraslani & Dragovich, 2011). Groundwater resources supply over 50 percent 

of water demand in Iran (Motagh et al., 2008).  The rate of aquifer depletion in Iran is high due 

to over-pumping of aquifers (Brown, 2005). The central drainage basin of Iran is seriously 

affected by increasing water demand and recurrent drought (Beheshti, 2011). Motagh et al., 

(2008) reported that the average of water level in Iranian aquifers have declined about 50 cm 

annually. He reveled that decrease in the groundwater levels leads to land-surface deformation. 

The relationship between groundwater and land degradation has been investigated by many 

previous researchers (Zhao et al., 2005); Gullison & Bourque, 2001). Many recent studies have 

focused on the decline of groundwater level and water quality (Qi & Luo, 2005), the salinity of 

groundwater and land degradation (Wen et al., 2005), groundwater and vegetation degradation 

(Ji et al., 2006; Guo et al., 2009), groundwater and change of land cover (Zhang et al., 2005). 

Stromberg et al. (1996) revealed that depletion of groundwater threatens riparian ecosystems in 

arid and semi-arid regions. Chen et al. (2003) mentioned that in northwest China the oasis-

ecosystem depend on the groundwater level variability. Any change on water level in this area 

can significantly affect vegetation growth. Guo et al. (2009) reported that a decrease in 

groundwater table led to ecological deterioration and desertification in the northwest of China. 

Therefore, a balance between groundwater recharge and groundwater exploitation is important to 

prevent land degradation.   

In arid and semi-arid countries like Iran, exploitation and diversion of water resources in 

aquifers and rivers are common activities and arise from low rate, high variability, and uneven 

distribution of precipitation (Abrishamchi & Tajrishi, 2005). Growing population, increasing per 

http://www.sciencedirect.com/science/article/pii/S0301421511005684#bib39
http://www.sciencedirect.com/science/article/pii/S0301421511005684#bib9
http://www.sciencedirect.com/science/article/pii/S0301421511005684
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capita water use, and irrigation are some causes of severe pressure on water resources in such 

countries. In Razan-Ghahavand semi-arid’s watershed, part of central drainage basin in Iran, 

intensive agriculture and traditional irrigation methods lead to large amounts of water 

withdrawal. Groundwater, the main sources of water harvesting in this area, is exploited due to 

increasing demand and recurrent droughts. Ecological deteriorations such as decreasing of 

biomass in rangelands, decreasing crop yields, and deterioration of soil are taking place in south 

of the watershed due to water scarcity.  Additionally, mismanagement of groundwater may have 

led to land subsidence, a dominant land degradation phenomenon in the west of the area, and 

salinization in central part of the area.  Therefore, knowledge about water resources components 

and in this case groundwater recharge can leads to sustainable management of available 

resources and also result in best management practice in Razan-Ghahavand area.   

The main objective of this research was to estimate the groundwater recharge by means of a 

hydrologic model. We used an innovative technique to calibrate our hydrologic model in order to 

precise estimating of groundwater recharge.  We assessed the relationship between groundwater 

recharge and groundwater level fluctuation in order to interpret land degradation phenomena 

such as land subsidence occurrence in the area.   

We used the Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998) to achieve this 

goal. SWAT was selected because it is a continuous time and spatially distributed model, in 

which components such as weather, crop growth and irrigation, reach routing, water transfer, and 

agricultural management practices are considered. The advantage of hydrological models is that 

all water balance components can be estimated over an infinite time series, and distributed 

hydrological models can account for spatial heterogeneities and provide more detail information 

of the hydrological processes in a watershed.  

 

4-2. Materials and method 

4-2-1. Study area 

The Razan-Ghavand watershed is located in central drainage basin of Iran and has an area of 

about 3100 km
2 

(Figure 4-1). The outlet of the watershed is Omarabad in the east. The long-term 

average daily discharge at this station is 6.7 m
3 

s
-1

. The altitude of the basin ranges from 1,577 m 
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in the eastern lowland part of the basin to 2,843 m in the hilly part of the basin in northern areas. 

The climate is semi-arid, and the average annual precipitation, temperature and potential 

evapotranspiration are about 295 mm, 11°C, and 1,320 mm, respectively. The area is mainly 

farmland (irrigated and rain fed) and rangeland. Most of the water withdrawal is used for the 

irrigation of farmlands and for power generation in the Mofatah power plant. In the northern part 

of the watershed good ecological condition exists with good rangeland and high biomass 

production, while most of the rangelands degradation and salinization are taking place in the 

southern part. Land subsidence is prevalent in the western part of the watershed.  Geological 

formation consists of parent rocks such as limestone, shale and conglomerate. The aquifer’s area 

is 1,750 km
2
 with a thickness about 70-100 meters (Amiri, 2005). The transmissivity of the 

watershed ranges from 100 to 750 m
2
 day−

1
, and the average specific yield of the aquifer is 4.5%. 

There are 81 piezometric wells well distributed over the area (Figure 4-2). Despite the 

piezometric wells, there are more than 1400 operation wells in the study area, which are 

extracting groundwater for agriculture, industries and domestic use.  The average water level is 

30 meter in this aquifer, decreasing with an average rate of about 1 meter per year.  
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Figure 4-1. Location of the study area in northwestern part of central drainage basin of Iran (Razan-

Ghavand watershed). The location of land subsidence, a dominate land degradation phenomenon in western 

area, has been shown in the map.  The distribution of rain gages and temperature stations and also 

hydrometric stations has been shown in the map. 
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Figure 4-2. The location of piezometric wells in the study area 
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4-2-2. Groundwater recharge  

Estimation of groundwater recharge is complex and depends on groundwater parameters (e.g. 

hydraulic conductivity), soil parameters, vegetation and land use characteristics, and climate 

parameters (Arnold et al., 2000). Among various models employed in water balance studies, we 

used SWAT, Soil and Water Assessment Tools, to estimate groundwater recharge. SWAT 

simulates the groundwater recharge as a residual of the water balance model.  Hydrological 

response units (HRUs) which are hydrological homogenous were used as the basis of 

groundwater recharge calculation.  Both shallow (2-20 m) and deep aquifer recharge (>20m) can 

be simulated by SWAT at the HRU level. Figure 4-3 shows the conceptual model of SWAT. The 

percolation water in the soil profile may percolate as groundwater recharge or loss as lateral flow 

or evapotranspiration. In shallow aquifer, the water can return through the unsaturated vadose 

zone by capillary activities to replace the deficit of water for plant evapotranspiration (REVAP), 

or may also move as a groundwater flow/bypass, the rest move into deep aquifer recharge and 

become groundwater.  

In this study, the groundwater recharge refers to the amount of water leached from the root 

zone into deep aquifer. In other words, deep aquifer recharge is a fraction of total groundwater 

recharge:  

Wdeep = βdeep×Wrchrg 

Where Wdeep is deep aquifer recharge (mm), βdeep is aquifer percolation coefficient, and 

Wrchrg is the amount of total groundwater recharge calculated as:  

𝑤𝑟𝑐ℎ𝑟𝑔,𝑖 = (1 − 𝑒𝑥𝑝[−1/𝛿𝑔𝑤]). 𝑤𝑠𝑒𝑒𝑝 + 𝑒𝑥𝑝[−1/𝛿𝑔𝑤]. 𝑤𝑟𝑐ℎ𝑟𝑔,𝑖−1 

Where 𝛿𝑔𝑤 is the delay time (day), 𝑤𝑠𝑒𝑒𝑝 is the total amount of water exiting the bottom of soil 

profile on day i (mm), and 𝑤𝑟𝑐ℎ𝑟𝑔,𝑖−1 is the amount of recharge entering the aquifers on day i-1 

(mm). 𝑤𝑠𝑒𝑒𝑝 is calculated:  

𝑊𝑠𝑒𝑒𝑝 = 𝑊𝑝𝑒𝑟𝑐,𝑙𝑦=𝑛 +  𝑊𝑐𝑟𝑘,𝑏𝑡𝑚 

 

Where 𝑊𝑝𝑒𝑟𝑐,𝑙𝑦=𝑛 is the amount of water percolation out of the lowest layer (n) in the soil 

profile on day i (mm), and Wcrk,btm is the amount of water flow past the lower boundary of soil 

profile due to bypass flow on day i (mm). Percolation is modeled with a layered storage routing 
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technique combined with a crack flow model. Groundwater recharge was simulated at the HRU 

level and then compared with groundwater level fluctuations. 

 

Figure 4-3. Conceptual of SWAT model (Adapted from Neitsch et al., 2005) 

 

4-2-3. Model input  

Running SWAT a variety of input data (weather data, soil data) is needed. Weather input data 

such as daily precipitation, daily minimum and maximum temperature, and daily solar radiations 

were obtained from the Public Weather Service of the Iranian Meteorological Organization 

(WSIMO), which had four synoptic, and climatology stations, and 22 rain gauge stations for a 

period of 31 years from 1977 to 2008. A weather generator model, WXGEN, (Sharpley & 

Williams, 1990) was used to fill the data gap. River discharge data were collected from Iran 

Water Resources Management Company (IWRMC), and Hamedan Regional Water Co. 

(HMRW) for 3 outlet stations, Omar Abad, Zehtaran, and Sirabe Khomigan,, and one inlet 

station for the period of 1977–2008. Winter wheat is a dominant crop in the study area and was 

obtained from 1998 to 2008 in central plain of Razan-Ghavand from Hamedan agricultural 

organization. Digital elevation model (DEM) and digital stream network map were extracted 
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from topography map of National Cartographic Center of Iran (NCC) with a resolution of 15 m. 

Land use/land cover map was created from satellite images (Landsat TM) dated in 2009 

according to supervised classification (Rafiei Emam et al., 2015). The landuse/land cover map 

includes 7 classes including irrigated agriculture, rain fed agriculture, good rangeland, moderate 

rangeland, weak rangeland, bare lands and urban. A five-layer soil map was generated using soil 

profile information including 13 types of soil (Soil & Water Research Institute). Physical 

parameters of each layer such as texture, available water content, field capacity, wilting point, 

hydraulic conductivity, and bulk density, were estimated by Soil-Plant-Air-Water model, SPAW, 

(Saxton & Willey, 2005), and based on silt, sand, and clay content of each layer. The slope map 

was produced using the DEM algorithm in ArcGIS whereat the slope range was divided into 

three classes: 0-2%, 2-5% and >5%.  

 

4-2-4. Model setup 

The first step inside SWAT to set up the model is to create hydrologic response units (HRUs) 

which are the basis of groundwater recharge calculation in this study. The hydrologic response 

units (HRUs) are produced by integrating the single sub-basins (by delineation of the watershed 

according to the DEM and the stream network system), soil, land use, and slope maps. A model 

is constructed using dominant HRUs (dominant soil and land use types defining the soil and land 

use of the sub-basins). A second model is constructed using multiple HRUs (To define HRU, 10 

% threshold of land use and soil was selected); in the first step 138 HRUs (or sub-basins) are 

created and in the second attempt 831 HRUs in the watershed are derived.   

Agricultures especially irrigated farmlands have significantly influence on groundwater 

recharge. We simulated the crop growth in order to estimate crop yields in SWAT model. The 

crop yields further were used in the calibration of the hydrologic model. Winter wheat was 

chosen as the representative crop in Razan-Ghahavand watershed. For rain-fed and irrigated 

lands two agricultural schedules are defined according to the information obtained from farmers 

and the Hamedan Agricultural Organization. Fertilization operations and auto-irrigation, based 

on water stress thresholds, are used to simulate crop growth due to lack of water use data in 

irrigation. The Hargreaves method (Hargreaves & Samani, 1985) is used to estimate 

evapotranspiration, which only requires minimum and maximum temperature. Variable storage 

routing method is selected to route water through the channel network. To adapt SWAT to the 
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conditions of the study area, the curve number (CN) is adjusted based on the slope 

characteristics. While in SWAT, the default curve number is calculated for a slope value of 5%. 

We also defined elevation bands for sub-basins with more than 100 m elevation difference and 

define TLAPS (Temperature lapse rate [°C/km]) and PLAPS (Precipitation lapse rate [mm 

H2O/km]) for these sub-basins. For more detailed information about SWAT see Neitsch et al. 

(2011).   

 

4-2-5. Model Calibration  

The model is calibrated and validated at the sub-basin level based on monthly observed river 

discharges and annually observed crop yield across the watershed. Data from 1997 to 2002 are 

used for validation and data from 2001 to 2008 are used for calibration including 2 years of 

warm up phase.  

For calibration of the model and uncertainty analysis, the Sequential Uncertainty Fitting 

program, SUFI-2 (Abbaspour, 2011) is chosen. SUFI-2 is an algorithm for sensitivity, 

calibration, validation, and uncertainty analysis. SUFI-2 has been used in many studies before for 

calibration and uncertainty analysis (Abbaspour et al., 2009; Schuol et al., 2008; Faramarzi et al., 

2009). 

In SUFI-2 algorithm, uncertainties including parameter, conceptual model, and input (e.g. 

precipitation) are mapped on the parameter ranges. The objective of the procedure was to capture 

most of the measured data within the 95% prediction uncertainty (Abbaspour et al., 2007). 

Model output is expressed as 95% prediction uncertainty (95PPU), which was calculated at the 

2.5% and 97.5% levels of the cumulative distribution of an output variable obtained through 

Latin Hypercube sampling. The P-factor and R-factor were used to quantify the strength of 

calibration and uncertainty performance. The P-factor is the percentage of measured data 

bracketed by the 95PPU band, and the R-factor is the average width of the 95PPU band divided 

by the standard deviation of the measured data. Ideally, we would like to bracket most of the 

measured data within the 95PPU band while having the narrowest band. Nash–Sutcliffe model 

efficiency (NS) and coefficient of determination (R
2
) were used to assess the SWAT model. For 

crop yield, MSE (mean square errors) was used as the objective function (Akhavan et al., 2010; 

Faramarzi et al., 2010; Abbaspour et al., 2009).   
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We identified the most sensitive parameters for each hydrometric station separately by 

changing specific parameters such as CN within their allowable range to obtain the best range. 

After calibrating the model for hydrology, crop parameters were calibrated including heat unit 

(HU), bio target (BIO-TARG), harvest index (HI) and auto water stress (AUTO_WSTRS). Heat 

unit shows growing degree days needed to bring plant to maturity. Bio target controls biomass 

produced by the plant every year, and harvest index is the weight of the harvested portion of the 

plant biomass divided by the weight of the total aboveground plant biomass.  Auto water stress is 

limiting the need to prescribe exact amounts and timing for irrigation.  

 

4-3. Results and Discussion  

There are many published works on the estimation of groundwater recharge as well as the trend 

of water level and land degradation in semi-arid regions. The principal differences exist between 

various methods to estimate groundwater recharge. However, numerical method is widely used 

to estimate groundwater recharge (Arnold & Allen, 1999; Gehrels et al., 2001; Manghi et al., 

2009; Xu et al., 2011; Barthel et al., 2012). Most of the researchers focused on the estimation of 

shallow groundwater recharge, which means water that percolates into shallow aquifer. 

However, we revealed deep aquifer recharge, water percolate into the deep aquifer with depth 

more than 20 meter, while water harvesting from deep aquifer using excavating of deep wells is 

usual in our study area. Based on an initial sensitivity analysis, a number of parameters such as 

soil parameters, groundwater parameters, snow parameters, crop parameters were chosen to 

calibrate the hydrologic model. These parameters were then regionalized based on their location 

in the watershed by assigning the sub basin numbers to the parameter (Table 4-1). The measure 

of sensitivity and the significance of sensitive parameters were provided by the t-stat and the p-

value, respectively. The initial and final ranges of these parameters are also indicated in Table 4-

1.  
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Table 4-1. The most sensitive parameters and their initial and final ranges 

Parametera t-value p-value Initial range Final range 

r__CN2.mgt________23,26,27,28,29,32,33,34,37,38,41b -44.67 0.00 -0.5    0.5 -0.27    -0.02 

r__CN2.mgt________1,2,3,4,5,6,12,13,14 -15.06 0.00 -0.5    0.5 -0.29    -0.15 

v__SMFMN.bsn -11.31 0.00 0    10 0.0         5.5 

v__ALPHA_BNK.rte________1,2,3,4,5,6,12,13,14 -9.39 0.00 0.01  1.00 0.02     0.17 

v__ALPHA_BNK.rte________23,26,27,28,29,32,33,34,37,38,41 -9.27 0.00 0.01  1.00 0.06     0.48 

r__SOL_AWC().sol________23,26,27,28,29,32,33,34,37,38,41 7.33 0.00  -0.5    0.5  -0.35    -0.10 

v__SMFMX.bsn -4.93 0.00 0   10 1.8        5 

v__TIMP.bsn -4.89 0.00 0.01   1 0.05     0.70 

v__GWQMN.gw________23,26,27,28,29,32,33,34,37,38,41 2.02 0.04 0    5000 2028    4830 

V__GW_DELAY.gw________1,2,3,4,5,6,12,13,14 2.34 0.02 0    500 322     407 

v__CH_K2.rte________23,26,27,28,29,32,33,34,37,38,41 2.47 0.01 0    150 20       65 

r__SOL_AWC().sol________1,2,3,4,5,6,12,13,14 1.97 0.05 -0.5    0.5 -0.26    -0.12 

v__GW_REVAP.gw________23,26,27,28,29,32,33,34,37,38,41 1.78 0.07  0.02   2 0.17     0.20 

V__GW_DELAY.gw________7-11,15-

22,24,25,30,31,35,36,39,40,42-138 

1.64 0.10 0    500 302      401 

a  
r:  parameter value is multiplied by 1+ given value, v: parameter value is replaced by a value from the given range 

b 
Sub basin numbers 

 

Generally, Hydrological models are sensitive to various kinds of input variables related to 

vegetation, land management, soil, weather, aquifer, and channels (Arnold et al., 2000).  Finch 

(1998) revealed that the variables related to soil components (e.g. water capacity) are the most 

crucial land surface parameters for estimating groundwater recharge. We found the same result 

in our study. We revealed that the curve number (CN) and the groundwater delay time (GW-

DELAY) are the most crucial parameters, which are related to both soil and vegetation.  

Our study showed that the curve number (CN2) is the most sensitive parameter in the 

mountainous areas; this could be probably due to relatively low rainfall rate in the watershed and 

steepness of the area. Vaghefi et al. (2014) mentioned that the most sensitive parameter of 

mountainous Karkheh river basin is CN2.  The same result was reported by a number of other 

studies (Akhavn et al., 2010;  Faramarzi et al.,  2009; Schmalz et al., 2008). The sensitivity of 

CN2 parameter is shown in Figure 4-4, where an increase in the CN2 values leads to raising 

runoff and consequently decreasing groundwater recharge and infiltration estimation. The second 
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sensitive parameter in highlands was minimum melt rate for snow in December (SMFMN); this 

is because snowmelt controls much of the stream flow in the mountainous region. Akhavan et al. 

(2010) also reported the same result.  

 

 

Figure 4-4. The sensitivity analysis of CN2 parameter by decreasing 7 percent, and increasing 14 and 35 

percents of CN2 value against surface runoff production. 

 

The most sensitive parameter in lowlands was groundwater delay time (GW_DELAY) which 

describes the delay time of water that moves past the lowest depth of the soil profile by 

percolation or bypass flow before becoming shallow aquifer recharge. This parameter depends 

on the depth of the water table and the hydraulic properties of the geological formation in the 

vadose and groundwater zone. Schmalz et al. (2008) revealed the same result for groundwater 

parameters in low land areas. 

The results of model calibration and validation for river discharge were quite satisfactory 

(Figure 4-5). At all stations, the flow dynamics was simulated quite well (R
2 

higher than 0.62). 

The model simulated the time of runoff peak very well, except in some months.  For instance, at 

Omarabad station in April 2004 and 2007 the model simulated the runoff earlier than the actual 

time, which is probably due to an earlier simulated snow melt (Figure 4-5a). Eckhardt & Ulbrich 

(2003) mentioned that the rising temperature and the earlier beginning of the growing season 

may have result in this uncertainty. Another possibility could be the paucity of data on water use 

in the farmlands. This result is comparable to the work of Akhavan et al. (2010) and Rostamian 

http://www.sciencedirect.com/science/article/pii/S002216940300297X
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et al. (2008). They also mentioned that SWAT cannot simulate the snow melt precisely; the 

evidence of this came from the model weakness to simulate peak flow rates in their study, which 

also has been revealed in some months in our calibration as well.  The validation results (Figure 

4-5b), however, are satisfactory, represented by high NS (66%) and R
2
 (0.69). At Zehtaran 

station (No.41), Figures 4-5 c & d, a P-factor of more than 0.5 shows that the model simulates 

the runoff very well at this station. In Sirab-Khomigan (No.14), Figures 4-5 e & f, the results of 

calibration and validation showed a high accuracy of simulation.  

After calibration, we compared the statistical results of dominant (with 138 HRU) and 

multiple or non-dominant (with 831 HRU) models (Figure 4-6). The results showed that multiple 

HRUs model, i.e. non-dominant HRU models, were more accurate and reliable than the 

dominant HRU models. We used the more accurate model for further analysis. Many researchers 

used HRU as a basis of groundwater recharge estimation. (Awan et al., 2013) revealed that the 

HRUs can be used not only to facilitate the identification of the sub-unit’s characteristics, but 

also help to estimate the recharge into the entire basin. Arnold et al. (2000) simulated daily water 

balance in the HRUs in order to simulate groundwater recharge.  
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Figure 4-5. Result of calibration and validation in a & b: Omarabad station (No.71); c & d: Sirab khomigan 

station (No.41) and e & f: Zehtaran station (No.14) 
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Figure 4-6-a,b. Statistical results of dominate and non-dominate HRU in SWAT model 

 

4-3-1. Calibration of model for crop yield 

After the calibration of the model by discharge, we calibrated the crop parameters. A good 

calibration with crop yield would result in a good calibration of evapotranspiration (ET) adding 

more confidence to simulation of soil moisture and groundwater recharge (Faramarzi et al. 

2009). Model uncertainties for irrigated wheat are larger than for rain fed wheat in both 

calibration and validation results (Figure 4-7). For irrigated fields the yield varies from 2430 kg 

ha
-1

 to 3780 kg ha
-1

, and for rain fed fields the yield varies from 890 kg 
-1

ha to 1362 kg ha
-1

. For 

irrigated and rain fed yield, the p-factor was quite satisfactory and varies from 0.67 to 0.92. The 

r-factor was quite small for rain fed rather than irrigated yield which indicates low uncertainties 

of prediction. Vaghefi et al. (2014) mentioned that a p-factor larger than 0.73 for irrigated yield 

is satisfactory in a semi-arid river basin of Karkheh in Iran.   

The RMSE for rain fed yield was just 70 kg ha
-1

 and 250 kg ha
-1

 in calibration and validation 

period, respectively, what documented high accuracy of rain fed calibration. In irrigated lands 

the RMSE varies from 190 kg ha
-1

 to 691 kg ha
-1

 both for validation and calibration. Akhavan et 

al. (2010) mentioned the high ranged of RMSE (80 to 4220 kg ha-
1
) for calibration and 

validation of crop yield (e.g. wheat and potato) in Hamedan area, Iran. They revealed that the 

large RMSE could be owing to the lack of data concerning to management practices (e.g. tillage 

operation, irrigation operation, planting date), which can be accounted also in our study area. The 

same limitation is also reported by Framarzi et al. (2010). Overall, the calibration and validation 
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of crop yield in our study was satisfactory due to low RMSE and pretty high value of p-factor  

both in calibration and validation period.  

 

4-3-2. Groundwater recharge, water level and land subsidence 

The process of runoff and crop simulation in the study area did not only lead to model 

parameters being defined, but also allowed the delineation of the recharge rate. In other words, 

with calibration and prediction of surface runoff and crop yield, the recharge rate can be 

estimated with high confidence. Sun & Cornish (2005) reported the same result. Githui et al. 

(2012) used river discharge and evapotranspiration data in order to calibrate the SWAT model 

for groundwater recharge estimation. Immerzeel & Droogers (2008) also mentioned that ET is 

useful to better simulate the water balance components such as groundwater recharge.  Estimated 

groundwater recharge was analyzed for an 11-year period from 1998 to 2008. The estimated 

annual average recharge for this period (1998-2008) was 4.8 mm/yr. Figure 4-8 shows that 

recharge has been dominated by the period surrounding 2003. A rather meaningful relationship is 

seen between groundwater recharge, simulated by SWAT, and observed groundwater level 

(Figure 4-8). A sharp decline in water level from 1998 to 2002 is accompanied by a decreasing 

groundwater recharge. As groundwater recharge increased from 2001 to 2003, groundwater level 

remained rather constant until 2005, which started to decrease again as groundwater recharge 

decreased.   

 

Figure 4-7-a,b. Calibration (left graph) and validation (right graph) results of annual average (2003–2008 for 

calibration and 1998–2002 for validation) crop yield for rainfed and irrigated wheat in study region. The 

green point is observation, and the gray band expresses the 95% prediction uncertainty (95PPU). 
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Figure 4-8. Relation between mean annual groundwater recharge and groundwater level from 1998 to 2008 

 

Figure 4-9 shows the groundwater and precipitation distribution in the watershed. The result 

of water balance showed that precipitation in the north of the watershed is higher than in the 

southern part. In the south, the average precipitation is below 265 mm per year. Ghahavand 

desert is located in this part. These areas are degraded because of huge groundwater extraction 

for irrigation and also for using in power production at Mofatah power plant in previous years 

and now most of the area is salinized with large occurrences of land subsidence. In the north of 

the watershed, precipitation is higher than 300 mm per year with good rangeland and ecological 

condition. Groundwater recharge is high in the north, especially in northeast portion of basin. 

Apart from the amount of precipitation, Land use/Land cover (LULC) and soil type had 

significantly effect on groundwater recharge. In the northeast of the basin, there is coarse soil 

texture, which leads to high groundwater recharge. Whereas in the central and south part of the 

area, there is finer soil texture which resulted in low GWR. Awan and Ismaeel (2014) mentioned 

that HRUs that have built-up settlements have no groundwater recharge. They revealed that 

sandy loam textures have the largest amount of groundwater recharge in compare to other type of 

texture in the study area in Punjab province, Pakistan.   
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The estimation of temporal precipitation showed an increase in average annual precipitation 

in 2002 and 2003 (Figure 4-10) and resulted in raising groundwater recharge in 2003. More than 

16 percent of precipitation (62 mm) in 2002 occurred in December, which significantly affected 

the hydrological process in 2003.    

Borehole data from 1998 to 2008 were investigated comprehensively using 81 borehole sites. 

The water level in the north of the aquifer is more or less constant while in the west of the 

aquifer water levels varied in different places. The depth of groundwater level is from 0.5 m in 

the north to 140 m in the west of the aquifer. Among all, six piezometric wells were selected 

around the aquifer to assess the water level fluctuations (Figure 4-11). The groundwater level 

assessment showed that a minimum groundwater decrease was observed in wells No. 1, 2 and 3 

in north and eastern part of the study area, and the maximum groundwater level decrease was 

observed in well No. 5 and 6 (in the West and South West of the region). Groundwater levels in 

the west and south west of the aquifer have experienced a steady decline as a result of increasing 

groundwater extraction for agricultural irrigation purposes and also of water use of the Mofatah 

power plant. In the north and east of the region there is no significantly declining of the 

groundwater level.  

Most of the land subsidence occurred in the west of the watershed which has been shown in 

Figure 4-1. This area is under intensive agriculture use. The comparability of groundwater 

recharges and point measurements of groundwater level in the sub basin assigning land 

subsidence in the west of the watershed is shown in Figure 4-12. The figure shows that 

groundwater level decreased by about 40 m during this time but the recharge did not change 

significantly. The trend of groundwater level was not the same as the groundwater recharge. 

Water extraction exceeded that of recharge which caused the groundwater level to decrease. 

Timoth (2006) mentioned that more than 80% of serious land subsidence problems are 

associated with huge withdrawal of groundwater, making it a growing problem throughout the 

world. On the other hand, poorly managed irrigation systems and high removal of groundwater 

for irrigation purposes lead to increasing critical groundwater levels, enhancing secondary 

salinity (UNDP, 2007). We also generally projected the same result in our study area (e.g. in 

central and east of the basin salinization appeared in farmlands). Land degradations turn out to be 
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costly in the agricultural lands. Awan et al. (2002) cited that land salinization and degradation of 

farmlands in Uzbekistan leaded to costs of US$31 million annually.   

 

Figure  4-9. Average yearly of groundwater recharge and precipitation distributions in each sub basin in the 

watershed   

 

Figure 4-10. Mean annual precipitation in Razan-Ghahavand study area, showing drought cycles from 1999 

to 2008.  An increase precipitation in 2002 and 2003 may have significantly increased on groundwater 

recharge in 2003. 
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Figure  4-11. Depth to groundwater at different locations in the study area. Bores No.1, 2, and 3 are located in 

North of area. Bore No. 4 in  East, and bores No. 5 and 6 are located in West of area  

 

Figure 4-12. Trend of groundwater recharge and groundwater level in west of the watershed, where land 

subsidences has been occurred.   
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4-4. Summary and Conclusions 

The concept of HRU that was used in this research, made it possible to recognize the influence of 

variables on groundwater recharge.  In this study, we demonstrated that the more detailed HRU 

use in the model (Multiple HRU model approach) had the better performance of the model in a 

semi-arid region of Razan-Ghahavand. The definition of model parameters played a key role in 

precise estimation of groundwater recharge by the SWAT water balance model. The model was 

calibrated both by surface runoff and crop yield with uncertainty analysis. SWAT has been 

extensively tested for a variety of climates, however little is known about its performance in 

semi-arid regions where river discharge is too low normally with high pick flow in flood events,  

or even there are just seasonal streams which make the model too complex for precise 

calibration. Lack of data on the amount of water used in irrigated lands was another limitation of 

this research.  

Temporal and spatial estimation of groundwater recharge can provide detail information for 

decision makers and stakeholder to regulate groundwater recharge for sustainable development.  

The annual average of groundwater recharge was verified by independently observed borehole 

data in the study area. Awan et al. (2013) presented the same method. In general, temporal 

assessment showed that groundwater recharge did not change significantly during the time step 

from 1998 to 2008, except in 2003 due to highest precipitation, while the water table declined 

about 1 meter per year. In particular, the water level was decreased about 3.6 meters in year in 

the west of the watershed with no significantly change in recharge. Overexploitation of 

groundwater was the main reason of the declining water level. 

 Groundwater is the main source of water in the study area and more than 90 percent of 

groundwater was used for agriculture while the rest went for industry and drinking. As the 

amount of water withdrawal is more than the water recharge and the bedrock in the west of the 

basin is limestone, overexploitation of water lead to joints and fracture systems in the bedrock, 

which is one of the main causes of land subsidence in this area.  
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CHAPTER 5 

Assessing the impact of climate change on water resources, crop production 

and land degradation in a semi-arid river basin 3 

 

 

 

Abstract 

The semi-arid regions of Iran have experienced severe water resources stress due to natural (e.g. 

drought) and anthropogenic (e.g. depletion of water in various sectors) factors. Assessing the 

impact of climate change on water resources and crop production could significantly help to 

better water management and hence prevention of land degradation in this area. A hydrological 

model of the Razan-Ghahavand basin was used as a representative case study of a semi-arid 

region of Iran. Future climate scenarios in the mid-21st century were generated from four global 

circulation models (GCMs) with three scenarios under the forth assessment report (AR4) of 

Intergovernmental Panel on Climate Change (IPCC) emission projections. The GCMs have been 

downscaled based on observed data at ten climate stations across the basin. The results showed 

that for the basin as whole, the mean annual precipitation is likely to decrease while the 

maximum temperature increases. The changes in these two climate variables resulted in 

substantial reduction in groundwater recharge as the main source of water supply in this area. 

Furthermore, soil water content was decreased which resulted in the reduction of crop yield in 

rain-fed areas. Indeed, the risk of drought in the south and flooding in the north was high.  

 

 

 

 

 

 

 

 

                                                           
3 This paper is accepted to publish in peer-reviewed “Hydrology Research Journal”. IWA, Inc. 
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5-1. Introduction 

Semi-arid regions suffer from shortage of water. Climate variation alongside anthropogenic 

factors such as population growth, land-use changes, and overuse of water resources especially 

for irrigation, are significant concerns.  Climate change and its impact on water resources have 

further challenge in the sensitive and fragile ecosystems like the semi–arid regions of Iran. The 

availability of water resources, crop production and the process of land degradation should be 

future considerations in this area in order to build up a sustainable ecosystem and to improve 

food security. However, the uncertainty of Global Circulation Models (GCMs) may lead to 

different results in the same area (Gosain et al., 2011; Singh & Bengtsson, 2005; WWF, 2010). 

Therefore, we developed an ensemble of GCMs model to predict the water availability and also 

the capacity of crop production in the semi-arid region of Iran.  

Hijioka et al. (2014) in IPCC-AR5 mentioned that increasing water demand and 

mismanagement of water resources give rise to water scarcity as a major challenge for most 

regions in Asia. According to IPCC (2007a) climate change has a pernicious effect on water 

resources and freshwater availability in most of the regions of the world.  It can also have a 

significant impact on the hydrological cycle (Piao et al., 2009; Wu et al., 2012). IPCC (2013) in 

their AR5 report revealed that human influence in global warming and changing of water cycle 

has grown since AR4. The quantum of damages, however, can differ from one place to another. 

The Variation of precipitation and temperature characteristics can lead to land degradation 

especially in fragile arid and semi-arid ecosystems (Meadows & Hoffman, 2003). The variation 

of intensity and variability of precipitation lead to increasing risks of droughts and floods in most 

of the regions. Furthermore, alteration in floods and droughts and a rise in water temperature are 

changing the water quality (IPCC, 2007b).  IPCC (2014) reported that drought frequency would 

likely raise in presently dry regions by the end of the 21
st
 century. Shifts in precipitation and 

temperature results in variations of groundwater recharge and also causes water table fluctuations 

(Changnon et al., 1988; Zektser & Loaiciga, 1993). Additionally, changes in groundwater 

recharge can have an influence on evapotranspiration, groundwater flow direction, groundwater 

level and surface water-groundwater interaction (Ali et al., 2012).  

Land use changes (particularly urbanization) could alter the hydrological response of an area 

by changing the amount of rainwater that goes into surface discharge and groundwater recharge 

(Baker & Miller, 2013). However, the impact of Land Use / Land Cover change (LULCC) varies 
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with the climatic conditions (Kim et al., 2013). Human activities and climate variability can 

influence on the hydrological processes (e.g. annual runoff, stream flow) especially in semi-arid 

regions (Zhan et al., 2013; Xu et al., 2013). Zhou et al. (2013) revealed that surface runoff and 

base flow are very sensitive to urbanization, whereas evapotranspiration and annual streamflow 

are less sensitive. Many previous studies identified a combined effect of climate and land use 

change on water components (e.g. surface runoff) (Kim et al., 2013; Tu, 2009; Tong et al., 2012).  

Food-producing capacity and livestock production can be significantly affected by climate 

change for years to come.  While some areas may experience a decrease in crop production, 

others are likely to increase. CO2 concentration and temperature are two important factors 

affecting crop production. While increasing CO2 concentration as the main driver of climate 

change could raise production of some crops (e.g. wheat), the changing climate in general is 

likely to have a negative effect on the length and quality of the growing season. Additionally, 

getting higher intensity of droughts and floods could have countless consequences for crop 

production.  On the other hand, a temperature increase of a few degrees is expected to generally 

raise crop production in temperate areas; however, greater warming may decrease crop yields 

(Adams et al., 1998; Raleigh & Urdal, 2007).   

Assessing the impact of climate change on hydrological processes can be used with various 

hydrological models (e.g., Kirshen, 2002; Rosenberg et al., 1999). For instance, the Hydrologic 

Unit Model of the US (HUMUS) was used to assess the impact of global warming on the 

hydrology of the Ogallala area in the United States, where the comparison of different GCMs 

shows an influence on the reduction of groundwater recharge (Rosenberg et al., 1999). Eckhardt 

and Ulbrich (2003) used a revised version of SWAT (Soil and Water Assessment Tools) to 

investigate the impact of climate change on groundwater recharge and stream flow in a central 

European low mountain range. The results of their studies show little effect of climate change on 

mean annual groundwater recharge and stream flow. In this research we used SWAT eco-

hydrologic model (Arnold et al., 1998) to study the impact of climate change on water resources 

and crop productions. Various investigations show the benefit of SWAT to assess the impact of 

climate change (Fontaine et al., 2001; Young et al., 2009; Faramarzi et al., 2013).   

As water resources in Iran become scarcer due to recurrent droughts and rising demand, 

accurate knowledge of the available resources in the future is mandatory for successful 

management. The fresh water availability in the semi-arid region of Razan-Ghahavand has 

http://www.sciencedirect.com/science/article/pii/S096262980700087X
http://www.sciencedirect.com/science/article/pii/S096262980700087X
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experienced severe reduction due to increasing demand for sanitation, drinking water, 

manufacturing and agriculture. All of these factors trigger the expansion of land degradation in 

this area. To improve water resource management, water use efficiency, sustainability of 

agriculture, and land management to combat degradation in the future, precise knowledge of 

water resources is needed. There is a close relationship between water resources, industry, 

agriculture and urban dynamics in this area. Therefore, it is essential to study the climate change 

impact on hydrology and water resources.  

The main objective of this research is to investigate the impact of climate change on water 

resources components such as groundwater recharge, soil water content, surface runoff and 

actual evapotranspiration (AET) for 2046-2065. This period was chosen because we would like 

to know the changes in the mid of 21
st
 century, and on the other hand, the uncertainty of data in 

this period is less than the end of century. The effect of land use change (e.g. urbanization) on 

surface runoff, estimation of crop yields and an analysis of future land degradation are the other 

objectives of this research. We used the ensemble of four global climate models to quantify the 

impact of climate change on water resources and crop productions in the mid-21st century.  

 

5-2. Material and methods 

5-2-1. Study area 

The study area called Razan-Ghahavand is located in the central drainage basin of Iran. The area 

is approximately 3100 km
2
. The range of the highest and lowest elevation inside the watershed is 

roughly 1265 m. A variety of species has evolved from the highest to the lowest elevation 

following this gradient. The climate of this region is semi-arid with an annual average 

temperature around 11⁰C and annual average precipitation of about 295 mm.  The main river in 

the watershed, called Gharehchay, enters the watershed from the east whereas the watershed’s 

outlet is controlled by the Omarabad hydrometric station in the west part of the watershed.  

Additionally, two other streams, Sirab Khomigan and Zehtaran respectively, join the main river 

from the north part of the basin. In table 5-1 the watershed area covered by the single 

hydrometric stations and their sub basins is shown. According to the land use map about 52 % of 

the area is grazing land covered by species that occur in different numbers and with a varying 

capacity for livestock rearing. Irrigation farming covers 26% and rain-fed cultivation cover 5 % 

of the watershed area.  
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Because of traditional irrigation methods and water conveying systems, the efficiency of 

water use is only 35 % and substantial amounts of water are lost (Abrishamchi & Tajrishi, 2005). 

Figure 5-1 shows the location of the study area inside Iran including all available hydrometric 

and meteorological stations.  There are various features of land degradation phenomena in this 

basin. In the south of the area rangelands have deteriorated. In the west of the basin, the 

groundwater level has decreased and land subsidence has occurred. In the eastern part arable 

lands are salinized (Figure 5-2). 

 

 

Table 5-1- Sub basins affected to flow in each station including the rate of discharge 

NO. Stations Name Location 

(in the sub 

basin) 

Sub  basins Area 

(km
2
) 

Discharge 

m
3
s

-1
 

I Sirab-Khomigan 14 1,2,3,4,5,6,12,13,14* 255 0.33 

II Zehtaran 41  23,26, 27,28,29,32,33,34, 37,38,41 420 0.66 

III Omarabad   71 All sub  basin  3100 6.68 

* Sub basin numbers  
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Figure  5-1. Region of Razan-Ghahavand watershed showing the hypsometric map, distribution of river and 

streams, hydrometric and climatic stations (e.g. rain gage and synoptic) 
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Figure 5-2. Some features of land degradation in the area (e.g. soil salinization in arable lands, rangeland 

degradation, and land subsidence)  

 

5-2-2. The SWAT Simulator, model setup, calibration and uncertainty analysis 

We used Soil and Water Assessment Tools (SWAT) (Arnold et al., 1998) to assess the influence 

of climate change on water resources and crop production. SWAT is a hydrologic model to study 

the quality and quantity of surface and ground water resources and predict the impact of land 

use, land management and climate change on water resources. It is a physical, distributed and 

continuous time model that operated on a daily time assessment. The main components of 

SWAT include hydrology, climate, nutrient cycle, sediment movement, crop growth and 

agricultural management. Hydrological processes in SWAT simulate surface runoff, potential 

a. 

c. 

b. 
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evapotranspiration, percolation, lateral subsurface flow, groundwater flow to streams from 

shallow aquifers, snowmelt, transmission losses from streams, and water storage and losses from 

ponds (Neitsch et al., 2011).  Hydrological response units (HRUs) including homogenous land 

use, soil and slope characteristics are the units of water balance calculations. The water in each 

HRU is stored in four storage volumes including snow, soil profile (0-2m), shallow aquifer (2-20 

m), and deep aquifer (>20 m).  

Basic input data include climate data, soil information, a digital elevation map, a river map, a 

land use classification plus crop and agricultural management data. All data are needed to set up 

a SWAT hydrologic model run. Climate data consist of daily precipitation, daily minimum and 

maximum temperature and daily solar radiation obtained from the weather service of the Iranian 

meteorological organization (WSIMO) from 1977 to 2008. Because the watershed is not located 

at the headwater of a particular basin, the inlet was defined for catchment. In other words, inlet is 

defined to estimate the amount of water entering the basin.  The surface runoff inside the 

catchment is estimated by the SCS curve number method based on daily precipitation, soil 

hydrologic groups, antecedent soil moisture plus different mapped land use. To adapt the model 

to the specific study area’s condition, the curve number (CN) is modified in relation to changing 

slope factors. To define the impact of elevation difference on the model, elevation bands are 

defined for sub-basins an elevation difference of more than 100 m using a specific TLAPS 

(Temperature lapse rate [°C/km]) and PLAPS (Precipitation lapse rate [mm H2O/km]) value. To 

route water through the channel network, a variable storage routing method is chosen. The crop 

growth is simulated based on the EPIC method (Williams et al., 1984) by determining leaf area 

development (LAI), light interception, and radiation use efficiency. Winter wheat is selected as 

the dominant crop in agricultural lands both for rain fed and irrigated lands.  Schedule planning 

(e.g. time of planting, irrigation, fertilization, harvesting) was defined both for irrigated and rain 

fed farmlands according to real information obtained from farmers and the Hamedan 

Agricultural Organization (HAO). Irrigation application is simulated based on an auto-irrigation 

routine, because it is difficult to know the volume and specific time of irrigation by farmers 

during simulation periods. Auto-irrigate triggers irrigation events based on water stress 

threshold.  To estimate potential evapotranspiration (PET) the Hargreaves method (Hargreaves & 

Samani, 1985) is used. Actual evapotranspiration is obtained based on the Ritchie methodology 

(Ritchie, 1972).    
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Several researchers have reported an uncertainty quantification of the hydrological models 

(Jin et al.,  2010; Li et al., 2010; Li et al., 2013). Li & Xu (2014) used Bayesian and Generalized 

Likelihood Uncertainty Estimation (GLUE) methods to estimate the uncertainty of a 

hydrological model. Abbaspour (2011) developed a SUFI-2(Sequential Uncertainty Fitting) 

method to analysis the uncertainty of the hydrological models.  

 After setting up a SWAT model run, a Sufi-2 algorithm is used to uncertainty analysis and to 

calibrate the model based on the monthly river discharge and yearly crop yield. The Sufi-2 

represents all modelling sources of uncertainties such as input data, conceptual model and 

parameter selections. The uncertainties are mapped based on the parameter ranges. The 

algorithm tries to bracket most of the measured data within the 95 percent prediction uncertainty 

band (95PPU) which is calculated at 2.5 % and 97.5% of the cumulative distribution of an output 

variable obtained through Latin hypercube sampling. To quantify the goodness of calibration and 

uncertainty performance two indices (P-factor and R-factor) are used. The P-factor is the 

percentage of data bracketed by the 95PPU band and the R-factor is the average width of the 

95PPU band divided by the standard deviation of the measured data. To compare the measured 

and simulated monthly discharge and annual crop yield, Nash-Sutcliff (NS) and Root Mean 

Square Error (RMSE) objective functions are used, respectively.  In this research, we used a 

previously calibrated SWAT model of the Razan-Ghahavand river system. A detailed description 

about calibration, validation, uncertainty and sensitivity analysis is presented by Rafiei Emam et 

al. (2015a). 

 

5-2-3. Climate change model 

An increasing CO2 concentration will have a severe effect on vegetation, especially on leaf area 

index development and stomata conductance (Wand et al., 1999) and additionally it can lead to 

changes in evapotranspiration resulting in change to other water components. 

The impact of climate change on water resources and crop production was assessed by 

developing a set of GCMs (General circulation models) parameterized based on three IPCC-AR4 

emission scenarios (A1B, B1, and A2) in the middle of the 21
st
 century (2046-2065) defined by 

the Intergovernmental Panel on Climate Change (IPCC, 2007a). The approved new set of 

scenarios is described in the IPCC Special Report on Emission Scenarios (SRES). Four different 

narrative storylines were developed to consistently describe the relationships between the forces 
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driving emissions and their evolution and to add context for the scenario quantification. The 

resulting scenarios cover a wide range of the main demographic, economic and technological 

driving forces of future greenhouse gas and sulphur emissions.  The B1 storyline and scenario 

family describes a convergent world with the same global population, that peaks in mid-century 

and declines thereafter, as in the A1 storyline, but with rapid change in economic structures 

toward a service and information economy, with reductions in material intensity and the 

introduction of clean and resource-efficient technologies. The emphasis is on global solutions to 

economic, social and environmental sustainability, including improved equity, but without 

additional climate initiatives. The three A1 groups are distinguished by their technological 

emphasis: fossil intensive (A1FI), non-fossil energy sources (A1T), or a balance across all 

sources (A1B) (where balanced is defined as not relying too heavily on one particular energy 

source, on the assumption that similar improvement rates apply to all energy supply and end-use 

technologies). The A2 storyline and scenario family describes a very heterogeneous world. The 

underlying theme is self-reliance and preservation of local identities. Fertility patterns across 

regions converge very slowly, which results in a continuously increasing population. Economic 

development is primarily regionally oriented and per capita economic growth and technological 

change more fragmented and slower than other storylines. 

Spatial resolution of GCM output is coarse; therefore we applied a downscaling program 

(LARS-WG) developed by Semenov and Stratonovitch (2010) in order to generate fine 

resolution climate data to use the output in the hydrological model. LARS-WG is a model 

simulating time-series of daily weather at a single site. It utilizes semi empirical distribution to 

obtain statistical parameters such as length of wet and dry periods, daily precipitation, daily 

minimum and maximum temperature and daily solar radiation based on daily observed climate 

data at local stations of the catchment. For the minimum and maximum temperature, auto- and 

cross- correlation calculated monthly were used by semi empirical distribution calculation. For 

solar radiation, semi-empirical distributions with equal interval sizes are used. LARS-WG has 

been successfully tested in several case studies with diverse climate types (e.g. Lawless & 

Semenov, 2005; Sunyer et al., 2012; Zarghami et al., 2011). The new version of LARS-WG 

includes the data  for different GCM models. A number of statistical tests such as t-test, F-test 

and chi-squared test were implemented by LARS-WG in order to verify the results of the 

simulation by comparing the synthetic data with the observed data.   
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Our climate model provided downscaled output from four GCMs (CCSM3, CSIRO-MK3, 

MPEH5 and HADGEM). These GCM models are high resolutions (finer than 1.9 degree) 

therefore we selected them. We developed a multi model ensemble from these GCMs. An 

ensemble of climate models exhibit more reliable representation of regional and local 

uncertainties than results from individual GCMs by decreasing the biases from single models 

(Abbaspour et al., 2009; Gaiser et al., 2011; Wu et al., 2012). After downscaling GCM’s data, 

the daily climate data were put into the SWAT calibrated eco-hydrologic model to simulate the 

future impacts on water components. Parameter ranges in the hydrologic model represent the 

uncertainty of the model run. According to the calibrated model, 69 set of eco-hydrologic 

parameters were used to capture the uncertainty of model (e.g. CN2, alpha_bf). The model was 

then run for a baseline scenario (1998-2008) and future climate scenarios (2046-2065). The CO2 

concentration was defined 492ppm, 54ppm and 545ppm for the selected climate scenarios B1, 

A1B and A2, respectively (Semenov & Stratonovitch, 2010).  

 

5-2-4. Land use change (Urbanization) 

We estimated the impact of urbanization on surface runoff in our study area. To examine the 

land-use change, two series of satellite images in 1989 and 2009 were used. The land use of 2009 

was adopted for the SWAT model. Based on changes in land use during 20 years (1989-2009), 

future land use (2050) was predicted. Moreover, population and growth rates were used as a 

driver in land-use prediction 2046-2065.   

 

5-3. Results and discussion 

We used a previously calibrated SWAT model of the Razan-Ghahavand area (Rafiei Emam et al. 

2015b). The model’s performance was satisfactory for both calibration and validation periods. 

The Nash-Sutcliff model efficiency was ranged from 0.53 to o.63 for calibration and from 0.42 

to 0.72 for validation for river discharge. Santhi et al. (2001) and Moriasi et al. (2007) mentioned 

that the model performances can be evaluated as satisfactory if NS and R
2
 are greater than 0.5. 

The root mean square error (RMSE) for crop (rain-fed wheat) calibration and validation was 0.07 

and 0.25 ton ha-
1
, respectively. In irrigated wheat the RMSE was estimated 0.19 and 0.691 ton 

ha
-1

, respectively, showing a good performance of the model. Generally, a good calibration with 
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crop yield leads to a good calibration of evapotranspiration (ET) adding more confidence to 

simulation of soil moisture and groundwater recharge. Figure 5-3 shows the calibration and 

validation performance of the SWAT model based on the river discharge at the Omarabad 

station. More details on calibration, uncertainty analysis and model results can be found in Rafiei 

Emam et al. (2015a) and Rafiei Emam et al. (2015b).   

 

Figure 5-3. Results of SWAT calibration–validation for one selected hydrometric station 

 

5-3-1. Downscaling results 

To assess the reliability of the downscaling result, the mean and standard deviation (sd) of 

observed and generated values of rainfall and temperature from 1983 to 2009 were calculated for 

the Ghahavand station in the south of the area (Figure 5-4a,b). The results showed that the 

simulated and observed mean and sd of temperature and rainfall are close together which 

indicates the high reliability of the simulation. 

 

Figure  5-4. -a,b. Comparison of the observed and generated mean and standard deviation of monthly rainfall 

and minimum temperatures at the Ghahavand station (1983-2009). bs: base line, gen: generated, sd: standard 

deviation 

 

http://www.sciencedirect.com/science/article/pii/S0022169412010761#b0225
http://www.sciencedirect.com/science/article/pii/S0022169412010761#b0225
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5-3-2. Impact of climate change on precipitation and temperature  

The results revealed that the annual precipitation decreased between 8 to 35 mm in different 

scenarios. The same result of reduced annual precipitation in the period of 2046-2065 was 

reported by Zarghami et al. (2011) in the northwest of Iran. Figure 5-5 compares the prediction 

of monthly mean precipitation for the period from 2046 to 2065 using the GCMs model and base 

line in the study area. The three scenarios have a tendency to raise monthly mean precipitation at 

the end of autumn but are less pronounced during spring and summer. This shortfall in 

precipitation especially in spring will increase the water stress. The water stress has an effect on 

crop production and rangeland species especially in the south of the watershed. The monthly 

mean precipitation will be decreased in scenario A1B more than A2 and B1.  

 

Figure 5-5. Mean monthly precipitation in baseline (1997-2008), and future (2046-2065) in three different 

emission scenarios according to the ensemble multi models. 

 

The spatial distribution of annual precipitation in the historic period (1998-2008), percent 

changes of precipitation based on the future (2046-2065) and historic data  are  shown in figure 

5-6(a-d). The precipitation will decrease in the south, east and northeast of the watershed up to 

18 percent for scenario A1B.  In scenarios A2, precipitation will decrease from 5 to 10 percent in 

the south of the watershed while in scenario B1 precipitation in this part will be decreased only 

up to 5 percent for the duration of 2046-2065. The spatial patterns show that in the west of the 

study area the precipitation is rising up to 27 percent in scenario B1.  

Because precipitation is already low in the southern lowlands of the watershed, the decline of 

precipitation may have a significant influence on increasing drought in the future. Hence, crop 
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production and rangeland productivity in this area will be at a lower level which may lead to 

more land degradation and desertification. Rangelands in the northern and southern part of the 

watershed are directly affected by precipitation and soil moisture distribution. The rangelands in 

the southern portion of the area are more sensitive than in the northern part due to lower 

precipitation and hence lower soil moisture.   

 

Figure 5-7 shows the absolute alteration of the surface temperature for three different 

emission scenarios (A1B, A2 and B1) at Dargazin station located in the north of the watershed. 

The figure revealed that the average temperature will rise by approximately 2.3 °C.  In total, the 

emission scenarios have a tendency to raise the maximum (Tmax) and minimum (Tmin) 

temperatures throughout the year. The highest increase was found with the A2 scenario for Tmin 

(about 58 % change), whereas the lowest increase occurred with the B1 scenario for Tmax 

(change of 5.2 %).    

Figure 5-6e-h shows an historic patterns of the average maximum temperature (Figure 5-6e) 

and anomalies  of the absolute difference between the maximum temperature prediction of the 

three scenarios and the average over the future(2046-2065) and historic (1998-2008) period. The 

results showed the changes of maximum temperature in A1B and A2 is more than B1 emission 

scenario. In scenarios A1B and A2, most of the north and central watershed experience an 

increase of about 2°C in temperature (in scenario B1 about 1°C) while in the south of the 

watershed the increase is mostly about 2.5°C (in B1 scenario about 1.5 °C).  

The diurnal temperature range is calculated as the difference between maximum and 

minimum temperature. For the historic period it is between 14°C-16.5 °C over the watershed 

area.  This difference in the southern area is more than center and the northern basin. However, 

the diurnal temperature will decrease in the north and central part of the watershed while it will 

increase in the south of the watershed during 2046-2065. Hence, the minimum temperature 

increase is stronger in the north and central part of watershed and lower in most parts of the 

southern water catchment.  
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Figure 5-6. Spatial pattern of average annual precipitation (a), maximum temperature (e) and actual 

evapotranspiration(i) for the historic period (1998-2008). Percent difference calculated of precipitation based 

on future and historic data (b-d),% difference maximum temperature (f-h) and the pattern of percent 

difference calculated of ET based on future and historic data (j-l).   
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Figure 5-7. The absolute surface temperature changes (°C) in north of study area in GCM period with respect 

to the baseline period for three different emission scenarios, according to the CCSM3 model.  

 

5-3-3. Impact of climate change on water balance components  

Evapotranspiration varies considerably across the area due to soil and land cover variations. The 

annual actual ET varies from 233 to 415 mm with the highest evapotranspiration in the northern 

part and lowest in the southern part of the watershed (Figure 5-6i). Approximately 294 mm of 

the water budget is lost by annual evapotranspiration (ET), which revealed that 

evapotranspiration has the largest portion of the watersheds’ overall water budget. The 

percentage difference calculated between ET based on the emission scenarios and the baseline 

scenario show that in most parts of the watershed the evapotranspiration will decrease by up to 

17 %. However, an increase of ET is seen in the west of the watershed throughout all scenarios 

(Figure 5-6j-k). The B1 scenario indicated an increase in ET in the north and central part of the 

watershed while scenario A1B illustrated a further decrease in ET.  

Groundwater recharge is affected not only by hydrological processes, but also by physical 

characteristics of the land surface and soil types. The average annual groundwater recharge rate 

is approximately about 5 mm/yr. The groundwater recharge rate responds not only to variation in 

land use but also to variation of hydraulic soil characteristics and variations in climatic 

conditions across the watershed.  On the other hand, the area is a semi-arid region with low 

precipitation and high temperature, therefore most of the precipitation will not infiltrate deep into 

the soils due to high evapotranspiration. The northern part of the watershed has significantly 
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higher recharge rates than the southern part. The areas with high groundwater recharge may 

illustrate regions where the underlying aquifers are facing higher contamination vulnerability. 

This may have a considerable impact on land use planning, where land is being converted into 

residential areas and/or industrial regions (Jyrkama & Sykes, 2006). The groundwater recharge 

varies significantly over time. In summer the monthly recharge rate is lower than in other months 

of the year due to high temperatures and low precipitation.  There also is no return flow from 

irrigation in the summer. The results also show that the increase in groundwater recharge in B1 

scenario in the west of the basin is much more than in other scenarios. In scenario A1B the 

groundwater recharge shows a greater decrease in the north of the area more than in other 

scenarios (Figure 5-8a-d).   

Figure 5-8e-h shows the annual spatial pattern of surface runoff in the study area. The 

northeast and the southwest of the watershed have significantly higher surface runoff due to the 

existence of low permeability soils. In scenario B1 the surface runoff rate is much higher than in 

other scenarios especially in the north, center and the south west of the watershed; the increase of 

surface runoff runs up to 65 % in these regions. In the southeast, and some parts of the north of 

the watershed the surface runoff decreased to 56 %.  However, in mountainous areas of the north 

portion of the basin the runoff will increase. 

The historical data show a soil moisture rate varying from 10 mm in the southwest to 80 mm 

in the north portion of the watershed. According to the emission scenarios, soil moisture in the 

north and south portion of the watershed has significantly decreased whereas the center and 

western part of the area showed an increase of water content. The A1B scenario shows the 

highest decrease in soil moisture compared to the other scenarios (Figure 5-8i-l).  

 

5-3-4. Land-use change scenario  

Land use change monitoring indicates that urban or built-up land expanded by about 100 % in 

Razan-Ghahavand during the 1989-2009 periods. The urban land was increased mostly due to 

the contraction of croplands. Based on this information and according to the mean annual 

population growth rate in the area reported by the Statistical Center of Iran (2011) of 2.63 % 

during 1986-2006, we assumed the urban or built-up growth is about 190 % during the 2046-

2065 periods. The results indicated that the average annual runoff volume increased by more 
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than 60 % from 2045 to 2064 due to urbanization. The increase of surface runoff by urbanization 

have already mentioned in other studies (Weng, 2001). 

 

5-3-5. Impact of climate change on crop production  

Figure 5-9 depicts anomaly graphs of irrigated and rain-fed wheat yield in the future. The results 

of the ensemble model show the increase of production in irrigated areas, however in rain-fed 

areas the production decreased. The reasons for rising wheat yield in irrigated areas are 

increasing CO2 concentration and rising temperature, especially minimum temperature, while the 

cereals suffered from temperature stress during historical period (1998-2008). In general, heat 

stress decreased in all GCMs scenarios in comparison to the base line both for irrigated and rain-

fed lands (Figure 5-10).  Within the watershed, the heat stress in the south of region is predicted 

26 percent less than in the north part of the plain, which is due to the mean monthly temperature 

in the south being higher than in the north part. The reason for the decreasing rain-fed yield 

especially in A1B scenario is due to decreasing precipitation (-10%) resulting in a decline of soil 

moisture (-13%). The analysis of water stress shows that it will increase in the future in all 

scenarios in rain-fed areas as a result of a decrease in predicted rain-fed yield. In irrigated lands, 

water stress doesn’t change significantly and M95PPU recorded around 75 days stress (Figure 5-

11). The analysis of monthly water stress shows an increase  from April to June (both for 

irrigated and rain-fed lands) which has a pernicious effect on crop production (e.g. Figure 5-12 

revealed the anomaly graph of water stress in the A1B scenario both for irrigated and rain fed).   
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Figure 5-8. Spatial pattern of deep aquifer recharge, surface runoff, and soil water content in historical (1998-

2008) and future (2046-2065) periods. The pattern of deep aquifer recharge (a) and % difference calculated of 

DARCH based on future and historic data (b-d).  The distribution of average annual surface runoff (e) and 

% difference calculated of SURQ based on future and historic data (f-h).  The spatial patter of soil water 

content (i ) and % difference calculated of SW based on future and historic data (j-l )  
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Figure 5-9. Anomaly graph of irrigated and rain-fed wheat yield in the GCMs scenarios 

 

 

Figure 5-10. Temperature stress during growing season for rain-fed and irrigated lands 

 

Ensemble of four GCMs model 



111 
 

 

Figure 5-11. Water stress uncertainty analysis in different scenarios both for irrigated and rain-fed areas 

 

 

Figure 5-12. Means monthly water stress in irrigated and rain-fed lands.95PPU: 95 percent prediction 

uncertainty, M95: Median of iteration  
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5-3-6. Land degradation and water table  

There are various land degradation phenomena in the study area. The evidence of these land 

degradations are salinization in the east and center, rangeland degradation in the south and 

subsidence in the west of the watershed.  Land subsidence in the study area responds directly to 

groundwater resources. Because of shortage of precipitation, groundwater is the main source of 

water resources for agriculture, industry and domestic purposes.  In the west part of the 

watershed due to the over-extraction of groundwater, and sensitivity of the bedrock, land 

subsidences are happening on a large scale. 

The hydrograph of the aquifer was mapped based on piezometric well data (Figure 5-13a). It 

revealed the trend of the water level falling about 20 meters during the 21 years from 1988 to 

2008. In other words, the water table is declining about 95 cm per year. The biggest decrease in 

the water level appeared in the west of the aquifer with approximately 3.5 meter per year (Figure 

5-13b). This huge fluctuation caused land degradation such as land subsidence and collapse and 

also salinization and other ecosystem deterioration.  If the decline of the groundwater table 

continues to the same degree in the future, then the groundwater resources will be exhausted.  To 

predict the water level of the aquifer in the future (2046-2065), we used the Auto-Regressive 

Integrated Moving Average model (ARIMA). ARIMA is usually used to predict future points in 

the time series course. The result shows a decrease of the water level up to 32 m in 2050 (Figure 

5-14). The use of ARIMA for the prediction of groundwater levels is documented by other 

studies such as Changnon et al., (1988).  

Table 5-2 shows the estimation of average annual recharge in the historic period (1998-2008) 

and the percentage difference between the future groundwater recharge (2046-2065) and the 

baseline groundwater recharge. The highest decrease (24 %) is based on the A1B scenario and 

the lowest decline (8 %) is found for scenario B1. The field observations show that most land 

subsidence is happening in HRU 515 and 571 in the west of the basin. Therefore, the 

groundwater recharge was estimated in these areas specifically. The results show an increase of 

recharge in those places up to 52 % for scenario B1. The reason for a rising recharge is due to 

increasing precipitation in this part of the basin. Overall, we can conclude that for the future the 

whole basin is facing both declining ground water table and decreasing groundwater recharge. 

 



113 
 

 

Figure 5-13-a: The hydrographs of Razan-Ghahavand Aquifer, b: the hydrograph of degraded area in the 

western part of basin.  

 

 

Figure 5-14. The hydrograph of Razan-Ghahavand Aquifer from historic period (1988) to 2050, predicted by 

ARIMA model 

 

 

Table  5-2. The rate of groundwater recharge in HRUs 515, 571 (in the west of basin) and whole basin in base 

line and percent difference calculated of GWR based on the future (2046-2065) and historic (1998-2008) data.  

Scenario HRU:571 HRU: 515 Watershed 

B1 52% 51% -14.1 % 

A1B 44% 42% -16.6% 

A2 32% 39% -26.7% 

Bs 1.2 mm 1.3 mm 4.78 mm 
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5-4. Summary and conclusions 

This study investigated the ensemble climate change effect on hydrology, crop production and 

land degradation based on four GCMs model in three emission scenarios. Additionally, the 

impact of land use changes (urbanization) on runoff production was evaluated.  

The Razan-Ghahavand basin is currently under high pressure due to growing water demand 

for drinking, agriculture and industrial purposes. The population has grown rapidly in the last 20 

years. A future climate is likely to affect the water resources differently in the north and south of 

the basin. The spatial pattern of climate change models show that with increasing CO2 the 

temperature is increased and it leads to more evapotranspiration and less groundwater recharge. 

A similar result is reported by Bouraoui et al. (2004).  We found that precipitation in the south 

and central part of the basin will decline while the north and the west parts will face more 

precipitation. The increase of precipitation in the west is the reason for rising groundwater 

recharge in HRUs with land subsidence phenomena; therefore the water table in this part of the 

basin will increase. In other words, with good water management in this area further land 

subsidence could be controlled. However, the rangelands in the southern part of the basin are 

under water stress which will continue even in the future due to the decrease in precipitation. 

However, we can conclude that the watershed will have less rain and hot summer temperatures. 

Therefore, a sustainable strategy needs to consider for future water resources development.  

On the other hand, wheat is the representative crop in the basin and suffered from heat stress 

during the historical period. Therefore, with rising temperatures in the future, the production will 

increase especially in irrigated lands. Nevertheless, production in rain fed areas will decrease due 

to water stress. The water stress in rain fed areas is more than in irrigated areas however the 

uncertainty in irrigated lands is more due to unaccounted  for  water use in the model due to lack 

of data. Hence, increasing of water use efficiency will be mandatory in the future cropping 

systems in order to sustainable water use. 

Urbanization growth has a significant effect on surface runoff. It is important to note that to 

develop a water resources management plan, LULC certain changes (e.g. urbanization) as well as 

associated flood patterns should be considered.  

Finally, it is important to note that, the predictions of hydrological components in the future 

were based on the use of same soil parameters for baseline. In this study the change of soil 

parameters was not considered in the future. Change of soil parameters may have an effect on 
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soil water content as well as surface runoff in the basin. Therefore, further research on climate 

change assessment while considering soil parameters changes would raise the confidence on the 

outcomes. The same limitation have already discussed by (Faramarzi et al., 2013). 

We used a set of four GCMs model in this study, however considering the effect of other 

GCMs or even RCMs model may have different outcomes which should be study in further 

research.  
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CHAPTER 6 

Estimating actual evapotranspiration from MODIS time series compared to a 

hydrological model in a semi-arid catchment in Iran
4 

 

 

Abstract   

The accurate estimation of actual evapotranspiration (ETa) is of crucial importance for 

management of water resources, especially in arid and semi-arid areas. Remote sensing data can 

be used as proxy data for the calibration of hydrological models in areas with low data 

availability. In this study, the Surface Energy Balance Algorithms for Land (SEBAL) model was 

used to estimate ETa over the semi-arid region of the Razan-Ghavand watershed located in the 

central drainage basin of Iran. Eight overpasses MODIS data during 150-day growing season 

from January 2008 to May 2008 were selected for this purpose. In addition, a SWAT (Soil and 

water assessment tools) hydrological model was used to estimate ETa based on a water balance 

equation. The SEBAL model was internally calibrated for the aerodynamic resistance to heat 

transport (rah) using Monin-Obukhov theory, while the SWAT model was calibrated using river 

discharge and crop yield. Here, crop yield leads to more precise estimates of evapotranspiration. 

The performance of the SWAT hydrological model was evaluated by Nash Sutcliff (NS) and R
2
, 

which calculated greater than 0.5 showing satisfactory results. Furthermore, the average of 

monthly ETa was estimated from 4.5 mm to 46 mm between January 2008 and May 2008 by the 

SEBAL model. The ETa estimates between both the SEBAL and SWAT models were found to 

be comparable. Therefore, the evapotranspiration estimates based on remote sensing data can be 

useful for calibration of hydrological models in an area with low data availability.  

 

 

 

 

 

 

 

                                                           
4 This paper is prepared  to submit to an international peer-review journal 
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6-1. Introduction 

The management of water resources is one of the biggest challenges in arid and semi-arid areas. 

The evapotranspiration (ET) process is one of the most important components within the 

hydrological cycle (Wang et al., 2014). It can release a large amount of water from the land 

surface by soil evaporation and vegetation transpiration. Quantifying ET is important for water 

resource planning and management. However, a point measurement of ET cannot be extended to 

a large area due to the dynamic of the heat transfer process (Wang et al., 2014). Therefore, we 

studied ET spatially by surface energy balance techniques derived from remotely sensed data. 

The results were compared with the output of surface water balance approaches adapted from a 

hydrological model.  

Satellite data are very useful in terms of producing information in the spatial and temporal scales, 

especially in arid and semi-arid regions. Remote sensing is an important source of data and 

information for hydrological modeling. Additionally, it can help precise calibration of 

hydrological models (Awan & Ismaeel, 2014). Remote sensing techniques also enable estimation 

of some variables for hydrology (e.g. soil moisture, evapotranspiration) (Engman, 1991). 

Generally, actual evapotranspiration is estimated as a residual of the surface energy balance 

derived from remotely sensed data (Bastiaanssen et al., 1998a; Su, 2002; Allen et al., 2007a). 

The widely used residual model is Surface Energy Balance Algorithm for Land (SEBAL) 

developed by Bastiaanssen et al. (1998a). SEBAL estimates actual evapotranspiration based on 

the  land surface temperature  derived from thermal remotely sensed data (RS-ET). Several 

researchers revealed the good performance of the SEBAL in various areas (Spiliotopoulos et al., 

2008; Teixeira et al., 2009; Tang et al., 2013). However, it is not easy to validate RS-ET 

(Norman et al. (2006). Allen et al. (2011) reported a validation study of RS-ET model using 

weighing lysimeters as the most direct and accurate field measurement approach. However, in 

some researches the eddy covariance and Bowen ratio measurements have been applied for 

validation purposes (Kalma et al., 2008; Ruhoff et al., 2013).  

In addition to the remote sensory method, hydrological models are useful approaches to estimate 

evapotranspiration. The models can be divided into various groups: white box (i.e. Distributed 

physically based models), gray box (i.e. Lumped conceptual models), and black box (i.e. 

Empirical models). Some hydrological models that consider the evapotranspiration in spatial and 

temporal scales belong to distributed models. SWAT (Arnold et al., 1998) is a kind of physical 
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distributed model and has been tested by different researchers (Tobin & Bennett, 2013; Schuol et 

al., 2008; Faramarzi et al., 2009). In the SWAT model, all water balance computations are done 

in homogenous units obtained through soil, land-use and slope maps. ET is a residual of the 

surface energy balance in the SWAT model.  

Water supplies are difficult in semi-arid regions of Iran. Groundwater is the source of water 

supply for irrigation purposes (Awan & Ismaeel., 2014) and as the groundwater recharge is less 

than the discharge (Rafiei Emam et al., 2015b), aquifers are eventually depleted. The average 

efficiency of water use in farmlands is less than 35%, which reveals the huge volume of water 

wasted by percolation or evapotranspiration processes. The information about spatial 

evapotranspiration in the RGB is too sparse.  

Although remotely sensed approaches and distributed hydrological models are useful techniques 

for spatial estimation of ET, the validation of the RS-ET models and the calibration of the 

hydrological models, especially in areas with low data availability, are not easy.   

The main objective of this research is to estimate the actual evapotranspiration by surface energy 

balance technique (SEBAL) using MODIS time series data in a spatial scale. Some equations of 

the METRIC model are used to mitigate the effects of topography. A comparison between ETa 

estimated by SEBAL and ETa estimated by SWAT is another goal of this research leading to 

validation of the SEBAL model. If the ETa estimated by remote sensing and by the hydrological 

model is the same, the former technique could be used for further calibration of hydrological 

models especially in area with low data availability.   

 

 

6-2. Material and Methods 

6-2-1. Study area 

The study was carried out in the central drainage basin of Iran, called Razan-Ghahavand Basin 

(RGB) (Figure 6-1). The climate in the study area can be characterized as being semi-arid, with 

an annual average precipitation of approximately 290 mm and temperature of 11 ⁰C. The 

elevation of the study area ranges from 1577 m to 2843 m from the eastern to northern part of the 

basin. More than 30 percent of the area is agriculture (e.g. Wheat, alfalfa), and the remaining 

70% comprises of rangelands, bare lands, and residential area.  
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Figure 6-1. Map of study area, including streams, hydrometric, temperature and rain gages 

 

6-2-2. Satellite and meteorological data 

One of the main products that are needed for evapotranspiration (ET) estimation by means of 

remotely sensed energy balance is Thermal Infrared Radiation (TIR). TIR refers to 

electromagnetic waves from 3 to 20 micrometer. Most of remote sensing applications use ranges 

between 8 and 14 micrometer. Therefore, all earth observation satellite systems consisting of 

thermal bands can be used for surface energy balance modeling.  In this research, different 

MODIS data products were used (e.g. LST, NDVI). The same data is used by Du et al. (2013) 

and Anderson (2008) for surface energy balance model.  MODIS data from January 2008 to May 

2008 was used in different temporal (daily, 8_day, 16_day) and spatial (250 m, 500 m, and 1000 

m) resolution. A summary of the available MODIS products for this study is given in Table 6-1. 

In addition to the satellite data, hourly climatic data (e.g. solar radiation, wind speed, 

temperature, relative humidity and atmospheric pressure) were extracted from a synoptic station 

in the southern part of the study area.  
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We selected at least one cloud-free image per month in order to estimate instantaneous 

evapotranspiration at the satellite overpass time. The LST images (MOD11A1) used in this study 

are listed in table 6-2 including the overpass time. 

 

Table 6-1. Specification of MODIS products used in ET modeling  

Data Product Layer Spatial 

resolution 

Temporal 

resolution  

MOD11A1 LST/Emissivity 1 km Daily  

MOD13A2 NDVI 1 km 16-days 

MCD43B3 Albedo 1 km 16-days 

MCD15A3 LAI 1 km 8-days 

MOD09GA Reflectance 500m 8-days 

  

 

Table 6-2. Overpass date and time of terra sensor 

No. Overpass Date Overpass time DOY* 

1 14 January 2008 11:24 14 

2 5 February 2008 10:06 36 

3 8 March 2008 10:25 68 

4 20 March 2008 10:30 80 

5 13 April 2008 11:12 104 

6 24 April 2008 11:30 115 

7 15 May 2008 11:18 136 

8 25 May 2008 10:24 146 

* DOY: Day Of Year  

 

6-2-3. Mapping of Land use/land cover   

The land use/Land cover (LULC) map is needed in both the surface energy balance method (e.g. to 

compute momentum roughness length (Zom)) (Waters et al., 2002), and for the water balance 

technique (e.g. to create hydrological response unit (HRU)) in order to estimate evapotranspiration.  

To create the LULC map, Landsat TM data in 2009 was used, and LULC classification was done 

by means of supervised classification. 
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6-2-4. Surface energy balance algorithm  

The method described here to estimate actual evapotranspiration is based on a surface energy 

balance model (Bastiaanssen et al., 1998a; Bastiaanssen, 2000) (Figure 6-2).  By using the 

SEBAL algorithm to estimate surface energy balance, ETa is calculated as a residual of the 

surface energy equation:  

LE = 𝑅𝑛 − 𝐺 − 𝐻                                           (1) 

Where LE refers to latent energy representing actual evapotranspiration, Rn indicates net energy, G 

refers to sensible heat flux which is conducted into the ground, and H indicates sensible heat flux 

converted into the air. The units of all parameters are [W m
-2

]. Rn is calculated as a sum of all heat 

energy flux, shortwave and long wave radiations, at the surface: 

𝑅𝑛 = (1 − 𝑎)𝑅𝑆 ↓ −𝑅𝐿 ↑ +𝜀0 𝑅𝐿 ↓               (2) 

Where 𝑎 is a land surface albedo, 𝑅𝑠 ↓ is an incoming short wave radiation, 𝑅𝐿 ↑ is an outgoing 

long wave radiation, 𝜀0  is a land surface emissivity, and 𝑅𝐿 ↓ is an incoming long wave radiation. 

Incoming short wave radiation is calculated as follows: 

𝑅𝑆 ↓= (𝐺𝑠𝑐 × 𝐶𝑜𝑠 𝜃 × 𝜏𝑠𝑤)/𝑑𝑟2                      (3)      

Where Gsc refers to the solar constant (1367 Wm
-2

), 𝜃 is a solar incident angle, 𝜏𝑠𝑤 is the 

atmospheric transmissivity, and dr indicates relative distance between the earth and sun in the 

astronomical units. For mountains lands, 𝜃 is calculated based on slope and aspect according to the 

equation presented in the METRIC model (Allen et al. 2007a). However, in the flat surface, where 

slope and aspect are ignored, solar incident angle is equivalent to the solar zenith angle (i.e. π/2 

minus the solar elevation angle). 𝜏𝑠𝑤 is calculated by empirical model of SDCE-EWRI (2005) 

cited by Allen et al. (2007b) by using atmospheric pressure, elevation above sea level, amount of 

water in the atmosphere, near surface vapor pressure,  solar zenith angle, and turbidity coefficient. 

The outgoing long wave radiation is calculated as:  

𝑅𝐿 ↑=  𝜀0 × 𝜎 × 𝑇𝑠
4                                 (4) 

Where 𝜀0 refers to the land surface emissivity, 𝜎 is the Stefan-Boltzman constant (5.67 × 10
-8

 

W.m
2
.k

-4
), and Ts is the land surface temperature (K). Incoming long wave radiation is calculated 

as:   

𝑅𝐿 ↓=  𝜀𝑎 × 𝜎 × 𝑇𝑎
4                      (5) 

Where 𝜀𝑎 indicates an atmospheric emissivity, and Ta refers to the near surface air temperature (K) 

usually assumed equal to cold pixel value. To calculate heat transfer into the soil ( G) Bastiaanseen 
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et al., (1998b) suggested the following equation based on the soil surface temperature in ⁰K (Ts), 

albedo ( 𝑎 ), and vegetation index (NDVI): 

𝐺 = (𝑇𝑠 − 273.15). (0.0038 + 0.0074 𝑎). (1 − 0.98 × 𝑁𝐷𝑉𝐼4). 𝑅𝑛        (6)    

Heat transfer into the air (H) is the most critical factor to consider regarding surface balance 

energy. It depends on surface temperature, surface roughness length (Zom), and wind speed using 

buoyancy corrections.  

𝐻 = 𝜌𝑎. 𝐶𝑝
𝑑𝑇

𝑟𝑎ℎ
                              (7) 

Where 𝜌𝑎 is air density (kg.m
-3

), 𝐶𝑝 refers to the specific heat of the air (1004 J/(kg.K)), 𝑟𝑎ℎ refers 

to the aerodynamic resistance of wind speed between two near surface heights(m.s
-1

), dT represents 

the temperature difference between the two near surface heights  (e.g. Z1=0.1m and Z2=2m). To 

compute heat transport into the air, one first needs to calculate 𝑟𝑎ℎ and dT. In the first attempt, the 

aerodynamic resistance to heat transport (𝑟𝑎ℎ) is calculated for neutral stability, so the H in neutral 

atmospheric conditions can be estimated. The stability of atmospheric conditions has a significant 

effect on the aerodynamic resistance (𝑟𝑎ℎ ) and takes into account the estimation of sensible heat 

flux (H), especially when evaluating dry conditions (Waters et al., 2002). The computation of H by 

SEBAL repeats through a number of iterations until 𝑟𝑎ℎ stabilizes. For this aim the Monin-

Obukhov theory is used in iterative processes to correct buoyancy effects generated by surface 

heating.  𝑟𝑎ℎ  is  calculated by equation (8): 

𝑟𝑎ℎ =  
1

𝑢∗×𝑘
[𝑙𝑛 (

𝑧2

𝑧1
) − 𝛹ℎ(𝑧2,𝐿) + 𝛹ℎ(𝑧1,𝐿)]                   (8) 

where, 𝑢∗ is the friction velocityat the blending layer of 200 m; k is the von Karman 

constant(dimensionless, = 0.4); 𝛹ℎ(𝑧2) is the stability correction of atmosphere for heat transport 

based on Monin-Obukhov length(L)( equals to -𝜌𝑐𝑝𝑢∗
3𝑇𝑠/𝐾𝑔𝐻), 𝑔 is gravitational constant (9.81 

ms
-2

) 

dT, the near surface temperature difference, is computed by assuming a linear relationship between 

dT and Ts: 

dT = b + aTs                      (9) 

To define a and b as a correlation coefficient, SEBAL is used the two anchor pixels in “cold” and 

“hot” areas. The cold areas refer to the well-irrigated fields containing low surface temperature. In 

these areas all available energy is assumed to be evpotranspirated. The hot areas indicate the 
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enough dry regions with high surface temperature. One can assume that in hot areas LE = 0, means 

there is no evapotranspiration in these areas. 

Then H and dT is calculated in cold and hot pixels by means of the following equations: 

𝐻𝑐𝑜𝑙𝑑 = 𝑅𝑛 − 𝐺 −  λ𝐸𝑇𝑐𝑜𝑙𝑑                             (10) 

𝑑𝑇𝑐𝑜𝑙𝑑 =  𝐻𝑐𝑜𝑙𝑑 ∗  𝑟𝑎ℎ/(𝜌𝐶𝑝)                            (11) 

𝐻ℎ𝑜𝑡 =  𝑅𝑛 − 𝐺                                                (12) 

𝑑𝑇ℎ𝑜𝑡 =  𝐻ℎ𝑜𝑡 ∗  𝑟𝑎ℎ / (𝜌𝐶𝑝)                            (13) 

By stabilizing 𝑟𝑎ℎ in iterative process, the final value of H is estimated. The flowchart of the 

process is shown in Figure 6-2 (After Waters et al., 2002; Bastiaanssen et al., 2000). After the final 

computation of H, the LE is computed for each pixel by equation 1. Then, the instantaneous ET at 

each pixel is calculated as:  

𝐸𝑇𝑖𝑛𝑠𝑡 = 3600
𝐿𝐸

λ
                     (14) 

Where 𝐸𝑇𝑖𝑛𝑠𝑡 refers to the instantaneous ET (mmhr
-1

), 3600 is the time conversion from second to 

hours, LE is the latent heat flux for evapotranspiration (Wm
2
), λ indicates the latent heat of 

vaporization (JKg
-1

) and is computed as following equation represented by Allen et al., (2011): 

λ = [2.501 − 0.00236(𝑇𝑠 − 273.15)] ∗ 106                          (15) 

 

To extrapolate the ET-ins to a period of time (e.g. daily, monthly), ET fraction (ETrF) should be 

calculated. ETrF is same as Kc in the traditional ET computation model. The evapotranspiration 

fraction and ET24 is computed as:  

𝐸𝑇𝑟𝐹 =
𝐸𝑇𝑖𝑛𝑠𝑡

𝐸𝑇𝑟
                                          (16) 

ET24 = ETrF * ETr_24                                               (17) 

Where ETr is reference evapotranspiration, and ETr_24 is calculated as cumulative of 24-hour ETr 

for the day of the specific chosen image: 

𝐸𝑇𝑟−24 = ∑ 𝐸𝑇𝑟−ℎ                                      (18) 

Monthly ET is calculated as:  

  𝐸𝑇𝑚𝑜𝑛𝑡ℎ𝑙𝑦 =  𝐸𝑇𝑟𝐹 ∑ 𝐸𝑇𝑟_24
𝑛
1                       (19) 
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Figure 6-2. Flowchart of process of surface energy balance technique to estimating actual evapotranspiration 

(ETa) 

 

 

6-2-5.  A hydrological model for water balance assessment  

Soil and Water Assessment Tools (SWAT) is one of the physical, distributed and continuous time 

models that was used in this study. In the SWAT, the watershed subdivides into sub basins based 

on digital elevation model (DEM). Hydrological response units (HRUs), which are the basis of the 

water balance calculations, were further created by integration of soil, land use and slope within 

the sub basins. Therefore, a total of 83 sub basins and 831 HRUs were created in the RGB. The 

soil-water-balance equation is the basis of the SWAT. The water balance model was analyzed 

based on the HRUs by adding meteorological data such as daily precipitation, daily temperature, 

and solar radiation.   

The general water balance model inside the SWAT can be indicated as such:  

𝑆𝑊𝑡 = 𝑆𝑊0 + ∑ (𝑃𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟 − 𝐸𝑇𝑃 − 𝑊𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)𝑡
𝑖        (19) 

Where: 𝑆𝑊𝑡 is the final soil water content (mm), 𝑆𝑊0 is the initial soil water content(mm), 

precipitation, 𝑃𝑑𝑎𝑦 is the precipitation (mm),  𝑄𝑠𝑢𝑟 is the surface runoff (mm), 𝐸𝑇𝑃 is the amount 

of  evapotranspiration (mm), 𝑊𝑠𝑒𝑒𝑝 refers to the  amount of percolation and bypass flow exiting 

the soil profile bottom, and 𝑄𝑔𝑤 indicates the  amount of return flow (mm).  

Sensible heat flux (H) Soil heat flux (G) Net Radiation (Rn) 

ETa 

Latent energy (LE) 

Meteorological data 
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Atmospheric stability condition 
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DEM 

NDVI Albedo LST 

MODIS data 
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Potential evapotranspiration (ETP) in SWAT is simulated by the Hargreaves method (Hargreaves 

& Samani, 1985). Daily data of three different meteorological stations were used. The daily 

amounts of LAI are used to partition ETP into potential soil evaporation and plant transpiration 

(Akhavan et al., 2010). Actual evapotranspiration (ETa) is further estimated using the Ritchie 

(1972) method. The soil water content applies actual soil evaporation. It is reduced exponentially 

when soil water content decreases less than field capacity. Actual plant transpiration is equal to 

the actual plant water uptake. It is calculated based on depth of root development, actual daily 

crop height and LAI (Immerzeel & Droogers, 2008).  

The SWAT model was calibrated and validated by means of considering monthly river discharge 

and yearly crop yield by SUFI-2 algorithm within the SWAT-CUP package developed by 

Abbaspour (2011). In SUFI-2 all source of uncertainties (e.g. input data, conceptual model, and 

parameters) are depicted into parameter range. The model tries to capture most of the measured 

data within 95 percent prediction uncertainty (95PPU). The output is mapped as 95PPU band, 

which is calculated at 2.5% and 97.5% levels of the cumulative distribution of an output variable.   

In the calibrated model, all water components (e.g. evapotranspiration) can be computed in the 

temporal and spatial patterns. More details about calibration, validation and uncertainty analysis 

of SWAT model is presented by Rafiei Emam et al. (2015a).  

 

6-3. Results  

Based on the results of the hydrological model, the actual evapotranspiration was estimated 

precisely due to the calibration of model both by river discharge and crop yield. A good 

calibration by crop yield would result in a good calibration of evapotranspiration (Rafiei Emam et 

al., 2015a; Faramarzi et al., 2009).  

The statistical results showed the Nash-Sutcliff (NS) coefficients are close to or more than 0.5 for 

all hydrometric stations for both the calibration and validation periods. According to Moriasi et 

al.(2007), NS more than 0.5 shows a good performance of the model. Furthermore, the calibration 

of the model by crop yield shows that the root mean error (RMS) is less than 0.07 ton/ha for rain-

fed lands, whereas the RMS in irrigated areas are 0.69 and 0.19 ton/ha for calibration and 

validation periods, respectively. Vaghefi et al. (2014) calibrated the hydrological model in 

southwestern Iran by winter wheat yield using harvest index and heat units.  They found that 

observed yields are within or close to the predicted yield band. Akhavan et al. (2010) calibrated 



133 
 

the hydrological model based on wheat and potato as representative crops in the Hamedan-Bahar 

area in Iran. The RMSE were 0,08 and 1.69 ton ha
-1

 for rain-fed wheat and potato in calibration 

period. They mentioned that the lack of accounting of management practices (e.g. tillage 

operation, fertilizer application, planting date) is the result of large RMSE for potato. Figure 6-3 

shows the anomaly graph of calibration and validation of model by crop yield in the RGB. The 

results of calibration and validation of SWAT model show the good performance of the model. 

The results are comparable with Akhavan et al., (2010) and Vaghefi et al., (2014). 

 

Figure 6-3. The calibration and validation of the crop yield in the RGB 

 

 

6-3-1. Reference Evapotranspiration, ETr 

The reference evapotranspiration is the ET rate of full- cover alfalfa. ETr is used in SEBAL to 

compute the evapotranspiration fraction in order to extrapolate the ET_inst to ET_24 or longer. 

Table 6-3 shows ETr at day of satellite overpass calculated at the Hamedan synoptic station by 

Ref-ET program based on Hargreaves method (Hargreaves & semani,1985). Maeda et al., (2011) 

compare three reference evapotranspiration methods. They mentioned the Hargreaves model as 

the most appropriate method among others.  The result shows that the ETr is the lowest in 

January and is the highest in May due to climate conditions and crop growth stages.  
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Table 6-3. ETr calculated at the time of satellite image based on Hargreaves method  

Nr. Overpass time ETr (mm/day) 

1 14.01.2008 0.02 

2 05.02.2008 0.03 

3 08.03.2008 0.59 

4 20.03.2008 0.76 

5 13.04.2008 0.82 

6 24.04.2008 1.32 

7 15.05.2008 1.28 

8 25.05.2005 1.67 

 

 

6-3-2.  SEBAL energy fluxes 

To solve the surface energy balance equation (equation 1) and compute H, as a most difficult 

parameter, one should use cold and hot pixel information in order to calculate dT and rah. For 

instance, table 6-4 shows the information of cold and hot pixels (e.g.  Rn, G, albedo and H) on 

April 13, 2008.  The table reveals that at the cold pixel the net radiation (Rn) is higher than the 

hot pixel, whereas the amount of heat flux transfer into the soil (G) in hot pixel is more than cold 

pixel.  The cold pixel reveals the high vegetation cover. Therefore, LST in this area is lowest. 

Feizizadeh et al., (2013) mentioned that LST is sensitive to LULC and vegetation cover. LULC 

classes with more vegetation have the lower LST. 

 

Table 6-4. Surface energy fluxes at Hot and Cold pixels on 13
th

 April 2008 

 Cold Pixel Hot pixel 

X 320989 323833 

Y 3884495 3871528 

Ts 296.7 305.9 

Rn 517 448 

G 73 96.5 

LE 214 0 

H 230 351.5 
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After solving the surface energy balance, ET_inst was calculated based on the equation Nr. 13. 

However, daily evapotranspiration (ET24) is useful than the instantaneous ET. To estimate ET24 

we assumed that instantaneous ETrF is constant over 24 hours. The assumption has already been 

demonstrated by various researchers, including Romero 2004; Colaizzi et al. 2006; Allen et al. 

2007a; Allen et al. 2011.    

 

6-3-3. Mapping monthly actual evapotranspiration   

The spatial distribution of ETa in monthly scale was calculated. To estimate the monthly 

evapotranspiration, equation 18 was used. Figure 6-4a shows the monthly actual 

evapotranspiration in April. The result shows the ETa estimated from 17 mm in the south to 

73mm in the north and western part of the basin. The highest evapotranspiration is estimated in 

areas with high vegetation cover (white color in the image). However, areas with low vegetation 

cover or bare land have less actual evapotranspiration (dark color in the image). The map is 

comparable with NDVI map. As expected, high values of ETa were observed for farmlands in 

the central of plain, and for high vegetation cover of rangelands in the north of the area. Du et al. 

(2013) mapped ETa based on SEBAL algorithm in Sanjiang Plain, Northeast China. They 

revealed the high values of ETa for the lakes, forests and farmlands, respectively.  

 

The average monthly value of 95PPU of actual evapotranspiration estimated by SWAT from 

January to May was calculated to compare the temporal evapotranspiration for both models 

(Figure 6-5). The results show that the dynamic of both models are similar together but peak 

values are different in some months. However, the figure shows that the estimated ETa by 

SEBAL is within or close to the 95PPU band, which indicates the high accuracy of estimation by 

the SEBAL model.  

In May the highest ET of 95PPU (>37mm) was found at the eastern part of basin with elevation 

higher than 1888 m, whereas the smallest value of ET (L95PPU) was found at the area in the 

south of watershed. However, the average of the whole basin was between 5.2 mm and 7.6 mm 

for the lower (L95PPU) and upper prediction uncertainty boundaries (U95PPU).  

The statistical evaluation of monthly ETa revealed a high correlation coefficient of 0.77 and 

Nasch-Sutcliff of 0.80 between M95PPU of SWAT and SEBAL models, and showed a good 

dynamic and monthly variation of ETa.  
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Figure 6-4. ETa in April, a: based on surface energy balance technique, b: surface water balance model 

 

 

 

Figure 6-5. Anomaly graph of monthly average of ETa. The gray box shows the 95PPU band simulated by 

500 iterations; M95PPU means the median of iterations. The star sign shows the ETa value simulated by 

SEBAL 
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6-4. Discussion and conclusions  

Evapotranspiration maps were created for the RGB in the center of Iran using SEBAL/METRIC 

model. The model was further validated by SWAT hydrological model. In the SEBAL model, 

MODIS time Seri data was used for the January-May periods of 2008. Some researchers used 

Landsat 7 and Landsat 5 to create evapotranspiration maps as it allows a high resolution of 

thermal band (Bastiaanssen et al., 1998b; Teixeira et al., 2009). However, Allen et al. (2007a) 

suggested MODIS data instead of Landast due to the problems of Landsat 7 in 2003 and recent 

problems with the aging Landsat 5.   

Several researchers mentioned limitations of the SEBAL model (Long et al. 2011; Long and 

Singh, 2012; Papadavid et el. 2013; Wang et al., 2014; Paul et al. 2014). Papadavid et al.(2013) 

improved the SEBAL model based on the crop parameters called CYSEBAL. The application of 

the SEBAL is suitable for flat areas. Therefore, Allen et al. (2007b) proposed the Mapping 

Evapotranspiration at High Resolution with Internalized Calibration (METRIC) model to 

mitigate this limitation. METRIC is a variant of SEBAL, which is able to consider the effects of 

topography. 

Atmospheric correction of satellite data is not essential in the SEBAL/METRIC model. Tasumi 

et al (2005) stated that atmospheric correction of reflectance for albedo estimation and thermal 

bands is not necessary due to internal calibration of sensible heat flux. We used MODIS product 

of white sky albedo in shortwave resolution calculated by seven bands (Band 1-7). However, 

some researchers calculated albedo with two bands (band 1 and band 2) of MODIS. Tasumi et al 

(2007) mentioned that albedo should be calculated by bands 1-7 of MODIS, bands 1-5 and 7 of 

Landsat, and band 1-9 of ASTER.  

The roughness length for heat transfer (Zoh) is one of the most important parameters in the 

SEBAL model. Various researchers have stated different values for Zoh. Paul et al. (2014) 

investigated the influence of Zoh on the performance of SEBAL model and found that Zoh=0.1 

m resulted in the same estimate of ETa as when Zoh =0.01 m.  In general, Zoh is equivalent to 

the lower reference height for aerodynamic resistance (Z1). We assumed Z1=0.1 m in this study 

as suggested by Bastiaanseen et al. (1998a). 

In the earlier version of SEBAL (Bastiaanseen et al 1998a), evaporative fraction was defined as 

the ratio of LE to (Rn-G) and assumed to be constant during 24-h period. However, Allen et al. 

(2005) mentioned that this assumption can sometime unpredicted daily ET in arid areas where 



138 
 

increases wind speeds in afternoon might raise LE in proportion to Rn (net radiation energy). 

However, in the newer version of SEBAL (Waters et al. 2002), and in the METRIC model, the 

evaporative fraction was modified by reference ET (ETrF). Allen et al (2005) mentioned that 

“The assumption of constant ETrF during a day may be better able to capture impacts of 

advection and changing wind and humidity conditions during the day, as expressed in the ETr 

calculation (which is done hourly and summed daily)”.  

The SEBAL model was validated successfully using ETa estimated by SWAT model. In this 

study, the SWAT model was calibrated by crop production, which resulted in a good estimation 

of evapotranspiration. The results show that the ETa estimated by SEBAL is very close to ETa 

estimated by SWAT. The NS value of SEBAL model was greater than 0.80, which shows the 

reliability of the SEBAL model.  

Besides the internal calibration of SEBAL/METRIC, it still has some uncertainty. A challenging 

part of energy balance approach is that the LE is only accurate if Rn, G and H are estimated 

precisely. However, the model attempts to overcome this error by inter-calibration of sensible 

heat flux (Allen et al., 2007a; Trezza, 2002).  Additionally, estimation of dT is depend on the 

suitable selections of cold and hot pixels in the image. The accurate selection of cold and hot 

pixels is one of the limitations of the SEBAL model, which has been discussed by Wang et al.     

(2014); Long & Singh (2012). Any error in dT might have a negative effect on final residual 

results.  

In spite of the limitations of the surface energy balance method, some researchers used 

evapotranspiration variable extracted by SEBAL model to calibrate hydrological models in 

instances of sparse data. Immerzeel & Droogers (2008) and Awan & Ismaeel (2014) used 

evapotranspiration extracted by SEBAL to calibrate a SWAT hydrological model in a catchment 

of the Krishna basin in southern India. The SEBAL model of evapotranspiration was validated 

by measured data. Hence, we can suggest that remote sensing data can be used to calibrate 

distributed hydrological models in case of low data availability. 
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CHAPTER 7 

General Summary and Conclusion  

The focus of this research is the investigation of climate change on water resources and crop 

production in a semi-arid river basin in Iran with the emphasis on remote sensing, GIS and a 

hydrological model. Additionally, the process of land degradation was also analyzed based on 

the results of hydrological and climate change models. Furthermore, a remote sensing process to 

estimate actual evapotranspiration was analyzed. The most important findings and some 

conclusions of the research is presented in this chapter: 

- The current hydrological process of a semi-arid basin was addressed by soil and water 

assessment tools (SWAT). The model was calibrated by river discharge data in relevante sub- 

basins. The sensitive analysis showed that the curve number (CN) and snow melt parameters are 

the most sensitive parameters in the mountainous part of the basin and groundwater delay factor 

(GW_DELAY) is the most sensitive parameter in the lowland area. The performance of the 

model was satisfied by R
2
 and NS assessment. The water cycle fluxes (e.g. surface runoff, 

evapotranspiration, percolation) were estimated at the monthly intervals. The flux distributions  

were mapped in the sub-basin level.  

- The uncertainty analysis shows that the uncertainty of actual evapotranspiration (ETa) is higher 

in March, April and May, than in other months. There is a close relationship between 

precipitation and evapotranspiration. The highest preciptation the highest ETa, and the lowest 

precipitation (e.g. in September), the lowest evapotranspiration.  

In April due to crop growth the highest precipitation, neither highest surface runoff (SURQ), nor 

highest uncertianty of SURQ is detected. However, the uncertainty of surface runoff and the rate 

of it is highest in February. 

The soil water content (SW) is less in summer and more in winter. Therfore, the uncertainty of 

SW estimation in winter is higher than in summer.  

- To precisely estimate groundwater recharge, the calibrated model was recalibrated by crop 

yield.  The idea was that the calibration of model by crop yield would lead to a more precise 
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estimation of evapotranspiration resulting in the more precise prediction of the other water fluxes 

such as groundwater recharge.  

- To calibrate the model by crop yield, all previous parameters which were calibrated by river 

discharge kept constantly, and parameters related to crop yield (e.g. heat unit, harvest index, bio 

target, water stress) were calibrated both in  rain-fed and irrigated lands. The results of the 

calibration were very good with RMSE less than 70 kg ha-1 for rain-fed yield, and 690 kg ha-1 

for irrigation yield. Lack of water use data in irrigated lands  is one of the limitations of this 

research and probably the reason for the high uncertainty of yield in irrigated lands.  

- Aquifer percolation coefficient (RCHRG-DP) is one of the important parameters in the 

groundwater recharge estimate. RCHRG-DP is ranged between 0 and 1. The lowest RCHRG-DP 

is the higest discharge and less groundwater recharge. The one-at-a-time sensitivite analysis of 

this parameter shows that the decreasing of this parameter by about 25 percent leads to a 

significant increase of baseflow (more than double).  

- The annual average groundwater recharge was estimated at about 5 mm, and was verified by 

independently observed borehole data. The water table decreased sharply during temporal 

assessment, however it was constant in 2003 owing to the highest precipitation leading to the 

highest groundwater recharge.   

- Borehole data independently show that the water level in the west of the basin decreased 

sharply, and the depth of water to the surface is more that 140 m, however, in some  places, like 

in the northern part, the water table is very close to the surface (less than 1 m) even leading to 

water logging. The north eastern part of the area was recognized as having the highest capability 

of percolation and recharge.  

- To assess the impact of climate change, the ensemble model leads to a decreasing of model 

uncertainty. Therefore a four GCMs model ensemble and three differenct emission scenarios 

were assessed. The GCMs data were downscaled by LARS-WG model based on ten rain gages 

and temperature stations. The results showed that the mean annual precipitation is likely to 

decrease, while the mean annual maximum temperature increases. Therefore, the whole basin 

will tend to be drier in the future.   
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- Assessing the impact of climate change on water resources availability showed the reduction of 

groundwater recharge, evapotranspiration and soil water content, and the increase of surface 

runoff in the basin.  

- According to the statistical center in Iran, the population growth rate in the basin is 2.63 %. 

Additionally, assessing the remotely sensed data by mapping LULC showed about a 100% 

increase of urbanization during the 20 year period from 1989 to 2009. This means that urban or 

built-up growth in the mid of 21st century will rise by  about 190%. The effect of the increase of 

urban lands on surface runoff shows that an average annual runoff will increase by more than 60 

%  during this time.    

- The impact of climate change on crop production shows the increase of production in irrigated 

lands. The reason is that irrigated lands are not dependent on precipitation as groundwater is the 

main source of irrigation in this area. Additionally, increasing CO2 emission and rising 

temperature, especially minimum temperature, help to increase the yield.  

- On the other hand, crop production in rain-fed areas will decrease in 2050. The reason is that 

rain-fed agriculure depends on rainfall and  any changes in precipitation, which can reduce soil 

water content, have a pernicious effect on crop yield. Additionally,  heat stress and water stress 

will increase in all scenarios and they significantly affect cereal yields in rain-fed lands. 

- The remote sensing process to estimate evapotranspiration showed that the ETa estimated by 

the surface energy balance method from MODIS data was close to that estimated by the 

hydrological model. Therefore, we can conclude that remote sensing data can be used to calibrate 

the hydrological models in the area with low data availability.  However, the further 

consideration toward the calibration of the hydrological models by ETa will be advisable in the 

area with low data availability.   

-The prediction of water components in the future was used based on the soil map in the 

historical period. As soil parameter changes may have an influence on soil moisture, surface 

runoff and land degradation, considering these changes will be suggested for further research 

projects.      
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- To build constant stations in the rangelands area would be beneficial in order to measure the 

species yields and LAI. The SWAT can further be used to predict the rangeland’s productions 

and the capacity of the animal units in the basin for the future. This measurement helps to 

improve management of the watershed by its stakeholders.  
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