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1. Introduction 
 

1.1 Glucocorticoids 
 

1.1.1 Synthesis of endogenous glucocorticoids  
 

Cortisol was first isolated from extracts of the adrenal gland independently in the 

laboratories of Dr. E.C. Kendall and Dr. T. Reichstein as Compound E and Sub-

stance FA, respectively. The synthesis of endogenous glucocorticoids (GCs) is 

tightly regulated by the hypothalamus-pituitary-adrenal axis (HPA axis), which 

consists of the paraventricular nucleus (PVN) located in the hypothalamus of the 

brain, the anterior pituitary and the adrenal glands. 

 

Stimulation of the PVN in the hypothalamus in response either to stress, physical 

activity, inflammation or the circadian rhythm leads to the secretion of corticotro-

pin-releasing-hormone (CRH), which in turn, stimulates the release of adrenocor-

ticotropin hormone (ACTH) from the anterior pituitary into the circulating blood-

stream. Upon reaching the adrenal glands, ACTH then induces the synthesis 

and release of GCs. 

 

The activity of HPA axis is mainly controlled by the central nervous system but 

also by other mechanisms including cytokines (Mulla and Buckingham, 1999). In 

addition, GCs regulate their homeostasis through a negative feedback loop that 

regulates the HPA axis on the level of the anterior pituitary and the hypothala-

mus (Webster and Sternberg, 2004; Webster et al., 2002). 

 

1.1.2 Structure and function of the glucocorticoid receptor 
 

Endogenous GCs play an important role in the regulation of metabolic, homeo-

static, immunological and developmental processes. Both, endogenous GCs like 

cortisol and synthetic GCs like dexamethasone exert their function through bind-

ing to the glucocorticoid receptor (GR).  
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The GR is a steroid hormone receptor and belongs to the nuclear receptor su-

perfamily (Beato et al., 1995; Evans, 1988). The members of this family are 

characterized by a common structural pattern consisting of a variable N-terminal 

region, a central DNA-binding domain (DBD) and a C-terminal ligand-binding 

domain (LBD) (Beato, 1989). The general structure of steroid hormone receptors 

is depicted in Figure 1. 

 

 

 

Figure 1. General structure of steroid hormone receptors. 

 

Similar to other steroid hormone receptors, the DBD of the GR contains two zinc-

finger-motifs that allow for its dimerization at specific DNA-binding sites of GC-

responsive genes that contain a palindromic DNA sequence, the so-called glu-

cocorticoid response element (GRE) (Beato and Klug, 2000; Luisi et al., 1991). 

 

Though being able to travel back and forth from the nucleus through the nuclear 

pore channel, the GR is, in the absence of ligand, mainly located in the cyto-

plasm (Vandevyver et al., 2013). There it is bound in a chaperone complex con-

sisting of heat shock proteins (hsp90, hsp70) and immunophilins (such as 

FKBP51, FKBP52) (Pratt and Toft, 2003; Stancato et al., 1993) thus ensuring its 

stabilization and enabling the maturation to its hormone binding conformation 

(Cheung and Smith, 2000; Picard and Yamamoto, 1987). Upon ligand binding 

the GR undergoes a conformational change and translocates into the nucleus. 

Notably, this process is reversible and the GR translocates back to the cyto-

plasm upon substrate withdrawal (Freedman and Yamamoto, 2004). 

 

Having entered the nucleus the GR can exert its function through two different 

mechanisms. The GR may dimerize at a GRE located in the promoter region of 

its target genes and thereby act in a DNA-binding dependent fashion (Dahlman-

Wright et al., 1990; Schmid et al., 1989). With the help of co-activators, this gen-

erally leads to the enhanced transcription of GC-responsive target genes (Beato 

and Klug, 2000). 
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Besides this so-called trans-activation mechanism there also exists a mechanism 

known as trans-repression, which is independent of dimerization and DNA-

binding of the GR (Beato et al., 1995; Herrlich, 2001; Reichardt et al., 1998). 

Namely, the monomeric GR can interact with transcription factors such as AP-1 

(Tuckermann et al., 1999) and NF-κB (Reichardt et al., 2001) in a tethering pro-

tein-protein interaction and thereby repress gene transcription. Both, the trans-

activation or DNA-binding dependent and the trans-repression or DNA-binding 

independent mechanism are depicted in Figure 2. 

 

 

Figure 2. Mechanisms of GC action.  

Upon GC binding the GR is released from the heat-shock protein complex (Hsps) and 

translocates into the nucleus. There it either dimerizes and binds to a GRE located in 

the promoter or enhancer region of GR target genes, which leads to gene trans-

activation after coactivator recruitment. Alternatively, the GR interacts as a monomer 

with other transcription factors (TF) bound to their respective regulatory elements (RE) 

and subsequently trans-represses gene expression. In both cases, chromatin comprised 

of DNA and histone proteins (His) needs to be unwinded and RNA polymerase II (Pol) 

recruited. Alternative modes of GC action include their binding to a membrane-bound 

GR or to the mineralocorticoid receptor (MR) located in the cytosol. 
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Apart from the two aforementioned mechanisms that require the translocation of 

the GR from the cytoplasm into the nucleus followed by the assembly of a tran-

scriptional complex and the initiation of gene expression (Cato et al., 2002), 

there also exist more rapid effects of GCs that are commonly referred to as non-

genomic GC effects. They can either be mediated by the cytosolic GR or they 

may even occur at the level of the plasma membrane.  

 

In the first case proteins that are released upon ligand binding from the dissem-

bling heteromeric complex including Src have been found to be responsible for 

rapid GC effects through activation of signalling pathways such as the MAPK-

pathway (Croxtall et al., 2000). In the second case, rapid GC effects result from 

the interaction of GCs with membrane-associated proteins. It has been speculat-

ed that a membrane-bound form of the GR may exist and mediate some of the 

non-genomic activities of GCs. However, evidence for such a mechanism is still 

scarce.  

 

Due to their lipophilic character GCs can easily attach to lipophilic membranes as 

well. Hence, besides acting though membrane-proteins GCs can influence the 

regulation of ion channels and interfere with intracellular calcium mobilization 

(Buttgereit and Scheffold, 2002; Stahn et al., 2007). 

 

Finally, it is noteworthy that the GR is not the only receptor that is able to medi-

ate physiological effects of GCs. There is also the mineralocorticoid receptor 

(MR) that can bind GCs thereby leading to the initiation of transcription. Howev-

er, the MR is expressed in only a limited number of tissues and, in addition, bind-

ing of GCs to the MR in some tissues is prevented by a pre-receptor mechanism. 

Thus, GC effects mediated via the MR are largely restricted to the hippocampus 

and macrophages (Lim et al., 2007). 
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1.1.3 Beneficial and adverse effects of GCs 
 

Ever since their first successful isolation and the subsequent discovery of their 

potent anti-inflammatory properties by applying cortisol to a patient with rheuma-

toid arthritis (RA) in the year 1948, GCs have been the gold standard in the 

treatment of many inflammatory diseases, such as RA (Kirwan and Power, 

2007), asthma (Adcock and Barnes, 2008) and inflammatory bowel disease 

(IBD) (Ford et al., 2011; Pithadia and Jain, 2011). 

 

Besides their potent anti-inflammatory properties, GCs are also involved in the 

regulation of multiple non-immunological processes including the control of vari-

ous metabolic, homeostatic, cardiovascular and developmental functions. Being 

expressed in almost every cell type the GR influences and controls multiple sig-

nalling pathways. Hence, when GCs are pharmacologically applied during anti-

inflammatory therapy, this pleiotropy can cause a plethora of potentially serious 

adverse effects. 

 

In particular, the gastrointestinal tract is an example for the dichotomy of GC ac-

tion. On the one hand, GCs have been the mainstay in the treatment inflammato-

ry disorders of the bowel such as ulcerative colitis (UC) and Crohn´s disease 

(CD) for over 50 years. On the other hand, it became more and more evident 

that prolonged application of GCs results in sometimes severe adverse effects 

such as hypertension, diabetes (Rose and Herzig, 2013), osteoporosis (Rauch et 

al., 2010) and the formation of peptic ulcers due to enhanced production of gas-

tric acid (Sandu et al., 2007; Schubert, 2008). Especially orally administered GCs 

at high dose frequently cause pronounced gastrointestinal symptoms (Sellebjerg 

et al., 1998). Nevertheless, oral application of steroids can often be advanta-

geous to the exhausting and costly intravenous therapy (Burton et al., 2012). 

  

Then again, GCs are also known to possess anti-emetic properties and are wide-

ly used as a means to attenuate nausea and vomiting during chemotherapy alt-

hough the underlying mechanisms remain unclear, so far (Tanihata et al., 2004). 

Taking into consideration that oral GCs are prescribed about 10 million times in 

the USA each year (Schäcke et al., 2002) and that there has been a continuous 
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increase in GC prescriptions, it appears to be vital to make efforts to further elu-

cidate the mechanistic details of GC action. 

 

1.1.4 Insights from animal models 
 

Multiple efforts have been made during the last two decades to mechanistically 

dissect the side-effects of GCs from their beneficial activities. Most anti-

inflammatory effects are being thought to be a consequence of inhibition of proin-

flammatory transcription factors and therefore mediated by the trans-repression 

mechanism of the GR. In contrast, many adverse effects, for instance those re-

sulting from the induction of genes involved in glucose or protein metabolism, are 

mediated through trans-activation (De Bosscher and Haegeman, 2009).  

 

To further investigate the molecular mechanism and function of the GR, several 

mutant mouse models have been developed. The first one was a strain of ubiqui-

tous knock-out mice lacking the GR in all cell types. The mutants were found to 

die shortly after birth due to respiratory failure (Cole et al., 1995), indicating that 

GCs play a pivotal role during embryonic development. However, they weren’t 

suitable for further studying the mode of action of GCs in adult mice.  

 

By contrast, mice carrying the A458T point mutation in the second zinc finger of 

the DBD turned out to be viable and present a very useful model to discriminate 

between the trans-activation and the trans-repression mechanism of the GR 

(Reichardt et al., 1998). These so-called GRdim mice have an impaired dimeriza-

tion capacity and therefore reduced GR-induced trans-activation of genes. In 

contrast, trans-repression through interaction with other transcription factors is 

still intact. With the help of the GRdim mice it could be shown that the therapeutic 

efficacy of GCs in various disease models requires different molecular mecha-

nisms. In a mouse model of irritative skin inflammation for example DNA-binding 

of the GR was not required for GC therapy. Contrariwise, it has been found that 

in a murine model of rheumatoid arthritis, dimerization of the GR was essential 

for GC therapy (Baschant et al., 2011). The same is true for the supression of 

septic shock by endogenous GCs in mice (Kleiman et al., 2012). With regard to 
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common side-effects of GCs, results obtained in GRdim mice weren’t unequivocal 

as well. Induction of muscle atrophy for example was abolished in GRdim mice 

and hence requires the DNA-binding function of the GR (Waddell et al., 2008), 

whereas GC-induced osteoporosis occurs normally in GRdim mice (Rauch et al., 

2010). Consequently, adverse effects of GCs also involve various and complex 

mechanisms making their separation from the desired therapeutic effect a diffi-

cult task. 

 

To determine the different cell types targeted by GCs, mouse models with cell 

type-specific depletions of the GR were developed. With the help of GRlckCre 

mice, which lack the GR in the entire T cell-lineage (Baumann et al., 2005), it 

could be shown that therapeutic efficacy of GCs in experimental autoimmune 

encephalomyelitis (EAE), a rodent model of multiple sclerosis (MS), mainly de-

pends on the repression of T cell function (Schweingruber et al., 2012; Wüst et 

al., 2008). In contrast, analysis of GRlysMCre mice led to the conclusion that mye-

loid cells are the major target cells of GCs in contact dermatitis (Tuckermann et 

al., 2007). 

 

GRvillinCre mice that specifically lack the GR in enterocytes of the intestinal tract 

(Madison et al., 2002) were used to tackle the question whether regulation of 

glucose uptake in the gut by GCs contributed to the development of hyperglyce-

mia as one major side effect of GC therapy. Here it could be shown that the GR 

in enterocytes was indeed responsible for enhanced intestinal glucose transport 

mediated by transcriptional regulation of target genes via a dimerization depend-

ent mechanism (Reichardt et al., 2012). 

  

Taken together, the aforementioned studies made it clear that the concept of 

separating beneficial from adverse GC effects on the basis of the dependency on 

trans-activation versus trans-repression may not be entirely true and require fur-

ther study. 

1.2 The stomach 
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1.2.1 Anatomy of the stomach 
 

The stomach is part of the digestive system and located in the upper half of the 

abdomen between the esophagus and the small intestine next to liver and 

spleen. It can be divided into four regions, namely the cardia, the fundus, the 

corpus or body and the pyloric antrum (Figure 3). Food enters the stomach 

through the esophagus into the cardia via the cardiac or lower esophagus 

sphincter. The central part of the stomach, the corpus or body is the place were 

chemical digestion takes place and the mixture of predigested food, the so-called 

chyme is transported to the lower portion of the stomach, the pyloric antrum 

where it leaves the stomach through the pyloric sphincter to enter the duodenum. 

  

Located at the uppermost part of the stomach lies the fundus. Due to its ability to 

relax and expand it can accommodate excessive food and provide space for the 

gas produced during digestion, therefore preventing an increase in intragastric 

pressure. Gastric folds or rugae in the inner wall of the stomach allow for expan-

sion of its surface when needed. In order to protect the stomach against gastric 

juices that are produced during the digestion process and which mainly consist 

of hydrochloric acid and pepsins, its inside is protected by mucus. 

 

The stomach wall itself consists of four layers, the innermost being called the 

mucosa followed by the submucosa, the muscularis externa and the serosa. To-

wards the lumen the mucosa is lined with epithelial cells. Loose connective tis-

sue, the lamina propria seperates the epithelium from a smooth muscle layer 

beneath. The submucosa consists of connective tissue and is surrounded by the 

muscular wall of the stomach that comprises three layers of muscular tissue. 

First, the inner oblique layer that mechanically breaks up the food by churning. 

Second, a circular layer that prevents the backward movement of the chyme by 

creating circular contractions. Third, the longitudinal layer that ensures the for-

ward movement of the stomach content. 

Essential for the transportation of food through the stomach to the duodenum are 

contractive movements of the gastric muscles. The so-called peristalsis consists 

of permanent contraction and relaxation of the gastric smooth muscle layer to 

produce a wavelike movement.    
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Figure 3. Anatomy of the stomach.  

The stomach is divided into for parts: the cardia with the cardiac sphincter, through 

which food from the esophagus enters the stomach and is accommodated in the fundus. 

In the corpus the stomach content is predigested and moved onwards to the pyloric an-

trum before the chyme is released into the duodenum via the pyloric sphincter. The 

stomach wall comprises three muscular layers, a longitudinal, a circular and an inner 

oblique layer that is separated from the mucosa by connective tissue. To allow expan-

sion of its surface the mucosa is folded in rugae (adapted from Univer-

salhealthcarela.com). 

 

1.2.2 The movement of the stomach 
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Since the time of Galenos, a Greek physician and scientist living in the second 

century AD, it remained unclear until the 19th century how the movements of the 

stomach exactly come to pass. Galenos was the first to divide the stomach into 

four parts and to assign to them the different functions of reception and accom-

modation of food followed by its digestion and passing on of the modified content 

into the small intestine (Claudii Galeni opera omnia, Kühn, 1822). It was long 

believed that the pylorus being a gatekeeper was the crucial player in all the 

functions of the stomach, ranging from retaining the food, digesting it and finally 

releasing it into the duodenum.  

 

In the middle of the 18th century in his opus “elementa physiologiae corporis hu-

mani” Albrecht von Haller defined the movements of the stomach as an alterna-

tion between relaxation and contraction in longitudinal or transverse compres-

sions so that the stomach content is shifted around until either the cardia or the 

pylorus opens. In the first case food is expelled from the stomach by vomiting 

whereas in the latter case the chyme enters into the duodenum. Notably, either 

procedure, the expulsion of stomach contents by vomiting or its transfer to the 

small intestine, requires a controlled movement of the gastric muscles. 

 

In the years between 1822 and 1833, William Beaumont, an US army surgeon, 

performed experiments on digestion on his patient Alexis St. Martin who lived 

with a permanent gastric fistula since when he had recovered from a gunshot in 

his side. By inserting a tube into the lateral hole of his patient, he was able to 

deduce the motions of the stomach muscles from the movements of the tube.  

 

In the late 19th century W.B. Cannon decided to further investigate gastric motion 

with the help of roentgen rays. He therefore mixed food with bismuth oxynitrate 

and after feeding this mixture to cats he detected the movement of this mass 

through the stomach by roentgen rays. Using this method he could confirm the 

earlier findings, namely that the stomach content is mixed and passed forward by 

constriction waves continually arising and subsiding in the pyloric part of the 

stomach whereas the function of the fundus is primarily the accommodation of 

food. Nevertheless, the astonishing new finding was the impact of strong emo-
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tions on gastric peristalsis. Because Cannon had to immobilize the cats during 

the entire procedure and since male animals didn’t tolerate this measure calmly, 

he observed that strong emotions completely inhibit the motoric gastric function. 

Having made this observation he performed several other experiments in which 

he distressed the animals for a brief period of time thus causing the constriction 

waves to subside. By stroking the animal reassuringly the stomach movements 

immediately set in again thus proving the extent of nervous influence on gastric 

motility (Cannon, 1898).  

 

Today it is known that stomach motility is mainly controlled by an autonomic 

nervous system consisting of an extrinsic (i.e. the vagus nerve) and intrinsic (i.e. 

the enteric nervous system) innervation pathways (Olsson and Holmgren, 2001).  

 

1.2.3 Gastric emptying and gastroparesis 
 

Gastric emptying is a process that normally takes place without noticing. If food 

enters the stomach a variety of signals regulate the process of gastric emptying 

that begins with the adaptive accommodation reflex which enables the intake of 

food without increasing intragastric pressure (Cannon and Lieb, 1911). This is 

followed by trituration and digestion of the stomach content to produce chyme 

that is then released through the pyloric sphincter into the small intestine. 

 

To ensure proper functioning of this complex procedure the gut is equipped with 

an intrinsic nervous system that is located in the lining of the gastrointestinal 

tract. The neurons of the enteric nervous system (ENS) are collected into the 

myenteric plexus located in the muscularis externa and the submucosal plexus. 

Capable of local and autonomous functioning the ENS continuously exchanges 

information back and forth with the central nervous system (CNS) thus control-

ling the digestive process (Furness, 2006; Gershon, 2005). 

 

The peristalsis of the stomach is a prerequisit for proper gastric emptying. The 

wave-like movement of the stomach results from excitatory and inhibitory signals 

that alternately induce contraction and relaxation of the gastric muscles and in-
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volves several different cell types, like motor neurons, smooth muscle cells and 

the interstitial cells of Cajal (ICC). Both extrinsic and enteric nerves work in con-

cert to stimulate the gastric muscles together with ICC. The latter are spindle 

formed cells that have been shown to participate in the signal transduction from 

the nerve endings to the smooth muscle cells (Sanders, 1996). Figure 4 illus-

trates the interaction of different cell types involved in the signal transduction that 

governs gastric motility. 

 

 

 

 

Figure 4. Cells types involved in gastric motility.  

Excitatory and inhibitory signals from enteric nerves are transmitted to smooth muscle 

cells with the help of interstitial cells of Cajal. The vagus and spinal nerve are two types 

of extrinsic nerves (Vittal et al., 2007). 

 

Even though we are generally not aware of our stomach functions, any malfunc-

tion of the digestive process can cause severe discomfort and symptoms ranging 

from early satiety and stomach pressure to nausea, vomiting and abdominal 

pain. Although these symptoms apply to various gastrointestinal diseases like 

gastric ulcer, functional dyspepsia or gastritis, they often correlate with gastro-

paresis, a disorder of the stomach defined as impaired gastric emptying without 

mechanical obstructions (Parkman et al., 2004). 
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Kassander was the first one to describe impaired gastric emptying as a side-

effect of diabetes (Kassander, 1958) but there is also a large number of patients 

that suffer from idiopathic gastroparesis. Taking into consideration the complexity 

of the process of gastric emptying and the many different cell types involved, it is 

not astonishing that until today the mechanisms of gastroparesis remain partially 

unclear. There is, however, some evidence that the inhibitory signals of the ENS 

are responsible for impaired gastric emptying. In particular the neurotransmitters 

used to mediate the inhibitory nervous signals have recently come into focus. 

Especially nitric oxide (NO), a small reactive molecule produced by nitric oxide 

synthase (NOS), an enzyme that is found in inhibitory motor neurons of the ENS, 

has been shown to play a crucial role in gastroparesis (Rivera et al., 2011; Vittal 

et al., 2007). 

 

1.2.4 Effects of GCs on the stomach 
 

Elevated levels of GCs can lead to enhanced gastric acid secretion and thereby 

increase the risk of peptic ulcers and bleeding (Cooke et al., 1966; Gray et al., 

1951; Hernandez-Diaz and Rodriguez, 2001). Until today the underlying mecha-

nism of this effect is poorly understood. Apart from the stimulation of gastric acid 

production and inhibition of gastroprotective enzymes like prostaglandin synthe-

tase and peroxidase (Bandyopadhyay et al., 1999) other mechanisms have been 

proposed including the regulation of genes that take part in the control of energy 

homeostasis and metabolism. 

 

As mentioned before GCs play a major role in the control of metabolic and ho-

meostatic processes. In response to stress factors such as infection, serum lev-

els of GCs become elevated and foster gluconeogenesis, glycolysis, proteolysis 

and lipolysis thus activating the energy resources of the organism. In this con-

text, the role of serum and glucocorticoid inducible kinase (SGK), a GC-

responsive gene that is highly expressed in gastric tissue, has been explored 

lately. It has been found that the up-regulation of SGK by GCs enhances gastric 

acid secretion via the regulation of several transport proteins (Sandu et al., 
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2007). However, such an effect is true only for the pharmacological application of 

GCs. Contrariwise, endogenous GCs have been found to exert rather gastropro-

tective effects. Namely, induction of corticosterone secretion either by stress or 

the application of nonsteroidal anti-inflammatory drugs (NSAIDs) can even pro-

tect against ulcerogenic actions by increasing mucus production (Filaretova et 

al., 2002) or reducing gastric hypermotility (Takeuchi et al., 1989).  

 

1.3 Properties and functions of NO 
 

1.3.1 NO as a signaling molecule 
 

NO is a highly reactive volatile molecule that naturally occurs as a free radical. 

Upon contact with water and oxygen it reacts to nitrous acid and is oxidized in air 

to nitrogen dioxide, a toxic gas. It is therefore not astonishing that when it was 

first reported to be the substance responsible for nervous transmission of smooth 

muscle relaxation many scientists remained skeptic about this revelation. None-

theless, for Robert Furchgott, Louis Ignarro and Ferid Murad it led to the award 

of the Nobel Prize in Physiology or Medicine in 1998 “for their discoveries con-

cerning nitric oxide as a signaling molecule in the cardiovascular system” 

(www.nobelprize.org/nobel_prizes/medicine/laureates/1998/). While it was al-

ready known that a substance called by then the “endothelial derived relaxing 

factor” or EDRF was essential for vascular smooth muscle relaxation, they where 

able to identify this substance as being NO. 

 

Today it is well known that NO plays a key role in the neurotransmission of the 

central and the peripheral nervous system. One of its key functions in the pe-

ripheral nervous system is the regulation of muscle contractility by inducing 

smooth muscle relaxation. Due to its ephemeral and volatile character it has to 

be produced on demand and in close vicinity to the recipient smooth muscle 

cells. It is therefore synthesized at nerve endings from where it diffuses to adja-

cent cells (Esplugues, 2002). 

As a small-sized molecule NO can easily permeate cell membranes to reach its 

intracellular targets. The major target protein for neuronal NO is soluble guanylyl 
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cyclase (sGC) (Esplugues, 2002) which is activated by nitrosylation of its heme-

group. The activation of sGC leads to an increase in intracellular cyclic guanosin 

monophosphate (cGMP) levels which, in turn, leads to a decrease in intracellular 

calcium levels and therefore to muscle relaxation (Gangula et al., 2011). 

 

In contrast to other known neurotransmitters there is no need to degrade NO 

enzymatically in order to terminate its signalling function, as it is rather bound to 

inactivate itself having reached and reacted with its target (Esplugues, 2002). On 

the other hand, this fact leaves NO synthesis as the only regulatory mechanism 

available to control its functional activity.  

 

1.3.1 NO synthesis 
 

NO is synthesized from nitric oxide synthase (NOS) by conversion of its sub-

strate L-arginine to citrulline and NO (Stuehr, 1997). There are three different 

isoforms of NOS, namely endothelial NOS (eNOS), neuronal NOS (nNOS) and 

inducible NOS (iNOS). Whilst iNOS expression is almost absent under normal 

physiological conditions and up-regulated mainly in response to inflammatory 

signals, the two other isoforms are expressed constitutively (Mungrue et al., 

2003).  

 

The main function of eNOS, which is expressed in endothelial cells, is the regula-

tion of the cardiovascular system (Andrew and Mayer, 1999). In contrast, nNOS 

plays a major role in neuronal signalling in non-adrenergic non-cholinergic 

(NANC) nerves. Being expressed in peripheral nitrergic nerves, an important 

function of nNOS is to produce NO as a signalling molecule to induce smooth 

muscle relaxation (Esplugues, 2002). All three isoforms of NOS are solely active 

as homodimers and need the assistance of cofactors such as heme, tetrahydro-

biopterin and flavin adenin dinucleotide for the biosynthesis of NO (Andrew and 

Mayer, 1999). 

 

Although the exact mechanism of NO production remains unclear, the proposed 

mode of action involves the formation of the intermediate Nω-hydroxy-L-arginine 
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and requires nicotinamide-adenin-dinucleotide phosphate as an electron donor 

(Marletta, 1993). Figure 5 shows the reaction equation for NO biosynthesis. 

 

 

 

 

 

Figure 5. Proposed mechanism of NO synthesis.  

Oxidation of L-arginine to citrulline and simultaneous production of NO. 

 

 

As mentioned above the only regulatory mechanism for NO signalling is the con-

trol of its biosynthesis. Several arginine derivatives are known to act as inhibitors 

for NOS. Nω-monomethyl-L-arginine (LNMA) and L-Nω-Nω-dimethylarginine are 

naturally occurring amino acids that inhibit NOS by competing with L-arginine for 

the binding site of NOS.  

 

Noteworthy, the substrate L-arginine is not only used for the production of NO 

from NOS but also by arginase 1 and 2 to produce ornithine which in turn serves 

as a substrate for ornithine decarboxylase (Odc) in the synthesis of polyamines. 

High levels of arginase 1 or 2 therefore lead to low substrate availability for NOS. 

Hence a potential regulatory effect on NO synthesis has been postulated for ar-

ginase (Wu and Morris, 1998). 
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1.3.2 Role of NO in gastric motility 

 
The peristalsis of the stomach is a complex process that is initiated upon food 

uptake via vagal stimulation. Its main function is to churn the stomach content 

and to move it forward towards the pylorus. The wave-like movement that is cre-

ated from alternating constriction and relaxation of the different smooth muscle 

layers of the stomach is controlled by motoric neurons. 

 

The pivotal role of NO for gastric motility was first demonstrated for the adaptive 

accommodation reflex that allows for the intake of large volumes of food without 

increase in intragastric pressure (Cannon and Lieb, 1911). It was shown that re-

laxation of the stomach upon vagal stimulation is transmitted via NANC nerves 

using NO as neurotransmitter (Abrahamsson and Jansson, 1969; Wilbur and 

Kelly, 1973). Moreover, the gastric emptying of solid meals was found to be pro-

foundly reduced upon inhibition of nNOS (Orihata and Sarna, 1994). 

 

A central role of NO for diabetic gastroparesis was proposed after several stud-

ies employing animal models of diabetes revealed a reduced nNOS expression 

and activity in the gastric myenteric plexus (Takahashi et al., 1997). In addition, it 

was found that diabetic patients suffering from gastric stasis exhibited low levels 

of NO and nNOS. 

  

The generation of nNOS knock-out mice has offered the opportunity to study the 

role of this enzyme on gastric emptying. It was found that these mice have a 

crossly enlarged stomach and exhibit impaired emptying of solids and liquids 

(Mashimo et al., 2000).  

 

Altogether these studies revealed the significance of NO as a crucial factor for 

proper functioning of gastric motility. 
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1.4 Aim of the study 

 

Since the discovery of their potent anti-inflammatory properties GCs have been 

the mainstay in the therapy of autoimmune diseases, such as RA, IBD, asthma 

and MS. Nonetheless, prolonged application or high-dose GC therapy can often 

lead to severe adverse effects like osteoporosis, muscle atrophy, diabetes or 

gastric ulcer. Especially the oral application of GCs that has some advantages 

over intravenously applied GC therapy causes severe gastrointestinal symptoms 

thus seriously affecting the quality-of-life of the patients. On the other hand GCs 

are known to possess anti-emetic potential and are therefore widely used to treat 

chemotherapy induced nausea and vomiting (CINV). The underlying mechanism 

of this effect, however, is yet unknown. The aim of this study was therefore to 

investigate the impact of oral GC therapy on the stomach and to further elucidate 

the mode of GC action in the stomach. For this purpose I employed several ex-

perimental approaches utilizing different mutant mouse strains in order to dis-

cover mechanism and targets of GC function. Since GCs are as yet indispensa-

ble for the therapy of many inflammatory disorders and the prescription of oral 

GCs is continuously increasing a more detailed knowledge might provide a 

means to reduce side-effects of GC therapy in the future. 
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2. Material and Methods 

 

2.1 Materials 

 

2.1.1 General equipment 
 

Table 1. General equipment 

Accu-jet® pro pipette controller Brand GmbH + CO KG, Wertheim, Germany 

Arium® 611 laboratory water 

Purification system 

Sartorius AG, Göttingen, Germany 

Balance TE 313S Sartorius AG, Göttingen, Germany 

Balance Acculab ALC 3100.2 Sartorius AG, Göttingen, Germany 

Balance MC1 RC 210 P-0D1 Sartorius AG, Göttingen, Germany 

Chemo Cam Imaging System Intas Science Imaging Instruments GmbH, 

Göttingen, Germany 

Centrifuge 5417R Eppendorf, Hamburg, Germany 

Centrifuge 5804 Eppendorf, Hamburg, Germany 

Centrifuge multifuge 4 KR Heraeus, Hanau, Germany 

Centrifuge Sigma 2-5 Sigma Laborzentrifugen GmbH,  

Osterode am Harz, Germany 

Electrophoresis chambers  

Type 40-0708, 40-1214, 40-1410 

Peqlab Biotechnology GmbH, 

Erlangen , Germany 

Electrophoresis chamber  

Mini-PROTEAN Tetra Cell 

BioRad Laboratories GmbH, München,  

Germany 

Electrophoresis power supply 301 Amersham Biosciences, Freiburg,  

Germany 

Electrophoresis power supply  

PowerPac Basic 

BioRad Laboratories GmbH, München,  

Germany 

Electrophoresis transfer unit 

SEMIPHOR TRANSPHOR 

Amersham Biosciences, Freiburg, Germany 

Freezer Hera freeze -80°C Heraeus, Hanau, Germany 

Freezer Liebherr Comfort -20°C Liebherr-International Deutschland GmbH, 

Biberach an der Riß, Germany 
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Micropipette 2μl, 20μl, 200μl,1000μl Gilson, Middleton,WI, USA 

PCR Mastercycler EP Gradient Eppendorf, Hamburg, Germany 

pH-Meter 766 Calimatic Knick Elektronische Messgeräte  

GmbH&Co. KG, Berlin, Germany 

Photometer Biophotometer Eppendorf, Hamburg, Germany 

Photometer Nanodrop 2000 Peqlab Biotechnology GmbH,  

Erlangen, Germany 

7500 Real Time PCR System Applied Biosystems, Foster City, CA, USA 

Thermomixer comfort Eppendorf, Hamburg, Germany 

Ultra Turrax IKA®T18 basic IKA®-werke GmbH&Co.KG,  

Staufen, Germany 

UV Transilluminator and Camera 

system 

Intas Science Imaging Instruments Gmbh, 

Göttingen, Germany 

Vortex Genie-2 Scientific Industries, Bohemia, NY, USA 

Water Bath W 12 Labortechnik Medingen, Dresden, Germany 

 

 
2.1.2 Consumables 
 

Table 2. Consumables 

Animal feeding needles 20Gx1,5’’ Fine Science Tools, Foster City, CA, USA 

CryoTube™Vials Nunc, Roskilde, Denmarc 

Disposable cuvettes semi-micro,  

1,5ml 

Brand GmbH + CO KG, Wertheim, Germany 

Falcon tubes 15ml, 50ml Greiner Bio-One GmbH,  

Frickenhausen Germany 

Glass pipettes 5ml, 10ml Brand GmbH + CO KG, Wertheim, Germany 

Hybond ECL blotting membrane Amersham Biosciences, Freiburg, Germany 

Pipette tips 2μl, 20μl, 200μl, 1000μl Greiner Bio-One GmbH,  

Frickenhausen, Germany 

PCR tubes Sarstedt, Nürnbrecht, Germany 

PCR-plate 96 well, half skirted Greiner Bio-One GmbH,  

Frickenhausen, Germany 
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Reaction tubes 1,5ml, 2ml Greiner Bio-One GmbH 

Optical adhesive covers Applied Biosystems, Foster City, CA, USA 

Whatman® Gel blotting paper 

GB005 

Sigma-Aldrich, Taufkirchen, Germany 

Single-use syringe Injekt®-F B.Braun, Melsungen, Germany 

 
 
2.1.3 Chemicals and Reagents 
 

Table 3. Chemicals and Reagents 

Acetic acid glacial Carl Roth, Karlsruhe, Germany 

Agarose UltraPure Invitrogen, Carlsbad, CA, USA 

Ammonium persulphate (APS) Sigma-Aldrich, Taufkirchen, Germany 

L-Arginine Sigma-Aldrich, Taufkirchen, Germany 

(S)-(2-Boronoethyl)-L-cystein (BEC) Merck KGaA, Darmstadt, Germany 

Bovine serum albumin (BSA) Carl Roth, Karlsruhe, Germany 

Bradford reagent Sigma-Aldrich, Taufkirchen, Germany 

Bromophenol blue Merck KGaA, Darmstadt, Germany 

Chloroform Sigma-Aldrich, Taufkirchen, Germany 

p-Coumaric acid Sigma-Aldrich, Taufkirchen, Germany 

Dexamethasone, water soluble Sigma-Aldrich, Taufkirchen, Germany 

Diethyl pyrocarbonate (DEPC) Sigma-Aldrich, Taufkirchen, Germany 

Dimethyl sulfoxide (DMSO) Carl Roth, Karlsruhe, Germany 

DNA ladder 1kb Fermentas GmbH, St-Leon-Rot, Germany 

Ethylenediaminetetraacetate 

(EDTA) 

Sigma-Aldrich, Taufkirchen, Germany 

Ethanol Carl Roth, Karlsruhe, Germany 

Ethidiumbromide Carl Roth, Karlsruhe, Germany 

Glycine Sigma-Aldrich, Taufkirchen, Germany 

Hydrogen peroxide 30% Carl Roth, Karlsruhe, Germany 

Igepal® CA-630 Sigma-Aldrich, Taufkirchen, Germany 

Iron(II) gluconate hydrate Sigma-Aldrich, Taufkirchen, Germany 

Luminol Serva Electrophoresis GmbH, Heidelberg, 

Germany 
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β-Mercaptoethanol Carl Roth, Karlsruhe, Germany 

Methyl cellulose Sigma-Aldrich, Taufkirchen, Germany 

dNTP-Mix, PCR Genaxxon Bioscience, Ulm, Germany 

pfuS DNA polymerase own production 

Phenol Red Sigma-Aldrich, Taufkirchen, Germany 

5x Phusion® Reaction Buffer HF Thermo Scientific, Waltham, MA, USA 

Potassium chloride Merck KGaA, Darmstadt, Germany 

Potassium dihydrogen phosphate Merck KGaA, Darmstadt, Germany 

Potassium hydrogen carbonate Merck KGaA, Darmstadt, Germany 

Prestained protein marker, broad 

range 

New England Biolabs GmbH,  

Frankfurt a.M., Germany 

2-Propanol Carl Roth, Karlsruhe, Germany 

Orange G Sigma-Aldrich, Taufkirchen, Germany 

Protease Inhibitor Cocktail Sigma-Aldrich, Taufkirchen, Germany 

Rotiphorese® Gel 30 Carl Roth, Karlsruhe, Germany 

Trichloroacetic acid Merck KgaA, Darmstadt, Germany 

Tris Pufferan® Carl Roth, Karlsruhe, Germany 

Sodium azide Sigma-Aldrich, Taufkirchen, Germany 

Sodium carbonate Merck KGaA, Darmstadt, Germany 

Sodium chloride Merck KGaA, Darmstadt, Germany 

Sodium fluoride Merck KgaA, Darmstadt, Germany 

Sodium hydroxide Sigma-Aldrich, Taufkirchen, Germany 

Sodium laurylsulphate/SDS Carl Roth, Karlsruhe, Germany 

Sodium molybdate Sigma-Aldrich, Taufkirchen, Germany 

Sodium orthovanadate Sigma-Aldrich, Taufkirchen, Germany 

di-Sodium hydrogen phosphate  

dodecahydrate 

Sigma-Aldrich, Taufkirchen, Germany 

Tetramethylethylenediamine   

(TEMED) 

Carl Roth, Karlsruhe, Germany 

Tetrasodium pyrophosphate Sigma-Aldrich, Taufkirchen, Germany 

Tween-20 Carl Roth, Karlsruhe, Germany 
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2.1.4 Buffers and Solutions  
 

 
RadioImmunoPrecipitation Assay  

PBS, pH 7,3      (RIPA) Buffer, pH 7,4 

80g NaCl 8,77g NaCl 

29g Na2HPO4 x 12 H2O 1,46g EDTA 

2g KCl 1,24g Tris 

2g KH2PO4 0,45g Na4P2O7 x 10 H2O 

ad 1000ml ddH2O 0,42g  NaF 

  ad 1000ml ddH2O 

 

Blotting Buffer     Protein Lysis Buffer            

 2,93g Glycine 500μl 2 x RIPA Buffer 

0,58g Tris 100μl NP40, 10% 

0,375g SDS 25μl Protease Inhibitor 

0,1g NaN3 20μl Na3VO4 50mM 

200ml  Methanol 1μl Na3MO4 10mM 

ad 1000ml ddH2O 354μl ddH2O 

 

Western Blot Washing Buffer   NP40, 10% 

 PBS 5ml Igepal CA-630 

+ 0,1% Tween 45ml ddH2O 

 

Western Blot Blocking Buffer   TAE Buffer 

 PBS 4,8g Tris 

+ 5% BSA 1,1g Acetic acid glacial 

+ 0,1% Tween 0,29g EDTA 

  ad 1000ml H2O 
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Laemmli Buffer     SDS Running Buffer 

20ml Glycerine 14,4g Glycine 

20ml SDS, 10% 3g Tris 

6,25ml 1M Tris-HCl, pH 6,8 1g SDS 

5ml β-Mercaptoethanol ad 1000ml ddH2O 

5ml Bromophenolblue 0,5%   

ad 100ml  ddH2O   

 

Western Blot Lower Buffer , pH 8,8  Western Blot Upper Buffer, pH 6,8 

90g Tris 6,06g Tris 

20ml SDS, 10% 4ml SDS, 10% 

ad 500ml ddH2O ad 100ml ddH2O 

 

Western Blot Staining solution A   Western Blot Staining solution B 

250mg Luminol 0,11g p-Coumaric acid 

ad 1000ml 0,1M Tris, pH 8,6 ad 100ml DMSO 

 

Development solution    Gastric emptying solution 

2ml Solution A 40ml ddH2O 

200μl Solution B 1,5g Methyl cellulose 

1,2μl H2O2, 30% ad 100ml  ddH2O 

  50mg Phenol red 

 

 
2.1.5 Antibodies for Western Blot 
 

Primary antibodies 

 

Arg2:    arginase II (H-64), rabbit polyclonal antibody,  

Santa Cruz Biotechnology, Inc., Heidelberg 
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ERK:    ERK-1 (C-16), rabbit polyclonal antibody,  

Santa Cruz Biotechnology Inc., Heidelberg 

 

β-tubulin:  β-tubulin (TUB 2.1), mouse monoclonal antibody 

Sigma-Aldrich, Taufkirchen, Germany 

 

GR:   GR (M-20): sc-1004, rabbit polyclonal antibody, 

Santa Cruz Biotechnology Inc., Heidelberg 

 

Secondary antibodies 

 

Rabbit IgG, (H+L):  ImmunoPure®, Goat Anti-Rabbit IgG, peroxidase  

conjugated, Pierce Biotechnology, Rockford, IL, USA 

Mouse IgG2a: ImmunoPure®, Goat Anti-mouse IgG, peroxidase  

conjugated, Pierce Biotechnology, Rockford, IL, USA 

 

2.1.6 Commercial assays 
 

Table 4. Commercial assays 

iScript cDNA Synthesis Kit Bio-Rad laboratories, München, Germany 

RNeasy® Plus Universal Mini Kit Qiagen, Hilden, Germany 

Power SYBR Green PCR Mastermix Applied Biosystems, Foster City, CA, USA 

 

 
2.1.7 Oligonucleotides 
 

Table 5. Oligonucleotides 

Target gene Sequence (5´- 3´) 

Arginase type1 (arg1) Fwd: AGCCCGAGCACATGCAGCAG 

Rev: ACCCCTCCTCGAGGCTGTCCT 
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Target gene Sequence (5´- 3´) 

Arginase type2 (arg2) Fwd: TCCTTGCGTCCTGACATCCG 

Rev: AGGTGGCATCCCAACCTGGAGAG 

CD163 antigen (CD163) Fwd: GAAGCCCACAAAGAAAGCTG 

Rev: TGCACACGATCTACCCACAT 

CD74 antigen (CD74) Fwd: ACCGAGGCTCCACCTAAAGTACTGA 

Rev: TCGCACTTGGGACGGAACGC 

Chemokine (C-X-C motif) ligand 13 

(Cxcl13) 

Fwd: GCCTCTCTCCAGGCCACGGTAT 

Rev: AGCCATTCCCAGGGGGCGTA 

Gasmodermin C2 (Gsdmc2) Fwd: GATGAGCTGCGAAAGGATTC 

Rev: TGGGTATCACTCAGCACCAA 

Gasmodermin C3 

(Gsdmc3) 

Fwd: ATCCCTGGAACATTCCCTTC 

Rev: CCTGGGATTATTCAGCTCCA 

Histocompatibility 2,  

class II antigen A, alpha (H2-Aa) 

Fwd: TGATTCTGGGGGTCCTCGCCC 

Rev: ACGTGGTCGGCCTCAATGTCG 

Histocompatibility 2, 

class II antigen A, beta1 (H2-Ab1) 

Fwd: GGCTGCGTGCTTGGGGTGA 

Rev: GGCCTCGAGGTCCTTTCTGACT 

Hypoxanthine-guanine-

Phosphoribosyltransfrase (HPRT) 

Fwd: GTCCTGTGGCCATCTGCCTA 

Rev: GGGACGCAGCAACTGACATT 

Kallikrein 1 (Klk1) Fwd: ATACCCAGAGCTCCAGTGTGTG 

Rev: GCCTCCTGAGTCACCCGCA 

Lipocalin 2 (Lcn2) Fwd: TCTTCTCTGTCCCCACCGACCA 

Rev: GCGCATCCCAGTCAGCCACA 

Neuronal Nitric oxide synthase 

(nNOS) 

Fwd: CAGTGGAGAGCCCTGGCTTGC 

Rev: AGGCCTGTCCCACTGTCCGC 

 

 

All oligonucleotides were purchased from Metabion, Martinsried, Germany. 
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2.1.8 Mice 
 

All mice used in this study were female and either on a Balb/c or C57Bl/6 back-

ground. Mice were kept under specified-pathogen-free (SPF) conditions in indi-

vidually ventilated cages at our own animal facilities in Göttingen. Mice were 

maintained under a standard 12 hour light-dark-circle with unlimited access to 

food and water.  

Wildtype Balb/c and C57Bl/6 mice were either purchased from Charles River 

(Sulzfeld, Germany) or bred at our own facility.  

GRdim  mice that are deficient in DNA-binding dependent gene regulation by the 

GR (Reichardt et al., 1998) had been backcrossed to the Balb/c background for 

more than 10 generations.  

Mice with a myeloid cell-specific knockout of the GR or MR, namely GRlysMcre 

(Tuckermann et al., 2007) and MRlysMcre (Usher et al., 2010) mice, were obtained 

by crossing GRflox/flox and MRflox/flox mice, respectively, with LysMcre transgenic 

mice.  

GRvillinCre mice that specifically lack the GR in enterocytes were kindly provided 

by our cooperation partner in Jena (Jan Tuckermann, Leibniz Institute for Age 

Research, Jena).  

All animal experimentation was conducted according to accepted standards of 

humane animal treatment and approved by the appropriate authorities in Lower 

Saxony (LAVES). 

 

2.1.9 Software 

 
Table 6. Software 

Adobe Photoshop® CS4 Adobe Systems, San José, CA, USA 

Graph Pad Prism® version 4.0c Graph Pad Software, La Jolla, CA, USA 

Intas GDS Intas, Göttingen, Germany 

7500 SDS Software version 1.4.0.25 Applied Biosystems, Foster City, CA, USA 

 

 

 



 MATERIALS AND METHODS  

 

 28 

2.2 Methods 
 

2.2.1 Animal experimentation 

 

2.2.1.1 Experimental protocols 
 

To mimic a standard high-dose oral GC therapy, mice were treated with water-

soluble dexamethasone (Dex) via the drinking water at a concentration of 50 

mg/L for three consecutive days, which was changed once on the second day. 

Based on a daily drinking volume of approximately 5 ml ± 0,7 ml this treatment 

corresponds to an effective dose of about 10 mg/kg*d (Reichardt et al., 2012). In 

some experiments, Dex was applied at lower concentrations as indicated in the 

Results section.  

L-Arginine at a concentration of 1% was added to the drinking water one day 

prior to Dex and changed once on the second day. Iron(II) gluconate hydrate 

was added at a concentration of either 600 mg/L or 1200 mg/L one day prior to 

Dex and changed once every second day. Based on a drinking volume of 5 ml ± 

0,7 ml this treatment corresponds to an effective dose of 150 mg/kg*d or 300 

mg/kg*d, respectively.  

A volume of 100μl of BEC at a concentration of 1 mg/ml was given once a day by 

oral gavage.  

 

2.2.1.2 Physiological parameters 
 

To determine the weight of the filled stomach, mice were sacrificed by inhalation 

of carbon dioxide. After opening the abdomen the stomach was clamped at the 

cardiac and pyloric sphincter, carefully removed and then weighed. The stomach 

weight was normalized to the body weight as follows: stomach weight [mg]/body 

weight [g]/10 = normalized stomach weight.  

The daily intake of food and drinking water was determined by providing the mice 

access to a defined amount of food and water. The difference in weight and vol-

ume every day was then measured and the average daily intake calculated. 
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Determination of the dry weight of the feces was accomplished by their daily col-

lection followed by an overnight drying in an oven at 60°C and subsequent 

weighing. 

 

2.2.1.3 Gastric emptying 
 

To determine the rate of gastric emptying I modified a previously published 

method (Martinez et al., 1997). In principle this method is based on determina-

tion of gastric emptying by feeding a defined volume of a stained meal of stable 

viscosity followed by subsequent photometric detection of the amount of retained 

meal in the stomach.  

To prepare a liquid meal of stable viscosity an aqueous solution of 1,5% methyl 

cellulose was prepared. To this end, 1,5 g methyl cellulose were dissolved in 40 

ml distilled water at a temperature of about 80°C under continuous stirring until 

all particles were dispersed. The remaining amount of water was added at a 

temperature below 10°C and the solution was stirred and cooled for at least an-

other 30 minutes at a temperature below 10°C. In this step the dispersed methyl 

cellulose particles become hydrated and an increase in viscosity can be ob-

served. In a final step 50 mg phenol red were dissolved in 100 ml of the resulting 

solution thus ensuring the later photometric detection of the remaining stomach 

content. 

For the determination of gastric emptying mice were fasted overnight and then 

given 150 μl of the prepared gastric emptying solution by gavage.  

Thirty minutes after force-feeding the mice were sacrificed in an atmosphere of 

excessive carbon dioxide and the abdominal part was opened. The stomach was 

clamped at the cardiac and pyloric sphincter, carefully removed and placed into  

4 ml 0,1N NaOH before homogenizing it with the help of an Ultra Turrax.  

After the addition of another 6 ml 0,1N NAOH the solution was thoroughly mixed 

and subsequently centrifuged at 3000 rpm for 10 minutes at 4°C. 1 ml of the su-

pernatant was added to 100 μl of 20% trichloro-acetic acid, vortexed and centri-

fuged at 3000 rpm at 4°C for 2 minutes. A volume of 500 μl was removed from 

the clear supernatant and mixed thoroughly with another volume of 400 μl of   

0,5 N NaOH.  
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The absorption of the sample was measured at a wavelength of 562 nm (A562) 

in a photometer. For baseline control some mice were killed immediately after 

force-feeding and the absorption of the stomach content was determined like-

wise.  

The rate of gastric emptying was then calculated according to the following equa-

tion: (1-[A562 of test sample]/[A562 of baseline control]) x 100 

 

2.2.2 Molecular biological methods 
 

 
2.2.2.1 Isolation of total RNA from tissue samples 
 

For the isolation of total RNA from tissue samples the Qiagen RNeasy® Mini Kit 

was used. Therefore, the frozen tissue samples were placed into 900 μl of QI-

Azol® lysis reagent and homogenized with the help of an Ultra Turrax. To remove 

genomic DNA 100 μl of DNA-eliminator solution was added and the mixture vor-

texed. After the addition of 180 μl chloroform and vortexing, the homogenates 

were incubated for three minutes at room temperature before centrifugation at 

12,000 g for 15 minutes at 4°C. The upper aqueous phase containing the RNA 

was placed in another tube mixed with 1 volume of 70% ethanol by pipetting up 

and down. A volume of 700 μl of the mixture was transferred to a spin column 

and centrifuged at ≥ 8,000 g for 20 seconds. After discarding the flow-through 

this step was repeated with the remainder of the sample. In three consecutive 

steps the column membrane was washed by first adding 700 μl of wash-buffer to 

the column before centrifugation at ≥ 10,000 g for 20 seconds. For each step a 

different wash buffer was used and the flow-through discarded. Afterwards the 

RNA was eluted twice with 35 μl RNase-free water by centrifugation at ≥ 8000 g 

for 1 minute. An aliquot of the sample was used for measuring the concentration 

and the samples were frozen immediately. 
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2.2.2.2 Reverse transcription of RNA 
 

For further analysis by quantitative reverse-transcription polymerase chain reac-

tion (qRT-PCR) the RNA samples were transcribed into complementary DNA 

(cDNA). This was accomplished with the help of the iScript cDNA synthesis Kit. 

In brief, 1 μg of RNA was mixed with 0,25 μl Reverse transcriptase and 4 ml of 

iScript reaction mix. RNA-free water was added to a final volume of 20 μl. The 

samples were held at 25°C for 5 minutes before incubating them at 42°C for 30 

minutes. In a final step the reaction was stopped by incubation at 85°C for 5 

minutes.  

 

2.2.2.3 Polymerase chain reaction 
 

Successful reverse transcription into cDNA was checked with the help of a poly-

merase chain reaction (PCR) aimed to amplify the housekeeping gene Hypoxan-

thine-guanine phosphoribyl-transferase (HPRT). To this end 1 μl of cDNA was 

added to a volume of 19 μl of the following master mix:  

 

12,7μl ddH2O 

4μl Buffer HF 

1μl dNTP´s 

0,5μl HPRT Primer forward 

0,5μl HPRT Primer reverse 

0,3μl pfuS DNA polymerase 

 

The tubes were then transferred into a PCR Mastercycler and the PCR was con-

ducted according to this protocol:       

 

Initialization step 98,5°C 2 minutes  

Denaturation step 98,5°C 20 seconds  

Annealing step 64°C 15 seconds 30 cycles 

Elongation step 72°C 20 seconds  

Final elongation  72°C 2 minutes  
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2.2.2.4 Agarose Gel Electrophoresis 
 

Analysis of the PCR products was done with the help of agarose gel elec-

tropheresis. To this end 7 μl of loading buffer consisting of a 30% solution of Or-

ange G in DMSO was added to the samples which were then loaded onto a 2% 

agarose gel in a electrophoresis chamber filled with TAE buffer. According to the 

size of the gel, the electrophoresis was run at 120 V and 230 mA, for small gels 

or at 150 V and 290 mA, for large gels, respectively. After 35 minutes electropho-

resis was stopped and the gel was placed on a UV screen to detect the seperat-

ed fragments. 

 

2.2.2.5 Quantitative RT-PCR 
 

To study changes in the relative expression level of genes qRT-PCR was used. 

RNA from tissue samples was isolated and subsequently transcribed into cDNA 

as described above. A mastermix of 11 μl distilled water, 12.5 μl SYBR-Green 

reaction mix and 0.25 μl of the respective forward and reverse primer of the gene 

of interest each (at a concentration of 10 μM) was prepared. 1 μl of cDNA was 

added to each well of a 96 well PCR plate and subsequently 24 μl of the Mas-

termix was added to each well. Following centrifugation the plate was placed into 

a 7500 Real Time PCR System and the PCR was performed following the follow-

ing protocol: 

Enzyme activation  50°C 2 minutes  

Initial denaturation 95°C 20 seconds  

Denaturation 95°C 15 seconds  

40 cycles Annealing and elongation 60°C 60 seconds 

 95°C 15 seconds  

Dissociation 60°C 60 seconds  

 95°C 15 seconds  

 

For evaluation of the relative expression of genes the ΔΔct method was em-

ployed. The housekeeping gene HPRT served as an endogenous control for 

normalization. 
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2.2.3 Biochemical Methods 
 

2.2.3.1 Preparation of protein lysates from tissue samples 
 

Protein lysates were prepared from the stomach of mice by homogenizing tissue 

samples in 500 μl freshly made protein lysis buffer with the help of an Ultra tur-

rax. The resulting homogenates were then put on ice for at least one hour before 

centrifugation at 12,000 g for 20 minutes at 4°C. The supernatant was removed 

and the concentration measured using the Bradford protein assay. 

2.2.3.2 Measurement of protein concentration 
 

Protein lysates were diluted 10-fold in RIPA buffer before adding 25 μl of the 

sample to 750 μl Bradford reagent. A blank solution was prepared by adding of 

25 μl RIPA buffer to 750 μl Bradford reagent. The absorption of the samples at 

595 nm was measured in a Nanodrop 2000 photometer and the concentration 

was calculated with the help of a standard curve. 

 

2.2.3.3 Polyacrylamide Gel Electrophoresis 
 

For further analysis of protein levels in tissues by Western Blot, protein lysates 

were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis 

(SDS-PAGE). To this end separating and stacking gels were prepared according 

to the following table: 

Table 7. Preparation of WesternBlot Gels 

 Separating Gel (7,5%) Stacking Gel 

Lower Buffer 1950 μl  

Upper Buffer  938μl 

Rotiphorese® Gel 30 2025μl 600μl 

H2O 3975μl 2205μl 

TEMED 7,5μl 3,75μl 

APS (10%), added shortly 

before casting 

49,95μl 37,5μl 
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The separating gel was casted between plate and spacer plate at a thickness of 

0,75 mm and allowed to polymerize for 10 to 20 minutes before the stacking gel 

was poured and a comb inserted. After solidifying the gel was placed in a elec-

trophoresis chamber filled with SDS Running Buffer. An amount of 20 μg protein 

lysate was added up to a volume of 10 μl with RIPA Buffer and mixed with 2x 

Laemmli Buffer before heating to 95°C for 5 minutes. The samples were then 

loaded onto the gel and the electrophoresis was run at a constant current of 20 

mA for 50 minutes. 

 

2.2.3.4 Western Blot Analysis 
 

After separation by SDS-PAGE the proteins were transferred to an ECL nitrocel-

lulose membrane. Therefore, a Whatman® blotting paper soaked with blotting 

buffer was placed in a SEMIPHOR transfer unit before sandwich-like the nitrocel-

lulose membrane, the separating gel and another Whatman® paper was each 

put on top. To transfer the proteins to the membrane a voltage of 16 V was ap-

plied for one hour. The membrane was then blocked for another hour with 5% 

BSA solution and subsequently washed 3 times with PBS/Tween before incuba-

tion overnight at 4°C with the primary antibody. The secondary antibody was ap-

plied after washing 3 times with PBS/Tween and incubated for one hour at room 

temperature. After adding the freshly prepared development solution the protein 

bands were visualized using a Chemo Cam Imaging system. 

 

2.2.4 Statistical analysis 
 

Statistical analysis was performed by either 2-way ANOVA followed by Bonferro-

ni multiple comparison test, unpaired t test or Mann-Whitney U test as indicated 

in the respective figure legends. Data are depicted as mean ± SEM. P values 

below 0.05 were considered significant and are indicated as follows: *p<0.05; 

**p<0.01; ***p<0.001. For all statistical analyses Graph Pad Prism® software 

was used. 
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3. Results  
 

3.1 Oral administration of GCs induces gastroparesis  
 

3.1.1 High-dose Dex treatment causes an enlargement of the stomach 
 

GCs are the mainstay in the treatment of inflammatory diseases such as MS, RA 

or IBD. Nevertheless, pharmacological application of GCs can lead to severe 

side-effects including diabetes, muscle atrophy, osteoporosis (Rauch et al., 

2010; Rose and Herzig, 2013; Watson et al., 2012) as well as the formation of 

gastric ulcers (Sandu et al., 2007). Administration of GCs, in particular orally, can 

lead to gastrointestinal disturbances with symptoms ranging from early satiety 

and bloating to nausea. In fact, patients often range gastrointestinal symptoms 

as one of the most important adverse effect because they pose a serious disad-

vantage on their daily life (Sellebjerg et al., 1998). On the other hand oral therapy 

has major advantages over intravenous therapy. It does not require hospitaliza-

tion or daily appointments for treatment in the clinic, which may be cumbersome 

and wearing for the patients especially in rural regions with less health facilities. 

Furthermore oral treatment is a far less exhausting method of application for the 

patients and it is therefore often the method of choice.  

 

Previous experiments performed by Toni Weinhage in my group had revealed 

that an enlargement of the stomach was a so far unknown gastrointestinal effect 

caused by GCs. It was therefore the aim of this work to follow up this observation 

and to explain it on a mechanistic level. In my experiments I initially mimicked 

high-dose oral GC therapy by treating female wildtype Balb/c mice with 50 mg/l 

Dex in the drinking water for three consecutive days with a change of drinking 

water on the second day. On the third day the mice were sacrificed and the 

stomachs removed and weighed. The relative stomach weight was calculated as 

the percentage of body weight to take differences between individual mice into 

account. In agreement with the previous observation, the weight and size of the 

stomach was strongly increased after oral treatment with Dex as compared to 

untreated mice (Figure 6). 
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Figure 6. Oral Dex treatment leads to an increase in stomach weight and size.  

Female Balb/c mice were given 50 mg/l Dex via the drinking water or left untreated 

(con). A, the relative stomach weight of the mice is depicted as the percentage of body 

weight; N = 7. Statistical analysis was performed by unpaired t test, ***, P < .001. B, 

representative pictures of mouse stomachs illustrating the size increase after Dex treat-

ment compared to control (con). The photographs shown in panel B were kindly provid-

ed by Toni Weinhage (Reichardt et al., 2014). 

 

Noteworthy, the observed effect was accompanied by a slight increase in drink-

ing volume but no change in food intake or dry feces as shown in Figure 7. 

 

 

Figure 7. Oral administration of Dex for three days does not alter food intake or 

dry feces and only leads to a slight increase in water intake.  

Mice were treated with 50 mg/L Dex in the drinking water or were left untreated (con). 

The left panel shows the total drinking volume during three days of treatment (N = 8/13). 

Food intake and dry feces weight were measured for each individual mouse and are 

shown in the middle (N = 6/12) and right panel (N = 4), respectively. Statistical analysis 

was performed by unpaired t test, *, P < .05; n.s., not significant. These data were kindly 

provided by Toni Weinhage (Reichardt et al., 2014).  
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3.1.2 Dex administration impairs gastric emptying 
 

Having excluded altered excretion or feeding behaviour as a potential cause of 

stomach enlargement after Dex administration, I suspected a reduced gastric 

emptying rate as the underlying mechanism. To confirm this hypothesis a meth-

od for the measurement of gastric emptying was established. To this end mice 

were fasted overnight and then force-fed a liquid test meal consisting of a methyl 

cellulose solution of stable viscosity. To be able to later detect the remains of the 

meal in the stomach it was stained with phenol red prior to feeding by oral ga-

vage. Either immediately as a baseline control or after 30 minutes the mice were 

sacrificed and the stomach clamped, removed and homogenized before the ab-

sorption of the remaining stomach content was measured (Figure 8A). The re-

duced absorption observed after 30 minutes in control mice indicates that part of 

the meal has been removed from the stomach as a result of normal gastric mo-

tility.  

 

 

Figure 8. Oral Dex treatment induces gastroparesis in mice.  

A, Dex treated and untreated (con) mice were fasted for 20 hours before force-feeding a 

test meal of methyl cellulose stained with phenol red. Some mice were sacrificed imme-

diately (0 min) and some after 30 minutes. The stomach was clamped, removed and 

homogenized. The remains of the stained meal in the stomach were determined by pho-

tometry based on the absorption at 562nm (A 562), which is depicted for each mouse (N 

= 3-9). B, The rate of gastric emptying was calculated as the ratio between the absorp-

tion after 30 minutes and the value at time point zero and is shown as percentage of 

gastric emptying. Statistical analysis in both panels was performed by unpaired t test, **, 

P < .01, ***, P < .001, n.s., not significant (Reichardt et al., 2014). 
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3.1.3 Increase in stomach weight induced by Dex is dose-dependent 
 

Although the initially administered high concentration of Dex indeed relates to 

doses given to patients suffering from chronic inflammatory diseases such as 

MS, I wanted to explore the dose dependency of gastroparesis induced by Dex. 

To rule out that the observed effect was strain-specific I conducted the experi-

ment using both Balb/c and C57Bl/6 mice. Different concentrations of Dex were 

provided via the drinking water for three days, ranging from 50 mg/L to 2 mg/L. It 

turned out that a significant increase in the stomach weight could be seen even 

at the lowest dosage in both strains (Figure 9). 

 

 

Figure 9. Dex-induced gastroparesis is dose-dependent.  

Female Balb/c (A) or C57Bl/6 (B) mice were orally administered Dex at concentrations 

of 50, 20, 5 or 2 mg/L for three days or left untreated (con). The relative stomach weight 

is depicted as the percentage of body weight. N=4-8 (A), N=3-5 (B). Statistical analysis 

by unpaired t test, *, P < .05, **, P < .01, ***, P < .001 (Reichardt et al., 2014). 

Of note, the weight increase of the filled stomach was slightly more pronounced 

in Balb/c than in C57Bl/6 mice. Nevertheless, I conclude that Dex induces gas-

troparesis independently of the genetic background of the mice and in a dose 

dependent manner, with a decrease of stomach enlargement corresponding to a 

decline in Dex concentration.  
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3.2 Target organ of GC-induced gastroparesis 
 

3.2.1 Gastroparesis is preserved in GRvillinCre mice 
 

GCs are known to influence many functional properties of the intestine amongst 

others the uptake of glucose from enterocytes (Reichardt et al., 2012). For this 

reason I wanted to know whether the observed GC-induced gastroparesis was a 

direct effect on the stomach or rather an indirect effect resulting from so far un-

known GC activities in the intestine. I thus made use of GRvillinCre mice that lack 

the GR in the intestine but not in the stomach. By using Western Blot I could 

show that indeed protein expression of the GR was absent in the jejunum and 

ileum of GRvillinCre mice, whereas it was normally expressed in the stomach of the 

mutant mice (Figure 10).  

 

 

 

B 

 

Figure 10. GR protein expression in the intestine and stomach of GRvillincre mice. 

GR protein levels were determined in the intestine (A) and the stomach (B) of GRvillinCre 

as well as GRflox control mice by Western blot. β-tubulin served as a control. One repre-

sentative experiment is shown each (Reichardt et al., 2012; Reichardt et al., 2014). 

 

Having confirmed the absence of GR protein in jejunum and ileum of GRvilinCre 

mice and its presence in the stomach, I next tested whether GC effects on the 

intestine were responsible for the induction of gastroparesis by orally applying 50 

mg/L Dex to GRvilinCre mice as well as GRflox wildtype littermates. Importantly, the 

stomach of both control and knock-out mice showed a significant increase in the 

weight of the filled stomach after three days (Figure 11).  

This suggests that gastroparesis is mainly a direct effect of GCs on the stomach 

rather than an indirect effect on the intestine. 
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Figure 11. The GC-induced increase in stomach weight is preserved in enterocyte-

specific GR knock-out mice.  

Mice were orally administered 50 mg/L Dex for three days or left untreated (con). The 

relative stomach weight of GRflox control and GRvillinCre knock-out mice was determined 

and is depicted as percentage of body weight; N = 5-9. Statistical analysis was per-

formed by 2-way ANOVA followed by Bonferroni multipe comparison test, n.s., not sig-

nificant (Reichardt et al., 2014). 

3.3 Molecular mechanism of GC-induced gastroparesis 

 

3.3.1 GC treatment of GRdim mice does not induce gastroparesis  
 

GCs exert most of their functions through binding to the GR. Upon ligand binding 

and translocation to the nucleus the GR can either trans-repress gene transcrip-

tion independently of DNA-binding, or it can trans-activate genes which requires 

DNA-binding of the GR. GRdim mice carry the A458T point mutation in the second 

zinc finger of the DBD, which impairs the ability of the GR to dimerize and there-

fore to modulate gene transcription in a DNA-binding dependent manner. Having 

found that GC-induced gastroparesis is a direct effect on the stomach I set out to 

determine the underlying molecular mechanism by employing GRdim mice.  

 

To this end, GRdim and GRwt mice were treated with 50 mg/L Dex for up to three 

days followed by the analysis of the stomach weight. A slight increase was ob-

served for both genotypes already after one day of Dex treatment. However, 

when I treated the mice with Dex for three consecutive days the stomach of 
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wildtype mice was strongly enlarged whereas GRdim mice showed only a minor 

increase in stomach weight and size (Figure 12A).  

Subsequently I also determined the gastric emptying rate for GRwt and GRdim 

mice after Dex treatment as described previously. While control mice showed 

severe gastroparesis as expected, the gastric emptying rate of GRdim mice re-

mained unaltered (Figure 12B).  

 

 

 

 

Figure 12. GC-induced gastroparesis is mediated by a DNA-binding dependent 

mechanism of the GR. 

GRwt and GRdim mice were orally administered 50 mg/L Dex or left untreated (con) for up 

to three consecutive days. A, the relative stomach weight was determined after 1 and 3 

days and is depicted as percentage of body weight, N = 5-9. B, Gastric emptying was 

determined after three days of treatment using a photometric assay. In brief, mice were 

force-fed a methyl cellulose solution stained with phenol red after being fasted for 20 

hours. The remains of the stained test meal were determined on the basis of the absorp-

tion at 562 nm. For baseline control some mice were sacrificed immediately. The ratio of 

stomach emptying was calculated and is depicted as percentage of stomach emptying 

after 30 minutes N = 4-6. Statistical analysis by 2-way ANOVA followed by Bonferroni 

multiple-comparison test, ***, p < .001; n.s., not significant (Reichardt et al., 2014). 

 

Taken together, these findings indicate that GC-induced gastroparesis is mediat-

ed by DNA-binding dependent GR trans-activation. 
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3.3.2 GC-induced gastric acid secretion does not influence gastroparesis  
 

Augmented secretion of hydrochloric acid (HCl) in the stomach is a well-known 

consequence of either elevated levels of endogenous GCs after stress or follow-

ing pharmacological administration of synthetic GCs. In collaboration with the 

group of Professor Dr. Florian Lang (University of Tübingen) the mechanism by 

which GCs impact HCl secretion were studied. In addition, it was tested whether 

HCl production is linked to GC-induced gastroparesis.  

 

For that reason GRwt and GRdim mice were treated with Dex via the drinking wa-

ter for three consecutive days or left untreated. Subsequently the change in pH 

value in the stomach per minute was measured. As expected, the secretion of 

HCl was more pronounced in Dex-treated than in untreated wildtype mice. More-

over, increased gastric acid secretion after Dex treatment could be counteracted 

by administering the proton pump inhibitor omeprazole. In contrast to wildtype 

mice, the HCl secretion in the stomach of GRdim mice remained almost unaltered 

after three days of Dex treatment (Figure 13A).  

These findings confirm the well-known capacity of GCs to enhance gastric acid 

secretion and indicate that dimerization of the GR and thus trans-activation of 

GR target genes is required to achieve this effect. 

 

Taking into consideration that both the stimulation of gastric acid secretion and 

the induction gastroparesis by GCs were abolished in mice carrying the A485T 

mutation of the GR, it was conceivable that there was a connection between 

these two effects. However, previous work of my group could exclude such a 

potential link between gastroparesis and HCl secretion.  

Namely, in a former experiment female Balb/c mice had been treated with Dex 

for three and ten days respectively. To counteract GC-induced gastric acid se-

cretion some mice had additionally received a daily injection of omeprazole, a 

treatment that effectively abolishes enhanced gastric acid secretion after Dex 

treatment (Figure 13A). Notably, a significant increase in stomach weight oc-

curred in both groups regardless of the additional treatment with omeprazole 

(Figure 13B).  
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Figure 13. Enhanced gastric acid secretion is not linked to GC-induced gastro-

paresis. 

A, The change in pH value per minute in the stomach is shown for GRwt and GRdim mice. 

Mice were either left untreated (con, black bars), treated with Dex for three days (white 

bars) or treated with Dex and omeprazole (Omp, grey bar). N = 6-12. B, Wildtype mice 

were treated with Dex for three or ten days or left untreated (con). Some of the mice 

were daily injected with 40 mg/kg omeprazol in addition. The relative stomach weight is 

depicted as percent body weight, N = 5-7. Statistical analysis by 2-way ANOVA followed 

by Bonferroni multiple comparison test, *, P < .05, n.s., not significant. Data kindly pro-

vided by Florian Lang (13A) and Toni Weinhage (13B) respectively (Reichardt et al., 

2014). 

 

From these data it was concluded that GC-induced gastroparesis occurs inde-

pendently of the stimulation of gastric acid secretion albeit both effects are abol-

ished in GRdim mice. 
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3.4 The role of macrophages in gastroparesis induction by GCs 
 

3.4.1 Dex-treatment results in altered macrophage polarization 
 

Having found that GC-induced gastroparesis is mediated via a mechanism that 

involves dimerization of the GR and therefore transcriptional regulation, I set out 

to identify genes in the stomach the expression of which was altered by GC 

treatment. To address this question a genome wide expression profiling employ-

ing microarrays was carried out. Hereby data were obtained about the genes that 

were differentially regulated in mice treated with Dex for three days as compared 

to untreated mice. An excerpt of the in total 52 genes that were identified as be-

ing up- or down-regulated by Dex more than two-fold in the stomach is given in 

Table 8 and 9, respectively. 

Table 8. Genes that are up-regulated in the stomach after Dex treatment.  

Macrophage-specific genes that were further studied by qRT-PCR are highlighted in 

orange, other genes in yellow. Microarray data were kindly provided by Toni Weinhage. 

Symbol Name 
fold  
expression 

Serpina3n serine peptidase inhibitor, clade A, member 3N 5,30 

Klk1 kallikrein 1 4,78 

Lcn2 lipocalin 2 4,40 

Hmgcs2 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2 4,30 

Fmo2 flavin containing monooxygenase 2 3,68 

Fkbp5 FK506 binding protein 5 3,36 

Arg2 arginase type II 2,98 

Sult1a1 sulfotransferase family 1A, phenol-preferring, member 1 2,96 

Pdk4 pyruvate dehydrogenase kinase, isoenzyme 4 2,92 

Lox lysyl oxidase 2,85 

CXCL13 chemokine (C-X-C motif) ligand 13 2,43 

Lyve1 lymphatic vessel endothelial hyaluronan receptor 1 2,30 

CD163 CD163 antigen 2,05 
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Table 9. Genes that are down-regulated in the stomach after Dex treatment. Mac-

rophage-specific genes that were further studied by qRT-PCR are highlighted in blue, 

other genes in green. Mircoarray data were kindly provided by Toni Weinhage. 

Symbol Name 
fold  
expression 

H2-Ab1 histocompatibility 2, class II antigen A, beta 1 -2,36 

H2-Aa histocompatibility 2, class II antigen A, alpha -2,58 

Gbp4 guanylate binding protein 4 -2,65 

Nr1d1 nuclear receptor subfamily 1, group D, member 1 -2,66 

Nr1d2 nuclear receptor subfamily 1, group D, member 2 -2,73 

Gsta3 glutathione S-transferase, alpha 3 -2,83 

Akr1b8 aldo-keto reductase family 1, member B8 -2,87 

Igh-2 immunoglobulin heavy chain 2 (serum IgA) -2,95 

H2-Ea histocompatibility 2, class II antigen E alpha -3,95 

CD74 
CD74 antigen (invariant polypeptide of major histocom-
patibility complex, class II antigen-associated) -4,21 

Nqo1 NAD(P)H dehydrogenase, quinone 1 -4,76 

Gsdmc2 gasdermin C2 -8,67 

Gsdmc3 gasdermin C3 -15,79 

 

Strikingly, amongst the differentially expressed genes I identified some that are 

specific for macrophages. GCs are known for their ability to impact macrophage 

function, in particular by polarizing them from a pro-inflammatory M1 phenotype 

towards an anti-inflammatory M2 phenotype (Varga et al., 2008). Accordingly, 

genes that are specific for M2 polarized macrophages were up-regulated (high-

lighted in orange in Table 8), and those ones, which are specific for a M1 polari-

zation of macrophages, were down-regulated (highlighted in blue in Table 9). 

 

To confirm the results from the microarray analysis I performed a qRT-PCR 

analysis. Therefore mice were administered Dex via the drinking water or left 

untreated. After three days the stomachs were removed and RNA was isolated 

from the stomach corpus, reverse transcribed into cDNA and qRT-PCR per-
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formed using primers designed for the specific detection of the genes encoding 

H2-Aa, H2-Ab1 and CD74 as well as CXCL13 and CD163. 

  

Importantly, my results were completely in line with the findings made by micro-

array analysis. Expression of CD163 and CXCL13, which are characteristic for a 

M2 polarization of macrophages, were up-regulated in the stomach after Dex 

treatment (Figure 14A), whereas the MHC class II genes H2-Aa, H2-Ab1 as well 

as CD74 were down-regulated (Figure 14B). Hence, GC treatment of mice alters 

the phenotype of macrophages in the stomach, which could presumably contrib-

ute to the induction of gastroparesis. 

 

 

 

 

Figure 14. Oral Dex treatment of mice induces a M2 polarization of macrophages 

in the stomach. 

Mice were treated with Dex via the drinking water or left untreated (con) for three days. 

RNA was prepared from tissue samples from the stomach corpus and reverse tran-

scribed into cDNA. Subsequently, qRT-PCR was performed using gene-specific primers 

and the expression of the housekeeping gene HPRT was used for normalization. A, 

genes specific for a M2 polarization of macrophages are up-regulated. B, genes specific 

for a M1 polarization of macrophages are down-regulated, N = 3-6. Statistical analysis 

by unpaired t test, *** p < .001; ** p < .01; * p < .05 (Reichardt et al., 2014). 
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3.4.2 Altered macrophage polarization is not related to gastroparesis 
 

To test whether the change in phenotype of the macrophages that are resident in 

the stomach wall might be connected to Dex-induced gastroparesis, I took ad-

vantage of two different strains of conditional knock-out mice. GCs can exert 

their function either through binding to the GR or the MR, both of which are ex-

pressed by macrophages (Lim et al., 2007). To further investigate the role of al-

tered polarization of macrophages in the induction of gastroparesis by GCs I 

made use of GRlysMCre and MRlysMCre mice, two mouse strains that specifically 

lack the GR or the MR, respectively, in myeloid cells. Thus, 50 mg/L Dex were 

administered to GRlysMCre or MRlysMCre mice via the drinking water for three days 

or the mice were left untreated. GRflox and MRflox littermates were treated like-

wise and served as controls. The mice were sacrificed on day 3, the stomachs 

removed and weighed. Interestingly, stomach weights were increased in both 

strains of knock-out mice to a similar extend as in wildtype control mice after Dex 

treatment as shown in Figure 15.  

  

Figure 15. Induction of gastroparesis by GCs is retained in mice specifically lack-

ing the GR or MR in macrophages. 

GRlysMcre or MRlysMcre mice were treated with 50 mg/L Dex for three days or left untreated 

(con) along with the respective GRflox and MRflox littermates as a control. The stomach 

weight was determined as percentage of body weight and is depicted in (A) for GRlysMCre 

mice (ko) and GRflox mice (wt), N = 5-7, in (B) for MRlysMCre mice (ko) and MRflox mice 

(wt), N = 9-10. Statistical analysis was performed by 2-way ANOVA followed by Bonfer-

roni multiple comparison test, n.s., not significant (Reichardt et al., 2014). 
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To confirm that the absence of the GR or MR in myeloid cells indeed resulted in 

a differential regulation of macrophage-specific genes after Dex-treatment, I ex-

emplarily determined the expression of CD163 and CD74 in the two strains of 

mice and their respective controls. As expected, CD163 was up-regulated and 

CD74 down-regulated by Dex in wildtype control mice of both strains (Figure 

16A, B). Importantly, in GRlysMCre mice both effects of Dex were lost whereas the 

absence of the MR in MRlysMCre mice had no impact on the regulation of these 

two genes (Figure 16). 

 

Figure 16. CD163 and CD74 are dif-

ferentially regulated in the stomach 

of myeloid cell-specific GR and MR 

knock-out mice after Dex treatment. 

GRlysMCre and MRlysMCre mice (ko) and the 

corresponding littermate controls GRflox 

and MRflox mice (wt) were orally admin-

istered 50 mg/L Dex for three days or 

left untreated. RNA was isolated from 

the stomach corpus and analyzed by 

qRT-PCR for altered mRNA expression 

of CD163 (A) or CD74 (B). Normaliza-

tion was achieved by comparing the 

expression levels to those of HPRT, N = 

3-6. Statistical analysis was performed 

by unpaired t test. *, p < .05; n.s., not 

significant (Reichardt et al., 2014).  

 

 

 

Taken together, my findings suggest that impaired gastric emptying after Dex 

treatment occurs independently of GC-induced macrophage polarization. 
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3.5. Role of genes specifically expressed in the gastrointestinal tract 

 

In the previously conducted microarray analysis two genes were found to be pro-

foundly down-regulated after Dex treatment (highlighted in green in Table 9), 

namely Gasdermin C2 (Gsdmc2) and C3 (Gsdmc3). These two members of the 

novel Gasdermin gene family are exclusively expressed in epithelial cells of the 

gastrointestinal tract and skin and are believed to regulate epithelial apoptosis, 

although their exact function is not yet known (Saeki et al., 2000; Tamura et al., 

2007). Hence I wondered whether down-regulation of these tissue-specific genes 

might contribute to GC-induced gastroparesis. To address this question I made 

use of my previous finding that GC-treatment of GRdim mice does not lead to gas-

troparesis (Figure 12). Furthermore, I predicted that the change in stomach 

weight should be mirrored by a similar pattern in the change of gene expression 

being responsible for it. Hence I treated GRdim and GRwt mice with Dex through 

the drinking water for three days and subsequently analyzed mRNA expression 

of Gsdmc2 and Gsdmc3 by qRT-PCR in the stomach. Interestingly, both genes 

were down-regulated after GC-treatment regardless of the genotype (Figure 17). 

 

 

Figure 17. Reduced expression of 

Gsdmc2 and Gsdmc3 after Dex 

treatment is not responsible for in-

duction of gastroparesis. 

GRwt and GRdim mice were orally given 

Dex for either one or three days or the 

mice were left untreated (con). RNA was 

isolated from the stomach corpus and 

mRNA expression of (A) Gsdmc2 or (B) 

Gsdmc3 was analyzed by qRT-PCR, N 

= 6-11. Relative expression levels were 

normalized to HPRT. Statistical analysis 

was performed by 2-way ANOVA fol-

lowed by Bonferroni multiple compari-

son test; *, P < .05; ***, P < .001; n.s., 

not significant (Reichardt et al., 2014). 
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3.6. Role of genes related to the regulation of gastric motility 
 

3.6.1 Expression of kallikrein 1, lipocalin 2 and arginase 2 in the stomach 
 

Having excluded the aforementioned genes Gsdmc2 and Gsdmc3 as possible 

candidates being responsible for the induction of gastroparesis by Dex I next 

focused on identifying genes that execute functions related to the regulation of 

gastric motility. In this context I found kallikrein 1 (Klk1), lipocalin 2 (Lcn2) and 

arginase 2 (Arg2) to be involved in the process of NO synthesis. All three of them 

were up-regulated in the stomach after Dex treatment according to the previously 

performed microarray analysis (highlighted in yellow in Table 8).  

 

To further investigate whether these genes might indeed play a role in gastro-

paresis induction by GCs I employed the same strategy as described above, 

namely to verify whether up-regulation of these genes occurs in both GRwt and 

GRdim mice. Hence I isolated RNA from the corpus of mouse stomachs of GRwt 

and GRdim mice after one or three days of oral Dex treatment and subsequently 

analyzed changes in mRNA expression levels of Klk1, Lcn2 and Arg2 employing 

qRT-PCR. Using this strategy I could confirm a considerable up-regulation of 

each of the three genes in Dex-treated GRwt mice, whereas analysis of mRNA 

expression levels in GRdim mice revealed only a slight increase after Dex treat-

ment as shown in Figure 18. 

 

Following my previous line of argumentation, namely that genes that are differen-

tially regulated in GRdim and GRwt mice after Dex treatment should represent 

promising candidates to play a role in gastroparesis induction, these findings 

strongly suggested that each of the three analyzed genes might potentially be 

linked to the effect of loss of gastric motility in mice receiving GCs via the drink-

ing water. 
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Figure 18. Identification of three GC 

target genes in the stomach that are 

differentially regulated in GRdim and 

GRwt mice following Dex administra-

tion. 

GRdim mice and GRwt littermate controls 

were orally administered Dex for one or 

three days, respectively, or left untreat-

ed (con). Mice were then sacrificed and 

RNA was isolated from the corpus of 

mouse stomachs and analyzed for 

mRNA expression by qRT-PCR of (A) 

lipocalin2 (Lcn2), N = 6-11, (B) kal-

likrein1 (Klk1), N = 7-13 and (C) ar-

ginase2 (Arg2), N = 6-11. Data repre-

sent relative expression levels normal-

ized to HPRT. Statistical analysis in all 

panels was performed by 2-way ANOVA 

followed by Bonferroni multiple compari-

son test, ***, p < .001; ** p < .01; n.s., 

not significant (Reichardt et al., 2014). 

 

3.6.2 Role of Lcn2 in gastric motility 
 

Neutrophil gelatinase-associated lipocalin (Lcn2) is a member of the lipocalin 

family of transport proteins (Schmidt-Ott et al., 2007) that plays an important role 

in various defense mechanisms of the innate immune system. During bacterial 

infections Lcn2 scavenges iron chelators that are produced from bacteria to facil-

itate uptake of iron, an essential element for all living organisms, from their host 
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(Flo et al., 2004). An up-regulation of Lcn2 in the stomach, I therefore speculat-

ed, might result in a reduced availability of iron in different cell types. 

 

Gastric motility is a complex process that has been shown to be impaired in the 

absence of NO (Mashimo et al., 2000). More specifically, NO production by 

nNOS is required to induce smooth muscle relaxation in the stomach. Important-

ly, since nNOS is a heme-containing enzyme, the generation of NO is an iron-

dependent process. It is against this background that I hypothesized that the 

proposed deprivation of iron caused by GC-induced up-regulation of Lcn2 might 

be responsible for impaired gastric motility. 

 

To investigate whether the mechanism of reduced iron availability indeed con-

tributes to the induction of gastroparesis, the drinking water of female Balb/c 

mice was supplemented with iron in the form of iron (II) gluconate thus aiming to 

overcome the proposed iron deficiency caused by up-regulation of Lcn2. In de-

tail, mice were administered an effective dosage of either 150 mg/kg*d or 300 

mg/kg*d via the drinking water starting one day prior to the addition of Dex thus 

allowing the mice to adjust to the altered taste of their drinking water. As a con-

trol some mice were left untreated and some were treated with iron (II) gluconate 

only, to exclude any potential side-effect of iron supplementation. Following this 

treatment the mice were sacrificed and the stomachs removed and weighed. My 

results show that an exogenous substitution with iron can indeed, to some ex-

tent, prevent the increase in stomach weight after Dex treatment regardless of 

the dosage of iron (II) gluconate as shown in Figure 19.  

 

I therefore conclude that iron deficiency caused by up-regulation of Lcn2 might 

contribute to the induction of gastroparesis after GC treatment although it is pre-

sumably not the major mechanism. 
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Figure 19. Iron supplementation partially prevents the increase in stomach weight 

caused by Dex treatment. 

Mice were given iron (II) gluconate at a concentration of 600 mg/L (conc1) and 120 mg/L 

(conc2), respectively, via the drinking water starting one day prior to oral administration 

of 50 mg/L Dex. As a control some mice were given iron (II) gluconate or Dex only, and 

some mice were left untreated. After three days the stomach was removed and ana-

lyzed. Stomach weights are depicted as percentage of body weight, N = 4-6. Statistical 

analysis by unpaired t test, **, p < .01; *, p < .05, n.s., not significant. 

 

3.6.3 Role of Arg2 in gastroparesis 
 

3.6.3.1 Regulation of genes related to NO production  
 

When food enters the stomach it is churned and passed on to the small intestine 

in a wavelike movement of the stomach consisting of alternating contraction and 

relaxation of gastric smooth muscle layers, a process called peristalsis. An es-

sential signalling molecule for the relaxation of the gastric muscles is NO 

(Abrahamsson and Jansson, 1969; Wilbur and Kelly, 1973), a volatile molecule 

produced by the enzyme family of NOS through oxidation of L-arginine to citrul-

line with simultaneous production of NO (Stuehr, 1997). However, the enzyme 

arginase which catalyzes the conversion of L-arginine to ornithine is known to 

compete with NOS for the same substrate (Wu and Morris, 1998). It is therefore 

feasible that enhanced gene transcription of Arg2 leads to an increased conver-
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sion of L-arginine to ornithine resulting in a limited availability of substrate for NO 

production.  

 

There exist two isoforms of arginase that are found in different cell compart-

ments. Arg1 is present in the cytosol whereas Arg2 is localized to the mitochon-

dria. To test my hypothesis that Arg2 impacts gastroparesis through depletion of 

NO I first set out to exclude a direct effect of GCs on nNOS expression and to 

investigate a potential role of the cytosolic isoenzyme arginase1. GRdim and GRwt 

mice were orally administered Dex for three days or left untreated. Afterwards 

RNA was isolated from the stomach corpus and mRNA expression of arg1 and 

nNOS were analyzed using qRT-PCR. My analysis indicates that mRNA expres-

sion of arg1 is not altered by Dex treatment in the stomach, neither in GRwt nor 

GRdim mice, which rules out a potential role for arg1 in gastroparesis induction 

(Figure 20A). A similar finding was made concerning nNOS expression, which 

was unaltered in GRdim mice but slightly increased in GRwt mice although without 

reaching statistical significance (Figure 20B). Importantly, however, elevated lev-

els of nNOS would be expected, if at all, to increase NO production rather than 

diminishing it.  

 

  

Figure 20. Gene expression of arg1 and nNOS in the stomach after Dex treatment. 

GRwt and GRdim mice were treated with Dex for three days or left untreated (con). RNA 

was isolated from the corpus of mouse stomachs and mRNA expression was deter-

mined using qRT-PCR for (A) Arg1 (N = 5-10) and (B) nNOS (N = 3). Relative expres-

sion levels were normalized to HPRT. Statistical analysis by 2-way ANOVA followed by 

Bonferroni multiple comparison test, n.s., not significant (Reichardt et al., 2014). 
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Altogether, these findings exclude that GC treatment influences NO production 

by impacting the expression of other genes, at least not via direct effects on Arg1 

and nNOS.  

 

 

3.6.3.2 Regulation of Arg2 at the protein level  
 

To further investigate the role of Arg2 in gastroparesis I set out to test whether 

the enhanced transcription of Arg2 also translated into higher protein levels. 

Hence, female Balb/c mice were administered Dex via the drinking water for 

three days or left untreated. Stomachs were then removed and lysates were pre-

pared. By employing Western Blot analysis I could identify a strong increase in 

Arg2 protein levels in GRwt but not in GRdim mice (Figure 21). 

 

 

 

 
 

Figure 21. Arg2 protein levels are 

increased after Dex treatment in GRwt 

but not GRdim mice. 

Protein was isolated from the stomach 

of GRdim or GRwt mice treated with Dex 

for three days or left untreated (con) and 

analyzed for Arg2 protein levels by 

Western Blot. ERK was used as a load-

ing control. One representative experi-

ment is shown (Reichardt et al., 2014). 

 

These findings strongly support my hypothesis that an increase in Arg2 mRNA 

expression leads to an enhanced translation into Arg2 protein, which in turn pre-

sumably leads to an increase of enzymatic capacity for the conversion of 

L-arginine to ornithine thus depleting the substrate for NO production.  
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3.6.3.3 L-arginine supplementation prevents GC-induced gastroparesis 
 

To provide additional evidence for my theory that a shortage in L-arginine was 

responsible for the induction of gastroparesis, I applied the same strategy as be-

fore, namely to overcome the potential limitation of substrate by supplying it ex-

ogenously to the mice.  

Analogous to my previous experimental setup for the supplementation with iron I 

added an amount of 1% L-arginine to the drinking water of female Balb/c mice 

one day prior to Dex treatment to ensure acceptance of this medication. After-

wards one group of mice was administered 50 mg/L Dex together with 1% L-

arginine via the drinking water whereas a second group orally received 50 mg/L 

of Dex only. As a control some mice were left untreated.  

 

As shown in Figure 21, treatment with L-arginine completely prevented the in-

crease in stomach weight as compared to mice treated with Dex only.  

 

 

Figure 21. Supplementation of the drinking water with L-arginine prevents the in-

crease in stomach weight after Dex treatment. 

Female Balb/c mice either received 50 mg/L Dex (white bar) or 50 mg/L Dex plus 1% 

L-arginine (Arg, grey bar) via the drinking water or were left untreated (black bar). After 

three days the mice were sacrificed and the stomachs removed and weighed. The 

stomach weight is depicted as mean percentage of body weight, N = 4, 8 or 9. Statistical 

analysis by unpaired t test. ** , p < .01; n.s., not significant (Reichardt et al., 2014). 
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To confirm that lack of increase in stomach weight indeed results from restored 

gastric emptying I subjected mice to exactly the same treatment as described 

above. In brief, mice were orally administered either Dex or Dex and L-arginine 

together via the drinking water, or they were left untreated. After three days the 

mice were fasted for 20 hours before receiving a test meal of methylcellulose 

stained with phenol red by oral gavage. Mice were sacrificed thirty minutes after 

force-feeding, the stomach clamped and removed. After homogenization the re-

sidual amount of the stained meal in the stomach was determined by measuring 

absorption of phenol red at a wavelength of 562 nm using a photometer. As a 

baseline control some mice were sacrificed immediately after force-feeding and 

the stomach content determined accordingly. The percentage of gastric emptying 

was calculated and is depicted in Figure 22.  

 

 

Figure 22. Supplementation with L-arginine restores the normal gastric emptying 

otherwise impaired by GC treatment. 

Female Balb/c mice were treated with either 50 mg/L Dex (white bar) or 50 mg/L Dex 

and 1% L-arginine (Arg, grey bar) for three days via the drinking water, or they were left 

untreated (black bar). After 20 hours of fasting the mice were given a stained test meal 

by gavage. Mice were sacrificed either immediately (time 0) or after 30 minutes (time 30), 

and the stomachs clamped, removed and homogenized. The amount of remaining test 

meal in the stomach was determined by measuring the absorption of the stomach con-

tent at 562 nm. Gastric emptying was calculated as the ratio between absorption after  

30 min divided by the absorption at time point 0 min and is depicted as mean percentage 

of gastric emptying, (N = 4,7 or 11). Statistical analysis by unpaired t test. ***, p < .001; 

n.s., not significant (Reichardt et al., 2014). 



 RESULTS  

 

 58 

As found previously, gastric emptying was strongly impaired after three days of 

oral Dex treatment. Importantly, the additional administration of L-arginine to-

gether with Dex completely restored gastric emptying to normal levels. Hence, 

this finding is in line with my previous observation that supplementation with 

L-arginine prevents the increase in stomach weight after GC administration.  

 

Arg2 catalyzes the conversion of arginine to ornithine. The latter is further catab-

olized by ornithine decarboxylase (Odc) to produce polyamines. Accordingly I 

hypothesized that increased availability of L-arginine would lead to increased 

mRNA expression levels of Arg2 and Odc. To test this hypothesis I isolated RNA 

from the corpus of stomachs of mice that were treated with Dex or a combination 

of Dex and L-arginine, or left untreated, and subsequently performed a qRT-PCR 

analysis. In line with my previous findings the expression of Arg2 was increased 

after Dex treatment. Furthermore, Odc was also higher, presumably as a result 

of the enhanced enzymatic capacity of Arg2 to produce ornithine leading to an 

increased substrate availability for Odc. More importantly, however, supplemen-

tation of the drinking water with L-arginine led to a further increase in both Arg2 

and Odc mRNA expression (Figure 23). 

 

Figure 23. Supplementation with L-arginine leads to enhanced expression of Arg2 

and Odc 

Mice were treated with Dex ± L-arginine or left untreated. RNA was isolated from the 

stomach corpus and mRNA expression levels of arg2 (A) and odc (B) were determined 

by qRT-PCR and normalized to HPRT as a housekeeping gene. N = 4, 7, or 9. Statisti-

cal analysis by Mann-Whitney U test. **, p < .01; *, p < .05; n.s., not significant (Reich-

ardt et al., 2014). 
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These results confirm that L-arginine indeed reaches the stomach and impacts 

the respective metabolic enzymes. Since the conversion to ornithin and polyam-

ines is increased, one can deduce that also NO production is restored by this 

measure. 

Taken together these findings strongly support the hypothesis that Dex-induced 

gastroparesis is caused by depletion of L-arginine.  

 

 

3.6.3.4 Inhibition of Arg2 only partially restores gastric emptying 
 

Another possibility to restore the availability of L-arginine, which is the substrate 

for nNOS and needed to produce NO in order to allow for proper gastric empty-

ing, is to inhibit the competitive reaction catalyzed by Arg2. In general, inhibition 

of arginase can be achieved by arginine analogues by blocking the binding site 

for the substrate. However, under these conditions also NOS is at risk of being 

inhibited. Therefore I used (S)-(2-Boronoethyl)-L-cystein hydrochlorid (BEC) in 

my experiments to selectively inhibit arginase but not NOS activity. 

 

In detail, mice were treated with Dex via the drinking water for three days. 

Throughout the whole duration of the treatment, mice additionally received 0,1 ml 

of BEC at a concentration of 1 mg/ml once a day by oral gavage. Upon comple-

tion of the treatment, mice were sacrificed and either the stomach weight or gas-

tric emptying was determined (Figure 24A,B). Notably, neither the increase in 

stomach weight nor gastroparesis could be completely prevented by administra-

tion of BEC. Nonetheless, there was a clear effect on both parameters although 

the reduction of stomach weight as well as the improvement in gastric emptying 

just missed significance. My finding that the rescue effect of the BEC treatment 

was not as good as the one of L-arginine supplementation may be due to the fact 

that BEC could only be applied intermittently while administration of Dex was 

continuously maintained throughout the whole experiment. Hence, up-regulation 

of Arg2 by Dex and the presumably resulting higher enzymatic capacity for the 

conversion of arginine to ornithine could only be counteracted by the inhibition of 

arginase during limited periods of time. Unfortunately a continuous application of 

the inhibitor was not possible due to technical reasons. Furthermore, the admin-
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istration of BEC by gavage more often than once daily would have imposed an 

unacceptable level of stress to the animals and was therefore discarded as an 

alternative approach. 

   

  

Figure 24. Inhibition of arginase only partially prevents the increase in stomach 

weight and the reduction in gastric emptying. 

Female Balb/c wildtype mice were treated with Dex via the drinking water for three days 

or left untreated. Some mice additionally received BEC at an effective dosage of 0,4 

mg/kg by oral gavage once daily. (A) Stomachs were removed and weighed and are 

depicted as percentage of body weight, N = 8 or 14. (B) To determine gastric emptying 

mice were fasted for 20 hours before feeding a stained test meal of methyl cellulose by 

gavage. After 30 min mice were sacrificed, the stomach clamped, carefully removed and 

homogenized. After centrifugation the absorption of the remains of stained meal in the 

stomach was measured at 562 nm. Some mice were sacrificed immediately after force-

feeding and analyzed likewise thus providing a baseline control. Gastric emptying was 

calculated and is depicted as percentage of stomach emptying, N = 7, 8 or 14. Statistical 

analysis by unpaired t test, ***, p < .001; **, p < .01; n.s., not significant. 

 

As a consequence, my results suggest that inhibition of arginase by pharmaco-

logical blockade might be a means to interfere with Dex-induced gastroparesis 

although it would be necessary to explore ways to provide BEC or alternative 

inhibitors in a more continuous manner. 
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4. Discussion 
 

4.1 Adverse effects of glucocorticoids in the gastrointestinal tract 
 

Despite the fact that pharmacological application of GCs can lead to a plethora 

of side-effects they are still the gold standard for treating a variety of autoimmune 

and atopic disorders, other inflammatory conditions such as Graft-versus-host 

disease as well as neoplastic diseases including leukemia and lymphoma. Typi-

cally encountered adverse effects of GCs are hyperglycemia, diabetes, myopa-

thies, elevated blood pressure, osteoporosis, growth retardation and depression. 

However, there are also side-effects that concern the gastrointestinal tract. In my 

study I focussed on a novel activity of GCs in the stomach, namely the induction 

of gastroparesis. Of note, GCs have previously been found to affect the digestive 

system in several ways. For instance, it is well known that increased levels of 

endogenous GCs, e.g. during emotional or physical stress, as well as synthetic 

GCs administered during therapy enhance gastric acid secretion and may there-

fore foster the formation of peptic ulcers. Furthermore, gastrointestinal bleeding 

and pancreatitis have been reported to accompany GC therapy as well (Schäcke 

et al., 2002).  

 

This work now gives evidence that gastroparesis is a so far unknown side-effect 

of GC therapy. Although impaired gastric motility is well known to occur in the 

course of diabetes, it has not yet been referred to as an adverse effect of high-

dose oral GC therapy. Contrariwise, gastrointestinal disturbances in general are 

frequently reported as symptoms accompanying GC therapy. It may therefore 

well be that discomfort experienced by patients is in fact caused by gastroparesis 

but wrongly assigned to enhanced gastric acid secretion and the formation of 

ulcers. 

  

In recent years considerable effort has been made to dissect beneficial and ad-

verse GC effects. To put it simple, GC actions mediated by transcriptional regu-

lation can be subdivided into two major groups based on their molecular mecha-

nism, namely those relying on trans-activation of genes as opposed to those re-
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sulting from trans-repression of genes. It was long believed that trans-activation 

was responsible for most of the unwanted physiological effects of GCs, whereas 

anti-inflammatory properties were thought to be mainly mediated by the trans-

repression mechanism. A common strategy to reduce side-effects caused by 

GCs was therefore the development of new drugs that dissociate these two 

modes of action. A couple of compounds with such properties, e.g. ZK 216348 or 

Org214007, have been reported over the years but none of them made it into the 

clinic so far (Schäcke et al., 2004; van Lierop et al., 2012). This is possibly be-

cause it has recently become clear that the concept of dissecting trans-activation 

and trans-repression as a mean to avoid adverse effects had been oversimpli-

fied.  

 

Namely, it has been shown that some anti-inflammatory effects of GCs require 

gene trans-activation (Clark, 2007) whereas some side-effects are the result of 

the combination of gene trans-activation and trans-repression (Schäcke et al., 

2004). One example of a major side-effect of GC therapy that is even exclusively 

mediated by trans-repression is osteoporosis. This observation was made when 

treating GRdim mice with synthetic GCs, which efficiently induced bone loss de-

spite the disruption of GR trans-activation in these mice (Rauch et al., 2010). 

This example clearly shows that it will not be possible to separate all beneficial 

from the adverse GC effects by dissociating GC derivatives although it might still 

be feasible to separate selected anti-inflammatory properties from individual side 

effects. 

 

Interestingly, many of the adverse effects of GCs in the gastrointestinal tract ap-

parently rely on gene trans-activation by the GR. This includes the enhanced 

intestinal glucose uptake that contributes to hyperglycemia (Reichardt et al., 

2012), the increase in gastric acid secretion and, as identified in this work, the 

induction of gastroparesis. Currently it is not known whether the treatment of 

IBD, one of the major therapeutic applications of synthetic GCs in the gastroin-

testinal tract, requires trans-activation or rather trans-repression of genes by the 

GR. Nonetheless, it is likely that the trans-repressive mechanism at least plays 

some role, which would open up the possibility to separate the beneficial GC ef-
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fects in the treatment of IBD at least partially from the adverse ones in the gas-

trointestinal tract. Despite the fact that none of the new dissociating GR ligands 

could so far meet the expectations to overcome all side-effects of GC therapy, 

our study now suggests that the idea to design new drugs specifically aimed to 

prevent adverse effects in the stomach remains a promising approach. 

 

4.2 The molecular mechanism of GCs in gastroparesis 
 

The induction of gastroparesis by high-dose oral GC therapy has to my 

knowledge not been described before in literature. Accordingly, nothing has been 

known concerning the underlying molecular mechanism. To tackle this issue 

several experimental approaches have been taken, including conditional knock-

out mice, gene expression analysis and physiological assays. First, GRvillinCre 

mice allowed me to exclude that gastroparesis was indirectly caused by GC ef-

fects on the intestine. Second, the analysis of GRdim mice indicated that altered 

gene transcription and, more specifically, gene trans-activation by the GR was 

responsible for this effect. Based on these findings it was reasonable to search 

for genes that were transcriptionally altered by Dex treatment in the stomach. By 

using this method a number of promising candidates could be identified. 

 

The stomach wall contains a considerable number of macrophages and conse-

quently several genes specific for this cell type were identified to be affected by 

Dex treatment. Of note, macrophages can polarize to phenotypes designated M1 

or M2. Interestingly, the observed changes in the stomach were typical for a M2 

polarization, which is generally observed in response to GC action (Varga et al., 

2008). Whilst I could confirm the changes in gene expression and thus the M2 

polarization by qRT-PCR, neither the deletion of the GR nor of the MR, two re-

ceptors which are able to bind GCs, had any effect on the induction of gastro-

paresis. This suggests that macrophages are not a cause of impaired gastric 

motility but may rather serve as a repair mechanism in the stomach aimed to 

counteract other GC effects in the stomach such as ulcers. 
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Amongst the genes identified in the mircroarray experiment there were also two 

genes which are largely restricted to the gastrointestinal tract (Saeki et al., 2000). 

Gsdmc 2 and 3 were strongly down-regulated after Dex treatment, however this 

was the case in GRwt as well as GRdim mice. Since GRdim mice do not develop 

gastroparesis in response to GC therapy it is unlikely that inhibition of Gsmdc 2 

and 3 contribute to this adverse effect in the stomach. 

 

In contrast to the two gasdermin genes, Lcn2, Klk1 and Arg2 were up-regulated 

after Dex treatment and, importantly, this was only the case in GRwt but not 

GRdim mice. Hence, the regulation of these genes by Dex parallels the induction 

of gastroparesis in mice of both genotypes. Lcn2 is known for its capacity to re-

duce iron availability (Flo et al., 2004), and iron is part of the heme-complex 

which, in turn, is required for enzymatic activity of NOS. Consequently, enhanced 

levels of Lcn2 would be expected to impair NOS function and thereby NO pro-

duction. As outlined below, this is a prerequisite for proper gastric motility. My 

attempt to exogenously provide iron to overcome a potential shortage of iron due 

to increased Lcn2 expression normalized gastric motility partially but not com-

pletely. This can be interpreted in such a way, that the postulated effect of higher 

Lcn2 expression indeed contributes to the induction of gastroparesis but does 

not suffice to explain it. 

 

Gastric motility is a complex process that requires the interaction between the 

enteric and the central nervous system. Intriguingly, NO, a small volatile mole-

cule, is a key player in the signal transduction pathway that regulates muscle 

contraction and relaxation in the stomach (Rivera et al., 2011). It is produced 

through the conversion of L-arginine to citrulline and NO, a reaction catalyzed by 

nNOS. Due to its volatile nature NO has to be produced on demand and in close 

vicinity to its target cells where it is immediately inactivated upon reaction with its 

target (Esplugues, 2002). Thus NO production can only be controlled by regulat-

ing its synthesis but not via downstream degrading mechanisms. It is therefore 

likely that substrate availability is the primary means to control NO biosynthesis. 

In this context it is noteworthy that L-arginine is also converted to ornithine by 

Arg1 and 2, which are competing with nNOS for the same substrate. Conse-
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quently, my finding that Arg2 is up-regulated after oral administration of Dex pro-

vides a plausible explanation how reduced NO production in the gastric wall 

might occur as a consequence of reduced substrate availability. I have provided 

two lines of evidence that this hypothesis is indeed true. First, providing exoge-

nous L-arginine indeed prevents gastroparesis, indicating that a limitation in the 

amount of available L-arginine is presumably the cause of impaired gastric motili-

ty. Second, direct pharmacological inhibition of arginase at least partially pre-

vents the effect of Dex on the stomach. This can be taken as an additional piece 

of evidence that Arg2 is involved in the induction of gastroparesis. Finally, be-

sides mechanistically explaining the mode of GC action in the stomach, my find-

ing that supplementing the drinking water with L-arginine allows to circumvent 

gastroparesis now offers a simple method, applicable in clinical practice, to im-

prove tolerability of GC therapy by patients. 

 

4.3 The anti-emetic effect of GCs 
 

Chemotherapy-induced nausea and vomiting (CINV) is a major side-effect in 

cancer patients and is often a limiting factor for the dosage of anti-cancer drugs 

such as cisplatin in the anti-tumor treatment regimens. The use of anti-emetic 

drugs is therefore indispensible to reduce CINV and increase tolerability of anti-

cancer therapy (Rao and Faso, 2012). GCs are known to have such an anti-

emetic effect although the underlying mechanism has been unknown so far. In-

hibition of prostanoid synthesis was proposed as a possible mechanism as well 

as a stabilizing effect on membranes thus hampering the entry of emetic sub-

stances into the CNS. However, some of the anti-emetic properties of GCs are 

not sufficiently explained by the aforementioned modes of action (Tanihata et al., 

2004).  

 

In my work I have demonstrated that Dex causes gastroparesis presumably 

through up-regulation of Arg2, which diminishes the availability of L-arginine for 

NO synthesis. Interestingly, gastrointestinal side-effects of cisplatin such as re-

duced colonic motor activity and altered intestinal transit time have been related 

to changes in NOS activity and thus NO levels as well. Namely, it has been 
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shown that cisplatin affects the enteric nervous system by damaging myenteric 

neurons thus leading to neuronal loss in the myenteric plexus while on the other 

hand the number of NOS immunoreactive neurons increase after cisplatin treat-

ment (Vera et al., 2011). Moreover, nNOS has been found to be up-regulated by 

cisplatin, an effect that could be prevented through administration of an nNOS 

inhibitor (Jung et al., 2009). Altogether, these data suggest that CINV might be 

caused by increased NO synthesis in the stomach. As our finding indicate that 

NO levels are reduced after Dex treatment due to limited substrate availability, it 

appears likely that the anti-emetic effect of GCs is due to its antagonistic activity 

with regard to NO synthesis in the stomach. 
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5. Summary 
 

Ever since their first successful application in the treatment of RA patients in the 

late 1950, GCs have been the gold standard for the treatment of multiple inflam-

matory and neoplastic diseases. There are, however, also severe adverse ef-

fects that denote restrictions upon the use of GCs. In particular oral application of 

GCs can lead to gastrointestinal complications that may severely affect the pa-

tient’s quality of life and lead to a reduced tolerability of the therapy. In this work I 

have described and characterized gastroparesis as a so far unrecognized effect 

of GCs in the gastrointestinal tract that is mediated via trans-activation of genes. 

Changes in gene expression characteristic for M2 macrophage polarization 

proved to be unrelated to gastroparesis. Similarly, an involvement of two genes 

specifically expressed in the gastrointestinal tract could be ruled out. In contrast, 

I could confirm that genes related to the regulation of NO production contribute to 

gastroparesis. A decrease in iron availability through up-regulation of Lcn2 was 

found to  partially impact on gastric motility whereas reduced substrate availabil-

ity for NO synthesis through up-regulation of Arg2 proved to be responsible for 

impaired gastric emptying. Hence, GC therapy causes gastroparesis by increas-

ing gene expression in the stomach in a DNA-binding-dependent manner there-

by diminishing the availability of NO required for gastric motility. Complete pre-

vention of gastroparesis was achieved by an exogenous supply of L-arginine 

thus providing a means to overcome the observed effect with the help of a die-

tary supplement. My study also offers a possible explanation for the anti-emetic 

effect of GCs that has been used for long to interfere with CINV without knowing 

the underlying mechanism. Now it appears likely that reducing NO availability in 

the stomach is the way how GCs counteract CINV, which is accompanied by 

increased NO production. Unfortunately, further elucidation of this process is im-

possible in rodent models due to the inability of mice and rats to vomit. Taken 

together, the identification and characterization of GC-induced gastroparesis 

sheds new light on both adverse and beneficial activities of GCs in the stomach 

and may help to optimize therapy in the future for the patients’ benefit.  
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7. Appendices 
 

7.1 List of abbreviations  
 
 

ACTH Adenocorticotropic hormone 

Arg2 Arginase 2 

BEC (S)-(2-Boronoethyl)-L-cystein hydrochlorid 

CD Crohn´s disease 

CINV Chemotherapy-induced nausea  
and vomiting 

CNS Central nervous system 

CRH Corticotropin-releasing hormone 

DBD DNA binding domain 

ENS Enteric nervous system 

GC Glucocorticoid 

GR Glucocorticoid receptor 

GRE Glucocorticoid response element 

HPA Hypothalamic-pituitary-adrenal axis 

HPRT Hypoxanthine-guanine phosphoribosyl-
transferase 

IBD Inflammatory bowel disease 

Klk1 Kallikrein 1 

ko Knock-out 

LBD Ligand binding domain 

Lcn2 Lipocalin 2 

MR Mineralocorticoid receptor 

MS Multiple sclerosis 



 APPENDICES  

 

 77 

NANC Nonadrenergic-noncholinergic 

NO Nitric oxide 

NOS Nitric oxide synthase 

Odc Ornithine decarboxylase 

RA Rheumatoide arthritis 

UC Ulcerative colitis 

wt wildtype 
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