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Abstract

Multifunctional, highly dexterous and complex mechanic hand prostheses are emerg-

ing and currently entering the market. However, the bottleneck to fully exploiting

all capabilities of these mechatronic devices, and to making all available functions

controllable reliably and intuitively by the users, remains a considerable challenge.

The robustness of scientific methods proposed to overcome this barrier is a crucial

factor for their future commercial success.

Therefore, in this thesis the matter of robust, multifunctional and dexterous control

of prostheses of the upper limb was addressed and some significant advancements in

the scientific field were aspired. To this end, several investigations grouped in four

studies were conducted, all with the same focus on understanding mechanisms that

influence the robustness of myoelectric control and resolving their deteriorating ef-

fects.

For the first study, a thorough literature review of the field was conducted and it

was revealed that many non-stationarities, which could be expected to affect the reli-

ability of surface EMG pattern recognition myoprosthesis control, had been identified

and studied previously. However, one significant factor had not been addressed to

a sufficient extent: the effect of long-term usage and day-to-day testing. Therefore,

a dedicated study was designed and carried out, in order to address the previously

unanswered question of how reliable surface electromyography pattern recognition

was across days. Eleven subjects, involving both able-bodied and amputees, partici-

pated in this study over the course of 5 days, and a pattern recognition system was

tested without daily retraining. As the main result of this study, it was revealed that

the time between training and testing a classifier was indeed a very relevant factor

influencing the classification accuracy. More estimation errors were observed as more

time lay between the classifier training and testing.

With the insights obtained from the first study, the need for compensating signal

non-stationarities was identified. Hence, in a second study, building upon the data

obtained from the first investigation, a self-correction mechanism was elaborated. The

goal of this approach was to increase the systems robustness towards non-stationarities

such as those identified in the first study. The system was capable of detecting and

correcting its own mistakes, yielding a better estimation of movements than the un-
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corrected classification or other, previously proposed strategies for error removal.

In the third part of this thesis, the previously investigated ideas for error suppression

for increased robustness of a classification based system were extended to regression

based movement estimation. While the same method as tested in the second study

was not directly applicable to regression, the same underlying idea was used for de-

veloping a novel proportional estimator. It was validated in online tests, with the

control of physical prostheses by able-bodied and transradial amputee subjects. The

proposed method, based on common spatial patterns, outperformed two state-of-the

art control methods, demonstrating the benefit of increased robustness in movement

estimation during applied tasks. The results showed the superior performance of ro-

bust movement estimation in real life investigations, which would have hardly been

observable in offline or abstract cursor control tests, underlining the importance of

tests with physical prostheses.

In the last part of this work, the limitation of sequential movements of the previously

explored system was addressed and a methodology for enhancing the system with

simultaneous and proportional control was developed. As a result of these efforts,

a system robust, natural and fluent in its movements was conceived. Again, online

control tests of physical prostheses were performed by able-bodied and amputee sub-

jects, and the novel system proved to outperform the sequential controller of the third

study of this thesis, yielding the best control technique tested.

An extensive set of tests was conducted with both able-bodied and amputee subjects,

in scenarios close to clinical routine. Custom prosthetic sockets were manufactured

for all subjects, allowing for experimental control of multifunction prostheses with

advanced machine learning based algorithms in real-life scenarios. The tests involved

grasping and manipulating objects, in ways as they are often encountered in everyday

living. Similar investigations had not been conducted before. One of the main con-

clusions of this thesis was that the suppression of wrong prosthetic motions was a key

factor for robust prosthesis control and that simultaneous wrist control was a benefi-

cial asset especially for experienced users. As a result of all investigations performed,

clinically relevant conclusions were drawn from these tests, maximizing the impact of

the developed systems on potential future commercialization of the newly conceived

control methods. This was emphasized by the close collaboration with Otto Bock as

an industrial partner of the AMYO project and hence this work.
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1 | Introduction

The importance of our hands is appreciated in all daily tasks - from object manipula-

tion to communication, gesticulation, touching, feeling, caressing and holding hands

with a loved-one. The vast variety of actions our hands are involved in makes us

understand the large impact on the quality of life of not having them. In 2008 it

was estimated that 41,000 persons with major upper limb amputation (above finger

level) were living in the United States alone [1] and 31% of all upper limb amputation

procedures were performed at transradial level [2]. In total, around 16% of all upper

limb amputations occur at higher than finger level [3]. The majority of upper limb

amputations are secondary to traumatic incidences (estimated around 83% in 2005 in

the U.S.) followed by dysvascular diseases (12%) and oncological etiologies (5%) [1].

These numbers show representative estimates for the U.S. where most substantial

surveys have been published in literature originate from. It is difficult to generalize

from these estimates to the entire population worldwide. In developing countries and

regions afflicted by war, the prevalence of upper limb absence might be significantly

higher [4].

The presented numbers of persons with upper limb deficiency coupled with the severe

consequences of arm loss put a high demand and expectations towards reconstructive

measures for such handicaps. While the transplantation of hands and arms has re-

cently been proven to be a possibility for alleviating the severity of upper extremity

amputation [5], prosthetic devices are still the preferred way of treatment. A variety

of prosthetic systems is available on the market, ranging from purely cosmetic pros-

theses to multifunctional, externally powered and myoelectric controlled systems.

The most life-like and natural, non-fatiguing control is offered by myoelectric prosthe-

ses and is thus regarded as the state of the art in prosthetic devices [6]. The control of

this type of prosthesis relies on the lead of electrical potentials which originate from

neuromuscular discharges during muscle activations [7]. For prosthetic applications,

1
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Chapter 1. Introduction

these signals are usually measured as electromyographic (EMG) signals on the skin

surface (sEMG), however also implantable sensors (iEMG) are being investigated in

experimental research settings [8, 9, 10, 11]. The benefits of surface electrodes consist

in their easy applicability, negligible risks for the wearer, minimal invasiveness and

the possibility to integrate them in the prosthetic sockets. For these reasons, surface

electrodes are exclusively used in commercial state-of-the-art myoelectric controlled

prostheses. However, certain drawbacks of this methodology exist and a need for im-

provement of the current control strategies is desirable, as will be motivated in detail

in the following sections.

1.1 Limitations of current myoelectric control

In commonly commercially available myoelectric prostheses a maximum of two sEMG

electrodes is used. These are strategically placed over regions that exhibit maximal

and most distinctive activations of the remnant muscles during phantom limb move-

ments of the amputee [12, 13]. It is up to the orthopedic technician fitting the pros-

thesis to the wearer to identify these optimal placements, which often proves to be

a bottleneck in the prosthetic care [14]. In the case that two independently control-

lable muscle sites with sufficient sEMG signal quality can be found, a 1-to-1 mapping

between electrodes and prosthetic functions is performed. The global activity of the

underlying muscle group beneath one electrode is estimated, usually by calculating

the signal power or envelope, and this estimate is used to drive one function of the

prosthesis. In most cases, the best configuration is obtained by placing one electrode

above the wrist flexor and one above the wrist extension muscles. Closing the pros-

thetic prehensor is then mapped to the flexor electrode while opening to the extensor.

In the event that not enough sites with sufficient signal quality can be found by the

clinicians, only one electrode may be used and the two prosthetic control functions

are obtained by distinguishing between slow and fast or low and high contractions in

order to obtain the desired two function control [15,16]. Experienced users may even

use the latter strategy with two electrodes, resulting in the so-called four channel con-

trol [17], allowing to address four prosthetic functions with two sEMG signals. This

is however only applicable for amputees with excellent signal quality, precise propor-

tional control and requires extensive training. Thus, more commonly, a switching

paradigm is adopted for the control of more than 2 functions. Either a hardware

2



Draft

1.2. State of the art hardware in transradial prostheses

switch integrated in the prosthetic socket [17] or a special muscle signal is used for

this purpose. In the latter case, the most common choice is the use of co-contractions,

elicited by a quick and short contraction of both the flexor and extensor muscles. This

scheme has proven to be very robust in practice, however its extensibility to more

than four functions is questionable although it has not been studied in detail previ-

ously. In Chapter 4 this topic will be addressed in a comparative study.

In conclusion, the classic two channel control, which is the state of the art in myoelec-

tric controlled prostheses, is reliable and robust, however the number of controllable

functions is very limited.

1.2 State of the art hardware in transradial pros-

theses

The first externally powered hand prostheses were developed in the 1940s [18,19] and

refined and commercialized 15 years later [20, 21]. Ever since, the rapid advances of

microelectronics, electric actuators and battery technologies drastically propelled the

further developments of these devices. To date, a large variety of multifunctional hand

prostheses with many degrees of freedom is available commercially and for research,

mimicking their natural anatomical counterparts in appearance, force, precision and

dexterity. In a recent review [22], an overview over the various types and specifications

of the most relevant hand prostheses was given. The common trend in all these

modern devices is the increasing number of actuated joints, allowing for complex

movements, natural in appearance. As discussed in Section 1.1 however, there is a

substantial disparity between the number of actuated motions in these devices and

the number of control signals that can be obtained with the conventional control

strategies.

1.3 The early days of myoelectric pattern recogni-

tion

Researchers therefore began to explore alternative signal processing techniques, al-

lowing for the control of several prosthetic movements. Soon, the domain of machine

learning in general and pattern recognition in particular were identified as suitable

3
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candidates for accomplishing this challenging task. The first work in this direction was

published in 1967 by Finley and Wirta [23] and soon pursued by other groups [24,25].

The work of Herberts, Almström and Caine [25] published in 1978, in which a wearable

prosthesis implementing wrist rotation, wrist flexion and extension and hand opening

and closing controlled by pattern recognition of sEMG signals was developed, is par-

ticularly interesting. The pattern recognition system used was discriminant analysis

and was implemented in hardware with analogue circuits. The system was tested in

four amputees. Two evaluation schemes involving abstract computer tests and activ-

ities of daily living (ADL) had to be completed by the subjects.

Apart from relatively small changes, this study design would still comply with current

state of the art research standards, which is rather surprising considering that in the

meantime almost four decades have passed.

1.4 Extracting more information from the EMG

A significant improvement to the above described system was introduced in 1993 by

Hudgins, Parker and Scott [26]. In their contribution they suggested to extract more

features from the EMG signal than only the global muscle activation. By windowing

and interlacing those windows, the EMG signal was regarded as quasi-stationary

over short periods of time (< 300 ms), and certain characteristic features could be

extracted with sufficient repeatability across windows [27]. Those features comprised

the mean absolute value (MAV), the number of signal zero crossings (ZC), slope sign

changes (SSC) and the global wave form length (WL): (adapted from [26])

MAV :=
1

N

N∑
k=1

|xk| (1.1)

ZC :=
1

N

N∑
k=1

c, c =

1, if xk · xk+1 < 0.

0, otherwise or if |xk − xk+1| < 0.01V .
(1.2)

SSC :=
1

N

N∑
k=1

c, c =

1, if xk ≷ xk−1 and xk ≷ xk+1.

0, otherwise or if |xk − xk+1| < 0.01V .
(1.3)

WL :=
1

N

N∑
k−1

|xk − xk−1| (1.4)

4
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1.4. Extracting more information from the EMG

where xk is the kth sample of the current time window with N samples. For the

calculation of the ZC and SSC features, a threshold between two adjacent samples

of 0.01 V (corresponding to 4µV peak to peak raw signal) was proposed to be in-

cluded in order to make these features less affected by random noise. The MAV value

contained information related to the amplitude of the EMG signal, the ZC and SSC

were simple frequency measures (for lower and higher frequencies, respectively) and

the WL contained mixed information of amplitude and frequency. These features

were extracted from every EMG channel and are still widely used and regarded as

the ”standard” feature set in myoelectric pattern recognition, termed Hudgins time

domain features (see for example [28] for an exemplary overview of studies which

used this set of features for myoelectric prosthesis control). Sometimes, the MAV is

replaced by the root mean square (RMS) value of the signal, defined as

RMS :=

√√√√ 1

N

N∑
k=1

(xk)2 (1.5)

The basic idea of splitting the EMG in interlaced windows and calculating features

from these signal segments is still the most widely used. Over the years, the Hudgins

time domain feature set has been substantially expanded, by other features computed

in the time domain [29, 30], frequency domain and time-frequency domain features,

such as extracted by short time fast Fourier transform (STFFT) and wavelet transfor-

mation (WT) [31,32, 33, 34, 35, 36], autoregressive models [29], fractal dimension [37]

and several more.

Importance of the feature set

The features extracted from the EMG signals constitute the basis for separability of

different movements by EMG. The desired characteristic of the optimal features is to

represent as distant as possible and with minimal intra-class variability the different

motions to be classified. This was first analyzed in [29], where the Davis-Bouldin

cluster separation measure (DBCSM) was used to evaluate a variety of features pre-

cisely regarding these qualities. DBCSM is related to Fisher’s criterion of separa-

bility [38, 39], which is also used as the optimization criterion in one of the most

popular classifiers (see Section 1.5.1). In their evaluations, Zardoshti-Kermani et al.

found that the time domain features differed in their importance for separability and

that the EMG histogram feature performed best, followed by WL and the amplitude

5
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related features [29]. Oskoei and Hu [34] found that time domain features yielded

slightly better classification accuracy when compared to features obtained in the fre-

quency domain. The best classification accuracies were reported for mixed feature

sets, for example time domain and autoregressive features [9, 40,41,42,43].

From these findings reported in literature, the discrepancy in different feature sets in

general appears small. Complex features often require hyper parameter selection or

optimization, substantially increased computation time and their sensitivity to noise

and electrode shifts is largely unknown (as opposed to time domain features which

have been studied extensively in that respect, see e.g. [44]). Therefore, the simple

time domain features offer a very competitive option and yield the best trade-off

between simplicity and performance.

1.5 Estimators

With the most relevant features extracted from the EMG signals, the next step in

the signal processing chain (Figure 1.1) is to translate the captured information to

movement commands. A long list of machine learning methods provides a series

of estimators to accomplish this task. The methods can be generally grouped into

classification and regression approaches. The former yield discrete outputs used as

class labels. The latter fit smooth curves to e.g. force functions. In the following,

the most relevant methods, representatives of each type, are briefly presented and

discussed.

1.5.1 Classifiers - choosing either-or

In the first studies using pattern recognition for myoelectric prosthetic control (refer to

Section 1.3), discriminant analysis was used. Later, artificial neural networks (ANN)

were introduced [26] and extensively used (e.g. [43, 45, 46]). Further popular choices

for non-parametric classifiers are for example k-nearest neighbor (kNN) [29, 47] and

support vector machines (SVM) [31,34,48,49], whereas linear and quadratic discrimi-

nant analysis (LDA, QDA), Gaussian mixture models and hidden markov models are

some investigated examples for parametric classifiers. For an extensive comparison

of different features, in combination with different estimators applied to sEMG and

iEMG signals, the interested reader is referred to [50]. Further comparisons of differ-

ent classifiers are found in [28,47,51].

6
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1.5. Estimators

Figure 1.1: Typical signal processing chain of a modern myoelectric control pattern recognition
system for upper limb prostheses. The signals originate in the muscle fibers, propagate through
the arm tissue to the skin where they are picked up as sEMG signals. The signals are filtered,
amplified and digitized. After windowing, discriminative signal features are calculated. In case of
large resulting dimensionality (many sEMG channels, many features), dimensionality reduction is
performed prior to calculating an estimate of the performed movement. The estimator needs to be
trained with a series of training data. The raw estimation outputs are postprocessed (e.g. again
windowed, filtered...) and ultimately the prosthesis control commands are sent to the prosthetic
control unit driving the actuators.

7
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As for the features, in general, simple and computationally cheap, (hyper-)parameter

independent, well studied and robust classifiers yield comparable results to more com-

plex and sensitive methods and are therefore the methods of choice in a generic setup.

These classifiers were also preferred in this work. However, as will be discussed in

Chapter 4, significant performance improvements can be achieved by specific, targeted

modifications of existing methods for desired objectives.

Linear Discriminant Analysis (LDA) classifier

In this section the LDA classifier is introduced in detail, since it will be used exten-

sively in the further progress of this thesis as well as other related algorithms, such

as CSP, PCA and KNFST (see later chapters for details on these methods). LDA

attempts to express the dependent variable (class) by a linear combination of indepen-

dent variables (features). This section has been adapted and extended from [38, 39].

LDA is closely related to the Fisher discriminant ratio (FDR), given as

FDR =
(µ1 − µ2)

2

σ2
1 + σ2

2

(1.6)

where µi and σ2
i are the class means and variances in the transformed space, re-

spectively. The criterion thus optimizes the feature separability (minimal inter-class

dispersion, maximal between-class dispersion) in the transformed space, resulting in

an optimized setting for classification. Realizing that the variance of variable y trans-

formed from an input vector x with the linear projection vector w

y = wTx+ w0 (1.7)

(1.6) can be obtained in the transformed space from the input space by

FDR(w) =
wTΣbw

wTΣww
(1.8)

where Σb is the covariance matrix between the class means of the different classes and

Σw is the average covariance matrix of data belonging to the same class.

In order to maximize the separability criterion given in (1.8), w has to be chosen such

that FDR(w) is maximized:

arg max
w

FDR(w) = arg max
w

wTΣbw

wTΣww
(1.9)
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To make the problem well defined, the scaling factor of w has to be fixed, which can

be achieved by setting the norm of w to 1: ||w||2 = wTw = 1.

This results in the constrained optimization problem:

arg max
w

wTΣbw

wTΣww
subject to: wTw = 1 (1.10)

Eq. (1.10) is a standard mathematical problem and is known as quadratic program-

ming. The standard technique yielding a closed form solution for such a problem is

by transforming the problem to a Lagrangian formulation L(w)

L(w) =
wTΣbw

wTΣww
− λ(wTw − 1) (1.11)

where λ are the Lagrange multipliers. Differentiating (1.11) w.r.t. w and setting to

0:

∂L(w)

∂w
= 2wΣ−1

w Σb − 2λw = 0 (1.12)

→ wΣ−1
w Σb = λw (1.13)

Eq. (1.13) is satisfied for all tuples (w, λ) where w ∈ W and λ ∈ R and W is the set

of eigenvectors of Σ−1
w Σb and λ the corresponding eigenvalues. The quantity of λ is a

measure of separation quality for its corresponding w. Thus, by taking the eigenvec-

tors sorted by their corresponding eigenvalues from largest to lowest, the projection

directions of optimal class separability as measured by the Fisher criterion in the

projected space are obtained. Note that in a C class problem, Σb is calculated from

the sum of outer products of C class mean vectors and thus its rank is at most C−1.

Therefore, there exist only C − 1 eigenvectors of Σ−1
w Σb with non-zero eigenvalues.

Plugging in the obtained result for w in the linear transformation (1.7), we obtain a

discriminative function g(x)

g(x) = W Tx+ w0 (1.14)

where W contains the calculated eigenvectors as columns aggregated in a matrix and

w0 are the corresponding biases. A sample of an unknown class can now be classi-

fied by calculating g(x) and attributing it to the class with the largest likelihood value.

9
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LDA becomes the optimal Bayesian classifier under two important assumptions, as

will be shown in the following:

In a general formulation, given a certain measurement x, we should classify x to any

of the C classes i if

P (i|x) > P (j|x) ∀j 6= i, i, j ∈ {1 . . . C} (1.15)

Read as: “Decide that x stems from class i if the probability of class label i is higher

than that of any other class, i.e. class i has the highest probability”.

Applying the Bayesian rule between posterior and prior probabilities and plugging

back into (1.15) delivers:

P (i|x) =
P (x|i)P (i)∑
k P (x|k)P (k)

(1.16)

P (x|i)P (i)∑
k P (x|k)P (k)

>
P (x|j)P (j)∑
k P (x|k)P (k)

(1.17)

Since the term
∑

k P (x|k)P (k) is positive and equal on both sides of the inequality,

it can be eliminated, leaving:

P (x|i)P (i) > P (x|j)P (j) (1.18)

There are two possible ways to obtain the class conditional probability density func-

tion, P (x|·): One way would be by estimation of the distribution, but this requires

a great amount of measurements which is usually hard to obtain. Another way is to

assume a probability distribution. Usually the following assumption is made:

Assumption 1: All measurements xk stem from a multivariate Gaussian distribu-

tion, which is given by:

P (x|k) =
1

2π
k
2 |Σk|

1
2

exp(−dm
2

) (1.19)

where dm is given as

dm = (x− µk)Σ−1
k (x− µk)T (1.20)

10
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Therefore, (1.18) can be re-written as:

P (i)

2π
k
2 |Σi|

1
2

exp(−dm
2

) >
P (j)

2π
k
2 |Σj|

1
2

exp(−dm
2

) (1.21)

Eliminating 1

2π
k
2

on both sides and taking the natural logarithm leads to:

logP (i)− 1

2
|Σi|−

1

2
(x−µi)Σ−1

i (x−µi)T > logP (j)− 1

2
|Σj|−

1

2
(x−µj)Σ−1

j (x−µj)T

(1.22)

Equation 1.22 is referred to as quadratic discriminant analysis (QDA) and the sepa-

ration lines between the classes are (hyper-)quadratics (dm has been resubstituted in

(1.22) to make the quadratic term apparent). It can readily be used as a classification

rule, and the mean vectors and covariance matrices are approximated empirically us-

ing a set of training data.

This equation can only be simplified further under the following assumption:

Assumption 2: All classes k share the same covariance matrix: Σi = Σj = Σ. Un-

der this assumption, the term −1
2
|Σ| in 1.22 is the same on both sides and can be

eliminated, leaving:

logP (i)− 1

2
(x− µi)Σ−1(x− µi)T > logP (j)− 1

2
(x− µj)Σ−1(x− µj)T (1.23)

The term (x− µk)Σ−1(x− µk)T can be split into: 1

xTΣ−1x− 2xTΣ−1µk + µTkΣ−1µk (1.29)

with xTΣ−1x being equal on both sides (assuming same covariance matrix for all

1

(x− µ)T Σ−1(x− µ) = (1.24)

(xT − µT )Σ−1(x− µ) = (1.25)

(xT − µT )(Σ−1x− Σ−1µ) = (1.26)

xT Σ−1x− xT Σ−1µ− µT Σ−1x+ µT Σ−1µ (1.27)

µT Σ−1x is a scalar, thus: µT Σ−1x = (µT Σ−1x)T . Further, (AB)T ) = BTAT and thus (ABC)T

= CT (AB)T = CTBTAT . This leads to: (µT Σ−1x)T = xT (Σ−1)Tµ. Since Σ−1 is by definition a
symmetric matrix, (Σ−1)T = Σ−1. Therefore:

xT Σ−1x− xT Σ−1µ− µT Σ−1x+ µT Σ−1µ = xT Σ−1x− 2xT Σ−1µ+ µT Σ−1µ (1.28)
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classes!), and thus:

logP (i)− 1

2
µTi Σ−1µi + xTΣ−1µi > logP (j)− 1

2
µTj Σ−1µj + xTΣ−1µj (1.30)

Thus for classifying an input vector x, the function g(x, i) has to be evaluated for

each class i:

g(x, i) = logP (i)− 1

2
µTi Σ−1µi︸ ︷︷ ︸

Cg

+xT Σ−1µi︸ ︷︷ ︸
Wg

(1.31)

where Cg and Wg can be calculated readily during the training of the classifier. The

classification rule is then simply to evaluate (1.31) for each of the classes and classify

x to class i if

g(x, i) > g(x, j) ∀j 6= i, i, j ∈ {1 . . . C} (1.32)

The value of g(x, i) is an indicator for the likelihood of the correctness of this clas-

sification. When the sum of all likelihoods for all classes is normalized to 1, each of

the obtained values can be interpreted as a probability. Since in (1.22) the logarithm

was taken for mathematical convenience, re-linearization of the likelihood values is

advisable by exponentiation of each g(x, i) value, as proposed in [52].

1.5.2 Regressors - It doesn’t always have to be either-or

In the previous section, the most classic machine learning methods applied to EMG

signals for advanced myoelectric prosthetic control were introduced - classifiers. In

pattern recognition, classifiers are used to assign one class label from a set of pre-

trained classes for a given input pattern. Therefore, they have hard boundaries and

discrete outputs. In myoelectric pattern recognition, classifiers are usually used to

determine the desired movement. In order to get an additional measure for the

strength of that movement, the global amplitude of EMG signals (normalized to a

maximum) is used and translated to the speed with which the selected movement is

to be executed (proportional value). Other strategies have also been proposed [53].

In an entirely different approach however, one can directly estimate the movement

speeds or forces for each involved degree of freedom (DOF). This is accomplished by

performing a regression of the input features on the desired outputs. For example, in

linear regression, a target vector y describing the instantaneous desired state of the

12
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prosthesis can be obtained by linear mapping of the input features x using a weight

matrix W :

y = W Tx (1.33)

In a prosthesis with 2 DOF, y would be a two dimensional vector, x would be a

n−dimensional feature vector and W ∈ Rn×2. In order to obtain the fit that produces

the least squared error between all measurements X and corresponding given targets

Y , W could be obtained by simply multiplying (1.33) with X−1 from the right:

X−1Y = W T (1.34)

Evaluating (1.34) directly however is not possible in general, since X is usually not

symmetric and thus X−1 not defined. Instead, the Moore-Penrose pseudoinverse [54]

can be substituted:

(XTX)−1XTY = W T (1.35)

The resulting regression weights W minimize the squared error between the pro-

duced estimates and the prompted targets. Linear regression is the most straightfor-

ward and simple regressor. It can be extended by regularization (ridge regression) and

application of the kernel trick (kernel ridge regression) for non-linear estimations [55].

These regression methods require precisely labeled data, i.e., for each input vector the

instantaneous target value has to be known. These can be acquired by tracking of the

sound hand in mirrored bilateral movements [42, 43, 46, 55], the targets prompted to

the subject or, in intact limb subjects, the produced grasping force [48,56]. However,

also semi-unsupervised methods exist for this purpose, requiring only information on

the active DOF but not the exact force trajectory. Such a method was proposed by

Jiang et al. [45] and is inspired by the natural, synergistic ways in which muscles op-

erate. Non-negative matrix factorization (NNMF) [57] was used to factorize a matrix

of recorded muscle activations (= EMG envelopes) into a matrix of primitives and

synergies. The inverse of the synergy matrix can later be used as the weight matrix

as in (1.33).

In a slightly different type of approach, regression can also be performed by train-

ing an ANN to map the input features to some target prosthetic states or com-

mands [42,46,58]. In this case, one network is trained for each DOF and the outputs
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are concatenated to yield the final movement commands for all DOF for the prosthe-

sis.

Another type of regression that has been applied to EMG signals for myoelectric pros-

thesis control is support vector regression (SVR) [48,59], showing promising results.

The main advantage of regression methods over classifiers is that they facilitate si-

multaneous estimation of several DOF. Therefore they allow for a close resemblance

of movements to natural, sound arms and hands. Their common drawback how-

ever is that they can only cope with a limited number of DOF (typically 2), since

including more results in very unstable estimation (as will be discussed further in

Chapter 5). Furthermore, some of these techniques also require training data from

combined movements together with their labels (ANN, SVR), which are time inten-

sive to acquire in a sufficient amount. Therefore, methods which can extrapolate from

single-DOF training data to multi-DOF movements during application such as linear

regression, (kernel) ridge regression and NNMF are preferred [60].

1.6 Current state of the art

In commercial prostheses, none of the methods described above have been integrated

so far in a clinically viable manner. However recently, a new controller called COAPT

Complete Control
TM

[61] has been presented, capable of sEMG pattern recognition for

prosthetic control. The system emulates independent conventional electrode signals

and can thus be used in conjunction with many commercial prosthesis controllers. It

uses pattern recognition and allows the user to recalibrate anytime necessary. The

commercialization of the product has just begun and while it still has to prove to

prevail on the market, this is the first promising step towards commercial routine use

of pattern recognition in upper limb prosthetic control.

From an academic point of view, the most important limitation of the current state

of the art is that only very little studies have been conducted with amputees in a

setup close to clinical practice. The online control of physical prostheses by subjects

was rarely reported in literature. However, it has recently also been discussed that

results from offline and online evaluations are only loosely correlated [58,62,63]. This

underlines the importance of clinically relevant studies for a better estimation of the

impact that newly developed methods have on the clinical outcome. The robustness of

the investigated methods under such study settings has previously not been described.
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1.7 Thesis goal and outline

The goal of this thesis was to investigate sources of non-stationarity affecting the

sEMG signals and to alleviate their effects on the machine learning based control

of multifunctional myoelectric prostheses. This was to be done in clinically realistic

study settings. The increased robustness of the developed estimation methods was

to be shown in comparative offline as well as in online control investigations. Physi-

cal prostheses used by both able-bodied and amputee subjects were to be employed.

The tests were designed to mimic real life scenarios in order to maximize the clinical

relevance of the achieved results.

The further outline of this thesis is therefore structured as follows:

• In Chapter 2, a detailed review of non-stationarities, which affect the perfor-

mance of EMG pattern recognition systems, is gathered from literature. A lack

of knowledge on time influences (performance across days) is identified. Hence,

in the further progress of this chapter, the development of a suitable evaluation

paradigm for this influence is elaborated, measured, analyzed and discussed.

• In Chapter 3, a method capable of alleviating the detrimental effects of non-

stationarities on sEMG pattern recognition is proposed. The development of the

method is detailed and its applicability is demonstrated on test data acquired

from able-bodied and amputee subjects. Specifically, the most influential non-

stationarities identified in Chapter 2 are coped with. The accuracy obtained

with this method is compared to that of the unprocessed classification stream

as well as to results of other post-processing methods.

• In Chapter 4, a new multi-class proportional myocontrol algorithm for upper

limb prosthesis control is proposed. It incorporates important insights obtained

from the first two studies into a single, improved and novel control method. It

is specifically developed for robust control of multifunctional prostheses under

the influence of certain non-stationarities such as dynamic contractions. It

inherently eliminates wrong movements of the prosthesis while providing direct

proportional control values for smooth prosthesis control. The method is applied

for the sequential control of a multi-DOF physical prosthesis in various test
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scenarios with able-bodied and amputee subjects and its superiority to two

other, state of the art, control methods is demonstrated.

• In Chapter 5, the limitation of sequential control from the previous study is

overcome by combining the introduced method with methods of simultaneous

and proportional control across multiple DOF. This final system incorporates

the knowledge gained from all previous evaluations and yields a robust, reliable

and highly advanced control method for multi-DOF prostheses with simulta-

neous and sequential control for natural positioning of the wrist and robust,

intuitive grasping.
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The main shortcoming of current pattern recognition algorithms for sEMG for pros-

thetic control is believed to be a lack in robustness. Many sources of reliability

reducing factors have been identified in previous studies. One of the most investi-

gated factors in literature is the so called limb position effect [42,64,65,66,67,68,69].

This effect describes the influence of different arm positions on the recorded sEMG

signals, such as lifting or stretching the arm. One possible reason for altered signals

in elevated arm positions and thus decreased movement recognition is the activation

of posture sustaining muscles such as the m. brachioradialis, responsible for lifting

the forearm. Additionally, moving one’s arm results in muscle displacement under-

neath the skin, causing the electrodes located on the skin surface to detect changed

signals with respect to the neutral arm position. These effects are even more pro-

nounced when additional weight is being sustained by the limb, e.g. when holding

a heavy object or the end effector of the prosthesis itself [70], causing the socket to

press against the stump. Recently, also the influence of arm motions while executing

wrist and hand functions, such as lifting the arm or bringing the hand towards the

mouth, has been investigated [68]. Unfortunately, no regularities of the described

effects with respect to the limb positions and movements could be determined so far

for automated compensation. Therefore, the only effective methodology proposed in

literature for resolving the limb positioning effect so far is to heuristically include a

variety of arm positions in the training set of the classifier [64, 65, 66]. In [69, 71, 72]

the utilization of an inertial sensor unit in the prosthesis was proposed. By including

the orientation of the prosthesis in the feature set, a significantly increased robustness

towards varying arm positions could be demonstrated. The common drawback of all

the presented solutions however is that several arm positions have to be included in

the data acquisition session for classifier training data collection. This can drastically

increase the required training time and is fatiguing for the users.
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Other sources of non-stationarity that have already been identified and studied are the

effects of electrode shifts [40, 73, 74], dynamic contractions [49, 75], different contrac-

tion levels [76], muscle fatigue [77], impedance changes, movement strategy changes

(mutual adaptation) [78], and psychological factors [79]. For coping with all of these

factors, similar strategies as with the limb position effect have been proposed, i.e.

including them in the classifier training set, with the same drawback as mentioned

above.

One factor which has only received very limited amount of attention is time. How

does a classifier trained with data of one day perform on the next day? And the day

after, etc? Kaufmann et al. [80] conducted investigations in this direction, however in

this conference publication only data of one healthy subject were included, allowing

only for limited generalizability to a larger population and amputees. Therefore, in

the study presented hereafter, the design and results of a study aiming to significantly

extend our knowledge in this direction are presented.

The concept of this study, as well as the results have been published partially in sim-

ilar form by me as first author in [81] and are extended here. Further, they have been

used as a basis for the submitted paper [82]. Therefore, text or results reproduced

from these manuscripts are not cited explicitly in the following.

2.1 Methods and procedures

In order to assess the stability over time of EMG pattern recognition, 7 able-bodied

(5 male, 2 female, age 25.4±1.4 years) and 4 male transradial amputee subjects with

medium stump lengths were recruited to participate in this study. For all amputee

subjects, the origin of amputation was traumatic, ranging from 1 to 21 years ago.

Two of the amputees were right and two left hand amputees. Over the course of 5

days, each subject performed the same exercises each day. Prior to the start of the

experiments, each subject was introduced to the study procedures and an informed

consent was signed by the participants.

The subjects were seated comfortably in front of a computer monitor, leaning their

back against the backrest of the seat. The upper arms were hanging in a relaxed posi-

tion parallel to the torso, while the lower right arm was flexed in a 90◦ angle, parallel to

the floor, pointing forward. Eight double differential dry electrodes (13E200=50AC,
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(a) Stump Amputee1 (b) Stump Amputee2

(c) Stump Amputee3 (d) Stump Amputee4

Figure 2.1: Stumps of the subjects, with the electrode locations marked after doffing to quantify the
electrode displacements.

Otto Bock HealthCare Products GmbH, Vienna, Austria) were placed equidistantly

around the circumference of the right forearm in able-bodied subjects and on the

stump of the amputees, approximately 7 cm distal to the elbow. All able-bodied

subjects were dominant right handed. In case of dry skin, the electrode placement lo-

cations were cleaned and moistened, since this reduced the time required for electrode-

skin contact to settle. The necessity of this measure was judged by the obtained signal

quality.

For each amputee, a custom prosthetic socket housing the 8 sEMG electrodes was

manufactured by an orthopedic technician. This allowed for a very realistic test setup

in which doffing/donning effects could be observed like with an actual, personalized

prosthesis of the wearer in a clinical routine use.

The recorded signals were filtered and amplified by the active electrodes (20-450 Hz,

50 Hz notch filter, output 0-4.5 V). The such conditioned raw signals were sampled at

1 kHz by the Axon Bus R© master (Otto Bock HealthCare Products GmbH, Vienna,

Austria) with 10 bit resolution and wireless transmitted via Bluetooth to a personal

computer, where the data were recorded and saved using a custom application. Be-

fore the start of the experiment, the exact position of each electrode on the skin was

marked using a skin friendly, water and sweat resistant marker and renewed daily as

needed. This way, the electrodes could be placed on the same locations each day.
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2.1.1 Test protocol

Following the above described preparations, each subject was introduced to the cor-

rect performance of the following 8 movements: wrist supination (WS), wrist prona-

tion (WP), wrist flexion (WF), wrist extension (WE), hand opening (HO), key grip

(KG), fine pinch (FP), and no movement (NM). The instructions given to the able-

bodied subjects were to perform each movement as consistently as possible in each

repetition and to focus on exclusively performing only the prompted move. For ex-

ample, during WE some subjects tended to also spread their fingers (= opening of the

hand), which they were then corrected to only extend the wrist joint while keeping

their fingers relaxed. This was done for every movement. With amputee subjects,

their phantom limb movements were explored until consistent and distinguishable

movements were found by visual inspection of the sEMG signals.

For each of the 8 movements, the maximum long term voluntary contraction (MLVC),

defined as the maximum contraction that the subject was able to hold over a period

of approximately 20 s, was determined. This maximum was later used to scale the

prompted movements. For data collection, the subjects received biofeedback on their

current total exerted force by calculating the sum of RMS values of all electrodes,

scaled to the MLVC level. A red cursor was displayed on the computer screen, whose

y-coordinate was proportional to the exerted force and which propagated along the

x-axis with time.

During one run, subjects were asked to track trapezoidal shaped profiles (trise = 1 s,

tplateau = 3 s, tfall = 1 s) with plateau heights of 30%, 60% and 90% of the MLVC.

Hence, one run consisted of 8 × 3 = 24 movements. The movement which was to

be performed for each profile tracking was indicated to the subject with audio and

visual cues. In total, each subject completed 5 runs in one session. Able-bodied

subjects completed 3 sessions per day and amputees 2 sessions. Between sessions,

the electrodes were removed for approximately 15 minutes to study the effect of elec-

trode doffing-donning. In able-bodied subjects, the electrodes were placed again on

the exact same locations as marked on the skin before doffing. In amputees, natu-

ral doffing-donning shifts occurred and were quantified by measuring the electrode

displacements between sessions and days. This test protocol was repeated over five

consecutive days. Subjects were granted sufficient breaks between each run to avoid

fatigue.

20



Draft

2.2. Results

Figure 2.2: The test socket manufactured for Amp4 for this study. A similar socket housing the 8
electrodes was manufactured for each amputee to participate in this study.

2.1.2 Signal processing

The four time domain features RMS, ZC, SSC and WL as introduced in Section

1.4 were calculated from the signals, which were split in windows of 128 ms length

with 78 ms overlap. Only the static parts of the contractions (3 s plateau center of

each movement) were considered for this study. All classification evaluations were

performed offline using the LDA classifier as introduced in Section 1.5.1. A separate

classifier was trained with data of each day of recordings and the data of all days were

tested with each classifier. All data of one day were used for classifier training and

all data of each test day were classified. For within-day evaluation, a five-fold cross-

validation was performed, i.e. 4/5th of data from that day were used for training and

1/5th for testing, permuted until all data were used for testing once. The classification

accuracy (ratio of correct classifications and total classifications) is reported and is

shown as mean ± standard deviation, calculated across subjects.

2.2 Results

All subjects were able to complete the full study. Exemplary sEMG signals recorded

from one amputee and one able-bodied subject are shown in Figure 2.3

In the setup of this study, a time difference of 1 to 4 days between classifier training

set and testing set could be investigated as shown in Table 2.1.
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Figure 2.3: Exemplary sEMG signals for all 7 active movement classes investigated in this study
of a representative amputee (left) and able-bodied subject (right). By visual inspection, the sEMG
patterns appear well distinguishable per class for the able-bodied subject, however in the amputee
subject, the patterns only differ slightly between most of the movements

Table 2.1: For comparing the robustness across days, a total of 4 inter-day differences could be
evaluated.

1 Day 2 Days 3 Days 4 Days

Day1 ↔ Day2 Day1 ↔ Day3 Day1 ↔ Day4 Day1 ↔ Day5

Day2 ↔ Day3 Day2 ↔ Day4 Day2 ↔ Day5

Day3 ↔ Day4 Day3 ↔ Day5

Day4 ↔ Day5

The average classification accuracy within each day was 97.6± 1.4% for able-bodied

subjects. For amputees, the individual within day performances were 96.2%, 75.3%,

67.3% and 79.3%. From these peak performances, substantial decreases in accuracy

were found when the test data where drawn from days different than the day on

which the classifier was trained. The average drop in accuracy from one day to the

next was 8.3% in able-bodied subjects and 6.8% in amputees. With an increasing

number of days between the training and testing data set, the recognition error in-

creased monotonically up to 13.6% and 19.1% with the maximum investigated of 4

days distance (cf. Table 2.1) in able-bodied and amputee subjects, respectively. The

average performances of all combinations of training and testing days are summarized

in Figure 2.4 and the average decrease of classification accuracy as function of days

between training and testing is summarized in Figure 2.5.

In a further analysis it was investigated whether a certain subgroup of movements

caused a majority of the mis-classifications. It was found that HO, FP and WS were
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(a) Able-bodied subjects

(b) Amputee subjects

Figure 2.4: Results of classification accuracy over time for (a) able-bodied and (b) amputee subjects.
Reused and modified with permission [81] c©2013 IEEE.
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Figure 2.5: Average drop of classification accuracy as a function of days between training and testing
day compared to within-day testing for able-bodied and amputee subjects.

the movements which were involved in most of the classification errors. Together,

these 3 movements accounted for 52% of all mis-classifications (Figure 2.6(b)).

As described in the introduction of this chapter, one non-stationarity whose influ-

ence on classification accuracy has often been investigated, was the shift of electrodes.

However, in none of these studies a quantification of electrode displacements between

two donnings has been reported. Instead, in many studies a rough estimate of usu-

ally several millimeters up to a few centimeters was assumed. In this study, due to

the realistic setup with an individually manufactured prosthetic socket for each of

the four amputees and its longitudinal character, the present investigations offered

a good basis for quantifying the electrode displacements after donnings between the

two sessions per day and also on consecutive days. Therefore, representative results

for a real use case in amputees were accessible.

The average electrode displacements in longitudinal direction (along the forearm)

were around 6 mm or less both across sessions and days (3.9 mm on average across

all sessions and 5.5 mm across days). In the perpendicular direction, shifts were less

than 9 mm across sessions and less than 6 mm across days (5.9 mm on average across

all sessions and 5 mm across days).
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(a) (b)

Figure 2.6: Average confusion matrix of mis-classifications, scaled to minimum and maximum (a)
and the percentage of total mis-classifications each movement accounted for (b). It can be seen that
WS, WP, HO and FP were the most difficult classes for classification. NM and WF were the least
difficult ones.

(a) (b)

Figure 2.7: Quantified electrode shifts in amputees with their custom made sockets (a) between the
two sessions of one day and (b) between the consecutive days. The shifts between the first and
second day were not measured.
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2.3 Study discussion and conclusion

In the presented study, a research question which had only received minor attention

previously was addressed. Many non-stationarities negatively affecting the sEMG sig-

nals for pattern recognition have been described in literature, but the importance of

time related effects was unknown. Therefore, in this study a total of 11 subjects (in-

cluding 4 amputees) were recruited to perform a set of 8 wrist and hand movements

while their sEMG signals were recorded from the forearm. The recording sessions

were repeated over the course of 5 consecutive days. In an offline analysis, the sig-

nals recorded from each day were used to train a classifier and the signals of all days

were tested with this classifier. The maximum classification accuracies were obtained

when the training and testing data set were acquired on the same day (using a 5-fold

cross-validation). In able-bodied subjects this accuracy was close to 100%, which is

in good correspondence with other studies achieving comparable results in similar

study settings [28]. In amputees, the results of the within day accuracy were much

lower with an average of 79.5%, however reporting the average is deceiving in this

case, since the results were quite different among subjects. This was likely the case

because Amp1 had extensive experience with pattern recognition training prior to

participating in this experiment. This shows that subject training is likely an impor-

tant factor, which was also reported in [83], especially in amputees. In able-bodied

subjects, proprioception and visual feedback of the moving hand made it easier to

perform consistent, repeatable movements.

The most important finding of this study was that the further training and test days

were apart, the more the classification accuracy decreased. This decrease was mono-

tonic and did not reach a plateau after the 5 days investigated in this study. It is

thus possible that after longer time periods a further decrease in accuracy has to be

expected. While the investigation of 5 subsequent days is considerably longer than in

the majority of all other studies, which are only conducted in one session, this is still a

limitation of the presented study which has to be addressed in future investigations.

Another question that merits particular attention in a dedicated study is towards

the origin of the observed time dependent degradation. This investigation was out-

side the descriptive scope of this study, but has been started by Paredes, Amsüss et

al. [82]. In this yet unpublished draft, inspired by the contribution of Bunderson et

al. [83], several measures were assessed in feature space to quantify the origin of mis-
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classifications with the data set acquired in the here presented study. Furthermore,

in [84] (see Chapter 3) and [85], strategies for alleviating the observed day-to-day

degradations with this particular data set were proposed.

A further limitation of the analyses presented here was the restriction to offline in-

vestigations. It is possible that some of the observed classification degradations over

time could be corrected by the user during online control by slightly adapting the way

movements are performed. However, this implies that relevant feedback for success

of the changed movement strategies must be given to the user, otherwise he is left

to search blindly and without guarantee of improvement. Such a feedback is not yet

available. Although it is possible to visualize the data by projecting them into a 2

or 3-dimensional space using e.g. principal component analysis (PCA) [86], a direct

and easy to understand guide for constructive adaptation of user behavior has not

yet been proposed. In this study, the occurrence of data shifts across time and their

detrimental effects on sEMG classification have been demonstrated. The capabilities

of algorithms and users to adapt to these changes however have to be shown in future

studies.

As an additional result of this descriptive study, the electrode shifts which have to be

expected after doffing and donning across sessions of the same day and different days

were quantified with the individually manufactured prosthetic sockets used for am-

putees in this study. As a result, it was demonstrated that shifts usually occur below

1 cm. It has to be pointed out however that these results may vary with the quality

of the socket fit and with the condition of the residual limb, c.f. Figure 2.1(c). The

numbers reported here should serve as a guideline for future investigations regarding

the influence of electrode shifts on sEMG pattern recognition systems.
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system

In the previous chapter, several non-stationarities, which are known to affect the

classification accuracy of EMG pattern recognition based myoelectric control, were

partially discussed from literature and in particular the influence of time related effects

was investigated in a dedicated study. Previous to this work, extensive knowledge

on multi-day testing had not been published. In the present study, the data which

were acquired during the experiments of the first study were further analyzed. A

methodology to counteract the decreases in classification accuracy observed in day-

to-day testing and in presence of other non-stationarities is being elaborated.

The objective of this study was to design and validate a method capable of detecting

and eliminating its own mistakes, based on the stream of observations made in the

past. In fact, most pattern recognition algorithms proposed in the past regarded each

feature vector as an independent observation that was to be classified. For example,

in an 8 class problem, with conventional classification methods it was possible to

classify 8 consecutive samples all to different classes. Since in myoelectric control

new decisions are usually made approximately every 50 ms, this means the system

would allow the user to switch to all movements within less than 500 ms, which is

physiologically not meaningful. In a much more realistic scenario, for example given a

stream of 10 samples which were classified to the same movement, it is very likely that

the 11th sample will also belong to this class. Hence, if the classifier would suggest

a new label for this sample, this decision should be questioned and accepted only in

case of high probability for correctness of this prediction. Similar behavior could be

achieved by a simple low-pass or moving average filter, however this would inevitably

introduce delays in the control. An illustration of this idea which is fundamental for

the following is given in Figure 3.1.
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Figure 3.1: Schematic representation of performing 7 different movements with 3 repetitions each
(1 run). Contractions are sustained for a period of 5 seconds. Class switches between two adjacent
estimates are far less likely than staying in the previous class. In the shown example, classes changed
at red points. In a recording of 22 minutes (5 runs), 23978 feature samples were acquired. In 23768
out of these, the movements of the subject did not change and only 210 times there was an actual
switch between movements, representing a total of 0.87% of all estimates. This a priori information
should be considered during classification. The same rational holds for less ordered movements than
shown here for illustration during real life application.
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Therefore, in this study a method was proposed to compute such a probability index,

which allows for overriding decisions with low likelihood of correctness. The derived

method was tested on an extensive set of data. Its effectiveness was compared to the

unprocessed classifier predictions as well as to 3 other post-processing methods.

The concept of this study, as well as the results have been published in similar form by

me as first author in [84]. Therefore, text or results reproduced from this manuscript

are not cited explicitly in the following. All figures and tables were reproduced with

permission.

3.1 Methods and procedures

For this study, the data which were presented in Chapter 2 were taken as a basis for

the development and evaluation of the proposed method (data of 7 able-bodied and 4

amputee subjects). As introduced in this previous study, several non-stationarities are

known to affect the sEMG signals, resulting in degradation of classification accuracy

if not compensated. From these inconsistencies, the following were included in the

present data set:

1. The onset, static phase, and relaxation phase of the contraction were included

in the data set, so that both static and dynamic phases were considered. In [49]

the difficulty of classifying transient movement phases has been demonstrated.

2. Weak, medium and strong contractions corresponding to 30%, 60% and 90%

MLVC were considered, along with the transitions in between. This is in con-

trast to other studies, where only one, user chosen, contraction level was inves-

tigated [87,88].

3. The training and testing sets were recorded with one day difference: a classifier

was trained with data of a particular day and data from the subsequent day

were tested. This was repeated with a total of 5 days (first column in Table 2.1).

Inevitably, a variety of non-stationarities were thus included simultaneously:

(a) Electrode shifts

(b) Impedance changes

(c) Socket fit (amputees)

(d) Psychometric factors such as subject motivation and concentration
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For reference, also the data within each session were classified in a 5-fold cross-

validation. This represented a scenario where these influences were minimized,

which allows for an estimation of the effects of these non-stationarities.

4. Amputees were included in the study which are known to have more difficulties

in producing consistent and separable movement patterns (e.g. see Chapter 2)

In addition to these mentioned non-stationarities, the no movement gesture was not

actively classified. This was motivated by the fact that in preliminary evaluations it

was observed that this movement was easy to be classified correctly, since compared

to the active movement classes, the changes of this class were negligible. Thus, for this

movement consistently more than 95% recognition accuracy were obtained, regardless

of the method investigated. It was therefore not considered for the analysis in order

to avoid a bias in the results. However, mis-classifications of active classes to the rest

gesture were naturally taken into account.

In the following, the development and evaluation of a method is presented, capable

of alleviating the combined effect of all of the above mentioned non-stationionarities

known to degrade the classification accuracy .

3.1.1 Self correction system

The concept of the self correcting system was based on observations that were made

during the conduction and evaluation of the study described in Chapter 2. The

following insights were gained:

• Mis-classifications usually occurred during the onset and relaxation phase of

movements.

• The likelihood output of the classifier was found to correlate with the correctness

of the classification.

• The time history of classification stream contained information on the reliability

of a classification (i.e. frequent classification output changes were correlated

with mis-classifications).

• The contraction level was found to have importance - low strength contractions

were usually more difficult to classify correctly than stronger contractions.
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Based on these observations, a methodology for eliminating mis-classifications was

derived.

In a first attempt, a variety of features to reflect the observations described above

quantitatively were empirically extracted from the classification stream, as summa-

rized in the following list:

• Absolute value of EMG RMS

• Variance (change) of the EMG RMS value

• Classification likelihood output

• Number of subsequent consistent raw classification results

• Number of changes in output class

• Last accepted decision is among top 3 of classifier output

• 1-vs-rest classifier output of the last accepted class

• Detect onset/offset of move

Out of this list, the RMS value and classifier likelihood were identified to contain the

most relevant information. Furthermore, the time history of these values was identi-

fied to be of great importance (e.g. a significant change in the RMS value indicated a

dynamic contraction). Therefore, it was decided to use the history of 10 samples of the

EMG RMS value and classifier likelihoods as final indicators for classifier confidence.

A multilayer perceptron ANN (MLP-ANN) was chosen to automatically obtain and

optimize a mapping function from these inputs to the desired confidence measure at

its output stage. For this purpose, a number of samples had to be extracted from

the training data, which were used to teach the ANN examples of trustworthy and

non-trustworthy classifier outputs.

The details of the implemented system are described in the following section.

3.1.2 Implementation of self-correction mechanism

As for the first study, the LDA classifier was chosen as the base classifier for the

system. For the purpose of identifying mis-classifications, a 3 layer MLP-ANN was

implemented. The MLP-ANN had 22 input nodes (the current and past 10 EMG

RMS values and maximum classifier likelihood). In a feed-forward structure, these

inputs were weighted and forwarded to a hidden layer comprised of 8 neurons. The
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final output layer had only one neuron which produced continuous output in the

interval [-1;+1], where +1 was interpreted as high confidence in the classifier output

and -1 as the opposite. All layers were connected with linear transfer functions and the

output was limited to the interval [-1;+1] by a hyperbolic tangent sigmoidal transfer

function. For training of the MLP-ANN weights, the Levenberg-Marquart (LM) back-

propagation algorithm was used. For the entire implementation of the MLP-ANN the

Matlab R©Artificial Neural Network tool box was used. The data set which was used

for training the LDA classifier was also used for training of the MLP-ANN, therefore

no additional training data to those needed for training the conventional system were

needed. All data were selected to train the LDA. Subsequently, the same data were

applied to the obtained classifier. For each data sample, a +1 was assigned in case of

correct recognition and a -1 in case of erroneous output. Then, 80% (4 of the 5 runs)

of the data were applied to train the ANN network with the inputs as described above

and the targets for each sample as either +1 or -1, depending on whether the LDA

had classified it correctly or not. The remaining 20% of the training samples were

used as a validation set for the MLP-ANN. Since the LM optimization algorithm does

not guarantee convergence to a global optimum, a total of 5 networks with different

randomly initialized weights was trained. The one with the lowest error rate on the

validation set was used in all further analyses.

In the application phase of the system, a new feature vector was first classified by

the LDA classifier, then the ANN output was evaluated. The described system is

depicted schematically in Figure 3.2.

A trust index at time t (TI(t)) was computed from the raw network output n(t) as

follows:

TI(t) = |TI(t− 1)|(α·n(t)) + β(t) (3.1)

where α is a filter constant and β(t) is given by

β(t) =


β(t− 1) + 1

200
if LDA class output consistent

0 if TI(t− 1)− TI(t− 2) > 0.5

β(t− 1) otherwise

(3.2)

The constant integration factor of 1
200

was selected to reflect the increase of confidence

with consistent LDA predictions at a maximum rate of 0.1 per second. In preliminary
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Figure 3.2: Schematic representation of the self-correcting classification approach. After classifica-
tion using LDA, the MLP-ANN output is evaluated. The two results are then merged (correction
of raw classification using ANN output) to a final decision of the system. Reused and modified with
permission [84] c©2014 IEEE.

investigations the exact value of this integration constant was found to be uncritical

for values > 0, hence this value was chosen without further optimization.

In (3.1), TI, and β were initialized to 0.5 and 0 respectively. The smoothing factor

α was varied in 9 steps between 0.1 and 0.9. In case of a TI(t) value above a certain

threshold, the classifier decision was not altered. In case of a low confidence output

however, the classification decision was dismissed and replaced by the previously

accepted class. The threshold θ was varied in 100 steps from 0 to 1. As a result, a

2-dimensional grid search for optimizing α and θ was performed to find the pseudo-

optimal values. Two different variations of this optimization were considered and

termed as follows:

1. ANN-IND: The parameters α and θ were optimized for each subject and day

individually. This optimization was expected to yield the best results.

2. ANN-GO: In order to find a generalizable solution that does not require indi-

vidual optimization, α and θ were globally optimized to yield the best outcome,

but not subject or day specific. The such optimized values could thus be used

“out of the box” for any new subject.
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These two variations of the proposed algorithm were compared to the following 4

methods:

1. LDA: The basic, unprocessed output of the classifier and its resulting classifi-

cation accuracy were used for baseline comparison with all other methods.

2. LDA-MV: The classic post-processing method of majority voting as introduced

in [27] was applied as a moving average filter of the classification stream. The

classifier decision was the one which was suggested the majority of times within

a certain time window. In this study, a majority vote length of 9 was selected,

since it showed to yield the best results in a preliminary investigation.

3. LDA-RJNM: This approach was proposed by Scheme et al. [52] and imple-

mented as described in that publication, since it follows the same rational as

motivated in this study, but purely focused on the instantaneous confidence

value provided by the LDA: it was proposed to reject any classification made

by the LDA which had a confidence value below 0.97 and relabel it to NM

instead (RJNM - reject to no movement).

4. LDA-RJRM: This slight variation of LDA-RJNM employed the same methodol-

ogy as LDA-RJNM, but instead of relabeling to NM, the last accepted class was

used as output (RJRM - reject and remain in previous class). It was expected

that this strategy would yield less discontinued prosthetic movements in an on-

line application and was more directly comparable to the proposed MLP-ANN

based system, which used the same relabeling strategy.

3.1.3 Evaluations

For the evaluations of the classification systems, two different metrics were used. The

total accuracy (tAcc) was calculated for describing the overall accuracy of each system

as

tAcc =
correct classifications

total classifications
× 100 (3.3)

In addition to this measure, the active accuracy (aAcc) was considered:

aAcc =
correct active classifications

total active classifications
× 100 (3.4)
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where active classifications are such that they would result in a prosthetic action,

i.e. classification to a class that causes the prosthesis to move. This is in contrast

to a classification to NM, which causes the prosthesis to stop its current movement.

The latter is the preferable type of classification error, since it does not cause any

erroneous movements, thus making the prosthesis safer to use. However, accepting too

many mis-classifications to NM would result in very discontinued, unsteady prosthetic

movements. Therefore, a good control system should have very high aAcc while also

maintaining a high tAcc and those two measures should be considered in conjunction.

3.1.4 Statistical Analysis

A single factor analysis of variance (ANOVA) for repeated measures was performed

to quantify the effects of the different algorithms investigated on the achieved clas-

sification accuracies. The factor was the algorithm used and had six levels (the six

algorithms listed above) and subjects and days were treated as random variables. The

statistical analysis was conducted with the hypothesis that there was no difference

in the methods investigated. In case of a probability value of lower than 0.05, this

hypothesis had to be rejected and a significant difference in the performance of the

algorithms was assumed. In the latter case, a Tukey-Kramer post hoc analysis [89,90]

was conducted to assess pair-wise differences between algorithms. All averaged re-

sults are presented as the mean value ± one standard deviation, calculated across all

days and subjects. For all statistical analyses, the threshold for significance was set

to p < 0.05.

3.2 Results

Upon visual inspection, the output of the MLP-ANN effectively decreased in the

presence of mis-classifications of the classifier. In case of continuously consistent

predictions, the constant integration factor of β(t) clearly reflected this measure of

increased confidence by monotonously increasing TI(t). The smoothing factor α

worked efficiently for removing undesired small fluctuations while allowing also for

fast responsive changes in case of decreasing TI(t). The resulting trust index as

computed from the output of the MLP-ANN along with the influences of α and the

integration factor for β(t) are shown for a representative example in Figure 3.3.
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Figure 3.3: Examples of the trust index TI(t) computed for the same network output n(t) (top graph)
with different smoothing factors α (graphs 2-4). In the highlighted section (1), the smoothing effect
of α becomes apparent. In the plateau phases of the network output, such as highlighted in section
(2), the effect of integrating β(t) with a constant factor over time can be observed. It can be seen
that choosing large values of α resulted in better artifact removal but also in an increased delay
of the response. The same threshold value is shown as dash-dotted line in each TI(t) graph for
reference, below which the LDA classification decision was discarded. Reused and modified with
permission [84] c©2014 IEEE.
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Figure 3.4: Exemplary exploitation of the trust index for removal of mis-classifications in a represen-
tative example. For this plot, α was set to 0.2 and θ to 0.61, which were found to globally optimize
the results among all subjects and days. It is apparent that many of the mis-classifications could
effectively be removed. When inspecting the introduced time delay, it appears that the system at
times predicted the relaxation state a few samples too late in the movement onset and before the
prompt returned back to NM in the offset. However, if for example the area marked by the dotted
vertical line and arrow is considered, observing the EMG RMS value reveals that the subject had
already relaxed the contraction. This shows that the proposed method reacted timely to the actual
performed class switch. Reused and modified with permission [84] c©2014 IEEE.

With this intuitively promising result, it was proceeded to apply the trust index to

the removal of mis-classifications. An exemplary result of such a procedure is shown

in Figure 3.4.

The observations described above and illustrated in Figure 3.3 were extended by

evaluating the histogram of the TI(t) values, grouped by correct and incorrect LDA

decisions (Figure 3.5). This analysis demonstrated that at the majority of time in-

stances, an incorrect LDA decision was accompanied by a TI(t) value lower than the

globally optimizing θ of 0.61. Most correct LDA decisions also had a correspond-

ing larger TI(t) value. Note that some false positive detections (LDA was correct

but TI(t) < 0.61) can be observed. However, in such a case, the algorithm would

just relabel the LDA decision to the previously accepted class. Thus, while the self-

correction mechanism would be incorrect in these cases, this would not necessarily

result in wrong movement estimation of the entire system.

The exemplary, qualitative analyses discussed above and demonstrated in Figures

3.4 and 3.5 let the reader gain insight to the functioning principle of the proposed

method. For a comprehensive quantitative analysis, the results of comparing all meth-

ods among each other, separated by subject groups, are presented in the following.
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Figure 3.5: Histogram plot of the distributions of the trust index TI(t), grouped by the correctness
of the LDA classifier at time t from an exemplary subject and day. It is shown that the majority of
mis-classifications had a corresponding TI(t) of lower than 0.61 (the globally optimizing threshold),
whereas correct classifier decisions also corresponded to larger TI(t) values. In a certain range
(∼ 0.35 to ∼ 0.8) the system appeared insensitive to the exact choice of θ, which was confirmed in
the comprehensive optimization results for ANN-GO. Note that while the MLP-ANN output was
limited to [-1;+1], the filtered and integrated TI(t) value could take values outside this interval.
Reused and modified with permission [84] c©2013 IEEE.

3.2.1 Able-bodied subjects

The parameter pair of α and θ was optimized by grid search to estimate the best

overall result across all subjects and days. The pseudo-optimal values were found

to be 0.2 and 0.61 for α and θ, respectively. These values were used for all further

analyses reported for ANN-GO in this study. In Figure 3.6 the result of the grid search

is shown. The system was relatively robust towards the choice of the parameter values,

since the resulting optimization plane had a flat characteristic.

The statistical evaluation revealed that the applied post processing method had

a significant influence on the resulting classification accuracy of the entire system

(p < 10−3). It was thus proceeded to analyze the pairwise differences between the

algorithms in a post hoc comparison.

The unprocessed classification results of the LDA classifier were regarded as the base

line. The well-established majority voting method increased the unprocessed classifi-

cation accuracy significantly by 2.3% tAcc and 3.4% aAcc (p < 0.05 for both). The

LDA-RJNM method as proposed in [52] performed very poorly in the assessment of

the total accuracy tAcc (worse than all other methods investigated with p < 10−3).
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Figure 3.6: Visualization of the parameter optimization grid search of α and θ. The optimal values
were determined to be 0.2 and 0.61, respectively. However, the resulting optimization plane was
relatively flat, indicating robustness of the system towards the precise choice of the parameter
values. The gray shaded area on the bottom of the plot indicates the parameter value pairs which
result in improved results compared to the un-processed LDA output. Reused and modified with
permission [84] c©2014 IEEE.

Regarding the aAcc however, this method resulted in the second best performance

achieved in this study (after ANN-IND), indicating that many of the classification

decisions were relabeled to NM, while the majority of the not relabeled results were

indeed correct classifications. This affected tAcc negatively and aAcc positively. The

slight alteration proposed in the present study of not re-labeling to NM but to the

previously accepted class (LDA-RJRM) significantly improved the tAcc by 17.8% but

decreased the aAcc by 5.1% compared to LDA-RJNM. LDA-RJRM was better than

the unprocessed LDA for tAcc and aAcc (p < 0.05 for both)

Regarding the proposed method, it was found that ANN-GO significantly outper-

formed all other investigated previously proposed methods in both tAcc and aAcc,

except for LDA-RJNM in aAcc (difference -1.2%, p = 0.052). Only ANN-IND re-

sulted in better accuracies than ANN-GO (+0.7% tAcc, p > 0.5 and +1.4% aAcc,

p < 0.05).

In general, the achieved classification accuracies were relatively low (< 85% tAcc and

< 95% aAcc) compared to other offline studies. This is likely attributable to the

various non-stationarities included in the data set of this study, including session to

session transfer effects across days and the exclusion of NM from the active classifica-

tion. In order to assess the value of the proposed system not only under the aspect of
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Figure 3.7: Comparison of all investigated algorithms, showing the tAcc (a,c) and aAcc (b,d) for
able-bodied subjects, when training and testing set were recorded with one day difference (a,b) or
stemmed from the same session (c,d). The proposed method performed significantly better than the
baseline, both in tAcc and aAcc. LDA-RJNM performed significantly worse than all other methods
in tAcc but yielded very good results in aAcc. In intra-session testing, the active accuracy reached
close to 100%. For details of pair wise differences of methods in inter-session comparisons see Table
3.1. For intra-session, * denotes p < 0.05. Reused and modified with permission [84] c©2014 IEEE.

these non-stationarities but also within a session of classifier testing, an intra-session

analysis was conducted to compare the performance gain with the proposed method

over the unprocessed LDA accuracy. Both in tAcc and aAcc the two variants of

the proposed method significantly outperformed the base line accuracy. The ANN

based post-processing yielded an accuracy gain of > 5% in all comparisons to LDA

in both accuracy types investigated. An aAcc close to 100% correct classifications

were achieved, demonstrating the benefit of the proposed system not only under the

presence of non-stationarities.

The results of the able-bodied subject group are summarized in Figure 3.7. Note that

for clarity, all pairwise comparisons of significance are not shown in Figure 3.7 for the

inter-session comparisons but are highlighted in bold-face font in Table 3.1 together

with the exact amount of classification accuracy difference.
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Table 3.1: Detailed summary of differences between algorithms for able-bodied subjects. Positive
(negative) values in cells represent improvement (deterioration) of the method in that column with
respect to the method in that row, separated by tAcc and aAcc. Bold values indicate significant
differences (repeated measures ANOVA, post hoc Tukey-Kramer comparison, p < 0.05). Reused and
modified with permission [84] c©2013 IEEE.

LDA-MV LDA-RJNM LDA-RJRM ANN-GO ANN-IND
tAcc aAcc tAcc aAcc tAcc aAcc tAcc aAcc tAcc aAcc

LDA 2.29 3.35 -15.1 9.48 2.66 4.34 4.75 8.24 5.46 9.66
LDA-MV -17.39 6.13 0.37 0.99 2.46 4.89 3.17 6.31

LDA-RJNM 17.75 -5.14 19.85 -1.23 20.56 0.19
LDA-RJRM 2.09 3.9 2.80 5.32

ANN-GO 0.71 1.42

3.2.2 Amputee subjects

The same evaluations as performed for the able-bodied subjects were carried out for

the amputee subjects. Although the patient group achieved lower absolute recogni-

tion accuracies, the improvements achieved by the the investigated post-processing

methods showed the same trends as in the control group.

As with the first subject group, the statistical analysis revealed a significant influence

of post-processing method on the recognition rate of the entire system (p < 10−3) and

the pairwise method comparisons were performed. LDA achieved an average tAcc of

59.2 ± 15% and aAcc of 63.7 ± 18.4%. These values were regarded as the baseline

for all other methods. Majority voting again resulted in a slight but not significant

increase of accuracy by 2.4% and 3.28% for tAcc and aAcc, respectively. LDA-RJNM

showed the same tendencies as described above: It resulted in a decrease of the overall

classification accuracy tAcc of 25.6%, but performed excellently with respect to aAcc

(increase of 20.4% compared to the base line, both comparisons p < 10−3). In aAcc,

this method was only outperformed by ANN-GO and ANN-IND, by 1.2% and 11.1%

respectively. LDA-RJRM performed significantly better in tAcc than LDA-RJNM

but also worse in aAcc. The methods which performed best were again consistently

ANN-GO and ANN-IND. These two methods outperformed all other methods in-

vestigated in this study. In tAcc they improved the baseline classification accuracy

by 4.6% and 5.9% and in aAcc by 21.6% and 31.5%, respectively (all improvements

p < 0.05).

Also in the within-session control evaluation, the proposed method resulted in sig-

nificantly improved recognition rates. In this scenario, the aAcc closely approached
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Figure 3.8: Comparison of all investigated algorithms, showing the tAcc (a,c) and aAcc (b,d) for
amputee subjects, when training and testing set were recorded with one day difference (a,b) or
stemmed from the same session (c,d). The proposed method performed significantly better than the
baseline, both in tAcc and aAcc. LDA-RJNM performed significantly worse than all other methods
in tAcc but yielded very good results in aAcc. In intra-session testing, the active accuracy reached
close to 100%. For details of pair wise differences of methods in inter-session comparisons see Table
3.2. For intra-session, * denotes p < 0.05. Reused and modified with permission [84] c©2014 IEEE.

100%. Therefore, this method yielded significant improvements for both inter-session

and intra-session testing in amputees compared to the baseline LDA classification

accuracy.

The results of the amputee subject group are summarized in Figure 3.8. Note that

the comparisons of significance are not shown in Figure 3.8 for the inter-session com-

parisons but are highlighted in bold-face font in Table 3.2. In this table also the

pairwise classification accuracy gains are shown for each compared method pair.

3.2.3 Time accuracy

One important consideration in the analysis of post-processing methods is the induced

time delay for a class change to be accepted. Two types of delays can be examined: the

delay which occurs for a movement to start (i.e. transition delay from NM to the active

class) and the delay of an active classification returning back to NM. It was found

that in the context of this study, both types of delay occurred with approximately

the same frequency and duration. They are thus summarized as “time accuracy” in
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Table 3.2: Detailed summary of differences between algorithms for amputee subjects. Positive
(negative) values in cells represent improvement (deterioration) of the method in that column with
respect to the method in that row, separated by tAcc and aAcc. Bold values indicate significant
differences (repeated measures ANOVA, post hoc Tukey-Kramer comparison, p < 0.05). Reused and
modified with permission [84] c©2014 IEEE.

LDA-MV LDA-RJNM LDA-RJRM ANN-GO ANN-IND
tAcc aAcc tAcc aAcc tAcc aAcc tAcc aAcc tAcc aAcc

LDA 2.44 3.28 -25.64 20.38 -2.22 11.05 4.60 21.58 5.92 31.51
LDA-MV -28.09 17.10 -4.66 7.77 2.16 18.30 3.48 28.23

LDA-RJNM 23.43 -9.33 30.25 -1.20 31.57 11.13
LDA-RJRM 6.82 10.52 8.14 20.46

ANN-GO 1.32 9.93

this study and are investigated together. The delays are reported with respect to

the unprocessed LDA class transitions to avoid bias by the subjects’ reaction times

to the movement prompts (assuming that LDA recognized NM correctly for the vast

majority of cases, which was shown to be the case as described above).

The median time accuracy of the MLP-ANN based correction mechanism was found to

be 200 ms for ANN-GO and 250 ms for ANN-IND in able-bodied subjects and 300 ms

for both method variants in amputee subjects and was slightly skewed towards shorter

delays. The other investigated methods behaved similarly or were slightly faster, but

none of the methods managed to have a better time accuracy than 100-175 ms, which

was found to be the threshold for noticeable delay in [91].

3.3 Study discussion and conclusion

In the presented study a novel post-processing method for EMG signal classification

for prosthetic control has been introduced. While in this study the base classifier

was limited to LDA, many other classification methods such as kNN and SVM could

be combined with the proposed method. The only requirement is that the classifier

produces an estimate of the reliability of its estimation (e.g. minimal distance to

training samples in kNN or distance to separation hyperplane in SVM). The devel-

opment of the system was motivated by observations made in previous studies that

mis-classifications often occurred during dynamic contraction phases and movement

transitions, accompanied by low classifier confidence values. It could be shown that

the proposed method effectively improved the classification accuracy in these situa-

tions (Figure 3.4).
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(a) Time accuracy able-bodied subjects (b) Time accuracy amputee subjects

Figure 3.9: Results of time accuracy analysis of each algorithm for (a) able-bodied and (b) amputee
subjects. Any time deviation from the raw classifier output was counted (50 ms time window incre-
ment from one classification to the next). It was found that, on average, all algorithms had a time
accuracy equal to or shorter than 300 ms, but the proposed method did not result in any improve-
ment in this aspect with respect to all other methods. Reused and modified with permission [84]
c©2014 IEEE.

For a thorough investigation and analysis of the proposed method, a challenging data

set was recorded with able-bodied and amputee subjects. The data set contained

contractions of dynamic movements with weak to strong plateaus. Furthermore, the

training and testing sets of the classification were recorded in sessions of different

days. This inevitably resulted in different electrode-skin impedance, electrode shifts

etc. as described in the introduction of this chapter. These non-stationarities were

included to enhance the clinical relevance of the investigated methods, as they would

naturally occur during routine usage of a prosthesis by an amputee. This also explains

the relatively low achieved classification accuracies, which were often reported to be

> 95% in studies not containing such non-stationarities [28]. The focus on clinical

relevance in the present study was further extended by individually manufactured

test prosthetic sockets custom made by a prosthetist for each amputee subject.

In this realistic setup the proposed approach significantly outperformed all other

methods in aAcc in both subject groups, except for LDA-RJNM which performed

slightly better than ANN-GO in able-bodied subjects. In this particular comparison

however it is important to consider the combined results of tAcc and aAcc. Theoret-

ically, a trivial system always predicting NM could achieve 100% aAcc. Therefore,
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this measure has to be considered in conjunction with tAcc, where such a system

would yield 0% (note that NM was not actively classified). Under this viewpoint,

both ANN-GO and ANN-IND outperformed indeed all other methods investigated,

since they simultaneously yielded high tAcc and aAcc. In amputees, a performance

gain of up to 30% could be demonstrated.

The effectiveness of the proposed method was compared to the base line of unpro-

cessed classification and to 3 other post-processing methods. Two of these methods

(LDA-MV, LDA-RJNM) were previously proposed in literature and the third (LDA-

RJRM) was a slight alteration of one of them to investigate the influence of relabeling

strategy. In direct comparison, LDA-RJRM considerably outperformed LDA-RJNM

in the total classification accuracy tAcc (+17.8%), but performed 5.1% worse when

mis-classifications to NM were not regarded as errors (aAcc). This indicates that

in an online application the resulting control system with LDA-RJRM would permit

more fluent, continuous prosthetic movements but with slightly more erroneous acti-

vations than LDA-RJNM. In this offline study it cannot be concluded which of the

two methods would result in the preferable system during online control.

In this study the time accuracy was investigated as a separate measure. It was found

that the proposed method did not introduce shorter delays than the other methods.

The maximum latency described was 300 ms, corresponding to 6 time windows delay.

It might be speculated that if the increment between windows would be reduced to

e.g. 30 ms, the time delay could be reduced to around 180 ms, which is almost below

the threshold of noticeable delay [91]. However, this assumption would have to be

confirmed in a dedicated evaluation. Lastly it is worth mentioning that heuristic

rules, such as preferring switches to NM, could decrease the time latency for ending

a movement. However, such attempts were outside the scope of this study.

As opposed to adaptive algorithms [48,85,92], the proposed self-correction system of

this study does not require recording of additional training data. The same data set

as used for training the base classifier was used, which is also important in a clinical

setup.

In conclusion, a novel method of self-correction for a classifier has been introduced

and its effectiveness evaluated in a challenging data set recorded with able-bodied

and amputee subjects. The highly significant improvements achieved in this study

foster expectations that the observed effects would also have beneficial influences on

the real-time control of a physical prosthesis. However, in this study the focus was
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laid on the introduction of the system and limited to offline evaluations, facilitating

the comprehensive evaluation of many methods as it would not have been possible

in an online study. The promising results achieved in this study are therefore to be

proven relevant for a clinical use for improving EMG based pattern recognition for

intuitive upper limb prosthetic control in an online, real-time control study.
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estimator

In the previous two studies presented, the focus was put on improving the more tra-

ditional approach of classification of EMG signals for myoelectric prosthetic control.

In this and the following study, another type of machine learning method - regression

- will be explored. Regression methods have the intrinsic advantage of estimating

proportional output, which can directly be used to drive a prosthesis in a smooth

way. In classification, only the currently active movement type can be determined,

but a proportional control value has to be extracted separately, which is not nec-

essarily straightforward [53]. A further advantage of regression models is that they

can estimate the activation of several DOF simultaneously, potentially allowing more

natural and fluent motions. However, due to their parallel nature of estimation, it is

sometimes difficult to selectively activate only one function while not activating any

of the other. This was for example discussed in [58].

Therefore, the development of a novel regression method capable of suppressing wrong

movements appeared desirable. The goals and basic ideas, which will be presented

in this chapter, are in line with that introduced in Chapter 3 - applied to regres-

sion. However, the same idea as presented in Chapter 3 was not directly applicable

for regression purposes, since it relied on the relabeling of movements in case of un-

certainty, which is not appropriate for continuous force estimation. Furthermore, in

general regressors do not output a measure of confidence for an estimation and they

do not suffer from transient movement phases to the extent classifiers do (which was

one of the premises for the history based ANN correction). Therefore a novel strat-

egy was pursued to substantially increase robustness of regression based myoelectric

prosthetic control.

CSP is a spatial filter routinely used in electroencephalography (EEG) analysis, where
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it is used to enhance the low signal-to-noise ratio of EEG signals. This method has

also been used as spatial sEMG raw signal filter in [93]. In its classic application, CSP

is therefore used as a spatial filter for raw signals in conjunction with high-density

signal recordings, containing both temporal and spatial information. The novel idea

conceived in the present study with only 8 channels was to apply the same technique

to features extracted from the EMG signals rather than the raw signals themselves.

This resulted directly in a novel proportional movement estimator, as will be de-

scribed in the following sections.

A further difference of this study with respect to the ones previously described in

this thesis is that from now on the main focus will be put on online evaluations of

direct control of a physical hand prosthesis. This approach is by far more expressive

and allows for much more direct estimation of the gained benefit of the investigated

method(s) for the target application in amputee users. The drawback of this evalua-

tion method is that it does not allow for the comparison of a multitude of different

control strategies due to time and fatigue constraints of the subjects. Nevertheless,

in the opinion of the author this limitation is outweighed largely by the functional

insights gained in such an assessment and its more direct transferability to the clin-

ical relevance. For this reason, offline analyses will be very limited in the following

evaluations and functional real-time tests will be emphasized.

The concept of this study, as well as the results have been submitted for publication

in similar form as presented here by me as first author in [94] and parts of it in [95].

Therefore, text or results reproduced from this manuscript are not cited explicitly in

the following. All figures and tables were reproduced with permission.

4.1 Methods and procedures

In this section, first the development of a novel multi-class proportional estimator

based on the CSP method (CSP-PE) is detailed. Subsequently, a test protocol is

defined which allows for the systematic evaluation of the derived control system based

on CSP-PE. The evaluation will be based on online measurements and comparisons

to state-of-the-art control schemes will be made.
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4.1.1 Common spatial patterns proportional estimator

(CSP-PE)

The CSP method implements a spatial filter for multi-channel recordings. Originally,

it has been applied in two-class classification tasks of EEG analysis and brain com-

puter interfacing. In this domain, it extracts features from the raw signal recordings

which are optimized to maximally discriminate between the data of two classes. It

is therefore a supervised algorithm that requires a priori information for training. It

was first described in 1991 by Koles [96] and the term CSP was coined by Mueller-

Gerking et al. in 1999 [97]. It was soon adopted by many research groups and

a considerable number of variations to the original scheme has been proposed (see

e.g. [98, 99,100,101] and references therein).

In order to find features which maximize the distance between two classes, the raw

input signals x ∈ Rc are transformed by a linear transformation W ∈ Rc×d to a

d-dimensional vector y ∈ Rd in a space that is characterized by maximal variance

for data of the first class while minimizing it for data from the second class (in the

spatial filtering context, the values in y are called components).

y = W Tx (4.1)

var(y) = E[yyT ] = W TE[xxT ]W (4.2)

where E[·] is the expectation operator. Assuming that x and y are drawn from

centered distributions, (4.2) can be calculated for a series of observations as

var(y) = W T Σ̂W (4.3)

where Σ̂ is the empiric covariance matrix of x.

For obtaining a transformation matrix W , which simultaneously maximizes the vari-

ance for data of class 1 and minimizes it for data of class 2, it is suitable to optimize

the ratio of variances as described in (4.3). The resulting quotient is known as the

generalized Rayleigh quotient:

W := arg max
W

W T Σ̂1 W

W T Σ̂2 W
(4.4)
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Figure 4.1: Exemplary result of applying CSP filter to 8 EMG signals. Note that while the activities
of the raw EMG signals are not ordered, the CSP components are ordered (for class FP the first
component has most variance and the last the smallest and vice verse for class WP, as indicated by
the arrows).

where Σ̂i represents the empiric covariance matrix of the data from class i. The op-

timization procedure of (4.4) using the Lagrangian method is equivalent to the one

described in Chapter 1, Section 1.5.1, Equations (1.8) through (1.13). Their simi-

lar calculation indicates the close relationship of the CSP and LDA methods. The

columns of W contain the spatial filters, and the first column is the one which max-

imizes the variance for data of class 1 and the last column for class 2. This is well

illustrated for high-density EMG recordings in [93] and for 8 channels in Figure 4.1.

The close resemblance of CSP and LDA and the fact that LDA is commonly applied

to feature data, somewhat inspired the application of the CSP method to feature data

in this study for the derivation of CSP-PE. After determining the projection matrix

W , (4.2) simply performs a linear combination of the values in x with the coefficients

of the columns in W . Hence, when choosing x to be a feature vector with elements

proportional to the amplitude of the recorded EMG and thus the exerted force, the

output of this linear combination is as well proportional to the force. Furthermore,

the optimization criterion as described above provides maximally distinct output for

data of different classes. Therefore, the spatial filters obtained from the CSP opti-

mization contain larger coefficients for features that are distinctly activated between

the two classes and those features, which have overlapping activations, are weighted

with smaller coefficients. Because of these properties, CSP-PE theoretically yields

an estimator for EMG driven myoelectric control with the favorable properties of a
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regression method while maintaining high discriminability between movements.

Due to the utilization of force related feature values rather than the raw EMG sig-

nals, the assumption of centered data (zero mean) made in (4.3) was no longer valid.

Therefore, instead of using the empiric covariance matrix, the empiric correlation

matrix was used. In order to extend the described method to a multi-class problem

of m classes, the well-known one-versus-one scheme was applied.

Application of the CSP-PE method

For the remainder of this section, the following taxonomy is defined. Considering the

transformation of two vectors xi and xj with the same column w of W

yi = wTxi

yj = wTxj
(4.5)

where yi/j are scalars, then the terminology that class i is winning this pair-wise CSP

competition if yi > yj. Since the CSP transformation is designed to yield large values

for one class and small values for the other class of that comparison, this terminology

is considered to be intuitive. Further, the ratio of yi
yj

is termed the contrast by which

class i won this competition against class j.

In order to compute the result of all m2−m
2

one-versus-one class competitions in a

single matrix-vector multiplication, the first and last column of each individual CSP

competition were compiled in one matrix Wcomp ∈ Rc×m2−m.

Wcomp = [w12, w21, w13, w31, . . . , w(m−1)m, wm(m−1)] (4.6)

where wij (wji) are the weight vectors which maximize the output for the data of class

i (j) while minimizing it for class j (i) and were obtained from computing the CSP

weight matrix between the classes i and j. Therefore, Wcomp contains all those weight

vectors that maximize the contrast between all class pairs with each class winning

each comparison exactly once.

For the estimation of a newly observed feature vector xobs, the multiplication with
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W T
comp yields a vector of competition results, ycomp ∈ Rm2−m:

ycomp = W T
comp xobs (4.7)

with elements

ycomp = [y12, y21, y13, y31, . . . , y(m−1)m, ym(m−1)] (4.8)

In (4.8), each element of ycomp is the result of the inner product between the filter

weights and the feature vector.

For illustration, consider an example of a m = 4 class problem: ycomp would be

composed of the elements [y12 y21 y13 y31 y14 y41 y23 y32 y24 y42 y34 y43]. Thus,

e.g. class 3 would be present in the 16−4
2

= 6 competition activations (y13 y31 y23

y32 y34 y43). When a feature vector which truly belongs to class 3 is applied, it

should yield large activation values in y31, y32 and y34 and small activation values

in y13, y23 and y43. The contrasts by which class 3 wins its CSP competitions are

computed as y31
y13

, y32
y23

and y34
y43

.

Finally, the activation αi of a class i ∈ [1 . . .m], which is in competition against all

other classes j ∈ [1 . . .m], j 6= i, is computed by multiplying the minimum of its

competition results with the maximum of the contrasts by which it won:

αi := min
j
yij ·max

j

yij
yji

(4.9)

where the winning contrasts
yij
yji

of class i are normalized to sum up to 1 across all j

∑
j

yij
yji

= 1 (4.10)

The winning contrasts can thus be regarded as probability measures for the correct-

ness of the activation estimation obtained from minj yij.
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Figure 4.2: Exemplary result of applying CSP-PE (upper part) to EMG signals (lower part). For the
activations, positive values represent movement in one direction (e.g. supination), negative values in
the opposite direction (e.g. pronation) - together representing one DOF. The prompted movements
are shown as straight lines, the estimation results are plotted on top.

Continuing the example from above, the activation of class 3, α3, would be calcu-

lated by taking the minimum of [y31, y32, y34] and multiplying this value by the

maximum of [y31
y13
, y32
y23
, y34
y43

], where these three numbers would have to be normalized

to sum up to 1.

The raw outputs of the regression were rescaled, so that when re-applying the training

data to the obtained estimator, a maximum of 100% movement speed in each DOF

was achieved. An exemplary output of the CSP-PE method is shown in Figure 4.2.

How CSP-PE works

Due to considering only the minimum of all competition results of a particular class

in (4.9), this class has to win all the CSP competitions against all other classes to

be attributed a large activation value α. If it loses at least one of the competitions,

it will not be able to achieve a high activation output. Furthermore it has to win

each of the competitions with a large contrast, otherwise its output will be reduced

as well.

The combination of these two factors in (4.9) make this approach very selective and
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thus suitable for robust, reliable and safe operation of a prosthesis, since it minimizes

the risk of wrong prosthetic activations. Additionally, when using force sensitive fea-

tures, in case of confident estimation its output is proportional to the exerted force

and thus also allows for smooth prosthesis operation. In summary, the derived ap-

proach promises to allow for very reliable, proportional control of myoelectric driven

prostheses. The testing of this hypothesis in real life test scenarios with able-bodied

and amputee subjects is described in the following sections of this chapter. Its per-

formance is compared to two other control schemes, as described next.

4.1.2 Compared methods

In order to compare the newly developed method, two state-of-the-art reference con-

trol methods were equally tested.

LDA

The first was a simple LDA classifier as used for previous experiments. A majority

voting post-processing was applied to the classification stream with a window length of

7, which was found to be the optimal trade-off between accuracy gain and controller

delay in preliminary investigations. The proportional value for the identified class

was computed as the average RMS value of all EMG signals, scaled to the MLVC of

each motion. This method was used for reference to a standard pattern recognition

method.

Extended mode switching (eMSW)

The second method for comparison was a straightforward extension of the commonly

used mode switching method. As introduced in Chapter 1, in commercial prosthe-

ses, two electrodes are placed on independently controllable muscle regions of the

forearm. This allows for the direct control of 1 DOF (two movements). In order to

allow control over a second DOF, a co-contraction of both muscles groups is used

as switching signal. In this study, this scheme was extended to the control of 3.5

DOF in form of a state machine. Co-contractions were used to cyclically switch from

WS/WP → WF/WE → KG/HO → FP/HO and back to WS/WP (since HO was

present twice, this system is referred to as 3.5 DOF rather than 4 DOF). A visual-

ization of this simple state machine is provided in Figure 4.3.
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Figure 4.3: State machine for eMSW method. Arrows indicate transitions from one state to the next
by co-contraction. A maximum of 3 switches is needed to reach any desired state, with the fourth
co-contraction, the initial state is returned to. Reused and modified with permission [84] c©2014
IEEE.

This extended mode switching method will be referred to as eMSW for the remainder

of this chapter. It was included as a reference system, since it has not been shown

yet in literature if this simple extension of the well accepted control for 2 DOF was

also suitable for the control of 3.5 or 4 DOF. The switching diagram shown in Figure

4.3 was printed out and available for the subjects throughout all tests. Successful

co-contractions were accompanied by a beeping sound for feedback.

The eMSW method was implemented with support from Otto Bock Healthcare Prod-

ucts GmbH, Vienna, Austria, which provided detailed information on how a co-

contraction based switching system is realized in commercial prostheses (thresholds,

timing, winning signal strategies. . . ). While these confidential data will not be dis-

closed in this thesis, the adherence to these guidelines during the implementation

of the software ensured similar performance as found in commercial systems. The

eMSW method was tested only with the able-bodied subjects. With amputees it was

preferred to record data with their own, commercially available prostheses as the ref-

erence scenario. It represents the current clinical state of the art (SOA). Investigating

eMSW in addition to the SOA was not feasible due to time and fatigue constraints

of the amputee subjects.

The sequence of testing the machine learning methods was randomized and subjects

were blind to the chosen order. The eMSW control required a completely different

control strategy and thus the subject had to be informed when this method was used.
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4.1.3 Subjects

In total, 14 subjects were recruited to participate in this study, split in a control

able-bodied (10) and an amputee (4) subject group. All subjects were introduced to

the design and goals of the study. Prior to their participation in the experiments,

they signed an informed consent in compliance with the study approval of the local

ethics committee.

Among the able-bodied subjects (age 30 ± 4.7 years), 3 female and 7 male subjects

volunteered, all dominant right handed. The available hardware for this study did

not allow mounting the able-bodied adapter for wearing the prosthesis and the EMG

on the same arm. Therefore, the prosthesis (a left hand) was mounted on the left

arm, while the EMG signals were recorded from the right arm. This setup was found

to be intuitive after a very short familiarization phase (less than a few minutes) and

proved to be beneficial because it distributed the physical strains (sustaining the

weight of the prosthesis and performing the wrist and hand gestures) to both arms,

which reduced fatigue.

The details on the amputees are summarized in Table 4.2. As mentioned previously,

a customized socket to which the prosthesis got attached was manufactured for each

amputee. The handling of the test prosthesis was therefore very close to how the

wearers usually use their prostheses, which maximized the clinical relevance of this

study.

4.1.4 Applied test scenarios

In order to estimate the potential of the three investigated prosthetic control schemes

for application in prosthetic control, in this study the focus was put on online evalua-

tions with the control of physical hand prostheses worn by the users. For able-bodied

subjects, a splint was manufactured to attach the prosthesis to the sound forearm of

a participant. For amputees, the same sockets as already fabricated for the study of

Chapter 3 were reused, this time with the prosthesis attached to the socket. The test

setup was thus very close to a realistic scenario of use.

With the prostheses attached to their forearms as shown in Figure 4.4, each subject

was asked to complete the following tests in the same order as described in the

following. This order was chosen so that the tests would increase in difficulty from

simple to complex.
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Figure 4.4: Prosthesis mounted on subjects. Upper two panels: one right (Amp1) and one left
(Amp2) hand amputee, lowest panel: adapter for able-bodied subjects to wear the prosthesis for the
tests. Reused and modified with permission [84] c©2014 IEEE.
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Box and Blocks test

Originally, the box and blocks test was proposed as an assessment test for gross hand

function of patients with cerebral palsy [102, 103], however due to its simplicity and

versatility it can be used for grasping tests in general. Moreover, it is well studied

and normative data for healthy adults [103] and minors [104] exist for reference.

The test consisted of two adjacent boxes of roughly 25 cm edge length and 7.5 cm

height, separated by a 15 cm tall dividing barrier (for exact measures see [103]). One

box was filled with cubes of 2.5 cm edge length and the test consisted in relocating

as many cubes from the full to the empty box in 60 s, one block at a time (Figure

4.5(a)). The test was repeated 3 times and the average number of transferred blocks

was reported. Since this test only required opening and closing of the hand it was

considered relatively easy from a control point of view.

Clothes pin relocation test

The clothes pin relocation test was proposed by Kuiken et al. [105]. Like the box and

blocks test, it is simple to reproduce and has found good acceptance for quantifying

upper limb function. The task which had to be performed by the subjects was to

pick up a clothes pin clipped to a horizontal rod, rotate it by 90 degrees and place

it on a vertical rod. The time for completing this maneuver 3 times in a row was

measured and again the average of three repetitions was reported. In this study, the

Rolyan R©Graded Pinch Exerciser [106] was used, which is a standardized, commer-

cially available version of that test. For the successful completion of this test, hand

open/close and rotation functions of the transradial prostheses were required. Hence

in this study it represented a test of medium difficulty.

Block turn test

After thorough literature research, to the best of the author’s knowledge no stan-

dardized test was available which enforced the utilization of all movements (3.5 DOF)

available in the hand prosthesis used for this study. The ULPOM (Upper Limb Pros-

thetic Outcome Measures) group gathered the most comprehensive list of tests [107],

but none of them appeared concise and suitable enough for the control of a multi-

functional hand prosthesis with the particular actuated DOF as utilized in this study.

Therefore, a novel test was introduced for this study, as described in the following.
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(a) A subject performing the box and blocks test.
As many cubes as possible have to be transferred
from the one box to the other over the barrier be-
tween them.

(b) A subject performing the clothes pin test. The
task was to relocate the clothes pin from the lower,
horizontal bar to the upper, vertical bar.

(c) An able-bodied subject in the middle of per-
forming the block turn test, placing the block in
the medium height shelf

Figure 4.5: Scenes of subjects performing the three practical tests applied in this study.
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The exercise of this test was to pick up a wooden rectangular shaped block with the

dimensions of 15.8 cm × 5.7 cm × 1.7 cm lying flat on a shelf at shoulder level, rotate

it, and place it on its short thin side like a book in a shelf at waist level. Then it was

to be grabbed again and turned back down to its initial orientation. The movements

required in each of the stages are detailed in Table 4.1 and depicted in Figure 4.6.

This sequence of movements was to be performed as fast as possible and the required

time was measured. If the block was dropped during the execution of the test it

was repeated from the start. Only the times of fully successful trials were taken into

account. As an additional measure to the speed, the number drops of the block was

evaluated. The average time of three successful trials and the number of drops until

three trials were successfully completed were evaluated. Less drops and faster com-

pletion times indicated a better control over the prosthesis.

Since this test required grasping in an elevated arm position and the control over

all DOF provided by the prosthesis was necessary, this test was considered the most

difficult of this study.

Figure 4.6: Schematic sequence of performing the block turn test. For closer description, see Table
4.1. Reused and modified with permission [84] c©2014 IEEE.

Table 4.1: Sequence and required movements for performing the block turn test. Reused and
modified with permission [84] c©2014 IEEE.

Stage Required movements

Pick up block from shoulder level shelf WF, FP
Rotate block upright WS, WE
Place block on its small side like book in shelf at waist level HO
Take the block again like a book or CD case WP, KG
Rotate the block back to its original orientation and release it WP, HO
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Table 4.2: Details on amputee subjects. CoCo is used as short-hand for co-contraction, PRE for
pattern recognition experience. Reused and modified with permission [84] c©2014 IEEE.

Subject Age Amputee Stump length Everyday prosthesis (movements) Control method PRE

Amp1 26 3 years medium Michelangelo + rotation (5) CoCo + 4-channel control >60 hrs

Amp2 35 7 years medium Sensorhand speed + rotation (4) 4 independent signals ∼50 hrs

Amp3 27 1 year short Sensorhand speed + rotation (4) 4-channel control ∼20 hrs

Amp4 29 3 years medium Michelangelo (3) CoCo ∼25 hrs

4.1.5 Questionnaire

Since the tests presented above solely relied on timed results, an additional, subjective

measure of user confidence in the control methods was assessed in form of a short

questionnaire with the questions as described in the following list.

1. Which method did you think resulted in unintentional movements more often?

2. Which method gave you the feeling of better control over the prosthetic move-

ments?

3. With which method did you have finer proportional control?

4. With which method do you think you were faster on average?

5. Which method did you prefer overall and would like to see in your own pros-

thesis?

These questions were asked to the amputee subjects only since they were regarded

as the more relevant group for this subjective rating.

4.1.6 Hardware control system

The prosthesis used for the experimental sessions was a commercially available Michel-

angelo hand from Otto Bock HealthCare Products GmbH, Vienna, Austria. It was

attached to prototypes of actuated wrist rotation and flexion/extension units by the

same manufacturer. The prosthesis thus allowed control over 3.5 DOF. As for the

data recording as described in Chapter 2, eight 13E200=50-AC electrodes were placed

equidistantly around the circumference of the subjects’ forearms. For able-bodied sub-

jects, a custom manufactured mounting system was employed to hold the electrodes in

place and for amputees their sockets were used. The signals were conditioned by the

active electrodes and A/D converted by the Axon bus master (Otto Bock) at 10 bit

63



Draft

Chapter 4. A novel multi-class proportional estimator

resolution with a sampling frequency of 1 kHz. The signals were transferred to a PC

(Intel i7, 1.73 GHz, 6 GB memory, Microsoft Windows 7) via Bluetooth connection,

where the signal processing steps for extracting the user intent with the algorithms

described above were implemented in a custom C# software package. The resulting

prosthetic movement commands were then sent back to the prosthesis again via the

same Bluetooth link to control it in near-realtime. The delay of the Bluetooth con-

nection (from sending the movement command to measuring a movement with the

hand internal sensors) was quantified in previous experiments to be in the range of

< 50 − 400 ms. This delay was noticeable but acceptable for the tasks completed in

this experiment.

4.1.7 Data acquisition

In order to acquire the training data for the LDA and CSP-PE methods, the same

software and procedures as described in Chapter 2 were used, but only 3 runs were

recorded per subject. The modified Hudgins feature set (RMS, ZC, SSC, WL) was

extracted from the signals. With able-bodied subjects, the data were recorded in

one relaxed arm position (upper arm hanging, elbow 90◦ flexed, forearm pointing for-

ward) and took around 15 minutes including breaks. All 7 movements the prosthesis

was capable of performing were included plus NM. With amputees, 3 different arm

positions (relaxed hanging, stretched to head level and pointing forward, [67]) were

included, with the prosthesis mounted. For Amp1 and Amp2 the same classes as

for the able-bodied subjects were used. For Amp3 and Amp4, WF and WE were

excluded, since these subjects were not able to perform these movements consistently

and distinguishably from all other movements. To avoid fatigue, substantially more

breaks were granted to the amputees, doubling the recording time.

4.1.8 Statistical analysis

In order to evaluate whether the used control methods resulted in significantly differ-

ent task completion measures, an ANOVA for repeated measures with one factor of

three levels (CSP-PE, LDA, eMSW) was conducted. Subjects were treated as random

factors. When the ANOVA showed a significant difference, a Tukey-Kramer post hoc

comparison [89,90] was applied to investigate pair-wise differences between methods.

The analysis was only carried out for able-bodied subjects. For amputees, the results
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were quite variable and due to the low number (n = 4), the individual results are

presented rather than summarizing statistics.

4.2 Results

4.2.1 Able-bodied subjects

In preliminary tests, all experiments were conducted within one session, after which

subjects reported substantial fatigue in the left arm (the one carrying the prosthe-

sis). Therefore, for the final assessments of this study, the experiments were split in

two days: On the first day, subjects performed all tests with the machine learning

based control methods (LDA, CSP-PE) and on the second day, eMSW was investi-

gated. With this setup all subjects were able to complete the experiments reporting

at most mild fatigue, with the exception of one female subject, who still reported

strong fatigue, accompanied by mild shoulder pain and substantially decreased per-

formance was apparent, especially with LDA. For this subject the experiments were

thus aborted and the data were excluded from all further evaluations.

In Figure 4.7 exemplary estimation results of LDA with no post-processing, LDA

with majority voting of 7 and CSP-PE are shown for the same EMG data. The

graph shows that in the center of the investigated time segment, the first EMG chan-

nel was affected by noise, resulting in mis-classifications of LDA, which could also not

be removed with a majority vote of 7, as used in this study. In fact, a majority vote

of 32 was necessary to remove all shown mis-classifications, but this would also have

introduced one second delay in the real-time control. CSP-PE however was capable

of suppressing wrong movements in this scenario.

The statistical analysis revealed that the control method had significant influence in

all tests (p < 0.01 for all). Therefore, in the following only the pairwise differences

will be presented per test.

Results of box and blocks tests

Average times for picking up, transferring and releasing one cube from one box to the

other were 3.1±0.4 s, 4.1±0.9 s and 2.7±0.5 s for CSP-PE, LDA and eMSW respec-
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Figure 4.7: Exemplary estimation results for the same EMG data by LDA, LDA with a majority
vote of 7 and CSP-PE. It is apparent that approximately in the center of the displayed sequence the
first EMG channel was affected by noise (likely due to electrode lift-off). In this case, LDA output
some wrong estimations, which were also not removed by majority voting. The subject was asked
to perform WP, but erroneous FP activations occurred. CSP-PE activation was strongly decreased
for this period of time, minimizing the risk for performing a wrong movement. Reused and modified
with permission [84] c©2014 IEEE.

tively1. In this comparison, LDA was significantly worse than both other methods

(p ≤ 10−3 for both). CSP-PE was also outperformed by eMSW, but this difference

was not statistically significant (p = 0.19). The good performance of eMSW can

be explained by the fact that for this test no mode switching was necessary (only

open/close required) and thus eMSW allowed for fast grasping and releasing. The

only times the users were interrupted in their flow of grasping was when an erroneous

co-contraction was detected (mostly because the subjects became too confident and

acted too fast, before their muscles were relaxed), but this occurred only on rare oc-

casions. The results per method in the box and blocks test are summarized in Figure

4.8(a).

Results of clothes pin tests

This test required control over at least 2 DOF (rotation and hand open/close). There-

fore, the eMSW method was expected to perform worse than the machine learning

methods, which allowed direct accessibility to each function. Indeed, the average

time required to complete this test across subjects was 59.3 ± 18.5 s, which was sig-

nificantly slower than with LDA(31.6 ± 14.1 s) and CSP-PE (25.6 ± 7.3 s, p < 10−3

for both). The better performance of CSP-PE compared to LDA was not significant

1In this study, the average times to transfer one block are reported, which is in contrast to most
other papers where the number of blocks transferred in 60 s was reported. This choice was made
so that for all evaluation metrics used in this paper “less is better”, allowing for more intuitive,
direct comparison of the results achieved per method and test. A conversion to blocks in 60 s for
comparisons is trivial.
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(p = 0.47), however the completion times were much more consistent in CSP-PE than

in LDA (compare 14.1 vs. 7.3 s standard deviation). The average completion times

per method in the clothes pin test are summarized in Figure 4.8(b).

Results of block turn tests

The block turn test proved to be the most selective one, revealing significant dif-

ferences among all methods (p < 10−3 for all comparisons). The best performing

algorithm was CSP-PE with an average task completion time of 25.5±6.2 s, followed

by LDA (34.1±12.5 s) and eMSW (48.6±10.0 s). In the additional measure evaluated

for the block turn test, the number of drops of the block, eMSW and CSP-PE were

not significantly different from each other (p = 0.27) but both where significantly

better than LDA (p < 10−3).

Thus, eMSW again proved to be slow in tasks where several DOF were to be con-

trolled. Additionally, subjects reported that they found this control scheme confusing

and much more complicated than the machine learning based methods. The results of

CSP-PE were the best with statistical significance, and also with the lowest variance.

This objective result is in good correspondence with the subject’s feedback, who re-

ported mostly that CSP-PE felt better controllable than LDA (although no detailed

interrogation was performed with these subjects). The completion times and number

of drops separated by method for the block turn test are summarized in Figure 4.8(c)

and Figure 4.8(d).

4.2.2 Amputee subjects

The entire experiment was completed by all amputee subjects, with the exception of

Amp4 due to sickness on the last day of the study, thus for this subject no compara-

tive data with his own, commercial prosthesis could be acquired. Moreover, since this

subject only had a Michelangelo hand without rotation or wrist flexion unit, evaluat-

ing the clothes pin test and block turn test would have been difficult for this subject.

Since the other 3 subjects had all different hands and wrist units (see Table 4.2),

the block turn test had to be simplified accordingly (starting position of the block

at waist level, no KG for the second part of the turn), which made a comparison

to able-bodied and also among the amputee subjects difficult. Therefore, no direct

comparisons were made and the results of the amputees with their SOA prostheses

are reported in the end of this section for reference.
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(a) Box and blocks (b) Clothes pin

(c) Block turn - Time (d) Block turn - Drops

Figure 4.8: Results of the three applied tests conducted in this study achieved by able-bodied
subjects, grouped per test. eMSW performed well in the simple box and block test but proved
unsuitable for more complex tasks. CSP-PE was not significantly slower than eMSW in the box and
blocks test and outperformed both other methods in the more complex tasks. Reused and modified
with permission [84] c©2014 IEEE.
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Results box and blocks test

Amputee subjects were faster using CSP-PE (2.45 s) compared to LDA (2.74 s) for

transferring the cubes in the box and blocks test, resulting in an increased transfer

rate of 22.1 to 25.1 blocks in 60 s. The individual improvements were variable with

4.3, 5, 0.3 and 2.3 (Amp1-Amp4) blocks relocated more in 60 s with CSP-PE than

with LDA, but the advantage of CSP-PE over LDA was consistent in all 4 amputees.

The results per method in the box and blocks test are summarized in Figure 4.9(a).

Results clothes pin test

The average difference between LDA and CSP-PE for completing the clothes pin test

was only minor (22.75 s vs. 22.25 s). However, reporting the average in this case is

not very representative, since the results varied substantially among subjects: While

Amp1, Amp2 and Amp4 completed the task on average 2.7 s, 0.7 s and 4.3 s faster

with CSP-PE than with LDA, Amp3 required 5.7 s more time. When asked for his

feedback, interestingly this subject preferred the control with CSP-PE because he

had more confidence in that control. With LDA he perceived more mis-classifications

and he thus did the task in a faster but also sloppier way: For example, releasing a

clothes pin on the vertical rod was not only possible by opening the hand but also by

rotating the wrist until the grip of the prosthesis lost the clothes pin and it snapped

back to the rod. While not elegant, this was not forbidden in the test and sometimes

faster for the subject if the control of hand open was poor or unreliable. The average

completion times per method in the clothes pin test are summarized in Figure 4.9(b).

Results block turn test

The average time needed for the amputee subjects to complete the block turn test

with CSP-PE was 22.75 s and 25.3 s with LDA. Amp1, Amp2 and Amp4 required 9 s,

3.3 s and 2.7 s less time with CSP-PE, whereas Amp2 was faster by 2.8 s with LDA.

This subject experienced problems with CSP-PE when grasping the block from the

top shelf. The wooden block was only once dropped (by Amp2) with CSP-PE and

three times with LDA (once each by Amp1, Amp2 and Amp4). The completion times

and number of drops separated by method for the block turn test are summarized in

Figure 4.9(c) and Figure 4.9(d).
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(a) Box and blocks (b) Clothes pin

(c) Block turn - Time (d) Block turn - Drops

Figure 4.9: Results of the three applied tests of this study achieved by amputee subjects. The last
panel shows the average over the subjects. In 10 out of the 12 timed measures (4 subjects, 3 tests)
CSP-PE outperformed LDA and it also performed better on average in the number of block drops.
The dashed horizontal lines represent the average results for able-bodied subjects achieved with
CSP-PE for reference. Reused and modified with permission [84] c©2014 IEEE.
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Table 4.3: Amputee subjective method ratings as answers to the questions introduced in Section
4.1.5 (N.D. denotes no difference perceived). Reused and modified with permission [84] c©2014
IEEE.

Question Amp1 Amp2 Amp3 Amp4

More unintentional movements LDA N.D. LDA LDA

Better controllability CSP-PE N.D. CSP-PE CSP-PE

Finer proportional control CSP-PE CSP-PE CSP-PE CSP-PE

Subjectively faster task completions CSP-PE N.D. CSP-PE N.D.

Overall preferred method CSP-PE CSP-PE CSP-PE CSP-PE

SOA prostheses tests

In addition to the experimental test prostheses, three of the amputee subjects also

completed the tests with their own SOA prostheses. Amp1 performed considerably

better with his own prosthesis in the box and blocks test than with CSP-PE (41.7

blocks, compared to 27) and also in the clothes pin test (11 s vs. 13 s on average).

He completed the simplified block turn test in 15.7 s. Amp2 moved one block less per

60 s in the box and blocks test compared to CSP-PE and was almost equally fast with

his SOA prosthesis in the clothes pin test (10.7 s SOA, 11.0 s CSP-PE). He needed

7.3 s for the simplified block turn test (no WF/WE, no KG). Amp3 moved 3 blocks

less with his prosthesis compared to CSP-PE and was 8.7 s slower in the clothes spin

test. He completed the block turn test in 14.7 s with the same simplifications made

as for Amp2.

In summary, the performance of the amputees with their own prostheses was de-

pendent on the level of training they had with it, however for all subjects this was

more than one year. This is compared to only a few hours of familiarization with the

methods investigated in this study.

After completing the tests, all amputee subjects were asked 5 predefined questions

(see Section 4.1.5) to evaluate their subjective feedback on the two machine learning

methods. The two methods were referred to as methods A and B throughout the

sessions in order to keep the subjects blinded towards the methods and were only re-

vealed to them after answering the questions. In general, subjects preferred CSP-PE

over LDA. The results are summarized in Table 4.3.
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4.3 Study discussion

Following the motivations of the previous chapters, further efforts for improved ro-

bustness in myoelectric prosthetic control of multifunctional prostheses were pursued

in this study. The work of the previous studies was extended here to a novel propor-

tional regression method which incorporated an inherent mechanism for suppressing

potentially wrong movements.

4.3.1 Machine learning methods

In Figure 4.2 an exemplary result of the estimation achieved by CSP-PE when applied

to sEMG signals was shown and in Figure 4.7 how CSP-PE was able to correct

for noisy signals in comparison to LDA. The promising results of these exemplary

demonstrations were quantitatively confirmed in a study with 10 able-bodied and

4 amputee subjects in a realistic test setup. The control of a physical prosthesis

in real-time for the completion of three different applied tests of varying difficulties

represented a clinically highly relevant test scenario.

The obtained results showed that CSP-PE consistently outperformed LDA in almost

all tests in both subject groups. In healthy subjects, it yielded the best results in the

2 most complex of the 3 tasks. It was only outperformed slightly by eMSW in the

box and blocks test, since the extended conventional control scheme allowed for very

fast open-close cycles without needing to switch between movements. In amputees,

CSP-PE achieved the best results in 10 out of 12 experiments (4 amputees, 3 tests).

With this consistency of results it is concluded that CSP-PE was the best performing

method investigated in this study.

The good performance of CSP-PE can be attributed to its mathematical properties of

maximal class separation and suppression of wrong movements based on the likelihood

for correct estimations. Similar results were reported in [52] in an abstract avatar

control on a computer screen and follow the same rational as described in Chapter

3 and [84]. Thus, the benefit of canceling wrong movements was already anticipated

but shown for the first time in this study for a physically controlled prosthesis. In

addition to its self correcting properties, the proportional control output for each

movement was found to be very beneficial and allowed fine controlled maneuvers.
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4.3.2 Extended state-of-the-art control

In order to support the need for direct control of multi-DOF hand prostheses, the

eMSW method was included in the investigated test protocol. As expected, the

method was very unintuitive and cumbersome for the näıve users to operate. They

often got lost in the control state machine, despite receiving auditory feedback for

each successful co-contraction and the flow chart of Figure 4.3 being visible for the

subjects at all times for support. Moreover, the eMSW experiments were conducted

last and on a separate day, so the subjects already had the most experience with

the prosthesis and the tests and were well rested. In the clothes pin and block turn

test, control with CSP-PE was approximately twice as fast compared to the eMSW

method and also LDA outperformed eMSW significantly. Together with the negative

impressions reported by the subjects it is concluded that eMSW was not suitable for

the control of the 3.5 DOF prosthetic hand used in this study. For hand opening and

closing only however, as required in the box and blocks test, this method was found

to perform very well, since in that case switching between DOF was not required.

Certainly, several improvements to this näıve straightforward extension of the clinical

SOA could be made, such as including codes (short or long co-contractions, automatic

return to often used functions after inactivity, etc.) but the determination of such

heuristic rules was out of the scope of this work. Also, when users have sufficient time

to learn the control method, good control with the SOA switching paradigm can be

achieved, as demonstrated by the amputees with their own prostheses (although they

had a limited number of actuated DOF).

4.3.3 Block turn test

In addition to the proposed machine learning method, a novel test for assessing man-

ual dexterity of upper limb prostheses was proposed in this study. In practice, the

block turn test proved to be very selective and revealed many shortcomings of the

evaluated control mechanisms. The test is easily replicable, adaptable and in theory

could also be performed by upper arm amputees. The evaluation and interpretation

of the test results is straightforward. In summary, this test may be a good candidate

for becoming a standardized evaluation metric for prosthetic hand function assess-

ment.

For the SOA tests with amputees, the block turn test had to be simplified signif-
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icantly, since none of the amputees had a SOA prosthesis with an actuated wrist

flexion/extension unit and only one subject could perform two grip types. This also

demonstrates the usefulness of these functions for specific tasks as described in this

test, provided that a suitable control method is supplied.

4.4 Study conclusion

A novel proportional control algorithm for myoelectric multifunctional hand pros-

theses was introduced and evaluated in this study. The method was evaluated with

able-bodied and amputee subjects and compared to two other algorithms: one aca-

demic state of the art and one extended version of a commercially available method.

The evaluation setup was chosen very realistically, with the real-time control of a

physical prosthesis in three different tests of pick and place actions of varying diffi-

culty, among which one newly proposed test.

The introduced control method outperformed the other methods in the majority of all

tests investigated. The achieved results were consistent between the able-bodied and

amputee subject groups. The block turn test demonstrated selectivity, adaptability

and reproducibility. In summary, the demanding test setup and the consistently good

results achieved with CSP-PE indicate a significant advancement in the efforts made

towards reliable, robust and intuitive control of multifunctional hand prostheses.
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5 | Combining sequential and

simultaneous regressors

Natural control of sound limbs is characterized by combined and parallel movements -

strictly sequential movements are perceived as robotic and inhuman. Imagine for

example the sequence of taking a glass of water in front of someone: One would ro-

tate and extend the wrist to position the hand, open the fingers and extend elbow

and shoulder - all at the same time, in order to grasp the glass efficiently and in the

correct orientation to avoid spilling. Broken down in its individual components, this

every-day movement suddenly appears indeed very complex - especially when one is

faced with the task of moving an artificial limb as natural in appearance as possible.

In a study dedicated to reveal frequent reasons of upper limb prosthesis device aban-

donment [14], it was reported that “Dissatisfaction with prosthetic technology” and

“Appearance of the prosthesis” were among the most critical factors. It is therefore

not astonishing that up to 50% of all myoelectric prostheses are reported to be never

used by their owners [14, 108, 109]. Providing prostheses, which are intuitive to use

and appear more natural in their functioning and moving, may thus be desired by

many users [6, 109].

To facilitate the intuitive control of multifunctional prostheses, pattern recognition

of EMG signals has been investigated for many decades. Recently, research efforts

have started to focus on the proportional simultaneous estimation of movement across

several DOF (for references see the introduction chapter of this thesis, Section 1.5.2).

The developed regression methods map the exerted force estimated from the EMG

to the activities of all joints. They allow the simultaneous estimation of activation of

several DOF, and each activation estimate is independent in its amplitude from the

rest. Therefore, regression methods allow for very life-like movements. One draw-

back of these methods is however that they only allow for the control of a limited
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number of DOF - typically 2 [110]. Including more DOF results in considerably more

erroneous activations of unintended movements, making dexterous control difficult.

This is however, as shown in the previous studies, achievable with pure sequential

estimators.

In summary, sequential control algorithms such as LDA and CSP-PE and simultane-

ous proportional regression models have disjoint strengths and weaknesses. Therefore,

the combination of both types of control appears as a promising idea: In case of sub-

tle, high precision single-DOF movements, a robust sequential controller should be

used. For gross positioning and orientation of the prosthetic limb, simultaneous and

proportional control is favorable for its natural appearance. This idea was pursued

in the present study, in which a methodology for achieving the combination of “ex-

pert algorithms” for different situations is proposed and evaluated. The most critical

step of this approach is to decide whether a movement should be estimated in a si-

multaneous or sequential manner. Several solutions to this problem are investigated

first.

5.1 Combining estimators

In this section a methodology is described which enables the combination two estima-

tors with complementary advantages for sequential and simultaneous wrist and hand

movements. The task would be relatively simple to accomplish if data of both single-

DOF and multi-DOF movements were available for training. However, due to the

exponential growth of combination possibilities with the number of controlled DOF,

this would significantly increase the data recording time and is thus not desirable.

Therefore, in a practical setup only training data of the single-DOF data are available

which are required for training of the movement estimators. A schematic representa-

tion of the system combining sequential and simultaneous regression methods as used

in this study is shown in Figure 5.1.

5.1.1 Embedded dimensionality estimators

The scientific techniques designed to solve binary recognition problems, where only

data of one (positive) class are accessible for training and data of the counter (neg-

ative) population are not available, are called novelty detection or one class classi-
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Figure 5.1: Schematic representation of the proposed system. For a feature vector originating from
a given movement, first its embedded dimensionality is estimated. Depending on the result, the
feature vector is forwarded to a specialist for sequential or simultaneous movements. The resulting
estimate from that specialist is used for controlling the prosthesis.

fication [111] methods. Consider for example the design of a jet engine, in which a

sensor based failure detection system should be integrated. Acquiring data from a

normally running engine can easily be done during routine tests. However intention-

ally inducing a variety of damages in order to observe corresponding sensor responses

is very costly in this scenario. Although sometimes less drastic, the same principle

can be applied to many other problems, which gave rise to the research field of novelty

detection. The same rational is also applicable to challenge in this study as described

above, where patient time is very expensive. This allows only for the collection of

data corresponding to different single-DOF movements. These form the data with

the positive label. The unavailable data are those which stem from combined move-

ments. During the online application phase, a method trained on the available data

should be able to determine if the currently applied data stemmed from a single-DOF

movement or not - and thus had to be of multi-DOF activation origin.

One well accepted method, which has even advanced to be regarded as the gold

standard solution in novelty detection, is called one class support vector machine

(OCSVM). It was proposed by Schölkopf et al. [112] and uses the kernel trick to

map the data of the positive class to a high dimensional space such that they are

compact and well separated from the origin in that space. That is, the smallest hy-

persphere in that space which encloses all training data is identified. For a newly

applied sample it is evaluated whether it is inside or outside that hypersphere (for

details see [112]). Apart from OCSVM, several other competitive methods have been

described. Five methods were selected from literature as the most promising candi-

dates, augmented by slight alterations and newly conceived ideas which resulted from

the previous chapters, are described briefly in the following. Since they are used to es-
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timate the embedded dimensionality of the observed EMG (single-DOF or multi-DOF

activations), these methods will be referred to as embedded dimensionality estimators

(EDE) in the following.

OCSVM

The state-of-the-art novelty detection method, as described above. The implementa-

tion in Lib-SVM was used for the experiments [113].

KNFST

The Kernel Null Foley-Sammon Transform (KNFST) was proposed by Bodesheim

et al. [114]. The Foley-Sammon method is identical to the Fisher transformation as

described in Section 1.5.1 and is often referred to by that name in subspace learning.

In KNFST, the standard Fisher criterion as in Equation (1.8) is optimized, however

the within-scatter matrix of each class Σw is reduced to 0, which means that the data

of that class have zero variance in the transformed space, i.e. they are projected to

a single point. This is only achievable in a high-dimensional space, such as obtained

by applying a kernel transformation [114]. For application, the novel feature vector

is mapped to the high dimensional space and the minimum euclidean distance of

the transformed point to any of the trained class points is taken as the measure for

novelty. An empirically determined threshold to that distance gives the decision for

novelty or not. The benefit of KNFST with respect to OCSVM is that it describes

each trained base class individually, while OCSVM treats all training data as coming

from the same class. In the present problem, multiple heterogeneous classes (training

data per movement class) form one super class of single-DOF movements. It may

therefore be beneficial to consider this a priori knowledge as done in KNFST. The

major drawback of KNFST however is that it requires computation of the full kernel

matrix with all training data, thus requiring considerable computation time during the

application phase. The implementation as available in [115] was used for this study.

Only every 4th training point could be used, otherwise an OutOfMemoryException

occurred (PC with Intel i7 core, Windows 7 64 bit, 6 GB RAM and Matlab 2012a).
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MD

A relatively simple technique is to calculate the minimum distance of a given point

to any of the training classes similarly to KNFST, but directly in the input space

and without the Fisher transformation [111]. As distance measure the Mahalanobis

distance (MD) is suitable, assuming Gaussian distribution of each class. The MD of

a feature vector x to class i with the class mean vector µi and covariance matrix Σi

is calculated as [38,39]:

MD = (x− µi)TΣ−1
i (x− µi) (5.1)

In contrast to the kernel based methods described above, this approach is compu-

tationally inexpensive and does not require hyperparameter optimization. However,

a threshold for MD above which a feature vector is classified as novel has to be

determined. In this approach one threshold for all classes is chosen.

MD-IND

This minor variation is mostly identical to the MD approach described above, with

the difference that a novelty threshold for each movement class (WS, WP, WF, WE,

HO, KG, FP) is determined individually.

MD-LDA

In another variation of the MD method, the LDA transformation was applied to the

feature data before calculating the MD in the transformed space. This was included

to investigate whether the Folley-Sammons transformation (=LDA) of KNFST was

a critical step for successful novelty detection.

kNN

Rather than assuming an underlying Gaussian distribution of the class data and

fitting the corresponding parameters as done with the MD based approaches, the

non-parametric kNN approach was proposed for novelty detection [111]. The ap-

proach is almost identical to MD, but rather than evaluating the minimal MD of the

feature vector to all classes, the minimal euclidean distance to any set of k neigh-

bors was considered. Again, a threshold based novelty detection rule was applied.
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The parameter k was set to 5. In a straightforward implementation, this approach is

very slow, since computation time increases with the number of training data (time

complexity O(Nd) for N training points of dimensionality d).

CSP-PELL

A further measure for recognition of known data can be extracted from the CSP-PE

estimator introduced in Chapter 4. As part of the computation, the likelihood (CSP-

PELL) of each estimation (expressed as the maximum of the contrasts normalized to

sum 1) is obtained. This can directly be used as the estimate for novelty. Again, a

simple threshold between 0 and 1 has to be determined.

LDA-LL

Similar to CSP-PELL, the classification likelihood of an LDA classifier trained on the

single-DOF data can be used.

5.1.2 Methods for identifying the optimal EDE

For a preliminary investigation to determine the most suitable of the EDE methods

described above, an offline evaluation was performed preceding the online experi-

ments described later in this chapter. For this purpose, 6 able-bodied subjects were

recruited and sEMG data corresponding to 7 active single-DOF movements (WS,

WP, WF, WE, HO, KG, FP) plus a rest class as well as data from the 4 combined

movements WS+WF, WS+WP, WP+WF and WP+WE were acquired. The train-

ing and recording paradigm was the same as used in Studies I, II and III, adapted to

be also suitable for combined movements. In one run, all movements were performed

3 times (at 30%, 60% and 90% MLVC) and in total 3 runs were recorded. For the

combined movements, subjects were asked to perform both of the partial movements

equally at the prompted contraction level, as they would also like to use it in an

online application. In an offline analysis, the 8 EDE methods were trained with two

runs of the single-DOF data only, and the withheld run as well as all 3 runs of the

combined movements were tested (3-fold cross-validation). This was repeated until all

runs were withheld once from training and served as test data. The novelty detectors

acted as EDEs by applying thresholds as described above, which resulted in a two

class classification for each presented feature vector: single-DOF or combined-DOF
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Table 5.1: Elapsed CPU times in [s] per EDE method to estimate all data of one condition

OCSVM KNFST MD MD-IND MDLDA kNN CSP-PELL LDA-LL

Single-DOF 0.02 2.1 0.02 0.02 0.01 126.9 0.66 0.02

Combined-DOF 0.04 4.7 0.03 0.03 0.01 191.1 0.92 0.03

movement. The percentage of correctly recognized single-DOF and combined-DOF

data was analyzed. The thresholds were optimized for each of the methods individ-

ually in 1000 steps. For KNFST this resulted in a grid search, since for this method

also the kernel width required optimization. It was optimized in steps [2−1 . . . 27]. For

OCSVM, the Gaussian kernel was chosen. The hyperparameters ν (determining the

fraction of data which are allowed to be support vectors) and the bandwidth of the

kernel σ had to be optimized. Both were varied in grid search in steps of [2−10 . . . 20].

5.1.3 Statistical Analysis

In order to determine the statistical difference between the investigated methods, a

Kruskal-Wallis test was conducted [116]. In case of statistically significant influence

of the method, pairwise Wilcoxon rank sum tests with Holm correction [117] were

conducted to determine significant differences between the methods. The significance

level for all analyses was set to p < 0.05.

5.1.4 Results of EDE performance

The run time of each of the algorithms varied significantly. For estimating all 2160

feature data per run of the single-DOF movements and the 3240 vectors of multi-DOF

data, the EDE algorithms required between 0.01 s (MD-LDA) and 190 s (kNN).

The recognition accuracies Psingle (Pcomb) were calculated as the conditional prob-

abilities of each feature vector x to be classified as single-DOF (combined-DOF) when

it was actually from the subset of single-DOF {S} (combined-DOF {C}) movements:

Psingle = P (x|x ∈ S) (5.2)

Pcomb = P (x|x ∈ C) (5.3)

Including all EDE methods, the Kruskal-Wallis analysis revealed significant influ-

ence of the method for both Psingle and Pcomb, p < 10−3. However, LDA-LL resulted

in unacceptable accuracy levels for Pcomb (<30%, see Figure 5.3). Therefore, LDA-LL
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Figure 5.2: Runtimes of EDE methods. Left circles in blue: time in seconds for estimating all 2160
feature vectors of one single-DOF run. Right red circles: the same for 3240 combined data feature
vectors. For KNFST only every 4th training vector could be used due to memory constraints.

was excluded from the methods and the analysis was repeated. In this new assess-

ment, Psingle was still significantly influenced by the used method (p < 10−3), however

the method now had no significant influence anymore on Pcomb (p = 0.16). In general,

the average recognition accuracies were below 95% for single-DOF data and below

90% for combined data. This means, 5% or more of actually single-DOF data were

wrongly labeled as combined-DOF data and 10% or more data were misclassified

as single-DOF, when they were actually from the subset of combined movements.

Whether this recognition accuracy was sufficient in an online application for smooth

control was to be investigated in the online tests (see below). The analysis conducted

here allowed for selecting the best suitable EDE candidate for these experiments.

With statistical significance, kNN, MD, MD-IND and MD-LDA outperformed OCSVM

and CSP-PELL, but were not significantly different among each other. KNFST was

also outperformed, but these differences were not statistically different. The main

result obtained in this analysis was hence that the simple to implement and compu-

tationally highly efficient methods (based on calculating the Mahalanobis distance)

achieved similar better accuracies than the more complex and time intensive methods
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and were thus the methods of choice. The method based on the CSP-PELL would

have been of particular interest since it did not require any additional calculations at

all (the times shown in Table 5.1 and Figure 5.2 were needed for movements estima-

tion regardless and did not result in any overhead for the estimation of the embedded

dimensionality). It was therefore also an interesting candidate for online investiga-

tion. However, it achieved significantly worse results compared to the MD based

approaches, and therefore had to be discarded. OCSVM achieved relatively poor re-

sults and proved to be very sensitive to hyperparameter selection and was therefore

not investigated further. KNFST was also not suitable, since it was computationally

so expensive (due to the creation of the full kernel matrix) that training data had to

be excluded. With this restriction, it did not result in sufficient recognition accura-

cies. Therefore it had to be excluded from the EDE candidates suitable for online

implementation. For its computational complexity, also kNN had to be excluded.

Although it yielded good recognition results, it was not superior to the MD based

methods.

As a result, the simple MD method was chosen as the most suitable candidate for

all further online experiments. The threshold for the method was determined empir-

ically before the start of the experiment, so that both simultaneous and sequential

movements could be performed by the subject. After this initial setup, the threshold

was not changed anymore.

5.2 Online control of physical prostheses

After identifying the optimal EDE method, it was proceeded to integrate the system

allowing for simultaneous wrist and sequential hand control in the software frame-

work developed for the study presented in Chapter 4. The main estimation methods,

linear regression (LR) and CSP-PE, were already available. The integration of the

MD EDE proved to be uncomplicated and its computational efficiency was adequate

for real time application. Since the obtained method was a combination of CSP-PE

and LR, it will be referred to as CSP-PE+LR from here on.

The online control experiments were largely conducted as those presented in Chapter

4, with only small alterations. The same prosthetic hand, prosthetic sockets for am-

putees, training and data recording paradigm, signal processing, evaluation schemes

and study design, including real time control of a physical prosthesis in applied tasks,
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Figure 5.3: Accuracies of EDE methods. Left: single-DOF accuracy - the percentage of single-DOF
movements recognized as such. Right: combined-DOF accuracy: Percentage of combined-DOF data
recognized as such. It is important to consider both accuracies at the same time. Due to its bad
performance in the combined accuracy, LDA-LL had to be excluded. Significant differences between
methods are marked with their respective symbols.

were used. For the experiments, the two amputee subjects Amp1 and Amp2 of the

study in Chapter 4, which were capable of controlling all 8 prosthetic movements,

were recruited to participate in this study, since the other two subjects were not ca-

pable of performing WF and WE independently from all other movements required.

In addition to the amputee subjects, 5 of the healthy subjects which had already

completed the study described in Chapter 4 were included. Amputee subjects were

asked to complete the Southampton hand assessment procedure (SHAP) test [118], a

comprehensive test particularly developed for the assessment of upper limb prosthesis

functionality in amputees. It is a test investigating prosthetic function in situations

close to those of activities of daily living (ADL) and was thus particularly suited for

the evaluation of the natural, dexterous prosthesis control facilitated by the simulta-

neous, proportional control used in this study. The test procedures included pouring

a cup of water, cutting a piece of plastic modeling mass with a knife, opening buttons

on clothes, picking up coins from a table top, etc. For all tests and the exact test

procedure, the interested reader is referred to [118]. The SHAP test was performed

by trained clinicians of the AKH Vienna General Hospital.

With the able-bodied subjects, it was preferred to repeat the box and blocks test,
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clothes pin test and block turn test, since ADL testing was considered not as rele-

vant as with amputees and direct comparison of the applied method to the purely

sequential control of Chapter 4 was favored. The tests with able-bodied subjects were

repeated 6 months after the initial tests. In the meantime, these subjects had not

participated in any machine learning based prosthetic control tasks. In this setting

of tests with able-bodied and amputee subjects, a comprehensive evaluation of the

investigated method was facilitated.

5.3 Results

All able-bodied and amputee subjects were able to complete the respective tests

conducted with each subject group. In the following, the detailed results for each

subject group are presented.

5.3.1 Amputee SHAP results

The SHAP results of amputee Amp1 are detailed in Table 5.2. The overall score of

function was 58 for this subject. During the entire SHAP test, in Amp1, 20.1% of all

rotation movements were also combined with flexion/extension of the wrist, whereas

24.5% of all wrist flexion/extensions were combined with a rotation activation. Ex-

emplary activations for Amp1 are shown in Figure 5.4.

For Amp2, 38.2% of all rotations were combined with wrist flexion/extension, and

flexion/extension was combined with rotation 27.1% of all times, hence this subject

used simultaneous activations more frequently than in the first subject. This was

likely the case since, as described in Chapter 4, this subject was also capable of

performing combined movements (although different ones than used in this study)

with his everyday prosthesis. Amp2 also achieved better results than Amp1 in the

SHAP test. The overall score of Amp2 was 71. The detailed results are shown in

Table 5.3.

Unfortunately, the exact way the global index of function score is calculated for the

SHAP test is not revealed to the user. The measured times per task have to be inserted

in a web-based form, and the index of function is computed automatically. The test is

standardized so that 100 points represent results equal to normally limbed subjects.

In order to gain more insight on how the subjects performed in direct comparison

to each other, their time results for each subtest of the SHAP were plotted against
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Table 5.2: SHAP test results for amputee subject Amp1

Abstract Objects

Light Sphere: 2.66 s Heavy Sphere: 4.78 s
Light Tripod: 3.56 s Heavy Tripod: 3.53 s
Light Power: 3.25 s Heavy Power: 3.22 s

Light Lateral: 2.81 s Heavy Lateral: 5.31 s
Light Tip: 2.88 s Heavy Tip: 4.47 s

Light Extension: 3.88 s Heavy Extension: 4.88 s

Activities of Daily Living

Pick Up Coins: 22.25 s Lifting a Heavy Object: 10.37 s
Button Board: 35.20 s Lifting a Light Object: 4.15 s

Simulated Food Cutting: 22.47 s Lifting a Tray: 7.25 s
Page Turning: 11.97 s Rotate Key: 4.25 s

Jar Lid: 3.93 s Open/Close Zip: 10.59 s
Glass Jug Pouring: 12.37 s Rotate A Screw: 25.31 s

Carton Pouring: 11.35 s Door Handle: 3.53 s

SHAP Scores

Functionality Profile
Spherical: 85.00 Tripod: 40.00

Power: 45.00 Lateral: 74.00
Tip: 56.00 Extension: 51.00

Index of Function Score

Index of Function: 58.00
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Figure 5.4: Exemplary activations of the first amputee participating in the SHAP test. It is shown
that the subject chose to activate most of the movements sequentially, but also simultaneous move-
ments were possible and used by the subject (highlighted in gray).

Figure 5.5: Exemplary sequence of Amp2 performing simultaneous wrist flexion and supination
followed by a pinch grip to grasp the mug of the SHAP test.
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Table 5.3: SHAP test results for amputee subject Amp2

Abstract Objects

Light Sphere: 3,60 s Heavy Sphere: 4.03 s
Light Tripod: 3,94 s Heavy Tripod: 3.98 s
Light Power: 3,22 s Heavy Power: 3.50 s

Light Lateral: 4.66 s Heavy Lateral: 5.20 s
Light Tip: 3.75 s Heavy Tip: 4.59 s

Light Extension: 3.08 s Heavy Extension: 4.22 s

Activities of Daily Living

Pick Up Coins: 26.82 s Lifting a Heavy Object: 4.53 s
Button Board: 19.80 s Lifting a Light Object: 2.80 s

Simulated Food Cutting: 30.10 s Lifting a Tray: 2.55 s
Page Turning: 6.96 s Rotate Key: 4.97 s

Jar Lid: 4.40 s Open/Close Zip: 6.47 s
Glass Jug Pouring: 13.12 s Rotate A Screw: 11.62 s

Carton Pouring: 17.97 s Door Handle: 2.59 s

SHAP Scores

Functionality Profile
Spherical: 78.00 Tripod: 38.00

Power: 54.00 Lateral: 76.00
Tip: 54,00 Extension: 74,00

Index of Function Score

Index of Function: 71.00
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Figure 5.6: Direct comparison for each SHAP test result between the two amputees participating in
this study. The upper, red half of the plot represents tests were Amp1 performed faster than Amp2,
while in the lower, blue half Amp2 was faster than Amp1. For tests with substantial differences
between the subjects, the SHAP test number is added next to the data point.

each other in a scatter plot, see Figure 5.6. In this plot it is shown, that simple

pick-and-place tasks were scattered around 4 s and were equally distributed among

the two subjects. The more complex tasks are numbered for identification. Generally,

Amp2 performed better than Amp1 in 6 out of these 10 difficult tasks, with two of

these differences being remarkably different: 11.62 s vs. 25.31 s for rotating the screw

and 19.80 s vs. 35.20 s for the button board. In summary, the differences visualized

in Figure 5.6 likely explain the different outcome scores of 58 for Amp1 and 71 for

Amp2, although with only two exceptions these differences did not appear particularly

prominent.

5.3.2 Able-bodied results

Since in this test only one control method was tested, subjects did not report muscle

fatigue and all were able to complete the tests. A t-test was conducted to determine

statistically significant differences between CSP-PE and CSP-PE+LR. In the box and

blocks test, the subjects needed 3.11 ± 0.62 s on average to transfer each block with

CSP-PE+LR. Compared to the 3.25 ± 0.62 s required with CSP-PE, this difference

was not statistically significant (p = 0.52). In the clothes spin test, subjects improved
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their completion times from an average of 23.4± 4.66 s with CSP-PE to 16.4± 3.35 s

with CSP-PE+LR, which was also statistically significant (p < 10−3). The same trend

was observed in the block turn test, where subjects improved from 23.2 ± 4.94 s to

16.0± 3.59 s with the CSP-PE+LR method, which was again statistically significant

(p < 10−3). The number of drops of the block slightly increased with CSP-PE+LR

compared to CSP-PE, from a total of 1 to 3 drops in all 15 experiments (5 subjects,

3 test repetitions per subject), which can still be considered as a good performance

and was not statistically different between methods.

During all tests, able-bodied subjects combined 14.5% of all rotation movements

with wrist flexion/extension, and 26.7% of all flexion/extensions were combined with

rotations.

5.4 Study discussion and conclusion

In this study a novel concept for combining estimators has been presented and eval-

uated. In the analysis of simultaneous and sequential regressors of previous studies,

complimentary benefits and compromises of these two estimator types were identified.

Therefore it was hypothesized that by combining these methods, each specialist could

potentially alleviate the shortcomings of the respective other method, resulting in an

overall improved control system, exhibiting favorable behavior compared to each of

the methods used alone.

The system investigated in this study facilitated the control over 8 prosthetic func-

tions, 4 of which could also be used in a simultaneous, proportional manner. Here,

wrist rotation and wrist flexion/extension where simultaneously controllable. How-

ever, it is noteworthy that the same methodology is also applicable to the control of

less functions, for example for users who do not have the possibility of using an actu-

ated wrist flexion/extension unit (these are not commercially available on the market

yet). In this case, for example hand open/close and rotation could be combined in

the same manner, which could readily be useful for commercial prostheses. However,

this has not been investigated in this study.

The most crucial step of this system, as highlighted in Figure 5.1, was the estimator,

which in the first step determined whether a movement sEMG feature vector should

be forwarded to the specialist for sequential or simultaneous estimation. To accom-

plish this task, eight suitable candidates for this purpose were identified. In the direct
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(a) Box and blocks (b) Clothes pin

(c) Block turn - Time (d) Block turn - Drops

Figure 5.7: Results of CSP-PE+LR compared to CSP-PE. In the simple box and blocks test, the
advanced control mechanism with simultaneous wrist movements did not result in a significantly
different performance compared to the sequential CSP-PE, since only hand open and close were
required. However, in the two more difficult tasks, which required activation over several DOF, the
simultaneous wrist and sequential hand activation control method resulted in a significant perfor-
mance increase. * denotes significant difference (p < 0.05).
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comparison of these methods, one of the simplest methods based on the thresholded

Mahalanobis distance to the training data proved to be also one of the most accurate

and was thus chosen for the online experiments. During the online control of the phys-

ical prosthesis, it was found that empiric determination of the appropriate threshold

was straightforward, however the optimal values varied considerably between subjects

(from 18 to 40 a.u.). In future developments, this threshold should be computed for

each subject individually and automatically, although this will be a challenging task,

since no data of simultaneous movements are available for optimization.

The results of the amputee subjects achieved in the SHAP test were encouraging,

however especially the result of Amp1 (58 points) was inferior to the expected out-

come [119,120]. A closer analysis and comparison revealed that two of the 26 subtests

(button board and rotate screw) were substantially different between the two subjects,

potentially explaining the relatively big difference in the overall outcome score.

It was further found that subjects used the simultaneous wrist movements to different

extents, with Amp1 almost twice as much as Amp2. This is likely explained by the

fact that Amp2 is also capable of using simultaneous movements with his personal

prosthesis (although different ones as used in this study), whereas Amp1 had not used

simultaneous movements before. It can therefore be speculated that user training and

usage habits play an important role in the amount of exploiting the capabilities of

simultaneous wrist movements. This interesting observation should be investigated

more closely in a dedicated study, preferably in a longitudinal scope to allow better

subject familiarization with the control.

In able-bodied subjects, substantial improvements with CSP-PE+LR over purely se-

quential CSP-PE alone were obtained. This could partially be explained by the usage

of simultaneous movements in about 20% of all wrist movements. Additionally to the

time gained by simultaneous movements, the CSP-PE+LR based system was less

affected by ”unclean” execution of wrist movements. For example, if the subject

wanted to move the prosthetic hand in full supination and wrist extension position,

with CSP-PE first activating e.g. supination was required. Then the subject had

to rotate his arm from which the EMG signals were collected, back to the neutral

position (in which the training data were recorded) and perform the wrist extension.

In case the return to the neutral position was omitted between the two movements,

CSP-PE would not have recognized the movement and not issued a control com-

mand to the prosthesis. However, in CSP-PE+LR, this would still result in a good
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estimation by LR, allowing the prosthesis to reach the desired orientation (without

necessarily causing a simultaneous movement, when the prosthesis was already in full

supination prior to the subject starting the wrist extension). This behavior was ob-

served multiple times by the experimenter in all subjects. Furthermore, able-bodied

subjects reported difficulties in determining the correct combination of wrist move-

ments for aligning the prosthesis in the desired orientation. These problems were not

reported by the amputee subjects, who had less difficulties to incorporate the cur-

rent prosthesis position into their body image than the able-bodied subjects and thus

to perform the correct combined movements. This may also partially be attributed

to the fact that able-bodied subjects had to use the sEMG of their right forearms

to control the prosthesis on their left hand, which was (as described in Chapter 4)

imposed by the mechanical constraints of the used equipment. While this drawback

proved unproblematic for sequential control in the study presented in Chapter 4, in

the present study using combined movements this setting might have had bigger in-

fluence. In future studies with able-bodied subjects using combined wrist motions,

this constrained should be eliminated by suitable hardware. However, despite these

difficulties, able-bodied subjects achieved very good results in these experiments with

CSP-PE+LR. It outperformed the purely sequential CSP-PE as used in Chapter 4,

which proved to be the best method in that study. The experiments of this study were

conducted 6 months after those of the study of Chapter 4. In the meantime, none of

the subjects had acquired further experiences with the machine learning based real-

time control of prosthesis, making the improved results unlikely to be due to carry

over effects [121]. The results are therefore encouraging and further investigations

considering the improvements mentioned above are warranted.

Conclusion

In this study, the combination of simultaneous and sequential proportional estimators

was developed and tested in real-time control experiments of a physical prosthesis in

applied tests with both able-bodied and amputee subjects. For amputees the same

custom sockets for attaching the prosthesis as described in the study of Chapter 4 were

used, maximizing the clinical relevance of the test protocol and the achieved results.

The simultaneous control of the wrist proved to be advantageous over pure sequential

control, however especially for able-bodied subjects, the contra-lateral control strategy

was identified as an important issue to be resolved in future studies for improved
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intuitiveness of the simultaneous control in this subject group. Also, in future studies

directly comparable test results (e.g. SHAP test) of pure sequential control and

mixed simultaneous and sequential control should be obtained to quantify the benefit

of simultaneous wrist motions over sequential control more extensively.
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conclusion

In the beginning of thesis, the general goals of machine learning based myoelectric

control of multifunctional prostheses of the upper extremity and the related challenges

were discussed. A substantial lack of robustness of the previously proposed methods

was identified. Therefore, in the further progress of this thesis, a series of four studies

was dedicated to investigate these matters profoundly and propose several solutions.

The particular focus was put on the robustness of these systems, advancing the state

of the art in prosthesis control.

In the first study, a previously insufficiently described influence of non-stationarity

on the sEMG signals was identified and an attempt to provide deeper insights was

made: the influence of time. To this end, in total 11 subjects divided in able-bodied

and amputee groups, were recruited to participate in this study over the course of 5

successive days. A well accepted pattern recognition method was investigated regard-

ing its performance of discriminating 8 wrist and hand movements over the course of

this time. The analyses were carried out in an offline manner for exhaustive tests. It

was revealed that the more days lay between the recording of the training and the

testing data of the classifier, the more mis-classifications occurred. This is relevant

knowledge for the clinical application of machine learning based methods for pros-

thesis control. Similar work had only been conducted before by [80], but this work

was limited to one healthy subject. In [122] a study was conducted across 4 days,

but again limited to able-bodied subjects and no inter-day testing was performed.

Therefore, in this work important new information was gained. The study was how-

ever limited to offline analyses. In future studies, it should be investigated if the

effects observed here translate to online control. Perhaps, the user could compensate
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Chapter 6. Thesis discussion and conclusion

for some mis-classifications by slightly changing his movement strategies. However,

the results of this work point at the probable necessity of such user (or algorithm)

adaptations, which is a valuable information.

In the third chapter, a novel methodology for alleviating the observed results de-

scribed in Chapter 2 was explored. A self-correction mechanism was designed, de-

scribed and analyzed. The proposed system effectively facilitated the autonomous

detection of mis-classifications and allowed for their correction. With this method, a

significantly increased performance was obtained when compared to the base line of

no correction or when three previously proposed correction methods were applied. As

the main result of this study, a solution for increasing the robustness of sEMG sig-

nal classification was proposed. A further result of interest was that the suppression

of wrong movements (i.e. predicting the rest class in case of uncertain estimations)

could be beneficial for removing false prosthetic motions. However, due to the offline

nature of this study, this had to be confirmed in the next study. Similar findings were

reported by Scheme et al. [52], but due to its limitation to an abstract cursor control

task, the transferability of the results to the control of a physical prostheses remained

unknown. This issue was also addressed in the next study.

In order to substantially extend the findings described in Chapter 3, a third study

was designed to investigate the beneficial behavior of suppressing wrong movements

in an online control study using physical prostheses, described in Chapter 4. For this

purpose, four amputees were fitted with experimental prosthetic sockets, suitable for

machine learning based prosthesis control. Additionally, 10 able-bodied subjects were

fitted with an experimental attachment to use a prosthesis with a sound limb. With

this realistic setup of controlling physical prostheses in real time, some clinically rel-

evant tests were conducted. In order to transfer the previously gained knowledge

on wrong movement suppression to regression based algorithms, a novel proportional

estimator was developed, which possessed this capability. This new method was com-

pared to two other, state-of-the-art control schemes without such corrections. It was

shown that the novel estimator outperformed both other methods in both subject

groups. Due to the clinically highly relevant test scenarios of real prosthetic con-

trol in applied online object manipulation tasks, these results were encouraging and

will potentially have great influence on the future development of upper limb pros-
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thesis. To the knowledge of the author, this was the first time that such extensive

real-time control investigations with physical prostheses and custom manufactured

sockets for each participant have been conducted. One drawback of the novel method

was however that it did not allow simultaneous control of several DOF. This issue

was addressed in a new, dedicated study.

In Chapter 5, the system conceived, described and tested in Chapter 4 was extended

to permit simultaneous proportional control of two of the involved DOF. Similar and

extended tests compared to those shown in Chapter 4 were performed, however now

exploiting simultaneous wrist control, augmented by sequential hand activations. In

the online control of the prosthesis, this enhancement of dexterity proved to be bene-

ficial, especially for experienced subjects. Unfortunately, none of the subjects had the

possibility to use the system for a longer period of time for getting better acquainted

with the control. This will be the focus of future studies, in order to investigate the

factor of user learning. This system is the final product of this thesis. It incorporates

the important knowledge gained in all the investigations described before in this the-

sis. It exhibits many desirable properties such as robustness, control over many DOF,

simultaneous and proportional activations for natural and fluent control, improved

fine control and gross positioning of the end effector and computational efficiency,

making it real-time capable. The system was tested extensively with able-bodied

and amputee users. The subjective feedback from the participants was very positive,

underlining the quantitative improvements as measured by the applied tests. For

commercial exploitation of the described system, several steps still need to be taken,

such as reducing hardware costs of multi-electrode sockets, clinicians and physiother-

apist education and advanced user training guide lines including optimized feedback

for effective training. Further, take-home test prostheses for selected users should be

issued for gathering more evidence of the usefulness of the proposed method for and

by end users.

All chapters and studies presented within this thesis followed the goal of increasing

the robustness and clinical viability of myoelectric controlled multifunctional pros-

theses. The scopes of the studies were successively extended from classification to

regression and from offline to online control of physical prosthesis in close to real life

prosthetic usage scenarios. In conclusion, the obtained results will potentially provide
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guidelines, which are important for the successful commercialization of dexterous, in-

tuitively controlled multifunctional prostheses, in order to reach the best achievable

results for prosthetic users.
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