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1. INTRODUCTION  

There are very few productive processes where natural conditions and location play such 

as essential a role in technical (in)efficiency as they do in agricultural production. The 

present work analyzes how location and environmental variables determine production 

possibilities by means of different model specifications and statistical techniques and how 

far farmers allocate from their potential production in the dairy sector in Europe.  

The aim of this work is to make use of innovative statistical techniques that allow us to 

have a better understanding of the impact of natural conditions and location where 

production takes place. Since these conditions are not homogeneous over space and in 

some cases over time, this source of heterogeneity necessarily impacts the estimators of 

efficiency when national or transnational analyses are performed. That is, assuming that 

the technology of all producers in different locations is the same or ignoring the different 

conditions and spatial interactions in which the production takes place might be a very 

strong assumption that leads to incorrect conclusions and more seriously, flawed policy 

decisions.  

This work offers some clues as to how regional heterogeneity can be included in the 

estimation of efficiency. As it will be shown throughout this work, relaxing the 

assumption of a common technology among producers doesn’t necessarily imply the 

estimation of individual frontiers (technologies). Adding heterogeneity might also imply 

an improvement of the accuracy of the estimators by explicitly accounting for regional 

heterogeneity.  

Furthermore, this work also explores the implications of a phenomenon in economics that 

can be attributed to location and natural conditions: local agglomeration economies. The 

latter is understood to be the potential benefit or loss from concentrating dairy activity in 

a specific area.  Assuming that local agglomeration may be the result of favorable natural 

conditions, the work explores the implications and impacts of local agglomeration and its 

associated externalities as a determinant of productivity and efficiency.  

The remainder of this chapter is organized as follows. First, the theoretical background of 

stochastic frontier analysis will be explained. Then in the second section, the 

econometrical foundations of the estimation of a stochastic frontier will be analyzed. The 

third section will be dedicated to describe the dairy sector in Europe and its importance in 
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the agricultural sector. The fourth section will address in detail the sources of regional 

heterogeneity and local agglomeration in the European dairy sector. The fifth section will 

present the data sources used in this work. Finally, the sixth section will describe the 

methods and aims of the remaining chapters.  

1.1. Theoretical Background  

Figure 1-1 graphically describes a production function and the measure of efficiency. A 

firm at point A requires XA input to produce YA output given the technology. Producing at 

point A is said to be inefficient since with the same amount of inputs the firm can 

potentially produce Y*A which represents an increase in the volume of output. A firm is 

said to be fully efficient if it produces the maximum quantity of output possible at a given 

technology and at a given level of inputs and therefore lies in the frontier F(x). The 

reason why firms are inefficient is generally due to performance of the producer and 

might include education, experience but also might include factors out of the control of 

the producer like weather conditions, market conditions and policy regulations. 

 

 

 

 

 

 

Figure 1-1 Stochastic frontier and measure of inefficiency. 

Understanding the technology of the firms and sectors in the economy and reasons why 

firms operate under below this potential is crucial for policy makers. The estimation of a 

production function gives a general picture of the possibilities of the firms in terms of 

output
1
. The development over time of the production possibilities (technical change) 

may be an indicator of relevance and effectiveness of the investment in research and 

development. The magnitude with which producers use inputs in the production process 

                                                           
1
 Input oriented technical efficiency and economic efficiency are also widely used in literature.  This is 

centered on the estimation of output oriented technical efficiency.  
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can shed light on the functioning of the input markets, as will be shown later in this work. 

On the other hand, inefficiency scores might be an indicator of policy effectiveness since 

it implicitly indicates a lack of capacity of the owners due to education and their capacity 

to adapt to new technologies. 

1.1.1. Assumptions on the frontier 

Stochastic frontier models are produced with several assumptions that have their roots in 

microeconomic theory. On the side of the markets, it is assumed that the markets are 

perfectively competitive and agents are price takers in output and input markets. The 

agents of the economy are assumed to be rational and maximize (minimize) profit (costs). 

On the side of the specification of the technology, several assumptions are required to 

ensure the existence of the production function and a set of feasible production 

possibilities. These assumptions include: 

 Essentiality of the inputs, that is, a positive value of at least one input is required 

to produce any positive quantity of the output. A null quantity of inputs implies a 

null quantity of output. 

 The set that involves the production function is closed. This means, that the output 

that can be produced using a given input vector also contains all the points on its 

boundary.  

 This set of production possibilities is bounded. That is, there is a limit in the 

amount of output that can be produced. This limit is given by the frontier. 

 Disposability of inputs and outputs. On the input side, this implies that a given 

input that can produce a given output can also be produced by a scalar 

magnification of this input. On the other hand, on the output side this implies that 

the same inputs required to produce a given output can also produce a scalar 

contraction of that output.    

In general, it is assumed that if a production technology with these characteristics exists, 

then this production technology is common for all the producers. In reality, this last 

assumption might not be true. Technologies employed by farms might be heterogeneous 

for a number of reasons that include firm heterogeneity, that is, size of firm, experience 

and education of the owner of the firm and accessibility to markets among others. A 

source of heterogeneity in the technology, the one explored in this work, might also be 
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the location and natural conditions. There are obvious reasons why technologies might be 

different depending on the environment in which they are applied. A later section of this 

chapter will introduce the idea of regional heterogeneity and its importance in the 

estimation of stochastic frontiers in the agricultural sector.  

1.2.  Estimation 

This work centers its analysis on the estimation of production frontiers and efficiency as 

Figure 1-1 describes. Efficiency and production functions can be estimated in several 

ways, parametric and non-parametric. This work will focus particularly on the parametric 

approach: Stochastic frontier. Stochastic frontier is a parametric technique first 

introduced by the seminal works of Aigner et al. (1977) and Meeusen and van den 

Broeck (1977). Later the technique was extended to a panel data setup by Pitt and Lee 

(1981) and Schmidt and Sickles (1984). Its aim is to estimate a production function, 

which is assumed to be common among all producers, and determine how far producers 

allocate from their potential production. In other words, how much production can be 

increased or inputs reduced to achieve a position on the frontier and be fully efficient. 

Since this is a parametric framework, a functional form for the production function is 

assumed to be known. Usually the technologies are assumed to either be Cobb-Douglas 

or translog
2
. The selection of the technology is at the discretion of the researcher or it van 

can be chosen by statistical test . Nevertheless, each functional form has advantages and 

disadvantages and determines the structure of the model and its results. In general, the 

stochastic frontier has the following form: 

                                        (1.1) 

Where     represents the output of the farm i in period t.      represents the technology 

employed in the production process and     represents the vector of inputs that are 

required to produce    .   represents the parameters that determine the technology and are 

commonly called elasticities of the inputs. The term                is known as the 

composed error term.        is the stochastic component of the model and is meant to 

capture any misspecification of the model, errors in the variables and random events out 

of the control of the producers.  It is assumed to have a normal distribution with mean 

zero and constant variance. On the other hand,     is used to measure efficiency and is 

                                                           
2
 A Cobb –Douglas production function is a special case of the trans-logarithmic production function in 

which some of the parameters are assumed to be zero.  
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assumed to be non-negative.  These distributional assumptions are required to separate 

estimates of the statistical noise and the efficiency term. The common approach to obtain 

estimates of   and     is maximum-likelihood. Other estimation techniques are also 

possible and will be used in this work. In particular, the Bayesian approach proposed by 

van den Broeck et al. (1994) and Griffin and Steel (2004).   

The stochastic frontier technique also allows for effects on the efficiency term    . That 

is, the model allows incorporating variables that explain efficiency. Kumbhakar et al. 

(1991), Hang and Lui (1994) or Battese and Coelli (1995) are some of the early works 

that allow for this possibility, each one with different specifications. This extension of the 

stochastic frontier will also be explored in this work. Given this framework, Equation 1 

can be rewritten as follows: 

       
                               (1.2) 

Where    are the variables that model the efficiency effects and   are the estimated 

parameters that measure the magnitude of the effects on efficiency.  Other efficiency 

effects might include time invariant efficiencies in an effort to explain how efficiency 

develops over time. Some examples include Cornwell et al. (1990), Kumbhakar (1990) 

and Batttese and Coelli (1992).  

An additional feature of the estimation of a production function is that it brings the 

possibility of estimating productivity change. According to Kumbhahar and Lovell 

(2000), there is productivity change when an index of outputs changes at a different rate 

to the inputs. The advantage of estimating a production function econometrically it that it 

allows us to estimate three components of total factor productivity change
3
. These 

components are: Technical change (TC) which indicates shifts of the production function 

over time. That is, expansions or reductions of the production possibilities. The scale 

component measures the capacity of the producers to take advantage of the scale 

economies. Finally, the technical efficiency change (TEC) gives information of how 

firms are moving towards or away from the frontier over time. This decomposition will 

be used in this work to fully understand the evolution of the dairy sector in Europe over 

time.  

                                                           
3
 An additional component is allocative efficiency (AE). The estimation of AE requires information on 

prices of inputs and outputs and is not studied in this work.  
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1.3. Dairy Sector in Europe 

According to the European Commission (EC), the dairy sector accounted for 15% of the 

total agricultural production in Europe by 2011. Dairy farming is present in all member 

countries of the European Union (EU). In fact the EU-25 countries produce 21% of 

global milk supplies according to the FAO.  

Dairy production represents a key sector in the structure of agricultural production. Under 

the scheme of the Common Agricultural Policy (CAP) it has been historically protected. 

According to Swinnen (2009), the CAP was a mechanism designed in the mid 1950’s and 

implemented by the mid 1960’s to support minimum prices for farmers. These 

intervention prices were accompanied by a set of trade measures like import tariffs and 

export subsidies. The aim of these measures was to increase agricultural productivity and 

technical progress, ensure a fair standard of living for farmers, stabilize markets, assure 

the availability of supplies and ensure reasonable prices for costumers. As a result, by the 

1970’s the EU became a net exporter of several agricultural commodities, including dairy 

products. 

Since then, several reforms were introduced to deal with the surplus and make the 

financial aid received by farmers more efficient. In order to deal with growing output 

surpluses, by the 1980’s production quotas in the dairy sector were introduced, while 

maintaining the price and trade support. A later reform called Agenda 2000 reduced the 

intervention prices. However, the most remarkable reform was probably the one 

introduced in 2003 in which reference prices were again reduced, however this reduction 

was partially mitigated by increasing the compensation payments to farmers. This reform 

also started increasing the quota production. The most drastic part of this reform was the 

decoupling of subsidies from the production. That is, depending on the scheme chosen by 

each country, farmers would receive a fixed monetary payment based on their historical 

production. The reform also introduced the cross-compliance instruments, which required 

the farmers to obey regulations related to the environment, animal welfare, plant 

protection and food safety.  The starting point of the introduction of the reform was at the 

discretion of each country. Nevertheless, by 2007 all member countries had fully 

implemented the decoupled payments.  
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To this date, the CAP remains one of the most monetarily demanding chapters in the EC 

budget. According to Swinnen (2009), the total budget of the CAP in 2008 was €52 

billion and from this budget €37 billion was spent in direct aid (subsidies).  The 

effectiveness of these measures has been widely studied in literature. The results are 

mixed depending on how subsides are modeled, and which country and sector are 

analyzed. Nevertheless it is important, as shown later in this work, to understand the 

scope and the channels by which subsidies affect production and efficiency. 

As stated previously, dairy farming is present in all countries of the EU. A closer look at 

the key measures of performance between countries reveals substantial differences. 

Figure 1-2 shows the average milk yield per cow in the period 1995-2008 in Belgium, 

Denmark, Germany, Spain, France, Italy, Netherlands and Austria. The common trend 

shows increasing yields in all countries. Nevertheless, it is evident that some countries 

present clear advantages in milk yields.  

 

 Source: Author’s calculations based on EU-FADN – DG AGRI. 

Figure 1-2 Average milk yield per cow in eight European countries 1995-2008.  

The hypothesis of the present work lies in Figure 1-2. If all countries in the EU share the 

same agricultural policy, the knowledge and technology is known across countries, and 

they face similar input and output markets. The drivers of these differences in 

productivity might be explained by the natural environment and local political, cultural 

and socio-economic conditions that tend to be similar on different geographical scales. 

Furthermore, if all the latter points are true, this evident heterogeneity cannot be ignored 

when estimating efficiency and productivity. 
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The heterogeneity in the average milk per cow is also present on a smaller geographical 

scale. As shown in the previous section, these eight countries are composed by regions. 

Figure 1-3 shows the evolution of average milk yield per cow in the 72 regions present in 

the sample. The plot not only shows differences across countries, but also differences 

within countries.  

 

 

Source: Author’s calculations based on EU-FADN – DG AGRI. 

Figure 1-3 Average milk yield per cow in 72 regions in Europe 1995, 2001 and 2008. 

Figure 1-3 also reveals clusters of high and low milk yields. For example, high yields 

seem to be more frequent in Northern Europe, whereas lower yields are common in 

southern regions. This clustering might be explained beyond differences in the natural 

conditions of the regions.  As hypothesized in this work, farms located in the same region 

might share a common knowledge that leads to similar farming techniques. The 

dissemination of this knowledge (knowledge spillover) thought space might also explain 

differences in productivity across regions. 
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1.4. Regional heterogeneity and local agglomeration and their implication on 

efficiency measurements 

In spite of the fact that the literature has recognized the importance of the natural 

conditions and location of farms in agricultural production, little research has been done 

in the study of the real impacts on efficiency and production possibilities. Ignoring such 

conditions may lead to biased estimators of efficiency and frontiers. Demir and Mahmud 

(2002), for example, state that ignoring environmental variables when estimating 

technical efficiency in agriculture may lead to improper specifications of technical 

efficiency. A review of the literature shows that in most cases, when they are not 

completely ignored, location or natural conditions are introduced as determinants of the 

efficiency by means of dummy variables, leaving poor conclusions about the real 

relevance of these characteristics.  

In this work, natural conditions are all the possible characteristics of the environment that 

affect the production in either a positive and negative way. Naturally, they include 

precipitation, temperature, altitude, sun light, etc. The main hypothesis in this work is that 

since these conditions are given and farmers have no possibility to change them, they 

must therefore adapt their technologies to these environments as an answer to overcome 

them and make the best out of them. This hypothesis leads to the idea that farms located 

in the same areas share similar farming techniques that have developed over time. In 

other words, neighboring farms may use similar farming techniques not only because 

they face identical natural conditions but also because the political, cultural and socio-

economic conditions are identical. 

The possibility that farmers share the same farming techniques in a limited area leads to 

the idea of knowledge spillover between farmers. Formally, spillovers have been studied 

under the perspective of local agglomeration. Externalities such as knowledge spillovers 

are prone to occur in agglomerated environments of the same economic activity. In this 

regard, abundant literature has addressed the issue especially in the industrial sector. 

However, little research has been undertaken in the agricultural sector in exploring the 

effects of local agglomeration on stochastic frontier and efficiency in the dairy sector.  

The geographical scope in which these conditions affect the production is also discussed 

in the present work and is certainly limited by the specificity of the information on the 
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location of the farms. The exact location of the farm is not available in any of the data 

sets used in this work. The only available information on farms’ locations is the political 

division in which each farm is located. In this line, models based in the smallest political 

division provided by the data have been developed. If neighboring farms use similar 

farming techniques, they might also be similar at the smallest regional level. This point is 

crucial since it determines the geographical scale of the present work. The more specific 

the information of the natural conditions of the farm, the more accurate the results of the 

estimation are. Taking national scale as reference, the natural conditions are still too 

general and ignore the immense heterogeneity of the conditions inside each country.  The 

following section is dedicated to data description and will explain in detail the 

geographical scope. 

1.5. Data and geographical scale  

The results present in this work will be based on two different data sets. In both data sets 

the unit of study is the farm level: 

 The first data set is the Farm Business Survey (FBS) from the Department of 

Environmental, Food and Rural Affairs (DEFRA) of the United Kingdom (UK). 

This is an annual survey that provides information of physical and economic 

performance of the agricultural sector in England and Wales. For this data set, the 

period of study is 2003-2007.  The unit of study is the farm level.  Given that we 

are interested in analyzing the effects of location, the data set provides this 

information only at the count level. Figure 1-4 shows the map of the counties 

present in the sample. 

 

Figure 1-4 Counties in England and Wales.   
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 The second data set is the Farm Accountancy Data Network (FADN) EU-FADN 

– DG AGRI of the EC. Like the FBS, it provides information on physical and 

economic performance of the agricultural sector in all member states of the EU 

and the unit of study is the farm level. The period of study is 1995-2008. 

Similarly, the data does not provide the exact location of the farm; it only 

provides the region in which the farm is located
4
. The study will focus on eight 

countries: Austria, Belgium, Denmark, France, Germany, Italy, Netherlands and 

Spain. Figure 1-5 shows the regions in which the data are located.  

 

Figure 1-5 Regions in eight selected European countries. 

1.6. Methods and chapters 

The subsequent chapters of this work are dedicated to modeling this regional 

heterogeneity and local agglomeration in efficiency analysis.  Since the goal is to 

estimate the frontier and the efficiencies at the farm level, all chapters present either 

modifications to the estimation of the stochastic frontier or use additional data on the 

natural conditions in an attempt to relax the assumption that all producers share a 

common technology. Otherwise, as in the case of the last chapter, measures of local 

agglomeration and natural conditions will be explicitly added to the frontier estimation. 

The remainder of this work is composed of the following chapters. 

                                                           
4
 Regional level means the NUTS1 definition of the European Commission (e.g. a Federal State in the case 

of Germany, autonomous community in the case of Spain). For the Netherlands, Denmark and Austria the 

information of the location of the farm is given at NUTS0 level, that is, country level. 
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Chapter 2 uses data from the FBS and is completely dedicated to the UK. In this chapter, 

regional heterogeneity is modeled under the assumption that there is a hierarchical 

geographical structure in the data.  Since the hierarchical structure is present, a mixed 

model is developed to account for the possible correlations of the farms at different 

political divisions in the UK
5
.  In particular, random coefficients are introduced in the 

coefficients of the production function. The hypothesis is that farms located in the same 

county share similar conditions that are translated in the technology. Furthermore, farms 

in the same county will tend to use inputs in the same intensity. Graphically, Figure 1-6 

shows the aim of the chapter.  

  

 

 

 

 

   Figure 1-6 Graphical description of  the methods in Chapter 2.  

For simplicity, in the graphical illustration the frontiers are plotted as lineal. F1(x) 

represents the frontier estimated ignoring the regional heterogeneity. That is, without 

random coefficients at the county level. F2(x) represents the frontier estimated with 

random coefficients at the county level. Since the random coefficients are present in the 

intercept and in the slope (elasticities) of the frontier, both are allowed to change in the 

mixed model specification. That is, the frontier has a new shape and new intercept. One 

additional advantage of the mixed model specification is that in principle it is designed to 

obtain individual county frontiers. The dashed lines F2a(x) and F2b(x) represent the 

individual county frontiers for count a and b, that also may differ in intercept and slope. 

As discussed in this chapter, the main strength of this technique is that it allows the 

addition of the effect of the location on the frontier. This is important to know since the 

frontier has changed intercept and slope and result efficiency scores are different from 

                                                           
5
 The chapter will focus on the discussion of the differences at the county level. Nevertheless, more 

aggregate political divisions are available (Government offices, regions and countries.) 

 Y 

X 

F1(x) F2(x) 

F2a(x) 

F2b(x) 
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those of the frontier that ignores the regional heterogeneity. This chapter also explores the 

impact of several types of subsidies on the inefficiency term.  

Chapter 3 explicitly uses data of natural conditions to separate the sample in different 

clusters accordingly. This chapter uses data from the FADN in the eight countries and 72 

regions described in the previous section. The baseline of this chapter is that dairy farms 

which are located in regions with adverse natural conditions perform significantly 

different than those located in favorable conditions.  In turn, these conditions affect the 

technology used by the farmers and therefore different frontiers are required to match the 

type of technology with the farms. In dairy science studies, it is recognized that 

temperature in combination with humidity affects the milk yield of the cows. In 

particular, the combination of high temperatures and humidity makes cows suffer from 

heat stress. This chapter will describe how heat stress has serious implications on the 

performance of the cows. Thus, several measures are required by farmers to mitigate its 

effects (which suggest different technologies).  The geographical scope of the data allows 

integrating a measure of heat stress at the region level. Other variables describing the 

natural conditions of the farm are provided by the FAND. Finally, other variables are 

used to describe the possible ways in which farmers react to the natural conditions. All 

these variables are used to separate the sample in clusters and estimate the stochastic 

frontier for each cluster. Figure 1-7 describes graphically the theory behind this chapter.  

 

 

 

 

 

Figure 1-7 Graphical description of  the methods in Chapter 3. 

Starting with a supposition that farm A faces adverse natural conditions, the frontier F(X) 

is the frontier estimated from farms located in heterogeneous natural conditions, that is, 

the complete sample. On the other hand FA(X) is the frontier of the group of farms that 

face similar conditions of those faced by A. It is clear that in the case that those 

conditions are ignored (frontier F(X)), the efficiency score will be lower than the 

 Y 

X 

F(x) 

*A 
FA(x) 
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efficiency score obtained with frontier of its group (frontier FA(X)). The chapter also 

estimates total factor productivity and compares the performance across clusters.  

Chapter 4 explores the effects of an agglomeration economy in the dairy sector in Europe. 

The hypothesis lies on the assumption that externalities (negative or positive) are the 

natural outcome of local agglomeration of a given activity in a specific area. These 

externalities, in turn can have an impact on the production frontier and efficiency. The 

chapter incorporates measures of dairy agglomeration at the regional level in the 

stochastic frontier. This chapter also uses the FADN to measure the impact of local 

agglomeration on dairy production.  The approach presented in the chapter takes into 

account not only the level of local agglomeration in the region in which the farm is 

located, but also the level of agglomeration in neighboring regions. The reason for this is 

that given the low barriers in the European borderlines, externalities might have a greater 

spatial effect. Since agglomeration might be explained by the favorability of the natural 

conditions, this chapter accounts for natural conditions in order to establish a clearer 

impact of agglomeration on productivity and efficiency.   

Finally, Chapter 5 summarizes the key findings of the present work and its implications 

for policy makers. The limitations of each chapter will be discussed and future research 

topics will be suggested. 
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2. MODELING REGIONAL HETEROGENEITY IN STOCHASTIC 

FRONTIER: A BAYESIAN MIXED MODEL APPROACH 

 

Abstract 

Neighboring farms, firms and in general any economic unit might face similar, if 

not identical, economical, natural, cultural and political conditions depending on 

their geographical location. Since the introduction of stochastic frontier models 

by Aigner et al. (1977) and Meeusen and van den Broeck (1977), little research 

has been done to analyze the possible effect of the geographical location. In 

most cases, dummies are employed to control for this possible effect of location 

on technical efficiency (TE). Further recent studies such as Schmidt el al. 

(2009), Areal et al. (2012) and Glass et al. (2013) have developed a more precise 

structure by using a weight distance matrix to study spatial dependence on TE; 

in either case, location seems to play an important role in the determination of 

TE. Our approach differs from those described before: By taking advantage of 

the properties of mixed models, we developed a stochastic frontier that takes into 

account regional heterogeneity of the farms at the smallest political unit 

available in our data, a panel data of dairy farms in England and Wales. A 

Bayesian approach is used to develop the stochastic frontier. Results suggest that 

regional heterogeneity is present and determines the production function. 

Different distributions of the inefficiency term were used with highly correlated 

results in the efficiency scores, showing consistency with our results. Finally, we 

investigate and discuss some effects on technical efficiency.  

Keywords: Stochastic frontier, efficiency analysis, linear mixed models, regional 

heterogeneity, Bayesian analysis  

JEL classification: C11, C13, C23, D24 
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2.1. Introduction 

Since the stochastic frontier models were introduced by the seminal papers of Aigner et 

al. (1977) and Meeusen and van den Broeck (1977), spatial dependence and correlation in 

the determination of the production function and technical efficiency has been studied 

very little. It is important to note that literature has dealt with the problem in two different 

ways based on the information of the location of the farms. In the case of regional 

heterogeneity, location is available at a certain political division, and dummy variables 

are used to account for it. On the other hand, a more precise location of the farm would 

appeal to the development of the study of spatial dependence by using, for example, a 

weight matrix.  

For the first case, location is added to the model as a dummy variable to account for 

regional heterogeneity in the inefficiency term. Examples of this approach include 

Karagiannis and Saris (2005) and Hadley (2006); in either case, regional dummies have a 

significant impact on technical efficiency. On the other hand, when the location of the 

farm is known, Schmidt el al. (2009) and Areal et al.(2012) developed a model that takes 

into account the spatial dependence by using a weight matrix in the inefficiency 

component. Both studies conclude that the spatial component plays an important role in 

the determination of technical efficiency. A similar approach was used by Druska and 

Horrace (2004), and Glass et al. (2013) using a spatial autoregressive production frontier 

with a weight matrix. They found spatial dependence in the production in different 

specifications of the weighted matrix.   

The reasons behind modeling these possible spatial interactions in agricultural production 

are easy to understand. Neighboring farms might face similar, if not identical, natural, 

political, cultural and socio-economic conditions. Neighboring farmers might use a 

similar farming technique which suggests that they use similar technology in the 

production process and, of course, the shorter the distance the more similar the conditions 

are in which production takes place. In this respect, Areal et al. (2012) found that spatial 

dependence reaches its maximum over a 100 km distance
6
. Our hypothesis is that if 

technologies used in neighboring farms tend to be similar, then the intensity with which 

they use the inputs would tend to be similar; this could imply similar elasticities of inputs 

in the technology of farms located nearby.  Furthermore, farmers’ decisions on the 

                                                           
6
 Areal et al. (2012) use different cut-off distances in their analysis, 20 km, 100 km, 180 km and 240 km.  
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adoption of new technology to achieve an expansion of production possibilities (technical 

change) and better practices that improve technical efficiency (technical efficiency 

change) are influenced by the learning-by-doing process. This process is likely to be 

spatial dependent because of the influence of local networks. We believe that the random 

coefficients of the mixed model would describe these possible differences in the 

technologies taking into account the correlations between farms located in the same 

political unit. 

Previous studies suggest that these mechanisms of propagation seem to be spatial 

dependent and strongly influenced by local conditions. Dries and Swinnen (2004) showed 

that local dairy farms in Poland copied successful strategies of foreign companies in the 

local market. The copied strategies included a vertical integration with small local 

producers. The vertical integration promoted by the foreign company encouraged an 

improvement of the product’s standards. The copied strategy also included assistance 

programs to improve access to technology, credit and other inputs. Lewis et al. (2011) 

found that neighboring dairy farms using organic farming was a powerful explanatory 

measure of decision on technological conversion. They suggest that the learning process 

from neighbors can reduce substantially uncertainty and the fixed costs attached to 

information in a clear example of knowledge spillover.  

Our hypothesis is that if technologies used in neighboring farms tend to be similar, then 

the intensity with which they use the inputs would tend to be similar; this could imply 

similar elasticities of inputs in the technology of farms located nearby.  This work will 

exploit the geographical structure of the data to explicitly account for regional 

heterogeneity in the production function. We believe that the random coefficients of the 

mixed model setup would capture be these possible differences in the technologies taking 

into account the correlations between farms located in the same political unit. Notice that 

accounting for regional heterogeneity implies a relaxation of assumption commonly done 

in stochastic frontier that all firms produce with the same technology. As it will be shown 

throughout this work, relaxing the assumption of a common technology among producers 

doesn’t necessarily imply the estimation of individual frontiers (technologies). Adding 

heterogeneity might also imply an improvement of the accuracy of the estimators by 

explicitly accounting for regional heterogeneity.  
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Advantages of mixed models have been recognized in other areas of economics, in 

particular educational economics uses this approach widely in analysis. Gelman and Hill 

(2006) enumerated some advantages of this type of analysis. In particular, mixed models 

use all the data to perform inferences for groups with small sample data. They also lead to 

more efficient inferences since they do not ignore differences between the groups.  

Paterson and Goldstein (1991) also described some of the advantages, for example, in the 

statistical inference they contribute with flexibility and their capacity to respect multiple 

groupings of the data while incorporating both explanatory processes and random 

variation at all different levels of analysis. Put simply, mixed models respect the unique 

nature of each group and at the same time retain the capacity to generalize. Modeling the 

group differences has another technical advantage; since grouping could have an effect 

on the estimation of standard errors, when grouping is ignored the group-level effect 

becomes part of the random error. Goldstein and Silver (1989) discuss how correct 

estimations in standard errors are achieved by modeling the group structure through a 

mixed model without losing generalization of the inferences at the individual level.  

Some works have used mixed models in the estimation of efficiency and productivity. 

McCloud and Kumbhakar (2008) developed a Bayesian stochastic frontier that allows 

heterogeneous input-specific elasticities, technology efficiency and technical change 

across regions in the dairy sector of Scandinavian countries. Our work differs from this in 

the sense that we analyze different distributions for the inefficiency term
7
.  Similarly, 

Holloway and Tomberlin (2005) use different hierarchy structures to analyze a hierarchy 

not related to spatial location in the fishery industry of the West Coast of the United 

States. In this case, our work differs from this in the hierarchical structure and the use of 

different distributions for the inefficiency term. 

The aim of this work is to develop a Bayesian stochastic frontier that incorporates the 

features of a mixed model to study the possible regional heterogeneity of the data while 

producing efficiency estimators for each farm along with effects in the efficiency term. 

The paper is organized as follows. Sections 2.2 to 2.4 present the data and its spatial 

hierarchy that can be modeled as a mixed model. Section 2.5 presents the model and the 

Bayesian inference. Section 2.4 presents the results of the estimation. Finally, Section 2.6 

and 2.7 present the discussion and conclusions of the paper.   

                                                           
7
 McCloud and Kumbhakar (2008) use the random intercept of the production function to obtain efficiency 

scores.  
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2.2. Data 

Our data consist of an unbalanced panel taken from the Farm Business Survey (FBS) 

performed by the Department of Environmental, Food and Rural Affairs of the United 

Kingdom (DEFRA). The geographical scope of the survey only includes farms in 

England and the Wales and provides financial, physical and environmental performance 

data for the farms in the sample. A total of 219 farms are analyzed in the period 2003-

2007, producing a total of 920 observations. In the following subsections we explain the 

geographical location of the farms at different political units and then we provide further 

detail on the variables used to perform the estimation.  

2.3. Farm location, source of regional heterogeneity 

Since the exact location of the farm is not provided by the FBS, the only available 

information about the location of the farm is the political unit in which the farm is 

located. As stated above, the survey is performed in two countries – England and Wales. 

These two countries are divided into 4 different regions which are subsequently divided 

up into 10 government offices. Finally, these 10 government offices are divided into 72 

counties
8
. Figure 2-1 shows maps of the different political divisions of England and 

Wales, ordered from top to bottom and from left to right accordingly.  

 

 

Figure 2-1 Political division of England and Wales at different levels. 

                                                           
8
 Counties and Unitary Authorities are the smallest administrative unit in the data. 
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Our interest in this work concerns the latter political unit - county level - since we believe 

that farms tend to be more similar to each other in smaller areas. In our sample, farms are 

distributed in 52 counties. Figure 2 shows the counties where there is at least one farm of 

the sample.   

 

Figure 2-2 In green counties in which farms are present in the sample. 

Although we are aware that we cannot expect to completely capture the complex 

conditions inside each county and the even more complex spatial dependence between 

the farms, we expect to capture the similarities in natural, political, cultural and socio-

economic conditions. These conditions make the farms similar within each political unit 

that – as a result – turns into regional heterogeneity between counties. 

2.4.  Variables 

Our aim is to estimate the production function for dairy farms. The variables available in 

the data for this purpose are:  

 Output: Revenue of the farm in Pounds (£), farms in our sample are specialized 

farms, which means that at least 80% of their revenue is due to dairy activities. Following 

Hadley (2006), this revenue includes subsidies and grants but excludes income from 

activities not related with the main activity of the farm. 

 Land: We use the utilized agricultural area (UAA) in hectares. 

 Labor: Hours of labor family members dedicated to the farm, managerial labor 

and      hired labor. 
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 Livestock costs: Includes veterinary and feeding costs in £. 

 Capital: The sum of  machinery, buildings and land maintenance costs in £  

 Other costs: These include water, electricity and other costs in £. 

Since the development of stochastic frontier models that allow effects on the efficiency 

term by Kumbhakar et al. (1991), Huang and Lui (1994) or Battese and Coelli (1995), the 

literature has proliferated studying all kind of possible influences on inefficiency. In this 

regard, we want to investigate the effect of subsidies on technical efficiency in this work. 

Literature has widely discussed the advantages and disadvantages of modeling subsidies 

as an input in the production function or as an effect on the inefficiency term. Our 

philosophy in this work (and following that of McCloud and Kumbhakar (2008)) is that 

subsidies are not necessary for the production of output
9
, so they should be analyzed as 

an effect on inefficiency.  Effects of subsidies on technical efficiency have also been 

studied previously in different works by Brümmer and Loy (2000), Giannakas el al. 

(2001), Rezitis et al. (2003) and Karigiannis and Saris (2005) to name a few. The key 

difference in this work is that we disaggregate the subsidies the farm receives to three 

different types, depending on their nature. The Common Agricultural Policy (CAP) of the 

European Union (EU) provides a number of subsidies with different aims for the farmers. 

We consider this discussion to be important since the CAP consumed about half of the 

budget of the EU by 2006 and one of its aims is to increase productivity, promote 

technical progress and ensure optimum use of factors.  

We have selected three types of subsidies based on the number of farms that received 

each kind of subsidy.  This means that, for example, “Input Subsidies” were dismissed 

from our analysis because less than 1% of the farms in the sample received this kind of 

subsidy in the period of study. The selected subsides
10

 are: 

 Livestock subsidies: A subsidy given to farms producing any kind of livestock 

output. In our period of analysis this subsidy was attached to production. 

 Hill farm allowance (less favored area payments): This a payment that farms located 

in less favored areas receive as compensation for the difficulties that hill farming 

might impose on the production. This payment is not attached to production. 

                                                           
9
 Authors in this work modeled subsidies in the production function as an input and   as a “facilitating 

input” to study all the effects of subsidies on productivity decomposition.  
10

 Log of the subsidies that are used in the estimation.  
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 Environmental subsidies: A payment given to farmers as compensation for protecting 

part of the area of the farm for environmental reasons. This payment is not attached 

to production. 

 

2.5. Model and Bayesian Inference  

Since the developments of van den Broeck et al. (1994), Bayesian inference in the 

estimation stochastic frontier has become popular because of its flexibility and relatively 

easy programming implementation handled by Markov Chain Monte Carlo (MCMC) 

methods through the Gibbs sampler
11

. We will take advantage of this flexibility to 

perform the estimation of our models. This section is organized as follows; the first part 

is dedicated to explaining the modeling of the regional heterogeneity by means of a 

mixed model. In the second part we explain the prior and posterior density distributions 

to conduct the Bayesian inference. Finally, we explain the use of the scaling property to 

model the effects on the inefficiency term. 

2.5.1. Regional heterogeneity through a mixed model 

The stochastic frontier model was first introduced in the works of Aigner et al. (1977) 

and Meeusen and van den Broeck (1977). These works considered the composed error 

term in a production function for the first time. Later the technique was extended to panel 

data setup by Pitt and Lee (1981) and Schmidt and Sickles (1984) with the following 

form
12

: 

       
                                                                       (2.1) 

In this model,     represents the output of the unit of analysis (firm or farms) i in time 

t,    
  is the vector of  j inputs that the firm requires to produce    ,         is known as 

the composed error term in which     represents the random component of the model 

which is expected to have a normal distribution with constant variance,     is the 

component that represents efficiency and follows a one-sided distribution.              

are presented in logarithms. Inefficiency measures are obtained by       

           )]
13

 ; the value is in  the interval [0,1] and an inefficiency score equal to 1 

                                                           
11

 To perform our inference we use WinBUGS through “R2WingBUGS” package in R. 
12

 We assume a Cobb-Douglas technology in this work. 
13

 The subscript t, has been removed, our analysis in this work considers inefficiency as time-invariant.  
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represents a fully efficient firm, this means the firm obtains the maximum output given its 

combination inputs.  

As stated before, our aim is to develop a model that incorporates the random coefficients 

of a mixed model into Equation 2.1, following our hierarchical structure described above: 

farm-county-government office-region country. The fixed part of the model is the one 

described in Equation 2.1 which varies across time and farms. The random part
14

 of our 

model varies only across counties and will account for the regional heterogeneity. This 

work studies the random effects only at the county level in spite of the fact that we have 

more levels in the hierarchical structure.  Two reasons motivate this decision: Firstly, it is 

reasonable to think that farms tend to be more similar in smaller areas – in our case, at the 

county level. Hadley et al. (2006) and Areal et all. (2012)  support this decision
15

. The 

second reason is related to the number of groups at a given hierarchy. Paterson and 

Goldstein (1991) discuss that any analysis with less than 25 units at a higher level are 

unable to provide an accurate estimation of the variability of the random coefficients. 

Gelman and Hill (2006) find that a small number of groups might fail to estimate the 

between-group variation, and the mixed model analysis loses its advantages for modeling 

the heterogeneity present in the hierarchical structures. At the county level we have 52 

groups representing the 52 counties present in the sample. The next level in the hierarchy 

of political units is government office.  This level of the hierarchy has only 10 different 

groups (see Figure 1.1) and the estimate of the variability of the random elasticities of the 

production function might be affected. Thus the model takes the following form:  

        
      

                                                             (2.2) 

Notice that we allow all the inputs (including the intercept) of the production function to 

vary across county level k, for the 52 counties present in our sample
16

. Notice also that 

the elasticity of the input j now has the form: 

                                                           
14

 Here the term “random part” refers to varying coefficients through the counties. Gellman and Hill (2006) 

define “Random” in the mixed model context as the randomness in the probability model for the group-

level coefficients (county level, in this application). 
15

 Areal et al. (2012) found the spatial dependence reaches a maximum at certain distances - 100km. Hadley 

et al. (2006) found strong evidence for regional heterogeneity in dairy farms in England and Wales by 

means of 6 location dummies in the inefficiency term.  
16

 For some of the counties, the number of observations is small. In this regard, the number of observations 

required in each county is not a concern when performing a Mixed Model Analysis. Gelman and Hill 

(2006) argue that when groups have a small number of observations, the random coefficients might not be 
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                                                                           (2.3)                                                                                    

In this case,     is the effect on the elasticity for being located in the county k. This means 

that the model is able to obtain a frontier per county.  Now we want to add effects on the 

inefficiency term that leads us to a model with the following form:  

        
      

                                                           (2.4) 

Where    are the time-invariant
17

 effects on inefficiency and   are the estimated 

parameters. There are several ways in which effects on inefficiency can be modeled. For 

example, Kumbhakar et al. (1991), Hang and Lui (1994) or Battese or Coelli (1995) 

assume that    affects the location parameter in a truncated normal distribution, that is  

        
      

  . On the other hand, works like Caudill et al. (1995) have parameterized 

the variance of the inefficiency term through an exponential function for a half-normal 

distribution            
         

     . Other approaches consist of parametrizing both, 

such as Wang (2002). In any case, the interpretation of    is the same: positive values 

increase inefficiency and negative values decrease inefficiency.   

Our approach in this work follows the one proposed by Alvarez et al. (2006), and also 

used by Galán et al. (2013). A Bayesian approach where the scaling property was used; 

Alvarez et al. (2006) describes the scaling property as: “…models satisfy the scaling 

property, which says that          can be written as a scaling function         times the 

variable u* that does not depend on    ” (Alvarez et al. 2006, p. 201). u* has a basic 

distribution (a one-sided distribution in our case) that determines the shape of the 

function and         determines the scale of it. The results of this method are appealing 

because it allows us to explore different distributions of the inefficiency term while 

giving an interpretation of the effect of   
  on the expected efficiency. A convenient form 

for         is chosen. In particular                
   , - this is a monotonic function 

that makes calculation and interpretation simpler. Our final model has the following 

form:  

        
      

           
         

                                    (2.5) 

                                                                                                                                                                             
estimated precisely but they can still provide information of the group level that allows the estimation of 

the random coefficients and their variance parameters 
17

 Although this might seem a restrictive assumption, models with time-varying effects were estimated. In 

all cases the time-invariant specification was preferred over time-varying specification by DIC criteria.  
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For u*, the inefficiency term, we test two different distributions - the exponential and 

half-normal distribution. In the case of the latter, we test two different scale parameters. 

Model 1 assumes an exponential distribution               
     whereas Model 2 

assumes a half-normal distribution                   
     in which     

    does not 

include an intercept. Finally, Model 3 assumes a half-normal distribution 

              
    , where   

   has an intercept
18

. 

2.5.2.  Bayesian Inference 

The posterior probability density function for the model described by equation 2.5 has the 

following form:  

            
     

                         
     

                   
       

                       

(2.6) 

Notice that     represents the total variance of the likelihood function and   
   represents 

the vector of variances of the random elasticities of the model, those that vary across 

counties and therefore have the subscript  .  

The prior distributions for each parameter are:            
    and              

   . 

The variances of the likelihood function and the random coefficients of the model have a 

Gamma distribution                ,       
             . Finally, in Model 1 

                     , in Model 2                 
             with       

    

          and in Model 3                         . For all three models,    

           
     with a diffuse covariance matrix. 

Parameterization of the prior distributions were conducted following the work of Griffin 

and Steel (2007) and Galan et al. (2013). In general, they use diffuse priors for the 

variances of the likelihood function        as well as for the variances of        and 

      We extend the same criteria for the variances of the random elasticities    
   and for 

the variance of          in Model 2           

All the models were estimated using WinBUGS. Each model has two chains with 

different initial values, each chain uses 240 000 iterations where the first 40 000 iterations 

were discarded in a burn-in phase.  From the remaining 200 000 iterations, every 500
th

 

                                                           
18

 Notice that in this model even if subsidies have a null impact on efficiency, the intercept might ensure a 

variance different from 1. 
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was used to perform the analysis. This means that a total of 400 iterations per chain were 

used in the results, with the purpose of reducing the possible correlations of the MCMC. 

2.6. Results 

Table 2-1 presents results for the estimation of models 1, 2 and 3. Point estimates 

presented in the table are the means of the posterior distributions, and standard errors are 

presented in parentheses
19

. MCMC plot diagnostics are presented in Appendix 1.   

2.6.1. Model selection 

Deviance Information Criteria (DIC) is a common instrument for model comparison in 

Bayesian inference; lower values of DIC tend to indicate better fitting models. While all 

models have similar DIC values,   Model 3 has the lowest one. A closer look at the 

MCMC diagnostics reveals that in Model 3 the intercept of the inefficiency effects does 

not converge satisfactorily, in fact, the MCMC are correlated
20

. Since the DIC values of 

each model are not considerably different, Model 2 is chosen for further analysis.   

2.6.2. Technology and elasticities.  

At this point, it is important to mention that a model without random elasticities was 

produced to compare with Models 1, 2 and 3. The DIC of this comparison model is 

1233.5, significantly higher than any of the other models presented here. Details of this 

model (Model 4) are shown in Appendix 2. This means that a model that takes regional 

heterogeneity into account is preferred to a model without such considerations.   

As seen in Table 2-1, variations of input elasticities are very small among the three 

models presented. This result is to be expected as all three models’ elasticities have 

identical prior distributions. Livestock costs are the most important input in dairy 

production, followed by land and labor while all of them are statistically significant. 

Other costs and capital
21

 seem to have no effect on dairy production. Finally, there seems 

                                                           
19

 All inputs were normalized; this implies that estimated coefficients are elasticities at the sample mean.  
20

  Although the issue might be solved by increasing the number of iterations and the thin number, it was 

decided not to force the convergence of the model.  
21

 Griffin and Steel (2007) and Ehlers (2007) suggest to choose a one-sided distribution for the prior 

distribution of the elasticities to obey regularity conditions. In particular, both pieces of work suggest a 

half-normal distribution for the input elasticities              
   . Since capital has no significance in 

this application, we decided to keep the normal prior. Maximum-likelihood estimation with the same data 

set also obtained no significance in capital. 
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to be a weak setback in the technical change in the analyzed period (trend) which 

coincides with the observed decline in UK milk production.  

 

Table 2-1 Mean posterior distributions of the models. Standard deviation in parenthesis. 

Table 2-2 shows the annual production in millions of liters and its rate of growth. 

Furthermore, dairy production in the UK has been undergoing through a structural change 

characterized by a constant decrease in the herd size and in the number of dairy holdings. 

Total dairy production has little decreased and has remained almost stable due to the 

constant increase in the yield per cow (DairyCo, 2013).  

INPUT Model 1 Model 2 Model 3

Intercept -0.145 -0.107 -0.107

(0.043) (0.045) (0.043)

LAND 0.204 0.208 0.207

(0.044) (0.045) (0.043)

LABOR 0.187 0.193 0.194

(0.048) (0.050) (0.050)

LIVESTOCK COSTS 0.581 0.581 0.581

(0.035) (0.034) (0.033)

OTHER COSTS 0.037 0.027 0.027

(0.033) (0.033) (0.033)

CAPITAL -0.016 -0.016 -0.016

(0.025) (0.023) (0.024)

TREND -0.019 -0.018 -0.019

(0.012) (0.012) (0.012)

Precision* 103.766 102.231 101.967

(6.888) (6.375) (6.333)

Intercept 1.238 1.994

(1.238) (0.244)

Precision* 7.446

(1.910)

Livestock sub. 0.134 0.258 0.267

(0.057) (0.090) (0.095)

Environmental sub. 0.010 0.012 0.016

(0.021) (0.031) (0.030)

HFA payments -0.094 -0.139 -0.139

(0.027) (0.039) (0.040)

Mean Efficiency 0.810 0.782 0.783

DIC -1347.8 -1352.6 -1354.1

Observations 920 920 920

Iterations 240000 240000 240000

* Precision is the inverse of the variance.

Inefficiency effects 
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Table 2-2 Annual milk production in the United Kingdom  

Compared to Model 4 in Appendix 2, elasticities preserve proportionality and there is an 

increase in the land elasticity when regional heterogeneity is modeled - as well as an 

increase in the precision of the model - suggesting a lower variance in the mixed model 

specifications.  

2.6.3. Random Elasticities 

All elasticities in the models have random coefficients; Figure 2-3 shows the estimate of 

the posterior distributions of the standard deviations of these random coefficients for 

Model 2,   
22

. In every model and for all elasticities, the standard deviations are 

significant. This confirms the presence of regional heterogeneity in the technologies used 

among counties.        

Figure 2-4 shows Kernel distributions of the means’ posterior distributions of the random 

intercepts for the 52 counties. The magnitudes suggest variation among the intensity of 

the use of the inputs in the production process between counties.  

A closer look at the total elasticity magnitudes by county (see Equation 2.3) of livestock 

costs, land and labor, reveals some differences between counties. Table 2-3 shows 

descriptive statistics of the means’ posterior distributions of these elasticities in the 52 

counties.   

 

Table 2-3 Descriptive statistics of the posteriors distributions  

of the elasticities plus their random coefficients for selected inputs in Model 2. 

                                                           
22

 Estimated variances in the other two models do not vary considerably since they all have identical prior 

distributions.  

Year 2004-2005 2005-2006 2006-2007 2007-2008

Production (M Liters) 13767 13590 13484 13205

Rate of growth -1.3% -0.8% -2.1%

Source: DairyCo, authors' calculation

Input Min. Mean Max.

Livestock costs 0.466 0.581 0.786

Land -0.213 0.209 0.325

Labor -0.031 0.192 0.430
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Figure 2-3 Variances of random coefficients in the three models 

 

Figure 2-4  Mean Kernel distributions of the random coefficients in the 52 counties.  
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The interpretation of these total magnitudes of the elasticities must be analyzed carefully. 

As explained previously, for some counties the number of observations is small and the 

estimator of the random coefficient might not be precise. Livestock costs are still the 

most important input in dairy production among counties with reasonable magnitudes. 

For land, the minimum value is -0.213. This is the only negative value and corresponds to 

the county of Lincolnshire in England. A possible reason for this unexpectedly low 

number is that there are only 8 observations from 2 farms in this county. Nevertheless, its 

maximum has a reasonable magnitude. In the case of land, only one county has a small 

negative value in the elasticity.   

 

Figures 2-5, 2-6 and 2-7 present these elasticities by county in map form. The fixed 

elasticity estimator was chosen as the threshold. Those counties in red represent values 

above the fixed elasticity while those in yellow represent values below it.  

In the three cases, the regions of the North West and West Midlands of England seem to 

be especially intense in the use of the inputs, reporting values above the fixed elasticity. 

These two regions are characterized by intensive dairy production. The 23.4% of the 

farms specialized in dairy production in England were located in the North West Region, 

while 15.3% were located in the West Midlands
23

. This might suggest that regions with 

some degree of specialization in dairy production use the main inputs of the production 

process more intensively.   

 

Figure 2-5 Livestock costs elasticities by county.  

                                                           
23

 Source: Detailed annual statistics on the structure of the agricultural industry on 1 June in England and 

the UK, DEFRA.  Authors’ calculation.  
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On the other hand, the counties of Ceredigion, Pembrokeshire and Carmarthenshire in the 

extreme west of Wales seem to be more intense in the use of most of the inputs, in fact 

these three counties accounted for 59.67% of the total area dedicated to dairy in Wales by 

2011
24

.  

 

Figure 2-6 Land  elasticities by county.  

 

Figure 2-7 Labor  elasticities by county.  

2.6.4. Inefficiency scores  

The effects of subsidies on inefficiency are consistent among the three models, while 

magnitudes vary considerably when comparing model 1 with the other two models in 

Table 2.  The desegregation of the subsidies allows us to analyze the different effects that 

they have on efficiency.  Livestock subsidies increase inefficiency in the dairy farms, this 

farm is attached to production; this means that only farms with a positive amount of 

                                                           
24

 Source: Welsh agricultural statistics, 2011. Authors’calculation.  
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output are eligible to receive the subsidy. Berström (2000) observed that some subsidies 

might have a negative impact on efficiency since they represent an additional income that 

could discourage farmers’ motivation.  Hill farm allowance payments seem to decrease 

inefficiency in farms located in less favored areas, this means that farms located in Less 

Favored Areas benefit from the subsidy that was meant to overcome all the disadvantages 

that these farms face. Finally, environmental subsidies have no effect on inefficiency; the 

result might be explained by the low number of farms that receive this type of subsidy 

that is attached to specific projects in the farms. To our knowledge, this is the first 

attempt to study the effect of the different types of subsidies that farms receive. Former 

studies suggest no consensus of the effects of subsidies on inefficiency. A number of 

them find that subsidies increase inefficiency: Giannakas et al. (2001), Iraizoz et al. 

(2005), Rezitis et al. (2003) are some examples of this finding;  McCloud and 

Kumbhakar (2008) find the opposite effect on inefficiency. Finally, Hadley (2006) finds 

different effects for each type of farm: In the case of dairy, subsidies decrease 

inefficiency.   

Posterior means of the inefficiency scores do not vary considerably between the models, 

regardless of the prior distribution of the inefficiency term and their specification. In fact, 

inefficiency rankings are significantly correlated at 0.99.  Figure 8 plots the Kernel 

distributions of the inefficiency scores of the four models (Model 4 does not take into 

account regional heterogeneity). The highest correlations are present in models 2 and 3, 

which have the same prior distribution for the inefficiency term - their Kernel 

distributions are almost identical. Model 4 has a mean inefficiency score of 0.71, which 

indicates that modeling the regional heterogeneity increases mean efficiency by 9.6% 

compared to Model 2. Model 4 has lower rank correlation with the other three models, 

between 0.78 for Model 1 and 0.80 for Model 3, suggesting differences in the rankings 

when regional heterogeneity is accounted for.  

The results show that the inefficiency scores are similar to those obtained in former 

studies of the dairy sector in the United Kingdom. Hadley (2006) found that dairy had a 

declining mean efficiency per year with a mean efficiency in the last year of his panel of 

around 0.85. Areal et al. (2013) found mean efficiencies in the range 0.78-0.86, 

depending on the specification of the model based on distances in the weight matrix.   



33 
 

 

Figure 2-8 Kernel densities of the inefficiency scores. 

Our results have a powerful interpretation. First of all, we have showed that models that 

account for regional heterogeneity by means of a mixed model were always preferred 

over models that ignore it.  This result suggests that technologies used within each county 

might be similar for reasons exposed previously and ignoring this fact leads to biased 

estimators. Secondly, we have showed that accounting for regional heterogeneity 

improves efficiency scores which essentially mean that for this application in dairy 

farming in the UK efficiency scores were underestimated. Finally, we have also showed 

that accounting for regional heterogeneity does not imply the estimation of individual 

technologies. Our model specification has improved the accuracy of the estimators of the 

elasticities which in turn implies changes in the curvature of the frontier and the 

efficiency scores. 

 

2.7. Conclusion  

Data used in the efficiency analysis might have different hierarchical structures. In this 

work, the geographical hierarchical structure and the possible correlation inside regions 

in which the farms are located has been explored as a source to study regional 

heterogeneity. A production function that incorporates features of the mixed models was 
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used to account for the regional heterogeneity. A  Bayesian approach was used to develop 

the model since it allows estimating the production function, the random part of the 

mixed model and efficiency scores with effects in one single step.  

The results suggest that models taking into account the regional heterogeneity are able to 

explain the data better in comparison to those models that ignore it.  Essentially, our 

model relaxes the assumption that all producers share the same technology in a given 

geographical space and acknowledges the differences possible similarities within counties 

that in turn represent heterogeneity between counties. The structure of the model is 

capable of producing elasticity estimators for the different counties, allowing for 

particular analysis of the technologies in each county. This reveals differences in the 

intensity of the use of the inputs in the production process.  

The results also show an increase of mean efficiency in farms when regional 

heterogeneity is taken into account independently of the chosen distribution for the 

inefficiency term. There are also differences in the rankings with a lower rank correlation 

of the model without random elasticities, suggesting substantial differences in the 

distribution of the rankings of the farms.  

The effects of the subsidies in the inefficiency term are mixed. Livestock subsidies seem 

to increase inefficiency while farms located in less favored areas seem to benefit from the 

hill farm allowance. On the other hand, environmental subsidies have no impact on 

inefficiency.  
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3. PRODUCTION HETEROGENEITY IN THE DAIRY SECTOR:  A LATENT 

CLASS MODEL APPROACH 

Abstract  

Estimating technical efficiency under the assumption that all producers have 

the same technology might lead to biased estimates. The common approach to 

tackle the problem of production heterogeneity is to split up groups in the 

population with a priori information and then estimate a different production 

function for each group. In this work we use information on key variables that 

affect and determine dairy production to classify the farms in different groups 

by means of a latent class model (LCM). It has long been recognized that 

natural conditions like temperature and humidity might affect dairy 

production and that farmers can adapt their technologies to the environment 

they work in. To our knowledge, little research has been done as to how 

natural conditions can actually determine the employed technology.   We use 

information on natural conditions such as temperature humidity index, 

altitude and classification of Less Favored Area (LFA) by the European 

Commission (EC) along with other variables that describe the technology 

employed by the farm such as yield per cow, feed per cow and total 

infrastructure in the farm per cow as latent variables to classify our data set in 

different groups. Stochastic frontier estimation is performed in each group to 

analyze technological differences between the groups. Our data consist of an 

unbalanced panel of dairy farms from Spain, France, Belgium, Netherlands, 

Germany, Denmark, Austria and Italy in the period 1995-2008 provided by 

the EC. The results suggest that the latent variables used clearly classify the 

sample according to the technology of each group. Total factor productivity 

decomposition reveals that decreasing efficiency and small technical change 

are common features across groups. All results were compared to estimators 

that ignore heterogeneity. The results differ in several issues and their 

implications are analyzed.   

Keywords: Stochastic frontier, efficiency analysis, latent class model, 

production heterogeneity. 

JEL classification: C13, C33,C81, D24, D13 
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3.1. Introduction 

Classical estimation of production frontiers has been studied under the assumption that all 

farmers share the same technology. This assumption might be more credible if natural 

conditions and location characteristics are accounted for. Furthermore, as noted by 

Alvarez and del Corral (2010), ignoring the different technologies in the sample can lead 

to biased estimations of efficiency. Orea and Kumbhakar (2004) found that if there is 

heterogeneity in the technology, a common frontier for all observations may not allow an 

estimation of the “true” technology for each observation; as a result, the estimation might 

be biased. If the heterogeneity is ignored, these differences in technology could be 

addressed as inefficiency. Several different pieces of work have studied the role of 

production heterogeneity. Some work has been dedicated to developing stochastic 

frontiers with random coefficients to account for firm heterogeneity; Tsionas (2002) and 

Green (2005) are some examples.  

Other studies have concentrated on firm classification. Form classification which 

accounts for firm heterogeneity has been divided into two different branches to address 

the problem. In the first branch the sample is divided into several groups according to 

farm information such as location, farm ownership and type of farm (Kumbahkar et al., 

2009; Battese el al. 2004). Individual frontiers are subsequently estimated for each group. 

This is the so called two stage-process. Other example of this technique includes Hoch 

(1962) and Alvarez et al., (2008). In this same two-stage process other authors have 

decided to use cluster or other statistical analysis techniques to divide the sample into 

several groups and then estimate the individual frontiers per group. Maudos el al. (2002), 

Newman and Matthews (2006) and Alvarez et al. (2008) are some examples. The results 

presented in this work belong to the latter. We employ latent class analysis (LCA) to 

classify our sample and then we estimate frontiers for each cluster. 

On the other hand, the second branch of the literature has been dedicated to the so called 

single-step process. Specifically, they use latent class models (LCM) in convention with 

stochastic frontier analysis (Greene, 2005). In this technique, latent variables are included 

in the production frontier in order to obtain the number of clusters and the firms’ 

membership to the cluster.  Examples of this technique include Orea and Kumbhakar 

(2004) and Alvarez and del Corral (2010). Despite of the benefits of estimating these 

kinds of models in one single step described by Orea and Kumbhakar (2004), we have 
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chosen the two-step process because it allows us to use observable variables in the first 

step that could be considered endogenous in the single-step procedure, e.g. milk yield. In 

fact, Alvarez and del Corral (2010) decided not to use two variables as latent variables to 

avoid this issue.  

As stated before, this work employs a two-step process. Our aim is to classify the sample 

of farms in several groups and then estimate individual frontiers for each group. To 

classify the sample, we use individual information as latent variables that can describe the 

technology of the farm. Additionally, we use regional information on the location of the 

farm, manly climatologic information, and other variables that describe the natural 

conditions in which the farm is operating. This group of variables –does not appear, to 

our knowledge, to have been studied in any great detail for the estimation of efficiency in 

dairy production.  Demir and Mahmud (2002) concluded that ignoring environmental 

variables when estimating technical efficiency in agriculture may lead to improper 

specifications of technical efficiency. Our hypothesis is that farmers adopt different 

technologies in an attempt to adapt to natural conditions. After the classification is 

performed, we estimate a stochastic frontier model for each group in the sample. Our data 

consist of an unbalanced panel of dairy farms of eight countries in Europe: Spain, France, 

Belgium, Netherlands, Germany, Denmark, Austria and Italy in the period 1995-2008 

with an approximate number of 90000 observations.  

The remainder of this work is organized as follows. First, we will describe the data used 

for the empirical application, paying particular attention to the variables used in each 

step. At the same time we will describe the first step of the process by explaining the 

cluster technique employed, Latent Class Analysis. Later we show the results of the 

second step, that is, the individual stochastic frontiers. We analyze the differences in the 

technologies and estimate total factor productivity decomposition. Finally we give some 

conclusions and policy implications of our findings.  

3.2. Data and Estimation 

Our data consists of an unbalanced panel of approximately 90,351 specialized 

observations of dairy farms
25

 in the period 1995-2008 located in Spain, France, Belgium, 

Netherlands, Germany, Denmark, Austria and Italy. The data belongs to the Farm 

                                                           
25

 According to the Farm Accountancy Data Network, a farm is specialized in a particular activity if at least 

75% of its revenue is provided by this particular activity. 
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Accountancy Data Network (FADN)
26

 of the European Commission (EC). The data 

provide financial, physical and environmental performance information for the farms in 

the sample. Since our goal is also to classify farms according to the natural conditions in 

which they operate, some of the variables that describe such conditions are measured at 

the regional level, and not the farm level. This in part because we do not know the exact 

location of the farms, all we know is the region
27

 in which the farms are located. 

Additionally, for the construction of some of the variables, only data aggregated at the 

region level was available.  

3.2.1. First Step - Latent Class Analysis (LCA) 

Data can be grouped in unobserved classifications. Some statistical techniques help 

researchers to unveil these groups; LCA is one of these techniques. The key idea here is 

that the latent class is not observed. Instead, the researcher measures the latent variable in 

an indirect way through a set of observed variables.  It is worth mentioning that the 

technique was developed to deal with observed variables that are discrete. Recent 

developments allow for continuous variables.   Our focus here is on the former type of 

variables, that is, discrete observed variables.  

In order to mathematically formalize the LCA, we will follow the notation suggested by 

Collins and Lanza (2010). This formalization assumes that the observed variables are 

discrete, that is, each observed variable has a finite number of options (e.g. Gender= Male 

or Female). These options are called response categories. 

We assume that we have J observed variables, and that each observed variable has 

            response categories. With this information, a contingency table can be 

constructed by tabulating all the J variables. We then define      
 
   , W as the total 

number of cells that the contingency has. Each cell in this contingency table corresponds 

to a vector of response patterns               , where each y is a possible combination 

of responses for all the observed variables. Let Y  be the array of response patterns with 

W rows and J columns.  Each pattern has an associated probability of      , 

with          . The parameters to be estimated are the vectors        . These 

                                                           
26

 Data source: EU-FADN – DG AGRI. 
27 Regional level means NUTS1 definition of the European Commission (e.g. Federal State in the case of 

Germany, autonomous community in the case of Spain). For the Netherlands, Belgium, Denmark and 

Austria information on the location of the farm is given at NUTS0 level, that is, country level. 
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vectors represent the prevalences (that is, the probability of each class in sample or 

probability of membership) and the item response probability (that is, the probability of 

each response category in each class). Both are probabilities and follow the rules of 

probabilities. In other words, if L represents a categorical latent variable with  c=1, ….., C 

latent classes, then       
   . Furthermore, since   is conditional on membership class 

c, that is,        
, then         

  
  

    .  

Let us finally define    , as the element j in the response pattern y, and the indicator 

function        ), that is going to be equal to 1 if      and 0 otherwise. The 

probability of observing a certain pattern of responses is then a function of         as 

follows: 

             
      

          

    
 
   

 
          (3.1) 

The estimation of Equation 3.1 is done with maximum likelihood using the Maximum 

Expectation Algorithm (see Collins and Lanza, 2010 for further details).  

Since our assumption is that natural conditions determine the technology that the farm 

employs, observed variables have been chosen that describe the technology and natural 

condition in which the farms operate. Notice that the chosen variables were converted 

into discrete variables in order to estimate Equation 3.1. In particular, the continuous 

variables were averaged over the time period and then converted into three categories 

according to their tertiles. 

Milk Yield: The volume of milk produced by a cow as a measure of partial productivity 

of the farm. Milk yield seems to be determined by many factors like farmers expertise 

and practices as well as natural conditions (either climatological or those related to the 

breed of the cow). Certain climatological conditions seem to favor high yields and certain 

cow breeds seem to be more productive. In any case, this variable is meant to divide the 

sample according to the productivity of the farms. Furthermore, when the average yield 

of milk per cow is plotted in a map, there seems to be a geographical pattern in the 

distribution of the yield. Figure 3-1 plots the average milk yield per cow over the time 

period in the regions in the sample. In general, northern Europe seems to be more 

productive than southern Europe. Differences in milk yield are also noticeable between 

north and south in Spain and Italy. To perform LCA, the tertiles of the distribution for 
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this variable expressed in kilograms of milk per cow are: [1000, 5188.5), [5188,5, 

6648.7], (6648.7, 10000].  

 

Figure 3-1 Average milk yield per cow in the period 1995-2008. 

 

Temperature-humidity Index (THI): It has long been recognized that temperature and 

humidity play a key role in the health of cows and their milk yield. According to 

Bouraoui el al. (2002), high temperature in combination with high humidity for long 

periods affects the capacity of the cow to dissipate heat. As a result, the cows tend to 

suffer from heat stress, which in turn negatively affects the physiology and milk yield of 

the cow. According to West (2003), changes in the physiology and behavior of a cow 

facing heat stress include reduced feed intake, decreased activity, a tendency to seek 

shade and wind, increase in respiratory rate and increase in blood flow and sweating.  All 

of these factors result in negative consequences to the milk yield.  THI is a widely used 

index in dairy science that combines measures of both temperature and humidity. It 

serves as a measure of heat stress. The formula for THI has the following form:  

                                                                           (3.2) 

Numerous studies use it to establish the effects of heat stress on the milk yield of the cow. 

Some include Johnson (1980) and Du Preez et al. (1990 and 1990b) who conclude that 

milk yield declines when the value of THI is around 72 or greater.  Johnson et al. (1962) 

found that milk yield decreases when THI reaches 77. Ingraham (1979) found a reduction 

of 0.32 Kg. in the milk yield per increased unit of THI. 
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We have calculated THI for each region in the sample. We collected monthly data of 

mean temperature and relative humidity from two distant cities in each region
28

 in the 

period of 1995-2008.  We then calculated the THI for each region. Figure 3-2 shows the 

differences in THI between the regions. The tertiles of this variable are: [48.68, 51.94), 

[51.94, 56.54], (56.54, 65.08]. 

As expected, THI tends to be larger in Mediterranean countries, while milder values of 

THI are more frequent in the regions of the north. None of the regions have average 

values of THI which would compromise the physiology of the cows. Nevertheless, 

critical values of THI may be reached in summer, especially in Mediterranean countries.  

Altitude: Altitude is a categorical variable that takes the value of 1 if the farm is located 

under 300 meters above sea level (MASL), 2 if it is between 300 and 600 MASL and 3 if 

it is above 900 MASL. Higher altitudes might be related with lower values of THI. 

Nevertheless, high altitudes might be an indicator of adverse natural conditions, isolation 

and difficulties of communication and extreme weather conditions in winter. 

Less Favored Area (LFA)
29

: LFAs are defined in articles 18 to 20 of regulation (EC) 

No. 1257/1999. To summarize, a farm is considered to be in an LFA if the farm is located 

in mountainous areas that face extreme weather conditions and/or make it difficult to use 

the land. Similarly, a farm is in an LFA if it is in danger of abandonment by the user due 

to poor productivity of the land and decline of the population, or if the farm is affected by 

special handicaps due to environmental conservation. The variable takes the value of 1 if 

the farm is not in an LFA and 2 otherwise.   

                                                           
28

 Cities separated by considerable distances were considered to account for the effect of different 

climatologic areas in each region.  
29

 The regulation of the EC allows countries to classify Less Favored Areas under the criteria “Other 

LFA’s”. According to a report from the Institute for the European Environmental Policy, this criterion is 

not well defined and lacks a precise measure.  As a result, each member state interprets and defines the 

measures for classifying areas under “Other LFA’s”. Much of the increase in LFA’s since the late 80’s has 

been attributed to this classification. The report attributes this increase partly to the monetary incentives 

provided by the European Agricultural Guidance and Guarantee Fund, and the fact that member states are 

not committed to make any LFA payments.  
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Figure 3-2 Average THI in the period 1995-2008 

Cows per hectare: According to Alvarez and del Corral (2010), a higher number of cows 

per hectare is associated with more intensive technologies. Furthermore, more intensive 

technologies are, in turn, associated with more productive and efficient farms. Simpson 

and Conrad (1993) and Reinhard et al. (1999) are other examples of this finding. We 

expect this variable to capture differences between extensive and intensive technologies. 

When the average number of cows per region is plotted on a map, there seems to be a 

pattern showing that regions in southern Europe tend to have more cows per hectare than 

countries in the north (See Figure 3-3).  The tertiles of this variable are: [0.029, 0.76), 

[0.76, 1.31], (1.31, 9.91]. 

Feed per cow: Feed per cow is the cost of feeding stuff and concentrates per cow. Just 

like cows per hectare, higher values of feed are associated with more intense 

technologies. Hallam and Machado (1996) and Alvarez and del Corral (2010) are some 

examples of this conclusion. The geographical pattern of feed cows per hectare seems to 

replicate in feed per cow: the southern regions tend to spend more on feeding in contrast 

with northern regions (See Figure 3-4).  This pattern seems to be consistent with the idea 

that cow diet needs to be modified when the cow faces heat stress. West (2003) found 

that the diet of the cow in high temperatures should take into account the reduced matter 

intake, greater nutrient requirements in periods of hot weather, dietary heat increment and 

avoid nutrient excess. Overall, farms located in adverse temperature conditions for the 

cows should invest more in feeding stuff. This is precisely the kind of weather that might 

prevail in south Europe.  The tertiles of this variable are: [0.065, 460.64), [460.64, 
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769.39], (769.39, 1996.05]. The values of this variable were deflated and are in constant 

prices of the year 2000. 

 

Figure 3-3 Average number of cows per hectare  in the period 1995-2008. 

 

Figure 3-4 Average feed cost per cow in Euros 1995-2008 (Constant prices 2000). 

Buildings per cow: This is calculated as the value of the buildings in the farm per cow. 

We expect this variable to capture the effort of the farmers to mitigate adverse natural 

conditions. West (2003) describes modifications that framers can make in order to 

mitigate the effects of high THI. They include shade, barns that improve ventilation 

together with fans and sprinkles. More advanced technologies might include ventilations 

tunnels. Figure 3-5 shows the average value of buildings per cow in each region. Regions 

facing adverse THI seem to have lower values; regions in the east and Austria have 

higher values. In general, if the variable serves as a proxy for infrastructure, this shows 

that contrary to expectations, regions with higher temperatures invest less in 
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infrastructure for the cows. The values were deflated to constant prices of the year 2000. 

The tertiles of this variable are: [0.033, 1254.6), [1264.6, 3062.2], (3062.2, 19922.24]. 

 

Figure 3-5 Average value of buildings per cow in the period 1995-2008 (Constant prices 2000) 

With this set of variables, we can estimate Equation 3.1. Like in any cluster analysis, 

choosing the number of clusters is a key issue. As noted by Collins and Lanza (2010), 

there are several criteria which address the issue. We have selected the number of clusters 

based on the Akaike Information Criteria (AIC) and the Bayesian Information Criteria 

(BIC). Both include a penalty in the number of parameters that the model estimates. 

Other criteria include the likelihood-ratio statistic, but as noted by the authors, when the 

number of degrees of freedom is large, the reference distribution for the likelihood-ratio 

is unknown, making interpretation difficult.  

A set of models was estimated from 2 clusters to 20 clusters. Since local maxima might 

be reached in the estimation, we have calculated each model 20 times with different 

initial values.   The model with the maximum log-likelihood was chosen in each set of 

calculations.  As stated before, the variables to estimate Equation 3.1 were first 

transformed into averages over time and then converted into categorical variables 

according to their tertiles
30

. This means that for the estimation we used the total number 

of farms present in the sample (cross-sections): 21452 farms.  

Figure 3-6 shows the values of AIC and DIC for the estimated models. There is a drastic 

decrease between 2 clusters and 10 clusters. Values tend to decrease more slowly after 10 
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 The results were better under AIC and DIC when variables were divided in tertiles than they were when 

variable s were divided by their median.   
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clusters. When the number of clusters is 17, BIC reaches its minimum value. This 

suggests that 17 is the optimal number of clusters. AIC keeps decreasing at a smaller rate 

at 15 clusters. That is, an additional cluster adds little information to the estimation. 

At 17 clusters, the value of BIC is 263,830.8. With this number of clusters as reference, 

decisions about the number of clusters should take into account desirable properties such 

as homogeneity and separability, as pointed by Collins and Lanza (2010). Complete 

homogeneity refers to item response probabilities with extreme values of 0 or 1.  In other 

words, the population in the cluster shares strong characteristics in the observed 

responses. Conversely, separability refers to the differentiation between latent classes or 

clusters. It is therefore desirable to have latent classes or clusters that differentiate 

strongly in the item-response probabilities. 

With this philosophy, we have chosen 16 as the number of clusters in the sample. We 

believe that homogeneity and separability in this number of clusters is adequate. 

Furthermore, the difference in DIC and AIC between 16 and 17 clusters is very small
31

.  

 

Figure 3-6 AIC and BIC values for different number of clusters. 

Table 3-1 shows the estimates for         in the 16 clusters. Since this is a probabilistic 

model, each farm`s membership of a particular cluster was defined as the largest 

probability of belonging to that cluster. The average probability for each farm of being a 
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 For 16 clusters, AIC is 266549.4 and DIC is 268327.5.  AIC is 266419 and BIC is 268308.8 for 17 
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member of a particular cluster is 0.77. The three categories of the visible variables named 

after their tertiles were named as “low”, “mid” and “high”  

 

 

Table 3-1 LCA results  

For illustrative purposes, all the clusters were named after a region. Figure 3-7 shows the 

most frequent clusters in each region. Notice that the North-Europe and Austro-German 

clusters are not plotted in the figure as they do not occur most frequently in any region. 

Each region has different clusters, on average each region has 6.4 clusters.  Table 3-2 

shows the chosen names for the clusters. 

CLUSTER 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Prevalence 8.3% 7.0% 6.5% 4.5% 6.4% 6.6% 6.3% 6.8% 8.4% 10.5% 6.8% 4.5% 4.1% 4.2% 2.8% 6.4%

Low 14.2% 6.4% 87.7% 1.5% 0.0% 69.7% 1.0% 52.9% 67.2% 29.5% 48.0% 53.0% 13.3% 28.5% 38.2% 7.5%

Mid 31.5% 33.6% 8.7% 10.1% 24.5% 22.9% 15.8% 41.8% 27.0% 48.5% 45.6% 40.4% 46.3% 50.6% 49.7% 43.3%

High 54.3% 60.0% 3.5% 88.4% 75.5% 7.4% 83.1% 5.3% 5.8% 22.1% 6.5% 6.6% 40.4% 20.9% 12.1% 49.2%

Low 1.2% 0.0% 0.0% 100.0% 70.1% 0.0% 0.0% 8.9% 0.0% 20.8% 94.1% 96.6% 100.0% 0.0% 100.0% 84.5%

Mid 37.7% 3.3% 56.1% 0.0% 28.7% 11.4% 100.0% 85.9% 4.7% 79.0% 5.3% 3.4% 0.0% 0.0% 0.0% 14.6%

High 61.1% 96.7% 44.0% 0.0% 1.2% 88.6% 0.0% 5.3% 95.3% 0.3% 0.6% 0.0% 0.0% 100.0% 0.0% 0.9%

Less than 300 mts. 85.2% 34.0% 2.0% 100.0% 91.6% 77.6% 99.6% 22.7% 14.5% 99.1% 46.1% 0.0% 91.9% 6.9% 0.0% 8.8%

300-600 mts 13.4% 52.9% 15.2% 0.0% 7.3% 20.3% 0.4% 39.6% 56.9% 0.8% 53.9% 28.0% 7.7% 14.4% 53.7% 67.7%

>600 mts. 1.4% 13.1% 82.8% 0.0% 1.1% 2.1% 0.0% 37.7% 28.6% 0.1% 0.0% 72.0% 0.5% 78.8% 46.3% 23.5%

Not in LFA 100.0% 2.0% 0.0% 98.5% 61.2% 78.3% 100.0% 1.8% 0.0% 100.0% 26.9% 1.1% 100.0% 0.0% 11.2% 0.8%

In LFA 0.0% 98.0% 100.0% 1.5% 38.8% 21.7% 0.0% 98.2% 100.0% 0.0% 73.1% 98.9% 0.0% 100.0% 88.8% 99.2%

Low 3.0% 5.2% 51.0% 20.3% 55.1% 5.1% 16.0% 71.3% 12.7% 45.6% 52.5% 84.9% 26.1% 16.5% 0.0% 59.6%

Mid 18.0% 16.2% 31.5% 64.4% 40.7% 17.9% 20.7% 23.2% 29.9% 43.2% 42.1% 15.2% 56.3% 37.6% 84.9% 35.3%

High 79.0% 78.6% 17.5% 15.3% 4.3% 77.1% 63.3% 5.4% 57.4% 11.3% 5.4% 0.0% 17.7% 45.9% 15.1% 5.1%

Low 0.0% 0.0% 4.0% 0.0% 20.4% 19.1% 35.9% 76.9% 8.4% 86.3% 83.7% 88.5% 15.0% 0.2% 97.0% 4.0%

Mid 1.2% 6.4% 30.5% 36.0% 67.1% 56.6% 57.2% 20.9% 55.0% 13.7% 15.8% 11.1% 76.7% 0.0% 3.0% 82.9%

High 98.8% 93.6% 65.4% 64.0% 12.6% 24.3% 6.9% 2.1% 36.7% 0.0% 0.5% 0.4% 8.3% 99.8% 0.0% 13.1%

Low 33.6% 47.0% 14.9% 0.3% 42.7% 53.7% 15.7% 62.4% 52.7% 61.9% 29.0% 0.0% 7.2% 7.5% 16.0% 12.3%

Mid 37.1% 41.6% 18.6% 2.3% 49.1% 31.0% 57.7% 35.1% 36.1% 32.9% 43.4% 9.0% 18.8% 17.8% 34.0% 39.7%

High 29.3% 11.4% 66.5% 97.5% 8.2% 15.3% 26.6% 2.5% 11.2% 5.3% 27.6% 91.0% 74.0% 74.8% 50.0% 48.0%

Buildings per cow

Feed per cow

Altitude

Less Favored Area

Cows per Ha.

Milk Yield

HTI
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Figure 3- 7 Names and location of the clusters. Names were chosen after the region in which they are most 

frequent.  

 

Table 3-2 Names of the clusters according to the location in which they are the most frequent.   

Figure 3-7 also reveals that neighboring regions share clusters and possibly technologies. 

For example, the Denmark (4) cluster is mainly located in the county it was named after. 

However, it is also present – albeit with less frequency - in regions of north Germany. 

Still, this cluster is never present in regions of south Europe. Another example is the 

North Spain high yield (2) cluster. While this cluster is mainly frequent in the region it 

Number Name 

1 North Mediterranean- High-yield

2 North Spain -High yield

3 Italian low yield

4 Denmark

5 North Germany-Central france High yield

6 Mediterrenian low yield

7 Netherlands-NRW

8 South France

9 Mediterranian high THI

10 Atlantic 

11 South-west Germany

12 Austria

13 North Europe

14 Italian Tyrol

15 Austro-German

16 South-east Germany
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was named after, it is also present in southern France but practically absent in regions of 

northern Europe.  

To confirm the separability of clusters, we carried out an ANOVA on the visible 

variables. In all seven variables, the null hypothesis was rejected. This suggests that there 

is a difference between the means of each variable between the clusters
32

.  

As seen in Table 3-1, high milk yield is frequent in clusters Denmark (4), North 

Germany-Central France high yield (5) and Netherlands-NRW (7). In all these regions, 

THI tends to take low or mid-range values. In general, these clusters are located at low 

altitudes and are not in less favored areas. This suggests that high yields seem to be 

associated with favorable natural conditions.   The cows per hectare variable doesn’t 

seem to have a clear pattern in these clusters, although Netherlands-NRW (7) seems to 

have, on average, a higher density of cows. The same applies for buildings per cow in 

which Denmark (4) tends to invest more in infrastructure. It is worth mentioning that in 

the case of Denmark and Netherlands-NRW, these types of farms are almost endemic 

from the regions they were named after. In the case of Denmark, 67% of the farms in the 

country belong to the cluster named Denmark. And in the case of the Netherlands, 79% 

of the farms in this country belong to the cluster named Netherlands-NRW. 

On the other hand, low yields are persistent in Italian low yield (3), Mediterranean low 

yield (6) and Mediterranean high THI (9). On average, these clusters all seem to be in 

locations with high THI values. Altitude is high for the cluster Italian low yield, and all 

the farms are located in less favored areas in the clusters Italian low yield (3) and 

Mediterranean high THI (9).  In contrast with clusters characterized with high yields, 

cluster facing low yields seem, in general, to face adverse natural conditions. Density of 

cows seems to be high (on average) in the Mediterranean low yield (6) cluster. In general, 

low yield clusters have higher densities of cows than clusters with high yields. This is 

also the tendency in feed per cow: in general, low yield clusters seem to spend more on 

feeding, probably as a consequence of the adverse THI. With the exception of Italian low 

yield (3), clusters with low yields tend to invest less in infrastructure than clusters with 

high yields. If buildings per cow is effectively capturing the amount of infrastructure in 
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 A Tukey test was also carried out. Due to the large number of clusters, some the means are not 

statistically different when pairwise clusters are compared.  Nevertheless, no pair of clusters has 

statistically significant equal means in all variables.   
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the farm, the result suggests that clusters with low yields do little to mitigate the impact 

of high THI on the cows. 

In general, favorable natural conditions seem to be associated with high yields. One 

exception is the North Spain high yield (2) cluster. This is characterized by a high THI 

and less favored area designation. Nevertheless, this cluster is among the top feeding 

spenders along with Italian Tyrol (14) and North Mediterranean high yield (1).  In all 

three clusters, high values of THI seem to be common.  

A multitude of clusters share a feature of low expenditure in feeding, including South 

France (8), Atlantic (10), South-west Germany (11), Austria (12) and Austro-German 

(15). In general, these clusters are located in north and central Europe with either low or 

mid-range values of THI. With the exception of the Atlantic (19) cluster, they seem to be 

located mainly in less favored areas. Milk yields in these clusters are either mid or low. 

Cluster Austria (12) invests more in infrastructure than the others. The latter cluster is 

also almost endemic of the country it was named after with 47% of the farms in the 

country belonging to this cluster. 

Finally, clusters North Europe (13) and South-east Germany (16) have either high to mid 

milk yields. Both are located in regions with low THI. Nevertheless, cluster South-east 

Germany (16) is persistently located in less favored areas.  

To summarize the cluster analysis, there seems to be a clear connection between milk 

yields and natural conditions, especially THI. The results also suggest that clusters facing 

low yields, possibly due to high THI, tend to invest more in feeding but not in 

infrastructure. Adapting the diet of the cows to the conditions requires less investment 

than sophisticated cooling systems. 

3.2.2. Second step- Stochastic Frontier 

In this section, we describe the estimation of the stochastic frontiers for each cluster. The 

stochastic frontier model was first developed in the works of Aigner et al. (1977) and 

Meeusen and van den Broeck (1977). Its aim is to estimate a production function that 

describes the technology and allows us to measure efficiency. The production function 

takes the form: 

                          (3.3) 
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Where      represents the output of the farm i in time t ,     represents x represents the 

vector of inputs required to produce y and      is the technology. The term          

      is also called the composed error term, where     represents the random component 

of the model and is expected to have a normal distribution with mean zero and constant 

variance. Meanwhile,     is a non-negative term that aims to measure technical 

efficiency. A fully efficient farm will have an efficiency value of 1, meaning that it is 

located right on the frontier. On the other hand, a fully inefficient farm will have an 

efficiency value of 0. Its distribution is positive.             are assumed to be 

independent.  

Now we describe the variables employed in the estimation of Equation 3.3. All monetary 

values were deflated with their corresponding price deflators with base year 2000. 

Output, the dependent variable is the total revenue of the farm measured in Euros. Land is 

the utilized agricultural area of the farm in acres. Labor is measured as the number of 

hours of work dedicated to the farm; it includes family and hired labor. Feed cost is the 

expenditure in Euros of feeding stuffs. Cows are the number of dairy cows in the farm, 

and finally farm expenses are measured in Euros. Other farm expenses include veterinary 

costs, energy, fuel, water, depreciation, milk tests and storage. Descriptive statistics are 

presented in Appendix 3. 

We have chosen a translog production function
33

 in which a time trend was added and 

allowed to interact with inputs to capture technical change. Furthermore, to capture 

efficiency growth in     we chose a time varying efficiency specification. In particular we 

follow the specification of Battese and Coelli (1992). This specification assumes a 

common identical time trend in the variation of technical efficiency in each group. 

According to Lee (2010), agricultural production is influenced by geographical 

characteristics; this implies that farms in the same region may have similar temporal 

efficiency behavior. At first glance, this may be seen as a strong assumption that ignores 

the heterogeneity of the firms, and measurement error and statistical noise in the 

determination of technical efficiency. Moreover, it strongly drives the trends over time of 

efficiency and Total Factor Productivity as will be shown later. We have chosen this 

specification because it allows us to consistently compare the development over time of 
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 Cobb-Douglas production function was also estimated. In all clusters the likelihood-ratio test favored the 

translog technology.  
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technical efficiency across groups, which is the aim of this work.   The chosen 

specification has the following form: 

                       (3.4) 

Negative values of   imply an increase in inefficiency over time, while positive values 

imply a decrease of inefficiency. The values of the variables are in logs and divided by 

their means. The final form of the production function is: 

                    

 

   

      
 

 
                  

 

 
     

                                  

 

   

 

   

 

   

 

(3.5) 

Where     has a half-normal distribution. The results of the estimation of the stochastic 

frontiers are presented in Table 3-3
34

. All elasticities are positive and significant in all 

clusters. In general, the three most important inputs according to the magnitude of their 

elasticities are cows, farm expenses and feed costs. On the other hand, in all clusters the 

elasticities with smaller magnitudes are labor and land. In order to compare the results of 

the clusters, a stochastic frontier with the complete panel was estimated (last column in 

Table 3-3). From the table it is apparent that, when considering the elasticities, the 

importance of the inputs is roughly the same as in the clusters. Cows are clearly the most 

important input in the production process.  

Feeding is especially important in a number of clusters, including North Spain-High 

Yield (2), Italian low yield (3) and Denmark (4), Italian Tyrol (14) and North 

Mediterranean High-Yield (1). With the exception of Denmark, the rest of the clusters are 

located in regions characterized by high THI. This supports the idea that clusters facing 

adverse THI tend to spend more on feeding. On the other hand, clusters with favorable 

THI tend - in general - to have lower values of elasticity of feed cost. This is the case for 

Austria (12), Atlantic (10), Netherlands-NRW (7) and Austro-German (15).  

In general, the elasticity of farm expenses tends to be lower in clusters located in south 

Europe and higher in clusters located in the north. Atlantic (10), Austria (12) and South 
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 All inputs were normalized; this implies that estimated coefficients are elasticities at the sample mean. 
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France (8) have the largest magnitude in this input. On the other hand, North 

Mediterranean High-yield (1), North Spain high-yield (2) and Mediterranean high THI 

(9) have the smallest.  

The variable trend is meant to capture technical change, that is, expansions of the 

production frontier are mainly due to technological change. As seen in Table 3-3, all 

clusters present positive technical change over the analyzed period. Nevertheless, the 

magnitude of this change does not seem economically significant. Only clusters North 

Mediterranean High-Yield (1) and Austria (12) seem to experience no change. The 

largest changes are in Italian low yield (3) and Denmark (4). The same reasoning applies 

when the stochastic frontier model is applied to the complete panel.  

Mean efficiency of the clusters in the analyzed period ranges from 0.67 in the Austria 

(12) cluster to 0.87 in Denmark (4). There seems to be no strong connection between 

efficiency and natural conditions. Italian Tyrol (14), North Spain High Yield (2) and 

North Mediterranean High-Yield (1) are some examples of adverse natural conditions and 

high efficiency scores. On the other hand, examples of favorable conditions in terms of 

THI and low efficiency scores include Austria (12), Netherlands-NRW and South-west 

Germany (11).  The time variable is meant to capture efficiency change in the period as 

described in Equation 4. In all clusters with the exception of Austria (12), it is significant 

and negative. This suggests that inefficiency has consistently increased in the period.  

When the stochastic frontier of the complete panel is analyzed, it is worth to note that the 

mean efficiency is 0.76, lower than the mean efficiency across all clusters which is close 

to 0.80
35

. This suggests that efficiency scores might be underestimated under the 

assumption of a common frontier in all countries. Our explanation for this phenomenon 

lies in the structure of the stochastic frontier model. Highly efficient farms allocate their 

outputs closer to the frontier; therefore these farms determine the frontier itself. When the 

frontier is estimated using the complete panel, the variation of the efficiency scores is 

larger and more farms will allocate their outputs below those farms that determine the 

frontier. Whereas, when individual frontiers in each cluster are estimated, farms are 

compared to those similar to them in terms of natural conditions and technology. Thus, it 

seems plausible that efficiency scores are higher than those obtained from the frontier that 
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 There is a significant correlation of 0.83 between the efficiency scores obtained with the frontiers in the 

clusters and the efficiency scores from the complete panel.   
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uses the complete panel.   The dynamics of this decrease over time and will be analyzed 

in more detail in the section describing total factor productivity change. 

To visualize the geographical spread of the efficiency in more detail, we have plotted 

average efficiency over the time period in the different regions of the sample. The 

average efficiency per region was calculated as a weighted average with the form    

        
 
   , where            are the efficiencies of the K regions present in the 

sample, and subscript ijk stays for the farm i that belongs to cluster j and is located in 

region k. And            
 
      is the weight of the output of the farm i in region k. 

Figure 3-8 shows the described weighted efficiencies obtained from the clusters’ 

frontiers.  

 

Figure 3-8 Weighted average efficiency in the period 1995-2008 obtained from the clusters’ frontiers. 

Efficiency scores in the regions have no clear geographical pattern.  High efficiency 

scores are present in regions of the extreme north (Denmark and North Germany) and in 

regions of the extreme south (Italy and Spain). In general, efficiency tends to be lower in 

south France, Austria and some regions of North Spain when compared to the rest of the 

countries. Contrary to the presumption that more productive technologies are associated 

with higher efficiencies, the results reported here suggest that regions with lower yields in 

south Europe also achieve high efficiency scores. This might be the result of the 

adaptation of the technology to the adverse environment through good farming 
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techniques. A Moran’s I test was carried out to test possible spatial autocorrelation in the 

efficiency scores. We found a significant spatial autocorrelation of 0.193
36

.  

The same exercise was done with the weighted efficiency scores obtained from the 

complete panel.  Figure 3-9 plots the weighted average efficiency per region. First of all, 

the range in which these efficiency scores vary is significantly different from the one in 

Figure 3-8. Maximum and minimum efficiency scores are lower in the case of the 

complete panel.  

 

Figure 3-9 Weighted average efficiency in the period 1995-2008 obtained from the complete panel. 

 

High efficiency scores are also present in the extreme north (Denmark and North 

Germany) and also in the extreme south, Spain and Italy. Northern France, the 

Netherlands and Belgium notoriously achieve higher efficiency scores when a common 

technology for the whole sample is assumed. Moran’s I test for spatial correlation is 

slightly higher, with a value of 0.215
37

. 

To summarize, in the period 1995-2008, two phenomena have characterized the dairy 

sector regardless of the cluster. A small expansion of the production possibilities, that is, 
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 Based on a row standardized spatial matrix, p-value 0.006. To avoid zero weight rows, insular regions 

were omitted from the test.  
37

 Based on a row standardized spatial matrix, p-value 0.009.  
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technological changes have increased the total output of the dairy sector and resulted in a 

persistent increase in inefficiency.   

This means that, in spite of the expansion of production, farmers have been progressively 

allocating their outputs further away from the production frontier. On the other hand, 

efficiency scores do not have a significant spatial pattern.  In the next section, we analyze 

the changes in productivity and efficiency by cluster over time in more detail by 

decomposing the total factor productivity. 
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Table 3-3 Stochastic frontier estimation in the different clusters. 

INPUT

Intercept 0.197 *** 0.145 *** 0.275 *** 0.064 *** 0.176 *** 0.241 *** 0.307 *** 0.228 *** 0.262 *** 0.204 *** 0.247 *** 0.354 *** 0.182 *** 0.205 *** 0.241 *** 0.158 *** 0.253 ***

Land 0.087 *** 0.052 *** 0.026 *** 0.126 *** 0.083 *** 0.044 *** 0.061 *** 0.043 *** 0.038 *** 0.075 *** 0.097 *** 0.035 ** 0.133 *** 0.084 *** 0.132 *** 0.080 *** 0.025 ***

Labor 0.073 *** 0.099 *** 0.042 ** 0.090 *** 0.048 *** 0.130 *** 0.115 *** 0.066 *** 0.098 *** 0.100 *** 0.094 *** 0.186 *** 0.042 * 0.108 *** 0.144 *** 0.072 *** 0.077 ***

Feed cost 0.253 *** 0.298 *** 0.281 *** 0.274 *** 0.168 *** 0.227 *** 0.127 *** 0.202 *** 0.226 *** 0.123 *** 0.149 *** 0.104 *** 0.183 *** 0.262 *** 0.133 *** 0.203 *** 0.202 ***

Cows 0.533 *** 0.509 *** 0.404 *** 0.339 *** 0.457 *** 0.527 *** 0.454 *** 0.410 *** 0.534 *** 0.442 *** 0.411 *** 0.359 *** 0.407 *** 0.430 *** 0.420 *** 0.400 *** 0.503 ***

Farm expenses 0.122 *** 0.128 *** 0.210 *** 0.209 *** 0.247 *** 0.205 *** 0.225 *** 0.268 *** 0.164 *** 0.304 *** 0.241 *** 0.301 *** 0.260 *** 0.185 *** 0.219 *** 0.235 *** 0.267 ***

Trend 0.001 0.004 ** 0.021 *** 0.021 *** 0.009 *** 0.004 . 0.017 *** 0.010 *** 0.014 *** 0.014 *** 0.013 *** 0.002 0.010 *** 0.015 *** 0.011 *** 0.011 *** 0.010 ***

Land^2 -0.007 0.008 -0.027 ** 0.103 *** -0.139 *** 0.040 -0.023 0.039 . -0.031 . 0.060 * 0.009 0.006 -0.075 . -0.045 ** 0.043 -0.046 * -0.025 ***

Land*Labor 0.013 -0.013 -0.010 -0.091 ** -0.029 0.063 ** -0.129 *** -0.040 * 0.011 -0.058 *** 0.032 -0.082 *** 0.074 . 0.051 * -0.069 0.008 -0.024 ***

Land*Feed 0.013 0.015 0.029 * -0.037 . 0.018 * 0.050 * 0.081 *** 0.041 ** -0.054 ** 0.012 0.006 -0.021 . -0.017 -0.013 -0.049 -0.015 0.007 **

Land*Cows 0.050 * 0.029 -0.036 * 0.056 0.058 . -0.102 ** 0.177 *** -0.056 * 0.100 *** 0.067 ** -0.130 *** 0.053 * 0.035 0.032 0.043 0.000 0.000

Land*Farm Exp. -0.040 ** 0.021 . -0.013 -0.071 * 0.078 ** -0.012 -0.166 *** 0.034 * -0.006 -0.121 *** 0.040 0.034 0.031 -0.036 * 0.062 0.088 *** 0.000

Land*trend 0.003 * -0.001 0.002 0.000 0.007 *** 0.001 -0.007 *** -0.002 0.002 0.004 ** 0.001 -0.006 ** 0.006 * 0.002 0.000 0.003 * 0.003 ***

Labor^2 0.019 0.085 ** 0.047 -0.063 -0.016 0.008 0.083 *** 0.005 0.056 -0.005 -0.010 0.105 * -0.057 0.022 0.045 0.087 *** 0.038 ***

Labor*Feed -0.026 0.075 *** -0.083 ** 0.021 0.016 * 0.075 ** -0.081 *** -0.054 *** -0.021 -0.011 . -0.042 *** 0.000 -0.022 -0.008 -0.073 ** -0.110 *** -0.035 ***

Labor*Cows 0.004 -0.100 *** 0.061 * 0.042 -0.020 -0.116 ** 0.028 0.005 0.011 0.024 -0.045 -0.074 . 0.007 -0.028 -0.079 -0.025 -0.005

Labor*Farm exp. 0.008 -0.015 0.036 . 0.074 * 0.035 . -0.022 0.137 *** 0.068 *** 0.009 0.035 * 0.042 0.011 -0.027 0.026 0.151 *** 0.032 . 0.024 ***

Labor*trend 0.000 -0.005 * 0.000 -0.009 *** 0.002 0.005 0.002 0.002 -0.005 * 0.002 0.005 * 0.000 -0.006 . 0.001 -0.001 -0.001 0.000

Feed^2 0.197 *** 0.102 *** 0.139 *** 0.219 *** 0.031 *** 0.057 ** 0.096 *** 0.075 *** 0.209 *** 0.026 *** 0.040 *** 0.031 *** 0.036 *** 0.057 0.066 *** 0.054 * 0.043 ***

Feed*Cows -0.166 *** -0.213 *** -0.090 * -0.152 *** 0.013 -0.092 ** -0.042 * -0.060 ** -0.217 *** 0.009 0.031 . 0.046 * 0.053 * 0.038 0.089 ** 0.103 *** 0.037 ***

Feed*Farm exp. -0.098 *** -0.003 -0.024 -0.054 * -0.078 *** -0.021 -0.084 *** -0.059 *** 0.034 * -0.044 *** -0.052 ** -0.040 * -0.031 . -0.097 ** -0.089 *** -0.052 * -0.046 ***

Feed*trend -0.005 * -0.011 *** -0.005 . 0.003 -0.001 -0.007 ** -0.002 0.002 -0.007 ** -0.002 *** -0.002 0.009 *** 0.002 -0.003 0.008 *** 0.006 *** 0.000

Cows^2 0.221 *** 0.429 *** 0.142 ** 0.194 * 0.011 0.243 *** 0.154 *** 0.135 ** 0.276 *** -0.067 . 0.313 *** 0.114 . -0.096 0.016 -0.155 0.099 * 0.057 ***

Cows*Farm exp. -0.002 -0.115 *** -0.039 -0.211 *** -0.044 -0.028 -0.323 *** -0.065 ** -0.097 *** -0.076 *** -0.156 *** -0.231 *** -0.068 0.014 -0.162 ** -0.230 *** -0.076 ***

Cows*trend -0.001 0.013 *** -0.007 . 0.006 * 0.002 0.001 0.002 -0.002 -0.004 0.003 0.005 * 0.003 -0.007 . -0.017 *** -0.007 * -0.002 0.001

Farm exp.^2 0.071 *** 0.100 *** 0.129 *** 0.343 *** 0.037 0.065 *** 0.455 *** 0.123 *** 0.049 *** 0.242 *** 0.196 *** 0.244 *** 0.101 * 0.104 *** 0.207 *** 0.232 *** 0.099 ***

Farm exp.*trend 0.001 -0.001 0.000 0.005 * -0.006 ** 0.000 0.007 *** -0.003 * 0.008 *** -0.002 * -0.006 ** 0.000 0.001 0.009 *** -0.006 * -0.005 ** -0.002 ***

Trend^2 0.001 0.000 0.002 ** 0.003 *** -0.001 ** 0.000 0.000 0.001 * 0.000 0.002 *** 0.002 *** 0.002 *** 0.002 *** 0.002 ** 0.001 ** 0.000 0.001 ***

sigmaSq 0.090 *** 0.091 *** 0.184 *** 0.040 *** 0.072 *** 0.192 *** 0.167 *** 0.155 *** 0.240 *** 0.117 *** 0.196 *** 0.260 *** 0.093 *** 0.080 *** 0.144 *** 0.109 *** 0.163 ***

Gamma 0.783 *** 0.685 *** 0.791 *** 0.817 *** 0.787 *** 0.834 *** 0.939 *** 0.865 *** 0.843 *** 0.862 *** 0.903 *** 0.895 *** 0.869 *** 0.757 *** 0.881 *** 0.859 *** 0.867 ***

Time -0.003 -0.024 ** -0.028 *** -0.022 *** -0.013 ** -0.030 *** -0.019 *** -0.025 *** -0.043 *** -0.030 *** -0.031 *** 0.001 -0.029 *** -0.020 . -0.019 *** -0.013 *** -0.016 ***

Observations 6095 6333 4641 4261 6368 3298 7243 6861 5523 11200 5343 5617 2202 2672 4322 8372 90351

Mean Eff. 0.810 0.837 0.783 0.880 0.833 0.776 0.727 0.792 0.775 0.819 0.768 0.676 0.842 0.841 0.778 0.797 0.765

Prevalence 6.7% 7.0% 5.1% 4.7% 7.0% 3.7% 8.0% 7.6% 6.1% 12.4% 5.9% 6.2% 2.4% 3.0% 4.8% 9.3% -

Log-likelihood 2006.6 1436.9 142.5 3618.6 3243.3 239.8 4545.7 2268.4 145.8 5172.9 1837.7 999.4 1277.2 998.6 1924.1 4103.2 25688.83

.Significance at the 5% level

* Significance at the 1% level

**Significance at the 0,1% level

***Significance at the 0% level

Total panelCLUSTER 13 CLUSTER 14 CLUSTER 15 CLUSTER 16CLUSTER 7 CLUSTER 8 CLUSTER 9 CLUSTER 10 CLUSTER 11 CLUSTER 12CLUSTER 6CLUSTER 1 CLUSTER 2 CLUSTER 3 CLUSTER 4 CLUSTER 5
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3.3. Total factor productivity growth decomposition (TFP)  

According to Kumbhakar and Lovell (2000), productivity change occurs when an index of 

outputs changes at a different rate than an index of inputs.  They also pointed out that this 

productivity change comes from three different sources: technical change, technical efficiency 

change and the contribution of returns to scale.  

Following their implementation of a translog production function, we desegregate the total 

factor productivity growth for the 16 clusters.  This requires the estimated parameters of the 

production function in Table 3-3 and also the actual values of the inputs. For further detail, 

see Kumbhakar and Lovell (2000). The total factor productivity growth is given by the sum of 

all three components as follows: 

               
  

 
 

   

  
     

               (3.6) 

Where the first component is technical change which, for a translog production function, is 

given by: 

                     
 
                   (3.7) 

The second component in 6 is the scale component in which                      
 
   

 

and                        
 
   

 
   . Finally, the last component of Equation 3.6 is 

the technical efficiency change that is given according to Equation 4 as follows: 

                                        (3.8) 

Indexes for each component were calculated with 1995-1996 as the base year. The 

calculations for a pair of two consecutive years were performed as the average of the two 

years.  

Figure 3-10 shows the development of the index for the technical change component. As 

expected by the signs of the trend estimators in Table 3-3, there is an increase in the 

production possibilities for all clusters. The figure also confirms the magnitude of the trend 

variable. Italian low yield (3), Denmark (4) and Netherlands-NRW (7) overtake the rest of the 

clusters in technical change with expansions of the frontier of 29.4%, 24.8% and 21.8% 

respectively over the period 1995-2004. At the other extreme, but still with positive change, 

are Austria (12) with 0.6%, North Mediterranean High-Yield (1) with 1.5% and 

Mediterranean low yield (6) with 6.3%.  On average, the technical change has increased 

14.03% over the analyzed period for all 16 clusters. 
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Figure 3-10 Technical change component. 

The scale component of total factor productivity shown in Figure 3-11 suggests mixed results. 

In any case, it is worth to notice that positive and negative tendencies change little in 

magnitude.  Over the period 1995-2008, North Spain high yield (2) leads the positive changes 

with a total change of 5.4%. Conversely, Austrogerman (15) shows a total loss of 6%. Most of 

the clusters seem to have almost no change in the scale component. By looking at the returns 

to scale of the clusters in Table 3-3, all technologies appear to be operating close to constant 

returns to scale. On average, the returns to scale of the 14 clusters are 1.02. Notorious 

increasing returns to scale are present in the Mediterranean low yield (6) cluster with a value 

1.13 and North Spain high-yield (2) with 1.08. At the other extreme, decreasing returns to 

scale are present in Italian low yield (3) with a value of 0.96 and Netherlands-NRW (7) with 

0.98. Given the prevalence of constant returns to scale, this suggests that in general 

expansions of the input quantities make almost no contribution to the total factor productivity.    

As predicted by the variable time in Table 3-3, there is a continuous decline in the efficiency 

of all clusters.  Figure 3-12 shows the index for this component. Leading the decline in the 

period 1995-2008 is Mediterranean high THI (9) with -13.2%, followed by North Europe (13) 

with -11% and Atlantic (10) with -10.9%. The clusters in which the decline is less severe are 

North Spain high yield (2) with -1.42% and South-east Germany (16) with -5,3%. The only 

cluster whose efficiency improves slightly is Austria (12) with an increase of 0.5%.  Since we 

have not included effects of the efficiency component, it is difficult to determine information 

about the drivers of this consistent decline. This result is also coherent when a pooled panel is 

estimated. The time component of the efficiency term is also negative and statistically 

significant. 
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Figure 3-11 Scale change. 

 

Figure 3-12 Technical efficiency component.  

 

The index for the total factor productivity change in shown in Figure 3-13. Leading the 

change is Italian low yield (3) with an increase of 8.12% mainly driven by its growth in the 

technical change component. Followed by this cluster is Netherlands-NRW (7) with 3.6% and 

South-east Germany (16) with 2.77%. On the negative change side are Mediterranean low 

yield (6) with -13.9%, North Europe (13) with -12.6% and Mediterranean high THI (9) also 

with 12.6%. On average, the change was -4.4% across the 16 clusters.  
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Figure 3-13 Total factor productivity change.  

 

Table 3-4 Average annual growth rates in TFP components. 

To analyze the dynamics of the changes in TFP in more detail, Table 3-4 shows the average 

annual growth rate of each component in each cluster. The main components of change in 

TFP are clearly technical change and technical efficiency change, while scale change seems to 

0.8
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South-East Germany

Cluster
Technical 

change
Scale  change

Technical 

efficiency change

TFP 

change

1 0,1% -0,1% -0,2% -0,2%

2 0,6% 0,4% -1,8% -0,7%

3 2,2% 0,4% -1,9% 0,7%

4 1,9% -0,1% -1,7% 0,1%

5 0,7% 0,1% -1,0% -0,2%

6 0,5% 0,2% -1,9% -1,2%

7 1,7% -0,1% -1,2% 0,3%

8 1,1% 0,0% -1,7% -0,7%

9 1,4% 0,1% -2,6% -1,1%

10 1,4% -0,2% -2,1% -0,9%

11 1,3% 0,1% -1,9% -0,6%

12 0,1% -0,1% 0,1% 0,1%

13 1,0% -0,1% -2,1% -1,1%

14 1,4% 0,1% -1,5% 0,0%

15 1,1% -0,5% -1,3% -0,7%

16 1,0% 0,2% -0,9% 0,2%

Total 

average
1,1% 0,0% -1,5% -0,4%

Source: Own calculation. 
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add little to the growth of the TFP. In all clusters there is positive annual growth of technical 

change and a negative annual growth in the efficiency component. Overall, the total effect of 

annual growth of TFP seems to be driven by the negative growth of the efficiency change. 

Similar conclusions are obtained when the decomposition is performed over the frontier that 

uses the complete panel. Figure 3-14 plots the components of the TFP over time. In a similar 

fashion to the TFP decomposition obtained by the clusters, TFP is strongly driven by the 

technical efficiency change, in spite of the fact that technical change undergoes positive 

growth. Special attention should be paid to the fact that when TFP is calculated for the 

complete panel, specific behavior observed in one of the clusters is invisible (for example, the 

fact that some regions have positive growth in TFP and the scale component). Even when the 

components have similar behavior in both setups, magnitudes differ when clusters are 

analyzed. It is rather unsurprising that the efficiency component has similar behavior in both 

cases. As revealed in section 2, the chosen frontier specification assumes an identical time 

trend in the frontier which was negative in both cases. 

 

Figure 3-14 Total factor productivity components using the complete panel. 

3.4. Conclusion 

This work explicitly acknowledges the regional heterogeneity and farm heterogeneity in dairy 

production across Europe. In doing so, we have relaxed the common assumption in SFA that 

all producers share a common frontier (technology). As explained earlier in this work, 

ignoring such sources of heterogeneity can lead to mistaken conclusions about efficiency 

scores and technology. By grouping our sample according to the results of LCA, we allow 

each farm to be compared to farms that face similar natural conditions and technological 
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characteristics. Using key variables that determine the technology employed by the farmers, 

our LCA results suggest that farms located in regions with favorable conditions for the 

performance of the cow tend to achieve higher yields. The opposite happens in regions that 

face adverse natural conditions. As a result, farms seem to adapt their technologies to the 

environment in an effort to maximize their production potential.  For instance, feeding seems 

to be especially important for farms in locations with high THI, a key determinant of milk 

yield.  

SFA estimation presented in this work reveals differences and common features in the 

technologies across the clusters. The magnitude of the inputs is relatively homogeneous in all 

clusters and the number of cows is the most important input in the production process. More 

dispersion was observed in the mean efficiency scores. High technical efficiency scores are 

present equally across Europe. This geographical dispersion of the efficiency scores suggests 

a fair degree of adaptation for farms located in adverse environmental conditions. Spatial 

correlation in the efficiency scores at the regional level showed weak correlation. When the 

clusters are compared to the typical stochastic frontier (complete panel), differences appear in 

the magnitudes of the efficiency scores. In particular, higher average efficiencies are achieved 

when clustering is applied. The result is relevant since it indicates efficiency scores improve 

when farms are compared to those that share similar natural conditions and technological 

characteristics. Since differences in the geographical spread of the efficiency were also 

observed, our results validate our hypothesis that regional heterogeneity needs to be 

accounted for when national and regional comparisons are performed. 

TFP decomposition leads to several conclusions. Firstly, there has been positive technical 

change in all clusters. Nevertheless, the growth rates of this change vary substantially across 

them. The scale component of the TFP shows little variation across clusters; its effect is 

neutralized even more since most of the clusters operate near constant returns to scale. 

Technical efficiency change has been decreasing in almost all clusters and heavily drives the 

growth of the TFP. This feature is in part due to the chosen model specification. This leads to 

the conclusion that while potential output has been increasing, farmers seem to allocate their 

outputs further from their potential.   

TFP decomposition was also calculated for the complete panel and compared to the TFP 

calculated in the clusters. It is likely that by doing this comparison, the need for accounting 

for regional heterogeneity is clearer. TFP calculated in the clusters showed individual 

behaviors in all its components that were complete left out by the TFP calculated using the 
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complete panel. Technical change has positive growth in both setups, but large variability in 

growth rates is observed when clusters are analyzed. By analyzing the scale component with 

the complete panel, one could conclude that expansions of the inputs make no contributions to 

productivity change. Nevertheless, this is not true for all farmers, as showed in the scale 

change component of the cluster decomposition. Some clusters, in fact, have a small positive 

contribution to the scale component. Finally, the efficiency component in both setups has a 

negative growth. Our model selection has assumed that farms are allowed to have different 

temporal patterns between groups, but those farms that belong to a given group have the same 

temporal pattern. Nevertheless, growth patterns in the efficiency component vary 

considerably when this component is analyzed in the clusters. In fact, one cluster has positive 

technical efficiency change.  

The results presented here have strong policy implications. Ignoring regional and farm 

characteristics when comparing national or trans-national technologies and efficiencies has 

proven to lead to misguided conclusions. Policies derived from generalized analysis like the 

one assumed in the typical SFA might waste resources and ignore the real needs and lacks of 

specific groups.  

Finally, further research should be done on how regional heterogeneity and other sources of 

heterogeneity can be implemented in SFA. Relaxing the assumption of a common temporal 

variation in technical efficiency needs to be tested. For instance, models with firm specific 

variation would open the possibility for further analysis in the real behavior of the efficiency 

scores; it is the authors’ belief that this component is completely firm specific. Finally, it is 

important to note that measuring TFP is very different from explaining it and that further 

research needs to be done to understand the drivers of TFP and its components.  
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4. ECONOMIES OF AGGLOMERATION AND  EXTERNALITIES IN THE DAIRY 

SECTOR IN EUROPE 

Abstract 

An agglomeration economy is present when there are both negative and/or positive 

effects from the concentration of economic activities in a given area. Effects can be 

present in both, the production frontier and in the efficiency achieved by the firms. 

For example, knowledge spillovers can benefit both the production frontier and 

efficiency. Concentration of knowledge and ideas in an area can improve the present 

technology (technical change) in a particular sector. Knowledge can also improve 

firms’ efficiency since firms tend to learn from mistakes and the experience of other 

firms in the area to improve their efficiency. Agglomerated activities might also get a 

more skilled labor force and lower costs that, in turn, benefit technology and 

efficiency. Nevertheless, some disadvantages might appear in agglomerated 

environments. Congestion costs, biological congestion and high competition are 

some examples.   To our knowledge little research has been done on the spatial scope 

of the agglomeration effects in the dairy sector. If agglomeration effects exist, then 

they are bounded in areas. Our approach here uses agglomeration information at the 

regional level for eight countries in Europe.  To measure the impact of regional 

agglomeration, we incorporate regional agglomeration of dairy activities not only for 

the region in which the farm is located, but also for the neighboring regions. A 

stochastic frontier approach is used in a panel data of 27000 farms in the period 

2000-2008. Since agglomeration might be explained by advantageous natural 

conditions, we also control for natural characteristics at the regional level.  The 

results suggest that farms consistently benefit from agglomeration in productivity, 

that is, production tends to increase in agglomerated environments in their region and 

in neighboring regions. On the other hand, efficiency benefits from agglomeration in 

the region where the farm is located. However, agglomeration in neighboring regions 

has no impact on efficiency. 

Keywords: Local agglomeration, stochastic frontier, size of firms.   

JEL classification: C13, C33, D21, D24 
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4.1. Introduction 

Marshall (1920) first proposed the idea that firms of the same industry can benefit from their 

spatial concentration in a specific area. Later this led to the definition of economies of 

agglomeration. Economies of agglomeration occur when there is a high concentration of a 

specific economic activity in a limited area. Recent literature suggests that there is a positive 

relationship between the level of agglomeration of an industry in a location and productivity. 

Some examples of such results include Caballero and Lyons (1990 and 1992) and Morrison 

Paul and Siegel (1999).  Even more recently, Tveteras and Battese (2006) and Nakamura 

(2012) state that these externalities might have a relationship with the productivity of the 

firms belonging to the agglomerated area. When the concentration of the activity in a region is 

high, externalities are expected to occur.  The idea that firms might perceive benefits (loss) 

derives from the concentration of firms. In particular, there can be natural conditions and also 

external economies, like access to specialized inputs and higher demand that can benefit firms 

due to their location in the same geographical area as many other firms. Furthermore, these 

externalities are limited to the relationships between the firms, but also to the complete 

productive activity, that is, vendors and customers.  

It is important to note that externalities
38

 derived from local agglomeration might have both 

negative and positive impacts on productivity and efficiency. Diez-Vidal (2011) summarizes 

the possible impacts of agglomeration on productivity. First of all, on the side of the 

advantages thy might include: 

 Reduction in the production costs due to access to specialized inputs like labor, 

capital and suppliers. 

 Knowledge spillovers, associated with flowing information and knowledge from the 

interaction of the forms in agglomerated spaces. 

 Lower transaction costs, agglomerated industries may stimulate suppliers to develop 

specialized machinery for the industry as observed by Alvarez-Suescun (2011). 

 Finally, concentration of firms from the same industry attracts demand and in turn it 

increases the firm’s performance. In other words, the proximity of firms from a 

common industry allows customers to evaluate a number of products in a single 

location. 

                                                           
38

 In this work externalities are understood as any effect in the productivity and efficiency of the dairy sector 

derived from agglomeration in this activity. Externalities generated by agglomeration of the dairy activity that 

benefit and/or affect another parties not involved in dairy activities are not of the scope of this work .E.g. Habitat 

degradation, contribution to anthropogenic greenhouse gas emissions, and deterioration of water resources that 

affect other parties. (See Bulletin of the International Dairy Federation 443/2010). 
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On the other hand, there might also be disadvantages to agglomeration: 

 Congestion costs reflected due to an increase of transport and traffic costs. 

 Agglomerated industries might also impact the inputs market, land and labor prices 

can increase. 

 As found by Tveteras and Battese (2006), there might also be biological congestion in 

agriculture activities; diseases may spread easily in dense areas of the same species of 

animal and plants. 

 Shared resources like water sources might also be affected by the excessive 

exploitation of a concentrated activity. 

 Baun and Mezias (1992) found that clustered firms are prone to resemble their 

competitors and, in general, clustered firms tend to focus more on competitors in the 

proximity rather than on competitors at a distance. Dei Attoti (2002) exposes that this 

phenomena turns into a homogenization of the firms in a clustered space, which is an 

advantage in the flow of information and communication but as pointed by Diez-Vial 

(2011) homogenization can also be set back in the ability of change of the firms.  

So far, most of the literature that studies the effects of local agglomeration has studied the 

industrial sector of the economy. According to Tveteras and Battese (2006), these effects can 

also be observed in the agricultural sector. An increase in the sophistication of the technology 

used in primary agricultural activities has led to specialization and indivisibilities in the use of 

physical capital and labor.  According to Schimmelpfennig and Thirle (1999), there was a 

technological proximity between some countries in Europe that explained their advantages in 

total factor productivity in the agricultural sector. They argued that this technological 

productivity was due to knowledge and technological spillovers.  Foster and Rosenzweig 

(1995) found that profitability of rice farmers in India was significantly higher when they had 

experienced neighbors. This supports the idea that imitation via learning by doing and 

learning spillovers plays a key role in the performance of agricultural activities.   

Our hypothesis is that such effects might be present in the dairy sector in Europe. To our 

knowledge, no study has addressed the effects of local agglomeration in the dairy sector by 

means of a stochastic frontier analysis. However, other studies with different approaches to 

ours find support for the effects of agglomeration.  Dries and Swinnen (2004) showed that 

local dairy farms in Poland copied successful strategies of foreign companies in the local 

market. These strategies included vertical integration with small local producers. The vertical 

integration promoted by the foreign company encouraged an improvement of the product’s 
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standards. The copied strategy also included assistance programs to improve access to 

technology, credit and other inputs. Lewis et al. (2011) found that neighboring dairy farms 

using organic farming was a powerful argument that explained the decision to move to 

organic farming. They found that, in a clear example of knowledge spillovers, the learning 

process from neighbors can substantially reduce uncertainty and the fixed costs attached to 

information.  

4.2. Local agglomeration and technical stochastic frontier 

Several studies have addressed the issue of local agglomeration and stochastic frontier 

analysis. Some studies use regional level data to estimate production frontiers while 

estimating effects of local agglomeration in a second step by regressing efficiency scores with 

agglomeration variables (Beenson and Husted (1989)). Regional estimates at the state level 

were also proposed by Puig –Junoy (2001). On the other hand, other studies have focused on 

firm level data and indicators of regional agglomeration. This approach is featured in studies 

by Mitra (1999) and Lall et al. (2004), the latter for industries in India. More recent studies 

include Tveteras and Battese (2006) for the salmon industry in Norway, and Nakamiura 

(2011) for different types of industry in Japan. The findings of all these works show no 

specific consensus in the impacts of agglomeration on productivity and efficiency. The wide 

variety of econometrical approaches and the variety of measures of agglomeration might be 

an explanation. Nevertheless, most of the listed studies show that their measures of 

agglomeration have positive impacts on efficiency and/or productivity.  

As previously established, agglomeration can bring both advantages and disadvantages to 

firms. However, it is not clear through which processes and by which mechanisms local 

agglomeration has an impact on the performance of firms. When these effects are analyzed by 

means of a stochastic frontier analysis, the processes are mechanisms are even more diffuse. 

Stochastic frontier analysis has two main parts. The first one is devoted to exploring the 

technology of the firms by estimating elasticities of the inputs that describe the employed 

technology; the second in known as the composed error term that measures efficiency. 

Efficiency is understood to be the magnitude by which a firm allocates its output from the 

estimated frontier. A firm is said to by efficient if, and only if, it is able to allocate its output 

on the estimated frontier. Notice that both the technology (frontier) and the efficiency are 

susceptible to being affected by externalities derived from local agglomeration.  For Tveteras 

and Battese (2006), externalities derived from agglomeration are already embodied in the 

frontier production technology in a form of existing knowledge. Thus, the benefits of the 
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externalities are assumed to mainly reduce the technical inefficiency of the firms.  

Nevertheless, they also argue that knowledge spillovers may lead to the creation of new 

knowledge that will inevitably be translated into expansions of the production frontier.  

On the other hand, according to Nakamura (2012) the effects of the local agglomeration are 

firstly embodied in the production process (frontier) and the intangible effects might also 

affect the efficiency of the firms. In either case, the effects of the externalities of the local 

agglomeration have an impact on both frontier and efficiency.   

The remainder of this work is organized as follows. In Section 2 we describe the data and 

geographical scope of the analysis. We also describe the variables that we use to measure 

local agglomeration. Finally, this section introduces the econometric estimation. Section 3 

presents the results of the estimation and their interpretation. Finally, Section 4 summarizes 

the results and analyzes the policy implications of the findings.  

4.3. Data and Estimation  

The goal of the work is the estimation of a stochastic frontier that takes into account the 

agglomeration effects in both the frontier and the efficiency term. Our data consist of an 

unbalanced panel of 27721 observations of dairy farms in the period 2000-2008. The farms 

are located in eight countries in Europe: Spain, France, Belgium, Netherlands, Germany, 

Denmark, Austria and Italy. The data belongs to the Farm Accountancy Data Network 

(FADN) of the European Commission (EC).  Conversely, agglomeration information is 

measured at the regional level
39

 and was taken from the Eurostat data base. Figure 4-1 

presents the regions present in the sample. 

 

Figure 4-1 Regions present in the sample. 

                                                           
39  Regional level means the NUTS1 definition of the European Commission (e.g. Federal State in the case of 

Germany, autonomous community in the case of Spain). For the Netherlands, Belgium, Denmark and Austria the 

information on the location of the farm is given at NUTS0 level, that is, country level. 
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4.3.1. Measures of agglomeration  

Since our aim is to introduce measures of agglomeration in the stochastic frontier model, 

proper measures of agglomeration need to be developed. For each farm, local agglomeration 

is measured as the proportion of dairy farms of the total number of farms in the region the 

farm is located in. We expect externalities to be positively related to the proportion of dairy 

farms in the region. As discussed by Tveteras and Battese (2006), farmers that share the same 

location might benefit the most from knowledge generation through face-to-face contact. 

Furthermore, they also suggest that if physical proximity is important for the transmission of 

knowledge, these spillovers increase with spatial concentration of the industry.  On the other 

hand, a high concentration of dairy farms might also encourage biological congestion e.g. it 

might facilitate the spread of diseases. The availability of the data of total number of farms 

and the number of dairy farms is biannual, starting in 2000. Figure 4-2 shows the evolution 

the proportion of dairy farms per region in 2000 and 2007. 

As seen in the maps in Figure 4-2, higher proportions of dairy farms are present in northern 

Spain, northern France, the Netherlands, western Germany, Austria and Denmark. 

Conversely, lower proportions are more frequent in southern Europe. Note that proportions 

vary little over time, suggesting that dairy farming tends to be concentrated in specific 

regions. This specificity might be related to advantages in natural conditions. In this regard, 

Ellison and Glaeser (1999) found that natural condition explain only 20% of agglomeration, 

even in the agricultural sector.  

 

Source: Own calculation. 

Figure 4-2 Proportion of dairy farms per region in 2000 and 2007. 

Proportion of dairy farms in 2000 Proportion of dairy farms in 2007 
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Our approach to the effects of local agglomeration is not limited to the region in which the 

farm is located. We also extend the possible effects of agglomeration to neighboring regions.  

Greunz (2003), in a study of the geographical scope of knowledge spillovers between regions 

in Europe, found that knowledge generated in neighboring regions has a significantly positive 

impact on the generation of knowledge in the “home” region.  As seen in Figure 4-2, regions 

with a high proportion of dairy farms don’t seem to be isolated. This clustering of regions 

might have also an impact on the generation of externalities derived from agglomeration. This 

is especially true in a continent in which barriers resulting from international borderlines are 

limited.  Labor force, capital and trade can move freely between countries. This might 

encourage a constant exchange of information and knowledge beyond national regions. 

Furthermore, the farms present in the sample also share, to a large extent, the same 

agricultural policy. All things considered, this might result in an appropriate environment in 

which externalities might easily propagate.  

Using this perspective, we have incorporated a measure of agglomeration in the neighboring 

regions. We consider W a NxN shared-boundary weighted matrix that captures spatial 

relationships based on shared boundaries, where each component of W has the following 

form:  

     
                                  

             
            (4.1) 

The row standardization requires that each value is divided by the sum of values of its row 

                . This matrix is then multiplied by the vector that contains the values of 

proportion of dairy farms per region. In essence, the result is the average proportion of farms 

in the neighboring regions.  Figure 4-3 displays a map showing the average proportion of 

dairy farms in the neighboring regions in 2000 and 2007. 

As shown in Figure 4-3, proportions vary little over time. The geographical spread seems to 

be similar to the one in Figure 4-2. In general, regions in northern Europe tend to have 

neighboring regions with higher proportions of dairy farms.  

As noted by Diez-Vial (2011), not all farms contribute and benefit equally from externalities 

caused by agglomeration. In particular, larger firms are able to make larger investments and 

take the lead in strategies to improve their performance from which smaller firms can benefit. 

Furthermore, Porter (1990) found that close proximity to larger firms allows the smaller ones 

to learn from their practices and strategies. Larger firms also tend to invest more in education 

of a specialized labor force. Smaller firms can benefit from this by hiring skilled workers, 
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therefore avoiding the expensive training process as reported by Brunello and Gambarotto 

(2004). Larger firms also find it easier to become exporters allowing firms which are close to 

also become exporters by trying to access the same markets as the regional leaders, as found 

by Koening (2009). 

         

Source: Own calculation. 

Figure 4-3 Proportion of dairy farms in the neighboring region in 2000 and 2007. 

We use the average volume of milk quota per region as a proxy for the size of the firm and 

industry at the regional level.  Since its introduction in 1984, the quota system limits the 

amount of milk that farmers can deliver to dairies, in an attempt to reduce milk production in 

Europe. The quota is attached to the holding, nevertheless subsequent changes to the policy 

have allowed quotas to be traded. As a consequence, farms that overtake their quota can buy 

more quotas and increase their production or sell their quota in case they don’t need it and 

abandon dairy production.  According to Alvarez and del Corral (2010), the number of dairy 

farms in Europe has been reduced in recent decades. Furthermore, as a consequence of the 

introduction of the quota system, farm size has been constantly increasing. This increase in 

the farm size has been accompanied by changes in the production techniques; farms 

increasingly adopt more extensive systems. From this perspective, we expect that average 

quota per region can capture the average size of a farm in the region. Since larger farms are 

associated with extensive systems that imply more sophisticated technologies, we also expect 

that this variable captures how the region benefits from the externalities of larger firms.  

Figure 4-4 shows the average quota per region in quintals in the years 2000, 2004 and 2008 

calculated from the FAND. The figure shows large variation in milk quota across regions in 

Europe. In particular, the figure shows larger values of quota in Denmark, northern Germany 

and the Netherlands in every year. Meanwhile in the other regions, quota tends to be smaller. 

Proportion of dairy farms in the neighboring region in 2000 Proportion of dairy farms in the neighboring region in 2007 
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Milk quota is also comparatively larger in northern Spain and Italy and central France.  

Conversely, milk quota increases significantly over time in every region, which supports the 

fact that dairy farm sizes have been increasing over time.    

 

Average milk quota in quintals in 2008 

 

Figure 4-4 Average milk quota per region in 2000, 2004 and 2008. One quintal is equivalent to 1000 kg.  

Since natural conditions may explain part of the economies of agglomeration, that is, 

favorable natural conditions might be positively related to the intensity of agglomeration. We 

have decided to incorporate measures of natural conditions into the stochastic frontier model. 

In particular, we will use two measures, the Temperature-Humidity Index (THI) and the 

proportion of grass land from the total utilized agricultural area at the regional level.  

High temperatures in combination with humidity can affect the physiology of the cows and in 

turn their milk production. According to West (2003), changes in the physiology and behavior 

of a cow facing heat stress include reduced feed intake, decreased activity, seeking shade and 

wind, an increase in respiratory rate and an increase in blood flow and sweating.  All of these 

factors would result in negative consequences for the milk yield.  THI is a widely used index 

in dairy science that combines measures of both temperature and humidity, serving as a 

measure of heat stress. The formula for THI has the following form:  

Average milk quota  in quintals in 2000 Average milk quota  in quintals in 2004 

Source: Own calculation. 
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                                                                           (4.2) 

Numerous studies use it to establish the effects of heat stress on the milk yield of the cow. 

Certain studies, including Johnson (1980) and Du Preez et al. (1990 and 1990b), conclude that 

milk yield declines when THI reaches a value of 72 or more.  Johnson et al. (1962) found that 

milk yield decreases when THI reaches 77. Ingraham (1979) found a reduction of 0.32 Kg. in 

the milk yield per increased unit of THI. 

We have calculated THI data for each region in the sample. We collected monthly data on 

mean temperature and relative humidity from two cities, separated by distance, in each 

region
40

 in the period 2000-2008.  We then calculated the THI for each region. The variable 

will be added as a dummy variable based in its tertiles.  The tertiles of this variable are: 

[48.77, 52.72), [52.72, 58.18], (58.18, 65.28]. Figure 4-5 shows the tertiles in the THI. As 

expected, the higher values of THI are located in the Mediterranean countries in the south, 

whereas lower values of THI are present in the northern regions of the continent.  

 

Source: Own calculation. 

Figure 4-5 Average THI in the period 2000-2008. 

As an additional measure of natural conditions, we use the proportion of grass land from the 

total utilized agricultural area. According to Stypinski (2011), there has been an increasing 

specialization in farming in Europe in recent decades. As a consequence, some regions have 

specialized in arable crops. Those regions rich in grassland have specialized in animal 

husbandry, milk and meat production. Furthermore, Stypinski estimates that around 74% of 

the cows in Europe are located in lowlands rich in grassland in the Atlantic climate zone. The 

                                                           
40

 Cities separated by considerable distances were considered to account for the effect of different climatologic 

areas in each region.  
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specialization due to favorable natural conditions has increased milk yields as noted by 

Peeters (2008) and Kristensen et al. (2008).     

 

   Source: Own calculation. 

Figure 4-6 Average proportion of grassland from the total utilized agricultural area per region. Average from 

2000 to 2008.  

Grassland proportion per region was calculated based on the data of EUROSTAT. As there 

was very little variation in the proportion of grassland over time, Figure 4-6 shows 

calculations for an average proportion of grassland in the period 2000-2008. As seen on the 

map, regions with higher proportions of grassland are located in northern Spain, central and 

southern France, Austria, southern Germany, Belgium and the Netherlands.  

4.4. Estimation  

Stochastic frontier analysis was first introduced by the seminal works of Aigner et al. (1977) 

and Meeusen and van den Broeck (1977). Its aim is to estimate a production function that 

describes the technology and allows us to measure efficiency. The production function takes 

the form:                        

                          (4.3) 

Where      represents the output of the farm i in time t ,     represents the vector of inputs 

required to produce y,      is the technology. The term                is also called the 

composed error term, where     represents the random component of the model and is 

expected to have a normal distribution with mean zero and constant variance. Meanwhile,     

is a non-negative term that aims to measure technical efficiency. A fully efficient farm will 

have an efficiency value of 1, meaning that it is located right on the frontier. On the other 
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hand, a fully inefficient farm will have an efficiency value of 0. Its distribution is positive. 

            are assumed to be independent.  

Since our aim is to estimate the effects of agglomeration in the frontier and on efficiency, we 

will use the Battese and Coelli (1995) approach. This specification allows us to introduce 

efficiency effects in the term    . This specification implies that              , where     is a 

vector of determinants of technical efficiency, and   is the parameter to be estimated.  The 

stochastic frontier model proposed has the following form: 

                    
 

 
                  

   

   

 

   

  

   

     
 

 
    

                  

 

   

         

(4.4) 

Equation 4.4 is a translog production frontier
41

. Output     is the revenue of the farm 

measured in Euros. Five inputs are used: Land is the utilized agricultural area of the farm in 

acres. Labor is measured as the number of hours of work dedicated to the farm, including 

family and hired labor. Feeding cost is the expenditure in Euros on feeding stuffs. Capital is 

measured as machinery and building costs plus depreciation in Euros, and finally farm 

expenses are measured in Euros. Among others, farm expenses include veterinary costs, 

energy, fuel, water, depreciation, milk tests and storage.  We also introduce a time trend t, to 

account for technical change. Table 4-1 summarizes the descriptive statistics for each variable 

of the production function
42

. 

 

                Source: Own calculation. 

Table 4-1 Descriptive statistics of the variables in the production function. 

                                                           
41

 The Cobb-Douglas production function was also estimated. In all clusters the likelihood-ratio test favored the 

translog technology.  
 
42

 All monetary values were deflated with 2000 as base year.  

Variable Unit Minimum Mean Maximum Standard Deviation

Output (revenue) € 15,280.0 154,800.0 1,379,000.0 133,768.4

Land Hectares 5.0 67.8 399.5 50.3

Labor Hours/year 1,080.0 4,132.0 41,990.0 2,039.0

Feeding cost € 4.6 28,540.0 419,300.0 33,818.3

Farm expenses € 801.7 25,880.0 676,000.0 21,901.4

Capital € 639.2 33,920.0 372,000.0 24,956.8
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 As discussed before, agglomeration effects might be present in the frontier and in the 

efficiency term. The term      in Equation 4.4 is meant to capture the effects of agglomeration 

on the frontier and has the following form:  

                                                                       

                                                      

 

   

                

(4.5) 

Equation 4.5 introduces the previously described measures of local agglomeration to the 

frontier.    is meant to capture the interaction of the local agglomeration and the 

agglomeration of the neighboring regions. Natural conditions are added to account for the 

possible effects of these conditions on the consolidation of the agglomeration of dairy 

activities. Country dummies are added to account for country heterogeneity.  

The term     has a truncated normal distribution               
  , and takes the following 

form: 

                                                                          

                                                              
   

                                        

(4.6) 

The efficiency term also incorporates the same measures of local agglomeration used in the 

frontier. The term also incorporates the average local milk quota
43

 and milk quota squared. 

We also include subsidies as a proportion of the revenue into the efficiency term. This is to 

account for policy related structures in the different regions and countries. Since its reform in 

2003, the Common Agricultural Policy (CAP) subsidies have been decoupled from 

production. Each member country is free to decide the time and form of application of the 

reform. On the other hand, subsidies might encourage farms to innovate and invest in new 

technologies that, in turn, decrease efficiency as noted by Harris and Trainor (2005).  Notice 

that if the latter is true, subsidies might also encourage positive externalities derived from 

knowledge spillovers. Nevertheless, subsidies might also have a negative impact on 

efficiency. An additional income can reduce the effort of the farmers, as found by Berström 

(2000). 

 

                                                           
43

 Milk quota was not used in the frontier due to its high correlation with output and the possible endogeneity 

with the same variable.  
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4.5. Empirical results  

In this section, we present the results of the estimation of Equations 4.4, 4.5 and 4.6. Table 4-

2 shows the result of the production function model
44

. The vast majority of the coefficients 

are statistically significant at the 1% level. Since the variables were normalized with respect 

to their means, they can be interpreted as partial production elasticities at the sample mean. 

That is, by how much the output would increase in percentage terms if any of the inputs are 

increased by 1%.  Among the 5 inputs, other farm expenses have the largest elasticity (0.329). 

On the other hand, labor has the lowest at 0.116. The variable trend captures the technical 

progress, it has a positive and significant value of around 3,2%. This means that there has 

been an expansion of the production possibilities in the dairy sector over the analysis period.  

In other words, the frontier has been shifting up.  

 

Source: Own calculation. 

Table 4-2 Coefficients estimates of the production function. 

Before continuing to deepen the core of this work, we would like to present some other results 

of the estimation of the stochastic frontier model. First of all, it is worth testing the hypothesis 

that data can be well represented by means of a production function. Put simply, we want to 

test the presence of inefficiency. In terms of Equation 4.4, this implies that            is not 

rejected. The model can then be efficiently estimated by an OLS estimator. This hypothesis 

was rejected with a likelihood-ratio test (LR) statistic equal to 2251.9. This value considerably 

                                                           
44

 All variables were normalized; this implies that estimated coefficients are elasticities at the sample mean. 

INPUT INPUT

INTERCEPT 0,129 *** LABOR*FEED -0,007

LAND 0,130 *** LABOR*FARM EXP -0,016 .

LABOR 0,116 *** LABOR*CAPITAL 0,016 *

FEED 0,290 *** LABOR*TREND -0,010 ***

OTHER EXPENSES 0,329 *** FEED^2 0,081 ***

CAPITAL 0,172 *** FEED*FARM EXP -0,027 ***

TREND 0,032 *** FEED*CAPITAL -0,030 ***

LAND^2 -0,108 *** FEED*TREND 0,001

LAND*LABOR -0,020 ** FARM EXP ^2 0,087 ***

LAND*FEED -0,018 *** FARM EXP*CAPITAL -0,065 ***

LAND*FARM EXP 0,066 *** FARM EXP*TREND 0,009 ***

LAND*CAPITAL 0,019 ** CAPITAL^2 0,096 ***

LAND*TREND 0,007 *** CAPITAL*TREND -0,010 ***

LABOR^2 -0,051 *** TREND^2 0,002 **

.' Significance at the 5% level, '*' Significance at the 1% level, 

**'Significance at the 0,1% level, '***'Significance at the 0% level

Coefficient Coefficient
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exceeds the upper one- percent point for the Chi-squared distribution with 11 degrees of 

freedom.  

Now we turn to the primary focus of this work. First we tested the validity of our measures of 

agglomeration and their effects on both frontier and efficiency. We must then test the null 

hypothesis that the effects of the measures of local agglomeration (regional proportion of 

dairy farms in the region and proportion of dairy farms in neighboring regions) and size of the 

firm (measured by average quota in the region) are equal to zero. According to Equations 4.5 

and 4.6, this implies that                              . This hypothesis 

is rejected; the LR statistic is equal to 567.02. This considerably exceeds the upper one-

percent point for the Chi-squared distribution with 8 degrees of freedom. The result of the test 

suggests that our measures of local agglomeration and farm size can explain, to some extent, 

both the frontier and the efficiency component. 

One of the innovative contributions of this work is that it explicitly accounts for the local 

agglomeration of neighboring regions. We now test the validity of the influence of the 

agglomeration of neighboring regions. In terms of Equations 4.5 and 4.6, this implies that 

                    . The hypothesis is rejected, the LR statistic is 193.21. Once 

again, this value considerably exceeds the upper one-percent point for the Chi-squared 

distribution with 4 degrees of freedom.  The rejection of the hypothesis suggests that the 

effects of the proportion of dairy farms in neighboring regions are present in both the frontier 

and the efficiency term. 

4.5.1. Local agglomeration effects on the frontier 

Table 4-3 shows the results of the estimation of Equation 4.5. Fist, we have the effects of 

natural conditions on the frontier. As described before, the THI was converted into a dummy 

variable; the reference is the lowest tertile of the values of the THI. Both dummies are 

statistically significant and, as expected, carry a negative sign. The result is in line with theory 

which predicts that higher values of THI reduce the milk yield and in turn the total output of 

the farm. The proportion of grassland in the region has no significant impact on the frontier.  

The effects of local agglomeration on the frontier are positive and statistically significant. The 

proportion of dairy farms in the region has a value of 0.021. This implies that farms located in 

regions in which the concentration of dairy farms is high increase their total output. Since the 

variable is in logs, this implies that an increase of 1% in the local proportion represents an 

increase of 2.1% in the output. A similar result indicates that the proportion of dairy farms in 
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neighboring regions takes on a value of 0.061, and the integration of both is 0.028. This 

shows that benefits from agglomeration are not only limited to the region where the farm is 

located. The output of farms also benefits from the agglomeration of dairy farming in 

neighboring regions. So far we have shown that agglomeration of dairy farming in the region 

in which the farm is located and in neighboring regions increases farms’ output. Nevertheless, 

the exact mechanisms by which local agglomeration affects productivity are not easy to 

determine and cannot be explained in our proposed model. As hypothesized in this work, one 

of the main benefits that might come local agglomeration are knowledge spillovers. As found 

by Greunz (2003), this might not be limited and beneficial to just the “home” region, but also 

to neighboring regions. Knowledge might spread in different ways, for example, highly 

specialized workers who can move freely and settle in new regions may be agents of 

propagation of knowledge. Networks of farmers and regional associations may also be nodes 

that encourage the propagation of knowledge.  However, as revealed previously, the 

externalities of local agglomeration are not limited to knowledge spillovers.  Productivity may 

also benefit mainly from other externalities inherent to agglomeration. For example, the 

reduction of production costs, lower transaction costs and the attraction of more demand as 

noted by Diez-Vial (2011) might also be powerful explanations of the benefits of local 

agglomeration. Since natural conditions and country heterogeneity have been accounted for, 

the effects of the agglomeration can be interpreted as pure effects of the externalities derived 

from the process and not as convenient clustering of farms that are located in specific areas 

with ideal conditions for dairy farming.  

 

Table 4-3 Estimates of local agglomeration on the frontier.  

FRONTIER EFFECTS

DUMMY THI MEDIUM -0,066 ***

DUMMY THI  HIGH -0,104 ***

PROPORTION GRASSLAND -0,010

PROPORTION DAIRY FARMS IN 

THE REGION (θ1)
0,021

***

PROPORTION DAIRY FARMS 

NEIGHBOR REGIONS (θ2)
0,061

***

INTERACTION (θ3) 0,028 ***

DUMMY BELGIUM 0,218 ***

DUMMY DENMARK 0,006

DUMMY GERMANY -0,056 ***

DUMMY SPAIN 0,067 **

DUMMY FRANCE 0,060 ***

DUMMY ITALY 0,132 ***

DUMMY NETHERLANDS 0,230 ***

.' Significance at the 5% level, '*' Significance at the 1% level, 

**'Significance at the 0,1% level, '***'Significance at the 0% level

Coefficient
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4.5.2. Local agglomeration effects and farm size effects on efficiency 

Table 4-4 shows the estimates of the effects on efficiency
45

 in Equation 4.6. First of all, we 

analyze the effect of natural conditions on the efficiency. The THI dummies are both 

significant and negative. This means that farms located in regions with higher values of THI 

are less inefficient than those located in regions with the lowest values of THI. Our 

interpretation of this result is that farms located in adverse natural conditions might require 

extra effort to achieve better yields from the cows in comparison to those located in regions 

with lower values of THI. Farms located in these regions achieve lower yields and outputs, 

but in an effort to adapt to the adverse environment they could achieve higher efficiency 

scores.  

The proportion of grassland has a positive sign. This means inefficiency increases as the 

proportion of grassland in the region is larger.  Our interpretation of this result is that farms 

located in regions rich in grassland tend to feed less cows with concentrates. Cows fed on 

grassland need to move continuously, which implies extra energy consumption and a possible 

reduction of the efficiency. 

 

Table 4-4 Estimates of efficiency effects.  

Now we turn to the impact of the local agglomeration on efficiency. Only one out of our three 

measures of local agglomeration is statistically significant: the proportion of dairy farms in 

the region where the farm is located. Its negative sign implies that it reduces inefficiency. This 

result suggests that farms located in a region with a high proportion of dairy farms have a 

                                                           
45

 The average efficiency score over the period is 0.859,   =0.436. 

EFFICIENCY EEFECTS

INTERCEPT 0,023

DUMMY THI MEDIUM -0,158 ***

DUMMY THI  HIGH -0,175 ***

PROPORTION GRASSLAND 0,142 ***

PROPORTION DAIRY FARMS IN 

THE REGION (δ1) -0,051 ***
PROPORTION DAIRY FARMS 

NEIGHBOR REGIONS (δ2) -0,033

INTERACTION (δ3) -0,006

REGIONAL FARM SIZE (QUOTA) -0,086 ***

REGIONAL FARM SIZE (QUOTA)^2 0,033 ***

LOG SUBSIDIES 0,177 ***

.' Significance at the 5% level, '*' Significance at the 1% level, 

**'Significance at the 0,1% level, '***'Significance at the 0% level

Coefficient
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propensity to make fewer errors in the production process and achieve higher efficiency 

scores. As noticed by Tveteras and Battese (2006), farms located in regions with a high 

intensity of a common activity may receive the correct signals from environment where they 

operate. Moreover, they also suggest that the probability of making a wrong decision 

regarding the combination and use of inputs can be reduced in agglomerated environments. 

Such situations necessarily have a positive impact on efficiency.  

Measures which are related to local agglomeration in neighboring regions are insignificant in 

the efficiency term. This implies that benefits to efficiency from local agglomeration mainly 

come from the region in which the farm is located. In spite of the fact that there is free 

movement of people, trade and capital in Europe, firms closely bounded in a specific area 

share a number of characteristics that encourage the presence of externalities which impact on 

efficiency. According to Harrison (1992), firms bounded closely in an area share a social and 

cultural identity facilitated by a common language, values and beliefs. On the other hand, as 

stated by Cevassus-Lozza and Galliano (2004), imitation is facilitated among neighboring 

farms which are located close to each other and have similar characteristics. In other words, 

proximity plays a role in the spread of knowledge. Furthermore, knowledge is more 

efficiently generated and propagated in environments in which agents share key features. This 

supports the findings of the previous section, stating that local agglomeration in the region 

and in neighboring regions seems to improve productivity via a reduction of costs and 

attraction of costumers (demand). Conversely, externalities derived from local agglomeration 

that impact efficiency seem to be more related to knowledge spillovers and bounded to the 

region where the farm is located.   

The average size of a firm is measured by the average milk quota in the region. This is found 

to have a negative and statistically significant impact on inefficiency. Thus, the larger the 

average farm size, the lower the inefficiency. We interpret this result in two ways. First of all, 

larger farms tend to be associated with higher efficiency scores. Moreover, since quotas have 

been increasing over the analyzed period, this might be the result of a technological change in 

farm structure which traduces in higher efficiencies. Secondly, in terms of local 

agglomeration, as exposed before, larger farms tend to benefit more from the externalities of 

the local agglomeration while on the other hand they tend to produce more externalities. Thus, 

the result can also be interpreted as the benefits of the investment of large firms in fixed assets 

and in the training of specialized labor.  Notice that the value of the estimated quota square 

parameter is positive; this shows that the average size of the farm decreases the inefficiency 

until a certain average farm size is reached.  Our interpretation of this result is that large firms 
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located in certain regions might experience heavy competition in the local final market which 

might be prejudicial for the performance of the farms. The competition might also be reflected 

in the input market, especially in the land and labor market. The competition in those markets 

might not only be reflected in a possible scarcity of the inputs, but also in their prices which 

would tend to rise.  Biological congestion could be another outcome of the high concentration 

of large farms, not only affecting the productivity but also the efficiency.  

Finally, the proportion of subsidies has a negative impact on efficiency. Similar findings have 

been reported by Giannakas et al. (2001), Iraizoz et al. (2005), Rezitis et al. (2003). The 

possible interpretation is the tradeoff between motivation or lack of effort and the additional 

income that the subsidy represents.   

4.6. Conclusion 

In this work we have estimated the effects of local agglomeration on the dairy sector in 

Europe. Apart from being the first work that examines agglomeration effects in the dairy 

sector by means of stochastic frontier analysis, it also innovates in the measure and scope of 

agglomeration. In particular, we have assumed that local agglomeration effects may not only 

come from the region in which the farm is located, but also from neighboring regions.   We 

have found that by controlling for natural conditions, all our local agglomeration measures 

have a positive impact on the frontier, which in turn increases the output of the farms. 

Contrary to other studies, we did not find signs of congestion effects. Distinguishing exactly 

the channels by which local agglomeration benefits or is detrimental is still an issue to debate. 

So far, the main channel has been attributed to knowledge spillovers and there are substantial 

reasons to believe that this might be the main channel by which local agglomeration affects 

productivity. Nevertheless, as pointed out, other benefits of agglomeration can include market 

benefits. We believe that the benefits of local agglomeration on the frontier are more related 

to the latter than those achieved by knowledge spillovers.  

Theoretically, when estimating effects of local agglomeration in stochastic frontier analysis, 

there are enough reasons to believe that its effects are not only present in the frontier, but also 

in the efficiency effects. If efficiency substantially depends on the skills and knowledge of the 

farmer, and knowledge spillovers are present in agglomerated areas, local agglomeration has 

an undeniable impact on the efficiency. The same measures of local agglomeration have been 

used as efficiency effects. We have found that only local agglomeration in the region in which 

the farm is located reduces inefficiency.  The result suggests that only local externalities, 

presumably knowledge spillovers, have a positive impact on the allocation of the outputs of 
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the farms from the frontier. The result might be interpreted as the geographical scope by 

which these externalities affect farms. It is reasonable to propose that knowledge and 

information are prone to propagate in places with homogeneous cultural, idiomatic, natural 

and political conditions.  

We have also added a variable that measures the average size of the farm in the region. We 

found that the average size of the farm has a positive impact on efficiency. The interpretation 

of this result can be viewed from two different angles. First, larger farms tend to be associated 

with higher efficiency scores, thus our result supports this idea. Secondly, in terms of 

externalities derived from the local agglomeration. In spite of this, the measure does not 

capture the density of proportionality.  The presence of larger farms might increase the 

likelihood of more externalities derived from agglomeration as explained in the previous 

section. Nevertheless, there seems to be a point at which the average farm size increases 

inefficiency. As discussed, this might be the result of congestion effects.  

Several aspects of the results of this work are relevant for policy. First of all, the location of 

the dairy activity plays a key role in the determination of the productivity and efficiency. As 

demonstrated here, those effects go beyond the advantages of natural conditions. The results 

can serve as a guide for location of agricultural activities across Europe. Furthermore, policies 

that encourage better practices that improve productivity and efficiency might have a 

multiplier effect since farms may tend to imitate successful practices.  

Finally, further research needs to be done on the exact channels by which externalities 

propagate in agglomerated areas. Models that use the exact location of the farms might help to 

fully understand the complex processes behind the propagation of externalities and their exact 

spatial scope.  

 

 

 

 

 

 

 



84 
 

5. CONCLUDING REMARKS  

This body of work addresses two important issues regarding efficiency and productivity 

analysis. Both issues stem from the geographical location in which production takes place. 

Firstly, Chapters 2 and 3 have addressed the importance of accounting for regional 

heterogeneity in the estimation of stochastic frontier models. This was done under the 

hypothesis that technologies are heterogeneous over space due to heterogeneous natural, 

political, socio-economic and cultural conditions.  The aim in both chapters is to relax the 

assumption that all producers use the same technology.  Secondly, this work explores an 

additional effect of location: the effects of local agglomeration on efficiency and productivity 

analysis in Chapter 4. To the author’s knowledge, this is the first effort to explicitly address 

these issues in the dairy sector in spite of the long recognition of the implications of these 

issues in existing literature.  

Ignoring regional heterogeneity has implications on policy makers’ decisions. Assuming a 

common technology for all firms when analyzing efficiency and productivity at the 

transnational or transregional scale might lead to mistaken conclusions about farmers’ 

performance. The findings of Chapters 2 and 3 suggest policy decisions should be based on 

smaller scales - on a regional level rather than national or continental.  

The results which have been presented prove that, in some cases, accounting for such 

heterogeneity improved efficiency estimations as seen in Chapter 2. A Bayesian mixed model 

setup was used to take into account regional heterogeneity at the county level in sample dairy 

farms in the UK. This allowed us to show that, in all cases, models accounting for regional 

heterogeneity were preferred over those that ignored it. The results in Chapter 2 also show 

that efficiency scores improved, suggesting a subestimation of efficiency when regional 

heterogeneity is not accounted for. Furthermore, it was shown that the flexibility of the mixed 

model setup is such that, in principle, it is possible to obtain individual frontiers at the county 

level. As discussed in this Chapter, it is the authors’ belief that the main gain of the setup used 

is the improvement in accuracy of the fixed effects of the frontier by accounting for regional 

heterogeneity. 

Chapter 2 has also contributed to the abundant literature on the effects of subsidies on 

efficiency. It is worth noting that the existing literature on this topic has not reached a solid 

conclusion regarding the real impact of subsidies on efficiency. The nature of the effects and 

the magnitude of their impact varies considerably depending on how the subsidies are 

modeled, including factors such as the productive sector that is studied, the country, etc.  
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Chapter 2 has considered subsidies only as determinants of inefficiency. The findings show 

that the impact of the subsidies on efficiency depends on their nature.  

Chapter 3 uses variables of natural conditions (THI, altitude and LFA) and variables that 

might be seen as indicators of adaptation to natural conditions (cow per ha., feeding per cow, 

buildings per cow) to unveil different technologies in the dairy sector in Europe.   The cluster 

analysis proposed in this chapter shows substantial differences in the technologies employed 

across Europe. This has the advantage that measuring farms’ efficiency with adequate frontier 

could give a more realistic measure of efficiency since farmers are compared to those that 

face similar natural conditions and employ similar technologies. The results of the clusters in 

this chapter were contrasted with the results of the estimation of the complete panel, not 

taking into account the grouping of the observations by using LFA. When analyzing the 

clusters, the estimations provide additional information about the technology and the behavior 

of the TFP and its components. These individualities in efficiency scores and TFP behavior 

were completely omitted when the complete panel was analyzed. Therefore, the cluster 

analysis provides additional information about the performance of the farms. 

In Chapter 4, it was shown that agglomeration effects have a positive impact on productivity 

and efficiency.  Firstly, the findings proved that agglomeration effects are present in 

agricultural activities. Existing literature had suggested that industrial sectors of the economy 

benefit more from agglomeration economies.  Furthermore, not only was it shown that these 

effects exist in an agricultural activity, but to the authors’  knowledge it is the first attempt to 

estimate the effects of local agglomeration on productivity and efficiency in the dairy sector. 

The chapter introduces an innovative new concept on agglomeration economies  not 

previously found in the existing literature by assuming that effects of agglomeration are not 

only limited to the region in which the farm is located. Instead, the model takes into account 

the effects of agglomeration of neighboring regions as well. This indicates that externalities 

produced in agglomerated areas have a wider spatial spread. These results are relevant for 

policy makers for several reasons. Firstly, the findings suggest differences in productivity and 

efficiency of farms located in agglomerated areas; this might serve as a guide for planning and 

stimulating the creation of clusters of different economic activities, in which knowledge 

spillovers would be encouraged.. Secondly, policies that encourage technical change and an 

increase in efficiency might have a multiplier effect since farmers would tend to imitate good 

farming practices.   
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Finally, in line with the motivation of previous chapters, Chapter 4 also quantifies the impact 

of two key measures of natural conditions on productivity and efficiency: THI and the 

availability of grassland. The magnitude and significance of the estimators suggest that such 

factors should not be ignored when estimating productivity and efficiency.  The results are 

relevant for policy because they can serve as a guide for focalization strategies of the policy to 

improve productivity. They show that there are differentials in the possibilities of the farms 

depending on their natural conditions. Again, this finding reinforces the idea that policies with 

national or continental scope might distort their aims if such conditions are ignored.    

The scope of the analysis of the complex spatial processes that might affect the technology, 

efficiency and knowledge are certainly limited by the specificity of information on the 

location of the farms. This work has based its analysis on the smallest regional division 

available. Specific locations open the possibility to explore more complex spatial techniques 

at the smallest possible scale, the farm level.  

The extent to which the results are driven by the simplicity of certain model specifications is 

open to question. Chapter 2 assumed a Cobb-Douglas production function with time-invariant 

efficiency. The flexibility of other technologies should be explored, e.g. translog. However, a 

more flexible technology implies an increasing number of parameters to estimate in the mixed 

model setup. Time-invariant efficiency might be seen as a very strong assumption on the 

farmers’ skills. The results of Chapter 2 suggested a preference for the time-invariant 

specification by DIC. Nevertheless, further time-varying specifications need to be tested.  In 

particular, given the described hierarchical structure of the data, efficiency trend parameters 

may also share this hierarchical structure and therefore be susceptible to being modeled with 

the corresponding random effects. This chapter also assumed that subsidies only influence 

efficiency scores. Modeling subsidies in stochastic frontier analysis has encouraged a 

considerable debate in literature. Nonetheless, it is the author’s belief that subsidies may not 

only affect farmers’ efficiency but also the input combinations. This would then imply that 

there is an effect on the technology as well as a technical change.  

A two-step procedure was used in Chapter 3: in the first step, clusters are identified by means 

of LCA. Meanwhile, in the second step stochastic frontier, efficiencies and TFP are all 

estimated. It should be noted that estimating both steps in one single operation is possible and 

several publications have addressed the issue (see Alvarez and del Corral , 2010 and Orea and 

Kumbhakar 2004). However, the approach in this chapter uses variables to identify clusters 

that might be considered endogenous when the one-step procedure is performed. The two-step 
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procedure allows us to use such variables in the analysis while avoiding possible endogeneity 

issues.     

A surprising result of the LCA was the relatively large number of clusters that were found. 

The selection of the numbers of clusters was based on the methodology suggested by Collins 

and Lanza (2010). The chosen selection criterion primarily bases its decisions on the 

minimum possible value of AIC and/or BIC. These criteria have the advantage that they 

include a penalty term that increases with the number of estimated parameters. The final 

selection of the number of clusters also takes into account the properties of separability and 

homogeneity.  Nevertheless, when selecting number of clusters other criteria may be used 

resulting in a different number of clusters. Another fact that can explain the number of 

clusters is the large number of farms present in the sample (21452 farms) alongside the 

sample’s large heterogeneity.  

Chapter 3 it was also assumed that prevalences (membership probabilities) are constant over 

time. Prevalences might be allowed to vary over time, imposing restrictions (invariability over 

time) on the item response parameters since the number of parameters to estimate would 

substantially increase. It is the author’s opinion that time varying prevalences add little useful 

information to the cluster analysis performed in this chapter. This is primarily assumed 

because it is the THI variable which heavily drives the LCA estimation. THI is region 

specific, which somehow attaches the farm to the region in which it is located. Even more, 

THI has little variability over time but larger variability over space.   On the other hand, the 

unbalanced nature of the panel data prevents an accurate estimation of prevalences over time.  

The TFP decomposition deserves special attention. The measure of TFP presented in Chapter 

3 is strongly driven by the selected model specification, Battese and Coelli (1992). This 

specification assumes the rate of growth of technical efficiency change is common to all 

producers in the same frontier (technology). Such assumption seems restrictive since farmers’ 

skills and knowledge are clearly heterogeneous and therefore growth rates of efficiency are 

also heterogeneous.  Furthermore, this specification ignores any statistical noise in the 

efficiency, which theoretically might be implausible.  However, since the purpose of this 

chapter was to make a comparison among clusters, assuming a common trend for the 

efficiency in each group facilitates this comparison and makes it more consistent. Adding 

other sources of heterogeneity (e.g. farm heterogeneity) may cause difficulties when 

comparing different technologies given the large variability of the farms present in the 

sample. Finally, the TFP decomposition presented in Chapter 3 ignores one of the components 
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of TFP: the allocative inefficiency. The estimation of this component requires information on 

the prices of inputs, which was not available.  

The behavior of the TFP can also be explained by the structure of the data set. Annual TFP 

was estimated as the average of two consecutive years. Since the panel data used is highly 

unbalanced, this implies that the TFP estimation for a particular pair of years does not 

necessarily contain the same farms in the previous and following pair or years. As a result, 

more appropriate conclusions on the development of TFP over time may be obtained with a 

balanced panel data.  

In Chapter 4, it was assumed that a common technology was used for all observations, an 

assumption which explains the low values of  46. The goal of the model presented in Chapter 

4 was to identify and quantify the impacts of local agglomeration in the dairy sector. The 

measures of local agglomeration are also open to interpretation.  In this chapter, the 

proportion of dairy farms per region was used as an appropriate measure. This measure is 

expected to capture the intensity or importance of the dairy sector in each region. Such a 

measure is based on the hypothesis that a higher proportion of dairy farms would encourage 

the diffusion of externalities (e.g. knowledge spillovers) and the creation of externalities 

themselves.  The existing literature has a wide spectrum of measures of local agglomeration, 

measures which are certainly limited by the quality of the data. In general, census data are 

required to create such measures. 

5.1. Further research   

Further research should focus on the integration of spatial regression techniques with SFA 

when panel data is available. At present, the techniques developed are limited to cross-

sectional or balanced panel data. Considering the best case scenario, this limitation implies a 

loss of observations when the panel is balanced. The challenge then becomes the possibility of 

introducing changing distance matrices over time. This work has mainly studied the effects of 

regional heterogeneity and location in the frontier component, i.e. the technology employed 

by farmers. Nevertheless, these effects may also be present in the efficiency component as 

suggested in Chapter 4. This leads to the conclusion that attempts to incorporate spatial 

regression analysis into SFA should be flexible enough to incorporate the spatial effect in 

both the frontier and the efficiency component. 

                                                           
46

 The proportion of the variance that can be attributed to inefficiency.  
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Further research is also needed to clarify the real impact of the subsidies on efficiency and 

technology. This suggests that the effects of subsidies in determining the technology and 

efficiency are more complex than effects tested so far in literature. Existing literature has not 

been able to accurately specify the mechanism by which subsidies affect productivity and 

efficiency.  The latter issue is not trivial to solve as there are indications that subsidies might 

have an impact on every component of SFA.  It is the author’s belief that subsidies should not 

be treated as inputs in the production function, though they may influence the input 

combinations. Models like the one developed by McCloud and Kumbhakar (2008) in which 

subsidies are introduced as a function of inputs, technical change and technical efficiency can 

shed light on the direction in which subsidies can be properly modeled. Notice that the 

structure of such a model implicitly enables the researcher to incorporate the effects of 

subsidies into the measure of TPF.   

Measuring the TFP clearly requires new estimation methods to analyze its decomposition and 

behavior over time. It is important to note that measuring TFP is very different from 

explaining it and little research has been done to tackle this issue. New estimators of TFP 

should search for the drivers of the behavior of TPF over time rather than merely measure it. 

Drivers like location, environment, policy and market structure should be accounted for when 

measuring TFP. Ignoring such drivers might lead to biased estimators and a biased measure of 

TFP.  So far, some work has been done in this direction under strong assumptions concerning 

the econometrical estimation of the model (see O’Donnell, 2014a and 2014b).  

Finally, more research should be done to identify the exact channels by which local 

agglomeration influences SFA. As described previously, effects of local agglomeration can be 

both negative and/or positive for the frontier and the efficiency component. This implies that 

it is essential to develop accurate measures of agglomeration. As exposed in Chapter 4, firms 

benefit from externalities derived from agglomeration and produce these externalities 

differently. For example, large firms are expected to generate more knowledge than small 

firms and are probably more prone to adopting newly generated knowledge. Measures of 

agglomeration that could incorporate the density and/or proportion of large farms derived 

from census data would allow researchers to understand the differentials in the generation and 

adaptation of knowledge spillovers. Another research line should consider knowledge 

spillovers and their propagation under the optic of social network analysis. This would allow 

researchers to understand the complexity of the mechanisms by which knowledge spillovers 

propagate. 
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APPENDIX 1.  

Appendix one shows Markov Chain Monte Carlo (MCMC) of models 1, 2 and 3. 

Model 1.  

Iterations of elasticities and inefficiency effects. 

  

Correlograms of MCMC of elasticities, inefficiency effects and variances of random 

intercepts. 
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Model 2.  

Iterations of elasticities and inefficiency effects. 
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Correlograms of MCMC of elasticities, inefficiency effects and variances of random 

intercepts. 

  

Model 3.  

Iterations of elasticities and inefficiency effects. 
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Correlograms of MCMC of elasticities, inefficiency effects and variances of random 

intercepts. 
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APPENDIX 2. 

Results of Model 4 are presented. This model does not have a random coefficient in the 

production function. The prior distribution for the inefficiency term is the same as in Mode2.  

.  

 

 

 

INPUT Model 4

Intercept -0.017

(0.032)

LAND 0.173

(0.028)

LABOR 0.198

(0.030)

LIVESTOCK COSTS 0.590

(0.024)

OTHER COSTS 0.023

(0.022)

CAPITAL 0.005

(0.014)

TREND -0.017

(0.003)

Precision* 81.840

(4.715)

Precision* 5.142

-1.156

Livestock sub. 0.238

(0.091)

Environmental sub. 0.001

(0.026)

HFA payments -0.081

(0.035)

Mean Efficiency 0.713

DIC -1233.0

Observations 920

Iterations 240'000

* Precision is the inverse of the variance.

Inefficiency effects 
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Model 4.  

Iterations of elasticities and inefficiency effects. 

  

Correlograms of MCMC of elasticities and inefficiency effects. 
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APPENDIX 3. Descriptive statistics per cluster.  

 

 

 

 

 

 

 

Variable Unit Cluster Minimum Mean Maximum
Standard 

Deviation

1 9,761.0 252,800.0 5,953,000.0 283,710.7

2 308.3 128,800.0 1,793,000.0 118,275.3

3 771.9 63,860.0 918,700.0 60,815.0

4 17,590.0 359,500.0 4,100,000.0 297,369.6

5 19,150.0 288,300.0 7,640,000.0 548,470.8

6 2,089.0 90,480.0 5,869,000.0 242,631.2

7 22,320.0 212,400.0 2,542,000.0 132,580.1

8 1,970.0 96,260.0 2,573,000.0 61,152.5

9 218.8 63,860.0 1,100,000.0 62,339.4

10 4,404.0 129,600.0 1,383,000.0 86,800.9

11 7,817.0 96,230.0 6,020,000.0 149,614.8

12 8,587.0 53,310.0 393,400.0 32,430.1

13 9,536.0 185,200.0 5,903,000.0 234,136.0

14 9,198.0 81,950.0 2,066,000.0 72,253.1

15 4,902.0 72,810.0 494,200.0 43,476.3

16 13,420.0 172,900.0 8,135,000.0 427,007.1

1 5.1 35.5 2,186.0 45.3

2 5.0 26.2 383.0 25.4

3 5.0 66.4 2,838.0 120.8

4 6.1 104.4 802.8 70.4

5 6.9 120.3 3,016.0 202.0

6 5.0 21.0 902.0 32.2

7 5.3 48.3 265.0 28.9

8 5.3 70.0 1,385.0 44.6

9 5.0 22.5 705.3 25.6

10 7.0 61.5 623.4 38.9

11 5.8 53.9 1,767.0 80.9

12 5.2 38.3 795.5 36.7

13 5.6 65.3 2,137.0 81.5

14 5.1 25.2 583.7 39.5

15 5.0 27.5 187.2 16.5

16 6.3 83.1 4,235.0 208.0

Output

Land

€

Hectares



105 
 

 

 

 

 

 

 

 

 

 

Variable Unit Cluster Minimum Mean Maximum
Standard 

Deviation

1 1,050.0 6,376.0 65,670.0 3,625.6

2 720.0 4,462.0 43,680.0 2,452.8

3 560.0 4,959.0 21,350.0 2,618.4

4 1,050.0 4,976.0 59,670.0 3,699.9

5 1,100.0 6,978.0 291,700.0 15,247.9

6 940.0 4,069.0 138,900.0 4,034.3

7 756.0 4,347.0 65,050.0 1,965.9

8 1,025.0 3,679.0 135,900.0 2,442.6

9 747.0 3,801.0 36,030.0 1,912.4

10 1,051.0 3,803.0 26,520.0 1,892.7

11 1,000.0 4,074.0 347,000.0 6,961.1

12 981.0 4,288.0 31,910.0 1,561.6

13 1,000.0 4,397.0 232,000.0 7,555.5

14 936.0 4,440.0 29,700.0 1,912.9

15 1,114.0 3,783.0 12,550.0 1,257.2

16 960.0 5,923.0 374,400.0 15,047.8

1 3,130.0 86,070.0 1,832,000.0 101,407.8

2 468.3 53,880.0 861,800.0 49,810.6

3 1,604.0 21,960.0 249,600.0 19,078.9

4 4,238.0 88,480.0 1,665,000.0 86,679.1

5 3.5 54,290.0 1,754,000.0 120,328.6

6 115.4 26,190.0 2,693,000.0 81,351.4

7 1,354.0 33,260.0 378,600.0 22,377.0

8 326.2 15,530.0 600,800.0 12,354.7

9 671.7 22,290.0 589,800.0 22,546.9

10 0.9 17,050.0 162,500.0 12,537.5

11 4.5 13,680.0 649,600.0 22,090.9

12 7.6 5,870.0 61,690.0 4,985.5

13 7.7 38,060.0 1,145,000.0 49,423.7

14 2,543.0 30,510.0 349,400.0 24,006.9

15 157.2 9,576.0 64,170.0 7,280.0

16 1,279.0 33,660.0 1,442,000.0 89,104.1

Labor

Feed cost

Hours/year

€
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Variable Unit Cluster Minimum Mean Maximum
Standard 

Deviation

1 1,512.0 48,090.0 1,672,000.0 62,174.9

2 464.0 24,630.0 358,600.0 25,306.9

3 258.6 16,690.0 403,400.0 19,900.4

4 5,405.0 80,820.0 926,700.0 59,752.9

5 3,163.0 89,080.0 3,024,000.0 163,242.8

6 760.4 15,880.0 2,162,000.0 46,264.3

7 6,036.0 59,520.0 668,700.0 34,978.2

8 687.7 33,900.0 997,700.0 23,654.7

9 257.3 10,900.0 288,300.0 12,467.8

10 2,369.0 40,780.0 522,400.0 30,991.2

11 4,514.0 38,320.0 3,089,000.0 63,172.7

12 3,935.0 23,690.0 159,000.0 13,848.5

13 3,532.0 51,030.0 2,024,000.0 71,544.3

14 1,590.0 20,350.0 296,200.0 16,061.7

15 5,212.0 29,420.0 139,500.0 16,500.4

16 4,233.0 65,030.0 2,710,000.0 147,035.5

1 3.8 72.1 1,427.0 74.7

2 4.0 48.2 527.0 35.7

3 2.7 24.9 200.0 19.7

4 5.5 100.9 996.0 69.3

5 4.0 86.6 1,842.0 142.1

6 3.0 40.1 2,165.0 84.4

7 7.8 67.0 619.0 40.2

8 4.0 42.9 692.1 22.5

9 3.0 30.8 608.0 27.3

10 6.8 49.3 345.5 28.8

11 5.1 38.4 1,555.0 52.2

12 4.0 17.9 130.0 10.6

13 4.2 64.4 1,256.0 61.5

14 2.0 25.4 288.3 18.7

15 6.2 27.8 157.1 15.9

16 4.5 50.6 2,100.0 98.4

Source: Own calculation.

Number of cows

Farm expenses

Cows

€
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