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Abstract 
 

Although Multiple sclerosis (MS) and its animal model experimental autoimmune 

encephalomyelitis (EAE) are known as T cell-mediated autoimmune diseases, there 

is increasing evidence that B cells also play a critical role in their pathogenesis. 

However, there are conflicting data about the exact role of B cells in the pathogenic 

process. To study the interaction of MOG-specific T and B cells in the course of 

actively induced EAE, we developed a model enabling us to track and analyze the 

cells ex vivo during disease progression. We induced EAE with the encephalitogenic 

MOGp35-55 peptide and found that the transfer of MOG-specific B cells had a disease 

promoting effect with an accelerated onset. When we focused on the underlying 

mechanism, we could show that MOG-specific B cells did not enhance MOG-specific 

T cell proliferation, activation or differentiation during the activation phase or 

immediately before EAE onset. Moreover, MOG-specific B cells did not enhance T 

cell activation in the reactivation phase within the CNS in our experimental model. 

The presence of MOG-specific B cells had no impact on the number of circulating 

inflammatory myeloid cells. Furthermore, endothelial cells of spinal cord microvessels 

displayed similar adhesion molecule and chemokine expression levels in the 

presence of MOG-specific B cells. The accelerated onset was accompanied by an 

increased number of CNS infiltrated T cells, leading to the speculation that MOG-

specific B cells might influence T cell trafficking. The latter is supported by our finding 

that peripheral MOG-specific T cells showed an enhanced expression of CXCR4 and 

CCR6 in the presence of MOG-specific B cells. Our clinical data revealed that the 

presence of activated MOG-specific B cells is critically required for the accelerated 

disease onset, as activated MOG-unspecific B cells had no effect on the disease 

onset. When we focused on the mechanism utilized by MOG-specific B cells to 

promote disease initiation, we found that B cells with an impaired development into 

antibody secreting plasma cells did not accelerate the disease onset. This led to the 

conclusion that, even in EAE induced by MOG peptide, B cells promote the initiation 

of EAE by their secretion of MOG-specific antibodies. 
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1. Introduction 
 

1.1. The immune system 

The immune system protects the organism against pathogens and can be divided 

into an innate and an adaptive immune system. The innate immune response occurs 

immediately after recognition of the pathogen by macrophages, dendritic cells, 

natural killer cells and the complement system. The defence mechanisms of the 

adaptive immune system are mediated by lymphocytes and are characterized by a 

specific recognition of the pathogen due to an antigen-specific surface receptor and 

the development of an immunological memory. Under normal circumstances, the 

processes of an immune response are optimally coordinated and regulated by 

specialized cells of the immune system to avoid overshooting reactions or to mediate 

tolerance against non-pathogenic antigens (e.g. self antigens). However, a 

dysfunction of any factor involved in this process can have fatal consequences for the 

organism, leading for example to the development of an autoimmune disease like 

diabetes type I, inflammatory bowel disease or multiple sclerosis. 

 

1.1.1. Innate immune system 

The innate immune response provides the first line of defence against an invading 

pathogen. Cells of the innate immune system detect molecular patterns found in most 

microorganisms by pattern recognition receptors (PRRs) [1]. These microbial 

structures are referred to as pathogen-associated molecular patterns (PAMPs), 

whereas molecular patterns from dead or damaged cells are defined as damage-

associated molecular patterns (DAMPS) [2]. The most prominent PRRs are the Toll-

like receptors (TLRs) [3]. Recognition of the pathogen by cells of the innate immune 

system either results in its phagocytosis and successful clearing or in the stimulation 

of the adaptive immune system. Macrophages and dendritic cells act as antigen-

presenting cells (APCs). They present antigens, loaded on major histocompatibility 

complex (MHC) molecules to either CD8+ T cells (MHC-I) or CD4+ T cells (MHC-II), 

which recognize the MHC-antigen complex due to their specific antigen receptor. 

Macrophages and dendritic cells derive from a common myeloid precursor, the 

monocyte. Monocytes originate in the bone marrow and are then released into the 
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peripheral blood where they appear predominantly as two distinct populations [4]. 

The short-lived monocyte subset was identified as CCR2+Ly6C+CX3CR1
-. These are 

commonly referred to as ‘inflammatory’ monocytes as upon inflammation they were 

found to be immediately recruited into the tissue in a CCR2-dependent manner [5, 6]. 

In contrast, the CCR2-Ly6CloCX3CR1
+ monocyte population have a longer half-life 

and are considered as ‘resident’ monocytes. They migrate into various tissues under 

non-inflammatory conditions in a CX3CR1-dependent manner [4]. A third very small 

monocyte population was identified as CCR7+CCR8+ and it was shown that they 

emigrate to lymph nodes where they appear as monocyte-derived dendritic cells [7]. 

 

1.1.2. Adaptive immune System 

T and B lymphocytes are the main players of the adaptive immune system, which can 

be divided into two functional parts: the cellular and the humoral system. B cells 

mediate humoral immunity by their production and secretion of high-affinity 

antibodies and are part of the cellular system due to their antigen-presenting capacity 

and their secretion of cytokines. One main characteristic of cells from the adaptive 

immune system is their specific antigen receptor. The antigen receptor specificity is 

determined by the antigen-binding site of the T cell receptor (TCR) and the B cell 

receptor (BCR). The enormous range of specificity is achieved by somatic 

recombination of the DNA which encodes the different segments of the receptor. 

T cells can be further divided into CD4+ (co-receptor) or CD8+ (co-receptor) T cells. 

Both T cell subtypes share the feature that they only recognize an antigen when it is 

bound to a MHC molecule on the surface of an antigen-presenting cell. Due to the 

different co-receptors, that interact with MHC molecules on the APC, CD4+ T cells 

recognize the antigen in the context of MHC-II and CD8+ in the context of MHC-I. The 

major function of CD8+ T cells is the elimination of intracellular pathogens by cytolysis 

of the infected cell and they are therefore called cytotoxic T cells. CD4+ T cells are 

also known as helper T cells (TH cells). They show a high phenotype plasticity and, 

depending on the surrounding cytokine milieu, they develop into different helper T 

cells subtypes as schematically depicted in Figure 1. 
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Figure 1: Schematic overview of helper T cell differentiation. Upon naïve T cell (blue) 

activation by antigen encounter the T cells develop either into TH1, TH2, TH17, induced regulatory T 

cells (iTreg cells) or T follicular helper cells (Tfh) depending on the cytokine milieu. The different CD4
+ 

T cell subsets are characterized by their main transcription factors and their secreted cytokine(s). 

Figure modified from [8]. 

 

Together with antigen presentation, the production of interleukin-12 (IL-12) by 

activated macrophages and dendritic cells induces the differentiation of naïve T cells 

into TH1 cells [9, 10]. IL-12 binds to the IL-12 receptor on the T cell surface which 

activates a signal transducer and activator 4 (STAT4) signaling pathway resulting in 

the transcription of the transcription factor T-box expressed in T cells (T- bet) and 

IFN [11]. In a positive feedback loop, IFN binds to its receptor on the T cells 

surface, thereby activates the signal transducer and activator 1 (STAT1) signaling 

pathway and enhance T-bet and its own expression [12]. In contrast, the cytokine IL-

25 triggers the differentiation of naïve T cells into IL-4, IL-5 and IL-13 producing TH2 

cells [13]. IL-4 then leads to the activation of the STAT6 pathway [14] resulting in an 

upregulation of the transcription factor GATA-3 enabling the expansion of TH2 cells 

[15]. The differentiation of naïve T cells into TH17 cells is triggered by either the 

cytokines IL-6 or IL-21 in combination with transforming growth factor beta (TGF), 

and the transcription factor orphan nuclear receptor RORt is critical for TH17 cell 

development [16-18]. The cytokines IL-1 and IL-23 are crucial for the maintenance 



Introduction 

4 

of the TH17 phenotype [19, 20]. TH17 cells produce a variety of effector cytokines 

like IL-17A, IL-17F, IL-21, IL-22, TNFα and granulocyte/macrophage-colony 

stimulating factor (GM-CSF) [21]. The cytokines TGF, IL-2 and IL-10 induce the 

differentiation of naïve CD4+ T cells into induced regulatory T cells (iTreg cells) by the 

induction of their critical transcription factor FOXP3 [22-24]. In contrast, natural 

regulatory T cells (nTreg cells) develop in the thymus during the process of negative 

selection [25]. Regulatory T cells play an important role in mediating tolerance to self-

antigens and establishing immune homeostasis by e.g. suppression of T cell 

proliferation or their differentiation into effector T cells [26, 27]. T follicular helper cells 

(Tfh cells) provide help for B cells to induce germinal center formation and are mainly 

characterized by their surface expression of CXCR5 and ICOS. The transcriptional 

repressor Bcl6 was shown to be critical for the differentiation of naïve T cells into Tfh 

cells upon IL-21 and IL-6 stimulation [28-30]. 

 

1.2. Multiple sclerosis 

Multiple sclerosis is an autoimmune disease affecting the central nervous system 

(CNS). An autoimmune disease is defined by the presence of an immune response 

directed against self- antigens leading to the activation and amplification of self-

reactive cells which results in organ-specific inflammation and tissue disruption. 

Multiple sclerosis is considered as a T- cell mediated autoimmune disease, where 

effector mechanisms of autoreactive myelin-specific T cells are directed against 

myelin antigens leading to myelin sheaths disruption (demyelination) and axonal 

damage.  

Multiple sclerosis is the most common inflammatory disease of the central nervous 

system (CNS) affecting more than 2 million people worldwide, but it is more common 

among Caucasians. First clinical signs typically appear between 20 to 40 years of 

age and females show a higher susceptibility than males. Typical clinical symptoms 

are paralysis and impaired vision and cognitive function [31]. There are different 

forms of MS regarding the clinical course of disease. The most common form is the 

relapse-remitting MS one (RR-MS). Patients of this MS form suffer from periods of 

acute attacks alternating with periods of recovery to near normal neurological 

function. In some cases, the RR-MS form turns into the secondary-progressive MS 
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(SP-MS) form, which is accompanied by irreversible progression of clinical disability 

after a relapse. Patients of primary-progressive MS (PP-MS) and progressive-

relapsing MS (PR-MS) suffer a clinical progression from the initiation of the disease. 

The PP-MS course shows a gradual increase of disease symptoms, whereas PR-MS 

disease course is accompanied by acute relapses [32].  

The etiology of MS is a central question of research. A high number of factors are 

associated with MS susceptibility. Environmental triggers, genetic risk factors and 

infectious diseases are those predominantly discussed. Environmental risk factors 

are for example reduced Vitamin D levels, smoking or special diets (association of 

high salt intake and its effects on the disease have only been investigated in the MS 

animal model EAE until now) [33-38]. In addition, infectious agents like the Epstein-

Barr virus (EBV) and, related to this, the hygiene hypothesis, are also considered to 

increase the susceptibility for MS [39]. Observations from population-based studies of 

twins and an elevated frequency of the disease in relatives from affected patients 

argue for a genetic predisposition for MS [40]. Genome-wide association studies 

revealed several risk loci associated with MS and almost all of them are related to the 

immune system. The most prominent of these is the HLA (Human Leukocyte 

Antigen) allele DRB*11501- it was shown that single nucleotide polymorphism (SNP) 

in this allele has the strongest association with MS [41]. Moreover, there were risk 

loci of genes identified encoding cytokine receptors (IL-2RA, IL-7RA) or co-

stimulatory molecules (CD80, CD86) [41], suggesting an immune dysfunction as a 

potential cause for MS.  

In MS, tissue damage occurs predominantly in the white matter of the brain and the 

spinal cord. Focal inflammatory demyelinated lesions are characterized by immune 

cell infiltrates and results in axonal damage and gliosis. In the progressive stages of 

the disease (SP-, PP-MS), also cortical demyelination can be detected [42]. 

Histopathological studies reveal a high heterogeneity in lesional profiles. However, by 

investigating actively demyelinating lesions of biopsy and autopsy cases, four 

different patterns of demyelination were defined. The presence of infiltrating T cells 

and macrophages is common in all cases, but they differ for example in the 

localization of the demyelinated plaques or the presence of immunglobulins and 

complement [43]. However, the reason for the different patterns is not clear and it is 

not a direct evidence for the pathogenic mechanism. 



Introduction 

6 

Several cellular dysfunctions have been uncovered in MS patients. Interestingly, 

myelin- specific T cells are not exclusively detected in the blood of MS patients, but 

also in healthy individuals. However, it was shown that myelin-specific T cells isolated 

from the blood and especially from the CSF of MS patients persist in a different 

activation status than T cells from healthy controls leading to a higher sensitivity upon 

antigen encounter [44-47]. Also regulatory cells from MS patients reveal an impaired 

cellular function. The suppressive capacity of regulatory T cells from MS patients is 

decreased leading to a loss of regulatory function [48, 49]. There is evidence that 

also pro-inflammatory and regulatory B cells are critically involved in the progression 

of MS. Ectopic lymphoid follicle-like structures containing a high number of B cells 

and plasma cells were found in the meninges of SP-MS patients [50, 51] and the 

presence of oligoclonal bands in the CSF of almost all MS patients can be used as a 

supportive diagnostic criteria [52]. In addition, autoantibodies against MOG are 

directly associated with myelin damage [53, 54]. Peripheral B cells isolated from 

blood of RR-MS patients exhibit an augmented pro-inflammatory cytokine response 

in comparison to B cells from healthy controls [55, 56]. Clinical studies with 

Rituximab, a monoclonal antibody which selectively targets and depletes CD20+ B 

cells, reveal beneficial effects in the treatment of MS. In a phase 2 study, relapse-

remitting multiple sclerosis patients show reduced lesions compared to placebo 

treated patients and the proportion of Rituximab treated patients with relapses was 

reduced [57]. The treatment of RR-MS patients results in a reduced T and B cell 

number in the cerebrospinal fluid at six months post treatment and an accompanied 

reduction of serum antibodies against myelin oligodendrocyte glycoprotein and 

myelin basic protein in some patients [58]. However, the beneficial effects observed 

with Rituximab therapies are in contrast to clinical trials with another B cell-depleting 

drug called Atacicept. Atacicept is a humanized recombinant fusion protein 

containing the extracellular ligand- binding portion of the human transmembrane 

activator and calcium modulator and cyclophilin-ligand interactor (TACI) receptor 

fused to a recombinant Fc domain of human IgG. The receptor binds the cytokines B-

lymphocyte stimulator (BLyS) and a proliferation-inducing ligand (APRIL) –cytokines 

involved in B cell differentiation, maturation, and survival, and thus inhibits their 

action on B cells [59, 60] Clinical studies with Atacicept reveal increased clinical 

disease activity [61]. The underlying reasons for the observed worsening of clinical 

symptoms are not yet clarified in detail, but it is considered that Atacicept, in contrast 
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to Rituximab, also targets and affects plasma cells [62], which were recently shown to 

play a regulatory role in the pathogenesis of MS. Regulatory B cells are a recently 

discovered B cell subpopulation and their contribution to CNS autoimmune disease 

was until now mainly investigated in the MS mouse model EAE (regulatory B cells 

are described in detail in chapter 1.3.4.1.4.). However, in mice as well as in humans, 

they exert their regulatory function mainly by the production of IL-10 and IL-35 and it 

was shown that B cells from MS patients exhibit a reduced production of IL-10 [63]. 

 

1.3. Experimental autoimmune encephalomyelitis 

The animal model experimental autoimmune encephalomyelitis (EAE) mimics several 

aspects of the human autoimmune disease Multiple sclerosis. Most of the EAE 

studies were performed in rodents like mice and rats but it can also be induced in 

other animals like non-human primates [64, 65]. In susceptible mouse strains, EAE 

can be induced in two ways– either by adoptive transfer of myelin antigen-primed 

encephalitogenic T cells (transfer EAE) or by immunization with a myelin antigen 

emulsified in adjuvant (active EAE). For transfer EAE, antigen-specific T cells are 

obtained by immunization with a respective antigen following by in vitro T cell re-

stimulation with antigen and cytokines pushing the T cells into T helper cell 

differentiation. It was shown that TH1 and TH17 cells, but not TH2 cells, can 

efficiently induce EAE in different mouse strains [21, 66-70]. The critical cytokine of 

TH1 cells in the context of EAE is IFN [66, 67, 69]. TH17 cells produce a wide range 

of cytokines [21], whereas only IL-17A and GM-CSF seem to play a critical role in 

EAE [69, 71, 72]. The myelin proteins predominantly used to induce EAE are the 

myelin oligodendrocyte glycoprotein (MOG), proteolipid protein (PLP) and the myelin 

basic protein (MBP) and their respective T cell relevant peptide epitopes (e.g. 

MOGp35-55, PLP139-151)  [73-75]. An overview of their location within the myelin sheath 

is depicted in Figure 2. 
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Figure 2: Localization of myelin proteins in the myelin sheath surrounding the 

neuron. Myelin-associated protein (MAG) and myelin oligodendrocyte glycoprotein (MOG) are 

located on the outer surface of the myelin sheaths, proteolipid protein (PLP) and myelin basic protein 

(MBP) are located in the inner layers of the myelin sheaths [76]. 

 

1.3.1. Different EAE models in the mouse 

EAE and MS are both autoimmune in nature. The physical disabilities are the 

consequence of mononuclear cell infiltration into the central nervous system leading 

to demyelination, axonal damage and tissue destruction. However, the animal model 

does not resemble the full spectrum of the human disease. To overcome this problem 

several EAE models have been established with each mimicking different 

characteristics of the human disease. Differences of the clinical phenotypes are due 

to the different genetic repertoire of each susceptible mouse strain, especially 

influenced by different MHC-haplotypes. Immunization of C57Bl/6 mice with either 

the MOG protein or with the T cell epitope MOGp35-55 as well as the adoptive transfer 

of MOG-specific TH1 or TH17 cells leads to a chronic form of EAE with inflammatory 

foci predominantly present within the spinal cord rather than within the brain [69, 75]. 

MOG-specific T cell receptor transgenic mice (2D2 mice) can develop EAE 

spontaneously but with a very low incidence (4%) [77], but the cooperation of MOG-

specific T and B cells in a double-transgenic mouse model led to the spontaneous 

development of EAE with an incidence of 59% [78, 79]. The relapse-remitting course 
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of MS, the most common form of the disease, can be resembled by the adoptive 

transfer of PLP139-151 primed T cells or by immunization of SJL/J mice with PLP. 

These mice develop EAE with a relapse-remitting course [74, 80]. Additionally, a T 

cell receptor transgenic mouse model on the SJL/J background spontaneously 

develop EAE with a relapse-remitting disease course [81]. In most EAE models the 

infiltration of cells into the CNS is restricted to the spinal cord rather than to the brain. 

However, there are some rodent models where immunization leads to brain 

inflammation mimicking the predominant MS CNS histopathology [82, 83]. 

 

1.3.2. Immune reactions within the central nervous system 

The central nervous system is often considered as an immune privileged organ e.g. 

due to its special microvessel endothelial cells restricting cell entry or the absence of 

lymphatic vessels. However, with increasing investigation it became clear, that the 

CNS is not completely devoid of immune reactions. CNS resident cells like microglia 

and astrocytes express MHC-II as well as co-stimulatory molecules, but also a low 

number of perivascular and meningeal macrophages [84] could be found under 

healthy physiological conditions. Activated T cells injected into the periphery were 

also found to be able to cross the blood brain barrier [85-87]. Additionally, the 

rejection of tissue transplants into the brain of immunologically primed recipients in 

contrast to immune deficient recipients emphasize the potential for immune reactions 

within the CNS [88]. 

The CNS is surrounded by a special membrane structure termed meninges. This 

structure is composed of three different membrane layers- the dura mata, which is in 

direct contact to the skull and the arachnoid mater which together with the pia mater 

define the subarachnoidal space comprising the cerebrospinal fluid (CSF). The CSF 

is produced within the ventricles of the brain by the choroid plexus and circulates 

through the brainstem around the outer surface of the spinal cord and is crucial for 

CNS metabolism and homeostasis. The subarachnoidal space is crossed by an 

artery network whose capillaries penetrate into the CNS parenchyma. An endothelial 

basement membrane on the vessel wall side and the glia limitans enclose the 

perivascular space. The CNS microvessels are lined by special endothelial cells also 

defined as blood-brain barrier (BBB). The endothelial cells are connected by tight 
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junctions limiting paracellular entry of soluble factors. The glia limitans surrounding 

the endothelial cells play an important role in maintaining the BBB integrity [89, 90]. 

 

1.3.3. T cell migration in EAE 

Under physiological conditions, the frequency of cell migration into the CNS is very 

low. However, under some circumstances as in the autoimmune disease MS or its 

animal model EAE, the infiltration of e.g. T cells and mononuclear phagocytes is 

augmented causing disruption of the BBB integrity, further cell invasion and 

manifestation of inflammation within the CNS. Generally, there are some possible 

sites for T cells to enter the CNS- across the choroid plexus into the CSF, from the 

blood into the subarachnoidal space or into the perivascular space.  Even though, the 

exact molecular mechanisms utilized by T cells to interact and finally to overcome the 

BBB does not seem to be clarified in detail, it is clear that the extravasation of T cells 

is a multi-step process, as depicted in Figure 3 

 

Figure 3: T cell–endothelial cell interaction steps in the process of T cell 
extravasation. T cell invasion can be divided into different steps each underlying different molecular 

mechanisms: 1) capture/ rolling, 2) activation, 3) firm adhesion (arrest), 4) crawling and 5) 
transmigration [91]. 

 

The initial interaction of T cells with CNS microvessel endothelial cells is mediated by 

selectins and integrins and their respective counterparts expressed by endothelial 
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cells. In EAE, the role of P-selectin glycoprotein ligand-1 (PSGL-1) expressed by T 

cells is controversial. Whereas PSGL-1 expression play a critical role for T cells to 

home into inflamed skin, it rather seems to be dispensable for EAE development [92-

95]. The interaction of alpha 4 beta 7 integrin (α41; very late antigen 4 (VLA-4)) 

expressed by T cells with vascular cell adhesion molecule 1 (VCAM-1), expressed by 

endothelial cells, is one of the most critical factors involved in EAE development as 

functional interference results in complete absence of EAE symptoms [70, 96, 97]. 

VLA-4 expression by T cells mediate the initial capture as well as the firm adhesion of 

T cells to endothelial cells [98, 99]. Due to its critical involvement, the VLA-4–VCAM-

1 interplay arose as a promising target for therapeutical treatment of MS. The 

humanized monoclonal antibody natalizumab binds to α41 and the treatment of RR-

MS patients shows beneficial effects [100, 101]. The initial capture brings the 

chemokine receptor expressing T cells in close proximity to chemokines secreted by 

endothelial cells (chemokine receptors and chemokines are described in detail in 

chapter 1.3.3.1.). The chemokine receptor signaling in turn leads to the activation of 

integrins resulting in its conformational changes and clustering which increases their 

affinity and avidity [102, 103]. Consequently, the initial capture changes into a firm 

arrest enabling the T cell to further interact with the endothelial cells. T cells express 

the alpha L beta 2 integrin (αL2; lymphocyte function-associated antigen-1 (LFA-1)) 

which interacts with intercellular adhesion molecule 1 (ICAM-1) on endothelial cells 

[104]. In vitro and in vivo studies under healthy conditions reveal that the LFA-1–

ICAM-1 interaction play a role in the transmigration step [105, 106]. However, under 

inflammatory conditions its role is controversial and difficult to interpret because LFA-

1 also plays a role in T cell activation [107]. Therefore, the results of immunization of 

LFA-1-deficient mice range from a higher EAE susceptibility to milder course of 

disease [108, 109]. Similar results were obtained by ICAM-1 neutralization in the rat 

system [110, 111]. Activated leukocyte cell adhesion molecule (ALCAM) is an 

adhesion molecule which is upregulated on CNS vessels of active MS lesions and by 

spinal cord cells during active EAE. Blockade of ALCAM ameliorate EAE symptoms 

and is accompanied by a reduced number of infiltrating cells but does not affect T cell 

activation in the periphery. Therefore, it presumably plays a role in T cell trafficking 

into the CNS rather than in interfering with T cell activation [112].  

Once T cells cross the BBB, they localize within the leptomeningeal space or the 

perivascular space, where they experience a second auto-antigen encounter by 
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resident APCs leading to their reactivation [113, 114]. The local reactivation is a 

crucial step to enable T cell infiltration into the CNS parenchyma and to cause 

disease. It was shown, that also activated myelin-unspecific T cells can enter the 

CNS tissue, even in equal numbers to that observed with myelin-specific T cells, but 

due to their failed reactivation they are not able to cause clinical symptoms [115, 

116]. The reactivation of T cells is accompanied by an upregulation of various 

cytokines and chemokines leading to the attraction of not only further T cells but also 

other cells like macrophages and neutrophils [117]. 

1.3.3.1. Chemokines and Chemokine receptors in EAE 

Several publications suggest an involvement of chemokines and their respective 

receptors during the course of EAE. Upon inflammatory conditions, TH1 cells 

upregulate the chemokine receptors CXCR3 and CCR5 [118, 119]. CXCR3+ and 

CCR5+ T cells have been found in the CNS of EAE animals or in MS patients 

suggesting a role for mediating CNS trafficking in CNS inflammation [120-122]. 

However, under experimental conditions, the roles of CXCR3 and CCR5 and their 

respective ligands are not clearly defined. Whereas active immunization of CXCR3 

knockout mice results in a higher EAE severity, as well as in a more severe chronic 

phase, CXCR3 blockade in an adoptive transfer model leads to a milder disease 

course and a delayed onset [120, 121, 123, 124]. The CXCR3 ligand IFN--Inducible 

Protein-10 (IP-10, CXCL10) becomes upregulated during the course of EAE, but 

similar to observations with CXCR3 deficiency, the neutralization of IP-10 in adoptive 

transfer EAE reduces clinical signs, whereas in actively induced EAE it rather 

exacerbates the disease, presumably due to an additional role in T cell activation 

[125-127]. Immunization of either CCR5- or macrophage-inflammatory protein-1α 

(MIP-1α) knockout mice, a CCR5 ligand which is upregulated during EAE, does not 

influence the clinical disease, but MIP-1α neutralization in an adoptive transfer EAE 

model prevents induction of acute and relapsing EAE without affecting T cell 

activation [128, 129]. Beside inflammatory chemokines, cells from the CNS also 

upregulate the expression of homeostatic lymphoid chemokines like CCL19, CCL21 

and CXCL12 suggesting a role for chemoattraction of T cells during inflammation 

[103, 130]. In line with this, CXCR4+ T cells are present within the inflamed CNS 

[120]. In healthy tissue, CXCL12 is expressed by spinal cord endothelial cells at the 

basolateral surface where it is suggested to retain CXCR4-expressing cells in the 
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perivascular space inhibiting them to migrate into the parenchyma. In this context, 

CXCR4 antagonization with AMD3100 during EAE leads to worsening of clinical 

signs, whereas CXCR4 antagonization with a CXCL12 mutant (CXCL12P2G2) 

ameliorates EAE in another mouse model [120, 130]. In contrast to TH1 cells, TH17 

cells predominantly express the chemokine receptor CCR6 and its ligand CCL20 was 

shown to attract TH17 cells to various sides of inflammation [131-134]. CCR6 

knockout mice are resistant to actively-induced EAE, but this resistance is abrogated 

by transfer of CCR6-sufficient T cells, suggesting a role for CCR6 in TH17 cell traffic 

into the CNS. CCR6-sufficient T cells enter the CNS through CCL20-expressing 

epithelial cells of the choroid plexus, from where they initiate inflammation, which in 

turn recruits a second wave of T cells in a CCR6-independent manner [135]. 

 

1.3.4. Role of different lymphocyte populations in EAE 

Although myelin-specific T cells have been identified as the crucial cells to initiate 

CNS autoimmunity in various animal models of MS, it is also considered that other 

cell types of the adaptive and of the innate immune systems are also critically 

involved in the initiation and progression of EAE and MS.  

1.3.4.1. B cells 

Although Multiple sclerosis and its animal model experimental autoimmune 

encephalomyelitis are T-cell mediated autoimmune diseases, the role of B cells in its 

pathologies have come into focus within the past decade. Beneficial effects of 

Rituximab therapy, the presence of oligoclonal bands in the cerebrospinal fluid of MS 

patients as well as beneficial effects of therapeutic plasma exchange support the 

hypothesis of B-cell contribution to MS [136]. 

There are many publications reporting on studies into the role of B cells in EAE. They 

differ in the model used and in the antigens used. C57bl/6 WT and B- cell deficient 

mice (µMT; [137]) are equally susceptible to MOG peptide-induced EAE, but when 

immunized with human recombinant MOG protein (rhMOG) B cell deficient mice are 

protected from EAE, which suggests a pronounced role for B cells in human MOG 

protein induced EAE [138, 139]. In addition, the ability of rhMOG to induce EAE in B 

cell deficient mice was restored by the injection of rhMOG-primed B cells (but not by 

injection of naïve WT or unspecifically activated B cells) prior to disease induction but 
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with a later onset and milder disease course compared to WT control group [140]. 

This observation was confirmed by others and it was additionally shown that the 

immunization with recombinant mouse MOG (rmMOG) is also B cell independent 

[139, 141]. However, the B cell depletion by an anti-CD20 depletion antibody at the 

onset of MOG peptide-induced EAE results in a faster recovery, suggesting also a 

role for B cells in MOG peptide induced EAE [56, 142]. The contribution of B cells to 

the development of EAE is also emphasized in spontaneous EAE models. Only 4% 

of the MOG-specific T cell receptor transgenic mice (2D2 mice, [77]) on the C57bl/6 

background develop spontaneous EAE. However, when they are crossed with MOG-

specific Ig heavy-chain knock-in mice (Th mice, [143]) 59% of the animals develop 

spontaneous EAE accompanied by a higher clinical score, earlier day of onset and a 

higher number of inflammatory foci [78, 79]. A second model using MOG-specific T 

cell receptor transgenic mice (1C6, [144]) on the NOD background shows a rare 

spontaneous EAE development, but when crossed with Th mice, 45% of male and 

79% of female mice develop EAE spontaneously.  

1.3.4.1.1. B cells and autoantibodies 

The mechanism utilized by B cells to contribute to the pathogenesis of EAE is 

controversially discussed. The main characteristic of B cells is their ability to produce 

and secrete antibodies. Due to the occurrence of oligoclonal bands in the 

cerebrospinal fluid in almost all MS patients [145], beneficial plasma exchange 

therapies [136] and the contribution of autoantibodies to other autoimmune diseases 

[146-149], it has been suggested that autoantibodies against myelin antigens may 

play a role in MS and EAE pathology. Immunization of MOG-specific B cell receptor 

transgenic mice (Th, [144]) either on the C57Bl/6 or on the SJL background results in 

an accelerated and exacerbated disease course compared to non-transgenic 

littermates emphasizing a role for anti-MOG-specific antibodies [143]. Studies with 

MOG peptide-induced EAE of B cell deficient mice reveal a dispensable role for B 

cells and for autoantibodies against myelin antigens [140, 150]. Double-transgenic 

mice and also mice immunized with rhMOG or rrMOG have high anti-MOG IgG titers 

[78, 141, 151] and i.v. sera transfer into B cell deficient mice at the time point of 

immunization restores the susceptibility to EAE to similar levels observed in WT mice 

[140]. However, the transfer of anti-MOG 8-18C5 (m-monoclonal antibody against 

MOG) starting at the onset of EAE only partially restores EAE susceptibility in B cell 
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specific MHC-II knockout animals [139], whereas when administered into SJL/J mice 

after the animals recovered from an attack, it induces severe relapses [152]. In a 

transgenic model where B cells express the membrane MOG-specific 

immunoglobulin, but are incapable of secreting it, immunization either with MOG 

peptide, rmMOG or rhMOG results in the same onset and clinical severity, 

suggesting a dispensable role for α-MOG antibodies in this experimental setting 

[139]. The contribution of α-MOG antibodies to the pathogenesis of EAE in the SJL/J 

mouse strain seems to be more convincing. The EAE severity of WT SJL/L mice 

immunized with a low dose of PLP139-151 could be increased by serum transfer and by 

direct administration of the anti-MOG monoclonal antibody 8.18C-5 [81]. Additionally, 

the housing of the TCR-transgenic mice under germ-free conditions results in a 

protection from spontaneous developed EAE, accompanied by low anti-MOG 

antibody titers. In turn, a recolonization of the gut reestablishes the spontaneous EAE 

susceptibility which is correlated with high anti-MOG antibody titers and a higher 

frequency of germinal center B cells within the lymph node [153].   

1.3.4.1.2. B cells as antigen-presenting cells 

B cells carry an antigen-specific B cell receptor enabling them to bind and process 

even small amounts of antigen and present it to T cells. Therefore, their contribution 

to EAE as antigen-presenting cells was investigated extensively. BM chimeric mice 

where MHC II deficiency is restricted to the B cell compartment, are resistant to 

rhMOG protein induction but not to MOG peptide or rmMOG protein induction, 

suggesting a role for B cells as antigen-presenting cells after immunization with 

rhMOG. The resistance is accompanied by reduced frequencies of IFN- and IL-17- 

producing CD4+ T cells in the periphery and a reduced number of CNS infiltrating 

CD4+ T cells. However, the ex vivo proliferation of splenocytes from either MHC II 

sufficient or MHC II deficient host animals is not affected [139]. The spontaneous 

double-transgenic models also reveal a role for B cells as antigen-presenting cells. 

MOG specific T cells isolated from double-transgenic mice show a stronger pro-

inflammatory cytokine production and proliferation when co-cultured with MOG 

specific B cells instead of antigen-unspecific B cells and recombinant rat MOG 

protein (rrMOG) [78, 79]. Nevertheless, conditional MHC-II deletion in different APC 

subsets demonstrate that the antigen-presenting capacity of B cells alone is not 

sufficient to trigger EAE [38]. It is also suggested that B cells play a role in the initial 
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steps of the reactivation phase within the CNS, leading to an increased pro-

inflammatory milieu [154]. 

1.3.4.1.3. B cells and cytokines 

The cytokine interleukin-6 (IL-6) plays a critical role in the development of EAE as IL-

6 deficient mice are completely resistant to MOG-peptide induced EAE [155]. B cells 

are the major source of IL-6 in secondary lymphoid tissues and abrogation of IL-6 

producing B cells via anti-CD20 treatment ameliorates EAE symptoms [56]. The 

depletion of IL-6 producing B cells or the selective B cell IL-6 deficiency affects the 

frequency of IL17+ CD4+ T cells but had no effect on IFN+ CD4+ T cells [56, 139]. 

Peripheral blood B cells from MS patients produce more IL-6 before Rituximab 

treatment and in vitro depletion of B cells from PBMCs of MS patients resulted in 

reduced IL-17 levels but had no effect on IFN [139]. Additionally, ex vivo BCR and 

CD40-activated B cells isolated from PBMCs of RR-MS patients produced elevated 

levels of lymphotoxin and TNFα compared to B cells isolated from healthy controls, 

and the culture supernatant transfer triggered T cell proliferation in vitro [55]. B cells 

from the CNS of naïve C3HeB/Fej are the main producers of IL-12p35 and TNFα but 

their direct contribution to EAE development has not yet been investigated in detail 

[154]. 

1.3.4.1.4. Regulatory B cells 

Besides the pro-inflammatory roles for B cells in the initiation and progression of 

EAE, it is also considered true that B cells can act as regulatory cells exerting anti-

inflammatory functions. The regulatory B cell (Breg) subset was identified as 

CD19+CD1dhiCD5+ cells representing 1-2% of spleen B220+ cells in WT mice [156]. 

BM chimera experiments reveal interleukin-10 (IL-10) as one of the crucial cytokine 

for Breg cells to exert their regulatory function [157]. Regulatory B cells can be 

expanded antigen-unspecific by CD40- and TLR stimulation in vitro [158]. Whereas 

TLR signaling alone triggers the production of IL-10, the simultaneous activation of 

CD40 and TLR4 leads to the production of IL-35 which in turn reduce the antigen-

presenting potency of B cells [159]. To exert their anti- inflammatory function in EAE, 

regulatory B cells require IL-21 and CD40 signaling, as well as cognate T cell 

interaction, shown by the fact that the transfer of IL-21 receptor knockout, CD40 

knockout or MHC-II knockout regulatory B cells did not ameliorate EAE symptoms 
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[160]. Upon EAE induction, there is an increase in the total number of IL10- 

producing B cells as well as a higher frequency of CD1dhiCD5+ cells among total 

CD19+ B cells [161]. Regulatory B cells influence T cell effector functions directly, but 

they also act on other antigen-presenting cells [160, 161].  

1.3.4.2. Myeloid cells 

In addition to cells of the adaptive immune system, cells from the innate immune 

system are also critically involved in the development and progression of EAE and 

MS. Macrophage depletion studies in EAE models of mice and rats reveal beneficial 

effects for the disease [162-164]. The chemokine ligand for CCR2, macrophage-

chemoattractant protein-1 (MCP-1, CCL2), is upregulated in spinal cord tissue during 

EAE. Active immunization of MCP-1 knockout mice leads to an ameliorated disease 

course and MCP-1 knockout recipients who received MCP-1 sufficient T cells do not 

develop EAE [165, 166]. In line with this, CCR2 knockout mice are relatively resistant 

to EAE induction, whereas the transfer of CCR2-deficient T cells induce EAE like WT 

T cells [165, 167, 168]. On the cellular level, the EAE resistance is accompanied by a 

reduced number of CNS infiltrating mononuclear cells, especially macrophages, and 

no upregulation of inflammatory factors like CXCL10, CCL5 which caused the 

reduced T cell attraction to the CNS. In contrast, neither absence of CCR2 nor of its 

ligand has an effect on T cell activation within the periphery. Bone-marrow chimera 

experiments identified the ‘inflammatory’ Ly6ChiCCR2+ monocyte subset as the 

critical factor for EAE induction in CCR2 knockout animals [169].  

These studies led to the conclusion that the solely presence of myelin-specific T cells 

is not sufficient for the development of an autoimmune disease, but the interaction of 

T cells with other cells types (like B cells or myeloid cells) is critically required for an 

autoimmune response. 

 

 

1.4. Objective 

There are several investigations studying the role of B cells in EAE and especially 

their impact on T cells during the course of disease. However, their exact role and the 
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critical time point when they contribute to the disease pathogenesis is not yet 

uncovered in detail. 

In my PhD-thesis I resumed the investigations about T cell–B cell interaction in the 

MOG peptide active immunization EAE model. We have now developed a system 

where we are able to exclusively investigate the interplay between MOG-specific T 

cells and MOG-specific B cells in the different phases of EAE development. The main 

objectives of this study were: 

 

1. To establish a model which makes it possible to track and analyze MOG-

specific lymphocytes during the course of actively-induced EAE 

 

2. To elaborate the critical time point and mechanism of the contribution of MOG-

specific B cells to the development and progression of EAE (activation phase, 

onset, recovery) 
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2. Material and Methods 

2.1. Material 

2.1.1. Reagents and Kits 

Immunization 

Freund's Incomplete Adjuvant (IFA)   Difco Laboratories, US 

Mycobacterium Tuberculosis H37 Ra   Difco Laboratories, US 

MOGp35-55 Charité Berlin, Inst. for med. 

Immunology 

4-Hydroxy-3-nitrophenylacetyl  

hapten-ovalbumin protein (NP-OVAL)   Biosearch Technologies, US 

Ovalbumin       Sigma Aldrich, D 

Pertussis toxin (PTX)     List Biological Laboratories, US 

Ketamine       Medistar 

Xylariem       Ecuphar 

 

ELISA 

BD OptEIA™ mouse IFN ELISA Kit   BD, D 

Mouse IL-17 ELISA reagents: 

 rec. mouse IL17A 

 mIL-17 biotinylated Det. Ab 

 mIL-17 MAb (Clone 50101) Cap. Ab  R&D Systems, US 

Mouse GM-CSF ELISA reagents: 

 rec. mouse GM-CSF 

 mGM-CSF biotinylated Det. Ab 

mGM-CSF MAb  

(Clone MP122E9) cap.Ab    R&D Systems, US 

Anti-mouse IgM Peroxidase    Sigma Aldrich, D 

Anti-mouse IgG Peroxidase    Sigma Aldrich, D 

3,3', 5,5' tetramethylbenzidine (TMB)   BD, D 

 

Cytometric Bead Array (CBA) 

Mouse Th1/Th2/Th17 Cytokine Kit   BD, D 
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Cell isolation kits 

EasySepTM Mouse T Cell Enrichment Kit   Stemcell Technologies, CA 

EasySepTM Mouse B Cell Isolation Kit   Stemcell Technologies, CA 

 

RNA purification, cDNA synthesis, RT-PCR 

RNeasy Micro Kit      Qiagen, D 

RNeasy Mini Kit      Qiagen, D 

RevertAid First Strand cDNA Synthesis Kit   Thermo Scientific, D 

qPCR Master Mix       Eurogentec, D 

Primer and Probes      Sigma Aldrich, D 

 

Others 

Percoll       GE Healthcare, D 

Trypan blue (0.4%)      Sigma Aldrich, D  

Dextran 70000      Sigma Aldrich, D 

0.9% NaCl       Braun, D 

Lymphocyte separation medium (LSM)   Thermo Scientific, D 

CFSE        Thermo Scientific, D 

Calibrite APC beads     BD,D 

 

 

2.1.2. Buffers and media 

If not otherwise stated, chemicals were purchased from Carl Roth, D. 

Standard buffers 

10x PBS:  

400g NaCl 

10g KCl 

71g Na2HPO4 

69g NaH2PO4, in 5l a.dest, pH 7.4 
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EH-medium (“Erhaltungsmedium”): 

13.38g/l Dulbeccos Modified Eagle Medium Powder (DMEM) 

(Gibco, Life Technologies, D.) 

3.7g/l NaHCO3 

25mM Hepes (Gibco, Life Technologies, D.)   in a.dest 

Erythrocytes lysis buffer 

0.15M NH4Cl 

 1mM KHCO3 

 0.1mM EDTA,  in a.dest pH 7.3 

 

FACS buffer: PBS, 2% BSA, 2% NaN3    

Sorting buffer: EH+ 2mM EDTA 

Sorting collection buffer: EH+10% FCS 

 

rrMOG purification 

Sonification buffer:   2x PBS 300mM NaCl, 25mM Na2HPO4, pH 7.4 

Wash buffer:  Sonification buffer+ 0.5% N,N Dimethyldodalylamin-N-oxid 

(LDAO)  

Solubilisation buffer:  6M Guanidinium chloride+ 10mM beta-mercaptoethanol 

Column loading buffer:  1% NiCl in a.dest 

Column Washbuffer:  6M Guanidinium chloride+ 40mM imidazole 

Elution buffer:   6M Guanidinium chloride+ 0.5M imidazole 

Dialysis buffer 1:   1x PBS+ 0.4M arginine+ 50mM glutathione, pH 8 

Dialysis buffer 2:   1x PBS+ 0.4M arginine, pH 8 

Inductor:    1mM IPTG (Thermo Scientific) 

 

T and B cell negative selection 

Isolation buffer : PBS, 5% FCS, 2% normal rat serum (provided by the 

manufacturer) 

 

Cell isolation from brain and spinal cord 

Resuspension/percoll dilution buffer: PBS, 1% Glucose, 0,1% BSA 
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In vitro co-culture/ in vitro restimulation 

(cell culture supplements were purchased from Gibco, Life Technologies, D.) 

Restimulation medium (ReMed)  

RPMI 1640 pH 7.4  

1% non-essential amino acids  

1% sodium-pyruvate 

1% L-glutamine 

1% penicillin/streptamycine (U)  

5% FCS (GE Healthcare, D) 

0.2% ß-MEtOH 

 

for ELISA 

coating buffer:  IFN:   0,1M Carbonate-Bicarbonate buffer 

IL-17:  phosphate buffer: 137mM NaCl, 2.7mM KCl, 8.1mM 

Na2HPO4, 1.5mM NaH2PO4, pH 7.2 

GM-CSF:  PBS 

wash buffer:   PBS+ 0,05% Tween20 

blocking/dilution buffer: IFN:  PBS, 10% FCS 

IL-17:  PBS, 1% BSA 

GM-CSF:  blocking: PBS, 5% sucrose, 1% BSA, 0.05% 

NaN3   

dilution: TBS, 0,1% BSA, 0,05% Tween20  

for serum antibody detection:   PBS, 5% BSA 

 

2.1.3. Equipment and consumables 

2.1.3.1. Plastic ware 

Cell culture plates      Thermo Scientific, D 

 (6-well, 24-well, 96-well U-bottom/Flat-bottom) 

Small reagent tubes (0.2ml, 1,5ml, 2ml)   Sarstedt, D  

Falcon tubes (15ml, 50ml)     Greiner Bio-One GmbH, D       

T and B cell isolation tubes (13ml)   Sarstedt, D  

Tips (1ml, 0.2ml, 0.01ml)     StarLab, D   

Filter Tips (1ml, 0.2ml, 0.01ml)    StarLab, D 
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ELISA plate       Thermo Scientific Nunc, D 

Parafilm       Picheney, US 

Gloves       Kimberly-Clark, US 

Combitips plus (5ml, 1ml, 0.5 ml, 0.25ml)  Eppendorf, D 

Petri Dish       Greiner Bio-One GmbH, D 

Syringes (5ml, 10ml)     Braun, D 

Insulin syringes (1ml)     BD, D 

Sterile needles (24G, 20G, 27G, 26G)   Braun, D 

FACS tubes (+/- Filter)     BD, D 

2.1.3.2. Glas ware 

Glass pipettes (5ml, 10ml, 20ml)    HBG, D  

Dounce tissue grinder + 

Pestle (0.071-0.119mm) (0.02-0.056mm)   Kimble (Sigma-Aldrich, D) 

Neubauer cell chamber     Brand, D 

Syringe for immunization (1ml, 2ml)   

 Tuberculin glass/ metal syringes   Hartenstein, D 

    

2.1.3.3. Equipment 

Pipettes (0.5-10µl; 10-200µl; 100-1000µl)  Eppendorf, D 

Pipettus       Hirschmann, D 

“Big Easy” silver EasySep magnet   Stemcell Technologies, CA 

Mesh (40µm pore size)     UMG factory 

Multichannel pipette     StarLab, D 
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2.1.3.4. Machines 

RT-PCR Cycler StepOnePlus Real-Time PCR System 

(Applied Biosystems) 

Flow Cytometer     BD FACSCalibur 

Cell Sorter      BD FACSAria II cell sorter 

Nanodrop      Peqlab, D 

ELISA plate reader     Tecan, CH 

Thermocycler     Mastercycler (Eppendorf, D) 

Centrifuges:  

Multifuge 1 S-R     Heraeus, D 

Centrifuge 5415 R    Eppendorf, D  

Incubator      Heraeus, D 

Laminar flow      Heraeus, D 

Inverted bright field  

Microscope     Zeiss, D 

 

2.1.3.5. Software 

Microsoft Office 

FlowJo V10       Tree Star, US 

StepOnePlus Software v2.0   Applied Biosystems 

GraphPad Prism 5     GraphPad Software, US 

BD FACSDiva Software 

BD CellQuestPro Software 

PrimerExpress v2.0     Applied Biosystems 

FCAP Array v3.0.1 Software for BD Cytometric Bead Array (CBA) Analysis 
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2.1.3.6. Flow cytometry fluorochrome labeled antibodies 

Table 1: Flow cytometry antibodies 

Specificity Label Clone Company 

CD3e 
Alexa-Fluor 647 145-2C11 BioLegend 

Biotin 145-2C11 BD 

CD4 

APC RM4-5 BioLegend 

APC-Cy7 RM4-5 BioLegend 

PE Gk1.5 BD 

PE-Cy5 H129.19 BioLegend 

CD8 

PerCP 53-6.7 BD 

FITC 53-6.7 BD 

PE-Cy7 53-6.7 BioLegend 

CD25 
APC 3C/ BiolLegend 

FITC 3C7 BioLegend 

CD69 
APC-Cy7 H1.2F3 BioLegend 

FITC H1.2F3 BioLegend 

CD44 
APC IM7 BD 

APC-Cy7 IM7 BioLegend 

CD62L 
Biotin MEL-14 BD 

FITC MEL-14 BioLegend 

CD45R/B220 
APC RA3-6B2 BioLegend 

PE RA3-6B2 BD 

MHC Class II (I-A
b
) APC/PE/FITC AF6-120.1 BioLegend 

CD86 FITC GL-1 BioLegend 

CD11a Biotin 2D7 BD 

CD49d Alexa-Fluor 647 R1-2 BioLegend 

V 11 TCR FITC KT11 BioLegend 

V 5.1/2 TCR Biotin MR9-4 BD 

CCR2 Alexa Fluor 700 475301 R&D Systems 

CX3CR1 APC   

Ly6C APC-Cy7 HK1.4 BioLegend 

Gr-1 PE RB6-8C5 BD 

CD11b 
APC M1/70 Biolegend 

Biotin M1/70 BioLegend 

CD31 APC MEC13.3 BioLegend 

Streptavidin- 
PE, APC, FITC, PE-Cy5, 

APC-Cy7 
 Biolegend 
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2.1.3.7. RT-PCR primer and probe sequences 

Table 2: RT-PCR Primer and probes (purchased from Sigma-Aldrich) 

HPRT Fw (5`-3`) TGCTCGAGATGTCATGAAGG 

Rev (5`-3`) TATGTCCCCCGTTGACTGAT 

Probe [6FAM]ATCACATTGTGGCCCTCTGT[TAM] 

Integrin alpha L Fw (5`-3`) AATGACGCTGGCAACAGATG 

Rev (5`-3`) GAGGTAAGTGTTCTGATCGCATGT 

Probe [6FAM]CTTTTGGCCTGTGACCCTGGACTGCT[TAM] 

Integrin alpha 4 Fw (5`-3`) CGAGTTTCAAGCAGTGGAGAGA 

Rev (5`-3`) TGGTATGTGGCCTCTACATGAATG 

Probe [6FAM]CACACCAGGCATTCATGCGGAAAGAC[TAM] 

IFNy Fw (5`-3`) TCAAGTGGCATAGATGTGGAAGAA 

Rev (5`-3`) TGGCTCTGCAGGATTTTCATG 

Probe [6FAM]TCACCATCCTTTTGCCAGTTCCTCCAG [TAM] 

GM-CSF Fw (5`-3`) GGGCGCCTTGAACATGAC 

Rev (5`-3`) CGCATAGGTGGTAACTTGTGTTTC 

Probe [6FAM]CCCCCCAACTCCGGAAACGGA [TAM] 

IL-17A Fw (5`-3`) ACTTTCAGGGTCGAGAAGATGCT 

Rev (5`-3`) TTCTGAATCTGCCTCTGAATCCAC 

Probe [6FAM]TGGGTGTGGGCTGCACCTGC [TAM] 

ALCAM Fw (5`-3`) ACGCGACTGTGGTGTGGAT 

Rev (5`-3`) CCTGATAATGAAGACTGGAAAAGGA 

Probe [6FAM]AAGGATAACATCCGGCTCCGGTCCA [TAM] 

ICAM Fw (5`-3`) GCCAAGCCCACGCTACCT 

Rev (5`-3`) TCTCTGGGATGGATGGATACCT 

Probe [6FAM]TCACCGTTGTGATCCCTGGGCCT [TAM] 

VCAM Fw (5`-3`) CAGAGTGTACAGCCTCTTTATGTCAAC 

Rev (5`-3`) GGACTGCCCTCCTCTAGTATAGGA 

Probe [6FAM]TTGCCCCCAAGGAAACCACCATC [TAM] 

CCR7 Fw (5`-3`) CAGCCTTCCTGTGTGATTTCTACA 

Rev (5`-3`) ACCACCAGCACGTTTTTCCT 

Probe [6FAM]CAGAGCACCATGGACCCAGGGAAAC [TAM] 

CXCR3 Fw (5`-3`) CCAAGCCATGTACCTTGAGGTTAG 

Rev (5`-3`) AATCGTAGGGAGAGGTGCTGTTT 

Probe [6FAM]ATGCCTCGGACTTTGCCTTTCTTCTGG [TAM] 

CXCR4 Fw (5`-3`) ACCTCTACAGCAGCGTTCTCATC 

Rev (5`-3`) TGTTGGTGGCGTGGACAATA 

Probe [6FAM]TGGCCTTCATCAGCCTGGACCG [TAM] 

CCR5 Fw (5`-3`) TGCTCAACCTGGCCATCTCT 

Rev (5`-3`) CCCACTCATTTGCAGCATAGTG 

Probe [6FAM]CTGCTCTTCCTGCTCACACTACCATTCTGG [TAM] 

CCR6 Fw (5`-3`) TCGTCCAGGCAACCAAATC 

Rev (5`-3`) CCACACTGCCACACAGATGAC 

Probe [6FAM]TTCCGGGTACGCTCCAGAACACTGA [TAM] 

CCL5 Fw (5`-3`) GGAGTATTTCTACACCAGCAGCAA 

Rev (5`-3`) CACACACTTGGCGGTTCCTT 

Probe [6FAM]TGCTCCAATCTTGCAGTCGTGTTTGTCA [TAM] 

CXCL10 Fw (5`-3`) CATCCCTGCGAGCCTATCC 

Rev (5`-3`) CATCTCTGCTCATCATTCTTTTTCA 

Probe [6FAM]CCCACGTGTTGAGATCATTGCCACG [TAM] 

CXCL12 Fw (5`-3`) CAAGCATCTGAAAATCCTCAACAC 
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Rev (5`-3`) GCACACTTGTCTGTTGTTGTTCTTC 

Probe [6FAM]AAACTGTGCCCTTCAGATTGTTGCACG [TAM] 

 

 

2.2. Methods 

2.2.1. Mouse strains 

All mice strains were bred in IVC cages (SPF conditions) in the central animal facility 
of the University Medicine School Göttingen. Experiments were performed with at 
least 10 weeks old mice. All mice were on the C57bl/6 background. Animal 
experiments were approved by the responsible authorities in Lower Saxonia.  
 
Table 3: Used mouse strains 

Name used for Ref. 

C57bl/6 Host  

RFP Crossed to various mouse strains [170] 

GFP Crossed to various mouse strains [171] 

2D2 Isolation of MOG-specific T cells [77] 

2D2RFP Isolation of RFP+ MOG-specific T cells  

2D2GFP Isolation of GFP+ MOG-specific T cells  

Th Isolation of MOG-specific B cells [143] 

ThRFP Isolation of RFP+ MOG-specific B cells  

THGFP Isolation of GFP+ MOG-specific B cells  

B1.8 (NP) Isolation of NP-specific B cells [172] 

OT-II Isolation of OVA-specific T cells, used as host [173] 

OT-II x NP Host  

mb1Cre Crossed to XBP-1 fl/fl [174] 

XBP-1 fl/fl  [175] 

MHC-II-/- Crossed to Th mice for isolation of MHC-II-/- MOG-
specific B cells 

[176] 

FOXP3-eGFP Crossed to 2D2RFP for isolation of MOG-specific 
FOXP3 eGFP reporter T cells 

[177] 
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2.2.2. Antigen-specific T and B cell isolation  

Briefly, lymph nodes and spleens were taken out from the respective donor animals 

(Table 3) and single cell suspension was prepared by smashing the organs through a 

mesh (40µm pore size). After centrifugation (1200rpm, 8 min., 4°C) the cells were 

resuspended at a concentration of 1x108 cells/ml in isolation buffer. CD3+ T cells and 

CD19+ B cells were isolated using the EasySep Mouse T Cell Enrichment Kit 

(Stemcell) or the EasySep Mouse B Cell Isolation Kit, respectively. Cell isolation was 

performed following the manufacturer’s protocol for the “Big Easy” silver EasySep 

magnet. Cell purity was routinely determined by flow cytometry and was always 

higher than 90%. After purification, the cells were used for various in vitro or in vivo 

experiments.  

 

2.2.3. Adoptive transfer experiments 

For adoptive cell transfer the cells were injected intravenously (i.v.) in different cell 

numbers depending on the experiment in a total volume of 200µl PBS into different 

host mice. For C57BL/6 experiments 7-8x106 T cells were injected either alone or 

together with 1x107 MOG-specific B cells if not otherwise stated. For OT-II or OT-II x 

NP experiments, 3.5x106 MOG-specific T cells were either injected alone or together 

with 1x107 MOG-specific B cells. Two days post adoptive cell transfer, the host mice 

were immunized with the respective antigen emulsified in CFA like described in 

chapter 2.2.5.2.. 

 

2.2.4. CFSE-labeling 

To assess T cell proliferation in vitro or ex vivo, isolated antigen-specific T cells were 

labeled with carboxyfluorescein diacetate succinimidyl ester (CFSE). Briefly, the 

respective lymphocytes were incubated at a concentration of 2x106 cells/ml PBS 

containing 0.25µM CFSE for 10 min at 37°C. The reaction was stopped by addition of 

10ml FCS and the cells were washed twice in PBS containing 5% FCS. According to 

the experiment, the CFSE labeled cells were either injected i.v. into host animals to 

determine the proliferation ex vivo at different time points or cultured with different 

conditions (chapter 2.2.7.1.) for three days. The proliferation, indicated by the CFSE 

dilution with every cell division, was assessed by flow cytometry. 
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2.2.5. EAE induction 

2.2.5.1. Antigens 

The 2D2 TCR epitope MOGp35-55 (MEVGWYRSPFSRVVHLYRNGK) was purchased 

from Charité, Institute for Medical Immunology. 4-Hydroxy-3-nitrophenylacetyl hapten 

conjugated to OVA (ovalbumin) protein (NP-OVAL) was purchased from Biosearch 

Technologies. A plasmid construct encoding the extracellular domain of rat MOG 

protein (MOG amino acids 1–125) was provided by C. Linington (University of 

Glasgow, UK) and purified from bacterial inclusion bodies [178]. Expression 

plasmidpQE-12 containing rat MOG 1-125 was grown in LB medium containing 

ampicillin (100 mg/ml) and kanamycin (25 mg/ml). MOG expression was induced with 

isopropyl thiogalactoside (IPTG) before the cells were pelletted. The pellet was 

resuspended in sonibuffer with lysozyme, sonicated and mechanically disrupted and 

homogenized (all used buffers for rrMOG purification are listed in chapter 2.1.2.). 

Lysed samples were washed, resuspended in solubilization buffer, and loaded onto 

the Ni-NTA column prepared with chelating sepharose and 1% NiCl2. The column 

was washed with column washbuffer and the protein was eluted with column elution 

buffer. The MOG protein was refolded in several dialysis steps. For the first 24-48h it 

was dialyzed against dialysis buffer 1 followed by a dialysis against dialysis buffer 2 

ON. Final dialysis was performed against 1x PBS for 48h. The protein concentration 

was measured on a Nanodrop at 280nm. 

2.2.5.2. Immunization and scoring 

Two days post adoptive cell transfer (chapter 2.2.3.) EAE was induced by 

immunization with respective antigen in at least 10 weeks old mice.  

Mice were anesthetized with 100µl of 10% ketamine, 5% xylariem in 0,9% NaCl per 

10g body weight. Mice were injected (50μl/side) subcutaneously (s.c.) at the tail base 

with an emulsion containing 50µg complete freund’s adjuvant (CFA) and 50μg 

MOGp35-55 in PBS. CFA was prepared by addition of 10mg mycobacterium 

tuberculosis (strain H37 Ra) to 10 ml incomplete freund`s adjuvant (1mg/ml). 

Pertussis toxin (PTX) (200ng/day) was injected intraperitoneal (i.p.) on days 0 and 2. 

Concentrations of other antigens were different in each experiment and are stated in 

the figure legend. 
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Animals were scored daily for clinical signs of EAE, based on a scoring system 

reaching from 0 – 10 points with the individual points defined as follows: 

0 = healthy 

1 = reduced tail tonicity 

2 = flaccid tail paralysis 

3 = loss of righting reflex 

4 = kinetic ataxia 

5 = slight paralysis of hind legs 

6 = plegia of one leg or moderate paralysis of both hind legs 

7 = paraplegia with complete paralysis of both hind legs 

8 = tetraparesis with additional (slight) paralysis of both forelegs  

9 = moribund 

10 = dead   With a score of >7 the animals had to be sacrifice. 

 

 

2.2.6. Tissue preparation for cell isolation 

2.2.6.1. Lymphocyte isolation from lymph nodes and spleen 

To analyze the injected antigen-specific T and B cells ex vivo, lymph nodes (inguinal 

and paraaortic as draining lymph nodes, axilliary and cervical lymph nodes as non-

draining lymph nodes) and spleen were isolated from the respective host mice and 

single cell suspension was prepared like described above (chapter 2.2.2.). Due to 

expression of fluorescent markers (either RFP or GFP) it was possible to track the 

cells with flow cytometry (chapter 2.2.11.) or cell sorting (chapter 2.2.12.) after 

recovery.  

2.2.6.2. Lymphocyte isolation from peripheral blood 

If animals were euthanized, blood was taken by heart puncture and mixed in a 1:2 

ratio with 2mM ethylenediaminetetraacetic acid (EDTA) in PBS to avoid thrombocyte 

aggregation. In case animals were kept alive, blood was taken by retro-orbital 

puncture. Lymphocytes were separated via density gradient centrifugation using 

lymphocyte separation medium (LSM) at 1500rpm, 20 min, 4°C. The interphase 

between plasma and separation solution containing the lymphocytes was transferred 

into a new tube and washed with PBS.  
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2.2.6.3. Lymphocyte isolation from spinal cord and brain 

Euthanized mice were perfused through the left cardiac ventricle with cold 0,9% 

NaCl. The spinal cord and brain were extracted and kept in PBS. Single-cell 

suspensions were prepared by application of mechanical disruption and subsequent 

resuspension in spinal cord resuspension buffer.  After centrifugation, the pellet was 

resuspended in 30% Percoll solution and mononuclear cells were separated from 

myelin via Percoll density gradient centrifugation (70/45/30% Percoll in spinal cord 

resuspension buffer)(2300rpm, 20 min, 4°C w/o break). The interphases (30:45 % 

and 45:70 %) containing the lymphocytes were transferred into a new tube and 

washed with PBS.  

For isolation of perivascular lymphocytes, spinal cord tissue was prepared following 

the spinal cord microvessel endothelial cell isolation protocol and T cells were sorted 

according to their RFP+ expression. 

 

2.2.6.4. Isolation of spinal cord microvessel endothelial cells 

The spinal cord was extracted and kept in EH medium. To prepare a cell suspension, 

the spinal cord was cut in small pieces (1-5mm2) and homogenized in a 7ml Dounce 

tissue grinder (Kimble/Kontes), first with a larger clearance pestle (0.071-0,119mm) 

and then with a smaller clearance pestle (0,02-0,056mm). The homogenate was then 

spun down (1200rpm, 8 min, 4°C) and resuspended in 6ml of an 18% (w/v) dextran 

solution (MW 70000) in EH medium. To get rid of the myelin proteins, the 

resuspension was spun down at 10000xg for 20 min and the supernatant was 

removed. The pellet was resuspended in EH medium and washed (1200rpm, 8 min, 

4°C). To digest the microvessels, the pellet was resuspend in 600µl 1% collagenase 

and gently shaked at 37°C for 20 min. Afterwards, the suspension was transferred 

into a FACS tube, washed with FACS buffer and stained for CD31 for CD31+ cell 

sorting. 
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2.2.7. In vitro experiments 

2.2.7.1. In vitro co-culture experiments 

To study the interaction of antigen-specific T and B cells in vitro, respective T and B 

cells were isolated as described in chapter 2.2.2. in sterile conditions. 1x106 T cells 

and 2x106 B cells were co-cultured for 3 days with increasing concentrations of 

different antigens in a range from 0-10µg/ml in a 24-well plate in ReMed in an 

incubator at 37°C and 5% CO2. To determine soluble factors in the supernatant, it 

was removed 3 days post culture and stored in -80°C until analysis. Depending on 

the experiment, either the T cells or the B cells were CFSE labeled (chapter 2.2.4.) 

before co-culture and proliferation was analyzed 3 days post culture.  

2.2.7.2. In vitro restimulation experiments 

To investigate the cytokine production of transferred T cells ex vivo, single cell 

suspension was prepared from draining lymph nodes and spleen. Erythrocytes were 

lysed from splenocytes by adding 1ml erythrocyte lysis buffer for 5min on ice. 

Afterwards, 5x105 total lymph node cells and splenocytes were cultured with 

increasing concentrations of MOGp35-55 (0, 1, 5, 10 µg/ml) in 100µl ReMed in a 96-

well plate for 72h (incubator, 37°C, 5% CO2). The cell culture supernatant was 

collected and stored at -80°C until cytokine determination via ELISA. 

 

2.2.8. Cell count 

Total cell numbers from single cell suspensions were determined using a Neubauer 

cell chamber. Trypan blue containing 1% acidic acid for erylysis was used to 

distinguish between viable and non-viable cells. 

cell number: N x dilution factor x volume x 104
    N= number of living cells 

Cell number of adoptively transferred RFP+ or GFP+ cells was determined with BD 

Calibrite APC beads by flow cytometry. A defined number of beads was solved in 

PBS and 50µl of the suspension was added to 200µl of an organ single cell 

suspension with defined volume. Weight of respective organs (lymph nodes, spleen 

and spinal cord) was determined before smashing to enable calculation of cell 

number per gram.  
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Total cell number was calculated according to the equation: 

(
𝑏𝑒𝑎𝑑𝑠 𝑖𝑛 50µ𝑙 𝑥 𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 𝑐𝑒𝑙𝑙𝑠

𝑎𝑐𝑞𝑢𝑖𝑟𝑒𝑑 𝑏𝑒𝑎𝑑𝑠
)  𝑥 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 

To determine the cell number per gram organ weight, the total number had to be 

divided by organ weight (g). 

 

2.2.9. Enzyme linked immunosorbent assay (ELISA) 

2.2.9.1. Cytokine ELISA 

The amounts of IFN, IL-17A and GM-CSF were determined from supernatants of 

restimulated total draining lymph node cells and splenocytes (chapter 2.2.7.2.) using 

BD OptEIA mouse ELISA Kits for IFN or capture antibody, detection antibody and 

standard from R&D Systems for IL-17A and GM-CSF following the manufacturer`s 

protocol. ELISA plates were coated with 50µl of respective capture antibody diluted 

1:250 in ELISA coating buffer ON at 4°C. For quantification, supernatant samples 

were diluted (IFN 1:50; IL-17A 1:5; GM-CSF 1:20) and analyzed in triplicates. For 

HRP enzymatic reaction 100µl 3,3', 5,5' tetramethylbenzidine (TMB) was added for 

30 min and the reaction was stopped by addition of 50µl 1M H2SO4. The absorbance 

was measured at 450nm with correction wavelength of 620nm in an ELISA reader. 

2.2.9.2. Serum antibody ELISA 

For determination of α-MOG IgM or IgG antibodies, ELISA plates were either coated 

with 4µg/ml rrMOG or 10µg/ml MOGp35-55 in PBS ON at 4°C. For determination of α-

NP IgM or IgG antibodies, plates were coated with 5µg/ml NP-OVAL or 5µg/ml OVA 

as control. To determine antibody titers, sera samples were diluted with dilution buffer 

1:100 and 1:1000 and analyzed in triplicates. HRP-conjugated detection antibodies 

against mouse IgM and IgG were used in a 1:250 dilution. Further analysis steps 

were performed as described above. 

 

2.2.10. Cytometric Bead Array (CBA) 

With the Mouse Th1/Th2/Th17 Cytokine Kit the cytokines IL-2, IL-4, IL-6, IFN-, TNF-

α, IL-17A, IL-10 were assessed in the supernatants of in vitro co-culture assays. The 
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supernatants of different T cell–B cell in vitro co-culture experiments were collected 

after 72h and stored in -80°C until cytokine quantification. Before analysis, 

supernatant samples were diluted 1:10 with dilution buffer (provided from the Kit). 

10 μl of each supernatant dilution was mixed with 10 μl Capture Beads (beads with 

different fluorescence intensities linked to antibodies against the 7 different cytokines) 

and 10 μl PE- detection solution (PE-conjugated antibodies). Furthermore, a dilution 

series from a standard (from kit, consisting of cytokines) was provided and also 

mixed with capture beads and PE- detection solution. After an incubation time of 2 h 

at RT in the dark, the samples were washed once in washing buffer (from kit), 

resuspend in 50 μl washing buffer and analyzed with flow cytometry. Cytokine 

concentrations were determined with the help of the standard curve and the FCAP 

Array v3.0.1 Software. 

 

2.2.11. Flow cytometry 

1-5x106 cells per sample was surface stained in 100 µl FACS buffer with 

combinations of monoclonal antibodies labelled with fluorochromes for 15 min at 4°C. 

After staining, the samples were washed and resuspended in FACS buffer. Stained 

cells were either analyzed on a BD FACSCalibur or on a BD FACSAria II cell sorter. 

Final analysis was performed using FlowJo V10 (Tree Star) software. The injected 

antigen-specific T and B cells could be tracked due to their expression of either RFP 

or GFP. All used antibodies are listed in Table1. 

2.2.12. Cell sorting 

Cell sorting was performed with the BD FACSAria II cell sorter. For RNA isolation, 

cDNA synthesis and subsequent RT-PCR, ex vivo isolated MOG-specific CD4+ T 

cells from different organs (chapter 2.2.6.) were identified and sorted by their 

simultaneous expression of either GFP or RFP and CD4. The sorted cells were 

collected in EH medium containing 10% FCS and subsequently resuspended in RLT 

buffer (chapter 2.2.13.) for RNA extraction. Endothelial cells from spinal cord 

microvessels were sorted according to their CD31 expression. 

2.2.13. RNA isolation, cDNA synthesis and RT-PCR 

RNA isolation was performed using Qiagen RNeasy Micro Kit for <100000 cells or 

Qiagen RNeasy Mini Kit >100000 cells following the manufacturer`s protocol. As the 

total RNA amount from less than 100.000 cells was very low, the RNA concentration 
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could not be determined and whole eluat was used for subsequent cDNA synthesis. 

cDNA synthesis was performed using RevertAid First Strand cDNA Synthesis Kit  

with random hexamer primer as described in the manufacturer`s protocol.              

RT-PCR was performed with the qPCR Master Mix on a StepOnePlus Real-Time 

PCR System. RT-PCR was performed with target specific FAM and TAMRA labeled 

TaqMan probes. Analysis was performed using StepOnePlus Software v2.0. 

Expression was normalized to that of the housekeeping gene hypoxanthine 

phosphoribosyltransferase 1 (HPRT). The best working forward and reverse primer 

concentration was titrated and used primer and probe sequences are listed in Table 

2.  

 

2.2.14. Statistics 

Statistical analysis was performed with GraphPad Prism 5. Data are depicted as 

mean±SEM (standard error of the mean). Respective statistical analysis methods are 

always depicted in the figure legend. P-value of statistical difference was indicated 

like: ns: p 0.05; *: p 0.05; **: p 0.01; ***:p 0.001 
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3. Results 

3.1. Establishment of the EAE model 

Several publications suggest an interaction of T and B cells to be involved in the 

pathogenesis of EAE. Most of the studies make use of the C57bl/6 active 

immunization with MOG antigens (MOGp35-55 (MOG peptide), rhMOG (recombinant 

human MOG), rrMOG (recombinant rodent MOG)) EAE model where the 

amplification of respective myelin-specific T and B cells is triggered. However, by 

their investigation of the endogenous T and B cell pool they do not exclusively focus 

on myelin-specific lymphocytes. We now developed a system enabling us to track 

and analyze MOG-specific T and B cells during the whole course of EAE ex vivo.  

As the antigen-specificity of pathogenic lymphocytes is critically associated with the 

development of EAE, it is advantageous to generate a system which facilitates the 

tracking of antigen-specific T and B cells during the course of EAE. For this purpose, 

we isolated MOG-specific T cells from 2D2 mice [77] and MOG-specific B cells from 

Th mice [143]. Beside the transgenic TCR or BCR, these cells simultaneously 

express either red fluorescent protein (RFP) or green fluorescent protein (GFP), 

enabling the cell tracking during the whole course of disease and to ex vivo analyze 

them with the help of different techniques (flow cytometry, FACS sorting, 2-photon 

intravital imaging). To study the cellular behavior during the course of EAE, we 

transferred the cells intravenously (i.v.) into different host animals followed by active 

immunization with different antigens. Initial experiments were performed with C57bl/6 

(WT) recipient mice. To study the influence of MOG-specific B cells on MOG-specific 

T cells in detail we utilized OT-II mice as recipients. These mice harbor >90% of 

endogenous OVA-specific T cells allowing to minimize the endogenous T cell 

responses to MOG antigens. To investigate the effect of different genetically modified 

B cells on EAE, we utilized OT-II x NP as these mice are devoid of endogenous 

pathogenic T cells and B cells. 

To evaluate the activation status of freshly isolated MOG-specific T cells, we 

performed antibody-labeled surface staining for flow cytometry analysis before i.v. 

transfer. To ensure that the transferred MOG-specific T cells can be primed antigen-

specific in vivo, we analyzed their proliferation behavior ex vivo upon MOGp35-55 or 

OVA protein immunization. 
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3.1.1. Freshly isolated MOG-specific T cells have a naïve phenotype and exhibit 

an antigen-specific response in vivo 

To initially characterize MOG-specific T cells before transfer, they were surface 

stained with antibodies against CD3, CD4, CD8 (Fig. 4 A) and the surface markers 

CD62L, CD69 and CD44 (Fig. 4 B) followed by flow cytometry analysis. CD62L is 

highly expressed by naïve T cells, whereas CD69 is considered as an early activation 

marker. CD44 is mainly expressed by antigen-experienced T cells. For lymphocyte 

isolation, lymph nodes and spleens from the respective donor mice were prepared 

and cell isolation was carried out using a negative selection kit to avoid TCR or BCR 

cross-linking and cell activation. 

  

Figure 4: Freshly isolated MOG-specific T cells from 2D2 mice have a naïve 
phenotype. MOG-specific T cells were isolated from 2D2 mice and antibody-labelled against (A) 

CD4 and CD8 (gated on CD3) and (B) CD62L, CD69 and CD44 (gated on CD4) for flow cytometry 
analysis. Histogram gates depict the percentage of surface marker positive cells. 
 
 

Approximately 95% of the isolated CD3+ T cells were CD4+ (Fig. 4 A). The majority 

(94 %) of the CD4+ T cells were CD62L+ and only a minor proportion of the isolated T 

cells expressed the activation marker CD69 (4.25%) or the memory marker CD44 

(3.39%) (Fig. 4 B) assuming that the vast majority of the transferred MOG-specific T 

cells had a naïve phenotype.  

To proof whether the transferred MOG-specific T cells respond specifically to the 

MOG peptide antigen in vivo, freshly isolated RFP+ MOG-specific T cells were 

labeled with CFSE and injected i.v. into C57bl/6 WT mice. Two days later, the host 

mice were immunized either with 50µg MOGp35-55 or with 50µg OVA protein as 

control. CFSE is a membrane-permeable fluorescent dye, which is non-fluorescent in 

its native form. Due to enzymatic modification within the cell, it is rendered highly 

fluorescent and also unable to diffuse out of it. Upon one cycle of cell division the 
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stain is halved in each of the daughter cells, which can be detected by flow 

cytometry. Five days post immunization (d p.i.), single cell suspension from spleen 

and draining lymph node (inguinal) was analyzed for CFSE dilution by flow cytometry. 

Figure 5: Transferred MOG-specific T cells show antigen-specific proliferation.      
RFP

+ 
MOG-specific T cells were isolated from 2D2 mice, CFSE labeled and i.v. injected in C57bl/6 WT 

mice two days before immunization with either MOGp35-55 (upper row) or OVA protein (lower row). Five 
days p.i., single cell suspension from the spleen (left) and the draining lymph node (right) was 
prepared and labeled with an antibody against CD4 for flow cytometry analysis. Transferred MOG-
specific T cells were identified by their simultaneous expression of CD4 and RFP (dotplots) and the 
proportion of CFSE dilution was examined with a histogram plot. 

 

The transferred MOG-specific T cells exclusively proliferated after immunization with 

MOGp35-55 (Fig. 5 upper row) but not after immunization with a foreign antigen (Fig. 5 

lower row) as measured by CFSE dilution. The specific amplification of MOG-specific 

T cells after immunization with MOGp35-55 can not only be demonstrated by the 

dilution of CFSE (histogram plots) but also by the frequency of RFP+CD4+ T cells 

among the total CD4+ T cell pool (dot plots). These basic observations ensure that 

we transferred naïve MOG-specific T cells which have to be activated in vivo like the 

endogenous T cell pool. In addition we ensure that the transferred MOG-specific T 

cells exclusively respond in an antigen-specific manner.  
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3.1.2. Characterization of the antigen-specific T and B cell interaction in vitro  

As we were interested in the antigen-specific interplay of T and B cells, we performed 

a series of in vitro experiments. We wondered whether the antigen presentation by B 

cells is sufficient to trigger T cell proliferation in vitro. Therefore, we co-cultured B 

cells with CFSE labeled T cells in the presence of antigen and determined T cell 

proliferation after 3 days. To investigate whether also B cells become activated upon 

T cell interaction, we determined MHC-II and CD86 expression on B cells. To study 

the contribution of antigen-specificity on the interplay of T and B cells, we co-cultured 

different antigen-specific T and B cells with increasing concentrations (0, 0.01, 0.1, 1, 

10 µg/ml) of different antigens (MOGp35-55, rrMOG, NP-OVAL). We co-cultured either 

MOG-specific T cells or OVA-specific T cells (isolated from OVA-specific TCR 

transgenic mice (OT-II mice) [173]) with MOG-specific B cells or with NP-specific B 

cells (isolated from B1.8 mice (in this study always termed “NP mice”) [172]).  

MOG-specific T cells proliferated in the presence of MOG-specific B cells and 

MOGp35-55 but also in the presence of NP-specific B cells (Fig. 6 A left). In contrast, in 

the presence of rrMOG, only MOG-specific B cells could trigger MOG-specific T cell 

proliferation (Fig. 6 A middle). OVA-specific T cells proliferated neither in the 

presence of MOGp35-55 nor in presence of rrMOG, but they responded to even very 

low NP-OVAL concentrations when presented by NP-specific B cells (Fig. 6 A right). 

The results regarding the T cell proliferation led to the conclusion that a T cell 

response can just be initiated in the presence of the appropriate antigen. Both, MOG-

specific B cells and NP-specific B cells upregulated CD86 and MHC-II at high 

MOGp35-55 concentration, but exclusively in the presence of MOG-specific T cells (Fig. 

6 B+C left). In the presence of rrMOG, MOG-specific B cells upregulated CD86 and 

MHC-II at very low antigen concentration, but just when they acquired T cell help of 

the same antigen specificity (Fig. 6 B+C middle). In contrast, NP-specific B cells 

upregulated CD86 and MHC-II in the presence of NP-OVAL and OVA-specific T 

cells, but also in the presence of antigen-unspecific T cells (Fig. 6 B+C right). In 

summary, the activation of B cells was not as strictly as observed for the T cells, as 

NP-specific B cells also upregulated MHC-II in the presence of an irrelevant antigen 

and of antigen-unspecific T cells. However, the interaction of T and B cells resulted in 

an activation of both interaction partners. 
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Figure 6: In vitro analysis of antigen-specific T and B cell interaction.                    
1x10

6
 MOG-specific T cells were co-cultured with either 2x10

6 
MOG-specific B cells (red line) or NP-

specific B cells (open quad), as control OVA-specific T cells were co-cultured with MOG-specific B 
cells (black line) or NP-specific B cells (grey line) with increasing MOGp35-55 (left), rrMOG (middle) or 
NP-OVAL (right) concentrations (0; 0.01; 0.1; 1; 10 µg/ml) for 72h. (A) T cell proliferation was 
determined by CFSE dilution. (B+C) Co-cultured B cells were stained for B220 and CD86 (B) or for 
B220 and MHC-II (C) and analyzed for their mean fluorescence intensity (MFI) of respective marker 
expression by flow cytometry. Shown is one representative experiment out of three independent 
experiments. 

 

3.1.3. MOG-specific B cells accelerate the disease onset in actively induced 

EAE 

To investigate whether the cell transfer had a direct effect on the course of EAE, we 

transferred 8x106 MOG-specific T cells, 5-10x106 MOG-specific B cells or both 

together into C57bl/6 WT mice followed by immunization with MOGp35-55 and 

monitored the clinical outcome for 18 days.  
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Figure 7: Clinical outcome of MOG-specific T and/or MOG-specific B cell transfer 
into WT mice and immunization with MOGp35-55. MOG-specific T and B cells were isolated 

from respective donor mice and i.v. transferred into WT mice followed by immunization with MOGp35-55 

two days later. (A) EAE disease course of T and B cell (grey line), T cell (black line) or PBS-
supplemented (red line) mice. (B) Day of onset of each animal per T or TB group. Shown are two 
pooled experiments with each 8 (T group), 10 (TB group) and 6 (PBS) animals. (C) EAE disease 
course of B cell (black broken line) and PBS (red line) supplemented mice. Shown is one experiment 
with 7 mice per group. Clinical graphs show mean ± SEM. Non-significant differences between means 
are indicated: ns p> 0,05, Mann-Whitney nonparametric t test. 
 
 

Control PBS-injected WT mice started to develop first clinical signs of EAE at about 

day 10-11 post immunization and peak disease severity on day 15 followed by a 

partial recovery (Fig. 7 A+C, red line). The transfer of either MOG-specific T cells 

(Fig. 7 A, black line), MOG-specific B cells (Fig. 7 C, black broken line) or both 

together (Fig. 7 A, grey line) accelerated the disease onset and also exacerbated 

disease severity as almost all animals had to be sacrified during the experiment. 

Though the transfer of MOG-specific T cells and MOG-specific B cells alone each 

had an effect on the day of disease onset, the simultaneous transfer of both cell 

types could just slightly, but not significantly, promote the clinical outcome as 

depicted in direct comparison of the day of onset (Fig. 7 B). We assumed that the 

contribution of endogenous T and B cells to disease severity make it difficult to 

further increase the clinical outcome. To overcome this problem, we copied the 
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model to OT-II mice as hosts, as they harbor >90% of OVA-specific T cells enabling 

us to minimize endogenous T cell effects as we know from in vitro experiments, that 

OVA-specific T cells do not respond to MOG antigens (Fig. 6 A left+ middle). To 

minimize endogenous T and B cell effects, we crossed OT-II mice to NP mice 

(termed OT-II x NP), resulting in host mice mainly harboring OVA-specific T cells and 

NP-specific B cells. 
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Figure 8: MOG-specific B cells accelerate the onset of EAE in OT-II and OT-II x NP 
mice. MOG-specific T and B cells were isolated from respective donor mice and i.v. transferred into 

OT-II (A,B) or OT-II x NP (C,D) mice followed by immunization with MOGp35-55 two days later. (A) EAE 
disease course of T (grey line), TB (black line) or PBS supplemented (red line) OT-II mice. (B) Day of 
onset of each animal per T or TB group. Shown are four pooled experiments with 14 (T group), 16 (TB 
group) and 6 (PBS) animals. (C) EAE disease course of T (grey line), TB (black line) or PBS 
supplemented (red line) OT-II x NP mice. (D) Day of onset of each animal per T or TB group. Shown 
are three pooled experiments with each 14 (T group), 15 (TB group) and 3 (PBS) animals. Clinical 
graphs show mean ± SEM, healthy mice were not included in the analysis. Significant differences 
between means are indicated: **p< 0,01, Mann-Whitney nonparametric t test. 

 

Both, OT-II and OT-II x NP mice were not susceptible for EAE induction without 

previous cell transfer (Fig. 8 A+C red line). However, the resistance could be 

overcome by the transfer of MOG-specific T cells (Fig. 8 A+C grey line) or the 
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simultaneous transfer of MOG-specific T and B cells (Fig. 8 A+C black line). In 

addition, the disease onset could be significantly accelerated by the simultaneous 

transfer of MOG-specific T and B cells in OT-II (Fig. 8 B, Table 4) and in OT-II x NP 

mice (Fig. 8 D, Table 4), leading to the conclusion that MOG-specific B cells had a 

disease promoting effect in this experimental setting. Furthermore, the additional 

transfer of MOG-specific B cells increased the incidence for EAE (in OT-II: T: 61.5%, 

TB: 100%; in OT-II x NP: T: 35.7%, TB: 86.7%) as summarized in Table 4. 

Nevertheless, the disease severity was not increased by the additional transfer of 

MOG-specific B cells, because as soon as T cell-injected mice developed first clinical 

signs, the clinical progress was similar to that observed in mice receiving T and B 

cells. Furthermore, cell transfer followed by active immunization always resulted in 

sacrifice of the animals due to a clinical score >7, thus making it impossible to study 

the recovery phase. Preliminary data also reveal the same effect of MOG-specific B 

cells in rrMOG-induced EAE (data not shown). 

 

Table 4: Influence of cell transfer into OT-II and OT-II x NP mice on EAE 
susceptibility 

Host Cell transfer 
Mean day of onset 

(±SEM) 
Incidence 

OT-II 
T cells 

T+B cells 

10.9 ± 0.3 

9.4 ± 0.24 

61,5% 

100% 

OT-II x NP 
T cells 

T+B cells 

11.4 ± 0.24 

9.5 ± 0.3 

35,7% 

86,7% 

 

Although several publications suggest a dispensable role for B cells in MOG peptide-

induced EAE, our established OT-II EAE model as well as the OT-II x NP EAE model 

reveal an effect of MOG-specific B cells after MOGp35-55 immunization. As we 

observed a disease promoting effect reflected by an earlier disease onset and a 

higher incidence in both models, we rather suggest a pro-inflammatory role for the 

transferred B cells than a role for B cells as regulatory cells. We now wanted to clarify 

the underlying mechanisms utilized by B cells to promote the development of EAE.  

Most of the experiments described in the PhD-thesis were performed in OT-II mice 

and critical findings were repeated in OT-II x NP mice as the B cell-mediated effect 

was more pronounced in this model. For our further analysis, we always compared 
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the phenotype of T cells injected alone (in graphs always depicted as “T”) with the T 

cells which were injected together with MOG-specific B cells (in graphs always 

depicted as “TB”). 

3.2. Influence of MOG-specific B cells during the activation phase of 

EAE 

In contrast to other professional antigen-presenting cells like dendritic cells or 

macrophages, B cells express an antigen-specific B cell receptor on their surface 

enabling them to capture even low amounts of antigen, process it and present it 

bound on MHC-II molecules to CD4+ T cells. Therefore, several publications suggest 

a role for B cells as antigen-presenting cells during EAE [78, 79, 139]. By presenting 

antigen to T cells, B cells can induce T cell proliferation, activation or their 

differentiation into a helper T cell direction, which is crucial for the development of 

EAE. In active EAE, myelin-specific T cells get activated within the first 4-5 days post 

disease induction in secondary lymphoid organs. According to the side of 

immunization, different lymph nodes arise as draining lymph nodes where T cell-

priming predominantly occurs. The subcutaneous immunization into the tail base 

determines the inguinal (ing LN) and the paraaortic lymph nodes (para LN) as 

draining lymph nodes, whereas the axillary (ax LN) and the cervical lymph nodes (cer 

LN) are non-draining lymph nodes. To clarify whether MOG-specific B cells exert 

their disease-promoting function within the first four days after immunization, we 

characterized the injected MOG-specific T cells in terms of proliferation, activation 

and differentiation within the first four days post immunization (schematically depicted 

in Fig. 9).  

 

Figure 9: Schematic overview of experimental design with focus on the activation 
phase. MOG-specific T cells +/- MOG-specific B cells were i.v. transferred into OT-II recipients (d-2) 

and immunized with MOGp35-55 2 days later (d0). Cells were analyzed either 2.5d or 4d p.i. 

i.v. 

cell transfer imm.

d -2 d 0 d 2.5 d 4

activation phase

days post immunization (p.i.)

d 11d 9
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3.2.1. MOG-specific B cells do not enhance antigen-specific T cell proliferation 

in vivo 

Although some publications suggest a dispensable role for B cells in enhancing T cell 

proliferation during EAE [139, 154], we wanted to investigate whether MOG-specific 

B cells enhance the proliferation of MOG-specific T cells in our experimental model. 

Freshly isolated RFP-expressing MOG-specific T cells were labeled with CFSE and 

injected either alone or together with MOG-specific B cells in OT-II recipients followed 

by immunization with MOGp35-55 two days later. The CFSE dilution of the injected 

MOG-specific T cells was analyzed ex vivo 2d, 2.5d and 4d post immunization by 

flow cytometry. Both, T cells injected alone or together with MOG-specific B cells 

started to proliferate at about 48h to 60h post immunization in the draining lymph 

nodes (Fig 10 A+B) and displayed similar proliferative responses during the 

subsequent time points in the draining lymph nodes, non-draining lymph nodes and 

in the spleen (Fig. 10 B). As it is possible that strongly proliferated cells were 

intangible with this analysis because they have already left the lymph node, we 

additionally determined the number of transferred T cells in the different lymph 

nodes, in the spleen and in the blood, as well as the frequency of RFP+ CD4+ T cells 

among the total CD4+ T cell pool four days post immunization (Fig. 10 C+D). At this 

time point we could not detect any differences in the cell number, neither in the 

secondary lymphoid organs, nor in the blood (Fig. 10 C), which was consistent with 

the frequency of RFP+ T cells among total CD4+ T cells (Fig. 10 D). 
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Figure 10: MOG-specific B cells do not enhance T cell proliferation in vivo.               
(A+B) CFSE-labeled MOG-specific T cells were ex vivo analyzed for CFSE dilution via flow cytometry 

(A) representative flow cytometry histogram plots of T cell CFSE dilution analyzed from the draining 
lymph node 2, 2.5 and 4 days p.i. either injected alone (upper row) or together with MOG-specific B 
cells (lower row). (B) Quantification of CFSE dilution of T cells analyzed from different lymph nodes 
and spleen of three pooled independent experiments, determination of % divided cells was performed 
like depicted in A. (C) absolute numbers of transferred MOG-specific T cells were determined like 
described in chapter 2.2.8 for lymph nodes, spleen and blood 4d p.i. (D) Frequency of RFP

+ 
CD4

+ 

among total CD4
+ 

was determined with flow cytometry 4d p.i.. Data represent >4 animals per group. 
Data are depicted as mean ± SEM. 

 

A 
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3.2.2. MOG-specific B cells do not enhance antigen-specific T cell activation in 

vivo 

Activated T cells can be discriminated form naïve T cells by their expression of 

different surface molecules. Upon antigen encounter within the lymph node, T cells 

downregulate their CD62L expression enabling them to leave the lymph node and 

migrate into the blood. CD69 is one of the earliest surface markers which is 

upregulated by T cells following activation. CD44 is an adhesion molecule and one 

characteristic marker of antigen-experienced T cells. In order to test whether the in 

vivo interaction of MOG-specific T and B cells increase the frequency of activated T 

cells, we stained them with fluorescently labeled antibodies against CD69, CD62L 

and CD44 and analyzed the percentage of positive cells with flow cytometry four 

days p.i.. 
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Figure 11: MOG-specific B cells do not influence T cell activation in vivo.             
Single cell suspensions of different lymph nodes, spleen and blood of mice were stained against 
CD69, CD62L and CD44 4d p.i.. Injected MOG-specific T cells were identified as CD4

+
 RFP

+
. Figure 

depicts the percentage of positive (in case of CD62L: negative) cells among the CD4
+
 RFP

+
 cell pool. 

Data represent two independent experiments with 4 animals per group. Data are depicted as mean ± 
SEM. 

  

The presence of MOG-specific B cells did not increase the frequency of CD62L- 

RFP+ T cells (Fig. 11 middle) or of CD44hi RFP+ T cells (Fig. 11 right) within the 

different lymph nodes, the spleen or the blood. In contrast, there was a slight 

increase of CD69+ T cells when injected together with MOG-specific B cells within the 

spleen (Fig. 11 left), but not in the lymph nodes or in the blood and it is questionable 

whether this difference accounts for the accelerated disease onset. Nevertheless, in 

comparison to activation marker expression of T cells before transfer (Fig. 4), the 

cells became activated upon EAE induction within the first four days p.i.. 
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3.2.3. MOG-specific B cells do not promote early antigen-specific T cell 

differentiation in vivo 

Upon antigen encounter within a pro-inflammatory milieu, naïve CD4+ T cells 

differentiate into helper T cells mainly characterized by their produced effector 

cytokines. TH1 and TH17 T cells are the critical helper T cell subsets in EAE. B cells 

have been shown to amplify T helper cell subsets in EAE and thus, contribute to 

disease pathogenesis [56, 78, 79, 139]. We therefore wanted to investigate whether 

the additional transfer of MOG-specific B cells influence the cytokine production of 

the transferred T cells in our experimental model. For this purpose, we sorted the 

transferred MOG-specific T cells according to their RFP and CD4 expression from 

the draining lymph nodes 2.5 days p.i. or from draining lymph nodes and spleen 4 

days p.i. and determined the mRNA expression level of IFN, IL-17A and GM-CSF 

via RT-PCR. Sorted RFP+CD4+ MOG-specific T cells from the draining lymph nodes 

of T and B cell-injected mice did not show an increased IFN and IL-17A expression 

2.5 days p.i. (Fig. 12 A). On that time point, GM-CSF mRNA was not detectable in 

both groups. In addition, mRNA expression of IFN, IL-17A and GM-CSF was not 

statistically different 4 days p.i. (Fig. 12 B). Nevertheless, in comparison to mRNA 

expression of T cells before transfer (naïve T cells, grey bars), in vivo activated 

MOG-specific T cells showed an upregulation of IFN, IL-17A and GM-CSF within the 

first four days after immunization (Fig. 12 B).  
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Figure 12: MOG-specific B cells do not increase the expression of TH1 and TH17 
specific cytokines on mRNA level. Cytokine expression (mRNA) of sorted RFP

+
CD4

+
 T cells 

2.5d p.i. (A) or 4d p.i. (B) or from RFP
+
CD4

+ 
T cells before transfer (grey bar). Graphs show the 

expression of respective mRNA relative to the endogenous housekeeping gene hypoxanthine 
phosphoribosyltransferase 1 (HPRT). Data in (A) and (B) represent 3 and 4 animals per group, 
respectively. Data are depicted as mean ± SEM. 

 

To further evaluate whether MOG-specific B cells affected T cell differentiation on the 

protein level, we restimulated total lymph node cells and splenocytes isolated from T 

cell or T and B cell-injected OT-II mice 4d p.i. in vitro with increasing MOGp35-55 

antigen concentrations. We assessed the amounts of secreted IFN, IL-17A and GM-

CSF after 72h in the supernatant via ELISA. As the frequency of RFP+ MOG-specific 

T cells was similar between the two groups at that time point (Fig. 10 D), we 

assumed that an observed effect was due to an increased cytokine production or an 

increased number of differentiated T cells, but not due to a higher number of MOG-

specific T cells in total. Total lymph node cells and splenocytes from T and B cell-

injected mice did not show an enhanced reactivity in response to MOGp35-55 in 

comparison to restimulated cells from T cell-injected mice. They neither showed an 

enhanced sensitivity to lower antigen concentrations, nor a higher production of IFN 

(Fig. 13 A), IL-17A (Fig. 13 B) or GM-CSF (Fig. 13 C) at the same antigen 

concentration. 
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Therefore, we exclude a critical role for B cells in enhancing T cell proliferation, 

activation and differentiation within the activation phase of EAE. 
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Figure 13: MOG-specific B cells do not enhance reactivity of T cells to MOGp35-55. 
Total draining lymph node cells and splenocytes were isolated 4d p.i. from T cell (black circles) or T 
and B cell (white quad) injected mice and restimulated in vitro with increasing MOGp35-55 

concentrations for 72h. Supernatant was collected and the amount of IFN (A), IL-17A (B) and GM-
CSF (C) was determined by ELISA. Each symbol represents an individual mouse out of two 
independent experiments, with the bar indicating the mean ± SEM. 
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3.3. Characterization of T cell behavior at the onset of EAE 

As we could not detect any obvious differences in the T cell activation, in their 

proliferation and in their T helper cell differentiation during the activation phase of 

actively induced EAE, we assumed that the MOG-specific B cells exert their pro-

inflammatory functions at later time points. Hence, we characterized the transferred T 

cells at day 9 p.i., the disease onset of the T and B cell-injected OT-II mice (as 

schematically depicted in Fig. 14). We were interested whether B cells might affect T 

cell activation or the peripheral T cell numbers shortly before the appearance of first 

clinical signs. Furthermore, as it is suggested that MOG-specific B cells enhance T 

cell differentiation, we also investigated whether the presence of MOG-specific B 

cells influence MOG-specific T cell differentiation at later time points. Moreover, we 

were intending to uncover the reason why T and B cell-injected mice develop EAE 

earlier than T cell-supplemented mice. Therefore, we focused on early events in the 

CNS (before appearance of clinical signs) to figure out whether B cells play a critical 

role in T cell reactivation within the CNS or whether they promote T cell infiltration by 

influencing their migration behavior. 

 

 

Figure 14: Schematic overview of experimental design with focus on the onset of 
EAE. MOG-specific T cells +/- MOG-specific B cells were i.v. transferred into OT-II recipients (d-2) 

and immunized with MOGp35-55 2 days later (d0). Cells were analyzed 9d p.i. (onset of TB group) or 
d11 (onset of T group).  
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3.3.1. MOG-specific B cells do not influence antigen-specific T cell number and 

activation before onset 

As we could not detect any difference in the T cell phenotype within the activation 

phase (2-4d p.i.), we wanted to investigate whether this observation changed during 

the progress of the pre-clinical phase, precisely on the day of EAE onset. We were 

interested whether the T cell phenotype of healthy animals with extravasated T cells 

(shortly before appearance of clinical symptoms) differs from these of animals without 

extravasated T cells. In order to determine the presence of extravasated T cells, my 

colleague Tanja Litke performed two-photon intravital imaging of the spinal cord. With 

this technique it is possible to visualize the fluorescently labeled T cells, both 

extravasated or intraluminal within the leptomeningeal vessels of the spinal cord. 

Starting from day 8 p.i., we analyzed 12 animals in total (6xT, 6xTB) for the following 

2 days. During this time, 4 animals of the TB group had extravasated T cells without 

clinical manifestation of disease and one animal with a clinical score. In contrast, no 

animal of the T group had a clinical score and just one had extravasated T cells (Fig. 

15 A). For further flow cytometry analysis, the RFP+ cell number within the CNS and 

peripheral lymphoid organs of T cell-injected animals without extravasated T cells 

and T and B cell-injected animals with extravasated T cells was compared. We could 

detect a difference in cell number within the CNS (Fig. 15 B), but this was neither 

reflected in the blood, nor in different non-draining (ax: axillary LN, cer: cervical LN), 

draining lymph nodes (ing: inguinal LN, para: paraaortic LN) nor in the spleen (Fig. 15 

B). In line with this, also the frequency of RFP+ T cells among the CD4+ T cell pool 

was not different between the two groups (Fig. 15 C). We could further not detect a 

striking difference in the frequency of CD69+ RFP+ T cells, CD62L- RFP+ T cells or 

CD44hi RFP+ T cells between the two groups, neither in the blood, nor in the different 

lymph nodes or in the spleen (Fig. 15 D). From these observations, we conclude that 

MOG-specific B cells did not amplify the peripheral MOG-specific T cells or increase 

the frequency of activated T cells.  
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Figure 15: MOG-specific B cells do not influence T cell number or activation at the 
onset of the disease. Injected OT-II mice were evaluated for the presence of infiltrated RFP

+
 T 

cells at the onset of EAE by two-photon microscopy and further analyzed with flow cytometry 8-10d 
p.i.. (A) Number of animals with non-extravasated (white), extravasated (grey) T cells or clinical score 
(dotted). (B-D) For analysis, T cell-injected animals without extravasated cells (T, black bars) were 
compared to T and B cell-injected animals with extravasated cells (TB, white bars) (B) Number of 
transferred MOG-specific T cells was determined like described in chapter 2.2.8. for spinal cord, brain, 
blood, lymph nodes and spleen (C) Frequency of RFP

+ 
CD4

+ 
among total CD4

+ 
was determined with 

flow cytometry. (D) Flow cytometry analysis of CD69, CD62L and CD44 expression of CD4
+
 RFP

+ 
T 

cells. Data represent >4 animals per group and are depicted as mean ± SEM, Significant differences 
are depicted:  *p<0.05, ***p< 0.001, unpaired students t test 
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3.3.2. MOG-specific B cells do not promote T cell differentiation before disease 

onset 

We know from our investigations concerning the cytokine expression of T cells within 

the activation phase that B cells are dispensable for the initial differentiation of naïve 

T cells into either TH1 or TH17 cells. Nevertheless, it is possible that they are crucial 

during the later time points as also suggested by other studies [56, 139]. In order to 

assess whether MOG-specific B cells increase pro-inflammatory cytokine production 

of the transferred MOG-specific T cells at later time points, we sorted them shortly 

before the onset of EAE according to their simultaneous RFP and CD4 expression 

from peripheral lymphoid organs and from the blood and performed RT-PCR. To 

asses cytokine secretion on protein level, we restimulated total draining lymph node 

cells and splenocytes of either T cell-injected or T and B cell-injected OT-II mice 9 

days p.i. in vitro with increasing MOGp35-55 concentrations for 72h and quantified 

IFN, IL-17A and GM-CSF from the supernatant by ELISA. We could not detect any 

difference in the expression of IFN, IL-17A and GM-CSF on mRNA level of T cells, 

which were injected alone (Fig. 16 A black bars) or together with MOG-specific B 

cells (Fig. 16 A white bars). As a lot of publications compare the cytokine expression 

between sick and healthy animals, we also included a third group, T cells sorted from 

T and B cell-injected mice with clinical score (Fig. 16 red bars), in our analysis. 

Interestingly, even MOG-specific T cells sorted from sick animals did not show an 

increased cytokine mRNA expression level. This was, at least in part, in contrast to 

the data we obtained by quantification of the different cytokines after restimulation of 

lymph node cells or splenocytes in vitro. Here, we could detect an increased amount 

of IFN of restimulated lymph node cells from sick T and B cell-injected mice (Fig. 16 

B left, red circles) and an even more pronounced IL-17A amount of restimulated 

splenocytes (Fig. 16 C right). These contradictory results lead to the conclusion, that 

the expression of cytokines is not upregulated on the single cell level during EAE, but 

rather that the number of cytokine-expressing cells increased in total. Nevertheless, 

this could not account for the accelerated disease onset, because there was no 

difference when we compared cells isolated from healthy animals, neither in the 

amount of IFN (Fig. 16 B), IL-17A (Fig.16 C) nor of GM-CSF (Fig. 16 D). Lymph 

node cells and splenocytes restimulated from T and B cell-injected mice neither 

showed an increased sensitivity for the antigen, which would be reflected by an 

increased cytokine amount at a lower antigen concentration, nor a higher cytokine 



Results 

55 

production than restimulated cells from T cell-injected mice. From that we conclude, 

that MOG-specific B cells did not accelerate the onset of EAE by influencing T cell 

differentiation before onset of clinical EAE. 
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Figure 16: MOG-specific B cells do not trigger T cell differentiation before onset of 
EAE. (A) Cytokine expression (mRNA) of sorted RFP

+
 cells isolated from blood and peripheral 

lymphoid organs of healthy T cell (black bars) or T and B cell (white bar) or sick (Score 4) T and B cell 
(red bars) injected mice 9 days p.i. Data represents n=6 for T and TB out of three independent 
experiments and n=3 for TB sick (B-D) total draining lymph node cells (left) or splenocytes (right) were 
taken from respective animals (healthy T inj.: black circle, healthy TB inj: white quad, sick TB inj.: red 
circle) 9d p.i. and restimulated in vitro with increasing MOGp35-55 concentrations for 72h. Supernatants 

were collected for (B) IFN, (C) IL-17A or (D) GM-CSF analysis by ELISA. Each symbol represents an 
individual mouse out of three independent experiments, with the bar indicating the mean ± SEM. 
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3.3.3. MOG-specific B cells promote the earlier infiltration of T cells into the 

CNS 

We know from our clinical observations, that B cells accelerate the disease onset 

resulting in first clinical signs about 9.5 days post immunization (Table 4). Therefore, 

we wondered why the animals which received MOG-specific T and B cells develop 

EAE earlier than mice which just received MOG-specific T cells. There are two main 

possible mechanisms known which can account for an earlier disease onset. On the 

one hand, it is possible that B cells promote T cell infiltration into the spinal cord and 

thus, lead to an earlier disease initiation. On the other hand, it was reported that 

rather the activation status than the number of infiltrating T cells determine the clinical 

outcome, as antigen-unspecific T cells can infiltrate the CNS tissue in equal numbers 

than myelin-specific T cells, but due to the failed reactivation, they are not able to 

induce clinical symptoms [115]. Therefore, it is possible that B cells influence T cell 

activation during the reactivation phase within the CNS. As B cells are the most 

prevalent MHC-II+ cell type within the naïve CNS, they cannot only act as APCs in the 

periphery, but it is suggested that they play a role in the initial steps of T cell 

reactivation and thus lead to the recruitment of further cells into the CNS [154]. 

To investigate whether an earlier T cell infiltration accounts for the earlier onset, we 

determined the number of spinal cord infiltrated RFP+ cells 8.5 to 9 days post 

immunization of animals either injected with T cells and animals injected with T and B 

cells. To really figure out the situation before disease onset, we did not include 

animals with clinical symptoms in our analysis. To isolate the initial infiltrated T cells, 

which were located within the perivascular spaces, we did not implement the percoll 

gradient method, because this is more suitable for lymphocytes located within the 

CNS parenchyma. Instead, we adapted the spinal cord microvessel endothelial cell 

isolation method for that purpose. 
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Figure 17: MOG-specific B cells promote 
the infiltration of MOG-specific T cells into 
the CNS. Number of RFP

+
 cells isolated from 

spinal cord 9 days p.i.. Each symbol represents an 
individual mouse, with the bar indicating the mean 
± SEM. (n= 9 for T and 8 for TB), Significant 
differences between means are indicated: *p< 
0.05, unpaired students t test 
 

 
 
 
 

Most of the animals receiving T and B cells, analyzed shortly before the onset of 

clinical EAE, had a higher number of infiltrated T cells in contrast to animals who just 

received MOG-specific T cells (Fig. 17). To further exclude a difference in the 

reactivation status of infiltrated cells, we sorted the RFP+ T cells of both, T cell-

injected and T and B cell-injected-mice and determined the expression of IFN, IL-

17A and GM-CSF on mRNA level by RT-PCR. Here, it is important to mention, that 

we sorted the initial infiltrates of T and B cell-injected mice 9 days post immunization 

and of T cell-injected mice 11-12 days post immunization to ensure the comparison 

of comparable cell numbers. The initial infiltrates of mice receiving MOG-specific T 

cells alone and of those, who received both cell types, displayed comparable mRNA 

expression for IFN, IL-17A and GM-CSF (Fig. 18 A). Moreover, when we transferred 

GFP+ MOG-specific B cells, we never detected them within the spinal cord of healthy 

animals 9 days p.i. (Fig. 18 B left) although they were present within the periphery 

(spleen). And even in sick animals, the presence of infiltrated GFP+ B cells was very 

rare (Fig. 18 B right). From these observations we conclude that MOG-specific B 

cells promote the infiltration of T cells and are not crucial for the reactivation step 

within the spinal cord in our experimental setting. Furthermore, we can exclude a 

critical role for B cells in amplifying peripheral total T cell numbers or increasing the 

frequency of activated or differentiated T cells. Therefore, we were interested 

whether B cells influence T cell migration in our experimental setting. 
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Figure 18: No difference in activation status of RFP+ initial infiltrated T cells.            
(A) Cytokine expression (mRNA) of sorted RFP

+
 cells isolated from spinal cord 11-12 days p.i. for T 

group and 9 days p.i. for TB group. (B) Frequency of GFP
+
 B cells in spleen and spinal cord of an 

healthy animal (left) and a sick animal (Score 4,5) (right) 9d p.i.. Data in A represent three independent 
experiments with each 2 animals per group. Data are depicted as mean ± SEM. Non-significant 
differences are depicted: ns p>0.05, unpaired students t test 
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3.3.4. Effect of MOG-specific B cells on T cell migration into the CNS 

Our previous results led us to suggest that the accelerated onset in the presence of 

MOG-specific B cells is rather due to an increased T cell infiltration (Fig. 17) than to 

an increased reactivation (Fig. 18). Therefore, we focused on mechanisms required 

for T cell migration.  

3.3.4.1. MOG-specific T cells show an enhanced expression of CCR6 and even 

pronounced expression of CXCR4 in the presence of MOG-specific B cells 

The interaction of chemokines and their respective receptors, expressed by T cells, is 

a critical step for T cell migration from the blood into various tissues. In the context of 

MS and EAE, several chemokine receptors have been found to be crucial for the 

infiltration into the CNS. Upon inflammation, TH1 cells upregulate the chemokine 

receptors CCR5 and CXCR3 and they were shown to be required for T cell migration 

into the CNS [118-122], whereas TH17 cells infiltrate the CNS in a CCR6-dependent 

manner [135]. Also T cells expressing homeostatic chemokine receptors like CXCR4 

and CCR7 have been shown to be located within MS lesions, also suggesting a role 

for these receptors in CNS infiltration [120, 179]. Although it is not described yet for B 

cells, it is possible that the antigen-specific interaction of T and B cells lead to a kind 

of T cell imprinting. This is for example described for the interaction of dendritic cells 

from the payers patch with T cells resulting in an upregulation of integrins and 

chemokine receptors required for their homing into the gut [180]. To investigate 

whether the MOG-specific interaction of T and B cells results in a different chemokine 

receptor regulation than of T cells injected without B cell supplementation, we 

determined the chemokine receptor expression, precisely CCR7, CXCR3, CXCR4, 

CCR5 and CCR6 on mRNA level of initial CNS-infiltrated T cells. Like described in 

chapter 3.3.3., we sorted the initial RFP+ T cells of T and B cell-injected animals 9d 

p.i. and these of T cell-injected animals 11-12d p.i. according to their RFP-

expression.  
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Figure 19: Initial infiltrated T cells utilize the same chemokine receptor for CNS 
infiltration. Chemokine receptor expression (mRNA) of sorted RFP

+
 cells isolated from spinal cord 

11-12 days p.i. for T group and 9 days p.i. for TB group. Data represent three independent 
experiments with each 2 animals per group and are depicted as mean ± SEM. Non-significant 
differences between means are indicated: ns p> 0.05, unpaired students t test 
 

We could not detect a significant difference of the chemokine receptor expression by 

the initial infiltrates of T cell-injected mice (Fig. 19 black bars) and T and B cell-

injected mice (Fig. 19 white bars). However, there was a tendency that T cells from T 

and B cell-injected mice showed a higher CCR6 (TH17 cells) and CCR7 expression 

(although statistically not significant), in contrast to T cell-injected alone, which 

showed a higher expression of CCR5 (TH1 cells). This is in line with the cytokine 

expression of the initial infiltrated T cells (Fig. 18) as the T cells from T and B cell-

injected animals showed a higher IL-17A and GM-CSF expression (but not 

statistically different). We were interested whether this observation could be reflected 

by T cells from the periphery. For this purpose, we sorted the RFP+ MOG-specific T 

cells either from T cell-injected or from T and B cell-injected mice from peripheral 

lymphoid organs and from blood 9d p.i. and performed chemokine receptor 

expression analysis by RT-PCR. In contrast to the initially infiltrated T cells from T 

and B cell-injected mice, T cells sorted from the periphery of the same group did not 

reveal an increased CCR7 expression, but a slight increase in CCR6 expression of T 

cells isolated from the spleen (Fig. 20). As CCR6+ TH17 cells are known to be crucial 

for the initiation of EAE, it is likely that MOG-specific B cells promote EAE 

development by triggering either CCR6 upregulation or amplification of CCR6+ T 

cells. But CCR6+ T cells infiltrate the CNS through blood-cerebrospinal fluid barrier 

and therefore it is questionable that we did not detect an increased CCR6-expression 

of T cells isolated from the blood [135]. This observation has to be elaborated in 

detail to come to a definitive answer. Moreover, we could not detect a difference in 
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CXCR3 and CCR5 expression of sorted RFP+ MOG-specific T cells between the two 

groups (Fig. 20). However, RFP+ T cells sorted from spleen, blood and draining 

lymph nodes of T and B cell-injected mice significantly upregulated CXCR4 (Fig. 20). 

As the role of CXCR4 in lymphocyte migration into the CNS is controversial, this 

observation is difficult to interpret, especially because the initial infiltrated T cells did 

not show an increased CXCR4 expression (Fig. 19). 
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Figure 20: MOG-specific B cells influence CXCR4 expression of T cells but have no 
effect on the other chemokine receptors. Chemokine receptor expression (mRNA) of sorted 

RFP
+
CD4

+ 
T cells from blood, non-draining lymph nodes, spleen and draining lymph nodes 9d p.i.. 

Data represent three independent experiments with each 2 animals per group. Significant differences 
are indicated: *p< 0.05 and **p< 0.01, unpaired students t test, shown are means ± SEM. 
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3.3.4.2. MOG-specific B cells do not influence adhesion molecule expression of 

T cells 

Adhesion molecules like VLA-4 and LFA-1 expressed by T cells have been shown to 

be crucial for the initial interaction of T cells with endothelial cells of CNS 

microvessels as well as for their transmigration [99, 106]. Therefore, we investigated 

whether MOG-specific B cells trigger the upregulation of either LFA-1 or VLA-4 on T 

cells or whether they expand LFA-1+ or VLA-4+ MOG-specific T cells in our 

experimental setting. For expression analysis we sorted RFP+CD4+ T cells 9d p.i. 

from either T cell-injected mice (Fig. 21 A black bars) or T and B cells-injected mice 

(Fig. 21 A white bars) and determined integrin alpha 4 (alpha subunit of VLA-4) or 

integrin alpha L (alpha subunit of LFA-1) mRNA expression by RT-PCR. When we 

compared the mRNA expression of T cells sorted from lymph nodes, spleen and 

blood, we could neither detect a significant difference in integrin alpha 4 nor in 

integrin alpha L expression between the two groups (Fig. 21 A). As it is possible that 

the expression is not regulated on mRNA level, but that B cells rather amplify VLA-4- 

or LFA-1-positive T cells, we determined the number of positive cells within the blood 

and spleen between day 7 and day 9 p.i. (Fig. 21 B+C). The number of VLA-

4+RFP+CD4+ T cells increased over time in the blood as well as in the spleen (Fig. 21 

B), but there was no difference in the T cell number of mice injected with T cells and 

of these injected with T and B cells. In accordance to that, we could not detect any 

difference in LFA-1+RFP+CD4+ T cell number (Fig. 21 C). We therefore conclude that 

MOG-specific B cells do not influence T cell migration into the CNS by affecting their 

expression of chemokine receptors or integrins. 
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Figure 21: MOG-specific B cells do not influence integrin expression of T cells.        
(A) Integrin expression (mRNA) of sorted RFP

+
CD4

+ 
T cells from blood, non-draining lymph nodes, 

spleen and draining lymph nodes 9d p.i. (B) Quantification of VLA-4
+
 RFP

+
CD4

+ 
T cells from the blood 

(left) and from the spleen (right) with flow cytometry on d7-d9 p.i. (C) Quantification of LFA-1
+
 

RFP
+
CD4

+ 
T cells from the blood (left) and from the spleen (right) with flow cytometry on d7-d9 p.i. 

Data in A represent three independent experiments with each 2 animals per group. Data in B+C 
represent two independent experiments with at least 2 animals per group. Shown are mean ± SEM 
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3.4. MOG-specific B cells do not influence mobilization of myeloid 

cells 

As we could not detect any differences in the T cell phenotype which would allow 

their earlier infiltration into the CNS, we determined whether MOG-specific B cells 

might influence other cell types responsible for the accelerated disease onset. 

Several publications suggest a crucial role for monocytes in disease initiation. EAE 

studies with CCR2-/- mice, the chemokine receptor predominantly expressed by 

inflammatory monocytes, reveal that the impaired CNS infiltration of monocytes is 

accompanied by a reduced number of infiltrating T cells [165, 167]. In addition, the 

increase of Ly6C+ monocyte number in the blood was associated with an earlier EAE 

disease onset [181]. In concordance, it was shown that B cells can influence 

monocyte mobilization in acute myocardial infarction [182]. Therefore, we were 

interested whether monocyte mobilization is affected in our experimental setting. 

Monocytes mainly appear in the blood as two populations: inflammatory monocytes 

are CD11b+Ly6C+CCR2+ whereas resident monocytes are CD11b+Ly6intCX3CR1+ [4]. 

As these populations originate from a common precursor, the simultaneous 

expression of CCR2 and CX3CR1 is not unusual. To investigate whether the 

frequency of monocyte subpopulations is altered between T cell-injected and T and B 

cell-injected mice before EAE onset, we determined the number of the different 

monocyte populations in the blood, the spleen and the spinal cord on day 7 and 8  

p.i. by flow cytometry. Different monocyte subpopulations were gated like depicted in 

Fig. 22 A. Seven days p.i. we detected a slight increase of total CD11b+Ly6Chi cells, 

which was reflected in both, an increase of CD11b+Ly6ChiCCR2+ and of 

CD11b+Ly6ChiCCR2+CX3CR1+ in the blood, but not in the spleen and spinal cord of T 

and B cell-injected mice (Fig. 22 B). One day later the picture completely changed 

with an increased number of CD11b+Ly6Chi monocyte subpopulations in the blood of 

T cell-injected mice (Fig. 22 C left), but a tendency of an increased number of that 

subpopulations in the spinal cord of T and B cell-injected mice (Fig. 22 C right). 

However, as we could not detect a unique increase of the CD11b+Ly6Chi monocyte 

subpopulations in the blood as described in the literature, we conclude that B cells do 

not influence monocyte mobilization in our experimental setting. 
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Figure 22: MOG-specific B cells do not influence monocyte mobilization.                   
(A) Flow cytometry gating strategy for different monocyte subpopulations. (B-C) different monocyte 

subpopulations (all gated on CD11b) were quantified in blood, spleen and spinal cord of T cell-injected 

(black bars) and T and B cell  injected mice (white bars) (B) 7d p.i. and (C) 8d p.i.. Data represents 2 

independent experiments with each 2 animals per group. Shown are mean ± SEM 
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3.5. MOG-specific B cells do not mediate upregulation of adhesion 

molecules and chemokines by spinal cord microvessel endothelial 

cells 

During EAE, endothelial cells of spinal cord microvessels have been shown to 

upregulate the expression of several chemokines and adhesion molecules required 

for lymphocyte attraction, adhesion and transmigration [112, 125, 126, 129]. 

Therefore, it is possible that B cells trigger chemokine or adhesion molecule 

upregulation, for example through soluble factors like cytokines, and thus promote 

lymphocyte infiltration into the CNS. In line with this, it was shown that B cells are the 

major source of IL-6 in secondary lymphoid tissues and that absence of IL-6 during 

EAE results in an impaired upregulation of ICAM-1 and VCAM-1 of CNS endothelial 

cells [183]. To investigate whether the presence of MOG-specific B cells promote the 

upregulation of adhesion molecules and chemokines before onset of EAE, we 

isolated spinal cord microvessels and sorted the endothelial cells according to their 

CD31 (PECAM-1) expression of T cell-injected and T and B cell-injected mice 8 days 

p.i.. We quantified their ICAM-1, VCAM-1, ALCAM, CXCL10, CXCL12, CCL5 mRNA 

expression by RT-PCR. To ensure that endothelial cells were isolated from mice at 

the same preclinical stage, we additionally determined the number of infiltrated RFP+ 

cells and only endothelial cells with comparable low numbers of infiltrated cells (~30-

60 cells) were used for gene expression analysis. Otherwise, we could not exclude 

that the presence of already infiltrated cells and their ongoing reactivation contributed 

to an increased expression of adhesion molecules and chemokines.  
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Figure 23: MOG-specific B cells do not trigger the upregulation of adhesion 
molecules and chemokines by spinal cord microvessel endothelial cells. Spinal cord 

microvessels were isolated from T cell-injected and T and B cell-injected OT-II mice with similar CNS 
infiltrated RFP

+
 cell numbers and endothelial cells were sorted according to their CD31 expression 8d 

p.i.. (A) Adhesion molecules (ICAM-1, VCAM-1, ALCAM) and (B) chemokine (CXCL10, CXCL12, 
CCL5) (mRNA) expression analysis was performed by RT-PCR. Data represent 2 independent 
experiments with 4 animals per group. Data are depicted as mean ± SEM. Non-significant differences 
between means are indicated: ns p> 0.05, unpaired students t test 
 

Although we observed an increased number of CNS infiltrated T cells upon additional 

transfer of MOG-specific B cells, these cells did not trigger the upregulation of 

adhesion molecules (Fig. 23 A) or chemokines (Fig. 23 B) by spinal cord microvessel 

endothelial cells. On the contrary, endothelial cells isolated from T cell-injected mice 

even showed an enhanced expression of ALCAM and of CXCL10 on mRNA level in 

contrast to T and B cell-injected mice. Therefore, it is unlikely that B cells promote T 

cell infiltration into the CNS by influencing microvessel endothelial cells. 
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3.6. The antigen-specific interaction of T and B cells determine the 

accelerated disease onset  

As we could not detect any obvious or detectable difference in the T cell phenotype 

or an effect of B cells on other cell types like monocytes or spinal cord microvessel 

endothelial cells, we wanted to search for other mechanisms by which B cells 

contribute to the accelerated disease onset. We were interested whether the 

presence of activated, but not MOG-specific B cells is sufficient to accelerate the 

disease onset or whether the antigen-specific interaction of T and B cells determines 

the effect on EAE onset. For that purpose, we supplemented OT-II mice with different 

combinations of T and B cells and immunized them with NP-OVAL and MOGp35-55 

(Table 5) and monitored their clinical outcome. 

Table 5: Overview of clinical experiment 

Cell transfer Antigen 

MOG-specific T cells NP-OVAL + MOGp35-55 

MOG-specific T and B cells NP-OVAL + MOGp35-55 

MOG-specific T cells and 

NP-specific B cells 
NP-OVAL + MOGp35-55 

 

To investigate whether the presence of activated, but not MOG-specific B cells is 

sufficient to accelerate the onset of EAE, we transferred NP-specific B cells together 

with MOG-specific T cells into OT-II hosts and immunized them with a combination of 

NP-OVAL and MOGp35-55. We know from in vitro studies that NP-specific B cells 

become activated by the NP-OVAL in the presence of OVA-specific T cells 

(endogenous cells) (Fig 6 B+C right). We compared the clinical outcome to either 

MOG-specific T cell-injected mice or to MOG-specific T and B cell-injected mice, both 

immunized with NP-OVAL and MOGp35-55, but we did not expect an effect of NP-

OVAL on the disease development in these groups. To proof that the NP-specific B 

cells became activated in vivo, we determined their IgG production against OVA, 

rrMOG and NP-OVAL and could show that they specifically produced anti-NP-OVAL 

IgG (Fig. 24 C). 
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Figure 24: The antigen-specific interaction of T and B cells determine the clinical 
outcome of EAE. OT-II mice were injected either with MOG-specific T cells, MOG-specific T and B 

cells or MOG-specific T cells and NP-specific B cells followed by immunization with NP-OVAL and 
MOGp35-55. (A) EAE disease course of OT-II injected mice (B) Day of onset of each animal per T or 
TBMOG or TBNP group. Shown are two pooled experiments with 9 animals per group. (C) Serum anti-
OVA, anti-rrMOG and anti-NP-OVAL IgG titer of MOG-specific T and NP-specific B cell-injected OT-II 
mice obtained 10-12d p.i. from peripheral blood, pooled data from 5 animals. Data show mean ± SEM. 
Significant differences between means are indicated: ns p>0.05, *p< 0.05 **p< 0.01, 1way ANOVA 
 

 

Whereas MOG-specific T and B cell-injected mice developed first clinical signs at 

about day 8.8 ± 0.24, the presence of in vivo activated NP-specific B cells had no 

effect on the onset compared to MOG-specific T cell-injected mice (TBNP: day 11.38 

± 0.59, T: day 10.71 ± 0.52) (Fig. 24 A+B). We therefore assume, that the antigen-

specific interaction of MOG-specific T and B cells rather determine the clinical 

outcome than the presence of activated MOG-unspecific B cells. 
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3.7. MHC-II deficiency of MOG-specific B cells do not exclusively 

affect their antigen-presenting capacity 

We know from the previous clinical experiment that activated, so-called “bystander” B 

cells had no effect on the onset of EAE. Therefore, we were interested about the 

mechanism which is based on the antigen-specific interaction of T and B cells. To 

interfere with this mechanism, we crossed Th mice to MHC-II-/- mice to generate 

MHC-II-/- MOG-specific B cells with the final intention to use these B cells for adoptive 

transfer experiments. To ensure that MHC-II-/- MOG-specific B cells were really 

impaired in their antigen-presenting capacity, we first tested them in an in vitro 

proliferation assay. We cultured CFSE-labeled MOG-specific T cells either with 

MOG-specific B cells or with MHC-II-/- MOG-specific B cells in the presence of 

increasing concentrations of either MOGp35-55 or rrMOG and assessed MOG-specific 

T cell proliferation after 72h. In addition, we analyzed in vitro B cell proliferation to 

investigate whether the defective antigen-presentation also impaired B cell function. 

We observed that MHC-II-/- B cells were impaired in triggering T cell proliferation (Fig. 

25 A). Moreover, MHC-II deficiency resulted in defective B cell response as their 

antigen-specific proliferation was also impaired (Fig. 25 B). As MHC-II deficiency not 

only resulted in their impaired antigen-presenting capacity, but also affected their 

cellular behavior, we wondered whether this also had consequences in vivo. A recent 

publication observed that MHC-II deficiency of B cells was accompanied by an 

impaired secretion of antibodies [139]. Therefore, we injected MOG-specific B cells or 

MHC-II-/- MOG-specific B cells into NP mice and immunized them with a high dose of 

rrMOG (40µg) and determined anti-rrMOG IgG levels 8d and 18d p.i.. We used NP 

mice recipients for that analysis as they are devoid of endogenous antibody-secreting 

MOG-specific B cells (Fig. 25 C lower row PBS ctrl). We detected substantial 

amounts of anti-rrMOG IgGs in serum of MOG-specific B cell-injected NP mice even 

after 8d p.i.. In contrast, MHC-II-/- MOG-specific B cells did not show an antibody 

response 8d p.i. or at later time points (18d p.i.), suggesting that the MHC-II 

deficiency not only affected their cellular-, but also their humoral immune response. 

Thus, we proposed that these B cells were not suitable to investigate the exclusive 

impact of antigen presentation on the course of EAE.  
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Figure 25: Ablation of MHC-II of B cells results in impaired B cell function. 
(A+B) 1x10

6
 MOG-specific T cells were co-cultured with either 2x10

6 
MOG-specific B cells (black line) 

or MHC-II
-/- 

MOG-specific B cells (grey line) with increasing MOGp35-55 (left) or rrMOG (right) 
concentrations (0; 0,1; 1; 10 µg/ml) for 72h. (A) T cell and (B) B cell proliferation was determined by 
CFSE dilution. (C) MOG-specific B cells, MHC-II

-/- 
MOG-specific B cells or PBS were i.v. injected into 

NP mice and immunized two days later with 40µg rrMOG. Sera were obtained 8d p.i. (upper row) and 
18d p.i. (lower row) and anti- anti-rrMOG IgG was quantified by ELISA, graphs are depicted as mean ± 
SEM. 
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3.8. The role of antibodies in MOGp35-55 induced EAE 

3.8.1. MOG-specific B cells produce anti-rrMOG IgG upon MOGp35-55 

immunization 

As we have analyzed the phenotype of the MOG-specific T cells in the previous 

experiments extensively during the activation phase and before the disease onset 

and could not detect any striking difference, we suppose that the disease-accelerated 

effect is mediated by the MOG-specific B cells. That assumption is supported by the 

observation that activated MOG-unspecific B cells did not accelerate the disease 

onset (Fig. 24 A+B). Of course, MOG-specific B cells and NP-specific B cells differ in 

their antibody specificity. Although several publications suggest that anti-MOG 

antibodies are not produced after MOGp35-55 immunization [139, 151], we investigated 

whether this also holds true in our experimental setting. Because we know that NP-

specific B cell mice were devoid of endogenous antibody-secreting MOG-specific B 

cells, we used these mice as hosts to analyze whether the transferred MOG-specific 

B cells were in general able to exhibit an humoral immune response after MOG 

peptide immunization. We injected MOG-specific B cells or PBS as control into NP- 

host mice and immunized them two days later with MOGp35-55, obtained blood 9d p.i. 

and assessed the amount of anti-MOGp35-55 IgM and IgG and of anti-rrMOG IgM and 

IgG by ELISA.  
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Figure 26: MOG-specific B cells produce anti-rrMOG IgG upon MOGp35-55. 
immunization. (A) MOG-specific B cells or PBS were i.v. injected into NP mice and immunized two 

days later with MOGp35-55. Sera were obtained 9d p.i. and anti-MOGp35-55 IgM and IgG (left) and anti-
rrMOG IgM and IgG (right) was quantified by ELISA. (B) MOG-specific B cells or PBS were i.v. 
injected into WT mice and immunized two days later with MOGp35-55. Sera were obtained 9d and 30d 
p.i. and anti-rrMOG IgG was quantified by ELISA (C) Serum was obtained from naïve Th mice or 
MOG-specific B cell-injected WT mice 2d p.i. and anti-MOGp35-55 IgG and anti-rrMOG IgG (naïve Th 
mice) was quantified by ELISA. (D) MOG-specific T cells, MOG-specific B cells or MOG-specific T and 
B cells were i.v. injected in OT-II, immunized with MOGp35-55 and serum was obtained 9-12d p.i.. Anti-
rrMOG IgG was quantified by ELISA. Data in A and B represent 4 mice per group, in C 2 mice per 
group and in D 6 mice per group, shown are mean ± SEM. 

 

Transferred MOG-specific B cells did not secrete anti-MOGp35-55 IgM or IgG (Fig. 26 

A, left) 9 days post immunization, which is not surprising because B cells are known 

to rather recognize structural epitopes than short amino acid sequences. However, 

although we immunized with MOG peptide, we detected anti-rrMOG IgG (Fig. 26 A 

right). As we could not detect any anti-rrMOG specific IgGs in PBS injected mice, we 

assumed that the transferred B cells were the source of antibodies. When we 

repeated the experiment in WT mice, we observed that the transferred MOG-specific 

B cells exhibited a stronger antibody response than the endogenous B cells at an 
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earlier time point (Fig. 26 B), but even endogenous B cells produced anti-rrMOG 

IgGs after MOG peptide immunization (30d p.i.). It is known that naïve Th mice, the 

donor of MOG-specific B cells, harbor a high titer of anti-rrMOG IgG (Fig. 26 C). 

Therefore, it is possible that the detected anti-rrMOG IgG are an artificial effect of 

transferring already differentiated antibody-secreting plasma blasts. However, upon 

transfer of MOG-specific B cells, they did not immediately (2d p.i.) produce and 

secrete anti-rrMOG specific IgGs (Fig. 26 C). Thus, we assumed that the transferred 

MOG-specific B cells became activated in vivo by immunization. To verify whether 

these observations also hold true in our experimental setup, we transferred either 

MOG-specific T cells, MOG-specific B cells or both together into OT-II mice, 

immunized them with MOGp35-55 two days later and determined anti-rrMOG IgG from 

sera obtained 9-12d p.i.. The transfer of MOG-specific T cells did not trigger anti-

MOG IgG production of the endogenous B cell pool (at least not until this early time 

point) and also MOG-specific B cells did not secrete any anti-rrMOG IgG, presumably 

due to the absent antigen-specific T cell help (Fig. 26 D). However, the simultaneous 

transfer of MOG-specific T and B cells resulted in an increased anti-rrMOG IgG 

production (Fig. 26 D). Conclusively, although several publications suggest that B 

cells do not exhibit an humoral immune response after MOG peptide immunization, 

we were indeed able to detect MOG-specific antibodies in our experimental setup. 

Moreover, the transfer of MOG-specific T cells alone did not facilitate an humoral 

immune response against MOG of the endogenous B cell pool leading to the 

assumption that the antibodies in theory can account for an accelerated disease 

onset in OT-II mice.   

 

3.8.2. Mice with XBP-1 deficient B cells lack anti-rrMOG specific Igs and show a 

delayed disease onset upon rrMOG immunization 

To investigate the role of antibodies in our experimental setting, we made use of a 

mouse system where B cells are incapable to develop into antibody-secreting plasma 

cells. The transcription factor X-box binding protein 1 (XBP-1) is required for the 

differentiation of B cells to plasma cells and XBP-1 deficient lymphoid chimeras are 

devoid of immunoglobulin of any isotype and of plasma cells [184]. To generate mice 

where XBP-1 deficiency is restricted to the B cell compartment, we crossed mb1Cre 

mice with XBP-1fl/fl mice resulting in Cre expression under the control of the B cell-
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specific mb1 promotor and subsequent specific deletion of XBP-1 [174]. Before 

crossing these mice to Th mice to obtain MOG-specific XBP-1-deficient B cells, we 

performed an initial clinical experiment to test their functionality. XBP-1fl/flmb1Cre- 

mice served as control mice in this experiment. As it is suggested that the secretion 

of pathogenic antibodies is rather mediated by protein antigens than by peptides, we 

immunized them with 20µg rrMOG and obtained blood 7d, 11d and 27d p.i. and 

quantified anti-rrMOG IgM and IgG levels.  

 

days p.i.

c
li
n

ic
a
l 
s
c
o

re
 [


S
E

M
]

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

XBP-1
fl/fl

mb1Cre
+

XBP-1
fl/fl

mb1Cre
-

d
a
y
 o

f 
o

n
s
e
t 

[ 
S

E
M

]

Cre
-

Cre
+

0

10
11

12

13

14

15

16

17

18

19 **
A B

IgM d7

O
D

4
5
0

1:
10

0

1:
50

0

1:
10

0

1:
50

0
0.0

0.2

0.4

0.6

0.8

1.0

Cre- Cre+

IgG d7

1:
10

0

1:
50

0

1:
10

0

1:
50

0
0.0

0.2

0.4

0.6

0.8

1.0

Cre- Cre+

IgM d11

1:
10

0

1:
50

0

1:
10

0

1:
50

0
0

1

2

3

4

Cre- Cre+

IgG d11

1:
10

0

1:
50

0

1:
10

0

1:
50

0
0

1

2

3

4

Cre- Cre+

IgM d27

1:
10

0

1:
50

0

1:
10

0

1:
50

0
0

1

2

3

4

Cre- Cre+

IgG d27

1:
10

0

1:
50

0

1:
10

0

1:
50

0
0

1

2

3

4

Cre- Cre+

C

Figure 27: Absence of anti-rrMOG Igs results in a delayed EAE onset.                 
(A+B) Clinical outcome of XBP-1

fl/fl
mb1Cre

-
 or XBP-1

fl/fl
mb1Cre

+
 mice immunized with 20µg rrMOG. 

Healthy mice were not included in the analysis. Clinical data represent 9 animals for Cre
-
 group and 5 

animals for Cre
+
 group from 2 independent experiments (C) Sera obtained from XBP-1

fl/fl
mb1Cre

-
 or 

XBP-1
fl/fl

mb1Cre
+
 mice 7, 11 and 27d p.i. and anti-rrMOG IgM and IgG quantification by ELISA.. Each 

symbol represents an individual mouse in C out of two independent experiments. Data are shown in 
mean ± SEM. Significant differences between means are indicated: **p< 0,01, Mann-Whitney 
nonparametric t test. 

 

 



Results 

76 

During our initial analysis of the XBP-1fl/flmb1Cre+ mice we recognized that these 

mice had a reduced B cell compartment in contrast to XBP-1fl/flmb1Cre- mice. 

Therefore, the outcome of the clinical data has to be interpreted carefully and might 

not exclusively be base on the absence of antibodies. But as we planned to use 

these mice as donor for B cells and not as hosts for cell transfer experiments, the 

reduced B cell number did not affect our experiments. EAE induction with rrMOG 

revealed a difference in the clinical outcome of XBP-1-sufficient and XBP-1-deficient 

B cell mice (Fig. 27 A+B). XBP-1fl/flmb1Cre- mice started to develop first clinical signs 

about four days earlier than XBP-1fl/flmb1Cre+ mice (Cre-: 12.89± 0.42; Cre+: 16.2± 

0.73). In addition, the different genotype affected the susceptibility for EAE as 47.3% 

of Cre- mice developed EAE whereas only 29.4% of Cre+ mice showed clinical 

symptoms. In line with this was the reduction of anti-rrMOG IgM and IgGs mainly 

emphasized on day 11 and 27 p.i. (Fig. 27 C). But as mentioned before, we cannot 

rule out that the observed clinical effect was rather mediated by the reduced B cell 

compartment than by the lower antibody titer. In addition, it is also questionable 

whether the reduced antibody titer is due to deficient plasma cell differentiation or the 

general reduction in B cell numbers. 

 

3.8.3. XBP-1-deficient MOG- specific B cells do not accelerate the onset of EAE 

To investigate whether MOG-specific B cells contribute to the accelerated disease 

onset by their production and secretion of high-affinity anti-rrMOG antibodies of the 

IgG isotype, we crossed the XBP-1fl/flmb1Cre+ mice to Th mice (for simplicity 

designated as “XBP-1-/- MOG-specific B cells”) with the final intention to use these B 

cells for adoptive transfer experiments. To ensure that the XBP-1 deficiency 

exclusively affected the humoral immune response of B cells without affecting their 

cellular immune response, we first tested their antigen-presenting capacity in vitro. 

We co-cultured them with CFSE-labeled MOG-specific T cells with increasing 

concentrations of either MOGp35-55 or rrMOG and analyzed T cell proliferation 72h 

post culture. We additionally assessed MHC-II and CD86 expression of B cells by 

flow cytometry as readout for B cell activation. 
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Figure 28: XBP-1 deficiency does not affect the antigen-presenting capacity of B 
cells. 1x10

6
 MOG-specific T cells were co-cultured with either 2x10

6 
MOG-specific B cells (black line) 

or XBP-1
-/- 

MOG-specific B cells (grey line) with increasing MOGp35-55 (left) or rrMOG (right) 
concentrations (0; 0,01; 0,1; 1; 10 µg/ml) for 72h. (A) T cell proliferation was determined by CFSE 
dilution. (B+C) Co-cultured B cells were stained for B220 and CD86 (B) or for B220 and MHC-II (C) 
and analyzed for their mean fluorescence intensity (MFI) of respective marker expression by flow 
cytometry. Shown is one experiment. 

 
 

XBP-1 deficiency did not influence the antigen-presenting capacity of MOG specific B 

cells. Both, XBP-1-deficient and XBP-1-sufficient B cells triggered antigen-specific T 

cell proliferation at the same antigen concentrations (Fig. 28 A). In addition, both B 

cell genotypes expressed MHC-II and CD86 with the same kinetic (Fig. 28 B+C). 

Minor differences in MHC-II expression as observed in Fig. 28 C (right) rather arise 

from natural variability. Thus, we conclude that the antigen-presenting capacity was 

not affected by the XBP-1 deficiency and that XBP-1-deficient B cells arise as 

appropriate B cells to study the role of antibodies in EAE. As the clinical outcome of T 

and B cell supplementation was more pronounced in the double-transgenic OT-II x 

NP host mice (Fig. 8 C+D, table 4), we used these mice as hosts for the clinical 
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experiment. We transferred MOG-specific T cells either together with MOG-specific B 

cells or with XBP-1-deficient MOG-specific B cells into OT-II x NP host mice, 

immunized them two days later with MOGp35-55 and monitored their clinical outcome 

for 20 days. 

days p.i.

c
li
n

ic
a
l 
s
c
o

re
 [


S
E

M
]

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10 TMOG BMOG

TMOG BMOG XBP-1
-/-

d
a
y
 o

f 
o

n
s
e
t 

[ 
S

E
M

]

TBMOG XBP-1
-/-

 TBMOG

0

6
8

10

12

14

16

18 **
A B

9d p.i.

O
D

4
5

0

1:
10

0

1:
50

0

1:
10

0

1:
50

0

0.0

0.2

0.4

0.6

0.8

1.0
C d15-d20 p.i.

1:
10

0

1:
50

0

1:
10

0

1:
50

0

0.0

0.5

1.0

1.5

2.0
TBMOG

TBMOG

XBP-1
-/-

R
F

P
+

B
 c

e
ll
s
/m

l 
b

lo
o

d

blood
0

100

200

300

400

R
F

P
+

B
 c

e
ll
s
/g

 (
x
1
0

5
)

spleen
0

2

4

6

8

10
D

Figure 29: MOG-specific XBP-1-deficient B cells do not accelerate the onset of EAE 
and do not produce anti-rrMOG specific IgGs. MOG-specific T cells were injected either with 

RFP
+
MOG-specific B cells or RFP

+
MOG-specific XBP-1-deficient B cells into OT-II x NP mice and 

immunized with MOGp35-55. (A+B) Clinical outcome of cell transfer (C) Sera obtained from MOG-
specific T and B cell-injected mice or MOG-specific T and XBP-1-deficient B cell-injected mice 9d p.i. 
and at end of experiment (depending on the clinical score between d15 and d20 p.i.) and anti-rrMOG 
IgG quantification by ELISA (D) Quantification of total RFP

+
 B cell numbers 9d p.i. in blood and spleen. 

Data in A and B represent 5 mice per group, in C 2 mice per group and in D one mouse per group. 
Data are shown in mean ± SEM. Significant differences between means are indicated: **p< 0,01, 
Mann-Whitney nonparametric t test. 

 
 

The transfer of XBP-1-/- MOG-specific B cells did not accelerate the disease onset 

like observed with XBP-1-sufficient MOG-specific B cells (Fig. 29 A+B). Precisely, 

mice which received MOG-specific T cells and XBP-1-deficient B cells developed first 

clinical signs at about day 12.8± 1.0, whereas the transfer of MOG-specific T cells 

together with XBP-1- sufficient B cells resulted in a clinical onset at about day 9.4± 
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0.24. In contrast to that, the different B cell genotype did not impact the susceptibility 

to EAE, as both groups developed EAE with an incidence of 83%. To ensure that 

XBP-1-deficient B cells were really impaired in antibody production, we obtained 

blood from two animals per group 9 days p.i. and from all animals after they had to be 

sacrified due to a too high clinical score and determined serum anti-rrMOG IgG level. 

Mice which received XBP-1-sufficient MOG-specific B cells showed an increased 

anti-rrMOG IgG serum level already 9 days p.i. (Fig. 29 C, left), which was even 

enhanced at later time points, whereas serum anti-rrMOG IgG levels of XBP-1-

deficient B cell-injected mice did not exceed background level (Fig. 29 C, right). As 

mentioned before, Th XBP-1fl/flmb1Cre+ mice (donor mice of MOG-specific XBP-1- 

deficient B cells) have an impaired B cell compartment with low numbers of 

peripheral B cells. To exclude that the observed clinical effect and the accompanied 

low serum anti-rrMOG IgG level was due to an e.g. increased apoptosis rate of the 

transferred B cells, we determined the number of transferred RFP+ B cells of one 

mouse per group 9 days p.i.. At that time point, the number of transferred B cells was 

similar in the spleen and in the blood (Fig. 29 D) between the two groups, leading to 

the conclusion that the deficiency of XBP-1 rather affected the development of B 

cells, but did not impact the survival of mature B cells with the consequence that 

isolated B cells stay viable upon transfer. In summary with the in vitro data, these 

data provide evidence that the transferred MOG-specific B cells promote the 

development of EAE through the secretion of MOG-specific IgGs. However, how 

these antibodies exert their pathogenic potential remains elusive.  
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4. Discussion 

4.1. Establishment of the EAE model 

Although MS is known to be a T cell-mediated autoimmune disease, beneficial 

effects of B cell-depleting therapies of MS patients with Rituximab, an anti-CD20 

monoclonal antibody, reveal evidence that B cells are involved in the pathogenesis of 

MS. Several publications disclose divergent roles for B cells during the course of MS 

and EAE, the mouse model of MS. On the one hand, B cells can exert their pro-

inflammatory function by their secretion of pro-inflammatory cytokines [55, 56, 154] or 

by triggering T cell activation through antigen-presentation [139]. Moreover, auto-

antibodies are also considered to be involved in MS and EAE [53, 54, 140]. On the 

other hand, a regulatory subpopulation of B cells and plasma cells were shown to 

secrete anti-inflammatory cytokines like IL-10 and IL-35 and thus dampen down the 

autoimmune response [157, 159, 160]. In addition to the different roles suggested for 

B cells, the critical time point when B cells participate in the immune response also 

seems to be uncertain. Whereas some publications suggest a role for B cells in T cell 

priming in secondary lymphoid tissues [139], others suggest a critical role for B cells 

in the reactivation phase of EAE in the CNS [154]. Similarly, the critical time point of 

regulatory B cell contribution also seems to be controversial. Whereas some reports 

reveal a critical requirement for regulatory B cells during the EAE recovery phase 

[157], others suggest an important role for these cells in the EAE induction phase 

[161]. Hence, there is an increasing interest in studying the role and the critical time 

point of B cell contribution to the pathogenesis of MS. This would help to develop 

drugs exclusively targeting the B cell-dependent mechanism without affecting the 

total cell lineage.  

We have now developed a system enabling us to track and analyze T and B cells of 

the same antigen-specificity in vivo during the course of EAE. Fluorescently labeled 

(RFP or GFP) MOG-specific T and B cells were isolated from respective donor mice 

and injected i.v. into different recipients followed by immunization with MOG peptide 

(MOGp35-55). This allowed the re-isolation and characterization of the cells during the 

whole course of actively induced EAE from the periphery, as well as from the CNS. 

We did not manipulate the course of EAE by transferring e.g. activated T cells (Fig. 4) 

and the antigen-specific T cells responded specifically to their appropriate antigen in 

vivo (Fig. 5). This ensured that the injected cells became primed in vivo in a similar 
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manner as the endogenous lymphocytes and that co-injected T and B cells could 

interact with each other. We first established the model in C57bl/6 WT mice, where 

we observed a disease promoting effect of transferred MOG-specific T cells, but also 

of transferred MOG-specific B cells (Fig. 7 A, C), leading to the assumption that both 

lymphocyte populations participate in the autoimmune response. Thus, we thought 

that the simultaneous transfer of MOG-specific T and B cells might even enhance the 

observed effects. Although we observed a trend that the simultaneous transfer of 

MOG-specific T and B cells accelerate and exacerbate the course of disease in 

comparison to MOG-specific T cell transfer alone, the difference was not statistically 

significant (Fig. 7 A, B). We assumed that the contribution of the endogenous MOG-

specific T cell pool to the disease progression was too strong to further significantly 

enhance the immune response. Therefore, we employed OT-II host mice, as it is 

known that OVA-specific T cells do not respond to MOG antigens and our in vitro 

data confirmed this observation (Fig 6 A left and middle). In line with this, OT-II mice 

were not susceptible for EAE induction with MOGp35-55 (Fig. 8 A), leading to the 

conclusion that the participation of OVA-specific T cells in the autoimmune response 

against MOG and thus in the initiation of EAE is negligible. To minimize the 

endogenous T and B cell effects simultaneously, we crossed the OT-II mice to NP 

mice resulting in OT-II x NP mice. These mice, mainly harboring OVA-specific T cells 

and NP-specific B cells, enabled us to widely exclude any effects from endogenous T 

and B cells after immunization with MOG peptide. As observed with OT-II mice, OT-II 

x NP mice were not susceptible for EAE induction either. The protection of EAE could 

be overcome by the transfer of MOG-specific T cells (Fig. 8 A) in OT-II host mice, as 

well as in OT-II x NP host mice (Fig. 8 C). In both models, the additional transfer of 

MOG-specific B cells to MOG-specific T cells significantly accelerated the disease 

onset and increased the susceptibility for EAE (Fig. 8 A-D, Table 4), although the 

disease-accelerated effect of MOG-specific B cell supplementation was more 

pronounced in the OT-II x NP model (Table 4, day of onset). Thus, both models 

exhibited several advantages: First, they facilitated a focus on the pathogenic MOG-

specific T and B cell population during the course of EAE, not only in the periphery, 

but also in their target organ, the CNS. Second, they permitted us to study the impact 

of MOG-specific B cells on the course of EAE, because the accelerated onset 

revealed an effect of the transferred MOG-specific B cells in OT-II mice and, even 

more pronounced, in OT-II x NP mice. Furthermore, we avoided the usage of host 
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mice lacking e.g. B cells (µMT) or even T and B cells (RAG2-/-) as these mice are 

known to have an impaired secondary lymphoid organ structure and injected T cells 

can undergo homeostatic proliferation [185, 186]. The traditional view is that peptide 

antigens are predominantly presented by professional APCs like DCs, whereas B 

cells require the presence of protein antigens for presentation [187, 188]. In line with 

this, several publications reveal that the presence or absence of B cells in MOG-

peptide induced EAE is completely irrelevant for the course of EAE [138, 139]. Our 

own observations showed the reverse. We could clearly show that the 

supplementation of C57bl/6 WT mice with MOG-specific B cells (Fig. 7 C) or the 

simultaneous transfer of MOG-specific T and B cells into OT-II and OT-II x NP mice 

and subsequent MOG peptide immunization accelerated the onset of EAE and 

increased susceptibility in comparison to non-supplemented mice or T cell-

supplemented mice, respectively (Fig. 8 A-D). We also established the above 

described models (C57bl/6 WT and OT-II) with rrMOG protein immunization (data not 

shown) and also observed an effect of supplemented MOG-specific B cells on the 

disease course. However, we were more interested in the role of B cells in MOG 

peptide induced EAE, because this is contradictory to most of the publications [138, 

139]. It is suggested in the literature that peptide antigens can be presented by B 

cells irrespective of their antigen receptor specificity by binding on surface MHC-II 

molecules [78, 79, 139]. Our in vitro results also reveal that NP-specific B cells can 

trigger MOG-specific T cell proliferation in the presence of MOGp35-55 almost as 

efficiently as MOG-specific B cells (Fig. 6 A left), whereas they fail to induce T cell 

proliferation in the presence of rrMOG (Fig. 6 A middle). This led to the conclusion 

that the antigen-specificity of the B cells is irrelevant for triggering T cell proliferation 

in the presence of MOG peptide antigens in vitro. However, the simultaneous transfer 

of MOG-specific T cells and NP-specific B cells into OT-II hosts and subsequent 

immunization with MOGp35-55 did not lead to the accelerated disease onset observed 

with MOG-specific B cells (preliminary data, Suppl. Fig. S1). This led to the 

assumption that the in vivo interaction of MOG-specific T and B cells in the presence 

of MOGp35-55 did not simply affect T cell proliferation, but rather might result in a more 

complex impact on the entire autoimmune response. In line with this, we observed a 

diminished EAE susceptibility of T cell-injected OT-II x NP mice in contrast to T cell-

injected OT-II mice (Table 4; 61.5% vs. 35.7%). This observation also emphasizes 

the critical role of B cell receptor antigen-specificity because if the antigen-specificity 
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of the endogenous B cell pool is irrelevant for peptide-induced EAE, it might not 

affect the clinical outcome of EAE. It should be mentioned here that we did not 

experimentally exclude a difference in the residual antigen-presenting cell pool of the 

two different host mice, which could possibly also account for a different EAE 

susceptibility.  

In summary the newly established EAE model not only enabled us to study the 

behavior of MOG-specific T and B cells during the course of EAE, but also highlights 

the importance of antigen-receptor specificity even in MOG peptide-induced EAE. 

 

4.2. The role of MOG-specific B cells in the activation phase of EAE 

There are several possible mechanisms of how B cells can influence the course of 

EAE. It is considered that B cells act as antigen-presenting cells and thereby prime 

encephalitogenic T cells [139]. In addition, B cells influence T cell differentiation by 

their provision of pro-inflammatory cytokines such as IL-6 [56]. Moreover, B cells can 

secrete high affinity anti-MOG-specific antibodies [140]. In contrast to the described 

pro-inflammatory roles for B cells in EAE, several publications also suggest a 

regulatory role for some B cell subpopulations during disease progression [159, 160]. 

However, in all of our experimental models (C57bl/6 (Fig. 7), OT-II, OT-II x NP hosts 

(Fig. 8)), we observed a disease promoting effect of the transferred B cells and in 

none of them did we find an implication for a regulatory role of B cells. Furthermore, 

we tried to identify regulatory B cells (CD19+CD1dhiCD5+) by FACS staining in naïve 

C57bl/6 and Th mice and could not at all detect a distinct population. Therefore, we 

rather suggest a pro-inflammatory role for the transferred B cells in our system. We 

were interested whether the transferred MOG-specific B cells participate as antigen-

presenting cells in the priming phase (d2- d4) of EAE. We rather expected a 

supportive than a critical role of the B cells, as the role of B cells in priming naïve T 

cells in vivo is controversially discussed [189, 190] and conditional MHC-II expression 

of B cells in EAE also reveals a limited role for B cells as antigen-presenting cells 

[38]. In line with this we observed that the transfer of MOG-specific T cells alone is 

sufficient to drive the development of EAE. When we focused on T cell proliferation 

between d2 and d4, we could not detect a difference of T cells injected alone or 

together with MOG-specific B cells (Fig. 10 A+B), which was in line with the T cell 
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number (Fig. 10 C) and frequency among the CD4+ T cell pool (Fig. 10 D). Moreover, 

the presence of MOG-specific B cells did not increase the frequency of activated T 

cells (Fig. 11). In general, antigen-presentation by B cells can induce T cell 

differentiation into a T helper cell direction [191] and several publications suggest that 

B cells promote predominantly TH17, but also TH1 differentiation in EAE [56, 139, 

151]. However, we did not detect a difference in IFN, IL-17A or GM-CSF expression 

on mRNA level early after disease induction (2.5d p.i.; Fig. 12 A) and later (4d p.i.; 

Fig. 12 B). Furthermore, the presence of B cells neither expanded already 

differentiated T cells nor increased their sensitivity to lower antigen concentrations 

(Fig. 13). Analyses with MOG-specific FOXP3-GFP reporter T cells also revealed no 

impaired conversion of naïve T cells into induced regulatory T cells in the presence of 

B cells (Suppl. Fig. S2).  

From these observations we conclude that MOG-specific B cells did not modulate T 

cell proliferation, activation or differentiation during the priming phase of EAE. 

 

4.3. The role of MOG-specific B cells before onset of EAE 

As we could not detect a contribution of MOG-specific B cells to promoting 

encephalitogenic T cell amplification, activation or differentiation in the priming phase 

of EAE, we focused on the time point immediately before EAE onset. We know from 

experiments with inducible conditional CD28 knockout mice that T cell priming is not 

entirely completed after the activation phase of EAE [212]. Thus, it is possible that B 

cells exert their pro-inflammatory function later during preclinical progression. As B 

cells accelerate EAE onset from day 11 to day 9 in our EAE model (Fig. 8 A+B, Table 

4), we hypothesized that we would find a difference in the T cell phenotype shortly 

before the manifestation of clinical symptoms of MOG-specific T and B cell-injected 

mice. We used the technique of two-photon intravital imaging to distinguish mice with 

intraluminal and extraluminal T cells in the CNS. Almost all of the analyzed T and B 

cell-injected mice were found to have already extravasated T cells, which resembled 

the clinical outcome (Fig. 15 A). However, when we compared T and B cell-injected 

mice with extravasated T cells and T cell-injected mice without extravasated T cells 

with further flow cytometric analyses we did not detect any difference in the 

peripheral T cell number (Fig. 15 B) or frequency of activated T cells (Fig. 15 C) 
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between the two groups. This was in line with a study published where no difference 

could be detected in peripheral T cell activation in the absence or presence of MOG-

specific B cells of healthy mice [78]. As mentioned previously, it is traditionally 

thought that B cells drive the development of TH17 cells [56, 139]. We could not 

detect any difference in the expression level of IFN, IL-17A and GM-CSF on mRNA 

level of peripheral MOG-specific T cells 9d p.i. (Fig. 16 A). In addition, there was no 

difference in cytokine secretion of restimulated lymph node cells and splenocytes re-

isolated either from T cell or T and B cell-injected mice before clinical manifestation of 

EAE (9d p.i.) (Fig. 16 B-D). However, we found increased levels of IFN and IL-17A 

(Fig. 16 B, C) from sick T and B cell-injected mice (also re-isolated 9d p.i.). Notably, 

most of the publications which suggest a role for B cells in driving T cell 

differentiation, analyzed cytokine expression in late phases of disease progression 

(between d14 and 32 p.i.) when mice already display a difference in the clinical 

progress [56, 139, 151]. But whether this was a specific B cell effect or due to the 

overall increased pro-inflammatory milieu remains questionable.   

When we focused on the underlying reason why T and B cell-injected mice displayed 

an accelerated EAE onset, we could clearly detect an increased number of CNS-

infiltrated encephalitogenic T cells (Fig 17). As we could never detect any of the 

injected MOG-specific B cells in the CNS of healthy mice (by flow cytometry or by 

two-photon imaging performed by my colleague Tanja Litke) and just very few of 

them in mice with fulminant EAE (Score 4.5) (Fig. 18 B), we exclude a role at least for 

the injected B cells in the reactivation step. This was in contrast to a recent 

publication, which suggests that the initial interaction of T and B cells in the CNS 

account for an enhanced pro-inflammatory milieu leading to further cell attraction 

[154]. Moreover, the presence of meningeal ectopic B cell follicles was also reported 

in some MS patients [51]. But in our study also initial CNS-infiltrated T cells (~3000 

cells) isolated before the occurrence of clinical signs, displayed similar IFN, IL-17A 

and GM-CSF mRNA levels (Fig. 18 A). This was a quite challenging analysis, 

because it was not feasible to accurately identify the first 50-100 infiltrated cells. 

Therefore we cannot completely exclude that the very first infiltrated T cells became 

reactivated more efficient in T and B cell-injected mice, which would then lead to 

further cell attraction with the consequence of a higher number of detected infiltrated 

cells before the onset of EAE. Our analyses did clearly show that the earlier onset 

was due to a higher number of infiltrated T cells and not due to a general enhanced 
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reactivation in the presence of B cells. However, the higher number of infiltrated cells 

was neither accompanied by an increased peripheral T cell number, nor by an 

enhanced T cell activation or differentiation in the periphery.  

 

4.4. Effect of MOG-specific B cells on T cell migration 

The migration behavior of T cells is determined by their expression of distinct 

chemokine receptors and adhesion molecules. It is widely accepted that expression 

of CCR9 and LPAM (integrin 47) by T cells is responsible for their gut homing [192-

194], whereas skin-homing is mediated by E and P-selectin ligands and CCR4 and 

CCR10 [195, 196]. The upregulation of the particular homing receptors is mediated 

by the interaction of T cells with respective tissue-specific dendritic cell subsets [180, 

197]. Chemokine receptor-dependent T cell attraction is also critically involved in the 

pathogenesis of EAE. Whereas TH1 cells preferentially utilize CXCR3 and CCR5, 

TH17 cells are characterized by their expression of CCR6. Interference or complete 

absence of the chemokine receptors or their ligands results in attenuated disease 

course or complete resistance to EAE [120, 121, 135]. Beside the upregulation of 

pro-inflammatory chemokine receptors, also homeostatic chemokine receptors such 

as CCR7 and CXCR4 have been shown to be involved in CNS migration [103, 120, 

130]. Therefore, the critical chemokine receptor required for CNS infiltration does not 

seem to be as strictly defined as observed in gut and skin homing. To get an idea 

which chemokine receptor was preferentially utilized by the pathogenic T cells in our 

model, we determined chemokine receptor expression of initial infiltrated T cells on 

mRNA level. We did not detect a statistically significant difference in chemokine 

receptor expression of T cells either injected alone or simultaneously with MOG-

specific B cells. However, there was a tendency of a higher CCR7 and CCR6 

expression (Fig. 19) of T cells injected together with B cells. Interestingly, these cells 

also showed an enhanced, but not statistically different, expression of the TH17 

specific cytokines IL-17A and GM-CSF (Fig. 18 A). Therefore, one can argue that the 

peripheral interaction of MOG-specific T cells with MOG-specific B cells somehow 

drive the development of the TH17 phenotype. It is possible that the experimental 

approaches we used (RT-PCR of sorted T cells from periphery and in vitro antigen-

specific restimulation) to determine T helper cell differentiation in the periphery before 

clinical onset were not sensitive enough to detect already differentiated TH17 cells or 
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that these cells were not terminally differentiated into TH17 cells before they became 

reactivated in the CNS by perivascular APCs. In agreement with this finding, we also 

detected an increase in CCR6 expression of splenic T cells (Fig. 20). CCR6+ CD4 T 

cells (TH17 cells) have been shown to be crucial for the initiation of EAE. They 

infiltrate the CNS at the site of the choroid plexus into the brain, where their 

reactivation results in an overall increased pro-inflammatory milieu whereby they 

trigger further CCR6-independent lymphocyte infiltration [135]. As we also detected 

increased T cell numbers in the brain before the onset of clinical EAE (Fig. 15 B), this 

scenario can also account for the accelerated onset in our experimental model. We 

are planning to investigate this observation in detail, for example by determining the 

number of T cells in the CSF. Furthermore, we observed a significant upregulation of 

CXCR4 of T cells re-isolated from peripheral lymphoid organs and blood (Fig. 20). 

The role of CXCR4 and its ligand CXCL12 in the context of EAE is controversial. 

CXCL12 is expressed by spinal cord endothelial cells, among other sites, where it is 

mainly secreted at the basolateral surface into the perivascular space. Here, it has 

been suggested, CXCL12 traps CXCR4+ lymphocytes and prevents their migration 

deeper into the CNS parenchyma [130]. Although treatment studies with AMD3100, 

an antagonist of CXCR4 signaling, reveal worsening of clinical symptoms due to an 

increased number of infiltrated mononuclear cells deeper into parenchymal tissue 

after treatment, CXCR4 blockade had no effect on the onset of the disease. 

Therefore, it is also likely that a different CXCR4 expression kinetic of the pathogenic 

T cells can account for the earlier disease onset observed in our experimental model. 

In theory, the CXCR4+ T cells become attracted into the perivascular space, where 

they become reactivated by resident APCs, which in turn leads to the upregulation of 

various chemokines and cytokines enabling further cell infiltration. In line with this, we 

observed massive upregulation of CXCL10 and CCL5 on mRNA level of spinal cord 

microvessel endothelial cells isolated 9-11d p.i. when initial CNS infiltrates were 

detected in T and B cell-injected, but also in some T cell-injected mice (Suppl. Fig 

S3). The absent CXCR4 expression of the initial infiltrated cells (Fig. 19) can be 

explained by a downregulation during reactivation. However, it is experimentally 

challenging to find further evidence supporting our CXCR4 theory, as functional 

interference with CXCR4 would mainly target the altered T cell trapping rather than 

the initial infiltration. It is feasible to re-isolate CXCR4+ RFP+ T cells shortly before 

EAE onset from the periphery, transfer them into new host mice and investigate 
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whether they infiltrate the CNS earlier than control T cells, but it is questionable 

whether they maintain their CXCR4 expression until they arrive at the BBB. 

As integrin expression by T cells is also critically required for CNS infiltration, we also 

focused on integrin L (LFA-1) and integrin 4 (VLA-4) expressions before onset of 

EAE (Fig. 21 A). We detected neither an enhanced expression on mRNA level nor an 

increased number of VLA-4+ T cells (Fig. 21 B) or LFA-1+ T cells (Fig. 21 C). 

However, this was not surprising, as LFA-1 and VLA-4 are not exclusively involved in 

T cell migration, but are also involved in T cell–APC interaction, leading to several 

further factors which might influence their expression. Moreover, it is also likely that B 

cells do not influence the integrin expression of T cells, but rather their activation 

status. LFA-1 is normally expressed in a quiescent state on the surface of leukocytes 

and interacts weakly with its ligands ICAM-1 [198, 199]. Upon activation, e.g. by 

chemokine receptor signaling, it changes its conformational state into an active form, 

leading to a firm interaction with its endothelial cell expressed ligand [200]. As LFA-1 

is also involved in the forming of an immunological synapse between T cells and 

APCs, it is in general possible that B cells can influence its activation state. At the 

moment we are establishing an in vitro BBB approach to test whether antigen-

specific T and B cell interaction results in a higher number of firmly adhesive T cells.  

 

4.5. Effect of MOG-specific B cells on myeloid cells 

It is widely accepted that other leukocyte subsets are also critically involved in the 

pathogenesis of EAE. Myeloid cells do not only mediate tissue damage through 

secretion of toxic factors, but they also serve as antigen-presenting cells for the 

reactivation of infiltrated myelin-specific T cells [201-204]. Therefore, an absence of 

myeloid cell infiltration due to impaired chemokine signaling leads to decreased T cell 

infiltration and overall reduction in produced pro-inflammatory mediators [165-168]. 

The CD11b+Ly6Chi monocyte population is critically involved in EAE pathogenesis. 

This population is released from the bone marrow into the blood immediately before 

EAE relapse in a GM-CSF-dependent manner. Upon CNS infiltration the cells 

upregulate MHC-II and gain pro-inflammatory functions. Furthermore, the increase in 

circulating Ly6Chi monocyte number was accompanied by an accelerated disease 

onset and an increase in clinical severity [169, 181]. As we did not detect a difference 
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in GM-CSF expression of the injected MOG-specific T cells after activation phase 

and before EAE onset (Fig. 12B, 13C, 16 A/D), we exclude that mechanism as 

accounting for a possible increase in monocyte number. However, it was shown that 

B cells attract monocytes to the heart after myocardial infarction in a CCL7- 

dependent manner. Therefore, we also wondered whether B cells can also influence 

monocyte mobilization in an autoimmune disease. We detected an increase in Ly6Chi 

monocyte number in the blood of T and B cell-injected mice 7d p.i., but not in spleen 

and spinal cord (Fig. 22 B). However, this increase was not consistent during the 

following days. One can argue that the number of Ly6Chi monocytes diminished in 

the blood of T and B cell-injected mice due to their enhanced infiltration into the CNS 

(Fig. 22 C+D), but one would assume a subsequent increased egress of monocytes 

from the bone marrow into the blood to compensate the reduced monocyte number in 

the blood. In summary, in our experiments the monocyte numbers were not as 

strikingly different as described in the literature. Therefore, we found no evidence that 

this mechanism is responsible for the accelerated disease onset. 

 

4.6. Effect of MOG-specific B cells on spinal cord microvessel 

endothelial cells 

CNS T cell infiltration can not only be influenced by their chemokine receptor 

expression, but also by chemokine and adhesion molecule expression of endothelial 

cells from spinal cord microvessels. The expression of chemokines and adhesion 

molecules is mainly regulated by different cytokines, for example IFN or IL-6 [183, 

205-207]. As several chemokines become upregulated before the appearance of first 

clinical signs, it is possible that their different expression kinetic can account for an 

accelerated disease onset [183, 205-207]. However, we did not detect a difference in 

the expression of adhesion molecules (ICAM-1, VCAM-1, ALCAM) by spinal cord 

microvessel endothelial cells isolated from T cell or T and B cell-injected mice before 

first T cell infiltration (8d p.i.) (Fig. 23 A). In addition, sorted endothelial cells also 

displayed similar chemokine expression levels (Fig. 23 B), leading to the conclusion 

that the presence of MOG-specific B cells did not trigger T cell infiltration by 

influencing the expression of adhesion molecules and chemokines by spinal cord 

microvessel endothelial cells. However, we could confirm the observation that some 
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chemokines became upregulated before the appearance of clinical signs. When we 

determined adhesion molecule and chemokine expression of healthy animals with 

infiltrated cells, we observed an enhanced chemokine expression level, specifically of 

CXCL10 and CCL5, but this was a secondary effect due to the ongoing reactivation 

of infiltrated T cells (Suppl. Fig S3). 

 

4.7. The antigen-specific interaction of T and B cells determine the 

accelerated disease onset  

B cells can also be involved in the establishment of a pro-inflammatory milieu, not 

only by their antibody secretion or antigen-presenting capacity which would require 

antigen-specificity, but also by their secretion of cytokines, which are crucial to drive 

T cell differentiation [55, 56, 139]. Hence, also activated autoantigen-unspecific B 

cells can be involved in the initiation of an immune response [208, 209]. However, in 

the context of EAE, it was reported that the transfer of activated MOG-unspecific B 

cells cannot restore the EAE susceptibility of µMT mice as observed with transfer of 

activated MOG-primed B cells [140]. Therefore, we were also interested whether or 

not the presence of activated but antigen-unspecific B cells is sufficient to accelerate 

the onset of EAE in our experimental setting. The simultaneous immunization with 

NP-OVAL and MOGp35-55 ensures the activation of the transferred NP-specific B cells 

in presence of the endogenous OVA-specific T cells while also ensuring a sufficient 

priming of the transferred MOG-specific T cells. We confirmed the successful B cell 

activation by detection of a high serum anti-NP IgG titer (Fig 24 C). However, 

activated MOG-unspecific B cells failed to accelerate the EAE onset compared to 

MOG-specific B cells (Fig. 24 A+B). This finding again emphasized our observation 

that MOG-specific B cells play a supportive role even in MOG peptide-induced EAE. 

One can argue that the antigen-specific interaction of OVA-specific T cells and NP-

specific B cells results in a different cytokine production profile than the antigen-

specific interaction of MOG-specific T and B cells. Thus, we determined the cytokine 

levels of in vitro co-cultured T and B cells and even detected elevated levels of pro-

inflammatory cytokines such as IFN, TNF and IL-6 in OVA-specific T cell and NP-

specific B cell co-culture (Suppl. Fig S4). 
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4.8. The role of antibodies in MOGp35-55 induced EAE 

Previous experiments reveal that activated, MOG-unspecific B cells were not able to 

accelerate the onset of EAE as observed with MOG-specific B cells. Thus, we 

wondered about the disease accelerating mechanism which might be based on the 

antigen-specific interaction of T and B cells. Obviously, the MOG-specific interaction 

results in a different humoral immune response than the NP-OVAL-specific 

interaction. Although several publications suggest a dispensable role for B cells and 

auto-antibodies in MOG peptide-induced EAE [139, 140, 150, 151], we detected anti-

rrMOG, but not anti-MOGp35-55 antibodies of the IgG isotype after MOG peptide 

immunization secreted by the transferred MOG-specific B cells before appearance of 

clinical signs (Fig 26. A). The anti-rrMOG IgG secretion required the presence of 

MOG-specific T and B cells suggesting that these cells interacted in vivo (Fig. 26 D). 

Our observation was supported by a publication which showed that B cell 

proliferation and isotype class switching can be induced by MOG-specific TH17 cells 

in vitro in the presence of MOGp35-55 [210]. The fact that we detected anti-MOG 

protein-specific IgGs even though we immunized with MOG peptide was presumably 

due to the specificity of the knock-in antibody of the transferred MOG-specific B cells. 

These antibodies were shown to accelerate and exacerbate EAE [143]. The role of 

antibodies in C57bl/6 MOG-induced EAE is controversial. Whereas a recent 

publication suggests a dispensability for antibodies upon rhMOG-immunization as 

well as for the development of spontaneous EAE [139], another study reveals a 

critical requirement for rhMOG-primed serum in restoring the susceptibility of EAE in 

µMT mice [140]. In addition, the presence of high endogenous MOG-specific serum 

autoantibody titer was shown to enhance clinical effects [143]. To investigate whether 

MOG-specific IgGs accounted for the accelerated disease onset in our experimental 

system, we employed XBP-1fl/flmb-1Cre+ MOG-specific B cells for adoptive transfer 

experiments. XBP-1 is a transcription factor required for the terminal differentiation of 

B cells to plasma cells. In the literature it is described that XBP-1-/- B cell mice 

displayed low baseline serum levels of all Ig isotypes and an impaired humoral 

immune response upon immunization, but XBP-1-deficiency did not affect B cell 

activation and proliferation in vitro as well in vivo [184]. When we immunized XBP-

1fl/flmb-1Cre+ mice with rrMOG we observed a delayed EAE onset with a reduced 

disease severity and susceptibility compared to XBP-1fl/flmb-1Cre- control mice (Fig. 

27 A+B), which was accompanied by reduced serum anti-rrMOG IgM and IgG levels 
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at several time points during disease progression (Fig. 27 C). Although peripheral B 

cell numbers were not affected when the Cre recombinase was expressed under the 

B cell-specific CD19 promotor [211], we detected reduced numbers of peripheral B 

cells in XBP-1fl/flmb-1Cre+ mice (as well as in Th XBP-1fl/flmb-1Cre+ mice). Therefore, 

it is not clear whether the clinical differences arose from the reduced B cell number or 

from the reduced antibody levels. When we adoptively transferred MOG-specific 

XBP-1fl/flmb-1Cre+ B cells, we observed that they did not accelerate the disease 

onset after MOGp35-55 immunization like observed with XBP-1-sufficient MOG-specific 

B cells (Fig. 29 A+B). The delayed disease onset was accompanied by reduced anti-

rrMOG IgG serum levels before establishment of clinical EAE as well as on later time 

points (Fig. 29 C) without affecting transferred peripheral B cell numbers (Fig. 29 D). 

Our in vitro data reveal that XBP-1-deficiency did not influence the antigen-presenting 

capacity or activation of B cells (Fig. 28 A-C), assuming that the diminished humoral 

immune response accounted for the delayed clinical onset. However, one should 

keep in mind that the XBP-1 deficiency impairs the development of plasma cells and 

does not affect the antibody secretion directly. Since a recent publication reveals a 

novel additional role for CD138+ plasma cells during EAE and infectious diseases, it 

is also possible that plasma cells contribute to the accelerated onset in a different 

way than by the secretion of antibodies [159]. It remains elusive how these 

antibodies exert their pathogenic role in EAE. This question has not yet been 

addressed in detail in the literature. It is suspected that MOG-specific antibodies play 

a role in effector cell maturation and/or trafficking because the lack of antibodies is 

not accompanied by an impaired T cell priming (similar to our observation) [140]. 

Furthermore, earlier demyelination and larger cellular infiltrates were detected in Th 

mice (high titer of endogenous MOG-specific antibodies), suggesting a role for 

antibodies in demyelination [143]. 
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5. Summary and Conclusion 
 

Beneficial B cell-depleting therapy in MS patients reveals a critical role for B cells to 

be involved in the pathogenesis of MS. However, the mechanisms of how B cells 

contribute to the autoimmune responses are still elusive. We generated a model 

enabling us to visualize and analyze antigen-specific T and B cells during the course 

of actively induced EAE, both in the periphery and in the CNS, their target organ. For 

this purpose we isolated fluorescently labeled MOG-specific T cells from 2D2 mice 

and MOG-specific B cells from Th mice and injected them i.v. into OT-II mice 

followed by immunization with MOGp35-55. OT-II mice were resistant to EAE induction. 

This resistance could be overcome by the transfer of MOG-specific T cells. An 

additional transfer of MOG-specific B cells resulted in an accelerated disease onset 

and an increased susceptibility for EAE. This experimental approach offers the 

advantage to focus on the pathogenic T and B cells due to their fluorescent label. 

Moreover, it permits the study of the direct impact of genetically modified 

lymphocytes on the course of EAE. We employed the active immunization model to 

ensure an antigen-specific in vivo activation. Intensive investigations on the impact of 

MOG-specific B cells on MOG-specific T cells during the course of EAE revealed that 

they did not play a critical role in enhancing T cell proliferation, activation or 

differentiation either in the activation phase or on the verge of the EAE onset. The 

accelerated disease onset in T and B cell-supplemented mice was accompanied by a 

higher number of CNS infiltrated T cells and not by an enhanced T cell reactivation, 

leading to the conclusion that MOG-specific B cells play a dispensable role in the 

reactivation step in the CNS. Moreover, MOG-specific B cells did not influence 

myeloid cell mobilization and adhesion molecule or chemokine expression of spinal 

cord microvessel endothelial cells. However, in the presence of MOG-specific B cells, 

peripheral MOG-specific T cells slightly upregulate the chemokine receptors CCR6 

and CXCR4, leading to speculations about whether B cells might influence T cell 

trafficking. To investigate the mechanism utilized by B cells to contribute to the 

accelerated EAE onset, we performed different clinical experiments. Because 

activated NP-specific B cells had no impact on the EAE onset it is clear that the 

accelerated onset is determined by the antigen-specificity of B cells rather than by 

their activation status. Moreover, we detected MOG protein-specific antibodies of the 

IgG isotype in T and B cell-supplemented mice, but not in T cell-supplemented mice 
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before the appearance of first clinical signs. XBP-1 is a transcription factor critically 

involved in the development of plasma cells. Thus, we employed MOG-specific XBP-

1-deficient B cells for adoptive transfer experiments to study the role of antibodies on 

the onset of EAE. XBP-1-deficient B cells did not accelerate the onset of EAE as 

XBP-1-sufficient B cells did, suggesting a disease-promoting role for anti-MOG 

protein specific antibodies in EAE. In conclusion, our established model provides a 

tool not only to track and analyze antigen-specific lymphocytes during EAE, but also 

to study the consequences of different lymphocyte supplementation on the course of 

disease. In our work, MOG-specific B cells and their utilized mechanisms did not 

enhance T cell proliferation, activation or differentiation in the periphery, but their 

interaction with MOG-specific T cells seem to trigger their CNS infiltration. Although 

several publications suggest a dispensable role for B cells in MOG peptide-induced 

EAE, our experimental data provide evidence that this may not be true: autoantigen-

specific B cells can become stimulated by peptide antigens, resulting in their 

participation in the autoimmune response. 
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Figure S1: NP-specific B cells do not accelerate the onset of EAE.                        
MOG-specific T and B cells and NP-specific B cells were isolated from respective donor mice and i.v. 
transferred (3,5x 10

6 
MOG-specific T cells+ 1x 10

7 
MOG-specific B cells or 3,5x 10

6 
MOG-specific T 

cells+ 1x 10
7 

NP-specific B cells) into OT-II mice followed by immunization with 50µg MOG + 50µg 
OVA protein two days later and monitored their clinical outcome for 13 days. Data represents mean ± 
SEM of 5 mice per BMOG group and 4 mice per BNP group of one experiment. Healthy animals were not 
included in the clinical data curve. Significant differences between means are indicated: *p< 0,05, 
Mann-Whitney nonparametric t test. 
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Figure S2: MOG-specific B cells do not inhibit the conversion of naïve MOG-specific 
T cells into induced regulatory T cells within the activation phase. RFP

+
 MOG-specific 

FOXP3 reporter T cells were isolated from respective donor mice and transferred alone or together 
with MOG-specific B cells into OT-II mice followed by immunization with MOGp35-55 two days later. 
Three and four days p.i. different lymph nodes and spleen were analyzed for frequency of GFP

+
 (= 

FOXP3
+
) cells among the CD4

+
RFP

+
 cells by flow cytometry. One bar represents 1 mouse per time 

point. Data were generated by Leon Hosang during his 8-week lab rotation. 
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Figure S3: Spinal cord microvessel endothelial cells upregulate chemokine 
expression upon reactivation of initial infiltrated T cells. Spinal cord microvessels were 

isolated from T cell-injected or T and B cell-injected OT-II mice between d9-d11 p.i.(without clinical 
score) and endothelial cells were sorted according to their CD31 expression. Adhesion molecules 
(ICAM-1, VCAM-1, ALCAM) and chemokine (CXCL10, CXCL12, CCL5) (mRNA) expression analysis 
was performed by RT-PCR. Data represent 2 independent experiments with 4 animals per group. Data 
are depicted as mean ± SEM. Significant differences between means are indicated: *p> 0,05, unpaired 
students t test 
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Figure S4: In vitro cytokine response of co-cultured antigen-specific lymphocytes. 
1x10

6
 MOG-specific T cells were co-cultured with 2x10

6 
MOG-specific B cells with increasing MOGp35-

55 concentrations (left) or 1x10
6
 OVA-specific T cells were co-cultured with 2x10

6 
NP-specific B cells 

with increasing NP-OVAL concentrations (right) for 72h. Supernatants were collected and analyzed for 

IL-10, IL-17A, TNF, IFN, IL-6, IL-4 and IL-2 with cytometric bead array. IL-10, IL-17A, IL-4 and IL-2 
were not detectable. Shown is one representative experiment out of two. 
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