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Abstract 

 

In recent years it has been shown that macroautophagy regulates the turnover of 

postsynaptic receptors and modulates presynaptic neurotransmission. However it is still 

unclear whether the presynaptic protein turnover is regulated by the same pathway. It was 

previously shown in our laboratory that the small GTPase Rab26 is highly enriched in the 

synaptic vesicle fraction (Nathan Pavlos, unpublished data). The real implication of its 

presence on the synaptic vesicle membranes though has not been investigated so far. The 

aim of this project was to characterize the functional role of Rab26 in neurons. We wanted 

to find out in which pathway Rab26 is implicated and if it contributes in regulating the 

synaptic vesicle (SV) cycle. I employed well established biochemical and cell biology 

approaches such as immunoprecipitation, GST pulldown, immunoisolation as well as 

immunocytochemistry and electron microscopy to address these questions. The systems in 

which I applied these techniques were cultured hippocampal neurons, HeLa ss6 and HEK 

293T cell lines. During this study it was possible to obtain several findings. I could 

demonstrate that Rab26 is a neuronal small GTPase Rab protein which is associated with a 

subset of synaptic vesicles. It has the ability to oligomerize, to cluster vesicles and it 

interacts with one of the essential core components of the autophagosome machinery, 

Atg16L1. Furthermore it is selectively targeting recycled synaptic vesicles. This led us to 

conclude that Rab26 might be an important key regulator of synaptic vesicle quality 

control. Furthermore the identification of the interaction between Rab26 and Atg16L1 

made it possible to connect recycled synaptic vesicles with the autophagy pathway. In 

addition we could offer an alternative mode of synaptic vesicle endocytosis that bypasses 

the Rab5-dependent pathway and converges with the late endosome/autolysosome 

pathway. All these aspects listed here will be discussed further in detail in the following 

paragraphs. 
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1 Introduction 

 

1.1 Synapse 

Neurons have a distinct and peculiar morphology that reflects their functional intracellular 

compartmentalization. They consist of a central part called either cell body or soma where 

the nucleus resides and where most of the synthesis occurs and of proximal and peripheral 

regions called axons and neurites. These arbors are fine and long extensions responsible for 

establishing contact with the neighboring neurons forming the so called neuronal network.  

The contact site is known as synapse. 

The term synapse (from Greek synapsis that means conjunction) was first introduced in 

1897 by the physiologist Charles Sherrington who first stated that the connection between 

neurons was neither direct nor physical. Synapses are one of the most specialized units of 

the neuronal network. They allow neurons to communicate with other neuronal cell types 

or with effector cells (such as muscle cells) through chemical or electrical signals. The 

synapse is formed principally by two parts that differ both morphologically and 

chemically. The presynaptic terminal contains a specialized type of vesicles named 

synaptic vesicles (SVs) in which the neurotransmitters (the chemical signals) are stored. 

The postsynaptic terminal is where the post synaptic receptors are located with their ligand 

binding sites exposed to the synaptic cleft in which the neurotransmitters (NTs) are 

released from the presynaptic terminal. The two parts are connected together by a specific 

set of cell-adhesion molecules (Chua et al. 2010). The signal first arrives at the presynaptic 

plasma membrane (PM) in the form of an electric impulse and induces then the opening of 

the calcium channels. The influx of calcium (Ca
2+

) in the nerve terminal drives exocytosis 

of the synaptic vesicles that fuse with the PM and release the neurotransmitters by 

exocytosis into the synaptic cleft. There they bind to the receptors located on the 

postsynaptic membrane where the chemical signal is converted into a change of the 

electrical property of the membrane (Südhof 2008) (Figure 1). The release of the 

neurotransmitters is temporally and spatially regulated and occurs in a specific site of the 

presynaptic PM named active zone (AZ). This site of release is called the cytomatrix at the 

active zone (CAZ) and it is composed of the presynaptic PM and a huge number of 

proteins. Under the electron microscope this area appears electron dense and is therefore 



 - Introduction -  

 

  2 

 

easily recognizable. The directionality of the exocytosis of the synaptic vesicles is finely 

regulated and is driven by three major molecular events: docking, priming and fusion of 

SVs that take place at the active zone (Figure 1).  

 

 

 

 

Figure 1 Key events of SV exocytosis. 

Schematic representation of the exocytosis events that drive synaptic transmission. Synaptic vesicles 

release the neurotransmitters (NTs) in a coordinated fashion that requires three fundamental steps: docking, 

priming and fusion of SV with the PM. Image modified from Südhof (2008). 

 

 

 

1.1.1 Steps of synaptic vesicle exocytosis  

The release of NTs occurs mainly by exocytosis of synaptic vesicles that fuse with the 

presynaptic membrane. Synaptic vesicles filled with neurotransmitters are first delivered to 

the release site, the active zone, and then docked with the presynaptic plasma membrane. 

Subsequently the molecular machinery required for the exocytosis is recruited on the 

synaptic vesicles. This step is called “priming”. In the final step the vesicle membrane 

fuses with the PM and the neurotransmitters are released into the synaptic cleft where they 

bind to the postsynaptic receptors that transduce the signal downstream. Below a more 

detailed description of the three mechanisms of synaptic vesicle exocytosis will be given: 

docking, priming and fusion. 
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Docking is the first step of SV exocytosis. Its definition is based mainly on a 

morphological observation. The docked SVs can be easily identified by electron 

microscopy. In fact their distance from the plasma membrane is not measurable or less 

than 30 nm (Xu-Friedman et al. 2001, Hammarlund et al. 2007, Verhage and Sorensen 

2008). The process of docking controls the correct arrangement of synaptic vesicles in 

close proximity to the active zone. However the docking machinery is not yet fully 

understood. 

The small GTPase Rab proteins (such as Rab3 and Rab27) and Rab effector proteins such 

as Rabphilin and Rab3 interacting molecule (RIM) are known to be involved in positioning 

synaptic vesicles at the level of the presynaptic PM. A fundamental role in SV docking is 

played by the so called RIM-containing protein complex which is composed of the active 

zone proteins such as piccolo, RIM, bassoon, ERKs and α-liprin (Südhof 2012).  

 

Priming is the reaction that converts the docked (unprimed pool) to the ready releasable 

pool (RRP). It is an ATP-dependent process that gives fusion competency to the docked 

synaptic vesicles that become ready to fuse with the PM upon Ca
2+

 influx (Becherer and 

Rettig 2006, Verhage and Sorensen 2008).  

The molecular mechanism that drives the priming event is well investigated and 

understood. The priming reaction requires the formation of a trimetric SNARE complex 

(the minimal core machinery for membrane fusion) in which the R-SNARE Synaptobrevin 

on the side of synaptic vesicle membrane forms a stable complex with the Q-SNAREs 

SNAP-25 and Syntaxin on the side of the PM. In a mechanism called SNARE complex 

zippering, the complex pulls the two membranes close to each other (Fasshauer et al. 1998, 

Lonart and Sudhof 2000, Sorensen et al. 2006).  

An essential factor of the priming step is Munc-13 (Brose et al. 2000). Mice deficient of 

this protein lack the RRP, have their synapse transmission impaired and have an increased 

number of docked vesicles (Aravamudan et al. 1999, Augustin et al. 1999, Richmond et al. 

1999). Munc-13 together with RIM and Rab3 assists synaptic vesicles towards the 

recruitment of the priming machinery (Betz et al. 2001). 

 

Fusion is the last step of synaptic vesicle exocytosis (Südhof 2013). It is the most 

investigated and best understood mechanism (Jahn and Fasshauer 2012). It is promoted 

upon calcium influx driven by the arrival of an action potential that induces the opening of 

the voltage-gated Ca
2+

 channels. Once the calcium enters the synaptic terminal, it binds to 
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both C2 domains (C2A and C2B) of Synaptotagmin, the calcium sensor SV protein that 

triggers membrane fusion (Geppert et al. 1994, Chapman et al. 1996). The C2A and C2B 

domains are able to interact with different phospholipids on the membrane of synaptic 

vesicles only upon calcium biding (van den Bogaart et al. 2012). The SNAREs are the 

driving force of the fusion. The formation of a quaternary trans SNARE complex 

(Chapman et al. 1995, Dai et al. 2007) is driven by a zippering mechanism that runs from 

their cytosolic tails towards their transmembrane domains. This process releases the energy 

necessary for membrane fusion (Jahn and Scheller 2006, Sorensen et al. 2006).  

 

 

1.1.2 Synaptic vesicle retrieval 

To sustain efficient neurotransmitter release a tight coupling of exo- and endocytosis is 

required. In this way synaptic vesicles undergo several rounds of exocytosis and 

endocytosis without compromising synaptic transmission. 

The first evidence of synaptic vesicles retrieval goes back to 1973 (Heuser and Reese 

1973), and since then a lot of progress was made in understanding vesicle recycling from 

the plasma membrane (PM) to the cytosol. The vesicle retrieval at the synapse can occur in 

at least three ways: Clathrin-mediated endocytosis (CME), “kiss-and-run” mode as shown 

in Figure 2, and bulk endocytosis. Recent experimental data showed the existence of a 

fourth possible way of synaptic vesicle recycling called “ultrafast” endocytosis that occurs 

in terms of milliseconds after stimulation (50 ms to 100 ms) and takes place outside of the 

active zone (Watanabe et al. 2013). 

The “kiss-and run” endocytosis is very fast whereas the bulk endocytosis is considerably 

slower. The first mode was observed upon vesicle stimulation at a very low frequency. The 

formation of an uncoated vesicle pinch could be seen within 1 to 2 sec after stimulation 

(Fesce et al. 1994). These observations led to the hypothesis that exocytosis and 

endocytosis were linked by the formation of a transient fusion pore. In this way the “kiss-

and run” theory was introduced. The synaptic vesicles are first attached to the active zone, 

and then they fuse without a complete membrane collapse with the plasma membrane, just 

forming a fusion pore through which they release their content. Then in less than 2 seconds 

they are endocytosed back while keeping their protein and lipid composition and thereby 

their vesicle identity. This mechanism is still very controversial within the field (Rizzoli 

and Jahn 2007). Bulk endocytosis occurs upon prolonged and strong stimulation (Rizzoli 
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and Betz 2005). Large regions of the presynaptic terminal PM are invaginated as a tubular 

or cistern-like structure from which vesicles can bud off and recycle back for multiple 

cycles of exo- and endocytosis (Miller and Heuser 1984, Clayton and Cousin 2008).  

 

 

The clathrin-mediated endocytosis (CME) is well characterized. It is the best understood 

and investigated molecular mechanism of endocytosis. It is accepted that the main pathway 

for synaptic vesicle recycling is based on the CME pathway (Granseth et al. 2006). 

Although CME is a “housekeeping” process, in synapses it acquired several adaptations 

that make this pathway neuron specific (Jahn and Sudhof 1994, Ferguson et al. 2007). 

Proteomic studies showed that synaptic vesicle proteins are the main cargo of the clathrin 

coated vesicles (CCV) (Blondeau et al. 2004). Isolation of synaptic vesicles from rat brain 

revealed high concentration of endosomal components (Takamori et al. 2006). The protein 

machinery of the CME pathway consists of a large number of proteins that include mainly 

clathrin, adaptor proteins such as AP-2, epsin, eps15, AP180, Intersectin, Dynamin, 

Synaptojanin, and Amphiphysin, (Slepnev and De Camilli 2000, McMahon and Boucrot 

2011). Clathrin mediated endocytosis occurs in a sequential manner and the CCVs are 

morphologically recognizable by their typical lattice-like coat (Pearse 1976, Ferguson et 

al. 2008). Clathrin alone does not bind to the membrane. Adaptors and accessory proteins 

 

 

 

Figure 2 The synaptic vesicle cycle. 

Schematic representation of the SV recycling pathway in the pre-synaptic terminal.  

Image taken from Jahn and Fasshauer (2012). 
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are essential for correct nucleation and cargo recognition. First adaptor proteins such as 

AP-2 are recruited on the presynaptic membrane in the sites where phosphatidylinositol-4, 

5-bisphosphate (PIP2) is clustered. Here AP-2 recognizes the specific cargo (such as 

Synaptotagmin, Zhang et al. (1994) ), recruits clathrin, and initiates the membrane 

invagination in concert with AP180 promoting the formation of the clathrin triskelion that 

induces membrane curvature. Subsequently the invaginated portion of the PM buds with 

the formation of a bud neck. Amphiphysin mediates Dynamin recruitment which promotes 

membrane fission (Hinshaw and Schmid 1995, Roux et al. 2006). At this point CCVs are 

formed and are transported in the cytosol. Finally Synaptojanin promotes uncoating 

hydrolyzing PIP2 (Chang-Ileto et al. 2011). The energy required for the coat disassembly 

comes from the ATPase Hsc70 that is recruited on the CCVs by its cofactor Auxilin that 

binds both AP-2 and Clathrin. Subsequently Clathrin and adaptor proteins are dissociated 

from the vesicles and recycled back to a new nucleation module for a subsequent round of 

endocytosis. CME in the nerve terminal is a relatively fast mechanism compare to other 

non-neuronal cell types and occurs within 15-20 seconds (Heuser and Reese 1973, Miller 

and Heuser 1984, Jockusch et al. 2005, Granseth et al. 2006, Balaji and Ryan 2007).  

After uncoating the recycled synaptic vesicles can be either directly recycled to populate 

the RRP (after being re-loaded with neurotransmitters), or fuse with the sorting endosome. 

From the sorting endosome vesicles can be recycled and regenerated by an additional 

mechanism that requires budding and uncoating (Sudhof 2004) (Figure 2). Alternatively 

from the sorting compartment other vesicle types can bud and donate membrane to the 

later stage endosomes such as late endosomes/multivesicular bodies (LE/MVBs) and 

lysosomes/autophagosomes (Figure 2) that are most likely involved in the turnover of pre-

synaptic components (Tsukita and Ishikawa 1980).  
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1.2 Synapse turnover 

Synaptic vesicles undergo several rounds of exocytosis and endocytosis. Therefore a fine 

regulation of the turnover of synaptic components is required for the synaptic machinery to 

function properly. 

Synthesis of synaptic proteins was originally thought to occur in the cell body and the 

proteins would then be transported via the axons to the synapses. But it became visible that 

protein synthesis in neurons can also occur locally (Steward and Levy 1982, Holt and 

Schuman 2013). In fact there are different evidences that show that proteins synthesis takes 

place in neurons at the level of the different subcellular compartments (Aakalu et al. 2001, 

Dahm et al. 2008, Martin 2010).  

The understanding of synaptic vesicle turnover is far from being completely elucidated. 

What is the mechanism that regulates the degradation of the presynaptic proteins? How can 

recycled synaptic vesicles be selectively targeted to the degradation pathway? This is a 

fascinating and poorly understood process. 

There are two major degradative pathways: the ubiquitin-mediated degradation and the 

autophagosome/lysosome pathways.  

 

 

1.2.1 Ubiquitin mediated degradation 

Many studies reported that protein synthesis and degradation are involved in synaptic 

plasticity (Campbell and Holt 2001) and that most of the proteins are degraded by the 

ubiquitin proteasome pathway (Hershko and Ciechanover 1998, Voges et al. 1999). 

Thomas and Wyman (1984) showed for the first time an involvement of ubiquitinylation in 

axonal outgrowth in drosophila giant fibers. Since then it became clear that this mechanism 

is indeed an essential and highly regulated pathway, which modulates the neuronal 

development, plasticity and connectivity as well as synapse formation (Muralidhar and 

Thomas 1993, DiAntonio et al. 2001, Murphey et al. 2003, Yao et al. 2007, Yi and Ehlers 

2007, Lee et al. 2008). There are at least two types of degradation pathways in which the 

ubiquitin conjugation system is involved in: the proteasome and the MVB/lysosome 

pathway.  
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Ubiquitin is a very small protein (76 amino acids). It is one of the post-translational 

modifications that the cell uses for the regulation of protein abundance and quality control.  

Specific enzymes catalyze the ubiquitinylation  reaction: the ubiquitin-activating enzymes 

(E1s) that transfer ubiquitin to the second enzyme, the ubiquitin-conjugating enzymes 

(E2s) that bind simultaneously the substrate and the ubiquitin ligases (E3s). E3s transfer 

the ubiquitin from E2 to the substrate (Komander and Rape 2012). The covalent 

attachment of one or more ubiquitins (polyubiquitin chain) targets the substrates to one of 

the ubiquitin-degradation pathways.  

 

 

1.2.1.1 The ubiquitin proteasome system (UPS) 

The proteasome (26S) is a big multi-subunit protease formed by a catalytic core (20S 

proteasome) and by two regulatory factors (19S particles) (Finley 2009). 

The ubiquitin-proteasome system (UPS) is a local and reversible process which usually 

plays a role in the turnover of short-lived proteins (Hegde et al. 1993, Hegde et al. 1997, 

Hershko and Ciechanover 1998). The substrates need to have a chain of at least 4 

ubiquitins attached in order to be degraded efficiently by the catalytic core of the 

proteasome (Thrower et al. 2000).  

The UPS is critical for presynaptic function. It is involved in the regulation of the 

abundance of the presynaptic proteins. Defects in this system strongly affect synapse 

physiology. Inhibition of the proteasome causes accumulation of the presynaptic protein 

Munc-13 compromising the neurotransmitter release (Speese et al. 2003). The synaptic E3 

ligase (SCRAPPER) regulates the degradation of RIM1 (Yao et al. 2007). Moreover 

proteasome blockage increases FM-dye uptake thereby affecting the SV cycle (Willeumier 

et al. 2006).  

UPS is involved also in the regulation of neuronal physiology. By regulating the level of 

small GTPase such as Rap and Rho family members the ubiquitin degradation system 

regulates neuronal differentiation, synapse formation and elimination (Schwamborn et al. 

2007).  
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1.2.1.2 The ubiquitin dependent endosomal sorting 

The second ubiquitin-based degradation system is dependent on the interaction with the 

endocytic pathway. In contrast to the UPS where polyubiquitinylation of the substrates is 

required, in this type of degradation instead the targets are labeled usually by a single 

ubiquitin molecule or by a multi-monoubiquitinylation (Haglund et al. 2003).  

The molecular basis of the ubiquitin-dependent endosomal sorting is based on a conserved 

mechanism: the ESCRTs machinery (endosomal sorting complex for transport) that is 

formed by four complexes: ESCRT0, ESCRT-I, ESCRT-II, and ESCRT-III which in a 

sequentially manner are recruited on the endosome to modulate the formation of 

intraluminal vesicles (ILVs) that internalize proteins that are intended to be delivered to the 

lysosome for degradation. The best investigated cargoes of this pathway are 

ubiquitinylated membrane receptor proteins (Katzmann et al. 2002), such as the epidermal 

growth factor receptor (EGFR) (Roxrud et al. 2008). Once the cargo is ubiquitinylated by a 

specific E3 ligase (d'Azzo et al. 2005) it is internalized by CME into endosomal 

membranes. The ESCRT machinery acts at this level. ESCRT-0, I and II contain subunits 

that have ubiquitin interacting motif (UIM) and retain the cargoes on the endosomal 

membrane to prevent their recycling back to the PM. Then ESCRT-III is recruited to 

promote membrane curvature, budding and abscission of the new formed ILV. The multi 

vesicle endosome (MVE), called also multi vesicular body (MVB) fuses with the lysosome 

where the cargoes are degraded (for details see review Raiborg and Stenmark (2009)). 

Contrary to the UPS, the degradation of presynaptic components by the ubiquitin-

dependent sorting endosome pathway is less investigated. Haberman et al. (2012) proposed 

the existence of an endo-lysosome degradation pathway that is linked with the SV cycle. 

But at the post-synaptic level the ubiquitin-based endocytosis pathway was shown to 

regulate the surface abundance of postsynaptic receptors such as the AMPAR (Patrick et 

al. 2003, Lee et al. 2004) and the GABAAR (Bedford et al. 2001). 

Both type of ubiquitin-degradation systems converge with the second main proteolytic 

machinery, the autophagosome-lysosome pathway, either at the regulatory or at the 

substrate level. In the following chapter a more detailed description of the autophagy 

pathway it will be given.   
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1.2.2 Autophagosome/lysosome pathway 

The autophagosome/lysosome pathway is the second proteolysis pathway where usually 

long-lived proteins are digested (Dunn 1994, Shehata et al. 2012). Neurons are highly 

differentiated and polarized. This specialization serves to fulfill their intrinsic role of 

communicating with other cells which often times are very far away from each other. It 

was described by electron microscopy in the 1960´s that upon injury, neuronal cell bodies 

and axons were showing an accumulation of autophagic compartments with very distinct 

characteristics: double membrane structures engulfing cytoplasmic contents (Wettstein and 

Sotelo 1963, Schlote 1966, Holtzman et al. 1967, Blumcke et al. 1968, Lampert and 

Schochet 1968). There are three major conserved autophagy pathways: macroautophagy, 

microautophagy, and chaperone-mediated autophagy (CMA). Each subtype applies 

different mechanisms to engulf cytoplasmic content and delivers materials for degradation 

into the lysosome. 

 

Microautophagy is the “self-eating” process that requires inward invagination of the 

lysosomal membrane thereby engulfing small portions of cytoplasmic content for 

degradation. It is the least understood mechanism and little is known about the molecular 

machinery that governs this uptake (Li et al. 2012). 

 

CMA is a selective self-eating process that results in degradation of specific soluble 

proteins (Cuervo and Dice 2000) that have an internal recognition motif (KFEQ) (Chiang 

and Dice 1988, Dice and Chiang 1989). Proteins that carry these sequences are recognized 

by chaperons mainly by Hsc70 and Hsp90 through the interaction with the lysosomal 

receptor LAMP2A which delivers the unfolded proteins to the lysosome for their digestion 

(Dice 2007, Mizushima 2011). Chaperone mediated autophagy is conserved in most of the 

cell types and is activated during long-term nutrient starvation and oxidative stress (Kiffin 

et al. 2004, Finn and Dice 2005). It is involved in the clearance of aggresomes such as 

mutants of α-Synuclein (Cuervo et al. 2004). The pathological α-Synuclein is not properly 

translocated into the lysosome though it is still able to bind to LAMP2A receptor. This 

blocks the degradation of the other CMA substrates. Inefficient activity of the CMA 

pathway leads to the activation of the non-selective autophagy process that is the 

macroautophagy. 
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Macroautophagy is the canonical autophagy pathway. The term autophagy originates 

from the Greek word “phagy” that means to eat and “auto” stays for self. The word was 

first introduced by Christian De Duve in 1966. It is a conserved cellular process, an 

intracellular membrane trafficking pathway that is active at a basal level. The cells use this 

pathway to get rid of misfolded proteins and damaged organelles. Macroautophagy is an 

important process strictly required for cellular survival. In fact the activity of this pathway 

is greatly enhanced during particular situations such as nutrient deprivation, physical and 

chemical stress, or during microbial invasions. In all these circumstances autophagy is used 

to degrade proteins and macromolecules to supply the cell with the necessary building 

blocks releasing amino acids, nucleotides, and other monomeric components. In detail, as 

shown in Figure 3, pieces of double membrane structures called either phagophore, 

isolation membrane, or PAS (pre-autophagosomal structure) progressively expand around 

the target cytoplasm. The PAS encloses to form the autophagosome that can undergo 

fusion with endocytic compartments such as early endosomes and MVBs (Orsi et al. 2010, 

Hyttinen et al. 2013) and becomes an intermediate autophagic compartment called 

amphisome. The autophagy pathway ends with the fusion of the autophagosome with the 

lysosome transforming into an autolysosome (Tanida et al. 2005, Nakatogawa et al. 2009). 

The lysosomal proteases break down both the inner membrane of the autophagosome and 

the cytoplasmic contents. The catabolic products are subsequently recycled back to the 

cytosol and used as substrates for the biosynthetic pathways (Xie and Klionsky 2007). 

 

 

 

Figure 3 Schematic representation of the canonical autophagy pathway 

  



 - Introduction -  

 

  12 

 

1.2.3 Molecular machinery that drives macroautophagy 

Macroautophagy is formed by a complex degradative machinery that includes at least 30 

autophagy related (Atg) genes, which encode Atg proteins (Xie and Klionsky 2007, Suzuki 

and Ohsumi 2010). There are three fundamental steps: the phagophore/isolation membrane 

biogenesis, the elongation/enclosure, and finally the autophagosome maturation. Each step 

of the autophagosome biogenesis and maturation is finely controlled by a subset of Atg 

proteins (Nakatogawa et al. 2009, Stanley et al. 2013) (see Figure 4).  

Autophagosome formation initiates at the PAS. The nucleation factors that trigger the 

recruitment of the other Atg proteins depend on the Atg1 complex that includes 

Atg1/ULK1-4 kinase, Atg17, Atg29 and Atg31. Their assembly on the PAS is independent 

on the nutrient condition (Suzuki et al. 2007, Kabeya et al. 2009). 

During starvation or treatment with rapamycin, the mammalian target of rapamycin 

(mTOR) is inhibited. This causes Atg13 dephosphorylation which under these conditions is 

able to bind to the Atg1 complex.  

Subsequently the Atg9 complex is recruited on the PAS. This complex is formed by Atg9 

itself (in yeast and mammals) and Atg23 and Atg27, in yeast with no counterpart in 

mammalian cells. The two proteins are respectively a peripheral membrane protein and a 

type I integral membrane protein (Tucker et al. 2003, Yen et al. 2007). Atg9 is the only 

multispanning membrane protein (Noda et al. 2000) and it is believed that Atg9 supplies 

the PAS with vesicles for the elongation of the isolation membrane. It was shown in yeast 

and proposed in mammals that Atg9 shuttles between the PAS and a peripheral pool that 

appears to be formed by vesicle clusters (Mari et al. 2010, Mari and Reggiori 2010, 

Webber and Tooze 2010). The next step is the recruitment of the Vps34/class III PI3-

kinase complex to which other Atg components such as Vps34, Vps15, Vps30/Atg6, and 

Atg14 belong. This complex is necessary for PIP3 production that acts as a molecular 

anchor allowing other Atg proteins to be recruited onto the membrane. These PIP3 binding 

proteins are the so called PROPPINS (β-propeller proteins that bind Phosphoinositides). 

Two Atg proteins are part of the PROPPINs family, Atg18 and Atg21. Atg18 is an adaptor 

protein which in complex with Atg2 mediates Atg9 cycles (Krick et al. 2012, Busse et al. 

2013, Thumm et al. 2013). Atg21 instead is a member of the cytoplasm to vacuole 

targeting (Cvt) pathway a selective type of autophagy in yeast used to deliver the hydrolase 

aminopeptidase I to the vacuole (Lynch-Day and Klionsky 2010).  
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The core components of the membrane elongation step are the two ubiquitin like proteins 

Atg12 and Atg8/LC3 (Mizushima et al. 2011). 

Shortly Atg12 is first attached to Atg7, an E1-like enzyme, then is transferred to the E2-

like protein Atg10 which then promotes the conjugation of Atg12 to Atg5, (Mizushima et 

al. 1998). The Atg5-Atg12 complex is subsequently bound to Atg16L1 by direct 

interaction with Atg5. Atg16L1 promotes oligomerisation of the trimeric complexes 

allowing the formation of the huge Atg16 complex that is essential for autophagosome 

progression and maturation (Mizushima et al. 2003). 

Atg8/LC3 is the second ubiquitin-like protein of the autophagy pathway. LC3 is associated 

to the autophagosome membrane during each step of autophagosome formation. It has 

been widely characterized and is used as a canonical autophagosome marker due to its 

ability to bind to the autophagosome membrane upon starvation (Klionsky et al. 2008, 

Rubinsztein et al. 2009). In order to be lipidated, an endopeptidase, namely Atg4, cleaves 

the C-terminal residues of LC3 in a way that the c-terminal Glycine is exposed (Hemelaar 

et al. 2003). This LC3 is a cytosolic form and it is called LC3-I. Atg7 activates LC3-I and 

transfers the protein to Atg3 that catalyzes the formation of a covalent bound between 

LC3-I and phosphatidylethanolamine (PE) and its conversion in LC3-II (Tanida et al. 

2002). Under these conditions LC3-II acts as an integral component of the autophagosome 

membrane (Tanida et al. 2006).  

After the autophagosome maturation the inner membrane-associated LC3-II is degraded by 

lysosomal proteases. The LC3-II in the outer membrane is released into the cytosolic pool 

by the action of Atg4 that cleaves the PE from LC3-II converting it into LC3-I that is ready 

for subsequent lipidation rounds (Tanida et al. 2004).  
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Figure 4 The molecular machinery of the autophagy pathway 

Each step of autophagosome formation is driven by a specific set of Atg proteins. Inhibition of mTOR 

causes phosphorylation of the Atg1 complex that activates the recruitment of the nucleation factors (PI3K 

complex III) on the isolation membrane (PAS). The Atg9 complex shuttle between the PAS and the vesicle 

precursors supplying the immature autophagosome with membranes promoting membrane elongation that 

requires the recruitment of the Atg5-Atg12-Atg16 complex (the ubiquitin-like conjugating system). This 

complex by activating and recruiting LC3 promotes not only the elongation, but also the enclosure of the 

autophagosome compartment. After fusion with the lysosome, LC3 is cleaved from the outer membrane by 

the action of the endopeptidase Atg4 and recycled to the cytosolic pool. Image taken by Maiuri et al. 

(2007).  
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1.2.4 Cross-talk between autophagy and endosome pathways  

Autophagy and endosomes are very close related pathways. They not only share molecular 

players, but since both are catabolic machinery, they both fuse with lysosome. They 

converge at a certain point in their pathway forming a hybrid compartment called 

amphisome derived from the fusion between autophagosome and LE/MVB (Berg et al. 

1998, Fader et al. 2008) (Figure 3). 

A number of molecular players are involved in the proper progression during 

autophagosome maturation which includes the small GTPase Rab proteins and the 

SNAREs. 

SNARE proteins, the minimal machinery for membrane fusion (Jahn and Scheller 2006, 

Jahn and Fasshauer 2012), assist the fusion steps between endosomes and 

autophagosomes. An increased numbers of studies demonstrate the importance of SNAREs 

in the autophagy pathway. They mediate fusion with LE/MVB (Fader and Colombo 2009, 

Fader et al. 2009) and with the lysosome (Renna et al. 2011). Syntaxin-17 was recently 

shown to be a resident autophagosomal membrane SNARE protein that assists 

autophagosome biogenesis and maturation (Itakura et al. 2012, Hamasaki et al. 2013, 

Takats et al. 2013)  

 

The small GTPases Rab proteins are also essential factors in driving the autophagosome 

towards the endosome-lysosome pathway (Chua et al. 2011) with the help of their 

regulators and effector proteins. They are present at the level of each step of 

autophagosome biogenesis, formation and maturation. For example Rab1 and Rab33 are 

thought to be involved in the early stage supplying the growing isolation membrane with 

precursors membranes coming either from ER (Lamb et al. 2013) or Golgi (Itoh et al. 

2008). Rab7 was shown to be crucial for autophagosome maturation (Hyttinen et al. 2013). 

It is required for fusion of late endosomes with the autophagosome (Gutierrez et al. 2004, 

Jager et al. 2004). A direct connection between Rab7 and the autophagosome is the newly 

discovered FYCO protein that contains a FYVE domain as well as coiled coil domain. This 

protein acts as a Rab7 effector and a LC3-interacting protein (Pankiv et al. 2010).   
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1.3 An overview on the small GTPase Rab proteins 

In my study I investigated the role of the small GTPase Rab26 and its involvement in 

synaptic function. As mentioned above Rab proteins play an important function in the 

regulation of intracellular membrane trafficking. 

Of particular interest for my studies was the implication of Rab26 in presynaptic protein 

turnover by looking at less investigated degradative pathways: ubiquitin-based endosomal 

degradation and the autophagosome/lysosome pathway for pre-synaptic proteins. 

Below I will give an overview on how the small GTPases work at the molecular level and 

how they are spatially and temporally regulated with a special emphasis on neuronal Rab 

proteins and Rab26. 

 

 

1.3.1 Rab proteins 

Rab26 is a member of the Rab proteins the biggest subgroup of the Ras superfamily 

(Stenmark and Olkkonen 2001, Hutagalung and Novick 2011). The Ras protein family is 

composed of more than 170 members (Colicelli 2004). According to functional and 

structural similarities they are subdivided in at least five different Ras-like GTPase 

subfamilies: Ras, Rho, Rab, Arf/Sar1 and Ran. They are highly conserved among all 

eukaryotes and are involved in different aspects of cellular physiology: gene expression is 

often regulated by Ras proteins. Cytoskeleton organization requires the Rho family. 

Necleo-cytoplasmic import-export is driven by the Ran proteins. Vesicle transport is 

mediated by both Arf and Rab proteins (Stenmark and Olkkonen 2001, Wennerberg et al. 

2005).  

The first Rab protein identified was the yeast Ypt1p. It was categorized as a yeast 

homologue of Ras like-proteins with uncharacterized function (Gallwitz et al. 1983). 

Subsequent analysis carried out by Schmidt et al. in (1986) and (1988) showed that Ypt1p 

is an essential yeast protein that is involved in microtubule organization and modulate 

intracellular calcium concentration. The involvement of Rab proteins in membrane 

trafficking was first observed by a yeast genetic screen that allow the identification of 

several temperature sensitive (ts) yeast (sec) mutants that cause accumulation of secretory 

vesicles in the cytoplasm (Novick and Schekman 1979, Novick et al. 1980, Waters and 

Pfeffer 1999). 
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These mutants block the secretory pathway. Sec4p was the first Rab protein to be 

identified as close relative to Ras-like proteins involved in vesicle secretion. The ts sec4 

was observed to block the secretory vesicle pathway at the exit site between Golgi and the 

membrane surface (Salminen and Novick 1987, Waters and Pfeffer 1999).  

When the first Rab proteins where discovered, their function was mainly restricted to 

tethering of secretory vesicles (Salminen and Novick 1987). In the last 30 years from the 

discovery of the first Rab proteins, the role of these small GTPases have been extensively 

studied and it was found that they are not only implicated in vesicle tethering, but also 

involved in different aspects of intracellular membrane trafficking, from exocytosis and 

endocytosis, to more specialized types of membrane trafficking such as the autophagy 

pathway (1.2.2). They are involved in cargo selection, vesicle formation, tethering, 

docking and membrane identity definition (Hutagalung and Novick 2011). Their versatility 

is dependent on their ability to recruit different effector proteins (Grosshans et al. 2006) 

that aid them in most of their different cellular functions: in the endocytic pathway, in 

degradative processes and in several neuronal function (Ng and Tang 2008, Stenmark 

2009, Hutagalung and Novick 2011). 

The Rab subfamily is composed of more than 70 members (around 11 in yeast and more 

than 60 in humans), that are subdivided according their function and structural similarities 

(see Figure 5A). At least one member of each group has a crystal structure solved in their 

GTP or GDP states allowing a general overview in their “modus operandi”. They have a 

common and conserved primary structures (Pfeffer 2005, Brighouse et al. 2010) (Figure 

5B). The Rab family domain (RabF) is the GTPase domain which in the ternary structure 

corresponds to the “swich region” that is formed by 6 β-strands and 5 α- helices. This motif 

includes the switch I and II regions the nucleotide binding site. The GTPase domain is 

present in all Rab members (Figure 5 grey box). Within each subgroup of Rabs a 

conserved sequences is observed: the Rab subfamily domain (RabSF showed in Figure 5 

with black boxes). These motifs are located upstream and downstream of the GTPase 

domain and represent the regions where the effector proteins bind. The C-terminal portion 

is the hypervariable region that is specific to each Rab proteins. The last 2 cysteine 

residues (cc) are postraslationally modified by the attachment of two geranylgeranyl 

anchors essential for the membrane insertion of Rabs after their activation.  
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Figure 5 Schematic representation of Ras superfamily 

(A) Rab proteins are the largest group of the small GTPases. They are clustered in several subfamilies 

according to their sequence and functional similarities. In (B) the primary structures that define the Rab 

domains are shown: RabF corresponds to the domain common to all the Rab family members; RabSF is the 

domain conserved within the Rab subfamilies. The C-terminal portion is the hypervariable region and is 

specific for each Rab proteins. At the very end of the sequence two cysteine residues (CC) are highlighted: 

they are the amino acids that are geranylgeranylated. Figure modified from Brighouse et al. (2010). 

 

1.3.1.1 The Rab cycle and membrane association and dissociation 

Rab proteins as all the small GTPase have an intrinsic ability to hydrolyze GTP in GDP + 

Pi. The switch on/off states corresponds to the activation/inactivation state of Rabs and it is 

an essential mechanism that controls not only spatially but also temporally the function of 

these small GTPases. The kinetics of the nucleotide-dependent cycle are finely regulated 

and accelerated by specific proteins (Cherfils and Zeghouf 2013): GTPase exchange 

factors (GEFs), GTPase activating proteins (GAPs) (Goody et al. 2005) and GDP 

dissociator inhibitors (GDIs) that control Rab membrane association dissociation (Pfeffer 

and Aivazian 2004, Goody et al. 2005). Therefore in order to understand membrane traffic 

it is essential to apprehend the mechanism of action of the small GTPase cycle. 

The intrinsically low ability to hydrolyze GTP in GDP + Pi, is accelerated by the regulator 

proteins GTPase-activating proteins (GAPs) (Barr and Lambright 2010). RabGAP proteins 

have a common domain called TBC1 (Tre-2/Cdc16/Bub2) that it was first identified in 

yeast in a genetic screen (Strom et al. 1993, Du et al. 1998, Albert and Gallwitz 1999).  

With a mechanism similar to RasGAPs the TBC1 domain has the so called 

Arginine/glutamine “fingers” that protrude into the GTPase pocket and stimulate the GTP 

hydrolysis (Albert et al. 1999, Pan et al. 2006), converting RabGTP (active form) in 
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RabGDP (inactive form). GAP proteins are the “inhibitors” of Rab activity. In fact the 

inability to hydrolysis GTP either by Rab point mutation in the GTPase domain or by loss 

of function of the specific GAP protein is sufficient to alter the endocytic pathway. An 

example is given by the constitutive activation of the early endosome marker Rab5. 

RabGAP-5 depletion induces uncontrolled membrane fusion and formation of large 

endosome whereas RabGAP-5 overexpression blocks the endocytic pathway (Haas et al. 

2005).  

The activation of Rabs is catalyzed by the GEF proteins that allow the exchange of GDP 

with GTP. A big numbers of GAP proteins (around 38) were characterized (Fuchs et al. 

2007, Haas et al. 2007) and observed to be specific for the different Rab proteins. On the 

other hand due to the difficulty of finding conserved and common domains, only a few 

GEFs were identified leaving a huge numbers of Rab proteins with unknown activating 

factors (Yoshimura et al. 2010, Hutagalung and Novick 2011). The few identified GEFs 

have unrelated protein structures (Barr and Lambright 2010). Structural analysis revealed 

that the VPS9 domain of Rabex-5 (Rab5-GEF) shows conserved residues that bind the 

switch I and II regions and promotes the replacement of GDP with GTP (Delprato et al. 

2004). Elegant experiments performed by Gerondopoulos et al. (2012) and by Blumer et 

al. (2013) showed how GEFs alone are able to target specific Rab proteins on the specific 

membranes.  

It is the cooperative role of GEF and GAP proteins that defines the spatial and temporal 

regulation of Rab function within the cells and on the specific membrane domains 

(Wennerberg et al. 2005). Once Rabs are activated, they are able to recruit specific effector 

proteins on their target sites initiating therefore the specific signal.  

The active form of Rab proteins (RabGTP form) is membrane bound whereas the RabGDP 

form is generally cytosolic. The association to the membrane is GTP dependent and is 

possible due to the presence of a lipid anchor, the geranylgeranyl motif.  

Newly synthesized Rab proteins similarly to many Ras family members bind to GDP and 

undergo post translational modifications. Rab escort proteins (REPs), factors restricted 

only to Rab families, form a complex with RabGDP that is recognized by the prenylating 

enzyme geranylgeranyltransferase (GGTase) that attaches covalently two geranylgeranyl 

motifs to the last two cysteine residues of the small GTPase. REPs act on Rab proteins till 

the small GTPase is associated to the specific membrane but they are not involved in the 

membrane association-dissociation cycle of Rabs. The retrieval of Rabs from the 

membrane is accomplished by RabGDI which keeps Rab inactive in the soluble pool 
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(Goody et al. 2005, Wu et al. 2010). It is well studied how RabGDI removes Rab proteins 

from the membrane (Ignatev et al. 2008). RabGDI binds preferentially to the prenylated 

GDP form of Rab proteins. (Sanford et al. 1995, Wu et al. 2010). Sasaki et al. (1990) 

identified and purified from bovine brain cytosol a protein that inhibited the dissociation of 

GDP (called GDI) from a Ras-like protein. Garrett et al. (1994) showed that yeast GDI 

proteins regulate the membrane association of Sec4 and depletion of this regulator inhibits 

dissociation of Sec4 from the membrane and loss of the Sec4 cytosolic pool. RabGDIs 

therefore not only extract Rab proteins from the membrane, but are crucial for the correct 

balance of the Rab cycles and therefore for vesicle trafficking. For a subsequent round of 

membrane cycle, Rab proteins are displaced from RabGDI by the GDI-displacement factor 

(GDF) (Sivars et al. 2003) with a still not completely understood mechanism. Rab proteins 

are transported to the membrane where the specific GEF proteins are located. GEFs 

catalyze the displacement of GDP with GTP thereby activating Rab that is now able to 

initiate the signal by recruiting specific effectors for the specific function for which the 

small GTPases are responsible. The GAPs inactivate Rab proteins by stimulating the GTP 

hydrolysis. Now RabGDI is able to extract RabGDP from the membrane to the cytosol 

pools and the cycle can reinitiate. In Figure 6 is depicted the mechanism of Rab cycle. 

 

 

 

Figure 6 Rab GTPase cycle 

Schematic representation of Rab nucleotide and membrane association-dissociation cycle (Cherfils and 

Zeghouf 2013) 
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1.3.2 Rab26 and the neuronal secretory Rab proteins  

Our group identified several Rab proteins that are differentially enriched in highly purified 

synaptic vesicles isolated from rat brain homogenates (Pavlos et al. 2010) suggesting that 

many Rabs are involved in controlling not only the synaptic vesicle cycle but more in 

general are involved in different aspects of neuronal activity (Ng and Tang 2008). 

Proteomic study showed that the small GTPase Rab26 was found in the purified synaptic 

vesicle fraction (Takamori et al. 2006). Biochemical analysis supported that indeed Rab26 

was highly enriched in the isolated synaptic vesicle fraction (Nathan Pavlos, unpublished 

data). The observation of Rab26 being highly enriched in the SV fraction motivated us to 

investigate more deeply the role of Rab26 in synapse. 

 

Rab26 is a poorly characterized Rab protein and is a close relative to the secretory small 

GTPase Rab37 (Masuda et al. 2000). It was first grouped as a member of the Rab3 family 

together with Rab27 and classified as a secretory Rab protein with RIM being its potential 

effector protein (Fukuda 2003, Fukuda 2008). Rab26 was first observed in tissues where 

the secretion is tightly regulated such as brain, kidney and pancreas by in-situ hybridization 

using Rab3a as a probe (Wagner et al. 1995). Subsequent findings proved that the human 

Rab26 was preferentially and highly expressed in brain areas, such as amygdala, 

cerebellum and hippocampus (Seki et al. 2000). Indirect evidence suggests an involvement 

of Rab26 in the regulation of exocrine granule maturation and cell surface localization of 

membrane receptors. (Tian et al. 2010, Li et al. 2012). Jin and Mills (2014) showed for the 

first time Rab26 as a novel lysosomal associated protein.  

Rab26 was proposed to be a Rab3a homologue and predicted to regulate synaptic vesicles 

exocytosis (Wagner et al. 1995). The neuronal exocytosis machinery is modulated by the 

two well investigated neuronal Rab proteins: Rab3s and Rab27s. 

 

Rab3 has four isoforms Rab3A, B C and D. Rab3D is the non-neuronal Rab3 isoform, is 

known to be highly expressed in osteoclasts and is involved in bone growth (Pavlos et al. 

2005). Rab3abc are the most abundant small GTPases in neurons and are highly enriched 

in SV fraction (Pavlos et al. 2010). Around ten Rab3 proteins were calculated to be 

associated to the membrane of one synaptic vesicle (Takamori et al. 2006). Rab3s are 

amongst the most investigated small GTPases. They are known to modulate 

neurotransmitter release, but unexpectedly it was the Rab3GEF KO that was showing a 

strong reduction in synaptic vesicle release when compared to the quadruple KO of all four 
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Rab3s (only 30% reduction) (Schluter et al. 2004). The same effect was observed in the C. 

elegance Rab3 homologue where the GEF (Aex-3) causes the major transmission defect 

(Iwasaki et al. 1997, Nonet et al. 1997).  

 

Rab27 is present in two different isoforms, Rab27A and Rab27B that differ at the 

functional level and in their intracellular distribution (Ostrowski et al. 2010). Rab27A is 

highly expressed outside of the central nervous system (CNS). Rab27B is the second most 

abundant small GTPase in the brain. It is shown to be involved in the modulation of 

synaptic vesicle endo/exocytosis and neurotransmitter release. It shares several common 

features with Rab3 such as sequence similarity and localization on the secretary vesicles. 

Furthermore it is regulated by the same Rab3GEF in mammals and Aex-3 in C-elegans 

(Mahoney et al. 2006). Rab3s and Rab27 also share common effector proteins such as 

Rabphillin (Fukuda 2003, Fukuda 2008). In addition it was recently shown that Rab27B is 

also required for synaptic vesicle recycling in a Ca
2+

 dependent manner (Pavlos et al. 

2010). In fact upon Rab27 depletion or expression of Rab27 GTP/GDP locked mutants the 

recycling mechanism of synaptic vesicles is impaired (Mahoney et al. 2006, Pavlos et al. 

2010). Contrary to Rab3 which cycles between the cytosolic pool and the membrane bound 

state during the synaptic vesicle cycle, Rab27B remains tightly associated to the membrane 

during all stages of the SV cycle. Rab27B seems to be resistant to GDI extraction in its 

GDP form. Strikingly structural studies showed that the GDP form of Rab27 undergoes 

homodimerization suggesting the existence of Rab27GDP as an inactive homodimer 

(Chavas et al. 2007, Pavlos et al. 2010).  

 

As a mentioned above in section 1.3.1 Rab proteins act at the level of vesicle formation, 

budding, transport, tethering and docking. They function in concert with their effector 

proteins. The most studied neuronal Rab effectors are Rabphilins and RIMs. Rabphilin acts 

as a Rab3 and Rab27 effector; whereas RIMs are only Rab3 effectors. Therefore their roles 

reflect the function of their specific Rab GTPase in their GTP configuration. Rabphilins are 

cytosolic proteins and are recruited to the plasma membrane by Rab3. Their function 

appears to be strictly linked to the Rab3 cycle. Their function is still unclear since 

Rabphilin KO mice do not show any obvious synaptic dysfunctions (Schluter et al. 1999). 

RIMs are members of the presynaptic protein complex that builds the active zone (AZ). All 

the AZ proteins are essential for correct synaptic vesicle exocytosis. The AZ is composed 

by the RIM complex that includes: Munc13, Piccolo, Bassoon, ELKS and α-Liprin (Chua 
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et al. 2010). Contrary to Rabphilins, RIMs appear to be essential for long term potentiation 

(Kaeser and Sudhof 2005), but the absence of the RIM gene does not cause any alteration 

in the number and quality of the docked synaptic vesicles (Koushika et al. 2001).  

Though it was reported that RIM was interacting directly also with Rab26 (Fukuda 2003), 

a surprising preliminary experiments performed by Nathan Pavlos revealed that 

overexpression of Rab26 in neurons gave an exciting and interesting phenotype that 

distanced Rab26 from the expected exocytosis towards an unknown synaptic autophagy 

pathway.   
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2 Results 

 

2.1 Rab26 is a neuronal small GTPase 

Several studies reported how Rab proteins and their regulators and effectors are implicated 

in the modulation of the different steps of the synaptic vesicle pathway (Ng and Tang 

2008). For example in our lab Pavlos et al. (2010) revealed that many Rab proteins are 

found to be enriched or differentially represented in neurons together with the most well-

known synaptic Rab proteins Rab3 and Rab27. Amongst them we found enrichment of the 

small GTPase Rab26 in synaptic vesicles isolated from rat brain homogenate (for protocol 

see section 4.2.3.4). Therefore in a first experiment I wanted to clarify if Rab26 is 

associated on the synaptic vesicle membranes using as a sample the different subcellular 

fractions of rat brain and checking the enrichment profile by western blotting. 

The enrichment of Rab26 and Synaptophysin in highly purified vesicles is represented in 

Figure 7A (lane SV). Very low signal could be detected in the nuclear fraction (P1), in the 

post nuclear supernatant (S1), in the cytosolic fraction (S2 and S3), in the synaptosome 

fraction (P2) and in the presynaptic membranes (LP1). The level of Rab26 was 

considerably higher in the crude synaptic vesicles (LP2) and highly enriched in the pure 

synaptic vesicle (SV) fractions. The well-known synaptic vesicle marker Synaptophysin 

showed a comparable pattern of enrichment though its signal in the SV fraction was 

significantly higher.  

Next I analyzed if Rab26 was directly associated to the synaptic vesicle membrane and if 

so whether these vesicles would be a subpopulation with characteristic morphology. In 

order to investigate this hypothesis, I made use of the immunoisolation (II) assay, a very 

powerful technique that allows the isolation of specific organelles and therefore the 

analysis of their membrane-protein composition. 

For this purpose the crude synaptic vesicle fractions (LP2) were re-suspended in 

immunoisolation buffer (for protocol see chapter 4.2.3.6) and incubated with immunobeads 

(Eupergit C1Z methacrylate microbeads) coupled either to monoclonal Synaptophysin 

(7.2) antibody or to monoclonal Rab26 (163E12) antibody. The beads were then washed 

extensively and eluted with loading dye. The vesicle composition was analyzed by 

Western blot (Figure 7B). 
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Excitingly the Rab26 antibody was pulling down a subset of Synaptophysin positive 

vesicles, whereas Synaptophysin was able to immunoisolate almost all the Rab26 positive 

vesicles. This can be seen comparing the II and SN lanes for Rab26 (left) and for 

Synaptophysin (right). In parallel immunoprecipitation (IP) was performed using the same 

conditions with the only difference of the addition of Triton X-100 (Tx). Triton as 

expected solubilized the membranes and in the presence of Tx both Rab26 and 

Synaptophysin were detected only in the supernatant fraction and not in the IP. This 

suggested that the two proteins are on the same vesicles and that they do not interact 

directly. 

 

 

 

  

 

Figure 7 Rab26 is a synaptic vesicle protein 

(A) Rab26 is enriched in the pure SV fraction. Synaptophysin was used as a synaptic vesicle marker. 

The blot represents the subcellular fractionation of rat brain homogenate. (B) Rab26 and 

Synaptophysin reside on the same vesicle membrane. SN, supernatant; II, Immunoisolation, Tx, 

Triton-x-100; IP, immunoprecipitation. LP2 was used as starting material. Arrows indicate the Rab26 

and Synaptophysin bands. Arrowheads show the antibody light or the heavy chain bands. 

Immunoisolation was performed by Janina Boyken. The monoclonal anti-Rab26 and anti Syph 

antibodies used in this study are from Synaptic System.  
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Once clarified that Rab26 was associated with the synaptic vesicle membrane, in a next 

step I investigated if there was any difference in morphology between Rab26 and 

Synaptophysin vesicles. For this purpose I decided to use electron microscopy. 

Immunoisolated Rab26- and Synaptophysin-positive vesicles were subjected to electron 

microscopy analysis. After data processing, the two sets of images were compared (Figure 

8A). Very few vesicles per beads were immunoisolated in the Rab26 immunobeads 

compared to the Synaptophysin sample that showed a large number of coupled particles. 

Further analysis pointed out that the two populations were not different in terms of size and 

morphology. In fact vesicles size distribution was analyzed by measuring the diameters of 

particles coupled to the beads (Figure 8B and C).  

Around 300-400 vesicles were counted and the size average was calculated (Figure 8C). 

The values were plotted in a graph (Figure 8B). No obvious differences could be observed 

in the vesicle size between Synaptophysin (in brown line) and Rab26 (in green line). Both 

showed a similar size profile with a peak at a synaptic vesicle diameter of 40-45 nm. To 

control the quality of the immunoisolation, the isolated vesicles against Rab26 and 

Synaptophysin were compared with the IgG negative control and analyzed by WB (Figure 

8D). Immunoisolation of synaptic vesicles was only efficient in presence of either anti 

Rab26 or anti Synaptophysin antibodies but not with IgG coupled beads. 
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Figure 8  Size distribution of Rab26 positive vesicles  

(A) Rab26 positive vesicles appear to be a subpopulation of SVs, scale bar, 1 µm. (B) The graph 

represents the size distribution of Rab26 positive vesicles in green and Synaptophysin positive vesicles in 

grey. In both case the size average is 40 nm as expected for SVs. (C) The table below is the summary of 

the counted vesicle diameters used for plotting the size distribution profile both for Rab26 and for 

Synaptophysin, Syph. Figure (D) Represents a WB of Rab26 and Synaptophysin coupled beads after the 

immunoisolation compared with the IgG beads. Arrows indicate respectively the Syph band and the Rab26 

band. The asterisk represents the light chain of the antibody used for the immunoisolation. Electron 

microscopy and quantification analysis was performed by Dietmar Riedel. 
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2.1.1 Rab26 is a SV protein 

I decided to use immunocytochemistry to confirm the hypothesis that Rab26 is not only a 

neuronal small GTPase, but also colocalizes with synaptic vesicle markers.  

Brain tissue sections of 2 years old mice were stained with the monoclonal anti Rab26 

antibody in combination with a neuronal nuclei marker (NeuN, a neuronal transcription 

factor) and with DAPI a general nuclear dye. Rab26 (in green), and NeuN (in red), are 

coexpressed in the same cell types as shown in the magnified area at the right side. The 

arrow and the arrowhead highlight the neuronal and the non-neuronal cells respectively 

(Figure 9A). 

Dissociated hippocampal neurons were co-labeled with monoclonal Rab26 antibody 

(green) and with the monoclonal Synaptotagmin I antibody (red) (Figure 9B). This 

experiment confirmed the results obtained by immunoisolation as described in paragraph 

2.1. In fact a subset of Synaptotagmin positive puncta was colocalizing with Rab26 puncta. 

The region within the white rectangular box is magnified next to the picture and highlights 

the cell body and the proximal regions of the neuronal cell. The arrows indicate the co-

localization. The in vivo data support the hypothesis that Rab26 is expressed in neurons 

and has a punctate-like pattern that marks a subset of synaptic vesicles.  

 

 

 

  



- Results - 

 

  30 

 

 

 

  

 

 

Figure 9 Rab26 is a neuronal Rab protein 

(A) Rab26 is expressed in the same cells as the neuronal marker NeuN (arrow) but not in other cell 

types indicated by the single stain of DAPI (arrowhead). Brain sections of 2 years old mice. The stain 

was performed by Sigrid Schmidt. (B) Endogenous Rab26 shows a punctate pattern that colocalizes 

with a subset of Synaptotagmin1 (arrows). Dissociated rat hippocampal neurons were used on day 16 in 

vitro (DIV 16). Anti-mouse Rab26 was observed with Alexafoluor-488, green; anti-rabbit Syt, 

Synaptotagmin-1was visualized with Cy3, red; nucleus with DAPI, blue. 
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2.2 Overexpression of Rab26 results in cluster formation 

 

2.2.1 The GFP tag influences the Rab26 phenotype  

Single point mutations in the nucleotide binding region of Rab proteins that cause defects 

in their membrane-cytosol cycle are well established (as an example see Li and Stahl 

(1993)). The constitutively active form (GTP bound) is called GTP-locked conformation. 

This substitution does not allow the small GTPases to hydrolyze GTP therefore they are in 

an active configuration and always associated to the membrane. The dominant negative 

form, (GDP-form) is referred also as the GDP-locked form. Under this condition Rab 

proteins are found mainly in the cytosolic pool. 

By the alignment with mouse Rab37 (the closest homologue of Rab26) for which these 

mutations are reported (Masuda et al. 2000), it was possible to identify the amino acid 

residues whose substitutions create the constitutively active (CA, Q123L) and dominant 

negative (DN, T77N and N177I) forms of Rab26. 

The most common and well established method to study the intracellular distribution and 

functions of Rab proteins is the use of the green fluorescent protein (GFP) (Sonnichsen et 

al. 2000) or other smaller tags such as Flag. To use the most suitable tag the phenotypes of 

the differentially labeled Rab26 proteins and the mutants were compared in neurons and in 

a heterologous system such as HeLa cells with the endogenous distribution or 

overexpression of the untagged protein visualized with the help of specific antibody.  

The differently tagged Rab26 versions (EGFP, mGFP, Flag-, and untagged variants) were 

transiently transfected in HeLa cells to observe their expression profile. As it can be seen 

in Figure 10A EGFP-Rab26 WT, QL, and TN (lane 1), Flag-Rab26 WT, QL, and TN (lane 

2), and the untagged variants (lane 3), expressed the proteins in a comparable way. The DN 

form shows very low expression level in a tag independent manner.  

Next I analyzed the behavior of the different tags by immunocytochemistry. HeLa cells 

were transiently transfected making use of the commercially available reagent, 

Lipofectamine 2000 (Invitrogen). The intracellular distribution of Rab26 was comparable 

between the different tags but the morphology of the Rab26 puncta and the time required 

for their formation was notably different. The GFP variants provoked the formation of 

huge puncta after only 24 hours of overexpression. The Flag- and the untagged version 

instead caused significant puncta formation starting from 48 hours of overexpression. 
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These observations suggested that the puncta generation caused by Rab26 overexpression 

was enhanced by the presence of GFP (Figure 10B). This effect could be observed both for 

EGFP and mGFP. EGFP differs from mGFP by only a single point mutation (A206K) that 

renders EGFP monomeric (mGFP). Therefore the weak self-dimerization property of 

EGFP might explain the observed big puncta formation.  

Next the two different GFP tagged Rab26 were compared. Generally once the small 

GTPases are bound to GTP, they are recruited on the specific membrane targets, and 

inserted in the membrane bilayer by their geranylgeranyl motif, a posttranslational 

modification that requires a specific enzyme called geranylgeranyltransferase (GGTase) 

(for details see section 1.3.1.1). To investigate if the two variants of GFP-Rab26WT were 

membrane associated a differential centrifugation experiments was performed. Figure 10C 

highlights how EGFP- and mGFP-Rab26 were found both in the cytosolic and in the 

membrane fractions. P1 and P2 are the heavy membrane fractions which correspond to 

nuclei and mitochondria. Mitofilin, a mitochondrial inner membrane protein, was used to 

visualize the mitochondria membrane fraction. Vesicles such as early endosomes, 

lysosomes, and autophagosomes can be found in the P3 fraction. Here LC3B was used as 

the autophagosome marker. EGFP alone was mainly found in the soluble fraction, and in 

the post nuclear supernatant (PNS), S2, and in S3. mGFP-Rab26WT and EGFP-Rab26WT 

behaved in similar way in HeLa and we decided to proceed using the EGFP-Rab26 

variants to investigate the subcellular localization of the recombinant Rab26 in neurons. 
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Figure 10 GFP-tag enhances Rab26 phenotype 

(A) Expression level of the different Rab26 variants. Rab26WT and QL are showing comparable 

expression level. Rab26TN instead appears to have lower expression in a tag independent manner. (B) 

Transient expression of the different Rab26WT variants. EGFP- and mGFP-Rab26WT form huge 

puncta around the perinuclear regions after 24 hrs overexpression. Flag-Rab26WT and untagged 

Rab26WT show a more reduced phenotype with puncta appearing after 48 hours transfection. (C) 

Differential centrifugation of HeLa extracts transiently expressing EGFP-/mGFP-Rab26WT or EGFP 

alone. The two Rab26WT variants are preferentially found in the membrane fraction indicated by the 

upper label (P1, P2, and P3). EGFP was used as a negative control, and is preferentially in the soluble 

fractions (PNS, post nuclear supernatant; S2 and S3). Mitofilin, a mitochondrial inner membrane 

protein, was observed in P1 and P2 the autophagosomal protein LC3 in P1, P2, and P3. Both proteins 

were used as a membrane bound marker respectively for mitochondria and autophagosome 

membranes. 
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Subsequently we used the different EGFP-Rab26 mutants to characterize their phenotype 

in dissociated hippocampal neurons. We were expecting to see puncta like structures 

similar to the phenotype observed at the endogenous level in neurons (Figure 9B). 

The overexpression of the EGFP-Rab26WT, QL, and TN/NI in cultured neurons showed a 

surprising phenotype. Interestingly EGFP-Rab26WT formed large and bright clusters 

around the perinuclear regions and on the entire length of the neurites. Unexpectedly the 

QL was showing moderate punctate structures localized preferentially at the neuronal 

branches. The proximal and the perinuclear regions instead showed intense and diffuse 

distribution. The DN forms (EGFP-Rab26TN and NI) of Rab26 appear diffuse having 

occasional puncta in close proximity of the cell body (Figure 11A). When compared with 

the endogenous distribution (Figure 9B) the EGFP-Rab26WTpuncta are again more 

numerous and their size is considerably increased.  

 

 

  

 

 

Figure 11 EGFP-Rab26 causes huge puncta structures in neurons  

(A) Overexpression of EGFP-Rab26WT is responsible for huge puncta formation. The constitutively 

active form (EGFP-Rab26QL) shows a reduced phenotype and the dominant negative forms (EGFP-

Rab26TN/NI) appear diffuse with small puncta distributed in the cytosol (arrows). The rat hippocampal 

neurons were fixed at DIV7 , scale bar 10 µm. Figures are given by Nathan Pavlos (data not published).  
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2.2.2 Rab26 clusters SV proteins in neurons 

Given its strong phenotype, EGFP-Rab26WT was used to investigate the intracellular 

distribution of Rab26 relative to a variety of different endomembrane markers in neurons. 

We expected to see -similar to endogenous Rab26 - that EGFP-Rab26WT labels synaptic 

vesicles. Indeed it was exciting to observed that those huge and bright puncta described in 

the previous paragraph were preferentially colocalizing with synaptic vesicle markers such 

as Synaptobrevin, Synaptophysin, Synaptotagmin I and Rab3a both in the soma (Figure 

12A) and in the axons (Figure 12B) but not with EEA1, an early endosomal marker. The 

linescans next to each figure represent the colocalization profile. In addition coexpression 

of EGFP-Rab26WT with the neuropeptide RFP-NPY caused huge clusters of NPY in the 

cell body and in the axon that colocalize with EGFP-Rab26WT (Figure 12A and B).  

No other intracellular organelles were affected in their morphology or distribution upon 

EGFP-Rab26WT overexpression, but some of the organelle markers showed significant 

colocalization (Figure 13). More in detail it can be seen that Rab26 did not colocalize with 

EEA1 and Transferrin (Tnf) suggesting no involvement with early endosomes or the 

recycling pool (Figure 13A and B). Rab26 did not disrupt the Golgi apparatus as visualized 

by the GM130 protein (Figure 13E) and the distribution of the late endosomal SNARE 

Vti1b was not affected (Figure 13F). On the other hand EGFP-Rab26WT seemed to reside 

in part on the lysosome membrane labeled with LAMP2 a lysosomal receptor protein 

(Figure 13C), suggesting that Rab26 is associated at some point with the lysosome 

compartment. In addition SNARE proteins that are involved in vesicle maturation 

(VAMP4 and Sytaxin-6) were partially affected by the EGFP-Rab26WT overexpression. 

Linescans show a partial colocalization (Figure 13G, H). In addition Rab26-positive 

structures contained the neuropeptide Secretogranin II (SgII) (Figure 13 I), suggesting the 

view that the Rab26-induced clusters include not only SVs but also large dense core 

vesicles.  
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Figure 12 EGFP-Rab26 colocalizes with presynaptic markers 

(A) EGFP-Rab26WT colocalizes with the synaptic vesicle protein markers at the level of the neuronal 

soma. Rab26 causes huge clusters of Synaptobrevin, (Sybv); Synaptophysin, (Syphy); Synaptotagmin I, 

(Syntag I) and Rab3A. Coexpression with RFP-NPY show drastic accumulation of the neuropeptide itself 

in the soma, scale bar 5 µm. (B) The synaptic vesicle proteins colocalize with EGFP-Rab26WT also at the 

level of the axon (arrows). No overlap was observed with the early endosomal marker EEA1 (arrows). Data 

kindly given by Nathan Pavlos (unpublished results). 
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Figure 13 EGFP-Rab26 intracellular distribution in neurons 

EGFP-Rab26WT does not colocalize with EEA-1 and Tnf (A and B). Significant colocalization could be 

observed with LAMP2, a lysosomal marker but not with Lysotracker (C and D). The overexpression of 

Rab26WT does not affect Golgi distribution visualized by GM130 (E). The SNARE proteins Vti1b and 

VAMP4 show little overlap. Sytaxin6 (SYX6) instead is extensively colocalizing (F, G, and H). EGFP-

Rab26WT clusters also Secretogranin II (SgII) (I). Linescans are represented next to the corresponding 

figure. Scale bar,5 µm Both panel are kindly given by Nathan Pavlos ( Unpublished results) 
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To clarify if the EGFP tag might enhance the Rab26 phenotype I compared its localization 

with the intracellular distribution of Flag-tagged Rab26 in neurons. The localization was 

not affected since we could still observe Flag-Rab26 on the synaptic vesicle compartment 

due to its overlap with Syt1 (Figure 14). Both Flag and EGFP-Rab26WT and QL had the 

ability to cause puncta formation (Figure 12 and Figure 14A and B). The TN form failed to 

colocalize with Synaptotagmin-1(Figure 14C).  

The analysis of the intracellular distribution of Rab26 at the level of the soma and the axon 

highlights that Rab26 preferentially resides in the synaptic vesicle pool. The absence of 

colocalization with EEA1, but the partial overlap with early endosomal SNARE proteins 

suggests a potential role of Rab26 in targeting synaptic vesicles to the late 

endosome/lysosomal pathway due the overlap with LAMP2.  
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Figure 14 Rab26 is enriched at the synapse 

(A) Flag-Rab26WT forms huge puncta at the neurite level that are colocalizing with endogenous Syt1 

visualized in red. White boxes are represented as a magnified area next to each panel. (B) Flag-

Rab26QL forms a punctate pattern that is colocalizing with Syt1 in red. The white box is represented 

as a magnified region close to the respective image. Arrows indicate colocalization. (C) Flag-Rab26TN 

is retained in the proximal region and appears to have small puncta that fail to colocalize with Syt1. 

Syt1, Synaptotagmin-1; 488, Alexa Fluor 488. High dense rat hippocampal culture; 46 hrs 

overexpression, DIV 9. 
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2.2.3 EGFP-Rab26 clusters recycled synaptic vesicles. 

Previously we observed that Rab26 resides on a subset of synaptic vesicles. It was of 

fundamental importance to find out which kind of structures EGFP-Rab26WT is causing. 

We decided to use electron microscopy to answer these questions.  

In neuron cultures overexpressing EGFP-Rab26WT, Rab26 was immunolabeled with 5 nm 

gold particles and either endogenous Synaptobrevin (upper panel) or endogenous 

Synaptophysin (lower panel) were immunolabeled with 10 nm diameter of gold particles. 

Electron microscopy analysis showed that both Rab26 and both the presynaptic markers 

are localized in the same vesicle pool (Figure 15A). Intriguingly the ultrastructure studies 

showed that the bright and big puncta that are observed by immunofluorescence 

microscopy, were a massive vesicle clusters. But which kind of synaptic vesicle are we 

looking at?  

To address this question I performed an in vivo recycling assay where I incubated the 

neurons with a pre-labeled antibody that recognizes the luminal domain of Synaptotagmin-

1(synaptic system) during the 24 hours of overexpression of EGFP-Rab26. The luminal tail 

of Synaptotagmin is accessible to the antibody only after the exocytosis of the 

neurotransmitters in to the synaptic cleft prior to the recycling event. Upon endocytosis the 

antibody is localized specifically in the lumen of recycled vesicles. Subsequently the 

neurons were fixed with 4% PFA and analyzed by confocal microscope. It was exciting to 

see that EGFP-Rab26WT and QL colocalized extensively with recycled synaptic vesicles 

(indicated in red). Regarding the dominant negative form of Rab26 no Synaptotagmin 

clusters were observed neither in the soma nor in the periphery of the neurons (Figure 

15B).  
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Figure 15 Rab26 targets a subset of recycled synaptic vesicles 

(A) Immuno gold electron microscopy shows that EGFP-Rab26WT (5 nm particle) resides on a subset 

of synaptic vesicles labeled either with Synaptobrevin (upper) or with Synaptophysin (below) (Sybv-

10 nm, and Syph-10 nm respectively). Electron microscopy images were performed by Dirk Wenzel.             

(B) The in vivo recycling assay shows the colocalization of Rab26 clusters with recycled synaptic 

vesicles upon 24 hours incubation of neurons expressing EGFP-Rab26WT, QL and TN with the 

antibody that recognizes the luminal domain of Synaptotagmin-1 (Syt1_41.1 Oyster-550, Synaptic 

System). The colocalization was extensive in the case of Rab26WT. The constitutively active form 

showed also colocalization where the clusters are formed whereas the dominant negative form does 

not show any Synaptotagmin clusters DIV 8, Scale bar 10 µm.  
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Further analysis of the ultrastructure images revealed that these vesicle clusters were 

sometimes compartmentalized within membranous structures (Figure 16, arrow), or 

oftentimes without these engulfing membrane compartment behaving more like vesicle 

aggregates (Figure 15A). Moreover the vesicle clusters were also found in close proximity 

of an electron dense material or mitochondria (m) that recall degradative compartments 

(Figure 16). 

Putting all this data together we could draw an exciting and fascinating picture: Rab26 is a 

SV protein and has the ability to cluster selectively recycled synaptic vesicles.  

 

 

 

 

  

 

Figure 16 EGFP-Rab26WT causes vesicle clusters  

Immunogold electron microscopy reveals that EGFP-Rab26WT clusters are massive vesicle aggregates that 

might be engulfed in membrane structures (arrows). The presence of mitochondria (m) and/or electron 

dense contents remind of degradative compartment. EGFP-Rab26WT was visualized by anti GFP antibody 

labeled with 10 nm gold particles. Scale bars are 200 nm. Electron microscopy was done by Dirk Wenzel. 
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2.3 Rab26-induced clusters in neurons represent intermediates 

of an autophagosomal pathway  

Next we try to understand in which compartment the clustered vesicles are trapped.  

The observation that EGFP-Rab26WT overlaps with the lysosomal marker (LAMP2) and 

the electron microscopy images brought us to speculate that we might be looking at a 

selective type of degradation pathway. But what does Rab26 have to do with synaptic 

vesicles and autophagosomes? Is it possible that Rab26 targets synaptic vesicles for 

degradation by the autophagosome/lysosome pathway? Are synaptic vesicles being 

degraded? Why? In order to answer some of these questions, I made use of canonical 

autophagy markers such as LC3 for mature autophagosomes and Atg16L1 for early 

autophagic compartments using cultured hippocampal neurons.  

The Flag-Rab26 variants were coexpressed with GFP-LC3B. After 48 hours the neurons 

were fixed, subjected to immunostaining and analyzed by confocal microscopy (Figure 

17). To our surprise the Flag-Rab26WT and the QL caused accumulation of the GFP-

LC3B puncta along the distal region of the neurites (arrows). Flag-Rab26TN instead 

showed small puncta distributed throughout the neuronal arborization and GFP-LC3B 

appeared to have diffuse stain along the neuronal extensions (arrowheads).  

Atg16L1 is one of the best investigated early autophagosome markers. It is essential for 

membrane elongation, LC3 lipidation and recruitment on the autophagosome membrane 

(Lamb et al. 2013). Furthermore it is also known to act as an effector for the Golgi resident 

small GTPase Rab33 (Fukuda and Itoh 2008, Itoh et al. 2008). For this reason I chose 

between many others early autophagosome markers (such as Atg1, Atg14, Atg5) Atg16L1.  

Both endogenous Atg16L1 and Rab26 colocalized in neurons (Figure 18A, arrows). To 

validate this observation I overexpressed Flag-Rab26 constructs in cultured hippocampal 

neurons. Excitingly overexpression of Flag-Rab26WT and QL caused clustering of the 

endogenous Atg16L1 (Figure 18B, C; see arrows) suggesting that Rab26 might recruit 

Atg16L1 on the synaptic vesicle membranes at the very early stage of autophagosome 

formation. Instead the overexpression of the Flag-Rab26TN did not cluster Atg16L1. 

Furthermore Rab26TN small puncta did not show any colocalization with Atg16L1 (Figure 

18D, arrows). Finally EGFP-Rab26WT was able to recruit Atg16L1 on the same 

compartment, but not the endogenous LC3B (Figure 18E, F. See arrows).  
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These results suggested that EGFP-Rab26WT most likely acts as dominant negative form 

and they support the hypothesis that Rab26 might reside both on SVs and on the 

autophagosome membrane. 

 

 

 

 

Figure 17 Rab26 clusters autophagosomes in neurons 

Flag-Rab26WT and QL (arrows) and not the TN (arrowhead) cause LC3B clusters in the neurites. 

The white boxes are enlarged as a magnified area beside each panel.Scale bar, 10µm. Rat 

hippocampal neurons DIV 8. 
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Figure 18 Rab26 recruits Atg16L1 to the same compartments 

(A) Endogenous Rab26 (green) colocalizes with endogenous Atg16L1 (red) in dissociated hippocampal 

neurons DIV 16. The white boxes are enlarged as a magnified area next to each figure. Arrows indicate 

colocalization. (B and C) Overexpression of Flag-Rab26WT and QL cause endogenous Atg16L1 clusters 

in the neurite regions. (D) FlagRab26TN instead fails to recruit Atg16L1 that appears diffused also if 

Rab26 clusters are formed, arrow. (E) EGFP-RAb26WT traps endogenous Atg16L1 on the same clusters 

(arrows) but fails to recruit LC3B, (F, arrows). White boxes are represented beside each panel as a 

magnified area. The cells are hippocampal neurons, DIV 8. Scale bare, 10 µm 
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2.4 Rab26 labels late endosomes and autophagosomes in HeLa 

cells 

In the first section of this work I performed my experiments mainly in neurons. I showed 

that Rab26 is a neuronal specific small GTPase. Furthermore in the light of all the 

experiments we could show by combination of light microscope and electron microscope 

that the overexpressed Rab26 provokes the formation of immense vesicle clusters that 

affect the distribution of the majority of pre-synaptic markers. Even more, colocalization of 

Rab26 with GFP-LC3B and Atg16L1 showed how Rab26 might be responsible for 

addressing selectively a subset of synaptic vesicles to the autophagy.  

If Rab26 is involved in vesicle clustering or in triggering membranous compartments to the 

autophagosome it should accomplished its function also in other cell systems that do not 

have Rab26 native compartments (SVs) when ectopically expressed. HeLa cells were the 

heterologous system chosen to investigate this theory. 

 

 

2.4.1 Rab26 phenotype in HeLa cells 

First I analyzed the exogenous expression of EGFP-Rab26WT, QL and TN. 

As described in neurons (Figure 11) also in HeLa the overexpression of EGFP-Rab26WT 

showed the strongest phenotype (Figure 19) whereas the QL appeared to be concentrated 

around the nucleus but with moderate features compare to the WT. EGFP-Rab26TN was 

mostly diffuse with some small puncta dispersed in the cytosol.  

 

 

Figure 19 EGFP-Rab26WT forms huge puncta in HeLa cells 

Overexpression of EGFP-Rab26WT and the mutants in HeLa shows comparable features to those observed 

in neurons. Cells where fixed after 24 hours of overexpression and analyzed by confocal microscope. 
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2.4.2 Rab26 compartmentalization in HeLa cells 

To investigate in more detail Rab26 function, I chose HeLa cell lines since they are well-

established model to study autophagy. In these experiments untagged Rab26 was chosen 

for the co-stain experiments. Like in neurons, also in HeLa different subcellular markers 

were used to investigate the intracellular localization of Rab26 (Figure 20). 

For the recycling and the early endosomes respectively the Transferrin (Tnf) conjugated 

with fluorescent dye (Alexa Fluor 488) and RFP-Rab5QL were used as markers. To label 

the late endosomes was used EGFP-Rab7WT, EGFP-Rab33WT to visualize the Golgi 

apparatus and vesicle derived from Golgi (Itoh et al. 2008). RFP-LC3 instead was used to 

visualize the autophagosome organelles.  

Transferrin receptors are down regulated upon binding to their ligand and internalized. 

Subsequently they are recycled back to the plasma membrane surface mediated by Rab4-

Rab11 pathway (Mayle et al. 2012). For this assay fluorescently labeled transferrin was 

incubated for 30 min with HeLa cells transiently expressing Rab26. Both Rab26 and Tnf 

distribution were not disturbed (Figure 20A). Tnf (in green) was mainly distributed close to 

the plasma membrane. Rab26 instead appears to have a perinuclear distribution. This is in 

agreement with what was shown previously in neurons (Figure 13B). Coexpression of 

Rab26WT with RFP-Rab5QL does not affect the Rab26 distribution. RFP-Rab5QL 

appears to have the canonical phenotype (Stenmark et al. 1994, Roberts et al. 1999): 

enlarge endosomal compartments that are Rab26 negative (Figure 20B). This results show 

that as observed in neurons (Figure 13A) Rab5 and Rab26 follow a different pathway. A 

partial overlap and extensive colocalization could be observed respectively with EGFP-

Rab33WT and with EGFP-Rab7WT (Figure 20C and D). Excitingly RFP-LC3 and 

Rab26WT were largely colocalizing (Figure 20E).  

 

In the present studies HeLa cells were used as an “artificial” system, since they are neither 

polarized nor secretory cells. But the data observed using this heterologous system were of 

great importance since they strongly support the experiments obtained in neurons. Rab26 

in the absence of its native compartment (SVs) is still able to perform its intrinsic activity: 

to cluster vesicles and to direct them to the autophagy pathway.  

Further advantages in having used HeLa were showing for the first time that Rab26 was 

preferentially found in the late endosomal-autophagosome compartments. The partial 

overlap observed with Rab33 suggest that Rab26 might be involved also in the maturation 
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of autophagosome since it is known that Rab33 interacts directly with Atg16L1 a core 

component of the autophagosome machinery (Itoh 2008).  

 

 

 

Figure 20 Rab26 compartmentalization in HeLa 

Co-labeling of untagged Rab26 transiently expressed in HeLa with organelle markers revealed that 

Rab26 was preferentially associated with Rab7, LC3 compartments and partially overlapping with 

EGFP-Rab33 (C, D, and E) and not with the recycling and early endosomes visualized by Rab5 and 

Tnf (A and B). Beside each figure a linescan graph is indicated to show the colocalization profile. 
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2.4.3 Rab26 clusters degradative compartments 

The colocalization experiments performed in HeLa converge with what was observed and 

described in neurons where it was shown clearly that Rab26 colocalizes with 

autophagosome markers, such as GFP-LC3 and endogenous Ag16L1 but not with early 

endosome markers. Furthermore the ultrastructural analysis in neurons showed that the 

EGFP-Rab26WT causes massive vesicle clusters (Figure 16). The observed colocalization 

of Rab26 with Rab7, LC3 and partially with Rab33 (Figure 20) was of crucial importance 

since it allowed me to address this study towards a specific intracellular membrane 

trafficking pathway. In fact these experiments revealed to be the additional and strong 

prove that Rab26 was implicated in the trafficking between late endosome and 

autophagosome/lysosome compartments.  

In the next step I analyzed whether the overexpression EGFP-Rab26 variants in HeLa have 

an effect in the autophagosome/lysosome distribution. To validate this hypothesis I used 

either LC3B or Lysotracker (fluorescent marker for acidic compartments) respectively as a 

marker for autophagosome and lysosome visualization. The different EGFP-Rab26 

constructs were transiently expressed in HeLa and after 24 hours the cells were fixed and 

immunostained using anti LC3 antibody and subsequently visualized by confocal 

microscope (Figure 21). EGFP-Rab26WT caused partial clustering of endogenous LC3B. 

EGFP-Rab26QL appeared to form perinuclear vesicle clusters that included LC3 positive 

puncta. The dominant negative forms (TN and NI) instead showed small and dispersed 

puncta that were LC3B free. Further negative controls were performed. Rab26dcc mutant 

is a variant of a dominant negative form of Rab proteins. This mutant lacks the last four 

amino acids that contain the two cysteine residues that are essential for the prenylation, a 

post-translational modification that allows Rabs to be inserted in the membrane (Khosravi-

Far et al. 1991, Khosravi-Far et al. 1992). Without this motif Rab proteins are cytosolic. 

Indeed EGFP-Rab26dcc was completely diffuse, and did not affect LC3B distribution. The 

same result was seen in the presence of EGFP only. 
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Figure 21 EGFP-Rab26 partially affect autophagosome distribution in HeLa cells 

EGFP-Rab26WT and QL, but not TN and NI are partially affecting LC3 distribution. EGFP-Rab26dcc 

and EGFP itself are negative controls and show diffuse distribution and LC3B puncta appear disperse in 

the cytoplasm. The white boxes are enlarged as magnified area beside each figure.  
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Co-staining experiments of EGFP-Rab26 with Lysotracker showed comparable results to 

the LC3B endogenous stain (Figure 22). After 24 hours of overexpression HeLa cells were 

incubated for 30 min with Lysotracker (red). Subsequently the samples were fixed and 

analyzed by confocal microscope the same day to avoid diffusion of the probe. EGFP-

Rab26WT and QL were clearly colocalizing with the Lysotracker stain. In the case of 

EGFP-Rab26TN and NI, the Lysotracker stain was mainly dispersed through the cytosol. 

 

 

Figure 22 EGFP-Rab26 resides on the acidic compartments 

The intracellular distribution of Lysotracker is affected by EGFP-Rab26WT that causes its clustering and 

moderately by the EGFP-Rab26QL. The presence of the dominant negative forms instead is responsible 

for more disperse Lysotracker puncta. The region inside the white boxe is represented as a magnified 

area next to the respective image.   
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2.4.4  EGFP-Rab26WT induces vesicle aggregate formation in HeLa 

As in neurons (Figure 16), the overexpression of the EGFP-Rab26WT in HeLa caused 

massive vesicle clusters. Cells were transiently transfected with EGFP-Rab26WT for 24 

hours and subsequently analyzed by electron microscopy (Figure 23). Compared to the 

neuronal ultrastructure analysis, in HeLa cells it was possible to read out more 

informations. We observed the accumulation of huge and massive vesicle aggregates that 

might be surrounded by membrane structures (indicated by the arrow) or more often 

without membrane that compartmentalized the vesicle aggregates (arrowhead). We could 

also observe that vesicle clusters were located inside or in close proximity of degradative 

compartments that resemble to autolysosomes (arrow and asterisks). 

 

 

 

Figure 23 EGFP-Rab26WT provokes vesicle aggregates and autolysosome like- 

structure cluster.  

Overexpression of EGFP-Rab26WT in HeLa causes vesicle clusters that might be surrounded by 

membrane structures (arrow), or membrane free aggregates (arrowhead). Furthermore EGFP-Rab26 

vesicles were in close proximity (asterisk) or inside (arrow) of what resembles autolysosomes. 10 nm gold 

particles label anti GFP antibody. Scale bar 200 nm. Data analyzed by Dirk Wenzel.  

 

 

Like in neurons also in the heterologous cell system the expression of Rab26 caused 

similar effect. In fact investigation of the function of Rab26 in HeLa cells allowed me to 

better understand and clarify its implication in vesicle clustering and vesicle triggering to 

the autophagosome/lysosome. But the nature of this vesicles or membranous structures 

observed in HeLa is mostly unknown. Most importantly HeLa experiments support the 

hypothesis that Rab26 is sufficient to cause vesicle internalization into a degradative like 

compartments. The question how this might happen and why particularly in neurons 

synaptic vesicles are degraded must be better investigated.  
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2.5 Molecular properties of Rab26   

To addressed the hypothesis how Rab26 might cluster vehicles and what is the potential 

molecular mechanism underling Rab26’s physiological activity I employed biochemistry 

approaches to answer the enigmatic behavior of this small GTPase. In the previous 

paragraph I showed that Rab26 is associated with a subset of synaptic vesicles. Up to this 

point there was no evidence showing how this might happen. 

 

 

2.5.1 Rab26 and Rab27 are resistant to GDI-mediated membrane 

dissociation 

Several studies reported that Rab26 belongs to the secretory Rab subgroup. 

It is known that Rab3a cycles between the cytosol pool and the membrane pool while 

Rab27 appears to be associated with the membrane in a nucleotide independent manner 

(Pavlos et al. 2010). The membrane-cytosol cycle of Rab proteins is regulated by a factor 

named Rab GDP dissociation inhibitor (RabGDI). This protein extracts the inactive form 

of Rab, Rab-GDP, from the membrane (for more details see chapter 1.3.1.1). The complex 

RabGDP·GDI becomes soluble. Therefore the addition of GDP and purified GDI in LP2 or 

in SV sample allows visualization of any difference in the composition of Rabs in the 

pellet fraction after the extraction reaction.  

 

I used LP2, the crude synaptic vesicles, as starting material to perform the RabGDI 

extraction assay (Figure 24) - for the protocol see chapter 4.2.3.5. Despite efficient 

extraction of the synaptic vesicle marker Rab3a (Lane Rab3, third column), we could see 

that Rab26 was tightly associated to the membrane in a nucleotide independent manner 

similarly to the behavior of Rab27 and Rab18 (Pavlos et al. 2010) (lane Rab26, column 3). 

As expected in the absence of RabGDI, and in the presence of PBS (first column), or 

GDP/GTPᵞS alone (second and fourth column), no difference in the level of the two Rab 

proteins could be observed. Synaptophysin was used as a loading control (lane Syph) 

whereas Rab3 was used as a positive control that showed that in the presence of GDP and 

GDI Rab3a was remarkably reduced. 
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Figure 24 Rab26GDP binds to vesicle membranes  

The GDI extraction experiment shows that Rab26 is resistant to extraction in the presence of GDP/ 

GTPᵞS and with and without recombinant RabGDI. Rab3a was used as a positive control (column 3, 

row 2), PBS as a negative control. Synaptophysin (Syph) was the loading control. LP2 was the brain 

fraction used as a starting material. 
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2.5.2 Rab26 oligomerization 

The observation that Rab26 and Rab27 behave in a similar way on the synaptic vesicle 

membrane motivated me to check whether Rab26 oligomerizes in a nucleotide dependent 

manner since it is known that Rab27 forms dimers in a GDP dependent manner (Chavas et 

al. 2007, Pavlos et al. 2010). Therefore I tested if Rab26 like Rab27 has the ability to 

dimerize/oligomerize. 

 

This idea was investigated experimentally by co-immunoprecipitation where EGFP-

Rab26WT, EGFP-Rab26QL and EGFP-Rab26TN/NI were cotransfected with Flag-

Rab26WT in HEK cells. In Figure 25A the upper blot represents the input fraction in 

which the coexpression can be observed. The Flag-Rab26WT bands show that equal 

volume of the samples was added. In the last lane of the input blot I observed only a band 

for Flag-Rab26WT. It represents the negative control since only Flag-Rab26WT was 

transfected. Anti GFP antibody was used to perform immunoprecipitation (below panel). 

The GFP antibody immunoprecipitated EGFP-Rab26WT, QL, TN and NI and in the last 

lane no bands were observed because there was no EGFP-Rab26 overexpression. Flag-

Rab26WT was co-immunoprecipitated with EGFP-Rab26 WT and DN (TN) confirming 

the hypothesis that Rab26 dimerizes/oligomerizes. 

Furthermore oligomerization of both bacteria purified GST-Rab26QL and TN was 

investigated by native PAGE (Figure 25B). Aggregates were still present after high 

centrifugation at 20.000 g (see asterisk) but a clear difference between the QL and the TN 

variant of GST-Rab26 could still be observed. Compared to the QL form that existed 

preferentially as a monomer (arrowhead) the GST-Rab26TN formed oligomers (see 

arrows). SDS-PAGE gels showed that in boiled or un-boiled conditions both GST-

Rab26QL and TN migrate at the expected molecular weight, 55KD (Figure 25C). 
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Figure 25 Rab26 self oligomerizes in vivo and in vitro 

(A) Co-immunoprecipitation (CoIP) assay revealed that Rab26 oligomerizes in vivo. The upper panel 

represents the input fraction. The lower panel the IP. Flag-Rab26WT co-immunoprecipitated with the 

wild-type (WT) and the dominant negative forms (TN and NI) of EGFP-Rab26 but not with the 

constitutively active form (QL). IB: immunoblot; IP: immunoprecipitation. The assay was performed 

in HEK 293T cell line. (B) The native gel shows that GST-Rab26QL exists prevalently in a monomeric 

form (arrowhead), whereas the GST-Rab26TN forms multiple bands that correspond to oligomers 

(arrows). 10 µg per lane were loaded. 0, no centrifugation; 5, 5+5 and 10 are the minutes of 

centrifugation at 20.000 g to get rid of the possible aggregates indicated with the asterisk (*). (C) The 

SDS-PAGE shows that the GST-Rab26QL and GST-Rab26TN in both condition boiled and not boiled 

are exist in their monomeric form, at 55 kDa. 
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2.5.3 Atg16L1 is a novel Rab26 effector protein 

The next essential question that required an answer is how Rab26 connects SVs to the 

autophagy pathway. Is there any regulator or effector protein that acts as a linker between 

the two pathways? Co-labeling analysis revealed that both endogenous and overexpressed 

Rab26 co-clusters with Atg16L1 one of the essential members of the pre-autophagosomal 

machinery. In addition Atg16L1 is reported to be an effector of Rab33 that overlaps 

partially with Rab26 in HeLa cells (Figure 20C). Therefore I wanted to investigate if 

Atg16L1 might be also an effector of Rab26. I decided to employ co-immunoprecipitation 

(Co-IP) and GST-pull down for protein-protein interaction analysis. Co-IP was first 

performed using HeLa cellular extracts expressing Flag-Rab26WT, QL, and TN. The 

results are reported in Figure 26A. Excitingly Flag-Rab26QL was capable of 

immunprecipitating endogenous Atg16L1 in a GTP dependent manner (arrow). More in 

detail the left blot represents the input fraction and the arrows indicate the relevant Atg16 

isoform. The first lane is the negative control that corresponds to the untransfected sample. 

Lane two to four are respectively WT, QL, and TN of Rab26. Anti-Flag antibody was used 

to carry out the IP (right panel). The first lane represents the negative control, the second 

and the third lane show that the Rab26 variants were efficiently and equally extract by anti-

Flag antibody. Only in the presence of Flag-Rab26QL the Atg16L1 isoform was co-

precipitated (arrow); whereas in the case of the Flag-Rab26WT and TN no signal could be 

detected.  

Subsequently I addressed the question if Atg16L1 is physically interacting with Rab26 in 

vitro. For this purpose GST-pulldown experiments were performed (Figure 26B). Bacteria 

expressed GST-Rab26QL and TN were immobilized on glutathione beads followed by the 

addition of a pre-formed complex of His-Atg16L1 N-terminal (NT) and His-Atg5-full 

length (FL). GST-Rab26QL pulled down His-Atg16L1 and surprisingly His-Atg5 was 

displaced from the preformed Atg5-Atg16 complex. 

These key experiments showed that Atg16L1 interacts preferentially with Rab26 in a GTP 

dependent manner, and suggest strongly that Atg16L1 might be a novel Rab26 effector 

protein. These findings contributed to our belief that Rab26 recruits Atg16L1 on synaptic 

vesicle membranes and targets the vesicles to the autophagy compartment for degradation.  
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Figure 26 Rab26 interacts directly with Atg16L1 

(A) Recombinant Flag-Rab26 co-immunoprecipitates with endogenous Atg16L1 in a GTP dependent 

manner (arrow). The asterisk indicates the IgG light chain. The heavy chain could not be observed 

because of the use of a secondary antibody that recognizes only the light chain. For the IP HeLa cell 

extracts were used. (B) Direct interaction of Rab26 with Atg16L1 was confirmed by GST pulldown. 

The pre-formed complex of Atg5-Atg16L1 is disrupted by the addition of GST-Rab26QL with Atg5 

displaced from its binding to Atg16L1.  
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3 Discussion 

 

3.1 Rab26 targets a subpopulation of SVs. 

Rab26 was assigned to be part of the secretory pathway by proteomics (Takamori et al. 

2006) and phylogenetic (Fukuda 2008) studies. Overexpression of the dominant negative 

form of Rab26 causes absence of granule formation in the zymogen exocrine cells (Tian et 

al. 2010, Li et al. 2012). The first direct evidence about potential physiological 

implications of Rab26 was published in 2006. The authors showed that Rab26 was 

associated to mature secretory granules. Furthermore Isoproterenol-induced amylase 

release was blocked by the introduction of an anti-Rab26 antibody in permeabilized parotid 

acinar cells. The release response to the stimulation could be rescued with the addition of 

exogenous GST-Rab26. This assay did not have any effect on the Ca2
+
 dependent 

stimulation (Nashida et al. 2006). They concluded that Rab26 might be involved in Ca2
+
 

independent exocytosis.  

During my research I confirmed that Rab26 colocalizes with the secretory granule vesicles 

as overexpression of EGFP-Rab26WT provokes cluster formation of neuropeptides such as 

NPY and Secretogranin (Figure 12; Figure 13E). 

In the very first section of the results I demonstrated that Rab26 is a neuronal and, 

precisely, a synaptic vesicle protein. Rab26 is recognizing a subset of the SVs. This is 

supported by the immunoisolation results (Figure 7B Figure 8D). In fact while 

Synaptophysin was able to pull out all the Rab26 positive particles, Rab26 isolated only a 

portion of Synaptophysin vesicles. Still a strong signal was detected on the SN. While 

differences in the efficiency of the antibodies cannot be excluded it seems more likely that 

the Rab26 vesicle pool is small compared to the Synaptophysin vesicle population. This 

interpretation is supported by studies which showed that Synaptophysin is one of the most 

prominent integral component of synaptic vesicles (Jahn et al. 1985, Wiedenmann and 

Franke 1985, Wiedenmann and Huttner 1989), and it is expected to isolate many coupled 

vesicles in immunoisolation experiments. This assumption was also supported by 

immunocytochemistry analysis, where Rab26 showed a puncta like pattern which was 

colocalizing with a subset of Synaptotagmin-1 (Figure 9B). 
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Different studies suggest that the synapse terminals are composed of different synaptic 

vesicle populations: from the ready release pool (RRP), to the reserve pool, (RP) and 

recycling pool (Rizzoli and Betz 2005, Voglmaier and Edwards 2007). It is also believed 

that these populations, though the ultrastructure analysis was not sufficient to help in 

distinguishing their morphology, might have different membrane-protein composition. For 

example VAMP7 (Hua et al. 2011), AP3 (Faundez et al. 1998, Blumstein et al. 2001) and 

AP1 (Glyvuk et al. 2010) appear to be enriched in the resting pool, AP2 in the recycling 

pool (Di Paolo and De Camilli 2006, Kim and Ryan 2009), VGLUT1 and VGLUT2 in the 

ready releasable pool (Hua et al. 2011). 

Furthermore synaptic vesicles are homogenous populations depending on their 

neurotransmitter contents. The different vesicles that transport different neurotransmitters 

can be separated from each other. An example is the GABA-synaptic vesicles that can be 

isolated with high purity from the rest of the other synaptic vesicle populations (Takamori 

et al. 2000). 

In the light of my results, it is reasonable to conclude that Rab26 positive compartments 

are a specific subpopulation of synaptic vesicles.  
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3.2 Rab26 and Rab27 show common functional features 

The neuronal secretory small GTPases are constituted by Rab3s, Rab27 and Rab26 

(Fukuda 2008). As discussed in the introduction, Rab27 differs in its membrane cycle from 

Rab3.  

Rab3 appears to shuttle between cytosolic pool and membrane pool in correspondence to 

the synaptic vesicle exocytosis pathway. During the exocytosis, Rab3 is anchored to the 

synaptic vesicles assisting their correct tethering, docking and priming toward the 

presynaptic plasma membrane. After neurotransmitter release, Rab3 is dissociated from the 

membrane by the action of RabGDI. The Rab3 cycle is essential for the directionality of 

the synaptic vesicle pathway (Lang and Jahn 2008). Rab27 instead is tightly associated to 

the synaptic vesicle membrane independent of the synaptic vesicle cycle. In addition the 

inactive form of Rab27 is found as a dimer (Pavlos et al. 2010). The association with the 

membrane in a nucleotide independent manner and its ability to dimerize resembles Rab26. 

Co-immunoprecipitation assays in HEK 293T cells (Figure 25) point out that Rab26 might 

undergo oligomerization by self-association or by mediation of regulator or effector 

proteins. This capacity is GDP dependent. It is reported that several Rab proteins have the 

ability to dimerize. For example Rab5 dimerizes (Daitoku et al. 2001) though in a GTP 

bound conformation; Rab11, Rab27 and Rab9 were found to crystalize as a dimer in a 

GDP-state (Pasqualato et al. 2004, Wittmann and Rudolph 2004, Chavas et al. 2007).  

Like Rab27, Rab26 appears to be bound to the membrane independently of the nucleotide 

state as suggested by the RabGDI extraction assay. More clearly Rab26 not only binds to 

the membrane in its active form (GTP bound form) but also in its inactive configuration 

(GDP- bound state). Several Rab proteins such as Rab27b and Rab18 behave in this way 

(Pavlos et al. 2010). This observation is in apparent contradiction to the partial cytosolic 

distribution of Rab26TN observed by immunofluorescence. One possible explanation is 

that the membrane extraction of Rab26 requires additional cytosolic components which are 

not present in LP2 or Rab26 might shuttle between an active membrane pool and an 

inactive membrane pool rather than cycle between the membrane and the cytosolic 

population. The latter mechanism was also speculated for Rab9 and Rab27 (Wittmann and 

Rudolph 2004, Pavlos et al. 2010). Further experiments will be needed to clarify the 

mechanism of membrane association/dissociation of Rab26. 
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3.2.1 Rab26 connects SVs with the autophagy pathway 

A very recent finding showed for the first time that Rab26 is associated to the lysosomal 

membrane. Furthermore overexpression of EGFP-Rab26WT causes lysosome clusters and 

reduction in mitochondria density but not mitochondria functionality (Jin and Mills 2014). 

This data supports our finding that Rab26 is indeed localizing to a degradative 

compartment, but it does not specify the mechanism of how Rab26 clusters lysosome and 

what its physiological role is.  

The observation that Rab26 is connected to the SV-autophagy pathway was the most 

exciting finding of my project. In fact Rab26 colocalizes with several proteins involved in 

the regulation of the autophagy pathway such as LC3, Atg16L1.  

It was very striking to see that the overexpression of Flag-Rab26WT and QL causes 

autophagosome accumulation along the neurites (Figure 17). Flag-Rab26TN instead does 

not cluster GFP-LC3B that appears mostly diffuse in the periphery. Moreover most of the 

expression of Flag-Rab26TN is localized around the soma (probably a “volume” artefact). 

Also GFP-LC3 seems to be preferentially expressed and punctated at the level of the cell 

body. This suggests that Rab26 might be important for autophagosome distribution in 

neurons.  

 

The moderate overlap between Rab33 and Rab26 in HeLa cells, was the key result that 

allowed me to address the attention of my study to the early stages of autophagosome 

formation. Atg16L1 was the best candidate for this study, since it was shown that it acts as 

a Rab33 effector protein (Itoh et al. 2008). Combining immunofluorescence and pulldown 

assays, I identified Atg16L1 as a direct effector protein of Rab26.  

Immunofluorescence analysis showed that not only endogenous but also recombinant 

Rab26 recruits Atg16L1 to the same compartment (Figure 18). Co-IP and GST pull down 

experiments support this observation. Rab26 interacts directly with the NT-region of 

Atg16L1 in a GTP dependent manner. The biochemistry studies allowed us to speculate on 

the dynamic interaction between Rab26, Atg16L1 and Atg5. In fact upon addition of GST-

Rab26 on a pre-formed complex between His-Atg16NT and His-Atg5FL, the binary 

complex is destabilized by Rab26, Atg5 is replaced and a new binary complex 

(Rab26·Atg16L1) is formed. One possible interpretation for this apparent mutually 

exclusive interaction is that the interaction between Rab26 and Atg16L1 occurs at an early 

step before autophagosome formation. This might be possible since it was proposed in 

yeast that the Atg5·Atg12 complex is first associated to the PAS and that Atg16L1 is 
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recruited a later stage (Suzuki et al. 2007, Suzuki and Ohsumi 2010). Therefore Atg16L1 

might be first recruited by Rab26 that transports synaptic vesicles to the new-forming 

autophagosome, then Atg16L1 interacts with Atg5·Atg12 complex on the isolation 

membrane. 

The mammalian Atg16L1 is one of the essential members of the autophagosome core 

machinery. It is well investigated both at the functional and structural level. It is composed 

of three major domains: the N-terminal region or Atg5 binding domain (Fukuda and Itoh 

2008; Itoh, Fujita et al. 2008), the coiled coil domains part of which is a Rab33 binding site 

and a C-terminal WD40 repeats domain with unknown interacting partners (Mizushima et 

al. 2003, Fukuda and Itoh 2008, Itoh et al. 2008, Ishibashi et al. 2012). In the GST 

pulldown experiments I could observe an interaction between Rab26QL and the truncated 

Atg16L1 lacking the WD40 domain. This result suggested that possibly the two Rabs, 

Rab26 and Rab33B, might compete for the same binding region that corresponds to the 

coiled-coil motive of Atg16L1 as proposed by Fukuda and Itoh (2008).  

Another Atg protein, Atg11, was shown to be a downstream effector of Rab1/Ypt1 in 

yeast. Interestingly Atg11 interacts with Ypt1 in correspondence of its coiled coil region, 

similar to Rab26 and Rab33 with Atg16L1. Intriguingly Rab1/Ypt1 is found to be 

associated with Atg9 positive membranes and together with Atg11 is required for PAS 

assembly (Lipatova et al. 2012). Like Atg11 for Ypt1, Atg16L1 interacts directly with 

Rab26 and might act as a downstream effector. 

Atg16L1 exists in different isoforms. At least three isoforms were identified in mammalian 

cells (Mizushima et al. 2003, Jiang et al. 2013). It might be that Rab33a/b and Rab26 each 

interact with different subsets of the Atg16L1 isoforms that act on different vesicle pools. 

This scenario is reasonable since Rab26 co-immunoprecipitated a short isoform of 

Atg16L1, whereas Rab33 interacts with the main isoform (Fukuda and Itoh 2008, Ishibashi 

et al. 2011). In fact the Atg16L1·Rab26 interaction was confirmed with a Co-IP 

experiment where Flag-Rab26QL but not Flag-Rab26TN precipitated the endogenous 

Atg16L1 short isoform. Furthermore the partial overlap between Rab26 and Rab33B as 

well as the colocalization with Rab7 observed in HeLa cells would imply that Rab26 

converges with the Rab33B pathway at the very early stages of the autophagosome 

formation. The Rab33B/Atg16L complex is likely involved in the early tethering/docking 

of Golgi derived vesicles, whereas the Rab26/Atg16L1 complex in the tethering/docking of 

synaptic vesicles. The two pathways might converge at some point to a common isolation 
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membrane containing Atg12·Atg5 complex. Instead Rab26 and Rab7 would only intersect 

at the stage of fusion of autophagosme with the lysosome. 

Rab33A and Atg16L1 are known to regulate the secretion of dense core vesicles in PC12 

independently from autophagy (Fukuda et. al 2012). It is likely that Rab26 and Rab33A are 

regulating different subsets of synaptic vesicles. Nevertheless all these aspects must be 

further investigated to better clarify the role of Rab26 and Rab33a/b in vesicle targeting 

and their involvement in the different Atg16L1-dependent vesicle trafficking/degradation 

processes in neurons. 

The fact that Atg16L1 and not LC3 is recruited on EGFP-Rab26WT puncta lead us to 

speculate how EGFP-Rab26WT, that acts as a functional mutant, causes this vesicle 

clusters in neurons and in HeLa. First it might be that EGFP-Rab26 actively subtracts 

synaptic vesicles from their normal pathway to the degradative pathway. The excess 

recruitment of vesicles stalled the autophagy pathway probably because the degradation 

machinery cannot keep up with the increased amount of vesicle aggregates. Alternatively 

EGFP-Rab26 might trap Atg16L1 in a step before its interaction with Atg5-Atg12 that 

resides on the PAS, preventing therefore LC3 recruitment. Finally it might be that Rab26-

Atg16L1 opens a specialized autophagy pathway that is Rab5 independent. This last 

scenario is not to be excluded since the existence of an Atg5 independent autophagy 

pathway was reported to exist. Mice atg5 or atg7 knock out are capable to form 

autophagosome/autolysosome. This work was the first in showing the co-existence of two 

autophagyc routs: the Atg5/Atg7 dependent pathway and Atg5/Atg7 independent pathway 

(Nishida et al. 2009). 

In addition to Atg16 also Rabphilin and RIM might act as Rab26 effector proteins. This 

hypothesis is based on results reported by Fukuda (2003). In this study it was shown that 

Rim1 and Rim2 are activated by different Rab proteins and that they are not Rab3 

exclusive effectors. Furthermore Fukuda showed that Rab3 interacts with Rim2 and 

Rabphilin, whereas Rab27 interacts only with Rabphilin. Intriguingly Rab26 was shown to 

interact with Rim1 only and not with Rim2 and Rabphilin. These are additional proves that 

Rab26 is diverging functionally from the Rab3 family suggesting that it is regulating a 

different aspect of synaptic activity. The investigation of a functional interaction between 

Rab26 and Rim1 in synapses and the implication of this interaction in synaptic vesicle 

quality control might be a very fascinating project.  
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3.2.2 Rab26 clusters synaptic vesicles 

The oligomerization property of Rab26 might explain the clustering phenotype observed 

by immunogold electron microscopy both in neurons and in HeLa.  

It might be that Rab26WT dimerizes in a “trans” or in a “cis” configuration. More clearly 

two Rab26 proteins might sit either in different vesicle membrane (“trans dimerization”) or 

both in the same vesicle (“cis” dimerization) and pull together other vesicles provoking 

this huge vesicle aggregates with the help of other proteins.  

The clustering phenotype is tag independent though the GFP tagged proteins exhibit more 

dramatic effects. One possible reason is that EGFP weakly dimerizes by its self and 

therefore possibly enhances the intrinsic ability of Rab26 to cluster vesicles. For this 

reason EGFP-Rab26WT could act as a functional mutant that might cluster and trap 

proteins in a particular step slowing down the endocytic pathway and enabling us to 

understand its role in synaptic vesicle quality control. In fact EGFP-Rab26WT trapped 

Atg16L1 on the same compartment subtracting it from the recruitment of LC3. The Flag 

tagged or untagged version of Rab26 is able to recruit LC3 in the same compartments. 

It is not the first time that GFP-fused proteins are acting as inhibitors. For example many 

ESCRT subunits upon fusion with fluorescent proteins are dominant negative and are used 

to investigate the ESCRT pathway. This functional mutants cause the formation of 

abnormal endosomal compartments because the ESCRT complexes are trapped (Howard et 

al. 2001, Strack et al. 2003, Langelier et al. 2006, Tandon et al. 2009). EGFP-Rab26 might 

selectively trap the recycled synaptic vesicles (Figure 15B) at an intermediate stage before 

fusion with the autolysosome. 
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3.3 Synaptic vesicle quality control 

 

3.3.1 Rab26-dependent pathway 

I showed that Atg16L1 and Rab26 are most likely involved in the membrane trafficking 

between synaptic vesicles and autophagosomes. 

The question that might arise is the following: is Rab26 acting selectively? In other words, 

which kind of synaptic vesicles are targeted by Rab26? 

To address this question I performed a recycling assay as describe in section 2.2.3. This 

experiment allowed me to visualize how Rab26 targets recycled synaptic vesicles, though 

it does not exclude that Rab26-induced clusters contain also not recycled vesicles. 

On the light of our observation we could conclude that Rab26 might be involved in the 

regulation of synaptic vesicle turnover. Possibly Rab26 recruits first Atg16L1 on the 

recycled synaptic vesicles, and then delivers the vesicles and its content to the 

autophagosome that subsequently fuses with the lysosomes for degradation.  

The synaptic vesicle pathway requires a high rate of vesicle and protein turnover. Since the 

1950´s several research groups were trying to understand how after neurotransmitter 

release, the cells were still able to produce new synaptic vesicles capable of release after 

intensive and extensive depletion of synaptic vesicles at the level of the NMJ of frog and 

crayfish (Atwood et al. 1972, Heuser and Reese 1973). 

Ceccarelli et al. (1973) showed for the first time that synaptic vesicles are recycled back 

and reused several times. Although no increase in the number of late endosomes, 

lysosomes or autophagosomes could be observed under the different conditions the 

hypothesis was formulated that the newly reformed synaptic vesicles could either be 

actively re-used as functional synaptic vesicles or re-directed to the late endosome-

autolysosome pathway (Holtzman 1971). It is still a very controversial and heavily 

investigated field. After a certain number of synaptic vesicle cycles, membranes and 

proteins that are integral components of these vesicles must be re-synthesized de novo.  

But where are the old synaptic vesicle components going and is there a pathway that 

controls the quality of synaptic vesicles? 

Macroautophagy has already been shown to contribute to regulating postsynaptic 

receptors. It is still unclear if the presynaptic proteins turnover is regulated by the same 

pathway. Holtzman (1971) predicted that the turnover of recycled synaptic vesicles might 
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require lysosomes. David Sulzer´s group demonstrated that presynaptic neurotransmission 

is modulated by macroautophagy in mice (Hernandez et al. 2012). Induction of autophagy 

by rapamycin causes reduction in presynaptic components. In addition they observed 

synaptic vesicle like structures inside autophagic vacuoles. This finding led them to 

hypothesize that the synaptic vesicle membranes are redistributed between endosomes, 

autophagosomes and lysosomes under normal conditions. They also speculated the 

existence of an alternative pathway for synaptic vesicle degradation. 

This newly discovered role of Rab26 could be seen as an indirect answer to the hypothesis 

formulated early on by Holtzman and Sulzer. 

We offer for the first time a new alternative mode of synaptic vesicle recycling that 

bypasses the Rab5-dependent pathway and converges with the LE/MVB and autolysosome 

pathway. A subset of recycled SVs is delivered to the proximal regions of neurons where 

most of the acidic compartments are localized. Two independent groups suggested that 

autophagosomes originate distally and through a retrograde transport move towards the 

cell body. During their travel they undergo fusion with acidic compartments and finally 

with the lysosomes (Lee, Sato et al. 2011). Maday et al. (2012) proposed that the 

autophagosome can be generated locally along the axons. It is therefore reasonable to think 

that Rab26 is selectively targeting synaptic vesicles for degradation, contributing to the 

formation of autophagosomes in the distal and proximal neurite by furnishing membranous 

structures needed for autophagosome biogenesis. All this data are supporting our theory 

that Rab26 might be assisting the synaptic vesicle delivery during autophagosome 

maturation up to the fusion with lysosomes as suggested by the colocalization with 

LAMP2, the lysosomal receptor protein that modulates selective or Chaperone-mediated 

autophagy (CMA). 

Further investigation in this direction must be performed to better understand the role of 

Rab26 in regulating the degradation of synaptic vesicle components by the CMA. 
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4 Materials & Methods 

 

4.1 Materials 

4.1.1 Chemicals 

All the regular chemicals used during this study were of high purity and only for 

biochemical analysis. Specific chemicals used for the purpose of this study are listed in the 

below table (Table 1). 

 

Chemicals Company 

Lysotracker Invitrogen 

DMEM Lonza 

HBSS Lonza 

MITO Becton Dickinson 

Collagen Becton Dickinson 

Neurobasal Medium A (NBA) Gibco 

B-27 Supplement Gibco 

L-glutammine 100X Lonza 

Glutamax –I Supplement Gibco 

Albumin, bovine Sigma 

Penicillin Streptomycin Roche 

FCS PAA laboratories 

Triton-X-100 Sigma-Aldrich 

Eupergit C1Z beads Roehm Pharma 

Complete EDTA-free, Protease inhibitor tablet Roche 

IPTG Formedium 

DTT Formedium 

GTPγS Roche 

GDP Sigma-Aldrich 

Eupergit C1Z beads Roehm Pharma 

Table 1 Chemicals 
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4.1.2 Enzymes 

The enzymes used during my studies were purchased from the company listed below 

(Table 2). They were used according to the manufacturer's protocol. 

 

Enzymes Company 

Restriction Enzyme NEB 

T4 DNA Ligase NEB 

Pfu polymerase Promega 

rApid Alkaline Phosphatase Roche 

Trypsin-EDTA GIBCO 

Papain Worthington biomedical corporation 

Tripsin Inhibitor Sigma 

Thrombin MP Biomedical 

DNaseI Applichem 

Table 2 Enzymes 

 

 

4.1.3 Kits 

Kits used in this study are listed below including the sources from where they were 

purchased (Table 3). The kits were handled according to the specific instruction given by 

the company. 

 

Kit Company 

DH5α chemically competent cells Invitrogen 

Gateway pENTR/D-TOPO cloning Invitrogen 

Gateway LR Clonase enzyme mix and reaction buffer Invitrogen 

Lipofectamine 
TM

 2000 Invitrogen 

NucleoSpin ®Plasmid kit Macherey-Nagel 

NucleoSpin® Gel and PCR Clean-up Macherey-Nagel 

NucleoBond® Xtra Midi Macherey-Nagel 

Pierce
®
BCA Protein assay Thermo scientific 

Western Lightening™ Plus-ECL Applied Biosystems 

Table 3 Kits. 

 

4.1.4 Antibodies 

In Table 4 the antibodies used in this study are reported including applications, dilutions 

and companies.  
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1° Antibody Species Application Company 

Synaptotagmin 41.1 mouse monoclonal  WB (1:1000), ICC (1:400) Synaptic Systems 

Tau rabbit polyclonal ICC (1:1000) Synaptic Systems 

Rab26 mouse monoclonal WB 1:500), ICC (1:100) Synaptic Systems 

Synaptobrevin 69.1 mouse monoclonal ICC (1:400) Synaptic Systems 

Synaptophysin G96 mouse monoclonal WB (1:1000), IP,ICC (1:400) Synaptic Systems 

Rab3a mouse monoclonal WB (1:100), ICC (1:500) Synaptic Systems 

VAMP4 rabbit polyclonal ICC (1:500) Synaptic Systems 

Syntaxin6 rabbit polyclonal ICC (1:500) Synaptic Systems 

Vti1b rabbit polyclonal ICC (1:500) Synaptic Systems 

GFP rabbit polyclonal WB (1:10.000), IP Synaptic Systems 

Flag mouse monoclonal WB (1:20000), ICC (1:1000), IP Sigma-Aldrich 

RFP rabbit polyclonal WB (1:1000) Abcam 

LC3B rabbit polyclonal WB (1:2000), ICC (1:500-1000) Novus Biological 

EEA1 mouse monoclonal WB (1.2000), ICC (1:400) BD Transduction Laboratories™ 

GM130 mouse monoclonal ICC (1:200) BD Transduction Laboratories™ 

Mitofilin mouse monoclonal WB (1:1000), ICC (1:200) Abcam 

Atg16L1 rabbit polyclonal WB (1:500)  Medical and biological laboratories 

Atg16L1 rabbit polyclonal ICC (1:200-400) Cosmo Bio Co. 

LAMP2 mouse monoclonal ICC (1:200) Developmental Studies Hybridoma Bank 

2° Antibody Species Application Company 

mouse IgG (Alexa fluor 488) goat polyclonal,  WB (1:400), ICC (1:400) Jackson ImmunoResearch 

mouse IgG (Cy2 or Cy3 labeled) goat polyclonal WB (1:400), ICC (1:400) Jackson ImmunoResearch 

rabbit IgG (Cy2 or Cy3 labeled) goat polyclonal WB (1:400), ICC (1:400) Jackson ImmunoResearch 

mouse IgG (HRP labeled ) goat polyclonal WB (1:400), ICC (1:400) BioRad 

rabbit IgG (HRP labeled) goat polyclonal WB (1:400), ICC (1:400) BioRad 

Table 4 Antibodies 
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4.1.5 Buffers and Media 

The common buffers used during this study are listed in Table 5: Phosphate Buffered Saline (PBS); Tris-Buffered Saline and Tween 20 (TBST); 

paraformaldehyd(PFA) used for immunocytochemistry (ICC); lysis buffer used to lyse cells; The running buffer was used for Laemmli SDS-PAGE 

for protein separation. The transfer buffer was used to transfer proteins from the SDS-PAGE gel to the nitrocellulose or PVDF membrane for WB. 

The blocking buffers were employed respectively to block the membrane prior to WB using dry milk as a blocking reagent or the cells during the 

ICC procedure using normal goat serum (NGS) as a blocking reagent.  

 

Buffer recipes 

Buffers 

(1X) 
PBS  TBST Running Transfer 

Blocking 

(WB) 
Lysis PFA Blocking (ICC) 

C
o
m

p
o
si

ti
o
n

 2.7 mM KCl 

1.5 mM KH2PO4 

137 mM NaCl 

8 mM Na2HPO4 

 

150 mM Tris-HCl 

1.5 M NaCl 

0.5 % Tween 20 

 

 

25mM Tris-HCl 

192 mM Glycine 

0.1 % SDS 

  

  

200 mM Glycin  

25 mM Tris  

0,04% SDS 

20% EtOH 

  

5% dry milk 

1XTBST 

  

  

  

50 mM HEPES 

150 mM NaCl 

1mM MgCl2 

1% Tx-100 

Protease inhibitors 

4% PFA 

1XPBS 

  

  

10% NGS 

1XPBS 

0.2% Tx-100 

  

 

pH 7,4- to filter 

    

 

pH 7,4- to filter 

 

pH 7,4- to filter 

 

pH 7,4- to filter 

Table 5 Buffers and media recipes 
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4.1.5.1 Antibiotics 

Ampicillin and kanamycin were the two antibiotics used in this study for DNA amplification 

and protein expression in bacteria strains. The following antibiotics were prepared using 

deionized water. Ampicillin 100 µg/ml (w/v) and Kanamycin 30 µg/ml (w/v).   

 

 

4.1.5.2 Neuronal culture media 

The neuronal culture media is based on the NBA solution that contains: 500 ml Neurobasal A, 

50 ml B-27-supplement, 5 ml Glutamax I-stock, 100 U/ml Penicillin/streptomycin.  

 

 

4.1.5.3 HeLa and HEK 293T feeding media 

The feeding media (D10) for HeLa and HEK cells is prepared as follow: DMEM, 10 % FCS, 4 mM 

glutamine, 100 U/ml penicillin and Streptomycin 

 

 

4.1.5.4 Bacteria media 

E.coli strains were grown in a Luria Bertani (LB) medium containing 10 g tryptone, 5 g yeast 

extract and 10 g NaCl per 1iter (l). 

 

 

4.1.6 Mammalian cell lines and bacteria strains 

During this study different cell lines were used in different experiments. 

The neuronal cultures, from rat brain, and the HeLa ss6 cell lines were used for overexpression studies 

and immunocytochemistry (ICC) analysis. HeLa and Human Embryonic Kidney 293T (HEK293T) 

cells were both used for transient transfection and for biochemistry studies. For molecular cloning 

and for protein expression respectively E.coli DH5α and E.coli BL21 (DE3) strains were 

used.  
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4.1.7 DNA constructs 

In Table 6 all the DNA constructs used in this study are listed 

 

 

Table 6 DNAs and Vectors 

Vector Gene Mutations site Tag Resistance Source 

pEGFP Rab26 WT; Q123L; T77N; N177I EGFP Kan
R
 N. Pavlos 

pEGFP Rab26 dcc EGFP Kan
R
 B. Binotti 

mGFP Rab26 WT GFP Kan
R
 J. Chua 

pCMV-Tag2a Rab26 WT; Q123L; T77N Flag Kan
R
 B. Binotti 

pcDNA 3.1(+) Rab26 WT; Q123L; T77N - Kan
R
 B. Binotti 

pGEX-KG Rab26 WT; Q123L; T77N; N177I GST Amp
R
 N. Pavlos 

pEGFP Rab7 WT EGFP Kan
R
 N. Pavlos 

pEGFP Rab33 WT EGFP Kan
R
 N. Pavlos 

GFP LC3B WT GFP Kan
R
 Z. Elazar 

mRFP LC3A WT RFP Kan
R
 B. Binotti 

mRFP Rab5 WT; Q79L RFP Kan
R
 S. Kioke 

 

4.1.8 Primers  

Primers used for cloning Rab26 and LC3 in the different vectors are listed below in Table 7 

Sequences: 5´-3´ Name 
Restriction 

site 
Vectors 

CGCGGATCCCATGTCCAGGAA Rab26_forward BamHI pCMV-Tag2a 

CCGCTCGAGTCATCAAGGGCG Rab26_reverse XhoI pCMV-Tag2a 

CGCGGATCCCACCATGGACGT 

CGCCTTCAAGGTCATGC 
Rab26_forward BamHI pcDNA3.1(+) 

CCGCTCGAGTCATCAAGGGCG 

GCAGCAGGA 
Rab26_reverse XhoI pcDNA3.1(+) 

GAGAAGATCTATGTCCAGGAAG 

AAGACCCCCA 
Rab26dcc_forward BaglII pEGFP-C1 

CGCGGATCCTCAGGAGGCCCC Rab26dcc_reverse BamHI pEGFP-C1 

CCGCTCGAGCTATGCCCTCCGA 

CCGGCCTTTC 
LC3A_forward XhoI pmRFP-C1 

CGCGGATCCTCAGAAGCCGAAG 

GTTTCTTGGGAG 
LC3A_reverce BamHI pmRFP-C1 

Table 7 Oligonucleotides  
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4.2 Methods  

 

4.2.1 Molecular biology methods 

4.2.1.1 Molecular cloning 

Standard cloning procedures were used to generate the different Rab26 constructs that include 

not only the WT but also the constitutively active (CA)/GTP locked form and the dominant 

negative (DN)/GDP locked form. Rab proteins share the same and well characterized 

organization of the small GTPase domain. The point mutations to get either the CA, or the 

DN forms are well defined (Li and Stahl 1993). The single point mutations for Rab26 were 

identified by alignment with the closest relative mRab37 which shares 74% sequence identity 

with Rab26 and for which the mutation sites were already characterized (Masuda et al. 2000). 

The sequences alignment between Mus musculus Rab37 (gi|112293035|) and Homo sapiens 

Rab26 (gi|46361978|) was performed using T-coffee algorithm. Rab26 CA could be generated 

by replacing the Glutamine residue Q123 with a Lysine (L) and the DNs by substituting 

Threonine T77 with Asparagine (N) or substituting Asparagine 177 (N177) with Isoleucine (I) 

(Figure 27, green boxes). The different Rab26 constructs were obtained using a standard PCR 

protocol. Specific primers for the specific vectors are listed in Table 7.  
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Figure 27 Rab26 and Rab37 sequence alignment 

Human Rab26 and mouse Rab37 are close relatives. They share 74% of sequence identity (Masuda et al. 

2000). Rab37Q89L corresponds to Rab26Q123L; whereas Rab37T43N corresponds to Rab26T77N. The 

two position are highlighted with green rectangles. The third green rectangle is the Asparagine residue that 

once substituted with the Isoleucine (I) gives the nucleotide-free state of the Rab protein. T-coffee is the 

algorithm used for the sequence alignment.  

 

 

4.2.1.2 Cloning procedure 

To clone genes into specific vectors the desired cDNA was amplified using a standard PCR 

protocol. The PCR products were obtained using the DNA polymerase Pfu (Promega) 

following the protocol in Table 8. 

 

Master Mix 

(PCR buffer reaction) 

100 µl 

reaction 
PCR cycles 

Buffer (10X) 10 (1) Initial denaturation  98 °C, 1 min 

water 77 (2) Denaturation 98 °C, 30 sec  

dNTPs (10 mM) 4 (3) Annealing 65°C, 30 sec 

Template (5 nM) 4 (4) Elongation 72°C, 2 min/1kb 

Primer_forward (15 µM) 2 n° of cycles Step 2 to 4 performed 30X 

Primer_reverse (15 µM) 2 (5) Final extension 72°C, 5 min  

Pfu 1 pause 4°C 

Table 8 PCR cycles.  
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The PCR products (or inserts) obtained were monitored by agarose gel electrophoresis and 

purified by gel extraction using a commercial kit (4.1.3). The DNA was loaded on 1% agarose 

gel using 100 mM Tris-boric acid EDTA-free buffer. Subsequently the purified PCR products 

were digested for 3 hours at 37°C with the specific restriction enzymes (NEB) and subjected 

to a second purification step using a PCR clean up kit (4.1.3). At the same time the vectors 

were digested with the same restriction enzymes and gel purified. Insert and vector were then 

ligated using the same amount of mole ratio, or with excess of insert. The ligation was 

performed in 10 µl of reaction using T4-DNA ligase (NEB) according to the manufacturer's 

protocol. 3 to 4 µl of the reaction were then used for heat shock transformation. 

 

 

4.2.1.3 Bacteria transformation 

Chemically competent E.coli DH5α (Invitrogen) were transformed using a heat shock 

transformation protocol that consists in incubating 50 µl of the competent cells with either 

normal plasmid or with the ligation reaction in a 2 ml Eppendorf tube. The DNA/cells mixture 

was then incubated for 30 min on ice. Afterwards the sample was heat shocked for 50 sec at 

42°C, let recover on ice for 2 min and for 45-60 min at 37°C in presence of 500-1000 µl of 

SOC medium under constant agitation. Finally the cells were shortly centrifuge at 13.000 rpm 

for 1 min, the supernatant was discarded and a fresh LB medium (around 150 µl) was used to 

re-suspend the pellet. The cells were plated on agar plate with the desired antibiotic for colony 

selection. The positive colonies were isolated to check for the presence of the insert. 

 

 

4.2.1.4 Plasmid purification 

A single positive colony was grown overnight (ON) in a 13 ml round bottom tube 

(SARSTED) with 6 ml LB-medium in presence of antibiotic. Then the culture was 

centrifuged for 10 min at 4.000 rpm using a micro centrifuge (Eppendorf centrifuge 5702R). 

The medium was discarded and the plasmids were extracted from the cell pellet using a 

plasmid extraction kit (NucleoSpin ®Plasmid kit). The DNA concentration was measured 

using a NanoDrop machine (NanoDrop® ND 1000 PEQLAB, Thermo Scientific). 200 ng of 

the purified plasmid was then subjected to digestion and the fragments were analyzed by 
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agarose gel. 1 µg of the positive plasmid were then sent for DNA sequencing (eurofins 

genomics mwg/operon)  

 

 

4.2.1.5 Protein expression and purification 

Human Rab26 was cloned in a pGEX-KG vector using the EcoRI and BamHI cleavage sites. 

The plasmid was then transformed in BL21 (D3). 200 ml pre-culture were grown at 37°C ON. 

10 ml of ON culture were inoculated in 1l fresh LB medium supplemented with 100 µg/ml 

Ampicillin for 2.5 hours up to an OD of 0.6-0.8. Subsequently before IPTG induction, the 

cultures were let grow for 1 hour at 16°C. The expression was achieved by addition of 1 mM 

IPTG ON at 16°C. The cells were harvested by centrifugation at 4000 rpm for 10 min using a 

Bachman centrifuge. 1l pellet was re-suspended in 25 mL protein buffer (PB) (50 mM HEPES 

pH 7.4, 500 mM NaCl, 5 mM DTT, 5 mM MgCl2, complete protease inhibitor, 100 µM 

GTPγS/GDP) and supplemented with a few crystals of DNase. The samples were left for 10-

15 min at 4°C and subsequently sonicated 4 times for 30 sec each, with 1 min interval on ice 

to cool down, using a Branson Sonifier 450. The lysate was then cleared at 13.000 rpm using 

SLA 1500 rotor for 40 min at 4°C. The supernatant was collected and filtered using a 0, 45 

µm Whatman filter. The sample was afterwards loaded onto a GST-column (GST Trap4B GE 

Healthcare) and eluted using 30 mM glutathione in PB. The eluted fractions were collected 

and dialyzed using PB to remove glutathione, three times for 3 hours each. The purified 

proteins were then used for GST pull down assay (4.2.3.7) or frozen in liquid nitrogen and 

kept at -80°C 
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4.2.2 Cell biology methods 

 

 

4.2.2.1 Mammalian cell cultures 

4.2.2.1.1 Cell lines and primary neuronal cultures  

HeLa ss6 and HEK 293T were cultured using D10 medium containing DMEM, 10% fetal calf 

serum (FCS), 4 mM glutamine and 100 units/ml penicillin/streptomycin. They were 

maintained in a 10-cm petri dishes for 2-3 days at 37°C and 90% humidity in 5% CO2. When 

they reached the confluence of 80%-90% they were passaged and diluted (usually 1:10). The 

splitting procedure was as follows: first the cells were washed once with a pre-warmed (37°C) 

1X PBS, and then they were incubated with 1 ml of Trypsin EDTA for 4 min in at 37°C or 1 

min at RT for HEK cells. Subsequently the trypsin activity was inhibited by the addition of 

fresh medium (around 10 ml). The cells were then collected in a 15 ml Falcon tube and 

centrifuged at 1000 g for 2 min at room temperature (RT). The supernatant was discarded and 

the cell pellet was re-suspended in 10 ml fresh D10 medium. 1 ml of the suspension was then 

added on the 10-cm petri dish containing 9 ml D10 medium. The cells were then re-incubated 

until the next passage. All the steps were carried out in a sterile condition under a lamina-

hood  

Primary hippocampal neurons were used to prepare high dense cultures. The hippocampal 

regions were first isolated from the brain of a new born rat (day of in vitro development 0, 

DIV 0). 75 000 cells were seeded in a 12 well plate and maintained till DIV 20 in a medium 

containing NBA solution (4.1.5.2). The cells were grown and developed at 37°C and 95% 

humidity in 5% CO2. The cultures were kindly prepared by Sigrid Schmidt. 
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4.2.2.2 Transient transfection 

Mammalian cell lines were transiently transfected using Lipofectamin
TM

 2000 (Invitrogen) 

following manufacturer's instructions. Briefly cells were seeded a day before in 12 well plates 

until the confluence was about 70%-80%. 3 µl/well of Lipofectamine was diluted in 100 µl of 

DMEM without supplement for 5 min. Subsequently 1 µg of DNA diluted in 100 µl of 

DMEM was combined with the diluted Lipofectamine. The transfection mix was then 

incubated at RT for 20 min and after addition to the cells, incubated at 37°C for 4 hours. 

Finally the medium was replaced with fresh D10 medium. The plate was then incubated for 

24-48 hours at 37°C. Subsequently the transiently expressing cells were either fixed and 

subjected to ICC for microscope analysis or lysed for biochemistry studies. 

The transfection protocol was optimized for neuronal culture. Neurons were transfected at 

DIV 7-9. First the cells were moved into a new 12-well plate with 800 µl freshly prepared 

NBA medium. The old medium was put back in the incubator. 160 µl of transfection mix 

containing 1 µg of DNA and 2 µl Lipofectamine were added on top of each well. The neurons 

were then incubated for 4 hours. Subsequently the cells were washed once with pre-warmed 

fresh NBA medium and then they were placed back into the initial growing medium for 

another 24-48 hours. In the experiments performed in Figure 12 and Figure 13 neurons were 

transiently transfected for 48 hours using a calcium phosphate transfection method (for 

protocol see Pavlos et al. (2010)). 

 

 

4.2.2.3 Transferrin assay 

For the transferrin uptake, Alexa Fluor 488-conjugated transferrin was diluted 1:100 in pre-

warmed (37°C) OptiMEM medium and added on the neuronal or HeLa cultures for 5 min or 

30 min (to label recycled and early endosomes). After incubation the cells were washed 3 

times in PBS and fixed with 4 % PFA for direct microscopy analysis. 

 

  



- Materials & Methods -  

  81 

 

4.2.2.4 Lysosome stain 

LysoTracker® Red (Invitrogen) is a florescent-labeled dye that is canonically used to 

visualize acidic compartments such as lysosomes in live cells. Cultured neurons and HeLa 

cells were labeled with Lysotracker following the manufacturer's instructions.  

 

 

4.2.2.5  In vivo recycling assay 

For the in vivo recycling assay neurons were incubated for 24 hours with anti Synaptotagimin-

Oyster-550 labeled antibody (Synaptic Systems) that recognizes the luminal domain of 

Synaptotagmin. The incubation was performed during all the time of transient expression of 

EGFP-Rab26 constructs. Subsequently the cells were washed twice with PBS then they were 

directly fixed and analyzed under the microscope.  

 

 

4.2.2.6 Immunofluorescence stain 

Transiently transfected cells or neurons from DIV-12 to DIV-16 were washed once with PBS 

to remove the serum. Then the cells were fixed using 4% PFA for 15 min at RT. The fixative 

was removed and the cells were washed 3 times 5 min each with PBS. Afterward the cells 

were blocked with 10% NGS and 0, 2% Triton-X-100 in PBS for 1 hour. The coverslips were 

inverted on top of a drop of 45-50 µl of primary antibody diluted in blocking buffer. The 

incubation was performed in a dark and humidified chamber for 1 to 2 hours at RT or ON at 

4°C. Subsequently the coverslips were placed back in their 12-well plates and washed 3 times 

for 5 min each with PBS and incubated again following the same procedure with the 

secondary antibody for 1 hour at RT. Finally the cells were washed as previously described 

and mounted on a microscope slides using a mounting media (Fuoro-Gel, Electron 

Microscopy Sciences, or VECTASHIELD HardSet Mounting Medium with DAPI, Vector 

Laboratory). The mounting media was let dry ON at 4°C. 
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4.2.2.7 Image acquisition and processing 

For the image acquisition of immunostained samples AOBS SP2 (Leica), or LSM 780 (ZEISS) 

confocal microscopes were used. The images shown in Figure 20 were acquired using an 

epifluorescence microscope (Axioverter 200M, ZEISS). ImageJ or LAS AF Lite software from Leica 

were used for colocalization studies (linescans). 

 

 

4.2.2.8 Electron microscopy 

For immunoelectron microscopy, ultrathin cryosections were prepared as described 

previously in (Tokuyasu 1973, Tokuyasu 1980, Zink et al. 2009). The images were processed 

by Dirk Wenzel (Facility for transmission electron microscopy, MPI for Biophysical 

Chemistry, Göttingen). For the ultrastucural analysis of immunoisolated synaptic vesicles the 

same procedure described in Takamori et al. (2000) was applied. Image acquisition and data 

processing was performed by Dietmar Riedel (Facility for transmission electron microscopy, 

MPI for Biophysical Chemistry, Göttingen). 

 

 

4.2.3 Biochemistry methods 

 

4.2.3.1 SDS polyacrylamide gels (SDS-PAGE) and Western Blotting (WB)  

To separate proteins and cell protein extracts a denaturing polyacrylamide gel was applied 

(Laemmli 1970). The Laemmli method is based on a discontinuous PAGE system composed 

of a collecting or stacking gel (4% bis-acrylamide, 0.1% SDS, 1 M Tris pH 6,8 ) and of a 

separating gel (10% bis-acrylamide, 0.1% SDS, 10% glycerol, 1 M Tris pH 8.45). The 

polymerization reaction was catalyzed by the addition of ammoniumpersulfate (APS) and 

TEMED. 2X loading dye (120 mM Tris pH 8,8, 20% (v/v) glycerol, 4% (w/v) SDS, 0,02% 

(w/v) bromophenol blue, 5% (v/v) β-Mercaptoethanol) was added in the samples which then 

were boiled for 5 min at 95°C prior loading them on the gel. The gel was run using SDS-

PAGE running buffer (25mM Tris-HCl, 192 mM Glycine, 0.1 % SDS). The gel was stopped 

and subjected to visualization either by coomassie blue stain, or by WB. 
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For Western blotting detection, proteins separated by SDS-PAGE were transferred onto a 

nitrocellulose membrane (Potran 0, 2 µm nitrocellulose transfer membrane PerkinElmer) or 

polyvinylidenfluorid (PVDF) (0, 45µm Millipore) membrane. Transfer was performed using 

transfer buffer (200 mM Glycin 25 mM Tris 0,04% SDS 20% EtOH ) either in a semidry 

system (Semi dry blotter PEGASUS) applying 50 mA current per gel for 1 hour at RT, or in 

wet system (BioRad) using 70V for 1 hour at 4°C.  

After checking the transfer by Ponceau S stain, the membrane was first washed once with 

TBST buffer and incubated for at least 1 hour at RT with blocking solution containing 5% of 

nonfat milk powder in TBST. Subsequently a primary antibody diluted in the blocking buffer 

was applied and the membrane was incubated ON at 4° on an agitating platform. Afterwards 

the membrane was washed 3 times for 10 min each prior to incubation for 1 hour at RT with 

an HRP-conjugated secondary antibody. Finally the membrane was washed again 3 times for 

10 min and incubated for 1 min with the Western Lightening
TM

 Plus-ECL reagent that 

allowed the detection of the protein bands using a chemiluminescence detection apparatus 

(FUJIFILM LAS-1000). 

 

 

4.2.3.2 Native gel 

To observe the behavior of proteins in their native condition, a blue native protein gel 

(Invitrogen) was used according to the manufacturer's instructions.  

 

 

4.2.3.3 Differential centrifugation 

Transiently transfected HeLa cells (two 15-cm petri dishes) were first washed with pre-

warmed PBS and then detached from the plates using Trypsin EDTA for 4 min at 37°C. The 

Trypsin activity was inactivated by the addition of pre-warmed growing media (D10). The 

cell were collected in a Falcon tube and centrifuged once at 1000 g for 3 min. The medium 

was removed, the cell pellet was washed once with ice-cold PBS, centrifuged again as before, 

and the supernatant (SN) was discarded. Subsequently the pellet was washed once with ice-

cold homogenization buffer (250 mM sucrose and 3 mM imidazole at pH 7, 4), and 

centrifuged as before. Twice the volume of the pellet of homogenization buffer supplemented 
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with complete EDTA-free protease inhibitors was used to re-suspend the cells. The cells were 

then applied through a pre-equilibrated and pre-cooled ball homogenizer with a 1 ml syringe 

at least 10 times to break the plasma membranes. The homogenized cells were then 

transferred to a 1.5 ml test tube and subjected to 2000 g centrifugation for 15 min. The nuclear 

pellet (P1) was kept. The post nuclear supernatant (PNS) was centrifuged at 32.000 g using a 

Beckmann centrifuge in a TLS 55 rotor for 15 min. In this way a pellet (P2) and a soluble 

fraction (S2) were generated. Finally the S2 was centrifuged at 100.000 g for 30 min allowing 

the separation of a pellet (P3) and the supernatant (S3) fraction. Each step was carried out at 

4°C. The protein concentration of all the fractions was measured using BCA protein assay Kit 

(ThermoFischer) following the manufacturer's instructions. 10 µg of each fraction were loaded 

on a SDS-PAGE and the protein profile was analyzed by WB (see section 4.2.3.1).  

 

 

4.2.3.4 Brain subcellular fractionation 

The isolation and characterization of highly purified rat SVs is based on the protocol 

described in Huttner et al. (1983) and Takamori et al. (2006). Briefly rat brain homogenate 

was centrifuged to get the synaptosome pellet (P2´) and the cytosol (S3) fraction. 

Subsequently the synaptosomes were lysed by osmotic shock and then subjected to two low 

speed centrifugation steps to obtain a crude synaptic vesicle pellet (LP2) and the cytosol SN 

(LS2) fractions. High pure synaptic vesicles were obtained by purifying LP2 first by sucrose 

density gradient centrifugation and then by size exclusion chromatography. 

 

 

4.2.3.5 RabGDI extraction assay 

The RabGDI assay was performed as described in Pavlos et al. (2010). The crude synaptic 

vesicles (LP2) were used as a starting material. 50 µg of LP2 were pre-incubated with 500 

µM GDP or 500 µM GTPγS for 15 min at 37°C in 200 µl of extraction buffer (EB) containing 

50 mM HEPES-KOH pH 7, 4; 100 mM KCl; 5 mM MgCl2; 10 mM EDTA; protease 

inhibitors. Then in each sample both PBS (control) or 5 µM HIS-GDI were added and the 

samples were re-incubated for additional 45 min at 37 °C. The samples were then kept on ice 

and subsequently centrifuged for 20 min at 200.000 g (95.000 rpm) at 4 °C using S100 AT3 
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rotor. The supernatants were collected for further analysis and the pellet was re-suspended in 

50 µl 2X LDS, boiled at 95°C for 5 min and analyzed by WB.  

 

 

4.2.3.6 Antibody coupling and Immunoisolation 

For the immunoisolation of a subpopulation of synaptic vesicles from the rat brain LP2 

fraction, the monoclonal Rab26 antibody (clone 163E12, Synaptic Systems) and the 

monoclonal Synaptophysin antibody (clone 7.2, Synaptic Systems) were coupled to 

immunobeads (Eupergit C1Z methacrylate microbeads; Röhm Pharmaceuticals) as previously 

described (Burger et al. 1989, Takamori et al. 2000, Boyken et al. 2013).  

Precisely 1,5 mg/ml of affinity purified Rab26 antibody was loaded into dialysis cassettes 

(10.000 MW, cut off Thermo Scientific) and dialyzed for 3 days in 500 ml of 150 mM NaCl 

(three changes per day). After dialysis the antibody solution was centrifuged at 10.000 g for 

15 min, the supernatant (SN) was collected and the concentration was measured and kept for 

coupling. Meanwhile the beads were weight. 25 mg of beads were used for 1 mg/ml of 

antibody. Beads were washed twice with water followed each time by vigorous vortexing and 

2 minute sonication to break down the clumped beads in isolated particles. They were then 

spinned down at 4500 rpm for 6 min. After removing the SN from the second wash, the pellet 

was incubated with the antibody after vigorous vortexing and incubated for 8 hours on a 

rotating wheel at 21°C. Then the beads were centrifuged for 6 min at 4500 rpm and the 

supernatant was saved to measure the coupling efficiency by determining the antibody 

concentration from the SN. Usually the coupling efficiency was around 35%- 40%. 1 M 

glycin was then added to the bead pellet and incubated ON under constant rotation at 21°C to 

quench unspecific binding sites. Afterwards the beads were pelleted at 4500 rpm for 6 min 

and the supernatant was discarded. Finally the beads were washed three times alternating two 

different buffers containing 0,1 M Na-Acetate, 0, 5 M NaCl pH 4,5 and 0,1 M Tris, 0, 5 M 

NaCl pH 8,0. After washing once with PBS, the beads were stored in 4 volumes of PBS. The 

coupled beads were then used for immunoisolation.  

For the immunoisolation of vesicles from LP2 a protocol previously describe in (Boyken et al. 

(2013)) was used. Briefly 10 µl of immunobeads were incubated with 400 µg of LP2 re-

suspended in the immunoisolation buffer (IB) that contains 1X PBS, 3 mg/ml BSA, 2,25 mM 

HEPES pH 7,4, protease inhibitor cocktail (Roche) in a final volume of 500 µl in the presence 

or in the absence of 1% Tx-100 and incubated ON at 4°C under constant rotation. Then the 
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samples were centrifuged at 2000 rpm at 4°C for 2 min and the SN was collected for further 

analysis. The beads were subjected to 3 washes with PBS. Each wash was performed for 5 

min at 4°C on a rotating wheel followed by 2 min of centrifugation at 2000 rpm. After the 

third wash, the beads were centrifuged at 6000 g for 1 min to completely remove the SN. At 

this point the pellet was either send for electron microscopy (EM) analysis or the protein 

composition was characterized by WB or mass spectrometry (MS).  

 

 

4.2.3.7 Immunoprecipitation and GST-pull down 

Transiently transfected cells were washed once with ice-cold PBS and then lysed using lysis 

buffer (50 mM HEPES, 150 mM NaCl, 5mM MgCl2, 1% Tx-100 and protease inhibitor) for 

30 min. The lysate was then pre-cleared by centrifugation at 10.000 g for 10 min. 30 µl of the 

SN were collected for the input, and the rest was incubated with the antibody (anti mouse Flag 

or anti rabbit GFP antibody) for 2 hours on a rotating wheel. Meanwhile the IgG Sepharose 

beads (GE Healthcare) were first washed once with water and then equilibrated with lysis 

buffer until use. Subsequently the samples were incubated with 30 µl of pre-equilibrated 

slurry beads for 1 hour under constant rotation. After incubation the samples were centrifuged 

at 3000 g for 1 min. The SN was collected and the beads were washed 3 times for 1 min at 

3000 g with lysis buffer. After the third wash, the beads were centrifuged for 1 min at 12.000 

g to completely remove the buffer. The samples were kept at 4°C or on ice during all the 

steps. Finally the beads were eluted with 25-30 µl of 2X loading dye (LDS), and together with 

the input were boiled at 95°C for 5 min. 15 µl of the IP samples and 5 µl of the input were 

loaded on the SDS-PAGE and subsequently transferred onto nitrocellulose or PVDF 

membrane. The membrane was then probed with the primary antibody against the protein of 

interest. WB was performed as describe in section 4.2.3.1. 

For GST pulldown assay 10 µg of purified GST-Rab26 variants were incubated with 

Sepharose Glutathione beads (Glutathione Sepharouse
TM 

Fast Flow GE Healthcare) for 1 hour 

under constant rotation in presence of protein buffer (50 mM HEPE pH 7.4, 200 mM NaCl, 5 

mM DTT, 5 mM MgCl2, 10 µM GTPγS/GDP, 1% NP40). Subseq uently a pre-formed 

complex His-Atg16L1
NT

/His-Atg5
FL

 was added to the beads and incubated for an additional 2 

hours under the same conditions. The samples were then washed 3 times with the protein 

buffer. Each wash was followed by a centrifugation step for 2 min at 3000 g. Each step was 
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accomplished on ice or at 4°C. 2X LDS was used to elute the proteins from the beads and 15 

µl of each sample were subjected to SDS-PAGE and then analyzed by western blot.  
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6 Appendix 

6.1 Abbreviations 

α alpha 

γ gamma 

µ micro 

Atg autophagy related gene 

ATP Adenosine triphosphate 

AZ Active Zone 

c control 

C. elegans Caenorhabditis elegans 

CA Costitutively Active 

Ca
2+

 calcium ion 

CAZ Cytomatrix of active zone 

CCV clathrin coated vesicles  

cDNA complementary DANN 

CMA chaperone-mediated autophagy  

CME Clathrin-mediated endocytosis  

CNS central nervous system  

CT C-terminal 

DIV Day of in vitro development 

DN Dominant negative 

DTT Dithiothreitol  

e. coli Escherichia coli 

ECL Enhanced chemiluminescence 

EDTA Ethylenediaminetetraacetic acid 

EEA1 Early endosome antige 1 

EGFP Enahanced Green fluorescent protein 

ESCRT Endosomal sorting complex for transport 

et al. et alii 

FL Full lenght 

g Gram/centrifugal force 

GAP GTPase-activating proteins  

GDF GDI-displacement factor  

GDI GDP dissociator inhibitor 

GDP Guanosine diphosphate 

GEF Guanin exchange factor 

GFP Green Fluorescent Protein 

GGTase Geranylgeranyltransferase  

GTP Guanosine triphosphate--S 

HEPES N-(2-Hydroxyethyl)piperazine-N-3-propanesulfonic acid 

His  Histidine 
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IgG Immunglobuline G 

II Immunoisolation 

ILV intraluminal vesicles  

IP Immunoprecipitation 

KO Knock out 

l liter 

LAMP2A Lysosomal associated membrane protein-2 

LB- Medium Luria-Bertani- Medium 

LE late endosomes 

m mitochondria 

mA milli Ampere 

mGFP monomeric Green fluorescent protein 

min minute 

mM milli Molar 

MVB Multivesicular body 

MVE Multivesicle endosome  

NGS Normal goat serum 

NMJ Neuro Muscular Junction 

NT N-terminal 

PAGE Polyacrylamide gel electrophoresis 

PAS Pre-autophagosomal structure 

PBS Phosphate-Buffered Saline 

PE Phosphatidylethanolamine 

pH preponderance of hydrogen ions 

PIP2 Phosphatidylinositol-4,5-bisphosphate  

PM Plasma membrane 

PNS Post nuclear supernatant 

REP Rab escort proteins  

rpm revolutions per minute 

RRP Ready releasable pool  

RT Room temperature 

SDS Sodium dodecyl sulfate 

sec second 

sec secretory mutant 

SN Supernatant 

SNARE soluble N-ethylmalemide–sensitive factor attachment protein receptor 

SOC medium Super Optimal broth with Catabolite repression 

SV Synaptic sesicle 

TB Tris-boric acid 

TBST Tris-Buffered Saline and Tween 20 

TEMED N,N,N´, N′-Tetramethylethylenediamine 

Tris tris-(hydroxymethyl)-aminomethane 

ts temperature senitive 

UPS Ubiquitin proteasome system  
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V Volt 

v/v volume per volume 

VPS9 Vacuolar sorting protein 9 

WB Wetern blotting  

w/v weight per volume 

X Time 
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