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1 Introduction

Every component of a biological system has its function, knowledge of which is crucial
to understand how living organisms work. The function is affected by the dynamics of
the component’s building blocks (e.g. proteins, lipid membranes etc.), and the dynamics
itself depends on the structure of those components [1]. Hence structure determination
techniques providing high resolution information are important for understanding bio-
logical systems. Structures of biomolecules at atomic resolution are essential to study in
detail biological processes with, e.g. molecular dynamics (MD) simulations, which help
to explain underlying mechanisms [2, 3].

One such high resolution structure determination technique is X-ray crystallog-
raphy. However, though a powerful tool, it faces certain limitations. First, this tech-
nique is applicable to crystalline samples only. About 40% of all biomolecules cannot
be crystallized [4], e.g. certain membrane proteins, and thus are inaccessible to X-ray
crystallography. Even for those biomolecules that do form crystals it still might be a
tedious process to purify and obtain a well diffracting sample. Furthermore, copies of
molecules in individual crystal cells may adopt different conformations. Diffraction im-
ages of such samples reflect an average distribution of atomic positions over possible
conformations, thus detailed information on molecular subregions is lost. Therefore, due
to the structure inhomogeneity it is challenging to obtain high resolution structures of
large biomolecules. Spatial resolution aside, temporal resolution achieved for crystals
in Laue diffraction experiments at synchrotron sources is limited to ∼ 100 ps scales
only [5].

The other problem in X-ray crystallography results from registering only the intensi-
ties of discrete Bragg reflections. Missing phases have to be determined to reconstruct the
electron density of the investigated protein. To circumvent the phase problem, crystal-
lographers use methods such as multiple isomorphous replacement [6], multiwavelength
anomalous diffraction [7], or molecular replacement [8].
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1 Introduction

Instead of using macroscopic crystals, recently developed X-ray sources enabled
diffractive imaging of smaller crystals with sizes in the µm to nm range, and thereby
solved some of the aforementioned problems. Nanocrystallography has the following ad-
vantages over traditional X-ray crystallography. Although a crystalline specimen is still
required in nanocrystallography, nanocrystals are easier to grow than macroscopic crys-
tals. Further, due to small crystal sizes, intensities between Bragg reflections are present
in diffraction images of nanocrystals, and thus oversampling techniques can be exploited
to help retrieving the missing phases [9]. In 2011, Chapman et al. [9] determined the
structure of Photosystem I (a membrane protein) at 8.5Å resolution from nanocrys-
tals exposed to a hard X-ray free electron laser (XFEL) beam. Recently, Barends et
al. [10] reported a 2.1Å structure of a lysozyme determined de novo from microcrystals.
These experiments confirmed that the use of XFEL sources enables diffractive imaging
of samples much smaller than macroscopic crystals.

The key advantage of XFEL beams is their very high intensity; currently available
beams deliver ∼ 2.3× 1012 photons per pulse focussed into a 10 µm spot [11]. However,
this high intensity causes a tremendously increased radiation damage. Instead of being
distributed over many copies of a molecule in a macroscopic crystal, the radiation is
absorbed by few molecules in a nanocrystal, or in the most extreme case, by only one
molecule. Thus every atom within the irradiated molecule absorbs multiple photons, and
as a result loses electrons in the core shell photo-ionization process and subsequent Auger
decay. The increasing positive charge of the molecule leads to a Coulomb explosion of
the sample [12]. Therefore, it is important that a diffraction image is recorded before
the radiation damages the illuminated molecule. To avoid imaging the disrupted electron
density, femtosecond pulses are necessary. Exposure times in the femtosecond regime will
additionally provide high temporal resolution, advantageous for studying conformational
dynamics, e.g. during enzymatic reactions [13].

One may ask if it is possible to go even one step further and perform XFEL scatter-
ing experiments on single molecules, such that no crystals have to be grown at all. Such
experiments have the potential to overcome the limitations of crystallography [12–14],
save for the purification process. Unlike crystals, single molecules lack translational sym-
metry, hence they generate continuous diffraction patterns that enable oversampling.
Iterative phasing algorithms allow to determine the missing phases from the registered
intensities, such that additional constrains are satisfied, and thus retrieve the electron
density of the irradiated molecule [15–20]. In the single molecule experiments, molecules
are injected into the XFEL beam, e.g. by applying electrospraying techniques, such that
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during one pulse a diffraction image of only a single molecule can be recorded on the
detector. Due to high repetition rates, many images (102 . . . 106) are obtained. However,
each image contains information from only very few elastically scattered photons (of the
order of 10 − 104, depending on molecule size and beam intensity) along with substan-
tial noise [18]. Further, and most importantly, molecules entering the beam can rotate
freely and assume a random orientation during the exposure. This unknown orienta-
tion together with partial structural information is encoded in the recorded diffraction
image.

The goal of single molecule XFEL scattering experiments is to determine the struc-
ture of the investigated molecule at the highest possible resolution. To achieve this goal,
the structural information has to be extracted from sparse diffraction images of a ran-
domly oriented molecule, therein lies the biggest challenge for the prospective structure
determination algorithms. Recent calculations showed that a 500 kDa protein scatters
only about 4 × 10−2 photons per pixel in the high resolution part of a diffraction im-
age [18]. Such low photon counts reflect a low structural information content of a single
diffraction image. The partial structural information results not only from few photon
counts, but also from the fact that an image on the detector plane is a 2D projection
of a 3D molecular transform obtained from an unknown orientation. Therefore, many
diffraction patterns from different orientations are required to fully sample a 3D inten-
sity distribution of the irradiated molecule. Structure determination methods from single
molecule XFEL scattering images proposed so far either aim at accurate orientation de-
termination for individual diffraction images and averaging those in 3D reciprocal space,
or recovering the structure from intensity correlations and thus omitting the orienta-
tion determination. I will now discuss selected methods belonging to the two classes:
orientation determination, and correlation based methods.

One of the earliest methods based on orientation determination was the ’common
line’ method by Huld et al. [21]. This ’common line’ refers to a curve in reciprocal space
formed by two intersecting Ewald spheres, which correspond to two different diffraction
images. Identifying intersection curves of any three diffraction patterns suffices to calcu-
late their relative orientations. However, due to very low photon counts, the images need
to be clustered and averaged beforehand, such that enough signal photons for locating
the ’common lines’ are available. The images are grouped according to cross-correlation
function between any two of them, provided that a mean photon count per pixel exceeds
10. Because this threshold value is three orders of magnitude higher than expected in
XFEL experiments, it will be very difficult to use the ’common line’ method under those
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conditions [18].

An alternative method for sorting diffraction images into orientational classes and
subsequent averaging in 3D reciprocal space was described by Fung et al. [22]. The
authors suggest to determine the most likely orientation for every diffraction pattern us-
ing generative topographic mapping, which, apart from the images themselves, requires
the dimensionality of the orientational space as the only input. However, clustering the
diffraction images and averaging them within orientational classes might cause informa-
tion loss due to insufficient sampling of high resolution regions in 3D reciprocal space,
as will be shown in the Results section. Further, the required mean number of elas-
tically scattered photons per picture of about 100 (excluding the central pixels of the
detector protected by the beamstop) seems rather high, especially for small molecules.
A similar manifold embedding method was proposed recently by Giannakis et al. [23].
A projection from 3D reciprocal space to a 2D diffraction image results in object in-
dependent symmetries in those images. This fact is exploited to navigate through the
manifold created from the recorded images and determine their relative molecular orien-
tations.

Loh and Elser proposed a method that maximizes the likelihood of an intensity dis-
tribution model in reciprocal space to fit a set of diffraction images [24]. This expansion-
expectation maximization-compression (EMC) approach uses Bayes’ theorem to deter-
mine the orientation for individual diffraction image from the intensity model, which is
updated by averaging the aligned images in 3D reciprocal space in each iteration. This
method was applied to determine the structure of a GroEL (heat shock 60 kDa pro-
tein) molecule at 2 nm resolution from up to 106 synthetic diffraction images. A similar,
though less computationally demanding, algorithm was proposed by Tegze and Bor-
tel [25].

All above methods show how challenging it is to determine the orientation for indi-
vidual sparse diffraction images. As will be shown later, the Bayesian formalism performs
this task promisingly despite low photon counts in recorded images.

A second class of structure determination methods circumvents the orientation
determination for individual images. Instead, the diffraction intensities in reciprocal
space are determined from cross-correlations between diffraction images. The intensities
are then expressed in a spherical harmonics basis. Saldin et al. [4] used such an approach
to determine a molecular shape. However, the achievable level of detail remains unclear;
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also low photon counts in registered patterns might limit the application of this method,
similarly to the ’common line’ method.

Alternatively, Liu et al. [26] proposed to refine a low resolution electron density
model using an angular correlation function of multiple diffraction images. As in ap-
proaches typical of small-angle X-ray scattering experiments, the electron density repre-
sented on a grid is, in every Monte Carlo step, locally perturbed by a random dilation or
an erosion. Resulting intensity correlations are then compared with those from the exper-
imental data. This approach allows for structure determination from diffraction images
of many randomly oriented copies of the same molecule.

Starodub et al. [11] devised an alternative correlation based method. The authors
calculated an electron density map of two polystyrene spheres with a 91 nm diameter at
20 nm resolution using partial triple correlation of intensity distributions. This approach
was applied to a molecule with cylindrical symmetry, thus reducing the complexity of
correlation calculations but also the generality. However, a structure determination with
full correlation analysis should enable solving high resolution structures of molecules
lacking any symmetry [27]. All these correlation based methods have so far been applied
to recover low resolution structures. As in the case of the orientation determination
approaches, low photon counts in diffraction images might also pose a challenge for the
above methods.

In this work, I aimed at developing a structure determination method that extracts
high resolution structural information even, in extreme cases, from very sparse and noisy
XFEL diffraction images of single molecules. To this end, I proposed two complimentary
Bayesian approaches to structure determination at atomic resolution from such images,
as depicted in Fig. 1.1. These approaches are referred to as ’Orientational Bayes’ and
’Structural Bayes’, respectively. In the Orientational Bayes approach, the probability of
a molecular orientation Θ given a diffraction pattern X, π(Θ|X), is calculated for every
recorded image, and used to align the images in 3D reciprocal space. By contrast, in the
Structural Bayes approach, the molecular orientation is not determined for individual
images; instead, the probability of a model structure S to give rise to the entire recorded
set of diffraction patterns {X}, π

(
S|{X}

)
, is computed. Both approaches will be tested

for their applicability to solving variously sized molecular structures, with a small tripep-
tide as the most challenging case, under extreme experimental conditions, such as low
photon counts.

The Orientational Bayes approach is similar to the EMC algorithm [24], in the
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Figure 1.1: Two Bayesian approaches to structure determination from single molecule
XFEL diffraction images. (A) The probability of a molecular orientation Θ,
here of a glutathione, π(Θ|X), is determined for every individual diffraction
image X. The underlying molecular transform is obtained by aligning and
averaging the images in reciprocal space. (B) The probability of a structure
S (defined in real space), π

(
S|{X}

)
, is calculated to identify a structure that

fits best simultaneously to all collected images {X}. Figure adapted from
Ref. [28].

sense that it uses a rigorous Bayesian framework for determining orientations of indi-
vidual diffraction images using a ’seed’ model, which is similar to the original structure,
and can be obtained from, e.g. nanocrystallogrphy [9]. For each recorded image, the
probability distribution, π(Θ|X), determines how probable it is that, given this observed
image, the ’seed’ structure assumed a particular orientation. The images are aligned
according to the calculated probability distributions and subsequently averaged in 3D
reciprocal space yielding an improved model of the molecular transform, as illustrated in
Fig. 1.1(A).

In the Orientational Bayes approach, the quality of the retrieved electron densities
depends on the accuracy of the orientation determination. Therefore, it will be studied
how the achievable resolution depends on molecular size, incident beam intensity, and
background noise level. In particular, I will investigate whether the Bayesian orientation
determination applied to simulated sparse XFEL diffraction images is accurate enough
to retrieve an electron density at atomistic resolution despite background noise levels up
to 50% of the average signal photon counts per image. This question has not yet been
addressed by the EMC approach [24]. In contrast to the EMC algorithm that considers
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diffraction images in terms of photon counts per pixel and uses a Poisson approximation
to calculate the likelihood of observing a diffraction pattern, here, probabilities of all
individual photons in recorded diffraction patterns are used, thereby providing a more
general likelihood formulation. In particular, the shot noise is directly and accurately
accounted for by the likelihood defined in terms of a multinomial distribution. Also, ad-
ditional background noise is straightforwardly included in the probabilities of registering
individual photons.

As discussed above, the Orientational Bayes approach requires a ’seed’ model. To
avoid this requirement, I propose the Structural Bayes approach. In this approach, all
orientations accessible to the model structure are sampled and the probability distribu-
tion is integrated over those orientations, leaving the model structure as the variable that
is optimized to yield the highest probability. By maximizing the probability π

(
S|{X}

)
,

a structure that simultaneously fits best to the entire set of recorded images is found
among several candidate structures. This way, I aim at distinguishing between different
structure models by calculating ratios of evidence between them, which is a common
practice in Bayesian model comparison [29].

Using a tripeptide as a test molecule, I investigated to what extent the Structural
Bayes approach enables a de novo structure determination. To this aim, a structure
model was refined in a Monte Carlo (MC) simulation by sampling different amino acid
conformations and comparing resulting structure models with synthetic diffraction images
generated from a reference residue configuration.

However, such amino acid based structural refinement may not be feasible for larger
biomolecules due to the vast search space. Therefore, to address also those large bio-
molecules with the Structural Bayes approach, I reformulated the previous question: is it
still possible to distinguish among different conformations of large structure models ob-
tained otherwise than by exhaustive conformational sampling? To answer this question,
different conformations of three immunoglobulin (Ig) domains of a titin from a con-
strained MD simulation were used as a limited test set to be compared with diffraction
images generated from a reference conformation.

Because in large biomolecular complexes structural changes happen at various
length scales, I also investigated if those changes can be detected using the Structural
Bayes approach; in particular, if local structural changes are traceable against a large
structural background. To this aim, cryo-electron microscopy (cryoEM) derived riboso-
mal structures of seven different translocation states were used as a test set to check
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if the reference state can be identified by calculating the probability of a structure
given a set of images. In the ribosome, tRNA chains constitute only a small fraction
of the entire complex. Hence their movement during the translocation process results
in local structural changes against the large structural background of ribosomal sub-
units.

Finally, to reduce computational time, a multiscale structural model is introduced.
I investigated if it is possible to distinguish among structures with important regions
modelled at atomic resolution and the remaining parts described at a lower resolution as
coarse grain (CG) beads. CG modelling is commonly used in MD simulations to study
molecular processes of large systems at relevant time scales, e.g. vesicle fusion [30],
because it reduces the computational cost.

When addressing the above questions, I found that the two proposed Bayesian ap-
proaches can indeed serve to determine molecular structures from single molecule XFEL
diffraction data. The results presented in this work suggest that these approaches are able
to extract structural information at atomic resolution from sparse and noisy diffraction
images of single biomolecules of different sizes (e.g. with molecular masses ranging from
several hundred Da to MDa). Further, the Structural Bayes approach should also be able
to trace structural changes happening at multiple length scales in complex molecules, in-
cluding localized structural changes against a large structural background. This feature
might be useful in studying biological processes such as enzymatic reactions or ligand
binding.

8



2 Theory

This chapter introduces the theoretical concepts of my project. First, I will focus
on the basics of X-ray scattering theory and Bayesian analysis that were used for devel-
oping the two structure determination approaches sketched in the introduction. Then,
I will describe the Bayesian framework applied for orientation determination and model
comparison based on structure probability.

2.1 X-ray scattering

In X-ray scattering experiments, matter, mostly built of light atoms, interacts in three
major ways with radiation. The most important type of interaction for diffraction imag-
ing is the elastic scattering. In that process, the photon energy is conserved and only the
momentum direction alters. Elastically scattered photons by the target molecule inter-
fere coherently and form diffraction patterns and thereby convey information about the
atomic structure. The most dominant interaction for high energy XFEL beams, however,
is the photoelectric effect, during which photon absorption leads to a core shell ionization
in most cases, followed by subsequent Auger decay. For 12 keV (1Å wavelength) photons,
as planned in single molecule scattering experiments to achieve atomic resolution, the
photoelectric cross-section of a carbon atom is approximately 10 times larger than the
elastic scattering cross-section [12]. In the third possible event, a photon is inelastically
scattered (Compton scattering). In fact, the photoelectric cross-section is about 33 times
larger than the inelastic scattering cross-section for a carbon atom [12]. Photons that
transfer part of their momentum to bound electrons during inelastic scattering contribute
to background noise in diffraction images.

All these processes can be described using perturbation theory and Hamiltonian
nonrelativistic quantum electrodynamics. In particular, the derivation of an elastic scat-
tering cross section not only reveals the link between diffraction pattern and electron
density function, but also explains how the phase problem in diffractive imaging arises.
Contents of this section are based on the full derivation by R. Santra in his paper [31].
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2 Theory

Here, I will only focus on certain steps and assume atomic units: reduced Planck constant
h̄ = 1, electron mass me = 1, and the speed of light c = 1/α, where α is the fine-structure
constant.

The total Hamiltonian describing a molecule interacting with an electromagnetic
field has three major components

Ĥ = Ĥmol + ĤEM + Ĥint, (2.1)

where Ĥmol is the molecular Hamiltonian, ĤEM is the Hamiltonian for the free electro-
magnetic field, Ĥint describes the interaction between photon and electron fields. The
molecular Hamiltonian comprises of the nuclear kinetic energy term, the nucleus-nucleus
repulsion term, and the electronic Hamiltonian. However, for further considerations,
nuclei movement is neglected, which is justified by anticipated pulse lengths in the fem-
tosecond regime. The vector potential A describing the electromagnetic field, expanded
in plane waves in a box of volume V , is given by an operator

Â(r) =
∑
k,λ

√
2π

V ωkα2

(
âk,λεk,λeik·r + â†k,λεk,λe−ik·r), (2.2)

where k is a wave vector, ωk = |k|
α is corresponding angular frequency, εk,λ is a polariza-

tion vector with λ = 1, 2, α is the fine-structure constant, â†k,λ and âk,λ are creation, anni-
hilation operators, respectively, acting on a photon in mode (k, λ). The Hamiltonian for
the free electromagnetic field, in the Coulomb gauge, is then

ĤEM =
∑
k,λ

ωkâ
†
k,λâk,λ +

∑
k,λ

ωk/2. (2.3)

The interaction Hamiltonian reads

Ĥint = α

∫
ψ̂†(r)

[
Â(r) · ∇

i

]
ψ̂(r)d3r +

1

2
α2

∫
ψ̂†(r)Â2(r)ψ̂(r)d3r. (2.4)

The field operator,

ψ̂(r) =

(
ψ̂+1/2(r)

ψ̂−1/2(r)

)
,

has two components that either create [ψ̂†σ(r)] or annihilate [ψ̂σ(r)] an electron with spin
projection quantum number σ at position r.

The interaction Hamiltonian Ĥint in Eq. (2.1) is in the following treated as a pertur-
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bation of the system described by Ĥmol+ĤEM. Assuming that initially the molecule with
the number of electrons Nel is in the electronic ground state |ΨNel

0 〉, and the photon field
is in the Fock state |NEM〉 containing NEM photons in the mode (kI, λI), then the initial
state of the system is |I〉 = |ΨNel

0 〉|NEM〉. After elastic scattering of an X-ray photon,
the final state of the system is |F〉 = â†kF,λF

|ΨNel
0 〉|NEM − 1〉. In the first order, only the

Â2 term in the interaction Hamiltonian (Eq. (2.3)) contributes to elastic scattering of a
single photon, according to Fermi’s golden rule, the transition rate Γ from the initial |I〉
to the final |F〉 state is

ΓFI = 2πδ(EF − EI)
∣∣〈F |Ĥint|I〉

∣∣2
= 2πδ(ωF − ωI)

∣∣∣∣〈NEM − 1|〈ΨNel |âkF,λF

× α2

2

∫
d3rψ̂†(r)Â2(r)ψ̂(r)|ΨNel〉|NEM〉

∣∣∣∣2
=

(2π)3

V 2ωFωI
δ(ωF − ωI)|ε∗kF,λF

· εkI,λI |
2

×
∣∣〈NEM − 1|âkF,λF(âkI,λI â

†
kF,λF

+ â†kF,λF
âkI,λI)|NEM〉

∣∣2
×

∣∣∣∣ ∫ d3r〈ΨNel |ψ†(r)ei(kI−kF)·rψ̂(r)|ΨNel〉
∣∣∣∣2

=
(2π)3NEM

V 2ωFωI
δ(ωF − ωI)|ε∗kF,λF

· εkI,λI |
2 |f0(∆k)|2, (2.5)

where EI, EF are the energies of the initial and final state, respectively, ∆k = kI−kF is
the scattering vector. The form factor f0(∆k) in Eq. (2.5) is a Fourier transform of the
ground state electron density

f0(∆k) =

∫
〈ΨNel |ψ̂†(r)ei∆k·rψ̂†(r)|ΨNel〉d3r =

∫
ρ(r)ei∆k·rd3r. (2.6)

The differential scattering cross section for elastic scattering into an solid angle dΩ is
calculated as a sum of the transition rates divided by X-ray photon flux JEM = NEM

αV over
the scattered photon states

dσ =
∑
λF

V

(2π)3
dΩ

∫ ∞
0

dkFk
2
FΓFI/JEM

=
V

(2π)3
dΩ
∑
λF

∫ ∞
0

dωFω
2
Fα

3 (2π)3NEM

V 2

1

ωFωI
δ(ωF − ωI)|ε∗kF,λF

· εkI,λI |
2

× |f0(∆k)|2 αV
NEM

. (2.7)
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Thus the elastic scattering differential cross section,

dσ(∆k)

dΩ
= α4|f0(∆k)|2

∑
λF

|ε∗kF,λF
· εkI,λI |

2, (2.8)

relates the electron density of the irradiated molecule to the observed diffraction pattern,
and shows that the phase information is inaccessible in scattering experiments. According
to Eq. (2.8), only the amplitude of the Fourier transformed electron density is measured
in the experiment. For an unpolarized X-ray beam, the polarization-dependent factor∑

λF
|ε∗kF,λF

·εkI,λI |2 integrated over all accessible polarizations (orthogonal to the incident
wave vector) is (1 + cos2 2θ)/2, thus Eq. (2.8) reads

dσ(∆k)

dΩ
= r2

e

(1 + cos2 2θ)

2
|f0(∆k)|2, (2.9)

where re is the classical electron radius, and θ is a scattering angle.

In single molecule XFEL experiments, both the incident beam intensity and the elec-
tron density vary during the exposure. Changes in the electron density result from the ra-
diation damage of the sample. Due to this time evolution for unpolarized X-ray radiation,
the intensity distribution recorded by a detector is given by

I(∆k) = r2
e

1 + cos2 2θ

2
∆Ω

∞∫
−∞

dt I0(t)

∣∣∣∣∫ d3r ρ(r, t)ei∆k·r
∣∣∣∣2 , (2.10)

where I0 is the incident beam intensity, ∆Ω is a solid angle subtended by a detector
pixel [12]. Here, sufficiently short pulses (few fs in length) with low temporal coher-
ence were assumed, thus the scattering amplitudes are summed incoherently over time
slices. When needed, Eq. (2.10) can be generalized to account for potential coherence
between the time slices and the pulse polarization. However, these issues are peripheral
to the presented structure reconstruction methods and thus will not be discussed in more
detail.

2.2 Bayesian analysis

Bayesian analysis allows to extract hidden information indirectly from sparse and noisy
data measured in experiments. In single molecule XFEL experiments, the orientation
of the irradiated molecule is encoded in the diffraction images, but it is not directly
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2 Theory

measured. Therefore, to determine the structure from diffraction patterns, I apply Bayes’
theorem.

Assuming that n disjoint events B1, . . . , Bn are not directly observed in an experi-
ment, but beliefs about their occurrence are expressed in therms of a priori probabilities
P (Bi). Further, for an observable A directly measured in the experiment, the condi-
tional probabilities P (A|Bi), also called likelihood, are known. According to the Bayes’
theorem,

P (Bi|A) =
P (A|Bi)P (Bi)∑n
i=1 P (A|Bi)P (Bi)

, (2.11)

the posterior probability P (Bi|A) combines the beliefs about Bi prior to the experiment
with knowledge gained from observing the event A, thus completing the information
about Bi. For a continuous observable x and a parameter θ belonging to a parameter
space Θ, Eq. (2.11) reads

π(θ|x) =
f(x|θ)p(θ)∫

Θ dθf(x|θ)p(θ)
. (2.12)

Applied to single molecule XFEL experiments, this Bayesian formalism has the
following interpretation. Direct observables are photon arrival positions X recorded on
the detector plane. Parameters indirectly observed are the molecular orientation Θ for a
particular diffraction image and the underlying molecular structure S. The likelihood of
recording a diffraction pattern given an orientation f(X|Θ), calculated using an assumed
structure model and combined with the a priori orientation distribution p(Θ), allows,
according to the Bayes’ theorem Eq. (2.11), to obtain the posterior probability of the
molecular orientation given the diffraction pattern π(Θ|X).

In the Orientational Bayes approach, I apply the Bayesian parameter estimation [29]
to determine the molecular orientation for each diffraction image individually. A model
of the physical system relates the parameter (orientation) to an ideal signal (intensity
distribution). By using this model the likelihood function for the measurement outcome
(diffraction pattern) is calculated. Finally, an improved molecular transform is obtained
from diffraction images aligned according to the orientation estimated from the posterior
probability distributions. In the Structural Bayes approach, however, instead of param-
eter determination, ratios of posterior probabilities for different structure models are
determined. This Bayesian model comparison [29] approach is used to identify a model
that fits best to the entire set of diffraction images.
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2.3 Posterior probability distribution and orientation
determination

To estimate the molecular orientation Θ for a single diffraction pattern X, the posterior
probability distribution π(Θ|X) is calculated from the a priori orientation distribution
p(Θ) and the likelihood f(X|Θ) that this diffraction pattern results from a particular
orientation of the model structure. This posterior probability density is used to align
the diffraction images on corresponding Ewald spheres in 3D reciprocal space, and thus
recover the molecular transform of the irradiated molecule.

The orientation of a molecule exposed to XFEL radiation is denoted by Θi =

(θi, ψi, ϕi). A diffraction pattern recorded from the molecule oriented according to
Θi is defined by positions of all ni recorded photons on the detector plane Xi ={

(x
(l)
i , y

(l)
i )
}
l=1...ni

. Assuming an incident beam intensity I0 focused into a focal spot
area FA, from the resulting constant number of total incident photons Ntotal = I0FA,
only ni are registered in the i-th image, the rest Ntotal−ni are not. The likelihood of ob-
serving a particular arrangement of photons Xi scattered by the target molecule oriented
according to Θi is given by a product of independent probabilities IΘi/Ntotal of recording
a photon at a position (x

(l)
i , y

(l)
i ) and the probability of the remaining Ntotal−ni photons

not being recorded

f(Xi|Θi) ∝
(

1− AΘi

Ntotal

)Ntotal−ni
ni∏
l=1

IΘi [∆k(x
(l)
i , y

(l)
i )]

Ntotal

∝
(

1− AΘi

Ntotal

)Ntotal−ni
ni∏
l=1

IΘi [∆k(x
(l)
i , y

(l)
i )]. (2.13)

IΘi [∆k(x
(l)
i , y

(l)
i )] is the intensity value in a detector pixel at the l-th recorded pho-

ton position (x
(l)
i , y

(l)
i ) for an orientation Θi and AΘi =

∑Npixels

l=1 IΘi [∆k(x(l), y(l))] is
the expected amount of elastic scattering registered by the detector in all of its Npixels

pixels. The intensity values were calculated from the model ’seed’ structure using
Eq. (2.10).

By expressing the likelihood function as a multinomial distribution, Eq. (2.13) au-
tomatically accounts for the shot noise. However, additional background noise requires
a modification of IΘi(∆k) with an appropriate noise model, which is described in the
Methods section.
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According to the Bayes’ theorem [Eq. (2.12)], the a priori distribution of the molec-
ular orientation is also required to calculate the posterior probability. In single molecule
experiments, the orientations are assumed to be uniformly distributed; therefore, the
probability π(Θi|Xi) is proportional to the likelihood expressed in Eq. (2.13). The pos-
terior probability distribution carries the complete information that can be gained from
the experiments about the underlying molecular orientation for an individual diffraction
pattern. I will explore two ways to estimate the orientation and name them ’Maximum
Likelihood’ and ’Bayesian’.

In the Maximum Likelihood approach, the position of the maximum in the calcu-
lated posterior probability distribution is used as a point estimate of the orientation.
Photon positions from the diffraction image are then projected onto an Ewald sphere
corresponding to that orientation. The entire process is then repeated for all collected
diffraction images. Thus the recorded photons are averaged in 3D reciprocal space and
yield a molecular transform of the irradiated molecule.

The Maximum Likelihood approach does not use the complete information con-
tained in the posterior probability distribution. Hence in the Bayesian approach I will
investigate how much can be gained from the entire orientational information. To this
end, photon positions from a single diffraction images are projected onto multiple Ewald
spheres with weights given by an appropriate posterior probability value for a particu-
lar orientation. Again, this process is repeated for all recorded images, though, in this
case yielding a molecular transform that is a weighted average of the registered pho-
tons.

2.4 Posterior probability of a structure

In the Orientational Bayes approach, the molecular orientation is estimated for each
diffraction pattern assuming a model ’seed’ structure. Certain a priori knowledge about
the molecule is therefore necessary. To limit the extent of prerequisite information, I de-
veloped the Structural Bayes approach that compares structure models in a search for one
that simultaneously fits best to the entire set of recorded diffraction images. The model
comparison is done by calculating posterior probability ratios.

A structure model is described by N atomic positions S =
{
r1, . . . , rN

}
. The likeli-

hood of observing a photon configuration Xi =
{

(x
(l)
i , y

(l)
i )
}
l=1,...,ni

scattered by structure
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Sj oriented according to Θ
(j)
i = (θ

(j)
i , ψ

(j)
i , ϕ

(j)
i ) is

f(Xi|Sj ,Θ(j)
i

)
∝
[
1−

A(Θ
(j)
i , Sj)

Ntotal

]Ntotal−ni
ni∏
l=1

I
[
R(θ

(j)
i , ψ

(j)
i , ϕ

(j)
i )∆k(x

(l)
i , y

(l)
i ), Sj

]
,

(2.14)
where I(∆k, Sj) is the intensity in a detector pixel corresponding to a scattering vec-
tor ∆k rotated by a rotation matrix R(θ

(j)
i , ψ

(j)
i , ϕ

(j)
i ) corresponding to the orientation

Θ
(j)
i = (θ

(j)
i , ψ

(j)
i , ϕ

(j)
i ), A(Θ

(j)
i , Sj) =

∑Npixels

l=1 I
[
R(θ

(j)
i , ψ

(j)
i , ϕ

(j)
i )∆k(x(l), y(l)), Sj

]
is

the expected amount of elastic scattering for the orientation Θ
(j)
i of structure Sj reg-

istered by a detector in all its Npixels pixels, and Ntotal is the total number of incident
photons.

The likelihoods of registering individual pictures f(Xi|Sj ,Θ(j)
i

)
are independent,

thus the likelihood of observing an entire set of diffraction patterns {Xi} is given by the
product

f
(
{Xi}|Sj , {Θ(j)

i }
)

=
∏
i

f
(
Xi|Sj ,Θ(j)

i

)
. (2.15)

The a priori distribution of atomic coordinates p(Sj) is assumed uniform, hence according
to the Bayes’ theorem, the posterior probability reads

π
(
Sj , {Θ(j)

i }|{Xi}
)
∝
∏
i

f
(
Xi|Sj ,Θ(j)

i

)
. (2.16)

Finally, the posterior probability of structure Sj giving rise to the set of registered diffrac-
tion images {Xi} is calculated by integrating Eq. (2.16) with respect to the molecular
orientation Θ

(j)
i

π
(
Sj |{Xi}

)
∝

∏
i

∫∫∫
f
(
Xi|Sj , θ(j)

i , ψ
(j)
i , ϕ

(j)
i

)
× sin θ

(j)
i dθ

(j)
i dψ

(j)
i dϕ

(j)
i . (2.17)

This expression is used to find amongst a set of proposed structure models the one that
fits best to the entire set of images.
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3 Methods

This chapter describes the performed simulations of single molecule XFEL scatter-
ing experiments and the computational details of the two presented Bayesian approaches,
the Orientational Bayes approach and Structural Bayes approach. So far, no atomic res-
olution XFEL diffraction images of single molecules are available, hence the first section
focuses on modelling the experiments.

3.1 Modelling single molecule X-ray
experiments

For both the simulation and analysis of the diffraction images, a model of the intensity
distribution is required. As mentioned in the Theory chapter, the registered intensity
I(∆k) [defined in Eq. (2.10)] is in general a function of the time dependent electron
density ρ(r, t). However, assuming pulses shorter than 10 fs, the electron density was
considered constant during the exposure time [12].

3.1.1 Describing electron density and intensity
distribution

In an all atom (AA) representation, the electron density was defined as follows

ρ(r) =

Natoms∑
i=1

N el
i e−(r−ri)

2/(2σ2
i ), (3.1)

whereN el
i is the number of electrons in the i-th atom, ri is its position, and σi is its radius.

The sum is performed over all Natoms non-hydrogen atoms in the molecule. Similarly,
in the coarse grain (CG) representation, the electron density is calculated as a sum of
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Gaussian functions over separate CG beads

ρ(r)CG =

Nbeads∑
i=1

NCG
i e−(r−rCG

i )2/(2σCG
i

2
), (3.2)

where rCG
i =

∑Natoms
i=1 (r − ri)N

el
i /
∑Natoms

i=1 N el
i is the position of the i-th bead, NCG

i =∑Natoms
i=1 Ni is the total number of electrons in all non-hydrogen atoms constituting that

bead, and σCG
i is the bead radius calculated as a standard deviation of the AA electron

density representation of the bead.

A 1Å wavelength was assumed for modelling all intensity distributions. For the
glutathione, those were computed on a 200 × 200 × 200 grid with a 6.3 × 10−2 Å−1

spacing, a 300 × 300 × 300 grid with a 6.3 × 10−3 Å−1 spacing for the titin, and a
300 × 300 × 300 grid with a 1.3 × 10−3 Å−1 spacing for the ribosome. An incident
beam intensity I0 = 2 × 108 photons/Å2 (obtained by focusing approx. 1.57 × 1012

photons to a 10 nm diameter spot) was assumed for the glutathione, and I0 = 4 ×
106 photons/Å2 (approx. 3.14 × 1012 photons in a 100 nm diameter spot) for the titin
and the ribosome.

3.1.2 Generating diffraction patterns

To mimic single molecule XFEL scattering experiments, the calculated intensity dis-
tributions were used to generate diffraction images, which in turn were used to test the
proposed structure determination methods. In the experiments, elastically scattered pho-
tons are registered at random positions following the intensity distribution. For efficiency
reasons, the distribution of photon counts n in a detector pixel of the simulated diffraction
images was approximated by a Poisson distribution

p(n,∆k) =
[I(∆k)]n

n!
e−I(∆k), (3.3)

where ∆k is the scattering vector corresponding to a particular pixel. Photon counts at
∆k = 0 were used to estimate orientations in the Orientational Bayes approach, but not
for calculating the structure probabilities in the Structural Bayes approach.

In the diffraction images, only the elastically scattered photons carry structural
information; all other registered photons are considered background noise. To simulate
the experiments, the background noise was included in the diffraction images by adding
Gaussian distributed photons. The standard deviation of the distribution was chosen
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to be 1/10 of the detector size to model experimental conditions, in which background
noise is mostly present in the centre of the image and decays towards the high resolution
regions [32]. Consequently, a corresponding Gaussian function was added to the intensity
distribution to calculate posterior probability distributions using Eq. (2.13). Assuming
that part of the inelastic scattering is not recorded in a diffraction image due to energy
filtering of the detector, the amount of additional background photons in the generated
images was considered at 10% and 50% ratios of noise to the mean signal photon counts
per picture.

The detector size was assumed to be 121 × 121 pixel in a 6 cm × 6 cm area for
the glutathione, 241 × 241 pixel (1.2 cm × 1.2 cm) for the titin, and 241 × 241 pixel
(2.4 mm×2.4mm) for the ribosome. In all simulations the distance between the irradiated
molecule and the detector plane was assumed to be 10 cm.

3.1.3 Generating random orientations

The orientation distribution for single molecules entering the XFEL beam was assumed
to be uniform. To generate orientations following such a distribution, Euler angles
used for the orientation description were drawn from a probability density g(θ, ψ, ϕ) =

(8π)−1 sin θ [33], i.e., ψ ∈ I[0, 2π), ϕ ∈ I[0, π), and θ = arccos z, where z ∈ I[−1, 1].
I used the Gnu Scientific Library [34] implementation of the ’Mersenne twister’ algo-
rithm [35] to generate the diffraction images of randomly oriented single molecules.

3.2 Computing posterior distributions

The posterior probability distributions π(Θi|Xi) for an individual diffraction image were
computed from Eq. (2.13) for accessible orientations sampled on a grid. The intensity
distribution IΘ[∆k(x, y)] registered on the detector plane for a molecular orientation Θ

is a projection of the intensity distribution on a corresponding Ewald sphere obtained via
trilinear interpolation from the molecular transform computed earlier on a 3D cubic grid.
To avoid numerical underflows, logarithms of the posterior probabilities were calculated
and exponentiated when required.

To improve the orientational resolution without unnecessary computational cost
increase, high probability regions were sampled with better accuracy. This orientational
resolution enhancement was achieved by first finding probability maxima on a coarse grid
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and subsequently sampling surrounding relevant regions with a finer step. The coarse
grid covered the entire Euler angles range θ = (0, π), ψ = [0, 2π), and φ = [0, π) with
a 10◦ step. The fine sampling with a 2◦ step was done in regions defined as those,
where the fine sampled probability exceeded the maximum of coarse sampled probability
πfine(Θi|Xi)/π

coarse
max ≥ 10−3 times for the glutathione and πfine(Θi|Xi)/π

coarse
max ≥ 5×10−4

times for the titin and the ribosome.

In the Maximum Likelihood approach, the orientation of a diffraction pattern was
estimated as the position of the fine sampled posterior probability maximum. In contrast,
the Bayesian approach considered all fine sampled orientations with assigned weights
W fine
i (Θi) = πfine(Θi|Xi)/π

fine
max.

The angular resolution dependency ∆Θ(Nphot) was obtained from posterior proba-
bility distributions sampled with a 1◦ step. Diffraction images of the glutathione molecule
rotated from the reference by θ = 58◦, ψ = 74◦, and ϕ = 136◦ were used for those calcu-
lations.

In the Structural Bayes approach, the posterior portability of a structure given a set
of diffraction images π

(
Sj |{Xi}

)
was obtained from the product of likelihood functions

for individual images f
(
Xi|Sj , θ(j)

i , ψ
(j)
i , ϕ

(j)
i

)
integrated over all orientations using the

rectangle rule.

3.3 Retrieving electron densities

The reconstructed molecular transform carries only partial information on the under-
lying electron density. To retrieve the latter, the relaxed averaged alternating reflec-
tions algorithm (RAAR) [20] was used to calculate the missing phases. The amplitudes
|F (∆k)| =

√
I(∆k) of the reconstructed molecular transform were combined with ran-

dom phases and provided to the algorithm. The amplitude at ∆k = 0 was also included
in the calculations.

The positivity constraint for the electron density was enforced in a finite support
defined as a cube centered at the origin and with a 9Å long edge (twice the radius
of gyration of the glutathione). 300 iterations were performed to retrieve the missing
phases. The β parameter relaxed from its initial value β0 = 0.75 to its final value
βmax = 0.99 in seven iterations following a smooth approximation of a step function [20].
The projections between real and reciprocal space were carried out with the fast Fourier
transform implementation from the FFTW library [36].
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To quantify the quality of the reconstruction method, R-factors were calculated for
both obtained molecular transforms and electron densities defined as

R =

∑
||Fref(∆k)| − |Fdet(∆k)||∑

|Fref(∆k)|
, (3.4)

where |Fref(∆k)| is the amplitude of the reference molecular transform and |Fdet(∆k)|
of the recovered molecular transform. The R-factors were computed up to a 0.22Å
resolution (|∆k| ≤ 4.4Å−1).

3.4 De novo structure refinement of the
glutathione

Random conformations of the glutathione constituting the search space for the MC re-
finement were generated by simultaneously changing the dihedral angles in the glycine
and cysteine residues of the model molecule. The four dihedral angles in the starting
structures were drawn from a uniform distribution. Then, in every MC step, a new
set of angles was obtained from the previously accepted ones by varying them accord-
ing to a normal distribution with a given standard deviation. Initially, the standard
deviation was set to 10◦ for all MC runs. To keep a constant acceptance ratio of 0.2,
the standard deviation was doubled when the ratio exceeded this threshold and halved
otherwise.

To avoid the system getting trapped in a local minimum of the sampled energy
landscape at an early stage of the simulation, simulated annealing was used [37]. To this
end, a dimensionless temperature ratio Tr = T/Ta was implemented in the Metropolis
criterion,

ξ < exp

[
(lnπj − lnπj−1)T

Ta

]
=
( πj
πj−1

)Tr
, (3.5)

where Ta is the annealing temperature and T is a pseudo-temperature that reduces the
dimension of the temperature ratio. The annealing was achieved through an exponential
temperature ratio increase with every accepted MC step from the initial value T 0

r =

0.002 to the final value T f
r = 1.2, Tr(n) = T f

r + (T 0
r − T f

r )e−nτ , where n is the number
of accepted MC steps and τ = 0.005 is a time constant. These values were adjusted
empirically.
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3.5 Generating a set of titin
conformations

To generate a set of proposed structures, an MD simulation of the titin molecule in
vacuum was performed using the GROMACS 4.5 simulation package [38] with the OPLS-
AA forcefield [39]. Long range electrostatic interactions (exceeding a 1.0 nm cutoff) were
computed with the particle mesh Ewald method [40]. Lennard-Jones interactions were
calculated up to a cutoff of 1.4 nm. The protein was coupled to a 300 K thermal bath
using the velocity rescale algorithm [41] with a time constant of 0.2 ps. All bonds were
constrained with the LINCS algorithm [42]. To avoid intradomain structural changes,
additional distance restrains were applied to atoms within the same Ig domains. An
integration time step of 2 fs was used. The total length of the simulation was 2.81 ns.
The proposed structures were obtained from snapshots 100 ps apart. During the last
10 ps of the simulation, snapshots were taken every 1 ps to obtain conformations with
small structural changes compared with the reference structure, and thereby to sample
the small RMSD values regime in Fig. 4.6.
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In this chapter, results of the two proposed Bayesian structure determination ap-
proaches, the Orientational Bayes approach and the Structural Bayes approach, are pre-
sented and discussed. First, I will discuss the accuracy of the orientation determination
for individual diffraction images. The quality of reconstructed electron densities will be
assessed under consideration of challenging experimental conditions, such as low photon
counts and background noise, demonstrating the robustness of the Orientational Bayes
approach. Finally, the achievable spatial resolution will be estimated as a function of the
incident beam intensity and molecular mass, revealing a scaling of the resolution with
the molecular mass as M−1/6.

Secondly, a potential application of the Structural Bayes approach to de novo struc-
ture determination of a small biomolecule will be studied. By limiting the search space,
this approach is applied to distinguish among different structures of large biomolecules;
here, demonstrated on conformations of three Ig domains and ribosomal translocation
states. Additionally, for the ribosome, the sensitivity of the Structural Bayes approach to
localized structural changes against structural background and its robustness to model
inaccuracy will be discussed.

4.1 Orientation determination

The aim of the Orientational Bayes approach is to estimate the molecular orientation for
each diffraction image individually. The accuracy in orientation determination influences
the quality of the recovered electron density. A challenge presents itself in achieving
sufficient accuracy despite very few signal photons and the presence of background noise.
In this section, I will investigate if it is possible to determine electron density maps at
atomic resolution from sparse diffraction images containing substantial background noise.
Further, an estimate of achievable resolution for molecules of different sizes exposed to
various beam intensities will be provided.
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To test the Orientational Bayes approach, I simulated XFEL diffraction images of
a glutathione molecule. For those, I calculated the posterior probability distributions
π(Θi|Xi). The images contained shot noise modelled by Poisson distribution of pho-
ton counts per pixel. Background noise was considered by adding normal distributed
photons at levels corresponding to 10% and 50% of the mean photon count per pic-
ture.

4.1.1 Posterior probability landscape

To accurately determine the molecular orientation, the posterior probability distribution
π(Θi|Xi) should possess a well pronounced maximum around the actual orientation. By
applying the Bayesian formalism, a high accuracy is expected already at very low numbers
of signal photons. This expectation is corroborated by an example cut in the ψ,ϕ-plane
through a 3D posterior probability landscape calculated from a simulated diffraction
image of a glutathione molecule containing only 65 elastically scattered photons shown
in Fig. 4.1. A dominant maximum is already visible in the logarithmic plot (top left
row), but the peak becomes pronounced in the linear scale (zoom below). Shot noise
causes a deviation of the maximum position (θ = 71◦, ψ = 52◦, ϕ = 33◦) from the actual
orientation (θ = 73◦, ψ = 52◦, ϕ = 34◦) by about 2.2◦. This shift remains still within the
half width of the peak (about 3.2◦).

Adding 50% background noise changes marginally the posterior probability surface
(right two plots in Fig. 4.1). The resulting shift of the maximum by 6.3◦ to θ = 67◦, ψ =

51◦, ϕ = 36◦ is more pronounced than in the previous case. The width of the peak
increased to about 4.3◦.

These results suggest that even at low photon counts and despite additional back-
ground noise the orientation information can be extracted from diffraction images. Whether
the proposed orientation estimate is accurate enough to resolve a structure at an atomic
level will be studied in the following sections.
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Figure 4.1: Example cuts through 3D posterior probability landscapes π(Θ|X). To illus-
trate the accuracy in orientation determination, posterior probability distri-
butions were calculated for diffraction images of a glutathione molecule ori-
ented as follows θ = 73◦, ψ = 52◦, ϕ = 34◦, containing shot noise only (left)
and additional 50% background noise (right). The top row shows ψ,ϕ-cuts
at a logarithmic scale taken at the θ coordinate of the posterior probability
maximum (θmax = 71◦ for shot noise only, θmax = 67◦ for background noise).
The bottom row depicts in linear scale how pronounced the maximum peaks
are. Figure adapted from Ref. [28].

4.1.2 Orientation determination and electron density
retrieval

Once the molecular orientation is accurately estimated for a particular diffraction image,
photons forming that pattern are mapped on an Ewald sphere corresponding to the de-
termined orientation. Photons from many diffraction images are accumulated in voxels
of a Cartesian grid, yielding an averaged 3D molecular transform. I investigated two pos-
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sible ways of performing those photon averages, as described in the Theory and Methods
sections. I name these methods and will refer to them in the following as ’Maximum
Likelihood’ and ’Bayesian’, respectively.

The Maximum Likelihood method locates the position of the maximum in the poste-
rior probability landscape. This point estimate of the most likely molecular orientation to
generate a given diffraction image is used to transfer the photon positions to a correspond-
ing Ewald sphere. The Maximum Likelihood method does not exploit the entire informa-
tion contained in the posterior probability distribution. In contrast, the Bayesian method
assigns a weight defined by the posterior probability value to every possible orientation.
Therefore, the Bayesian method should be less prone to lose information due to incom-
plete sampling and the discretization of reciprocal space.

To compare the Maximum Likelihood and Bayesian methods, I retrieved the molec-
ular transform of a glutathione tripeptide from 20,000 synthetic diffraction images, each
with 82 elastically scattered photons on average. The influence of the background noise
on the quality of the reconstruction outcome was studied by including additional 10% and
50% photons relative to the mean signal photons count per picture. Figure 4.2 shows
profiles of the retrieved molecular transforms along the kx axis (red lines) compared
to the reference (blue). The plots in the top row collate the results of the Maximum
Likelihood and Bayesian methods. The molecular transform profiles in the bottom row
illustrate the impact of background noise on the reconstruction accuracy of the Bayesian
method. To assess the quality of the reconstruction, the difference between the reference
and calculated profiles is plotted underneath each graph.

As shown in the top part of Fig. 4.2, the Maximum Likelihood method reconstructs
the molecular transform reasonably well only in the low k-vector regime, which suggests
that only low resolution electron density can be determined using this method. The
Bayesian method outperforms the Maximum Likelihood method, as it also captures the
high resolution details in the reconstructed molecular transform. This increased accuracy
seems to result from the use of the entire information contained in the posterior prob-
ability distribution, thereby ensuring a better coverage of reciprocal space with Ewald
spheres. The improved quality of the reconstructed molecular transforms is also visible in
respective R-factors in the three upper rows of Table 4.1.

To assess the influence of the background noise on the quality of reconstruction
(bottom row in Fig. 4.2), Gaussian distributed random photon positions were added to
the diffraction images containing shot noise only, as well as an appropriate Gaussian
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Figure 4.2: Quality of retrieved molecular transforms. Cuts through calculated molecular
transforms along kx axis (red lines) are compared to the reference (blue), and
their difference is plotted below in green. The top row contrasts the perfor-
mance of the Maximum Likelihood (left) and the Bayesian (right) methods
in the high resolution regime. The bottom row depicts the influence of back-
ground noise at two different levels on the molecular transform both obtained
with the Bayesian method. Figure adapted from Ref. [28].
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Table 4.1: R-factors as a quality measure for structures determined with the Maximum
Likelihood and Bayesian methods from diffraction images containing shot noise
only (SN) and additional 50% background noise (BN). R-factors in the three
upper rows quantify the accuracy of the retrieved molecular transforms. The
three lower rows contain R-factors that measure the similarity in reciprocal
space between the retrieved and reference electron densities. All R-factors
were calculated up to a 0.22 Å resolution (|∆k| ≤ 4.4Å−1).

Method Noise level R-factor

Molecular transform determination
Max. Lik. SN 0.48

SN 0.21
Bayesian 50% BN 0.23

Electron density determination
Max. Lik. SN 0.54

SN 0.27
Bayesian 50% BN 0.28

model was included in Eq. (2.13) for calculating the posterior distributions. After his-
togramming the photons from all recorded images in 3D reciprocal space, the background
noise was subtracted from the obtained molecular transform. Despite the assumed back-
ground noise levels of 10% and 50%, respectively, the Bayesian method yielded still
accurate molecular transforms. Whereas the calculated molecular transforms deviate
slightly from the reference, the corresponding R-factor (third row of Table 4.1) remains
similar to the one obtained for the shot noise only scenario (second row of Table 4.1),
thus suggesting no significant deterioration in the quality of the reconstruction despite
the additional background noise.

To check whether the anticipated quality and the level of detail of the reconstructed
electron densities obtained from the reconstructed molecular transforms reflects the ro-
bustness of the Orientational Bayes approach, Fig. 4.3 shows these electron density maps
retrieved with a relaxed averaged alternating reflections algorithm (RAAR) [20]. As
expected, the Maximum Likelihood method (left side of the middle row) yields a low
resolution map, lacking the high resolution details visible in the electron density map
retrieved from diffraction images containing shot noise only with the Bayesian method
(right side of the middle row). A better performance of the Bayesian method is also
reflected in the R-factors listed in the fourth and fifth row of Table 4.1. This loss of
detail in case of the Maximum Likelihood method was anticipated from the missing high
resolution information in the reconstructed molecular transforms. The bottom row of
Fig. 4.3 depicts the robustness of the Bayesian method in the presence of up to 50%
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Figure 4.3: Quality of retrieved electron densities compared with the reference (blue).
Middle row shows electron densities calculated with the Maximum Likeli-
hood (pink) and Bayesian (red) methods from images with shot noise only.
The bottom row illustrates how the Bayesian method copes with additional
background noise (BN) at levels of 10% (orange) and 50% (green). Figure
adapted from Ref. [28].

background noise. In fact, no significant difference caused by neither 10% nor 50% back-
ground noise level is visible in the retrieved electron density maps, as compared to the
one calculated from images with shot noise only. The similarity between the latter map
and the reconstructed maps from images with 50% background noise is further reflected
in the R-factor values presented in the two bottom rows of Table 4.1. Above results
suggest that the Bayesian method is robust against shot noise and low photon counts
but, more importantly, also against substantial background noise. In contrast to the
Maximum Likelihood method, the Bayesian method is not affected by high resolution
detail loss because it utilizes the entire information contained in the posterior probability
distribution.
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4.1.3 Achievable resolution dependence on molecular
mass

I have shown that it is possible to solve the structure of a small biomolecule despite
low photon counts registered in single molecule diffraction images and in the presence of
background noise. In the following, I studied how the achievable resolution depends on
molecular masses spanning a wider range, given different beam intensities and background
noise levels.

To answer this question, I estimated the achievable spatial resolution ∆x by a prod-
uct of angular resolution ∆Θ, being a measure of the orientation determination accuracy,
and the radius of gyration Rg of the molecule used in the experiment. The angular res-
olution ∆Θ was estimated as a mean distance to the actual orientation, calculated from
the posterior probability distribution. The distance between orientations was expressed
in Riemannian metrics [43].

The spatial resolution defined as ∆x = Rg∆Θ is influenced by two opposing effects.
Similar to pointillistic methods in fluorescence microscopy [44], where the resolution
scales with the number of photons as N−1/2

phot , I expected the accuracy of the orientation
determination ∆Θ to increase with the number of photons registered in a diffraction
pattern, ∆Θ ∝ N−1/2

phot . Here, this scaling was anticipated for the following reason. First,
I consider a diffraction pattern with Nphot recorded photons resulting in a likelihood
function f(X|Θ), which yields a posterior probability landscape π(Θ|X) that I assume
to have a well pronounced maximum at Θmax (e.g. as shown in Fig. 4.1). Next, I assume
a diffraction image withm times more photons,mNphot. This image can be described as a
superposition ofm images of the first sort with Nphot photons each because the scattering
of the individual photons are independent events. Specifically, each of those m subsets
of photons are drawn, by construction, from the same likelihood distribution f(X|Θ).
The likelihood of the superimposed image fm(mX|Θ) is thus proportional to f(X|Θ)m.
Taylor expansion up to the second order term of log f(X|Θ) and of logfm(mX|Θ) around
Θmax shows the expected scaling of the posterior probability standard deviation with
m−1/2. Nphot is proportional to the incident beam intensity I0, and presumably to the
molecular mass, thus yielding ∆Θ ∝ (I0M)−1/2. Vice versa, for a specific orientation
accuracy ∆Θ, the achievable spatial resolution should decrease with the molecular mass,
due to increasing radius of gyration Rg ∝M1/3. Put together, these two opposing effects
result in the spatial resolution increasing with the molecular mass as ∆x ∝ I−1/2

0 M−1/6.
In this light, using the glutathione as a test case presents the biggest challenge as opposed
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to larger biomolecules such as the titin or the ribosome.

Figure 4.4: Achievable spatial resolution for differently sized molecules and incident beam
intensities. Solid lines (dots) correspond to diffraction images with shot noise
only and dashed lines (diamonds) to images with additional 50% background
noise. Line colours refer to different incident beam intensities (photons/Å2).
For comparison, the resolution range typical for X-ray crystallography (ca
1-5Å) is marked with a cyan background. The masses of the test molecules
used in this work are labeled on the x-axis; glutathione (GTT), titin and
ribosome. The black dot-dash line illustrates the expected scaling as M−1/6.
Figure adapted from Ref. [28].

To verify this scaling, I simulated scattering experiments with varying beam inten-
sities using the glutathione as a target molecule. Thereby, posterior probability dis-
tributions were calculated for images containing on average from Nphot = 24 to 3724

scattered photons. For each of those average photon counts, 500 diffraction images with
a corresponding Nphot were generated to calculate the average orientational accuracy
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∆Θ. The resulting achievable spatial resolution for the glutathione can be extracted
from the coloured lines, corresponding to different beam intensities, intersecting with the
vertical dashed line in Fig. 4.4.

Ultimately, I intended to generalize the calculated ∆Θ(Nphot) dependence obtained
for the glutathione to predict the expected resolution for biomolecules of different sizes.
Those molecules were modelled by scaling up the glutathione α-times in size and α3M

in molecular mass, accordingly (horizontal axis in Fig. 4.4). As mentioned previously,
the number of registered photons was assumed to scale with the molecular mass as
Nphot ∝ I0M . As expected, the colour-coded curves for different beam intensities I0

show that the achievable spatial resolution increases ∝ M−1/6 (exemplified by a dot-
dash line with a slope of −1/6) and ∝ I

−1/2
0 for large molecular masses, corresponding

to Nphot > 200. For lower photon counts, smaller masses, respectively, the resolution
changes more rapidly as a result of comprised orientational accuracy ∆Θ. For very
sparse images, it is difficult to distinguish the correct orientation from those rotated by
about 180o, hence the misaligned orientations become almost equally probable as the
ones around the correct orientation. Therefore, the achievable orientational accuracy
∆Θ approaches 90◦ at very low photon counts.

The achievable spatial resolution for a beam intensity comparable with the one
currently available at Stanford Linear Accelerator Center (SLAC) is plotted with black
lines in Fig. 4.4. For these lines, I assumed a 12 keV beam with an intensity of I0 =

4.0 × 106 photons/Å2 focused to a 100 nm spot [12], whereas an intensity of approxi-
mately 105 photons/Å2 photons in a 1µm focal spot was achieved recently; however,
for up to 2 keV XFEL beams [45]. According to the estimated resolution dependence
on molecular mass, an intensity of I0 = 4.0 × 106 photons/Å2 should already suffice to
solve large structures, e.g three Ig domains of a titin molecule or the ribosome, within a
resolution range typically achieved in X-ray crystallography, indicated by a shaded area.
To achieve atomic resolution for smaller molecules, higher beam intensities are necessary.
For instance, imaging the glutathione would require increasing the beam intensity to
I0 = 2.0 × 108 photons/Å2 by reducing the focal spot size to 10 nm, which should be
possible, at least for 6 keV XFEL radiation [46].
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4.2 Structure optimization

Up to this point, I used a ’seed’ model structure to determine the molecular orienta-
tion for each diffraction image separately. Using the Bayesian formalism allowed to ex-
tract the orientational information even from sparse and noisy scattering data, thereby
enabling reliable structure determination at atomic resolution. Further, I intended to
investigate how to circumvent the need of the ’seed’ model for determining the struc-
ture from single molecule scattering images. This alternative approach aims at finding
a structure that simultaneously fits best to the entire set of diffraction images. Here,
the posterior probability of a structure giving rise to a set of observed images serves as
a comparison criterion to distinguish between proposed structures and is implemented
in a refinement procedure. The structure model defined in real space can thus be itera-
tively optimized according to the probability measure, as will be shown in the following
section.

4.2.1 De novo structure determination

I will assess the ability of the developed Bayesian approach to solve molecular structures
de novo. To this end, the posterior probability of a structure given a set of diffraction
images, Eq. (2.17), was implemented in a Monte Carlo (MC) structure optimization of
the glutathione. In contrast to the Orientational Bayes approach, here, the molecular
structure Sj is treated as an additional parameter that is optimized in a MC simulation
to find the structure that fits best to the entire set of recorded diffraction images; for
details refer to Methods section.

The search space of the proposed structures consisted of glutathione conforma-
tions differing in four dihedral angles between cysteine and glycine residues. The in-
ternal structure of the three amino acids constituting the peptide was assumed to be
known. The search was performed from starting structures with randomly chosen dihe-
dral angles. In each MC step, the posterior probability of a newly proposed structure,
πj+1 = π

(
Sj+1|{Xi}

)
, generated by changing all four dihedral angles according to a nor-

mal distribution, was calculated using Eq. (2.17). The posterior probability ratio of the
newly proposed and previously accepted structure πj+1/πj was used as the Metropolis
criterion [47] with associated energies Ej = −kBT lnπj . Consequently, the proposed
structure was accepted if ξ < exp(−∆E/kBT ) = πj+1/πj , where ξ is a random number
between [0,1).
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Figure 4.5: De novo structure determination in a Monte Carlo simulation. To opti-
mize the structure of the glutathione, the posterior probability was used as
a criterion to find a structure that most likely gave rise to 200 simulated
diffraction images. The logarithm of the normalized probability was plotted
for accepted structures in twelve independent MC runs (colour lines), each
of them started from different random configurations. Two example initial
structures are depicted in green and pink boxes. The most probable struc-
ture was observed after about 500 steps (black box); its overlay (blue) with
the reference structure (red) illustrates their similarity. Figure adapted from
Ref. [28].

The glutathione structure was refined against only 200 simulated diffraction images
with ca. 76 elastically scattered photons per picture on average, but without background
noise. Twelve MC runs from random structures were performed, for each of them Fig. 4.5
shows in colour lines the increasing posterior probability π

(
S|{X}

)
, normalized to the

probability of the most probable structure πmax, as a function of accepted MC steps.
The most and least probable starting conformations are shown in blue and green boxes,
respectively. After about 700 accepted MC steps, all runs seem to converge, and the
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most probable structure, shown in a black box, was found after about 380 accepted MC
steps. The remarkable structural similarity between the refined (blue) and the reference
(red) structure is depicted in the overlay of these structures and is also reflected in a root
mean square deviation (RMSD) of 0.02Å.

These results show that the Structural Bayes approach is able to accurately solve
de novo the structure of single molecules; however, only if the search space is limited,
as in the presented case of the glutathione. For larger biomolecules such MC optimiza-
tion might not be feasible because of a sampling problem. It was not the scope of this
work to propose a solution to overcome the sampling problem; instead, I applied the
Structural Bayes approach to distinguish among different conformations of larger struc-
tures.

4.2.2 Structure discrimination for large
biomolecules

An exhaustive amino acid based search space for de novo structure optimization of bio-
molecules larger than a peptide might be computationally too demanding. Therefore, I
limited the structural search space for two other example molecules: titin and the 70S
ribosome of E. coli. Here, the goal is to distinguish the correct conformation of a molecule
from the incorrect ones.

To test the developed approach on a relatively large protein, I used a 283 residues
long titin molecule with three Ig domains (Ig67-Ig69). The internal structure of the do-
mains remained rigid, whereas the domains were flexibly connected via proline-, glutamate-
, valine-, and lysine-rich (PEVK) linkers (PDB entry 2RIK [48]). 290 conformations,
differing in the mutual arrangement of the domains, were obtained in a 2.81 ns MD sim-
ulation with distance restrains put on the domain atoms, yet allowing the flexibility of the
linkers. The snapshot at 2800 ns was chosen as reference structure to generate 200 diffrac-
tion images, containing on average 376 photons per picture; the images contained shot
noise only. For each of the generated structures, the posterior probability of that structure
giving rise to the observed images π

(
S|{X}

)
and the RMSD to the reference structure

were calculated and plotted in Fig. 4.6 (blue asterisks). Structural differences between
conformations are shown for the reference structure (blue) and three other sample struc-
tures along the RMSD range (magenta, orange and red).

As expected, the reference structure is the most probable one and any structural
differences in the other sampled conformations lower their posterior probability. Even
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Figure 4.6: Finding the correct titin conformation within a limited set of proposed
structures. 290 different conformations were compared against 200 synthetic
diffraction images (example image shown in the bottom left corner) gener-
ated from the reference (blue, cartoon representation). For each of these
structures its posterior probability was plotted versus the RMSD with re-
spect to the reference (blue asterisks). Three intermediate structures in a
cartoon representation are shown in magenta, orange and red colour. Figure
adapted from Ref. [28].

the smallest structural change of 0.6Å decreases the probability about 1.24×1072 times,
suggesting that the reference structure could be correctly identified with much certainty
amongst the sampled conformations with an accuracy better than 0.6ÅRMSD.

The largest molecule used as a test case is the bacterial 70S ribosome with a molecu-
lar mass of about 2.5MDa. However, the ribosome size was not the only criterion for the
choice as a test molecule. During the translocation process, the ribosome undergoes struc-
tural changes at different length scales as described recently [3, 49], and thereby might
challenge the developed approach. The translocation states of the ribosome are classified
according to the tRNA chain positions with respect to the binding sites of the 30S and
50S subunits. Apart from the tRNA displacement, the structural changes between the
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states also stem from different subunit configurations.

To test whether the Structural Bayes approach can be used to identify the refer-
ence structure amongst a set of proposed structures, I chose seven translocation state
structures that were obtained as atomic fits to cryo-EM maps and kindly provided by my
colleagues [3]. The reference structure was chosen from the pre-translocation (pre1) state,
as previously defined in Ref. [49], and used to generate 200 diffraction images containing
on average 1.075 × 105 photons per picture. The images contained shot noise only, and
were used to test the Structural Bayes approach for its capacity to discriminate between
different ribosomal structures at three difficulty levels.

Figure 4.7: Identifying the correct ribosomal translocation state among seven proposed
structures. The different translocation states were compared against 200 syn-
thetic diffraction images generated from the reference (pre1 state). Structural
differences were expressed in terms of normalized posterior probabilities and
the RMSD with respect to the reference. These differences are exemplified
by an overlay of the pre1 (blue) and the pre5 (red) state that contrasts the
subunit (surface) arrangement and the tRNA chain (cartoon) configurations.
Boxes next to each of the points show the tRNA positions with respect to
the binding sites (E, P, A). Figure adapted from Ref. [28].

First, differences between entire ribosomal structures were regarded. Posterior prob-
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abilities were calculated for all seven structures and plotted in Fig. 4.7 versus the RMSD
to the reference (blue asterisks). The box representations at each point illustrate the
location of the tRNA chains with respect to the three binding sites of the subunits:
aminoacyl (A), peptidyl (P), and exit (E) (as defined in previous studies [49]). An over-
lay of pre1 (red) and pre5 (blue) structures depicts the overall structural change between
these two states resulting from different subunit arrangements (surface representation)
and the translocation of the tRNA chains (cartoon representation). As anticipated, the
reference structure was correctly identified as the most probable one to give rise to the
recorded diffraction images. Due to high photon counts per image, the reference structure
was determined with almost certainty in contrast to the remaining six structures; note the
large posterior probability ratios compared with the remaining structures. Apparently,
the posterior probability of a structure decreases with increasing structural difference to
the reference, here, expressed in terms of RMSD. Though, the post-translocation (post3)
structure deviates from this trend, possibly because the relatively small change in the
subunit arrangement compared to the reference structure masks to some extent the tRNA
chains displacement.

The next challenge for the developed method was to detect local structural changes
against a large structural background. In the ribosome, the tRNA chains constitute only
a small part of the entire complex, yet tracing their movement along the mRNA chain is
important to understand the translocation process. Hence following question emerges: is
it possible to detect the structural changes of the tRNA chains alone against the structural
background of ribosomal units? To answer it, I constructed seven test structures that
consisted of the tRNA chains from the seven translocation states embedded in the pre1
subunit configuration. This way, these test structures differed only in the tRNA chain
positioning and their internal conformation.

Figure 4.8 depicts how the posterior probabilities of the seven test structures giving
rise to 200 diffraction images generated from the pre1 state decreased along the tRNA
chain displacement, characterized in terms of RMSD compared with the reference struc-
ture. The reference tRNA chain positions were successfully identified as most probable.
The lower x-axis shows the RMSD values of the entire complex compared with the ref-
erence, whereas the upper x-axis depicts RMSDs of the tRNA chains only. Due to size
differences, the structural background partly masks the local structural changes, which
is visible in different lower and upper RMSD ranges. The inset in the upper right corner
illustrates the size comparison between the tRNA chains (cartoon representation) and
the ribosomal units of the pre1 state (surface representation). Overlays of tRNA chains
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Figure 4.8: Detecting local structural changes appearing during the ribosomal tRNA
translocation process. Normalized posterior probabilities that each of the test
structures, consisting of native tRNA chains embedded in pre1 state subunits,
gave rise to 200 synthetic diffraction images of the reference structure (pre1)
decrease along the chains displacement. The RMSDs on the lower x-axis
quantify the overall structural change, whereas the upper x-axis shows the
RMSDs of the local structural changes resulting from the tRNA movement.
The conformation change from the reference chains (blue) to the native for
other translocation states (red) is depicted at each of the red dots. The inset
in the top right corner illustrates the local structural change in tRNA chain
configurations from the pre1 to the pre5 state (cartoon) against the structural
background of the pre1 state (surface). Figure adapted from Ref. [28].

next to red points in the plot show the structural differences between the reference chains
(blue) and the replaced ones (red). As shown in the plot, the translocation process can
be tracked in terms of decreasing posterior probability. Even small localized structural
changes of tRNA chains are detected against a large structural background causing a
well pronounced drop in posterior probability values along the increasing RMSD. This
result suggests that single molecule X-ray scattering experiments might be suitable for
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studying, e.g. ligand binding processes.

The goal of the third difficulty level was to challenge the Structural Bayes approach
by introducing an inaccuracy in the structure model. In particular, I tested if detailed
structural information can also be retrieved against distorted structural background.
To answer this question, I created test structures by embedding the native tRNA con-
figurations of the seven different translocation states into the pre2 state subunit ar-
rangement and calculated their probabilities to give rise to diffraction images generated
from the pre1 state. This way, I introduced an inaccuracy in the structural background
model.

As in the previous case, Fig. 4.9 illustrates decreasing posterior probability along
the translocation process. Despite the inaccuracy in modelling the subunits arrangement
(note the offset in the lower RMSD axis), it is still possible to correctly identify the
reference position of tRNA chains and track the local structural changes in the translo-
cation process. The decreasing posterior probability trend is similar to the one obtained
previously. Here, the posterior probability ratio between the reference and the second
most probable structure is slightly less pronounced yet still very large ln(πreference/π2nd) ≈
4.04×103, indicating an almost certain structure discrimination.

These results show that it is indeed possible to distinguish between among confor-
mations of large biomolecules. The developed method is also sensitive to local structural
changes that can be tracked even against large and inaccurately modelled structural
background.
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Figure 4.9: Detecting local structural changes in tRNA configurations against inaccurate
structural background model. Normalized posterior probabilities that each
of the test structures consisting of native tRNA chains embedded in pre2
state subunits give rise to 200 synthetic diffraction images of the reference
structure (pre1) decrease along the chains displacement. The RMSDs on
the lower x-axis describe the overall structural change (offset in the scale is
caused by the model inaccuracy), whereas the upper x-axis shows the RMSDs
of the translocated tRNA chains alone. The conformation change from the
reference chains (blue) to the native for other translocation states (red) is
depicted at each of the red dots. The inset in the top right corner illustrates
the local structural change in tRNA chain configurations from the pre1 to
the pre5 state against the inaccurately modelled structural background, i.e.
the pre2 subunit arrangement (surface). Figure adapted from Ref. [28].

4.2.3 Structure discrimination using a multiscale structure
model

So far, all molecular structures were modelled at atomic resolution. The above results
suggest that the developed method can be used to extract local structural information
despite inaccurate structural background. Hence next, I investigated whether certain less
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important regions, such as the structural background, can be modelled at a lower resolu-
tion while maintaining atomic resolution in the regions of interest. This way, computa-
tion cost would be reduced without sacrificing accuracy in retrieval of relevant structural
details.

To achieve this multiscale structure model, the electron density of tRNA chains was,
as previously, calculated atom-wise whereas that of the ribosomal units residue-wise, i.e.,
single amino acids and nucleic acids were represented as coarse grain (CG) beads (for a
detailed description refer to Methods section). These models were compared against 200
diffraction images with 1.075×105 photons per picture generated from an all atom (AA)
representation of the pre1 state.

Figure 4.10: Identifying the correct ribosomal translocation state using mixed CG/AA
structure representations. Test structures were compared against 200 syn-
thetic diffraction images that were generated from the AA representation
of the pre1 state. For seven different translocation states, the logarithm
of the normalized posterior probability and the RMSD with respect to the
CG/AA representation of the pre1 state were calculated. Boxes next to
each of the points depict the location of the tRNA chains in the ribosome
at corresponding translocation states.
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First, to test whether the multiscale description would be suitable for structure
discrimination with the developed method, the posterior probabilities with respect to
the generated diffraction images were calculated for CG/AA representation structures of
seven different translocation states. The probability values of these states were plotted
in Fig. 4.10 versus the RMSD to the CG/AA structure of the pre1 state. As in the AA
representation, the correct state was identified with almost certainty. The post2 and
post3 states appear as outliers from the decreasing trend of the posterior probabilities
of the other states. Differences in subunit arrangements might partly compensate the
structural changes caused by tRNA translocation thus leading to the observed devia-
tion.

Next, I asked if structural details at atomic resolution can be extracted from a
multiscale model with an additional inaccuracy introduced in the structural background.
To answer this question, test structures were created by modelling the tRNA chain
arrangements native to the seven translocation states in AA representation and placing
them in CG subunit environment of the pre2 state. Figure 4.11 shows a decrease in
posterior probability that the test structures fit to the diffraction images of the pre1 state
in AA representation plotted versus structural difference to the CG/AA representation
of the pre1 state expressed in terms of RMSD. Local structural changes are still traceable
at a high resolution even though both the accuracy and the resolution in modelling of the
subunits were comprised. Compared to the results obtained for an AA representation
(Fig. 4.9), the probability ratio between the most probable and the second most probable
structure is slightly less pronounced ln(πmax/π2nd) ≈ 1.60 × 103, but still assuring an
almost certain identification of the correct tRNA chain arrangement amongst all proposed
structures.

Taken together, these results suggest that it should be possible to extract high
resolution structural information in regions of interest even using an inaccurate and low
resolution model of the structural background. Hence computational effort can possibly
be spared without comprising the high accuracy in small, yet important regions. This
CG description might be useful in devising a structure refinement scheme with increasing
levels of detail, i.e., decreasing size of CG beads; however, discussion of such a procedure
exceeds the scope of this work.
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Figure 4.11: Tracing local structural changes during tRNA translocation using the in-
accurate multiscale structure model. For each translocation state model,
obtained by embedding the native tRNA chain conformations within the
subunits of the pre2 state (inaccuracy of the model), the normalized poste-
rior probability was calculated (y-axis) using 200 synthetic diffraction images
generated from the AA representation of the pre1 state. The bottom x-axis
corresponds to the RMSDs of entire structures (mixed CG/AA representa-
tion), whereas the upper x-axis shows the RMSDs of the tRNA chains alone
(AA representation). The difference between the translocated (red) and the
reference chains (blue) is shown for each of the states.
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In this work, I developed two Bayesian approaches to determine the structure of
biomolecules from single molecule X-ray scattering images. The Orientational Bayes
approach, which is similar to the EMC algorithm by Loh and Elser [24], determines
the molecular orientation for individual diffraction images. The Structural Bayes ap-
proach is used to identify a structure that simultaneously fits best to all recorded diffrac-
tion images. These approaches were tested using simulated scattering images contain-
ing very few photons and substantial shot noise to mimic the challenging conditions
of future experiments. The anticipated low photon counts are indeed one of the chal-
lenges for structure reconstruction algorithms; as recent calculations showed, a relatively
small 500 kDa protein would scatter about 100 photons per picture, yielding photon
counts of 4 × 10−2 photons per pixel in the high resolution regions of a diffraction im-
age [18].

The Orientational Bayes approach uses a ’seed model’ (a structure similar to the
reference, obtained from, e.g. nanocrystallography or from homology modelling [50,51])
to determine the molecular orientation for individual images. The underlying molecular
transform is thereby determined by aligning and averaging the collected images in 3D
reciprocal space. Here, I compared two orientation determination schemes differing in
the extent of information contained in the calculated posterior probability distribution
they actually use. The Maximum Likelihood scheme estimates the molecular orientation
as the position of the maximum in the posterior probability landscape. In contrast, the
Bayesian scheme assigns weights to all sampled orientations according to the obtained
posterior probabilities. The results obtained in this work showed that, by using the entire
available information encoded in the posterior probability distribution, the Bayesian
scheme is superior to the Maximum Likelihood one. The Bayesian scheme ensures a
more accurate coverage of the 3D reciprocal space, and consequently, it recovers high
resolution structural information.

The ability to distinguish between different orientations in the Orientational Bayes
approach depends on the shape of the posterior probability landscape, which in turn
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is determined by the number of recorded elastically scattered photons and the level of
additional background noise. With increasing number of photons, the maximum of the
posterior probability distribution becomes narrower, leading to a better accuracy in the
orientation determination. An opposite effect is observed in the presence of background
noise; the additional noise results in a less pronounced posterior probability maximum.
The anticipated and calculated scaling of the angular resolution with the number of
recorded photons as Nphot translates into a spatial resolution increase with the molecular
mass as M−1/6. This scaling implies that, for a given beam intensity, a better resolu-
tion is expected for larger molecules; also when background noise is present. This result
appears counter-intuitive from the X-ray crystallography perspective. There, obtaining
high resolution structures for large molecules is challenging due to structural inhomogene-
ity resulting in imaging an average distribution of atomic position over many possible
conformations. For instance, the crystal structure of three Ig domains (∼30.8 kDa) was
solved at a 1.6 Å [48] resolution, whereas the bacterial 70S ribosome (∼2.5 MDa) struc-
tures were obtained at 2.8 Å [52] and 3.7 Å [53] resolutions, respectively. Here, assuming
an incident beam intensity anticipated in single molecule XFEL experiments of about
4.0×106 photons/Å2 [12], the estimated resolution for the Ig domains construct is about
3.2 Å and the resolution increases for the ribosome to 1.2 Å. The results further sug-
gest that by reducing the focal spot size and thereby increasing the beam intensity, even
higher resolutions should be achieved. Small focal sizes, about 10 nm in diameter, would
be required to image smaller molecules, such as the glutathione (308 Da), at about 1.4 Å
resolution.

The Orientational Bayes approach requires a ’seed’ model structure to determine
the molecular orientation for each of the recorded images. To avoid this requirement,
I developed and studied an alternative: the Structural Bayes approach. This approach
does not treat the collected diffraction images individually; instead it considers the en-
tire set of images to find a structure in real space that fits best to all images simul-
taneously. By defining the structures in real space and distinguishing between them
according to their probabilities, the phase retrieval stage is circumvented. Also, a bet-
ter spatial resolution of recovered structures is expected because the need to accurately
align the images, which limits the resolution in the Orientational Bayes approach, is
avoided.

To assess the possibility of de novo structure determination, I implemented the
posterior structure probabilities in a Metropolis MC refinement procedure for a small
test molecule, glutathione. From 200 simulated diffraction images containing on average
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∼ 70 elastically scattered photons each, a structure almost identical to the reference was
obtained. The refined structure differed from the reference by only 0.02 Å in terms of
RMSD.

Whereas the presented amino acid based de novo structure refinement was success-
fully applied to the glutathione, the sampling problem might hinder this procedure in
refining larger molecules. To avoid this problem, I reformulated the goal and aimed at
distinguishing among different conformations of large molecules forming a limited set of
test structures. Indeed, obtained results showed that the reference conformation of three
Ig domains was correctly identified among 290 proposed structures as the most probable
one to give rise to the generated diffraction images. The posterior probabilities obtained
using only 200 simulated diffraction images with on average ∼ 380 photons did suffice to
detect structural changes as small as 0.6 Å measured in terms of RMSD to the reference
structure.

Structural changes of large biomolecular systems might span several length scales for
their individual components. Hence I investigated whether the Structural Bayes approach
is able to distinguish among different states of a complex molecule. First, I asked if the
overall structural change can be detected in terms of calculated posterior probabilities.
Indeed, it was possible to correctly identify a reference structure among seven different
translocation states of the 70S ribosome. The test structures were compared against
200 simulated diffraction images of the reference structure, and any structural deviation
from the reference resulted in a lowered probability of a particular structure. This result
suggests that the Structural Bayes approach can be used to differentiate between states of
a complex biomolecule by detecting overall structural changes; also when those changes
result from local structural changes, happening at multiple length scales, of individual
components.

In certain biological processes, important structural changes happen in confined
regions of a complex system. Thus the next challenge for the Structural Bayes approach
was to trace local structural changes against large structural background. As a test case,
tRNA configurations native to seven ribosomal translocation states were embedded in a
subunit arrangement of a selected state. These seven chimera structures were compared
against 200 diffraction images generated from the reference state. The reference tRNA
configuration was correctly identified as the most probable one. Moreover, the tRNA
displacement in the translocation process was traceable in terms of decreasing structure
probabilities.
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Next, to test the robustness of the developed method to inaccuracies in the struc-
tural background, I introduced an inaccuracy in the structural background model. With
an incorrectly modelled subunit arrangement, it was still possible to identify the refer-
ence tRNA chain configurations as the most probable among the seven test structures.
Despite the introduced inaccuracy, the tRNA displacement was still reflected in decreas-
ing posterior probabilities along the translocation process. The results obtained for the
ribosome suggest that the planned XFEL single molecule experiments might be applied
to study localized structural changes even of small regions of interest against a large
structural background. Extracting such structural information might help to understand
mechanisms of, e.g. ligand binding or enzymatic reactions. The conformational changes
of a small ligand within a binding pocket or a substrate in a catalytic reaction centre,
traced in single molecule XFEL experiments, might give insights into the mechanisms
governing these processes.

Further, to reduce computational cost, I studied a multiscale structure model ap-
plied to distinguish among complex structures. Less important regions were modelled at
a lower resolution (coarse grain representation) whereas the atomic details were main-
tained in the important parts of the investigated molecules. Similar to the previously
described all atom structure models, the multiscale structure models of ribosomal translo-
cation states allowed to trace tRNA displacement at atomic resolution against the coarse
grained subunit arrangements. Such multiscale structure models might also facilitate a
de novo structure refinement of larger biomolecules.

In summary, the results presented in this work suggest that it should be possible
to extract structural information at atomic resolution from single molecule XFEL exper-
iments for molecules of various sizes, ranging from small peptides to large complexes.
The challenging experimental conditions, e.g. anticipated low photon counts and sub-
stantial background noise in the diffraction images, can be addressed by the two Bayesian
approaches described here to solve structures of various molecular sizes. In contrast to
X-ray crystallography, solving structures of single molecules at a high resolution should
be less challenging with their increasing sizes. These results combined with no require-
ment of crystalline specimen suggest that single molecule XFEL scattering experiments
might indeed become a powerful tool for structure determination and help to understand
mechanisms governing biological processes.
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