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1 Introduction 

1.1 Rett syndrome 
Rett syndrome (RTT; ICD10: F84.2) has been classified as an autism spectrum 

developmental disorder and was first described by the Vienna physician Andreas Rett 

in 1966 (Rett 1966). RTT predominantly affects female children with a prevalence of 1 

in 15,000 to 1 in 10,000 live births (Hagberg et al. 1985). Thereby, it represents one of 

the most numerous genetic factors for mental retardation in females. Only Down’s 

syndrome occurs more frequently (Hoffbuhr et al. 2001). 

RTT is strongly associated with mutations of the MECP2 gene, which is located on the 

long arm of the X-chromosome (Xq28) (Amir et al. 1999). 90% of these mutations 

occur in the male germline spontaneously (Trappe et al. 2001). Moreover, RTT shows 

strong gynecotropism. While males with MECP2 mutations almost always die in their 

first year of life, hemizygous females manage to go on living in the face of their severe 

symptoms (Villard 2007). 

Although a patient’s phenotype can vary depending on the X-chromosome inactivation 

pattern and the kind of MECP2 mutation (Schanen et al. 1997), Hagberg and Witt- 

Engerström (1986) established a four-stage classification of developmental 

progression and symptoms of Rett patients, which is highly acknowledged around the 

world. The stages of Hagberg and Witt-Engerström’s (1986) classification are 

illustrated in Figure 1.1. 

First stage (six to 18 months of age): After a normal neurological development 

stage until the sixth month of age, the “early onset stagnation stage” sets in. RTT 

patients of this age show motor progress deceleration, disinterest, activity 

reduction, small-sized head circumference, as well as the inability to keep eye-to-

eye contact. 

Second stage (first to third year of age): During the “rapid destructive stage” 

patients demonstrate a loss of already learned skills, such as language and 

purposeful hand use. Moreover, the RTT disease manifests itself in stereotypical 

hand movements, social and emotional retraction, phases of screaming and 
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crying, epileptic seizures, as well as dysfunction of sensory perception and 

integration, hardly distinguishable from autism. 

Third stage (second to tenth year of age): In the “pseudo-stationary stage” RTT 

patients show fewer expressions of autistic behavior and irritability. However, 

physiological disturbances, such as apraxia, ataxia, and hand stereotypes 

likewise increase. In this stage, for example, first striking breathing symptoms 

leading to episodic “press” hyperventilation of RTT patients occur (Hagberg et al. 

1985). Moreover, RTT patients show pronounced teeth grinding and oral bruxism 

habits, caused by a high palatal arch, which leads to teeth mobility class II and 

momentous tooth attrition  (Fuertes-González et al. 2011).  

Fourth stadium (tenth year of age onwards): In the “late motor deterioration 

stage” RTT patients demonstrate cognitive proceedings on the one hand, but 

weakness, cachexia, and spasticity on the other. Most RTT patients are obliged 

to use a wheelchair from now on, which often leads to further diseases, such as 

scoliosis (Han et al. 2012). Individuals affected by RTT only have a limited life 

expectancy of seven to 35 years (20 years in average) (Laurvick et al. 2006).  

To improve their life quality, RTT patients can take advantage of therapies such as 

music therapy, physical therapy, speech therapy, or ergo therapy (Hanks et al. 1986). 

To maintain sufficient nutritional status patients are often fed via a stomach tube or 

percutaneous endoscopic gastrostomy (PEG) (Oddy et al. 2007). Furthermore, 

patients who exhibit seizure activity are treated with anticonvulsant pharmaceutics 

(Glaze et al. 1998). Unfortunately, however, to date no causal therapy for patients 

suffering under the RTT disease exists. 
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Figure 1.1 Photograph sequence of a female Rett patient affected by severe breathing problems 

(A) Patient shows the first symptoms at the age of 9 months, particularly apathetic behavior. (B) At the 
age of 3 years the patient needs Biphasic Positive Airway Pressure (BIPAP) to provide the oxygen due 
to breathing disturbances. (C) At the age of 5 years she is reliant on a walker (model adapted from 
Smeets et al. 2012). 

1.1.1 Breathing impairment in Rett syndrome 

As shown above, one of the devastating features of the RTT syndrome are breathing 

aberrations such as air swallowing (Morton et al. 2000), breath holding, shallow 

breathing, Cheyne-Stokes breathing, Biot’s breathing (Julu et al. 2001), Valsalva’s 

maneuvers (Southall et al. 1988), episodic hyperventilation (Ren et al. 2012), as well 

as hypoventilation (Hagebeuk et al. 2012). The breathing aberrations of RTT patients 

usually start with the age of five to ten years (Julu et al. 2001) and can be observed 

both during day- as well as nighttime (Rohdin et al. 2007, Weese-Mayer et al. 2008, 

d’Orsi et al. 2009).  50% of all RTT patients suffer from breathing aberrations. 25% of 

these RTT patients under hyperventilation, often leading to central lack of inspiration 
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(Gökben et al. 2012). These breathing arrests are normally accompanied with a 

decrease of oxygen saturation to less than 50% of the norm (Southall et al. 1988). 

Central apnea lasting longer than 45s can lead to life threatening circumstances and 

even to sudden death (Glaze 2005). It is assumed that repetitive hypoxic conditions 

lead to brain injury, which provokes typical neurologic symptoms in RTT patients. 

Because so far no preventative therapy for RTT patients has been established, it is not 

surprising that a strong research interest in breathing disturbances exists. 

1.1.2 The transcription factor MeCP2 

The methyl CpG (Cytidin, phosphate, Guanine) binding protein (MeCP) 2, named 

according to its ability to bind to methylated DNA, is part of a protein family with a 

characteristic methyl-CpG-binding domain (MBD) (see Figure 1.2) (Nan et al. 1993). In 

human as well as in mice, the MECP2/Mecp2 gene resides on the X chromosome and 

comprises four exons (see Figure 1.2) (Quaderi et al. 1994, D’Esposito et al. 1996). 
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Figure 1.2 Splicing variants of the human methyl-CpG protein (MeCP2) and its functional 
domains 

(A) Two isoforms of the MeCP2 protein, MeCP2_e1 and MeCP2_e2, are generated by alternative 
splicing. The arrows demonstrate alternative starting points for the translation. (B) Regardless of the 
different N-termini, both MeCP2 isoforms possess identical domains; (Model adapted from Gadalla et al. 
2011). Abbreviations: N-terminal domain (NTD), methyl-CpG binding domain (MBD), interdomain (ID), 
transcription repressor domain (TRD), C-terminal domain (CTD), nuclear localization sequence (NLS), 
heterochromatin protein 1 (HP1). The arrows below each domain indicate primary interactors (black) as 
well as secondary binding partners (grey). 

Alternative splicing of exon 2 results in the two different splice variants MeCP2e1 and 

MeCP2e2. The protein coded by MeCP2e1 mRNA, which is the dominant splice 

variant in the brain, has a larger N-terminus in comparison to protein translated by the 

MeCP2e2 mRNA (Mnatzakanian et al. 2004, Kriaucionis and Bird 2004). 

The MeCP2 protein (Figure 1.2 B) is composed of 486 amino acids and contains a N-

terminal MBD (Nan et al. 1993), a central nuclear localization sequence (NLS), and a 

C-terminal transcription repression domain (TRD) (Nan et al. 1997). The NLS exists 

inside TRD and transports the protein into the nucleus (Nan et al. 1997). By means of 

the MBD, MeCP2 binds to DNA with symmetrically methylated CpG’s (Nan et al. 
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1993). In particular, TRD has been shown to interact with the co-repressor mSin3A, 

which leads to the recruitment of histone deacetylases 1 and 2 (HDAC1/2). Histone 

deacetylation is associated with a heterochromatin formation, which itself is closely 

linked to the major functions of MeCP2 - chromosome and gene silencing (Jones et al. 

1998). Hence, MeCP2 is involved in chromatin remodeling (Mandrioli 2007), gene 

repression, X-chromosome inactivation (Li 2002), deactivation of foreign DNA 

elements within genome (Hendrich and Tweedie 2003), and genomic imprinting 

(Barlow 1994) (Figure 1.3 A-D). Moreover, many genes have been identified as being 

directly suppressed by MeCP2, such as ubiquitin-protein ligase E3A (Ube3a), gamma-

aminobutyric acid receptor subunit beta-3 (Gabrb3), corticotropin releasing hormone 

(Crh), distal-less homeobox 5 (Dlx5), and brain-derived neurotrophic factor (Bdnf, see 

1.1.4 Breathing impairment in Mecp2-/y mice) (Nan et al. 1997, Samaco et al. 2005, 

Chen et al. 2003, Horike et al. 2005, Martinowich et al. 2003). 

However, besides its function as a gene repressor MeCP2 is also known to activate 

RNA expression (Zhou 2006). MeCP2 activates RNA expression by interacting with 

the transcriptional activator cAMP responsive element binding protein 1 (CREB1) 

(Chahrour et al. 2008). MeCP2 has a strong binding capacity towards 5-

hydroxymethylcytosine (5hmC). Moreover, an increased 5hmC expression is 

interlinked with an increased gene expression. Therefore, it is strongly suggested that 

MeCP2 functions as an immediate facilitator of gene expression (Mellén et al. 2012). 

Additionally, depending on the specific posttranslational modification pattern, which 

includes phosphorylation, ubiquitylation, and acetylation of MeCP2, the protein is even 

able to change its role regarding a gene transiently: It allows MeCP2 to act as a 

regulator of gene expression as well as a repressor of genes (Gonzales et al. 2012). 

Due to the Janus-faced character of gene repression and activation in the process of 

chromatin formation, MeCP2 is not only regarded as a simple repressor, but as a 

global chromatin regulator. 
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Figure 1.3 Functions of MeCP2 in chronological research order 

(A) Repressor model: MeCP2 functions as a transcriptional repressor in the nucleus. (B) Structural 
model: MeCP2 condensates chromatin. (C) Loop and recruit model: MeCP2 causes a chromatin loop 
structure and recruits chromatin-remodeling factors. (D) Transcriptional activator model: MeCP2 
interacts with the transcription factor CREB1; (Model adapted from Zachariah and Rastegar 2012). 
Abbreviations: Distal-less homeobox 5 protein (Dlx5), distal-less homeobox 6 protein (Dlx6), cAMP 
responsive element binding protein (CREB), RNA polymerase II (RNA Pol II), corepresor mSin3A 
(Sin3A), histone deacetylases (HDACs). 

1.1.3 The mouse model of Rett syndrome 

Since it is known that MECP2 mutations are responsible for RTT in humans, several 

mouse models have been developed, which lack the functional Mecp2 gene  (Chen et 

al. 2001, Guy et al. 2001, Shahbazian et al. 2002). Depending on the sex, these 

mouse models are either termed Mecp2-/y or Mecp2-/+ mouse model (male or female 

mouse). The male mouse model Mecp2-/y displays highly similar symptoms to human 

RTT patients. 

However, in contrast to male RTT patients (see 1.1 Rett syndrome), Mecp2-/y mice live 

for a certain amount of days. In average they are viable until postnatal day 54 (P54) 

(Guy et al. 2001). 
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The motor behavior of Mecp2-/y mice (at P54) is very similar to that of humans. The 

Mecp2-/y mice (at P54) show hind limp clasping corresponding to hand wringing 

stereotypes, unstableness in walking, tremor, unresponsiveness to external stimuli as 

well as hypoactivity (Guy et al. 2007). Even a discoordination of the oral system, 

including unbalanced clashing of teeth based on a jaw malfunction, has been identified 

in Mecp2-/y mice, and thus symptoms are similar to human bruxism (Guy et al 2001). 

In comparison to wild type (wt) mice, Mecp2-/y mice are less active in exploring their 

littermates as well as their spatial environment (Samaco et al. 2013) and have a 

remarkably lower body weight and smaller body size (Guy et al. 2001). Fischer et al. 

(2009) revealed a lower amount of pyramidal neurons in the cortex area of Mecp2-/y 

mice, resulting in less synaptic connections in the cerebrum (Chao et al. 2007). Finally, 

in comparison to hemizygous Mecp2+/- female mice, symptoms of Mecp2-/y mice occur 

earlier than the symptoms of hemizygous Mecp2+/- female mice and are much more 

severe (Stearns et al. 2007). Hemizygous Mecp2+/- female mice are variable in their 

phenotype. 

1.1.4 Breathing impairment in Mecp2-/y mice 

Newborn Mecp2-/y mice, like newborn RTT patients, do not show any breathing 

disturbances (Guy et al. 2001, Viemari et al. 2005). First respiratory symptoms such as 

frequent apneas, apneusis (deep gasp like inhale followed by pause and then short, 

insufficient exhale), unsteady breathing cycle periods, and slow and erratic breathing 

are usually developed as soon as Mecp2-/y mice reach the age of P30 (Zanella et al. 

2008, Ren et al. 2012). The corresponding age of humans is 1-1.5 years (Watson et 

al. 2006). The respiratory dysfunctions occur more frequently and persistently with 

increasing age (Ren et al. 2012). This development is very similar to the early 

development of human RTT patients (Katz et al. 2009). 

Eupnoic breathing consists of three phases, i.e. inspiration, post-inspiration, and late 

expiration (Richter 1982). Mecp2-/y mice show prolonged post-inspiratory activity as 

well as shortened phases of inspiration and delayed expiration duration (Stettner et al. 

2008). These breathing features cause breathing rhythm irregularities regarding 

frequency, amplitude (Ramirez et al. 2013) as well as apneas (Stettner et al. 2008). 

Arrhythmic breathing, long breathing arrests and tachypnea with approximately 20% 
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higher breathing frequency are typical symptoms of Mecp2-/y mice (Ogier et al. 2007). 

In conclusion, periods of hyper- and hypoventilation alternate (Ramirez et al. 2013). 

Different studies exist, which investigated the correlation between breathing 

disturbances and expression levels of genes, hormones, as well as hormone receptors 

in Mecp2-/y mice. 

On gene level, for example, it was found that Mecp2-/y mice show lower Bdnf/BDNF 

expressions compared to wt mice, which lead to low levels of the growth factor 

ampakine. Inhibition of Bdnf in neurons induces breathing disturbances in wt mice 

(Mironov et al. 2009), whereas an increase of BDNF protein levels, as well as a 

medical treatment with ampakine, significantly improves respiration of Mecp2-/y mice 

(Ogier et al. 2007). Thus, researchers assume that low levels of ampakine contribute 

to the disturbed breathing phenotype. 

At the hormone level, it was found that Mecp2-/y mice have lower levels of 

norepinephrines in comparison with wt mice, which modulate excitatory impulses 

between neurons (Viemari et al. 2005). Medical treatment with the neurotransmitter 

norepinephrine stabilizes the breathing rhythm of Mecp2-/y mice in vitro (Viemari et al. 

2005) and in vivo (Ramirez et al. 2013). Ramirez et al. (2013) developed a model, 

which describes the breathing problems of Mecp2-/y mice as a ‘vicious circle’: 

Breathing problems arise from a synaptic imbalance caused by BDNF reduction. This 

imbalance then leads to oxidative stress, hyper-, and hypoventilation in Mecp2-/y mice. 

Finally, oxidative stress, hyper- and hypoventilation in Mecp2-/y mice result in 

modulatory disturbances in Mecp2-/y mice, represented by alterations of their 

norepinephrine and serotonin expressions (Ramirez et al. 2013). Changes in the 

expression levels of norepinephrine and serotonin deteriorate the breathing of Mecp2-/y 

mice further. 

Finally, at the hormone receptor level it was found that Mecp2-/y mice show higher 

serotonin receptor 5b (5-ht5b) levels in the ventral respiratory column (VRC) area 

(Vogelgesang, 2013). It has been found that this dysregulation directly leads to 

persistently low cAMP levels, due to the constitutive activity of 5-ht5b receptors 

(Vogelgesang, 2013). As a result, the central breathing rhythm of Mecp2-/y mice is 

disturbed. However, elevating cAMP levels pharmacologically leads to a significant 

improvement of breathing conditions (Vogelgesang 2013). 
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1.2 The respiratory network  
The main breathing function is to ensure the availability of oxygen in the organisms’ 

blood circuit as well as the exhalation of carbon dioxide throughout the lungs. Various 

neuronal breathing models exist, indicating the scientific complexity of this 

physiological process (Richter et al. 1992, Balis et al. 1993, Richter et al. 1996, 

Matsugu et al. 1998, Smith et al. 2000). Different beliefs about function and number of 

respiratory neurons exist. This study follows the assumption that differing classes of 

neurons are involved in the breathing mechanism. They are classifiable into different 

functional as well as anatomical groups. 

On functional level there are inspiratory, post-inspiratory, and expiratory neurons. 

Inspiratory, post-inspiratory, and expiratory neurons control the breathing rhythm and 

frequency. Thus, their activity levels differ depending on the specific breathing phase 

(Richter 1982, Ogilvie et al. 1992, Richter et al. 1992). On anatomical level a major 

group is known as the ventral respiratory group (VRG), which is part of the ventral 

respiratory column (Smith et al 1991). The ventral respiratory column is arranged as a 

longitudinal cell group alongside the compact part of the nucleus ambiguus (cNA) 

(Feldmann and McCrimmon 2003). Furthermore, it is divided into a rostral section, 

containing the Bötzinger and the pre-Bötzinger complex (pre-BötC) (Cotes et al 2006). 

The latter is considered to be essential for rhythmogenesis in mammals (Smith et al. 

1991). 
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Figure 1.4 Schema of the localization of regions essential for respiratory rhythm generation 

(A) Sagittal section: Column-like, bilaterally arranged breathing center, containing the respiratory 
network (colored). The sagittal section also contains the ventral respiratory group (rVRG), including the 
Bötzinger and pre-BötC in its rostral part as well as caudal part, which are important for generating the 
breathing-rhythm. This part of the illustration also shows the nucleus of the solitary tract, which is 
relevant for vagal reflexes. (B) Transversal section; (Model adapted from Vogelgesang 2013, 11). 
Abbreviations: Principal nucleus of the inferior olive (IOPr), thalamic reticular nucleus (RTN), compact 
part of nucleus ambiguous (cNA), pre-BötC, Bötzinger complex (BötC), nucleus tractus solitarius (NTS), 
ventral respiratory group (VRG), hypoglossal nucleus (XII), pyramidal decussation (pyx), rostral (r), 
caudal (c), lateral (l). 

The rhythm excitability within the respiratory network is adjusted synaptically by 

various neurochemicals, such as Bdnf, thyrotropin-releasing hormone (Trh), 

acetylcholine, adenosine-5'-triphosphate (ATP), dopamine, histamine, neurokinins, 

noradrenalin, opioids, and serotonin (Manzke 2013). 

1.3 Definition of Hypoxia 
Hypoxia describes the condition in which the tissue of the whole body or of distinct 

body regions is undersupplied with oxygen (Korner 1959). Hypoxia can, for example, 

be caused by vasoconstriction, respiratory or pulmonary lung disease (Morani et al. 

2006), segmented oxygen supply of organs by means of cardiac insufficiency, 

thrombosis, or embolisms, reactions to mountain air, as well as anemia (Peyssonnaux 

et al. 2007). Common symptoms of individuals suffering under hypoxia are clouding of 



Introduction 

 12 

consciousness, fainting, seizures, shortness of breath, as well as muscle weakness 

(Chávez et al. 1995).  

In hypoxic situations, the oxygen deficiency causes an inefficient anaerobic 

metabolism within neurons, which leads to an accumulation of lactate and a disruption 

of the membrane function. As a consequence, calcium enters postsynaptic cells in an 

unimpeded manner, which enables the production of free radicals. As a result 

mitochondria become dysfunctional and energy-generating processes are completely 

suppressed. In mild hypoxia certain neuronal functions become modified to ensure the 

survival of the neuron or to regulate a controlled apoptosis (Sprang and Brown 1987). 

 In the case of severe hypoxia, even morphological alterations, such as necrosis, 

shrinkage of brain parts, and selective neuron destruction can be observed (Shalak 

and Perlman 2004, Huang and Castillo 2008, Yue et al. 1997). Irreversible neuronal 

damage can take place after three minutes of hypoxia (Smith et al. 1984). During a 

decrease of oxygen the organism mainly concentrates on oxygen supply for the 

essential organs, particularly the CNS (Zauner et Muizelaar 1997). However, in the 

case of even further oxygen decrease this compensation mechanism fails. 

Consequently, the heart rate decelerates (Zwillich et al. 1982) and the blood pressure 

decreases (Courten-Myers et al. 1985). 

Although hypoxia occurs systemically within the whole CNS, several brain regions are 

more susceptible for oxygen deficiency. This phenomenon is known as the ‘selective 

vulnerability of the brain’ (Johnston et al. 2001). In early life, neurons of evolutionary 

older brain regions, such as cerebellum (Cerv´s-Navarro and Diemer 1991), or brain 

stem areas, such as the inferior olive and VRC region are more susceptible to hypoxic 

damages than neurons of evolutionary newer brain portions, such as neocortex 

(Panigrahy et al. 1995) However, neurons of evolutionary newer brain portions such as 

neocortex become more resistant with increasing age (Falini et al. 1998). Prone to 

damages caused by hypoxia are also parts of the brain with a high metabolic activity, 

such as the thalamus and cortex (Luigetti et al. 2012). 

1.3.1 Gene expression mediated adaption to hypoxia 

Hypoxia triggers a multifaceted genetic and cellular response, which is important in the 

maintenance of normal physiological functions. One gene, whose expression has been 
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found to change under hypoxic conditions, is, erythropoietin (Epo), responsible for the 

capacity to carry oxygen through the blood system (Ebert and Bunn 1999). Epo is 

transcriptionally induced under hypoxic condition. 

Other genes, whose expression has been found to change under hypoxic conditions 

are hypoxia inducible factors (Hifs). Hifs become degraded depending on their oxygen 

level. Hifs are the main regulators of Epo synthesis. Consequently, HIF proteins are 

generally defined as both the main oxygen sensors as well as modulators at the 

cellular and systemic level (Wenger 2002). HIF proteins regulate multiple genes 

(Warnecke et al. 2004, Chan and Giaccia 2007) which are related to hypoxia and/or 

are involved in improving oxygen transportation. 

HIF proteins also affect the expression of genes involved in iron metabolism, such as 

transferrin (Rolfs et al. 1997). Moreover, they affect the expression of genes involved 

in the vascular regulation, such as the vascular endothelial growth factor (Damert et al. 

1997). Finally, HIFs activate the transcription of genes responsible for anaerobic 

glycolysis, for example lactate dehydrogenase A (Firth et al. 1995), as well as for 

general glycolysis due to a lower anaerobic energy efficiency, such as aldolase A 

(Semenza et al. 1994). 

1.3.2 Hypoxia in Rett syndrome  

Although it is known that Rett mouse models exhibit impaired breathing, information 

about induced hypoxia is limited. Early indications of hypoxia in Rett mouse models 

have been described by Fischer et al. (2009). As expected, higher HIF-1α levels have 

been found in the Mecp2-/y mice’ (P38-P60) brain areas cerebellum and neocortex 

compared to wt mice. 
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2 Aim of the study 
This study aims to clarify whether breathing irregularities evoke systemic hypoxia 

throughout the brain of Mecp2-/y mice. Hypoxia-mediated gene expressions as well 

as neuronal cell death in particular brain regions might explain further neurological 

symptoms, which are caused by breathing disturbances as well. Therefore, five 

brain areas have been analyzed: The (1) cerebellum, (2) cortex, (3) inferior olive, (4) 

hypothalamus as well as (5) VRC area. For all brain areas this study assumes that 

gene deregulations in these areas are interconnected to specific RTT symptoms. 

(1, 2) The cerebellum and cortex area are associated with the movement control of 

mice (Clarke and O’Malley 1996, Fuster 2008). It is hypothesized that a 

dysregulation of gene expression in these brain areas might result in an impaired 

motor activity and unresponsiveness to external stimuli of Mecp2-/y mice. 

(3) The inferior olive area is a further motor related region responsible for the 

coordination of Mecp2-/y mice and reports movement errors to the cerebellum area 

(Kawato and Gomi 1992). Thus, it is predicted that a deregulation of gene 

expression in this brain area is involved in an impaired motor activity in Mecp2-/y 

mice as well. 

(4) The hypothalamus area is responsible for the metabolism functions of the body 

and controls vegetative functions, such as feeding, body temperature and emotional 

responses. It is thus assumed that gene alterations in the hypothalamic area might 

lead to the reduced bodyweight and size of Mecp2-/y mice. 

(5) Finally, the VRC area regulates the breathing activity of mice. Because the VRC 

area is the brain’s breathing center it is the most significant brain area to 

investigate. Therefore, it is hypothesized that respiratory disorders manifest 

themselves in abnormal gene expressions of neurons in particular (Feldmann and 

del Negro 2006). 
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3 Materials and methods 

3.1 Materials 

3.1.1 Instruments 

Table 3.3.1 Instruments 

Instruments Manufacturer 
Autoclave 

Systec 5075 ELV Systec GmbH (Wettenberg) 

Blotting-Apparatus 

iBlot Invitrogen (Karlsruhe) 

Centrifuges 

5415R Eppendorf (Hamburg) 

Centrifuge 5415D Eppendorf (Hamburg) 

Mikro 200R Hettich (Tuttlingen) 

Documentation 

Alphalmager EC (western blot) Alpha Innotec Corporation (San Leandro, USA) 

BioVision Video documentation (agarose gel) Peqlab (Erlangen) 

Electrophoresis chambers 

Horizontal, self-made (agarose gel) by workshop UMG (Göttingen) 

Vertical, XCell Sure Lock Invitrogen (Karlsruhe) 

Freezers 

Comfort (-20°C) Liebherr (Biberach) 

U535 Innova (-80°C) New Brunswick Scientific (Edison, USA) 

Heat blocks 

Thermofixer comfort Eppendorf (Hamburg) 

Thermostat 5320 Eppendorf (Hamburg) 

Microscopes 

EM 900 Zeiss (Göttingen) 

Meta-LSM 510 Zeiss (Göttingen) 

Microtome 

CM1510S Leica Microsystems (Bensheim) 

pH meter 

inoLab pH 720 WTW (Weilheim) 
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Photometer 

NanoDrop 1000 Spectrophotometer Thermo Fisher Scientific (Dreieich) 

Pipettes 

2.5-, 10-, 20-, 100-, 200-, 1000-µl Eppendorf (Hamburg) 

10-, 20-, 100-, 200-, 1000-µl Gilson (Limburg-Offheim) 

accu-jet BRAND GmbH & CoKG (Wertheim) 

Macro pipette controller BRAND GmbH & CoKG (Wertheim) 

Multipipette plus Eppendorf (Hamburg) 

Power supplies 

EV-231 Biotec-Fischer (Reiskirchen) 

Power-Pac 3000 BIO-RAD (München) 

Scales  

572 Kern & Sohn (Balingen-Frommern) 

Alt 100-5AM Kern & Sohn (Balingen-Frommern) 

Shakers/wheeled walker 

Duomax 1030 Heidolph Instruments (Schwabach) 

Genius 3 IKA (Staufen) 

Roller Shaker “Assistant” RM5 Glaswarenfabrik Hecht (Sondheim) 

Rotamax 120 Heidolph Instruments (Schwabach) 

Titramax 1000 Heidolph Instruments (Schwabach) 

Sterile bench 

HeraSafe HSP Heraeus (Berlin) 

Thermocyclers 

C100 Thermal Cycler / CFX96 Real-Time System BIO-RAD (München) 

Labcylers SensoQuest (Göttingen) 

Western blot detection 

Odyssey Sa Infrared Imaging System Licor (Lincoln, USA) 

3.1.2 Consumables 

Table 3.2 Consumables 

Consumables Manufacturer 
Aluminum foil Roth (Karlsruhe) 

Centrifuge tubes (15-, 50-ml) Greiner (Frickenhausen) 

Combitips (1-, 5-, 10-ml) Eppendorf (Hamburg) 
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Coverslips (24 x 50 mm) Roth (Karlsruhe) 

Microscope slides (Superfrost® Plus) Thermo Fisher Scientific (Dreieich) 

Microtiter plates (96-well) Thermo Fisher Scientific (Dreieich) 

Nitrile gloves Top glove (Duisburg) 

Parafilm Pechiney (Chicago, USA) 

PCR plates (96-well) BIO-RAD (München) 

Pipette tips (10-, 100-, 200-, 1000-µl) nerbe plus (Winsen/Luhe) 

Reaction tubes (0.2-, 0.5-, 1.5-, 2-ml) nerbe plus (Winsen/Luhe) 

Serological pipettes Techno Plastic Products (Trasadingen, Suisse) 

Surgery (cannula, scalpels, syringes) B. Braun (Melsungen) 

3.1.3 Chemicals and biochemical reagents 

Table 3.3 Chemicals and biochemical reagents 

Chemicals and biochemical reagents Manufacturer 
Acetic acid (100%) Roth (Karlsruhe) 

Acetone Roth (Karlsruhe) 

Agarose (for electrophoresis) Peqlab (Erlangen) 

β-Mercaptoethanol Merck (Darmstadt) 

BSA fraction V Roth (Karlsruhe) 

Calcium chloride Roth (Karlsruhe) 

Chloroform  Roth (Karlsruhe) 

Dapi Fluoromount-G Southern Biotech (Birmingham, USA) 

Desoxynucleosid-5’-triphosphate (100mM) Invitrogen (Karlsruhe) 

ECL Western Blot kit Amersham, GE Healthcare (München) 

Ethanol, absolute ultra pure Roth (Karlsruhe) 

Ethanol, denatured (99%)  CVH (Hannover) 

Ethidium bromide Merck (Darmstadt) 

Ethylenediaminetetraacetic acid  Roth (Karlsruhe) 

Gene Ruler® 1 kb-DNA-Ladder Fermentas (St. Leon-Rot) 

Gene Ruler® 100 bp-DNA-Ladder Fermentas (St. Leon-Rot) 

Glucose Roth (Karlsruhe) 

Glycerol Sigma-Aldrich (Taufkirchen)  

Glycine Roth (Karlsruhe) 

GlycoBlue Ambion (Darmstadt) 
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Hydrochloric acid (32%) Roth (Karlsruhe) 

IGEPAL CA-630 Sigma-Aldrich (Taufkirchen)  

Isofluran Baxter (Deerfield, USA) 

Isopropanol (ultra pure) Roth (Karlsruhe) 

Magnesium chloride Roth (Karlsruhe) 

Methanol Roth (Karlsruhe) 

Nuclease-Free Water Ambion (Darmstadt) 

Paraformaldehyde Roth (Karlsruhe) 

Phenol Sigma-Aldrich (Taufkirchen)  

Ponceau S Sigma-Aldrich (Taufkirchen)  

Potassium chloride Roth (Karlsruhe) 

Potassium dihydrogen phosphate Roth (Karlsruhe) 

Precision Plus ProteinTM KaleidoscopeTM protein 
standard 

BIO-RAD (München) 

Protease inhibitor cocktail Fermentas (St. Leon-Rot) 

Roti phenol Roth (Karlsruhe) 

Saccharose Roth (Karlsruhe) 

Sodium acetate Roth (Karlsruhe) 

Sodium chloride Roth (Karlsruhe) 

Sodium dodecyl sulfate Roth (Karlsruhe) 

Sodium hydrogen carbonate Roth (Karlsruhe) 

Sodium hydrogen phosphate Roth (Karlsruhe) 

Sodium hydroxide Roth (Karlsruhe) 

Tris Roth (Karlsruhe) 

Triton X-100 Sigma-Aldrich (Taufkirchen)  

Trizol Invitrogen (Karlsruhe) 

Tween® 20 Sigma-Aldrich (Taufkirchen)  

3.1.4 Kits 

Table 3.4 Kits 

Kits  Manufacturer 
DC Protein Assay BIO-RAD (München) 

iBlot Gel Transfer Stacks Nitrocellulose, Regular Invitrogen (Karlsruhe) 

iScript BIO-RAD (München) 

cDNA Synthesis Invitrogen (Karlsruhe) 
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Novex 4 – 20% Tris Glycine Gel Qiagen (Hilden) 

QlAquick Gel Extraction Qiagen (Hilden) 

QIAquick PCR Purification Qiagen (Hilden) 

RT2 Profiler PCR Array: Hypoxia Signaling 
Pathway PCR Array # PAXX-032Y 

Qiagen (Hilden) 

3.1.5 Enzymes 

Table 3.5 Enzymes 

Name (conc.) Company Application (final conc.) 
Benzonase (250 u/µl) Sigma-Aldrich 1:1000 

DNase (10 u/µl) Fermentas 1:50 

Fast SYBR® Green (2x) Applied Biosystems (Darmstadt) 1x 

3.1.6 Primers for q-PCR 

Table 3.6 Primers for q-PCR 

Gene Accession number Sequence (5’ → 3’) 

Casp1 NM_009807 
Forward AAACGCCATGGCTGACAAGATCC 

Reverse GTCCCGTGCCTTGTCCATAGC 

Hif1a NM_010431.2 
Forward ACACACAGAAATGGCCCAGTGAGA 

Reverse CCCGGCTTGTTAGGGTGCAC 

Mecp2 NM_010788.3 
Forward TCCTTGGACCCTAATGATTT 

Reverse TTTCACCTGAACACCTTCTG 

Trh NM_009426.2 
Forward AGCCAGTTTGCACTCTTCGGC 

Reverse AGGTCCCTGCATCTTGGAGTCTG 

Trhr1 NM_013696.2 
Forward CTATGGTTTGACAGCCTCGG 

Reverse CTTTCCCCTCTTCACTCTGTC 

Trhr2 NM_133202.2 
Forward CTCAATGTCCTCCAGGAAGC 

Reverse ACCAGCACAGTTTCAGGAAG 
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3.1.7 Primers for sequence verification 

Table 3.7 Primers for sequence verification 

Gene Sequence (5’ → 3’) 

Mecp2 wt (Genotyping) Forward GACCCCTTGGGACTGAAGTT 

Reverse CCACCCTCCAGTTTGGTTTA 

Mecp2 ko (Genotyping) Forward CCATGCGATAAGCTTGATGA 

Reverse ACCAGCACAGTTTCAGGAAG 

3.1.8 Primary antibodies 

Table 3.8 Primary antibodies 

Antibody (host) Company Final concentration 

Anti-GAPDH (mouse) Biotrend (6C5) 0.2 µg/ml 

Anti-HIF-1α (rabbit) Abcam (ab2185) 2 µg/ml 

3.1.9 Secondary antibodies 

Table 3.9 Secondary antibodies 

Antibody Conjugate  Company 

Goat anti-mouse IgG HRP DAKO (Hamburg) 

Goat anti-rabbit IgG HRP DAKO (Hamburg) 

3.1.10 Mouse lines 

Table 3.10 Mouse lines 

Name Genotype Background Source 
C57BL/6J wt  Jackson Laboratory 

129P2(C)-Mecp2tm1-1Bird Mecp2-/y C57BL/6J Guy et al. 2001 
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3.1.11 Computer software 

Table 3.11 Computer software 

Program/web page Company/address Application 

Image J National Institutes of Health Analysis of color values 

NCBI http://www.ncbi.nlm.nih.gov/ Basic information about 
journals, genes etc. 

Office Excel Microsoft (Unterschleißheim) Data analysis 

Office Word Microsoft (Unterschleißheim) Writing 

Photoshop Adobe Systems (München) Image processing 
Primer-Blast http://www.ncbi.nlm.nih.gov/tools/primer-blast/ Primer generation 
Prism GraphPad (La Jolla, USA) Data analysis 
Serial cloner SerialBasics (Internet, free) Sequence comparison 

3.1.12 Universal buffers 

Buffers were prepared with double distilled water (ddH2O) of a deionization facility 

(Millipore) and afterwards autoclaved for 20 min at 121°C and 1.1 bar. X-fold stock 

solutions were diluted to 1-fold before using. Specific buffers are indicated in the 

method section. 

Table 3.12 Universal buffers 

10 x PBS 

1.5 M NaCl 

38 mM NaH2PO4 

162 mM Na2HPO4 

pH 7.4 
 

10 x TBS 

100 mM Tris 

1.5 M NaCl 

pH 7.6 
 

 TBS-T 

10% 10 x TBS 

0.05% Tween20 

pH 7.6 
 

50 x TAE 

2 M Tris 

5.7% Acetic acid 

50 mM EDTA 

pH 8.0 
 

10 x TBS 

250 mM Tris 

250 M NaCl 

33 ml 150 

mM 

Tris 

60 ml Glycerine 
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3.2 Methods 
The following experimental procedures were performed according to the European 

Community and National Institutes of Health guidelines for the Care and Use of 

Laboratory Animals. Moreover, the Ethics Committee of the Georg-August-

University, Göttingen, Germany, authorized the protocols. 

3.2.1 Animal work 

The following description involves the family background, generation, as well as 

handling of various mouse models, which were analyzed in the course of this study. 

3.2.2 Animal models 

As a model for Rett syndrome Mecp2 knockout mouse (Mecp2-/y), strain 

B6.129P2(C)-Mecp2tm1-1Bird (Guy et al. 2001), were used. The mice were 

obtained from Jackson Laboratory (Bar Harbor, ME, USA) and maintained on a 

C57BL/6J background. Mecp2 knockout males (Mecp2-/y) were generated by 

crossing hemizygous Mecp2-/+ females with C57BL/6J wt males. 

3.2.2.1 Housing 

The ambient temperature and humidity of the mice cages was controlled and kept 

on constant level. A 12h light-dark rhythm was set up. Finally, the animals were 

provided with pellet food and water ad libitum. 

3.2.2.2 Genotyping 

The DNA extracted from the mice’ tail biopsies served as a template for a PCR-

based genotyping. The specific sequences of the primer, which was applied to 

verify the genotype-specific DNA are listed in Table 3.3.1. 

3.2.2.3 Anesthesia  

The animals of postnatal stage P40 (40 days of postnatal age) were deeply 

anesthetized and made insensible to pain using volatile anesthetic Isofluran. After 

clear breathing deceleration and vibrissae motion termination, mice were 

decapitated as indicated in 3.2.2.4.  
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3.2.2.4 General brain preparation 

To avoid the destruction of relevant brain areas, after narcotization the decapitation 

of mice was done as cautious as possible. After fur and neck muscles were 

removed, the skull was opened by a longitudinal as well as transversal cut. 

Immediately afterwards, the brain was taken out and frozen on dry ice. For long-

time storage brains were kept at  -80 °C.  

3.2.2.5 Specific preparation of several CNS areas 

As described above, the brain areas analyzed in the course of this study are 

cerebellum, cortex, hypothalamus, inferior olive, as well as VRC area. Figure 3.1 

shows a sagittal section overview of a mouse brain with analyzed areas highlighted 

in red. In order to dissect areas of interest the brain was cut coronally into two 

approximately similar halves. Equally large sections from anterior and posterior 

cranial brain part provided slices from cortex (anterior) and cerebellum (posterior). 

Posterior wall of 3rd ventricle served as reference point for identifying hypothalamic 

part. Coronal slices were made exactly at this position and triangles were cut out 

underneath 3rd ventricle to remove hypothalamus. Using successive transversal 

sections from dorsal inferior olive (IO) identified by its typical loop structure, VRC 

was removed, which resides dorsolateral from principle nucleus of IO. 

 
Figure 3.1 Schema of sagittal section of mouse brain with regions of interest 

Abbreviations: different cerebellar lobules (2 – 10 Cb, red), primary motor cortex (M1, red), 
secondary motor cortex (M2, red), lateral hypothalamic area (LH, red), 3rd ventricle (3V, yellow), 
inferior olive (IO), facial nucleus (7N, green) (modified from Paxinos and Franklin 2001). 
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3.2.3 Molecular biology 

3.2.3.1 Isolation of nucleic acids 

3.2.3.1.1 DNA isolation from mice tails and PCR 

For genotyping, tail biopsies from mice at an age of circa P10 were taken. To 

extract DNA, the tails were incubated in 80 µl of 25 mM NaOH / 0.2 mM EDTA for 

2.5 h at 99°C and shaken at 1,000 rpm. 0.8 µl of this solution served as a template 

in a subsequent PCR. The existing fragments were electrophoretically separated in 

a 1.5% agarose gel. 

Table 3.13 20 µl PCR master mix 

15 µl H2O 

2 µl NH4 reaction buffer 10x 

0.8 µl MgCl2 50mM 

0.8 µl Primer forward and reverse (5µM) (MeCP2 wt and ko – see table 3.7) 

0.2 µl dNTP 25 mM 

0.4 µl Thermus aquaticus polymerase (Taq) (1 U/µl) (PANScript red, PAN) 

Table 3.14 Cycling conditions 

Step Cycle(s) Duration Temperature (°C) 
Initial denaturation 1 3 min 95 

Denaturation  30 s 95 

Annealing 35 - 40 30 s 64 - 68 

Elongation  45 s - 1 min 15 s 72 

Final elongation 1 5 min 72 

Hold 1 infinite 10 

3.2.3.1.2 Isolation of whole RNA 

RNA isolation from mice brains was conducted by applying the Trizol® approach. All 

preparatory steps were carried out using RNAse-free materials to avoid a 

degradation as well as contamination of the RNA. 
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Table 3.15 Solutions required isolating RNA 

Trizol® 

Chloroform 

Isopropanol  

GlycoBlueTM 

Ethanol (75%) 

Nuclease-free water 

 

The tissues were transferred to 900 µl Trizol® and homogenized with the aid of hand 

mortar. The tissues were then incubated and mixed gently for 5 min at RT. 

Following incubation, 200 µl chloroform was added. The tubes with tissue content 

were shaken gently for 15 sec by hand and incubated for further 5 min at RT. After 

a 20 min long centrifugation at 12.000 g and 4°C, the transparent supernatant (ca. 

600 µl) was transferred into new tubes and mixed with an equal amount of 

isopropanol as well as 1 µl GlycoBlueTM. The samples were incubated at -28°C for 

30 min and then centrifuged for 30 min at 17.900 g and 4°C. Afterward, the 

supernatants were discarded. The remaining pellet was washed twice with 700 µl of 

ethanol (75%) and centrifuged for 5 min at 17.900 g and 4°C. The supernatants 

were completely removed and the RNA pellet was dried in a heat block. Finally, the 

pellet was dissolved in 43.5 µl of nuclease-free water. The DNAse digestion was 

carried out as described below. 

Table 3.16 DNAse digestion mix (6.5 µl) 

5 µl DNase I buffer 10x 

1 µl DNAse I (10U/µl) 

0.5 µl RNAseOutTM ribonuclease inhibitor (40 U/µl) 

Table 3.3.17 Further chemicals 

Roti® phenol 

Sodium acetate 3 M, pH 4.8 

Isopropanol  

GlycoBlueTM 

Ethanol 75% 

Nuclease-free water 
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After adding 6.5 µl of DNase I standard digestion mix, the RNA samples (50 µl in 

total) were vortexed, shortly centrifuged and incubated for 20 min at 37°C. Then, 

the samples were filled up with RNAse-free water up to an end volume of 200 µl 

and mixed with an equal amount of Roti® phenol. Roti® phenol contains phenol, 

chloroform, and isoamylalcohol (proportion 25 : 24 : 1). The samples were gently 

mixed and centrifuged for 2 min at 12.000 g and RT. The hydrophilic upper phase 

with an approximate volume of 200 µl was transferred into a new tube and mixed 

with 1:10 (20 µl) 3 M sodium acetate pH 4.8, an equal amount (220 µl) of 

isopropanol, as well as 1 µl of GlycoBlueTM. The samples were gently mixed and 

incubated at -28°C for 30 min. Moreover, the samples were centrifuged for 30 min 

at 17.900 g and 4°C. The supernatant was discarded and the pellets were washed 

with 500 µl ethanol 75%. Finally, after the ethanol was completely removed by 

drying the samples at 37°C for approx. 10 min, the RNA pellets were dissolved in 25 

µl nuclease-free water. 

3.2.3.2 Spectrophotometric determination of nucleic acid concentration 

The RNA quantity was calculated by a spectrophotometric measurement of 

wavelength absorbance at 260 nm using NanoDrop 1000. An optical density of 1.0 

equates to a concentration of 40 µg/ml single-stranded RNA and thus 50 µg/ml 

double-stranded DNA. The RNA quality was assessed by measuring the 

absorbance at a wavelength of 280 nm. To ensure proper RNA integrity, the RNA 

was mixed up with 6x DNA loading buffer, loaded onto agarose gel, which was 

placed in 1x TAE buffer. The RNA probes were separated by a voltage of 5 V/cm 

(electrode distance). The results were visualized by using UV-light as well as a BIO-

VISIONTM fluorescence documentation system. If the integrity of RNA was 

sufficient, the RNA showed two different bands, which represented 18S (Svedberg 

unit) ribosomal RNA (rRNA) and 28S rRNA. 28S rRNA appeared in the lower band, 

which is twice as dark as the band of 18S rRNA. 

3.2.3.3 cDNA synthesis from RNA 

The extracted RNA samples were transcribed into complementary single strand 

DNA (cDNA) via the Moloney Murine Leukemia Virus (MMLV) reverse transcriptase, 

which can also be described as an RNA-dependent DNA polymerase. To do so, 
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iScriptTM cDNA synthesis kit was used in accordance to the procedures, prescribed 

by the manufacturer. 

Table 3.18 DNA synthesis master mix (20 µl) 

4 µl iScript Reaction Mix 5x 

1 µl iScript reverse transcriptase 

x µl RNA (500 ng) 

15-x µl H2O (nuclease-free) 

 

0.5 µg RNA was transcribed per reaction using a thermocycler and the following 

cycling conditions: 

Table 3.19 Cycling conditions for cDNA synthesis 

Step Cycle(s) Duration (min) Temperature (°C) 
Activation 1 4  25 

Elongation 1 30 42 

Denaturation 1 5 85 

Hold 1 Infinite 10 

3.2.3.4 Quantitative real-time PCR (qRT-PCR) 

First, the C100 Thermal Cycler denaturized and melted the DNA into single-strands 

at 95 °C. In a second phase, the primers were hybridized at 64-68 °C. In a third 

phase, the elongation phase, the DNA was extended at 72 °C. After every single 

elongation cycle, the fluorescent molecule SYBR-Green intercalates with the freshly 

synthesized double-stranded DNA. The initial cDNA amount is determined by 

comparing the threshold value of cDNA with the threshold value of the standard 

curve. To determine the melting curves, the temperature was stepwise increased by 

0.5 °C after every other cycle until 95 °C was reached. Reference housekeeping 

genes were tested as duplicates, whereas the genes of interest were analyzed as 

triplicates. Finally, the CFX96TM Real-time System determined the mRNA 

quantification. The gene expression was calculated using the 2-ΔΔCt method  (Pfaffl 

2001). 
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Table 3.20 qRT-PCR master mix (10 µl) 

5 µl Fast SBYR® Green Master Mix 2x 

3.85 µl H2O 

0.2 µl Forward primer, 200 nM 

0.2 µl Reverse primer, 200 nM 

0.75 µl cDNA  

Table 3.21 Cycling conditions for qRT-PCR 

Step Cycle(s) Duration Temperature (°C) 
Enzyme activation 1 3 min 95 

Denaturation  30 s 95 

Annealing/ elongation 40 30 s 64 - 68 

Detection 

Melting curve 1 10 s 95 

in 0.5°C steps 65 - 90 

3.2.3.5 RT2 Profiler PCR Array: Hypoxia Signaling Pathway   

For the gene expression profiling of hypoxia related genes, an RT2 Profiler PCR 

Array analysis was performed in accordance with the manufacture’s instructions. 

The same RNA amounts of 5 biological replicates of each wt and MeCP2 deficient 

mice were pooled to a concentration of 100 ng/µl in a volume of 10 µl and 

transcribed into cDNA by adding the same amount of reverse-transcription mix 

(provided by the kit) to it. Then, the cDNAs were mixed up with 90 µl of RNase-free 

water and a Real-time PCR mix was prepared as described in Table 3.22. To 

perform the RT2 Profiler PCR Array, 25 µl of RT-PCR master mix was added to 

each of the 96 wells and a RT-PCR was run (see Table 3.22). To assess the gene 

expression a supplied data analysis software was used. 

Table 3.22 RT-PCR master mix (2700 µl) 

1350 µl RT2 SBYR Green Mastermix 
102 µl cDNA 
1248 µl RNase-free water 
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Table 3.23 Cycling conditions for RT-PCR 

Step Cycle(s) Duration Temperature (°C) 
Activation of HotStart DNA  1 10 min 95 

Taq Polymerase 40 15 s 95 

Fluorescence data collection   1 min 60 

3.2.4 Protein biochemistry  

3.2.4.1 Total protein isolation from cerebellum and cortex 

Tissue from freshly frozen brains was dissolved in 200 µl lysis buffer (see Table 

3.24). Benzonase® is a nuclease, which degrades various kinds of nucleic acids. 

The mixture was pestled using a hand mortar and then incubated on ice for 30 min. 

The mixture was occasionally vortexed. Samples were taken for a protein 

concentration analysis as described in the following section. 

Table 3.24 SDS Lysis buffer 

50 mM Tris 

150 mM NaCl 

2 mM EDTA 

2% SDS 

1% IGEPAL CA-630 

5 u Benzonase® 

1% Protease inhibitor cocktail  

pH 6.8 

3.2.4.2 Protein concentration analysis 

The protein concentration of the cerebellum and cortex samples was determined 

using a DC Protein Assay, which is based on the protein determination approach of 

Lowry et al. (1951). First, a standard curve was arranged, consisting of bovine 

serum albumin (BSA) concentrations from 200-1,500 µg/ml. 5 µl of a protein sample 

were mixed up with 25 µl Reagent A’ (mixture of 20 µl reagent S with 1 ml buffer A). 

Then, 200 µl of buffer B were added. After gently mixing and incubating the liquid 

for 5 min at RT, the wavelength at 690 nm was measured using Nanodrop1000. 

The protein concentrations were calculated by means of the standard curve. Finally, 

the samples were adjusted to a protein concentration of 2 µg/µl, mixed with 5x 
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Laemmli buffer (see Table 3.25) and heated up for 10 min to 85 °C. For long term 

storage sample were kept at -20 °C. 

Table 3.25 Laemmli buffer (x5) 

250 mM Tris 

7% SDS 

10 mM EDTA 

50% Glycerine 

50 mM EDTA 

7% β-mercaptoethanol (fresh) 

pH 6.8 

3.2.4.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis 

In order to separate the proteins, 30 µl (60 µg total protein) of the protein samples 

and 10 µl of the size marker Precision Plus ProteinTM KaleidoscopeTM were loaded 

onto a 4-20 % SDS-polyacrylamide gel Novex®. The gel was then transferred into a 

SDS-containing tris-glycine buffer system (see Table 3.26). For protein separation a 

voltage of 125 V was applied for 3 h. Sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) was run. 

Table 3.26 Running buffer (x10) 

250 mM Tris 

2 M Glycine 

10% SDS 

pH 8.3 

3.2.4.4 Protein detection by western blot 

To make specific proteins visible, the proteins were transferred from the gel to a 

nitrocellulose membrane, using the iBlot®-7-minute Blotting System, which includes 

iBlot® Gel Transfer Stacks. Firstly, the bottom stack, which contains a 0.2 µm thick 

nitrocellulose membrane, was placed in the blotting device. Then, the gel, which 

was washed in ddH2O, was put onto the membrane and covered with a ddH2O-

soaked filter paper. The cathode stack was placed on top of the soaked filter paper. 
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Finally, the iBlot® Disposable Sponge was inserted and the device was turned on at 

a voltage of 23 V for 7 min. 

Afterwards, the protein transfer was verified by means of a reversible protein 

staining using a “Ponceau S” solution. Ponceau S was washed out thoroughly three 

times using TBS-T for 5 min each. For the protein-specific antibody staining, the 

membrane was blocked with 5% BSA/TBS-T for 1 h at RT. After the washing, the 

membrane was exposed to primary antibody rabbit anti-HIF-1α, which was diluted 

in a concentration of 2 µg/ml in 2.5% BSA/TBS-T for 3 h at RT.  The primary 

antibody mouse anti-GAPDH, which served as a loading control, was applied 

simultaneously in a concentration of 0.2 µg/ml. After an intensive washing, the 

membranes were mixed with 0.02 µg/ml secondary goat anti-rabbit and goat anti-

mouse antibodies and incubated in 2.5% BSA/TBS-T for 2 h at RT. These 

antibodies bind to domains in the Fc-part of the primary antibody specifically. During 

this procedure, after washing and drying the membrane, conjugated fluorophores 

with a specific wavelength (680 nm and 800 nm) were detected, using the Odyssey 

CLx scanner. 
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4 Results 
This section gives an overview as to whether breathing disturbances in Mecp2-/y 

mice lead to systemic hypoxia. Unless otherwise stated experiments were 

performed at postnatal stage P40 when the respiratory phenotype is fully 

developed. 

4.1 Analysis of general hypoxia-mediated mRNA expression in the 
brain  

In order to analyze general hypoxia-mediated mRNA expression, a customized RT2 

Profiler PCR Array was performed comprising 84 genes associated with hypoxia. 

Total RNA from the VRC area of 5 Mecp2-/y mice were pooled and compared with 

wt mice. The VRC area of the brain was chosen for these experiments for the 

following 2 reasons: 

Firstly, the VRC area contains respiratory neurons interacting with each other and is 

responsible for the initiation of breathing. It is assumed that hypoxia, which is 

caused by irregular breathing rhythm, becomes visible in this respiration modulating 

brain area first. Secondly, the VRC was chosen for analysis, because it is relatively 

unsusceptible to gene deregulation in general, compared to other brain regions. 

Additionally, it was found that the VRC area of adult brains is, to some degree, 

resistant to damages caused by hypoxia in particular (1.3 Definition of Hypoxia) 

(Johnston et al. 2001, Falini et al. 1998). Both of the above reasons allow one to 

draw conclusions whether severe hypoxia based on respiratory irregularities in the 

brain of Mecp2-/y mice compared to wt mice can be found. 

By running the RT2 Profiler PCR Array it was discovered that except for Casp1 all 

other genes investigated did not show any significant changes in their expression 

levels when comparing wt to Mecp2-/y mice. Casp1 was found to be up-regulated in 

Mecp2-/y mice by 2.8-fold compared to wt mice. On the basis of this result, Casp1 

was analyzed in more detail within further 4 brain areas (4.2.1 Analysis of Casp1 

expression). In addition, the expression of 8 selected neuronal key genes that have 

been shown to be massively affected by hypoxia were analyzed within the VRC 

area. Table 4.1 introduces each neuronal key gene briefly and provides examples of 

studies that support its relevance for hypoxia. 
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Table 4.1 Hypoxia related genes 

Adrenomedullin (Adm) 

Peptide 

 

• Trollmann et al. (2010) included this gene in 
analyses of microarray and demonstrated 
elevated Adm levels in mouse brain by using 
high-density oligonucleotide microarrays, RT-
PCR and immunohistochemistry after hypoxia.  

• Halterman et al. (2010) used the microarray 
method and found elevated Adm levels in in 
vitro cortical culture model after hypoxia as 
well.  

• Kaur et al. (2012) found out elevated Adm 
levels analyzing the cerebellum area of hypoxic 
neonatal rats. 

Glucose phosphate isomerase 1 (Gpi1) 

Glycolysis enzyme 

 

• Jin et al. (2002) found that Gpi1 is induced by 
hypoxia after examining cerebral cortical 
neurons of mice utilizing cDNA microarray 
gene expression profiling,  

• Ishikawa et al. (2010) showed up-regulated 
Gpi1 expression levels in hypoxic murine 
retinas utilizing gene microarrays, qRT-PCR 
and multiplex ELISA. 

• Halterman et al. (2010) demonstrated induction 
of Gpi1 in mice brain after hypoxia in in vitro 
cortical culture model by use of microarray. 

Hexokinase 2 (Hk2) 

Hexoses phosphorylating enzyme 

 

• Trollmann et al. (2010) included this gene in 
analyses of microarray and demonstrated 
elevated Hk2 levels in mouse brain by using 
high-density oligonucleotide microarrays, RT-
PCR and immunohistochemistry after hypoxia 
as well.  

• Jolly et al. (2011) found higher Hk2 expression 
levels after hypoxia by running RT-PCR within 
neurons and astrocytes.  

• Halterman et al. (2010) showed induction of 
Hk2 after hypoxia in in vitro cortical culture 
model in mice by use of microarray. 

Insulin like growth factor binding protein 3 

(Igfbp3) 

Binding of differentiation factors 

 

• Ragel et al. (2007) found elevated Igfbp3 levels 
in malignant glioma cell line after hypoxia by 
use of cDNA microarray chip. 

• Beilharz et al. (1998) found elevated Igfbp3 
levels after hypoxia in the hippocampus area of 
rats by in situ hybridization, 
immunohistochemistry, Northern blot analysis, 
RNAse protection assay and RT-PCR.  

• Lee et al. (1999) found elevated Igfbp3 levels 
after hypoxic-ischemic injury by using in situ 
hybridization and histochemistry within brain 
areas thalamus, hippocampus and amygdaloid. 

Interleukin 1 (Il-1) 

Cytokine 

• Szaflarski et al. (1995) detected elevated IL-1 
levels in brain areas cortex and hippocampus 
after hypoxia in rats by use of RT-PCR and 
southern blot.  

• Savard et al. (2013) showed increased IL-1 
levels in cortex after hypoxia in rats by applying 
in situ hybridization and ELISA.  

• Kaur et al. (2012) showed elevated IL-1 levels 
in cerebellar purkinje neurons of neonatal rats 
subjected to hypoxia.  
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Solute carrier family 2A3 (Slc2a3) = Glut3 

Glucose transporter 

• Ragel et al. (2007) found elevated Slc2a3 
levels in malignant glioma cell line after 
hypoxia by use of cDNA microarray chip.  

• Lusardi et al. (2009) analyzed mouse cortex by 
use of RT-PCR and found elevated Slc2a3 
levels after hypoxia.  

• Vanucci et al. (1996) found higher Glut3 
expression levels in rat brain after hypoxia 
using western blot method. 

 

Transforming growth factor 1 (Tgf-1) 

Neurotrophic factor 
 

• Klempt et al. (1992) found elevated expression 
levels of Tgf-1 in the rat brain areas cortex, 
thalamus, and hippocampus utilizing in situ 
hybridization. 

• Kawahara et al. (2004) showed elevated Tgf-1 
expression levels within hippocampal regions 
of rats after ischemia utilizing an 
oligonucleotide-based DNA microarray. 

• Hughes et al. (1999) depicted elevated Tgf 
levels within glia after neuronal injury in rats. 

Vascular endothelial growth factor (Vegf) 

Signal protein 

• Trollmann et al. (2010) analyzed brain tissue 
by use of high-density oligonucleotide 
microarrays, RT-PCR and 
immunohistochemistry in developing mouse 
brains and found up-regulated Vegf expression 
levels.  

• Kaur et al. (2012) found out elevated Vegf 
expression levels analyzing the cerebellum 
area of neonatal rats.  

• Stone et al. (1995) demonstrated hypoxia 
induced up-regulated Vegf levels in the retina 
of cats and rats by using in situ hybridization 
techniques. 

 

In order to compare mRNA expression of these hypoxia-indicating genes within the 

VRC at P40, qRT-PCR experiments were performed (see figure 4.1). 
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Figure 4.1 mRNA expression of hypoxia related genes comparing wt to Mecp2-/y mice  

Means and standard deviations of mRNA levels of eight hypoxia genes when comparing wt (black 
bar) to Mecp2-/y mice (red bar) within VRC (P40; n = 5), measured by running qRT-PCR.  

The results revealed no statistically significant differences in the mRNA expressions 

of any of the hypoxia related genes analyzed between wt and Mecp2-/y mice.  

4.2 Systemic analysis of selected hypoxia-mediated mRNA and 
protein expression in the brain 

In the following section the genes Casp1, Hif1a, Trh, Trh-r1, and Trh-r2 will be 

analyzed systemically regarding their impact on breathing phenotype in Rett mice 

compared to wt mice. The underlying causes for all experiments will be described in 

more detail in the sections below. 

4.2.1 Analysis of Casp1 expression in the brain 

As noted above, the RT2 Profiler PCR Array analysis revealed altered Casp1 

expression levels between wt and Mecp2-/y mice. Consequently, the Casp1 gene 

expression was measured systemically and in more detail using qRT-PCR. 

Therefore total mRNA levels from 5 different brain areas were extracted. These 

areas include the cerebellum, cortex, hypothalamus, inferior olive, and VRC area. 
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Firstly, to give an overview about general Casp1 mRNA distribution, Casp1 mRNA 

levels were measured throughout the brain areas of wt mice (4.2.1.1). Secondly, to 

contrast Casp1 mRNA levels within the brain areas of wt and Mecp2-/y mice, Casp1 

mRNA levels of both samples were measured and the results compared (4.2.1.2.). 

4.2.1.1 Analysis of Casp1 mRNA expression in wt mice in the brain 

Messenger RNA was isolated from different brain areas and transcribed into cDNA, 

which served as a template for qRT-PCR, used in the following two experiments 

(Figure 4.2). 

 
Figure 4.2 Casp1 mRNA expression in wt mice 

Means and standard deviations of Casp1 mRNA levels within 5 brain areas of wt mice (P40; n = 5), 
measured by running qRT-PCR (None of the values were significant; one-way ANOVA; Bonferroni’s 
multiple comparison test). 

The results demonstrated that Casp1 mRNA levels did not differ substantially 

between brain regions analyzed. The highest Casp1 mRNA level was identified in 

the cerebellum area. The lowest Casp1 mRNA level was identified in the 

hypothalamus region (0.635-fold compared to cerebellum). The VRC area 

demonstrated the second highest Casp1 mRNA level (0.98-fold compared to 

cerebellum). 

4.2.1.2 Analysis of Casp1 mRNA expression comparing wt to Mecp2-/y mice in 
the brain 

In order to investigate Casp1 mRNA levels within the cerebellum, cortex, 

hypothalamus, inferior olive, and VRC of wt and Mecp2-/y mice, Casp1 mRNA levels 
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of both samples were measured and results compared (P40; n = 4 to 5) (Figure 

4.3). 

 
 
 
 
 
 

 

 

 

Figure 4.3 Casp1 mRNA expression comparing wt to Mecp2-/y mice 

Means and standard deviations of Casp1 mRNA levels when comparing wt (black bar) to Mecp2-/y 
mice (red bar) within 5 brain areas (P40; n = 5), measured by running qRT-PCR. Wt was set to 1. 
Asterisks indicate significance (* = p ≤ 0.05; student’s t-test). 

The results showed no statistically significant differences in the Casp1 mRNA 

expressions of wt and Mecp2-/y mice within cerebellum, cortex, and hypothalamus 

area. Significantly down-regulated mRNA values were found in the inferior olive 

area (wt vs. Mecp2-/y; 1.00 ± 0.099 vs. 0.774 ± 0.132, p ≤ 0.01) and VRC area (wt 

vs. Mecp2-/y; 1.00 ± 0.243 vs. 0.547 ± 0.167; p ≤ 0.01). The result of qRT-PCR 

cannot verify upregulation of Casp1 levels in Mecp2-/y mice compared to wt mice. 

This result indicates no hypoxia in Mecp2-/y mice compared to wt mice. 

4.2.2 Analysis of the HIF-1α system in the brain 

Fischer et al. (2009) demonstrated significant differences in protein expression in 

cerebellum and cortex. Thus, the Hif1a gene as well as its protein was studied 

regarding expression in wt and Mecp2-/y mice (P40).  

To assess systemic hypoxia, Hif1a mRNA levels from the five different brain areas 

(cerebellum, cortex, hypothalamus, inferior olive, and VRC) were extracted for qRT-

PCR method. Additionally, cerebellum and cortex tissues were used for protein 

analysis using western blot. 

R
el

at
iv

e 
m

R
N

A
 e

xp
re

ss
io

n 
 

0 

0,5 

1 

1,5 

Cerebellum  

0 

1 

2 

Cortex 

0 

0,5 

1 

1,5 

Hypothalamus 

0 

0,5 

1 

1,5 

Inferior olive 

* 

0 

0,5 

1 

1,5 

VRC 

*



Results 

 38 

4.2.2.1 Analysis of Hif1a mRNA expression in wt mice in the brain 

To investigate the general Hif1a mRNA distribution, Hif1a mRNA levels were 

measured within the cerebellum, cortex, hypothalamus, inferior olive, and VRC of wt 

mice (P40; n = 5). mRNA was isolated and transcribed into cDNA serving as 

template for qRT-PCR (Figure 4.4). 

 

 
Figure 4.4 Hif1a mRNA expression in wt mice  

Means and standard deviations of Hif1a mRNA levels within five brain areas of wt mice (P40; n = 5), 
measured by running qRT-PCR (Asterisks indicate significance. Cerebellum (cb) vs. cortex (co) ****, 
cb vs. hypothalamus (hy) ****, cb vs. inferior olive (io) ****, cb vs. VRC ****, co vs. hy *, co vs. VRC 
***, hy vs. VRC ****, io vs. VRC ****; * = p ≤ 0.05; *** = p ≤ 0.001; **** = p ≤ 0.0001; one-way 
ANOVA; Bonferroni’s multiple comparison test). 

 
The results demonstrated that the cerebellum area had the highest Hif1a mRNA 

levels of all brain areas tested. The breathing-related VRC area indicated the lowest 

Hif1a mRNA levels (0.065-fold compared to cerebellum). The cortex (0.312-fold 

compared to cerebellum), hypothalamus (0.489-fold compared to cerebellum), as 

well as the inferior olive area (0.454-fold compared to cerebellum) showed almost 

identical expressions. 

4.2.2.2 Analysis of Hif1a mRNA expression comparing wt to Mecp2-/y mice in 
the brain 

To compare Hif1a mRNA levels within the cerebellum, cortex, hypothalamus, 

inferior olive, and VRC of wt and Mecp2-/y mice, Hif1a mRNA levels of both samples 

were measured and results compared (P40; n = 5).  
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Figure 4.5 Hif1a mRNA expression comparing wt to Mecp2-/y mice 

Means and standard deviations of Hif1a mRNA levels when comparing wt (black bars) to Mecp2-/y 
mice (red bars) within five brain areas (P40; n = 5), measured by running qRT-PCR. Wt was set to 1. 
Asterisks indicate significance (* = p ≤ 0.05; ** = p ≤ 0.01; student’s t-test). 

Results demonstrated that the brain areas of the Mecp2-/y mice have significantly 

higher Hif1a mRNA levels compared to wt mice: Hif1a mRNA levels in the 

cerebellum area of wt mice were 1.00 ± 0.054 and Mecp2-/y mice were 1.251 ± 

0.186 (p ≤ 0.05). A similar deregulation dimension was observed in the inferior olive 

area (wt vs. Mecp2-/y; 1.00 ± 0.136 vs. 1.244 ± 0.09; p ≤ 0.05). The cortex area even 

showed higher up-regulation in Mecp2-/y mice compared to wt mice (wt vs. Mecp2-/y; 

1.00 ± 0.205 vs. 1.352 ± 0.122; p ≤ 0.05). The breathing-correlated VRC area 

indicated the highest deregulation of all brain areas (wt vs. Mecp2-/y; 1.00 ± 0.175 

vs. 1.588 ± 0.128; p ≤ 0.05). Only the hypothalamus area of the Mecp2-/y mice 

showed no statistically significant difference compared to wt mice. 

4.2.2.3 Analysis of HIF-1α protein expression comparing wt to Mecp2-/y mice 
in the brain 

In order to investigate HIF-1α protein levels within the cerebellum and cortex area of 

wt and Mecp2-/y mice at P40, western blot analysis was conducted (n = 3 

independent experiments). The western blot experiment indicated specific signals at 

36 kDa for the housekeeping protein GAPDH and 120 kDa for HIF-1α. This result is 

in line with the expected molecular mass of corresponding proteins (Figure 4.6 and 

Figure 4.7). 
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Figure 4.6 HIF-1α western blot comparing wt to Mecp2-/y mice 

Western blot analysis of HIF-1α protein within two brain areas in wt and Mecp2-/y mice (P40; n = 4 
animals each). For the western blot experiment 60 µg of total protein per lane was loaded. 10 µl of 
size marker (sm) was applied in first left slot; and a primary antibody of HIF-1α was applied at a 
concentration level of 1:1,000 as well as a primary antibody of GAPDH at a concentration level of 
1:15,000. Both antibodies were diluted in 2.5% BSA in TBS-T. Secondary antibodies were diluted in 
same solution at a concentration level of 1:10,000 (HIF-1α) respectively 1:15,000 (GAPDH).  

 

 

 

Figure 4.7 HIF-1α protein expression comparing wt to Mecp2-/y mice 

Means and standard deviations of HIF-1α protein levels within two brain areas when comparing wt 
(black bars) to Mecp2-/y mice (red bars) using a western blot analysis (P40; n = 4). Wt was set to 1. 

Densitometric analysis of the specific western blot signals did not show any 

statistical differences in HIF-1α protein expressions between wt and Mecp2-/y mice 

neither in the cerebellum nor in the cortex. 
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4.2.3 Analysis of Trh expression in the brain 

In the following section the Trh system (the Trh gene as well as its receptors Trh-r1 

and Trh-r2) will be analyzed. The experiments were motivated by the following three 

assumptions: 

First of all, the characterictics of Mecp2-/y mice include dehydration and reduced 

body mass (see 1.1.3 The mouse model of Rett syndrome), which might be a result 

of thyroid hyperfunction. TRH is the origin of a hormone cascade to stimulate 

building and releasing of triiodothyronine (T3) and tetraiodothyronine (T4) in the 

thyroid glands. In addition the Trh system plays a key role within and acts to 

modulate areas of the respiratory network. Thus, this research proposed that Trh 

levels are dysregulated in Mecp2-/y mice compared to wt mice. Furthermore, the 

experiments of Manzke et al. (2007) indicated differing expression levels of the Trh 

hormone in the VRC when comparing Mecp2-/y with wt mice (P40). This research 

assumes a correlation between cerebral Trh levels and hypoxia in Mecp2-/y mice. 

Trh mRNA levels were extracted from five different brain areas. The areas included 

the cerebellum, cortex, hypothalamus, inferior olive, and VRC. 

First, to give an overview about the general Trh mRNA distribution, Trh mRNA 

levels were measured within the above brain areas of wt mice (4.2.3.1). Second, to 

compare Trh mRNA levels within the brain areas of wt and Mecp2-/y mice, Trh 

mRNA levels of both samples were measured and the results compared (4.2.3.2). 
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4.2.3.1 Analysis of Trh mRNA expression in wt mice in the brain 

 To investigate the general Trh mRNA distribution, Trh mRNA levels were measured 

within the cerebellum, cortex, hypothalamus, inferior olive, and VRC of wt mice 

(P40; n = 5). Messenger RNA was isolated and transcribed into cDNA. The samples 

served as a template for the qRT-PCR, used in the following two experiments. 

 

Figure 4.8 Trh mRNA expression in wt mice 

Means and standard deviations of Trh mRNA levels within five brain areas of wt mice (P40; n = 5), 
measured by running qRT-PCR (Asterisks indicate significance. Cb vs. io ***, co vs. io ***, hy vs. io 
***, io vs. VRC ***; *** = p ≤ 0.001; one-way ANOVA; Bonferroni’s multiple comparison test). 

The results demonstrated that the inferior olive area has the highest Trh mRNA 

levels of all brain areas tested (703.458-fold compared to the cerebellum area). The 

second highest Trh mRNA levels have been identified in the hypothalamus region 

(13.497-fold). 

The breathing-related VRC area (0.463-fold compared to the cerebellum area) and 

the cortex area (1.555-fold compared to cerebellum) showed the second-lowest Trh 

mRNA levels. 

4.2.3.2 Analysis of Trh mRNA expression comparing wt to Mecp2-/y mice in 
the brain 

To compare Trh mRNA levels within the cerebellum, cortex, hypothalamus, inferior 

olive, and VRC of wt and Mecp2-/y mice, Trh mRNA levels of both samples were 

measured and results compared (P40; n = 5) (Figure 4.9). 
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Figure 4.9 Trh mRNA expression comparing wt to Mecp2-/y mice 

Means and standard deviations of Trh mRNA levels when comparing wt (black bars) to Mecp2-/y 
mice (red bars) within five brain areas (P40; n = 5), measured by running qRT-PCR. Wt was set to 1. 
Asterisks indicate significance (* = p ≤ 0.05; student’s t-test). 

The experiment revealed higher Trh mRNA levels in the cortex (wt vs. Mecp2-/y; 

1.00 ± 0.949 vs. 7.445 ± 6.179; p ≤ 0.05), hypothalamus (wt vs. Mecp2-/y; 1.00 ± 

0.291 vs. 31.374 ± 21.677; p ≤ 0.05), and VRC area (wt vs. Mecp2-/y; 1.00 ± 0.544 

vs. 32.214 ± 22.372; p ≤ 0.05). The cerebellum and inferior olive area demonstrated 

no statistically significant difference. 

4.2.4 Analysis of Trh-r1 expression in the brain 

Because the Mecp2-/y mice showed a significant increase in Trh compared to wt 

mice in almost all brain areas analyzed and the TRH function depends on the 

interaction with its two different receptor subtypes (Trh-r1 and Trh-r2), it was of 

interest to explore the region-specific expression levels of Trh-r1 and Trh-r2 and to 

compare them between wt and Mecp2-/y mouse models.  

To assess the systemic hypoxia, Trh-r1 mRNA levels from five different brain areas 

were extracted. The areas include the cerebellum, cortex, hypothalamus, inferior 

olive, and VRC. 

First, to give an overview about general Trh-r1 mRNA distribution, Trh-r1 mRNA 

levels were measured within the above brain areas of wt mice (4.2.4.1). Second, to 

compare Trh-r1 mRNA levels within the brain areas of wt and Mecp2-/y mice, Trh-r1 

mRNA levels of both samples were measured and the results compared (4.2.4.2). 
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4.2.4.1 Analysis of Trh-r1 mRNA expression in wt mice in the brain 

To investigate the general Trh-r1 mRNA distribution, Trh-r1 mRNA levels were 

measured within the cerebellum, cortex, hypothalamus, inferior olive, and VRC of wt 

mice (P40; n = 5). mRNA was isolated from the different brain areas and 

transcribed into cDNA. The samples gained served as a template for the qRT-PCR, 

used in the following two experiments (Figure 4.10). 

Figure 4.10 Trh-r1 mRNA expression in wt mice  

Means and standard deviations of Trh-r1 mRNA levels within five brain areas of wt mice (P40; n = 5), 
measured by running qRT-PCR (Asterisks indicate significance. Cb vs. hy *, cb vs. io **, co vs. hy *, 
co vs. io **, io vs. VRC **; * = p ≤ 0.05; ** = p ≤ 0,01; one-way ANOVA; Bonferroni’s multiple 
comparison test). 

The highest Trh-r1 mRNA levels were identified in the inferior olive area. This result 

was in accordance with the Trh mRNA levels measured in the same brain region 

above (4.2.3.1) (21.609-fold compared to cerebellum). In addition, high Trh-r1 

mRNA levels were identified in the hypothalamus area (17.337-fold). The 

cerebellum, cortex, and VRC regions demonstrated low expressions on a similar 

level. Interestingly, on average the Trh-r1 levels (mean value 0.002) were 

approximately one-tenth of the Trh mRNA levels identified above (mean value 

0.021). 

4.2.4.2 Analysis of Trh-r1 mRNA expression comparing wt to Mecp2-/y mice in 
the brain 

Subsequently, Trh-r1 mRNA levels within the brain areas (cerebellum, cortex, 

hypothalamus, inferior olive, and VRC) of wt and Mecp2-/y mice were compared. 

Trh-r1 mRNA levels of both samples were measured and results compared (P40; n 

= 5) (Figure 4.11). 
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Figure 4.11 Trh-r1 mRNA expression comparing wt to Mecp2-/y mice 

Means and standard deviations of Trh-r1 mRNA levels when comparing wt (black bars) to Mecp2-/y 
mice (red bars) within five brain areas (P40; n = 5), measured by running qRT-PCR. Wt was set to 1. 

The results demonstrated that there were no statistically significant differences in 

the Trh-r1 mRNA expressions of wt and Mecp2-/y mice. 

4.2.5 Analysis of Trh-r2 expression in the brain 

In this section Trh-r2 expression will be explored accordingly to analysis of Trh-r1 

expression.  

To assess the systemic hypoxia, Trh-r2 mRNA levels from five different brain areas 

were extracted. The areas include the cerebellum, cortex, hypothalamus, inferior 

olive, and VRC. 

First, to give an overview about general Trh-r2 mRNA distribution, Trh-r2 mRNA 

levels were measured within the above brain areas of wt mice (4.2.5.1). Second, to 

compare Trh-r2 mRNA levels within the brain areas of wt and Mecp2-/y mice, Trh-r2 

mRNA levels of both samples were measured and the results compared (4.2.5.2). 

4.2.5.1 Analysis of Trh-r2 mRNA expression in wt mice in the brain 

To investigate the general Trh-r2 mRNA distribution, Trh-r2 mRNA levels were 

measured within the cerebellum, cortex, hypothalamus, inferior olive, and VRC of wt 

mice (P40; n = 5). mRNA was isolated from the different brain areas and 

transcribed into cDNA. The samples gained served as a template for the qRT-PCR, 

used in the following two experiments (Figure 4.12).  
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Figure 4.12 Trh-r2 mRNA expression in wt mice 

Means and standard deviations of Trh-r2 mRNA levels within five brain areas of wt mice (P40; n = 5), 
measured by running qRT-PCR (Asterisks indicate significance. Cb vs. co ****, cb vs. hy **, co vs. hy 
**, co vs. io ***, co vs. VRC ****, hy vs. VRC **; ** = p ≤ 0.01; *** = p ≤ 0,001; **** = p ≤ 0,0001; one-
way ANOVA; Bonferroni’s multiple comparison test). 

The experiment revealed that the highest Trh-r2 mRNA levels exist in the cortex 

area (58.112-fold compared to the cerebellum area), followed by the Trh-r2 mRNA 

levels of the hypothalamus (29.921-fold compared to the cerebellum area), inferior 

olive (16.256-fold compared to the cerebellum area), and VRC area (1.89-fold 

compared to the cerebellum area). The Trh-r2 mRNA expression in the inferior olive 

area is particularly interesting, since it is much lower than the Trh expression 

measured in 4.2.3.1. On average the Trh-r2 levels (mean value 0.003) are almost 

identical to the Trh-r1 levels identified above (mean value 0.002). 

4.2.5.2 Analysis of Trh-r2 mRNA expression comparing wt to Mecp2-/y mice in 
the brain 

In comparison, Trh-r2 mRNA levels within the brain areas (cerebellum, cortex, 

hypothalamus, inferior olive, and VRC) of wt and Mecp2-/y mice were measured and 

results compared (P40; n = 5) (Figure 4.13). 
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Figure 4.13 Trh-r2 mRNA expression comparing wt to Mecp2-/y mice 

Means and standard deviations of Trh-r2 mRNA levels when comparing wt (black bars) to Mecp2-/y 
mice (red bars) within five brain areas (P40; n = 5), measured by running qRT-PCR. Wt was set to 1. 

The results demonstrated no statistically significant differences in the Trh-r2 mRNA 

expressions of wt and Mecp2-/y mice. 
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5 Discussion, implications and further research 
Several researchers identified major life-threatening breathing characteristics in 

Mecp2-/y mice (Ward et al. 2011), such as irregularities of frequency and amplitude 

(Ramirez et al. 2013), apneas (Stettner et al. 2008), as well as tachypnea (Ogier et 

al. 2007) (see 1.1.4 Breathing impairment in Mecp2-/y mice). Moreover, it was found 

that life-threatening breathing conditions in RTT patients may lead to decreased 

oxygen saturation and, in worst case, to sudden death (Glaze 2005). In order to find 

genetic symptoms of systemic cerebral hypoxia under such circumstances, gene 

and protein expression levels in specific brain areas of Mecp2-/y mice were 

examined and compared with wt. The aim of these experiments was to find 

evidence for hypothesis 1: If Mecp2-/y mice suffer under breathing imbalance, this 

would induce hypoxic conditions. 

5.1 General hypoxia-mediated mRNA expression is not modified 
in the brain  

To obtain hypoxia indicators, a RT2 Profiler PCR Array: Hypoxia Signaling Pathway 

test was performed, scanning the expression levels of 84 hypoxia genes in the VRC 

area for significant alterations between wt and Mecp2-/y mice. None of these genes 

showed any statistically significant differences in their expression levels, except for 

the apoptosis gene Casp1 which will be discussed in section 5.2. Hence, this 

experiment did not reveal any indicators that hypoxia in Mecp2-/y mouse brains 

exist. 

To further analyze putative hypoxia in Mecp2-/y mice brains, eight genes (Adm, 

Gpi1, Hk2, Igfbp-3, Il-1, Slc2a3, Tgf-1, Vegf) that have been frequently listed as 

major indicators for hypoxia were tested using qRT-PCR. None of these genes 

showed any regulation in the VRC area of Mecp2-/y mice compared to wt mice. Like 

the experiment above, this test did not reveal any evidence that hypoxia in Mecp2-/y 

mouse brains occurs. 

Because only one deregulated hypoxia gene had been identified in the first 

experiment, and none of the eight strongly hypoxia related genes have been found 

to be regulated in wt mice compared to Mecp2-/y mice in a second experiment, this 
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study suggested that hypoxic conditions in Mecp2-/y mice solely manifest in a 

physiological manner, e.g. by apneas or tachypnea.  

5.2 Casp1 expression is not modified in the brain 
As described above, only Casp1 had been identified in the first experiment, and 

none of the eight strongly hypoxia related genes were found to be regulated in 

Mecp2-/y mice compared to wt mice in the second experiment.  

Casp1, primarily acts as a protease (Nicholson and Thornberry 1997), involved in 

the apoptosis cascade (Hilbi et al. 1998). Most importantly, however, it plays a 

prominent role concerning cellular response to severe damage, e.g. caused by 

hypoxia (Clark et al. 1999). The RT2 Profiler PCR Array: Hypoxia Signaling Pathway 

test has revealed a 2.809-fold up-regulation of Casp1 expression levels in Mecp2-/y 

mice brain, in comparison to wt mice brains. Furthermore, Russell et al. (2007) 

found, that exposing isolated Mecp2-/- and wt cerebellum neurons in vitro to hypoxia 

lead to a higher Casp1 level in Mecp2-/- neurons than in wt neurons. This indicates 

a different response of neurons to hypoxia depending on their Mecp2 levels. It was 

thus decided to analyze Casp1 in more detail, using a qRT-PCR analysis. 

The experiment revealed significantly lower Casp1 expression levels in the inferior 

olive and VRC area of Mecp2-/y mice when compared to wt mice. Other brain 

regions did not show any alterations in Mecp2-/y mice.  

One reason, explaining no visible apoptosis condition might be the activating impact 

of MeCP2 on Casp1: MeCP2 does not exist in Mecp2-/y mice. This leads to a lower 

activating stimulus on the Casp1 expression levels. Therefore, the Casp1 

expression levels in Mecp2-/y mice brains are reduced compared to wt mice. As a 

consequence, neurons within Mecp2-/y mice brains are unable to react adequately 

to rough neuronal damages. Subsequently, neurons, e.g. within the VRC area, 

undergo unregulated neuronal death. This destruction of neurons by necrosis, e.g. 

in the VRC area, manifests itself in typical Rett symptoms, such as breathing 

disorders. Necrosis describes the loss of control regarding cell death, which directly 

leads to autolysis and the release of inflammatory factors (Fink and Cookson 2005).  

Maezawa and Jin (2010) found significantly less necrosis indicating TNF-α release 

in Mecp2-/y microglia than in the wt mice after stimulation. They expect constitutively 

higher expression levels in Mecp2-/y mice. Furthermore, neurons are exclusively 
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involved in the oxygen gene synthesis, e.g. in the oxygen gene synthesis of Hif1a. 

Because neurons are exclusively involved in the production of survival assuring 

genes, the oxygen gene synthesis suppresses Casp1 synthesis. 

It should be noted, however, that the results of the qRT-PCR analysis conflicts with 

the findings of Russell et al. (2007). A possible reason for this deviation could be the 

different methods used in both studies. For example, the mice analyzed within this 

study did not undergo any oxygen deficiency whereas Russell et al. (2007) 

examined neurons of Mecp2-/- mice after exposing them six hours to hypoxia. The 

initial results from the RT2 Profiler PCR Array: Hypoxia Signaling Pathway test could 

be explained by measuring inaccuracies. Consequently, doing technical as well as 

biological repeats would reduce these errors.  

5.3 The HIF-1α system is not modified in the brain 
As none of the above experiments provided evidence required to validate 

hypothesis 1, literature, which supports the hypothesis 1 has been studied in more 

detail. A recent study, which confirmed the hypothesis of hypoxia in Mecp2-/y mice, 

is the work by Fischer et al. (2009). Fischer et al. (2009) identified elevated HIF-1α 

expression levels in the cerebellum and cortex area of Mecp2-/y mice. 

The hypoxia induced transcription factor HIF-1α (Wiener et al. 1996) regulates cell 

functions in condition of low oxygen levels (Zinkernagel et al. 2007). The operation 

of HIF-1α is linked to its specific structure: HIF-1α consists of an alpha subunit, 

which is degraded by ubiquitination under normoxic conditions (Tanimoto et al. 

2000) and the beta subunit, which is constitutively expressed (Yu et al. 1998). 

When hypoxia occurs, HIF-1α regulation is considered to occur at the protein level. 

Studies, which have identified Hif1a regulation at the RNA level, however, are still 

limited. One of the few studies, which identified Hif1a regulation at the gene level, is 

the research of Van Uden et al. (2008). They found Hif1a regulation at the gene 

level caused by the apoptosis factor NF-κb. It should be noted, however, that the 

research was concentrated on the kidney of mice only, and did not include the 

brain. 

Under hypoxic conditions, the protein HIF-1α becomes stabilized and genes, such 

as erythropoietin (Epo), vascular endothelial growth factor (Vegf), and lactate 
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dehydrogenase A (Ldha) become activated. These genes are necessary to adjust 

hypoxic cells to the low oxygen saturation (Pugh and Ratcliffe 2003, Hu et al. 2003). 

Furthermore, the generation and maturation of erythrocytes increases, 

angiogenesis is stimulated and glucose metabolism is converted into an anaerobic 

mode.  

To reassess the results of Fischer et al. (2009) and to examine, whether the 

hypothesis of hypoxia in Mecp2-/y mouse models can be maintained, a further 

systemic analysis was performed. 

5.3.1 HIF-1α protein expression is not modified in the brain 

The results of Fischer et al. were reassessed by including the observations of 

Schüle et al. (2008). Schüle et al. (2008) reported rare cases of male Rett patients 

that died at the age of 15 months. According to Schüle et al. (2008) causes of death 

were central breathing failure, respiratory arrest, and chronic hypoxia. 

Consequently, a second hypothesis was developed: 

Hypothesis 2: If human male Rett patients die by respiratory failure, cerebral 

hypoxia must exist in Mecp2-/y mice when compared to wt mice. 

As well as comparing the results of Fischer et al. (2009) with Schüle et al. (2008) 

the results from Fischer et al were reassessed by including the observations of 

Chen et al. (2001). Chen et al. (2001) found that Rett symptoms of Mecp2-/+ mice 

are rather harmless and develop relatively late when compared to Mecp2-/y mice. 

Mecp2-/+ mice are female mice, which only possess one Mecp2 knockout 

chromosome and consequently another non-affected chromosome. It was assumed 

that the harmless and relatively delayed symptoms of Mecp2-/+ mice could be 

substantiated by an improved respiratory phenotype. Hence, the improved 

respiratory phenotype causes less severe hypoxia and lower neuronal damage. A 

third hypothesis was determined: 

Hypothesis 3: If female Mecp2-/+ mice show improved respiration and therefor less 

Rett symptoms compared to male Mecp2-/y mice, cerebral hypoxia must be existent 

in Mecp2-/y mice. 

Protein levels of HIF-1α were investigated in the cerebellum and the cortex of 

Mecp2-/y mice and wt mice using western blot analysis. This experiment was carried 
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out to reassess the findings of Fischer et al. (2009). Initially, the results were 

described and brought into context of the current literature in general. Furthermore, 

the results were compared to the results of Fischer et al. (2009). 

The experiment revealed that HIF-1α protein levels were not significantly regulated 

in Mecp2-/y mice. Since HIF-1α is an important hypoxia indicator, hypothesis 1, 3, 

and 4 have to be rejected. 

Hypothesis 1: Mecp2-/y mice compared to wt mice suffer under breathing imbalance 

that nonetheless does not induce hypoxic conditions. 

Hypothesis 2: Although human male Rett patients die by respiratory failure, cerebral 

hypoxia does not exist in Mecp2-/y mice. 

Hypothesis 3: Although female Mecp2+/- mice show improved respiration and 

therefor less Rett symptoms compared to male Mecp2-/y mice, cerebral hypoxia is 

not existent in Mecp2-/y mice. 

5.3.2 Hif1a mRNA expression is modified in the brain 

To find out whether hypoxia occurs in Mecp2-/y mice compared to wt mice at all, 

experiments were set up and Hif1a expression levels systemically measured within 

five brain areas. These experiments revealed that all brain areas examined had a 

significantly higher Hif1a expression level in Mecp2-/y mice brains when compared 

to wt mice, except for in the hypothalamus area. The hypothalamus area did not 

show any regulation in Mecp2-/y mice. The up-regulation of Hif1a in four brain areas 

of Mecp2-/y mice compared to wt mice therefore contributes to the limited amount of 

studies, which identified similar results (e.g. Van Uden et al. 2008). 

Reasons, which might explain that Hif1a mRNA expression levels were up-

regulated while protein levels of HIF-1α were not increased, are as follows: 

Firstly, Hif1a mRNA expression levels might be significantly regulated in Mecp2-/y 

mouse brains due to the impact of MeCP2 on Hif1a. MeCP2 might directly control 

Hif1a mRNA expression levels in a down-regulating manner. Because MeCP2 does 

not exist in the genome of Mecp2-/y mice, Hif1a might be up-regulated compared to 

wt mice. 
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Secondly, HIF-1α protein levels might not be significantly regulated in Mecp2-/y 

mouse brains due to the discontinuity of hypoxia in Mecp2-/y mice. Kron et al. (2011) 

found out that hypoxia of Mecp2-/y mice is interrupted by short oxygen recovery 

phases (intermittent hypoxia). During these periods of oxygen recovery the HIF-1α 

protein structure might be ubiquitinated and degraded, averting the stabilization of 

the HIF-1α protein. 

As discussed above, however, initial experiments were conducted to reassess the 

results of Fischer et al. (2009). Fischer et al. (2009) conducted protein analysis in 

the cerebellum and cortex of Mecp2-/y mice using western blot technique. The 

Mecp2-/y mice expression levels were compared to wt mice at the age of P38-60. 

Significantly higher HIF-1α levels were revealed in the Mecp2-/y brain parts tested. 

Reasons, which might explain the differing outcomes of both experiments, are as 

follows. They are roughly concentrated around the age, the gene expression levels, 

as well as the living conditions of the mice used. 

Age of the mice used: Fischer et al. (2009) tested mice with an age of P38 to P60. 

Since RTT is a developmental disease that displays different symptoms at different 

developmental stages, the validity of results, which are based on animals of such a 

wide rage of age is questionable. Additionally, despite differing estimations of the 

mean age of death of Mecp2-/y mice (e.g. P54 (Guy et al. 2001) or P65 (Ward et al. 

2011)), the possibility exists that in the study of Fischer et al. (2009) mice older than 

P45 displayed hypoxia caused by pre-final breathing (Viemari et al. 2005) instead of 

true RTT breathing symptoms. Fischer et al. (2009) investigated mice at a 

developmental age of P38-60, whereas this study examined mice at P40. Younger 

mice were chosen to avoid the possibility that symptoms of hypoxia are caused by 

senility instead of RTT itself. Andersen (2003) found that rat brains at P40 

correspond with human brains of adolescents. Furthermore, Julu et al. (2001) found 

that Rett patients show a strong manifestation of respiratory disorders during 

adolescence. It was thus expected that breathing imbalances of Mecp2-/y mice 

compared to wt mice at the age of P40 could be identified. Finally, however, it could 

also be argued that the age of the mice tested in the experiments of this study were 

too young. It is possible that P40 represents a too early developmental stage to 

detect cerebral hypoxia in Mecp2-/y mice compared to wt mice.  
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Gene expression levels of the mice used: For the experiments of this study, only 

homozygous Mecp2-/y mice were chosen to obtain a homogeneous genome of 

mice. Heterozygous Mecp2+/- mice were not included in the experiments in order to 

avoid differing Mecp2 gene expression levels. Nevertheless, these Mecp2-/y mice 

display a differing phenotype among each other, e.g. due to size differences.  

Living conditions of the mice used: The development of mice depends, for example, 

on the number of littermates in a cage. Non-mutant mice might identify Mecp2-/y 

mice and isolate them. This leads to higher stress levels of Mecp2-/y mice. Stress 

levels of mammals correlate with methylated DNA levels (Unternaehrer et al. 2012). 

Methylated DNA is specifically bound by MeCP2 (Nan et al. 1993, see section 1.1.2 

The transcription factor MeCP2). i.e. stress levels of mammals correlate with the 

MeCP2 function. Therefore, it is conceivable that Mecp2-/y mice develop differently, 

although they are of the same genotype. Several characteristics related to the 

phenotype and even gene expression levels could deviate. 

5.4 The Trh system  

5.4.1 Trh system expression in wt mice 

Summarizing the above results, significant evidence for breathing-induced hypoxia 

in Mecp2-/y mice at P40 is still missing. Although Fischer et al. (2009) found cerebral 

hypoxia at later age of development, breathing-induced hypoxia could not yet be 

identified by this study’s experiments. Nevertheless, it is indisputable that 

respiratory disorders in Rett mouse models exist (Zanella et al. 2008, Ren et al. 

2012, Ramirez et al. 2013).  

Breathing phenotype in human Rett patients and Mecp2-/y mice differs strongly:  

It has been demonstrated that in humans breath holding (Julu et al. 2001), 

hyperventilation (Ren et al. 2012), and hypoventilation (Hagebeuk et al. 2012) leads 

to a decrease of blood oxygen saturation of at least 50 % (Southall et al. 1988) and 

to apnea that lasts longer than 45 seconds and induces sudden death (Glaze 2005). 

Hyper- and hypoventilation, leading to an apneusis (Ren et al. 2012), has been 

identified in Mecp2-/y mice as well (Ramirez et al. 2013). However, a decrease of 

oxygen saturation could not be demonstrated in Mecp2-/y mice yet.  Because the 

metabolism of larger mammals works much slower than the metabolism of smaller 
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mammals, it is very likely that apneas, which last approximately 45 seconds, are not 

demonstrable in Mecp2-/y mice anyway.  

Moreover, another possible reason for the presented results is the existence of a 

potent counter-regulating gene, which prevents Mecp2-/y mice from hypoxic 

conditions and therefor leads to a modulation of breathing.  

To analyze possible reasons more closely, additional experiments were carried out. 

These experiments were set up to find a particular counteracting gene that helps 

Mecp2-/y mice to adapt their general breathing patterns to respiratory irregularities. 

Finding such a counteracting gene would help to explain why hypoxia could not be 

identified in Mecp2-/y mice although respiratory disorders evidently exist. 

Consequently, hypothesis 4 was created: 

Hypothesis 4: If there are no indicators for hypoxia in breathing impaired Mecp2-/y 

mice, a counter-regulator of the breathing impairment exists. 

When compared to wt mice, Mecp2-/y mice exhibit a phenotype characterized by 

small size, low weight, and exsiccosis (see section 1.1.3 The mouse model of Rett 

syndrome), it was suggested that a metabolism-affecting hormone could be 

dysregulated in Mecp2-/y mice in comparison to wt mice. Various metabolism-

affecting hormones exist, one of which is TRH.  

TRH is a tripeptidal releasing hormone (Boler et al. 1969) that is produced within the 

hypothalamus area by stimulation of e.g. serotonin (Burgus et al. 1969, Chen and 

Ramirez, 1980). The release of TRH is stimulated by several energy-demanding 

processes of the body e.g. low body temperature (Arancibia et al. 1983). The 

release of TRH triggers secretion of other hormones, such as prolactin and TSH 

(thyroid-stimulating hormone) from anterior pituitary (Bowers et al. 1971) (Figure 

5.1). TRH is known to be widely distributed throughout the brain (Shibusawa et al. 

2008) and primarily to influence the growth (Martial et al. 1977) and metabolism 

(Arancibia et al. 1996) of mammals. Moreover TRH has been identified as a potent 

neuromodulator (Zhang and van den Pol 2012) to affect rhythm generation of 

breathing (Manzke 2013). 

Several studies have proven the impact of TRH on the augmentation of frequency 

and the depth-elevation of breathing (Hedner et al. 1983; Bennett et al. 1988; 
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Cream et al. 1999; Hou et al. 2012). Cream et al. (1997) discovered that TRH 

injections in the pre-Bötzinger region of neonatal rats immediately cause an 

acceleration of the breathing frequency. 

 

 
Figure 5.1 Mechanisms of TRH 

After being synthetized by hypothalamic neurons (Burgus et al. 1969), TRH reaches the anterior 
pituitary and causes prolactin and TSH secretion (Bowers et al. 1971). TSH stimulates the thyroid 
gland, which then releases T3 and T4. As a consequence, the whole body metabolism gets activated 
(model adapted from Hinkle et al. 2012). Abbreviations: thyrotropin-releasing hormone (TRH), 
prolactin (PRL), thyroid-stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4) 

The first experiment investigated whether Trh expression levels correlate with the 

expression levels of its receptors. For this reason the Trh mRNA expression levels 

were measured quantitatively in five different brain areas of wt mice. By using the 

same procedure, the general regulations of the Trh receptor subtypes 1 and 2 were 
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measured in the same five different brain areas. The results of the brain areas 

hypothalamus and VRC were suggested to be of special interest for this study: The 

results of the hypothalamic area were analyzed, as this is the area where Trh 

synthesis takes place. Because the VRC represents the breathing-related area of 

the brain, the results of its experiments were particularly interesting. 

The results revealed that Trh is ubiquitously expressed throughout the brain 

although it is solely produced within the hypothalamus and next affects hormones 

within anterior pituitary. In the hypothalamus region the second highest expression 

levels in wt mice concerning all three parts of the Trh system (the Trh hormone itself 

and its 2 receptor subtypes) were found. Although the experiment did not identify 

the highest expression levels in the hypothalamic area, the results are as expected. 

As implied above, it was expected that the hypothalamic area would show the 

highest Trh expression levels of all brain areas, since Trh is synthesized in this 

brain area. 

Nevertheless, the highest Trh expression levels were found in the inferior olive, 

which is related to the coordination and motor area of the brain (Kawato and Gomi, 

1992). Compared to the cerebellum area, the inferior olive demonstrated a 700-fold 

expression level of Trh. 

Although high Trh, Trh-r1 and Trh-r2 expression levels were expected in the VRC 

area as well, the experiments revealed low levels in this brain area. This result 

could be linked to two different reasons: Firstly, Trh might not play an as important 

role in the VRC area as suggested, contradicting the assumption that Trh prevents 

hypoxic conditions, e.g. damages caused by breathing impairment. Secondly, Trh 

expression levels do not need to be particularly high to prevent hypoxic conditions. 

Slight variations of Trh might already lead to major consequences when basal Trh 

concentration levels are low. 

5.4.2 The systemic Trh expression is modified in the brain 

To investigate Trh mRNA levels of Mecp2-/y mice compared to wt mice in five brain 

areas, a further qRT-PCR experiment was conducted. Experiments analyzing the 

Trh receptor subtypes 1 and 2 were also conducted following the same procedure. 
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It was found that the Trh expression levels of Mecp2-/y mice compared to wt mice 

were significantly up-regulated within the cortex, hypothalamus and VRC. When 

comparing Trh receptors expression levels of wt and Mecp2-/y mice no significant 

regulation could be found. 

The up-regulation of Trh in Mecp2-/y mice compared to wt mice might be explained 

by various reasons. 

 (1) It is possible, for example, that MeCP2 directly controls the Trh expression 

levels. Because the depressing impact of MeCP2 on Trh synthesis is missing, 

Trh expression levels might be up-regulated in Mecp2-/y mice when compared to 

wt mice. (2) It could be possible that high Trh levels in Mecp2-/y mice compared 

to wt mice exist due to the negative feedback mechanism of non-detectable 

Mecp2. According to Yano and Lou (2004) Trh controls the gene expression of 

Mecp2. Because in Mecp2-/y mice Mecp2 gene and MeCP2 protein do not exist, 

it is thinkable, that Trh reacts to this condition by elevating its own prevalence. (3) 

It is possible that high Trh levels in Mecp2-/y mice compared to wt mice exist due 

to its function as a natural pain relief. It was found that higher Trh levels result in 

pain relief (Chizh and Headley 1995), sleep deprivation (Zhang and van den Pol 

2012), and loss of appetite (Suzuki et al. 1982). It is possible that Trh levels 

increase since Mecp2-/y mice suffer under pain, for example, caused by spasticity 

and seizures. Increased Trh expression levels might also explain the lack of 

sleep and appetite and impacts negatively on the animals’ vitality and body size. 

Decreased vitality and body size are a common characteristic of Mecp2-/y mice 

(Guy et al. 2001). (4) It could be possible that high Trh levels in Mecp2-/y mice 

compared to wt mice exist due to the energy requiring symptoms of RTT, which 

trigger Trh release. It has been found that energy-demanding processes of the 

body, such as hyperventilation (Mount et al. 2003), weakness, cachexia, and 

spasticity (Hagberg and Witt-Engerström 1986) lead to an increase of Trh 

expression levels (Arancibia et al. 1983). Under these circumstances primarily 

physiological dysregulations such as lower body weight and smaller body size 

would become visible on a molecular level. (5) It is possible that high Trh levels in 

Mecp2-/y mice compared to wt mice exist due to impaired breathing in Mecp2-/y 

mice. Trh might function as a modulator of adaption, induced by respiratory 

imbalances in Mecp2-/y mice compared to wt mice. 
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All of the described conditions, no matter if they occur separately or together lead to 

an adaption process of Trh: 

The adaption process begins with an up-regulation of Trh; the up-regulation of Trh 

modifies the breathing of Mecp2-/y mice; and the modification of the breathing of 

Mecp2-/y mice averts hypoxia. The adaption process is illustrated in Figure 5.2. 

 
Figure 5.2 TRH adaption process during hypoxia within the brain of Mecp2-/y mice 

(A) MeCP2 is lacking in Mecp2-/y mice. This induces a TRH dysregulation and leads to various de-
regulated gene transcriptions. (B) The imbalance within the respiratory network causes a phenotype 
of breathing irregularities. However, these breathing irregularities cannot be identified on elevated 
hypoxia indicating gene levels. (C) Breathing irregularities cannot be identified on hypoxic gene level, 
because Trh stimulates the breathing frequency. Trh expression levels have been demonstrated to 
be significantly up-regulated within several brain areas of Mecp2-/y mice. These elevated Trh 
expression levels lead to imbalances within the neuronal network, suppressing an effect on hypoxic 
gene level. 

Both the results and the above discussion of the results substantiate the relation 

between lack of MeCP2 and upregulation of Trh. Consequently, the reason for 

missing indicators of hypoxia in Mecp2-/y mice in spite of impaired breathing is Trh, 

which functions as a counter-regulator of the breathing impairment. 

5.5 Further research 
This study has demonstrated that Mecp2-/y mice at the age of P40 do not show any 

hypoxic signs on protein or mRNA level, such as elevated HIF protein levels. 

Therefore, this study suggests that Trh induces an adaption process as a reaction 

to breathing disorders, which leads to a modulation of breathing within the 
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respiratory network of Mecp2-/y mice. Strong indicators have been presented that an 

induction of hypoxic genes is prevented by a deeper as well as accelerated 

respiration. In other words, although the Mecp2-/y mice phenotype indubitably 

demonstrates breathing imbalances compared to wt mice, these disruptions cannot 

be detected at the genetic level. 

Although breathing disorders are similar in human beings, they cannot be regarded 

as the same. The main differences between the respiratory phenotype of Mecp2-/y 

mice and humans reside in breathing frequency and amplitude: Human RTT 

patients exhibit irregular periods of hypo- and hyperventilation. Additionally, 

hypoventilation duration of RTT patients last in some cases more than 45 seconds 

and can be described as breath holding. This irregular respiratory rhythm can be 

observed in Mecp2-/y mice as well. However, Mecp2-/y mice reveal much faster and 

irregular breathing patterns and lack the relatively long lasting apneas (Ramirez et 

al. 2013). It is thus impossible to transfer the suggested animal model without any 

adaptation to human Rett patients. Due to these differences, it would be of special 

interest to investigate the role of Trh in the respiratory phenotype of human RTT 

patients further. 

This study analyzed mice at the age of P40, it is thus problematic to simply transfer 

the findings to mice at an older age. Further studies analyzing older Mecp2-/y mice, 

which are rare because of restricted life-span, would be particularly interesting in 

order to possibly generalize the results. It should be emphasized again that   

Mecp2-/y mice at P40 were chosen precisely because they display very similar – if 

not the same – RTT symptoms as human RTT patients (Ren et al. 2012). 

Furthermore, Rett symptoms in human RTT patients are strongly pronounced at an 

age between five to ten years (Julu et al. 2001) and the corresponding age of mice 

at P40 in human RTT patients is 13 to 19 years (Anderson, 2003), which further 

justifies the sample’s age chosen. Most importantly however, it would be interesting 

to see, whether Trh expression levels decrease with advancing age. A decrease of 

Trh expression levels with higher age (e.g. at P50) would confirm this study’s results 

and help to further explain the underlying reasons for the differing findings of 

Fischer et al. (2009).  

As noted above (see section 5.4.1 Trh system expression in wt mice), injecting TRH 

in the neonatal rat brain leads to a stimulation of breathing immediately (Cream et 
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al. 1997). It would be necessary to analyze the effect of TRH injected into the brain 

of wt as well as Mecp2-/y mice in order to find out whether similar effects can be 

observed. Controlling the cerebral TRH levels with the aid of pharmacological 

injections might lead to a weakening of RTT symptoms in Mecp2-/y mice. Although 

TRH influences breathing in mice just like TRH in humans (Rekling et al. 1996, Nink 

et al. 2008), experiments analyzing the Trh expression levels of human RTT 

patients are still missing. It would be highly informative to see, whether Trh 

expression levels are down-regulated in human RTT patients, who display severe 

hypoxia. Going further, it would be also of interest to investigate, whether breathing 

impairments in human RTT patients are correlated with Trh expression levels. As 

with Mecp2-/y mice, controlling the cerebral TRH levels with the aid of 

pharmacological injections might lead to a weakening of symptoms in human RTT 

patients.  
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6 Conclusion 
The respiratory phenotype of Mecp2-/y mice at postnatal day 40 is characterized by 

arrhythmia, breath holdings and apneas. A previous study has indicated that these 

respiratory disturbances lead to hypoxia in Mecp2-/y mice at the age of P38-60. 

However, this study has found out that respiratory disorders of Mecp2-/y mice (P40) 

do not provoke an induction of hypoxia genes at all. 84 genes were examined by 

conducting a RT2 Profiler PCR Array: Hypoxia Signaling Pathway in the VRC. This 

region contains important parts of the medullary respiratory network, which are 

essential for rhythm generation. None of the analyzed genes were found to be up-

regulated. Additionally, gene levels of specific hypoxia related genes were 

compared between wt and Mecp2-/y mice in the same brain regions. It was found 

that none of the eight genes displayed altered regulation. Finally, Hif1a mRNA 

levels of Mecp2-/y mice were compared to wt mice, conducting a qRT-PCR within 

five brain areas. The final experiments were carried out to reassess a specific study, 

which tested HIF-1 α protein expression levels and additionally found hypoxia in 

Mecp2-/y mice. Four brain areas of the Mecp2-/y mice showed increased Hif1a gene 

levels. However, these results could not be confirmed at the protein level. 

To explain the absence of hypoxia it was demonstrated that in Mecp2-/y mice Trh 

was strongly up-regulated in VRC. Within the VRC, which contains major parts of 

the respiratory network that are important for the rhythm generation, Trh serves as a 

neuromodulator increasing breathing frequency. Indeed, Mecp2-/y mice at P40 show 

an increased breathing frequency in general. Therefore, up-regulation of Trh might 

be a potential mechanism in Mecp2-/y mice to circumvent hypoxia in the early phase 

of disturbed breathing. The up-regulation of Trh in further analyzed brain regions 

might also explain the typical emaciated phenotype of Mecp2-/y mice. It is important 

to analyze whether this adaption mechanism is also present at postnatal stages 

>P50 in additional experiments.  

Investigating the effects of TRH injections on hypoxia symptoms in Mecp2-/y mice 

but more importantly in human RTT patients is suggested for further research. 
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