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Introduction

In the 1950s, K. IWASAWA initiated the study of Z,-extensions, which became
an area of extensive research. We will briefly sketch the basic notions of classical
Iwasawa theory, thus describing the setting for the investigations done in this
thesis. For details, we refer to the rigorous introduction to the subject given in
Chapter 1.

Let p denote a fixed prime number. Let K be a number field, i.e., a finite
algebraic extension of the field @ of rational numbers. We consider a sequence
of field extensions

K()Z:K Q K1 Q KQ g

such that for every n € N, K,,/K is a cyclic extension of degree p". Then

K := |J K, is called a Zjy-extension of K. One can show that the K,, C K,
n>0

n € IN, are the only intermediate fields in the extension K/K. The name

‘Zy-extension’ is based on the fact that

Gal(K/K) = imZ/p"Z = 7,

Here Z,, denotes the additive group of p-adic integers.

The most basic example of a Z,-extension of a fixed number field K arises if
we consider the algebraic extension L of K that is generated by all p-power roots
of unity. L contains the so-called cyclotomic Z,-extension of K. In particular,
every number field has at least one Z,-extension. Typically there exist infinitely
many Zp-extensions of K; in fact the set of Z,-extensions of K can be finite
only is K is totally real.

A basic problem in algebraic number theory is the investigation of the ideal
class groups of given number fields. In general, it is a highly non-trivial task to
actually determine the structure of these groups, in particular if the degree of
the number field becomes large.

IWASAWA showed that in the case of a Z,-extension, the orders of the p-
Sylow subgroups A, of the ideal class groups of the intermediate fields K,
grow very uniformly. The following famous theorem actually gives a complete
asymptotic description of the growth of these groups and therefore contains
information about the class numbers of a sequence of number fields having
unbounded degrees.

Theorem 0.1 (Iwasawa). There exist integers p, A and v such that p, A >0
and such that for every sufficiently large n, |A,| = p*" with

en = p-ptH+FA-n+uv.



ii INTRODUCTION

This remarkable result describes the information about the class-numbers
p°" in terms of the so-called Twasawa invariants p, A and v of K/K.

We are therefore naturally lead to the problem of determining, for a given
Z,-extension IK/K, the corresponding Iwasawa invariants. After more than
50 years of research, only very few general properties of these invariants are
known. For example, Iwasawa conjectured that the p-invariant of a cyclotomic
Z,-extension IK/K always vanishes. This has been proved for abelian ground
fields K, and has also been checked numerically for many other fields, but the
general problem is still open.

The present work contains a new approach to the investigation of Iwasawa’s
invariants. We will be concerned with the study of Iwasawa invariants attached
to Zp-extensions of a fixed number field K. If £(K) denotes the set of Z,-
extensions of K, then to each K € £(K) is attached a tuple of invariants. We
will thus regard the Iwasawa invariants as maps

wA\v: E(K) — 7,

and we want to study properties of these maps.

In his Ph.D. thesis, R. GREENBERG defined a topology on the set £(K) with
respect to which £(K') becomes a compact topological space. This induced new
kinds of questions. For example, suppose that K,I. € £(K) are two elements
which are ‘close’” with respect to Greenberg’s topology. Does this imply that
the values of KK and IL under u, A and v are also close in Z?7 Greenberg proved
some first results in this direction.

Theorem 0.2 (Greenberg). Let K/K denote a Zy-extension such that only
finitely many primes of K divide p. Then p is locally bounded around K, i.e.,
there exist a constant C € N and a neighbourhood U of K such that u(IL/K) < C
for each L e U.

If moreover n(IK/K) = 0, then there exists a neighbourhood U of K such that
=0 on U and such that \ is bounded on U.

In this thesis, we will improve on these results, using a completely different
approach. We will define a finer topology that takes care of ramification, and we
will be able to prove that with respect to this topology, the following theorem
holds.

Theorem 0.3. Let IK\/K denote any Zj,-extension.

(i)  There exists a neighbourhood U of K such that pu is locally maximal on
U, e, p(L/K) < W(K/K) for every L € U.

(ii) There exists a neighbourhood U of K such that A\(L/K) < NIK/K) for
every L € U satisfying p(L/K) = n(K/K).

(iii) There exists a neighbourhood U of K such that v(L/K) = v(K/K) for
every L € U satisfying p(IL/K) = w(K/K) and A(L/K) = M(K/K).

This nicely reflects the hierarchy of Iwasawa’s invariants: The p-invariant
describes the dominating part of the growth of the | A, |, whereas the v-invariants
contains the finer information. It is one of the main advantages of our method
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that we are able to obtain results about A- and v-invariants also in the case
where the p-invariant does not vanish.

Based on Greenberg’s results, V.A. BABAICEV equipped the set £(K) with
the structure of a projective variety, and he used geometric arguments in order
to prove that p is in fact globally bounded on £(K). This was also proved
independently by P. MONSKY . It is unknown whether the same is true for -
invariants. We will enhance the methods of Monsky and Babaicev and develop
necessary and sufficient criteria for the A-invariants to be globally bounded.

Finally, we consider, more generally, Z;-extensions of K, ¢ € IN, and we
show how to generalise the approach used for the study of Iwasawa invariants
to this higher-dimensional setting.

We will now briefly give an outline of the contents of the individual chapters
of this work.

0.1 Structure of the thesis

Chapter 1. In the first chapter, we will introduce the basic notions and collect
some facts concerning Z,-extensions. In particular, we will point out the main
ingredients that are used in the proof of Iwasawa’s famous Theorem 0.1. This
will include an overview of the theory of finitely generated Z,[[T]]-modules
because the action of the ring Z,[[T]] on the ideal class groups is of fundamental
importance in this context.

Chapter 2. We will define more structure on the set £(K) of Z,-extensions
of K. On the one hand, we will describe Greenberg’s topology on £(K). On the
other hand, we will depict several ways to turn £(K) into a projective variety;
this contains work of Babaicev.

Finally, Chapter 2 also prepares for the study of multiple Z,-extensions in
later chapters. Analogously to the one-dimensional case, the action of power

series rings Zy[[T1,...,T;]] in a suitable number of variables is of particular
interest for these investigations. We will therefore collect basic facts about the
rings Zy[[T1, ..., T;]] and about modules over these rings.

Chapter 3. Chapter 3 contains the heart of our work, namely, a new
approach to the study of Iwasawa’s invariants. This method is based on a
generalisation of a theorem of T'. FUKUDA concerning the stabilisation of certain
ranks. We will be able to obtain information about Iwasawa invariants from
the values of these ranks. Therefore bounding the Iwasawa invariants reduces
to bounding the ranks. While Fukuda’s original theorem considers only p-ranks
(i.e., uses group-theoretic information), we will extensively exploit the action
of Zy[[T]] on the class groups and consider also ranks attached to elements of
Z,([T)] \ Zy. This essentially strengthens the power of the approach and is one
reason why our method works also in the case of non-vanishing u-invariants (if
u # 0, then the corresponding p-ranks get arbitrarily large and therefore are
not suitable for the extraction of information about Iwasawa invariants).

Our approach makes it necessary to refine Greenberg’s topology in order to
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obtain control on ramification. We will therefore study possible configurations
of ramification in multiple Z,-extensions.

We will also study connections between Iwasawa invariants and the phe-
nomenon of capitulation. This is closely related to the investigation of certain
cohomology groups of global units.

Chapter 4. In contrast to the method used in Chapter 3, we will describe
the approach that has been developed by Greenberg and Babaicev, leading to a
proof that u is globally bounded on £(K) (the method of Chapter 3 in general
is not suitable for attacking this kind of question).

We then apply an adapted version of Greenberg’s approach to the task of
studying A-invariants, and we develop a criterion for the A-invariants to be
globally bounded. A special case of this criterion was known to P. MONSKY,
who considered Z,-extensions contained in a fixed Zg-extension of K.

Chapter 5. In Chapter 5, we turn to the consideration of multiple Z,-
extensions, i.e., we study Z;-extensions of a number field K, i € N. A. Cuoco
and P. MONSKY proved a generalisation of Iwasawa’s Theorem 0.1 for multiple
Z-extensions, introducing generalised Twasawa invariants, which are usually
denoted by mg and ly. If ¢ = 1, then these invariants reduce to the classical u-
and A-invariant, respectively (there seems to be no canonical generalisation of
Iwasawa’s v-invariant).

Analogously to the investigations in Chapter 3, we study the local behaviour
of these generalised Iwasawa invariants. We first show how to use Greenberg’s
and Babaicev’s approach, described in Chapter 4, in order to reduce the i-
dimensional problem to a one-dimensional problem, which then can be studied
with the help of the results proved in Chapter 3. This will yield local bound-
edness results for mg and [.

In order to obtain stronger results, we then generalise the method used
in Chapter 3 to the higher-dimensional setting in order to apply this method
directly to Z;—extensions of K. It turns out that this is considerably more
difficult than the one-dimensional case. Particularly, the handling of suitable
ranks needs much more effort.

We conclude the chapter with some results concerning the special situation
of a Zz—extension, culminating in a new proof of Greenberg’s Generalised Con-
jecture for imaginary quadratic number fields whose class number is coprime to
p and in which the rational prime p does not split.

0.2 Notation

We will now introduce some notation that will be used throughout the thesis.

Let M be a finite set. Then we denote by | M| the cardinality of M, i.e., the
number of elements contained in M.

N ={1,2,3,...,} denotes the set of natural numbers, and INy := IN U {0}.
7. denotes the ring of integers. @, R and C denote the fields of rational, real,
and complex numbers, respectively.

Throughout the thesis, p will denote a fixed rational prime number (we will
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sometimes assume that p # 2). ), denotes the finite field with p elements, and
Z,, respectively, Q,,, denote the ring, respectively, the field, of p-adic integers.
If G denotes a finite abelian p-group, then the p-rank of G,

rank,(G) := dimp,(G/(p- G)) ,

is defined to be the dimension of the IFj-vector space G/(p - G). This is the
number 7 of cyclic groups Z/p"Z in the canonical representation

G = Z)p"TZ x ... x L)p"Z

of G. We could also write rank,(G) = v,(|G/(p - G)|), where v, denotes the
usual p-adic valuation on Z (i.e., if n =p”-n' € Z, ptn/, then v,(n) = v).
Moreover, the exponent of a finite abelian p-group G, written exp(G), de-
notes the smallest power p”, n € Ny, that annihilates G.
G is called p-elementary if exp(G) = p.

Our rings will always be commutative, and we assume that they contain a
multiplicative unit element.

If R is a ring, and if n,m € IN, then Mat(n, m, R) denotes the set of n x m-
matrices over R. GL,(R) denotes the subset of invertible n x n-matrices. If
A € Mat(n,m, R) has entries a;; € R, 1 < i < n, 1 < j < m, then the
transposed matrix of A is the matrix B = AT € Mat(m,n, R) having entries
bij i =aj;, 1<i<m,1<j<n.

Let R be a ring, and let M denote an R-module. Then the rank rankpg (M)
of M over R denotes the supremum of the natural numbers n such that there
exist n R-linearly independent elements in M.

We will be mainly concerned with number fields, i.e., finite algebraic exten-
sions K of Q. For each number field K, we denote by O the ring of integral
elements of K. The ideal class group of K will be denoted by CI(K).

We will usually assume that we have fixed an algebraic closure K of K. An
important subfield of K is the Hilbert class field of K, i.e., the maximal abelian
unramified extension of K. Since we are mainly interested in the p-divisibility
of class numbers, we will usually consider the maximal unramified p-abelian
extension H(K) of K.

We will often denote by Z = {p1,...,p;} the set of primes of the number
field K that divide our fixed rational prime p.

Fix a number field K. If we consider embeddings ¢ : K — C of K into
the field C of complex numbers, then we may distinguish between embeddings
mapping K into R C C and those mapping K onto a proper imaginary field.
Then 7 (K) will denote the number of real embeddings of K, and r9(K') denotes
the number of pairs of complex conjugate embeddings.

A CM-field is a totally imaginary quadratic extension K of a totally real
number field K+. This means that ro(K*) =r;(K) =0 and [K : KT] = 2.
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Chapter 1

Iwasawa’s theory of
Zp-extensions

In this first chapter, we will introduce the basic objects that are dealt with in
classical Iwasawa theory. This subfield of algebraic number theory is concerned
with the study of so-called Z,-extensions of number fields, which will be defined
below. The first section collects, in addition to some examples, basic properties
of Zy-extensions that will be used throughout this thesis.

Typical objects of interest will be the ideal class groups of the number fields
contained in a given Z,-extension. IWASAWA discovered that one can obtain
deep insight on the growth of these class groups by taking into account the
additional structure arising from the action of certain group rings. Therefore
the second section will be devoted to a structure theory of groups admitting an
action of such group rings.

This general structure theory may be used to obtain a proof of Iwasawa’s
famous class number formula (Theorem 1.32). In the third section, we will
describe the main ideas used in the proof of this result. In particular, we will
discuss several versions of Nakayama’s Lemma, which will be an indispensable
tool for many proofs derived in this work.

1.1 Basic properties of Z,-extensions

Let K be a number field and let p be a fixed rational prime. A Z,-extension of
K is a Galois extension Ko, of K such that the Galois group I' := Gal(K,/K)
is topologically isomorphic to the additive group Z, of p-adic integers. In this
section we summarise some basic facts about such extensions. For proofs and
more details see [Wa 97], Chapter 13.

Proposition 1.1. For every n € IN, there is a unique field K,, C Ky such that
Gal(K,/K) = Z/p"Z. These are the only intermediate fields in Ko /K.

This just follows from infinite Galois theory (see [Neu 92], Thm. IV.1.2):
the intermediate fields correspond to the closed subgroups of I' = Z,,, and the
only non-trivial closed subgroups of Z,, are the groups p"Z,, n € IN.

1
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This means that we can think of the extension K, /K as the chain of cyclic
field extensions of p-power degree

K=KyCK CKyC...CK,C...CKgqp = UKn
n € Ng

Lemma 1.2. A Z,-exstension Ko /K is unramified outside the primes of K ly-
ing above p. In particular, Ko /K is unramified at infinity, i.e., a Zy-extension
of a totally real field is totally real.

Proof. see [Wa 97|, Proposition 13.2. O

However, the extension K,/K cannot be completely unramified, because
otherwise the field K, would be contained in the Hilbert class field H of K.
But class field theory (see [Neu 92], Theorem VI.6.9) implies that the Galois
group Gal(H/K) is isomorphic to the ideal class group of K, which is finite,
and therefore K., would have to be a finite extension of K, which gives a
contradiction.

More precisely, we have the following proposition:

Proposition 1.3. Let Ko/K be a Z,-extension. Then at least one prime
ramifies in Ko /K. Moreover, there exists some integer e > 0 such that every
prime which ramifies in Ko /K, is totally ramified.

Proof. see [Wa 97|, Lemma 13.3. O

It is, however, possible to have K, /K unramified for some n (see Example
1.6 below).

Up to now, we have described some properties of Z,-extensions without
having shown yet that such extensions do exist. We will now show that every
number field K has at least one Z,-extension. For that purpose, we first review
the following easy group-theoretic result.

Lemma 1.4.
(i) Ifp+#2isaprime and e € N, then the group (Z/p°Z)* of multiplicatively
invertible elements of the ring Z./p°Z is cyclic, and

(Z/p°Z)* = Z/p* 7 x Z)(p—1)Z .

(ii)) If e € N, then (Z/2°7)* is cyclic if and only if e € {1,2}. For e > 3 we
have (Z.)2°7)* = 7./]2°7%7 x 7./27.

Proof. See [Rib 01], 3.(J) and 3.(K). O

Example 1.5. Let p be an odd prime, let ¢, be a primitive p-th root of unity,
and consider the field K = Ko := Q((p). The fields K, := Q((ynt1), n € N,
(where (yn+1 denotes a primitive p"tlth root of unity contained in a fixed
algebraic closure K of K, respectively) are cyclic over Q with Galois groups
Gal(K,/Q) = (Z/p"t'Z)*. Moreover, each K, is abelian over K = K, and
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Gal(K,,/K) = Z/p"Z is cyclic of order p" for all n (compare Lemma 1.4, (i)).
Therefore

Koo = |J En = |J Q(Gnn)

n>1 n>1

is a Zy-extension of K = Q((,). We call it the cyclotomic Z,-extension of
K.
Now let K be an arbitrary number field; let p be a prime, let

__Jp :pisodd
T4 p=2

For any n € IN (in the case p = 2, we have to assume that n > 1), there is
a unique subfield B,, of Q(({gp») which is cyclic of degree p" over Q (using the
isomorphism from Lemma 1.4, (i), respectively, (ii), define BB,, to be the subfield
of Q(¢gpn) fixed by the Z/(p — 1)Z-part, respectively, the Z/2Z-part, of the
Galois group Gal(Q((gpr)/Q)). We define By, := |J B, and Ko := K - Bo.
n>1

Then Ko /K is a Zy-extension. Indeed, let L := K N By. Then [L : Q] is a
finite power of p, and L is cyclic over Q. Therefore L = B, for some e > 0 by
the uniqueness of the B,,. (We have to pay attention to the case p = 2: There
are three cyclic extensions QQ1, Q2 and Q3 of degree 2 over @) that are contained
in Q(¢s) (see Example 1.6 below), and exactly one of them serves as the first
step in our Z,-extension).

Moreover, there are group isomorphisms

Gal(Ks/K) = Gal(K - Boo/K) 2 Gal(Boo/(K N By = B.))
P Ly = 7y .

I

K is called the cyclotomic Z,-extension of K.

Example 1.6. We will now show that it is possible that in a Z,-extension
K« /K, K, /K is unramified for some n (compare Proposition 1.3); the following
example is put as an exercise in [Wa 97]. Let p = 2. There are exactly three
quadratic subfields of Q(Cg), namely Q(v/2), Q(i) and Q(iv/2). Since Q(i)/Q
and Q(iv/2)/Q are ramified at infinity, Lemma 1.2 shows that Q(v/2) is the first
step of the cyclotomic Zs-extension of Q. More generally, if K is a number field
and v2 ¢ K, then K(1/2)/K is the first step of the cyclotomic Zs-extension
of K. Now consider K := Q(v/—6). We show that K; := Q(v/—6,v2) is
unramified over K. In order to see this we consider the following diagram of
fields.

Q(V=3,v2) = Q(V=6,v2)
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We have the following ramification indices in the labelled subextensions (here
we denote by e, = e,(M/L) the ramification index of the prime p of L in the
extension M/L):

(I) ez =e3 =2, all p ¢ {2,3} are unramified

(IT) ey =2, all odd primes are unramified

(ITII) e3 = 2, all primes p # 3 are unramified.

We see this by computing the discriminants of these quadratic subfields (a
rational prime p € @Q ramifies in a number field if and only if it divides the
absolute discriminant of that field): Oqva) = 42 =28,0¢q(/=5) =4 (—6) = —24
and ¢, /=3, = —3 (note that —3 =1 mod 4).

By looking at (III), we see that

e2(K1/Q) < 2 Y e (K/Q)

and therefore ey, (K;/K) = 1 for the unique prime py of K lying above 2.
Analogously,

an o w
e3(K1/Q) < 2 = e3(K/Q),
and so ep, (K1/K) = 1 for the unique prime p3 of K lying above 3. This shows
that K;/K is unramified, since obviously no prime different from 2 and 3 is
ramified in K;/Q.

Every number field K has at least one Z-extension, namely the cyclotomic
one, as defined above. We will now give an estimate for the number of Z,-
extensions of K. Two Z,-extensions Li/K and Ly/K are called independent
if LiNLy =K.

First, we introduce some notation. Let E denote the group of units of (the
ring of integers O of) K. Let Z := {p C Or : p|(p)} be the set of primes
of K lying above p. Define Fy :={e € E | e =1 mod p Vp € Z}. For every
p € Z we consider the completion K, of K with respect to the non-archimedean
absolute value induced by the prime p. Let Uy, C K, denote the local units
congruent to 1 modulo p. Then we have a diagonal embedding

FEF, — U = HULP’ E'—>(€,...,€).
peZ

If N(p) denotes the norm of the prime p, i.e., the number of elements in the
residue class field O /p, then eNP)-1 ¢ Uiy for any € € E. Therefore E; is a
subgroup of F of finite index, and thus a free abelian group of rank r» = r1+ry—1,
where 1 denotes the number of real embeddings of the number field K and 7o
denotes the number of pairs of complex conjugate embeddings (by Dirichlet’s
Unit Theorem).

Let E; be the closure of F; < U; with respect to the product topology on
Ui. Uy is a Zy-module via z - u := u” (z € Zjp, v € Uy), and so the closure By
is also a Zy,-module. It has rank 1 4+ 72 — 1 — ¢ for some § = §(K) > 0 which is
called the Leopoldt defect of K. Leopoldt’s Conjecture predicts that 6 =0
for every number field K, which has been proved by A. BRUMER in [Br 67| for
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abelian number fields (so the Leopoldt defect measures the extent to which the
conjecture fails).

The following theorem gives an estimate for the number of independent
Z.,-extensions of K:

Theorem 1.7. With the above notation, let d denote the number of independent
Z,-extensions of K. Then d = ro + 1+ 9. Therefore

ro+1 < d < 2r9+1r = [K:Q].

The proof via class field theory (cf. [Wa 97|, pp. 266-269) also shows the
following result ([Wa 97|, Corollary 13.6):

Lemma 1.8. Let H be the Hilbert class field of K and let F be the maximal
abelian extension of K which is unramified outside primes lying above p. Then
there exists a group homomorphism

Gal(F/H) ~ (][ U:)/E

pel

with finite kernel and cokernel, where U, denotes the unit group of the com-
pletion K,, respectively, and E is the closure of the group of global units E
(embedded in ([[,e7 Up) diagonally).

In Chapter 3, we will prove a generalisation of this lemma (compare Lemma
3.28).

1.2 Group rings and A-modules

Group rings play an important role in the study of algebraic number fields.
For example, suppose that we are interested in the ideal class group Cl(K) of
a number field K which is galois over Q. The group G := Gal(K/Q) acts on
CI(K). If we take R to be an appropriate coefficient ring which, too, operates
on CI(K) (e.g., R = Z), then the group ring R[G] acts on ClI(K). Now if
we have knowledge about the structure of R[G]-modules in general, then these
results in particular hold for C1(K) (viewed as a R|[G|-module). This approach
sometimes delivers a deeper insight into the structure of C1(K) or other objects
related to K which can be equipped with the structure of a R[G]-module.

In our situation, we will usually have R = Z,. More generally, let R = O
denote a unique factorisation domain that is a local ring with unique maximal
ideal p. Assume further that O is complete with respect to the p-adic topology
(note that Z, fills into this pattern, by [Neu 92], Theorems II.2.3 and II1.2.4).
Let K be a number field, let K. /K be a Z,-extension with Galois group
I'=7Z,, and let v € I be a fixed topological generator, i.e., the cyclic subgroup
generated by 7y is dense in I' with regard to the topology on I' induced by the
p-adic topology on Z,. This will be the case if, for example, v corresponds
to 1 € Z, under the above isomorphism. We will write I" multiplicatively.
Since the only nontrivial closed subgroups of Z, are of the form p" Z,, for some
n € Ny, the nontrivial closed subgroups of I' are given by I'?", n € INg. If we
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define T, := I'/T'P", then T, is a cyclic group of order p" generated by the coset
7 of v modulo I'"". Tt corresponds to the Galois group of the subextension
K, /K (compare Proposition 1.1).

We consider the group rings O[], n > 0. If, for example, O = Z,,, then
O[I',,] acts on the p-Sylow parts of the class groups Cl(K,), respectively. We
would like to define an analogous group ring which acts on arithmetic objects
attached to the extension K, itself. It turns out that instead of using the group
ring O[I'] it is much better to consider the so-called profinite group ring or
completed group ring O[[I']] of I" which is kind of a compactification of O[I']
and will be defined now.

If m > n > 0 then TP" C Fpn, so there is a canonical surjection I';,, — I',,
which induces a map ¢y, : Oy — O[I',]. We define O[[I']] to be the
inverse limit of the group rings O[I';,] with respect to the maps ¢y, . Since any
element « € O[I'] canonically induces a sequence of elements «,, € O[] such
that ¢ pn(m) = an Vm > n > 0, we have an embedding O[I'] < O[[I']]. Note
that O[[I']] is somewhat ‘bigger’ than OI[I'] (it contains certain ‘infinite’ sums
of elements of I'). O[[I']] is a compact O-module with respect to the topology
induced by the projective limit of the topologies on the O[I';,].

At any finite level n we have an isomorphism

O[ly] = O[T]/(1+T)" —1)

induced by

v mod T*" — 14T mod (1+T)"" —1)
(since vP" + 1, this map is well-defined; one can easily see that it is onto and
one-to-one). If m > n > 0, then (1+7)P" —1 divides (1+T)P" —1, so there is a
natural map 0y, ,, : O[T]/(1+T)P" —1) — O[T]/((1+T)?P" —1) corresponding
to the map ¢p, p : O[I'y,] — O[] defined above. We obtain

Or)) = lim O[T)/(L+ TP 1),

where the inverse limit on the right-hand side is taken with respect to the maps

Om.n-
The following theorem is fundamental for the understanding of the profinite
group ring O[[I']].

Theorem 1.9. Let O[[T]] denote the ring of formal power series in one variable
with coefficients in O. Then O[[I]] = O[T]] as O-algebras, the isomorphism
being induced by vy +— 14+ T.

The proof (see, for example, [Wa 97|, pp. 114-117) is based on the following
auxiliary results which are important on their own.

Lemma 1.10 (Division Lemma). Let O be a local ring with mazimal ideal p
that is Hausdorff and complete with regard to the p-adic topology. Let

o

f=> aTieo[T),

1=0
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and assume that n := inf({i | a; € p}) is finite (n is called the reduced degree
of f). Then every g € O[[T]] may be uniquely written as

g =qf +r,

with g € O[[T]], and where r € O[T is a polynomial of degree at most n — 1.
In particular, O[[T]]/(f) is a free O-module of rank n having basis

{T" mod f|0<i<n—1}.
Proof. See [Bou 89|, Chapter 7, §3, Proposition 5. O

We will now define an important class of elements in O[T to which we can
apply the Division Lemma.

Definition 1.11. Let O be a local ring with maximal ideal p. A polynomial
F € O[T] is called distinguished (or a Weterstraf3 polynomial) if it is of
the form F(T) =T" + ap, 17" '+ ... +ag witha; €p forall 0 <i <n — 1.

Remarks 1.12.

(1) Inparticular, a distinguished polynomial F'(T') is not constant (since n > 1).
If O is a principal ideal domain, then F(7T') is almost an Eisenstein poly-
nomial: if ag & p?, then F(T) will be irreducible.

(2) The polynomials wy,(T) := (1+T)P" —1, n > 0, which played an important
role above (and will do later on), are distinguished in Z,[T7.

Lemma 1.13. Let O be as in Lemma 1.10, let F(T') € O[T] be a distinguished
polynomial. Then we have an O-module isomorphism

O[T/(F(T) - O[T]) —— O[T}/ (F(T) - O[[T]]) .
Proof. The injection O[T] — O[[T]] induces a well-defined map
v O[T/(F(T) - O[T]) —— O[[T1)/(F(T) - O[[T]]) .

Let n be the degree of F(T) (which is the same as the reduced degree because
F(T) is distinguished). By the Division Lemma, each coset of the quotient on
the right hand side may be uniquely represented by an element r € O[T] of
degree less than n. Therefore the map ¢ actually has to be a bijection.

O

Finally, we come to the main result used in the proof of Theorem 1.9.

Theorem 1.14 (Weierstraf3 Preparation Theorem). Let O denote a local
ring with mazimal ideal p, and assume that O is Hausdorff and complete with
respect to the p-adic topology. Let furthermore f = ag+ a1T + ... € O[[T]] be
a series such that there exists a coefficient of f that is not contained in p (in
particular, f # 0). Let s denote the reduced degree of f, as defined in Lemma
1.10.

Then we may uniquely write

f =U-F )
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where U € (O[[T]])* is a unit, and where F' = F(T) € O[T] is a distinguished
polynomial of degree s, as in Definition 1.11. (If s =0, then f =U is a unit.)
In particular, if O is a principal ideal domain, then we may choose a generator
7 of p, and every non-zero element f € O[[T]] may be uniquely written as

f(T) =="-U(T) - F(T),

where 0 < u € 7. denotes the largest integer such that © divides f, and with U
and F' as above.

Proof. See [Bou 89|, Chapter 7, §3, Proposition 6. O
We now specialise to the case O = Z,. Let A := Z,[[T]].

Definition 1.15. The profinite group ring Z,[[I']] = A is called the Iwasawa
algebra. Every compact A-module is called an Twasawa module.

The isomorphism Z,[[I']] = A given in Theorem 1.9 depends on the choice
of the topological generator v of I'. In the following we will identify Z,[[I']]
with A, using a fized topological generator ~.

We will now state some basic properties of the ring A which build the
foundation of a couple of results concerning the structure of finitely generated A-
modules. This culminates in an important structure theorem which afterwards
will be applied to some specific A-modules which are of arithmetic interest.

Proposition 1.16. A is a unique factorisation domain whose irreducible ele-
ments are the rational prime p and the irreducible distinguished polynomials.
The units of A are the power series with constant term in Zs,.

Proof. The first statement is a consequence of Theorem 1.14. The last assertion
follows from a general fact: if R is any domain, then the units in R[[T]] are those

power series whose constant term is a unit in R (see [Rib 01|, pp. 345f.). O

Lemma 1.17.

(i) Let f,g € A be relatively prime. Then the ideal (f,g) is of finite index in
A

(i) Let f € A with f ¢ A*. Then A/(f) is infinite.
Proof. See [Wa 97|, Lemmas 13.7 and 13.10. O

Proposition 1.18.

(i)  The prime ideals of A are (0), (p), (p,T) and the ideals (F(T)) generated
by irreducible distinguished polynomials F(T).

(i) A is a local ring with unique maximal ideal m = (p,T).

(iii) A is a Noetherian ring.

Proof. See [Wa 97|, Proposition 13.9 for (i) and (ii). For (iii), we can use
Chapter 4, Corollary 9.6 in [La 93] which states that if A is a Noetherian ring,
then the ring A[[T]] is Noetherian, too (inductively, this is also true for the ring
of power series in more than one variable). O
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We will now describe the above-mentioned structure theorem for (finitely
generated) A-modules. We will classify these modules up to pseudo-isomor-
phism.

Definition 1.19. Two A-modules M and M’ are called pseudo-isomorphic
(written M ~ M’) if there exists a A-module homomorphism ¢ : M — M’
with finite kernel and cokernel. In other words, M ~ M’ if there is an exact
sequence of A-modules

0 A M—2 M/ B 0

with A and B finite.

Remarks 1.20.

(1) In general, M ~ M’ does not imply M’ ~ M. For example, (p,T) ~ A,
because the inclusion (p,7") < A has finite cokernel by Lemma 1.17, (i).
On the other hand, we cannot have A ~ (p,T) (the following argument is
due to [Wa 97|, p. 272): Suppose that ¢ : A — (p,T) is a A-module-
homomorphism. Let f(T') € (p,T) be the image of 1 € A. Then

p(A) C (f(T)) € (p,T).

But A/(f(T)) is infinite (Lemma 1.17, (ii)), whereas A/(p, T) is finite, again
by Lemma 1.17, (i). Therefore the cokernel of ¢ has to be infinite.

(2) Tt can be shown (compare Remarks 2.22, (1)) that if M and M’ are finitely
generated over A and A-torsion, then

M~M <+ M~M
(3) The composition of two pseudo-isomorphisms is again a pseudo-isomor-
phism. Indeed, let f : M — M’ and g : M’ — M" denote pseudo-
isomorphisms. Then |ker(g o f)| < |ker(g)| - |ker(f)], since f and g are
homomorphisms.

Furthermore, it is easy to see that |coker(g o f)| < |coker(f)]| - |coker(g)].
Therefore g o f is a pseudo-isomorphism.

Example 1.21. Let f,g € A be relatively prime. Then

A/(fg) ~ A(f)@A/(g) and A/(f)DA/(g) ~ A/(fg)-

Proof. See [Wa 97|, Lemma 13.8. We will generalise this result in Chapter 5
(compare Proposition 5.43). O

Remark 1.22. If f and g are relatively prime non-units, then there cannot
exist a A-module isomorphism

v A(f) e A (9) — A(f9)-
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Proof. We assume that

w: A(f) @A/ (9) — A/(f9)

denotes a A-module homomorphism, and we will show that ¢ cannot be an iso-
morphism. Indeed, let a1, as € A denote representatives of the classes ¢((1,0)),
respectively, ¢((0,1)) in A/(fg). Since

f-e((1,0)) = ¢((£,0)) = ¢((0,0)) =0
and
9-¢((0,1)) = ¢((0,9)) = ¢((0,0)) =0,
it follows that f-a; € (fg) and g -ag € (fg). Since A is a unique factorisation

domain, we may conclude that g divides a; and that f divides as.
This means that every image

o((@,7) = z-¢((1,0)) +y-¢((0,1)), zyeA,

is the coset in A/(fg) of an element contained in the ideal (f,g). But 1 € (f,g),
since f and g are non-units and therefore are contained in the maximal ideal
m = (p,T) of A. We therefore see that ¢ cannot be surjective. O

Definition 1.23. A A-module F is called elementary if E is of the form

E=Ao (EBM(I?’“)) o | DA/ |,

i=1 j=1

where r,s,t € INg, n;,l; € IN for all 4, j, and where the f;(T") are irreducible
distinguished polynomials in Z,[T7.

Theorem 1.24 (Structure theorem for finitely generated A-modules).
Let M be a finitely generated A-module. Then M is pseudo-isomorphic to an
elementary A-module E. E is uniquely determined by X (up to permutation of
the summands).

Proof. See [Wa 97|, Theorem 13.12 and Corollary 15.19. O

Corollary 1.25. Let X, Y denote finitely generated A-modules.

(i) IfY is pseudo-isomorphic to X, then the elementary A-modules Ex and
Ey attached to X and'Y are equal (up to permutation of the summands).

(ii) If Y C X denotes a submodule such that X/Y is finite, then the same
concluston holds.

Proof. (i) Supposethat px : X — Ex,py : Y — Ey and ¢ : Y — X are
pseudo-isomorphisms. Then ¢x o : Y — FEx is a pseudo-isomorphism
(compare Remarks 1.20, (3)). Therefore Ex = Ey by the uniqueness
statement of Theorem 1.24.

(ii) This is a special case of (i), since under the assumptions stated in the
corollary, the embedding v : Y — X is a pseudo-isomorphism.

O
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In this thesis, we will be mainly concerned with elementary torsion A-
modules; we will sometimes simply speak of elementary A-modules.

For each n € Ny, consider the distinguished polynomial

vp(T) = (1+T%p —1 = WH;T)

(see Remarks 1.12, (2)) which via the isomorphism described in Theorem 1.9
corresponds to the element 1+ v+ % + ... + "~ € Z,[[I].
For integers n,e € Ny with n > e, we define

 Vn (1+T)P" —1

== L 4 (14T A+ .+ (1+ TP
Yone) = L S A T =1 + A+ +(A+T)7 +...+(1+T)

Lemma 1.26. The polynomials v, ) (T) € Zp[T] are distinguished whenever
n>e (and vee =1).

This follows from the following useful properties of distinguished polynomi-
als:

Proposition 1.27.

(i)  The product of two distinguished polynomials is again distinguished.

(i1) Suppose that f(T) € Z,[T| denotes a distinguished polynomial, let g € A
be arbitrary. If f divides g in A, then in fact % € Z,[T).

(iii) If the quotient of two distinguished polynomials is a polynomial, then it is
distinguished or the constant polynomial 1.

(iv) Let f(T) € Z,|T) C A be a distinguished polynomial. Then f(T) is irre-
ducible in Z,[T] if and only if it is irreducible in A.

Proof. (i)  This is obvious from the definitions.

(ii) This may be deduced from the Weierstral Preparation Theorem 1.14 (see
[Wa 97], Lemma 7.5).

(iii) Let f,g,h denote polynomials with f - g = h, and suppose that ¢g and
h are distinguished. Then f(7T) has leading coefficient 1. Therefore if f
is not constant and not distinguished, then f(T) = w(T) - f(T) with a
distinguished polynomial f(7) and a unit u(T) € A*, by Theorem 1.14.
But then h(T) = g(T) - f(T) - w(T) with g(T) - f(T) distinguished by (i).
Therefore w = 1 by the uniqueness in 1.14, i.e., f = f
Note that if f(T') = % is constant, then it has to equal 1, since g(7T')
and h(T) have leading coefficients 1.

(iv) Let us first assume that f was reducible in A. Then f = g - h for suitable
g,h € A\ A*. Using the Weierstrafl Preparation Theorem 1.14, we may
write

g=p™-G-uy and h=h"-h-uy

with uy,us € A* and §(T), h(T) € Z,[T)] distinguished; note that in fact
n1 = no = 0, since f is distinguished and therefore its leading coefficient is
equal to 1. Now u; = % and ug = % are polynomials (see (ii)), and in fact

I
Gh

up - ug = 1 by (iii), since it is contained in A* and therefore cannot
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be distinguished. So f(T) = §(T)-h(T). Since g, h ¢ A*, we may conclude
that g, h # 1, and therefore §, h ¢ (Z,|T))* = Z, as being distinguished
polynomials. Thus f is reducible in Z,[T].

Assume now to the contrary that there exist polynomials ¢(T"), h(T') in
Zy|T| \ Zy, such that f(T) = g(T) - h(T). Since Zp[T] C A, it will be
sufficient to show that g(7") and h(T") both are not contained in A*. It is
easy to see that they cannot simultaneously lie in A*, since the product
of their constant coefficients (which belong to Zj if and only if g(T") or
h(T) are invertible in A, respectively) has to yield the constant coefficient
of f(T), which is divisible by p, since f is distinguished. Moreover, the
product of their leading terms equals 1, and therefore we may assume that

g(T) =Tr+cp - TF '+, 4¢g and A(T)=T'+a_1- T +.. . +ag

with
p|ap and pfeco.
Now
g(T)-h(T) = aoco+T - (ager + arco) + T (agca + arer + asco) + ...

= f(I) = T mod p

and therefore
0 = agcr +ai1cg = ajcg mod p,

so p | ai, since pt co. Then, considering the coefficients of T2, we get
0 =apcg + ajcy + ascg = ascy mod p

so p | az, and so on. Inductively, we obtain that h(T") € Z,[T] is dis-
tinguished. But as we have seen in (iii), this means that the quotient

g(T) = % either is distinguished (contradicting the fact that p 1 ¢)
or equals 1 (and therefore is contained in Zy, again contrary to our as-
sumptions). This shows that ¢g(7),h(T) ¢ A*, so f(T') is reducible in
A.

O

The following proposition will become very important in the next section.

Proposition 1.28. Let

E=A\No (@A/(p’“)> o | PA/HD"Y)

i=1 j=1

be an elementary A-module as defined in Definition 1.23.

S

t
Let p:= ) n; and X := > 1 - deg(f).

=1 7j=1



1.2. GROUP RINGS AND A-MODULES 13

(i) If E/(V(nye) - E) is finite for some fized e > 0 and all n > e, then r = 0
and there ezist constants ng and v (which depend on E and e, but are
independent of n) such that

\E/(Vine) - E)| = PP for alln > ng .

(ii) Assume that r = 0. Then u = 0 <= the p-rank of (E/(v(y¢) - E)) is
bounded as n — oo.

Proof. See [Wa 97|, Proposition 13.19 and Lemma 13.20. O

Definition 1.29. Let X be a finitely generated torsion A-module. By Theorem
1.24 and Proposition 1.28 we can attach to X (via the corresponding elementary
A-module E) two integers A = A(X) and pu = u(X) and a polynomial

t
Fx = [[ (@Y,
j=1

the product of the polynomials occurring in the representation of E.

Then A\ = deg(Fx) and p are called the ITwasawa invariants of the A-module
X and F is called the characteristic polynomial of X (it will be explained
below where this name comes from; see Proposition 1.31, (ii)).

Remark 1.30. If X is a Z,[[I']]-module and therefore bears a A-module struc-
ture via Theorem 1.9, then the characteristic polynomial of X depends on the
choice of the topological generator v of I' which induces the isomorphism in
1.9. However, the invariants A and u are independent of v (compare [NSW_0§],
Remark 1 on p. 292).

We will conclude our discussion of A-modules by describing some of the
properties of the Iwasawa invariants.
Let X be a finitely generated torsion A-module. For every n € INg, we let

X[p"] == fe € X | p"-2 =0},

and we define
xX° = J X"
n>0
to be the Z,-torsion submodule of X. Then the quotient module X/X° is a
finitely generated torsion A-module which by construction is torsion-free as a
Z,-module.

Let f(T) € A denote a non-zero annihilator of X. We write f = p" - g
for some g € A coprime to p. Then ¢ annihilates X/X°. By the Weierstraf3
Preparation Theorem 1.14, g is associated to a distinguished polynomial g €
Z,[T). Then A/(g) is isomorphic to a free Z,-module of rank deg(g), by the
Division Lemma 1.10 (compare Lemma 1.13). If X/X° is generated as a A-
module by s elements, then X/X° is isomorphic to a quotient of (A/(g))*.
Therefore X/X° is a free Z,-module of finite rank.
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Recall that

s t
X ~ Pa/em) e @A/
i=1 j=1
with irreducible distinguished polynomials f;(T") € Z,[T].
If we let
V=X ®Zp Qp ,

then it is easy to see that

V= D QuIT1/(f;(T)")

j=1

as Qp-vector spaces: First, we have

Z[[TN)/(f;(T)") = Zy[T1/(f;(T)")

for every j (see Lemma 1.13). Moreover, Z,[T| ®z, Qp = Q,[T]. Finally, the
tensoring - ®z, Q) eliminates the Z,-torsion part.
Note that
dimgq, (V) = AMX),

since the dimension of Q,[T]/(f;(T)%) is equal to I; - deg(f;), respectively.
Multiplication by 7" induces an endomorphism on the Q,-vector space

QplT1/(£;(T)")

with characteristic polynomial f; (T)%, respectively. Therefore the character-
istic polynomial Fx of X as defined via Theorem 1.24 and Proposition 1.28
is the characteristic polynomial for the operation of T on the Q,-vector space
V=X ®Zp Qp.

We summarise our results, together with some facts about the Iwasawa
invariant (X)) which are immediately clear from the definitions:

Proposition 1.31. Let X be a finitely generated torsion A-module with Iwa-

sawa invariants AN(X) and p(X), and let Fx be the characteristic polynomial

of X, as introduced in Definition 1.29. Let X° be the Z,-torsion submodule of

X.

(i) X° is a A-submodule of X. There is a finite integer t € Wy such that
p' - X° ={0}. X/X° is a free Z,-module of finite rank.

(ii) V=X ®z, Qp is a Qp-vector space of dimension \(X). Fx is the char-
acteristic polynomial of the endomorphism on V induced by multiplication
by T.

(1it) X is finitely generated as a Zy-module if and only if u(X) = 0. Moreover,
we have

wX) =0 < X° is finite <= X/pX is finite .

(iv) MX)=0 <= p*- X ={0} for some s > 0.
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Proof. Most of the assertions are clear from the above.

(i) If x € X is a Z,-torsion element and f € A, then clearly also f - x is
annihilated by the same element of Z,, (because A D Z, is commutative),
and so X° is a A-module. Since A is Noetherian, X° has to be finitely
generated, and therefore there exists a ¢ > 0 such that X° = X [pf].

(ii) This has been explained above.

(iii) First, X° is finite if and only if E° is finite, where E denotes the elementary

A-module attached to X. Now E° is finite if and only if u(X) = 0 (recall
that A/(f;j(T)4) is Zy-free for each j by Lemma 1.10).
Moreover, X is finitely generated as a Z,-module if and only if F is finitely
generated as Z,-module, which is the case if and only if u(X) = 0 (note
that A/(p) = (Z/pZ)[[T] is not finitely generated over Z,). Finally, X is
finitely generated as Z,-module if and only if X/pX is finite.

(iv) Let ¢ : X — E denote a pseudo-isomorphism. Then the kernel of ¢ is
finite, and therefore ker(¢) C X°. If A(X) = 0, then there exists a finite
integer s with p®- X = {0} (e.g., choose s = u(X) + t, where ¢t has been
defined in (i)). But if A(X) # 0, then E contains a nontrivial Z,-free
submodule by the Division Lemma 1.10. Since the cokernel of ¢ is finite,

this proves the proposition.
O

1.3 Iwasawa’s Theorem on the asymptotic growth
of class numbers in Z ,-extensions

In this section we will show how to use the general theory developed above for
the study of arithmetic properties of Z,-extensions. The main result will be
the following fundamental theorem due to K. IWASAWA.

Theorem 1.32. Let K/K be a Z,-extension of the number field K. Let
A, denote the p-Sylow part of the ideal class group of the intermediate field
K, respectively. Let p®" be the exact power of p dividing the class number of
Ky, i.e., |Ay| = p®. Then there exist rational integers X > 0, u > 0 and v,
independent of n, and an integer ng = no(Ks/K) € IN such that for every
n > ng, we have

en=up" +An+v.

The constants j1, A and v are called the Iwasawa invariants of K /K.

Therefore, for sufficiently large n, the growth of the p-primary parts of the
class numbers of the fields K, splits into a linear part (described by \), a portion
proportional to the degree p™ of the subextension K, /K, with factor u, and a
constant part, described by v.

The detailed proof of the theorem is given, for example, in [Wa 97|, pp. 277-
285. We will describe here the main ideas the proof is based on; this will give us
the opportunity to introduce some objects and notions that will be important
in later chapters.

Let Gal(Ko/K) =: T' =2 Z,, and let v be a fixed topological generator
of I'. For every n > 0, let L, = H(K,) be the maximal unramified abelian
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p-extension of K, (i.e., L, is the ‘p-part’ of the Hilbert class field of K,).
Then, by class field theory, X,, := Gal(L,/K,) is isomorphic to the p-Sylow
group A, C Cl(K,). Let L := J,,~ Ln and X := Gal(L/K); note that
Ko =U,>o Kn C L, since K,, C L, for every n.

L, is galois over K for each n. Indeed, suppose that

o:L, — o(L,) CC

is a homomorphism that fixes K. Since K, is galois over K, it follows that
o(K,) = K,, and
Gal(o(Ly)/Ky) = Gal(L,/K,)

is an abelian p-group. Now o(L,,)/K, is unramified because L, /K, is unram-
ified, and therefore o(Ly) C Ly, by the maximality of L,,. Since this holds for
every such homomorphism (in particular, it holds for ¢—!), we have o(L,) = Ly,
i.e., L, is galois over K for each n.

Therefore L/K is galois, too, because L = |J,;~¢ Ln. Let G := Gal(L/K).
Then we have the following diagram:

Proposition 1.33. L =J,,~ Ly is the mazimal p-abelian unramified exten-
ston of K.

Proof. Let H be the maximal p-abelian unramified extension of K.,. We want
to show that L = H.
We will apply the following general fact.

Proposition 1.34. Let Ko/K; be a p-abelian field extension, let L1 and Lo
denote the mazimal p-abelian unramified extensions of K1 and Ko, respectively.
Then L1 C L.

Proof. Suppose that Ly € Ly. Then there exists an element x € L; such that
x & Ly and [Ks(z) : K3] = p. Since Ko(x)/K3 is p-abelian, there exists a prime
P of Ky that ramifies in Ka(x). Let p := PN Ky, and let p be a prime of K (x)
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lying above p. We have the following diagram of fields:

\ unram.

If I C Gal(K2/K7) denotes the inertia subgroup of the prime p, then we
let K| := K denote the subfield fixed by I. p is unramified in K} and in
Ki(z) C Ly, and therefore p is unramified in K/ (z) = K1 - K1(x).

Let p’ ;=P N K{. Then p’ is totally ramified in Ko/K]. Therefore B is the
unique prime of K» dividing p’, and there exists a unique prime P of Ka(z)
lying above p’. Moreover, the residue class fields O, (y) /B and O, /B both
are isomorphic to O /p'.

But this means that p’ has to ramify in the extension K/(x)/K], since it
cannot be split or inert (note that O,y /B = Ok, /p’ is a field extension of
Ok (x)/ p’, where p’ denotes the corresponding prime in K/ (z)).

This contradicts the fact that p’ is unramified in K7 (x). O

Now we return to the proof of Proposition 1.33. Proposition 1.34 implies
that L = J,,~¢ Ln is contained in H, because each K, is a subfield of K.

Suppose that L ;Cé H,and let z € H, x ¢ L, generate an extension of degree
p over K. Then x & L,, for every n € INy. Proposition 1.3 shows that there
exists an integer e > 0 such that all primes which ramify in K /K, are totally
ramified. Fix some m > e. We have the following diagram of fields.

Koo — Koo(2)

Since K, (z) is a finite extension of K,,, the intersection Ko, N K, (z) is equal
to K+ for some k € INy. Replacing m by m + k, we may assume that in fact
Kp(z) N Koo = Ky, so that Gal(Kp,(z)/Ky) = Gal(Kx(z)/Kx) is cyclic of
order p.

By assumption, there exists a prime p of K, ramifying in K,,(x)/Ky,
whereas the extension Ko (2)/Ks is unramified. If p was unramified also in
Ko /K, it would have to be unramified in Ko (z)/K,,. Since m > e, we may
therefore assume that p is totally ramified in Ko /K,y,.

Now we consider the extension Ko (z)/Kpm(z). Since Koo N Ky (z) = Ky,
we have

Gal(Koo(2)/ K (2)) =2 Gal(Koo/Kp) = Z, .

If p C K,,(z) denotes the prime above p, then there exists some k € IN such that
p is unramified in K,,;x(2)/ Ky (z), and totally ramified in Koo(z)/Kppir(x).
Since [Kso(z) : K] = p, we actually have k = 1.
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Since this holds for every prime p of K,, ramifying in K,,(x), we may
conclude that the extension K, 4+1(z)/ K1 is unramified, and thus x € Ly, 41.
Indeed, if some prime P of K,,y; was ramified in K, 1(z), we would again
conclude that 3 was ramified in Ko, and thus already ramified in K,+1/Kp,.
But then p := P N K,,, was totally ramified in K,,4+1(x)/K,,, and therefore also
in K,,(z)/K,. By the above, the prime P of K,,;1(z) dividing 9 was totally
ramified in Koo(z)/Kpm+1(x), and unramified in K,,41(z)/Kp(x), yielding a
contradiction. O

We want to provide X = Gal(L/K) with the structure of a I'-module,
hence of a A-module, in order to apply the results of the last section. Let us
first assume that the following condition is satisfied:

Assumption 1.35. All primes which ramify in Ko /K are totally ramified.

By Proposition 1.3, there exists an integer e > 0 such that this may be
arranged by replacing K by K.. Under the assumption, K,y N L, = K, for
every n (since L, /K, is unramified), and therefore

X, = Gal(L,/K,) = Gal(L,K,+1/Kn+1) -
Since L, - Kn+1 € Ly41, we obtain a surjective map
Gal(Ln+1/Kn+1) = n+l —» Xn

induced by restriction (one can show that this map corresponds to the norm
map A,+1 — A, on the corresponding ideal class groups, see page 400 of
[Wa 97] or [Neu 92], Theorem IV.6.4). Since X,, = Gal(L, Ko /K) for every
n, because Ko N L, = K,,, it follows that

X = Gal(L/Ky) = %nGal(LnKm/Kw) o @Xn o @An = A.

Now we make each X, into a Z,[I',]-module, respectively, where I';, = T'/T'?"
can be identified with Gal(K,,/K). Let x € X,,, and extend a given o € T',, to
& € Gal(L,/K) (recall that L, is galois over K, as mentioned above). Then
we define

a‘x::doxodfl,

where o denotes composition in Gal(L,,/K). Since Gal(L,/K,) is abelian, a -
is well-defined, i.e., does not depend on the choice of the extension & of .
Using this construction, we can define a Z,[I'y]-module structure on X,,. By
considering an element x € X = lim X,, as a sequence (zg, z1,...) of elements
x; € X;, it can be shown that X becomes a module over @1 Z,I'y] = A, letting
Z,I'y] act on the n-th component, respectively.

In order to be able to apply Theorem 1.24, we want to show now that the
A-module X is finitely generated. For this purpose we define some important
submodules of X — still under the above assumption. By Lemma 1.2, there
are only finitely many prime ideals pi,...,ps which ramify in K. /K. For
i=1,...,s, let p; be a fixed prime of L lying above p;, and let

I, C G = Gal(L/K)
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be its inertia group, respectively.
Since L/K is unramified by definition of L, I; N X = {1} for all . There-
fore we have an injection

L G/X 2T = Gal(Ky/K) .

Since p; ramifies totally in K, /K by our assumption, the map I; < IT" has to
be also surjective and therefore is a bijection. The pre-image o; € I; of the fixed
topological generator v of I' then yields a topological generator of I;. Moreover,
using the exact sequence of groups

0—X—>G—G/X—0,

the isomorphism G/X = I; implies that G is isomorphic to the semi-direct
product X x I;. It follows that I; C G = X x Iy, and therefore o; = a; - 01 for
some a; € X,i=1,...,s (note that we can take a; = 1).

G = Gal(L/K) forms a profinite topological group with respect to the Krull
topology, see [Neu 92], § IV.1. The action of A on X C G as defined above is
continuous, and X C G forms a closed subgroup. In fact, X is compact as being
the inverse limit of finite groups (compare [Neu 92|, Theorem IV.2.3), because
the topology induced by the inverse limit coincides with the Krull topology on
X C @G. This means that X is an Iwasawa module in the sense of Definition
1.15.

Lemma 1.36. Under the above assumption, the following hold:

(i) If G’ denotes the closure of the commutator subgroup of G, then G' =T-X.

(1) Let Yy be the Z,-submodule of X generated by {a; | 2 < i < s} and by
T-X. For eachn € N, let Y,, = vy, - Yy (v € Zp[T] is defined in Section
1.2). Then X, = X/Y,, for every n > 0.

Proof. See Lemmas 13.14 and 13.15 in [Wa 97]. O

Note that Yy in fact is a A-module, since T'- Yy C T - X C Y. Therefore
each Y,, denotes a A-submodule of X.

Recalling that X = Gal(L/K) = Jim Gal(Koo - Ly /Ko ), we will now prove
the following important characterisation of the Y, C X:

Lemma 1.37. For each n € Ny, we let X, = Gal(Keo - Ly /Koo). Then, under
Assumption 1.35,

Y, = ker(pr, : X — X,,)
for each n > 0.

Proof. We let f/n := ker(pr,, : X — Xn), and we will show that 17” =Y, for

each n. The proof will occupy three steps.

1. Let n > 0 be arbitrary, but fivred. Then an element y € X = Gal(L/Kx) is
contained in Yy, if and only if Yl(KoLn) = 1-
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Proof. Since L = {59 Ln = U,, Koo - Ln and X, = Gal(Kso - Ln)/Kso),
we have, as mentioned above, X = lim X,,. Therefore we can represent each
element y € X by a coherent sequence (yo,y1,...) with

pr;(y) = Z/|(K00~Li) =Y € X;

for all 4 and y;| (k. ;) = y; for i > j. The statement now is obvious.
O

. We have 170 =Y.

Proof. By Lemma 1.2, there are only finitely many prime ideals pq,...,ps
which ramify in K. /K. For i =1,...,s, let p; be a fixed prime of L lying
above p;, and let I; C G = Gal(L/K) be its inertia group, respectively. We
have seen above that each I; is isomorphic to I'. Let o; be a topological
generator of I;, respectively. Then we have chosen elements ao,...,as € X
such that 0;, = a;-01 € X - I1 =G, i =2,...,s.

Since Lg by definition is the maximal abelian unramified p-extension of K,
and since L/K is a pro-p-extension, it follows that L is the maximal abelian
unramified subextension of L/K. Therefore Gal(L/Ly) C Gal(L/K) = G is
the closed subgroup generated by the commutator subgroup of G together
with all the inertia subgroups I;, 1 <17 < s.

This means that Gal(L/Lg) is the closure of the subgroup of G generated by
G’', I and the elements as, ..., as. Therefore

Cal(Lo/K) = Gal(L/K)/Gal(L/Ly) = G/Cal(L/Lo)
= X'Il/<G/,Il,a2,...,CLS> = X/<T-X,a2,...,as>

Zp

since Lemma 1.36, (i) implies that G’ = T - X. But X = Gal(L/K), so
that we may conclude that

Gal(Kwo - Lo)/Koo)

Gal(Ly/K)
X/<T-X,an,...,05>, .

I

X/Gal(L/(Kw - Lo))

12

12

The second isomorphism uses the fact that Ko, N Ly = K, which follows
from Assumption 1.35.
Therefore the elements of X fixing K, - Lo are those contained in

Yo = <I-X,a0,...,as>

S Zp.

By the first part of the proof, it follows that Yy = Yy, as claimed. O
. Now consider an arbitrary n > 0. Then Yn =Y,.

Proof. This can be proved analogously to the second step. Simply replace
the ground field K by K,. Then L, corresponds to the fields Ly, and the
topological generators o;, i = 1,...,s, of the inertia groups are replaced by
their p”-th powers. Note that the replacement does not change L and X.
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In [Wa 97], p. 280, it is shown that O'an = (V(ny0) " @) - Ufn (i.e., the a; are
replaced by v, o) - ai, respectively), and that T"- X has to be replaced by
(Y(n,0) - T)- X. But therefore, by the argument used in step 2, v, o) Yo = Y,
is the subgroup of X fixing K - Ly, and so Y, =Y, by step 1. O

O]

Remark 1.38. In order to get rid of Assumption 1.35, we recall that for an
arbitrary Z,-extension K, /K, Proposition 1.3 shows that there exists an inte-
ger e > 0 such that the above lemmas apply to the Z,-extension K., /K.. Note
that X = Gal(L/K,) does not depend on the ground field K. In particular, if
we let Y, be the analogue of Y for the base field K replaced by K., then the
results of Lemmas 1.36 and 1.37 may be transferred to the general case, being
valid for all n > e.

Lemma 1.39. Let K /K be an arbitrary Zy,-extension. Then X = Gal(L/K)
is a finitely generated A-module which is sometimes called the Greenberg
module of K /K, and there exist an integer e > 0 and a A-submodule Y, C X,
such that

Xn = X/(V(ne)Ye) foralln>e,

where the v, ¢ are defined in Section 1.2. In particular, by Proposition 1.28,
(i), X is a torsion A-module.

Proof. See [Wa 97|, Lemmas 13.17 and 13.18. As in Remark 1.38, we let Y,
be the analogue of Yy for the base field K. instead of K. Since v(, ) = ’;—z
by definition and therefore v(, ) - Yo = Y, the lemma follows because the
replacement vy, — v, ) corresponds to the change of the ground fields K — K.

(see [Wa 97| for details). O

An important ingredient in the proof of the first assertion of Lemma 1.39
(Lemma 13.17 in [Wa 97]) is Nakayama’s Lemma. Since it is a very useful tool,
we give several versions of this statement:

Lemma 1.40 (Nakayama’s Lemma I). Let A be a ring. Let A C A be an ideal
which is contained in every maximal ideal of A, and let E be a finitely generated
A-module.

IfA-E=FE, then E = {0}.

Proof. See [La 93], Chapter X, Lemma 4.1. O
Now we consider local rings.

Lemma 1.41 (Nakayama’s Lemma II). Let A be a local ring with mazximal
ideal m, let E be a finitely generated A-module, and let F' be a submodule of E.
IfE=F+m-FE, then E=F.

Proof. See [La 93], Chapter X, Lemma 4.2. O

The next version shows how to replace the condition that FE is finitely gen-
erated over A by a topological assumption on E.
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Lemma 1.42 (Nakayama’s Lemma III). Let A be a local ring with mazimal
ideal m. Suppose that A is complete with respect to the m-adic topology. Let
be a compact A-module.

(i) Ifm-E=E, then E = {0}.

(i) Suppose that A is compact. Let xi,...,x, € E be elements such that

T1,...,%, generate E/mE over A/mA. Then x1,...,x, generate E as an
A-module.
Proof. See [La 90|, page 126. O

We conclude with a special case of Nakayama’s Lemma which will be the
version that we will apply most frequently.

Corollary 1.43 (Nakayama’s Lemma for A-modules). Let X be a compact
A-module. Let m := (p,T) C A. Then

X is finitely generated over A <—  X/(m- X) is finite

If T1,..., @y are generators of X/(m - X) over A/m = Z/pZ, then any set of
lifts x1,...,xy, € X generates X as a A-module. In particular,

X/(m-X)={0} < X={0}.

Proof. This follows from Lemmas 1.42 and 1.17, (i) together with Proposition
1.18, (ii) (see [Wa 97|, Lemma 13.16). Note that A = Z,[[T]] is complete with
respect to the m-adic topology and compact (compare Proposition 2.17, (i) and
(iii)). O]

We can now finish the sketch of the proof of Theorem 1.32. We have shown
that

X = l'&an ~ l'&lAn::A

is a finitely generated torsion A-module, and that X/(v(ye) - Ye) = X, is finite
for all n > e. By Theorem 1.24, we have an exact sequence

0 M, X E Mo 0

where My and My are finite A-modules and F is as in Proposition 1.28, and
similarly for Y. (since X/Y. = X, is finite, we have Y. ~ X in view of Corollary
1.25, (ii)). The theorem now follows from a topological argument which relates
the orders [E/(v(ne) - E)| and | X,| = | X/Ye| - [Ye/(V(ne) - Ye)| (see [Wa 97], pp.
284-285), together with an explicit computation of [E/(v(,.) - £)| (compare
Proposition 1.28, (i)).

The following observation, proved in a special case by J. SANDS in [Sa 91],
will be used in Chapter 3.
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Proposition 1.44. Let Ko/K be a Zy-extension. For every pair of integers
(n,m) with n > m, we consider the distinguished polynomial

(T +1)P" —1
Vingm) = T+ -1 € Z,T].
Ifn>m>e=e(Kyx/K), then vy, ) is coprime to the characteristic polyno-
mial Fx(T) of X.

Proof. Assume that we are given an integer n > e. Fix a topological generator
v of Gal(K~/K) and an isomorphism Z,[[Gal(K~/K)]] = Z,[[T]] = A. Then
we have a pseudo-isomorphism of A-modules Ex — X for some suitable ele-
mentary A-module Ex. Let Fx(T) denote the characteristic polynomial of X
(compare Definition 1.29). Fx(7T) depends on the coice of 7, but the following
proof will work for every choice of ~.

We give an adaption of (part of) the proof of Lemma 2.1 in [Sa 91|, where
e = 0 is assumed. We will show that for every n > e, Fx(T) is coprime to the
polynomial v, .. This obviously proves the proposition, since v, ;) | V() for
n>m>e.

Recall that there exist A-submodules Y,, C X, n > e, such that we have
Yo = V(ne) - Ye and

1

Xn X/(V(n,e) : }/e>

for every n > e (see Lemma 1.39). In particular, X/Y., = X, is finite, and
therefore the elementary A-modules attached to the finitely generated torsion A-
modules X and Y, are equal, i.e., we also have a pseudo-isomorphism Ex — Y,
(compare Corollary 1.25, (ii)).

Since Ex does not contain any non-trivial finite A-submodules, this map
actually is an injection, i.e., we have an exact sequence

0—FEx —Y.— M —0

of A-modules, with M finite. We obtain the following commutative diagram.

Ex [V(n,e)] Ye [V(n,e)] M,y [V(n,e)]
0 Ex Ye M, 0
“V(n.e) “V(n.e) “V(ne)
0 Ex Ye M, 0
Ex/(Vin,e) - Ex) Ye/(Vine) - Ye) My /(Viney - M1)
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Here, for any A-module N, we define N[y, )] := {n € N | v, ¢) - n = 0}. The
Snake Lemma yields a long exact sequence

0 ——— Ex[Vine)) ————— YelVne) ———— Mi[v(n,e)] )

C—>EX/(V(7L,6) “Ex) ——Ye/(Vine) - Ye) —— M1 /(Vine) - M1) —— 0.

Since both Ye/(V(n,@ -Ye) C X/(V(n,e) -Ye) = X/Y, =2 X, and M, [V(n,e)] C M
are finite, it follows that Ex /(v(, ) Ex) is finite, and therefore v, o) is coprime
to Fx(T'), using Lemma 1.17, (i) and (ii). O

We will conclude the chapter by mentioning some well-known properties of
the Iwasawa invariants p and A attached to a given Z,-extension.

Proposition 1.45. Let K /K be a Z,-extension with Iwasawa invariants A,

wandv. Let A= 1’&114” be defined as above.

(i) p=0 <= rank,(A,) is bounded as n — oo.

(i) Suppose that p = 0. Then A = Zg @ F as Zy-modules, where F is a
finite p-group (this is not an isomorphism of A-modules).

Proof. This follows from Proposition 1.28, (ii) and Proposition 1.31; see [Wa 97],
Propositions 13.23 and 13.25, respectively. 0



Chapter 2

Multiple Z,-extensions

In the first chapter, we introduced the notion of Z,-extensions, together with
the related arithmetic objects that we want to study. We have seen in Sections
1.2 and 1.3 that these objects admit a natural action of the ring A := Z,[[T]
of formal power series in one variable over Z,.

In the following chapters, we will pursue two aims:

° find relations between the arithmetic invariants of distinct Z,-extensions
which are in some sense ‘similar’ (this will be the main subject in Chapters
3 and 4), and

° generalise the theory developed so far to the study of Z;-extensions of a

number field K, i € IN (to be performed in Chapter 5).

The current chapter wants to prepare in both directions:

° In the first, respectively, the third section, we define more algebraic struc-
ture on the set £(K) of all Z,-extensions of K. More precisely, in the first
section, we show how to view £(K) as a projective variety. This will be
used in Chapter 4. In the third section, we define Greenberg’s topology on
E(K), which will be fundamental throughout this work.

° The second section is devoted to a study of general profinite group rings
that will naturally come up in the study of multiple Z,-extensions. It will
be shown that these are closely connected to rings A; := Z,[[T1, ..., Ti]]
of formal power series in several variables over Z,. In particular, we
describe a theory of finitely generated A;-modules, which can be seen as
a generalisation of the study of A-modules in Section 1.2.

2.1 An approach using projective geometry

Let K be a number field. If d denotes the number of independent Z,-extensions
of K, then ro(K)+1 < d < [K : Q] (see Theorem 1.7). In this chapter, we
want to study the composite KK of these d Z-extensions. Note that K contains
every Z,-extension of K: If L/K was a Z,-extension not contained in I, then
LNK = L, for some n € N, where L,, denotes the n-th intermediate field of
L/K,ie., [L, : K| =p". Therefore [L: (LNIK)] = co. Now let M,(K) denote

the maximal p-abelian p-ramified (i.e., unramified outside p) extension of K.

25
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Using class field theory, one can show that we have a homomorphism
1 Gal(My(K)/K) — Z

having finite kernel and cokernel, see [La 90], Chapter 5, Theorems 5.1 and 5.2
(this is based on Lemma 1.8). It follows that [M,(K) : K] < oo (recall that
K C My,(K) by Lemma 1.2). But since, again by Lemma 1.2, L C M,(K), it is
then impossible to have [L: (L NK)] = oo.

For the rest of this chapter (and the following parts of the text) we will
usually assume that d > 2. Otherwise there would exist only one single Z,-
extension of K, and this would have to be the cyclotomic one as defined in
Section 1 of Chapter 1. Note that d > 2 if K is not totally real.

K is a Galois extension of K, and we have G := Gal(IK/K) = ZZ. Let
01,09,...,04 be fixed topological generators of G. We let £(K) denote the set
of all Z,-extensions of K. More generally, we define £(K), 1 < i < d, to be the
sets consisting of all Z;—extensions of K, respectively. Then £(K) = £1(K).
By viewing the fields contained in £'(K) as fixed fields of KK under appropriate
subgroups of G = Gal(IK/K), we will be able to give £(K) the structure of a
certain projective variety. The underlying projective space is defined as follows.

Definition 2.1. For n € INg define

P"(Z,) = {(ao,...,an)" € ZZH | not all a; are divisible by p}/ ~,

where (ag, a1, ...,a,)" ~ (bo,by,...,b,)T <= 3t Zy : bi =t a; for every
1=0,...,n.
We usually write elements of P"(Z,) as (ag : ... : ap).

Remark 2.2. P"(Z,) = P"(Q,), where the latter is the usual n-dimensional
projective space over the field Q.

Proof. Every 0 # x € Q, can be written as z = p~* .y with & € Ny and
y € Zp. Since % € Q, = Q \ {0}, we can uniquely represent every tuple
(0, ... 2n)T € QUTI\{(0)} by an element (yo, . ..yn)" € Zp™ such that p{y;

k

for at least one ¢: just define y; = ¢ - x;, where t = p* is an appropriate power

of p.
Furthermore, the equivalence relations on P"(Z,) and P"(Q,,) coincide: Let
us first assume that we have (ao,...,an,)? ~ (bo,...,b,)" in P*(Qp). This

means that b; = t - a; for all ¢ with an element ¢ € Q;. Now we choose rep-
resentatives of (ag,...,a,)’ and (bg,...,b,)T in the way described above: For
the indices 7 with a; # 0 (at least one such ¢ does exist) write a; = pli - U
with u; € Z, and I; € Z. Let | := min;(l;) and consider a = p~t-a;. Then
(ao, ... an)" ~ (af,...,a,)" in P"(Qy), a} € Z,, for all i and a} € Z for all i
with [ = [;, so we get an element in P"(Z,,) which under the equivalence relation
in P"(Q,) corresponds to our given tuple (aq, ..., a,)’. We analogously choose
a representative (bf),...,0)T ~ (by,...,bn)T.

If ¢t € @, denotes an element such that b, = t-a} for all 4, then ¢t cannot
be divisible by p because of our choice of the a; and b, (at least one b, is not



2.1. AN APPROACH USING PROJECTIVE GEOMETRY 27

divisible by p). Since a} = 1. b, it also follows that ¢ cannot be divisible by
p~ !, and therefore t € Zs,.

If, on the other hand, the classes of (ag,...,an)", (bo,...,bn)T € QZH
are equivalent in P"(Z,), represented by (af,...,al)t, (b),...,0,)T € ZZH,
then a, = ¢ - b for some ¢ € Z, C Q, and every i = 0,...,n, and therefore
a; = p® - t-b; for some s € Z and every i. Since p® -t € Qp, we may conclude
that (ag,...,an)T ~ (bo,...,by)T in P*(Qy). O

Proposition 2.3. There is a bijection E471(K) +— PY(Z,). In particular,
if d =2, then E(K) — P(Zy).

Proof. Let G = Gal(K/K) = <o01,...,04 >z,, as above. By infinite Galois
theory, there is a bijective correspondence between the subfields L C K having
Gal(KK/L) = Z, and the (closed) subgroups H of G isomorphic to Z,, mapping
H to its fixed field L = K. Since G is abelian, each such L is galois over K
and

Gal(L/K) 2 G/H = ngl @ finite torsion ,

using the fact that the ring 7, is a principal ideal domain. If the topological
generator g :=o{' -...- 0y’ € G of H satisfies g = y? for some element y € G,
then G/H contains an element 3 of finite order p.

If, on the other hand, g has been chosen such that g ¢ GP, then G/H = Zg_l
is torsion-free because of the Principal Divisor Theorem.

This shows that every element (ay : ... : ag) € P*(Z,) defines a Z24 -
extension of K by considering the field fixed by the subgroup

H = <o{"-...-0p'>z, CG.

If we take a unit u € Z;, and consider the group H " generated by the element

oy - ... -0y, then certainly H = H’. This means that the group H is
independent of the choice of the representative of (a : ... : agq) € IPdfl(Zp),

and so we obtain a well-defined and obviously injective map
Y PUYZ,) — ETHK) .

If, on the other hand, L/K is a Zg’l—extension, then Gal(IK/L) = Z,, which
can be seen as follows. First, Gal(IK/L) has to be a closed subgroup of Zg and
d/
therefore is isomorphic to [] p™Z,, d' < d, n; € Ny for every i. The rank of
i=1
the quotient

Gal(L/K) = Gal(K/K)/Gal(IK/L)

then is equal to d — d’, and therefore d' = 1. Moreover, Z,/p™Z, = Z/p™Z is
finite and non-trivial for every n; > 0, and thus n; = 0, because Gal(L/K) has
to be torsion-free.

But then Gal(KK/L) = < g >z, is generated topologically by an element
g=ai'-...- 04" and p{ a; for at least one i, by the above. This means that
L is the image of (ay,...,aq) € P¥"Y(Z,) under the above map 1, which is
therefore seen to be surjective. O
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Now consider Zg_Q—extensions of K:

K

GDH=Z2

L
G/H =787
K

Then the subgroup H C G corresponding to Gal(IK/L) = Zzz, is topologically
generated by two elements g = o{* - ... 0y* and go = a?l o O'Zd. The above
proof of the proposition shows that the tuples (a1, ...,aq) and (b1,...,bq) give
rise to elements in P471(Z,). We will identify the tuples with their classes in
P4-1(Z,). Since < g >,, F < 92>, , wehave (a1:...:aq) # (b1:...:bg) in
PTY(Zy).

The situation here is more involved. First note that the subgroup H C G
may also be generated by, for example, g and g-gs (corresponding to the classes
(a1 :...:aq) and (ag + by @ ... : aq + bg) in P471(Z,)), and therefore we will
not get a well-defined map

E2(K) — {subsets M C P~ !(Z,) with [M| = 2},

since the subset M corresponding to H is not unique.
Moreover, not every subset M C IPdfl(Zp) of order 2 yields a subgroup
H C @ such that G/H = Zg_Q is Z-free.

We would like to more generally obtain a description of £4~¢(K) for arbitrary
1 < i < d-1. This needs even more work because not every subset M of
P4=1(K) of order i gives rise to a subgroup of G isomorphic to Z;).

Each element » € P?1(K) is represented by a tuple (aj,...,aq)T € Zg
such that at least one a; is not divisible by p. If we consider the map

¢ : PY(Z,) — { subgroups H C G isomorphic to Z, } ,

defined by ¢(z) = <of' - ... 0% >z, then we have seen in the proof of
Proposition 2.3 that v is well-defined and injective.

Now let y1,...,y; € QZ denote Qp-linearly independent elements. For every
Y, j = 1,...,1, there exists a unique power p" of p such that p"i -y, € Zg has
at least one entry which is not divisible by p. Let z; := p™ -y;, j = 1,...,1,

so that each x; gives rise to a class in P4"Y(Z,). Let H := < g1,...,9; >, be
the subgroup of G generated by the elements g] = aizj oo aézj )4 We want
to show that H = Z; Assume that H % Z! Do , suppose that there exists a

relation between the g;. Then we have an equation of the form [ | j gjj =1, 9"
for suitable elements e;, fr € Z,, 1 < j,k < i. This can be rewritten as
1= Hj g;j (setting z; = f; — ej € Zy). But this means that

i

1 = H(ngj)l'... xﬂ)d H o g 2 )

j=1
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and since the o} are multiplicatively independent, it follows that

i

0= z- (&

j=1
for every 1 < k < d, and therefore the elements x; = ((z;)1,...,(z;)q4)T are
linearly dependent over Z,, so that yq,...,y; are linearly dependent over Q,

yielding a contradiction.
This proves that every set {y1,...,v;} C Q; of linearly independent elements
defines a subset M = {z1,...,2;} C P4"Y(Z,) that corresponds to a subgroup

H =7} of G.

Now consider a set M C P971(Z,) of order i that consists of projectively
independent elements T1,...,T;, i.e., one and therefore every set of representa-
tives

d d
Llyeo.y Xy € Zngp

of T1,...,T; is Qp-linearly independent. By the above, M defines a subgroup
H C G isomorphic to Z;.

Ifa),...,a} € ZZ are representatives of certain classes @, . . ., T in P¥~Y(Z,)
such that xy,...,2; can be transformed into z, ...,z by a linear transforma-
tion in GL;(Zy), then the corresponding subgroups H and H' of G are equal:

7

Let us write m; = kzl ag; - T for every j = 1,...,4 and suitable elements
aj € Zyp such that the matrix A = (ax;) is contained in GL;(Zp). Then the
image of each f; € P4=1(Z,) under 1 is a subgroup of H. On the other hand,
every x; is a Zy-linear combination of the z}, and therefore also H C H'.

It is easy to see that the converse is also true: If the elements z1,...,x;
and zi,...,2} € Zg define the same subgroup H = H' of G, then every z; is a
Z,-linear combination of the z}, and vice versa.

This proves that for every 1 <+i < d — 1, we obtain a well-defined map

U, : MY (P*Y(Z,)) — { subgroups H C G isomorphic to Z; },

where
MiPTY(Z,) = {M:{Tl,...,fi}QIPd_l(Zp) | %1,...,T; are
projectively independent } / ~,
with {Z1,...,7;} ~ {7},...,7;} if and only if two (arbitrarily chosen) sets

of representatives differ by a transformation in GL;(Z,). Moreover, we have
already seen above that the maps W; are injective. Let J; denote the image of
W, respectively.

Proposition 2.4. For every 1 <i¢ < d— 1, we have an injection
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Proof. Let L € £77%(K) denote an arbitrary Zg_i—extension of K. Then L CK
is the fixed field of a subgroup H C G = Gal(K/K) isomorphic to Z,. We will
show that H C J;. Let ¢1,...,¢; denote topological generators of H. Having
fixed a set of generators oy,...,04 of G, we write g; = J%mj)l s ac(lxj)d,
j =1,...,i, with elements z; = ((z;)1,...,(z;)a)’ € Zg7 respectively. Since
G/H = Gal(L/K) is torsion-free, each x; contains at least one entry that is not
divisible by p, and <g; >z, = U (T;), where T; € P?~1(Z,) denotes the class of
xj;, respectively.

We claim that z1,...,2; € Zg - Qg span a Qp-vector space of dimension
i. Assume, to the contrary, that they are Q,-linearly dependent. Then there

exist elements z1,...,2; € Q, such that

0= Z zj - (@)
j=1

for every 1 < k < d. By multiplying these equations by an appropriate power
of p, we may in fact assume that the z; are contained in Z,. But then

i

d 7
1 = H O_ij Zj.(xj)k = H(O’§xj)1 L Uéxj)d)zj frnd ng] N
k=1 j=1

J=1

contradicting the fact that ¢, ..., g; form a basis of H = Z; and therefore must
be multiplicatively independent.

This shows that the span V' C Qg of x1,...,x; has dimension 7, and therefore
T1,...,%; are projectively independent. Thus, the unique subgroup H C G
corresponding to L is contained in .J;. O

We may therefore embed £97%(K) into M*(P?~'(Z,)), which can be re-
garded as a projective variety.

In the above, we described Z%-extensions of K in terms of the subgroups of
Gal(KK/K) fixing them. As we have seen, this description in general gets rather
complicated. In Chapter 4, we will use a more practicable way to regard the
sets £/(K) as projective varieties, which has been used by V.A. BABAICEV in
course of his study of p-invariants (see [Ba 81] and [Ba 82]).

The basic idea is to describe the elements L € &/(K) via the restriction
maps

Gal(K/K) — Gal(L/K) .
We will start with the most important case, 7 = 1. Let
E(ZZ) = {r: Zg — Zp}

denote the set of all surjective Z,-module homomorphisms (i.e., continuous
group homomorphisms) from Zg to Zy.

Proposition 2.5 (Babaicev). There is a bijection

©: 5(Zg) = PiY(zZ,) .
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Proof. The map ¢ is defined as follows: Let v1,...,7v4 denote a fixed system
of topological generators of ZZ, and let 0 be a generator of Z,. Then every
element 7 € 5(Zg) is uniquely determined by the values

w(y) = 6%, a€Z,, 1<i<d,

i.e., 7 is uniquely characterised by the tuple (a1, ... ,ad)T € Zg.

Furthermore, since each 7 € 5(Zg) is surjective, at least one of the a; has to
be contained in Z;, which means that p does not divide a;. Now if 0" denotes
a different generator of Z,, then

§ =6, u€Zy,,

and therefore, when considered with regard to the new generator ¢, 7 is de-
scribed by the tuple (a1-u, ..., aq-u)? € Zg, which is equivalent to (a1, ..., aq)"
in P471(Z,). Therefore the equivalence relation in P4~1(Z,) corresponds to the
possibility of choosing a different topological generator of Z,; if we fix a gen-
erator ¢ of Z,, then there is a unique representative (ay, ... caq)! € Zg of the
class in P4~1(Z,) corresponding to the homomorphism .

It is then obvious that the map

p:m— (a1:...:aq)
defines a well-defined bijection between E(Zg) and P?~Y(Z,), since for fixed
topological generator & of Zj, the tuples (a1,...,aq)” and (aj,...,a};)T repre-
senting two classes in IPdfl(Zp) that correspond to homomorphisms
o Zg — 2y,

respectively, are equal if and only if 7 = 7.

Furthermore, it is obvious that every tuple (ay,...,aq)? € ZZ with p 1 a;
for at least one index i € {1,...,d} gives rise to a surjective homomorphism
T L — T O
Remarks 2.6.

(1) One may ask for the reason of considering this bijection to P?~1(Z,) instead
of simply fixing a topological generator of Z, and looking at the induced
map

€(Z$) — {(a1,...,aq)" € Zz | p1{a;for at least one 7 } .

It will turn out to be important to have the freedom of changing the gen-
erator of Z,, as we will see in the next lemma.

(2) We introduce a topology on 5(Zg) by using the canonical topology on
]Pd_l(Zp), induced by the p-adic topology on Z,: A basis of the neighbour-
hoods of an element (ay, ..., aq)" € Zg representing a class in P4~1(Z,) is
given by the sets of the form

U(n17.__7nd)(a1,... ,ad) = {(bl,. . .,bd)T S Zg | a; —b; € (p)ni,i =1,... ,d}

with (n1,...,nq)7 € IN? Note that p { b; if p { a; and a; — b; € (p)™,
n; € IN.
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Using the isomorphism Gal(IK/K) = Zg, we may identify E(Zg) and

e(Gal(K/K)) = {r: Gal(K/K) - Z,} .

Lemma 2.7. There exists a bijection

E(K) =5 (Gal(K/K)) .

Proof. We define two maps

01:E(K) — e(Gal(IK/K)) and ¢3:e(Gal(K/K)) — E(K)

and show that they are inverse to each other.

Let L € £(K). We define ¢1(L) : Zg — Z,, to be the surjective homo-
morphism induced by the canonical restriction map, identifying Gal(L/K)
with Z,. The class of 7 in e(Gal(K/K)) — P4"1(Z,) does not depend
on the choice of a topological generator of the quotient Gal(L/K). This is
important for getting a well-defined map, since there is no distinguished
generator of Gal(L/K) (compare Remarks 2.6, (1)).

Let 7 : Zg — 7, be a Z,-module homomorphism, let

H := ker(r) C G := Z = Gal(K/K) .

Then H is a free Z,-module of rank d — 1, and G/H = Z, is torsion-free,
so the fixed field yo(7) := K is a Z,-extension of K (note that H C G
is a closed subgroup, since 7 is a continuous homomorphism).

We now want to prove that ¢ and 2 are inverse to each other.
w2(¢1(L)) = L: By definition, ¢1(L)(0) = o|r for every o € Gal(IK/K).
In particular, ¢1(L)(c) = 1 if and only if o|; = 1, i.e., if and only if
o € Gal(IK/L). This shows that the fixed field pa(¢p1(L)) is equal to L.
©1(p2(m)) = 7 pao(m) is the subfield of K fixed by the kernel of 7. For
every o € Gal(K/K) = Zg, ©1(p2(m)) = 0|py(x) is the restriction of o to
p2(m). Choose generators 71, . ..,7q of Zg such that v1,...,74—1 generate
the kernel of 7 (compare Remark 4.8 in Chapter 4; note that this is
allowed because the definitions of @1 and 2 do not depend on the choice
of generators of Gal(IK/K) = Zg). Then @o(7) is fixed by 71,..., V-1,
so that in particular,

e1(02(m) (1) = Vilgymy =1 1<i<d—1.

Furthermore, 4 has to generate Gal(p2(m)/K) = Z,, because the re-
striction map Gal(KK/K) — Gal(pa(m)/K) is surjective. If § denotes any
topological generator of Gal(ps(m)/K), then we have

e1(2(m))(vd) = Valgpy(m) = 6

for some a € Zj; . This means that p1(p2(7)) = 7 in e(Gal(K/K)),
since every tuple (0,...,0,a)", a € Z, is equivalent to (0, ...,0, 17T in
PiY(7,) = =(Z2).
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Remark 2.8. In Proposition 2.3, we have seen that there is a bijection
P (Z,) <5 1K) |

where £ 1(K) denotes the set of Zg_l—extensions of K. We obtained a Zg_l—

extension M of K corresponding to the element (aj : ... : ag) € P471(Z,) by
considering the subfield of K that is fixed by <~{* -... 75 >=7Z,.
On the other hand, each (ay : ... : aq) € IPdfl(Zp) corresponds to some ho-

momorphism 7 € e(Gal(IK/K)), by Proposition 2.5, and therefore yields a
Zy-extension L of K via Lemma 2.7.
This yields a bijective correspondence

E(K) = &YK) .

The pairs
(L, M) € E(K) x E7Y(K)

defined by this bijection are kind of dual pairs of extensions of K:

Suppose that a pair (L, M) is given; let 7 : Zg — Z, denote the homo-
morphism that induces this pair. If we choose the topological generators of
Gal(KK/K) = Z2 such that the tuple (ay,...,aq) describing the corresponding
homomorphism 7 has the form (0,...,0,1) (this is always possible, compare
Remark 4.8, and does not affect the pair (L, M)), then M C K is the fixed
field of <v4>, and the Zp-extension L/K is the unique extension such that
the restriction map Gal(IX/K) — Gal(L/K) is given by the homomorphism 7
that maps ~; + 1 for i < d, while 74 is mapped to a generator of Gal(L/K).
Therefore, L is fixed by the subgroup of Gal(IKK/K) generated by 71,...,74-1.
But this means that we have

LNnM =K and L-M=K.

More generally, for every n € IN and 0 < m < n — 1, we let €)' denote the
set of all surjective Z,-module homomorphisms

T Zn-‘,—l Zm+1
Ly — p .

In particular, €9 | = 5(Zg) is the set that we have studied above.

Let us fix n and m. Choose topological generators vy, . .., v, of Zg“ and
00y -+, O Of Z;”H, respectively. Then every m € €] is uniquely determined by
the values

m
() = H 5?” , 0<i<n, witha; € Z, for every i and j .
7=0

If we define A := (a;;) € Mat(,11)x(m+1)(Zp), then we may write this as
7((y)) = A - (9), where () = (70,.--,7)7 and (8) = (do,...,0m) are col-
umn vectors. Choosing a different set of topological generators of ZZ“‘l corre-
sponds to multiplying A from the right by a matrix in GL;,+1(Z,). Therefore
7 determines A only up to multiplication by a matrix in GLy,11(Zp).
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Let Ag,...,An_1, N = (:;11), denote the minors of A of order m+1. Using
the map
v A (Ag:--- 1 An—1),

we may embed ™ into the projective space PV (Z,): First note that this is well-
defined. Indeed, if we change A to A- B, with B € GL;,,11(Z,), corresponding

to a different choice of topological generators of ZZ”l, then (Ag:---: Ay_1)
changes to (Ag - det(B) : --- : Ay_; - det(B)), which is the same element in
PN(Z,).

Moreover, the map v is injective, which can be seen as follows. Suppose
that two matrices A, B € Mat(, 1 1)x (m+1)(Zp) are mapped to the same element

(co:...:cn-1) € IPN_I(ZP). Then there exists some ¢ € Zy such that 4; = ¢-B;
for every 0 <4 < N — 1, where By, ..., By_1 denote the corresponding minors
of B.

Suppose that the generators vy, ..., vy, of Z;}“ have been chosen such that

A corresponds to the map

{@ e <m
(e il 4

1 ti>m.
Then ¥(A) = (1:0:...:0), ¥(B) = (¢t!:0:...:0), and therefore B
describes the same homomorphism 7 with regard to the basis {df,d1,...,m}

of Z1. This shows that ¢ : el — PN (Z,) is injective.

Moreover, since m < n and therefore det(A) = 0, the image of ¢ forms
a subvariety of PY(Z,) (i.e., closed with respect to the Zariski topology). In
particular, by identifying €)' with its image, we can view €)' as a compact
projective variety.

The Grassmanian varieties €, will be used in Section 4.2.2.

2.2 Group rings and power series

As we have seen in Chapter 1, the complete group ring Z,[[I']] = A plays a
fundamental role in the study of the arithmetic properties of Z,-extensions
K /K. We want to generalise the construction given in Section 1.2 in order to
be able to apply it to multiple Z,-extensions. Therefore we give the following
very general definition.

Definition 2.9. Let G be a profinite group, i.e., a compact Hausdorff topo-
logical group such that there exists a system of neighbourhoods of the neutral
element containing only normal subgroups. Let O be a local ring with unique
maximal ideal p that is Hausdorff and complete with respect to the p-adic topol-
ogy. We furthermore assume that O is compact. Then we define the completed
group ring of G over O to be the topological inverse limit

O[lG]] = lim O[G/U]
U

of the group rings O[G/U], where U runs through all the open normal subgroups
of G.
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Remarks 2.10.

(1) Let U C G be an open subgroup. Then we can write G as the union of
pairwise disjoint cosets modulo U, i.e. G = |J,; 0;-U, where o; runs through
a system of representatives of G/U. Since G is compact and all the o; - U
are open, we can conclude that U is of finite index in G. Therefore every
O[G/U] is the group ring of a finite group over O.

(2) For any profinite topological group G, we have an isomorphism (alge-
braically and topologically) G = @G /U, where U runs through the open
normal subgroups of G (see [Neu 92], Theorem IV.2.8).

Here the projective limit is taken according to the canonical projection
mappings induced by inclusions (i.e., the open normal subgroups of G are
ordered partially by inclusion; if U; 2 Uj, then we consider the maps

f@j : G/U] — G/UZ

between finite groups). This projective system also induces the inverse limit
1'&1 O[G/U].

(3) The open normal subgroups of Z,, are exactly the groups p"Z, with n € INg
({0} is not open since Z,/(0) has infinite order). Therefore Definition 2.9
is a direct generalisation of the definition of O[[I']] given in Section 1.2.

In the following, we will prove a generalisation of Theorem 1.9 for multiple
Zy-extensions. We therefore will have to deal with rings of formal power series
in several variables and coefficients in . Before stating the theorem, we will
collect some properties of such rings. This makes use of the following concepts.

In what follows, let O denote an arbitrary ring. For any prime ideal p C O,
we can consider the localisation Op. If O is a domain, then each O, is a subring
of the quotient field of O.

Definition 2.11. The height of p is defined to be ht(p) := dim(O,), where
dim means the Krull dimension of the ring Oy, i.e., the maximal length n of
a chain of prime ideals

T I S

in Op. This corresponds to the maximal length of a chain of prime ideals in O
descending from p.

Be aware of the numbering which takes care of the trivial ideal {0}, which is
prime if O, is a domain.

Let P(O) denote the set of prime ideals p C O of height 1.

Definition 2.12. Let now O be a local ring with maximal ideal m.

(1) Let I C O be an ideal. Then we call I an ideal of definition of O if there
exists an integer v > 0 such that m¥ C I C m.

(2) Let d be the Krull dimension of O as defined in Definition 2.11. If [ is an
ideal of definition of O that is generated by d elements x1, ..., x4, then we
say that {z1,...,24} is a system of parameters of O.

(3) If there is a system of parameters that generates the maximal ideal m, then
we say that O is a regular local ring.
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(4) An arbitrary (not necessarily local) Noetherian ring O is called regular if
for every prime ideal p C O, the localisation Oy is a regular local ring.

Definition 2.13. Let O be a domain with quotient field K. Then O is called
completely integrally closed if the following condition holds:

If x € K is such that there exists a finitely generated O-submodule of K
containing every power z', n € IN, then « € O.

Proposition 2.14. Let O be a domain.

(i) If O is completely integrally closed, then O is integrally closed.

(ii) If O is Noetherian, then the converse of (i) holds.

(i1i) If O is completely integrally closed, then O[X| and O[[X]] are completely
integrally closed.

Proof. (i) and (ii): See [Bou 89, Chapter V, §1, no. 1 and no. 4..
(iii): See [Bou 89], Chapter V, §1, no.4, Proposition 14. O

Lemma 2.15. Let O denote a regular factorial local ring with maximal ideal m.
Suppose that O is Hausdorff and complete with respect to the m-adic topology,
and that the residue field O/m is finite. Let d € IN. Then the rings of formal
power series in d variables over O have the following properties:

(i) O[[T1,...,T4]] is a local ring with maximal ideal

My = m+(T1,...,Td).

It is Hausdorff and complete with respect to the Mg-adic topology.

(i) O[[T1,...,T4]] is a compact topological group.

(i1i) O[[T1,...,T4]] is a unique factorisation domain.

(iv) If O is Noetherian, then also O[[T1,...,Tq]] is Noetherian.

(v) If O is Noetherian and integrally closed, then also O[[11,...,Ty]] is inte-
grally closed.

(vi) If O is Noetherian and integrally closed, then we have

olTy,....Ty] = N (O[T, .-, Tallp) -
p €P(O[[T1,....Tal])

Proof. (i) It is a general fact that for a local ring A, the ring A[[Th,...,Ty]]
of formal power series in a finite number of variables is local, too (see
[Bou 89], Chapter II, §3, no. 1). Furthermore, using the corollary of Prop-
osition 6 in [Bou 89|, Chapter III, §2, no. 6, we inductively obtain that
the maximal ideal 9, of O[[T7,...,T},]] is generated by m and T1,..., Ty,
and that O[[T1,...,Ty]] is Hausdorff and complete with respect to the
My-adic topology.

(ii) Since O][T1,...,Tqy]] is Hausdorff and complete with respect to the Miy-
adic topology, O][T1,...,Ty]] may be canonically identified with the in-
verse limit of the finite discrete quotients (O[[Th,...,Ty)])/9M:, i € N,
see [Bou 89|, Chapter III, §2, no. 6. This limit is compact (see [Neu 92],
Theorem IV.2.3).
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(iii) Since O is a regular local ring, Theorem 19.5 of [Mat 86] implies that
O[[T1,...,Ty]] is regular, too. By a theorem of AUSLANDER and BUCHS-
BAUM (see Theorem 20.3 in [Mat. 86]), every regular local ring is a unique
factorisation domain.

(iv) If A denotes any Noetherian domain, then also A[[T1,...,Ty]] is Noethe-
rian, see [Bou 89], Chapter III, §2, no. 10, Corollary 6.

(v) Since O is Noetherian and integrally closed, it is completely integrally
closed by Proposition 2.14, (ii). The assertion follows inductively by using
(iii) and, finally, (i) of the same proposition.

(vi) This is an immediate consequence of (iv) and (v), which together imply
that O[Ty, ...,Ty]] is a so-called Krull domain, see [Bou 89], Corollary 1
to Lemma 1 in Chapter VII, §1, no. 3. The statement then follows from
Theorem 4 in [Bou 89], Chapter VII, §1, no. 6.

O

We now specialise to the case O = Z,, (this will be enough for our purposes).

Definition 2.16. For any d € N let Ay := Zy[[T1,...,Ty]] denote the ring
of formal power series in d variables having coefficients in Z,. In particular,
A1 = A is the ring studied in Chapter 1.

Lemma 2.15 yields the following properties of the rings Ag.

Proposition 2.17.
(i) Ag is a local ring with unique mazimal ideal given by Mg = (p, T4, ..., Ty).
It is Hausdorff and complete with respect to the Mg-adic topology.
(i) Ag is reqular with Krull dimension equal to d + 1.
(iii) Ag is a compact topological group.
(iv) Agq is a unique factorisation domain.
(v) Ag is Noetherian and integrally closed.
(vi) We have
Aa = [ ((Aa)p)-

peP(Ag)

Proof. Everything except (ii) follows immediately from Lemma 2.15. Since the
ring Z, is a Dedekind domain and therefore any prime ideal p # (0) is maximal,
the Krull dimension of Z, is equal to 1. Since m = (p) is the maximal ideal of
the local ring Z,,, we know that {p} is a system of parameters of Z,. Therefore
Z, is a regular local ring (compare Definition 2.12, (3)). By Theorem 19.5 of
[Mat 86|, the ring of formal power series over a regular ring again is regular.
Using Theorem 15.4 in [Mat 86], we can compute the Krull dimension of A4 as
follows:
dim(Z,[[T1,...,Ty]]) = dimZ,+d = d+1.

O]

We now come to the generalisation of Theorem 1.9 announced above. Let
K and K be as in Section 2.1, and write G = Gal(K/K) =<o01,...,04>7,
with fixed topological generators o1,...,0q.
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Theorem 2.18. Z,[[G]] = Ag4, the isomorphism of Z,-algebras (and homeo-
morphism of topological groups) being induced by o; — 1+ T;, i =1,...,d.

Proof. The case d = 1 is covered by Theorem 1.9. We now let d € IN be
arbitrary.

For every integer n € INg, we consider the subgroup G?" C G generated by
the elements a’fn, . ,a’d’n, and we let GG,, denote the quotient group

G/GY" = (Z/p"Z)"

respectively. Then it is easy to see that Z,[[G]] is algebraically and topologically
isomorphic to the projective limit I'&an[Gn], where the limit is taken with
respect to the projections m, , : G, — G, n > m, that are induced by the
inclusions GP" C GP™, respectively:

Indeed, by [Neu 92|, Theorem IV.2.8, G is isomorphic to the projective limit
l'&lG /U, where U runs over the open normal subgroups of G; since G = Zg,

d
these are isomorphic to [[ p"Z,, n; € Ny for every j = 1,...,d, and therefore
j=1
every such U contains some GP". But then we have Jm G JU = lim Gy, and
Z,[[G]] = @Zp[Gn]'

For every fixed integer n, there exists an isomorphism
Zy|Gn] — ZpTh, ..., Ti)/1, ,

where the ideal I,, C Zp[T1, ..., Ty] is generated by the elements (T} + 1)P" — 1,

..oy (Tg+1)P" —1. Here the isomorphism is induced by mapping each generator

0; € Gp = G/GP" =2 (Z/p"Z)? to the polynomial (T; 4 1)P" — 1, respectively.
We therefore have to show that

Zp([Th, ..., Tal] = W Zy[Th, .. Ty (Ty + )7 = 1, (Ty+ P = 1)

By Proposition 2.17, (iii), Ag = Z,[[T1,...,T4]] is a compact topological
group. The canonical projections Ay — Agy/I,, n € IN, define a continuous
homomorphism ¢ : Ay — @Ad/ln. Let My := (p,T1,...,Ty) denote the
maximal ideal of A4. Since

(1. < (o = {0},

n>0 n>0

the map ¢ is injective.

Let (f,)n>0 € T&lAd/ I,, denote an arbitrary element; we will show that
there exists a pre-image f € Ay under ¢: For each n, we choose a representative
fn € Ag of f,, € Ag/I,. Since Ay is complete with respect to the My-adic
topology (see Proposition 2.17, (i)), and since I,, € 9 for every n, there exists

an element f € Ay such that f € () f,, = () fn - In (note that for every
n>0 n>0

j > i, we have f; = f; mod I;). But then o(f) = (f,)n, and therefore ¢ is an
isomorphism.
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Furthermore, every quotient
Na/In = Zp[Ty,..., T/ I, = 75"

is profinite, and therefore also the limit @Ad /I, is a profinite group (compare
Lemma 1.2.6, (c) in [FJ 08]), and in particular Hausdorff. Since A, is compact,
it follows that ¢ : Ay — lim Ag/Iy, is a homeomorphism (see [Os 92], Corollary
2.4.9).

O

We will conclude this section by giving an overview of the theory of Ay-
modules (analogously to the theory of A-modules described in Section 1.2, which
culminated in the Structure Theorem 1.24 — see Theorem 2.23 below).

Definition 2.19. A finitely generated Ag-module M is called pseudo-null if
M, = {0} for all prime ideals p C Ag of height < 1.

Remarks 2.20.

(1) A pseudo-null Agz-module M is Ag-torsion.

(2) M is pseudo-null if and only if it satisfies the following equivalent condition:
If p is a prime ideal with Ann(M) C p, then ht(p) > 2. Here

Amn(M) ={zx € Ay | x- M = {0}}

denotes the annihilator ideal of M.

(3) If M is pseudo-null, then (2) implies that M is annihilated by two relatively
prime elements of Ag.
In fact, if J := Ann(M), and if 0 # g € J is arbitrary, then there exists an
element h € J coprime to g:

,
Let 0 # g € J be arbitrary, and write g = [] p;*, with irreducible elements
i=1

p; in the unique factorisation domain Ay (compare Proposition 2.17, (iv)).
For every i = 1,...,r, there exists an element h; € J such that p; 1 h;, since
otherwise, J would be contained in the prime ideal (p;) C A4 of height one.
Without loss of generality, we may assume that p; | h; for every j # i.
Then g is coprime to h:=hy; + ...+ h, € J.

(4) A Ay = A-module is pseudo-null if and only if it is finite.

Proof. See the remarks after Definition 5.1.4 in [NSW 08]; for (4) we use that
A1 = A is a 2-dimensional, Noetherian, integrally closed local domain with
finite residue field Z,[[T]]/(p,T) = Z/pZ; compare Proposition 2.17, (i), (iv)
and (v). O

Definition 2.21. A homomorphism f : M — N of finitely generated Ag4-
modules is called a pseudo-isomorphism if the kernel and cokernel of f are
pseudo-null Ag-modules. Equivalently, this is the case if we have an exact

sequence

0—>M1—>ML>N—>M2—>O

with pseudo-null Ag-modules My and Ms. We write M ~ N if there is such a
pseudo-isomorphism.
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Remarks 2.22.

(1) In general, M ~ N does not imply N ~ M (compare Remarks 1.20, (1)
for an example in the case d = 1). But if M and N are finitely generated
torsion Ag-modules, then M ~ N if and only if N ~ M, see the remarks
on page 271 of [NSW 0§].

(2) In view of Remarks 2.20, (4), the notion of pseudo-isomorphic A;-modules
introduced here coincides with the definition given in Chapter 1 (see Defi-
nition 1.19).

Theorem 2.23 (Structure Theorem). Let M be a finitely generated Ag-
module. Then there exist an integer s € Ny, finitely many prime ideals p1, ..., ps
of Aq of height one, integers n; € N, 1 =1,...,s, and a pseudo-isomorphism

fiM — Fy (M) & @@ Aa/p),

=1

where Fa,(M) denotes the mazimal torsion-free quotient of M. The prime
ideals p; and the numbers n; are uniquely determined by M .

For d = 1, we can replace the module Fy,(M) by a free A-module, i.e., there
exists an integer v € Ng such that we have a pseudo-isomorphism

fiM — A @ PAgpl

=1

Proof. By [NSW 08|, Proposition 5.1.7, we have a pseudo-isomorphism

fiM — By, (M) © @ Al/pr
1=1

For d = 1, compare Theorem 1.24 or see [NSW 08|, Propositions 5.1.8 and
5.1.9. -

Definition 2.24. A Aj-module of the form E = €@ Ay/p;" is called an ele-
i=1
mentary (torsion) Ag-module.

Remarks 2.25.

(1) The prime ideals p; C Ay of height one are principal ideals p; = (g;) gen-
erated by irreducible elements g; € Ay, respectively. Indeed, let 0 # x be
contained in a prime ideal p C Ay of height one. We write x as a product
of irreducible elements in the unique factorisation domain Ag4. Since p is a
prime ideal, at least one irreducible divisor g of = has to be contained in p.
But then (g) C Ag4 is a prime ideal contained in p, and therefore (g) = p,
because p is of height one.

(2) If E denotes an elementary Ag-module, then E does not contain any non-
trivial pseudo-null submodules.

S

Proof. Write E = @ Ag4/(g;"), where the g; € Ay denote suitable irre-
i=1

ducible elements. If 0 £ x = z1 + ...+ xs € E, then an element h € Ay
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annihilates z if and only if []7_, gf “ divides h, where k; < n; denotes the
smallest integer such that gf t.x; =01in Ag/(g;"), respectively. Here we are
using the fact that Ay is a unique factorisation domain. In particular, the
annihilator ideal of x is contained in the principal ideal (] gfl)

Now suppose that N C F denotes a non-trivial submodule. Since Ay is
Noetherian (see Proposition 2.17, (v)), N is finitely generated over Ag.

The annihilator ideal of each of the generators by,...,b; of N is, by the
(@)
above, contained in a principal ideal (][ gf ), 1< <L If

then the annihilator ideal of NV is contained in the intersection ([] g;"*) C Aq4
of the annihilators of the b;. Note that m; > 0 for at least one 4, since N
is non-trivial. The claim now follows from Remarks 2.20, (2). O

(3) Let A denote a finitely generated torsion Agz-module with corresponding
elementary Ag-module E4, let ¢ : A — FE 4 denote a pseudo-isomorphism.
If My, respectively, Ms, denote the pseudo-null kernel and cokernel of ¢,
then we have an exact sequence

00— M —A—FEy — My —0.

In this situation, M; may be seen as the maximal pseudo-null submodule
of A. Indeed, if x € A generates a pseudo-null submodule of A, i.e., the
annihilator ideal of x contains two relatively prime elements, then also the
annihilator ideal of the submodule of E4 generated by ¢(x) contains two
relatively prime elements. By (2), it follows that @ € M; = ker(y). On the
other hand, M is pseudo-null by definition.

2.3 Greenberg’s topology

As above, let K be a number field. In his article [Gr 73], R. GREENBERG
introduced a topology on the set £(K) of Zy-extensions of K, in the following
way. For L € £(K) and n € Ny, define

E(L,n) == {L'e&K)|[LNL:K]>p"}.

This means that £(L,n) consists of all Z,-extensions of K which coincide with
L up to level n. If we denote by M} the k-th intermediate field of an element
M € E£(K), respectively, then

E(L,n) = {L' € E(K) | (L)n = Ln} .

It is possible to take the sets £(L,n), n € Ny, as a base of neighbourhoods of
L € £(K) (getting smaller while n grows), inducing a topology on £(K): We
have to show that the intersection of two such sets again is of the same shape.
So let L', L? be two Z,-extensions of K, and let nq,no € IN. Without loss of
generality, we may assume that n; < ng. Now there are two cases to consider.
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If L'N L% 2 (LY)y,, ie., L? & E(LY,ny), then E(LY,ny) N E(L? na) = (. But
otherwise £(LY,n1) N E(L% ng) = E(L?, na), since then (LY),, = (L?),,.

We also immediately see that with respect to this topology, E(K) is Haus-
dorff.

Lemma 2.26. With regard to Greenberg’s topology, £(K) is compact.

Proof. Greenberg’s proof given in [Gr 73| uses the sets £(n) containing all cyclic
extensions of degree p™ over K which are contained in some Z,-extension of K.
These sets are finite by Theorem 1.7 (we will give a detailed and elementary
proof below). For m > n, there is a map

Omn : E(m) — E(n)

defined by mapping each element of £(m) to its unique subfield of degree p"
over K.

We consider the inverse limit lim £(n) with respect to the maps ¢, . The
finite sets £(n) are equipped with the discrete topology. Then E(K) = Hm & (n)
algebraically and topologically, which follows from the definition of Greenberg’s
topology. In particular, £(K) is compact (see [Neu 92|, Theorem IV.2.3).

We want to give a more detailed proof which seems to be more descriptive.
The main idea is to use the fact that a metric space X is compact if and only if
every sequence (), enN in X contains a convergent subsequence (see [Os 92],
Theorem 2.4.5). In order to make £(K) into a metric space, we define, for two
arbitrary Z,-extensions L', L? € £(K),

0 LY =12
d(L', L?) =
( ) {p”(Ll’LQ) : otherwise
where n(L', L?) is defined to be the greatest integer m € IN such that we have
L' € £(L? m); n(L', L?) is a finite number whenever L' # L?. One easily
checks that the function

d:E(K) x E(K) — Rx>o

defines a metric on £(K).

Now suppose that we have a sequence (L(™),, ¢ of Z,-extensions of K. For
the purpose of illustration, let us first assume that d = 2, i.e., that there exist
exactly two independent Z,-extensions M L'and M? of K. Consider the field
extension LW /K and set L := LM,

By Proposition 1.1, for every ¢ > 0 there exists a unique subfield L; C L
which is cyclic of degree p’ over K. We want to prove the following fact: If
1 > 0 and L; are given, then there exist exactly p + 1 possible choices for the
level L;q contained in a Z-extension L C K = M LoM2 of K.

Since Gal((M* - M?)/K) = Z2 is torsion-free, it suffices to count cyclic
extensions of degree p't! over K that contain L;.

Suppose first that ¢ = 0. Then L;y; = L; is contained in the composite
(M%) - (M?);. Note that Gy = Gal((M'); - (M?)1)/K) = (Z/pZ)?, and
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that we are counting the number of subgroups of order p. If ¢ € G; and
a € {1,...,p — 1}, then o and 0% generate the same subgroup of G;. We
therefore in fact look for a set of representatives for certain distinct orbits of
the action of (Z/pZ)* on G, given by (a, o) — o®.

If 01,09 € G1 denote generators of the rank two abelian group G, then a
set of representatives for the elements of order p is given by the elements

-1
g1, 0102, 0’1-0'%, ey 01'0'51) ), g9 ,

proving that there exist exactly p + 1 subgroups of Gy of order p.

Now let i > 0 be arbitrary, and let

Git1 = Gal(MY)ig1 - (M?)i1)/K) = (Z/p™'7)?

be generated by elements o1 and oo. Since L;y1 € (MY);11 - (M?);11, we are
now looking for cyclic subgroups H of G;;1 of order p'*!, because these are
exactly the subgroups of G;11 such that the quotient G;1/H is cyclic of order
p'T!. Moreover, the image of H under the canonical projection

™ Giy1 — Gig1/(Gi1)?
shall be equal to a given cyclic subgroup H of order p'. This latter condition
encodes the fact that L;y; shall contain the given field L; C (M%); - (M?);,
using the fact that

Gir/(Gip)" = Gal((M1); - (M?),)/K) .

If 0 € G;4+1 denotes a generator of H, then this means that we want the
image m(o) to be a generator ¢ of H. Any other pre-image of & differs from o
by an element 7 € (G;11)?". If a € (Z/p™'Z)*, then o7 and 0?7 generate the
same subgroup of G;y1. Therefore the distinct cyclic subgroups H C G;11 of

order pt! which are mapped to H are generated by elements o7, where 7 is
one of the elements
ot pt pt o pt 2p pt . _(p=1p°  _p’
o], 0y 0y , 0) 0y , ..., 0] 05 , Oy

Again, this yields exactly p 4+ 1 distinct possibilities.

Now let us return to the general case of arbitrary d > 2. As above, we can
think of L) = L = U;>o Li as being build up step by step. Analogously to the
case d = 2 one can show that, for any fixed ¢ > 0, there are only finitely many
possible fields contained in IK that can be taken into consideration for the field
L;y1 as an extension of L; of degree p.

Indeed, let us fix a set of pairwise independent Z,-extensions M*, ..., M d
of K. For every ¢ > 0, we have

Liyi © (M1 (M%),
and therefore we are looking for the number of certain subgroups H of

Giy1 == Gal(M")iq1-...- (M")ip1)/K) = (Z/p™'7)*
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, since these are the subgroups H yielding
i+1

of rank d — 1 and order (pi*!)4-!
quotients G;+1/H which are cyclic of order p

Moreover, we want the image of H under the projection
™ Gig1 — Gig1/(Gipa)V
to equal a given rank d — 1 subgroup

H C Gipr/(Gipr)” 2 Gal(MV); ... (M?),)

of order (p')?~!, since L;y1 shall contain the field L; C (M1);-...- (M%);.

If g1,...,94_1 generate such a subgroup H, and if 71,...,7q_1 € (Gi1)?
are arbitrary, then also the subgroup of G;;1 generated by gi71,...,94-1Td—1
is a solution to our problem. Moreover, if a1, ...,aq_1 € (Z/p"T1Z)*, then we
have an equality of (multiplicatively written) subgroups

ai, ai ad—1__Qad—1

<GITLy 5 G9d—1Td-1> = <1 TGyt Taly > -
Let 01, ...,04 denote fixed generators of G;11. Then the above shows that the
distinct subgroups H of G;11 we are looking for are parameterised by tuples
(T1,...,7Ta—1), where each 7; is contained in the set of elements of the form
J;“'pi ~...-asd'pi ,

where (u1,...,uq) € (Z/pZ)¢ are considered modulo the action of (Z/pZ)*
defined by a - (u1,...,uq) = (auy,...,aug).

This shows that there exists a bound ry < oo for the number of possible
choices for H which is independent of i (e.g., 4 < pd(dfl)).

Now we fix generators 71, .. .,74 of Gal(IK/K). On each level 4, this induces
a set of generators of G; 11 (namely, the restrictions of v, ..., 74, respectively),
and thus an ordering of the set of subgroups H C G;;1; we are looking for.
Indeed, on each level we choose the subgroup H C (G;y1 which solves our
problem and comes first concerning a lexicographical order of the exponents
(a,...,aq) of the elements g = 47" - ...-~v3* generating H. Then we order the
subgroups H C G, of interest via the corresponding tuples (71,...,74-1).

Therefore we can describe the process of building up L; out of Ly = K in
terms of a sequence {ay,...,a;} of integers satisfying 1 < a; < rq for all j. This
means that the field L(Y) = L is uniquely represented by the sequence {a;}jew of
integers. One can easily see that this gives a bijective correspondence between
the Z,-extensions of K and the sequences {a;}jen with a; € {1,...,74} for all
j.

Therefore our given sequence (L(”))nem of Z,-extensions can be represented
(n)

J
Consider the sequence {agn) }nen of the first terms of these sequences (represent-

by a sequence of sequences {{a§-n) }ienw tnew with 1 < a3’ < rg for every j and n.

ing the subfields Lgn) of degree p over K of the fields in our sequence (L("))ne]N,
repectively). Since r4 is finite, there has to be an integer k1 € {1,...,74} such
that agn) = ky for infinitely many n. By restricting to a subsequence we may as-

sume that agn) = ky for all n. Now consider the second terms {agn)}nem. By the
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same argument, there has to be a ko € {1,...,74} such that a(2n) = ko infinitely

often. Via induction, for any N € IN we obtain a subsequence {(agn’N)) JEN neN

such that there exist integers (k;);<n, kj € {1,...,rq} for every j, such that
agn,N)
(kj)jew which defines a Z,-extension L of K, using the above bijective corre-

spondence.

By definition of Greenberg’s topology on £(K), a sequence (L(™),en of
elements in £(K) converges to some M € £(K) if and only if the sequence
of numbers m, := max{i € IN : L™ ¢ &£(M,4)} tends to infinity. But by
construction of L we have shown that for any N € IN we are able to choose
a subsequence (L"), o of (L), such that for every n, L(N) € £(L, N).
This exactly means that we inductively get a subsequence of (L("))n converging
to L, proving that £(K) is compact. O

= kj for all n and 1 < 5 < N. Letting N — oo, we obtain a sequence

Having defined Greenberg’s topology on the set £(K), some natural ques-
tions arise. For example, by Theorem 1.32, every Z,-extension L of K is at-
tached its Iwasawa invariants A, 4 and v € Z. Now suppose that we are given
a Zp-extension L' € £(K) which is ‘close’ to L in the sense that L' € £(L,n)
for some large n. Is there then a connection between the Iwasawa invariants of
L and L/, i.e., are they related and perhaps also close together?

In his article [Gr 73], Greenberg proved some first results in this direction.
Roughly speaking, under some assumptions which he had to put on the Z,-
extension L/K whose neighbourhood is studied, Greenberg proved that p is
locally bounded and that A is locally bounded on the subset of all Z,-extensions
of K having p = 0:

Theorem 2.27. Let L be a Z,-extension of K such that only finitely many
prime ideals of L lie above p. Then there exist integers ng and ¢ € IN such that
w(L'/K) < ¢ for any L' € E(L,ny), i.e., p is locally bounded.

Theorem 2.28. Let L be a Zy-extension of K such that only finitely many
primes of L lie above p. Assume further that u(L/K) = 0. Then there exist
no,c € N such that p(L'/K) =0 and \(L'/K) < ¢ for any L' € (L, ng), i.e.,
A s locally bounded.

As an application, Greenberg deduced some global boundedness results:

Theorem 2.29. Let K be a number field which contains only one prime dividing
p. Then there exists a constant ¢ such that u(L/K) < ¢ for any Z,-exstension
of K.

Theorem 2.30. Let K be a number field which contains only one prime dividing
p. Assume that p(L/K) =0 for every L € E(K). Then there exists a constant
¢ such that N(L/K) < ¢ for any Z,-extension of K.

Proof. These four theorems are Theorems 4-7 in [Gr 73]. O

In the next chapter, we will further investigate local properties of Iwasawa’s
invariants, obtaining finer results.
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Chapter 3

Local behaviour of Iwasawa
invariants

Let K be a fixed number field. In this chapter, we will study the local behaviour
of the Iwasawa invariants attached to Z,-extensions of K. This means that we
will regard these invariants as functions on the topological space £(K) of all Z,-
extensions of K, and we will ask whether the invariants related to Z,-extensions
of K that are close in the sense of Greenberg’s topology (see Section 2.3) are
also close together.

We will obtain finer results than the theorems proved by Greenberg in
[Gr 73] (compare Theorems 2.27-2.30), using a theory of stabilisation of cer-
tain ranks. Starting point of our method is a theorem of T. FUKUDA. The
first section extracts and formalises the main ingredients of this theorem. This
will be used in order to generalise Fukuda’s method, making it applicable in
a much broader context. In fact, while Fukuda’s original theorem mainly uses
group-theoretic arguments, we will focus on the action of A = Z,[[T]] on the
arithemtic objects of interest.

It turns out that the main obstruction to the application of our method is
the need to control the ramification in the corresponding Z,-extensions. In the
second section, we will introduce a modified topology on the set £(K’) which
will be adequate for our method.

Section 3.3 presents the main results of this chapter, improving Greenberg’s
theorems. Theorem 3.57 may be regarded as our most important result con-
cerning Iwasawa invariants of Z,-extensions.

In Sections 3.4 and 3.5, we use a different approach to obtain results about
Iwasawa’s invariants. More precisely, we introduce the concept of capitulation
and link it to the study of Iwasawa invariants. The capitulation is strongly
connected with cohomology groups of units, as will be described in the last
section. This will yield a new proof of a part of Theorem 3.57.

3.1 Fukuda’s Theorem and Fukuda modules

Our main method is based on a theorem of T. FUKUDA (see Theorem 3.1
below). In this section, we will define a general class of objects which share the

47
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necessary properties to make an analogon of Fukuda’s Theorem hold for them.
We will give examples of classes of natural objects satisfying these properties.
In particular, this will enable us to apply an analogon of Fukuda’s Theorem in
a very general setting.

If L/K denotes a Zy-extension, then we denote by L,,, n € Ny, the interme-
diate field of degree p™ over K, respectively, and we let A%L) denote the p-Sylow
subgroup of the ideal class group of L, respectively.

In his article [Fu 94], Fukuda proves the following theorem, which will be
our starting point for the comparison of Iwasawa invariants of elements of £(K):

Theorem 3.1 (Fukuda). Let L/K be a Z,-extension. For any n > 0, let

A, = A%L). Let e = e(L/K) > 0 be defined as in Proposition 1.3: Any prime

of K which ramifies in L/K is totally ramified in L/L.. Then the following

holds:

(i) If there exists an integer n > e such that |Ani1| = |Ay|, d.e., Apy1 and
Ay, are p-groups of the same cardinality, then |Ay,| = |Ay| for allm > n.
In particular, we then have p(L/K) =0 and A(L/K) = 0.

(i1) If there exists an integer n > e such that rank,(A,) = rank,(A,11),
then ranky(A,,) = ranky(Ay) for all m > n. In particular, p(L/K) =0
(compare Proposition 1.45, (i)).

We want to immediately give a quick hint on how to obtain results concern-
ing the local behaviour of Iwasawa invariants by applying Fukuda’s Theorem.

Theorem 3.2. Assume that there exists only one prime of K lying above p.

(1)  The subset of E(K) consisting of all Z,-extensions L of K with Iwasawa
invariants w(L/K) = MNL/K) = 0 is open with respect to Greenberg’s
topology. The invariant v is locally constant on that subset.

(i1) The subset of E(K) consisting of all Zy-extensions L of K for which
uw(L/K) =0 is open.

Proof. (i) Let L/K be a Zpy-extension with A\(L/K) = p(L/K) = 0. Then
there exists an integer ng € IN such that

D] = 4D = 9 < o

for every m > ng (see Theorem 1.32). We may assume that ng > e,
where e = e(L/K) is the integer defined in Proposition 1.3. Since, by
assumption, there is exactly one prime ¥ of K lying above p, and since
the maximal abelian unramified extension of K is of finite degree over K,
Lemma 1.2 shows that every Z,-extension M /K is ramified at the prime
B, and unramified outside 3. Now define

U:=E&Lng+1) = {(Me&K)|[MNL:K]>pwt}.

Let M € U. We know that P ramifies in L.1/Le and therefore in
M.y1/M,, since ny > e. Now assume that P is not totally ramified in
the abelian extension M /M., and let M; denote its inertia subfield. Then
M; # M., and in particular M.,1 C Mj, since this is the unique subfield
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of M of degree p over M.. But this contradicts the fact that 3 is ramified
in Me41/M., proving that 9 is totally ramified in M/M,. In particular,

e(M/K) = e(L/K) < ng .
Furthermore, for M € U we have \Agﬁﬂ = |A££)+1| = |A,(£)| = \A%ﬂ”,
where A%\/[ ) denotes the p-Sylow subgroup of the ideal class group of the
intermediate field M,, C M, respectively. Using Fukuda’s Theorem 3.1,
(i), we conclude that |Aq(7jlw)| = ]Ag(\f” for any m > ny, i.e.,

W(M/K) = AM/K) = 0.

Furthermore, if we consider n large enough to make the formula in Theo-
rem 1.32 be valid for |A£1L)\ and \A%M)|, respectively, then we see that
PO — A = 4D = g

which means that v is locally constant on U.
Let L/K be a Zy,-extension satisfying p(L/K) = 0. Then there exists

an integer » € IN such that rankp(ASLL)) < r < oo for every n > 0 (see
Proposition 1.45, (i)).
Using class field theory, one can show that the norm maps

Ny 0 AL AD)

induced by the algebraic norms between the fields L,, and L,, are surjective
for m > n > e = e(L/K) (see the Lemma in Chapter 3, §4, of [La 90];
compare also the proof of Corollary 3.9). Actually, class field theory shows
that the norm maps Np,, : Cl(Ly,) — Cl(L,) between the full class
groups of L,, and L,, are surjective, but this immediately carries over to
the restrictions on the p-Sylow subgroups. In particular we have

rankp(A%)) > rankp(A%L))

whenever m > n > e. Therefore the p-ranks have to stabilise, i.e., there

exists an integer ng € IN such that rankp(A%)Jrl) = rankp(A%Lo)).
We may assume that ng > e. Now we define U := £(L,ng + 1), and the
assertion follows analogously to the proof of (i), using Fukuda’s Theorem
3.1, (ii).

O

There are some natural questions arising from this theorem. For example,

are the invariants A or v locally constant on the subset of £(K) defined in (ii)?
Can we get rid of the assumption that only one prime of K divides p?

We will study two different approaches to strengthen Theorem 3.2: The

restriction to fields K with exactly one prime lying above p arose from the
fact that the statements of Fukuda’s Theorem 3.1 require the indices n to be
greater than the number e = e(L/K) attached to the Z,-extension L/K under
consideration. This means that we could not simply apply Theorem 3.1 to the
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Z-extensions contained in a fixed neighbourhood U of L without having control
on the respective e’s. If, for example, the e(M/K), M € U, were unbounded,
then Theorem 3.1 would not apply to those M € U having ‘too large’ e (e.g.,
U=E&(L,n) and e(M/K) > n). We are therefore looking for conditions that
help us to locally bound the e(M/K). As we have seen in the proof of Theo-
rem 3.2, the assumption that only one prime of K lies above p is sufficient to
ensure that e even is locally constant. We will deal with the problem of finding
appropriate conditions in the case of arbitrary K in the next section. As one
can imagine in view of the definition of e, this subject is closely related to the
study of ramification inside Greenberg neighbourhoods.

In the current section, we want to further investigate Fukuda’s Theorem.
We will try to determine the key properties of the groups A, that make the
theorem work in order to get able to apply it in more general settings — with
the hope of getting further results concerning the local behaviour of p, A and
v-invariants.

In Chapter 1, we have studied A = 1'£1An, where the projective limit is
taken with respect to the norm maps induced by the algebraic norms

Nyt Ly — Ly, m>n.

We have seen that A can in a natural way be equipped with the structure of a
A-module, where A = Z,[[T]]. We now want to define a class of A-modules for
which the analogue of Fukuda’s Theorem holds.

For this purpose, we review the basic notions concerning projective limits
that will occur in our investigations (compare [Neu 92|, §IV.2). Suppose that
we are given a family of A-modules (By,)nen, together with A-module homo-
morphisms f;; : B; — Bj, 1 > j, satisfying f;; = idp, for all i and fi, = fjro fi;
whenever ¢ > j > k (a so-called projective system). Then we let

B = {(bi)iew, : fij(bi) =b;Vi>j} € [] B:i-
i€INg

B = lgln B, is a projective limit of the B,. By definition, the f;; commutate
with the canonical projections pr, : B — By, i.e., fij o pr; = pr; for all i > j,
and so all the diagrams

B

are commutative.

Definition 3.3. Let B = l'&an be a projective limit of A-modules. We
assume that each B,, is a finite abelian p-group, n € INy.

Suppose that B further has the following properties. Assume that there exists
an integer e > 0 such that:
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(1) For every n > e, the n-th projection pr,, is surjective. In particular, for any
i > j > e, the maps f;; : B; — B, are surjective.

(2) For n € Ny we define Y,, := Ker{pr,, : B — B,}. Then for every n > e,
there exists an element v, 11 ) contained in the maximal ideal m = (p, T)
of A =7Z,[[T]] such that

Yot1 = Vintim) - Ya

(note that Y,, is a A-submodule of B as being the kernel of the A-module
homomorphism pr,,). In particular, we have

Y = Vim,n) " Yy (F)

for any m > n > e, with v, n) = Vinm—1) Vim—1,m—2)" - - V(nt1,n) €M™

If all these properties are satisfied, then we say that B is a Fukuda module,
and we call e the index barrier of B.

Remark 3.4. In Chapter 5, we will study Iwasawa invariants of multiple
Zy-extensions. The ideal class groups of the corresponding intermediate fields
admit actions of power series rings Ay = Zp[[T1,...,Ty]] in several variables.
In particular, we will need a notion of Fukuda-Agzmodules. Actually, we will
develop a theory of Fukuda modules over a broad class of local rings, compare
Definition 5.24.

Proposition 3.5. FEvery Fukuda module is finitely generated as a A-module.

Proof. Since B, is finite for any n > 0, and therefore compact with regard to
the discrete topology, B = @Bn is compact (see [Neu 92], Theorem IV.2.3).
Therefore, by Nakayama’s Lemma (Corollary 1.43), B is finitely generated as
a A-module if and only if B/(m - B) is finite, where m = (p,T") denotes the
maximal ideal of A.

Let e denote the index barrier of B. Since B/Y. = B, is finite, it suffices
to show that Y. is finitely generated, i.e., that Y./(m - Y,) is finite (note that
Y, again is compact because it is the kernel of the continuous homomorphism
pr.). Using the Property (F), we see that

&)
Ye /(m-Yo)| < Yo /(Wetre) Ye)l = [Ye/Yerr| < [B/Yerr| = [Ber]
——

em
is finite, as claimed. O

We will now see that an analogon of Fukuda’s Theorem 3.1 holds for arbi-
trary Fukuda modules.

Theorem 3.6. Let B = l'&an be a Fukuda module with index barrier e.

(i) If there exists an integer n > e such that |Byy1| = |By|, then |Bp| = | By
for every m > n and in fact |B| = |B,| < cc.

(11) If there exists an integer n > e such that rank,(By41) = rank,(B,,), then
rank,(By,) = rank,(B,,) = rank,(B) for every m > n.
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Proof. We can repeat literally FUKUDA’s proof of Theorem 3.1 (see [Fu 94]).

(i)

Since n > e, the map fr41,n : Bny1 — By is surjective. The assumption
|Bp| = |Bp+1]| then implies that fy,11, is in fact a bijection. Therefore,
by looking at the diagram

Bn+1 *~> B/Yn+l

fn+1,nJ/

B, —=+B/Y,

and using the fact that B/Y,, 11 = B/V(p 1) Y for some v, 1 ) € (p, T)
by the Fukuda property (F), we see that there is a bijection

B/V(n—l—l,n) . Yn ;> B/Yn .

Now v(y41n) - Yn C Yy, since Yy, is a A-module. Since both quotients are
finite, we can conclude that v, 1) - Yn = Ya.

We want to apply Nakayama’s Lemma (Corollary 1.43). B = lim B,, is
compact as being the inverse limit of finite groups (see [Neu 92], Theorem
IV.2.3). This shows that the kernel Y;, of the continuous map

pr, : B — B,
also is a compact A-module. Therefore Nakayama’s Lemma implies that
Y, /(m-Y,) = {0} if and only if Y;, = {0}. Since v(;,41 ) € m, the equality
V(intlm) Y, = Y, shows that \Yn/(m . Yn)| < |Yn/(V(n+1,n) . Yn)’ = 1,

and thus Y,, = {0}.
Therefore Y, = V() - Yo = {0} for every m > n, where we let

Vimmn) *= Y(imm—1) " Yim—1,m—=2) " -+ V(nt+1n) € (paT) CA,
m > n, and V(,, ) := 1. This means that
|Bm‘ - |B/Ym‘ - ’B‘ = ’B/Yn‘ = ’Bn‘
for every m > n.
If rank,(By41) = ranky,(B,), then B,/p- B,, and Bp11/p - Bp41 are -

vector spaces of the same dimension and therefore are isomorphic (as
vector spaces). Therefore, the A-module isomorphisms

~ )
By = B/Yn+1 = B/(V(nJrl,n) ’ Yn)
and B, = B/Y, imply that
B/(Yn+pB) = B/(Vni1,n) - Yn +PB),

as IFp-vector spaces. Since V(41 - Yo +pB C Y, + pB, and as both
quotients are finite, it follows that v, 41 - Yn +pB = Y, + pB.
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Now define Z := (Y, +pB)/pB. Since v(,41 ) -pPB = p-Vniy1,mB € pB,
we can conclude that

Vint1,m) zZ = (l/(n+1,n) Yy +pB)/pB = 7,

by the above. Z is a compact A-module, and so Nakayama’s Lemma shows
that Z = {0}, i.e., Y, C p- B. Letting v(,, ,,) be defined as in (i) and using
Property (F), we obtain

Yin = Vinm) - Yo C Vmpn-pB C pB (%)
for every m > n, and therefore, for these m,
ranky(Bp,) = rank,(B/Y,) = dimp, (B/(Yy +pB))

*

= dimp,(B/pB) = rank,(B) .

—
N

O

Consider a Zy,-extension K, /K with intermediate fields K, n > 0, and p-
Sylow class groups A, respectively. Fukuda’s Theorem 3.1 shows that Theorem
3.6 holds for the projective limit A = @An. We will now prove that indeed A
is a Fukuda module. In particular, this implies that Theorem 3.1 is a special
case of Theorem 3.6.

Recall the notion of the Greenberg module X = Gal(L/K ) attached to
Ko /K, where L denotes the maximal p-abelian unramified extension of K
(compare Proposition 1.33 and Lemma 1.39).

Proposition 3.7. The Greenberg module X attached to Ko /K is a Fukuda
module with index barrier e = e(Ko/K) (the integer defined in Proposition
1.3).

Proof. If L,, denotes the maximal unramified p-abelian extension of K,,, n € Ny,
then

X = @Gal((Ln - Ky)/Kso)

=X,

where the projective limit is taken with respect to the restriction maps.
Since at least one prime is totally ramified in the extension K /K., we see
that the restrictions X,, — X,, are surjective for each m > n > e, because

Gal((Ln - Koo)/Koo) = Gal(Ln/Kn)

and K,, N L, = K, for each m > n > e. By the same reasons, the projections
pr, : X — X,, are surjective for n > e.

It therefore remains to show that X = @Xn satisfies Property (F). Letting
Y, := Ker{pr,, : X — X,,}, n € Ny, this means that we have to show that
Yit1 = Vng1,n) - Yo for each n > e and suitable elements v(,,11 ) € m = (p,T),
respectively.
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We will in fact see that this property holds with respect to the polynomials
Ving1,0)(T) € Zyp[T] defined in Section 1.2:

(1+7T)P"" -1
V(n—i—l,n) = (1 + T)pn _ 1

n+1

=(A+T)P P+ (Q+T)P +1.

Note that Proposition 1.27, (iii) implies that the v, ,)(T) are distinguished
polynomials for every n > 0, and therefore v(,,1,)(T) € (p,T).

Now we recall that we have seen in Lemma 1.37 an equivalent charac-
terisation of the Y,. Namely, Y. is generated by 7' - X and the Z,-span of
certain elements ag,...,as describing the ramification in Ko /K.. Moreover,
Yn = V(n,e) - Ye for every n > e.

Note that Lemma 1.37 was proved only in the case e = 0. However, we may
treat the case of arbitrary (K /K) by replacing K by K. (this does not affect
@X” = X = Gal(L/K)), compare Remark 1.38 and Lemma 1.39.

We may obtain the desired statement via induction: First of all, we have
Yet1 = V(et1,e)  Ye- Suppose now that Yy, 11 = V(41 - Yy holds for every n < k,
for some fixed k£ > e. Then

Yiro = V(k+2,e) Ye
V(k+2,k+1) " V(k+1,e) " Ye
= Vt2,k+1) " Yet1

using the induction hypothesis and the fact that v(y2e) = Viggo,k+1) " V(k+1,e)-
O

Lemma 3.8 (Isomorphisms of Fukuda modules). Let A = @An be a Fukuda
module with index barrier e = e(A), let ¢ : A — B be a A-module isomor-
phism, B = yLan- Assume that ¢ is induced by A-module isomorphisms

o+ Ay — By, such that the diagrams

% .B

A
prnl PTy (*)
A

$n
n Bn

are commutative for all n > e.
Then B = ¢(A) is a Fukuda module with index barrier e.

Proof. First of all, B is an inverse limit B = @Bn, taken with respect to the
maps

BB —— B, @i —— oi(fii(ei (@), i =],

where f;; : A; — A; denote the maps corresponding to the projective system
of A= @An. The fi? are well-defined because ¢; and ¢; are isomorphisms,
and they are surjective A-module homomorphisms for j > e as being the com-
position of surjective homomorphisms.
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If a=(an)p € A= Hm Ay, then b := (on(an))n € Hm B, because

W) = (i) = @i(fij(a)) = @jla;) = b;.

Because of the assumptions (x), the projections pr,, : B — B, are surjective
whenever n > e.

It therefore remains to show that B has the Fukuda Property (F). Let YnA,
respectively, Y.Z, denote the kernels of the projections pr, : A — A, and
pr, : B — B,, respectively. Then we know that for every n > e, there exists
an element v(,,41 ) € (p,T) C A such that Ynﬁl = Vin+in) YA

We will show that

V2 = oY,

for every n > e. Let a € Y4, b:= ¢(a). Then 0 = pr,,(a) and therefore

0 = pu(pr(a) 2 pro(p(a)) = pro(b) -

If, on the other hand, b € Y;Z, then we choose a pre-image a € A of b under
the isomorphism ¢. Then

—
=

*

0 = prp(b) = pra(p(a)) = @n(pra(a)),

and thus 0 = pr,,(a), since ¢, is an isomorphism, by assumption. This shows
that a € Y, and b € p(Y,1).
It is now obvious that
B A A
Yn—l—l = @(Yn—l—l) = Sp(y(n—&—l,n) : Yn )

= Vin+in) - ‘p(YnA) = Vin+1n) - YnB

for every n > e.
O

Corollary 3.9. Let Koo/K be a Zy-extension. Then A = @An s a Fukuda
module with index barrier e = e(K/K).

Proof. Proposition 3.7 implies that X = lim Gal((Lp - Kx)/K) is a Fukuda

=:Xn
module with index barrier e. We now proceed in two steps:
First, we use Lemma 3.8 in order to transfer the Fukuda property from X
to
T&l Gal(L,/K,) .
N———
=: X,

Then we apply Lemma 3.8 again in order to prove the statement.

The isomorphisms 1, : X,, — X,, n > e, satisfy the (x)-condition from
Lemma 3.8, since both the 1, and the pr,, are in fact induced by restriction
maps. Therefore Lemma 3.8 implies that l'gln>0 X, is a Fukuda module with
index barrier e.
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Now we come to the second step. For any finite level K, /K, we have the
Artin isomorphism ¢, : A, — X,, from class field theory (see, for example,
[Neu 92], Theorem VI.6.9). On the level of ideals, ¢, satisfies the following
property. If I is an ideal of the ring of integers O(K,,) of K, then for any
o € Gal(K,,/K) we have ¢, (o(I)) = o - p,(I)- o~ (see [Rib01], 25.(B)). But
this exactly means that ¢, : A, — X, is a A-module homomorphism, since
the action of Z,[[Gal(K«/K)]] = A on X, is given by conjugation, see Section
1.3.

Class field theory furthermore implies that for any ¢ > 57 > 0, we have a
commutative diagram

A — X,

fz‘jJ( lgij

A X
where the f;; are induced by the algebraic norms N K, and the g;; are given by
restriction (see [Neu 92|, Theorem IV.6.4). This shows that the ¢, : 4, — X,
induce a A-module isomorphism ¢ : A — X such that the diagrams (x) in
Lemma 3.8 are commutative for all n. Therefore the assertion follows from
Lemma 3.8, using the inverse isomorphism ¢~ : X — A.
O

The following lemma is a very useful tool for the construction of new Fukuda
modules.

Lemma 3.10 (Quotients of Fukuda modules). Let A = 1'£1An be a Fukuda
module with index barrier e = e(A), let M = l&nMn C A be a submodule, i.e.,
we have A-submodules M, C A,, n > 0, and the inverse limit is taken with
respect to the mappings fij : A — Aj, © > j, restricted to M;.
In particular, we assume that the projections pr,, : M — M, are surjective for
everyn > e (and so fij(M;) = Mj, j > e).

Then the A-module A/M := @An/Mn (i.e., we take quotients component-
wise) is a Fukuda module with index barrier e.

Proof. The factor groups A,,/M,, are finite abelian p-groups and A-modules.
The maps f;; : A; — A; induce mappings

?ij:Ai/Mi—>Aj/Mj, Ti=xi+M; — fij(xi)+M;, i>j.

These are well-defined because f;;(M;) C M;, and they are easily seen to be
surjective for j > e. Indeed, let 7; € (A/M); = Aj/M; be arbitrary. Choose a
representative x; € A;. By the surjectivity of f;;, there is an element x; € A;
with fm(l’l) = x;. But then 71](52) =T;.

Moreover, ((An/Mpy)n, fi;) is a projective system, and we can consider a
corresponding inverse limit A/M = @An/Mn C II, An/M,.

We want to show now that the so-defined A-module satisfies Property (F).
Along the way, we will obtain the surjectivity of the projections of A/M. For

every n > 0, let us denote by Y4, respectively, YnA/ M, the kernel of the n-th



3.1. FUKUDA’S THEOREM AND FUKUDA MODULES o7

projection pr, : A — A,, respectively, pr,, : A/M — (A/M),, = A,/M,.
By assumption, we know that for every n > e, Y{}H = Vintin) YA for some

element v(,11,) € (p,T) € A. We will show that Yn‘j_/y = V(nt1,n) -Yﬁq/M.

order to do so, we fix n > e, and we consider the following diagram:

In

0 | M——A—T"35A/M——0
|
‘ pr pr, pry,
I

0 § M, —"— A, — (A/M),, —— 0
|

Lf»o 0 0

First of all, the two rows in the middle obviously are exact. Furthermore, the
corresponding two rectangles are commutative. In particular, the projections
pr,, : A/M — (A/M),, have to be surjective for n > e. But then also the two
upper rectangles do commutate: It is obvious that i(V;™) C V;A. Moreover, if
r € Y;A C A, then by the above

and therefore 7(Y,4) C y, MM

We are now in the position to apply the Snake Lemma (see, for example,
[0s 92], Lemma 5.28) which tells us that there is a A-module homomorphism,
as suggested in the above picture,

5 YoM Coker(pr, : M — M,,) = {0},

such that YnA SN YnA/ M L 0 is exact. This means that, for any n > e, we
have
m(Yh) =y, M (*)
But then
A/M (%) F) )
Yn+/1 = W(Ynﬁl) = 7T(V(nJrl,n) YnA) = V(n+1n) W(erl) = V(nt1,n) 'YnA/M
for any n > e. O

Example 3.11.

(1) Let Koo/K be a Z,-extension with Galois group I' = Z,; let v be a topo-
logical generator of I'. Assume that every prime of K dividing p ramifies
in Ko /K (this condition is satisfied, for example, by the cyclotomic Z,-
extension of K, as we will prove in Lemma 3.18, (ii)). For every n > 0,
let A, be the p-Sylow subgroup of the ideal class group of K,, and let
D, C A, denote the subgroup generated by the classes that contain an
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ideal all of whose prime factors lie above p. Using Lemma 1.2, we see that
D,, in particular contains all classes of ramified ideals. Each D,, actually
is a A-submodule of A,,, respectively. Indeed, if I is an ideal of K, all of
whose prime factors lie above p, then this is certainly also true for ~(I),
ie., v(Dy,) € D,, and therefore A - D,, C D,,.

Take the projective limit A = @ A,, with respect to the norm maps

fij:Ai—>Aj7 12]

Then f;;(D;) = D;j whenever i > j > e = e(Ky/K):
On the one hand, it is clear that f;;(D;) C Dj, since the norms map ideals
above p to ideals above p. On the other hand, let x € D;, and let J be an

ideal of the class  such that J = ] P;* with e, € Z and P;, | (p) for
k=1

every k. Since every prime dividing p ramifies in K;/Kj;, i > j > e, we have
[ij(Qk) = Pi, for every k =1,...,r, where 9y, denotes the unique prime of

i r
K; dividing B, respectively (i.e., By - Ok, = QF J). Letting I := kH1 QrF,

we may conclude that the class y of I belongs to D;, and f;(y) = =.

Now we consider the projective limit D = lim D,, with respect to the f;;.
Let A] := A, /Dy, n > 0. Using Corollary 3.9 and Lemma 3.10, we con-
clude that A" := @A’n = A/D is a Fukuda module. In particular, The-
orem 3.6 holds for A’, a fact which has been proved for the cyclotomic
Z,-extension Ko, of K by Mi1zusawA in [Miz 10], Proposition 3.

Note that for every n > 0, A!, = Gal(H'(K,,)/K,), where H'(K,) denotes
the maximal p-abelian unramified extension of K, in which every prime
ideal of K, lying above p splits completely. This is the subfield of H(K,)
fixed by the image ¢(D,) C Gal(H(K,)/Ky), where ¢ denotes the Artin
isomorphism; it is a general fact that unramified primes 3 split completely
in H(K,) if and only if ¢(P) is trivial, see [Rib 01], 25.(A).

More generally, let S = {p1,...,ps} denote a finite set of primes of K.
Let S’ D S denote the union of S with the set of primes of K dividing p.
Suppose that K /K denotes a Zy-extension such that every prime p € 5’
is only finitely decomposed in K /K, i.e., for each p € S’, there exist only
finitely many primes of K, lying above p. Note that this is equivalent
to the decomposition group Z,(Ku/K) of p in Ko /K being non-trivial,
because every non-trivial closed subgroup of Gal(K/K) = Z, will be of
finite index. Therefore Z, (Ko /K) = Gal(Ko/Kp,) for some n, € IN, re-
spectively. Let ng := maxycg np.

For example, it is known that no prime of K splits completely in the cyclo-
tomic Z,-extension of K (see [Wa 97|, Exercise 13.2, (a)).

For every n > ng, we let DS C A, denote the subgroup generated by
the prime ideals of K, lying above some p; € S, respectively. Then
AS := A, /D2 is called the (p-primary subgroup of the) S-class group of
K, respectively. We let A% := l&nAS , where the projective limit is taken
with respect to the norm maps f;; : A; — A;, which satisfy f,](DZS) C D]S
for every 7 > j.
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In [Fe 86], L. FEDERER proved that A° is a Fukuda module (compare The-
orems 3.2, 3.5 and 4.7 in [Fe 86]). We therefore can apply Theorem 3.6 in
order to deduce information about the Iwasawa invariants that are attached
to this finitely generated A-torsion module via Proposition 1.28. (In fact,
Federer only considered the case of the cylotomic Z,-extension of K. Her
proofs, however, are valid for any Z,-extension of K in which every prime
p € S’ is finitely decomposed.)

Note that under Artin’s isomorphism, A,f corresponds to the Galois group
of the maximal p-abelian unramified extension of K, in which every prime
of K, dividing some p; € S is completely decomposed.

Even more generally, the work of FEDERER in [Fe 86] shows that under the
assumptions of (2), we could consider R-generalised S-class groups A,
where R denotes a set of primes of K, containing all the infinite primes,
such that RN S’ = (. Here BAS, n > ng, is defined as follows: Let ?4,,
denote the p-primary subgroup of the ray class group of K, with modulus
Hpe r P =: m, respectively. This means that we consider the group of
fractional ideals of K, that are coprime to m, and we divide out principal
ideals («) such that « =1 mod m. At the infinite primes, this means that
« has to be totally positive, i.e., for every real infinite prime p of K,,, a« > 0
in (Ky), = R.

We then let RDE denote the subgroup of 4, generated by the primes
dividing some p; € S, and we define #AS := A, /EDS. By Artin’s map,
RAS is isomorphic to the Galois group Gal(N,,/K,), where N,, denotes the
maximal abelian p-extension of K, which is unramified outside R and in
which every prime of S is completely decomposed.

Federer proved in [Fe 86] that %A% := Jim RAS is a Fukuda module, where
the limit is taken with respect to the induced norm maps.

Using Federer’s approach, one has to assume that no prime of S’ (and in
particular no prime dividing p) is totally split in K,/K. Using instead the
method of (1) (i.e., Corollary 3.9 and Lemma 3.10), we may consider sets S
of primes such that every p € S is either ramified or completely decomposed
in the Zy-extension K., /K, because this condition is equivalent to the fact
that for some fixed e € INg, arbitrary ¢ > j > e and every prime *B; of K;
dividing some of the primes of .S, there exists a prime £; of K; such that
fij (Qi) =*B;.

(Note that Corollary 3.9 may be generalised in order to prove that for every
Z,-extension K /K and for a set R of primes which does not contain any
prime ideal dividing p, A = @ R4, is a Fukuda module.)

Lemma 3.12 (Complementable Fukuda-submodules). Let A = @An be a
Fukuda module with index barrier e = e(A). Let B = T&an be a A-submodule

that is a direct summand of A (sometimes also called A-complement of A),

i.e.

assume that for any n € Ng, B, C A, is a A-submodule such that there

exists a A-submodule C,, of Ay, with B, ® C,, = Ay, and such that f;;(B;) C B;
and fi;(C;) C Cj for every i > j, where f;j, as usual, are the maps in the

projective limit A = @An.

Then B and C are Fukuda modules with index barrier e.
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Proof. Let j > e. By assumption, we have f;;(B;) C B; and f;;(C;) € Cj
for any ¢ > j. But then f;; : B; — Bj and f;; : C; — C} have to be
surjective, because f;; : A; — A; is surjective. Furthermore, pr,(B) = B, and
pr,(C) = C, for every n > e by construction, since pr,(A) = A,, = B, ® C,
(direct sum) for those n.

As in the proof of Lemma 3.10, we denote by Y,Z the kernel of the n-th
projection pr,, : B — B, in contrast to Y,4, Y¥, etc. It remains to show that
YnEfH = Vintin) * Y,2 for some Ving1n) € (0, T) C A, n>e.

Let n > e be arbitrary, but fixed. We know by assumption that we have
Yn‘il = Vintim) ° YA for some Vint1,m) € (p,T). But Y2 =Y AN B for every m
and therefore

n n

Vinstn) - Yo' € Vsrny Yo NB = Y4, NB = V.7,

for every n (this argument works for any submodule of A). It therefore suffices
to prove the other inclusion. Let z € Y,B | = YnA+1 N B, * = Viq1,n) -y for
some y € YA ie., 2 = (2;)ien, and y = (y;)ien, satisfy Ving1m) " Yi = Ti € B;
@ y(2)

for every i > 0. Since B; and C; are A-modules, it follows that y; = y; i
= 0 for every i. But then we can

1(1) c Bia y(2) c CZ and V(n—i—l,n) : y7,(2)

' M

i
element gy € B N YnA = Y,B such that = = Vint1n) Y € Vinyln) -Y,B. This shows
that B is a Fukuda module with index barrier e = e(A4). By interchanging the
roles of B and C, one can show analogously that C' is a Fukuda submodule of
A. O

with y

replace y; by vy, for every i, since fi;(y,”’) = yj(l) for each 7 > j. We obtain an

Remarks 3.13.

(1) The following example shows that arbitrary, not A-complementable, sub-
modules of Fukuda modules in general will not inherit the Fukuda property
with the same index barrier:

Let A= @An be a Fukuda module with index barrier e, and let & € INg
be such that |A. 1| = p¥. We consider the submodule B := pF- A C A,
i.e., we let B, := p*- A, for each n. Then we have B.,; = {0}, since p”
annihilates Ac1, and therefore we conclude that B, = fe11.({0}) = {0}.
Now assume that B is a Fukuda module with index barrier e. Then The-
orem 3.6 implies that B,, = {0} for every m > e. But this means that p*
annihilates A; for every i > e. Now there are certainly Fukuda modules
that are not Z,-torsion modules. For example, Proposition 3.7 shows that
for any Z,-extension K /K, the Greenberg module X = Gal(L/K) is a
Fukuda module. But there exist Z,-extensions whose A-invariant (see The-
orem 1.32) is different from zero, and this exactly means that we cannot
have p¥- X = 0 for any k& € INg (see Proposition 1.31, (iv)). For example, if
p splits completely in K/Q and if K, denotes the cyclotomic Z,-extension
of K, then A(K/K) > ro(K) (compare |[Gr 76|, p. 266).

We will see in Example 3.15 a Fukuda submodule of the limit A = T&lAn
of class groups in a Zy-extension.

(2) Since the map A — p*- A is a A-module homomorphism, the above exam-
ple also shows that, in general, homomorphic images of Fukuda modules will
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not necessarily be Fukuda modules again. The inheritance of the Fukuda
property is not even true for isomorphisms, as we will see in Example 3.14,
(2). We therefore have to put additional assumptions on the isomorphism,
as in Lemma 3.8.

Example 3.14.

(1) Let L/K be a Zjy-extension. Assume that k C K is a subfield such that K/k
is normal with finite abelian Galois group A = Gal(K/k). Let furthermore
I' = Gal(L/K) = Z,, and assume that L is galois over k with Galois group
Gal(L/k) =T x A. Let us further assume that |A| is coprime to p.
Let H(L) denote the maximal p-abelian unramified extension of L. Then
A acts on the Greenberg module X = Gal(H(L)/L), as in Section 1.3 (in
fact, Gal(L/k) acts on X). Since X = A = lim Ay, via Artin’s isomorphism,
this defines an action of A on A.
Let A denote the group of characters xy : A — @; into a fixed algebraic

closure of Q,. For each x € A, one defines the idempotent

€y = Mi‘ Z x(o)- o7t € 0,A].

cEA

Here we note that ﬁ € Z,, since we assume that p { |A|, and the values

X (o) are contained in the ring Oy := Z,((s) of integral elements of a cyclo-
tomic extension Q,((r) € Q,, f = |A| (note that Z, only contains roots of
unity of order dividing p — 1). The idempotents satisfy the relations

Ex Ep = °X iXZQ/) , Zele and e, -0 =x(0) &gy
0 :x#v oy

for every o € A (compare [Wa 97], p. 100).
Now let x € A denote any fixed character. For every

g€ Gy = Gal(Qp(¢r)/Qp),

the map x“ defined by x?(0) := g(x(0)) is also a homomorphism from A

to Op; in other words, Gy acts on A. If Gy - x denotes the orbit of x € A
under the action of G¢, then

Z T(0) € Z,
TGGf~X

for every o € A (note that we are actually taking the trace to Q) here).
Let Aq,..., A, denote the distinct orbits of the action of Gy on A.
The elements

1
= A Y x(o) ]| ot ezla], 1<i<s,
UEA XEA'L

denote the orthogonal idempotents of the group ring Z,[A] (compare [Wa 97],
p. 339).
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Since A is a Zy[A]-module, and as the sum over the pairwise different idem-
potents €1, ...,&, is still equal to 1, we have a canonical decomposition

A:éé‘lz‘l
=1

of A-modules, coming from a decomposition into eigenspaces (the action of
each o € A yields a Z,-linear map on A, and ¢; - A is the eigenspace with
eigenvalue Trq, (¢,)/q, (X(0)), X € A; arbitrary).

Every module €;- A is a finitely generated torsion A-module, and Proposition
1.28 yields invariants u;, A;,v; € 7Z attached to &; - A, respectively. In
particular, the Iwasawa invariants u, A, v of L/K satisfy

S S S
u:Zui, )\:Z)\i and V:ZW.
=1 =1 i=1

In this situation, Lemma 3.12 implies that each ¢; - A is a Fukuda module
having the same index barrier as A. Indeed, it suffices to show that the

decomposition
S
A=Pe-A
k=1

is compatible with the norm maps f;; : A; — A; for every i > j, i.e., that
fij(Ek . Az) - Ek Aj.
Now an application of the norm f;; on A; may be identified with the action
of the element > o of the group ring Z,[Gal(L;/L;)], respectively.

oeGal(Li/L;)
Since Gal(L/k) = Gal(L/K) x A is abelian by assumption, we see that
Gal(L;/k) = Gal(L;/K) x A for every i, and therefore the group ring
elements fi; € Z,|Gal(L;/L;)] C Z,[Gal(L;/K)] and ¢}, € Zp[A] commute,
ie.,

fij(en - Ai) = ek fij(Ai) C e A

for every k € {1,...,s}, ¢ > j > 0. This shows that we may apply Lemma
3.12.
For the sake of simplicity, we will for the moment assume that p # 2. Let K
denote a CM-field, i.e., a totally imaginary quadratic extension of a totally
real number field k := K. If L denotes the cyclotomic Z,-extension of K,
then L, K and k satisfy the condition from example (1), i.e.,

Gal(L/k) 2 T x A,

where A := Gal(K/K™) is generated by the complex conjugation map j.
According to the above general example, we have a canonical decomposition

A=ATp A
of A-modules, where A = @A;L),

1

A+:EXO'A:(2

(1+4)) A
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corresponds to the trivial character xg € A, and
1

A" =g A= (2

(1-j))-A

corresponds to the nontrivial character of A.

Proposition 13.28 in [Wa 97] shows that the Fukuda module A~ does not

contain any non-trivial finite A-submodules. Now suppose that K/Q is

abelian, and that every prime of k = K dividing p is split in K/k. It is

known that in this case,

e u(L/K)=0 (compare [FW 79]), and

e )N (L/K):=XA") > g, where g > 1 denotes the number of primes
of KT dividing p (see Section 2 of [Gr 73(2)]).

Since p~ (L/K) := p(A7) < u(L/K) =0, and as A~ does not contain any

non-trivial finite submodules, Proposition 1.31, (i) and (iii) imply that A~

is a finitely generated free Z,-module. In particular, multiplication by p is

an injective A-module homomorphism on A~.

Moreover, if e = e(L/K) denotes the index barrier of A, and if k € INy is

large enough to ensure that p* - A, = {0}, then the isomorphic image

p* - A= of A~ cannot be a Fukuda module with index barrier e, because

A(A™) > 1 and therefore p*- A~ # {0} (see Remarks 3.13, (1)). This shows

that isomorphic images of Fukuda modules will not automatically inherit

the Fukuda property (compare Remarks 3.13, (2)).

We will conclude the current section with an important example of a Fukuda

submodule of the projective limit of ideal class groups A = I'LmA,(lL) attached
to a Zy,-extension L/K.

Example 3.15. Let L/K denote a Z,-extension, let A = lim AP be defined
as usual. Since A is a finitely generated torsion A-module, Theorem 1.24 implies
that there exists an exact sequence

0— M — A5 Ey —s My — 0

of A-modules, where F4 denotes an elementary A-module in the sense of Defi-
nition 1.23, and where M; and M, are finite A-modules. In other words, there
exists a A-pseudo-isomorphism ¢ : A — E4 with kernel M; and cokernel Ms.
We want to show that M; C A is a Fukuda submodule with index barrier
e:=e(A) =e(L/K).

For each n € Ny, we define (M;),, := pr, (M), where pr,, : A — AF) de-
note the canonical projections. Then each (M), C A is a A-submodule. If
fij Al(-L) — A;L), i > j, denote the norm maps, then f;;((M);) = (My); for
each ¢ > j, since f;j o pr; = pr; for every i > j.

It therefore remains to prove Property (F). Let n > e be arbitrary, let Y1,
respectively, Y4, denote the kernels of the projections pr, : My — (Mi)n,
respectively, pr,, : A — A,,.

Then VM = V,A N M; and therefore

M A A M-
V(n+1,n) YR C V(n+1,n) Yo N M = Yn—i—l N M = YnJrll .
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We want to prove the converse.
Let z € Ynj\fl be arbitrary. Since

M A A
Yn—i-ll = Yn+1 N M = Y(n+1,n) ‘Yn N My,

we may write T = V(1) - y for some element y € YA, and we want to prove
that y € My = ker(y). Since x € M, we have

0 = @) = eVmnt1,n)  Y) = Vitrin) - 2W) -

If X denotes the Greenberg module attached to the Z,-extension L/K, then
we have shown in Proposition 1.44 that v, 1) is coprime to the characteristic
polynomial of X for every n > e. But X = A, and therefore the elementary
A-modules attached to X and A are equal by Corollary 1.25, (i), implying
that multiplication by v(,41,) is injective on E4 (recall that A is a unique
factorisation domain). Therefore 0 = ¢(y), i.e., y € M, as claimed.

3.2 Ramification and Greenberg’s topology

In this section, we want to investigate an important drawback which limits the
strength of Fukuda’s Theorem 3.1 and of its generalisation, Theorem 3.6: The
statements of these theorems only hold for n being large enough, i.e., greater
than the index barrier e, which in the classical case of ideal class groups in Z,-
extensions (Theorem 3.1) is given by the ramification describing integer defined
in Proposition 1.3.

We therefore want to study the local behaviour of the function

e: E(K) — Ny, Lr—e(l/K),

where K is a fixed number field. More precisely, we will investigate the values
e(L/K), where L ranges over certain open or closed neighbourhoods in the sense
of Greenberg’s topology (compare Section 2.3). In particular, we will look for
subsets of £(K) restricted to which the e invariant remains bounded.

It turns out that one can modify Greenberg’s topology in order to obtain
a topology with respect to which e is locally bounded. This topology will take
care of ramification. At the end of the section, we will study in some detail
which sets of primes of K typically occur as ramification sets of Z,-extensions
of K, looking at the example of a CM-field K in which p is totally split.

We start with the following already known facts.

Lemma 3.16. Let L/K be a Z,-extension.

(i) Lete=e(L/K), and let L' € E(K) be such that L N L' O Ley1. Then
every prime of K that ramifies in L also ramifies in L.

(ii) If there is only one prime of K lying above p, then e is locally constant,
i.e., for any L € E(K) there exists an open neighbourhood L € U C E(K)
such that e(L' /K) = e(L/K) for every L' € U.

Proof. We have shown these two statements in course of the proof of Theorem
3.2, (i). O
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We introduce some notation.

Definition 3.17. Let Z := {pi1,...,p:} be the set of all prime ideals of K
lying above p. For any Z,-extension L of K, let P(L) denote the subset of 7
consisting of the primes that ramify in L/K. Define £Z(K) to be the set of
all Z-extensions L of K satisfying P(L) = Z. For any subset § # I G Z, let
ENK) :={L € &K) | P(L) = I}, and let £I(K) C £(K) denote the set of all
L € E(K) satisfying P(L) C I.

Now we are able to generalise the above lemma:

Lemma 3.18. The following assertions are stated with respect to Greenberg’s
topology on E(K).
(i) EL(K) C E(K) is open. elez(ky is locally constant.
(i) Let Koo/K denote the cyclotomic Zy-extension of K (see Example 1.5).
Then Ko € EX(K). In particular, EL(K) # O for every number field K .
(iii) The set EX(K) is dense in E(K). The sets EN(K) and EN(K), I # T,
contain no nontrivial open subsets.
(iv) Fiz some I CZI. Then e is bounded on every closed subset V C E1(K).
(v) Let ) # 1 C T be fived. The set EL(K) is closed and therefore compact.
The set EN(K) is closed if and only if E1(K) =0 or EN(K) \ EN(K) = 0.
(vi) For any L € E(K) there exists an open neighbourhood U of L such that e
is constant on U N EPE)(K).
Fiz some 0 #1 CT.
IfENK)\ EN(K) =0, then elerry = €|51(K) is globally bounded.
If ENK)\ ENK) # 0 (and E(K) # 0), then eler(x) and therefore also
e|£~,(K) 1s unbounded and 6|51(K) in general is not locally constant: For
L € SI(K), the existence of an open neighbourhood U of L such that
€|UméI(K) is constant is equivalent to the condition that P(L) = I.

Proof. (i) Let L € E2(K). Then every prime ideal of K lying above p ramifies
in L. Let U := &(L,e(L/K) + 1). Then P(M) = Z for every M € U by
Lemma 3.16, (i). Therefore U C £Z(K), i.e., EX(K) is open. Furthermore,
e(M/K) =e(L/K) for every M € U (compare the proof of Theorem 3.2,
(1)), and therefore e|y; is constant, proving (i). Note that this generalises
the statement of Lemma 3.16, (ii), and will be strengthened further in
(vi).

(ii) Let Ko be the cyclotomic Zy,-extension of K. We want to show that
every prime ideal of K dividing p ramifies in K, /K. By definition of K,
(see Example 1.5), we have Ko, = {J,,> o Kpn with K, = K - Byy,. Here
By = K N By, where B, denotes the union of the unique cyclic subfields
B, € Q(¢ym+1) of degree p™ over Q, respectively (with slight modifica-
tions in the case p = 2), as described in Example 1.5. In particular, p is
totally ramified in B,,,/Q for every m.

Now choose any m € IN such that [B,, : Q) = p™ > [K : Q]. Let p be
a prime of K lying above p, and consider the field B,, - K, which is a
non-trivial Galois extension of K with cyclic Galois group

Gal((By, - K)/K) 2 Gal(B,,/By) .
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We have the following diagram of fields.

B, — K -B,,

Q— K

Now we choose a prime P in K - B, lying above p; let p’ := PN Op, .
Since p is totally ramified in B,,/Q, the ramification index e,(B,,/Q)
equals p™. In particular, (p/)P" divides (p) in the ring of integers of B,,,
and therefore at least BP" divides (p) in the ring of integers of K - B,,.
But since ey, (K/Q) < [K : Q] < p™, it then follows that p has to ramify
in (K -B,,)/K. Since p was arbitrary, the assertion follows.

Let L € £(K) be such that P(L) G Z. The idea is to show that there exist
Zp-extensions of K contained in the composite of L with the cyclotomic
Z,-extension Ko, of K that are arbitrarily close to L and belong to EZ(K).
For this purpose, let n € IN be arbitrary, and consider

E(Lyn)={Mec&K)|MNLDL,}.

We make use of the following basic lemma:

Lemma 3.19. Let L', L? be different Zp-extensions of K, and let us

write I :== P(LY) and Iy := P(L?). Let M := L' - L?.

(i)  Suppose that L' N L? = K. Let o1, 03 denote topological generators
of Gal(M/K) such that Gal(L!/K) is generated topologically by the
restriction o;| i, respectively. Then we consider Z,-extensions M of
K contained in M :

<og2>
Lt M
<a%~al2’>
<0'1‘L1> M <o1>
K 2
<a‘2\L2>

We can write Gal(M/K) = Gal(M/K)/ < o¢ - 0% > for suitable
elements a,b € Zyp, and we know that one of them is a p-adic unit
(see Proposition 2.8). In this situation, the following holds:
If p* || a and p! || b, then M N L' = (LY, and M N L? = (L?),.
Here (LV);, as usual, denotes the j-th intermediate field of L'/K,
respectively.

(ii) P(M) = I, Uy for all but at most |I,NIy| Zy-extensions M C M. In
the exceptional Z,-extensions, we could have p unramified for some
p € Iy N Iz; for every such p, at most one such Z,-extension exists.

Proof. (i) Define k and [ by the properties p" || a (ie., p¥ | aand pF*lta
in Z,) and p' || b, respectively. Since Gal(M /K) = Z, contains no
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p-torsion elements, k = 0 or [ = 0 (compare the proof of Proposition
2.3). Without loss of generality, we may assume that [ = 0. Write

azp’“u,uEZZ. Then

k -1
<0'%‘0'127>Zp = <ol oY,

and therefore, letting b’ :=u"'-b € Zy,
Gal(M/K) = <oy,00> / <U]flc b >

ie. alk =o,° Y in Gal(M/K)
The intersection M N L' is uniquely determined by the subgroup H
of Gal(M/K) fixing it. Since

H =<0 oY o9> = <o
- 1 092,02 - 0-170-2>)

it follows that M N L' = (L').

Furthermore, b € Z;, because | = 0, and thus we can write
<Uf~012)> = <o ' 02>,

Therefore oy * 7 = ) in Gal(M /K), which implies that o2 acts

trivially on M N L?, and therefore M N L? C M<92:91> = K,

Let us first con51der a prime p € Z such that p € I, p & Iy, ie., p

ramifies in L', but not in L?. Let

T = Ty(M/K) C Gal(M/K) = 7.

denote the inertia subgroup of p in M /K. Then the Z,-rank of T' is
greater or equal to 1, since p is totally ramified in Ll/(Ll)e(Ll/K).
Indeed, if rankz, (1) was zero, then T" would have to be trivial, since
it is a closed subgroup of Gal(M/K), and the only finite closed sub-
group of Z2 is {0}; but then p was unramified in M/K.

On the other hand, p ¢ P(L?) implies that L? C MT, and therefore
rankz, (1) < 1, i.e., rankz, (T) = 1.

Now let M C M denote a Z,-extension of K such that L # M + L2
Then p cannot be unramified in M, since otherwise M - L2 C M7,
and as Gal(M - L?/K) is isomorphic to (a subgroup of finite index m)
ZZ, we would conclude that rankz, (T') = 0, yielding a contradiction.

Therefore p € P(M).
By a symmetric argument, it follows that p € P(M) for every prime
p € I\ I1. Let us look now at the primes p € Iy N I. If p & P(M),
then M C M7, Therefore, for any such p, at most one Z,-extension
M with p ¢ P(M) does exist, since otherwise, its inertia group
would satisfy rankz, (') = 0, which would contradict the fact that p
is ramified in L' and L2. The assertion follows.

O
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Now we return to the proof of (iii). We apply the above lemma with
L' := L and L? := K, the cyclotomic Z,-extension of K. Let n € IN
be arbitrary. Since there exist only finitely many Z,-extensions M of
K contained in L - Ko that satisfy P(M) S T =P(L)UPKs), by
Lemma 3.19, (ii), we can choose M € £(L,n) such that P(M) =Z, i.e.,
M € EX(K).

Now assume that U C E/(K) or U C EI(K), T G I, is non-trivial and
open. Let L € U be a Zy-extension of K such that £(L,n) € U for some
n € N. Since £(L,n) N EL(K) # 0, because EX(K) C £(K) is dense, this
gives a contradiction because £Z(K) and £7(K) (respectively, £ (K) and
E1(K)) are disjoint by definition.

If e|y was unbounded, we could choose a sequence (M (™), <, of elements
in V C &/(K) with unbounded e(M ™ /K). Since V is closed and therefore
compact, the sequence (M ™),, > o would contain a subsequence converging
to a field M € V C &/(K). Without loss of generality, we may assume
that the M themselves converge to M and that (M N M) D M,, for
every n > 0. But then, for every n > e(M/K) + 1, each prime of I would
ramify in (M(”))e(M/K)H/K, and in particular,

e(M™/K) = e(M/K) < oo

for these n. This contradicts the unboundedness of the e(M ™ /K).
Let ) # I C 7, and consider a sequence (M®);>o of elements in E!(K).
Since £(K) is compact, there exists a convergent subsequence M n@) M
for a suitable M € £(K). Without loss of generality, we may assume that
the M themselves converge to M. We want to show that M € £/(K),
i.e., that P(M) C I.
Since M) — M, we may assume that (M® N M) D M; for every i > 0.
But then, for i > e(M/K) + 1, every element of P(M) has to ramify in
M9D/K, ie.,

P(M)CPMD)CT,

and therefore M € ET(K).

Now consider the set £/(K). Without loss of generality, we may assume
that it is not empty. If E/(K)\ E/(K) = 0, then £'(K) = E(K) is closed
by the above.

Now assume that there exists a Z,-extension N of K such that P(N) G I.
Then we can construct a sequence N9 —s N such that P(N®)) = I for
every ¢ by considering appropriate Z,-extensions of K contained in the
composite of N with an element M € £/(K), and using Lemma 3.19, as
in the proof of (iii). Thus N® ¢ E(K) for every i, but N ¢ £/(K).
Therefore £1(K) is not closed in this case.

Let L be an arbitrary Z,-extension of K. Then Lemma 3.16 implies that
P(M)="P(L) and e(M/K) = e(L/K) for every

M e E(L,e(L/K)+1) N EPEN(K) .

We fix a subset § # I C Z. If E(K)\ E/(K) = 0, then £/(K) = £E/(K) is
closed by (v). It follows that e|gr(f is globally bounded, using (iv).
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Now let L € £/(K) be a Z,-extension of K such that P(L) G I. Assume
that there exists an integer n € IN such that e is bounded by a constant
E € N on £(L,n) N E(K). Define m' := max(n, E + 1). Then we
choose M € E'(K) and make use of Lemma 3.19, applied to L! := L
and L? := M, in order to obtain a Z.,-extension M of K contained in
L - M such that M € £(L,m’') and P(M) = P(L) U P(M) =P(M) =1.
In particular, since P(L) & I and ~(]\~4)l = L; for every i < E + 1, we
must have e(M/K) > E+ 1. But M € £(L,n) N E/(K), proving that e
cannot be locally bounded, and in particular cannot be locally constant.
Moreover, this shows that e|gr (g is unbounded if ENK)\ EN(K) # 0 and
ENEK) #0.
If, on the other hand, L € £7(K) satisfies P(L) = I, then we have seen
above that e| &1 (K) is locally constant around L.

O

Remarks 3.20.

(1)

(2)

There are two general principles which can be learned from the proofs of
the preceding lemmas:

e If we consider a sequence (M ("))nzo of Z,-extensions converging to
an extension M, then the set of primes ramifying in the limit M can
be strictly smaller than the P(M ™) (compare the proofs of Lemma
3.18, (iii) and (v)). On the other hand, every p € P(M) has to ramify
also in the M (™ for n being large enough.

e  If we consider a Greenberg open neighbourhood £(L, n) of a Z,-exten-
sion L of K, then the set of primes ramifying in an arbitrary extension
M € E£(L,n) can be larger than P (L), since in general, it is possible
that e(M/K) > n, so that there can exist primes that have not yet
started ramifying in M,, = L,,.
If n > e(L/K), then we have at least P(L) C P(M) by Lemma 3.16,
(i), whereas for n < e(L/K), we can only say that the p; € P(L) that
have already started ramifying in L,,/K will also belong to P(M) (it
is plausible that for small n we do not have much information about
M, since then £(L,n) is quite coarse).

Both cases mentioned in Lemma 3.18, (vi) do occur: Consider the special

case I = T. First of all, it is clear that £EZ(K) = £(K) if there is only one

prime of K lying above p. But there are also a lot of fields K such that

there exist Z,-extensions L/K in which some of the primes p; € Z above p

are unramified. We will now give an example.

Example 3.21. Consider a number field K. Then

[K:Q] = ) [Kp: Q)

pl(p)

(see [Neu 92|, Corollary I1.8.4), where K, denotes the completion of K with
respect to the non-archimedean absolute value induced by the prime p, respec-
tively. For any finite extension K of Q,, we have

Ky 2 Z&Z/(p-1)Z & Z/p"Z & 78,
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where d = [K, : Qp], and where a > 0 is the greatest integer k such that K,
contains a primitive p*-th root of unity (compare [Neu 92], Theorem I11.5.7).
Now let us assume that p splits completely in K/Q. Then the above degree
formula implies that [K, : Q,] = 1 for every p dividing p. This means that
K, = Q, for all p. Therefore, we have d =1 and a = 0 in the decomposition of
K, since Q, does not contain any p-power root of unity (see [Gou 97|, Prop.
3.4.2). This means that for every p | p,

Ky 2ZoZ/p-1)2ZSZ, =7 UK,),

where U(K,) := {z € K, : |z, < 1}. Here |.|, denotes the absolute value
induced by p. We have thus shown that the Z,-rank of (the pro-p-part of)
U(Ky) is equal to 1 for every p | p.

Now let L/K be a Zg—extension, d > 1. For every prime p | p of K, we consider
the abelian extension L/ Ky, where Kj, as above, denotes the completion of K
with respect to the absolute value induced by p, p is any prime of L lying above
p and Ly = J; Lip, is the union of the completions of the finite subextensions
L; C L of K with respect to the primes p; := p N L;, respectively.

If T5),(L/K) denotes the inertia subgroup of p over K, then we have an isomor-
phism Ty, (L/K) = T(Lg/Ky) (see [Neu 92], Theorem I1.9.6). Here T(Lg/Ky)
denotes the inertia group of the Galois extension Lg/ K} of the local field K, in
the sense of valuation theory: Let v, denote the normalised valuation induced
by p, ie., if z € K* and () = p*- A with ¢ € Z and A Z p, then v,(z) = i.
Then K is complete with regard to v, and there exists a unique extension w
of vy to Ly. We define the decomposition group

and the inertia subgroup
T(Ly/Ky) = {0 € Z(Ly/K,) | o(x) =2 mod p Va € Ly with w(z) >0} .

Now local class field theory (see [Wa 97|, p. 403) implies that T(Ly/K}) is
isomorphic to a quotient of U(K,) (we have to divide out the intersection of
the norms Ny, .k, (U(Lip,)) of all finite subextensions of Lg/Ky). By the
choice of K, the Z-rank of U(K)) is equal to 1, and so rankz, (Tp),(L/K)) <1
for every p | p.

In particular, if L/K denotes the composite of all Z,-extensions of K (see
Section 2.1), then Gal(L/K) = Z4 with d > r5(K) + 1 (see Theorem 1.7). If
we assume that ro(K) > 1, i.e., that K is not totally real, then d > 2.

For every prime p; of K lying above p, the Z,-rank of the inertia group

Ti = Ty, (L/K)

of any prime p; of L dividing p; is less than or equal to 1, by the above. There-
fore, letting M@ := LTi be the corresponding fixed field, we conclude that
ranky, (Gal(M®)/K)) > d—1 > 1. This proves that there exists a Z,-extension
M® C M® of K in which p; is unramified.

To summarise, we have shown that if K is a number field, not totally real, in
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which p splits completely, then for every prime p; of K dividing p (i.e., p; € Z in
the notation of Definition 3.17), there exists a Z,-extension M) /K such that
p; is unramified in M and therefore M) € £(K)\ EX(K).

Furthermore, if ro(K) > 2, then for every pair (p;,p;) of primes lying above p,
there exists a Z,-extension M of K such that p; and p; are unramified in M,
ie., M € EPMPibi}(K). Indeed, the Z,-rank of the subgroup T, ; of Gal(L/K)
generated by T; and T} is less or equal to 2, and therefore

rankz, (Gal(L7%/K)) > d—2 > ry(K)+1-2 > 1.

More generally, this shows that there exist number fields K and Z,-extensions
of K in which arbitrarily many primes lying above p are unramified.

Lemma 3.18 enables us to prove the following generalisation of Theorem
3.2:

Corollary 3.22. Let L/K be a Zy-extension. We define, for any n € Ny,
U(L,n) = E(L,n) N EPENK) ,

where E(L,n) ={M € E(K) | [([M N L) : K] >p"}, as usual.

Ifn>e(L/K)+ 1, then e is locally constant on U(L,n). Moreover,

(i) If W(L/K) = XNL/K) =0, then there exists an integer ng > e(L/K) + 1
such that W(M/K) = A(M/K) = 0 and v(M/K) = v(L/K) for every
M € U(L,ng). In other words, the Iwasawa invariants are constant on
U(L,no).

(i) If u(L/K) = 0, then there exists an integer ng > e(L/K) + 1 such that
w(M/K) =0 for every M € U(L,ng), i.e., p is constant on U(L,ng).

Proof. The first statement is obvious, since Lemma 3.16, (i) implies that we
have P(M) = P(L) for every M € U(L,n), provided that n > e(L/K) + 1.
Now we can copy the proof of Theorem 3.2:

For (i), note that u(L/K) = A(L/K) = 0 implies that there exists an integer
ng > e(L/K) 4 1 such that |A£,€)| = |A££)| for every m > ng (see Theorem
1.32). Then we can use Fukuda’s Theorem to deduce \A%M )| = |A%)\ for every
M e U(L,ng+ 1) and m > ng, and therefore p(M/K) = A\(M/K) = 0 and
prM/E) — | A M)] ]A \ " EIE) for every M € U(L,ng + 1).

In order to prove (ii), we use the fact that u(L/K) = 0 if and only if the
p-ranks of the A%L) remain bounded as n tends to co, which again is equivalent
to saying that there exists an integer ng € IN such that rank,(A4,,) = rank,(Ay,)
for every m > ng, as we have shown in the proof of Theorem 3.2, (ii). Now we
can use the second statement of Fukuda’s Theorem 3.1 and continue as in the
proof of (i). O

Remarks 3.23.

(1) Of course the statements of the corollary are non-trivial only for Z-exten-
sions L/K such that EP()(K) is infinite. Note that for any set I C Z,
the condition that £/(K) is finite is equivalent to saying that |E1(K)| < 1.
Indeed, if there exist at least two different Z,-extensions L and M with
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P(L)=1="P(M), then we can consider the composite L - M, and Lemma
3.19, (ii) yields the existence of infinitely many elements of £!(K) being
contained in L - M.

If P(L) =7, then U(L,n) = E(L,n) for every n > e¢(L/K)+ 1. One draw-
back of Corollary 3.22 is the fact that for P(L) & Z, we make a prediction
on the M € U(L,n), but not on the larger and canonical set £(L,n).

If there is only one prime of K lying above p, then £(K) = £Z(K), and so
we obtain Theorem 3.2 as a special case of the above corollary.

If |Z| = 2, i.e., there are exactly two primes p; and py of K which divide p,
then we have a decomposition

E(K) = eP(x) | ) ev2h(x) | £5()

into disjoint sets. If the first two sets are empty (which does happen, see
Lemma 3.30, (i) below), then £2(K) = £(K), and U(L,n) = £(L,n) for
each L € £(K) and every n € INo.

If one of the first two sets is infinite, we can apply Corollary 3.22 in order
to obtain information about the corresponding Z,-extensions L/K with
P(L) = {p;} which is not covered by Theorem 3.2.

If L/K denotes a Zy,-extensions with |P(L)| = 1, then there is an effective
upper bound on e(L/K), given by the exponent of the Galois group of the
Hilbert class field of K over K.

Note that for L ¢ EZ(K), the sets U(L,n) will not be open in the sense of
Greenberg’s topology (compare Lemma 3.18, (iii)), and therefore Corollary
3.22 does not imply that the sets

{L € &(K) | n(L/K) = NL/K) = 0}
{L € &(K) | p(L/K) =0}

are Greenberg open, as was the statement of Theorem 3.2 in the case
|Z| = 1. We will now define a modified topology on £(K) that allows
us to get a result analogous to Theorem 3.2.

Definition 3.24. For every Z,-extension L of K and any n € INg, we let

U(L,n) = &E(L,n) N EPEN(K)
{Me&K)|[(MnNL):K]>p" and P(M)C P(L)},

as in Corollary 3.22. Then the U(L, n) generate a topology on £(K) (see Lemma
3.25 below), which we call the Greenberg-R-topology.

Using this terminology, Corollary 3.22 can be restated as follows:

Corollary 3.22) The sets

{L e &(K) | u(L/K) = AML/K) =0}

and

{L € &(K)|uL/K) =0}

are open with regard to the Greenberg-R-topology.
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Lemma 3.25.
(i) The sets U(L,n), with L € E(K) and n € Ny, generate a topology on
E(K).

(ii) For every L and n, U(L,n) is closed with respect to Greenberg’s topology.
It is Greenberg open if and only if P(L) =T.

(iii) e is constant on U(L,n) if n > e(L/K) + 1.

(tv) The set E(K) of all Zy-extensions of K is compact with respect to the
Greenberg-R-topology if and only if £(K) = EX(K).

Proof. (i) First of all, £(K) = U(Kw,0), where K, denotes the cyclotomic
Zy-extension of K. We will show now that for any L, M € £(K) and
arbitrary n, m € Ny, the set U(L,n) NU(M,m) is a (possibly empty) finite
union of sets U(N;,n;). Then {U(L,n) | L € £(K),n € Ny} generate a
topology on £(K).

We may assume that n > m. If M ¢ E(L, m), then U(L,n) U (M, m) = 0.
Otherwise, we have

U(L,n) NUM,m) = E(L,n) N EPP(K) N EPMI(K)
= &(L,n) N EPEINPIM) () |

If there does not exist any Zy,-extension N € £(L,n) satisfying
P(N) C P(L) N P(M),

then again U(L,n) N U(M,m) = (). Otherwise, we choose sets
I,....I. € P(L) N P(M)

such that

° for every i = 1,...,r, there exists an element N; € £(L,n) with
P(NZ) = Il‘, and

e for every N € E(L,n) with P(N) C P(L) N P(M), there exists an
i€ {l,...,r} such that P(N) C I,.

-
Then it is easy to see that U(L,n) N

1
UM, m)=J UN;,n).
i=1
(ii) Since U(L,n) = E(L,n) N EPE)(K), the assertions follow from Lemma
3.18, (i), (iii) and (v).
(iii) Compare the proof of Corollary 3.22.
(iv) We obviously have

gryc  |J um,

Le&(K)
n>e(L/K)+1

and by (iii), e is constant on every U(L,n) occurring on the right hand
side. This means that e would be globally bounded on £(K) if this set
was compact with respect to the Greenberg-R-topology, since in this case,
it could be covered by finitely many of the U(L,n). But we have seen in
Lemma 3.18, (vi) that e is unbounded if £(K) # &7 (K).
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If, on the other hand, £(K) = £Z(K), then U(L,n) = £(L,n) for every
Zy-extension L of K and every n € INg, respectively, i.e., the Greenberg-
R-topology and the Greenberg topology coincide, and £(K) is compact
by Lemma 2.26.

O

Remarks 3.26.

(1) The proof of the last part of Lemma 3.25 shows that whenever we have
E(K) 2 EX(K), i.e., the classical theorem of Fukuda does not apply in gen-
eral, and whenever T is a topology on £(K) such that e is locally constant
(or even only locally bounded) with respect to 7 — which implies that we
can nevertheless use Fukuda-like arguments to study the local behaviour
of Iwasawa’s invariants —, then £(K) cannot be compact with regard to
the topology T, and so we cannot gather global information such as the
boundedness of some invariant on the whole set £(K).

More briefly: there seems to be no topology on £(K) that allows dealing
with local and global properties of Iwasawa invariants simultaneously.

(2) If K/K denotes a Z’;—extension, k € IN, and if E¥(K) consists of the Z,-
extensions of K contained in K, then E¥(K ) is compact with respect to
the Greenberg-R-topology if and only if every M € £<¥(K) has the same
ramification set P(M) = P, P C 7 fixed. This can be proved analogously
to Lemma 3.25, (iv) by using Lemma 3.18, (vi) and noting that Greenberg’s
Lemma 2.26 actually remains valid in this more general situation, i.e., the
set E<¥(K) is compact with respect to Greenberg’s topology.

(3) For every L, M € E(K) and each n € IN, we know that L € E(M,n) if
and only if M € £(L,n). This is not longer the case if we consider the
U(L,n), at least if £(K) # £X(K). This missing symmetry, resulting from
the ramification condition in the definition of the U (L, n), shows that there
will not be a metric on £(K) lying behind the Greenberg-R-topology. Note
that on the contrary the classical Greenberg topology is induced by

o = [ L=M
S M LA M

where n(L, M) is determined by [(L N M) : K] = p™ LM compare Section

2.3.

We want to study which subsets of Z typically appear as ramification sets of
Zy-extensions of K. We will show that in general, it is likely to have ENK)=10
for at least some subsets I CZ = {p1,...,p¢}-

Lemma 3.27. Let K be a number field, let X denote the composite of the

Z,-extensions of K. Then K/K is a Zg—extension, for some d € IN.

(i) Let us denote by a; the rank of EW(K), i = 1,...,t, i.e., the maxi-
mal number of pairwise independent Z,-extensions M € 5{pi}(K). Then

t
SY a; < d. In particular, at most d of the sets EPi}(K) are non-empty.
i=1
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(i)

(iii)
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More generally, if I, . .., I}, C T denote subsets such that Ijﬂ(U#j L)=10

k
for each 1 < j < k, then Y rank(E%(K)) < d, where rank(E%(K)) de-
i=1
notes the mazimal number of pairwise independent M € Sli(K), respec-
tively.
For every p; € Z, we let P; be any fized prime of K lying above p;. Let
T; := Ty, ), (K/K) denote the inertia subgroup of B; in K/K, 1 <i <t.
If T; = {0}, then EW(K) = 0.
More generally, if rank(EW¥:}(K)) = a; € N, then rankz, (T;) > a;.

Proof. (i) This is a special case of (ii).

(i)

(iii)

Let I;,Is C Z denote subsets such that Iy NIy = (). Let L% denote the
composite of all Z,-extensions of K contained in £%i(K), i = 1,2. Then
LM N L@ is a finite extension of K, since every Zp-extension M of K
contained in L) satisfies P(M) C I;, respectively. Therefore

Gal(LW - LW)/K) = z 2|

where 7; = rank(£%¢(K)), respectively, i.e., Gal(L() /K) = Zi,i=1,2.
Inductively, if Kk € IN, Iy, ..., I CZ denote subsets such that

I; N (U L) =0
1#£]

for each 1 < j <k, and if L denotes the composite of the Z,-extensions
of K contained in £%(K), 1 <i < k, then

where 7; = rank(E%(K)), 1 <i < k.

Indeed, suppose that the statement is true for k—1. Then L., . .L(=1 ig
a Zy' T Lextension of K. Since I, N (Y] I;) = 0, each prime p € I
is unramified in (L. . .- L1 /K and therefore L*) 0 (LM, .. L(*k=1)

is finite over K. In other words,
Gal((L(l) o L(k))/K) o Z;;lJr..‘Jrrk 7

proving our claim. Assertion (ii) follows because (LD - ... . L)) C K.
We first note that the subfield

t
K = ]Kil;ll B
of K fixed by the smallest subgroup of Gal(I{/K) generated by all the
inertia subgroups T; (which is simply [], T, since Gal(I/K) is abelian)
has to be a finite extension of K, since every prime of Z is unramified in
K, and therefore
K :K] < [H(K): K] < o,

where H(K) denotes the maximal unramified p-abelian extension of K.
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Therefore rankzp(H;l T;) = d. But this implies that we have, for any
fixed i € {1,...,t},

T; ={0} <= rankg, (T;)=0

= rankz, (]| Tj) =d

— L0 .= Ki# ’ is a finite extension of K
— ik =09,

noting that a Z,-extension M of K is contained in L® if and only if

M e e (K).

More generally, rankZp(S{pi}(K )) = a; implies that there exists a Zgi-

T.
extension M® of K such that M@ C ]Kjgi ’. This is equivalent to the
fact that
rankZp(H T;) < d—a;.
J#

Since rankz, (], Ts) = d, by the above, this implies that rankz, (T;) > a;.

Note that the reverse conclusion of this last step in general will not be true,

since the subgroups T; C Gal(IK/K) might have non-trivial intersection.
O]

In particular, if K denotes a number field such that |Z| > d, then Lemma
3.27, (i) implies that EPi}(K) = () for at least some of the p; € Z. Using class
field theory, we will be able to get much more precise information about the sets
EN(K) and £'(K). Starting point will be the following lemma, which is a direct
generalisation of [La 90], Chapter 5, Theorem 5.1, and [Wa 97], Corollary 13.6
(compare Lemma 1.8):

Lemma 3.28. Let K denote the composite of all Z,-extensions of K. Let I C 1
be a set of primes of K dividing p. Assume that L/K denotes the mazimal p-
abelian extension of K which is contained in K and unramified outside I. Then

Gal(L/K) ~ p-part of (I Up)/¢1(E)
pel

= ([To") /@B 0 [T,

pel pel

where the first map is a pseudo-isomorphism, i.e., a homomorphism with finite
kernel and cokernel (compare Definition 1.19). Here E denotes the set of units
of K, Uy and Up(l) are the sets of units, respectively, 1-units, in the completion
K, of K, and 11(E) denotes the closure (with respect to the product topology
on Hpel Up) of E under the diagonal embedding vy : E — Hpe] U, mapping
e (g...,8).

Moreover, if k C K denotes a subfield of K such that K/k is galois, and if
o(I) C I for every o € Gal(K/k), then the above pseudo-isomorphism actually
is a homomorphism of Z,|Gal(K/k)]-modules.
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Proof. The proof is analogous to the proofs of the above-mentioned theorems
(which deal with the special case I = Z). First of all, since L/K is an abelian
p-extension, class field theory implies that

Gal(L/K) = CK/HL,

where Ci denotes the group of idele classes of K and Hy, C Ck is a closed sub-
group associated to L/K (compare, for example, Theorem 14 in the appendix
of [Wa 97]). Moreover, a prime q of K is unramified in L/K if and only if
Ug - K*/K* C Hp, (by the same theorem).

Since IK/K is of finite index in the maximal p-abelian p-ramified extension
of K (compare [Wa 97|, p. 269), the definition of L implies that Gal(L/K) is
pseudo-isomorphic to (the p-part of) Ji/((I[,¢; Up) - K*), where Jx denotes
the group of ideles of K (i.e., Cx = Jx/K*). Here the product runs over all
(finite and infinite) primes p of K that are not contained in I and therefore are
unramified in L/K.

Now we consider the inclusions

Jrk 2 (I]:C@ 'II Up) - K* 2 (I]:L%) K

pel pgl pél

where the closure is taken with respect to the canonical topology on Jg. Note
that ([, Up) - K* is a closed subgroup of Jx. The quotient of the first two
groups Jg/ Hpe 1 Up- Hpez 7 Up - K* is isomorphic to the ideal class group of K
and is therefore finite (see [Neu 92], Theorem VI.1.3). The quotient group of
the last two groups is

HUp~HUp-K*/HUp-K* = HUp/(HUpmHUp-K*).
pel pel pel pel pel pel

In the next lemma, which is the analogon of Lemma 13.5 in [Wa 97|, we will
show that

[T [ U - K = ¢i(E),

pel P&l
where 17 is defined in the statement of Lemma 3.28. This proves the existence
of the desired pseudo-isomorphism.

Moreover, if k¥ C K is a subfield such that K/k is galois, then also L/k
is galois, by the maximality of L. Since L/K is abelian, Gal(K/k) acts on
Gal(L/K) by conjugation, as in Section 1.3.

Now we describe the action of Gal(K/k) on

U =10 ] K= Kr.
pel pel
We define an absolute value on Kj by letting d(x) := mpax(\:vp]p) for every

x = (xp)per € K.

By the Approximation Theorem (see [Neu 92|, Theorem 11.3.4), K C Ky,
embedded diagonally, is dense with respect to the above absolute value. There-
fore, every element = (zy)per € Ky can be viewed as the limit « = lim,, z,, of a
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sequence of elements =, € K. Let now o € Gal(K/k). Then o(x) := lim,, o(x,).
We will now show that this is well-defined.

Since every component K, of K is complete with respect to the absolute
value |. |y, respectively, we immediately see that K is complete with respect
to the absolute value d. In particular, a sequence in X; converges with respect
to d if and only if it satisfies the Cauchy condition. The convergence x, — x
in Ky implies that for every N € N, there exists an integer M € IN such that
d(zy — ) < p~ N for every n,m > M, i.e.,

Ty — T € pIY foreachpel .

But then
o(zn) — o(xy) € o(p)Y foreachpe [,

and therefore o(z,) — o(z,,) € pV for every p € I, since o(I) C I for every
o € Gal(K/k) and therefore in fact o(I) = I for each o. This shows that
(0(xyp)) forms a Cauchy sequence with respect to d and therefore converges to
an element o(x) € K;. Moreover, the limit o(z) does not depend on the choice
of the sequence x,, — z, and therefore o(x) is well-defined.

It is easy to see that this defines a Gal(K/k)-module structure on the
quotient ([[,c; Up)/4¥r(E); it suffices to note that ¢;(E) C Us are Gal(K/k)-
submodules of ;.

If q denotes a prime of K and if o € Gal(K/k), then the Frobenius homo-
morphism of o(q) is the conjugate of the Frobenius homomorphism of q by a
lift of o to Gal(L/k) (compare [Rib 01], 25.(B)). Therefore the above pseudo-
isomorphism

Gal(L/K) ~ ppart of (][ Up)/¢1(E)
pel

translates the conjugation operation of Gal(K/k) on Gal(L/K) into the action

on ([[,e; Up)/v1(E), because Artin’s correspondence identifies an idele
z = (wplper € [per Up — Ji

with the ideal [],; p? (@) of K (compare [Neu 92], p. 375). Therefore the
pseudo-isomorphism actually is a Z,[Gal(K/k)]-module homomorphism.
It remains to prove the following lemma.

Lemma 3.29. With the above notation, we have

[T ][0 -K* = u(E).

pel p&I

Proof. We modify the proof of Lemma 13.5 in [Wa 97| in order to deal with our
more general situation.
"2’ : By definition, we have ¢r(E) C [[,c; Up. We can regard ¢;(E) as a

subgroup of U := [] U, in the following sense:
all p

EB&»—)(wI(e)):{iigp E;} cuU.
o
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Using this identification, we can write

Yi(e) *
i) = (@ () e & T s,
pel
since sz(s) has component 1 at all p € I. Taking the closures in Hpe 1 Up, we

obtain ¢;(E) C K* - Hpe[ U, N Hpe] Up.

‘C’ : The sets Up(n) = {zr € Uy | + = 1 mod p"} of n-units, n € NN,
form a basis of neighbourhoods of the unit element in Uy, respectively. Letting
Uln) = Hpel Up(n), and denoting by U™ the image of Ul(n) in U, respectively
(i.e., putting 1 in all components Uy, p ¢ I), we conclude that

I v, = (&[0 - U™)
pel n>1 pel

and ¢r(E) = () (¥r(E)-UM).

n>1
It therefore suffices to show that

H U, N (K*- H Uy - U™y c y(E)-U™
pel pél

for every n > 1. Let z € K*, v/ € Hpgl U, and u € U™ be elements such
that - v -u € [lyes Up =: Ur. Then we have x - u € Uy, since u € UM, and
therefore z - v’ has component 1 at all p ¢ I. Since u’ € [[,¢; Uy is a unit at
these places, it follows that x € K* is a local unit at every p & I.

On the other hand, v’ has component 1 at all p € I, and therefore z-u' € U;
implies that = is also a unit at the places in I, i.e., x is a local unit at every
place of K and therefore has to be a global unit (see [Neu 92|, p.72). But then
x-u € r(F), since it has component 1 at all p & I, and since the component
at each p € I is given by the unit z, because v’ € [[,o; Up. O

Returning to the proof of Lemma 3.28, we see that it remains to deal with
the second isomorphism. But this canonical isomorphism simply arises from
the fact that for every prime p € I, we have U, = Up(l) x Cy, where Cj is a
finite group which does not contribute to the p-part (see [Neu 92], Theorem
I1.5.3). O

Using the previous results, we will now determine, in some cases, the struc-
ture of the sets £/(K). We will consider number fields K/Q in which the
rational prime p is completely decomposed. In this case it will be rather easy
to obtain information about the size of the sets £/ (K) for small I.

Lemma 3.30. Let K be a number field such that the fixed rational prime p

splits completely in K.

(i) If K # Q is not imaginary quadratic, then EPHK)=0,i=1,...,t.

(i) If K is imaginary quadratic, then EW:(K) contains exactly one element,
i=1,2.
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(i1i) Let I C T be a set such that |I| = 2. Then, under the assumptions of (i),

we have |EV(K)| < 1.

Note that if K is imaginary quadratic and Z = I = {p,p}, then of course

|ET(K)| = oo, by (ii) and Lemma 3.18, (iii), since in fact |€(K) \ E/(K)| = 2.

Proof. (i) Let i € {1,...,t} be arbitrary, but fixed. Let L) C K be the

(iii)

maximal p-abelian extension of K that is unramified outside the prime p;.
By Lemma 3.28, we have

Gal(L?)/K) ~ p-part of Uy, /4:(E) = UL /(UY nu(E))

where we let v; := 1y, for simplification. Since p is totally decomposed in

K/Q, we have rankZP(Up(il)) =1 (see Example 3.21 and [Neu 92|, Theorem
I1.5.7). Since K # Q is not imaginary quadratic, the Z-rank of the set E of
global units of K equals r; (K )+ra(K)—1 > 1 by Dirichlet’s Unit Theorem,
i.e., F is an infinite set. Therefore also 1;(F) and 1;(E) are infinite, i.e.,
rankz, (¢;(E£)) > 1. Since ¢;(E) N Up(il) C Up(il) is a closed subgroup, it
follows that it is of finite index in Up(il), and therefore Gal(L() / K) is finite,
which implies that £} (K) = (.

If K is an imaginary quadratic field, then the arguments used for the
proof of (i) remain valid, except that now the group F is finite. But then

also the 1;(FE) are finite sets, and since Up(il) is a Hausdorff space (see
[Neu 92], p. 377), it follows that ;(E) = v¢;(E) has Zy-rank equal to
0. Therefore Gal(L(/K) is pseudo-isomorphic to Z,, which proves that
EPHK) =1,i=1,2.

Assume that |£1(K)| > 2 for some ramification set I = {p;,p;}. Let L!
and L? be two different Z,-extensions of K such that P(L') = I = P(L?).
Let M := L' - L?, and consider the inertia subgroup 7' C Gal(M/K) of
any prime B; of M lying above the prime p; € I. By class field theory,
this inertia subgroup 7" = Ty,)p, (M/K) is isomorphic to a quotient of
Up, (compare Example 3.21), which has Z,-rank equal to 1 since p is
totally decomposed in K/Q. Therefore rankz, (7") < 1, which means that
there exists a Zj-extension M C M of K contained in the fixed field
MT. In particular, p; is not ramified in M /K, and since M /K cannot be
unramified, we would conclude that P(M) = {p;}, in contradiction to the
fact that £t (K) =0, by (i).

O

We will from now on assume that K is a CM-field.

Lemma 3.31. Let K be a number field, and let p be an odd rational prime that
splits completely in K. Assume that K is a CM-field, and that [K : Q] > 4.

(1)

Let I C T be such that |I| = 2. Then |E1(K)| < 1. In fact, |E1(K)| =1
for the sets I = {p;,pi} consisting of a pair of complex conjugate primes
of K.
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More generally, if I C T is any subset that contains a number of ny € Ny
pairs of complex conjugate primes {p;,p;} of K, then rank(EL(K)) > ny.
Here the rank is defined to be the Z,-rank of the Galois group Gal(L/K),
where L C K denotes the mazximal p-abelian extension of K such that
P(L) C 1, as in Lemma 3.27.

If|I| >2 and ny > 1, then EH(K) # 0 <+ |E1(K)| = .

For every I, we have ET(K) # 0 if and only if there exist r; := rank(EL(K))
many pairwise independent Z,-extensions in EL(K).

Proof. (i) We have shown in Lemma 3.30, (iii) that |/(K)| < 1 whenever

|I| = 2. Let now I = {p;,p;}, let K denote the maximal real subfield
of K, and let j be a generator of Gal(K/K™") = Z/2Z, i.e., j is induced
by the complex conjugation on C. The automorphism j acts on the unit
group E of K. If ET denotes the group of units of KT, and if furthermore
E-:={c € E|j(e) =& '}, then Et - E~ C E is a subgroup of finite
index, because for each unit € € E, we have ¢2 =¢!ti . ¢l=i ¢ B+ . E~.
Since K is a CM-field, we actually know that [E : (W - ET)] < 2 is finite,
where W denotes the group of roots of unity contained in K (see [Wa 97],
Theorem 4.13). But then also E is of finite index in F, since W is a finite
set. Using the notation from Lemma 3.28, this means that also ¢ (E™) is
of finite index in ¥;(E).

Recall that we have an action of j on

U =110 €[] Ko =K1,

pel pel

where K, denotes, as usual, the completion of K with respect to the prime
p. We define an absolute value on K; by letting d(x) := mgx(\xp]p) for

every = (xp)per € Kr.

Since K/K™* is normal and j(I) = I, we may proceed as in the proof
of Lemma 3.28: Every element = (xp)per € K7 can be viewed as the
limit x = lim, x,, of a sequence of elements z,, € K. We then define
j(@) = ji(z) = limy j(zn).

It is easy to see that the map x +— j(x) yields an involution on Ky, i.e.,
§(i(@)) = 2, j(e+y) = j(@)+i(y) and j(z-y) = j(x)-j(y) for all 2,y € K7,
with component-wise addition and multiplication.

We recall from the proof of Lemma 3.28 that the same construction of a
conjugation isomorphism works for an arbitrary set I C Z which is closed
under conjugation (this means that for every prime p € I, we also have
p € I). This will be used in the proof of (ii) below.

Returning to the case I = {p;,p;}, we look at an element

r = (u,v) € Uy =Uy, xUs; .
We choose a sequence (z,,), C K such that x = lim,, z,,. Then we have

| lo; .
r, ———— u  (convergence in Kj,)
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and
T L v (convergence in Kp;)

simultaneously, by definition of the absolute value d on K;. This implies
that

J(xn) L Jpr(u)  (convergence in Kj;)
and

J(xn) % Jp;(v)  (convergence in Kj,)
for elements jy, (v) € Ky, and jg-(u) € Kp7, so jr((u,v)) = (jp, (v), Jp;(w)).
In particular, letting

Uf ={xeUr|ji(z)=2} and U; :=={xeUr|ji(x)=2""},

we see that

Ul ={zeUr|z=(uj5(u)} and U; :={zeclU|z=(u jp_l(u))}’

since jy, (jp;(w)) = u by construction.

For ¢ € E7, ie., j(¢) = €, we obviously have jr(¢(e)) = r(e), since
r(e) € Ur C K can be represented by the constant sequence (g). There-
fore ¢(E*) C U, and analogously 1;(E~) C U; . In view of Lemma
3.28, we are interested in the Z,-rank of (the p-part of) (Uy, xUs;) / ¥1(E).
Since p is totally decomposed in K/Q, we know that the Z,-ranks of Uy,
and Uy; both are equal to 1, and therefore rankz, (Up, x Uy;) = 2.

We will explain below that

*

rankz, (Uy /¥1(E)) > rankg, (U; /(¥1(E) N U;))

(3 _

) rankz, (U; / (Yr(E~) NU;)) .

Since £~ and therefore also ¢;(E~) C U; are finite, this latter rank is

equal to 1 because (Up, x Uy;)~ = U, via the map (u, %) > u. This
P

proves the existence of a Zj-extension M of K such that P(M) = I, using

Lemma 3.28 and noting that £/(K) = £/(K) by Lemma 3.30, (i).

The inequality (x) is obvious in view of the surjective homomorphism

v :Ur/¢i(E) — Up [/ (¢r(E) N U)

induced by the inclusion U; C U;. Finally, the equality of ranks (%x)

results from the fact that ¢;(ET)NU; C U} N U; is finite.
This is proved analogously. We consider (the p-part of) Uy /¢ (E), with

I = {plaFTlv'-‘7pn17@7pn1+17'~ 7p8}

~~

=1
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and
nr S
U =[]0 xUs - I Un € Er=]] K-
i=1 i=ns+1 pel
—_————
=: Uf
The absolute value d(x) := maxyes |2plp, © = (2p)per € K1, induces an

absolute value on Kj;. Then we consider the conjugation map j; on the
subgroup U; C Uy, which may be defined as in (i), since I is closed under
complex conjugation.

We define
UIZIr ={zxcU;|ji(z) =z}

and
U: ={z € U;|ji(z) = z 1}

Since multiplication is defined component-wise, the equation jr(z) = 2*!

is equivalent to the system of corresponding equations in the components
Up, xUg;,i=1,...,n7. These conditions in turn are equivalent to (xp,, z5;)
being of the form (xy,, jg; (p,)), respectively,(zy,, 5 (x )) as shown in the
proof of (i).

ny
In particular, Ui_ = ][ Uy, via the isomorphism ¢; mapping

i=1

1 1 1

Tpy, = ey Tpy T
) galwe)” T ()

(Tp1s = ) € Us
n ]pT(xpl I

to the element (zy,,...,2p, ).
Using similar arguments as in the proof of (i), we obtain

—~
—_
~—

rankZP(U[ / ¢[(E))

v

rankzp (Uf / wf(E))

rankz, (U / (4;(E) N U7))
rankz, (U / (7(E=) N U7))

5
)(:)nla

A
IV

—
w
=

—
W~
N

rankz, (U=

where the inequalities (1) and (2) are based on the surjections

Ur [ $1(E) — Up/9p(E) — Uz [ (@3(E7) N U7),
and the rank identities hold since
(3) ¥p(EY) CUZ, U C Uj is closed, and U N U is finite,
(4) v7(E) is ﬁnlte because E~ is finite, and
(5) we have the isomorphism 7 : U — H Up,, and each of the groups
Uy, has Z-rank equal to 1, since p is totally decompoeed in K/Q.
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(iii) Let I C Z be such that [I| > 2, n;y > 1 and EX(K) # 0. Let {p;, p;}
denote a pair of complex conjugate primes contained in I, and consider
Z,-extensions L' € E1(K) and L? € EWidi} | the latter being non-empty
by (i). Using Lemma 3.19, (ii), we find infinitely many Z,-extensions M
of K contained in L' - L? such that P(M) = I U {p;,p;} = I.

(iv) Let M € E(K). Let L?,... L' € E(K) be such that M, L?,... L'T are
pairwise independent Z,-extensions of K. Then L g ]_[j# L7 for every
1 <4 < ry, where we let L' := M.

Using Lemma 3.19, (ii), we see that P(N) = I for almost every Z,-
extension N contained in M - L?. Therefore, L?> may be replaced by an
extension L? satisfying P(L?) = I such that L?>- M C L?- M is of finite
index. Inductively, we may replace L3,...,L" by independent elements
of £1(K).

O

We will conclude the present section by putting some emphasis on the special
role of the cyclotomic Z,-extension. Assume that K denotes a CM-field for
which Leopoldt’s Conjecture is true (e.g., assume that K/Q is abelian). In
this case, there exist exactly d = ro(K) + 1 pairwise linearly independent Z,-
extensions of K (compare Theorem 1.7). Let us assume that [K : Q] > 4. As
before, p is assumed to be totally split in K/Q; for the sake of simplicity, we
will assume that p # 2.

We write Z = {p1,p1,...,ps,pe}, t = @ = ro(K). Lemma 3.31, (i) shows
that for every i € {1,...,t}, there exists exactly one Z,-extension M’ € £(K)
with P(M?) = {p;,p;}. Let Q= (K) := M!..... M denote the composite of these
Z,-extensions of K. Then Gal(Q™ (K)/K) = Z;,Q(K), since the M* are pairwise
linearly independent because of their disjoint ramification sets. We will now
show that in 2~ (K), complex conjugate primes always ramify simultaneously:

Lemma 3.32. Assume that L C Q™ (K) is a Z,-extension of K. If some prime
ideal p; € T ramifies in L/K, then also p; ramifies in L/K.

Proof. Assume that p; € P(L), but p; € P(L). The composite M := L - k];[ M*
i

, since L cannot be contained in HM ¥ because

pi € P(L). Moreover, as p; ramifies in M*/K and at the same tinlcl?is unramified

in M = L'kl;[z‘Mk’ it follows that M* ¢ M. Since M*- M C Q= (K), we obtain

the contradiction Gal(Q2™ (K)/K) = Z;2(K)+1. O

satisfies Gal(M/K) = Z?(K)

Lemma 3.33. The cyclotomic Zy-extension K of K satisfies
Ko NQ (K) = K.

Proof. As usual, we denote by K the composite of all Z-extensions of K. Then
K/K is abelian with Galois group G = Gal(IK/K) = Zg. By infinite Galois
theory, Koo C K and Q~(K) C K uniquely determine two closed subgroups
H, Hy C G fixing them, respectively.
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Embedding the algebraic extension I/ K into the algebraic closure C of K,
we may consider the restriction to K of the complex conjugation map j. If
L C K denotes a Zjy,-extension of K, then j(L) is a Z,-extension of j(K) = K,
and thus j(L) C K. This shows that j(K) C K.

Jj acts on G by conjugation, since K is a CM-field and therefore j(K) = K.
Let GT :={g € G| jlg) =gt and G~ := {g € G | j(9) = g'}. Then
G=G"® G, since p # 2.

We will show that G~ is contained in the subgroup H; of G fixing K. If
this was not true, then there would exist an element ¢ € Gal(K./K) = G/H;
such that ¢ # id and jo p o j~! = =1, where j here means the restriction to
K. Let | € INy be the largest integer such that K contains a primitive p'-th
root of unity (.

If 1 > 1, then Koo = ;50 Kn With Ky, = K(Cyrin), and ¢ € Gal(Kxo/K) is
uniquely determined through its values ¢((pin) = ;‘[;n with u, € (Z/p!™"7Z)*
satisfying u, = 1 mod p', respectively. But (jopo j_l)(cpz+n) = ¢((pt4n) for
every n, and therefore j o p o 771 = . Therefore p=! = ¢, ie., ¢? = id, and
thus ¢ = id, because —1 % 1 mod p', recalling that p # 2.

If I = 0, then [K((pn+1) : K] = [K(G) : K] for every n € N, and
Gal(K,/K) is a quotient of the cyclic group Gal(K((,n+1)/K), respectively.
Every 7, € Gal(K ((yn+1)/K) satisfies j o 7, 0 j7! = 7, by the above, so that
jownojt =, for every ¢, € Gal(K,/K). Since K, = U0 Kn, it follows
that jopoj~1 = ¢ for every ¢ € Gal(K,/K), and we may continue as before.

We have therefore shown that H; contains G~. On the other hand,

Gal(Q (K)/K) ~ (p-part of) U7 /Y7 (E~),

1 1

by construction of the fields M? in Lemma 3.31, (i). Therefore jopoj=t = o~
for every ¢ € Gal(27(K)/K), since the pseudo-homomorphism is compatible
with j € Gal(K/K™), by Lemma 3.28. This proves that G* is contained in the
subgroup Hj of G fixing Q™ (K).

In particular, since GT® G~ = G, it follows that H;+Hs = G, and therefore
Ko N Q (K) =K. O

Corollary 3.34. Using the notation from the above proof, we have
K=Ky Q(K) = Koo - M- ...- M.
In particular, Ky = K7 = K¢ and O~ (K) = K72 = K&

Proof. By definition, K is the composite of all Z,-extensions of K. Since we
assume that Leopoldt’s Conjecture holds for K, we know that Gal(KK/K) = Zg
with d = ro(K) + 1 (compare Theorem 1.7). Therefore the corollary follows
from Lemma 3.33 and the fact that Gal(Q™(K)/K) = Z;Q(K).

Indeed, if Koo-Q (K) & K, then the closed subgroup HyNHy C Gal(K/K)
was non-trivial, and therefore rankz (H; N Hz) > 1. But then

rankz, (Gal((Kw - Q7 (K))/K)) = rankz, (G/(H1 N Hz)) < roK) .
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On the other hand, Ko, N Q7 (K) = K by Lemma 3.33, and therefore
Gal((Kno - O~ (K))/K) & Z7200+
yielding a contradiction. O

Theorem 3.35. Suppose that K denotes a CM-field, [K : Q] > 4, and that p

splits completely in K/Q. We assume that Leopoldt’s Congjecture is valid for K.

For each I CZ, we let r(I) denote the number of primes p € I such thatp & I,

and we let n(I) be the number of pairs {p,p} contained in I.

(i)  Suppose that M € E(K) satisfies M € Q™ (K) and r(P(M)) = 0. Then
P(M) = I. In other words, if r(P(M)) = 0 and P(M) # Z, then
M C QO (K).

(ii) EN(K) # O for every I C T with |I| = |Z| — 1. In particular, we have
rank(E1(K)) = ro(K) for such I.

(i) rank(EV(K)) = n; for every O # I G T with r(I) = 0.

(iv) Let © # I C T satisfy r(I) > 0. Then EN(K) # 0 if and only if
1] = 7] - (D).

Proof. (i) Let I :=P(M),let M! denote the composite of all Z,-extensions of
K contained in /(K). We assume that I # Z. Let H C G = CGal(K/K)
denote the subgroup fixing M!. Since M ¢ Q~(K), the intersection
Gt N H is finite (note that rankz (G*) = 1, because §(K) = 0). Since
G= Z;Q(K)H does not contain any element of finite order, we may in fact
assume that GT N H = {1}.

On the other hand, the assumption that I # Z implies that Ko Z M, so
that H is not contained in G~. This means that there exists an element

g=2-ye HCG=G" G

suchthat r e GT, o ¢ H,andy € G,y & H.

Now we consider the cosets [z],[y] of  and y in Gal(M!/K) = G/H.
Since [z -y] = [1], it follows that [z~1] = [y] in Gal(M!/K). If L € E/(K),
then j(L) is a Zp-extension of j(K) = K with P(j(L)) C I, using the fact
that r(I) = 0. Therefore M! is invariant under complex conjugation, so
that j acts on Gal(M?!/K). Moreover,

™ =) = i) = 71 = ],

and therefore [y]?> = [1]. But then [y] = [1], since Gal(M!/K) is a free Z,-
module of rank equal to rank(£!(K)), and therefore y € H, contradiction.
This shows that either H C G~ (so that Koo € M and I = I), or
M C QO (K).

(ii) Assume that [I| = |Z| — 1, and let p € Z, p ¢ I. By Lemma 3.31, (i),
there exists a Zy-extension M of K such that P(M) = {p,p}. Now we
consider the composite K, - M with the cyclotomic Z,-extension K, of
K. Since p is totally decomposed in K/Q, there exists N C K, - M such
that p € P(N) (compare Lemma 3.19, (ii)). Moreover, g € P(N) for every
q ¢ {p,p} by the same lemma, since P(K,) = Z.
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If p was not contained in P(N), then r(P(N)) = 0. However, N Z Q~ (K),
since M C Q™ (K) and Koo NQ (K) = K, and therefore (i) would imply
that P(N) = Z, contradiction. Therefore p € P(N), i.e., P(N) = I.

We will now prove that rank(£!(K)) = ro(K). We first note that

rank(EL(K)) > ry(K) -1,

by Lemma 3.31, (ii). Since we have shown that EN(K) # 0, we actually
know that rank(£7(K)) > ro(K). But

ro(K)+1 = rank(gI(K)) > rank(éI(K)) +1,

because the cyclotomic Z,-extension of K is ramified at p and therefore
is not contained in £7(K).

Suppose first that r(I) = 0 and ny = ro(K) — 1. Then |I| = |Z| — 2, and
Z =1U{p,p} for a suitable prime p. By (ii), we have

rank(EVPH(K)) = ry(K)

and
rank(£7(K)) < rank(E™PHK)) ,

since E1YIPH(K) # (). Therefore rank(£7(K)) < ro(K) — 1. On the other
hand, rank(E/(K)) > ro(K) — 1 = nz, by Lemma 3.31, (ii).

Let now I C 7 denote an arbitrary subset satisfying (1) = 0. We may
assume that n; < ro(K) — 1. Let I’ D I denote any subset of Z satisfying
r(I') = 0 and |I'| = |Z| — 2. On the one hand, rank(£/(K)) > n; by
Lemma 3.31, (ii). On the other hand,

rank(E/(K)) < rank(E" (K)) — (ro(K) — 1 —nyp) ,

since every ‘new’ pair {p, p} raises the rank by one, using Lemma 3.31, (i).
The statement now follows from the fact that rank(E (K)) = ro(K) — 1.
Let us first assume that £/ (K) # (), but |I| < |Z| —r(I). Then there exists
at least one pair {p,p} C Z such that both p and p are not contained in
I. We may assume that there exists in fact exactly one such pair:

If {p1,p1},...,{ps,Ps} denote all the pairs in Z \ I, then we consider
I' := TU{p2,p2,...,ps,Ps}. Then E(K) # 0, which can be proved
inductively using Lemma 3.31, (i). Moreover, |I'| < |Z| — r(I'), because
of {p1,p1}. It would therefore be sufficient to derive a contradiction for I’
instead of I.

Since EL(K) # 0, by assumption, we know that rank(/(K)) > ny + 1,
because (1) > 0. If py, 41,0042, Pny4r € I, 7 = r(I), denote the
primes whose complex conjugates p,,+;, 1 < j < 7, are not contained in
I, respectively, then we may inductively conclude that

rank(éIU{pnI+17---7P7L]+j}(K)) >nr4+1+45

for every j, by using the existence of suitable M™1 17 g EPnr+s Pt} (K),
guaranteed by Lemma 3.31, (i), respectively. In particular, if we define
I/ =1U {pn1+1, NN ,pn1+7~}, then

rank(E7(K)) > ny+1+r =np +1,
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in contradition to (iii) (note that I’ # Z, since p and p are missing).

Let us now assume that |I| = |Z| — r, r = r(I). We will prove the
statement via induction on 7. If 7 = 1, then £/(K) # () by (ii). Let us
assume that the statement is true for some ' > 1. If r(I) = ' + 1 and
|I| = |Z| — (" + 1), then we choose any prime p € I such that p ¢ I, and
we define I' := I U {p}. Since r(I') = (+' +1) — 1> 0 and |I'| = |Z| — 1/,
the induction hypothesis implies that £/ (K) # 0.

We now consider the composite of some M € £ (K) with an extension
M' € WPH(K), which exists by Lemma 3.31, (i). Then there exists a
Z,-extension N C M - M’ of K such that P(N) C I = I'\ {p}. Moreover,
I'\ {p,p} € P(N), since M’ is unramified outside {p,p}.

If P(N) =1\ {p,p}, then r(P(N)) =7 > 1, but

PN = |I'-2 =T -+ -2,
so that we obtain a contradiction to the first part of (iv). Therefore
P(N) =I'\{p} =1,

ie., EN(K) £ 0.

Remarks 3.36.

(1)
(2)

3)

The last part of Theorem 3.35 shows that in a given Z,-extension of K, for
every pair {p,p}, at least one of the two primes ramifies.
A special case of Theorem 3.35, (iv) is the following: If p; # p; € Z are not
complex conjugates, then i} (K) = () as soon as [K : Q] > 4. Moreover,
Theorem 3.35, (iv) also generalises the first two statements of Lemma 3.30.
If Leopoldt’s Conjecture is not true for K, then IK/K is a Z;Q(K)HM(K)—
extension, with §(K) > 0. We let K := K, - Q(K), where, as usual, K,
denotes the cyclotomic Z,-extension of K.
Q~(K) is the composite of Z,-extensions M*, ..., M™5) of K such that
P(M?) = {p;, pi}, respectively, as defined in Lemma 3.31. In particular,
§(M?) = M* for every i, because rank(£PiP} (K)) < 1 by Lemma 3.31, (i).
Therefore j(Q(K)) = Q(K) and j(Ky) = Koo, i.e., j(K) = K.
Gt C G = Gal(K/K) still equals the subgroup fixing 0~ (K) C K, but we
now have rank(G*) = §(K) + 1. Moreover, G~ now is properly contained
in the subgroup of G fixing K.
If we define G := Gal(K/IK) C G, then j acts on Gal(K/K) = G/G, since
§(G) = G, and

G/G = (G/G) & (G/)G)~ .

Note that KK is a ZZQ(K)H—extension of K which is an analogue of K/K for
the case of §(K) > 0. If we replace rank(E/(K)) by rank(€LS¥(K)) in
Theorem 3.35 (i.e., we only consider Z,-extensions of K that are contained
in ]f(), then the statements of the theorem carry over to this more general
situation.
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(4) In the setting of (3), we define K¥ := K% | so that

Gal(K*/K) ~ (p-part of) (Uz/dz(E))* ,

using the notation introduced in the proofs of Lemma 3.28 and Lemma 3.31.
If §(K) > 0, and if I C 7 satisfies r(I) = 0 and n; > ra(K) — 1 — 0(K),
then

rankz, (U;/(v1(E)NU})) > 1

and in fact
rank(ELSET(K)) > np— (ra(K) — 1 — §(K))

(compare the proof of Lemma 3.31, (ii)).

(5) Suppose that I C Z satisfies 7(I) = |I| = ro(K) — 1. Then we have
rank(£(K)) = §(K).
Proof. Since |I| +r(I) < |Z| = 2 - ro(K), Theorem 3.35, (iv) implies that
ELEK(K) = 0 (K has been defined in (3)). Moreover, this is also true for
every subset () #£ I’ C I, since |I'| = r(I') > 0 and

[+ (') < [ +r(I) < |Z]

for every such I'. This means that rank(gf’gﬁ((K)) = 0, and therefore
rank(E1(K)) < 0(K).

On the other hand, rank(£!(K)) = rankZp(Ul(l)/(WE)ﬂUI(l))), by Lemma
3.28. Here UI(l) = [lper Up(l). But

rankz, (¢r(E)NUY) < rankg, (¢2(E)) < ro(K) —1— 6(K)
and rankz, (UI(I)) = |I], so that
rank(E1(K)) > [I| — ro(K) + 6(K) + 1 = §(K) .

O

(6) If [K : Q] > 4, then the Leopoldt defect §(K) is strictly smaller than
r2(K) —1: Otherwise, rankz, (¢¥z(F)) = 0, in contradiction to the fact that
E — 9¢7(F) is infinite.

(7) If 6(K) = ro(K) — 2, then rank(EL(K)) = |I| — 1 for every subset I C T.

Proof. As we have seen in the proof of (5), we have rank(£!(K)) > |I] — 1
for each I. In view of Lemma 3.30, (i), this means that in particular,
EL(K) # 0 for every I with |I| = 2. But this implies that

2:19(K)—1 = ry(K)+1+6(K)
= rank(EZ(K))
> rank(gI(K)) + (|Z] - 1))

for every I with [I| > 2: Let p € I, let p € Z denote any prime ideal
that is not contained in I. The fact that E##}(K) # @ then implies that
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rank(E1YPH(K)) > rank(£7(K)) + 1. Inductively, we obtain the stated
inequality. This implies that

rank(E1(K)) < 2-m(K) —1—|Z] + |1
= 2‘7’2(K)—1—2‘7’2(K)+‘I‘ = |I|—1.

3.3 Local boundedness results

We have started the investigations of the local behaviour of Iwasawa invariants,

at the beginning of the current chapter, with a discussion of the following result

(see Theorem 3.2). If K contains only one prime dividing p, and if L/K is a

Z-extension, then the following holds:

. If u(L/K) = 0, then the p-invariant vanishes on a whole neighbourhood
of L.

o If W(L/K) = ANL/K) = 0, then all the three Iwasawa invariants are
constant in any sufficiently small neighbourhood of L.

These statements are formulated with respect to Greenberg’s topology, which

has been introduced in Section 2.3.

In the current section, we will prove our main results concerning local prop-
erties of Iwasawa’s invariants, with respect to the Greenberg-R-topology intro-
duced in the preceding section. We will use our generalisation 3.6 of Fukuda’s
Theorem.

We will first consider two problems:

Let L/K be any Z,-extension.

Question 1. Is p locally bounded, i.e., is there a neighbourhood U C E(K)
of L such that u(M/K) < C < oo for some fixed constant C' and every M € U?

Question 2. Suppose that u(L/K) = 0. Is A locally bounded, i.e., is there
a neighbourhood U C E(K) of L such that A\(M/K) < C < oo for some fized
constant C and every M € U?

These questions have been answered partially by R. GREENBERG for a spe-
cial subset of Z,-extensions, with respect to the Greenberg topology (compare
Theorems 2.27-2.30).

Our method of proof, using Theorem 3.6, will be completely different from
Greenberg’s approach.

At the end of his article [Gr 73], Greenberg supposed that maybe, under
appropriate assumptions, u, respectively, A, are not only locally bounded, but
in fact locally maximal. We will be able to prove these statements (compare
Theorem 3.57 below). We will also prove a result bounding the p-adic valuation
of the constant coefficients of characteristic polynomials.

3.3.1 pu=0 = )\ is locally bounded

We will start with Question 2, because it is more easy to answer. We first recall

some notation. For every n > 0, we let A4, = A,(lL) be the p-Sylow subgroup
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of the ideal class group of the unique subfield L, C L of degree p"™ over K,
respectively. Let A = @An. We have shown in Section 1.3 that A is a finitely
generated torsion A-module.

Therefore we have a pseudo-isomorphism

p:A— Eyi= (@A/(p’”)) e | @A/

i=1 j=1

with distinguished irreducible polynomials f;(T) € Zy[T], j =1,...,t, by The-
orem 1.24, and there is also a pseudo-isomorphism 1 : E4 — A, since both
modules are finitely generated and A-torsion (compare Remarks 1.20, (2)). Fur-
thermore, we have u(L/K) =>7_; n; and A(L/K) = Z lj-deg(f;(T)); see
Proposition 1.28.

Now assume that u(L/K) = 0.

Lemma 3.37. Let K be a number field, let L/K be a Z,-extension such that
w(L/K) = 0. Then there exists an integer n € IN such that A is bounded on
U(L,n), i.e., \(M/K) < C for some fized constant C < oo and every element
M e U(L,n).

Here U(L,n) ={M € E(L,n) | P(M) C P(L)}, as in Section 3.2.

Proof. Since pu(L/K) = 0, there are pseudo-isomorphisms

p: A" Ex =D A/(£(T)5)

Jj=1

and ¢ : B4 — A. Since E4 does not contain any non-trivial finite sub-
modules (compare Remarks 2.25, (2)), the map 1 actually is an injection hav-
ing finite cokernel, so that A = M; @ Z;, as Zp-module, with M; finite and
r = rankz, (E4) (compare Proposition 1.45, (ii)). In particular,

t
rank,(E4) = dimlpp(EA/(p-EA dlm]Fp EB /(p, £;(T )

t
= dimp, ( EB p, OB 1))

since we have an equality

|A/(p7 f](T)l])| — |/&/(p7 Tdeg(fj(T)).lj)| ’

which results from the fact that the f;(T )l are distinguished polynomials, see
Definition 1.11. Therefore
rank,,( Z deg(f;(T))-1; = ML/K)

is bounded by rank,(A). This rank is finite, since we assumed that @(L/K) = 0.
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Now we choose an integer n > e(L/K) such that rank,( A%L)) = rankp(AnLJr)l).
Then p(M/K) =0 and

rank,(AM)) = rank,(AD) < oo

for every M € U(L,n + 1), by Theorem 3.6, (ii), since e(M/K) = e¢(L/K) for
these M by Corollary 3.22. In particular,

)\(M/K) S rankp(A(M)) = rankp(A(L)) < 00
for every M € U(L,n). 0

Corollary 3.38. Let L/K be a Zy-extension such that p(L/K) = 0. Assume

that the A-module AL = lim Aq(lL) does not contain any nontrivial finite A-
submodule. Then there exists an integer n € IN such that N(M/K) < A\(L/K)
for every M € U(L,n) (i.e., A is locally maximal).

Proof. By assumption on A%, the A-module homomorphism ¢ : AL — E A(L)
has to be an injection. In particular, rankp(A(L)) = ranky(F 1)), since we al-
ready know that rank,(E ,z)) < rank,(A()) (compare the proof of Lemma
3.37). Choose n as in the previous lemma. Then

AMM/K) < rank,(AM) = rank,(A®)) = rank,(E,w) = ML/K)
for every M € U(L,n). O

Remark 3.39. The assumption that A) does not contain any nontrivial finite
A-submodule is equivalent to the condition that rank,(A")) = rank,(E yw)).
In Section 3.3.3, we will prove the result of the corollary for arbitrary Z,-
extensions L/K with pu(L/K) = 0. In Section 3.5, we will give another proof
of this result.

3.3.2 p is locally bounded

We will now consider the p-invariant and study the first of the two questions
raised at the beginning of this section.

Let L/K be a Zy-extension. We will first consider the case A\(L/K) = 0.
Then

S S

Ex = @AW" = PZ/v" 2T = P2/ D)) -

=1 i=1 1=1

The idea is to look at the module A/(T - A), since

Eaf(T-Ea) = @AT") = DZo/p"2, = DZ/p"z
=1 =1

=1

is a finite abelian group of order p(Z/X) If N denotes any A-module, then we
define
rankp(N) = o,(|N/(T- N))
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provided that the right hand side is finite. Here v, denotes the usual p-adic
valuation (i.e., vp(p) = 1). Then

ranky(E4) = p(L/K) .

Let M denote the kernel of the pseudo-isomorphism ¢ : A — E 4, which
is a finite abelian p-group. Then ¢(A/M;) =: E4 C E4 is a submodule of finite
index.

We will show below (compare Proposition 3.41) that

ranky(E4) = ranky(E4)

and that .
rankp(F4) = rankp(A/M;) < rankp(A) .

This means that pu(L/K) = ranky(E4) is bounded by ranky(A). We will
use our generalisation of Fukuda’s Theorem (Theorem 3.6) and the Quotient
Lemma 3.10 in order to find a neighbourhood U(L,n) such that rankp(AM))
is bounded in U(L,n). This will then also bound the p-invariants pu(M/K),
M e U(L,n).

In the case of non-vanishing A\(L/K), we have

Ey = (@A/(p"i)) & | DA/

i=1 j=1

Again, A/M; is isomorphic to some submodule E4 C Ey of finite index. How-
ever, E4/(T-E4) will only be finite if 7" does not divide the characteristic poly-
nomial szl fj(T)4 of A. In order to nevertheless bound u(L/K) in terms of
an invariant attached to the A-module A, we have to more generally consider
suitably chosen distinguished polynomials f(T'), coprime to the characteristic
polynomial of A, instead of T". This motivates the following

Definition 3.40. Let f(7T) € A denote a distinguished polynomial; define the
f-rank of a A-module A to be

ranky(A) = v,(|A/(f(T) - A)),

whenever this is finite. Otherwise, we let rank(A) := oo.

Proposition 3.41. Let f(T) € A denote a distinguished polynomial. Then the

following statements hold:

(i)  Suppose thatp € A denotes an irreducible element that is coprime to f(T).
IfC C A/(p™), n € N, denotes a A-submodule of finite index, then

A~

rank;(C) = rankg(A/(p")) < o0

(ii) More generally, let E := @ A/(p;") be an elementary torsion A-module
=1

1

such that p" - .. .-p™s is coprime to f(T), and let E C E be a A-submodule
of finite index. Then

rank;(FE) = ranky(F) < oo .
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(iii) Let A, B denote A-modules such that at least one of the ranks ranks(A),
rank¢(B) is finite. Assume that there exists a A-module isomorphism

p:A—B.
Then both rank(A) and rank;(B) are finite, and
rank;(A) = ranks(B) .
() Let A denote a A-module such that ranky(A) is finite. Then
ranks(A/M) < ranks(A)

for every A-submodule M of A.

(v) If a A-module A = By @ By is isomorphic to the direct sum of two
A-modules By and Bz, and if ranky(B1) and ranks(Bs) are finite, then
ranks(A) is also finite, and

ranks(A) = ranks(B1) + rank¢(B2) .

Proof. We will give an abstract proof using the following notation (which ge-
neralises Exercise 13.12 in [Wa 97]):

Definition 3.42. Let A € A. For any A-module N, we let
N[A] == {zeN|X-z=0},

and we define Q\(N) = | N';\(]/[\)f}\',”, whenever both orders are finite.

Proposition 3.43.
(i) If N is finite, then Q\(N) = 1.
(ir) If
00— Ny — Ny —> N3 — 0
is an exact sequence of A-modules, then Qx(N2) = Qx(N1) - QA (N3), i.e.,

whenever two of the Qf(N;) are finite, then so is the third, and then
equality holds.

Proof. (i) It is easy to see that the action of A € A on N induces a A-module
isomorphism N/N[A| = X - N. Therefore, since N is finite,

IN/(A-N)[ = [N[A][ -
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(i)

(i)

We apply the Snake Lemma to the commutative diagram

NI Na[A] ARY
0 Ny No N3 0
A - A A
0 Ny No N3 0
N1/()\ N1) NQ/()\'NQ) NS/()\ NS)
0 0 0

and obtain a long exact sequence

0 Ni[A] Na[A] ————— N3[A] )

<—>N1/(>\'N1)*>N2/(A‘Ng)—>N3/(>\'N3)*>O.

If at least two of the factors Q,(NN;) are defined, then the corresponding
four modules in the long exact sequence are finite. In each of the three
possible cases, this implies that in fact all six abelian groups occurring in
the exact sequence are finite. Moreover, we may conclude that

_ N INB[A[ [N2/AN2| o Qa(N1) - Qa(Ns)

LS N AN NN T 0a(V)

We will now start with the proof of Proposition 3.41.

~

It is easy to see that rank(C) and rank¢(A/(p™)) are finite (this will be
justified more generally in (ii)). Since C' C A/(p") is of finite index, we
have an exact sequence

0 —— C —— A/(p") — (A/(p")/C — 0,

and N := (A/(p"))/C is finite. Then Q;(C) = Q;(A/(p™)), using Propo-
sition 3.43, (i) and (ii).

But (A/(p™))[f] = {0}, because p and f(T') are coprime elements in the
unique factorisation domain A. Moreover, C' C A/(p™), and therefore also

C[f] = {0}. But this means that

Qs(C) = p k(@) and  Qp(A/(p")) = pranksB/GM)
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(ii) We first note that rank¢(£) and rank(F) are finite, since f(7") is coprime
to each p;. Indeed, ranky(A/(p;*)) is finite for every i € {1,...,s}, by
Lemma 1.17, (i). Therefore

ranks(F) = Zrankf(/\/(p?i))

=1

is also finite, making use of (v) below. Moreover, A/(f,p}" -... p2*) is

finite, again by Lemma 1.17, (i). Since f and py" -...-py* both annihilate
the quotient E/(f - E), and since F is finitely generated as a A-module,

it follows that rank¢(£) < oco.
Now we apply Proposition 3.43 to the exact sequence

0 E E E/E 0.

This implies that Qf(E) = Q;(E). But E[f] = {0} and therefore also
E[f] = {0}, as in the proof of (i).

(iii) ¢ induces a A-module homomorphism @ : A/(f(T)-A) — B/(f(T)- B),
sending the class [a] of an element a € A to the class [p(a)]; this is well-
defined since ¢(f(T)-A) = f(T)-¢(A) = f(T')- B. One easily checks that
© is an isomorphism, using the fact that ¢ is bijective.

(iv) For any A-submodule M of A, the order of

(A/M)/(f(T) - A/M) = A/(M + f(T) - A)

is less than or equal to the order of A/(f(T) - A), proving (iv).
(v) Using (iii), we may assume that in fact A = By @ By. But then

A/(f(T)-A) = B1/(f(T)- B1) & Ba/(f(T) - Ba) -

This concludes the proof of the proposition.
O

We choose a distinguished polynomial f(7') which is coprime to the char-
acteristic polynomial of A = A, We would like to bound p-invariants by
rank¢(A) < oo in a certain neighbourhood U of L. The following lemma shows
that we may indeed find a neighbourhood U of L such that for every M € U,
f(T) is coprime to the characteristic polynomial of AM) - respectively, and
therefore rank ;(AM)) < oo,

Lemma 3.44. Let L/K be a Zy-extension, and let ~\L) denote a fized topolog-
ical generator of the Galois group Gal(L/K) = Z,. Let

t
Fyuy == Fyw) 40 = H (1) € Z,[T]
j=1

denote the characteristic polynomial of AE) = @A%L) with respect to the given
generator v\1) (compare Remark 1.30).
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Let f(T) € Zy[T] denote a distinguished polynomial that is coprime to F 4.
Then there exists an integern € IN such that f is coprime to F ) o) for every
M € U(L,n), where y™) denotes a generator of Gal(M/K) that coincides with
~+L) on M, = L,. More precisely, with these choices of generators, we have
rank ;(AM)) = rank(AF)) < oo for M € U(L,n).

Proof. For every choice of a topological generator y(/) of Gal(L/K) = Z,, we
obtain an isomorphism Z,[[Gal(L/K)]] = Z,[[T"]], induced by

SR W 4O

we identify Z,[[Gal(L/K)]] with the ring of formal power series A(") = Z,[[T(")]]
for some fixed indeterminate T := TX). Choosing another topological genera-
tor of Gal(L/K) therefore corresponds to a change of variables: If 4 = 7% with
a € Zs, is the new topological generator, then the new indeterminate T =T1W5
is given by T = (1+T7)* — 1. In particular, the characteristic polynomial
of A) depends on the choice of 4(%) (compare Remark 1.30). This becomes
crucial when we try to compare the characteristic polynomials of different Z,-
extensions. Fix some (1),

Choose a pseudo-isomorphism ¢ : AL E ). Let MI(L) denote the
finite kernel of ¢. Since f is coprime to Fy) by assumption, we know that
rank s (E 4r)) is finite. Indeed,

s t
By = A/ @™ & @@ A (Sf(T)Y)
i=1 j=1
and therefore rank(E 1)) = Y ranky(A/(p™)) + > rankp(A/(f;(T)Y)) is fi-
nite, because f(7") and p, respectively, f(T") and the f;(T), are pairwise coprime

in A (compare Lemma 1.17, (i)).
Then also

rank(AP) < rank (AP /M) + v, (107))
= rank;(E ) +up(| M)

is finite, using Proposition 3.41, (ii) and (iii).
For every m > n > e = e(L/K), the norm maps Ag) — A%L) induce

surjective maps
AR J(F(T) - AR - AR J(F(T)- AR) — AL/ (F(T) - AL .

These are well-defined since the norm maps are A-module homomorphisms.
In particular, rankf(A(L)) > rankf(A%)) > rankf(A;L)) for all integers
m > n > e(L/K). This proves that there exists an integer ng > e(L/K) + 1
such that
rankf(AglLO)) = rankf(A%L) = rankf(A(L)) .

We have e(M/K) = e(L/K) for every M € U(L,ng + 1), by Corollary
3.22. We want to compare the orders of the quotients A%L)/(f(T(L)) . A%L))
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and A%M)/(f(T(M)) : A&M)). It is important to note that, as mentioned above,
in fact two different rings A = Z,[[TW]] and AM) = 7,[[TP)]] act on
AW respectively, AM) arising from the different Galois groups Gal(L/K)
and Gal(M/K). This means that for M € U(L,n), we will have L,, = M,, and
Ay(lL) = A,(lM), but this will not immediately imply that

AP /(D) - A = |ARD /(T D) - ARD)]

n n

However, if we choose a topological generator v(™) of Gal(M/K) such that
M) coincides with the fixed generator v(&) of Gal(L/K) on Myy11 = Lngi1,
then

TO AL = (D], —1). AL = (0D],, 1) 4G = 70D . 4

no no no no
)

and 7). 4 =TM) . A; {1- Then we have a chain of equalities

(L)

no+1

rankf(A,(loll) = ranky(A 0+1) = rankf(A%)) = rankf(A(M)),
)

which implies that rank ;(AM)) = rank;(A")) < oo for every such M. Indeed,
AM) — T&nA,&M) is a Fukuda module with index barrier e(M/K), by Corollary
3.9. Therefore also AM) /(f(TM)). AM)) is a Fukuda module, by the Quotient
Lemma 3.10. This means that we can apply Theorem 3.6, (i).

In particular, f is coprime to F ) ,an: Otherwise Ey un /(f(T) - Eqon)
would contain a factor A/(f), which is infinite by Lemma 1.17, (ii). But since
rank ;(AM)) < oo, we have

rankp(E on) < rankg(Eyon) +Up(|EA /B gan )
= 1”aﬂkf(A VMM + (| B qoan /B gan )
< rankp(AM) 4+ up(|Egn /Egon]) < o0,
using Proposition 3.41, (iii) and (iv). O

Remarks 3.45.

(1) In the following, we will usually study sets of Z,-extensions contained in a
small neighbourhood U(L,n) of a fixed Zy,-extension L/K. We will from
now on suppress the dependence of the indeterminate T" € A on the cor-
responding Z,-extension from our notation. This means that we will sim-
ply write 7 - AM) for each M € U(L,n), instead of using the notation
TM) . AMM) - We keep in mind that this may be justified by choosing the
corresponding topological generators of the galois groups Gal(M/K') prop-
erly.

(2) Let f(T) € A denote a distinguished polynomial. Let L/K denote a Z,-

extension, A = lim AgL), and let F4 denote the elementary A-module at-

tached to A. Then we have shown in the proof of Lemma 3.44, using

Proposition 3.41, that

ranks(A) < oo <<= ranks(E4) < oo|.

Note that the same proof works for any finitely generated torsion A-module
X with corresponding elementary A-module Ex.
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Using arguments similar to those applied in the proof of Lemma 3.44, we
may actually also prove the following boundedness result:

Corollary 3.46. Assume that L/K is a Z,-extension such that T does not
dwide the characteristic polynomial F 4ry. Then there exists an integer n € IN
such that for every M € U(L,n), T does not divide the characteristic polyno-
mial Fyory. Moreover, the p-adic valuation of the constant coefficients of the
polynomials F 4y is bounded on U(L,n).

In particular, this bounds the number of distinguished factors of F o) (T'), since
each of them raises the valuation of the constant coefficient.

Proof. Lemma 3.44 yields a neighbourhood U(L,n) of L such that T { F
for every M € U(L,n). Moreover, we know that

ranky (B on) < rankp(A®)) = rankp(A®) < oo

for M € U(L,n), using Proposition 3.41, (ii), (iii) and (iv). Now

B on/(T-Eyon) = @ M(Tp™) & @ AT, f;(T)Y)
i=1 j=1
&P zriz e P z/pz,

i=1 j=1

1

where m; denotes the p-adic valuation of the (non-zero!) constant coefficient of
the distinguished polynomial f;(7)%, respectively. Therefore

s t
Zni + ij < rankp(A%)) < o
i=1 j=1

is bounded on U(L,n), and this is exactly the sum of p(M/K) and the p-adic
valuation of the constant coefficient of F ) (T") = H§:1 f (T)lj. O

Remarks 3.47.

(1) Note that the proof of Corollary 3.46 shows that the u-invariant is locally
bounded in a neighbourhood of L/K, provided that T does not divide the
characteristic polynomial F ) (T).

(2) Let M/K denote a Z,-extension. We will now prove that T 1 F ) (T) if
and only if the order \(A%M))Gal(M”/ K)| of elements in AM) that are fixed
by Gal(M,,/K) = Z/p™Z is bounded for all n.

Indeed, we already know that Tt F 4 (T) if and only if ranky(AM)) < oo
(compare Remarks 3.45, (2)). Since

rank7(AM)Y) > rankp(AM))
for every m > n > e(M/K), this is equivalent to the fact that rankT(A%M))
remains bounded as n — oc.
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For each n € IN, we let AM [T] denote the submodule of elements of AM
that are annihilated by 7. Then the exact sequences

0 — AMT) AM T AM g

imply that ]A(M /(T - A%M))| = \A%M) [T]| for every n (compare Proposition

3.43, (i)).

But |A1(1M) 7] = \(A%M))Gal(Mn/K)L because T acts on ALY as M) 1,

Where 7M) denotes a topological generator of Gal(M/K) and therefore
M)|5s. generates Gal(M,,/K). This shows that ranky(A(M)) is finite if

and only if ](A(M )GalMn/K) | is hounded as n — oo.

(3) J. CARROLL and H. KISILEVSKY proved that [(AS))GalMa/K) | is hounded
as n — oo if exactly one prime p of K ramifies in M/K (see Lemma 4 in
[CK 81]). The proof is based on Chevalley’s Theorem (compare [La 90],
Lemma 13.4.1):

|(A(M))Ga1(Mn/K)‘ _ h(K) (M /K)
" [MnK] (EK NMn/K( )QEK)
< hEK) - p"
=~ p" (BEk : N, k(M) N Ek)
< h(K) < 00

for every n, where h(K') denotes the class number of K, e(M,,/K) is defined
to be the product of the ramification indices ey, (My/K) of all the (finite
or infinite) primes p of K, and Efx denotes the group of units of K; in
particular, e(M,,/K) divides [M,, : K] = p™ here, by assumption on M/K.
This shows that Corollary 3.46 can be applied to every Z,-extension M /K
satisfying |P(M)| = 1 (of course, the statement of the corollary is non-
trivial only if the set EP(M)(K) is infinite).

Lemma 3.48. Let L/K be a Zy-extension, and let F)(T') denote the charac-
teristic polynomial of AL). Suppose that f(T) € Z,[T) denotes a distinguished
polynomial that is coprime to F ).

Let U = U(L,n) be a neighbourhood of L as constructed in Lemma 3.44, i.e.,
rankf(A,(lL)) = rankf(AELLJI) and thus rank(AM) = rank(AF)) for every
M e U(L,n).

Then there exists an integer k € N such that

rank, (A = rankf(A(M))
for every M € U(L,n) and every g € A satisfying
g = f mod (p,T)"
Proof. By construction of U in the proof of Lemma 3.44, we have

rankf(AglL)) = rankf(Aglel),
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and n = ng(f) + 1 is the smallest integer with this property, i.e.,
rankf(AgnL)) > rankf(Agrﬂl)

for every m < n.
A%M) = A;L) is a finite compact A-module for every M € U. Now we apply
the following observation.

Remark 3.49. Let A denote a finite A-module which is a p-group. Then there
exists an integer k € IN such that

T A =" A = {0}.

Moreover, we may in fact achieve that ¢*- A = {0} for every non-unit g € A\ A*.
For example, it is sufficient to take k large enough to ensure that p* > |AJ.

Proof. We may assume that A # {0}. Then multiplication by 7" on A cannot be
injective, since otherwise it would also be surjective, and thus A =T - A. Using
Nakayama’s Lemma 1.43, it would then follow that A = {0}, in contradiction
to our assumption.

In particular, |T - A| < ]%]A\. Now T'- A is again a finite A-module of p-power
order, and we analogously see that |12 - A| < %|T - A|. An induction proves that
TF - A = {0} if k is sufficiently large.

The same argument in fact works for every element g € A\ A* = (p,T). O

Choosing k € IN such that h* - AP = {0} for every h € (p,T), we may
conclude that
g- AL = . AP

for every g € A that is congruent to f modulo (p, T)*. Therefore
rank, (A)) = rank;(AL)

and analogously rankg(Anle) = rankf(AgLle) for each such g. Moreover, the
same argument works for every M € U(L,n), since h* - AP = {0} for every
h € (p,T) and every M € U. Now the statement follows from the Quotient

Lemma 3.10 and Theorem 3.6, (i). O

Iterating the argument of Lemma 3.48, we obtain neighbourhoods U of L
such that the characteristic polynomials F'yr) for M € U are coprime to the
polynomials contained in a finite union of residue classes modulo (p, T)l, where
I denotes the maximum of the corresponding k’s. This leads to the following
question:

Is it possible to bound the integers k = k(f) attached to polynomials
f € Z,[T] coprime to Fyu)(T)? If this is not the case, then an iteration of
the above process is not very reasonable.

Note that the proofs of Lemma 3.44 and Lemma 3.48 imply that the k(f)
are bounded if and only if the stabilisation indices ng = ng(f) are bounded.
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Lemma 3.50. Let L/K be a fived Zy-extension. For simplicity, we assume
that e(L/K) = 0. Let My, C Z,[T] denote an arbitrary subset of distinguished
polynomials coprime to Fyw)(T'). Then the set of stabilisation indices
L

1_1) = rankf(Ag;))}

(
no

S1 = {no(f) | f € Mr,ng minimal such that ranks(A
1s bounded if and only if the set

Sy = {rank;(AD) | fem}
s bounded.

Proof. Suppose first that S is bounded. It is a general fact that
rank(A") > no(f)

since rankf(AglLﬁl) > rankf(AgL)) for each n < ng = ny(f), using Theorem 3.6
and the minimality of ng. Therefore also the set S; is bounded.

Suppose now that the stabilisation indices are bounded by some integer
N € N. Then rank;(A")) < vp(|A§\€J)rl]) for every f € 9, by Theorem
3.6. O

Corollary 3.51. Using the above notation, we let 9y denote the set of all

distinguished polynomials coprime to Fyw)(T). Then the following statements

are equivalent:

(i) S1:={no(f) | f € Mr,ng minimal with rankf(AglLO)H) = rankf(AglLO))} is
bounded.

(i) S := {rank;(AP)) | f € ML} is bounded.

(iii) AW is finite.

Proof. We have seen in the previous lemma that statements (i) and (ii) are
equivalent.
‘(i) = (iii)’: Let N € IN denote a bound for S;. Then

rank (Ag\ﬁ)rl) = ranky (Ang) )

for every f € M. This means that the kernel Yy of the projection map
pry : AL — Ag\%) is contained in f - A for every f € My, (compare
the proof of Theorem 3.6, (ii)).

Note that for each n € IN, there exists a distinguished polynomial
fewm” = (pT)"

such that f is coprime to Fyz).
Therefore

Yv € () (£-4B) € (" A®) = {o}.

femyg n>0

But this means that |[A()| = |A%)| is finite.
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‘(iiiy = (ii)’: If, on the other hand, A" is finite, then of course
ranky (A1) < v,(|A%))

for every f € MMy, and thus Sy is bounded.

We will now prove our first result bounding p-invariants:

Lemma 3.52. Let K be a number field, let L/ K be a Z,-extension. Then there
exists an integer n € IN such that p is bounded on U(L,n), i.e., w(M/K) < C
for some fized constant C' < oo and every M € U(L,n).

Proof. Let L/K be any given Zy-extension. In view of Corollary 3.46 (com-
pare Remarks 3.47, (1)), it remains to consider the case where T" divides the
characteristic polynomial of A%, We let

F(T) =TF+p,

where we choose k € IN minimal such that f(7") is different from the irreducible
distinguished factors f1(T),..., fi(T) dividing the characteristic polynomial of
AL £(T) is irreducible in Z,[T] and therefore in A (compare Proposition 1.27,
(iv)) by Eisenstein’s Irreducibility Criterion. This means that f(7") and f;(T)
are coprime for j = 1,...,t, and therefore A/(f;(T)4, f(T)) is finite for every
j (compare Lemma 1.17, (i)). In particular,

t

Eyu/(f(T)-Eaw) = @A/, (1) & @A/ (f(T)5, £(T))
i=1

Jj=1

=C

= PAr/e T +p) @ C,

=1

where C'is a finite abelian p-group. The order of each quotient A/(p™, T* + p)
is equal to p™*, respectively, by the Division Lemma 1.10.
We have thus shown that

ranks(E4 ) = k- p(L/K)+v,(|C]) < 0.

In particular, rank;(A")) < co (compare Remarks 3.45, (2)), and therefore
rankf(A(M)) < oo for every M € U(L,n), if n is large enough. This means that
f is coprime to the characteristic polynomial of AM) for each M € U(L,n).
Analogously to the above, this implies that

rank (B on) = k- p(M/K) +v,(|CHD])

respectively.
Using Proposition 3.41, we obtain inequalities

k-pu(M/K) < ranky(E ) < rankf(A(M)) = rankf(A(L)),

which are valid for every M € U(L,n). O
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Remarks 3.53.

(1) In his article [Gr 73], GREENBERG proved that p is bounded on £(L,n)
for n € IN being large enough, provided that only finitely many primes of
L lie above p (compare Theorem 2.27). This is the case, for example, if
P(L) = Z, and this case is covered by Lemma 3.52. In particular, if only
one prime of K divides p, i.e., |Z| = 1, then u is globally bounded on the
compact set EL(K) = £(K) (compare Greenberg’s Theorem 2.29).
Furthermore, Greenberg proved that the subset £'(K) consisting of every
Zy-extension of K in which no prime dividing p splits completely is open
and dense in E(K); see Proposition 4 in [Gr 73]. Therefore Lemma 3.52
has already been proved by Greenberg for ‘almost every’ L € E£(K), using
completely different arguments (compare Section 4.1). In addition, Green-
berg’s formulation is stronger in general because it shows boundedness on
the set £(L, n), which is stricly larger than U(L,n) if P(L) & Z.

(2) At the end of his article, Greenberg supposed that probably p is not only
locally bounded but actually locally maximal. We are able to prove this,
first under quite restrictive assumptions:

Corollary 3.54. Suppose that L/K is a Z,-extension with \(L/K) = 0, such
that the A-module AL = lim A,(lL) does not contain any nontrivial finite A-
submodule. Then there exists an integer n € N such that u(M/K) < u(L/K)
for every M € U(L,n) (i.e., u is locally maximal).

Proof. By assumption on A%, the pseudo-isomorphism ¢ : AL — F AL
has to be an injection. ¢ induces an isomorphism AL = B Ay, where
EA(L) C E, ) is of finite index. In particular, using Proposition 3.41, (ii)
and (iii), we have

rankr(AD)) = rankp(E 1)) = ranky(E @) ,

noting that rankT(EgL)) < 00, since A(L/K) = 0 by assumption. Furthermore,
we may choose an integer n € IN such that ranky(AM)) = ranky(A®F)) for

every M € U(L,n), as in Corollary 3.46. But then

u(M/K) ranky (E 4 o))
ranky(AM)) = rankp(AX)

= rankp(E 1) = uw(L/K)

<
<

for every M € U(L,n), where the last equality arises from the fact that
ML/K) = 0. O

Remark 3.55. The assumption that A%) does not contain any nontrivial
finite A-submodule is equivalent to the condition ranky(A®)) = ranky(E 41)),
provided that these ranks are finite. Indeed, we will show in Proposition 3.58
that

ranky(AF) = rankT(A(L)/Ml(L)) + rankT(Ml(L))
= rankT(EA(L>) + rankT(Ml(L)) ,
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where Ml(L) denotes the kernel of the pseudo-isomorphism ¢ : A — FEy4, i.e.,
the maximal finite A-submodule of A (see Remarks 2.25, (3)). Furthermore,
rankT(Ml(L)) = 0 if and only if MI(L) = {0}, by Nakayama’s Lemma 1.43.

Actually, we may completely remove the assumptions made in Corollary 3.54,
by choosing a ‘good’ polynomial f(T") instead of using 7', as we will show now.

Lemma 3.56. Let L/K denote any Zy-extension. Then p(L/K) is locally
mazimal.

Proof. Fix a pseudo-isomorphism AL = B Ay, and let Ml(L) denote the
finite kernel of this map, i.e., A(L)/Ml(L) = EA(L) C E ) is of finite index.
Write ]Ml(L)] =p™, m € Ng. We define

F(T) == T™ - F iy (T) +p.

Then f(T) is a distinguished polynomial, and irreducible by Eisenstein’s Crite-
rion. Moreover, f(T') is coprime to F ) (7T'), so that rank(E 4)) and therefore
rank ;(A()) are finite. If d € IN denotes the degree of F ;1) (T), then the degree
of f(T) is equal to m +d + 1.

Now we choose a neighbourhood U(L,n) of L € £(K) such that we have
rank ;(AM)) = rank ;(AP)) < oo for every M € U(L,n). Then

(m4+d+1)-p(M/K) < rankp(AM) = rank(AL)
< (M) + rank (B y))

A 4 rank s (E 41))

< m+d+ (m+d+1) p(L/K)

for each M € U(L,n), where the first inequality has been shown in the proof
of Lemma 3.52. The last inequality furthermore makes use of the fact that for
every divisor f;(T)% of Fur)(T), we have

IA/(F(T), £(T)9)| < plodess(T)

since p € (f(T), f;(T)4), by definition of f(T).
Since pu(L/K) and u(M/K) are integers, it follows that pu(M/K) < pu(L/K).
O

3.3.3 Local maximality

We will now prove our main theorem. This result will not only contain a new
proof of Lemma 3.56, but also improves our results concerning the A-invariant
(i.e., Lemma 3.37 and Corollary 3.38). Furthermore, our method will even be
fine enough to obtain information about r-invariants. The key idea is to use,
as in the study of the p-invariant, modules of the form

A/(f(T)-A),

for some suitable distinguished polynomial f(7"). We will in fact choose a
sequence of polynomials and consider the corresponding ranks.
The following theorem is the most important result of Chapter 3.
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Theorem 3.57. Let L/K be a Zy-extension. Let p:= pu(L/K), A := AL/K).
Then the following holds.

(1)

(i)

(iii)

(i)

u(L/K) is locally maximal, i.e., there exists an integer n € IN such that
for every M € U(L,n), we have

W(M/K) < p(L/K) .

If w = 0, then A(L/K) is locally maximal, i.e., there exists some
n € IN such that for each M € U(L,n), we have u(M/K) = 0 and
AMM/K) < ANL/K).

More generally, if u:= p(L/K) € Ny is arbitrary, then A\(L/K) is locally
mazimal on the set EH(K) of Z,-extensions M /K satisfying p(M/K) = p,
i.e., there exists an integer n € IN such that

AM/K) < ML/K)

for every M € U(L,n) N EH(K).
If EMANK) denotes the set of Zy-extensions M /K satisfying u(M/K) = p
and A\(M/K) = X\, then there exists an integer n € IN such that

MM = MP| and v(M/K) = v(L/K)

for every M € U(L,n) N E*NK), i.e., the v-invariant is locally con-

stant in this set. Here Ml(M) denotes the mazximal finite A-submodule of

M) _

the projective limit A @A%M), respectively.

Proof. (i) Let n > m > e(L/K). We make use of the distinguished polyno-

(T+1)P" —1
m, the

roots of v, ,,,) in an algebraic closure Qp of Q,, are of the form ( —1, where
Pt =1,¢" #£1,ie., (= Cpt is a primitive p-th root of unity, m < 1 < n.
We note that

mials v/, ) (T) introduced in Section 1.2. Since vy, ;) =

1 1
Pp—1) " pri(p—1)
for every | > m, where v, denotes the extension of the usual p-adic val-
uation to Q,((y) (i-e., vp(p) = 1). The degree of Fyr)(T) is equal to
A = AML/K). We choose m large enough to ensure that W)Ep—l) < 1.

Up(Cpl - 1) =

Then, since F ) (T') is a distinguished polynomial, we have

A
Op(Fyn) (G — 1)) = 47— <1 (3.1)
P (G 1)
for every [ > m. For every [, there exist exactly p!~!(p—1) primitive p'-th
roots of unity. We may conclude that

|A/(Fpw, V(n,m))| = H pvp(FA(L) =1

m<I<n,
pl_1

= I ey e = iy,
m<l<n
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where the first product runs over the primitive p-th roots of unity, re-
spectively. Indeed, Z := A/(v(y, ) is isomorphic to a free Zj-module of
rank deg(v(,,m)) = p" — p™, by the Division Lemma 1.10. Multiplication
by T'is a Zp-linear map T': Z — Z with eigenvalues (; — 1, m <1 < n.
A/(FAw), V(n,m)) is the cokernel of the linear map on Z given by multipli-
cation by F)(T'). This map has eigenvalues Fyr) (G — 1), m <1 < n,
and the order of the cokernel equals the p-valuation of the determinant,
which is the product of the eigenvalues. Note that v(, ;) is coprime to
F ) (T) for every n > m > e(L/K), by Proposition 1.44, and therefore
Fpw(p — 1) # 0 for each m <1 < n, ie, [A/(Faw),Vnm))| < oo and
)(A(L)) < 0.

More generally, for every divisor f;(T)% of F,,(T) arising in the decom-
position of E ), we have [A/(v(nm), f; (T)b)| = plr—m)di-des(f5(T)),

In particular,

rankl,(n .

L
ranky . (Eq) + vp(1M{"))
:C

rank,,, (Eqm) + C (3.2)
= @ =p")-ptn—m-A+C.

(A®)

IN

rank,,<n m)

Now we choose a neighbourhood U (L, wq) of L such that

(AM)y = rank,, (AP)) <

rankl,(n .

) )

for every M € U(L,wyp), using Lemma 3.44. Then

- M
rank,, (Ejqon) = ranky,, (Eson) = rank,,wm)(A(M)/Ml( ))

< ranky(nym)(A(M)) = rank (AF) (3.3)

V(n,m)

for these M.

Let M € U(L,wq) be arbitrary, but fixed. We will develop a formula that
will be useful to bound p- and A-invariants. The latter means bounding
the degree A(M) := X\(M/K) of the characteristic polynomial F ) (T).
For arbitrary I € {m+1,...,n}, it is not clear whether % <1,i.e.,
whether holds for F 4 (T).

We therefore let I1,...,1l, € {m+1,...,n} denote the values of [ for which
fails. Then l; = m +1, 1 <i < 7. Thus, v,(Fyan (¢ — 1)) > 1 for
I <m+r, and vp(Fyon((p — 1)) = A 1 for I > m+r. Note
that at the moment, we have not said anything about r (so r =n —m is

p1(p—1)
possible) and therefore have not bounded AM) yet,
However, we know that
ranky, .\ (Eq0n) (" =p™) - WM/ K) + [N/ (Fpan (T), Vnm))|

ranky(n,m) (A(L))

NERLER

(" =p") pu+(n—m) - A+C,
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where C' = vp(|M1(L)|) has been defined above, and therefore

" = p™M/K)+p"(p-1)+p" T p—1)+...+ " (p-1)
+ (n—m—r)- AM
= p"E"™ — Du(M/K) +p" (" — 1)+ (n—m —r) - A\M) (3.4)
< P - Dt (n—m) A+ C

For every pair of integers n > m > e(L/K), we have found a neighbour-
hood U(L,wy), wyg = wo(n,m), such that for every M € U(L,wy), (3.4)
holds with a suitable integer

r=r(n,m,M)e{0,...,n—m}.

We will now choose special values for n and m, namely sequences (n;)i>0,

(m;)i>0 defined by n; := 2i and m; :=i for every i > 0. If iy > e(L/K) is
A

large enough to ensure that o) < 1 and

pmil(pil _ 1) = pil(pil _ 1) > 4 A+ C = (nil _mil) )\_|_C’7

then implies that u(M/K) < p= p(L/K).

If u(L/K) = 0, then Corollary 3.22, (ii) implies that there exists some
wo > wo such that u(M/K) = 0 for each M € U(L,wy). In particular,
for these M, reduces to

PO =)+ m—m—r) A < (n—m) - A\+C.
If 49 > 47 is large enough to ensure that
pmi? :piQ > g9 A+ C = (niQ—miQ)‘)\—i-C,

then implies that r(n;,m;, M) = 0 for every i > iy and every M
contained in the neighbourhood U(L,w;) C U(L,wy) corresponding to
the pair (n;, m;).

Therefore, (3.4) yields

i XM = (ny—my) - XM < x4 C (3.5)
for every i > iy. Let now i > max(ip, C +1). If \(M) > X then
(C+1)- A —x) <i- (WM -y <O,

contradiction. Therefore A(M) < X for every M € U(L, w;).

If M satisfies u(M/K) = p, then we may subtract p - (p" — p"™) on both
sides of the inequality and obtain the same inequality as in the proof
of (ii); we then may proceed as above.

Note that in general does not yield bounds for the A-invariants of
Z,-extensions M /K with p(M/K) < p—1, since 7 < n—m and therefore
in this case, the inequality

p"e(" -1 < (p—p(M/K))-p™- (" = 1)
>1
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is always true, for every choice of n and m. We will have to put further
technical restrictions on the characteristic polynomials F 4 (T') in order
to obtain results concerning such Z,-extensions (compare Lemma 3.62
below).

In the proof of the preceding statements, we have used the inequality

M

ranky(n,m)(A(M)/Ml( )) <rank,, (AM)) (compare (3.3))). We can make
this more precise, using the following

Proposition 3.58. Let A € A denote either a distinguished polynomial,
or X =p. Let M/K denote a Zy,-extension, and assume that X is coprime

to the characteristic polynomial Fyon(T) of AWM (this means that we
want X # p if wW((M/K) #0). Then

ranky (AM)) = rank)\(A(M)/Ml(M))—I—rank)\(Ml(M))
= ranky (AN /M) (/O M)

Proof. We will make use of Proposition 3.43. Recall that for every element
A € A and every A-module N, we defined N[A] :={z € N | A\-z =0} and
QA(N) = | J\flj\(]/[\%\}\‘f)w whenever both orders are finite (compare Definition
3.42).

In our situation, Proposition 3.43, (ii), applied to the exact sequence

0— MM ABD _y 4QD A g

implies that Qy(AM)) = Q\(AM /MMy . @y (M) Since MM s
finite, we have Q,\(Ml(M)) = 1, by Proposition 3.43, (i).

Furthermore, A acts injectively on A(M)/MI(M) = FE 4 ), using our as-
sumption that A is coprime to the characteristic polynomial of A
Therefore AM[\] C MI(M) [A], and Q)\(A(M)/MI(M)) = p*rankA(A(M)/M{M)).
It follows that

(M)1 )
—ranky (AD D) A0y _ [AVDIA]|
M
|Ml( )[A” _ rank>\(Ml(M))—rankk(A(M))
o prankA(A(M>) B ’

proving Proposition 3.58. 0
We therefore may replace inequality (3.3|) by the equality

(M)

ranky, (A(M)/Ml(M)) + rank M;™’) = rank (A

V(n,m)(

V(n,m)

Now

n—1
M M M M
MM /Wy - MO = TNy - M) W1y - MM
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Applying Nakayama’s Lemma 1.43 to the compact A-module Ml(M), we
see that

either Ml(M) ={0} or Vumiim) -MI(M) # MI(M) ,

ie., \Ml(M)/(u(erLm) . Ml(M))| > p. Analogously,

either  V(y,11,m) -Ml(M) ={0} or Vumiom) -Ml(M) # Vim+1,m) ° MI(M) ,

e | Vmpm) - M)/ Wi y2my - M) > p and therefore

ranky(n m)

(M)

Inductively, we obtain that rank,, (M) > n—m as long as we don’t

)
have v, m) - Ml(M) = {0}. But in the latter case, Ml(M) [Vinm)] = Ml(M),

(M)

and therefore rank (M) = vp(]Ml(M)D. We have thus shown that

V(n,m)

rank (MI(M)) > n—m  whenever |M1(M)] > ptm.

V(n,m)

More generally, this argument shows that for every j < n — m, we have

rank,, (M;77) > j whenever |M1(M)| > .

Choosing n; = 2i and m; = @ with ¢ > max(i2, C+1), as in the proof of (ii),
the inequality from that proof yields that for every j < i =n; — m;
and every M € U(L,w;) satisfying u(M/K) = u(L/K),
either |M1(M)\ <p or i XM ypji<ioayC.
In particular, if M € U(L, w;) also satisfies \(M) = X, then
either ]MfM)| <p or j<C
for every j < 1i. Letting j = C' 4 1, we may conclude that
M| < poH = p P
using the definition of C, and therefore
M) <

Remark 3.59. Note that actually we have proved a bit more: If we apply
Proposition 3.58 to both AM) and AX), then we can turn the inequality
into an equality and replace the right-hand side ¢ - A + C' of by
the better upper bound i -\ + |M1(L) [V(n;;m)]|- This means that

M L
MM o]l = M Wil
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for every M € U(L,w;) satisfying A\M) = X\, provided that i > ip. In
particular, if 4 > vp(]Ml(L)]) > Up(\Ml(M)]), then

MO Wmoy] = ME and - MMy ol = MM

ng,m;)

for every M € U(L,w;) satisfying u(M/K) = p and A(M/K) = A, and
thus
™) = [hf)

for these M. We will give another proof of this fact in Corollary 3.75,
under the assumption that u(L/K) = 0.

Now fix i as in Remark 3.59. For M € U(L,w;), we let Yi(M) denote
the kernel of the i-th projection map AM) — AEM), respectively. Then
A A(M)/(y(n’i) ~§/i(M)) for every n > i. Moreover,

M
JAMD] = 1AM iy - ACDY ] (i - AYD) (s - Y
. ranky( N (AGD) (M) |Y;(M) N MI(M)‘
— p mn,1 . ’A’L ‘ . W
MM

for every n > 2i, because the map

¢(n,i) : A(M)/Yi(M) —_— (V(n,i) . A(M)>/(V(n,i) . Y.(M))

)

given by multiplication by v, ;) is a surjective homomorphism having
kernel (VM) + ) /v ™) (apply Proposition 1.44 and use the fact
that v, ;) annihilates Ml(M) ifn—12>1).

In particular, if U C U(L,w;) is a sufficiently small neighbourhood, then

v = i o)

(2

(M) N Ml(M) is the maximal finite A-submodule

C AM) respectively, Proposition 3.58 implies that

for every M € U. Since Y,
of Yi(M )

ranky, (Y;(M)) = rankl,(n’m)(Y(L))

)

for every M € U and for all pairs n > m > 4 satisfying n — m = m.
But then

M M M
AQD] = AP (- V) = (AP

n,i

for arbitrarily large n, proving that v(M/K) = v(L/K) for every M € U.
O

Corollary 3.60. Suppose that K/K is a Z’;-extension, k€ N. Let E<%(K)
denote the set of Zy-extensions of K contained in K. If there exist an inte-
ger 0 < p € Z and a set P C T of prime ideals of K dividing p such that
w(M/K) = p and P(M) = P for every M € ESX(K), then A\(M/K) is glob-
ally bounded on the set E¥(K).
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Proof. Since u(M/K) = p for every M € E¥(K), X is locally maximal,
and in particular locally bounded, in appropriate neighbourhoods of every
M € ESK(K). Moreover, since P(M) = P for every M, the set E<¥(K) is
compact with respect to the Greenberg-R-topology (compare Remarks 3.26,
(2)). This proves the corollary. O

Remark 3.61. Note that this corollary generalises Greenberg’s Theorem 2.30,
which is the case p =0 and P =7 = {p}.

We cannot say much in the case of a ‘jump’ of the p-invariant, i.e., if
w(M/K) < p(L/K) for some M € U(L,n). In order to obtain boundedness
results in this situation, we have to put technical assumptions on the involved
characteristic polynomials, as in the following lemma. In fact, it seems likely
that the M-invariant can be unbounded in the neighbourhood of a Z,-extension
L whose p-invariant is ‘isolated’, i.e., if u(L/K) > u(M/K) for infinitely many
M contained in some small neighbourhood of L (compare Theorem 4.43).

Lemma 3.62. Let L/K be a Zy,-extension. Write p := pu(L/K). Let further
y € No. As in Theorem 3.57, we define the set EY(K) to consist of those
Zy-extensions M /K satisfying (M/K) = y. For every x € IN, we let £,(K)
denote the set of Zy-extensions M € E(K) such that every coefficient of the
characteristic polynomial F o (T), besides the leading coefficient, is divisible
by p”, respectively. Then there exists an integer w € IN such that the following
holds:

For 0 < x < pu, A is bounded in each of the sets EF*(K)NEpp1(K)NU(L,w),
respectively.

Proof. We will use the notation introduced in the proof of Theorem 3.57. If
F o (T) is a distinguished polynomial such that every coefficient, besides the
leading one, is divisible by p®*!, then either

A (M)
ptp—1)

or vp(Fyan (G — 1)) > x + 1. This means that the inequality (3.4) from the
proof of Theorem 3.57 may be strengthened to

Up(FA(M) (sz -1)) = <xz+1,

(" —p™) - p(M/K) + (z+1)-p" (" —1) + (n—m—r) - A4
< @"-p")p+(n-—m)-A+C.

Choosing the sequences m; := i — 00, n; := m; + 4, ¢ > 0, this implies that for

1 large enough to ensure that W < 1, we have

)
PP = 1) p(M/K) + (x4 1) -p™i(p" — 1) + (i — ;) - A
pm

< pmMip -1 u+ A+ C.

Choosing i1 € IN such that p™i (p't — 1) > A+ C, we may conclude that r; < i
for every pair (n;,m;) with ¢ > 4; and every M contained in the neighbour-
hood U(L,w;) N Ex+1(K) N EF*(K) of L. In particular, by definition of r;,
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pl_)‘l((];jil) <z +1 for [ = m;; + 11 = n;,, and therefore
AM < (@ 4+ 1) pP T (p—1)
is bounded in this (restricted) neighbourhood of L. O

3.3.4 Further generalisations

Let L/K denote a Z,-extension. So far, we have only worked with the Fukuda

module A = lim AgLL). However, the general results concerning Fukuda mod-
ules developed in Section 3.1, in particular the Quotient Lemma 3.10 and the
study of A-complementable submodules in Lemma 3.12, yield several more gen-
eral classes of Fukuda modules that may be studied analogously. In the follow-
ing theorem, we summarise the corresponding results for two main classes of
Fukuda modules related to A%) that have been introduced in Examples 3.11
and 3.14, respectively.

Theorem 3.63. Let L/K and AW = @A%L) be as above.

(1) Let S = {p1,...,ps} denote a finite set of primes of K. Let S’ :== SUT
denote the union of S with the set of primes dividing p. Assume that
every prime p € S’ is finitely decomposed in L/K. We define the mod-

ule (AU)S .= @A%L)/(D,(ZL))S, as in Example 3.11, (2). Let p°(L/K),

M(L/K) and v¥(L/K) denote the corresponding Iwasawa invariants. Then

(i) p®(L/K) is locally mazimal, i.e., there exists an integer n € IN such
that u®(M/K) < u®(L/K) for every M € U(L,n).
(ii) Assume that u®(L/K) = 0. Then \° is locally mazimal. If, more gen-
erally, u(L/K) > 0, then N¥(L/K) is locally mazimal if we restrict
to the subset of Zy-extensions M /K with u>(M/K) = u%(L/K).
(i4i) If wS(L/K) = NS(L/K) = 0, then there erxists some n € IN such
that p®(M/K) = X\S(M/K) =0 and v°(M/K) = v°(L/K) for every
M € U(L,n). More generally, v°(L/K) is locally constant if we re-
strict to the subset of Z,-extensions M of K that satisfy
WS (M/E) = pS(L/K) and X(M/K) = XS(L/K).
(2) In the situation of (1), we may even more generally consider R-generalised
S-class groups, as defined in Example 3.11, (3).
(3) Assume that k C K is a subfield such that K/k is abelian of degree prime
to p. Let A := Gal(K/k), and denote by E(K|k) C E(K) the subset of

Zp-extensions L of K that are galois over k with Galois group
Gal(L/k) =2 Gal(L/K) x A .

Assume that L € E(K|k). Then we have a decomposition of Z,[A]-modules

AD = Pe; 4D
=1
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where €1, ...,es denote the idempotents introduced in Example 3.14, (1).
Each module £;- AL is a finitely generated torsion A-module. Let wi(L/K),
XNi(L/K) and v;(L/K) denote the corresponding Iwasawa invariants, respec-
tively.

Then for every i € {1,...,s}, statements analogous to (1), (i), (ii) and
(7ii) hold when restricted to E(K|k). For example, for each i € {1,...,s},

(i) wi(L/K) is locally mazimal in U(L,n) N E(K|k) for suitable n € IN.

Proof. (1) Since every prime p € S’ is finitely decomposed in L/K, we know
that (AF))S = I‘&H(A%L))S is a Fukuda module, where we let

(A% = AP /(D) neNo

(compare Example 3.11, (2)). Moreover, there exists an integer ng € IN
such that the number of primes of L,, dividing some prime p € S’ stabilises
for n > ng. We may assume that ng > e(L/K). Then we consider an
arbitrary Z,-extension M € E(L,ny + 1). Since for every prime p € 5,
the corresponding primes in L,, = M,, are either ramified or inert in
Lpo+1 = Mpyy1, it follows that each p € S’ is ramified or inert in M
(using the uniqueness of the intermediate fields in the abelian extension
M/K; compare the proof of Theorem 3.2, (i)). In particular, each p € 5’
is finitely decomposed in M/K, so that (A(M))S = 'm(A,(@M))S is defined.
If M € U(L,n) with n > ng > e(L/K), then e(M/K) = e(L/K) and
furthermore (AEM))S = (AZ(-L))S for every ¢ < n. Therefore, the statements
(i), (ii) and (iii) can be proved by using the same arguments as in Lemma
3.56, respectively, Theorem 3.57, respectively, Corollary 3.22, replacing the
Fukuda module A by the Fukuda module AS.

(2) This can be proved analogously to (1).

(3) Lemma 3.12 implies that each factor ), - A) in the decomposition of A()
is a Fukuda module (compare Example 3.14, (1)).
Now we may copy the proof of (1), applying our results to every component
g; - AD) | respectively.

O

Note for (1): The case of the cyclotomic Zy-extension of K and S = Z has
been studied before by Y. MizusawA in [Miz 10], obtaining part of (ii) and

(iii).

Remark 3.64. Note that the condition in (3) to be a Z,-extension contained
in £(K k) C £(K) is restrictive: in general, an arbitrarily chosen Z,-extension
L of K will not satisfy this condition. However, at least r9(k) independent
Zy-extensions of K with these properties do exist: For every Z,-extension I
of k, we may take L := [ - K, since p t [K : k] and therefore K Nl = k, i.e.,
Gal(L/k) = Gal(l/k) x Gal(K/k), as desired.
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3.4 Stabilisation of Capitulation kernels and the -
invariant

In the current section, we will introduce the concept of capitulation and describe
the relations to Iwasawa invariants. More precisely, we will study the growth of
the capitulation kernels in a Zy-extension L/K. These are defined as follows.
If we denote by

ip 1= in,n+1 : An —_— An+1

the ideal lift map between the p-Sylow subgroups of the ideal class groups of the
intermediate fields L,, and L1, n > 0, then the kernel of 7, is called the n-th
capitulation kernel. It consists of all ideal classes C € A,, that capitulate
in Ap41. If C € A,,, and if an ideal I of O, denotes any representative of C,
then C capitulates in A, if and only if the lift I - Of,, ., becomes a principal
ideal.

We will establish a connection between the p-ranks of these capitulation
kernels for large n on the one side and Iwasawa’s A-invariant on the other
side. Moreover, we will show that the capitulation kernels in a natural way
correspond to the finite torsion submodule of A = lim A,,.

We start with an algebraic analysis of the structure of the groups A, for
large n.

Lemma 3.65 (Mihailescu). Let G and H be two finite abelian p-groups (written
additively), and let N : H — G and i : G — H be two group homomorphisms
such that:

(i) N is surjective.

(it) rank,(G) = rank,(H).

(i1i) N(i(x)) =p-z for every x € G.

(iv) subexp(G) := min{ord(z) |z € G\ p-G} > p.

Then i(G) =p- H.

Proof. See [Be 12], Theorem 4.2.1. O

We will show now how to apply this result to the ideal class groups of the
intermediate fields in a Z)-extension.

Lemma 3.66. Let L/K be a Zy-extension satisfying p(L/K) = 0. We denote
by in @ Ap — Apy1 the ideal lift map, n > 0. Then there exists an integer
Ny € INg such that

Zn(An) =Dp- An+1
for every n > Nj.

Proof. We will check the conditions from Lemma 3.65. Let n € INg be arbitrary;

step by step, we will choose it large enough in order to make things work. Define
G:=A,, H:= A1, 1:=1y, and let

N = Nn+17n : An+1 — An

be the norm map. Then it follows from class field theory that N is surjective if
n>e(L/K) =:e (see [Wa_ 97|, Theorem 10.1).
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Furthermore, it is a well-known fact that Npi1,(in(z)) = p -« for every
n > 0 and any x € A,. Since the Norm maps Npi1, @ App1 — Ay are
surjective for n > e, it follows that rank,(A,41) > rank,(A,) for such n. But
u(L/K) =0, and therefore rank,(A,,) is bounded for n — co. Therefore there
exists an integer ng € IN, ng > e, such that rank,(A,,) = rank,(A4,,) for every
m > ny.

It remains to show that the subexp-assumption of Lemma 3.65 is satisfied
for large n. In order to deal with this problem, we will study the algebraic
structure of the A, for n > ng. Since A, is a finite abelian p-group, we may
write

Ay 2 Z)p" L B L)l S ... B L)pnl ® Lpl S ... & L)pZ

ay factors

with integers o, ky, € No, e,; € IN, i € {1,...,ky,}, such that
€nl = €n2 2> ... 2 €enk, > 1.

We write A, = B,, & A!,, where A/ corresponds to the p-elementary subgroup
in the above decomposition, and where B,, corresponds to the ‘well-behaved’
part satisfying the subexp > p-condition.

Note that «,, := rank,(A]) is independent from the choice of the specific
maximal p-elementary subgroup A}, of A,,.

Proposition 3.67. With the above notation, o, < o, whenever m >n > nyg.
Proof. Tt suffices to prove this for m = n + 1. Consider the decompositions

Api1 & Z)p" L S ... ® L)l © LpZ D ... D L)pZ

~
ap+1 factors

A, = Z/p7 & ... d Z/p*Z & ZJ)pL S ... D ZL/pZ
ay factors
and the norm map N := Nypy1 : Apg1 — Ap. For o =1,... kpp1 + a1,

choose generators xEnH) € A,y of the cyclic factors contained in A,4+; which

under a fixed isomorphism correspond to the Z/p®r+1.iZ-factor, respectively. In
particular 2D (n+1)

? Thkpa1+1 0 Yk p1tant
Apt1.

Since n > ng, we have

generate a p-elementary subgroup A, of

knt1 + ong1 = ranky(A,41) = rank,(A4,) = kn + o .

Since the Norm map is surjective, there is a decomposition of A, into cyclic

(

groups such that every generator xinH) € An41 yields a generator

2™ = N(a:(n+1)) €A,.

%

If 0 # $§n+1) €A, thenp- 2" = 0 and therefore

i

p-a™ = p N@E@"™) = Np-2") = 0.

i
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By the above, N(xEnH)) # 0 because otherwise the p-rank of A, = N(A,+1)
would be smaller than the p-rank of A,1. In fact, this rank equality implies
that the kernel of N has to be contained in p - A, 1 (compare the proof of
Proposition 3.68, (iv) below).

(n)
(2
cannot be contained in p - A,, by the surjectivity of N, we conclude that x
generates a cyclic factor of A/,. This shows that

Therefore z;’ generates a cyclic subgroup of order p. Since 2= N (x(n+1))

3 3 (n)

i

an = ranky(A4}) > rank,(A4), ;) = ani1,

since the images :Ul(.n) = N(:UZ("H)), i € {knt1+1,..., kny1 + ant1}, generate a

p-elementary subgroup of A, of rank c,11.
Note that ay, can be strictly larger than oy, 1 since the norm map in general
is not injective. ]

Now we look at the sequence (a;)i>n,. Since a; < oy for j > i and as
a; < ranky(4;) < rank,(A4) < oo

for every i, there exists an integer N1 > ng such that o, = an, =: «a for all
n > Ny, i.e. the p-rank of A/ stabilises. Then also

rank,(By,) = rank,(Bn,)

for every n > Nj. Now let n > Nj be arbitrary. Look at the decomposition
Apt1 = Bpt1 ® A, induced by

Apy1 2 Z/p"t 2 & ... @ Lfp el & L/pZ & ... & Z)pZ .

Proposition 3.68. With the above notation, we have:
(i) Nl - Al — Ay is injective.
i) N(A = Al is a p-elementary subgroup of A, of p-rank equal to .
n+1 n
(iii) Letting By, := N(Bp+1), we have B, N Al = {0} and A, = B, ® A,.
(iv) We have i(By) C Bp+1 and i(A)) C p- Bpy1.

Proof. (i) If0#y € Aj,, was such that N(y) = 0, then we would have

rank,(A4,) = rank,(N(A,+1)) = rank,(N(Ap11/<y>))
ranky,(Ap+1/ <y >) < ranky(Ap41)—1,

A

since every proper quotient of a p-elementary group has strictly smaller
rank. But for n > Ny, we have rank,(A,) = rank,(A,+1).

(i) We have already seen above that the group N (A7, ;) has to be p-elementary.
Since o, = a4 for n > Ny, the order of A/, is equal to

(&)
|V ( ;L+1)| = ’A/n—i—1| = pintt = p%n .
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(iii) Since N : A,41 — A, is surjective, we have
Ap = N(Ant1) = N(Bpt1 @ A;’L-i—l) C N(Bnt1) + N(A;H-l)
and therefore 4,, = B, + A},. If B,, N A, # {0}, then we would have

rank,(A4,) = rank,(B, + A],) < rank,(B,) + rank,(4))
< ranky(Ap41),

since A/, N B, C A} is p-elementary. This again gives a contradiction.
(iv) Let z € B,. Assume that i(xz) = y+2z with y € B,y1 and z € A], ;. Then

B,2>p-z = N(i(r)) = Nly+2) = w+£@
€B, €A,

Therefore N(z) = p-a — N(y) € B, N Al, = {0}. Using (i), we see that
z=0,1ie.,i(x) =y € Bpt1.
Now let x € Aj,. Write i(x) =y + 2 with y € B,11 and z € A}, ;. Then
we have

0 =p-o = Niiz)) = Ny) + N(2)

and therefore N(y) = —N(z) € B, N A}, = {0}. In particular, N(z) = 0
and therefore z = 0 by (i). This means that i(z) = y € Bj+1 N Ker(V).
Now consider the map

N : An+l/p ' An+l — An/p : An

induced by N. N is well-defined because N(p - A,11) = p - Ay, and
surjective because N is surjective. Since rank,(A,) = rank,(A,4+1) for
n > ng, N is also injective as being a map between finite sets of the same
cardinality. But this shows that the kernel of N is contained in p - A,41.
In particular, y € p- Ap+1, and so i(z) € Byy1 Np- Aps1 =p- Buy.

O

Now we return to the proof of Lemma 3.66. Consider an arbitrary n > N
and look at the decomposition A, = By11 & A}, 41 which, as decribed above,
induces a decomposition A,, = B,, @& A],. Then we can apply Lemma 3.65 to
the groups G := B,, and H := B, 1, which satisfy all the conditions in 3.65,
by Proposition 3.68. Therefore i(By) = p- Bp41.

But this means that

Z(Aﬂ) = 'L(Bn GBA%) =p-Buy1 = p'An+1 )

using Proposition 3.68, (iii) and (iv), Lemma 3.65 and the fact p- A; ; = {0},
respectively. O

Remarks 3.69.
(1) Using the notation from the preceding proof, let n > ng, i.e., assume that
ranky(A,) = rank,(Ay,+1). Then i, (By,) = p-Bp41 if and only if oy, = vy
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Proof. ‘<="": See the proof of Lemma 3.66.
‘=’ : We have a,+1 < «ay, by Proposition 3.67. Suppose that a,+1 < .
Then

ranky(in(By)) = rank,(p- Bpy1) = rank,(Bpi1)
> rank,(B,) > rank,(in(By)) ,

which gives a contradiction. O

Note that each of the two statements implies that i,(Ay,) = p- Apt1 (com-
pare the end of the proof of Lemma 3.66).

(2) The statement of Lemma 3.66 has been proved by M. GRANDET and J.-
F. JAULENT in [GJ 8], using the A-module structure of the A,, (compare
Theorem 3.73 below).

The following theorem establishes the connection between the preceding
algebraic structure theory and the study of Iwasawa’s A-invariant.

Theorem 3.70. Let L/K be a Z,-extension satisfying p(L/K) = 0. As usual,
we let A = @An.

Then there exists an integer N € Wq such that N(L/K) = r — r}, for every
n > N, where r = rank,(A) < oo and where r], denotes the p-rank of the
capitulation kernel Ker(i, : A, — Any1), respectively.

Proof. By Iwasawa’s Theorem 1.32, there exists an integer No € INg such that
for every n > Ny, |A,| = p*?" A+ where p, A and v denote the Iwasawa
invariants of L/K. Let Nj be the integer defined in Lemma 3.66, and let
N :=max{Na, N1}. Let n > N be arbitrary, but fixed.

Since n > N, we have % = p*, using our assumption that u(L/K) = 0.
The map iy, : A, — Apt1 is a homomorphism between the finite groups A,
and A,+1, and

[An| = [Tm(in)| - [Ker(in)| -

If z € Ker(in), then p- 2 = N(i(x)) = N(0) = 0. This shows that Ker(i,) is
a p-elementary group. Therefore [Ker(i,)| = p™ with 7/, := rank,(Ker(i,)). If
n > N, then r, := rank,(A,) = rank,(A) by definition of N; (compare the
proof of Lemma 3.66), and i,(Ay,) = p - Ap11. We conclude that

A |An+1| _ |An+1‘ _ ’An+1| =T — prnfr% r—r!
‘An’ ‘Im(ln” : pril |pAn+1‘

for n > N. O

p

Corollary 3.71. With the above notation, the p-ranks of the capitulation ker-
nels Ker(i, : A, — Any1) stabilise, i.e., there exists an integer N € IN such
that rank,(Ker(iy,)) = rank,(Ker(iy)) for every n > N.

Conversely, if the p-ranks of the capitulation kernels and the p-ranks of the A,
have stabilised at N € IN, and if N is larger than the integer N1 from Lemma
3.66, then also the quotients % have stabilised and therefore |A,| = prnty
forn>N. !
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An important improvement of Lemma 3.66 is given by the following result,
which yields an effective upper bound on the integer Ny that will be very useful
later:

Lemma 3.72. Suppose that p is an odd rational prime. Let L/K denote a
Z,-extension satisfying p(L/K) = 0. Choose an integer Ny > e(L/K) such
that

rank,(An,) = rank,(An,4+1) = ranky(A4) =: r.

Let N1 > Ny be such that
le >,

Then i,(Ay) = p- Apyq for every n > Ny.

Proof. This proof is essentially due to P. MIHAILESCU. We have already seen
in the proof of Proposition 3.68, (iv) that i, (A,) C p- Ap41 for every n > Ny.
Indeed, Ny41.0(in(x)) = p -z for every x € A, and therefore the induced map

Nyyipn0in Ay /pAy — An/pA,

is the zero map. But Nypi1, @ Ant1/pAnt1 — Ap/pA, is an isomorphism,
because n > Ny, proving that i, : A, /pA, — Ant1/pAnt1 is the zero map.

We will prove that also p- A,+1 C i,(A,) if n is taken large enough.

Suppose that n > Ny, and let b := b,11 € Apy1. If v denotes a topological
generator of Gal(L/K) = Z,, then Gal(Ly+1/Ly,) = <o>/<oP>, where we let
o =P,

We consider the submodule M := A - b of the A-module A,, 11, and we let
M := M/pM, which in a natural way bears a IF,-vector space structure. Since
M C A,41 is a subgroup, we can conclude that

dimp, (M) = rank,(M) < ranky(Ap41) = 7.
If b denotes the coset of b € M in M, then this means that the elements
b, T-b,...,T""71.b

have to be linearly dependent. Therefore we can write some T b, i <pt—1,
as a linear combination of the other powers 77 - b. Lifting the relation to M,
we obtain a polynomial

F(T) = co- TP L4 TP 24 4 ey € Z,[T)

such that f(T)-b = p-x-b for some element x € A and such that at least one of
the coefficients may be assumed to equal 1. In fact, we may assume that f(7)
is a distinguished polynomial in Z,[T] (see Definition 1.11). Indeed, using the
Weierstrafl Preparation Theorem 1.14, we can write

f(T) = J(T)-U(T)

for some distinguished polynomial f(7') of degree at most p™ — 1 and a unit
U(T) € A*. Then

f(T)-b=p-2-UT) b=p-a'b
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with 2/ == z-U(T)~! € A.

Actually, we may also assume that x € Z,[T] is a polynomial. Indeed, Re-
mark 3.49 implies that there exists an integer k£ € IN such that 7% - A,,,; = {0}.
In particular, T* annihilates b, so that we may think of x as being a polynomial
of degree less then k.

Now we use Theorem 1.9 and identify s := 0 — 1 = +*" — 1 with the
distinguished polynomial

(T+1)P" —1 =T +p-hT),
h(T) € Z,[T) appropriate. Since f(7') is monic, division with remainder in
Z,[T) yields the existence of two polynomials ¢(7T"), (T € Z,[T] such that
s = f(T)q(T) +r(T)

and such that the degree of r(7") is smaller than p™ — 1, which is a bound for the
degree of f(T') (this includes the case r(T') = 0). Moreover, every coefficient
of r(T) is divisible by p because the monic leading terms of s and f(7") cancel
(note that ¢(T') # 0, since deg(f(T)) < p" — 1 < deg(s)). Using the equality
f(T)-b = p-x-bobtained above, we have therefore shown that

seb = (pg(T))-b
for some polynomial ¢(T") € Z,[T].
Then
s b=s-5b=s-(p-g(T) b= (p-g(T)-s-b=(p-g(T))> b,

and inductively, we obtain

b = (peg(T))* b (*)
for every k € IN.
Now we use the fact that the norm
of —1 (s+1)P -1

N=Npyip=140+...40P71 = =
’ oc—1 s

may be written as
N = s# 1 pu(T),
where
b— 1 *

u(T) = 1+T's—i—... €A
is a unit, since s = s(T') is distinguished. Letting b, := N(b) € A,,, we may
conclude that

in(bn) = in(N®) = (" +p-u(T)) b
= p-u(T) - (L+u(T)"-pP 2 g(T) ") 0.

Since v(T) := 14+ uw(T)~t-pP=2. g(T)P~1 € A* (recall that p # 2), it follows

that
p-b = (U<T)_1 : U(T)_l) “in(bn) € in(An),

using the fact that i,(A;) is a A-module since i, : A, — A, 41 is a A-module
homomorphism. O
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Consider a Zy-extension L/K satisfying u(L/K) =0, and let A = @An,
in @ Ay — Apt1, ete. be defined as above. Let

T:=Alp|:={acA|lp-a=0}.

Then T C A is a A-submodule of A, and we can write T' = limT,,, where
we let T), := pr,(T) denote the images of T under the n-th projection map
pr,, : A — A, respectively.

We will desribe now an important connection between 1" = @T n and the
capitulation kernels Ker(i, ), proved by M. GRANDET and J.-F. JAULENT. The
following theorem is part of the main result of their article [GJ 85].

Theorem 3.73 (Grandet, Jaulent). Under the above assumptions, let ¥ denote
the Zy-torsion submodule of A, i.e., A = Z;} & T, with A = X(L/K) (compare
Proposition 1.45, (ii)).
Then there exist integers N € N, ay,...,a\ € Z and ayy1,...,a, € N, where
r = ranky(A), such that for any n > N, the following statements hold.
(i) %, C A, is isomorphic to the kernel of the ideal lift map ip o0 : Ap — A,
which contains all classes of A, that capitulate in some L,,, m > n.
(i1) More precisely, there is a bijection between the elements in T, of order p*
and the kernel of the map iy pik @ An — Apti.
In particular, we have |T,,| = |Ker(ip = innt1 : An — Ant1)].

(i)
A r
A, = (@Z/pn—i-aiZ) @( @ Z/paiZ> )

=1 i=A+1
Here the right sum corresponds to the torsion, i.e., by the above, mea-

sures the capitulation. In particular, the subexp of the left group tends to
infinity.

Proof. See |GJ 85]. O

Remarks 3.74.

(1) If My C A denotes the maximal finite A-submodule (compare Remarks
2.25, (3)), then ¥ = M;. Indeed, ¥ is obviously a finite A-submodule of A,
since A is finitely generated as a Z,-module by Proposition 1.31, (iii). If,
on the other hand, z € A generates a finite A-submodule, then in particular
p* -z =0 for some k € IN.

(2) The decomposition of the A,, in Theorem 3.73, (iii) in general differs from
our decomposition 4,, = B,,® A]: We have seen above that the A/, stabilise
for n > Ny; for such n, the norm maps N : A}, ; — A are bijections
by Proposition 3.68. This shows that the projective limit of the A/, yields
a p-elementary Z,-torsion submodule of A. Therefore the A], for large n
correspond to the factors of exponent p occurring in the right sum of the
theorem. Note that in general there exist also torsion elements of higher
order, i.e., TH#T.

We will conclude the present section by giving another proof of Remark
3.59 (‘|M;]| is locally constant’). We will see that, in the case of vanishing
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p-invariants, a local boundedness result concerning the orders of the torsion
subgroups is enough to prove that in fact A and v are locally constant.

Corollary 3.75. Let L/K denote a Zjy-extension satisfying p(L/K) = 0.

(i) Let U denote a meighbourhood of L (with respect to the Greenberg-R-
topology) such that w(M/K) = 0 and A\(M/K) < ML/K) for every
M € U. Then there exists a neighbourhood U(L,n) C U such that
v(M/K) =v(L/K) for every M € U(L,n) satisfying \(M/K) = \(L/K).

(ii) Lett € IN. Then there exists a neighbourhood U(L,n) of L such that
u(M/K) = 0, A\M/K) = ML/K) and v(M/K) = v(L/K) for every
M € U(L,n) satisfying vp(|M1(M))] <t.

Proof. (i) First we note that a neighbourhood U as in the statement of the
corollary exists by Theorem 3.57, (ii). Using Theorem 3.57, (iv), we may
choose a neighbourhood U(L,n) C U such that vp(\Ml(M)D < vp(|M1(L)|)
for every M € U(L,n) satisfying A(M/K) = A(L/K).

We may assume that rank,(AM)) = rank,(A")) for every M € U(L,n).
Then

rankp(f(M)) = rankp(‘I(L))
for every M € U(L,n) satisfying \(M/K) = \(L/K), where TM) = Ml(M)
denotes the Z,-torsion submodule of AM),
Now we assume that n > e(L/K) + vp(]Ml(L)D. Since Ml(L) =3W is a
Fukuda module by Example 3.15, it follows that

TP = 1z

Analogously, since e(M/K) = e(L/K) and vp(]Ml(M)\) < vp(\Ml(L)\) for
the M € U(L,n) under consideration, we have

TRD] = 0]

for every m > n.

Now we assume that n, moreover, is larger than N—l—vp(|M1(L)|) +1, where
N denotes the integer attached to L/K by Theorem 3.73. Then Theorem
3.73, (iii) implies that the exponent of each cyclic subgroup of the ‘left

term’ in the decomposition of A%L), corresponding to the ‘A-part’, is at
least v, (| M 1(L) |)+ 1. Therefore none of the corresponding cyclic subgroups
in A%M) = A%L) can contribute to the torsion subgroup S%M) of M/K,
because v, (|M™M]) < v, (|MP)).
In view of the equality

rank, () = rank, () = rank,(T™)) = rank,(TM)) |
we therefore have in fact

T00] = 500) = 50| = |50

As we have seen in the proof of Theorem 3.57, (iv), this implies that
v(M/K) = v(L/K) for every M € U(L,n), provided that n is sufficiently

large.
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(ii) Conversely, let t € IN, and denote by 9 the subset of M € £(K) satisfying
Up(\Ml(M)]) < t. Since u(L/K) = 0, we know that E,u,/(p"T! - E 1)) is
finite, and therefore

rankptH(A(L)) = Up(\A(L)/(le : A(L))D < 0.

Moreover, A /(pt+1. AU is a Fukuda module by the Quotient Lemma
3.10. This means that we may choose a neighbourhood U(L,n) of L such
that

rankpt+1(A,(1M)) = rankpz+1(A(M)) = rankptﬂ(A(L)) = rankpzﬂ(Af,LL))
for each M € U(L,n). In particular, we then have
rank,(A®)) = rank,(AD) < oo,

ie, u(M/K)=0for M € U(L,n).

We assume that n is large enough to ensure that in the decomposition of
A%L) according to Theorem 3.73, (iii), each cyclic subgroup corresponding
to the ‘\-part’ has exponent larger than ¢t. If M € MNU(L,n + 1), then

none of these cyclic subgroups in A%L) =~ A%M) contributes to Ml(M) , and

therefore A(M/K) > A(L/K) and rankp(Ml(M)) < rankp(Ml(L)).

On the other hand, we have rankpt+1(A(M)) = rankpt+1(A(L)) for each
M € U(L,n). In particular, if N(M) denotes the integer of Theorem 3.73
for M (note that a priori, N(M) could be much larger than N (L)), and
if m > max(n, N(M)), then

rankptﬂ(A%)l) = rankpt+1(A,(q]1V[)) = Tankpt+1(A$zM))-

This means that none of the cyclic subgroups of A%M) = A%L) of expo-

nent smaller than ¢ + 1 can contribute to the A-part of M, and therefore

A(M/K) = A(L/K), rank,(M™)) = rank,(M")) and M| = | 7).
O

3.5 Capitulation kernels and units

In the preceding section, we have shown that the Iwasawa A-invariant is closely
related to the asymptotic growth of capitulation kernels. This motivates the
study of this arithmetic phenomenon in the present section. We will establish a
link between the orders of capitulation kernels on the one side and the orders of
suitable cohomology groups of units on the other side. This will then be used
in order to obtain a new proof of the fact that A is locally maximal if  vanishes
(compare Theorem 3.57, (ii)).

Starting point of the well-known theory linking capitulation kernels and
units was the following observation of K. IwasawA: In [Iw 73|, Iwasawa con-
structed isomorphisms between capitulation kernels of quotients of the ideal
class groups and the cohomology groups of p-units. If A = @An denotes
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the projective limit of the ideal class groups attached to a Z,-extension L/K,
respectively, then we let A/, := A,/Bp, n > 0, where B, C A, is the sub-
group generated by ideal classes which contain an ideal all of whose prime
factors are ramified in L,,11/L,, respectively (compare Example 3.11). For ev-
ery m > n > 0, we denote by i, ,,, : A}, — Aj, the ideal lift map. Furthermore,
we define E' := J,~o E},, where E;, denotes the group of p-units in L, i.e.,

n’

the units of the ring OLn[%] of p-integers in L,,, respectively.

We briefly recall some basic definitions concerning cohomology theory of
finite groups: Let G denote a finite cyclic group generated by an element o.
Let A be a G-module, i.e., an abelian group on which G operates. Let n denote
the order of G, and consider the elements s := 1—c and N := 140 +... 40"}
in the group ring Z[G] acting on A. Then im(N) C ker(s) and im(s) C ker(V)
because of the formal identities N - s =s- N =0 in Z[G]. One defines

ker(s: A — A) ker(N : A — A)
N(A) s(4)

H(G, A) == and H (G, A) :=
Note that s(A) = {ra —a | 7 € G,a € A}. Indeed, if T = o* € G, then
Ta—a=—s- ("1 +oF2 4. . +1)-a € s(A) for each a € A.

Remark 3.76. There exists a much more general theory, defining cohomology
groups H"(G, A) for arbitrary n € Z. For finite cyclic groups G, we have
H"(G,A) = HY(G, A) for every odd integer n and H"(G, A) = H(G, A) for
every even n (the isomorphisms being induced by the cup product, compare
[NSW08], Prop. 1.7.1). In the literature, the cohomology group H™(G, A)
sometimes is denoted by H*(G, A).

Theorem 3.77 (Iwasawa). There are isomorphisms
G o ker(in .+ Al — A7) 5 H Y (Gal(Lm/Ly), E,)
for every m >n >0, and also

on + ker(iy, o 0 Ay, —> lim A7) — H™'(Gal(L/Ln), E') ,

where the direct limit th;n is taken with respect to the ideal lift maps.

Proof. This is Theorem 12 in [Iw 73|. Iwasawa explicitly defines ¢, ,,, as fol-
lows.
Fix a generator o of Gal(Ly,/Ly). For ¢ € ker(iy, ,,,) and a representative

2 € ¢, we know that 2 - (QLm[%] = (a) becomes principal, and we may assume
that o #£ 0. Then

o—1

€=«
is a p-unit in E/ , since A7 = A because A C OLn[%] C L,. Furthermore,
Np,./p.(€) =1, since Ny /p. - (0 —1) =0 in Z[Gal(Ly,/Ly)]. Therefore, ¢ is
the representative of a class € H™1(Gal(Ly,/Ly), E!,). Iwasawa shows that
the map

O Ker(iy, ) — H YGal(L,,/Ly,), EL,), c~g,

is a well-defined homomorphism, and in fact a bijection. O
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Remark 3.78. There exist similar canonical homomorphisms
Onm : ker(inm : Ay — Apm) — H Y (Gal(L,,/Ln), Em), m>n,

and
n t ker(inoo : An —> lim Ap) — H™H(Gal(L/Ly), E),

with B, = 07 and E = J,5¢ En. Iwasawa remarks in [Iw 73] that these
maps are injective, but usually not surjective.

Proof. Let ¢ € A,, be such that i,,,(c) =0. If A € ¢, then A- O, = (a) is a
principal ideal, and ¢y, m(c) = a1, where o generates Gal(Ly,/Ly).

Now suppose that

£:=a’!
is contained in the trivial class of H™*(Gal(L,,/Ly), Er). Then ¢ = 67!
for some § € E,,. Therefore a®~! = §°71 ie., (a/§)”"! = 1 and therefore
a6 =1z € L,. But then (a) = (6 - ) = (z), and therefore 2 = (z) is principal
already in L,,. This proves that ¢, ,, is injective.

If ¢ € A, satisfies ip oo(c) = 0, then there exists some m > n such that
inm(c) = 0. Therefore also ¢, is injective, n € INp.

Now let () € Op,, denote a ramified principal prime ideal (for example, if
L/K is the cyclotomic Zjy-extension, then we can take o = Cpr — 1 for a suitable
k € N). Then (a)° = («) and therefore ¢ := a°~! € E,,.

We claim that the class of ¢ in H™*(Gal(L,,/Ly), E;) cannot lie in the
image of ¢y,—1,m. Indeed, otherwise there exists an ideal 2 of L,,_1 such that
2A-0r,, = (a). But («) is ramified in Ly,/Ly,,—1 and therefore does not lie in
the image of the ideal lift map %m,—1,m. O]

Note that the absence of an isomorphism ¢ analogous to Theorem 3.77 is not
very obstructive to our purposes, since we are mainly interested in the order of
the capitulation kernels ker (i, ), rather than in their specific group structure.
In fact, the following theorem will yield enough information for us.

Theorem 3.79. Let L/K be a cyclic extension with Galois group G = <o >.
Then there exists an isomorphism

¢ = ok Pfign(Px) = H YG,Eyp),

where P and P, denote the groups of principal fractional ideals of K and L,
respectively, and where

Pf={eP,: () =(V7TeG ={(1)ePL: ()7 =}-

@ 1is the analogon of the maps from Theorem 8.77: For ~v € L*, the coset
(v) -ir.(Px) is mapped to the class 2 € H (G, EL) of e := 77~ 1.

Proof. See Satz 2 and p. 47 in [Sc 85]. O
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Remarks 3.80.

(1) In the article [Sc 85], Theorem 3.79 is actually proved for arbitrary Galois
extensions L/K.

(2) If L/K is unramified, then every ideal 2 in P¢ is the image i (') of
some ideal 2’ of K (see Theorem 93 in [Hi 97]). Therefore

PE/iK,L(PK) = ker(iKL) s

i.e., the analogon of Theorem 3.77 is valid in this case. Since a Z,-extension
cannot be unramified, this situation is only possible for intermediate exten-
sions Ly, /L, with small values of n and m.

(3) We have already seen in Remark 3.78 that the existence of ramified primes
in L/K implies that the map from Theorem 3.79 will not be an isomor-
phism. In fact, in general we cannot hope for having an isomorphism, as
we will see now by relating the orders of H™(G, F1) and ker(ix 1,); compare
Corollary 3.81 below.

If Gal(L/K) = <o > is cyclic, then () € PY if and only if ()7 = ().
Moreover, Hilbert’s Theorem 93 implies that each such («) may be written as
(o) =B - € for two ideals B and € of L (possibly trivial) such that every prime
factor of B ramifies in L/K and such that € = i 1(¢') for some ideal ¢’ of K.

In particular, if [L : K] = p, then
\Pf )ik (Px)| = p*t - |ker(ixp)|,

where p°L denotes the number of ideals 8 of L such that every prime factor of
B ramifies in L/K and occurs in B with exponent in {1,...,p — 1}, and such
that there exists an ideal € of K such that B-ix 1,(€') = («) is a principal ideal
in L. For the moment, we will call these ramified ideals of L ‘pseudo-principal’.

Indeed, we have

\Pf [ ik(P)l = |PE/(iko(Ik) N PE)| - (ik,c(Ik) N PE) [ ik (P
= |P{/ (ix (k) N PE)| - |ker(ik,p)|

where I denotes the group of fractional ideals of K.
Moreover,

PP/ (ix,L(Ix) N PE) = (Pf ik L(Ix)) /ik.o(Ik) -

The class of (a) = B - ik (€’) in this quotient equals the class of B. We are
therefore counting classes of ramified pseudo-principal ideals B of L, modulo
ir,,(K). Note that the number of these classes is a power of p, because each
class B # 1 has order p in (PE -ix 1 (Ik)) /ix.r(Ik), since BP € ix 1 (Ix).

We have thus proved the following result.
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Corollary 3.81.
(i) Let L/K be a cyclic extension of degree p. Then

[H Y (Gal(L/K),Er)| = p°F - |ker(ix.1)]| ,

where p°L denotes the number of pseudo-principal ramified ideals of L, as
defined above.
(ii) In particular, if L/ K is unramified, then

| ker(ix,z)] = [H™'(Gal(L/K), E)] ,

and in fact the map ¢ from Theorem 3.79 yields an isomorphism between
the two groups.

Now we are reduced to studying orders of cohomology groups. The following
lemma will be a crucial ingredient in our proof that A is locally maximal.

Lemma 3.82. Let p denote an odd prime, let L/K denote a Z,-extension such
that p(L/K) = 0. If N1(L/K) denotes the integer defined in Lemma 3.72, then
w(M/K)=0 and

IHO(Gal(Myq1 /M), EN)| < [HO(Gal(Myy2/Myi1), ES)]

for every n > Ny and every M € U(L,n). Here M, and E,(@M) denote the
unique subfield of M of degree p" over K and its group of units, respectively.

Proof. Since u(L/K) = 0, rank,(A,) is bounded as n — oo (see Proposition
1.45, (1)), and there exists an integer No > e(L/K) such that

rank,(Ay,) = rank,(Ay,) = rank,(A)

for every n > Np. In particular, u(M/K) = 0 and rank,(AM)) = rank,(A")
for each M € U(L, No + 1).
Let n > Ny + 1 be arbitrary, but fixed.
Assume that [H(Gal(M,41/M,), X)) > [H(Gal(M4o/M,1), ES))]
for some M € U(L,n).
(M)

Then there exists a unit € € E,, ' C ET(LJ\Q such that ¢ ¢ Nn+17n(E,(LAf1)), ie.,
M)

g#1in HO(Gal(MnH/Mn),E?sH), but such that ¢ = Ny 42 pn41(e) for some

e € E,(LAfZ) We want to show that this cannot be the case if n is chosen large

enough.

If v denotes a topological generator of Gal(M/K) = Z,, then we know that
Gal(M/M;) = <y?"> for every i € IN. Therefore, letting o := +*", we conclude
that Gal(My41/M,) = <o> / <oP> and Gal(M,12/Mp+1) = <Up>/<0'p2>.
In order to simplify the notation, we will for the moment write the action of
these Galois groups multiplicatively.

Since € € M, it follows that o(e) = &, and therefore

1 = 50_1 = (Nn+2,n+1(6))a_1 = n+2,n+1(60_1)a
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using the fact that Gal(M4o/M,) = <o> /<oP"> is abelian. Hilbert’s The-
orem 90, applied to the cyclic extension M, 12/M,y+1, implies that there exists
an element § € M, 2 such that

6a—l — 501’—1 _ <5Nn+1,n)o—l )

Here we use the formal identity (¢ — 1) - Np41, = o — 1 in the group ring
Z]Gal(M,42/M,)]. Therefore (e/6Nn+12)7~1 =1, i.e.,

e = §Nntin . g (%)

for some element d € M,,. But then

g = Nn+2,n+1(€) (;) n+2,n+1(6Nn+l’n d)

— 6Nn+2,n+l'Nn+1,n . dp — 5Nn+1,n'Nn+2,n+l . dp (**)

= Npy1n(0420e0 . d)

)

since d € M,, and because Z[Gal(M,2/M,)] is abelian.
Now we consider the ideal () of M,12. Since

(67 = (7 = (1),

it follows that (6)°” = (d), and therefore Hilbert’s Theorem 93 (compare [Hi 97]
and |[Neu 92|, Corollary I11.2.12) implies that

(0) = int1ns2(D) A

with ideals ® of M,,+1 and 2 of M2 such that every prime ideal dividing 2
is ramified in My,1o/Mp41 .

We first show that we may actually choose 2 = (1), i.e., (§) = int1,n42(D),
if n is large enough. In order to prove this, let us assume that 20 has been
chosen minimal, i.e., A = H§:1 iB;’J with 0 < e; < p for every j = 1,...,k;
note that for each 7, qsgj equals ip11n4+2(P1,;) for some prime Py ; of M,
and therefore may be absorbed into i,41,n42(D).

Since n > e(L/K) = e(M/K), every prime P ; is totally ramified in
My42/M,. Foreach j =1,...,k, let P ;, respectively, By ;, denote the unique
primes of M,, 1, respectively, M, that are divisible by ‘Bs ;.

For any fixed j € {1,..., k}, we consider the normalised valuation v := Uy,
induced by the prime B, ;, i.e.,

U(ml,j : OMn+2) =p and U(mo,j : OMn+2) = p2 :

Then

0 = v((e) 2 (8 +m)) + v((d))
= (V) P e,

where ¢ € Z is the exponent of Po ; in (d) C My, i.e., c = vy, ;((d)). Moreover,

(6N m)) = pow((9))
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because the extension M, 2/M, is galois and therefore

But if 0 = p-v((8)) +p? ¢, then we must have v((§)) =0 mod p, i.e., e; =0
in the above decomposition of 2 into prime factors. Since this holds for every
j=1,...,k, we may conclude that we can choose © with (§) = int1n+2(D),
ie, A =(1).

Now we will deal with the ideal © of M, 1. We claim that

Noy1n(®) = (d71) .

Indeed, since ip41pn4+2(D) = (6), the class of © in the group AS‘Q has order at
most p, because ker(in11n+2) is p-elementary. This means that ©P = () for
some 3 € My41. Therefore i1 pn42((8)) = (6)P, ie., f = 6P - ez for some unit

ey € ES\JQ But then

Npi1n(D)P 6Nn+1 ) = BNnH " O,
BNt Opy ) N M,

(67 - 62) mtn On) N My
(5p) mn Ongn) N My
(d - Owm,yy) N My

a1 Ou, ,

(
(
(
(
(
= (

because 6Vr+in . d = e € Eff‘_g by (%). This implies that N,11,(D) = (d71),
as claimed, since the group of fractional ideals of M, is Z-free.

Furthermore, the ideal ® of M,11 cannot be a principal ideal. Indeed, if
® = («a) for some element o € M, 41, then

int1n12(D) = (o) = (9),

and therefore § = o - ey with some unit eg € E( ) . But then

P—1 _ _oP-1

=5 = (are)” T =

e
since @« € Mp4+1. Using ey instead of 4, (x) and (xx) then would imply that
€€ Nn+1,n(E7(fﬂ), in contradiction to our assumptions on e.

Therefore, 1 # D € AS\Q and Nyt1,(D) = 1, since Npy1,(D) = (d71) is

a principal ideal. Recall that n > Ny and thus rank (AS\Q) = rankp(A%M)),

implying that ker(Np4+1,) Cp- Al d, because the induced map

Npyin ASZ—II/ pAn—‘,—l — AgM)/pA%M)

is an isomorphism (compare the proof of Proposition 3.68, (iv)).
Now let N7 > Ny denote the integer attached to L/K in Lemma 3.72. This
means that Nj is large enough to ensure that p/¥* > rankp(A(L)). Note that the
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same integer Ny works for every M € U(L,n), since rank,(AM)) = rank, (A"))
for these M.

We now assume that n > Nj. Returning to our fixed M € U(L,n), Lemma
3.72 implies that p - A(+% Cip n+1(A( )) Therefore © - (1) = ipp+1(A) for
some element a1 € My 11 and an ideal 2 of M,,. But

—
*
Z
q
|
—_

(6-a7)°" 7t = §7"71 2 oL,

so that we may replace 0 by § - @ and also © by © - («;). This means that we
may without loss of generality assume that ® = i, ,,41(2) and (8) = iy n42(A).
Therefore, in the ring of integers of M1,

(5Nn+2,n+1 . d) = ((5N”+2’n+1) Zn n+1((d))

Nn+2,n+1(2n,n+2( )) in n+1( n+1, n(zn nH@U))
= in,n+1(m)p 'in,n+1(m)_p = (1) )

so that (xx) implies that ¢ € Nn+1,n(E7(LA_Q) contrary to our assumptions.

This shows that the inclusion E,(L ) CFE ( +B induces an injective map

HO(Gal(M, 41 /M,), EX)) s HO(Gal(My10/Myi1), EY)

Since M € U(L,n) was chosen arbitrary, this proves the lemma. O

Corollary 3.83. Let p be an odd prime number, and let L/K denote a Z,-
extension such that u(L/K) = 0. Then there exists an integer N1 € IN such
that p(M/K) = 0, rank,(AM)) = rank,(A") and

| < Jker(iM) L, AT s AU

(M
]ker(z( i Aa(q,M) — A it f Antl n+2

nn+1 n+1)
for every n > Ny and every M € U(L,n).
Proof. Using Corollary 3.81 and Lemma 3.82, we already know that for suitable
Np €N,
PPt [ker(i )| = [H (Gal(Mag /M), L))

= p- [H(Gal(Mya /M) )|
p- [H0(Gal(Maya/Miia). By )
[H(Gal (Mo 2/ M), ELL3)|

M
pVre - ker(i] )]

IN

for every M € U(L, N1). Here we have also used the fact that
[H™H(Gal(F/G), EF)| = p- [H(Gal(F/G), EF)|

for every cyclic extension F'/G of degree p that is unramified at infinity (see
[Ja 73], Theorem V.2.4).
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In particular, \ker(igi\;[l)“” < p*Mme2 Mg ]ker(i;]\f%’n_i_Q)\. We will show
now that sy, < sar,., if n > Ni. Recall that p®n+2 (respectively, p*Mn+1)

denotes the number of ‘pseudo-principal’ ramified ideals of M, o (respectively,

Mn-i—l)‘
Let B,,42 be such an ideal of M9, i.e., assume that every prime divisor
of B,,42 is ramified in M, 12/M,+1 and occurs with exponent in {1,...,p— 1},

and that there exists an ideal €, of M, 41 such that

B2 intint2(Cnr1) = (@)

is a principal ideal in Oy, _,.
We apply the norm map N := N, 12 ,4+1. Then each prime factor of

B = N(iBn+2) C My

is ramified in M, 41 /M, since n > e(M/K), and divides B,,41 with exponent
in {1,...,p— 1}. Moreover,

%nJrl ' Q:Z—Q—l = (N(Oé)) )
since N (ipt+1n42(€nt1)) = QfL_H. But p - Agﬁ C imn“(A%M)) for n > Ny, and
therefore €? 11 = innt1(€y) - (B) for some ideal &, of M,, and a suitable element
B € My,+1. This means that

SBn—l—l . in,n+1(¢n) = (N(CM) : 671)
is principal, and therefore sy, ,, < sn,, ;- O

Now we are ready to prove the main result of this section, which corresponds
to Theorem 3.57, (ii).

Theorem 3.84. Let p be an odd prime number, and let L/K be a Z,-extension
such that (L) K) = 0. Then the Iwasawa \-invariant is locally maximal with
respect to the Greenberg-R-topology, i.e., there exists an integer N € IN such
that \(M/K) < AN(L/K) for every M € U(L,n).

Proof. We choose N; € IN as in Corollary 3.83, and we let No = Na(L/K) be
the integer N defined in Theorem 3.70. This means that

ML/K) =r—mry
for every n > No, where 7 := rank,(A") and

rp = ranky(ker(ip := inni1 0 AP — A;L_gl)) .

Now we define N := max(N1, N2)+1 and consider a Zy-extension M € U(L, N).
Since N > N, we know that the statement of Corollary 3.83 is valid for M.
In particular, u(M/K) =0 and

rM) .= rankp(A(M)) = rankp(A(L)) =r.
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If Noy(M/K) < N —1, then

(M) _ (L)
rankp(ker(ZNg(M/K),Ng(M/K)+1)) = rankp(ker(ZNQ(M/K),NQ(M/K)-H)) ,

and therefore A\(M/K) = A(L/K), using Theorem 3.70.
Now N3(M/K) might be strictly larger than N — 1. But then Corollary

3.83 implies that

(M) o (M)
"Ny = rankp(ker(ing i) vy 41))
> rank, (ker(ig\]f\{)L N))

= rankp(ker(iS\QLN)) )

(M)

since the capitulation kernels ker(i; ;" ;) are p-elementary and therefore

|ker(zl(€]\gzrl)’ _ prankp(ker(ilg%l_l))

for every k € INg.
This means that in any case, we may conclude that

M M
AM/E) = v =G0 = =G < T = MI/K)

proving that A(L/K) is locally maximal. O
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Chapter 4

The global approach

In this chapter, we want to briefly describe a different approach to the study of
Iwasawa’s invariants which originates in GREENBERG’s article [Gr 73] and which
is more capable if one wants to deduce global results. In the first two sections,
we will describe work of R. GREENBERG and V. BABAICEV, who proved that
the set {u(L/K) | L € E(K)} is bounded for every number field K. In Section
4.3, we will turn to A-invariants. The analogous question, i.e., whether the
set {\N(L/K) | L € £(K)} is bounded for an arbitrary number field K, is still
open. In fact, no example of unbounded A-invariants is known. We will derive
a sufficient criterion for the existence of such an example, using the theory
developed in the first two sections.

4.1 Greenberg’s boundedness results

Let p denote a fixed rational prime, let K denote a number field such that
there exist infinitely many Z,-extensions of K. Let KK be the composite of all
Zp-extensions of K, i.e., Gal(K/K) = Z% with d > 2. In the article [Gr 73],
R. GREENBERG introduced the Greenberg topology on the set £(K) of Z,-
extensions of K, and he proved the following results (compare Theorems 2.27-
2.30):

Theorem 4.1 (Greenberg).

(i) Let L be a Zy-extension of K such that only finitely many prime ideals of L
lie over p. Then there exist integers ng and ¢ € N such that p(M/K) < ¢
for any M € E(L,no).

(11) Let L be a Z,-extension of K such that only finitely many primes of L lie
over p. Assume further that u(L/K) = 0. Then there exist integers ng
and ¢ € IN such that u(M/K) =0 and \(M/K) < ¢ for any M € E(L,ng).

(i1i) Let K be a number field which contains only one prime dividing p. Then
there exists a constant ¢ such that (L/K) < ¢ for every Z,-extension of
K.

(iv) Let K be a number field which contains only one prime dividing p. Assume
that u(L/K) = 0 for every L € E(K). Then there exists a constant ¢ such
that A\(L/K) < c for every Zy-extension of K.

135
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Note that the assumptions made in Theorem 4.1 imply that no prime of K
dividing p splits completely in L/K.

We will now briefly describe Greenberg’s method of proof, which is quite
different from our approach used in Chapter 3. In particular, we will see the
motivation for assuming that no prime of K lying above p splits completely in
L/K; using our local method, we are free to allow infinitely split primes. On
the other hand, we have to put assumptions on the ramification, being coded
into the Greenberg-R-topology (see Definition 3.24).

In [Gr 73], Greenberg started with a fixed Z,-extension L/K, and he con-
sidered the canonical restriction map which is a surjective homomorphism

Gal(K/K) —» Gal(L/K) .
This map induces a surjective ring homomorphism
71 Ak = Zy[[Gal(K/K)| — Ap = Z,[[Gal(L/K)]]
of the corresponding completed group rings (see Definition 2.9). Note that
Ap =2 Z,T]] = A and A = Zy[[Th,...,Tq)] = A,

using Theorems 1.9 and 2.18, respectively.
Now let 2(;, denote the kernel of 7,; then (7, C Ak is an ideal. If Y denotes
a noetherian torsion Ag-module, then

YL = Y/(QlL . Y)

can be regarded as a module over Ak /A = Ar. Indeed, if A € Ap, then we
choose a pre-image A under the surjective homomorphism 77, and we define
Ay:=X-y,y €Y/ Y). This is well-defined since any other lift \ + a,
a € A, yields the same element -y € Y, =Y/(A - Y).

Y7, becomes a noetherian Ap-module, but it is not necessarily a torsion
module. Greenberg defined, for fixed K and Y, £(Y) = £(Y,K) C E(K) to
be the set of all Z,-extensions L of K such that Y7 is a torsion Az-module.
E(Y) bears the subspace topology induced by the Greenberg topology on £(K).
For each L € £(Y), the Iwasawa invariants of the module Y7, are defined via
Proposition 1.28, using the isomorphism Ap = A.

Lemma 4.2 (Greenberg). Let Y denote a fized noetherian torsion Ak-module,

and let E(Y) be defined as above.

(i) L e€&(Y) if and only if the annihilator ideal of Y in Ak is not contained
in the kernel A, of n. If L € E(Y), then we may choose an annihilator
f of Y such that f = +h'(mod 2Ap), where h € Ak denotes the lift of
an annihilator of Yr,, and t is the minimal number of generators of Y, as
Ax-module.

(ii) The invariant u(Yy) is locally bounded on E(Y).

(iii) If w(Yr) = 0 for some L € E(Y), then then there exist an open neigh-
bourhood U C E(Y') of L and a constant ¢ € IN such that (1(Yar) = 0 and
AYr) < c for every M € U.
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Proof. For the proof of (i), see p. 208 in [Gr 73]: If g € Ak, g & A1, annihilates
Y, then 0 # 71.(g) € A satisfies 7 (g) - Yz = {0}. If, on the other hand, Y7, is
Aj-torsion, then we may choose an element h € Ak such that h-Y C Ay -Y
and h € 2. If y1,...,y: denote generators of the Ax-module Y, then

t

hoyi=) cij-y, 1<i<t,
j=1

with ¢;; € Uy, for every ¢ and j, so

(cij = 0igh) - y; = 0
1

1 i=3
dij = Y
0 :i#7.
Let f:=det((¢;j — dijh)i;) € Ak. Then f-Y =0 and f = £h' (mod 2A), and
in particular f ¢ Ay, since nr,(f) = 7o (£h!) = £x (k) # 0.
For (ii) and (iii), compare Theorems 2 and 3 in [Gr 73]. We will sketch the

proof in the case of an elementary Ax-module Y = Ak /(f), f € Ak.
The connection to Greenberg’s topology is given by the observation that

t

J

for every 1 <14 < t, where

Ay C Ay +m"H for every M € £(L,n), (%)

where m denotes the maximal ideal of the local ring Ak (i.e., m corresponds to
(p,Th,...,Tq) C Z,[[T1,...,Tq]] = Ak, compare Proposition 2.17, (i)).
For Y = Ak/(f), n(Yy) is given by the exponent of the largest power of p
dividing
[ =m(f) = f+Ar € Ax/Ar = Ap.

If mz, denotes the maximal ideal of Ay = A, then
oo
() m7 = {0}.
n=0

Moreover, 7 (m) = my, because 7y, is a surjective ring homomorphism. We
may conclude that for sufficiently large s € IN, we have

fg @O paa 4wt

It follows that for every M € £(L,s), we have f & (p*L)+1) 4 9,5, using (%)
above.

Analogously, if u(Yz) = 0 for some L € £(Y), then A(Y7) is equal to the
smallest index j such that the coefficient a; in the expansion

m(f) =f =a+a-TH+ay-T>+... € A= Ap

is a p-adic unit (compare the Weierstral Preparation Theorem 1.14). Now (iii)
may be proved similarly to part (ii). O
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Greenberg applied this theory to X := Gal(H (K)/K), the Galois group of
the maximal unramified p-abelian extension of K. X is a finitely generated
torsion Ag-module (see Theorem 1 in [Gr 73]) and therefore may be used in
position of Y. If L/K is a Z,-extension such that only finitely many primes of
L divide p, then L € £(X):

In order to prove that X/(2(z - X) is a torsion Ar-module, Greenberg
considered the Galois group G := Gal(H (K)/L), together with its topologi-
cal commutator subgroup G’. He showed that G’ contains 2[;, - X, and that
D :=G'/(A - X) is a finitely generated Z,-module of rank at most (d-1)d-2)
and a Ap-torsion module (this generalises Lemma 1.36, (i)).

In order to prove that also G/G’ is Ap-torsion, Greenberg considered the
finitely many primes p1,...,ps of L dividing p, and he defined T :=T7 -... - Ty,
where T; denotes the inertia subgroup of p; in the maximal abelian exten-
sion of L contained in H(IK), respectively. Then T C G/G’, and each Tj
is isomorphic to a subgroup of Gal(K/L) = ZI~', since Tj N X/G' = {1},
j=1,...,s. Therefore T is finitely generated over Z, and thus Ap-torsion. Fi-
nally, (G/G')/T = Gal(H(L)/L), where H(L) denotes the maximal unramified
p-abelian extension of L, and this is a torsion Ar-module by Lemma 1.39. This
shows that G/G’ and therefore also X/G' are Ap-torsion, proving the claim
that L € £(K).

In the following lemma, we will slightly generalise Greenberg’s approach.

Lemma 4.3.

(i)  Assume that only finitely many primes of L divide p. Then L € £(X) and
w(L/K) = p(XL). In particular, if u(L/K) = 0 in this case, then Xy, is
a finitely generated Z,-module.

(ii) More generally, let K/K denote a Zé—extensz’on, i € N, and let ER(K)
denote the set of Zy-extensions L/K such that L C K (compare Remarks
3.26, (2)). Fiz some L € ESX(K). Let H(K) denote the mazimal p-
abelian unramified extension of K, and let X := Gal(H (KK)/K) denote the
Greenberg module of K/ K. If

L Ak = Zp[[Gal(K/K)]] — Ap = Zp[[Gal(L/K)]]

denotes the ring homomorphism induced by the restriction map, then the
quotient X, := X/(ker(mwr) - X) becomes a Ar-module.

If no prime of L ramifying in K is completely decomposed in L/K, then
X1, is a finitely generated torsion Ar-module, and u(Xr) = pu(L/K).
Moreover,

2)

AXr) = )\(L/K)+%

/L)

and
ML/K) < AXp)+i-1,

where j(IK/L) denotes the sum of the Z,-ranks of the finitely many inertia
subgroups of Gal(H(IK)*"/L). Here H(IK)?® denotes the mazximal abelian
extension of L contained in H(IK).
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Proof. (i)  We will make use of the notation introduced above. We already

mentioned that L € £(X) if only finitely many primes of L divide p. If
u(L/K) = 0, then the torsion Az-module Gal(H(L)/L) = (G/G")/T is
finitely generated over Z, (compare Proposition 1.45, (ii)). Since also
D =G'/(-X) and T are finitely generated Z,-modules, it follows that
X1 =X/ - X), too, is finitely generated. More generally, for arbitrary
u(L/K), it follows that

W(L/K) = p(Gal(H(L)/L)) = pu(Xy) |

see p. 213 in [Gr 73].

In the proof of (i), we have not used the fact that X is the composite
of all Z,-extensions of K. Therefore the above arguments remain valid
for an arbitrary Z;,—extension K/K, i < d. It is sufficient to note that
only finitely many primes of L ramify in H(IK)/L, since the primes that
split in L/K by assumption will be unramified in IX/L and in H(K)/K.
Therefore the product 7 of all the inertia subgroups of Gal(H (IK)P /L) will
be a finitely generated Z,-module whose Z,-rank is bounded by j(IK/L),
and therefore it will not have impact on p-invariants, as in the proof of
(i). Moreover,

(i = )i - 2)

rankz, (D) < 5 ’

proving that

ANXp) < )\(L/K)—i—w

(/L)

(compare the proof of Proposition 2 in [Gr 73] and p. 232 in [Mo 81]).
We will now prove the last inequality; this inequality actually holds for
every L € E¥(K) N &E(X). Indeed, let 7, Ar be defined as above, and
let Ay, := ker(my,). By definition,

u(L/K) = p(Gal(H(L)/L)) and ML/K) = MNGal(H(L)/L)) .
The inclusion H(L) - K C H(K) induces a surjective homomorphism
X = Gal(H(K)/K) — Gal(H(L) - K/K) .
Since 2, = {0 — 1| o € Gal(K{/L)} by definition, we have
AL - Gal((H(L) - K)/K) = {1},

because

7V = oro7lrT = 7l =1

for every 7 € Gal((H(L) - K)/K) and every o € Gal(I{/L). Therefore the
above map induces a surjective Az-module homomorphism

Xp =X/ X) — Gal(H(L) - K)/K) = Gal(H(L)/(K N H(L))).
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In particular,
N(Gal(H(L)/(K N H(L)))) < A(Xy) .

Now

AL/K) = MGal(H(L)/L))
MGal(H(L)/(KNH(L)))) + ANGal((Kn H(L))/L))

MXL) +MGal(K/L)) < MXz)+i—1,

IN N

since Gal(K/L) = 7",

O]

Remark 4.4. Let &'(K) denote the set of Z,-extensions L/K such that only
finitely many primes of L divide p. Then &'(K) C £(K) is open and dense with
respect to Greenberg’s topology.

Proof. See Proposition 3 in [Gr 73]. Note that the fact that &'(K) C £(K) is
dense also follows from Lemma 3.18, (iii). O

We conclude the section by restricting to the special case of the composite
K of all Z,-extensions of K, returning to Greenberg’s proof of Theorem 4.1.

Corollary 4.5 (Greenberg). Let KK denote the composite of all Z,-extensions

of K, let X = Gal(H(K)/K), L € £&(X) and let X;, = X/(Ur - X) be defined

as above. Then

(i) ML/K)<XXr)+d—-1, and

(ii) w(L/K) < u(Xgr). If no prime dividing p splits completely in L/K, then
w(L/K) = u(Xyr) (compare Lemma 4.3).

Proof. (i) is a special case of the last inequality obtained in Lemma 4.3, (ii). In
course of the proof of this lemma, we have shown that there exists a surjective
Ar-module homomorphism

X = X/ -X) —» Gal((H(L) - K)/K) = Gal(H(L)/(KNnH(L))) .
Therefore

p(L/K) p(Gal(H(L)/(KN H(L)))) + p(Gal(KN H(L))/L)

<
< w(Xp) + p(Gal(K/L)) = pu(Xr),

since Gal(IK/L) is a finitely generated Z,-module and thus p(Gal(IK/L)) = 0
(compare Proposition 1.31, (iii)). O

Theorem 4.1 now immediately follows from Lemma 4.2.
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4.2 Projective varieties and the p-invariant

In a series of articles (see [Ba 76], [Ba 81] and [Ba82]), V. A. BABAICEV has
proved several global boundedness results concerning the Iwaswa invariant p,
regarded as a function on the set £(K) of Zy,-extensions of a fixed number
field K. These results build on Greenberg’s work in [Gr 73] (and in particu-
lar generalise Theorem 4.1, (iii)). In order to obtain these results, Babaicev
considered the sets E#7¢(K) consisting of all Z,-extensions L of K satisfying
w(L/K) > ¢, ¢ € Np, and he showed how to equip them with the structure of a
projective variety, respectively. The most important special case will be ¢ = 0,
the study of which will show that Z,-extensions L/K with u(L/K) > 0 usually
are supposed to be somewhat ‘rare’ (see, for example, Theorem 4.15 below).

In this section, we will describe in detail Babaicev’s approach to study global
properties of Iwasawa invariants, which is a refinement of Greenberg’s method
that has been introduced in the last section. We will take the opportunity to
state several auxiliary results that will become important in later parts of our
work. Although some of these results have been proved by Babaicev, we will
usually include full proofs whenever these make use of methods or notions that
will be useful later.

4.2.1 Introduction

Let KK denote the composite of all Z,-extensions of K, i.e., Gal(KK/K) = Zg for
some d € IN, and suppose that d > 2. In the preceding section, we considered
homomorphisms

L Zp[[Gal(K/K)]] — Z,[[Gal(L/K)]]

for any fixed Z,-extension L of K. Babaicev more generally studied the set of
all surjective homomorphisms

T Ag —» A

where A = Ay = Z,[[T]] and Ay = Z,[[T1, ..., Tq]] (see Definition 2.16).
Let T, respectively, I', denote free abelian pro-p-groups of rank d, respec-
tively, of rank 1. Then we have topological isomorphisms I'* = Zg and I' = Z,,.
We will use some notation introduced in Section 2.1. Let

e = {n:1% —» T}

denote the set of all surjective Z,-module homomorphisms (i.e., continuous
group homomorphisms) from I'? into I'. In what follows, we will usually write
the groups I'* and I" multiplicatively, since in our applications, these groups
will come up as Galois groups. Using the isomorphisms I'¢ 22 Zg and I' = Z,,
we will identify £(I'?) with the set

E(Zg) = {m: Zg —» Zp}

that has been studied in Section 2.1.
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We will identify two homomorphisms 7, 7o : Zg — 2y if m = 7§ for some
u € Z,. This will be important for the application to Z,-extensions (compare
Remarks 2.6, (1) and Lemma 2.7), and makes it possible to obtain an isomor-
phism between £(Z¢%) and the (d — 1)-dimensional projective space P4~1(Z,)
over Z, introduced in Definition 2.1 (compare Proposition 2.5). Therefore £(I'?)
may be seen as a projective variety.

Using the isomorphism Gal(K/K) = Zg, we may furthermore identify a(Zg)
and

e(Gal(K/K)) = {n:Gal(K/K) — Z,} .

This has been used in Lemma 2.7 in order to obtain a bijection
E(K) = e(Gal(K/K)) ;
roughly speaking, each L € £(K) corresponds to the restriction map
7 Gal(IK/K) — Gal(L/K) ,

respectively.

Now let I' and I'Y be as above. Note that each homomorphism 7 € £(I'%)
defines a homomorphism

w1 Zy[[M)] —— Z,[[]]

of the corresponding completed group rings. Let v1,...,7q denote topological
generators of I'Y. Then Theorem 2.18 implies that there exists an isomorphism

¢ Zy[TY] —== Ay = Zp[[Ty,. .., T4

induced by the map v; — 1+ 7T;, 1 <17 <d.

If 41, ...,/ is another system of topological generators of I'?, then
d
v =IIv", 1<i<d,
i=1

and A := (ai;)i; € GLq(Zp) is an invertible matrix over Z,. The map induced
by 75 = 1+ T}, 1 < j < d, yields another isomorphism

¢ LMY —— Mg,
again using Theorem 2.18. The commutative diagram

Ag

(67

|
\

\

|

\

) |

¥ 4

Aqg
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defines an automorphism « : Ay — Ay, given by the substitution

d
T = T) = [JA+T)" -1, 1<j<d.
=1

Definition 4.6. A change of variables in Ay of the above shape is called
admissible.

Lemma 4.7 (Babaicev). Let f(T1,...,Ty) be a formal power series different
from zero having coefficients in a commutative ring E of characteristic p # 0.
Then there exists an admissible change of variables of the form

X, = (l—l-Tl)(l—l-Td)al -1,
Xg1 = (+Tg1)A+Ty)%* — 1,
Xa = Ta,
with a1, ...,aq—1 € N, under which f is carried to a series g(X1i,...,Xq) such

that g(0,...,0,Xy) #0. Actually, ay,...,aq_1 may be chosen as

!
a = ... =0a4-1 =p ,

with | € IN sufficiently large.

Proof. See [Ba 76], Lemma 1. The proof given there in fact is an adaption of
Lemmas 2 and 3 in [Bou 89], Chapter 7, §3, with the additional property that
we want the changes of variables to be admissible. O

Let 7 € e(I'Y). If the topological generators of I'? are chosen such that the
kernel of 7 : T% — T is generated by 1, ...,7v4—1, and if § := 7(74), then ¢ is
a topological generator of I'. The induced homomorphism 7 : Ay — A is then
given by

(L) = w(yi—1) = w(y)—7(1) =1-1 =20

for every 1 <i<d—1, and
m(Ty) = w(yg)—1 =d6d-1="1T.

If f € Zp[[TY)] 2 Zy[[Ty, . .., T4]], then we simply have 7(f) = f(0,...,0,T).
We will now see that for a given m, we may always choose topological gen-
erators of I'? such that 7 obtains this canonical form.

Remark 4.8. For every 7 € ¢(I'%), we may choose topological generators
Y, .., 74 of T% such that the kernel of w : I'¥ — T is generated by 71, . .., Ya—1.

Proof. The kernel of 7 : T'Y — T'is a Zp-submodule of I'" and therefore is
Zy-free. Its rank has to be strictly smaller than d, since 7 is surjective, and in
fact, ker(m) has Z,-rank equal to d — 1, since m induces an exact sequence

0 Z;ank(ker(fr)) Zg Zp 0.
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By the Principal Divisor Theorem (see [JS 06], Thm. VII.8.2), there exists a
basis 71, . .. ,vq of I'? (i.e., a set of topological generators of this multiplicatively
written group) such that ker(w) is generated topologically by ~{*,... ,ygi’ll,
with a1,...,a4-1 € Z, and a1 | a2 | ... | ag—1. Let z := fygi_ll € ker(m).
Now assume that p | ag—; in Z,. Then we can write z = y? for some element
y € T'? that does not lie in the kernel of 7 (since the 4" form a basis of ker(r),
they are linearly independent). But then z := 7(y) € Z, is different from 1,
and 2P = (7w(y))? = 7(y?) = w(z) = 1, which contradicts the fact that I is
torsion-free (as being a free Z,-module). Therefore p does not divide aq_1, i.e.,
ai,...,a4-1 € Zy, and ker() is generated by v1,..., Va1 O

Definition 4.9. An element f € Ay = Zpy[[Th,...,Ty]] is in Weierstraf3
normal form with respect to T, if

f=U-p" (T§+ a1 Ty +... +ag),

where m € INg, k € N, U € A} is a unit and ao, ..., ax—1 € (p,T1,...,T4—1) are
contained in the maximal ideal of the local ring Z,[[T1,...,Tq—1]]. f is called
regular in Ty if f is in Weierstral normal form with respect to Ty and m = 0
in the corresponding representation.

Remarks 4.10. )
(1) If f is in Weierstrafl normal form with respect to Ty, then f = U-p™- f(Ty)
with a distinguished polynomial

f(Ta) € (Zp[[Th, ..., Ta1])[T4]

in the sense of Definition 1.11.

(2) If 7 € (I'%) is a homomorphism such that ker(r) is generated topologically
by Y1, ... ,Yd—1, then 6 := 7(7y4) generates I'. If f € Ay is in Weierstrafl nor-
mal form with respect to T, in the variables 11, . .., Ty induced by v1, . .., Y4,
then we can simply write

m(f) = 7(U)-p™ (T* + a1 - T" 1+ ... +a),

with @ = m(a;) = a;(0,...,0) € p-Zp, 0 < i < d— 1. In particular,
w(f) # 0, and p | 7(f) if and only if m > 0, i.e., if and only if p | f.

(3) We may apply the Weierstral Preparation Theorem 1.14 in the ring of
power series

Zy|[T, .., Ta]] = (Zp|[Th, - ., TaaID[[Tall ,
since Zy[[Th, . ..,T4-1]] is a local ring with maximal ideal
M1 = (p, T, Ta-1)

which is complete with respect to the 91;_1-adic topology; compare Propo-
sition 2.17, (i). This implies that an element f € A, is regular with respect
to Ty if and only if f & (p,T1,...,Ty—1) C Ag.
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Lemma 4.11 (Babaicev). Let f € Z,[[['Y]] be non-zero. Let U C e(I'%) denote

the set of homomorphisms m : T4 — T' such that

(1) we can choose topological generators vy,...,7q of I'% such that ker(r) is
generated by Y1, ...,%v4—1, and

(2) f isin Weierstrafs normal form with respect to Ty in the variables induced
by v1,...,7q via the map v; — 1+ 15, 1 <i <d.

Then U C e(T'%) is open and dense in the topology defined on e(I'?) wia the

bijection e(I'?) — E(Zg) — P4Y(Z,) (compare Remarks 2.6, (2)).

Proof. This is basically an application of Lemma 4.7 and Remark 4.8, see Propo-
sition 1 in [Ba 76] for details.
O

Definition 4.12. Let M denote a finitely generated Agz-module. For every
surjective homomorphism 7 : Ay — A, we define M, := M /(ker(r) - M); this is
a A-module, where we identify A = Ay/ ker ().

Note that this corresponds to the notion Xy used by Greenberg (compare
the preceding section).

Theorem 4.13 (Babaicev).
(i) Let M denote a finitely generated Ag-module, and let m = ranky, (M).
Then the subset

U := {r€e(?) |ranky(M,) =m} C (I'9)

is open and dense in e(T'Y).

(ii) Let M denote a finitely generated Ag-module, and assume that there exists
a homomorphism mg € £(I'%) such that M, is a finitely generated Lp-
module. Then the set U C e(I'?) containing all ™ such that M, is finitely
generated over Z, is open and dense in e(T'%).

We recall that the Ag-rank of a finitely generated Agz-module N may be
defined via
ranky, (V) := dimg(N ®4p, Q) ,

where ) denotes the quotient field of Ag, and dimg means the dimension as
Q-vector space.

Proof. (i) This is Theorem 1 in [Ba 76]. Since Babaicev only gives a very
brief proof, we will include here a proof giving full details.
Since M is a finitely generated Agz-module, there exists a surjection

F M 0

for some free Ag-module F' with basis fi,..., fi. Let R C F denote the
kernel of this map. Then R is finitely generated over Ay, since F is
Noetherian as being finitely generated over the Noetherian ring A4, and
rankp, (M) = m if and only if ranky,(R) = [ — m. Indeed, the sequence

0 R F M 0
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of Ag-modules is exact by construction, and therefore the following se-
quence of ()-vector spaces also is exact:

0 — (RRQ) — (FRQ) — (M®Q) —— 0 . (%)

Note that in general, tensoring a sequence of Ag-modules with a Ag-module
N will be only right-exact (see [JS06], p. 184 for an example over the
ring Z). A Ag-module N is called flat if tensoring with N is exact on both
sides. In our situation, N = @ = Quot(Ay) is equal to the quotient field of
A4, and therefore flat by Corollary 3.6 in [AM 69], proving the exactness
of the sequence (x). But the dimension of vector spaces is additive on
exact sequences, and therefore

ranky, (R) + ranky, (M) = dimg(R® Q) + dimg(M @ Q)
= dimg(F ® Q)
= ranky,(F) = [,

proving that ranky (M) = m if and only if ranky,(R) =1 — m.
Let 71,...,7rq denote generators of R C F'. There exist elements a; ; € Ag
such that

Now the condition rank,(R) = [ —m is equivalent to the fact that there
exists a non-vanishing minor of the matrix (a;;); ; of order | —m, whereas
every minor of order greater than [ —m is zero. Let f € A, denote the non-
trivial minor of (a;j); ;. By Lemma 4.11, there exists an open and dense
subset U C £(I'%) such that for every 7 € U, n(f) is in Weierstral normal
form, and in particular non-zero. We will show that ranky,(M;) = m for
7 € U, proving (i).

We have a surjection

F, = F/(ker(n) - F) —— M, = M/(ker(r) - M) — 0

induced by the surjective Agz-module homomorphism F YoM — 0,
which maps ker(r) - F into ker(r) - M. The map R, — F, induced by

0— R F perhaps is not injective, so we divide out the kernel Xr
and define a A-module R, := R;/X;. Then the sequence

0 Re 25 Y My 0 (k)

is exact, where the induced injective map ¢ : R; — Fj is defined via
7+ ker(@) — (7). B
Indeed, it remains to show that ker(¢)) C im(p). Let f € F be such that

Y(f + ker(n) - F) € ker(w) - M. Write

Y(f) = Zai‘mi
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with elements «; € ker(w), m; € M. For every i, we choose a pre-image
fi € F such that ¢(f;) = m;. Then ¢(f — >, o; - fi) =0, so that

f=2 i i = ¢r)

for some r € R. But then p(F) = f—> . a; - fi = [, ie., f €im(p).
The exact sequence (xx) implies that

rankp (Ry) + rankp (M) = ranky (Fr) = ranky,(F) = 1.

Here we use the fact that F' = Afj, and therefore Fr & A as A-modules.

It therefore suffices to prove that ranky (R,) = ranky,(R) =:r for 7 € U.
We know from the first part of the proof that there exists a non-vanishing
minor f € Ay of the matrix (a;;); ; of order 7. The set U C &(I'?) has been
chosen such that 7(f) # 0 in A = Ay4/(ker(w)) for every m € U. Fixing an

arbitrary m € U, we know that R, is generated by the cosets
Ti,...,7q € Rr = R/(ker(n) - R)

of the generators ri,...,r, of R. Furthermore, since r; = Zj aij - fj,
1 < i < g, we obtain relations

I
p(r) = Zaij'?jw 1<i<gq,
j=1

with ?j being the coset of f; in Fr = F/(ker(m) - F), respectively.
Consider the matrix (a;;); ;, with @;; = 7(a;;) € A for every i and j. Since
m(f) # 0, this matrix has a non-vanishing minor of order r, proving that
ranky (R;) > ranka(@(R;)) > r. Let J C {1,...,q} denote the set of
indices corresponding to the submatrix of (a;;) whose determinant is the
minor f.

Now assume that ranky (RW) < r <rankp(Ry), Then, by definition of R,

sz ‘T € ker(@)
i€l

and therefore l

szi-dij-fj =0c¢ F,
el g

=1

for each subset I C {1,...,q} of order r and coefficients \; € A such that
Ai # 0 for some i € I, respectively. We will show that this cannot hold
for the special set I # J of order 7.

Choose lifts \; € Ag of );, respectively. Since {f; :1 < j <l}is abasis of
F', we may conclude that

! !
Zz/\i'aij'fj = Zﬁj'fj
=1

iel j=1
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with 8; € ker(m) C Ag, j =1,...,1. But then

l

0= Z(Z Niaij — Bi) - f;

j=1 el

and therefore ) ;. ; A\ja;; = B; € ker(m) for all 1 < j <, recalling that the
fj are Ag-linear independent.

If I was equal to J, then we would obtain a non-trivial vanishing linear
combination of the rows of (@;;);jcs in A = Ay/ker(m). But this would
contradict the fact that

m(f) = det((aij)ijes) # 0.
Therefore, rank(Ry) > |J| = 7.

On the other hand, if ranks(R;) was strictly larger than r, then there
would exist a non-vanishing minor g of the matrix (a@;;) of order greater
than r, since R, is generated by the cosets of 71, . . . ,Tq- Sincem : Ag — A
is surjective, we could lift g to a non-vanishing minor of (a;j) of order
greater than r, in contradiction to the fact that ranky,(R) = r.

(ii) Now suppose that My, is a finitely generated Z,-module. Then M, is a
torsion A-module. Greenberg has shown that this happens only if there
exists an annihilator f € Ay of M such that f & ker(m) (see Lemma 4.2,
(i)). Furthermore, we may assume that f is not divisible by p. Indeed,
pu(Mz,) = 0 by Proposition 1.31, (iii). Therefore the characteristic poly-
nomial g(T') € Zy|T] C A of My, is not divisible by p. g(7') annihilates
the elementary A-module Ejy, . Since the finite kernel of the pseudo-
isomorphism My, = Enr,, may be annihilated by an appropriate power
of T, by Nakayama’s Lemma (compare Remark 3.49), we may augment g
in order to obtain an annihilator g of My, that is still not divisible by p.
Using the arguments from the proof of Lemma 4.2, (i), it follows that M
is a torsion Ag-module, and that there exists an annihilator f € Ag of M
such that

f = ¢" mod (ker(m)),

where [ denotes the number of generators of the finitely generated Agy-
module M. In particular, pt f.

Since there exists a surjective homomorphism (Ag/(f))" — M, it will
suffice to prove assertion (ii) for the module N := A4/(f). By Lemma 4.11
and Remarks 4.10, (2), there exists an open and dense subset U C £(I'?)
such that for every 7w € U, the image 7(f) = u- f is the product of a unit
u € Z,[[T]]* = A* and a distinguished polynomial f € Z,[T]. Therefore

l

No = A/(x(f)) = AJ(f) = zg=D)

is finitely generated over Z, for every m € U.
O

Using this theorem, Babaicev proved his first result concerning the Iwasawa
p-invariant in Z,-extensions of K. In order to apply the theory developed so



4.2. PROJECTIVE VARIETIES AND THE u-INVARIANT 149

far, we let T' = I'! := Z, and I'¥ := Gal(K/K) = Zg, where K denotes the
composite of all Zy-extensions of K, as usual. Then the study of surjective Z,-
module homomorphisms 7 € £(I'?) corresponds to the study of Z,-extensions
of K (compare Lemma 2.7).

Definition 4.14. Let ¢ € INy. Define £#7¢(K) to be the set of Z,-extensions
L/K satisfying u(L/K) > c. Furthermore, let £Y(K) denote the set of Z,-
extensions L/K such that u(L/K) = 0.

Theorem 4.15 (Babaicev). If there exists a Zy,-extension L € E°(K) such that
only finitely many primes of L lie over p, then the subset E°(K) of £(K) is open
and dense.

Proof. This is Theorem 4 in [Ba 76]. Whereas the proof given there uses coho-
mology theory, we will use more elementary arguments. Let Y := Gal(H(K)/K)
denote the Galois group of the maximal p-abelian unramified extension of
K. Then Y is a finitely generated torsion Ag-module (compare Theorem 1
in [Gr 73]). Furthermore, if m denotes the surjective homomorphism corre-
sponding to L/K via Lemma 2.7, then our assumptions on L imply that
Yy = Y/(ker(m) - Y) is a finitely generated Z,-module (compare Lemma 4.3,

(1))-
Theorem 4.13, (ii) implies that there exists an open and dense subset U of
e(Gal(IK/K)) such that Y7 is a finitely generated Z,-module for every 7 € U.
We will now make use of the following fact.

Lemma 4.16. For every Zy-extension L/ K, and corresponding homomorphism
7w € e(Gal(IK/K)), we have an exact sequence

Y, X, Gal((H(L) N K)/L)

of A-modules, where X, := Gal(H(L)/L) denotes the Galois group of the max-
imal p-abelian unramified extension H(L) of L, and Yy is defined as above.

Proof. Let F' denote the subfield of H(K) fixed by ker(w) - Y C Y. Thus,
Gal(H(K)/F) = ker(m) - Y and Gal(F/K) = Y, = Y/(ker(w)-Y). Assume that
we have chosen a set of topological generators 71, . . ., v of Gal(IK/K) such that
the kernel of 7 € ¢(Gal(IK/K)) is generated by v1,...,%d-1-

Claim 4.17. The mazximal p-abelian unramified extension H(L) of L is con-
tained in F.

Proof. Since ker(mw) C Ag4 is generated by T, ...,T4_1, the subfield F' of H(K)
is fixed by <T1,..., Ty 1>-Y.
Note that H(IK) actually is Galois over L. Since

<Ty,....Ty1>-Y C Gal(H(K)/L)

is a closed subgroup, it follows that F' C H(K) is also Galois over L. We claim
that F' is the maximal subextension that is abelian over L; this relies on the fact
that <T7,...,Ty_1> Y corresponds to the topological commutator subgroup
of Gal(H(K)/L), as we will see in Chapter 5 (compare Lemma 5.19).
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Indeed, Gal(KK/L) acts on Gal(H (K)/K) =Y via conjugation. Since
viroy o z) = ((i=1)-0)(@) = (Ti-0)(x) = @

foreveryoc €Y, x € F,i=1,...,d—1, it follows that fyi‘a'fyi_l(a:) = o(x) for
eachoeY,ze F,ie, v -0- ’y;l = o for every o € Gal(F/K), proving that
F/L is abelian.

Conversely, if M C H(K) is abelian over L, then ~; - o - 'y;l = ¢ for every
o € Gal(M/K) and every ¢ € {1,...,d — 1}, since Gal(IK/L) is generated by
Y, -+ yYd—1. But then M C H(K)<TvTa>Y = p,

Since H(L) is abelian over L, and H(L) C H(K) (compare Proposition
1.34), it is now immediate that H(L) C F.

O

Now let X, := Gal(H(L)/L). Then H(L) := H(L)-K C F. We let
X, := Gal(H(L)/K) and summarise our situation in the following diagram:

H(K)
ker(m)-Y
F
Y
Yr
K H(L)
L———H(L)

K

Since it is possible that X N H(L) 2 L, we may not conclude that X, = X,
However, since H(L) C F, we have a surjective map

Yo —» Xz, o+——— o+ Gal(F/H(L)) =7 .
Furthermore, since X, = Gal(H(L)/K) = Gal(H(L)/(K N H(L))), we obtain
amap X, — X, induced by restriction to H(L). Note that this latter map
will not be surjective whenever H(L)NIK # L. However, the cokernel will yield
us the desired exact sequence:

First note that the composite

Z'IYN Xﬂ X7r7 U|—>E|—>E|H(L) s

is well-defined since every element in Gal(F/H (L)) fixes H(L) C H(L). Let

J:Xe=Gal(H(L)/L) — Gal((H(L)NK)/L), 7 +—— T|lHr)nK) >
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denote the canonical restriction map. Then the sequence

J

Y, —— X Gal((H(L)NnK)/L)

is exact. First of all, it is clear that the image of ¢ is contained in ker(j),
since &g (1)nk) = id € Gal((H(L) NK)/L) for every & € Gal(H(L)/K). On
the other hand, if 7|(g(1)nKk) = id for some 7 € X; = Gal(H(L)/L), then
7€ Gal(H(L)/(H(L)NK)), and therefore 7 is the restriction to H(L) of some
element in Gal(H(L)/K) = X,. Since Y; — X, is surjective, we obtain that
7 =i(o) for a suitable o. O

This shows that X is a finitely generated Z,-module if Y is finitely gen-
erated over Z,, since rankz, (Gal((IKX N H(L))/L)) < d — 1. In particular,
Xy is finitely generated over Z, and therefore A-torsion for every = € U, i.e.,
U C £(X) in the notation of Section 4.1. The assertion of Theorem 4.15 now
follows from Corollary 4.5, (ii) and Proposition 1.31, (iii). O

4.2.2 4 is globally bounded

In [Ba 81] and [Ba 82], Babaicev showed that Theorem 4.1, (iii), proved by
Greenberg only in the case of ground fields K containing one single prime
above p, actually holds in general: For any number field K, there exists a
constant C' = C(K) such that u(L/K) < C for every L € £(K). The main step
in Babaicev’s proof is built up of giving the sets £E#7¢(K) the structure of a
projective variety. For this purpose, Babaicev considered, for every n € IN and
0 <m < n—1, the Grassmannian varieties €] which we introduced in Section
2.1.

We recall some notation. For every integer k > 0, let I'* = Z’; denote a
fixed free abelian pro-p-group with k generators. We let €' be the set of all
surjective continuous group homomorphisms 7 : " —— T™+! | In partic-
ular, €9 | = £(I'?) is the set we have studied in the preceding subsection. We
have shown in Section 2.1 that each set €] in a natural way bears the structure
of a compact projective variety.

Let us fix n and m. We choose topological generators ¥, ...,vy, of I"*!
and Jg,...,0, of I™%L respectively. Each m € &™ extends to a surjective
homomorphism of the corresponding group rings, which may be regarded as a
map

7 Zpl[Xo, ..., Xn)] — Zp[[To, ..., Tl ,
using the isomorphisms
Zy[[T" )] = Apy1 = Zy[[ X0, - .-, X,]]

and
Zo[[T™] 5 At := Zy[[To, - - -, T

(compare Theorem 2.18).
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For every f € Ay, let vy(m(f)) denote the largest power of p dividing 7 (f)
in the unique factorisation domain A,,+1. For every ¢ > 0, we define

V(fie) = Am e ey [up(n(f) = e}

We will now prove several auxiliary results, some of which are used in
[Ba 81], that will be used several times in the next section and also in the
next chapter.

For any k N € N such that k& < p?V, the p-adic valuation of the binomial

coefficient ( ) is given by 2N —up (k) (see, for example, Lemma 1.1 in [Ba 81]).

In particular, for k& < p’, we have fup((pzN)) > N. Therefore the following
congruence holds in the ring Z,[[T"]] of formal power series in one variable:

A+T7)P" =1 =0 mod (p~,T7"). (4.1)

Now we consider a fixed element 7y € €;'. We write a standard neighbourhood
of mg as U = U((N,j)o<i<n,0<j<m)(0), consisting of every surjective homomor-
phism 7 : I+l — "+ guch that

m
a(y) = moly) - [167 . wplaiy) = Nig, 0<i<n, 0<j<m.
j=0

Proposition 4.18. Let U = U((2N; ;)i ;)(m0) be a neighbourhood of my € €]
(note the doubled precision 2N;j), let f € Ayyq be arbitrary. Then

7(f) = mo(f) mod (PN, T, ..., T8"™)

for every m € U, where N; := min; N;;, 0 < j <m, and N := min; Nj.

Proof. Using (4.1)), we obtain

m
(X)) = 7wy) -1 = m(Xi+1) H Ty » Ui € L

m
= HT+1 Wi
7=0

Nio

(WO(X’Z) + 1) 1-1 = TrO(Xi) mod (p Tp o 7T1€LNi,m)

for every 0 <i < n and every m € U. Expanding f € A,41 = Zp[[Xo, ..., X4,
and using the fact that every = € €' is a ring homomorphism, the assertion
follows (note that we have to consider at most p™o -...-p™m terms of the power
series f). O

Proposition 4.18 will be used in the proofs of the following two results.

Lemma 4.19 (Babaicev). Let f € A,11. For every integer ¢ > 0, the set
V™ (fie) = {meel | vp(n(f)) > ¢} is closed.
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Proof. This is Proposition 1.1 in [Ba 82]. We will show that " \ V™(f;c¢) is
open. Let my € &' be such that v,(mo(f)) < c¢. Then there exists a term

kg - T+ T of mo(f) € Z,[[Ty, ..., ] such that
Up (k... Jom -Té“o ce TT]f{") < c.

We will use the notation introduced in Proposition 4.18. Choosing a neigh-
bourhood U = U((2N; ;)i ;)(mo) such that p™s > k;, 0 < j < m, and such that
N > ¢, Proposition 4.18 shows that 7(f) = mo(f) mod (p¢, Tpoth, ... Thm+1y,
and therefore v,(7(f)) < ¢, for every m € U. O

We will now consider the special case m =n — 1.

Lemma 4.20 (Babaicev). If f € An41 satisfies p t f, then there exist only
finitely many elements m € €7~ such that p | 7(f), i.e., the set V*=(f;1) is
finite.

Proof. This is Proposition 1.2 in [Ba 82]. Since 77! is compact (see Section
2.1), and since the set V"~ 1(f;1) is closed by Lemma 4.19, it suffices to prove
that this set is discrete in en L.

Let mo € V™ !(f;1) be an arbitrary element. We may choose topological
generators of ™! such that mo(X,) = 0 (using the same arguments as in the
proof of Remark 4.8). Furthermore, we may choose generators do, ..., d, of

'+l = '™ such that
(X)) =T;, 0<i<n-—1.

Note that this choice of variables does not affect the property v,(mo(f)) > 0.

Writing f € A1 as f = CL(](X(), ce 7Xn—1> + sz ai(Xo, ey Xn—l) . X%
for some k£ > 0, we obtain mo(f) = ao(Tv,...,Th—1). Since p | mo(f), we have
p | ap(Xo,...,Xn-1). Now p1 f, by assumption, and therefore we can write

00
f =g+ Zai(XOa"'aanl)'X;L7
i=k'

with &' > 0, p | g € Apt1 and p 1 ap (Xo, ..., Xpn—1). The last property implies

that there exists a tuple (bg, ..., b,—1) of non-negative integers such that p does
not divide the coefficient ¢ of Xgo Ce X,bl"_’l1 in ap (Xo,..., Xn-1).

Let M € IN be a power of p that is larger than the maximum of the b;.
Using Proposition 4.18, we may choose a neighbourhood U = U((2N; ;):,5)(m0)
such that

W(ak’ (X(], . ,anl)) = 71-0((1]{/ (X0> s 7XTL*1))
= ak/(TO,--an*l) mod (paT({w7’Té\{1)

for every m € U. In particular, p t 7(ax (Xo,..., Xn—1)) for these 7, since by
definition of M, the coefficient of T - ... - Tgﬁ‘ll in 7(ag (Xo, ..., Xp—1)) will
be congruent to ¢ modulo p.
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Let m € U be fixed. Then there exists a power series h € Zy[[To, ..., Th—1]]
such that

m(ap (X0, -y Xno1)) = ap(To, ..., Tuo1) +TM -h mod (p,TM,..., TM ).

Now we note that p 1 7(X,), since 7p(X,) = 0 by our choice of topological
generators. Indeed,

(Xa) = (mo(Xn)+ 1) [ (T3 + 1" — 1

[I7""  mody.
0+£S5C{0,..,n—1} jeS

1
(]

for suitable elements u, ; € Z,, 0 < j < n — 1. Therefore 7(X,) # 0 mod p,
n—1 2Ny, 5. i
because p 1 ‘Ho ij “mdin A,
]:
Since p | g, and as 7 is a ring homomorphism, we may conclude that

w(f) = W(Xn)kl cap/(Toy ..y Th—1) + W(Xn)kl . TOM -h
# 0 mod p

+ Z m(ai(Xo, ..., Xn-1)) - 7(X,)" mod (p,TM,...,TM))

i=k'41
_ k0, kpPm0un o M
i-p N0y M M
+ Z m(ai(Xo, ..., Xn_1)) - T mod (p, TM, ..., TM )
i=k'+1
K p?Nm0. a0 M M
- TO " F mOd (p?Tl ""7Tn—1)’

where

Fi=ap(To,...,Tp1) + TMh + Z m(ai(Xo, -+, Xn1))TH

i=k'+1
Now ay (To, ..., Tn—1) contains the term c - T(l))0 - Tg’fll # 0 mod p. Since
pNn0 > M > by, the coefficient of Té’o - -Tnb’l‘ll in F' in fact equals ¢, proving

that p t F' and thus p t 7(f). Since m € U was arbitrary, this shows that
V=L(f:1) is discrete in en 1.
]

Corollary 4.21 (Babaicev). Let f € Apy1. For everyc > 0, the set V'™ 1(f;c)
is either finite or equal to €771,

Proof. If p¢ | f, then p° | w(f) for every m € €771 ie., V' i(f;e) = en L If
p° 1 f, then we denote by p’ the maximal power of p dividing f, and we define
g = }%. Then V" 1(f;c) = V" 1(g;e —i) € V" 1(g;1) is finite by Lemma

4.20. O
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We will now interrupt the study of u-invariants for a short remark that will
be used in the next section for the investigation of A-invariants.

Definition 4.22. Let f € A = Z,[[T]] denote an element such that p { f.
Then the reduced degree deg,(f) of f is the smallest value k € INg such that
p does not divide the coefficient of 7% in f (compare Lemma 1.10).

Lemma 4.23. Let n € IN, let f € Apy1 be such that pt f. If mo € €0 satisfies
p | mo(f), and if C € IN is arbitrary, there exists a neighbourhood U = Uc of m
such that deg,(m(f)) > C for every mo # m € U. This means that the reduced
degree deg,(m(f)) is unbounded around mo.

Proof. Suppose first that n = 1, i.e., f € Ay and 7y € £J. Analogously to the
proof of Lemma 4.20, we may choose a basis {79, v1} of I'? such that my(vg) = 1,
whereas 7y(y1) = d generates T, i.e., mo(Xo) = 0 and mp(X1) = T. Then the
assumption that

F0.T) = mo(f) = 0 mod p

is equivalent to the fact that f is contained in the ideal (p, Xo) C As.

We will consider the neighbourhood U = U ((2N; 0)o<i<1) of mp with N1 g =0
and Noo = M, where M denotes an integer that has been chosen large enough
to ensure that p™ > C and such that p { 7(f) for every mg # 7 € U (compare
Lemma 4.20). Then deg,(7(f)) is defined for every mo # 7 € U.

Moreover, w(f) = 0 mod (p, TPM) for every m € U, since f € (p, Xp). In
particular, deg, (7(f)) > pM > C for every my # m € U.

Let now n € IN be arbitrary, let f € A,y; and mp € €2 be as in the
assertion. By choosing appropriate topological generators of It respectively,
I', we may assume that mo : Apt1 = Zp[[Xo,..., Xyn]] — Z,[[T]] satisfies
7T0(X0) =...= 7T0(Xn,1) =0 and 7T0(Xn) =T.

The fact that

f@0,...,0,T) = mo(f) = 0 mod p

implies that f is contained in the ideal (p, Xo,..., Xp—1) C Apy1. If

f:=f modp

denotes the reduction of f modulo p, i.e., f € A1 := Ayy1/pAni1, then f #0,
because p t f by assumption. Lemma 4.7 implies that we can alter the basis
Y05+ - -3 of I in order to obtain a set of generators g, ...,%, such that
with respect to the corresponding variables

Xoy vy Xpo2y Xn-1 = X1, Xn
(compare Lemma 4.7), we have
F(0,...,0,X,-1,0) # 0,
ie, f £ 0 mod (p,Xo, . 7Xn_27Xn) and in particular

f#0 mod (p,Xo,..., Xn2).
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Note that this admissible change of variables does not affect the property that

70(Xo) = ... = m(Xn_1) = 0 and mo(X,,) = T, since ,_1 € ker(m). We will
therefore call these new variables Xy, ..., X,, again.
Consider now the epimorphism 7 € &} defined by 7 : "1 — T2,

ﬁ'(’}/o) = ... = 77['(’7”,2) = 1, ﬁ'(’yn,l) = 50 and 7~T(’7n) = 61,

where {0g, 61} forms a basis of I'2. Writing Ty = dp — 1 and Ty = &; — 1, this
means that

F(Xo) = ... = #(Xp_z) = 0, #Xn_1) = Ty and #(Xp) = T} .

If 7 € &) is defined by m(dy) = 1 and m(61) = 9, ie., m(Tp) = 0 and
7T1(T1) =T, then
Qg = 71 © .

Now the fact that f # 0 mod (p, Xo, ..., X,,—2) implies that
A2 349 :ﬁ-(f) = f(Ov"'aoaTlaT2) 7_é 0 mOdpv

whereas m1(g9) = mo(f) = 0 mod p, by assumption. Let C' € IN be given.
Then the proof of the above special case yields a neighbourhood Uy C & of m;
such that for every m; # 7y € U, the reduced degree of 71(g) is defined and
deg,(71(g)) > C. We consider the neighbourhood U = U((2N;)o<i<n) of mo
with N; o = pMifi=n—1, and N; o = 0 otherwise, where M is large enough
to ensure that U consists of homomorphisms 7w = 7 o & with 71 € U;. Then

deg,(m(f)) = deg,(m1(g)) > C
for every mg #m € U. O

Now we return to the study of p-invariants. In [Ba 81], Babaicev used the
above Lemmas 4.19 and 4.20, together with a geometric study of the projective
varieties €', m < n — 1, for the proof of the following result.

Theorem 4.24 (Babaicev). Let 0 # f € Ayq1. Then

sup{vp(n(f)) | 7€ £l 7(f) £ 0} < 0.
Proof. This is Theorem 2.1 in [Ba 81]. O

We will now prove a module-theoretic version of Theorem 4.24 which then
may be applied to Iwasawa theory.
Let M denote a finitely generated torsion A,yij-module. For every homo-
morphism 7 € €2,
7T:A7H_1—>A1 = A,

the quotient M, := M/(ker(w) - M) is a finitely generated A-module, as in the
preceding sections.
Define V(M) := {7 € €2 | ranks (M) > 0}. For every m € € \ V/(M), M,

is a torsion A-module, and therefore its Iwasawa invariant p(M;) is defined.
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Theorem 4.25 (Babaicev). For every finitely generated torsion A, y1-module
M, we have
sup{pu(Mz) | m € en \ V(M)} < oo.

Proof. Consider a presentation of the finitely generated A,4i-module M by
generators and relations:

l
M:<b1,...,b1]2aijbj:0, 1§¢§Q>7
j=1

with suitable elements a;; € Ay41. Since M is A, 1-torsion, we have ¢ > [. Let
A=(ay),1<i<q1<j<l

Lemma 4.26. For every m € 2\ V(M), u(M,) is equal to the exponent of the
largest power of p dividing every minor of order l of the matriz w(A).

Proof. This is Lemma 1.2 in [Ba 82]. We first note that

l
M, = M/(ker(n) M) = <61,...,Bl | > w(ay)b; =0, 1§z’§q> .
j=1

Indeed, it is obvious that M is generated by the cosets of b1, ..., b;. Moreover,
suppose that we have a relation

0=> d-b

Jj=1

with given elements d; € A, 1 < j < [. Since 7 is surjective, we may choose
pre-images c; € Ag of dj, respectively. Then

l
chbj € ker(m) - M .
j=1
Thus ) ¢jb; = > A\;b; for suitable A\; € ker(m) C Ay. But then

(cj—Aj)-bj =0,

l
=1

J

i.e., this relation is an appropriate linear combination of the equations

Zaij'bj =0, 1<i<gq,
J

l — —_
and therefore the relation ) d;-b; = 0in My is a linear combination of relations
J=1

W(aij)@j = 6,

l
=1

J
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because 7(c; — \j) = 7(c;) = dj, respectively.

Now we consider the localisation A, of A at p, which is a discrete valuation
ring with maximal ideal (p). Since M is a finitely generated torsion A-module,
there exists an exact sequence

s t
0— My — My — E:= @A/ ") & @A/ (£(T)5) — My — 0
i=1 Jj=1
of A-modules, with M7 and M, finite, which we now localise. The localised
sequence remains exact, since N,y & N ®p A, for every A-module N, and
because A, is a flat A-module (see [Ei95], Lemma 2.4 and Proposition 2.5;
the notion of flatness has been introduced in the proof of Theorem 4.13). There
exists a power of T' that annihilates the finite A-modules M; and My (compare
Remark 3.49). But T' € A(y) is a unit, so that we may conclude that

(M) = Apy®@a My = {0} and (M) = Ap) ® My = {0}.

This shows that we have an isomorphism

l
) = D A/ (90)
=1

with g; = p™, respectively, g; = f;(T)%. Therefore (M) = > vp(9s) is equal
to the sum of the exponents of p dividing the elementary divisors g; of the
module (My) -

Now we use the following general fact (see, for example, Theorem 2.9.6 in
[Bo 03]).

uz

Lemma 4.27. Let N denote a finitely generated torsion module over a principal
ideal domain R, with matriz of relations B. Then for every m < rank(B), the
product of the first m elementary divisors of N is equal to the greatest common
divisor of the minors of order m of B.

Using this with R = A(,), N = (My)(,), m = [, and with B corresponding
to the matrix over A, defined by the entries of 7(A) proves Lemma 4.26.
O

Lemma 4.26 implies that p(M;) > c if and only if every minor of order [ of
the matrix m(A) is divisible by p°. Let fi,..., fn denote the minors of order
[ of the matrix A. Thus, p(Mz) > c if and only if v,(7(f;)) > ¢ for every
j=1,...,N. Moreover, if 7 € V(M), then M, is a torsion A-module, and
therefore at least one of the f; is non-zero, by Lemma 4.2, (i). Theorem 4.24
implies that

min vp(7(f;))

1<j<N

is bounded on &) \ V (M), yielding an upper bound for p(M). O

Now we will apply the above results to the set £(K) of Z,-extensions of a
fixed number field K, proving Babaicevs main theorem. As we have seen in
Lemma 2.7, we have an isomorphism (K) = &Y ;. Using this isomorphism,
we identify £(K) and €J |, making £(K) into a projective variety.
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Theorem 4.28 (Babaicev). Let K be a number field. Then the invariant p is
bounded on E(K).

Proof. This is Theorem 3.1 in [Ba 81]. If M denotes a Z}-extension of K, i < d,
then we denote by <M (K) the set of Z,-extensions of K contained in M. We
will prove that yu is bounded on every set £ (K), using induction on i. The
statement is true in the case of a single Z,-extension of K (i = 1), and we
assume that there exists an integer n € IN, n > 2, such that p is bounded on
ESM(K) for every Z!-extension M of K with i < n.

Let IK/K denote an arbitrary Zjy-extension, and let X := Gal(H (K)/K) be
the Galois group of the maximal unramified p-abelian extension of IK. Then X is
a finitely generated torsion A,-module (see Theorem 1 in [Gr 73| or Proposition
3.1 in [Ba81]). Let L € E<¥(K).

We first assume that only finitely many primes of L ramify in IK/L. Let
7 € ), correspond to L via Lemma 2.7. Then Lemma 4.3, (ii) shows that
m ¢ V(X) and p(L/K) = u(Xz). Theorem 4.25 implies that u(X;) < ¢o for
every m € €2, \ V(X) and some ¢y € IN. It therefore remains to look at those
Z,-extensions L € ES¥(K) such that at least one prime p of L ramifying in K
splits completely in L/K.

Let P := {p1,...,ps} denote the set of primes of L that ramify in K. For
each p; € P, we let p; denote the unique prime of K divisible by p;, respec-
tively. If Zy, C Gal(K/K) = Z; denotes the decomposition group of p; in
K/K, respectively, then p; is split in L if and only if L C K25 . Moreover,
Gal(K*i /K) = Z,’ for some nj < n, since p; ramifies in K/L and therefore
p; cannot be totally split in IK/K. Therefore the induction hypothesis im-
plies that u(L/K) < ¢; for every Zy,-extension L C K?; and some constant

¢; € IN, respectively. Letting M := max({co,c1,...,¢s}), we may conclude that
w(L/K) < M for every Z,-extension L € E¥(K). O

4.3 Boundedness of M-invariants

In the last section, we studied p-invariants of Z,-extensions L/K of a fixed
number field K, and we discussed in detail Babaicev’s proof that u is globally
bounded on £(K). It is unknown whether the A-invariants of the Z,-extensions
L € £(K) are bounded in general. In the current section, we will develop
a sufficient criterion for the existence of a sequence (M), C £(K) having
unbounded A-invariants. This will make use of the results obtained in the last
sections.

In [Mo 81], P. MONSKY proved some results in the case d = 2 (i.e., he
considered Z,-extensions L of K contained in some fixed Z2-extension K/K).
Monsky obtained a criterion that is related to ours (compare Proposition 4.40
below). In order to briefly describe Monsky’s result, we have to introduce some
notation.

Let K/K be a fixed Zl-extension, d € IN, let X := Gal(H(K)/K), where
H(K) denotes the maximal p-abelian unramified extension of IK. Then X is a
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finitely generated torsion Ag-module, where
Ay = Zp[[Xq, ..., X4]] = Zp[[Gal(K/K)]]

(compare Proposition 3.1 in [Ba 81]). By the Structure Theorem 2.23, X is
S
pseudo-isomorphic to an elementary torsion module @@ Ag4/p;", where s € IN,
i=1
n; € N for i = 1,...,s, and with suitable principal prime ideals p; = (g;) C Aq

S
(compare Remarks 2.25, (1)). Then f := [] g;" € Aq is called the character-
i=1

istic power series of X.

There are different possible descriptions of f. For example, the Ag-module
X can be described via generators and relations, as in the proof of Theorem
4.25:

l
X:<b1,...,bl |Zaijbj:0, 1§i§q,ai]’€Ad>.
j=1

Since X is Ag-torsion, ¢ > I. Let A =(a;5), 1 <i<q, 1 <j<LIf fi,...,f
denote the minors of the matrix A of order [, then one can show that the
characteristic power series f of X is (up to multiplication by a unit) equal to
the greatest common divisor of the f; (compare the proof of Lemma 4.26).

Definition 4.29.

(1) We will also call f € Ay the characteristic power series of the Zg—
extension /K. It is unique up to multiplication by a unit.

(2) The ideal F(X) generated by the minors fi,..., f, is called the (zeroth)
Fitting ideal of X.

Remarks 4.30.

(i)  §(X) does not depend on the chosen representation of X (see Corollary
20.4 in [EL95)).

(i) We may write §(X) = (f) - J, where the ideal J C A, is not contained
in any non-trivial principal ideal (i.e., ideal of height one) of Ay.

(iii) If X can be generated over Ay by [ elements, then

Ann(X)! C F(X) C Ann(X),

where Ann(X) C A, denotes the annihilator ideal of X (compare Propo-
sition 20.7 in [Ei 95]). In particular, F(X) # (0), since X is Ag-torsion.

(iv) If d =1, then the Weierstrafl Preparation Theorem 1.14 implies that the
characteristic power series f € A of X may be written as f = U - p™ - f,
where U € A* is a unit, m = pu(X) € Ny, and where f € Z,[X] is a dis-
tinguished polynomial. Actually f = Fx is the characteristic polynomial
of X introduced in Definition 1.29.

Definition 4.31. Let d € N and 0 # f € Ag = Z,[[I']], with I'? = ZZ. Write
f=p"-gwith ptg. Then mo(f) := p. B

Let further g denote the reduction of g modulo p, i.e., g € Ag := Ag/pAg. Then
we define lo(f) := > vp(g), where the sum is taken over all prime ideals of
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Ay of the form P = (y — 1), with v € T%\ (I'Y)?. Here vp denotes the P-adic
valuation, respectively. Note that the sum ) vp(g) is always finite, because Ay
is a unique factorisation domain.

Let £<%(K) be the set of Z,-extensions L/K such that L C K. Monsky
proved the following criterion for the global boundedness of A-invariants (in the
case of d = 2):

Theorem 4.32 (Monsky). Let K/K denote a Zg—extension with characteristic
power series f € Ay. Then the A-invariants \(L/K), L € E¥(K), are bounded
if and only if lo(f) = 0.

Proof. See Theorem IV in [Mo 81]. O

We will prove the following result:

Theorem 4.33. Let d € N, let K/K be a Z%-extension, X = Gal(H(K)/K),

and let f € Ay denote the characteristic power series of K/ K.

We write f =p™0 - g, with ptg.

(i) X is unbounded on the set ESX(K) if there exists a Zy-extension M C K
of K such that only finitely many primes of M ramify in IK and such that
p | mar(g), where myr corresponds to M wvia Lemma 2.7.

(ii) X is bounded on ESB(K) if for every m € €Y |, the quotient module
Xr = X/(ker(n) - X) is Ax = Ag/(ker 7)-torsion and satisfies u(X,) = myg.

(iii) If d =2, then X is unbounded if and only if p | w(g) for some m € €9_,.

Before starting with the proof, we state a fact which will be useful several
times.

Proposition 4.34.
(i)  Suppose that T € € |\ V(X), let f € Ag. Then mo(7(f)) < u(Xx).
(i) If m(f) = p® - h with x € No and p 1 h, then deg,(h) < A\(X7).

Proof. (i) We will use the notation from the proofs of Theorem 4.25 and
Lemma 4.26 (with M = X). If fi,..., fr € Aq denote the minors of order
[ of the matrix A, then f = ggT(f1,..., fr) and therefore

mo(m(f)) = mo(r(geT(fi,.., f)))
mo(ggT(x(f1), ..., 7(f) 2 u(Xa),

since w(ggT(f1,..., fr)) divides ggT(7(f1),...,7(fr)), because 7 is a ho-
momorphism.
(ii) Suppose first that p(X,) = 0. Analogously to (i), we have

deg,(7(f)) < degy(ggT(n(f1),...,7(fr))) = MXz),

where the last equality may be proved similarly to Lemma 4.26 by consid-
ering modules over localisations A/(g;) for the irreducible divisors of the
characteristic polynomial of the A-module X .

In the general case, we extract suitable powers of p and concentrate on
the remaining distinguished polynomials in A, = Ay/(ker(7)).

IN

O
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We now start with the proof of Theorem 4.33.

Proof. (i)  We assume that for some m € €_,, we have p | 7(g) (note that this
includes the possibility that 7(f) = 0). Then Lemma 4.23 implies that
for any given integer C' € IN, we may choose a neighbourhood U = U(C)
of  such that for every 7 # 7 € U, we have p { 7(g) and deg,(7(g)) > C.
Via Lemma 2.7, this yields a neighbourhood U of the Zp-extension M of
K corresponding to .

Let &'(K) denote the set of Z,-extensions N of K such that only finitely
many primes of N divide p (i.e., no prime of K dividing p is completely
split in V). The set £'(K) is dense in £(K) (compare Remark 4.4).

We therefore may choose a sequence of Z,-extensions M € &'(K) N U
such that for the corresponding homomorphisms 7, of M, we have
deg,(mn(g)) > n, respectively. Moreover, we may assume that

(M™AM): K] > p"

for every n.
For M ¢ &'(K), the module X, is a torsion A ;) -module, by Lemma
4.3. Proposition 4.34, (ii) therefore implies that A(X,,) > n for each n.

Now
(d—1)(d—2)

2
where j(IK/M (™) denotes the sum of the Z,-ranks of the inertia subgroups
of Gal(H(]K)ab(n) /M ™), by Lemma 4.3, (ii). Here H(]K)ab(n) denotes the
maximal subextension of H(IK) that is abelian over M (") respectively.
For every n € Ny, we let M,, denote the intermediate field of M /K that
has degree p™ over K. Let s, denote the number of primes of M, that
are divisible by some prime of M ramifying in I{/M. Since only finitely
many primes of M are ramified in IK/M, by assumption, we may conclude
that there exists an integer m € IN such that s, = s, for every n > m.
We assume that m > e(M/K) + 1. Let t,, denote the number of primes
of M,, that are ramified in My, 1.

By construction, M™ N M D M, for every n € Ng. If p denotes a
prime of M that ramifies in ]K/M("), and if p := p N M,,, then either
p ramifies in M/M,, or p is divisible by some prime of M ramifying in
K/M. If n > m, then p is the unique prime of M, C M® dividing the
prime p N My, _1, respe&ively, and therefore p is the unique prime of M,

A Xr,) < MMM /EK) + + (K /M)

dividing p. This shows that the number of primes p of M ramifying in
]K/M(") is bounded by C' := s,, + t,,, for every n > m.

Since H(K)/K is unramified, the Z,-rank of each inertia subgroup of
Gal(H(]K)ab(n) JM™) is at most d — 1 = rankZP(Gal(]K/M(")). Therefore
we have proved the bound

JIE/M™) <C-(d-1),

which holds for every n > m.
This implies that the A\(M( /K) are unbounded.



4.3. BOUNDEDNESS OF A-INVARIANTS 163

(i)

(iii)

Now we assume that for every w € 5271, X, 1s a torsion A;-module sat-
isfying p(X,) = mo. Let m be arbitrary, let M € E¥(K) correspond to
7. Let §(X) denote the Fitting ideal of X (compare Definition 4.29, (2)).
We write §(X) = (f) - J, as in Remarks 4.30, (2).

Lemma 4.35. 7(§(X)) = §F(Xr).

Proof. Let r denote the number of generators of the Azg-module X. By
definition, §(X) is the ideal generated by the r x r-minors of the matrix
A describing the presentation of X. Since 7(A) describes a presentation
of the A-module X = X/(ker - X) (compare the proof of Lemma 4.26),
we see that §(X;) = 7(F(X)). O

Since pu(Xr) = mg by assumption, Lemma 4.35 implies that there exists an
element h = f - j € F(X) such that w(h) Z 0 mod p™*+!. More precisely,
if h = p™ . h with h = g - j, then 77(71) # 0 mod p. This means that
we can choose a neighbourhood U, of 7 such that for every @ € Uy, we
have 7(h) # 0 mod p and moreover degp(fr(il)) = degp(ﬂ(ﬁ)) (compare
Proposition 4.18).

Let Cr := degp(ﬂ(ﬁ)) < 00. Since 7(h) € F(Xz), we have

A(Xﬁ—) < CW < 0

for every m € U,. Since 6271 is compact and therefore can be covered
by finitely many neighbourhoods U, we may conclude that there exists a
constant C' < oo such that A\(X,) < C for every 7 € €.
If M € ES¥(K) corresponds to m € €J |, then Lemma 4.3, (ii) implies
that

AMM/K) < M Xz)+d—1

(note that this inequality holds for every M € E¥(K) N &£(X), as we have
seen in the proof of Lemma 4.3, (ii); moreover, we have E<¥(K) = £(X),
by assumption). This shows that

AM/K) < C+d—1

for every M € E<¥(K).

Finally, let us assume that d = 2. In this case, A is unbounded whenever
there exists some m € € | = &Y such that p | n(g), i.e., we do not
need to ensure that the corresponding Z,-extension M of K satisfies the
additional condition from (i). Indeed, in the proof of (i), the condition
that only finitely many primes of M ramify in IK was only needed in order
to bound the number of primes that could possibly ramify in K/M (n),
where M (™ runs through a sequence of Zy-extensions of K contained in
a suitable neighbourhood & (K) N U of M.

In [Mo 81, Monsky proved that in the case d = 2, there exists actually a
global constant C such that for every N € &'(K) N ES¥(K), the number
of primes ramifying in IK/N is smaller than or equal to C. Namely, let
P1,-..,Ppr denote the primes of K that ramify in KK and that are divisible
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by only finitely many primes of IK, respectively. Let ¢; denote this finite
number, 1 <i<r,andlet C:=>""_, ¢.

Let now N € &'(K) N ESK(K) be arbitrary. If p denotes a prime of
N ramifying in KK, then only finitely many primes of K divide p, since
Gal(KK/N) = Z,. Moreover, p is only finitely decomposed in N/ K, because
N € &'(K). Therefore pN K € {p1,...,p,}, proving that the number of
primes ramifying in I{/N is bounded by C.

In the notation from (i), this means that j(IK/M ™) < C'-(d—1) for every
n € INg. Therefore X is unbounded if p | w(g) for any 7 € &Y.

It remains to show that \ is bounded on ES¥(K) if p { 7w(g) for every
T € el

Let F(X) = (f) - J be the Fitting ideal of X. Fix some 7 € £}. We will
use the following fact.

Lemma 4.36. There exists an element H € Ay such that 7(H) # 0 mod p
and p® - H € J for some s € Ny.

Proof. The proof follows an idea of Monsky (compare the proof of Theo-
rem 3.3 in [Mo 81]). We consider the ideal

J* = {z€ Ay |p® z€ Jfor some s e Np}.

Then multiplication by p is an injective operation on the quotient module
Ao/ J*. We will now use the following terminology:

Definition 4.37. Let R denote a Noetherian ring, let M be a finitely
generated R-module. Then a prime ideal p C R is called associated to
M if and only if p is equal to the annihilator ideal of some element x € M.

Lemma 4.38. Let R denote a Noetherian ring, let M # {0} be a finitely

generated R-module.

(i) Leta € R. The map mg : M — M, m +— a-m, is injective if and
only if a is not contained in any associated prime ideal of M.

(ii) Assume that p is a prime ideal of R that contains the annihilator
ideal of M and is minimal concerning inclusion with this property.
Then p is associated to M.

Proof. (i)  See [La 93], Chapter X, Proposition 2.9.
(ii) See [Ei95], Theorem 3.1, a.
O

If we apply Lemma 4.38 to the finitely generated As-module Ag/J*, then
we may conclude that p is not contained in any prime ideal containing J*
and being minimal with this property.

Choose generators 1, Yo, respectively, §, of I'2 = Gal(IK/K), respectively,
I' = Gal(M/K) such that with respect to the corresponding variables
Xi=vi—1land T =6 — 1, we have m(X;) = 0, whereas 7(X3) =T.

Lemma 4.39. Fiz i € {1,2}. There does not exist a prime ideal p such
that J* Cp C (p, X;). In particular, J* < (p, X;).
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Proof. Assume that there exists a prime ideal p such that J* C p C (p, X;),
and that p is minimal with respect to inclusion. We will show that in this
situation, p will necessarily be equal to (p, X;). But p € p, by the above,
yielding a contradiction.

Since Az is a Noetherian ring (compare Proposition 2.17, (v)), a maximal
descending chain of prime ideals

(P, Xi) =:pr 2 Pr1 2 ... 2 po = (0)

has length r = 2 (see Corollary 10.3 in [Ei 95]).

Since J C J* is not contained in any prime ideal of Ay of height one, we
may conclude that the minimal number of elements generating p O J* is
at least two, i.e., p is not principal.

Since (0) # J C p, there exists an element 0 # g € p. We may assume that
g is irreducible, using the fact that p is a prime ideal (g has a decomposition
into irreducible elements in the unique factorisation domain Ag). But
then the principal ideal (g) is prime, again using the fact that As is a
unique factorisation domain. Moreover, (g) # p, since p is not principal.
Therefore

(p, Xi) 29 2 (9) 2 (0),

so that the above descending chain condition implies that we must have
(p, Xi) = p, yielding the desired contradiction.
O

But this means that we may choose an element H € J* C As such that
m(H) = H(0,T) # 0 mod p, proving Lemma 4.36. O

Now we may finish the proof of Theorem 4.33, (iii). We may simply copy
the proof of the boundedness of A for arbitrary d, given in (ii), replacing
the element A used there by f - H. Indeed, p { 7(f - H), by assumption,
and 0 # p* - 7(f - H) € §(X,) for some s € N, implying that each X, is
a torsion Ar-module, respectively (compare Lemma 4.2, (i)). Moreover,
M X7) < deg,(f- H) for every 7 contained in a suitable neighbourhood of
7, respectively, as in the proof of (ii).

O

If d = 2, then the conditions in our criterion (Theorem 4.33) and Monsky’s
Theorem 4.32 are equivalent, so that our theorem generalises Monsky’s result
to the case of arbitrary d > 2:

Proposition 4.40. Let 2 < d € IN. Assume that g € Ay satisfies p { g. If
lo(g) # 0, then there exists a homomorphism m € €9, such that p | 7(g).

If, on the other hand, there exists m € € | with p | ©(g), then we can choose
generators yi, . ..,vq of T'¢ such that with respect to the corresponding variables
X;=v—-1,1<j<d, we have g = 0 mod (p, X1,...,X4-1). In particular,
if d =2, then ly(g) > 0.

Proof. Assume that ly(g) # 0. Then there exists an element v € T'%\ (I'Y)? such
that g is divisible by 7 — 1 in A4. Letting X := v — 1 € A4, we may conclude
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that g € (p,X). Since v ¢ (TP, we may extend v to a basis {7,72,...,74}
of I'Y. Now define 7 : T — T by 7(74) := 6 (a generator of '), 7(y;) = 1
for every i < d. Let T := § — 1. Then n(g) = ¢(0,...,0,7) = 0 mod p, by
construction.

If, on the other hand, a homomorphism 7 € €J_| is given such that p | 7(g),
then we choose generators 71, ...,7v4 and 6 of I' and T, respectively, such that
w(vi) = 1 for i < d and 7w(yg) = d. Then p | w(g9) = ¢(0,...,0,T), and
therefore g is contained in the ideal of A4 generated by the elements v; — 1,
i=1,...,d—1. O

It seems natural to conjecture that our condition that 7w(g) = 0 mod p, i.e.,
7(f) = 0 mod pmoE/ K+ for some 7 € gY_, is tightly connected to the fact
that u(M/K) > mo(IK/K) for some M € E¥(K). We are able to make this
precise for d = 2 if the Fitting ideal F(X) of X = Gal(H(K)/K) satisfies the

following technical condition.

Definition 4.41. Let K/K denote a Z2-extension, and let X = Gal(H (K)/K).
We write the Fitting ideal of X in the form §(X) = (f)-J, as in Remarks 4.30,
(2).

We call K/K regular if there exist elements g,h € J such that the greatest
common divisor G of their reductions g,ﬁ € Ay = Ay /pAs is the reduction
modulo p of a series G € Ag with Io(G) =0, and G # 0.

Note that this is the case, for example, if there exists an element h € J such
that p 1 h and ly(h) = 0. This is equivalent to saying that for any choice of
generators v1,v2 € I'2, h € J is regular with respect to the variables X; = ~; —1
and X9 = v9 — 1 of Ag in the sense of Definition 4.9 (compare Remarks 4.10,
(3) and the proof of Proposition 4.40).

Remarks 4.42.

(1) Note that not every irreducible element of Ay is of the form v — 1 for some

v € T?\ (T9)P. Therefore an element h € J with p { h and lg(h) = 0 will
not have to be a unit.
Indeed, assume that p # 2, and let X1 = v — 1 and X9 = 72 — 1 for two
multiplicatively independent elements v1,72 € I'2\ (I'?)P. We consider the
element X7 + X9 € Ag, and we will show that lo(X; + X2) = 0. Note that,
on the contrary, lo(X; — X2) > 0, because

X1 — X9 = (X2+1) . (<X1+1)<X2+1)a— 1),

where a € Z,, is chosen such that o + 1 = 0.

By Proposition 4.40, lp(X71 + X3) > 0 if and only if there exists a homomor-
phism 7 € ¥ such that m(X; + X2) = 0 mod p. We will show that such a
homomorphism cannot exist (note that, on the contrary, 7(X; — X3) = 0
fOI‘7T:X1I—>T, X2I—>T)

We know that

(X)) = (T+1)" -1, n(Xo) = (T+1)%2 -1
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for suitable a1,as2 € Z,. Since 7w : Z,[[X1, X2]] — Zp[[T]] is surjective,
we may assume that a; Z 0 mod p. Since 7 is a homomorphism, m maps
X1+ X3 to

(T+1)" =14+ (T+1)2 -1 =aT+1-1+aT+1—-1 mod (p,T?),
using Lemma 2 of [Ba 76]. If 7(X;1+X2) = 0 mod p, then we may conclude

that a3 + a2 = 0 mod p.
Now we consider the coefficient of T, obtaining

(6)+ () - 22

Since p # 2, this term is congruent to zero modulo p if and only if

ai(ag — 1)+ az(ag—1) = 0 mod p .
Inserting as = —a; mod p, this yields
2 2 —
ai —ay+aj+a =0 modp,

i.e., a1 = 0 mod p. But this contradicts our choice a; Z 0 mod p.

(2) Since J is not contained in any prime ideal of A4 of height one, there do
always exist two coprime elements g, h € J. In fact, if 0 # g € J is arbitrary,
then there exists an element h € J coprime to g (compare Remarks 2.20,
(3).

Moreover, we may assume that p t g - h. Indeed, since J Z (p), we may
choose some g € J such that p { g. Then we choose an element h € J
coprime to p- g € J.

However, it is well possible that § and h are not longer coprime. For
example, if g = X; and h = X; + pXs, then g = h.

(3) In order to motivate our definition of regularity, we consider the following
example. Suppose that J = (X7 + p, X?). Then K/K is not regular, since
X, = v — 1 divides every residue class h, h € J. We make the following
observation. If 7 € £ satisfies 7(X1) = 0, then w(J) C (p), and therefore

w(Xz) > mo(w(f))

(compare the proof of Proposition 4.34). This is exactly the phenomenon
we want to get rid of by our regularity constraint (see the proof of Theorem
4.43 below).

Theorem 4.43. Let I\/K denote a regular Zz—extension. If there exists some
M € EK(K) such that u(M/K) > mq := mo(IK/K), then \ is unbounded on
ER(K).

Proof. We will first prove a general result which shows that we may assume that
for every 7 € €Y, the module X, = X/(ker(r) - X) is a torsion Ay -module,
with M, € E<¥(K) corresponding to 7 via Lemma 2.7.
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Lemma 4.44. Let K/K denote a Zf,-extension with corresponding Greenberg-
module X = Gal(H(K)/K). If there exists a homomorphism m € &Y, with
corresponding field M, € ES¥(K), such that X, = X/(ker(r)- X) is no torsion
Ay, -module, then X is unbounded on E¥(K).

Proof. Let f € A; denote the characteristic power series of X. Write f = p™0.g,
p 1 g, with mg = mo(IK/K). Let © € €{ be such that X, is no torsion Ay, -
module. Then 7(g) = 0. Indeed, we may use Lemma 4.36 in order to find an
element H € Ag such that 7(H) # 0 mod p and such that p®- f - H € §F(X) for
some s € INy. But then

p*om(f) - m(H) = p*™ - 7(g) - m(H) € F(Xx),

and this element is different from zero if 7(g) # 0. Lemma 4.2, (i) then would
imply that X, was Ay, -torsion.

We therefore assume that m(g) = 0. Then Lemma 4.23 implies that for
every C' € IN we may find a neighbourhood U¢ of m such that 7(g) # 0 mod p
and deg,(7)(g) > C for every m # 7 € Uc.

Let &'(K) denote the set of Zy-extensions of K in which no prime dividing
p splits into infinitely many primes. We have shown in Lemma 4.3, (i) that the
module X is A y;-torsion for every homomorphism y; € &Y corresponding to
some M € £'(K). £'(K) is dense in E¥(K), sece Remark 4.4. Moreover, there
exists a constant ¢, € IN such that for every M € &(K) and corresponding
7> We have

AMXr.) < AM/K)+ C

(compare the proof of Theorem 4.33, (iii)).

Now assume that A is bounded on SQK(K), i.e., let X € IN be such that
AMN/K) < X for every N € E¥(K). Let C := X + C;. Choose some
M € &'(K)NUg. The corresponding homomorphism 7 € €9 then satisfies
7(g) # 0 mod p and deg,(7(g)) > X +C1. Since deg,(7(g)) < A(X7) (compare

Proposition 4.34, (ii)), it follows that
MM/K) > MXz)—Cp > X,
yielding a contradiction. O

Now we return to the proof of Theorem 4.43. Let 7 € ! correspond to the
element M € E<¥(K) with u(M/K) > mg. In view of Lemma 4.44, we may
assume that X is a torsion Aj;-module. Then

W(Xr) = p(M/K) > mo,

by Corollary 4.5.

We have seen in Proposition 4.34, (i) that mo(7(f)) < wu(Xr) whenever
m € E(X). We will prove now that the assumed regularity of I{/K implies that
we actually have mo(7(f)) = u(Xx) for every m (compare Remarks 4.42, (3)):
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Proof. Suppose first that there exists h € J such that p { h and ly(h) = 0. Then
7(h) 2 0 mod p for every 7 € €Y, by Proposition 4.40. But 7(f)-7(h) € F(Xx)
for each 7, implying that

1(Xz) < mo(w(f)) +mo(m(h)) = mo(r(f)) -

Let now g, h € J denote two elements such that the greatest common divisor G
of their reductions g and h modulo p is not divisible by any irreducible element
of the form v — 1, v € T2\ (I'?)?.

We may assume that p { g - h (otherwise our condition on G implies that
lo(g) = 0 or lp(h) = 0, and we are done because of the special case discussed
above).

If 7 € &) satisfies mo(7(f)) < u(Xy), then m(H) = 0 mod p for every
H € J. In particular, 7(g) = 0 mod p and 7(h) = 0 mod p. If 71,72 denote
topological generators of I'? such that 7(vy;) = 1 and such that 7(y) = §
generates the image I' = 7(I'?), then this means that the reductions g and
h of g and h are divisible by 7; — 1 in Ay (compare the proof of Proposition
4.40). But then 77 — 1 divides the greatest common divisor G of g and h, in
contradiction to our regularity constraints.

This shows that for every m € &), we have either 7(g) £ 0 mod p or
m(h) #Z 0 mod p, proving that mo(7w(f)) = u(Xr). O

But this implies that for the homomorphism 7 € €9 corresponding to our
fixed M € EK(K), we have mo(n(f)) = u(Xy) > mo, ie., f = p™ - g
and p | m(g). Therefore Theorem 4.33, (iii) implies that A is unbounded on
EK(K). O

Definition 4.45. Let d € IN, let f € Ay = Z,[[['Y], f # 0. We write
f=p" g, with p { g. Then we define dp(f) to be the number of pairwise
coprime irreducible elements v — 1, v € T4\ (I'%)P dividing § in Aq = Ag/pAq.
In particular, do(f) = 0 if and only if ly(f) = 0.

Corollary 4.46. Let K/K denote a Z-extension. Let F(X) = (f)-J, let
m := min({dg(h) | h€ J, pth}).

If there exist at least m + 1 different Zy-extensions My, ..., My 1 € ESB(K)
such that p(M;/K) > mo(IK/K) for every i € {1,...,m + 1}, then X\ is un-
bounded on E¥(K).

Proof. First note that m is well-defined, since not every element of J can be
divisible by p. Let h € J, pt h, be an element such that dyo(h) = m. For every
7 € &), we have m(h) = 0 mod p if and only if 7(;) = 1 for some ; € T'?\ (I'?)?
satisfying 7; — 1 | h (compare the proof of Proposition 4.40). This means that
there exist exactly m homomorphisms 7y, ..., m, such that 7;(h) = 0 mod p,
because every 7 € €Y is uniquely determined by its (rank one) kernel. Indeed, if
the kernel of 7 is generated by v € I'2\ (I'?)P, then we extend v to a basis {7, 72}
of I'2, and 7 has to map 72 to a generator of I'. Since we do not distinguish
between the homomorphisms 7 and 7, u € Z, in eV, v uniquely determines
.
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This means that 7(h) # 0 mod p and therefore mo(w(f)) = pu(X,) for
every  different from 7y, ..., m,y,. Write f = p™o(K/K) . g If there exist more
than m Z,-extensions whose p-invariant is greater than mg(IK/K), then there
exists 7 € €Y such that p | 7(g), and therefore A is unbounded. O

Corollary 4.47. Suppose that K is an abelian number field. Let IK/K denote
a Zg—extension containing the cyclotomic Z,-extension Ko of K. We write

§(X) = (f)-J. Let
m := min({do(h) | h € J, pth}).

If there exist at least m + 1 different Z,-extensions My, ..., Mp+1 € ESB(K)
such that u(M;/K) > 0 for every i € {1,...,m + 1}, then X\ is unbounded on
EK(K).

Proof. If K is an abelian extension of Q and if Ko, denotes the cyclotomic
Z,-extension of K, then it is known that p(K/K) = 0 (compare [EW_79]).
Moreover, every prime of K dividing p ramifies in K,/ K (compare Lemma 3.18,
(ii)), and therefore Ko, € &'(K) and pu(Xz) = p(Koo/K) for the corresponding
homomorphism 7 € &). Since u(X,) > mo(IK/K) (see Proposition 4.34, (i)), it
follows that mo(IK/K) = 0. Now apply the previous corollary. O

Remarks 4.48.

(1) If m = 0 in Corollary 4.46, then we are in the special case of regularity
mentioned in Definition 4.41, and therefore the statement of the corollary
follows from Theorem 4.43.

(2) We already know that the existence of some

L e E¥(K) n &'(K)

with pu(L/K) = 0 implies that the Z,-extensions M C K of K satisfying
w(M/K) = 0 are dense in E¥(K) (compare Theorem 4.15).
In the case of d = 2, there can exist only finitely many Z,-extensions
M, ..., M, C K of K such that u(M;/K) # mo(IK/K) (compare Theorem
5 in [Ba 76] and Lemma 5.10 below). In this notation, the Corollaries 4.46
and 4.47 show that » < m.

(3) The proof of Theorem 4.43 may be used in order to prove the following
generalisation. Let d € IN, d > 2.
Let K/K be a Zg-extension having a Fitting ideal F(X) = (f) - J such that
J contains an element h with the following property: For every choice of
topological generators of Gal(IK/K), h is reqular with respect to each of the
variables X; = v;—1 of Ay in the sense of Definition 4.9 (this generalises the
special case of regularity mentioned in Definition 4.41). Let M € ES¥(K)
be such that every prime of K that ramifies in K is also ramified in M. If
w(M/K) > mo(K/K), then X is unbounded on €<% (K).
Indeed, the existence of h implies that

mo(n(f)) = m(Xx) > mo(K/K)
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for the homomorphism 7 € 5271 corresponding to M (compare Remarks
4.10, (3) and the proof of Proposition 4.40). Moreover, the ramification
condition ensures that for some C; € IN, we have

(Xry) < MI/K) +Cy

for each M contained in a suitable neighbourhood U (M, n) of M, for some
n > e(M/K)+1 (compare the proof of Theorem 4.33).

Corollary 4.49. Let K be an abelian number field, let IK/K denote a regular
Zg—extension containing the cyclotomic Zy-extension of K. Assume that K

contains only one prime dividing p. Then X is unbounded on E¥(K) if and
only if there exists M € ESX(K) such that u(M/K) > 0.

Proof. If u(M/K) > 0 for some M € E<%(K), then ) is unbounded by Theorem
4.43 (compare the proof of Corollary 4.47). If, on the other hand, u(M/K) =0
for every M € £<¥(K), then X is bounded by Corollary 3.60. Note that this
has been reproved in Theorem 4.33, (iii), since pu(M/K) = pu(X5) for every M,
because each M is ramified at the single prime p of K dividing p (compare
Corollary 4.5). O

Remark 4.50. Note that instead of assuming that K contains only one prime
dividing p, it would be sufficient if every M € £S®(K) had the same ramifica-
tion set (compare Corollary 3.60).
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Chapter 5

Local behaviour of generalised
Iwasawa invariants

Let K denote a fixed number field. In Chapter 3, we studied the local behaviour
of Iwasawa invariants on the set £(K) of Z,-extensions of K, with respect
to suitable topologies. We will now, more generally, consider the sets of Zg—
extensions £4(K) of K, d € IN. Note that £%(K) = 0 if d is too large (compare
Theorem 1.7).

In analogy with the theory developed in Chapter 3, we will study the local
behaviour of so-called generalised Iwasawa invariants, which are natural ana-
logues of Iwasawa’s classical yu- and A-invariants. In the first section, we will
define the Greenberg- and Greenberg-R-topologies on the sets £4(K). Then
we start the investigation of local properties of generalised Iwasawa invariants,
using a descent-ascent method and applying our one-dimensional results from
Chapter 3.

In order to obtain stronger results, we will then work out a generalisation
of our method to the higher-dimensional setting. In Section 5.4, we introduce a
suitable concept of Fukuda modules and prove some basic properties. Section
5.5 is devoted to a study of ramification. As in the one-dimensional case, a good
understanding of ramification is fundamental for our method. We will see that,
although sufficient for the study of Z,-extensions, the Greenberg-R-topology
has to be refined further in order to control the ramification in neighbourhoods
of Zg—extensions.

In Section 5.6, we introduce a notion of ranks of Az-modules generalising
the f-ranks, f € A, studied in Chapter 3. In comparison to the one-dimensional
case, it is much more difficult to handle pseudo-isomorphisms of Agz-modules,
because for d > 1 the kernels and cokernels of these maps in general will not be
finite. In fact, we typically only know an upper bound for their Krull dimension,
and therefore it is usually a difficult task to relate the ranks of two pseudo-
isomorphic Ag-modules.

The main theorem is stated in Section 5.7. We have to make several technical
assumptions in order to be able to apply our method. In particular, we have to
presume the validity of a certain inequality concerning the ranks of cyclic torsion
Ag-modules. Under these assumptions, we are able to prove a generalisation of

173



174 CHAPTER 5. GENERALISED IWASAWA INVARIANTS

Theorem 3.57 (the main result of Chapter 3).

Section 5.8 is dedicated to a proof of a technical lemma that has been used
in the proof of the main theorem. In Section 5.9, we prove the rank inequality
needed for Section 5.7 in certain special cases.

Finally, Section 5.10 contains some results concerning the special case of a
Zg—extension K/K of a number field K which contains only one prime above p.
We will use the results of the preceding chapters in order to obtain a criterion
for the Greenberg module of IK/K to be pseudo-null.

5.1 Introduction

In generalisation of Iwasawa’s Theorem 1.32, A. Cuoco and P. MONSKY
proved the following result (compare Theorem I in [CM 81]):

Theorem 5.1 (Cuoco, Monsky). Let I{/K denote a Zg—extension, let further
I := Gal(K/K) = Zg. For every n € Ny, we let K,, C K denote the subfield
that is fized by (T)P", and we let A, denote the p-primary part of the ideal
class group of K,,, respectively.
Then there exist integers mg,lyg € INg such that for every n € Ny, we have
|Ay| = p with

en = (mop™ + lon + O(1))pld=bn

We call mo and ly the generalised Iwasawa invariants of K/K.

Remark 5.2. If d =1, then this result gives a weak version of Theorem 1.32
(compare also Theorem 5.3 below); while Theorem 1.32 gives an explicit formula
for the e, (for n sufficiently large), Theorem 5.1 only includes an upper bound
for the ‘constant contribution’. Cuoco and Monsky conjectured that Theorem
5.1 in general cannot be improved in order to obtain an explicit polynomial

(mop™ + lon + ng) - pld=1"
for some ng € Z, and they gave module-theoretic evidence for their conjecture
(compare Section 7 in [CM 81]).

In |[CM 81], Cuoco and Monsky also proved that mg and [y only depend on
K/K, in the following sense.

In Section 4.3, we introduced the notion of the characteristic power series
f € Ag = Zy[[Tn,...,Ty]] of a given Zl-extension K/K (compare Definition
4.29, (1)): If H(X) denotes the maximal p-abelian unramified extension of I,
then one can show that X := Gal(H(K)/K) is a finitely generated torsion A4-
module, using the isomorphism A4 = Z,[[Gal(IK/K)]]. By the Structure Theo-

S

rem 2.23, X is pseudo-isomorphic to an elementary torsion module @ Az/ p?j ,
j=1
S .
with p; = (f;) and f; € A4 irreducible for every j. Then f := [] f?’ :
i=1

Moreover, f is equal to the greatest common divisor of the ggnerators of the
Fitting ideal F(X) of X (compare Definition 4.29, (2)). We refer to Remarks
4.30 for some basic properties of F(X).
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In Definition 4.31, we defined integers mq(f) and lo(f) attached to the power
series 0 # f € Aqg.

Theorem 5.3 (Cuoco, Monsky). Let I{/K denote a Zg—extension with gene-
ralised Twasawa invariants mo and ly. Then mg = mo(f) and ly = lo(f), where
f € Ag denotes the characteristic power series of IX/ K. In particular, if d =1,
then mg = p and lyg = A coincide with Twasawa’s classical invariants.

Proof. Compare the proof of Theorem I in [CM &1]. O

We will now define two topologies on the sets £4(K) of Zg—extensions of K,
d e NN.

Definition 5.4. Let d € IN, and assume that the set £¢(K) is non-empty. Let
K € £4K). For every n € INg, we let

EK,n) = {L € EYK) | L, = K,} .

Here I, respectively, K,,, denote the subfield of IL fixed by Gal(IL/K)P", re-
spectively, the subfield of K fixed by Gal(IK/K)P".

Note that this generalises Greenberg’s topology on £(K) = £'(K) (compare
Section 2.3). We will therefore speak of the Greenberg topology on £%4(K).

Remark 5.5. The sets E(IK, n), together with (), generate a topology on E(K)
with regard to which E4(K) is compact.

Proof. Tt is easy to see that the intersection of two sets £(IK,n1) and £(IK,ny)
is either empty or equal to one of the two sets. Therefore the £(IK,n), n € N,
and (), can be taken as a basis of neighbourhoods of K € £4(K), respectively.
The compactness may be proved analogously to Greenberg’s proof for d =1
(compare |Gr 73], p. 208): For each m, let &,, denote the set of abelian ex-
tensions of K of degree p®™ which are the m-th intermediate field for some
K € £4(K) (i.e., equal to the subfield of K fixed by Gal(IK/K)P™). Then every
Em is a finite set because each L € &, is the composite of d cyclic extensions
of degree p™ over K contained in some Z,-extension of K, respectively; it is
well-known that there exist only finitely many cyclic extensions of this shape.
Moreover, £4(K) = lim &,,, where the inverse limit is taken with respect to the
following maps: if m’ > m, then an element L € &,/ is mapped to the unique
subfield that is fixed by Gal(L/K)P" (which is an element of &,). Since every
set &, is finite and therefore a discrete compact topological space, it follows
that £4(K) is compact. O

Definition 5.6. Let IK/K denote a Zg-extension, d e NN.

Then we denote by P(K) the ramification set of K, i.e., the set of primes of
K that ramify in IK/K. Note that P(IK) is a subset of the set Z of primes of K
dividing p.

The following lemma will be used below.
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Lemma 5.7. Let K/K denote a Zg-extension.

(1)
(i)

The set of Zy-extensions L C K of K satisfying P(L) = P(K) is dense in
ESK(K) C E(K) with respect to Greenberg’s topology.

More generally, fori < d, we denote by E><K(K) the set of Z;—extensions
L C K of K. Then the set of Z,-extensions I. C K of K satisfying
P(L) = P(K) is dense in <K (K) C EY(K) with respect to Greenberg’s
topology on EY(K), as introduced in Definition 5.4.

Proof. (i)  Write P(K) = {p1,...,ps}. For every p; € P(K), there exists a

Z,-extension L; € ESX(K) such that p; € P(L;), because a prime p;
that is unramified in every L; € E¥(K) will also be unramified in their
composite IK. Therefore, we may choose suitable Li,...,L, € E¥(K)
such that

P(Ly) U---UPLs) = PK).

Note that we have P(L) = P(L;) U P(Lsg) for almost every Z,-extension
LCL Ly CK

of K (i.e., there exist only finitely many L contained in this composite
such that P(Iz) S P(L1) U P(Lg)), by Lemma 3.19, (ii). We choose
an extension L € £<R(K) with P(L) = P(L1) U P(Ls) and continue
with L and Ls. Inductively, we obtain some L € ESK(K) satisfying
P(L) = P(K).

Now let M € ES¥(K) be arbitrary. Then P(L) = P(K) for almost
every LCL-M , again using Lemma 3.19, (ii). In particular, every
neighbourhood U of M contains an element L with the desired property.
Suppose that I. C K is a Z;,—extension of K; let L',..., L' denote 2y
extensions of K such that L = L'-...- L’. We may assume that

'n]]r =K
J#k

for every k € {1,...,i}.
Let n € INg be given. We will construct an element I € £(IL, n) such that
P(L) = P(K).
If P(L) & P(K), then P(L/) G P(K) for every j. By (i), there exists a
Z,-extension L' C K of K contained in £(L!, n) such that P(L') = P(K).
We let L := L' - L?-... . L'. Then L C K is a Z;—extension of K (note
that L' N [ I/ = K, since the n-th intermediate field (L), of L'/K

J#1
is contained in L'), and P(IL) = P(IK). Moreover, I € £(IL,n), because
(LY),, = (LY),, and therefore

L, = (LY (L ...- (LD = (LYy ... (L), = Ly, .

O]

In Chapter 3, we observed that the use of Fukuda’s Theorem and its gene-

ralisations make it necessary to take care of the ramification of primes in the
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corresponding Z,-extensions. We therefore introduced a new topology on £(K),
which we called the Greenberg-R-topology, and which we want to define on
arbitrary £¢(K) now.

Definition 5.8. Let IK/K denote a Zg—extension, d € IN. For every n € INy,
we define
UXK,n) ={LeéX,n)|PL)CPK)}.

Remark 5.9. The U(K,n), together with (), generate a topology on £4(K).

Proof. The intersection of two sets U (KK, n;) and U(IK, ny) is a finite union of
sets of this type, or empty (compare the proof of Lemma 3.25, (i)):
Without loss of generality, we may assume that n; > no. Then

U(K,n1) N UK, ny) = {L e &K, ny) | PL) CPEK)NPIK)} .

This set might be empty. Otherwise, we choose sets I, ..., I, C P(K) N P(K)

such that

. for every i = 1,...,r, there exists an element I; € £(IK,n;) such that
P(EZ) = Ii, and

o for every M € £(IK,n;) with P(IM) € P(K) N P(K), we have P(M) C I;
for some ¢ € {1,...,7}.

Then

UK,m) N UK, ny) = (J Ui n1).
i=1
O

We will see in Section 5.5 that, in contrast to the one-dimensional case,
a full use of Fukuda theory for Zg—extensions requires a finer control on the
ramification than is provided by the Greenberg-R-topology. In fact, it will
not be enough to simply control which primes of K do ramify at all. We will
moreover have to fix the rank of the maximal ‘torsion’ unramified subextension
of our Zg-extension (compare Definition 5.38 for details).

The Greenberg-R-topology, however, is fine enough in order to allow the
application of the one-dimensional Fukuda method developed in Chapter 3 to
suitable Z,-extensions of K that are contained in our Zg—extensions. This will
be exploited in the next two sections, yielding the first results concerning the
local behaviour of generalised Iwasawa invariants.

5.2 myg is locally maximal

We will now start to study the local behaviour of generalised Iwasawa invariants
with respect to the topologies introduced above. Before formulating the first
result, we prove a technical lemma.

Lemma 5.10. Let d € N, d > 2. Let I\/K denote a Zg—extension, and let
mo = mo(KK/K) € Ng. Then there exist only finitely many Zg_l-e:ﬁtensions
M C K of K such that

mo(M/K) > my .
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If d = 2, then there exist only finitely many Zy-extensions M C K of K such
that p(M/K) # mo(K/K).

Proof. We first note that there exist only finitely many Zg_l—extensions M CK
of K such that P(M) & P(K). Indeed, each such M has to be contained in
the inertia subfield of a prime of K ramifying in K whose inertia group is a
subgroup of Gal(IK/K) of Z,-rank 1.

Therefore, we will from now on assume that P(M) = P(K).

Let f € A4 denote the characteristic power series of IK/K, and let us write
f =7p" g, with p{ g. Consider the Fitting ideal (0) # §(X) = (p™°g) - J
of X := Gal(H(K)/K), where H(K) denotes the maximal unramified p-abelian
extension of IK. Suppose that 0 # h € J is not divisible by p (such an element
exists because J is not contained in the prime ideal (p) C Ay of height one).

By Lemma 4.20, the subset C' C 53:3 of homomorphisms 7 such that either
m(g) = 0 mod porw(h) = 0 mod pis finite. For every 7 € ag:%\C, the module
X = X/(ker(m) - X) is a finitely generated torsion A;_j-module (annihilated,
for example, by p" - (g - h) # 0), and

p"e-m(g-h) € F(Xx)
(compare Lemma 4.35). Therefore
mo(Xﬂ) = myp .

If d = 2, then Lemma 4.3, (ii) implies that pu(M/K) = mo(X,) for the
Z,-extension M /K that corresponds to m, provided that P(M) = P(K).

In order to handle the case d > 2, we generalise Lemma 4.3, (ii) and show
that mo(M/K) < mo(X5) if M corresponds to some 7 € EZ:% \C.

Proposition 5.11. Let j,r € N, 2 < j < r — 1. Let K/K denote a Z-

extension, and let M € £ <%(K) denote a Z%—extension of K contained in K.
Let X := Gal(H(K)/K), and suppose that w € 51:% corresponds to the restric-
tion map Gal(IK/K) — Gal(M/K). We assume that X, := X/(ker(w) - X) is
a torsion Aj-module. Then

If only finitely many primes of M ramify in IK, then we have equalities.

Proof. We adapt the proof of Lemma 4.3, (ii). If H(M) denotes the maximal
unramified p-abelian extension of M, then mo(M/K) = mo(Gal(H(M)/M)),
by definition. The inclusion H(M)-IK C H (IK) implies that we have a surjective
homomorphism

X = Gal(H(K)/K) — Gal((H(M)-K)/K) .
Note that kerm = {0 — 1| 0 € Gal(IK/M)}. Since

(c—1)-7 = GoTog tort =107 =1
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for every 7 € Gal((H(M) - K)/K) and every o € Gal(IK/M), it follows that
ker(m) - Gal((H(M) - K)/K) = {1} (here ¢ € Gal((H(M) - K)/M) denotes any
lift of o, respectively). We therefore obtain a surjective Zy[[Gal(M/K)]] = A;-
module homomorphism

X, = X/(ker(n) - X) — Gal((H(M) - K)/K) = Gal(H(M)/(H(M)NK)) .

In particular,
mo(Gal(H(M)/(H (M) NK))) < mo(Xx)

and
lo(Gal(H(M)/(H(M) NK))) < lo(Xx) -

We will show that the Aj-module Gal(H(M)/(H (M) N K)) is pseudo-iso-
morphic to Gal(H (M )/M) and therefore

mo(Gal(H(M)/(H (M) NK))) = mo(M/K)

and
lo(Gal(H(M)/(H(M) NK))) = lo(M/K) .

The reason for this is the fact that
Gal(H(M)/M) /Gal(H(M)/(H(M)NK)) = Gal(H(M)NK)/M)

is a finitely generated Z,-module and therefore is pseudo-null as a Aj-module.
Indeed, we may assume that Z := Gal((H (M) N K)/M) is in fact Z,-free,
because the torsion subgroup of Z is finite. We write A; = Z,[[T1,...,T}]].
Recall that 5 > 2, by assumption. There exist distinguished polynomials in
Z,|T1] as well as in Z,[T>] that annihilate the finitely generated Z,-module Z,
using the Weierstra3 Preparation Theorem 1.14 and the assumption that 7 is
torsion-free. In particular, these two polynomials are coprime when regarded
as elements of A;, and therefore Z is Aj-pseudo-null.

Now suppose that only finitely many primes of M ramify in K. Then the
proof of the first inequality of Lemma 4.3, (ii) shows that

mo(Xx) < mo(M/K) and lo(X,) < lo(M/K) .

Indeed, if the Z,-extension L of K in Greenberg’s original approach is replaced
by the Z{,—extension M/K, then the proof goes through without changes. In
particular, the two groups D and 71" remain finitely generated over Z,. By the
above, D and T therefore are pseudo-null as A j-modules. ]

This also concludes the proof of Lemma 5.10. O
We are now ready to state the main result of this section.

Theorem 5.12. Let I{/K denote a Zg—extension. Then mq := mo(IK/K) is
locally maximal with respect to the Greenberg-R-topology, i.e., there exists an
integer n € g such that mo(L/K) < mo(K/K) for every L € U(K,n).
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Proof. If d = 1, then the statement has been proved in Lemma 3.56 (recall that
in this case, my(K/K) = u(KK/K), by Theorem 5.3).

Let us now assume that d = 2. Then there exist only finitely many Z,-
extensions M C K of K with u(M/K) # mo(IK/K), by Lemma 5.10. In view of
Lemma 5.7, (i), we may choose M € E<¥(K) such that u(M/K) = mo(K/K)
and P(M) = P(K). Let n € IN be large enough to ensure that in the one-
dimensional neighbourhood U (M, n) of M € £(K), (M /K) is locally maximal.
We may assume that every prime ramifying in the Zp,-extension M/K has
already started ramifying in the n-th intermediate field M,,.

Now consider the neighbourhood U := U(KK,n) of K € £4(K). Let K € U.
Then M, C K,, = K,, C K, where K,, denotes the subfield of K that is fixed
by Gal(KK/K)P". Since Gal(K/K) = Zg is torsion-free, we may choose a Z,-
extension M C K of K containing M,. In view of Lemma 5.7, (i), we may
assume that P(M) = P(K). Then M € U(M,n) C £(K), because

P(M) = P(K) € P(K) = P(M) .

Therefore u(j\Z/K) < p(M/K). )
We let X := Gal(H(K)/K). Let f € Ay denote the characteristic power
series of K/K, and let # € £ denote the homomorphism corresponding to

M C K via Lemma 2.7. Then

WM/K) = p(Xz) < oo,

by Lemma 4.3, (ii), and p(X%) > mo(7(f)), by Proposition 4.34, (i). But then
mo(K/K) = mo(f) < p(M/K) < u(M/K) = mo(K/K) .

Assume now that 3 < d is arbitrary. First note that all but finitely many
Zg_l—extensions K@D C K of K satisfy P(K(¢~1V) = P(K) (compare the
proof of Lemma 5.10). Moreover, Lemma 5.10 implies that we may choose
K(@=1 such that mo(K4/K) < mo(K/K).

Inductively, we obtain a Z,-extension M C K of K such that

W(M/K) < mo(K/K) and P(M) = P(K).

Let n € IN be large enough to ensure that in the one-dimensional neighbourhood
U(M,n) of M € E(K), p(M/K) is locally maximal, and such that every prime
ramifying in M /K has already started ramifying in the n-th intermediate field
M, of M/K.

Let U := U(K,n) C £%(K). Suppose that K € U. As in the proof of d = 2,
we can choose a Z,-extension

M e UM,n) N E¥(K)
such that P(M) = P(K). Again, Lemma 4.3, (ii) implies that

mo(K/K) < u(N/K) < p(M/K) < mo(K/K).
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We may draw some conclusions from this theorem.

Corollary 5.13. Suppose that K/K denotes a Zg—extension such that every
prime of K dividing p ramifies in IK/K (this is the case, for example, if K
contains the cyclotomic Zy-extension of K ). Then mg := mo(IK/K) is locally

mazimal with respect to Greenberg’s topology, i.e., there exists some n € INg
such that mo(IL/K) < myq for every I € £(K,n).

Proof. If every prime of K dividing p ramifies in IK/K, then there exists an
integer e € IN such that every such prime is ramified in the e-th intermediate
field Ke, since K = {J,,5 g Ky. Therefore £(K, n) = U(K,n) for everyn > e. [

Corollary 5.14. Suppose that IX/K denotes a Zg—efctension. If mo(KK/K) =0,
then there exists some integer n € WNg such that mo(IL/K) = 0 for every
L eU(K,n).

Proof. This is obvious from Theorem 5.12. O

5.3 p is locally bounded

We will now turn to the consideration of [y invariants. We will see below that
these are more difficult to handle, so that several arguments used in the proof of
Theorem 5.12 will have to be made more precise. The statement that we obtain
by a more or less direct adaption of the above proof will therefore be weaker,
namely, we will only prove local boundedness instead of local maximality.

Theorem 5.15. Let IK/K denote a Zg-extension, let mo := mo(IK/K) € INy.
In the following, we restrict to Zg—extensions L/K satisfying mo(IL/K) = my.
Then ly is locally bounded with respect to the Greenberg-R-topology, i.e.,
there exist an integer n € W and a fized constant C < oo such that lo(L/K) < C
for every L € U(K, n) satisfying mo(L/K) = my.

Proof. As in the proof of Theorem 5.12, there exists a Z,-extension M C K
of K such that u(M/K) < mo(IX/K) and P(M) = P(K). By Theorem 3.57,
there exists an integer n € IN such that for every element M contained in the
neighbourhood U (M, n) of the Z,-extension M € £(K), we have

pM/K) < p(M/K)
and
AM/K) < MM/K)

if (V1K) = p(M/K).

We assume that n is large enough to make the statement of Theorem 5.12
hold for U(K,n) C £%(K). Let U := U(K, n), and suppose that K € U. Using
Lemma 5.7, (i), we may choose some

M e ESK(KYnEM,n)

such that P(M) = P(K) C P(K). Then M € U(M,n). Moreover, Lemma
4.3, (ii) implies that for the homomorphism 7 € €}, corresponding to M C K,
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the quotient Xz = )N(/(kergfr) - X) of X = Gal(H(K)/K) is a finitely generated
torsion A-module, and p(Xz) = p(M/K).
We have a chain of inequalitites

mo(K/K) < p(M/K) < p(M/K) < mq,

as in the proof of Theorem 5.12.

We will now assume that mo(IK/K) = mg. Then the above actually is a
chain of equalities. In particular, we have (M /K) = p(M/K) and therefore
MM/K) < MM/K).

Moreover, if f € Ay denotes the characteristic polynomial of K /K, then

mo(f) = mo(K/K)
= u(M/K)
= M(Xfr)
> mo(7(f))

using Proposition 4.34, (i). Therefore

mo(f) = mo(7(f)) -
We will now apply the following fact:
Lemma 5.16. Let d € IN, let 0 # f € Ay = Z,[[T'?)], with T'¢ = Zg. Suppose
that m € €9_, satisfies mo(m(f)) = mo(f). Then
lo(m(f)) = lo(f) -
Proof. Write f = p™ () . g, ptg. Suppose that in Ay = Ag/pAy, we have

g=Mm-1 (-1 -h,

with o := lo(f), Y15+, € T4\ (I'9)P, and ly(h) = 0 (note that the ~; will
not necessarily be pairwise independent). Then 7w (h) # 0 and m(y; — 1) # 0 for
every j, because mo(m(f)) = mo(f) by assumption.
Fix j € {1,...,lp}. If § denotes a topological generator of I' := 7(I'?) = Z,,
then
(- 1) = (6—1)+ 1% —1

for some x; € Z,. Moreover, x; # 0, because m(y; — 1) # 0. But
0 £ 7(3~1) = 0 mod (3-1),
i.e., lp(m(y; — 1)) > 1. This shows that lo(7(f)) > lo(f). O
Using this lemma, we may conclude that
WIK/K) = () < b#(f) < AXz),

where the last inequality follows from Proposition 4.34, (ii). Moreover, there
exist constants C7,Cy € IN such that

MX:) < AMM/K)+C; and  AM/K) < MXz)+ Cy
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for every M € SQR(K) NE(M,n), provided that n > e(M/K) + 1 (compare
Lemma 4.3, (ii)). Note that analogous inequalities (containing the same con-

stants) are also valid for the invariants of the A-torsion module X attached to
our fixed M € ES¥(K). Therefore

< MM/K)+C

< MM/K)+ Cy

< AMXR) +C+Cy

lo(f) +C1+ Co+ (MXx) —lo(f)) = lb(K/K)+C

lo(K/K)

for every K € U, where f denotes the characteristic power series of IK/K, and
where C := C1 4+ Co+ M\ X;) —lp(f) < oo; note that \(X;) —lo(f) only depends
on the fixed Zy-extension M C K of K. O

5.4 Generalised Fukuda theory

In Chapter 3, we studied the classical Iwasawa invariants of Z,-extensions,
and we proved that the A-invariants actually are not only locally bounded, but
in fact locally maximal. In order to obtain results which are stronger than
Theorem 5.15, we will now start to work out a generalisation of the method
that we have used in Chapter 3. The first step will be to prove a generalisation
of Fukuda’s Theorem in the higher-dimensional setting. We therefore look for a
Fukuda module containing the necessary information about the class numbers
of the intermediate fields in a given Zg—extension. In particular, we will have
to find a suitable index barrier attached to this module. In fact, we will see
that a slight generalisation of the notion of Fukuda modules used in Chapter 3
(compare Definitions 3.3 and 5.24) will be appropriate for obtaining a variant of
Fukuda’s Theorem. This will take into account the fact that we are not longer
dealing with A-modules, but with modules over Ay for some d € IN.

Suppose that I/ K denotes a Zg—extension, d € N, and let T' := Gal(IK/K).

Then KK is the union of the finite field extensions KK, := K™ of K , n >0,
and each K, is galois over K with Gal(K,,/K) = (Z/p"Z)®. For each n, we

let A, = ASK) denote the p-Sylow subgroup of the ideal class group of K,,
respectively, and we define A := l'&lAm where the projective limit is taken
with respect to the norm maps.

From now on, we will make the following assumption:

Assumption 5.17. There exists a prime p of K that is totally ramified in

Of course the prime p has to divide p. Assumption 5.17 implies that the
norm maps Ny, n : Ay —> A, are surjective for every m > n > 0 (compare
[Wa 97], Theorem 10.1).

Let H(K) denote the maximal p-abelian unramified extension of I{. Then
X = Gal(H(K)/K) is isomorphic to A, via Artin’s isomorphism from class
field theory (this can be proved as in the case d = 1 — compare Section 1.3). X
is called the Greenberg module attached to the Zg—extension K/K.
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Note that because of its maximality property, H(KK) is in fact a Galois
extension of K. We let G := Gal(H(K)/K). Suppose that pi,...,ps denote the
primes of K ramifying in H(IK)/K. Then {pi,...,ps} = P(K). Assume that
p1 is totally ramified in IK/K. For each j € {1,...,s}, we choose a prime B;
of H(K) dividing pj, respectively, and we denote by I; = Iy /. (H(K)/K) C G
the inertia group of PB; over p; in the extension H(K)/K.

Since H(K)/K is unramified, we have I; N X = {1} for every j. Moreover,
since pp is totally ramified in K/K, the induced injection I; — G/X = T
is surjective, so that G is isomorphic to the semi-direct product X x ;. In
particular, identifying G with X x I;, we may conclude that

Ij gX)dIl

for every j € {2,...,s}.
Since each I; bijectively maps to a submodule of the (multiplicative) free
Z,-module
G/X 27T,

we see that every I; is a finitely generated free Z,-module of rank smaller or
equal to d. We denote this rank by r;, and we choose topological generators
Oj1s- -, 05y, of Ij, respectively.

Definition 5.18. There exist elements as1,...,a25,...,051,...,05,, € X
such that

Oi = Qj -0'(1)
gk = Yk 95k

for suitable elements O'j(~71k) € 1l1,2<j<s,1<k<rj, respectively.

Let us fix a set of topological generators 71, ...,7v4 of I'. Analogously to the
classical one-dimensional case which has been described in Section 1.3, I' acts
on X by conjugation: For z € X, v € I' = Gal(IK/K), we let

vz = FozoF !,

where 4 denotes any lift of v to G = Gal(H (K)/K). This is well-defined (i.e.,
independent of the choice of 4) because Gal(H (K)/K) is abelian. Moreover,
we may identify I1 and I', using the bijection mentioned above, in order to ‘fix’
the lifts.

Letting T := v; — 1, 1 < j < d, we obtain an action of the module

Ag = Zp[[Tlv---,TdH = Zp[[FH
on X.

Lemma 5.19. Let G’ denote the closure of the commutator subgroup of G.
Then G' = (Ty,...,Ty) - X, where (T, ..., Ty) is considered as an ideal of Ag.

Proof. This can be proved analogously to the case of d = 1, see Lemma 13.14
in [Wa 97]. In order to clarify the notation, we will for the moment write the
action of I' on X multiplicatively. In what follows, we will identify [; with IT.
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Let a,b € G. Since the map
Xxh — XxLi, (z,7) —— (27,7),

is a bijection, we have an equality of sets G = X - I} = [ - X. We thus write
a=ar, b=y, with o, €' =11 and z,y € X. It is shown in the proof of
Lemma 13.14 in [Wa 97] that

aba~ b1 = (wo‘)l_ﬂ . (yﬁ)o‘_l.
Indeed, we have

aba b7l = azfyztalyipE
= sPafyr oty
= 2%(yr™ )P apa’ yTIpT
5
= 2 (ya )Py’
2 (e y) P (y™h)?
yr,

— xa—aﬁ .
using the commutativity of X and I, respectively.

In particular, letting 8 =1 and « € {1, ...,74}, we see that y?~! € G’ for
every y € X and each i € {1,...,d}, so that (T1,...,Ty)- X C G".

On the other hand, an arbitrary element 5 € I' may be written in the form

/B:’Yijl'..."Ygd,Withcl,...,CdEZp. Then
1-8 = 1—(T1—|—1)Cl.'“.(Td_|_1)cd
00 ol o o
= 1= VA Ty Ty,...,Ty) - A
<n§;)<"> 1) (;%(7) d) € (Th,...,Ta) - Ag,

and therefore (z®)'=# € (Ty,...,T;) - X for every z € X and a, 8 € T'. Ana-
logously, (y®)'=® € (T1,...,Ty) - X for every y € X and «, 8 € I'. Therefore
G' C (Th,...,Ty) - X, because (T1,...,T,;) - X is closed as being the image of
the compact set X¢ under the continuous map

¢:Xd—>X, (ml,...,:cd)»—>T1-a:1+...+Td-xd.
O

Now we return to the study of A = yLnAn. In order to define a suitable
index barrier for a Fukuda module structure on A, we will use the following
invariant introduced by A. Cuoco and P. MoNsky in [CM 81]:

Definition 5.20. For every j € {1,..., s}, we denote by I, the image of I; in
G/X = T. Then we let e(IK/K) € INy denote the smallest integer k such that
pF annihilates the torsion subgroup of every quotient T’ /fj, 1< <s.
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In particular, if d = 1, then e(IK/K) coincides with the integer defined in
Proposition 1.3.

We will show below that e(I{/K) may indeed serve as a kind of index barrier
for A. The first step in this direction is the next lemma. For each n € INg, we
let G := Gal(H(K)/IK,) C G, and we define I](n) := I; N G™), respectively.

Lemma 5.21. Ij(nﬂ) = (I§n))p for everyn > e(K/K) and each j € {1,...,s}.
Proof. This is Lemma 5.1 in [CM 81]. O

Definition 5.22.

(1) We first assume that e(IK/K) = 0. We define Yy to be the submodule of
X generated by (T1,...,T4) - X and by the Zy,-span of the elements a; ,
2<j<s,1<k<rj, introduced in Definition 5.18.

(2) More generally, let n € IN. Let v, o)(T) € Zp[T] denote the distinguished
polynomial

(T+1)P" —1

~ L T+ (T T

Vino)(T) =
Then we define Y,, C X to be the submodule generated by

Vo) (T1) - T1, - V(o) (Ta) - Ta) - X

and by the Zj,-span of the elements v, o)(Tj ) - a;, where
T = o) 1€ M2 L[], 2<j<s, 1<k<ry,

respectively. Here we use the notation introduced in Definition 5.18, and
we recall that I' has been identified with 1.

(3) Finally, suppose that e = e(IK/K) € Ny is arbitrary. Then K/K. is a
Zg—extension satisfying e(IK/KK.) = 0, and we let Y. denote the module ‘Yj
attached to IK/IK.’, as defined in (1). Note that X = Gal(H (K)/K) re-
mains the same if we replace K by K.. Moreover, Gal(IK/K.) is generated
topologically by 77 e, . ,'756. Therefore Y, C X is the submodule generated
by (V0 (Th) - T1y -+, V(e,0)(Ta) - Ta) - X and by the Z,-span of the corre-
sponding elements a; j attached to the inertia subgroups in Gal(IK/IKK.).
For n > e, we define Y,, C X to be the submodule generated by

(V(n,e) (Tl) " V(e,0) (Tl) N ATRUR V(n,e) (Td) *V(e,0) (Td) ) Td) - X

and by the Z,-span of the elements v, o) (T} x)-ajk, where v, oy (T') € Zp[T]
denotes the distinguished polynomial

(T +1)P" -1

L = (TH+ 1) P 4 (T+1)P +1
Ty 1 = TV @ 4,

V(n,e) (T) -

respectively.
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Let n € Ng. Then A, = Gal(H,/K,) by Artin’s isomorphism, where
H,, := H(K,) denotes the maximal unramified p-abelian extension of I,,. Since
p1 is totally ramified in K/ K, we have K N H,, = K,,, and thus

Gal(H,/K,) = Gal(K - Hy)/K) =: X, .

Letting H,, := K - H,,, we conclude that

X = lim Gal(f,/K) ,

00 oo
using the fact that H(K) = |J H, = |J Hp, which may be proved analogously

n=0 n=0
to Proposition 1.33. Let ¢ : A —+ X denote the isomorphism induced by
Artin’s maps ¢, : A, — X,, n € Ny.

Lemma 5.23. For each integer n € g, we define Y,X to be the kernel of the
projection pr,, : X = l&an — X, (this map is induced by the restriction
from H(K) to H,). Then Y;X =Y, for everyn > 0.

Proof. Let us first assume that e(IK/K) = 0. We will adapt the proof of Lemma

1.37, which is divided into three steps.
1. Let n € Nqg be arbitrary, but fized. Then Y;X is the set of y € X satisfying

Proof. X = @Gal(m/ﬂi). Therefore y € Y,X if and only if yg- =1 O
2. We have Yy = Y;~.

Proof. Since Hy by definition is the maximal abelian unramified p-extension
of Ko = K, and since H(K)/K is a pro-p-extension, it follows that Hy is the
maximal abelian unramified subextension of H(IK)/K. Therefore

Gal(H (K)/Ho) C Gal(H(K)/K) = G

is the closed subgroup generated by the commutator subgroup of G together
with all the inertia subgroups I;, 1 < j < s.

This means that Gal(H (IK)/Hy) is the closure of the subgroup of G generated
by G', I and the elements a;;, 2 < j < s, 1 < k < rj, respectively.
Therefore

Gal(Ho/K) = Gal(H(K)/K)/Gal(H(K)/Ho) = G/Gal(H(IK)/Hy)
= X-Il/<G/,Il,{aj,k}>
=~ X/<(T1,...,Td)-X,{aj7k}>zp s

since Lemma 5.19 implies that G' = (T1,...,T;)-X. But X = Gal(H (K)/K),
so that
X/Gal(H(K)/Tlg) = Gal(Fo/K) = Gal(Ho/K) |

and therefore the subset of elements of X fixing Hy is exactly
Yo = <(Th,...,Ta) - X, {ajr}>,, -

By the first part of the proof, it follows that Yy = YOX , as claimed. O
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3. Now consider an arbitrary n € Wo. Then Y, = Y;X.

Proof. This can be proved analogously to the second step. Simply replace
the ground field K by K,. Then H, and H, correspond to the fields H
and Hy in step 2, and the topological generators Ojk, 257 <5, 1<k <y,
are replaced by their p™-th powers, respectively (note that Gal(KK/K) /I, is
torsion-free for every j, since e(IK/K) = 0). Now

n 1)\pn
O-fyk = (ajvk ’ J.grk))p
1 N D (g 1)\p"
- U§7k Cag - (0'](7,13) 1(0_](‘7]3)2 g (0’](713) (p 1)(0']('719))17
1 Lyp™— by
= oDt ) g (o)

= Vin,0)(Tik)  ajk- (%(',lk) i

)

compare p. 280 in [Wa 97]. Therefore each a;j € X has to be replaced by
V(n,0)(Tj k) - ajk, respectively. Moreover, (T1,...,Ty) - X has to be replaced
by (Vn0)(T1) - T, - - - s Vo) (Ta) - Ta) - X, because

(e

v =1 = V(T (v —1)

for every j =1,...,d, respectively.
By the argument used in step 2, and in view of Definition 5.22, Y,, C X is
the subgroup fixing H,,, and so Y,, = Y,X by step 1. O

If e(K/K) € Ny is arbitrary, then K/K, is a Zg—extension with e(IK/K.) = 0.
By definition, Y, is ‘Yp for K/K.” and X,, corresponds to ‘X, _. for K/K.’,
n > e. Therefore YX corresponds to ‘YOX for K/IK.’, so that Y.X =Y., by step

2.
The proof of YnX =Y, for arbitrary n > e is now analogous to step 3 above,
replacing the distinguished polynomial v, gy by v(;, ¢) (compare Definition 5.22).
O

This lemma shows that we will have to modify the notion of Fukuda modules
introduced in the third chapter. The following definition introduces a concept
of Fukuda modules that will be sufficient for our purposes.

Definition 5.24. Let R denote a local domain with maximal ideal m. Suppose
that R is Hausdorff and complete with respect to the m-adic topology, and that
the residue field R/m is finite.

Let B = @Bn denote the projective limit of finite R-modules B,,, n € Ny,
each of which we assume to be an abelian p-group.

Furthermore, we assume that B = lim B,, satisfies the following two properties:
Suppose that there exists an integer e > 0 such that:

(1) For every n > e, the n-th projection pr, : B — B, is surjective.

(2) If Y, :=ker(pr,,), n € Ny, then Y,,;1 Cm .Y, for every n > e.

Then B is called a Fukuda-R-module (or simply Fukuda module) with
index barrier e.
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Proposition 5.25. Every Fukuda-R-module B is finitely generated over R.

Proof. Since B/Y, = B, is finite, B is finitely generated over R if and only
if Y, is finitely generated. Our assumptions on R imply that R is a compact
topological ring (compare the proof of Lemma 2.15, (ii)). Using Nakayama’s
Lemma 1.42, (ii), it will be sufficient to prove that Y./(m-Y;) is finite, because
B =lim B, and therefore also Y, = ker(pr,) C B are compact R-modules. But

Ye/(m-Ye)| < [Ye/Yera| < [B/Yeqs]| = [Beyal.
O

Corollary 5.26. Let K/K denote a Zg-extension, and let e := e(IK/K), as in
Definition 5.20. Then the Greenberg-module X = Gal(H(K)/K) is a Fukuda-
Ag-module with index barrier e.

Proof. First note that Ay satisfies the properties of the ring R in Definition
5.24, by Proposition 2.17.

Recall that X' = lim X, with X, = Gal((K - Hy,)/IK). Since p; is totally
ramified in IK/K by Assumption 5.17, X, = Gal(H,/K,) = A, for every
n, using Artin’s isomorphism. Therefore each X, is a finite abelian p-group.
Moreover, H, C H(IK) for every n, by Proposition 1.34, and therefore the
restriction maps

X = Gal(H(K)/K) — Gal((H, -K)/K)

l12

Xn

are surjective for each n > e.

Let YnX denote the kernel of the projection map pr, : X — X,,, respec-
tively. Then we have shown in Lemma 5.23 that Y,X =Y, for every n > e, with
the modules Y,, € X that have been introduced in Definition 5.22. But this
means that Yt | C I-Y,X for every such n, where the ideal I C A, is generated

T. . 3
- %» with certain Tjx € Ay

satisfying T}, € (T4, ...,Tq). In particular, I C (p,T1,...,Ty) = m. O

by a finite set of elements vy, 1 ) (T} k)

Lemma 5.27 (Isomorphisms of Fukuda-modules). Let A = @An be a Fukuda-
R-module, let p: A — B be an R-module isomorphism, B = lim B,,. Assume
that ¢ is induced by R-module isomorphisms ¢, : A, — B, such that the
diagrams

pr, pr, (%)

are commutative for all n > e, where e := e(A) denotes the index barrier of A.
Then B = ¢(A) is a Fukuda-R-module with index barrier e.

Proof. This may be proved analogously to Lemma 3.8: The commutativity of
the diagrams (x) implies that V.2 = p(Y,4) for every n > e, and therefore

V2= o) € em- V) = m-y)?

n

for every n > e. O
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Corollary 5.28. Let IK/K denote a Zg-extension, e := e(K/K). Recall that
we assume that there exists a prime p1 of K that is totally ramified in K/K.
Then A = @An is a Fukuda-Ag-module with index barrier e.

Proof. Use Artin’s isomorphisms ¢ : X,, — A, from class field theory, and
apply Corollary 5.26 and Lemma 5.27 (compare the proof of Corollary 3.9). [

Lemma 5.29 (Quotients of Fukuda modules). Let A = lim A,, denote a Fukuda-
R-module with index barrier e. Let M C A be a submodule, i.e., M = @Mn
with R-submodules M, C A,, n > 0. We assume that the projection maps
pr,, : M — M, are surjective for every n > e.

Then A/M := MAn/Mn is a Fukuda-R-module with index barrier e.

Proof. This can be proved analogously to Lemma 3.10 by showing that the
canonical projection 7 : A — A/M maps Y, onto erl M for every n >e. [

We will now prove a generalisation of Fukuda’s Theorem that will be fun-
damental for our method.

Theorem 5.30. Let A = @An denote a Fukuda-R-module with index barrier
e.
(i)  If there exists an integer n > e such that |An11| = |Ay|, then
|Am| = |Anl| for every m > n, and therefore |A,| = |A].
(it) Letje N, let fi,...,f; € R. If there exists an integer n > e such that

|An+1/(<f17 cee 7fj) ' A7’L+1)’ = |An/((f17 cee 7fj) ' An)’ s

then |Am/((f1,.- -5 fi) - Am)| = [An/((f1,- -, fj) - An)| for every m > n,
and in fact |An/((f1,. .., fj) - An)|l = [A/((f1, ..., fj) - A)].

Proof. (i) Since n > e, the projections pr,, : A — Ay, pr, 1 : A — App
and the map fr41,0 1 Any1 — A, are surjective (the latter is part of the
projective system corresponding to the inverse limit A = @ A, compare
the introduction to inverse limits given prior to Definition 3.3). Note that
Pr, = fnt1,n © Pry,y1, by definition.

Since |[Ap41| = |Ay| by assumption, the map fp 11, actually is an isomor-
phism, so that
AlYp1 =2 Appr =2 A, 2 AY,.

Since Y,+1 C m-Y,, CY,, and as both quotients A/Y,,+1 and A/Y,, are fi-
nite, it follows that Y, 11 = Y,,. In particular, Y, = m-Y,,, and Nakayama’s
Lemma 1.41 (with £ =Y,, and F' = {0}) implies that Y,, = {0}. Therefore
Y, Cm™™ " .Y, = {0} for every m > n, so that |4,,| = |A,| for each
m>n.
(ii) Letting M := Um M, with M, := (fi,-.-, fj) - An, n > 0, the quotient
module A/M = Hm Ay, /M, is a Fukuda-R-module with index barrier e,
by Lemma 5.29. Now apply (i).
]
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5.5 Ramification and the index barrier

Let K/K denote a Zg—extension. We have seen in the last section that the
inverse limit A =lim 4,, is a Fukuda-Az-module with index barrier e(K/K).
The generalised Iwasawa invariants attached to IK/K describe the asymptotic
growth of the class groups A,, n € Ng. In order to study the local behaviour
of these invariants, we therefore want to transform information about the A,
coded into the finiteness of certain quotients (the details will be given in the
next section), into information about the class groups ASL) attached to Zg—
extensions IL/K that are contained in some neighbourhood of K. The main
tool for performing this transfer will be Theorem 5.30. Since the statements in
this theorem are only valid for integers n > e, respectively, it is necessary to
obtain control on the index barriers of the modules AL) = @ASL).

In Chapter 3, we have seen that Greenberg’s topology is not suitable for
this purpose, since the index barriers e(L/K), L € £(K), in general will not
be locally bounded with respect to this topology (compare Lemma 3.18, (vi)).
We therefore introduced the Greenberg-R-topology, with respect to which the
e(L/K) in fact even are locally constant (see Corollary 3.22).

In the present section, we will define a topology on the set £4(K) of Zg—
extensions of K that will be sufficient for our purposes. In Section 5.1, we
introduced the Greenberg-R-topology on £4(K). A typical neighbourhood of
an element K € £4(K) with respect to this topology is given by

U(K,n) = {Le&K,n)|P(L)C PK)}.

Therefore this topology — in contrast to Greenberg’s topology — depends on
the set of primes of K ramifying in K. In the case d = 1, this was enough.
However, we will now see that it might not be sufficient if d > 1. We first seek
for a better understanding of the invariant e(IK/K).

Proposition 5.31. Let K/K denote a Zg—extension, let e := e(IK/K). We
consider the set ESB(K) of Z,-eatensions of K that are contained in K. If
P(K) ={p1,...,ps}, then

max inf e;(L/K) <e< sup e(L/K).

p;eP(K) L e £SK(K) Le&CK(K)
p;EP(L)

Here e;(L/K) denotes the largest integer k € Ny such that p; is unramified in
the k-th intermediate field Ly of L/ K, respectively.

Remarks 5.32.

(1) The supremum of the e(L/K) is finite if and only if P(L) = P for some fixed
set P C T of primes and every L € E<¥(K) (compare Lemma 3.18). In view
of Lemma 5.7, (i), this is equivalent to the condition that P(L) = P(K) for
every L € £S%(K). Therefore the upper bound for e given in Proposition
5.31 is non-trivial only in this special case.

(2) In general, the first inequality will be strict. Suppose, for example, that
P(K) = {p} contains only one element, and let I C Gal(IK/K) denote the
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inertia subgroup of p in IK/K. Then I'/ I is a finite group, since the prime
p has to ramify in each Zj,-extension L C K of K. We assume that the
torsion group I'/ I is not cyclic, i.e.,

S
r/1 = Pz z
=1

with s > 1. Assume further that not all the n; are equal. Then

e = maxn; > minn; > inf e(L/K).
i i Le&CK(K)

Here the last inequality follows from Proposition 5.33, (i) below.

We now turn to the proof of Proposition 5.31.

Proof. For every 1 < j < s, we let H; denote the subfield of K that is fixed
by E C T (compare Definition 5.20), i.e., H; is the maximal subextension of K
that is unramified at p;. Let T denote the Z,-torsion subgroup of Gal(H;/K),
and let furthermore
Bj - Gal(Hj/K) = P/E

denote some torsion-free submodule such that Gal(H;/K) = B; @ T}. Finally,
let F; € Hj be the subfield fixed by Bj, respectively. Then Fj is a finite
abelian extension of K, and Gal(F};/K) is isomorphic to the torsion subgroup
Tj of the Z,-module Gal(H;/K). Note that the ‘maximal free subgroup’ B; of
Gal(H;/K) and therefore the field F}; are not unique; but Gal(F};/K) is unique
up to isomorphism. Every cyclic subextension M /K of F; is contained in some
Z,-extension of K that ramifies at p; (note that every finite subfield of K,
cyclic over K, is contained in some Z,-extension of K'). Moreover, we have the
following fact.

Proposition 5.33.

(i) Letk € N. If M C Fj is maximal cyclic of degree p* over K and if
L € ES%(K) contains M, then p; ramifies in Ly1/Ly = M.

(it) If M C F; denotes any cyclic extension of K, M # K, and if some
L € ESB(K) contains M, then p;j ramifies in Lei1 /K, where e = e(K/K).

Proof. (i) If p; was unramified in L1, then Ly C H;. Fj is the subfield

of H; fixed by some torsion-free subgroup B; C Gal(H;/K). Write the
torsion subgroup of Gal(H;/K) as

t
T, =@V, Vi=z)p"z,
i=1

for suitable n; € IN, respectively. Then n; = k for some i, because of our
assumptions on M C Fj. We may without loss of generality assume that
n1 = k, and that M C F} is the subfield of H; fixed by B;®Va®--- @ V}.
If M C Ly C Hj, then the subgroup of Gal(H;/K) fixing Ly, has to
be a proper subgroup of B; ® Vo @ --- @ V; of index p. But then

Gal(Lk+1/K) = Gal(H]/K)/Gal(H]/LkH)

cannot be cyclic, yielding a contradiction.
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(ii) If M C F; denotes any subextension that is cyclic over K, then we may
choose the V; C T} such that the subgroup Fix(M) C Gal(H,;/K) fixing
M is given by

Fix(M) :Bj@vl@VQ@"'@Vt,

where V; C Vj is a subgroup of index [M : K]. Assume that p; is un-
ramified in Ley1/K for some Zj,-extension L € ES¥(K) containing M.
Then M C Leyy € Hj, and therefore Fix(Leq1) € Fix(M). Moreover,
Fix(Ley1) + T # Gal(H;/K), since otherwise, Fix(Le41) would have to
contain a torsion-free subgroup C; such that C; + T; = Gal(H;/K); but
then L.y would be contained in the fixed field F j = Hfj . Since the ex-

ponent of Gal(Fj/K) = T; would be bounded by e, this would contradict
the fact that L., 1/K is cyclic of degree p®*1.
We therefore may choose an element g € Gal(H;/K) such that

g & Fix(Let1) + 7 .

Moreover, g € Gal(H;/K) \ T; has infinite order, and we may assume
that ¢ is contained in the fixed torsion-free subgroup B; C Gal(H;/K)
satisfying B; + T; = Gal(H;/K) (indeed, if g = g+t with § € B; and
t € T}, then we may replace g by § & Fix(Let1) + Tj.) Let further
veV\ ‘71 denote any fixed element. Then the cosets of g and v in

Gal(Ley1/K) = Gal(H;/K) /Fix(Les1)

are non-trivial. Moreover, we claim that these cosets in fact generate a
group having p-rank two. This contradicts the fact that L.y, /K is cyclic,
proving the proposition.
Indeed, assume that ¢ = A-v + 2, with A € Z, and z € Fix(Let1).
Then g € Fix(Let1) + T}, contradiction. Assume, on the other hand, that
v =A-g+z, with X and z as above. Then v—\-g € Fix(L¢y1) C Fix(M),
and therefore v € Fix(M), because B; C Fix(M) and g € Bj, by our
choice of ¢g. This again yields a contradiction.

O

Now we return to the proof of Proposition 5.31. Fix j € {1,...,s}. Then
e > exp(I'/I;) = exp(Gal(F;/K)), by definition. We let k < e denote the
largest integer such that there exists an extension M C Fj that is cyclic of
degree p* over K. By the above, there exists some L € £¥(K) such that
M C L and such that p; ramifies in Ljy1/Ly. Therefore k = e;(L/K), and
thus

Lesugl“f‘(K) ej(L/K) <e.
p;€P(L)

Since this holds for every j € {1,..., s}, the first inequality of Proposition 5.31
follows.

Now suppose that P(L) = P for some P C T and every L € E¥(K). Let
C € NN be the smallest integer such that e(L/K) < C for each L € £<¥(K)
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(compare Remarks 5.32, (1)). If e > C, then there exists j € {1,...,s} such
that the exponent of the Galois group Gal(F};/K) is strictly larger than C.
But this means that there exists an extension M C K, cyclic of degree p¢*!
over K, such that p; is unramified in M, and such that M is contained in
some L € ESB(K) with p; € P(L). Therefore e(L/K) > C + 1, yielding a
contradiction. O

Lemma 5.34. Let e := e¢(IK/K), let L € U(K,e + 1). Then
(i) PL)=PIK), and
(i1)) e(L/K) > e(K/K).

Proof. (i)  We have P(L) C P(K) by definition of U(K, e + 1). If p € P(K),
then there exists some M € ES¥(K) such that p € P(M). Let ey(M/K)
denote the largest integer k € INg such that p is unramified in the interme-
diate field M}, /K. We may assume that M /K has been chosen such that
ep(M/K) is minimal among the Z,-extensions in E5¥(K) which ramify
at p. Then e,(M/K) < e, by Proposition 5.31, and p ramifies in

Me,m/xy+1 € Ker1 = Lepr C L.
Therefore p € P(LL).

(ii) Write P(L) = P(K) = {p1,...,ps}, and fix some j € {1,...,s}. Let
H; denote the subfield of K fixed by I;, and let F; C H; denote the
field fixed by some free subgroup B; of Gal(H;/K) = T'/I; satisfying
Bj & T; = Gal(H;/K), as in the proof of Proposition 5.31. We will
denote by H ](]L), respectively, F]-(E), subfields of IL that are obtained in

an analogous way (again, we remark that F; and F j(]L) in general are not
unique).
Then F; € K, = L. C L, and in fact Fj(]L) can be chosen such that

F; C Fj(]L). This will be shown below (compare Proposition 5.35 and
Corollary 5.36). Before stating these results, we will finish the proof of
Lemma 5.34:

Note that there exists some j € {1,...,s} such that e = exp(Gal(F;/K))
(for every choice of F}j). If N C F}j denotes a cyclic extension of K of degree

p¢, then N C F; C I ]-(E), by the results announced above. Therefore
e(L/K) = maxexp(Gal(Fj(]L)/K)) > exp(Gal(N/K)) = e.
J

Proposition 5.35. Let K # M C H;. Then M is contained in F; for
some choice of Bj if and only if no subfield N # K of M, cyclic over K,
is contained in a Zy-extension L € ESX(K) that is unramified at p;.

Proof. Let H ; € Hj denote the subfield fixed by the torsion subgroup T;
of G := Gal(H;/K). Then Gal(H;/K) is torsion-free, and every finite
cyclic subextension of H ;j is contained in some Z,-extension of K that
is unramified at p;. Moreover, every Z,-extension L € E<¥(K) that is
unramified at p; is contained in Hj, since H; C H; is of finite index |Tj].
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This shows that the latter condition in the lemma is satisfied if and only
if M NH =K.

Let now N := M N ﬁj. Then the subgroup Fix(N) C G fixing N contains
the torsion group 7} = Fix(H ;). Moreover, if M is contained in some Fj,
then also N C F}, and Fix(/N) contains the Z,-free group B; fixing F}.
Since B; @ T; = G, we conclude that N = K.

If, on the other hand, M N ﬁj = K, then

Fix(M) +T; = G = Gal(H;/K) .

Since Fix(M) C G is of finite index, there exists a torsion-free subgroup
C C Fix(M) such that rankgz, (C) = rankz, (G /T};) and Fix(M) C C'+Tj.
Then C' +7T; = G, and therefore M is contained in the subfield F} := HJC
of H; that is fixed by C. O

Corollary 5.36. Suppose that I. € U(K, e(IK/K) + 1). For every choice
of F; C K, we have F; C FJ(E) for some choice of Fj(]L) CL.

Proof. Let e := e(IK/K). We will apply the previous proposition to
M = Fj. Suppose that K # N denotes any subfield of M. We will
show that there cannot exist a Zp-extension W € £L'(K) that contains
N and at the same time is unramified at p;. Otherwise, the intermediate
field Weq1 € Let1 = Keq1 was unramified at p;. But then there would
exist a Zpy-extension in ES¥(K) containing W41 2 N, in contradiction
to Proposition 5.33, (ii).

Now Proposition 5.35 implies that M = F} is contained in some choice
of F j(]L). This concludes the proof of Corollary 5.36, and also the proof of
Lemma 5.34. 0

O]

Note that it is well possible that e(IL/K) > e(IK/K): This will happen if
the rank of the torsion submodule of the quotient of Gal(IL/K’) by the inertia
subgroup of some p; € P(IL) is strictly larger than the rank of the corresponding

quotient of Gal(IK/K') by the inertia subgroup Tj(]K) C Gal(K/K), by the next
result.
For any Z,-module M, we will denote by M® the torsion submodule of M.

Lemma 5.37. Let K/K denote a Zg—eactension, let U := UK, e(K/K)+1).
ForLe U and p; € T =: {p1,...,p:}, we denote by

L™ c 1@ = Gal(L/K)

the inertia subgroup of p; in /K, and we let GE]L) = F(]L)/Tj(m7 1<j <t
In particular, Gg-]L) =TW®) ifp; ¢ P(L ) =P(K).
(i) Then rankp((G;.]L))o) > rank, ( ) for every j € {1,...,t}.

(
(ii) Ifrankp((Gg.]L))o) = rank ((G§ ) ) for every j € {1,. t}, then
e(L/K) =e(K/K).
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(iii) If on the other hand rankp((GglL))o) > rankp((Gg-]K))o) for some j, then
e(L/K) > e(K/K).
More generally, if U = U(KK,n + 1) for any n > e(K/K), L € U and if

rankp((Gg-]L))") > rankp((Gg-]K))o) for some j, then e(L/K) > n.

Proof. (i) Let p; € P(K) = P(IL). Let H; and F}, respectively, H](-]L) and

F ]-(]L), denote the fields introduced in the proofs of Proposition 5.31 and
Lemma 5.34, (ii). Then

rank, (GY))°) = rank,(Gal(Fj/K)) ,

since Gal(F}/K) is isomorphic to the torsion subgroup of the finitely ge-
nerated Z,-module Gal(H;/K) = Gg-]K). Analogously,

rankp((Ggm))o) = rankp(Gal(Fj(]L)/K)) .

Since we have shown in Corollary 5.36 that F; C Fj(]L) for a suitably chosen
F{V, it follows that

rank, (GS")°) > rank,((G{)7) |

proving (i).
(i) If rank,((G™)°) = rank,((G")°), then

rank, (Gal(F\") /K)) = rank,(Gal(F;/K)) .

But F; C F j(]L), and each maximal cyclic subextension of F} of degree pF
over K is contained in some Z,-extension M that ramifies in Ny41/Nj
(compare Proposition 5.33, (i)). Therefore F; = Fj(]L), since otherwise,
there would exist a maximal cyclic subextension M of F}; that is contained
in some extension M) C F].(]L) of degree p over M. If [M : K| = p*, then
k < e := e(K/K), and therefore M™ C L., = K. ;. Then there
exists a Zy-extension N € E¥(K) of K such that M € M) C N and
such that p; is unramified in M @) = p, k+1, in contradiction to Proposition
5.33.
(iii) Suppose that U = U(K,n + 1) for some n > e(IK/K), and that

rank, (Gal(F\" /K)) = rank,((G")°)
> rank,((GIV)°) = rank,(Gal(F;/K))
for some I € U and some j € {1,...,t}.

Since n > e(IK/K), we have P(IL) = P(K), by Lemma 5.34, (i). Therefore
KeUL,n+1). If e(IL/K) <n, then (i) implies that

rank,((G¥)°) > rank,((GI)°)

yielding a contradiction. This shows that e(IL/K) > n.
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Definition 5.38. Let d € N. Let £4(K) denote the set of Zg—extensions of
K, and let K € £%(K). We use the notation introduced in the previous lemma,

W = )M 1 <<t

i.e., we write Z = {p1,...,p:} and G;

For n € IN, we define
UK, n) = {]L € £(K,n) | rank,((GI")°) < rank,(G1)°), 1< < t} .

Then the U(IK,n) define a topology on £4(K) (see Proposition 5.39 below),
which we call the R-topology on £4(K).

Proposition 5.39. U(K,n) C U(K,n) for every K € £4(K) and every n € IN.
The U(IK, n), together with ) and E4(K), generate a topology on E(K). e(IL/K)
1s locally constant with respect to this topology.

Proof. If L € U(KK,n) and p; € 7 is unramified in K/K, then
rank, ((G1)°) < rank,((G1)?) = 0.

If p; was ramified in I/ K, then IL would have to contain a Z,-extension M of K
such that p; € P(M). Since rankp((Gg.]L))O) = 0, the Galois group Gal(HJ(E)/K)

of the maximal subextension H ](-]L) C IL which is unramified at p; (compare the
proof of Proposition 5.31) is Z,-free of rank d; < d. If p; € P(LL), then d; < d.

This means that M could be chosen such that M N HJ(E) = K, i.e., such that p;
was totally ramified in M /K. However, since M,, C I,, = KK,,, p; cannot ramify
in M,,/K, yielding a contradiction. Therefore P(LL) C P(K), i.e., L € U(K,n).

The intersection of two sets U(IK,n;) and U(IK, ny) is a finite union of sets
of this type (compare the proof of Lemma 3.25, (i), and the proof of Remark
5.9). Indeed, we may assume that n; > ng. Then U(K,n1) N UK, ny) is the
set of Z,-extensions IL € £(IK, ny) satisfying

rank, ((GY)°) < m; = min({rank,((G'"™)°), rank,((G'™)*)})

for every j € {1,...,t}. This set might be empty. Otherwise, we can choose a
set I C N} of tuples (nq,...,n;) such that n; < m; for every 1 < j < ¢, and
such that

o for every (n) = (n1,...,n;) € I, there exists some L® € £(K,n;) such

(n)
that 1"ankp((G§IL ))O) =nj, 1 <j <t and
. for every M € U(IK,n1) N UK, ny), there exists some tuple

(n) = (n1,...,ny) €1

such that rankp((GgM))o) <n;,1<5<t

t
Note that [I| < [[(m; +1) < oo.
j=1
Then U(K,ny) N UK, n2) = | ULD ny).
(n)el
Finally, the last statement follows from Lemma 5.37, (i) and (ii). O
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Since e(IL/K) is locally constant with respect to the R-topology, this topol-
ogy allows a full use of Theorem 5.30 and therefore is suitable for our Fukuda-
theoretic method. We will conclude the present section by pointing out one
disadvantage of the R-topology. Namely, the space £(K) usually will not be
compact with respect to this topology.

Lemma 5.40. Let d,i € IN, and suppose that d > 2i. For every Zg—extension
L of K, we let E-<V“(K) denote the subset of Z;—extensions of K contained in
L.

Then EHSV(K) is compact with respect to the R-topology if and only if there
exists a set P of primes of K such that P(M) = P for every Z,-extension
MCIL of K.

Proof. Let us first assume that P(M) = P for a suitable set P and every
M € ES%(K). We will show that in this case, the Greenberg, Greenberg-R and
R-topologies on £ <L (K) coincide.

Indeed, it is obvious that the assumption implies that £(K,n) = U(K, n) for
each K e -k (K) and every n € INg. Moreover, Proposition 5.35 implies that
U(K,n) = U(K,n) for each K € E4T(K) and every n > e(K/K) + 1, since
either every K € U(IK,n) = £(IK, n) is unramified at p;, or p; € P(K) = P and

(K) (IK) (K)

Hyw = Fy = I

_ &)
= Hj
for every K € U(K, n).

Therefore, under this assumption, £ <¥(K) is compact by Remark 5.5 (note
that the proof of this remark goes through for £ <%(K) instead of £(K)).

Now we assume that there exist two Z,-extensions M, N C IL of K such
that P(M) # P(N). In view of Lemma 5.7, (i), we may assume that

PM) =P(@L) =P and P(N) G P.

We will show that in this case, e(IM/K) is unbounded on £><Y(K). Since
e(IM/K) is locally constant with respect to the R-topology, this will show that
EHSL(K) cannot be compact with regard to this topology.

We will make use of the following result.
Proposition 5.41. Suppose that I/ K denotes a Zg-extension, let 1 < d. Let
p; € P(L). Let K € EVSL(K) be such that pj is unramified in K (so that in
particular, rankp((Gg.]K))O) = 0, where Gg.]K) = I‘(]K)/Tj(]K), as above).
If nj € Ny denotes the largest integer such that there exists some K e EHEL(K)
satisfying rankp((Gg.]K))o) = n;j, then nj > 0. Moreover, define

.A?j — {]R c ging(K) | rankp((G§«IK))o) =n;}.

Then for every n € IN, there exists some K e E(K,n) N .A?j.

Proof. Let L C I denote the composite of all Z-extensions in & SL(K) that are
unramified at p;. If L/ K is a Z}-extension, then n; < min(i,d — t). Note that
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every M € ESF(K) unramified at p; is contained in L. In particular, K C L,
by assumption.

We choose Z,-extensions M, ..., M* € ESL(K) such that K = M!..... M".
We may assume that M!N I 21 MF¥ = K for each I, respectively.

Let n € IN be arbitrary. We consider the composite M* - L, where L C L
denotes any Z,-extension of K that is ramified at p;. Every Z,-extension
V C M' Lof K,V # M is ramified at p; (compare Lemma 3.19, (ii)). We
choose some V C M- L such that V € £(M? n). Then

Vi=M'.... .M.V

is a Z-extension of K contained in £(K,n), and rankp((Gg.V))o) = 1. In par-
ticular, this shows that n; > 1.
Inductively, suppose that we have obtained a Z;—extension

K= M. ..M.Vt Ve £(K,n)

such that rankp((Gé-]K))o) =r>1, (M. M) NV V) = K and
such that (V©=7+1. .. V%) N L is finite over K. Recall that p; is unramified
in M'- . M

If r <nj <d—t, then we may choose some L & ESL(K), ramified at P
such that

(L- M=)y (M. Moyt ) = K

and such that ' ‘ ‘
(M. L. vt VY N L

is a finite extension of M®~".

Let M*™" # V C M"" . L denote any Z,-extension of K contained in
E(M*", n). Then (V- Vir+1l. . V%) does not contain any Z,-extension of K
which is unramified at p;. Therefore Proposition 5.35 implies that the Galois
group of the maximal abelian extension of K contained in V - Vi=r+1. . Vi
and unramified at p; is finite of rank r 41, by our induction hypothesis and the
choice of V.

Therefore

V=M. oMLy Ly Y e €K n) = E(K,n)

satisfies rankp((Ggw))O) —r41.
Inductively, we construct a Z;—extension W e £(K,n) such that

rankp((Gg.W))o) =n;.
O

We will now conclude the proof of Lemma 5.40. Fix a prime p; € P(IL) such
that there exists some N € £<L(K) unramified at p;. We want to show that
e(M/K) is unbounded on &% <F(K).
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Suppose that d > 2i. As in the proof of Proposition 5.41, we let

L:=1L3'....['CL

denote the composite of all Z,-extensions in E<¥(K) that are unramified at p;.
We distinguish two cases.

If t > 4, then we may apply Proposition 5.41 to K := L'-...-L! C L. Lemma
5.37, (iii) then implies that e(IM/K) is unbounded in any neighbourhood of K.

If 1 <t < i, then we let K € £<F(K) denote any Z;—extension of K
which contains the Z,-extension N of K that is unramified at p;. We claim
that in every given neighbourhood £(K,n), n > e(K/K) + 1, we find some
W € £5E(K) such that

rankp((G§W))°) > rankp((Gg.]K))o) =: mj .

Indeed, we write K = M!. ... M with M!, ..., M" ramified at p; for some
r € N, r > mj;, and with M. . M' unramified at p;. Suppose that
(M'-...-M™) N L is a finite extension of K.

We proceed as in the proof of Proposition 5.41: Since d —t > i, there exists
a Zy-extension L C IL of K, ramified at p;, such that

(L-MHYnM'-...-M7Y = K

and such that
(MY oM™ L-MY) N L

is a finite extension of M?.

Let V. C L-M* V # M, denote a Z,-extension of K contained in £(M?* n).
Then V - M' - .... M™ does not contain any Zy-extension of K which is
unramified at p;.

Letting

W=V .M. ... .M~

we may conclude that W € (K, n) satisfies rankp((Gg-W))o) > mj, as in the
proof of Proposition 5.41.

Therefore e(W/K) > n+ 1, by Lemma 5.37, (iii). Since n > e(K/K) + 1
was arbitrary, the statement follows. O

Remark 5.42. Lemma 5.40 shows that, as in the case d = 1, we will usually
not be able to gather global information (such as global boundedness on £4(K))
about the generalised Iwasawa invariants (compare Remarks 3.26, (1)).

5.6 Finiteness of ranks

In our approach for the study of classical Iwasawa invariants, developed in the
third chapter, the following observation provided a link between characteristic
polynomials of Greenberg modules and the f-ranks which then could be studied
via Fukuda’s Theorem:
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Let L/K denote a Z-extension, A = lim AL, and let Fy(T) € Z,[T] de-
note the characteristic polynomial of A (compare Definition 1.29). Then F4(T')
has degree N(L/K). If f(T') € Z,[T] denotes any irreducible distinguished
polynomial, then

ranks(4) = v(|4/(f-A)) < 00 <> [{Fa.

This property of f-ranks is based on the following two facts:
(1) rankf(A) < oo <= ranks(F4) < oo, where

t

Ea = @AG™) © @A/SD)Y)
=1

j=1

denotes the elementary A-module attached to A (this follows from Propo-

sition 3.41).

(2) If f € A is irreducible, then |[A/(f)| = co. If g,h € A are coprime, then

|A/(g,h)| < oo (compare Lemma 1.17).

In order to adapt our method for the case of d > 1, we will have to study
whether our ranks of Agz-modules (to be defined below) satisfy analogous prop-
erties.

We immediately see that it will not be sufficient to simply consider, for
some element f € Ag = Z,[[T1,...,Ty]] and a given finitely generated torsion
Ag-module A, the quotient A/(f-A). Indeed, this quotient will in general be an
infinite group. Suppose, for example, that A = Ay/(T1). If d > 2, then Ty € Ay
is an irreducible element coprime to the characteristic power series T of A, but

A/(Ty - A) = Ng/(Th, Tn) = Zy|[T3,...,T4)]

is infinite.
This example already hints at how to define an appropriate rank: the quo-
tient

A/((T2>7Td7p)‘4) = Zp/pr = Z/pZ7

for example, is finite. The ranks that we will introduce below will be the orders
of quotients A/(I - A), where I C A, denotes an ideal having d suitably chosen
generators. Note that this obviously generalises the case d = 1.

If A denotes an arbitrary finitely generated torsion Agz-module, then Theo-
rem 2.23 implies that A is pseudo-isomorphic to some elementary Ag-module

EA = @ Ad/p?z >
i=1

where p1,...,ps denote prime ideals of Ay of height one, i.e., principal prime
S

ideals p; = (g;), respectively. F4 := [] g;" is called the characteristic power
i=1

series of A (compare Section 4.3).
We start with several technical results.
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Proposition 5.43. Let d € IN, and suppose that g, h € Ay are relatively prime.
Then there exist pseudo-isomorphisms

¢ Na/(gh) —— Aa/(g9) ® Aa/(h)

and
¥ Ag/(9) ® Aa/(R) —— Ag/(gh) .

Proof. This generalises Example 1.21. We give an adaption of the corresponding
proof given in [Wa 97|, Lemma 13.8.
Let

¢: Aa/(gh) — Aa/(9) ® Aa/(h)

be the Ag-module homomorphism mapping the coset of an element z € Ay in
Agq/(gh) to the tuple (7, %) of the corresponding cosets in the quotients Ay/(g)
and Ag/(h), respectively. This is well-defined, and moreover injective because
A4 is a unique factorisation domain by Proposition 2.17, (iv).

Let (@,b) € Ag/(g) © Ag/(h) be arbitrary, but fixed. We choose representa-
tives a,b € Agq of @ and b, respectively. If a —b € (g,h), thena—b=a-g+f-h
for suitable elements «, 8 € Ay. Let

ci=a—a-g=b+p-h.
Then we may conclude that

(@b) = ¢(c) € Im(p) .

If (a,b) € Ag/(9) ® Ag/(h) is arbitrary, then X - (@,b) = (Aa,\b) € Im(yp)
for every A € (g,h), by the above. But this means that the cokernel of ¢
is annihilated by every element A € (g, h). Since g and h are relatively prime,
Remarks 2.20, (2) and (3) imply that coker(y) is a pseudo-null Aj-module. Since
also ker(yp) = {0} is pseudo-null, this proves that ¢ is a pseudo-isomorphism.
Since both Ay/(gh) and Ag/(g) & Ag/(h) are finitely generated torsion Ag-
modules, the existence of ¢ implies that there exists also a pseudo-isomorphism

Y Ag/(9) @ Aa/(h) —— Ag/(gh)

(compare Remarks 2.22, (1)). This fact may also easily be proved directly:
By the above, A;/(gh) is isomorphic to a submodule M C A;/(g) ® Aq/(h)
such that the quotient
(Aa/(g) ® Aa/(h)) | M

is a pseudo-null Ag-module. This means that there exists an element P € Ay,
coprime to g - h, such that P - (z,y) € M for each (Z,7) € Ag/(g9) @ Aa/(h)
(compare Remarks 2.20, (3)).
Moreover, if
P-(z,y) = (Pz,Py) = (0,0)
in Ay/(9)®Aq/(h), then (Z,7) = (0,0) since Ay is a unique factorisation domain
and P is coprime to g - h. This shows that the composite map

v Aaf(9) ® Aa/(h) =T M F— Ag/(gh)
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induced by multiplication by P is injective.
Moreover, the image of Ay/(g) ® Ag/(h) under this map contains

e N (P-(1,1) = ¢ Y(P,P) = P.

Since Ag/(gh, P) is pseudo-null, this proves that the cokernel of % is pseudo-
null, and therefore v is a pseudo-isomorphism. O

Proposition 5.44. If o1 : A =5 E4 and py: B 5 Ep denote two pseudo-
isomorphisms of Ag-modules, then

SO:A@B B— EA@EB: (aab) L (@1(&),(,02(19)) s

is a pseudo-isomorphism. In particular, the direct sum of two pseudo-null Ag-
modules is pseudo-null.

Proof. The map ¢ obviously is a Azg-module homomorphism. We have to show
that the kernel and the cokernel of ¢ are pseudo-null Azj-modules. Recall that
a finitely generated Az-module M is called pseudo-null if and only if the local-
isation M, is trivial for every prime ideal p C A4 of height at most one. Now
ker(p) = ker(¢1) @ ker(yp2) and

coker(p) = (Ea @ Ep)/(im(p1) @ im(p2)) = Ea/im(p1) ® Ep/im(p2) .

Therefore both ker(¢) and coker(y) are finitely generated over Ay, and the
statement follows from the general fact that for a Ag-module M = My & M
and a prime p C Ay, we have M, = (M;), @& (M2),. This can be proved by
using, for example, Lemma 2.4 in [Ei 95].

In particular, if A and B are pseudo-null, then

(A@B), = Ay ® B, = {0}
for every prime p C Ay of height < 1. O

Proposition 5.45. Let A be a finitely generated torsion Ag-module, let
S
Ea = @ Aa/(g])
i=1

be the elementary Ag-module of A, and let Fy € Ay denote the characteristic
power series attached to A. Suppose that f € Ag is irreducible.
Then f is coprime to Fa if and only if Eo/(f-E4a) is a pseudo-null Ag-module.

Proof. A finitely generated Ag-module M is pseudo-null if and only if it is
annihilated by two relatively prime elements of A; (compare Remarks 2.20, (2)
and (3)). Ea/(f - E4) is pseudo-null if and only if each summand Ag4/(g;", f)
is pseudo-null, by the previous proposition. This completes the proof. O
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This result proves part of an analogon of the property mentioned at the
beginning of the current section. The main difference when compared to the
one-dimensional case concerns the observation that a Aj-module is pseudo-null
if and only if it is finite (compare Remarks 2.20, (4)). Since this is not longer
true if d > 1, our method gets much more involved in the higher-dimensional
setting.

More precisely, whereas in the one-dimensional case, E4/(f - E4) will be
finite for every f € A coprime to Fl, it is in general a non-trivial task to find
elements f1,..., f4 € Ag such that, as in the above example,

Ea/((f1,--., fa) - Ea)

is finite, even if some f € Ay coprime to Fjy is already known (of course we want

to exclude the trivial case where one of the f; is a unit, i.e., (fi,..., fa) = Aqg).
The following lemma shows that this is (at least in principle) always possible.

Therefore this result is one of the main motivations for our method.

Lemma 5.46. Let E4 denote an elementary Ag-module with characteristic
power series Fa. Then we may choose fi,..., fqg € Ag such that
° (f1,--., fa) does not contain a unit of Ay,

® Es/((f1,---, fa) - Ea) is finite, and
® Aa/(f1,..., fa) is isomorphic to a finitely generated free Z,-module.

Proof. Let Fy = p}* -...-p2s denote the characteristic power series of A, with
irreducible elements p1,...,ps € Ag. If f € Ay denotes an irreducible element,
then f is coprime to F4 if and only if the image of each p; in Agy/(f) is different
from zero.

We will use an inductive argument. First choose fi € Zy[T] distinguished
with respect to 77 (which is the same as being regular in Z,[[T}]] with respect
to 11 in the sense of Definition 4.9), and coprime to F4. This is possible since
there exist only finitely many irreducible divisors p; of Fl4, whereas there exist
infinitely many irreducible distinguished polynomials in Z,[T7].

Now we choose fo € Zp[TQ] distinguished with respect to 75, and such that
the image of each p; in Ay/(f1, f2) is different from zero. Inductively, choose
f3,..., fa € Mg such that f; € Z,[T;] is regular with respect to T, and such

that the residue classes p; of p; are non-trivial in Ag/(f1,...,fi), 3 <@ < d.
Again, this is possible since Z,[T;] contains infinitely many prime elements and
since fi,..., fi—1 do not affect the variable T;, respectively.

Then

Aa/(fr,---s fa) = Zp[Ty, ..., T4l/(fr,-- -, fa)

is isomorphic to Z;, with r being the sum of the degrees of the f; with respect
to T;, respectively.
Indeed, we will prove that for every i < d, the quotient ring

Zp([Th, ..., T/ (frs- - fi)

with f; € Z,[T;] distinguished, respectively, is Z,-free of rank equal to the sum
of the degrees of the f;. This is certainly true for ¢ = 1, since we can divide with
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remainder by the monic polynomial fi in the ring Z,[[T1]] (compare Lemma
1.10). Inductively, assume that

R = ZPHTI”EH/(fh?f’L)
is isomorphic to deg(fl) + ..+ deg(fi)

The isomorphism

Zpl[T1s - Tia]] = (Zp[[Ths - T ([ Ti1]]

induces an isomorphism between Z,[[T1,...,Ti+1]]/(f1,. .., fi+1) and

(Zp[[T, . T/ (frs o D Tial)) / (Fiv) = (RI[Tigal))/ (firr) -

Again, since fiy1 € Zp[Ti11] € R[[Ti41]] is monic, we may divide with
remainder by fj41 in this ring. Therefore R[[Tj4+1]]/(fi+1) is isomorphic to
RA°e(fi+1) a5 Z,-module (note that division with remainder in R[[Tj41]] is ‘R-
linear’). Using our induction hypothesis, the claim follows.

Remarks 5.47.

(1) The same proof works if each f; is a monic polynomial in T; with coefficients
in Zp[[T1, ..., Ti—1]], respectively.

(2) In the case f; € Z,[T;], 1 <1i < d, a basis of the free Z,-module

Q == Aa/(f1---, fa)

is given by the residue classes of the elements
TP Ty, 0<s;<deg(fi), 1<i<d.

Indeed, it is obvious that these elements generate (). Moreover, the corre-
sponding residue classes are Z,-linearly independent: Suppose that there
exist elements

A( €Zy, 0<s;<deg(fi), 1<i<d,

517~"7Sd)

such that Y A, o) T7" - ... - T;* yields the zero class in Q. Since @ is
Z,-torsionfree, we may assume that at least one Ay, . ) is not divisible
by p. Then this coefficient is a unit in Z,, and therefore

d
T = Z Nevota)  T1 o Tyt + Zﬂjfj
(t1,-5ta) 7 (51,--,54) J=1

for suitable elements S\(tl,.._,t 2 € Zyp, pj € Ay, respectively. We consider
the coefficient of 77 - ... - T;d on the right hand side. The fact that the
fj € Z,[T}] are distinguished polynomials of degree deg(f;) > t;, respec-
tively, implies that this coefficient is divisible by p, yielding a contradiction.

We will now prove that fi,..., f; may be chosen such that furthermore,

Ea/((f1,---,fa) - Ea)

is finite. We will make use of the following fact.
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Proposition 5.48. Let f1,..., fq € Ag be such that Q :== Agq/(f1,-.., fq) is iso-
morphic to a finitely generated free Zy,-module. Let p € Aq. Then the following
statements are equivalent:

(i)  Aa/(f1,--., fa,p") is finite for some n € N,

(ii) the residue class of p™ is no zero divisor in Q for some n € N,

(#1i) multiplication by (the residue class of ) p is injective on Q.

Proof. We first note that statements (ii) and (iii) are obviously equivalent: If
p? -7 = 0 for some T € @, then p - p*~lax = 0, so that either (iii) is false or
pn~lz = 0. Inductively, we see that (iii) implies (ii). If, on the other hand,
multiplication by p is not injective on @), then this also holds for multiplication
by p”, implying that (ii) is not true.

We will now show that (i) implies (iii). To this purpose, suppose that T € @
denotes an element such that p-Z = 0. Then the annihilator ideal Ann(Z) C Ay
of T contains p, fi,..., fg. Since [Ag/(f1,..., f4,p™)] is finite, by (i), the ideal
(f1,.--s fa,p™) C Ag is of finite index. Then also |Ag/(f1,-.., fa,p)| is finite.
This means that there exists an integer » € IN such that m" C Ann(Z), where
m = (p,T1,...,Ty) denotes the maximal ideal of A4. In particular, this implies
that p” - = 0. However, Q is Z,-torsionfree, and therefore = = 0, proving (iii).

Finally, we will show that (iii) implies (i). We let « := p™. Then T # 0 in
Q. Moreover, multiplication by T is a Z,-linear map ) — @, and this map is
injective by (iii). This means that the image - Q C @ is a Z,-module of rank
equal to rankz, (@), and therefore the quotient

Q/(f) = Ad/(fla"'vfdapn>

is finite. O

We return to the proof of Lemma 5.46. We want to show that the polyno-
mials fi,..., fq may be chosen such that Ag/(f1,..., fa,p;") is finite for every

i€ {l,...,s}, where Fy = p* - ... pZ. This will follow from the following
fact.
Claim 5.49. fi,..., fq € Ag as above may be chosen such that

(f1,--s fa) € Ag

s a prime ideal.

If we have shown this claim, then the lemma will follow at once, since by
construction of the fj, pi"* & (f1,..., fq) for every i. This implies that none of
the p; is a zero divisor in the domain @, and therefore each Agq/(f1,. .., fa,p;")
is finite, by the preceding proposition.

In order to prove Claim 5.49, we assume that the f; € Z,[T};] have been
chosen in the special form

f] = T‘] + pkj 5

with suitable integers k; € INg, 1 < j < d. Note that this is possible since on
the one hand, the family {7} +p* | k; € No} C Z,[T}] contains infinitely many
pairwise coprime irreducible elements, yielding infinitely many different residue
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classes in Ag/(f1,..., fj—1), respectively. On the other hand, we only have to

exclude that f; divides one of the finitely many residue classes @, ..., ps® in
Aa/(frs--- s fim1)-
It is now easy to see that the ideal (f1,...,f;) € Aq4 is a prime ideal for

every 1 < j <d. Indeed, the ring isomorphism
Aa/(f1,-- - f3) — Zp[[Tjsa,- - T4

mapping T; to —pF, 1 < i < j, is a bijection between Aa/(f1,...,f;) and
the domain Z,[[Tj11,...,Ty]]. This may be seen via induction on j, using the
isomorphism

Aa/(frs--5 f3) = R/(f5)

where R := Ag/(f1,..., fi—1) = Zy[[T},...,T4]] is a domain because of the
induction hypothesis.
This concludes the proof of Lemma 5.46.
O

The following result considers, more generally, arbitrary finitely generated
torsion Ag-modules. It moreover proves the plausible fact that for a pseudo-
null Ag-module A, d — 1 suitably chosen f; are enough in order to make
A/((f1,---, fa—1)-A) finite. We want to exclude the trivial solution of choosing
fj to be a unit in A4 for some j. Therefore we assume that each f; is contained
in the maximal ideal m = (p, 711, ...,Ty) of the local ring A4, respectively.

Proposition 5.50. Let A denote a finitely generated torsion Ag-module.
(i)  There exist elements f1,..., fq € m such that A/((f1,..., fq)-A) is finite.
(ii) If A is pseudo-null, then we may find d—1 elements f1,..., fq—1 € m such

that A/((f1,-.., fa—1) - A) is finite.
(iii) More generally, if s € N, and if Ay, ..., As denote pseudo-null Ag-modules,
then there exist d — 1 elements f1,..., fq_1 € m such that

Ai/((fr,o s fam1) - Ai)
is finite for every 1 <i <s.

Proof. (i) Let fa € Ay denote a non-trivial annihilator of the torsion-module
A. The proof of Lemma 5.46 implies that we may choose f1,...,fq € m
such that Ag/(fa, fi,-.., fa) is finite.

If ¢1,..., ¢, denote generators of A over Ay, then

A/((fro-oosfa) - A) = A/((fas frseos fa) - A)

may be imbedded into

Ad/(fAzflv"'yfd)'Cl + ...+ Ad/(fAvfla"’vfd)'CTa

and therefore is finite.
(ii) This is a special case of (iii).
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(iii) M = A1 & ... ® As is a pseudo-null Ag-module (compare Proposition
5.44). This means that the annihilator ideal I := Ann(M) C Ay of M is
not contained in any prime ideal of A4 of height one.

We claim that the Krull dimension (compare Definition 2.11) of R := Ay/I
is at most d — 1.

Indeed, suppose that dim(R) > d. Then there exists a chain of prime
ideals

Pd 2 Pa1 2 --- 2 Po

in R. This yields a chain of primes

Pd 2 Pa1 2 ... 2 po 2 1

in Ag4. Since we have seen in Proposition 2.17, (ii) that the Krull dimension
of Ay is equal to d+ 1, it follows that the height of pg is at most one. But
this contradicts the fact that M is pseudo-null. Therefore we may conclude
that dim(R) < d — 1.

Let now m denote the maximal ideal of the local ring R = Agz/I. Then
Corollary 10.7 in [Ei 95] implies that there exist d — 1 > dim(R) elements
fi,..., fa_1 € m such that

ﬁn g (ﬁ?"wfd—l)

for sufficiently large n. If fi,..., fi—1 € m denote lifts of fi,..., fa_1,
respectively, then this means that there exists an integer ng € IN such
that

mn g I+ (fla'-'vfdfl)
for every n > ng, and therefore

Aa/(I+(fro o faa)| € |Aa/m™] = p™ < oo

Since M is finitely generated over Ay, this means that also

M/((fry-oos fa1) - M) = M/((I+ (f1,--, fa-1)) - M)

is finite, as in the proof of (i). This proves (iii).
O

Definition 5.51. Let A denote a finitely generated torsion Agz-module. Sup-
pose that fi,..., fqs € Ag. Then we define

ranks, ;) (A) = op(|A/((f1s- -, fa) - A)])

whenever this is finite. Otherwise, we let ranks, . r,)(A) := oo,

This generalises the f-rank of A-modules introduced in Chapter 3 (compare
Definition 3.40). We would like to carry over the properties of the f-rank (in
particular Proposition 3.41 and the property (1) mentioned at the beginning of
the current section) to this multi-dimensional version. In particular, we want
to relate the rank of a finitely generated torsion Ag-module A to the rank of
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the corresponding elementary Ag-module E4. We will, however, see that not
all of the results from Chapter 3 remain valid if d > 1.

We will start with the proof of some easy properties of the ranks introduced
in Definition 5.51 (compare Proposition 3.41):

Proposition 5.52. Let fi,..., fq € Aqg.

(i)  Suppose that A denotes a finitely generated torsion Ag-module. Let ACA
be a Ag-submodule. If rank(f17.‘_’fd)(f~1) and rank(fl,m’fd)(A/A) are finite,
then so is ranky, . ;(A), and in fact

rank, g,y (A) < rank(p, g (A) +rank, g (A/4)

(ii) Let A, B denote Ag-modules such that at least one of the ranks
ranky, - ¢y(A), rank(y ) (B) is defined. Assume that there exists a
Ag-module isomorphism

p:A—— B .
Then both ranky,  ;(A) and rank(ys,  ¢y(B) are defined, and
rank g s (A) = ranke | r)(B) .
(i4i) Let A denote a Ag-module such that vank s, . r(A) is finite. Then
rank s, .. ) (A/M) < ranks, . 5 (A)

for every Ag-submodule M of A.

(iv) If a Ag-module A is isomorphic to the direct sum of two Ag-modules
By and Bg, and if ranky,  ¢)(B1) and ranks, . r)(B2) are finite, then
rank p, ¢ (A) is also finite, and

rank(, ) (A) = rank(y, ) (B1) + rankgs, ;) (B2) .

Proof. (i) Fix some set M of representatives for A/A. Then every element
a € A may in a unique way be written as a = b+« withb € Aand o € M.
Since

(fla"'ufd)‘A g (flv"wfd)'AnAa

the assertion follows.
(ii) Since

o((fr,-- s fa)-A) = (fr,-., fa)-0(A) = (fr,.... fa)- B,
we obtain a well-defined Agj-module isomophism
2 A/((frs-s fa) - A) —— B/((h,--. fa)- B) .
(iii) For every submodule M of A, the order of
(A/M)/(frs---s fa) - (A/M)) = A/(M + (fr,. .., fa) - A)
is less or equal to the order of A/((f1,..., f4) - A).
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(iv) Using (ii), we may assume that A = B; & By. Then

A/((fr,-  fa) - A) = Bi/((f1,---, fa) - B1) © B2/((f1,---, fa) - B2) -
O

In Proposition 3.41, (i), we proved the following statement, which is con-
siderably stronger than assertion (i) above: If A = A/(p™) for some irreducible
element p € A and some n € N, and if A C A is a submodule of finite index
(i.e., A/A is a pseudo-null A-module), then rank(A) = rank;(A) for every
distinguished polynomial f € A that is coprime to p.

The proof was based on properties of a cohomological invariant @ s(A) which

is defined as Qf(A) = %, whenever both orders are finite. Here A[f]
denotes the submodule of A that is annihilated by the element f € A. In
Proposition 3.43, we proved that ()¢ is ‘multiplicative in short exact sequences’,
and that Q (M) =1 for a pseudo-null (i.e., finite) A-module M.

Let f1,...,fq € Ag, let A denote a finitely generated torsion Ag-module.

We will now see that the canonical generalisation

_ lAlAIn .0 Al
T AN da) - A

of the above invariant in general does not share analogous properties.

Q(fr,nf)(A)

Example 5.53.

(1) Let d =2. Then A := Ay/(Ty,p) is a pseudo-null As-module. However, we
will see that Qp, 1,)(A4) # 1
First, A[T1] N A[Ty] = A[T»] = {0}, since A = Ao/(T1,p) = (Z/pZ)[[T:]] is
a domain and Ty & (71, p). Moreover,

A/((T,Tz) - A) = Ao/(p,Th,To) = Z/pZ

contains p elements, and therefore Q 1, 1,,)(A) = %.

(2) Let d = 2, A = Ay/(T}), and let A := (T1,T3)/(T1), so that A is a Ao-
submodule of A. Then we have a short exact sequence

0 A A AJA —— 0 .

We will see that Q, 1) (A) # Q(p,Tz)(fl) . Q(p,Tz)(A//l). Indeed, on the one
hand, ) }
Alp] = Alp] = (A/A)[p] = {0},
using the fact that A/A = Ay/(Ty, Ty) = Z,, is Z,-torsionfree.
On the other hand, A/((p,T2) - A) =2 Z/pZ,

A/((p,Ta)-A) = Ty- Ao/ (pTn, T2, Ty - Th) = Z/pZ
and (A/A)/((p,Tz) - (A/A)) = Z/pZ. Thus

Qpm)(4) = #

= Q(p,Tg)(A) : Q(p,TQ)(A/A) .

K=
K=
hSREE
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Remark 5.54. Although the above examples show that the quantity
Q(fi,....12)(A) is not a suitable generalisation of the invariant Q;(A) defined
in the third chapter, one might hope that nevertheless

rank(fl,m,fd) (A) = rank(fl,...,fd) (A)

for submodules A C A such that A/A is pseudo-null — at least in the case
where A = E is elementary, as in Proposition 3.41, (i) and (ii). The next
example shows, however, that this in general is not even true for cyclic torsion
Ag-modules.

Example 5.55. Let d =3, £ := A3/(p), and E := (T}, Ty, p)/(p) C E. Then
E/E = A3/(T1,Tz,p) is pseudo-null. Moreover, rank(r, 7, 1) (£) = 1. But

rank(r, 7,1 (E) = vp(|E/(T1, To, Ts) - E)|)
= u(|<Ty,To> | <pTi,pTe, TE, T1 T2, Ty, T1 T3, To T3 > )
2 > 1.

Every submodule E of a cyclic Ag-module E = Ag/(g), where g € Aq
denotes an arbitrary non-unit, is of the form E = C/(g), where C' C A4 is an
ideal containing g. Since Ay is Noetherian, C is finitely generated. We choose
generators ci, ..., c of C such that ¢; is a divisor of g in Ag. We may assume
that k£ has been chosen as small as possible.

Lemma 5.56. Let E = Ag/(g) and E = C/(g) be as above. We assume that
k=2. Let first g =1p" be a power of an irreducible element p € Ay.

Suppose that rank s, ¢ (E) < oo for suitable elements fi,..., fq € Ag, and
that Agq/(f1,..., fa) is a finitely generated free Z,-module.

Then also rank(fl’m,fd)(E) < 00. Moreover,

rank(p,,...1(B) = rank,,. ) (E)

if and only if the two generators of C' are coprime. Note that this is the case if
and only if E/E 1s pseudo-null.
More generally, if f1,...,fq € Ag are as above, g € Ay is an arbitrary non-unit,
and if E/E is pseudo-null, then

rank(s, 7, (E) = rank(s, g, (E) .

Proof. We will make use of the following property of ranks of elementary Ag4-
modules:

Proposition 5.57. Let p € Ay. Suppose that we have chosen f1,..., fq € Ay
such that Q = ANg/(f1,..., fa) is a finitely generated free Z,-module, and such
that R :=ranky,  ¢)(Ag/(p)) < oo. Then

(i)  multiplication by p is an injective operation on @,

(i) we have an equality of ideals (f1,...,fa) N (p) = (p)- (f1,..., fa), and
(iii) rank(s, ;) (Aa/(p") = i- R for everyi € IN.
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(iv) More generally, suppose that p = p1 - pa in Ag.
Then both rank s, ¢)(Aa/(p1)) and ranks, ¢y (Aa/(p2)) are finite, and

rank g s (Ag/(p)) = rank(y gy (Aa/(p1)) +rankes . r)(Aa/(p2)) -

Proof. (i)  This follows from Proposition 5.48.
(ii) It is clear that (p) - (f1,...,fs) € (p) N (f1,..., f4a). Suppose now that
x € (fi,..., fa) N (p). Then z = p -y in Ay, and we want to prove that

vy € (f1,---,fa). Otherwise, y # 0 1in Q = Ag/(f1,..., f4), and p -7 = 0.
But this contradicts (i).

(iii) We first note that multiplication by p/, j € N, induces a Ag-module
isomorphism

Q/p-Q) = (- Q)W Q) (%)

(here the injectivity follows from (i)). In particular,

(- Q)/ (- Q) = 1Q/(0- Q) = p"

for every j € IN.
Let now 7 € IN be given. Then the isomorphisms (x) imply that

Q/("- Q) = 1Q/(p- Q)1 Q)/B* Q- |- Q)/ (b Q)]
= [Q/kp-Q)I,
and therefore rank (s, 5)(Ag/(p")) = i- R.

(iv) Since (f1,..., fq4,p) is contained in each of the ideals (fi,..., fq4,p1) and
(fiy---, fa,p2), it follows that both

rank(y, ) (Aa/(p1))  and  rankey | ry(Aa/(P2))

are bounded by R. Therefore multiplication by p; and by po on @ is
injective by (i). In particular, multiplication by p; induces a Az-module
isomorphism

Q/(p2-Q) = (p1-Q)/(p-Q),

since p = py - pa.
This means that

Q/(p- Q)]

1Q/(p1- Q) - |(p1-Q)/(p- Q)]
= [Q/(pr-Q)]-1Q/(p2- Q)] -

O

We return to the proof of Lemma 5.56. Suppose first that g = p”, where
p € Ag4 is irreducible. Write C' = <e¢1,c2 >p,, with ¢; = p®, s < r, and with
co =: p' - p, where p is coprime to p.

Since rank(s, . r)(F) < oo by assumption, the ideal (p”, f1,..., fa) € Ay
is of finite index, and therefore also (p, fi,..., f4) € Aq4 is of finite index, i.e.,
R :=rank(y,  7,)(Ag/(p)) < o0.

In Lemma 5.59 below, we will give a general proof for the finiteness of

rank s, ¢y(F). In what follows, we will actually compute this value explicitely.
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Suppose first that t = 0. We have E/((f1,..., fs) - E) = <p®,p>/N, with

N = <p"p°fr,.. .0 fa, pfrs. b fa>
Suppose that A1, Ay € Ay are elements such that Ay - p* + o -p € N. Then

APt p = pop Fprpt P

with suitable elements pug € Ay and pq, p2 € (f1,--., fa)-

In particular, (A2 — p2) - p € (p®), and therefore Ao — p2 € (p°), since p
and p are coprime. This means that Ao € (p°, f1,...,fq4). In other words,
AP+ Xo - p € N whenever Ay # 0 in Ag/(p%, f1,- .-, f4)-

This holds for every \; € A;. We will now determine the elements A} which
yield the same class A - p* + X2 - p = A1 - p* + A2 - p modulo N. Let therefore Ay
be fixed. Without loss of generality, we may assume that Ao = 0. If A} -p* € N,
then

1p% = g0 A pt Fpep
as above. Since p is coprime to p®, we may conclude that ps = 0 mod p®.
Proposition 5.57, (ii) then implies that ps = p*® - fip for some s € (f1,..., fa)-
Dividing by p® in the unique factorisation domain A4, we therefore see that an
equation as above is equivalent to the fact that A} € (p"~%, f1,..., fa).
Summarising, for each Ao € Ay \ (p%, f1,..., f4), we obtain exactly

‘Ad/(pr_saflw . -afd)’

many pairwise distinct equivalence classes A1 - p + Ao - p in the quotient module

E/((flavfd)E)
Suppose now that A € (p°, f1,..., f4). Then we write

)\2 = T- ps + Ky
with z € Ay and i € (fy,..., fq4). Considering congruence classes in
<p*,p> /N,

we may conclude that

AMpS+HAde-p = A -pS+a-psp = pS(A +ap) .
As we have seen above, this yields

‘Ad/(prisaflw . '7fd)’

many pairwise distinct equivalence classes.
We may conclude that

rank(p, ) (E) = rankg, ) (Aa/(p%)) + rank(s, ) (Aa/(p77%)) -

Now we apply Proposition 5.57, (iii). It follows that

rank(s, ) (E) = rankg, py(Aa/(p%) + ranks, gy (Aa/(p7%))
= s-R+(r—s)-R =7r-R
= rank(fl,...,fd)(Ad/(pr)) = rank(flp..,fd)(E) *
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If ¢t > 0, then
E =<psphp>/<p'> = <plp>/<pi>,

where we note that ¢ < s < r, since we assume that C' is not a principal ideal
(k = 2). Now the first part of the proof implies that

rank(y, r)(E) = rank(s, p)(Aa/(p°71) + ranks, gy (Aa/(pUD 767
= rank(s,, g (Aa/(077))
< rank(fla--wfd)(Ad/(pr))
= rankgs, g (E) -

Finally, let ¢ € Ay be arbitrary. By our assumptions, the ideal C has
generators ¢; =: p; dividing g and ¢y = p coprime to g. Then the proof of the
case ‘t = 0" above goes through literally. Indeed,

)\1 “P1 +)‘2 fj € N := <g7plfla" 'aplfdaﬁfla” . aﬁfd>
only if Ay € (p1, f1,..., fa), since p; and p are coprime.

Moreover, since

rank s, . f,)(Aa/(p1)) < rankg r)(Aa/(p)) < oo,

Proposition 5.57, (ii) implies that A\; -p; € N if and only if Ay € (p2, f1,..., fa),
where pg := p%' Finally, Proposition 5.57, (iv) implies that

rank(y, ) (E) = ranke, ) (Ag/(p1)) 4+ rankes, o py(Aa/(p2))
= rank( ) (E) .

O]

Remark 5.58. If £ = Ay/(p"), p irreducible, and if C' =< p®> is a principal
ideal for some s > 1, then

rank(fh_”’fd)(E) = (r—s)-rankgy . r,)(Aa/(p))
< r- rank(flym,fd)(Ad/(p)) = rank(fl,---7fd)(E) .

In this case, E/ F is not pseudo-null, of course.

Lemma 5.59. Letp € Ay be a not necessarily irreducible element. Suppose that

E = MAyg/(p), and let E denote a Ag-submodule of E. If rank(s, ¢ (F) < 00

for suitable elements f1,..., fq € Ag, then rank(fh_..?fd)(EN’) < 00.

If E/E~ 18 pseudo-null, then the converse also holds.

Proof. As above, E = C/(p), where C' C A4 denotes an ideal containing p.

Since Ay is Noetherian, C' can be generated over Ay by a finite set {c,...,cx}.
Let M = Ag/(p, f1,.--,f4), and let R := rank(fh_._,fd)(E) < 00. Then

|M| = pft. Moreover,

E/((fi,--- fa) BE) < |<aa>m| | <ce>um],

and therefore rank(flw’fd)(E) <k-R < .
Now suppose, to the contrary, that rank(flw,fd)(E) < oo, and assume that

E/ E is pseudo-null. We will make use of the following concepts.
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Definition 5.60.

(1) If Ris aring and M is an R-module, then the length of M over R denotes
the least length of a maximal chain of submodules decreasing from M — or
infinity, if there exists no finite maximal chain.

(2) Let R denote a local ring with maximal ideal m. Suppose that M is a
finitely generated R-module, and let I C m be an ideal of R. Then we
say that I is an ideal of finite colength on M if the quotient module
M/(I - M) has finite length.

Proposition 5.61. If R is a local ring with mazimal ideal m, then an ideal
I Cm has finite colength on a finitely generated R-module M if and only if

m"” C I+ Ann(M)

for every sufficiently large n € N. Here Ann(M) C R denotes the annihilator
ideal of M, i.e., Ann(M) = {0} if M is not R-torsion.

Proof. See Proposition 10.8.a in [Ei 95]. O

We return to the proof of Lemma 5.59. Since rank(fh_yfd)(EN) < o0, the
length of E/((f1,..., fs) - E) is finite. Proposition 5.61 therefore implies that

m" C (fl,...,fd)—FAnn(E),

provided that n € IN is sufficiently large.

Since E C E is a Ag-submodule and E / Fis pseudo-null, we have a pseudo-
isomorphism ¢ : E = E. Moreover, since both E and E are finitely
generated and Ag-torsion, there exists also a pseudo-isomorphism ¢ : £ — E
(compare Remarks 2.22, (1)). v is actually an injection, because the cyclic Ag4-
module £ = Ay/(p) does not contain any non-trivial pseudo-null submodules
(this may be proved analogously to Remarks 2.25, (2)).

But then the annihilator ideal Ann(E) of E contains Ann(FE), and therefore

m" C (fl, ceey fd) + AHH(E)

for every sufficiently large n € IN. Since Ann(F) = (p), this means that

Ad/(flv"'afdap)

is finite, i.e., rank(y, 1) (F) < oo. O

Corollary 5.62. Let A be a finitely generated torsion Ag-module, let E4 de-
note the elementary Ag-module attached to A, and let Cy = Agq/(Fa), where
F4 denotes the characteristic power series of A. Suppose that f1,..., fq € Ag.
Ifranks, . ;)(A) < oo, thenranks  ;1(Ca) < oo andranky, ;5 (Ea) < oo.

Proof. Let ¢ : A — E 4 denote a pseudo-isomorphism, let M; := ker(yp). Then
¢ induces an isomorphism A/M; = E4 C Ey, and the cokernel My := EA/E’A
is pseudo-null. Proposition 5.43 implies that there exists a pseudo-isomorphism
w2 1 E4 — Cj4, which is in fact injective in view of Remarks 2.25, (2). Let
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¥ A — Cy be the pseudo-isomorphism ¢ := 3 0 . Then ker(¢)) = M, and
im(y)) =: C4 C C4 is a submodule such that C4/Cy is pseudo-null.
Proposition 5.52, (ii) and (iii) therefore imply that

rank, 1) (Ca) = rankgs p)(A/Mi)
< rankgp o py(A) < oo

Therefore ranks, . £y(Ca) < oo, by Lemma 5.59. Now consider the injective
pseudo-isomorphism ¢y : B4 — Cy4. Since the cokernel of o is pseudo-null,
Lemma 5.59 implies that rank s, ¢ (¢2(E£a)) < oco. But

rankp, s (¢2(Ea)) = ranks 5y (Ea)
by Proposition 5.52, (ii). O

Remarks 5.63.

(1) The assumption in the second part of Lemma 5.59 that E/E is pseudo-
null is necessary, which follows from Example 5.64, (2) below. Moreover,
Example 5.64, (1) will show that an analogous result is wrong in general
for non-elementary torsion Agz-modules.

(2) At the beginning of the current section, we mentioned two facts that have
been fundamental prerequisites for the one-dimensional Fukuda method.
The first statement was that ranky(A) < oo if and only if rank;(E4) < oo,
where f € A, and where E 4 denotes the elementary A-module attached to a
finitely generated torsion A-module A. In Corollary 5.62, we proved one di-
rection of an analogous statement for finitely generated torsion Agz-modules.
The following example, however, shows that the reverse implication will not
be true in general for arbitrary d > 1.

Example 5.64.

(1) Suppose that d = 3. Let A := A3/(T1,T3). Then A is a pseudo-null As-
module, and therefore E4 = {0}. If we consider f; = Ty, fo = T and
f3 = T3, then ranks 1, 1,)(A) = |A3/(T1,T»,T3)| = oo. But of course
rank ¢, ¢, £,)(E£4) = 0 < oo. Note that A := {0} C A is a submodule such
that A/A is pseudo-null.

(2) Suppose now that E = Ao/(T1), so that E is a Ay-elementary module. Then
rank (7, 1,)(E) = 00, but of course rankp, 7,)({0}) < oo, where E := {0} is
a submodule of E such that E/E is not pseudo-null.

As we pointed out in Remark 5.54, one could hope that

rankp,,...1(B) = rank,,.. 5, (E)

for every submodule of an elementary torsion Ag-module E such that E/ E
is pseudo-null, provided that the two ranks are finite. However, Example
5.55 showed that in this situation, rank(fh_”’fd)(E) can be strictly larger than
rankj,,._g, ().

In what follows, we will consider cyclic Ag-modules in place of elementary
Ag-modules, using the pseudo-isomorphisms from Proposition 5.43: Instead
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of considering a pseudo-isomorphism between a finitely generated torsion Ag-
module A and the corresponding elementary Ag-module, we will from now on
usually consider the induced map from A to Ay/(F4), where Fq € Ay denotes
the characteristic power series of A. This will make it easier to relate informa-
tion about F4 to the size of suitable ranks of A.

In view of Example 5.55, we state the following conjecture.

Conjecture 5.65 (Rank inequality). Suppose that E = Ag/(p) denotes a cyclic
torsion Ag-module, with p € Agq \ A} arbitrary, and let E C E be a submod-
ule such that M := E/E is pseudo-null. Let fi,...,fq € Ag be such that
rank(y, ¢y (F) and rank(flw,fd)(ﬁ’) are finite. Then

rank(f17m7fd)(E) > rank(fhwfd)(E).

Remarks 5.66.
(1) We have shown in Lemma 5.59 that under the assumptions of the conjec-
ture, rank(y, ¢y (F) is finite if and only if ranks, ;) (E) is finite.

(2) It follows from Lemma 5.56 that Conjecture 5.65 holds if £ can be gen-
erated by the residue classes of exactly two elements of Ay, provided that
Aa/(f1,..., fa) is a finitely generated free Z,-module.

(3) Let A be a finitely generated torsion Ag-module, and let E4 := Ag/(Fa),
where F4 € Ay denotes the characteristic power series of A.

If the Rank Inequality Conjecture 5.65 holds for fi,...,fs € Ay and Ey4,
and if rank(s,  ¢(A) < oo, then

rank(y, oy (Ea) < rankes e (A) .
Proof. We have seen in the proof of Corollary 5.62 that
rank(fl,m,fd)(EA) < rank(s, ) (A)

where EA C FE4 denotes a submodule such that EA/EA is pseudo-null.
Therefore the statement follows from Lemma 5.59 and from the validity of
the conjecture. O

We have not found any example violating Conjecture 5.65, but we also have
not been able to prove this conjecture in general. In Section 5.9, we will state
several results proving the conjecture in some special cases.

We will conclude the present section by giving an important example of a
situation where finite ranks naturally occur.

Lemma 5.67. Let K/K denote a Zg—extension, lete:=e(IK/K). We consider
the Greenberg module X := Gal(H (K)/K). For everyn > m and 1 < i < d,
we let Vi ) (T;) € Zyp[T;] denote the distinguished polynomial

(41 -1

V(n,m)(Tl) = (Tz T 1)pm 1
(compare Definition 5.22). Then

rankK(y (1) (Ta) (X)) <00
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for each pair of tuples (ni,...,ng),(my,...,mq) € ]Ng such that nj; > m; > e
for every j=1,...,d.

Proof. We will first consider the case ny = ... =ng>mq1 =... = mq.

For every n > 0, we let Y, C X denote the kernel of the projection map
pr, : X = l'&an — X, with X,, = Gal(H,/K,), as in Section 5.4. Then
X/Y, = X, is finite for every n > 0.

Let us first assume that there exists only one prime of K that ramifies in
K. We have shown in the proof of Lemma 5.23 that

Yo © (V) (Th)s -3 Vim) (Ta)) - Ym
for every n > m > e. Indeed, our assumption implies that
Vi = Vime)(T1)  Vieo)(T1) - T1y e Vi) (Ta) - Ve o) (Ta) - Ta) - X
for every m > e (compare Definition 5.22); further note that
Vine)(Ti) = Vinm)(Th) - Vime) ()

for every 1 < i < d and every n >m > e.
Since Y;,,/Y,, C X/Y,, = X, is finite, it follows that

Yo/ (Vingm) (T1)s - -+ s Vinm) (Td)) - Yim)

is finite, i.e., rank(l,(n iy (1) m)(Td))(Ym) < 00. But Y,, € X is of finite
index, and therefore

rank(y ), @) (X) S TANKSeny ) (Yim)
+ rank(y(n,m)(Tl)z"'7u(n,m)(Td)) (X/Ym)

-----

N
g
&
B
i
N
0
3
E
=
3
2
S
S
+
>
~
£

< 00,

using Proposition 5.52, (i).
Now we drop the assumption that only one prime ramifies in IK/K. In the
general case, Lemma 5.23 shows that for every n > m > e,

Y, C (V(n,m) (Tl)a <o Vingm) (Td)a {V(n,m) (Tj,k)jvk}) Yo,

Vv
= In,m

where {7} ;}; 1 denotes a certain set of elements in (77,...,7Ty) € Ag such that

d
for each j and k, T} +1 is a product [] (7;+1)% with suitable elements b; € Z,
i=1
(compare the Definitions 5.18 and 5.22).
We want to show that (v(y ) (T1), - - - Vnm)(Ta)) € Inm is of finite index.
Since Y, C X is a finitely generated Agz-module (recall that A4 is Noetherian),
this will imply that

Ym/((u(n,m) (Tl)a <y V(in,m) (Td)) ’ Ym)



5.6. FINITENESS OF RANKS 219

is finite if and only if Y;,/(Ip m - Yy,) is finite. Since Y, C I, 4, - Yoy, and as
Y.n/Y, C X/Y, is finite, it will then follow that

rank(y(n,m)(Tl)v"'vy(n,m)(Td)) (Ym) <0 ’

and therefore rank(ﬂ(n,m)(Tl),..-,u(n,m)(Td))(X) < 00, as in the above special case.

In order to prove our claim, we observe that Agq/(V(nm)(T1); - - - Vinm) (Ta))
is a finitely generated free Z,-module (compare the proof of Lemma 5.46).

Moreover, the rank of the free Z,-module Ag/(v(ym)(T1);- - - Vinm)(Ta))
is equal to (p"™ — p™)%, because every Vin,m)(Ti) has degree p" — p™ in T,
respectively. It therefore will suffice to show that the Z,-rank of Agy/I, n, is
equal to (p" — p™)%. To this purpose, we will show that the residue classes
in Ag/Inm of the elements T7' - ... - Tj* € Ag, 0 < s1,...,8¢ < p™ — p", are
Zy-linearly independent. The proof will be a variant of an argument used in
the proof of Remarks 5.47, (2).

Assume, to the contrary, that there exist elements
sd)EZpa 0§517"'a5d<pn_pm7

not all of which equal zero, such that 3 A5, . s, VTt € Iy . Since we
do not care about torsion elements in the Zy-module Ag/I, n, we may assume

that at least one of the A(y, . ,,) is not divisible by p. Then this coefficient is a
unit in Z,, so we may assume that there exists a tuple (si, ..., sq) such that
3 t
Tl51 T 'T;d = Z )‘(t1,~.-,td)Tf1 T 'Tdd + Z Hj.k " V(n,m) (Tj,k)
(t1yeeitq) # (S14--ry Sd) 1<5<d
1<k<r;
for suitable elements :\(tl,...,td) € Zy and p; ) € Ag, where ra, ..., 74 have been

introduced in Definition 5.18, and where we let r; := d and T j, := T}, respec-
tively.

Now reduce modulo (77" 7", ..., T? ). The degree of each v(,, ) (T)x),
with respect to a single variable T; that occurs in Tjj (ie., by # 0 in the
above representation of T ;. + 1), is at least equal to deg(v(, m)(Ti)) = p" —p™.
Since v(, m) (1) € Zyp[T;] is distinguished with respect to the variable T;, we
may conclude that the latter sum is congruent to some multiple of p modulo
(TP" 7P T 7P™). But the first sum does not contain a term T5' - ... - T34,
Comparing coefficients of 77" - ... - T3¢ on both sides of the equation therefore
yields the contradiction 1 = 0 mod p.

This shows that (v(n ) (T1); - -, Vnm)(Ta)) S Inm is of finite index, and
concludes the proof of the lemma in the case where we have n; = ... = ng and

n_pm

mip=...=mg.

Finally, if (n1,...,n4) and (m1,...,my) € IN¢ denote any tuples such that
n; > m; > e for every 1 < i < d, then we define n := max(nq,...,nq) and
m = min(my,...,mg). Then each v(,, ,,)(1;) divides v(, ,,)(T}), respectively,
and therefore

(V(n,m) (Tl)v <y V(inm) (Td)) - (V(n1,m1)(T1)a s V(nd,md)(Td)) :
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This proves that

O]

Corollary 5.68. In the situation of the previous lemma, we consider the Ag4-
module A = I‘&DASK). Then

rank(l/(nl,ml) (Tl)v"'7V(nd,md) (Td)) (A) < 0

for each pair of tuples (ni,...,ng),(my,...,mq) € ]Ng such that n; > mj; > e
for every j=1,...,d.

Corollary 5.69. Let E4 = Ay/(Fa), where Fy denotes the characteristic
power series of A. Then

rank(y(nl,ml) (Tl)v“wl/(nd,md) (Td)) (EA) <

for each pair of tuples (n1,...,n4),(ma,...,mq) € N& such that n; > m; > e
for every j =1,...,d.
Moreover, if the Rank Inequality Conjecture 5.65 holds for the tuple

(V(nl,ml)(T1)7 SERE) l/(nd,md)(Td)>

and the module E 4, then

rank(l/(nl,ml)(Tl)v"'ry(nd,md)(Td))(EA) S ra’nk(’/(nl,ml)(Tl)v"’vy(nd,md)(Td))<A) :

Proof. This follows from Lemma 5.67 together with Corollary 5.62 and Remarks
5.66, (3), respectively. O

5.7 Local maximality of [

In this section, we want to use the methods developed in the preceding para-
graphs in order to obtain results concerning [y invariants. We want to do better
than Theorem 5.15 (i.e., local boundedness of lp). In order to prove local max-
imality, we will have to put a technical assumption on the power series F4
attached to the Fukuda module A under consideration. We want to motivate
this by the following observation.

If L/K denotes a Z,-extension, A = @A&L) and F'y € A = Z,[[T]] are
defined as usual, then A\(L/K) equals the degree of the distinguished polyno-
mial F4(T'). However, there is no direct analogon of this fact in the higher-
dimensional setting:

Suppose that IK/K denotes a Zg—extension, d > 1. Then we may write the

characteristic power series Fq € Ag of A = Jim ASK) as Fy = pmo(K/K) . f
with f € Ag = Z,[[T1, ..., Tqy]] being coprime to p. Suppose that f & A%. Then
Lemma 4.7 implies that we may choose elements 71, ...,94-1 € I' = Gal(K/K)
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such that T" is generated by 71, ...,%4—1 and 74 = Ty + 1, and such that (up to
multiplication by a unit)

f=TF b - T 4. +ho, (%)
where k € IN, hg, ..., hx_1 € (p, T, ... ,Td,l) and T; = 9; — 1, respectively.
Lemma 5.70. [y(f) < k.

Proof. Suppose that f =g - h in the quotient Ay = Ay/pAg. Then

= T;" mod (T1,. .., Ty1)

>

? .

where T7, ..., Ty denote the residue classes of Ty, ..., Ty_1 in Ay, respectively.

Since Ag/(p,Ti,. .., Ty_1) = (Z/pZ)[[Ty]] is a unique factorisation domain,
it follows that g = Ty mod (T, ...,Ty_;) for some i € {0,...,k}. If i = 0 or
i = k, then g, respectively, h, will be a unit in A4. This shows that f can have
at most k irreducible divisors in the unique factorisation domain Ag. ]

More generally, if v € T' = Gal(IK/K), v ¢ (I')?, is arbitrary, then we may
choose a set {v1,...,74-1,7} of topological generators of I' containing v (if
{b1,...,bq} denotes any Z,-basis of I, and if v = bi‘l . bé‘d, then at least
one of the coefficients \; € Z, is not divisible by p; we then may replace the
corresponding b; by 7).

Moreover, Lemma 4.7 implies that we may change this basis into a basis
{31,--+,9d-1,7} of T such that f has a representation as in (x) with respect to
T;:=~v—1,and withTj ;=% —1for 1 <i<d—1.

An inequality analogous to that of Lemma 5.70 then holds for every integer
k = k(T},) attached to some variable T, with respect to which a representation
of f asin (x) is valid.

Remark 5.71. It is possible that l[o(f) < k. Consider, for example, the
element f =11+ 15 € Ay. Then f = T + T10 Ty = Ty + T20 -T7 is represented
as in (%), with £ = 1 in both variants. However, we have seen in Remarks 4.42,
(1) that lo(f) = 0.

In what follows, we will sometimes not consider f, but in fact an appro-
priate multiple of f which will be constructed now. Let E4 := Ay/(F4) de-
note the cyclic Ag-module attached to the finitely generated torsion Ag-module
A= I.&HA%]K) . Let further ¢ : E4 — A denote a pseudo-isomorphism. If

A C A denotes the image of ¢, then the cokernel M := A / A of ¢ is a pseudo-
null Agj-module. This means that there exists an annihilator h € A4 of M such
that h is not divisible by p, since otherwise the annihilator ideal of M was
contained in the height one prime ideal (p) C A4 (compare Remarks 2.20).

In fact, it is possible to choose h as a multiple of f because we may simply
replace h by the least common multiple g of A and f in the unique factorisation
domain Ag4. Then g is still coprime to p, and we can choose generators of I’
in order to obtain a representation of ¢ as in (x). Summarising, we obtain the
following result:
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Lemma 5.72. We may choose a set of generators of I' = Gal(IK/K) (corre-
sponding to variables Th, ..., Tq of Ag) such that there exists an element g € Ay
which has the following properties:

(1) g is divisible by f = fa,

(2) g annihilates M := AJA (where A has been defined above), and

(3) we have a representation of g as in (x), so that in particular ptg.

Remark 5.73. In the situation of Lemma 5.72, f automatically has also
a representation as in (x) with respect to these variables T1,...,Ty. Indeed,
otherwise f was not regular with respect to Ty, i.e., f € (p,T1,...,T4—1) (com-
pare Remarks 4.10, (3)). But then also the multiple g of f was contained in
(p,Th,...,T4—1), in contradiction to (x).

From now on, we will make the following assumption:

Assumption 5.74. We may choose a set of variables T1,...,Ty of Ay such
that lo(f) = k, where k is defined by the corresponding representation of f as
in ().

Remark 5.75. In particular, the special case lo(IK/K) = lo(f) = 0 has to be
treated separately, since k > 1 in our representations of f.

We will prove our main result by considering (fi, ..., fq)-ranks with

where the tuples (ny,...,nq), (m1,...,my) € IN& have been chosen such that
n; > m; > e = e(IK/K) for every j. Then the Corollaries 5.68 and 5.69 imply
that ranks,  7)(A) < oo and ranky, . ;(Fa) < oo.

We will now prove an explicit formula for ranks,  ¢y(F4) that will give us
a link to the generalised Iwasawa invariants of A. This connection will then be
used in order to bound these invariants in terms of our ranks. The following
result is the generalisation of an argument used in the proof of Theorem 3.57.

Lemma 5.76. Let f € Ay, f #0, let E = Ay/(f). We assume that (nq,...,nq)
and (m1,...,mgq) denote tuples of integers such that

rank(y(nl,ml)(Tl)r"'vu(nd,md)(Td))(E) <00

Then f(Cp — Lo Ga — 1) # 0 for every tuple (I1,...,l5) € IN% such that
m; < lj <nj, 1 <j<d Here(. denotes a primitive pli-th root of unity
contained in a fived algebraic closure of Qy, respectively.

Moreover,

rank(y, (1), (Ta) (B) = > wp(F G =1y e — 1))

where the sum is taken over the same set of tuples (I1,...,1q).
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Proof. X = Ag/(Vnymi)(T1)s - s Ving,mg) (Ta)) is a free Zj,-module of rank
(p"t—p™)-...-(p"d—p™d) (compare the proof of Lemma 5.46). A basis over Z,,
is given by the products 77" - ... Ty¢, with s; < deg(v(n;m,)(T})) = p" —p",
respectively.

Multiplication by T in Ag induces a Z,-linear map 77 : X — X. The ma-
trix corresponding to this map with regard to the above basis, ordered properly,
is a block matrix

o 0 @),
where
0 0 —Co

0 —Cpn1—pm1—2
1 _Cpnl 7pm1—1

is the companion matriz of
nl _pmi
V(nl,ml)(Tl) = Tin Py Cpm1—pmi—1 + ...+ Co -

The number of blocks is equal to (p™2 — p™2) - ... (p"d — p™d). In particular,
the characteristic polynomial of the linear map 77 is equal to

sy (T1) 227

This shows that the eigenvalues of this map are exactly the roots
Cpll_lv m1<l1§n17

of V(ny,mi) (Tl)

Analogously, the eigenvalues of the Z,-linear maps on X induced by multi-
plication by T;, 2 <4 < d, are equal to the roots of V(ni7mi)(ﬂ), respectively.

Consider a direct sum decomposition of the free Z,-module X into submod-
ules corresponding to the block decomposition of the matrix representing the
map 7T7. The representation matrix of the restriction of 77 to one of the corre-
sponding submodules is equal to Ay, and therefore the characteristic polynomial
is given by l/(nhml)(Tl), respectively. Since this polynomial has pairwise differ-
ent roots, we may conclude that 77 is diagonalisable on X (over an algebraic
extension of Q, containing the eigenvalues).

The same is true for the maps 15, ..., Ty. Moreover, since Ay is a commuta-
tive ring, these maps actually are simultaneously diagonalisable. We fix a basis
of X with respect to which 711, ...,T,; are diagonalised.
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Now we consider the given element f € Ay such that

rank(l/(nl,ml)(T1)7"'7V(nd,md)(Td))(Ad/(f)) <00
Since X = Aa/(Vinymy)(T1)s - - s V(ngmg)(Ta)) is isomorphic to

[T, Tal ) (Ving mn) (T1)s - s Vingma) (1))

we may conclude that

E/((V(nl,ml)(Tl)’ < Vingmyg) (Td)) : E) = Ad/(fv V(nl,m1)(T1)7 < Ving,myg) (Td))

is isomorphic to X/(f - X), where f € Z,[T},...,T4) denotes a representative
of the residue class of f in Zy[T1, ..., Tal/(V(nymi)(T1)s - - s Ving,mg) (Ta)) which
has degree less than p™ — p™ in T;, respectively.

Now we observe that X/(f - X) is the cokernel of the map on X given by
multiplication by f. By the above, the eigenvalues of this map are equal to

f(szl — 1,...,Cpld -1),

where (I1,...,15) € IN? runs through the tuples such that mj < l; < nj for
every 1 < j <d.

Moreover, if 0 is an eigenvalue of the Z,-linear map f: X — X (equiv-
alently, if T(szl —1,....¢ — 1) = 0 for some choice of (I1,...,l4)), then
X/(f-X) is infinite, since X is a free Z,-module. Therefore our assumption that
rank(’/(nl,ml)(Tl)v"'vl’(nd,'md)(Td))(E) < oo implies that f((n —1,...,( —1) #0
for each tuple (I1,...,1q).

Finally, if X/(f - X) is finite, then its order is equal to pU»(4*(/) and the
determinant of f is given by the product of the eigenvalues. Therefore

aa(E) = vw(IX/(F X))
= > w(f(¢n — L. G — 1))
= > 0p(f(Gu — L a — 1)),

rank(l/(nl,ml)(Tl) ----- V(nd,md)

as claimed.

Note that the sum always runs over all tuples (I,...,l3) € IN? such that
m; < l; < n; for every i. This means that if, for example, T; does not occur in
f (e, if f € Zy[[Ty,...,Tq—1]]), then each eigenvalue ?(sz1 —-1,..., szcH -1)

7d

will be counted with multiplicity p"d — p™ (overall, the sum has

(p™ —p™) - (" = p™) = rankg,(X)
terms). =

We now may formulate our main result.

Theorem 5.77. Let K/K denote a Zg—emtension, and let moreover A = AK)
and E4 := Aq/(Fa) be defined as above. We assume that



5.7. LOCAL MAXIMALITY OF Iy 225

there exists a prime of K that is totally ramified in IK/K, and
Congecture 5.65 holds for the tuples

(Yn,mn) (T1), - - - 7V(nd,md)(Td)) , nj>my; > e(K/K) for each j ,

for the cyclic modules E yu) = Ag/(Fya)) attached to the Zg—extensz'ons
L/K contained in a suitable neighbourhood U(IK, o) of K, with respect to
the R-topology (compare Definition 5.38).

Then

(i)  there exists a neighbourhood U = U(K,r) of K such that

mo(L/K) < mo(K/K)

for each L € U, and
(i) there exist a neighbourhood U(IK,ry) =: U C U and an integer k € N such
that
WL/K) < k

for every L € U satisfying mo(L/K) = mo(K/K).
If Assumption 5.7/ holds for X/ K, i.e., if we may choose variables Ty, ..., Ty
of Agq (corresponding to generators of Gal(IX/K)) such that lo(f) = k in the
representation (%) derived at the beginning of the current section, then there
exists a neighbourhood U = U(K,r9) C U such that

l(L/K) < lb(K/K)
for every L € U satisfying mo(L/K) = mo(K/K).

Proof. e Let p; denote a prime of K that is totally ramified in K/K. If
U = U(K,ng) denotes some neighbourhood of K and if ng > 0, then p; is
totally ramified in every Zg—extension L/K, L€ U, since there does not
exist an extension of K of degree p that is contained in IL (and therefore
also in ) and unramified at p;.

° We will consider the modules AL = lim ASL) for Zg—extensions LeU.
These are Fukuda modules with index barrier e(IL/K), respectively, by
Corollary 5.28.

o Let e := e(IK/K). Corollary 5.68 implies that for every pair of tuples
(n1,...,nq),(my,...,mq) € ]Ng such that n; > m; > e, 1 < j < d, we
have

rank( (Td))(A(]K)) < 0.

V(nl,ml)(Tl)a'“»l/(nd,md)

° We fix tuples (ni,...,ng) and (my,...,mg) with the above properties.
Theorem 5.30 implies that there exists a neighbourhood U(IK,r) such
that

L K
rank(”(nl,ml)(Tl)v---vy(nd,md)(Td))(A( )) = rank(l’(nl,ml)(Tl) ----- V(nd,md)(Td))(A( ))

is finite for every I € U(IK,r): just choose r > e + 1 large enough to
ensure that

K
rank(l’(nl,ml)(Tl)""vl/(nd,md) (Td)) (A"(“_?I-)
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is equal to

AK)

rank(y (1) (Ta) (AR ) -

Note that such a stabilisation index exists because we have surjective
maps

A /(W) (1), -+ Vigoma (1) - AT

J

AEIK)/((V(Nl,ml)(Tl)’ RS V("dvmd)(Td)) . AZ(]K))

for every j > i > e, induced by the norm maps, and therefore the rank of
AEIK) increases for ¢ > e. Note that Lemma 5.37, (i) and (ii) imply that
e(L/K) = e for every L € U(KK,r), since r > e + 1. Therefore Theorem
5.30 indeed applies to L. € U (KK, r).

In what follows, the rank of a module M will always denote

rank(y,, (1) vy (Ta)) (M) -

Suppose that r > rg, and let L € U(K,r). If E u) = Ag/(F4a)) denotes
the cyclic Ag-module corresponding to A, then

rank(E 1)) < rank(A®™) = rank(A®)

by Corollary 5.69, since we assume that Conjecture 5.65 holds for E ,u,)
and (V(n17ml)(T1), R V(nd,md)(Td))'

On the other hand, we let ¢ : E &) — AX) = A denote a pseudo-
isomorphism. Then ¢ is an injection because the Ag-module E ) does
not contain any non-trivial pseudo-null submodules (this may be proved
analogous to Remarks 2.25, (2)).

Writing A := im(¢p), we may conclude that rank(E yx)) = rank(A), using
Proposition 5.52, (ii). Moreover, Proposition 5.52, (i) implies that

rank(A) < rank(A) + rank(A/A) .
This shows that
rank(E yr)) < rank(E 4 ) + rank(A4/A) (5.1)

for every L € U(K, ).

The following result shows that rank(,,(nl’mﬂ(Tl)w.’,,(nd,md)(Td))(A/A) may
be bounded linearly with respect to the (difference of the) two indices ngy
and my.

We will assume from now on that
m =...=mg_1=m and n; =...=ng.1 =:n,

and that mg > n (this will be sufficient for our applications). Moreover,
m > e will be thought of as being fixed.
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Lemma 5.78. There exists a constant C € IN such that for each tuple
(nyn,...,n,ng) € IN? and every mq € IN such that n > m > e and
ng > mq > n, we have

rank(p, 1) (A/4) < C-[(p" = p™) " + (ng — ma)(p" - p™)7?],
where fj = v m)(T5), 1 <j<d—1, and fq = vy m,)(Ta)-

Proof. As we have shown in Lemma 5.72, there exists an annihilator
g € A4 of the pseudo-null Aj-module M := A/A such that g is regu-
lar with respect to Ty, i.e., such that

Tcll = 0 mod (p,T1,...,T4-1,9)

for some integer [ € IN.

We let Ann(M) C A4 denote the annihilator ideal of M, and we define
M := M/pM and R := Ayg/(pAg + Ann(M)). Then R is a local ring,
and the Krull dimension of R is at most d — 1, since M is pseudo-null
(compare the proof of Proposition 5.50, (iii)).

If m denotes the maximal ideal of R and if T, ..., T;_; denote the residue
classes of T1,...,Ty_1, respectively, then

ﬁl - (Tla-"defl)v

because g € Ann(M) and therefore T% € (T1,...,Ty—1) + Ann(M). This
means that

mid-DE" ") ¢ (Vngm) (T1)5 -+ -5 Vinm) (Ta—1)) -
Therefore

0Ky, (1), gy () (M) S 0 (M (IEDE2 2D

Now we apply the theory of Hilbert polynomials (compare Section 12.1 in
[Ei95]). Recall the notions introduced in Definition 5.60.

Lemma 5.79 (Hilbert polynomials).
(i) Let R be a Noetherian ring, let M be a finitely generated R-module.
Suppose that I C R is an ideal of finite colength on M. If

Hr(n) = length of (I" - M)/(I"™' - M),

n € IN, then there exists a polynomial Py € Z[T) of degree smaller
than the number of generators of I such that

P],M(n) = HLM(TL)

for every sufficiently large n.
(i) If Lym(n) := length of M/(I" - M), n € IN, then there exists a
polynomial Pr r of degree at most 1 + deg Pr s such that

PI,M(n) = Lrm(n)

for every sufficiently large n.
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(iii) If R is a local ring, then PI,M may be chosen of degree at most
equal to the Krull dimension of R/Ann(M), where Ann(M) C R
denotes the annihilator ideal of M (i.e., Ann(M) = {0} if M is not
R-torsion).

Proof. (i) Compare Proposition 11.2 of [Ei 95].

(ii) See page 277 in [Ei95].

(iii) Compare Theorem 12.4 in [Ei 95].

We apply Lemma 5.79, (iii) to R = Ag/(pAg+ Ann(M)) and I = m.
Since

R/ﬁ = Ad/m = Z/pZ,

the length of (m* - M /(m**! . M) corresponds to the dimension over the

field R/m for every k € IN. Since the Krull dimension of R/Ann(M) is
smaller than or equal to the Krull dimension of R, which is at most d — 1
by the above, we may conclude that

) = oI -1t (p" —p™) )
= O((p"—p™'" ).

Letting N := M/((V(nm)(T1); - - - s V(ngmg)(Ta)) - M), we may conclude
that

Up(\ﬂ/@l(dfl)(p”fpm) M)

rank,(N) = vp(|M/((Vpnm)(T1): - -+ s Vingima) (Ta)) - M)))
< (| M/ (@ DE T AT

= O((p" —p™)"Y),

and it remains to estimate the exponent of N. To this purpose, we refer
to results of A. Cuoco and P. MONSKY. The idea is as follows (compare
the proof of Theorem 3.2 in [CM 81]).

We define M’ := {x € M | p? -2 = 0 for some j € N} and M" := M/M’.
Then there exists a fixed integer j, depending only on M, such that
p? - M’ = 0 (recall that M is finitely generated over Ay and therefore
Noetherian). Using the above approach, we obtain

rank(l’(n,m)(Tl),...,u(nwmd)(Td))(M/) = (’)((p" _pm)(dfl)) ‘

It will therefore be enough to bound rank(y<n oy (1), md)(Td))(M”)7
since
rank(M) < rank(M’') + rank(M")

by Proposition 5.52, (i). We will first show that we can actually find a
better bound for the p-rank of M".

If J := Ann(M") C A4 denotes the annihilator ideal of M” | then we let J
denote the image of J in Ay := Ay/pAy. Note that p is not a zero divisor
on M”, by definition. Since M and therefore also M” are pseudo-null
Ag-modules, the quotient ring Ay/J has Krull dimension at most d — 2
(compare the proof of Lemma 3.1 in [CM 81]).
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Let m denote the maximal ideal of the local ring Ag/J. If M := M" /pM",
then

ﬁl(dil)(pnfpm) M7 - (V(n,m)(T1)7-"7V(nd,md)(Td)) M
because
TcllW - (paTlv"'aTd—lag)'W = (Tla"'aTd—l)'Wa

as in the case of M.
Therefore

ranky,(M" /(V(,m) (T1), - - Vingm) (Ta)) - M")) = O((p" —p™)7%) |

using Lemma 5.79, (iii) and the fact that the Krull dimension of Ay/J is
at most d — 2.
Finally, we use the following bound on the exponent of M":

Lemma 5.80. Let N denote a finitely generated Ag-module. Then there
exists a constant ¢ = ¢(N) such that

pn1+---+nd—1+(”d_md)+c

annihilates the torsion subgroup of

N/((V(nl,ml)(T1)7 ceey V(nd,md)(Td)) : N)

for each pair (n1,...,nq),(m1,...,mq) € N¢ satisfying n; > m; for every
i and mg > max(ni,...,ng_1).

Proof. This is a modification of Theorem 2.8 in [CM &1]; in that article,
the result is proved with v(,,, .\ (T;) replaced by vy, o)(T;)-T;, respectively,
and assuming that all the n; are equal. We will give a proof of a slightly
more general version of this lemma in the next section. O

Summarising, we obtain that

rank(M”) = O([(d=1) - n+ (ng—ma) +d - (p* —p™)*?)
= O(n(p" —p™¥ 2+ (ng — ma)(p" — p™)*?) ,

and therefore
rank(M) = O((p" = p™)*" + (ng — ma)(p" — p™)"7?)
since n < p" — p™ = p"(p"~™ — 1) for large n. O

Remark 5.81. We want to stress the fact that the bound in Lemma
5.78 is linear in ng and my. This will be one main ingredient making our
proof work.
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We will now compute rank(E 4x)). Let Fy = pmoE/K) . f e Ay denote the
characteristic power series of A = A®) 5o that E & = Ag/(Fa). Recall

that rank(E k) < oo, by our choice of (ni,...,nq) and (m1,...,mg).
Therefore Lemma 5.76 implies that

rank(y(nl’ml)(TI) Wngamyg) Td)) ZUp FA C 1 — ,- cey Cpld - 1)) )
where the sum is taken over all tuples (I1,...,l5) € IN% such that we have

m; <l; <n;, 1 <j<d. Here Fy € Z,[Ti,...,Ty] denotes, without loss
of generality, a representative of the class of F4 in

Ad/( (n1,m1) (T1)7 <y Ving,myg) (Td))

having degree less than p™i — p™ in each variable Tj, respectively.
Consider the representation

Fp = p™  (T§ + hg_y - TV 4+ ...+ ho) (%)
with mg = mo(IK/K). Suppose that
n=n]=...=MNg—1 >M=M1] = ... =Mg_1 = ¢€
are fixed, and that my > n has been chosen large enough to ensure that

k B 1
pmi(p—1)  pr(p—1).

(5.2)

Then k
Up(Fa(Gpn — Loy Ga — 1)) = mo + P l(p—1)

for every tuple (I1,...,l3). Indeed, ho,...,hx—1 € (p,T1,...,T4—1) and

therefore )

Up(hi(Cy = 1,5 Gy — 1)) > 1)

for every i, provided that hi(Cpll -1,..., szd — 1) # 0. But this implies
that

k
k _
) = o)
k
preH(p—1)

< (G hilGn = 1,0, Ga — 1))
for every 0 <14 < d—1 such that h;i(C —1,..., ¢, — 1) # 0. Note that
vanishing h; do not contribute to UP(TA(CplI =1 G — 1).
This shows that
rank(Eya0) = mo- (p" —p™)T - (p" — p™) (5.3)
+ (g —mq) - k- (p" —pm)d b
We will now study rank(E,u)) for arbitrary L € U(KK,r) (the neigh-
bourhood corresponding to the tuples (n,...,n,ng) and (m,...,m,my),

respectively, as defined at the beginning of the proof), turning to the
proofs of (i) and (ii).
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(i)

(i)

Let F'yx) denote the characteristic power series of A®) " Then pmo/K)

divides F ), and therefore Lemma 5.76 implies that
rank(E @) > mo(L/K) - (p* —p™)*"- (' —p™) .
Choose an integer ¢ € IN such that
p>i-(k+0C)+C, (5.4)

where C denotes the constant defined in Lemma 5.78. Now suppose that
mq > n + ¢ is large enough to make ([5.2)) valid. Furthermore, we define
ng 1= mgq + 1.

If U(KK,r) denotes a neighbourhood of K such that

)) (A(]L)) = rank( )) (A(]K))

rank(

V(n,m) (Tl)v“'vl’(nd,md) (Td V(n,m) (Tl)ﬂ“'vl’(nd,md) (Td

for every I € U(K, r), then (5.1) and (5.3) imply that mo(IL/K) < mg for
every such IL.
From now on, we will restrict to those I € U(IK, r) satisfying

mo(L/K) = mo(K/K) .

We will bound [y invariants by using and . First we subtract
mo(IK/K) - (p™ — p™)?~1 . (p"@ — p™4) on both sides of the inequality
(5.1). This means that we may without loss of generality assume that
mo(L/K) = mo(IK/K) = 0.

By Lemma 5.76, we have

rank('/(nl,ml)(Tl)a"'7y(nd,md)( EA(]L) Z Up C l1 — 7 ce 7Cpld - 1)) b
where f&) = F "4y denotes the characteristic power series of A®) and
where the sum is taken over all (I1,...,lq) € IN% such that m; <l < ny,
1<y <d.

We will now estimate vp(f(IL)(sz1 —1,...,(s —1)). Choose generators

Yoo,y of 7 := Gal(IL/ K) such that each ] coincides with the generator
vi € I' = Gal(K/K) on KN L, respectively. Let T} :=~/ — 1,1 < i < d,
so that f) € A, = Z,[[T},..., T}

We want to show that fI) is regular with respect to the variable T/ in
the sense of Definition 4.9. Then we can write (after multiplication by a
suitable unit of A/))

O = T T b+ Ry

with &' € IN and h{,...,h},_, € (p,T7,...,T;_;) € Al,. Note that
vp(FP (G =L Qe = 1) = vp(FB(Cn — L, Gra — 1))

where, as usual, fI) ¢ Zp|T},...,T)] denotes a representative of the
residue class of f(I) in Ay Vinym) (T1)s - - s Vingmyg) (Tyy)) having degree
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less than p™ — p™i in each variable T}, respectively. We therefore may
assume that each A/ is of finite total degree.
Since rank(E 4w)) < 00, we know that f(]L)(sz1 — 1., — 1) #0 for
every choice of (I1,...,lg), by Lemma 5.76.
If £ is not regular with respect to 77, then f() e (p,T7,...,T;_,) and

— 1
(L) —1,... B ) I
’Up(f (Cpll ) 7<pld )) = pnfl(p — 1)
for each tuple (Iy,...,1;). If f) is regular in T, but pld_f(/pil) > p”_l%p—l)
for some mg < lg < ng, then the same estimate holds for every Iy, ...,l5_1
(for this fixed lg). Otherwise,
L K
op(fB (G = 1,00,y — 1)) = Filp—1) .

If k1,...,ks denote the values of I for which only the ‘bad’ estimate
Up(f(]L)(Cpll - 17 ey Cpld - 1)) 2 }O’"‘T%p—l) hOldS, then

{kl,...,kjs} = {md+1,...,md+s},

since becomes smaller for growing l; and therefore the ‘bad’ l4

k/
pla=1(p=1)
are the small ones, as in the proof of Theorem 3.57. Note that up to
now, we have not excluded the possibility that mg 4+ s = ng (and this will
happen, for example, if f® is not regular in T)).

Summarising, we obtain that
1 n m\d—1 mq+s m

iy W= S(peT = pt
I AR )

+E (" = ™) (ng —mg — 5)
rank(E 4w)) (5.5)
k(" =p™)* " (ng—ma) + C-(p" —p™)!

+C - (ng—mq)- (p" = p") 72,

using (5.1)), (5.3)) and Lemma 5.78.
Recall that mg > n + i is large enough in order to make (5.2)) valid, and

that ng = mg + i, where p* > i- (k + C) + C by (5.4). In particular,

1 1
prts —phd)y. ————— = pM.(pP—1) ————
( ) pip—1) ( ) pip—1)

> pmdfn
>

> (nd—md)-(k+0)+0

whenever s > 0. Since this contradicts , we may conclude that s =0
in U(IK,r). In particular, this shows that every I € U(IK,r) satisfying
mo(L/K) = mo(IK/K) has (up to powers of p) a characteristic power
series which is regular with respect to the variable T”, respectively.
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Therefore (5.5 reduces to

K" —p™) (g —mg) < k(" —p™) " ng — ma) + Cp" — p™)?
+C(ng —mg)(p" — p™)* 2,

or equivalently
k' (ng—ma)(p" —p™) < k(ng—ma)@p" —p™)+Cp" —p™)+C(ng—ma) .

Now we assume that n —m (which still is a free parameter) is greater than
or equal to log, (i + 1), i = ng —my. Letting i — oo (this does not affect
C!), we may conclude that there exists a neighbourhood U = U(K,r) of
KK such that

K <k

for every I € U satisfying mo(IL/K) = mo(KK/K). In particular,
b(f™) < ¥ <k

for each I. € U, by Lemma 5.70.
Finally, if Assumption 5.74 holds for I{/K, then

(L/K) = lo(f®™) < k = Io(f) = lo(K/K)

for all such L.
O

As we have already observed earlier (compare Remark 5.75), the case of
lo(IK/K) = 0 has to be treated seperately.

Theorem 5.82. Let K/K denote a Zg-extension such that there exists a prime
p of K that is totally ramified in K/ K. Suppose that Congecture 5.65 holds for
the tuples

(I/(nl’ml)(Tl), .. '7V(nd,md)(Td)) , nj >m; > e(IK/K) for each j,

for the cyclic modules E yu) = Ag/(Fyw)) attached to the Zg-emtensions L/K
contained in a suitable neighbourhood U(K, o) of K.
If the characteristic power series f&) of K/K is associated to a power of p (so
that in particular lo(IK/K) = 0), then there exists a neighbourhood U = U (KK, r)
of KK such that

lo(L/K) = 0

for every I € U satisfying mo(IL/K) = mo(K/K). In fact, f(1) = pmo(K/K) o
LeUu.

Proof. We will use the notation from the proof of Theorem 5.77, in particular
applying the inequalities and .

As in the proof of Theorem 5.77, (ii), we subtract on both sides of the
inequality the term mo(IK/K) - (p" — p™)?~1 - (p"d — p™d) and therefore
may assume that, without loss of generality, mo(I{/K) = 0.
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Then the fact that f®) = 1 implies that E a0 = {0}, Therefore (j5.1))
implies that

rank(E y1)) < rank(4/A) < C-[(p" — p™)? 1t + (ng — ma)(p" — p™)* 2

for some constant C' € IN and every I € U(IK,r), provided that r is large
enough. -

If f) 1, then vp(fF®) (¢ — 1, g — 1)) > m for each of the
corresponding tuples of p-power roots of unity (recall that Iy > mg > n + i for
some large integer ¢ € IN).

But then rank(E 4w)) > (ng—mq)-(p"—p™)?~1, which is strictly larger than
C-[(p" —p™)9¥ 4 (ng —mq)(p™ — p™)?2] if the parameters are large enough.
This proves that f(I) = 1 and therefore lo(IL/K) = 0 for every I € U. O

Corollary 5.83. Let K/K denote a Zg—e:ﬂtension such that there exists a prime
p of K that is totally ramified in K/K. Suppose that Congecture 5.65 holds for
the tuples

(y(nhml)(Tl), .. ,V(ndmd)(Td)) , nj>my; > e(K/K) for each j ,

for the cyclic modules E yu) = Ng/(Fyw)) attached to the Zg-emtensions L/K
contained in a suitable neighbourhood U(K, 1) of K.

If A®) s pseudo-null, then there exists a neighbourhood U = UK, r) of K such
that AW s pseudo-null for every I € U.

Proof. Tf AT is pseudo-null, then mg(K/K) = 0 and f® = 1. Since myq is
locally maximal by Theorem 5.12 (note that U(K,r) C U(K, r) for every r € N,
by Proposition 5.39), the claim follows from the previous theorem. ]

Remarks 5.84.

(1) Let K/K denote a Zf-extension such that there exists a prime of K that
is totally ramified in I/K. Then the statements of Theorem 5.77, respec-
tively, Theorem 5.82 and Corollary 5.83, hold for all Zg—extensions Lof K
that are contained in a suitable neighbourhood U(IK,r) of K and satisfy
the following condition:

The module AW = @ASL) is generated over Ay by at most two elements.

Proof. If L € U(KK, r) satisfies the above condition, then the image

Eyu = ¢M(AW) € Byu) = Aa/(Faw)
under the corresponding pseudo-isomorphism go(]L) AW = B Ay 18
generated by at most two elements.
We have to show that this implies that inequality holds, since this is
the only step of the proof of Theorem 5.77 which depends on Conjecture
5.65.
In other words, it suffices to show that

rank(E 1)) < rank(4™)
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for these IL, where rank always denotes rank(l,(nl’ml)(;pl)
where n; > m; > e(IK/K) for every j € {1,...,d}.

If A and therefore also E~A(L) = M (AM) are cyclic Ag-modules (i.e.,
generated by a single element), then we have in fact

)s and

----- Vingmg)(Td)

AW = BLa) = A/ (Fym)

and therefore
rank(E 1)) = rank(4®) .

Now suppose that E 2w C E,@) is generated by exactly two elements.
Since Ag/(V(nymy)(T1), - - s Ving,my)(Ta)) is isomorphic to a finitely gener-
ated free Z,-module, Lemma 5.56 and Proposition 5.52, (ii) and (iii) imply
that

rank(E ) = rank(E, w) = rank(A(]L)/Ml(]L))
rank(AM™) |

A

where Ml(L) C AL denotes the kernel of the pseudo-isomorphism cp(]L),
respectively. O

In Section 5.9, we will prove Conjecture 5.65 in several further special cases,
thus obtaining more unconditional variants of Theorem 5.77.

5.8 Bounding the exponents of torsion modules

This section is devoted to a proof of Lemma 5.80, which has been used in

the

proof of Theorem 5.77. We will actually prove a slightly more general

statement which will be needed in the next section. In order to state this result
in an elegant way, we introduce some ad hoc notation.
For every i € {1,...,d} and each n € Ny, we define

and

V(O,fl)(Ti) =T

Vin—1)(Ti) = Vo) (Ti) - vo,—1)(Ti) = Ti vino)(Ti) -

Lemma 5.80. Let N denote a finitely generated Ag-module. Then there exists
a constant ¢ = ¢(N) such that

pnlJF--'JFnd—lJF(”d*md)JFC

annihilates the Z,-torsion subgroup of

N/((V(m,m1)(T1)7 RN V(nd,md) (Td)) : N)

for each pair (ni,...,nq), (mi,...,mq) € Z% satisfying n; > m; > —1 for every

1<

j < d, provided that mg > max(ny,...,ng_1).
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Our proof is a slight modification of the proof of Theorem 2.8 in [CM 81].
This theorem bounds the exponent of the torsion submodule of

N/(T1v0)(T1), - -, TaVino) (Ta)) N) = N/((Vn,—1)(T1), -+, Vn,—1)(Ta))-N)

for n € IN.

Let I := (V(nl,ml)(T1)7' . '7V(nd,md)(Td)) - Ad. The first step will be to
construct an embedding of Ag/I into a direct sum of cyclotomic rings Z,[(]
generated by suitable p'-th roots of unity.

More precisely, we consider the set W of tuples ¢ = (szl yeees szd) of primi-
tive pli-th roots of unity, contained in a fixed algebraic closure @p of Qp, where
m; < l; < nj, respectively. Here 1 is the only primitive p°-th root of unity.
Note that sz]. —lis aroot of v, ;) (1}) for every m; < l; < nj, respectively.

Each cyclotomic ring Z,[(] is a free Z,-module of rank ¢(p'i), where
l; = max(ly,...,lq) .

Two tuples ¢ and ¢’ are called conjugate if and only if there exists an automor-
phism ¢ € AthP(@) such that 1({) = (', where we let ¢ act component-

wise. Note that this is the case if and only if g = (" for some integer
uwe{l,... ,pmax(llﬁ“"ld)} coprime to p, i.e., if ¢ and g generate the same cyclo-
tomic ring.

We choose one ¢ of each conjugacy class of W, and we consider the direct

Z = P z,[¢]

over this set of representatives.

Suppose that k € {0,...,d} is chosen such that m; = ... =m; = —1 and
m; > 0 for every ¢ > k (if necessary, we permute some of the indices). Then Z
is a free Z,-module of rank

sum

P pltE e (P = L) - (P = p™)

Moreover, we obtain a surjective map
Y = Pnrma)(miemy) D/l — 7,
induced by the maps

NI —» Z,lc), | fGn — Lo G — 1),

where ¢ = (G, ..., (ypa) € W (this is well-defined since g(¢) = 0 for every
gel).

Lemma 5.85. Suppose that mg > max(ny,...,nqg_1). Then the cokernel of the
map @ is annihilated by pn1+"-+nd—1+(nd—md).
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Proof. This is an adaption of Lemma 2.1 in [CM 81]]. In course of the proof of
that lemma, the authors observe that the polynomials defined by

pn
Gy(T) == > T € Z,[T]
j=1

and G?(T) = G§(T?") — G}}(Tp#l) for 0 < s < n have the property that
G?(¢) = p" whenever ¢ is a primitive p*-th root of unity, and G7(¢) = 0 if
¢P" =1, but ( is no primitive p*~th root of unity.
Letting Hén’m) (T) := G{~™(T?™), we may conclude that Hé”’m)(g) =pm
whenever ( is a p™-th root of unity, and H(()n’m)(C) =0if ¢P" =1, P" #1.
More generally, for m > 0 and n —m > s > 0, we define

s—1

H™(T) = H"™(T7") — ™1 |

S

Then H™™ (¢) = 0if ¢P" =1, but ¢ is no primitive p™**-th root of unity, and
Hs(n’m)(C) = p"~"™ otherwise.
Finally, let ¢ = ((u1s-- -5 (a) € Wiie, m; <l; <mjforeachi € {1,...,d}.

Since mg > max(ny,...,ng—1) by assumption, we have l; = max(ly,...,lz). We
therefore may choose integers a1, ..., aq_1 such that C;f;i = szj, respectively.
We let
d—1
H(Ty,....Ty) = H "1y - T] G (T - 1)) -
j=1

Then H¢(¢') = 0 for every ' = (CII)Z,17“"<ZI)l:i) € W, unless I, = lg and
(C'l:j)‘” ¢, = 1forevery 1 < j < d—1, ie., unless ¢’ is conjugate to (.
P pi = >

Note that H¢(¢') = p™ ™ Fna-1tna=ma for every ¢’ conjugate to ¢.
If ¢ denotes an element conjugate to ¢, and if z € p™+-+na-1tna=ma. 7, [(1]
denotes an arbitrary given element, then we can find a polynomial

g € ZP[T17"'7Td] g A

such that (g- H¢)(¢') = 2. Moreover, g - He vanishes at all (" € W that are not
conjugate to ¢. This proves the lemma. O

Corollary 5.86. Under the above assumptions,
p:ha/T — Z=ED7Z¢

is injective with finite cokernel annihilated by p™ +-Td—1+na—ma,

Proof. Choose k € {0,...,d} such that m; = ... = my = —1 and m; > 0 for
every ¢ > k. Then both Ay/I and Z are free Z,-modules of rank
pnl L pnk . (pnk+1 —_ pmk+1) e (pnd — pmd)

(compare the proof of Lemma 5.46). Since the cokernel of ¢ is annihilated by
pU T d-1tna=ma hy the previous lemma, we may conclude that the image of
© has full rank. Therefore ¢ has to be injective. O
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Remark 5.87. In the proof of the above corollary, there is no need to use
Lemma 5.46, since Lemma 5.85 actually reproves the fact that Ay/I is a free
Z,-module of rank p"t - ... pk . (pME+l — pME+L) .. (phd — p™d): Obviously
this quotient is generated as a Zy-module by the elements 77" - ... T;¢ with
0 < s; < deg(v(n,,m,)(T3)), respectively. Since the number of these elements is
equal to the Z,-rank of Z, and since the cokernel of ¢ is finite by the above
lemma, it follows that A;/I in fact is Z,-free.

We will now use the map ¢ for the study of finitely generated Ag-modules.
Let N denote such a module. For every ¢ = (szl,...,cpzd) € W, we define a
finitely generated Z,[(]-module

N¢ == N/(I¢-N),

where I C A4 denotes the kernel of the map

WQ:Ad%Zp[g, fl—)f(cpzl—l,...,cpzd—l).

N¢ is a Zp[¢]-module via z -7 := yn, where y € Agq denotes any element
such that e (y) = 2.

Lemma 5.88. There exists a fixed integer ¢ = ¢(N) such that p® annihilates
the Zy-torsion submodule of the finitely generated Zy[(]-module N¢ for every
ew. -

Proof. This is Lemma 2.6 in J[CM 81] (in fact this result does not only hold for
the ¢ € W, but for every tuple of p-power roots of unity). O

The projections N — N¢ canonically induce a map ¢ : N — @ N¢,
where the sum is taken over a set of representatives of the conjugacy classes of
the ( € W.

Lemma 5.89. Suppose that mq > max(ni,...,nqg_1). Then both the kernel
and the cokernel of the induced map

®:N/(I-N) — @N;

are annihilated by p™t-tna-1+(na—ma)

Proof. First note that the map ® is well-defined, since for each ( € W, the
ideal I is contained in the kernel I of 7, respectively. a

If g1, ..., g, are generators of the Ay/I-module N/(I - N), then the images
®(g1),...,®(g9-) generate @ N¢ over Z = P Z,[(] (acting component-wise).
Since the image of ® contains every linear combination of ®(g), ..., ®(g,) with
coefficients in Ay/I (instead of Z), the statement for the cokernel follows from
Lemma 5.85.

The result for the kernel may be proved analogously to Lemma 2.7 in
[CM 81]: Since N is finitely generated over Ay, there exist a finitely generated
free Ag/I-module F' and a surjective homomorphism F' — N/(I - N). Choose
generators ui,...,u, € F of the kernel of this homomorphism.
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Let T € ker(®). Choose some x € F' that is mapped to Z. We consider the
map F' — F¢ for some fixed ¢ € W. Note that the kernel of the map

F —» F;=F/(Ic- F) — N/(I-N)

is equal to I - F'+ <wuq,...,up>. We may conclude that

k
r = Zaié-ui mod (I¢ - F)

=1

for suitable a; ¢ € Z,[(], since the image of x in N is trivial.

Lemma 5.85 implies that for every i € {1,...,k}, there exists an element
a; € Ag such that p(a;) € Z has component p™t - FTnd-1+na=md . g, . in every
Z,(], respectively. Therefore -

k

w(pn1+...+nd—1+nd—md Cr— Z aju;) = 0
=1

vanishes in every F, and thus p™t - Tnd-11na=md . o — %~ q,q,, since F is free
over Ay/I and

o:NgJI — Z = D7Zy[(]

is injective by Corollary 5.86. But this means that T € ker(®) satisfies

p”1+--~+”d71+nd*md T =0.

Now we are ready for the proof of Lemma 5.80:

Proof. We consider the map ® : N/(I-N) — P N¢ of the previous lemma.

If 7 is contained in the Z,-torsion subgroup of N/(I - N), then ®(Z) represents
a Zy,-torsion element in each of the N¢.

Therefore p°™) . T € ker(®), where ¢(N) denotes the constant defined in
Lemma 5.88. But then

pnl+...+nd_1+(nd_md)+C(N) T = 67

by Lemma 5.89. O

5.9 The rank inequality

In this section, we will prove the Rank Inequality Conjecture 5.65 in some
special cases. This yields weak unconditional versions of Theorem 5.77. We
will state basically three main results.
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Theorem 5.90. Write E = Ay/(p) for some p € Ag.
(i)  Suppose that rank(, 1, (E) < oo for a choice of variables of Ag. Then

rank(fhmjd)(E) < oo for every set of variables arising from {Th,..., Ty}
by an admissible change of variables in the sense of Definition 4.6.
(i) If Ty,...,T; can be chosen such that moreover, there exists some index

i€ {l,...,d} such that the residue class of p in
Aa/(Th, ..., Tie1, Ty, - Ta) = Zy[[T5]]

is coprime to every polynomial v, 0)(T;) € Zp[Ti], n € N, then the Rank
Inequality Conjecture 5.65 holds for every tuple {Ty,...,Ty}.

Proof. (i) We first note that whenever 71, ..., Ty are obtained from 11, ..., Ty
by an admissible change of variables, then we have an equality of ideals

(Ty,...,Ty) = (Th,...,Ty) .
Indeed,

d
T = [+ -1
j=1

for each 1 <@ < d, where a;; € Z,, denote suitable elements, respectively.
Therefore T; € (T, . .. , Tq) for every i.

Conversely, the set {17, ...,T;} arises as an admissible change of variables
of {Tl, - ,Td}, and therefore also T; € (Tl, ..., Ty) for every i.

This means that

rank(r, .1, (N) = rank(ﬁ’..‘jd) (N)

for every Ag-module N, proving the first statement of the theorem. Note
that ranky,  7,)(Ag/(p)) < oo if and only if p & (T1,...,Ty), which
means that p has a ‘non-trivial constant coefficient’.

We will now turn to the proof of (ii). We write Ay = Z,[[I'?]], where
Id =~ ZZ is generated topologically by the elements

i =T1+1, ..., vg =Tg+1.

By the above, we are free to choose a different set of generators of I'* and
prove the conjecture for the corresponding variables.
(ii)  After renumbering the variables 71, . .., Ty, we may assume that the residue

class of p in Z,[[T,...,Tq—2,Tq]] = Z,[[T4-1]] is coprime to the polyno-
mials v, 0)(T4-1), n € N. This condition is equivalent to saying that

rank(T17---7Td—27V(n,O)(Td—l)de)(E) < 0

for every n € IN (compare Lemma 1.17).

Let E C E denote a submodule such that M := E/F is a pseudo-null
Ag-module. Let h € Ay be an annihilator of M which is coprime to p
(compare Remarks 2.20, (3)). We write p = p™ - g and h = p™ - h with
p1g-hin Ag (so that mg =0 or ng = 0).
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After an admissible change of variables, we may assume that g and h are
regular with respect to Ty in the sense of Definition 4.9 (compare Lemma
4.7). Note that such a change of variables does not destroy the property
that rank(Tl7_”,Td727,,<n70)(Tdil)de)(E) < oo for every n € IN. Indeed, the

new variables X1,..., Xy are obtained from 77, ...,Ty by the rule
X1 = i+ H(Ta+1)" -1,
Xi1 = (Taa1+1)(Ty+1)%1 -1,
Xa = Ta,
where a1, ...,aq—1 € Z, are suitable powers of p. But then

X; = T, mod Ty
for every 1 <4 < d— 1, and therefore

rank(Xlw-de—ZaV(n,O)(Xd—l)de) (E) = rank(TI7---7Td72a1’(n,0)(Tdfl)de) (E)

for every n € IN.
We now apply the following result of J. MINARDI.

Lemma 5.91 (Minardi). Suppose thatd > 3, and let g, h € Z,[[T1,. .., Tq]]
be relatively prime and both reqular with respect to Ty. Then for all
but finitely many subgroups <o > C H = <~y,...,7v4-1 > satisfying
H/<o>= Zg_Q, the residue classes of g and h in Ag/< o — 1> are
relatively prime.

Proof. See Proposition 4.C in [Min 86]. O
Inductively, we see that the generators 7i,...,vq of I'¥ may be chosen
such that the images of g and h in

A2 = Zp[[Td_l, Td]] = Ad/(Tl, . ,Td_g)

still are relatively prime.

After multiplication of g by a unit in A4, we may assume that g equals a
monic polynomial in (Z,[[171,...,Tq—1]])[Ta]. We therefore may choose a
representative of the residue class of g in Ay of the form

fo(Tu—1) + f1(Tu1) - Ta+ oo+ foo1(Tua) - T5H+ T,

k € IN, where fo, ..., fi—1 € Zp[[Ta—1]]. Then fy(0) # 0, since we assume
that rank(p, 7, (E) is finite and therefore p = p™° - g & (T1, ..., Ty).
Now we apply another result of MINARDI.

Lemma 5.92 (Minardi). Suppose that g,h € Ay are relatively prime, and
that we can write

g = fo(Tu1)+ [1(Tu-1) Ta+ .+ fro1(Tumr) - THH+T5
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We assume that fo(Ty—1) is relatively prime to p and to each of the poly-
nomials vy, o) (Ty_1) Tyt = (Ty_1+1)P" —1, n € N. Then the following
holds.

For every | € IN, there exists an element o € p' - Zy such that the residue
classes of g and h in No/(Ty,) are relatively prime, where

To = (Ty+1)(Tqg-1+1)"*—1.

Proof. See Lemma 4.2 in [Min 86]; we will give a sketch of the proof in
course of the proof of the next lemma. O

We may actually modify this result, obtaining the following lemma.

Lemma 5.93. Suppose that p, h € Ay are relatively prime, and that we
can write

p =" (fo(Tum1) + Ai(Tu—1) Tu+ ...+ foor(Tumr) - T+ TF)

for some my € Ny. We assume that fo(Ty—1) is coprime to each of the
polynomials vy, 0)(Ty-1) - Ta—1, n € V.

Then lg € IN can be chosen large enough such that for every l > ly, there
exists an element o € p' - Z,, such that the residue classes of p and h in
Ao /(T,,) are relatively prime.

Proof. We will first describe the strategy behind Minardi’s proof of Lemma
5.92. Let thus g, h € Ay be as in the statement of that lemma. For a € Z,,
we define

9a(Ta1) = fo(Tae1)+ fi(Tam1)(Tamr +1)* = 1)+ .o+ (Tur +1)* = 1) .

Then g = g, mod T,,. Note that Ty 1 ga, since fo(Ty—1) is coprime to
Ty—1 and therefore g & (T, ..., Tq—1,Ty) = (T1,...,T4-1,Ta). Moreover,
if v is divisible by a sufficiently large power of p, then p { g4, since fo(Ty—1)
is coprime to p. Indeed, fo(Ty—1) is associated to a distinguished poly-
nomial fy € Z,[Ty—1]. Let [ = deg(fo), and choose [ € IN large enough
to ensure that p!~! > [. Let a € P Zp, and let ¢ denote a primitive
pl-th root of unity contained in a suitable algebraic extension K of Qp. If
P | ga, then go(¢—1) =0 mod p in the ring of integral elements of K. But
(((—=1)+1)*—1 =0, because « € p'-Z,. Therefore go({ —1) = fo(¢ —1)
is associated to fo(¢ — 1). Since

we may conclude that vp(fo(C — 1)) < 1, proving that p{ go(¢ — 1).

For every «, Minardi chose an irreducible distinguished polynomial factor
Py(Ty—1) of go(Ty—1) € Zp[[T4—1]], respectively, and he proved that the
set of prime ideals

{&la = (To, Pa(Tu-1)) | € pl Ly}
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of As is infinite for every | € IN. This step of the proof needs the assump-
tion that fo(7y-1) is coprime to every polynomial v, o)(T4-1) - T4—1 in
Z,([Ti1])

Minardi then explained that

n 2.

a€p-Zy,

is contained in a prime ideal (R) C Ag of height one.
Now suppose that the images of g and h in As/(T,) are not relatively
prime. Then we can choose some P, (Ty_1) dividing both g and A modulo
T, and therefore

gah € Qla = (TDt)Pa(Td—l))

for this choice of P,. If the statement of the lemma was wrong, we could
therefore conclude that

ghe [ % C(R),

a€pt-Zy
in contradiction to the assumption that g, h € Ay are relatively prime.

Now we start with the proof of Lemma 5.93. Suppose first that mg = 0,
but that p divides fo(Ty—1). We have to exclude the possibility that the
residue classes of p = g and h in Ay/(T,,) both are divisible by p. Then
each irreducible common factor will be associated to some distinguished
polynomial P, (7T;_1), and Minardi’s proof will go through.

Since lp(p) < oo, there exists an integer [ € IN such that v, — 1 does not
divide p € A2/(p) for every 0 # a € p' - Z,, where

Yo =Y Vgl = Tat1.

Here we use the fact that the irreducible elements 7, — 1 € As/(p), a € Zy,
are pairwise coprime since the elements v, € 'Y\ (I'%)P generate different
subgroups of I'?, respectively.

But this means that p & (p, Tn) € Ay for every 0 # a € p' - Z,, and thus
the image of p in Ay/(T,) is coprime to the residue class of p for these a.
Finally, suppose that mg > 0. Then p divides the image of p in As/(T,)
for each a € Z,,. However, p { h, since p and h are coprime in Ay. If [ € N
is large enough to ensure that v, — 1 does not divide the residue class of h
in Ag/(p) for every 0 # a € p'-Z,, then the residue class of b in Ag/(T,) is
coprime to p. Therefore, for these «, each possible common factor of the
classes of p and & in Ay/(T,) is divisible by some distinguished polynomial
Py (Ty—1). O

For every o € Zy, the set {v1,...,Y4—2,Vd—1,Va = Va7 1 } topologically
generates the group I'". We have therefore proved the following fact.

Proposition 5.94. Under the assumptions of Theorem 5.90, (ii), we may
choose variables Ty, ..., Ty of Aq such that

M/(Th, ..., Ty—2,Ty) - M)
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s finite.
Proof. This follows from Lemmas 5.91 and 5.93. Indeed, Lemma 5.91
implies that we may choose variables T, ..., Ty such that the images of g

and h in As are coprime. Since both g and h are regular with respect to Ty,
the corresponding residue classes both are also coprime to p. Therefore at
most one of the images of the elements p and & in the unique factorisation
domain As is divisible by p.

In order to be able to apply Lemma 5.93, it therefore remains to prove that
fo(T4-1) in the representation of g is coprime to v, o) (Ty—1)-Ty—1 for every
n € IN. First, fo(Ty—1) is coprime to Tyy_1, since g & (11, ..., Tg—2,Ty—1,Ty)
by assumption.

Moreover, we also assume that the residue class of p = p™ - g in the
quotient Ag/(T1,...,Ty—2,Ty4) is coprime to each v, 0)(Tq-1). Since the
element p™ - fy(T;_1) is contained in this residue class, the conditions of
Lemma 5.82 are fulfilled.

Lemma 5.93 implies that the images of p and h in

Ag/(Th, ..., Ty—9,Tq) = Zp[[Tg—1]]

are coprime for a suitable choice of Ty (let Ty := a in the notation
from Lemma 5.93). Therefore Ay/(T4,...,T4—2,Tq,p,h) is finite. But
this means that also M/((Th,...,Tq—2,Tq) - M) is finite.

O]

The next step of the proof may be formulated in a more general setting.

Proposition 5.95. Let f1,...,fqs € Ag be such that vanky, . ;. (F) is
finite, and suppose that there exists some index i € {1,...,d} such that
Na/(f1,-- oy fim1, fix1, -, fa) 18 a unique factorisation domain. Then mul-
tiplication by f; on E/((f1,..., fi—1, fi+1,---, fa) - E) is injective.

Proof. The local ring

Q = Ag/(f1,---, fie1s fix1s-- -5 fa)

has Krull dimension at least two by Proposition 2.17, (ii) and Corollary
10.9 in [Ei 95].
Suppose that multiplication by f; on

E/((fi, - fi=1, fix1,-- - fa) - E) = Q/(p- Q)

is not injective. Since ) is a unique factorisation domain, this means
that the residue classes of f; and p in @ are not coprime. If d denotes an
irreducible common divisor, then the classes of both f; and p are contained
in the principal ideal of ) generated by d. In particular,

[E/((fr,---5 fa) - E)l = 1Q/((fi,p) - Q) = |Q/(d)] .

This contradicts the assumption that rank s, ¢, (E) < oo, because Q/(d)
is a local domain having Krull dimension at least equal to

dim(Q) -1 > 1
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by Corollary 10.9 in [Ei 95], and therefore Q/(d) is infinite, using Corollary
10.7 of [Ei95). O

Lemma 5.96. Let E, E and M = E/E be defined as above, let further
fi,---, fa € Ag be elements as in Proposition 5.95. Suppose that addition-
ally,

M/((fi,---, fiet, fix1,- -5 fa) - M)

is finite for the index i € {1,...,d} from Proposition 5.95.
Then ranks,  r)(E) > ranky ¢y (F).

Proof. Let I C A4 be the ideal generated by f1,..., fi—1, fix1,--., fa. The
exact sequence

0 E E M 0

induces an exact sequence

0 — E/N — E/I-E) — M/(I-M) — 0,
N- N N.
=N =: INg =i IN3

where N :=1-ENE.
We let N;[fi] .= {z € N; | fi-x =0}, 5 € {1,2,3}. As in the proof of
Proposition 3.43, (ii), we can apply the Snake Lemma to the commutative

diagram
Ni[fi] Na[fi] N3 fi]
0 Ny Ny N3 0
i - fi - fi
0 N1 N N3 0
Ni/(fi- N1) Na/(fi- Na2) N3/(fi- Ns)
0 0 0

and obtain a long exact sequence

0 —— Ni[fi] ——— No[fi] ——— Nslfi] )

Since Proposition 5.95 implies that

No[fi] = (E/(I-E)Ifi] = {0},
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we obtain an exact sequence

0 ——— (M/(I- M))[fi] —— E/(N+(f...., fa) - E) >

LE/«fl,...,fd»E) s M/((fre fa) - M) —— 0,

Since E/((f1,..., fq)- E) is finite and therefore also E/((f1,..., f4)- E) is
finite by Lemma 5.59, in fact all the four quotients occurring in this exact
sequence are finite.

Moreover,
|(M/(I - M))[fi]l B/ fa) - B
\E/(N + (f1,---. fa) - E)| [M/((f1,---. fa) - M) ’
vp(|(M/(I - M))[fi]]) +rank(E) = wv,(|E/(N + (f1,..-, fa) - E)])

+ rank(M)
< rank(E) + rank(M) ,

where rank always denotes rank;, (). Therefore

rank(s, ) (E) > rankgs, e (E)+C,

where C := v, (|(M/(I - M))[fi]|) — rank(y, . ¢)(M). Since the quotient
M/(I - M) is finite by assumption, it is easy to see that

vp(|(M/(I- M))[fil]) = ranks, (M),

and therefore C' = 0 (compare the proof of Proposition 3.43, (i)). O

Theorem 5.90 now immediately follows from Proposition 5.94, Proposition
5.95 and Lemma 5.96 (apply Proposition 5.95 to the elements f; = Tj,
1<j<d,andleti=d—-1).

O

Remarks 5.97.
(1) The assumption in Theorem 5.90, (ii) that the residue class of p in

Ag/(Th,...,Tq—2,Ty)

is coprime to the polynomials v, o) (Ty—1), n € IN, is not as restrictive as it
might seem at first glance. In fact, each v(,, 41 n)(Tq-1), n € IN, is irreducible
of degree p™(p—1). If g € Z,[[T;;—1]] denotes a representative of the residue
class of p, and if

g=1p-u-g
for some unit u € (Zp[[Ty—1]])* and a suitable distinguished polynomial

G € Zp|Ty—1] of degree t, then the above conditions are fulfilled if g is
coprime to the finitely many v(,,41 ) of the n € IN satisfying p"(p — 1) < t.



5.9. THE RANK INEQUALITY 247

(2) MINARDI proved that the conditions are satisfied in the following example:
If K denotes the Z2-extension of K := Q(v/—31), Ko /K denotes the cyclo-
tomic Z,-extension, and if the restriction of v; € Gal(IKX/K) to K topo-
logically generates Gal(K /K ), then the residue class of the characteristic
power series p € Ay of K/K in Z[[Gal(Ks/K)|| = Z,[[T1]], T1 := 71 — 1,
is coprime to the polynomials v, o)(71) for every n € IN (compare p. 27 in
[Min 86]).

We will formalise and generalise this example by using the following result.

Let K/K be a Zg-extension of a number field K, d € N, and let L be a
ngl—extension of K which is contained in K. Let H(IK), respectively, H(L),
denote the maximal p-abelian unramified extensions of K, respectively, of L.
Let further X := Gal(H (K)/K).

If v denotes a topological generator of Gal(IK/L) = Z,,, and if T := vy — 1,
then the completed group ring Z,[[T] = Z,[[Gal(IK/L)]] acts on X via conju-
gation, as in Section 1.3.

Lemma 5.98. Let K and L be as above. We assume that exactly one prime
ramifies in IK/L. Then there exists a Zy[[Gal(L/K)|]-module homomorphism

X/(TX) — Gal(H(L)/L)

whose kernel and cokernel are annihilated by p*%/L). Here e(IK/L) is defined
as in Proposition 1.5.

More generally, if K/L is a Z;—extension, 1 € IN, such that exactly one prime is
ramified in I/ L, if this prime is totally ramified, and if Gal(IK/L) is generated
topologically by v1,...,7:, then there exists a bijective Zy[|Gal(L/K)||-module
homomorphism

X/(Ty,...,T;)- X) — Gal(H(L)/L),
where Ty =~v1 —1,...,1T; = v — 1.

Proof. We will first assume that the prime of L ramifying in K is totally rami-
fied. Then KN H(L) = L.

Moreover, Proposition 1.34 implies that H(L) C H(KK). As in the proof of
Lemma 4.3, (ii), we may conclude that there exists a canonical Z,[[Gal(IK/K)]]-
module homomorphism

X = Gal(H(K)/K) — Gal(K- H(L))/K) = Gal(H(L)/L)

with kernel Yy := Gal(H(K)/(IKX- H(L))). We will show that our assumptions
imply that Yy = (11, ...,7;) - X; this in particular proves the lemma in the case
where IK/L is a Zy,-extension satisfying e(IK/L) = 0.

First note that the topological commutator subgroup of G := Gal(H (K)/L)
is equal to (T1,...,T;) - X, by Lemma 5.19.

Moreover, since H(IK)/L is a pro-p-extension, H(L) C H(K) is the max-
imal subextension which is unramified and abelian over L. This means that
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Gal(H(K)/H(L)) is the closed subgroup of G = Gal(H (K)/L) which is gener-
ated by the topological commutator subgroup of G and by the inertia subgroup
I of some prime B of H(IK) dividing the prime p of L that ramifies in H(K).

Recall that p is totally ramified in IK/L. Since H(K)/K is unramified, we
may conclude that /N X = {1} and I = G/X, i.e., G = X x I, as in Section
1.3. This implies that

I

Gal((K - H(L))/K) = Gal(H(L)/L)
G/ Gal(H(K)/H(L))
(XxI)/ <(Th,....T}) - X,I>

X/((Th,...,Th) - X)

i1

12

(compare the proofs of Lemma 1.37 and Lemma 5.23).
But then

Yo = Gal(H(K)/(K-H(L)) = (T1,...,T}) - X |
proving that we have in fact equality because (T1,...,T;) - X C Yj, since
G/Yy = Gal(K- H(L))/L)

is abelian.

Now suppose that IK/L is a Zp-extension such that e := e(IK/L) > 0.
We denote by K. C K the unique subfield which is cyclic of degree p® over
L. Then H(L) N K = K. As in the first case, we consider the surjective
Z,([Gal(K/K)]]-module homomorphism

X — Gal(K- H(L))/K) = Gal(H(L)/K,)

with kernel Yy := Gal(H(K)/(KK- H(L))). If o € Gal(H(L)/L), then the order
of ok, is bounded by p°. This means that o?° € Gal(H(L)/IK.), proving that
the cokernel of the induced homomorphism

X —» Gal(H(L)/K.) > Gal(H(L)/L)

is annihilated by p°.
Let p be the unique prime of L which ramifies in KK, and let

I C G = Gal(H(K)/L)

denote the inertia subgroup of some prime of H (IK) dividing p.

We note that the closure of the commutator subgroup of G is equal to
T - X. This has been proved by Greenberg (compare the proof of Proposition 2
in [Gr 73]).

Since H(L) C H(K) is the maximal subextension which is unramified and
abelian over L, it follows that Gal(H(K)/H (L)) is generated by T'- X and I,
as in the first case.

The exact sequence

1 X G G/ X — 1
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and the fact that G/X = Gal(IK/L) is Z,-free imply that G is isomorphic to
the semidirect product X x G/X. If e(IK/L) > 0, then the injection I — G/X
will not be surjective, and in fact p®- (G/X) = I. If

g=uz-v€XxG/X,

then

P9 = Ve )"
(compare p. 280 in [Wa 97]). Therefore
pe-G = (V(e,O)'X) xT.

This implies that we have isomorphisms

p° - Gal(H(L)/L)

1%

p°- (G / Gal(H(K)/H(L)))
p“- (G/<T-X,1>)
Vo) - (X/(T- X)) .

We have already mentioned above that

1%

1%

p®-Gal(H(L)/L) C Gal(H(L)/K,) .
The above isomorphisms therefore induce an injection
Vieo)  (X/(T- X)) —— Gal(H(L)/Ke) .

But Gal(H(L)/K.) = X/Yy by definition of Yy, and therefore we obtain an
injective map

Vieo) - (X/(T- X)) —— X/Yp.

This means that v ) - Yo €T - X. Since Yy C X and therefore T'- Yy C T - X,
it follows that
p Yo CT-X,

proving Lemma 5.98. [

Corollary 5.99. Let K/K be a Zg—extensz'on of a number field K such that

exactly one prime of K ramifies in K/K, and such that this prime is totally

ramified.

(i) Then T 1 Fyoun(T) for every Zy,-extension M C K of K.

(1) If M C K is an arbitrary Zy-extension of K, and if T1, . .., T, are variables
of Ag = Z,[|Gal(KK/K)]] such that v4—1 = Tq—1 + 1 topologically generates
Gal(M/K), then

rank(TI,__.,Td)(A(lK)) < oo and rank(Th__’Td_Q’V(n’O)(Td_l)jd)(A(IK)) < 0o
for every n € IN. In particular, this means that the image of the charac-

teristic power series F ) of A i Ag/(Ty,. .., Ty_o,Ty) is coprime to
Ty—1 and to each vi, ) (Ty-1), n € IN.
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Proof. (i) We apply Lemma 5.98 with L = K. For every M € E(K), this
yields a Zj,-module homomorphism

M) AM) j(pM) - AM)y . Gal(H(K)/K)

where TM) = ~(M) _ 1 for some topological generator v(™) of the group
Gal(M/K) = Z,, respectively. Moreover, if M C I, then this map actu-
ally is a bijection, because e(M/K) = 0 for every M C K.

(ii) Let M C K be fixed, let X := Gal(H(K)/K). Lemma 5.98 implies that

we have a bijective Zy[[T;—1]]-module homomorphism
X/((Th,...,Ty0,Ty) - X) —— Gal(H(M)/M) = AM)

Since Tyy—1 1 Fqon (Ta—1), by (i), it follows that
1X/((T1, ... Ta2, Tao1, Ty) - X)| = [AM) )(Ty_q - AOD)]

is finite.
Analogously,

X/((Tl, v ,Td,Q, V(n,O)(Tdfl)v Td) . X)
is finite because the characteristic polynomial of AM) is coprime to every
V(n,0)(Ta-1), n € N, since e(M/K) = 0 (compare Proposition 1.44).
Corollary 5.62 implies that

rankery 1, 51y 1) (Eac) < 00

and
rank(Tl’mdevaV(n,O)(Td71)>Td)(EA<]K)) < 0
for every n € IN, where E ) = Ag/(Fax))-

If the residue class of Fyx) in Ag/(Th,...,Ti—2,T4) was not coprime to
Ty—1, then the Krull dimension of

EA(]K)/<(T17 o Tg—2,Tq-1, Td) ) EA(IK)) = Ad/(FA(lK)aTh . ,Td)
was greater or equal to 1, in contradiction to the fact that
rank(r, 1) (Eqa0) < 00

(compare the proof of Proposition 5.95).
Analogously, we see that Fyx) is coprime to each v, o)(T4—1), respectively.
O

Remark 5.100. Corollary 5.99, (i) may be generalised as follows: If M/K
denotes any Z,-extension of a number field K such that exactly one prime
ramifies in M /K, then T { F ) (T') (compare also Remarks 3.47, (3)).
Indeed, Lemma 5.98 implies that there exists a Z,-module homomorphism

M) o AM) )7 Ay s Gal(H(K)/K)
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such that the kernel of ¢™) is annihilated by p¢™/X). But
ker(p() € AOD /(7 - AD)

is finitely generated over Z, and therefore finite, proving that AM) (7. AM))
is finite.

As an application, we obtain the following result.

Theorem 5.101. Suppose that IK/K denotes a Zg—extension. We assume that
there exists a unique prime p of K ramifying in K, and that p is totally ramified
in K/K.

Then myg is locally bounded near IK, i.e., there exist a neighbourhood U = U(IK, r)
of K and an integer k € IN such that

mo(L/K) < k
for every L € U.

Proof. Indeed, let n > e(I{/K) + 1 be an integer. Then every L € U(K,n) is
totally ramified at the prime p, and unramified outside p by Proposition 5.39.
Moreover, Corollary 5.99, (ii) implies that the conditions from Theorem 5.90,
(ii) are satisfied for each I € U(IK,n) and every choice of variables T1, ..., Ty,
respectively.

Therefore inequality from the proof of Theorem 5.77 holds for the tuple
(Th,...,Ty) and for each I € U(K, ), provided that r > n is large enough. In
other words,

rank(py 1) (Eaw) < rank(Tl,...7Td)(A(K)) = C
for every such IL. But
rank(ry, 1) (Eaw) = mo(L/K) + vp(|Faw(0,...,0)]) .
O

We now come to the second one of the three results annqunced at the be-
ginning of the current section. Let £ = Ay/(p) and M = E/E be as above.

Theorem 5.102. Under the assumptions of Theorem 5.90, (ii), suppose that
additionally, p € Ay is reqular with respect to the variable T; in the sense of
Definition 4.9. Then the Rank Inequality Conjecture also holds for the tuple

(T17' .. 77—%—17,1—%-&-17 o 7Td7p)
and for every tuple
(Tlv s 7Ti—1>V(n,m)(Ti)7Ti+17~ : 'aTd) )

n,m € N with n > m, for a suitable choice of T1,...,T;_1,Tiy1,...,13.
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Proof. As in the proof of Theorem 5.90, we may assume that i = d — 1. We
first note that the additional assumption on p ensures that

rank(Tl 7"'7Td72 »Td 7p) (E)

is finite. Indeed, p is (up to multiplication by a unit) associated to a distin-
guished polynomial in

(Zp[[T17 ooy Ty, Td]])[Tdfl] )

and therefore
Q = Ag/(T1,...,Ty—2,Tq,p)

is isomorphic to a finitely generated free Z,-module (compare Remarks 5.47,
(1)). But then E/((Th,...,Tq—2,Ty,p)- E) = Q/(p- Q) is finite.

Moreover, if n,m € IN, then the residue classes of p and v, p,)(Ty-1) in
ANg/(Th,. .., Ty—9,Ty) = Zy[[Ti—1]] are coprime by assumption, and therefore
the ideal of Z,[[T;;—1]] generated by these two residue classes contains the class
of some power of p, by Lemma 1.17, (i). This proves that also

E/(Ty, ..., Ti—2,V(nm)(Ta-1),Ta) - E)

is finite for every n > m.

The proof of Theorem 5.90 implies that we may choose variables T1,...,Ty
such that M/((Th,...,Ty—2,Ty)- M) is finite (compare Proposition 5.94). More-
over, the admissible changes of variables which are used in course of this proof
do not destroy the property that p is regular with respect to the variable Ty 1.

Now we apply Proposition 5.95 with i = d — 1, f; = p, respectively, with
fi = Vinm)(Ta-1), and with f; = Tj, j # . This implies that multiplication
by p, respectively, v(; m)(T4-1), is injective on E/((T1,...,Ty2,Tq) - E). The
claim now follows from Lemma 5.96. 0

The above theorem may be used for a proof of the following variant of
Theorem 5.77 which does not presume the validity of Conjecture 5.65.

Theorem 5.103. Let K/K be a Zg—extension. Suppose that there exists a
prime of K that is totally ramified in IX/K, and that this is the only prime
ramifying in K/K. We assume that mo(IK/K) = 0.
Then there ezist a neighbourhood U = U(K,r) of K and an integer k € IN such
that

hL/K) < k

for every L € U.

Proof. Let A = A®) and let N := A/fl be defined as in Section 5.7. Since
mo(IKK/K) = 0, we may choose variables T1, ..., T, of A4 such that there exists
an annihilator g € A4 of N such that g is divisible by the characteristic power
series Fy of A, and regular with respect to T (compare the proof of Lemma
5.72).
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This means that

Es/(Th, ..., Ta—2,Ta,p) - Ea) = Ng/(Fa,Th,...,Ty—2,T4,p)

and N/((T1,...,Tq—2,Ty,p)-IN) are finite (compare the proof of Theorem 5.102).
Proposition 5.52, (i) implies that

rank(Tl,andfz,Td,P)(A) < rank(le-,Tdfz,Td,P)(EA) + rank(leande,Tdap)(N)

is also finite. We therefore may choose an integer 9 € IN, ro > e(K/K) + 1,
such that

rank(T17---7Td—2de7p)(A(]L)> = rank(Tlv“'7Td—27Td7p)(A) < 0

for every I € U(K, r).

In particular, Corollary 5.62 implies that rank(r, 7, , 1, ) (E @) < oo for
each I € U(KK,rp), proving that for these IL, the characteristic power series
F @) is regular with respect to T;;_1, respectively. Indeed, otherwise we have
Fiuw € (p,Th,...,Tq—2,Ty) for some L. But then

E o /((T1,...,Tq—2,Ta,p) - Eyu)) = Ag/(T1,...,Ta—2,Ty4,p)

was infinite, yielding a contradiction.

IfL € U(K,rp), then P(L) = P(K) by Lemma 5.34, (i), and therefore the
conditions from Corollary 5.99 are satisfied for every I € U (IK, rp), proving that
we may apply Theorem 5.102 to every I € U(IK, rp).

For every n,m € IN, n > m, we may find a neighbourhood U,, ,,, C U (KK, rp)
of KK such that

rank(Tl seesTa—2.V(n,m) (Ta—1),Ta) (A(E) ) = rank(TI s Td—2:Y(n,m) (Ta—1)Ta) (A)

for every I.. € U, . Moreover, the analogon of inequality holds for
(T, Ty2,V(inm)(Ta-1), Ty) and every I € Uy, 1, by Theorem 5.102.
The proof of Lemma 5.78 shows that there exists a constant C' € IN such
that 3
rank(Tl,...,Td_Q,u(n’m)(Td_l),Td)(A/A) < C-(n—m)

for every n > m > e(IK/K). In fact, the p-rank of
(A/A)/(T1, -, Ta2, Vinm)(Ta—1), Ta) - (A/ A))

is bounded, and the main term comes from Lemma 5.80; compare Section 5.8.
As in the proof of Theorem 5.77, n and m may be taken large enough to
ensure that
lhL/K) < lh)(K/K)+C

for each L € Uy, ,,, (note that mo(IL/K) = 0 for every L, since Fyu) is regular
with respect to Tj;_1, respectively). ]

The last result to be discussed in this section provides some evidence for our
conjecture that the Rank Inequality not only holds in the special cases stated
above, but in fact is valid for more general elements f1,..., fq € Ag. We will
make use of the following fact from commutative algebra.
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Lemma 5.104 (Artin-Rees). Let R be a Noetherian ring, let I C R be an
ideal. Suppose that M is a finitely generated R-module, and let N C M be a
submodule. Then there exists an integer k > 1 such that

I""MnN=1"%F(I*MnN) cI™* N
for everyn > k.
Proof. This follows from Lemma 5.1 in [Ei 95]. O

Corollary 5.105. Let E = Ayg/(p) be a cyclic Ag-module, let E C E be a
submodule such that M := E/E 18 pseudo-null. Moreover, let f1,..., fq € Ay
be elements such that ranky, . ;. (E) < oo. We write I := (f1,..., fa)-

Then there exists an integer k > 1 such that

rankr (E) > rank.—«(E) and rankm(E) > rank;.—.(E)

for every n > k, where we let rankm(N) := v,(|N/(I"™ - N)|) for every m € IN
and every Ag-module N, respectively, whenever this is finite.

Proof. We apply the Artin-Rees Lemma to M = F and N = E. Let k € IN be
the integer attached to I, and fix some n > k.

Since M = E/E is pseudo-null, inclusion of E in E yields a pseudo-
isomorphism ¢ : E — E. Since both E and E are finitely generated and
Ag4-torsion, there exists also a pseudo-isomorphism ¢ : F — E (compare
Remarks 2.22; (1)). 9 actually is an injection, because the cyclic Ag-module
E = Ag/(p) does not contain any non-trivial pseudo-null submodules. We
therefore obtain an exact sequence

1/) ~

0 E

=M
As in the proof of Lemma 5.96, this induces an exact sequence
0 — E/D — E/UI"-E) — M/(I"-M) — 0,

where D:=I"-E N E.
The Artin-Rees Lemma now implies that

D C Ik . E.

Therefore

rank (E) = rankm(l\z./) + v,(|E/D))

ranks» (M) + rank;.—x(E)

>
> rankp.x(F) .

Interchanging the roles of E and E, and using the pseudo-isomorphism
¢ : B — E (which is an injection since F C FE does not contain any non-
trivial pseudo-null submodules), we obtain the second inequality. ]
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Remarks 5.106.

(1) The Artin-Rees number k from Lemma 5.104 depends on the ideal I and
on the modules M and N. There exist uniform versions of this lemma,
providing an integer that works for every ideal I of R (compare [Hu 92]).
However, the corresponding integer still depends on the modules M and N.

(2) Since A4 is a regular local ring, it seems reasonable to believe that the
uniform Artin-Rees numbers occurring in (1) can be bounded in terms of
the Krull dimension of Ay (compare Remark 4.14 in [Hu 92]). In fact, the
connections to the so-called Briangon-Skoda Theorem (compare [LS 81])
suggest that dim(A4)—1 = d may serve as such a bound.

Using this estimate, we could conclude that

rank;(F) < rank;«(E) and rank;(E) < rankj.(E),

whenever these ranks are finite. In particular, if d = 1, then we recover the
statement rank;(E) = rank;(FE) of Proposition 3.41, (i).

Suppose that K/K is a Zg-extension such that some prime of K is totally
ramified in K. If we replace inequality in the proof of Theorem 5.77
by the inequality

rank;(E ) < rank;a(Em) + ranka(A/A),

I:= (Vi m)(T1); - - s V(ng,my)(T4)), then we obtain new proofs of the local
boundedness of mg- and [p-invariants.

5.10 Pseudo-null As-modules

In this section, let K be a number field such that exactly one prime of K divides
p, and let K/K be a Zg—extension. We will develop a method that bounds the
lo-invariant of K in terms of the A-invariants of Z,-extensions of K contained
in K. In some situations, this approach may be used in order to show that the
Greenberg module of I{/K is pseudo-null.

Lemma 5.107. Let K be a number field containing exactly one prime divid-
ing p. Let A(K) C E(K) denote the subset of Zy-extensions L/K satisfying
e(L/K)=0. Then A(K) is open in E(K) with respect to Greenberg’s topology.
Moreover, if K denotes a Z]%-ea:tension of K, my :=my(K/K) and

A™(K) = {L € A(K) | p(L/K) = mo} ,
then L € A™0(K) for all but finitely many L € A(K) N EK(K), and
(K/K) < min({ML/K) | L€ A™(K) N ESX(K)}) .
Proof. If L € A(K) and n € N, then e(M/K) = 0 for every M € &£(L,n),
proving that A(K) C £(K) is open.

If K/K denotes any Zg—extension, then Lemma 5.10 implies that there exist
only finitely many Z,-extensions L C KK of K such that u(L/K) # my.
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Let now L € A™(K) N £<¥(K) be arbitrary, but fixed. Let furthermore
I':=Gal(K/K) = ZIQ). We choose topological generators 71, y2 of I' such that v
generates Gal(IK/L) and such that 2|z, is a topological generator of Gal(L/K).
Let T1 = v — 1, T5 = 9 — 1 denote the corresponding variables.

Then the homomorphism

T Ay = Zp[T, )] —» A = Zy[[T]]
induced by the restriction map
Gal(K/K) ——» Gal(L/K)

satisfies 77 (71) = 0 and 7wz, (T2) =T.

Now consider the characteristic power series Fyx) € Ao of K/K. We write
Fixy = p™ - g, with p { g. Let X = Gal(H(K)/K). Since Lemma 4.3, (i)
implies that pu(L/K) = u(Xy,), the condition pu(L/K) = mg is equivalent to
saying that p t 71(g). ’

Replacing 71 by ¥1 := 7175 " for a suitable n € IN, we may assume that g is
regular with respect to T (compare Definition 4.9 and Lemma 4.7). Moreover,
we may assume that n has been chosen large enough to ensure that

W(M/K) = p(L/K) and  A(M/K) < NL/K)
for every M € £(L,n). Indeed, this is possible because of Theorem 3.57, since
p(M/K) > mo = p(L/K)

for every M € E¥(K) (note that £(L,n) = U(L,n) for every n € IN, because
K contains only one prime dividing p).
We write
g = T8 +T8 by +...+ho,

with k € N and ho, ..., hy_1 € (p,T1), where
T =—1= (D +D)(Th+1)P —1.

Let M € £<%(K) be the subfield of K that is fixed by ;. Then M € £(L,n)
by Lemma 3.19, (i). Moreover, the corresponding homomorphism

TM A2 —» A
satisfies w7 (T1) = 0 and 7 (Ty) = T.
This means that the reduced degree of my/(g) € Zp[[T]] is equal to k. We

want to show that £ < A\(M/K). In view of Lemma 5.70, this will yield a chain
of inequalities

K/K) = lbo(f) <k < MM/K) < ML/K),

concluding the proof of the lemma.
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Lemma 5.98 implies that there exists a Z,[[Gal(M/K)]]-module homomor-
phism

Xy = X/(T1 - X) —— AM)

whose kernel and cokernel are annihilated by a power of p. In particular, mod-
ulo possible powers of p, the characteristic polynomial fXTrM of Xr,, divides
F,on(T). But fx.,, is divisible by 7w (F 4)) and therefore by m/(g), proving
that £ < A\(M/K). O

Lemma 5.108. Let K be a number field containing exactly one prime dividing
p. Let K/K denote a Zg—extension.
If there exists a Zy-extension L C K of K such that

uw(L/K) = mo(K/K) =: mg and e(L/K) = ML/K) = 0,

then the characteristic power series Fyu) of IK/K is associated to a power of
p.

Proof. We will use the notation from the preceding lemma. Since our assump-
tions ensure that L € A™0(K), this lemma implies that {o(IK/K) = 0. Actually
the proof of Lemma 5.107 shows more:

If Fyxy = p™° - g for some non-unit g € Ay coprime to p, then

T(9) € Zyp[[T1]

is coprime to p and therefore is associated to a distinguished polynomial. Since
e(L/K) = 0, Lemma 5.98 implies that, modulo possible powers of p, 71 (g)
divides F ) (T'). But Fyw)(T) = 1, because A(L/K) = 0, yielding a contra-
diction. O

Corollary 5.109. Let K be a number field containing exactly one prime divid-
ing p. Let IK/K denote a Zg—e:mﬁensz'on.
If there exists a Zy-extension L C K of K such that

ML/K) = ML/K) = e(L/K) = 0,
then the Ag-module X = Gal(H (K)/K) is pseudo-null.
Proof. Lemma 4.3, (i) and Proposition 4.34, (i) imply that

mo(K/K) < u(L/K) = 0.

Moreover, Lemma 5.108 implies that the characteristic power series of IK/K is
not divisible by any irreducible element coprime to p. O

Corollary 5.110. Let K be an imaginary quadratic number field. Suppose that
the rational prime p is inert or ramified in K. Let IK denote the composite of
all Z.,-extensions of K.

If p does not divide the class number hy = |Cl(K)| of K, then Gal(H (K)/K)
18 pseudo-null.
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Proof. Since K/Q is abelian, Leopoldt’s Conjecture is valid for K, i.e., the field
Kisa ZZ—extension of K by Theorem 1.7. Moreover, the assumption that p { hx
implies that each Z,-extension of K is totally ramified at the unique prime of K
dividing p. Finally, this assumption also implies that u(L/K) = A(L/K) = 0 for
every L € £(K) (compare Proposition 13.22 of [Wa 97]). Now apply Corollary
5.1009. O

Remarks 5.111.

(1) Greenberg’s Generalised Conjecture predicts that for every number field K,
the Greenberg module attached to the composite KK of all Z,-extensions of
K is pseudo-null as a Ag-module, where d = rankgz, (Gal(I/K)), respec-
tively. The above corollary proves a special case of this conjecture.

(2) In his Ph.D. thesis, J. MINARDI studied pseudo-null Ajz-modules in great

detail. Minardi observed that the Greenberg module X of a Zg—extension is
pseudo-null if there exists a choice of variables of A4 such that, for example,
X/(T1 - X) is pseudo-null as a module over Ag_; = Zy[[T>, ..., Ty]] (see, for
example, Section 4.B of [Min 86]). In particular, the Corollaries 5.109 and
5.110 were known to Minardi (compare Proposition 3.A of [Min 86]).
We believe that Lemmas 5.107 and 5.108 are slight, but nevertheless im-
portant generalisations of Minardi’s results, fitting into the pattern of one
of the main innovations of this thesis, namely, the possibility to obtain re-
sults concerning A- (or, more generally, lp-) invariants even in the case of
non-vanishing p- (respectively, myp-) invariants.

(3) There is not known any concrete example of a Zg—extension, d > 1, whose
characteristic power series is not associated to a power p”, n € INg, of p
(while there do exist examples constructing Zg—extensions having a non-
trivial mp-invariant).

(4) Let K/K be as in Lemma 5.108. The results of Chapter 3 provide a tool
to explicitly test whether a given Z,-extension L/K contained K satis-
fies the conditions from Lemma 5.108. Namely, suppose that L C KK sat-
isfies ¢(L/K) = 0, and assume that mgy := mo(IK/K) is known. Then
w(L/K) =mgp and A(L/K) = 0 if there exist integers n,m € INg, n > m,
such that

(AB) < - (" = p™) + D, (%)

where D := min(n — m,p"(p — 1)). Moreover, in this case, we have
v(L/K) <n—m.

Indeed, if E ) denotes the elementary A-module attached to A®L) | then
the proof of Theorem 3.57 shows that

rank,,(n .

rank,, (Eyw) > p(L/K)-(p" —=p™) + ML/K) - (n—m)
if m € IN is large enough to ensure that A\(L/K) < p™~!(p—1). Otherwise,
ranky, . (Eqw) = p(L/K) - (p" =p™) + p"(p—1)

(corresponding to the case r > 1 in equation ((3.4))).
Since Lemma 4.3, (i) and Proposition 4.34, (i) imply that u(L/K) > my,
(%) implies that u(L/K) = mg and A(L/K) = 0.
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(A can be determined with the help of Theorem 3.6
(L)

Note that rank,,(nym)

by computing the ranks of the first layers A
occurs.

, until the first stabilisation
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