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Abstract iii

Abstract
Quasi two-dimensional systems such as surfaces and atomically thin films can exhibit

drastically different properties relative to the material’s bulk, including complex phases

and transitions only observable in reduced dimensions. However, while methods for

the structural and electronic investigation of bulk media with ultrahigh spatio-temporal

resolution have been available for some time, there is a striking lack of methods for

resolving structural dynamics at surfaces.

Here, the development of an ultrafast low-energy electron diffraction setup is presented,

offering a temporal resolution of a few picoseconds in combination with monolayer struc-

tural sensitivity. In particular, a detailed account is given on the defining beam proper-

ties of the electron source, based on a nonlinearly driven nanometric photocathode. The

emitter parameters within an electrostatic lens assembly are studied by means of a fi-

nite element approach. In particular, the optimal operation regime as well as achievable

temporal resolution are determined. A prototype emitter comparable to the one used

in the simulation is designed, characterized and applied within an ultrafast low-energy

diffraction experiment. Specifically, the superstructure dynamics of an ultrathin bilayer

of polymer crystallites adsorbed on free-standing graphene are investigated upon strong

out-of-equilibrium excitation. Different processes in the superstructure relaxation are

identified together with their respective timescales between 40 and 300 ps, including the

energy transfer from the graphene to the polymer, the loss of crystalline order and the

formation of extended amorphous components. The findings are subsequently discussed

in view of an ultrafast melting of the superstructure. To conclude, the contribution of

the approach to time-resolved surface science is discussed and an outlook is given in

terms of future systems to investigate and further developments of the apparatus.

Keywords

Ultrafast Low-Energy Electron Diffraction, Electron Pulses, Surface Science, Structural

Analysis, Superstructure Dynamics, Ultrathin Polymer Film, Graphene, PMMA
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Chapter 1

Introduction

The outermost atomic layers in a solid are generally referred to as its surface. When-

ever a physical or chemical interaction occurs between two objects, the result of this

interaction is subject to the individual properties of the surfaces in contact with each

other. Interestingly, even though the surface is in principle made up from the same

constituents as the material’s volume (its bulk), it often exhibits drastically different

behavior in terms of its structural or electronic properties [1]. The reason for this dis-

crepancy originates in the symmetry breaking at the surface with the solid on the one

side and, e.g., vacuum on the other, leading to a strong coupling of electronic and lattice

systems.

The study of surfaces and their physical and chemical properties constitutes “surface

science”. One of its main objectives is to relate the microscopic structure of a given sur-

face to the material’s macroscopic properties. Although optical, electrical, magnetic and

chemical investigations have been performed systematically for a long time, quantitative

results on an atomistic level became only available with relatively recent technological

advances. In particular, ultrahigh vacuum technology, the development of suitable de-

tection systems, and the appearance of digital computers have propelled experimental

and theoretical progress [2, 3]. This has resulted in a rapid increase in the number

of available surface sensitive techniques, reaching from atomic force microscopy (AFM)

[4] and low-energy electron diffraction (LEED) [5, 6] to scanning electron microscopy

(SEM) [7] and scanning tunneling microscopy (STM) [8] to (grazing incidence) X-ray

diffraction (XRD) [9].

1



Introduction 2

For structural surface analysis, LEED has an outstanding role. In particular, it com-

bines extremely high surface sensitivity (under certain conditions down to a fraction of

a monolayer) with the possibility of atomic structure determination, a direct and fast

interpretation of symmetry information, and a robust (but involved) theoretical back-

ground, all in an overall low-cost approach. Additionally, Auger spectroscopy can be

straight-forwardly implemented within a LEED setup to retrieve chemical information

about the surface. These properties make LEED one of the most prominent structural

surface techniques of today.

Paralleling the technological developments, new methods in surface science have quickly

emerged, which are yet again motivating new applications. These applications include

corrosion and wear protection by means of self-assembling monolayers [10], superconductor-

semiconductor interfaces as a basis for quantum computing [11–13], catalysis in surface

chemistry, e.g., in view of energy storage and production [14–16] and giant magne-

toresistance for the development of non-volatile information storage devices [17], to

name but a few. Moreover, the recent possibility to atomically tailor materials, such

as graphene heterostructures and composite materials, has additionally accelerated the

trend of surface/interface enlargement with respect to volume [18–21], making surface-

sensitive studies increasingly important in view of current scientific and technological

advances. Generally speaking, surface science has become a major field of material

science.

In the context of the wealth of observed surface structures, reflected for example in the

existence of phases and phase transitions limited to two-dimensional systems [22–25], an

equally high degree of diversity is to be expected from structural dynamics at surfaces.

This assumption is substantiated, for example, by recent experimental and theoretical

studies on surface premelting [26, 27], the investigation of negative thermal expansion

coefficients at surfaces [28] and the observation of surface charge density waves (sCDW)

[29].

In stark contrast to the richness of explorable systems, time-resolved methods to ac-

tually follow structural changes during physical and chemical processes at surfaces are

sparse. On the other hand, ultrafast time resolution1 has been successfully implemented

1Here, the term ultrafast is used for timescales below one nanosecond.
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in a number of systems for bulk analysis, including time-resolved electron [30] and x-

ray spectroscopy [31, 32], ultrafast electron diffraction (UED) [33–35] and microscopy

[36–38], time-resolved second harmonic and sum frequency spectroscopy [39], as well as

ultrafast x-ray crystallography [40, 41]. Whereas some of these techniques such as photo-

electron spectroscopy can be applied to the probing of the electronic structural evolution

at surfaces [42], time-resolved atomic structural information of surfaces is challenging to

obtain.

So far, for the investigation of a surface’s atomic structure, mainly x-ray or electron-based

techniques are employed. While x-rays offer supreme temporal resolution combined with

high monochromaticity, electrons are less damaging to specimens, the technology of

electron imaging is well-developed, electron sources are brighter and their interaction

with matter stronger [43].

Depending on the probe, high surface sensitivity can be in principle achieved by using

either large angles of incidence, as in XRD and reflection high-energy electron diffraction

(RHEED) [44], or low kinetic electron energies. Large angles of incidence, however, have

the disadvantage to be strongly dependent on the surface morphology, which makes a

quantitative analysis difficult. Additionally, a grazing-incident geometry not only results

in large probing areas on the sample, hence making a localized probing challenging, but

also limits the achievable temporal resolution of the technique, necessitating a tilted

wave front setup [45]. On the other hand, when using low-energy electrons, space charge

effects and dispersive broadening strongly decrease the temporal resolution [46], so far

preventing the development of time-resolved LEED with sub-nanosecond resolution [47].

Only recently, the availability of table-top ultrafast laser sources in combination with

nano-engineered photocathodes has opened up a new gateway to potentially develop

low-energy electron sources capable of ultrafast probing [48–51]. In particular, nonlin-

early driven, nanometrically sharp needle emitters are suggested to minimize broadening

effects [52–54].

In the experimental work presented in this thesis, an ultrafast LEED (ULEED) setup

in transmission is developed, featuring a temporal resolution of few picoseconds at low

electron energies. Particularly, this setup represents the first application of a tip-based

emitter in a diffraction experiment. To demonstrate the feasibility of the approach,

free-standing graphene is chosen as a prototype material, offering a well-defined atomic
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structure in combination with high mechanical and thermal stability. Specifically, the

structural relaxation dynamics of an ultrathin polymer superstructure, adsorbed on the

graphene substrate and excited to a highly out-of-equilibrium state, is investigated. The

characteristic time scales of the superstructure evolution are subsequently identified and

a physical picture is derived from the observations.

This novel tool in time-resolved material science carries the potential to allow for the

investigation of atomic scale structural dynamics at surfaces and thin films with ultrahigh

temporal precision.

1.1 Outline

The organization of this thesis is as follows: In Chap. 2, the reader is introduced to the

theoretical concepts and methods commonly employed in surface science. This includes

a brief description of the LEED concept, followed by basic diffraction theory and a

description of the materials constituting the sample system of Chap. 6.

The main body of the thesis is divided into two parts. The first deals with the devel-

opment of a new electron source for time resolved surface studies and its subsequent

theoretical and experimental characterization (Chap. 3, 4, and 5). In contrast, the

second part displays the application of the technique to resolve the ultrafast dynamics

of a first sample system (Chap. 6).

More specifically, Chap. 3 gives a brief overview of the current state of the art in ultrafast

surface science. Subsequently, the feasibility of nonlinearly driven nanometric electron

sources in terms of an application in an ultrafast LEED setup is investigated. The

characterizing source properties, such as coherence, brightness and temporal resolution,

are calculated theoretically.

In the subsequent Chap. 4, a finite element method (FEM) is employed to further in-

vestigate the performance of an electron gun based on nanoscale photoemission. Par-

ticularly, the optimal electron source parameters are determined for highest brightness

and temporal resolution.

Chapter 5 is the experimental analogue to its predecessor, investigating the properties

of a prototype electron source within a setup for low-energy electron diffraction. The
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theoretically and experimentally found quantities are compared and discussed. The

chapter closes with an outlook on potential developments of the tip-based source to

further increase its temporal and spatial resolution.

The application of the setup to resolve the structural evolution of a sample system is

described in Chap. 6. Specifically, the relaxation dynamics of a polymer superstructure

adsorbed on graphene, are investigated. The governing time scales of different processes

are determined and a physical picture based on the observations is provided.

In the last chapter, a brief summary of the major aspects of the thesis is given. In

particular, Chap. 7 concludes with an outlook on the ongoing molecular dynamics sim-

ulations, prospective systems to study in the future, as well as the further development

in terms of ULEED.

There are two suggested pathways of reading. Whereas the scientist new to the field

of time-resolved material science may just follow the thesis in the given order, a reader

with a background in (electron) diffraction is suggested to skip Chap. 2. Furthermore,

those parts of Chap. 3, which are introducing the concepts of brightness, emittance and

coherence, can be equally omitted. The relevant observation in terms of electron source

performance are repeated at the end of the chapter. For the remaining thesis, the given

order can be followed.





Chapter 2

Methods and concepts

This chapter offers an introduction to the theoretical and experimental methods, which

are important in the framework of this thesis. First, the concept of low-energy electron

diffraction as a tool for surface structural investigations is outlined. Specifically, after a

brief historical overview on the development of LEED in combination with its key fea-

tures and challenges (Sec. 2.1.1), the typical experimental setup is illustrated (Sec. 2.1.2).

In the following section, the basics of surface-diffraction theory are presented in view of

the analysis performed in the time-resolved surface study of Chap. 6 (Sec. 2.2). For this

purpose, the materials comprising the sample system are introduced (Sec. 2.3).

2.1 An introduction to LEED

2.1.1 LEED historical context and key aspects

Low-energy electron diffraction is a technique for the structural investigation of crys-

talline surfaces based on the diffraction of electrons with low kinetic energy. The origins

of LEED go back to the 1920s, when C. J. Davisson and L. H. Germer directed a beam

of monochromatic, slow electrons at a nickel single-crystal under vacuum conditions [5].

They found that the recorded angular intensity pattern of the scattered electrons was

in agreement with the concept of diffraction of wave-like electrons, as had recently been

proposed by L. de Broglie [55]. At the same time, G. P. Thomson independently made

similar observations with faster electrons in a backscattering as well as in a transmission

geometry [56, 57].

7
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These findings mark the beginning of modern electron diffraction experiments such as

LEED, which then eventually developed into the powerful tool in surface crystallography

it is today. With respect to the technique of X-ray diffraction from crystals, which was

already well-established at that time1, the use of electrons presented a few important

advantages:

• X-rays are scattered relatively weakly by matter, resulting in large penetration

depths, making electron-based methods far more sensitive to the surface structure.

• The energy of electrons can be easily adapted to fit the investigated sample, which

is a far more involved task for most X-ray sources.

• Electronic and magnetic lens systems allow for a straight-forward manipulation

and tailoring of the electron beam, while X-ray optics are challenging to produce.

• For the typical electron energies used for highest surface sensitivity, the electron

wavelengths are comparable to the lattice spacing of most crystals, leading to large

scattering angles.

Despite these advantages, the subsequent development of LEED came to an untimely

end only few years later, owning largely to difficulties in meeting the requirements as-

sociated with the experimental setup. Specifically, high surface crystallinity as well as

cleanliness of the sample both necessitated operation under ultrahigh vacuum condi-

tions, which were not easily achievable at the time. Additionally, the lack of spatially-

resolved detector systems and computational resources made LEED recordings arduous

and time-consuming.

Only with the availability of suitable vacuum, electron sources and detection techniques

in the 1960s, LEED achieved a wide acceptance as a surface probing tool within the

scientific community. These advantages also in turn led to the development of the theo-

retical methods based on multiple scattering to allow for a quantitative understanding of

the recorded data. With the technological requirements met, LEED rapidly became one

of the standard methods for structure determination [59]. Nowadays, besides qualitative

investigations on the symmetry and periodicity of a surface, the analysis of I-V curves

and spot profiles in combination with robust numerical methods enables scientists to

1The first quantitative X-ray bulk structural analysis was performed in 1913, only one year after the
initial prove of X-ray diffraction [58].
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obtain detailed information about crystal defects as well as the precise atomic arrange-

ment within a surface unit cell. Moreover, LEED setups are routinely coupled to Auger

electron spectroscopy (AES), additionally yielding information about the chemical com-

position of surface contaminants [60].

2.1.2 Experimental Setup

LEED investigates the surface structure of a given crystalline sample by recording the

scattered diffraction orders. Commonly, as shown in Fig. 2.1A, a collimated electron

beam for sample probing is generated within a thermionic electron gun. The latter com-

prises a heated cathode filament and an electrostatic lens system, whereby LEED gun

currents are typical in the range of 10−4 and 10−8 A [61]. The emitted electrons are then

backscattered by the sample and subsequently recorded on a spherical cap-shaped fluo-

rescent phosphor screen. Since only the elastically scattered electrons carry the wanted

structural information [62], an energy filter is employed to deflect any inelastically scat-

tered electrons. The energy filter is most commonly made from a series of fine metal

grids with the inner ones set to a retarding electrostatic potential just below the initial

electron energy, allowing only elastically scattered electrons to pass.

Fluorescent screen,
energy filter

Sample

Thermionic
electron gun

Electrostatic
lens assembly

A B

Figure 2.1: Sketch of LEED principle and IMFP computation. A: Electrons generated
by a thermal emitter are focused on the sample by an electrostatic lens system. The
(elastically) backscattered electrons are then recorded on a fluorescent screen after
passing an energy filter (usually both shaped as a spherical cap). B: Universal curve of
IMFP for electrons in a solid [63]. Energy range with highest surface sensitivity below

1 nm indicated by arrows.

Due to the use of low-energy electrons, LEED is extremely surface sensitive and has

to be carried out under ultrahigh vacuum conditions to avoid sample contamination,

e.g. through oxidation or adsorbed molecules. A plot of the inelastic mean-free-path
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(IMFP) as a function of the kinetic electron energy is shown in Fig. 2.1B [63] (for

computation, see App. A.2). The minimal IMFP for most materials, including graphite,

is found at electron energies of about 50 eV. Nevertheless, very high surface sensitivity

with an IMFP below 1 nm is generally achieved for energies between 10 eV and 700 eV.

This sensitivity stems from the collective excitation of vibrational lattice (phonons) and

electron (plasmons) modes with energies between a few to some tens of electron volts

above the Fermi level [6]. These excitations significantly reduce the typical penetration

depth of impinging electrons by removing a substantial fraction of their initial kinetic

energy.

Depending on the investigated quantity, LEED is operated in the following ways:

1. For a qualitative analysis of the surface structure in terms of lattice spacing, pe-

riodicity and symmetry, merely a reciprocal scale has to be determined to access

these parameters directly. This can either be done by knowledge of the experi-

ment’s exact geometry or a reference diffraction pattern.

2. For a more quantitative analysis, the diffraction spot profile can be used to deter-

mine deviations from the ideal order, including the domain size (spot width) and

the existence of steps, facets or surface defects (shape) [64, 65].

3. In order to extract information about the precise internal unit cell structure, the

diffraction spot intensity is recorded as a function of electron energy (so-called I-V

curves) [66–68]. An iterative approach based on the comparison with a theoretical

model then leads to the atomic arrangement within the unit cell.

The combination of these analytical capabilities makes LEED into a versatile tool for

detailed structural surface characterization.

2.2 Diffraction pattern formation in two dimensions

Diffraction can be seen as a result of the interaction between an incoming, periodic wave

field and a likewise periodic array of scattering centers [6]. At large enough wave numbers

k0 of the incoming wave, the amplitudes of scattered waves are in-phase along certain

directions (diffraction condition), resulting in an observable intensity on the detector.
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Normally, not only one but a larger number of conditions along different scattering

directions are met simultaneously, resulting in the appearance of multiple beams and

the so-called diffraction pattern.

To obtain a mathematical description of the process, we are assuming a monochromatic

incoming plane wave as well as an infinite periodicity of the sample. This requirement

is usually an adequate assumption in two dimensions with at most a few layers in the

direction perpendicular to the surface, as well as an in-plane periodicity, which is limited

only by either the domain size of the sample or the coherently probed area.

a2

a1a1
*

a2
*

Figure 2.2: Sketch of a single unit cell (blue) with lattice vectors a1 and a2 in case
of a hexagonally symmetric surface atom arrangement. Dashed areas denote repeating

unit cells. Reciprocal lattice vectors displayed in red.

The surface periodicity is given in terms of a lattice. A lattice is defined as the simplest

arrangement of points which follow the fundamental periodicity of the crystal [6]. Indi-

vidual mesh cells of a lattice are called unit cells and carry the relationship between the

lattice and the actual atomic positions (Fig. 2.2). Unit cells are chosen according to be

the smallest possible repeating unit to fully describe the crystal structure. Depending

on the actual atomic arrangement, different choices of unit cells are often possible to

describe the same structure. A real space lattice is described by a set of two linearly

independent lattice vectors defining the boundaries of the unit cell.

The above described diffraction condition, namely that a net flux of scattered waves is

recorded along those directions, in which constructive interference occurs, is called the

Laue condition and can be written as (Fig. 2.3)

a(sin Θn − sin Θ0) = nλ, (2.1)
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where Θ0 and Θn are the angles of the incident and scattered waves, respectively, nλ

an integer multiple of the wavelength of the incoming wave, and a = |a| the lattice

parameter.

θ0 θna

s0

sn

n

Figure 2.3: Sketch of diffraction from a one-dimensional array of scatterers. Dashed
black line denotes “surface” normal with unit vector n. Incoming (outgoing) wave
vector labeled s0 (sn). Red and green lines denote path length contributions (a sin Θ0)

and (a sin Θn), respectively. Lattice parameter: a.

When written in terms of the unit vectors s0 and sn of the incident and scattered beam,

respectively, this expression becomes

a(sn − s0) = a∆s = nλ. (2.2)

Hence, the diffracted beam is determined by the normalized path length difference ∆s,

which is given by integer multiples of λ/|a|, a quantity proportional to the reciprocal

lattice constant. Specifically, the reciprocal lattice vectors, a∗i , are defined in terms of

the real space lattice vectors, ai, by the following relationship [1]:

a∗i = 2π
aj × n

|ai × aj |
. (2.3)

In Eq. 2.3, n is the unit vector normal to the surface as depicted in Fig. 2.3. The

relationship between real and reciprocal lattice vectors is often also expressed by a∗i aj =

2πδij leading to the pairwise perpendicular vectors illustrated in Fig. 2.2.

Any general translation vector, relating two reciprocal lattice points, therefore takes the

form

ghk = ha∗1 + ka∗2 = ∆s/λ. (2.4)

The integers h and k are called Miller indices.
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2.2.1 Ewald construction

The above-mentioned diffraction criteria can be visualized by a geometrical construction

called the Ewald construction. Before doing so, we will briefly assess the impact of two-

dimensionality on the diffraction process.

From Eq. 2.3 one can see that whenever a real space lattice vector is increased in length,

the corresponding reciprocal vector is decreased accordingly. Considering an isolated

two-dimensional system, the lattice vector normal to the surface is infinitely stretched,

hence the respective reciprocal lattice vector becomes infinitesimally small. This means

that parallel to this direction, interference effects are eliminated, allowing the beam to

be observed at all angles and energies. In the Ewald construction, this is expressed by

the existence of reciprocal lattice rods rather than points for the direction normal to the

surface (Fig. 2.4). As a consequence, a diffraction pattern of a quasi-two-dimensional

system is seen at nearly any incident angle and energy.

a1
*

a2
*

00
01

02
03 23 33 4313 20 10 00 10 2030- - -

k0

k00

k10

k10

-k10-k20

surface

|a1
*|

A B

Figure 2.4: Ewald construction. A: Reciprocal space of a periodic surface with rods
instead of points perpendicular to the surface. Numbers above rods: Miller indices.
Red arrows: reciprocal unit vectors. Green rectangle denotes single row depicted in B.
B: Two-dimensional Ewald sphere. Incoming wave vector k0 in green, back-scattered

(forward-scattered) wave vectors khk in red (blue) with h and k Miller indices.

In Fig. 2.4B, the Ewald sphere (in two dimensions) is shown for a single row of the

surface reciprocal lattice depicted in Fig. 2.4A. The incident wave vector k0 = 2π/λ

(green arrow) impinges on the sample surface and is scattered (red arrows). As stated

earlier (Sec. 2.1.2), we are only concerned with the elastically scattered waves, since they

carry the structural information of the sample system. If the scattered beams do not

lose energy, they must have the same length as the incident wave vector, thus lying on

a circle (sphere in three dimensions). Hence, the intersections of the circle of radius |k0|
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with the lattice rods fulfill both the condition of energy conservation as well as the Laue

diffraction condition.

The direct reflection from the incident beam is labeled k00 and usually has to be blocked

in order to observe the other, less intense diffracted beams. In the case of very thin

samples or high electron energies, not only reflected, but also transmitted beams will

be seen. Notably and in stark contrast to bulk diffraction, diffraction patterns will

not only be observable for certain energy-angle relations, but basically for any chosen

configuration, as long as the Ewald sphere’s diameter is larger than the reciprocal lattice

constant.

2.2.2 Overlayers and domains

Based on the concept of the Ewald sphere, the total number of diffracted beams with

their respective scattering angles can be determined for a given energy in combination

with the knowledge of the reciprocal lattice. While the bulk structure of crystals is

generally well known from x-ray crystallography, structural deviations of the surface from

the bulk are quite common. Typical deviations may stem from surface reconstructions

due to symmetry breaking and subsequent energy minimization or from the adsorption

of molecules [6, 69]. This individual surface reconstruction will hereby strongly depend

on the bulk structure, the type of molecules and bonds involved, as well as environmental

factors such as temperature and pressure.

In the most general case, the lattice vectors of the overlayer or superstructure can be

expressed in terms of the lattice vectors of the primary lattice [6]:

b1 = m11a1 +m12a2, (2.5)

b2 = m21a1 +m22a2. (2.6)

This can be rewritten in matrix notation as

b =

 b1

b2

 =

 m11 m12

m21 m22

 a1

a2

 = Ma. (2.7)
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Similarly, a relationship between the reciprocal lattices can be established

b∗ = M∗a∗, (2.8)

where the matrices M and M∗ are related by [6]

 m11 m12

m21 m22

 =
1

detM∗

 m∗22 −m∗21

−m∗12 m11∗

⇔M(M∗)T = 2π1, (2.9)

with 1 representing the identity matrix in two dimensions. Once the reciprocal lattice

vectors of the superstructure are extracted from the diffraction pattern, its real space

lattice vectors can in principle be computed. Nevertheless, this will only yield the

periodicity of the overlayer, but not the information about its atomic arrangement or

the registration to the surface. For an identification of the atom’s positions within the

unit cell, additional information needs to be included, e.g., from measurements of the

I-V curves of the superstructure spots or by prior knowledge about preferred bonding

sites of an adsorbate.
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Figure 2.5: Exemplary ambiguity in real-space superstructure lattice reconstruction.
Clean surface (overlayer) unit cell(s) in blue (red). Top panel: Interpretation as a single
2×2 overlayer structure. Bottom panel: Interpretation as a superposition of three 2×1
overlayer domains. Both real space superstructures shown in B1 and B2 result in the

same diffraction pattern depicted in A1 and A2.

Frequently, more than one orientation of the superstructure is abundant. Such regions,

which are comprising a certain orientation of the overlayer, are called domains or islands
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in case of very small coverage. Depending on the characteristic length scale of the

domains, the probed sample area, and the coherence length of the source relative to

each other, different results in term of observed diffraction patterns may be expected.

When the domain size is comparable to the investigated sample area, the probe beam can

in principle be scanned over the surface, yielding different diffraction patterns depending

on the underlying domain orientation. In contrast, a domain size well below the size of

the probed region leads to two distinguishable cases, depending on the ratio between

coherence length lc and domain size d:

1. lc < d: A superposition of diffraction patterns from different domain orientations.

2. lc > d: An interference between the diffraction signals from different domains.

Generally, the existence of domains can result in an additional ambiguity when inter-

preting the structure of the overlayer (see Fig. 2.5). In the diffraction pattern shown in

Fig. 2.5A1, the clean surface (full circle) and overlayer (empty circle) spots have been

identified. The overlayer is interpreted as a 2 × 2 superstructure (red unit cell), which

translates to the real-space periodicity shown in Fig. 2.5B1. Alternatively, the same

diffraction image (Fig. 2.5A2) can be understood as the superposition of three overlayer

domain types as indicated in the real-space image in Fig. 2.5B2.

However, there exist several options for resolving this ambiguity in the interpretation of

the diffraction patterns. For instance, the sample could be prepared in a way to allow

only certain domain orientations, e.g., by the introduction of step defects [70]. Similarly,

a piecewise scanning of small sample areas could reveal the abundance of domains.

When taking the diffraction pattern from surfaces or thin films with more than one

atomic layer, the scattering from successive crystal planes has to be taken into account.

In case of a rationally related overlayer, the lattice vectors can be expressed via Eq. 2.5

and 2.6.

An incoming beam s0 (see Fig. 2.3) then produces a series of diffracted beams following

the relation given in Eq. 2.4:

s0 − shk = λ(hb∗1 + kb∗2). (2.10)
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This beam is now incident upon another lattice plane, resulting in a new set of beams

shk − sfg = λ(fa∗1 + ga∗2),hence (2.11)

s0 − sfg = λ((f + hm∗11 + km∗21)a∗1 + (g + hm∗12 + km∗22)a∗2), (2.12)

with f, g, h, k,m∗xy integers. Therefore, the beams sfg must correspond to the same set

of angles as the shk set. This also means that no new diffraction beams from scattering

of successive planes will be introduced and multiple scattering in this case only shifts

the intensities between diffraction spots.

2.3 Graphene and graphene technology

Whereas surfaces and in particular atomically thin superstructures can be seen as quasi-

two-dimensional systems, free-standing 2D materials have not been available until very

recently [71]. And even though there is now a vast number of monolayer systems avail-

able, including various types of oxides (e.g. BSCCO (“bisko”), Bi2Sr2Can−1CunO2n+4+x)

or chalcogenides (e.g. molybdenum disulfide, MoS2), the material that continues to at-

tract the most attention is graphene, a single crystalline sheet of carbon atoms [18].

One reason for the popularity of graphene as a research material are its outstanding

electronic and mechanical properties as a consequence of its low dimensionality in com-

bination with its atomic and electronic structure [72]. Specifically, the extremely high

carrier mobility of graphene, even at elevated temperatures, motivates significant efforts

in the field of graphene-based electronics. This includes, for example, the development

of single-electron, high frequency transistors operating ballistically at room temperature

[73–76] as well as devices for electromagnetic interference shielding [77]. Graphene-based

applications are also under investigation in the fields of sensor development, biology and

medical sciences [19, 78]. To date, however, most of these applications are not within

immediate reach due to still existing challenges, mainly connected to the complexity of

large-scale manufacturing of high-quality graphene sheets [19].

In contrast, the first applications using graphene as a compound material, in particular

within a polymer matrix, are already available today [21, 79–82]. So far, applications



Chapter 2. Methods and concepts 18

include graphene-based touch-screens [83–85], coatings for thermal and electromagnetic

shielding and conductive ink2.

Yet, before graphene composite materials are discussed, a brief introduction to graphene

is presented here. In view of the analysis performed in this work, this introduction will

mainly focus on the structural properties of graphene. A broader and more general

review of graphene can be found in Ref. [19, 72].

2.3.1 Structural properties of graphene

Graphene consists of a single layer of carbon atoms arranged in a hexagonal lattice with

a two-atomic base (Fig. 2.6) [86]. The corresponding reciprocal lattice therefore also

exhibits a six-fold symmetry with reciprocal lattice vectors as depicted in Fig. 2.5A.

a1

a2

α

Figure 2.6: Hexagonal lattice of graphene (α = 120 ◦). Possible representation of the
unit cell indicated in blue with unit cell vectors a1 and a2. Atoms of the two sub-lattices
are shaded with dark and light gray. Possible grain boundaries for polycrystalline
graphene: Cut along [10] direction leads to zigzag (red), cut along [-12] direction leads

to armchair configuration (green). Reciprocal lattice as in Fig. 2.5A.

The four binding electrons of each carbon atom hybridize into three covalent sp2 bonds

and a single, delocalized π bond [87]. The carbon-carbon bond length is 1.42 Å, leading

to a unit cell vector length of |a1| = |a2| =
√

3 · 1.42 Å = 2.46 Å [88]. The covalent

bonding energy within the lattice plane is large (Einplane = 4.3 eV) compared to the

van der Waals bonding energy between adjacent, stacked sheets in the case of graphite

(Enormal = 0.07 eV) [87]. The successful exfoliation of graphite to isolated single sheets

of graphene can be attributed to this discrepancy [71].

2List of vendors of a selection of graphene-based applications can be found here:
http://www.understandingnano.com/graphene-companies.html.

http://www.understandingnano.com/graphene-companies.html
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Due to the honeycomb structure of the lattice, different types of grain boundaries for

polycrystalline graphene are possible. Grain boundaries can in principle strongly influ-

ence the mechanical and electronic properties of the material by the formation of defects

[89–91]. In the case of graphene, however, it was found that for large tilting angles the

incorporation of defects into the crystal lattice does not necessarily lead to a drastic

decrease in bond stability. In particular, tilting angles of 21.7 ◦ (zigzag configuration,

red dashed line and atoms in Fig. 2.6) and 28.7 ◦ (armchair configuration, green dashed

line and atoms in Fig. 2.6) lead to less initial strain on the carbon bonds compared to

smaller angles in the same configuration, and are therefore very stable [91].

2.3.2 Polymers in graphene technology

As previously mentioned, potential graphene applications do not only arise from the

use of pure graphene, but also from the combination of graphene with different other

materials. For the latter case, two major current research areas can be identified, namely

graphene-based heterostructures and composite materials.

Heterostructures describe a group of thin-film type materials, which are constructed by

consecutive stacking of individual two-dimensional crystalline sheets on top of each other

[18]. Whereas strong covalent bonds act within these sheets, the resulting heterostruc-

tures are held together by relatively weak van der Waals forces [92, 93].

The big appeal of such structures stems from the idea to atomically tailor material prop-

erties. With the large amount of readily available 2D crystals [18, 19], this provides for

a seemingly endless number of possible combinations. Specific efforts are, for example,

dedicated to find high temperature superconductors [18] or substituents for silicon-based

electronics [94].

A conceptually similar approach to heterostructures is the manufacturing of compos-

ite materials. Here, too, the modification of material properties is in the foreground,

which is commonly accomplished by immersion of graphene sheets or flakes (so called

nano-platelets) in a polymer matrix [21, 79, 95–97]. From the technological point of

view, graphene-based composite materials therefore offer one great advantage compared

to heterostructures: Since they do not necessitate layer-based, large-area, high-quality,
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single-crystalline graphene, but mostly rely on nano-platelets of few to few tens of mi-

crometers in diameter, the production process is greatly facilitated. At very low volu-

metric fractions of graphene, significant increases in tensile strength, Young’s modulus,

as well as thermal and electric conductivity have been reported [98]. The resulting

features make these new materials interesting for a wide range of applications, as, for

example, conductive plastics and ink as used in electromagnetic interference shielding

[77], or implementation into energy conversion [99], energy storage [100] and non-volatile

memory devices [101].

Polymers, including poly(methyl methacrylate) (PMMA) and polycarbonate (PC), are

commonly used to stabilize the two-dimensional crystal sheets upon transfer from the

substrate used in the preparation process [102] (Sec. 6.1.1). After the transfer process,

the thin polymer film is removed by organic solvents such as acetone and isopropanol

[103]. However, the strong physisorption of the polymer in contact with the graphene

results in a very resistant ultrathin residual polymer layer [104, 105]. Several methods

have been employed to remove this residual layer, e.g. changing the polymer [106],

annealing at high temperatures [105], as well as polymer-free, so-called direct transfer

[107]. However, to date, none of these approaches has resulted in large area, high quality

graphene, stimulating additional interest in the investigation of the intimate connection

between these two unlike materials [21, 108, 109].

2.3.3 Structural properties of PMMA

PMMA is a lightweight plastic, which is most commonly known as acrylic glass (trade

name: Plexiglas). Low cost and easy handling as well as the lack of potentially harmful

bisphenol-A, as found in PC, allow PMMA to be used in many applications in medical

technologies or as a resist in semiconductor electron beam lithography.

Structurally, this polymer consists of long chains of methyl-methacrylate (MMA) repeat

units as shown in Fig. 2.7A and B. The molar mass of MMA is 100.12 g/mol, while the

total polymer’s molar mass strongly depends on the overall chain length, and is usually

in the range of 5 · 104–106 g/mol.

PMMA molecules can display different tacticity, which describes the relative orientation

of the side groups within the polymer. Possible configurations are isotactic (Fig. 2.7C),
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Figure 2.7: Structure and tacticity of PMMA. A,B: 3D model and structural formula
of repeating monomer unit MMA. C-E: Sketch of isotactic, syndiotactic and atactic
configurations, respectively. R represents the functional (side) group of the monomer.

syndiotactic (Fig. 2.7D) and atactic (Fig. 2.7E). Tacticity strongly influences the physical

properties of a polymer, including the degree to which it exhibits crystalline order.

STM as well as AFM studies have shown that thin PMMA Langmuir-Blodgett films

on mica and graphite display long-range crystalline order independent of tacticity, in

contrast to PMMA behavior in bulk [110, 111]. This behavior is in principle well known

for other types of polymers, too, when subjected to a strong potential template [112, 113].

In the case of graphite and graphene, the adsorption of polymer chains to the surface is

facilitated via van der Waals forces, similar to the bonding between consecutive graphene

planes [114].

Atactic and syndiotactic PMMA molecules both arrange in a folded-chain configuration

with little to no backbone crossovers [110]. The chain-to-chain distances reported in

the literature are 5.0(1.0) Å and 4.8(1.9) Å, respectively, with a repeating monomer

unit length of about 2.5 Å in direction of the polymer backbone. In the case of isotac-

tic PMMA, linear as well as helical arrangements are found with a somewhat smaller

interchain distance of the latter of 3.7(0.8) Å [110, 115, 116].

Because of the sensitivity of PMMA to electron irradiation, the formation of crystalline

folded-chain conformations is challenging to observe in a regular transmission electron

microscope (TEM), because of the relatively high electron current density of such sys-

tems. For ULEED, a quantitative analysis of the degradation behavior can be found in

App. B.4.





Chapter 3

Aspects of ultrafast LEED

In this chapter, the potential of ultrafast LEED for investigations with atomic-scale

resolution is discussed. To motivate the development of an ULEED setup, the field of

ultrafast science is briefly introduced with focus on the time-resolved study of quasi-two-

dimensional systems (Sec. 3.1), while particular challenges in such a setup are assessed

in the subsequent section (Sec. 3.1.1). Next, an introduction is given into common

techniques employed in ultrafast imaging and diffraction. In particular, the pump-probe

scheme is described (Sec. 3.2), followed by a brief presentation of different electron

sources evaluated with respect to their capability to be implemented into a time-resolved

LEED experiment (Sec. 3.3). Lastly, the characteristic quantities of a pulsed electron

source based on a nonlinearly driven nanometric photocathode are determined (Sec. 3.4)

and discussed in view of an application in ULEED (Sec. 3.5).

3.1 Motivation

The field of ultrafast science is intimately connected to the development of mode-locked

laser sources in the 1960s [117], which ultimately allowed for the observation of extremely

short-lived phenomena [118, 119] on time scales below those accessible via electronic

means [47, 120].

In 1984, Williamson et al. investigated the fluence-dependent melting of a thin aluminum

sample by diffraction upon illumination from a strong laser pulse, using electrons with

a kinetic energy of 25 keV [121]. And even though for higher fluences, the achieved

23
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pulse duration of 20 ps only allowed for an observation of the loss of order in the sample

at the time, the applied methodology to study ultrafast phenomena remained mostly

unchanged until today. Specifically, laser-driven photocathodes in combination with

a pump-probe scheme are still the basis for the majority of modern ultrafast electron

diffraction and imaging experiments [33, 122, 123].

Since then, a multitude of techniques with ultrahigh spatio-temporal resolution have

emerged, including time-resolved photoelectron spectroscopy [124, 125], ultrafast x-ray

spectroscopy [126, 127] and crystallography [40, 41, 128], high-energy electron diffraction

[33, 34, 129] and microscopy [36, 37], as well as, relatively recently, terahertz STM

(THz-STM) [130]. The type of probe pulse in combination with the geometry of the

experimental setup determine, which quantities of a system can be accessed.

Generally, compared to the large number of techniques with atomic resolution available

for the observation of ultrafast phenomena in bulk media, accessing dynamics at surfaces

with similar resolution has proven to be challenging. Time and angle-resolved photoe-

mission spectroscopy (trARPES) [125] and THz-STM can be, for example, employed to

map the electronic structure with atomic resolution and high surface sensitivity. For

the investigation of the atomic structure at surfaces, mainly two pathways are currently

followed: On the one hand, extremely thin films are probed by ultrafast TEM (UTEM)

[131] and ultrafast electron diffraction (UED) [132] in transmission. To obtain a strong

surface signal, a grazing incidence geometry is alternatively applied as in time-resolved

XRD [133] and RHEED [44] studies.

Existing time-resolved surface studies have demonstrated the richness of ultrafast phe-

nomena in quasi-two-dimensional systems excited to states far from equilibrium, in-

cluding phonon confinement effects in ultrathin films [134], the relaxations of surface

reconstructions and complex superstructures in monolayer adsorbate systems [44, 135],

surface pre-melting [136], and the formation of warm dense matter as a result of a strong

coupling between electronic and lattice systems [137].

But despite recent accomplishments, e.g., in further increasing the temporal resolu-

tion of the experimental techniques by pulse compression schemes [138–140] and tilted

wavefront setups [35, 45], the inherent requirements to achieve high surface sensitiv-

ity make quantitative analysis difficult. Particular challenges are the strong influence

of the surface morphology, large probing areas, and the mapping of only a restricted
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angular fraction of reciprocal space in grazing incidence-based methods, as well as the

preparation of ultrathin samples to avoid large background contributions in ultrafast

transmission experiments.

LEED equipped with ultrafast temporal resolution, on the other hand, would naturally

offer extremely high surface sensitivity in combination with a well-developed experimen-

tal and theoretical framework to access the atomic structural evolution at surfaces.

3.1.1 Particular challenges of ultrafast LEED

An implementation of ultrahigh temporal resolution into a LEED system using a laser-

pump / electron-probe scheme as described below is mainly limited by the capability

to deliver short electron pulses at low energies [46, 47, 141, 142]. In particular, elec-

trons with kinetic energies typically employed in LEED are highly susceptible to spatio-

temporal broadening from velocity dispersion and space charge effects.

A temporal expansion by Coulomb repulsion within the bunch can, for example, be

avoided by operating in the one-to-few electrons per pulse regime, while integrating over

a large number of electron pulses. Alternatively, electron pulses can be compressed,

e.g., within a radio-frequency cavity [138], to improve the temporal resolution. Yet,

considering the proof-of-concept character of the ultrafast LEED developed in this work

as well as the confined dimension of a LEED setup, a complex pulse compression scheme

as employed in high-energy electron diffraction experiments seems to be too involved

at this point in time. Hence, the ultrafast LEED setup in this work is based on the

stroboscopic approach introduced in the next section, avoiding space-charge effects by

employing only a relatively small electron number per pulse.

In terms of dispersive broadening caused by different initial kinetic energies of the emit-

ted electrons, several solutions have been suggested. However, many of the proposed

ideas make compromises in either low signal intensity [142] or grazing incidence geom-

etry [143], which ultimately complicates the quantitative analysis, as well as limits the

achievable pulse duration.

As an alternative approach, electron sources based on the nonlinear emission from nano-

metric photocathodes have been proposed [48, 49, 51–54]. In the following, after a brief
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description of the pump-probe scheme used in ultrafast imaging and diffraction, an in-

troduction to the operation principle of tip-based photocathodes is given as well as a

more detailed analysis in terms of their applicability with respect to an ultrafast LEED

experiment.

3.2 Ultrahigh temporal resolution via pump-probe

Ultrafast temporal resolution is commonly achieved by so-called pump-probe schemes,

as illustrated in Fig. 3.1. The sample is pumped by a short laser pulse (red) and subse-

quently probed by an electron pulse (green) after a given temporal delay. In particular,

the electron pulse is generated within a fast photocathode, which is driven by part of

the same laser pulse (purple) employed also for the sample excitation.
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Figure 3.1: Sketch of a laser-pump / electron-probe scheme. The relative arrival time
is controlled by changing the optical path length of the laser pump pulse (red).

The challenge of realizing exact timing of the relative arrival of (laser) pump and (elec-

tron) probe pulses is solved by introducing a variable additional optical path length in

either the pump or the photoemission arm of the laser. In particular, a routinely con-

trollable additional optical path length of 1 µm translates into a temporal shift of 3.3 fs,

thus allowing for extremely high temporal accuracy.

Depending on the experimental settings, this scheme can be operated to obtain informa-

tion in real or in reciprocal space. Diffraction techniques provide direct insight into the

structure of a system by measuring the specimen’s atomic spacings, whereas real space

images can be employed to identify phase and grain boundaries, impurities, dislocations

or defects in the sample [43, 144]. The requirements in terms of electron sources for
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both cases are similar though, and depend strongly on the investigated sample as well

as the employed experimental geometry. For imaging as well as for diffraction, two main

modes of operation can be identified.

The single-shot approach is mainly used for the investigation of irreversible dynamics,

allowing for an observation of the dynamics as they occur [139, 145]. In order to extract

a significant amount of information from the sample with a single shot, probing pulses

with about 107 electrons per pulse are required to obtain an image. Such dense electron

clouds are highly susceptible to internal Coulomb repulsion, which eventually limits

the currently achievable temporal resolution to few tens of nanoseconds in TEMs [146]

and some hundreds of femtoseconds for UED [147]. Several techniques, such as radio-

frequency compression as well as relativistic electron energies, are commonly employed

to reduce temporal pulse broadening [148–151].

In an alternative operation mode, the so-called stroboscopic or single-electron approach,

individual images are formed by integration over a large number of probing pulses in-

cluding only a small number of electrons in each one [152]. Hence, space charge effects

can be mainly avoided, allowing for a temporal resolution down to few hundreds of

femtoseconds in imaging as well as diffraction. Compared to the single-shot approach,

comparable or even higher temporal resolution can be achieved with considerably less

involved experimental setups [146]. However, a necessary requirement to the investi-

gated dynamical process is its reversibility on a time scale determined by the repetition

rate of the driving laser system, which is somewhat limiting the accessible processes and

sample systems. On the one hand, generally reversible systems will most likely relax to

their initial state in between consecutive pump pulses, given the ultrafast nature of the

investigated processes and commonly employed laser repetition rates in the kHz to MHz

regime. On the other hand, the sample must be able to withstand not only about 106

to 108 such pulses, but also an equal number of photo excitations, potentially leading

to a degradation of the sample, e.g. by accumulative heating [139]. These effects may

be particularly severe when studying organic molecules, as for example proteins or poly-

mers. Then again, the life span of very sensitive samples might strongly benefit from the

small duty cycle of the experiments, allowing for the dissipation of heat and charge in

between consecutive excitations (The sample degradation for the polymer investigated

in Chap. 6 is described in App. B.4.).
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In order to further increase the experimental capabilities of both approaches, much effort

is currently devoted into the development and modification of novel electron sources

[43, 131, 153].

3.3 From continuous to pulsed electron sources

3.3.1 Thermionic electron sources

Electron sources as used in experimental setups such as LEED and TEM are usually

operated by heating a metal filament connected to a sharp metal tip. By raising the

temperature of the material, the Fermi-Dirac distribution of the electron gas is broad-

ened, eventually allowing electrons from the high-energy tail to overcome the potential

barrier and subsequently be emitted into the vacuum [154]. These so-called thermionic

electron sources rely strongly on the thermal stability with respect to the work function

of the employed materials, and are therefore commonly made from tungsten (W). Alter-

natively, Lanthanum hexaboride (LaB6) electron sources are frequently used in TEMs,

because of the material’s very low work function (around 2.7 eV) in combination with a

high melting temperature (2210 ◦C)[62].

3.3.2 Cold and Schottky field emitters

However, the operation at temperatures necessary for thermal emission strongly reduces

the lifetime of thermionic electron sources to at most a few hundred hours [62]. To lessen

the strain on the material, different approaches are pursued: In order to decrease the

necessary thermal energy of the electrons for the emission process, the effective work

function Φeff can be decreased by the application of an electric field F to the emitter

[155, 156]

Φeff = Φ−

√
e3F

4πε0
, (3.1)

with Φ the material’s work function, e the electron charge and ε0 the vacuum permit-

tivity. Specifically, an applied electric potential reduces the effective image potential of

the electron cloud at the surface of the metal and hence the work function.
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The idea of so-called cold field emission guns is to employ the lightning rod effect of

sharp metal tips to locally enhance the electric field, resulting in strongly localized

electron emission at the tip apex [48, 157–159]. Particularly, for a given potential U and

a tip radius of curvature r, the enhanced field strength is given by F = U/(kr) , with

k ≈ 5− 6 a geometrical factor depending on the shape of the tip and its distance to the

anode [160, 161]. The typical radius of curvature of employed field emission tips is of

the order of about 100 nm, leading to significant field enhancement. In addition to the

operation at much lower temperatures, which significantly increases the source’s lifetime,

field emission guns exhibit a narrower electron energy spectrum [62]. Furthermore, the

smaller emission area leads to more favorable beam properties, in particular an increased

brightness of the source (see Sec. 3.4.3) as well as a higher transverse coherence (see

Sec. 3.4.1).

For so-called Schottky field emitters, tungsten tips are additionally coated with materials

such as zirconium dioxide (ZrO2) to locally lower the work function [62, 162]. In con-

trast to cold field emitters, which are normally operated at room temperature, Schottky

field emitters are operated at around 1800 K. They usually feature higher total emission

currents, but lower emission current densities due to their larger cathode radius. There-

fore, even though Schottky field emitters have the advantages of not requiring frequent

cleaning and as strict vacuum conditions, cold field emitters offer higher brightness and

smaller emittance.

3.3.3 Pulsed electron sources

To achieve precise temporal control over the emission process, pulsed electron sources

are commonly driven by intense laser pulses [150, 163–165]. Most state of the art fem-

tosecond photocathodes are based on the classical photoelectric effect, i.e., for moderate

light intensities, electron emission occurs upon absorption of a photon with an energy

~ω above the work function Φ of the material (Fig. 3.2A). This mode of operation

is usually realized in pulsed electron sources by the illumination of a thin metal film

and a subsequent acceleration of the emitted electrons within a strong electric potential

[33, 143, 166]. However, this approach is challenging to implement in LEED-type experi-

ments, since pulses of low-energy electrons are very susceptible to dispersive broadening

even at narrow electron energy distributions and the absence of space charge effects.
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Instead, as will be discussed later (Sec. 5.3.2), pulsed electron emission within a field

emitter geometry can be used to strongly minimize these effects.
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Figure 3.2: Comparison of linear and nonlinear photoemission. A: Sketch of the
classic photoelectric effect. Photon with energy above metal’s work function (~ω > Φ)
raises electron energy from Fermi-level (εF ) to above vacuum level (εV ); electron is
emitted. Potential decay indicated by blue dashed line. B: Sketch of multiphoton
photoelectric effect. Single photon energy below work function of the metal (~ω < Φ),
vacuum potential barrier energetically overcome by absorption of multiple photons. C:
Tunnel assisted multiphoton photoelectric effect aided by static field F0 to lower the
work function (Schottky effect) to Φeff = Φ − ∆Φ (dashed green arrow). D-F: SEM
image of sharp gold tip (D), shadow image (E) and strongly localized electron signal

(F) of same tip, when scanned through the laser focus. [167]

The translation of the field emitter working principle is not directly transferable to

pulsed operation. In particular, an illumination of a sharp needle-type photocathode

with photons of energy ~ω > Φ does not lead to strongly localized emission as described

above. In this case, the size of the emission area is given by the diameter of the laser

pulse on the photocathode and therefore effectively by the used wavelength.

In order to accomplish selective electron emission, nanometric sources can instead be

illuminated by light pulses of photon energies below the material’s work function, eventu-

ally resulting in nonlinear (multiphoton) photoemission for high enough light intensities

(Fig. 3.2B). In this case, several photons with ~ω < Φ are absorbed to deliver the nec-

essary energy to overcome the potential barrier for electron emission. However, the

absorption of multiple photons by the same electron requires very high optical field am-

plitudes. High fields can be reached by intense, short laser pulses in combination with

the above mentioned field enhancement effects at regions of small radius of curvature

[50, 168, 169]. This results in a highly selective emission process for a polarization of

the driving light field along the tip axis, ultimately leading to an extreme localization of

the electron emission site (Fig. 3.2D-F)[157, 170, 171]. Furthermore, electron emission

can be supported by the additional application of a static potential to the tip to reduce

the effective work function (Fig. 3.2C) [49, 50, 172].
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This description holds, as long as the light fields are still significantly smaller than

the binding fields of the material. The relationship between the strengths of light and

binding energy is usually quantified by the Keldysh parameter γ, defined as [173]

γ =

√
Φ

2Up
with (3.2)

Up =
e2F 2

2ε0cmeω2
, (3.3)

where the latter is the ponderomotive potential of the light field F oscillating at an

frequency of ω. Physically, Up describes the cycle-averaged quiver energy of an electron

(charge e, mass me) in an oscillating electromagnetic field F . For γ � 1, the light field

can be seen as a small perturbation of the binding potential (multiphoton regime), while

the latter is dominated by the former in case of γ � 1 (optical field emission or strong-

field regime). A more detailed treatment of electron emission within the strong-field

regime can be found in Refs. [174, 175] and references therein. The potential operation

of an electron gun in the optical-field emission regime is briefly discussed at the end of

Chap. 5 (Sec. 5.4.3).

3.4 Beam properties of tip-based electron sources

In the following, an estimate of the characteristic quantities of the proposed tip-based

electron source will be given, namely coherence (Sec. 3.4.1), emittance (Sec. 3.4.2),

brightness (Sec. 3.4.3) and temporal resolution (Sec. 3.4.4). Furthermore, a performance

comparison with state of the art pulsed electron sources is provided (Fig. 3.3).

(-) (-)

(+) (+)

A B

ħω ħω

Figure 3.3: Sketches for planar (A) and tip-based (B) electron gun geometry. [176]
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3.4.1 Coherence

In an electron diffraction experiment, the pattern on the detector results from the super-

position of electron wave packets, which have been scattered by the crystal lattice of the

sample. The coherence describes the phase correlation within an ensemble of electron

wave packets and hence their ability to interfere1.

Generally speaking, there are two types of coherence, namely a longitudinal (temporal)

coherence, and a transverse (spatial) coherence (Fig. 3.4)[177]. The former is a measure

of correlation between the phase of the wave in time and in propagation direction.

A phase shift can be introduced, for example, by different initial kinetic energies of

the electrons. In a typical diffraction experiment, the longitudinal coherence length

is much larger than the spacing between atoms in the direction of propagation and

therefore poses no limitation for the observation of diffraction spots, especially in quasi-

two-dimensional systems [140]. A small longitudinal coherence length will mainly result

in an incoherent superposition of diffraction spots corresponding to different energies

and hence contributes only to the overall intensity of the diffraction pattern [178].

t

Effective pulse
envelope Pulse durationElectron

pulse
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Transverse
coherence

0 0

Pulse
diameter

Figure 3.4: Transverse (spatial) and longitudinal (temporal) coherence of electron
pulses. Due to spatial and temporal jittering, pulse diameter and duration are deter-
mined by the effective pulse envelope. Relative laser pulse timing indicated at t = 0.

Image adapted from Ref. [140].

In contrast, the transverse coherence is a measure for the ability of scatterers to inter-

fere when separated normal to their direction of propagation. It ultimately limits the

maximum spatial resolution of a diffraction experiment, i.e., the achievable sharpness of

the recorded Bragg peaks [177]. Ideally, the sharpness is only determined by the spatial

extension of the sample region within which scattered electrons from the source can still

constructively interfere. Therefore, the coherently probed sample region should be as

1In a more general definition as used in Ref. [177], the coherence is a measure for the correlation
between quantities of an optical field.



Chapter 3. Aspects of ultrafast LEED 33

big as possible, which can be a limiting factor especially in the case of very large unit

cells, e.g., from long organic molecules [139].
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Figure 3.5: Sketches of interference experiments. A: Classical Young’s interference
setup displaying two optical paths from points Q1 (red) and Q0 (blue) of the source.
B: Setup with additional lens system at position R′. Beams between R′ and the screen

are assumed to propagate parallel. [179]

Figure 3.5A illustrates the setup of a classical interference experiment with an extended,

incoherent (electron) source of size L. here, incoherent means that there is no fixed phase

relation along the source’s spatial extent. Instead, the source can be seen as an array

of independent point sources. For simplicity, a double slit of dimension d is taken to be

the scattering object at distance R from the source. The path of waves emitted from

a point Q0 on the optical axis and the resulting interference pattern on the screen are

indicated as blue lines. Since no path length difference occurs, the intensity maximum

is found on the optical axis (see I(Q0)).

The propagation paths r1 and r2 of electrons from the outmost point Q1 of the source to

the scattering object, and subsequently to the screen, are marked as red lines. In contrast

to emission from the optical axis, the path length difference for electron emitted from

Q1 is non-zero and instead given by [177]

|r2 − r1| ≈
dL

R
. (3.4)

For Eq. 3.4, it was assumed that the extent of the source(Q1Q2) is small compared

to the distance R to the scattering object. As a result from the off-axis emission, the

intensity pattern I(Q1) is shifted with respect to the one generated from Q0. Specifically,

destructive interference is obtained when the intensity maximum of Q0 coincides with

the intensity minimum of Q1 or vice versa. In this case, the path difference would be

exactly half the electron wavelength.
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This consideration allows for the determination of the maximum extent of the sample

area within which scattered electrons can interfere constructively:

dc =
λR

2L
. (3.5)

Usually, electrons are not propagating freely to the sample, but are subject to colli-

mation, e.g., by an electrostatic lens system at a distance R′ < R. For the purpose of

generality, we assume that the propagation paths of electrons from the same point of the

source are parallel after the source (Fig. 3.5B), hence R = R′ in Eq. 3.5. As can be seen

from Eq. 3.5, dc is inversely proportional to the spatial extension of the source. With

the emission area of a tip source of the order of its radius of curvature (about 10 nm),

a comparison to a planar photocathode, where the source size is determined by the size

of the laser focus (about 10 µm), yields an increase of about three orders of magnitude

in the transverse coherence. This would translate in a six orders of magnitude larger

area of unit cells within the coherently illuminated sample surface, potentially leading

to significantly sharper Bragg peaks [180]. However, the present discussion is not taking

into account aberrations caused by the lens system or a limited resolution of the detector

assembly.

For parameters typically employed in LEED experiments (λ = 1 Å, R′ = 1 mm) a

maximum transverse coherence length of few tens of micrometers can be theoretically

achieved within the tip geometry. In comparison, standard LEED optics only exhibit

transverse coherence lengths of 10–20 nm at most [61]. Consequently, the enlarged

coherence would potentially allow not only for sharper diffraction patterns in general,

but also for the investigation in deviations of long range order on the micrometer scale

not observable with current electron sources.

3.4.2 Emittance

As mentioned in the previous section, electron beams are not monochromatic, but have

a finite kinetic energy spectrum. The reasons for this energy spread are manifold and

include emission from different energy levels within the metal, modifications in the ef-

fective work function of the particular emission site, and in case of photoemission also

non-monochromatic photons from the driving source. The emittance provides a figure of

merit for the beam quality by relating it to the phase space volume or the beam’s width
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and divergence. Since the exact definition of the emittance is not congruent throughout

the literature, we will follow the convention of M. Reiser [181] and Dowell et al. [156]

for this purpose.

The root-mean-square (RMS) emittance as a measure of the pulse’s spatial extension

and divergence and is defined as

εRMS =
√
〈r2〉〈r′2〉 − 〈rr′〉2, (3.6)

with 〈. . . 〉 denoting the average value of the quantity in brackets, r the radial position

in cylindrical coordinates, and r′ = dr/dz the slope along the direction of propagation.

The cross term 〈rr′〉2 encompasses the correlation between the location of emission and

the transverse momentum and is zero at the waist of an ideal uniform beam. As a result,

the RMS emittance is a measure for the minimal achievable cross section σr =
√
〈r2〉 of

the beam, which is given by

σr = εRMS/σr′ , (3.7)

with σr′ =
√
〈r′2〉 the RMS divergence of the electron beam.

For a flat photocathode, it is assumed that the emission site and the transverse mo-

mentum of the emitted electron are generally not correlated, hence 〈rr′〉2 = 0. This

consideration leads to the following expression for the RMS emittance εn, normalized

by the relativistic factor β/
√

1− β2 (with β = ve/c and ve and c the electron and light

velocity, respectively) to compensate for different electron pulse operation energies:

εn ≈ σr
√

~ω − Φeff

3mec2
. (3.8)

Here, ~ω−Φeff is the excess energy from the photoemission process with Φeff as given in

Eq. 3.1 and me the electron’s mass. For electrons photoemitted from a tungsten surface

within a well-adjusted two-photon process (excess energy: 0.1 eV) from an emission site

of 20 µm diameter, Eq. 3.8 would result in a normalized RMS emittance of about 2.5

µm mrad, which is in the typical range of values for such a emitter [166, 182].

In case of a needle emitter, the electron momentum is correlated to the emission site

on the apex, hence 〈rr′〉2 6= 0. Consequently, the effective source size in a tip geometry

is smaller than the radius of curvature of the emission site. A pulsed electron source

based on a nanometric needle-type emitter with a drastically decreased emission area is
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therefore beneficial in terms of the achievable emittance. Specifically, S. Strauch [182]

performed a detailed FEM simulation-based analysis and comparison of the emittance

and brightness of a pulsed tip-based electron source with respect to flat cathode emitters

in the framework of the development of an ultrafast TEM setup. According to the nu-

merical findings in her work, the achievable emittance in such a geometry is significantly

smaller than in the case of the flat emitter type at a comparable brightness.

3.4.3 Brightness

Even though the emittance is a valuable figure of merit for the beam quality, it can

theoretically be arbitrarily reduced by the placement of collimating apertures lessening

the transversal spread. This would of course severely diminish the overall current avail-

able for imaging and diffraction. Consequently, and in perspective of the instrument’s

capability to resolve atomically small features within a reasonable time, the current has

to be taken into account when characterizing the electron beam. The parameter used to

describe this requirement is the brightness B, which is the current density J = dI/dA

per unit solid angle dΩ,

B =
dI

dAdΩ
. (3.9)

The brightness averaged over the whole trace space volume can be expressed in terms

of the RMS emittance εn via

B =
I

8π2ε2n
. (3.10)

As in the case of the emittance, the brightness can be arbitrarily increased when min-

imizing the solid angle of emission by the application of high acceleration voltages.

Therefore, the brightness is usually normalized by the relativistic parameter (βγ)2 sim-

ilarly to the emittance or in terms of the accelerating voltage2 U . The so called reduced

brightness then reads

Br =
B

U
=

I

8Uπ2ε2n
. (3.11)

Typical values for static thermionic electron guns are of the order of 106 A/Vm2sr, those

for field emission guns even of 1012 A/Vm2sr [62, 162, 182, 183]. In comparison to these

static sources, pulsed electron guns have the disadvantage of a very small duty cycle,

2(βγ)2 ≈ 2 · 10−6U
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thus reducing the average brightness by orders of magnitude, making it difficult to judge

their applicability.

Therefore, we compare the reduced brightness to be expected for an ultrafast tip-based

emitter with those of flat state of the art femto- and picosecond photocathodes, which

have already been successfully employed in time-resolved imaging and diffraction exper-

iments. Values for the latter range between 10−4 and 103 A/Vm2sr [147, 166, 184].

For the computation of the reduced brightness in a needle-type geometry, we assume

an emission area similar to the apex surface of a typical tip of A = π(10 nm)2, while

the solid angle of emission without a lens system is about Ω = 0.3 sr [50]. With an

acceleration potential of U = 100 eV and an average electronic current of I = 1 pA, the

achievable brightness is of the order of 102 A/Vm2sr, hence within the upper region of

values from flat pulsed electron sources.

However, this estimate does not take into account that for a tip-geometry, the transverse

momentum is correlated to the emission site, which leads to a smaller effective source

size (see Sec. 3.4.2). Hence, the actual experimental brightness of such sources might be

significantly higher.

3.4.4 Temporal resolution

The defining quantity of any time-resolved experiment is of course its achievable tempo-

ral resolution. Hence, a comparison between the planar and the tip emitter geometries,

as sketched in Fig. 3.3, is undertaken based on a simple analytical model (For details,

see App. A.1).

Specifically, the pulse duration τpulse of an electron pulse with energy spread ∆E and

after propagation of a distance d in the field of a plate capacitor with acceleration voltage

U can be expressed as

τpulse =

√
2me

eU
d
(√

eU + E0 + ∆E −
√
eU + E0 −

√
∆E

)
, (3.12)

with me and e the electron mass and charge, respectively, and E0 the initial mean

kinetic energy of the electron after the emission process. In the case of an electron

accelerated from a nanometric tip under the same conditions, the pulse duration can be



Chapter 3. Aspects of ultrafast LEED 38

approximated as

τpulse =

√
me

2
d

(
1√

eU + E0 + ∆E
− 1√

eU + E0

)
. (3.13)

Figure 3.6 displays the electron pulse durations in both geometries as a function of the

initial energy spread for three different low electron energies. In the case of the flat

cathode geometry (Fig. 3.6A), electrons are drawn from an emission area comparable

to the size of the laser focus, which is usually a few tens of micrometers in diameter.

Subsequent linear acceleration towards the anode (denoted with (+) in Fig. 3.3A) leads

to typical pulse durations in the range of few tens to more than hundred picoseconds

after a propagation distance of 2 mm (Fig. 3.6A).

A B

Figure 3.6: Estimated temporal resolution of (A) a flat and (B) a tip-based pho-
tocathode as a function of electron energy spread ∆E. Solid red, dashed green, and
dotted blue lines for final electron energies of 100 eV, 300 eV, and 450 eV, respectively.

Propagation distance: 2 mm. Model is described in detail in App. A.1.

In contrast, in the case of nanometric field emitters, nonlinear photoemission leads

to selective emission from the tip apex (Fig. 3.6B). Electrons are then accelerated to

velocities close to their final velocity within few tens of nanometers. This minimizes

the propagation time and strongly suppresses dispersive pulse broadening, resulting in

pulse durations more than 20 times shorter as compared to the model based on linear

acceleration.

3.5 Summary

The concept of an electron source based on nonlinear photoemission from a sharp metal

tip has been introduced. Subsequently, the characterizing quantities, namely emittance,

brightness, coherence and temporal resolution have been estimated for such an electron

gun within a time-resolved LEED experiment.
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It has been found that the average brightness of pulsed electron sources in general is

strongly reduced in comparison to continuous emitters due to their extremely shot duty

cycle. However, when applied within a stroboscopic approach, the brightness is of less

importance than in the single shot mode, since it can be potentially compensated for by

longer integration times. Therefore, a high brightness is mainly important for the fast

acquisition of high quality images. Compared to flat state of the art photocathodes, a tip-

based geometry offers comparable or slightly higher brightness at an reduced emittance,

allowing for an increased focusability of the electron pulses. In terms of the achievable

spatial resolution, the extremely localized area of emission of nanometric photocathodes

leads to a high transverse coherence, making such sources ideal for the investigation of

systems with large unit cells, e.g., complex organic molecules.

Most importantly, the achievable temporal resolution is strongly enhanced in compari-

son to capacitor-type geometries. This effect is especially pronounced at low energies:

Electrons emitted from the tip surface are basically instantly accelerated to velocities

very close to their final velocity, hence significantly reducing the time of flight and their

susceptibility to dispersive broadening. Additionally, the tip-geometry is less susceptible

to space-charge effects due to quickly diverging trajectories of emitted electrons.

In conclusion, nonlinear driven nanometric photocathodes offer excellent pulse properties

in terms of achievable spatial and temporal resolution as well as overall current even at

low electron energies, making them ideal candidates for the application in ultrafast

imaging and diffraction experiments including ULEED.





Chapter 4

Numerical analysis of a tip-based

ultrafast electron gun

In this section, a numerical study of an electron source with tip-based geometry is

provided. First, a brief introduction to the employed finite element method (FEM) is

given (Sec. 4.1). Next, the influence of the individual lens components with respect

to focusability and temporal resolution of the electron pulse is simulated (Sec. 4.2).

The chapter closes with the analysis of the impact of energy dispersion on the electron

pulse duration (Sec. 4.4) and a discussion on the feasibility of the simulated approach

(Sec. 4.5). Parts of the results presented here have been published in Ref. [52].

4.1 Finite element simulation

For the development of an ultrafast electron gun suitable for the operation at low electron

energies, we theoretically model the source properties using a FEM-based approach. In

particular, the spatio-temporal evolution of single short electron wave packets emitted

from a nanoscopic photocathode are investigated. A more detailed account on the

simulation procedure is given in App. A.3.

The finite element computations are performed in the MATLAB1 programming envi-

ronment together with GMSH2 for the initial mesh generation. In order to reduce the

1The MATLAB code has been largely programmed by Felix Schenk. Information about MATLAB
can be found at: http://www.mathworks.de/products/matlab/

2Free, open source, 3D mesh generator for use in FEM, more information at: http://geuz.org/gmsh/
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computational effort, cylindrical symmetry is assumed as well as zero out-of-plane mo-

mentum. The electron propagation is simulated classically by solving the equation of

motion in the computed electric field for pulses containing only single electrons. Since

a) the normal operation regime of such a gun features one to few tens of electrons per

pulse (see Sec. 3.2), and b) the tip geometry strongly suppresses space charge effects,

electron-electron interaction has been neglected. This simplification is supported by

experimental findings in Ref. [50], where space-charge effects for a similar tip-based

electron emitter were not observed up to some hundreds of electrons per pulse, albeit for

low laser repetition rates. Additionally, it is assumed that the electron generation occurs

instantaneously, which is a good approximation for a sub-100-femtosecond driving laser

in combination with electron pulse durations of the order of few picoseconds.

The geometrical parameters from the sharp metal tip are taken from experimentally em-

ployed tips produced within the framework of earlier works [185, 186] (also see Sec. 5.1).

Specifically, a tip apex radius of curvature of 25 nm is used throughout the simulations.

At the beginning of the computations, several different electrostatic lens assembly ge-

ometries and potential configurations were simulated. The geometry chosen was derived

from TEM optics and consists of a lens system comprising four individual components

(Fig. 4.1), namely suppressor (S), extractor (E), lens (L) and anode (A), in addition to

the metal tip (T). These TEM-type lens assemblies were found to deliver good results in

terms of pulse duration and focal size, as confirmed in a later experimental realization.

In the numerical calculations, the anode is always kept at ground potential; hence, the

energy of electrons, which have left the lens system, is solely dependent on the (negative)

tip potential.

An exemplary potential distribution along with the mesh grid for the geometry used in

the following simulations is shown in Fig. 4.1 (upper and lower half, respectively). In

addition to the lens assembly, the sample is labeled (P) and is positioned at a distance

of about 1.5 mm from the anode (A).

Electron trajectories are computed for only one half of the geometry depicted in Fig. 4.1

and subsequently mirrored at the tip axis to obtain the full picture in agreement with

the assumption of cylindrical symmetry.
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Figure 4.1: Electrostatic potential distribution (upper half) and mesh (lower half)
computed for the ultrafast electron gun employed in the FEM simulations. T: tip, S:

suppressor, E: extractor, L: lens, A: anode, P: sample.

The grid used in the FEM is manually adapted to the feature size of the surrounding

geometry, as can be seen in Fig. 4.2. The possibility of refining the mesh size is of

particular importance, since the evaluation of the electric potentials and fields has to

be performed correctly and within a reasonable time interval not only in the vicinity of

the nanometric sized tip (see Fig. 4.1A, lower half), but also for the macroscopic lens

assembly. Before starting the simulations, the optimal temporal step width and mesh

resolution have been determined.

4.1.1 Energy and emission site distribution

Since the exact spatial and temporal profile of photoemitted electrons from such nano-

metric photocathodes depends strongly on the detailed experimental conditions includ-

ing, for example, the laser intensity and wavelength, the applied tip potential or the

crystalline structure of the employed tip [50, 186–188], the following generalizations are

made: (i) The initial energy distribution of electrons emitted from the tip is assumed

to be Gaussian

D(E) = D0,EΘ(E) exp

(
−8 log(2)(E − E0)2

2∆E2

)
, (4.1)

where Θ(E) is the Heaviside function ensuring only positive values of E, D0,E is a nor-

malization factor, and ∆E is the full width at half maximum (FWHM) of the energy

distribution width around the distribution center E0. The factor of 8 log(2) stems from

the relationship between the standard deviation σ and the FWHM of a Gaussian distri-

bution: FWHM=2
√

2 log(2) ·σ ≈ 2.35σ. For generality, all obtained values for the pulse

duration and focal size are given in terms of the FWHM of their respective temporal

and radial electron distributions.
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Figure 4.2: Simulated field emitter tip apex and angular electron distribution. A:
FEM mesh (lower half) and trajectories (red) of emitted electrons (upper half). B:
Emission site distribution takes into account three dimensionality of apex. C: Exem-

plary resulting angular distribution for n = 500 electrons.

(ii) The electrons are assumed to be uniformly emitted into a (2D) solid angle of β = 45 ◦

centered around the surface normal of the emission site. In a previous study on this

system, β was assumed to be zero [52]. (iii) The emission site distribution follows again

a Gaussian distribution

D(α) = D0,α exp

(
−8 log(2)(α− α0)2

2∆α2

)
sinα. (4.2)

The term sinα results from taking into account the three-dimensionality of the emission

sites on the tip apex (Fig. 4.2B). In this case, the infinitesimal surface area becomes

dA(α) = 2πr′dα = 2π(r sinα)dα at a given angle α. At first glance, this consideration

might lead to a somewhat oddly shaped trajectory distribution with low density along

the main symmetry axis, as for example seen in Fig. 4.3B. However, this assumption

is necessary to correctly weight the tip surface in three dimensions, when assuming a

constant emission density over the emitting area. An exemplary angular distribution is

given in Fig. 4.2C.

In the strong-field study of Bormann et al. [50], a solid angle of emission of about Ω =

0.28 sr was found in the multiphoton regime. For a conical approximation of the shape

of the emission volume, this translates into a half-angle of α = arccos
(
1− Ω

2π

)
≈ 17 ◦.

4.2 The suppressor / extractor unit

In a first step, the influence of the suppressor unit on the emission characteristics of the

gun is simulated. The suppressor unit is negative with respect to the tip bias potential
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and serves two main functions: Firstly, it suppresses electrons generated not from the

apex, e.g., from hotspots3 along the tip shaft, and secondly, together with the extractor,

it can be used to control the field enhancement at the apex (Fig. 4.3). For now, we keep

the extractor voltage at a fixed value and change only the suppressor settings.

25 µm

A B C D

tip

Figure 4.3: Influence of the suppressor on the field distribution and electron trajecto-
ries from the tip. Potentials are: tip: −450 V, extractor: 150 V, lens and anode: 0 V.
Electron trajectories shown in red, equipotential contour lines in blue, step size: 5 V.
A: Suppressor potential US = −550 V, relatively close to the tip potential. Strongly
diverging electron trajectories, strong field enhancement. B: US = −860 V, electron
trajectories less divergent, lower field enhancement. C: US = −923 V, electron trajec-
tories now strongly collimated, nearly complete suppression of field enhancement. D:
Electron emission cut off due to field reversal at the tip apex, shown for US = −1100 V.

For suppressor voltages US close to that of the tip, electrons propagate away from their

emission site normal to the tip surface, leading to a strongly divergent beam (Fig. 4.3A).

In order to avoid pulse broadening resulting from different path lengths of electrons

from different emission sites, the suppressor voltage can be decreased (Fig. 4.3B). This

eventually leads to an increasingly pronounced suppression of the field enhancement

around the tip (Fig. 4.3C) and finally to a field reversal (Fig. 4.3D), resulting in the

complete extinction of electron emission. The reduction of the field enhancement also

decreases the acceleration of the electrons, ultimately leading to a capacitor-like potential

distribution at the cut-off voltage (US = −924 V, situation similar to Fig. 4.3C) and

hence an increased electron pulse duration (Fig. 3.6B). Therefore, the optimal suppressor

setting will be a tradeoff between two regimes: Path-length-induced temporal broadening

on the one side and broadening caused by reduced field enhancement at the tip apex on

the other side. Additionally, it is expected that the optimal suppressor potential shifts

closer to the tip potential, when the suppression of dispersive broadening (and hence a

stronger field enhancement) becomes important. This outcome is the case for a large

electron energy distribution width ∆E [52].

3Hotspots are regions on the tip shaft with radius of curvature comparable to the apex, leading to
strong electron emission within the tip area, which is illuminated by the driving laser.
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A B
a b

Figure 4.4: Influence of the suppressor voltage on the pulse duration as a function of
electron energy spread ∆E for two different propagation distances (A: 0.5 mm, B: 12
mm). Dashed line in B indicates the optimal suppressor setting for ∆E = 0.5 eV (blue
solid line): pulse broadening effect due to (a) reduced field enhancement and (b) path

length differences. Tip voltage: −450 V.

The dependence of the pulse duration on the suppressor voltage as a function of ∆E is

simulated in Fig. 4.4A after propagation from the apex to the extractor (d = 0.5 mm).

It displays a growing temporal pulse width by (i) a decrease of the suppressor voltage

and (ii) an increase of the energetic spread of the electron energy distribution. As

expected, the impact of the suppressor voltage setting rises when assuming broader

energy distributions, since in this case, field enhancement becomes more crucial for short

electron pulses. Yet, pulse broadening due to path length-variations cannot be observed

in Fig. 4.4A, since the propagation distance is too small (effect visible in Fig. 4.4B and

in Ref. [52], Fig. 7).

Figure 4.4B displays the pulse duration as a function of suppressor voltage with the same

settings as in Fig. 4.4A but at a significantly longer propagation distance of 12 mm,

corresponding to the full distance to the sample position. For a relatively narrow range

of electron energy widths, a suppressor voltage close to the cut-off threshold is favorable,

resulting in strong radial compression of the pulse (∆E ≤ 0.5 eV). Upon enlargement

of ∆E, the effect of velocity dispersion becomes visible by strongly increased temporal

broadening for the aforementioned suppressor settings (region denoted by “a” for ∆E =

0.5 eV). On the other hand, pulse lengthening is caused due to path-length differences

at more positive suppressor settings (region denoted by “b” for ∆E = 0.5 eV).

Qualitatively, the optimal suppressor voltage for a minimal pulse duration in this setup

increases with a broader electron energy spectrum. This can be understood by the

growing importance of field enhancement to compensate dispersive broadening. In this
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simulation, however, the effect of the extractor and the lens, which themselves have

strong influence on tempo-spatial pulse development, have not yet been taken into ac-

count. These components as well as their interplay will therefore be analyzed in the

following.

A control of the initial acceleration of the electrons away from the tip by means of the

extractor voltage is especially useful at low electron energies to avoid pulse broadening

from long overall propagation times. Figure 4.5 displays the temporal spread of the elec-

tron pulse after 2 mm of propagation for different extractor voltages and a tip potential

of −100 V. The extractor and suppressor settings are chosen to yield the same potential

at the position of the tip apex, only the gradient (the field) is changed. As expected for

an increasing extraction potential, the temporal broadening is significantly suppressed.

Within an experimental realization, the extractor potential is of course somewhat re-

stricted due to the danger of electric sparkovers. We therefore use potential distributions

with a maximum electric field strength of about 3.0 kV/mm between suppressor and ex-

tractor to avoid the mentioned sparkovers as well as static field emission from the sharp

tip.

Figure 4.5: Pulse duration as a function of extractor voltage. Tip potential: −100 V.
Propagation distance: 2 mm. Electrons per data point: 100. Energy spread: 1 eV.

4.3 The lens: pulse duration, focusability, and total cur-

rent

In a next step, the pulse duration as a function of lens voltage is simulated for different

suppressor voltages to find the respective optimal operation regime of the lens. For this
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simulation, a sample is assumed to be at a position about 1.5 mm after the anode, at a

total distance of 12 mm away from the tip apex. The tip and extractor potentials are

held at −450 V and 150 V, respectively, while the lens potential is scanned for a fixed

suppressor voltage. For each point, the trajectories of 4500 electrons with an initial

kinetic energy spread of ∆E = 1 eV around an offset of E0 = 1.5 eV and an angular

distribution with α = 10 ◦ and β = 45 ◦ are used. The solid angle of emission α was

chosen to be somewhat smaller than experimentally found in Bormann et al. [50] and

instead be in accordance to the value used in the joint publication with A. Paarmann

[52] for better comparison (see Sec. 4.5).

The pulse duration exhibits a local minimum close to the ground potential and a global

minimum at lens voltages around 2500 V (Fig. 4.6A). With increasing suppressor voltage

(closer to the tip potential), the pulse duration becomes smaller and the minima more

pronounced. A minimal pulse duration is achieved for UL = −2450 V and US = −700 V.

A B C

Figure 4.6: Simulation of the lens and suppressor influence on pulse duration, focal
width and throughput. Potentials: tip: −450 V, extractor: 150 V. Propagation dis-
tance: 12 mm. Energy spread: 1 eV. A: Pulse duration as a function of lens voltage for
different suppressor voltages. B: Radial spread of arriving electrons. Inset: Magnified
region denoted by gray dashed rectangle. C: Relative amount of arriving electrons at

the sample position (12 mm).

The radial electron pulse spread is displayed in Fig. 4.6B. Again, two minima exist, one

local minima at lens voltages close to the tip potential and a global one between lens

voltages of 2500 V and 2600 V. The smallest focus is achieved for a suppressor voltage of

−900 V and a lens voltage of 2580 V (Fig. 4.6B, inset). Further minima are observed at

higher lens voltages (> 5000 V), which are neglected, since they (i) do not offer better

beam characteristics in terms of temporal and spatial spread and (ii) are technically

more difficult to realize, again due to the increasing danger of electric sparkovers at high

voltages.

Both the focal spread and the pulse duration exhibit their minima under comparable

conditions. In particular, the second minimum around a lens voltage of 2500 V is
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displaying a relatively small electron focus (20–60 µm) as well as pulse durations of the

order of 1.2–1.5 ps. Both minima in pulse duration result from a (local) minimization of

the path length differences, naturally best achieved close to the lens settings for minimal

radial spread.

For a suppressor voltage close to the cutoff voltage (Fig. 4.3D), the influence of the

lens on the pulse duration is somewhat reduced compared to more positive suppressor

voltages. This behavior stems from the focusing property of the suppressor and can lead

to the shortest possible electron pulses for very small ∆E. In the present case as shown

in Fig. 4.6, the energy spread is taken to be ∆E = 1 eV, therefore resulting in longer

pulse durations for US = −900 V as compared to less negative suppressor settings.

In general, a suppressor voltage close to the tip potential is beneficial in terms of minimal

achievable pulse duration, while slightly increasing the focal size. The enlarged focus can

be explained by analyzing the influence of the solid angle of emission (β-parameter) at

different suppressor settings. In the case of reduced field enhancement, electron emitted

at the surface are subject to the capacitor-like potential distribution between extractor

and suppressor almost immediately. A strong bending of the electron trajectories in

the forward direction results in a reduction of the effective source size. At higher field

enhancements, the emission direction of electrons is initially preserved, leading to an

increased effective source size. However, the overall impact of the suppressor setting is

relatively small when operated sufficiently away from the cutoff voltage, which leaves a

large parameter space of possible operation voltages.

When choosing the optimal operation regime of the gun, an additional parameter to

consider is the absolute throughput of electrons. The throughput is the percentage of

electrons emitted from the tip, which actually arrive at the sample position (Fig. 4.6C).

The losses are mainly a result from electrons blocked by the first and in a minor degree

the second extractor aperture, when operating the gun with a more divergent beam. In

the simulations, the total loss amounts to about 10 % at US = −800 V. This somewhat

limits the useful operational regime of the suppressor, which will now be a tradeoff

between the maximal achievable temporal resolution on the one hand and a sufficient

signal intensity on the other hand. Moreover, it has to be taken into account that

within the simulation, an ideal alignment of the tip and lens elements with respect to

each other is achieved, which is most likely not the case in an experimental realization.
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In the latter, electron losses will therefore be larger, ultimately limiting the range of

suppressor settings.

As for the lens voltage, the optimal setting is straight forward: There is only one pro-

nounced minimum in the spatial as well as in the temporal spread, which is achieved at

comparable lens voltages.

4.4 Energy dispersion

The above simulation was performed for a single energy spread of ∆E = 1 eV. Now,

the influence of ∆E on the achievable spatio-temporal resolution is determined for a

fixed suppressor voltage of US = −860 V (Fig. 4.7). This voltage is chosen while trying

to satisfy the above mentioned criteria for an optimal operation regime. In terms of

angular distribution of the emission sites, lens voltages and total number of electrons

simulated per data point, the simulation parameters are kept equal to those used in the

analysis of the influence of the suppressor settings (Fig. 4.6).

A B C

Figure 4.7: Influence of the initial electron energy spread ∆E. Applied potentials:
tip: −450 V, suppressor: −860 V, extractor: 150 V. Lens voltage dependent pulse
duration (A) and focal size (B) as a function of ∆E. Inset in B is a magnification of
area denoted by dashed grey rectangle. C: Pulse duration at lens setting for smallest

focus as function of ∆E.

Figure 4.7A displays the pulse duration as a function of lens voltage for initial electron

energy distributions widths of 0.1 eV ≤ ∆E ≤ 3.0 eV. The behavior displays the two

minima as described in Fig. 4.6A, except for very high ∆E. For moderate to small

energy spreads, the minimal achievable pulse duration within the chosen geometry is

found to be between 1.0 ps and 1.3 ps. Within the simulated accuracy, no influence of

∆E on the focusability of the electron pulses at the sample position has been observed.

Lens voltage settings between 2300 V and 2800 V seem to offer good focusability of

the beam down to about 50 µm. These values are of course a strong function of the
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initial angular distribution of the emission sites as well as of the direction of emission of

the electrons, where especially the former has a significantly influence on the focal size.

For comparison, in the simulations performed together with A. Paarman [52], we find

standard beam deviations between 25 µm and 50 µm for a similar tip voltage of −400 V,

taking into account, however, only emission normal to the tip surface (β = 0). If we

assume a Gaussian distribution of the radial coordinate of the electrons at the sample

position, the standard deviation translates to the FWHM by multiplication with a factor

of 2
√

2 log(2) ≈ 2.35, thus resulting in values similar or even slightly bigger than those

in the present work for a comparable angular distribution. Considering that the effective

source size is basically zero in the case of β = 0, a significantly smaller focus than in

the present work could have been expected, since the simulated systems were otherwise

comparable. At this moment it remains unclear to what extent the focusability of the

electron beam is influenced by the distribution of the initial electron velocity vector and

the individual components of the electrostatic lens system.

The pulse duration as a function of the initial spread ∆E is displayed in Fig. 4.7C at

a given lens voltage of UL = 2550 V. The graph displays a steep increase of the pulse

duration for ∆E > 1.0 eV for this suppressor setting. Hence, the influence of ∆E on

the optimal suppressor setting has to be kept in mind for an experimental realization of

such an electron source.

Finally, a strong influence of the tip radius on the pulse duration is not found for a

rather large range of tip radii, an observation which is somewhat parallel to the broad

operation regime of the suppressor: A larger tip radius would lead to a reduced field

enhancement, which does not have a huge impact within a certain range, as seen from

the calculations in Fig. 4.4, assuming an initial electron energy distribution width ∆E of

not more than 1 or 2 eV. Furthermore, since the suppressor unit can basically tune the

field enhancement at the tip apex by controlling the surrounding potential distribution,

changes in the tip radius can easily be balanced out within a reasonable range of values.

4.5 Summary and discussion

In comparison to the results of the joint study with A. Paarmann [52], significantly

longer pulse durations have been computed at comparable lens geometries, energies and
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energetic spreads. This can be mainly attributed to the following reasons: Firstly, the

propagation distance in Ref. [52] has been chosen to be only about 8 mm in comparison

to 12 mm used here. As seen in Eq. 3.13, the pulse duration increases roughly linearly

with the propagation distance. On the other hand, the study presented here uses higher

energy electrons, 450 eV compared to 300 eV, but at lower extraction fields (150 V

compared up to 600 V).

The main difference, however, comes from the inclusion of non-normal emission from

the tip surface. By allowing for β > 0 ◦, not only the effective source size increases (and

therefore the minimal achievable focal size), but also the effect of dispersive broadening.

A higher initial kinetic energy offset of E0 = 1.5 eV (E0 = 0.5 eV in Paarmann et

al.) further increases this tendency4. Compared to the narrow energy distribution of

∆E = 0.2 eV as chosen in the joint study, this leads to a strong increase in pulse

duration. However, a non-zero β is a more realistic assumption compared to emission

exclusively normal to the tip surface [156] and should result in good agreement with

experimentally recorded values (see Sec. 5.3.2).

In conclusion, the above performed simulations demonstrate the possibility to operate

laser-driven nanoscopically sharp metal tips as ultrafast electron guns. Such electron

sources are potentially suitable but not limited to time-resolved low-energy applications

as ULEED. As a rough guideline for an optimal performance,

• the width of the initial kinetic energy spectrum of the emitted electrons should be

kept as small as possible, ideally below ∆E = 1.0 eV (Fig. 4.7C),

• a combination of a strong intermediate acceleration by the lens and subsequent

deceleration by the anode offers the smallest pulse durations in the regime of 1 ps

together with good beam collimation of the order of 50 µm (Fig. 4.7),

• the suppressor should be operated in a regime not too close to the cutoff voltage

to avoid pulse broadening by loss of field enhancement and not too close to the tip

potential to avoid a significant electron current decrease at the apertures (Fig. 4.4),

• the effect of temporal broadening due to path length differences is only visible for

very narrow energy distributions and can in most cases be neglected,

4As will be seen in the intensity-dependent electron current measurement (Sec. 5.3.1), an initial
energy of E0 = 1.5 eV, corresponding to half the photon energy of 400 nm laser pulses, models the
emission process more realistically.
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• a relatively high extractor voltage should be chosen, especially at low electron

energies, to increase the initial acceleration of the electrons (Fig. 4.5).

It should be noted that the operation regime of such a gun is not limited to the use

of low-energy electrons, but could be readily implemented in a similar fashion within

various other time-resolved imaging and diffraction experiments.





Chapter 5

Experimental analysis of a

tip-based ultrafast electron gun

In this chapter, the experimental realization of the simulated gun design is presented,

starting with the preparation procedure of the needle emitter (Sec. 5.1). Furthermore,

the setup of the ULEED experiment is described (Sec. 5.2) and a characterization of

key parameters such as pulse duration is given (Sec. 5.3). Finally, the electron source

is compared with the simulation of the previous chapter and possible improvements

are discussed (Sec. 5.4). The chapter ends with a brief discussion on an electron source

operated in the optical field emission regime (Sec. 5.4.3), THz compression of the electron

pulses (Sec. 5.4.4), as well as alternative methods for a more precise determination of

the pulse duration (Sec. 5.4.1).

5.1 Tip preparation

For the realization of an electron source as employed in the simulations, nanometric

sharp tungsten tips are produced by chemical wet etching in a procedure derived from a

tip-production scheme for STM tips as depicted in Fig. 5.1 [189]. Specifically, a tungsten1

wire of 250 µm radius is tapered by electrochemical polishing in an 3.5 %mol aqueous

KOH solution for 8–10 minutes with an applied DC voltage of 6.5 V. Etching proceeds,

until the weight of the part submerged in the etching solution cannot be supported by

1Vendor: GoodFellow (http://www.goodfellow.com/), purity: 99.95 %, order number: W 005150.

55
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the notched region at the solution / air interface and falls to the bottom of the beaker.

At this point, the etching current I drops and the etching is stopped by electronically

shutting off the external voltage. Tungsten tips are then washed in ethanol and de-

ionized (DI) water and routinely characterized in terms of straightness, smoothness and

radius of curvature under the optical microscope and subsequently by a SEM (Fig. 5.2C).

(K+OH-) solution

W wirePtIr
anode

I

(OH-)n

K+

Wn+

Figure 5.1: Sketch of chemical wet etching process of sharp tungsten tip preparation.

5.1.1 Tip alignment

In a next step, the tungsten tip is mounted into the suppressor unit as shown in Fig. 5.2.

400 µm

250 µm

20 nm

A B

B C

Figure 5.2: Nanometric photocathode and suppressor unit. A: Photograph of the
suppressor unit as used within the electrostatic lens assembly. Dashed white box denotes
region shown in B. B: Top-down view of the suppressor unit and tungsten tip. Inset:
Magnified area as indicated by white dashed box. C: SEM image of the tungsten tip

used, inset shows radius of curvature of about 10 nm.

The exact alignment of the tip within the suppressor aperture is performed manually

under an optical microscope and requires experience and patience. It is found that a



Chapter 5. Experimental analysis 57

correct alignment is essential to avoid blocking a large part of the electron beam by the

apertures of the lens assembly (see also Sec. 4.3).

Tip

Lens assembly

Photo-
emission laser

Electron
beam

Figure 5.3: Conceptual drawing of the ultrafast electron gun. Inset displays magnified
version of tip region denoted by dark rectangle.

The suppressor unit with tungsten tip is subsequently aligned within the lens system

as shown in a conceptual drawing of the assembled gun in Fig. 5.3. To avoid the high

electric fields from the lens to alter electron trajectories outside of the gun, the whole

gun is mounted within a shielding Faraday cup, which also comprises the anode (at

ground potential) of the lens system. The total propagation distance within the lens

system from the tip apex to the outside of the aperture is taken to be 12 mm. The

experimental setup in which the developed electron gun is employed is described in the

next section.

5.2 ULEED experimental setup

The ultrafast electron gun is employed in a laser-pump / electron probe scheme as

illustrated in Fig. 5.4. The amplified laser source, which delivers the pulses for sample

excitation (pump) as well as for photoemission, comprises a Coherent Mantis Ti:sapphire

oscillator (80 MHz repetition rate, 7 nJ pulse energy, center wavelength 800 nm, sub-100-

fs pulses) in combination with a Coherent RegA 9050 regenerative amplifier (variable

repetition rate up to 312 kHz, 5 µJ pulse energy, center wavelength 800 nm, < 80 fs pulse

duration). About half of the intensity from the amplifier is guided through an optical

chopper and over a variable delay stage into the vacuum chamber to the sample (pump

pulse, red). The other half is frequency-doubled via second-harmonic generation (SHG)

in a β-barium borate (BBO) crystal and focused on the tungsten tip (photoemission
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pulse, purple) by a movable lens outside of the vacuum chamber with 250 mm focal

length. Before the lens, the laser beam is expanded to a diameter of about 25 mm

by a telescope comprising two concave silver mirrors. The system of electron source,

sample and detector assembly is operated under ultrahigh vacuum conditions (10−8 mbar

> p > 11−9 mbar) to avoid sample contamination as well as electron scattering on the

way to the sample. A magnified sketch of the gun-sample-detector configuration is shown

in Fig. 5.4B.

Amplified
fs laser source

Vacuum chamber
Camera

SHG

Delay stage

Chopper

Telescope

Lenses

BS

800 nm

400 nm

PC

B

Needle
emitter

Lens system

Electron pulse

Sample on
TEM gridPhotoemission

laser pulse

Pump
laser pulse

Detector

A B

Figure 5.4: Experimental setup of ULEED. A: Schematic of the laser-pump /
electron-probe setup. Dashed gray box denotes area magnified in B. B: Schematic

of the gun-sample-detector system within the vacuum chamber (not to scale). [190]

Electrons emitted from the gun (green) arrive at the sample, which is situated on a TEM

mesh grid. Depending on the operation mode of the setup, the electrostatic lens system

is employed to produce either a focused or a divergent beam at the sample position.

The excitation of the sample by the pump pulse (red) takes place from the backside to

allow for a small incident angle as well as a reduced distance between electron source

and sample. Scattered electrons are recorded on a phosphor screen microchannel plate

(MCP) detector (model: Hamamatsu F2226-24P). The distance between the anode of

the electron gun and the sample is about 2 mm, resulting in a total propagation length of

ca. 14 mm along the z axis from the tip apex to the sample2, while the sample-detector

distance is set to about 90 mm. A sketched overview of the vacuum chamber system

from the experimental setup used is displayed in Fig. 5.5.

In contrast to classic LEED geometries (Sec. 2.1.2), the ULEED setup is currently

operated in transmission. As will be demonstrated later (Chap. 7), diffraction recorded

in a back-reflection geometry is also possible, but for the characterization of the electron

source and the sample system in this work, a transmission setup is advantageous.

2Which is slightly longer compared to the value used in the simulation (12 mm).
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Figure 5.5: Sketch of the ULEED ultrahigh vacuum chamber system. Pump and
photoemission pulses are indicated by red and purple rays, respectively.

A further difference with respect to a regular LEED is the use of a planar instead of a

spherical-cap type detector. While a conversion from the planar to the spherical screen

geometry is performed in the analysis, individual diffraction images presented in this

work are shown as recorded.

5.3 Experimental characterization of the ultrafast electron

gun

In this section, the ultrafast needle emitter is characterized with respect to its electron

energy spectrum, the electron current and, most importantly, the achievable temporal

resolution.

5.3.1 Focal size, energy spectrum and brightness

The focal size of the electron beam at the sample position can be determined, for ex-

ample, by a knife-edge-type experimental configuration, as performed for this setup by

S. Schweda in Ref. [191] (electron beam diameter at sample position: 60(5) µm). Al-

ternatively, the electrostatic lens of the electron source can be employed to zoom into

the projection images of TEM grids with known mesh size. We found that for the setup

described above, the electron beam can be focused through a single mesh cell of a 300
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mesh TEM grid3, hence yielding a minimal radial spread close to the values extracted

from the simulation (Sec. 4.3) as well as from the knife-edge measurement.

For the determination of the electron energy spectrum, a retarding-potential energy

filter is placed between the electron source and the detector. The differential electron

intensity recorded on the detector peaks at the set kinetic electron energy and results in

a spectral width of about 1.2 eV FWHM, assuming a Gaussian energy distribution of

the electrons (Fig. 5.6A). This measurement is mainly limited by the poor resolution of

the A/D-converter PCI board that controls the programmable power supplies of the tip,

the lens assembly and the energy filter. The resolution of the board in combination with

the employed power supplies is of the order of 0.5–1.0 eV. Also, it has to be taken into

account that only the energy component in the z-direction (along the tip axis) can be

measured. Furthermore, the waviness of the employed grids limit the relative accuracy

of the filter to about 2 % [191].

A B

Figure 5.6: Characterization of the electron source used in the experiment. A: Elec-
tron energy distribution width at a pulse energy of 200 eV. B: Recorded electrons per
pulse yielding a power law with exponent 1.8. Electron energy: 300 eV. Integration
time: 1 s. Detector quantum efficiency: 50 %. Electron loss before detector: 50 %.

Driving laser repetition rate: 312 kHz. Keldysh parameter as defined in Eq. 3.2.

Alternatively, an estimate of the energy spread can be made from a consideration of the

photoemission process with respect to the material’s work function. Depending on the

surface direction at the tip apex, tungsten has work functions between 4.5 eV (111) and

5.3 eV (110) [192]. Assuming two-photon photoemission ((Fig. 3.2) from the tip with

a single photon energy of 3.1 eV (400 nm, see Sec. 5.2), excess energies in the order of

0.9–1.7 eV are to be expected. However, this is not taking into account possible further

work function modifications by oxidation of the tungsten [193] and applied potentials

[172]. Since the tips are etched from polycrystalline tungsten, this would result in a

3Vendor: Plano GmbH (http://www.plano-em.de/); single mesh size: 70 µm. The mesh number
gives the number of mesh cells per inch. The bar size is usually of the order of 5–15 µm.

http://www.plano-em.de/
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width of the energy spectrum of about 1.3 eV for a uniform distribution of crystal

surface directions.

Indirectly, an upper limit for the energy spread can also be obtained by a comparison

of the measured pulse durations with the simulated ones. This would result in an

energy spread of 1.15 eV (App. A.1). For simplicity and until measurements with higher

accuracy are undertaken, we presume an energy spread of approximately 1.0 eV. Beyond

that, methods for the reduction of the energy spread are discussed at the end of this

chapter.

So far, the claimed two-photon photoemission process driving the electron emission has

not yet been experimentally confirmed. This hypothesis can be tested by measuring the

electron current dependence on the photoemission laser pulse energy. The functional

relation found is displayed in a double logarithmic plot in Fig. 5.6B. Specifically, the

measurement is performed by recording the light intensity on the detector in the area

of electron signal from the electron gun over 1 s for a given pulse energy. At very

low emission currents, the detected electrons are counted manually as well as by using

a counting algorithm [186], while at the same time recording their averaged intensity.

This is followed by an estimation of the brightness of a single electron to extrapolate

the electron count at higher emission currents. Finally, the relation was corrected for

the detector quantum efficiency (taken as 50 %) and electron losses before the detector

(50 %). As a result of a probably slight misalignment of the tip with respect to the center

of the suppressor, the losses were taken to be higher than expected from the simulation

for the given lens settings (Fig. 4.6C).

The functional dependence of the electron number per pulse Ne on the pulse energy Ep

was found to follow the power law

Ne = 0.0175(2) ·
(
Ep
nJ

)1.83(3)

(5.1)

With a maximum value of about 10 electrons per pulse at Ep = 30 nJ pulse energy.

Compared to the experimental data on the power dependence by Bormann et al. [50],

the employed pulse energies are significantly higher. This stems mainly from the larger

focal size of the laser spot on the tip apex, which was about 10 times bigger in our

experiment, resulting in a 100 times smaller intensity at the same pulse energies (see
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Keldysh parameter scale in Fig. 5.6B). When this is taken into account, the resulting

electron numbers are comparable in magnitude.

The exponential given in Eq. 5.1 is reduced by about 10 % compared to the exponential

expected for a pure two-photon photoemission process. However, we have to consider a

few effects, which are potentially supporting the electron emission in this setup: Firstly,

the tip is heated by the driving laser. The influence of the resulting thermal blurring

can be estimated by means of the electron gas temperature in the metal after the initial

heating by the short laser pulse. Specifically, when assuming an intensity of about

10 GW/cm2 of the driving photoemission pulse (100 fs pulse duration, 30 µm focal

size, 300 kHz repetition rate and 10 mW average laser power; corresponding to about

33 nJ pulse energy), we expect an initial temperature increase of the electron gas to

about 1000 K for tungsten [194, 195]. The FWHM of the derivative of the Fermi-Dirac

distribution has a width of 0.3 eV in this case, compared to 0.1 eV at T = 300 K. Hence,

a thermally assisted two-photon process with a reduced effective nonlinearity can be

expected [156, 196, 197].

Furthermore, the applied bias voltage at the tip leads to a decreased effective work

function (also see Fig. 3.2C) following Eq. 3.1, likewise resulting in a decreased power

law in Eq. 5.1 [186, 198]. This behavior can be easily verified by changing the suppressor

voltage, which effectively controls the field enhancement at the tip apex (Sec. 4.2):

we expect a decrease of the nonlinearity for higher fields (suppressor voltage closer

to tip voltage) and a likewise increase of the nonlinearity for capacitor-like potential

distributions (suppressor voltage close to cut-off value). Specifically, for a tip voltage

of −450 V, the exponent in Eq. 5.1 is decreased from 1.88 to 1.61 when reducing the

magnitude of the suppressor voltage from −960 V to −880 V. The strong suppressor

voltage dependence also serves as an indicator for electron emission from the apex. The

reduced exponential in Eq. 5.1 is most likely a result from the combination of both

effects.

For testing purposes, we operated the gun with up to about 100 electrons per pulse, but

found this operation regime to be too close to the tip damage threshold at the employed

high repetition rates (312 kHz). In perspective of a stable long-term operation4, we

therefore limited the maximum emission current to about 10 electrons per pulse. As will

4All sample measurements presented in the next chapter have been performed with the same tungsten
tip without any noticeable degradation of the electron signal.
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be shown later, the resulting few million electrons on the detector per second allow for

a real-time observation of diffraction patterns with reasonable contrast and necessitate

long integration times only for high-accuracy measurements or low repetition rates [142].

A knowledge of the focusability and electronic current now also allows for the determina-

tion of the reduced brightness (see Eq. 3.9 and 3.11). Taking the solid angle of emission

to be Ω = 0.3 srad [50], a current of 1 pA (corresponds to 312 kHz repetition rate and 20

electrons per pulse) and an typical electron energy of 300 eV, this results in a reduced

brightness of Br = 35 A/Vm2sr. This value is in the upper range of those reported for

state of the art femtosecond photocathodes (see Ref. [182] for comparison). Taking into

consideration the extremely small duty cycle of the electron source (≈ 2.5 · 10−8), the

resulting value is not far from the brightness achieved by static field emission sources

[181].

The coherence of the electron source cannot be measured directly at this point. However,

it is roughly estimated in (Sec. 6.2.2) from the angular width of the diffraction peaks.

5.3.2 Temporal resolution of the ultrafast electron gun

The temporal spread of the electron pulses at the sample position as well as their spatial

and temporal overlap with the pump pulses is determined via a transient electric field

(TEF) effect near a bare gold or copper TEM grid [148, 199–201]. The experimental

principle is demonstrated in Fig. 5.7. First, the electron gun is operated with a divergent

beam (zero lens voltage) to obtain a projection image of the TEM grid (Fig. 5.7B).

The pump beam is then approximately overlapped with the imaged region by observing

the diffuse laser reflection on the grid at low fluence levels. Once the overlap is achieved,

the pump fluence is increased again (greater than 10 mJ/cm2). While changing the

relative temporal delay ∆t between electron probe and laser pump via a translation

stage (Fig. 5.4A), the projection image is recorded. For positive delay times (arrival of

pump pulse before probe pulse), a distortion of the projection image can be observed

(Fig. 5.7C and D). The distortion stems from the deflection of the electron trajectories of

the passing pulse by Coulomb repulsion within the region of the electron cloud generated

by the pump pulse.
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Figure 5.7: Pulse length determination via TEF effect. A: For negative delay times,
the electron gun delivers an undisturbed projection image of a bare TEM grid (B). C:
For positive delay times, the electron pulse propagation is altered by the pump-induced
electron cloud on the TEM grid, resulting in a distorted projection image (D). For a

more detailed account on this technique, see Ref. [148, 199–201].

However, this distortion is only seen in part of the projection image and hence only

applies to a partial beam. To obtain a measure for the pulse duration under normal

operation conditions, e.g., in a diffraction experiment, the above measurement is re-

peated with the electron beam focused through a single mesh cell by adaption of the

lens voltage. This technique requires a repositioning of the delay stage to maintain the

temporal overlap.

The achievable temporal resolution of this method can be roughly estimated by the

interaction time tint of the electron cloud emitted from the grid with the passing electrons

[202]. When assuming the radial electron cloud diameter to be of the order of r = 100 µm

(as visible in Fig. 5.7D) and exhibiting a half-spherical shape on the TEM grid’s surface

[141], the interaction distance along the axis of propagation of the electrons is on average5

about dint = 2
3r. This gives the following dependence between the interaction time and

the electron energy E for in the case of non-relativistic electrons

tint = dint

√
me

2E
(5.2)

5With respect to the half-sphere’s volume.
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where me is the electron mass.

Figure 5.8: Estimate for the interaction time of a passing electron with energy E
through the electron cloud generated at the TEM grid surface. Dashed arrows indicate
the interactions times for electrons of 100 eV and 450 eV to be about 5.5 ps and 2.5 ps,

respectively.

Figure 5.8 displays the estimated interaction time for energies between 1 eV and 1000 eV,

which is of about the same order of magnitude as the pulse durations computed in

the simulations (Fig. 4.7) and in agreement with values found in the literature [148].

However, it also means that this method is likely to deliver only an upper limit for

the pulse durations, especially for faster electron pulses (on the ULEED scale) of few

hundreds of electron volts. In the light of this limitation, several alternative approaches

to measure the pulse duration are discussed at the end of this chapter (Sec. 5.4.1).

The experimentally recorded, normalized intensity transients for two electron energies of

a few-micron sized mesh region are displayed in Fig. 5.9. For a determination of the pulse

duration from the recorded intensity evolution I(t), we assume a static, instantaneously

generated electron cloud at t = t0 as well as a Gaussian temporal beam profile g(t) of

the electron cloud.

I(∆t) = (Θ ∗ g)(∆t), and (5.3)

D(∆t) = D0 +D1erf

(
−

2
√

2 log(2) · I(∆t)

FWHM

)
, (5.4)

where ∆t = t−t0, Θ(t) is the Heaviside function, D0 is an offset andD1 is a normalization

constant.

The recorded transients display a width of 7 ps for 100 eV and 2 ps for 450 eV electron

energy. As expected, these values are very close to those estimated for the interaction
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A B

Figure 5.9: Pulse duration determination via TEF effect for different electron energies.
Fluence: 20 mJ/cm2. Electron energy: 100 eV (A), 450 eV (B).

time with the plasma cloud, namely 5.5 ps and 2.5 ps, respectively (Fig. 5.8). Addi-

tionally, they do not take into account the formation time or propagation effects of the

plasma cloud during the passing of the electron pulses. Therefore, these pulse durations

are to be seen as an upper limit for a partial beam6. The actual pulse durations are

therefore likely to be somewhere in between these values and those from the simulation.

A B C

Figure 5.10: Fluence dependence of pulse duration measured via transient electric
field effect evaluated at the same position. Pulse duration measured at same sample
position for pump fluences of 2.3 mJ/cm2 (A), 4.2 mJ/cm2 (B) and 10.4 mJ/cm2 (C)

Notably, the measured temporal width of the intensity transient is a strong function

of the pump fluence [203]. Figure 5.10 displays the above measurement (settings as in

Fig. 5.9B) repeated for a set of lower fluences. A shortening of the recorded transients

is somewhat counter intuitive, since one would expect an expansion of the plasma cloud

at higher fluences to be accompanied by a growing interaction time with the passing

electron pulse. This effect can be explained by the higher electron velocities in the

emitted plasma cloud, which lead to a faster dissipation of the same [204]. Hence, for

a more in-depth analysis of the achievable temporal resolution of this method, a model

taking into account also the plasma dynamics would be better suited.

6An integration over the whole mesh cell yields a longer pulse duration (about 6 ps in the case
of 450 eV electrons), caused by a significantly stronger impact of the plasma cloud formation and
propagation time as well as by a spatial inhomogeneity of pulse durations within the electron beam.
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5.4 Summary and discussion

In this chapter, a gun design based on the previously introduced concept of a laser-

driven needle emitter has been implemented and characterized. Specifically, a reduced

nonlinearity compared to pure two-photon photoemission has been found, which could

be attributed to a reduced effective work function by application of a bias voltage as well

as heating of the photocathode by the driving laser. Furthermore, the energy spread

was measured to be in the range of 1 eV.

The reduced brightness of the electron source was determined to be of the order of

Br = 35 A/Vm2sr at 300 eV electron energy, which is comparable to flat pulsed photo-

cathodes. The current setup features an energy-dependent temporal resolution between

2 ps (450 eV) and 7 ps (100 eV) FWHM. All measured values compare well to the sim-

ulated ones, attesting for the further implementation of FEM computations in future

source developments.

The main statement of this chapter is, however, that the developed electron source is

well-suited for the time-resolved investigation of ultrafast dynamics at surfaces.

5.4.1 Alternative approaches to determine the pulse duration

The applied method of the TEF effect yields only a relatively rough estimate of the

pulse duration [199]. For the employed prototype electron gun, this estimate may be

sufficient. In light of further developments, however, experimental means for a more

accurate determination of the temporal spread are needed. In the following, a few

alternative approaches are discussed with respect to their ability to characterize low-

energy electron pulses in combination with an applicability in the current ULEED setup.

1. A temporal pulse characterization by ultrafast streaking [205–208]. The elec-

tron pulses are channeled through a narrow and rapidly changing electromagnetic

field normal to their propagation direction. The detected electron position of the

streaked pulses then depends on the relative arrival time of the electrons in the field

region. From the length of the streaking pulses as well as the temporal evolution

of the field, the pulse duration can be estimated.
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2. Similar to the streaking principle, the electron pulse duration can be determined

via ponderomotive scattering by an intense laser pulse [209, 210]. Specifically, a

short and intense pump pulse focused in the line of propagation of the electron

pulse and polarized normal to it scatters passing electrons depending on their

relative temporal delay.

3. Photon-induced near field electron microscopy (PINEM) [211]. The operation

principle is based upon the observation that a temporal overlap of the electron

pulse with an intense optical pulse in the close vicinity of a nanostructure leads to

identifiable changes in the electron pulse spectrum.

4. A TEF effect on a second nanometric tip placed at the position of the grid.

5. The measurement of an ultrafast transient effect, which is significantly shorter

than the electron pulse duration, thus effectively allowing for a sampling of the

electron pulse length [212, 213].

The principle of ultrafast streaking is shown to work very well in the case of fast electron

pulses for energies between 30 keV [206] and several MeV [207] with temporal resolutions

down to about 500 fs and 200 fs, respectively. Similar to the case of the transient electric

field effect on the copper grid, the quantity limiting the temporal resolution is the

interaction time with the electric field. By relating the electron velocities and respective

achieved temporal resolutions, the temporal resolution of a streaking setup in the present

experiment can be estimated. Assuming 450 eV electrons, this estimate yields a temporal

resolution of about 4.3(0.6) ps (10 ps at 100 eV). Hence, a determination of the pulse

duration by means of a streaking setup will only be meaningful after an improvement of

the experimental setup, e.g., by further reducing the propagation distance through the

capacitor.

Recently, so called laser streaking has been developed, which is based on the electron

probe and laser pump beam being intersected at an ultrathin metal mirror. This con-

cept potentially allows for sub-femtosecond temporal resolution, since it mainly depends

on the duration of the employed laser pulses [208]. For high energy electron pulses,

this method bears large potential for an extremely precise temporal characterization.

Nevertheless, it has two distinct disadvantages in view of an application in ULEED:

Firstly, phase-stabilized laser pulses are needed, and secondly, the metallic mirror must
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be thin enough for the electrons to pass. At the thickness needed to be transmissive

for a sufficient percentage for low-energy electrons, such a mirror would most likely be

mechanically and thermally unstable, when illuminated by intense, short laser pulses,

hence making this approach challenging in the case of slow electrons.

Based on a similar concept, the temporal resolution achievable by ponderomotive scat-

tering is also primarily determined by the optical pulse length and focal size employed.

Hebeisen et al. [209] used 90 fs laser pulses and achieved a temporal resolution of

about 100 fs. The major drawback of the method, however, is the requirement of very

high pulse energies of several millijoules to achieve the necessary intensities of about

100 TW/cm2. However, for low-energy electrons, the necessary field strength is re-

duced, potentially allowing for an application of this method to ULEED. In streaking,

the maximum energy ∆E gained from an optical field (wavelength λ, peak electric field

F‖ along the electron’s direction of propagation) can be approximated as [214]

∆E =
eλ√

2me · πc
√
E0 · F‖, (5.5)

with E0 the electron energy. In the experiment conducted by Hebeisen et al., ∆E was

of the order of E0. With our current laser system and experimental conditions (average

pump power: 500 mW, focal spot size: 20 µm, pulse duration: 80 fs, repetition rate:

312 kHz, wavelength 800 nm), we would only achieve about 15 % of the needed energy

gain at an electron energy of 100 eV. However, when using a microscope objective for

focusing, this approach could potentially be made feasible in a ULEED setup.

PINEM employs strong near fields in the vicinity of laser-illuminated nanostructures to

(de-) accelerate passing electrons [211]. The interaction time between the nanostructure

and a passing electron pulse is, due to the small nanostructure diameter, only in the

range of few femtoseconds, even for relatively slow electrons (≈ 17 fs for 100 eV electrons

and a 100 nm thick nanowire). Due to the field enhancement effect at the nanostructure

(Sec. 3.3.3), the laser pulse energies of few microjoule used are comparable to those

for sample excitation in most ultrafast experiments. However, the experimental effort

especially with respect of the measurement of the electronic spectra and the large beam

diameter of the ULEED setup, is relatively high.

Yet, a partial application of the concept introduced in PINEM would potentially lead to

a drastically increase of the temporal resolution of the current TEF effect-based method:
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Specifically, the influence of a TEF effect on the electron pulse is recorded at a second

sharp needle emitter (instead of the copper grid). The second needle is positioned to

have its symmetry axis perpendicular to the electron’s direction of propagation and is

likewise illuminated by the pump laser. By optical field enhancement, electrons around

the tip apex are strongly scattered. To allow for an even stronger enhancement caused

by resonant plasmonic excitation at the surface, taking into account the 800 nm driving

pulses in our current setup, a gold instead of a tungsten tip could be employed.

The big advantage of this method would be the relatively modest engineering effort to

implement a second tip and a potential temporal resolution of about 100 fs, in princi-

ple limited only by the driving laser of the second tip. However, the extremely small

interaction area compared to the large beam diameter of the electron pulse results

in a small scattering efficiency, thus necessitating long integration times to observe a

transient behavior. Specifically, taking the ULEED electron pulse cross section to be

Apulse = π(30µm)2 and the interacting tip surface to be of the order of Aint = π(10nm)2,

the scattering efficiency is about 10−7. This would mean that even at high beam cur-

rents, only one scattered electron every two seconds is detected. For a rough estimate

of the necessary integration time, the following parameters are taken: The employed

MCP7 has an effective diameter of 77 mm, a spatial resolution of about 1 mm and a

dark count of the order of 10 electrons per second at single-electron sensitivity. Hence,

when assuming that the non-scattered electrons can be efficiently blocked without losing

the scattered electrons, an integration time of few tens of seconds should be sufficient

for a discernible signal (approx. 30 dB signal to noise). However, this estimate is rather

optimistic and does not take into account additional noise producing effects, including

electronic noise from the camera’s charge-coupled device (CCD) or electrons occasionally

scattered from lens assembly apertures.

A similar straight-forward approach as the one just discussed would be to determine the

pulse duration via an ultrafast structural effect, such as a reduction of the diffraction

intensity due to lattice heating (about τ ≈ 200 fs for graphene / graphite, [213], but

potentially masked by transient electric field effects [204]) or the structural change ob-

served in vanadium dioxide (VO2) upon transition from insulator to metal (in particular

the V-V bond dilution, τ ≈ 300 fs, [35]). The major advantage of this approach would be

7Hamamatsu F2226-24p, data sheet available at:
http://www.datasheetarchive.com/hamamatsu%20F2226-datasheet.html

http://www.datasheetarchive.com/hamamatsu%20F2226-datasheet.html
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the applicability in a transmission (thin film dynamics) as well as in a reflection (surface

dynamics) geometry.

5.4.2 Further improvements on the gun design

As has been demonstrated in the simulations, the achievable pulse duration is basically

limited by two major factors, namely the propagation distance to the sample and the

energetic spread of emitted electrons. In the following, approaches to further decrease

the temporal spread based on these two factors, are discussed.

The pulse duration increases roughly linearly with the propagation length, as can be

seen in Eq. 3.13. A reduction of the pulse duration by means of a miniaturizing of

the electron gun in general is therefore a relatively straight-forward approach. In fact,

an electron gun currently being developed in our laboratory employs apertures from

electron microscopy to limit the total propagation distance to few millimeters, thus

potentially allowing for sub-picosecond resolution. Additionally, the gun diameter is

strongly decreased, which facilitates the recording of diffraction images in the classical

back-reflection LEED geometry (see Sec. 7.2).

An alternative approach is the lensless diffraction by a nanometric needle emitter directly

in front of the sample [215]. The approach has shown to allow for about 250 fs temporal

resolution at electron energies as low as 70 eV with excellent focusability. However, there

are still particular challenges of this geometry due to the vicinity of the emitter to the

sample, including the influence of the pump pulse on electron emission, the necessary

shielding of back-reflected electrons from the electrostatic tip and suppressor potentials,

as well as the transfer of this approach to a backscattering geometry without largely

shadowing the sample.

Ultimately, a nanofabricated electron lens system would be ideal, offering small source

dimensions, hence minimizing propagational broadening and shadowing effects, while

allowing for full electron beam control.

The second strong influence on the pulse duration is velocity dispersion, originating from

a finite initial energy distribution width of the emitted electrons. This width has several

contributions, including thermal blurring of the Fermi-Dirac distribution of the electron
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gas in the metal, different electron momenta within the metal surface, finite width of the

spectrum of the driving laser, and the non-planar emission geometry of the tip itself.

A first step in reducing the energy spread is the use of tungsten with a single crystal

orientation for the production of the tips, since, depending on the surface direction,

tungsten has work functions between 4.5 eV (111) and 5.3 eV (110) [192]. Without

this initial step, the efficiency of the subsequently explored methods would be strongly

reduced.

The influence of the thermal blurring has previously been estimated by means of the

electron gas temperature in the metal after the initial heating by the short laser pulse

(Sec. 5.3.1). Specifically, it was found that for tungsten, the FWHM of the derivative

of the Fermi-Dirac distribution is 0.3 eV under typical experimental conditions as found

in ULEED, compared to 0.1 eV at T = 300 K. The enhanced tip temperature leads to

thermally assisted photoemission, which results in a broader energy distribution of the

emitted electrons. To minimize this effect, the photocathode can be cooled [216].

Additionally, the wavelength of the photoemission laser can be adapted to avoid large

excess kinetic energies of electrons after the emission process. This could be achieved by

means of an optical parametric amplifier (OPA). A disadvantage of a carefully aligned

wavelength would be that whenever the potentials of the suppressor, tip or extractor

unit are changed, the wavelength would also have to be realigned to compensate for

the modified effective work function, see Eq. 3.1. In the typical operation regime of

the current ULEED setup, the change in work function is of the order of 0.2 eV when

increasing the electron energies of 300 eV to 450 eV. However, by adapting the electric

potentials of all three components in such a way that the field around the tip is not

drastically altered, this change can be minimized.

A reduction of the initial kinetic energy of the electrons would also reduce the energy

spread caused by the tip geometry. The spread is caused by emission of electrons with

velocity components normal to the forward propagation direction. Specifically, an elec-

tron with initial energy E0 emitted under an angle of emission β relative to the surface

normal at the emission site α (Sec. 4.1.1) has an energy component parallel to the

forward direction which is reduced by

∆E = E0(1− cos(α+ β)). (5.6)
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This difference in kinetic energy is somehow damped by the trajectories being bent in

forward direction, depending on the lens assembly voltage settings. A reduction of the

initial energy E0 would likewise decrease the contribution of the emission geometry to

the overall energy spread.

Specific efforts in the direction of the development of an improved electron source are

presented in the outlook of this work (Sec. 7.2).

5.4.3 Optical field emission electron gun

As described in this section, the pulsed electron gun in this setup is operated in the

multiphoton regime (see Fig. 5.6B). An operation at even higher intensities of the driving

laser is theoretically possible, and could even lead to shorter electron pulses with higher

spatial coherence.

In the regime of optical field emission (Sec. 3.3.3), the driving light field is dominating

over the electronic binding forces or the metal, thus basically ripping the electrons out

of the tip. After emission, electrons could potentially gain a significant amount of

kinetic energy from the strongly enhanced oscillating light field in the vicinity of the

nanostructure [49], thereby also reducing the solid angle of emission [175]. The energy

gain would depend strongly on the phase of the laser pulse at the time of emission and

can easily be in the region of hundreds of electron volts for long enough wavelengths.

However, this high energy gain has to be paid for by a broad electron energy spectrum,

resulting from its strong phase-dependency [217].

Nevertheless, with accurately timed, phase-locked laser pulses and appropriate spec-

tral compression methods, e.g., by RF-cavities [138, 148, 218] an optical field emission

electron gun could in principle lead to enhanced temporal resolution at low electron

energies. A main drawback of such an electron source would be the limited repetition

rate within a pump / probe scheme. To avoid strong cumulative heating effects result-

ing in a thermal destruction of the metal tip, the operation would be likely limited to

repetition rates of the order of few kHz, resulting in long integration times due to the

relatively small electron-per-pulse yield of needle-type emitters [50]. Additionally, the

temporal compression of the electron pulses is paid for by a broadened energy spectrum.

Considering, for example, the relatively large RF-cavities in combination with the strong
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propagational broadening at low electron energies, the realization of such a scheme will

likely be technically challenging.

From the point of view of this work, the operation of such a laser driven optical field

emission electron gun is in principle feasible, but will require a rather sophisticated

experimental setup compared to the one at hand.

5.4.4 THz compression of electron pulses

Very recently, optical temporal compression of electron pulses photoemitted from a

nanometric tip has been demonstrated experimentally in our group [217]. In particular,

a pulsed, needle-type photocathode has been illuminated by an additional THz pulse,

effectively leading to a streaking and gating of the photoelectron emission by modulation

of the metal work function. Depending on the relative temporal delay between the

photoemission and the THz pulses, the energetic electron spectra have been compressed,

shifted or broadened.

This approach, which can be understood as the optical equivalent of RF compression,

offers two distinctive advantages compared to the cavity-based approach: firstly, the

THz-based technique operates at orders of magnitude higher frequencies, offering few-fs

temporal control [219]. Secondly, the electron pulses are manipulated directly at the

emission site, therefore avoiding a temporal broadening caused by longer propagation

distances, allowing for a potential implementation of the technique in ULEED.
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Ultrafast PMMA superstructure

dynamics on free-standing

graphene

This chapter describes the time-resolved structural analysis of an ultrathin polymer

overlayer adsorbed on free-standing graphene by the previously introduced transmission

ULEED setup. Part of the results presented here have been published in Ref. [220].

After a short motivation of the selected sample system (Sec. 6.1) and a brief description

of the sample preparation method (Sec. 6.1.1), ULEED is used to perform an initial

characterization of the graphene / PMMA bilayer system (Sec. 6.2). Further, the non-

equilibrium dynamics of a crystalline PMMA superstructure are analyzed and the time

scales of different involved processes identified (Sec. 6.3). Lastly, we propose a physi-

cal picture of the superstructure evolution (Sec. 6.4), which is subsequently discussed

(Sec. 6.5).

6.1 Choice of a sample system

The previous chapters have theoretically as well as experimentally demonstrated the

potential performance of ULEED based on its brightness, its spatial and its temporal

resolution. However, the determination of all the key quantities has been performed in

75
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isolation from each other. Therefore, it is important to additionally present a feasibility

study, based on the analysis of a complex sample system, to demonstrate the applicability

of ULEED as a novel tool for ultrafast surface science.

We therefore prepare a sample system consisting of an ultrathin polymer layer on free-

standing graphene. From a fundamental point of view, this system is interesting, because

its constituents display drastically different mechanical, electronic and thermodynamic

properties. In particular, whereas the polymer, atactic PMMA, usually does not exist

in crystalline form, graphene is a highly-ordered system. Moreover, while individual

PMMA chains with molecular weights of close to 106 g/mol are expected to react rather

slowly on environmental changes [221], graphene’s relaxation dynamics have been shown

to happen on very short time scales [203, 222].

On the other hand, the properties of these two materials are often interlaced in terms of

graphene heterostructures [18], and, even more strongly, graphene / polymer composite

materials [79]. But also apart from graphene-based material compositions, PMMA is

commonly incorporated into the preparation process of free-standing graphene [103],

and to our knowledge also regularly seen on TEM images [103, 105, 223]. However,

concerning the interplay between these two materials, there is still a pronounced lack

of understanding. One reason might be that even though the graphene subsystem and

its dynamical properties are routinely mapped [203], the dynamical investigation of

the PMMA layer is challenging. Major difficulties in the investigation include PMMA’s

transparency over a wide spectral range [224] as well as its high susceptibility to electron

beam induced damage [225].

In light of a fundamental interest as well as its importance in graphene research and

technology, a PMMA / graphene bilayer represents a potentially very rich system to

study. Furthermore, the extremely low radiation-dose of ULEED compared to other

time-resolved electron diffraction experiments might allow for a new perspective on the

dynamics of graphene composites relaxing from highly non-equilibrium states, which

have been inherently difficult to access so far.
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6.1.1 Sample preparation

Graphene was first obtained by means of the scotch-tape method as described in [71].

Since then, many different preparation methods have emerged ultimately trying to allow

for a high-quality, low-cost, large-area graphene production [226]. An overview on al-

ternative preparation methods can be found in Ref. [227] with focus on chemical vapor

deposition (CVD).

The sample preparation process as used in the framework of this thesis is sketched in

Fig. 6.1.

Copper foil
substrate

Graphene transfer to
TEM grid on Si wafer

Sample drying
on TEM grid

Sample drying

Graphene with
ultrathin residual

polymer layer

Dissolving all polymer not
in contact with graphene

CVD process Polymer
spincoating

Backside graphene
removal by RIE

Dissolving
copper foil

Figure 6.1: Sample preparation of polymer/graphene bilayer system. Production of
monolayer graphene and subsequent polymer-supported transfer to TEM grid.

Specifically, monolayer graphene is produced by a CVD process on a 25 µm thick, pre-

etched Cu substrate1. The following steps are undertaken within the CVD process

([103, 220]):

1. First, the quartz tube reaction chamber is evacuated to a pressure of about 3 mTorr2

by a mechanical pump.

2. Then, a 40 sccm hydrogen gas flow is introduced at a pressure of 950 mTorr.

3. To enlarge the Cu grains and remove residual Cu oxide and impurities from the

foil’s surface, the Cu is heated to 1000 ◦C within 60 min and subsequently annealed

for 30 min.

1Vendor: Alfa Aesar, item No. 13382, purity: 99.8 %.
2The pressure scale of the instrument is in Torr. Torr are converted into Pa by multiplication with

101325/760.
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4. For the graphene synthesis, methane gas together with hydrogen is introduced into

the chamber (6 sccm and 20 sccm, respectively) for 10 min at a total pressure of

460 mTorr.

5. Lastly, the furnace is rapidly cooled down to room temperature, keeping the

20 sccm hydrogen flow.

In a next step, free-standing graphene is obtained by a transfer of the graphene to a

TEM grid. To suspend the graphene and secure its adhesion to the grid, it is covered

by a thin, holey layer of amorphous carbon (Quantifoil3), as visible in Fig. 6.2. For the

sample used in this work, the hole size of the Quantifoil is either 3.5 µm or 7 µm. At

larger sizes the adhesion of the graphene to the substrate is decreasing rapidly.

200 µm 20 µm 2 µmA B

B

C

C

Figure 6.2: TEM grid covered with a thin layer (about 20 nm) of amorphous, holey
carbon (Quantifoil). A, B, and C show different magnifications of the TEM grid on
the covering Quantifoil film. The dashed white rectangles show the areas magnified in

the image to the right.

For the transfer process (Fig. 6.1), one side of the graphene / Cu foil is spincoated with

a polymer. In this work, various types of polymers for spincoating have been used,

namely two different solutions of PMMA4 and a single solution of PC5. The spincoating

is performed at 2000 rpm for 60 s, the sample is subsequently dried for 1 h under

atmospheric conditions. Backside graphene on the Cu substrate is then removed by

oxygen plasma etching (30 s at 100 W). The remaining copper is dissolved in a 0.3 M

(NH4)2S2O8 solution for 6 h. Finally, the left over polymer / graphene film is scooped

out of the solution by TEM-grids6, which have been attached to a Si wafer by a small

3More information on Quantifoil on: http://www.quantifoil.com/.
4Named PMMAi and PMMAii; vendor: Allresist (http://www.allresist.de/); tacticity: atactic;

molecular weight: 950, 000 g/mol; PDI: 3.76; melting temperature: 130 ◦C – 160 ◦C; glass transi-
tion temperature: 105 ◦C; viscosity at 25 ◦C: PMMAi 43.4 mPas, PMMAii 8.8 mPas; solvent: PMMAi

solved in anisole, PMMAii solved in ethyl lactate. Since most of the measurements and especially all
time-resolved experiments are performed with samples spincoated with PMMAi, it is referred to as
simply “PMMA”, whereas the use of PC and PMMAii is specifically indicated.

5Poly(propylene carbonate); vendor: Sigma-Aldrich (http://www.sigmaaldrich.com/); tacticity: at-
actic; molecular weight: 50, 000 g/mol; glass temperature: 25 ◦C – 45 ◦C; molecular weight: 102 g/mol;
solvent: ethyl acetate.

6If not denoted otherwise, 400 mesh copper grid covered with a Quantifoil film of about 10 nm
thickness and hole size of 3.5 µm. Vendor: Plano (http://www.plano-em.de/).

http://www.quantifoil.com/
http://www.allresist.de/
http://www.sigmaaldrich.com/
http://www.plano-em.de/
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amount of the same polymer as used during spincoating.

To increase the adhesion of the graphene on the grid, the samples are dried for several

days under atmospheric conditions at room temperature. After this period, all polymer

but the one in direct contact with the graphene substrate is removed by consecutively

washing the sample for 15 min each in acetone, isopropanol, and DI water in the case

of PMMA and chloroform, isopropanol, and DI water in the case of PC.

This fabrication protocol applies to all of the samples investigated in this work. A more

detailed account on the graphene characterization, the influence of the drying time on

the bilayer, as well as its thermal stability and degradation behavior under electron

irradiation is provided in App. B.

6.2 Bilayer characterization in the ULEED setup

6.2.1 Local diffractive probing

For a first sample overview, the setup is operated in projection mode7 with a strongly

divergent beam (Fig. 6.3A). The dark areas on the TEM grid denote sample coverage,

whereas the few visible very bright mesh cells in the bottom right area of Fig. 6.3A

indicates missing or ripped Quantifoil8.

In order to demonstrate bilayer abundance, local diffractive probing on a TEM grid

with relative poor overall sample coverage has been performed. Fig. 6.3B shows a

magnification of the area in the red dashed rectangle of Fig. 6.3A. Diffraction images

have then been taken from each single mesh cell of the 3 × 3 mesh array in Fig. 6.3C.

The green boxes mark mesh cells with notable diffraction signal, clearly showing that

the graphene / PMMA bilayer covers only the dark areas within the projection images.

An in-depth analysis of the recorded diffraction pattern is performed in the next section.

The dark spot just below the central beam block in (Fig. 6.3C) is visible in all diffrac-

tion images and originates from the geometry of the MCP detector. In particular, the

7Suppressor voltage optimized for homogeneous illumination of the whole sample area, lens voltage
set to ground.

8Mean-free path length for 500 eV electrons is of the order of 1 nm, whereas the Quantifoil thickness
is about 20 nm, therefore not transmissive. Quantifoil coverage is about 50 % on an intact sample site.
More information on this subject in App. B.
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Figure 6.3: Projection and local diffractive probing images of sample system. A: Pro-
jection image of sample, diffractive probing area is indicated by red dashed rectangle.
B: Magnified area of dashed rectangle depicted in A. Green squares in B mark sample
sites with notable diffraction signal. C: Diffraction images from individual mesh cells

as indicated in B. Electron energy: 450 eV.

microchannels inside the MCP are tilted by 8 ◦ with respect to the surface normal. At

the spot position, electrons are propagating towards the screen at the same angle and

are therefore subject to a reduced probability of amplification9.

In the framework of this thesis, the operation conditions have been chosen to be optimal

for monolayer sensitivity, short pulse durations and high scattering efficiency. This

resulted in electron energies above those typically employed in static LEED experiments.

However, is has to be stressed that the chosen energies are motivated only by the observed

sample system and not a result of limitations of the electron source. In fact, the gun

has been operated at electron energies below 100 eV, not showing any reduction of the

beam quality.

Since the present setup is working in transmission, electrons need sufficient energy to

be transmitted through the bilayer. This property can be observed in the dramatic

increase of integration time, when reducing the electron energy below about 240 eV,

9We gratefully acknowledge discussions with M. Müller, which contributed greatly in understanding
this effect.
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corresponding to a penetration depth of about 6 Å (App. A.2). For comparison, the

integration time for the diffraction image recorded in Fig. 6.3C at an energy of 450 eV is

only 10 s, while the images displayed in Fig. 6.4, at an energy of 150 eV, are integrated

over 200 s and those in Fig. 6.5 for only one second at an energy of 1000 eV.

1 Å-1

A B

Figure 6.4: Diffraction images taken at 150 eV at two different sample positions.
Integration time: 200 s. Non-linear gray scale for better visibility.

6.2.2 Structural analysis of the polymer overlayer

The deterioration of the sample by intense laser irradiation as well as electron bombard-

ment have made it necessary to frequently change sample sites after long measurement

runs. Therefore, typically samples with higher overall coverage were chosen, as displayed

in Fig. 6.5A (coverage about 40 %).

A B C

C

mesh size 70 µm

Graphene

PMMA
superstructure
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(  0)1
2
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Figure 6.5: Projection and diffraction images of the PMMA/graphene bilayer sys-
tem. A: Projection image from a sample recorded with the ULEED electron gun and
divergent beam settings. Dark areas denote sample coverage. Electron energy: 450 eV.
B: Diffraction image of a single mesh cell. The sample displays the typical hexagonally
symmetric graphene peaks as well as an orientationally linked PMMA superstructure
close to the central beam stop. Reciprocal graphene lattice parameter a∗G = 2.95 Å−1.
Integration time: 1 s, electron energy: 1000 eV. Dashed rectangle indicates area mag-
nified in C. C: Close-up of graphene and PMMA superstructure diffraction peaks with

Miller indices. Superstructure lattice parameter a∗P = 1.47 Å−1.
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On such a high-quality sample, a detailed diffraction image can usually be obtained

within a few seconds, depending on the electron energy employed. Fig. 6.5B displays a

typical diffraction pattern from a single mesh cell with full graphene / PMMA coverage.

In particular, the hexagonally symmetric graphene diffraction spots with a reciprocal

lattice parameter of a∗G = 2.95 Å−1 as well as an equal number of additional peaks

closer to the central beam stop can be observed. These peaks are found to be at half

the scattering angles of the graphene spots, corresponding to a lattice parameter of

a∗P = 1.47 Å−1 (Fig. 6.5C). Moreover, they also display a six-fold symmetry and can

be attributed to a superstructure formed by the ultrathin PMMA film. As seen in the

diffraction pattern, this superstructure is orientationally linked to the graphene lattice.

Very similar superstructures are found on all samples prepared under comparable fabri-

cation protocols (Sample preparation), using one out of two different polymers, namely

PMMA and PC. Figure 6.6 displays two diffraction patterns found in the case of a PC

/ graphene bilayer system.

A B

1 Å-1 1 Å-1

Figure 6.6: Superstructure types of PC/graphene bilayer system with different lattice
parameter. 5 s integration time.

Orientationally, they display the same angular linkage to the graphene substrate, but

differ significantly in intensity and lattice parameter. Whereas the reciprocal superstruc-

ture lattice constant in Fig. 6.6A is half that of graphene, the one found in Fig. 6.6B

is about 30 % smaller, displaying a reciprocal lattice constant of a∗PC = 1.16 Å−1. For

a physical explanation of this effect, the impact of the monomer characteristics on the

conformation of the superstructure has to be further investigated. Current efforts in this

direction are pointed out in the outlook section of this work (Sec. 7.2).

Hence, in the time-resolved study, only graphene / PMMA samples with regions dis-

playing a hexagonal pattern are chosen for the quantitative analysis of the diffraction
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images. Such samples have the advantage of usually featuring the best signal-to-noise

ratio. Moreover, due to the limited resolution of the detector camera, intensity blurring

between adjacent spots can be avoided. However, only about 20 % of the probed sample

areas display this symmetry, whereas the rest have shown a superposition of several

different sample orientations. Most abundant are the two types of 12-fold symmetry

depicted in Fig. 6.7A and B. Specifically, the individual patterns display relative angles

of rotations of α = 28 ◦ and β = 21 ◦, respectively. These tilt angles agree well with

the theoretically predicted and experimentally confirmed most stable configurations of

armchair- and zigzag-type grain boundaries of graphene (Sec. 2.3.1), which have been

found to be 28.7 ◦ and 21.7 ◦, respectively [89–91].

A B

α

β

Figure 6.7: Diffraction images of typical sample regions featuring two distinct
graphene orientations. Relative angular orientation of α = 28 ◦ (A) and β = 21 ◦

(B). Red circles indicate clearly visible diffraction spot structures.

Additionally, the diffraction spots display a structure in terms of intensity distribution

as marked by the red circles in Fig. 6.7B. Such an inhomogeneous intensity profile could

in principle be an indicator of defects within the crystal lattice causing tension or mosaic

formation and be interpreted as a result of the observed grain boundaries [69].

However, the observed relative angles between different graphene orientations are found

to induce relatively little strain to the carbon bonds [91]. Moreover, a structured spot

profile is also visible in the case of sample regions displaying a six-fold symmetry, which

would be expected to have fewer defects compared to those depicted in Fig. 6.7. A

more likely explanation is therefore an inhomogeneity not within the crystal lattice of

graphene, but instead in the beam profile of the electron source. Particularly, the spot

profile shows the same half-moon like shape as the intensity distribution of the electron

beam, when operated in projection mode. This is likely caused by a combination of a

slightly misaligned tip, an imperfect lens system, but also the tip geometry itself [228].
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Generally, a measurement of transverse coherence in the framework of an electron diffrac-

tion experiment is relatively laborious. Nevertheless, the distance of the spots to the

zeroth order spot (at the center of the pattern) with respect to their spatial extension

can serve as a rough estimate. In particular, the ratio of peak width to peak distance

to the pattern center is found to be 5− 10 is most cases, corresponding to a coherently

illuminated sample area of about 2.5 − 5 nm in diameter. If compared to the value

predicted for the maximal transverse coherence length (see Sec. 3.4.3 and Sec. 3.4.1),

this value is orders of magnitude smaller. Possible reasons for the apparent reduction

of the coherence length again include imperfect beam optics and a widening of the spot

profile due to heating and superstructure degradation (see App. B.4). The latter can

be excluded by using the graphene spots as a scale instead, resulting at similar values

for the transverse correlation length. Additionally, as will be demonstrated in the out-

look (Sec. 7.2), a newly designed miniature electron gun produces significantly sharper

diffraction peaks, supporting the idea of a limitation of the coherence length by imperfect

electron optics in the presented setup.

6.2.3 TEM measurements

Since the electron beam of the gun currently used in the ULEED setup samples a region

of few tens of micrometers in diameter (Sec. 5.3), TEM as well as cryo-TEM mea-

surements with few-nanometer sampling areas are performed to further investigate the

nature of the superstructure (Fig. 6.8A). However, under irradiation of a regular TEM

and even the low-dose approach of the cryo-TEM, a superstructure degradation within

a few seconds is observed, making it challenging to perform more than a qualitative

investigation on the system (see App. B.4).

Nevertheless, when sampling only few tens of nanometer large areas in a (cryo-) TEM

in diffraction, three basic observations can be made:

1. Mainly two and sometimes four superstructure spots are visible out of the six in

the images recorded with the ULEED setup (Fig. 6.8A).

2. Areas of single-domain superstructure abundance are about 10 nm in diameter.

3. The superstructure is only visible on about half of the investigated area.
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A

2 Å-1

B

1 Å-1

C 5 Å

Figure 6.8: Characterization of the PMMA superstructure. A: Low-dose cryo-TEM
image with few nanometer sampling area displays only two PMMA diffraction spots,
indicating a stripe-like order as depicted in C. Electron energy: 300 keV. B: ULEED
diffraction pattern of an infrequently encountered sample area showing a preferred
direction of orientation (two bright center spots) of the adsorbed PMMA superstructure.
C: STM image of atactic PMMA on HOPG with chain-to-chain distance of 5.0(1.0) Å,

taken from Ref. [110]. [229]

The first observation can be explained by the abundance of three superstructure do-

mains with a periodicity in only one direction, instead of a hexagonally symmetric 2× 2

superstructure (Sec. 2.2.2). As far as this observation goes, the domains differ only by

being rotated by 60 ◦ with respect to each other, while all of them are orientationally

linked to the substrate.

The formation of stripe-like crystalline domains of polymers on various substrates has

been previously observed. Specifically, AFM and STM measurements have been per-

formed for various PMMA types on mica and highly ordered pyrolytic graphite (HOPG)

[110, 111, 230, 231], finding tacticity-dependent configurations of so-called folded-chain

crystals. Remarkably, this is also the case for atactic PMMA (Fig. 6.8C). Specifically,

the charge density distribution recorded by the STM shows a strong periodicity along

one direction, whereas the other direction displays a significantly weaker periodicity at

a higher spatial frequency. However, this order along the backbone of the polymer is

not visible in the ULEED diffraction images.

The second observation already gives a rough idea of the approximate domain dimension.

Specifically, the domain size is of the same order as the transverse coherence length of

the current ULEED setup. Taking into account a substrate coverage of approximately

50 %, it is likely that interference of diffraction signals from different domains plays

only a minor role. Instead, the pattern can be seen as a superposition of the individual

domains.
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Additionally, it can be concluded from the homogeneous intensity of the six individual

superstructure spots in the majority of ULEED diffraction images (see e.g. Fig. 6.5B

and C) that the three domain orientations are uniformly distributed. Fig. 6.8B shows

a ULEED diffraction image taken of an only rarely encountered sample region also

displaying a preferred orientation of the superstructure, indicated by the higher intensity

of two out of the six inner diffraction spots.

The last observation, concerning the PMMA coverage, agrees well with TEM images

taken from the samples (Fig. 6.10C) and will become important when analyzing the

out-of-equilibrium dynamics of the superstructure, in particular the expansion of the

superstructure lattice.

6.2.4 STM measurements

To corroborate the notion of a folded-chain superstructure, STM measurements on the

samples at a temperature of 77 K are performed. Before interpreting the results, it has to

be noted that it was not possible to repeat individual measurements at the same position.

This might stem from mobile PMMA chain segments, which got shifted by the STM

tip. However, several observations are supporting the interpretation of a PMMA folded-

chain crystal superstructure: Firstly, the measurements could be reproduced at different

sample positions. Secondly, the instable tunneling process during the measurements

indicates the abundance of a material overlayer other than graphene. Furthermore, the

orientation of the stripe-like features fits the orientation of graphene and shows double

its periodicity. And lastly, the obtained periodicity for both graphene and PMMA agree

well with values found in the literature.

Figure 6.9A displays two exemplary STM images of PMMA (top) and graphene (bot-

tom). The averaged traces of these images (area of averaging indicated by the dashed

rectangular boxes) are plotted in Fig. 6.9B. By Fourier transformation, the periodic-

ity of graphene is calculated to be 2.50 Å (literature value: 2.46 Å), while the PMMA

chain-to-chain distance is found to be 5.13 Å (literature value: 5.0(1.0) Å [110]).

From these measurements, the polymer superstructure is understood to have the follow-

ing configuration: The PMMA forms strands on top of the graphene displaying double

periodicity with respect to the substrate’s unit cell, |b| = 2|a1| = 4.92 Å. It orders
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Figure 6.9: STM characterization of the PMMA/graphene bilayer. A: STM images
of PMMA (top, voltage −0.2 V, constant current 0.2 nA) and empty graphene (bot-
tom, voltage 0.25 V, constant current 0.2 nA) displaying double periodicity of PMMA
with respect to graphene in x direction (black arrow). Dashed boxes indicate area of
y-integration for B and C. Stripe-like appearance of graphene stems from preferred
direction of scanning. Scale applies to both images. B: Integrated STM traces for
both PMMA (dashed blue line) and graphene (solid red line). C: Fourier expansion of
PMMA and graphene data in B, showing peaks at 1.95 nm−1 and 4.00 nm−1, respec-
tively. Dashed lines indicate reciprocals of values given in the literature for the lattice

spacing. [232]

itself in folded chains, which are following the directionality of the underlying graphene

lattice, resulting in three different possible domain orientations rotated by 60 ◦ with

respect to each other. In particular, the adaptation to the substrate orientation follows

from the periodically corrugated adsorption potential of graphene.

The size of these folded-chain polymer domains is estimated from TEM measurements

(Fig. 6.8A) to be of the order of 10 nm in diameter, corresponding to about 20 chain

spacings. This feature is in agreement with the typical correlation length, which is found

for most of the samples probed to be of the order of 5 to 10 chain spacings. With the high

molecular weight of the used PMMA (approx. 104 monomers per chain), and assuming

enough time for the molecule to rearrange on the graphene substrate, this results in a

single PMMA chain building up to 50 connected crystal superstructure domains.

Since the samples are stored at temperatures below the glass transition temperature of

the atactic PMMA (TG ≈ 105 ◦C), its chain mobility is strongly decreased. Hence, we

assume that despite the long drying time, at least a small part of the PMMA is still in

amorphous form, visible as background signal in the diffraction pattern. In agreement

with this assumption, the superstructure signal quality increased for samples, which

have been subjected to longer drying times (see App. B.2).

Nevertheless, as the polymer superstructure diffraction peak intensity has been found to

be comparable with the one of graphene and does not change significantly when scanning
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the sample in ULEED, considerable overall crystallinity and uniform substrate coverage

on the micrometer scale can be inferred.

An exemplary PMMA superstructure on the graphene substrate is sketched in Fig. 6.10A

and B. The red and orange tubes are showing two different folded-chain domains, both

aligned to the graphene substrate and rotated by 60 ◦ with respect to each other

(Fig. 6.10A). For a more detailed picture, a magnified PMMA folding is displayed in

comparison to the graphene unit cell in Fig. 6.10B.

d

5 Å
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b

a2

A B

B
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C

Graphene

PMMA

Figure 6.10: PMMA superstructure sketches and TEM image. A: Schematic sketch
of the ordered PMMA chains (red and orange) on the graphene substrate. Dashed
rectangle indicates area magnified in B. B: Graphene unit cell (gray area) with lattice
vectors ai. Double periodicity |b| = 4.92 Å of superstructure with respect to (dashed)
graphene unit cell and chain-to-chain distance d = 4.26 Å. C: TEM image of typical

sample at 80 keV, displaying graphene and unordered PMMA. [233]

For comparison, a TEM image also displaying both graphene and PMMA, is depicted in

Fig. 6.10C. In this case, however, any existing PMMA superstructure has been already

destroyed by intense electron beam irradiation (see App. B.4). As mentioned above, the

total PMMA coverage of graphene is of the order of 50 % (more TEM images found in

Ref. [103, 105, 223]).

As can be seen in the diffraction images (e.g. Fig. 6.5C) as well as in Fig. 6.10B, the

inter-chain spacing of PMMA is determined by Eq. 2.3:

d =
2π

a∗p
= 4.26 Å. (6.1)

With graphene having a hexagonal lattice with lattice vectors of length |ai| = 2.46 Å,

a double periodicity results in a value of |b| = 2|a1| = 4.92 Å, because the PMMA

chain-to-chain vector is not parallel to the unit cell vector of graphene. However, when

discussing the superstructure lattice parameter, the value of d = 4.26 Å is referred to.
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6.2.5 Higher diffraction orders

Upon increase of the electron energy, higher diffraction orders of graphene and the

superstructure become visible (Fig. 6.11A and B). In case of the latter, however, the

diffraction spot intensity decreases rapidly with increasing order, which has been pre-

viously reported for similar systems, for example in electron diffraction experiments of

polyethylene folded-chain crystallites [234].
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Figure 6.11: Higher diffraction orders of graphene and superstructure, simulated su-
perstructure charge density modulation. Numbers denote Miller indices in graphene
(A) and superstructure (B) lattice units. Electron energy: 1000 eV (A), 500 eV (B).
Integration time: 1.5 s (A), 45 s (B). A: Diffraction image with graphene and PMMA
peak labels. B: Diffraction peaks correspond to the same superstructure domain ori-
entation. C: Idealized charge density modulation simulated for spot intensities and

positions as found in B.

For illustration purposes, an idealized charge density distribution is simulated in the

following, not taking into account static or dynamic disorder. While the position and

shape of the diffraction spots is given by the relative arrangement of the unit cells and

hence the structure factor |S|2, their intensity I is ultimately determined by the atomic

form factor |F |2 [69]. Specifically, the atomic form amplitude is the Fourier transform

of the charge density distribution ρ within the scattering unit cell,

I ∝ |Fhk|2 = ρ2. (6.2)

Using Eq. 6.2, the relative atomic form factor amplitudes Fhk can be evaluated from the

measured spot intensities Ihk in Fig. 6.11B. For a computation of the absolute value,

however, the intensity of the zeroth order (transmitted) beam would have to be known.

Specifically, the spot intensity is determined by subtracting a linear, radius-dependent

background and a subsequent fit with a 2D Gaussian.
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The charge density distribution ρ(x, y) is now obtained via the 2D Fourier series [235]

ρ(x, y) ∝
∑
h

∑
k

ϕhkFhk exp(i(khx+ kky)) (6.3)

∝ ϕ10F10 sin(khx) + ϕ01F01 sin(kky) + ϕ21F21 sin(2khx) sin(kky), (6.4)

where the ϕhk = ±1 denote the phase coefficients and, without loss of generality, ρ(x, y)

was assumed to be an odd function. The magnitudes of the wave vectors kh and kk in

the [10] and [01] directions, respectively, are obtained from Fig. 6.11B.

The result for ρ(x, y) is depicted in Fig. 6.11C for ϕhk = 1. Due to the symmetry of

Eq. 6.4, there are only two distinguishable, yet still similar modulations for the overall

eight combinations of the ϕhk [191]. Specifically, Fig. 6.11C shows a strong modulation

of the charge density along the [10] direction and a weaker modulation perpendicular to

it. When interpreting this result, one has to keep in mind that Eq. 6.4 is based upon a

strongly simplified picture of the physical system, e.g., using the Born approximation,

a kinematic treatment (see also Sec. 6.2.6), and, more importantly, neglecting the influ-

ence of disorder. Nevertheless, one can conclude that this rough analysis is in support

of previous results in terms of the polymer conformation on the graphene (compare

Fig. 6.8C).

6.2.6 Bilayer thickness

Qualitatively, it can be reasoned that the strong template properties of the graphene only

result in superstructure formation on the PMMA layer in direct contact with it [221].

Hence, possible subsequent PMMA layers may likely be non-crystalline and therefore

only contribute to the scattering intensity as an amorphous background.

However, due to the small penetration depth of low-energy electrons, a rough estimate of

the average bilayer thickness can be performed by means of the IMFP at those energies,

when the signal drastically decreases (compare Sec. 6.2.1). This decrease is found at

about 240 eV, corresponding to an IMFP of around 6 Å, which is in good agreement with

the assumed monolayer coverage of PMMA. When approximating the PMMA strains as

tubes with constant diameter, then their diameter cannot be larger than the chain-to-

chain distance, which is about 4.3 Å. Additionally, the graphene thickness is estimated
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by the inter-plane distance of successive graphene planes, which was determined to be

about 4 Å [72], resulting in a upper limit for the total bilayer thickness of about 8 Å.

In surface diffraction, multiple scattering from successive crystal planes has to be con-

sidered, which increases the level of complexity to quantitatively model the surface

structure [6]. However, this effect is usually negligible in transmission studies of the

ultrathin bilayers as in the present case.

6.3 Ultrafast relaxation dynamics of the PMMA super-

structure

In the following, a quantitative analysis of the reversible relaxation of the presented

bilayer system is given with focus on the superstructure dynamics, when excited far-

out-of equilibrium. Specifically, the current ULEED setup is employed to resolve the

ultrafast temporal evolution of the different processes taking place after intense laser

irradiation.

First, the general observation of an intensity loss of the diffraction spots is discussed

(Sec. 6.3.1). In the next step, differently behaving components of the superstructure

are identified (Sec. 6.3.2). Then, the temporal evolution of processes connected to the

superstructure relaxation are mapped and their characteristic time constants determined

(Sec. 6.3.3). Lastly, the graphene spot evolution is investigated (Sec. 6.3.6) and a physical

picture is derived and discussed (Sec. 6.4), followed by the conclusions (Sec. 6.5).

6.3.1 Diffraction intensity reduction

Figure 6.12 displays the change in diffraction intensity of graphene and the PMMA

superstructure, when illuminated by an intense laser pulse (pump pulse, duration: 3 ps,

fluence: 6 mJ/cm2) before (B) and after (C) arrival of the pump pulse as well as without

excitation (A).

The diffraction image of the unpumped sample (Fig. 6.13A) shows the hexagonal sym-

metric peaks of the graphene as well as three pairs of peaks of the adsorbed PMMA

superstructure with comparable intensity (Sec. 6.2). At negative delay times (∆t < 0 ps,
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Figure 6.12: Change in the diffraction images upon laser irradiation. Electron energy:
450 eV. Pump fluence: 6 mJ/cm2. A-C: averaged diffraction images for unpumped
sample (A), pumped sample at negative (B) and positive (C) delay times. D: Difference

map of images B and C. Dashed rectangle denotes image area shown in Fig. 6.13A.

electron probe pulse arrives before laser pump pulse), the intensity of the superstructure

spots is slightly decreasing by about 10–15 % with respect to the unpumped sample (cf.

Fig. 6.13A). This can be attributed to a non-complete recrystallization of the super-

structure between two pump pulses. With the repetition rate of 10 kHz used in the

experiment, the recrystallization time is therefore of the order of below 100 µs.

The intensity decrease is significantly amplified at long positive delay times (Fig. 6.12C,

∆t = 600 ps, electron probe pulse arrives after laser pump pulse), whereas the graphene

spot intensity stays seemingly constant. The intensity development can be best analyzed

by computing the difference between images taken at positive delays with respect to

images taken at negative delays (Fig. 6.12D).

In these difference maps, a further observation can be made: Next to the loss of intensity

for the superstructure peaks (blue), a slightly higher intensity at smaller scattering

angles is observed (red disc). Notably, this increase does not show a preferred direction

of orientation.

6.3.2 Amorphous and crystalline components

For a further examination of the temporal evolution, the difference maps for three delay

times are analyzed with respect to their changes in diffraction intensity.

Figure 6.13A displays the small angle scattering region (as denoted by the black dashed

rectangle in Fig. 6.12D) for three positive pump-probe delays. Mainly two features are

observed, namely the already mentioned reduction of the superstructure diffraction peak

intensity and an intensity increase at small scattering angles, corresponding to an in-

plane momentum transfer of k‖ < 1.25 Å−1. As can be seen in (i) and (ii), the spot
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Figure 6.13: Difference maps of superstructure diffraction images. Parameters as in
Fig. 6.12. A: Superstructure diffraction images for three different points in time, image
area denoted by dashed rectangle in Fig. 6.12D. Blue (red) color indicates intensity de-
crease (increase). B: Momentum-dependent peak intensity evolution without isotropic
contribution for delay times denoted in A. C: As in B, but only intensity of small-angle

scattering without peak contribution.

intensity decrease takes place on a different time scale with respect to the formation of

the inner disc (iii).

For a separate analysis of the individual features, the angularly averaged spot intensity

without the isotropic contribution from the disc is displayed in Fig. 6.13B. Likewise, the

latter is analyzed in Fig. 6.13C without the spot contribution. A detailed account on

how these components are separated is given in App. A.5.

Interestingly, the isotropic feature displays a peak in addition to the plateau region

visible in the difference maps (Fig. 6.13B A (iii)). The intensity change is maximal

at 1.12 Å−1, indicating a preferred spatial correlation length of about 5.6 Å, which is

approximately 25 % larger than the lattice parameter of the crystalline state.

Additionally, the notion of different time scales can be consolidated upon comparison

of the intensity changes at the same point in time relative to the respective feature’s

peak value at large delays: Whereas the intensity loss of the spots (Fig. 6.13B, k ≈

1.5 Å−1) is nearly complete after about 160 ps, only about half of the maximal intensity

increase has been achieved in case of the extended amorphous structure (Fig. 6.13C,
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k ≈ 1.2 Å−1). Additionally, the time scale for the latter is apparently strongly dependent

on the scattering angle. This feature can be confirmed by relating the displayed intensity

change to the scattering momentum. Explicitly, the characteristic time scale is increasing

with decreasing k‖.

6.3.3 Superstructure relaxation time scales

For a quantitative determination of the underlying characteristic time scales, a detailed

delay-dependent measurement with a temporal step-width between 10 ps (around time-

zero) and 60 ps (for long delay times) is performed. In Fig. 6.14A, the evolution of

the superstructure diffraction peak (blue triangles) and disc (orange circles) intensity

is displayed and fitted (solid lines with respective colors, fitting method detailed in

App. A.4). In case of the peak intensity evolution, a characteristic time scale of 105(8) ps

is found, whereas the isotropic intensity changes on the order of 228(61) ps. The relative

changes in amplitudes are −40 % and +12 %, respectively.

A B

C
||

Figure 6.14: Structural evolution of the superstructure relaxation. A: PMMA diffrac-
tion peak (blue triangles) and small angle scattering (orange circles, integrated over all
scattering angles) intensity development. Fluence: 6 mJ/cm2. B: Scattering momen-
tum dependent time constants for small angle scattering. C: Time constants as a

function of laser pump fluence.

Notably, the value of approximately 230 ps is obtained, when integrating the difference

maps over a large range of scattering momenta between 0.6 Å−1 and 1.3 Å−1. Yet,

as observed in Fig. 6.13B and C, the determined duration is a strong function of the
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scattering angle. To quantify this observation, the obtained time constants are dis-

played as a function of scattering momentum, using a integration width of 0.1 Å−1, in

Fig. 6.14B. Specifically, the computed characteristic time constants range from 150 ps

(k‖ = 1.3 Å−1) to values beyond 300 ps (k‖ < 0.6 Å−1).

The functional dependence can be used to define a characteristic velocity v of the process

related to the small angle scattering increase:

v =
∆λ

∆τ
=

2π

∆k∆τ
≈ 6

m

s
. (6.5)

Notably, this velocity is significantly smaller than the speed of sound in PMMA (vs =

2780 m/s, [236]). We will return to this observation at the end of this chapter (Sec. 6.4).

Furthermore, a possible correlation between the observed time constant and the em-

ployed fluence level is investigated. To this end, the superstructure dynamics are

recorded for numerous samples prepared under the same conditions, yielding a mean

characteristic time scale for the peak intensity loss of 128(32) ps. The individual time

constants are displayed in Fig. 6.14C as a function of employed laser pump fluence.

So far, within the sample-to-sample variability, we found no fluence-dependency of the

observed time constants for fluences between 3 mJ/cm2 and 12 mJ/cm2.

6.3.4 Fluence threshold

Interestingly, for fluence levels below 3 mJ/cm2, the diffraction intensity loss of the peaks

is found to be strongly suppressed. On these grounds, fluence-dependent measurements

of the superstructure diffraction peak intensity and position are conducted (Fig. 6.15A).

Up to a threshold fluence of about 3 mJ/cm2, the diffraction peak intensity is slightly

decreasing with increasing pump fluence, e.g., due to heating of the sample (blue squares,

see Sec. 6.3.6). Above the threshold fluence, the intensity loss is strongly enhanced,

displayed by a kink in the otherwise linear behavior. This finding is paralleled by an

expansion of the superstructure lattice, which is also significantly steepened above the

same critical fluence. Explicitly, the superstructure lattice expansion amounts to about

1 % (0.05 Å) at the threshold, while a doubling of the pump fluence further increases

the lattice parameter by an additional 5 % (0.2 Å).
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C

Figure 6.15: Fluence dependent intensity and spot position measurements. Electron
energy: 450 eV. A: Superstructure peak (turquoise diamonds) and lattice parameter
(purple circles) development as a function of pump fluence at large delay times (∆t =
600 ps). Turquoise and purple lines are linear fits to the experimental data and should
serve as a guide to the eye. B, C: Delay-dependent superstructure lattice parameter
expansion above (B) and below (C) the fluence threshold with respect to the unpumped
value (d = 4.26 Å). Pump fluences: 6.0 mJ/cm2 and 1.9 mJ/cm2, respectively. Green
dashed line in (C) indicates time constant found in B, scaled to the amplitude observed

in C.

The relatively abrupt change of the superstructure in crystallinity and lattice parameter

upon passing the threshold fluence are indicating the abundance of two qualitatively

different states of the polymer superstructure. The unexcited state comprises a folded-

chain conformation with a well-defined lattice parameter, a high degree of order and

an orientationally linkage to the substrate. After laser excitation, the order is strongly

reduced and the formation of components with an expanded lattice parameter and no

further registration to the graphene is observed.

The initial temperature increase of the graphene lattice up to the fluence threshold is

estimated by assuming that the specific heat capacity cG of graphene equals that of

graphite for temperature T > 100 K [237]. Specifically, it can be approximated by the

following polynomial for 200 K < T < 1200 K [238]:

cG = 9 · 10−16T 6 − 6 · 10−12T 5 + 2 · 10−8T 4

− 2 · 10−5T 3 + 0.0092T 2 + 0.9463T − 10.481

[
J

kg K

]
.

(6.6)
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With the PMMA being quasi-transparent at the pump wavelength of 800 nm, the energy

of the pump pulse is mainly deposited into the graphene (2.3 % absorption, see [239]). At

a fluence level of 3 mJ/cm2, we obtain an initial graphene lattice temperature increase of

536 K. Subsequently, the thermal energy is transferred to the PMMA though the bilayer

interface, leading to the observed expansion of the lattice parameter. The characteristic

time for this process is discussed in the next section.

The temperature of the superstructure at the fluence threshold can be computed by

means of the thermal expansion coefficient. Specifically, for a thermal expansion coeffi-

cient of α = 7 · 10−5 K−1 of bulk PMMA [240], the temperature at the fluence threshold

is calculated to be about 165 ◦C. This is close to the reported melting temperature range

of values between 130 ◦C and 160 ◦C (Sec. 6.1.1).

6.3.5 Energy transfer time

The temporal evolution of the superstructure lattice expansion is displayed in Fig. 6.15B,

exhibiting a characteristic time constant of about 133(13) ps. Remarkably, the time scale

of the expansion is drastically reduced below the threshold fluence found in Fig. 6.15A

(τ = 43(10) ps). For a better comparison, Fig. 6.15C displays the delay-dependent

superstructure peak position (blue circles and line) as well as the characteristic time

constant found for the lattice expansion above the fluence threshold (green dashed line),

normalized to the same amplitude.

In order to determine, if the time constant of the observed lattice expansion is limited

by the mechanical properties of PMMA, the time of a sound wave traveling the length

of a single superstructure domain is computed. Assuming that the velocity of sound

of crystalline PMMA is of the same order as in bulk (vs = 2780 m/s) and taking into

account the approximate domain size of 10 nm of the superstructure (Sec. 6.2), a time

duration of less than 4 ps is obtained. Since also the temporal resolution of the ULEED

setup is about one order of magnitude higher than the measured value of τ = 43 ps,

the latter is therefore attributed to the characteristic time scale for the energy transfer

across the bilayer interface from the graphene to the PMMA.

Alternatively, the energy transfer time across the bilayer interface can also be calculated

using the thermal boundary conductance of at an carbon / polymer interface [241].
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It has to be considered, however, that the heat flow across an interface is drastically

reduced compared to bulk diffusion [242]. Specifically, the temperature decay in a thin

film on a substrate is given by [134]

cpρpdp
∂Tp(t)

∂t
= −Tp(t)− TG(t)

Rk
, (6.7)

with cp the specific heat capacity of the film, dp its thickness, Rk the thermal boundary

(Kapitza) resistance of the substrate-film system, ρp the film mass density and Tp and

TG the film and substrate temperatures, respectively. When assuming temperature-

independent material constants, the energy transfer time across the interface is then

given by

τ = Rkcpdpρp. (6.8)

In the present case, the following values were used: cp,PMMA = 1466 J/kgK and ρp,PMMA =

1.18 g/cm3 (Sec. 6.1.1) as well as Rk = 8 · 10−8 m2K/W for a polymer / carbon nan-

otube (CNT) interface [243, 244]. Together with the PMMA film thickness previously

estimated to be dp,PMMA = 4.3 Å (Sec. 6.2.6), we obtain a transfer time of τ ≈ 60 ps,

close to the experimentally determined value. However, since no experimental data on

the thermal boundary resistance at a graphene / polymer interface could be found in the

literature, the respective value in case of a polymer / CNT interface was used. However,

theoretically obtained values for Rk from molecular dynamics simulations of graphene /

polymer systems are available, resulting in a somewhat smaller characteristic time con-

stant of τ ≈ 30 ps instead for Rk = 4.0(1.0) · 10−8 m2K/W [245]. For comparison, the

Kapitza resistance of the PMMA / graphene interface computed from the experimentally

observed time constant in the present measurement is Rk = 5.8 · 10−8 m2K/W.

6.3.6 Graphene spot evolution

Upon careful investigation of the difference maps, a slight reduction of the graphene

spot intensity by 1 – 2 % is visible (Fig. 6.16A). In the following, this observation is

investigated in view of three potential causes, namely a decreased scattering efficiency

by lattice warming (Debye-Waller effect), electron deflection by a laser pump pulse-

generated TEF effect, and superimposed higher order superstructure diffraction spots.
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Figure 6.16: Graphene spot dynamics. A: Difference image between pumped and
unpumped sample shows the intensity change of first (blue circles) and second (red
circle) order graphene spots when integrated over all positive delay times. B: Delay-
dependent intensity change of graphene spots for first (lower panel) and second (upper
panel) order. C: Delay-dependent graphene spot shift. Insets: Integrated diffraction

spot images at marked delays. Fluence: 6 mJ/cm2, electron energy: 450 eV.

In case of graphene, the derivation of the Debye-Waller factor exp−2W is somewhat

challenging, since it diverges for an infinite, two-dimensional crystal at temperatures

above zero [246–249]. For this reason, two-dimensional materials were believed to be

inherently thermally unstable before their experimental realization by A. Geim and K.

Novoselov in 2004 [71]. However, it is possible to extract an approximate solution for

temperatures above absolute zero, when the finite size of the crystal is taken into account

[250, 251]:

2W ≈ G2

[
~

kDMvs
+

2kBT

k2
DMv2

s

log

(
kBT

~vsks

)]
. (6.9)

In Eq. 6.9, G is a discrete reciprocal lattice vector (taken as 2π/a with a = 2.46 Å the

graphene lattice constant), ~ is Planck’s constant, M the carbon atom mass, vs the

sound velocity in graphene (2.4 · 104 m/s [250]), kD the Debye wave vector, kBT the

thermal energy and ks smallest possible wave vector supported by the finite lattice10.

For an estimate of the latter, ks = 2π/lc with lc = 5 nm the transverse coherence length

of the experimental setup, as previously estimated in section (Sec. 6.2).

A fluence level of 6 mJ/cm2 results in an initial graphene temperature increase of 746 K

(Sec. 6.3.4), leading to an intensity reduction of 1.15 % for the first order and 0.62 %

for the second order graphene diffraction peaks, which is well in the range of observed

values. However, this initial lattice heating would happen on a very fast time scale of

10In the limit of an infinite lattice, ks → 0, and the diverging behavior of the Debye-Waller factor is
recovered.
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the order of the pump pulse duration and should leave a visible trace in a time-resolved

intensity analysis.

Figure 6.16B depicts the recorded relative intensity difference as a function of delay for

the first order (lower panel, blue circles in Fig. 6.16A) and second order (upper panel, red

circle in Fig. 6.16A) graphene spots. Only a single second order spot could be analyzed,

since the detector distance and electron energy is optimized for the observation of the

PMMA peaks in this measurement. In case of the first order graphene spots, a reduction

of the intensity by about 1.5 % (about 0.5 – 1.0 % for second order) is visible at long

delay times with a decay time of around 110 ps. A feature with a time constant in the

range between the pump pulse duration (3 ps, heating of the graphene) and the energy

transfer time (43 ps, thermal equilibration with the PMMA, hence graphene cooling) is

not observed. Yet, with a temporal step width of about 10 ps around time-zero and a

small overall signal intensity, it is possible that the fast Debye-Waller intensity transient

is only partially recorded or hidden within the recorded transient. Lastly, at longer delay

times, when the graphene and PMMA temperatures have equilibrated, the temperature

of the combined bilayer is probably significantly lower, hence the reduction of scattering

intensity less pronounced (< 0.2 % for first order and T = Tm,PMMA ≈ 160 ◦C).

A missing fast intensity signal at small delay times also excludes a strong contribution to

the observed spot intensity change by a TEF effect after optical pumping of the sample

(Sec. 5.3.2). Even though an intensity transient is not detected, a small spatial shift of

the graphene spots in one direction is observed, amounting to only about one pixel on the

CCD of the camera (insets of Fig. 6.16C). For comparison, the measured magnitude of

the superstructure spot shift as depicted in Fig. 6.15B is about three times larger. Figure

6.16C shows the averaged position of all six first order graphene diffraction spots as a

function of delay time. Specifically, after a strong initial shift (τ1), the graphene spots

relax back towards their original position more slowly (τ2). However, a full relaxation

does not take place on the observed time scale. Instead, after reaching about 40 % of

the peak signal intensity, the spots shift evolution towards the initial state is strongly

slowed (τ3).

The observed fast transient can be attributed to a deflection of the electron pulse by a

plasma cloud generated during sample excitation, which leads to a unidirectional shift

of the diffraction pattern. It has to be noted that while this effect is well visible in case
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of the graphene spots, it does not influence the PMMA superstructure spot analysis due

to the aforementioned unidirectionality. In this picture, the slower transient would be

caused by a dissipation of the plasma cloud with relatively low-energy electrons. Similar

behavior, i.e. 100-ps scale relaxations transients, are sometimes observed during pulse

duration measurements [202]. Considering that PMMA is an insulator, the plateaus

regions could be an indicator for remaining charge, which is only slowly dissipating over

the bilayer interface into the sample holder.

For an estimate of the governing time scales, the signal has been fitted (solid green line)

with a Gaussian error function with decay constant τ1, as well as with two single expo-

nential decays with time constants τ2 and τ3. The resulting time scales are τ1 = 18 ps,

τ2 = 45 ps, and τ3 = 180 ps. Notably, the observed decay time τ1 is about one order

of magnitude larger compared to those of TEF transients recorded during pulse dura-

tion measurements under similar conditions. This can be understood as the interplay

of various effects: A small contribution is likely caused by the longer pump pulses com-

pared to those in the pulse duration measurements, namely 3 ps instead of 80 fs. More

importantly, the time scale of plasma cloud dissipation is strongly fluence-dependent

(Sec. 5.3.2), leading to significantly slower dynamics at low fluences as employed in the

measurements presented in Fig. 6.16 (6 mJ/cm2). Also, TEF measurements are usually

performed on blank Cu grids to avoid possible charging of insulating materials, such as

the employed polymer. Lastly, the pulse duration measurements have been performed

for a partial beam to reduce the influence of the plasma cloud dynamics. An integration

over the whole area resulted in a transient of about 6 ps compared to 2 ps for the partial

beam at 450 eV electron energy. In this view, the unidirectional shift of the spots as

well as the recorded time constant seem consistent with a pump-induced TEF.

A final remark on the graphene spot shift in Fig. 6.16C: the apparent oscillation of the

signal after about 100 ps likely originates from a technical problem of the recording

software used at the time of the measurement. For a further investigation of a possible

physical effect, experiments with focus on the graphene spot shift and longer integration

times are going to be performed in the near future.

An alternative explanation for the observed intensity reduction on a time scale of 110 ps

is based on higher order superstructure diffraction spots superimposed on the graphene

spots. Specifically, the reduction in spot intensity of the superstructure occurs on a time
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scale of 108 ps (Sec. 6.3.3), which agrees well with the observed transient in Fig. 6.16B

(lower panel). For a rough estimate of contributions from higher order superstructure

spots, their intensities as found in the previous section (Sec. 6.2.5) are used. In par-

ticular, the investigated (01) and (21) peaks both had intensities of about 5 % of the

first order spots. Considering the 40 % intensity loss of the superstructure peaks after

laser excitation (Sec. 6.3.3) and comparable intensities for the primary graphene and

polymer peaks, this roughly amounts to an overall intensity change of 3 %, similar to

the intensity loss displayed in Fig. 6.16B.

Ultimately, the change in graphene spot intensity most likely originates from a combi-

nation of the above mentioned effects. However, the good comparableness of the delay-

dependent data with the superstructure spot intensity transient advocates a strong con-

tribution from higher order PMMA diffraction peaks superimposed on those of graphene,

while a pump-induced TEF effect mainly shows in the overall shift of the diffraction im-

age.

6.4 Physical picture and discussion

The individually presented observations on the recorded PMMA superstructure dynam-

ics are now combined into a connected physical picture.

The initial system can be described by strongly physisorbed, long PMMA chain molecules

on the graphene substrate (Fig. 6.17A). Individual polymer strands crystallize in a

folded-chain configuration with an inter-chain spacing of d = 4.26 Å. These strands

form three different types of domains, which are orientationally linked to the substrate.

Specifically, domains of polymer crystallites have an approximate diameter of 10 nm and

cover about 50 % of the graphene substrate in these regions. Different domain types

are rotated by 60 ◦ with respect to each other and exhibit a double periodicity in one

direction in terms of the graphene unit cell.

Upon illumination by the few-ps laser pulse, energy is absorbed primarily within the

graphene, while the PMMA is highly transmissive for the 800 nm wavelength of the

pump (Fig. 6.17B). For an incoming laser fluence of 3 mJ/cm2, the initial graphene

temperature rises by about 535 K, with the thermal equilibration of the graphene lattice

occurring on the same time scale as the laser excitation [252].
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Within about 40 ps, thermal energy is transferred from the graphene to the superstruc-

ture (Fig. 6.17C). This process leads to a slight spatial expansion of the crystallite’s

chain-to-chain distance of about 1 % at a fluence level of 3 mJ/cm2. For this fluence,

the bilayer temperature reaches 165 ◦C, which is comparable to the melting temperature

of bulk PMMA.

For higher fluences above the threshold level, the superstructure order is lost (Fig. 6.17D).

Specifically, a deregistration of the polymer chains from the substrate on a 100 ps time

scale is observed. The process is accompanied by a further temperature increase of

the bilayer, which is derived qualitatively from the accelerated lattice expansion of the

remaining crystalline components of about 5 % within 130 ps.

For longer times up to 300 ps, an amorphous state with expanded spatial components is

formed. These components are peaked at a correlation length of about 5.7 Å (Fig. 6.17E).

Finally, the initial crystalline state is largely (about 90 %) recovered after about 100 µs

(Fig. 6.17F). The very good reproducibility of the recrystallization process is ensured

by the graphene, serving as a consistent structural template for the polymer chains.

The entirety of the observations, most notably the loss of order and substrate registration

beyond a certain energy threshold, indicate a reversible phase transition between a

crystalline and an amorphous phase of the superstructure.

A theory of melting in two dimensions has been developed by J. M. Kosterlitz and D.

J. Thouless in the 1970s [22]. Based on this theory, D. R. Nelson and B. Halperin

[253] have established a model for solid-liquid phase transition in a situation similar to

the one experimentally investigated, namely of a two-dimensional film adsorbed to a

periodic lattice. They distinguish between two general cases for the melting process of

a commensurate crystalline overlayer phase.

1. A direct transition from a solid, crystalline phase, to a liquid phase at a melting

temperature of Tm.

2. A two-step phase transition with an intermediate phase. In a first step, the solid

adsorbate transitions to a so-called floating solid phase at a temperature Tm1.

This phase still remains basically crystalline, but has no more registration to the

substrate. Instead, it can be understood as crystalline islands floating on the
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Figure 6.17: Sketch of a physical picture of the superstructure dynamics. Left im-
ages: Energy-space representation of corrugated graphene potential and PMMA strand
cross-sections. Right images: Top-down view of PMMA conformation (red and blue)
on graphene substrate (gray). Temperature of PMMA indicated by reddish (warmer)
and bluish (colder) colors. A: Unpumped system. B: Graphene heating by light ab-
sorption (energy ~ω). C: Energy transfer to the PMMA, spatial expansion. D: Loss
of substrate registration and chain order, increased spatial expansion. E: Formation
of amorphous components at low spatial frequencies. F: Cool down and near-complete

recrystallization.

substrate. Above a temperature Tm2 > Tm1, the floating solid loses its crystallinity

completely and transitions to a liquid phase. For an experimental observation of

this two-step process, see Ref. [254, 255].

The parameter, which ultimately decides for the specific pathway (1) or (2) in the

solid-to-liquid transition is the fineness of the substrate lattice as a measure for the

relative strength of graphene-adsorbate and intra-adsorbate coupling. In particular,

a very fine substrate mesh relative to the superstructure lattice advocates the two-

step process, while in a relatively coarse mesh, the periodic perturbations prevent the
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formation of a floating solid. Quantitatively, the criterion for the two-step process can be

expressed as c∗/b∗ > ν, with c∗ the minimum common nonzero reciprocal lattice vector of

substrate and superstructure, b∗ the minimum reciprocal lattice vector of the overlayer,

and ν a constant depending on the Poisson ratio of the material. In the current case,

2.36 < ν < 2.55, for a typical Poisson ratio of PMMA between 0.35 and 0.40. Following

from this criterion, the observed phase transition of the PMMA superstructure in the

present case would be of the first kind, hence a direct solid-liquid transition.

At this moment, the character of the transition cannot clearly be extracted from the

available data: Since the rotation time of a single adsorbate domain on the substrate

is large compared to the typical time scales in the experiment, a potential angular

spread of the superstructure diffraction spots will be challenging to observe. However,

the enhanced expansion of the superstructure lattice parameter as well as continuing

temperature increase above the fluence threshold could be interpreted as the beginning

formation of an incommensurate floating-solid phase. Nevertheless, it has to be taken

into account that the data is integrated over a relatively large sample area, leading to a

strongly averaged signal.

For a determination of the transition character, different approaches could be employed:

For example, fluence-dependent measurements at very long delay times comparable to

the characteristic domain rotation time could indicate a two-step process by a widen-

ing of the azimuthal superstructure spot profile. Complementary, atomistic molecular

dynamics simulations of a polymer-graphene bilayer system as found in the experiment

could give insight into the melting behavior on the molecular level.

More generally, the transition between the solid and the liquid phases could be explained,

for example, by the creation of increasingly large looped chain segments with enhanced

mobility. These regions at the border of the crystalline domains would not exhibit a

crystalline order anymore (indicated in Fig. 6.17E). In this picture, the velocity given in

Eq. 6.5 could be interpreted as the phase front velocity during the floating-solid-to-liquid

transition.

Considering that phase front velocities are commonly of a similar order as the speed of

sound of the material, e.g. about 200 − 500 m/s for surface melting of Si(111) [256],

which has a direction-depending speed of sound between vs(hkl) = 5− 8 · 103 m/s [257],

the found value of vph ≈ 6 m/s seems comparably small. We therefore try to get an
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estimate on the order of magnitude of this velocity by means of the Frenkel-Wilson law

[258]:

vph = v0 exp

(
− Ea
kBT

)(
1− exp

(
−Lm(Tm − T )

kBTmT

))
(6.10)

In Eq. 6.10, v0 is a pre-exponential factor commonly of the order of the velocity of sound

of the material, Ea the activation energy for melting per atom, kBT the thermal energy

at a given temperature T , and Tm the melting temperature. Additionally, to apply this

model, we need to momentarily assume that we have a well-defined latent heat Lm per

PMMA monomer. With v0 ≈ 2780 m/s taken as the velocity of sound for PMMA, and

Lm ≈ Ea ≈ kBTm with Tm ≈ 430 K the melting temperature of bulk PMMA, this results

in phase front velocity of vph ≈ 55 m/s. This value is still significantly larger than the

experimentally obtained one, but of about the correct order of magnitude, supporting

the idea of its interpretation as a phase front velocity. However, the polymer character

has not been taken into account in this rough estimate and we used an upper-limit value

for v0. In this light, a more sophisticated description is needed to correctly extract a

more precise value for vph for this particular system.

6.5 Summary

In this chapter, the ultrafast dynamics of a polymer superstructure adsorbed on free-

standing graphene have been investigated by the newly developed transmission ULEED

setup.

The observed relaxation processes, including a loss of crystalline order and the formation

of an amorphous phase, in combination with the clear threshold behavior have led to

the conclusion that the superstructure is reversibly melted by intense laser excitation.

Specifically, the large span of time constants connected to the various processes can be

interpreted as a direct result of a hierarchical order of contributing coupling strengths.

This includes the relatively weak registration of the polymer to the substrate on the one

hand, and the strong polymer backbone, ultimately limiting the speed of the melting

process, on the other hand. However, a direct correspondence between the involved cou-

pling strengths and their respective influence on the superstructure melting necessitates

further investigations.
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Similarly, the pathway of the two-dimensional melting process is not clearly resolved.

In particular, there exist arguments for both types of melting, namely a direct solid-to-

liquid transition as well as a two-step process involving a floating solid phase without

substrate registration.

Furthermore, it cannot be determined with certainty at the moment, if the enhanced

expansion of the adsorbate lattice parameter is caused by a loss of crystallinity of the

superstructure or if it is driving the melting process itself. Yet, with an observed chain-

to-chain distance at the lower end of the values reported for Langmuir-Blodgett films

produced from PMMA, the second hypothesis seems more likely [110].

In conclusion, an atomistic molecular dynamics approach, based on the observations

made in the experiment, would be extremely helpful to obtain a more detailed physical

picture. Moreover, it can potentially help to understand open questions including the

correspondence between the characteristic time constants and the involved coupling

strengths, the observed discrepancy in time scale when compared to theoretical results

for similar systems [259], as well as the nature of the phase transition itself.





Chapter 7

Conclusions

7.1 Summary

The work performed in the framework of this thesis comprises two main points, namely

the development of an ultrafast LEED setup, based on a nanometric pulsed electron

source and its application to resolve the superstructure dynamics of an atomically thin

polymer film adsorbed on free-standing graphene.

In the first part of the thesis, the properties of nonlinearly driven, needle-type photo-

cathodes as electron sources for ultrafast low-energy imaging and diffraction experiments

have been investigated in theoretical and experimental studies. Particular findings were:

• Nanometric photocathodes show exceptional beam properties, in particular low

emittance, as well as high spatial coherence and brightness.

• Numerical FEM simulations on a tip-based electron source geometry confirmed

a strong suppression of pulse broadening effects. Additionally, the optimal oper-

ation conditions for ultrahigh temporal resolution at low electron energies were

determined.

• A prototype electron source was realized, displaying very good overall beam prop-

erties in terms of brightness, and coherence.

• Measurements performed on ultrathin films suspended on graphene displayed the

electron source’s long-term stability as well as its ultimate surface sensitivity down

to a single atomic layer.
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• Experimental measurements demonstrated temporal resolutions of few picoseconds

at electron energies comparable to classical LEED experiments.

The theoretical and experimental results attest to the outstanding performance of nano-

metric photocathodes within stroboscopically operated ultrafast experiments.

The applicability of the newly developed source has subsequently been demonstrated

within an ultrafast LEED setup in transmission. Specifically, it was used to resolve

the superstructure melting dynamics of an ultrathin bilayer system of atactic PMMA

adsorbed on free-standing graphene, leading to the following observations:

• Individual polymer chains form orientationally linked, folded-chain superstructure

configurations of double periodicity with respect to the graphene.

• This superstructure can be reversibly melted by intense laser irradiation, triggering

a multitude of sequential relaxation processes.

• For the PMMA / graphene system, a thermal boundary resistance of Rk = 5.8 ·

10−8 m2K/W was found from the measured energy transfer time across the bilayer

interface of the order of 40 ps.

• A loss of crystallinity occurs within about 100 ps, paralleled by a further tempera-

ture rise as well as an continuous increase of the superstructure lattice parameter.

• An amorphous phase with pronounced low spatial frequency modes and charac-

teristic, scattering-angle-dependent time constants between 150 ps and 300 ps is

subsequently formed.

• Nearly complete recrystallization of the amorphous polymer happens within 100 µs.

The detailed account on the system’s ultrafast relaxation from an extreme out-of-

equilibrium state underline the feasibility of the presented approach, making ULEED a

new and versatile tool in ultrafast surface and material science.

7.2 Outlook

In terms of the superstructure dynamics, these results present an interesting starting

point for further theoretical investigations in terms of an atomistic molecular dynamics
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approach. To this end, a cooperation with the group of V. Harmandaris at the Uni-

versity of Crete, Greece, has been initiated. In view of the groups experience in the

numerical investigation of graphene / polymer composite materials, an implementation

of the system experimentally studied in this thesis should result in valuable insights. In

particular, the effects of molecular length and substrate coverage, the correlation be-

tween coupling strengths and observed time scales, as well as the nature of the melting

process itself are intriguing questions to be investigated.

Currently, first simulations on less complex sample systems, in particular united-atom

simulations of a single polyethylene (PE) chain close to the graphene substrate, are

performed at different temperatures. The chosen potential is of the van der Waals

type, in particular a semi-empirical formulation of dispersion and London interactions.

Preliminary observations of the simulations are:

• The PE nearly immediately adsorbs to the graphene substrate on a few-ns time

scale. The initial three-dimensional PE configuration with respect to the graphene

is shown in Fig. 7.1A, its projection on the substrate plane in Fig. 7.1B.

• For low and intermediate temperatures (300 K and 350 K), a folded chain config-

uration is adopted on a time scale of few tens of nanoseconds, depending on the

temperature of the system (Fig. 7.1C and D, respectively). For higher tempera-

tures (T > 400 K), this conformation is lost (Fig. 7.1E).

BA C D E

Figure 7.1: Exemplary PE conformations from preliminary molecular dynamics sim-
ulation on graphene. A, B: Initial PE conformation in 3D (A) and projected to the
graphene plane (B). C: Folded-chain conformation at 300 K after 40 ns. D: Folded-
chain configuration at elevated temperatures, different orientation to substrate. E: PE
at 450 K after 40 ns without folded-chain character. Bar denotes length scale of 1 nm.

• This behavior is mirrored by the evolution of the dihedral angle distribution, specif-

ically by a reduction of gauche configurations with respect to the number of trans

configurations in the chain (Fig. 7.2C). This is very close to the distribution ex-

pected for a crystalline state.
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• Single PE strands are orientationally linked to the substrate at lower temperatures

(Fig. 7.1C, Fig. 7.2B), but loose this linkage at intermediate temperatures, while

crystallinity is conserved (Fig. 7.1D).

• The crystal chain conformation displays a double periodicity with respect to the

graphene, as can be seen in Fig. 7.2A and B.

• The preferred segment length is temperature dependent. It increases until after the

point when substrate registration is lost (Fig. 7.1C) and is subsequently reduced

in the amorphous state (Fig. 7.1E). An exemplary temporal evolution is given in

Fig. 7.2D. Here, the segment length distribution is weighted by the number of

monomers per segment. For 300 K, a preferred fold length of 9− 10 nm is found,

for 350 K this increases to 15–20 nm.
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Figure 7.2: A: Fourier transformation of conformation shown in Fig. 7.1C. B: Orien-
tation of PE on graphene substrate for A. C: Dihedral angle distribution. D: Folded-

chain segment length distribution, normalized to the number of monomers per fold.

These preliminary results are in very good agreement with the experimental observa-

tions on the PMMA / graphene bilayer, e.g., concerning the polymer conformation,

its periodicity, orientation and segment length. Further simulations are going to be

performed in the near future, including the analysis of a system excited to a state far

out-of-equilibrium.

Furthermore, it is planned to experimentally study different types of polymers, for exam-

ple PE or isotactic PMMA, which has been observed to crystallize in a helical structure

[110]. This would allow for the analysis of correlations within single chains, and hence

support a differentiation of the respective dynamics from those based on inter-chain in-

teraction. Additionally, the investigation of overlayer lattices with different periodicity

might shed some light into the underlying pathway of melting, as previously discussed.

On the technical side, ULEED is going to be further improved, including the possibility

of sample heating, the use of a low-noise, high resolution camera system, and measures
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to further increase the temporal resolution of the current system (Sec. 5.4.2). With the

improvement of the temporal resolution of ULEED, for example, new systems featuring

smaller time scales will be accessible. This may include significantly smaller organic

molecules, down to dimers and monomers, eventually allowing for a correlation between

the detailed microscopic structures and their macroscopically observed dynamical prop-

erties.

Apart from thin films and two-dimensional crystals, the study of dynamics on bulk

surfaces of course offers a tremendous amount of intriguing systems, such as adsorbate

dynamics on metal surfaces for the study of heterogeneous reactions in femtosecond

surface chemistry [260] or surface charge density waves [29]. This will necessitate an im-

plementation of ULEED in the normal-incidence backscattering geometry, as commonly

used in LEED setups. The resulting system will potentially be capable of employing

the full analytical power of static LEED systems, while additionally allowing access to

dynamical properties on ultrafast time scales.

A B

(10)

(02)

(10)

(01)

Figure 7.3: Ultrafast LEED diffraction images of a single crystalline sapphire (0001)
surface in back-reflection geometry. Angle of incidence: 45 ◦. Electron energy: 380 eV
(A) and between 335 eV and 435 eV (B). Distortion stems from planar detector em-

ployed.

The current setup is only partially usable in back-reflection geometry with the minimal

angle of incidence limited by the relatively large electron gun (outer diameter 6 cm).

However, measurements of a sapphire surface at an angle of incidence of about 45 ◦ have

been performed to demonstrate the general feasibility of operation in back-reflection

(Fig. 7.3).

There is no fundamental constraint on developing ultrafast LEED for the classical normal

incidence geometry based on the methods provided within this work (Fig. 7.4A). In

contrast, it is expected from numerical simulations that the experimental parameters
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such as pulse duration and electron beam coherence will strongly benefit from a smaller

gun.
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Figure 7.4: Ultrafast LEED in normal-incidence back-reflection geometry. A: Sketch
of the experimental setup featuring a miniaturized tip-based ultrafast electron gun. B,
C: Photograph of the electron source (B) and electrostatic lens system (C). D: First
diffraction image of single crystalline sapphire (0001) recorded with the new electron
source. Dark center area stems from shadowing of the electron gun. Electron energy:

150 eV. Integration time: 120 s. [261]

On these grounds, first steps in this direction are currently undertaken by the devel-

opment of a significantly smaller electron source (Fig. 7.4B and C, outer diameter 7

mm). Even though this source is still under development, first diffraction images from a

sapphire surface within a normal-incidence geometry have been recorded Fig. 7.4D). A

temporal characterization of the electron pulses as well as first time-resolved diffraction

experiments are under way.

In comparison with other ultrafast electron-based methods, the present experimental

setup features a relatively simple and low-cost approach, e.g., by the utilization of readily

available components for regular ultrafast optics experiments. It is hoped that this will

make it accessible to a broad scientific community in the near future.

More generally, tip-based electron sources are not only interesting in terms of low-energy

applications such as time-resolved LEED. Instead, they are also promising candidates to

further advance existing ultrafast imaging and diffraction techniques at higher energies,

e.g., in time-resolved RHEED and TEM experiments. To this end, an ultrafast TEM

based on a similar needle emitter as employed in ULEED, is currently under development

in our laboratories (Fig. 7.5). The use of a nanometric photocathode has been extensively

investigated in simulations and has been seen to result in excellent beam properties,

capable to further increase the coherence and temporal resolution compared to current

ultrafast implementations of TEM [182].
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Figure 7.5: Schematic of an ultrafast TEM based on a nanometric tip-based photo-
cathode. A: Laser-pump / electron-probe scheme of the TEM. Dashed black rectangle
denotes area magnified in B. B: Inside view of an ultrafast TEM with laser driven

needle emitter gun.

To conclude, ULEED and its future developments carry the potential to be the basis of

investigating previously inaccessible surface and thin film atomic structural dynamics

on their intrinsic ultrafast time scales.





Appendix A

Methods and Calculations

A.1 Analytical model for pulse durations

The spatio-temporal broadening of electron pulses has three main contributors [165]: A

finite width of the initial electron energy spectrum, path length differences on the way

to the anode and Coulomb repulsion within the electron bunch. With pulse durations

of the order of below 100 femtoseconds, the interaction time of the emitter with the

photoemission laser pulse is usually a negligible factor.

Broadening from inter-electron interaction can also be discarded, when operating in a

regime of few electrons per pulse [50]. Path length differences, however, arise from the

specific gun geometry and lens system employed and will not be taken into account in

this analytical model for the sake of simplicity. These considerations leave the initial

electron energy spread as the sole broadening factor, which is in agreement with the

results obtained from the finite element simulations at least for intermediate and high

values of ∆E (Chap. 3).

The following calculation is based on the model presented by S. Schweda in Ref. [191],

but implements further approximations to obtain a simple expression for the pulse du-

ration τpulse as a function of the initial energy spread ∆E.

First, the time of flight of an electron within a plate capacitor geometry (Fig. A.1A)

for a given distance d between anode and cathode and an acceleration voltage U is

analytically determined.

117



Appendix A. Methods and Calculations 118

d

e-

U

K

e-

K
d

rt

U

A B

Figure A.1: Sketches of plate capacitor (A) and needle emitter (B) geometries. Vari-
ables: d: distance between emission site and anode; U : accelerating voltage; K: Force

acting on electron; rt: tip apex radius of curvature.

The force acting upon a single electron within the plate capacitor may be written as

K =
eU

d
= mer̈, (A.1)

where e and me are the charge and mass of the electron, respectively. Single integration

leads to

ṙ =
eU

med
t+ v0, (A.2)

with the initial velocity given by v0 =
√

2E/me, and E being the initial electron energy.

The time of flight T (E) can then be written as

T (E) =

√
2me · d
eU

(ṙ(t = T )− v0) =

√
2me · d
eU

(√
eU + E +

√
E
)
. (A.3)

The pulse duration for a given energy spread ∆E is then simply the difference

τpulse = T (E + ∆E)− T (E). (A.4)

In the case of the tip geometry (Fig. A.1B), the velocity is again given by

v(t) =
√

2(E + eΦ)/me, (A.5)

with Φ = Φ(r) a radially dependent potential. For simplicity, we chose Φ(r) to be of the

form:

Φ(r) =
a

r
+ b. (A.6)
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The constants a and b can be determined by the boundary conditions Φ(rt) = 0 and

Φ(rt + d) = U , where rt is the tip radius. This form emphasizes the potential decay

stronger in comparison with the logarithmic potential given in Ref. [161], but poses still

an adequate approximation. Additionally, it has the advantage of delivering an analytical

result for the pulse duration. For a more detailed account on the r-dependence of the

potential of a nanometric tip, see Ref. [174].

For simplicity and a nanometer sized tip as well as macroscopic propagation distances,

we can further approximate rt + d ≈ d, so that the potential now reads

Φ(r) = U − Urt
t
. (A.7)

By separation of the variables, the time of flight can then be written in terms of the

following integral: ∫ T

0
dt = T (E) ≈

∫ T

rt

dr√
2(E+eΦ(r))

me

. (A.8)

This integral can be analytically solved [262] by rewriting it in the form

∫ √
r

B1r +B2
dr, (A.9)

with B1 = B1(E) = 2(E + eU)/me and B2 = −2rteU/me, leading to

T (E) ≈ 1

B1

√
r(B1r +B2)− B2

B
3/2
1

log
(√

B1r +
√
B1r +B2

)
. (A.10)

The pulse broadening is then again calculated by the difference as given in Eq. A.4. With

B2 � B1r and the second term in Eq. A.10 also more than three orders of magnitude

smaller than the first within a typical tip geometry, the pulse duration can be written

as

τpulse =

√
me

2
d

(
1√

eU + E0 + ∆E
− 1√

eU + E0

)
. (A.11)

In this approximation, the tip radius is not included anymore, which coincides with the

results from the simulation, namely that the radius of the tip apex does not strongly

influence the pulse duration (Sec. 4.4). A more sophisticated model of the propagation

dynamics of an ultrashort electron pulse can be found in Ref. [165].

For a rough comparison with the results from the FEM calculations, Fig. A.2 displays the
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computed pulse durations for a propagation distance of d = 12 mm in the tip geometry

for both cases, α = 0 ◦, and α = 10 ◦. For low to intermediate ∆E, the analytical

approach agrees well with the FEM simulations with electrons only along the optical

axis, but increasingly overestimates the pulse duration at higher energetic spreads.

Figure A.2: Comparison of analytical model with results from the finite element
simulations for the pulse duration at a given energy spread ∆E. Electron energy:
450 eV. The dashed line denotes the pulse duration found in the experiment at the
same energy. The red, blue and orange arrows show the resulting energy spread for
to the experimental pulse duration within the FEM (1.13 eV for α = 0 ◦, 2.03 eV for

α = 10 ◦) and the analytical (1.86 eV) model, respectively.

When compared to the experimentally obtained pulse duration at the same energy of

450 eV (gray dashed line), the energetic spread can be estimated for both the FEM (red

arrow) and the analytical model (orange arrow). While the FEM for α = 10 ◦ yields

a value of about 1 eV in good agreement with the experimentally obtained value, the

analytical model as well as the simulations with α = 0 ◦ yield a larger spread of around

2 eV. Interestingly, the inclusion of electrons not on the optical axis leads to a more or

less constant offset in the temporal resolution. This could potentially help to quickly

estimate the pulse duration a given energetic spread and to indirectly measure the actual

emission cone of the electron source.

A.2 The electron inelastic mean-free-path

The universal curve for the electron IMFP for energies between 1 eV and 10 keV consists

of two branches with different functional dependency on the electron energy: between
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1 eV and about 20 eV, it displays a proportionality to E−2, for energies above 100 eV,

it is proportional to E1/2.

Qualitatively, this behavior can be understood in the following way: In the low-energy

limit, the functional behavior is dominated by excitation of electron-hole pairs [263].

Specifically, an electron of energy E has a lifetime (τ ∝ IMPF), which is inversely

proportional to a) the number of excitable conduction electrons (∝ E) as well as b) the

number of unoccupied states to transfer to (∝ E) [264]. Hence, in the low-energy limit,

the functional dependence is IMFP ∝ E−2. Generally, the IMFP is slightly enhanced

for organic molecules [265]. For an more in-depth theoretical treatment (also in the case

of higher energy electrons), see Ref. [266].

With increasing energy, ionization of core electrons and plasmonic excitation also be-

come possible, leading to a further reduction of the IMPF. For higher energies of about

100 eV and above, one can approximate the inelastic scattering cross-section1 as being

proportional to the interaction time of the passing electron. With this interaction time

inversely proportional to the velocity of the electron and hence to E−1/2, we get IMPF

∝ E1/2.

The curves in Fig. 2.1B are calculated using the best-fit equations in the conclusions of

[63] for elements with the appropriate values for graphite.

A.3 Finite element method

The FEM is a numerical procedure to solve partial differential equations. In particular,

FEMs are used to find an approximate solution for a simplified mathematical model

[267]. They are used in a wide variety of engineering problems and have the advantages

of being able to handle complex geometries and boundary conditions. Major drawbacks

are the production of only approximate solutions and, as common in numerical methods,

the lack of a general closed-form solution, which would allow for a parametric analysis

of the problem.

The general concept of FEMs is based on a discretization of the simulation volume in a

number of finite-sized sub-volumes (the so-called mesh), which are itself described by a

1Since the elastic scattering coefficient of electrons does usually not exceed a few percent, it will be
ignored in the following argumentation [264].
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number of parameters. Ideally, the solution obtained from the FEM converges against

a fixed value for an increasingly fine discretization. Since the computational effort in-

creases with the number of elements within the simulation volume, it is important for

many applications to develop “smart” meshes. In context of the simulations performed

for the tip-geometry, this was achieved by defining different spatial resolutions for vari-

ous areas, resulting, e.g., in a very fine discretization at the tip apex and larger elements

for non-critical regions. The mesh generation was performed with the help of GMSH

after the initial geometry construction with MATLAB. To complete the discretization, a

basis for solutions with constant boundary values is computed using cubic finite elements

on triangles.

The governing equation for the electrostatic boundary problem is Laplace’s equation,

commonly written as ∆U = 0, with U the electrostatic potential. When cylindrical

coordinates (r, ϕ, z) are employed, the problem reads

∆U =
1

r

∂

∂r

(
r
∂U

∂r

)
+

1

r2

∂2U

∂ϕ2
+
∂2U

∂z2
= 0 (A.12)

Since the problem is cylindrically symmetric, the central term of Eq. A.12 is zero.

Specifically, two types of boundary conditions are used, namely Dirichlet and Neumann

boundary conditions. For the former, the value of the potential U is fixed, thus Dirich-

let boundary conditions apply to the lens elements and the tip. In contrast, Neumann

boundary conditions are fulfilled, whenever the gradient of the potential with respect to

the surface vanishes, and are employed to define the remaining volume surface.

A Runge-Kutta algorithm is used to numerically find the solution to the set of partial

differential equations derived from Eq. A.12. In particular, the classical equation of

motion for individual electrons with their initial conditions is solved. In the simulations

presented in this work, the trajectories of about 9000 electrons have been simulated to

obtain a single data point. The resulting temporal and radial spread are then given in

terms of the FWHM of the respective distribution.

Apart from the initial mesh generation, all computations are performed within the MAT-

LAB programming environment. For an estimate of the accuracy of the software, part

of the results are reproduced in the COMSOL Multiphysics 4.3 package2 and found to

agree well.

2http://www.comsol.com/comsol-multiphysics

http://www.comsol.com/comsol-multiphysics
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A.4 Data normalization and fitting

All time-resolved measurements of the diffraction intensity data presented in this work

are normalized to the recorded intensity at negative delay times ∆t = t− t0 < 0 with t0

the temporal overlap between pump and probe pulses at the sample position. For mea-

surements without temporal resolution, including the fluence-dependency, the diffraction

intensity is normalized with respect to the unpumped sample. By taking into account

only the relative intensity change, it is made sure that the effect of sample degradation

is minimized.

Furthermore, the sample degeneration is simultaneously controlled by an alternating

recording of the pumped and unpumped sample for each data point. Several of the

figures in this work show fitted curves in addition to the time-resolved diffraction data.

In particular, the temporal evolution of the diffraction intensity I(t) is fitted by means

of a single exponential [149, 268]:

I(t) = Θ(t− t0)A exp

(
− t− t0

τ

)
+ I0, (A.13)

where Θ(t − t0) is the Heaviside function to allow for fitting the intensity at negative

delay times I(t− t0 < 0) = I0 and A is the amplitude of the recorded intensity change.

The temporal overlap between electron probe and laser pump pulse is determined prior

to each measurement by means of the described TEF effect (Sec. 5.3.2) and is not used

as a free parameter in the fitting process.

A.5 Separation of diffraction spot and disc contributions

In order to evaluate the intensity evolution of the adsorbate diffraction spots and the

amorphous disc isolated from each other, the different contributions are separated by

the following approach: Firstly, a radial averaging (Fig. A.3A) is performed for only the

areas around (in between) the spots as shown in Fig. A.3B (C), while the intermediate

regions (gray shaded areas) and the central beam block (black) are ignored. The angular

selection is thereby performed manually within MATLAB.
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Figure A.3: Differentiation routine of isotropic and six-fold symmetric components of
the diffraction pattern. Fluence: 6 mJ/cm2 A: Difference image of a diffraction pattern
recorded at large positive delay with respect to the same image taken at negative delays.
Coordinate system indicated for angular averaging around the center of the pattern.
B: The isotropic signal (gray shaded area) as well as the central beam stop (black) are
ignored during the averaging process, leaving only the six-fold symmetric contributions.

C: The same as in B, but for the isotropic contribution.

Secondly, the so obtained isotropic contribution (Fig. A.3C) is subtracted from the signal

acquired when averaging over the regions denoted in Fig. A.3B, leaving only the intensity

change in the adsorbate peaks.

A.6 Reproducibility of the measurements

The performance of measurements on a sample system, which is as sensitive to degra-

dation as the bilayer system presented in this work, is a challenge. To nevertheless

maintain a good reproducibility of the experimentally obtained results, while taking the

mentioned degradation of the probed system into consideration, the following steps are

undertaken.

Firstly, all time-dependent measurements are recorded consecutively over multiple mea-

surement runs (“loops”), and secondly, each data point / diffraction image is recorded

between 10 and 30 times per run. We also performed measurements with a randomized

order of delay points – to conform that cumulative effects for time dependent behavior

have been avoided – and obtained the same result. However, in view of the limited ex-

posure time for each sample, we decided to go through the delay points in chronological

order to avoid an additional degradation of the sample during extended delay stage po-

sitioning. Furthermore, it is apparently of importance for the recording of high quality
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data to maintain constant recrystallization times for the polymer crystallites between

pumping, again by avoiding randomly chosen delay points.

Figure A.4 displays the temporal evolution of the PMMA superstructure spot intensity

decrease resolved for the four individually recorded measurement runs (red circles). For

better comparison, the averaged data points (gray squares) as well as their exponential

fit (blue dashed line) are also shown. The individual time constants for each plot are

determined by using the same settings as in the case of the averaged data with only the

decay time as a free parameter.

A B

C D

Figure A.4: Loop-resolved superstructure dynamics. Electron energy: 450 eV. Flu-
ence: 7.1 mJ/cm2. Diffraction images per point per loop: 15. The graphs display
the relative intensity difference of the superstructure diffraction peaks consecutively
recorded four times (A – D) in comparison with the averaged values (gray squares)

and their exponential fit (blue dashed line).

The amplitude of the intensity loss, the time-zero as well as the individual time constants

agree well with the averaged data, leading to an overall decay time of 129 ps with a

standard deviation of 14 ps.





Appendix B

Sample characterization

B.1 Graphene characterization

There are several methods to determine the quality as well as the single layer character

of the resulting graphene, including AFM, SEM, TEM, optical microscopy1 and Ra-

man spectroscopy [71, 269]. For the samples used in this work, Raman spectroscopy is

performed either directly on the Cu substrate or after transfer of the graphene to SiO2

wafers. In comparison with the other methods, Raman spectroscopy has the advantages,

that it is not only giving a clear fingerprint of the graphene in terms of number of lay-

ers and single crystallinity, but it is also relatively simple, quick, non-destructive, and

substrate independent [270].

Figure B.1 shows Raman measurements of single (Fig. B.1A [271] and Fig. B.1B) and

multi-layer graphene (Fig. B.1B). The most prominent features are the G peak (around

1580 cm−1) and 2D peak2 (around 2700 cm−1). Whereas the G peak is scaling directly

with the number of the graphene layer(s), the intensity of the 2D peak remains mainly

unaffected by thickness variations [269, 270]. Instead, the 2D peak stems from the second

order of zone-boundary phonons (at around 1350 cm−1) [272].

Apart from the intensity relation between the G and 2D peaks the occurrence of single

layer graphene can be determined from the shape of the 2D peak. Fig. B.1B, lower

1Single layers of graphene are visible under the optical microscope when deposited on oxidized Si
substrates with very defined thickness. In this case, single carbon layers can be distinguished by slightly
changing the optical path length of the transmitted light in comparison to the empty substrate.

2The 2D peak has been historically named G′.
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A B

G

2D/G`

Figure B.1: Raman spectra of graphene samples showing G and 2D peaks. A: Raman
spectra taken from three graphene samples, two of them on a SiO2 substrate (red and
black curves), one suspended (blue line). The weak G peak and the symmetric shape of
the 2D peak indicate monolayer graphene. Excitation wavelength: 633 nm. Laser beam
spot size: 5 µm. Integration time: 20 s. B: Reference spectra of single and multi-layer
graphene as well as graphite taken from Ref. [269]. Excitation wavelengths: 514 nm

(b) and 633 nm (c).

panel, illustrate the changing of the 2D peak shape from single to multi-layer graphene

/ graphite.

When taking the Raman signal from free-standing graphene, a small contribution from

PMMA at around 2900 cm−1 can sometimes be observed Fig. B.2) in agreement with the

PMMA signal as reported in the literature [273]. However, this feature is not detected in

all sample areas and therefore likely due to a locally thicker PMMA film. For comparison,

the PMMA film thickness in Ref. [273] was about 200 nm.

Figure B.2: Raman signal from bilayer sample with PMMA contribution. Inset:
Magnified area denoted by dashed rectangle.
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B.2 Formation time of the folded-chain crystallites

We find that the diffraction signal of the polymer superstructure close to the central

beam stop depends critically on the drying time. For a qualitative analysis, two samples

(“1” and “2” denoting different positions on the sample) with varied drying times are

compared in Fig. B.3. Both of them have been prepared in the same sample preparation

run under identical conditions. The sample shown in A has been analyzed directly

after etching and washing, whereas sample B was given 24 h to dry under atmospheric

conditions.

A1 A2

B1 B2

1 Å-1

1 Å-1

Figure B.3: Influence of drying time on the superstructure visibility (marked by gray
ring in images A2 and B2). Numbers 1 and 2 denote two different sample positions.
A: Samples directly analyzed after etching. B: Sample from same batch, but analyzed
after one day of drying under atmospheric conditions. Integration times: 3 s per image

for A, 5 s per image for B. Both samples are PMMA.

The inner diffraction peaks close to the beam stop (area indicated by gray ring shape

in images Fig. B.3A2) are nearly not discernible in the A samples (low drying time),

whereas their intensities are comparable to the graphene spot intensity for the B samples

(24 h drying time).
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B.3 Thermal resistance of the superstructure

The polymer superstructure is prepared on many different samples and found to be

extremely resistant to thermal and chemical treatment with various solvents [105, 111].

In order to exclude any influence of the Quantifoil film3 on the recorded structures,

several samples are prepared on SixNy membranes4 instead. This alteration also allows

for bake-out of the samples, which is not possible when using Quantifoil. In the latter

case, the carbon / plastic membranes are not thermally stable for temperatures above

150 ◦C, which results in the destruction of the overlaying graphene layer. Fig. B.4 shows

three different graphene / PMMA samples prepared on SixNy membranes before (1)

and after (2) bake-out for 6 h at 350 ◦C to 400 ◦C under atmospheric conditions. The

polymer superstructure is visible on each sample. Note that the overall signal intensity

has degraded significantly after bake-out.

A1 B1 C1

A2 B2 C2

1 Å-1

Figure B.4: Sample on SiN before and after bake-out. Top row: PMMA on graphene
on SiN-TEM grid (no Quantifoil). Bottom row: Same samples (different sample
positions) after bake-out for 6 h at 350 ◦C. Overall signal reduction, but superstructure
still visible. Integration time: 10 s. Image contrast normalized. Electron energy:

450 eV.

3Quantifoil is produced by evaporation of carbon on a holey plastic film, which is later on dissolved.
However, the manufactures claims that not all of the plastic is removed, but about 10 nm remain below
the 10 nm carbon film (http:// http://www.quantifoil.com/).

4Vendor: Plano GmbH (http://www.plano-em.de/)

http:// http://www.quantifoil.com/
http://www.plano-em.de/
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In the case of PMMA not in contact with a graphene surface, degradation already starts

at temperatures as low as 165 ◦C by chain scissions at H-H linkages [274]. At around

360 ◦C, random scissions are setting in within the polymer chains. To observe a mere

reduction of the overall signal but no removal of the PMMA at such high temperatures

indicated the strong influence of the graphene surface potential on the PMMA stability.

B.4 Superstructure degradation

There are two main contributions to the degradation of the superstructure diffraction

signal, namely electron bombardment by the gun and continuous heating by the intense

laser pump pulse. The first contribution can be estimated by considering the lifetime of

the superstructure in a TEM and comparing the experimental conditions to the ULEED

setup. As mentioned, the polymer superstructure lasts only for about 1− 2 s in a TEM

and even the low-dose, low-temperature approach of a cryo-TEM cannot increase the

lifetime to beyond 10 s.

The main reason for this short lifetime is the small area in which the electrons are

focused within in a TEM. While the electron current is distributed over an area with

about 60 − 70 µm in diameter in the case of ULEED (Sec. 5.2), TEMs have focal

diameters in the order of 5 nm and below, leading to maximum current densities of

about 106 A/m2. This figure is more than 10 orders of magnitude higher than that for

ULEED. In terms of electrons per unit cell per second, this estimate means that whereas

in ULEED, each PMMA unit cell is hit by an electron within the timespan of about

one hour, electrons bombard the unit cell every few seconds in a TEM even at reduced

current densities and taking into account the reduced scattering cross-section at higher

energies [275]. This can lead to a series of physical and chemical processes eventually

degrading the sample signal [225].

The second important source of superstructure degradation stems from the heating of

the sample by the intense pump laser beam. The superstructure lattice parameter as

well as diffraction spot width and intensity as a function of total integration time for low

fluences are displayed in Fig. B.5A. While the change in the measured lattice parameter

is about 1 % (red squares), the relative spot intensity (blue circles) and peak width

(green triangles) change significantly. After 60 min, only 70 % of the initial diffraction
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intensity of the spots is left, while the peak has experienced a broadening by about

5− 10 %.

C

1 Å-1

A B

*
†

Figure B.5: Superstructure degradation. Electron energy: 450 eV. Pump laser rep-
etition rate: 312 kHz. All measurement at negative delay times. A: Low-fluence
development of the superstructure peak width, peak position and the lattice parame-
ter. Pump fluence: 1.1 mJ/cm2. B: Intensity development as a function of laser pump
fluence. The asterisk (*) and dagger (†) indicate slight sample movement to increase
overall intensity. Inset: Amplitude decrease as a function of pump fluence. Threshold
fluence (estimated from visible onset of lost crystalline order) for superstructure melt-
ing indicated by gray dashed line. C: Diffraction images taken at the start of each

measurement.

When increasing the pump fluence, the rate of intensity loss first remains about constant

up to 4 mJ/cm2 and strongly increases for even higher fluences (Fig. B.5B) up to about

2 % per minute. The intensity loss as a function of fluence is displayed in the inset

of Fig. B.5B. The respective diffraction images are shown in Fig. B.5C, recorded at

large positive delay times to exclude any effects from the relaxation process of the

superstructure (Sec. 5.2).

Notably, the intensity loss is significantly enhanced at fluences beyond a threshold5 of

4 mJ/cm2, with the onset of the loss of crystalline order in the superstructure. In

5The higher observed threshold fluence (compare Sec. 6.3.4) is most likely caused by slight variations
between different sample sites or a small defocussing of the pump beam on the sample.
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addition to mere sample degradation, also non-complete recrystallization of the super-

structure amounts to the higher observed intensity loss. Also, a dependence of the

degradation velocity on the electron energy has not been observed. However, a possible

larger inelastic energy transfer on the sample could be masked by a reduced scattering

cross section of faster electrons [275].





Appendix C

Abbreviations and symbols

C.1 Abbreviations

AES Auger electron spectroscopy

AFM atomic force microscopy

BBO β-barium borate

BSCCO bismuth strontium calcium copper oxide

CCD charge-coupled device

CNT carbon nanotube

CVD chemical vapor deposition

DI de-ionized

FEM finite element method

FWHM full width at half maximum

HOPG highly ordered pyrolytic graphite

IMFP inelastic mean-free-path

I-V intensity-energy / intensity-velocity

LEED low-energy electron diffraction

MCP microchannel plate

MMA methyl-methacrylate

OPA optical parametric amplifier

PC polycarbonate

PE polyethylene

PINEM photon-induced near field electron microscopy
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PMMA poly(methyl methacrylate)

RHEED reflection high-energy electron diffraction

RMS root-mean-square

sCDW surface charge density wave

SEM scanning electron microscopy

SHG second-harmonic generation

STM scanning tunneling microscopy

TEF transient electric field

TEM transmission electron microscope

THz-STM terahertz STM

trARPES time and angle-resolved photoemission spectroscopy

UED ultrafast electron diffraction

ULEED ultrafast LEED

UTEM ultrafast TEM

XRD X-ray diffraction

C.2 Symbols

c speed of light (299792458 m/s)

e charge of an electron (1.60217657 · 10−19 C)

ε0 vacuum permittivity (8.85418782 · 10−12 F/m)

~ Planck’s constant (6.62606957 · 10−34 m2kg/s)

kB Boltzmann constant (1.3806488 · 10−23 m2kg/s2K)

me mass of an electron (9.10938291 · 10−31 kg)

1 identity matrix

A area

a lattice parameter

ai lattice vector

a∗i reciprocal lattice parameter

B brightness

bi overlayer lattice parameter

b∗i reciprocal overlayer lattice vector
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cG specific heat capacity

d distance , thickness

D distribution

E energy

F electric field

Fhk structure factor

fhk structure factor coefficient

ghk reciprocal lattice vector

h, k, l Miller indices

I intensity

K force

k, s wave vectors

L diameter of light source

Lm specific latent heat for melting

lc transverse coherence length

M mass

Ne electron number

n surface normal vector

R distance between light source and scattering object

Rk thermal boundary resistance

r radius, distance

ṙ, v velocity

T temperature

t time

U potential

Up ponderomotive potential

α angle, expansion coefficient

β angle, relativistic factor

∆E energy spread

∆t delay time

δij Dirac delta function

ε emittance
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εF energy of Fermi level

εV energy of vacuum level

γ Keldysh parameter, photon energy, relativistic factor

λ wave length

Φ work function

ϕ angle, phase coefficient

Ω solid angle

ω angular frequency

ρ charge / mass density

σ standard deviation

Θ diffraction angle, Heaviside function

τ time duration
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[203] S. Schäfer, W. Liang, and A. H. Zewail. Primary structural dynamics

in graphite. New Journal of Physics, 13(6):063030, June 2011. ISSN

1367-2630. URL http://stacks.iop.org/1367-2630/13/i=6/a=063030?key=

crossref.1bb24b4813109185ed905889068d87de.

http://www.sciencedirect.com/science/article/pii/S1076567008701563
http://www.sciencedirect.com/science/article/pii/S1076567008701563
http://stacks.iop.org/1367-2630/9/i=10/a=397?key=crossref.495913c28004e470fd663e4af84509d4
http://stacks.iop.org/1367-2630/9/i=10/a=397?key=crossref.495913c28004e470fd663e4af84509d4
http://www.ncbi.nlm.nih.gov/pubmed/16483961
http://link.aip.org/link/RSINAK/v76/i8/p083905/s1&Agg=doi
http://link.aip.org/link/RSINAK/v76/i8/p083905/s1&Agg=doi
http://link.aip.org/link/JAPIAU/v68/i9/p4802/s1&Agg=doi
http://link.aip.org/link/JAPIAU/v68/i9/p4802/s1&Agg=doi
http://link.aip.org/link/APPLAB/v94/i25/p251103/s1&Agg=doi
http://link.aip.org/link/APPLAB/v94/i25/p251103/s1&Agg=doi
http://stacks.iop.org/1367-2630/13/i=6/a=063030?key=crossref.1bb24b4813109185ed905889068d87de
http://stacks.iop.org/1367-2630/13/i=6/a=063030?key=crossref.1bb24b4813109185ed905889068d87de


Bibliography 164

[204] H. Park and J.-M. Zuo. Comment on “Structural Preablation Dynamics of

Graphite Observed by Ultrafast Electron Crystallography”. Physical Review Let-

ters, 105(5):059603, July 2010. ISSN 0031-9007. URL http://link.aps.org/

doi/10.1103/PhysRevLett.105.059603.

[205] J. Cao, Z. Hao, H. Park, C. Tao, D. Kau, and L. Blaszczyk. Femtosecond electron

diffraction for direct measurement of ultrafast atomic motions. Applied Physics

Letters, 83(5):1044, 2003. ISSN 00036951. URL http://link.aip.org/link/

APPLAB/v83/i5/p1044/s1&Agg=doi.

[206] M. Eichberger, N. Erasmus, K. Haupt, G. Kassier, A. von Flotow, J. Demsar,

and H. Schwoerer. Femtosecond streaking of electron diffraction patterns to

study structural dynamics in crystalline matter. Applied Physics Letters, 102(12):

121106, 2013. ISSN 00036951. URL http://link.aip.org/link/APPLAB/v102/

i12/p121106/s1&Agg=doi.

[207] R. Li, W. Huang, Y. Du, L. Yan, Q. Du, J. Shi, J. Hua, H. Chen, T. Du, H. Xu,

and C. Tang. Note: Single-shot continuously time-resolved MeV ultrafast electron

diffraction. The Review of Scientific Instruments, 81(3):036110, March 2010. ISSN

1089-7623. URL http://www.ncbi.nlm.nih.gov/pubmed/20370233.

[208] F. O. Kirchner, A. Gliserin, F. Krausz, and P. Baum. Laser streaking of free

electrons at 25 keV. Nature Photonics, 8(1):52–57, December 2013. ISSN 1749-

4885. URL http://www.nature.com/doifinder/10.1038/nphoton.2013.315.

[209] C. T. Hebeisen, R. Ernstorfer, M. Harb, T. Dartigalongue, R. E. Jordan, and

R. J. D. Miller. Femtosecond electron pulse characterization using laser pondero-

motive scattering. Optics letters, 31(23):3517–9, December 2006. ISSN 0146-9592.

URL http://www.ncbi.nlm.nih.gov/pubmed/17099769.

[210] B. J. Siwick, A. A. Green, C. T. Hebeisen, and R. J. D. Miller. Characterization of

ultrashort electron pulses by electron-laser pulse cross correlation. Optics Letters,

30(9):1057–9, May 2005. ISSN 0146-9592. URL http://www.ncbi.nlm.nih.gov/

pubmed/15907002.

[211] B. Barwick, D. J. Flannigan, and A. H. Zewail. Photon-induced near-field electron

microscopy. Nature, 462(7275):902–6, December 2009. ISSN 1476-4687. doi: 10.

1038/nature08662. URL http://www.ncbi.nlm.nih.gov/pubmed/20016598.

http://link.aps.org/doi/10.1103/PhysRevLett.105.059603
http://link.aps.org/doi/10.1103/PhysRevLett.105.059603
http://link.aip.org/link/APPLAB/v83/i5/p1044/s1&Agg=doi
http://link.aip.org/link/APPLAB/v83/i5/p1044/s1&Agg=doi
http://link.aip.org/link/APPLAB/v102/i12/p121106/s1&Agg=doi
http://link.aip.org/link/APPLAB/v102/i12/p121106/s1&Agg=doi
http://www.ncbi.nlm.nih.gov/pubmed/20370233
http://www.nature.com/doifinder/10.1038/nphoton.2013.315
http://www.ncbi.nlm.nih.gov/pubmed/17099769
http://www.ncbi.nlm.nih.gov/pubmed/15907002
http://www.ncbi.nlm.nih.gov/pubmed/15907002
http://www.ncbi.nlm.nih.gov/pubmed/20016598


Bibliography 165

[212] A. Cavalleri, T. Dekorsy, H. Chong, J. Kieffer, and R. Schoenlein. Evidence for a

structurally-driven insulator-to-metal transition in VO2: A view from the ultrafast

timescale. Physical Review B, 70(16):161102, October 2004. ISSN 1098-0121. URL

http://link.aps.org/doi/10.1103/PhysRevB.70.161102.

[213] M. Breusing, C. Ropers, and T. Elsaesser. Ultrafast carrier dynamics in graphite.

Physical Review Letters, 102(8):086809, February 2009. ISSN 0031-9007. URL

http://link.aps.org/doi/10.1103/PhysRevLett.102.086809.

[214] M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi,

T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz. Time-resolved

atomic inner-shell spectroscopy. Nature, 419(6909):803–7, October 2002. ISSN

0028-0836. URL http://www.ncbi.nlm.nih.gov/pubmed/12397349.

[215] M. Müller, A. Paarmann, and R. Ernstorfer. Femtosecond electrons probing cur-

rents and atomic structure in nanomaterials. arXiv preprint, pages 1–15, 2014.

URL http://arxiv.org/abs/1405.4992.

[216] U. Weigel, D. A. Orlov, and S. N. Kosolobov. Cold intense electron beams from

LN2-cooled GaAs-photocathodes. Nuclear Instruments and Methods in Physics

Research Section A, 536(11):232–328, 2005. URL http://www.sciencedirect.

com/science/article/pii/S0168900204019849.

[217] L. Wimmer, G. Herink, D. R. Solli, S. V. Yalunin, K. E. Echternkamp, and C. Rop-

ers. Terahertz control of nanotip photoemission. Nature Physics, 10:432–436, 2014.

URL http://www.nature.com/nphys/journal/v10/n6/full/nphys2974.html.

[218] G. H. Kassier, N. Erasmus, K. Haupt, I. Boshoff, R. Siegmund, S. M. M. Coelho,

and H. Schwoerer. Photo-triggered pulsed cavity compressor for bright elec-

tron bunches in ultrafast electron diffraction. Applied Physics B, 109(2):249–257,

September 2012. ISSN 0946-2171. URL http://link.springer.com/10.1007/

s00340-012-5207-2.

[219] T. van Oudheusden, P. L. E. M. Pasmans, S. B. van der Geer, M. J. de Loos, M. J.

van der Wiel, and O. J. Luiten. Compression of Subrelativistic Space-Charge-

Dominated Electron Bunches for Single-Shot Femtosecond Electron Diffraction.

Physical Review Letters, 105(26):264801, December 2010. ISSN 0031-9007. URL

http://link.aps.org/doi/10.1103/PhysRevLett.105.264801.

http://link.aps.org/doi/10.1103/PhysRevB.70.161102
http://link.aps.org/doi/10.1103/PhysRevLett.102.086809
http://www.ncbi.nlm.nih.gov/pubmed/12397349
http://arxiv.org/abs/1405.4992
http://www.sciencedirect.com/science/article/pii/S0168900204019849
http://www.sciencedirect.com/science/article/pii/S0168900204019849
http://www.nature.com/nphys/journal/v10/n6/full/nphys2974.html
http://link.springer.com/10.1007/s00340-012-5207-2
http://link.springer.com/10.1007/s00340-012-5207-2
http://link.aps.org/doi/10.1103/PhysRevLett.105.264801


Bibliography 166

[220] M. Gulde, S. Schweda, G. Storeck, M. Maiti, H. K. Yu, A. M. Wodtke, S. Schafer,

and C. Ropers. Ultrafast low-energy electron diffraction in transmission resolves

polymer/graphene superstructure dynamics. Science, 345(6193):200–204, July

2014. ISSN 0036-8075. URL http://www.sciencemag.org/cgi/doi/10.1126/

science.1250658.

[221] A. N. Rissanou and V. Harmandaris. Structure and dynamics of poly(methyl

methacrylate)/graphene systems through atomistic molecular dynamics simula-

tions. Journal of Nanoparticle Research, 15(5):1589, April 2013. ISSN 1388-0764.

URL http://link.springer.com/10.1007/s11051-013-1589-2.

[222] H. Wang, J. H. Strait, P. A. George, S. Shivaraman, V. B. Shields, M. Chan-

drashekhar, J. Hwang, F. Rana, M. G. Spencer, C. S. Ruiz-Vargas, and J. Park.

Ultrafast relaxation dynamics of hot optical phonons in graphene. Applied Physics

Letters, 96(8):081917, 2010. ISSN 00036951. URL http://scitation.aip.org/

content/aip/journal/apl/96/8/10.1063/1.3291615.

[223] M. H. Gass, U. Bangert, A. L. Bleloch, P. Wang, R. R. Nair, and A. K. Geim. Free-

standing graphene at atomic resolution. Nature Nanotechnology, 3(11):676–81,

November 2008. ISSN 1748-3395. URL http://www.ncbi.nlm.nih.gov/pubmed/

18989334.

[224] D. C. Miller, M. D. Kempe, C. E. Kennedy, and S. R. Kurtz. Analysis of

Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs:

Preprint. Society of Photographic Instrumentation Engineers (SPIE), 2009. URL

http://www.osti.gov/bridge/product.biblio.jsp?osti_id=962021.

[225] D. T. Grubb. Review Radiation damage and electron microscopy of organic

polymers. Journal of Materials Science, 9(10):1715–1736, 1974. URL http:

//link.springer.com/article/10.1007/BF00540772.

[226] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung,

E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff. Large-area synthesis of

high-quality and uniform graphene films on copper foils. Science, 324(5932):1312–

4, June 2009. ISSN 1095-9203. URL http://www.ncbi.nlm.nih.gov/pubmed/

19423775.

http://www.sciencemag.org/cgi/doi/10.1126/science.1250658
http://www.sciencemag.org/cgi/doi/10.1126/science.1250658
http://link.springer.com/10.1007/s11051-013-1589-2
http://scitation.aip.org/content/aip/journal/apl/96/8/10.1063/1.3291615
http://scitation.aip.org/content/aip/journal/apl/96/8/10.1063/1.3291615
http://www.ncbi.nlm.nih.gov/pubmed/18989334
http://www.ncbi.nlm.nih.gov/pubmed/18989334
http://www.osti.gov/bridge/product.biblio.jsp?osti_id=962021
http://link.springer.com/article/10.1007/BF00540772
http://link.springer.com/article/10.1007/BF00540772
http://www.ncbi.nlm.nih.gov/pubmed/19423775
http://www.ncbi.nlm.nih.gov/pubmed/19423775


Bibliography 167

[227] M. J. Allen, V. C. Tung, and R. B. Kaner. Honeycomb carbon: a review of

graphene. Chemical Reviews, 110(1):132–45, January 2010. ISSN 1520-6890. URL

http://www.ncbi.nlm.nih.gov/pubmed/19610631.

[228] R. Bormann. Development of a tip-based ultrafast TEM setup. Phd thesis (not yet

published), University of Göttingen, 2014.

[229] Note. Image A courtesy of Holger Stark (Max Planck Institute for Biophysical

Chemistry).

[230] J. Kumaki, T. Kawauchi, and E. Yashima. Two-dimensional folded chain crystals

of a synthetic polymer in a Langmuir-Blodgett film. Journal of the American

Chemical Society, 127(16):5788–9, April 2005. ISSN 0002-7863. URL http://

www.ncbi.nlm.nih.gov/pubmed/15839667.

[231] J.-J. Kim, S.-D. Jung, H.-S. Roh, and J.-S. Ha. Molecular configuration of

isotactic PMMA Langmuir-Blodgett films observed by scanning tunnelling mi-

croscopy. Thin Solid Films, 244(1-2):700–704, May 1994. ISSN 00406090. URL

http://linkinghub.elsevier.com/retrieve/pii/0040609094905533.

[232] Note. Images in A courtesy of Philip Willke, Philipp Ansorg, Thomas Kotzott,

and Martin Wenderoth (IV. Physical Institute, University of Göttingen).

[233] Note. Image C courtesy of Stefanie Strauch, James E. Evans, and Nigel D. Brown-

ing. This image is part of the Chemical Imaging Initiative at Pacific Northwest

National Laboratory under Contract DE-AC05-76RL01830 operated for DOE by

Battelle. A portion of the research was performed using EMSL, a national scien-

tific user facility sponsored by the Department of Energy’s Office of Biological and

Environmental Research and located at Pacific Northwest National Laboratory.

[234] D. C. Bassett, F. C. Frank, and A. Keller. Some new habit features in crys-

tals of long chain compounds part IV. the fold surface geometry of monolayer

polyethylene crystals and its relevance to fold packing and crystal growth. Philo-

sophical Magazine, 8(94):1753–1787, October 1963. ISSN 0031-8086. URL

http://www.tandfonline.com/doi/abs/10.1080/14786436308207335.

[235] W. Kleber, H.-J. Bautsch, J. Bohm, and D. Klimm. Einführung in die Kristal-
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[258] G. Andrä, H. D. Geiler, and G. Götz. Explosive Liquid-Phase Crystallization

of Thin Silicon Films during Pulse Heating. Physica Status Solidi (a), 74(2):

511–515, 1982. URL http://onlinelibrary.wiley.com/doi/10.1002/pssa.

2210740217/abstract.

[259] A. N. Rissanou and V. Harmandaris. A Molecular Dynamics Study of Polymer/-

Graphene Nanocomposites. Macromolecular Symposia, 331-332(1):43–49, October

2013. ISSN 10221360. URL http://doi.wiley.com/10.1002/masy.201300070.

[260] R. R. Cavanagh and D. S. King. Dynamics of nonthermal reactions: Femtosecond

surface chemistry. The Journal of Physical Chemistry, 97(4):786–798, 1993. URL

http://pubs.acs.org/doi/abs/10.1021/j100106a002.

[261] Note. Images B-D courtesy of Gero Storeck and Simon Schweda (IV. Physical

Institute, University of Göttingen).
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Tim Salditt und Klaus Sokolowski-Tinten möchte ich meinen Dank dafür aussprechen,

sich als Korreferenten für die Arbeit zur Verfügung gestellt zu haben.

Die unkomplizierte ideelle und finanzielle Förderung meiner Promotion durch die Stu-

dienstiftung des deutschen Volkes erkenne ich ebenfalls dankend an. Die Unterstützung
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