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Abstract

A central objective in the analysis of mass spectrometry-based untargeted Metabolomics data

is the detection of intensity patterns that differ between experimental conditions and the iden-

tification of underlying metabolites and biochemical processes. In this context, the identifi-

cation of metabolites is a major bottleneck and needs to be guided by expert knowledge and

tools for explorative data analysis. The integration of data sets from other omics platforms,

e.g. DNA microarray-based Transcriptomics, can thereby provide valuable hints and support

the reconstruction of related metabolic pathways, which then form the biochemical context

for metabolite identification. In this work, a statistical framework and user interfaces for ex-

ploratory evaluation of mass spectrometry-based non-targeted Metabolomics data in combina-

tion with data sets from other omics platforms are introduced. The developed methods and

tools were combined in the highly interactive MarVis-Suite software. The MarVis-Filter in-

terface includes functions for the adduct and isotope correction of mass spectrometry data,

molecular formula prediction, statistical ranking, filtering, and combination of cross-omics

data sets. Within MarVis-Cluster, intensity profiles associated with ion species or microarray

spots (features) in filtered and combined data sets can be clustered, visualized, interactively

inspected and labeled. By means of MarVis-Pathway, data set features may be annotated in

the context of organism-specific metabolic pathways. For statistical analysis, which forms a

counterweight to the highly interactive and selective MarVis workflow, an extensive frame-

work for meta-analysis of multi-omics data sets based on pathway enrichment analysis was

developed. The methods and tools were successfully applied to several liquid chromatogra-

phy/mass spectrometry data sets in combination with DNA microarray data in the context of

plant wounding. The integration of Transcriptomics data thereby significantly supported the

analysis and interpretation of non-targeted Metabolomics data sets.
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Introduction

3.1 Mass spectrometry-based Metabolomics

In recent years, Metabolomics, the study of all small molecules (metabolites) representing

educts, intermediates, and products of metabolism, has become a key methodology to inves-

tigate an organism’s reaction under different experimental conditions, such as environmental

or genetic perturbations [1, 2, 3]. In contrast to the more established fields Transcriptomics

and Proteomics, which focus on the analysis of the whole set of transcripts (transcriptome)

and proteins (proteome) in organisms, Metabolomics allows the characterization of the bio-

chemical properties of a cell in terms of metabolite abundance measurements, e.g. as result of

modifications on the genetic level. Therefore, it was named the link between genotypes and

phenotypes [4]. Metabolomics comprises two different approaches: targeted and non-targeted

studies. Targeted Metabolomics [5] focuses on the quantification of a set of known metabo-

lites. Non-targeted or untargeted studies aim to identify and characterize unknown or so far

not described metabolites for particular experimental conditions [6]. In this context, the terms

metabolic fingerprinting and profiling are often used to indicate the type of analysis [4, 7].

A metabolic fingerprint thereby represents all measurements obtained for a particular sample

and all detected but not yet identified metabolites. These fingerprints can then be used to dis-

criminate different groups of samples and extract measurements that are responsible for this

distinction. In a final step, the underlying metabolites may be identified. In metabolic profil-

ing studies, classes of known compounds, e.g. belonging to the same metabolic pathway, are

analyzed and their abundance is compared between different samples.

Before analyzing metabolic samples, the metabolites have to be extracted from the biological

material [8, 9, 10] (see figure 3.1, first part). This step includes the quenching of metabolic re-

actions, e.g. by means of rapid freezing in liquid nitrogen, and the removal of macromolecules,

such as proteins, which would interfere with the detection of the small-weight metabolites. For

targeted analysis, the extraction method is usually highly optimized and tailored to the target

5



compounds [11]. In order to extract as many metabolites as possible for non-targeted analysis,

different classes of metabolites are often extracted separately. For example, by means of a two-

phase extraction with methanol, chloroform and water [12], non-polar metabolites are extracted

in the chloroform and polar metabolites in the methanol phase. In order to compare different

genotypes, environmental perturbations, or developmental stages, multiple independent sam-

ples are prepared for different experimental conditions (see figure 3.1 and section 3.2). In many

applications, an experiment comprises more than two conditions, e.g. when performing studies

on time series [13].

For the analysis of metabolic samples, nuclear magnetic resonance (NMR) spectroscopy and

mass spectrometry (MS) techniques are widely used [14, 15]. It is important to state that cur-

rently no single platform can measure all classes of metabolites occurring in typical metabolic

samples. NMR spectroscopy allows the non-destructive analysis of metabolites and also pro-

vides structural information [16]. However, NMR requires large amounts of analytes and is

therefore not applicable for the detection of low-concentration metabolites, such as plant hor-

mones. In contrast, MS analysis features a higher sensitivity and allows to detect and quantify

hundreds of metabolites in small sample volumes. In this type of analysis, the molecules in

a sample are ionized, separated by means of the mass-to-charge (m/z) ratios of correspond-

ing ions, and finally detected and quantified. MS analysis can be performed in positive and

negative ionization mode, which result in positively or negatively charged ions, respectively.

During ionization, different analytes can interact and particular ions may be suppressed [17],

which hinders the detection or may result in an incorrect quantification. Therefore, the analytes

are usually separated before MS analysis using chromatographic techniques.

The most common combinations here are gas chromatography/mass spectrometry (GC/MS)

[18] and liquid chromatography/mass spectrometry (LC/MS) [19, 20]. GC/MS allows the

highly reproducible separation of volatile metabolites or less volatile compounds in combina-

tion with derivatization (chemical adding of a volatile functional group). The gaseous analytes

together with a carrier gas (mobile phase) are transported through a column and chronologically

separated by means of the interaction with the column material (stationary phase). GC/MS was

used in the earliest studies in Metabolomics [1].

In LC analysis, the analytes are dissolved in solvents (mobile phase) and then led through

a column. Depending on the interaction with the stationary phase and the solvent system,

different compounds take more or less time to travel the column and a chronological separation

is achieved. LC/MS is suitable for the analysis of most metabolites that can be dissolved

and does not require derivatization of non-volatile compounds. However, the chromatographic

separation is often less reproducible compared to GC and shifts in retention time (rt), the time

a particular compound takes to traverse the column, are observed between different analyses.

6



The rt depends for example on the size of particles in the column material, the column length,

the solvent system, and the polarity of analytes. In order to allow high-throughput LC/MS

analysis, ultra (high) performance liquid chromatography (UPLC or UHPLC) systems, which

use columns packed with very small particles in combination with high pressure, have been

developed [20].

In most applications, (UP)LC is combined with electrospray ionization (ESI) and time-of-

flight (TOF) analysis in the mass spectrometer [20]. Details on other ionization and detection

technologies applied in LC/MS analysis can be found in [19, 20]. ESI is a a soft ionization tech-

nique that results in rather small amounts of fragmentations of the analytes. The compounds

in the liquid sample are ionized by means of high voltage and form drops, which dissolve into

smaller droplets until single ions are isolated. Once these ions reach the TOF mass analyzer,

they are accelerated in an electric field and the time until they reach a detector plate is mea-

sured. This time is proportional to the square root of the m/z ratio of each ion. Finally, the

ions that reach the detector are recorded. The abundance of ions (intensity) is either measured

as ion counts or electric current. This information can be combined in the so-called total ion

chromatogram (TIC), which summarizes the ion intensities over all m/z values along the rt axis

(see figure 3.2 and 3.1). For each rt, an MS spectrum is recorded (see lower plot in figure 3.2).

After soft ionization by ESI-MS, a particular metabolite is often detected as protonated (pos-

itive ionization mode) or deprotonated (negative mode) ion. However, a single metabolite

species is often represented by multiple ions with different m/z ratios. These related ions may

represent isotopologues, molecules having the same structure but containing different numbers

of isotopes. Also the aggregation of multiple target molecules or multiply charged ions, which

are not so common for ESI-MS of small metabolites, are possible. Additionally, a molecule

may be fragmented during ionization resulting in the loss of mass. In case the fragment is

not subsequently ionized and can therefore not be detected by MS, this phenomenon is called

neutral loss. Especially for ESI-based (UP)LC/MS analysis, the formation of adducts is often

observed [20, 21]. These adducts result from the addition of another molecule to the target

during ionization, e.g. the addition of formate in negative or ammonium and sodium in pos-

itive mode (see lower plot in figure 3.2). Since isotopologues interact in the same way with

the stationary phase of the LC column and the other described alterations occur in the MS ion

source, all ions representing the same metabolite species are detected at about the same rt.

In order to compare different samples or conditions, the results from UPLC TOF-MS anal-

ysis of each sample (see figure 3.2) have to be combined [7] (see figure 3.1). This data pre-

processing includes the detection and integration of intensity peaks and the chromatographic

alignment of sample-specific peak lists [22]. Because of limited chromatographic precision,
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ions belonging to a particular metabolite species are detected in an rt range around a maximum

intensity (see figure 3.2). The average width of such a peak in UPLC TOF-MS analysis is about

10 seconds (depending on the actual platform). In comparison, a typical UPLC run takes only

a few minutes. For each sample, peaks are detected in the rt-m/z spectrum and the correspond-

ing intensities are either integrated/summed or the maximum value (peak height) is taken. The

sample-specific peak lists, which contain the rts, m/z ratios, and integrated intensities for all

detected peaks, have then to be aligned and corrected for rt shifts, which are very common

for the less reproducible (UP)LC analysis compared to GC. Finally, the aligned peaks can be

stored in a feature matrix of intensity profiles (see figure 3.1). Each ion peak feature (column

in the feature matrix) is associated with an rt and m/z value, averaged over all aligned sam-

ples, and a profile containing the intensities for all samples [12]. These intensities can be used

to compare the relative abundance of the corresponding metabolite species between different

samples and conditions. Ion features representing the same metabolite species, e.g. adducts or

isotopologues, usually show a very similar intensity profile. The ion features are also referred

to as markers [7] or marker candidates [12]. A typical UPLC TOF-MS data set contains a few

thousand features, depending on the preprocessing and additional filters, e.g. when considering

only peaks above a predefined intensity threshold.

For the described data preprocessing, machine and vendor-specific software platforms, such

as the MarkerLynx Application Manager for the MassLynx software (Waters Corporation) and

the Mass Hunter Workstation in combination with the Mass Profiler Professional software (Ag-

ilent Technologies Corporation), are available. Additionally, open software packages, such as

the popular XCMS platform [23], have been developed for this purpose.

The workflow of data acquisition (see figure 3.1) has to be repeated for different extraction

phases of metabolites. Additionally, the samples of each extraction phase are analyzed in pos-

itive and negative ionization mode of the mass spectrometer. This repeated analysis results in

multiple data matrices, e.g. four data sets for the analysis of the polar and non-polar extrac-

tion phase in positive and negative mode, respectively. Since some metabolite species can be

detected in positive and negative ionization mode, represented by different ion types, and can

even occur in the polar as well as the non-polar extraction phase, the resulting data sets are not

independent. Because the corresponding metabolites are detected as different ion species, e.g.

representing unknown adducts [24], and rt shifts occur, the related features cannot be easily

merged across data sets.
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Figure 3.1: Workflow for UPLC TOF-MS analysis of multiple samples, associated with different experimental con-
ditions, and data processing (chromatogram provided by Dr. Kirstin Feussner, feature matrix adapted
from [12]). Each cell in the feature matrix represents the integrated intensity for the corresponding ion
feature (column) and sample (row). The intensities are color-coded, e.g. red color represents high and
blue color low intensities.
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Figure 3.2: Example TIC and MS spectrum of jasmonic acid for an UPLC TOF-MS analysis of a single sample
(non-polar extraction phase in negative ionization mode, chromatogram and spectrum provided by
Dr. Kirstin Feussner). The total intensity for a particular rt in the TIC (upper plot) summarizes the
underlying MS spectrum. The lower plot shows the corresponding spectrum for jasmonic acid (rt 0.79
minutes, monoisotopic mass 210.1256 Dalton). Two ionization products, the deprotonated molecule
[m−H]− and the formate adduct [m+CH2O2−H]−, are marked by arrows. Notably, the formate
adduct shows a much higher intensity compared to the deprotonated jasmonate.
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3.2 Statistical and exploratory data analysis

In most applications, data set features associated with differential intensity profiles are of high

interest. These profiles show large differences between the experimental conditions in com-

parison to small variations within each condition. In order to detect such candidates, statistical

ranking and filtering methods are applied [25, 26]. The corresponding significance tests can be

divided into parametric methods, which are based on assumptions on the intensity distribution,

e.g. the normal or log-normal distribution, and non-parametric methods, which utilize intensity

ranks. The parametric t-test and the analysis of variance (ANOVA) in case of more than two

conditions or the rank-based Mann-Whitney and Kruskal-Wallis test are popular methods in

this context. In the context of DNA microarray analysis, also non-parametric tests based on

the random permutation of sample labels (assignments of samples to conditions), such as the

significance analysis of microarrays (SAM) [27], are often applied.

A p-value for a particular feature thereby represents the probability of obtaining an equally or

more differential profile for the corresponding feature by chance. The actual p-values strongly

dependent on the assumptions associated with the null hypothesis of the test (that there is no

difference between the conditions), e.g. normal or log-normal distributed intensities in case of

ANOVA. The p-values can be used to rank the data set features and filter them by means of

an error threshold after adjustment for multiple testing [28]. The p-values should be adjusted

because low p-values are expected to be observed when testing a large number of features in

parallel. For example, if 10,000 independent tests with true null hypotheses (no differences

between the conditions) are performed, one feature with a p-value of 0.0001 is expected to

be found by chance. Different methods have been developed for the adjustment in a multiple

testing scenario. The conservative Holm-Bonferroni method [29] controls the familywise er-

ror rate (FWER), which represents the probability of falsely rejecting a true null hypothesis

(declaring one or more features significant although they do not represent real differences be-

tween the conditions). The less conservative Benjamini-Hochberg procedure [30] controls the

false discovery rate (FDR), which represents the expected rate of false discoveries (features

with rejected but true null hypothesis). The FWER or FDR can be estimated for each feature

and used to filter a data set, e.g. by means of an error threshold of 0.01 or 0.05. For random per-

mutation tests, the error rates can be directly estimated based on the observed feature-specific

test statistics and the corresponding values obtained in the permutations [27].

Despite filtering, a typical data set still contains hundreds of features, which are associated

with complex multivariate intensity profiles. In order to identify interesting intensity patterns,
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unsupervised data mining approaches, such as principal component analysis (PCA), clustering

algorithms, and self-organizing maps are often employed [1, 7, 12, 26].

PCA and related methods are applied for dimensionality reduction and visualization of the

samples in a data set. The samples are initially represented as high-dimensional vectors con-

taining the intensities for all features. By means of an eigenvalue decomposition of the esti-

mated covariance matrix, the first k (typical two) orthogonal eigenvectors which represent most

of the variance are extracted. The sample vectors (rows in the matrix in figure 3.1) can then

be projected onto this low-dimensional coordinate plane and visualized, e.g. as 2D scatter plot

(see figure 3.3). The coordinates after projection are called principal components (PCs) and

the corresponding visualization the PCA score plot. This plot is often used for quality control.

Samples of the same condition should cluster together, which indicates an overall higher vari-

ation between than within the conditions (see figure 3.3). However, PCA is based on a linear

projection and complex non-linear relationships cannot be represented. Additionally, the first

k (e.g. two) principal components may represent only a small fraction of the total variance in

the data.

Similar to the score plot, the extracted eigenvectors, which contain the projection weights

(loadings) for all data set features, can be visualized in a so-called loading plot (see figure 3.4).

Here, the features and not the samples are represented as scatter points and features with high

absolute loadings, which represent large parts of the captured variance, can be identified. In

addition, clusters of features, which are associated with similar loadings, may be inspected.

A central disadvantage of the score and loading plot visualization is that the intensity profiles

responsible for the separation of conditions and for high absolute loadings cannot be directly

inspected [12]. In the loading plot in figure 3.4, for example, it is not clear what kind of

intensity patterns are associated with particular features.
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Figure 3.3: Example score plot of the first two principal components of 72 samples associated with eight conditions
(adapted from [12]). The samples are represented as condition-specific colored markers and the plot
shows a clear separation of the samples for most of the conditions (see [12] for details).

Figure 3.4: Example loading plot for the first two principal components of 837 ion features (adapted from [12]).
Every feature is represented as scatter point. Features associated with identified metabolites are marked
with arrows. Related features identified in cluster analysis are marked in green and blue color (see [12]
for details).
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Figure 3.5: Example heatmap visualization of ordered prototype profiles after 1D-SOM clustering (adapted from
[12]). Each row represents an experimental condition, each column a prototype/cluster. The cells
show color-coded normalized intensities for each condition and prototype (see color mapping on the
right-hand side). High relative intensities are represented by red and low intensities by blue color.

For the direct visualization and inspection of intensity patterns, the clustering and visualiza-

tion by means of one-dimensional self-organizing maps (1D-SOMs) was introduced [12] and

has proven to be highly valuable for exploratory data analysis in MS-based non-targeted Meta-

bolomics studies. For each feature, the intensities per condition are averaged and the resulting

vector is normalized to unit Euclidean length (normalized profile). Then, a one-dimensional

array of k connected prototype vectors (the 1D-SOM) is fitted into the space of normalized

profiles and each feature is associated with a representative prototype. After this training pro-

cedure, each prototype represents a cluster of features with similar profiles and the average

profiles per cluster (prototype profiles) can be visualized as heatmap (see figure 3.5). Due to

the linear order of the 1D-SOM, the prototype profiles in the heatmap visualization are sorted

according to similarity. This allows a convenient overview on prominent intensity patterns in

the data set and the identification of blocks of neighboring clusters that share a similar profile.

Because of the aggregation of sample intensities per condition (averaging), the patterns can be

directly interpreted in the experimental context.

Compared to the classical approach of hierarchical clustering [31] combined with the pop-

ular k-means algorithm [32, 33], the 1D-SOM training results in a more robust clustering and

visualization of feature profiles [12]. The 1D approach allows the direct heatmap visualization

of all experimental conditions (y-axis in figure 3.5) along the linear array of prototypes (x-axis

in figure 3.5). In case of applications of the classical 2D-SOMs [34, 35], the multivariate pro-

totype profiles cannot be directly integrated in a single heatmap since the x-axis and y-axis are

used for the visualization of the 2D grid of prototypes.

Besides the described unsupervised methods, also supervised methods for machine learning,

which for example use the sample labels (assignments of samples to conditions) in order to

train a classifier, are applied in this context [26]. The partial least squares discriminant analysis

(PLS-DA) [36], support vector machines (SVMs) [37], and the random forests classifier [38,
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39] are popular examples. After training of the corresponding model, feature weights or scores

can be visualized and candidates which discriminate between the experimental conditions may

be extracted [40]. However, this work focuses on unsupervised methods for clustering and

visualization and especially the 1D-SOM approach.

The 1D-SOM method was implemented in the MarVis-Cluster (Marker Visualization) tool

[41]. After 1D-SOM training, MarVis-Cluster facilitates the interactive selection and export

of clusters of data set features which are associated with an interesting prototype profile. The

1D-SOM order thereby significantly supports this selection. Similar to the cluster analysis of

gene expression patterns [31], the functional analysis of features associated with a particular

intensity pattern, e.g. represented by single or blocks of clusters, is of high interest. Especially

in case of non-targeted LC/MS data, the interactive interface of MarVis-Cluster facilitates the

integration of the user’s expert knowledge, e.g. for the identification of adducts and other

related features found in the same cluster [12, 41].

3.3 Functional annotation and integration of other omics
platforms

In order to identify metabolites associated with differential intensity profiles or interesting pat-

terns in a particular experimental context, the ion features have to be annotated. For this anno-

tation, the accurate m/z ratios are mapped to exact masses of known metabolites [21, 24]. The

highly machine-specific and often poorly reproducible rt values from LC analysis are usually

not used for this purpose. For mass-based mapping, the feature-specific m/z ratios have to be

transformed into putative monoisotopic masses. This transformation includes the correction for

the ion charge, e.g. when detected with double charge, included isotopes, adducts, and neutral

mass loss (see section 3.1). For this purpose, common adduct and ionization rules, which de-

scribe the formation of frequently observed ion species in the form [xm+ y]z[+/−], are applied

in combination with isotope correction [42, 43, 44, 45]. These rules, e.g. [m+H]+ for proto-

nation, formally describe the building blocks of a particular ionization product. They include

the number of combined target molecules (x) or charges (z) and the addition or subtraction of

other molecules (y) and allow the calculation of the potential mass (m) of the corresponding

metabolite (see lower plot in figure 3.2). For the prediction of ionization rules, isotope pat-

terns, and accurate feature masses in LC/MS data, software tools, such as AStream [46] and

CAMERA [47], have recently been developed.
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A more sophisticated method, compared to the mass matching, is to predict molecular for-

mulas based on the feature masses and match these with known metabolites [24, 42]. In order

to reduce the number of possible formulas for a given tolerance, heuristic filtering based on

chemical rules can be applied [48]. For the mass matching and formula prediction, a high mass

precision, the machine-dependent accurateness of the measured m/z values, is of high impor-

tance. Even with high precision, e.g. 1 mDalton, the mapping is often ambiguous because

of isomer metabolites, which share the same molecular formula but have a different chemical

structure.

For this reason, the context in which are particular metabolite occurs is of high importance

[42]. This includes basic information whether a compound has any biological relevance, has

been described previously for the organism under study, or is part of a metabolic reaction

or pathway, which is associated with specific genes. Especially organism-specific metabolic

pathways, which are stored in public databases such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG) [49, 50] and BioCyc [51], provide a valuable context for metabolite annota-

tion. Therefore, the mapping of corrected ion features to metabolic pathways was implemented

as tool [52]. The mapping of ion features to different metabolites in the same pathway thereby

increases the confidence of the putative identification, especially when the corresponding pro-

files show the same intensity pattern.

Besides KEGG and BioCyc, other published databases provide context-specific metabolite

data. AraCyc [53], which is part of the BioCyc collection, is an Arabidopsis-specific pathway

database. The Human Metabolome Database (HMDB) [54] contains endogenous metabolites

for human derived from literature and experiments. In the LIPID MAPS structure database

[55], biologically relevant lipids are organized in different classes. The KNApSAcK database

[56] provides metabolite entries associated with different species. A more general biochem-

ical database is PubChem [57], which covers more than 700,000 compounds and associated

biological test/screening results. In the context of GC/MS and MS/MS analysis, more special-

ized databases, which also include compound-specific MS fragmentation spectra, are available

[58, 59, 60, 61]. In recent years, several web-based platforms [62, 63, 64, 65] have been devel-

oped, which allow the online preprocessing, statistical and exploratory analysis, and functional

annotation of MS-derived Metabolomics data in the context of the described databases.

The introduced methods for analysis of non-targeted LC/MS data imply a couple of chal-

lenges. The mass-based mapping of ion features to metabolites and associated pathways allows

the fast annotation of large data sets and the generation of working hypotheses. However, the

mappings based on exact masses are only putative and error-prone. First, the predicted feature

masses may not be correct because of errors in the adduct and isotope detection. Second, the

16



mapping to a particular metabolite can be erroneous because of isomers or similar compound

masses within the machine-specific mass precision. Additionally, many metabolites are not yet

represented in public databases [3]. Another challenge is that Metabolomics data sets which

are used for first hypothesis generation often comprise only a small number of independent

biological replicates.

The integration of data sets from other omics platforms which complement the Metabol-

omics approach, such as DNA microarray and RNA-seq based Transcriptomics [66, 67] and

MS-based Proteomics [68], is a promising direction to cope with these challenges [69, 70]. A

comprehensive data analysis should thereby take advantage of all available omics data sets for

a particular experimental context [71, 72]. In comparison to the relatively young Metabolomics

discipline, DNA microarray based Transcriptomics and corresponding methods for data analy-

sis are much more established. This includes statistical tests for differentially expressed genes

[73, 74, 75] and the cluster analysis of corresponding expression patterns [76, 77, 78].

For the knowledge-based functional analysis of sets of related genes, the overrepresentation

[79, 80] and gene set enrichment analysis [81] are popular methods [82, 83]. The objective

of this type of data analysis is to identify gene sets, e.g. genes associated with a particu-

lar pathway or gene ontology [84] term, which show an overrepresentation or enrichment of

genes differentially expressed under particular experimental conditions. The methodology was

also transferred to Metabolomics [45, 85, 86] by analyzing sets of metabolites, e.g. metabolic

pathways. For integrative analysis, pathways, which summarize biochemical reactions and as-

sociated enzymes, genes, and metabolites, represent a convenient link between data sets from

different omics platforms [62, 87].

In order to integrate results from multiple independent studies in the same experimental

context, methods in the field of statistical meta-analysis [88, 89] have been developed. Meta-

analysis has been applied to independent DNA microarray studies in order to extract genes

which are differentially expressed considering multiple data sets [90, 91, 92, 93]. For the

combination of independent pathway-specific p-values from enrichment analysis of microarray

data, a framework was introduced in [94]. However, in the context of MS-based Metabolomics,

the dependence of data sets plays an important role (see section 3.1).

3.4 The wound response of Arabidopsis thaliana: A case
study experiment

The introduced methods and tools were evaluated and successfully applied to cross-omics data

in the context of wounding of Arabidopsis thaliana (see the following chapters). The wound
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response, which is part of the plant’s defense against insects, has been studied by means of

Transcriptomics as well as Proteomics experiments [95, 96, 97]. It is well known that the

response is mainly regulated by the isoleucin conjugate of jasmonic acid (JA-Ile) [98, 99, 100].

Metabolic pathways which describe the biosythesis of jasmonic acid are available in KEGG

(alpha-linolenic acid metabolism) and AraCyc (jasmonic acid biosynthesis). These pathways

also contain important precursor metabolites, such as 12-oxo-10,15-phytodienoic acid (12-

OPDA) and 3-Oxo-2-(pent-2’-enyl)-cyclopentane-1-octanoic acid (OPC-8:0), and show a good

coverage of genes coding for enzymes in the JA-Ile biosynthesis. For these reasons, the context

of plant wounding is used as a model system for the evaluation of methods for LC/MS-based

Metabolomics [12].

The data sets, which were derived from UPLC TOF-MS Metabolomics and DNA microarray

Transcriptomics analysis, comprise conditions for wild type (wt) and the jasmonate-deficient

dde2-2 mutant plants [101] harvested at different time points after wounding. Table 3.1 gives

an overview on the data sets ordered according to two scenarios of data analysis. In scenario

A (see chapter 4 and 5), the available samples were analyzed only by UPLC TOF-MS and

independent DNA microarray data sets [102] obtained from the ArrayExpress [103] repository

were integrated (chapter 5). In scenario B (see chapter 6), the Metabolomics (UPLC TOF-MS

analysis) and Transcriptomics data (DNA microarray analysis) were derived from the same

biological samples and a more integrated data analysis, e.g. by means of the clustering of

cross-omics feature profiles, was possible.

The Metabolomics experiments and preprocessing of raw UPLC TOF-MS data (peak detec-

tion and alignment) were performed in the Department of Plant Biochemistry1 by Dr. Kirstin

Feussner and coworkers. The DNA microarray data sets used in chapter 5 were downloaded

from the ArrayExpress website and preprocessed (preparation of the data matrix) by Dr. Corinna

Thurow2 and Manuel Landesfeind3. The Transcriptomics experiment described in chapter 6

was designed by Prof. Dr. Ivo Feussner, Prof. Dr. Ingo Heilmann, Dr. Kirstin Feussner, and

Dr. Alina Mosblech (Department of Plant Biochemistry) and conducted by Dr. Alina Mosblech

(including RNA preparation). Microarray analysis and data preprocessing (including quantile-

normalization) were performed by Dr. Lennart Opitz and Dr. Gabriela Salinas-Riester4.
1Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University

Göttingen
2Department for Plant Molecular Biology and Physiology, Schwann-Schleiden-Research-Center for Molecular

Cell Biology, Georg-August-University Göttingen
3Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University Göttingen
4DNA Microarray and Deep-Sequencing Facility, Department of Developmental Biochemistry, Georg-August-

University Göttingen
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Label Times Platform Extraction Ionization Reference

A_M1 0.5h 2h 5h UPLC TOF-MS non-polar negative chapter 4 and 5
A_M2 0.5h 2h 5h UPLC TOF-MS non-polar positive chapter 4 and 5
A_T1 1h DNA microarray - - [102], E-ATMX-9
A_T2 3h DNA microarray - - E-MEXP-1475

B_M1 0.5h 2h UPLC TOF-MS non-polar negative chapter 6
B_M2 0.5h 2h UPLC TOF-MS non-polar positive chapter 6
B_M3 0.5h 2h UPLC TOF-MS polar negative chapter 6
B_M4 0.5h 2h UPLC TOF-MS polar positive chapter 6
B_T1 0.5h 2h DNA microarray - - chapter 6

Table 3.1: Overview on data sets in the cross-omics case study used for evaluation and application of the developed
methods and tools. The second column (Times) shows the time points when the wounded plants (wt and
mutant) were harvested. All data sets also contain a condition of control samples for unwounded wt and
dde2-2 plants. The columns Extraction and Ionization indicate the extraction phase and ionization mode
for the Metabolomics data sets. The A_T1 and A_T2 data sets can be obtained from the ArrayExpress
website (see IDs in the last column).

3.5 Objectives and overview

The objective of this work is the development of a statistical framework for the described

workflow in non-targeted Metabolomics studies and the integration of other omics platforms.

The main focus lies on the statistical analysis of intensity profiles and the pathway enrichment

and meta-analysis of multiple independent or dependent data sets from UPLC TOF-MS analy-

ses. The already successfully applied methods for exploratory data analysis and the interactive

MarVis-Cluster interface should be integrated in the new framework. Ideally, the framework

should extend the user-driven exploratory data analysis by functional annotations and be a

counterweight and statistical control of the highly interactive and selective MarVis-Cluster-

based analysis.

In the following publications, the extension of the MarVis-Cluster tool to the powerful

MarVis-Suite toolbox, the statistical framework, and selected applications are introduced. The

first paper (chapter 4) describes the MarVis-Filter tool, which features the raw data import,

ranking, filtering, adduct and isotope correction, and combination of processed data sets before

analysis in MarVis-Cluster. The second publication (chapter 5) introduces the statistical frame-

work based on the meta-analysis of pathway enrichment utilizing independent and dependent

multi-omics data sets. Chapter 6 contains a publication describing the MarVis-Pathway tool,

which is used for the reconstruction and statistical analysis of pathways for ranked, filtered, or
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selected data set features, and further extensions of the MarVis-Suite and the statistical frame-

work. Figure 1 in chapter 6 shows an overview on the workflow of data analysis within the

new MarVis-Suite. Chapter 7 summarizes selected coauthor publications on the application

of the MarVis-Suite. In chapter 8, the overall results of the publications are discussed. As

supplementary material, chapter 11 contains the complete MarVis-Suite 2.0 handbook, which

describes all methods, tools, and graphical user interfaces in detail.
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MarVis-Filter: Ranking, Filtering,
Adduct and Isotope Correction of
Mass Spectrometry Data

The following paper was published 2012 in the Journal of Biomedicine and Biotechnology

[104]. Supplementary material are available on http://marvis.gobics.de.

The sections on the biological interpretation of results from data analysis were written and

the tables were created by Alexander Kaever, Dr. Kirstin Feussner, and Prof. Dr. Ivo Feussner

in close collaboration. The algorithm for adduct and isotope correction includes concepts of

an earlier version [45] and the MarVis-Filter tool includes corresponding redesigned prototype

functions. The interfaces for prediction of molecular formulas from exact masses were imple-

mented by Lars Söder (Department of Bioinformatics) under supervision of Alexander Kaever

and Dr. Peter Meinicke (Department of Bioinformatics). The article was critically revised by

all coauthors.
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Statistical ranking, filtering, adduct detection, isotope correction, and molecular formula calculation are essential tasks in
processing mass spectrometry data in metabolomics studies. In order to obtain high-quality data sets, a framework which
incorporates all these methods is required. We present the MarVis-Filter software, which provides well-established and specialized
methods for processing mass spectrometry data. For the task of ranking and filtering multivariate intensity profiles, MarVis-Filter
provides the ANOVA and Kruskal-Wallis tests with adjustment for multiple hypothesis testing. Adduct and isotope correction
are based on a novel algorithm which takes the similarity of intensity profiles into account and allows user-defined ionization
rules. The molecular formula calculation utilizes the results of the adduct and isotope correction. For a comprehensive analysis,
MarVis-Filter provides an interactive interface to combine data sets deriving from positive and negative ionization mode. The
software is exemplarily applied in a metabolic case study, where octadecanoids could be identified as markers for wounding in
plants.

1. Introduction

A central aim of untargeted Metabolomics and Metabo-
nomics studies is the identification of marker metabolites
which play a crucial role in the experimental context [1,
2]. Mass spectrometry combined with either gas chro-
matography (GC/MS) or liquid chromatography (LC/MS)
has become a key technology for metabolome analysis
under different experimental conditions [3, 4]. A typical
data set after peak detection and sample alignment [5–
7] consists of several thousand marker candidates which
are characterized by a retention time (RT), a mass-to-
charge value (m/z), and a multivariate intensity profile
of abundance levels per condition, respectively [8]. The

experimental conditions are represented by replicate samples
and may correspond to environmental disease or genetic
perturbations [9–11]. In order to obtain a high-quality data
set of experiment-related marker candidates, the raw data
set is usually ranked and filtered using supervised machine
learning techniques such as Random Forest classification
[12, 13] or statistical analysis based on ANOVA or Kruskal-
Wallis tests [14–16]. The filtered marker candidates are
then annotated according to known metabolites from public
biological and biomedical compound databases [17–21].
A central task of annotation is the calculation of actual
molecular masses corresponding to each marker candidate
by correcting the m/z ratios according to the ionization
mode, potential adduct formation, and included natural
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isotopes [22]. This problem can be addressed by applying
the ionization rules [xm + y]z[+/−] [23], where x denotes
the number of combined target molecules, y the mass of
attached molecules (adduct formation), and z the degree of
ionization (e.g., single or double). Additionally, the number
of included isotopes has to be estimated in order to query
databases which contain monoisotopic compound masses.
Based on a potential ionization rule with parameters x, y,
z and the number of included isotopes, the corresponding
compound mass can be calculated.

For the corrected masses which cannot be assigned to
particular compounds, the identification can be supported
by calculating possible molecular formulas. The number
of considered formulas can be significantly reduced by
incorporating information from preprocessing as well as
rules for heuristic filtering of molecular formulas [24],
respectively. A major step in this process is the estimation of
the number of included carbon atoms based on the intensity
profiles of previously detected isotopologues.

There are a great number of software packages available,
which provide tools for statistical analysis of multivariate
experimental data [25, 26]. A number of tools for peak detec-
tion and sample alignment of mass spectrometry data, such
as MetAlign or OpenMS, also support the deconvolution of
isotopologues and statistical analysis [27, 28]. For the XCMS
platform [7], a package for the annotation of LC/ESI-MS
mass signals based on adduct rules has been implemented
[23]. The calculation of possible ionization products and
the rule-based heuristic filtering of molecular formulas is
provided by several software packages [22, 24]. However,
to the best of our knowledge, there is no software available
which incorporates all of these methods in a single user-
friendly tool as offered by MarVis-Filter.

2. Materials and Methods

In the following sections, the algorithm for adduct/isotope
correction and the implementation of MarVis-Filter are
described in detail.

2.1. Algorithm for Adduct and Isotope Correction. The algo-
rithm is based on the input of the retention times, m/z ratios,
and raw intensity profiles of all marker candidates in a data
set and calculates as output the potential monoisotopic mass,
ionization rule, and number of included 13C-isotopes for
every candidate. The approach is based on a greedy strategy
which minimizes the number of potential molecular masses
and simultaneously maximizes the similarity of intensity
profiles between candidates with a similar retention time and
actual mass. This concept follows the paradigm that in mass
spectrometry analysis a metabolite is usually represented by
several marker candidates with a similar retention time and
intensity profile, but different m/z ratios according to the
various possibilities of ionization and number of included
isotopes. As parameters, the algorithm expects a list of
ionization/adduct rules sorted according to their relevance,
the assumed maximal number of 13C-isotopes per marker
candidate, a mass tolerance, an RT tolerance, and a minimal

cosine similarity of intensity profiles. The isotopologues
correction is restricted to the detection of 13C.

For storage of pairwise cosine similarities between candi-
date profiles, the algorithm utilizes a five-dimensional matrix
M. Each entry M(m,a1,i1,a2,i2) corresponds to the maximal
cosine similarity between the intensity profile of candidate
m, assuming ionization rule a1 and i1 13C-isotopes, and
another candidate, which has a similar retention time (within
tolerance) and corrected mass (within tolerance) assuming
ionization rule a2 and i2 13C-isotopes. For each candidate m,
the algorithm then chooses the ionization rule and number
of 13C-isotopes which is supported by the highest sum
of cosine similarities. In the following, the algorithm is
described in detail.

(1) Initialize M with zeros.

(2) Calculate all possible masses by applying all ion-
ization rules and number of 13C-isotopes to all
candidate m/z ratios.

(3) Consider all pairs of potential masses under the
following constraints and fill M with pairwise cosine
similarities of corresponding candidate profiles.

(i) Consider only pairs of different marker candi-
dates.

(ii) Consider only pairs within the mass and RT
tolerance.

(iii) Consider only pairs with at least the requested
cosine similarity.

(iv) Consider only pairs with different combina-
tions of adduct rules and number of isotopes.

(v) For each entry in M hold only the maximum
cosine similarity.

(4) Calculate the reduced three-dimensional matrix Mred

with summed entries:

Mred
(m,a1,i1) =

∑

a2,i2

M(m,a1,i1,a2,i2). (1)

(5) Choose for each candidate m: the adduct rule and
isotope number with the maximal sum of similarities
cmax = maxa1,i1 (Mred

(m,a1,i1)). If cmax = 0, use the first
ionization rule and zero 13C-isotopes as default.

(6) Calculate the masses according to chosen rules and
isotope numbers.

In order to avoid apparently false associations between
marker candidates, negative cosine similarities are disre-
garded. If for a given candidate different selections of the
ionization rule and the number of isotopes maximize the
sum of cosine similarities, the ionization rules with the
highest relevance and the minimal number of 13C-isotopes
are selected.

Following the annotation of the ionization rules and
13C-isotopes, the number of carbon atoms per candidate

is estimated by comparing the raw intensities of marker
candidates with zero predicted 13C-isotopes (IM) and the
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respective marker candidates including one 13C-isotope
(IM+1) according to the following formula:

nC = 98.9 IM+1

1.1 IM
, (2)

corresponding to the natural abundances of carbon isotopes.
Given a pair of candidates, annotated as isotopologues (M
and M + 1) and with the same ionization rule, a robust
estimation of the number of carbon atoms is obtained by
calculating the median nC over all samples included in both
intensity profiles.

2.2. Implementation. MarVis-Filter is implemented in the
Matlab and C programming language and has been compiled
together with the MarVis-Cluster tool [29] for Microsoft
Windows XP/Vista/7. Execution of the software requires
installation of the Matlab Compiler Runtime, which is
provided with the software. The installation packages, the
documentation, and example data sets can be downloaded
from the project home page http://marvis.gobics.de/.

For data import and export MarVis-Filter uses the CSV
(Comma Separated Values) file format, which can easily be
processed by statistical analysis software and spreadsheet
applications. MarVis-Filter also supports the direct import
of aligned mass spectrometry samples from MarkerLynx
Application Manager of MassLynx (Waters Corporation,
Milford). For interactive analysis, ranking and filtering of
multivariate intensity profiles MarVis-Filter provides the
well-known one-way ANOVA and Kruskal-Wallis tests [14]
combined with methods for P value adjustment for multiple-
hypothesis testing [30, 31]. Based on customizable lists
of ionization rules, the adduct/isotope correction can be
performed on raw or filtered data sets. The ionization rules
are imported as text files and can easily be adapted or
extended.

Figure 1 shows the main window of MarVis-Filter after
import and ranking. The “Ranking plot” (1) displays the
adjusted P values (y-axis) of all candidate intensity profiles
in the current data set sorted in ascending order. The data
set can interactively be filtered according to a user-defined
significance level by selecting a marker, sliding the red
separator line or jumping to a predefined level. The “Profile
plot” (2) shows the raw intensity profile of the currently
selected marker candidate. Intensity values of replicated
samples belonging to the same experimental conditions are
marked in the same color. The “Marker information box” (3)
displays information about all marker candidates of the data
set arranged according to the P values and characterized by
the m/z ratio, RT and additional user-defined scores, which
can be imported along with the data set. After adduct and
isotope correction, the additional annotations are displayed
in this listbox as well. The “Data set clipboard listbox” (4)
shows data sets which are currently held in the MarVis
clipboard. The current (filtered or unfiltered) data set can
simply be added or removed to/from this list. The data
set clipboard supports an adduct and isotope correction of
selected data sets in a batch mode. Data sets which were
corrected based on different sets of ionization rules (e.g.,

positive and negative ionization) may be combined into one
single data set.

For selected candidate profiles, bar plots, standard error
plots, and boxplots can easily be inspected and exported in
various image formats. For detailed analysis, the user can
zoom into all plots. Additionally, MarVis-Filter provides a
convenient interface for quick candidate search based on the
ID, RT, m/z, or mass value.

MarVis-Filter also provides a molecular formula calcu-
lator, which is based on the Seven Golden Rules [24] and
utilizes the estimated number of carbon atoms per marker
candidate obtained after adduct and isotope correction.

MarVis-Filter and MarVis-Cluster [29] are combined in
the MarVis-Suite which features the direct data exchange
between preprocessing in MarVis-Filter and convenient
visualization of multivariate intensity profiles and high-level
cluster analysis in MarVis-Cluster.

3. Results and Discussion

The functionality of MarVis-Filter is demonstrated using two
data sets of a metabolomic case study for plant wounding
experiments [8]. The data sets are available on the project
homepage http://marvis.gobics.de/ together with a detailed
description of the extraction and UPLC-TOF method. Addi-
tionally, the data sets are available for import in MarVis-Filter
after installation of the MarVis-Suite (wound neg raw.csv
and wound pos raw.csv in the examples directory).

3.1. Case Study and Data Sets. The case study reflects a
wounding time course of Arabidopsis thaliana wild-type
(WT) plants as well as of mutant plants (dde 2-2), which
are deficient in the biosynthesis of the plant wound hormone
jasmonic acid and its derivatives [32]. The wounding time
course represents eight experimental conditions. The first
four conditions reflect the metabolic situation within a
wounding time course of wild-type (WT) plants, starting
with the unwounded control plants (abbreviation wt 0)
followed by the plants harvested 0.5 (wt 30), 2 (wt 2), and 5
hours past wounding (wt 5). The conditions 5 to 8 represent
the analogous time course for the jasmonate deficient mutant
plant dde 2-2 (aos 0, aos 30, aos 2, aos 5). Each condition
contains nine replicate samples.

3.2. Data Import and Analysis in MarVis-Filter. The two data
sets are imported sequentially in MarVis-Filter using the
“Import raw CSV data” entry in the “File” menu with the
following options: Delimiter: “,”; Start row: 5, Start column:
3; ID label: “id”; Generate IDs: activated; x column: 2; x
label: “rt”; y column: 3; y label: “m/z”; Condition identifiers:
“wt 0, wt 30, wt 2, wt 5, aos 0, aos 30, aos 2, aos 5”.

After data import, the marker candidates are sorted and
ranked according to the P values of a Kruskal-Wallis test and
the Bonferroni-Holm adjustment for multiple hypothesis
testing [30] by selecting the corresponding checkboxes in
the “Filter dialog” and the “Adjustment for multiple testing”
dialog.

Adduct and isotope correction are performed on the
full data sets separately using predefined sets of adduct
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Figure 1: The main window of MarVis-Filter after data import and ranking. The “Ranking plot” (1) displays the adjusted P values (y-axis)
of all candidate intensity profiles. The “Profile plot” (2) shows the raw intensity profile of the currently selected marker candidate. The
“Marker listbox” (3) displays information about the current marker candidate. The “Data set clipboard listbox” (4) shows data sets which
are currently held in the MarVis clipboard.

Table 1: Overview on data sets from the metabolomic case study
for plant wounding experiments. The columns “Candidates” and
“Filtered candidates” contain the number of marker candidates in
the raw data set and the number of significant candidates in the
filtered data set, respectively.

Data set Ionization Candidates
Filtered

candidates
Samples per

condition

1 Negative 24796 1719 9

2 Positive 23325 1785 9

rules for the negative (Table 2) and positive ionization mode
(Table 3), an RT tolerance of 0.04 minutes, a mass tolerance
of 0.005 Da, a minimal cosine similarity of 0.75, and a
maximum number of two 13C-isotopes per candidate. The
adduct rules had been determined in previous targeted
UPLC-TOF-MS experiments. After correction, the data sets
are filtered according to a significance level for adjusted P
values of 0.01 (“Goto level” entry in “Selection” menu) and
added to the MarVis data set clipboard. Table 1 shows the
initial number of imported marker candidates and the num-
ber of high-quality marker candidates after filtering. Finally,
the two data sets in the MarVis clipboard are concatenated
using the “combine” button. The combined data set can
be sorted according to a user-defined method once again
and is then presented in a new MarVis-Filter window. After
selecting the whole data set, the combined subset of 3504
high-quality marker candidates can be exported as a CSV
file, and clustered as well as visualized using MarVis-Cluster
(“Goto MarVis-Cluster” entry in the “MarVis-Suite” menu).
Figure 2 shows the results from clustering of the filtered and
combined data in MarVis-Cluster.

Table 2: List of adduct rules for correction of data measured in
negative ionization mode.

Rule Description Rule

1 Deprotonation [m−H]−

2 Formate adduct [m + CH2O2−H]−

3 Formate adduct with sodium [m + CH2O2− 2H + Na]−

Table 3: List of adduct rules for correction of data measured in
positive ionization mode.

Rule Description Rule

1 Protonation [m + H]+

2 Ammonium adduct [m + NH4]+

3 Sodium adduct [m + Na]+

3.3. Identification of Metabolites. The corrected, filtered, and
combined data sets were used to identify metabolites which
show a significant change of abundance in the wound
time course in WT and/or jasmonate deficient mutant
plants. First, the corrected masses of marker candidates were
matched to molecular masses of all compounds recorded in
the KEGG [17] and AraCyc [18] database or literature [33]
based on a tolerance of 0.005 Da. The identity of marker
candidates was confirmed based on the isotopic pattern and
coelution with identical standards or MS/MS fragmentation
[34]. Thus, a number of oxylipins could be identified as
wound-induced metabolite markers (see Table 4). Oxylipins
are metabolites deriving from lipid peroxidation and are
involved in regulating developmental processes as well as
environmental responses, like the inflammatory or wound
response, in nearly every organism. Among these bioactive
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Table 4: Identified metabolites in the combined and filtered data set. The retention time is measured in minutes and the exact compound
mass is stated in Dalton. The columns “Negative” and “Positive” contain the number of associated marker candidates/ions obtained in the
negative or positive ionization mode. The column “Ions” contains the sum of associated marker candidates/ions per compound. The column
“P value” contains the minimal adjusted P value of the Kruskal-Wallis test over all associated marker candidates, respectively. The column
“Mass error” contains the absolute difference between the corrected mass of the marker candidate with the minimal adjusted P value and
the exact compound mass in Dalton.

RT Exact mass Mass error Name Formula Ions Negative Positive P value

0.73 210.1256 0.0015 Jasmonic acid C12H18O3 5 5 0 6.67e-8

2.08 292.2038 0.0021 OPDA C18H28O3 8 4 4 3.41e-8

1.85 310.2144 0.0016 13-HPOT C18H30O4 1 1 0 2.04e-4

2.49 292.2038 0.0027 13-KOT C18H28O3 4 4 0 1.70e-7

1.33 264.1725 0.0037 dn-OPDA C16H24O3 5 3 2 7.65e-8

0.5 226.1205 0.0009 11/12-Hydroxy jasmonic acid C12H18O4 4 4 0 2.87e-8

0.51 339.2046 0.0008 12-Hydroxy jasmonoyl isoleucine C18H29NO5 1 1 0 3.44e-5

0.51 353.1838 0.001 12-Carboxy jasmonoyl isoleucine C18H27NO6 1 1 0 2.20e-5

4.02 760.4762 0.005 18 : 3/dn-OPDA-MGDG C43H68O11 4 0 4 1.96e-6

2.85 774.4554 0.0022 OPDA/dn-OPDA-MGDG C43H66O12 8 0 8 1.93e-7

3.26 802.4867 0.0034 OPDA/OPDA-MGDG C45H70O12 7 0 7 1.79e-7

4.59 1048.6487 0.0033 OPDA/dn-OPDA-MGDG-OPDA C61H92O14 9 0 9 1.48e-6

4.89 1076.68 0.002 OPDA/OPDA-MGDG-OPDA C63H96O14 8 0 8 2.13e-6

2.36 936.5083 0.0023 OPDA/dn-OPDA-DGDG C49H76O17 4 0 4 1.86e-6

2.76 964.5396 0.0021 OPDA/OPDA-DGDG C51H80O17 6 0 6 1.98e-7

The identified oxylipins are found in literature under the following synonyms: Jasmonic acid (3-Oxo-2R-(2Z)2-penten-1R-yl-cyclopentaneacetic
acid), OPDA (12-Oxo-10,15(Z)-phytodienoic acid or 4-Oxo-5α-(2(Z)-pentenyl)-2-cyclopentene-1α-octanoic acid), 13-HPOT (13-Hydroperoxy-octadeca-
9(Z),11(Z),15(Z)-trienoic acid), 13-KOT (13-Keto-octadeca-9(Z),11(Z),15(Z)-trienoic acid), dn-OPDA (4-Oxo-5S-(2Z)-2-penten-1-yl-2-cyclopentene-1S-
hexanoic acid), 18 : 3/dn-OPDA-MGDG (Arabidopside F, Monogalactosyldiacylglycerol), OPDA/dn-OPDA-MGDG (Arabidopside A, Monogalactosyldiacyl-
glycerol), OPDA/OPDA-MGDG (Arabidopside B, Monogalactosyldiacylglycerol), OPDA/dn-OPDA-MGDG-OPDA (Arabidopside E, Acylated Monogalac-
tosyldiacylglycerol), OPDA/OPDA-MGDG-OPDA (Arabidopside G, Acylated Monogalactosyldiacylglycerol), OPDA/dn-OPDA-DGDG (Arabidopside C,
Digalactosyldiacylglycerol), and OPDA/OPDA-DGDG (Arabidopside D, Digalactosyldiacylglycerol).
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Figure 2: Prototype plot of the filtered and combined data in
MarVis-Cluster using 30 prototypes for clustering. Every column
represents the average intensity profile (prototype) of associated
marker candidates. The prototypes are ordered according to sim-
ilarity based on a one-dimensional self-organizing map. The first
prototypes represent marker candidates in a WT-specific wound
time course (high intensities in the first four conditions and almost
no intensities in the last four conditions).

lipids, the mammalian and plant oxylipins are the best
characterized ones. Mammals use predominantly C20 fatty
acids (eicosanoids), while in plants C18 fatty acids are most
abundantly used for the biosynthesis of oxylipins or so-called
octadecanoids [35]. The identified oxylipins (see Table 4) are
part of the α-linolenic acid metabolism or members of the
compound class of mono- and digalactosyldiacylglycerols.
They are described in the context of plant wounding [33, 34,
36]. Thirteen of the fifteen identified oxylipins could only
be detected in either the negative or the positive ionization
mode. On average, five ions/marker candidates could be

assigned per compound. The findings are supported by very
low adjusted P values from the Kruskal-Wallis test of the
intensity profiles (see previous section and Table 4).

4. Conclusions

MarVis-Filter combines essential preprocessing tools for
mass spectrometry data analysis within a single user-friendly
tool. Large data sets from the negative and positive ioniza-
tion mode can easily be imported, corrected, filtered, and
combined. Lists of ionization rules for adduct correction can
be customized, extended, and commented in a convenient
way using a standard text editor. Within the MarVis-Suite
filtered and combined data sets can directly be clustered,
visualized, and analyzed in detail using the MarVis-Cluster
tool. In a case study 75 high-quality marker candidates could
be clearly assigned to fifteen compounds of the oxylipin class
based on the adduct and isotope correction in MarVis-Filter.
The combination of data sets deriving from the negative and
positive ionization mode is an important step for further
data analysis. In the case study, most of the identified
metabolites could only be detected in either the negative or
the positive mode. The significance of the selected wound
markers is supported by a high number of annotated and
assigned ions/marker candidates and by very low adjusted P
values from the Kruskal-Wallis test. The statistical filtering of
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marker candidates reduced the complexity of the data sets
from about 48000 to 3500 significant candidates (about 7
percent).
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[34] A. Ibrahim, A. Schütz, J. Galano et al., “The alphabet
of galactolipids in Arabidopsis thaliana,” Frontiers in Plant
Physiology, vol. 2, article 95, 2011.

[35] A. Andreou, F. Brodhun, and I. Feussner, “Biosynthesis of
oxylipins in non-mammals,” Progress in Lipid Research, vol. 48,
no. 3-4, pp. 148–170, 2009.

[36] G. A. Howe and G. Jander, “Plant immunity to insect
herbivores,” Annual Review of Plant Biology, vol. 59, pp. 41–
66, 2008.





Meta-Analysis of Pathway
Enrichment: Combining Independent
and Dependent Omics Data Sets

The following paper was published 2014 in PLoS ONE [105]. The Supporting Information are

available on http://dx.doi.org/10.1371/journal.pone.0089297.

The sections on the biological interpretation of results from data analysis were written and

all tables created in close collaboration of Alexander Kaever, Dr. Kirstin Feussner, and Prof.

Dr. Ivo Feussner. The parsing of KEGG and BioCyc flatfiles, the calculation of monoisotopic

masses for pathway database construction and the method for database query were partially

implemented by Manuel Landesfeind. The article was critically revised by all coauthors.

31

http://dx.doi.org/10.1371/journal.pone.0089297




Meta-Analysis of Pathway Enrichment: Combining
Independent and Dependent Omics Data Sets
Alexander Kaever1*, Manuel Landesfeind1, Kirstin Feussner2, Burkhard Morgenstern1, Ivo Feussner2,

Peter Meinicke1

1 Department of Bioinformatics, Institute of Microbiology and Genetics, Georg-August-University, Göttingen, Germany, 2 Department of Plant Biochemistry, Albrecht-von-

Haller-Institute for Plant Sciences, Georg-August-University, Göttingen, Germany

Abstract

A major challenge in current systems biology is the combination and integrative analysis of large data sets obtained from
different high-throughput omics platforms, such as mass spectrometry based Metabolomics and Proteomics or DNA
microarray or RNA-seq-based Transcriptomics. Especially in the case of non-targeted Metabolomics experiments, where it is
often impossible to unambiguously map ion features from mass spectrometry analysis to metabolites, the integration of
more reliable omics technologies is highly desirable. A popular method for the knowledge-based interpretation of single
data sets is the (Gene) Set Enrichment Analysis. In order to combine the results from different analyses, we introduce a
methodical framework for the meta-analysis of p-values obtained from Pathway Enrichment Analysis (Set Enrichment
Analysis based on pathways) of multiple dependent or independent data sets from different omics platforms. For
dependent data sets, e.g. obtained from the same biological samples, the framework utilizes a covariance estimation
procedure based on the nonsignificant pathways in single data set enrichment analysis. The framework is evaluated and
applied in the joint analysis of Metabolomics mass spectrometry and Transcriptomics DNA microarray data in the context of
plant wounding. In extensive studies of simulated data set dependence, the introduced correlation could be fully
reconstructed by means of the covariance estimation based on pathway enrichment. By restricting the range of p-values of
pathways considered in the estimation, the overestimation of correlation, which is introduced by the significant pathways,
could be reduced. When applying the proposed methods to the real data sets, the meta-analysis was shown not only to be
a powerful tool to investigate the correlation between different data sets and summarize the results of multiple analyses but
also to distinguish experiment-specific key pathways.
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Introduction

High-throughput omics platforms, such as mass spectrometry

(MS) based Metabolomics and Proteomics or DNA microarray or

RNA-seq-based Transcriptomics, allow the comprehensive anal-

ysis of an organism’s reaction under different experimental

conditions [1–5]. A current major challenge in systems biology is

the combination and integrative analysis of the large data sets

obtained from these platforms [6–8]. A single data set usually

contains the intensity/expression profiles (intensities for all

measured samples) of thousands of features, such as different ion

species in MS or spots in DNA microarray analysis. After

individual preprocessing of each data set, which includes the

statistical analysis, ranking, or filtering of features according to the

relevance of their profiles [9–11], the features have to be assigned

to known biological entities [12], such as metabolites, genes, or

proteins. Especially in MS-based Metabolomics, a major bottle-

neck is the identification of metabolites in non-targeted experi-

ments [13]. In many applications, the putative monoisotopic

masses of measured ion species cannot unambiguously mapped to

metabolite entries in public databases. The integration of data

from other omics platforms which provide a more reliable

mapping, such as DNA microarrays, can significantly support

the metabolite identification in this case. After annotation, the

results are usually interpreted in the context of current knowledge,

e.g. known biochemical pathways or processes [14–16]. A popular

method for this knowledge-based interpretation of single data sets

is the Gene Set Enrichment Analysis [17] or Overrepresentation

Analysis [18,19]. Many similar approaches have been developend

and the methodology was transferred to other omics platforms

[20–23]. In general, the enrichment analysis is based on sets of

entities, e.g. pathways with associated metabolites, and results in a

list of relevant sets which are enriched in high-ranking features (in

comparison to all features in the data set). In most methods, the

enrichment level of a single set is expressed as p-value. Modelling

metabolic pathways as well-defined sets of biological entities, e.g.

metabolites, enzymes, and corresponding genes, has shown to be a

powerful approach to interpreting complex omics data sets.

Furthermore, the concept of pathways associated with different

types of biological entities facilitates the joint analysis of different

data sets [24].
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The combination of results from different studies sharing the

same experimental design in terms of null and alternative

hypothesis (meta-analysis) is a central task in various statistical

applications [25–27]. In case of the combination of independent

p-values, Fisher’s method [28] or Stouffer’s method [29], also

known as normal, Z-method, or Z-transform test, are often

applied. For dependent p-values and known covariances, in [30]

an extended version of Fisher’s method was proposed (Brown’s

method). In order to increase statistical power, meta-analysis has

been applied to Pathway Enrichment Analysis (Set Enrichment

Analysis utilizing pathways as sets) in the context of cancer studies

[31]. The proposed methods were focused on the combination of

independent p-values based on DNA microarray data. In contrast,

we introduce a general methodical framework for the meta-

analysis of multiple dependent or independent data sets resulting

from different omics platforms applied to Pathway Enrichment

Analysis. In order to cope with dependent data sets, such as

obtained from the same biological samples analyzed by MS in

negative and positive ionization mode, the framework utilizes a

covariance estimation procedure based on the nonsignificant

pathways in single data set enrichment analysis. The framework is

applied and evaluated on two Metabolomics MS data sets [32]

Table 1. Overview on data sets.

Label Number of features Times Platform Ionization mode Reference

M1 24796 0.5 h, 2 h, 5 h Mass spectrometry negative [11]

M2 23325 0.5 h, 2 h, 5 h Mass spectrometry positive [11]

T1 25392 1 h DNA microarray - [32], E-ATMX-9

T2 25392 3 h DNA microarray - E-MEXP-1475

The table gives an overview on the four data sets used for evaluation and application. The third column (Times) summarizes the different points in time when the
wounded plants were harvested in the respective experiment. The T1 and T2 data sets can be obtained from the ArrayExpress [44] website.
doi:10.1371/journal.pone.0089297.t001

Figure 1. Histograms of standard normal deviates for the Metabolomics and Transcriptomics data sets. For the p-value calculation, the
Kolmogorov-Smirnov (KS) and rank-sum tests were utilized. The p-values were restricted to the range (10{5,1{10{5). The red graph represents the
expected density assuming the standard normal distribution. The green graph shows the expected density assuming a normal distribution with the
sample mean and standard deviation as parameters. The histograms for both tests are similar and confirm the normal-like distribution of deviates. In
both cases however, the sample standard deviation is higher than the unit standard deviation used for the transformation. Additionally, the sample
mean for the combined Transcriptomics data sets is smaller than zero.
doi:10.1371/journal.pone.0089297.g001

Meta-Analysis of Cross-Omics Pathway Enrichment
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and two Transcriptomics DNA microarray studies [11] in the

context of wounding of Arabidopsis thaliana. The main focus of this

exemplary meta-analysis lies on the enhancement of MS based

Metabolomics results by means of the microarray studies.

Materials and Methods

Data sets and preprocessing
For application and evaluation of the meta-analysis, two

Metabolomics MS data sets (M1 and M2) [11] and two

Transcriptomics DNA microarray data sets (T1 and T2) [32]

were used (see Table 1 and Dataset S1 for details). All studies

investigate the wounding of Arabidopsis thaliana wild type and the

jasmonate-deficient dde 2-2 mutant plants [33], the experimental

designs comprise conditions for control plants as well as plants

harvested at different times after wounding (see Table 1). The two

Metabolomics data sets derive from an Ultra Performance Liquid

Chromatography (UPLC) analysis coupled to a Time-Of-Flight

(TOF) MS detection. With this method, the non-polar extraction

phase of one set of samples was analyzed in positive and negative

ionization mode. Since some metabolites may have been measured

in both ionization modes following different (partially unknown)

ionization rules [34], the level of dependence between both data

sets is not clear. In case of the MS data sets, a single feature

corresponds to a particular ion species, which is characterized by

an exact mass-to-charge ratio and a retention time. A single

metabolite may be represented by multiple features, e.g. corre-

sponding to different adduct formations and isotopologues. The

features in the microarray data sets correspond to different spots

on the array containing DNA probes that match a particular

sequence. Also in this case, a single transcript may be represented

by multiple features corresponding to particular sequences of the

respective gene. The feature profiles of all data sets were ranked

separately utilizing a signal-to-noise ratio (similar to the method

described in [9], see TechnicalDescription S1).

Pathway enrichment analysis
The ranked features were mapped to the pathway entries in

AraCyc [35] and the Arabidopsis-specific pathways in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database [14] (see

TechnicalDescription S1). In case of the Metabolomics MS data

sets, all potential monoisotopic masses were calculated per feature

based on the ionization rules and number of isotopes used in [11]

and mapped to the metabolite masses in the databases. In case of

the Transcriptomics DNA microarray data, the features were

mapped to the A. thaliana genes utilizing their CATMA IDs [36].

Based on the mappings, a set of feature ranks was extracted for

each pathway and data set. In order to test for an over-

representation of high-ranked features, a p-value was calculated

for each set of ranks (pathway) utilizing a one-sided Kolmogorov-

Smirnov (KS) or Wilcoxon rank-sum test (also known as Mann-

Whitney U test) [21]. In case of the KS test, the empirical

Figure 2. Differences between the reconstructed correlation coefficients from pathway enrichment and the introduced positive
feature correlation. The differences were calculated for different pmin values and the Kolmogorov-Smirnov (KS) and rank-sum test. The best
reconstruction, corresponding to differences near zero, can be observed for pmin~0:01.
doi:10.1371/journal.pone.0089297.g002
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distribution of ranks in a given set is compared to the distribution

of ranks in the respective data set. In case of the rank-sum test, the

sum of feature ranks within a given set is evaluated. Especially for

Gene Set Enrichment Analysis of DNA microarrays, many

methods have been published [20]. Most of these methods are

based on KS-like or average gene-specific statistics. For a general

meta-analysis and in order to combine the Metabolomics and

Transcriptomics data sets in a robust way, we decided to utilize the

rank-based KS and rank-sum test. However, more specialized

methods for the pathway-specific p-value calculation may be

employed as well. The resulting p-values for the dependent

Metabolomics data sets were used for the covariance estimation

(see corresponding section). The covariances between both

Transcriptomics data sets and between the Metabolomics and

Transcriptomics data sets, which were obtained from independent

biological samples, were set to zero.

Meta-analysis of p-values
In statistical meta-analysis, the most common methods for

combining independent p-values from related tests are Fisher’s

[28] and Stouffer’s method [29]. In Fisher’s method, the meta-

p-value is calculated based on a chi-squared distribution (see

TechnicalDescription S1). In Stouffer’s method, the test statistic is

the sum of p-values transformed into normally distributed random

variables (standard normal deviates). For dependent p-values, a

powerful approach is Brown’s method [30], which is an extension

of Fisher’s method based on a scaled chi-squared distribution and

modified degrees of freedom utilizing a known covariance matrix

for standard normal deviates. The given p-values can be

transformed into standard normal deviates by means of the

inverse cumulative distribution function of the standard normal

distribution. The covariance matrix of the standard normal

deviates can also be utilized in order to extend Stouffer’s method

to dependent p-values.

Estimation of covariances
In most applications with dependent data sets, the covariance

matrix is not known and has to be estimated. In our proposed

procedure, the pairwise covariance between two data sets is

estimated based on the standard normal deviates of the pathway-

specific p-values, which were obtained for each single data set in

Pathway Enrichment Analysis. This estimation is expected to be

biased by the alternative hypothesis since the similar or same

experimental setup of the data sets imposes a certain dependence

and significant pathways associated with very low p-values will

strongly influence the results. In order to minimize this bias in the

Figure 3. Differences between the reconstructed correlation coefficients from pathway enrichment and the introduced negative
feature correlation. The differences were calculated for different pmin values and the Kolmogorov-Smirnov (KS) and rank-sum test. The best
reconstruction, corresponding to differences near zero, can be observed for pmin~0:01. The KS test is not able to fully reconstruct strong negative
feature correlations.
doi:10.1371/journal.pone.0089297.g003
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estimation of the pairwise covariance between two data sets, a

parameter pmin is introduced and only pathways with p-values in

the range (pmin,1{pmin) are considered. This procedure leaves out

significant pathways for which the null hypothesis is likely to be

rejected for at least one of the data sets. Instead of directly

estimating the sample covariance of the transformed p-values in

this range (which would again be biased because of the range

restriction), Pearson’s correlation coefficient is used.

Results

The Pathway Enrichment Analysis, the transformation of

pathway-specific p-values into standard normal deviates, the

Figure 4. Pathway map of the alpha-linolenic acid metabolism (KEGG) with marked entries. Entries mapped to features from all data sets
are marked in gray, selected entries from Tables 5, 7, 9, and 11 are marked in red.
doi:10.1371/journal.pone.0089297.g004
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estimation of covariances for dependent data sets, and the meta-

analysis based on the previous results were applied and evaluated

on the four Metabolomics/Transcriptomics data sets (see previous

section). First, in order to check the distribution of transformed

p-values, the histograms of the standard normal deviates were

inspected. Because of significant pathways which are highly

relevant in this context, the p-values are expected to be not fully

uniformly distributed, which may result in a distribution of

transformed p-values that deviates from the standard normal

distribution. In this case, the p-values/normal deviates should be

corrected for significance analysis. Second, the performance of the

introduced method in reconstructing simulated data set correla-

tions was evaluated for different pmin values. This performance was

not clear, since the proposed correlation estimation includes

several complex steps, such as the mapping of a proportion of

feature ranks to pathways of different size, the calculation and

restriction of p-values, and the transformation into normal

deviates. Additionally, the pmin parameter might have a strong

influence on the results. Therefore, another objective of the

simulation studies was the identification of an appropriate

parameter value for the real data sets. Third, the correlation

estimation and meta-analysis were applied to all four real data sets.

All data sets, containing the annotation information from the

pathway mapping, and the results from Pathway Enrichment

Analysis are available as comma-separated-values files (see Dataset

S1 and Table S1). The source code of functions for the meta-

analysis of p-values can be found in File S1.

Distribution of standard normal deviates
Figure 1 shows the histograms of the transformed p-values

(standard normal deviates) from Pathway Enrichment Analysis for

the two Metabolomics and two Transcriptomics data sets within

the p-value range (10{5,1{10{5). The histograms for the KS

and the rank-sum test are similar and confirm the normal-like

distribution of deviates. In both cases however, the sample

standard deviation is higher than the unit standard deviation used

for the transformation. Additionally, the sample mean for the

combined Transcriptomics data sets is smaller than zero. This

difference may be caused by pathways which are directly or

indirectly influenced by the experimental setup. Although the

Table 2. Results from meta-analysis of pathway enrichment (Brown’s method).

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 214 0.0001321 2.383e-05

2 AraCyc jasmonic acid biosynthesis 176 0.003676 0.0003101

3 AraCyc glycolipid desaturation 325 0.0007046 0.0102

4 KEGG Linoleic acid metabolism 147 0.5252 0.3968

5 AraCyc superpathway of phenylalanine, tyrosine and tryptophan
biosynthesis

86 0.5364 0.5253

6 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 131 0.4538 0.5557

7 KEGG 2-Oxocarboxylic acid metabolism 578 0.5252 0.767

8 AraCyc glucosinolate biosynthesis from dihomomethionine 153 0.5364 0.7857

9 KEGG Starch and sucrose metabolism 335 0.5252 0.7857

10 KEGG Proteasome 114 0.5252 0.7857

The table contains the high-ranking pathways from meta-analysis of pathway enrichment (Brown’s method) based on the Kolmogorov-Smirnov (KS) and rank-sum test
utilizing all data sets. The p-values per data set were restandardized. The pathways are sorted according to the meta-p-values derived from the rank-sum test. The
second column (DB) contains the name of the source database, the fourth column (Hits) the number of feature assignments. The last two columns comprise the false
discovery rates calculated from the meta-p-values.
doi:10.1371/journal.pone.0089297.t002

Table 3. Results from meta-analysis of pathway enrichment (Stouffer’s extended method).

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 214 6.708e-05 1.127e-05

2 AraCyc jasmonic acid biosynthesis 176 0.001774 7.328e-05

3 AraCyc glycolipid desaturation 325 0.02043 0.2122

4 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 131 0.4545 0.4326

5 AraCyc superpathway of phenylalanine, tyrosine and tryptophan biosynthesis 86 0.4545 0.4326

6 KEGG Linoleic acid metabolism 147 0.7866 0.499

7 AraCyc glucosinolate biosynthesis from dihomomethionine 153 0.4545 0.6282

8 AraCyc glucosinolate biosynthesis from tryptophan 132 0.4545 0.6583

9 AraCyc glucosinolate biosynthesis from phenylalanine 115 0.6522 0.6583

10 AraCyc glucosinolate biosynthesis from tetrahomomethionine 114 0.4545 0.6583

The table contains the high-ranking pathways from meta-analysis of pathway enrichment (Stouffer’s extended method) based on the Kolmogorov-Smirnov (KS) and
rank-sum test utilizing all data sets. The last two columns comprise the false discovery rates calculated from the meta-p-values.
doi:10.1371/journal.pone.0089297.t003
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highly significant pathways with p-values below the threshold

10{5 were left out, many other pathways are expected to be

indirectly affected by the wounding process. Another explanation

would be the dependence of feature ranks used for p-value

calculation, e.g. introduced by the dependence of different

microarray spots representing the same gene or by gene-gene

correlations [17]. In order to eliminate the observed bias, the p-

values were restandardized [37] for significance analysis by means

of the sample mean and sample standard deviation of observed

normal deviates per data set and retransforming of the standard-

ized deviates into corrected p-values. This is a conservative

correction because the observed bias also includes the pathways

which are directly influenced by the wounding process.

Estimation of data set correlation
In simulated studies (see TechnicalDescription S1 for details),

the correlation estimation was evaluated by calculating the

pairwise Pearson correlation coefficients between all four data

sets and a copy of the respective data set with different percentages

of feature ranks randomly permuted. For each original and

permuted data set, the p-values were calculated for all pathways

using the KS or rank-sum test. The correlation coefficient between

each original and permuted data set was computed based on the

respective standard normal deviates (not restandardized) and the

restriction of p-values utilizing different parameter values pmin. As

measurement of the introduced artificial correlation, the correla-

tion coefficient between the feature ranks of each data set and the

permuted ranks (feature rank correlation) was calculated and

averaged, respectively. The whole procedure was repeated for

negative correlation by randomly permuting a percentage of the

inverted original feature ranks per data set.

Table S2 shows the average results over all data sets in detail.

Figure 2 and 3 summarize the differences between the recon-

structed correlation coefficients from pathway enrichment and the

introduced positive or negative feature rank correlation. In

comparison to the average feature rank correlation coefficients

(x-axis), the absolute correlation is overestimated for low pmin

values and underestimated for high values. A pmin value of 0.01

results in the best reconstruction of data set correlation, the

absolute difference between the correlation coefficients from

pathway enrichment and the feature rank correlation is close to

zero for both tests. In case of the observed overestimation for low

pmin values, the relevant pathways, which are associated with many

top-ranking features, are assigned a low p-value, even when

randomly permuting some of the features, and have a high

influence on the correlation estimation. In case of the underesti-

mation for high pmin values, the introduced correlation over all

Table 4. Results from pathway enrichment analysis of data set M1.

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 65 0.02084 0.03717

2 AraCyc jasmonic acid biosynthesis 68 0.1531 0.1503

3 KEGG Linoleic acid metabolism 43 0.4598 0.8524

4 AraCyc indole-3-acetyl-amino acid biosynthesis 29 0.4598 0.8524

5 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 38 0.4598 0.8524

6 AraCyc galactosylcyclitol biosynthesis 14 0.4598 0.8524

7 AraCyc glycolipid desaturation 144 0.4598 0.8524

8 KEGG Porphyrin and chlorophyll metabolism 222 0.8841 0.8524

9 AraCyc poly-hydroxy fatty acids biosynthesis 59 0.9248 0.8524

10 KEGG Lysine degradation 46 0.4598 0.8524

The table contains the high-ranking pathways from enrichment analysis of data set M1 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The pathways are
sorted according to the restandardized p-values derived from the rank-sum test. The last two columns comprise the false discovery rates calculated from the
restandardized p-values.
doi:10.1371/journal.pone.0089297.t004

Table 5. Selected feature mappings from data set M1.

Rank rt m/z Mappings

1 0.73 255.1218 Jasmonic acid

3 0.73 209.1168 Jasmonic acid

7 0.73 256.1264 Jasmonic acid

8 2.08 337.1999 OPDA, EOTrE

11 2.08 338.2044 OPDA, EOTrE

321 5.66 986.6145 18:3/18:1-DGD, 18:2/18:2-DGD

324 5.78 822.5428 18:2/16:0-MGD, 18:1/16:1-MGD

410 5.53 820.5295 18:3/16:0-MGD, 18:2/16:1-MGD,
18:1/16:2-MGD

447 2.33 339.2155 OPC-8:0

540 5.64 960.5985 18:3/16:0-DGD

542 6.02 823.5541 18:1/16:0-MGD, 18:0/16:1-MGD

554 5.67 858.5064 18:3/18:3-MGD

563 5.74 795.5232 18:3/18:1-MGD, 18:2/18:2-MGD

650 6.18 939.5986 18:2/18:3-DGD

846 5.89 962.613 18:2/16:0-DGD

879 6.23 859.5155 18:2/18:3-MGD

899 1.86 309.2055 HpOTrE

1445 6.17 964.6258 18:1/16:0-DGD

1727 7.53 278.2245 Linolenic acid

2142 0.52 239.0895 9-Oxononanoic acid

The table shows selected mappings of features from data set M1 (24796
features) to entries in the first three pathways in tables 2 and 3. The first column
contains the feature rank. The second and third column show the
corresponding retention times and mass-to-charge ratios. Multiple mappings
correspond to different ionization rules or isotopologues.
doi:10.1371/journal.pone.0089297.t005
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features and pathways cannot be fully recovered when restricting

the range of p-values and number of utilized pathways too much.

For the KS test and small negative feature rank correlations, the

estimated coefficients from enrichment are considerably larger,

e.g. showing a difference between 0.2 and 0.4 in case of a feature

rank correlation of 21 (see Figure 3). This can be explained by the

non-symmetric properties of the one-sided KS test. A set enriched

in both high-ranking and low-ranking features would receive a low

p-value when performing the one-sided KS test on the original as

well as the inverted ranks. The rank-sum test, on the contrary,

would result in an average p-value in both cases because the sum

of ranks in the set is near the expected value. For a pmin value of

0.01 and negative correlation, the KS test is still able to reconstruct

feature rank correlation coefficients between 0 and 20.3 with a

difference near zero.

For the correlation estimation between the two dependent

Metabolomics data sets, a pmin value of 0.01, which showed the

best reconstruction in the simulations, was utilized. The estimation

resulted in relatively small coefficients, 0.12 (KS test) and 0.08

(rank-sum test).

Meta-analysis of pathway enrichment
Tables 2 and 3 show the results from meta-analysis of pathway

enrichment utilizing Brown’s and Stouffer’s extended method

integrating the correlation estimation for the Metabolomics data

sets. The pathways are sorted according to the False Discovery

Rate (FDR) [38] calculated based on the meta-p-values. Pathways

with more than 500 associated entries were left out in this analysis

for better interpretability. For both methods, the top-ranked

pathways are the ‘‘alpha-Linolenic acid metabolism’’ (KEGG, 214

feature hits), the ‘‘jasmonic acid biosynthesis’’ (AraCyc, 176

feature hits), and the ‘‘lycolipid desaturation’’(AraCyc, 325 feature

hits). These pathways specifically describe parts of the biosynthesis

of the well-known wound hormone jasmonate [39]. The first two

pathways cover all biosynthetic steps from the fatty acid alpha-

linolenic acid to jasmonic acid. The first committed step is

catalyzed by the allene oxide synthase (AOS), whose gene is

mutated in the dde 2-2 mutant plants [33]. The glycolipid

desaturation pathway describes the formation of the alpha-

linolenic acid via sequential steps of glycolipid-linked desaturation.

The FDRs for these key pathways are much lower compared to

the following pathways. Tables 4, 5, 6, 7, 8, 9, 10, and 11 show the

results from enrichment analysis of the four single data sets and

selected mappings of top-ranked features which were assigned to

entries in the three key pathways, respectively. The enrichment

analysis of the M1 data set (negative ionization mode, see Table 4)

provides a major contribution to the results from meta-analysis.

The first two pathways are also top-ranked but associated with

much higher FDRs. The high-ranked features associated with

jasmonic acid and its precursor metabolites, such as OPDA and

OPC-8:0, are mainly responsible for this ranking (see Table 5).

However, the mapping of putative monoisotopic feature masses to

Table 6. Results from pathway enrichment analysis of data set M2.

Rank DB Pathway Hits KS Rank-sum

1 AraCyc glycolipid desaturation 167 0.0009173 0.002862

2 AraCyc antheraxanthin and violaxanthin biosynthesis 63 0.1033 0.2477

3 KEGG Carotenoid biosynthesis 389 0.3608 0.8365

4 AraCyc zeaxanthin biosynthesis 29 0.5251 0.8365

5 AraCyc lutein biosynthesis 34 0.5251 0.8365

6 AraCyc capsanthin and capsorubin biosynthesis 38 0.5251 0.8365

7 AraCyc brassinosteroids inactivation 20 0.5251 0.8365

8 KEGG Porphyrin and chlorophyll metabolism 236 0.8693 0.8365

… … … … … …

12 KEGG alpha-Linolenic acid metabolism 89 0.8693 0.8365

13 AraCyc jasmonic acid biosynthesis 54 0.8693 0.8365

The table contains the high-ranking pathways from enrichment analysis of data set M2 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The last two columns
comprise the false discovery rates calculated from the restandardized p-values.
doi:10.1371/journal.pone.0089297.t006

Table 7. Selected feature mappings from data set M2.

Rank rt m/z Mappings

2 2.08 310.2377 OPDA, EOTrE

8 2.08 293.2117 OPDA, EOTrE

11 2.08 311.2422 OPDA, EOTrE

48 2.08 315.1932 OPDA, EOTrE

180 6.17 942.6175 18:1/16:0-DGD

211 6.17 941.6124 18:2/18:3-DGD

231 6.22 772.5912 18:2/16:0-MGD, 18:1/16:1-MGD

248 5.51 776.5365 18:3/16:0-MGD, 18:2/16:1-MGD,
18:1/16:2-MGD

295 6.00 960.6576 18:3/18:1-DGD, 18:2/18:2-DGD

297 4.69 772.5034 18:3/16:2-MGD

310 5.07 937.5843 18:3/18:3-DGD

330 5.87 935.6452 18:2/16:0-DGD

413 6.15 915.5996 16:0/18:1-DGD

459 6.45 774.6054 18:1/16:0-MGD, 18:0/16:1-MGD

507 5.72 768.56 18:3/16:1-MGD, 18:2/16:2-MGD,
18:1/16:3-MGD

615 5.18 748.5052 18:3/16:3-MGD

699 1.41 441.3184 Volicitin

The table contains selected feature mappings from data set M2 (23325 features)
to the first three pathways in tables 2 and 3. Multiple mappings correspond to
different ionization rules or isotopologues.
doi:10.1371/journal.pone.0089297.t007
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metabolites is error-prone and ambiguous. For example, OPDA,

EOTrE, and a couple of other metabolites provided by KEGG

and AraCyc share the same sum formula and single ion features

cannot be unambiguously assigned without further information. In

contrast to the alpha-linolenic acid metabolism pathway (KEGG),

the very similar jasmonic acid biosynthesis pathway (AraCyc) is

associated with a much higher FDR. This can be explained by a

number of additional entries found only in the AraCyc version of

the pathway and representing general substrates, such as acetyl-

CoA, intermediate products which could not be measured with a

high signal-to-noise ratio, such as OPC6-3-hydroxyacyl-CoA, or

other side products. The glycolipid desaturation pathway, which

can be found at position seven, is associated with a very high FDR.

Most of the glycolipid species show higher intensities and signal-to-

noise ratios in positive compared to negative ionization mode,

which results in a very low FDR in pathway enrichment analysis of

the M2 data set (see Tables 6 and 7). In contrast, jasmonate and

many direct precursor metabolites cannot be measured in positive

ionization mode with sufficient intensity, which explains the less

prominent ranking of the alpha-linolenic acid metabolism (rank

12) and jasmonic acid biosynthesis (rank 13). Nonetheless,

metabolites such as OPDA can be measured in both ionization

modes with high signal-to-noise ratio and these findings confirm

the corresponding pathways in meta-analysis. Integrating the

Transcriptomics data sets T1 and T2 results in a much more

comprehensive data interpretation (see Tables 9 and 11). Figure 4

exemplarily shows the pathway map of the alpha-linolenic acid

metabolism with marked entries matched by high-ranking features

from all data sets. In this combination, the ambiguous mapping of

the MS data is supported by unambiguously matching transcripts.

Almost all of the transcripts corresponding to enzymes in the

alpha-linolenic acid metabolism can be found in the T1 and T2

data sets with relatively high signal-to-noise ratios. This results in

much lower FDRs for the jasmonate-specific pathways in meta-

analysis compared to the results from single Metabolomics data set

analysis. Also in the analysis of the single Transcriptomics data sets

(see Tables 8 and 10), these two pathways are associated with

relatively high FDRs. In case of the T1 data set, both pathways

can be found at less prominent positions (rank 14 and 23, see

Table 8). For both Transcriptomics data sets, the glycolipid

desaturation is ranked in the middle of all pathways (rank 420 and

161). Only a small number of transcripts associated with fatty acid

desaturase show a high signal-to-noise ratio (see Tables 9 and 11).

In case of both methods for meta-analysis, the pathways

‘‘Linoleic acid metabolism’’ and ‘‘traumatin and (Z)-3-hexen-1-yl

acetate biosynthesis’’ can be found in the list of top-ten. These

Table 8. Results from pathway enrichment analysis of data set T1.

Rank DB Pathway Hits KS Rank-sum

1 KEGG Glycolysis/Gluconeogenesis 108 0.3527 0.2952

2 KEGG Proteasome 57 0.2885 0.2952

3 KEGG Protein processing in endoplasmic reticulum 176 0.2885 0.2952

4 KEGG Ribosome 220 0.02489 0.2952

5 KEGG Oxidative phosphorylation 118 0.2885 0.2952

6 KEGG Phenylalanine, tyrosine and tryptophan biosynthesis 54 0.492 0.2952

7 AraCyc superpathway of phenylalanine, tyrosine and tryptophan biosynthesis 43 0.4966 0.3302

… … … … … …

14 AraCyc jasmonic acid biosynthesis 27 0.8201 0.35

… … … … … …

23 KEGG alpha-Linolenic acid metabolism 30 0.6202 0.4782

… … … … … …

420 AraCyc glycolipid desaturation 7 0.976 0.9758

The table contains the high-ranking pathways from enrichment analysis of data set T1 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The last two columns
comprise the false discovery rates calculated from the restandardized p-values.
doi:10.1371/journal.pone.0089297.t008

Table 9. Selected feature mappings from data set T1.

Rank ID Mappings

6 AT2G06050 12-oxophytodienoate reductase 3

12 AT3G11170 fatty acid desaturase 7

16 AT5G42650 allene oxide synthase

18 AT1G17420 lipoxygenase 3

82 AT2G06050 12-oxophytodienoate reductase 3

120 AT4G15440 hydroperoxide lyase 1

226 AT5G48880 peroxisomal 3-keto-acyl-CoA thiolase 5

241 AT2G44810 phospholipase A1

316 AT1G20510 OPC-8:0 CoA ligase 1

436 AT1G76680 12-oxophytodienoate reductase 1

638 AT1G72520 lipoxygenase 4

737 AT4G16760 peroxisomal acyl-coenzyme A oxidase 1

744 AT1G17420 lipoxygenase 3

1037 AT3G45140 lipoxygenase 2

1487 AT1G13280 allene oxide cyclase 4

2116 AT2G06925 phospholipase A2-ALPHA

2788 AT2G31360 delta 9 acyl-lipid desaturase 2

3146 AT3G15290 3-hydroxyacyl-CoA dehydrogenase

4263 AT5G04040 triacylglycerol lipase SDP1

4276 AT1G76150 enoyl-CoA hydratase 2

The table contains selected feature mappings from data set T1 (25392 features)
to the first three pathways in tables 2 and 3. Multiple mappings correspond to
different spots on the microarray.
doi:10.1371/journal.pone.0089297.t009
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pathways are directly connected with the alpha-linolenic acid

metabolism and affected by the AOS mutation as well [40].

However, it should be noted that the second pathway is only of

limited relevance in this context because the used genotype

Columbia is a natural mutant in its second enzymatic step, the

fatty acid hydroperoxide lyase reaction [41]. The 2-Oxocarboxylic

acid metabolism (Brown’s method) and several pathways in

the ranking based on Stouffer’s extended method describe

glucosinolate biosynthesis, the major chemical defense reaction

of Arabidopsis plants upon wounding that is regulated by

jasmonates [42]. Though, these pathways are associated with

comparably high FDRs.

Comparing the results based on the KS and the rank-sum test,

no clear trend towards lower FDRs can be observed. In case of

Brown’s method, the glycolipid desaturation pathway is associated

with a much lower FDR for both tests. In case of Stouffer’s

extended method, both jasmonate-specific pathways are scored

with lower FDRs.

Discussion

The meta-analysis of pathway enrichment was evaluated and

applied on two Metabolomics and two Transcriptomics data sets

in the context of plant wounding. The meta-analysis based on

Brown’s and Stouffer’s extended method is able to incorporate

information from different independent and dependent omics data

sets and distinguish key pathways in the experimental context. The

FDRs calculated based on the meta-p-values are much lower

compared to the single data set analysis. Especially for the pathway

analysis of non-targeted Metabolomics studies, where the identi-

fication of metabolites is a bottleneck, the integration of data from

other omics platforms, such as DNA microarrays, increases the

value and reliability of results. In this application, Brown’s and

Stouffer’s extended method showed overall similar results.

However, Brown’s method seems to be more powerful in case of

pathways which are associated with extreme p-values for only a

proportion of the data sets. The glycolipid desaturation pathway

for example is associated with very small p-values (KS and rank-

sum test) for the M2, relatively small p-values for the M1, and

much larger p-values for the T1 and T2 data sets (see Table S1). In

case of Brown’s method, this pathway is associated with smaller

FDRs (0.0007 and 0.01) in comparison to Stouffer’s method (0.02

and 0.21). In contrast, Stouffer’s method seems to be more

powerful in case a pathway is associated with comparably small p-

values for all data sets (see alpha-linolenic acid metabolism and

jasmonic acid biosynthesis pathways). The choice of method

depends on the objective of the meta-analysis, e.g. focus on

pathways which show a consensus for all data sets or also including

pathways with significant p-values for only a single or small

number of data sets [26,43]. In the context of heterogeneous omics

Table 10. Results from pathway enrichment analysis of data set T2.

Rank DB Pathway Hits KS Rank-sum

1 KEGG alpha-Linolenic acid metabolism 30 0.5885 0.0794

2 KEGG Starch and sucrose metabolism 142 0.6748 0.3277

3 AraCyc jasmonic acid biosynthesis 27 0.7192 0.3277

4 KEGG Linoleic acid metabolism 11 0.7192 0.7457

5 AraCyc glucosinolate biosynthesis from phenylalanine 16 0.7192 0.7457

6 AraCyc glucosinolate biosynthesis from dihomomethionine 19 0.7192 0.7457

7 KEGG Valine, leucine and isoleucine biosynthesis 19 0.7192 0.7457

8 AraCyc glucosinolate biosynthesis from tryptophan 21 0.7192 0.7457

9 AraCyc starch degradation I 37 0.7192 0.7457

… … … … … …

161 AraCyc glycolipid desaturation 7 0.8851 0.9666

The table contains the high-ranking pathways from enrichment analysis of data set T2 based on the Kolmogorov-Smirnov (KS) and rank-sum test. The last two columns
comprise the false discovery rates calculated from the restandardized p-values.
doi:10.1371/journal.pone.0089297.t010

Table 11. Selected feature mappings from data set T2.

Rank ID Mappings

25 AT5G42650 allene oxide synthase

104 AT2G06050 12-oxophytodienoate reductase 3

355 AT1G76680 12-oxophytodienoate reductase 1

376 AT5G48880 peroxisomal 3-keto-acyl-CoA thiolase 5

426 AT1G17420 lipoxygenase 3

484 AT3G15870 oxidoreductase

631 AT1G19640 jasmonic acid carboxyl methyltransferase

1019 AT3G11170 fatty acid desaturase 7

1263 AT5G04040 triacylglycerol lipase SDP1

1354 AT4G16760 peroxisomal acyl-coenzyme A oxidase 1

1371 AT1G17420 lipoxygenase 3

1544 AT3G45140 lipoxygenase 2

1812 AT3G15850 fatty acid desaturase 5

1940 AT2G06925 phospholipase A2-ALPHA

2139 AT4G30950 fatty acid desaturase 6

2413 AT2G06050 12-oxophytodienoate reductase 3

2653 AT3G15290 3-hydroxyacyl-CoA dehydrogenase

3022 AT1G67560 lipoxygenase 3

3297 AT3G06860 3-hydroxyacyl-CoA dehydrogenase

3383 AT2G33150 peroxisomal 3-keto-acyl-CoA thiolase 2

The table contains selected feature mappings from data set T2 (25392 features)
to the first three pathways in tables 2 and 3. Multiple mappings correspond to
different spots on the microarray.
doi:10.1371/journal.pone.0089297.t011
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data sets, which contain entities that cannot be measured in all

experiments, e.g. metabolites that can be ionized either in positive

or negative ionization mode, and pathways that may be associated

with only a small number of entries for a particular omics

platform, Brown’s (or Fisher’s method in case of independent p-

values) seems to be the better choice. In both meta-analyses, a

couple of pathways related to the wounding process were detected

with relatively large FDRs. In order to combine the Metabolomics

and Transcriptomics data sets in a robust way, we utilized general

rank-based tests and a conservative restandardization of p-values

per data set. The introduced framework may also be combined

with more powerful tests specialized on microarray data analysis

[37]. The enrichment analysis of the single T1 and T2 data sets

resulted in considerably different rankings. This is likely to be

related to the different time points when the wounded plants have

been harvested (one and three hours).

In the performed simulation studies, the introduced feature rank

correlation could be fully reconstructed utilizing the correlation

estimation from pathway enrichment. By restricting the range of

p-values via the parameter pmin~0:01, leaving out significant

pathways, the estimation bias could be reduced. The comparison

of the two dependent Metabolomics data sets, which were

obtained from the same biological samples analyzed in positive

and negative ionization mode, resulted in relatively small positive

correlation coefficients. This indicates that only a small proportion

of metabolites could be detected in both ionization modes with

comparable quality of intensity profiles and that data from both

modes should be considered in a comprehensive analysis. In

general, the statistical power of the meta-analysis increases with

decreasing dependence of data sets. Therefore, nearly independent

data sets are desirable.

Comparing the one-sided KS and rank-sum test, both tests

resulted in a similar distribution of normal deviates. In the

simulation studies, the one-sided KS test was not able to fully

reconstruct strong negative feature correlations. In most applica-

tions however, this type of data set correlation is not expected.

Supporting Information

File S1 Matlab source code for functions used in meta-
analysis.
(GZ)

Dataset S1 Data sets with database entry and pathway
annotations. The archive file contains the data sets in comma

separated values format. The first column contains the feature IDs,

respectively. The rt and Former m/z columns (M1 and M2 data

set) contain the retention times and mass-to-charge ratios from MS

analysis. The raw intensities for each sample can be found in the

following columns. The s/n column shows the feature-specific

signal-to-noise ratios and the last columns contain the KEGG and

AraCyc entries and pathways mapped to the corresponding

features and separated by slash characters.

(ZIP)

Table S1 Pathways with p-values and FDRs from
Pathway Enrichment Analysis. The comma separated values

file contains the p-values, restandardized p-values, meta-p-values,

and corresponding FDRs for single data set and meta-analysis.

(CSV)
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Abstract A central aim in the evaluation of non-targeted

metabolomics data is the detection of intensity patterns that

differ between experimental conditions as well as the

identification of the underlying metabolites and their

association with metabolic pathways. In this context, the

identification of metabolites based on non-targeted mass

spectrometry data is a major bottleneck. In many applica-

tions, this identification needs to be guided by expert

knowledge and interactive tools for exploratory data ana-

lysis can significantly support this process. Additionally,

the integration of data from other omics platforms, such as

DNA microarray-based transcriptomics, can provide valu-

able hints and thereby facilitate the identification of

metabolites via the reconstruction of related metabolic

pathways. We here introduce the MarVis-Pathway tool,

which allows the user to identify metabolites by annotation

of pathways from cross-omics data. The analysis is sup-

ported by an extensive framework for pathway enrichment

and meta-analysis. The tool allows the mapping of data set

features by ID, name, and accurate mass, and can incor-

porate information from adduct and isotope correction of

mass spectrometry data. MarVis-Pathway was integrated in

the MarVis-Suite (http://marvis.gobics.de), which features

the seamless highly interactive filtering, combination,

clustering, and visualization of omics data sets. The func-

tionality of the new software tool is illustrated using

combined mass spectrometry and DNA microarray data.

This application confirms jasmonate biosynthesis as

important metabolic pathway that is upregulated during the

wound response of Arabidopsis plants.

Keywords Metabolomics � Metabolic fingerprinting �
Mass spectrometry � Metabolic pathways � Set enrichment

analysis � Transcriptomics

1 Introduction

Metabolomics studies (Dunn et al. 2013; Fiehn 2002) aim

to identify and characterize all metabolites under specific

experimental conditions, such as environmental or genetic

perturbations or developmental stages (Tarpley et al. 2005;

Nahlik et al. 2010; Watanabe et al. 2013; Bellaire et al.

2013; König et al. 2014). In this field, mass spectrometry

(MS) coupled to gas or liquid chromatography (GC/MS

and LC/MS) has become a key technology for detection,

identification, and quantification of metabolites (Dunn

et al. 2005). A typical non-targeted metabolomics experi-

ment can be represented by a high-dimensional data matrix

(Dettmer et al. 2007; Meinicke et al. 2008) comprising

information on the identity of measured ion species (data

set features) and intensities for each feature and sample.

These intensities can be used as relative abundance mea-

surements for the comparison of different samples or

groups of samples. The features are characterized by means

of the mass-to-charge (m/z) ratio, retention time (rt), and
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the respective intensity profiles. Data sets from other omics

technologies, such as DNA microarray or RNA-seq-based

transcriptomics (Brown and Botstein 1999; Mortazavi et al.

2008) and MS-based proteomics (Aebersold and Mann

2003), may be represented in a similar way. After pre-

processing, the corresponding data set features, e.g. DNA

microarray spots, can be identified with associated gene,

protein, or transcript IDs. Similar to the non-targeted MS

data from a metabolomics experiment, where a particular

metabolite may be represented by multiple features

standing for different isotopologues and adducts (Brown

et al. 2009; Draper et al. 2009), a transcript may be asso-

ciated with multiple spots containing specific DNA probes.

The typical workflow in the analysis of omics data involves

several steps for the identification and characterization of

data set features that are relevant in a particular context.

For this purpose, replicate samples for each experimental

condition are statistically evaluated in order to identify

features which show significant differences (Dudoit et al.

2002; Sugimoto et al. 2012; Kaever et al. 2012). In many

applications, e.g. when analyzing time series, the experi-

ments comprise more than two conditions and prepro-

cessing results in large data sets of complex multivariate

intensity profiles.

After detection of features, which significantly differ

between conditions, the filtered data set can be analyzed by

means of exploratory multivariate methods, such as clus-

tering algorithms, principal, or independent component

analysis (Eisen et al. 1998; Dettmer et al. 2007; Gürdeniz

et al. 2013; Meinicke et al. 2008; Wijetunge et al. 2013) in

order to identify prominent intensity patterns. Finally,

annotations, e.g. in terms of metabolic pathways, may be

used to explain or characterize particular groups of features

in a functional context (Dahlquist et al. 2002; Suhre and

Schmitt-Kopplin 2008). Pathway maps from public dat-

abases, such as the Kyoto Encyclopedia of Genes and

Genomes (KEGG) (Kanehisa et al. 2012) and BioCyc

(Caspi et al. 2012), contain information about metabolic

reactions as well as the associated enzymes, genes, and

metabolites, and can therefore interconnect almost all

omics fields (Arakawa et al. 2005; Wägele et al. 2012).

While the mapping of gene and protein IDs is in most cases

straightforward, m/z ratios from non-targeted metabolo-

mics experiments cannot be directly mapped to entries in

the corresponding databases and the identification of

metabolites is a major bottleneck in such experiments

(Dunn et al. 2013; Scalbert et al. 2009). A common

approach is to calculate putative monoisotopic masses and

molecular formulas for all MS data set features and match

these with known metabolites (Brown et al. 2011; Kuhl

et al. 2012; Kaever et al. 2012; Lee et al. 2013). In order to

identify relevant pathways, a popular approach is the Gene/

Metabolite Set Enrichment Analysis (G/M SEA) and Over-

Representation Analysis (ORA) (Subramanian et al. 2005;

Xia and Wishart 2010; Persicke et al. 2012; Khatri et al.

2012), where pathways are represented as sets of entries,

e.g. metabolites in MSEA. The enrichment analysis aims to

detect pathways which are enriched in significant or high-

ranked features mapped to corresponding entries.

For the analysis of MS-derived metabolomics data,

several web-based platforms have been published that

cover all steps from preprocessing, data set management,

statistical analysis, mapping of features to metabolic

pathways, and enrichment analysis (Kessler et al. 2013;

Xia et al. 2012; Kastenmüller et al. 2011; Wägele et al.

2012). Only recently, the stand-alone software Metabo-

Nexus (Huang et al. 2014), which combines a workflow

similar to the web-based platforms with the manual

selection and database query of MS features, was intro-

duced. MetaboNexus provides a browser-based user inter-

face, but the analysis is performed on the local machine

and without requiring the upload of data sets to a web

server. In the context of DNA microarray analysis, soft-

ware tools and libraries which allow the exploratory data

analysis by means of cluster algorithms are available

(Eisen et al. 1998; Saldanha 2004; Sturn et al. 2002; Hoon

et al. 2004) and the methodology of GSEA and ORA was

implemented in multiple packages (Huang et al. 2009;

Ackermann and Strimmer 2009; Khatri et al. 2012). Pow-

erful software suites, such as the TM4 platform (Saeed

et al. 2003, 2006), allow the interactive and exploratory

analysis of microarray data, e.g. the clustering and labeling

of transcript profiles, in combination with ORA. In order to

combine and integrate results from different omics plat-

forms, many tools which focus on visualization, e.g. based

on metabolic pathways, have been proposed (Gehlenborg

et al. 2010; Thimm et al. 2004; Junker et al. 2006; Neu-

weger et al. 2009). Different platforms for the network-

based visualization and analysis of metabolomics and

transcriptomics data have been introduced (Gao et al. 2010;

Landesfeind et al. 2014; Posma et al. 2014). The Cytoscape

(Shannon et al. 2003) plug-in Metscape (Gao et al. 2010),

for example, allows the extraction of pathway-specific

subnetworks, the coloring of nodes according to intensities,

and the animation of different condition-specific snapshots.

The MarVis-Suite tools (Kaever et al. 2009, 2012) were

introduced for the extraction, clustering, and visualization

of metabolic markers from data originating from non-tar-

geted experiments. The MarVis-Suite thereby combines

functionalities of previously described tools and platforms

with the focus on three main themes: It provides highly

interactive desktop user interfaces, e.g. for interactive

inspection of data clusters, thus integrating the user’s

expert knowledge instead of generating static heatmap

figures. For the analysis of data from non-targeted MS

experiments, specialized functions are provided. These

A. Kaever et al.
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tools are combined with more general functions that allow

the straightforward integration of data sets from other

omics platforms. In particular, the MarVis-Cluster inter-

face provides a robust clustering based on one-dimensional

self-organizing maps (1D-SOMs) (Meinicke et al. 2008),

that is interactively used to investigate intensity patterns for

a large number of multivariate feature profiles. Addition-

ally, the MarVis-Filter interface features the adduct and

isotope correction, filtering, and combination of multiple

data sets, e.g. derived from positive and negative ionization

mode. Several tools of the MarVis-Suite have been suc-

cessfully applied for the identification of metabolite

markers relevant in plant-pathogen-interaction (Djamei

et al. 2011; Floerl et al. 2012; König et al. 2014) as well as

for the characterization of mutants in lipid metabolism of

Arabidopsis (König et al. 2012) and the COP9 signalosome

of Aspergillus (Nahlik et al. 2010; Gerke et al. 2012).

In order to identify data set features in a functional

context, we introduce the MarVis-Pathway tool, which

allows the annotation and analysis of organism-specific

pathways from the KEGG and BioCyc database collections

in combination with an SEA meta-analysis framework for

multi-omics data sets (Kaever et al. 2014). The mapping of

features to database entries is based on the matching of

IDs, names, or accurate masses. MarVis-Pathway thereby

completes the MarVis-Suite pipeline by providing a

knowledge-based interpretation of results from explorative

data analysis (see Fig. 1 for an overview on the interactive

workflow). In addition, we introduce a signal-to-noise

ratio-based ranking and filtering method for the MarVis-

Filter tool, which features the statistical analysis of heter-

ogeneous omics data based on minimal assumptions and

which can be easily used for exploratory data analysis by

modifying the signal definition. The proposed methods and

tools are applied to data sets combining LC/MS with DNA

microarray data in the context of a cross-omics study on the

wound response of Arabidopsis plants, which represents a

well-established model system. We show that the strength

of MarVis-Pathway lies in the enhancement of analysis and

interpretation of non-targeted LC/MS data sets in combi-

nation with transcriptomics data.

2 Materials and methods

2.1 Availability

Installation packages for the MarVis-Suite including Mar-

Vis-Pathway and a detailed handbook are available on the

project homepage http://marvis.gobics.de. Data sets are

available as comma separated values (CSV) files. Addi-

tionally, a detailed protocol of the corresponding data

analysis within the MarVis-Suite and project files which

can be loaded directly into the MarVis-Suite interfaces

(Load project function in the File menu) are provided.

2.2 Study, data sets, and preprocessing

The study investigates the wound reaction of Arabidopsis

thaliana (ecotype Columbia-0) wild type (wt) and jasmo-

nate-deficient dde2-2 mutant plants (Malek et al. 2002) in a

time course (control, 0.5 hours post wounding (hpw), 2

hpw) and comprises four metabolomics LC/MS and one

transcriptomics DNA microarray data set generated from

the same biological samples (see Table 1). The study was

performed as described in (Mosblech et al. 2008; Meinicke

et al. 2008; Kaever et al. 2012). For each of six experi-

mental conditions (wt: control, wt: 0.5 hpw, wt: 2 hpw,

dde2-2: control, dde2-2: 0.5 hpw, dde2-2: 2 hpw), three

biological replicate samples were analyzed with two plat-

forms: The four metabolomics data sets derive from Ultra

Performance Liquid Chromatography (UPLC) coupled to a

Time-Of-Flight (TOF) MS analysis of the non-polar and

Fig. 1 Interactive workflow of data analysis within the MarVis-Suite

MarVis-Pathway
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polar extraction phases in positive and negative ionization

mode, respectively (see Table 1). For each sample, two

UPLC TOF-MS runs (technical replicates) were per-

formed, which resulted in six replicates per experimental

condition. Data processing of the raw UPLC TOF-MS data

(peak picking, peak alignment, and deisotoping) was per-

formed with the MarkerLynx Application Manager for the

MassLynx software (Waters Corporation, Milford, USA).

For the DNA microarray analysis, the Agilent-021169

Arabidopsis 4 Oligo Microarray (V4) platform was used.

Spots without gene assignment were left out and the

expression values were quantile-normalized.

2.3 MarVis filter: data import, adduct correction,

signal-to-noise filtering, and combination of data

sets

The metabolomics and transcriptomics data sets were

consecutively imported in MarVis-Filter (Kaever et al.

2012; see also Raw data import function in the MarVis-

Suite handbook) and processed (see Table 1; Fig. 1). In

order to calculate accurate monoisotopic masses for all ion

features in the MS data sets, the m/z values were corrected

in MarVis-Filter based on different sets of rules for positive

and negative ionization mode (mass tolerance 0.01 Da, rt

tolerance 0.05 min) as described in (Kaever et al. 2012).

The features of each of the five data sets were filtered

according to a signal-to-noise ratio (SNR) (He and Zhou

2008) in combination with 1000 random permutations of

sample labels (assignments of samples to conditions) and a

false discovery rate (FDR) (Benjamini and Hochberg 1995)

threshold of 0.05 (see MarVis-Suite handbook), similar to

the Significance Analysis of Microarrays (SAM) method

introduced by Tusher et al. (2001). As part of the SNR

calculation for each feature, the signal was defined as

difference between the maximum and minimum average

condition-specific intensity and the noise term was calcu-

lated as pooled sample standard deviation of intensity

values over all conditions. For the metabolomics data sets,

which contain two technical replicates per biological

sample, the FDRs were estimated by randomly permuting

only the biological samples (see labeling of dependent

replicates in the MarVis-Suite handbook). The technical

replicates were always assigned to the condition label of

the corresponding sample. This procedure allows to utilize

the technical variation in the SNR score calculation without

assuming independence of technical replicates, which

usually show a high dependence. The intensities are not

assumed to follow a specific distribution, e.g. the normal or

log-normal distribution, which considerably extends the

range of application and allows to filter heterogeneous data

sets, e.g. metabolome and transcriptome data, within the

same framework. Table 1 gives an overview on the number

of features after filtering. For a customized SNR (see

MarVis-Suite handbook), the signal may also be defined as

the difference of the maximum/minimum/mean of average

intensities for two subsets of conditions, e.g. comparing the

maximum of condition 2 and 3 with the maximum over all

other (control) conditions. Each filtered data set was stored

in the MarVis-Filter clipboard. Finally, all filtered meta-

bolomics and transcriptomics data sets were combined by

concatenating the corresponding data tables (see MarVis-

Suite documentation).

2.4 MarVis-Cluster: clustering, visualization, selection,

and labeling of data set features

The combined data set was clustered and visualized in

MarVis-Cluster (Kaever et al. 2009; see also Goto MarVis-

Cluster function in the MarVis-Suite handbook) using 30

prototypes/clusters for the training of the 1D-SOM. For

clustering, the replicate intensities per condition and feature

were averaged (arithmetic mean) and the resulting profile

was normalized to unit Euclidean length. For each cluster,

the proportion of metabolomics and transcriptomics features

was visualized (see the Label barplot function in the

Table 1 Overview on data sets used for the integrative metabolome and transcriptome study of wild type and jasmonate-deficient dde2-2 mutant

plants in a time course of 0, 0.5, and 2 hours post wounding (6 conditions)

Data set label Platform Conditions/samples

per condition

Extraction

phase

Ionization

mode

Features Filtered

features

M1 UPLC TOF-MS 6/3a Non-polar Negative 2,272 316

M2 UPLC TOF-MS 6/3a Non-polar Positive 5,980 313

M3 UPLC TOF-MS 6/3a Polar Negative 4,023 161

M4 UPLC TOF-MS 6/3a Polar Positive 10,421 234

T1 DNA microarray 6/3 – – 38,825 2,809

The number of data set features/variables corresponds to the number of different ion species detected in MS analysis and the number of

microarray spots (after discarding spots which were not assigned to a gene), respectively. The last column shows the number of retained features

after signal-to-noise filtering (FDR\0:05 in random permutation test, see Sect. 2.3)
a The metabolomics data sets comprise two technical replicates per sample.
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MarVis-Suite handbook). In order to label features which

show higher intensities in the wt wounding-specific condi-

tions compared to dde2-2, all features were selected and the

selection was reduced by means of a customized SNR (see

Sect. 2.3 and the MarVis-Suite handbook). For this purpose,

the signal was defined as the difference between the maxi-

mum of the average intensities for condition 2 and 3 (wt: 0.5

hpw and wt: 2 hpw) and the maximum of all other conditions

(wt: control and all conditions associated with dde2-2). The

selection was reduced to all features with a ratio higher than 2

(1506 features) and labeled (’wt’). For the functional ana-

lysis in MarVis-Pathway, all features (labeled and unla-

beled) were then selected (see Goto MarVis-Pathway

function in the MarVis-Suite handbook).

2.5 MarVis-Pathway: database query, pathway

enrichment, and meta-analysis

2.5.1 Pathway databases and feature mapping

MarVis-Pathway implements pathway databases from the

KEGG and the BioCyc collection (Kanehisa et al. (2012);

Caspi et al. (2012); see also Fig. 1). The included KEGG

collection (KEGG FTP Release Dec 9, 2013, http://www.

kegg.jp) contains one reference and about 3,000 organism-

specific databases. The included BioCyc collection (biocyc-

17.5, http://biocyc.org) provides about the same number of

organism-specific databases and one reference database

(MetaCyc). Each KEGG reference pathway is associated with

a number of compound, EC (Enzyme Commission), and KO

(KEGG ORTHOLOGY) IDs and names. Each MetaCyc ref-

erence pathway variant is associated with a number of com-

pound and EC IDs/names. For all compounds in the databases,

the monoisotopic masses were calculated based on the

molecular formula. In case of the organism-specific databases,

the pathways are associated with compound IDs, names, and

masses and gene IDs/names instead of the EC and KO num-

bers. Additionally, customized databases may be loaded from

comma separated values (CSV) files (see the MarVis-Suite

handbook for details).

The features of the combined data set were mapped to

metabolite and gene entries in the A. thaliana-specific path-

ways from KEGG and AraCyc (Mueller et al. 2003), which is

part of the BioCyc database collection. The mapping of the

features from the metabolomics data sets to metabolite entries

was based on the corrected accurate masses (see Sect. 2.3) and

a tolerance of 0.01 Dalton. The transcriptomics features were

mapped to gene entries using the corresponding IDs.

2.5.2 Pathway enrichment analysis

For statistical analysis of pathways with matched entries,

MarVis-Pathway provides an extensive framework for

(Gene/Metabolite) Set Enrichment Analysis (SEA) (Subr-

amanian et al. 2005; Xia and Wishart 2010; Huang et al.

2009). The SEA framework in MarVis-Pathway offers

three different types of enrichment analysis: Entry-based,

marker/feature-based, and sample-based analysis. In the

first case, the number of entries in a pathway matched by

the selected features (in MarVis-Filter or MarVis-Cluster)

in comparison to the number of entries which could be

matched over all pathways is evaluated based on a hyper-

geometric distribution, similar to the ORA approach

(Khatri et al. 2012) introduced by Draghici et al. (2003)

and Hosack et al. (2003). When analyzing MS data sets, the

metabolite entries are clustered according to their mass

before performing the hypergeometric test in order to

reduce the systematic dependence of database entries. In

case of the marker/feature-based SEA, the analysis is based

on the ranks of features (as calculated in MarVis-Filter)

which match entries in a particular pathway, assuming

independence of features. For statistical evaluation, a static

or iterative hypergeometric test (Breitling et al. 2004), a

rank-sum, or a Kolmogorov-Smirnov test is utilized. The

method is able to incorporate information from adduct and

isotope corrections performed in MarVis-Filter. In case of

the sample-based SEA, the analysis is based on the ranks of

features and a rank-sum or Kolmogorov–Smirnov test

statistic which is recalculated for a large number of random

permutations of sample condition labels, similar to the

original GSEA method (Subramanian et al. 2005). For

(re-)ranking, the SNR function is used. This method does

not depend on the assumption of independent features or

independent database entries but requires a sufficiently

high number of replicate samples and considerably more

computing time in comparison to the first two methods. As

for the SNR permutation test, the labels of technical rep-

licates of the same biological sample may be permuted

together. The introduced methods for marker/feature-based

and sample-based enrichment analysis use concepts of the

Functional Class Scoring (FCS) approaches (Khatri et al.

2012). A detailed description of the implemented types of

enrichment analysis can be found in the MarVis-Suite

handbook.

2.5.3 Meta-analysis of multiple data sets

MarVis-Pathway offers a framework for the joint (entry,

marker/feature, or sample-based) SEA of combined data

sets. For this purpose, the pathway-specific p-values are

first calculated for each data set separately in order to

account for data set-specific properties, such as the number

of features. Then, the p-values are merged per pathway in a

meta-analysis (Kaever et al. 2014; Shen and Tseng 2010;

Whitlock 2005) using Fisher’s (Fisher 1925) or Stouffer’s

method (Stouffer et al. 1949) for independent data sets. In
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case a sample-based enrichment analysis is performed,

biological samples in different data sets may be linked and

the condition labels are permuted together, e.g. a particular

sample is always assigned the same condition label in all

linked data sets. The linking option may also be combined

with technical replicates belonging to independent bio-

logical samples. Finally, the FDRs are calculated (Benja-

mini and Hochberg 1995) based on the meta-p-values. In

case a random permutation test is performed, the observed

meta-p-value for a particular pathway is compared to the

meta-p-values obtained for all pathways and all random

permutations and the corresponding FDR is estimated

(Tusher et al. 2001).

In order to identify relevant pathways in the study, entry,

marker/feature, and sample-based enrichment analyses

were performed. Global pathways with more than 500

associated entries, such as KEGG’s unspecific metabolic

pathways map, were left out in this analysis. In case of the

entry and marker/feature-based analysis, the p-values were

calculated based on a hypergeometric test and the initial

filtering of the data sets (see Sect. 2.3). For meta-analysis,

Fisher’s method was used. In case of the sample-based

analysis, a Kolmogorov-Smirnov test in combination with

Fisher’s method was used. The obtained meta-p-values

were recalculated for 1,000 random permutations of sample

labels, linking technical replicates within the data sets M1

to M4 and samples over all data sets.

2.6 MS/MS analysis

For unequivocal identification of metabolites, MS/MS

spectra of MS features mapped to jasmonic acid (JA),

jasmonoyl isoleucine (JA-Ile), 11/12-Hydroxy-JA,

12-Hydroxy-JA-Ile, and 12-Carboxy-JA-Ile were obtained

by LC 1290 Infinity (Agilent Technologies, Santa Clara,

CA, USA) coupled with a 6540 UHD Accurate-Mass

Q-TOF-MS instrument (Agilent Technologies, Santa Clara,

CA, USA) with Dual Jet Stream Technology as electro-

spray ionization (ESI) source (see Supplementary material

4). The analysis was performed in the negative ESI mode

with minor modifications as described by Floerl et al.

(2012).

3 Results and discussion

The plant’s response to wounding is part of the defense

against insects and is mainly regulated by the isoleucine

conjugate of jasmonic acid JA-Ile (Howe and Jander 2008;

Mosblech et al. 2009; Wasternack and Hause 2007; Wu

and Baldwin 2010). During recent years, the corresponding

defense pathway has been analyzed in detail in Arabidopsis

and Tobacco. In the model plant Arabidopsis so far the

focus was on transcriptomics and proteomics experiments,

comparing wounded wild type plants with JA-Ile biosyn-

thesis or perception mutants (Stintzi et al. 2001; Reymond

et al. 2004; Gfeller et al. 2011). Therefore, we used the JA-

Ile-dependent wound response of Arabidopsis as an ideal

experimental background to evaluate the functionality of

MarVis-Pathway and the new MarVis-Suite.

3.1 Intensity profile clustering and visualization

provides a convenient overview for combined

cross-omics data set

The filtered transcriptomics and four metabolomics data

sets were combined in MarVis-Filter (see Sects. 2.2, 2.3)

and analyzed in MarVis-Cluster (see Sect. 2.4 and work-

flow in Fig. 1). Figure 2 shows the heatmap of prototypes

(average cluster profiles) and the proportion of metabolo-

mics and transcriptomics features within each cluster. The

upper prototype plot provides a convenient overview on

prominent intensity patterns and allows to interactively

browse the clusters and select features. The first block of

clusters (prototype 1–6) represents metabolomics and

transcriptomics features with a profile specific for the

wound response in wt plants. These features are therefore

dependent on the biosynthesis of the signal molecule JA-

Ile. However, a closer inspection revealed that also other

clusters (e.g. cluster 7 and 8, see Fig. 2) harbor additional

features being JA-Ile-dependent and showing a less

prominent but significant difference. In order to mark all

these wt-specific features in further analysis, they were

labeled utilizing a customized SNR (see Sect. 2.4).

An important issue in the context of integrative analysis

of metabolomics and transcriptomics time series data is the

possible time lag between the different omics levels (Ta-

kahashi et al. 2011; Gibon et al. 2006). For example,

transcripts may not be translated for a couple of hours

resulting in a time shift of corresponding metabolite pro-

ducts. The heatmap visualization (see Fig. 2) supports the

interactive analysis of different time frames, e.g. by means

of the identification of blocks of clusters representing an

early or late wound response (see cluster 1 and 2 or 3–6).

However, the introduced functions focus on the visualiza-

tion and interactive analysis of time-dependent intensity

patterns and not on the calculation of time lags between

different omics levels.

3.2 MarVis-Pathway facilitates the reconstruction

and interactive analysis of metabolic pathways

For a functional interpretation, all metabolomics and

transcriptomics features were selected and used for ana-

lysis in MarVis-Pathway (see Sect. 2.5). Based on the

corrected monoisotopic masses (see Sect. 2.3) and gene
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IDs, the features were mapped to entries in the A. thaliana-

specific pathways from KEGG and AraCyc (Mueller et al.

2003).

Figure 3 shows a screenshot of MarVis-Pathway after

database query together with a short description of the

interactive user interface. Pathways which contain matched

metabolites or genes can be interactively inspected and

selected. For the selected pathway, the averaged and nor-

malized intensity profiles of associated features (see

Sect. 2.4) are visualized in a heatmap sorted according to

the 1D-SOM order, which allows a convenient overview on

intensity patterns. Interesting profiles can be interactively

selected and mapped pathway entries inspected. Metabolite

and gene entries associated with particular intensity pro-

files may be marked in a specific color, either by individual

selection or based on previously defined labels of mapped

data set features. The online resources associated with the

selected pathway, e.g. the colored organism-specific

KEGG pathway map, and the selected entry can be directly

accessed in an additional browser window. In contrast to

platforms focused on web-based interfaces (Kessler et al.

2013; Xia et al. 2012; Kastenmüller et al. 2011; Wägele

et al. 2012), this approach splits the workflow into the

exploratory analysis of multivariate intensity profiles by

means of highly interactive desktop applications and the

knowledge-based interpretation of results by means of the

interconnected online resources of the KEGG and BioCyc

databases. The central objective of MarVis-Pathway is the

rapid detection of affected pathways that can be used as

working hypotheses. This first reconstruction may be

followed by a more detailed network analysis of detected

pathways using specialized tools (Gao et al. 2010; Land-

esfeind et al. 2014; Posma et al. 2014), e.g. by means of the

visualization and expansion of pathway-specific subnet-

works in the Metscape software (Gao et al. 2010). In

contrast to the visualization of condition-specific network

snapshots, MarVis-Pathway focuses on the pathway-spe-

cific heatmap visualization of multivariate intensity pro-

files, which allows a convenient overview on associated

intensity patterns.

3.3 Enrichment analysis of metabolomics data sets

identifies highly relevant pathways

In order to identify the most relevant pathways affected

after wounding in wt and JA-deficient dde2-2 plants, an

enrichment analysis was performed in MarVis-Pathway.

First, only the four metabolomics data sets (M1–M4, see

Table 1) were used for analysis. Table 2A shows the top-

ranked pathways and the FDRs calculated in the entry

(E-SEA), marker/feature (M-SEA), and sample-based

analysis (S-SEA) (see Sects. 2.5.2 and 2.5.3). The five top-

ranked pathways (see Table 2A) are highly relevant in the

context of plant wounding. The jasmonic acid biosynthesis

(AraCyc, rank 2) and the alpha-linolenic acid metabolism

(KEGG, rank 4) pathways describe the biosynthesis of

JA-Ile. Additionally, pathways associated with glucosi-

nolate biosynthesis, which is at least in major parts regu-

lated by JA-Ile (Sønderby et al. 2010) and which

constitutes a central defense reaction of A. thaliana plants

Fig. 2 Heatmap of ordered prototype profiles (average cluster

profiles) from 1D-SOM clustering (upper region) and stacked bar

plot of the distribution of data set features (lower region) for the

combined metabolomics and transcriptomics data set. Blue bars in the

lower plot indicate the percentage of features from the metabolomics

data sets (ion species) found in the corresponding cluster. Red bars

show the percentage of transcriptomics features (microarray spots),

respectively. Black lines between the prototype and bar plot mark

clusters that contain features which were labeled as wt-specific by

means of a customized SNR (see Sect. 2.4)
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upon wounding, can be found in this list. For the relevant

pathways, the FDRs calculated based on the M-SEA and

E-SEA are much lower compared to the S-SEA. This is a

direct result of the less conservative test assumptions (see

Sect. 2.5.2). The data set features, e.g. different adducts of

the same metabolite, or database entries, e.g. metabolites in

the same pathway, are expected to show a systematic

dependence (Subramanian et al. 2005; Barry et al. 2005).

Nonetheless, the M-SEA is useful in order to identify

pathways which contain entries that are matched by many

significant features (see the jasmonic acid biosynthesis and

alpha-linolenic acid metabolism pathways), indicating a

correct adduct detection in preprocessing of non-targeted

LC/MS data. However, this method also highlights path-

ways with a very low number of matched entries. The

plant-pathogen interaction pathway (rank 3), that contains

only one matched metabolite, JA, is an example for this

case. The M-SEA and E-SEA methods require consider-

ably less computing time in comparison to the random

permutation-based S-SEA and can also be performed in

case only a low number of replicate samples are available.

On the other hand, the S-SEA method allows to link

dependent technical replicates and samples in the random

permutation test and can therefore account for dependent

data sets comprising measurements for the same samples

(Kaever et al. 2014). In case of the S-SEA based only on

the metabolomics data sets, the estimated FDR for the

important alpha-linolenic acid metabolism pathway is very

high (0.807, rank 4). For most of the pathways, only a

relatively small number of metabolites are matched by data

set features.

3.4 Transcriptomics data significantly support

the pathway analysis

The pathway enrichment analysis was repeated for the

metabolomics (M1–M4) in combination with the transcri-

ptomics (T1) data set. For the S-SEA, the sample labels in

the metabolomics and transcriptomics data sets were linked

(see Sect. 2.5.3). The enrichment analysis (see Table 2B)

results in much lower estimated FDRs compared to the

case where only the metabolomics data sets were used (see

Fig. 3 Screenshot of the MarVis-Pathway interface after database

query. The pathway list box (area 1) contains all matched pathways.

The pathway information box (2) contains additional information

about the flat files used for database construction. The marker profile

map (3) shows the heatmap of feature profiles which could be mapped

to the selected pathway. The entry assignment list box (4) contains the

assignments of features to entries in the selected pathway. The marker

profile plot (5) displays the raw intensity profile of the currently

selected feature. The related pathways list box (6) shows all pathways

that contain entries mapped to the currently selected data set feature.

Pathways, profiles, and entry assignments can be interactively

inspected and selected. Via the Map and Entry button below the

assignment list box (4), the online resources of the queried databases

can be accessed, the marker color of particular entries may be

interactively or automatically specified (only for KEGG pathways)
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Table 2A). Especially the E-SEA method is highly sensi-

tive to the higher coverage of database entries due to the

assigned transcript features (see alpha-linolenic acid

metabolism pathway, rank 2). The alpha-linolenic acid

metabolism pathway is also associated with a much lower

FDR for the S-SEA method (0.1363) compared to the FDR

estimated without the microarray data set (0.807). Fig-

ure 4a shows the corresponding colored KEGG pathway

map. Entries (metabolites and genes) mapped to data set

features which were labeled as specific for the wounding of

wt plants are marked in red. Entries mapped to features

which are not associated with a wt-specific intensity profile

are marked in gray. This pathway, which describes the

jasmonate biosynthesis and contains the allene oxide syn-

thase (AOS) enzyme (EC 4.2.1.92) that is missing in the

dde2-2 mutant, should be highly enriched in features

showing significant differences between the experimental

conditions and especially features with a wt-specific

Table 2 Top-ranked pathways from enrichment analysis based only on filtered/raw metabolomics data sets (part A), the combined metabolomics

and transcriptomics data sets (B), and selected metabolomics and transcriptomics features showing a wt-constitutive intensity profile (C)

DB Pathway F M G M-SEA E-SEA S-SEA

(A) Pathway enrichment analysis of metabolomics data only

1 KEGG Plant hormone signal transduction 17 3 0 2.549e-06 0.005071 0.2475

2 AraCyc Jasmonic acid biosynthesis 20 5 0 8.816e-08 0.09175 0.2475

3 KEGG Plant–pathogen interaction 6 1 0 0.0004678 0.6159 0.357

4 KEGG Alpha-Linolenic acid metabolism 20 13 0 2.479e-05 0.04789 0.807

5 AraCyc Indole glucosinolate breakdown 9 4 0 0.1805 0.5675 0.8436

6 AraCyc Heptaprenyl diphosphate biosynthesis 2 1 0 1 0.6825 0.8436

7 KEGG Terpenoid backbone biosynthesis 2 1 0 1 1 0.8436

8 AraCyc Glucosinolate biosynthesis from tryptophan 5 5 0 1 0.1445 0.8969

9 AraCyc Glucosinolate biosynthesis from trihomomethionine 4 2 0 0.6825 0.9679 0.8969

10 KEGG Sulfur relay system 2 1 0 0.2618 0.9679 0.8969

(B) Pathway enrichment analysis of metabolomics and transcriptomics data

1 KEGG Plant hormone signal transduction 55 3 34 2.18e-07 0.0001173 0.091

2 KEGG Alpha-Linolenic acid metabolism 47 13 16 4.161e-18 6.228e-09 0.1363

3 KEGG Plant–pathogen interaction 48 1 36 2.395e-09 1.13e-05 0.1363

4 AraCyc Jasmonic acid biosynthesis 43 5 14 1.515e-15 0.0002319 0.1363

5 KEGG Glucosinolate biosynthesis 24 12 9 0.0008703 1.001e-05 0.1578

6 KEGG Fatty acid elongation 11 0 9 0.02568 0.01554 0.2113

7 AraCyc Hydroxyjasmonate sulfate biosynthesis 3 0 2 0.01398 0.1264 0.2113

8 KEGG Carotenoid biosynthesis 9 1 6 0.3106 0.341 0.3406

9 AraCyc traumatin and (Z)-3-hexen-1-yl acetate biosynthesis 13 0 6 2.783e-06 0.08044 0.4552

10 AraCyc Glucosinolate biosynthesis from tryptophan 15 5 9 0.01398 0.0005411 0.5308

(C) Pathway enrichment analysis for selected wt-constitutive features

1 AraCyc Glucosinolate biosynthesis from tryptophan 5 5 0 0.02223 0.001129 –

2 AraCyc Sulfate activation for sulfonation 2 0 2 0.002438 0.006558 –

3 KEGG Tryptophan metabolism 5 3 1 0.1026 0.01164 –

4 KEGG Glucosinolate biosynthesis 5 5 0 0.1088 0.02593 –

5 KEGG Sulfur metabolism 2 0 2 0.01791 0.02744 –

6 KEGG 2-Oxocarboxylic acid metabolism 5 5 0 0.3276 0.1019 –

7 KEGG Purine metabolism 2 0 2 0.1026 0.2686 –

8 AraCyc Glucosinolate biosynthesis from homomethionine 2 1 1 0.3276 0.41 –

9 AraCyc Glucosinolate breakdown 1 0 1 0.1672 0.4173 –

10 KEGG Stilbenoid, diarylheptanoid and gingerol biosynthesis 2 2 0 0.4627 0.4173 –

The 4th, 5th, and 6th column contain the number of filtered/selected features over all data sets (F) which could be assigned to an entry in the

corresponding pathway, the number of matched metabolites (M) in the corresponding pathway, and the number of matched genes (G). The last

columns contain the estimated false discovery rates (FDRs) based on a marker/feature-based SEA (M-SEA), entry-based SEA (E-SEA), and

sample-based SEA (S-SEA). The pathways are sorted according to the S-SEA (A, B) or E-SEA FDRs (C), respectively
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(a)

(b)

Fig. 4 Results from database query in MarVis-Pathway. a The

KEGG alpha-linolenic acid metabolism pathway with entries mapped

to features from the filtered metabolomics and transcriptomics data

sets. Entries exclusively mapped to labeled features, which are

specific for the wounding of wt plants, are marked in red. Entries

mapped to features which are not associated with a wt-specific

intensity profile, e.g. because of the mapping of isomers with different

intensity patterns to the same metabolite, are marked in gray. Green

color indicates enzymes associated with A. thaliana genes which

could not be mapped to features from the filtered transcriptomics data

set. b Wt-specific feature hits from the query of a custom database

containing metabolites from the jasmonic acid (JA) metabolism and

oxidized galactolipids described in literature. 10-OPDA 10-oxo-

11,15-phytodienoic acid, 12-OPDA 12-oxo-10,15-phytodienoic acid,

9,10-EOTrE 9,10-epoxyoctadecatrienoic acid, 12,13-EOTrE 12,13-

epoxyoctadecatrienoic acid, OPC-8:0 3-oxo-2-(pent-2’-enyl)-cyclo-

pentane-1-octanoic acid, 9(S)-HOTrE 9-hydroxyoctadecatri-10,12,15-

enoic acid, 13(S)-HOTrE 13-hydroxyoctadeca-9,11,15-trienoic acid,

2(R)-HOTrE 2-hydroxyoctadecatri-9,12,15-enoic acid, JA-Ile jasmo-

noyl isoleucine, dnOPDA 10-oxo-8,13-dinor-phytodienoic acid,

OPC-4 3-oxo-2-(pent-20-enyl)-cyclopentane-1-butanoic acid, DGDG

digalactosyl diacylglycerol, MGDG monogalactosyl diacylglycerol
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profile. From the metabolomics point of view, only the

jasmonate is clearly associated with wt-specific ion fea-

tures. All other matched metabolites (gray points) are not

exclusively associated with labeled features due to isomers

and ambiguous mass matching (see mapping table in

Supplementary material 1). By means of the mapping of

the filtered microarray data set, the coverage of pathway

entries is significantly increased, as represented by much

lower FDRs in enrichment analysis, and the wt-specific

enzymatic steps towards the biosynthesis of jasmonate are

clearly highlighted (see the lower branch of the pathway).

Noteably, all but two mapped transcript features are

labeled as wt-specific (see mapping table in Supplementary

material 1).

The integration of the transcriptomics data set has a

strong effect on the estimated FDRs. However, the

microarray data do not bias the overall pathway ranking. In

both cases, when analyzing only the metabolomics (see

Table 2A) or transcriptomics data (see Supplementary

material 7), the highly relevant alpha-linolenic acid

metabolism, the plant hormone signal transduction, and

glucosinolate-related pathways can be found in the list of

top-ranked candidates. In addition, the introduced methods

for integrative enrichment and meta-analysis do not depend

on the estimation of a time lag between data from different

omics platforms (Takahashi et al. 2011). The introduced

analysis is based on the ranking of data set features

according to general differences between the experimental

conditions or the selection of features associated with

particular intensity patterns.

3.5 Custom databases expand pathway analysis

The analysis based on KEGG and AraCyc pathways

resulted in a relatively small number of metabolite anno-

tations (see Table 2A) because many precursors and

derivatives of jasmonic acid as well as related compound

classes, such as oxidized galactolipids, are not yet repre-

sented in these databases. In order to integrate expert and

literature knowledge, MarVis-Pathway provides an inter-

face to import custom databases in CSV format, containing

additional entries (e.g. metabolites, genes, or enzymes) and

assignments to pathways or arbitrary sets/groups of related

entries, such as compound classes (see workflow in Fig. 1

and MarVis-Suite handbook). For data analysis in this

study on plant wounding, a custom database containing

previously described metabolites (Göbel and Feussner

2009; Ibrahim et al. 2011) was created (see custom data-

base in Supplementary material 2). This database was used

for annotating additional metabolic features based on the

corrected masses (see Fig. 4b and the table of additional

metabolite hits in Supplementary material 3). By this

means, 22 highly context-related metabolites could be

assigned to features which exclusively accumulated in wt

plants after wounding. These JA-Ile-dependent wound-

induced features are represented by prototypes 1 to 6 after

clustering by 1D-SOM (see Fig. 2). As proof of concept,

five putative metabolite hits, including JA and JA-Ile as

well as the JA-derivatives described as degradation pro-

ducts or transport forms, 12-hydroxy-JA, 12-hydroxy-JA-

Ile, and 12-carboxy-JA-Ile, were confirmed by MS/MS

analysis (see MS/MS spectra in Supplementary material 4).

In the following, we will describe two further examples

how the new MarVis-Suite tools support the exploratory

analysis and context-related identification of data set

features.

3.6 Pathway analysis of selected clusters identifies

glucosinolates as JA-Ile-dependent metabolites

with wt-constitutive intensity pattern

The prototype heatmap for the combined cross-omics data

set (see Fig. 2) shows a number of other interesting

intensity patterns. For example, cluster 10 contains features

with a wt-constitutive pattern characterized by very small

differences between the wt conditions and zero or very low

average intensities for the mutant-associated conditions.

For further analysis, the cluster was selected in MarVis-

Cluster and only the associated features were imported and

analyzed in MarVis-Pathway. Table 2C shows the results

of marker and entry-based enrichment analysis. Interest-

ingly, most of the top-ranked pathways are associated with

glucosinolate biosynthesis (see mapping table in Supple-

mentary material 5). Though, only a small number of

features match entries in these pathways.

3.7 Customized SNR ranking detects dde2-2-

constitutive intensity profiles

In contrast to the wt-constitutive intensity pattern, the

prototype heatmap (see Fig. 2) does not reveal intensity

profiles with a dde2-2-constitutive pattern. However, there

may be a small number of corresponding features hidden in

one of the more prominent clusters. Therefore, the whole

cross-omics data set was re-ranked in MarVis-Filter uti-

lizing a signal-to-noise ratio with customized signal term

(see Sect. 2.3), the difference between the minimum over

the average intensities of the dde2-2-associated conditions

4–6 and the maximum over the average intensities of the

wt-associated conditions 1–3. Interestingly, only two of the

2,809 filtered transcriptomics data set features, ambigu-

ously associated with At1g53490 and At1g53480, could be

found with a ratio greater than 2 (see expression profiles in

Supplementary material 6). These two microarray spots

show high expression levels for the dde2-2-associated

conditions independent of the wounding and may be an

MarVis-Pathway
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interesting starting point for further studies on the dde2-2

mutant.

4 Concluding remarks

The MarVis-Suite combines a statistical framework with

highly interactive interfaces for exploratory data analysis.

Data sets from different omics platforms can be filtered,

combined, clustered, and visualized. By means of the new

MarVis-Pathway interface, filtered or selected data set

features may be annotated in the context of organism-

specific pathway databases or custom pathway/entry set

definitions which represent expert knowledge. The signal-

to-noise ratio allows the ranking and filtering of hetero-

geneous data sets within a common framework and can

easily be customized for the search for particular intensity

patterns. The framework allows many other options,

including alternative ratios, e.g. the signal-to-level ratio, or

moderation/shrinkage of the noise term (Smyth 2004; Al-

lison et al. 2006). By means of the enrichment analysis,

annotated pathways can be statistically evaluated based on

different assumptions, e.g. independence of features,

database entries, or samples. Additionally, MarVis-Path-

way provides functions for the meta-analysis of pathway

enrichment for multiple data sets. The tools were suc-

cessfully applied in a cross-omics study on plant wounding.

The integration of transcriptomics data significantly sup-

ported the analysis of the non-targeted metabolomics data

sets. Additionally, proteomics data can be integrated for a

more comprehensive analysis.
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Applications of the MarVis-Suite

The tools of the MarVis-Suite have been applied in many experimental studies. In the follow-

ing, selected applications are summarized.

In a book chapter by Alexander Kaever et al. [107], the principle of clustering of ion features

by means of 1D-SOMs was reviewed in the context of two previous applications [12, 108] and

a detailed protocol for data analysis in MarVis-Cluster [41] was described. Furthermore, the

combination of data sets derived from MS analysis of polar and non-polar extracts measured

in positive and negative ionization mode was introduced. The section Applications of the Tech-

nology and the corresponding tables were drafted by Alexander Kaever, Dr. Kirstin Feussner,

and Prof. Dr. Ivo Feussner and all coauthors critically revised the chapter. The figures are

conceptually based on graphics from the corresponding publications and figure 9 was created

by Dr. Kirstin Feussner.

In [109], metabolic fingerprints of Arabidopsis thaliana mutants of sphingolipid fatty acid

α-hydroxylases were compared to wild type plants using MarVis-Filter, MarVis-Cluster, and a

prototype version of MarVis-Pathway. In [110], the MarVis-Suite tools were applied in order

to analyze non-targeted MS data in the context of priming of A. thaliana against the fungal

pathogen Plectosphaerella cucumerina. In [111] and [112], data sets in the context of infection

of Arabidopsis with the plant-pathogenic fungus Verticillium longisporum were analyzed. In

the latter case, the data sets were derived from RNA-seq Transcriptomics and MS-based Pro-

teomics measurements. The protein profiles were filtered in MarVis-Filter based on a signal-

to-level ratio (see MarVis-Suite handbook 11.1). The transcript candidates were ranked and

filtered based on a combination of the edgeR [113] tool, the DESeq [114] package, and a

moderated Chi-squared test, which is based on the same shrinkage method used for the moder-

ated signal-to-noise ratio (see MarVis-Suite handbook 11.1). Alexander Kaever implemented

the moderated Chi-squared test and conducted the analysis of RNA-seq data using the imple-

mented test, the edgeR, and DESeq packages (see Methods S1 in the corresponding Supporting
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Information). The respective description (see sections RNA-Seq data analysis and Moderated

Chi-squared test in Methods S1) was drafted by Alexander Kaever. In the context of all de-

scribed applications, Alexander Kaever provided the MarVis-Suite tools and hands-on training,

supported data analysis, and revised the manuscripts.

In the evaluation and application of the recently published MarVis-Graph software [115],

MarVis-Filter was used for adduct/isotope correction and filtering of Metabolomics and Trans-

criptomics data sets as preprocessing for the graph-based analysis of metabolic reaction-chains

in the context of Arabidopsis wounding experiments. Alexander Kaever performed the prepro-

cessing of data with MarVis-Filter, contributed conceptually to the development of the permu-

tation test for detected sub-networks, and revised the manuscript.
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Discussion

In this work, a statistical framework for the analysis of non-targeted Metabolomics MS data sets

in combination with data from other omics platforms was introduced. The proposed methods

and tools were implemented in the MarVis-Suite, which provides interactive user interfaces

for exploratory analysis of omics data. The original MarVis-Cluster tool [41] was extended

in order to support the visualization of combined cross-omics data sets and the labeling of

selected data set features (see chapter 6). The MarVis-Filter interface (see chapter 4 and 6)

includes functions for the adduct and isotope correction of LC/MS data, molecular formula

prediction, statistical ranking, filtering, and combination of multiple data sets. The MarVis-

Pathway tool (see chapter 6) allows the mapping of data set features to pathway databases and

provides functions for enrichment analysis in order to identify highly relevant pathways in the

experimental context. An important function is the combination of multiple cross-omics data

sets in a meta-analysis (see chapter 5 and 6). The meta-analysis of pathway enrichment thereby

forms the top level of data analysis in the proposed framework.

The tools of the MarVis-Suite were evaluated in the context of a cross-omics case study on

wounding of Arabidopsis thaliana (see section 3.4) and successfully applied in many studies

for the detection of relevant data set features and associated metabolites and metabolic path-

ways (see chapter 7). In the studies on plant wounding, the integration of Transcriptomics

data significantly supported the analysis and interpretation of the non-targeted Metabolomics

data. In the first application in this context (see chapter 5), non-targeted LC/MS data sets were

combined with publicly available DNA microarray data sets, which were obtained from inde-

pendent biological samples. In the second application (see chapter 6), Metabolomics data were

integrated with a Transcriptomics data set obtained from the same biological samples, which

allowed the cluster analysis of correlated metabolite and transcript features.
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8.1 Adduct correction and annotation of LC/MS data

A central requirement for the functional annotation of ion features in LC/MS data is the adduct

and isotope correction, which calculates potential accurate masses for the feature m/z ratios.

Based on these masses, the features can be mapped to metabolites in public or custom databases

or molecular formulas can be predicted (see section 3.1). The correction of m/z ratios thereby

provides the basis for putative identification and hypothesis generation. The annotated metabo-

lites may then be confirmed by means of the coelution with authentic standards or MS/MS

fragmentation patterns [6].

The adduct and isotope correction in MarVis-Filter (see chapter 4) is based on predefined

ionization rules [xm + y]z[+/−] [21, 42, 43]. These rules describe the building blocks of an

ionization product, e.g. the number of target molecules (x) or charges (z) and the addition of

other molecules (y), and allow the calculation of potential masses (m). Additionally, MarVis-

Filter detects carbon-13 isotopes and corrects for the difference between carbon-13 and carbon-

12 to calculate accurate monoisotopic feature masses (see section 3.3). For each ion feature

and hypothetical combination of ionization rule and number of included carbon-13 isotopes

(feature annotation), the introduced algorithm calculates a score based on other features in the

data set that support this hypothesis. A particular feature annotation is thereby supported by

another ion feature if, for any allowed annotation of the latter feature, both calculated masses

are equal within a given tolerance. Then, the annotation with the highest score is chosen for

each feature and used for the prediction of the corresponding mass. The score for a particular

annotation is calculated as the sum of cosine similarities between the intensity profile of the

feature to be annotated and the supporting candidates. Additionally, supporting candidates are

restricted to features within a predefined rt tolerance. This concept is based on the observation

that in LC/MS analysis a metabolite species is usually represented by several ion features with

similar rt and intensity profile, but different m/z ratios, representing the different possibilities

of ionization and number of isotopes (see section 3.1).

Besides machine and vendor-specific tools, such as the deisotoping function in the MassL-

ynx software (Waters Corporation), which removes common isotopologues in a data set, and

the Molecular Feature Extractor in the MassHunter software (Agilent Technologies Corpora-

tion), many free software packages and workflows for the correction of MS features in LC/MS

data have been published in recent years [24, 46, 47, 116]. Similar to the adduct and isotope

correction in MarVis-Filter, these method utilize the exact mass difference between adduct

rules, a retention time tolerance, and a similarity measure between intensity profiles in order

to annotate ion features. But in contrast to MarVis-Filter, most of these methods also group

64



features that putatively derive from the same metabolite. For this purpose, the CAMERA pack-

age [47] also uses the correlation coefficients between chromatographic peak shapes of related

ion features, which have to be extracted from the raw data and which are not available in the

MarVis-Suite. The clustering of potentially related MS features has the advantage that the data

set size can be significantly reduced [46] and that the systematic dependence of features may

thereby be reduced. Furthermore, the number of distinct metabolites represented in a particular

data set can be estimated more directly. On the other hand, the clustering of MS features may be

erroneous, grouping features representing the same metabolite species into different clusters,

and result in an incorrect mass prediction. For clustering and visualization of the intensity pro-

files, the merging of feature profiles in the same group can be problematic because the resulting

profiles may significantly differ from the original feature profiles. One of the key principles in

the design of the original MarVis-Cluster tool was the convenient clustering and visualization

of intensity profiles with as little as possible preprocessing, still allowing the manual inspection

of adduct formations in particular clusters and visualization as rt-m/z plot [12, 41]. Therefore,

the annotation and not the merging of data set features is the central objective of the adduct and

isotope correction in MarVis-Filter.

For comparison of the results obtained by means of the adduct correction in MarVis-Filter,

the M1 data set from chapter 6, containing UPLC TOF-MS features for the non-polar extraction

phase analyzed in negative ionization mode, was preprocessed with the XCMS software [23],

using recommended parameter settings from [117], and annotated using the CAMERA and the

AStream [46] packages (results not shown). The CAMERA package requires peak detection

and sample alignment by XCMS and the AStream package expects data containing isotopo-

logues. In comparison to the deisotoped M1 data set, which contains about 2000 ion features,

the XCMS preprocessing resulted in a data set of about 3000 features, including isotopologues.

The 1D-SOM clustering of both data sets revealed overall similar intensity profiles.

After annotation of the XCMS data set with CAMERA and AStream using default and mod-

ified parameter settings, the data set was searched for the exact masses of central metabolites

(see section 3.4 and chapter 6 figure 4). In case of CAMERA and default options for negative

ionization mode, the exact mass of jasmonic acid was not correctly predicted, despite the pres-

ence of related adducts. When using the fixed set of three ionization rules applied in chapter

4, 5, and 6 (see table 2 in chapter 4), the features representing jasmonic acid were correctly

annotated by CAMERA. However, the accurate mass of 12-OPDA was not correctly predicted

using the default options or the three described rules, despite the presence of the correspond-

ing adduct peaks in the XCMS data set. When deactivating the default peak shape correlation

option, the mass of 12-OPDA and related adducts were correctly annotated. Apart from that,
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the query of the custom database described in chapter 6 with the corrected feature masses

based on the CAMERA annotations showed a large overlap of hits with the results from the

MarVis-Filter-based processing of data set M1.

The AStream package seems to have been tested only on LC/MS data from positive ioniza-

tion mode because the specification of the [m+H]+ rule is mandatory for adduct search. After

extending the corresponding function, allowing [m − H]− as reference rule for negative ion-

ization mode, the package was applied to the XCMS data set. In case of the default options as

well as modified parameters, the mass of 12-OPDA was not correctly annotated and the query

of the custom database resulted in much less hits.

All in all, the three tested packages XCMS, CAMERA, and AStream provide powerful and

highly specialized methods for automatic processing of LC/MS data but also include many

(hyper-)parameters, e.g. a peak shape correlation threshold in CAMERA, that significantly in-

fluence the results. In contrast, MarVis-Filter provides a less complex function for adduct and

isotope correction embedded in a highly interactive user interface. By means of the visualiza-

tion capabilities of MarVis-Cluster, e.g. the cluster-specific rt-m/z plot, errors in the adduct and

isotope correction may be detected by means of the user’s expert knowledge.

Nonetheless, data sets preprocessed with the described packages may also be imported in

MarVis-Filter or MarVis-Cluster, using the predicted masses instead of the original m/z values.

Instead of the mass-based mapping of features from non-targeted MS data sets to metabo-

lites, a more sophisticated method may be used. After calculating potential accurate masses

(first step), molecular formulas can be predicted for each mass (second step) and used for

database query [15, 24]. In order to reduce the number of potential formulas, especially for

large masses, heuristic chemical rules and information about the isotope distribution can be

utilized [48]. This method is able to reduce the number of false-positive database hits, e.g. if

the number of carbon atoms predicted for the observed isotopic pattern does not match the cor-

responding number for a particular compound. On the other hand, the prediction of formulas

and numbers of included atoms can be erroneous. Especially for large masses, the prediction

results in multiple formulas [6] and the automatic filtering can be problematic. Therefore, the

MarVis-Suite tools provide a function for molecular formula prediction only for single selected

data set features (see chapter 4 and MarVis-Suite handbook 11.1), e.g. for features associated

with highly interesting intensity profiles that could not be mapped to any metabolite in the

available databases.

Based on the mass correction in MarVis-Filter described in chapter 4, 5, and 6, metabolic

features specific for the wounding of wild type in comparison to jasmonate-deficient dde2-2
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mutant plants [101] could be associated with oxylipins in the alpha-linolenic acid metabolism

pathway, mono- and di-galactosyldiacylglycerols, and glucosinolates. Additionally, further jas-

monic acid derivatives, hormones, and poly-hydroxy fatty acids could be identified in [115].

Ion features with accumulating intensity for Arabidopsis mutants of sphingolipid fatty acid α-

hydroxylases could be identified as ceramides, glucosylceramides, salicylic acid (SA), and SA-

derived metabolites [109]. In the context of priming of Arabidopsis against the fungal pathogen

Plectosphaerella cucumerina [110], compounds from the primary metabolism of sugars were

detected. Additionally, three central metabolites in the priming fingerprint could be identified

as indole-3-carboxylic acid, hypoxanthine, and galacturonic acid. In the context of the de-

fense response of Arabidopsis against the fungus Verticillium longisporum [111], metabolites

derived from the phenylpropanoid pathway were identified as infection-induced and confirmed

in targeted analysis.

In these applications, the calculation of accurate masses based on different sets of ionization

rules for positive and negative ionization mode was an important step for metabolite identi-

fication and also for combining the data sets. This combination of data sets obtained from

different extraction phases analyzed in positive or negative ionization mode is essential since

many identified metabolites could only be detected in one of the corresponding data sets.

8.2 Statistical ranking and filtering of intensity profiles

In order to detect data set features which represent actual differences between the experimental

conditions instead of noise, the associated intensity profiles are ranked and filtered by means of

statistical methods. The ranking of features thereby allows to focus the following data analysis

on high-ranked candidates without loosing the context of other features in the data set. The

strict filtering of features can simplify the user-driven interactive data analysis, e.g. by reducing

the data set size by a factor of more than 10 (see chapter 6).

For this purpose, several tests, e.g. the Kruskal-Wallis and ANOVA test [25], in combi-

nation with methods for multiple testing correction were implemented in MarVis-Filter (see

chapter 4) and applied in various studies (see chapter 7). In all these studies, context-related

metabolites could be detected based on high-ranked feature intensity profiles. The filtering by

means of an error rate threshold, e.g. the false discovery rate (FDR) [30] or familywise error

rate (FWER) [29], allowed to significantly reduce the data set sizes for initial analysis and hy-

pothesis generation. Besides filtering, the ranking of whole data sets could be used for global

pathway enrichment analysis (see chapter 5 and 6). While the strict filtering of data sets allows

the rapid interactive data analysis, e.g. in MarVis-Cluster, the ranking of whole data sets and
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the following enrichment analysis facilitates a broader and more thorough statistical analysis

(see section 8.4).

In many applications, the non-parametric Kruskal-Wallis test was used for ranking and fil-

tering of MS data set features [13, 108, 110, 111]. This test utilizes the ranks of intensities for

a given feature profile in order to detect differences between the experimental conditions and

does not assume a particular distribution of intensities, e.g. the normal or log-normal distribu-

tion. Therefore, it is well suited for testing profiles containing not normally-distributed outlier

intensities or replaced missing values, which can result from an erroneous peak detection and

alignment of LC/MS data [22]. However, the rank-based test is less powerful compared to the

parametric ANOVA [25, 75], assuming normally or log-normally distributed intensities. Thus,

ANOVA filtering was applied in a number of studies [109, 118], too.

Especially for the statistical analysis of large DNA microarray data sets, the Kruskal-Wallis

test is too conservative and results, after correction for multiple testing, in a very low number

of retained features. For example, performing the Kruskal-Wallis test on the Transcriptomics

data from chapter 6 results in no features below an FDR threshold of 0.05 (results not shown).

In order to replace the Kruskal-Wallis test with a more sensitive method that does not assume

a particular distribution of intensities, a signal-to-noise ratio (SNR) [119] based framework was

developed (see chapter 5 and 6). The SNR here is defined as the ratio of the difference be-

tween condition-specific average intensities (signal) and the pooled sample standard deviation

of intensities within the conditions (noise), similar to Hedges’s effect size estimator [120]. In

analogy to the significance analysis of microarrays (SAM) [27], the SNR is calculated for each

feature, the observed ratios are compared to values obtained in random permutations of sample

labels (assignments of samples to conditions), and the FDRs or FWERs are estimated per fea-

ture. Since the random permutation test makes no assumptions about the intensity/expression

level distribution, it has proven to be useful for combining heterogeneous omics data (see chap-

ter 6).

The SNR definition can be easily customized, e.g. in the form of the signal-to-level ratio (see

MarVis-Suite handbook 11.1) or for selecting condition-specific intensity patterns (see labeling

of wt-specific features or search for mutant-specific constitutive intensity profiles in chapter 6).

In case, a data set contains intensity measurements for technical/analytical replicates of biolog-

ical samples [14, 121, 122], which usually show a high systematic dependence, these replicates

may be permuted together and not independently. This allows to utilize the information from

analytical replicates (technical variation) within the ratio calculation without extending the test

assumptions, which are independent biological samples and random assignments of condition
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labels. In case only measurements for a small number of biological samples are available, the

labels of technical replicates may also be permuted independently.

In comparison to the SAM method, the implemented default SNR definition does not include

a fudge factor, a small constant which is added to the noise term. This factor is meant to sta-

bilize the ratio calculation for very small noise values. By adding a small constant to the noise

term in the denominator of the ratio, profiles containing very small intensities are automati-

cally scored with relatively low SNRs. However, the fudge factor value has to be estimated and

depends on the technological platform used for data acquisition [27, 75, 123]. A very small

value would not have much effect while a large factor would strongly discriminate low inten-

sity profiles, which may represent important but not highly abundant metabolites/transcripts.

Especially in the context of RNA-seq analysis, the problem of detecting differences for low-

abundant or short transcripts has been discussed [124, 125]. Therefore and because MarVis-

Filter provides general methods for ranking and filtering of intensity profiles, the introduced

SNR framework does not utilize a fudge factor by default. In case an extremely small or even

zero noise term is calculated for a particular profile with a non-zero signal, the ratio is set

to infinity and the corresponding feature is top-ranked. However, this phenomenon was not

observed for the analyzed MS and microarray data sets.

In case the noise term should be stabilized, the framework provides a function for noise

moderation (see MarVis-Suite handbook 11.1) based on a shrinkage method [74, 126, 127].

Furthermore, a constant fudge factor could be easily added to a customized SNR definition

(see SNR macro definition in 11.1) or profiles containing only very low intensities could be

filtered out (see intensity-level based ranking in 11.1).

The SNR ranking and filtering described in chapter 6 was performed on raw MS intensities

and (quantile-normalized) expression values. This is in accordance with the default cluster-

ing and heatmap visualization in MarVis-Cluster based on averaged and linearly scaled raw

intensity profiles [41]. MarVis-Filter also offers the option to apply a logarithm function to

all intensities (log-transformation), which is performed by default in most tools for microarray

data analysis [127], before calculating the SNRs. The log-transformation can thereby signif-

icantly reduce the noise for large intensities but also discriminates small values. Overall, the

introduced tests and options for ranking of intensity profiles show very similar results (aver-

age feature rank correlation coefficient above 0.9, results not shown). This corresponds to the

observation that parametric and non-parametric tests result in a large overlap of significant fea-

tures [25] and that the feature-specific scoring/ranking method does not have a large effect on

the following enrichment analysis [83].
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8.3 Combination of multi-omics data sets, clustering, and
visualization

In order to extract and detect as many metabolites as possible in non-targeted LC/MS exper-

iments, different classes of metabolites are extracted separately and analyzed in positive and

negative ionization mode (see section 3.1). This results in multiple data sets comprising mea-

surements for the same samples and experimental conditions. The identification of metabolites

associated with detected ion features represented in these data sets is a major challenge [6],

which becomes manifest in the ambiguous matching of accurate masses or predicted formu-

las to metabolites (see section 3.3). Additionally, many context-specific metabolites are not

yet represented in public databases (see chapter 6). The integration of data from other omics

platforms, such as DNA microarrays, which allow a more reliable mapping of microarray spot

IDs to organism-specific gene IDs, is a promising approach to cope with this challenge (see

chapter 5). After preprocessing, data sets from both platforms can be represented in the form

of a matrix, which comprises the intensity measurements for different features, representing

ion species or microarray spots (see chapter 6).

MarVis-Filter features a simple but powerful interface for the combination of data sets, which

can be used to combine MS-derived data sets, e.g. analyzed in positive and negative ioniza-

tion mode (see chapter 4), or Metabolomics and Transcriptomics data (see chapter 6). The

corresponding data matrices are concatenated (see MarVis-Suite handbook 11.1), retaining all

original feature intensity profiles and annotations. The assignment of each feature to the orig-

inal data set is stored in additional fields, which are utilized for example in meta-analysis of

pathway enrichment (see section 8.5). In case the data sets contain measurements for the same

experimental conditions, the features of the combined data set, e.g. ion features from posi-

tive and negative ionization mode and transcript features, can be used for 1D-SOM clustering

based on the averaged condition-specific intensity profiles. In combination with a bar plot of

the distribution of original data set features per cluster, this results in a highly convenient vi-

sualization of the combined data set (see figure 2 in chapter 6). In interactive data analysis,

information/annotations about transcripts/genes may be used in order to interpret metabolic

features in the same or neighboring clusters (see chapter 6), assuming that the clustering of

similar intensity/expression profiles may represent related functional groups [31].

For the integrative analysis of multi-omics data sets, principal component, correlation, and

hierarchical cluster analysis as well as related methods have been introduced and applied [71,

128, 129, 130, 131, 132, 133, 134]. In the context of LC/MS data analysis, the 1D-SOM
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clustering resulted in a more convenient data interpretation in comparison to the loading plot

from principal component analysis and a more robust clustering and visualization compared

to hierarchical clustering combined with the K-means algorithm [12] (see also section 3.2).

In a study on nutritional stresses in Arabidopsis [135], Transcriptomics and Metabolomics

data sets were clustered separately by means of 2D-SOMs and identified intensity patterns

were compared. By means of the *omeSOM tool [136], Transcriptomics and Metabolomics

data can be clustered and visualized together based on 2D-SOMs. For each node in the 2D-

grid visualization, the marker color indicates the association of only transcript features, only

metabolite features, or the combination of both, while the marker size indicates the number of

associated features. In comparison, a distinct advantage of the 1D-SOM prototype visualization

in MarVis-Cluster is the direct overview on complex multivariate intensity profiles (see upper

plot in figure 2 in chapter 6) in combination with a bar plot of the distribution of data set

features (see lower plot).

Another very popular approach to visualization and analysis of cross-omics data [70] is the

projection onto networks or sub-networks [69] and many tools have been developed for this

purpose [137, 138, 139]. In this context, the vertices and edges of the corresponding graph may

be annotated and colored according to the intensity profiles of mapped transcript or metabolite

features. The mapping of data set features to metabolic pathway maps [140, 141, 142] (see

following section) can be seen as sub-category of this type of analysis, though genome-scale

networks [143] also comprise the links between different pathways and can be used for the

analysis of metabolic fluxes [144] and complex protein interactions [145]. However, for in-

teractive and user-driven data analysis, large networks can be complex to overview and the

analysis of individual, simplified pathway maps may be better suited. The recently published

MarVis-Graph tool [115] (see also chapter 7) provides a convenient interface for the analysis of

Metabolomics and Transcriptomics data, e.g. after preprocessing in MarVis-Filter and MarVis-

Cluster, based on a graph/network representation instead of the focus on separate pathways in

MarVis-Pathway.

8.4 Pathway annotation, visualization, and enrichment
analysis

In order to cope with the challenge of ambiguous mass matching of ion features to metabolites,

the biochemical context, e.g. corresponding metabolic pathways, plays an important role (see

section 3.3). The mapping of multiple features to different metabolites in the same pathway
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thereby provides more confidence in the identification of corresponding metabolites. This con-

text can be further backed up by the mapping of data set features from other omics platforms,

e.g. DNA microarray-based Transcriptomics, to corresponding pathway entries (see chapter 5

and 6).

In this context, the introduced MarVis-Pathway tool provides functions for the mapping of

selected data set features to entries of metabolic pathways or arbitrary sets defined in custom

databases (see chapter 6). The mapping is either based on accurate masses, e.g. obtained from

the adduct and isotope correction of LC/MS data in MarVis-Filter, or feature IDs, e.g. in the

form of gene identifiers for DNA microarray data. The mapping of features to metabolic path-

ways, which describe the relationships between metabolites, metabolic reactions, associated

enzymes, transcripts, and genes, thereby allows to link information from many omics fields,

e.g. Metabolomics, Transcriptomics, and Proteomics. Therefore, the visualization concept

based on the annotation and coloring of pathway entries, especially for the KEGG database

[50], has been implemented in various tools [62, 87]. MarVis-Pathway provides interfaces

for the coloring/marking of entries in a similar way. A major difference to other tools is that

MarVis-Pathways allows to interactively color single entries, e.g. associated with a specific in-

tensity profile, or perform the coloring based on feature labels, e.g. assigned in MarVis-Cluster

based on intensity patterns (see figure 4 in chapter 6).

In order to identify highly relevant pathways for a particular experiment, methods for the sta-

tistical evaluation of pathways based on the concept of (gene/metabolite) set enrichment anal-

ysis (G/M SEA) [81, 85] were implemented and applied. In chapter 5 and 6, the enrichment

analysis resulted in the top-ranking of well-known pathways in the context of plant wounding.

The implemented methods are either based on the assumption of independent data set features

or database entries, similar to the concept of overrepresentation analysis [79, 80, 83], or on the

assumption of independent samples, as introduced in the original GSEA method [81]. In case

of the marker/feature-based SEA, the pathway-specific p-values and corresponding FDRs or

FWERs are expected to be biased, since features representing the same biological entity, e.g.

different ionization products representing the same metabolite species, show a systematic cor-

relation [42, 47], independent of the experimental context. A similar dependence is expected

for entries associated with the same pathway [81, 146, 147]. For this reason, the pathway-

specific p-values in the application described in chapter 5 were restandardized based on the

sample mean and standard deviation of transformed p-values (normal deviates, see figure 1 in

chapter 5). This is a conservative procedure, since the observed normal deviates also include

values for pathways that should be detected in enrichment analysis. In addition, the restandard-
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ization procedure depends on a sufficiently high number of matched pathways for the mean and

standard deviation estimation. The mapping of strictly filtered data sets or even single clusters

though results in only few entry hits (see chapter 6) and therefore also a relatively low number

of matched pathways. In this case, the restandardization of p-values is not recommended.

However, the ranking of pathways based on the FDRs from entry or marker/feature-based

SEA, which requires considerably less computing time compared to the sample-based ap-

proach, is still very useful in order to identify relevant pathways. Especially the marker/feature-

based SEA, which is able to integrate information from the adduct and isotope correction in

MarVis-Filter, focuses on pathways associated with metabolites that are matched by multiple

ion features representing different ionization products. These multiple hits indicate a correct

adduct detection and increase the confidence in the predicted mass [47]. Additionally, these

methods can also be applied if the number of available samples is very small.

In contrast, the sample-based approach [81] is based only on the assumption of independent

samples (see chapter 6) and can be used for a more stringent analysis of unfiltered data sets,

requiring considerably more computing time. As for the SNR random permutation test (see

section 8.2), the labels of technical/analytical replicates may be permuted together and in this

case only biological replicate samples are assumed to be independent. In the context of the

random permutation-based SEA of DNA microarray data, highly specialized and powerful

methods have been developed [82, 147]. In contrast, the implemented rank-based methods are

more general and can be applied to arbitrary data set rankings or feature selections. In this

context, the results on simulated data set correlation (see chapter 5) are also transferable to

other methods for the ranking of data set features.

As extension to the analysis of pathways represented as simplified sets of entries, a network-

assisted approach to enrichment analysis was recently introduced [148]. The EnrichNet ap-

proach utilizes the connections between genes or proteins within an interaction network [149]

in order to allow a more comprehensive enrichment analysis, e.g. by taking into account dif-

ferentially expressed genes which are not directly associated with a particular pathway but are

in close network proximity to associated genes. This concept was partially integrated into the

MarVis-Graph tool [115].

The reconstruction of metabolic pathways by means of MarVis-Pathway facilitated the in-

terpretation of non-targeted Metabolomics experiments and the identification of correspond-

ing metabolites in several applications. In chapter 5 and 6, highly relevant pathways for the

wound response of Arabidopsis plants were investigated. The phenylpropanoid biosynthe-

sis was identified as a central pathway induced upon infection with Verticillium longisporum

[111]. Metabolic pathways associated with the primary metabolism of sugars were detected as
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overrepresented in the context of priming of Arabidopsis against Plectosphaerella cucumerina

[110].

8.5 Meta-analysis of pathway enrichment

In chapter 5 and 6, different methods for the meta-analysis of pathway enrichment for multiple

data sets were introduced and applied. In MS-based Metabolomics experiments, multiple data

sets arise from the extraction of different classes of metabolites, e.g. from the polar or non-

polar extraction phase, and analysis in positive or negative ionization mode (see section 3.1).

Furthermore, the integration with data from other omics platforms increases the number of data

sets and the combination of results becomes an essential step in data interpretation.

In the context of MS-based non-targeted Metabolomics, the metaXCMS package [150] and

a detailed protocol for the summary of overlapping features in multiple comparisons of con-

ditions [117] were introduced. For the statistical evaluation of results from related studies,

methods for meta-analysis [88, 151] have been developed and applied to the analysis of inde-

pendent DNA microarray data [90, 91, 92, 93] in order to extract genes which are differentially

expressed under particular conditions combining the evidence from multiple data sets. In con-

trast to the metaXCMS approach, most methods for meta-analysis first summarize the test

statistics across multiple studies before performing a combined test, which results in a list of

significant genes. By this means, also genes with weak differential expression may be detected

if the corresponding expression pattern can be observed in multiple studies.

Fisher’s method [152] was used to identify significant genes in multiple studies on prostate

cancer and these genes were used to query the KEGG pathway database [153]. Meta-analysis

on gene level has also been combined with enrichment or overrepresentation analysis in the

context of cancer studies [154, 155] and gene set scores from enrichment analysis of different

microarray data sets were combined in a meta-analysis based on hierarchical clustering [156].

Furthermore, it was pointed out that the testing of gene sets improves the comparability of

different microarray data sets in comparison to gene-wise analysis [157].

For the meta-analysis of pathway enrichment, a framework was described in [94] and [158],

specialized on the analysis of independent microarray data sets. The authors introduced two

different approaches: MAPE_G, which summarizes gene-specific test statistics and then per-

forms an enrichment analysis based on the summarized values [154, 155], and MAPE_P, which

combines the test statistics from enrichment analysis on the pathway level. In the context of

combining multi-omics data sets, where single features represent ion species or microarray

spots and cannot be directly summarized across data sets, a MAPE_P-like approach, which
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combines the data sets on the pathway level, is required (see chapter 5 and 6). However, meth-

ods assuming independent data sets, such as MAPE_P, are not directly applicable because the

MS-derived Metabolomics data sets are expected to be dependent (see section 3.1). Further-

more, the focus on DNA microarray data does not allow the integration of special character-

istics of the MS-derived data sets, such as the mapping of multiple ion species to a particular

metabolite.

Therefore, a general framework for the estimation of data set correlations and meta-analysis

of multi-omics data based on the results from pathway enrichment analysis was developed

(see chapter 5). After correlation estimation, which indicated a relatively low dependence

of Metabolomics data sets, the pathway-specific p-values were combined using an extended

version of Fisher’s [159] or Stouffer’s (normal) method [160].

In the context of combining results from pathway enrichment analysis using general rank

or selection-based tests (see section 8.4), p-value-based methods for meta-analysis [90, 161,

162], such as Fisher’s or Stouffer’s method, provide a more general framework in comparison

to specialized effect size-based approaches [88, 89]. In contrast to meta-analysis using the

minimum or nth smallest observed p-value [163, 164], Fisher’s and Stouffer’s method integrate

the p-values for all data sets into the summary statistic and were therefore implemented in the

framework described in chapter 5.

In the application, the extended version of Fisher’s method (Brown’s method) seemed to be

more powerful for pathways associated with low p-values for only some of the data sets. In

contrast, Stouffer’s method resulted in lower FDRs for pathways associated with comparably

small p-values in case of all data sets. This is in agreement with the results presented in [162].

For the analysis of non-targeted Metabolomics data, e.g. containing measurements for metabo-

lites that can be extracted either in the polar or non-polar phase or that can be detected either

in the positive or negative ionization mode (see chapter 4), Fisher’s/Brown’s method seems to

be the better choice. However, this depends on the objective of the meta-analysis, detection of

pathways showing a consensus enrichment for all or most data sets or also pathways which are

enriched for only a proportion of the data sets [161, 165].

Parallel to the described framework for meta-analysis of pathway enrichment (see chapter

5), the iPEAP [166] platform has been developed. iPEAP allows to combine the results from

different methods for pathway enrichment analysis and data from Transcriptomics, Proteomics,

and Metabolomics studies. The platform focuses on the evaluation and aggregation of pathway

rankings obtained for different methods and data sets. Importantly, Metabolomics data set

features have to be associated with compound IDs for the pathway mapping (a requirement
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for many published tools). Especially in non-targeted LC/MS-based studies, the mapping of

ion features to distinct metabolite IDs is a central challenge and cannot easily be solved (see

section 3.3 and 8.1). In order to cope with this challenge, the highly interactive MarVis-Suite

was developed, which covers many preprocessing steps before pathway enrichment analysis

and allows to integrate the user’s expert knowledge into the process of data analysis.

In chapter 6, an alternative method for the meta-analysis of dependent data sets, whose

dependence arises from analysis of the same biological samples, based on the sample-based

SEA was introduced. In this approach, the observed meta-p-values are calculated per pathway

using Fisher’s or Stouffer’s method and recalculated for a large number of random permutations

of sample labels, similar to the MAPE_P approach. But as essential part of the meta-analysis,

the labels of samples in different data sets are linked during random permutations. By this

means, a particular biological sample is always assigned the same condition label in all data

sets. This approach is computationally much more expensive compared to the direct calculation

of meta-p-values. On the other hand, the p-values do not have to be restandardized and no data

set correlations have to be estimated (see chapter 5). In both applications (chapter 5 and 6),

the integration of Transcriptomics data significantly supported the analysis and interpretation

of non-targeted Metabolomics data, which is indicated by much lower FDRs and a higher entry

coverage for relevant pathways (see figure 4 in chapter 6).

As recommendation, the marker/feature-based and entry-based SEA (see chapter 6) should

be used in combination with Fisher’s method for fast ranking of pathways and hypothesis gen-

eration in case the data sets were filtered or a small proportion of features were selected, e.g.

based on the clustering in MarVis-Cluster. The marker/feature-based SEA thereby focuses

on pathways associated with multiple significant feature profiles, e.g. representing different

adducts of the same metabolite, while the entry-based analysis primarily detects pathways

showing a high entry coverage. The sample-based SEA in combination with the linking option

or the marker/feature-based SEA in combination with p-value restandardization and data set

correlation estimation (see chapter 5) should be used for a more thorough statistical analysis

of whole data sets. The sample-based SEA is thereby computationally much more expensive

compared to the marker/feature-based SEA but allows to omit the conservative restandardiza-

tion and the correlation estimation, which both require a sufficiently high number of annotated

pathways. The marker/feature-based, entry-based, and sample-based SEA methods are com-

plementary and should be combined in a comprehensive data analysis (see chapter 6).
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8.6 Workflow and platforms

In this work, the MarVis-Suite, which provides highly interactive user interfaces enclosed in a

statistical framework for the analysis of non-targeted Metabolomics data, was developed. The

introduced workflow (see figure 1 in chapter 6) is straightforward and allows to easily integrate

data from other omics platforms. For this purpose, generally applicable and robust methods,

e.g. based on the ranking of data set features, were developed.

In recent years, similar workflows were implemented in web-based platforms [62, 63, 64,

65]. Most of these platforms utilize different R-packages [167] and provide tools for data

analysis without the need to install additional software on the local machine. However, the

data sets have to be uploaded to the corresponding server. In comparison, the MarVis-Suite

is locally installed and allows a much more interactive exploratory data analysis (see chapter

6 and MarVis-Suite handbook 11.1). Furthermore, the general methods for ranking, filtering,

clustering, and enrichment analysis facilitate the analysis and integration of data from other

omics platforms besides MS-based Metabolomics.

In the context of non-targeted Metabolomics, other specialized workflows based on the com-

bination of R-packages, such as XCMS or CAMERA, were introduced [168, 169]. The corre-

sponding packages allow the implementation of a programmable workflow, e.g. in the form of

an R-script for each individual data analysis, but are not directly applicable for scientists with-

out appropriate programming skills and do not allow interactive data analysis. In future studies,

the user-driven MarVis-Suite workflow for fast hypothesis generation should be combined with

an adapted R-based workflow, featuring more sophisticated tools for metabolite identification,

e.g. based on the annotation of in-source fragmentations [168]. Such a parallel workflow would

also facilitate the integration of powerful R-packages specialized on the enrichment analysis of

microarray data sets, such as the GSA package [147].

In order to cope with the challenge of metabolite identification, the development of the

MarVis-Suite was focused on the integration of other omics platforms, e.g. Transcriptomics

data from DNA microarray analysis (see chapter 5 and 6). In this context, the MarVis-Suite

was also applied to the evaluation of RNA-seq Transcriptomics and MS-based Proteomics data

[112] in the BMBF BioFung project (“The plant-pathogenic fungus Verticillium longisporum

and the interaction with its host Brassica napus”). In future projects, also MS/MS and GC/MS

data in combination with more specialized databases [58, 59, 60, 61] should be integrated into

the MarVis-Suite or a parallel workflow.
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Supplementary Material

11.1 MarVis-Suite handbook

This handbook describes all methods and user interfaces implemented in the MarVis-Suite

version 2.0. Previous versions of the handbook/documentation for the original MarVis tool [41]

and the MarVis-Suite 1.0 [104] can be found on the project homepage http://marvis.gobics.de.

The MarVis-Suite workflow and interfaces were conceptually designed in collaboration with

Manuel Landesfeind and Dr. Peter Meinicke (Department of Bioinformatics) and Dr. Kirstin

Feussner and Prof. Dr. Ivo Feussner (Department of Plant Biochemistry). The MarVis-

Cluster software is based on the original MarVis tool [41]. The algorithm for training of

one-dimensional self-organizing maps [12] and the function for principal component analy-

sis were implemented by Dr. Peter Meinicke. The interface for setting of figure properties was

developed by Lars Söder under supervision of Alexander Kaever and Dr. Peter Meinicke. The

MarVis-Suite handbook includes the documentation of the original MarVis tool, which was

revised by Dr. Peter Meinicke and Dr. Thomas Lingner (Department of Bioinformatics).
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Introduction

The MarVis-Suite is a toolbox for interactive ranking, filtering, combination, clustering,

visualization, and functional annotation of data sets containing intensity-based profile

vectors (data set features, marker candidates, or markers) as obtained e.g. from mass

spectrometry (MS), microarray, or RNA-seq experiments. The clustering algorithm is based

on a realization of one-dimensional self-organizing maps (1D-SOMs) [1]. Additionally,

the MarVis-Suite includes specialized functions for analysis of MS data in the context of

untargeted Metabolomics studies, such as adduct and isotope correction and molecular

formula calculation.

This documentation covers all features implemented in the MarVis-Suite version 2.0.

The MarVis-Filter interface (see section 3) provides functions for import, preprocessing,

filtering, and combination of raw data files, while the MarVis-Cluster interface (see section

4) was designed for high-level visualization and cluster analysis. The MarVis-Pathway

interface (see section 5) is used for functional annotation of filtered/combined data sets or

selected clusters in the context of reference or organism-specific pathway maps from the

Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCyc databases [2, 3, 4]. For

statistical analysis of combined data sets from different omics platforms, MarVis-Pathway

provides an extensive framework for (Gene/Metabolite) Set Enrichment Analysis [5, 6] and

meta-analysis [7]. Within the MarVis-Suite, selected data can be easily exchanged between

the different interfaces. Nonetheless, the interfaces can also be utilized as independent tool

as described in [8, 9].

The MarVis-Suite was developed at the Department of Bioinformatics in collabora-

tion with the Department of Plant Biochemistry at the Georg-August-University Göttingen.

Installation packages for Microsoft Windows XP/Vista/7/8 and Linux x86 (only MarVis-

Cluster) can be obtained from http://marvis.gobics.de. Please send questions, bug reports,

and feature requests to marvis@gobics.de.
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Installation and Requirements

The MarVis-Suite is implemented in the MATLAB R© (MathWorks Corporation) program-

ming language and compiled for Microsoft Windows XP/Vista/7/8 and Linux x86 (only

MarVis-Cluster). The install packages can be downloaded from http://marvis.gobics.de.

For installation, follow the steps in the README-file in the package. MarVis was

originally developed for Windows and then ported to Linux. Therefore we recommend

the Windows version. When installing and testing MarVis-Cluster on Linux, a number

of additional packages had to be installed and minor bugs regarding the GUI-elements

occurred. For experienced users we have added the corresponding references to the

README-file.

The MarVis-Suite software is free for academic use. It comes with no guarantee or

warranty at all. Use it at your own risk.
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MarVis-Filter

3.1 File import and export

For data import and export, MarVis uses the CSV (Comma Separated Values) and

Microsoft Excel file format, which can easily be processed by statistical analysis software

and spreadsheet applications. Note that on systems without Microsoft Excel installed, the

Excel import function is error-prone. In case an error occurs, the conversion and import in

CSV format is recommended.

MarVis-Filter supports the import of files in two different ways: Via the entry Import

MarVis data in the File menu, data in a MarVis-specific spreadsheet format can be

imported. In case of a CSV file, each line of the file corresponds to a row of data fields

separated by a delimiter character, which can freely be chosen (e.g. a comma). The file

dataset1.csv (in the examples directory1) contains an exemplary data set of the

metabolomic case study from [1]. The first rows and columns can be used for comments. In

this example, the first four rows and two columns are used for this purpose. The comment

rows and columns are followed by the regular data starting with a header row (line 5 and

column 3 in the example). The header contains customizable column labels, which are

displayed in MarVis. Each of the succeeding rows represents a feature/marker candidate.

The first regular column must contain identifiers for all candidates. They are interpreted

and displayed as text. The second and third regular column are reserved for x and y

numerical values, which are displayed by MarVis-Cluster as two-dimensional scatter plot

(retention time vs. mass-to-charge-ratio in the example). The first three regular columns

are followed by the numerical intensity values. They must be ordered according to replicate

measurements and experimental conditions. The example data set contains intensities

for eight different conditions, which are represented by nine replicate measurements,

respectively. The intensity columns can be followed by additional user-specific data

1The examples directory is located within the MarVis-Suite program directory
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columns. Values in these columns are displayed by MarVis as marker-specific text, which

can be helpful for further interpretation. After selecting the import file, the delimiter

character (a comma in this example), the start row and column of the header (5 and 3), the

number of conditions (8) and the number of replicate measurements/samples per condition

(9) can be specified in the Import dialog (see figure 3.1). In case of an Excel import

file, the delimiter character is ignored. If the number of replicate samples per condition

varies, the different numbers have to be given in order of the conditions separated by space

characters (e.g. 6 6 6 6 9 9 9 9).

Data in a more general format can be imported via the entry Import raw data

in the File menu. This file format conforms to the MarVis format but allows variable po-

sitions for the data columns. The files wound neg raw.csv and wound pos raw.csv

(the files can be found in the examples directory or downloaded from the project home

page) contain exemplary data sets of the metabolomic case study from [9] as generated

by the MarkerLynxTM Application Manager of MassLynxTM (Waters Corporation) for the

negative and positive ionization mode. After selecting the input file, the column positions

(relative to the start column, e.g. 1 for the start column itself) have to be specified in the

Import dialog (see figure 3.2). In this dialog, the position of the column containing

the marker candidate IDs (ID column), the positions of the columns containing x and

y-values (x column and y column), and the corresponding labels which should be

displayed in MarVis have to be specified. Marker candidate IDs are automatically generated

as ascending numbers if the checkbox Generate IDs is activated. If no x or y-columns

are specified, MarVis inserts zeros, signal-to-level ratios (y) and log-levels (x) (see section

3.3.2), or parses the values from the marker IDs. In the latter case, the user has to specify

the pattern which encodes the x and y-values within the ID strings (e.g. “y x” for IDs

which contain the y and x-values separated by “ ” characters). In the field Condition

identifier, distinct identifiers for the experimental conditions have to be specified

separated by comma. MarVis searches the header row (first row of regular data) for columns

which contain these identifiers as substrings of their labels and groups them as replicate

samples into different conditions. The identifiers are interpreted as case-insensitive regular

expressions (see MATLAB R© regexpi function for details). White spaces are ignored in the

corresponding text field. In addition to the regular data columns, other columns may be

imported by specifying the (relative) positions in the Additional columns text field

separated by space characters and corresponding labels in the Additional labels

field separated by comma. If the Additional labels field contains more labels

(separated by comma) than positions in the Additional columns field (separated by
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space characters), MarVis-Filter tries to fill the missing column positions by searching the

column headers for the extra labels.

If the import file is a tab-separated values file (using a tabulator as delimiter), this

can be specified by \t in the Delimiter textfield.

Ranked and filtered data sets can be exported in the MarVis CSV file format using

the Export MarVis data entry in the File menu. After selecting an output file,

MarVis opens the Export dialog (see figure 3.3). A delimiter character for CSV

export has to be specified in the Delimiter textfield. If the Filter data set

checkbox is activated, MarVis exports only the marker candidates below the selected

threshold (see section 3.4). The current filter criterion (e.g. p-value) can be exported in

addition to the regular marker data by selecting the Export filter criterion

checkbox. The rows in the output file can also be sorted according to the filter criterion

(Sort data set by filter criterion checkbox).

Figure 3.1: Import dialog for dataset1.csv
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Figure 3.2: Raw import dialog for wound neg raw.csv
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Figure 3.3: Export dialog in MarVis-Filter

3.2 Data transformation and normalization

After import and before ranking, a simple log-transformation (log2(x)) and a sample-based

normalization of the intensity data can be performed.

In case the log-transformation should be performed and the data set contains negative inten-

sities, the global minimum is subtracted from all values, previously. If the data set contains

positive intensities smaller than 1, a pseudo count of 1 is added to all values before applying

the log-transformation.

In case of the sample-based normalization, all intensities in a sample are scaled accord-

ing to the respective sum of absolute intensities and multiplied by 1000, divided by the

respective mean absolute intensity, divided by the median (considering only non-zero ab-

solute intensities), divided by a size factor as introduced in [10] (considering only profiles

with all intensities greater than zero), or normalized based on a quantile-normalization. The

sample-based normalization is useful when comparing samples with different average in-

tensity levels.
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3.3 Ranking

After data import, a method for ranking has to be selected in the Filter dialog (see

figure 3.4). Along with a title, a subset of conditions which should be used for testing/rank-

ing can be specified in the Use conditions textfield. The condition indices have to

be given separated by space characters or colons (1 2 3 or 1:3, for example, selects the

first three conditions for testing/ranking). By default (blank field), all conditions are used.

Additionally, the method for ranking has to be selected. This method is then applied to

rank the marker candidates according to the relevance of their intensity profiles. If the New

window checkbox is selected, MarVis displays the results of ranking in a new instead of

the current window. This option can be useful when different methods should be compared.

3.3.1 ANOVA/t-test and Kruskal-Wallis/ranksum test

MarVis-Filter provides functions for the well-known one-way ANOVA and nonparametric

Kruskal-Wallis test [11, 12], which are used to identify candidates with significant intensity

differences between the experimental conditions. After calculation of p-values, MarVis

opens a dialog for multiple testing adjustment/correction [13] (see figure 3.5). The p-values

may be adjusted according to the Bonferroni or Holm-Bonferroni method [14], which

controls the familywise error rate (FWER), or the Benjamini-Hochberg method [15], which

controls the false discovery rate (FDR).

If the data set contains only two experimental conditions, a two-sample student’s t-

test or Wilcoxon ranksum test is performed instead of the ANOVA/Kruskal-Wallis test,

respectively. The ANOVA test may be performed on log-transformed intensities. In this

case and in contrast to the general transformation of intensities after data import (see

section 3.2), the transformed intensities are used only for this test and not for further

processing.

3.3.2 Signal-to-noise/level ranking

Similar to the Significance Analysis of Microarrays (SAM) [16], MarVis-Filter provides a

signal-to-noise ratio (SNR) [17] based method for ranking and filtering. This method can

be used for an undirected or directed comparison of different subsets of conditions (e.g.

higher intensities in samples of condition one or two compared to samples of condition

three and four). For each marker candidate intensity profile, the signal-to-noise ratio (option
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Calculate signal-to-noise ratio) is calculated as

RSN =
S

N
(3.1)

while the signal-to-level ratio (SLR) (option Calculate signal-to-level

ratio) is calculated as

RSL =
S −N

L
. (3.2)

The noise level N is defined as the square root of the pooled unbiased sample variance over

all c conditions:

N =

√∑
c (nc − 1) s2c∑
c (nc − 1)

, (3.3)

where nc denotes the number of samples in condition c and s2c the unbiased sample variance

for condition c.

The signal is calculated either as the maximum average (arithmetic mean) intensity

over all conditions S = maxc (x̄c) (Signal type option Maximum condition)

or as the difference of the maximum and minimum average intensities over all conditions

S = maxc (x̄c)−minc (x̄c) (option Difference between conditions). The first

option is useful when searching for candidates with a good signal-to-noise/level ratio but

not necessarily a large difference between two or more conditions. The second definition is

similar to Hedges’s effect size estimator [18]. For the signal-to-level calculation, the level

is defined as the maximum absolute average intensity over all conditions: L = maxc (|x̄c|).

In contrast to the signal-to-noise ratio, the signal-to-level ranking is robust against very

small noise levels and focuses on high signals relative to the level.

In case the difference is treated as signal, the user may customize the formula for

the difference calculation. First, the conditions whose aggregated average intensities

should be added in the signal calculation can be specified as indices (e.g. 1 2 3

or 1:3 for conditions one to three). Following this dialog, the method for aggrega-

tion of the selected average condition intensities has to be chosen (Maximum over

selected conditions, Minimum over selected conditions, or Mean

over selected conditions). Second, the indices of conditions whose average

intensities should be subtracted in the signal calculation and a method for aggregation can
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be specified. The signal is then calculated as

S = max |min |meand(x̄d)−max |min |meane(x̄e) (3.4)

over all condition indices d which were selected in the first part and all conditions e which

were selected in the second part. A negative signal is set to minus-infinity. If no condition

indices are specified (default option) the signal is calculated as described at the start of this

section.

The customized difference calculation is useful when searching for candidates which show

high intensities in one or more conditions in comparison to the remaining conditions (e.g.

controls).

For the final ranking, the user can choose between three different options: The first option

(Calculate ratio/score) is to calculate and display the raw signal-to-noise/level

ratios. The second option (Calculate FWER using random permutations) is

to calculate the familywise error rates based on random permutations. The third option

(Calculate FDR using random permutations) is the calculation of false

discovery rates based on random permutations [16]. In the second and third case, the

user can choose between the permutation of sample condition labels (Permute sample

labels), if enough independent samples per condition are available, and the permutation

of intensity values per sample (Permute intensities per sample), which is

only recommended if not enough samples are available. In either case, the number of

random permutations and the labels of dependent samples have to be specified. The

dependency labels have to be entered as integers separated by space characters (e.g. 1

2 3 for three independent samples or 1 1 2 for three samples and sample one and two

dependent). The number of dependency labels has to be in accordance with the overall

number of samples (over all conditions). The order of labels corresponds to the order of

samples in the current data set (see function Show sample names in the Selection

menu). Samples which are assigned to different conditions cannot be defined as dependent.

By default, all samples are assumed to be independent. For each random permutation,

dependent samples are treated together. In case of the Permute sample labels

option, dependent samples are always assigned the same condition label and, in case of the

Permute intensities per sample option, intensity values of dependent samples

are always permuted using the same permutation.

The concept of dependent samples is especially useful when dealing with biological
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and technical replicates (different measurements of the same biological sample). The

dependency labels 1 1 2 2 3 3 4 4, for example, could be used to indicate two

dependent technical replicates for each of four independent biological samples. Note that

these dependency labels usually differ from the condition labels (e.g. 1 1 1 1 2 2 2

2 for two conditions in the example).

The signal-to-noise/level ratios may be calculated based on log-transformed intensi-

ties. In this case and in contrast to the general transformation of intensities after data import

(see section 3.2), the transformed intensities are used only for this calculation and not for

further processing.

Noise moderation

In the SAM method [16], a fudge factor, which represents a small positive value that is

added to the denominator of the ratio statistic, is used to stabilize the calculation for very

small denominators. In a moderated t-test [19], a global variance estimate is used to stabi-

lize the gene-wise variance estimation. This principle is also known as shrinkage and has

become very popular in microarray analysis [20]. In this context, the calculation of the raw

SNR (see equation 3.1) might lead to extremely high ratios for very small noise terms. Ad-

ditionally, the feature-wise noise estimation may not be very reliable in case of small sample

size. In order to stabilize this estimation, a moderated noise term based on shrinkage can be

used:

N =
aN1 + bN0

a + b
(3.5)

N1 corresponds to the definition in 3.3 and represents the local marker candidate-specific

noise estimate, N0 corresponds to a global estimate based on all available profiles. Instead

of using a constant N0 value for all features in a data set, N0 is calculated based on the

relationship of the average intensity observed for the particular candidate and the average

noise observed for candidates with similar average intensities. This approach takes into

account that small intensities are often associated with relatively high noise levels in

contrast to large intensities which often show good reproducibility. Instead of modeling

the relationship between average intensity and noise based on a predefined function class,

which is difficult for heterogeneous data sets and which would impose additional assump-

tions about the intensity distribution, the global noise estimate is obtained by binning the

average intensities per condition, calculation of median bin-specific noise values, and linear

interpolation between the bins. In the following, the procedure for binning is described in

detail:
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1. Calculate the average intensities (arithmetic mean) for all conditions and feature pro-

files in the current data set

2. Leave out means which equal zero

3. Calculate the corresponding coefficients of variation (sample standard deviation di-

vided by mean)

4. Order the value pairs into K bins (by default K = 10)

5. For each bin, calculate the median mean intensity (bin average) and median coeffi-

cient of variation (bin coefficient)

6. Conservatively correct the bin coefficients: If a bin coefficient is smaller than the

following coefficient (for a larger bin average), assign the larger value

Step 6 ensures a monotonically decreasing function. In many applications, very small

intensities are associated with purely technical noise, which is considerably smaller than the

variation of biological signals. Without the correction, small intensities without biological

meaning might be backed up by the moderation procedure.

The following procedure describes the lookup of the global noise estimate N0 for a

particular feature profile:

1. Calculate the mean intensities for all conditions and take the maximum

2. If the maximum mean is larger than the largest bin average: Select the bin coefficient

for the largest bin average

3. Else if the maximum mean is smaller than the smallest bin average: Select the bin

coefficient for the smallest bin average

4. Else: Linearly interpolate the coefficient based on the neighbor bins

5. Multiply the coefficient with the maximum mean (see step 1) in order to obtain the

absolute noise estimate N0 (see equation 3.5)
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The intensity profile might contain very small intensities for some of the experimental

conditions, e.g. representing only technical variation without any biological signal.

Therefore, the lookup procedure utilizes the maximum condition-specific mean intensity

instead of the mean over all intensities of the profile. After looking up N0, the noise term

of the ratio can be calculated according to equation 3.5. By default, the weights a and b are

set to 0.5, balancing the influence of the local and global noise estimate.

A similar procedure was used for the analysis of RNA-seq data in order to estimate

the standard deviation for a moderated Chi-squared test [21].

Macro definition

Instead of using the predefined signal-to-noise/level ratio definitions, the user may also

utilize a customized macro for the ratio/score calculation (within the random permutation

framework). In this case, the macro has to be defined in the MATLAB R© programming

language and can be loaded from a file. When selecting this option, a commented example

macro for the calculation of the signal-to-noise/level ratio is shown in a new window and

can be customized.

3.3.3 Fold-change ranking

When selecting the Fold-change option, MarVis-Filter ranks the marker candidates ac-

cording to the ratio

R1 =
x̄max

x̄min
(3.6)

or (user’s choice)

R2 =
x̄min

x̄max
(3.7)

with x̄max = maxc(x̄c) and x̄min = minc(x̄c) over all average condition-specific intensi-

ties x̄c. In the first case, if x̄min equals zero and x̄max is greater than zero, the fold change

is set to infinity. In the second case, if x̄max equals zero, the fold change is set to infinity, too.

Similar to the signal-to-noise/level calculation, the user can define subsets of con-

ditions which are treated as candidates for the maximum and minimum average

intensities. The corresponding condition indices have to be specified in the fields Treat

the following conditions as maximum and Treat the following

conditions as minimum separated by space characters (e.g. 1 2 3 or 1:3 for
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conditions one to three). If a list of conditions is specified for the maximum, the maximum

average intensity is calculated only over the selected d conditions: x̄max = maxd(x̄d). The

corresponding minimum average intensity (see x̄min in equation 3.6 and 3.7) is calculated

as maximum over the remaining (not specified) e conditions: x̄min = maxe(x̄e). If a list

of conditions is specified for the minimum, the numerator and denominator are calculated

as x̄min = mind(x̄d) and x̄max = mine(x̄e).

Both options may be combined and in this case the final ratio is calculated as the maxi-

mum/minimum (depending on the ratio definition) of both ratios. If no subsets are specified

(default option), x̄max and x̄min are calculated over all available conditions, as described

at the start of this section.

Note that if the data set contains many zero or missing intensity values, the fold-

change ranking is not very robust and should only be performed as second step of

filtering.

3.3.4 Intensity level-based ranking

In addition to the comparative ranking methods, MarVis-Filter provides a number of func-

tions purely based on intensity levels (and not on the comparison of different conditions).

The Maximum level function ranks the marker candidates according to the maximum

average intensity over all conditions maxc(x̄c) (descending order). The Minimum level

function uses the minimum average intensity minc(x̄c) (ascending order). The High

intensity ratio method ranks the candidates according to the number of intensity

values greater than a specified threshold (e.g. zero) in relation to the overall number of

samples or the number of samples per condition. In the second case, the ratio is calculated

per condition and the maximum is taken over all conditions.

3.3.5 Additional ranking methods

Marker candidates can also be ranked and filtered according to values imported along with

the regular data (see section 3.1) using the Value ranking option. In this case, the

respective column label has to be specified. In case the ID column is selected, the marker

candidates are sorted in alphabetical order of the IDs. If another label is selected, the

candidates are sorted according to the numerical values of the selected column in ascending

or descending order.

If the checkbox None is selected, MarVis sorts the imported candidates according to
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the row order in the input file. In case of a combined data set (see section 3.4.1), they are

also sorted according to the original data set index.

Figure 3.4: Filter dialog
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Figure 3.5: Dialog for multiple testing adjustment
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3.4 Visualization, filtering, and data analysis

After import and ranking, MarVis presents the results in the MarVis-Filter main window

(see figure 3.6).

3.4.1 Main window

The ranking plot

The ranking plot (area 1, see figure 3.6) displays the values used for ranking (e.g. adjusted

p-values) of all marker intensity profiles in the current data set on the y-axis sorted in as-

cending or descending order (based on the ranking method). A marker candidate with a

particular value can be selected by clicking into the plot. The red separator line indicates

the currently selected value/candidate. By pressing the cursor keys, the user can slide the

separator line. The data set can be interactively filtered according to a user-defined thresh-

old by positioning the red separator line, by jumping to a predefined level (Goto level

entry in Selection menu), or by going to a rank/proportion of the ranked data set (e.g.

rank number 100 or best 10% using the Goto rank entry in Selection menu). The

selected data (all features before and including the current candidate) can then be exported

as MarVis CSV file (see section 3.1) or handed to MarVis-Cluster/MarVis-Pathway (see

section 3.6). Only marker candidates associated with values on the left side of the separator

line (including the current candidate) are used.

The marker profile plot

The marker profile plot (2) shows the raw intensity profile of the currently selected marker

candidate as bar plot. Intensity values of replicate samples associated with the same ex-

perimental condition are marked in the same color. The intensities are sorted according to

conditions and the sample order in the original file (see function Show sample names

in the Selection menu for display of the sample labels/names).

The marker information box

The marker information box (3) displays information about all marker candidates in the data

set ordered according to the ranking (e.g. by adjusted p-value), including ID , x-value (e.g.

retention time), y-value (e.g. mass-to-charge value) and additional scores or annotations

which were imported along with the data set (see section 3.1) or generated by MarVis. A

candidate can be selected by clicking into the list or using the arrow keys.
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The data set clipboard listbox

The data set clipboard listbox (4) shows data sets which are currently stored in the MarVis

clipboard. The current data set can easily be added or removed to/from this list by clicking

on the add data set or remove button. Before adding the data set to the clipboard,

it is filtered according to the currently selected value. A data set in the clipboard can be

selected by clicking into the listbox. Multiple data sets can be selected by holding the

Control or Shift key. The data set clipboard supports an adduct and isotope correction

of selected data sets in batch mode (correct button, see section 3.5).

Data sets in the clipboard (e.g. MS data sets corrected according to positive and

negative ionization mode or from different omics platforms) may be combined into a

single data set using the combine button. In this case, MarVis concatenates the marker

candidates of selected data sets and presents the results in a new MarVis-Filter main

window. In order to concatenate the intensity profiles of the different data sets (which may

contain measurements for different conditions or different numbers of replicate samples),

the user has to specify whether the conditions should be interlaced or stacked.

In the first case, the number of conditions in the combined data set corresponds to the

maximum number of conditions within one of the selected data sets and the number of

replicates for a particular condition corresponds to the maximum number of replicates

for that condition and one of the data sets. The conditions of the original data sets are

mapped to the combined set of conditions according to their position in the experimental

setup (e.g. the first condition of an original data set is mapped to the first condition of the

combined data set). If a data set does not contain the maximum number of conditions, the

missing intensity values are set to NaN (“Not a Number”) as placeholder. If a single data

set does not contain the maximum number of replicate samples for a particular condition,

the missing intensity values are set to NaN, too.

In the second case, the conditions are not interlaced but stacked. The number of conditions

in the combined data set corresponds to the sum of conditions over all selected data sets

and the total number of samples to the sum of samples over all data sets. Missing intensity

values (all intensities in a particular data set for conditions corresponding to another data

set) are set to NaN. The stacking of conditions is useful when combining data sets with

different experimental setups.

In all following steps of data analysis (e.g. calculation of average intensities), NaN

values are left out or replaced by user-defined intensities.
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All functions of the data set clipboard can also be accessed via the Clipboard

menu.

Figure 3.6: MarVis-Filter main window after import and ranking

3.4.2 Selection and re-filtering

The currently loaded data set can be ranked and filtered once again according to another

criterion via the Refilter markers ... entry in the Selection menu. In this

case, only the selected marker candidates (on the left side of the separator line) are used. By

activating the New window checkbox in the Filter dialog the results are presented

in a new MarVis-Filter main window.

Via the entries Regroup samples and Remove samples, the user can change

the association of samples to experimental conditions and remove samples (e.g. outliers

identified in the PCA or HCA plot, see section 3.4.3) from the data set.

In the first case, new condition labels have to be specified. The labels have to be defined as

ascending integers representing the new conditions and the number of specified labels has
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to correspond to the number of samples in the current data set. The labels 2 2 2 1 1

1 1 1 3 3 3 3 for example represent 12 samples with sample one to three associated

with the new condition two, sample four to eight associated with condition one, and the last

four samples with condition three. The current data set is then filtered (marker candidates

to the left-hand side of the separator-line are retained), the samples are ordered according

to the new condition labels, and the data set is ranked and displayed in a new MarVis-Filter

window according to the new condition setup.

For removing of samples, the respective sample names/numbers have to be selected in

a listbox dialog. Multiple samples can be selected by holding the Control or Shift

key. As in the case of regrouping samples, the resulting data set is displayed in a new

MarVis-Filter window.

3.4.3 Sample-based analysis and visualization

For analysis and quality control of replicate samples, MarVis-Filter provides interfaces for

sample-based Principal Component Analysis (entry Sample PCA in the Selection

menu) and Hierarchical Clustering Analysis (entry Sample HCA in the Selection

menu).

In the first case, MarVis-Filter performs a PCA using the samples as high-dimensional

intensity vectors (see [1]) and plots the eigenvalue spectrum and the scores for the first two

principal components. Only the intensities of selected marker candidates are used. Before

applying PCA, the selected marker intensity profiles are normalized to unit Euclidean

length, respectively.

In the second case, MarVis-Filter performs a hierarchical clustering of the sample intensity

vectors using different distance and linkage methods (see MATLAB R© linkage and pdist

function). In all cases, MarVis-Filter uses only the intensities of selected marker candi-

dates. The selected marker intensity profiles may be log-scale-transformed, aggregated, or

normalized before clustering. Samples corresponding to technical replicates or the same

experimental condition should form distinct clusters in the PCA score or HCA dendrogram

plot.

Via the entry Show sample names in the Selection menu, the names of all

samples, which correspond to the respective column labels in the original data file (see

section 3.1), can be shown in the current order. The samples are sorted according to

experimental conditions and order in the original file. Additionally, the sample names are

shown on the left-hand side of the HCA dendrogram. For the PCA score plot, the samples
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names can be displayed by activating the MATLAB R© datacursor mode (see toolbar section

6.1) and clicking on one of the scatter points.

3.5 Adduct and isotope correction

The adduct and isotope correction in MarVis-Filter takes as input values the retention

times (rt, x-values), mass-to-charge ratios (m/z, y-values) and raw intensity profiles of all

selected marker candidates (on the left side of the separator line) and calculates as output

the putative (monoisotopic) molecular mass, ionization rule, and number of included
13C-isotopes for every candidate. It is based on a greedy strategy which minimizes

the number of actual molecular masses and simultaneously maximizes the similarity of

intensity profiles between candidates with similar retention time and actual mass. This

concept follows the paradigm that in MS analysis a metabolite is usually represented

by several marker candidates which show a similar retention time and intensity profile

but different m/z ratios according to the various possibilities of ionization and number

of included isotopes. As parameters, the function expects a list of ionization/adduct

rules sorted according to relevance, the assumed maximal number of 13C-isotopes per

marker candidate, a mass tolerance, an rt tolerance and a minimal cosine similarity. Each

ionization rule is represented by a formula in the format [xm + y]z[+/−] [22]. x denotes

the number of combined target molecules, y the mass or chemical formula of attached ions

(adduct formation), and z the ionization charge (e.g. single or double charge). m (or M )

is a placeholder for the target molecule. Assuming a particular formula and number of

included 13C-isotopes, the actual (monoisotopic) mass of a marker candidate is calculated

by solving the formula for m and subtracting the mass difference between 13C and 12C

isotopes.

For storage of pairwise similarities between candidate profiles, the algorithm utilizes

a five-dimensional matrix M . Each entry M(m,a1,i1,a2,i2) corresponds to the maximal

cosine similarity between the intensity profile of candidate m assuming ionization rule

a1 and i1
13C-isotopes and another candidate which has a similar retention time (within

tolerance) and corrected mass (within tolerance) assuming ionization rule a2 and i2
13C-isotopes. For each candidate m, the algorithm chooses then the ionization rule and

number of 13C-isotopes which are supported by the highest sum of cosine similarities. In

the following, the algorithm is described in detail:

1. Initialize M with zeros
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2. Calculate all potential masses by applying all ionization rules and number of 13C-

isotopes to all candidate m/z ratios

3. Consider all pairs of potential masses under the following constraints and fill M with

pairwise cosine similarities of corresponding candidate profiles:

• Consider only pairs of different marker candidates

• Consider only pairs within mass and rt tolerance

• Consider only pairs with at least the requested cosine similarity

• Consider only pairs with different combinations of adduct rules and number of

isotopes

• For each entry in M , store only the maximum observed cosine similarity

4. Calculate the reduced three-dimensional matrix M red with summed entries

M red
(m,a1,i1)

=
∑

a2,i2

M(m,a1,i1,a2,i2)

5. Choose for each candidate m: Adduct rule and isotope number with maximal sum of

similarities cmax = maxa1,i1(M red
(m,a1,i1)

). If cmax = 0, use first ionization rule and

zero 13C-isotopes as default

6. Calculate output masses according to chosen rules and isotope numbers

In order to avoid apparently false associations between marker candidates, negative cosine

similarities are not considered. If for a given candidate different combinations of ionization

rule and number of isotopes maximize the sum of cosine similarities, the ionization rule

with the highest relevance and the lowest number of 13C-isotopes are selected.

The adduct rules have to be specified in a text file (see files adduct neg.txt and

adduct pos.txt in the examples directory). Every line in this file corresponds to an

adduct/ionization rule. Each line starts with a name/description followed by a colon and

the formula in the format [xm + y]z[+/−]. In case x = 1, z = 1, or y = 0, the values do

not have to be specified. Every specified rule has to end with the + (positive ionization) or

− (negative ionization) sign. The rules have to be sorted according to relevance (e.g. the

first rule has a higher relevance than the second rule in file order). Lines starting with a %

character are ignored and can be used to comment rules.
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After adduct and isotope correction, the number of carbon atoms per candidate is

estimated by comparing the raw intensities of marker candidates with zero predicted
13C-isotopes (IM ) and the respective marker candidates including one 13C-isotope (IM+1)

according to the formula

nC =
98.9 IM+1

1.1 IM
(3.8)

corresponding to the natural abundances of carbon isotopes. Given a pair of candidates

annotated as isotopologues (M and M + 1) and with the same ionization rule, a robust

estimation of the number of carbon atoms is obtained by calculating the median nC over

all samples which show non-zero intensities in both profiles.

The adduct and isotope correction and the estimation of the number of carbon atoms

can be performed on the selected marker candidates (on the left side of the separator line)

by clicking on the Adduct and isotope correction entry in the Selection

menu. The user has to specify the input file for adduct/ionization rules and the additional

parameters. After correction, MarVis displays the number of applied rules, the number

of detected 13C-isotopes, and a histogram of the maximal sum of cosine similarities

per marker candidate in new windows. Note that marker candidates which could not be

corrected based on supporting candidates (with similar rt, profile, and potential mass)

are counted for the first (default) ionization rule, zero isotopes, and a maximal cosine

similarity sum of zero. The marker candidates are annotated according to the results of

the adduct/isotope correction and estimation of the number of carbon atoms (see marker

information box 3.4.1, ARule: Description of the applied adduct rule, nC13: Number of

included 13C-isotopes, CosSum: Maximal sum of cosine similarities, FormerY: Original

m/z ratio (y value), nC: Estimated number of included carbon atoms). The original m/z

values (y values) are replaced by the corrected masses. A high sum of cosine similarities

indicates marker candidates which were corrected based on a high number of supporting

candidates and high similarities of corresponding intensity profiles.

The adduct and isotope correction should be performed on raw data sets (e.g.

wound neg raw.csv in combination with the rules in adduct neg.txt). Note

that the filtered data set dataset1.csv contains only nominal instead of accurate m/z

ratios.

The correction can be undone by clicking on the Undo correction entry in the
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Selection menu.

3.6 Data exchange with MarVis-Cluster and
MarVis-Pathway

The selected marker candidates (to the left side of the separator line) can be an-

alyzed in MarVis-Cluster (see chapter 4) or MarVis-Pathway (5) using the Goto

MarVis-Cluster or Goto MarVis-Pathway entry in the MarVis-Suite menu.

A method for aggregation of replicate intensities per condition and marker candidate and

for scaling of aggregated intensity profiles has to be specified (see figure 3.7). The replicate

intensities can be aggregated per condition using the mean, mean+std, median, or

mean ranks function. The mean+std method aggregates the replicate intensities per

condition using the arithmetic mean and additionally adds the square root of the pooled

sample variance (noise level, see section 3.3.2) to each mean value. This method is

useful when visualizing noisy or unfiltered data. The mean ranks method corresponds

to the mean function but replaces intensity values by ranks for every candidate profile.

When selecting none, no aggregation is performed. The resulting intensity vectors can

be scaled according to unit Euclidean (2-norm), Manhattan (1-norm), or maximum

norm (max-norm), or by calculating z-scores (subtracting the mean value and dividing

by the sample standard deviation of condition-specific average intensities). By selecting

none, no scaling is performed. The aggregated and scaled condition-specific profile

vectors are then used for clustering and visualization in MarVis-Cluster (see section 4.3)

or MarVis-Pathway. After clustering in MarVis-Cluster, the marker candidates within a

cluster may be sorted according to the projection onto the 1D-SOM (and thereby sorted

according to similarity of the intensity profiles). This can be used for a finer visualization

(see section 4.4.1 the prototype and cluster plot). In MarVis-Pathway, the profiles are

automatically projected and visualized in the corresponding order (no cluster structure).
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Figure 3.7: Normalization dialog in MarVis-Filter
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MarVis-Cluster

4.1 File import

For import of files in MarVis CSV format (see section 3.1) open the File menu and select

Open for clustering. After displaying a file browser dialog for selection of the

input file, MarVis will open the Import dialog (see figure 4.1) with further options.

Here, the delimiter character, the start row and column of the header of the regular data, the

number of conditions, and the number of samples for each condition have to be specified. If

all conditions have the same number of replicate measurements, this can be specified using

a single number (see figure 4.1). Otherwise, the different numbers must be given in order of

conditions separated by spaces (e.g. 9 9 9 9 9 9 9 9 for dataset1.csv in the examples

directory1). By default, MarVis performs an aggregation of replicate measurements for

each condition using the corresponding mean or median value. Furthermore, the resulting

intensity vectors are normalized before clustering using e.g. the Euclidean norm. If

alternative intensity profiles containing intensities for each marker candidate and condition

should be used for clustering, these optional values can be stored after the regular intensity

values in succeeding columns. If the checkbox Import normalized markers is

activated, MarVis tries to import these additional columns and uses them for clustering.

If the internal normalization is used, the panel Sample aggregation and Marker

scaling allows the customization of the aggregation and scaling method. MarVis-Cluster

supports the aggregation of replicate measurements for each condition using the mean or

median value and the scaling of aggregated marker candidates using the Manhattan norm

(1-norm), the Euclidean norm (2-norm), or the z-score transformation (subtracting

the mean value and dividing by the sample standard deviation). Note that MarVis displays

the marker candidates of selected clusters according to the order of rows in the input

file. For example, the candidates in dataset1.csv are sorted by retention time, which

supports the identification of adducts in MS data sets.

1The example directory is located within the MarVis-Suite program directory.
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Figure 4.1: Import dialog for dataset1.csv

4.2 File export

Clustering results can be exported to a file in MarVis CSV format. In order to export

all clusters, open the File menu and select the menu item Export clustering

results. After specification of an output file, MarVis will export the marker candi-

date data (sorted by clusters) in CSV format with additional columns for normalized in-

tensities, cluster number, and intensity profiles of associated prototypes (see example file
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dataset1Results.csv). For export of selected candidates only, select the menu item

Export markers in the Selection menu (for interactive selection of clusters and

single candidates see section 4.4.2). In both cases, MarVis will use the delimiter character

specified in the Import dialog.

4.3 Clustering

After file import (or data exchange with MarVis-Filter, or selection of marker candidates

for re-clustering, see section 3.6 and 4.4.2), MarVis opens the Clustering dialog

(see figure 4.2). Here, a data set title and the number of prototypes that should be used

for clustering have to be specified. If the checkbox New window is activated, MarVis

will display the results in a new window, which can be useful for comparison of different

clustering results. Click the OK button to start the clustering process.

Figure 4.2: Clustering dialog for dataset1.csv

During the clustering process MarVis displays the intermediate clustering results in a

new window (see figure 4.3). The red bar in the middle of the window indicates the clus-

tering progress. The upper plot shows the intermediate prototype intensity profiles for each

clustering step. The vertical axis represents the data set conditions, the horizontal axis cor-

responds to the prototype numbers. MarVis uses the current colormap for color-coding. By
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Figure 4.3: Clustering progress window for dataset1.csv (intermediate state).

default, the MATLAB R© Jet map is used (e.g. red colors represent high intensities and blue

colors represent low intensities). In the lower plot, the number of marker candidates that

are associated with each prototype are represented as vertical bars. The clustering process

can be stopped by clicking the Cancel button. When the clustering process is finished,

MarVis displays a scrollbar instead of the progress bar (see figure 4.4). The slider (the el-

ement within the scrollbar) can be used to browse through intermediate clustering results

according to different amount of smoothing over the intensity vectors. In most cases, the fi-

nal clustering state with minimal smoothing is most suitable for analysis. After clicking the

OK button, MarVis will open the main window. Here, the results according to the selected

clustering state are displayed for further analysis.

4.4 Visualization and data analysis

After clustering, the MarVis-Cluster main window displays the results according to the

selected clustering state (see figure 4.5). Here, a particular prototype can be selected (“ac-

tivated”) by clicking on the corresponding column in the heatmap in the upper right region

of the window. Afterwards, additional information about the associated cluster is presented

(see figure 4.6). In the following section, the different regions of the main window are

described in detail.
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Figure 4.4: Clustering progress window for dataset1.csv (final state).

Figure 4.5: Initial MarVis-Cluster main window for dataset1.csv
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Figure 4.6: MarVis-Cluster main window for dataset1.csv after activation of a partic-
ular prototype.

4.4.1 Main window

The prototype plot

The prototype plot (see figure 4.6, region 1) shows the ordered prototypes in a heatmap

(region 1a) according to the current colormap and additional information about associated

clusters (region 1b). By default, the displayed prototype profiles are equally spaced and

region 1b shows the associated cluster sizes as a bar diagram (see figure 4.7 a). By clicking

on a column corresponding to a particular prototype profile or using the left and right cursor

keys, the respective cluster can be activated. MarVis will display further information about

the activated cluster in the other regions. A cursor (represented by a white rectangle) marks

the current prototype. Clicking the reverse button under the left corner of region 1b

causes MarVis to reverse the prototype order. This can be helpful when different clustering

results should be compared. The graphical representation of the prototypes can be changed

via the toggle view button. Besides the default view, the prototype profiles can be

scaled (in width) according to cluster size, which helps to identify dominating intensity

profiles. In this case, region 1b shows the normalized or original intensity profiles of the
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marker candidates associated with each prototype (see figure 4.7 b and c). The title above

region 1a indicates the currently activated view mode.

(A)

(B)

(C)

Figure 4.7: Different modes of the prototype plot for dataset1.csv: (A) Equally scaled
prototypes and cluster size diagram (B) Scaled prototypes and normalized
marker candidate profiles (C) Scaled prototypes and original marker candidate
profiles

32



MarVis-Suite Handbook

The cluster plot

The cluster plot (see figure 4.6, region 2) displays the intensity profiles of marker can-

didates in the activated cluster. Each column represents the intensity profile of a single

candidate according to the current colormap. Via the toggle view button, the graph-

ical representation of marker intensities can be switched between normalized (aggregated

and scaled) and original intensities (see figure 4.8). By default, normalized intensities are

shown. Depending on the view mode, the vertical axis corresponds to conditions or replicate

measurements of conditions (see figure 4.8). After clicking into the plot, a tooltip displays

the marker-specific normalized/original intensity value (m: marker candidate number, c/r:

condition/replicate number, i: normalized/original intensity value). A (white) rectangle in-

dicates the current candidate while the cursor keys can be used to browse the plot.

Figure 4.8: Graphical representation of marker candidates of cluster 8 for dataset1.csv
using normalized intensities (left-hand side, 8 rows corresponding to 8 condi-
tions) and original intensities (right-hand side, 72 rows according to 8 conditions
and 9 replicates for each condition).

The marker information box

The marker information box (see figure 4.6, region 3) shows a table containing information

about all marker candidates in the currently activated cluster (see figure 4.9). Each candidate

is represented by a particular row. Apart from marker ID (second column), x-value (third
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column), and y-value (fourth column), also the values for additional data columns (see

section 3.1) and the candidate selection status (first column: 0=not selected, 1=selected) are

displayed (see section 4.4.2 for details). By using the up and down cursor keys or clicking

on a particular row, the corresponding marker candidate can be activated/highlighted. A

cursor in the cluster plot represents the currently highlighted candidate.

Figure 4.9: Marker information box for cluster 8 and dataset1.csv

The marker scatter plot

The marker scatter plot (see figure 4.6, region 4) displays the x vs. y-values (e.g. retention

time vs. mass, see section 3.1) of all marker candidates in the currently activated cluster

using big red dots (see figure 4.10). The currently activated candidate is represented by a

big blue dot. The selected candidates in the currently activated cluster are shown using big

black dots (see section 4.4.2 for details). In the background, all marker candidates of the

underlying data set are displayed as small gray points. By clicking into the plot, a particular

candidate can be activated.

The active-prototype/marker plot

The active-prototype/marker plot (see figure 4.6, region 5) displays by default the mag-

nified prototype of the currently activated cluster mapped to the current colormap. Via
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the toggle view button, the graphical representation mode can be switched between

the prototype view, the normalized intensity profile, and the original intensity profile of

the currently activated marker candidate (see figure 4.11). By clicking into the plot and

navigating with the up and down cursor keys, the original or normalized intensity values

can be inspected.

Figure 4.10: Marker scatter plot of cluster 8 for dataset1.csv

Figure 4.11: Three different views on the active-prototype/marker plot for cluster 8 and
marker candidate 2 of data set dataset1.csv
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4.4.2 Selection of marker candidates

MarVis-Cluster stores a list of selected marker candidates in memory. By pressing c in

the main window, all candidates of the currently activated cluster are added to/removed

from this list. By pressing m, only the currently activated candidate is affected. The menu

items Select/Deselect cluster and Select/Deselect marker from the

Selection menu can be used for this purpose, too. By choosing the entries Select

all or Reset all from the Selection menu, all marker candidates from all clusters

can be selected or deselected. By means of the Select block function, all marker

candidates in clusters between the first selected candidate (starting on the left-hand side

of the prototype plot) and the currently activated cluster are selected. This function is

especially useful when selecting many small neighboring clusters. The selection status of

all marker candidates can be inverted by means of the Invert selection entry. The

function Filter selection can be used to filter the currently selected candidates

based on one of the MarVis-Filter ranking methods (see section 3.3) and a given threshold

for the corresponding ranking score (e.g. fold-change ratio). After specifying a threshold,

MarVis-Cluster deselects all candidates below or above the threshold (depending on the

filter method, e.g. only candidates with a fold change above 2 are kept selected). This

function can be used to reduce the selection step by step starting with the selection of all

candidates.

Selected candidates are highlighted in the marker information box (entry 1 in the se-

lection indicator column) and in the scatter plot by big black dots (see figure 4.10).

Clusters that contain selected marker candidates are highlighted by a black line below

the corresponding prototype in the prototype plot (see figure 4.12). The list of selected

candidates can be exported, re-clustered, or combined in a new window via the entries

Export markers, Recluster markers ..., or Combine markers ... in

the Selection menu (see also section 4.2). In the latter case, all selected candidates are

presented in a new MarVis-Cluster main window within a single cluster. For re-clustering,

the user can select a subset of conditions used for clustering (e.g. 1:8 or 1 2 3 4 5

6 7 8 for the first eight conditions). After re-clustering, the marker candidates within a

cluster may be sorted according to the projection onto the 1D-SOM (and thereby sorted

according to similarity of the intensity profiles). This can be utilized for a finer visualization

(see section 4.4.1 the prototype and cluster plot).

By means of the Set marker labels function in the Selection menu, se-
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lected marker candidates can be annotated with a user-defined label (e.g. “wt-specific“).

In this case, another column with the header MarkerLabel is added to the additional

data. For all selected candidates, the corresponding entries are set to the specified label.

If marker labels are defined for the first time, all marker candidates which are currently

not selected are assigned the label ”-“. The specified marker labels can be exported along

with the data set (see section 4.2) or utilized in MarVis-Pathway for coloring of entries in

pathway maps (see section 4.5 and 5.3.1). The marker labels may be removed using the

function Reset marker labels.

Marker candidates may be selected based on discrete values/labels by means of the

Select labeled markers function in the Selection menu. The column which

contains these label information can be chosen from a list including the marker labels

described in the previous paragraph and other additional columns which seem to contain

discrete values/labels (not more than 25 distinct values, e.g. the original data set index

in a combined data set). In the following listbox, the user can choose values from the

previously selected column. All marker candidates which are associated with one of these

values (in the respective column) will be selected. This function does not change the status

of previously selected candidates.

By means of the Label barplot function in the Selection menu, a barplot

which shows the distribution of particular labels/values over all clusters can be generated.

This plot is similar to the cluster size diagram (see lower part of the prototype plot in figure

4.7) but with colored bars split into different groups of labels/values. It is displayed instead

of the cluster size diagram in the lower part of the prototype plot (reset plot by clicking

the toggle view button). First, a data set column containing discrete values/labels has

to be specified (e.g. marker labels or data set indices). Second, the discrete values have to

be grouped by selecting a single or multiple values representing the first group, selecting

values representing the second group, and so on. For each cluster and each group, the

marker candidates which are associated with the corresponding labels are then counted

and plotted as colored proportions of the corresponding bar. The proportions are colored

according to the current colormap (e.g. dark blue for the first group and dark red for the last

group). Figure 4.13 shows the label plot for the data set indices of wound neg raw.csv

(label 1) and wound pos raw.csv (label 2) after filtering/combination in MarVis-Filter

and clustering with MarVis-Cluster. The number of features/marker candidates for each

cluster may be normalized according to the overall number of features in the corresponding

group. In this case, the barplot shows the percentage of features in the corresponding group
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found in the respective cluster.

Figure 4.12: Clusters with selected marker candidates from dataset1.csv. Clusters that
contain selected marker candidates are marked by a black line below the cor-
responding column in the prototype plot.

Figure 4.13: Data set label barplot for the data sets wound neg raw.csv and
wound pos raw.csv after filtering, combination, and clustering: For each
cluster, the dark blue proportions of the bars correspond to the number of can-
didates from the data set obtained in negative ionization mode and the dark red
proportions correspond to the candidates from the positive ionization mode.
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4.4.3 General visualization properties

Via the View menu, general visualization properties of MarVis-Cluster can be changed. By

clicking the Colormap editor menu item, the MATLAB R© colormap editor is opened.

The colormap editor displays the current colormap in the upper region of the dialog. Mar-

Vis plots the intensity values according to this map. Low intensity values are mapped to the

colors on the left-hand side of the color spectrum (by default blue). High intensity values

are mapped to the colors on the right-hand side of the spectrum (by default red). Inten-

sities between the minimum and the maximum are mapped based on a linear projection

onto the colormap. Color values for the original, log-transformed, and normalized inten-

sity profiles are calculated independently according to their global minimum and maximum

values. The reference marks below the spectrum can be moved to the left or to the right to

change the color contrast. By clicking below the spectrum, further marks can be added for

a finer contrast adjustment. Via the Standard colormaps menu item in the Tools

menu, one of the MATLAB R© standard colormaps can be selected. By default, MarVis uses

the MATLAB R© Jet map. If the checkbox Immediate apply is activated, the changes

are immediately applied. By clicking OK, the dialog is closed and the changes are applied.

Use the Cancel button to close the dialog without applying any changes (Immediate

apply must be deselected). Clicking the Apply button applies the colormap to all in-

tensity profile plots in the main window. View the online MATLAB R© colormap editor or

colormap help pages for further information.

Note: Several MATLAB R© functions of the colormap editor are not integrated in MarVis

and the application may produce an error message.

Select the Cursor color editor entry in the View menu to change the color

for the cursor representation. This can be useful to improve distinguishability between the

cursor (usually a white rectangle) and the intensity profiles, e.g. if a new colormap was

selected.

If the Logarithmic intensities checkbox within the View menu is acti-

vated, MarVis calculates the color mapping for original intensity profiles logarithmically.

This can be useful if the data set contains very large intensities (see figure 4.14). The color

mapping for normalized intensity profiles is not affected. By default, this checkbox is

deactivated.
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Figure 4.14: Original intensities of marker candidates from dataset1.csv in a clus-
ter without logarithmic scaling (left-hand side) and with logarithmic scaling
(right-hand side).

4.5 Data exchange with MarVis-Pathway

The selected marker candidates can be analyzed in MarVis-Pathway (see chapter 5) using

the Goto MarVis-Pathway entry in the MarVis-Suite menu. In MarVis-Pathway,

the marker candidate profiles are visualized according to the projection onto the 1D-SOM

used in MarVis-Cluster or a new one (user’s choice). If marker candidates were labeled

(see section 4.4.2), a distinct color can be selected for each specified label. After database

query, entries (e.g. metabolites or genes) exclusively mapped to candidates associated with

a particular label are colored accordingly. Entries mapped to data set features associated

with different labels or labeled and unlabeled features are by default colored in gray (see

section 5.3.1).

4.6 Example data sets

In the following, two example data sets are introduced, which can be used to explore the

capabilities of MarVis-Cluster in the context of a metabolomic and a gene expression study.

4.6.1 The wound response of Arabidopsis thaliana: A metabolomic
case study

Data set one (file examples/dataset1.csv) contains 837 metabolite marker candi-

dates for the wound response of the thale cress Arabidopsis thaliana under 8 conditions,
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which correspond to a time course after wounding for wild type (wt) plants (conditions

1-4) and the jasmonate-deficient dde2-2 mutant plants (conditions 5-8) [1]. Each condition

contains 9 replicate samples. The data file starts with 4 comment rows and 2 comment

columns, which contain explanatory information about the file format. The header infor-

mation is contained in several columns within the fifth row starting at column three. The

third column contains unique integers representing marker candidate IDs. Columns four

(x-values) and five (y-values) contain the retention times (rt) and the mass-to-charge-ratios

(m/z) from liquid chromatography/mass spectrometry (LC/MS) analysis, respectively.

These columns are followed by the 72 intensity data columns (number 6 to 77, sorted by

conditions and replicate samples). As an additional column (number 78, KWpValue), the

p-values of a Kruskal-Wallis test were added. These values were used as a measure of

marker-specific quality in [1]. In this data set, the columns are separated by comma. In

the previous chapters, this data set was already used to demonstrate particular features of

MarVis.

Figure 4.15 shows the main window of MarVis-Cluster after clustering of this data

set using 50 prototypes and minimal smoothing (final clustering state). Intensity profiles

were aggregated and scaled using the mean value and the Euclidean norm (2-norm),

respectively. The prototype plot reveals

• a block of marker candidates that show high intensities in the conditions representing

wt plants only (prototype 1 to 18, condition 1 to 4),

• an intermediate block of different profiles representing high intensities across wt and

dde2-2 mutant plants (prototype 19 to 24),

• a block of prototypes that show high intensities in mutant plants only (prototype 27

to 36, condition 5 to 8),

• and a block of marker candidates which particularly represent high concentrations in

the third and eighth condition (prototype 40 to 50).

The corresponding bar diagram shows a number of clusters that contain just a few or no

marker candidates at all (e.g. cluster 30). These ”sparse” clusters usually indicate the use

of too many prototypes. Despite the large number of prototypes, candidates with similar

intensity profiles can be found in neighboring clusters.

For better interpretability, all clusters except for clusters 19 to 24, which show quite
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indistinct prototype profiles, were selected (item Select all in the Selection menu

and pressing c after activating clusters 19 to 24). The selected marker candidates are

clustered once again via the Recluster markers entry in the Selection menu.

This time, a lower number of prototypes (30) is used. The two different clustering results

can be compared if the New window checkbox in the Clustering dialog is

activated. The file dataset1Results.csv in the examples directory contains the

exported clustering results in CSV format.

Figure 4.15: MarVis-Cluster main window for dataset1.csv using 50 prototypes.

Figure 4.16: MarVis-Cluster main window for the selection of dataset1.csv using 30
prototypes.
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4.6.2 The yeast cell cycle: A gene expression experiment

Data set two (file examples/dataset2.csv) contains the (normalized) expression

levels of 384 selected yeast genes over two cell cycles represented by 17 time points

(which are used as conditions). The 384 genes were selected from the original data

set from [23] based on expression level peaks at different time points representing the

five phases of cell cycle [24]2. To obtain suitable x and y-values, the loadings of the

first two principal components (PC1 and PC2) were calculated. As IDs the ORF (Open

Reading Frame) identifiers from the original data set were used. The information about

the dominant group/phase of each gene was retained as an additional data column (last

column). Additionally, four comment rows and two comment columns (start of the header

in row 5 and column 3) were added. All columns are separated by a comma as delimiter

character.

The data set contains no replicate measurements for the conditions (insert 1 as num-

ber of samples per condition), therefore the selected aggregation method has no effect. The

Euclidean norm (2-norm) was used for normalization and the data set was clustered using

minimal smoothing and 20 prototypes. Figure 4.17 shows the main window containing

the clustering results. The prototype plot reveals roughly two parallel diagonal lines of

high expression levels, which represent two cell cycles. Due to the ordering, a number of

adjacent prototypes with very similar expression profiles can be identified (e.g. number 1

and 2 or 13 and 14). The prototype number 9 seems to be alien to the adjacent prototypes

(see figure 4.17, cursor in the prototype plot). The associated cluster contains only eight

marker candidates, which show quite different expression profiles. This and the similarity

of adjacent prototypes indicate a much lower adequate number of clusters. Despite the

overestimated number of clusters, the order of prototypes reflects the five phases of the cell

cycle (see additional column phase). Cluster 1 to 5 contain mainly marker candidates

associated with phase 2, cluster 6 to 8 represent mainly candidates of phase 3, cluster 9 to

12 are generally associated with phase 4, cluster 13 to 15 represent mainly phase 5, and

cluster 16 to 20 contain primarily candidates of phase 1. When the data set is clustered

using a lower number of prototypes (e.g. 10 or 5, see figure 4.18), this effect becomes even

stronger.

2The original data set of selected genes can be downloaded from http://faculty.washington.edu/kayee/model/
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Figure 4.17: MarVis-Cluster main window for dataset2.csv using 20 prototypes. The
“alien” prototype number 9 is highlighted by the white cursor in the prototype
plot.

Figure 4.18: Main window for dataset2.csv using 5 prototypes (prototypes are scaled
according to cluster size and the lower box of the prototype plot displays nor-
malized marker candidate profiles).
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MarVis-Pathway

5.1 Data import

For data import, MarVis-Pathway utilizes the import capabilities of MarVis-Filter and

MarVis-Cluster (see section 3.1 and 4.1). Filtered and selected data can be analyzed by

means of MarVis-Pathway via the Goto MarVis-Pathway function in the respective

MarVis-Suite menu (see section 3.6 and 4.5). Additionally, previously saved MarVis-

Pathway projects may be loaded via the Load project function in the File menu (see

section 6.2).

5.2 Database selection and query

In the current version, MarVis-Pathway provides pathway databases from the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) and the BioCyc collection [3, 4]. The databases

are either integrated in the MarVis-Suite program directory (subfolder local) or can be

downloaded separately from the project home page. In the latter case, the folder where

the database files have been extracted has to be specified when running MarVis-Pathway

for the first time. The local database folder can be changed by means of the Set local

database dir function in the Analysis menu.

The included KEGG collection1 contains one reference (Reference pathways)

and about 3000 organism-specific databases. The included BioCyc collection2 provides

about the same number of organism-specific databases and one reference database

(MetaCyc). Each KEGG reference pathway is associated with a number of compound,

EC (Enzyme Commission), and KO (KEGG ORTHOLOGY) IDs (e.g C00084, K00001,

or 3.2.1.86) and names. Each MetaCyc reference pathway variant is associated with a

1KEGG FTP Release Dec 9, 2013, http://www.kegg.jp
2biocyc-17.5, http://biocyc.org/
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number of compound and EC IDs/names. The databases in both collections also contain

the monoisotopic masses for all compounds (which may be used for annotation of MS

data sets). In case of the organism-specific databases, the pathways are associated with

compound IDs/names/masses and gene IDs/names (e.g. AT5G42650 or AOS for A.

thaliana) instead of the EC and KO numbers. Each pathway can be considered as a set of

associated entries (see also section 5.4).

Additionally, customized databases may be loaded from CSV files. The first row in

such a file is reserved for header information (e.g. column labels). Each following row

contains information about the association of an entry (e.g. compound or gene) with a set

(e.g. pathway). The first column is reserved for entry IDs, the second and third column

for retention time and compound mass values (insert zeros for genes or enzymes), and the

fourth column for the corresponding entry names. The fifth column is reserved for the IDs

of associated sets/pathways, followed by the set/pathway name in the sixth column. The

last column is reserved for molecular formulas of the respective compounds (insert ’-’ if no

formula is available, e.g. for genes).

Note that entry IDs should not contain the characters ’/’ or ’:’, which are reserved

for entry type definitions (see also section 5.4.1).

5.2.1 Database selection

After switching to MarVis-Pathway or using the Database lookup function in the

Analysis menu, the databases which should be queried have to be selected in the

Database selection dialog (see figure 5.1). The user can select one or both of

the collections from the listbox Top level order on the left-hand side of the dialog.

The available databases in the selected collection(s) are presented in the middle listbox

with the title Databases. For both collections, the first entry represents the respective

reference database (MetaCyc for the BioCyc collection and Reference pathways

for KEGG) followed by the organism-specific databases sorted in alphabetic order of

their names. Single entries can be marked by clicking into the listbox or using the arrow

keys, multiple entries may be marked by holding the Control or Shift key. Marked

databases can be selected by clicking the Select button. The corresponding entries are

then listed in the Selection listbox on the right-hand side. The databases (in the selected

collections) may be searched for a particular organism by entering the corresponding name,

abbreviation, or substring in the textfield below the listbox and clicking the Find button.
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The Database listbox shows then only entries which contain the entered text in their

names. All entries can be restored by clicking onto the collection entries (left-hand side)

once again. Marked entries in the Selection listbox can be deselected by clicking on the

Remove button. By clicking the OK button, the dialog is closed and all selected databases

will be used for query. In the following file dialogs, additional databases may be loaded

from CSV files (see start of section). By clicking the Cancel button, the selection of

additional CSV files is finished.

Figure 5.1: MarVis-Pathway database selection dialog

5.2.2 Entry mapping

After database selection, the mapping method for each data set has to be specified. The

marker candidates in a particular data set may be mapped to the database entries based

on their IDs and the entry ID/names or based on their corrected monoisotopic masses (y-

values, see section 3.1 and 3.5) and the entry masses. In the Match entry IDs for

data sets dialog, the user can specify the data sets which should be mapped based on

marker candidate ID (as imported with the data set) and entry ID (as stored in the databases,

e.g. KO/EC numbers or gene IDs). In the Match entry names for data sets

dialog, the data sets which should be mapped based on marker candidate ID and entry name
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(e.g. common gene name) can be selected. Multiple data sets can be selected by holding

the Control or Shift key. The ID and name matching is case-insensitive. Note that

in contrast to the ID matching, the name matching is error-prone (especially for compound

names). By clicking the Cancel button, no data sets are selected for ID or name matching.

Data sets which have not been selected are used for mass-based mapping. In this case, the

user has to specify a mass tolerance (e.g. 0.005 Da) and a single or several correction factors

in the Mass matching dialog. A marker candidate is mapped to a database entry if the

absolute mass difference (marker candidate y-value minus entry mass) is below the specified

tolerance. The correction factors are added to each marker candidate mass (y-value) before

calculating the difference. By this means, multiple corrected masses per feature can be

used for matching. For data sets corrected for adducts and isotopes (see section 3.5), the

correction term should be set to 0. For uncorrected MS data these factors may represent

different ionization rules (e.g. 1.0078 or -1.0078 for negative/positive ionization mode

and [m −H]− or [m + H]+). Different correction factors (e.g. corresponding to adducts)

may be specified separated by space characters.

5.2.3 Scoring of pathways

After specifying the method(s) for marker candidate mapping, different options for the scor-

ing and ranking of pathways which contain matched entries can be selected in the Ranking

options dialog (see figure 5.2). For each pathway p, a score

Sp =
∑

m

∑

e

cm,e,p am,e,p Wm,e (5.1)

is calculated. Wm,e defines a positive weight for each assignment of a marker candidate m

to an entry e. am,e,p is a boolean assignment variable: am,e,p = 1 if marker candidate m

was mapped to entry e and e is associated with pathway p, am,e,p = 0 otherwise. cm,e,p is

a scaling factor for normalization.

If the radio button count in the Marker score box is activated, Wm,e = 1 for

all assignments. If the radio button rank is selected, the marker candidate ranking from

MarVis-Filter (see section 3.3) is utilized. In this case, the weights are calculated as rank

score Wm,e = 1 − Rm
Nd

, where Rm denotes the marker candidate rank in the (first)

MarVis-Filter ranking and Nd the number of candidates in the corresponding original data

set. This option is useful when annotating unfiltered data sets.
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The following options can be used in order to normalize the pathway scores accord-

ing to the number of entries a particular marker candidate matches (Mm,p, option Marker

hit normalization) and/or the number of candidates a particular database entry is

mapped to (Ee,p, option Entry hit normalization). The global normalization

factor cm,e,p (see equation 5.1) is defined as a function of Mm,p and Ee,p. If the max radio

button in the Overall normalization box is activated,

cm,e,p =
1

max(Mm,p, Ee,p)
. (5.2)

If the product radio button is selected,

cm,e,p =
1

Mm,p Ee,p
. (5.3)

If the mean radio button is selected,

cm,e,p =
1

mean(Mm,p, Ee,p)
. (5.4)

If the option local in the Marker hit normalization box is activated, Mm,p

is calculated as the number of assignments of marker candidate m to different entries in

pathway p. In case global is selected, Mm,p is the number of assignments of marker

candidate m to different entry-pathway pairs (in this case, Mm,p is independent of p). If the

option local in the Entry hit normalization box is activated, Ee,p is defined as

the number of assignments of marker candidates to entry e in pathway p. In case global

is selected, Ee,p is the number of assignments of marker candidates to entry e over all

pathways. If the option none is selected, Mm,p = 1 and Ee,p = 1, respectively.

Additionally, the pathway scores may be normalized according to the number of en-

tries associated with each pathway (checkbox normalize by set size selected).

This option in combination with the entry-based normalization is useful when searching

for pathways which show a high coverage by experimental evidence.

If the count option is activated and no normalization method is selected (none for

Marker hit normalization and Entry hit normalization), the pathway

scores correspond to the number of assignments per pathway. If the Marker hit

normalization is set to local, the pathway scores equal the number of unique

marker candidate hits per pathway. In case the Marker hit normalization and
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Entry hit normalization are set to local and the max option is activated

in the Overall normalization box (default options), the pathway scores are

normalized for marker candidates which match multiple entries in one pathway (e.g.

because the entries have the same mass) and for entries which are associated with multiple

candidates (e.g. due to different ionizations in MS analysis). The global option

and product function are useful when searching for pathways which are exclusively

associated with a set of entries which are exclusively matched by a set of marker candidates.

After specifying the ranking options and clicking the OK button, MarVis-Pathway

performs the database query and scoring of pathways. The results are presented in the

MarVis-Pathway main window (see figure 5.3).

Figure 5.2: MarVis-Pathway ranking options dialog (default options)
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5.3 Visualization and data analysis

The results of a database query are presented in the MarVis-Pathway main window (see

figure 5.3).

Figure 5.3: MarVis-Pathway main window after database query

5.3.1 Main window

The pathway/set list box

The pathway/set list box (see figure 5.3, region 1) shows the pathways (sets for Set Enrich-

ment Analysis, see section 5.4) which contain matched entries. The pathways are sorted

according to the scoring (see section 5.2.3). For each pathway, the first column contains the

rank index, followed by the pathway ID, name, score, number of associated entries (Size),

number of marker candidate and entry hits, and the score from Set Enrichment Analysis

(see section 5.4). Single pathways can be selected for further inspection by clicking into the

list box or using the up and down arrow keys.
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The pathway/set information box

The pathway/set information box (region 2) contains additional information regarding the

currently selected pathway. For the KEGG and BioCyc collection, this includes information

about the flat files used for database construction and copyright details.

The marker profile map

The marker profile map (region 3) shows the heatmap of marker candidate profiles

(columns) which could be mapped to the current pathway. Each row represents one of

the experimental conditions in the current order. The profiles are sorted according to the

projection onto the 1D-SOM used for clustering. By default, the average intensities per

condition are represented by colors from the MATLAB R© Jet colormap (e.g. red colors rep-

resent high intensities and blue colors represent low intensities). Single marker candidates

may be selected by clicking into the plot or using the left and right arrow keys. A white

rectangular cursor marks the current candidate (profile).

The entry assignment list box

The entry assignment list box (region 4) shows the assignments of marker candidates to en-

tries in the selected pathway sorted according to entry name. For each assignment, the first

column contains the color which is used to represent the corresponding entry in pathway

maps (e.g. pathway maps on the KEGG web site) followed by the corresponding marker

candidate ID, the associated entry name and ID, the marker candidate x and y-value, the

correction factor used for mass matching, and additional marker-specific information (e.g.

annotations from MarVis-Filter). A particular assignment can be selected by clicking into

the list box or using the up and down arrow keys. After selecting an assignment, the cor-

responding marker candidate profile is highlighted in the marker profile map (region 3).

When selecting a profile in the marker profile map, the first assignment of the correspond-

ing marker candidate is highlighted in the assignment list box.

By holding the Control key and pressing one of the color keys (r: red, b: blue, g: green,

y: yellow, o: orange, m: magenta, a: gray), the color for the entry associated with the

currently selected assignment can be changed. This function and additionally the selec-

tion of customized RGB colors are also available via the Set entry color item in the

Analysis menu. The dialog for customizing the color is shown after canceling the first

dialog. Via the Set colors item in the Analysis menu, the color can be changed for

all entries.

After clicking the Map button below the list box, MarVis-Pathway opens the corresponding
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online pathway map in a new browser window or tab. In case of pathways from the KEGG

collection, the entries in the pathway map are marked in the chosen colors (by default red).

For the KEGG reference pathways, the user may specify an KEGG organism code (e.g.

’ath’ for Arabidopsis thaliana). In this case, the organism-specific pathway with all match-

ing entries is shown. Leave the corresponding text field empty or insert ’map’ in order to

inspect the reference pathway.

After clicking the Entry button, the online resources for the corresponding entry are pre-

sented in a new browser window or tab.

The marker profile plot

The marker profile plot (region 5) shows the raw intensity profile of the marker candidate

associated with the currently selected assignment as bar plot. Intensity values of replicate

samples for the same experimental condition are marked in the same color. The intensities

are sorted according to conditions and the current sample order.

The related pathways/sets list box

The related pathways/sets list box (region 6) shows all pathways that contain entries mapped

to the marker candidate which is currently selected in the marker profile map (region 3) (or

which is associated with the currently selected assignment). The list items contain the same

information as presented in the pathway/set list box (region 1) and are in the same order.

If the current marker candidate is mapped to more than one entry in the same pathway, the

corresponding row is repeated. By clicking onto one of the rows, the corresponding path-

way, assignment, and marker candidate is selected and highlighted. When activating the

Hold checkbox below the list box, the current contents are retained when a new pathway/-

candidate/assignment is selected and the user can browse the list. This is especially useful

when checking different assignments of a single marker candidate.

5.3.2 Pathway and entry search

By means of the Search set list and Search entry list in the Analysis

menu, the user can search the results of database query for pathway/entry names and IDs.

In the first case, the rows of the pathway/set list box are searched for a given substring

(case-insensitive) starting with the next pathway in the list. In the second case, the entry

assignments are searched starting with the next pathway in the pathway/set list box. Ad-

ditionally, the user can search for particular marker candidates via the Find markers

... function in the Analysis menu (see section 6.3).
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5.4 Set Enrichment Analysis

For statistical analysis of pathway sets containing matched entries, MarVis-Pathway pro-

vides an extensive framework for (Gene/Metabolite) Set Enrichment Analysis (SEA) [5, 6]

(see function Set Enrichment Analysis in the Analysis menu). SEA intends

to identify sets of database entries (e.g. metabolic pathways) which are enriched in high-

ranked (e.g. highly differential) data set features mapped to the corresponding entries.

The SEA framework in MarVis-Pathway offers three different types of enrichment analy-

sis: The entry-based, marker/feature-based, and sample-based analysis. In the first case,

the number of entries in a pathway matched by the filtered/selected marker candidates (e.g.

in MarVis-Filter or MarVis-Cluster) in comparison to the number of entries which could

be matched over all pathways is evaluated based on a hypergeometric distribution. This

method is useful when dealing with small or strictly filtered data sets in comparison to large

organism-specific databases.

The marker/feature-based enrichment analysis uses the ranks of marker candidates (as cal-

culated in MarVis-Filter) which match entries in a particular pathway. For statistical evalu-

ation, a static or iterative hypergeometric test, a rank-sum, or a Kolmogorov-Smirnov test is

applied. This type of analysis relies on data sets containing a large number of marker can-

didates (but not necessarily large databases). The method is able to incorporate information

from adduct and isotope correction performed in MarVis-Filter (see section 3.5).

The sample-based enrichment analysis uses the ranks of marker candidates which are recal-

culated for a large number of random permutations of sample condition labels (assignments

of samples to experimental conditions). For (re-)ranking, the signal-to-noise ratio (see sec-

tion 3.3.2) is used. This method does not depend on the assumption of independent marker

candidates or independent database entries but requires a sufficiently high number of inde-

pendent replicate samples and considerably more computing time in comparison the first

two methods. In the following sections, the three types of analysis and the combination of

results from multiple data sets in a meta-analysis are described in detail.

5.4.1 Entry-based enrichment analysis

The entry-based enrichment analysis utilizes the cumulative hypergeometric distribution

[25, 26] based on the probability mass function

P (X = k) =

(
M
k

)(
N−M
n−k

)
(
N
n

) , (5.5)
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which represents the probability of observing exactly k successes when drawing n times

from a population of size N containing M successes (without replacement). In the context

of SEA, the population size N is calculated as the number of different entries in the selected

database(s). M is the number of matched entries (successes). For each pathway, n is set

to the number of associated entries and k to the number of matched entries in this pathway.

The p-value for each pathway is calculated based on the cumulative probability

P (X ≥ k) =

n∑

i=k

P (X = i) . (5.6)

Instead of calculating the numbers k, n, M , and N by counting all (matching) entries in

the database/pathways, the user can select a particular type of entries (cpd/: compounds,

ko/: KEGG ORTHOLOGY entries, ec/: enzymes, gene/: genes, all: all entries in the

selected databases). This function is useful when a data set contains only marker candidates

which are matched to a specific type of entries (e.g. compounds in case of MS-based

Metabolomics experiments). In case mass-based mapping of marker candidates was

performed (see section 5.2.2), entries with very similar masses are merged in order to

reduce this systematic dependence. For this purpose, the entry masses are clustered

(hierarchical clustering with complete linkage) before the statistical analysis is performed.

The clusters are obtained by cutting the dendrogram at a maximum distance corresponding

to the doubled mass tolerance (as specified, see section 5.2.2).

The pathway-specific p-values may be adjusted for multiple testing based on the Bonferroni

(option Direct p-value calculation, FWER control (Bonferroni))

or Holm-Bonferroni method (Direct p-value calculation, FWER control

(Holm-Bonferroni)) [14], which control the familywise error rate (FWER), or the

Benjamini-Hochberg method (Direct p-value calculation, FDR control

(Benjamini-Hochberg)) [15], which controls the false discovery rate (FDR).

Additionally, the error rates can be estimated based on the random permutation of entry

hits (options Random permutation of ranks, FWER control and Random

permutation of ranks, FDR control). In this case, the p-values are directly

calculated (see above) and then compared to the p-values recalculated for a high number of

random permutations. In each permutation step, the entries which are matched by marker

candidates and the entries which could not be matched are permuted randomly (with the

number of matched entries constant). This approach takes the dependence of different

pathways (e.g. pathways that contain a common subset of entries) into account when
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calculating the error rates.

After calculation, the pathways in the pathway/set list box are sorted according to

the corresponding p-values. An additional column contains the adjusted p-values/error

rates. In case of direct p-value calculation and adjustment, the corresponding values may

be greater than one (e.g. due to Bonferroni adjustment).

5.4.2 Marker/feature-based enrichment analysis

The marker/feature-based enrichment analysis provides four different types of tests: A test

based on the cumulative hypergeometric distribution (option Hypergeometric, see pre-

vious section), an iterative hypergeometric test (Hypergeometric (iterative)),

a rank-sum (Mann–Whitney U) test (Rank-sum), and a Kolmogorov–Smirnov test

(Kolmogorov-Smirnov).

In the first case, the p-values are calculated based on the cumulative probability

from equation 5.6. In contrast to the entry-based analysis, N is the number of marker

candidates in the unfiltered data set, M the number of selected candidates (in MarVis-Filter

or MarVis-Cluster), n the number of candidates in the unfiltered data set that match entries

in a particular pathway, and k the number of selected and matching candidates (in a

particular pathway). In case of the mass-based mapping of marker candidates (see section

5.2.2), the overall number of hits in a pathway (n) is calculated by applying all available

adduct rules and isotope numbers used in the mass correction procedure (see section 3.5)

to all marker candidates in the unfiltered data set and mapping the resulting masses to the

database entries. In case mass correction factors were specified (see section 5.2.2), the

factors are applied to all candidates and the resulting masses are mapped to the selected

database(s).

The iterative hypergeometric method evaluates the different filtering possibilities in

MarVis-Filter within one test. Starting with the first selected candidate in the MarVis-Filter

ranking, followed by the first two, three, and up to all candidates which were selected (e.g.

in MarVis-Filter or MarVis-Cluster), the cumulative probabilities are calculated. For each

simulated filtering, the numbers M and k in equation 5.5 include only the selected candi-

dates below/above the currently simulated filter threshold. For the final pathway-specific

p-value, the minimum is taken over all simulated selections and multiplied by the number

of matching selected candidates (applying all adduct/isotope rules in case of mass-based
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mapping). If the data set was ranked and filtered several times, MarVis-Pathway utilizes the

first ranking after data import in MarVis-Filter. This type of test is useful when applying the

hypergeometric test to unfiltered data sets or when there is no suitable threshold for filtering.

The rank-sum (Mann–Whitney U) and Kolmogorov-Smirnov tests are more powerful

but less robust alternatives to the iterative hypergeometric test. In case of the rank-sum

test, the p-value for each pathway is calculated based on the ranks of all matching marker

candidates in the unfiltered data set (considering all adduct rules, isotope numbers, and cor-

rection factors in case of mass-based mapping) in comparison to the ranks of all candidates

which do not match entries in the current pathway. In case of the Kolmogorov-Smirnov

test, the p-value is calculated by comparing the ranks of all matching candidates to the

distribution of ranks in the unfiltered data set. Note that the resulting p-values reflect the

rank distribution of all matching marker candidates (not only the selected candidates which

are displayed in MarVis-Pathway).

For all four types of tests, the p-values may be calculated and adjusted directly or

based on random permutations of marker candidate ranks/hits (see previous section). After

calculation, the pathways in the pathway/set list box are sorted according to p-values and

an additional column contains the adjusted values.

5.4.3 Sample-based enrichment analysis

The sample-based enrichment analysis uses the signal-to-noise ranking of marker candi-

dates (see section 3.3.2) in combination with the rank-sum or Kolmogorov-Smirnov test

(see previous section) and random permutations of sample condition labels (assignments

of samples to experimental conditions). In contrast to the first two approaches, this method

does not assume independent marker candidates or independent database entries for the

final error rate estimation. It should be applied to unfiltered data sets only. The user has to

specify the number of random permutations and dependence labels of samples (e.g. 1 2

3 for three independent samples, see section 3.3.2).

In the first step of this procedure, the available marker profiles (as selected in MarVis-Filter

or -Cluster) are ranked using the signal-to-noise ratio. For each pathway, a p-score is

calculated based on the rank-sum or Kolmogorov-Smirnov test (user’s choice) of associated

marker candidate ranks. Then, for a high number of random permutations of sample labels,

the ranking of the permuted intensity profiles and the corresponding pathway-specific
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p-scores are recalculated. The observed pathway-specific p-scores are then compared to

the p-scores calculated for all pathways and random permutations. Finally, the error rate is

estimated for each pathway (option FWER control or FDR control, see also section

3.3.2). After calculation, the pathways in the pathway/set list box are sorted according to

the error rates and an additional column contains the adjusted values.

Note that the re-ranking of marker candidate profiles for all random permutations

takes considerably more computing time compared to the marker/feature or entry-based

SEA.

5.4.4 Meta-analysis of multiple data sets

MarVis-Pathway provides a framework for the joint (entry, marker/feature, or sample-

based) Set Enrichment Analysis of combined data sets, e.g. resulting from positive and

negative ionization mode in MS analysis, from different omics platforms, or replicate

experiments (see section 3.4.1). For this purpose, the pathway-specific p-values/scores,

which are calculated for each data set and pathway separately (see previous sections),

are merged in a meta-analysis [7, 27] using Fisher’s [28] or Stouffer’s method [29] for

independent data sets.

Additionally, groups of dependent data sets, e.g. obtained from the same biological

samples, may be specified. For each pathway and group of data sets, the corresponding

p-values are then combined by taking the minimum value multiplied by the number

of group members (Minimum p-value and Fisher’s method). The adjusted

group-specific p-values are then used to calculate the meta-p-value for each pathway based

on Fisher’s method. In case no groups of dependent data sets were specified, all data sets

are assumed to be independent. An exception applies to the sample-based analysis (see

following paragraph).

In case a sample-based enrichment analysis is performed, representations of the same

biological sample in different data sets may be linked and the condition labels are permuted

together, e.g. a particular sample is always assigned the same condition label in all linked

data sets. The linking option may also be combined with technical replicates belonging to

independent biological samples (see section 3.3.2). For example: In case of linking two

data sets with dependent sample labels 1 1 2 2 3 3 4 4 (four independent biological

samples and two dependent technical replicates, respectively) and 1 2 3 4 (the same

four independent biological samples, no technical replicates), the four biological samples
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are always assigned the same condition label for both data sets and the technical replicates

are assigned the label of the corresponding sample.

Finally, the error rates (FWER or FDR) are calculated based on the meta-p-values.

In case a random permutation test is performed, the observed meta-p-value for a pathway

is compared to the meta-values obtained for all pathways and all random permutations.

If no marker candidates in a data set match entries in a particular pathway, this data

set is left out in the meta-analysis of the corresponding pathway. The user may select a

subset of data sets which should be used for SEA and meta-analysis. The error rates of

pathways which contain no hits for the selected data sets are set to infinity.

5.5 Data export

Results from functional annotation and statistical analysis in MarVis-Pathway may

be exported via the Export sets, Export annotated markers, or Export

markers in set(s) entries in the File menu. In the first case, the annotated set-

s/pathways (see figure 5.3 region 1) are exported as CSV file. In the second case, all marker

candidates are exported in MarVis CSV format (see section 3.1) with an additional entry

column. This column contains the IDs and names of all matched database entries and the

corresponding set/pathway IDs and names. In the third case, only marker candidates which

could be mapped to selected pathways are exported. The pathways have to be selected by

specifying their current rank indices (e.g. 1:3 6 for indices 1 to 3 and 6, see figure 5.3

region 1).

5.6 Data exchange with MarVis-Cluster

The annotated marker candidates can be analyzed in MarVis-Cluster (see chapter 4) using

the Goto MarVis-Cluster entry in the MarVis-Suite menu. In this case, the can-

didates are annotated with an additional entry column. This column contains the IDs and

names of all matched database entries and the corresponding pathway IDs/names. A method

for aggregation of replicate intensities and for scaling of aggregated intensity profiles has to

be specified (see section 3.6). The aggregated and scaled condition-specific profiles are then

used for clustering and visualization in MarVis-Cluster (see section 4.3). After clustering,

the marker candidates within a cluster may be sorted according to the projection onto the

1D-SOM (and thereby sorted according to similarity of their intensity profiles).
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General functions in the
MarVis-Suite

6.1 Toolbar

The toolbar in the MarVis-Suite main windows (below the menu bar) contains two toggle

buttons for zooming. After activating the Zoom in button (on the left-hand side) with a

mouse click, the MATLAB R© zoom mode can be used to zoom into a particular plot by

clicking into the plot (for details see the online MATLAB R© zoom help page). Within a plot,

a rectangular area which should be zoomed in can be specified by holding the left mouse

button pressed and moving the cursor along the plot. After releasing the mouse button, the

selected area will be zoomed in. By activating the Zoom out button (right-hand side),

the plots can be zoomed out, respectively. A click with the right mouse button within a

plot shows a small context menu. Via the Reset to Original View menu item,

the original view can be restored. The zoom mode can be deactivated by pressing the

respective button with another mouse click.

For plots in additional windows, MarVis utilizes the MATLAB R© toolbar. Via the

floppy disk symbol, the figure content can be saved in various image formats. By means

of the symbols representing a magnifying glass or hand, the zoom mode can be activat-

ed/deactivated and the user can slide the plot (click on the hand symbol, click into the plot

and hold the mouse button, move the mouse for sliding). By clicking on the datacursor

symbol (third from right-hand side), the datacursor mode (see MATLAB R© help page) can

be activated and used for inspection of associated data. A colorbar representing the current

color mapping can be added by clicking on the respective symbol (second from right-hand

side). For changing the colormap, see section 4.4.3 about the MATLAB R© colormap editor.
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6.2 Save and load projects

Via the entries Save project and Load project in the File menu of all MarVis-

Suite main windows, the current data set and all user-specific settings (e.g. visualization

properties, dialog entries, etc.), can be saved or restored. MarVis displays a file dialog

where the input/output file has to be selected. The project is stored in the MATLAB R©

mat-format. Note that projects saved in MarVis-Filter, MarVis-Cluster, or MarVis-Pathway

can only be loaded in the respective tool. By default, MarVis saves all user-specific

settings at the end of each session in the files MFilterUserSettings.mat,

MClusterUserSettings.mat, and MPathwayUserSettings.mat in the

MarVis-Suite program directory. At the start of each session, MarVis automatically loads

these files and the corresponding settings.

Via the menu entry Reset default settings in the File menu, the default

settings, e.g. the default colormap, can be restored.

6.3 Search for marker candidates

Marker candidates with particular IDs, x, or y-values (e.g. retention time or mass)

can be searched for and selected/deselected using the Find markers dialog via the

Selection or Analysis menu in all MarVis-Suite main windows (see figure 6.1). The

(range of) values to be searched for can be specified in the ID/x/y Value text fields (left

column). If a value should not be limited, the corresponding field has to be left empty.

The ID must be specified as a regular expression1 or substring (e.g. “∧123” for marker

IDs starting with “123”), while the x and y-value must be numerical. The ID search is

case-insensitive and leading/trailing whitespaces are removed. In the Deviation fields

the maximum absolute x and y-deviation of the search results can be specified. Note that

these values must be positive. After clicking the Find button, MarVis searches for marker

candidates

• whose IDs match the regular expression or substring (if specified)

• AND whose x-values are in the range [given x-value - x-deviation, given x-value +

x-deviation] (if specified)

1For information about regular expressions, we refer to the corresponding MATLAB R© help page or the
wikipedia web site.
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• AND whose y-values are in the range [given y-value - y-deviation, given y-value +

y-deviation] (if specified).

The search results are presented in the Marker information box at the bottom

of the dialog (see also section 4.4.1). Here, the selection status (1: marker candidate

selected, 0: marker not selected), the associated cluster number, the ID, x and y-values, and

additional values of matching candidates can be inspected. By clicking on a single row

or by using the up and down cursor keys, a particular marker candidate can be activated.

Clicking Select/Deselect or pressing m on the keyboard adds the current candidate

to the selection list (only in MarVis-Cluster). By clicking the Close button, the Find

markers dialog is closed. After closing the dialog, MarVis jumps to the activated marker

candidate in the corresponding main window.

Figure 6.1: Find markers dialog for example dataset1.csv
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6.4 General visualization functions

6.4.1 Standard deviation, box, and scatter plots

The raw intensity profile of the current marker candidate can be visualized as mean/s-

tandard deviation plot or boxplot using the Errorplot and Boxplot entries in the

MarVis-Suite menu. In the first case, MarVis plots the mean intensities for all

conditions and the sample standard deviation within all conditions in a new window. In the

second case, a condition-specific boxplot is displayed (see MATLAB R© boxplot function

for details).

Additionally, in MarVis-Filter and MarVis-Pathway, the x and y-values of marker

candidates (e.g. retention times and masses) can be visualized as scatter plot (entry Plot

x/y values). The x and y-values of all marker candidates in the unfiltered data set are

plotted as small gray dots. The values of all marker candidates in the current filtered data

set are marked as big red dots, the values of currently selected candidates (MarVis-Filter)

or of candidates in the currently highlighted pathway/set (MarVis-Pathway) as big black

dots.

6.4.2 Export of graphics

Via the Export graphics item in the MarVis-Suite menu, all plots of the current

main window can be copied into separate windows, inspected, and exported. By using the

MATLAB R© toolbar (beneath the menu bar, see section 6.1), the plots can be adjusted (see

pan function), zoomed in (see zoom function), inspected with a data cursor (see datacursor

function), annotated with a colormap bar (see colorbar function), and exported in various

image formats (e.g. in TIF or EPS format, see saveas function). For general export options,

such as the resolution in dpi, the MATLAB R© Export Setup function in the File

menu may be used (see Export Setup function).

Via the Copy figure entry in the Edit menu, the whole plot can be copied into

the system clipboard. Using the Colormap editor entry (see section 4.4.3 for details),

the colormap can be modified. Via the Figure properties entry, general properties

of the current plot can be adjusted for export (e.g. the title, the x and y-labels, and the axes

ticks and labels). All described functions can also be applied to standard deviation and

boxplots generated by MarVis (see section 6.4.1).
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Via the Hide cursors and Show cursors entries in the MarVis-Suite menu of

each main window, the cursors within each plot can be hidden or restored. These functions

can be useful when exporting graphics without highlighting.

Note that for the standard export of plots (not in case of the Export Setup func-

tion), the corresponding window size determines the resolution of the resulting images.

6.5 MarVis-Suite log function

All MarVis-Suite tools log the workflow of data analysis and the applied functions. The user

can inspect the log via the View log function in the MarVis-Suite menu. The log text

is shown in a new window and can be exported via the Save file button or copied into

the system clipboard using the Control+C keys. Additionally, the user can edit the log

and confirm the changes by clicking the OK button. When closing the window or clicking

the Cancel button, changes are not applied to the log.

6.6 Molecular formula calculation

In MS data analysis, putative molecular formulas can be calculated for the selected

(corrected) marker candidate using the Mass2Formula entry in the MarVis-Suite

menu. In the following dialog (see figure 6.2), the chemical elements used for calculation

(elements), the input mass (measured mass), and the mass tolerance (tolerance)

can be specified. By default, measured mass is set to the (corrected) y-value of the

current marker candidate (see section 3.5 for details about mass correction).

When clicking on the Std button, MarVis fills the elements field with a set of

default elements (C H N O P S). If the checkbox chemical rules is activated, MarVis

filters out formulas which do not satisfy the heuristic Seven Golden Rules [30]. If the

checkbox RDBE is activated, MarVis also performs a Rings-plus-Double-Bonds-Equivalent

check for the obtained formulas (see [30]). Via the checkbox number of carbons

estimated and the text fields number of carbon atoms and tolerance, the

obtained formulas can be filtered further. The (estimated) number of carbon atoms may be

a floating-point number, the tolerance must be a number between 0 and 1 (e.g. 0.25 for a

25 percent tolerance). MarVis automatically fills the first text field with the estimated num-

ber of carbon atoms from isotope correction (if the estimation was possible, see section 3.5).
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The calculation can be started via the Calculate button. Note that the calculation

of molecular formulas for large masses (> 500 Da) without applying chemical rules may

take some time. After calculation and filtering, the remaining formulas and their deviation

from the measured mass are displayed in the text field below the button, sorted according

to absolute deviation. Single lines of the output can be copied into the system clipboard

using the Control+C keys.

The molecular formula calculator can also be applied to the difference of y-values

of two selected marker candidates (function DifferenceMass2Formula, only in

MarVis-Cluster). This option is useful for the identification of adducts in MS data analysis.

Figure 6.2: Mass-to-formula dialog
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[8] A. Kaever, T. Lingner, K. Feussner, C. Göbel, I. Feussner, and P. Meinicke. MarVis: a

Tool for Clustering and Visualization of Metabolic Biomarkers. BMC Bioinformatics,

10:92, 2009.

[9] A. Kaever, M. Landesfeind, M. Possienke, K. Feussner, I. Feussner, and P. Meinicke.

MarVis-Filter: Ranking, Filtering, Adduct and Isotope Correction of Mass Spec-

trometry Data. Journal of Biomedicine and Biotechnology, 2012, 2012. doi:

10.1155/2012/263910.

[10] S. Anders and W. Huber. Differential expression analysis for sequence count data.

Genome Biology, 11(10):R106, 2010.

[11] J. Gibbons and S. Chakraborti. Nonparametric Statistical Inference. CRC Press, 2003.

[12] M. Vinaixa, S. Samino, I. Saez, J. Duran, J. J. Guinovart, and O. Yanes. A guideline to

univariate statistical analysis for LC/MS-based untargeted metabolomics-derived data.

Metabolites, 2(4):775–795, 2012.

[13] S. Wright. Adjusted p-values for simultaneous inference. Biometrics, 48(4):1005–

1013, 1992.

[14] S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Jour-

nal of Statistics, 6(2):65–70, 1979.

[15] Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: a practical and

powerful approach to multiple testing. Journal of the Royal Statistical Society. Series

B (Methodological), 57(1):289–300, 1995.

[16] V. G. Tusher, R. Tibshirani, and G. Chu. Significance analysis of microarrays applied

to the ionizing radiation response. PNAS, 98(9):5116–5121, 2001.

[17] Z. He and J. Zhou. Empirical evaluation of a new method for calculating signal-to-

noise ratio for microarray data analysis. Applied and Environmental Microbiology, 74

(10):2957–2966, 2008.

[18] L. V. Hedges. Distribution theory for Glass’s estimator of effect size and related esti-

mators. Journal of Educational and Behavioral Statistics, 6(2):107–128, 1981.

[19] G. K. Smyth. Linear models and empirical bayes methods for assessing differential

expression in microarray experiments. Statistical Applications in Genetics and Molec-

ular Biology, 3(1):3, 2004.

67



MarVis-Suite Handbook

[20] X. Cui and G. A. Churchill. Statistical tests for differential expression in cDNA mi-

croarray experiments. Genome Biology, 4(4):210, 2003.

[21] V.-T. Tran, S. A. Braus-Stromeyer, H. Kusch, M. Reusche, A. Kaever, A. Kühn, O. Va-
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