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1. Summary 

 

Cardiac fibroblasts play a major role in fibrogenesis associated with heart failure, since 

they produce ECM components and secrete important fibrosis-associated mediators, 

such as connective tissue growth factor (CTGF). CTGF expression and secretion can be 

induced by the angiotensin II (Ang II) type1 receptor (AT1-R) activation. Within this 

thesis, the role of the Ca2+- and cytoskeleton-dependent signaling pathways elicited by 

Ang II on the regulation of CTGF were investigated in neonatal rat cardiac fibroblasts 

(NRCF). Ang II was shown to induce a Ca2+ transient via the PLC-β canonical pathway 

with an EC50 in a physiological range. This transient was detectable in the absence of 

extracellular Ca2+ and in accordance, the depletion of intracellular Ca2+ by thapsigargin 

(TGN) completely suppressed it. Interestingly, the blockade of the transmembrane 

TRPC3 channels by pyrazole 3 increased this transient and strongly inhibited the Ang II-

induced Ca2+ oscillations. In addition, the Ca2+ oscillation could be also blocked by TGN. 

Moreover, the NADPH oxidase and its accessory activator Rac1 were found to be 

involved in the regulation of the induced Ca2+ transient in the cytosol and in 

mitochondria. In the next step, the impact of Ca2+ and its effector proteins were studied 

on CTGF expression and secretion. First, to demonstrate the overall outcome of Ca2+ on 

the regulation of CTGF, BAPTA-AM was used and showed that the chelation of 

intracellular Ca2+ resulted in the inhibition of CTGF expression and secretion. Second, 

with help of the inhibitor Go 6983 the involvement of protein kinase C (PKC) as a 

downstream mediator could be established. Third, in contrast to the downregulation of 

CTGF expression by PKC inhibition, an increase in CTGF expression was found in 

response to calcineurin inhibition by cyclosporin A (CsA). Next, the role of the actin 

cytoskeleton and of microtubules were studied. Actin filament disruption by latrunculin A 

(LAT-A) led to a similar decrease in CTGF expression as BAPTA-AM, which also had an 

actin depolymerizing effect. Similar, PKC inhibition was found to disrupt the actin 

cytoskeleton. All three interventions led in addition to major morphological changes of 

the Golgi apparatus, which is the major storage place of CTGF. In contrast to the actin 

cytoskeleton, the integrity of the microtubules was not affected under most conditions. 

To finally determine the role of these thick filaments in CTGF regulation, the 

microtubules depolymerizing drug colchicine was applied, which dispersed the Golgi 

apparatus, increased the CTGF expression and uncoupled it from the AT1R signaling 
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cascade. In summary, CTGF is regulated by a crosstalk of Ca2+-dependent signaling, 

involving PKC and calcineurin, and cytoskeleton-dependent pathways involving actin 

filaments and microtubules. 

  

 

2. Introduction 

 

Heart diseases are the most common death causes not only in industrial societies, but 

also in low- and middle-income countries. During the last decades, huge efforts have 

been made to understand the molecular mechanisms involved in the dysregulation of 

cardiac function in order to improve the pharmacological therapy. Despite the 

intervention with several classes of modern therapeutics has clearly reduced the 

mortality of cardiac diseases, it is still not possible to reverse the diseased cardiac 

phenotype, this is most likely due to our limited knowledge of the detailed underlying 

molecular pathomechanisms. One reason for this might be attributed to the strong 

research focus on the malfunction of cardiomyocytes, disregarding the complex cellular 

composition of the cardiac tissue, where non-cardiomyocytes compose a major cell 

population [1]. It can be assumed that these cells, including cardiac fibroblasts, 

endothelial cells, pericytes, smooth muscle cells and immune cells, communicate with 

each other as well as with the cardiomyocytes and are therefore similarly affected by the 

neurohumoral changes occurring in heart diseases [2, 3]. Moreover, it is highly possible 

that non-cardiomyocytes expedite the progression of the cardiac remodelling as 

occurring in heart diseases [4].  

 

 

2.1. Heart failure 

 

Heart failure (HF) is a common cause for disability and death worldwide. According to a 

global epidemiological study in the year 2012, the prevalence of HF was over 23 million 

worldwide, with a lifetime risk of developing the disease to be one in five, and a five-year 

mortality rate that is higher than in many types of cancer [5]. 

 

HF is a progressive chronic disease that is generally characterized by imbalance 

between cardiac output and the metabolic demand of the body. It usually results from 

diminished contractility of the myocardium (systolic dysfunction), inadequate filling of the 
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heart (diastolic dysfunction), or more often a combination of both dysfunctions. Several 

underlying disease conditions have long been identified to stand behind cardiac 

dysfunctions, including myocardial infarctions (MI), chronic ischemia, dilated 

cardiomyopathy, ventricular hypertrophy (which results from chronic pressure overload 

or volume overload), cardiac valves stenosis and pericardial diseases. Any of these 

diseases can weaken cardiac contractility and so can reduce cardiac output, leading to a 

reduction in renal blood perfusion, which in turn activates the renin-angiotensin II (Ang 

II)-aldosterone system (RAAS), resulting in increased Ang II generation and aldosterone 

secretion, which mediate several events that are associated with cardiac remodeling, 

such as hypertrophy and fibrosis. On the other hand, the reduction in the cardiac output 

results in the activation of the sympathetic nervous system, due to a decline in carotid 

sinus firing. The persistent activation of the sympathetic nervous system on one side 

contributes to the myocardial remodeling, and on the other side causes desensitization 

of the β-adrenergic receptors. Together, cardiac remodeling and β-adrenergic receptors 

desensitization further exacerbate the dysfunction of cardiac contractility and cardiac 

output, and by that a vicious cycle is initiated, which persists along the progression of the 

disease (Fig. 1) [6]. It is worthy to mention that in the early stage of HF development, the 

activation of the RAAS as well as the sympathetic activation improve cardiac function, 

but the chronic activation of these two systems leads to the detrimental, irreversible and 

progressive cardiac remodeling [7].  
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Figure 1: Vicious circle of heart failure 

The reduction of the cardiac output, due to several underlying etiologies, induces the 

activation of the sympathetic nervous system and RAAS, which eventually results in the 

desensitization of the β-adrenergic receptors and in cardiac remodeling, and 

consequently in further reduction of the  cardiac output. Modified from Maack and 

coworkers [8]. 

 

 

2.2. Cardiac fibrosis 

 

Cardiac fibrosis is a feature of cardiac remodeling that occurs along the course of HF 

development. It is characterized by increased deposition of extracellular matrix (ECM) 

proteins, mainly by activated cardiac fibroblasts (CF) as well as by vascular smooth 

muscle cells [9]. There are two types of fibrosis: reparative fibrosis, which is secondary 

to cardiac cell necrosis as in the case of ischemia and aging, where the dead tissue is 

replaced by a scar. The second type of fibrosis is the reactive fibrosis, which results from 

persistent stimulation of CF, but without direct tissue injury as in the case of chronic 

hypertension [10]. With time, reactive fibrosis causes necrosis and apoptosis of 

cardiomyocytes, resulting in reparative fibrosis. Cardiac fibrosis increases the stiffness of 

the myocardium, thus impairs cardiac filling and contraction of the myocardium [9]. 

  

 

2.3. Contribution of CF to cardiac remodeling 

 

2.3.1. CF and myocardium homeostasis 

 

The CF numerically comprise a major cell population of the myocardium [11]. Normally 

they produce and deposit ECM proteins, including collagen types I, III, V and VI, laminin, 

elastin, proteoglycans and glycosaminoglycan. In the same time they secret different kinds 

of matrix metalloproteinases (MMPs) which degrade ECM as well as tissue inhibitors of 

metalloproteinases (TIMPs) [12]. Under healthy conditions, the balance between synthesis 

and turnover of ECM by CF is tightly regulated, so that CF can build up a 3D network of 

connective tissue, where myocytes, fibroblasts and ECM interact with each other in a way 

that ensures structural integrity of the heart, proper distribution of contraction force and 

proper electromechanical function of the myocardium [4]. In vitro studies have shown that 
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CF can couple to cardiomyocytes via connexin 43, and that this coupling allows 

synchronization of spontaneous beating of distant cardiomyocytes, which suggests a 

potential role in the regulation of electrophysiology of the heart [13]. In addition, the 

connective tissue that is synthesized by CF acts as a natural electrical insulator, which 

allows gradual distribution of electrical impulse throughout the cardiac tissue being 

important for the orderly contraction of the different parts of the heart [14]. Moreover, CF 

secret a plethora of bioactive molecules, such as connective tissue growth factor (CTGF), 

transforming growth factor-beta (TGF-β), tumor necrosis factor-alpha (TNF-α), interleukin 

1beta (IL-1β), interleukin-6 (IL-6), endothelin-1 (ET), natriuretic peptides and vascular 

endothelial growth factor (VEGF). These mediators generally function in an autocrine and 

paracrine fashion to regulate proliferation, migration, differentiation, gene expression and 

secretion of mediators by CF and other cells. Interestingly, it was also found that CF can 

secrete all components of the RAAS system including angiotensinogen, renin and the 

angiotensin converting enzyme (ACE), which allows local generation of Ang II in the 

microenvironment of CF and cardiomyocytes. This might play a central role in myocardial 

homeostasis as well as in the pathogenesis of HF [15] as will be explained in more details 

below.  

 

 

2.3.2.  Differentiation of CF into myofibroblasts 

 

Under stress conditions, like cardiac injury and chronic hypertension, CF tend to 

differentiate into myofibroblasts (MyoF), which are disease-affected CF [16] and normally 

not present in a healthy myocardium [4]. MyoF acquire the ability to express α-smooth 

muscle-actin (sm-actin), allowing the contraction of ECM fibers, they also acquire greater 

capacity to secret bioactive molecules, ECM proteins, MMPs and TIMPs, which help MyoF 

in scar formation (Fig. 2) [15, 17, 18]. Usually after successful wound closure the MyoF 

e.g. in the skin undergo apoptosis [19], but the scenario that occurs in the infarct heart is 

somewhat different. For so far unclear reasons, following “healing” and scar formation, 

MyoF in the mature infarct scar persist for a long time, months or years [20], and play a 

key role in excessive scaring and fibrosis. Eventually, they participate in the pathogenesis 

of cardiac remodeling and HF [21].  
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Figure 2: Role of CF in cardiac remodeling 

The different biological activities of CF are essential for the maintenance of the 

myocardium homeostasis. Under stress conditions, CF differentiate into MyoF, which 

have enhanced biological activities that are in favor of supporting myocytes hypertrophy 

and the increased deposition and turnover of the ECM, which contributes to the 

myocardium remodeling.  

 

 

Experimentally it is difficult to analyze the distinct functions of CF and MyoF, as 

maintaining the CF phenotype in culture is challenging. Whenever these cells are seeded 

on plastic cell culture plates/dishes, they spontaneously start to differentiate into MyoF, 

which can be detected by an increased expression of α-sma. In this case, CF differentiate 

into MyoF because plastic surfaces are generally stiffer than healthy cardiac tissue [22]. 

Therefore, most of the current publications about fibroblasts are actually showing data on 
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the pathobiology of MyoF, and consequently there is a lack of information on precise 

differences between CF and MyoF. In addition, the more these cells are passaged, the 

more they express α-sma, i.e. the more they acquire the myofibroblastic phenotype [16]. 

Several other factors have been indentified so far which shift CF characteristics into more 

myofibroblastic phenotype including the presence of serum, glucose level in the culture 

medium, the addition of certain bioactive molecules like TGF-β and the electrical and 

mechanical stimulation [23-26].  

 

 

2.4. Role of Ang II in the pathogenesis of cardiac fibrosis 

 

In patients with HF, the levels of Ang II in the circulation, myocardium and the central 

nervous system are increased [27, 28]. Beside the fact that Ang II induces hypertrophy 

in cardiomyocytes [29], Ang II also induces the differentiation of CF into MyoF [30], and it 

stimulates these cells to deposit ECM proteins [31] and to secret profibrotic mediators 

such as TGF-β and CTGF [32, 33].  

 

Ang II is the active end product of the RAAS, where angiotensinogen is converted by 

renin into angiotensin I, which is then cleaved by the angiotensin converting enzyme 

(ACE) into Ang II. Two isotypes of Ang II receptors have been identified both belong to 

the G-protein coupled receptor (GPCR) superfamily and are named as AT1 and AT2 

receptors. In healthy adult individuals, Ang II exerts its biological functions mainly via 

activation of the AT1 receptors [34]. In the adult heart, AT1 receptors are expressed in 

different cardiac cell types including CF [35], cardiomyocytes [36] and vascular smooth 

muscle cells [37]. They are able to couple to different isoforms of G-proteins at the same 

time, and therefore, they can simultaneously initiate different signal transduction 

pathways depending on the activated G-protein. Each of the activated G-proteins can in 

turn activate several signaling cascades, which crosstalk with each other and regulate 

each other. Therefore, the activation of AT1 receptors initiates a highly complex 

regulated signal transduction network resulting in an array of physio-pathophysiological 

effects. 
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2.4.1. Ang II-induced reactive oxygen species production in CF 

 

In general, reactive oxygen species (ROS) are highly reactive oxygen derivatives, such 

as hydrogen peroxide (H2O2) and superoxide (O2
.-), which have a great capacity to 

interact with and oxidize various cellular macromolecules resulting in modifications that 

influence the functionality and activity of the affected molecules. The role of ROS in the 

physiology of immune cells was identified as early as in the1960s, when it was found 

that ROS generation is crucial for the elimination of phagocytized pathogens by immune 

cells [38, 39]. Later ROS generation was detected in various non-immune tissues, which 

was perceived as an unfavourable and inevitable event that accompanies the normal 

catalytic activities of enzymes, which can participate under certain circumstances in the 

pathogenesis of several diseases including heart failure [40, 41]. However, the intensive 

investigations for the biology of ROS over the last few decades expanded our 

understanding of ROS biology to include, beside pathological effects, vital contributions 

to cellular physiology [42]. 

 

The generation of ROS is usually performed by the multi-subunit NADPH oxidases 

(NOXs), which are localized to various subcellular microdomains such as caveolae, 

mitochondria, the nucleus, and endosomes, and therefore the generation of ROS is 

thought to be highly compartmentalized, which allows specific targeting of certain 

signaling cascade molecules [43, 44]. The NOX family consists of several isozymes: 

NOX1-5 and 2 related enzymes (DUOX1, DUOX2). These enzymes catalyze the 

transfer of one electron from NADH or NADPH to an oxygen molecule (O2) converting it 

into superoxide (O2
.-), which can be converted into H2O2 by superoxide dismutase [45]. 

NOXs are generally known to be differentially expressed in different cardiac cell types. In 

CF several publications have shown that NOX2 and NOX4 are expressed, but the 

expression of other NOXs cannot be excluded. NOX2 is composed of two membrane-

spanning subunits, which are an oxidizing subunit (gp91phox also called NOX2) and a 

complex stabilizing subunit (p22phox), besides the three cytoplasmic components 

Rac1/2, p40phox, p67phox and p47-phox. Likewise, NOX4 also has two membrane-

spanning subunits; the complex stabilizing p22phox subunit and the oxidizing NOX4 

subunit. The involvement of cytoplasmic subunits in NOX4 activation is still unclear; 

some publications reported an association with Poldip2 [46], others suggested a Rac1-
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mediated activation [47], and some suggested that NOX4 is constitutively active and 

does not require additional regulatory subunits [48-50]. 

 

ROS has been also shown to be involved in the fibrogenesis of several organs including 

heart, lung, liver and kidney [51]. In the heart, ROS generation is acutely upregulated in 

response to ischemia/reperfusion of the myocardium that occurs during MI [52], and is 

also chronically generated in the myocardium of patients with heart failure in response to 

chronic Ang II and TGF-β stimulation [53]. Ang II-induced NOX activation in CF has been 

shown to mediate several fibrogenic effects such as the induction of fibroblasts 

proliferation and differentiation into MyoF, the deposition and organization ECM proteins 

[51, 54], the epithelial-mesenchymal transformation [55], as well as the induction of 

several pro-fibrotic genes including endothelin-1 [56], TGF-β [57], MMPs [58] and CTGF 

[59]. 

 

It has been reported that among the different signaling pathways initiated by AT1 

receptors, only G-proteins are important for NOX activation. Gαq and Gβγ subunits 

activates PLC-β, which mediates the increase in cytosolic Ca2+ concentration along with 

the generation of DAG, both of which work together to activate protein kinase C (PKC), 

which in turn phosphorylates p47phox, causing the translocation of the p47phox-

p67phox complex from the cytosol to the Nox2-p22phox trans-membrane complex. In 

the same time, Gβγ subunit activates phosphatidylinositol 3-kinase (PI3K), which 

activates Rac1 protein causing it to translocate from the cytosol to join the Nox2-

p22phox trans-membrane complex. By that, NOX2 complex is complete and is able to 

produce ROS. On the other hand, PKC causes by unknown mechanism the association 

of NOXA1 and NOXO1 to the NOX1-p22phox trans-membrane complex. Also activated 

Rac1 associates with NOX1 complex and contributes to its activity. Phospholipase D2 

(PLD2) is activated by DAG and is thought to be important to replenish the precursors of 

DAG (Fig. 3) [60].     
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Figure 3: Mechanism of NOX1/2 activation by Ang II 

Ang II can induce the assembly of the subunits of NOX1/2 via PLC-β-PKC signaling 

pathway, which is activated by Gαq and Gβγ subunits of G-protein. In the same time, 

Gβγ subunit mediates PI3K-depndent activation of Rac1, a necessary step to allow the 

association of Rac1 with NOX1/2 complexes. The scheme was adopted from Choi and 

coworkers [60].     

 

 

Moreover, it has been shown that when the AT1 receptors are activated, they 

translocate to cholesterol rich rafts in the cell membranes called caveolae, which are 

associated with caveolin-1 and hold several signaling molecules, including NOXs [61-

63]. Interestingly, Ang II-induced Rac1 activation and ROS generation can be inhibited 

when the integrity of the caveolae was disrupted [63, 64]. In addition, Ang II was found to 

induce the expression of p67phox and p22phox subunits in adventitial and CF [65, 66]. 

Another Ang II-dependent signaling pathway for the activation of NOX has been reported 

in CF through the activation of Gα12/13 and Rac1, which was shown to be important for 

Ang II-induced nuclear factor of activated T cells (NFAT) activation [67].  
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2.4.2. Regulation of TGF-β by Ang II signaling 

 

TGF-β is elevated in the circulation and myocardium of patients with HF [68] and in the 

myocardium of patients with MI [69]. Also it has been shown that cultured human CF and 

neonatal rat CF can secret this cytokine. TGF-β induces the differentiation of CF into 

MyoF, an action that is thought to be mediated by the generation of ROS [70, 71], and it 

stimulates these cells to deposit ECM proteins [25, 32] and to secret the profibrotic 

CTGF protein [72]. Different stimuli can upregulate TGF-β, such as Ang II and ROS 

generation [15]. It has been shown that Ang II can induce TGF-β expression via a NOX-

dependent signaling pathway, which involves PKC-dependent p38-mitogen activated 

protein (MAP) kinase activation that in turn activates the transcription factor AP-1, a step 

that is necessary for the induction of TGF-β gene transcription [73, 74]. Other proposed 

Ang II-mediated signaling pathways for the induction of TGF-β could involve the Ang II-

induced expression of Egr-1 and c-Fos transcription factors [75], which were shown to 

induce TGF-β gene transcription [76, 77].  

 

2.5. Regulation of calcium in CF 

 

2.5.1.  Ang II-dependent calcium (Ca2+) signaling 

 

AT1 receptors couple besides others (see section 1.4.1) to Gαq/11 proteins, through 

which they can activate phospholipase C-β (PLC-β) resulting in the release of 

intracellular Ca2+ from the endoplasmic reticulum (ER). This action is mediated via 

generation of the second messenger inositol triphosphate (IP3) from phosphatidylinositol 

4,5-bisphosphate (PIP2) by the PLC-β. Once IP3 is generated, it is released in the 

cytosol, where it activates the IP3 receptors (IP3R) that are located in the membranes of 

the ER. The IP3R are Ca2+ channels, which open due to the allosteric changes that 

occur in response to IP3 binding resulting in a release of Ca2+ from the ER [78-80]. This 

pathway was shown in several publications to be involved in Ang II-induced contraction 

of vascular smooth muscle cells and in cardiomyocytes [81, 82]. Besides IP3, the 

hydrolysis of PIP2 generates diacylglycerol (DAG), which remains anchored to the cell 

membrane. The Ca2+ which is released by IP3 causes the translocation of protein kinase 

C (PKC) isozymes to the plasma membrane, where they get activated by DAG [79, 83] 

and hence initiate signaling cascades which is involved in regulation of the expression of 
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several genes [84, 85]. Besides, DAG is known to activate the transient receptor 

potential canonical (TRPC) channels, which are Ca2+ permeable cation channels [86, 

87].  

 

The targets of Ca2+, which are located in the cytosol and different cellular organelles, 

sense the change in the intracellular Ca2+ concentration either directly by interacting with 

Ca2+ ions or indirectly via scaffolding proteins like calmodulin, which when activated can 

interact with different Ca2+-dependent enzymes, such as kinases and phosphatases [88], 

through which different physiological functions of Ca2+, such as the regulation of gene 

expression and vesicular secretion, can be mediated. 

 

2.5.1.1.1. PKC signaling 

 

PKC constitute an extended family of several isozymes of serine/threonine kinases that 

are known to be activated by phospholipase associated receptors. They vary mainly 

based on the composition of the regulatory domain at the N-terminus, PKC isozymes 

can be classified into three categories with various sensitivities to Ca2+ and DAG. 

Conventional PKC isozymes, such as PKCα, βI, βII, γ, require both Ca2+ and DAG for 

activation. Novel PKC isozymes, such as PKCδ, ε, η, θ, require only DAG. Atypical PKC 

isozymes, such as PKCζ, ι, μ, ν, and these isozymes are completely insensitive to Ca2+ 

or DAG [89-92].  

 

PKCα, βI, βII, δ, ε, and ζ are expressed in adult and neonatal CF [93]. Several studies 

have identified PKC as potential therapeutic targets for cardiac fibrosis associated with 

heart failure. The inhibition of PKCα and β was shown to suppress cardiac fibrosis in a 

rat post-myocardial infarction model [94]. In addition, the selective over-expression of 

PKCβII in the myocardium resulted in severe cardiac fibrosis [95]. On the other hand, the 

knockout of PKCε enhanced the interstitial cardiac fibrosis in a mouse model of pressure 

overload [96]. 

  

It has been reported that PKCε mediate the Ang II-induced adhesion of fibroblasts to the 

ECM via a mechanism involving βI-integrins. In addition, it has been found that PKCδ 

and PKCζ oppositely regulate TGF-βI-induced proliferation of neonatal rat CF [93, 97]. 
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Moreover, PKCs were found to be involved in the regulation of Ang II-induced CTGF 

expression in an isozyme-dependent manner. The blockade of PKCα, ζ, or ε inhibited 

the Ang II-induced CTGF expression, whereas the knockdown of PKCδ significantly 

enhanced the Ang II-induced CTGF expression [98].  

 

2.5.1.1.2. Calcineurin signaling 

 

Calcineurin is a Ca2+ and calmodulin-dependent protein phosphatase IIB. It is composed 

of two subunits, calcineurin A, which is the catalytic subunit, and calcineurin B, which is 

the regulatory subunit [99]. Under resting conditions, calcineurin is inactive due to the 

low cytoplasmic Ca2+ concentration, but upon the activation of the GPCR-PLC-β/γ-IP3 

pathway, the cytoplasmic Ca2+ concentration is elevated, so that Ca2+ binds calmodulin 

causing conformational changes that allow binding to calcineurin to activate its 

phosphatase activity. Ca2+ can also directly interact with the regulatory subunit of 

calcineurin [100]. The classical targets for activated calcineurin are the members of the 

nuclear factor of activated T cells (NFAT), which are transcription factors localized 

mainly to the cytosol when they are in the inactive phosphorylated state. Active 

calcineurin is necessary to dephosphorylate NFAT proteins, a step that is indispensable 

to allow NFAT proteins to cross the nuclear envelope, so that they can function as 

transcription factors [101].  

 

Calcineurin-NFAT signaling is known to be vital for normal homeostasis as well as in the 

pathogenesis of different diseases, including cardiovascular diseases [102]. Over-

expression of calcineurin was reported to induce cardiac hypertrophy and heart failure, 

which could be prevented by inhibiting calcineurin by cyclosporin A (CsA) [103]. 

Moreover, it was reported that calcineurin mediates the Ang II-induced cardiomyocytes 

hypertrophy and CF hyperplasia [104]. 

 

2.5.1.1.3. Transient receptor potential channels  

 

Transient receptor potential (TRP) channels form a superfamily of 6 related subfamilies: 

TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPP 

(polycystin) and TRPML (mucolipin). All TRP channels are composed of 6-



14 
 

transmembrane domains that are arranged to form cation-permeable pores. Generally, 

these channels are nonselective cation channels with most of them showing a Ca2+ to 

Na+ permeation ratio of less than 1:10 [105-107].  

 

The TRPC channel subfamily consists of seven isoforms, numbered from 1-7. Several 

studies provided evidences that these channels can contribute to store-operated Ca2+ 

entry (SOCE) [108, 109], nevertheless, it is still controversial whether they are instead a 

specialized receptor-operated Ca2+ entry (ROCE) mediators, that replenish the 

intracellular Ca2+ stores following IP3-mediated Ca2+ release, as in the case of 

TRPC3/6/7 [86, 107]. Some TRPC channels have been reported to act as 

mechanosensitive channels [110, 111]. However, the mechanism of TRPC channel 

activation is still highly unclear, and the data available show lots of controversial findings, 

since so many factors are involved in the regulation of the activity of these channels, 

including the cell type, the level of expression, the cellular localization and the availability 

of interaction partners [107].    

      

Several isoforms of TRPC channels, such as TRPC1/3/5/6 were shown to be 

upregulated and involved in the pathogenesis of heart failure in several animal models, 

where calcineurin-NFAT signaling was frequently involved, which mediates the 

expression of several hypertrophic genes. Moreover, TRPC1/3 were found to be 

upregulated in cardiomyocytes in response to Ang II, endothelin-1 and phenylephrine 

treatment [112-116].  

 

 

2.5.2. Ca2+ oscillation in CF 

 

Ca2+ oscillation is a repetitive cyclical change in the cytoplasmic Ca2+ concentration 

observed in different types of cells, especially the non-excitable ones, in response to 

different physiological stimuli. There are evidences that the amplitude, frequency and 

duration of these signals actually play a major role in the regulation of different cellular 

processes such as, proliferation, contraction and secretion [117-119].  

 

It has been shown that GPCR activation results in cyclic generation of IP3 that was 

consistently parallel with the cyclic change in the cytoplasmic Ca2+ levels [120-122]. In 

the same time, Bird and Putney, 2005 reported that the intracellular Ca2+ stores are the 
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major source of the oscillating Ca2+ supported by an Ca2+ influx through store-operated 

Ca2+ channels (SOC), such as Orai1 channels [117]. During Ca2+ oscillation the 

reduction of the Ca2+ concentration in the endoplasmic reticulum,  is sensed by the 

stromal interaction molecule 1 (STIM1), which in turn causes the plasma membrane 

Orai1 channels to open: This mechanism is important to maintain the filling of the 

endoplasmic Ca2+ stores [123]. Moreover, it was reported that TRPC3 channels can 

mediate agonist-activated Ca2+ oscillation via non-capacitative calcium entry [117, 124], 

besides several other publications that reported direct and indirect coupling between the 

IP3Rs and the TRPC3 channels [125-127]. Therefore, it can be hypothesized that 

TRPC3 channels play a role in Ca2+ oscillation via regulating the activity of the IP3Rs. 

Recent studies in MyoF have reported a correlation between the frequency of Ca2+ 

oscillation and the cycles of MyoF contractions, which was dependent on the elastic 

modulus of the cell culture surface as well as on the intracellular mechanical stress that 

is transduced by actin filaments [128]. Ca2+ oscillation was found to be synchronized 

between physically contacting MyoF, which is mediated by adherens junctions, 

suggesting that the mechanosensitive ion channels could be involved [129]. 

 

2.6. Regulation of bioactive molecules expression and secretion 

 

Several studies have shown that actin filaments and microtubules function is not limited 

to the provision of physical support to the cells, but rather extend to include the 

regulation of various cellular processes, such as the regulation of gene expression and 

vesicular secretion. Actin filaments and microtubules were reported to function as tracks 

along which the secretory vesicles travel towards the cell membrane. In addition, they 

can regulate the kinetics of some transcription factors, and also transduce physical 

signals from the outer environment to the nucleus, whereby they can regulate the 

expression of different genes [130]. 

 

2.6.1. Regulation of secretory processes by Ca2+  

 

The role of Ca2+ in the mechanism of neurotransmitters and hormones secretion has 

been recognized and well characterized over the last few decades. The release of the 

neurotransmitters is normally triggered in response to the influx of Ca2+ through voltage-
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gated Ca2+ channels, which are activated by action potentials. Whereas, the secretion of 

hormones is usually triggered by intracellular Ca2+ release that is mediated by GPCR-

PLC-β-IP3 signaling pathway. Ca2+ is known to be involved in the mechanism of 

intracellular secretory vesicle trafficking [131] and fusion of the secretory vesicles with 

the target cell membrane, which involves interaction with the Ca2+ sensor 

synaptotagmin-1 protein [132]. Synaptotagmin is located on the membrane of the 

secretory vesicles and has two C2 domains (C2A and C2B) that are homologous to the 

Ca2+-binding domain of PKC. The C2A domain binds syntaxin SNAP-25 proteins (the 

cell membrane components of the SNARE complex) and phospholipids on the cell 

membrane in a Ca2+ dependent manner, which is important to tether the secretory 

vesicles to the plasma membrane and facilitate membrane fusion and exocytosis [133]. 

 

2.6.2. Regulation of gene expression by actin filaments and microtubules 

 

Actin filaments, also called microfilaments, are polymers of globular actin (G-actin) that 

forms flexible double-stranded helix fibers of several micrometers in length and up to 7 

nm in diameter. They form higher order structures of bundles and networks. Actin 

polymerization is a reversible spontaneous process that can be facilitated by the 

hydrolysis of the ATP bound to G-actin to ADP. The rate of actin polymerization is 

proportional to the concentration of the G-actin, and normally there is equilibrium 

between actin polymerization and dissociation. Several actin-binding proteins regulate 

the assembly and disassembly of the actin filaments, such as cofilin that enhances the 

rate of actin filaments depolymerization, profilin that antagonizes the function of cofilin by 

enhancing the exchange of ADP for ATP on G-actin, and the actin related proteins 

(Arp2/3) proteins, which functions as a nucleation point for the polymerization of a new 

actin filaments [134, 135]. RhoA GTPase is also a major promoter for actin filaments 

polymerization. It functions mainly via two downstream signaling pathways: one that is 

mediated through the Rho-kinases (ROCK) that activate LIM kinase-mediated 

phosphorylation of cofilin, which inactivates cofilin, resulting in the stabilization of the 

actin filaments [136]. The other pathway involves the activation of the formins (mDia1 

and mDia2), which are a potent nucleator and polymerization factor for actin filaments 

[137]. 
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Several extracellular stimuli, such as GPCRs (coupled to Gαq/11 and Gα12/13), TGF-β 

receptors and integrins, can modulate the activity of the RhoGTPases through Rho 

guanine nucleotide exchange factors (GEFs), which influences the rate of actin filaments 

organization, and thereby the concentration of cytoplasmic free G-actin. High 

cytoplasmic free G-actin is known to bind myocardin-related transcription factors 

(MRTFs), preventing them from entering the nucleus and therefore interacting with the 

serum response factor (SRF), as a result SRF cannot induce gene expression. 

Therefore, the equilibrium between the polymerized and free actin can regulate the 

expression of certain gene expression [138].  

 

Microtubules are composed of a polymer of α-tubulin and β-tubulin monomers that are 

alternatively linked together to form protofilaments, each 13 protofilaments associate 

laterally to form a hollow cylindrical polymer of 25 nm in diameter. γ-tubulin are specially 

located in the microtubule organizing centers, from which the microtubules 

polymerization originates, so that the α-tubulin subunit is exposed at the beginning of the 

protofilament (-) end and the β-tubulin subunit exposed at the opposite end (+) end, at 

which the elongation of the microtubule usually occurs [139]. Microtubules need GTP for 

polymerization and stability, and the status of the microtubules oscillate between regular 

growing phase and rapid disassembly phase (catastrophe). The loss of the GTP-bound 

tubulin from the (+) end of growing protofilaments is believed to result in the instability of 

the microtubule protofilaments, causing them to shift to the catastrophe phase [140]. 

  

The disruption of microtubules has been shown by different studies to change the 

expression of different genes. It has been shown by Cho and coworkers that treatment 

with Nocadazole, an effective microtubules disrupting drug, was associated with the 

modulation of gene expression of 50 genes [141]. Moreover, it was shown that 

microtubules sequester Smad2 transcription factors, making them less available to 

activation by TGF-β receptors [142]. Several other transcription factors, such as MIZ-1 

and Egr3 were found to associate with the microtubules, so that their activity was 

assumed to be regulated by the polymerization state of the microtubules [143, 144].  
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2.7. Connective tissue growth factor  

 

The connective tissue growth factor (CTGF), also known as CCN2, was first identified as a 

platelet derived growth factor (PDGF)-related mitogen that is secreted by human vascular 

endothelial cells [145-147]. Later, it was shown that CTGF is highly expressed during 

embryonic development and re-expressed in almost all fibrotic tissues including the fibrotic 

heart. With this respect, it has been demonstrated that MyoF but also other cardiac cells 

are substantial sources of CTGF.  

 

 

2.7.1. Protein structure of CTGF 

 

The analysis of its protein structure revealed that it is a 38-kDa cysteine-rich protein that 

is composed of four modules: I) insulin-like growth factor binding protein module 

(IGFBP) for the binding of insulin-like growth factor (IGF), II) von Willebrand factor type 

C (VWF-C) module for the binding of TGF-β and bone morphogenetic proteins-4 (BMP-

4), III) thrombospondin (TSP)-type I homology module for the binding of vascular 

endothelial growth factors (VEGF) and various isoforms of integrins and some cell 

surface receptors like LRP-1. This module has a cysteine-rich (CR) region. And finally, 

IV) the carboxy-terminal (CT) cysteine knot motif and heparin-binding module for the 

binding of proteoheparan sulphate proteoglycans, which allows the binding and 

interaction with the ECM proteins. This complex structure combining growth factor 

binding and ECM binding modules defines CTGF as a matricellular protein [145].  
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Figure 4: Protein structure of CTGF 

The scheme shows the 4 modules of CTGF and their interactions with different growth 

factors, cell surface and ECM proteins. It also shows the cleavage sites for proteases 

and plasmin. The scheme was adapted with modifications from de Winter and coworkers 

and Gressner and Gressner [145, 148]. 

 

In addition to its 4 modules, CTGF contains a hinge region with a protease cleavage site 

that is sensitive to most proteases including elastases, matrix metalloproteinases 

(MMPs) and plasmin. The cleavage of the hinge region separates the N-domain from the 

C-domain resulting in two fragments of similar molecular weight. Plasmin, as well as 

chemotrypsin can also cleave module I and IV. Therefore, four different fragments of 

CTGF, in addition to the full-length protein, can be found in body fluids and in the 

supernatant of CTGF-producing cells (Fig. 4). It is postulated that these different 

fragments can fulfill different physiological functions [145, 148, 149]. The full length and 

C-terminus CTGF were reported to stimulate cell proliferation and collagen synthesis in 

different cells including fibroblasts. Also full length CTGF and module III were found to 

induce fibronectin synthesis and to mediate interaction with integrins, which is important 

for cell adhesion. They were also reported to induce the phosphorylation of extracellular 

signal-regulated kinases 1/2 (ERK1/2), which drive a signaling cascade that activates 
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collagen synthesis and induces fibrosis [150-152]. However, the induction of collagen 

synthesis by CTGF was found to be dependent on the presence of other factors like 

insulin and IGF, and is also tissue specific [148].  

 

2.7.2. Physiological functions of CTGF 

 

CTGF is known to play a vital role during the embryogenesis stage, since its absence 

was associated with malformation of cartilages, bones and blood vessels. However, 

CTGF expression and secretion continues during the adulthood [153, 154]. The structure 

of CTGF protein gives it the capacity to interact with several growth factors as well as 

cell surface and ECM proteins, allowing CTGF to function as a modulator for several 

cellular processes including cell migration, proliferation and differentiation, besides ECM 

synthesis and the cell-ECM interaction [155-157]. In addition, it was reported that CTGF 

mediates the deposition of fibronectin in response to TGF-β through upregulation of the 

active α5β1 integrin [158]. Based on the ability of CTGF to bind fibronectin and integrin 

on one hand, the ability to enhance the binding of fibronectin to fibrin on the other hand, 

it was proposed that CTGF promotes fiber-fiber, fiber-matrix and matrix-matrix 

interactions through direct interaction with ECM proteins [145].   

 

2.7.3. Role of CTGF in fibrotic heart disease 

 

CTGF and TGF-β are both upregulated in the myocardium of patients with HF, and are 

thought to play an important role in the pathogenesis of the disease, especially in the 

development of fibrosis [72]. Several publications have reported that CTGF mediates 

several functions of TGF-β. However, it was found that different CTGF fragments 

actually mediate different functions, that is, the N-terminal domain of CTGF mediates 

MyoF differentiation and collagen synthesis, while the C-terminal domain mediates the 

proliferation of fibroblasts [159]. Moreover, CTGF was shown to enhance the fibrotic 

process associated with HF, which was mainly dependent on its CT domain [160]. In 

addition, CTGF synergizes the ability of TGF-β to induce epithelial-mesenchymal 

transition (EMT), which is a known mechanism for the accumulation of fibroblasts in the 

site of injury and the later scar formation. Several mechanisms have been proposed with 

this respect, for example, it was shown that CTGF inhibits Smad7 phosphorylation, 



21 
 

which is a counter-regulatory mechanism for the activation of Smad2/3, the main second 

messengers for TGF-β signaling. Also it was found that CTGF enhances the binding of 

TGF-β to its own receptor and besides this there were some reports that CTGF induces 

the expression of the EMT marker tenascin-C (TN-C) [145, 161]. Moreover, it was found 

that CTGF is important for the expression of the stretched-induced fibrillary         

collagen α-1(III), MMPs and Ccl2/7/8 chemokines in primary CF, which are involved in 

fibrogenesis associated with cardiomyopathies [162].  

 

In contrast to the concept of the profibrotic role of CTGF, there are several recent 

publications reporting that CTGF has cardioprotective effects. Gravning and coworkers 

published two papers in the year 2011 and 2012 reporting that the over-expression of 

CTGF resulted in a diminished infarct size, but without a remarkable effect on the 

collagen content [163, 164]. Moreover, another two publications from the same lab in the 

year 2013 reported that CTGF overexpression has cardioprotective effects via 

attenuating the cardiac hypertrophy in response to chronic pressure-overload by either 

abdominal aortic banding or to chronic exposure to isoproterenol [165, 166]. A report 

from another lab in the year 2013 confirmed the cardioprotective effects of CTGF, and 

proposed that it increases the tolerance of cardiomyocytes towards hypoxia and 

oxidative stress via PI3-kinase (PI3K)-dependent Akt/GSK-3β signaling [167].   

 

2.7.4. Regulation of CTGF in CF 

 

CTGF is complexly regulated by different factors, including mechanical signaling, which 

can be transduced to the nucleus via certain cytoskeleton-dependent signaling involving 

integrins, and biochemical activation by autocrine and paracrine factors, like Ang II and 

TGF-β. In addition, functional Golgi apparatus was also found to play a role with this 

respect. Muehlich and coworkers reported a direct relationship between the formation of 

stress fibers and the expression of CTGF, which reflected an inverse relationship 

between the level of the monomeric G-actin and the level of CTGF expression. In 

addition, the overexpression of constitutively active RhoA, which is in favor of actin 

filaments formation, significantly enhanced the expression of CTGF. A similar induction 

of CTGF expression was also obtained with overexpression of the serum response 

factor (SRF) [168]. Several other reports demonstrated a regulatory role for the actin 

filaments on CTGF expression via mediating shear-stress signals to the nucleus and the 
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regulation of SRF [168, 169]. Moreover, as mentioned in section 1.6.2, the function of 

SRF requires the translocation of MRTF from the cytosol to the nucleus, where it 

complexes with SRF to function as transcription factor. However, it was also found that 

the monomeric G-actin binds MRTF in the cytosol, thus preventing it from translocation 

to the nucleus, and that the interaction between the monomeric G-actin and MRTF is 

dependent on the level of the monomeric G-actin in the cytosol, which is inversely 

related to the polymerization of actin filaments [138]. Taking these findings together, it 

can be concluded that for the induction of CTGF expression, actin polymerization is 

required, so that less G-actin is available in the cytosol in order to allow MRTF-SRF 

complex to form in the nucleus. In addition, it has been found that CTGF expression can 

be induced by a mechanism involving the activation of focal adhesion kinase (FAK), Src-

family of tyrosine kinases and PI3K, which translate the mechanical signaling by integrin 

and cytoskeleton into a change in CTGF expression [170].  

 

2.8. Aim of the project  

 

Cardiac fibrosis occurs a one major process in cardiac remodeling during heart disease. 

Within this process the numerical highly abundant CF secrete excessive amounts of 

extracellular matrix proteins as well as fibrosis-associated growth factors, cytokines and 

so called matricellular proteins. The connective tissue growth factor (CTGF) belongs to 

the latter protein family and has been shown to be strongly increased in its expression 

during cardiac fibrosis. The aim of this project was to unravel mechanisms, which are 

involved in the control of the expression and secretion of this protein in CF with a strong 

focus on calcium- and cytoskeleton-dependent mechanisms. In the detail, the 

angiotensin II-dependent regulation of the calcium handling in neonatal rat CF was 

studied, downstream mechanisms leading to a change in the regulation of CTGF were 

analyzed, and the impact of changes in the actin cytoskeleton as well as in microtubules 

was determined. 
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3. Materials and methods 

 

 

3.1. Materials 

 

3.1.1. Chemicals, reagents and consumables 

 

Chemicals and reagents 
 

Company 

1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid 

tetrakis(acetoxymethyl ester) (BAPTA-AM) 

AAT Bioquest 

3-N-morpholino-propanesulfonic-acid (MOPS) AppliChem 

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Carl Roth 

4',6-diamidino-2-phenylindole (DAPI) Roche 

Acetic acid (100%) Carl Roth 

Acrylamide rotiphorese gel 30 solution (30 % 

acrylamide/bisacrylamide, mixing ratio 37.5:1) 

Carl Roth 

Agar Peqlab 

Agarose AppliChem 

Ammonium persulfate (APS) AppliChem 

Angiotensin II, human (Ang II)  Sigma-Aldrich 

Aqua B. Braun  Braun 

Ascorbic acid AppliChem 

Bromophenol blue AppliChem 

Calcium chloride hexahydrate (CaCl2.6H2O) AppliChem 

Carbenicillin Applichem 

Cesium chloride (CsCl) Biomol 

Colchicine Cayman Chemicals 

Cyclosporin A (CsA)  Tocris 

Dimethylsulfoxide (DMSO)  Sigma-Aldrich 

DMEM Glutamax, 1 g/l glucose, pyruvate Life Technologies 

DMEM Glutamax, 4.5 g/l glucose Life Technologies 

DNA loading buffer (6x) Thermo-Scientific 

DNase I type V Merck 

Ethanol, absolute  J.T. Baker 

Ethidium bromide Sigma-Aldrich 

Fetal calf serum (FCS) Life Technologies 

FITC-phalloidin Sigma-Aldrich 

Formaldehyde (37%) Merck 

Formamide Sigma-Aldrich 

GeneRuler 1 Kb DNA ladder Thermo-Scientific 

GeneRuler 1 Kb plus DNA ladder Thermo-Scientific 
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Glucose  AppliChem 

Glycerol AppliChem 

Glycine AppliChem 

Go 6983 Tocris 

gp91-ds-tat Mo BioTec 

gp91-ds-tat; sgp91 ds-tat, scrambled (Scr) Mo BioTec 

HEPES-buffered saline solution Lonza 

Igepal CA-630 Sigma-Aldrich 

Isopropanol  Carl Roth 

Kanamycin Sigma-Aldrich 

Kn-92 Calbiochem 

Kn-93 Calbiochem 

Latrunculin-A (LAT-A) Cayman Chemicals 

Magnesium chloride (MgCl2)  AppliChem 

Magnesium sulphate monohydrate (MgSO4.H2O) AppliChem 

Manganese(II) chloride tetrahydrate (MnCl2.4H2O) AppliChem 

Methanol Carl Roth 

Methyl-beta-cyclodextrin (CDX)  Sigma-Aldrich 

Non-essential amino acids (NEAA) (100x) Life Technologies 

NSC 23766 Tocris 

Paraformaldehyde (PFA) Sigma-Aldrich 

Penicillin/streptomycin (P/S) (100x) Life Technologies 

Phosphate-buffered saline (PBS) without Ca2+ Life Technologies 

Picric acid Sigma-Aldrich 

Piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES) Carl Roth 

Polyfect Qiagen 

Ponceau S  Sigma-Aldrich 

Potassium chloride (KCl) AppliChem 

Potassium dihydrogen phosphate (KH2PO4)  AppliChem 

Pyrazol 3 (Pyr3)  Sigma-Aldrich 

Roti-block (10x)  Carl Roth 

Roti-immunoblock (10x) Carl Roth 

Roti-mark standard, protein molecular weight marker  Carl Roth 

Sodium acetate (CH₃COONa) AppliChem 

Sodium bicarbonate (NaHCO3)  Roth 

Sodium chloride (NaCl) AppliChem 

Sodium dihydrogen phosphate (NaH2PO4)  AppliChem 

Sodium dodecyl sulfate (SDS) AppliChem 

Sodium hydrogen phosphate dihydrate (Na2HPO4.2H2O)  AppliChem 

Sodium hydroxide (NaOH) AppliChem 

ß-Mercaptoethanol  AppliChem 

Tetramethylethylenediamine (TEMED) Merck 

Thapsigargin (TGN) Calbiochem 
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Tris ultrapure (Tris base) AppliChem 

TRITC-phalloidin Sigma-Aldrich 

Triton X-100  Carl Roth 

Trypan blue Fluka 

Trypsin  BD Biosciences  

Trypsin-EDTA 0.05% Life Technologies 

Trypsin neutralizing solution (TNS) Lonza 

Tryptone AppliChem 

Tween 20 Carl Roth 

U73122 (122)  Tocris 

U73343 (343)  Tocris 

Valsartan  Sigma-Aldrich 

Wheat germ agglutinin (WGA), Alexa-fluor 488 conjugate Life Technologies 

Yeast extract AppliChem 

Xestospongin C (XeC) Cayman Chemicals 

Table 1: Chemicals and reagents 

 

 

Article 
 

Specification Source 

Cell culture dishes 6, 10, 15 cm Greiner Bio One 

Cell scrapers 1.7 cm blade Sarstedt 

Centrifuge tubes Polyallomer (16 x 102 mm) Beckman 

Dialysis device Float-A-lyzer G2, MWCO 20 KD Spectrum Labs 

Filter syringes Non pyrogenic, 0.2 µM Sarstedt 

Filtration sets 250, 500, 1000 ml, 0.22 µM Corning 

Flexitip pipette tips 0.5-200 µl Peqlab 

Micro-Amp optical adhesive 

films 

PCR compatible Applied Biosystens 

Micro-Amp optical reaction 

plates  

384-well Applied Biosystens 

Multi-well cell culture plates 6, 12, 24, 96-well Greiner Bio One 

Nitrocellulose membrane, 

Whatman, Protran 

Pore size 0.2 µM GE Healthcare 

PCR reaction tubes 0.2 ml Sarstedt 

Pipette tips  10, 100, 200 1000 µl Sarstedt 

Pipette tips with filters  10, 100, 200 1000 µl 4titude 

Reaction and centrifuge tubes  15, 50 ml Greiner Bio One 

Reaction tubes 0.5, 1.5, 2 ml Sarstedt 

Serological pipettes 1, 2, 5, 10, 25 ml Sarstedt 

Wide opening, serological 

pipettes 

10 ml Falcon 

Table 2: Consumables 
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3.1.2. Restriction enzymes and related supplements 

 

Restriction enzymes 
 

Buffer Company 

AflII 10x NEB buffer 2 

New England Biolabs 

EcoRV 10x NEB buffer 3 

KpnI 10x NEB buffer 2 

PacI 10x NEB buffer 4 

PmeI 10x NEB buffer 4 

PstI 10x NEB buffer 3 

XhoI 10x NEB buffer 2 

SmaI 10x Tango yellow buffer  Thermo-Scientific 

Table 3: Restriction enzymes 

 

 

3.1.3. Kits 

 

Kit 
 

Application Company 

5x HOT FIREPOL EvaGreen qPCR 

Mix Plus 

qPCR Solis Biodyne 

Exprep plasmid SV midi Midiprep plasmid 

purification from bacteria 

GeneAll 

Exprep plasmid SV mini Miniprep plasmid 

purification from bacteria 

GeneAll 

FGM-3 Bullet kit Culturing and 

maintenance of NHCF-V 

Lonza 

GoTaq green master mix PCR Promega 

High pure PCR product purification kit PCR product purification Roche 

Lumi-light western blotting substrate Chemiluminescence 

protein blot visualization 

Roche 

PrimeSTAR HS DNA polymerase Gene amplification by 

PCR 

TAKARA 

Quick ligation kit DNA ligation New England Biolabs 

Revert Aid First Strand cDNA 

Synthesis Kit  

RNA reverse 

transcription into cDNA 

Thermo-Scientific 

RNeasy Total RNA isolation Qiagen 

Screen Quest Fluo-8 No Wash Live cell Ca2+ imaging AAT Bioquest 

Super signal west femto maximum 

sensitivity substrate 

Chemiluminescence 

protein blot visualization 

Thermo-Scientific 

Table 4: Kits 
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3.1.4. Cells and viruses 

 

Cells 
 

Descriptions 

DH10B bacteria High-efficiency chemically competent cells for 

transformation  

AdEasier bacteria BJ5183 bacteria transformed with adenoviral 

backbone plasmid pAdEasy-1 

HEK293A Immortalized human embryonic kidney cell line 

Tsa201 Transformed HEK293 stably expressing SV40 

temperature-sensitive T antigen 

Primary neonatal rat cardiac 

fibroblasts (NRCF)  

Isolated weekly from neonatal Wistar rats (1-3 days 

old) 

Primary normal human 

ventricular cardiac fibroblasts 

(NHCF-V)  

Purchased from Lonza (catalogue No. CC-2904, Lot 

No. 351481), isolated from healthy 50 year old male 

donor. 

Table 5: Bacterial and mammalian cells  

 

 

Adenovirus 
 

Source 

Ad.EGFP Susanne Lutz, Mannheim 

Ad.HA-CTGF Department of Life Science, Gwangju Institute of 
Science and Technology, South Korea 

Table 6: Adenoviruses  

 

 

3.1.5. Antibodies 

 

Primary 
antibody 
against 

Dilution Source Type/ Clone Catalogue 
No. 

Company 

WB IF 

Acetylated 

tubulin 

1:2000 1:500 Mouse  Monoclonal/6-

11B-1 

T6793 Sigma-

Aldrich 

CaM 

kinase IIδ 

(CaMKII δ) 

1:5000 Not used Mouse  Monoclonal/438

422 

MAB4176 R&D 

Systems 

Caveolin-1 1:200 Not used Mouse  Monoclonal/7C8 sc-53564 Santa 

Cruz 

CTGF 1:200 1:50 Goat Polyclonal/L-20  sc-14939 Santa 

Cruz 

ERK1/2 1:1000 Not used Rabbit Polyclonal 9102S Cell 

Signaling 
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PathScan 

Multiplex 

Western 

Cocktail I 

1:200 Not used Rabbit mixed 

antibodies 

5301 Cell 

Signaling 

Phospho- 

CaMKII 

1:5000 Not used Mouse Monoclonal/22B

1 

MA1-047 Thermo-

Scientific 

Phospho- 

ERK1/2 

1:1000 Not used Rabbit Polyclonal 9101S Cell 

Signaling 

Polygluta- 

mylated 

tubulin 

1:2000 1:500 Mouse Monoclonal/B3 T9822 Sigma-

Aldrich 

TRPC3 Not used 1:100 Rabbit Polyclonal ACC-016 Alomona 

Labs 

Tyrosin- 

tubulin 

1:800 1:200 Mouse Monoclonal/TU

B-1A2 

T9028 Sigma-

Aldrich 

Vimentin Not used 1:500 Mouse Monoclonal/ V9 V6630 Sigma-

Aldrich 

sm-actin  1:2500 Not used Mouse Monoclonal 1A4 A5228 Sigma-

Aldrich 

α-tubulin 1:2000 1:500 Mouse Monoclonal/B-5-

1-2 

T5168 Sigma-

Aldrich 

β-actin 1:5000 1:1250 Mouse Monoclonal/ 

AC-74 

A2228 Sigma-

Aldrich 

Table 7: Primary antibodies 

 

 

Secondary antibody 
against 

Dilution Source Catalogue No. Company 

Goat 1:10000 Donkey sc-2020 Santa Cruz 

Mouse 1:10000 Rabbit A9044 Sigma-Aldrich 

Rabbit 1:40000 Goat A9169 Sigma-Aldrich 

Table 8: Horseradish peroxidase (HRP)-conjugated secondary antibodies for western 

blotting 

 

 

Secondary 
antibody against 

Dilution Fluorophore Source Catalogue 
No.  

Company 

Goat 1:300 Cy3 Rabbit 305-165-

003 

Jackson Immuno 

Research 

Goat 1:100 FITC Rabbit 305-095-

003 

Jackson Immuno 

Research 

Goat 1:300 Alexa-fluor 

680 

Donkey 705-625-

147 

Jackson Immuno 

Research 
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Mouse 1:300 Alexa-fluor 

488 

Goat 115-545-

003 

Jackson Immuno 

Research 

Mouse 1:300 Cy3 Goat 115-165-

068 

Jackson Immuno 

Research 

Rabbit 1:100 Alexa-fluor 

594 

Goat 111-585-

003 

Jackson Immuno 

Research 

Table 9: Fluorophore-conjugated secondary antibodies for immunofluorescence 

 

 

3.1.6. Chemicals used for cell organelle fluorescence staining 

 

Chemical 
 

Stock concentration Dilution 

DAPI 1 mg/ml 1:1000 

FITC-phalloidin 0.5 mg/ml 1:300 

TRITC-phalloidin 0.5 mg/ml 1:500 

Wheat germ agglutinin 

(WGA), Alexa-fluor 488 

conjugate 

1 mg/ml 1:200 

Table 10: Chemicals used for cell organelle/actin fluorescence staining  

 

 

3.1.7. Oligonucleotides, primers and plasmids 

 

Oligonucleotide 
 

Strand Sequence (5`→ 3`) 

Tetracysteine (TC)-tag 

oligonucleotides 

Forward TTAAGCCGCCATGTTCTTGAACTGTTGCCC- 

GGGCTGCTGTATGGAGCCTGGTAC  

Reverse CAGGCTCCATACAGCAGCCCGGGCAACAGT- 

TCAAGAACATGGCGGC  

Table 11: TC-tag oligonucleotides  
  
 

Gene 
 

Primer Sequence (5`→ 3`) 

Amplification of CTGF gene 

without overhang 

Forward CTCTCCAAGAAGACTCAG C  

Reverse GCAGTTAGG AACCCAGATTTA  

      

Amplification of CTGF gene 

with the addition of KpnI 

and XhoI restriction sites 

Forward CCTGGTACCCTCGCCTCCGTCGCG 

Reverse AGACTCGAGGTCCCTTACTCCCTGGCTT  

Table 12: Primers used for cloning of CTGF gene 
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Gene Primer Sequence (5`→ 3`) Annealing 
temperature 

CTGF Forward CCGGGTTACCAATGACAATA 58oC 

Reverse CACACCCCACAGAACTTAGC 

       

PBGD (housekeeping 

gene) 

Forward CCTGAAACTCTGCTTCGCTG 55, 57 or 
58oC Reverse CTGGACCATCTTCTTGCTGAA 

       

IP3R1 (variants 1, 2 

and 3) 

Forward AGCACCTTGGGCTTGGTTGATGA 57oC 

Reverse CCGTCCCCAGCAATTTCCTGTT 

       

IP3R2 Forward CAACGTCGGCCACTAGCTCTAAA 57oC 

Reverse AAGCTCCCCGTCTCTCACAGTTT 

       

IP3R3 Forward AGCAATGGGGATAACGTGGTTGTG 57oC 

Reverse GTCACAGGTCAGGAACTTCTCCT 

       

TRPC3 Forward ACTGGGCATGGGTAACTCAA 53oC 

Reverse TTCAGTTCACCTTCGTTCACCT 

Table 13: Primers used for qPCR and RT-PCR  

 

 

Plasmid 
 

Description 

pcDNA 3.1/Zeo(+)  Mammalian expression vector, allows high level of 

constitutive gene expression in mammalian cells  

pShuttle-CMV vector Facilitates the transfer of the gene of interest to AdEasier 

bacteria, where it can be recombined with the pAdEasy-1 

plasmid 

pAdEasy-1  E1 and E3 double deletion adenoviral backbone vector 

Table 14: Plasmids used for the construction of TC-CTGF overexpressing recombinant 

adenovirus 
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3.1.8. Buffers, solutions and media 

 

Immunoblotting 
 

GST-fish buffer (500 ml) 25 ml 1 M Tris (pH 7.4 with HCl) 
75 ml 1 M NaCl 
2 ml 1 M MgCl2 
50 ml glycerol  
5 ml Igepal CA-630 
up to 500 ml distilled water 
 

4x SDS-PAGE sample loading buffer without 
glycerol (50 ml) 

5 ml β-mercaptoethanol                                    
3.25 g SDS                                                    
15 ml 300 mM Tris (pH 6.8 with HCl)                     
0.125 g bromophenol blue                                       
up to 50 ml distilled water 
 

4x SDS-PAGE sample loading buffer with 
glycerol (50 ml) 

25 ml glycerol                                              
5 ml β-mercaptoethanol                               
3.25 g SDS                                                  
15 ml 300 mM Tris (pH 6.8 with HCl)                           
0.125 g bromophenol blue                                    
up to 50 ml distilled water 
 

10x TBS buffer (1000 ml) 12.12 g Tris 
87.65 g NaCl 
up to 1000 ml distilled water 
pH 7.4 with HCl 
 

TBS-T buffer (1000 ml) 1000 ml 10x TBS 
1 ml tween 20 
 

5x SDS-PAGE electrophoresis buffer (1000 
ml) 

15.1 g Tris 
94 g glycine 
5 g SDS 
up to 1000 ml distilled water 
pH 8.3 with KOH 
 

Blotting buffer (1000 ml) 3.02 g Tris 
14.4 g glycine 
200 ml methanol 
up to 1000 ml distilled water 
 

12 % SDS-polyacrylamide gel (50 ml) 16.5 ml distilled water 
20 ml acrylamide rotiphorese gel 30 
solution 
12.5 ml 1.5 M Tris (pH 8.8 with HCl) 
0.5 ml 10% SDS 
0.5 ml 10% APS 
0.02 ml TEMED 
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15% SDS-polyacrylamide gel (50 ml) 11.5 ml distilled water 
25 ml acrylamide rotiphorese gel 30 
solution 
12.5 ml 1.5 M Tris (pH 8.8 with HCl) 
0.5 ml 10% SDS 
0.5 ml 10% APS 
0.02 ml TEMED 
 

5% SDS-polyacrylamide gel (20 ml) 13.6 ml distilled water 
3.4 ml acrylamide rotiphorese gel 30 
solution 
2.5 ml 1 M Tris (pH 6.8 with HCl) 
0.2 ml 10% SDS 
0.2 ml 10% APS 
0.02 ml TEMED 
 

10% SDS (100 ml) 10 g SDS  
up to 100 ml distilled water 
 

10% APS (10 ml) 1 g APS 
up to 10 ml distilled water 
 

Ponceau S stain (100 ml) 5 ml glacial acetic acid 
0.2 g Ponceau S powder 
up to 100 ml distilled water 
 

Stripping buffer (500 ml) 3.79 g Tris 
3.9 ml β-mercaptoethanol 
10 g SDS 
up to 500 ml distilled water 
pH 6.7 with HCl 
 

Immunofluorescence (IF) 

 

4% paraformaldehyde (PFA) (250 ml) 10 g paraformaldehyde 
50 µl 10 N NaOH 
25 ml 10x PBS 
up to 250 ml distilled water  
pH adjusted to 7.0 with HCl 
 

0.05% Triton (50 ml) 250 µl 10x Triton 
up to 50 ml PBS 

1x Roti-immunoblock (50 ml) 5 ml 10x Roti-immunoblock 
up to 50 ml distilled water 
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Formaldehyde (FA) agarose gel electrophoresis 

 

10x FA gel buffer (1000 ml) 41.46 g MOPS 
6.8 g sodium acetate 
2.9 g EDTA 
up to 1000 ml distilled water 
pH 7.0 with NaOH 
 

1x FA gel running  buffer (1000 ml) 100 ml 10x FA gel buffer 
20 ml 37% FA 
up to 1000 ml RNase-free water  
 

1.2% FA gel (100 ml) 1.2 g agarose 
10 ml 10x FA gel buffer 
up to 100 ml RNase-free water   
heat with mixing, cool to 65oC, add    
1.8 ml 37% FA and 3 µl ethidium 
bromide (10 mg/ml) then cast 
 

5x RNA loading buffer (10 ml) 16 µl saturated aqueous bromophenol 
blue solution 
80 µl 500 mM EDTA (pH 8.0 NaOH) 
720 µl 37% FA 
2 ml glycerol anhydrous 
3.084 ml formamide 
4 ml FA gel buffer 
up to 10 ml RNase-free water 
  

DNA agarose gel electrophoresis 

 

1% DNA agarose gel (50 ml) 0.5 g agarose powder 
50 ml 1x TAE buffer 
2 µl ethidium bromide (10 mg/ml) 
 

50x TAE buffer (1000 ml) 242.28 g Tris 
57.1 ml glacial acetic acid 
200 ml 0.25 M EDTA (pH 8.0 with 
NaOH) 
up to 1000 ml distilled water 
 

Bacterial culture media and plates 

 

LB medium (1000 ml) 10 g tryptone 
5 g yeast extract 
10 g NaCl 
up to 1000 ml distilled water 
pH 7.0 
autoclave 
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LB agar plates with carbenicillin (1000 ml) 10 g tryptone 
5 g yeast extract 
10 g NaCl 
15 g agar 
up to 1000 ml distilled water 
pH 7.0 with NaOH 
autoclave  
let cool to about 50oC, then add 1 ml 
carbenicillin stock (50 mg/ml), then cast 
as 20 ml/10 cm petri dish 
 

LB agar plates with kanamycin (1000 ml) 10 g tryptone 
5 g yeast extract 
10 g NaCl 
15 g agar 
up to 1000 ml distilled water, pH 7.0 
autoclave  
let cool to about 50oC, then add 1 ml 
kanamycin stock (33 mg/ml), then cast 
as 20 ml/10 cm petri dish 

SOB medium (1000 ml) 20 g tryptone 
5 g yeast extract 
0.5 g NaCl 
10 ml 25 mM KCl 
up to 1000 ml distilled water 
pH 7.4 
autoclave 
5 ml autoclaved 2 M MgCl2 
 

SOC medium (100 ml) 1 ml filter-sterilized 2 M glucose 
up to 100 ml SOB medium 
 

0.5 M PIPES buffer (20 ml) 3.02 g PIPES 
up to 20 ml distilled water 
pH 6.7 with NaOH 
 

Inoue buffer (10 ml) 108.8 g MnCl2.4H2O 
22 mg CaCl2.6H2O 
186 mg KCl 
200 µl 0.5 M PIPES 
up to 10 ml distilled water 
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Cell isolation 

 

Calcium- and bicarbonate- free Hanks with 
HEPES (CBFHH) (1000 ml) 

40 ml NaCl stock (200 g/l)                           
10 ml MgSO4.H2O stock (20 g/l)                  
10 ml KH2PO4 stock (6 g/l)                         
10 ml Na2HPO4.2H2O stock (5.97 g/l)       
10 ml glucose dihydrate stock (100 g/l)      
100 ml HEPES stock (47.66 g/l)                              
up to 1000 ml distilled water, sterile by 
filtration 
pH 7.4 with NaOH  
 

50x trypsin stock solution (10 ml) 1 g trypsin/10 ml CBFHH, dissolved 
overnight at 4oC with continuous 
rotation, sterilized by filter syringe (0.2 
µM) 
 

DNase I stock solution (100 ml) 100 mg DNase I type V/100 ml distilled 
water 
 

Heat inactivated FCS (50 ml) 50 ml FCS was incubated in a water 
bath adjusted to 56oC for 30 min, during 
which it was shaken gently every 5 min. 
   

Non-cardiomyocyte medium (NKM) 500 ml DMEM GlutaMax 1 g/l glucose 
50 ml heat-inactivated FCS 
5 ml P/S (100x) 
 

Trypsin working solution (50 ml) 0.5 ml P/S (100x) 
1.3 ml trypsin stock 
0.2 ml DNase I stock  
up to 50 ml CBFHH 
 

DNase-working solution (50 ml) 0.5 ml P/S (100x) 
1.7 ml FCS 
0.2 ml DNase I stock 
up to 50 ml CBFHH 
 

0.4% Trypan blue (100 ml) 0.4 mg trypan blue 
100 ml distilled water 

NRCF culture media 

 

Fibroblasts growth medium (FGM) 500 ml DMEM GlutaMAX 4.5 g/l 
glucose 
50 ml FCS 
5 ml P/S (100x)  
5 ml NEAA (100x) 
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Low medium (LM) 500 ml DMEM GlutaMax 1 g/l glucose 
5 ml P/S (100x)  

HEK293A culture media 
 

HEK293A growth medium 500 ml DMEM GlutaMAX 4.5 g/l 
glucose 
50 ml heat-inactivated FCS 
5 ml P/S (100x) 
  

HEK293A low serum medium 500 ml DMEM GlutaMAX 4.5 g/l 
glucose 
2.5 ml heat-inactivated FCS 
5 ml P/S (100x) 
  

Buffers for adenovirus purification 

 

10x Virus storage buffer (VSB) (1000 ml) 100 ml 1 M Tris, (pH 7.4 with HCl) 
80 g NaCl 
50 ml 1 M KCl 
10 ml 1 M MgCl2 
up to 1000 ml distilled water 
 

Light cesium chloride (CsCl) (1.209 g/ml) 11.02 g CsCl, fill up to 50 g 1x VSB 
 

Heavy cesium chloride (CsCl) (1.459 g/ml) 21.10 g CsCl, fill up to 50 g 1x VSB 
 

Sirius red-based colorimetric microassay for collagen 
 

Sirius red solution (100 ml) 100 mg siruis red dye powder 
100 ml saturated aqueous picric acid 
 

Bouin's solution (16 ml) 
 
 

15 ml saturated aqueous picric acid 
5 ml 35% formaldehyde 
1 ml 100% acetic acid 
 

Other buffers and solution 

 

Calcium-free Tyrode's solution (500 ml) 20 ml stock I (175 g NaCl, 10 g KCl,   
25 ml MgCl2, up to 1000 ml distilled 
water) 
19 ml stock II (50 g/l NaHCO3) 
10 ml stock III ( 5.8 g/l NaH2PO4) 
0.5 g glucose 
50 mg ascorbic acid 
up to 500 ml distilled water 
 

3 M Sodium acetate (1000 ml) 246 g sodium acetate 
up to 1000 ml distilled water 
pH 5.2 with acetic acid 

Table 15: Composition of the used buffers, solutions and media 
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3.1.9. Inhibitors 

 

 Inhibitor Stock 
solutions 

Solvent End 
concentration 
in cell culture 

Control 
condition 

BAPTA-AM 13.1 mM DMSO 7 µM DMSO 

Colchicine 2.5 mg/ml Water 1.3, 5 µg/ml Water 

Cyclosporin A (CsA)  40 mM DMSO 20 nM DMSO 

Go 6983 50 mM DMSO 6 µM DMSO 

gp91 ds-tat 50 mM Water 5 µM  Water 

gp91 ds-tat; sgp91 ds-tat, 

scrambled 

50 mM Water 5 µM  Water 

Kn-92 1 mM Water 2 µM  Water 

Kn-93 1 mM DMSO 2 µM  DMSO 

Latrunculin-A (LAT-A) 100 µg/ml Ethanol, 

absolute 

5.5, 7, 8.5 

ng/ml  

Ethanol, 

absolute 

Methyl-beta-cyclodextrin 

(CDX) 

Freshly 

prepared 

Water 2.5 mM Water 

NSC 23766 50 mM Water 50 µM Water 

Pyrazol 3 (Pyr3)  10.95 mM DMSO 3 µM   DMSO 

Thapsigargin (TGN) 1 mM DMSO 3 µM DMSO 

U73122 (122)  5 mM DMSO 1.5 µM  DMSO 

U73343 (343)  5 mM DMSO 1.5 µM  DMSO 

Valsartan 2.3 mM DMSO 15 nM DMSO 

Xestospongin C (XeC) 5.6 mM Ethanol, 

absolute 

1.4, 100 µM Ethanol, 

absolute 

Table 16: End concentration in cell culture for each of the used inhibitors 

 

 

3.1.10. Devices and softwares 

 

Device 
 

Model Company 

Autoclave  VX-150 Systec 

Cell counter Casy Roche 

Cell counting chamber Fuchs-Rosenthal bright-line Marienfeld-Superior 

Cell culture incubator  Steri-cult 200 Incubator  Forma Scientific 

Cell culture incubator  Labotect Incubator C 200  Labotect 

Cell sieve Cell dissociation sieve - 

tissue grinder kit (250 µm 

pore size) 

Sigma-Aldrich 

Centrifuge bench top Centrifuge 5804 R  Eppendorf 
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Centrifuge bench top Sigma 3K30 Sigma 

Centrifuge table top Tabletop centrifuge 5415 D  Eppendorf 

Centrifuge table top  Combi-spin FVL-2400N Biosan 

Centrifuge table top Centrifuge 5417 R Eppendorf 

Chemiluminescence imaging 

system 

Versa doc MP Bio-Rad 

Double distilled water system Milli-Q Millipore 

Electric power supply and control Powerpac Bio-Rad 

Heating block Thermo mixer compact Eppendorf 

Horizontal system for submerged 

gel electrophoresis   

H5 BRL 

Horizontal system for submerged 

gel electrophoresis   

Mini-sub cell GT Bio-Rad 

Incubator CFC-free Sanyo 

Inverted fluorescence microscope Axiovert 200 Zeiss 

Inverted fluorescence microscope 

with climate chamber 

Olympus IX 81 Olympus 

Inverted microscope Axiovert S100 TV Zeiss 

Microscope camera CAM-XM10-T-Camera Olympus 

Microscope filter Cy5 BP 635/40 Olympus 

Microscope filter DAPI BP 403/12 Olympus 

Microscope filter EGFP BP 470/20 Olympus 

Microscope filter FITC BP492/18 Olympus 

Microscope filter Texas Red BP 572/23 Olympus 

Microscope objective 20x LUCPLFLN20xPH|0.45  Olympus 

Microscope objective 40x LUCPLFLN40xPH|0.60 Olympus 

Microscope objective 60x PlanApo N60x/1.42 oil Olympus 

pH meter WTW Inolab 

Pipettes   Pipetman Gilson 

Plate reader FlexStation3 Molecular Devices 

Pump ME2 Vacuubrand 

Real-Time-PCR-System TaqMan 7900HT Fast Real-

Time-PCR System 

Applied Biosystems 

Rocker Diomax 1030 Heidolph 

Rotation shaker Reax 3 Heidolph 

Scale Portable Sartorius 

Shaker GFL 3016 GLF 

Shaker Vibramax 100 Heidolph 

Shaking incubator Innova 4300 New Baunswick 

Scientific 

Sonicator Sonifier B-12 Branson Sonic 

Power  

Spectrophotometer Nanodrop 1000  Peqlab 
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Temperature control chamber Certomat B. Braun 

Thermocycler  Mastercycler gradient  Eppendorf 

Ultracentrifuge L8-70M Beckman 

Ultracentrifuge rotor SW-27 Beckman 

UV agarose gel imaging system Gel doc XR Bio-Rad 

UV lamb plate TI 1 Biometra 

Vortexer VF 2 Vortexer  Janke u. Kunkel IKA 

Labortechnik 

Water bath  2764 Eppendorf 

Western blot gel electrophoresis 

and protein blotting system 

Mini-protean tetra cell 4-gel 

system 

Bio-Rad 

Table 17: Devices 

 

 

Software 
 

Use Company 

GraphPad prism 5.0 Statistical calculations and 

graphs drawing 

GraphPad 

Image J 1.60_20, time series 

analyzer V2.0 plug-in 

Evaluation of fluorescence 

intensity 

National Institutes 

of Health, USA  

Quantity One 4.6.5 Operating the Versa doc MP 

system and for semi-

quantification of western blots 

Bio-Rad 

SDS 2.4 Operating the TaqMan 7900HT 

Fast Real-Time-PCR System, 

and its data analysis 

Applied Biosystems 

Xcellence pro Operating the Olympus 

microscopy system for cell 

imaging 

Olympus 

Table 18: Softwares 

 

 

3.2. Methods 

 

 

3.2.1. Isolation, maintenance and passaging of primary neonatal rat cardiac 

fibroblasts 

 

Neonatal rat cardiac fibroblasts (NRCF) were isolated from neonatal rats (1-3 days old) 

according to a modified protocol by Simpson and Savion, 1982 [171]. Briefly, the animals 

were decapitated, the thoracic cavity was quickly opened and the hearts were removed. 
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The pedicles and the atria were removed, and the ventricles were cut into small pieces 

(about 1-2 mm size). After that, the cardiac cells were released from the ventricular 

tissues by repeated digestion cycles. To do so, the ventricular tissues were incubated 

with trypsin working solution with mild rocking at room temperature until it started to 

become cloudy (1-4 min), at this point, the supernatant solution was transferred into a 

collecting tube containing fetal calf serum (FCS), and DNAse I working solution was 

added to the tissues. The tissues were triturated several times to physically release the 

loosened cells. Then, the supernatant was transferred into the collecting tube, and a new 

digestion cycle was started. The digestion cycles continued until no more cells were 

released. After that, the collecting tubes were centrifuged at 60 g, 4oC for 15 min, the 

supernatant was aspired, the pellets were resuspended in non-cardiomyocyte medium 

(NKM), and the cells from different collecting tubes were pooled together. Next, the cells 

were strained through a pre-wetted cell sieve (250 µm pore size), and were collected in 

a new 50 ml reaction tube. After that, a sample from the cell suspension was mixed with 

0.4% trypan blue as 1:1, and the mixture was then transferred into Fuchs-Rosenthal 

bright-line cell counting chamber to determine the number and viability of the yielded 

cells. Finally, NRCF were isolated from cell suspension by making use of their ability to 

adhere much faster to plastic cell culture surfaces comparing to cardiomyocytes and 

other cell types. To do so, the cell suspension was diluted with an appropriate volume of 

NKM, and the cells were seeded on 15 cm cell culture dishes as 10 million cells/dish. 

The cells were incubated at 37oC, 5% CO2, 99% humidity for 1 hr, after which the 

medium containing the non-adherent cells was changed for fibroblasts growth medium 

(FGM). By this, most of the adherent cells are NRCF, and these cells are considered 

passage 0 (P0). The cells were maintained in FGM until the desired confluency had 

been reached.  

 

Confluent NRCF culture plates were washed twice with pre-warmed PBS, after that, they 

were incubated with pre-warmed 0.05% trypsin-EDTA (7 ml/15 cm dish) until the cells 

started to round up and detach, at this point 20 ml/15 cm dish FGM was added, and the 

cells were collected in 50 ml reaction tube, diluted further with FGM, triturated well and 

seeded in new cell culture dishes and plates, so that the splitting ratio was 1:4 with 

respect to culturing surface area. Passage one (P1) was always used unless otherwise 

indicated. 
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Usually 24 hr before running any experiment, the cells were washed twice with PBS, and 

the FGM was exchanged by low medium (LM). This step was referred to as starvation. 

 

 

3.2.2. Culturing, maintenance and passaging of primary normal human 

ventricular cardiac fibroblasts (NHCF-V) 

 

Handling of NHCF-V cells was according to the instructions of the supplier company, 

using the media and solutions supplied with the cells. To do so, the frozen components 

of the FGM-3Bullet kit (FCS, recombinant human insulin, recombinant human fibroblast 

growth factor, and gentamycin/amphoteracin) were thawed on ice and combined with the 

supplied basal medium.  

 

FGM-3Bullet medium was added first into the culture vessels as 1 ml/5 cm2, and was 

allowed to equilibrate in the cell culture incubator for at least 30 min. After that, the 

cryovial of the NHCF-V cells was quickly thawed in a water bath set to 37oC, the cells 

were resuspended in the cryovial and dispensed into the equilibrated cell culture 

vessels.  

 

The cells were passaged when they had already reached 70-80% confluency. FGM-

3Bullet medium was added first into the culture vessels as 1 ml/5 cm2, as was allowed to 

equilibrate in the cell culture incubator for at least 30 min. The medium on the cells was 

removed and the cells were washed two times with room temperature HEPES-buffered 

saline solution. After that, trypsin-EDTA was added only enough to cover the cell culture 

surface, and the cells were incubated at room temperature until most of the cells had 

already detached from the vessel. At this point, room temperature trypsin neutralizing 

solution (TNS) was added in a volume equivalent to two times that of the already added 

trypsin-EDTA. The cell suspension was collected and diluted with the appropriate 

volume of FGM-3Bullet medium, before the cells were seeded in new cell culture 

vessels.  
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3.2.3. Culturing, passaging and maintenance of HEK293A cells 

 

The cryovials of HEK293A cells were thawed quickly in 37oC water bath, and were 

directly diluted with an appropriate volume of HEK293A growth medium. After that, the 

cells were seeded in 15 cm dishes, and the medium was exchanged every other day. 

When the cells were 70-80% confluent, they were passaged. To do so, the cells were 

washed twice with pre-warmed PBS, after that, they were incubated with pre-warmed 

7ml 0.05% trypsin-EDTA until the cells started to round up and detach, at this point 

HEK293A growth medium was added, the cell suspension was collected in 50 ml 

reaction tube and diluted with the appropriate volume of HEK293A growth medium. The 

cell suspension was triturated well, and was then dispensed in new cell culture dishes 

and plates according to the desired splitting ratio. 

 

In case of passaging HEK293A cells for transfection, a serial dilution from the cell 

suspension was performed and seeded in cell culture plates so that on the next day, the 

plates with the appropriate cell confluency could be used.  

 

 

3.2.4. Live cell calcium imaging and time lapse analysis 

 

Generally, experiments were performed in 12-well plates. The cells were initially 

incubated separately with 570 µl medium containing the experimental conditions for 1 hr, 

unless otherwise indicated. After that, 60 µl/well of the Ca2+ sensitive fluorescent dye 

solution was added, and the cells were incubated with the dye for 25-30 min in the 

climate chamber of the inverse fluorescence microscope (Olympus), where the 

conditions were adjusted to 37oC, 5% CO2, 57.37% lamp intensity and the exposure time 

to 290 millisecond. The 20x objective and the GFP filter were used to visualize the cells. 

Time-lapse recording was programmed as one frame every 5 sec for a duration of 5 min, 

with the first frame taken at 0 second. Ang II (100 nM) was added at the 20th second 

(after the first five frames), unless otherwise indicated. The change in fluorescence 

intensity for individual cells, which correlates to the change in cytoplasmic Ca2+ level, 

was analyzed with the help of Image J, using time series analyzer version 2 plug-in. For 

each experiment, several fields from different wells were analyzed with at least 70 cells 

per field. For all of the Ca2+ transient assays, the baseline fluorescence (first 5 frames 
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before the addition of Ang II) was subtracted from the graph to normalize the 

background fluorescence, unless otherwise indicated. The change in the maximal 

fluorescence intensity (ΔRFUMax) was used to compare the effect of different conditions 

on the intensity of the Ca2+ transient. The percentages of the Ca2+ oscillating cells and 

the cell with mitochondrial Ca2+ loading were determined by manual counting.  

 

 

3.2.5. Fluorescence staining for cell microscopy 

 

After cells were incubated overnight with the treatment conditions, the medium was 

aspired and the cells were fixed with 4% paraformaldehyde (PFA) for 15 min at room 

temperature. After that, they were washed three times with PBS, and incubated for 5 min 

with 0.05% Triton solution to permeabilize the cellular membranes, this was followed by 

washing three times with PBS and incubation with 1x Roti-immunoblock for 1 hr at room 

temperature. Then, the cells were incubated with PBS containing the antibody against 

the protein(s) of interest (using the dilutions shown in table 7), DAPI to stain the nuclei, 

and when needed fluorophore-conjugated-phalloidin to stain actin and fluorophore-

conjugated WGA to stain the cellular membranous structures including the Golgi 

apparatus (using the dilutions shown in table 10). The cells were incubated with this 

solution overnight at 4oC shuttle shaking and protected from light. On the next day, the 

cells were washed three times with PBS, and were incubated with the appropriate 

fluorophore-conjugated secondary antibodies (using the dilutions shown in table 9) for   

1 hr at room temperature while shaking and protected from light. At the end, the cells 

were washed three times with PBS and were imaged by inverse fluorescence 

microscopy (Olympus). 

   

 

3.2.6. Sirius red-based colorimetric microassay for collagen 

 

The assay was performed using 12-well plates of confluent NRCF according to the 

protocol described by Tullberg-Reinert and Jundt [172]. Following cell treatment, the 

medium was removed and the cells were washed three times with PBS followed by 1 hr 

incubation at room temperature with Bouin’s solution for fixation (1 ml/well). After that, 

Bouin’s solution was removed and the plates were washed with running tap water for   
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15 min, followed by air drying. When the plates were completely dry, 1 ml/well of sirius 

stain solution was added and the cells were stained for 1 hr under mild shaking. After 

that, the dye was removed and the cells were washed extensively with 0.01 N HCl to 

remove the excess dye. Then, each well received 0.4 ml of 0.1 N NaOH, and the plate 

was placed on a shaker for 30 min at room temperature to dissolve the dye. Finally, the 

dissolved dye was transferred into a 96-well plate, and the absorbance was measured at 

550 nm wave length against 0.1 N NaOH using FlexStation 3 plate reader.  

 

 

3.2.7. Protein biochemical analysis 

 

 

3.2.7.1. Preparation of samples for immunoblotting 

 

Generally, NRCF were initially incubated with the inhibitor in question (according to the 

concentrations shown in table 16) or the corresponding control condition for 1 hr, before 

Ang II (100 nM) was added. After about 24 hr, the conditioned medium was collected and 

kept on ice, and ice-cold GST-fish lysis buffer was used to lyse the cells with the help of 

cell scrapers. Then, the scraped cells were centrifuged at 13000 g for 5 min to remove cell 

debris, and the supernatant was mixed as 1:4 with the 4x sample loading buffer without 

glycerol. Medium samples were mixed as 1:4 with the 4x sample loading buffer containing 

glycerol. After that, the samples were incubated at 95oC for 5 min on a heating block, then 

on ice for few minutes, and finally they were centrifuged briefly and kept cooled until use. 

 

In case of checking protein phosphorylation, the cell lysates were quickly collected 5 min 

after Ang II treatment, using 1x SDS sample loading buffer containing glycerol, because 

SDS instantly denature proteins, thus blocking the activity of phosphatases. Since the     

1x SDS sample loading buffer can also disrupt the nuclear envelope resulting in the 

release of DNA, which makes the samples very viscous, the samples were exposed to 

three cycles of sonication on ice each lasted for 15 sec, with the output knob adjusted to 4. 

After that, the samples were incubated at 95oC for 5 min on a heating block, then on ice for 

few minutes, and finally they were centrifuged briefly and kept cooled until use.    
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3.2.7.2. Protein separation, by sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE), and blotting  

 

Protein samples mixed with loading buffer were loaded on 15% or 12% SDS-

polyacrylamide gels (table 15), depending on the molecular weight of the investigated 

proteins. The electrophoresis was performed with 200 volts for 70 min. After that, the 

proteins were blotted onto nitrocellulose membranes for 1 hr under cooled conditions with 

100 volts. Then, the nitrocellulose membranes were incubated for 5 min in Ponceau S 

stain at room temperature to stain the proteins on the membrane and to visualize the 

protein marker. The excess dye was washed off several times with distilled water, and 

when necessary the membranes were cut according to the protein marker to allow the 

incubation with different primary antibodies. The membranes were destained by washing 

several times with TBS-T, followed by incubation with 1x Roti-block for 1 hr at room 

temperature. After that, they were washed three times with TBS-T, each for 5 min followed 

by overnight incubation with the appropriate primary antibodies (diluted with TBS-T as 

shown in table 7) at 4oC with shaking. On the next day, the membranes were washed 

three times with TBS-T each for 5 min, and then, they were incubated with the appropriate 

HRP-conjugated secondary antibodies (diluted with TBS-T as shown in table 8) for 1 hr, at 

room temperature with shaking. After that, the membranes were washed three times with 

TBS-T, each for 5 min, and at the end the protein antibody complexes were visualized by 

Versa doc MP chemiluminescence detection system using lumi-light western blotting 

substrate kit or super signal west femto maximum sensitivity substrate kit. 

 

3.2.7.3. Exchanging antibodies from nitrocellulose membranes 

 

In the first step, the existing antibodies were stripped from the nitrocellulose membranes. 

To do so, the membranes were incubated with the stripping buffer for exactly 30 min at 

50oC with shacking. After that, the membranes were washed 6 times with TBS-T buffer 

each for 10 min at room temperature. Then, the membranes were incubated with a 

blocking solution and the proteins were labelled with the primary and secondary as 

described before.  

 

 



46 
 

3.2.8. Molecular biology 

 

3.2.8.1. Determination of relative change in gene expression  

 

3.2.8.1.1. RNA isolation 

 

The experiments were performed using confluent 10 cm dishes of NRCF. Following 

treatment course, the cells were washed once with PBS, and were incubated afterwards 

with 0.05 % trypsin-EDTA (2.5 ml/plate) for 3-4 min until most were detached. At this 

point, 12 ml FGM was added and the cell suspension was collected and centrifuged at 

300 g for 5 min at 4oC. The supernatant was removed completely, and the total RNA 

was extracted from the cell pellet using RNeasy kit according to the manufacturer’s 

instructions. Following RNA extraction, the RNA concentration was determined using 

Nanodrop 1000 device. 

    

3.2.8.1.2. RNA analysis by formaldehyde (FA) agarose gel-electrophoresis 

 

RNA analysis was performed according to the protocol described in the RNeasy kit 

manufacturer’s instructions. First, 1.2% FA agarose gel was prepared as described in 

section 2.1.7. After the gel had already condensed, it was incubated for at least 30 min 

in a horizontal system for submerged gel electrophoresis containing 1x FA gel running 

buffer, to equilibrate before sample loading. RNA samples were diluted with RNase-free 

water and were mixed with 5x RNA loading dye. Usually between 0.5 to 2.5 µg RNA was 

used from each sample. After that, the RNA samples were incubated for 5 min at 65oC 

for 5 min, then, chilled on ice, centrifuged briefly and loaded onto the equilibrated 1.2% 

FA agarose gel. The electrophoresis was performed at 7 volts/cm for 25-30 min. Finally, 

the RNA bands were imaged with the help of Gel doc XR device. The detection of two 

sharp bands, which reflects the ribosomal RNAs, was considered as an indication of a 

good RNA integrity.  
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3.2.8.1.3. RNA reverse transcription into cDNA 

 

Every time, 1000 ng RNA was used from each sample to produce cDNA using Revert 

Aid First Strand cDNA Synthese Kit according to the manufacturer’s instructions.  

 

3.2.8.1.4. Quantitative polymerase chain reaction (qPCR) 

 

The qPCR was performed using 5x HOT FIREPOL EvaGreen qPCR Mix Plus kit, 

according to the instructions of the manufacturer. The cDNA samples were diluted as 

1:20, and the primers for each gene were diluted to 10 µM. A master mix for each target 

gene was prepared by scaling up the recipe shown in table 19 according to the number 

of samples. For each sample four replicates were performed.  

 

Component 
 

Volume (µl) 

Forward primer (10 µM) 1 

Reverse primer (10 µM) 1 

5x HOT FIREPol EvaGreen qPCR Mix 

Plus 

4 

Water 13 

Tables 19: Mix for a single replicate  

 

The experiment was performed in a Micro-Amp optical reaction 384-well plate, where 

first 1 µl of the diluted cDNA was added per well, followed by the addition of 19 µl of the 

corresponding master mix. After loading the samples on the plate, it was sealed with 

Micro-Amp optical adhesive film and centrifuged for 5 min at 700 g. Finally the reaction 

was performed using TaqMan 7900HT Fast Real-Time-PCR System, according to the 

program shown in table 20. 

 

Stage 
 

Cycle Temperature  Time  Repetition Ramp 
rate 

I Initial denaturation 95oC 15 min 1 time 

1.6oC/sec II 

Denaturation 95oC 15 sec 

40 times Annealing 
Specified for 

each gene 
20 sec 

Elongation 72oC 45 sec 

III Dissociation curve 95oC 15 sec 1 time 
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 60oC 15 sec 

95oC 15 sec 

Table 20: General qPCR program 

 

 

3.2.8.2. RT-PCR for verification of gene expression 

 

To check whether a certain gene is expressed in NRCF, cDNA was first synthesized 

from RNA, followed by a PCR step according to the reaction mixture shown in table 21, 

where the cDNA was used as a template. 

 

Component 
 

Volume (µl) 

Forward primer (10 µM) 1 

Reverse primer (10 µM) 1 

GoTaq green master mix 12.5 

cDNA 1 

Water 9.5 

Table 21: Reaction mixture for the PCR step 

 

 

The reaction was performed using Mastercycler gradient device according to the 

program shown in table 22. 

  

Cycle 
 

Temperature (oC) Time  Repetition 

Initial denaturation 94 2 min 1 time 

Denaturation 94 10 sec 

45 times Annealing Specified for each gene 5 sec 

Elongation 72 85 sec 

Final elongation 72 10 min 1 time  

Table 22: General program for the PCR step  

 

 

After that, the PCR product was separated by DNA-agarose gel electrophoresis, and the 

band of the representative DNA fragment was visualized by Gel doc XR device. 
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3.2.8.3. Construction of an adenovirus for overexpression of tetracysteine (TC) 

tagged CTGF 

 

3.2.8.3.1. Restriction digestion 

 

The conditions and the composition of the reaction mixture for the restriction digestion 

were according to the manufacturer’s instructions, provided with each restriction 

enzyme. 

 

3.2.8.3.2. DNA agarose gel electrophoresis 

 

DNA samples were pre-mixed with a suitable volume of 6x DNA loading buffer. After 

that, they were loaded on a DNA agarose gel. The electrophoresis was performed at      

7 volts/cm for 15-35 min, depending on the expected size of DNA band. After that, DNA 

bands were imaged with the help of Gel doc XR device.  

 

3.2.8.3.3. Purification of DNA from agarose gel 

 

After performing DNA agarose gel electrophoresis for PCR products or restriction 

digests, the regions of the agarose gel containing the DNA bands were excised under 

UV light using a sharp scalpel. After that, the DNA was extracted using High pure PCR 

product purification kit according to the manufacturer’s instructions. 

 

3.2.8.3.4. Amplification of CTGF gene from cDNA by PCR 

 

As a starting point, cDNA prepared by reverse transcription of total NRCF RNA, was 

used as a template for CTGF gene amplification, using PrimeSTAR HS DNA polymerase 

kit. The reaction mixture was prepared according to table 23, and the PCR was 

performed according to the program shown in table 24. 
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Reagent 
 

Volume 

cDNA 2 µl 

5x PrimeSTAR buffer (Mg 2+ plus) 10 µl 

Forward primer (10 µM) 1 µl 

Reverse primer (10 µM) 1 µl 

dNTP mixture (2.5 mM each) 4 µl 

PrimStar HS Polymerase 0.5 µl 

Water 31.5 µl 

Final volume 50 µl 

 Table 23: Reaction mixture for CTGF gene amplification from cDNA 

 

 

Cycle 
 

Temperature (oC) Time  Repetition 

Denaturation 95 10 sec 

30 times Annealing 55 5 sec 

Elongation 72 85 sec 

Table 24: PCR program for CTGF gene amplification from cDNA  

 

 

3.2.8.3.5. Addition of KpnI and XhoI restriction sites to CTGF gene by PCR 

 

After amplification of the CTGF fragment, it was purified as mentioned before, and was 

further amplified using primers with overhangs, which can add KpnI and XhoI restriction 

sites at the 5’ and 3’ ends of the gene, respectively. The reaction mixture was prepared 

according to table 25, and by using the program shown in table 26. 

 

Reagent 
 

Volume 

CTGF fragment (109 ng/µl) 1 µl 

5x PrimSTAR buffer (Mg 2+ plus) 10 µl 

Forward primer (10 µM) 1 µl 

Reverse primer (10 µM) 1 µl 

dNTP mixture (2.5 mM each) 4 µl 

PrimStar HS Polymerase 0.5 µl 

Water 32.5 µl 

Final volume 50 µl 

Table 25: PCR reaction mixture for the addition of restriction sites to the ends of CTGF 

gene by PCR 
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Cycle Temperature (oC) Time  Repetition 

Denaturation 95 10 sec 

30 times Annealing 55 5 sec 

Elongation 72 70 sec 

Table 26: PCR program for the addition of restriction sites to the ends of CTGF gene 

 

 

3.2.8.3.6. Hybridization of TC-tag oligonucleotides 

 

The TC-tag was provided as separate sense and antisense DNA oligonucleotides. The 

lyophilized powder of each oligonucleotide strand was reconstituted in water to achieve 

a concentration of 1 pmol/µl. Equal number of moles from each oligonucleotide was 

used in the hybridization reaction as shown in table 27. The hybridization mixture was 

incubated at 95oC for 30 min, and then, it was left to cool down slowly overnight to room 

temperature. 

 

 Table 27: Hybridization reaction for TC-tag oligonucleotides 

 

 

3.2.8.3.7. DNA ligation 

 

Quick ligation kit was used to perform different kinds of ligation reactions, according to 

the manufacturer’s instruction. For cohesive end ligation 3:1 molar excess of the insert 

was used, whereas for linker ligation 20:1 molar excess of the linker was used. As a 

negative control, equal volume of water was used instead of the insert. The ligation 

reaction mixture was incubated for 1 hr at room temperature, after that, it was directly 

used to transform DH10 bacteria by heat shock protocol.  

 

Reagent 
 

Volume 

Sense oligonucleotide  16.25 µl (16.25 pmol) 

Antisense oligonucleotide 16.25 µl (16.25 pmol) 

NEB Buffer 1 5 µl 

Water 12.5 µl 

Final volume 50 µl 
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3.2.8.3.8. Transformation of DH10B bacteria by heat shock protocol 

 

Initially DH10B bacteria were thawed on ice for 30 min. After that, 25 ng of the 

transforming DNA was mixed well with 50 µl of the bacteria in pre-cooled tubes, and the 

tubes were incubated on ice for 30 min. Then, the tubes were incubated in a 42oC water 

bath for exactly 90 sec, after which they were rapidly transferred into an ice bath, where 

they were incubated for 2 min. In the next step, 800 µl of SOC medium was added to 

each tube, warmed to 37oC in a water bath, and then, transferred to a shaking incubator 

set to 37oC. The Bacteria were incubated for 45 min whilst continuous shacking. After 

that, under sterile conditions 200 µl of the bacterial culture was transferred to each       

10 cm LB agar plate supplied with the appropriate antibiotic. The bacterial suspension 

was distributed evenly throughout the plate, and was left until the liquid was absorbed. 

Finally, the plates were transferred in an inverted position to a 37oC incubator. On the 

next day, the colonies of bacteria that grew on the plates were picked up under sterile 

conditions and each colony was used to inoculate LB medium containing the proper 

antibiotic.     

 

3.2.8.3.9. Transformation of AdEasier cells by Inoue protocol 

 

A starter culture was made by adding 10 µl AdEasier cell stock to 5 ml of LB medium 

(containing 50 µg/ml carbenicillin), and was placed in a shaking incubator at 37oC for     

8 hr. After that, an overnight culture was prepared by adding the starter culture to 120 ml 

SOB medium (containing 50 µg/ml carbenicillin). The culture was placed in a shaking 

incubator at 18-22oC overnight and until the optical density at a wave length of 600 nm 

(OD600) was between 0.45-0.50. At this point, the bacterial suspension was centrifuged 

for 10 min at 4oC and 2500 g, and the supernatant was poured off completely. Then, the 

bacterial pellet was resuspended in 8 ml of ice-cold Inoue buffer, and was centrifuged for 

10 min at 4oC and 2500 g. Next, the supernatant was poured off completely, the 

bacterial pellet was resuspended in 2 ml of fresh ice-cold Inoue buffer, and the cells 

were immediately transformed with the vector of interest by heat shock method as 

described above.  

   

 



53 
 

3.2.8.3.10. Isopropanol precipitation of DNA 

 

DNA solution was mixed with 0.1 volume of 3 M sodium acetate solution (pH 5.2) and 

0.7 volume of room temperature isopropanol, and incubated overnight at 80oC. The next 

day, the solution was centrifuged at 15000 g for 30 min at 4oC, and the supernatant was 

poured off. In the next step, 500 µl of ice-cold 70% ethanol was added, and the solution 

was centrifuged at 15,000 g for 30 min at 4oC. The supernatant was poured off, the 

pellet was air dried completely, and finally it was reconstituted with 50 µl sterile distilled 

water.   

 

3.2.8.3.11. Transfection of HEK293A cells by recombinant adenovirus plasmid 

 

One day before transfection, HEK293A cells were seeded in 6 cm dishes with a density 

allowing to have 70% confluent cells the next day. After that, 4 µg of the linearized 

plasmid was used to transfect the cells using PolyFect reagent according to the 

manufacturer’s instruction. The transfected cells were maintained in the incubator for   

20 days, during which 0.5 ml of HEK293A low serum medium was added every 3rd day. 

 

3.2.8.3.12. Amplification of recombinant adenovirus by HEK293A cells 

 

After 20 days of transfection, the HEK293A cells were collected by scraping them off in 

the presence of the medium, and were thereafter exposed to three cycles of freezing 

and thawing using liquid nitrogen, followed by vigorous vortexing to disrupt the cells in 

order to release the virus particles. After that, the resulting suspension was centrifuged 

at 700 g for 5 min at room temperature to pellet the debris, and the supernatant was 

mixed with fresh HEK293A low serum medium, which was used to infect 70% confluent 

HEK293A cells cultured in 10 cm dish. When the cells started to detach (after about 

three days), they were collected and processed following the same steps mentioned 

above, and the obtained supernatant was used to infect 2x 15 cm dishes of HEK293A to 

start a new round of infection. In the next round, the supernatant of virus was used to 

infect 5x 15 cm dishes of HEK293A cells, and the supernatant obtained from these cells 

was used in the last round to infect 20x 15 cm dishes of HEK293A cells. At this point, 

when the cells start to round and slightly detach, they were flushed off the plate by their 

own medium, collected in 50 ml reaction tubes, centrifuged at 150 g for 10 min at room 
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temperature. Next, the pellet was resuspended in 50 ml PBS, centrifuged at 150 g for  

10 min at room temperature. The supernatant was aspired and the pellet was 

resuspended in 10 ml PBS. After that, the cell suspension was exposed to three cycles 

of freezing and thawing, followed by centrifugation at 700 g for 5 min at room 

temperature to pellet the cell debris.  

  

 

3.2.8.3.13. Purification of recombinant adenovirus 

 

In a 17 ml ultracentrifugation tube, 5 ml of light CsCl was added followed by the 

administration of 5 ml of heavy CsCl underneath the light CsCl, and the interphase was 

marked. After that, 5 ml of virus supernatant was added on top and the tubes were filled 

completely with PBS. Next, ultracentrifugation was performed using L8-70M device 

under vacuum, at 22000 g, 8oC for 24 hr. After that, the virus ring was aspired through 

the wall of the tube by a syringe. Then, the virus was purified by overnight dialysis: two 

times against 2000 ml PBS and one time against 2000 ml 1x virus storage buffer (VSB). 

Finally, the virus was stored in 45% glycerol in 1x VSB at -20oC.  

 

 

3.2.8.3.14. Cloning strategy  

 

Insertion of the TC tag in pcDNA3.1/Zeo(+) 5.0 kb vector 

 

First, the pcDNA3.1/Zeo 5.0 kb expression vector was linearized using KpnI and AflII 

restriction enzymes, and the linearized vector was purified as explained before. After 

that, the TC-tag oligoneocleotide, which has AflII and KpnI overhang, was ligated with 

the linearized vector, creating a TC-pcDNA3.1/zeo(+) vector. Next, DH10B bacteria were 

directly transformed with this vector using heat shock method, and minipreps were 

performed for the resulting bacterial colonies, using Exprep plasmid SV mini kit 

according to the manufacturer’s instructions. The positive colonies were determined by 

checking the yielded pcDNA with SmaI restriction enzyme, since the corresponding 

restriction site exists exclusively in the TC-tag. After that, midipreps were performed for 
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the positive colonies to get enough yield of the vector, using Exprep plasmid SV midi kit 

according to the manufacturer’s instructions.  

 

 

Insertion of CTGF gene downstream the TC-tag in the expression vector 

 

The CTGF PCR fragment with added restriction sites was processed with KpnI and XhoI 

restriction enzymes to create sticky ends. In parallel, the TC-pcDNA3.1/zeo(+) vector 

was linearized by the same restriction enzymes. Both CTGF gene and the linearized 

vector were isolated and purified as explained before. After that, the CTGF fragment was 

ligated downstream the TC-tag, creating TC-CTGF-pcDNA3.1/zeo(+) vector, which was 

used directly to transform DH10B bacteria by the heat shock method. Minipreps were 

performed for the resulting bacterial colonies, and the positive colonies were determined 

by checking the yielded pcDNA by KpnI, XhoI and PstI restriction enzymes (PstI can cut 

within two regions of CTGF gene). The presence of mutation was ruled out by 

sequencing the pcDNA of positive clones by Seqlab Company. Tsa201 cells were 

transfected with this construct using PolyFect reagent to validate the expression of TC-

CTGF fusion protein. 

 

 

Insertion of TC-CTGF-pcDNA3.1/zeo(+) vector in pShuttle-CMV vector 

 

TC-CTGF-pcDNA3.1/zeo(+) and pShuttle-CMV vectors were digested by PmeI and 

EcoRV restriction enzymes, respectively, to create blunt ends. After that, they were 

purified and ligated together as explained before creating TC-CTGF-pShuttle-CMV 

vector. Using heat shock method, DH10B bacteria were transformed by the resulting 

construct, followed by miniprep. Colonies having the correct orientation of ligation were 

identified by restriction digest using XhoI. 
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Transformation of AdEasier cells with TC-CTGF-pShuttle-CMV vector to create 

adenovirus backbone for the expression of TC-CTGF 

 

TC-CTGF-pShuttle-CMV vector was linearized with PmeI restriction enzyme, and after 

that, it was purified as explained before. Next AdEasier cells were transformed by the 

linearized vector using Inoue protocol as described before, and miniprep was performed 

for the obtained colonies. Positive clones, which contain the TC-CTGF-pShuttle-CMV-

pAdEasy-1 (TC-CTGF-AdEasy-1) were determined by restriction digestion using PacI 

enzyme. 

 

 

Transfection of HEK293A cells with TC-CTGF-AdEasy-1, and the production of high-titer 

recombinant adenovirus  

 

First the TC-CTGF-AdEasy-1 vector was linearized using PacI restriction enzyme. After 

that, the linearized vector was purified by isopropanol precipitation, and then it was used 

to transfect HEK293A cells. The cell lysate from these cells was used in repeated 

infection cycles, as described before, to infect increasing numbers of HEK293A cells. 

Finally, the recombinant adenovirus was isolated and purified as described before. 

  

 

3.2.9. Statistical analysis 

 

The data are shown as means ± standard error means (SEM). To test the differences 

between groups, one-way analysis of variance (ANOVA) test was performed. To further 

compare two groups, where the data in the same raw are matched, paired student’s t-

test was used, and otherwise unpaired student’s t-test was used. p-values less than or 

equal to 0.05 were considered statistically significant. 
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4. Results 

 

4.1. Role of Ca2+ in the regulation of CTGF  

 

4.1.1. Characterization of Ang II-induced Ca2+ transient in CF 

 

4.1.1.1. Ang II induces Ca2+ transient in both NRCF and NHCF-V 

 

First, the ability of NRCF to induce a Ca2+ transient in response to Ang II was 

investigated. To do so, NRCF were loaded with Fluo-8 Ca2+ sensitive fluorescent dye. 

While recording time lapse as one frame every 5 sec, 100 nM Ang II was applied at the 

20th sec, resulting in a sharp increase in the fluorescence intensity that could be 

detected in the subsequent frame (at 25th sec), which declined gradually until close to 

baseline level. This transient change in fluorescence intensity reflects a transient 

increase in the cytoplasmic Ca2+ concentration (Fig. 5A). The fluorescence intensity was 

measured by the arbitrary relative fluorescence unit (RFU) (Fig. 5B). In the next step, a 

concentration-response curve was performed using 4 different concentrations of Ang II 

(1, 10, 100 and 1000 nM). For each Ang II concentration, the means ± SEM of ΔRFUMax 

(maximal fluorescence   basal fluorescence) was used to calculate a concentration-

response curve. The calculated EC50 was 1.7 nM, and it was found that 100 nM Ang II 

was required to achieve a maximal response (Fig. 5C). In addition, the ability of normal 

human ventricular CF (NHCF-V) to generate a similar Ca2+ transient in response to    

Ang II was validated (Fig. 5D). In addition, Ang II was able to induce a concentration-

dependent change in fluorescence intensities in NHCF-V, preliminary data (Fig. 5E).  
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Figure 4: Ang II treatment induces rapid Ca2+ transient in CF

A) Cell images: NRCF were first loaded with the Ca2+ dye, then a time lapse recording was started, as one frame every 5 sec for 5 min,

with the first frame at 0 sec. In the first five frames, the cells looked dim, as the cytoplasmic Ca2+ concentration was low, which was

considered as base line (left image). Immediately after the 5th frame (20th sec), 100 nM Ang II was dispensed, as a result a strong increase

in the fluorescence was detected in the subsequent frame (right image), which reflects an increase in cytoplasmic Ca2+ concentration. The
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Figure 5: Induction of Ca2+ transients in NRCF and NHCF-V by different 

concentrations of Ang II 

NRCF and NHCF-V were loaded with the Ca2+ dye, then time lapse was recorded where 

Ang II was added at the 20th sec. A) Representative images for NRCF taken at 0 sec 

(baseline), after Ang II (100 nM) application at the 25th sec, and at the end of the time 

lapse at 300th sec B) The graph shows the analysis of the fluorescence, for control and 

100 nM Ang II-treated NRCF, over the time course of the experiment (n=4, for each n at 

least 3 wells/condition, 40-60 cells/well, means ± SEM). C) Ca2+ transients were 

analyzed in NRCF in the presence of 0, 1, 10, 100 and 1000 nM Ang II. The means ± 

SEM for ΔRFUMax from each Ang II concentration was used for the concentration-

response curve, where the calculated EC50 was 1.7 nM (n=3, for each n at least 3 

wells/condition, 40-60 cells/well, means ± SEM). D) Representative images for NHCF-V 

taken at 0 sec (baseline), after Ang II application at the 25th sec, and at the end of the 

time lapse at 300th sec E) The graph shows the analysis of the fluorescence for NHCF-V 

treated with two different concentrations of Ang II, as well as for a baseline (n=1, at least 

3 wells for each condition, 30-50 cells/well, means ± SEM, preliminary data). 

 

4.1.1.2. Ca2+ handling in NRCF is independent of the differentiation state  

 

To investigate whether the differentiation state of NRCF can influence the handling of 

Ca2+, the Ang II-induced Ca2+ transient (Ang II-CaT) was compared between passage 0 

(P0) and passage 1 (P1) NRCF. It was found that the basal fluorescence (basal Ca2+ 

level), the maximal fluorescence (peak level of Ca2+) and the area under the curve 

(AUC)  (total Ca2+ mobilization) were all equal (Fig. 6).  
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Figure 6: Comparison of the Ang II-CaT in P0 and P1 NRCF  

The Ang II-CaT was investigated in P0 and P1 NRCF, in the presence of 100 nM Ang II. 

The upper left graph demonstrates the trace of the detected fluorescence over 300 sec. 

The analysis of this graph is shown in the accompanying scatter plots. Upper right 

scatter plot illustrates the basal fluorescence level in P0 and P1 cells. Lower left scatter 

plot illustrates the maximal fluorescence intensity. Lower right scatter plot illustrates the 

area under the curve (AUC) (n=13, for each n at least 3 wells/condition, 40-60 cells/well, 

means ± SEM).  

 

4.1.1.3. AT1 receptor -PLC-β signaling cascade mediates the Ang II-CaT 

 

In order to verify that the observed Ca2+ transient in response to Ang II is mediated 

through the AT1 receptor-PLC-β canonical pathway, the Ang II-CaT was studied in 

NRCF treated with valsartan, which is a clinically used selective AT1 receptor blocker, or 

with the PLC-β inhibitor U73122 (122). U73343 (343) was used as a negative control for 

122. Both treatments significantly reduced the ΔRFUMax (Fig. 7A and B). To further 

determine whether the components of the signaling cascade are located in the caveolae, 

NRCF were treated with methyl-β-cyclodextrin (CDX), which disrupts caveolae by 

Ang II

Figure 5: Different passages of NRCF handle Ca2+ similarly 

P0 and P1 NRCF were first loaded with the Ca2+ dye, then live cell Ca2+ imaging

was performed, where 100 nM Ang II was added at the 20th sec. The upper left

graph demonstrates the trace of the detected fluorescence over 5 min. The analysis

of this graph is shown in the accompanying scatter plots. Upper right scatter plot

illustrates the basal fluorescence level in P0 and P1 cells. Lower left scatter plot

illustrates the amplitude of the MFI. Lower right scatter plot illustrates the area under

the curve (AUC) (N=13, mean  SEM).
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cholesterol depletion, before the Ang II-CaT was measured. This resulted in a significant 

reduction in the ΔRFUMax (Fig. 7C). The disruption of the caveolae was confirmed by 

immunofluorescence (IF) analysis of caveolin-1 (Fig. 7D).  

  

 

 

Figure 7: Signaling cascade underlying the Ang II-CaT  

NRCF were treated with the inhibitors or the corresponding control conditions for 1 hr, 

before the Ang II-CaT was investigated. A) Effect of AT1 receptor blockade by 15 nM 

valsartan on the ΔRFUMax (n=7, for each n at least 3 wells/condition, 40-60 cells/well, 

means ± SEM, *p≤0.05) B) Effect of PLC-β inhibition by 1.5 µM 122 on the ΔRFUMax as 

compared to 1.5 µM of the negative control 343 (n=5, for each n at least 3 

wells/condition, 40-60 cells/well, means ± SEM, *p≤0.05) C) Effect of caveolae disruption 

by 2.5 mM CDX on the ΔRFUMax (n=5, for each n at least 3 wells/condition, 40-60 

cells/well, means ± SEM, *p≤0.05) D) IF microscopy for caveolin-1 showing the 

disruption of caveolae by CDX.  
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Figure 6: Ang II induced Ca2+ transient in NRCF via AT1 receptor -PLC-β

signaling cascade
The cells were first incubated with the inhibitors or the corresponding control conditions 

for 1 hr, then loaded with the Ca2+ dye, followed by live cell Ca2+ imaging. A) Effect  of 

Ang II-type 1 receptor (AT1R) blockade, by 15 nM valsartan, on the MFI amplitude 

induced by 100 nM Ang II (N=7, mean  SEM, *p≤0.05). B) Effect of PLC-β inhibition, by 

1.5 µM U73122 (122), on the MFI amplitude induced by 100 nM Ang II as compared to 

the negative control U73343 (343) (N=5, mean  SEM *p≤0.05). C) Effect of the disruption 

of caveolae, by 2.5 mM methyl-β-cyclodextrin (CDX), on the MFI amplitude induced by 

100 nM Ang II (N=5, mean  SEM, *p≤0.05). D) Immunofluorescence staining of caveolin-

1 showing the  disruption of caveolae by CDX. The antibody against caveolin-1 was 

detected by Alexa-fluor 488-conjugated anti-mouse antibody, the images are shown in 

gray
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4.1.1.4. Intracellular Ca2+ stores are the major sources for the Ang II-CaT  

 

In order to investigate the involvement of the intracellular Ca2+ stores and the 

extracellular Ca2+ in the Ang II-CaT, the normal cell culture medium was replaced by 

Ca2+-free Tyrode’s solution during the recording of the time lapse, then Ang II was added 

in the absence of extracellular Ca2+ and the impact on the Ca2+ transient was studied. 

Finally, the extracellular Ca2+ level was restored. As shown in Fig. 8A, a first increase in 

cytoplasmic Ca2+ level was observed in response to the depletion of the extracellular 

Ca2+, then a second Ca2+ transient was induced in response to Ang II treatment, and 

finally a third Ca2+ transient was induced upon restoring the extracellular Ca2+ level. To 

further validate this finding, an experiment was performed, where first the cell culture 

medium was exchanged to Ca2+-free Tyrode’s solution, followed by restoration of the 

original extracellular Ca2+ level, and finally, the Ang II treatment was applied in the 

presence of extracellular Ca2+. Comparably, a first Ca2+ transient was induced in 

response to the depletion of the extracellular Ca2+, then a second Ca2+ transient 

occurred upon restoring the original extracellular Ca2+ level. Finally, Ang II treatment 

induced a Ca2+ transient. The amplitude of the transient was comparable to that 

observed in the absence of extracellular Ca2+ (Fig. 8B). As this data argued for a more 

prominent role for the intracellular Ca2+ stores in the Ca2+ transient, the effect of the 

intracellular Ca2+ store depletion by thapsigargin (TGN) was studied. As shown in Fig. 

8C, the ΔRFUMax was significantly reduced in TGN-treated NRCF. This pointed to a role 

for the inositol-triphosphate receptors (IP3Rs), therefore, the expression of these 

receptors by NRCF was checked by RT-PCR, which confirmed that all of the three 

isoforms of the IP3Rs could be could be detected (Fig. 8D). Next, the effect of IP3Rs 

blockade by xestospongin C (XeC) was investigated, which showed a significant 

reduction in the ΔRFUMax (Fig. 8E).  
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Figure 8: Contribution of the intracellular Ca2+ stores to the Ang II-CaT 

A) The graphs show the background-subtracted fluorescence intensity (ΔRFU) over 

time. The cell culture medium was quickly replaced by Ca2+-free Tyrode’s solution at the 

20th sec. After that, 100 nM Ang II was added at the 180th sec. Finally, Ca2+ solution was 

added at the 360th sec to restore the original extracellular Ca2+ level (2 mM) (n=2, for 

each n at least 3 wells/condition, 40-60 cells/well, means ± SEM). B) The graphs show 

the ΔRFU over time. The cell culture medium was replaced by Ca2+-free Tyrode’s 

solution at the 20th sec. After that, Ca2+ was added at the 180th sec to restore the original 

extracellular Ca2+ level (2 mM). Finally, 100 nM Ang II was added at the 360th sec (n=2, 
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for each n at least 3 wells/condition, 40-60 cells/well, means ± SEM). C) Effect of pre-

depletion of intracellular Ca2+ stores by 3 µM TGN on the ΔRFUMax (n=4, for each n at 

least 3 wells/condition, 40-60 cells/well, means ± SEM, *p≤0.05). D) DNA-agarose gel 

electrophoresis for the products of the RT-PCR showing the expression of IP3R1, IP3R2 

and IP3R3. The calculated length of the amplified DNA fragments is 259, 197 and 252 

base pairs, respectively. * is an unspecific band. E) Effect of IP3Rs blockade by 100 µM 

XeC on the ΔRFUMax (n=3, for each n at least 3 wells/condition, 40-60 cells/well, means 

± SEM, *p≤0.05). 

 

4.1.1.5. Blockade of TRPC3 channels enhances the ΔRFUMax of the Ang II-CaT 

 

To further investigate the impact of different Ca2+ sources on the regulation of the Ang II-

CaT, the effect of TRPC3 channels blockade by Pyr3 was investigated, which showed 

that the basal fluorescence intensity was reduced in Pyr3-treated NRCF compared to the 

control, but the maximal fluorescence was equal in both groups. This lead to an increase 

in the ΔRFUMax (Fig. 9A). The expression of TRPC3 channels by NRCF was confirmed 

by RT-PCR (Fig. 9B). 
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Figure 9: Contribution of TRPC3 channels to the Ang II-CaT in NRCF 

A) The cells were treated with 3 µM Pyr3 for 1 hr before the Ang II-CaT was 

investigated. The graph shows the traces for the detected absolute fluorescence 

intensity in response to 100 nM Ang II in the presence and absence of Pyr3. The 

analysis of this graph is shown in the accompanying column graphs. The middle graph 

illustrates the basal level of absolute fluorescence intensity. The right graph shows the 

ΔRFUMax (n=7, for each n at least 3 wells/condition, 40-60 cells/well, means ± SEM, 

*p≤0.05). B) DNA-agarose gel electrophoresis for the products of the RT-PCR for 

TRPC3 channel expression. The calculated length of the amplified DNA fragment is 198 

base pairs. 

 

 

 

Figure 8: Blockade of TRPC3 by Pyr3 reduces the basal fluorescence intensity, but

increases the MFI amplitude in response to Ang II in NRCF .

A) The cells were first incubated with 3 µM Pyr3 or the corresponding control conditions for 1 hr,

then loaded with the Ca2+ dye, followed by live cell Ca2+ imaging Left graph shows the traces

for the absolute fluorescence intensity in response to 100 nM Ang II, in the presence and

absence of 3 µM Pyr3. The analysis of this graph is shown in the accompanying column graphs.

The middle graph illustrates the basal level of absolute fluorescence intensity. The right graph

illustrates the MFI amplitude in response to Ang II (N=7, mean  SEM, *p≤0.05). B) The

expression of TRPC3 channels was verified by end-point PCR, using qPCR primers. The PCR

product was was analyzed by DNA agarose gel electrophoresis.
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4.1.1.6. TRPC3 channels and the intracellular Ca2+ stores play a role in the 

regulation of the Ang II-induced-Ca2+ oscillation 

 

Besides the induction of a Ca2+ transient by Ang II, spontaneous Ca2+ oscillation could 

be detected in NRCF (Fig. 10A). This phenomenon was evaluated by analyzing the 

percentages of the oscillating to the non-oscillating P0 and P1 cells, in the presence and 

absence of Ang II, which showed that following Ang II treatment, the proportion of Ca2+ 

oscillating cells was significantly increased, independent of the passage (Fig. 10B). 

However, this effect could not be prevented by valsartan (Fig. 10C). To study the 

sensitivity of the NRCF towards Ang II, the effect of 1 nM and 100 nM Ang II was 

compared. Interestingly, the submaximal concentration of 1 nM Ang II was sufficient to 

induce a maximal oscillation (Fig. 10D). After that, the contribution of the intracellular 

Ca2+ stores to the Ang II-induced Ca2+ oscillation was investigated by using TGN. As a 

result, the Ca2+ oscillation was completely inhibited (Fig. 10E). To investigate whether 

the TRPC3 channels are also involved in the regulation of Ca2+ oscillation, the influence 

of Pyr3 treatment was analyzed. Similar to TGN, treatment with Pyr3 significantly inhibit 

the effect of Ang II on Ca2+ oscillation (Fig. 10F). Finally, in a first experiment, it could be 

shown that also the NHCF-V are oscillating Ca2+ to a certain extent (Fig. 10G).  
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Figure 10: Investigation of Ca2+ oscillation in CF  

A) Representative series of images of NRCF showing Ca2+ oscillation over a time period 

of 50 sec. The graph shows the ΔRFU for the marked cells. B-F) For each field of the 

time lapse recording, the percentage of oscillating (Osc) vs. non-oscillating (Norm) 
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NRCF was analyzed. B) Percentage of P0 and P1 NRCF that can spontaneously 

oscillate Ca2+ at the basal level and following 100 nM Ang II treatment (n=7, for each n at 

least 3 wells/condition, 40-60 cells/well, means ± SEM, *p≤0.05 vs. basal P0, #p≤0.05 vs. 

basal P1). C) Effect of AT1 receptor blockade by 15 nM valsartan on the proportion of 

Ca2+ oscillating NRCF, with and without 100 nM Ang II (n=7, for each n at least 3 

wells/condition, 40-60 cells/well, means ± SEM, *p≤0.05). D) Effect of 1 and 100 nM Ang 

II on the proportion of Ca2+ oscillating NRCF (n=3, for each n at least 3 wells/condition, 

40-60 cells/well, means ± SEM, *p≤0.05 vs. baseline). E) Effect of pre-depletion of 

intracellular Ca2+ stores by 3 µM TGN on the proportion of Ca2+ oscillating NRCF with 

and without 100 nM Ang II treatment (n=4, for each n at least 3 wells/condition, 40-60 

cells/well, means ± SEM, *p≤0.05). F) Effect of TRPC3 channel blockade by 3 µM Pyr3 

on the proportion of Ca2+ oscillating NRCF with and without 100 nM Ang II treatment 

(n=7, for each n at least 3 wells/condition, 40-60 cells/well, means ± SEM, *p≤0.05). G) 

Investigating the occurrence of Ca2+ oscillation in NHCF-V. The graph shows the 

fluorescence traces for 6 individual cells treated with 100 nM Ang II. 

 

4.1.1.7. The NADPH oxidases (NOXs) and Rac1 GTPases are regulators of the 

Ang II-CaT in NRCF  

 

Higher magnification imaging revealed that the flux of Ca2+ is spatially regulated. In 

response to Ang II, there was a transient Ca2+ loading in the nucleus or the perinuclear 

space, and a transient Ca2+ loading inside the mitochondria in many cells (Fig. 11A). 

Several processes in the mitochondria are known to involve ROS generation, therefore, 

the effect of ROS on Ang II-mediated Ca2+ handling was investigated by targeting Rac1 

activation, which is among others a subunits of NOX1, 2, and 3, and by inhibition of 

NOX2 subunit gp91 phox activation. 

 

To determine whether the ROS producing NADPH-oxidases are involved in the 

regulation of Ca2+, the Ang II-CaT was investigated in NRCF treated with the Rac1 

activation inhibitor NSC23766 (NSC). By analyzing the change in fluorescence in the 

whole cells, a significant decrease in the ΔRFUMax was detected (Fig. 11B). Moreover, it 

was found that following Ang II treatment, around 30-40% of the control and NSC-

treated cells, showed Ca2+ loading in the mitochondria, which resolved over time in the 

control cells, so that after 170 sec only 10% of the cells showed mitochondrial Ca2+ 
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loading, while the mitochondrial Ca2+ loading was persistent in the NSC-treated cells. 

However, the loading of Ca2+ in the nuclei or the perinuclear space was not influenced 

by NSC treatment (Fig. 11C).  
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Figure 11: Investigation of the role of Rac1 in Ca2+ handling 

A) Representative image for the loading of Ca2+ in the mitochondria following 100 nM 

Ang II treatment. B) NRCF were incubated for 1 hr with 50 µM NSC, before the Ang II-

CaT was studied, where 100 nM Ang II was added at the 20th sec. The graph shows the 

effect of NSC treatment on the ΔRFUMax (n=7, for each n at least 3 wells/condition, 40-60 

cells/well, means ± SEM, *p≤0.05). C) Upper panel contains representative cell images 

showing the time-course for Ca2+ loading in the mitochondria and nuclei at 0, 25th and 

170th sec for control and NSC-treated cells. Lower graph shows the analysis of the 

proportion of cells with mitochondrial Ca2+ loading at the defined time points (n=7, for 

each n at least 3 wells/condition, 40-60 cells/well, means ± SEM, # vs. control + Ang II at 

170th sec, p≤0.05). 

 

To further investigate the role of ROS in the regulation of Ca2+ handling in NRCF, a 

gp91-ds-tat peptide was used to specifically inhibit the association of gp91phox with 

p47phox, thus preventing the assembly of NOX2 subunits. A scrambled peptide with ds-

tat motif (Scr) was used as a negative control. Similar to NSC treatment, the gp91-ds-tat 

peptide decreased the ΔRFUMax significantly by approximately 40% (Fig. 12A). However, 

in contrast to the inhibition of the Rac activation, the duration of Ca2+ loading in the 

mitochondria was not prolonged (Fig. 12B). 
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Figure 12: Investigation of the role of NOX2 in Ca2+ handling  

NRCF were incubated for 1 hr with 5 µM gp91-ds-tat or Scr before the Ang II-CaT was 

studied. A) Effect of gp91-ds-tat treatment on the ΔRFUMax (n=3, for each n at least 3 

wells/condition, 40-60 cells/well, means ± SEM, *p≤0.05). B) Upper panel contains 

representative cell images showing the time-course for Ca2+ loading in the mitochondria 

and nuclei at 0, 25th and 170th sec for the Scr and gp91-ds-tat-treated cells. Lower graph 

shows the analysis of the proportion of the cells with mitochondrial Ca2+ loading at the 

defined time points (n=3, for each n at least 3 wells/condition, 40-60 cells/well, means ± 

SEM). 

 

 

4.1.2. Ca2+ controls the expression and secretion of CTGF  

 

4.1.2.1. Chelation of intracellular Ca2+ by BAPTA-AM affects the basal and 

induced levels of CTGF expression and secretion 

 

After the characterization of the Ang II-CaT in NRCF, its impact on CTGF expression 

and secretion was studied. To do so, first a control experiment was performed in which 

the NRCF were treated with BAPTA-AM and the effectiveness of Ca2+ chelation was 

studied by Ca2+ imaging after Ang II application. Compared to control conditions, 

BAPTA-AM significantly reduced the ΔRFUMax by 70% reflecting the successful chelation 

of free Ca2+ in these cells (Fig. 13A). In next step, the impact of BAPTA-AM on the 

transcription of the immediate-early gene CTGF was analyzed under basal conditions 

and 2 hr after Ang II application, which induced the transcription of CTGF by 3-folds. In 

the presence of BAPTA-AM, however, this increase was completely suppressed and the 

basal CTGF gene transcription was also significantly reduced (Fig. 13B). To verify this 

finding on protein level, the effect of BAPTA-AM was investigated on the regulation of 

CTGF protein over 24 hr under basal conditions and after Ang II treatment. Ang II 

treatment alone significantly increased the intracellular CTGF by 0.5-fold and the 

secreted CTGF by 3.5 fold, however, in the presence of BAPTA-AM, the effect of Ang II 

was completely suppressed (Fig. 13C). 
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Figure 13: Investigation of the general role of Ca2+ in the regulation of CTGF 

expression and secretion 

A) The graph shows ΔRFUMax for the Ang II-CaT, where NRCF were treated for 1 hr with 

7 µM BAPTA-AM or the corresponding control condition before 100 nM Ang II was 

applied (n=3, for each n at least 3 wells/condition, 40-60 cells/well, means ± SEM, 

*p≤0.05). For the experiments shown in B and C, NRCF were treated for 1 hr with 7 µM 

BAPTA-AM or the corresponding control condition before 100 nM Ang II was added. For 

the qPCR data shown in B, the RNA was isolated 2 hr after Ang II treatment, whereas 

for the immunoblotting data shown in C the cell lysates and the conditioned media were 

collected 24 hr after Ang II treatment. B) Effect of BAPTA-AM treatment on CTGF gene 

transcription. The data were normalized to PBGD, and the change in gene transcription 

was calculated relative to the control (n=3, means ± SEM, * and #p≤0.05, * vs. control, # 

vs. Ang II). C) Effect of BAPTA-AM treatment on the intracellular and secreted CTGF 

protein levels under basal and Ang II effects. Left are representative immunoblots, right 

are the relative quantification of the intracellular and secreted CTGF shown. The data 

Figure 12: Chelation of cytoplasmic Ca2+ inhibits CTGF expression and

secretion

Live cell Ca2+ imaging was performed in NRCF pre-incubated for 1 hr with 7 µM A)

BAPTA-AM, where 100 nM Ang II was added at the 20th sec. The graph shows the

change in the amplitude of MFI in response to Ang II, in control and BAPTA-AM-

treated cells (N=3, mean  SEM, *p≤0.05). B and C) NRCF were pre-incubated for 1

hr with 7 µM BAPTA-AM or the corresponding control conditions, after that, they were

treated with 100 nM Ang II. For the qPCR data shown in B,. the RNA was isolated 2 hr

following Ang II treatment, whereas for the immunoblotting data shown in C, the cell

lysates and the conditioned media were collected 24 hr following Ang II treatment. B)

Effect of BAPTA-AM treatment on CTGF gene transcription. The change was

calculated relative to the control, and normalized to PBGD (N=3, means  SEM, * and

# p≤0.05. * vs. control, # vs. Ang II). C) Effect of BAPTA-AM treatment on the

intracellular and secreted CTGF levels, under basal and Ang II effects. Left are

representative immunoblots. Right graphs show the relative quantification for

intracellular and secreted CTGF. The data were normalized to β-actin, and the change

in CTGF level was calculated relative to the control (N=5, means  SEM, * and #

p≤0.05. * vs. control, # vs. Ang II).
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were normalized to β-actin, and the change in CTGF level was calculated relative to the 

control (n=5, means ± SEM, * and #p≤0.05, * vs. control, #vs. Ang II).  

 

In addition, fluorescence microscopy was performed for NRCF treated for 24 hr with 

BAPTA-AM to analyze its effect on CTGF localization and the cytoskeleton´s integrity 

and organization. As shown in Fig. 14, there was no clear effect of the BAPTA-AM 

treatment on the CTGF localization in the Golgi apparatus, or on the integrity and 

organization of the actin filaments and microtubules.  
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Figure 14: Fluorescence microscopy of NRCF treated for 24 hr with BAPTA-AM  

The cells were incubated with 7 µM BAPTA-AM for 24 hr, after which they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (red). The actin filaments were stained with FITC-

phalloidin (green), the membranous structures, including the Golgi apparatus, were 

stained with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with 

DAPI (blue).  

 

 

As shown by the qPCR and immunoblotting data, the effect of BAPTA-AM was more 

pronounced in the qPCR data, where the cells were treated with BAPTA-AM for only      

3 hr. Since BAPTA-AM is known to be unstable for a long time in cell culture, 

fluorescence microscopy was performed for NRCF treated with BAPTA-AM for 3 hr to 

explore the impact on the localization of CTGF and on the status of the cytoskeleton. As 

shown in Fig. 15, BAPTA-AM treatment disrupted of the Golgi apparatus into 

membranous structures containing CTGF. There was also a disruption of actin filaments 

and microtubules.     

 

 

 



76 
 

 

 

Figure 15: Fluorescence microscopy of NRCF treated for 3 hr with BAPTA-AM  

The cells were incubated with 7 µM BAPTA-AM for 3 hr, after which they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (red). The actin filaments were stained with FITC-

phalloidin (green), the membranous structures, including the Golgi apparatus, were 

stained with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with 

DAPI (blue).  
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4.1.2.2. Depletion of intracellular Ca2+ by TGN affects mainly CTGF secretion 

 

After the effect of Ca2+ chelation was investigated, further experiments were performed 

to determine the effect of the intracellular Ca2+ depletion by TGN on the regulation of 

CTGF by Ang II, which showed that in the presence of TGN the stimulatory effect of  

Ang II on CTGF secretion was completely suppressed, but there was no effect on the 

basal level of secretion. Also, there was no significant effect for TGN on the intracellular 

CTGF (Fig. 16).  

 

 

Figure 16: Investigating the effect of intracellular Ca2+ depletion by TGN on CTGF 

regulation 

NRCF were treated for 1 hr with 3 µM TGN or the corresponding control condition, 

before they were treated with 100 nM Ang II. After 24 hr, the cell lysates and the 

conditioned media were collected. Upper panel showing representative immunoblots. 

The graphs below show the relative quantification of the intracellular and secreted 

CTGF. The data were normalized to β-actin, and the change in CTGF level was 

Figure 14: Depletion of intracellular Ca2+ inhibits CTGF secretion

NRCF were pre-incubated for 1 hr with 3 µM TGN or the corresponding control conditions,

after that, they were treated with 100 nM Ang II. 24 hr later, the cell lysates and the

conditioned media were collected. Upper panel are representative immunoblots. The

graphs below show the relative quantification for intracellular and secreted CTGF. The

data were normalized to β-actin, and the change in CTGF level was calculated relative to

the control (N=4, means  SEM, * and # p≤0.05. * vs. control, # vs. Ang II).
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calculated relative to the control (n=4, means ± SEM, * and #p≤0.05, * vs. control, # vs. 

Ang II). 

 

Moreover, fluorescence microscopy was performed for NRCF treated with TGN to 

analyze its effect on CTGF localization and the cytoskeleton’s integrity and organization, 

which revealed that TGN treatment disrupted the morphology of Golgi apparatus, while 

CTGF protein was dispersed throughout the cytosol. Moreover, TGN treatment affected 

the integrity of the actin filaments, but not of the microtubules (Fig. 17). 

 

 

 



79 
 

Figure 17: Fluorescence microscopy of TGN-treated NRCF  

The cells were incubated for 24 hr with 3 µM TGN, after which they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (green). The actin filaments were stained with TRITC-

phalloidin (red), the membranous structures, including the Golgi apparatus, were stained 

with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with DAPI 

(blue). 

 

 

4.1.2.3. Blockade of IP3Rs by XeC inhibits CTGF secretion 

 

After it was found that the depletion of intracellular Ca2+ stores suppresses the secretion 

of CTGF, the effect of IP3Rs blockade by XeC was evaluated on the regulation of CTGF 

protein in the presence and absence of Ang II. Immunoblotting data analysis revealed 

that XeC significantly reduced the basal and induced levels of CTGF secretion, without 

showing a clear reduction in the intracellular level of CTGF (Fig. 18).   

 

 

N=
Intracellular CTGF

Secreted CTGF

β-actin

XeC

Ang II - +       - +     

0 1.4 µM

Intracellular Secreted

*

*

#

*



80 
 

Figure 18: Evaluating the effect of IP3R blockade by XeC on CTGF regulation 

NRCF were treated for 1 hr with 1.4 µM TGN or the corresponding control condition, 

before they were treated with 100 nM Ang II. After 24 hr, the cell lysates and the 

conditioned media were collected. Upper panel showing representative immunoblots. 

The graphs below show the relative quantification of the intracellular and secreted 

CTGF. The data were normalized to β-actin, and the change in CTGF level was 

calculated relative to the control (n=5, means ± SEM, * and #p≤0.05, * vs. control, # vs. 

Ang II). 

 

IF microscopy was also performed to determine the effect of XeC treatment on the 

localization of CTGF as well as on the integrity and organization of actin filaments and 

microtubules. As shown in Fig. 19, XeC partially disrupted the morphology of Golgi 

apparatus, and the cytoplasm of XeC-treated cells seemed to contain more CTGF 

vesicles. In the same time, no effect could be detected on the status of actin filaments 

and microtubules.  
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Figure 19: Fluorescence microscopy of XeC-treated NRCF  

The cells were incubated for 24 hr with 1.4 µM TGN, after which they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (green). The actin filaments were stained with TRITC-

phalloidin (red), the membranous structures, including the Golgi apparatus, were stained 

with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with DAPI 

(blue). 
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4.1.2.4. Blockade of TRPC3 channels induces CTGF secretion, without 

influencing the expression 

 

As shown in Fig. 9A and Fig. 10F, TRPC3 channels were found to play a role in the 

regulation of the Ang II-CaT and the Ang II-induced Ca2+ oscillation. The next step was 

to determine whether TRPC3 channels can therefore play a role in the regulation of 

CTGF expression by Ang II. To do so, the effect of Pyr3 on the transcription of the 

immediate-early gene CTGF was analyzed under basal conditions and 2 hr following 

Ang II application, which revealed that treatment with Pyr3 had no effect on the basal or 

induced levels of CTGF gene transcription (Fig. 20A). In addition, immunoblotting 

analysis was performed to evaluate the effect of Pyr3 on the intracellular and secreted 

CTGF protein under basal and Ang II treatment, which showed that treatment with Pyr3 

had no effect on the basal levels of intracellular and secreted CTGF, but upon Ang II 

treatment, the intracellular level of CTGF was significantly reduced while the secreted 

CTGF was significantly increased (Fig. 20B). 

 

 

 

 

Figure 16: The blockade of TRPC3 channels induced CTGF secretion

NRCF were pre-incubated for 1 hr with 3 µM Pyr3 or the corresponding control conditions,

after that, they were treated with 100 nM Ang II. For the immunoblotting data shown in A,

the cell lysates and the conditioned media were collected 24 hr following Ang II treatment,

whereas for the qPCR data shown in B,. the RNA was isolated 2 hr following Ang II

treatment. A) Effect of Pyr3 treatment on the intracellular and secreted CTGF levels,

under basal and Ang II effects. Upper panel are representative immunoblots, the graphs

below show the relative quantification for intracellular and secreted CTGF. The data were

normalized to β-actin, and the change in CTGF level was calculated relative to the control

(N=8, means  SEM, * and # p≤0.05. * vs. control, # vs. Ang II).B) Effect of Pyr3 treatment

on CTGF gene transcription. The change was calculated relative to the control, and

normalized to PBGD (N=3, means  SEM, * and # p≤0.05. * vs. control, # vs. Ang II).
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Figure 20: Investigating the effect of TRPC3 blockade on CTGF regulation 

NRCF were treated for 1 hr with 3 µM Pyr3 or the corresponding control condition, 

before 100 nM Ang II was added. For the qPCR data shown in A, the RNA was isolated 

2 hr following Ang II treatment, whereas for the immunoblotting data shown in B, the cell 

lysates and the conditioned media were collected 24 hr after Ang II treatment. A) Effect 

of Pyr3 treatment on CTGF gene transcription under basal and Ang II effects. The data 

were normalized to PBGD, and the change in gene transcription was calculated relative 

to the control (n=3, means ± SEM, * and #p≤0.05, * vs. control, # vs. Ang II). B) Effect of 

Pyr3 treatment on the intracellular and secreted CTGF levels, under basal and Ang II 

effects. Upper panel shows representative immunoblots, the graphs below show the 

relative quantification for the intracellular and secreted CTGF. The data were normalized 

to β-actin, and the change in CTGF level was calculated relative to the control (n=8, 

means ± SEM, * and #p≤0.05, * vs. control, # vs. Ang II).  

 

Besides, NRCF treated with Pyr3 were examined by fluorescence microscopy to 

determine the effect of Pyr3 on CTGF localization and the cytoskeleton’s integrity and 

organization. As shown in Fig. 21, there was no clear effect for Pyr3 treatment on CTGF 

localization in Golgi apparatus, or on the integrity and organization of the actin filaments 

and microtubules.  
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Figure 21: Fluorescence microscopy for NRCF treated with Pyr3  

The cells were incubated for 24 hr with 3 µM Pyr3. After that, they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (red). The actin filaments were stained with FITC-

phalloidin (green), the membranous structures, including Golgi apparatus, were stained 

with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with DAPI 

(blue).  
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4.1.2.5. Inhibition of NOX2 subunits assembly has no impact on the regulation 

of CTGF 

 

After it has been shown that the inhibition of NOX2 subunits assembly by gp91-ds-tat 

interfered with the regulation of Ca2+ handling in NRCF, the effect of gp91-ds-tat 

treatment on the regulation of CTGF was investigated by immunoblotting, which showed 

no impact for gp91-ds-tat treatment on the basal or induced levels of the intracellular or 

secreted CTGF (Fig. 22). 

 

 

 

Figure 22: Evaluation of the effect of NOX2 inhibition by gp91-ds-tat on CTGF 

regulation 

NRCF were incubated for 1 hr with 5 µM Scr (negative control) or 5 µM gp91-ds.tat, 

before 100 nM Ang II was applied. After 24 hr, the cell lysates and the conditioned media 
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Figure 18: The blockade of NOX2 subunits assembly has no impact on CTGF

regulation

NRCF were pre-incubated for 1 hr with 5 µM Scr (negative control) or 5 µM gp91-ds.tat,

after that, they were treated with 100 nM Ang II. After 24 hr, the cell lysates and the

conditioned media were collected. Upper panel are representative immunoblots. Lower

graphs show the relative quantification for intracellular and secreted CTGF. The data were

normalized to β-actin, and the change in CTGF level was calculated relative to the control

(N=3, means  SEM, * and # p≤0.05. * vs. control, # vs. Ang II).
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were collected. Upper panel are representative immunoblots. Lower graphs show the 

relative quantification for the intracellular and secreted CTGF. The data were normalized 

to β-actin, and the change in CTGF level was calculated relative to the Scr (n=3, means 

± SEM, *p≤0.05, * vs. Scr).  

 

 

4.1.3. Determination of downstream targets for Ca2+ that mediate CTGF regulation 

 

4.1.3.1. Calcineurin and PKC oppositely regulate CTGF expression  

 

After it had been established that Ca2+ plays a role in the regulation of CTGF, the next 

step was to determine downstream targets through which Ca2+ can influence CTGF 

expression and secretion. Therefore, PKC (Ca2+-dependent kinases) and calcineurin 

(Ca2+-dependent phosphatase) were investigated.  

In order to confirm that both PKC and calcineurin are located downstream Ca2+ and have 

no impact on the handling of Ca2+ itself, Ang II-CaT was investigated in the presence of 

the PKC inhibitor Go 6983 and the calcineurin inhibitor CsA. As shown in Fig. 23A and 

B, there was no effect for either of these two inhibitors on the ΔRFUMax. In addition, the 

impact of Go 6983, CsA and a combination of both on the transcription of the immediate-

early gene CTGF was analyzed under basal conditions and 2 hr after Ang II application, 

which showed that Go 6983 significantly reduced the basal and induced levels of CTGF 

gene transcription. In contrast, CsA significantly increased the basal and induced levels 

of CTGF gene transcription. However, when a combination of both treatments was 

applied, CsA was no longer able to enhance CTGF gene transcription (Fig. 23C). 

Moreover, the effect of Go 6983 was investigated on the regulation of CTGF at the 

protein level by immunoblotting, which demonstrated that treatment with Go 6983 

significantly reduced the basal and induced levels of intracellular and secreted CTGF 

(Fig. 23D). In parallel, the effect of CsA on the regulation of CTGF at the protein level 

was also evaluated by immunoblotting analysis, which revealed that treatment with CsA 

significantly reduced the basal and induced levels of the intracellular CTGF, without 

showing a significant effect on the basal and induced levels of CTGF secretion (Fig. 

23E).  
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Figure 23: Investigating the role of PKC and calcineurin in CTGF regulation 

A) NRCF were incubated with 6 µM Go 6983 before the Ang II-CaT was investigated. 

The graph shows the effect of Go 6983 on the ΔRFUMax (n=3, for each n at least 3 

wells/condition, 40-60 cells/well, means ± SEM *p≤0.05). B) NRCF were incubated with 

Figure 19: Calcineurin and protein kinase C (PKC) oppositely regulate the CTGF
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20 nM CsA before the Ang II-CaT was investigated. The graph shows the effect of CsA 

on the ΔRFUMax (n=3, for each n at least 3 wells/condition, 40-60 cells/well, means ± 

SEM, *p≤0.05). C) NRCF were incubated with 6 µM Go 6983, 20 nM CsA or a 

combination of both for 1 hr, before 100 nM Ang II was added. The RNA was isolated    

2 hr following Ang II treatment and was used to analyze the change in CTGF gene 

transcription by qPCR. The data were normalized to PBGD, and the change in gene 

transcription was calculated relative to the control (n=3, means ± SEM, *p≤0.05 vs. 

control, #p≤0.05 vs. Ang II). D) NRCF were treated for 1 hr with 6 µM Go 6983 or the 

corresponding control condition, after that 100 nM Ang II was added. The cell lysates 

and the conditioned media were collected 24 hr later. Left are representative 

immunoblots shown. The graphs on the right show the relative quantification for the 

intracellular and secreted CTGF. The data were normalized to β-actin, and the change in 

CTGF level was calculated relative to the control (n=4, means ± SEM, *p≤0.05 vs. 

control, #p≤0.05 vs. Ang II). E) NRCF were treated for 1 hr with 20 nM CsA or the 

corresponding control conditions, after that 100 nM Ang II was added. The cell lysates 

and the conditioned media were collected 24 hr later. Left are representative 

immunoblots shown. The graphs on the right show the relative quantification for the 

intracellular and secreted CTGF. The data were normalized to β-actin, and the change in 

CTGF level was calculated relative to the control (n=4, means ± SEM, *p≤0.05 vs. 

control, #p≤0.05 vs. Ang II).  

 

The effect of 24 hr-treatment with Go 6983 on CTGF localization and the cytoskeleton’s 

integrity and organization was determined by fluorescence microscopy, which revealed 

that Go 6983 treatment resulted in the collapse and condensation of the Golgi apparatus 

and the disruption of the actin filaments. CTGF remained localized in the Golgi 

apparatus, and the microtubules appeared normal (Fig. 24). 
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Figure 24: Fluorescence microscopy for NRCF treated for 24 hr with Go 6983  

The cells were incubated for 24 hr with 6 µM Go 6983. After that, they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (green). The actin filaments were stained with TRITC-

phalloidin (red), the membranous structures, including the Golgi apparatus, were stained 

with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with DAPI 

(blue).  

 

In order to determine, whether 3 hr-treatment with Go 6983 can also cause structural 

changes in NRCF, fluorescence microscopy was performed for this purpose, which 
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revealed that the disruption of the Golgi apparatus can already be observed within this 

short time interval . However, the impact on the integrity of actin filaments was not clear 

(Fig. 25). 

 

 

 

Figure 25: Fluorescence microscopy for NRCF treated for 3 hr with Go 6983  

The cells were incubated for 3 hr with 6 µM Go 6983. After that, they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (green). The actin filaments were stained with TRITC-

phalloidin (red), the membranous structures, including the Golgi apparatus, were stained 
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with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with DAPI 

(blue).  

 

The effect of CsA treatment on CTGF localization and the cytoskeleton’s status was also 

investigated by fluorescence microscopy. As shown in Fig. 26, the complexities of the 

cell membrane in the CsA-treated cells were lost, and the morphology of the Golgi 

apparatus became unclear, but it was not disrupted. However, there was no clear effect 

on the actin filaments or microtubules. 
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Figure 26: Fluorescence microscopy for CsA-treated NRCF  

The cells were incubated for 24 hr with 20 nM CsA. After that, they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (green). The actin filaments were stained with TRITC-

phalloidin (red), the membranous structures, including the Golgi apparatus, were stained 

with Alexa-fluor 488 conjugated-WGA (green), and the nuclei were stained with DAPI 

(blue).  

  

 

4.1.3.2. Ca2+ regulates CTGF independently of ERK1/2 or Ca2+/calmodulin-

dependent protein kinase IIδ (CaMKIIδ) signaling 

 

Other downstream targets of Ca2+, which could be involved in the regulation of CTGF, 

were also investigated including ERK1/2 and CaMKIIδ. To do so, the phosphorylation of 

ERK1/2 by Ang II was investigated in NRCF in the presence and absence of BAPTA-

AM, which demonstrated that Ang II-induced ERK1/2 phosphorylation was not 

influenced by intracellular Ca2+ chelation (Fig. 27A). In addition, the effect of Ang II on 

CaMKII phosphorylation was investigated in the presence of the CaMKII phosphorylation 

inhibitor Kn-93 and its negative control Kn-92. As shown in Fig. 27B, Ang II did not 

induce CaMKII phosphorylation (preliminary data). Moreover, CaMKII inhibition did not 

affect the Ang II-CaT (preliminary data) (Fig. 27C). Thus, a role of CaMKII could be 

excluded. 
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Figure 27: Verification of the role of ERK1/2 and CaMKII in the Ca2+-dependent  

Ang II signaling 

A) NRCF were incubated for 1 hr with 7 µM BAPTA-AM or the corresponding control 

conditions before treatment with 100 nM Ang II. The cell lysates were collected 5 min 

thereafter. Left are representative immunoblots of phospho and total ERK1/2 proteins. 

Right graph shows the analysis of the change in ERK1/2 phosphorylation. The data were 

normalized to total ERK1/2, and the change in phosphorylation was calculated relative to 

the control (n=4, means ± SEM, * p≤0.05 vs. control). B) NRCF were incubated for 1 hr 

with 2 µM Kn-92 or Kn-93, before treatment with 100 nM Ang II. The cell lysates were 

collected 5 min thereafter. Representative immunoblots for phospho-and total CaMKII 

are shown (preliminary data). C) NRCF were incubated with 2 µM Kn-93 or 2 µM of the 

negative control Kn-92 before the Ang II-CaT was investigated. The graph shows the 

effect of CaMKII phosphorylation inhibition on the ΔRFUMax (n=1, 3 wells/condition, 40-

60 cells/well, means (of replicates) ± SEM, preliminary data). 

Figure 22: Role of ERK1/2 and CaMKII in Ca2+ dependent Ang II signaling
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4.1.3.3. Ca2+, PKC and Rac1 are involved in CTGF regulation in NHCF-V 

 

To validate the role of Ca2+, PKC and Rac1 in the regulation of CTGF in human cardiac 

fibroblasts, NHCF-V were incubated with BAPTA-AM, Go 6983 and NSC before they 

were treated with Ang II. As shown in the immunoblot in Fig. 28, BAPTA-AM was at least 

able to inhibit the secretion of CTGF, Go 6983 reduced both the intracellular and 

secreted CTGF, and NSC reduced mainly the intracellular CTGF. This experiment was 

performed only once. 

 

 

Figure 28: Validating the role of Ca2+, PKC and Rac1 in the regulation of CTGF in 

NHCF-V 

NHCF-V were incubated for 1 hr with 7 µM BAPTA-AM, 6 µM Go 6983, 50 µM NSC or 

the corresponding control condition before they were treated with 100 nM Ang II. The 

cell lysates and the conditioned media were collected 24 hr following Ang II treatment. 

Shown are immunoblots of the intracellular and secreted CTGF. β-actin is shown as a 

loading control (preliminary data). 
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Figure 23: Ca2+, PKC and Rac1 are involved in the regulation of

CTGF in NHCF-V.

NHCF-V were pre-incubated for 1 hr with 7 µM BAPTA-AM, 6 µM Go

6983, 50 µM NSC 23766, 20 nM CsA or the corresponding control

conditions, after that, they were treated with 100 nM Ang II. The cell

lysates and the conditioned media were collected 24 hr following Ang II

treatment. Shown are immunoblots for the intracellular and secreted

CTGF. β-actin is shown as a loading control.
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4.2. Role of the cytoskeleton in CTGF regulation 

 

4.2.1. Role of the actin filaments in CTGF regulation 

 

The role of the actin filaments in the regulation of CTGF in NRCF was investigated using 

latrunculin-A (LAT-A), which is a natural compound known to disrupt actin filaments. 

First of all, fluorescence microscopy was performed to confirm the effect of LAT-A on the 

actin filaments, and to study the consequences of the disruption of the actin filaments on 

CTGF localization. Cell imaging by fluorescence microscopy clearly showed that the 

actin filaments were disrupted by LAT-A treatment, and that the Golgi apparatus became 

condensed, but not disrupted. CTGF remained localized to the Golgi apparatus (Fig. 29). 

 

 

 

Figure 29: Fluorescence microscopy of NRCF treated with LAT-A  

NRCF were incubated for 24 hr with 8.5 ng/ml LAT-A. After that, they were fixed, 

permeabilized and incubated with a blocking solution. CTGF was detected by IF staining 

(red), the actin filaments were stained with FITC-phalloidin (green), and the nuclei were 

stained with DAPI (blue).  
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To rule out the possibility that LAT-A might influence the microtubules, co-fluorescence 

staining for actin filaments and microtubules was performed in LAT-A-treated cells, 

which showed no clear effect for LAT-A on the integrity or organization of microtubules 

(Fig. 30). 

 

 

 

Figure 30: Fluorescence microscopy of the effect of LAT-A on microtubules  

NRCF were incubated for 24 hr with 8.5 ng/ml LAT-A. After that, they were fixed, 

permeabilized and incubated with a blocking solution. The actin filaments were stained 

with TRITC-phalloidin (red), α-tubulin was detected by IF staining (green) and the nuclei 

were stained with DAPI (blue). 

 

In the next step, the consequences of the actin filaments disruption by LAT-A on the 

regulation of CTGF by Ang II was investigated at the level of gene expression. The 

analysis of the qPCR data showed that treatment with LAT-A significantly inhibited the 

basal and Ang II-induced levels of CTGF gene transcription (Fig. 31A). In the same time, 

immunoblotting analysis was performed to evaluate CTGF regulation at the protein level, 

which showed that upon disruption of the actin filaments, Ang II was no longer able to 

increase the intracellular or the secreted CTGF. Also, the basal level of intracellular 
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CTGF was significantly reduced, while the basal level of secretion was not affected (Fig. 

31B).  

 

 

Figure 31: Investigating the effects of the actin filaments disruption on CTGF 

regulation  

NRCF were incubated for 1 hr with 8.5 ng/ml, before they were treated with 100 nM Ang 

II. For the qPCR data shown in A, the RNA was isolated 2 hr following Ang II treatment, 

whereas for the immunoblotting data shown in B, the cell lysates and the conditioned 

media were collected 24 hr following Ang II treatment. A) Effect of LAT-A treatment on 

CTGF gene transcription under basal and Ang II effect. The data were normalized to 

PBGD, and the change in gene transcription was calculated relative to the control (n=3, 

means ± SEM, * and #p≤0.05, * vs. control, # vs. Ang II). B) Effect of LAT-A treatment on 

the intracellular and secreted CTGF levels, under basal and Ang II effects. Upper panel 

demonstrates representative immunoblots. The graphs below show the relative 

quantification of the intracellular and secreted CTGF. The data were normalized to α-

tubulin, and the change in CTGF level was calculated relative to the control (n=5, means 

± SEM, * and #p≤0.05, * vs. control, # vs. Ang II).  
Figure 26: Disruption of actin filaments inhibits CTGF expression and secretion.

A) NRCF were pre-incubated for 1 hr with 8.5 ng/ml. After that, they were treated with

100 nM Ang II. for the immunoblotting data shown in A, the cell lysates and the
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4.2.2. Role of the microtubules in the regulation of CTGF  

 

The role of microtubules in the regulation of CTGF was verified in NRCF using 

colchicine, which is a clinically used drug that disrupts microtubules. In the first step, 

fluorescence microscopy was performed to confirm the effect of colchicine on the 

microtubules, and to study the consequences on the localization of CTGF. As shown in 

Fig. 32, the microtubules were depolymerised and randomly dispersed throughout the 

cytosol in the form of tubulin aggregates. In addition, the Golgi apparatus, where CTGF 

is normally stored, was fragmented and dispersed randomly throughout the cytosol.  
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Figure 32: Fluorescence microscopy for NRCF treated with colchicine  

The cells were incubated for 24 hr with 5 µg/ml colchicine. After that, they were fixed, 

permeabilized and incubated with a blocking solution. IF staining was performed to 

detect CTGF (red) and α-tubulin (green). The membranous structures, including the 

Golgi apparatus, were stained with Alexa-fluor 488 conjugated-WGA (green), and the 

nuclei were stained with DAPI (blue).  

 

In the next step, the consequence of the microtubules disruption was investigated on the 

regulation of CTGF gene transcription at the basal level and 2 hr following Ang II 

treatment. The analysis of the qPCR data showed that treatment with colchicine 

significantly enhanced the level of CTGF gene transcription, which could not be 

increased further by Ang II (Fig. 33A). The successful disruption of microtubules within   

2 hr was confirmed by immunofluorescence microscopy of α-tubulin (Fig. 33B). Further 

biochemical analysis, by immunoblotting of protein samples from cells treated over 24 hr 

with colchicine in the presence and absence of Ang II, showed that upon disruption of 

the microtubules, the intracellular and secreted levels of CTGF were significantly 

increased, and that Ang II was no longer able to enhance it further. In addition, the level 

of α-tubulin was significantly reduced (Fig. 33C). In addition, by using sirius red-based 

colorimetric microassay it was found that colchicine treatment had no effect on the 

amount of collagen deposition over 24 hr (preliminary data) (Fig. 33D). 
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Figure 33: Disruption of microtubules by colchicine significantly induces CTGF 

expression and secretion 

A) NRCF were treated for 1 hr with 5 µg/ml colchicine or the corresponding control 

conditions, before they were treated with 100 nM Ang II. After 2 hr, the RNA was isolated 
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for the analysis of CTGF gene transcription by qPCR. The data were normalized to 

PBGD, and the change in gene transcription was calculated relative to the control (n=3, 

means ± SEM, * and #p≤0.05, * vs. control, # vs. Ang II). B) IF staining for the detection 

of α-tubulin in NRCF treated with 5 µg/ml colchicine over 2 hr.  C) NRCF were treated for 

1 hr with two different concentrations of colchicine (1.3, 5 µg/ml) or the corresponding 

control conditions, before they were treated with 100 nM Ang II. The cell lysates and the 

conditioned media were collected 24 hr following Ang II treatment. Representative 

immunoblots are presented along with graphs showing the relative quantification for α-

tubulin and the intracellular and secreted CTGF. The data were normalized to β-actin, 

and the change in CTGF and α-tubulin levels were calculated relative to the control (n=6, 

means ± SEM, * and #p≤0.05, * vs. control, # vs. Ang II). D) NRCF were treated overnight 

with two different concentrations of colchicine (1.3, 5 µg/ml), 10% FCS (positive control) 

or the corresponding negative control condition. After that sirius red-based colorimetric 

microassay was performed. The graph shows the relative quantification for the deposited 

collagen (preliminary data, n=2, 6 replicates, means ± SEM).  

 

 

4.3. Prospects for studying CTGF by live cell imaging using Ad.TC-CTGF 

 

After construction of the adenovirus encoding the TC-CTGF fusion protein (Ad.TC-

CTGF), the functionality of the virus was evaluated in NRCF. First, IF microscopy was 

performed for NRCF infected with Ad.TC-CTGF or the control virus Ad.EGFP, which 

showed that in case of Ad.TC-CTGF infection EGFP-positive cells displayed a strong 

expression of CTGF (Fig. 34A). The next step was to confirm that the over-expressed 

CTGF was tagged by TC, and that it can be secreted. To do so, NRCF were infected 

with Ad.EGFP, Ad.TC-CTGF and an adenovirus over-expressing hemagglutinin (HA) 

tagged-CTGF (Ad.HA-CTGF), which was considered as a positive control. As shown in 

the immunoblot in Fig. 34B, single bands of CTGF were observed in the lysate and 

conditioned medium of the Ad.EGFP-infected cells, whereas, double bands were 

observed in the cell lysate and conditioned medium of the Ad.HA-CTGF-infected cells, 

but for the Ad.TC-CTGF-infected NRCF, double bands of CTGF were observed in the 

cell lysate only, while there was only a single band of CTGF in the medium. 

From this immunoblot, it was concluded that the TC-CTGF could be over-expressed in 

NRCF, but during certain stages of processing the TC- tag was cleaved, and only the 
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untagged CTGF could be secreted, which explains why greater amounts of the 

endogenous CTGF could be detected in the cell lysate and conditioned medium. 

Regarding the positive control virus Ad.HA-CTGF, the HA-tag was similarly cloned in 

front of the CTGF cDNA as in the Ad.TC-CTGF, however, cleavage was not as effective. 

The most probable reason for this finding is the difference in the tag length. The HA-tag 

seems to be cloned as a multicopy construct and thus cleavage by the signal peptide 

peptidase was not effective. In principle, the tagging of CTGF by TC is still an interesting 

strategy for real time tracking of CTGF in living cells, with assumedly minimal 

interference with the behavior of CTGF, due to the relatively small molecular weight of 

the tag, but the cloning strategy should be modified to overcome the problem of tag 

cleavage. Although the cloning of multiple TC tags at the N-terminus of CTGF gene 

sounds a good idea, the risk that this could influence the behavior of the CTGF protein 

becomes higher. In addition, the fact that the cleavage process of the tag is still 

occurring makes it impossible to distinguish between the endogenous and the cleaved 

TC-CTGF, which restricts the readout of certain experiments. Therefore, it is worthy to 

try to clone the TC tag within the first 130 amino acids, but verification steps would be 

required to rule out problems in protein folding and behavior.    
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Figure 34: Evaluation of the Ad.TC-CTGF in NRCF  

A) NRCF were incubated for 48 hr with Ad.EGFP (negative control adenovirus) or 

Ad.TC-CTGF, 10 µl of each virus stock was used per 1 ml medium. After that, the cells 

were fixed, permeabilized and incubated with a blocking solution. CTGF detected by IF 

staining (yellow) and the nuclei were stained with DAPI (blue). B) NRCF were incubated 

for 48 hr with Ad.EGFP, Ad.TC-CTGF or Ad.HA-CTGF (positive control). 10 µl of each 

virus stock was used per 1 ml medium. After that, the cells lysates and conditioned 

media were collected and analyzed by immunoblotting.  
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Figure 32: The TC-CTGF fusion protein could be expressed in NRCF, but the

TC tag had been cleaved from CTGF, before it was secreted

A) NRCF were incubated overnight with Ad. EGFP (control adenovirus) or Ad. TC-

CTGF adenovirus. On the next day the cells were fixed, permeabilized and blocked.

CTGF was labeled yellow, and the nuclei were stained blue with DAPI . B) NRCF

were incubated overnight with Ad. EGFP, Ad. TC-CTGF or Ad.HA-CTGF (positive

control). On the next day, the cells lysates and conditioned media were collected for

immunoblots

B
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5. Discussion 

 

A hallmark for heart failure is remodeling of the cardiac tissue, which is characterized by 

myocardial hypertrophy and fibrosis. Fibrosis occurs due to dysregulation of the 

extracellular matrix homeostasis. In the last few years, there was increasing interest in 

the contribution of the numerically predominant CF in this process, because these cells 

are largely responsible for the deposition and organization of the extracellular matrix 

components. In addition, these cells secrete a variety of growth factors and cytokines, 

which contribute to the progression of heart disease via autocrine and paracrine 

mechanisms. CTGF is one of the interesting proteins that are secreted by fibroblasts. 

The expression and secretion of this factor are upregulated not only in cardiac diseases, 

but also in almost all other fibrotic diseases occurring in various tissues. Moreover, 

several recent publications have reported increasing evidences for its direct role in the 

process of fibrosis. However, the mechanisms controlling the expression and secretion 

of CTGF in CF are still unclear. This work provides novel findings on the regulation of 

CTGF in CF by cytoskeleton-dependent and Ca2+-dependent signaling pathways. It 

provides thorough investigations on the Ca2+ handling in these cells, and discusses the 

role of actin filaments and microtubules on the status of the Golgi apparatus and the 

regulation of CTGF. It also pinpoints Ca2+ as a major regulator of the expression of 

CTGF with potential role for the actin and microtubules cytoskeleton in the underlying 

mechanism. Mechanistically, this work highlights PKC and calcineurin as major 

downstream targets for Ca2+ and shows potential crosstalk between their signaling 

pathways. At the same time, the Golgi apparatus and actin filaments were identified as 

targets for Ca2+, PKC and calcineurin, which creates a link between Ca2+-dependent and 

cytoskeleton-dependent signaling pathways.  

 

5.1. Regulation of the Ca2+ transient in CF 

 

Within this work, it could be shown that the Ang II-CaT involves the activation of the 

AT1R, Gq/11 proteins, PLC-β and IP3 receptors. This canonical Ca2+ release pathway 

has been already demonstrated to play a substantial role in the regulation of Ca2+ in 

diverse other cells like smooth muscle cells [81, 82]. However, in contrast to rat aortic 

smooth muscle cells [63] it was found by cholesterol depletion with CDX that this 

signaling cascade seems to reside at least partly in caveolae. Moreover, by inhibiting the 



105 
 

ER Ca2+ ATPase with TGN, and by analysing the effect of extracellular Ca2+ on the Ca2+ 

transient, it was found that the ER is probably the most important source of this ion. This 

is in line with a report by Brilla and coworkers, who demonstrated in adult rat CF that the 

Ang II-CaTs in the absence and presence of extracellular Ca2+ were comparable, 

therefore, they also suggested the intracellular Ca2+ stores to be the major source for the 

acute increase in the cytoplasmic Ca2+ levels in response to Ang II [173]. However, there 

is increasing evidence that the influx of Ca2+ from the extracellular space via diverse 

channels also plays a role in the Ca2+ homeostasis in CF. This includes a study from 

Chen and coworkers who demonstrated that at least on the mRNA level the expression 

of diverse channels including Ca(V)1.2, NCX3, PMCA1,3,4, TRPC1,3,4,6, STIM1, and 

Orai1-3 in human CF [174]. Ikeda and coworkers then confirmed the expression of the 

unselective Ca2+/Na+ TRPC1,3,4,6 channels in these cells. Furthermore, they showed 

that these channels and the reverse-mode of the Na+/Ca2+ exchanger influences the 

proliferative behavior of these cells [175]. This is in line with data presented by Harada 

and coworkers, who also showed that the specific TRPC3 inhibitor Pyr3 inhibited the 

proliferation of CF. As a mechanism, the authors analyzed the impact of Pyr3 on the 

regulation of Ca2+. They showed that the relatively slow, Ang II-induced Ca2+ influx in 

adult CF could be blocked by Pyr3 [176]. This type of Ang II-dependent, slow and 

persistent Ca2+ influx could not be detected within this work in a similar time frame. 

However, the incubation of neonatal CF with Pyr3 led to significant reduction of the basal 

cytoplasmic Ca2+ concentration. This discrepancy between data obtained in adult and 

neonatal CF might be explained by several reasons. First, it has been shown that the 

TRPC3 possesses a substantial constitutive activity, which could be of different height. 

Second, Schleifer and coworkers demonstrated recently that Pyr3 additionally inhibits 

the store-operated Ca2+ influx, which could be also differently involved [177]. Third, the 

already in smooth muscle cell described coupling between the TRPC3 and the IP3R 

[125-127] might play a so far unevaluated role in CF. Further studies are needed to 

address this issue. 

In addition to the decrease in the basal cytosolic Ca2+ concentration, Pyr3 substantially 

inhibited the oscillation of Ca2+ in CF in this work. Ca2+ oscillation is a repetitive cyclical 

change in the cytoplasmic Ca2+ concentration, which has been observed in different non-

excitable cell types under not only basal conditions, but also in response to different 

physiological stimuli. 
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5.2. Regulation of the Ca2+ oscillation in CF 

 

In summary, in this thesis it could be shown that the Ca2+ oscillation occurred in around 

one third of the cells independent of the passage number and could be increased by 

submaximal Ang II concentrations and inhibited by TGN and Pyr3, arguing for a role of 

intracellular Ca2+ stores but also for an influx of Ca2+ from the extracellular space. 

Although, so far only few data is available for CF on the oscillation of Ca2+, this finding is 

in line with data presented by Chen and coworkers, who reported that spontaneous Ca2+ 

oscillation occurred in 29% of primary human CF. With respect to the mechanism the 

authors discussed a role of the PLC-β/IP3R system and of L-type Ca2+ channels [174]. 

For other cell types, it has already been described that the TRPC3 channels can 

mediate agonist-activated Ca2+ oscillation via non-capacitative Ca2+ entry [117]. But also 

other mechanisms have been attributed to this process which has not been evaluated 

within this work, such as extracellular and intracellular mechanical stress [128]. 

Independent of the mechanism how Ca2+ oscillations are generated, the outcome of 

these cyclic changes is not clear. There is evidence that the amplitude, frequency and 

duration of these signals actually play a major role in the regulation of different cellular 

processes such as, proliferation, contraction and secretion [117, 118], and it was shown 

by several publications that it is involved in the efficiency and specificity of gene 

expression [178], but it was not possible to find a link between this process and the 

regulation of CTGF expression in NRCF. However, the inhibition of TRPC3 channels 

augmented the CTGF secretion in CF. Future experiments have to be performed to 

unravel the role of this long known phenomenon in CF.  

 

5.3. Influence of ROS-regulating mediators on the Ca2+ handing in CF 

 

Within this thesis, the role of the reactive oxygen species (ROS) producing NADPH 

oxidase in the regulation of the Ca2+ handling in CF was analyzed. By using the specific 

peptide gp91-ds-tat, which can penetrate the plasma membrane and inhibit the 

association of the essential p47phox with the transmembrane subunits of the NADPH 

oxidase NOX2, it could be demonstrated that the amplitude of the Ang II-CaT was 
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significantly reduced. Similar results were obtained by inhibiting the activation of the 

accessory activator Rac1 with NSC, which argues for a role of ROS in the regulation of 

Ca2+ in CF. With this respect, it has already been demonstrated by Colston and 

coworkers that a short exposure of CF to exogenously added H2O2 can induced a Ca2+ 

transient without any other stimulus [179]. So far, however, it is not clear which 

mechanism is responsible for this regulation. On one hand, Colston and coworkers could 

partly block this transient by IP3R inhibition with XeC and TGN, but also by the depletion 

of extracellular Ca2+. These findings suggested that the ROS-induced increase in Ca2+ is 

not only dependent on intracellular Ca2+ stores, but also on the influx of Ca2+ from the 

extracellular space. On the other hand, Takahashi and coworkers postulated the 

involvement of the TRPM2 channel in the ROS-induced Ca2+ influx in CF. The TRPM2 is 

a non-selective Ca2+-permeable channel, which is upregulated in hypoxia and stimulated 

by ROS [180]. Finally, data presented by Fujii supported the idea of the Ca2+ influx as 

the main ROS target, because they showed that in CF in the absence of extracellular 

Ca2+ the Ang II-CaT could not be decreased by the expression of dominant negative 

variants of Rac1 and p47phox [67]. To finally understand the role of ROS in the handling 

of Ca2+ in CF further studies have to be performed. 

Besides the inhibitory effect of the gp91-ds-tat peptide and of the inhibitor of Rac1 

activation on the amplitude of the Ang II-CaT, distinct effects of both molecules on the 

Ca2+ loading in the mitochondria was observed. The uptake of Ca2+ in the mitochondria 

is a well-documented process, which occurs in most cells when the Ca2+ concentration 

rises above 1 µM [88, 181]. Depending on the increase of Ca2+ in the mitochondria the 

outcome is either an increase in ATP synthesis or in case of a Ca2+ overload the 

enhanced generation of ROS, triggering of the permeability transition pore, and 

cytochrome c release, leading to cell apoptosis. Recently, a new junction has been 

identified which allows the direct, spatially highly controlled flux of Ca2+ from the ER into 

the mitochondria. This region has been called mitochondria-associated ER membranes 

(MAM) or the ER-mitochondria-juxtaposition. It has been shown that within this junction 

several Ca2+ channels are clustered, including the IP3R in the ER membrane, the 

voltage-dependent anion channel in the outer mitochondrial membrane and the 

mitochondrial Ca2+ uniporter in the inner mitochondrial membrane. With respect to the 

Ca2+ efflux from the mitochondria, the Na+-Ca2+-exchanger 3 (NCX3) in the outer 

mitochondrial membrane was identified as a possible candidate [182]. Although, it is not 
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clear in this thesis how the observed decrease and increase in the duration of the rise in 

mitochondrial Ca2+ by gp91-ds-tat and NSC, respectively, takes place, there is 

increasing evidence data that most of the proteins involved in the mitochondrial Ca2+ flux 

are redox-sensitive [183]. In addition, it was shown that in endothelial cells glucose 

induces total and mitochondrial ROS, mitochondrial DNA damage and cell apoptosis, 

which could be blocked by NSC [184]. Moreover, Rac1 has been found at the membrane 

of mitochondria where it interacts with Bcl-2 and its functional inhibition or silencing 

decrease mitochondrial O2
.- levels and enhances apoptosis sensitivity [185]. However, 

these studies provided no links to a potential role of the mitochondrial Ca2+ regulation.  

In summary, the obtained data in this thesis and the recent literature suggest that ROS 

production is important for the cytosolic Ca2+ transient and for the regulation of the Ca2+ 

flux in mitochondria, however, the underlying mechanisms are still obscure. It has to be 

also taken into account that Rac1 is not only a functional part of some isoforms of the 

NADPH oxidases but also possess other downstream target like the p21-activated 

kinases.  

 

5.4. Mechanism of CTGF regulation by cytoskeleton-dependent and Ca2+-

dependent signaling pathways 

 

The mechanical properties of cells are strongly dependent on the organization and 

degree of actin filaments polymerization. LAT-A can inhibit the polymerization of these 

filaments mainly by binding to G-actin monomers in the cytosol [186]. Interestingly, the 

chelation or depletion of the intracellular Ca2+ by BAPTA-AM or TGN, respectively, 

disrupted actin filaments, which is in line with a recent publication by Kuwahara, who 

reported that the elevation of the intracellular Ca2+ concentration in mesothelial cells was 

associated with increased actin filaments polymerization and organization [187]. 

Moreover, it was shown by this thesis that the inhibition of PKC, the downstream target 

of Ca2+, was also associated with the disruption of actin filaments. Several working 

groups reported that PKC mediates the activation of RhoA-ROCK in different cell types 

including smooth muscle cells and endothelial cells [188, 189]. A mechanistic study by 

Dovas and coworkers in fibroblasts provided evidence that PKCα mediates the activation 

of RhoA by syndican 4, a transmembrane heparin sulphate proteoglycan that works with 

integrin in the formation of the focal adhesions. In addition, the study provided evidence 
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that syndican 4–PKCα–RhoA signaling pathway was necessary for the formation and 

maintenance of the actin stress fibers [190]. RhoA maintains the stability of actin 

filaments via ROCK-mediated LIM-kinase phosphorylation, which in turn phosphorylates 

and inhibits cofilin, the actin filaments depolymerizing protein [136]. RhoA in addition, 

activates diaphanous-related formins (mDia1 and mDia2), which nucleate the formation 

of actin filaments and prevent the binding of plus-end capping proteins, thus keeping the 

progress of actin filaments polymerization [191-194]. Within this thesis, the disruption of 

actin filaments was most of the times associated with the inhibition of CTGF expression 

and secretion. With this respect, it has already been demonstrated by Muehlich and 

coworkers that the level of CTGF expression in endothelial cells was proportionally 

related to the degree of actin filaments polymerization, which was dependent on RhoA 

activation, and mediated via SRF transcription factor [168]. The activation of SRF was 

shown to be inhibited consequently to actin filaments depolymerization and the elevation 

of G-actin monomers concentration that sequester MRTF, thus preventing it from 

complexing with SRF in the nucleus, as reviewed in section 2.7.4.   

In this project, the depolymerization of actin filaments, whether directly by LAT-A or 

indirectly via interference with Ca2+ signaling, was associated with the disruption of the 

Golgi apparatus and the inhibition of CTGF secretion. Consistent with these findings, 

Lazaro-Dieguez and coworkers reported that the disruption of actin filament changes the 

morphology and integrity of the Golgi apparatus [195], which was found by another 

group to inhibit protein transportation through the cisternae of the Golgi apparatus, 

resulting in the inhibition of the cellular secretion [196]. In addition, Chen and coworkers 

demonstrated that the localization of CTGF to the Golgi apparatus was essential for 

successful CTGF secretion [197]. In the same time as reviewed in section 2.6.1, Ca2+ 

has already been demonstrated to be involved in the trafficking of the secretory vesicles 

and in the fusion of the these vesicles with the target cell membrane during exocytosis. 

Moreover, several reports highlighted the role of Ca2+-dependent actin coating of 

secretory vesicles as an important factor for the efficient release of the content of 

secretory vesicles during exocytosis [198, 199]. Therefore, it can be postulated that the 

regulation of CTGF secretion involves actin-dependent and Ca2+-dependent 

mechanisms, with potential crosstalk between these two mechanisms, and involves 

functional Golgi apparatus. However, the inhibition of CTGF expression per se is also 

expected to contribute to the inhibition of secretion. 
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In the same context, the role of calcineurin in the regulation of CTGF was also 

investigated within this thesis. It was found that the inhibition of calcineurin by CsA 

significantly enhanced CTGF expression. This was associated with the loss of the cell 

membrane complexities and changes in the morphology of the Golgi apparatus, but 

without clear effects on the actin filaments and microtubules. Several reports have 

already highlighted a role for calcineurin in the dynamic regulation of the actin 

cytoskeleton. Zhang and coworkers demonstrated that calcineurin mediated the 

activation of cofilin [200]. A mechanistic study by Wang and coworkers using cell-free 

assays demonstrated that calcineurin dephosphorylated slingshot 1L protein 

phosphatase, which in turn dephosphorylated and activated cofilin [201]. Moreover, Li 

and coworkers recently reported that CsA could inhibit the dephosphorylation of cofilin, 

resulting in the stabilization of actin filaments [202]. This effect is speculated to enhance 

CTGF gene expression, as it would negatively influence the level of the monomeric-G 

actin and enhance SRF-induced gene expression as reviewed in section 2.7.4.  On the 

other hand, Akool and coworkers demonstrated in mesangial cells that the inhibition of 

calcineurin by CsA was associated with rapid activation of TGF-β/Smad signaling and 

increased DNA binding of Smad-2, -3 and -4 to the Smad-binding promoter element, 

resulting in the induction of expression of several genes including CTGF. 

Mechanistically, they suggested that CsA could induce ROS generation that activated 

latent TGF-β, which in turn induced gene expression via activation of Smad and p38 

MAPK signaling pathways [203]. In another approach, a proteomics study by Van 

Summeren and coworkers demonstrated that CsA induced endoplasmic reticulum (ER) 

stress in a cell culture of hepatocytes. The authors showed that CsA treatment was 

associated with the differential expression of several chaperone proteins, which are 

normally associated with the induction of ER stress and the disruption of the ER-Golgi 

transport [204]. Consistent with these findings, Cheng and coworkers showed that 

treatment of rat kidney epithelial cells with CsA was associated with the induction of ER 

stress response related proteins including ATF6 [205], which was shown by another 

group to be involved in the activation of SRF [206]. Therefore, it can be hypothesized 

that the induction of CTGF expression by CsA results, at least in part, from the ATF6-

induced ER-stress. Further experiments are required to test this hypothesis.  

The role of microtubules in the regulation of CTGF was also investigated within this 

thesis by using colchicine, which is a clinically used drug known to depolymerize 
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microtubules. The disruption of the microtubules by colchicine resulted in the 

fragmentation of the Golgi apparatus into CTGF-containing membranous structures, 

which were dispersed randomly throughout the cytosol. At the same time, CTGF 

expression and secretion were strongly induced and were uncoupled from the AT1R 

signaling cascade. The disruption of the Golgi apparatus subsequently to microtubule 

disruption is in line with previous findings by Miller and coworkers, who reported that the 

spatial organization of the Golgi apparatus is regulated by two subsets of microtubules: 

the radial centrosomal microtubule array that positions the Golgi apparatus in the center 

of the cell, and the Golgi-derived microtubules that draw the Golgi ministacks together to 

maintain the continuity and proper morphology of the Golgi apparatus complex [207]. 

The augmenting effect of colchicine on CTGF expression was reported previously in 

immortalized human renal fibroblasts by Ott and coworkers, who demonstrated that the 

induction of CTGF by colchicine was associated with the activation of RhoA, and that the 

pharmacological inhibition of RhoA-ROCK was associated with a reduction in colchicine-

induced CTGF expression [208]. In addition, Graness and coworkers demonstrated in 

the same cell type that the colchicine-induced CTGF expression was associated with the 

recruitment of patchy actin filaments to the cell cortex. This was associated with the 

reorganization of the focal contact into strong clusters, and with the activation of RhoA-

ROCK, focal adhesion kinase and Src-family kinases [170]. Consistent with these 

findings, several other reports provided evidences that colchicine treatment could alter 

the G-actin/filamentous actin ratio by inducing actin filaments polymerization and stress 

fiber formation, thus increasing the cellular rigidity [209-211].  

In summary, the obtained data in this thesis and the discussed literature suggest that 

both the cytoskeleton-dependent signaling pathway and the Ca2+-dependent signaling 

pathway influence the integrity and morphology of the Golgi apparatus, and play a 

critical role in the regulation of CTGF, with potential crosstalk between these two 

signaling pathways. 
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5.4.1. Role of ROS in the regulation of CTGF  

 

The role of ROS in the regulation of CTGF was evaluated within this thesis by 

specifically targeting NOX2 isozyme by the inhibitory peptide gp91-ds-tat. Although 

treatment with gp91-ds-tat inhibited the ΔRFUMax of the Ang II-CaT, it did not influence 

the expression or secretion of CTGF. On the other hand, the inhibition of Rac1 activation 

by NSC significantly inhibited ΔRFUMax of the Ang II-CaT, and was shown to reduce the 

level of intracellular CTGF (personal communication). Rupérez and coworkers reported 

that H2O2 increased CTGF mRNA and protein expression independently of TGF-β [59]. 

Park and coworkers demonstrated that this effect could be mediated by Janus kinase 

(JAK)-2 and -3 signaling pathway [212]. In addition, Adam and coworkers showed that 

the inhibition of Rac1 activation by NSC significantly inhibited the induction effect of   

Ang II on the expression of CTGF in both NRCF and neonatal rat cardiomyocytes. The 

authors suggested that the underlying mechanism could involve the generation of ROS 

[213]. However, Rac1 is a cofactor not only of NOX2 complex but also of NOX1 and 

NOX3 complexes [214], suggesting that the potential regulation of CTGF by ROS could 

involve NOX1 and NOX3 isozymes. Therefore, targeted studies on NOX1 and NOX3 are 

required to unravel the potential role of ROS in the regulation of CTGF. 

 

5.4.2. Ca2+ is involved in the regulation of CTGF in human cardiac fibroblasts 

 

Preliminary data obtained from experiments in normal human ventricular cardiac 

fibroblasts (NHCF-V) showed that Ca2+ and PKC were involved in the regulation of 

CTGF, which is in line with the findings in NRCF. In addition, these preliminary data 

showed that Rac1 is also involved in CTGF regulation, which is consistent with previous 

findings in NRCF (personal communication) and in other cell types like chondrocytes 

[215].  
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