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Abstract 

Cyclic nucleotides are ubiquitous second messengers, which regulate cellular functions by acting in discrete 

subcellular microdomains. Cardiac phosphodiesterases (PDEs) are indispensable for -adrenoceptor signaling 

regulation by restricting and maintaining distinct cAMP microdomains. In the mammalian myocardium, at least 

five PDE families (PDE1, 2, 3, 4, 8) contribute to cAMP breakdown, each with unique binding affinities and 

regulatory properties. Moreover, different PDE families and isoforms localize to distinct functional cAMP 

microdomains, making them promising targets to modulate cell function. However, the use of selective PDE 

inhibitors to treat heart failure is problematic due to a high risk of tachyarrhythmias and sudden cardiac death. 

Furthermore, progressive heart failure is accompanied by severely altered PDE expression patterns. Despite 

considerable insights into cardiac cAMP handling in general, exact mechanisms of cAMP regulation by PDEs 

inside functionally relevant microdomains are still poorly understood.  

This work firstly describes compartmentalized functions of cardiac cAMP and uncovers that atrial natriuretic 

peptide can augment catecholamine-stimulated contractility in order to increase heart function in early cardiac 

hypertrophy. Real-time cAMP analysis of distinct β1- and β2-adrenoceptor-associated sarcolemmal cAMP 

microdomains using a novel targeted Förster resonance energy transfer (FRET)-based biosensor, pmEpac1, 

reveals that this effect is brought about by spatial redistribution of cGMP-sensitive phosphodiesterases 2 and 3 

between β-adrenoceptor subtype-specific cAMP microdomains. While whole-cell PDE protein levels and 

activities are still unaffected at this early disease stage, differential subcellular PDE localization leads to altered 

cGMP/cAMP-crosstalk, which shifts the balance between β1- and β2-adrenoreceptor-mediated effects on 

cardiac function. These findings point towards a novel functionally relevant adaptation mechanism, which 

occurs early during disease and might compensate for a loss of heart function by redistribution of cGMP-

regulated PDEs between distinct membrane microdomains, thereby modulating the functionally relevant ANP-

cGMP / -adrenoceptor-cAMP crosstalk at the sarcolemma of adult cardiomyocytes. 

Secondly, a previously unappreciated PDE4 inhibitory side effect of atropine, a clinically relevant muscarinic 

receptor blocker, was uncovered in this work. This mechanism can, at least in part, explain incidences of 

tachycardia, which are frequently observed upon atropine administration and have been attributed solely to 

the antagonism at cardiac muscarinic M2-receptors. However, in isolated mouse cardiomyocytes expressing the 

FRET-based cAMP biosensor Epac1-camps, even upon Gi-protein inactivation with pertussis toxin or in M2-

receptor knockout cells, atropine increases isoproterenol pre-stimulated cAMP levels, similar to the effects of 

PDE inhibitors. Furthermore, in intact wild type and M2-receptor deficient hearts, it leads to increased beating 

frequency. Detailed analysis of atropine-mediated changes in cAMP handling using FRET approaches and in 

vitro assays show that atropine indeed inhibits PDE4 activity. Therefore, inhibition of PDE4 by atropine may be 

responsible at least for some of its multiple side effects.  
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Abbreviations 

5’-AMP adenosine-5’-monophosphate 

8-Br-cAMP-AM 8-Bromoadenosine-3',5'-cyclicmonophosphate,acetoxymethyl ester 

ACh     acetylcholine 

AC     adenylyl cyclase 

AKAP     A kinase anchoring protein 

ANP     atrial natriuretic peptide 

Atr     atropine 

AWThd     anterior wall thickness in diastole 

bpm     beats per minute 

β-AR     beta-adrenoceptor 

β1-AR     beta-1-adrenoceptor 

β2-AR     beta-2-adrenoceptor 

βArr     beta-arrestin 

BAY     BAY 60-7550 

BNP     B-type natriuretic peptide 

b.p.     base pairs 

BSA     albumin bovine serum 

BW     body weight 

Ca
2+

     calcium 

CaMKII     Ca
2+

/Calmodulin-dependent Kinase II 

cAMP     3‘-5‘-cyclic adenosine monophosphate 

CFP     cyan fluorescent protein 

cGMP     3’-5’-cyclic guanosine monophosphate 

CGP     CGP-20-712A 

Cilo     cilostamide 

CNBD     cyclic nucleotide-binding domain 

CNGC     cyclic nucleotide gated channel 

COPD     chronic obstructive pulmonary disease 

dNTPs     desoxyribonucleotide triphosphates 

EC      excitation-contraction  

ECG     electrocardiogram 

EF     ejection fraction 

Epac     exchange protein directly activated by cAMP 

FAS     fractional area shortening 

FRET     Förster resonance energy transfer 

FS     fractional shortening 

G i     alpha subunit of inhibitory G-proteins  

GAPDH     glyceraldehyde 3-phosphate dehydrogenase 

G s     alpha subunit of stimulatory G-proteins 

Gβ      -beta-gamma subunit of GPCRs 

GFP     green fluorescent protein 

GPCR     G-protein coupled receptors 

HCN2     hyperpolarization-activated cyclic nucleotide-gated channel 2 

HW     heart weight 

ICI     ICI 118,551 
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ISO     isoproterenol / isoprenaline 

IBMX     3-Isobutyl-1-methylxanthine 

LTCC     L-type calcium channel 

LVEDD     left ventricular end diastolic diameter  

LVESD     left ventricular end systolic diameter 

mAChR     muscarinic acetylcholine receptor 

o.n.     over night 

PDE     phosphodiesterase 

PKA     protein kinase A 

PI3K      phosphoinositide-3 kinase gamma 

PLN     phospholamban 

Pi     monophosphate 

pPLN     phospho-phospholamban 

PPi     pyrophosphate  

pTnI     phospho-troponin I 

Roli     rolipram 

RyR2     ryanodine receptor 2 

Ser     serine 

SERCA2a    sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a 

SR     Sarcoplasmic reticulum 

TnI     troponin I 

YFP     yellow fluorescent protein 
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1 Introduction 

1.1 The Role of cAMP in the Heart 

The second messenger 3’,5’-cyclic adenosine monophosphate (cAMP) is a key signaling molecule important for 

a plethora of physiological functions. In general, cAMP signaling pathways start with the activation of G-

protein-coupled receptors (GPCRs) associated to either stimulatory or inhibitory G-proteins (Gs, Gi), which in 

turn modulate the activity of the cAMP-synthesizing enzymes adenylyl cyclases. However, diverse effects 

attributed to cAMP strongly depend on the particular cell type with differential expression of various GPCR 

subsets and downstream targets of cAMP, leading to highly versatile, sometimes even opposing functional 

outcomes. For example, elevated cAMP leads to increased heart muscle contraction, at the same time 

decreased smooth muscle cell contractility
1
. Other important processes regulated by cAMP include metabolism 

and gene expression
2
, insulin secretion

3,4
 vascular tone immune reactions

5,6
 and memory formation

7
. 

In the mammalian heart, cAMP primarily controls beating frequency, force of contraction and relaxation, 

referred to as chronotropic, inotropic and lusitropic effects, respectively. This is achieved through the -

adrenergic signaling pathway, which starts with catecholamine-induced activation of Gs-coupled -adrenergic 

receptors ( -ARs) and results in cAMP-dependent protein kinase (PKA)-mediated phosphorylation of functional 

components of the excitation-contraction (EC) coupling system in cardiomyocytes. Calcium-handling proteins 

such as voltage-gated L-type calcium channels (LTCCs), calcium release units formed by ryanodine receptor 2 

(RyR2), the negative regulator of the sarcoplasmic/endoplasmic reticular calcium ATPase (SERCA), 

phospholamban (PLN) and contractile proteins such as troponin I (TnI) have been shown to be functionally 

modulated through PKA-dependent phosphorylation
8,9

. This regulation is important for the beneficial effects of 

catecholamines on cardiac contractility during the classical ‘fight-or-flight’ response. However, chronic -

adrenergic stimulation affects the heart in a more detrimental way, i.e. causing down-regulation of 1-

adrenergic receptor ( 1-AR) expression, cardiomyocyte apoptosis, hypertrophy and loss of pump function, 

leading to decompensated heart failure
10-14

. In sharp contrast to 1-AR-driven effects, selective stimulation or 

transgenic overexpression of 2-ARs, does not lead to cardiomyocyte apoptosis, cardiac hypertrophy and 

failure
15,16

. Instead, 2-ARs might protect against these abnormalities unless the receptor is overexpressed at 

extremely high levels (>300-fold) or a chronic heart failure phenotype is established
17

. Other receptors coupled 

to cAMP are represented by prostaglandin and glucagon receptors. Despite triggering intracellular cAMP 

increase their activation does not stimulate contractility, probably due to their association with cAMP pools 

which are spatially separated from those that elicit a positive inotropic response
18-20

. Apart from PKA, another 

important effector of cAMP is expressed in cardiomyocytes, which is called exchange protein directly activated 

by cAMP (Epac). It acts as a guanine nucleotide exchange factor for some small G-proteins such as Rap1 and 

mediates many PKA-independent effects of cAMP in various tissues
21

. In the heart, Epac1 is the predominant 

isoform expressed
22

 and shows relatively minor effects on cardiac function at the basal state
23

. Instead, Epac 

seems to be one of the key factors downstream of chronic 1-AR stimulation and cAMP, which promote the 
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development of cardiac hypertrophy
24,25

. It is supposed to do so via the activation of pro-hypertrophic genes 

and calcium/calmodulin-dependent protein kinase type II (CaMKII). The role of Epac-mediated pathways was 

further addressed in a recent study, in which transgenic mice with myocardial expression of the PKA inhibitory 

peptide no longer showed -AR-agonist-induced hypertrophy, SR calcium overload and CaMKII activation but 

were rather protected against Epac/Rap1/ERK-mediated cardiomyocyte apoptosis
26

. Interestingly, one report 

demonstrated that stimulated 1-AR but not 2-AR can activate CaMKII via the recruitment ofof -arrestin, which 

serves as a scaffold for both, CaMKII and Epac1 in cardiomyocytes
27

. This -arrestin-dependent mechanism 

explains the link between 1-AR- and CaMKII-dependent phosphorylation of PLN as well as CaMKII-dependent 

induction of pro-hypertrophic fetal gene expression and apoptotic pathways by 1-AR. Especially when 

considering the disease-associated upregulation of CaMKII activity, its synergistic action on promiscuous 

substrates such as LTCC, RyR2 and PLN may not only stimulate PKA-mediated contractility but also the 

incidence of arrhythmias
28

. 

 

1.2 FRET-based Methods to Measure cAMP in living cells 

Cyclic AMP content in any given cell type or tissue can be traditionally measured by standard antibody-based 

techniques such as radioimmunoassays and enzyme-linked immunoassays
29,30

. These methods allow 

quantification of total cAMP content (free cytosolic cAMP plus cAMP bound to various proteins) after lysis or 

mechanical disruption of thousands of cells or of the tissue. However, such methods have no spatial resolution 

and do not allow measurements of physiologically relevant free cAMP concentrations in intact living cells or in 

various subcellular locations within one cell. To overcome these difficulties, several live cell imaging techniques 

have been developed over the past two decades, which shed light into subcellular cAMP signaling in a more 

native context
31,32

. 

The majority of these findings relies on cAMP biosensors, which monitor intracellular dynamics of this second 

messenger based on Förster resonance energy transfer (FRET). In 1948, the German physicist Theodor Förster 

first described how two fluorescent molecules exchange energy in a nonradiative way
33

.  The underlying 

physical principles are demonstrated in the Jablonski-Diagram (Figure 1A) according to which photon 

absorption by a donor fluorophore promotes it from its singlet ground sate, S0 to a higher excitation level, S1. In 

order to return to its ground state the excited donor releases lower-energy photons (fluorescence), which can 

be absorbed by an adjacent acceptor fluorophore within the a distance of 10 nm, known as the Förster radius. 

The acceptor is thereby lifted to its S1 level and subsequently emits energy in form of fluorescence to return 

the S0. A FRET pair consists of two fluorophores with incompletely separated absorption-emission spectra. The 

limited overlap in donor-emission and acceptor-absorption spectra is the basis on which FRET can occur 

between these two fluorophores.  
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About two decades ago, Adams et al.
34

 created the first FRET-based cAMP probe, called FlCRhR. This pioneer-

sensor consisted of a PKA holoenzyme with two fluorescent dyes chemically fused to the R- and C-subunits, and 

needed to be microinjected 

into living cells to monitor 

PKA dissociation upon 

elevation of intracellular 

cAMP and its re-association 

when cAMP is decreased. 

Since then, a series of more 

compact and ‘easy-to-use’ 

genetically encoded FRET 

biosensors has been 

generated, which are easily 

introduced into cells by 

transfection of the DNA 

construct to monitor cAMP 

with high resolution in space and time
35-39

. To achieve effective FRET pairs, such biosensors consist of green 

fluorescent protein (GFP) mutants, flanking a single cyclic nucleotide-binding domain (CNBD) (Figure1B). In 

cardiomyocytes, transient expression of such biosensors is commonly achieved via transfection of neonatal 

cardiomyocytes or adenoviral gene transfer in adult cardiomyocytes
40

. Adult rat ventricular myocytes are 

preferred for latter approach due to their relatively high stability in cell culture. However, significantly less 

stable mouse and human cardiomyocytes can be also successfully transduced with such adenoviruses
41-44

 

Expression of a functional FRET biosensor via adenovirus in adult myocytes requires at least 40–48 hours during 

which dedifferentiation and remodeling of normal cell physiology are likely to occur
45

. To address this problem 

and to enable cAMP measurements in freshly isolated cells, transgenic mice were generated expressing 

biosensors in adult heart muscle. In these mice, unimolecular sensors based on a single cAMP-binding site 

(from Epac1 or from hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) called Epac1-camps 

or HCN2-camps, respectively) sandwiched between a pair of fluorescent proteins could be expressed without 

any physiological abnormalities
37,46

. An additional advantage of such models is that they can be easily 

combined with various genetic and experimental heart disease models. So far, the sensors expressed in such 

transgenic mice were not targeted to any subcellular microdomain and were solely capable of monitoring 

changes in free cytosolic cAMP levels. Recently, various targeted versions of Epac1-camps have been cloned, 

which are can measure cAMP in various subcellular compartments or microdomains; however, they have 

mostly been used in transfected or transduced neonatal cardiomyocytes
19,47-49

.  
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1.3 Key Factors for cAMP Compartmentation 

The theory of cAMP compartmentation emerged about three decades ago from the observation that cAMP and 

PKA activities are differentially stimulated in ‘membrane’ and ‘cytosolic’ rabbit cardiomyocyte fractions by -

adrenergic and prostaglandin receptor agonists. The -adrenergic agonist isoproterenol stimulated cAMP in 

both fractions, while prostaglandin increased cAMP exclusively in the cytosolic fraction, which is not coupled to 

positive inotropic response
18,50

. A later study combined whole-cell patch-clamp recordings of LTCC currents 

(hence indirectly reporting cAMP/PKA 

activity – at least at the membrane) in 

long frog ventricular myocytes, with 

simultaneous local application of -AR 

agonists through a double-barreled 

micropipette to either half of the cell. 

Comparing the change in current upon 

close and distant agonist application 

revealed that cAMP activated by 2-AR 

expressed in these cells is not diffusing 

over long distances inside the cell unless 

the cAMP-hydrolyzing enzymes 

phosphodiesterases (PDEs) are inhibited, 

which was in contrast to the global adenylyl cyclase stimulation by forskolin, associated with more diffuse 

signals
51

. Though indirectly, this finding further indicated the presence of discrete subcellular pools cAMP 

associated with various types of stimulation. To date, cAMP compartmentation has developed from an elegant 

hypothesis into a well-appreciated paradigm. Key regulators for cAMP compartmentation in the myocardium 

include scaffolding proteins that recruit macromolecular PKA-signaling complexes, differential subtype-specific 

AR localization to particular membrane structures and especially PDEs as enzymes responsible for localized 

cAMP degradation hence shaping subcellular cAMP gradients. Exemplar cardiac cAMP microdomains are 

summarized in Figure 2.  
52

 

1.3.1 Scaffolding Proteins  

A-kinase anchoring proteins (AKAPs) 

One important factor in regulating compartmentalized cAMP signaling is represented by scaffolding proteins 

such as those belonging to the AKAP family, which recruit PKA to its effector proteins. Furthermore, PDEs, 

other kinases, protein phosphatases (PPs) or even different GPCRs bind to certain AKAPs to form functionally 

relevant signaling complexes
53-58

. To date, a considerable number of cardiac AKAPs has been described 

(mAKAP, AKAP15/18 , AKAP79/150, D-AKAP1/2, AKAP95, AKAP220, AKAP-Lbc, gravin, ezrin, yotiao)
58,59

. Some 

of these AKAPs and their role in heart function were studied in detail.  

As such, mAKAP anchors PKA and PDE4D3 to the RyR2 complex, close to the sites of interaction with protein 

phosphatases PP1/PP2 and FKBP12.6 (calstabin), thereby forming a signaling unit to regulate the calcium 
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release from sarcoplasmic reticulum (SR)
60,61

. AKAP15/18  facilitates PKA-dependent phosphorylation of PLN, 

the negative regulator of SERCA2a. AKAP79 (AKAP150 or AKAP6) mediates PKA-dependent phosphorylation of 

the cardiac LTCC and is critically involved in increased calcium influx in response to AR stimulation. A 

functional complex comprised of AKAP79, PKA, adenylyl cyclase type 5/6 and LTCC has been described in 

caveolin-3-rich membrane compartments of cardiomyocytes
62

. AKAP15/18 , another AKAP associated with 

cardiac LTCC modulates AR effects on calcium transients and contractility, acting in concert with AKAP79
56,63

. 

In addition to AKAPs, other proteins can also serve as scaffolds for cAMP/PKA signaling units.  

 

-arrestins  

-arrestins ( Arrs) comprise another important group of scaffolding proteins. Arr 1 and 2 are two highly 

homologous isoforms, which are expressed in the myocardium. Initially, their function in cardiomyocytes was 

thought to be limited to termination and desensitization mechanisms of AR signaling
64-66

. However, 

considerable evidence has been presented that Arrs can contribute to the molecular make-up of 

submembrane and AR-associated cAMP microdomains, especially through the recruitment of PDE4s
67-69

. 

Pioneering studies by Baillie et al.
68

 and Perry et al.
69

 established that Arrs bind PDE4D isoforms to promote 

the PKA-mediated switch from stimulatory to inhibitory G-protein coupling (Gs-to-Gi) of 2-ARs. An elegant 

biochemical study by Richter et al. later on demonstrated that 1- and 2-AR are dynamically associated with 

different PDE4D isoforms. In particular, 1-AR forms a complex with PDE4D8, which dissociates upon receptor 

activation, whereas 2-AR recruits Arr and PDE4D5 upon stimulation
70

. This leads to different subcellular 

cAMP gradients, underpinning cAMP compartmentation and different functional effects induced by these two 

receptor isoforms. 

 

Phosphoinositide 3-kinase gamma (PI3K ) 

Very recently, PI3K  was added to the list of scaffolding proteins that are actively involved in cAMP 

compartmentation. As such, PI3K  has been shown to recruit PKA regulatory subunits type II (RII-subunits), 

PDE3 and PDE4 and form distinct functional signaling complexes at the membrane of cardiomyocytes. 

Importantly, this function of PI3K  is independent of its catalytic activity but crucial for establishing regulatory 

feedback loops via PDE3s and 4s and protecting the heart from catecholamine-induced ventricular 

arrhythmias
71

.  

 

1.3.2 Subtype-specific -AR localization 

Marked differences between 1- and 2-ARs in terms of their physiological and pathophysiological responses 

suggest that these receptors might trigger different downstream signaling pathways or affect different cAMP 

microdomains and associated functional responses. 2-AR has been shown to switch from Gs to Gi upon 

prolonged agonist application in order to decrease the magnitude of the cAMP signal, which can explain why 

2-AR activation does not lead to phosphorylation of cytosolic substrates such as PLN or contractile proteins
72-

74
. Instead, Gi–coupling has been shown to mediate cardioprotective effects of this receptor subtype by 
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activation of Akt (protein kinase B) and PI3 kinases
75,76

. Using a FRET-based approach with adult mouse 

cardiomyocytes transgenically expressing the HCN2-camps biosensor in heart muscle, it was established that 

local and selective stimulation of 1-AR results in diffusive far-reaching cAMP signals, while 2-AR cAMP signals 

are highly locally confined even upon Gi-protein inactivation
37

, suggesting differences in cAMP 

compartmentalization between the two -AR subtypes. However, the precise localization of both receptor 

subtypes in cardiomyocytes was unclear at that time, because the available antibodies could not reliably detect 

endogenously expressed amounts of the receptors in electron microscopy or immunofluorescence studies. The 

non-optical imaging technique, scanning ion conductance microscopy (SICM), allows non-contact imaging of 

living cell membrane with nanometer resolution
77

. Using a combined SICM/FRET approach together with local 

ligand application, it could be later on established that 1- and 2-ARs are differentially distributed on the 

sarcolemma of adult cardiomyocytes. Especially 2-ARs showed to be exclusively localized in the transverse 

tubules that are crucial for LTCC function and EC coupling
78

.  

 

1.3.3 cAMP-hydrolyzing Phosphodiesterases 

cAMP-hydrolyzing PDEs play a central role in cAMP compartmentalization by shaping, separating and 

modulating distinct subcellular cAMP microdomains. The PDE superfamily of enzymes is represented by 11 

families with over 60 individual isoforms. In mammalian myocardium, five PDE families (PDE1, 2, 3, 4 and 8) 

hydrolyze cAMP
79-83

. PDE1, 2 and 3, are dual-specific PDEs that can hydrolyze both cAMP and cGMP, whereas 

PDE4 and 8 are specific for cAMP. Their high versatility in substrate specificities, regulatory properties as well 

as their systemic and isoform-specific subcellular distributions make PDEs an attractive target for 

pharmacotherapy. However, a lack of isoform-selective inhibitors has largely prevented a general breakthrough 

in clinical exploitation of PDE-dependent mechanisms. 

 

PDE1 

PDE1 is also referred to as the “Ca
2+

/calmodulin-stimulated PDE”. In vitro studies have shown that enzyme 

activity can be increased up to 10-fold by calcium/calmodulin binding
84

. This way, PDE1 is believed to establish 

a crosstalk between calcium and cyclic nucleotide signaling
85

. Three PDE1 isoforms, i.e. 1A, 1B, 1C are 

expressed in cardiomyocytes. All show dual specificity and hydrolyze both cAMP and cGMP. However, PDE1A 

and B prefer cGMP over cAMP as a substrate, whereas PDE1C binds both cyclic nucleotides with equal 

affinities
86-90

. Much less is known about the subcellular distribution of PDE1s and their contribution to cAMP 

compartmentation in cardiomyocytes. These questions should be further investigated in the light of the 

possible cardioprotective role of PDE1, supported by the fact that the PDE1 inhibitor IC86340 is able to protect 

the heart from pressure overload-induced hypertrophy
88

. However, the lack of truly selective inhibitors has so 

far hampered thorough functional investigations of myocardial PDE1 dependent functions and its role in 

modulating the cAMP dynamics. 
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PDE2  

The second cardiac dual-specific PDE family is represented by PDE2. Members of this family are assembled as 

homodimers, each monomer bearing a pair of tandem regulatory GAF domains (GAF = cGMP-specific 

phosphodiesterases, adenylyl cyclases and FhlA) on their N-

terminus. Binding of cGMP to one of these domains (GAF-B) 

stimulates the activity of catalytic domains by an allosteric 

mechanism
91

. Therefore, PDE2 is also referred to as the 

“cGMP-stimulated PDE” (Figure 3). Mammalian 

cardiomyocytes express several PDE2A isoforms (2A1, 2A2 

and 2A3), which are associated with both, cytosolic 

compartment and sarcolemmal membrane
83

. Two studies performed either using a FRET biosensor in neonatal 

or cyclic nucleotide gated channel (CNGC) recordings in adult rat myocytes have shown an association of PDE2 

activity with the subsarcolemmal microdomain
92,93

. The first study described a negative feedback mechanism 

3AR and endothelial nitrite monoxide synthetase (eNOS)/ soluble guanylyl cyclase (sGC)/ 3’,5’-

cyclic guanosine monophosphate (cGMP) signaling pathway, which leads to PDE2 activation, thereby 

counteracting an increase in cAMP and positive inotropic response after -adrenergic stimulation. The second 

study found that cGMP pools produced by both particulate guanylyl cyclase and soluble guanylyl cyclase are 

controlled by PDE2.  

 

PDE3  

Two PDE3 isoforms PDE3A and PDE3B have been described in cardiomyocytes
83,94

, whereby PDE3A is 

considered as the predominant isoform in mammalian hearts
95-97

. The PDE3 family represents the third group 

of dual-specific PDEs. Furthermore, similar to PDE2, its activity can be modulated by cGMP. However, in 

contrast to PDE2, which is stimulated by cGMP, this second messenger inhibits PDE3 activity (Figure 3). 

Therefore, PDE3 is also known as the “cGMP-inhibited PDE”.  PDE3 is considered the second most important 

cAMP-degrading enzyme in rodent cardiomyocytes and the predominant cAMP-PDE in human 

cardiomyocytes
44

. In 2004, Patrucco and co-workers
94

 showed that PDE3B co-precipitates with PI3K . They 

postulated a complex of PI3K  and PDE3B, which regulates local cAMP pools at the sarcolemma and, at the 

same time, controls PLN phosphorylation, thereby participating in cAMP/PKA-mediated signaling. Recently, the 

same group identified PDE3A in the PI3K -associated cAMP compartment
71

.  

 

PDE4  

Type 4 PDEs are cAMP-specific. In mammalian systems, four genes (pde4a-d) encode about 20 isoforms. Each 

isoform contains a unique N-terminal region, which is responsible for subcellular localization
98

, and PDE4A, 

PDE4B and PDE4D were shown to be expressed in rodent and the human hearts
99,100

. In the past few years, the 

hypothesis of different PDE4 isoforms each playing a unique role in cardiomyocyte cAMP compartmentalization 

has gained increasing interest. To date, several studies are available that report PDE4 subtypes and isoforms to 

be critical for the fine-tuning of different cAMP microdomains. For example, PDE4B associates with the LTCC 



Introduction 
 

 12

complex at the sarcolemma of adult mouse cardiomyocytes and represent the major isoform responsible for 

the regulation of PKA-mediated phosphorylation of this channel upon -adrenergic stimulation
101

. PDE4D3 is 

part of the RyR2 signaling complex
43

, whereas PDE4D5 and PDE4D8 were reported to form signaling complexes 

with either 1- or 2-ARs in a ligand-dependent manner
70

. A still not identified PDE4D isoform has been shown 

to co-immunoprecipitate with the SERCA2a signaling complex in mouse hearts. This PDE is responsible for the 

regulation of PLN phosphorylation and hence SERCA2a activity under basal conditions
102,103

. PDE4A and PDE4B 

but no D-isoforms were also found in the PI3K -cAMP compartment
71

. 

 

PDE8  

Phosphodiesterase 8 is another cAMP-specific PDE in mammalian myocardium. Two genes encode the PDE8A 

and B isoforms, of which PDE8A is expressed in human and mouse hearts
104

. Its most profound property is its 

insensitivity to the unselective PDE inhibitor 3-Isobutyl-1-methylxanthin (IBMX). Regarding cAMP 

compartmentalization in cardiomyocytes, PDE8 has long been neglected. In a recent study, it was 

demonstrated that cardiomyocytes isolated from PDE8A knockout -adrenergic-

stimulated calcium transients, LTCC currents and calcium spark frequencies
105

. This indicates the involvement 

of PDE8A in the calcium homoeostasis. The authors also report a ‘leaky’ RyR2 phenotype, which is suggested to 

be the result of a compensatory increase in SR calcium re-uptake. Recently, it was shown that, similar to PDE4, 

this PDE can also be phosphorylated by PKA, which leads to an increase in its hydrolyzing activity
106

. This may 

represent an important negative feedback loop regulating cAMP dynamics in subcellular microdomains of 

cardiomyocytes. Further efforts are necessary to study the exact role of PDE8A for cAMP compartmentation. 

 

1.4 Pathophysiology of Chronic Heart Disease 

 Chronic heart disease is often triggered by catecholamine-induced augmentation of cardiac output, which 

occurs as a result of increased 

afterload due to hypertension or 

aortic valve disease. In order to 

compensate the increased demand 

of oxygen, the secretion of 

natriuretic peptides, especially that 

of the atrial and B-type kind (ANP, 

BNP) is increased to achieve 

enhanced blood flow by cGMP-

dependent vasodilatation 

mechanisms. However, chronic 

pressure overload ultimately causes exhaustion of this adaptive response, during which the heart undergoes 

different stages of progressive morphological and functional remodeling. These range from compensated 

hypertrophy to decompensated states of late- and end-stage heart failure (Figure 4). 
107
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During compensated hypertrophy, the heart muscle responds to the enhanced demand on cardiac contractility 

by a gain in left-ventricular size, achieved through increased wall thickness. Single cardiomyocytes incorporate 

additional sarcomeres, leading to increased cellular diameters. At this state, cardiac performance is largely 

preserved. In contrast, decompensation is morphologically characterized by progressive dilatation of the left 

ventricle due to myocyte apoptosis, which may be accompanied by increased fibrosis. Together, all these 

factors account for a dramatic drop in cardiac function. A molecular hallmark of heart failure is the 

desensitization of -AR and ANP receptor signaling cascades. Dramatic reduction of 1-AR density in failing 

myocytes
108,109

 and desensitization of the ANP receptor NPR-A due to its dephosphorylation in cardiac 

hypertrophy
110,111

 have been consistently documented. These molecular changes result in the reduction of 

catecholamine-stimulated cardiomyocyte force and ANP-mediated cGMP generation in late-stage cardiac 

disease, while disease-initiating alterations are still poorly defined.  Despite the essential role of the second 

messenger pathways for normal heart function, little to nothing is known about alterations in microdomain-

specific cAMP or cGMP signaling and about cGMP/cAMP cross-talk in diseased cardiomyocytes, especially not 

at disease onset, which is potentially relevant for therapeutic prevention strategies.  

 

1.5 Changes in cAMP Compartmentation in Diseased Cardiomyocytes  

Cardiac disease has been associated with changes in compartmentalized cAMP signaling. Today there is 

considerable evidence that remodeled subcellular signaling pathways promote or potentially cause chronic 

heart failure. Known alterations in compartmentalized cAMP signaling are illustrated in Figure 5. 

 

Remodeling of AKAP-associated signaling complexes 

Early studies by the group of Meredith Bond revealed that in human failing cardiomyocytes, the proper 

association of the PKA with 

AKAPs is dramatically 

decreased
112

. This was 

explained by the decrease in 

the basal RII (regulatory PKA 

subunit II) 

autophosphorylation, which 

normally increases PKA affinity 

for AKAPs. Disrupted 

interaction between AKAPs and 

PKA might result in the reduced 

phosphorylation of other PKA 

targets, including those 

associated with cardiomyocyte 

EC coupling. Disruption of the 

mAKAP/RyR2 signaling complex responsible for calcium release from SR has also been shown to cause severe 
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impairment of heart function in experimental mouse models, which resemble human disorders such as age-

related cardiomyopathy, exercise-induced arrhythmias and sudden cardiac death. In a series of elegant studies, 

the group of Andrew Marks could show that failing hearts display a destabilization of the RyR2 complex caused 

by the pronounced dissociation of FKBP12.6 (calstabin) from the signaling complex due to 

hyperphosphorylation of RyR2
61,113-115

. The same group later reported that deletion of FKBP12.6 leads to a 

cardiac phenotype similar to that of failing hearts with delayed afterdepolarizations, favoring severe 

arrhythmias and sudden cardiac death caused by spontaneous diastolic calcium release from the ‘leaky’ 

RyR2
115

. It was further demonstrated that the hyperphosphorylation of RyR2 by the local pools of PKA is 

involved in these processes due to depletion of PDE4D from the complex that occurs in failing cardiomyocytes 

under chronic -adrenergic stimulation
43

. This phenotype could be recapitulated in PDE4D knockout mice, and 

such effects might be also linked to the adverse effects of the selective PDE4 inhibitors
116

 that have been 

reported to promote arrhythmia in human heart muscle
44

. Recently, Beca et al.
102

 showed that under basal 

conditions (which is in contrast to the -adrenergic stimulation used in the studies mentioned above), PDE4 is 

not involved in the regulation of PKA-mediated RyR2 phosphorylation, but in this state, it rather maintains 

proper calcium handling via the SERCA2a–PLN complex. In addition to PKA, the increased activity of CaMKII can 

lead to hyperphosphorylation and leakiness of the RyR2
117,118

. A recent study by Kashimura et al. demonstrated 

that in a genetic mouse model of catecholaminergic polymorphic ventricular tachycardia, RyR2 leak after -

adrenergic stimulation does not result from a lowered threshold for calcium waves but rather from increased 

SR calcium content
119

. Therefore, it can be anticipated that for the leak mechanism to be effective, the SR 

calcium content must be maintained, a technical point frequently missed in studies that argue against the RyR2 

hyperphosphorylation hypothesis.  

Redistribution of -AR subtypes  

Nikolaev et al. combined FRET with scanning ion conductance microscopy (SICM/FRET) to analyze sarcolemmal 

distributions of 1- and 2-ARs in failing rat cardiomyocytes
78

. Here, widespread membrane 1-AR localization 

was basically unchanged, while 2-AR redistributed from the T-tubules onto the de-tubulated outer membrane 

areas. Interestingly, following the receptor redistribution, its subcellular cAMP gradients were also remodeled 

so that they were no longer confined but diffused throughout the entire cytosol, similar to the 1-AR cAMP 

signals. These diffuse signals have been associated with increased PLN phosphorylation and arrhythmias, which 

occur in heart failure. They might be a result of the loss of receptor coupling to local PKA and PDE4 pools found 

in the T-tubules of healthy cardiomyocytes. In addition, proper localization of PKA was also shown to be 

disrupted, leading to a loss of the negative PKA-PDE4 feedback regulatory loop capable of restricting 2-AR 

cAMP signals to the T-tubular compartment. Future work should more precisely analyze the composition and 

remodeling of such macromolecular complexes in heart failure. Probably, the regulation of 2-AR cAMP is likely 

to be more complex than previously anticipated, because a recent study suggests that 2-AR signaling is also 

dependent on PI3K -mediated scaffolding, which is apparently important to protect the heart from 

arrhythmias
71

. Interestingly, the findings of this study suggest that PI3K  interaction with PDE4 might regulate 

2-AR cAMP signaling in the cytosol, whereas a PI3K /PDE3 complex shapes those signals at the membrane. 
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More insights into the architecture of this cAMP compartment are definitely needed to fully understand the 

nature of 2-AR cAMP signaling in healthy and failing myocytes.  

Altered PDE expressions and activities  

Cardiac hypertrophy has been associated with changes in PDE activity patterns. In 2009, Abi-Gerges et al. 

established that expressions and activities of PDE3A and PDE4s are dramatically reduced in cardiomyocytes 

isolated from rats that underwent transverse aortic constriction to induce cardiac hypertrophy
95

. By 

electrophysiological CNG channel-based measurements of subsarcolemmal cAMP, they showed that upon -

adrenergic stimulation, cAMP signals are significantly reduced in hypertrophied cardiomyocytes, which might 

be due to the above-mentioned receptor desensitization. However, the responses to PDE3 and PDE4 inhibitors 

were also shown to be markedly reduced in this compartment. Analyses of subtype-specific PDE expressions 

and activities revealed that the expression levels and activities of PDE3A and PDE4A, PDE4B but not PDE4D 

were reduced in hypertrophied cardiomyocytes. It was proposed that this decrease in cAMP-hydrolyzing PDE 

activity could be a potential short-term adaptation mechanism to counterbalance the reduction in cAMP 

production by desensitized ARs. In addition to PDE3 and PDE4 downregulation, some PDE amounts might 

conversely increase during disease progression. As such, PDE2 has recently been identified to be upregulated in 

heart failure models of rodents and dogs but importantly also in end-stage heart failure patients, thereby 

possibly contributing AR desenzitation
120

. However, little is known about how local PDE pools, associated 

with AKAPs and other subcellular signaling complexes are affected in heart disease. The work by Lehnart et al. 

(2005) vividly demonstrated that despite unchanged global PDE4D expression and activity in failing 

cardiomyocytes, the reduction in local PDE4D content inside the mAKAP/RyR2 signaling complex leads to PKA-

mediated hyperphosphorylation of RyR2 in failing myocytes making them more susceptible to arrhythmias
43

.  

Nevertheless, more direct investigations of cAMP dynamics in various subcellular compartments are needed to 

fully understand the molecular mechanism of cardiac disease. 

 

1.6 Autonomous Nervous Control of Heart Function 

The autonomous nervous system regulates functions of various organs via the sympathetic and 

parasympathetic neurotransmitters norepinephrine and acetylcholine, which once released from nerve 

terminals, activate adrenergic and muscarinic G-protein coupled receptors on the membranes of target cells. In 

the heart, sympathetic innervation augments contractile force and beat frequency by -AR-mediated increases 

in intracellular levels of cAMP. Conversely, parasympathetic control via the Vagus nerve is achieved through 

acetylcholine-mediated activation of type 2 muscarinic acetylcholine receptors (M2) and leads to a decrease of 

cellular cAMP, resulting in lowered heart rate and less pronounced decrease in force of contraction (Figure 6).  
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1.7 Effects and Clinical Use of Atropine 

Atropine is a plant secondary metabolite, tropane alkaloid extracted from the deadly nightshade (Atropa 

belladonna) and other species of the Solanaceae family. It is a potent competitive antagonist for muscarinic 

acetylcholine receptors (mAChRs) with an affinity (dissociation constant, KD) of approximately 1nM
121,122

. In 

mammalian organisms, five different sub-types of mAChRs, M1-M5
123

 are expressed, of which the M1, M3 and 

M5 receptor subtypes are coupled  to Gq, whereas M2 and M4 are Gi-coupled. As an unselective mAChR 

antagonist, atropine has been widely used for multiple purposes over the centuries. Presumably, the Egyptians 

already used Solanaceae plant extracts to alleviate respiratory complaints
124

. The Greeks and Romans knew 

about its poisonous potential and in medieval times, its effect to dilate the pupils was utilized by court ladies to 

achieve a brighter 

glance, hence its name 

Belladonna
125

. Its 

pharmacological 

properties are known 

since the early 20
th

 

century
122

. But as early 

as in the 1830s, L-

atropine was first 

purified from plant 

extracts, which enabled 

further understanding 

of its effects as a potent 

modulator of the 

autonomic nervous 

system, eventually 

leading to the discovery 

of the neurotransmitter acetylcholine
125

.  

Today, atropine and atropine-derived anticholinergics are used for multiple indications, such as to prevent 

hyper-salivation during anesthesia or as antidotes for organophosphate poisoning. They are used for pupil 

dilation during eye examinations or as bronchodilators for the therapeutic treatment of asthma and chronic 

obstructive pulmonary disease (COPD)
126-128

. In the heart, atropine blocks the inhibitory effect of acetylcholine 

on heart rate and contractility, and is used to reduce susceptibility to bradycardia and atrioventricular block or 

during stress echocardiography
129

. Furthermore, atropine is still a first-line drug for acute bradycardia 

treatment
130

. 

 However, because of its broad range activity spectrum, atropine also shows multiple side effects such as 

blurred vision and dizziness, cottonmouth, nausea and emesis, urine retention and even severe arrhythmias. 

Moreover, lower doses of atropine (<0.5 mg) are known to trigger paradoxical bradycardia, whereas higher 

doses tend to elicit tachycardia
131,132

. It is subject of debate whether this is due to differential effects on the 
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central and the terminal parasympathetic nervous system
133,134

. Atropine-induced tachyarrhythmia has been 

attributed exclusively to the antagonism at cardiac Gi-coupled M2-receptors and inhibition of parasympathetic 

events. However, exact molecular mechanisms behind these inadvertent phenomena remain elusive.  

Redundancy in atropine and PDE4 inhibitor effects 

Interestingly, a number of aforementioned atropine effects show similarities to those of PDE inhibitors, 

especially PDE4 inhibitors
135-137

 used e.g. for treatment of airway diseases such as asthma and COPD 
138-140

 or 

bladder function disorders 
141,142

. 

Conversely, PDE4 inhibitors are also associated with a plethora of adverse effects that are partly reminiscent of 

atropine-related side effects such as emesis or nausea, but importantly also tachycardia
116,135,136

. Furthermore 

certain PDE4 isoforms have been shown to prevent catecholamine-induced arrhythmias
43,44,71,101,143

. 

 



Aims 
 

 18

2 Aims 

Local -Adrenergic Signaling at the Sarcolemma of Adult Mouse Cardiomyocytes  

Several publications have shed light onto molecular changes in the -AR signaling cascade that accompany the 

failing heart phenotype, such as -AR desenzitation and downregulation
12

, -AR redistribution
78

 or changes in 

the activity of certain PDEs
120,144

. So far, however relatively little is known about alterations in -AR signaling 

pathways that occur at the onset of cardiac disease, i.e. in early compensated cardiac hypertrophy, where 

subtle changes would first affect subcellular compartments, rather than the whole cell.  

The purpose of this project was to establish a new transgenic mouse line expressing a localized FRET-based 

cAMP biosensor, which would allow analysis of local cAMP dynamics exclusively at the sarcolemma of freshly 

isolated adult cardiomyocytes. Using this mouse as a tool, investigations of subtype-specific -AR-mediated 

cAMP signals, their regulation by PDEs and role in chronic cardiac disease were performed. 

  

Atropine Modulates Phosphodiesterase Activity in the Heart  

Atropine is an unspecific anticholinergic drug that inhibits all five mammalian muscarinic acetylcholine receptor 

subtypes. As such, atropine is linked to multiple side effects. Its pro-arrhythmic potential has long been 

acknowledged but not completely understood. 

Importantly, a considerable number of atropine-associated side effects show similarities to effects evoked by 

PDE4 inhibition. The aim of this project was to analyze the molecular mechanisms by which atropine can affect 

cardiac function independently of the parasympathetic nervous system and M2 receptors. In particular, the 

effects of atropine on PDE4 activity to promote tachycardia were investigated.
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3 Materials and Methods 

3.1 Materials 
Description       Company 

3.1.1 Stable cell lines 
HEK293A       Invitrogen, #R705-07 

3.1.2 Plasmids 

pcDNA3.0       Invitrogen 

-MHC-HCN2       see Nikolaev et al., 200637 

3.1.3 Bacteria strains 

One Shot® TOP10 chemically competent E. coli    Invitrogen 

One Shot® OmniMax2T1      Invitrogen  

3.1.4 Animals 
FVB/NRj animals were obtained from Janvier Labs (Saint Berthevin, France) and used for pronuclear injection 

with the pmEpac1construct by the Max-Planck-Institute of Experimental Medicine. All animal experiments 

were performed in accordance with institutional and governmental guidelines. 

3.1.5 Oligonucleotides                                                                         
Oligonucleotides were purchased from MWG Biotech GmbH, Ebersberg 

MHCseqfor  5’-TGACAGACAGATCCCTCCTAT-3’ 

YFPrev   5’-CATGGCGGACTTGAAGAAGT-3’ 

pmYFPKpnIfor   5’-AAAGGTACCATGGGATGTATCAATAGCAAGC-3’ 

YFPEcoRIrev   5’-AAAGAATTCCTTGTACAGCTCGTCCATG-3’ 

PDE1ABamHIfor   5’-AAAGGATCCATGCCCTTGGTGGATTTCTTCTGCGGGTCTACTGATACGGAC-3’ 

PDE1AXhoIstoprev  5’-AAACTCGAGCTATGGACGTGTGTAAGCA-3’ 

3.1.6 Chemicals 

AG 1-X8 Resin       Biorad, # 140-1441 

Albumin Fraction V      Applichem, # A1391.0100 

Ammonium persulfate      Sigma, # A3678 

Ampilcillin       Roth, # K029.1 

Ampuwa® water Fresenius Kabi Deutschland GmbH 

BAY 60-7550       Santa Cruz, # sc-205219 

BES buffer grade       Applichem, A1062 

β-Mercaptoethanol      Sigma, # M3148 

Bromphenol Blue sodium salt     Applichem, # A1120 

8-Bromoadenosine-3', 5'-cyclic monophosphate, acetoxymethyl ester  Biolog, # B028 
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Description       Company 

2,3-Butanedione monoxime     Sigma, # B0753 

Calcium chloride dihydrat      Merck, # 17257 

cAMP        Sigma, # A9501 

cAMP [5',8-
3
H] Hartmann Analytic GmbH, # 1790 

Cesium chloride Sigma, # C3032 

CGP-20712A methanesulfonate salt    Sigma, # C231 

Cilostamide       Sigma, # C7971 

Crotalus atrox snake venom     Sigma, # V7000 

di-8-ANEPPS       Molecular Probes®, # F1221 

Dimethyl sulfoxide HYBRI-MAX®     Sigma, # D2650 

DirectPCR-Tail       Peqlab, # 31-102-T 

D(+) Sucrose       Roth, # 4621.2 

dNTPs        Promega, # U1240 

EDTA        Roth, # 8040.3 

EGTA        Sigma, # E4378 

Ethanol Rotipuran >99,8 %     Roth, # 9065.1 

Ethidium bromide - Solution 1 %     Applichem, # A1152 

Forskolin       Sigma, # F6886 

Fura2-AM       Invitrogen, # F-1201 

Glucose        Sigma, # G7021 

Glycerol        Sigma, # G8773 

Glycine        Roth, # 3908.3 

Hematoxylin       Fluka # 51260 

HEPES        Sigma, # H4034 

Hydrochloride acid 37 %      Sigma, # 84422 

125
I-cyanopindolol      Perkin Elmer, Inc. # NEX189100UC 

ICI-118.551 hydrochloride      Sigma, # I127 

Iron(III) chloride hexahydrate     Roth, # P742.1 

3-Isobutyl-1-methylxanthin     Applichem, # A0695 

Isoproterenol hydrochloride     Sigma, # I6504 

Laminin        Sigma, # L2020 

LB- Agar powder Miller      Applichem, # A0927 

LB- Medium powder Miller     Applichem, # A0954  

Lipofectamine®  2000 Reagent     Invitrogen, #11668-019  

Loading buffer DNA IV (for Agarose gels)    Applichem, # A3481 

Magnesium chloride hexahydrate     Applichem, # A1036 

Magnesium sulfate heptahydrate     Sigma, # M2773 

MDL-12,330A hydrochloride     Sigma, # M182 

Methanol       Roth, # HN41.2 
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Description       Company 

8-methoxymethyl-3-isobutyl-1-methylxanthine   Sigma, # M2547 

Milk powder       Roth, # T145.1 

N,N,N′ ,N′ -Tetramethylethylenediamine    Sigma, # T9281 

peqGOLD Universal Agarose     Peqlab, # 35-1020 

PhosStop       Roche, # 04906837001 

Ponceau S       Sigma, # P3504 

Potassium bicarbonate      Sigma, # P7682 

Potassium chloride      Sigma, # P5405 

Potassium dihydrogen phosphate     Merck, # 4873 

RNAse free water      Ambion, # AM9937 

Phenol red sodium salt      Sigma, # P5530 

Protease Inhibitor Cocktail     Roche, # 11872580001 

Protein Marker V       Peqlab, #27-2211 

Quick-Load® 100bp DNA ladder     Biolabs, # NO467S 

Quick load® 1 kb DNA ladder     Biolabs, # NO468S 

Rolipram       Sigma, # R6520 

Roticlear®       Roth, # A538.5 

Roti-Histofix® 4%       Roth, # P087.5 

Rotiphorese® Gel 30      Roth, # 3029.1 

Sodium azide       Sigma, # S2002 

Sodium bicarbonate      Sigma, # S5761 

Sodium chloride       Sigma, # S5886 

Sodium dodecyl sulfate solution 20%    Fluka, # 05030 

Sodium hydroxide      Roth, # 6771.3 

Sodium phosphate dibasic      Sigma, # 255793 

Sodium phosphate dibasic dihydrate     Sigma, # 71643 

Sucrose        Sigma, # S0389 

TAE-buffer (50x)       Applichem, # A1691 

Target Retrieval Solution, Citrate pH=6 (10x)   Dako, # S2369 

Taurine        Sigma, # T8691 

TRIS        Roth, # 4855.3 

Triton-X® 100       Applichem, # A1287.0025 

Tween-20®       Sigma, # P1379 

Vectashield® Mounting Medium     Vector Laboratories, # H-1000 

Lectin from Triticum vulgaris (wheat)    Sigma, # L5266 
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3.1.7 Cell culture 

Description       Company 

Antibiotic-Antimycotic, 100x     Gibco, # 15240062 

DMEM, 4.5 % glucose      Biochrom, # F0445 

FCS        Biochrom, # S0615 

Glutamine       Biochrom, # K0283 

Iscove Basal Medium      Biochrom, # FG 0465 

OPTI-MEM®       Gibco, # 11058  

PBS Phosphate Buffered Saline (Dulbecco)    Biochrom, # L1825 

Penicillin/Streptomycin      Biochrom, # A2213 

Plaque GP Agarose      Biozym, # 850110 

Trypsin/EDTA solution      Biochrom, # L2143 

 

3.1.8 Enzymes and Kits 
BamHI        New England Biolabs, # R0136 

EcoRI        New England Biolabs, # R0101 

KpnI        New England Biolabs, # R0142 

XbaI        New England Biolabs, # R0145 

XhoI        New England Biolabs, # R0146 

GoTaq DNA Polymerase, 500U     Promega, # M3175 

KpnI        New England Biolabs, # R3142 

Liberase DH        Roche, # 05401054001 

NotI        New England Biolabs, # R3189 

PacI        New England Biolabs, # R0547 

Pfu DNA Polymerase      Promega, # M774B 

Pierce BCA Protein Assay Kit     Thermo Scientific, # 23227 

Plasmid Midi Kit       Qiagen, # 12945 

Plasmid Mini Kit       Qiagen, # 12125 

Proteinase K       Applichem, # A3830-0500 

QIAquick Gel Extraction Kit     Qiagen, # 28704  

QIAquick PCR purification Kit     Qiagen, # 28104  

Qproteome Cell compartment Kit     Qiagen, # 37502 

Sodiumacetate solution 3M     Applichem. # 3947 

Super Signal West Pico Chemiluminescent Substrate   Thermo Scientific, # 34080 

SYBR® Green Super Mix for iQ™     Quanta Biosciences, # 95053 

T4 DNA Ligase       NEB, # M0202S 

Trypsin 2.5 %       Gibco #15090 

XbaI        New England Biolabs, # R0145 

XhoI        New England Biolabs, # R0146 
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3.1.9 Primary Antibodies 

Description       Company 

anti- -actinin       Sigma, # A7811 

anti- -arrestin 2       Santa Cruz, # sc-13140 

anti-Calsequestrin      Thermo Scientific, # PA1-913 

anti-GAPDH       HyTest Ltd, # 5G4 

anti-PDE2A       Fabgennix, # 101AP 

anti-PDE2A       Santa Cruz, # sc-17228 

anti-PDE3A       Santa Cruz, # sc-11834 

anti-PDE4D8       home made (Marco Conti) 

anti-PDE8A       home made (George Baillie) 

anti-pPLN (Phospho Serine 16)     Badrilla, # A010-12 

anti-pTnI (Phospho Serine 23/24)     Cell Signaling, # 4004 
 

3.1.10 Secondary Antibodies 
Alexa Fluor®

 
488 Goat Anti-Mouse IgG    Invitrogen, # A11055 

Alexa Fluor® 633 Goat Anti-Rabbit IgG    Invitrogen, # A21070 

Immun-Star™ Goat Anti-Mouse (GAM)-HRP Conjugate  Biorad, # 170-5047 

Immun-Star™ Goat Anti-Rabbit (GAR)-HRP Conjugate  Biorad, # 170-5046 

 

3.1.11 Technical devices and software for fluorescence microscopy 
Arduino I/O board      Sparkfun Electronics 

Attofluor® cell chamber      Invitrogen 

AxioObserver A1 epifluorescence microscope    Carl Zeiss MicroImaging      

AxioCam ICc1       Carl Zeiss MicroImaging 

Axiovert 200 microscope      Carl Zeiss MicroImaging 

Axio Vision software      Carl Zeiss MicroImaging 

CFP/YFP filter set       Chroma Technology 

CoolLED 440 nm       CoolLED 

CoolSNAP-HQ CCD-camera      Visitron Systems 

DualView filter slider      Photometrics 

DV2 DualView (505dcxr filter)     Photometrics 

ImageJ Software       National Institutes of Health 

Inverted fluorescent microscope     Nikon 

710 NLO microscope      Carl Zeiss MicroImaging 

Microsoft Office Picture Manager     Microsoft Corporation 

Oil immersion 63x objective     Carl Zeiss MicroImaging 

ORCA-03G camera      Hamamatsu Photonics 

Polychrome V light source      TILLPhotonics 

Stemi 2000-C microscope binocular    Carl Zeiss MicroImaging 
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Description       Company 

ZEN 2010 Software      Carl Zeiss MicroImaging 

 

3.1.12 Technical devices and software for cardiomyocyte contractility  

 measurements 

Fluorescence System Interface     IonOptix 

IonWizard- Core and Analysis     IonOptix 

MyoCam-S       IonOptix 

MyoPacer Cell Stimulator      IonOptix 

Sarcomere Length Acquisition Module    IonOptix 

 

3.1.13 Other technical devices and software 

AlphaImager® software      ProteinSimple 

Binocular macroscope       Olympus 

Biotek Reader (for BCA assay)     BIOTEK Instruments 

Chart5™ Software      ADInstruments 

Centrifuges       Thermo Scientific 

iCycler        Biorad 

MicroBeta
2
       Perkin Elmer, Inc. 

MicroBeta
2
 Windows Workstation     Perkin Elmer, Inc. 

Microtom Leica RM 2165      Leica 

Mini-PROTEAN® Electrophoresis System    Biorad  

MS-400 MicroScan Transducer     Linear Array Technology 

MS-Excel™       Microsoft® 

MS-PowerPoint™       Microsoft® 

MS-Word™       Microsoft®  

MultiImage Light Cabinet      Alpha Innotech Corporation 

Mupid-One Gel Electrophoresis Unit      ADVANCE Co., Ltd. 

NanoDrop 2000       Thermo Scientific 

Origin 8.5G Software      OriginLab® Corporation  

pH meter       Inolab 

Powerpac HC       Biorad 

Thermocycler       Sensoquest 

ThermoMix compact      Eppendorf 

Tracheal tube       Hugo Sachs Electronic 

Ultracentrifuge L-70       Beckman 

Ultra-Turrax MicraD-1      Art-Labortechnik 

Vevo 2100        VisualSonics (Toronto, Canada) 

Ventilator Minivent      Hugo Sachs Electronic 



Materials & Methods 
 

 25 

Description       Company 

X-Ray Film processor SRX 101A     Konica 

 

3.1.14 Other Materials 

Elca®med       Asid Bonz GmbH 

Eppendorf tubes       Eppendorf 

Ethilon suture 9-0      Ethicon 

Falcon tubes       BD Falcon 

Fiber pads for Western blot     Bio Rad, #1703933 

Filter Unit 0.2 RC Spartan 13 0.2 µm (DNA filtration)   Whatman, # 10463040 

Forene®        Abbott 

21-gauge needle       BD Microlane 

26-gauge needle       BD Microlane 

Gauze        Th Geyer, # 9.068291 

Round Glass Cover Slides, ø 24 mm                       Thermo Scientific, #004710781 

Microscope Slides Thermo Scientific, #  J1800AMNZ 

Medical X-Ray Film      Fujifilm, # 4014403 

Prolene suture 6-0      Ethicon 

Protran Nitrocellulose Transfer Membrane    Whatman, # 4018650 

Quickseal Centrifuge Tubes (virus centrifugation)   Beckmann, # 342413 

Scintilation Liquid Lumasafe Plus     Lumac LSC, # 3097 

Serological pipettes       Sarstedt 

Slide-A-Lyzer Dialysis Cassettes, 10K MWCO   Thermo Scientific, # 66383 0.5ml 

Spacer Plates for Western blot     Bio Rad, #1653311 

Steriflips       Millipore, # SCGP00525 

Short Plates for Western blot     Bio Rad, #1653308 

Temgesic®       Essex Pharma GmbH 

U-40 Insulin 30Gx1/2      Braun, # 40012525 

U-40 Insulin Omnifix Solo      Braun, # 9161309v 

Water bath       Julabo 

6 Well Plates       Starlab, # CC7682-7506 

6-0 polyviolene suture      Harvard Apparatus  

96 Well Plates       Nunc, # 167008 

96 Well Plates for MicroBeta
2     

Perkin Elmer, Inc. #1450-401 
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3.1.15 Buffers and solutions 

All buffers were prepared in deionized H2O, if not indicated otherwise 
 

Description 
 
Composition       

 

Plasmid dialysis 

    TE Buffer  Tris, 1 M, pH 7.4    5    ml 
    EDTA, 0.5 M, pH 8    0.2 ml 
    Ampuwa® 1000 ml 
   

E.coli transformation 

    5x KCM buffer  CaCl2 150 mM 
    MgCl2 250 mM 
    KCL 500 mM 
            

LB medium LB medium powder 25 g/l 
  

  
dH2O ad 1000 ml 
Autoclave, cool down to 50°C  

     add Ampicillin 100 µg/ml 
            

LB plates LB agar powder 40 g/l 
  

  
dH2O ad 1000 ml 
Autoclave, cool down to 50°C  

   

  

add Ampicillin 

 

 

100 µg/ml 

 

 

  HEK293A Cell Transfection 

2x BBS Na2HPO4  1.5 mM 
  

 
BES   50 mM 

    NaCl 280 mM 
    pH 6.95  

   
 

      

CaCl2 CaCl2 2.5 M 
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Description Composition 

 Cardiomyocyte Isolation 

Stock Buffer 10x NaCl 1.13    M 
  

 
KCL    47 mM 

  

 
KH2PO4      6 mM 

    Na2HPO4x2H2O      6 mM 
    MgSO4x7H2O    12 mM 
    Phenol red 0.32 mM 
    NaHCO3  120 mM 
    KHCO3  100 mM 
    HEPES  100 mM 
  

 
Taurine  300 mM 

            

Perfusion Buffer 1x Stock Buffer 10x        10 ml 
  sterile filtrate BDM solution          2 ml 
  

 
Glucose      100 mg 

  

 
dH2O ad 100 ml 

            

BDM Solution BDM 500 mM 
            

BSA Solution BSA 10 % (w/v) 
    

    CaCl2 Solution 100mM CaCl2 100 mM 
    

    CaCl2 Solution 10 mM CaCl2  10 mM 
    

    Liberase DH Solution Liberase DH 50 mg 
    dH2O (injection grade) 12 ml 
    

    Digestion Buffer Perfusion Buffer 1x  26 ml 
  

  
CaCl2 solution,  
100 mM 

3.75 µl 
 

    Trypsin 2.5 % 200 µl 
    Liberase DH Solution 300 µl 
            

Stopping Buffer 1 Perfusion Buffer 1x 2.25 ml 
    BSA Solution  250 µl 
    CaCl2 Solution 100 mM  1.25 µl 
            

Stopping Buffer 2 Perfusion Buffer 1x   9.5 ml 
    BSA Solution  500 µl 
    CaCl2 Solution 100 mM 3.75 µl 
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Description Composition 
      

Tyrodes 

FRET tyrode NaCl 144 mM 
    KCl  5.4 mM 
    MgCl2     1 mM 
    CaCl2     1 mM 
    HEPES   10 mM 
    pH 7.3 
            

ION Optix tyrode  NaCl 149 mM 
  

 
KCl     1 mM 

    MgCl2     1 mM 
    HEPES     5 mM 
    Glucose   10 mM 
    CaCl2     1 mM 
    pH 7.54 
            

Langendorff tyrode  NaCl 118  mM 
   (Krebs-Henseleit buffer) KCl   4.7 mM 

     KH2PO4   1.2 mM 
     MgSO4 1.25 mM 
   

 
NaHCO3    24 mM 

    CaCl2 1.25 mM 
     glucose    11 mM      

 

      Immunoblot Solutions 

Homogenization Buffer HEPES      10 mM 
    Succrose 300 mM 

    NaCl 150 mM 
    EGTA     1 mM 
    CaCl2     2 mM 
    Triton X 100 10 % 
    pH 7.4 
  

 

10 ml + PhosStop and Protease Inhibitor Cocktail, 
1 tablet each 
  

SDS Stop 3x Tris 200 mM 
    SDS   6 % (v/v) 
    Glycerol 15 % (v/v) 
    Bromphenol Blue 

     β-Mercapthoethanol 10 % (v/v) 
    pH 6.7 
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Description Composition 

4x Tris/SDS pH 6.8 Tris 500 mM 
    SDS 0.4 % (v/v) 
    pH 6.8 
            

4x Tris/SDS pH 8.8 Tris 1.5 M 
    SDS 0.4 % (v/v) 
    pH 8.8 
            

APS solution APS 10 % (w/v) 
            

10x SDS Running Buffer Tris 250 mM 
    Glycine 1.9 M 
    SDS 1 % (v/v) 
    pH 8.3 
            

Stock Transfer Buffer 10x Tris 325 mM 
    Glycine 1.9 M 
            

Transfer Buffer 1x Stock Transfer Buffer 10x  10 % (v/v) 
    Methanol 20 % (v/v) 
            

Ponceau S Solution Ponceau S 0.5 % (w/v) 
    in 10% acetic acid 

   

 
        

Stock TBS Buffer 10x Tris 100 mM 
    NaCl 1.5 M 
    pH 7.5 (HCl) 
            

TBS-Tween  Stock TBS Buffer 10x 10 % (v/v) 
    Tween 20  0.1 % (v/v) 
            

Stacking Gel  Acrylamide 500 µl 
  (3.8 ml; 2Gels) 4x Tris/SDS pH 6.8 940 µl 
    dH2O 2.31 ml 
    10% APS 18.8 µl 
    TEMED   7.5 µl 
            

Separating Gel 10 % Acrylamide 4 ml 
  (12 ml; 2 Gels) 4x Tris/SDS pH 8.8 3 ml 
    dH2O 5 ml 
    10 % APS 48 µl 
    TEMED 18 µL 
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Description Composition 

Separating Gel 15 % Acrylamide 6 ml 
  (12 ml; 2 Gels) 4x Tris/SDS pH 8.8 3 ml 
    dH2O 3 ml 
    10 % APS 48 µl 
    TEMED 18 µL 
   

PDE Activity Assay 

Wash Buffer Tris 40 mM 
    pH 8.0 (HCl) 
            

Homogenation Buffer Wash Buffer 10 ml  
    MgCl2 10 mM 
    PhosStop 1 tablet 
    Protease Inhibitor 

     Cocktail 1 tablet 
            

cAMP Stock Solution cAMP 1 mM 
            

BSA Stock Solution BSA 10 % (w/v) 
    

    [
3
H]cAMP Stock Solution [

3
H]cAMP 1mCi/ml 

            

Ready-To-Use  MgCl2 10 mM 
  Reaction Buffer β-Mercaptoethanol 10 mM 
    cAMP    2 µM 
    BSA 1.5 % (w/v) 
    [

3
H]cAMP 2.5 µl/ml 

    in Wash Buffer 
             

Stop Solution EDTA 15 mM 
    pH 8.0 (NaOH) 

   in Wash Buffer 
             

Venom Snake Venom 1mg/ml 
   

Immunostaining 

Blocking buffer FCS  10 % (v/v) 
    Triton-X® 100 0.1 % (v/v) 
     in PBS       
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3.2 Methods 

3.2.1 Cloning and transgenic mouse generation  
A. pmEpac1 cloning: 

For generation of pmEpac1, the Epac1-CNBD (cyclic nucleotide-binding domain) sequence was excised out of 

the Epac1-camps plasmid
36

 (pcDNA3.0) using  EcoRI and XbaI. Same restriction sites were used to remove the 

Epac2-CNBD sequence from the pmEpac2 construct
145

. The Epac1-CNBD sequence was then ligated into the cut 

open pmEpac2-construct to achieve pmEpac1. 

B. MHC subcloning 

1. pmYFP was excised out of the new pmEpac1 construct with KpnI and EcoRI and subsequently PCR 

amplified using pmYFPKpnIfor and pmYFPKpnIfor primers to achieve KpnI and EcoRI restriction sites at the 

same time increasing expression efficiency due to a loss of 11 b.p. upstream of pmYFP start codon. PCR 

products were digested with KpnI and EcoRI to achieve “sticky ends” 

2. Epac1-CFP was cut out of the pmEpac1 construct by EcoRI and XhoI. 

3. MHC-HCN2 vector containing simian virus polyadenylation signal (SV40)
37

 was cut with KpnI and XhoI to 

remove the HCN2 sensor construct.   

pmYFP (KpnI/EcoRI), Epac1-CFP (EcoRI/XhoI) and MHC vector (KpnI/XhoI) were then triple-ligated to achieve 

the MHC-pmEpac1 construct. 

C. cDNA3.0 transcloning 

For expression control in HEK293 cells, pmEpac1 was excised out of the MHC vector using KpnI and XhoI and 

pasted into pcDNA3.0 vector using identical restriction sites.  

D. Epac1-camps-PDE1A cloning 

To generate Epac1-camps-PDE1A, the mouse PDE1A sequence was fused in frame to the C-terminus of Epac1-

camps via BamHI restriction site and a helical linker MPLVDFFC. 

Epac1-PDE4A1
146

 construct served as vector: 

1. PDE4A1 was excised with BamHI und XhoI. 

2.  Murine PDE1A Sequence was PCR amplified using PDE1ABamHIfor and PDE1AXhoIstoprev  

 primers to achieve BamHI and XhoI restriction sites. 

3.  Thus amplified PDE1A sequence was then ligated into cut open Epac1-camps-PDE4A1 vector.  

 

Cloning PCR reaction mix: 

10x Pfu reaction buffer      10 µl 

10 mM desoxyribonucleotide triphosphates mix (dNTPs)    2 µl 

forward primer       2.5 µl 10 pmol/µl (final conc. 25 µM) 

reverse primer       2.5 µl 10 pmol/µl (final conc. 25 µM) 

template cDNA     100–300 ng  

Pfu polymerase          1 µl 

ddH2O                ad 100 µL 
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Cloning-PCR reaction protocol: 

    94°C 5 min       

    94°C 30 sec       

    55°C 30 sec           30x       

    72°C 1 min      

    72°C 7 min 

 

Digestion protocol: 

Standard digestion was carried out overnight at 37°C:  

7 µg plasmid DNA (or 49.5 µl of the Qiaquick purified PCR product)  

 2.5 µl Restriction Enzyme 1 

2.5 µl Restriction Enzyme2      

    5 µl 10 x Buffer 4       

 0.5 µl 100x BSA       

 ddH2O ad 50 µl 

 

Ligation protocol 

Ligation of the digested fragments and vector was performed in a reaction using T4 ligase over night (o.n.) at 

14°C: 

  αMHC vector      (KpnI/XhoI-Fragment)     1 µl   (25 ng)  

  pmYFP       (EcoRI/KpnI-Fragment)  4.5 µl (125 ng)  

  Epac-CFP   (EcoRI/XhoI-Fragment)     7 µl  (125 ng) 

  T4 Ligase buffer 10x     1.5 µl   

  T4 Ligase         1 µl 

 

For plasmid amplification, E. coli TOP10 (competence 1x10
9
 cfu/µg DNA) were transformed with ligation mix, 

using the following reaction mix: 

  E.coli TOP10    100 µl      

  Ligation Mix       15 µl     

  H2O         65 µl     

  5x KCM Buffer      20 µl 

For microinjections, the pmEpac1 construct was linearized using SpeI for overnight digestion at 37°C: 

          50 µg DNA        

             10 µl SpeI        

      20 µl Buffer 4        

    2 µl 100x BSA       

      H2O ad 200 µl 
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The linearized construct was purified on a 1 % Agarose gel, extracted using the Qiaquick Gel extraction Kit and 

eluted with 100 µl of sterile TE buffer.  

After filtration of the linearized and purified MHC-pmEpac1 construct through a 2 µm filter under sterile 

conditions, the DNA was transferred into a sterile dialysis chamber (Slide-A-Lyzer). Dialysis was performed in 

500 ml TE buffer which was exchanged every 4 hours (overall 2 l TE buffer). The dialysis chamber was unloaded 

under sterile conditions and DNA concentration was measured using a Nanodrop device. A concentration of 1-

5 ng/µl was considered sufficient for pronuclear microinjection. 

The pronuclear microinjection of FVB/N mice with the MHC-pmEpac1 construct was performed as previously 

described
147

. Microinjections were carried out by Dr. Ursula Fünfschilling and co-workers (Transgenic Core 

Facility of the Max-Planck Institute for Experimental Medicine, Göttingen, Germany).  

The resultant founder mice and their heterozygous offspring were genotyped by a standard PCR resulting in a 

~365 bp fragment on a gel. In brief, tail biopsies were digested overnight in 200 µl DirectPCR-Tail supplemented 

with 500 µg/ ml Proteinase K at 55°C and 1000 rpm in a ThermoMixer. The reaction was terminated by boiling 

at 85°C for 45 min. After cooling down, tail lysates were directly used as a template for PCR amplification 

performed.  

Genotyping-PCR reaction mix: 

0.5  µl  Tail lysate 

14.7  µl  H2O 

4.0  µl  5x GoTaq buffer       

0.5  µl dNTPs 10 mM          

0.05  µl MHCseqford primer, 100 pmol/µl     

0.05  µl YFPnewrev primer, 100 pmol/µl     

0.2    µl GoTaq Polymerase 

 

 

 

Genotyping-PCR reaction protocol: 

    94°C 4 min       

    94°C 30 sec       

    62°C 30 sec           35x       

    72°C 50 sec       

    72°C 7 min 

3.2.2 Cell culture and transfection 
Day 0: HEK293A cells were cultured at 37°C and 5 % CO2 in DMEM medium supplemented with 4.5 g/l glucose, 

10 % FCS, 2 mM L-glutamine, 100 U/ml penicillin and 100 µg/ml streptomycin. For transfection with plasmid 

DNA, cells were plated onto 24 mm glass coverslips in 6-well plates.  

Day 1: At about 60-70 % confluence, cells were transfected using the  
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Calcium-Phosphate method: 

   H2O     440 µl     

   2.5 M CaCl2     50 µl  

Plasmid DNA (1 µg/µl)      10 µl      

   2x BBS    500 µl 

 

After 10 min of incubation at RT, 166 µl of the reaction mix were added dropwise to each well.  

To yield higher transfection efficiencies, e.g. for protein overexpression analyzes, cells were grown to 60-70% 

confluence in 15-cm cell culture dishes and transfected using the  

Lipofection method: 

1. Lipofectamine 2000® reagent:   Opti-Mem® Medium  455 µl 

     Liopectamine 2000®     45 µl 

2. DNA reagent:    Opti-Mem® Medium  490 µl 

    DNA (1µl/µg)     10 µl  

Lipofectamine 2000® and DNA reagents were mixed 1:1 and incubated at room temperature. After 20 minutes 

the reaction mix was dropwise pipetted onto the cells. 

Day 2: 24-30 hours post transfection cells were e.g. subjected to FRET measurements.  

 

3.2.3 Adult cardiomyocyte isolation 

Mice were sacrificed by cervical dislocation. Hearts were rapidly explanted. In a petri dish with ice-cold PBS the 

aorta was mounted onto a blunted cannula (24-26-gauge) and subjected to retrograde perfusion (Langendorff 

perfusion). A constant flow rate of 3.5 ml was assessed using a peristaltic pump. The heart was perfused with 

Perfusion Buffer 1x for 3 minutes, followed by 8 minutes perfusion with Digestion Buffer.  

Thereafter, the heart was removed from the perfusion apparatus and the ventricles were briefly cut into 

pieces. Digestion was slowed down by adding Stopping Buffer 1 to the crude suspension, followed by 

homogenation with a 1ml-syringe without needle to detach single cardiomyocytes from the extra cellular 

matrix. The cell suspension was briefly filtered using gauze with a mesh diameter of 200 µm and left to settle 

for 10-15 minutes. 

Sedimented cardiomyocytes were then transferred into Stopping Buffer 2 and further subjected to re-

calcification. Cellular calcium was increased in five steps to achieve a final concentration of 1mM, letting cells 

accommodate for 4 minutes, after each step. 

Re-calcification protocol: 

1. 50 µl CaCl2 Solution 10 mM   =>     62 µM                        

2. 50 µl CaCl2 Solution 10 mM  =>   112 µM                     

3. 100 µl CaCl2 Solution 10 mM  =>   212 µM 

4. 30 µl CaCl2 Solution 100 mM  =>   500 µM                                                       

5. 50 µl CaCl2 Solution 100 mM  => 1000 µM 
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After recalcification, cardiomyocytes were either seeded onto laminated coverslides for functional studies, or 

subjected to e.g. in vitro stimulation prior to immunoblot analysis. 

For immunoblot analysis cells were isolated as described, however re-calcification was carried out in BSA-free 

Stopping Buffer 2 to minimize excessive signal background due to unspecific antibody cross reactions with BSA. 

After re-calcification cells were quickly spun down (2.000 rpm for 2 minutes) and flash-frozen. For further 

sample preparation see 4.12 Immunoblot assay. 

 

3.2.4 FRET-based cAMP measurements in living cells 

Freshly isolated cardiomyocytes were plated onto laminin-coated round glass cover slides. For FRET 

measurements, cover slides with adherent cells were mounted in an Attofluor microscopy chamber and 

maintained in FRET buffer. FRET recordings were performed using a homemade FRET microscopy system
148

. 

The donor fluorophore (CFP) was excited with a 440 nm blue-light beam at five-second intervals using a 

CoolLED single-wavelength light emitting diode. Simultaneously, the FRET emission was separated into CFP and 

YFP signals using a DualView beam splitter. Split emission signals were detected via a charge-coupled device 

(CCD) camera. Image acquisition was synchronized to the five-second light pulse intervals.  After a stable 

baseline was reached, cells were challenged with different compounds e.g. ISO or PDE inhibitors diluted in the 

FRET buffer to stimulate cellular cAMP responses. 

FRET recordings on HEK293A cells were performed in a similar way one-day post transfection. 

Offline data analysis was carried out using Microsoft Excel and Origin 8.5G software.  

Raw values of YFP and CFP emissions were fed into following equation:  
 

FRET ratio = (YFP – 0.63 x CFP) / CFP  
 

to correct for CFP bleedthrough into the YFP channel. 0.63 is the bleedthrough factor, which was assessed for 

the particular FRET microscopy setup used, prior to FRET measurements.  

Changes in the FRET ratio were plotted against time in seconds to display the measured FRET traces, 

representing the time course of cellular/subcellular cAMP dynamics.  

3.2.5 Single-cell contractility measurements 
Freshly isolated cardiomyocytes were plated onto laminin-coated glass coverslides, mounted onto custom 

made measuring chambers. Contractile responses were evaluated by the optical sarcomere length 

measurement method (IonOptix) at 1 Hz pacing frequency using field stimulation of 20-40 V as previously 

described
149

. Similar to FRET recordings, cells were sequentially challenged with various compounds by 

pipetting, i.e. ISO and selective/unselective PDE inhibitors to stimulate contractility. Contractility recordings 

were offline analyzed using ION Wizard™ and Origin 8.5G software. 

3.2.6 Heart rate measurements  
Mice were sacrificed by cervical dislocation. Hearts were rapidly explanted and subjected to Langendorff 

perfusion (see 3.2.3 Adult cardiomyocyte isolation) with the Krebs-Henseleit tyrode, oxygenated with 95% O2 

and 5% CO2 at 37.5 °C with a constant flow rate of 3.5 ml/min. Hearts were placed in an organ bath with 37.5°C 

temperate Krebs-Henseleit tyrode and heart beats were detected using a custom made electrode. Heart rates 
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were amplified and online processed with Chart5™ Software. The perfusion setup consisted of a closed flow 

circuit (Figure 7). The tubing was insulated with double-walled glass pipes. The inner spaces of all pipes and 

containers (i.e. buffer 

container and organ bath) 

were filled with heating 

water and connected to a 

thermostated circulating 

water bath. The heating bath 

was set to 42°C to maintain a 

temperature of 37.5°C of the 

perfusate and at the organ 

bath. Stimulatory compounds 

were introduced 

sequentially. I.e. hearts were 

perfused for 3-5 minutes to reach stable heart rates and then stimulated with 10 nM ISO for 3-5 min. After 

reaching the plateau phase, 10 nM of atropine were additionally washed in for another 5 min. 

Electrocardiograms (ECGs) were offline analyzed using Chart5™ and Origin 8.5G software. 

3.2.7 Transverse aortic constriction (TAC) 
9-13 week aged female mice were randomized into sham or TAC group. Mice were anesthetized using 1.5 - 2 % 

isoflurane in 100 % oxygen. A suprasternal incision was made, and the aortic arch was visualized using a 

binocular macroscope. TAC occurred by spacer defined (26-gauge) constriction using a 6-0 polyviolene suture 

between the first and second trunk of the aortic arch
150

. For sham, the aorta was exposed but not constricted. 

Doppler velocity was measured by a 20 MHz probe to quantify the pressure gradient across the TAC region or 

after sham procedure by transthoracic echocardiography. Mice were sacrificed 8 weeks after surgery for 

Langendorff heart rate recordings or ventricular cardiomyocyte isolation and subsequent single-cell 

measurements or biochemical assays. TAC surgeries and pressure gradient measurements were carried out by 

Dipl. Biol. Julia Steinbrecher (Department of Cardiology and Pulmonology, University Medical Centre 

Göttingen). 

3.2.8 Histology, morphometric analysis and echocardiography  

Histology 

For histology and morphometric analysis, hearts were perfused with ice-cold PBS to remove blood and fixed in 

4% Roti Histofix at 4°C overnight. The fixed hearts were paraffin embedded, and 5 μm heart cross sections 

were generated at a Microtome (Leica RM 2165). For the following applications, paraffin cross-sections were 

de-waxed in xylol (20 min twice) and rehydrated with 6 subsequent decreasing ethanol series (100 % - 25 %, 5 

min each step) and with deionized dH2O.  

Hematoxylin-eosin staining 

Hematoxylin-eosin (HE) staining of heart cross-sections was performed in the pathology department of the 

University Medical Center Göttingen using a standard HE staining protocol. In brief, cell nuclei were stained 
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thrice with hematoxylin (2 min each), and after 2 min washing the cytosol was stained twice using eosin (2 min 

each). After rehydration and mounting, heart cross-sections were analyzed using a Stemi 2000-C microscope 

binocular with associated AxioCam ICc1 and Axio Vision Software.  

Wheat Germ Agglutinin staining 

For cardiomyocyte dimension analysis, transverse heart sections were incubated with Wheat Germ Agglutinin 

(WGA, 75 µg/mL) for 30 min in the dark, washed thrice for 5 min with PBS, mounted and analyzed by 

microscopy. Images were analyzed with ImageJ software. The cell diameter was measured in 100 cells from 5 

sections per heart. 

Echocardiography 

Prior to echocardiography, mouse weights were assessed. Echocardiography and analysis were performed in a 

double-blinded fashion by Kirsten Koschel, Sabrina Wollborn, Beate Knocke, Roland Blume and Marcel 

Zoremba (Department of Cardiology and Pulmonology, University Medical Centre Göttingen) as previously 

described
151,152

. Briefly, cardiac parameters, i.e. septum thickness, left ventricular enddiastolic diameter 

(LVEDD), left ventricular endsystolic diameter (LVESD), enddiastolic volume (EDV), endsystolic volume (ESV), 

heart frequency and heart weight were used to calculate functional values such as ejection fraction (EF) and 

fractional shortening (FS).  

EF: blood volume the heart ejects per contraction (Calculations according to Simpson et al., 1993152
).  

EF=  x 100 

FS: pump function and shortening of the left ventricle during contraction. 

FS =  

3.2.9 Confocal microscopy  
Confocal microscopy was performed using Zeiss LSM 710 NLO microscope equipped with a Plan-Apochromat 

x63/1.40 oil-immersion objective.  

Live staining: For live cell imaging, freshly isolated adult cardiomyocytes plated on class coverslides were 

incubated with the lipophilic fluorescent probe di-8-ANEPPS (50 μM, Molecular Probes®) for 10-15 minutes at 

room temperature in FRET buffer and subsequently subjected to confocal microscopy. Prior to microscopy, 

cells were washed once with FRET buffer at room temperature. Images were acquired for CFP/YFP (405 nm 

diode laser excitation), di-8-ANEPPS (488 nm argon ion laser excitation) and analyzed using ZEN 2010 software. 

Immunostaining: For co-localization experiments, cells were fixed for 20 min with ice-cold ethanol at -20°C, 

washed and co-stained with mouse monoclonal anti- -actinin antibody (Sigma) and either goat polyclonal anti-

PDE2A (sc-17228, Santa Cruz) or goat polyclonal anti-PDE3A (sc-11834, Santa Cruz) antibodies, followed by the 

secondary anti-mouse Alexa 633 Fluor® and anti-goat Alexa 488 Fluor® antibodies (A-21063 and A-11055, 

respectively, Life Technologies). Images were taken and automatically analyzed using the ZEN 2010 software to 

calculate the Pearson’s coefficient which shows the degree of co-localization. See below for antibody dilutions: 

Antibody (source)  Dilution      

Anti- -actinin (mouse) 1: 300  

Anti-PDE2A (goat) 1: 100       
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Anti-PDE3A (goat) 1: 100  

3.2.10 Radioligand binding 
Radioligand binding studies were performed by Christian Dees (Institute of Pharmacology and Toxicology, 

University Würzburg), as previously described
153

. Briefly, isolated cardiomyocyte cell membranes were 

incubated in the assay buffer containing 5 mM Tris, pH 7.4 for 1 h at 30°C with 60-100 pM 
125

I-cyanopindolol 

and increasing concentrations of ICI118551. Thereafter, samples were filtered through GF/F glass fiber filters 

(Millipore, Schwalbach, Germany), washed twice, and the filter-bound radioactivity was quantified using a 

scintillation counter.  

3.2.11 Phosphodiesterase activity assay  

Freshly isolated cardiomyocytes were prepared for in vitro measurement of cAMP-PDE hydrolyzing activity 

following the two-step method by Thompson and Appleman
154,155

.  

Isolated cardiomyocytes were left to sediment in Stop buffer I (see 3.2.3 Adult cardiomyocyte isolation), 

washed once with PDE-Assay Wash Buffer and sonicated in 500 µL of ice-cold PDE-Assay Homogenization 

Buffer. Protein concentrations were quantified using BCA Protein Assay. 30 µg of total protein were set to a 

total volume of 200 µl PDE-Assay Homogenation Buffer containing selective PDE inhibitors. Contributions of 

individual PDE families were calculated from the effects of 100 nM BAY (PDE2), 10 µM cilostamide (PDE3), 10 

µM rolipram (PDE4), and 100 µM IBMX (unselective inhibitor).   

Step I: cAMP -> 5’-AMP: 

For cAMP breakdown, each sample was incubated with 200 µL PDE-Assay Ready-To-Use Reaction Buffer 

containing 1 µM cAMP and 2nM [
3
H]cAMP (1:500 ratio) as a substrate, for 10 minutes at 33°C. Reaction was 

terminated by adding 200 µL Stop solution and boiling for 1 minute at 95°C.  

Step II: 5’-AMP -> Pi + adenosine: 

Heat inactivated samples were incubated with 50 µg of 5’-nucleotidase-containing snake venom (Crotalus 

atrox) for 20 minutes at 33°C to hydrolyze 5’-AMP. The samples were loaded onto self-made columns 

containing 50 mg AG1-X8 resin for anion exchange chromatography to bind non-hydrolyzed [
3
H]cAMP, thereby 

separating it from cleaved [
3
H]adenosine. Quantification of cleaved [

3
H]adenosine was performed by 

scintillation counting (MicroBeta
2
) in a 96 well format. Data were collected with the MicroBeta

2
 Windows 

Workstation. 

3.2.12 Immunoblot assay  
For samples preparation, freshly isolated cardiomyocytes were shock frozen and homogenized using a 1ml-

syringe with needle. Proteins were quantified using BCA Protein Assay. Samples were generally boiled at 70°C 

for 10 minutes or at 95°C for 5 minutes, respectively, if not indicated differently.  

10-50 µg of total protein per lane were subjected to 10 or 15 % SDS-PAGE modified from Laemmli (1979)
156

 

followed by immunoblot analysis according to Towbin et al. (1979)
157

.  

Primary antibodies used, were prepared in TBS-Tween with 1, 3 or 5 % of either low fat milk or BSA,  

as depicted below. If not indicated differently, incubation proceeded at 4°C o.n.: 
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Antibody (source)   Blocking reagent / dilution  Comments 

Anti-beta-Arrestin 2 (goat)  5 % milk / 1:1000 - 

Anti-Calsequestrin (rabbit) 3 % BSA / 1: 5000 -   

Anti-GAPDH (mouse) 5 % milk / 1:80000 4°C, 1 hour  

Anti-PDE2A (rabbit) 3 % BSA / 1:750 -   

Anti-PDE4D8 (rabbit) 5 % BSA / 1:2000 Blocked in 5 % milk 

Anti-PDE8 (rabbit) 3 % BSA / 1:1000 -   

Anti-pPLN (Phospho-Ser16) (rabbit) 5 % milk / 1:5000 -   

Anti-pTnI (Phospho-Ser23/24) (rabbit) 5 % BSA / 1:1000 - 
 

Secondary antibodies (Immun-Star™ Goat Anti-Mouse or Anti-Rabbit (GAM)-HRP Conjugate) were diluted 

1:5000 in the same blocking reagent as used for primary antibody incubation. 

Blots were scanned and analyzed densitometrically by ImageJ software for uncalibrated optical density.   

3.2.13 Statistical analysis  
Normal distribution was tested by the Kolmogorov-Smirnov test. Differences between experimental groups 

were analyzed using Origin 8.5G software and one-way ANOVA (for normally distributed values) or Mann-

Whitney (for nonparametric datasets) tests at the significance level of 0.05, followed by Bonferroni’s post-hoc 

test. Data are presented as means ± SE from the indicated number of independent experiments (animals and 

cells) per condition.
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4 Results 

4.1 Local -Adrenergic Signaling at the Sarcolemma of Adult Mouse 

Cardiomyocytes  

4.1.1 N-terminal fusion of Epac1-camps to an acylation substrate sequence promotes 

plasma membrane targeted expression 
In 2002, Zacharias et al. demonstrated that expression of GFP-mutants in MDCK cells could be restricted to 

plasma membrane lipid rafts by fusing it to a 10 amino acid long SH4 domain of Lyn kinase containing a 

myristoylation/palmitoylation motif, MyrPalm (see Methods, subsection 3.2.1, Cloning and transgenic mouse 

generation). Importantly, MyrPalm-YFP variants well co-localized with caveolin-CFP producing FRET
158

. Utilizing 
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this strategy, Wachten et al.
145

 later generated a MyrPalm-fused version of the Epac2-camps, thereby 

engineering the first membrane-targeted version of the cAMP FRET biosensor, pmEpac2 (pm = PalmMyr  

plasma membrane). pmEpac1 was generated accordingly, using the pmEpac2 vector as a template and 

replacing the Epac2- by the Epac1-CNBD sequence. Transient co-expression of pmEpac1 with RFP-tagged cav3 

in HEK293 cells confirmed their good co-localization at the plasma membrane (Figure 8A, B).  

 

4.1.2 Heart-specific expression of pmEpac1 leads to localization at the sarcolemma of adult 

mouse cardiomyocytes (with T-tubular enrichment) 
To drive transgene 

expression in a tissue-

specific manner (in 

the myocardium), 

pmEpac1 was cloned 

into a construct 

containing the -

myosin heavy chain 

( MHC) promoter
37

. 

For transgenic mouse 

generation, the 

linearized construct 

was purified, dialyzed 

and subjected to 

pronuclear injections 

into one-cell mouse 

embryos (Figure 8C). 

Three injection rounds resulted in eight pmEpac1 positive heterozygous founder animals. However, only in the 

offspring from founder #113, over 95% of all isolated adult cardiomyocytes showed pmEpac1 expression, as 

determined by fluorescence microscopy. Therefore, the colony #113 was selected to generate a new pmEpac1 

transgenic mouse line. Live stains of freshly isolated adult ventricular cardiomyocytes from line #113 with the 

unspecific lipophilic membrane dye di-8-ANEPPS and subsequent confocal imaging showed good co-localization 

of pmEpac1 with the sarcolemma, with local enrichment in T-tubular structures (Figure 8E, upper panel). 

Immunostaining of pmEpac1 cardiomyocytes with cav3-specific antibodies further indicated a preferable 

expression in caveolar structures (Figure 8E, lower panel). Importantly, stimulation of isolated cardiomyocytes 

with saturating concentrations of the beta-adrenergic agonist isoproterenol (ISO) together with the unspecific 

PDE inhibitor 3-Isobutyl-1-methylxanthin (IBMX) led to a clear change in FRET with good signal-to-noise ratio 

(Figure 8F). 
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4.1.3 Heart-specific expression of pmEpac1 does not affect normal cardiac function 
To establish whether cardiac-specific pmEpac1-

expression per se would affect normal heart 

function, pmEpac1 mice were compared to their 

wild type littermates in terms of heart and 

cardiomyocyte size, histology and in vivo cardiac 

contractility. For morphometric analysis, hearts 

explanted from mice aged three and six month, 

respectively were weighted and put into relation to 

either whole body weight or tibia length (Figure 

9A). Further, cross-sections of transgenic and wild 

type hearts were subjected to hematoxylin and 

eosin staining to assess overall tissue morphology 

(Figure 9B). Last, diameter of isolated adult 

cardiomyocytes from pmEpac1-transgenic and wild 

type mice were determined after wheat-germ-

agglutinin staining (Figure 9C). None of these 

parameters showed any difference between the 

transgenic mice and their wild type littermates, 

suggesting no alteration in heart morphology by 

transgene expression. To further investigate heart 

morphology and in vivo function, pmEpac1 

transgenic mice and wild type littermates were 

subjected to echocardiography at the age of six 

months. Measured and calculated parameters included septum and diastolic posterior wall thickness (PWTd) as 

well as left-ventricular inner diameters in systole and diastole (LVIDs, LVIDd). In addition, functional parameters 

such as fractional shortening, fractional area shortening and ejection fraction (FS, FAS, EF) were also compared 

(Figure 9D,E).  Changes in any of the above-mentioned parameters would indicate the presence of a 

pathological heart-phenotype. Importantly, none of these parameters were significantly changed in pmEpac1 

versus wild type animals.  
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4.1.4 pmEpac1, compared to Epac1-camps, can particularly well resolve the 2-AR/cAMP 

signals  

To analyze how 

sarcolemmal cAMP 

microdomains might differ 

from cytosolic cAMP pools 

in their real time dynamics, 

FRET data obtained from 

pmEpac1 expressing 

cardiomyocytes were 

compared side-by-side 

with those of the 

previously described 

cytosolic otherwise 

identical version of the 

same biosensor, Epac1-

camps
36,46

. Concentration-

response experiments with 

8-Bromo-2'-O-methyladenosine-3',5'-cyclic monophosphate (8-Br-2’-O-Me-cAMP-AM), a membrane-

permeable and non-PDE-hydrolyzable cAMP analog, revealed that targeted pmEpac1 showed slightly lower 

affinities to cAMP (Figure 10D). However, the membrane targeted sensor could more than two-fold better 

resolve local 2-AR/cAMP signals (Figure 10B, C), which have previously been shown to be stringently 

compartmentalized close to T-tubular membranes
78

. In contrast, ISO and 1-selective responses were not 
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significantly different when measured either in cardiomyocytes from pmEpac1 (sarcolemma) or from Epac1-

camps (cytosol) transgenic mice, indicating that 1-adrenergic stimulation is indeed coupled to a cAMP pool 

with far-reaching signal properties as previously described
31

 (Figure10A, C). For calculations of -AR cAMP 

signal proportions, 1- and 2-specific 

cAMP signals were set into relation to 

the maximal signal, achieved by addition 

of 10µM forskolin and 100µM IBMX.  

To evaluate how receptor-subtype 

specific cAMP signals are controlled by 

PDEs in the cytosol vs. sarcolemmal 

receptor-associated cAMP 

microdomains, individual PDE profiles 

were measured in Epac1-camps1- and 

pmEpac1 expressing cardiomyocytes 

using selective PDE inhibitors applied 

after ISO stimulation with and without 

the 1-AR-selective inhibitor CGP20712A. PDE-dependent regulation of the functionally relevant 1-AR cAMP 

pool essentially showed the same hierarchical pattern of PDE4>>PDE3>PDE2 (Figure 11B), measured either in 

the cytosol (Epac1-camps) or at the sarcolemma (pmEpac1), further suggesting that the 1-AR cAMP signals 

measured with pmEpac1-expressing cardiomyocytes were of the far-reaching nature. 2-AR cAMP regulation, 

however, was much more different when monitored by the two differentially localized FRET probes, i.e. Epac1-

camps and pmEpac1. Whereas a regulatory hierarchy of PDE4=PDE3>PDE2 was established when PDE 

contributions on 2-AR cAMP were measured in Epac1-camps-expressing cardiomyocytes (cytosolic probe), in 
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pmEpac1-cardiomyocytes, PDE3 could be identified as the predominant regulator of the membrane-associated 

2-AR cAMP pool which can be expressed by the PDE regulation pattern PDE3>PDE4>PDE2 (Figure 11D).  

 

4.1.5 FRET imaging reveals altered subtype-specific -AR cAMP responses in diseased 

cardiomyocytes  
In order to study local 

cAMP dynamics in early 

cardiac disease, TAC was 

performed in pmEpac1 

mice to induce cardiac 

hypertrophy. 8 weeks 

post TAC, pmEpac1 mice 

showed substantially 

increased heart size and 

ventricular wall thickness 

with yet only a modest 

decline in cardiac output, 

indicative of a relatively 

mild, functionally still 

compensated phenotype 

of pathological 

hypertrophy, which was, 

however, accompanied 

by a two-fold increase of 

plasma ANP levels (Figure 

12A-E). Importantly, in 

this relatively early 

pathological state, the 

localization of the FRET 

sensor in cardiomyocyte 

striation-associated T-

tubular membranes and 

surface sarcolemma was 

virtually unchanged 

(Figure 13A, B). First, 1- 

and 2-AR specific 

responses were 

compared in cells isolated from TAC vs. sham-operated mice using analogous FRET protocols as shown in Figure 
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10A, B. Unexpectedly, much stronger ISO responses were detected in TAC compared to sham cardiomyocytes, 

which were apparently caused by stronger 1-AR-selective cAMP signals (Figure 14A, B). Of note, ISO and 1-

AR-cAMP responses were indistinguishable, again suggesting that global ISO responses are predominantly 

mediated by 1-AR. Therefore, ISO was used in all subsequent experiments to stimulate this global 1-AR-

associated pool of cAMP. In 

sharp contrast, 2-AR/cAMP 

responses were significantly 

reduced in diseased cells 

(Figure 14 C, D). These 

changes of -AR/cAMP 

signals were not due to 

altered -AR densities (164 ± 

16 vs. 128 ± 17 fmol/mg 

membrane protein in sham 

vs. TAC cells, not significant, 

p=0.1, n=3) or 1-// 2-AR 

ratio, as confirmed by 

radioligand binding studies 

(Figure13 C, performed by 

Christian Dees, University of 

Würzburg, Germany, 

Pharmacology Department). 

Therefore, the hypothesis 

arouse that shifted 1// 2-AR 

signal balance might be 

caused by changes in local, 

-AR-associated PDE 

activities.  

 

4.1.6 cGMP-regulated PDEs redistribute between β1-AR and β2-AR-associated 

microdomains in hypertrophy 

When FRET-based PDE profiles on subtype-specific -AR cAMP signals (for experimental settings, see Figure 11) 

were assayed in TAC vs. sham pmEpac1 cardiomyocytes, 1-AR cAMP surprisingly was found to be mostly 

unaltered, with only decreased contributions of minor PDE2 (Figure 15A-C). The PDE subset regulating 2-AR 

cAMP, however, turned out to be more severely changed. In fact, the pre-dominant PDE3 regulation observed 

under normal conditions was displaced by PDE2 in disease (Figure 15D-G). Importantly, these highly localized 

changes in PDE inhibitor responses, measured by FRET, were neither manifested in changed whole cell PDE 

activities, nor in altered expression levels of functionally relevant PDE isoforms (Figure 16A-C). Previously, Arr 
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has been established not only as a crucial negative regulator of the -adrenergic signaling but, importantly, also 

as a scaffold which recruits in particular 

PDE4D isoforms to the stimulated 2-

AR
69

. However, Arr2 protein levels 

remained stable in mildly hypertrophied 

cardiomyocytes (Figure 16C, right 

panel), similar to PDEs. To prove the 

hypothesis of PDE redistribution, 

physical changes of PDE2 and 3 

localizations were analyzed by co-

immunostainings with -actinin. 

Therefore, isolated adult wild type 

cardiomyocytes were stained with PDE 

family-specific antibodies to analyze the 

degree of their co-localization with -

actinin. Interestingly, in TAC 

cardiomyocytes, the subcellular PDE2 

and 3 distributions were visibly altered, also reflected by a decreased Pearson’s coefficient, which shows the 

degree of co-

localization (Figure 

17A, B).  

 

4.1.7 PDE2 

redistribution 

causes a shifting 

in ANP/cGMP-

stimulatory 

effects from local 

( 2-AR) to global 

( 1-AR) cAMP, 

contractility and 

heart rates 
Since cellular PDE 

protein levels were 

unaffected, the 

dramatic changes, 

especially of the PDE-

dependent regulation 

of the 2-AR/cAMP responses  likely to arouse from subcellular redistribution of PDE2 and PDE3. Of note, these 
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two PDE families are oppositely regulated by cGMP. Whereas allosteric binding of cGMP stimulates PDE2 

activity, it inhibits PDE3 cAMP-hydrolysis by substrate competition (see Introduction, subsection 1.5). Hence, 

since 2-AR cAMP appeared to be at all times under the control of cGMP-regulated PDEs, the effects of cellular 

cGMP on 2-AR cAMP were next studied. 2006 Castro et al.
92

 reported the existence of two distinct cGMP pools 

in adult rat cardiomyocytes, each being stimulated by different ligands, e.g. natriuretic peptides such as ANP 

for the (sub-) sarcolemmal, but nitric oxide for the cytosolic cGMP pool. Therefore, in adult cardiomyocytes 

from untreated mice, it was first tested whether ANP would exert any effect on 2-AR stimulated cAMP signals, 

considering that PDE3 (the cGMP-inhibited PDE) was the primary regulator in this cAMP microdomain, under 

normal conditions. Indeed, 2-AR-triggered FRET signals could be further enhanced by the addition of ANP 

(Figure 18A). Importantly, this ANP effect was abrogated when cells were pre-treated with the PDE3-selective 

inhibitor cilostamide, strongly suggesting that that the ANP/cGMP-mediated inhibitory effect is PDE3 

dependent (Figure 18A, B). However, when similar protocols were applied onto TAC-cardiomyocytes, the ANP 

effect was markedly reduced (even without cilostamide pretreatment) (Figure 18C, D).  
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Considering that in early disease, PDE2 displaces PDE3 as the predominant regulator of 2-AR cAMP, as shown 

by the FRET-based 2-AR 

PDE profile (see Figure 

15F, G), cells were next 

pretreated with the PDE2-

selective inhibitor, BAY 60-

7550, which unmasked the 

ANP-mediated 2-AR cAMP 

increase, suggesting 

increased PDE2 activity in 

this microdomain of 

diseased cells  (Figure 18C, 

D). To clarify, to what 

extent the overall modest 

changes in regulation of 

fairly small 2-AR cAMP 

signals could possibly 

translate into functional 

response, the same 

pharmacological protocols 

as described in Figures 11 

and 15 were applied 

during single-cell 

contractility 
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measurements after 2-AR-selective stimulation (Figure 19A-D). Importantly, contributions of PDE2 and PDE3 

as well as the ANP-effect on 2-AR cAMP in normal und diseased cardiomyocytes, directly translated into 

sarcomere shortening of single wild type cardiomyocytes (Figure 19E). Next, it was studied whether PDE 

redistribution may affect the physiologically more significant general contractile response stimulated by ISO for 

the global -AR-dependent pool of cAMP. Strikingly, ANP showed completely opposite effects after global -

AR stimulation. Whereas ANP applied alone or after submaximal ISO stimulation did not exert any contractile 

response in healthy cells, it triggered a significant positive inotropic response in diseased cardiomyocytes 

(Figure 20A-C). Similar to -AR/cAMP, also NPR-A/cGMP signaling has been shown to be downregulated in 

heart failure
159

. Besides NPR-A, ANP does also bind to the clearance receptor NPR-C. This receptor subtype not 

only eliminates ANP from the cell surface via internalization but, when bound to ANP, can also exert G i-

mediated AC inhibition and G -dependent Ca
2+

 extrusion via membrane-bound transient receptor potential 

channels (TRPCs)
160

. To clarify whether the functional ANP effects on 1- and 2-AR signaling might be mediated 

by NPR-C pathways, cANP4-23 was used to selectively activate NPR-C
161

, but did not lead to such contractility 

effects, seen after ANP application. Conversely, application of the cell-permeable cGMP analogue cGMP-AM 

mimicked the ANP-mediated contractile responses, confirming that these functional responses were mediated 

by cGMP (Figure 20D). FRET experiments performed using the same stimulation protocols in TAC and sham 

pmEpac1 cardiomyocytes validated, that the differential effects of ANP on cardiomyocyte contractility were 

indeed caused by the same ANP effects on global cAMP (Figure 20E, F). Finally, the stimulatory effect of ANP 
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after ISO in diseased myocytes was also detected in heart rate measurements using intact perfused 

Langendorff hearts (Figure 20G), more closely reflecting the in vivo situation. 

 

 

 

 

4.2 Atropine Modulates Phosphodiesterase Activity in the Heart  

4.2.1 Atropine augments cAMP signaling in adult cardiomyocytes independently of 

muscarinic receptors 
Atropine effects on 

cAMP dynamics were 

analyzed via FRET 

measurements in 

cardiomyocytes 

isolated from mice 

transgenically 

expressing Epac1-

camps
36,46

. In these 

cells, stimulation with 

ISO classically leads to a 

substantial increase of 

intracellular cAMP, 

which can be partially 

(to ~50%) reversed by 

ACh, as this was 

previously also described in adult guinea pig cardiomyocytes infected with Epac2-camps adenovirus
162

. As 

expected, application of atropine after ACh fully blocked its effect. (Figure 21A). Unexpectedly, when applied 

after ISO and in the absence of ACh, atropine substantially potentiated the -AR-induced cAMP response, 

which was also the case when cells were prestimulated with the general adenylyl cyclase activator forskolin 

(Figure 21B, D, E). However, when applied alone, atropine, even at very high concentrations, did not affect the 

FRET ratio (Figure 21C, E). Of all five known muscarinic receptor subtypes, cardiomyocytes predominantly, if 

not exclusively express the M2-receptor which is coupled to inhibitory G-proteins
123

. However, treatment with 

PTX completely abolished the effect of ACh but strikingly did not affect the atropine-mediated increase in 

cardiomyocyte cAMP after ISO stimulation, suggesting its receptor-independent nature (Figure 22A-C). To 

further support this hypothesis, isolated cardiomyocytes from the M2-receptor knockout mice were infected 

with Epac1-camps adenovirus. Even in these cells, the cAMP response to atropine could be clearly detected 
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(Fig22D, E). Analyzing the concentration-response dependency of this novel atropine effect in cardiomyocytes 

revealed biphasic kinetics with a saturation at ~10 nM (Figure 22F).  

 

 

 

 

 

 

 

 

 

4.2.2 Atropine potently 

inhibits PDE4  

The stimulatory effect of 

atropine on cAMP levels was 

reminiscent of the PDE 

inhibitor effects. For example, 

the PDE4 inhibitor rolipram 

similarly increased ISO-

stimulated cardiomyocyte 

cAMP, however, with a higher 

efficacy. Previously, it has 

been shown that atropine 

potentiates PDE1 and PDE4 

inhibitor effects in tracheal 

smooth muscle, even though 

the mechanism of this phenomenon was unclear
163

. Hence it was tested whether atropine could directly inhibit 

PDEs. Cardiomyocytes express at least five families of these enzymes, PDE1-5 and 8, which either selectively 

degrade cAMP (PDE4, PDE8), or both, cAMP and cGMP (PDE1, 2 and 3)
79,81,83,164

. PDE inhibitory potential of 

atropine was directly investigated using a classical in vitro activity assay. In heart lysates, atropine could clearly 

inhibit cAMP-hydrolysis in a concentration-dependent fashion, starting at low nanomolar concentrations 

(Figure 22G).  

Using chimera sensors, comprising Epac1-camps fused to an active PDE1, PDE3, PDE4 or PDE5 isoform
146

, 

atropine inhibitory potential on single PDE families was further analyzed. Atropine showed strong FRET 

responses at PDE4, while the activities of PDE1, PDE3 and PDE5 were not significantly affected, even at very 

high atropine concentrations (Figure 23A, B). The intracellular PDE4 inhibition responses by atropine reached 

their steady state within several minutes but the concentrations-response dependency in HEK293A cells was 
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clearly biphasic (Figure 23F, black trace). Importantly, atropine also inhibited recombinant PDE4D3 activities in 

vitro, though with a much lower efficacy than the PDE4 selective inhibitor rolipram (Figure 23C).  

 

4.2.3 Atropine cell entry is facilitated by unselective organic cation transporters 
At physiological conditions, atropine can cross cell membranes, at least to some extent, by free diffusion

165,166
. 

However, this way of transport is limited. In addition, organic cation transporters (OCTs) highly expressed in 

the heart and less abundantly found in HEK293 cells, can facilitate active cellular atropine uptake
167

. In line with 

this notion, the unselective OCT blocker MPP+ completely abolished the effect of atropine on cAMP levels in 

Epac1-camps cardiomyocytes (Figure 23D, E). Conversely, stable expression of OCT3 in HEK293 cells led to 

larger atropine responses causing a leftward shift of atropine concentration dependency (Figure 23F), 

suggesting that atropine 

can be actively imported 

into the cell where it 

inhibits PDE activity.  

 

4.2.4 Atropine 

augments cardiac 

function in adult mice 
Next, atropine effects on 

heart rates in explanted 

perfused mouse hearts 

(Langendorff 

preparation), which lack 

any nervous innervation 

were analyzed. ISO 

increased the basal heart 

rate by ~20%, while 

atropine applied on top of 

ISO significantly augmented its response, which is indicative of the positive chronotropic effect of atropine 

after -adrenergic stimulation. This effect was preserved in M2-receptor knockout mouse hearts, further 

corroborating its receptor-independent nature (Figure 24A). cAMP increase in cardiomyocytes should lead not 

only to an increase in heart rate but also to an increase in beating force. Sarcomere shortening measurements 

in isolated ventricular cardiomyocytes showed that atropine also significantly enhanced the positive inotropic 

effect of ISO (Figure 24B, C).  
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4.2.5 Atropine 

stimulatory effects on 

myocardial function are 

conserved in human 
To link these novel findings 

from small animal models to 

the situation in human 

myocardium, force of 

contraction in heart muscle 

trabeculae isolated from 

human right atria was 

measured. While atropine 

alone or after sole ISO 

prestimulation did not affect 

the force of contraction, 

application of atropine to 

trabeculae pretreated with 

ISO and the PDE3 inhibitor 

cilostamide substantially increased contractility which was further augmented by rolipram (Figure 24D, E). 

Force measurements on human trabeculae were performed by Dr. Thomas Fischer, MD and Jonas Herting 

(University Medical Center Göttingen, Department of Cardiology).  
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5 Discussion 

5.1 Local -Adrenergic Signaling at the Sarcolemma of Adult Mouse 

Cardiomyocytes   

This study describes the successful generation of a transgenic mouse model with heart-specific expression of 

the highly localized FRET-based cAMP sensor, pmEpac1. This sensor enables direct monitoring of cAMP 

dynamics exclusively in sarcolemmal microdomains. pmEpac1 was designed to associate predominantly with 

caveolar membrane structures to attain its high expression at the T-tubules (see Figure 8) with the aim to 

particularly well resolve and analyze the highly compartmentalized 2-AR-cAMP signals.  

5.1.1 pmEpac1 expressed in mice enables detailed analysis of subtype-specific -AR-

associated cAMP compartments, especially at -AR  

Indeed, 2-AR-stimulated cAMP signal amplitudes in adult cardiomyocytes show to be two-fold larger when 

measured with pmEpac1 compared to the maternal cytosolic sensor, Epac1-camps (see Figure 10B, C). 

Considering a slight loss in sensor sensitivity of pmEpac1, when compared with Epac1-camps (see Figure 10D), 

the actual cAMP signals in this microdomain must be considered even greater. Likewise, this further 

marginalizes the possibility of pmEpac1 acting as a sarcolemmal cAMP sink, which could interfere with normal 

cardiac cAMP homeostasis. However, pmEpac1 mice do not develop any heart-specific or other phenotype (see 

Figure 9) per se, which makes this possibility rather unlikely.  

Hence, the improved cAMP resolution of pmE1 enables real time analysis of subtype-specific -AR- cAMP with 

high temporal and spatial resolution. Importantly, 1-AR signals show virtually similar amplitudes and PDE-

dependent regulation when measured either at the sarcolemma (pmEpac1) or in the cytosol (Epac1-camps) of 

adult cardiomyocytes (see Figures 10A,C, 11B). This likely reflects the far-reaching effects that have been 

attributed to 1-AR signaling
37

. Interestingly, the presented data suggest that 2-AR-cAMP signals are pre-

dominantly controlled by PDE3 (see Figure 11D), which has not been appreciated so far, most likely due to 

insufficient precision and spatial resolution of the experimental tools, used
37,168

. For example, one previous 

study with olfactory cyclic nucleotide gated (CNG) channels ectopically expressed in adult rat cardiomyocytes 

as reporters for subsarcolemmal cAMP showed that different membrane receptors evoke distinct 

submembrane cAMP signals due to their regulation by different PDE subsets
169

. However, the exact localization 

of these sensors is not thoroughly established, although it was demonstrated that CNG channels are 

predominantly associated with non-caveolar membrane microdomains
170

, whereas 2-ARs are almost 

exclusively localized in caveolin-rich membrane compartments
171-173

. Hence, when measured with either 

cytosolic FRET probes
37

 (see also Figure 11D) or with CNG-channels
169

 both, PDE3 and PDE4 show equal 

contributions to the control of 2-AR-cAMP signals. Probably, due to insufficient proximity of the respective 

sensor to 2-AR, its relative responses remained very small in both studies, preventing a more thorough 

analysis of such highly localized functionally important signals. In contrast to these previous observations, local 
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2-AR-cAMP signals measured with pmEpac1 reveal predominant control of PDE3, which is well in line with the 

strong augmenting effect of the selective PDE3 inhibitors, such as cilostamide on 2-AR stimulated 

cardiomyocyte contractility (see Figures 11D, 15F, 19A, E). So far, cardiac cAMP regulation, especially of 2-ARs 

was primarily attributed to the actions of different PDE4 isoforms
68-70

. In this regard, the pmEpac1 mouse has 

already proven to be a valuable new tool for investigations of cardiac cAMP signaling, especially regarding the 

highly localized 2-AR-cAMP dynamics.  

5.1.2 The FVB/N mouse strain shows certain resistance to experimentally induced cardiac 

disease  
Transgenic expression of pmEpac1 in mice further allows combining pmEpac1 mice with experimental and 

genetic heart disease models.  

For the present study, to investigate pathological changes in -AR/cAMP signal compartmentation, transverse 

aortic constriction (TAC) was chosen to experimentally induce heart failure. Interestingly, regardless of a 

pronounced pressure gradient of 80 mmHg, eight weeks post TAC surgery pmEpac1 mice developed a very mild 

cardiac disease phenotype. As such, a yet pronounced gain in heart weight and wall thicknesses was 

accompanied by only mild reduction in contractile function, indicative of an early disease state, i.e. 

compensated hypertrophy (see Figure 12A-D). Since pmEpac1 transgenic mice do not show any developmental 

abnormalities per se (see Figure 9), the observed mild cardiac phenotype is most likely reasoned by the genetic 

background of those animals. This assumption is further corroborated by the fact, that wild type littermates of 

the heterozygous pmEpac1 transgenic mice, used for biochemical assays and functional studies (i.e. 

Langendorff ECGs and single cell contractility measurements) develop the same mild cardiac phenotype 

described above.  

Several studies have reported that FVB/N mice indeed exhibit a certain resistance against different 

experimental disease models, such as parasite infection or type 2 diabetes
174,175

. Especially considering that 

FVB/N mice can even withstand the development of acquired systemic diseases such as type 2 diabetes, it can 

be presumed that the development of congestive heart failure is similarly slowed down. Therefore, the FVB/N 

mouse strain proves to be well suited to investigate especially early cardiac disease pathology. 

5.1.3 ANP stimulates heart function at the onset of heart failure  
However, in this early state of compensated hypertrophy, plasma ANP levels are already increased by two-fold. 

Considering ANP as a trigger of cardiomyocyte cGMP
92

, changed cyclic nucleotide contents in diseased 

cardiomyocytes are very likely. Indeed, FRET measurements in pmEpac1 expressing TAC cardiomyocytes reveal 

ANP-stimulatory effects on global -AR-cAMP signals (see Figure 20E, F). Importantly, this unexpected ANP 

effect on -AR signaling in diseased cardiomyocytes readily translates into an augmentation of contractile 

function. Previously, ANP was reported to not affect catecholamine (ISO)-stimulated contractility in healthy 

cardiomyocytes
176

, which is well in line with the unchanged sarcomere shortening in sham cardiomyocytes 

observed in the present study (see Figure 20A, C). In TAC cells, however, ANP shows robust contractile 

responses after -AR stimulation (see Figure 20B, C). Furthermore, ISO-stimulated heart rates can be further 

increased by ANP only in hypertrophied hearts, indicating that this ANP effect, initially uncovered in single 
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isolated cardiomyocytes, is indeed applicable to the in vivo situation (Figure 20G). Hence, the novel localized 

FRET biosensor pmEpac1 transgenically expressed in adult mouse cardiomyocytes can truly report functionally 

relevant cAMP dynamics linked to myocardial function.   

5.1.4 In early cardiac disease, local PDE redistribution precedes global molecular changes 

yet with functional effects on global -AR signaling  

Considering that FRET measurements reveal augmented -AR responses as a result of a shifted balance in 1-

AR: 2-AR signal ratio (i.e. increased 1-AR-cAMP and decreased 2-AR-cAMP), on first sight, these data seem to 

contradict the extensively investigated paradigm of -AR and ANP receptor desensitization occurring in 

advanced chronic cardiac diseases such as heart failure
11,110

. However, it should be pointed out that the early 

pathology events addressed in the present study, are likely to display an adaptational process rather than the 

well described detrimental effects caused by excessively prolonged -AR signaling. In support for this notion, 

sensor: sarcolemma integrity and -AR densities are virtually unchanged in TAC myocytes (see Figure 13). How 

can this adaptive 

response be explained 

mechanistically?  

One key finding is that 

during early heart 

disease, locally 

detected PDE2 and 

PDE3 selective inhibitor 

effects (reflecting local 

PDE2/3 contributions) 

dramatically change, 

whereas whole-cell PDE 

amounts and activities 

remain stable (see 

Figures 15D-G, 16).  

In order to explain this 

intriguing observation, 

it was hypothesized 

that changed local PDE 

inhibitor responses, 

especially at the 2-AR, 

may possibly arise from 

a subcellular 

redistribution of PDE2 and 3 between the 1-AR and 2-AR-associated membrane microdomains. This scenario 

would eventually lead to a switching of cGMP/cAMP cross-talk from a formerly ANP-mediated cAMP increase 

(via PDE3) to an ANP-mediated cAMP decrease (via PDE2) at the 2-AR (see Figures 18, 25A).  
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Physical proof of principle for this redistribution theory was approached by co-immunostaining of either PDE2 

or PDE3 with the z-discs ( -actinin) of adult cardiomyocytes (see Figure 17); both PDEs showing decreased 

localization patterns with respect to -actinin in early disease. However, more clear-cut evidence, i.e. co-

localization of PDE2 and PDE3 with 1- and 2-ARs, currently remains technically difficult to accomplish. To 

bypass the lack of reliable subtype-specific -AR antibodies, alternatively recombinant FLAG®-tagged -ARs 

could be transiently expressed in normal and phenylephrine-treated neonatal cardiomyocytes to subsequently 

co-stain these with PDE2- and PDE3-specific antibodies. However this approach is highly artificial and it can be 

questioned whether functional cAMP microdomains are composed same in neonatal and adult 

cardiomyocytes.  

Hence, in order to further corroborate the here claimed hypothesis of PDE-redistribution, one must rely mostly 

on indirect approaches. For instance, PDE2 and 3 could possibly be co-localized with particularly caveolin-3 

enriched cell fractions. Here, shifted PDE2/3 expression patterns within subcellular fractions could serve as a 

further indication for PDE redistribution. However, the resolution of such an approach is clearly limited by the 

fact that both major -AR subtypes reside in caveolar membrane compartments
177

. 

Nevertheless, regarding the functional relevance, it could be established that 2-AR cAMP signaling well 

responds to ANP/cGMP stimulation in healthy cells (PDE3) as well as in early disease (PDE2) (see Figure 18). In 

untreated cells, ANP augments the 2-stimulated cAMP levels. Importantly, this effect can be abolished by pre-

incubating the cells with the PDE3-selective inhibitor cilostamide, confirming that the ANP-mediated effect on 

2-AR-cAMP is indeed caused by ANP/cGMP-dependent PDE3 inhibition (see Figure 18A, B). However, similar 

stimulation protocols in TAC cardiomyocytes reveal a dramatic reduction in the ANP-mediated 2-AR-cAMP 

effect. In support of the PDE redistribution hypothesis, pre-incubation of diseased myocytes with the PDE2-

selective inhibitor BAY 60-7550 partially unmasks the stimulatory effect of ANP on 2-AR-cAMP levels (see 18C, 

D).  This finding well contradicts possible NPR-A desensitization at this early stage of disease. Conversely, it 

further suggests that PDE3 is not fully displaced from the 2-AR cAMP microdomain but its effect being covered 

by increased local PDE2 activity in disease, especially under conditions of elevated cellular cGMP levels. 

5.1.5 Functional ANP responses in early cardiac disease are mediated by cGMP 

Functionally, this observation correlates with the diminished ANP effect on selectively 2-AR-stimulated 

cardiomyocyte contractility (see Figure 19). Most strikingly, not only does this lead to a change in 

physiologically less relevant 2-AR-specific contractile effects, but importantly also to inversed ANP-effects on 

global contractile force after β-AR stimulation in hypertrophied myocytes (see Figure 20B and C). This effect is 

apparently caused by a shift in 1// 2-AR signal balance towards 1-AR signaling in hypertrophied cells, despite 

unchanged -AR densities. The elevated -AR/ANP contractile response at this stage of disease is likely to be 

caused by the reorganization of microdomain-specific PDE activity patterns that cause the turnaround in 

cGMP/cAMP crosstalk. Unlike pronounced 1-AR-cAMP and ANP/cGMP signal desensitization described for 

advanced heart failure, the present model of early cardiac hypertrophy provides insights into molecular 

changes, which take place during the onset of chronic cardiac disease. Although these changes appear rather 

neutral with regard to whole cell PDE activities, yet it could be shown that even slight changes in local PDE 

contributions can cause drastic changes in compartmentalized signaling patterns. These changes do directly 
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translate into opposite contractile effects of the same ligand such as ANP, which is present at higher levels in 

systemic circulation during hypertrophy (see Figures 12E, 20A-C and 25B). ANP has previously been reported to 

also act through the clearance receptor NPR-C that primarily removes bound ANP from the cell surface, but 

also exerts AC inhibitory properties via G i-uncoupling. Furthermore, G of NPR-Cs has been shown to activate 

transient receptor potential channels (TRPCs), in a phospholipase C-dependent manner
160,161

. So, in order to 

prove that the functional ANP effects are indeed triggered by NPR-A/cGMP, a cell-permeable cGMP analogue, 

cGMP-AM was used in analogous contractility experiments. Importantly, cGMP-AM induces contractile effects, 

highly similar to that evoked by ANP (see Figure 20D). Furthermore, a selective NPR-C agonist, cANP(4-23), was 

used to analyze possible involvement of  the clearance receptor. However, cANP(4-23) did not exert any 

contractile responses as seen upon ANP application, making involvement of NPR-C in this mechanism unlikely. 

  

5.1.6 PDE redistribution causes a turnaround of cGMP/cAMP crosstalk and mediates ANP 

stimulatory effects on contractility 

Based on the current findings PDE2, which was thought to represent a minor fraction of total PDE activity 

under normal conditions, might serve as an important therapeutically interesting reservoir, which regulates 

and orchestrates -AR/cAMP and ANP/cGMP signaling. When redistributed from the 1- to the 2-AR-

associated compartment in early disease, this PDE facilitates the shift in 1-// 2-AR signal balance. Such shifting 

leads to a turnaround of the ANP/ cGMP-mediated control over -AR-stimulated cAMP and contractility. The 

combined stimulatory effects by elevated ANP and catecholamines in cardiac hypertrophy can thereby further 

increase heart function. As mentioned above, concerning the pathophysiology, it is highly possible that this 

effect might represent a compensatory mechanism to meet the enhanced demand on cardiac output under 

pressure overload (Figure 25B). Strikingly, during early compensated cardiac hypertrophy, the 2-AR, which 

generally plays a minor role in the catecholaminergic contractile response, seems to act as an important 

signaling module which can be regulated by either PDE2 or PDE3 to exert opposite effects on global -AR-

mediated cell function. Therefore, the previously postulated additive effects of both -AR subtypes on 

myocardial force at healthy state (contractile response ~ 1-AR- cAMP + 2-AR-cAMP) might, in early heart 

disease transform into a relation of reciprocal interdependence (contractile response ~ 1-AR-cAMP / 2- AR-

cAMP). Given that PDE3 generally dominates cAMP hydrolysis in human myocardium and that cardiac PDE2 

amounts increase in late staged heart failure patients
120

, such cGMP/cAMP crosstalk can be expected to have 

even more profound meaning for the human heart. 

 

In summary, the presented data are indicative for a new cell adaptation mechanism, which involves subcellular 

redistribution of cGMP-sensitive PDEs. Such alterations well precede the abundantly documented more severe 

cellular changes which occur later during the decompensated cardiac phenotype and overt heart failure 

associated with changes of whole-cell PDE activities and the desensitization of the 1-AR-cAMP and ANP/cGMP 

signaling cascades. In future, these findings might become clinically relevant in terms of novel therapeutic 

strategies acting on defined subcellular microdomains to prevent PDE redistribution and its detrimental effects. 

Since the PDE2/3-dependent cGMP/cAMP cross-talk is functionally important not only in cardiomyocytes but 
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also in many other cell types such as neurons 
178

, endothelial cells 
179

, platelets 
180

 and adrenal cells 
181

, this 

principle of cell function regulation can be expected to play an ubiquitous role in a wide variety of cells and 

disease conditions.  

 

 

5.2 Atropine Modulates Phosphodiesterase Activity in the Heart  

Atropine is widely used clinically as a non-selective antagonist of the muscarinic receptors to treat 

organophosphate intoxication as well as multiple other diseases such as acute bradycardia, heart block and 

chronic obstructive pulmonary disease. It binds all five muscarinic receptor subtypes with high affinity and 

prevents the ACh-mediated effects in target cells. In the heart, atropine abolishes the inhibitory effect of ACh 

on heart rate and contractility, often leading to tachycardia. These effects have been attributed exclusively to 

the antagonism at cardiac muscarinic M2-receptors and inhibition of parasympathetic events.  

 

5.2.1 Atropine modulates cardiomyocyte cAMP independently of muscarinic receptors 
Atropine proves well to neutralize ACh-mediated reduction of ISO-induced cAMP (see Figure 21A). However, it 

increases cellular cAMP even without prior activation of muscarinic receptors, an effect that was observed only 

upon pre-stimulation with either ISO or forskolin (see Figure 21B, C, D, E). Previous studies have shown that M2 

receptors exert constitutive activity and, moreover, that Gi- subunits potentially stimulate AC subtypes
182-184

. 

Importantly, atropine-driven augmentation of cAMP is preserved even upon pertussis toxin (PTX) treatment 

(see Figure 22A-C), which prevents Gi  uncoupling by ADP-ribosylation, further indicating that this novel 

atropine effect is independent of M2 receptor actions. Final proof is provided by analyzing cAMP dynamics in 

M2-KO cells and hearts,
185

 which behave virtually identical to those in either wild type or Epac1-camps 

transgenic mice. Therefore, it is very unlikely that the novel atropine effect on cardiomyocyte cAMP is linked to 

its properties as an inverse antagonist at muscarinic receptors
182,186

 

 

5.2.2 cAMP effects are mediated via atropine-dependent PDE inhibition 
However, exploring other directions, cardiomyocyte cAMP levels do increase with increasing atropine 

concentrations. The concentration-response dependency of this atropine effect in cardiomyocytes follows 

biphasic kinetics with a saturation at ~10 nM (see Figure 22F), which is in the therapeutically relevant 

concentration range of this drug. The stimulatory effect of atropine on cAMP levels observed here is consistent 

with the data from frog and rat ventricular myocytes where atropine stimulated L-type calcium channel 

currents when applied after ISO, presumably via a G-protein-dependent mechanism
186

.  

This and the observation that atropine only enhances pre-stimulated cAMP is reminiscent of the feedback 

actions of PDE4. In particular, of the long PDE4 isoforms the activities of which are stimulated upon PKA-

dependent phosphorylation
187

. Using a classical biochemical assay, analysis of potential atropine effects on PDE 

activities in wild type cardiomyocyte lysates reveals a significant inhibition in a concentration-dependent 

manner.  
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Herget et al. previously established FRET biosensors, which can measure cAMP or cGMP in the vicinity of 

various PDEs, thereby directly reporting PDE inhibitor potential of various compounds in intact cells
146

. These 

sensors are comprised of a catalytically active PDE fused to Epac1-camps or to the cGMP sensor cGES-DE2
188

 

and respond to PDE inhibitors by a change of FRET. In addition to these previously described sensors for PDE3, 

4 and 5, a new sensor construct was developed to measure PDE1 inhibition. Such chimeric sensors with Epac1-

camps fused to PDE1A, PDE3A or PDE4A1 transiently expressed in HEK293A cells revealed pronounced atropine 

inhibitor effects exclusively on PDE4, with the concentration-response dependency being clearly biphasic (see 

Figure 23 A, B, F). Possible modulation of PDE5-dependent cellular cGMP pathways can be neglected since the 

cGMP-specific chimera cGES-DE2-PDE5A did not respond to atropine application.  

 

Since this FRET approach pointed towards PDE4 as the intracellular target of atropine, its inhibitory potential 

was quantitated in vitro with recombinant PDE4D3, the pre-dominant PDE4 isoform expressed in mammalian 

myocardium. Importantly, the biphasic character of concentration-response dependence is also preserved 

here, although with a much lower overall efficacy than the selective well-established inhibitor rolipram (see 

Figure 23 C). This might indicate an unusual mechanism of action on PDE4, different from the classical 

inhibitors but sufficient to decrease the hydrolysis of cAMP and increase its intracellular levels in a functionally 

relevant range. In 1996, Jacobitz et al. established that PDE4s are present in two different conformations, with 

one showing higher susceptibility to rolipram-based inhibition than the other (high/low affinity rolipram 

binding states)
189

. Such findings leave room for speculations, such as that atropine could specifically bind to 

only one of those two PDE4 conformations, e.g. preferentially to the low affinity rolipram binding state. 

However, more efforts are required to fully understand the mechanisms behind atropine-dependent PDE4 

inhibition. 

Previously, PDE8A, a second cAMP-specific PDE in myocardial tissue which is insensitive to the unselective PDE 

inhibitor IBMX, has been reported to contribute to EC coupling regulation
105

. However, to date, a lack of 

appropriate PDE8 inhibitors has prevented further investigations of PDE8-mediated regulation of dynamic 

cAMP changes in cardiomyocyte. Hence, atropine inhibitory effects on PDE8 cannot be fully ruled out at that 

point. Conversely, PDE2, which likewise has not directly been addressed in this study, is rather unlikely to be 

side-targeted by atropine. Firstly, PDE2 is the minor contributor to cardiomyocyte cAMP-PDE activity due to 

relatively low expression levels. Secondly, atropine-mediated PDE inhibition, assessed in cardiomyocyte lysates 

(see Figure 22 E) clearly exceeded PDE2 activity, which was determined with the PDE2-specific inhibitor BAY 60-

7550. 

 

5.2.3 Organic cation transporters facilitate cellular atropine uptake 
Another critical issue to address was how atropine actually enters the cell. Under physiological pH, the 

membrane is permeable to atropine to a certain extent
165,166

. In addition, organic cation transporters can 

facilitate active atropine uptake into cells. Incubating adult Epac1-camps cardiomyocytes with the unselective 

OCT blocker MPP+ abolished atropine-mediated FRET responses (see Figure 23D, E). Thus, it can be assumed 

that atropine is actively transported into the cells by OCTs. Especially OCT3 is expressed in the heart
190

 but is 
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barely detectable in HEK cells, which could explain why the FRET kinetics assessed by Epac1-camps 

(cardiomyocytes) and by Epac1-camps-PDE4A1 (HEK293 cells) are remarkably different.  The left-shifted 

concentration dependencies of atropine FRET responses obtained from HEK293 cells stably overexpressing 

OCT3 is indicative of an accelerated cellular atropine uptake upon enhanced OCT expression (see Figure 23F).  

 

5.2.4 Atropine-mediated PDE4 inhibition may trigger arrhythmias 
Which functional implications does atropine-mediated PDE4 inhibition have on the heart? It is well accepted 

that atropine induces tachycardia as a frequent and prominent side effect in vivo, which has been mainly 

attributed to a decreased parasympathetic stimulation. Atropine clearly potentiates ISO-simulated heart rates 

in perfused Langendorff hearts. An experimental advantage of this approach in contrast to in vivo ECG 

measurements is the exclusion of any nervous tone. Therefore, concerns such as that atropine-driven positive 

chronotropy as a result from the blockade of a basal vagal tone can be excluded. Likewise, basal activity of M2 

receptor on which atropine might act as an inverse agonist is not relevant, since atropine-mediated 

augmentation of heart rates is preserved even in M2-KO mice (see Figure 24A). If atropine truly increased cAMP 

via PDE4 inhibition, this should be also manifested in an enhanced contractile force. Importantly, 

measurements of sarcomere shortening in isolated adult ventricular cardiomyocytes show that atropine also 

significantly augments the positive inotropic effect of ISO (see Figure 24 B, C).  

Unlike in rodent hearts, PDE4 is not the predominant contributor to cAMP hydrolysis in human myocardium. In 

human atria for instance, PDE4 accounts for only ~15% of the cAMP-specific PDE activity, whereas PDE3 

represents the major PDE family
191

. Nevertheless, PDE4 plays an important protective role against atrial 

arrhythmias, and its effects on cAMP levels can be unmasked by PDE3 inhibition
44

. When measuring contractile 

forces of trabeculae isolated from human right atria, atropine alone or after sole ISO prestimulation does not 

affect the force of contraction, but trabeculae pretreated with ISO and cilostamide (PDE3-selective inhibitor) 

substantially increase contractility upon atropine addition, which can be further augmented by rolipram (PDE4-

selective inhibitor) (see Figure 24 D, E). This confirms that the stimulatory effect of atropine is also relevant for 

the human heart and results from PDE4 inhibition. Interestingly, during these experiments, it was noticed that 

the trabeculae often became arrhythmic after atropine administration. 

In summary, it is now evident that atropine, a clinically relevant drug, does not modulate myocardial cAMP 

solely by preventing Vagus-mediated effects on the heart via muscarinic receptor inhibition. It can furthermore 

exert PDE4 inhibitor properties. This new mechanism accounts for sustained cAMP signals, especially in 

situations of missing negative regulation via the parasympathetic nerve drive. Therefore, it can be assumed 

that this novel effect might play a crucial role in mediating various side effects of atropine, especially 

arrhythmogenesis. PDE4 inhibition by atropine promotes an increase in intracellular cAMP, heart contractility 

and contributes to tachycardia. This might be especially important under adrenergic stress which occurs either 

due to increased endogenous catecholamine levels in heart failure
192

 or during diagnostic procedures such as 

the dobutamine atropine stress echocardiography
129

. One must expect that the effect of atropine inhibiting 

PDE4 in various other tissues can also account for the pharmacological actions of this drug.  
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Addressing the hypotension-bradycardia paradox occurring during vasovagal syncope, characterized by a 

sudden drop in blood pressure and concurrent reflexive fall in heart rate, atropine has been reported to 

counteract bradycardia but not hypotension. Atropine can be assumed to exert similar effects on both cardiac 

and vascular PDE4s, though with very diverse functional outcomes. While atropine increases function of the 

stressed heart by PDE4 inhibition and subsequent cAMP elevation, that same mechanism in vascular smooth 

muscle can rather stabilize the peripheral vascular resistance or even favor vasodilatation
193,194
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6 Conclusions 

6.1 PDE2 is important for myocardial adaptation to long-term stress 

Phosphodiesterases are indispensable enzymes in any cell type that reacts to external stimuli via cyclic 

nucleotide signaling pathways. Especially myocardial tissue possesses a plethora of different cAMP-hydrolyzing 

PDEs, suggesting that these enzymes do not solely contribute to cAMP signal termination, but do also modulate 

cyclic nucleotide signals at the subcellular level. But what are the exact roles of these PDE families? The current 

work exemplifies how cGMP-regulated PDEs such as PDE2 and 3 can act as potential cyclic nucleotide crosstalk 

hubs. Moreover, by replacing a cGMP-inhibited (PDE3) by the cGMP-stimulated PDE (PDE2) inside the 2-AR 

microdomain, the cell can readily shift cAMP microdomains inside single cardiomyocytes in order to adapt to 

changed environmental conditions (e.g. increased demand on cardiac function in hypertrophy). These 

observations indicate that cGMP-sensitive PDEs, especially PDE2, which is normally only a minor contributor to 

myocardial cAMP handling, can serve as an adaptation module used by cardiomyocyte to meet increased 

demand on functional output. Following this assumption, the cell might respond to long-term stress 

conditioning by differential expression of PDE2 and 3, thereby causing generally altered cyclic nucleotide 

signaling (cross-talk) patterns, thus changing cellular perception and physiology. Indications for this 

phenomenon have also been provided by the recent findings of Mehel et al.
120

, which show that PDE2 is 

upregulated in the failing, heart of rodents and dogs but also in congestive heart failure patients. In contrast, 

the here presented findings about subcellular PDE2 redistribution despite unchanged cellular PDE2 amounts, 

occur during an early phase of disease progression. As such, this rather dynamic adaptive molecular response 

might be readily reversible when early diagnosed. Therefore, preventing PDE2/3 redistribution leading to ANP-

stimulatory cardiac responses, could be interesting with regard to clinical intervention, perhaps even to disease 

prevention strategies.  

6.2 PDE4 firstly processes normal short-termed cAMP increases in adult 

myocardium 

In contrast to the findings about cGMP-regulated PDEs 2 and 3, PDE4 has previously been shown to regulate 

normal cAMP handling in order to prevent arrhythmogenesis, especially in mice
43,102

, but importantly even in 

human
44

. Especially the long PDE4 isoforms possess PKA-dependent phosphorylation motifs for feed-forward 

regulation
187

. Furthermore, at least for the murine model, different PDE4 families, partly even single PDE4 

isoforms have been identified in several functionally crucial cAMP microdomains, especially at EC coupling 

hubs
43,70,101,102,195

. Such stress-induced negative cAMP regulation represents a perhaps simpler mechanism of 

enzyme activity modulation, compared to the flexible ANP/cGMP-mediated regulation of PDE2 and PDE3. 

Therefore, PDE4s, which at least in rodent cardiac tissue contribute the largest fraction of cAMP-PDE activity, 

are well suited to process and sequester prestimulated cAMP levels during normal beat-to-beat events. As such 

they are likely being especially important in regulating increased cAMP during short-termed stress, i.e. the fight 

or flight response. The here presented findings about atropine-mediated PDE4 inhibition well fit into this 
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context and suggest that this previously unappreciated action of atropine is likely to promote tachyarrhythmias 

as the most prominent side effect of this drug. Reasoned by this and other frequent side effects, such as 

nausea or emesis, atropine has been withdrawn from most systemic clinical applications. However, it is still 

used during organophosphate poisoning or intensive cardiac care. In light of the new findings, even in 

emergency scenarios, it should be reconsidered to replace atropine by muscarinic receptor antagonists without 

PDE inhibitor potential in order to avoid unwanted side effects. 
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