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Summary 

 

Post-translational modifications modulate several characteristics of proteins. They 

can regulate substrate activity, localization, stability, but also feature and structure, 

remarkably in disease-associated proteins. The major hallmark of Parkinson’s 

disease is the accumulation of proteinaceous inclusions termed Lewy bodies (LBs), 

which are mainly composed of α-synuclein. They lead to neuronal cell death upon 

different mechanisms, which are often yet unknown. α-synuclein, a presynaptic 

neuronal protein, plays an important role in Parkinson’s disease pathogenesis. It 

undergoes various post-translational modifications during pathological conditions. 

The cytotoxicity and aggregation of α-synuclein can be mimicked in yeast. In this 

study, the two major post-translational modifications of α-synuclein, sumoylation and 

serine-129 (S129) phosphorylation, are addressed. Heterologously expressed wild 

type α-synuclein and A30P mutant are sumoylated in yeast at the same major α-

synuclein sumoylation residues, lysine 96 (K96) and lysine 102 (K102) as in human. 

Lowering the cellular pool of the ubiquitin like modifier SUMO resulted in severe 

growth reduction in cells expressing α-synuclein, which correlated with increased 

numbers of cells with inclusion formation. This suggests that sumoylation protects 

against α-synuclein-mediated toxicity and inclusion formation in yeast. Expression of 

sumoylation-deficient α-synuclein caused the same growth rate, validating the 

protective role of α-synuclein sumoylation in cis. Overexpression of the human 

kinases GRK5 and PLK2 elevated α-synuclein phosphorylation level at S129. 

Interestingly, α-synuclein-mediated cytotoxicity associated with sumoylation 

impairment was compensated by a kinase-dependent higher phosphorylation rate at 

S129 of α-synuclein. Phosphorylation reduced inclusion formation and improved 

yeast growth. In order to get more insight into the cross-talk between α-synuclein 

sumoylation and S129 phosphorylation, α-synuclein aggregate clearance was 

monitored. Promoter shut-off studies were conducted in parallel with chemical 

inhibition of the cellular degradation pathways. In the absence of SUMO, α-synuclein 

aggregates were mainly cleared via the ubiquitin proteasome system. This suggests 

that sumoylation supports autophagy in α-synuclein aggregate clearance. In the 

presence of the human kinases GRK5 or PLK2, sumoylation-deficient α-synuclein 

aggregates were subjected to the ubiquitin proteasome as well as the autophagy 

pathway in a kinase-dependent manner, which was accompanied with altering α-

synuclein-ubiquitination profile. GRK5 was able to partially rescue autophagy and 
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further promotes the proteasome system to clear sumoylation-deficient α-synuclein 

aggregates. Both degradation pathways contributed equally to α-synuclein aggregate 

clearance in the absence of SUMO when PLK2 is overexpressed. This cross-talk 

between α-synuclein phosphorylation and sumoylation opens novel avenues for 

therapeutic intervention in Parkinson’s disease and other synucleinopathies.  
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Zusammenfassung 

 
Posttranslationale Modifikationen modulieren verschiedene Charakteristika von 

Proteinen. Sie können die Aktivität, Lokalisierung und Stabilität ihrer Substrate 

regulieren, verändern aber auch Eigenschaften und Strukturvon Proteinen, die mit 

Krankheiten assoziiert sind. Ein wichtiges Kennzeichen der Parkinson-Krankheit ist 

die Akkumulation von Proteinaggregaten (Lewy Körperchen). Dies führt zu 

neuronalem Zelltod durch verschiedene, bisher oft unbekannte Mechanismen. α-

Synuclein, ein präsynaptisches, neuronales Protein, ist der Hauptbestandteil der 

Lewy-Körperchen und spielt eine wichtige Rolle in der Pathogenese der Parkinson-

Krankheit. Es unterliegt verschiedenen posttranslationalen Modifikationen unter 

pathologischen Bedingungen. Die Zytotoxizität und Aggregation von α-Synuclein 

kann in Hefe imitiert werden. In dieser Studie werden zwei wichtigen 

posttranslationalen Modifikationen von α-Synuclein, Sumoylierung und 

Phosphorylierung von Serin 129 (S129), untersucht. Heterolog exprimertes Wildtyp-

α-Synuclein und die A30P Mutante sind in Hefe an den gleichen Resten, Lysin 96 

(K96) und Lysin 102 (K102), sumoyliert wie im Menschen. Eine Absenkung des 

zellulären Pools des Ubiquitin-ähnlichen Proteins SUMO führte zu einer starken 

Wachstumsreduktion von Zellen, welche α-Synuclein exprimieren. Dies korrelierte 

mit einer erhöhten Zahl an Zellen, die Einschlüsse bildeten. Dies legt nahe, dass 

Sumoylierung die Hefen vor α-Synuclein vermittelter Toxizität und Einschlussbildung 

schützt. Die Expression von sumoylierungsdefizienten α-Synuclein verursachte die 

gleiche Wachstumsrate, was die protektive Rolle der α-Synuclein Sumoylierung in cis 

bestätigt. Eine Überexpression der humanen Kinasen GRK5 und PLK2 erhöhten den 

Anteil an S129 phosphoryierten α-Synuclein. Interessanterweise wurde die α-

Synuclein–vermittelte Zytotoxizität in Zusammenhang mit einer beeinträchtigten 

Sumoylierung durch eine höhere Kinase-abhängige S129 α-Synuclein 

Phosphorylierungsrate kompensiert. Phosphorylierung reduzierte die 

Einschlussbildung und verminderte die Wachstumshemmung. Um mehr Einblicke in 

eine plausible wechselseitige Beeinflussung zwischen α-Synuclein Sumoylierung und 

S129 Phosphorylierung zu erhalten, wurde die Beseitigung der α-Synuclein 

Aggregate beobachtet. Promotor „shut-off“ Studien wurden parallel mit chemischer 

Inhibition der zellulären Abbauwege durchgeführt. In der Abwesenheit von SUMO 

wurden α-Synuclein-Aggregate hauptsächlich durch das Ubiquitin-Proteasom-

System abgebaut. Dies legt nahe, dass Sumoylierung den Abbau der α-Synuclein-

Aggregate durch Autophagie unterstützt. In Anwesenheit der humanen Kinasen 



  

4  

GRK5 oder PLK2, wurden die sumoylierungsdefizienten α-Synuclein-Aggregate 

Kinasen abhängig sowohl dem Ubiquitin-Proteasom als auch dem Autophagie-

System zugeführt. Dies ging einher mit einem veränderten Ubiquitinierungs-Profil von 

α-Synuclein. GRK5 war in der Lage den Abbau von sumoylierungsdefizienten α-

Synuclein-Aggregaten durch Autophagie partiell zu retten und außerdem das 

Proteasom-System zu unterstützen. In Abwesenheit von SUMO, wenn PLK2 

überexprimiert wird, trugen beide Abbauwege gleich stark zur Beseitigung der α-

Synuclein-Aggregate bei. Diese wechselseitige Beeinflussung zwischen α-Synuclein 

Phosphorylierung und Sumoylierung könnte neue Wege für eine therapeutische 

Intervention in der Parkinsonkrankheit und anderen Synucleinopathien eröffnen. 
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1 Introduction 

1.1 Parkinson’s Disease 

 
Parkinson’s disease is the second most frequent neurodegenerative disorder, which 

belongs to the wide superfamily of pathologies known as protein misfolding diseases 

(de Lau & Breteler, 2006). The clinical syndrome of Parkinson’s disease is 

associated with dopaminergic neuronal loss from part of the mid-brain called 

substantia nigra pars compacta. The specific cause of dopamine generating cell 

death in disease progression is still unknown. In the early stage of the disease, the 

most noticeable symptoms are movement related and include shaking, rigidity, 

walking difficulties and bradykinesia (slowness of movement), which were first 

described by James Parkinson in 1817 (Galvin et al, 2001a; Meissner et al, 2011). In 

advanced stages thinking and behavioral problems may arise. Moreover, patients 

with this condition show some level of cognitive dysfunction including dementia. 

Parkinson’s disease is now known as being a more complex clinicopathological 

object with both a movement and cognitive dysfunction.  

Although incompletely understood, the etiology of Parkinson’s disease is thought to 

involve both genetic and environmental factors. Genetic causes of Parkinson’s 

disease comprise of two categories, sporadic/idiopathic (≈ 95% of the cases) and 

familial (≈5% of the cases). Studies of familial cases of Parkinson’s disease 

introduced 17 autosomal dominant and autosomal recessive gene mutations 

responsible for the disease (Houlden & Singleton, 2012) (Table 1). These include α-

synuclein mutation and triplication, parkin, ubiquitin carboxyl terminal hydrolase L1 

(UCH-L1), DJ-1, phosphatase and tensin homolog-inducible kinases 1 (PINK1), 

leucine-rich repeat kinase 2 (LRRK2), and glucocerebrosidase (GBA) (Dexter & 

Jenner, 2013). Beside genetic there are some environmental factors that contribute 

to the risk of developing the disease. Toxicity of some chemicals like commercial 

weed killer (Rotenone) and pesticides (paraquat) are found to destroy dopaminergic 

cells and links to an increased risk of the disease development (McCormack et al, 

2008; McCormack et al, 2002; Tanner et al, 2011). Other environmental causes 

include solvent exposure (n-hexane, methanol), carbon monoxide poisoning, 

hydrogen sulfide intoxication and perhaps manganese. One environmental factor 

worth noticing is head trauma, which significantly increases the risk of Parkinson’s 

disease in population studies. Study with ex-national football players of the United 
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States suggests that head trauma increases the risk of developing Parkinson’s 

disease (Lehman et al, 2012).  

Moreover, recently epigenetic mechanisms, such as DNA methylation, chromatin 

remodeling and miRNA, which may trigger gene expression, have started to be 

elucidated in Parkinson’s disease (de Mena et al, 2010; Frieling et al, 2007; Song et 

al, 2010). Since epigenetic mechanism modulation over the lifetime depends on 

different parameters, lifestyle condition and environmental factors, it might help to 

clear the link between risk factors and genetic factors involved in Parkinson’s 

disease. 

Although some symptomatic therapies exist for Parkinson’s disease, the complexity 

of the disease makes the discovery of more efficient therapeutics difficult. Hence, 

great effort needs to be made to get more insight into the molecular pathways 

involved in this disorder and to understand how different mechanisms might affect 

the development of the disease. These will further help to open new horizons for 

generating new therapeutic treatments. 

 

 

 

 

 

 

 

 

 

 

FTDP-17, frontotemporal dementia with parkinsonism linked to chromosome 17; PPS, palidopyramidal 

syndrome (Dexter & Jenner, 2013). 

 

 

Table 1. Common gene mutations causing familial Parkinson's disease. 
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1.2 The pathogenesis of Parkinson’s disease 

1.2.1 Synucleins 

 
The synuclein family plays a major role in pathogenesis of Parkinson’s disease. It 

consists of small natively unfolded proteins named α-, ß- and γ-synuclein. These 

proteins are characterized by a highly conserved N-terminal region with 6 imperfect 

repeats and a less-well conserved acidic terminus (von Bohlen Und Halbach, 2004). 

All three synucleins are expressed in the human and rodents brain (Galvin et al, 

2001b; Giasson et al, 2001; Li et al, 2002). Whereas α- and ß-synuclein are 

enormously expressed in central nervous system, γ-synuclein is prominently 

expressed in peripheral nervous system (Mori et al, 2002; Surgucheva et al, 2006). 

Different studies described the link of α-synuclein to Parkinson’s disease pathology, 

while there is limited investigation on ß- and γ-synucleins-mediated pathogenicity in 

Parkinson’s disease (Irwin et al, 2013; Taschenberger et al, 2013). 

1.2.2 α-synuclein  

 
Parkinson’s disease belongs to a family of neurodegenerative disorders known as 

synucleinopathies includes also dementia with Lewy bodies (DLB) and multiple 

system atrophy that are characterized by common pathogenic mechanism involved 

with the aggregation and deposition of misfolded α-synuclein (Spillantini et al, 1998). 

The molecular hallmark of synucleinopathies is the presence of intracellular 

inclusions termed Lewy bodies (LBs), which mainly consist of the synaptic protein α-

synuclein (Spillantini et al, 1997) (Figure 2). Although synuclein family members 

share high sequence similarities, α-synuclein is unique in its possession of an 

amyloidogenic amino acid domain in its NAC region. α-synuclein protein is 

abundantly expressed in the brain as well as other tissues (Ltic et al, 2004) and 

localizes in nucleus and presynaptic terminals (Maroteaux et al, 1988). Although the 

full function of α-synuclein is still unclear, this protein is certainly involved in vesicular 

trafficking and release depending on its association with SNARE complex proteins 

(Burre et al, 2010; Nemani et al, 2010). This protein was implicated in pathogenesis 

of Parkinson’s disease when pathogenic mutations in SNCA gene that encode for α-

synuclein were linked to hereditary forms of this disease (Polymeropoulos et al, 

1997). α-synuclein consists of 140 amino acids containing three domains: (i) the 

amino-terminal lipid binding domain with six α-helical repeats of 11 residues with 

variation of the conserved central sequence KTKEGV. This region is shown to be 
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important in anchoring and localizing α-synuclein (Bartels et al, 2010). (ii) a central 

hydrophobic non-Aβ component (NAC), which is critical for aggregation. The isolated 

NAC domain forms amyloid structure and small deletions within this domain can 

dramatically reduce the propensity of α-synuclein to aggregate (Rivers et al, 2008). 

(iii) a C-terminal unstructured domain, which is prolin rich and highly acidic, which 

seems to suppress α-synuclein aggregation (Li et al, 2005) (Figure 1). These three 

domains are essential for the misfolding of the protein (Jo et al, 2000). However, 

there is a contradictory study, which showed that α-synuclein might exist as a folded 

protein in a stable tetrameric formation under native condition in cell lines and mouse 

brain tissue as well as in vitro assay (Bartels et al, 2011; Wang et al, 2011). 

However, α-synuclein is widely considered as a natively unfolded monomer protein 

(Conway et al, 1998; Fauvet et al, 2012; Weinreb et al, 1996). 

 

 

 

 

 

 

 

 

 
α-synuclein is not the only component of Lewy bodies in sporadic Parkinson’s 

disease, but missense mutations A53T, A30P and E46K in the SNCA gene are also 

associated with autosomal dominant Parkinson’s disease (Kruger et al, 1998; 

Polymeropoulos et al, 1997; Zarranz et al, 2004). Recently, a new mutation has been 

identified by sequencing of SNCA coding exons in patients with Parkinson’s disease, 

which encodes the histidine to glutamine substitution (H50Q) (Appel-Cresswell et al, 

2013). Beside that, G51D familial missense mutation of α-synuclein is also shown to 

be implicated in Parkinson’s disease (Lesage et al, 2013). 

 

 

Figure 1. α-synuclein structure.  
 
α-synuclein N-terminus adopts an α-helical structure upon binding to lipid membrane. 
The hydrophobic non-Aβ component (NAC) domain has the high tendency to make 
ß-sheet aggregates. The C-terminus is negatively charged and promotes protein 
solubility. Five point mutations, A30P, A53T, E46K, G51D and H50Q are Parkinson’s 
disease-related mutations associated with an early onset of the disease (Appel-
Cresswell et al, 2013; Lesage et al, 2013).  
 

α-synuclein 

140 aa 95 60 

A30P A53T 

G51D 

H50Q 

E46K 

C-terminal NAC N-terminal 

α-helix β-sheet unstructured 
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1.2.3 β-synuclein 

 
SNCB gene is encoding human ß-synuclein protein, which is composed of 134 amino 

acids (Jakes et al, 1994; Spillantini et al, 1995) (Figure 3). ß-synuclein lacks 11 

central hydrophobic residues compared to α-synuclein, which facilitates ß-synuclein 

to make random coil (Uversky et al, 2002) (Figure 3). Likewise α-synuclein, ß-

synuclein is predominantly expressed in the human brain and concentrated in 

presynaptic nerve terminals (Jakes et al, 1994). 

ß-synuclein is the closest member of the synucleins related to α-synuclein, which 

shows high overlapping pattern of expression in central nervous system by localizing 

to presynaptic nerve terminal (Clayton & George, 1998). The role of β-synuclein in 

Parkinson’s disease pathology is poorly studied. Based on in vitro and in vivo 

evidences β-synuclein protects against α-synuclein toxicity by inhibiting its 

aggregation and fibril formation (Hashimoto et al, 2001; Park & Lansbury, 2003; 

Uversky et al, 2002). In addition, β-synuclein reduces α-synuclein protein level 

without affecting its RNA level in transgenic mouse (Fan et al, 2006). Recently, it has 

been shown that β-synuclein expression leads to formation of aggregates, which are 

proteinase resistant. This study shows the β-synuclein-mediated neurotoxicity, which 

leads to loss of dopaminergic neurons, suggesting β-synuclein’s direct link to 

Parkinson’s disease similar to α-synuclein (Taschenberger et al, 2013). Thus, further 

studies are vital to decipher the clear mechanistic role of β-synuclein in Parkinson’s 

Figure 2. Lewy bodies in Parkinson’s disease. 
 
Lewy body (pointed with arrow) in dopaminergic cells of the substantia nigra. Lewy 
bodies consist of granular core that includes variety of nitrated, phosphorylated and 
ubiquitinated protein surrounded by filamentous halo primarily comprised of 
neurofilament and α-synuclein (Olanow & Brundin, 2013). 
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disease pathology and further obtain efficient therapeutic lines in Parkinson’s disease 

treatment.  

 

 

 

 

 

 

 

 

 

 

 

1.2.4 γ-synuclein 

 
The human synuclein family includes another member called γ-synuclein encoded by 

SNCG gene. As already described, synuclein family members share highly 

conserved N-terminal domain. The N-terminal domain of γ-synuclein, similarly to the 

other two members, is defined by its lipid interaction (Ueda et al, 1993). The 

difference of γ-synuclein exists within its C-terminal domain, which does not contain 

two 16-residues imperfect repeats, presents in α- and β-synuclein that makes the 

acidic tail shorter than the two others (Lavedan et al, 1998) (Figure 3). In contrast to 

α- and β-synuclein, γ-synuclein is abundant in peripheral nervous system but is also 

expressed in other tissues, as well as breast and ovarian cancers (Akopian & Wood, 

1995; Buchman et al, 1998; Ji et al, 1997; Lavedan et al, 1998). In spite of limited 

information, γ-synuclein is structurally and functionally placed between α- and β-

synuclein. It resembles α-synuclein in its free-state residual secondary structure, 

whereas in an extended-mode it resembles β-synuclein (Sung & Eliezer, 2007).  

Compared to α-synuclein, γ-synuclein has lower propensity to form fibrils and 

aggregates in vitro and was shown to inhibit α-synuclein aggregation (Biere et al, 

Figure 3. Schematic comparison of α-, β- and γ-synuclein proteins. 
 
The N-terminal part is highly conserved between α-synuclein and β-synuclein 
(indicated in red), whereas the C-terminal part of β-synuclein is shorter and different. 
β-synuclein lacks 11 amino acids in non-Aβ component (NAC) (indicated in as a grey 
square) domain, which is responsible for amyloidogenic properties of the protein that 
may effect β-synuclein aggregation properties (Wales et al, 2013). γ-synuclein 
shares the highly conserved N-terminus with α-synuclein though it is shorter in its 
acidic tail. 
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2000; Uversky et al, 2002). Unlike α-synuclein, little is known about γ-synuclein-

related pathology in Parkinson’s disease. Nevertheless, some evidence shows γ-

synuclein deposition in Parkinson’s disease, suggesting that its higher protein level 

leads to severe age and transgene dose-dependent neuropathology in mouse 

(Galvin et al, 1999; Ninkina et al, 2009). In addition, a sequencing study of Lewy 

bodies extracted from patients reveals that genetic variability in α- and γ-synuclein 

gene influences the risk of Lewy body formation, which in fact suggests the 

conservation between synuclein family members in Parkinson’s disease pathology 

(Nishioka et al, 2010).  

 

1.3 Post-translational modifications of α-synuclein 

 
Proteins in eukaryotic cells can be edited by mechanisms known as post-translational 

modifications (PTMs). PTMs are critical reversible and irreversible processes, which 

can control the protein activity. They play an important role in regulating protein 

function, stability and structure. Based on biochemical reactions, PTMs are altering 

their target protein properties such as binding partners (protein-protein interactions), 

protein localization and conformation. 

 

 

 

 

 

 

 

 

 

 
 
Post-translational modifications of α-synuclein can trigger its aggregate-prone 

properties associated with Parkinson’s disease pathology mainly linked to formation 

Figure 4. α-synuclein post-translational modification sites. 
 
The position of the main α-synuclein post-translational modifications (phosphorylation, 
ubiquitination, nitration, acetylation and sumoylation) are shown. Disease-associated post-
translational modifications in Lewy bodies are shown in the upper part of the scheme, 
whereas the identified PTMs from in vitro studies are shown below (Schmid et al, 2013). 
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of Lewy bodies. Inside the Lewy bodies, α-synuclein undergoes different post-

translational modifications such as phosphorylation, ubiquitination, nitration, 

acetylation and sumoylation (Fujiwara et al, 2002; Giasson et al, 2000; Kang et al, 

2012; Krumova et al, 2011; Nonaka et al, 2005) (Figure 4). However, whether these 

modifications enhance or inhibit α-synuclein aggregation and neurotoxicity is still 

debatable. 

1.3.1 Sumoylation 

 
Sumoylation is a critical post-translational modification, which controls its target 

protein stability, subcellular localization and activity in a dynamic and reversible 

manner. SUMO (small ubiquitin-like modifier protein) shares similarities with ubiquitin 

protein in the structure and biochemistry of its conjugation. Whereas ubiquitin often 

targets its substrate for proteasome-mediated degradation, sumoylation can 

modulate different functional consequences of its target protein. SUMO is only 

absent in bacteria and archea and is expressed by all eukaryotes. The importance of 

sumoylation in cellular processes makes it an essential system for health and even 

the survival of most organisms (Flotho & Melchior, 2013; Johnson, 2004; Ulrich, 

2009). Sumoylation is a reversible pathway due to having the SUMO-specific 

proteases that can cleave and release SUMO for further cycles (Drag & Salvesen, 

2008; Hickey et al, 2012). SUMO belongs to a family of protein modifiers that are 

covalently attached to their substrates via isopeptide bonds formed between the 

carboxy group of their C-terminal glycine residues and the -amino groups of 

substrates residues (Johnson, 2004). Newly synthetized SUMO protein is immature 

and needs to be processed in order to conjugate to its target protein. SUMO-specific 

proteolytic enzymes expose two glycine residues close to SUMO C-terminus by 

removing some carboxy residues from them (SENP proteases in mammals and ULP 

proteases in yeast). Mature SUMO is then activated by E1 activating enzyme in an 

ATP dependent manner and subsequently is transferred to the E2 conjugating 

enzyme (UBC9). Finally, in the last step the isopeptide bond is formed between the 

carboxyl group of the glycine residue at SUMO’s carboxyl terminus and amino group 

of a lysine residue in its target protein. The last step is usually facilitated by E3 

ligases, but many targets are efficiently sumoylated by E2 enzyme alone (Figure 5).  

SUMO considers as one of the most soluble proteins, which regulate toxic protein 

properties (Marblestone et al, 2006). Sumoylation is an important candidate regulator 

in disease circumstances, especially in terms of neurodegenerative diseases 
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(Krumova & Weishaupt, 2013). SUMO protein is detected within pathological 

inclusions in various neurodegenerative disorders such as Huntington’s, Alzheimer’s 

and Parkinson’s disease (Dorval & Fraser, 2006; Dorval & Fraser, 2007; Krumova et 

al, 2011; Steffan et al, 2004; Ueda et al, 2002). The sumoylation of α-synuclein has 

been reported in vitro and in mammalian cells mainly at lysine residues 96 and 102 

(Dorval & Fraser, 2006; Krumova et al, 2011) (Figure 4). Sumoylation of α-synuclein 

can contribute to underlying Parkinson’s disease molecular progression via different 

mechanisms. It has been shown that sumoylation negatively regulates α-synuclein 

aggregate formation by triggering its solubility (Krumova et al, 2011). Thus, 

understanding the molecular involvement of sumoylation in Parkinson’s disease 

pathogenicity will help to achieve valuable therapeutic strategies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Reversible cycle of sumoylation.  
 
Premature SUMO protein has to be exposed at the C-terminal glycine-glycine (GG) 
motif. This is catalyzed by SUMO-specific proteases (SUPs) of the Ulp/SENP family. A 
mature SUMO is activated by the E1 heterodimer SAE1/SAE2 (SUMO activating 
enzyme subunits 1 and 2) in an ATP-dependent manner, which results in thioester 
bond between C-terminal glycine of SUMO and the catalytic cysteine (C) of SAE2. 
SUMO is transferred to E2 conjugating enzyme Ubc9. Ubc9 catalyzes formation of an 
isopeptide bond between the C-terminal glycine of SUMO and lysine (K) residue in the 
substrate usually together with SUMO E3 ligase enzyme. Adapted from (Flotho & 
Melchior, 2013). 
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1.3.2 Phosphorylation 

 
Protein phosphorylation is one of the most common and possibly the most important 

post-translational modification. Phosphorylation of different substrates might affect 

the attachment of other modifiers and consequently change the post-translational 

modification profile of the target. Phosphorylation is proposed to play an important 

role in regulating α-synuclein aggregation propensity (oligomerization and fibril 

formation) and neurotoxicity (Oueslati et al, 2010; Paleologou et al, 2010). α-

synuclein is phosphorylated at one or multiple sites by being subjected at both serine 

and tyrosine residues (Fujiwara et al, 2002; Okochi et al, 2000) (Figure 4). In vivo 

studies have identified S87, S129, Y125 α-synuclein phosphorylation sites, whereas 

in vitro studies have also shown that α-synuclein is subjected to phosphorylation at 

Y133, Y136 and Y39 (Fujiwara et al, 2002; Negro et al, 2002; Okochi et al, 2000; 

Pronin et al, 2000) (Figure 4). Postmortem studies on human brains revealed that α-

synuclein is predominantly phosphorylated at S129 rather than other residues 

(Anderson et al, 2006). In normal condition only 4% of α-synuclein is phosphorylated, 

whereas 90% is evident to be S129 phosphorylated in pathological cases inside 

Lewy bodies (Anderson et al, 2006; Fujiwara et al, 2002). 

Different kinases are involved in regulation of α-synuclein S129 phosphorylation 

including casein kinase I (CKI), CKII, G-protein coupled receptor kinases (GRKs), 

LRRK2 (leucine-rich repeat kinase 2), and polo-like kinases (PLKs) (Anderson et al, 

2006; Fujiwara et al, 2002; Mbefo et al, 2010; Okochi et al, 2000; Pronin et al, 2000; 

Waxman & Giasson, 2008). Phosphorylation of α-synuclein by GRK5 plays a crucial 

role in the pathogenesis of Parkinson’s disease (Arawaka et al, 2006). PLK2 is the 

most efficient Polo-like kinase phosphorylating α-synuclein at S129 (Inglis et al, 

2009; Mbefo et al, 2010; Salvi et al, 2012). 

The role of α-synuclein S129 phosphorylation under physiological conditions for 

inclusion formation and the pathogenesis of Parkinson’s disease remains 

controversial. It has been reported that fibrilization of α-synuclein is inhibited by S129 

phosphorylation in vitro (Paleologou et al, 2008). Mimicking non-phosphorylated form 

of α-synuclein by substitution of S129 to alanine (S129A) in Drosophila model of 

Parkinson’s disease resulted in inhibition of dopaminergic cell loss followed by 

promoting the aggregate formation (Chen & Feany, 2005). In another study, the toxic 

effect of α-synuclein S129 phosphorylation has been observed in transgenic mouse 

models of Parkinson’s disease followed by increased neuronal loss (Freichel et al, 

2007). Furthermore, the same observation was reported in rat model of Parkinson’s 
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disease by comparing the effect of S129D (mimicking phosphorylated α-synuclein at 

S129) and S129A (non-phosphorylated α-synuclein at S129), which resulted in more 

toxicity by non-phosphorylated form of α-synuclein at S129 (S129A) rather than 

phosphorylated S129 (Azeredo da Silveira et al, 2009; Gorbatyuk et al, 2008). Study 

in yeast model of Parkinson’s disease revealed that PLK2-mediated α-synuclein 

S129 increased phosphorylation level resulted in more α-synuclein cytotoxicity and 

intracellular inclusions (Basso et al, 2013). In contrast, another investigation reported 

no differences in aggregation and toxicity of α-synuclein mutants S129A and S129D 

in rat model of Parkinson’s disease (McFarland et al, 2009).  

Beside the solo importance of the effect of α-synuclein phosphorylation in 

Parkinson’s disease pathology, the interplay between phosphorylation and other α-

synuclein post-translational modifications might account as an important disease 

regulator. In Alzheimer’s disease, increased tau phosphorylation can stimulate its 

sumoylation (Dorval & Fraser, 2006). There is also additional evidence indicating that 

the cross-talk between phosphorylation and sumoylation can affect substrates in 

different ways (Johnson, 2004), suggesting this might also modulate α-synuclein 

function and aggregation. 

 

1.4 α-synuclein aggregation and aggregate clearance 

1.4.1 Lewy body formation 

 
Most of the efforts on understanding Parkinson’s disease pathology are focused on 

mechanisms involved in α-synuclein aggregation and identification of the toxic 

species that result in disease. Although evidences support the link between the 

progressive accumulation of aggregated α-synuclein in patients and decrease in 

motor and/or cognitive function (Braak et al, 2003; Cookson, 2009; Klucken et al, 

2006), the precise mechanism by which α-synuclein aggregates contribute to 

neuronal cell death and the events altering α-synuclein pathology are poorly 

understood. Recent studies show that synthetic α-synuclein pre-formed fibrils can 

induce Parkinson’s disease-like α-synuclein pathology by initiating a cascade of 

pathological events in a highly lethal Lewy body-like phenotype in vivo (Luk et al, 

2012a; Luk et al, 2012b) (Figure 6).  

Although monomeric α-synuclein is a natively unfolded protein in solution, 

possessing a central hydrophobic region arises its affinity to oligomerize under 
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pathological conditions (Chandra et al, 2003). Cellular failure in degradation of 

natively misfolded monomeric α-synuclein under pathological conditions promotes its 

high self-interaction tendency and formation of unstable oligomers. The hydrophobic 

core of α-synuclein protein facilitates the oligomers to bind to lipid membranes, which 

leads to conformational change of the protein into stabilized -sheet-rich high 

molecular weights (Zhu et al, 2003). Further, they aggregate into higher-order 

structures including protofibrils, other intermediates and amyloid fibrils. Ultimately, 

these higher-order structures are the building blocks for the pathological inclusions of 

α-synuclein termed Lewy bodies (Volpicelli-Daley et al, 2011). Interestingly, it is 

suggested that rather the fibrilar species of α-synuclein are cytotoxic than the 

aggregates in Parkinson’s disease (Goldberg & Lansbury, 2000; Karpinar et al, 

2009). Aggregates might play a cytoprotective role by isolating toxic forms of α-

synuclein (Tanaka et al, 2004). Notwithstanding enormous investigations, the exact 

pathogenic species of α-synuclein (dimers, oligomers, protofibrils or fibrils) 

responsible for neuronal cell death and toxicity, are still unclear. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

Figure 6. Hypothetical model of α-synuclein toxicity and aggregate formation. 
 
Native α-synuclein exists as soluble random coil state. Under pathological conditions, 
misfolded monomeric α-synuclein homo-interact and forms unstable dimers and 
oligomers. Interaction of oligomers and monomers results in formation of amyloid fibrils 

in a stable -sheet-rich conformation. Further accumulation of amyloid fibrils leads to 
Lewy body formation (Irwin et al, 2013). 
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1.4.2 Aggregate clearance 

 
Accumulation of damaged or abnormally modified proteins may lead to perturbed 

cellular function and eventually cell death. As highlighted above, α-synuclein 

misfolding and aggregation is a pathological feature of Parkinson’s disease that is 

linked to neuronal cell death. The neurons rely on particular protein quality control 

pathways to maintain protein intercellular homeostasis. One of the critical factors 

controlling the aggregation process of α-synuclein is the protein level, which is 

regulated by balanced equilibrium between synthesis, degradation and secretion of 

the protein. The two major proteolytic pathways that participate in the removal of 

altered proteins in neurodegenerative disorders like Parkinson’s disease are the 

ubiquitin-proteasome system (UPS) and the autophagy-lysosomal pathway (ALP). 

Any dysfunction of these two important pathways contributes to accumulation of 

aggregated α-synuclein species and leads to disease progression. These 

degradation mechanisms are functionally connected and impairment of one can 

influence the other regulation. The systems conducting α-synuclein turnover are 

critical aspect of the Parkinson’s disease mechanism. The exact mechanism pledged 

for α-synuclein aggregate clearance is still controversial depending on the system 

studied. 

1.4.2.1 Ubiquitin-proteasome system in α-synuclein aggregate 

clearance 

 
The major pathway that facilitates the degradation of short-lived intercellular soluble 

proteins in cell is the ubiquitin-proteasome system (UPS) (Goldberg, 2003; Wong & 

Cuervo, 2010). Aggregate clearance by UPS is assessed by ubiquitylation, which is a 

three-step cascade mechanism. The highly conserved ubiquitin protein attaches to 

the exposed lysine residue of the target protein by ubiquitin-activating (E1), ubiquitin-

conjugating (E2) and ubiquitin-ligase (E3) enzymes in an ATP-dependent manner. 

The substrate specificity and selectivity of the proteasome is achieved by the E3 

ligases that catalyze the attachment of ubiquitin to the target protein and some 

number of other proteasome ancillary proteins. Ubiquitin chains act as a signal for 

recognition of the target protein by proteasome (Glickman & Ciechanover, 2002). 

Beside that, aggregated proteins may also undergo degradation in an ubiquitin-

independent manner (Demartino & Gillette, 2007).  

Several studies focused on the potential role of UPS in α-synuclein aggregate 

clearance in Parkinson’s disease. According to some evidences, upon proteasome 
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inhibition α-synuclein aggregates are accumulated in neuronal cells in poly-

ubiquitinated form, suggesting that α-synuclein is degraded via UPS system (Bennett 

et al, 1999; McLean et al, 2001). On the other hand, it is reported that α-synuclein 

does not need to be ubiquitinated to be degraded by proteasome (Tofaris et al, 

2001). Rott and colleagues demonstrated that in the absence of proteolytic 

impairment, mono-ubiquitinated α-synuclein undergoes degradation by proteasome. 

They assumed that the ubiquitinase USP9X governed the α-synuclein fate of 

clearance (Rott et al, 2011). Recently, it has been shown that phosphorylated α-

synuclein at S129 is targeted to proteasomal pathway in an ubiquitin-independent 

manner (Paulson et al, 2008). Furthermore, an in vivo study supports the 

involvement of UPS in α-synuclein degradation (Ebrahimi-Fakhari et al, 2011). They 

suggested that the degradation pathway depends on the α-synuclein protein burden 

inside the cell. Low expressed α-synuclein is preferentially degraded by the UPS, 

whereas increased expression level of α-synuclein targets the protein to the 

autophagosome (Ebrahimi-Fakhari et al, 2011).  

1.4.2.2 Autophagy-lysosome pathway in α-synuclein aggregate 

clearance 

 
The autophagy-lysosomal pathway (ALP) serves as a general degradation 

mechanism to degrade intercellular proteins and organelles (Wong & Cuervo, 2010). 

The major functional difference between UPS and ALP is the fact that ALP recruits 

long-lived macromolecule proteins, cytosolic components and dysfunctional 

organelles for degradation through the process of macroautophagy (Klionsky & Emr, 

2000). Dysfunction of autophagy pathway may contribute to Parkinson’s disease 

pathogenesis as a significant amount of α-synuclein aggregates is shown to be 

degraded through lysosomal pathways in neuronal cells (Vogiatzi et al, 2008). 

Application of pharmacological and molecular enhancement of macroautophagy 

showed reduced α-synuclein protein level in cell culture system study (Spencer et al, 

2009). Despite UPS that mainly degrades soluble α-synuclein, the autophagy 

degradation pathway is shown to be predominantly responsible for clearing higher 

molecular weight α-synuclein species such as oligomeric intermediates and 

oligomers/aggregates (Alvarez-Erviti et al, 2010; Cullen et al, 2009; Lee et al, 2004; 

Mak et al, 2010; Tofaris et al, 2011).  

In an in vivo study, α-synuclein turnover is addressed in living mouse brain indicating 

a distinct role of both degradation pathways (UPS/ALP) (Ebrahimi-Fakhari et al, 
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2011). They reported that both endogenous α-synuclein and pathological α-synuclein 

turnover is mediated by the UPS. They observed that ALP is not involved in the 

regular turnover of endogenous α-synuclein but turning on when the pre-existing 

level of α-synuclein is elevated to pathological form, suggesting the role of ALP in 

clearing higher molecular weight of α-synuclein (Ebrahimi-Fakhari et al, 2011; 

Ebrahimi-Fakhari et al, 2012). Furthermore, the clearance of α-synuclein is reported 

to be regulated by USP9X ubiquitinase activity. In the presence of proteolytic 

impairment, the de-ubiquitinated α-synuclein is cleared through ALP in cultured cells 

(Rott et al, 2011). Our previous study revealed the major role of ALP in α-synuclein 

aggregate clearance in yeast, while UPS contributes a minor role (Petroi et al, 2012). 

Overall, both proteolytic pathways (UPS and ALP) are functionally connected and 

can take over the other responsibility in pathological conditions. Deciphering the 

mechanisms regulating α-synuclein turnover is a critical aspect of Parkinson’s 

disease that helps to improve the potential therapeutic treatments.  

1.5  Humanized Saccharomyces cerevisiae 

 
The budding yeast Saccharomyces cerevisiae is the most broadly studied eukaryotic 

organism. Saccharomyces cerevisiae is a single cell organism that belongs to the 

group of fungi. It was the first eukaryotic organism that was fully sequenced in 1996 

(Goffeau et al, 1996) and contains genes with 60% homology to human genes 

(Mager & Winderickx, 2005). Yeast model system possesses several advantages 

that make it widely used such as its ease of manipulation and amenability to genetic 

modification, short generation time, inexpensive growth, high transformation 

efficiency and easy laboratory conservation. Due to the highly conserved intercellular 

processes in evolution, many fundamental cellular mechanisms in eukaryotic 

systems are elucidated using yeast (Botstein & Fink, 2011).  

The powerful genetic recourses and valuable knowledge about yeast makes it being 

used to demonstrate the molecular function of proteins involved in several human 

diseases including neurodegenerative disorders (Babcock et al, 1997; Outeiro & 

Lindquist, 2003; Wickner, 1994). Many disease-associated pathways and 

mechanisms are conserved between yeast and human (Karathia et al, 2011). If yeast 

cells do not harbor the human gene homolog associated with a disease, the 

transgene can be heterologously expressed in yeast and the obtained strain can be 

subjected to different functional analyses. Introduction of human genes into yeast 

cells often mimic the disease-relevant phenotypes. In addition, even if the gene 
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function is already known, we can get more insight into understanding the molecular 

pathways involved in the disease and the underlying basis of the disease-related 

pathology.  

1.5.1 Yeast model of Parkinson’s disease 

 
The main aspect of studying Parkinson’s disease similar to the other diseases is 

getting closer to improved better therapeutic strategies. In order to achieve this aim, it 

is essential to get a better understanding of molecular mechanisms involved in 

Parkinson’s disease pathology. Thus, scientists are now adopting more rational 

approaches where different model systems are being used. Furthermore, the 

obtained findings can be validated in various model systems (Cooper et al, 2006; Su 

et al, 2010; Xiong et al, 2010).  

α-synuclein does not have a yeast homolog but it can be heterologously expressed in 

yeast cells. Several cellular pathways involved in Parkinson’s disease were either 

first addressed in yeast and then validated in other model systems or first identified in 

other Parkinson’s disease model systems and then being reproduced in yeast 

successfully (Buttner et al, 2008; Outeiro & Lindquist, 2003; Petroi et al, 2012; 

Sampaio-Marques et al, 2012; Sharma et al, 2006; Su et al, 2010). The first yeast 

model of Parkinson’s disease was introduced by Outeiro and Lindquist in 2003 

(Outeiro & Lindquist, 2003). They showed that α-synuclein expression is toxic to 

yeast cells in gene dosage dependent manner. We reported the α-synuclein 

threshold for cytoxicity in yeast. Three integrated copies of wild type α-synuclein and 

two integrated copies of A53T mutant are the causative concentration of α-synuclein, 

which lead to cell death (Petroi et al, 2012).  

In addition, α-synuclein forms intercellular inclusions in yeast, which are correlated 

with cytotoxicity. Different pathways that are involved in α-synuclein toxicity are being 

studied in yeast, namely oxidative stress (Flower et al, 2005; Sharma et al, 2006), 

proteasome impairment (Chen et al, 2005; Sharma et al, 2006), autophagy (Petroi et 

al, 2012), mitophagy dysfunction (Sampaio-Marques et al, 2012), mitochondrial 

dysfunction (Buttner et al, 2008; Su et al, 2010), vesicle trafficking defects (Soper et 

al, 2008) and phosphorylation (Basso et al, 2013; Sancenon et al, 2012). In addition 

to α-synuclein-related toxicity in Parkinson’s disease, other genes such as LRRK2 

and PARK2, which are also involved in Parkinson’s disease, are being studied in 

yeast model system recently (Chesi et al, 2012; Shin et al, 2008; Usenovic et al, 

2012; Xiong et al, 2010; Zheng et al, 2008). 
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Taken together, using yeast as a model to underline molecular mechanisms involved 

in Parkinson’s disease pathology will set up new paths toward reaching effective 

therapeutic approaches. 

.  

1.6 Aim of this study 

 
α-synuclein post-translational modifications play an important role in triggering 

aggregation and cytotoxicity properties. α-synuclein sumoylation and S129 

phosphorylation were shown to be two key modifications involved in Parkinson’s 

disease pathogenicity (Anderson et al, 2006; Dorval & Fraser, 2006; Fujiwara et al, 

2002; Krumova et al, 2011). The mechanisms by which these modifiers might 

interplay and consequently effect α-synuclein-mediated toxicity is yet unclear. α-

synuclein phosphorylation is well studied, while there is lack of evidences regarding 

sumoylation potential regulatory role in α-synuclein-mediated pathology in 

Parkinson’s disease process. Thus, deciphering molecular mechanisms involved in 

α-synuclein-mediated pathology associated with Parkinson’s disease needs to be 

studied in more details.  

The main aim of this study was to use budding yeast as a model system in order to 

elucidate α-synuclein sumoylation and S129 phosphorylation-mediated effect on α-

synuclein-related cytotoxicity, aggregation and aggregate clearance.  

Three major questions were addressed in the current study: 

1- Is sumoylation a conserved phenomenon in α-synuclein-related pathology 

from yeast to human? 

In order to address this question, yeast ulp1ts strain and smt3ts strain expressing α-

synuclein were generated and characterized to be further subjected to different 

molecular analyses. In addition, sumoylation-deficient α-synuclein mutants were 

constructed to validate the findings in cis. 

2- Is there a cross-talk between α-synuclein S129 phosphorylation and α-

synuclein sumoylation? 

Due to the fact that GRK5 and PLK2 are the major kinases in phosphorylating α-

synuclein at S129 (Pronin et al, 2000; Salvi et al, 2012), we further analyzed the 

effect of the corresponding kinases on α-synuclein S129 phosphorylation. In addition, 
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the probable interplay between α-synuclein sumoylation and α-synuclein S129 

phosphorylation were examined in different contexts.  

3- What are the mechanisms involved in α-synuclein aggregate clearance?  

Since ALP has a major role in α-synuclein aggregate clearance in yeast model of 

Parkinson’s disease, we were interested to investigate the regulatory effect of 

sumoylation and S129 phosphorylation on α-synuclein aggregate clearance. The 

involvement of ALP and UPS were analyzed through chemical approaches. Promoter 

shut-off studies were performed in combination with UPS and ALP impairment by 

chemical treatments with MG132, a proteasome inhibitor, and phenylmethanesulfonyl 

fluoride (PMSF), a vacuolar protease inhibitor, respectively.  

Overall, our findings in yeast cell-based model of Parkinson’s disease provide 

mechanistic insight into pathological role of α-synuclein post-translational 

modifications in Parkinson’s disease.  
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2 Material and Methods 

2.1 Materials 

2.1.1 Chemicals, growth media and conditions 

Chemicals for buffers, media and solutions preparation were achieved from 

AppliChem GmbH (Darmstadt, Germany), BD Becton GmbH (Heidelberg, Germany), 

Carl Roth GmbH und Co. KG (Karlsruhe, Germany), SERVA Electrophoresis GmbH 

(Heidelberg, Germany), Roche Diagnostics GmbH (Manheim, Germany) and Sigma-

Aldrich Chemie GmbH (Steinheim, Germany). DNA polymerase and dNTPs were 

obtained from Thermo Fisher, Scientific GmbH (Dreich, Germany). Primers were 

received from Invitrogen GmbH (Darmstadt, Germany) or Sigma-Aldrich Chemie 

GmbH (Steinheim, Germany). DNA and protein standard GeneRuler (1kb DNA 

ladder and PageRuler Prestained Protein Ladder) were obtained from Thermo 

Fisher, Scientific GmbH (Dreich, Germany). DNAs were isolated with QIAprep Spin 

Miniprep Kit and the QIAprep Gel Extraction Kit from Qiagen (Hilden, Germany). 

PCRs were performed with T Professional Thermocycler, Biometra GmbH 

(Göttingen, Germany). DNA concentrations were determined with Nanodrop ND-

1000, Peqlab Biotechnologie GmbH (Erlangen, Germany). Protein concentrations 

were measured with Tecan reader (Männedorf, Switzerland). Agarose gel 

electrophoresis was performed with Wide Mini-Sub Cell GT Cell, Bio-Rad Labratories 

GmbH (München, Germany). ECL films results of Southern and Western analysis 

were exposed with PROTEC Processor Compact film-developing machine, Siemens 

(Erlangen, Germany). Centrifugations steps were performed with the Biogue pico, 

Biofuge fresco, Labofuge 400R Heraeus (Hanau, Germany) and 5804R, Eppendorf 

AG (Hamburg, Germany). The K96R K102R mutant constructs and the S129A 

mutant were generated by site-directed mutagenesis using Stratagene QuikChange 

Site-Directed Mutagenesis Kit (Agilent Technologies). 

2.1.1.1 Saccharomyces cerevisiae growth condition 

 
Saccharomyces cerevisiae strains were grown in synthetic complete medium (SC) 

lacking the amino acid (uracil, histidine, tryptophan or leucine) corresponding to α-

synuclein construct marker (SC-URA, SC-URA-HIS, SC-URA-HIS-TRP-LEU) at 30°C 

(Guthrie & Fink, 1991). Temperature sensitive yeast strains smt3 and ulp1 were 

grown at permissive temperature at 25°C, whereas down regulation of corresponding 

genes was achieved by shifting the cells to 30°C after being pre-grown at 25°C. 
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2.1.1.2 Escherichia coli growth condition 

 
Escherichia coli strain was grown and harvested in Luria-Bertani (LB) medium 

(Bertani, 1951) containing, 1% bacto-trypton, 0.5% yeast extract and 1% NaCl with 

pH 7.5 at 37°C. In order to have solid medium, 2% agar was added. 100 mg/ml 

ampicillin was applied to the medium for selection. 

2.1.2 Strains, plasmids and primers 

 
Escherichia coli strain DH5α [F-, Φ80dΔ (lacZ) M15-1, Δ (lacZYA-argF) U169, recA1, 

endA1, hsdR17 (rK–, mK+), supE44, λ–, thi1, gyrA96, relA1] (Woodcock et al, 1989) 

was used for plasmid DNA preparation.  

2.1.2.1 Saccharomyces cerevisiae strains  

 
All yeast strains used in this study are presented in Table 2. Yeast backgrounds, 

which were used to construct strains with determined copies of α-synuclein 

integration in the yeast genome were Wild-type W303-1A (EUROSCARF, Frankfurt, 

Germany), smt3 temperature sensitive mutant (smt3ts) (Biggins et al, 2001), ulp1 

temperature sensitive mutant (ulp1ts) (Hoege et al, 2002), cdc5-DAmP (cdc5 allele in 

DAmP collection) (Breslow et al, 2008). W303 served as parent in both 

corresponding temperature sensitive backgrounds.  

Table 2. Yeast strains used in this study. 
 

Strain Genotype Source 

W303-1A MAT a; ura3-1; trp1-1; leu2-3_112; his3-11; 
ade2-1; can1-100 

EUROSCARF, 
(Frankfurt, Germany) 

YBP206 smt3ts: MAT a; ura3-1; trp1-1; leu2-3_112; his3-1; 
ade2-1; can1-100 bar1Δ pGAL-HA3-SMT3:HIS3 

(Biggins et al, 2001) 

RH3468 W303 containing 2 genomic copies 
GAL1::SNCAWT::GFP in URA3 locus 

(Petroi et al, 2012) 

RH3601 
 

smt3ts containing 2 genomic copies 
GAL1::SNCAWT::GFP in URA3 locus 

This study 

RH3602 
 

W303 containing 2 genomic copies 
GAL1::SNCAK96R K102R::GFP in URA3 locus 

This study  

YBP5 ulp1ts (Hoege et al, 2002) 
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Table 2 continues. 

RH3603 ulp1ts containing YIp1ac211-ADH-His6-Smt3 in 
HIS3 locus 

This study  

RH3604 RH3603 containing GAL1::SNCAWT integrated in 
TRP1 locus 

This study  

RH3605 RH3603 containing GAL1::SNCAA30P integrated in 
TRP1 locus 

This study  

RH3606 RH3603 containing GAL1::SNCAK96R K102R 

integrated in TRP1 locus 
This study  

RH3607 smt3ts containing 2 genomic copies 
GAL1::SNCAS129A::GFP in TRP1 locus 

This study  

 Cdc5-DAmP (Breslow et al, 2008) 

 Cdc5-DAmP containing 2 genomic copies 
GAL1::SNCAWT::GFP in TRP1 locus 

AG Braus 

 Cdc5-DAmP containing 2 genomic copies 
GAL1::SNCAA30P::GFP in TRP1 locus 

AG Braus 

 

2.1.2.1.1 Construction of yeast strains  

 
Several strains were constructed in smt3ts, W303 and ulp1ts backgrounds. Wild-type 

(WT) α-synuclein encoding cDNA sequence (referred to as SNCA) or A30P mutant 

sequence were integrated in TRP1 genomic locus of ulp1ts background. The ulp1ts 

yeast strains harboring sumoylation-deficient α-synuclein variants, were constructed 

by integrating K96R K102R synuclein or A30P K96R K102R synuclein in the TRP1 

genomic locus. Different smt3ts yeast strains were constructed by integrating WT α-

synuclein fused to GFP via linker (KLID) in the URA3 genomic locus and S129A- 

synuclein fused to GFP via linker (KLID) in the TRP1 genomic locus. Strains with two 

tandemic integrations of WT α-synuclein were selected for analysis. The W303 yeast 

strains were generated by integrating K96R K102R synuclein in URA3 genomic 

locus. Strains with two tandemic integration of K96R K102R synuclein were selected 

for further analysis.  

2.1.2.2 Saccharomyces cerevisiae plasmids 

 
The yeast plasmids used in this study are listed in Table 3. In general, 

overexpression vector, pRS426 carrying URA3 gene or pRS423 carrying HIS3 gene 
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and integrative yeast plasmids, pRS306 carrying URA3 gene or pRS304 carrying 

TRP1 gene were used for yeast strains construction (Sikorski & Hieter, 1989). The 

cDNA of α-synuclein variants preceded by GAL1-promoter and followed by the 

CYC1-terminator were cloned into mentioned yeast vectors. α-synuclein variants 

were used as either tagged or untagged depending on the aim of the experiment. α-

synuclein-KLID-GFP was used for live-cell fluorescence microscopy and α-synuclein-

His6 was used for Ni2+-NTA pull down. Untagged α-synuclein was used for Ni2+-NTA 

pull-down of sumoylated proteins. The cDNA of SNCA gene fused to GFP via KLID 

linker was amplified by PCR from the genomic DNA of the yeast strain HiTox 

(Outeiro & Lindquist, 2003). 

Human kinases GRK5 and PLK2 were cloned into the SmaI restriction site of 

pME2792 yeast vector proceeded by GPD1 and GAL promoter, respectively. 

Table 3. Yeast plasmids used in this study. 
 

Plasmid Description Source 

pME2795 pRS426-GAL1-Promoter, CYC1-Terminator, URA3, 
2µm, pUC origin, AmpR 

(Petroi et al, 2012) 

pME3760 pME2795 with GAL1::SNCAWT (Petroi et al, 2012) 

pME3764 pME2795 with GAL1::SNCAA30P::GFP (KLID linker)  (Petroi et al, 2012) 

pME3759 pME2795 with GFP (Petroi et al, 2012) 

pME3945 pRS306 with SNCAWT::GFP (KLID linker), CYC1-
Terminator, URA3, integrative, pUC origin, AmpR 

(Petroi et al, 2012) 

pME3596 pRS304 with GAL1-Promoter, CYC1-Terminator, 
TRP1, integrative, pUC origin, AmpR 

This study 

pME3597 pME3596 with GAL1::SNCAWT This study 

pME3598 pME3596 with GAL1::SNCAA30P This study 

pME4089 pME3596 with GAL1:: SNCA K96R K102R 
  

This study 

pME4090 pME3596 with GAL1:: SNCAA30P K96R K102R This study 
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Table 3 continues. 

pME4091 pRS306 with GAL1:: SNCA K96R K102R::GFP (KLID 
linker), CYC1-Terminator, URA3, integrative, pUC 
origin, AmpR 

This study 

pME2792 pRS423-GAL1-Promoter, CYC1-Terminator, HIS3, 
2µm, pUC origin, AmpR 

This study 

pME4092 pME2792 with GAL::PLK2 This study 

pME4093 pME2792 with GPD::GRK5 This study 

pME4094 pME3596 with GAL1:: SNCA S129A::GFP (KLID linker) This study 

pME4095 pME2795 with GAL1::SNCAWT::His6 AG Braus 

D1374 YIplac211-ADH-His-Smt3 (Hoege et al, 
2002) 

pME4099 pME2792 with GAL1:: CDC5 This study 

pME4098 pME4099 with GPD::GRK5, destroyed HIS3 This study 

pME4097 pME2795 with GAL1::SNCAK96R K102R::GFP (KLID linker) This study 

pME4100 pME2795 with GAL1::SNCAWT::His6 AG Braus 

pME4101 pME2795 with GAL1::SNCAA30P::His6 AG Braus 

pME4102 pME2795 with GAL1::SNCB::GFP (KLID linker) This study 

pME4103 pME2795 with GAL1::SNCG::GFP (KLID linker) This study 

 
 
 
 

2.1.2.3 Primers 

 
The list of oligonucleotides used in the current work are presented in Table 4. 
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Table 4. Oligonucleotides used in this study for plasmid construction. 
 

Name Sequence (5’- 3’) Use 

BP10 TTA TTT GTA TAG TTC ATC 
CAT GC 

KLID-GFP linker reverse no 
restriction site 

BP15 AAG CTT ATC GAA AGT AAA 
GGA GAA GAA CTT 

SNCA Forward for 
amplification of SNCA-KLID-
GFP PCR fragment 

BP16 ATC GAT AAG CTT GGC TTC 
AGG TTC GTA GTC 

Reverse for amplification of 
SNCA-KLID-GFP PCR 
fragment 

BP20 GTT AGA GCG GAT GTG 
GGG 

CYC reverse primer used for 
sequencing 

BP77 ATG TCG TTG GGT CCT CTT 
AAA G 

Forward primer cdc5 blunt 
end cloning 

BP78 TTA ATC TAC GGT AAC AAT 
TGT GGA C 

Reverse primer cdc5 blunt 
end cloning 

KanX forward TTA ACC CGG GGA TCC TTT 
GTA C 

KanX forward 

KanX reverse TAG ATT GTC GCA CCT GAT 
TGC C 

KanX reverse 

NTTP79 GCT GCA TAA CCA CTT TAA 
CTA 

GAL1 forward primer used 
for sequencing 

Hsp1 ATG GAT GTA TTC ATG AAA 
GGA C 

SNCA forward 

Hsp18 CTG GCT TTG TCA GAA AGG 
ACC AGT TGG GCA GAA ATG 
AAG AAG G 

SNCAK96R K102R forward 
primer for quick-change 
mutagenesis 

Hsp19 CCT TCT TCA TTT CTG CCC 
AAC TGG TCC TTT CTG ACA 
AAG CCA G 

SNCAK96R K102R reverse 
primer for quick-change 
mutagenesis 

BP59 GCT TAT GAA ATG CCT GCC 
GAG GAA GGG TAT CAA G 

SNCAS129A forward primer 
for quick-change 
mutagenesis 

NTTP108 GTCGAAAGCTACATATAAGG
AAC 

URA3 gene and using as a 
hybridization probe for the 
Southern analysis 

NTTP109 AGTTTTGCTGGCCGCATCTT
C 

URA3 gene and using as a 
hybridization probe for the 
Southern analysis 

NTTP110 ATGTCTGTTATTAATTTCACA
G 

TRP1 gene and using as a 
hybridization probe for the 
Southern analysis 

NTTP111 CAGTAATAACCTATTTCTTAG
C 

TRP1 gene and using as a 
hybridization probe for the 
Southern analysis 
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Table 4 continues. 

BP60 CTT GAT ACC CTT CCT CGG 
CAG GCA TTT CAT AAG C 

SNCAS129A reverse primer 
for quick-change 
mutagenesis 

 

 

2.2 Methods 

2.2.1 Molecular biology and genetic manipulation methods 

2.2.1.1 Escherichia coli transformation 

 
Escherichia coli transformation was performed according to standard method (Inoue 

et al, 1990). E. coli DH5α competent cells (DSMZ, Braunschweig, Germany) were 

used for transformation. The competent cells were thawed on ice and 0.5 μg of the 

desired plasmid DNA or 10 μl of the ligation reaction were added to 200 μl competent 

cells. The cell mixture with DNA was incubated for 30 min on ice and was further 

subjected to heat shock at 42°C for 60 seconds. Cells were quickly put back on ice 

for 5 min. 800 μl of SOC medium (SOB + 20 mM glucose) was applied to the mixture 

and then incubated for 1 hour at 37°C. Cells were collected by centrifugation 

(Biofuge pico, Heraeus, Hanau, Germany) at 2500 rpm for 3 min and plated on LB 

agar plates containing respective antibiotic (ampicillin at final concentration of 100 

μg/ml). Plates were incubated at 37°C overnight. Clones were picked and analyzed 

by polymerase chain reaction (PCR) (described later). In addition, sequencing 

analysis was performed for verification of the positive clones carrying the plasmid of 

interest in a correct orientation. 

2.2.1.2 DNA sequence analysis 

 
All constructs used in the current study were verified by DNA sequencing. DNA was 

sequenced at the Göttingen Genomic Laboratory. Sequences were analyzed with 

multiple sequence align tool (Corpet, 1988) also using the 4Peaks software 

(www.makentosj.com). The SGD (Saccharomyces Genome Database) online 

website (www.yeastgenome.org) was used to analyze yeast chromosomal 

sequences, which were used as DNA template amplification in this study. 

 

http://www.makentosj.com/
http://www.yeastgenome.org/
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2.2.1.3 Polymerase Chain Reaction (PCR) 

 
PCR method was applied for DNA amplification according to established protocols 

(Saiki et al, 1988). The following polymerases were applied for PCR: Taq 

(FERMENTAS GmbH/THERMO FISHER SCIENTIFIC GmbH, St. Leon-Rot, 

Germany/Schwartz, Germany) and Phusion High-Fidelity (FINNZYMES/THERMO 

FISHER SCIENTIFIC GmbH, Vantaa, Finland/Schwartz, Germany). Phusion 

polymerase was applied for cloning purposes according to manufacturer instruction 

and Taq polymerase was used for checking the amplified sequences. PCR with Taq 

polymerase was programmed as following: initial denaturation step at 95°C for 2 min, 

continued by 33 cycles of denaturation at 95°C for 1 min, annealing at different 

temperatures for 45 seconds and extension for 1 min/kb at 72°C. The final step of 

PCR program was set at 72°C as final extension step for 10 min. All PCR programs 

were performed in Thermo cyclers (Eurofins MWG GmbH, Ebersberg, Germany).  

2.2.1.4 Agarose gel electrophoresis 

 
In order to separate DNA fragments by their size, agarose gel electrophoresis was 

performed in a Wide Mini-Sub Cell GT Cell (Bio-Rad Laboratories GmbH, München, 

Germany) at 90 V in TAE buffer (40 mM Tris, 10 mM acetic acid, 1 mM Na2-EDTA). 

Loading dye (50 % glycerol, 0.4 % Bromophenol blue) was added to DNA of interest 

and loaded on agarose gel (1% agarose and 1 μg/ml ethidiumbromide in TAE buffer). 

DNA bands were detected with the Gel iX Imager (INTAS Science Imaging 

Instrument GmbH, Göttingen, Germany). 

2.2.1.5 DNA isolation 

 
QIAGEN Plasmid Mini Kit (QIAGEN GmbH, Hilden, Germany) was used to isolate 

plasmid DNA from E. coli, according to manufacture instruction. In order to extract 

DNA from gel, QIAquick Gel Extraction Kit (QIAGEN GmbH, Hilden, Germany) was 

used following the producer protocol.  
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2.2.1.6 DNA digestions and ligations 

 
According to identified cloning strategy, the PCR-amplified DNA sequences and the 

corresponding vector were digested with the appropriate restriction enzyme (MBI 

FERMENTAS, Vilnius, Lithuania). Per 0.5 μg DNA, 1-2 unit of enzyme in 10× 

reaction buffer were used. The reaction mixture was incubated at appropriate 

temperature (normally at 37°C) depending on the enzyme that was applied for 2-3 

hours. The mixture was subjected to agarose gel electrophoresis and the restricted 

fragment was purified using the gel QIAquick Gel Extraction Kit (QIAGEN GmbH, 

Hilden, Germany).  

The linearized vector and respective insert were used in a molar ratio of 1:3 to be 

ligated. The T4 DNA ligase (MBI Fermentas, Vilnius, Lithuania) and 1×T4 ligation 

buffer were used for ligation. The reaction was incubated at 16°C overnight. The 

ligation reaction was inactivated at 65°C for 10 min. 

2.2.1.7 Southern hybridization 

 
Southern hybridization analyses were performed with several transformants to verify 

the integration of α-synuclein-GFP construct into the mutated genomic ura3-1 locus 

(Southern, 1975). Isolation of genomic DNA from S. cerevisiae was performed 

according to standard procedures (Hoffman & Winston, 1987). 10 µg genomic DNA 

were subjected to restriction digestion with Hind III (MBI Fermentas, Vilnius, 

Lithuania). The restriction fragments were resolved on a 1% agarose gel, transferred 

to a nitrocellulose membrane, cross-linked by UV irradiation for 5 min and hybridized 

to a URA3 gene fragment probe. In order to prepare hybridization probe, 100 ng of 

DNA corresponding to URA3 gene fragment were denatured at 95°C and followed by 

labeling with horseradish peroxidase using the ECL Direct Labeling and Detection 

System (GE Healthcare Limited, Buckinghamshire, United Kingdome). The 

membrane was washed several times and incubated with detection solution (GE 

Healthcare Limited, Buckinghamshire, United Kingdome). The membrane was 

exposed to ECL film (GE Healthcare Limited, Buckinghamshire, United Kingdome) in 

the dark and developed in the PROTEC Processor Compact film-developing machine 

(Siemens, Erlangen, Germany). Copy numbers of the integrated vector were 

estimated according to the profile of the restriction fragments. One copy 

corresponded to 2.7 kb + 4.7 kb and two copies to 2.7 kb + 4.7 kb + 6.2 kb.  



Material and Methods 
  

32  

For integration of α-synuclein-GFP into the mutated genomic trp1-1 locus, 10 µg 

genomic DNA were subjected to restriction digestion with EcoRI (MBI Fermentas, 

Vilnius, Lithuania). One copy of the integrated vector corresponded to 1.9 kb + 4.2 kb 

restriction digestion fragments and two copies to 1.9 kb + 4.2 kb + 4.6 kb.  

2.2.1.8 Quickchange Site-Directed Mutagenesis 

 
In order to substitute α-synuclein lysine 96 (K96) and lysine 102 (K102) to arginine 

(K96R K102R) and serine 129 (S129) to alanine (S129A), Quickchange Site-Directed 

Mutagenesis was performed (Wang & Malcolm, 1999). DNA templates used for this 

study are listed in Table 5. Pair of complementary nucleotide primers containing the 

mutation of interest were designed (Table 4). The PCR amplification process was 

conducted according to the manufacture instruction (Agilent Technologies, Santa 

Clara, USA). Amplification of target DNA was carried out using thermostable high 

fidelity PfuTurbo Cx hotstart DNA polymerase (Agilent Technologies, Santa Clara, 

USA). In order to remove parental template DNA and select for the synthetized 

mutated DNA, 1 μl of DpnI restriction enzyme (MBI Fermentas, Vilnius, Lithuania) 

was added directly to the amplification mixture and incubated for 1 hour at 37°C. 1 μl 

of digested reaction was subsequently transformed in E. coli DH5α. After isolation of 

the plasmid DNA (QIAGEN GmbH, Hilden, Germany), sequencing analysis was 

performed for verification of the positive mutants. 

Table 5. Template DNA for Quickchange Site-Directed mutagenesis. 
 

Template DNA Mutant of interest 

pME3596 with GAL1::SNCAWT pME3596 with GAL1:: SNCA K96R K102R 

pME3596 with GAL1::SNCAA30P pME3596 with GAL1:: SNCA A30P K96R K102R 

pRS306 with SNCAWT::GFP (KLID 

linker), CYC1-Terminator, URA3, 

integrative, pUC origin, AmpR 

pRS306 with SNCAK96R K102R::GFP (KLID 

linker), CYC1-Terminator, URA3, 

integrative, pUC origin, AmpR 

pRS304 with GAL1::SNCAWT::GFP 

(KLID linker), CYC1-Terminator, TRP1, 

integrative, pUC origin, AmpR 

pRS304 with GAL1::SNCAS129::GFP (KLID 

linker), CYC1-Terminator, TRP1, 

integrative, pUC origin, AmpR 
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2.2.2 Saccharomyces cerevisiae methods 

2.2.2.1 S. cerevisiae transformation 

 
Yeast transformations were performed according to standard protocols (Gietz et al, 

1992). Wild type background yeast cells were pre-grown overnight at 30°C in 

nutrient-rich YPD medium (Guthrie & Fink, 1991). Pre-grown cells were centrifuged 

at 3000 rpm for 3 min (Sigma 4K15C, Sigma Laboratory Centrifuges, Osterode am 

Harz, Germany) and transformed to fresh YPD medium for almost 5 hours. Fresh 

cells were washed with 10 ml 100 mM LiOAc/TE (5 ml 1 M Tris-Cl pH 8.0, 1 ml 0.5 M 

Na-EDTA pH 8.0, 100 mM LiOAc in a total volume of 50 ml H2O) three times till being 

competent for transformation. 20 μl pre-warmed DNA (salmon sperm) was added to 

200 μl competent cells. 1 μg of yeast 2-micron plasmid (2μ) was added to competent 

yeast cells. Integrative yeast plasmids were linearized prior to transformation. For 

targeting the trp1 genomic locus, 10 μg of the DNA were digested for 2 h with StuI 

(Fermentas, St.Leon-Rot, Germany) at 37°C. For targeting the ura3 genomic locus, 

10 μg of the DNA was digested for 2 h with Eco8II (Fermentas, St.Leon-Rot, 

Germany) at 37°C. The total 40 μl of the digestion were added to the yeast 

competent cells. 800 μl of 50% polyethylene glycol (PEG) in LiOAc/TE were added 

along with DNA to the competent cells. Cells with the particular DNA were incubated 

at 30°C at shaking platform for 30 min. Subsequently, heat shock at 42°C was 

applied to the cells for 20 min. Cells were smoothly centrifuged at 4000 rpm for 20 

seconds and the cell pellet was re-suspended in 1 ml fresh YPD medium and 

incubated at 30°C for 2 hours. Finally, cells were centrifuged at 4000 rpm for 1 min 

and plated in SC solid medium lacking the selective amino acid. Cells carrying 

plasmid with TRP1 marker were plated on SC-trp (lacking TRP amino acid) plates 

and cells carrying plasmid with URA3 marker were plated on SC-ura (lacking URA 

amino acid). Plates were incubated at 30°C for 2-4 days. The positive transformants 

grown on the selective plates were isolated and re-streaked on a fresh plate. 

In case of temperature sensitive strains, cells were pre-grown at 25°C and plates 

were incubated at 25°C at the end. 
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2.2.2.2 Isolation of S. cerevisiae genomic DNA 

 
S. cerevisiae genomic DNA isolation was performed according to standard procedure 

(Hoffman & Winston, 1987). Cells were grown overnight in 10 ml YPD medium at 

30°C (temperature sensitive yeast cells were grown at 25°C). Grown cells were 

collected by centrifugation. After washing the collected cells, 200 μl breaking buffer 

(2% V/V Triton X 100, 1% V/V SDS, 100 mM NaCl, 10 mM Tris-Hcl pH 8.0, 1 mM 

EDTA pH 8.0), 200 μl Phenol Choloroform Isomyl (25:24:1) and 0.45 mm glass 

beads were additionally added to the cell pellet. In order to break the cells, rigorous 

vortexing for 10 min at 4°C was performed. Mechanically broken cells were 

centrifuged for 5 min at 13000 rpm. Obtained supernatant was collected and mixed 

with 1 ml cold ethanol for DNA precipitation. Cells were spinned-down shortly and the 

pellet was incubated with 400 μl TE buffer (10 mM Tris-Hcl pH 7.5/8.0, 1 mM EDTA 

pH 8.0) and 3 μl RNase (Qiagen, Hilden, Germany) for 1 hour at 37°C. After adding 1 

ml ethanol to the probes, they were centrifuged for 5 min at 13000 rpm. The DNA 

pellet was dried at room temperature. The DNA was dissolved in 50 μl TE buffer and 

stored at -20°C. 

2.2.2.3 S. cerevisiae crude extract preparation 

 
Yeast cells harboring DNA of interest were pre-grown in liquid SC medium lacking 

the selective amino acid, containing 2% raffinose overnight. Pre-grown cells were 

incubated in SC medium containing 2% galactose for GAL1-promoter induction to 

OD600 of 0.1. GAL1-promoter was induced for 6 hours and cells were cultivated by 

centrifugation at 4000 rpm for 3 min. Cell pellet was washed with 1 ml cold TE buffer 

(10 mM Tris-Hcl pH 7.5/8.0, 1 mM EDTA pH 8.0) and subsequently re-suspended in 

200 μl R-buffer (150 μl 1 M Tris-Hcl pH 7.5, 6 μ 0.5 M EDTA, 150 μl 1 M DTT, 120 μl 

proteases inhibitor mixture (PIM) (Roche, Mannheim, Germany). In order to break the 

cells mechanically, 0.45 mm glass beads were added to the cell mixture and 

vigorously vortexed at 4°C for 10 min followed by centrifugation (Biofuge fresco, 

Heraeus, Hanau, Germany) at 13000 rpm for 10 min. The total protein crude extract 

was collected as a supernatant. Protein concentration was determined with a 

Bradford assay (Bradford, 1976).  

2.2.2.4 Spotting test  

 
For growth test on solid medium, yeast cells were pre-grown in SC medium 

containing 2% raffinose lacking the corresponding marker to mid-log phase. Cells 
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were normalized to equal densities, serially diluted 10-fold starting with an OD600 of 

0.1, and spotted on SC-plates containing either 2% glucose or 2% galactose and 

lacking in corresponding marker. Smt3ts mutant cells were incubated at permissive 

temperature (25°C) and restrictive temperature (30°C). W303 yeast cells were 

incubated only at 30°C. After 3 days incubation the plates were photographed.  

2.2.2.5 Halo assay 

 
Smt3ts yeast cells harboring the gene of interest were grown to OD600 0.1. 100 μl of 

the cell suspension was shifted to 10 ml 0.5 % liquid agar (30°C). The agar was 

poured onto SC medium plates lacking the selective marker. The filter pre-steriled 

disc paper soaked with 5 μl 30 % H2O2 (AppliChem GmbH, Darmstadt, Germany) 

was immediately placed onto the agar surface. Plates were incubated at permissive 

(25°C) and restrictive (30°C) temperatures for 2-3 days. The inhibition area was 

measured and the plates were photographed.  

2.2.2.6 Promoter shut-off assay for aggregate clearance study 

 
Yeast cells carrying α-synuclein or its mutants were pre-grown in SC selective 

medium containing 2% raffinose overnight at ambient temperature. Pre-grown cells 

were collected and shifted to 2% galactose SC selective medium to induce α-

synuclein expression for 5 hours. In order to shut-off the GAL1-promoter, cells were 

shifted to SC medium containing 2% glucose. 

2.2.2.6.1 Proteasome inhibition 

 
According to previously described method (Liu et al, 2007) L-proline was used as 

nitrogen source instead of ammonium sulfate in growth medium. In addition 0.003% 

sodium dodecyl sulfate (SDS) was supplemented to the growth medium. In order to 

block the proteasome, Carbobenzoxyl-leucinyl-leucinyl-leucinal (MG132) dissolved in 

dimethyl sulfoxide (DMSO) was applied concomitantly to the cell suspension as 

described previously (Liu et al, 2007) in a final concentration of 75 μM. In parallel, 

equal volume of DMSO was added to the cells as a control. At several time points 

after promoter shut-off, cells were visualized by fluorescence microscopy. 
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2.2.2.6.2 Autophagy pathway inhibition 

 
Phenylmethanesulfonyl fluoride (PMSF) dissolved in ethanol (EtOH) was 

supplemented to medium containing 2 % glucose in a final concentration of 1 mM. An 

equal volume of ethanol was added to the cells as a control (Lee & Goldberg, 1998). 

At several time points after promoter shut-off, cells were visualized by fluorescence 

microscopy. For experiments with temperature sensitive yeast strain smt3ts, pre-

incubation was performed at 25°C. Induction of α-synuclein expression and the 

promoter shut-off assay were performed at 25°C and 30°C. The reduction of number 

of cells displaying α-synuclein inclusions was recorded and plotted on a graph.  

2.2.2.7 Protein stability 

 
Promoter shut-off study was also performed for protein stability assay. Yeast cells 

were pre-grown in SC selective medium containing 2% raffinose overnight. Pre-

grown cells were collected and transformed to SC selective medium containing 2% 

galactose for four hours GAL1-promoter induction. After four hours α-synuclein 

production, cells were collected. Collected cells were divided in two, half was 

subjected to protein extract purification (zero point) and the other half was shifted to 

SC selective medium containing 2% glucose to have the GAL1-promoter off. Cells 

were collected at indicated time points (3 hours, 6 hours, 18 hours).  

 

2.2.3 Protein methods 

2.2.3.1 Ni2+-NTA affinity chromatography  

 
Ni+2-NTA affinity chromatography was conducted to purify His6-tagged recombinant 

protein expressed in S. cerevisiae (Porath et al, 1975). Ulp1ts mutant cells carrying 

GAL1-SNCA integrations and His6-tagged Smt3 (His-Smt3) were pre-grown in 200 

ml SC medium containing 2% raffinose at 30°C overnight. Total cells harvested by 

centrifugation were transferred to 2 liters YEPD liquid medium containing 2% 

galactose for 12 hours induction. Cells were collected by centrifugation at 4000 rpm 

for 20 min at 4°C in the Sorvall RC-3B Plus Refrigerated Centrifuge (Thermo Fisher 

Scientific Inc., Waltham, USA) and lysed by 25 ml 1.85 M NaOH containing 7.5 % ß-

mercaptoethanol (Carl Roth GmbH & CO. KG, Karlsruhe, Germany) for 10 minutes 

on ice. Protein was precipitated with 25 ml 50% trichloroacetic acid (TCA) (Carl Roth 



Material and Methods 
  

37  

GmbH & CO. KG, Karlsruhe, Germany) and washed with 100% cold acetone. 

Proteins were suspended in 25 ml buffer A (6 M guanidine HCl, 100 mM sodium 

phosphate, 10 mM Tris/HCl, pH 8.0) and rotated for 1 hour at 25°C. The supernatant 

was cleared by centrifugation; the pH was adjusted to 7.0 by 1 M Tris base and 

supplemented with imidazole (AppliChem GmbH, Darmstadt, Germany) to final 

concentration of 20 mM. After equilibration of the His GraviTrap column (GE 

Healthcare Life Science, Buckinghamshire, United Kingdom) with 5 ml of buffer A 

containing 20 mM imidazole, proteins were applied to the column and the flow-

through fraction was collected for analysis. The column was washed with buffer A 

supplemented with 20 mM imidazole then with buffer B (8 M Urea, 100 mM sodium 

phosphate, 10 mM Tris, pH 6.3). The column was washed with buffer C (50 mM Tris 

pH 8.0, 300 mM NaCl, 20 mM imidazole). Finally, the proteins were eluted four times 

with 1 ml of 200 mM imidazole resolved in buffer C. Protein concentration in the 

eluted fractions was determined with Bradford assay. To reuse the columns, they 

were first washed with 20 ml H2O followed by 10 mL 0.2 M NaOH and another 

washing step with 20 ml H2O. The columns were stored in 20% ethanol. 

2.2.3.2 Immunoprecipitation 

 
100 μg protein purified by Ni2+-NTA was incubated with primary antibody (ubiquitin 

mouse monoclonal antibody, Milipore, MA, USA) at 4°C for 2 hours rotating in 

Immunoprecipitation (IP) buffer (50 mM Tris-HCL, pH 7.5, 150 mM NaCl, 2 mM 

EDTA) with freshly added 6 mM protease inhibitor mixture (Roche, Mannheim 

Germany), 2 mM DTT, 0.1% phosphatase inhibitor (Roche, Mannheim Germany). 

The mixture was then incubated with pre-washed Protein A Sepharose beads (GE 

Healthcare Life Science, Buckinghamshire, United Kingdome) in IP buffer overnight 

rotating at 4°C. The mixture was centrifuged at 4°C for 1 min at 13000 rpm. After 

discarding the supernatant, the beads were washed three times with ice-cold IP 

buffer. The immunoprecipitated protein was dissolved from the beads by heating in 

1x sample loading buffer at 95oC for 10 min. The samples were subjected to Western 

hybridization analyses using rabbit α-synuclein polyclonal antibody (Santa Cruz 

Biotechnology, CA, USA).  

2.2.3.3 Immunoblotting 

 
Wild type (W303-1A) yeast cells harboring α-synuclein were pre-grown at 30°C in SC 

selective medium containing 2% raffinose. Cells were transferred to SC medium 

containing 2% galactose at OD600 of 0.1 to induce the GAL1-promoter for 5 hours. 
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Smt3ts cells harboring α-synuclein were pre-incubated at 25°C and later transferred 

to either 25°C or 30°C. Total protein extracts were prepared as described before. 

The protein concentrations were determined with a Bradford assay. 10 μg of each 

protein was incubated with SDS loading buffer (250 mM Tris-HCl pH 6.8, 15% β-

mercaptoethanol, 30% glycerol, 7% SDS, 0.3% bromphenol blue) and denatured at 

95°C and then were subjected to 12% SDS-polyacrylamide gel electrophoresis. 

Separated proteins were transferred to a nitrocellulose membrane (Whatman 

Protran, Whatman GmbH, Dassel, Germany) by blotting for 1 hour at 100 V. The 

membrane was blocked in TBST buffer (100 mM Tris-HCl pH 8.0, 1.5 M NaCl, 0.5 % 

(v/v) Tween-20) containing 5% milk powder for at least 1 hour. Membrane was 

probed with primary antibody at 4°C. Primary antibodies used in this study were 

listed in Table 6. Membrane was washed with 1×TBST three times and then 

incubated with secondary antibody for 2 hours at room temperature. The secondary 

antibodies used in this study were (i) peroxidase-coupled goat anti-mouse or (ii) goat 

anti-rabbit immunoglobins G (Invitrogen GmbH, Karlsruhe, Germany). After washing 

the membrane with 1×TBST for at least three times, the proteins were detected with 

reagents from the Immobilon Western Chemiliminiscent HRP Substrate detection Kit 

(Millipore, Schwalbach, Germany). The membrane was exposed in the dark to ECL 

film (GE Healthcare Limited, Buckinghamshire, United Kingdome) and the film was 

developed in the PROTEC Processor Compact film-developing machine (Siemens, 

Erlangen, Germany). 

Table 6. Primary antibodies used in this study. 
 

Antibody Animal Type Dilution Source 

Anti-α-synuclein Mouse Monoclonal 1:3000 AnaSpec, Fremont, 
CA, USA 

Anti-β-synuclein Rabbit Monoclonal 1:5000 abcam, Cambridg, 
United Kingdome 

Anti- α-synuclein 
S129 
phosphorylated   

Mouse Monoclonal 1:5000 Wako, Osaka, 
Japan 

Anti-ubiquitin Mouse Monoclonal 1:1000 Millipore, Billerica, 
MA, USA 

Anti-SUMO Rabbit Polyclonal 1:1000 Rockland, 
Gilbertsville, USA 

Anti- α-synuclein Rabbit Polyclonal 1:2000 abcam, Cambridge, 
United Kingdome 
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2.2.3.4 Quantification of Western hybridizations 

 
Pixel density values for Western quantification were obtained from TIFF files 

generated from digitized X-ray films (KODAK) and analyzed with the ImageJ software 

(Abramoff et al, 2004). Before comparison, sample density values were normalized to 

the corresponding loading control. The adjusted density values were standardized to 

the control lane to get fold increase. The significance of differences was calculated 

using Students t-test or one-way ANOVA test. P value < 0.05 was considered to 

indicate a significant difference. 

2.2.3.5 Tandem Ubiquitin Binding Entities (TUBEs) 

 
Determination of poly-ubiquitinated proteins can be achieved with certain ubiquitin 

binding associated domains (UBAs). Agarose Tandem Ubiquitin Binding Entities 

(TUBEs) (LifeSensors, Inc. Malvern, USA) facilitate “one-step” pull-down of poly 

ubiquitinated proteins. 500 μg of the protein crude extract, isolated from yeast cells 

were subjected to TUBEs pull-down. Equilibration of Agarose TUBEs was performed 

according to manufacture instruction. 

Initially, 500 μg of total protein was diluted to equal volume of 200 μl final in R-buffer 

(50 mM Tris-Hcl pH 7.5, 1 mM EDTA, 50 mM DTT, 1× Proteases Inhibitor Mixture 

(PIM)). 20 μl of TUBEs was added to each sample and the pull-down was followed 

by the suggested protocol from the manufacture. Untreated Agarose beads were 

applied as negative control. Supernatants were stored as unbound-fraction and 

applied to Western hybridization analysis in parallel with the pull-down proteins 

purified from TUBEs. The purified samples and the supernatants were mixed in SDS 

loading buffer (250 mM Tris-HCl pH 6.8, 15% β-mercaptoethanol, 30% glycerol, 7% 

SDS, 0.3% bromphenol blue) and denatured at 95°C. The samples were further 

analyzed with Western hybridization (Laemmli, 1970). 

2.2.4 Fluorescence microscopy and quantifications 

 
Wild type (W303-1A) yeast cells harboring α-synuclein were grown in SC selective 

medium containing 2% raffinose at 30°C and smt3ts mutant cells at 25°C overnight. 

Pre-grown cells were transferred to 2% galactose containing medium for induction of 

α-synuclein expression for 6 hours. Smt3ts mutant cells were induced at 25°C and 

30°C. Fluorescent images were obtained with Zeiss Observer (Zeiss, Göttingen, 

Germany). Z1 microscope equipped with CSU-X1 A1 confocal scanner unit 
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(YOKOGAWA), QuantEM: 512SC (Photometrics) digital camera and SlideBook 5.0 

software package (Intelligent Imaging Innovations). For quantification of α-synuclein 

aggregation at least 300 cells were counted per strain and per experiment. The 

number of cells presenting inclusions was referred to the total number of cells 

counted. The values are mean of at least three independent experiments.  
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3 Results 

3.1 Post-translational modifications of α-synuclein in 

yeast model of Parkinson’s disease 

3.1.1 Sumoylation of α-synuclein 

3.1.1.1 α-synuclein is sumoylated in yeast 

 
Sumoylation is a rapid and reversible protein modification that plays an important role 

to change and regulate its substrate protein stability, localization, interactions and 

function. SUMO protein is involved in various neurodegenerative diseases such as 

Huntington’s disease, multiple system atrophy and Parkinson’s disease (Dorval & 

Fraser, 2006; Krumova et al, 2011). α-synuclein protein, which is implicated in 

Parkinson’s disease pathology, was shown to be mono-sumoylated in mammalian 

cells (Krumova et al, 2011). However, the impact of sumoylation on α-synuclein-

mediated toxicity remains to be elucidated.  

Here, we addressed the question if α-synuclein sumoylation is conserved from yeast 

to higher eukaryotic cells. Yeast cells harbor the essential gene SMT3 homologue to 

human SUMO1 (Takahashi et al, 1999). We first analyzed whether α-synuclein is 

sumoylated in yeast cells. The dynamics of between sumoylation and de-sumoylation 

reactions impede accurate studies. The ulp1ts strain, defective in SUMO de-

conjugation enzyme, was transformed with wild type (WT) α-synuclein and A30P 

mutant and the empty vector (control) driven under GAL1 promoter and integrated in 

the TRP1 genomic locus. The pre-grown cells at permissive temperature (25°C) were 

shifted to restrictive temperature (30°C), which enabled the down regulation of 

SUMO de-conjugation enzymes. Ulp1ts cells expressing WT α-synuclein and A30P 

mutant were examined by Western hybridization to choose the best candidate for 

further investigation (Figure 7A). Western hybridization analysis with SMT3 antibody 

revealed that down regulation of the ULP1 protease activity at non-permissive 30°C 

resulted in enrichment of SUMO-conjugated proteins in ulp1ts yeast background 

compared to the control (W303) (Figure 7B). In order to detect α-synuclein 

conjugated to SMT3, the ulp1ts strain expressing WT α-synuclein and A30P were co-

transformed with His-Smt3 followed by Ni2+ affinity chromatography. Total 

sumoylated proteins were pulled down by Ni2+-NTA. The modified α-synuclein was 

successfully detected from the total sumoylated proteins by western hybridization 
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with α-synuclein specific antibody (Figure 7C). Sumoylated WT α-synuclein and 

A30P mutant migrated approximately to 35 kDa, whereas unmodified protein 

migrates around at 17 kDa. This data indicate that WT α-synuclein and its mutant 

A30P are sumoylated in vivo by the yeast homologue of human SUMO, which 

support the conserved function of α-synuclein sumoylation from yeast to mammalian 

organisms. 
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Figure 7. α-synuclein is sumoylated in Saccharomyces cerevisiae. 
 
A. Total protein extracts of ulp1ts cells expressing α-synuclein, A30P mutant and 
empty vector (EV) were subjected to Western hybridization analyses. α-synuclein 
was detected using specific α-synuclein antibody. B. Total protein extract of ulp1ts 
yeast cells, defective in SUMO-de-conjugation, co-expressing α-synuclein and His6-
tagged Smt3, A30P and His6-tagged Smt3 and EV and His6-tagged Smt3. Enriched 
sumoylated proteins in the ulp1ts strain in comparison with the control WT yeast 
background (W303) were detected by Western hybridization with anti-Smt3 antibody. 
C. Nickel pull-down of His6-tagged Smt3 (His-Smt3) in ulp1ts cells co-expressing α-
synuclein. Sumoylated α-synuclein was detected in the pull-down fractions with α-
synuclein antibody. Unmodified α-synuclein was detected in flow-through. Yeast cells 
transformed with empty vector were used as a control. 
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3.1.1.2 Lysines 96 and 102 are the major α-synuclein sumoylation 

sites in yeast as in human 

α-synuclein contains two SUMO consensus acceptor sites, K96 and K102, and 

eleven-nonconsensus lysines (K6, K10, K12, K21, K23, K32, K34, K43, K45, K58 

and K60) (Figure 8). It had been shown that K96 and K102 serve as key sumoylation 

sites of α-synuclein in human cells (Krumova et al, 2011).  

 

 

 

 

 

 

 

 

 
 

In order to verify if K96 and K102 are conserved as major sumoylation sites of α-

synuclein in yeast, the codon for the residues K96 and K102 in WT α-synuclein and 

A30P-synuclein were substituted to arginine codon using Quickchange Site-Directed 

Mutagenesis method (Figure 8). The newly generated constructs were verified and 

sequenced. The proved K96R K102R-synuclein and A30P K96R K102R-synuclein 

codon replacement constructs were transformed in ulp1ts strain. The strains that 

expressed appropriate amounts of α-synuclein variants (K96R K102R-synuclein or 

A30P K96R K102R-synuclein) were co-transformed with His-Smt3 in order to purify 

the sumoylated proteins by Ni2+-NTA. After purifying all substrates conjugated to His-

Smt3, Western hybridization analyses with α-synuclein antibody were performed. A 

significant reduction of the sumoylation of K96R K102R variant and a complete 

sumoylation abolishment in the A30P variant carrying substitutions in K96 and K102 

were observed (Figure 9). This result suggests that α-synuclein SUMO acceptor sites 

are conserved in yeast. 

 

Figure 8. α-Synuclein SUMO acceptor sites. 
 
Scheme of α-synuclein sumoylation sites. α-synuclein displays in total eleven non-
consensus lysine (K) residues of which 8 lysines in the N-terminal amphipathic 
region, 1 lysine in the hydrophobic NAC region, and the 2 lysines in the C-terminal 
acidic region. K96 and K102 are identified as the major α-synuclein sumoylation sites 
(Krumova et al, 2011). Lysine 96 (K96) and lysine 102 (K102) were substituted to 
arginine (K96R K102R) with Quickchange Site-Directed Mutagenesis in this study. 
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3.1.1.3 Sumoylation protects yeast cell against α-synuclein-

mediated cytotoxicity and aggregate formation 

 
The importance of sumoylation in Parkinson’s pathology arises the question how 

sumoylation might affect α-synuclein-mediated cytotoxicity in yeast cells. It has been 

shown that inhibiting α-synuclein from sumoylation leads to neuronal cell death in the 

rat model of Parkinson’s disease (Krumova et al, 2011) though it has been reported 

that accumulation of sumoylated α-synuclein resulting from proteasome inhibition 

leads to cell death (Kim et al, 2011). Hence, further investigations are essential to 

lighten the road of sumoylation impact in Parkinson’s disease. Saccharomyces 

cerevisiae, temperature sensitive smt3 mutant, conditionally defective in the yeast 

SUMO gene, was used in this study to investigate the effect of sumoylation 

impairment on α-synuclein toxicity. Different sumoylation status can be achieved by 

growing temperature sensitive yeast cells at permissive temperature (25°C) and at 

restrictive temperature (30°C) when sumoylation is down regulated. Smt3ts strain was 

transformed with WT α-synuclein-KLID-GFP from integrative plasmid and A30P-

KLID-GFP with high-copy plasmid expression. GFP expressing cells were used as a 

control. The number of integrated copies was determined by Southern hybridization 

Figure 9. Major sumoylation residues of α-synuclein are conserved in yeast. 
 
Lysines 96 and 102 to arginine codon substitutions (K96R K102R) resulted in 
decreased α-synuclein sumoylation. Not mutated (K96 K102) and mutated (K96R 
K102R) WT α-synuclein and A30P were transformed in ulp1ts yeast cells expressing 
His-Smt3. His6-tagged SUMO-conjugates were pulled down by Ni2+-NTA and α-
synuclein was detected by Western hybridization using α-synuclein antibody. 
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and smt3ts strain expressing two copy integrations of WT α-synuclein were selected 

for analysis (Figure 12). It has been shown that expression of WT α-synuclein from 

two copies is under the threshold for yeast growth inhibition (Petroi et al, 2012). 

 

 

 

 

 

 

 

 

 
 
 

 

Growth of the smt3ts yeast cells expressing WT α-synuclein and A30P mutant were 

compared in the presence or absence of SUMO at permissive (25°C) and restrictive 

(30°C) temperatures. At the permissive temperature (25°C), when sumoylation is not 

impaired, all strains grew equally well (Figure 11). Spotting assays revealed that at 

the restrictive temperature (30°C), when sumoylation is down regulated, expression 

of wild-type α-synuclein resulted in growth inhibition in comparison to cells 

expressing GFP as a control. Similar results were obtained for A30P, where high-

copy plasmid expression normally does not impair yeast growth (Petroi et al, 2012), 

whereas defects in sumoylation resulted in a drastic growth inhibition (Figure 11). 

This suggests that SUMO modification has a protective role in α-synuclein 

expressing yeast cells.  

 

 

 

 

 

 

Figure 10. Determination of gene copy number of α-synuclein, integrated in the 
genome.  
 
Southern hybridization of smt3ts strains expressing WT α-synuclein using labeled 
URA3 as probe. Integrated α-synuclein-GFP genes correspond to 2.7 kb + 4.7 kb 
(1 x) and 2.7 kb + 4.7 kb + 6.2 kb (2 x) according to the Southern hybridization 
strategy. C (control): genomic locus without vector integration; corresponds to 1.1 kb.  
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Furthermore, to study the correlation of sumoylation-mediated α-synuclein 

cytotoxicity and α-synuclein aggregate formation, live cell fluorescence microscopy 

was conducted. Cells were visualized after five hours of α-synuclein protein 

induction. Quantification of the number of smt3ts cells displaying α-synuclein 

inclusions revealed significant increases in cells displaying α-synuclein inclusions 

when sumoylation is down regulated. To check for possible temperature effects, the 

wild type yeast background (W303), smt3ts parental strain, was employed for 

comparison. The temperature did not affect the number of W303 cells with α-

synuclein aggregates (Figure 12), which excluded that the difference in the number 

of cells with inclusions is due to a temperature shift. This further suggests a 

protective role of sumoylation against α-synuclein aggregate formation. Our data 

strengthen the idea of an α-synuclein sumoylation protective effect against α-

synuclein-mediated cytotoxicity and aggregate formation, which is conserved from 

yeast to higher model systems like rat (Krumova et al, 2011). 

Figure 11. Sumoylation protects against α-synuclein-mediated toxicity. 
 
Spotting assay of smt3ts mutant strains expressing α-synuclein-GFP or A30P-GFP at 
permissive (25°C; + SUMO) or restrictive temperature (30°C; - SUMO). GAL1-driven 
α-synuclein-GFP is expressed from two genomically integrated copies. GAL1-driven 
A30P-GFP is expressed from a 2 µm plasmid. GFP, expressed from the same 
promoter, is used as a control. Yeast cells were spotted in 10-fold dilutions on 
selection plates containing glucose (α-synuclein ‘OFF’) or galactose (α-synuclein 
‘ON’). 
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Figure 12. Sumoylation impairment increases α-synuclein aggregate formation. 

Fluorescence microscopy of smt3ts cells expressing α-synuclein-GFP or A30P-GFP at 
permissive (25°C; + SUMO) or restrictive temperature (30°C; - SUMO). Cells expressing 
GFP alone showed as control. Scale bar, 1 µm, (up). Quantification of the percentage of 
cells displaying α-synuclein inclusions. At least 300 cells were counted per strain and 
experiment (below). 
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3.1.1.4 Protective function of SUMO requires direct α-synuclein 

modification  

 
In order to analyze whether the protective function of SUMO requires direct 

sumoylation of α-synuclein, W303 yeast strain was transformed with α-synuclein-

deficient sumoylation variant (K96R K102R-synuclein). A yeast strain carrying two 

copies of K96R K102R-KLID-GFP has been determined by Southern analysis (Figure 

13) and subjected to growth assay (Figure 14A). In addition, the number of cells 

carrying sumoylation-deficient α-synuclein aggregates were quantified after 

visualization by fluorescence microscopy (Figure 14B). Cells expressing K96R 

K102R-synuclein displayed an increased number of cells with inclusions compared to 

WT α-synuclein. Thus, blocking the key α-synuclein sumoylation residues resulted in 

higher α-synuclein-mediated cytotoxicity and aggregate formation, which further 

supports the direct protective role of sumoylation against α-synuclein-mediated 

toxicity.  

 

 

 

 

 

 

 

 

 
 

Expression of the K96R K102R-KLID-GFP (two copies) resulted in growth inhibition 

in contrast to WT α-synuclein (two copies), which did not impair yeast growth (Figure 

14A). 

 

 

 

Figure 13. Southern hybridization using labeled URA3 as probe. 
 
Integrated α-synuclein-GFP genes correspond to 2.7 kb + 4.7 kb (1x) and 2.7 kb 
+ 4.7 kb + 6.2 kb (2 x) and 2.7 kb + 4.7 kb + 6.2 kb (higher intensity) (3 x). C 
(control): genomic locus without vector integration; corresponds to 1.1 kb. 
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3.1.2 Phosphorylation of α-synuclein 

 

3.1.2.1 α-synuclein is phosphorylated in yeast 

 
The major goal of this study was to investigate a possible cross-talk between two 

main post-translational modifications of α-synuclein; sumoylation and 

phosphorylation. α-synuclein deposited in Lewy bodies is highly phosphorylated. 

90% of α-synuclein is phosphorylated at S129 within Parkinson’s disease Lewy 

bodies, whereas in the healthy brain, less than 5% of α-synuclein is phosphorylated 

A 

B 

Figure 14. Sumoylation deficient α-synuclein (K96R K102R synuclein) is toxic 
to yeast and forms aggregates. 
 
A. Spotting assay of W303 yeast cells, carrying two copies of GAL1-driven α-
synuclein-GFP and K96R K102R synuclein-GFP. Yeast cells were spotted in 10-fold 
dilutions on selection plates containing glucose (α-synuclein ‘OFF’) or galactose (α-
synuclein ‘ON’). B. Live-cell fluorescence microscopy of W303 cells expressing 
K96R K102R synuclein. Scale bar 1 μm (left). Quantification of the percentage of 
cells displaying α-synuclein inclusions (right). 
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at S129 (Anderson et al, 2006; Fujiwara et al, 2002). The effects of phosphorylation 

on α-synuclein-induced toxicity are complex with reports supporting negative as well 

as positive impacts on cells (Azeredo da Silveira et al, 2009; Chen & Feany, 2005; 

Freichel et al, 2007; Gorbatyuk et al, 2008; Hasegawa et al, 2002a; Hasegawa et al, 

2002b). Therefore, we next investigated the interplay between α-synuclein 

sumoylation and phosphorylation by examining how changes in sumoylation affect α-

synuclein phosphorylation and whether this impacted on α-synuclein toxicity.  

 

3.1.2.2 Overexpression of yeast endogenous kinase Cdc5 is toxic 

to yeast cells  

 

Various kinases have been implicated in phosphorylation of α-synuclein at S129. 

Serine/threonine Polo like kinases family was shown to contribute more than other 

kinases (Waxman & Giasson, 2011). These kinases are highly conserved from yeast 

to human. Saccharomyces cerevisiae has a single endogenous Polo-like kinase; 

Cdc5, which can phosphorylate α-synuclein in yeast (Gitler et al, 2009; Wang et al, 

2012). We started analyzing the effect of Cdc5 on α-synuclein toxicity in yeast. We 

used cdc5-DAmP strain in which the Cdc5 expression is downregulated in the 

presence of geneticine (G418). Further cdc5-DAmP strains were generated that 

expressed WT α-synuclein or A30P synuclein from two genomically integrated copies 

by synthetic genetic array technology (B. Popova, unpublished). Growth test of cdc5-

DAmP cells expressing WT α-synuclein and A30P mutant revealed that when Cdc5 

is down regulated yeast cells expressing WT α-synuclein or A30P mutant grow 

equally to the control cells, where α-synuclein(s) were not expressed (Figure 15).  

 

 

 

 

 

 

 

 

Figure 15. Down regulation of Cdc5 has no impact on α-synuclein mediated 
toxicity. 
 
Spotting assay of DAmP (Decreased Abundance by mRNA Perturbation) allele of 
Cdc5, carrying two copies of GAL1-driven α-synuclein-GFP or A30P-GFP. Decreased 
Abundance by mRNA Perturbation (DAmP) allele of cdc5 was used to assess the 
effect of down-regulation of the Cdc5 activity. Empty vector is used as a control. Cdc5-
DAmP cells were spotted in 10-fold dilutions on selection plates containing glucose (α-
synuclein ‘OFF’) or galactose (α-synuclein ‘ON’) with geneticin (G418). 
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This data suggested that down regulation of Cdc5 did not affect α-synuclein-related 

behavior. In order to investigate whether overexpression of Cdc5 has an effect on α-

synuclein expressing cells, the smt3ts cells expressing WT α-synuclein from two 

genomically integrated copies were co-transformed with GAL1-driven Cdc5. Cells 

expressing GFP and Cdc5 were taken as control. Spotting assay showed that 

overexpression of Cdc5 resulted in growth impairment in cells, co-expressing GFP 

and Cdc5 either at permissive 25°C or restrictive temperature 30°C. Remarkably, 

overexpression of Cdc5 was lethal to yeast cells co-expressing α-synuclein(s) and 

Cdc5, which suggested that higher level of Cdc5 might result in disruption of other 

molecular pathways in yeast which made it lethal to the cells (Figure 16). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2.3 Expression of human kinases GRK5 and PLK2 elevates α-

synuclein phosphorylation level 

α-synuclein is constitutively phosphorylated in low levels at S129 in normal brains 

and predominantly in Lewy bodies extracted from Parkinson’s disease patient brains 

(Fujiwara et al, 2002). Different human kinases are involved in α-synuclein 

phosphorylation (Ellis et al, 2001; Fujiwara et al, 2002; Inglis et al, 2009; Mbefo et al, 

2010; Okochi et al, 2000; Pronin et al, 2000; Sakamoto et al, 2009; Waxman & 

Giasson, 2008; Waxman & Giasson, 2011). Among them, PLK2 and GRK5 are 

Figure 16. Overexpression of CDC5 is toxic to yeast cells. 
 
Spotting assay of smt3ts cells co-expressing α-synuclein-GFP from two genomically 
integrated copies with GAL1-CDC5, expressed form a 2 μm plasmid, either at 
permissive (25°C; + SUMO) or restrictive temperature (30°C; - SUMO). Yeast cells 
were spotted in 10-fold dilutions on selection plates containing glucose (α-synuclein 
‘OFF’; kinase ‘OFF’) or galactose (α-synuclein ‘ON’; kinase ‘ON’).  
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shown to be the most efficient kinases in phosphorylating α-synuclein at S129 (Inglis 

et al, 2009; Pronin et al, 2000; Salvi et al, 2012). To see whether human kinases 

GRK5 and PLK2 affect α-synuclein phosphorylation level at S129 in yeast, GRK5 

and PLK2 were cloned in yeast high-copy plasmid (2 μm) under GPD and GAL1 

promoter, respectively. Smt3ts mutant strains carrying two copies of WT α-synuclein 

were co-transformed with GPD and GAL1-driven GRK5 or PLK2 and for comparison 

a vector control (EV). Western hybridization analyses with α-synuclein 

phosphorylated at S129 specific antibody (αSyn pS129) revealed that heterologous 

expression of kinases GRK5 or PLK2 resulted in increased phosphorylation of α-

synuclein at S129 in comparison to control cells without additional kinase activity 

(EV) (Figure 17).  

In the absence of human kinases α-synuclein is phosphorylated at S129 by the Polo-

like endogenous kinase Cdc5 (Wang et al, 2012), which is detected here in the 

control lane when no heterologous kinases were present (Figure 17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17. Expression of the human kinases GRK5/PLK2 increases α-synuclein 
S129 phosphorylation in yeast. 
 
Smt3ts mutant cells co-expressing α-synuclein and GRK5 or PLK2 at permissive (25°C; 
+ SUMO) or restrictive temperature (30°C; - SUMO). α-synuclein expression was 
detected using α-synuclein specific antibody. The phosphorylation level of α-synuclein 

on S129 was detected by α-synuclein S129 phosphorylation specific antibody (Syn 
pSer129) when expressed either alone (α-synuclein–GFP + empty vector (EV)) or in 
the presence of GRK5 or PLK2. GAPDH served as loading control. 
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3.1.2.4 GRK5 phosphorylates α-synuclein constitutively, whereas 

PLK2 prefers non-modified α-synuclein  

 
Proteins can be subjected to various post-translational modifications, which can 

interplay directly or indirectly to regulate their substrates function (Fink, 2005). With 

the previous results we showed that α-synuclein is sumoylated in yeast at the same 

sites as in human cells. In addition, the expression of human kinases PLK2 and 

GRK5 resulted in higher α-synuclein phosphorylation at S129 in yeast cells. Further, 

we aimed to investigate whether there is a cross-talk between α-synuclein 

sumoylation and α-synuclein S129 phosphorylation. We addressed this question by 

investigating whether sumoylation affects α-synuclein S129 phosphorylation levels. 

Several studies demonstrated that phosphorylation of some proteins (for example 

heat shock factors) is dependent on their sumoylation status (Hietakangas et al, 

2006; Yao et al, 2011). We explored the effect of sumoylation on α-synuclein 

phosphorylation at S129 by lowering the total cellular SUMO level and comparing the 

α-synuclein S129 phosphorylation level in the presence of GRK5 and PLK2. The 

constructed smt3ts strain harboring two genomic copies of WT α-synuclein 

(Figure 10) were transformed with the human kinase PLK2 or GRK5. To analyze how 

the sumoylation profile alters α-synuclein phosphorylation at S129 in the presence of 

PLK2 or GRK5, yeast cells were pre-grown at permissive temperature (25°C) and 

shifted in parallel to both 25°C and 30°C in 2% galactose inducing media for 5 hours 

α-synuclein production. The total protein content of yeast cells was extracted and 

subjected to Western hybridization analysis. In order to quantify the phosphorylated 

α-synuclein at S129, four independent clones were investigated. Quantifying 

increased α-synuclein S129 (Figure 18) phosphorylation level in both conditions (with 

or without SUMO) revealed that GRK5 leads to higher phosphorylation level of α-

synuclein at S129 independently from sumoylation statues, suggesting that GRK5 

can use sumoylated as well as unmodified α-synuclein as substrate to phosphorylate 

S129. PLK2 promotes α-synuclein phosphorylation level at S129 even more, when 

sumoylation is down regulated at 30°C and the total cellular sumoylated proteins 

were reduced. These results suggest differences in substrate specificity for the two 

kinases. PLK2 kinase is further stimulated to phosphorylate S129 when the target 

protein is unmodified, whereas GRK5 seems to be less specific in phosphorylating 

S129 of sumoylated or unmodified α-synuclein. Overall, these data suggest an 

interplay between α-synuclein sumoylation and phosphorylation.  
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3.1.2.5  α-synuclein is sumoylated in the presence of GRK5  

Our previous findings support an interplay between sumoylation and α-synuclein 

phosphorylation (Figure 18). In order to get more insight into the interplay between 

these two modifiers, we examined whether increased α-synuclein S129 

phosphorylation levels by GRK5 changed its sumoylation level. Ulp1ts cells co-

expressing WT α-synuclein and His-Smt3 were co-transformed with GRK5 and the 

kinase backbone empty vector (EV) as control. The total sumoylated proteins were 

purified by Ni2+-NTA. To get reliable quantifications, three independent experiments 

were performed. The result revealed that α-synuclein is sumoylated when co-

expressed with GRK5, however no significant differences could be identified in the 

level of sumoylated α-synuclein (Figure 19). 

 

Figure 18. Interplay between sumoylation and α-synuclein phosphorylation. 
 
Quantification of α-synuclein S129 phosphorylation level in the presence or absence 
of GRK5 and PLK2, respectively at permissive (25°C; + SUMO) or restrictive 
temperature (30°C; - SUMO). Densitometric analysis of the immunodetection of 

Syn pSer129 was normalized to the total amount of α-synuclein and relative to α-
synuclein + EV at permissive temperature (25°C; + SUMO). Significance of 
differences was calculated with one-way ANOVA test (P* < 0,01; P** < 0.001, n=4). 
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Figure 19. α-synuclein is sumoylated in the presence of GRK5. 
 
Nickel pull-down of His6-tagged Smt3 (His-Smt3) in ulp1ts cells co-expressing α-
synuclein and GRK5 or empty vector (EV). Sumoylated α-synuclein was detected in 
the pull-down fractions with α-synuclein antibody. Unmodified α-synuclein was 
detected in flow-through (upper panel). α-synuclein sumoylation level in the presence 
and absence of GRK5 was quantified and presented as ratio to the control (input α-
synuclein) (below panel). 
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3.1.2.6 Higher α-synuclein phosphorylation levels at S129 by 

GRK5 and PLK2 expression alleviate induced cytotoxicity 

and inclusion formation in a SUMO-deficient yeast strain  

 
To further study the interplay between sumoylation and α-synuclein S129 

phosphorylation, the effect of increased α-synuclein S129 phosphorylation by GRK5 

or PLK2 expression on α-synuclein-mediated cytotoxicity associated with 

sumoylation impairment was questioned. The effect of GRK5 and PLK2 on α-

synuclein-mediated toxicity associated with sumoylation impairment was tested by 

spotting assays. Cells expressing two copies of WT α-synuclein already presented 

significant growth inhibition when sumoylation is impaired at 30°C (Figure 11) but in 

the presence of human kinases yeast cells rescued from α-synuclein-mediated 

toxicity in the absence of SUMO (Figure 20). We found that GRK5 suppressed the 

growth defect associated with impaired sumoylation whereas PLK2 expression 

resulted in a less pronounced improvement of growth in comparison to cells 

expressing GRK5. Cells grew equally well to the control when sumoylation was not 

impaired and the kinases were expressed.  

 

 

 

 

 

 

 

 

 

 
 
 

 
 

Figure 20. Increased α-synuclein S129 phosphorylation level by GRK5/PLK2 
expression alleviates the toxicity. 
 
Spotting assay of smt3ts cells co-expressing α-synuclein-GFP with GRK5 or PLK2 
either at permissive (25°C; + SUMO) or restrictive temperature (30°C; - SUMO). Yeast 
cells were spotted in 10-fold dilutions on selection plates containing glucose (α-
synuclein ‘OFF’; kinases ‘OFF’) or galactose (α-synuclein ‘ON’; kinases ‘ON’).  
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Yeast cell survival correlated with reduced numbers of cells displaying inclusions in 

the presence of human kinases (Figure 21). The previous results have shown that in 

the absence of SUMO, cells displaying inclusions increased (Figure 12), whereas the 

higher phosphorylation level of α-synuclein at S129 in the presence of GRK5 and 

PLK2 resulted in significant decreases in the number of cells presenting inclusions in 

the absence of SUMO. The percentage of cells with inclusions at permissive 

temperature was affected by kinase expression (Figure 21). These results suggest 

that higher α-synuclein phosphorylation at S129 rescues the cells from α-synuclein-

mediated cytotoxicity and inclusion formation associated with sumoylation 

impairment in a kinase-dependent manner.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 21. Increased α-synuclein S129 phosphorylation levels by GRK5/PLK2 
reduces inclusions associated with impaired sumoylation in smt3ts cells. 
 
Fluorescence microscopy of smt3ts cells expressing α-synuclein in the presence or 
absence of GRK5 or PLK2. Scale bar 1 µm (up). Quantification of percentage of cells 
displaying α-synuclein inclusions in the presence or absence of the kinases (below).  
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3.1.2.7 Overexpression of GRK5 reduces the oxidative stress-

mediated sensitivity associated with sumoylation 

deficiency in α-synuclein expressing cells 

 
Our observations revealed that higher α-synuclein phosphorylation at S129 by 

overexpression of GRK5 alleviated the α-synuclein cytoxicity associated with 

sumoylation impairment (Figure 20). In order to explore more probable rescue effect 

of higher α-synuclein S129 phosphorylation on α-synuclein-mediated toxicity in yeast 

cells impaired in sumoylation, we examined oxidative stress influence. Several 

reports over the past years implicated involvement of oxidative stress in a number of 

disease states, including Parkinson’s disease (Giasson et al, 2000; Jenner, 2003; 

Kikuchi et al, 2002; Sherer et al, 2002; Souza et al, 2000). The exact mechanistic 

role of oxidative stress in Parkinson’s disease progression is yet to be cleared 

because it is linked to other components of the degenerative process. It is difficult to 

determine whether oxidative stress directly leads to cells death, or is the 

consequence of this event. We treated smt3ts yeast strain expressing WT α-synuclein 

(two genomically copies) with hydrogen peroxide, which results in the accumulation 

of reactive oxygen species (ROS), in the presence and absence of GRK5 at 

permissive or restrictive temperature. Cells expressing GFP alone were used as 

control. Halo assay analyzes showed less sensitivity of α-synuclein cells to ROS in 

the absence of cellular SUMO when GKR5 was overexpressed (Figure 22). These 

data suggest that GRK5-mediated α-synuclein phosphorylation advocates α-

synuclein expressing cells from harmful factors such as oxidative stress in the 

absence of SUMO modifier. This further supports that higher α-synuclein 

phosphorylation at S129 can compensate the sumoylation impairment-associated 

impact on α-synuclein expressing cells. 
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3.1.2.8 Increased α-synuclein S129 phosphorylation cannot 

attenuate yeast growth impairment mediated by higher α-

synuclein concentration 

 
To learn more about the effect of increased phosphorylation levels of α-synuclein at 

S129 on α-synuclein-mediated cytotoxicity, W303 yeast cells expressing three copies 

of WT α-synuclein, which is shown to be a threshold for cytotoxicity in yeast (Petroi et 

al, 2012), were transformed with the human kinases GRK5 and PLK2. Spotting tests 

revealed that α-synuclein-mediated cytotoxicity has not been reduced by 

Figure 22. GRK5 overexpression reduces the sensitivity of α-synuclein-
expressing cells to oxidative stress in the absence of SUMO. 
 
Halo assay of smt3ts cells expressing WT α-synuclein from two genomically 
integrated copies at restrictive temperature (30°C; - SUMO) alone or co-expressed 
with GRK5. Cells expressing GFP alone considered as control. 5 μl of 30% H2O2 was 
applied at the sterile disc positioned in the middle of SC-selective marker plates 
containing 2% galactose (α-synuclein ‘ON’). The cells sensitivity to oxidative stress 
was measured after two days incubation at restrictive temperature (30°C). The 
diameter of the inhibition area, where the cells were not able to grow, was 
considered as measure for oxidative stress sensitivity. 
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overexpression of either kinase (Figure 23A). The same results were observed when 

the kinases were co-expressed in yeast cells with WT α-synuclein from episomal 

2 μm plasmid (Figure 23B). These results suggest that the rescue effect of higher α-

synuclein phosphorylation levels at S129 can not directly reduce α-synuclein toxicity 

but only compensate sumoylation impairment, which further supports the interplay 

between these two post-translational modifications. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.2.9 Rescue of SUMO defect is S129 specific 

 
α-synuclein contains several phosphorylation sites including S129, S87, Y125, Y133 

and Y136 (Ellis et al, 2001; Kim et al, 2006; Nakamura et al, 2001; Okochi et al, 

2000) (Figure 4). α-synuclein was shown to be predominantly phosphorylated at the 

S129 residue (Anderson et al, 2006). To further analyze the rescue effect of GRK5 

A 

B 

Figure 23. Increased level α-synuclein-mediated toxicity is not attenuated by 
kinases. 
 
A. Spotting assay of W303 strain co-expressing α-synuclein-GFP with kinases 
(GRK5/PLK2). GAL1-driven α-synuclein-GFP was expressed from three genomically 
integrated copies. GFP, expressed from the same promoter, was used as a control. 
B. Spotting assay of W303 strain co-expressing α-synuclein-GFP with kinases 
(GRK5/PLK2). GAL1-driven α-synuclein-GFP was expressed from a 2 µm plasmid. 
Yeast cells were spotted in 10-fold dilutions on selection plates containing glucose 
(α-synuclein ‘OFF’) or galactose (α-synuclein ‘ON’).  
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and PLK2 against α-synuclein toxicity associated with sumoylation impairment, S129 

specificity has been questioned. For this purpose, serine 129 was substituted to 

alanine by Quickchange Site-Directed Mutagenesis method. The specificity of 

phosphorylation of GRK5 or PLK2 on S129 was analyzed in greater detail by 

integrating two copies of an S129A mutant form of α-synuclein in the genome. Smt3ts 

strain with two genomically integrated copies of S129A synuclein were constructed 

(Figure 24A). These cells were co-transformed with GRK5 and PLK2 kinases. In 

order to evaluate the α-synuclein S129 antibody specificity, protein purified from cells 

co-expressing S129A synuclein and GRK5/PLK2 were subjected to Western 

hybridization analysis. Treating the membrane with α-synuclein S129 antibody 

showed the complete abolishment of phosphorylated α-synuclein when the S129 is 

mutated to alanine (Figure 24B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. Substitution of serine to alanine results in abolishment of α-
synuclein S129 phosphorylation by GRK5. 
 
A. Southern hybridization using labeled TRP1 as probe. Integrated genes for α-
synuclein-GFP correspond to 1.9 kb + 4.2 kb + 4.6 kb (2 x). C (control): genomic 
locus without vector integration; corresponds to 1,5 kb. B. Smt3ts mutant cells co-
expressing α-synuclein with GRK5 and S129A-synuclein-GFP with GRK5 at 
permissive (25°C; + SUMO) or restrictive temperature (30°C; - SUMO). α-synuclein 
levels were detected with α-synuclein specific antibody and α-synuclein 
phosphorylation at S129 was detected by α-synuclein S129 phosphorylation specific 

antibody (Syn pSer129). GAPDH was used as loading control. 
 

A B 
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Growth tests were conducted to analyze α-synuclein S129 specificity in rescue effect 

mediated by kinases expression in the absence of SUMO. In the presence of 

functional SUMO, co-expression of S129A with GRK5 had the same growth 

phenotype as that observed for cells co-expressing WT α-synuclein with GRK5 

(Figure 25). Slight growth retardation was observed by co-expression of S129A and 

PLK2 (Figure 25). In the absence of functional SUMO, neither kinase could rescue 

the growth defect of the mutant α-synuclein, where the phosphorylation site was 

missing (Figure 25). These data indicate that the SUMO dependent effect of GRK5 or 

PLK2 expression on yeast growth depends on the phosphorylation of α-synuclein at 

S129.  
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Figure 25. Rescue of SUMO defect is S129 specific. 
 
Spotting assay of smt3ts cells co-expressing α-synuclein-GFP or S129A synuclein-
GFP with GRK5 or PLK2 either at permissive (25°C; + SUMO) (up) or restrictive 
temperature (30°C; - SUMO) (below), The cells growth was compared to α-
synuclein-GFP with GRK5 or PLK2 either at permissive (25°C; + SUMO) or 
restrictive temperature (30°C; - SUMO). Yeast cells were spotted in 10-fold dilutions 
on selection plates containing glucose (α-synuclein ‘OFF’; kinases ‘OFF’) or 
galactose (α-synuclein ‘ON’; kinases ‘ON’). 
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Furthermore, decreased accumulation of α-synuclein inclusions in the absence of 

cellular SUMO and presence of GRK5 or PLK2 (Figure 21) was S129 dependent, 

since co-expression of S129A mutant with either kinase did not reveal decreased 

accumulation of α-synuclein inclusions in the absence of SUMO (Figure 26). These 

results suggest that increased levels of the α-synuclein S129 phosphorylation can 

suppress the α-synuclein-induced cytotoxicity in SUMO-deficient mutant strain of 

yeast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 26. Inclusions reduction in SUMO deficient cells is S129 specific. 
 
Fluorescence microscopy of SUMO deficient cells expressing S129A synuclein-GFP 
in the presence or absence of GRK5 or PLK2 (Kinase) (up). Scale bar 1 µm. 
Quantification of percentage of cells displaying S129A synuclein-GFP inclusions in 
the presence or absence of GRK5 or PLK2 (below). 
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3.1.2.10 GRK5 has direct effect on sumoylation-deficient α-

synuclein mediated cytotoxicity, whereas PLK2 displays 

an indirect effect 

 
To obtain more insights into the interplay of α-synuclein sumoylation and 

phosphorylation, the major sumoylation sites of α-synuclein (K96 and K102) were 

blocked. The direct or indirect effect of each kinase on sumoylation-deficient α-

synuclein mediated cytotoxicity was evaluated. To this aim, we used W303 cells 

expressing two copies of K96R K102R mutant, blocked in two major sumoylation 

residues (Figure 13). GRK5 and PLK2 kinases were transformed in the strain and 

growth assays were performed. Co-expression of GRK5 and K96R K102R mutant 

resulted in a striking recovery of growth (Figure 27). This suggests that GRK5 directly 

suppresses the sumoylation defect of α-synuclein. In contrast, expression of PLK2 

did not significantly influence yeast growth. This suggests an indirect effect on α-

synuclein toxicity caused by down regulation of the sumoylation activity, which then 

allows a partial growth recovery by PLK2 expression. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 27. Reduction of sumoylation-deficient synuclein-mediated cytotoxicity 
in a kinase dependent-manner. 
 
Spotting assay of W303 yeast cells, carrying two copies of GAL1-driven α-synuclein-
GFP and K96R, K102R synuclein-GFP in the presence of GRK5 and PLK2 or empty 
vector (EV). Yeast cells were spotted in 10-fold dilutions on selection plates 
containing 2 % glucose (α-synuclein ‘OFF’; kinases ‘OFF’) or 2 % galactose (α-
synuclein ‘ON’; kinases ‘ON’). 
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3.2 SUMO-deficiency and aggregate clearance of α-

synuclein  

Although several studies explored the degradation mechanisms involved in α-

synuclein aggregate clearance, the mechanisms regulating α-synuclein partitioning 

between the main degradation pathways remains arguable (Chu et al, 2009; 

Ebrahimi-Fakhari et al, 2011; Furukawa et al, 2002; Hara et al, 2006; McLean et al, 

2001; Petroi et al, 2012; Rideout et al, 2001). In this chapter, we addressed the 

question whether interplay between specific post-translational modifications of α-

synuclein modulates the processing of the inclusions through degradation by 

autophagy and proteasome pathways. 

 

3.2.1 Sumoylation supports aggregate clearance of α-synuclein 

by autophagy 

 
α-synuclein aggregates are mainly cleared by autophagy pathway, whereas there is 

a minor contribution of the proteasome in clearing α-synuclein aggregates in yeast 

cells (Petroi et al, 2012). The previous results showed that sumoylation has a 

protective role against α-synuclein aggregate formations (Figure 12). The next aim 

was to study how sumoylation might affect the α-synuclein aggregate clearance in 

yeast. We studied autophagy contribution in aggregate clearance of α-synuclein 

when sumoylation is inhibited by performing GAL1 promoter shut-off experiments. 

We analyzed the impact of blocking the autophagy pathway by chemical treatments. 

Phenylmethylsulfonyl fluoride (PMSF) was used to block the activity of vacuolar 

proteases. Smt3ts strain harboring two copy integrations of WT α-synuclein was first 

pre-grown overnight at permissive temperature and then shifted to induction media 

containing 2% galactose at both permissive and restrictive temperature for four 

hours. The GAL1 promoter was switched off by transferring cells to media containing 

2% glucose and supplemented with PMSF dissolved in ethanol to inhibit autophagy 

pathway. In parallel, cells were treated with ethanol as control. Life-cell fluorescence 

microscopy was performed two hours after promoter shut-off and the number of cells 

displaying aggregates was quantified. At permissive temperature when sumoylation 

is not down regulated, cells were unable to clear aggregates two hours after 

promoter shut-off, whereas cells expressing α-synuclein at restrictive temperature, 

when sumoylation is down regulated, cleared aggregates upon promoter shut-off in 

the same manner as the control (Figure 28). In order to validate this result genetically 
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and study the aggregate clearance of sumoylation deficient α-synuclein directly, 

W303 cells expressing two copies of K96R K102R variant were subjected to 

promoter shut-off study with PMSF drug treatment. After four hours production of 

K96R K102R variant, cells were shifted to 2% glucose containing media 

supplemented with PMSF. Quantification of number of the cells after promoter shut-

off revealed that cells expressing K96R K102R mutant cleared inclusions in a similar 

manner to that observed with vehicle only (ethanol) (Figure 28). These results 

suggest that defect in sumoylation interferes with the aggregate clearance of α-

synuclein through the autophagic degradation pathway. Thus, sumoylation supports 

the autophagy-dependent clearance of α-synuclein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Sumoylation supports α-synuclein aggregate clearance through 
autophagy pathway. 
 
Quantification of aggregates in smt3ts cells expressing α-synuclein-GFP, two times 
integrated in the genome upon GAL1-promoter shut off at indicated time points. Cells 
were incubated in 2% galactose containing media for four hours at permissive (25°C) 
and restrictive temperature (30°C). Then the cells were shifted to 2% glucose 
containing media supplemented with 1 mM PMSF dissolved in EtOH and only EtOH 
as a control. Cells with aggregates were counted at the indicated time points and 
presented as a ratio to the control (EtOH). Significance of differences was calculated 
with t- test (P*, P** < 0.05, n=3). 
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3.2.2 Phosphorylation partially supports SUMO-deficient α-

synuclein aggregate clearance via the autophagy pathway  

 
The role of phosphorylation at S129 on aggregate clearance of SUMO deficient cells 

was addressed. To this aim, W303 cells co-expressing two genomically integrated 

copies of SUMO-deficient α-synuclein (K96R K102R mutant) and human kinases 

GRK5/PLK2 were studied upon promoter shut-off experiment with PMSF treatment. 

After four hours inducing K96R K102R mutant, cells were shifted to 2% glucose 

containing media supplemented with PMSF. Fluorescence microscopy and 

aggregation quantification after 2 hours promoter shut-off revealed that expression of 

kinases prevented the clearance of aggregates when autophagy pathway is blocked, 

whereas cells expressing SUMO-deficient α-synuclein without the kinase expression 

were able to clear aggregates in the absence of autophagy mechanism (Figure 29). 

These data suggest that expression of GRK5 or PLK2 can partially rescue the 

aggregate clearance through autophagy pathway. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 

Figure 29. α-synuclein aggregate clearance upon promoter shut-off and 
inhibition of autophagy. 
 
Inhibition of the vacuolar degradation pathway by PMSF. Quantification of cells 
expressing α-synuclein-GFP, K96R K102R synuclein-GFP and K96R K102R 
synuclein-GFP, expressing GRK5 or PLK2, respectively. α-synuclein-GFP and K96R 
K102R synuclein-GFP were expressed from two genomically integrated GAL1-
promoter driven copies. After four hours induction of the protein expression in 
galactose medium, cells were shifted to glucose medium supplemented with 1 mM 
PMSF dissolved in ethanol (EtOH) or only EtOH as a control. Quantification of the 
reduction of inclusions was done 2 hours after the promoter shut-off. Cells with 
inclusions were counted and presented as a ratio to the control (EtOH). Significance 
of differences was calculated with t-test (P* < 0.05, n=3). 
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3.2.2.1 α-synuclein is ubiquitinated in yeast 

 
Accumulated proteins can be degraded via different degradation pathways 

(Goldberg, 2003; Wong & Cuervo, 2010). According to our previous observations in 

this study, sumoylation deficient α-synuclein is not degraded by autophagy, which 

suggests involvement of another degradation pathway in α-synuclein aggregate 

clearance. Proteasome contributes to degrade proteins in ubiquitin dependent or 

independent manner (Smith et al, 2011). One of the most important post-translational 

modifications of α-synuclein involved in Parkinson’s disease pathology is 

ubiquitination. α-synuclein has been shown to be mono- and di-ubiquitinated in vitro 

and in vivo (Ebrahimi-Fakhari et al, 2011; Nonaka et al, 2005). To get more insight 

into the mechanism involved in α-synuclein aggregate clearance, we tested whether 

α-synuclein is ubiquitinated in yeast cells and how higher phosphorylation might 

affect α-synuclein ubiquitination status. For this purpose, immunoprecipitation (IP) 

analysis was performed. In order to enrich α-synuclein protein, W303 cells 

overexpressing α-synuclein-His6 and A30P-His6 were subjected to Ni2+ affinity 

chromatography. Enriched α-synuclein protein pulled down by Ni2+-NTA was 

immunoprecipitated with ubiquitin antibody (Figure 30). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 30. α-synuclein is ubiquitinated and phosphorylated simultaneously in 
yeast cells. 
 
α-synuclein-His6 and A30P-His6 protein was purified by Ni2+ pull-down. α-synuclein 
purified from Ni2+ pull-down was detected with α-synuclein specific antibody and then 
subjected to immunoprecipitation with ubiquitin antibody. The ubiquitinated and 
phosphorylated α-synuclein was detected by α-synuclein and αSyn pS129 specific 
antibody, respectively. 
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Western hybridization analysis after ubiquitin IP with α-synuclein specific antibody 

detected the mono-ubiquitinated α-synuclein and its A30P mutant, which migrated to 

22 kDa (Figure 30). Treating the membranes with phospho-specific antibody (αSyn 

pSer129) in parallel indicated that α-synuclein is simultaneously phosphorylated at 

S129. This result revealed that the preference of monomeric α-synuclein to be mono-

ubiquitinated is conserved from yeast to higher organisms. 

 

3.2.1 Ubiquitination of α-synuclein depends on its 

phosphorylation and sumoylation status 

 
We showed that α-synuclein is mono-ubiquitinted in yeast (Figure 30). We also 

showed that the ubiquitinated α-synuclein is phosphorylated at S129 at the same 

time (Figure 30). Next goal was to investigate the influence of phosphorylation and 

sumoylation on α-synuclein ubiquitination profile. The smt3ts yeast cells expressing α-

synuclein-His6 were co-expressed with GRK5 and PLK2. The empty vector of the 

kinase was used as control. Cells were pre-grown at permissive temperature and 

then shifted to induction medium (2% galactose) in presence or absence of SUMO at 

different temperatures. Then pull-down of the enriched α-synuclein via Ni2+-NTA were 

applied. α-synuclein eluted from columns was subjected to ubiquitin 

immunoprecipitation. Immunoblotting of the immunoprecipitated protein with α-

synuclein antibody revealed different pattern of ubiquitinated proteins, migrating at 

molecular mass range of 22-36 kDa. When no kinases were expressed, we observed 

a single molecular band at around 29 kDa (Figure 31). Interestingly, in the presence 

of the kinases, we observed multiple distinct bands, the major one migrating at 

22 kDa. In addition, we observed a smear pattern of the modified α-synuclein to 

higher molecular weights, which was more pronounced when sumoylation is down 

regulated (Figure 31). Judging from the size and from previous reports, we 

hypothesize that α-synuclein underwent mono- (22 kDa), di- (29 kDa) and tri-

ubiquitination (Hasegawa et al, 2002c). Expression of GRK5 revealed more profound 

effect on the ubiquitination pattern of α-synuclein in comparison with PLK2, 

especially in the absence of SUMO. 

The results indicate that the ubiquitination pattern of sumoylated and non-sumoylated 

α-synuclein changes in a kinase-specific manner. GRK5, which phosphorylates α-

synuclein independently of its sumoylation status, promotes multi-ubiquitination of α-

synuclein and the effect is more profound when the protein is not sumoylated. PLK2, 
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which preferentially phosphorylates S129 of non-sumoylated α-synuclein, induces 

mainly mono-ubiquitination. The findings suggest a cross-talk between sumoylation, 

phosphorylation and ubiquitination of α-synuclein in yeast. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
α-synuclein is highly mono- or di-ubiquitinated at multiple residues in Lewy bodies 

(Anderson et al, 2006; Hasegawa et al, 2002c; Sampathu et al, 2003) (Figure 4). 

Observing multi-ubiquitinated α-synuclein in the presence of the kinases raised the 

question whether α-synuclein undergoes poly-ubiquitination. To investigate the 

nature of multi-ubiquitinated α-synuclein, we used Tandem Ubiquitin Binding Entities 

(TUBEs) (Hjerpe et al, 2009), which enable the identification of poly-ubiquitinated 

proteins. The total protein crude extracts were purified from smt3ts yeast cells co-

Figure 31. Sumoylation and α-synuclein S129 phosphorylation affect the 
ubiquitination pattern of α-synuclein. 
 
Smt3ts cells expressing α-synuclein-His6 co-transformed with GRK5 or PLK2 and 
empty vector of the kinases (EV) as a control at permissive (25°C; + SUMO) or 
restrictive temperature (30°C; - SUMO). The purified α-synuclein protein from Ni2+ 
pull-down was subjected to ubiquitin immunoprecipitation. The ubiquitinated α-
synuclein was analyzed by Western hybridizationting with α-synuclein antibody. 
 



Results 
  

72  

expressing α-synuclein-His6 with GRK5 or PLK2 and the empty vector of the kinase 

as control, in presence or absence of SUMO at different temperatures. In order to 

control the TUBEs purification specificity, total protein crude extract from smt3ts yeast 

cells co-expressing α-synuclein-His6 with GRK5 at permissive or restrictive 

temperatures were incubated with agarose beads as negative control reactions. The 

expression of α-synuclein was detected with α-synuclein specific antibody (Figure 

32). Equal amounts of the total protein from each strain were subjected to TUBEs 

analysis. Immunoblotting analysis of the precipitated proteins revealed no poly-

ubiquitinated α-synuclein (Figure 32 (middle), no signal), which is in line with 

previous evidences. Western hybridization analysis of the purified proteins from 

TUBEs with ubiquitin specific antibody showed multiple bands in precipitated proteins 

whereas no signal was observed in negative control reactions (Figure 32 (below)). 

These data suggest that α-synuclein is multi-ubiquitinated in the presence of the 

kinases at several residues rather than poly-ubiquitinated (ubiquitination-chain) at a 

specific lysine residue. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. TUBEs do not show poly-ubiquitinated α-synuclein in yeast. 
 
Western hybridization analysis of total protein crude extract from smt3ts yeast cells 
co-expressing α-synuclein-His6 with GRK5 or PLK2 and the empty vector in the 
presence or absence of SUMO at different temperature (Input). The last two samples 
are untreated total protein crude extract from α-synuclein-His6 with GRK5 at 
permissive and restrictive temperatures, used as TUBEs Negative Control 
Reactions. α-synuclein was detected with α-synuclein specific antibody (Upper). 
Western hybridization analysis of poly-ubiquitinated α-synuclein after the TUBEs 
purification with α-synuclein specific antibody (middle). Western hybridization 
analysis of poly-ubiquitinated proteins after the TUBEs purification with ubiquitin 
specific antibody (below). 
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3.2.2 The proteasome degradation pathway plays a major role in 

SUMO-deficient α-synuclein aggregate clearance 

 
Observation of α-synuclein ubiquitination status alteration and the supportive effect of 

sumoylation on α-synuclein aggregate clearance via autophagy pathway promoted 

us to analyze how sumoylation and phosphorylation affect the α-synuclein aggregate 

clearance by the proteasome. We assessed the study of the ubiquitin proteasome 

system by blocking the proteasome activity by drug treatment. For this reason, the 

drug MG132 was used to inhibit proteasomal activity (Lee & Goldberg, 1998; Liu et 

al, 2007). Impermeability of yeast chitin cell wall hampered the use of proteasome 

inhibitors in S. cerevisiae. A new method to overcome this difficulty is to use L-proline 

instead of ammonium sulfate as nitrogen source in growth medium and addition of 

small amount of sodium dodecyl sulfate (0.003%SDS), which leads to transient 

opening of the cell wall (Liu et al, 2007). W303 cells expressing two genomically 

integrated copies of K96R K102R mutant were pre-grown in corresponding media 

and further studied after promoter shut-off. In parallel, W303 cells expressing two 

copies of WT α-synuclein were used as control. After inducing the α-synuclein 

expression for four hours, cells were shifted to 2% glucose containing media 

supplemented with MG132 dissolved in DMSO. As control, K96R K102R-synuclein 

expressing cells were treated with DMSO. Quantification of cells presenting 

aggregates 2 hours after promoter shut-off revealed equal aggregate clearance of 

WT α-synuclein in MG132-treated cells when compared with the control (DMSO) 

(Figure 33). In contrast, in the presence of proteasome inhibitor, cells were unable to 

clear aggregates when α-synuclein major sumoylation sites were blocked (K96R 

K102R) (Figure 33). This suggests a major contribution of the proteasome in α-

synuclein aggregate clearance when α-synuclein is sumoylation-deficient. Our data 

indicate that sumoylated α-synuclein is primarily targeted to the autophagy pathway 

and non-sumoylated α-synuclein primarily to the proteasome. Inhibition of 

sumoylation results in inefficient autophagy-mediated aggregate clearance and 

directs α-synuclein to the proteasome.  
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3.2.3 Phosphorylation supports proteasome pathway in α-

synuclein aggregate clearance in kinase-dependent manner 

 
We have shown that GRK5 and PLK2 expression stimulates α-synuclein 

ubiquitination status when sumoylation is impaired (Figure 31). In addition, promoter 

shut-off studies revealed the partial contribution of autophagy in aggregate clearance 

of SUMO-deficient α-synuclein when kinases are present (Figure 29). To further 

study the interplay between these modifiers in context of α-synuclein aggregate 

clearance, we analyzed the effect of GRK5 or PLK2 expression and sumoylation on 

α-synuclein aggregate clearance via proteasome degradation pathway. To this aim, 

promoter shut-off studies were performed with W303 co-expressing SUMO-deficient 

α-synuclein (K96R K102R synuclein) and each of the kinases by inhibiting the 

proteasome with MG132. Cells expressing two genomically integrated WT α-

synuclein driven by the GAL1-promoter were analyzed as control. As previously 

Figure 33. α-synuclein aggregate clearance upon promoter shut-off and 
proteasome inhibition. 
 
Quantification of cells expressing α-synuclein-GFP, K96R K102R synuclein-GFP 
from two genomically integrated GAL1-driven copies. After four hours inductions of 
the protein expression in galactose medium, cells were shifted to glucose medium 
supplemented with 75 μM MG132, dissolved in DMSO or only DMSO as a control. 
Quantification of the reduction of inclusions was done 2 hours after the promoter 
shut-off. Cells with inclusions were counted and presented as a ratio to the control 
(DMSO). 
 



Results 
  

75  

explained, α-synuclein expression was induced for four hours and the cells were 

shifted to glucose containing media. Two hours after promoter shut-off the cells with 

aggregates were counted. The results indicated that in the presence of the kinases 

the aggregates were directed to the proteasome pathway when α-synuclein is 

impaired in sumoylation in kinase-dependent manner (Figure 34). This suggests a 

major contribution of the proteasome in α-synuclein aggregate clearance when the α-

synuclein is sumoylation-deficient. Cells were unable to clear inclusions when α-

synuclein sumoylation (K96R K102R) and the proteasome (MG132) were blocked 

simultaneously. Expression of GRK5 and the sumoylation-deficient mutant promoted 

the proteasome-dependent clearing of inclusions and, accordingly, MG132 treatment 

resulted in an increased percentage of cells with inclusions. Again, PLK2 had only a 

minor impact on inclusion clearance by the proteasome in comparison to GRK5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 34. Phosphorylation promotes aggregate degradation of sumoylation-
deficient α-synuclein by the proteasome. 
 
Quantification of cells expressing α-synuclein-GFP, K96R K102R synuclein-GFP and 
K96R K102R synuclein-GFP, expressing GRK5 or PLK2, respectively. α -synuclein-
GFP and K96R K102R synuclein-GFP were expressed from two GAL1-promoter 
drivengenomically integrated copies. After four hours inductions of the protein 
expression in galactose medium, cells were shifted to glucose medium 
supplemented with 75 μM MG132 dissolved in DMSO or only DMSO as a control. 
Quantification of the reduction of inclusions was done 2 hours after the promoter 
shut-off. Cells with inclusions were counted and presented as a ratio to the control 
(DMSO). Significance of differences was calculated with t-test (P*< 0.05, n=3). 
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3.2.4 Sumoylation impairment does not alter α-synuclein protein 

stability in yeast 

Sumoylation is also known to modulate its target proteins activity/stability (Bologna & 

Ferrari, 2013). Sumoylation regulates CHFR tumor suppressor stability negatively 

and promotes its degradation in UPS-dependent manner (Bae et al, 2013). To 

explore the effect of sumoylation on α-synuclein stability, we performed GAL1 

promoter shut-off experiment with smt3ts mutant cells expressing WT α-synuclein 

from two genomically integrated gene copies. Expression of α-synuclein was induced 

in 2% galactose-containing medium for four hours at permissive (25oC) and 

restrictive (30oC) temperature and the cells were then shifted to glucose medium, 

which represses the promoter. Cells were harvested at indicated time points (0, 3, 6, 

18 h) and the whole protein extract subjected to Western hybridization analysis with 

α-synuclein antibody. Immunoblotting analysis revealed that α-synuclein protein was 

stable with no changes in its protein level either in presence or absence of SUMO at 

different temperatures (Figure 35A). To further validate our finding and investigate 

whether direct inhibition of α-synuclein sumoylation by blocking the major 

sumoylation sites (K96R K102R) will affect the protein stability over the time, 

promoter shut-off study was performed in parallel with W303 yeast cells, expressing 

K96R K102R synuclein from two genomically integrated copies and cells expressing 

WT α-synuclein. GAL1 promoter was shut-off four hours after induction and cells 

collected at indicated time points. Similarly as observed with smt3ts mutant cells 

expressing WT α-synuclein, Western hybridization analysis of the protein extracts at 

the indicated times after promoter shut-off with α-synuclein antibody revealed that 

sumoylation deficient α-synuclein (K96R K102R) is equally stable as WT α-synuclein 

(Figure 35B). Altogether, our stability analysis performed by promoter shut-off 

approaches indicated that sumoylation-deficient α-synuclein exhibited similar stability 

to that of its WT form, therefore suggesting that SUMO-deficient α-synuclein is stable 

in yeast cells and this modification did not alter α-synuclein stability. 
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3.2.5 SUMO-deficient α-synuclein stability reduces when its 

phosphorylation level on S129 is higher by GRK5 and PLK2 

 
Among different regulatory mechanisms, where phosphorylation plays a role, tuning 

the protein stability was shown to be an important phenomenon in different cellular 

pathways including protein degradation (Xu et al, 2009). Having defined that 

phosphorylation of α-synuclein by GRK5 and PLK2 changes its ubiquitination status 

in the presence and absence of SUMO (Figure 31), we aimed to address the 

A 

B 

Figure 35. Sumoylation does not alter α-synuclein protein stability. 
 
A. GAL1 promoter shut-off studies. Smt3ts cells expressing α-synuclein were induced 
for four hours in galactose (α-synuclein “on”) at permissive (25°C; + SUMO) or 
restrictive temperature (30°C; - SUMO) and then transferred to glucose containing 
medium (α-synuclein “off”). Immunoblotting analysis was performed at the indicated 
time-points after promoter shut-off with α-synuclein antibody and GAPDH antibody 
as loading control. B. Western hybridization analysis of GAL1 promoter shut-off in 
W303 yeast cells expressing α-synuclein-GFP (left panel) and K96R K102R 
synuclein-GFP at the indicated time-points with α-synuclein antibody and 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) antibody as loading control. 
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question whether sumoylation-deficient α-synuclein protein stability is changed by 

expression of the kinases. To this end, promoter shut-off study was done with W303 

cells carrying two genomically integrated copies of SUMO-deficient α-synuclein 

(K96R K102R), co-expressed GRK5 or PLK2. K96R K102R synuclein protein was 

produced for four hours and the promoter was suppressed by shifting cells to media 

containing 2% glucose. Total protein extracts were isolated from cells harvested at 

indicated time points (0, 3, 6, 18 h) after promoter shut-off. The probes were 

subjected to Western hybridization analysis and sumoylation-deficient α-synuclein 

protein levels were detected by α-synuclein specific antibody (Figure 36). 

Immunoblotting analysis indicated that α-synuclein higher phosphorylation at S129 

when its major SUMO sites are blocked affected its turnover and the protein level 

declined over the time. These data indicate that expression of the kinases affects α-

synuclein stability when its major sumoylation sites are impaired, which corroborate 

our findings that expression of kinases increases the ubiquitination level of α-

synuclein, thus promoting the degradation of the protein by the proteasome. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 36. GRK5 and PLK2 decrease sumoylation-deficient α-synuclein protein 
stability. 
 
Western hybridization analysis of GAL1 promoter shut-off studies. W303 yeast cells 
co-expressing K96R K102R synuclein-GFP with GRK5 or PLK2 were induced for 
four hours in galactose (α-synuclein “on”) and then transferred to glucose containing 
medium (α-synuclein “off”). α-synuclein protein levels were detected with α-synuclein 
specific antibody. GAPDH antibody was used as control. 
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3.3 The yeast model for β and γ-synuclein aggregation 

and toxicity 

3.3.1 -synuclein overexpression is toxic to yeast cells whereas 

γ-synuclein does not have any impact 

 
Recently, the other two member of the synuclein family, β- and γ-synuclein, beside α-

synuclein considered as neurodegeneration-inducing proteins, which are associated 

with Parkinson’s disease progression. However their exact contribution in 

Parkinson’s disease pathology remains elusive (Ninkina et al, 2009; Nishioka et al, 

2010; Sung & Eliezer, 2007; Taschenberger et al, 2013; von Bohlen Und Halbach, 

2004). In this study we aimed to characterize β- and γ-synuclein mediated 

cytotoxicity in yeast as model of Parkinson’s disease. The human β-synuclein 

encoding cDNA sequence, SNCB, and γ-synuclein cDNA sequence, SNCG, were C-

terminally GFP-tagged via a KLID linker and further cloned into a high-copy yeast 

vector (2 µ) under control of galactose-inducible promoter GAL1. The attachment of 

GFP tag via a linker to α-synuclein was shown to be mandatory to preserve the toxic 

effect of the untagged version of the protein in yeast model of Parkinson’s disease 

(Petroi et al, 2012). The growth of WT yeast (W303) carrying each variant of 

synuclein was analyzed with spotting test. Overexpression of β-synuclein caused 

severe growth inhibition similar to WT α-synuclein expressing cells (Figure 37A), 

suggesting the toxic effect of β-synuclein in yeast. In comparison, γ-synuclein 

expressing cells grew uninhibited as the control (GFP expressing cells) (Figure 37A). 

One of the major aims of this study was to decipher the role of the post-translational 

modifications such as sumoylation in Parkinson’s disease pathology. So far, we 

showed that sumoylation protects yeast cells against α-synuclein toxicity and 

inclusions (Figure 11 and 14). In order to learn more about β- and γ-synuclein 

associated impact and broaden our investigation regarding sumoylation, we aimed to 

study the mediated effect of β- and γ-synuclein in presence and absence of cellular 

SUMO in yeast. Smt3ts yeast strain was transformed with β-synuclein-KLID-GFP and 

γ-synuclein-KLID-GFP high-copy plasmid vectors. Smt3ts strain expressing WT α-

synuclein from two genomically integrated gene copies (Figure 10) was used for 

comparison. GFP expressing cells were used as a control. Cells harboring β-

synuclein-KLID-GFP, γ-synuclein-KLID-GFP, GFP alone and WT α-synuclein from 

two genomically integrated gene copies were subjected to growth test in the 

presence and absence of SUMO at permissive (25°C) and restrictive (30°C) 
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temperatures. Cells expressing β-synuclein-KLID-GFP presented growth inhibition at 

both temperatures (Figure 37B). In addition, their growth was more inhibited when 

the cellular SUMO was impaired at restrictive temperature (30°C). In comparison, γ-

synuclein-KLID-GFP expressing cells grew equally well like the control at both 

permissive and restrictive temperatures (Figure 37B). These data suggested that β-

synuclein-mediated toxicity might be regulated by sumoylation, which needs to be 

further investigated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 

A 

Figure 37. β-synuclein is toxic to yeast cell unlike γ-synuclein. 
 
A. WT yeast cells (W303) were transformed with a high copy plasmid carrying α-
synuclein-KLID-GFP, β-synuclein-KLID-GFP and γ-synuclein-KLID-GFP under the 
control of GAL1. GFP expressing cells, expressed from the same promoter, served 
as control. Yeast cells were spotted in 10-fold dilutions on selection plates containing 
glucose (GAL1 promoter ‘OFF’) or galactose (GAL1 promoter ‘ON’). B. Spotting 
assay of smt3ts mutant strain expressing WT α-synuclein-KLID-GFP from two 
genomically integrated gene copies, β-synuclein-KLID-GFP and γ-synuclein-KLID-
GFP at permissive (25°C; + SUMO) or restrictive temperature (30°C; - SUMO). 
GAL1-driven synucleins are expressed from a 2 µm plasmid. GFP, expressed from 
the same promoter, is used as a control. Yeast cells were spotted in 10-fold dilutions 
on selection plates containing non-inducing (glucose) and inducing (galactose) solid 
medium. 
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3.3.2 β-synuclein and γ-synuclein overexpression results in 

aggregate formation in yeast  

 
In order to study the localization of β- and γ-synuclein in yeast cells and follow their 

pattern, we visualized the GFP fusion β- and γ-synuclein in yeast expressing cells. It 

has been previously reported that α-synuclein toxicity is correlated with its aggregate 

formation in yeast (Petroi et al, 2012). To examine whether the β-synuclein-mediated 

cytotoxicity is correlated with its aggregate formation, the smt3ts yeast strain 

expressing β-synuclein-KLID-GFP in presence and absence of SUMO was subjected 

to live cell fluorescence microscopy after 5 hours induction of β-synuclein-KLID-GFP 

expression.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A 

B 

Figure 38. β-synuclein cytotoxicity correlates with its aggregate formation. 
 
A. Live-cell fluorescence microscopy of smt3ts cells harboring β-synuclein-KLID-GFP 
(left) and γ-synuclein-KLID-GFP (right) in the presence (+SUMO) and absence (-
SUMO) of cellular SUMO. Cells were induced for 5 hours in 2% galactose containing 
medium and then subjected to fluorescence microscopy. Scale bar 1 µm. B. 
Quantification of number of smt3ts cells harboring β-synuclein-KLID-GFP and γ-
synuclein-KLID-GFP in the presence (+SUMO) and absence (-SUMO) displaying 
aggregate formation. Quantification was done after more than biological replications.  
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The results revealed that the toxic β-synuclein forms aggregates irregardless of 

cellular SUMO status, which shows the correlation between β-synuclein cytotoxicity 

and aggregate formation (Figure 38A). Quantification of numbers of cells displaying 

β-synuclein aggregates showed that, when sumoylation is down regulated the 

number of cells with β-synuclein aggregates were increased (Figure 38B). Smt3ts 

yeast cells were monitored after 5 hours expressing γ-synuclein-KLID-GFP in the 

presence and absence of SUMO. γ-synuclein showed aggregate formation as well as 

cytoplasmic localization (Figure 38A). The number of cells displaying γ-synuclein 

aggregates was lower at permissive temperature than at restrictive temperature, 

suggesting regulatory effect of SUMO in γ-synuclein-mediated aggregate formation 

(Figure 38B). 
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4 Discussion 

Due to the increasing life expectancy, study of human neurodegenerative disorders 

such as Parkinson’s disease is getting more important. The aggregation of α-

synuclein has emerged as the most important player in Parkinson’s disease process 

(Luk & Lee, 2014). α-synuclein propensity to aggregate can be altered with several 

factors including post-translational modifications.  

Baker’s yeast Saccharomyces cerevisiae serves as a valuable cellular tool to 

underline different mechanisms explaining α-synuclein pathology in Parkinson’s 

disease (Tenreiro et al, 2013). α-synuclein is toxic to yeast in a gene dosage 

dependent manner and the α-synuclein-mediated cytotoxicy is correlated with the 

number of cells showing inclusions (Outeiro & Lindquist, 2003; Petroi et al, 2012). In 

addition, the main degradation pathway that contributes to α-synuclein aggregate 

clearance in yeast is autophagy (Petroi et al, 2012). 

We used Saccharomyces cerevisiae as a model to investigate the molecular 

interplay between sumoylation and phosphorylation in the clearance of α-synuclein 

aggregates. We uncovered a complex cross-talk between these post-translational 

modifications which impacts on ubiquitination and influences the degradation of α-

synuclein by both autophagy and the 26S proteasome. The differential processing of 

α-synuclein by these two modifications systems interferes with inclusion formation 

and cytotoxicity.  

4.1 Cross-talk between α-synuclein sumoylation and 

S129 phosphorylation 

4.1.1 α-synuclein sumoylation in yeast model 

 

α-synuclein undergoes numerous post-translational modifications such as 

phosphorylation, ubiquitination, nitration, acetylation, O-glycosylation or sumoylation 

(Figure 4). α-synuclein was found to be a SUMO target in cultured human cells and 

in a rat animal model of Parkinson’s disease (Dorval & Fraser, 2006; Krumova et al, 

2011). The number of sumoylation studies of α-synuclein is very limited in 

comparison to those on other post-translational modification publications. Therefore 

limiting our understanding of the implications of sumoylation on α-synuclein biology 

are still puzzling.  
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The first goal of this study was to investigate whether there is α-synuclein 

sumoylation in yeast. Furthermore, the regulatory influence of this modification on α-

synuclein-mediated cytotoxicity was analyzed. We showed that both wild type α-

synuclein and the A30P mutant are sumoylated in vivo in yeast at K96 and K102, two 

sumoylation sites that are conserved in eukaryotes including humans (Dorval & 

Fraser, 2006; Krumova et al, 2011) (Figure 7C and 11). By decreasing the cellular 

SUMO pool, growth analysis revealed a protective effect of sumoylation against α-

synuclein-mediated cytotoxicity and inclusion formation in yeast cells (Figure 11 and 

14). SUMO is one of the most soluble proteins known (Marblestone et al, 2006). The 

alteration in solubility of aggregate-prone proteins is connected to their pathological 

tendency to form intercellular aggregates. The lack of overlapping between SUMO 

and α-synuclein immunoreactivity in post-mortem studies of human brains suggested 

that α-synuclein aggregations are not SUMO-modified in Parkinson’s patients 

(Pountney et al, 2005). Previously, sumoylation was suggested to keep α-synuclein 

in solution, which results in decreased α-synuclein aggregation (Krumova et al, 

2011). This indicates the direct impact of SUMO on α-synuclein solubility. Recently 

an interesting investigation reported the SUMO’s impact on STAT1 protein. STAT 

proteins are dimeric transcription factors, which modulate the biological effect of 

cytokines in human cells. Sumoylation of STAT1 regulates its activity indirectly by 

increasing the solubility of STAT1 paracrystals (Droescher et al, 2011a; Droescher et 

al, 2011b). The reduction of SUMO levels in Drosophila melanogaster model of 

Huntington’s disease promoted the neuropathology, resulting in neuronal cell loss 

(Steffan et al, 2004). Similarly, sumoylation was found to modulate the solubility of 

transcriptional regulator DJ1, androgen receptor and ataxin 7 that also reduced the 

toxicity of these proteins in other degenerative diseases (Janer et al, 2010; 

Mukherjee et al, 2009; Shinbo et al, 2006). Moreover, α-synuclein sumoylation 

abolishment by mutating the codons for the major SUMO sites of α-synuclein, K96 

and K102, revealed that these two major lysine residues are conserved from yeast to 

human (Krumova et al, 2011). This in addition confirmed the direct defensive 

influence of sumoylation against α-synuclein-mediated cytotoxicity in yeast (Figure 

14A). Consistently, impairment of sumoylation in yeast as well as expression of 

sumoylation-deficient α-synuclein resulted in a significant increase in the number of 

cells displaying α-synuclein inclusions (Figure 14B). This further supports the 

beneficial regulatory role of sumoylation in inhibiting α-synuclein inclusion formation 

in vivo.  

.  
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4.1.2   α-synuclein phosphorylation in yeast  

 

Non-pathologic α-synuclein is phosphorylated at low levels (Anderson et al, 2006; 

Fujiwara et al, 2002; Kahle et al, 2002; Waxman & Giasson, 2008), whereas hyper-

phosphorylation of α-synuclein at S129 was observed in pathological inclusions of 

postmortem human brain samples (Anderson et al, 2006; Fujiwara et al, 2002; Kahle 

et al, 2002; Neumann et al, 2002; Nishie et al, 2004; Waxman & Giasson, 2008). The 

finding of 90% insoluble α-synuclein phosphorylated at S129 in Lewy bodies led to 

extensive studies of this key α-synuclein post-translational modification. Study of the 

levels of pathologic form of phosphorylated α-synuclein revealed that soluble non-

phosphorylated α-synuclein decreases over the Parkinson’s disease time course 

(Zhou et al, 2011). Though the initial findings suggested that the α-synuclein 

pervasive S129 phosphorylation is a significant pathogenic event (Chen & Feany, 

2005; Freichel et al, 2007), the exact impact of this modifier remains elusive. In this 

study we explored yeast as model to investigate the molecular interplay between α-

synuclein sumoylation and S129 phosphorylation. We examined the effect of efficient 

human kinases as GRK5 (Arawaka et al, 2006; Pronin et al, 2000) or PLK2 (Inglis et 

al, 2009; Salvi et al, 2012) on α-synuclein S129 phosphorylation in yeast. Initially we 

checked CDC5, the yeast ortholog of PLK2 in hampered yeast. Overexpression of 

CDC5 was lethal to yeast cell, which consequently stopped further investigations 

Figure (15 and 19). Our observations confirmed the potent effect of human kinases 

GRK5 and PLK2 in elevating α-synuclein S129 phosphorylation level in yeast (Figure 

17). Furthermore, our data revealed a significant increase of PLK2-mediated α-

synuclein phosphorylation at S129 in SUMO deficient cells, when compared to that 

observed in cells with intact sumoylation machinery (Figure 18). PLK2 seems to be 

especially efficient on non-sumoylated α-synuclein. In contrast, GRK5 is less specific 

and can increase the level of S129 phosphorylation independently of the cellular 

SUMO pool (Figure 18). It is reported that PLK2 phosphorylates α-synuclein at S129 

in yeast cells and increases α-synuclein inclusions independently from the 

phosphorylation level at S129 (Basso et al, 2013). 

Sumoylation and phosphorylation are both reversible dynamic processes, which can 

actively interfere with each other and modulate the behavior of their substrates. 

Several examples have been reported in the literature where phosphorylation 

depends on the sumoylation profile of target proteins (Hietakangas et al, 2006; 

Ugrinova et al, 2011). Sumoylation can modulate the specific interaction with kinases 

or phosphatases, by changing substrate surfaces and activity. In particular, 
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sumoylation of protein-tyrosine phosphatase 1B has been shown to reduce the 

catalytic activity and, therefore, change the phosphorylation status of substrates 

(Dadke et al, 2007). The systematic study of the cellular phosphoproteome upon 

SUMO inhibition revealed that the reduction in sumoylation resulted in less activity of 

the casein kinase II. This leads to less phosphorylation of the substrates and 

modulate the cell cycle progression (Yao et al, 2011). Furthermore, identification of 

phosphorylation-dependent sumoylation motifs (PDSMs) in proteins such as heat 

shock factors facilitates the explanation of interplay between protein phosphorylation 

and sumoylation (Hietakangas et al, 2006).  

The cross-talk between sumoylation and other post-translational modifications is best 

shown by the tumor suppressor p53. The last 30 amino acids of human p53 are 

heavily modified by sumoylation, phosphorylation, acetylation, neddylation, 

ubiquitination and methylation (Kruse & Gu, 2008; Wu & Chiang, 2009). Although it 

remains unclear whether serine 392 phosphorylation stimulate p53 lysine 386 

sumoylation, it is shown that p53 lysine 386 sumoylation enhances its serine 392 

phosphorylation by PKR (Bennett et al, 2012). We observed that α-synuclein is 

sumoylated in the presence of GRK5 (Figure 19), though no significant differences in 

α-synuclein sumoylation level could be identified.  

These data corroborate an interconnection between sumoylation and kinase activity 

to regulate α-synuclein S129 phosphorylation. Though the exact molecular 

mechanisms that might be involved in this regulation needs further studies. 

A better understanding of the molecular mechanisms of the α-synuclein-related 

influence on Parkinson’s disease pathology will provide novel therapeutic strategies.  

Accumulation evidence suggests that α-synuclein post-translational modifications 

(sumoylation, ubiquitination and phosphorylation) modulate α-synuclein-mediated 

toxicity and aggregate formation. The protective effect of α-synuclein sumoylation 

against its aggregate formation in cell-based study as well as rat model of 

Parkinson’s disease (Dorval & Fraser, 2006; Krumova et al, 2011) support this 

findings. Suppression and enhancing impact of α-synuclein phosphorylation on its 

aggregate properties (Chen & Feany, 2005; Gorbatyuk et al, 2008; Paleologou et al, 

2008) and the regulatory mechanism of α-synuclein ubiquitination on its aggregation 

propensity and degradation fate (Rott et al, 2011; Rott et al, 2008) are other 

pronounced findings in this concept. However, there is still no consensus on the 

effects of different modifications on α-synuclein aggregation and toxicity (Azeredo da 

Silveira et al, 2009; Basso et al, 2013; Kim et al, 2011; Krumova et al, 2011; Oueslati 
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et al, 2013; Smith et al, 2005). In addition, the presence of different α-synuclein 

residues (Figure 4) that are potential factors for several post-translational 

modifications, highlight the importance of studying the interplay between the different 

modifiers.  

Here, we focused on the interplay between α-synuclein sumoylation and S129 

phosphorylation. Whereas earlier studies did not observe effects of α-synuclein 

phosphorylation at S129 on α-synuclein-mediated toxicity and aggregation (Azeredo 

da Silveira et al, 2009; McFarland et al, 2009), protective roles of α-synuclein S129 

phosphorylation were described in a strain-specific manner in yeast (Sancenon et al, 

2012). Therefore, the specific genetic context was proposed to determine the 

sensitivity to changes in α-synuclein phosphorylation. This suggests a complex and 

subtle cross-talk between different modifications that can change features of the 

target protein including inclusion formation, stability and the affinity to the autophagic 

or the proteasome degradation pathways. We showed that increased α-synuclein 

S129 phosphorylation induced by GRK5 was able to rescue yeast cells from α-

synuclein-mediated cytotoxicity associated with sumoylation impairment (Figure 20). 

Alleviation of α-synuclein-mediated cytotoxicity in SUMO deficient cells correlates 

with a decreased number of cells presenting α-synuclein intracellular inclusions 

(Figure 21). Expression of GRK5 induced a strong improvement on yeast growth 

when the sumoylation was impaired. Our finding showed that there is no rescue in 

cells expressing S129-phosphorylation blocked α-synuclein (S129A) in the presence 

of GRK5 when cellular SUMO pool is inhibited (Figure 25). This suggested a direct 

cross-talk between increased α-synuclein phosphorylation at S129 and sumoylation. 

These data were further supported by the results with the sumoylation-deficient α-

synuclein (K96R K102R synuclein) (Figure 27). Environmental factors such as 

oxidative stress are also shown to be involved in Parkinson’s disease pathology 

(Hauser & Hastings, 2013; Michel et al, 2013). Accumulation of reactive oxygen 

spices (ROS) in cells resulted in up-regulation of global sumoylation, which further 

affect the mitochondrial processes (Manza et al, 2004). Increased phosphorylation 

level of alpha subunit of elF2 facilitates the adaption of cells to oxidative stress 

(Koromilas & Mounir, 2013). Increased ROS-mediated H2O2 in the absence of 

cellular SUMO resulted in a severe growth inhibition in yeast cells expressing α-

synuclein. Overexpression of GRK5 in the absence of SUMO reduced α-synuclein 

expressing cells sensitivity to oxidative stress (Figure 22). Overall our observation 

suggested that increased α-synuclein phosphorylation at S129 with GRK5 could 
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compensate the α-synuclein-mediated cytotoxicity associated with sumoylation 

impairment.  

Despite increased α-synuclein phosphorylation levels at S129 in the absence of 

SUMO, overexpression of PLK2 led to improve cell growth from α-synuclein-

mediated toxicity associated with sumoylation impairment (Figure 20). This further 

correlated with decreased numbers of cells displaying α-synuclein inclusions (Figure 

21). PLK2 might cause additional effects on other targets than α-synuclein in yeast, 

or on other phosphorylation sites of α-synuclein. These data are in agreement with a 

recent study, where a specific role of PLK2 on α-synuclein inclusion formation and 

toxicity in yeast is reported, independent of the level of α-synuclein phosphorylation 

on S129 (Basso et al, 2013).  

 

4.2 α-synuclein aggregate clearance  

The dynamic process of α-synuclein aggregate formation depends on the equilibrium 

between synthesis and degradation, which determines the protein level of α-

synuclein. An important question is how α-synuclein degradation is distributed 

between the ubiquitin-proteasome (UPS) system and the autophagy-

lysosome/vacuole pathway (ALP). 

 

4.2.1  Contribution of post-translational modification network in 

α-synuclein aggregate clearance 

The current study addresses the involvement of post-translational modifications in α-

synuclein aggregate clearance. We previously found that autophagy represents the 

major pathway for aggregate clearance in yeast after shut-off of protein biosynthesis, 

allowing cells to recover from α-synuclein toxicity (Petroi et al, 2012).  

One of the major findings of this study is that sumoylation of α-synuclein promotes 

aggregate clearance by autophagy. α-synuclein clearance is impaired when 

sumoylation is inhibited either by reducing the cellular SUMO pool or by amino acid 

substitutions of the SUMO target sites of α-synuclein (Figure 28). At low levels, α-

synuclein seems to be preferentially degraded by the UPS, whereas increased α-

synuclein expression stimulates autophagy as the main degradation pathway 

(Ebrahimi-Fakhari et al, 2011). Sumoylation and ubiquitination can act as competitors 
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to target the same substrate protein. The impaired sumoylation might facilitate higher 

ubiquitination of the target protein and affect its fate of degradation. Interestingly, 

sumoylation was indicated as a targeting signal for ubiquitination and ubiquitin-

dependent degradation (Cheng et al, 2007; Uzunova et al, 2007). Reduction of 

cellular SUMO pool might enhance ubiquitination authority of α-synuclein, which lead 

the protein to UPS for degradation (Ebrahimi-Fakhari et al, 2012), though, the 

interplay between sumoylation, ubiquitination and degradation pathways involved in 

protein clearance is more complex than anticipated (Kim et al, 2011; Tatham et al, 

2011). 

Another major finding is that phosphorylation of α-synuclein by GRK5 or PLK2 can 

partially support autophagy and compensate sumoylation impairment effect (Figure 

29). Sumoylation and phosphorylation are two post-translational modifications of α-

synuclein that protect against α-synuclein-induced toxicity (Krumova et al, 2011; 

Paleologou et al, 2008; Waxman & Giasson, 2008). However, they represent distinct 

signals for the processing of α-synuclein by different degradation pathways (Oueslati 

et al, 2013). Whereas sumoylation primarily targets α-synuclein for autophagy, 

phosphorylation by kinases such as GRK5 has a dual effect because it partially 

rescues the autophagy pathway but also promotes increased ubiquitination and a 

reduced half-life of the protein (Figure 31 and 36). Phosphorylation is a well-known 

priming reaction for ubiquitination (Hasegawa et al, 2002c; Hershko & Ciechanover, 

1998). We found that enriched WT α-synuclein expressed in WT yeast background is 

mono-ubiquitinated (Figure 30) in agreement with evidence showing that α-synuclein 

purified from Lewy bodies is mainly mono- and di-ubiquitinated (Tofaris et al, 2003), 

whereas α-synuclein higher phosphorylation at S129 lead to promoted ubiquitination 

by altering the ubiquitination profile of α-synuclein when sumoylation is inhibited 

(Figure 31). MG132 treatment impaired the sumoylation-deficient α-synuclein 

aggregate clearance more compared to the reduction of aggregate clearance with 

PMSF in the presence of GRK5 (Figure 33 and 37). These data suggest that UPS 

degradation pathway contributes more to the clearance of sumoylation-deficient α-

synuclein with increased S129 phosphorylation, induced by GRK5. This further 

supports the idea that phosphorylation promotes the degradation of α-synuclein by 

the proteasome. 

The protective role of PLK2, which can form a complex with α-synuclein and can also 

induce the autophagy pathway, seems to be more complicated and might include 

additional phosphorylation target proteins. Recently, in vivo study suggested that 

induction of PLK2 activity mediate α-synuclein turnover via enhancing its clearance 
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by the autophagy pathway (Oueslati et al, 2013). Inhibition of both cellular 

degradation pathways chemically resulted in the same contribution of each system in 

aggregate clearance of sumoylation-deficient α-synuclein when PLK2 kinase was 

overexpressed (Figure 33 and 37).  

A dual modification that is interdependent allows a subtle fine-tuning as molecular 

mechanism to selectively control α-synuclein turnover in response to sumoylation or 

phosphorylation input signals. Sumoylation might induce structural and 

conformational changes in α-synuclein and thus modulate the interaction with 

different kinases, which have various effects in the channeling to distinct degradation 

pathways. Post-translational modifications of α-synuclein seem to orchestrate the 

harmonic interplay to maintain the balance of protein removal. This network relies on 

complex cross-talk between molecular mechanisms that interact directly/indirectly to 

subject the pathogenic protein for efficient degradation. 

 

4.3 β-synuclein is toxic to yeast 

There are high similarities between α- and β-synuclein in amino acid sequences 

identity (> 50 %) in their N-terminus (Lavedan, 1998) and their sub-cellular 

localization (Clayton & George, 1998). Several studies revealed a role of β-synuclein 

role in the progress of Parkinson’s disease. In the present study we explored β-

synuclein-mediated effects on yeast growth. We showed that overexpression of β-

synuclein is inhibiting yeast growth severely (Figure 37A). The toxic effect of β-

synuclein on yeast cells correlated with increased number of yeast cells presenting 

inclusions (Figure 38B). Only limited investigations focused on the function of β-

synuclein Parkinson’s disease pathology. Early studies showed the potential 

propensity of β-synuclein to inhibit α-synuclein aggregate formation. It was suggested 

that β-synuclein ameliorate α-synuclein neurotoxicity (Hashimoto et al, 2001; Park & 

Lansbury, 2003; Uversky et al, 2002). A recent study demonstrated that β-synuclein 

is aggregating in dopaminergic neurons and is as neurotoxic as α-synuclein to those 

cells (Taschenberger et al, 2013). This is in line with our observations in the yeast 

model system. Furthermore, the sumoylation impact on β-synuclein-mediated toxicity 

in yeast cells was addressed. β-synuclein toxic effect was increased in sumoylation 

deficient yeast cells (at restrictive temperature), was correlated with increased 

number of cells displaying inclusions (Figure 38B). Protective effect of sumoylation 

against α-synuclein-mediated toxicity suggested the same mechanism that might be 
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involved in β-synuclein pathobiology. It would be interesting to investigate post-

translational modifications of β- and γ-synuclein such as sumoylation and 

phosphorylation in yeast model system. These might provide a key to uncover the 

complex pathology of Parkinson’s disease.  
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5 Conclusion 

α-synuclein post-translational modifications play an intrinsic role in Parkinson’s 

disease pathology. The susceptibility of post-translational modifications to interplay 

affects α-synuclein-mediated consequences in Parkinson’s disease progression.  

This study provides evidence that the degree of switching between autophagic and 

proteasomal degradation of α-synuclein is linked to a molecular cross-talk between 

sumoylation and phosphorylation. Sumoylation preferentially directs α-synuclein 

towards autophagy and phosphorylation can shift the fate of α-synuclein to increased 

ubiquitination and proteasome degradation. Ultimately, a deeper understanding of 

this cross-talk will enable the design of effective strategies for directing α-synuclein 

for processing by the desired degradation machinery and may, therefore, constitute 

the basis for novel therapeutic strategies in Parkinson’s disease and other 

synucleinopathies. 
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