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"Es gibt eine Theorie, die besagt, wenn jemals irgendwer genau herausfindet, wozu das 

Universum da ist und warum es da ist, dann verschwindet es auf der Stelle und wird durch 

noch etwas Bizarreres und Unbegreiflicheres ersetzt. - Es gibt eine andere Theorie, nach 

der das schon passiert ist."  

Douglas Adams, Das Restaurant am Ende des Universums, 1980 
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ZUSAMMENFASSUNG 

Tropische Waldböden spielen für das Klima der Erde eine wichtige Rolle, da sie 

große Mengen an Treibhausgasen (THGs) mit der Atmosphäre austauschen. Diese 

wichtige Funktion könnte jedoch durch menschliche Aktivitäten verändert werden, da sie 

atmosphärische Nährstoffeinträge vor allem in tropischen Regionen erhöhen. Wie 

ansteigende Nährstoffeinträge THG Flüsse von tropischen Waldböden beeinflussen wurde 

jedoch bisher kaum untersucht und Nährstoff-Kontrollmechanismen in tropischen 

Bergregenwäldern (TBRWs) sind noch viel weniger verstanden. Nachdem TBRW-Böden 

ungefähr 11-21% der tropischen Waldfläche ausmachen, ist es unerlässlich Veränderungen 

in THG Flüssen unter Nährstoffeinträgen zu quantifizieren und vorherzusagen, da diese 

weitere globale Veränderung zur Folge haben könnten. Ziel dieser Doktorarbeit ist es, den 

Einfluss, den moderater Gaben von Stickstoff (N) und/oder Phosphor (P) auf Flüsse der 

drei THGs Kohlenstoffdioxid (CO2), Distickstoffoxid (N2O) und Methan (CH4) haben, 

entlang eines Höhengradienten (1000 m, 2000 m, 3000 m) primärer TBRWs Südecuadors 

zu quantifizieren. 

Hierfür haben wir fünf Jahre lang THG Flüsse von Böden in einem 

Nährstoffmanipulationsexperiment (‘NUMEX‘, Abkürzung vom Englischen herrührend) 

mit unbehandelte Kontrollflächen und N (50 kg N ha-1 yr-1), P (10 kg P ha-1 yr-1) sowie 

N+P gedüngten Flächen gemessen. Messungen erfolgten monatlich in situ mit belüfteten 

statischen Hauben und darauffolgender gaschromatographischer Analyse. Um einen 

detaillierten Einblick in Prozesse zu erhalten, welche an dem Austausch von THGs 

zwischen Boden und Atmosphäre beteiligt sind, wurden weitere Untersuchungen 

durchgeführt. Unter anderem untersuchten wir grundlegenden Faktoren die die THG 

Flüsse von Böden beeinflussen (Bodentemperatur, -feuchte und mineralischer Boden-N 

Gehalt), verschiedener Komponenten von CO2 Flüssen, netto N-Umsatzraten in Böden und 
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Komponenten der N2O Flüsse. Hierfür wurden folgende Techniken in situ angewandt: 

Entfernen frischen Laubstreus, Ausschluss von Wurzeln (trenching), Bodeninkubation 

(buried bag method) und temporäre Markierung von Böden mit 15N. 

THG Flüsse von Waldböden in unserem Untersuchungsgebiet waren vergleichbar 

mit Flüssen von anderen TBRWs entsprechender Höhenstufen, mit Ausnahme von N2O. 

N2O Flüsse, welche sich hauptsächlich aus Denitrifikationsprozessen ableiten, waren für 

einen TBRW relative klein, was wir auf einen konservativen Boden N-Kreislauf in unserer 

Flächen zurückführen. Böden waren CO2 und N2O Quellen (wobei die Stärke mit 

zunehmender Höhe abnahm) und über alle Höhenstufen hinweg CH4 Senken. 

Unsere Ergebnisse zeigen, dass sich die Auswirkungen der Nährstoffgaben auf 

gemessenen THG Flüsse mit der Höhenstufe unterscheiden. Die Reaktionen der CO2 

Flüsse von Böden veränderten sich zudem mit der Dauer der Nährstoffgabe und der Art 

zugegebener Nährstoffe. Auf 1000 m Höhe veränderten sich CO2 Flüsse von Böden unter 

Zugabe von N nicht, wohingegen sie unter Zugabe von P und N+P in dem ersten und 

vierten bis fünften Jahr abnahmen. Auf 2000 m Höhe stiegen CO2 Flüsse unter Zugabe von 

N und N+P in dem ersten Jahr an; danach nahmen sie mit Zugabe von N ab, wohingegen 

die Zugabe von N+P keine Auswirkungen mehr hatte; Zugabe von P hatte keine Folge. 

Auf 3000 m Höhe stiegen CO2 Flüsse unter Zugabe von N durchgehend; wobei sie unter 

Zugabe von P und N+P nur in dem ersten Jahr anstiegen, ohne weitere Auswirkungen in 

den folgenden Jahren. Differentielle Auswirkungen der Nährstoffgaben hingen mit dem 

ursprünglichen N und P Status der Böden sowie unterschiedlichen Reaktionen von 

Komponenten der Bodenrespiration zusammen.  

Reaktionen von N2O und CH4 Flüssen zeigten große Schwankungen zwischen den 

Jahren. Die Zugabe von N in den Jahr drei bis fünf veränderte N2O Flüsse nicht, obwohl 

während der ersten zwei Jahre desselben Experiments signifikante Effekte beobachteter 
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werden konnten. Wir führen das Ausbleiben einer Reaktion auf relativ geringe 

Bodenfeuchtegehalte während unseres Messzeitraumes in den Jahren 2010-2012 zurück. 

Entlang des gesamten Höhengradienten nahmen N2O-Flüsse und mineralische Boden-N 

Gehalte durch Zugabe von P ab, vermutlich da dies die P Limitierung der 

Nettoprimärproduktion abschwächte, wodurch Pflanzen mehr N aufnahmen. Die Zugabe 

von N+P zeigte ähnliche Trends wie die Zugabe von N, wobei die Ausprägung durch die 

gegenläufige Wirkung der P Zugabe geringerer ausfiel. 

Während der ersten zwei Jahre hatten Nährstoffgaben auf keiner Höhenstufe einen 

Einfluss auf die CH4 Flüsse. Wir führen dies auf die Kombination moderater 

Nährstoffgaben, starker Immobilisierung zugegebener Nährstoffe und die räumliche 

Trennung des Ortes höchster CH4 Aufnahmekapazität im Unterboden von dem Ort der 

Nährstoffgabe auf der Bodenoberfläche zurück. Drei bis fünfjährige Nährstoffgaben 

erhöhten die CH4 Aufnahme von Böden, jedoch variierten die Effekte unter Zugabe von N 

und P entlang des Höhengradienten: auf 1000 m Höhe stieg die jährliche CH4 Aufnahme 

unter Zugabe von N und N+P um 20-60% an. Auf 2000 m Höhe stieg sie unter Zugabe von 

P und N+P um 21-50% an; und auf 3000 m Höhe stieg sie unter Zugabe von N um 34-40% 

an. Diese unterschiedlichen Effekte der Nährstoffgaben könnten mit dem anfänglichen 

Nährstoffstatus der Böden sowie unterschiedlichen Auswirkungen von Nährstoffgaben auf 

Ökosystemkomponenten je Höhenstufe zusammenhängen. 

Wir zeigen hiermit, dass sich in TBRWs die THG Flüsse von Böden und demnach 

das Netto-Treibhauspotential von Böden entlang eines Höhengradienten stark verändern 

kann, wobei es mit zunehmender Höhe tendenziell zu einer Abnahme kommt. Unsere 

Ergebnisse deuten ferner an, dass in TBRW der Anden, erhöhte N und P Depositionen die 

THG Flüsse von Böden stark beeinflussen können. Auswirkungen von Nährstoffgaben auf 

THG Flüssen von Böden hängen allerdings stark von dem anfänglichen Nährstoffstatus der 
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Böden, der Dauer der Nährstoffgabe und jährlichen klimatischen Schwankungen ab. Da 

sich Nährstoffeffekte nicht linear mit der Dauer der Nährstoffgabe veränderten und 

komplexe Interaktionen mit anderen Ökosystemkomponenten existieren, gibt es einige 

Unsicherheit was die Prognose der Auswirkungen von Nährstoffdepositionen auf THG 

Flüsse von Böden betrifft. Dennoch liefern wir hiermit die ersten Daten über mittelfristige 

Auswirkungen der Nährstoffzugabe von N, P und N+P, auf die drei wichtigsten THG 

Flüsse von Böden entlang eines Höhengradienten in TBRWs der Anden. Unsere 

Ergebnisse deuten an, dass das Netto-Treibhauspotential von Böden entlang des 

Höhengradienten unter zunehmenden N Einträgen leicht zunehmen könnte, wohingegen es 

unter zunehmenden P und N+P Einträgen abnehmen könnte. 
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SUMMARY 

Tropical forest soils play an important role in Earth’s climate, by exchanging large 

amounts of greenhouse gases (GHGs) with the atmosphere. This important function might 

however be altered by human activities, which increase nutrient deposition to terrestrial 

ecosystems - especially in tropical regions. How increasing nutrient inputs affect soil GHG 

fluxes from tropical forests is relatively understudied, though, and nutrient controls in 

tropical montane forests (TMFs) are even less understood. Since TMFs represent about 

11-21% of tropical forest area, it is vital to be able to predict and quantify changes in soil 

GHG fluxes with nutrient input, as they might further feedback to other global changes. 

This dissertation aims to quantify the impact of moderate nitrogen (N) and/or phosphorus 

(P) addition on fluxes of three soil GHGs: carbon dioxide (CO2), nitrous oxide (N2O) and 

methane (CH4), along an elevation gradient (1000 m, 2000 m, 3000 m) of old-growth 

TMFs in southern Ecuador. 

Over five years, we measured soil GHG fluxes in a nutrient manipulation experiment 

(NUMEX), with control, N (50 kg N ha-1 yr-1), P (10 kg P ha-1 yr-1) and N+P addition. In 

situ measurements were done monthly using static vented chambers, followed by gas 

chromatographic analysis. To achieve an in-depth look into the processes involved in soil-

atmosphere GHG exchange, further investigations included monitoring of basic controlling 

factors (soil temperature, moisture and mineral N concentrations), different components of 

soil CO2 fluxes, net soil N cycling rates and sources of soil N2O fluxes. To do so, we used 

litter removal and trenching techniques, the buried bag method and a short-term 15N 

labeling approach. 

Soil GHG fluxes in our study forests were within the range of fluxes reported from 

other TMFs at comparable elevations, except for N2O. N2O fluxes, which were mainly 

derived from denitrification, were low for a TMF, which we attribute to the conservative 
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soil N cycling in our sites. Soils were sources of CO2 and N2O (source strength decreases 

with increasing elevation) and across all elevations, they were CH4 sinks. 

We found differential nutrient effects on all measured soil GHG fluxes with 

elevation. Responses of soil CO2 fluxes changed with the duration and type of nutrient 

addition. At 1000 m, N addition did not affect soil CO2 fluxes, whereas P and N+P 

additions decreased fluxes in the first and fourth-fifth years. At 2000 m, N and N+P 

additions increased CO2 fluxes in the first year; thereafter, N addition decreased fluxes 

whereas N+P addition no longer showed any effect; P addition showed no effect. At 

3000 m, N addition increased CO2 fluxes consistently; P and N+P additions increased 

fluxes only in the first year showing no effect thereafter. Differential nutrient effects were 

related to initial soil N and P status and varied responses of soil respiration components. 

Responses of N2O and CH4 fluxes to nutrient addition showed large inter-annual 

variability. N2O fluxes were not affected by three to five years of N addition, despite the 

significant effects observed during the first two years of the same experiment. We attribute 

the lack of response in later years to the relatively low soil moisture contents during our 

2010-2012 measurement period. Across the elevation gradient, P addition decreased N2O 

fluxes and mineral N concentrations, presumably because it alleviated P limitations to net 

primary production, which increased plant N uptake. N+P addition showed similar trends 

to N addition, but less pronounced because of the counteracting effects of P addition. 

During the first two years of nutrient addition, CH4 fluxes were not affected at any 

elevation, which we attribute to the combination of moderate amounts of added nutrients, 

strong immobilization of added nutrients, and the separation of the highest CH4 uptake 

capacity in the subsoil from the surface of the soil, where fertilizers were added. In years 

three to five, nutrient additions increased soil CH4 uptake. However, effects of N and P 

varied along the elevation gradient: at 1000 m, N and N+P addition increased annual CH4 
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uptake by 20-60%; at 2000 m, P and N+P addition increase uptake by 21-50%; and at 

3000 m, N addition increased CH4 uptake by 34-40%. These differential effects of nutrient 

addition may be related to initial soil nutrient status and differential responses of 

ecosystem components to nutrient addition at each elevation. 

We show that soil GHG fluxes and consequently net soil global warming potential of 

TMFs can change considerably along an elevation gradient, following a general 

descending trend with increasing elevation. Results indicated further, that elevated N and P 

deposition can strongly affect soil GHG fluxes in Andean TMFs, but responses of soil 

GHG fluxes to nutrient addition depend largely on initial soil nutrient status, duration of 

nutrient addition and inter-annual variability in climatic conditions. Since nutrient addition 

effects were not linear with time of exposure, and complex interactions with other 

ecosystem components exist, there are some uncertainties in predicting effects of nutrient 

depositions on soil GHG fluxes. However, we provide the first data on mid-term nutrient 

effects of N, P and N+P on fluxes of the three main soil GHGs along an elevation gradient 

of Andean TMFs. Our results suggest that the net soil global warming potential across the 

elevation gradient might slightly increase with increasing N input, whereas it might 

decrease with increasing P and N+P inputs.  
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RESUMEN 

Los suelos de los bosques tropicales desempeñan un papel importante en el clima de 

la Tierra mediante el intercambio con la atmosfera de grandes cantidades de gases de 

efecto invernadero (GEI). Sin embargo, esta importante función podría ser alterada por las 

actividades humanas causando el aumento en la deposición de nutrientes en los 

ecosistemas terrestres, especialmente en las regiones tropicales. Las causas de cómo el 

incremento de las cantidades de nutrientes está afectando los flujos de suelo de los GEI de 

los bosques tropicales es relativamente poco conocida, por ello los monitoreos de 

nutrientes in situ de los bosques montanos tropicales (BHT) son aún menos comprendidos. 

Ya que los BHT representan alrededor del 11-21% de la superficie forestal tropical, es de 

vital importancia predecir y cuantificar los cambios en los flujos de GEI del suelo en 

respuesta a la adición de nutrientes ya que podrían favorecer la retroalimentación a otros 

cambios globales. Esta tesis tiene como objetivo cuantificar el impacto de adición 

moderada de  nitrógeno (N) y/o fósforo (P) en los flujos de tres  GEI en suelo: dióxido de 

carbono (CO2), óxido nitroso (N2O) y el metano (CH4), a lo largo de un gradiente 

altitudinal (1000 m, 2000 m, 3000 m) de los  BHT primarios en el sur de Ecuador. 

Desde hace más de cinco años, se ha medido los flujos de GEI del suelo en un 

experimento de manipulación de nutrientes (‘NUMEX’, por sus siglas en inglés), con 

replicas para control, y la adición de N (50 kg N ha-1 año-1), P (10 kg P ha-1 año-1) y N+P. 

Las mediciones in situ se realizaron mensualmente utilizando cámaras ventiladas estáticas, 

seguido por un análisis de cromatografía de gases para conseguir una perspectiva más 

profunda sobre los procesos implicados en el intercambio suelo-atmósfera de GEI. Se 

realizaron nuevas investigaciones  incluyendo el monitoreo de factores básicos de control 

(i.e. temperatura del suelo, humedad y las concentraciones del N mineral), los diferentes 

componentes de los flujos de CO2 del suelo, tasas de reciclaje netos de N y fuentes de los 



Resumen 

XVII 

flujos de N2O del suelo. Con este propósito, se utilizó la extracción de  hojarasca y técnicas 

de excavación de zanjas (trenching technique), incubación de las muestras in situ (buried 

bag method) y el etiquetaje de 15N de corto plazo. 

Los flujos de GEI del suelo en los bosques que estudiados se mostraron en el rango 

de aceptado de los flujos de gases de otras BHT en elevaciones comparables, excepto para 

el N2O. Los flujos de N2O, que se derivan principalmente de la des nitrificación, fueron 

bajos para un TMF lo que se puede atribuir a los ciclos conservativos de N del suelo en 

nuestros sitios de estudios. Los suelos fueron fuentes de CO2 y N2O (la intensidad del 

recurso disminuye al aumentar la altitud) y en todas las elevaciones el CH4 es bajo. 

Encontramos efectos de los nutrientes en todos los flujos de GEI medidos en cada 

elevación. Las respuestas de los flujos de CO2 del suelo cambian con la duración y el tipo 

de nutrientes adicionado. En 1000 m, la adición del N no afecta los flujos de CO2 del suelo, 

mientras que las adiciones de P y N+P disminuyeron los flujos en el primer y cuarto a 

quinto año. En  2000 m., la adición de N y N+P incrementa los flujos de CO2 en el primer 

año; a partir de entonces, la adición del N disminuye los flujos  mientras que  la adición de 

N + P no mostro ningún efecto la adición de P carece de efectos. En 3000 m, la adición de 

N además incrementó los flujos de CO2 constantemente; la adición de P y N+P aumentaron 

los flujos sólo en el primer año a partir de entonces no existió ningún efecto. Los efectos 

diferenciales de los nutrientes estuvieron relacionados a un estatus del N y P y respuestas 

variadas de los componentes de la respiración del suelo.  

Las respuestas de los flujos de N2O y CH4 a la adición de nutrientes mostraron gran 

variabilidad entre años. Los flujos de N2O no se vieron afectados por la adición de tres a 

cinco años de N a pesar de las diferencias significativas observadas durante los dos 

primeros años del mismo experimento. Atribuimos la ausencia de las respuestas en años 

mas tardíos debido a los contenidos bajos de humedad del suelo en nuestro periodo de 
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monitoreo 2010-2012. En todo el gradiente altitudinal, la adición de P disminuyó los flujos 

de N2O y las concentraciones de  N mineral, presumiblemente debido a que alivió de la 

limitación del P en la producción primaria neta, lo que aumentó la captación de N a través 

de las plantas. La adición de N+P además mostró tendencias similares las respuestas a la 

adición de N solamente, pero con efectos menos fuertes debido a los efectos contrapuestos 

de la adición de P. 

Durante los dos primeros años de la adición de nutrientes, los flujos de CH4 no se 

vieron afectados en ninguna elevación, lo cual atribuimos a la combinación de cantidades 

moderadas de nutrientes añadidos, la fuerte inmovilización de nutrientes, y la separación 

de la más alta capacidad de absorción de CH4 en el subsuelo de la superficie del suelo 

donde se añaden fertilizantes. En el tercer a quinto año, la adición de nutrientes del suelo 

aumentaron la captación de CH4, aunque los efectos de N y P variaron a lo largo del 

gradiente altitudinal: en 1000 m, la adición de N y N+P aumentó la captación anual de CH4 

a 20-60%; en 2000 m P y N+P incrementaron la captación a 21-50%; y en 3000 m la 

adición de P y N+P incrementó la captación de CH4 a 34-40%. Estos efectos diferenciales 

de la adición de nutrientes pueden estar relacionados con el estatus inicial de del suelo y 

respuesta diferenciales de otros componentes del ecosistema a la adición de nutrientes en 

cada elevación. 

Demostramos que los flujos de GEI del suelo y consecuentemente la red potencial de 

calentamiento global del suelo pueden cambiar considerablemente a lo largo de un 

gradiente de elevación, siguiendo una tendencia general de disminución con el aumento de 

la elevación. Los resultados indican además que la elevada deposición de N y P puede 

afectar los flujos de GEI del suelo en los BHT Andinos, pero las respuestas a los flujos de 

GEI a la adición de nutrientes depende del estatus inicial de los nutrientes del suelo, la 

duración de la adición de nutrientes y la variabilidad inter-anual de las condiciones 
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climáticas. Puesto que los efectos de la adición de nutrientes fueron no lineares con el 

tiempo de exposición y a la par existen complejas interacciones con otros componentes del 

ecosistema, aún quedan muchas incertidumbres en la predicción exacta de los efectos de la 

deposición de nutrientes en los flujos de GEI. Sin embargo, ofrecemos los primeros datos 

sobre los efectos de nutrientes a medio plazo de N, P y N+P en los flujos de los tres 

principales gases de efecto invernadero del suelo a lo largo de un gradiente altitudinal de 

los BHT Andina. Nuestros resultados sugieren que la red potencial de calentamiento global 

de los suelos en todo el gradiente altitudinal podría aumentar ligeramente con la entrada 

contribución de N, mientras que podría disminuir con el aumento de la contribución de P y 

N+P. 
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1.1 Global change - significance and complexity 

Human activities are changing global environmental processes in a largely 

unregulated way, with limited knowledge as to the consequences; however, these changes 

could affect the basic functioning of the Earth system and thus human life (Steffen et al. 

2004). 

Major global changes currently impacting the earth include the alteration of 

biogeochemical cycles (e.g. nitrogen [N], carbon [C]) and rising atmospheric greenhouse 

gas (GHG) concentrations, the latter directly changing the earth’s climate (IPCC 2013). 

Atmospheric concentrations of the three major GHGs: carbon dioxide (CO2), nitrous oxide 

(N2O) and methane (CH4) have increased between 20 and 150 % since pre-industrial times 

(Table 1.1). Increasing concentrations drive global warming by increasing global surface 

temperatures, which are likely to exceed 2°C in 2100 relative to 1850-1900 (IPCC 2013). 

This would move temperatures well outside the range of natural variability that has been 

exhibited for thousands of years. This temperature shift could potentially exceed tipping 

points, causing the Earth system to switch quickly from its current state to another state, 

which may prove much less amenable to human life (Steffen et al. 2004). 

Although increases in atmospheric GHG concentrations are primarily driven by 

fossil-fuel emissions, they are also linked to other global changes, and cascade through the 

Earth system in complex ways. Cultivation of N-fixing plants, fossil fuel and fertilizer use, 

biomass burning, and industrialization, for example, more than double the amount of 

reactive N cycling globally, with consequent increases in atmospheric N deposition 

(Galloway et al. 2008). Increasing atmospheric N deposition, in turn, can affects soil GHG 

fluxes, and is therefore indirectly responsible for the 0.4-1.3 Tg N yr-1 of anthropogenic 

N2O land emissions. This range of emissions is similar in magnitude to direct emissions 

due to fossil-fuel use and industrial processes (0.2-1.0 Tg N yr-1; IPCC 2013). This 
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comparison, which does not include potential feedbacks of changing temperature on land 

emissions, illustrates the complexity of human impacts on the Earth system, and the need 

to understand and quantify global changes, in order to predict, manage and possibly 

prevent potential negative impacts. 

Table 1.1 An overview of climate-relevant characteristics of the three greenhouse gases carbon dioxide 

(CO2), nitrous oxide (N2O) and methane (CH4) (IPCC 2013) 

 CO2 N2O CH4 

Pre-industrial atmospheric concentrations  

in 1750 
278 ± 2 ppm 270 ± 7 ppb 722 ± 25 ppb 

Atmospheric concentrations in 2011 391 ± 0.2 ppm 324 ± 0.1 ppb 1803 ± 2.0 ppb 

Change in atmospheric concentrations (%) 

between 1750-2011 

41 

(113 ppm) 

20 

(54 ppb) 

150 

(1081 ppb) 

Absolute change in radiative forcing (W/m²) 1.82 ± 0.19 0.17 ± 0.03 0.48 ± 0.05 

Atmospheric lifetime (yrs) 50-200* 131 9 

Global warming potential (100 yrs)** 1 298 34 

*No single lifetime can be given; range reported by Batjes and Bridges 1992 

**including climate-carbon feedbacks 

 

1.2 Greenhouse gas fluxes from tropical forest soils 

Although the current atmospheric GHG concentrations of CO2, N2O and CH4 are 

dominated by human activities, soils - especially tropical forest soils - are an important 

natural controller of these GHGs and thus important for the earth’s climate. 

Soil CO2 emissions are the second-largest flux in the global C cycle (Schlesinger and 

Andrews 2000). Tropical forest soils have higher annual CO2 emission rates than any other 

forest biome (Luyssaert et al. 2007), which is significant  in terms of climate change, since, 

after water vapor, CO2 is the most abundant GHG in the atmosphere (Table 1.1). However, 

due to the ability of plants to fix CO2 via photosynthesis, intact forest ecosystems appear to 
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be CO2 sinks (Dalal and Allen 2008; Luyssaert et al. 2007). In soils, CO2 is produced via 

root and heterotrophic respiration (Figure 1.1) and the relative contributions of these 

sources, although critical to the understanding of total soil CO2 emissions, have only rarely 

been quantified (Kuzyakov 2006); soil CO2 emissions are still one of the least understood 

fluxes in the C cycle (Houghton 2007; Malhi et al. 1999). The two main controlling factors 

for CO2 emission are soil temperature and moisture (Schwendenmann et al. 2003). 

However, several indirect factors such as soil type, vegetation, landscape position and 

nutrient availability can also affect soil CO2 fluxes (Luo and Zhou 2006; Raich 1998). 

 

Figure 1.1 Flow diagram of processes involving the production and consumption of the three main soil 

greenhouse gases (red) in forest soils; processes and stocks that were measured as part of this study (see 

Chapters 2-4) are indicated in black. 

The biggest natural source of atmospheric N2O are soils (Denman et al. 2007), and 

tropical forest soils contribute most to these emissions, accounting for 30% (Dentener et al. 

2001). Although N2O fluxes and concentrations in the atmosphere are low, even small 

changes in atmospheric N2O concentrations can largely affect the global climate, due to the 

298 times higher global warming potential (GWP) of N2O compared to CO2 (Table 1.1). 

N2O is produced in soils mainly during the microbial processes of nitrification and 
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denitrification, although N2O can also be consumed during the anoxic process of 

denitrification (Figure 1.1; Chapuis-Lardy et al. 2007). How the two main controlling 

factors, N cycling and soil water content, affect N2O fluxes has been described in the 

conceptual ‘hole-in-the-pipe’ model (Firestone and Davidson 1989). However, several 

other factors such as soil temperature, organic C contents (Weier et al. 1993) and soil pH 

have also been found to be important controls of soil N2O fluxes (Weslien et al. 2009). 

Finally, soils are important natural biogenic sinks and sources of CH4; forest soils are 

generally strong net CH4 sinks (Le Mer and Roger 2001), although in tropical forests, 

canopy wetlands have been found to be CH4 sources (Martinson et al. 2010). Tropical 

forest soils contribute about 28% to the global annual CH4 uptake by soils (Dutaur and 

Verchot 2007). Consequently, they represent important sinks of atmospheric CH4 

concentrations, which have increased dramatically since levels before the industrial 

revolution (Table 1.1; Etheridge et al. 1998). In combination with its relatively higher 

GWP compared to CO2, this makes CH4 the second most important GHG causing global 

warming (Denman et al. 2007). In soils, CH4 is produced via anaerobic oxidation of C, 

mainly by methanogenic archae, and consumed via oxidation by methanotrophic bacteria 

(Figure 1.1; Le Mer and Roger 2001). The dominance of one process over the other 

determines if soils are sinks or sources of CH4; generally wetland soils are net sources of 

CH4 and aerated upland forest soils are net sinks for atmospheric CH4 (Le Mer and Roger 

2001). The strength and direction of CH4 fluxes in aerated soils are mainly controlled by 

soil moisture (Bowden et al. 1998), soil texture (Dörr et al. 1993) and the presence of 

organic layers (Saari et al. 1998). However, soil temperature (Le Mer and Roger 2001) and 

N availability (Bodelier and Laanbroek 2004) have also been shown to be important 

controlling factors.  
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1.3 Nutrient deposition in tropical regions, tropical montane forests and nutrient 

effects on soil greenhouse gas fluxes 

Increasing N deposition due to human impacts have been shown to affect many 

ecosystem functions, causing acidification (Matson et al. 1999), aquatic eutrophication  

(Smith et al. 1999), biodiversity loss (Phoenix et al. 2006) and changes in soil GHG fluxes 

(Corre et al. 2014). Currently, dramatic increases in atmospheric N deposition are 

occurring in tropical areas (Galloway et al. 2004; Hietz et al. 2011) and further increases 

are predicted within the next decades, with predicted rates exceeding 25 kg N ha-1 yr-1 

(Figure 1.2; Phoenix et al. 2006). Additionally, in tropical forests of South America, 

atmospheric phosphorus (P) depositions are expected to increase due to biomass burning 

and dust inputs (Mahowald et al. 2005; Okin et al. 2004). Changes in P deposition will be 

relatively small as compared to N deposition, but since P and N are both major nutrients 

limiting net primary productivity (NPP), not only their single but also their combined 

impact is of interest in tropical forests. Studying forest response to nutrient additions is 

especially important in tropical regions, since these highly diverse forests have recently 

been recognized to contradict Liebig’s law (which posits a single limiting factor for plant 

growth), instead having complex and multiple nutrient limitations (Homeier et al. 2012; 

Kaspari et al. 2008; Wright et al. 2011). Tropical montane forests (TMFs), which seem to 

be co-limited by N and P (Homeier et al. 2012; Tanner et al. 1998), might particularly be 

affected by increasing N and P depositions, due to the importance of cloud water 

deposition in this ecosystem (Carillo et al. 2002). Not only are ion concentrations higher in 

fog water compared to rain water (Rollenbeck et al. 2008), but this form of water input 

reduces the risk of immediate nutrient losses via leaching or overland flow, which often 

occur with heavy rainfall events. 
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Figure 1.2 Projected total inorganic N deposition in 2050 (mg N m-2 yr-1) (from Galloway et al. 2004) 

TMFs occur within mountainous regions in tropical latitudes, spanning altitudinal 

gradients of 300 - 3,900 m above sea level (asl) (Stadtmüller 1987) and comprising a 

remarkable variety of climatic, floral and soil characteristics. However, moving upwards 

along elevation gradients, some general changes consistently occur (Figure 1.3); these 

include decreases in: temperature, tree height, complexity of forest strata and leaf size, and 

increases in: tree density, epiphytic density, the amount of gnarled trees, the tendency 

towards sclerophyll leaves and cloud incidence (Bruijnzeel and Hamilton 2000; Hamilton 

1995; Richter 2008; Stadtmüller 1987). Although soil characteristics vary greatly, shallow 

soils with densely rooted organic layers of increasing thickness dominate at higher 

elevations (Wilcke et al. 2002). 
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Figure 1.3 Generalized altitudinal forest formation series in the humid tropics (adapted from Bruijnzeel and 

Hamilton 2000) 

Globally, TMFs represent an estimated 11 – 21% of global tropical forests (Bubb et 

al. 2004; FAO 1993; Spracklen and Righelato 2014), rank among the world’s most 

important biodiversity hotspots (Myers et al. 2000) and fulfill important ecosystem 

services. They provide a reliable supply of high-quality water (Bruijnzeel 2005) and have 

important climate regulation functions, since they do not only cycle large amounts of CO2 

through plants, but their soils are also sinks and sources of the three major atmospheric 

GHGs (CO2, N2O and CH4). Still, TMFs are one of the least-studied forest ecosystems in 

terms of ecosystem functioning (Bruijnzeel and Hamilton 2000; Bruijnzeel 2005) and their 

research history is rather short (Stadmüller 1987). A process-orientated understanding of 

TMFs is particularly lacking, and can be attributed to their high local and regional 

variability (Townsend et al. 2008) in combination with scarcity of long-term and 

ecosystem-integrated monitoring studies (Bruijnzeel and Hamilton 2000; Hamilton 1995). 

This is problematic, however, since the impact of human activities (locally and globally) is 

increasing rapidly in tropical regions and substantial changes in ecosystem processes and 

functioning are expected. For example, changes due to increasing nutrient deposition are 

still largely unquantified and poorly understood (Boehmer 2011).  
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Although nutrient deposition in tropical regions is increasing, most studies reporting 

effects of increasing nutrient inputs (mainly of N) on forest soil GHG fluxes stem from 

temperate regions (Wei et al. 2008). In these studies, N-addition does not always affect soil 

GHG fluxes, but studies reporting significant effects have generally found soil N2O fluxes 

to increase and soil CH4 uptake to decreases with N addition, while the effect on soil CO2 

fluxes varied from increasing to decreasing, depending, among others, on duration of 

nutrient addition. The effect of P addition on soil GHG fluxes is generally less studied in 

forest ecosystems, and plants seem to play a larger role in the response of GHG fluxes to P 

addition compared to N addition (Keith et al. 1997; Zhang et al. 2011). However, in 

tropical forests, nutrient effects might differ from temperate forests, due to their high 

diversity and thus heterogeneity (Townsend et al. 2008), year-round biological activity and 

NP-co-limitation of NPP (Hobbie and Vitousek 2000). In addition, many studies looking at 

GHG fluxes do not do so in an ecologically-relevant manner. 

Of the studies looking at nutrient effects on GHG fluxes, several have been 

laboratory studies (e.g. Flessa et al. 1996; Saari et al. 1997; Teklay et al. 2006). Although 

such studies are helpful tools to investigate direct nutrient effects on soil GHG fluxes, by 

excluding ecosystem components their results are often different than in-situ manipulations 

and measurements (Cleveland and Townsend 2006). Since it is important to understand 

potential nutrient effects on soil GHG fluxes from TMFs on an ecosystem-scale, in-situ 

measurements are necessary, preferably using large-area and long-term measurements. 

Although some in-situ nutrient manipulation studies have been conducted in TMFs, studies 

often restrict measurements to one elevation (Hall and Matson 2003; Koehler et al. 

2009a,b). Furthermore, in many studies, applied nutrient amounts are unrealistically high 

compared to expected nutrient depositions, with plot sizes that are too small to represent 

the highly diverse tropical forest ecosystem (Cleveland and Townsend 2006; Fisher et al. 
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2013). Finally, studies frequently concentrate on only one GHG for a short period of time 

(measurements rarely exceed 1 year) (Fisher et al. 2012; Hall and Matson 2003). Although 

these studies certainly contribute to the general understanding of nutrient input on soil 

GHG fluxes, they do not provide reliable data on the long-term impact of increasing 

nutrient deposition in TMFs and their resulting contribution to climate change. 

 

1.4 Objectives 

The aim of this study was to investigate the effect of moderate nutrient input of N 

and/or P (up to five years) on greenhouse gas fluxes (CO2, N2O, CH4) from tropical 

montane forest soils along an elevation gradient in southern Ecuador.  

We expected nutrient addition to affect soil GHG fluxes, in the same way as 

observed in other studies from tropical forests and previous results from our study area. 

We tested the following hypotheses (a detailed justification for each is given in the 

introductory sections of Chapters 2 to 4):   

(1) Soil CO2 fluxes will decrease with increasing elevation and response to nutrient 

addition will change over time, since different components of soil CO2 fluxes will 

react with different magnitudes and directions. The combined addition of N and P 

will lead to stronger effects than the addition of single nutrients. 

(2) Net soil-N cycling and soil N2O fluxes, which increased within the first two years 

of N and N+P addition in our experiment (Martinson et al. 2013) will continue to 

increase, while P addition will have a minimal effect or might even decrease soil 

N2O emissions. Soil N2O fluxes will be dominated by denitrification processes in 

these moist tropical forest soils. 
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(3) N, P and N+P addition will increase soil CH4 uptake, since forests showed evidence 

of N and P co-limitation (Homeier et al. 2012, 2013) and there are indications of 

N-limited CH4 uptake in our study area (Wolf et al. 2012). 

 

1.5 Material and methods 

1.5.1 Study area and experimental design 

Our study was conducted in three TMF sites, located along an elevation gradient 

(1000 m, 2000 m and 3000 m asl) in the Cordillera Real, a mountain chain in the eastern 

range of the South Ecuadorian Andes. While tropical forests formerly dominated the 

landscape of the Ecuadorian Andes, their extent has been significantly decreased through 

anthropogenic influences and deforestation rates are still high (Beck et al. 2008). However, 

protected old-growth forests remain in the Podocarpus National Park (~1460 km²; 

Naughton-Treves et al. 2006) and parts of the adjacent ‘Reserva Biológica San Francisco’ 

(~11.2 km²; 1600-3140 m as; Beck et al. 2008), which lay within the Ecuadorian provinces 

of Loja and Zamora Chinchipe. This area of forests, which served as our study area for this 

research (Figure 1.4), has been identified as a center of endemism and diversity for major 

groups of organisms including birds, various insects (e.g. moths) and vascular plants (e.g. 

Beck and Richter 2008; Beck et al. 2008; Brehm et al. 2005; Brummitt and Lughadha 

2003; Jørgensen et al. 2011). A detailed description of the study area is given by Richter et 

al. (2008) and several ecosystem aspects within this area have already been investigated 

(Beck et al. 2008; Bendix et al. 2013).  
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Figure 1.4 Map of Ecuador with the Podocarpus National Park situated in the South (left) and a map with the locations of the three study sites in and adjacent to the 

Podocarpus National Park (right). Maps adapted from: http://d-maps.com (left) and http://maps.google.de (right). 
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For our study, a nutrient manipulation experiment (NUMEX) was established as a complete block design, with four replicate blocks at each 

of the three study sites (elevations). Each block contained four treatment plots: N addition, P addition, N+P addition and untreated control 

(Figure 1.5). Nutrient application started in 2008 and amounts were split into two equal applications per year at moderate rates of 50 kg N ha-1 

yr-1 (as urea) and 10 kg P ha-1 yr-1 (as sodium hydrogen phosphate). More detailed information about the study sites and experimental setup is 

given in the materials and methods sections of Chapters 2 to 4. 

       

Figure 1.5 Topographic maps showing the plot layout of the nutrient manipulation experiment (NUMEX) along the elevation gradient at 1000 m, 2000 m and 3000 m (left to 

right) in tropical montane forests of southern Ecuador. Diagrams adapted from J. Homeier.  

 

N 
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1.5.2 Methodological overview 

We measured soil CO2, N2O and CH4 fluxes once a month from November 2010 to 

August 2012 (years three to five of nutrient addition) using static vented chambers. G.O. 

Martinson (Martinson 2011) provided data of soil CO2 and CH4 fluxes measured from 

January 2008 to September 2009, using the same methodological approach. Gas samples were 

analyzed using gas chromatographs equipped with an electron capture detector and flame 

ionization detector and gas fluxes were calculated from the linear increase of gas 

concentrations in the chamber headspace over time. Parallel to gas sampling, soil temperature, 

gravimetric soil moisture and extractable mineral ammonium (NH4
+) and nitrate (NO3

-) of the 

top 5 cm of soil were determined. 

During 2011 and 2012, several additional measurements were performed to distinguish 

between different sources of soil CO2 fluxes: a small-scale litter removal and trenching 

experiment was established within NUMEX and monthly gas flux measurements were carried 

out for 1.5 years. Net N cycling rates were also measured in-situ on three occasions, using the 

‘buried bag method’. Finally, the relative contribution of NH4
+ and NO3

- to soil N2O fluxes 

were quantified in control and N-amended plots on two occasions, using short-term 15N 

tracing to 15N2O. An overview on processes and stocks measured within this study is shown in 

Figure 1.1 and more detailed methodological descriptions are given in the materials and 

methods sections of Chapters 2 to 4. 
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2.1 Abstract 

Tropical forests play an important role in the global carbon cycle and are increasingly 

affected by elevated atmospheric nutrient inputs. We assessed the five-year impact of 

moderate nitrogen (N) and phosphorus (P) additions on total soil carbon dioxide (CO2) fluxes 

and its components across an elevation gradient (1000, 2000 and 3000 m) of tropical montane 

forests in south Ecuador. In a nutrient manipulation experiment with control, N (50 kg N ha-1 

year-1), P (10 kg P ha-1 year-1) and N+P additions, soil CO2 fluxes were measured using static 

chambers. Soil CO2 fluxes from controls decreased from 8.8 ± 0.2, 5.4 ± 0.4 to 2.4 ± 0.7 Mg 

C ha-1 year-1 from 1000 m to 3000 m. Nutrient additions showed differential effects on soil 

CO2 fluxes with elevation and duration of addition. At 1000 m, N addition did not affect soil 

CO2 fluxes, whereas P and N+P additions decreased fluxes in the first and fourth-fifth years. 

At 2000 m, N and N+P additions increased CO2 fluxes in the first year; thereafter, N addition 

decreased fluxes whereas N+P addition no longer showed any effect; P addition showed no 

effect. At 3000 m, N addition increased CO2 fluxes consistently; P and N+P additions 

increased fluxes only in the first year showing no effect thereafter. Differential nutrient effects 

were related to initial soil N and P status and varied responses of soil respiration components. 

Our results illustrate that elevated N and P depositions can strongly affect the belowground C 

cycle in these Andean tropical montane forests. 

 

2.2 Introduction 

Tropical forests play an important role in the global carbon (C) cycle, storing over a 

fifth of global terrestrial C stocks [Jobbagy and Jackson, 2000; Prentice et al., 2001] and 

cycling about 12% year-1 of the atmospheric carbon dioxide (CO2) through photosynthesis as 

well as plant/microbial respiration [Malhi, 2005]. In the global C cycle, CO2 emissions from 

soils are the second-largest flux with an estimated 68-77 Pg C year-1 [Schlesinger and 
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Andrews, 2000]. Despite their importance, soil CO2 fluxes are one of the least understood 

fluxes in the C cycle [Malhi et al., 1999; Houghton, 2007]. Soil CO2 fluxes measured at the 

soil surface are mainly produced by autotrophic or root respiration (from roots, rhizosphere 

and associated mycorrhiza) and heterotrophic or microbial respiration, which can be 

subdivided into fresh litter respiration and soil organic matter (SOM) respiration [Raich and 

Schlesinger, 1992; Hanson et al., 2000]. 

Although tropical montane forests (TMFs) cover more than 11% of the world’s tropical 

forest area [FAO, 1993, 2001] and contain larger amounts of soil C than lowland tropical 

forests [Dieleman et al., 2013], soil CO2 fluxes are poorly studied in these diverse 

ecosystems. TMFs occur over large altitudinal gradients and experience a variety of 

environmental conditions, which at high elevations can impede decomposition processes, 

leading to thick organic layers [Grubb, 1977; Stadtmüller, 1987]. Soil CO2 fluxes are 

controlled by many different factors. Among the more direct or proximal factors are soil 

temperature and moisture, whereas among the more indirect or distal factors are: soil type, 

vegetation, landscape position and nutrient availability. In TMFs, the combination of these 

controlling factors causes a reduction in soil CO2 fluxes with increasing elevation (e.g. in 

Indonesia [Purbopuspito et al., 2006] and Ecuador [Wolf, 2011]). Since soil CO2 emissions 

are produced by different sources, which react differently to controlling factors [van Straaten 

et al., 2011; Tan et al., 2013], the contributions of these different sources to the total soil CO2 

flux may also vary greatly across an elevation gradient [Zimmermann et al., 2010], with 

changing soil types [Purbopuspito et al., 2006], climatic variables [Fisher et al., 2013], 

nutrient availability [Drake et al., 2012] and forest types [Wang and Yang, 2007]. 

Human activities like cultivation of nitrogen (N)-fixing plants, biomass burning, 

industrialization, fossil fuel use and fertilizer use, have more than doubled the amount of 

reactive N cycling globally [Galloway et al., 2008]. As a result, N deposition in the tropics is 
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presently increasing, with further increases predicted in the next decade [Galloway et al., 

2004; Phoenix et al., 2006; Hietz et al., 2011]. Deposition of phosphorus (P) is also predicted 

to increase in tropical South America through increased input from biomass burning, 

anthropogenic mineral aerosols and biogenic particles from the neighboring Amazon Basin 

[Mahowald et al., 2005]. 

How soil CO2 flux will react to elevated nutrient deposition depends on whether the 

additional nutrients are limiting processes involved in CO2 production. Traditionally, net 

primary production (NPP) of TMFs, which typically occur on soils that are not strongly 

weathered, was assumed to be N-limited whereas NPP of tropical lowland forests, which 

occur on heavily weathered soils, was assumed to be P-limited [Vitousek and Farrington, 

1997]. However, in recent years, several studies have been published that do not support this 

generalization, developed originally in mono-species stands in Hawaii. It appears that in 

diverse tropical forests, multiple nutrient limitations are the rule rather than the exception 

[Kaspari et al., 2008; Wright et al., 2011; Homeier et al., 2012], and there is increasing 

evidence that in many TMFs co-limitation of N and P occurs [Tanner et al., 1998; Homeier et 

al., 2012]. Furthermore, NPP may be limited by one specific nutrient, while other ecosystem 

processes may be limited by other nutrients [Hobbie and Vitousek, 2000; Corre et al., 2010; 

Homeier et al., 2012]. Several responses of the different components of soil CO2 fluxes have 

been proposed when N and P are added to tropical forests. (1) For fresh litter respiration, the 

direct alleviation of nutrient limitations on microbial activity and community composition can 

accelerate decomposition of light soil C fractions, leading to an increase (short-term) in 

heterotrophic respiration [Cleveland et al., 2002; Cleveland and Townsend, 2006; Cusack et 

al., 2010; Liu et al., 2013]. Since nutrient addition will often increase plant productivity, this 

will increase substrate quantity and quality, which may in turn increase (long-term) fresh litter 

respiration [Sayer et al., 2007, 2011]. (2) N addition can suppress decomposition of more 
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decayed soil C fractions, present in large quantity in thick organic layers due to reduced 

activity of lignin-degrading enzymes [Berg and Matzner, 1997; Janssens et al., 2010], 

reducing soil organic matter respiration [Giardina et al., 2004]. (3) N addition can increase 

root maintenance respiration [Ryan et al., 1996; Jia et al., 2013] and root dynamics, 

especially in severely N-limited soils [Nadelhoffer, 2000; Cleveland and Townsend, 2006; 

Yuan and Chen, 2012). However, decreases in fine-root biomass and soil CO2 fluxes with N 

addition to TMFs have frequently been reported as well [Gower and Vitousek, 1989; Koehler 

et al., 2009; Cusack et al., 2011], which are explained by a shift in C allocation in trees from 

below- to aboveground with increasing nutrient availability, and thus N addition may 

potentially lower root respiration [Ågren and Franklin, 2003; Treseder, 2004]. Moreover, 

long-term effects of N addition include decreases in soil pH and base saturation, and increases 

in aluminum saturation [Matson et al., 1999, 2002; Koehler et al., 2009], which can reduce 

microbial biomass and root growth and consequently soil respiration. Although P availability 

is often considered to have a stronger effect on root dynamics than N availability [Ostertag, 

2001; Treseder, 2004; Fisher et al., 2013], this was not confirmed in a recent meta-analysis 

that included TMF soils [Yuan and Chen, 2012]. Finally, the combined addition of N and P 

causes strong positive synergistic responses of plant productivity that exceed stimulations by 

single nutrient element addition [Elser et al., 2007; Harpole et al., 2011]; thus, N and P 

addition may have the potential both to amplify fresh litter respiration and to decrease root 

and soil organic carbon respiration.  

Here, we report the effects of moderate N and P additions on soil CO2 fluxes and its 

components across an elevation gradient of TMFs in southern Ecuador in the first five years 

of nutrient manipulation. We tested the following hypothesis: (1) CO2 fluxes will decrease 

with increasing elevation, (2) the response of soil CO2 fluxes to nutrient addition will change 

over time since different components of CO2 fluxes will react with different magnitudes and 
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directions, and (3) the combined addition of N and P will lead to stronger effects than the 

addition of single nutrients. Our study is the only one so far, that investigated long-term (five 

years) changes in soil respiration with rates of N and P inputs that are realistic for tropical 

regions and moderate in comparison to other nutrient manipulation studies conducted in 

tropical forests [e.g. Cleveland and Townsend, 2006; Fisher et al., 2013]. Thus, our findings 

provide critical information to predict and model future changes in C cycling of TMFs due to 

changes in nutrient deposition. 

 

2.3 Material and Methods 

2.3.1 Study area 

We conducted this study on the eastern slope of the Cordillera del Consuelo in the 

provinces of Loja and Zamora Chinchipe, southern Ecuador. Three old-growth forest sites 

were selected along an elevation gradient of 1000 - 3000 m above sea level (asl) within the 

Podocarpus National Park and the adjacent private Biological Reserve San Francisco. A 

detailed description of these sites is given by Martinson et al. [2013] and summarized in 

Table S2.1. 

The lowest site is located at 990-1100 m asl (referred to as 1000 m; 4.115° S, 78.968° 

W) and consists of a premontane tropical forest [Homeier et al., 2008]. The soil (Cambisol) is 

developed on deeply weathered granitic rock [Litherland et al., 1994] and has a sandy texture 

with only a thin layer of decomposing leaves. The mid-elevation site is located at 1950-2100 

m asl (referred to as 2000 m; 3.982° S, 79.083° W) and consists of a lower montane rain 

forest [Homeier et al., 2012]. The high elevation site is located at 2900-3050 m asl (referred 

to as 3000 m; 4.110° S, 79.178° W) and consists of an upper montane rain forest. The soils at 

2000 m (Cambisol) and 3000 m (Histosol) have loamy texture, developed from metamorphic 

schists [Litherland et al., 1994] and are covered by thick organic layers. 
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Mean annual temperature decreased with elevation from 19.4 at 1000 m to 15.7 at 

2000 m and 9.4° C at 3000 m whereas mean annual precipitation was lowest at 2000 m with 

1950 mm, followed by 1000 m with 2230 mm and highest at 3000 m with 4500 mm [Moser et 

al., 2007]. The climate in the study area shows only slight seasonal variability with the driest 

and warmest month in November and both high rainfall and cold temperatures around July 

[Bendix et al., 2006; Emck, 2007]. 

Ambient annual nutrient bulk and dry deposition in the study region has been 

increasing between 1998-2010 and ranged from 14 to 45 kg N and 0.4 to 4.9 kg P ha-1 

[Fabian et al., 2005; Boy et al., 2008; Homeier et al., 2012]. 

 

2.3.2 Experimental design 

A full factorial nutrient manipulation experiment (NUMEX) was established in 2008 

with N, P and N+P additions and untreated control plots [Homeier et al., 2012; Martinson et 

al., 2013]. At each site, 16 plots (20 m x 20 m each; ≥ 10 m distance from each other) were 

allocated to four blocks in a complete block design. Blocks covered topographic gradients 

which can influence soil characteristics and result in differing gas fluxes [Wolf, 2011]. 

Treatments were assigned randomly within a block with the restriction that unfertilized 

control treatments were located upslope and the combined treatment of N+P addition were 

located downslope in each block. In this steep terrain, this was necessary to avoid nutrient 

leaching from fertilized to control plots and from N+P plots to a plot fertilized with only one 

of these elements. 

Fertilizers were applied manually in solid form at moderate rates of 50 kg N ha-1 year-1 

as urea (CO(NH2)2) and 10 kg P ha-1 year-1 as sodium hydrogen phosphate (NaH2PO4·H2O 

and NaH2PO4·2H2O, in analytic grade quality). Fertilizer was split into two equal applications 

per year (February/March and August/September) starting in 2008. The second fertilization in 
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2010 was delayed four months due to logistical problems of shipping high-grade P fertilizer 

from Germany to Ecuador.  

 

2.3.3 Litter removal and trenching experiment 

To obtain additional information on possible mechanisms involved in differential 

responses of soil CO2 fluxes observed within the first years of nutrient addition, we conducted 

a small-scale fresh litter removal and trenching experiment in the last 1.5 years of nutrient 

manipulation. We measured fresh litter respiration and root-related respiration, which 

encompass not only autotrophic respiration but also possible additional heterotrophic 

respiration from decomposition of severed roots, as discussed and defined by Hanson et al. 

[2000].  We selected an undisturbed and homogenous area (~ 2 m x 2 m; > 2 m from plot 

edges) in each plot of NUMEX, in which three chamber bases for soil CO2 flux measurements 

(see description below) were installed close (< 1 m) to each other in November-December 

2010 and were assigned randomly as undisturbed reference (R) chamber, litter removal (-L) 

chamber and trenched (T) chamber. Within –L chamber bases (0.04 m²) all freshly fallen litter 

was removed once a month by hand, starting from February 2011 until August 2012. 

Trenched areas (~0.15 m² area) were prepared in May 2011 by cutting a circular trench 

about 0.1 m from the previously installed T chamber base, using a hand saw. We did not 

trench larger areas around the chamber bases because that would have required severing many 

large roots. Trenching included at least 0.1 m of mineral soil and the minimum depths from 

the surface were 0.3 m at 1000 m, 0.4 m at 2000 m and 0.6 m at 3000 m. In these sites, more 

than 75% of the total fine and coarse roots within a depth of 0.8 m is located in the top 0.3 m 

[Leuschner et al., 2007]; thus, our trenching depths guaranteed that most roots were cut 

[Leuschner and Moser, 2008]. No rooting barriers were inserted into the soil in order to avoid 

large disturbance and reduce possible changes in soil moisture [Hanson et al., 2000]. 
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Trenches were carefully re-cut bimonthly (directly after gas measurements) to prevent lateral 

root in-growth; seedlings within the isolated block of soil were also removed at least once a 

month. 

 

2.3.4 Soil CO2 flux, temperature and moisture measurements 

Soil CO2 fluxes were measured once a month from January 2008 to September 2009 

and from November 2010 to August 2012, using static vented chambers. Chambers bases 

were circular in shape and made of polyvinyl chloride (Figure S2.1: 0.04 m² area, 0.15 m 

height, ~ 0.03 m insertion depth). In 2007, four chamber bases per treatment plot were 

permanently installed in three replicate blocks. In each plot, the chamber bases were located 

along two perpendicular random transects (≥ 2 m from plot edges). On each sampling day, 

these bases were covered with polyethylene hoods equipped with a Luer-lock sampling port 

and a vent for pressure equilibrium (totaling 12 L chamber volume). Four gas samples were 

taken at 2, 14, 26 and 38 minutes after chamber closure. 

For the litter removal experiment, CO2 fluxes were first measured in January 2011, a 

month prior to the start of fresh litter removal, for a background check of fluxes between –L 

and R chambers, and then once a month during the litter removal phase (February 2011 to 

August 2012). For the trenching experiment, background CO2 fluxes were also measured 

prior to the start of trenching in May 2011, and then once a month following trenching (June 

2011 to August 2012). On each sampling day, four gas samples were taken at 3, 13, 23 and 33 

minutes after chamber closure.  

Until April 2011, gas samples stored in pre-evacuated 60-ml glass containers equipped 

with stopcocks were analyzed in Ecuador. Thereafter, gas samples were stored (as 

overpressured samples) in 12 ml Labco Exetainers® (Labco Limited, Lampeter, UK) with 

rubber septa and shipped to Germany for analysis. Gas samples were analyzed using gas 
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chromatographs equipped with an electron capture detector (a Shimadzu GC-14B, Duisburg, 

Germany with an autosampler [Loftfield et al., 1997], and a GC 6000 Vega Series 2, Carlo 

Erba Instruments, Milan, Italy with an ASPEC autosampler (Gilson SAS, Villiers, Le Bel, 

France)). CO2 concentrations were determined from the comparison of integrated peak areas 

of samples to three or four standard gases (with concentrations from 350 to 5000 ppm; Deuste 

Steininger GmbH, Mühlhausen, Germany). Analysis was done in Ecuador not later than one 

day after sampling and in Germany up to several months after sampling. Exetainers® were 

tested for their good quality during extended sample storage and aircraft transport [Glatzel 

and Well, 2008] and their performance was controlled by crosschecking pressure and 

concentration of calibration gases stored and transported in the same way as the samples. 

Gas fluxes were calculated from the linear increase of CO2 concentrations in the 

chamber headspace over time; the headspace air volume was estimated based on 

measurements of the chamber height at three places around the chamber. We corrected the 

fluxes with air pressure and temperature measured during the time of sampling. The linear fit 

of data was checked using the coefficient of determination. 

For the litter removal experiment, fresh litter respiration was calculated as the difference 

in CO2 fluxes between R and -L chambers in the same plot. For the trenching experiment, 

root-related respiration was calculated as the difference in CO2 fluxes between R and T 

chambers in the same plot. We excluded any measurement of total soil CO2 flux within three 

weeks after fertilization since we were not interested in the short-term effect of nutrient 

addition [e.g. Koehler et al., 2009]. Annual soil CO2 fluxes were approximated using the 

trapezoidal rule on time intervals between measured flux rates, assuming constant daily flux 

rates as shown by a lack of systematic diurnal courses within the study area [Iost et al., 2008]. 

Soil temperature was measured parallel to gas sampling at a depth of 0.05 m in each 

plot and from 2010 onward it was monitored more intensively (close to each chamber base 
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where gas samples were taken) using a GTH 175/Pt-E digital precision thermometer 

(Greisinger electronics GmbH, Regenstauf, Germany). Also, soil moisture was determined 

parallel to soil CO2 flux measurements from samples taken at the top 0.05 m within 1 m of the 

chamber; the soil sample for each plot was either pooled from four sub-samples (taken near 

the four regular chambers) or one single sample taken for the litter removal and trenching 

experiments. Soil moisture was determined gravimetrically by oven-drying at 105° C for at 

least 24 h and expressed as percentage of water-filled pore space (WFPS), assuming a particle 

density of 2.65 g cm-3 for mineral soil [Linn and Doran, 1984] and 1.4 g cm−3 for the organic 

layer [Breuer et al., 2002]. 

 

2.3.5 Statistical analysis 

Data were checked for normality and homoscedasticity and either a square root or 

logarithmic transformation (adding a constant value if the dataset included negative values) 

was applied when required. First, we assessed if there were pre-existing differences in CO2 

fluxes among plots at each elevation prior to nutrient manipulation; we used the 

measurements conducted one month prior to the start of fertilization and conducted one-way 

analysis of variance with block effect. Similarly, we assessed if there were pre-existing 

differences in CO2 fluxes between R, -L and T chambers at each elevation and treatment prior 

to litter removal and trenching experiments using Paired t tests. 

Second, we assessed the influence of soil moisture and temperature on soil CO2 flux 

from the control forests using Pearson’s correlation test and multiple regression analyses. 

These analyses were conducted on the means of the three replicate plots on each sampling 

day, considering the measurements conducted in the last three years of the study (2010 to 

2012). The maximal regression models (including linear or quadratic model with interaction 

terms) were reduced to the minimal adequate model through a series of single-term deletions 
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based on F tests [Crawley, 2007]. Multicollinearity was corrected by mean-centering 

explanatory variables so that the variance inflation factors were < 3 in all models. This was 

done for WFPS at 1000 m and soil temperature at 2000 m, for which regression functions are 

given for mean-centered data.  Model significance was assessed by regression analysis of 

variance. 

Third, we assessed the nutrient-addition effects on total soil CO2 fluxes over a certain 

period of time, using the linear mixed effects (LME) models for these time series data [Piepho 

et al., 2004; Crawley, 2007]. These analyses were conducted using the means of four to five 

chambers per plot on each sampling day (chambers are not replicates but plots and hence n = 

3) and considering all the sampling days within each year separately as well as for the 

cumulative years of the experiment. Nutrient-addition effects on fresh litter respiration and 

root-related respiration as well as differences in soil temperature and moisture among 

treatments were also analyzed using LMEs for the time series data across the entire 

experimental period. Analyses of nutrient-addition effects were conducted separately for each 

elevation. Nutrient-addition treatments were considered fixed effects whereas sampling days 

and plots were included as random effects. The following structures were included in the 

LME model if these improved the relative goodness of the model-fit based on the Akaike 

information criterion: (1) a first-order temporal autoregressive process to account for 

decreasing correlation of measurements with increasing time difference [Zuur et al., 2009], 

and (2) a variance function to account for heteroscedasticity of residual variances [Crawley, 

2007]. The significance of the fixed effects was then determined by analysis of variance at 

P ≤ 0.05. Mean values in the text are given with ± standard error (SE). Statistical analyses 

were conducted using R 2.14.0 [R Development Core Team, 2012]. 
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2.4 Results 

2.4.1 Soil temperature and water-filled pore space and effects of nutrient additions 

Soil temperature and WFPS in the top 0.05 m varied with elevation during the entire 

study period of 2008-2012 (P < 0.001, Table 2.1). Mean soil temperature decreased with 

increasing elevation. WFPS was lowest at 1000 m, where soils had no organic layers, 

followed by 3000 m and then 2000 m with the highest WFPS. Neither soil temperature nor 

WFPS displayed a clear seasonal pattern at any site. 

We found no effect of nutrient addition on soil temperature (P = 0.184 to 0.808) but soil 

WFPS in P and N+P plots were different from control plots at 1000 m and 3000 m (Table 

2.1). At 1000 m, soil moisture was higher in P and N+P plots (P < 0.001) while at 3000 m soil 

moisture was lower in P and N+P plots (P < 0.001) compared to control plots. Compared to P 

plots, N+P plots were more strongly affected by nutrient manipulation with higher WFPS at 

1000 m (P = 0.009) and lower WFPS at 3000 m (P = 0.024). 
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Table 2.1 Meana (±SE, n = 3) soil temperature and water-filled pore space (WFPS) in the top 0.05 m of soil in 

montane forests across a 1000- to 3000-m elevation gradient during the first five years (encompassing 37 

monthly measurements from January 2008 to August 2012) of nutrient manipulation 

Elevation (m) Treatment Soil temperature (°C) WFPS (%) 

1000 Control 17.7 ± 0.1a 48.6 ±   4.7c 

 
Nitrogen (N) 17.8 ± 0.1a 53.8 ±   4.8c 

 
Phosphorus (P) 18.0 ± 0.1a 58.3 ± 10.2b 

 
N + P 18.0 ± 0.0a 65.3 ±   7.7a 

    

2000 Control 13.8 ± 0.0a 80.4 ±   4.1a 

 
N 14.1 ± 0.1a 80.2 ±   1.2a 

 
P 13.9 ± 0.2a 80.3 ±   2.1a 

 
N + P 14.0 ± 0.2a 78.9 ±   1.3a 

    

3000 Control 7.2 ± 0.2a 59.6 ±   0.8a 

 
N 7.2 ± 0.3a 57.4 ±   2.3a 

 
P 7.4 ± 0.3a 52.2 ±   2.0b 

 
N + P 7.3 ± 0.1a 48.2 ±   6.6c 

a For each elevation, means followed by different letters indicate significant differences among treatments (linear 

mixed effects model at P ≤ 0.05) 

 

2.4.2 Soil CO2 fluxes from control forests and their controlling factors 

Annual soil CO2 fluxes decreased with increasing elevation from 1000 m to 3000 m by 

a factor of nearly four in the entire measurement period from 2008 to 2012 (Table 2.2). Daily 

soil CO2 fluxes showed a weak seasonality at 1000 m with increasing fluxes around 

October/November, highest fluxes in February/March and decreasing fluxes thereafter (Figure 

2.1a).  The variation of daily soil CO2 fluxes in a year was small at 2000 m (Figure 2.1b) and 

3000 m (Figure 2.1c). 
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Table 2.2 Meana (± SE, n = 3) annual soil CO2 fluxes (Mg C ha-1 year-1) from montane forests across a 1000- to 

3000-m elevation gradient in the first five years (2008-2012) of nutrient manipulation 

Elevation (m)  Treatment 2008b 2009 2010/2011b 2012 2008-2012 

1000  Control 8.93 ± 0.51 8.73 ± 0.28 8.92 ± 0.18 11.58 ± 0.49 8.85 ± 0.24 

 
Nitrogen (N) 9.06 ± 0.31 8.64 ± 0.63 8.41 ± 0.48 11.14 ± 0.07 8.19 ± 0.36 

 
Phosphorus (P) 8.04 ± 0.58 9.21 ± 0.53 7.56 ± 0.77 8.74 ± 0.92 7.99 ± 0.14 

 
N + P 7.64 ± 0.75 8.47 ± 0.92 8.73 ± 0.60 10.61 ± 0.54 8.26 ± 0.61 

       

2000  Control 6.13 ± 0.71 5.45 ± 0.36 4.86 ± 0.19 6.82 ± 0.76 5.43 ± 0.37 

 
N 6.71 ± 0.68 6.13 ± 0.30 4.32 ± 0.15 6.23 ± 0.12 5.52 ± 0.18 

 
P 6.15 ± 0.42 5.98 ± 0.09 4.94 ± 0.30 7.17 ± 0.46 5.72 ± 0.16 

 
N + P 7.19 ± 0.24 5.81 ± 0.34 4.86 ± 0.31 7.04 ± 0.76 5.72 ± 0.25 

       

3000  Control 2.87 ± 0.48 2.23 ± 0.70 1.98 ± 0.36 3.04 ± 0.43 2.41 ± 0.66 

 
N 4.09 ± 0.81 3.56 ± 1.03 3.72 ± 0.80 5.84 ± 1.46 3.94 ± 1.00 

 
P 3.51 ± 0.68 2.99 ± 0.69 2.58 ± 0.89 3.87 ± 1.29 2.87 ± 0.85 

 
N + P 3.37 ± 0.57 2.80 ± 0.43 1.88 ± 0.43 2.79 ± 0.24 2.50 ± 0.27 

a Annual soil CO2 fluxes were approximated by applying the trapezoid rule on time intervals between measured 

flux rates, assuming constant flux rates per day 

b In 2008, annual values include one pre-treatment measurement; in 2010/2011, annual values include only two 

monthly measurements from 2010 

Daily soil CO2 fluxes, measured in 2010-2012, were correlated differently with soil 

temperature and soil moisture (Table 2.3): we found a positive correlation with WFPS at each 

elevation, and correlation coefficients as well as significant levels (P < 0.001 - 0.036) 

decreased with increasing elevation. At 1000 m, a minimal multiple regression model 

explaining the soil CO2 flux contained only WFPS in a quadratic function (soil CO2 flux = 

120.40 + 1.94*WFPS – 0.12*WFPS², R² = 0.67, P < 0.001, n = 19). At 2000 m, we found no 

correlation of soil CO2 flux with soil temperature but soil WFPS and temperature were 

negatively correlated (Table 2.3), and the minimum multiple regression model included this 

interaction (soil CO2 flux = 19.07 + 5.45*T - 5.23*T² + 0.71*WFPS, R² = 0.66, P < 0.001, n = 

19, where T is soil temperature). Only at 3000 m, were soil CO2 fluxes positively correlated 

with soil temperature and WFPS (Table 2.3), and these were not correlated with each other; 

the minimal multiple regression model was a linear function (soil CO2 flux = -35.37 + 3.54*T 

+ 0.47*WFPS, R² = 0.36, P = 0.009, n = 20).   
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Figure 2.1 Mean (± SE, n = 3) soil CO2 fluxes (mg C m-2 h-1) from montane forests at (a) 1000 m, (b) 2000 m 

and (c) 3000 m elevations during five years of nutrient manipulation: control (filled circle), N addition (open 

circle), P addition (filled triangle) and N+P addition (open triangle). Vertical lines indicate fertilization events.  
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Table 2.3 Pearson correlation coefficients (n = 22) between soil CO2 flux (mg C m-2 h-1), soil temperature (°C, 

top 0.05-m depth) and water-filled pore space (WFPS, %, top 0.05-m depth) in montane forest control plots 

across a 1000- to 3000-m elevation gradient, measured from 2010 to 2012 

Elevation (m) Variable Soil CO2 flux Soil temperature 

1000 Soil temperature -0.41  

 WFPS 0.78** -0.28 

    

2000 Soil temperature -0.12  

 WFPS 0.67** -0.68** 

    

3000 Soil temperature 0.51*  

 WFPS 0.47* 0.14 

*P ≤ 0.05, **P ≤ 0.01. 

 

2.4.3 Effect of nutrient additions on soil CO2 fluxes 

One pre-treatment measurement conducted in January 2008 indicated that soil CO2 

fluxes did not differ between plots at any site (P = 0.121 to 0.999). Nutrient addition 

significantly affected soil CO2 fluxes (Figure 2.1, Table 2.4). At 1000 m (Figure 2.1a), soil 

CO2 fluxes from N plots did not differ from the control, regardless of whether they were 

analyzed for each year, for succeeding cumulative years or across five years of treatment 

(P = 0.223 to 0.980; Table 2.4). However, soil CO2 fluxes were reduced both in N+P and 

especially in P plots in succeeding cumulative years and across five years of treatment 

(P < 0.001 to 0.038). In 2012, this resulted in a reduction of annual soil CO2 fluxes by 8.4% 

(N+P addition) and 24.5% (P addition) compared to control plots (Table 2.2). In the first and 

second year, P addition did not affect soil CO2 fluxes (P = 0.140 to 0.508) but reduced fluxes 

from the second year onward (P < 0.001 to 0.038) with the strongest effect in the fifth year 

(Table 2.4). Addition of N+P did reduce soil CO2 fluxes in the first, last and across five years 

of treatment (P = 0.018 to 0.031), although there was no effect in the second and fourth 

treatment years (P = 0.425 to 0.730). 
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At 2000 m (Figure 2.1b), soil CO2 fluxes were not affected by any of the nutrients 

added when analyzed for the entire five years of treatment (P = 0.061 to 0.836; Table 2.4). 

Looking at the treatment effects for each year, P addition had no effect on soil CO2 fluxes at 

any year (P = 0.293 to 0.921) compared to the control whereas N and N+P additions showed 

high fluxes already in the first two years (P = 0.031 and P = 0.016, respectively). The N- and 

N+P-addition effects changed in the fourth and fifth year when soil CO2 fluxes were the 

lowest in N plots (P < 0.001 and 0.084, respectively) whereas fluxes in N+P plots no longer 

differed from control plots (P = 0.712 to 0.939). 

At 3000 m (Figure 2.1c), soil CO2 fluxes across five years of nutrient addition were 

highest with N addition (P < 0.001), followed by P addition (P < 0.001) but were not affected 

by N+P addition (P = 0.368; Table 2.4). N addition showed higher soil CO2 fluxes than the 

control in most years (P < 0.001 to 0.003) except in the second treatment year when the fluxes 

were only marginally higher than the control (P = 0.071). The annual fluxes from N plots 

exceeded those from control plots by 42.5 - 92.1% (average of 63.5%; Table 2.2). P plots 

emitted, on average, 22.3 - 34.1% (average of 19.1%) more CO2 than control plots on an 

annual basis. Soil CO2 fluxes from N+P plots were higher than control plots only when 

analyzed cumulatively for the first two years (P = 0.033) but in the succeeding years the 

fluxes were comparable with control plots (P = 0.108 to 0.828; Table 2.4). 
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Table 2.4 Meana (± SE, n = 3) soil CO2 fluxes (mg C m-2 h-1) from montane forests across a 1000- to 3000-m 

elevation gradient in the first five years of nutrient manipulation 

Elevation  
(m) 

Treatment 
 

Soil CO2 flux (mg C m-2 h-1) 
 

1000 
 

2008 
 

2009 
 

2010/11 
 

2012 

 
Control 101.05 ± 5.19ab 

 
100.51 ± 2.64a 

 
102.58 ± 2.44a 

 
130.25 ±   5.95a 

 
Nitrogen (N) 106.22 ± 5.59a 

 
108.71 ± 3.89a 

 
 97.03 ± 4.86a 

 
125.34 ±   1.14ab 

 
Phosphorus (P) 92.00 ± 5.75bc 

 
95.07 ± 4.33a 

 
 87.37 ± 9.42b 

 
 99.22 ± 10.91c 

 
N + P 88.21 ± 8.38c 

 
97.68 ± 9.90a 

 
 98.95 ± 6.78a 

 
119.42 ±   6.23b 

         

    
2008-2009 

 
2008-2011 

 
2008-2012 

 
Control 

  
100.83 ± 2.80a 

 
101.55 ± 2.61a 

 
107.76 ± 3.10a 

 
N 

  
107.25 ± 3.30a 

 
103.02 ± 3.94a 

 
107.84 ± 2.90a 

 
P 

  
93.27 ± 2.38b 

 
 90.83 ± 3.58b 

 
 92.64 ± 5.08c 

 
N + P 

  
92.11 ± 8.84b 

 
 94.94 ± 7.60b 

 
100.23 ± 7.10b 

         

2000 
 

2008 
 

2009 
 

2010/11 
 

2012 

 
Control 68.79 ± 7.70b 

 
62.44 ± 4.26a 

 
55.59 ± 2.24a 

 
77.98 ± 9.06ab 

 
N 75.63 ± 6.80ab 

 
70.35 ± 4.73a 

 
49.40 ± 1.53b 

 
70.87 ± 1.75b 

 
P 69.57 ± 4.78b 

 
67.21 ± 1.06a 

 
57.20 ± 3.43a 

 
81.96 ± 5.48a 

 
N +P 80.76 ± 2.85a 

 
66.21 ± 3.37a 

 
55.67 ± 3.62a 

 
79.86 ± 8.34a 

         

    
2008-2009 

 
2008-2011 

 
2008-2012 

 
Control 

  
66.18 ± 6.23b 

 
61.79 ± 4.56a 

 
65.29 ± 5.26a 

 
N 

  
73.46 ± 4.34a 

 
63.50 ± 3.12a 

 
65.09 ± 2.81a 

 
P 

  
68.60 ± 2.48ab 

 
63.88 ± 0.74a 

 
67.79 ± 1.27a 

 
N + P 

  
74.77 ± 1.74a 

 
66.86 ± 2.47a 

 
69.67 ± 3.74a 

         

3000 
 

2008 
 

2009 
 

2010/11 
 

2012 

 
Control 32.42 ± 5.30b 

 
26.15 ±   8.57a 

 
22.26 ±   4.06bc 

 
34.42 ±   5.20bc 

 
N 48.12 ± 9.75a 

 
40.62 ± 10.30a 

 
41.08 ±   8.82a 

 
66.11 ± 16.38a 

 
P 40.94 ± 7.68a 

 
34.28 ±   8.36a 

 
29.09 ± 10.08b 

 
44.08 ± 14.91b 

 
N + P 39.24 ± 6.91ab 

 
32.39 ±   4.87a 

 
21.60 ±   5.01c 

 
31.24 ±   2.49c 

         

    
2008-2009 

 
2008-2011 

 
2008-2012 

 
Control 

  
29.84 ± 6.58b 

 
26.70 ± 5.40c 

 
28.37 ±   5.30c 

 
N 

  
45.04 ± 9.97a 

 
43.43 ± 9.20a 

 
48.38 ± 10.70a 

 
P 

  
38.20 ± 7.94a 

 
34.43 ± 8.83b 

 
36.52 ± 10.08b 

  N + P 
  

36.42 ± 5.06a 
 

30.29 ± 4.93bc 
 

30.49 ±   4.15c 

a For each elevation, means followed by different superscript letters indicate significant differences among 

treatments within each year or time period (linear mixed effects model at P ≤ 0.05). 
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2.4.4 Effect of nutrient additions on fresh litter and root-related respiration 

One pre-manipulation measurement of soil CO2 fluxes prior to fresh litter removal in 

January 2011 and trenching in May 2011, indicated, no differences between undisturbed 

reference and manipulation chambers in almost all treatments (P = 0.136 to 0.942). Only in 

N+P plots at 1000 m were soil CO2 fluxes lower in pre-trenched chambers compared to the 

corresponding undisturbed reference chambers (P = 0.002). 

Fresh litter respiration was significantly above zero in N plots at all elevations 

(P = 0.034 to 0.046) and in P plots at 1000 m (P = 0.015), with litter respiration in N and P 

plots at 1000 m elevation being significantly higher compared to controls (P = 0.026 and 

0.011; Figure 2.2). Root-related respiration was only significantly higher than zero in N 

addition plots at 1000 and 3000 m (P = 0.013 and 0.026), with fluxes from 1000 m 

elevation being significantly different from controls (P = 0.004; Table 2.5). In all other 

cases, including all control plots, fresh-litter and root-related respiration were not different 

from zero due to the large variation among plots at each elevation (e.g. SE bars overlapped 

0; Figure 2.2, Table 2.5).  
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Figure 2.2 Difference in soil CO2 fluxes (mean ± SE, n = 4) between reference chambers (undisturbed) and 

chambers with fresh litter removal in montane forests at (a) 1000 m, (b) 2000 m and (c) 3000 m during four 

to five years (February 2011 – August 2012) of nutrient manipulation. Values on the top of each panel are the 

means across the given measurement period, expressed in mg C m-2 h-1 (reference – fresh litter removal). 

Asterisks (*) indicate significant differences from zero (linear mixed effects model at P ≤ 0.05). 
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Table 2.5 Mean (± SE, n = 4) soil CO2 fluxes (mg C m-2 h-1) from paired reference (undisturbed) and 

trenched chambers in each treatment plot, measured monthly in the fourth and fifth year (June 2011 – August 

2012) of nutrient manipulation in montane forests across a 1000- to 3000-m elevation gradient  

Elevation (m)  Treatment Reference chamber Trenched chamber Root-related CO2 fluxa 
(Reference – Trenched) 

1000 Control 105.28 ± 13.31 114.02 ±   8.70 -8.43 ±   5.20 

 
Nitrogen (N) 130.81 ± 11.74 94.29 ± 15.92   36.06 ± 21.31* 

 
Phosphorus (P) 120.24 ± 18.75 113.14 ± 21.30   7.08 ±   5.39 

 
N + P b 110.24 ± 12.33 99.50 ±   7.69  11.07 ± 10.93 

2000 Control 53.86 ±   9.41 46.10 ±   7.34    7.76 ± 12.07 

 
N 57.11 ±   6.74 52.45 ±   6.44    4.80 ± 12.43 

 
P 58.60 ±   5.95 49.74 ±   1.14    8.99 ±   6.79 

 
N + P 64.06 ±   8.97 59.39 ±   2.03     4.67 ±   8.60 

3000 Control 32.60 ±   6.59 29.44 ±   1.48     3.94 ±   7.38 

 
N 61.82 ±   5.85 36.78 ±   3.77     25.67 ±   8.31* 

 
P 40.59 ± 10.88 33.70 ± 12.60     6.86 ± 11.41 

 
N + P 35.13 ± 15.49 23.34 ± 11.04  11.38 ±   4.87 

a Root-related CO2 flux (e.g. from decomposition of cut roots and root respiration) for the given sampling day 

was calculated as: reference – trenched chambers. * - indicates significant difference from zero (linear mixed 

effects model at P ≤ 0.05). 

b One sampling day prior to trenching revealed lower fluxes in pre-trenched chambers compared to the 

corresponding reference chambers. 

 

2.5 Discussion 

2.5.1 Soil CO2 fluxes from control forests and the controlling factors across the elevation 

gradient  

The annual soil CO2 fluxes across the elevation gradient (Table 2.2) were within the 

range of those reported from other studies that conducted in situ year-round measurements 

in TMFs at comparable elevations, e.g. Hawaii [Raich, 1998], Venezuelan Guyana [Priess 

and Fölster, 2001], Indonesia [Purbopuspito et al., 2006; van Straaten et al., 2011], 

Panama [Koehler et al., 2009], Peru [Zimmermann et al., 2010], Ecuador [Wolf et al., 

2012] and China [Zhou et al., 2013].  
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Decreasing soil CO2 fluxes with increasing elevation support our first hypothesis and 

are consistent with measurements from other elevation gradients of TMFs [Purbopuspito et 

al., 2006; Zimmermann et al., 2010; Wolf et al., 2012]. Regression functions of soil CO2 

fluxes with WFPS and temperature show that the relationship between these important 

controlling variables changes slightly with elevation. However, we interpret the positive 

correlation of soil CO2 fluxes with soil moisture across the elevation gradient as an 

indication that dry conditions generally limit microbial activity and thus microbial 

respiration, which was a major CO2 source considering the low contributions of root-

related respiration across all sites (Table 2.5). Temperature control, on the other hand, 

changed with elevation: soil temperature was not a controlling factor at 1000 m; although it 

was part of the regression function at 2000 m, it was not correlated with soil CO2 fluxes on 

its own; only at 3000 m was it an explanatory variable in the regression equation, and it 

accounted for only 36% of the variation together with WFPS. We interpret this trend as 

increasing limitation of decreasing soil temperatures on microbial activity across the 

elevation gradient (Table 2.1). The explanatory power of soil moisture and temperature on 

soil CO2 flux, however, became weaker with increasing elevation, implying the importance 

of other factors in controlling soil CO2 fluxes. Such factors could include decreasing 

nutrient availability and substrate supply [Grubb, 1977; Martinson et al., 2013] as shown 

in our study by a strong response of soil CO2 efflux to N addition at 3000 m. 

 

2.5.2 N-addition effects on soil CO2 fluxes 

At 1000 m, N addition had no effect on total soil CO2 fluxes compared to the control, 

although it increased fresh litter respiration (Figure 2.2a) and root-related respiration 

(Table 2.5), which implies that a decrease in SOM respiration with N addition 

compensated for increases in fresh litter and root-related respirations. Similar findings 
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were reported for forests in Puerto Rico (on Acrisol soils at 260 m and 640 m elevations), 

where 5 years of N addition (with a rate of 50 kg N ha-1 year-1 in the form of NH4NO3) 

caused differential effects on soil C pools, increasing decomposition of active soil C pools 

while slowing turnover of the slowly cycling C pools due to suppressed heterotrophic 

respiration [Cusack et al., 2010]. Reduced heterotrophic respiration has also been claimed 

to be responsible for reduced soil CO2 fluxes as a result of N addition, where the effect 

depended on the initial N status, duration of N addition and the quality of decomposing 

material [Zhang et al., 2008; Janssens et al., 2010].  In our study area, N availability 

decreased with increasing elevation, as reflected by decreasing aboveground plant 

productivity, litter quality (e.g. increasing C:N ratios), soil-N cycling rates, 15N natural 

abundance signatures in the soil and increasing thickness of organic layers with increasing 

C:N ratios [Wolf et al., 2011; Homeier et al., 2013; Martinson et al., 2013]. Chronic N 

addition to our site at 1000 m, which had larger rates of N cycling in the soil than the sites 

at 2000 m and 3000 m [Martinson et al., 2013; Baldos et al., in press], caused decreases in 

microbial biomass C and extractable organic C in the soil [Baldos et al., in press], 

indicating a possible decrease in the amount of labile C. After 5 years of N addition to 

Puerto Rican forests, bacterial decomposers and hydrolytic enzyme activities increased and 

the amount of labile C compound decreased in the forest at 260 m elevation whereas 

fungal abundance and oxidative enzyme activities increased and the amount of poor-

quality C compound decreased in the forest at 640 m elevation [Cusack et al., 2011]. In our 

site, N addition may have resulted in decreased SOM respiration, possibly due to a 

decrease in the amount of labile C, which was compensated by the increases in fresh litter 

and root-related respirations, consequently resulting in unchanged soil CO2 fluxes overall. 

The effect of N addition at 2000 m changed with years of treatment. We attribute the 

elevated soil CO2 fluxes in the first two years of N addition to a possible increase in fresh 
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litter and SOM respiration, considering that fine-root biomass and necromass did not 

change in the first year of N addition at this site [Homeier et al., 2012], and thus possibly 

caused no change in root respiration. At this site, where the initial N availability is lower 

than at 1000 m [Martinson et al., 2013; Baldos et al., in press], fine litter quality increased 

in the first year of N addition [Homeier et al., 2012]. Such positive feedback via plant 

input might have resulted in higher CO2 fluxes in the short term [Janssens et al., 2010; 

Ramirez et al., 2012].  The decreased soil CO2 fluxes in the fourth and fifth year of N 

addition could be due to a decrease in SOM respiration, since microbial biomass C and 

extractable organic C decreased in the fourth year of N addition, similar to the site at 1000 

m [Baldos et al., in press]. Also, root-related respiration was not affected by N addition 

(Table 2.5) and although proportions of fresh litter respiration from N plots were, with 

33%, contributing significantly to total soil CO2 fluxes (Figure 2.2b) they were not larger 

compared to control plots and therefore might not have compensated such a decrease in 

SOM respiration. The trend we observed at this site was similar to that at 1000 m, but the 

response was more delayed (i.e. SOM respiration decreased after 4-5 years of N addition at 

2000 m as opposed to already occurring in the earlier years of N addition at 1000 m). 

Similar dynamic changes in soil CO2 fluxes with chronic N addition (at rates between 37 

and 150 kg N ha-1 year-1 in the form of NH4NO3) were observed in temperate forest soils, 

which ultimately resulted in decreases in total soil respiration and SOM respiration 

[Bowden et al., 2004]. 

At 3000 m, we attributed the immediate and continuous increases in soil CO2 fluxes 

following N addition to significant fresh litter (Figure 2.2c) and root-related respiration 

(Table 2.5). Soil N availability at this site was initially the lowest among the three control 

forests [Martinson et al., 2013; Baldos et al., in press] and chronic N addition had 

stimulated fresh litter and root-related respiration in combined contribution to total soil 
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CO2 fluxes of 85%. Since microbial biomass C and extractable organic C in the soil had 

decreased after four years of N addition compared to the control [Baldos et al., in press] we 

can assume that such a decrease in the amount of labile C caused a decrease in SOM 

respiration. However, this might have been overly compensated by the increases in fresh 

litter and root-related respirations in the same period. Furthermore, fresh litter respiration 

increased with N addition by an average of 7 mg CO2-C m-2 h-1 (Figure 2.2c) and 

root-related respiration by 22 mg CO2-C m-2 h-1 (Table 2.5), which more than accounted 

for the overall increase in total soil respiration of 20 mg CO2-C m-2 h-1 (Table 2.4) on top 

of the soil CO2 fluxes from the control plots. 

In summary, the initial N status of our forest sites might explain the different 

responses found with chronic N addition at different elevations of our study area. While 

there were indications that SOM respiration decreased differently with years of N addition 

(e.g. this probably occurred early on at 1000 m and more delayed at the higher elevations), 

the ultimate effects on the total soil respiration varied depending on whether or not the 

increase in litter and root-related respiration had compensated for the decrease in SOM 

respiration. These results support our second hypothesis. Such diverging responses of the 

components of soil respiration to N addition were similar to the findings in Puerto Rico, 

where 5 years of N addition with a rate similar to our application rate show differential 

effects on various fractions of soil organic C [Cusack et al., 2011]. Similarly, the varying 

effects of N addition on soil respiration due to differing initial N status were similar to the 

findings in Panama, where >10 years of N addition at a rate double that of our application 

rate did not affect total soil CO2 respiration in a lowland forest with high N availability but 

decreased total soil CO2 respiration after 2-3 years of N addition in a montane forest with 

low N availability [Koehler et al., 2009]. Our study further shows the importance of 

investigating the various components of soil respiration, despite limitations of the methods 



Soil CO2 fluxes 

47 

used for quantifying these components in situ, in order to untangle the non-uniform effects 

of increased N availability on these components. 

 

2.5.3 P-addition effects on soil CO2 fluxes 

The positive response of fresh litter respiration to P addition at 1000 m suggests P 

limitation on microbial decomposition of fresh sources of C. Similar findings were 

reported for old-growth lowland forests of Costa Rica, where 2-3 years of P addition (with 

a rate of 150 kg P ha-1 year-1 in the form of KH2PO4) increased microbial respiration of 

easily available C [Cleveland and Townsend, 2006]. On the other hand, micronutrients can 

also limit decomposition [Kaspari et al., 2008] and sodium (Na), which was contained in 

the sodium phosphate we added as P source (with a rate of 7.4 kg Na ha-1 year-1), has been 

shown to increase decomposition in a tropical forest in Peru [Kaspari et al., 2009]. Thus, 

the effect of P addition on litter respiration may have also been augmented by the effect of 

Na. Since fresh litter respiration was increased (Figure 2.2a) and root-related respiration 

was low and unaffected (Table 2.5), reduced total soil CO2 fluxes with P addition at 1000 

m are probably related to reduced SOM respiration. Although decreases in microbial 

respiration of SOM with P addition were reported for Chinese forest soils, Ouyang et al. 

[2008] did not have an explanation for their observation. We speculate that in our soils, 

such a decrease in SOM respiration might be caused by a decrease in easily available C 

related to a shift in C allocation from below- to above-ground plant parts with increasing P 

availability. Such a shift in C allocation by plants was indicated by a trend in decreasing 

fine-root biomass and increasing basal area increment after the first year of P addition at 

this site [Homeier et al., 2013]. 

Although P addition did not change total soil CO2 fluxes or any of its components at 

2000 m, fine-root biomass decreased and fine-root necromass increased significantly in the 
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first year of P addition at this site [Homeier et al., 2012]. Such changes in fine roots may 

indicate changes in root-related respiration, but we did not detect this in the fourth and fifth 

year of P addition. This was either because of the small contribution of root-related 

respiration (Table 2.5) as well as fresh litter respiration (Figure 2.2b) to total soil 

respiration in these plots (Table 2.4) or because of methodological limitations of the 

trenching technique. 

Similarly, at 3000 m, we were unable to detect any effect of P addition on litter and 

root-related respirations because these components were quite small (Figure 2.2c, Table 

2.5) compared to the total soil respiration in these P plots (Table 2.4). It was however clear 

that total soil CO2 fluxes increased with P addition, which is probably related to increased 

SOM respiration. The initial P levels of the top 0.05 m of control forest soil at this 

elevation were the lowest (3 g P m-2 in organic layer) compared to the other two forest 

soils at the lower elevations (29 g P m-2 in mineral soil and 6 g P m-2 in organic layer at 

1000 m and 2000 m, respectively; Table S2.1). Similar decreasing soil P concentrations 

along a 1000- to 3000-m elevation gradient in our study area were reported by Wolf et al. 

[2011]. With these extremely low soil P levels at 3000 m, P addition (and with it also Na) 

might have stimulated SOM respiration, which is in keeping with findings from tropical 

forests in China (with a rate of 150 kg P ha-1 year-1 in the form of NaH2PO4) [Liu et al., 

2012]. A similar finding was reported for a submontane forest in Venezuelan Guyana, 

where total soil CO2 fluxes increased with the addition of high doses of P (350 and 175 kg 

P ha-1) in the form of CaHPO4 [Priess and Fölster, 2001]. Finally, root-associated 

mycorrhizal fungi may have contributed to the higher CO2 fluxes, since they can be 

directly limited by P availability and have been shown to proliferate following P addition 

in severely P-limited soils [Treseder and Allen, 2002; Liu et al., 2013]. 
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Taken together, we show that the responses of total soil CO2 fluxes to P addition 

were related to the initial P status of the forest soils with increases at the highest elevation 

that had the lowest soil P levels and decreases or no effect at the lower elevations that had 

relatively high soil P levels. P addition at 1000 m increased litter respiration and this did 

not compensate for decreases in SOM respiration and potential decreases in autotrophic 

respiration, which were probably associated with a shift in C allocation. 

 

2.5.4 Combined N+P-addition effects on soil CO2 fluxes 

The combined addition of N and P showed either a middling effect on soil CO2 

fluxes at 1000 m (i.e. 2008-2012, Table 2.4) in between the N- and P-addition effects or a 

comparable effect with N or P addition at 2000 m (i.e. 2008-2012, Table 2.4), and did not 

result in any stronger effect than the addition of a single nutrient. These trends were also 

mirrored by the pattern of responses of the litter and root-related respirations. Indeed, at 

3000 m, the comparable effect of N+P addition with either N or P addition only occurred 

in the first two years while there were no more significant N+P effects relative to the 

control in the fourth to fifth year. It may be that N and P co-limitation on tree growth, as 

indicated by a trend toward increasing basal area at 3000 m with N+P addition compared 

to the control plots [Homeier et al., 2013], had resulted in higher plant N or P uptake, 

lowering the observed effect of single elements on heterotrophic respiration over time at 

this site. These findings were in contrast with our third hypothesis, which is based on 

synergistic effects of nutrient co-limitation on plant growth [Elser et al., 2007; Harpole et 

al., 2011]. Nutrient co-limitations are often complex due to several limitations at the 

biochemical level as well as changes in nutrient limitations over time [Davidson and 

Howarth, 2007; Harpole et al., 2011]. Furthermore, the amount of applied nutrient and 

duration of nutrient manipulation may influence results. 
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In conclusion, our results provide the much-needed data on responses of in situ soil 

CO2 fluxes to moderate levels of nutrient inputs (at rates expected to occur in our study 

area) [Homeier et al., 2012] on a multi-year temporal scale. We showed that addition of 

nutrients affects root and heterotrophic respiration, causing changes in total soil CO2 fluxes 

that depended on the initial N and P status of the forest soils along our elevation gradient 

and on the duration of nutrient addition. This illustrates the need for long-term nutrient 

manipulation experiments and a mechanistic understanding of the variable responses of 

soil CO2 flux components to nutrient addition in order to predict and model the effect of 

elevated nutrient deposition on soil respiration in these ecosystems. Our results suggest 

profound effects of elevated N and P input on the belowground C cycle, which illustrates 

the sensitivity of TMFs to increases in atmospheric N and P deposition.  
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Table S2.1 Site, forest and soil characteristics across the elevation gradient. 

Characteristics Elevation (m) - site 

 
1000 

Bombuscaro 

2000 

San Francisco 

3000 

Cajanuma 

Site    

Latitude (°S) 4.115 3.982 4.110 

Longitude (°W) 78.968 79.083 79.178 

Range of elevation (m asl) 990 - 1,100 1,950 - 2,100 2,900 - 3,050 

Annual mean air temperature (°C) a 19.4 15.7 9.4 

Precipitation (mm year-1) a 2,230 1,950 4,500 

Bulk N deposition (kg N ha-1 year -1) b  14 - 45  

Bulk P deposition (kg P ha-1 year-1) b  0.4 - 4.9  

Forest c    

Rain forest type Premontane  Lower montane Upper montane 

Most abundant tree families 

 

Moraceae, 

Sapotaceae 

Melastomaceae, 

Euphorbiaceae 

Cunoniaceae, 

Clusiaceae 

Stand height (m) 20 - 25 10 - 14 6 - 8 

Mean basal areas (m² ha-1) 33.4 22.8 25.5 

Tree density (trees ha-1) 748 1143 1305 

Soil    

Soil profilesd    

Soil type (FAO) Dystric Cambisol Stagnic Cambisol Stagnic Histosol 

Soil texture Sandy loam Medium loam Medium loam 

Organic layer thickness (cm) 0 10 - 30 10 - 40 

Bulk density (g cm-3), top 5 cm 0.84 ± 0.10 0.18 ± 0.05 0.11 ± 0.01 

Soil characteristics, top 5 cme    

Soil material Mineral soil Organic layer Organic layer 

pH-H2O 4.3 ± 0.2 4.0 ± 0.1 3.7 ± 0.2 

Total C (kg C m-2) 2.5 ± 0.7 4.4 ± 0.1 2.6 ± 0.1 

Total N (g N m-2)  168 ± 35 167 ± 12 75 ± 4 

C/N ratio  14 ± 1 26 ± 2 35 ± 1 

Total P (g P m-2)  29 ± 7 6 ± 1 3 ± 1 

a Moser et al. [2007], measured at 1.5 m height within the stands in the study area 

b Homeier et al. [2012] 

c Homeier et al. [2013] and J. Homeier unpublished data; excluding trees ≤ 0.1 m in diameter at breast height  

d Martinson et al. [2013]; soil characteristics were determined from soil profiles (mean ± SE, n = 3) in 

November 2007 before the first nutrient application. 

e Baldos et al., unpublished data; soil characteristics (mean ± SE, n = 4) were determined in control plots in 

2012 except for total P contents at 1000 m elevation, which were determined by Wolf et al. [2011] in a 

nearby and comparable forest. Sample preparation and analytical methods applied are described in detail by 

Corre et al. [2010]. 
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(a) 1000 m (Bombuscaro) (b) 2000 m (San Francisco) (c) 3000 m (Cajanuma) 

   

 

  

   

Figure S2.1 Tropical montane forests, permanently-installed chamber bases for soil CO2 flux measurement 

and soil profiles at (a) 1000 m, (b) 2000 m and (c) 3000 m in the Podocarpus National Park and San 

Francisco Biological Reserve, southern Ecuador. Photo credit: G.O. Martinson, A. K. Müller. 
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3.1 Abstract 

Although deposition of nutrients to tropical forests is increasing, few studies investigate 

the effects of multiple-year nutrient manipulations on fluxes of nitrous oxide (N2O), a potent 

greenhouse gas. Our objectives were (1) to determine the effects of three to five years of 

moderate nitrogen (N) and phophorus (P) additions on soil N2O fluxes and net soil-N cycling 

rates, and (2) to quantify the relative contributions of nitrification and denitrification to N2O 

fluxes. In 2008, a nutrient manipulation experiment was established along a 1000- to 3000-m 

elevation gradient of montane forests in southern Ecuador. Each elevation had four replicate 

blocks, with subplots (20 m x 20 m each) of control, N (50 kg N·ha−1·yr-1), P (10 kg 

P·ha−1·yr-1) and N+P additions. We report measurements that we conducted from November 

2010 to August 2012. Annual N2O fluxes from the control plots decreased along the elevation 

gradient (from 0.57±0.26 to 0.17±0.06 to 0.05±0.04 kg N2O-N ha-1 yr-1 at 1000 m, 2000 m 

and 3000 m, respectively). Measurements were low for a tropical montane forest, which we 

attributed to our sites’ conservative soil N cycling. Denitrification was the main N2O source at 

1000 m and the only N2O source in organic layers at 2000 m and 3000 m. In contrast to the 

first two years of this experiment, N addition did not affect N2O fluxes during our 2010-2012 

measurements; we attribute the lack of response to the relatively low soil moisture contents 

during this period. Across the elevation gradient, P addition decreased N2O fluxes and 

mineral N concentrations, presumably because it alleviated P limitations to net primary 

production, increasing plant N uptake. N+P addition showed similar trends to N addition, but 

less pronounced because of the counteracting effects of P addition. Results from the whole 

experiment (2008-2012) showed that effects of N and P addition on soil N2O fluxes were not 

linear with time of exposure, highlighting the importance of long-term studies. 
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3.2 Introduction 

Globally, soils are the biggest natural source of nitrous oxide (N2O), a potent 

greenhouse gas and a dominant ozone-depleting substance (Denman et al. 2007). Tropical 

forest soils alone contribute most to this source, accounting for 30% of the global natural 

emissions from terrestrial soils (Ehhalt et al. 2001). In soils of temperate forest ecosystems, it 

has been demonstrated that elevated N deposition has the potential to accelerate soil N cycling 

and increase soil N availability causing substantial N losses in the form of N2O emissions 

(e.g. Butterbach-Bahl et al. 1998; Gundersen et al. 1998). Since nitrogen (N) deposition in 

tropical regions is rapidly increasing due to biomass burning, fertilizer use and 

industrialization (Hietz et al. 2011), it is expected that N2O emissions from tropical forest 

soils will also increase (Koehler et al. 2009; Martinson et al. 2013). Additionally, it has been 

suggested that the N2O response of tropical forests to elevated N input might be stronger than 

in other ecosystems (Liu and Graever 2009). In soils, N2O is mainly produced and consumed 

together with other N-oxide gases by the microbial processes of nitrification and 

denitrification (Chapius-Lardy et al. 2007). While nitrification is an obligate aerobic process 

which depends on ammonium (NH4
+) and organic N as substrates, denitrification is an anoxic 

process which is controlled mainly by the soil aeration/oxygen status or conversely soil water 

content, nitrate (NO3
-) availability, microbially-available organic carbon and soil pH 

(Firestone and Davidson 1989). Thus, soil N availability and water content play a crucial role 

in controlling the amounts and relative ratios of N-oxide fluxes from soils. These relations 

have been described in the conceptual ’hole-in-the-pipe’ (HIP) model (Firestone and 

Davidson 1989), which has been shown to be applicable across a wide range of ecosystems 

and climates, including tropical forests (Davidson et al. 2000). 

Tropical montane forests (TMFs) represent over 11% of the world’s tropical forests 

(Bubb et al. 2004; FAO 1993) and occur across large elevation gradients with a variety of 
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environmental conditions. TMFs tend to have a so-called “conservative” soil N cycle, with 

low N losses relative to tropical lowland forest soils which tend to have a more “leaky” soil N 

cycle, as indicated by their higher soil-N cycling rates (Corre et al. 2010; Vitousek and 

Matson 1988) and consequently larger N-oxide (NO, N2O) fluxes (e.g. Keller et al. 2005; 

Koehler et al. 2009; Matson and Vitousek 1987; Purbopuspito et al. 2006) and NO3
- leaching 

(e.g. Dechert et al. 2005; Hedin et al. 2003; Schwendenmann and Veldkamp 2005). N 

addition experiments in TMFs of Hawaii (Hall and Matson 2003), Panama (Corre et al. 2014; 

Koehler et al. 2009) and Ecuador (Martinson et al. 2013) have shown increases in soil mineral 

N production, especially nitrification rates, and in N-oxide fluxes as early as 1-2 years after 

the onset of N addition. In the Panamanian TMF, soil N2O emissions during the third and 

fourth year of N addition were even as high as the emissions from the lowland forest, which 

already had 11-12 years of N addition (Corre et al. 2014); this shows the potential of TMF 

soil to be a significant N2O source when subjected to chronic N input. 

How soil N cycling in TMFs reacts to elevated phosphorus (P) input, another nutrient 

that often limits plant growth in TMFs (Homeier et al. 2012; Tanner et al. 1998), has been 

little studied, even though atmospheric P deposition is also increasing in tropical South 

America mainly due to biomass burning (Mahowald et al. 2005). Results from two years of 

moderate P addition to TMF soils along an elevation gradient in southern Ecuador showed no 

effect on net rates of soil N cycling and N2O emissions (Martinson et al. 2013). In a plantation 

of N-fixing trees in Indonesia, however, a one-time application of 100 kg P ha-1 followed by 

two years of measurements, decreased soil total N contents and N2O emissions but increased 

plant N uptake (Mori et al. 2013). 

Since responses of ecosystem processes to chronic nutrient addition are nonlinear with 

time (e.g. Aber et al. 1998), quantifying changes in N-oxide fluxes and their controlling 

factors need to be conducted in long-term and large-scale nutrient manipulation experiments. 
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Here, we report the changes in soil N2O fluxes, contributions of nitrification and 

denitrification to N2O fluxes, and net rates of soil N cycling (an index of plant-available N) in 

the third to fifth year of nutrient addition with moderate N (50 kg N ha-1 yr-1), P (10 kg P ha-1 

yr-1) and combined N+P additions along an elevation gradient of TMFs in southern Ecuador. 

These measurements are a continuation from the first two years of nutrient manipulation 

reported by Martinson et al. (2013). We thereby provide information on mid-term, moderate-

level nutrient manipulation in TMFs, which may serve as a basis to model and predict future 

effects of nutrient depositions on soil N2O fluxes from these ecosystems. Martinson et al. 

(2013) showed that after two years of moderate N and N+P additions, soil N2O fluxes 

increased compared to the control plots along the 1000- to 3000-m elevation gradient. N and 

N+P additions at 1000 m did not significantly change the relatively high net nitrification rate 

already present at that elevation, whereas the same treatments at 2000 m and 3000 m resulted 

in small increases in the previously-undetectable net nitrification activity, but only in the 

second year of treatment. Addition of P affected neither soil N2O fluxes nor net soil-N cycling 

rates at any elevation. 

The objectives of the present study were to (1) determine the effect of three to five years 

of moderate nutrient additions on soil N2O fluxes and net soil-N cycling rates, and (2) assess 

the contributions of nitrification and denitrification to soil N2O fluxes. We hypothesized that 

(1) soil N2O fluxes together with net soil-N cycling rates will further increase with years of 

continued N and N+P additions whereas the moderate P addition will have a minimal effect or 

will even decrease soil N2O emissions and (2) denitrification will be the major source of N2O 

fluxes in these moist TMF soils.  
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3.3 Material and Methods 

3.3.1 Study area 

The study area was located in the eastern part of the Andes of southern Ecuador in the 

provinces of Loja and Zamora Chinchipe. The experiment was conducted in three old-growth 

forest sites, spanning across an elevation gradient from 1000 to 3000 m above sea level, and 

located within and close to the Podocarpus National Park (Table S2.1; Homeier et al. 2012; 

Martinson et al. 2013). 

Forest types across the elevation gradient ranged from premontane tropical forest at 

‘1000 m’ (990-1100 m; 4.115° S, 78.968° W), to lower montane rain forest at ‘2000 m’ 

(1950-2100 m; 3.982° S, 79.083° W) to upper montane rain forest at ‘3000 m’ (2900-3050 m; 

4.110° S, 79.178° W) (Homeier et al. 2012). At 1000 m, Cambisol soil with sandy texture 

(covered only by a thin layer of decomposing leaves) developed from deeply weathered 

granitic rock (Litherland et al. 1994). At 2000 m and 3000 m, loamy textured Cambisol soil 

and Histosol soil, respectively, developed from metamorphic schists (Litherland et al. 1994); 

these soils were covered by 10-40 cm of thick organic layers (Table S2.1). 

Climatic parameters in the study area displayed only slight seasonal variability (Emck 

2007). Mean annual air temperature decreased with elevation from 19.4 °C at 1000 m and 

15.4 °C at 2000 m to 9.4 °C at 3000 m. Mean annual precipitation ranged from 1950 to 

4500 mm yr-1 with intermediate rainfall of 2230 mm yr-1 at 1000 m, lowest amount at 2000 m 

and highest rainfall at 3000 m (Moser et al. 2007). 

Ambient bulk and dry deposition of N and P in the study region ranged between 14 and 

45 kg N ha-1 yr-1 and 0.4 and 4.9 kg P ha-1 yr-1, with an increasing tendency for deposition 

over the years of measurement from 1998 to 2010 (Boy et al. 2008; Homeier et al. 2012) and 

thereafter (personal communication, W. Wilcke). 
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3.3.2 Experimental design 

At each elevation, we established nutrient manipulation experiments (NUMEX) with 

16 plots (20 m x 20 m each) equally distributed to four blocks. The four blocks served as 

replicates and included little topographic difference (50-100 m) within each elevation.  Each 

block consisted of four plots: N, P and N+P additions, and untreated controls; these plots were 

separated by at least 10 m (Homeier et al. 2013; Martinson et al. 2013). Fertilization started in 

2008 with two equal applications per year (February/March and August/September), with the 

exception of 2010 when there was a four month delay of the second fertilization due to 

logistical problems in shipping the high-grade P fertilizer from Germany to Ecuador. 

Fertilizers were applied manually in solid form at moderate rates of 50 kg N ha-1 yr-1 in the 

form of urea (CH4N2O) and 10 kg P ha-1 yr-1 in form of sodium hydrogen phosphate 

(NaH2PO4·H2O and NaH2PO4·2H2O, with analytic grade quality). 

 

3.3.3 Measurements 

Soil N2O flux, temperature, moisture and mineral N concentrations 

Measurements of soil N2O flux, temperature, moisture and mineral N concentrations 

followed the same procedure described in detail by Martinson et al. (2013). Measurements 

were performed monthly from November 2010 to August 2012 in three out of the four blocks, 

with a minimum distance of 2 m to plot borders for the nutrient-addition plots. In each plot, 

measurements were conducted at four locations that were laid out in a stratified random 

pattern (Martinson et al. 2013); after January 2011, we added one additional location per plot 

as part of a small-scale manipulation study, to measure soil CO2 fluxes (Chapter 2). Since we 

were interested in long-term effects of nutrient deposition rather than the transitory peaks of 

N2O that occur directly after N addition (Koehler et al. 2009), we only included 

measurements that were taken at least three weeks after fertilization. This timespan was 
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chosen based on a study from our working group in Panama, where mineral N concentrations 

and N2O emissions peaked within 3 weeks following N application in a TMF (Koehler et al. 

2009). 

Soil N2O fluxes were measured using static vented chambers with permanently installed 

round polyvinyl chloride chambers bases (area 0.04 m², height 0.15 m, ~ 0.03 m inserted into 

the soil) and polyethylene chamber hoods with a Luer lock sampling port and a vent for 

pressure equilibrium (0.16 m height of chamber cover, 0.03 m overlapping width with 

chamber base for tight cover, and 12 L total volume). Gas samples were taken at 2, 14, 26 and 

38 minutes or at 3, 13, 23 and 33 minutes after chamber closure and stored in pre-evacuated 

glass containers (60 ml vials until April 2011, and 12 ml Exetainers® afterwards). Gas 

samples were either analyzed in Ecuador or in Germany, after shipping as over-pressured 

samples in Labco Exetainers® (Labco Limited, UK). We have tested these Exetainers® for 

their quality during extended sample storage and aircraft transport (see also Glatzel and Well 

2008). Gas samples were analyzed using gas chromatographs (Shimadzu GC-14B, Duisburg, 

Germany for samples analyzed in Ecuador and GC 6000 Vega Series 2, Carlo Erba 

Instruments, Milan, Italy for samples analyzed in Germany; both of these and the standard 

gases are owned by our group and were calibrated regularly) equipped with an electron 

capture detector and autosamplers. N2O concentrations were determined from the comparison 

of integrated peak areas from samples to three or four standard gases (ranging from 350 ppb 

to 3,000 ppb; Deuste Steininger GmbH, Mühlhausen, Germany). Fluxes of N2O, expressed as 

N2O-N flux per area (μg N m-2 h-1) were calculated from the linear increase of N2O 

concentration in the chamber headspace over time, corrected for the air pressure and 

temperature measured at the time of field sampling. 

Soil temperature was measured parallel to gas sampling at a 0.05-m depth close to each 

of the four chamber bases per plot using a GTH 175/Pt-E digital precision thermometer 
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(Greisinger electronics GmbH, Regenstauf, Germany). Soil moisture and mineral N 

concentrations were determined parallel to gas sampling for each plot from pooled soil 

samples of the top 0.05 m of soil, consisting of four samples taken within 1 m of each 

chamber. Soil moisture was determined by oven-drying subsamples at 105° C for at least 24 h 

and was expressed as percentage of water-filled pore space (WFPS) using the measured soil 

densities in the top 0.05 m of soil (reported by Martinson et al. 2013) and particle densities of 

2.65 g cm-3 for mineral soil at 1000 m and 1.4 g cm-3 for organic layers at 2000 m and 3000 m 

(Breuer et al. 2002; Linn and Doran, 1984). Soil extraction for mineral N concentration 

determination was carried out in-situ in order to avoid alterations of actual N concentrations 

during transport (Arnold et al. 2008). A subsample of soil was added into a prepared 

extraction bottle with 150 ml of 0.5 mol L-1 K2SO4-solution. After returning to the laboratory 

on the same day, samples were shaken (1 h), filtered and kept frozen until arrival in Germany. 

Soil extraction of mineral NH4
+ and NO3

- concentration was done at the University of 

Goettingen, using continuous flow injection colorimetry (Cenco/Skalar Instruments, Breda, 

Netherlands); NH4
+ was analyzed by the Berthelot reaction method (Skalar Method 155-000) 

and NO3
- by the copper-cadmium reduction method with NH4Cl buffer but without 

ethylenediamine tetraacetic acid (Skalar Method 461-000).  

 

Net soil-N cycling rates: ammonification and nitrification 

Net rates of soil N cycling were determined twice in 2011 (February and December; just 

over 1 month and about 4 months following fertilization) and once in 2012 (April; about 2 

months following fertilization), using the in-situ buried bag method (Hart et al. 1994). Two 

pairs of intact soil cores were taken from the top 0.05 m of soil/organic matter in each plot of 

all four blocks. One soil core of each pair was extracted immediately in the field with 0.5 mol 

L-1 K2SO4 (as described above); the other soil core was put in a plastic bag, inserted back into 
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the soil to incubate for 10 days and afterwards extracted. Net soil-N cycling rates of each 

sampling pair were calculated by subtracting the initial soil mineral N concentrations from 

mineral N concentrations of incubated soils. Net ammonification is the difference in NH4
+ 

concentrations and net nitrification is the difference in the NO3
- concentrations.  

 

15N tracing to 15N2O: contribution of nitrification and denitrification to soil N2O flux 

Short-term tracing from 15NH4
+ or 15NO3- to 15N2O was used to determine the 

contributions of nitrification and denitrification to soil N2O fluxes; we used the same method 

in a montane forest in Panama (it is described in detail in Corre et al. 2014). Tracing was 

conducted in all four replicate plots of the control and N-addition treatments at all three 

elevations and was carried out in July 2011 and January 2012, four and five months after the 

last fertilization. In each of the four control or N-addition plots, two additional chamber bases 

(same dimensions and material as described above) were installed > 10 m apart, at least 3 

weeks prior to sampling. In N-addition plots, the bases were > 2 m from plot edges. For the 

second sampling, the chamber bases were located close to the previous chambers of the same 

15N source but always upslope to prevent influences from previously applied 15N. Each of the 

two chambers in a plot was labelled separately with either 15NO3
- or 15NH4

+. 

The amounts of added 15N (either NH4
+ or NO3

-) were calculated based on the extant 

soil mineral N levels in the control and N-addition plots such that the added 15N would be at 

most 50% of the native levels and the volume of solution would not increase the soil moisture 

contents. In each plot, 0.52 mg 15N-KNO3  in 50 ml distilled water was applied to the soil 

surface within one chamber (0.04 m²) and 13.29 mg of 15N-(NH4)2SO4 in 50 ml distilled water 

was applied to the soil surface within the other chamber. Half of the amount of the 15N 

solution was injected about 0.025 m deep with a side-port spinal needle at several points 

inside the chamber. The other half was sprayed with a hand sprayer onto the surface of the 
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soil after removal of the leaf litter layer (which was returned afterwards). Transparent plastic 

covers (0.85 x 0.6 m) were put 0.5 m above the chamber bases one to two days before 

labeling to prevent immediate leaching losses of the applied 15N isotope tracers in case of 

rainfall. These applied amounts of 15NO3
- and 15NH4

+ were the same for all plots and 

represented 3 – 30 % and 7 – 46 % of the native NO3
- and NH4

+ levels, respectively in the top 

0.05 m of soil across all control and N-addition plots  

Thirty minutes after 15N application, gas samples were taken with a syringe at 2, 17 and 

32 minutes following chamber closure and stored as overpressured samples in 100 ml pre-

evacuated glass vials with butyl rubber septa. These glass vials were tested as leak proof in an 

earlier study (Corre et al. 2014). Gas samples were brought to Germany where N2O 

concentrations were analyzed using the same gas chromatograph described above and 15N2O 

was determined using isotope ratio mass spectrometry (IRMS; Finnigan DeltaPlus XP, Thermo 

Electron Corporation, Bremen, Germany). Following the final gas sampling, we took a soil 

sample of the top 0.05 m in the center of each chamber base to determine soil moisture and 

mineral N concentrations following the procedures described above. Additionally, 15N from 

NH4
+ and NO3

- was determined by the 15N diffusion procedures described in detail by Corre 

and Lamersdorf (2004) and analyzed using IRMS (Delta C, Finnigan MAT, Bremen, 

Germany). Contributions of nitrification and denitrification to soil N2O fluxes were calculated 

following the same calculations given by Corre et al. (2014). 

 

3.3.4 Statistical analysis 

Data were checked for normality and homoscedasticity, and we used either square root 

or logarithmic transformation (adding a constant value if the dataset included negative values) 

for data with non-normal distribution and unequal variance. If after transformation the data 

were still non-normally distributed we used non-parametric statistical tests. 
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The influence of soil factors (moisture, temperature, mineral N concentrations) on soil 

N2O fluxes was assessed using Pearson’s correlation tests: first, across the elevation gradient 

considering the control plots only to assess which of these soil factors control N2O fluxes 

under ambient nutrient conditions, and second for each elevation considering all treatment 

plots to determine if changes in these soil factors due to nutrient amendment influence 

changes in N2O fluxes. These analyses were conducted for the entire 2010-2012 

measurements on the treatment means (average of three replicate plots) on each sampling day. 

Effects of elevation and nutrient addition on time series data (soil N2O flux, 

temperature, WFPS, mineral N concentration and net N-cycling rates) were assessed using 

linear mixed effects (LME) models (Crawley 2012; Piepho et al. 2004). Analyses were based 

on plot means (the average of four or five chamber measurements for N2O and two 

measurements for net soil N cycling) with three replicate plots (for all parameters) or four 

replicate plots (for soil N-cycling rates). Elevation effects were assessed for control plots only 

and nutrient-addition effects were assessed separately for each of the three elevations. 

Elevation or treatments were considered fixed effects whereas sampling month and plot (as 

spatial replication) were included as random effects. The following structures were included 

in the LME model if this improved the relative goodness of the model fit based on the Akaike 

information criterion: (1) a first-order temporal autoregressive process accounting for 

decreasing correlation of measurements with increasing time difference (Zuur et al. 2009) and 

(2) a variance function varIdent to model heteroscedasticity of residual variances (Crawley 

2012). The significance of the fixed effects was then determined by analysis of variance and 

stepwise model simplification. 

For the short-term 15N tracing method of N2O sources, we first assessed the effects of 

added 15N solution on soil parameters (mineral N concentrations, WFPS, NO3
-/NH4

+ ratio) 

and soil N2O fluxes for each measurement campaign, elevation and treatment. We compared 
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15NH4
+- with 15NO3

--labeled chambers and both with reference (without 15N) chambers that 

were measured in the nearest sampling months, using Paired T tests. Second, we tested the 

differences in relative contributions of nitrification and denitrification to N2O fluxes between 

years for each elevation and treatment, between elevations for the control plots only and 

between treatments for each elevation, using either T tests (paired and unpaired) or a Mann 

Whitney U test.  

The significance level was defined at P ≤ 0.050 and mean values in the text are given 

with ± standard error (SE). Statistical analyses were conducted using R 2.14.0 (R 

Development Core Team 2012). 

 

3.4 Results 

3.4.1 Control plots along the elevation gradient: soil N2O fluxes and controlling factors 

Soil N2O fluxes from control plots were influenced by elevation (P < 0.001; Table 3.1) 

with annual fluxes at 1000 m more than three times larger than at 2000 m and more than 

eleven times larger than at 3000 m over the entire measurement period (Table 3.2). However, 

in 2012 the difference between soil N2O fluxes at 1000 m and 2000 m was not significant 

(P = 0.103; Table 3.1). Temporal variability of N2O fluxes from the control plots was largest 

at 1000 m although without a clear seasonal trend (Figure 3.1).  
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Table 3.1 Mean (±SE, n = 3) soil temperature, water-filled pore space (WFPS) and N2O fluxes in montane forests along a 1000- to 3000-m elevation gradient, measured 

monthly between November 2010 and August 2012 

Means followed by different capital letters indicate significant differences across the elevation gradient for the control plots, and means followed by small letters indicate 

significant differences among treatments within each elevation and year(s) (linear mixed effects model at P ≤ 0.05) 

 

Elevation (m) Treatment Soil temperature (°C)  WFPS (%)  Soil N2O fluxes (μg N m-2 h-1) 

  2010-2012  2010-2012  2010/2011  2012  2010-2012 

1000 Control 18.43 ± 0.10A  43.35 ± 3.87C  5.75 ± 1.97A,a    7.37 ± 4.99A  6.40 ± 3.17A,ab 

 
Nitrogen (N) 18.50 ± 0.04  45.26 ± 6.91  6.73 ± 0.99a    8.67 ± 1.54  7.50 ± 1.20a 

 
Phosphorus (P) 18.60 ± 0.09  51.41 ± 9.69  2.25 ± 1.62b    5.71 ± 1.18  3.63 ± 1.31b 

 
N + P 18.66 ± 0.07  54.06 ± 6.68  6.14 ± 0.84a    7.60 ± 2.13  6.73 ± 0.67a 

2000 Control 14.67 ± 0.28B  71.12 ± 4.21A  1.79 ± 0.89B    2.43 ± 1.91AB,ab  2.05 ± 0.64B,ab 

 
N 14.77 ± 0.19  71.64 ± 2.00  2.20 ± 0.28    4.18 ± 0.61a  2.99 ± 0.42a 

 
P 14.81 ± 0.17  72.88 ± 2.41  0.83 ± 0.26    1.47 ± 0.71b  1.09 ± 0.40b 

 
N + P 14.64 ± 0.18  69.00 ± 1.76  2.17 ± 0.24    4.21 ± 0.97a  2.98 ± 0.51a 

3000 Control   9.80 ± 0.26C,b  58.58 ± 0.82B,a  0.85 ± 0.47B  -0.10 ± 0.92B  0.47 ± 0.62B 

 
N   9.61 ± 0.26b  57.00 ± 2.25a  1.31 ± 0.29    0.56 ± 0.58  1.00 ± 0.21 

 
P 10.03 ± 0.26a  50.34 ± 2.13ab  0.46 ± 0.91    1.27 ± 0.70  0.78 ± 0.75 

 
N + P   9.74 ± 0.10b  44.61 ± 6.91b  1.04 ± 0.49    1.95 ± 1.53  1.40 ± 0.33 
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Table 3.2 Mean (± SE, n = 3) annual N2O fluxes (kg N ha-1 yr-1) from montane forest soils along a 1000- to 

3000-m elevation gradient, measured 12 and 8 times at monthly interval in 2010/2011 and 2012, respectively 

Annual soil N2O fluxes were approximated by applying the trapezoid rule on time intervals between measured 

flux rates, assuming constant flux rates per day 

In the control plots at each elevation, addition of 15N-solutions for the short-term 15N 

tracing of N2O did not affect soil N2O fluxes, WFPS or mineral N concentrations (P ≥ 0.060) 

compared to the reference (without 15N) chambers, except at 2000 m in 2011 where addition 

of 15NH4
+ solution increased soil NH4

+ concentrations (P < 0.009) relative to the reference 

chambers. The relative contributions of nitrification and denitrification to N2O fluxes did not 

differ between the two measurement campaigns in July 2011 and January 2012 (P ≥ 0.500), 

and hence we report the means (± SE, n = 4) of these two periods. Denitrification dominated 

N2O fluxes in control plots along the elevation gradient with contributions of 67 ± 26% at 

1000 m, 100 ± 0% at 2000 m and 98 ± 3% at 3000 m. There was a larger contribution of 

nitrification at 1000 m than at 2000 m (P = 0.029). The amounts of 15N2O emitted during 30 

minutes of chamber closure were very small: maximally 0.003% of soil 15NH4 and 0.755% of 

soil 15NO3 in the top 0.05 m across the elevation gradient.   

Elevation (m) Treatment 2010/2011 2012 2010-2012 

1000 Control 0.51 ± 0.15 0.68 ± 0.48 0.57 ± 0.26 

 
Nitrogen (N) 0.56 ± 0.04 0.77 ± 0.13 0.64 ± 0.08 

 
Phosphorus (P) 0.22 ± 0.16 0.53 ± 0.11 0.33 ± 0.13 

 
N + P 0.54 ± 0.09 0.72 ± 0.23 0.59 ± 0.06 

2000 Control 0.15 ± 0.05 0.20 ± 0.17 0.17 ± 0.06 

 
N 0.22 ± 0.03 0.37 ± 0.07 0.27 ± 0.04 

 
P 0.08 ± 0.03 0.11 ± 0.05 0.09 ± 0.03 

 
N + P 0.19 ± 0.02 0.36 ± 0.09 0.25 ± 0.05 

3000 Control 0.07 ± 0.04 0.00 ± 0.08 0.05 ± 0.04 

 
N 0.12 ± 0.02 0.04 ± 0.04 0.10 ± 0.02 

 
P 0.05 ± 0.06 0.13 ± 0.04 0.07 ± 0.05 

 
N + P 0.08 ± 0.04 0.21 ± 0.14 0.12 ± 0.02 
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Figure 3.1 Mean (± SE, n = 3) soil N2O fluxes (μg N m-2 h-1) from montane forests at (a) 1000 m, (b) 2000 m 

and (c) 3000 m during 3-5 years of nutrient manipulation: control (filled circle), N addition (open circle), 

P addition (filled triangle) and N+P addition (open triangle). Vertical lines indicate fertilization events. 
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Across the 2010-2012 measurements, soil temperature and WFPS in the top 0.05 m of 

soil in control plots differed between elevations (Table 3.1) but showed no clear seasonal 

pattern at any elevation. Soil temperature decreased with increasing elevation (P < 0.001). 

WFPS was highest at 2000 m followed by 3000 m and 1000 m (P < 0.001). 

In the control plots, net ammonification rates did not differ across the elevation gradient 

(P = 0.126; Table 3.3), which was caused by the large spatial variability (i.e. large SE), but 

net nitrification rates were larger at 1000 m than at 2000 m and 3000 m (P < 0.001; Table 

3.3). At all elevations, the dominant form of mineral N in the top 0.05 m of soil was NH4
+ 

(Table 3.3). NH4
+ was higher at 1000 m and 2000 m compared to 3000 m (P < 0.001), and did 

not vary markedly within the measurement period. Similar to net nitrification, NO3
- 

concentrations decreased with increasing elevation (P < 0.001; Table 3.3), and seasonally 

elevated soil NO3
- concentrations at 1000 m and 2000 m coincided with months of large 

litterfall (Homeier et al. unpublished data on litterfall). 

Across the elevation gradient, soil N2O fluxes from control plots were positively 

correlated with soil temperature and NO3
- (Table 3.4). Soil temperature was negatively 

correlated with WFPS and positively correlated with NH4
+ and NO3

- concentrations. WFPS 

was negatively correlated with NO3
- concentration. NO3

- and NH4
+ concentrations were also 

positively correlated. Correlation tests performed for each elevation only revealed correlations 

at 1000 m; positive correlations between soil N2O fluxes and WFPS (R = 0.59; P = 0.004; 

n = 22) and between soil temperature and NH4
+ concentrations (R = 0.52; P = 0.013; n = 22). 

At 2000 m and 3000 m, we did not detect any significant correlations. 
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Table 3.3 Mean (± SE) net soil-N cycling rates (n = 4) and soil mineral N concentrations (n = 3) in the top 0.05 m of montane forest soils along a 1000- to 3000-m elevation 

gradient. Net N-cycling rates were measured three times between 2011 and 2012 (end of the 3rd, end of the 4th and middle of the 5th year of nutrient manipulation) and soil 

mineral N concentrations were measured monthly between November 2010 and August 2012 

Elevation (m)  Treatment Net soil-N cycling rates (mg N m-2 d-1)  Soil mineral N concentration (mg N m-2) 

  
ammonification 

 
nitrification  NH4

+  NO3
- 

1000 Control 15.24 ± 5.59a 
 

35.48 ± 6.82A  335.79 ± 31.38A  43.41 ± 26.01A,c 

 
Nitrogen (N) 3.02 ± 1.73ab 

 
42.93 ±  1.83  308.96 ± 25.59  76.07 ± 15.40a 

 
Phosphorus (P) 19.71 ± 8.45a 

 
52.95 ± 7.96  317.02 ± 15.62  19.44 ± 8.33d 

 
N + P -3.76 ± 2.23b 

 
38.56 ±  3.28  328.13 ± 55.86  58.60 ± 7.88b 

2000 Control   1.25 ±  5.64b 
 

0.25 ± 0.29B,b  359.96 ± 17.12A,c  9.59 ±  2.33B,b 

 
N 44.97 ± 19.37a 

 
4.39 ± 3.02a  745.60 ± 49.82a  44.08 ± 14.81a 

 
P   1.58 ±  4.12b 

 
0.34 ± 0.30b  324.51 ± 20.85c  8.78 ± 2.33b 

 
N + P 19.04 ±  6.97a 

 
8.39 ± 2.45a  563.17 ± 57.76b  60.49 ± 6.46a 

3000 Control -0.04 ± 1.93c 
 

-0.03 ± 0.09B,b  217.95 ± 10.71B,b  3.77 ± 0.83C,c 

 
N 21.31 ± 5.48a 

 
1.24 ± 0.71a  504.82 ± 99.84a  22.25 ± 1.11a 

 
P   5.69 ± 3.79bc 

 
0.08 ± 0.11b  159.51 ±  9.94c  2.53 ± 0.77d 

 
N + P 14.57 ± 5.83ab 

 
1.76 ± 1.36a  248.07 ± 64.80b  6.77 ± 1.36b 

Means followed by different capital letters indicate significant differences across the elevation gradient for the control plots and means with superscript small letters indicate 

significant differences among treatments for each elevation (linear mixed effects model at P ≤ 0.05) 
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Table 3.4 Pearson correlation coefficients for monthly average (n = 66) soil N2O flux (μg N m-2 h-1), soil 

temperature (°C), water-filled pore space (WFPS; %) and mineral N concentrations (mg N m-2) in control plots 

of montane forests across a 1000- to 3000-m elevation gradient 

 Soil temperature WFPS NH4
+ NO3

- 

Soil N2O flux 0.51* -0.13 0.21 0.36* 

Soil temperature  -0.40* 0.50* 0.67* 

WFPS   0.05 -0.41* 

NH4
+    0.34* 

* P < 0.01 

 

3.4.2 Effects of nutrient additions on soil N2O fluxes and controlling factors at each 

elevation 

At 1000 m, soil N2O fluxes from nutrient-amended plots were not different than control 

plots over the entire measurement period (P = 0.059 – 0.146; Figure 3.1a; Table 3.1). P plots, 

however, had lower soil N2O fluxes compared to N (P = 0.001) and N+P plots (P = 0.004) 

during the 2010-2012 measurement period. Analyzing measurement years separately, in 

2010/2011 P plots had N2O fluxes that were > 60% smaller compared to all other treatments 

(P = 0.001 – 0.034) while in 2012 there was no detectable differences (P = 0.334). At 2000 m, 

nutrient additions over the entire 2010-2012 measurement period had similar effects as at 

1000 m: N2O fluxes from nutrient-amended plots were not significantly different than control 

plots (P = 0.119 – 0.128), but P plots had lower soil N2O fluxes compared to N and N+P plots 

(both P = 0.002; Figure 3.1b; Table 3.1). Although in 2010/2011 there was no detectable 

treatment difference (P = 0.213), in 2012 treatment effects followed the same pattern as that 

of the entire measurement period (P = 0.019). At 3000 m, there were no detectable treatment 

differences in soil N2O fluxes (P = 0.391 to 0.651) over any time period from 2010 to 2012 

(Figure 3.1c; Table 3.1). 
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For the short-term 15N tracing method of N2O sources, addition of 15N solutions did not 

affect soil N2O fluxes, WFPS or mineral N concentrations (P ≥ 0.062) as compared to the 

reference chambers in each N plot at each elevation. Relative contribution of nitrification and 

denitrification to soil N2O fluxes did not differ between the two measurement campaigns in 

2011 and 2012 for each treatment (P ≥ 0.500) and hence we reported the average values of 

these two measurements. We did not detect a significant difference in the sources of N2O 

fluxes between control and N plots at any elevation (P = 0.625) and mean (±SE, n = 4) 

contributions of denitrification to N2O fluxes in N plots were 96 ± 12% at 1000 m, 100 ± 1% 

at 2000 m and 99 ± 2% at 3000 m. The amounts of 15N2O emitted during 30 minutes of 

chamber closure were maximally 0.004% of soil 15NH4
+ and 0.065% of soil 15NO3

- in the top 

0.05 m across the elevation gradient.  

Nutrient addition affected net soil-N cycling rates across all elevations (Table 3.3). At 

1000 m, net ammonification rates decreased in N+P plots (P = 0.017) compared to control 

and P plots (P = 0.004) whereas the N plots showed intermediate rates (Table 3.3). There was 

no treatment difference detected for net nitrification rates (P = 0.357). At 2000 m, net 

ammonification and nitrification rates increased in N and N+P plots compared to control and 

P plots (P = 0.001 - 0.033; Table 3.3). At 3000 m, net ammonification rates increased in N 

(P = 0.001) and N+P plots (P = 0.007) compared to control plots, and P plots did not differ 

from the control (P = 0.196; Table 3.3). Furthermore, net ammonification rates in N plots 

were higher than in P plots (P = 0.029). Net nitrification rates increased in N (P = 0.011) and 

N+P plots (P = 0.005) whereas P plots were comparable with the control (P = 0.536).  

Soil mineral N concentrations measured monthly between 2010 and 2012 were also 

influenced by nutrient addition (Table 3.3). At 1000 m, NH4
+ concentrations did not differ 

between treatments (P = 0.601) whereas NO3
- concentrations decreased in the order N, N+P, 

control and P plots (P ≤ 0.017; Table 3.3). At 2000 m, NH4
+ concentrations in N and N+P 
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plots were larger compared to control plots (P < 0.005) with concentrations in N plots being 

larger than in  N+P plots (P = 0.007). NO3
- concentrations displayed a similar pattern (Table 

3.3). At 3000m, NH4
+ concentrations were higher in N plots and lower in P plots compared to 

control and N+P plots (P < 0.001), while NO3
- concentrations at 3000 m displayed the same 

pattern described for 1000 m with descending concentrations in the order of N, N+P, control 

and P plots (P < 0.001; Table 3.3). For soil temperature and WFPS measured between 2010 

and 2012, only at 3000 m were there differences between treatments in soil temperature and 

moisture, measured between 2010 and 2012 (P < 0.001; Table 3.1); soil temperature was 

higher in P plots compared to all other treatments (P = 0.006 - 0.033) while WFPS was lower 

in N+P plots compared to control (P = 0.013) and N plots (P = 0.026). 

Across all treatment plots, correlations between soil N2O fluxes and soil temperature, 

WFPS and mineral N varied for each elevation (Table S3.1). At 1000 m N2O fluxes were 

positively correlated with WFPS. At 2000 m, there was a positive correlation of N2O fluxes 

with WFPS, NH4
+ and NO3

- concentrations. At 3000 m, we did not detect any significant 

correlation with N2O fluxes. 

 

3.5 Discussion 

3.5.1 Control plots along the elevation gradient: soil N2O fluxes and controlling factors  

Annual soil N2O fluxes from control plots measured for nearly two years across the 

elevation gradient (Table 3.2) were lower than those from other TMFs at comparable 

elevations that reported in-situ, year-round measurements, e.g. in Brazil (Sousa Neto et al. 

2011), Panama (Koehler et al. 2009), Peru (Teh et al. 2014), and Indonesia (Purbopuspito et 

al. 2006). Our annual N2O fluxes were, however, within the range of those reported for the 

same study area (Wolf et al. 2011) and for the same control forests measured earlier (in 2008 

and 2009 by Martinson et al. 2013).  
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According to the HIP model, the amount of gaseous N losses from soils is primarily 

controlled by soil N availability, which is commonly measured using soil-N cycling rates 

(Davidson et al. 2000; Firestone and Davidson 1989). We compared the net soil-N cycling 

rates from our control plots (Table 3.3) with published data from other old-growth TMFs that 

used in-situ incubation of intact soil cores. Our net N cycling rates in the top 0.05 m of soil at 

1000 m were lower than values reported for TMFs on Andosol soils located between 700 m 

and 1500 m in northwestern Ecuador and Costa Rica (Arnold 2008; Arnold et al. 2009). 

Similarly, net nitrification rates in the top 0.05 m of the organic layer in an Andosol soil at 

1200 m in Panama (Koehler et al. 2009) were more than 10 times higher than values from the 

same depth of organic layers in our Cambisol soil at 2000 m and our Histosol soil at 3000 m. 

A separate study carried out at our study sites showed that gross rates of mineral N production 

(N mineralization and nitrification) in our control plots were low and closely coupled with 

microbial N immobilization (Baldos et al. in press), which is typical for conservative soil N 

cycling and supports our low net soil-N cycling rates. Therefore it is not surprising, that N2O 

losses from our study sites were very low, with mean daily N2O fluxes (Table 3.1) accounting 

for only 0.02% to 0.06% of gross N mineralization rates (used as an index of soil available N; 

ranging from 60 ± 10 mg N m-² d-1 at 3000 m to 235 ± 30 mg N m-² d-1 at 1000 m in the top 

0.05 m of soil; Baldos et al. in press). This was comparable with the 0.06% N2O loss in 

proportion to gross N mineralization rate in the top 0.05 m of soil reported for a TMF in 

Panama (Corre et al. 2014). The low levels of N availability (and corresponding low N2O 

fluxes) in our soils were also partly controlled by temperature. Along our elevation gradient, 

the decreasing N2O fluxes from the control plots were correlated with the decreasing soil 

temperatures (Table 4). Temperature also influenced the decreasing gross rates of soil mineral 

N production across our elevation gradient (Baldos et al. in press) as was shown by the 

positive correlations of soil temperature with NH4
+ and NO3

- (Table 3.4). 
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The second level of control on gaseous N losses from soils in the HIP model is the soil 

aeration status, usually represented by the soil WFPS, which influences the relative 

contributions of nitrification and denitrification to gaseous N losses. Denitrification is 

proposed to become the dominant source of N2O fluxes above a threshold value of 60% 

WFPS (Davidson et al. 2000) and to become the only N2O source at WFPS >70% (Bateman 

and Baggs 2005; Davidson 1991; Machefert and Dise 2004). Across our elevation gradient, 

WFPS in the top 0.05 m of soil only surpassed these threshold values at 2000 m and not at 

1000 m or 3000 m (Table 3.1). However, the 15N tracing method showed that denitrification 

was the dominant source of N2O at 1000 m and the only N2O source at 2000 m and 3000 m. 

In previous studies, it has been shown that WFPS threshold values can vary substantially 

depending on soil texture; for example, in acid brown earth (Cambisol) with 48% sand in 

Northern Ireland 60-80% of N2O was derived from denitrification at 40% WFPS (Stevens et 

al. 1997). This is comparable to our results from the sandy loam mineral soil (Cambisol) at 

1000 m. At 2000 m and 3000 m, the 59-71% WFPS in the top 0.05 m of the organic layer 

cannot explain the absence of nitrification-derived N2O fluxes. However, these organic layers 

had very high gravimetric soil moisture contents (3-5 g g-1) due to the high water holding 

capacity of the organic matter (Hudson 1994). To illustrate this: approximately 27-30 kg H2O 

m-2 was stored in the top 0.05 m organic layer, which was much more than the approximately 

15 kg H2O m-2 stored in the top 0.05 m of mineral soil at 1000 m. Such high gravimetric 

water contents in organic layers can create plenty of anaerobic microsites in which 

denitrification can occur despite the relatively low WFPS. Indeed, the positive correlations 

between N2O flux and NO3
- (Table 3.4) also supported our results from the 15N tracing 

method that denitrification was the dominant N2O source. Thus, our findings illustrate that in 

contrast to mineral soils, different threshold values of WFPS should be used for organic layers 

in estimating limits of the relative importance of nitrification and denitrification as N2O 
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sources. The low N2O losses from our study sites, especially at the higher elevations with 

thick organic layers, may be further attributed to the combination of low NO3
- concentrations 

(Table 3.3) and presumably high labile carbon in organic layers, which have been shown to 

result in high N2/N2O ratios, causing N losses via denitrification to be dominated by N2 

(Weier et al. 1993). 

In summary, our study sites were characterized by low N2O fluxes as reflected by their 

conservative soil N cycling (i.e. small net (Table 3.3) and gross (Baldos et al. in press) rates 

of mineral N production with closely coupled microbial N immobilization). This has also 

been observed in other TMFs in Puerto Rico, Hawaii and Panama (Corre et al. 2010, 2014; 

Hall and Matson 2003; Silver et al. 2001), and was in line with the previously demonstrated 

strong limitation of N2O fluxes by N availability in our study area (Martinson et al. 2013; 

Wolf et al. 2011). The high gravimetric water content of organic layers strongly favored 

denitrification as the source of N2O at 2000 m and 3000 m. Moreover, the low N2O losses 

probably also resulted from the combination of low soil NO3
- concentrations and high carbon 

in organic layers, which would have favored the already low gaseous N losses to be 

dominated by N2 via denitrification. 

 

3.5.2 N-addition effects on N2O fluxes 

Along our elevation gradient, N addition did not increase N2O fluxes relative to the 

control (Table 3.1, Figure 3.1) although net ammonification and nitrification rates increased 

with N addition at 2000 m and 3000 m (Table 3.3). Along the same elevation gradient, 

N addition also led to increases in gross rates of N mineralization and nitrification and 

decreases in microbial immobilization of NH4
+ and NO3

- (measured in the third and fourth 

year of nutrient manipulation; Baldos et al. in press), which supported our observed increases 

in net ammonification, net nitrification, NH4
+ (at 2000 m and 3000 m) and NO3

- 
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concentrations (at all elevations) in N plots (Table 3.3). Such increases in net and gross rates 

of mineral N production and mineral N levels in the N plots, however, did not lead to 

increases in N2O fluxes. This may be due to produced N2O being further reduced to N2. The 

idea that N2 rather than N2O was not the dominant gaseous N loss, was supported by the 

results of the 15N tracing experiment; although denitrification was the main N2O source, 

emitted 15N2O within 30 minutes of chamber closure accounted for maximally 0.065% of soil 

15NO3
- (see Results: effects of nutrient addition), suggesting further reduction of N2O to N2 

given favorable anaerobic microsites, high carbon and low NO3
- levels (as we discussed 

above). Chronic N addition can cause increases in NO3
- levels and decreases in soil pH, which 

then inhibit N2O to N2 reduction, as was observed in an Andosol soil from a montane forest 

on in Panama (Corre et al. 2014; Koehler et al. 2009, 2012). The increases in NO3
- levels in 

our N plots (Table 3.3) were much lower than those observed from the Panamanian montane 

forest soil of course, since that soil  received four years of 125 kg N ha-1 yr-1 (with NO3
- levels 

as high as 50-60 mg N m-2 in the organic layer and 112-183 mg N m-2 in the mineral). Our 

moderate levels of nutrient addition are probably also the reason why soil pH in our N plots 

did not yet differ significantly from the control plots even after four years (Baldos et al. in 

press). 

Whether an increase in soil N availability (e.g. mineral N concentrations, net/gross rates 

of mineral N production) results in an increase in N2O fluxes also depends on inter-annual 

variations in climate. Corre et al. (2014) showed that the N2O response to chronic N addition 

in tropical forest soils was strongly controlled by inter-annual variability of rainfall and thus 

soil moisture. In the first two years of N addition to our sites, Martinson et al. (2013) reported 

that net nitrification at all elevations increased slightly and that these increases were 

accompanied by small increases in N2O fluxes in the second year of N addition. However, 

WFPS during our 2010-2012 measurement period (Table 3.1) was lower than that measured 
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during the first two years (2008-2009) of nutrient manipulation (63-88% WFPS; Martinson et 

al. 2013) when N addition led to increased N2O fluxes. The positive correlation of N2O fluxes 

with WFPS at 1000 m, both in control plots (see results) and across all treatments (Table 

S3.1), clearly indicates moisture limitations to N2O fluxes. At 2000 m, a combination of 

changes in mineral N concentrations and soil moisture contents were controlling N2O fluxes, 

as indicated by the significant positive correlation across all treatments (Table S3.1) but lack 

of significant effects of WFPS and mineral N concentrations in control plots. Thus, the 

relatively low soil moisture contents during our measurement period likely contributed to the 

generally low N2O fluxes, and combined with its possible further reduction to N2 in anaerobic 

microsites, resulted in insignificant effects of N addition on soil N2O fluxes. 

 

3.5.3 P-addition effects on N2O fluxes 

In contrast to the initial two years (2008-2009) of nutrient manipulation in our sites, 

when no effect of P addition on soil N2O fluxes was detected (Martinson et al. 2013), we did 

detect several changes during our study period (2010-2012). As compared to control plots, 

P addition plots exhibited decreases in: soil N2O fluxes at 1000 m (Table 3.1; Figure 3.1a), 

NH4
+ at 3000 m and NO3

- at 1000 m and 3000 m (Table 3.3) Across our elevation gradient, 

aboveground net primary production (ANPP) is limited by P and/or co-limited by N+P as 

indicated by the trend towards higher basal area increment already evident after one year of 

nutrient addition in P-addition plots (1000 and 2000 m) and in N+P-addition plots (all 

elevations) (Homeier et al. 2012, 2013). Increased ANPP with P addition could mean that 

there was an increase in plant uptake of soil nutrients, including soil mineral N. P addition did 

not change net (Table 3.3) or gross (Baldos et al. in press) rates of mineral N production and 

hence, increase in uptake of soil mineral N by plants without changes in rates of soil mineral 

N production, would lead to lower mineral N levels in P plots. Since NO3
- was the main 
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substrate for N2O production across our elevation gradient (see Results on 15N tracing method, 

i.e. denitrification as the main N2O source), decreased NO3
- concentrations in P plots also led 

to reduced N2O fluxes. A comparable mechanism was described for a 6 year old leguminous 

tree plantation in Indonesia, where P addition alleviated plant P limitation and increased root 

N uptake, resulting in decreased mineral N concentrations and N2O fluxes (Mori et al. 2013). 

At 3000 m, we did not observe a significant reduction in N2O fluxes in P addition plots, 

despite a reduction in mineral N, but at this site N2O fluxes were already very low to start 

with (Figure 3.1c). Additionally, N2O fluxes at 3000 m elevation were not correlated with any 

of the measured soil factors, neither for control plots nor across all treatments (Tables 3.4 and 

S3.1), which suggests that the N2O fluxes were too low (mostly fluctuating around zero; 

Figure 3.1c) to generate any significant relationship with the soil factors known to control 

N2O fluxes. 

 

3.5.4 Combined N+P-addition effects on N2O fluxes 

As was the case for the N plots, N2O fluxes from N+P plots did not differ from the 

control plots along the elevation gradient (Table 3.1; Figure 3.1). Again, this is in contrast to 

the second year (2009) of N+P addition to our sites, when Martinson et al. (2013) observed 

increases in N2O fluxes from the N+P plots compared to the control plots. The net (Table 3.3) 

and gross (Baldos et al. in press) rates of mineral N production and the soil mineral N 

concentrations in the N+P plots during our 2010-2012 measurement period were comparable 

with the N plots, in that both were larger than the control plots. In P plots, however, these 

parameters either decreased, or did not change. Thus, changes in rates of mineral N 

production and mineral N concentrations in N+P plots were dominated by the added N. It can 

be noted that the effects of N+P addition on these parameters (Table 3.3: net ammonification 

and NO3
- at 1000 m and 3000 m; NH4

+ at 2000 m and 3000 m) were not as strong as the 
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effects of N addition alone, presumably because of the opposing effect of P addition on these 

parameters (as discussed above). Similar to the N plots, then soil N2O fluxes from N+P plots 

did not differ from the control plots (despite an increase in soil N availability) due to the 

generally low N2O fluxes and relatively low soil moisture contents during our study period 

compared to the 2008-2009 measurement period of Martinson et al. (2013). 

In conclusion, we have shown that soil N2O fluxes in our study sites were among the 

lowest measured in TMFs and that denitrification was the main (at 1000 m) or the only (at 

2000 m and 3000 m) source of N2O production, probably due to anaerobic microsites. These 

low levels of N2O fluxes were the result of the conservative soil N cycling along our elevation 

gradient (Baldos et al. in press), and the combination of low NO3
- concentrations and 

presumably high available C in the organic layers (at 2000 m and 3000 m) which probably 

favored the already low gaseous N losses to be dominated by N2 via denitrification.  

In contrast to the first two years of this study (Martinson et al. 2013), in the third to the 

fifth year we did not detect significant increases in N2O fluxes despite increase in soil N 

availability. This can be attributed to the generally low N2O fluxes during our 2010-2012 

measurement period, which we in turn attribute to the relatively low rainfall and soil moisture 

contents during our study period  However, we did detect a reduction in soil mineral N 

concentrations and N2O fluxes with P addition in the third year, again in contrast to the first 

two years of P addition, when no effects on N2O fluxes were observed (Martinson et al. 

2013). The significant P effect was probably due to increased uptake of soil mineral N by 

vegetation after an extended period of P addition, since P is a limiting element for ANPP at 

our sites. N+P addition showed similar trends in net rates of mineral N production, mineral N 

concentrations and N2O fluxes as those with N addition alone, although to a lesser degree 

because of the counteracting effects of P addition. Combined with the previous work of 

Martinson et al. (2013), our results show that effects of N and P addition on soil N2O fluxes 
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were not linear with time of exposure to elevated nutrient inputs. We observed large inter-

annual variation in N2O responses, which we attributed to changes of soil moisture 

conditions. Without this multiple-year study we would not have been able to detect these 

annual variations of N2O responses to N and P additions, highlighting the importance of 

long-term studies. 
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Table S3.1 Pearson coefficients for monthly average (n = 80) soil N2O flux (μg N m-2 h-1), soil temperature (°C), 

water-filled pore space (WFPS; %) and mineral N concentrations (mg N m-2) of all treatment plots of montane 

forests along a 1000- to 3000-m elevation gradient 

Elevation (m)  Soil temperature WFPS NH4
+ NO3

- 

1000 Soil N2O flux -0.21 0.25* 0.02 0.12 

 Soil temperature  -0.29** 0.49** 0.15 

 WFPS   -0.16 -0.24** 

 NH4
+    0.36** 

      

2000 Soil N2O flux 0.09 0.32** 0.21* 0.10** 

 Soil temperature  -0.16 0.03 -0.04 

 WFPS   0.01 -0.10 

 NH4
+    0.58** 

      

3000 Soil N2O flux 0.10 -0.04 0.09 0.03 

 Soil temperature  -0.01 0.07 0.03 

 WFPS   0.33** 0.08 

 NH4
+    0.56** 

*P < 0.05, ** P < 0.01 
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CHAPTER 4 

 

Nutrient addition increases soil CH4 

uptake across an elevation gradient 

in Andean tropical montane forests 
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4.1 Abstract 

Tropical forest soils are important sinks for the greenhouse gas methane (CH4). They 

are also increasingly affected by elevated nitrogen (N) and phosphorus (P) deposition. An 

increase in N and P availability has the potential to affect the CH4 budget of these ecosystems. 

While inhibiting effects of nitrogen on CH4 fluxes have been studied extensively, there is 

increasing evidence that nutrients can limit CH4 uptake, especially in tropical montane forests. 

Here, we assess the impact of moderate N (50 kg N ha-1 yr-1), P (10 kg P ha-1 yr-1) and N+P 

additions on soil CH4 fluxes across an elevation gradient of tropical montane forests in 

Ecuador. Using static vented chambers, we measured CH4 fluxes in a nutrient manipulation 

experiment, at elevations of 1000 m, 2000 m and 3000 m over a period of five years. Control 

forest soils were net atmospheric CH4 sinks with annual fluxes of -2.23 ± 0.52 kg C ha-1 at 

1000m, -2.77 ± 0.15 kg C ha-1 at 2000m and -1.45 ± 0.63 kg C ha-1 at 3000 m elevation. 

During the first two years, nutrient addition did not affect soil CH4 fluxes at any elevation, 

which we attributed to the combination of moderate amounts of added nutrients; the strong 

immobilization of added nutrients, and the separation of the highest CH4 uptake capacity in 

the subsoil from the surface of the soil, where fertilizers were added. In years three to five, 

nutrient additions increased soil CH4 uptake. However effects for N and P varied along the 

elevation gradient: at 1000 m, N and N+P addition increased annual CH4 uptake by 20-60%; 

at 2000 m, P and N+P addition increase uptake by 21-50%; and at 3000 m, N addition 

increased CH4 uptake by 34-40%.  These differential effects of nutrient addition may be 

related to initial soil nutrient status and differential responses of ecosystem components to 

nutrient addition at each elevation. Our results are the first to show that CH4 uptake across an 

elevation gradient of tropical montane forest was nutrient limited and could be stimulated by 

elevated N and P deposition. Whether increases in CH4 uptake capacity will continue to be 
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elevated under chronic N deposition is uncertain since it is likely that after some time chronic 

N deposition will lead to inhibition of CH4 uptake.  

 

4.2 Introduction 

Atmospheric methane (CH4) concentrations have more than doubled since pre-industrial 

times due to human activities (Etheridge et al. 1998) and are steadily increasing despite a 

short period of stabilization between 1999 and 2006 (Kirschke et al. 2013). Nowadays, this 

makes CH4, which is mainly produced by methanogenic archea, the second most important 

greenhouse gas causing global warming (Denman et al. 2007). Soils are both important 

natural biogenic sinks and sources of CH4 (Le Mer and Roger 2001), in which CH4 

production in anaerobic zones and CH4 consumption in aerobic zones can occur 

simultaneously. In aerated soils, CH4 uptake dominated over CH4 production, which makes 

these soils a net CH4 sink. Globally, forest soils are strong net CH4 sinks (Le Mer and Roger 

2001), with tropical forest soils contributing about 28% (6.2 Tg CH4 yr-1) to the global annual 

CH4 uptake by soils (Dutaur and Verchot 2007). Although tropical montane forest (TMF) 

soils cover more than 11% of the world’s tropical forest area (Bubb et al. 2004; FAO 1993), 

they are presently neglected in global CH4 budgets, despite large variance in CH4 uptake 

across elevation gradients within this ecosystem (Purbopuspito et al. 2006; Teh et al. 2014). 

Strength and direction of soil CH4 fluxes in aerated soils are mainly controlled by soil 

moisture (Bowden et al. 1998), soil texture (Dörr et al. 1993) and presence of organic layers 

(Saari et al. 1998), which affect CH4 production, consumption and transport via soil oxygen 

status and gas diffusion (Bradford et al. 2001). In addition, soil temperature (Bowden et al. 

1998) and nitrogen (N) availability (Bodelier and Laanbroek 2004) have been shown to be 

important controlling factors, so that the interplay of different controlling factors finally 

determines CH4 fluxes. 
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Human activities like biomass burning, fossil fuel consumption and fertilizer use have 

more than doubled the amount of reactive nitrogen (N) cycling globally (Galloway et al. 

2008). The area affected by emitted reactive N is not only restricted to the region close to its 

origin, but also includes areas far from its source. Elevated N deposition has been observed in 

natural tropical forest regions, for example (Hietz et al. 2011), and further increases, which 

are expected in the next decade could exceed 25 kg N ha-1 yr-1 (Phoenix et al. 2006). 

Compared to lowland forests TMFs may be especially affected due to the importance of cloud 

water deposition (Carillo et al. 2002). 

There are contradictory observations of the effect of N addition on soil CH4 fluxes from 

forest soils, which has mainly been studied in temperate regions (Bodelier and Lannbroek 

2004). For years, most studies discussed the inhibitory effect of N addition on soil CH4 

uptake. However, in the last decade an increasing amount of studies have shown potential 

N limitation of CH4 uptake in soils (Bodelier and Laanbroek 2004) and recently, indications 

of N-limited CH4 uptake came from TMF soils in Ecuador (Wolf et al. 2012) and Panama 

(Veldkamp et al. 2013). Several mechanisms may affect CH4 uptake by soils following 

N addition: (1) competition of ammonium with CH4 for reactive sites of the methane 

monooxygenase enzyme, which inhibit of methane oxidation (Bédard and Knowles 1989), 

(2) toxic effects of by-products of N transformation (e.g. NO2
-, NO, N2O) on methanogenic 

archea (Klüber and Conrad 1998) and methanotrophic bacteria (Schnell and King 1994), 

(3) inhibition of methanogenesis by nitrate since it is preferred as an electron-acceptor 

(Conrad 1989), (4) osmotic effects of high N doses (Schnell and King 1996), (5) microbial N 

limitation of methanotrophs (Bodelier and Laanbroek 2004) and (6) reduction of energy-

intensive N assimilation by methanotrophic microorganisms that are also capable of 

N2-fixation (Hanson and Hanson 1996). Only some of these processes have been 

demonstrated in the field. 
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 In tropical South America, phosphorus (P) deposition is also predicted to increase 

through increased input from biomass burning, anthropogenic mineral aerosols and biogenic 

particles from the neighboring Amazon Basin (Mahowald et al. 2005), as well as from 

Saharan dust (Okin et al. 2004). How elevated P availability affects soil CH4 fluxes from soils 

has not been studied extensively, however P addition in P-deficient soils may affect soil CH4 

fluxes (1) directly via increased microbial activity and growth if this includes methanogenic 

archaea and methanotrophic bacteria (Cleveland et al. 2002) or (2) indirectly via changes in 

soil oxygen and nutrient (i.e. N) status caused by changes in plant water and plant nutrient 

uptake (Zhang et al. 2011). 

Recent studies indicate that multiple nutrient limitations are common in diverse tropical 

forests (Kaspari et al. 2008) and in diverse TMFs there is increasing evidence that 

co-limitation of N and P occurs (Homeier et al. 2012; Tanner et al. 1998). In (sub)tropical 

forests only two in-situ nutrient addition studies have been conducted in which year-round 

CH4 fluxes were measured. These studies have shown contradictory effects of N addition on 

CH4 fluxes. In Panama, addition of 125 kg urea-N ha-1 yr-1 did not significantly affect CH4 

uptake both on long-term (9-12 yrs) N amended lowland tropical Nitisols/Cambisols and mid-

term (1-4 yrs) N amended tropical montane forest Andosols with a thick organic layer. 

However, there were indications that CH4 uptake was N-limited (Veldkamp et al. 2013). In 

contrast, addition of 50 - 150 kg NH4NO3-N ha-1 yr-1 applied for up to 3 years in N-saturated 

subtropical forest Oxisols decreased CH4 uptake in Southern China (Zhang et al. 2008, 2011). 

Addition of 150 kg NaH2PO4-P ha-1 yr-1 in the same forest increased CH4 uptake, while 

addition of N+P with 150 kg ha-1 yr-1 each had no effect on CH4 fluxes. The results from these 

experiments and those conducted in other climates suggest that N addition to soils with high 

soil N status and high amounts of added N tend to inhibit CH4 uptake (Aronson and Helliker 

2010) while N addition to soils with low N availability may stimulate CH4 uptake. 
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Here we report the effects of 5 years of moderate nutrient addition on soil CH4 fluxes 

across an elevation gradient in tropical montane forests of Southern Ecuador. We 

hypothesized that N, P and N+P addition would increase CH4 uptake since these forests 

showed evidence of N and P co-limitation (Homeier et al. 2012, 2013) and an earlier study 

showed indications of N-limited CH4 uptake in the same area (Wolf et al. 2012). 

 

4.3 Material and Methods 

4.3.1 Study area 

The study area was located in a tropical mountain ecosystem in the provinces Loja and 

Zamora Chinchipe, on the eastern slope of the South Ecuadorian Andes. We selected three 

sites along an elevation gradient (1000-3000 m above sea level (asl)) of old-growth tropical 

montane rainforests within the Podocarpus National Park and the adjacent private Biological 

Reserve San Francisco. 

The elevation gradient covers a premontane tropical forest (Homeier et al. 2008) on a 

Dystric Cambisol developed on deeply weathered granitic rock (Litherland et al. 1994; 

Martinson et al. 2013) at ‘1000 m’ (990-1100 m asl; 4.115° S, 78.968° W), a lower montane 

rain forest on a Stagnic Cambisol at ‘2000 m’ (1950-2100 m asl; 3.982° S, 79.083° W) and an 

upper montane rain forest on a Stagnic Histosol at ‘3000 m’ (2900-3050 m asl; 4.110° S, 

79.178° W). Soils at 2000 m and 3000 m were both formed from methamorphosed schists and 

covered by 0.1-0.4 m organic layers (Litherland et al. 1994). Detailed forest and soil 

characteristics are given by (Homeier et al. 2013; Martinson et al. 2013) and in Table S2.1. 

Along the elevation gradient mean annual temperature decreased from 19.4 at 1000 m 

to 15.7 at 2000 m and 9.4° C at 3000 m, whereas mean annual precipitation was lowest at 

2000 m with 1950 mm, followed by 1000 m elevation with 2230 mm and highest at 3000 m 

elevation with 4500 mm (Moser et al. 2007). Rainfall and temperature display only slight 
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seasonal variability in this region (Emck 2007). Ambient annual nutrient bulk and dry 

deposition in the study region increased between 1998 and 2010 ranging from 14 to 45 kg N 

and 0.4 to 4.9 kg P ha-1 (Boy et al. 2008; Homeier et al. 2012). 

 

4.3.2 Experimental design 

A full factorial nutrient manipulation experiment (NUMEX) with N-, P-, N+P-addition 

and untreated control treatments, was established along the elevation gradient in 2007 as 

described in previous studies (Homeier et al. 2013; Martinson et al. 2013). In short, we 

established at each site a stratified complete block design, comprising of four replicate blocks, 

each with four plots (20 x 20 m) with at least 10 m distance between plots. Blocks were 

established along topographic positions which could affect soil CH4 fluxes (Wolf et al. 2012). 

Treatments were assigned randomly within a block with the restriction that unfertilized 

control treatments were located upslope and the combined treatment of N+P addition were 

located downslope in each block, to avoid unwanted fertilization effects due to nutrient 

leaching in this steep terrain. 

Nutrients were applied manually at moderate rates of 50 kg N ha-1 yr-1 in the form of 

urea (CH4N2O) and 10 kg P ha-1 yr-1 in form of sodium hydrogen phosphate (NaH2PO4·H2O 

and NaH2PO4·2H2O, with analytic grade quality). Starting in early 2008, rates were split into 

two equal applications per year (February/March and August/September) with a four-month 

delay of the second fertilization in 2010 due to logistical problems related to the shipping of 

high-grade P fertilizer from Germany to Ecuador.  
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4.3.3 Soil CH4 flux, temperature, moisture and mineral N measurements 

Soil CH4 fluxes were measured with static vented chambers consisting of permanently 

installed round polyvinyl chloride chamber bases (area 0.04 m², height 0.15 m, ~0.03 m 

inserted into the soil) and polyethylene chamber hoods (totaling the chamber volume to 12 L), 

equipped with a Luer-Lock sampling port and vent for pressure equilibrium. In three out of 

four blocks per elevation, four chamber bases per plot were installed in 2007 along two 

perpendicular random transects and one additional chamber per plot was installed before 

January 2010, ensuring a minimum distance of 2 m to the border for non-control plots. Four 

gas samples were drawn at 2, 14, 26 and 38 minutes after chamber closure in a monthly 

sampling frequency from January 2008 to September 2009 and from November 2010 to 

August 2012. Gas samples from the additional chamber were taken monthly from January 

2010 to August 2012 at 3, 13, 23 and 33 minutes after chamber closure. Since we were not 

interested in short-term effects of nutrient manipulation, measurements within three weeks 

after fertilization were excluded. Equipment failure resulted in missing values in the time 

from June 2009 to July 2009 and May 2011 to July 2011. 

For logistical reasons, we stored and transported gas samples in pre-evacuated 60 ml 

glass containers equipped with stop cocks until April 2011 and in 12 ml Labco Exetainer® 

(Labco Limited, Lampeter, UK) with pierceable rubber septa thereafter (as overpressured 

samples). Analysis of gas samples was done with gas chromatographs (Shimadzu GC-14B, 

Germany and Carlo Erba GC 6000 Vega Series 2; AllTech® packed GC column) equipped 

with a flame ionization detector (FID) and autosampler (Loftfield et al. 1997) and ASPEC 

auto-sampler, Gilson SAS; Villiers, Le Bel, France). Integrated peak areas of samples were 

compared to three to four standard gases (between 1000 and 20,000 ppb; Deuste Steininger 

GmbH, Mühlhausen, Germany). Analysis was performed either within one day in Ecuador or 

up to several months later in Germany. Extended storage and transport were only performed 
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for gas samples in Exetainers®, which are known for their good quality during extended 

sample storage and aircraft transport (Glatzel and Well 2008), and their performance was 

tested by crosschecking pressure and concentration of transported calibration gases. Gas flux 

per chamber was calculated from the linear increase of CH4 concentration in the headspace 

over time, whereby the headspace air volume was estimated based on measurements of the 

chamber height at three places around the chamber base and linear fit of data was checked 

visually and via coefficient of determination. Gas fluxes were adjusted for air pressure and 

temperature measured during sampling and expressed as CH4-C flux per area soil (μg C m-2 

h-1). Annual soil CH4 fluxes were approximated using the trapezoid rule on time intervals 

between measured flux rates, assuming constant daily flux rates. 

Parallel to gas sampling, we measured soil temperature, gravimetric soil moisture and 

extractable mineral N concentrations (in situ extraction with 0.5 M K2SO4 solution) of the top 

0.05-m depth within each plot. Soil temperature was measured more intensively from 2010 

onwards with measurements close to each chamber base, where gas measurements were 

taken. Soil moisture and mineral N concentrations were determined from pooled samples per 

plot and soil moisture was expressed as water-filled pore space (WFPS; for calculation see 

Chapter 2). 

 

4.3.4 Statistical analysis 

Statistical analyses of our data were conducted using R 2.14.0 (R Development Core 

Team, 2012). Data were checked for normality and homoscedasticity and either a square root 

or logarithmic transformation (adding a constant value if the dataset included negative values) 

was applied when required.  

The relationship between monthly average soil CH4 flux and soil parameters (WFPS, 

mineral NH4
+ and NO3

- concentrations, temperature) was tested for control plots with 
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Pearson’s correlation. Analyses were conducted on the means of the three replicate plots on 

each sampling day, considering the measurements conducted in the last three years of the 

study (2010 to 2012). 

Before assessing nutrient-addition effects, pre-existing differences in CH4 fluxes among 

plots at each elevation were assessed for measurements conducted one month prior to the start 

of fertilization using a one-way analysis of variance with block effect. Nutrient-addition 

effects as well as elevation effects on time series and cumulative data of soil CH4 fluxes were 

then assessed using linear mixed effects (LME) models (Crawley 2007, Piepho et al. 2004) on 

plot-mean CH4 fluxes (four and five chambers) for each year separately as well as for 

different time period from the beginning of the experiment. Treatment effects on soil 

temperature and moisture of plot means were analyzed the same way without subdividing into 

shorter time periods. Analyses of treatment effects were conducted separately for each of the 

three elevations. Nutrient treatment was considered a fixed effect, whereas sampling day and 

spatial replicate were included as random effects. Elevation effects on time series data were 

tested only on control plots with elevation as fixed effect and sampling day as random effect. 

The following structures were included in the LME model if these improved the relative 

goodness of the model-fit based on the Akaike information criterion: (1) a first-order temporal 

autoregressive process to account for decreasing correlation of measurements with increasing 

time difference (Zuur et al. 2009), and (2) a variance function to account for 

heteroscedasticity of residual variances (Crawley 2007). The significance of the fixed effects 

was then determined by analysis of variance at P ≤ 0.05. Mean values in the text are given 

with ± standard error (SE). 
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4.4 Results 

4.4.1 Controlling factors and soil CH4 flux of control forests along the elevation gradient 

Mean soil temperature (±SE, n = 3) in control forests decreased with increasing 

elevation (1000 – 3000 m) from 17.7 ± 0.1 to 13.8 ± 0.0 and 7.2 ± 0.2°C during 2008 to 2012 

(P < 0.001). Mean soil moisture (±SE, n = 3) was highest at 2000 m with 80.4 ± 4.1% WFPS, 

followed by 3000 m with 59.6 ± 0.8% WFPS and 1000 m with 48.6 ± 4.7% WFPS 

(P < 0.001). Neither soil temperature nor WFPS displayed a clear seasonal pattern at any site 

(data not shown). 

Mineral N concentrations in the top 5 cm of control forest soils varied with elevation; 

NH4
+ concentrations decreased from 422.85 ± 6.86 mg N m-2 at 2000 m to 333.76 ± 26.65 mg 

N m-2 at 1000 m elevation and 236.67 ± 12.13 mg N m-2 at 3000 m (P ≤ 0.027); NO3
- 

concentrations were highest at 1000 m (P < 0.001) with 38.35 ± 21.25 mg N m-2 and did not 

differ between 2000 m with 5.72 ± 0.96 mg N m-2 and 3000 m with 3.08 ± 0.29 mg N m-2 

(P = 0.405). 

Annual soil CH4 uptake in control forests was 35 and 48 % higher at 1000 m and 2000 

m compared to 3000 m over the entire measurement period from 2008 to 2012 (P < 0.001; 

Table 4.1), but there was considerable inter-annual variability; in 2008 CH4 uptake did not 

differ between elevations (P = 0.136), while in 2012 CH4 uptake at 2000 m was higher 

compared to the other two elevations that did not differ from each other (Table 4.2). There 

was no seasonal trend of CH4 uptake at any of the sites, but temporal variability within and 

between years were largest at 1000 m (Figure 4.1). 
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Table 4.1 Mean (± SE, n = 3) annual soil CH4 fluxes (kg C ha-1 yr-1) from montane forests along an elevation gradient during five years (2008-2012) of nutrient manipulation. 

Annual soil CH4 fluxes were approximated by applying the trapezoid rule on time intervals between measured flux rates, assuming constant flux rates per day. 

Elevation (m) Treatment 2008† 2009 2010/2011† 2012 2008-2012 

1000 Control -2.02 ± 0.41 -2.96 ± 0.38 -2.57 ± 0.71 -2.23 ± 0.75 -2.23 ± 0.52 

 
Nitrogen (N) -2.12 ± 0.81 -2.38 ± 0.37 -4.11 ± 1.24 -3.55 ± 1.79 -2.94 ± 0.89 

 
Phosphorus (P) -4.07 ± 1.73 -2.94 ± 0.48 -2.96 ± 1.30 -1.87 ± 1.11 -3.50 ± 0.96 

 
N + P -3.29 ± 0.96 -2.43 ± 0.44 -3.77 ± 1.42 -2.68 ± 1.18 -3.27 ± 1.04 

       

2000 Control -2.42 ± 0.30 -2.59 ± 0.09 -2.49 ± 0.38 -2.99 ± 0.59 -2.77 ± 0.15 

 
N -2.77 ± 0.73 -3.01 ± 0.44 -2.52 ± 0.19 -2.77 ± 0.15 -2.82 ± 0.39 

 
P -2.23 ± 0.41 -2.67 ± 0.35 -3.39 ± 0.44 -3.61 ± 0.65 -3.16 ± 0.25 

 
N + P -3.08 ± 0.15 -2.71 ± 0.12 -3.73 ± 0.24 -3.84 ± 0.50 -3.28 ± 0.20 

       

3000 Control -1.52 ± 0.50 -1.54 ± 0.75 -1.52 ± 0.52 -1.81 ± 0.54 -1.45 ± 0.63 

 
N -1.81 ± 0.56 -1.31 ± 0.67 -2.03 ± 0.55 -2.54 ± 0.62 -1.79 ± 0.55 

 
P -1.52 ± 0.29 -1.32 ± 0.33 -1.64 ± 0.49 -1.86 ± 0.50 -1.36 ± 0.39 

 
N + P -1.29 ± 0.23 -1.29 ± 0.47 -1.28 ± 0.24 -1.33 ± 0.16 -1.25 ± 0.13 

† In 2008, annual values include one pre-treatment measurement; in 2010/2011, annual values include only two monthly measurements from 2010. 
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Table 4.2 Mean (± SE, n = 3) soil CH4 fluxes (μg C m-2 h-1) in montane forests across an elevation gradient.  

Elevation  

(m) 

Treatment 

 

Soil CH4 flux  

(μg C m-2 h-1) 

1000 
 

2008 
 

2009 
 

2010/11 
 

2012 

 
Control -22.17 ±   4.65 

 
-32.85 ± 3.82 

 
-28.13 ± 8.94a 

 
-24.96 ±   8.93 

 
Nitrogen (N) -44.00 ± 22.28 

 
-32.56 ± 8.83 

 
-44.99 ± 14.72b 

 
-39.60 ± 20.51 

 
Phosphorus (P) -26.85 ±   7.20 

 
-31.41 ± 5.02 

 
-33.31 ± 15.75a 

 
-21.37 ± 12.90 

 
N + P -39.53 ± 11.60 

 
-31.75 ± 6.25 

 
-40.54 ± 16.26ab 

 
-29.31 ± 14.97 

         

    
2008-2009 

 
2008-2011 

 
2008-2012 

 
Control 

  
-26.78 ±   2.4 

 
-27.25 ±   4.61a 

 
-26.67 ±   5.10a 

 
N 

  
-39.26 ± 16.59 

 
-41.21 ± 15.60c 

 
-40.84 ± 16.63b 

 
P 

  
-28.73 ±   6.23 

 
-30.25 ±   9.63ab 

 
-28.29 ± 10.40a 

 
N + P 

  
-36.13 ±   8.80 

 
-37.75 ± 10.90bc 

 
-35.77 ± 11.88b 

         
2000 

 
2008 

 
2009 

 
2010/11 

 
2012 

 
Control -28.12 ± 4.17 

 
-31.57 ± 1.51 

 
-30.19 ± 4.68a 

 
-34.45 ± 6.56a 

 
N -32.10 ± 7.84 

 
-34.42 ± 4.95 

 
-29.27 ± 1.98a 

 
-31.59 ± 1.56a 

 
P -25.99 ± 4.89 

 
-30.77 ± 3.31 

 
-40.56 ± 5.73b 

 
-41.53 ± 7.66b 

 
N +P -35.67 ± 1.27 

 
-30.62 ± 1.01 

 
-43.96 ± 2.89b 

 
-44.15 ± 5.18b 

         

    
2008-2009 

 
2008-2011 

 
2008-2012 

 
Control 

  
-29.63 ± 2.79 

 
-29.79 ± 1.33a 

 
-30.91 ± 2.19a 

 
N 

  
-33.12 ± 6.14 

 
-31.64 ± 4.49a 

 
-31.63 ± 3.76ab 

 
P 

  
-28.08 ± 2.39 

 
-32.88 ± 0.95a 

 
-34.92 ± 2.48b 

 
N + P 

  
-33.46 ± 1.10 

 
-37.42 ± 1.39b 

 
-39.00 ± 2.26c 

         
3000 

 
2008 

 
2009 

 
2010/11 

 
2012 

 
Control -16.88 ± 5.62 

 
-16.97 ± 8.01 

 
-16.98 ± 5.80a 

 
-20.80 ± 6.49a 

 
N -20.98 ± 6.72 

 
-16.57 ± 7.03 

 
-23.02 ± 6.02b 

 
-29.60 ± 7.40b 

 
P -17.60 ± 3.22 

 
-15.73 ± 3.48 

 
-17.99 ± 5.23a 

 
-21.27 ± 5.78a 

 
N + P -14.70 ± 2.57 

 
-14.65 ± 4.43 

 
-14.77 ± 3.20a 

 
-15.59 ± 1.31a 

         

    
2008-2009 

 
2008-2011 

 
2008-2012 

 
Control 

  
-16.91 ± 6.41 

 
-16.94 ± 6.00a 

 
-17.88 ± 6.12a 

 
N 

  
-19.51 ± 6.80 

 
-20.87 ± 6.49b 

 
-23.01 ± 6.66b 

 
P 

  
-16.97 ± 3.31 

 
-17.38 ± 4.07a 

 
-18.32 ± 4.48a 

 
N + P 

  
-14.68 ± 2.13 

 
-14.73 ± 2.51a 

 
-14.92 ± 1.58a 

Means within each year or time period followed by different superscript letters indicate significant differences 

among treatments within each elevation (linear mixed effects model at P ≤ 0.05) 
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Figure 4.1 Mean (± SE, n = 3) soil CH4 fluxes (μg C m-2 h-1) from montane forests at (a) 1000 m, (b) 2000 m 

and (c) 3000 m during five years of nutrient manipulation: control (filled circle), N addition (open circle), 

P addition (filled triangle) and N+P addition (open triangle). Vertical lines indicate fertilization events.  
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Soil CH4 fluxes from control forests between 2010 and 2012 that were found to be 

negatively correlated to soil parameters (Table 4.3), imply a positive correlation between net 

soil CH4 uptake and soil parameters. Negative correlations were observed between CH4 fluxes 

and soil temperature (P = 0.002) and soil NH4
+ concentrations (P = 0.010) across the 

elevation gradient. While soil CH4 flux at the two lower elevations were not significantly 

correlated with soil parameters (P = 0.068 - 0.951), CH4 fluxes at 3000 m were significantly 

correlated with soil temperature (P = 0.033). 

Table 4.3 Pearson correlation coefficients between soil CH4 fluxes (μg C m-2 h-1) and soil parameters of control 

plots in montane forests along an elevation gradient, measured in 2010-2012. 

Elevation (m) n WFPS (%) NH4
+ (mg N m-2) NO3

- (mg N m-2) Temperature (°C) 

1000 19 0.43 -0.02 -0.05 -0.23 

2000 20 0.10 -0.22 0.01 0.03 

3000 20 -0.33 -0.15 -0.18 -0.48* 

      

1000-3000 59 -0.06 -0.33** -0.10 -0.39** 

*P ≤ 0.05, ** P ≤ 0.01 

 

4.4.2 Effect of nutrient additions on soil CH4 fluxes 

During a pre-treatment measurement conducted in January 2008, soil CH4 fluxes did not 

differ between plots of different prospective treatments at any site (P = 0.417 - 0.987). 

Furthermore, there was no effect of nutrient addition on soil CH4 flux at any elevation within 

or during the first two years of nutrient addition (P = 0.064 - 0.997). However, after 2010, 

nutrient effects varied with added nutrient, elevation and time period (Figure 4.1; Table 4.2). 

At 1000 m (Figure 4.1a), soil CH4 uptake increased with N and N+P addition over the 

entire five years of nutrient addition, while addition of P alone did not affect soil CH4 flux at 

any time (P = 0.489 - 0.903). Increased CH4 uptake with N addition (P = 0.001) and a trend 
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towards increased uptake with N+P addition in 2010/11 resulted in increased CH4 uptake with 

N and N+P addition within four years of nutrient addition (P < 0.001 and 0.015). 

At 2000 m (Figure 4.1b), N addition did not affect soil CH4 fluxes at any time over five 

years of nutrient addition (P = 0.170 - 0.678), whereas P addition and especially N+P addition 

increased CH4 uptake over the five years of nutrient addition (P = 0.019 and < 0.001), being 

significant in 2010/11 (P < 0.001) and 2012 (P = 0.014 and 0.001). When considering four 

years of nutrient addition, however, the effect was only significant for N+P addition 

(P < 0.001).  

At 3000 m (Figure 4.1c), N addition resulted in higher CH4 uptake over five years of 

nutrient addition (P < 0.001), while addition of P and N+P did not affect soil CH4 fluxes at 

any time (P = 0.360 - 0.977 and 0.150 - 0.863). Increased CH4 uptake with N addition was 

significant in 2010/11 (P = 0.007) and 2012 (P < 0.001) as well as over the first four years of 

nutrient addition (P = 0.013). 

 

4.5 Discussion 

4.5.1 Soil CH4 flux and controlling factors of control forests along the elevation gradient 

Soils in our study area were net sinks for atmospheric CH4. Annual soil CH4 fluxes 

across the elevation gradient (Table 4.1) were within the range of studies reporting in-situ 

year-round measurements of tropical montane forests at comparable elevations in Brazil 

(Sousa Neto et al. 2011), Ecuador (Wolf et al. 2012), Indonesia (Purbopuspito 2006), Peru 

(Teh et al. 2014) and Panama (Veldkamp et al. 2013) 

Our results support previous results from our study area (Wolf et al. 2012), since there 

was no evidence of net CH4 production, and NH4
+ concentrations and soil temperature, rather 

than soil moisture, correlated with CH4 uptake across our elevation gradient. This indicates 

that despite the presence of thick organic layers, CH4 uptake is not restricted by CH4 diffusion 
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into the soil. Instead, the high porosity of organic layers with aerobic conditions favor net 

CH4 uptake, which is controlled by mineral NH4
+ availability and soil temperature, where soil 

temperature was especially important at 3000 m elevation ´(Table 4.3). 

 

4.5.2 Nutrient-addition effects on soil CH4 fluxes – unresponsive phase (year 1-2) 

During the first tqo years of nutrient addition, the lack of nutrient effects on soil CH4 

fluxes across the elevation gradient (Table 4.2; Figure 4.1) was probably caused by the 

moderate amounts of nutrients added, strong immobilization of added nutrients and the 

location of the highest CH4 uptake activity occuring in the subsoil (Wolf et al. 2012). 

During the first two years of our experiment, the cumulative amounts of N and P applied in 

our experiment were 100 kg N ha-1 and 20 kg P ha-1, which was considerably lower than the 

yearly doses applied in other nutrient manipulation studies performed in (sub)tropical forests 

(e.g. 150 kg N and 150 kg P ha-1 yr-1 in (Zhang et al. 2011); 125 kg N ha-1 yr-1 in (Veldkamp 

et al. 2013)). Even though laboratory incubations mostly result in immediate short-term 

responses of CH4 fluxes to nutrient additions, nutrient additions to entire ecosystems have a 

different response time, since strong competition for added nutrients and other interactive 

processes (e.g. plant induced changes in soil moisture) can result in slowed responses of CH4 

fluxes to added nutrients (Bodelier and Laanbroek 2004). In the soil of our experiment the 

zone with the highest CH4 oxidation activity was located just above the interface of the 

organic layers and the mineral soil (Wolf et al. 2012) and it is likely that most of the moderate 

amounts of nutrients applied to the surface did not reach this zone due to quick 

immobilization, as was demonstrated in a 15N pulse-chase experiment at our sites (Baldos 

2014). 
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4.5.3 N-addition effects on soil CH4 fluxes – responsive phase (year 3-5) 

Increased CH4 uptake with N addition at 1000 m and 3000 m (Table 4.2; Figure 4.1a,c) 

confirms previous indications of N-limited CH4 oxidation in our study area (Wolf et al. 2012) 

which were also found in tropical forest soils in Panama (Veldkamp et al. 2013). It is, 

however, in contrast to observations in an N-rich subtropical forest in China where N addition 

(150 kg N ha-1 yr-1 in form of NH4NO3) caused inhibition of CH4 uptake (Zhang et al. 2011). 

The soils in our experiment were characterized by a conservative N cycle with low N cycling 

rates, large microbial N immobilization and N retention (Martinson et al. 2013). However, 

N addition decreased N retention, decoupled N cycling (Baldos 2014; Baldos et al. in press) 

and increased mineral N availability (Chapter 3), which probably led to alleviation of 

N limitation on methanotrophic activity and consequently increasing CH4 uptake. Most 

methanotrophs can survive independent from mineral N sources due to their ability to fix N2 

(Auman et al. 2001) and recently a study from peatlands indicate that methanotrophy can be 

tightly linked with N2 fixation (Larmola et al. 2014). However, increased availability of 

mineral N could allow them to switch from energy-demanding N2 fixation to low energy 

N acquisition, which might increase their CH4 oxidizing activity (Bodelier and Laanbroek 

2004). The lack of an effect of N addition at 2000 m elevation (Table 4.2; Figure 4.1b) 

compared to the other elevations, despite similar trends in N cycling in the top 5 cm (Baldos 

et al. in press), might be related to strong P limitation of soil CH4 oxidation at this elevation. 

 

4.5.4 P-addition effects on soil CH4 fluxes – responsive phase (year 3-5) 

At 1000 m and 3000 m elevation, P addition had no effect on CH4 fluxes (Table 4.2; 

Figure 4.1a,c). Since P addition probably increased N uptake by the vegetation (as illustrated 

by decreased extractable NO3
- of the top 0.05 m and lower N2O fluxes in year 3-4 of our 

experiment (Chapter 3)), this might have aggravated N limitation, potentially decreasing CH4 
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uptake. However, the methanotrophic bacteria were either able to compete for available NH4
+ 

or they compensated the lower N availability by increased N2 fixation since the ability to fix 

N is widespread among methanotrophic bacteria (Auman et al. 2011). 

Compared to the other elevations, P immobilization was probably highest in the subsoil 

(including the top 0.05 m of mineral soils) at 2000 m as indicated by C/P ratios (983 and 266 

in the top 0.05 m of the organic and mineral soil; Martinson et al. 2013) and low rates of soil 

P-losses by leaching (Wullaert et al. 2010). Soil C/P ratios above 100 indicate strong 

microbial P immobilization (White 2006) and P-addition may have alleviated P limitation on 

methanotrophic activity, resulting in increased CH4 uptake (Table 4.2; Figure 4.1b). Thus, the 

direction of the P effect was the same as hypothesized and reported in the nutrient addition 

experiment in China (Zhang et al. 2011), but the mechanisms responsible in our experiment 

were very different from their observations, where P addition increased plant water uptake, 

which in turn reduced soil moisture and increased CH4 diffusivity of the soil. 

 

4.5.5 Combined N+P-addition effects on soil CH4 fluxes- responsive phase (year 3-5) 

At 1000 m and 2000 m, the direction of changes in CH4 uptake were similar for 

combined N+P additions and for N (at 1000m) or P (at 2000m) addition (Table 4.2; Figure 

4.1a,b). Since at 2000 m, the effect of N+P addition was stronger than with P addition alone, 

and N addition had no effect, this may indicate a serial limitation of methanotrophs with 

synergistic responses, as has been described for nutrient co-limitation of primary producer 

communities (Harpole et al. 2011). With serial nutrient limitation, not only P (the primary 

limiting nutrient), but also N is limiting CH4 uptake, whereby synergistic responses to N can 

only occur after P addition.  

At 3000 m, combined N+P addition did not affect CH4 uptake (Table 4.2; Figure 4.1c), 

although addition of N alone increased CH4 uptake and addition of P had no effect. This 
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might be attributed to increased plant N uptake with N+P addition due to co-limitation of tree 

growth. Decreased soil moisture and a trend towards increasing basal area increment with 

N+P addition compared to the control plots at 3000 m elevation also suggested co-limitation 

of forest productivity (Homeier et al. 2013). 

 

4.5.6 Implications for elevated nutrient deposition in TMFs 

In summary, we showed the first field measurements of nutrient limited CH4 uptake 

across an elevation gradient of TMFs. We detected differential nutrient limitation of CH4 

uptake across the elevation gradient with N limitation being dominant at 1000 m and 3000 m 

and P limitation being dominant at 2000 m. Increasing depositions of N and P thus has the 

potential to affect CH4 fluxes in these ecosystems. However, the soils in these ecosystems, 

where elevated N and P deposition has only recently started increasing, have a considerable 

capacity to immobilize N and P which will delay such effects; this is especially the case in 

soils with thick organic layers where the highest capacity to oxidize CH4 is located just above 

the interface of the mineral soil and organic layers. At present, N and P limitation is 

dominating effects of elevated nutrient inputs, but it is very likely that chronic N deposition 

will ultimately lead to inhibition of CH4 uptake as has been shown in other laboratory and 

field experiments.  
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5.1 Net soil global warming potential of tropical montane forests 

5.1.1 Net soil global warming potential along elevation gradients 

The GWP is a parameter that quantifies the radiative forcing of a GHG relative to 

that of CO2 over a certain time and helps to evaluate the combined impact of different 

GHGs on global temperatures (IPCC 2013). We calculated the net GWP of our soils in 

‘CO2 equivalents’ (CO2 eq.) over a 100 year time period, including CO2, N2O and CH4 

fluxes. We used the conversion factors: 1 for CO2, 298 for N2O and 34 for CH4 (Table 

1.1). Annual net soil GWPs in our study forests decreased from 32.8 to 19.9 to 8.7 Mg CO2 

eq. ha-1 yr-1 along the 1000 m to 3000 m elevation gradient (Table 5.1). These are all much 

smaller than the calculated average net soil GWP of 47.2 Mg CO2 eq. ha-1 yr-1 for tropical 

forests (Dutaur and Verchot 2007; Raich and Schlesinger 1992; Werner et al. 2007) and 

slightly smaller than values from other TMFs at comparable elevations (Table 5.1). The 

calculated net soil GWP at 3000 m is even smaller than 11.8 Mg CO2 eq. ha-1 yr-1, the 

calculated average of boreal forests (Dalal and Allen, 2008; Dutaur and Verchot 2007; 

Raich and Schlesinger 1992). However, only four other studies have reported annual fluxes 

of all three GHGs, and one of these studies was in our study area. Compiled data from this 

small dataset of TMFs suggest that there is a linear decrease in net soil GWP with 

increasing elevation (Figure 5.1). This relationship between GWP and elevation is mainly 

attributed to decreasing soil CO2 emissions with increasing elevation, since the net soil 

GWP of TMFs is dominated by the large soil GWP of CO2 (Table 5.1; notice unit 

differences). N2O and CH4, despite their relatively larger GWP, play only a minor role in 

the net soil GWP of TMFs, due to small absolute fluxes. 
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Table 5.1 Compilation of soil global warming potentials (GWP) from published greenhouse gas fluxes of old-growth tropical montane forest soils, sorted by elevation* 

  Annual mean  Thickness 
Mean annual soil GWP 

(CO2 eq. ha-1 yr-1) 

Net soil 

GWP** 
 

Country Elevation Rainfall Temp Soil type Organic layer CO2 N2O CH4 (Mg CO2 eq. Reference 

 (m asl) (mm) (°C)  (cm) (Mg) (kg) (kg) ha-1 yr-1)  

Brazil 400 3050 ~22.3 Inceptisol 0 50.05 899.11 -210.80 50.74 Sousa Neto et al. 2011 

Peru 600-1200 5318 23.4 - - - 505.75 -6.35 - Teh et al. 2014 

Hawaii 760 6000 19 Hydrudand > 0 32.63 - - - Raich 1998 

China 870 2198 19.7 Lateritic  

yellow soil 
- 

61.34 - - - Zhou et al. 2013 

Ecuador 990-1100 2230 19.4 Cambisol 0 32.45 449.55 -101.09 32.80 Martinson et al. 2013;  

present study 

Ecuador 990-1200 2230 19.4 Cambisol 4 37.14 262.24 -253.87 37.15 Wolf et al. 2011, 2012 

Brazil 1000 2300 ~22.3 Inceptisol 0 47.23 899.11 -173.63 47.95 Sousa Neto et al. 2011 

Peru 1000 3090 21.3 Gleysol 3 47.34 - - - Zimmermann et al. 2010 

Indonesia 1050 2901 20.6 Nitisol 4 42.90 - - - Van Straaten et al. 2011 

Indonesia 1190 1590 22.5 Fluvisol,  

Entisol 

0 44.33 1039.59 -111.07 45.26 Purbopuspito et al. 2006 

Venezuelan 

Guyana 

1200 2200 20.6 Acrohumox 9 38.65 - - - Priess and Fölster 2001 

Panama 1200-1300 5532 20.1 Andosol ~ 8 34.36 1058.33 -16.77 35.40 Corre et al. 2014; 

Koehler et al. 2009a,b;  

Veldkamp et al. 2013 

Peru 1200-2200 2631 18.8 - - - 468.29 -31.28 - Teh et al. 2014 
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  Annual mean  Thickness 
Mean annual soil GWP 

(CO2 eq. ha-1 yr-1) 

Net soil 

GWP** 
 

Country Elevation Rainfall Temp Soil type Organic layer CO2 N2O CH4 (Mg CO2 eq. Reference 

 (m asl) (mm) (°C)  (cm) (Mg) (kg) (kg) ha-1 yr-1)  

Peru 1500 2630 18.3 Gleysol 7 49.28 - - - Zimmermann et al. 

2010 

Hawaii 1660 2600 13 Histosol > 10 26.22 - - - Raich 1998 

Indonesia 1800 n.a. 18.3 Inceptisol 20 29.08 271.61 -150.51 29.20 Purbopuspito et al. 2006 

Ecuador 1800-2100 1950 15.7 Cambisol,  

Planosol 

13 28.23 533.85 -140.53 28.63 Wolf et al. 2011, 2012 

Ecuador 1950-2100 1950 15.7 Cambisol 20 19.91 149.85 -125.57 19.93 Martinson et al. 2013;  

present study 

Peru 2200-3200 1706 12.5 - - - 122.39 -36.27 - Teh et al. 2014 

Indonesia 2470 n.a. 14.6 Inceptisols 15 27.43 945.94 -65.73 28.31 Purbopuspito et al. 2006 

Ecuador 2800-3000 4500  9.4 Cambisol,  

Planosol 

14 19.32 65.56 -48.51 19.34 Wolf et al. 2011, 2012 

Ecuador 2900-3050 4500  9.4 Histosol 25 8.84 -47.93 -65.73 8.70 Martinson et al. 2013;  

present study 

Peru 3030 1710 12.5 Lithosol 17 39.01 - - - Zimmermann et al. 

2010 

* Only studies of in-situ year-round measurements, comprising at least one year of data are included. This listing is not meant to be a complete summary of all studies that 

have been done, but to give an overview of the range of published data  

**Net soil GWP over a 100 year time period, calculated from annual mean fluxes, based on conversion factors of 1 for CO2, 298 for N2O and 34 for CH4 (IPCC, 2013) 
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Figure 5.1 The relationship between the elevation and net soil GWP of TMFs in the present study ( ) 

(including data of Martinson et al. 2013) and from literature ( )  (Corre et al. 2014; Koehler et al. 2009a,b; 

Purbopuspito et al. 2006; Sousa Neto et al. 2011; Veldkamp et al. 2013; Wolf et al. 2011, 2012). The line 

shows the best-fit regression through all points ± 95% confidence interval (GWP = 55.01-0.01x, R² = 0.81, P 

< 0.005, n = 12, where x = elevation) 

To assess the global impact of soil GHG fluxes from TMFs, there are a number of 

aspects that need to be considered before upscaling measured data. First, decreasing net 

soil GWPs with increasing elevation highlight the importance of incorporating elevation 

models into upscaling approaches. In addition, the dominance of steep slopes, recently 

estimated to be 75% of the planimetric (horizontal) area of TMFs (Spracklen and Righelato 

2014), may not only underestimate the global surface area of global TMFs (Spracklen and 

Righelato 2014) but also complicate upscaling since soil GHG fluxes can be significantly 

affected by landscape position (Teh et al. 2014; Wolf 2010; Wolf et al. 2011, 2012). 

Finally, high spatial heterogeneity of soil GHG fluxes in tropical forests (e.g. Breuer et al. 

2000; Ishizuka et al. 2005; van Haren et al. 2010), also shown in the standard errors of soil 

GHG fluxes in our study forests (Chapters 2 to 4), stress the importance of selecting 

datasets that are spatially representative of their study area. 
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Although, soils have positive net GWPs that reinforce global warming, net 

ecosystem GWPs of natural terrestrial ecosystems are, on average, negative (Dalal and 

Allen, 2008), since the CO2 uptake capacity of vegetation via photosynthesis induces a 

negative GWP that exceeds the positive net GWP of soils. However, although tropical 

forests are estimated to have the highest CO2 uptake rates of all terrestrial ecosystems, they 

have the highest (i.e. the least negative) annual net-ecosystem GWP (-0.03 ± 0.44 Mg CO2 

eq. ha-1 yr-1), owing to their high N2O fluxes. Boreal forests, on the other hand, have the 

lowest (i.e. the most negative) annual net ecosystem GWP (-1.18 ± 0.44 Mg CO2 eq. ha-1 

yr-1) (Dalal and Allen, 2008), despite their lower CO2 uptake rates, due to negligible N2O 

emissions. Since TMFs have low net soil GWPs, especially at high elevations (Table 5.1) 

and usually have continuous year-round CO2 uptake capacity due to the absence of 

seasonality, they might be particularly important ecosystems, acting to counteract global 

warming. 

 

5.1.2 Nutrient effects on the net soil global warming potential 

Effects of nutrient addition on the net soil GWP in our study forests over 5 years 

(Table 5.2) roughly reflect changes observed for soil CO2 fluxes (Chapter 2), with some 

influence of high N2O fluxes during the first two years with N and N+P addition 

(Martinson et al. 2013). Nutrient effects on soil CH4 fluxes were significant (Chapter 4) but 

minor in terms of their soil GWPs, relative to the large net soil GWP. Differential effects 

of nutrient addition on the net soil GWP along our elevation gradient ranged from -12% 

with P addition at 1000 m elevation to +71% with N addition at 3000 m elevation (Table 

5.2). This illustrates how important it is to investigate nutrient effects on net soil GWP not 

only at one elevation, but also along elevation gradients. 
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Table 5.2 Mean (± SE, n = 3) soil global warming potential (GWP) from montane forest soils along a 1000- to 3000-m elevation gradient and mean soil GWP across the 

elevation gradient of TMFs in southern Ecuador over the first five years (2008-2012) of nutrient manipulation 

Elevation (m) Treatment soil GWP (Mg CO2 eq. ha-1 yr-1)† Relative difference (%) 

 

  
CO2 

 
N2O 

 
CH4 

 
Net* 

Area-weighted 

net# 
Net 

Area-weighted 

net# 

1000 Control 34.4 ± 1.1 
 

0.39 ± 0.16 
 

-0.11 ± 0.02 
 

34.7 ± 1.2A,a - - - 

 
Nitrogen (N) 34.1 ± 1.1 

 
0.80 ± 0.21 

 
-0.13 ± 0.04 

 
34.7 ± 1.2a -   0 - 

 
Phosphorus (P) 30.4 ± 0.7 

 
0.40 ± 0.04 

 
-0.14 ± 0.04 

 
30.7 ± 0.7c - -12 - 

 
N + P 31.9 ± 2.3 

 
0.91 ± 0.10 

 
-0.14 ± 0.05 

 
32.7 ± 2.3b -  -6 - 

        
    

2000 Control 21.1 ± 1.7 
 

0.14 ± 0.04 
 

-0.12 ± 0.01 
 

21.2 ± 1.8B,b - - - 

 
N 21.3 ± 0.9 

 
0.36 ± 0.03 

 
-0.13 ± 0.01 

 
21.5 ± 0.8b - 2 - 

 
P 21.9 ± 0.4 

 
0.10 ± 0.06 

 
-0.14 ± 0.01 

 
21.9 ± 0.3ab - 3 - 

 
N + P 22.8 ± 1.2 

 
0.45 ± 0.05 

 
-0.15 ± 0.01 

 
23.1 ± 1.2a - 9 - 

        
    

3000 Control   9.4 ± 1.7 
 

-0.02 ± 0.02 
 

-0.07 ± 0.02 
 

  9.3 ± 1.7C,c - - - 

 
N 15.9 ± 3.5 

 
  0.11 ± 0.03 

 
-0.09 ± 0.03 

 
15.9 ± 3.4a - 71 - 

 
P 12.0 ± 3.2 

 
  0.02 ± 0.08 

 
-0.07 ± 0.02 

 
11.9 ± 3.3b - 28 - 

 
N + P 10.0 ± 1.3 

 
  0.20 ± 0.01 

 
-0.06 ± 0.01 

 
10.1 ± 1.3c -   8 - 

            

1000-3000 Control 21.7  0.17  -0.10  21.7 26.9 - - 

 N 23.8  0.42  -0.12  24.1 28.0 11  4 

 P 21.4  0.17  -0.12  21.5 25.2 -1 -6 

 N + P 21.6  0.52  -0.12  22.0 26.4   1 -2 

† Means are calculated from the mean across 5 years of measurements and do not take into account seasonality or inter-annual variability. Measurements within three weeks after 

fertilization and dates without CH4 measurements (June 2009 to July 2009 and May 2011 to July 2011) were excluded 

* Means at 1000, 2000 and 3000 m followed by superscript capital letters indicate significant difference across the elevation gradient for control plots, and means followed by 

superscript small letters indicate significant differences among treatments within each elevation (linear mixed effects model at P ≤ 0.05) 

# Estimate of area weighted net soil GWP based on areal extent reported by Körner et al. (2006); conversion factors: 0.56 at 1000 m, 0.28 at 2000 m and 0.16 at 3000 m 
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But how does the net soil GWP of our TMFs change, on average, with nutrient addition, 

considering effects across the entire elevation gradient? To answer this question, we 

calculated not only the average net soil GWP across the 1000- to 3000-m elevation gradient, 

but also made a rough area-weighted estimate of net soil GWP, based on the size of elevation 

bands reported for moist tropical mountain forests (1000-1500 m asl: 545,700 km²; 

1500-2500 m asl: 277,000 km²; > 2500 m asl: 1,580 km²; Körner et al. 2006). Our results 

show that the area-weighted net soil GWP across all elevations for 5 years of nutrient addition 

increased with N addition by 4%, while it decreased with P and N+P addition by 6% and 2% 

respectively (Table 5.2). This indicates that with N deposition, our soils could contribute to 

reinforce global warming, while P and N+P addition could slightly counteract this process. 

Although N addition increased average-weighted net soil GWP to 28.0 Mg CO2 eq. ha-1 yr-1, 

which is higher than the estimated averages of 24.6 Mg CO2 eq. ha-1 yr-1 for temperate forests 

(Dalal and Allen 2008; Dutaur and Verchot 2007; Raich and Schlesinger 1992), it is still 

> 40% smaller than the estimated average net soil GWP of tropical forests (47.2 Mg CO2 eq. 

ha-1 yr-1; Dutaur and Verchot 2007; Raich and Schlesinger 1992; Werner et al. 2007). Thus, 

even with increasing N deposition, TMFs are in the mid-range of estimated net soil GWPs of 

forest ecosystems. However, it is interesting to notice that the increase of area-weighted net 

soil GWP with N addition across the 1000 m to 3000 m elevation gradient is relatively small, 

considering the large increase in net soil GWP observed with N addition at 3000 m. This was 

the result of the combined effects of relatively small GHG fluxes and the small areal extent of 

high elevations (Körner et al. 2006) and highlights once more, how important it is to consider 

nutrient effects at different elevations and include elevation gradients in the upscaling 

processes. 

Although N addition can increase the net soil GWP, its effect on entire forest 

ecosystems, including vegetation, can differ; as shown in temperate forests (Magnani et al. 
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2007; Quinn Thomas et al. 2010), it has the potential to increase forest productivity and thus 

CO2 uptake capacity, consequently reducing the net ecosystem GWP. Since NPP of TMFs 

seems to be N+P co-limited (Homeier et al. 2012; Tanner et al. 1998), however, we speculate 

that input of N+P to TMFs, but not single input of N or P, could reduce the net ecosystem 

GWP; even more than results from our soils suggest. However, the general assumption of 

N+P co-limitation of TMFs is questionable, since nutrient availability in our study area varied 

considerably along the elevation gradient (Table S2.1; Schrumpf et al. 2001; Wolf, 2010). 

Furthermore, responses of tree growth to nutrient addition tended to be specific not only for 

each elevation (Homeier et al. 2013) but also for single tree species (Homeier et al. 2012), and 

some positive effects on tree growth were observed with single nutrient additions. Thus, 

increasing tree growth with N addition at only one elevation or within only one species could 

still partly compensate increases in net soil GWP. However, we do not expect that effects 

with N input were as large as those reported from temperate forests, where effects on soils 

were completely neutralized by vegetation (Janssens et al. 2010).  

Overall, our results suggest that N deposition to TMF soils has the potential to reinforce 

global warming, while P and N+P depositions could counteract global warming, potentially 

quite significantly if nutrient addition increases forest productivity. 

 

5.1.3 Implications for chronic nutrient addition on the net soil global warming potential 

During 5 years of nutrient addition, nutrient effects on the net soil GWP also changed 

between years (not shown), since we observed differential nutrient effects on all three GHG 

fluxes over time. While CO2 fluxes were apparently a function of the duration of nutrient 

addition, with some uncertainties added by the differential effects of soil CO2 sources 

(Chapter 2), nutrient effects (of N and N+P) on soil N2O fluxes displayed large inter-annual 

variability, which did not seem to be a function of nutrient addition but depended on soil 
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moisture conditions (Chapter 3). Nutrient effects on soil CH4 fluxes (Chapter 4), although 

negligible in terms of the net soil GWP (Table 5.2), also failed to follow a predictable pattern 

over time, due to a 2-year lag-phase where no nutrient effects were detectable. These findings 

illustrate the importance of long-term nutrient manipulation studies, which are so far limited 

to a small number (Bowden et al. 1998; Corre et al. 2014). Further, they show that we need to 

better understand interactions of soil GHG fluxes with both ecosystem components and 

environmental conditions, in order to identify ‘critical loads’ and predict future changes of 

soil GHG fluxes with atmospheric nutrient deposition. 

We reported observations made within 5 years of nutrient addition, but how will chronic 

nutrient addition change soil GHG fluxes and the net soil GWP in the long term? N-addition 

effects on soil GHG fluxes have been studied frequently in many ecosystems and include not 

only short-term, but also some long-term (> 10 years) manipulation studies (Bowden et al. 

2010; Corre et al. 2014). In contrast to N, effects of P and N+P addition are far less 

investigated and understood. Studies from tropical forests and plantations indicate, however, 

that P effects on soil GHG fluxes can be a result of complex interactions with vegetation in 

these ecosystems (Fisher et al. 2012; Mori et al. 2013; Zhang et al. 2011). What makes 

predictions on the effect of chronic nutrient effects even more difficult is, that many studies 

(including the present study) have shown that nutrient addition effects on soil GHG fuxes 

often react in a non-linear fashion to duration and amounts of nutrient addition (Aber et al. 

1998; Hall and Matson, 2003; Liu and Graever 2009), owing to the presence of threshold 

values and occurrence of unpredictable ‘hot-spots’ and/or ‘hot-moments’ (Hagedorn and 

Bellamy 2011). 

Nevertheless, we assume that with chronic N and N+P inputs, the biological demand of 

TMFs will eventually become N saturated, although it is unclear how long it will take for this 

change to happen (Aber et al. 1998). Some studies (e.g. Gundersen et al. 1998; Hall and 
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Matson 2003) indicate that compared to N-rich and/or P-limited forests, it will take longer for 

N-limited forests to reach N saturation, due to conservative N cycling, low N availability and 

high N retention capacity of soils and vegetation, which were the conditions we found in our 

study forests (Chapter 3; Baldos 2014). We can further assume that increased plant N uptake 

with N+P addition to TMFs (co-limited by N and P) will delay the occurrence of N saturation 

as compared to TMFs with the addition of N alone. However, a study from Panama indicates, 

that N retention of TMFs may not only depend on the nutrient limitation of NPP (Adamek et 

al. 2009) but also on the N retention capacity of soils and presence/absence of an organic 

layer (Corre et al. 2010; Koehler et al. 2009a). However, once an ecosystem is N saturated, 

continuous N input can decrease CO2 fluxes due to decreasing heterotrophic and potentially 

autotrophic respiration, as indicated by findings in temperate forest stands, where 13 years of 

N addition decreased not only microbial respiration but also altered forest productivity, even 

causing substantial tree mortality (Bowden et al. 2004). On the other hand, a study from a 

lowland forest in Panama with 9-11 years of N addition found no effect on soil CO2 fluxes 

(Koehler et al. 2009b). A trend towards decreasing soil CO2 fluxes with N addition at our 

lower elevations, already detectable within 5 years of N addition (Chapter 2), suggests that 

these sites are likely to have decreasing CO2 fluxes with increasing N addition, but 

differential effects of N and N+P addition with elevation and component of soil respiration do 

not allow further specification. Predicting changes is especially complex for CO2 fluxes, since 

nutrient effects might be characterized by the relative contributions of different components 

of soil CO2 fluxes, which have been shown to vary with elevation and were estimated in 

TMFs at: 20-40% from fresh litter respiration (van Straaten et al. 2011; Zhou et al. 2013; 

Zimmermann et al. 2009), 25-60% from SOM respiration (van Straaten et al. 2011; 

Zimmermann et al. 2010) and 30-65% from root respiration (Fisher et al. 2013; Girardin et al. 

2014; Huaraca Huasco et al. 2014; van Straaten et al. 2011). Quantifying the contribution of 
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components of soil CO2 fluxes within our study area would help to foresee chronic N effects, 

since, for example, the dominance of SOM respiration from organic layers and the known 

hampering effect of N on SOM respiration indicates that soil CO2 fluxes will decrease in the 

future. N2O fluxes will likely increase with increasing N availability in our TMFs, as  found 

in many ecosystems (e.g. Butterbach-Bahl et al. 2002; Corre et al. 2014; Liu and Graever 

2009), provided that soil moisture conditions are conducive to denitrification, and that 

denitrification remains the main source of N2O (Chapter 3; Corre et al. 2014). It is probable 

that observed increases in soil CH4 uptake with N and N+P addition will not only stagnate but 

decrease in the long term, as indicated by several laboratory and field studies from different 

ecosystems (e.g. Butterbach-Bahl et al. 2002; Liu and Graever 2009; Saari et al. 1997). 

Considering that changes in soil CH4 fluxes play only a minor role for the net soil GWP, 

counteracting effects of chronic N input on soil GWP of CO2 and N2O could lead to 

everything from decreasing (dominance of CO2) to increasing (dominance of N2O) net soil 

GWPs. 

As previously mentioned, predictions of the effect of chronic P input on soil GHG 

fluxes and the net soil GWP are highly speculative. Nevertheless, we assume that excessive P, 

above levels where plant and microbial demand is fulfilled, has no large effects on soil GHG 

formation, since so far no mechanisms of direct influence (restraining or promoting) have 

been described. Results from our study (which, to our knowledge, is the only study that has 

investigated the effect of P addition on all three GHG fluxes for 5 years), point towards a new 

steady state, with lower CO2 fluxes at lower elevations and higher CO2 fluxes at higher 

elevations (Chapter 2). However, since plants in our study still seem to be limited by 

nutrients, 5 years of addition are insufficient to answer questions about chronic addition. For 

N2O fluxes we can, however, speculate from our results (Chapter 3), that P addition will 

either have no effect on N2O fluxes or they may decrease, where plant uptake is restricted by 



Chapter 5 

130 

P and/or NP. Similarly, our results indicate that CH4 fluxes will either be unchanged or 

increase compared to the current state (Chapter 4), the latter presumably due to alleviation of 

microbial P demand. However, the fact that we can only speculate, rather than provide 

detailed predictions about changes in soil GHG fluxes and the net soil GWP with chronic 

P addition clearly shows that there is a lack of studies investigating P effects on soil GHG 

fluxes, especially in the long term. Considering the increasing use and deposition of P in 

ecosystems, further research on both mechanisms behind GHG response to P addition and 

actual in situ long-term responses, is clearly required. 

We reported potential effects of increasing nutrient deposition on soil GHG fluxes and 

radiative forcing (net soil and net ecosystem GWP) in a single manipulation experiment. 

However, in a changing world, not only one factor (e.g. nutrient deposition), but several 

factors (e.g. temperature, rainfall patterns, atmospheric CO2 concentrations) will change, 

partly due to the complex feedback mechanisms mentioned in Chapter 1, all of which leave 

their unique ‘fingerprint’ (Lewis et al. 2004). 

We will probably never be able to completely predict soil GHG fluxes due to the high 

level of complexity and uncertainty of global changes, but using integrated approaches, where 

not only multiple ecosystem components are connected on larger scale, but also different 

(new) methodological approaches are combined (e.g. eddy covariance measurement and 

ground based gas chamber measurements), will be useful in the future. However, to feed 

complex predictions models, data from field measurements and a better mechanistic 

understanding of the interaction of controlling factors on soil GHG fluxes are essential. 
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5.2 Closing the N cycle – measurements of soil N2 fluxes  

Although soil N2O fluxes in our study area were lower than in other TMFs, N2O fluxes 

from the top 5 cm were predominantly derived from denitrification (Chapter 3). 

Denitrification is the stepwise reduction of NO3
- to N2, with other forms of N, such as nitrite 

(NO2
-), nitric oxide (NO) and N2O, involved as intermediates (Robertson and Groffman, 

2007). It is, apart from anaerobic ammonium oxidation, the only pathway through which 

reactive forms of N in terrestrial ecosystems re-enter the atmosphere as inert and climate-

neutral N2 gas (Galloway et al. 2004; Robertson and Groffman, 2007) - in this way ‘closing’ 

the N cycle and being important to primary production, water quality and the atmosphere.  

Nonetheless, this important process is one of the least quantified processes in the 

N cycle. In situ measurements of N2 face several methodological difficulties, with the 

fundamental problem being the quantification of a relatively small N2 flux against the high 

background N2 concentration in the atmosphere (Groffman et al. 2006). Globally, continental 

N2 fluxes to the atmosphere via denitrification are an estimated 109 Tg N2-N yr-1 and thus six 

times larger than the total natural and anthropogenic N2O sources together (17.9 Tg N2O-N 

yr-1; IPCC, 2013). Moreover, there are indications from Hawaiian TMFs, that under moist 

conditions, N2 losses from these ecosystems might be substantial (Houlton et al. 2006). In the 

Hawaiian study, N2 losses were ~10 times higher than N2O+NO losses, indicating their 

importance for the calculation of total ecosystem N budgets (Houlton et al. 2006). 

In general, conditions promoting high N2/N2O ratios include high soil moisture 

(representative of low oxygen contents) and high carbon contents, while high NO3- 

concentrations inhibit the conversion of N2O to N2, reducing N2/N2O ratios (Robertson and 

Groffman, 2007; Saggar et al. 2013; Weier et al. 1993). In our study, especially in the organic 

layers at 2000 m and 3000 m, soil conditions were in favor of large N2/N2O ratios 

(Chapter 3). Therefore, we can speculate that N losses via N2 in our soils might have been 
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substantial, despite the low N2O fluxes that we measured. In combination with the low 

absolute N2O and negligible NO fluxes found in our study area (Wolf et al. 2011), this 

indicates that moist TMFs might be of global importance in returning reactive N in terrestrial 

ecosystems to unreactive atmospheric N2. This may not be the case in drier and seasonal 

tropical forests, however, since the relatively larger NO fluxes compared to N2O fluxes 

indicate the importance of nitrification processes and therefore less significant N2 fluxes 

(Butterbach-Bahl et al. 2004; Holtgrieve et al. 2006).  

Although N addition did not change the relative contribution of nitrification and 

denitrifcation to N2O fluxes in our study area, increasing nutrient deposition might affect 

denitrification potential and thus N2 fluxes from TMFs.  Direct N effects on net N-cycling 

rates and N2O fluxes of our soils (Martinson et al. 2013), as well as indirect P effects on 

mineral N concentrations and N2O fluxes via plant feedback in our study area (Chapter 3), 

suggest that absolute amounts of N2 fluxes will be affected by nutrient inputs. Higher N loads 

might increase NO3- concentrations, which can increase absolute N2 fluxes due to increased 

substrate availability for denitrification but can also reduce N2/N2O ratios through NO3
- 

inhibition (Saggar et al. 2013; Weier et al. 1993). Furthermore, nutrient addition might induce 

indirect changes in denitrification due to shifts in microbial communities and changes in soil 

moisture and nutrient status caused by plant feedbacks (Corre et al. 2014; Parton et al. 1996). 

Thus, we suggest that future research should focus on methodological techniques to 

quantify soil N2 fluxes in-situ. This will then help to improve our understanding of N budgets, 

reducing current uncertainties and allowing us to evaluate the potential of ecosystems to turn 

reactive forms of N into climate-neutral N2. 

 

  



Synthesis 

133 

5.3 References 

Aber J, McDowell W, Nadelhoffer K, et al. (1998) Nitrogen saturation in temperate forest 

ecosystems: hypotheses revisited. BioScience 48: 921-934. 

Adamek M, Corre MD, Hölscher D (2009) Early effect of elevated nitrogen input on above-

ground net primary production of a lower montane rain forests, Panama. Journal of 

Tropical Ecology 25: 637-647. 

Baldos AP (2014) Soil nitrogen cycling and fate of nitrogen in montane forests along a 1000- 

to 3000-m elevation gradient in the Ecuadorian Andes. PhD thesis, Georg August 

Universität, Göttingen. 

Bowden RD, Newkirk KM, Rullo GM (1998) Carbon dioxide and methane fluxes by a forest 

soil under laboratory-controlled moisture and temperature conditions. Soil Biology and 

Biochemistry 30: 1591-1597. 

Bowden RD, Davidson E, Savage K, Arabia C, Steudler P (2004) Chronic nitrogen additions 

reduce total soil respiration and microbial respiration in temperate forest soils at the 

Harvard Forest. Forest. Ecology and Management, 196: 43-56. 

Breuer L, Papen H, Butterbach-Bahl K (2000) N2O emission from tropical forest soils of 

Australia. Journal of Geophysical Research 105: 26,353-26,367. 

Butterbach-Bahl K, Breuer L, Gasche R, Willibald G, Papen H (2002) Exchange of trace 

gases between soils and the atmosphere in Scots pine forest ecosystems of the 

northeastern German lowlands. 1. Fluxes of N2O, NO/NO2 and CH4 at forest sites with 

different N-deposition. Forest Ecology and Management 167: 123-134. 

Butterbach-Bahl K, Kock M, Willibald G, Hewett B, Buhagiar S, Papen H, Kiese R (2004) 

Temporal variations of fluxes of NO, NO2, N2O, CO2 and CH4 in a tropical rain forest 

ecosystem. Global Biogeochemical Cycles 18: GB3012. 

Corre MD, Veldkamp E, Arnold A, Wright SJ (2010) Impact of elevated N input on soil N 

cycling and losses in old-growth lowland and montane forests in Panama. Ecology 91: 

1715-1729. 

Corre MD, Sueta JP, Veldkamp E (2014) Nitrogen-oxide emissions from tropical forest soils 

exposed to elevated nitrogen input strongly interact with rainfall quantity and 

seasonality. Biogeochemistry 118: 103-120.  

Dalal RC, Allen DE (2008) Greenhouse gas fluxes from natural ecosystems. Australian 

Journal of Botany 56: 369-407. 

Dutaur L, Verchot LV (2007) A global inventory of the soil CH4 sink. Global Biogeochemical 

Cycles 21: GB4013. 

Fisher JB, Malhi Y, Torres IC, et al. (2012) Nutrient limitation in rainforests and cloud forests 

along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia 172: 889-902. 

Galloway JN, Dentner FJ, Capone DG, et al. (2004) Nitrogen cycles: past, present, and future. 

Biogeochemistry 70: 153-226. 

Girardin CAJ, Silva Espejob JE, Doughty CE, et al. (2014) Productivity and carbon allocation 

in a tropical montane cloud forest in the Peruvian Andes. Plant Ecology and Diversity 

7: 107-123. 



Chapter 5 

134 

Groffman PM, Altabet MA, Böhlke JK, et al. (2006) Methods for measuring denitrification: 

diverse approaches to a difficult problem. Ecological Applications 16: 2091-2122.  

Gundersen P, Emmett BA, Kjønaas OJ, Koopmans CJ, Tietema A (1998) Impact of nitrogen 

deposition on nitrogen cycling in a forest: a synthesis of NITREX data. Forest Ecology 

and Management 101: 37-55. 

Hagedorn F, Bellamy P (2011) Hot spots and hot moments for greenhouse gas emissions from 

soils. In: Jandl R, Rodeghiero M, Ollson M (eds) Soil carbon in sensitive European 

ecosystems: from science to land management, John Wiley and Sons, Chichester  pp. 

13-32. 

Hall SJ, Matson PA (2003) Nutrient status of tropical rain forests influences soil N dynamics 

after N additions. Ecological Monographs 73: 107-129. 

Holtgrieve GW, Jewett PK, Matson PA (2006) Variations in soil N cycling and trace gas 

emissions in wet tropical forests. Oecologia 146: 584-594. 

Homeier J, Hertel D, Camenzind T, et al. (2012) Tropical Andean Forests are highly 

susceptible to nutrient inputs – rapid effects of experimental N and P addition to an 

Ecuadorian montane forest. PLoS ONE 7: e47128. 

Homeier J, Leuschner C, Bräuning A, et al. (2013) Effects of nutrient addition on the 

productivity of montane forests and implications for the carbon cycle. In: Bendix J, 

Beck E, Bräuning A, Makeschin F, Mosandl R, Scheu S, Wilcke W (eds) Ecosystem 

services, biodiversity and environmental change in a tropical mountain ecosystem of 

south Ecuador. Ecological Studies 221, Springer, Heidelberg, pp 315-329. 

Houlton BZ, Sigman DM, Hedin, LO (2006) Isotopic evidence for large gaseous nitrogen 

losses from tropical rainforests. PNAS 103(23): 8745-8750. 

Huaraca Huasco W, Girardin CAJ, Doughty CE, et al. (2014) Seasonal production, allocation 

and cycling of carbon in two mid-elevation tropical montane forest plots in the Peruvian 

Andes. Plant Ecology and Diversity 7: 125-142. 

IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working 

Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate 

Change. Stocker TF, Qin D, Plattner G-K, et al. (eds). Cambridge University Press, 

Cambridge, United Kindom and New York. 

Ishizuka S, Iswandi A, Nakajima Y, Yonemura S, Sudo S, Tsuruta H, Muriyarso D (2005) 

Spatial patterns of greenhouse gas emission in a tropical rainforest in Indonesia. 

Nutrient Cycling in Agroecosystems 71: 55-62. 

Janssens IA, Dieleman W, Luyssaert S, et al. (2010) Reduction of forest soil respiration in 

response to nitrogen deposition. Nature Geoscience 3: 315-322. 

Koehler B, Corre MD, Veldkamp E, Wullaert H, Wright SJ (2009a) Immediate and long-term 

nitrogen oxide emissions from tropical forest soils exposed to elevated nitrogen input. 

Global Change Biology 15: 2049-2066. 

Koehler N, Corre MC, Veldkamp E, Sueta JP (2009b) Chronic nitrogen addition causes a 

reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical 

montane forest but no response from a tropical lowland forest on a decadal time scale. 

Biogeosciences 6: 2973-1983. 



Synthesis 

135 

Körner C, Ohsawa M, Spehn E, et al. (2006) Mountain systems. In: Hassan R, Scholes R, Ash 

N (eds) Ecosystem and human well-being: current state and trends. Millenium 

Ecosystem Assessment, Island Press, Washington, pp. 681-716. 

Lewis SL, Malhi Y, Phillips OL (2004) Fingerprinting the impacts of global change on 

tropical forests. Philosophical Transactions of the Royal Society of London. Series B: 

Biological Sciences 359: 437-462. 

Liu L, Graever TL (2009) A review of nitrogen enrichment effects on three biogenic GHGs: 

the CO2 sink may be largely offset by stimulated N2O and CH4 emissions. Ecology 

Letters 12: 1103-1117. 

Magnani F, Mencuccini M, Borghetti M, et al. (2007) The human footprint in the carbon 

cycle of temperate and boreal forests. Nature 447: 849-851. 

Martinson GO, Corre MD, Veldkamp E (2013) Responses of nitrous oxide fluxes and soil 

nitrogen cycling to nutrient additions in montane forests along an elevation gradient in 

southern Ecuador. Biogeochemistry 112: 625-636. 

Mori T, Ohta S, Ishizuka S, et al. (2013) Soil greenhouse gas fluxes and C stocks as affected 

by phosphorus addition in a newly established Acacia mangium plantation in Indonesia. 

Forest Ecology and Management 310: 643-651. 

Parton WJ, Mosier AR, Ojima DS, Valentine DW, Schimel DS, Weier K, Kulmala AE (1996) 

Generalized model for N2 and N2O production from nitrification and denitrification. 

Global Biogeochemical Cycles 10: 401-412. 

Priess JA, Fölster H (2001) Microbial properties and soil respiration in submontane forests of 

Venezuelian Guyana: characteristics and response to fertilizer treatments. Soil Biology 

and Biochemistry 33: 503-509. 

Purbopuspito J, Veldkamp E, Brumme R, Murdiyarso D (2006) Trace gas fluxes and nitrogen 

cycling along an elevation sequence of tropical montane forests in Central Sulawesi, 

Indonesia. Global Biogeochemical Cycles 20: GB3010. 

Quinn Thomas R, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon 

storage in response to nitrogen deposition in the US. Nature Geoscience 3: 13-17. 

Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its 

relationship to vegetation and climate. Tellus 44B: 81-99. 

Raich JW (1998) Aboveground productivity and soil respiration in three Hawaiian rain 

forests. Forest Ecology and Management 107: 309-318. 

Robertson GP, Groffman PM (2007) Nitrogen transformation. In: Paul EA (ed) Soil 

microbiology, biochemistry, and ecology. Springer New York, New York, pp 341-364. 

Saari A, Martikainen PJ, Ferm A, Ruuskanen J, De Boer W, Troelstra SR, Laanbroek HJ 

(1997) Methane oxidation in soil profiles of Dutch and Finnish coniferous forests with 

different soil texture and atmospheric nitrogen deposition. Soil Biology and 

Biochemistry 29: 1625-1632. 

Saggar S, Jha N, Deslippe J, et al. (2013) Denitrification and N2O:N2 production in temperate 

grasslands: processes, measurements, modelling and mitigating negative impacts. 

Science of the Total Environment 465: 173-195. 



Chapter 5 

136 

Schrumpf M, Guggenberger G, Valarezo C, Zech W (2001) Tropical montane rainforest soils. 

Development and nutrient status along an altitudinal gradient in the south Ecuadorian 

Andes. Die Erde 132: 43-59. 

Sousa Neto E, Carmo JB, Keller M, et al. (2011) Soil-atmosphere Exchange of nitrous oxide, 

methane and carbon dioxide in a gradient of elevation in the coastal Brazilian Atlantic 

forest. Biogeosciences 8: 733-742. 

Spracklen DV, Righelato R (2014) Tropical montane forests are a larger than expected global 

carbon store. Biogeosciences 11: 2741-2754. 

Tanner EVJ, Vitousek PM, Cuevas E (1998) Experimental investigation of nutrient limitation 

of forest growth on wet tropical mountains. Ecology 79: 10-22. 

Teh YA, Diem T, Jones S, et al. (2014) Methane and nitrous oxide fluxes across an elevation 

gradient in the tropical Peruvian Andes. Biogeosciences 11: 2325-2339. 

Van Haren JLM, de Oliveira Jr RC, Restrepo-Coupe N, Hutyra L, de Camargo PB, Keller M, 

Saleska SR (2010) Do plant species influence soil CO2 and N2O fluxes in a diverse 

tropical forests? Journal of Geophysical Research 115: G03010. 

Van Straaten O, Veldkamp E, Corre MD (2011) Simulated drought reduces soil CO2 efflux 

and production in a tropical forest in Sulawesi, Indonesia. Ecosphere 2: art119. 

Veldkamp E, Koehler B, Corre MD (2013) Indications of nitrogen-limited methane uptake in 

tropical forest soils. Biogeosciences 10: 5367–5379. 

Weier KL, Doran JW, Power JF, Walters DT (1993) Denitrification and dinitrogen/nitrous 

oxide ratio as affected by soil water, available carbon, and nitrate. Soil Science Society 

of America Journal 57: 66-72. 

Werner C, Butterbach-Bahl K, Haas E, Hickler T, Kiese R (2007) A global inventory of N2O 

emissions from tropical rainforest soils using a detailed biogeochemical model. Global 

Biogeochemical Cycles 21: GB3010. 

Wolf K (2010) Trace gas fluxes and belowground carbon allocation in tropical montane forest 

soils of Southern Ecuador. PhD thesis, Georg-August-Universität Göttingen, Göttingen. 

Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest 

productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in 

southern Ecuador. Global Biogeochemical Cycles 25: GB4009. 

Wolf K, Flessa H, Veldkamp E (2012) Atmospheric methane uptake by tropical montane 

forest soils and the contribution of organic layers. Biogeochemistry 111: 469–483. 

Zhang T, Zhu W, Mo J, Liu L, Dong S (2011) Responses of CH4 uptake to the experimental 

N and P additions in an old-growth tropical forest, southern China. Biogeosciences 

8: 2805-2813 

Zhou Z, Jiang L, Du E, Hu H, Li Y, Chen D, Fang J (2013) Temperature and substrate 

availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, 

China. Journal of Plant Ecology 6: 325-334. 

Zimmermann M, Meir P, Bird M, Malhi Y, Ccahuana AJQ (2009) Litter contribution to 

diurnal and annual soil respiration in a tropical montane cloud forest. Soil Biology and 

Biochemistry 41: 1338-1340. 



Synthesis 

137 

Zimmermann M, Meir P, Bird MI, Malhi Y, Ccahuana AJQ (2010) Temporal variation and 

climate dependence of soil respiration and its components along a 3000 m altitudinal 

tropical forest gradient. Global Biogeochemical Cycles 24: GB4012. 

 

 

 

 



Acknowledgements 

XX 

ACKNOWLEDGEMENTS 

  

I want to thank Edzo Veldkamp and Marife Corre for their supervision of this PhD thesis. 

Dank geht an die Deutschen Forschungsgemeinschaft, für die Finanzierung des Projektes im 

Rahmen der Forschereinheit RU816 ‘Biodiversity and Sustainable Management of a 

Megadiverse Mountain Ecosystem in South Ecuador‘. 

Gracias por la cooperación y ayuda del personal del la UTPL, especialmente a Juan Ignacio 

Burneo Valdivieso, Omar Malagón Avilés y Edwin Daniel Capa Mora. 

Gracias por mis asistentes del campo y laboratorio para ayudarme: Patricio Salas, Pablo 

Ramirez, Fabián Cuenca y Richard Samaniego. 

Dank dem Labor-Team des Büsgen-Instituts und dem Kompetenzzentrum Stabile Isotope der 

Universität Göttingen für ihre Hilfe bei der Bearbeitung meiner unzähligen Proben. 

Dank gilt all den großartigen Leuten die ich in den letzten Jahren in Ecuador und Göttingen 

kennenlernen durfte. Danke für eure Unterstützung und Freundschaft! Da es viel zu viele 

waren, um sie alle einzelnen aufzuzählen, möchte ich ein paar wenige benennen: Guntars 

Martinson - der mich nicht nur mit einer Menge Daten versorgt hat, sondern mir hilfreich 

unter die Arme gegriffen hat. Amanda Matson, Angelica Baldos and Daisy Carate - without 

you it would not have been half as much fun and I’ll always remember our Science Saturdays! 

Marc Adams, Jürgen Homeier, Daniel Kübler und David Windhorst – unschätzbare 

Mithäftlinge und Langzeitinsassen, die den Stationsaufenthalt geprägt haben. Zuletzt geht 

mein spezieller Dank an all die “Packesel“, die einige Tonnen an Probenmaterial von und 

nach Ecuador transportiert haben! 

Ich danke all meinen Freunde und meine Familie die mich motiviert haben alles zu geben. 

At the end, I have to mention Maud and Murphy who gave us a hard time in Ecuador but 

contributed to the mad number-song we invented during one of our sleepless lab-nights! 

 

 

Maud is having a bad day  

 



Declaration 

 

XXI 

DECLARATION OF ORIGINALITY AND CERTIFICATE OF AUTHORSHIP 

 

I, Anke K. Müller, hereby declare that I am the sole author of this dissertation entitled ‘Soil 

greenhouse gas fluxes under elevated nutrient input along an elevation gradient of 

tropical montane forests in southern Ecuador’. All references and data sources that were 

used in the dissertation have been appropriately acknowledged. I furthermore declare that this 

work has not been submitted elsewhere in any form as part of another dissertation procedure. 

I certify that the manuscripts presented in Chapters 2, 3 and 4 have been written by me as first 

author. 

Chapters 2 and 4: Guntars O. Martinson provided data on soil CO2 and CH4 fluxes. 

 

 

Göttingen, August 2014                               

      (Anke K. Müller) 

 

 



Curriculum Vitae 

XXII 

Curriculum Vitae 
 

Personal Information 

Name   Anke K. Müller 

Nationality  German 

Languages German, English (fluent), Spanish (basic), Latin (Latin proficiency 

certificate) 

 

 

Career 

Since 05/2010  Ph.D. Program: Biological Diversity and Ecology 

   Georg-August University of Göttingen,  

Center for Biodiversity and Ecology  

 

05/2010 – 05/2013 Research Assistant at the Büsgen Institute 

   Georg-August University of Göttingen, 

Soil Science of Tropical and Subtropical Ecosystems 

 

04/2005 – 05/2010 Diploma in Agricultural Biology  

University of Hohenheim 

Major  Biology of Agricultural Plants 

   Subjects Agricultural Ecology in the Tropics and Subtropics 

     Biology of Special Crops 

     Plant Protection 

 

 

Publications 

Müller AK, Corre MD, Veldkamp E. Soil N2O fluxes along a 1000- to 3000-m elevation 

gradient of tropical montane forests with five years of nitrogen and phosphorus inputs. Under 

Review with Biogeochemistry (submitted September 2014) 

 

Müller AK, Corre MD, Martinson GO, Burneo Valdivieso JI, Veldkamp E. Differential 

responses of soil CO2 fluxes to nutrient inputs along an elevation gradient of Andean tropical 

montane forests. Under Review with Journal of Geophysical Research – Biogeosciences 

(submitted July 2014) 

 

Baldos AP, Müller AK (2013) Nitrogen additions affects N cycling but not N2O surface 

fluxes. In: Tropical Mountain Forest (TMF) Newsletter No. 19, DFG Research Unit 816, 

doi:10.5678/lcrs/for816.cit.1233.  



Curriculum Vitae 

XXIII 

Conferences 

2013 Annual Conference of the Society for Tropical Ecology, Vienna, Austria 

Response of soil trace gas fluxes to elevated nutrient inputs in tropical montane forests 

(Müller AK, Martinson GO, Veldkamp E, Corre MD) – Oral presentation 

 

2012 BES Annual Meeting 2012, Birmingham, UK  

Effect of nutrient deposition on gas emissions of tropical montane forest soils in 

southern Ecuador (Müller AK, Martinson GO, Veldkamp E, Corre MD) – Poster 

presentation 

 

2011  FOR 816 - Status Symposium, Loja, Ecuador 

Gas emissions and nitrogen cycling in a tropical montane rainforest in southern 

Ecuador at 2000 m elevation (Baldos AP, Matson AL, Müller AK, Corre MD, 

Veldkamp E) – Poster presentation 

 

2010 FOR 816 - Status Symposium, Loja, Ecuador 

Effect of nutrient addition on N2O fluxes and N cycling in montane tropical forest 

soils (Müller AK, Martinson GO, Veldkamp E, Corre MD, Flessa H) – Poster 

presentation 

 

2009 Tropentag, Hamburg, Germany 

Developing an improved strip-intercropping system for maize and Chinese cabbage in 

the North China Plain (Müller A, Feike T, Chen Q, Gräff-Hönninger S, Pfenning J, 

Claupein W) – Oral presentation 

 


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ZUSAMMENFASSUNG
	SUMMARY
	RESUMEN
	CHAPTER 1
	General introduction
	1.1 Global change - significance and complexity
	1.2 Greenhouse gas fluxes from tropical forest soils
	1.3 Nutrient deposition in tropical regions, tropical montane forests and nutrient effects on soil greenhouse gas fluxes
	1.4 Objectives
	1.5 Material and methods
	1.5.1 Study area and experimental design
	1.5.2 Methodological overview

	1.6 References

	CHAPTER 2
	Differential responses of soil CO2 fluxes to nutrient inputs along an elevation gradient of Andean tropical montane forests
	2.1 Abstract
	2.2 Introduction
	2.3 Material and Methods
	2.3.1 Study area
	2.3.2 Experimental design
	2.3.3 Litter removal and trenching experiment
	2.3.4 Soil CO2 flux, temperature and moisture measurements
	2.3.5 Statistical analysis

	2.4 Results
	2.4.1 Soil temperature and water-filled pore space and effects of nutrient additions
	2.4.2 Soil CO2 fluxes from control forests and their controlling factors
	2.4.3 Effect of nutrient additions on soil CO2 fluxes
	2.4.4 Effect of nutrient additions on fresh litter and root-related respiration

	2.5 Discussion
	2.5.1 Soil CO2 fluxes from control forests and the controlling factors across the elevation gradient
	2.5.2 N-addition effects on soil CO2 fluxes
	2.5.3 P-addition effects on soil CO2 fluxes
	2.5.4 Combined N+P-addition effects on soil CO2 fluxes

	2.6 References

	CHAPTER 3
	Soil N2O fluxes along a 1000- to 3000-m elevation gradient of Ecuadorian montane forests with five years of nitrogen and phosphorus input
	3.1 Abstract
	3.2 Introduction
	3.3 Material and Methods
	3.3.1 Study area
	3.3.2 Experimental design
	3.3.3 Measurements
	3.3.4 Statistical analysis

	3.4 Results
	3.4.1 Control plots along the elevation gradient: soil N2O fluxes and controlling factors
	3.4.2 Effects of nutrient additions on soil N2O fluxes and controlling factors at each elevation

	3.5 Discussion
	3.5.1 Control plots along the elevation gradient: soil N2O fluxes and controlling factors
	3.5.2 N-addition effects on N2O fluxes
	3.5.3 P-addition effects on N2O fluxes
	3.5.4 Combined N+P-addition effects on N2O fluxes

	3.6 References

	CHAPTER 4
	Nutrient addition increases soil CH4 uptake across an elevation gradient in Andean tropical montane forests
	4.1 Abstract
	4.2 Introduction
	4.3 Material and Methods
	4.3.1 Study area
	4.3.2 Experimental design
	4.3.3 Soil CH4 flux, temperature, moisture and mineral N measurements
	4.3.4 Statistical analysis

	4.4 Results
	4.4.1 Controlling factors and soil CH4 flux of control forests along the elevation gradient
	4.4.2 Effect of nutrient additions on soil CH4 fluxes

	4.5 Discussion
	4.5.1 Soil CH4 flux and controlling factors of control forests along the elevation gradient
	4.5.2 Nutrient-addition effects on soil CH4 fluxes – unresponsive phase (year 1-2)
	4.5.3 N-addition effects on soil CH4 fluxes – responsive phase (year 3-5)
	4.5.4 P-addition effects on soil CH4 fluxes – responsive phase (year 3-5)
	4.5.5 Combined N+P-addition effects on soil CH4 fluxes- responsive phase (year 3-5)
	4.5.6 Implications for elevated nutrient deposition in TMFs

	4.6 References

	CHAPTER 5
	Synthesis
	5.1 Net soil global warming potential of tropical montane forests
	5.1.1 Net soil global warming potential along elevation gradients
	5.1.2 Nutrient effects on the net soil global warming potential
	5.1.3 Implications for chronic nutrient addition on the net soil global warming potential

	5.2 Closing the N cycle – measurements of soil N2 fluxes
	5.3 References

	ACKNOWLEDGEMENTS
	DECLARATION OF ORIGINALITY AND CERTIFICATE OF AUTHORSHIP
	Curriculum Vitae

