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Abstract

The physiological reactions in a cell are generally not performed by single biological

macromolecules, but by complexes of several molecules. They can be a complex of sev-

eral proteins or can be composed of RNA and proteins as a ribonucleoprotein (RNP)

complex. The RNP complexes perform their functions either through dynamic assem-

bly and disassembly of components, such as the spliceosome, or through structural

dynamics, such as the ribosome. Due to their dynamic nature and large size, sin-

gle particle cryo-electron microscopy is an ideally suited method to study these RNP

complexes. However, due to the high heterogeneity of samples, which can be a result

of compositional difference or conformational flexibility, most of the structures thus

far could only be obtained with restricted resolution. In this work, biochemical and

computational methods were applied to reduce sample heterogeneity and to resolve

heterogeneous sub-states of RNP complexes.

In the first approach, the structure of the human spliceosomal C complex was analyzed.

Different sub-states representing the heterogeneity were sorted in silico, and the regions

with high heterogeneity were characterized. Unfortunately, the amount of heterogene-

ity exceeded the capacity which could be dealt with by image processing alone and has

obstructed the improvement of resolution. Therefore, biochemical methods have been

developed to stabilize samples and to decrease heterogeneity. Two approaches were

pursued: (1) to stabilize the sample during purification, and (2) to prevent the macro-

molecules from disruption during the sample preparation for transmission electron mi-

xv



xvi ABSTRACT

croscopy (TEM). As a proof of concept, the optimization of purification was performed

on an endogenous small nuclear ribonucleoprotein (snRNP). With the optimization of

the crowding agent, as well as replacing chromatography with selective precipitation,

the 3D model of the yeast snRNP could be reconstructed for the first time. To pre-

vent macromolecules from disruption during sample preparation, p-maleimidophenyl

isocyanate (PMPI) was evaluated as an RNA-protein crosslinker. PMPI was tested

on the human 80S ribosome. In the reconstructed 3D model, a crosslink between the

expansion segment ES7L and the ribosomal protein L7A was observed. Besides, the

E-site tRNA showed higher occupancy. To further stabilize the ribosome during pu-

rification, the conventional “salt wash” step, which utilizes high salt concentration to

remove salt-unstable proteins, was replaced by selective precipitation under low salt

conditions. The L1 and P stalks in the reconstructed 3D models were significantly sta-

bilized in the low salt purification procedure. Furthermore, a factor located next to the

nascent chain exit tunnel was copurified. These biochemical approaches were shown

to stabilize the ribosome and the spliceosome, and can be applicable in the future for

cryo-EM studies on all RNP complexes.



Chapter 1

Introduction

1.1 Single Particle Electron Microscopy

The interactions between objects and the light contribute to our world of vision. To

explore the subtlety of the world, light microscopes were invented to enlarge the objects

in a micrometer scale. However, smaller objects cannot be magnified clearly with the

visible light. This is due to the wavelength restricting the resolution limit, which was

proposed by Ernst Karl Abbe in 1873:

d =
λ

2NA
=

λ

2n sin θ
(1.1)

d is called the resolution limit, meaning the minimum distance where two neighbouring

features can be distinguished. λ is the wavelength. NA stands for numerical aperture,

which is the refractive index n of the medium filling the space between the cover glass

and front lens multiplied by the sine of the half angle θ of the maximum cone of light

that can enter or exit the lens. Therefore, to visualize an object at the nanometer

range, a light source of nanometer wavelength is required. Since electrons exhibit a

duality of wave and particle, as proposed by Louis de Broglie in 1924, and the electron

wave has much shorter wavelength comparing to the visible light, the electron beam

can be utilized in microscopes for smaller scaled objects.

1



2 1 | Introduction

Figure 1.1: Overview of single particle cryo-EM. A sample grid is placed in the TEM, and

images are recorded. Image processing aims to reconstruct a 3D model from the 2D images,

and the main steps include particle selection, alignment, classification, angular determination,

and 3D reconstruction.
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The transmission electron microscope (TEM) is nowadays widely used in various bio-

logical research, such as single particle electron microscopy and electron tomography.

Single particle cryo-electron microscopy (cryo-EM) has become one of the main meth-

ods in high-resolution structural biology. In single particle cryo-EM, a sample solution

is rapidly frozen to a vitrified ice. Single particles are imaged by TEM. These images

are analyzed in silico, and the 3D model can be reconstructed (figure 1.1).

Though the average resolution of structures obtained by cryo-EM is still lower than

that of X-ray crystallography and NMR structures, cryo-EM possesses significant ad-

vantages in studying large, dynamic, flexible, and heterogeneous macromolecules. Com-

pared to NMR, cryo-EM can be used to study much larger molecules. Compared to

X-ray crystallography, cryo-EM is not restricted by the necessity of crystals. That

means, first, the required amount of the sample is much less. Second, the particles

can be analyzed in solution instead of a crystallization state. For particles which are

dynamic in solution, particles representing different dynamic states can be trapped by

vitrification and further analyzed in silico.

1.1.1 Image formation

With a contrast, an object is distinguishable from the other objects or the background

in an image. Usually in our visual system, the contrast is determined by the difference

in color or illumination. In TEM, the image contrast is determined by the illumination

difference. Image formation in the TEM is based on the interaction of the electron

beam and the atoms of specimens. As electrons are charged particles, they are influ-

enced by the positively charged atomic nuclei or the negatively charged electrons in the

orbitals, therefore the incident electrons can be deflected from their original trajectory.

This phenomenon is called electron scattering. The scattering can be accompanied
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Figure 1.2: Overview of the image contrast formation. (a) Comparison of the amplitude

contrast and the phase contrast. (b) Wave can be expressed in a complex plane, and the

phase difference between real and imaginary coordinates is π/2. (c) Exit wave ψ1 is the

vector addition of the incident wave ψ0 and the scattered wave ψsc. Depends on the phase

shift of ψsc, different kinds of phase contrast are produced.
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Figure 1.3: Phase contrast transfer function at different defoci. With higher defocus value,

the first crossing on the zero line is more close to the original point (the turquoise line). CTF

curve was simulated and plotted in matplotlib.

with energy loss, which is called inelastic scattering, where the amplitude of the exit

wave is reduced. The amplitude difference between the incident wave and the exit wave

produces the amplitude contrast. The scattering without energy loss is called elastic

scattering, which results in alteration of phase. The phase difference cannot be visual-

ized, but with a phase shift of the scattered wave, phase contrast between the incident

wave and exit wave can be produced. The difference between amplitude contrast and

phase contrast is illustrated in figure 1.2(a).

Because biological specimens are mostly composed of light atoms such as C, H, O,

N, S, and P, usually scattering angles are low, and the amplitude remains almost un-

changed. Therefore, the main source of contrast in biological samples comes from the

phase contrast. Assuming that the wave function of the incident wave is ψ0, and the

wave function of the exit wave is ψ1, the relation can be expressed as:

ψ1 = ψ0exp(iφ) (1.2)

where φ is the phase shift at the exit surface. It can also be written according to Euler’s

formula:

ψ1 = ψ0exp(iφ) = ψ0[cosφ+ i sinφ] (1.3)
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Since biological specimens for TEM are very thin, it can be taken as a weak-phase

object, and phase shift φ � 1 can be assumed. Therefore, the exit wave ψ1 can be

approximated as:

ψ1 = ψ0[cosφ+ i sinφ] ≈ ψ0[1 + iφ] (1.4)

As we can see here, the exit wave can be taken as a superposition of the unscattered

and the scattered wave: the term ‘ψ0 · 1’ refers to the unscattered (unmodified) wave,

and the term ‘ψ0 ·iφ’ refers to the scattered wave (ψsc). The imaginary unit of ψsc refers

to a phase shift of π/2 (figure 1.2(b)). On the plane of detection, only the intensity

(I1) is observed. Intensity is the multiplication of the exit wave (ψ1) and its complex

conjugate (ψ∗
1):

I1 = ψ1 · ψ∗
1 = ψ0[1 + iφ] · ψ0[1− iφ] = ψ2

0[1 + φ2] (1.5)

Since φ� 1 the intensity of exit wave I1 is similar to the incident wave I0:

I1 = ψ2
0[1 + φ2] ≈ ψ2

0 = I0 (1.6)

This means that the object is observed without contrast (figure 1.2(c(1))). However,

when the phase of the scattered wave is further shifted by π/2 (figure 1.2(c(2))), the

exit wave ψ1 is changed as:

ψ1 = ψ0 − ψsc ≈ ψ0 − ψ0 · φ = ψ0[1− φ] (1.7)

So the observed intensity is:

I1 = ψ1 · ψ∗
1 ≈ [ψ0(1− φ)]2 = ψ2

0[1− 2φ+ φ2] (1.8)

Even though φ � 1, −2φ is much greater than φ2, and the difference −2φ is large

enough to be detected as an intensity change, therefore the contrast is observed. The

same principle applies for figure 1.2(c(3)). This extra phase shift of −2φ can be intro-

duced with a phase plate. Like the light microscope, there are also phase plates for

TEM, and the most tested ones so far are the Zernike phase plate (Danev and Na-

gayama, 2001) and the Hilbert phase plate (Danev et al., 2002)(Danev and Nagayama,
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2004). However, due to technical limitations, such as the requirement of microscope

geometry, electron loss, and sample charging, phase plates are not commonly used to-

day (Jensen, 2010). Practically, the extra phase shift of the scattered wave is achieved

with defocus and the spherical aberration of the magnetic lens. The defocus value (∆z)

is the distance between the image plane to the focal plane. The spherical aberration

(Cs) is caused by an imperfection of the lens, that the waves passing through different

distances from the optical axis are not focussed on the same point.

An image can be described as an addition of spatial waves with different frequen-

cies. As the expression of a time progressing wave can be transformed from the time

domain to the frequency domain by Fourier transform, a spatial wave can also be trans-

formed from the space domain to the frequency domain, and the Fourier transform of

the spatial wave is called “spatial frequency”. Spatial frequencies detected on the im-

age plane represent the scattered angles of the electron wave at the exit plane of the

object. Waves with different scattered angles have different phase shifts. This means,

except for certain spatial frequencies, where the scattered wave stays at its original

π/2 phase shift relative to the incident wave, other spatial frequencies can be detected.

This alteration of phase shift can be written as the wave aberration W , a function of

the spatial frequency f :

W (f) =
π

2
(Csλ

3f 4 − 2∆zλf 2), (1.9)

λ is the wavelength of the electron beam. This formula is known as the Scherzer formula

(Scherzer, 1949). The phase contrast transfer function (phCTF) K, which describes

the relative contrast corresponding to different spatial frequencies, can therefore be

derived:

K(f) = −2 sinW (f) = −2 sin[
π

2
(Csλ

3f 4 − 2∆zλf 2)]. (1.10)

As a sine function, phCTF starts from zero, and fluctuates between positive and nega-

tive values (figure 1.3). In the range of low spatial frequency, the fluctuation is small,
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but increases in the higher spatial frequency range. When the phCTF is equal to zero,

there is no contrast, meaning no information for this spatial frequency is transferred.

In practice, since phCTF alters with defocus, these gaps of information can be compen-

sated by recording series of images at different defocus values. The first zero-crossing

point is determined by the defocus value and the spherical aberration coefficient: the

higher the absolute value of defocus, the closer the first zero-crossing point is to the ori-

gin point. When the defocus value is equal to Scherzer focus, scattered waves ψsc with

a relatively broad range of spatial frequencies undergo a −π/2 phase shift, therefore

the highest theoretical instrumental resolution can be reached.

1.1.2 Image processing

In single particle cryo-EM, each three-dimensional (3D) particle is projected into a

two-dimensional (2D) image. The 3D particle in solution has six degrees of freedom:

three translational parameters (x, y, and z) and three rotational parameters (Euler

angle α, β, and γ). For each recorded 2D projection, the z-translational parameter

is stored in the form of different defocus values through projection, whereas the other

five parameters still need to be restored. This becomes one important task for image

processing.

The other important task for image processing is to improve the low signal-to-noise

ratio (SNR) of the images. Theoretically with a higher dose of electrons, the inter-

action between the beam and the specimen is increased, therefore better signal can

be obtained. However, biological samples can only be imaged without damage by low

dose of electrons (< 20e−/Å2) (Zeitler, 1982). The solution to increase the SNR is by

computationally averaging the single particles which represent the same projection, so

that the real information is additively enhanced while the noise is subtractively elimi-

nated.
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Figure 1.4: General procedure of image processing
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To restore the degrees of freedom, first alignment is performed, where particles are

centered and rotated in the same orientation (see section 1.1.2.3). This means that

the translational degrees of freedom x and y are equalized for all particles, and the

in-plane rotational parameter α is solved. When the particles are aligned, classifica-

tion can be performed to group particles representing the same projection (see section

1.1.2.4). Images in the same class can hence be averaged, as a “class average”, to ob-

tain better SNR. To restore the last two rotational degrees of freedom: Euler angles β

and γ, angular reconstitution (van Heel, 1987) is performed. In angular reconstitution,

the angular relationship is directly calculated from the 2D images, and can be very

dependent on the image quality (see section 1.1.2.5). An alternative is to record the

same field twice with different angles, as random conical tilt. Since the tilting angle is

known, two projections representing the same particle can be correlated with the an-

gular information. Once all translational and rotational parameters are restored, the

averaged images, which have satisfactory SNR, can be reprojected into a 3D model.

The general procedure of image processing is depicted in figure 1.4, and each step will

be explained in detail later.

1.1.2.1 CTF correction

Although the sample can be imaged with TEM, those recorded images are not exactly

the same as the original objects. The recorded images are influenced by the CTF and

an envelope function. This envelope function describes an intensity decay at higher

spatial frequencies, and the decay might come from the imperfection of the device, such

as incoherent incident beam or sample damage. Besides, in the PhCTF, for an image

recorded at a certain defocus value, information of certain spatial frequencies is missing,

and at some spatial frequency ranges, the phase contrast has a negative value. Missing

information is compensated by acquiring images at different defoci, where the zero

crossings are at different spatial frequencies, and averaging these images. The negative

values of the CTF are flipped in silico, and this process is called phase correction. In



1.1 Single Particle Electron Microscopy 11

addition, the envelope decay, which reduces detail information, can be corrected with

amplitude correction. The effect of correction on the CTF is depicted in figure 1.5.

Figure 1.5: CTF correction. Left: uncorrected CTF, which is a product of CTF and an

envelope function. The envelope function describing the incoherence of the beam is plotted

in yellow. Middle: phase correction, where negative CTF is flipped into positive. Right:

amplitude correction. CTF curves were simulated and plotted with matplotlib.

1.1.2.2 Preprocessing of particles

After CTF correction, particles need to go through additional preprocessing procedures

before alignment. First, in the early stage, when the overall structure is more important

than the details, particles can be rescaled, for example, 1/2 or 1/3 of the original size,

to speed up the calculation. Filtering, which is performed in the Fourier space, keeps

only the useful range of spatial frequencies of the images at this stage. The very low

spatial frequencies, which represent sharp contrast, are usually from the background

gradient of ice, carbon, or stain. The high spatial frequencies can be a mixture of

structural details, which is not the main concern in the early stage, and random noise,

therefore are also filtered out. Since the particles are spreading on different locations

of the carbon film, the micrograph of each particle can have very different gray values.

By normalization, the mean density of all particles are equalized, and the standard

deviation is scaled to the same value. A circular mask can be applied on the micro-
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graphs of particles to remove unwanted features, such as neighboring particles, on the

periphery of the micrograph. The effect of preprocessing is illustrated in figure 1.6.

Figure 1.6: Preprocessing of particles, including filtering and application of the circular

mask.

1.1.2.3 Alignment

In the alignment procedure, particles are shifted to the center, and particles with

similar views are rotated to the same direction according to a set of reference images.

Commonly used references are 2D class averages or projections from a 3D model. When

no reference is available, reference-free alignment is performed, where a circular density,

which is generated by averaging all images and rotationally self-averaging, is used as the

initial reference (Dube et al., 1993). For an alignment process, the image translational

shift x and y and in-plane rotation angle θ can be expressed in a transformation matrix

T :

T =


cos θ − sin θ x

sin θ cos θ y

0 0 1

 (1.11)

The goal of alignment is to minimize the distance between image f and reference g by

applying the transformation matrix T , so that∫
|f(u)− g(T (u))|2du→ min, (1.12)
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Figure 1.7: Multi-reference alignment
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where u = [ux uy 1]T is a vector of pixel-coordinate.

In the presence of more than one references, every particle is aligned to all the reference

images, and the similarities between this particle and each of the reference images

can be evaluated. The similarity evaluation is calculated with the cross-correlation

coefficient (CCC):

CCC =
n
∑
xy −

∑
x
∑
y√

[n
∑
x2 − (

∑
x)2][n

∑
y2 − (

∑
y)2]

, (1.13)

where n is the total number of pixels in the image or the reference, and x and y are

gray values of pixels in the image or the reference. The CCC of each particle with

every reference is calculated, and the alignment parameters, shift and rotation, of the

reference which leads to the highest CCC, are applied onto that particle. This process is

called multi-reference alignment (van Heel et al., 2000), and is illustrated in figure 1.7.

1.1.2.4 Principal component analysis and classification

To group and average particles representing the same projection for better SNR, clas-

sification is performed. For a dataset composed of a large amount of particles, the

classification process can be computationally demanding. On the other hand, not all

the image information is needed for classification, as long as the image features are

enough to distinguish the images and classify them. To facilitate calculations, multi-

variate statistical analysis (MSA) has been used to compress the data (van Heel, 1984).

For electron micrographs, an image of p pixels is described by p gray values, and this

image can be expressed as a vector or a point in a p-dimensional coordinate system,

with the coordinate of each dimension representing the gray value of a specific pixel.

The full image dataset, therefore, can be considered as a “data cloud” in this coordi-

nate system. In MSA, new axes of the component coordinate system are formed, and

the new axes, also called eigenvectors, describe the variance within the data cloud (i.e.

principle component). The first eigenvector points to the highest variance, the second
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Figure 1.8: Principal component analysis. (a) Images with 3 pixels can be taken as coordi-

nates with 3 dimensions, therefore can be plotted in a 3 dimensional space as a data cloud.

(b) In PCA, the first component points towards the direction representing the highest vari-

ance (turquoise arrow). The data cloud can be projected on the line so that the representing

dimensions reduces from 3 to 1. Note that projected points are not well resolved. (c) To bet-

ter resolve the projections for more detailed classification, the second axis pointing towards

the second highest variance is expanded (indigo arrow). The second axis is perpendicular to

the first axis; therefore, a component plane is formed (blue plane). The data cloud can be

projected on the plane. (d) Distances between all the projections on the component plane,

which represent the variance, are calculated. Also, projections are classified into groups ac-

cording to the variance. (e) The classification result on the component plane is applied to

the data cloud in the data space.
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eigenvector, which is perpendicular to the first one, points to the second high variance,

and so on. The number n of eigenvectors determines how detailed the variance is taken

into consideration for classification. For the classification, distances between all the

point projections in the component coordinate system are calculated, and point pro-

jections that are near to each other are classified into a class. The maximum distance

between two points within a class is determined by the wanted maximum intraclass

variance. Instead of the original image coordinate system, classification is performed

in the component coordinate system with n axes. Because the very detailed variance

might come from random noise, n is much less than p, therefore, the required calcula-

tion resources can be significantly reduced. An example of MSA performed on images

with three pixels is described in detail in figure 1.8.

1.1.2.5 Angular reconstitution

The key of turning 2D class averages into a 3D model is to reconstitute the relative ori-

entations of projections. There are three rotational degrees of freedom for the particles

to lay on the sample grid and be imaged. They are called Euler angles : α, β, and γ.

The in-plane rotational degree of freedom α is removed by alignment, so what needs to

be determined is the two out-of-plane rotations β and γ. Without tilting the sample,

the angular reconstitution method (van Heel, 1987) calculates the relative orientations

of the projections. Angular reconstitution is based on the common line projection the-

orem (Crowther et al., 1970), which claims that two different 2D projections from the

same 3D object have at least an 1D line in common. This can be applied in Fourier

space or real space. In this work, the software packages used (IMAGIC and CowEyes,

custom-made software) perform angular reconstitution in real space. In real space,

to determine the position of this common line, which gives information of the angles,

two sets of 1D line projections are generated from the two 2D images. For each 2D

image, the set of line projections is with 1◦ interval, and the stack of a total of 360 line

projections is called a sinogram. The correlation coefficients of the two sinograms are
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Figure 1.9: Angular reconstitution by the common line theorem. The sinograms of image 1

and 2 were generated, and the sinogram correlation could be calculated: (a) auto-correlation

of image 1; (b) correlation between image 1 and 2. The gray value indicates the correlation

coefficient: the lighter, the higher correlation. For two projections from an asymmetrical 3D

structure, two peaks of highest correlation are observed, with about 180◦ in between.

calculated line by line (figure 1.9), and the highest correlation coefficient indicates the

position of the common line.

In the presence of a known structure, projections from the structure can be used to

improve the accuracy for angular assignment. These projections with known projec-

tion angles are used as an “anchor set”. Instead of calculating the sinogram correlation

between two different class averages, the sinogram correlation of each class average is

calcualted with every projection from the anchor set.
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1.1.2.6 Three-dimensional reconstruction

Once the relative angles of the averaged images are known, the 3D model can be

reconstructed. Reconstruction can be done in the real or Fourier space, and the method

used in this work is called exact filter back projection (Harauz and van Heel, 1986),

which is one of the real-space methods. For the conventional back projection method,

every image can be taken as a ray of pixels, and each ray comes from a direction which

is corresponding to its determined orientation. Where the rays intersect, the 3D model

emerges. However, some information of the 3D model might smear out with the ray

and lead to a blurry halo around the 3D model. This is because of over-weighing of

the low spatial frequency in the central overlapped region. To correct this artifact, a

dampening filter, which normalizes the spatial frequencies, is applied individually on

every averaged image.

1.1.2.7 Refinement

The reconstructed first 3D model usually does not have a satisfactory resolution, and

might even contain artefacts besides real structural features. Therefore, iterative data

processing cycles are needed to refine the structure. The overall procedure is similar to

the first round, but there are some detailed differences in each step, which can be crit-

ical for the refined result. The procedures are also included in the graphical overview

(figure 1.4).

Projection Projections can be produced from the 3D model. They can be used as

references for alignment, or as the anchor set for angular reconstitution. Most of the

biomolecules do not show a homogeneous angular distribution; therefore, some of the

rare views cannot be correctly classified in the first round due to the sparse abundance.

Missing angles of image information can lead to distortion of the model, but a 3D model
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can still be reconstructed as long as the angular coverage is sufficient. The rare views,

which cannot be classified in the first round, can probably be reproduced by projecting

the 3D model. When the rare views are in the reference, particles representing the

rare views can be better aligned, and it is possible to obtain decent class averages.

The interval for the projection angles can be big in the early stage of refinement in

order to facilitate the calculation speed, and in the later stage, when reconstructing

the structural details becomes more important, the angular interval should be reduced.

Filtering and alignment Due to the damping with increasing spatial frequencies of

the CTF, low spatial frequencies are initially dominant. However, overemphasis of low

spatial frequencies can influence the accuracy of alignments of structural details at late

stages. Therefore, during the refinement, the threshold for the high-pass frequency

filter is shifted to be higher, and for the low-pass filter is lower. In addition, for

CCC calculation in alignment, mutual correlation function (MCF) is used instead,

due to cross correlation functions (CCF) used in early stage are “squared” correlation

functions, which amplify the low spatial frequency domain (van Heel et al., 2000).

Averaging and angular assignment Because images of particles have poor SNR,

the alignment becomes model-bias prone. The noise in an image can easily be aligned

to a wrong reference. Therefore, alignment and averaging should be decoupled in the

early stages, where the averages from classification (class averages) should be used. In

the later stages, when the overall structure of the model is validated, an “ali-sum”,

which is the average of images aligning to the same reference during multi-reference

alignment, can be used instead. “Ali-sums” are used in this step instead of class

averages, not only for reducing the imprecision from classification, but also for bet-

ter angular assignment. Because angular reconstitution is not very precise within a

small range, when ali-sums are used, the projected angle for the reference can directly

be assigned to the corresponding ali-sum. This method is called projection matching

(Penczek et al., 1994).
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Automated refinement As described above, many parameters are involved in the

refinement process, and they are critical for the result of the refinement. Usually

input values of the parameters are determined by the user, which requires experience

to obtain optimum results. It can also be time consuming for the user to perform

several rounds of refinements. Software packages with different approaches have been

developed for automated refinement, e.g. FREALIGN (Grigorieff, 1998, 2007) and

RELION (Scheres and Chen, 2012).

1.1.2.8 Resolution determination

For the single particle cryo-EM, resolution determination is in practice an estimation

about how detailed real structural features can still be distinguished from the noise.

The most commonly used method for resolution determination is called the Fourier

shell correlation (FSC) (Harauz and van Heel, 1986). The level of detail in this case

is described in the Fourier space as spatial frequency. The images utilized for the

reconstruction of the final 3D model are split into two sub-sets, and two respective 3D

structures are reconstructed independently. Like the Fourier transformation of a 2D

image is concentric circles, the Fourier transformation of a 3D structure is concentric

shells. The correlation between the Fourier transformations of these two 3D models is

calculated shell by shell, and the correlation coefficient in Fourier space is calculated

as

FSC(R) =

∑
R=S F1(R)F ∗

2 (R)√
(
∑

R=S |F1(R)|2
∑

R=S |F2(R)|2)
(1.14)

where R is the spatial frequency, S is the shell radius in Fourier space, F1 represents

the Fourier transformation of the first 3D structure, and F ∗
2 corresponds to the com-

plex conjugated Fourier transformation of the second 3D structure. The FSC is plotted

against the reciprocal of resolution, usually like a decaying curve. A low correlation co-
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efficient means two 3D models of sub-datasets have no structural features in common,

and the correlation calculated indicates random noise. There are several conventional

criteria to determine at which resolution the correlation coefficient still represents the

structural information: the 0.5 FSC value, the 0.143 FSC value (Rosenthal and Hen-

derson, 2003), and the intersection with the 3 σ threshold curve of the background noise.

In fact, it was originally suggested that the image dataset should be splitted into

two halves from the very beginning and refined separately, instead of splitting only at

the final refinement stage as described above. Indeed, the latter method reduces the

required calculation resources, but might lead to an over-estimation of the resolution

and over-fitting. With the improvement of the calculation power, the original method

of FSC determination was reproposed as the gold-standard FSC (Henderson et al.,

2012). The structural models determined by gold-standard FSC were compared with

crystal structural models, and the gold-standard FSC was proven to be more reliable

than the FSC in which data is split only in the end of refinement (Scheres and Chen,

2012).

1.1.2.9 Resolving structural heterogeneity

A significant advantage of single particle cryo-EM over crystallography is the tolerance

of sample heterogeneity. Structural heterogeneity can come from the flexibility of

molecules (conformational heterogeneity) or different compositions of the molecules

(compositional heterogeneity) (figure 1.10). For example, the expansion segments of the

human ribosome are very flexible, and the consequence of averaging ribosome particles

which have expansion segments pointing towards different directions is that the roots

of the expansion segment are blurred out, and the termini of expansion segments are

not visualized (Anger et al., 2013). An example of heterogeneous composition is the

incomplete occupancy of tRNA in the ribosome. In either case, averaging heterogeneous

images results in reduced local resolution. In order to obtain an isotropic resolution,
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Figure 1.10: Conformational heterogeneity and compositional heterogeneity. Compositional

heterogeneity is due to particles in one sample having different composition of components,

whereas in a conformational heterogeneous sample, particles have the same composition but

different conformations.

resolving the heterogeneity is a critical task. There are several methods for dealing

with this problem, and two of them, which have been applied in this work, are reviewed

shortly in the following paragraphs. For a more detailed review, see the review from

Leschziner and Nogales (2007).

Supervised classification One of the most used in silico methods to resolve the

heterogeneity is supervised classification, first applied by Gao et al. (2004). The brief

procedure of supervised classification is illustrated in figure 1.11. If initial structural

models representing different states in the image dataset are available, these models

can be used as seeds for refinement to analyze the heterogeneity. The projections from

all the initial models are combined as a large reference set for alignment. The regular

multi-reference alignment (MRA) is performed, where images of particles are assigned

and aligned to the individual reference, which yields the highest CCC. So depending on

the reference to which the particle is assigned, one can assume to which heterogeneous

state that particle belongs. The image dataset can therefore be sorted into different
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Figure 1.11: Supervised classification: an example of two initial models. Projections from

two 3D models are combined as the reference dataset for multi-reference alignment. Each

particle is assigned and aligned to the individual reference which yields the highest CCC.

The assigned reference decides to which original structure each particle has higher similarity.

The particles are sorted into two groups accordingly. Moreover, the 3D models of these

two subdatasets, which represents two different states of heterogeneity, are reconstructed

independently.
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Figure 1.12: Resampling and 3D MSA classification. Aligned particles are randomly se-

lected as groups. Examples are illustrated as orange, yellow, and indigo. Every group of

images is used to reconstructed a 3D. These raw 3D structures are classified. Some of the

raw 3D structures (orange and yellow) exactly exist in the dataset, and the outcome 3D class

averages can represent real heterogeneous states of the sample. However, some of the ran-

domly selected and reconstructed structures (indigo) do not match the existing states (e.g.

the dinosaur’s tail does not have full occupancy), and the corresponding class average might

look worse defined.
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groups and refined separately. However, the features of the initial seeds strongly restrict

the heterogeneous states which can be resolved.

Resampling and 3D MSA classification When the overall structure of the par-

ticle is available, but preliminary knowledge regarding the individual heterogeneous

states is missing, resampling and 3D multivariate statistical analysis classification is

useful to obtain the initial seeds for supervised classification (Fischer et al., 2010). The

procedure of resampling is illustrated in figure 1.12. First, a preliminary 3D structure,

which might not be well resolved, is required as a reference. Particles are aligned, and

the Euler angles of the particles are determined by the assigned reference as in pro-

jection matching. Several images from the aligned image pool are randomly selected,

and they are used to reconstruct a 3D. In order to prevent errors in reconstruction

from missing angles, the selected particles should cover the Euler sphere. This step

is repeated many times, and a pool of many different 3D models is obtained. Since

the input images are not averaged, the SNR of the 3D models is also low. Therefore,

MSA and classification are performed at the 3D level. Usually the 3D class averages

with the most distinct features are selected as initial seeds for refinement by supervised

classification.

1.2 RNP complexes

Single particle cryo-EM is suitable for studying structures of large and dynamic molecules.

In a cell, there are many such large complexes utilizing their dynamic nature to ac-

complish their tasks. Some of them function for maintaining the genetic information

flow, such as DNA (deoxyribonucleic acid) polymerases, RNA (ribonucleic acid) poly-

merases, and spliceosomes. Some of them, such as ribosomes, chaperons, or protea-

somes, work for constructing or recycling proteins. These complexes can be entirely

composed of proteins, or can be composed of both RNA and proteins as a ribonucleo-

protein (RNP) complex. Among all the RNP complexes, structures of ribosomes and



26 1 | Introduction

spliceosomes are especially interesting topics for single particle cryo-EM. These two

complexes will be further discussed in the next sections.

1.2.1 The ribosome

The ribosome consists of one large subunit and one small subunit, and both subunits

are composed of RNA and proteins (figure 1.13). Both subunits work together as

a cellular machinery, which is responsible for protein synthesis. The ribosome reads

the genetic code (codons) from the mRNA template, and builds up a peptide chain

from amino acids according to the codons. Therefore, the protein synthesis process is

also called translation. Translation can be briefly divided into three steps: initiation,

elongation, and termination. The initiation is triggered by recognition of the start

codon, which encodes the first amino acid to be translated, and the ribosome is assem-

bled on this location. The amino acid is carried by the transfer RNA (tRNA) which

contains the anticodon, the complementary nucleic acid of the codon. At the begin-

ning of the elongation stage, the first aminoacyl-tRNA (fMet-tRNAMet
f in prokaryotes

or Met-tRNAMet
i in eukaryotes) moves to the P-site of the ribosome, and the next

aminoacyl-tRNA is delivered to the A-site by the elongation factor, EF-Tu in prokary-

otes or eEF1a in eukaryotes. The amino acid, or the peptide chain in the next rounds,

on the P-site tRNA is transferred to the amino acid on the A-site by the peptidyl trans-

ferase. Another elongation factor, EF-G in prokaryotes or eEF2 in eukaryotes, then

triggers the translocation, where the A-site and P-site tRNA is moved to the P-site and

E-site respectively. This elongation process continues iteratively until the stop codon

is reached in most cases. The termination codon is recognized by the release factors,

inducing the hydrolysis of the ester bond in peptidyl-tRNA and causes the release of

the newly synthesized peptide chain from the ribosome.

Though the roles of the ribosome are the same in prokaryotes and eukaryotes, the

size of the eukaryotic ribosomes is significantly larger, with more complicated compo-
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Figure 1.13: Crystal structure of the yeast ribosome. The RNA in the large subunit is

shown in yellow, the proteins in the large subunit are shown in orange. The RNA in the

small subunit is shown in cyan, the proteins in the small subunit are shown in blue. RNA

expansion segments, which are unique in eukaryotes, are shown in red. Reprint from (Jenner

et al., 2012) with permission.
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sition. The size and compositional differences of the prokaryotic ribosome (E. coli as

an example) and the eukaryotic ribosome (human as an example) are briefly compared

in table 1.1:

Table 1.1:

E. coli human

subunits 50S + 30S 60S + 40S

molecular weight 2.3 MDa 4.3 MDa

composition 54 proteins, 3 rRNAs 80 proteins, 4 rRNAs

The size difference comes from the eukaryotic specific proteins and the extra length

of rRNAs. While the structures around the active core are relatively conserved, the

periphery of the ribosome has altered a lot during the evolution. Most of the eukaryotic

specific proteins distribute at the solvent surfaces of the ribosomes. Unlike prokaryotic

rRNAs, the eukaryotic rRNAs elongate and form expansion segments (ES), extend-

ing dynamically from the ribosome surface (Gerbi, 1996). The expansion segments

interwine with the eukaryotic specific proteins, suggesting the possibility of coevolu-

tion (Yokoyama and Suzuki, 2008). The structural complexity has made the structural

studies on eukaryotic ribosome much more challenging than the prokaryotic ones. The

ribosomal subunits of prokaryotes were resolved by X-ray crystallography in 2000: 30S

from Thermus thermophilus (Wimberly et al., 2000), 50S from Haloarcula marismortui

(Ban, 2000) and Deinococcus radiodurans (Schluenzen et al., 2000), whereas the yeast

ribosome was only resolved by X-ray crystallography one decade later (Ben-Shem et al.,

2011). Moreover, due to the significantly longer expansion segments in higher eukary-

otes and the accompanying flexibility, high-resolution maps of higher eukaryotes so far

could only be obtained by single particle cryo-EM (Armache et al., 2010). However,

expansion segments with the highest dynamics have not been able to be visualized with
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full length (Anger et al., 2013).

Structural determination of ribosomes provides an insight into how the components

work cooperatively to accomplish the translation. It has also been validated that the

structural difference between prokaryotic and eukaryotic ribosomes reflects the func-

tional complexity in eukaryotic ribosomes. For example, the “ratcheting” of the ribo-

some, which is the rotation between the small and the large subunits, is considered

to be a driving force to the translocation process. Interestingly, the prokaryotic ribo-

somes structure seem to prefer the unrotated state (Schuwirth et al., 2005), whereas

the structures of eukaryotic ribosomes showed to be at rotated states (Ben-Shem et al.,

2011). This might be due to the additional intersubunit connections and interac-

tions at the periphery of the eukaryotic ribosomes (Wilson and Doudna Cate, 2012).

The protein-ES clusters mainly distribute on the surface of the 60S subunit, but the

surrounding of the nascent peptide chain exit tunnel is left uninterfered. Also, the

surrounding of the exit tunnel shows a flat surface, which allows the ribosome to be at-

tached on the endoplasmic reticulum. In addition, the nascent peptide chain emerging

from the exit tunnel seems to be more regulated in the eukaryotic system. Besides the

chaperone ribosome-associated complex (RAC), which exists in both prokaryotes and

eukaryotes, the signal recognition particle (SRP) targets the ribosome-nascent chain

complex to the endoplasmic reticulum instead of the plasma membrane. The nascent

polypeptide-associated complex (NAC) is only present in eukaryotes, and the role of

NAC is to protect the nascent chain from inappropriate interactions with cytosolic pro-

teins, therefore mis-translocation is prevented. The regulation of the factors accessing

the exit tunnel is assumed to be related to the ES27 (Beckmann et al., 2001), and the

single particle cryo-EM structure of the in vitro assembled ribosome-RAC complex in

Chaetomium thermophilum suggests that ES27 is possible to interact directly to the

RAC (Leidig et al., 2013).
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Unlike crystallography, the dynamic nature of ribosome particles is preserved in sin-

gle particle cryo-EM sample. On one hand, the resolution of the reconstructed model

can be restricted due to the sample heterogeneity. On the other hand, those thermo-

dynamically unpreferred transitional states can be visualized if the heterogeneity can

be resolved (Fischer et al., 2010). With the improvement of hardware and software,

nowadays a large cryo-EM dataset with high quality can be recorded and analyzed. It

is expectable that the dynamic structures of ribosomes can be better understood in

the future, and visualization of high eukaryotic ribosomal expansion segments with full

length is no longer an impossible task.

1.2.2 The spliceosome

The main components of the spliceosome are small nuclear RNPs (snRNP), which are

composed of small nuclear RNAs (snRNA) and proteins. The spliceosome is responsi-

ble for catalyzing the splicing reaction. In eukaryotes, most genes are expressed in the

form of precursor mRNA (pre-mRNA). In a pre-mRNA, the sequence carrying coding

information (exon) is segmented with fragments, which will not be used in translation

(introns). Therefore, before being exported to the cytosol for translation, pre-mRNA

needs to be modified such that the introns are removed and the exons are joined. This

modification process is called splicing. Splicing needs two distinct biochemical reaction

steps. First, the 2’ hydroxyl group of the adenosine at the “branch site” in the intron

performs a nucleophilic attack on the 5’ splicing site, so the 5’ exon is cleaved, and a

lariat structure in the intron is formed. In the second step, the 3’ hydroxyl group of

the 5’ exon attacks the 3’ splicing site. The exons are joined, and the intron is cleaved

and released.

Depending on the targeted sequence at the 5’ splicing site and the branch site in

the intron, spliceosomes can be classified into two classes. The most common class is

called the U2-dependent spliceosome, which is mainly composed of U1, U2, U4, U5, and
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Figure 1.14: Splicing cycle of U2-dependent spliceosomes. Components of spliceosome

assemble dynamically and sequentially in time in order to catalyze the splicing reaction.

After the splicing reaction, spliceosome is disassembled, and the components are recycled for

the next round of splicing cycle. Reprint from (Will and Lührmann, 2011) with permission.



32 1 | Introduction

U6 snRNPs. The less abundant class of spliceosome is the U12-dependent spliceosome,

also known as the minor spliceosome, where the components are U11, U12, U5, and

U4atac/U6atac snRNPs (Patel and Steitz, 2003). Different from the ribosomes, which

have a rigid assembly and a dedicated catalytic core, components of the spliceosome

are thought to assemble in a dynamic and stepwise manner, and the catalytic site is

only activated at certain steps of the splicing reaction. After completion of the splicing

reaction, components of the spliceosome are recycled and are prepared for the next

round of splicing. Therefore, the process of the stepwise splicing reaction with the

dynamic spliceosomal assembly is called the splicing cycle. The splicing cycle of the

U2-dependent spliceosome is discussed in the following as an example (figure 1.14):

Splicing cycle of U2-dependent spliceosomes Before the splicing reaction can

be catalyzed by the spliceosome, the positions of the introns and exons must be defined.

This is initiated by the U1 snRNP recognizing the 5’ splicing site, the non-U snRNP

splicing factor 1 (SF1) binding the branch point, and the U2AF binding the pyrimidine

tract on the intron at the 3’ splicing site. The U2 snRNP interacts with the U2AF

and binds the branch point, so that the pre-spliceosomal A complex is formed. The

U4/U6·U5 tri-snRNP is next integrated, forming the pre-catalytic B complex. Then

a significant compositional remodeling occurs: U1, U4 snRNPs, and most of the U6

proteins are released from the spliceosome, accompanied with a rearrangement of base

pairing between RNAs, and the B-complex is activated into the Bact complex. The

Bact complex does not have the catalytic activity, and requires the activation from

Prp2 to be transformed into the catalytically active B∗ complex (Kim and Lin, 1996;

Fabrizio et al., 2009). Though the main components remain unchanged, during the

transformation from Bact to B∗, the structure is remodeled (Warkocki et al., 2009).

The B∗ complex catalyzes the first step of splicing, 5’ splicing site cleavage, and the C

complex with a lariat structured intron is formed. The structure is again remodeled,

with association and dissociation of protein components, so that the transesterification
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of the 3’ splicing site is enabled. After the second step of splicing, the exons are ligated

to form the mature mRNA. The mRNA is released from the post-spliceosomal com-

plex and is prepared to be transported to the cytosol. The snRNPs dissociate from

the post-spliceosomal complex and can be reused for the next round of splicing cycles,

whereas the intron lariat is linearized by the lariat intron debranching enzyme and

degraded by RNases.

Interestingly, besides the canonical sequential spliceosomal assembly, it was also pro-

posed that the spliceosome can exist in a form which is already assembled and nearly

functional (Stevens et al., 2002). The yeast penta-snRNP, without pre-mRNA, was

isolated under low salt condition, and it exhibited catalytic function when pre-mRNA

and some additional splicing factors were added.

Structural studies of snRNPs and spliceosomes With years of biochemical re-

search, the big picture of the enigmatic splicing mechanism has become to a great

portion well understood. The compositional dynamic nature of spliceosomes has also

been explored by mass spectrometry. However, to clarify the functions of all compo-

nents in this big machinery, and how they interact with each other, structural studies

are indispensable. High-resolution structures of important fragments of snRNPs and

spliceosomes have been obtained by X-ray crystallography. The U1 snRNP from HeLa

cells, determined at 5.5 Å resolution (Pomeranz Krummel et al., 2009) or 4.4 Å reso-

lution (Weber et al., 2010), has been the only structure of a quasi-full snRNP solved

by crystallography so far. Due to the compositionally and conformationally dynamic

structure, as well as the large size of the particles (e.g. tri-snRNP: ∼1.7 MDa; spliceo-

some: ∼5.5 MDa), single particle electron microscopy (single particle EM) has been

used as the main tool for elucidating the structures of full snRNPs and spliceosomes.

Three dimensional (3D) structures of snRNPs and snRNP components obtained by

single particle EM are listed in table 1.2:
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Table 1.2:

Molecule Publication

snRNPs or snRNP components

human U1 snRNP (Stark et al., 2001)

human SF3b (component of U2 snRNP and the

U11/U12 di-snRNP)

(Golas et al., 2003)

yeast U11/U12 di-snRNP (Golas et al., 2005)

human U5 snRNP (Sander et al., 2006)

U4/U6 di-snRNP (Sander et al., 2006)

U4/U6·U5 tri-snRNP (Sander et al., 2006)

spliceosomes

human A complex (Behzadnia et al., 2007)

human B∆U1 complex (Boehringer et al., 2004)

human C complex (Golas et al., 2010)

supra spliceosome (penta-snRNP) (Azubel et al., 2004)

Nevertheless, solving the 3D structures of other snRNPs and spliceosomes have

still been obstructed, mainly due to the heterogeneity of the sample. Notably, the

transition from Bact to C complex involves significant alteration in components and

the structure, therefore it becomes an interesting but challenging topic for structural

studies. Regardless of the difficulty in 3D reconstruction, image analyses with single

particle EM have been performed at the 2D level. For example, the structural re-

modeling from Bact to B∗ was observed (Warkocki et al., 2009). In addition, antibody

labeling on human B complex (Wolf et al., 2009) and yeast tri-snRNP (Häcker et al.,

2008) helped us to localize the components and might provide hints of structure related

functions. Besides the “missing gaps” of 3D structures in the splicing cycle, resolutions

for 3D structures obtained by single particle EM so far have been restricted to max 10
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Å (Golas et al., 2003). With the optimization to reduce sample heterogeneity, as well

as improvements on image processing technique and calculation power, high-resolution

cryo-EM structures of snRNPs and spliceosomes are expected to be available one day,

and they will give us an insight into the profound mechanism of splicing.

1.3 Aim of the work

Single particle cryo-EM has been so far the most suitable method to study the structure

of large RNP complexes such as the spliceosome and ribosome. Their bulky size and

dynamic nature increase the difficulty for crystallography, and the phosphate groups in

the RNA provide additional contrast for EM. However, due to the sample heterogeneity,

which can be a result of compositional difference or structural flexibility, structures have

been obtained with restricted resolution. To reconstruct structures of RNP complexes

at higher resolution requires an increase in homogeneity of the sample. To improve the

cryo-EM in RNP complexes, three strategies were performed in this thesis:

1. In silico purification, as introduced in section 1.1.2.9, was applied to resolve the

heterogeneity of the recorded dataset (Chapter 3.1).

2. Due to the high heterogeneity in the sample, computational resolving could not be

performed efficiently. Therefore, reducing sample heterogeneity at the biochemi-

cal level was a primary goal. One approach is to optimize the sample purification

procedure. This thesis was mainly focussed on:

(a) Optimization of the crowding agent (Chapter 3.2).

(b) Replacing affinity column by selective precipitation (Chapter 3.2).

(c) Purification under low salt concentration environment (Chapter 3.4).

3. The other approach to reduce sample heterogeneity is to improve the sample

preparation for TEM. In this thesis, crosslinking between protein and RNA
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was utilized in the fixation procedure besides the conventional protein-protein

crosslinking (Chapter 3.3).

It was expected that the optimization of sample preparation increases the stability

of particles, therefore the heterogeneity becomes resolvable by in silico sorting. These

methods might be used as general procedures for obtaining high-resolution structures

of RNP complexes.



Chapter 2

Materials and Methods

2.1 Material

2.1.1 Chemicals

Table 2.1:

Chemical Supplier

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

(HEPES)

Sigma-Aldrich

6-aminocaproic acid Sigma-Aldrich

Acetic acid ester, ultrapure grade Fluka-Riedel-de-Haen

Acetobutyrate cellulose in ethyl acetate 0.5%

(Triafol)

Sigma-Aldrich

Acetone Merck

Adenosinetriphosphate (ATP) Amersham Biosciences

Alkylbenzyldimethylammoniumchlorid 0.5%

(Osvan solution)

Sigma-Aldrich

Ammoniumperoxodisulfate (APS) Carl Roth

Benzamidine hydrochloride hydrate Sigma-Aldrich

Continued on next page

37
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Table 2.1 – Continued from previous page

Chemical Supplier

Dimethyl sulfoxide (DMSO) Sigma-Aldrich

di-sodium hydrogen phosphate (Na2HPO4) Merck

Dithiothreitol (DTT) Carl Roth

Ethanol Merck

Ethyl acetate Fluka-Riedel-de-Haen

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich

Glucose Merck

Glutaraldehyde Electron Microscopy Sciences

Glycerol Merck

Iodoacetamide Sigma-Aldrich

Lauryl Maltose Neopentyl Glycol (LMNG) Affymetrix

L-Aspartate Sigma-Aldrich

L-Cysteine Sigma-Aldrich

Magnesium chloride Merck

Millipore water EMD Millipore

N-Ethylmaleimide Sigma-Aldrich

Polyethyleneglycol (PEG) 300 Fluka-Riedel-de-Haen

Polyethyleneglycol (PEG) 400 Fluka-Riedel-de-Haen

Polyethyleneglycol (PEG) 6000 EMD Millipore

Potassium chloride Merck

Potassium dihydrogen phosphate (KH2PO4) Merck

Potassium hydroxide Sigma-Aldrich

Precision Plus Protein Standards (Unstained) BIO-RAD

Roti-Aqua-Phenol Carl Roth

Rotiphorese 10x SDS-PAGE Carl Roth

Continued on next page
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Table 2.1 – Continued from previous page

Chemical Supplier

Rotiphorese Gel 30 (37,5:1) Carl Roth

snRNA marker Department of Cellular

Biochemistry, MPIbpc, Göttingen,

Germany

Sodium chloride Merck

Sodium hydroxide Merck

Spermidine Fluka-Riedel-de-Haen

Spermine Fluka-Riedel-de-Haen

Sucrose Merck

Tetramethylethylenediamine (TEMED) Carl Roth

Tween 20 Sigma-Aldrich

Uranyl formate Polyscience Inc.

2.1.2 Buffers

Table 2.2:

Buffer Composition

HeLa ribosome low salt gradient buffer 50 mM Bis-Tris pH 6.8

50 mM KCl

10 mM MgCl2

HeLa ribosome high salt gradient buffer 20 mM HEPES-K pH 7.5

500 mM KCl

5 mM MgCl2

Continued on next page
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Table 2.2 – Continued from previous page

Buffer Composition

HeLa ribosome sample buffer 10 mM HEPES-K pH 7.5

for low salt prepared sample 50 mM KOAc

10 mM NH4Cl

2 mM DTT

5 mM Mg(OAc)2

HeLa ribosome sample buffer 50 mM Bis-Tris pH6.8

for high salt prepared sample 50 mM KCl

5 mM MgCl2

2 mM DTT

2 mM ATP

HeLa spliceosomal C complex sample buffer 20 mM HEPES pH7.9

180 mM NaCl

1.5 mM MgCl2

snRNP sample buffer (Roeder D) 20 mM HEPES pH7.9

100 mM KCl

5 mM MgCl2

0.2 mM EDTA

2.1.3 Laboratory materials

Table 2.3:

Item Supplier

Carbon rods, highest grade Ringsdorff Werke GmbH, Bonn, Germany

Copper EM grids, 200 mesh square fine bar Science Services, Munich, Germany

Continued on next page
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Table 2.3 – Continued from previous page

Item Supplier

EM grids Quantifoil R2/2 Cu 200 mesh Quantifoil Micro Tools GmbH, Jena,

Germany

EM grids Quantifoil R3.5/1 Cu 200 mesh Quantifoil Micro Tools GmbH, Jena,

Germany

Ethane (liquid) Messer, Sulzbach, Germany

Filter paper, 90 mm Whatman (GE Healthcare)

Mica, 75x25 mm Plano, Wetzlar, Germany

Nitrocellulose, 0.2 µm Whatman (GE Healthcare)

Nitrogen (liquid) Air Liquide, Paris, France

Open-top centrifuge tubes polyclear SETON scientific, Petaluma, CA, USA

Parafilm “M” laboratory film Bemis Company, Neenah, WI, USA

PD MiniTrap G25 columns GE Healthcare, Munich, Germany

Sterile filters, 0.2 µm Millipore, Billerica, MA, USA

Zeba spin desalting columns, 7K MWCO Thermo Fisher Scienctific Inc., Rockford,

IL, USA

2.1.4 Special equipments

Table 2.4:

Item Source

Cryo electron microscope Titan Krios FEI, Eindhoven, the Netherlands

Cryo electron microscope CM200 FEG Philips, Eindhoven, the Netherlands

Cs corrector CEOS GmbH, Heidelberg, Germany

Eagle 4k CCD Camera FEI, Eindhoven, The Netherlands

Edwards E12E vacuum coating unit BOC Edwards, Kirchheim, Germany

Continued on next page
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Table 2.4 – Continued from previous page

Item Source

Falcon 2 CMOS Direct Electron Detector

camera

FEI, Eindhoven, the Netherlands

Peristaltic Pump LKB-Pump P-1 Amersham Pharmacia Biotech

Room temperature EM specimen holder Philips, Eindhoven, the Netherlands

TemCam F415 (slow scan 4K x 4K CCD

camera)

Tietz Video Systems, Germany

Vitrobot Mark IV FEI, Eindhoven, the Netherlands

2.1.5 Softwares

Table 2.5:

Program Source

Amira 5.2.2 Visualization Sciences Group (VSG, part of FEI)

Blender Stichting Blender Foundation, the Netherlands

http://www.blender.org/

CowEyes Boris Busche, Jan-Martin Kirves, Mario Lüttich (Stark lab)

ImageJ National Institutes of Health, Bethesda, MD, USA

IMAGIC-5 Image Science, Berlin, Germany

John Henry Boris Busche (Stark lab)

matplotlib (Hunter, 2007)

http://matplotlib.org/

NumPy http://www.numpy.org/

Python 2.6.5 Python Software Foundation, Beaverton, OR, USA

http://www.python.org

TVIPS EM-MENU Tietz Video System, Gauting, Germany

Continued on next page
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Table 2.5 – Continued from previous page

Program Source

UCSF Chimera Resource for Biocomputing, Visualization, and Informatics

(RBVI)

at the University of California, San Francisco

(Pettersen et al., 2004)

2.2 Methods

2.2.1 Purification of RNP complexes

2.2.1.1 HeLa spliceosomal C complex

HeLa spliceosomal C complex was purified and kindly provided by Dr. Sergey Bessonov

and Dr. Elmar Wolf (Department of Cellular Biochemistry, Max Planck Institute for

Biophysical Chemistry, Göttingen, Germany) as previously described (Bessonov et al.,

2008). In summary, 32P -labeled PM5 RNA, which had a 5’-MS2 stem-loops but lacked

a 3’ splice site, was incubated in the nuclear extract, so that the splicing reaction was

stalled before the exon ligation. Then a sedimentation purification step was performed

using a glycerol gradient, and the fractions containing spliceosomes were identified by

radioactivity counts. Prior to the splicing reaction, PM5 RNA was pre-incubated with

an MS2-MBP fusion protein. After fractionation, affinity purification over an amylose

column which binds the MBP tag was used. MS2-MBP-tagged C complexes were eluted

with maltose. Eluted sample was prepared for EM using the GraFix methodology.

2.2.1.2 Optimization of crowding agent and selective precipitation of hu-

man snRNP

HeLa nuclear extract was kindly provided by Department of Cellular Biochemistry, Max

Planck Institute for Biophysical Chemistry, Göttingen, Germany. Nuclear extract was
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dialyzed against glycerol, glucose, or sucrose. Dialyzed nuclear extract was precipitated

with PEG6000, from 0 to 21%. The precipitated pellets were resuspended, and the

RNA content was extracted by phenol. Urea polyacrylamide gel (10%) electrophoresis

was performed to analyze the snRNA.

2.2.1.3 Isolation of the yeast snRNP

Yeast cells (Saccharomyces cerevisiae) were harvested at an OD600 of 2. Harvested

cells were washed with Millipore water, and were diluted in the Roeder D buffer to

a volume twice as big as the original cell volume, with 20% (w/v) sucrose, 10 mM

DTT, 10% PMSF, and 10 mM benzamidine. Cell suspension was frozen in liquid ni-

trogen as small droplets and fractured with a ZM 200 Ultra Centrifugal Mill (Retsch,

Haan, Germany). Cell debris in the thawed extract such as cell walls was pelleted

by centrifugation at 30,000 g for 30 minutes, with 10 mM N-ethylmaleimide, 10 mM

iodoacetamide, 10 mM benzamidine hydrochloride hydrate added, followed by cen-

trifugation at 100,000 g for 1 hour to obtain an S100 extract. 7% (v/v for the final

concentration) of PEG300 was added and incubated with S100 extract for 20 minutes

to precipitate impurities, which was later pelleted and removed by centrifugation at

30,000 g for 30 minutes. The snRNP in the supernatant was then precipitated with

20% of PEG300 in total for 1 hour, followed by centrifugation at 15,000 g for 20 min-

utes. The pellet was resuspended in Roeder D buffer with 5% sucrose containing 5 mM

DTT in addition. The sample solution was fractionated on a 10 – 30% sucrose gradient

(SW40 rotor (Beckman Coulter, Brea, USA), 33000 rpm, 16 hours), and the snRNP

peak was identified by SDS-PAGE analysis. The fractions containing snRNP were

pooled and concentrated by precipitation with 15% PEG400 and resuspension. Then

the sample solution was fractionated on a second 10 – 30% sucrose gradient (SW60 Ti

rotor (Beckman Coulter), 28500 rpm, 16 hours). The peak fractions were collected,

precipitated with 20% PEG300, resuspended in Roeder D buffer containing 0.001%

(w/v) LMNG (Affymetrix) but without DTT, and ready for the further GraFix pro-
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cedure. Every step was performed at 4◦C, except for the resuspension of PEG pellets,

which was performed in room temperature.

2.2.1.4 Isolation of the HeLa 80S ribosome under high and low salt condi-

tions

HeLa ribosomes prepared under high salt conditions were kindly provided by Dr. Ashwin

Chari. HeLa cytosolic extract supplemented with protease inhibitors (PMSF, N-

ethylmaleimide, iodoacetamide, benzamidine) was centrifuged at 30,000 g for 30 min-

utes to yield the S30 supernatant. The S30 was pelleted through a 30% sucrose cushion

(500 mM KCl, 5 mM MgCl2) in a Type 45Ti rotor (Beckman Coulter, Brea, USA) at

40,000 rpm for 5 hours. The pellet was resuspended in the high salt gradient buffer

containing 150 mM KCl. The sample solution was loaded onto a 10 – 30% sucrose gra-

dient containing 500 mM KCl. The fractions containing 80S ribosomes are collected

and concentrated by pelleting with ultracentrifugation at 40,000 g for 12 hours. The

ribosome pellet was resuspended in buffer with 50 mM Bis-Tris pH6.8, 50 mM KCl, 5

mM MgCl2, 2 mM ATP, 2 mM DTT, and cycloheximide (10 µg/mL).

For the preparation under low salt condition, S30 was prepared and pelleted through

a 30% sucrose cushion with 50 mM KCl and 10 mM MgCl2 instead. To increase the

solubility, the buffer to resuspend the pellet was adjusted to 150 mM KCl. Two steps

of ultracentrifugation with 10 – 30% sucrose gradient (50 mM KCl, 5 mM MgCl2)

were performed to purify the sample. The fractions containing 80S ribosomes were

collected and concentrated by pelleting with 10% PEG6000. Finally, the pellets were

resuspended with buffer containing 10 mM HEPES-K pH7.5, 50 mM KOAc, 10 mM

NH4CL, 2 mM DTT, 5 mM Mg(OAc)2, and cycloheximide (10 µg/mL).

The potassium salt concentrations in every purification step are listed in table 2.6

and compared with the conventional purification under high salt condition:
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Table 2.6:

procedure high salt preparation low salt preparation

cushion 500 mM KCl 50 mM KCl

resuspension after cushion 150 mM KCl 150 mM KCl

ultracentrifugation 500 mM KCl 50 mM KCl

resuspension and GraFix 50 mM KCl 50 mM KOAc

2.2.2 GraFix

There are several sources of disruption of particles during cryo-EM sample preparation,

which should be taken care. For example, since sugars reduce the contrast in cryo-EM,

the sugar, which stabilizes the molecule, needs to be removed before vitrification. In

addition, a carbon film is used to adsorb the molecule for the sample grid, but a dis-

rupting force can be created during the interaction. Therefore, fixatives have been

commonly used for crosslinking the cryo-EM sample. An optimized fixation procedure

named GraFix was established in our lab and has become a general procedure (Kastner

et al., 2008).

In GraFix, the fixative is prepared as a gradient along with the sugar solution, and ul-

tracentrifugation is performed. Particles do not suddenly encounter high concentration

of fixatives, so the intramolecular crosslink can be formed mildly before aggregation

occurs. In addition, the centrifugal force can disrupt unwanted intermolecular crosslink-

ing. Even if aggregation unfortunately occurs, the aggregate migrates to the bottom of

the gradient due to its higher sedimentation coefficient, thus does not reduce the final

sample quality. For highly heterogeneous samples such as the spliceosomal B complex,

the GraFix method has shown to significantly stabilize the molecules and to increase

the image quality in EM images (Kastner et al., 2008).
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Figure 2.1: Preparation of variant GraFix methods. Fixatives can be added into the light or

heavy sugar solutions (left), followed by gradient forming (right). (a) Sugar gradient without

any fixatives. (b) Conventional GraFix method with glutaraldehyde as fixative in the heavy

sugar solution. (c) PMPI as fixative in the heavy sugar solution. (d) Double fixation with

PMPI in the light sugar solution and glutaraldehyde in the heavy sugar solution.

One of the most commonly used fixatives in biological EM is glutaraldehyde. Glu-

taraldehyde mainly crosslinks the ε-amino groups of lysines, but was observed to

crosslink tyrosines, histidines, and sulfhydryl residues in some reactions (Habeeb and

Hiramoto, 1968). However, for cryo-EM studies on RNP complexes, fixatives for RNA-

protein crosslinks are not commonly utilized. P -maleimidophenyl isocyanate (PMPI)

was used innovatively here as an RNA-protein crosslinker. PMPI crosslinks a thiol

group with a hydroxyl group, which in our case would be cysteine and the 2’ hydroxyl

group on the ribose backbone of the RNA in the ideal situation. However, it can also

react with water and hence loses crosslinking activity for the hydroxyl group (Annun-

ziato et al., 1993). Therefore, DMSO was used here as a solvent to predissolve PMPI.

The chemical formulas of glutaraldehyde and PMPI are shown in figure 2.2.

The conventional GraFix method uses the glutaraldehyde as a single fixative. Here
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Figure 2.2: Chemical formulas of glutaraldehyde and PMPI. The functional groups of

glutaraldehyde which react with amino groups of lysines are circled in orange. In PMPI, the

functional group which reacts with the hydroxyl group is circled in pink, and the functional

group which reacts with the thiol group is circled in green. Chemical formulas were drawn

with eMolecules (http://www.emolecules.com/).

PMPI was used as the single fixative, or in a reverse gradient with glutaraldehyde to

perform a double fixation (figure 2.1). Fixatives were added into light or heavy sugar

solutions, and the gradient was prepared by a gradient former (Gradient Master, Bio-

Comp Instruments, Canada). Glutaraldehyde was added into the heavy sugar solution

in 0.1% (v/v) final concentration. PMPI was predissolved in DMSO, and then added

to the heavy or light solution for a final concentration of 0.2 mg/mL. Samples were

loaded on the gradients immediately after the gradients were prepared. The gradients

were centrifuged in a Sorvall Centrifuge Evolution RC (Thermo Electron, Langensel-

bold, Germany) or Optima L-100XP Ultracentrifuge (Beckman Coulter, Brea, USA),

with a Sorvall TH660 or Beckman SW60 Ti rotor respectively. The temperature was

maintained at 4 ◦C through the whole process, and the centrifugation conditions are

listed in table 2.7:

Gradients were harvested manually into 200 µL fractions after GraFix. To reduce

the inter-molecular reaction from excess fixatives, each fraction was quenched with 25

mM final concentration of aspartate (for glutaraldehyde) or cysteine (for PMPI).

http://www.emolecules.com/
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Table 2.7:

Sample Sugar Gradient(%,w/v) Speed(rpm) Time(hrs)

Hela ribosome sucrose 15 – 45 22500 14

HeLa spliceosomal C complex glycerol 10 – 30 18500 18

yeast snRNP sucrose 10 – 30 28500 16

2.2.3 EM sample preparation

2.2.3.1 Preparation of continuous carbon film and holey carbon grids

Carbon films and grids were kindly prepared by Frank Würriehausen.

Mica was here used as the coating carrier for continuous carbon films. In order to obtain

a smooth surface which does not have any direct air contact before, mica (Plano G250-

1, 25x75 mm) was freshly split. With the fresh side exposed, the mica was placed

in an Edwards E12E vacuum coating unit (BOC Edwards, Kirchheim, Germany).

Electric current was conducted through two carbon rods (Ringsdorff Werke GmbH,

Bonn, Germany) as electrodes in the device, and carbon was sputtered from the contact

surface of the carbon rods. To prevent heterogeneous distribution of carbon on the

mica, carbon was coated on the mica only indirectly. This was achieved by sheltering

mica under a piece of metal to prevent direct exposure, and the sputtered carbon was

reflected onto the mica.

For evaluating sample quality, low-cost grids with irregular holes were prepared. Self-

made triafol film with holes was covered on copper grids. Then carbon was directly

sputtered as previously described onto this triafol film. To dissolve and remove the

triafol film between the carbon layer and the copper grids, these grids were incubated

in ethyl acetate overnight and air-dried.

In order to record images which were used for further analysis and 3D reconstruction,

Quantifoil grids (Quantifoil Micro Tools GmbH, Jena, Germany) were used. Triafol
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Figure 2.3: Preparation of negative stained samples. (a) Sample solution was loaded into

a well of a homemade teflon block. (b) A piece of carbon-coated mica was floated on the

top of the well. (c) Floated thin carbon film adsorbed sample molecules over time. (d) (e)

The carbon film was transferred to a new well which contained uranyl formate by a holey-

carbon coated copper grid. (f) After removing residual stain solution, the sample grid was

left air-dried.

films with regular sizes of holes (hole radius=3.5 µm with 1 µm spacing or hole radius=2

µm with 2 µm spacing) were already coated on the grids. Procedures for carbon coating

were as previously described.

2.2.3.2 Preparation of negative stained samples

Negative staining, which provides high contrast with a relatively simple preparation

procedure, is best suited for quick sample quality estimation, as well as yielding a

starting structure for an unknown molecule. 2% uranyl formate was dissolved in double

distilled water. The solution then was centrifuged at 13000 rpm for 20 minutes at

4◦C in order to pellet excess and crystalized uranyl formate. 100 µL of the stain

supernatant was transferred to a well of a home-made teflon block. 25 µL of sample
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solution was filled in another well. A piece of carbon coated mica was floated on the

surface of the sample well to adsorb molecules. Different sample concentrations require

different adsorption times. An optimum adsorption time is obtained when particles

fully distribute on the carbon but do not attach to each other. After adsorption, a

holey-carbon coated copper grid was used to lift out the carbon film, with the carbon

side of the grid down. The grid was transferred to the well of stain immediately with

forceps, and was incubated on the stain for 1 minute. To maintain a decent thickness

of the stain, the residual stain on the grid was removed by blotting with KimWipes

(Kimberly-Clark Corporation). The negative stain procedure is illustrated in figure 2.3.

2.2.3.3 Preparation of unstained cryo samples

One of the advantages of cryo EM is that it preserves the native state of biomolecules in

aqueous solution. Besides, the unstained cryo sample also offers the possibility to reach

higher resolution compared to negatively stained samples. Therefore, samples with a

known structure were prepared with unstained cryo procedure, which is illustrated

in figure 2.4. The sugars present in the sample solution result in a reduction of the

contrast for EM imaging, thus buffer exchange of the sample solution was performed

with Zeba spin desalting columns, 7K MWCO (Thermo Fisher Scienctific Inc.). Similar

to the negative stain procedure, carbon coated mica was floated on the surface of the

sample solution in a well, and the thin carbon film was incubated for a certain time

to adsorb proper amounts of particles. Then the carbon film was lifted out onto a

Quantifoil copper grid, and 3 to 5 µL of distilled water was applied to the grid. The

vitrification procedure was executed with a Vitrobot Mark IV (FEI). To maintain the

thickness of ice which provides the best contrast, excess sample solution was removed

by blotting with filter papers. Then the grid was immediately plunged into liquid

ethane cooled by liquid nitrogen to vitrify. The particles should be embedded in a thin

layer of amorphous ice when the vitrification procedure is quick enough, so that the
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Figure 2.4: Preparation of unstained cryo samples. (a) Floated carbon film with adsorbed

molecules was fished with a Quantifoil copper grid by forceps. (b) Residual buffer was blotted

with filter papers. (c) The grid was immediately plunged into liquid ethane which was cooled

down by liquid nitrogen. (d) Vitrified sample grid was transferred and stored in liquid

nitrogen.

water did not have time to form crystals. The cryo-grids were stored in liquid nitrogen

before EM imaging.

2.2.4 EM analysis

2.2.4.1 Image acquisition with TEM

Negative stained samples were imaged at room temperature with a Philips CM200

FEG TEM at an acceleration voltage of 160 kV. Images were recorded on a 4K x 4K
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Charge Coupled Device (CCD) camera (Tietz Video Systems, Gauting, Germany).

Cryo samples were imaged in liquid nitrogen temperature with a Titan Krios TEM

(FEI) at an acceleration voltage of 300 kV on a 4K x 4K Eagle 4k CCD camera or a

Falcon 2 CMOS Direct Electron Detector camera (FEI). Images were taken at -1.5 to

-3 µm defocus. Parameters of image recording for different sample are listed here in

table 2.8:

Table 2.8:

Sample Preparation Camera Magnification Binning Pixel size

Hela ribosome (high salt) cryo Eagle 59000 2 2.6 Å/pix.

Hela ribosome (low salt) cryo Falcon 2 37000 1 2 Å/pix.

HeLa spliceosomal

C complex

cryo Eagle 47000 2 3 Å/pix.

yeast snRNP negative CCD camera 66000 2 3.3 Å/pix.

2.2.4.2 Image analysis

Particles from the TEM micrographs were selected semi-automatically with JohnHenry

(custom-made software, Boris Busche). Image processing was mainly performed with

a combination of IMAGIC-5 (Image Science) and CowEyes (custom-made software).

The general routine procedure was illustrated in figure 1.4. An overview for image

processing of different samples is listed here in table 2.9:

CTF correction The softwares used in this work were defcorr inc (Sander et al.,

2003) and CTF correction module of CowEyes (Boris Busche, unpublished). In these

two softwares, CTF correction works on averaged power spectra of single particles.

The class averages of power spectra are approximated by the CTF correction softwares
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Table 2.9:

Sample CTF Methods to obtain the initial structure

correction

Hela ribosome yes class averages obtained from reference-free alignment

de novo angular reconstitution

HeLa spliceosomal yes initial structure from random conical tilt as reference

C complex (Golas et al., 2010)

class averages obtained from alignment with references

angular reconstitution with known angular information

yeast snRNP no class averages obtained from reference- free alignment

angular reconstitution using angular information from

projections of the yeast spliceosome Bact model

with variable parameters. CTF parameters such as astigmatism, defocus, B-factor, and

amplitude-contrast proportion were estimated, and the phase correction was performed.

Notably, the cryo TEM in our lab is equipped with a Cs corrector, so the spherical

aberration Cs value was set close to zero for the CTF approximation here. The envelope

decay was only corrected (as amplitude correction) at late stages of refinement directly

on the 3D model. Because in the early stage of image processing, without reliable

alignment and averaging, noise and structural details might be undistinguishable, it

can lead to over-amplification of the noise.

Refinement Refinements of all models were performed manually, except the final

model of GraFixed HeLa 80S ribosome purified under low salt condition was automat-

ically refined by RELION (Scheres and Chen, 2012), with the structural heterogeneity

resolved.
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Results

3.1 Structural Analysis of Human Spliceosomal C Com-

plex

The human spliceosomal C complex was previously reconstructed by single particle

cryo-EM using random conical tilt (RCT) (Golas et al., 2010). However, the final

resolution was limited to 20 – 29 Å due to the heterogeneity and flexibility. In order

to better resolve the heterogeneous states and further improve the resolution, a larger

dataset consisting of about 200,000 particles was recorded. Class averages were calcu-

lated without any reference, and projections of the RCT model were used as an anchor

set for angular reconstitution. The reconstructed model is shown in figure 3.1. The

structure of the model, especially the “head” part was not well defined, and this was

due to averaging particles representing different heterogeneous states.

To overcome this heterogeneity and to elucidate different states, resampling and 3D

MSA classification were performed. 3D class average models were examined carefully,

and those with distinct features were selected as references for supervised classification.

After several rounds of refinement, a variance on the “belly” was observed. Moreover,

it seemed that in most cases the integrity of the “belly” is related to the unity of the

55
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Figure 3.1: Structure of human spliceosomal C complex. (a) The 3D model consists of

33000 particles. (b) An electron micrograph of vitrified C complex. (c) Representative class

averages which were used to reconstruct the 3D and their reprojections.

overall structure. With this result, supervised classification was performed, and parti-

cles having the “belly” density, which were supposed to be more stable, were selected

for further analysis (figure 3.2(a)). As the “head” part displayed the most dominant

heterogeneity, 3D MSA classification was performed focusing on this region. The ob-

served degree of heterogeneity was greater than expected: rather than few states of

definite variance, it showed many hardly resolvable states without a systematic pattern.

In addition, heterogeneity or flexibility was also observed in the “platform” region.

In some of the states, the “platform” density had a contact with the “back” region
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Figure 3.2: Analysis on structure variance of human spliceosomal C complex. (a) Sorting

scheme of C complex structures. (b) Structural variance of the C complex. Models were

generated by resampling and 3D MSA classification, and refined with supervised classification.

Representative refined 3D models are listed here in green, blue, and purple. For comparison

purpose, contours of models are overlayed (most right column), and the variance of interest

is emphasized with corresponding colors.
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(figure 3.2(b)). The in silico purification was continued to resolve the heterogeneity

further until the amount of particles within one group reached the lowest limit for 3D

reconstruction. Unfortunately, the heterogeneity still could not be resolved in this step.

Both conformational and compositional heterogeneity were highly present in the C

complex structure, and the heterogeneity could not be sufficiently resolved in silico

with a limited amount of particles and the current image processing tools available.

This might be due to the biochemical instability of the sample, which has exceeded

the applicable level for in silico sorting. Therefore, reducing the heterogeneity before

image acquisition seemed to be an essential task. This can be achieved by two different

approaches: stabilizing the biomolecules during purification, or prevent molecules from

disruption during the sample preparation for TEM. For particle stabilization during

purification, we mainly focused on optimization of the crowding agents (see the next

section: 3.2) as well as reduction of the salt concentrations (see section 3.4). Be-

sides, chromatography was replaced by selective precipitation (discussed in the next

section: 3.2). For particle stabilization during TEM sample preparation, an innovative

RNA-protein crosslinker for TEM sample was applied (discussed in 3.3). To simplify

the experiment design, optimization of the purification procedure was performed using

endogenous snRNP as the experimental material instead of the C complex. This is be-

cause that purification of the C complex involves trapping a time-dependent assembly,

while the endogenous snRNP was already assembled in vivo.

3.2 Purification and Structure of Yeast Endogenous snRNP

Based on the assumption that the integrity of the complex supports structural sta-

bility, in order to obtain a homogeneous and stable structure, the sample purification

method could be optimized to minimize the damages during the procedure. Optimiza-

tion of endogenous snRNP purification was here focussed on two topics: improvement
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Figure 3.3: Human snRNA composition of precipitates from different concentration of

PEG6000 in different sugar environments.

of crowding agent, and establish a chromatography-free purification procedure.

Affinity-based procedures have the advantage of high specificity for purification, and

has been commonly applied to purify snRNPs and spliceosomes (Behrens and Lührmann,

1991). However, surface interactions between the antibody and the molecule might

compete with the intramolecular interaction, therefore the assembly of the complex

might be disrupted. There are two commonly used purification methods in which no

chromatography is involved. One is to sediment the target molecules through a sugar

cushion by ultracentrifugation. This method has been used for ribosome purification

(Belin et al., 2010). However, this method requires high abundance of the molecule

in the cell, therefore might not apply for the much less abundant snRNPs. The other

method is selective precipitation. Different approaches of protein selective precipita-

tion were described in detail by Lovrien and Matulis (2001). In this work, polyethylene

glycol (PEG) was used for selectively precipitating endogenous snRNPs. For more than

half century, PEG precipitation has been applied for protein concentration and purifi-

cation (Stocking, 1956). PEG is inert and does not interact directly with proteins;

instead, PEG occupies the solvent so that the proteins have reduced solubility and

precipitate (Atha and Ingham, 1981).
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Figure 3.4: Structural analysis of yeast snRNP. (a) Endogenous snRNP was identified with

the Prp8/Brr2 double bands on the SDS-PAGE. (b) Raw TEM micrograph of the yeast

snRNP. The scale bar represents 30 nm (c) Representative class averages of yeast snRNP

and corresponding re-projections from the 3D model. (d) One of the class averages from

previously calculated 2D images of yeast tri-snRNP for comparison. The scale bar represents

10 nm. Reprint from (Häcker et al., 2008) with permission. (e) 3D model of the yeast snRNP.
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Glycerol has been generally used in our standard snRNP purification method as crowd-

ing agent in the buffer and for gradient sedimentation (Häcker et al., 2008). To test

other crowding agents, HeLa nuclear extract was dialyzed against glycerol, sucrose, or

glucose. Different amounts of PEG6000, from 3% to 21% (w/v), were added to the

extract. Most of the snRNP precipitated at 3%, and at 12.5% almost all the snRNP

was precipitated. In addition, higher quantity of snRNP was recovered in the extract

containing sucrose compare to the standard glycerol (figure 3.3).

Due to the lack of availability of HeLa nuclear extract, the experiments were per-

formed with yeast. During the purification, yeast endogenous snRNP was identified

with the Prp8/Brr2 double bands on the SDS-PAGE as well as single particle cryo-EM.

For the result of optimization, three steps of sucrose gradient, together with precipi-

tation by combination of PEG300 and PEG400, was able to give a satisfactory yield,

in terms of quantity and quality. For cryo-EM analysis, the density of particle distri-

bution like figure 3.4(b) required only 1 minutes for the carbon film adsorption. In

comparison, immunoaffinity methods with anti-TAP column and the standard anti-

m3G antibody (Behrens and Lührmann, 1991) have also been tested starting with a

comparable amount, but led to a much larger loss of quantity. Even with an overnight

carbon film adsorption, the particle distribution never reached the same level. Ac-

cording to the sedimentation in the 10 – 30% sucrose gradient, the size of the purified

yeast snRNP is about 26S. The mass spectrometric analysis suggested that the purified

snRNP contains protein from U4, U5, and U6 snRNP (appendix A.1).

Around 20,000 negative stained particles of yeast snRNP were imaged with the elec-

tron microscope and analyzed (figure 3.4(b, c)). The calculated 2D class averages were

structurally very comparable to the known yeast tri-snRNP (Häcker et al., 2008)(fig-

ure 3.4(d)). The initial low resolution 3D structure of yeast snRNP was calculated

from the class averages(figure 3.4(e)).
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3.3 Crosslink RNP with PMPI: HeLa 80S ribosomes as

an example

Besides sample purification, the subsequent sample preparation for EM imaging can

cause destabilization of the particles. For example, the forces the carbon foil applies

on the particles during adsorption are strong enough to disrupt the particles struc-

tural integrity. Therefore, crosslinkers have been applied as fixatives to enhance the

intramolecular stability. The GraFix method provides good intramolecular fixation,

while the intermolecular crosslinks, yielding aggregates, are significantly suppressed

(Kastner et al., 2008). Glutaraldehyde has been commonly used in the GraFix proce-

dure as a protein-protein crosslinker. In contrast, even though RNP complexes such

as spliceosomes and ribosomes have been popular targets for structural studies in the

field of single particle EM, fixatives for RNA-protein crosslinks are not commonly uti-

lized. Here the fixative p-maleimidophenyl isocyanate (PMPI) was innovatively used

as an RNA-protein crosslinker for EM samples. However, the hydroxyl groups of the

sucrose in the gradient solution can also potentially be crosslinked instead of the 2’

hydroxyl group of the RNA. Moreover, PMPI reacts with water and loses the activity

for hydroxyl crosslinking (Annunziato et al., 1993) , therefore it has been only used

on small molecules with DMSO as a solvent, mainly for immunochemistry (Fox et al.,

2004; Wang et al., 2007). The intramolecular interaction in the RNP macromolecules is

much more complicated than the small molecules, so we tried to test if PMPI can serve

as a fixative for large RNP complexes. In the following experiments, RNP complexes

were dissolved in regular water-based buffers instead of DMSO. To better preserve the

reactivity of PMPI, the PMPI powder was initially dissolved in DMSO, and freshly

added into the sugar solution just before gradient preparation and centrifugation.

The eukaryotic 80S ribosomes were selected as the model system for proof of con-

cept experiments for testing the crosslinking effect of PMPI. Ribosomes are relatively
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Figure 3.5: Structures of HeLa 80S ribosomes under the effect of polyamine and PMPI. (a)

Raw micrographs and (b) class averages of the ribosomes with different GraFix preparation.

(c) Upper row: ES7L was stabilized by polyamine and PMPI. Lower row: the position of L1

stalk was altered and the occupancy of E-site tRNA increased in the presence of PMPI. Model

for the glutaraldehyde control preparation is shown in green, glutaraldehyde with polyamine

preparation in dark blue, and PMPI with polyamine preparation in purple. Overlays of the

contours are displayed in the right-most column and illustrated with the corresponding colors.

The block of light blue (60S) and yellow (40S) are painted according to the contour of the

glutaraldehyde control model. The scale bar represents 30 nm.
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Figure 3.6: GraFix with PMPI might alter the Euler angle distribution. (a) Euler angle

distribution of the ribosome models with different GraFix preparation. In the PMPI with

polyamine preparation, a new population of the angular distribution was observed, and it is

emphasized with a purple circle. A class average representing this orientation is shown in

(b). The map of the angular distribution was plotted with matplotlib basemap toolkit.

stable and homogeneous compared to spliceosomes, but also present some degrees of

flexibility, which can be further stabilized. Notably, eukaryotic ribosomes possess RNA

expansion segments, which are exposed on the surface and known to be very dynamic.

We assume that the RNA-protein crosslinking effect can be clearly observed on eu-

karyotic ribosomes. Besides PMPI, stabilization effects of polyamines were also tested

here. Polyamines have been used in prokaryotic 70S ribosome for stabilizing the struc-

ture and minimizing motion (Schuwirth et al., 2005). The polyamines used here were

a mixture of 0.6 mM spermine and 0.4 mM spermidine. Since the polyamines react
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Figure 3.7: ES7L was crosslinked on the ribosome core with PMPI. (a) Crystal structure of

yeast 60S ribosomal subunit (PDB: 3O5H) was fitted into 3D map of the HeLa 80S ribosome

from the PMPI with polyamine preparation group. RNAs are shown in navy blue, and

proteins are shown in white. The possible crosslinked protein L8A (L7A for the human

homolog) is emphasized in red. Model fitting and rendering were generated in UCSF Chimera.

(b) Contour illustration of the crosslinking effect from PMPI. Green contour with the blue

and yellow color block is the contour from the glutaraldehyde control group, and the extra

density of PMPI with polyamine preparation is illustrated in purple. The position of L7A is

labeled with red.

with the glutaraldehyde and might reduce the efficiency of crosslinking, it is important

to avoid co-presence of polyamines and glutaraldehyde. HeLa 80S ribosomes with the

same purification method were separated into three groups, with different pre-GraFix,

GraFix, and post-GraFix procedures. The differences are listed in table 3.1.

The 3D models of these three groups were reconstructed independently without

any starting reference and carefully compared (figure 3.5). Overall, in the presence of

the polyamines, longer segments of some RNA expansions could be visualized, indicat-

ing the stabilization effect on expansion segments. Moreover, PMPI further reduced

the flexibility of the expansion segments, especially ES7L. In addition, in the PMPI

sample with polyamines, the position of the flexible L1 stalk was altered, and more
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Table 3.1:

procedure glutaraldehyde glutaraldehyde PMPI

control + polyamine + polyamine

incubation with polyamine − + +

before GraFix for 2 hr

polyamine in − − +

gradient solution

fixative glutaraldehyde glutaraldehyde PMPI

after GraFix − − 2 hr post-fixation

with glutaraldehyde

after buffer exchange − + polyamine + polyamine

structural details were observed. The E-site tRNA occupancy was also higher in this

group, suggesting less structural heterogeneity in this location due to stabilization of

E-site tRNA binding.

For most of the biomolecules, the angular distribution of projections is not homo-

geneous. During sample grid preparation, particles are adsorbed onto the carbon film

with preferred orientations, which are mostly with larger attached surface. The an-

gular distributions of the three groups were plotted and compared in figure 3.6 (a).

One population of the angular distribution was observed exclusively in the PMPI with

polyamine group, and the class averages corresponding to this orientation is shown in

figure 3.6 (b). Adsorption of particles in this orientation was originally not preferred,
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unless a new landing surface was created by longer stabilized ES7L. The orientation of

the class averages was coherent to this explanation.

The fact that ES7L becomes increasingly stabilized in the PMPI-based GraFix prepara-

tion can be explained by a crosslinking effect of PMPI. Since crystal structures of HeLa

ribosome are not yet available, the crystal structure of yeast 60S ribosome (Ben-Shem

et al., 2011) was fitted into the map (figure 3.7(a)). In spite of significantly differ-

ent lengths of expansion segments, the core structure of ribosomes is well-conserved

through evolution. The protein L8A (L7A for human homolog) presented at the loca-

tion where the ES7L was crosslinked to the core, might be involved in such a potential

RNA-protein crosslink. From the amino acid sequence, there are three cysteines in

the human L7A protein. Unfortunately, the resolution for this EM map was not high

enough to indicate the exact crosslink-position.

3.4 Structure of HeLa 80S ribosome purified under low

salt condition

Electrostatic interaction is considered to be a significant force to maintain the assembly

of an RNP complex. The RNA is negatively charged and can directly interact with

positively charged surfaces of proteins. Therefore, under high-salt conditions, the in-

tramolecular electrostatic interaction might be destabilized, and this might cause the

dissociation of components or even the disassembly of the whole RNP complex.

The common purification procedures of eukaryotic ribosomes usually involve one or

more steps of preparation with a high concentration of salt (e.g. 500 mM KCl or

KOAc) (Dube et al., 1998). Since ribosomes are more rigid than most of the other
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Figure 3.8: Three steps of ultracentrifugation gradient purification of the HeLa 80S ribo-

some: (a) the first step, (b) the second step, and (c) the third step. Fractions containing 80S

ribosomes (labeled in blue) were collected and concentrated for the next step.
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Figure 3.9: Low salt preparation stabilizes the structure of HeLa 80S ribosome. (a) Raw

micrographs and (b) class averages of ribosomes prepared under low salt condition. (c) 3D

models of low-salt prepared ribosomes are reconstructed and compared with the model of

high-salt prepared ribosome. L1 stalk and P stalk are stabilized by low salt preparation and

GraFix. The scale bar represents 30 nm.
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biomolecules, those unwanted molecules can be efficiently removed by high concentra-

tion of salt, and this procedure is the so-called “salt wash”. However, some molecules

associated with the ribosome can also be lost during these steps. Comparing to the

ribosomes of prokaryotes or lower eukaryotes, the human ribosome is much less un-

derstood. Besides the long expansion segments, human ribosomes may also have more

interactions with other molecules. Not all of the ribosome associated molecules are

clarified, but also for the identified ones, some of them remain mysterious in function

(Doudna and Rath, 2002; Dinman, 2009). Assuming that some of the ribosome asso-

ciated molecules have an influence on structural stability of the ribosome, like some

components of the spliceosomal assembly, preventing these molecules from dissociation

might preserve a better-stabilized ribosome structure. Therefore, HeLa ribosomes here

were purified under a milder condition, where the salt concentration was mostly main-

tained at 50 mM. Instead of removing other molecules by high salt concentration, three

steps of gradient sedimentation with PEG precipitation were performed (figure 3.8).

To further confirm the stabilization effect of GraFix with glutaraldehyde and PMPI,

the purified ribosomes were either loaded onto a sucrose gradient with double fixatives

(as figure 2.1(d)) or a plain sucrose gradient.

3D models of the “GraFixed” and the unfixed samples were reconstructed indepen-

dently by single particle cryo-EM, and these two models were compared to the previ-

ously constructed model of salt-washed ribosome which was “GraFixed” with PMPI

and post-fixated with glutaraldehyde (see section 3.3). The L1 stalk and P stalk were

structurally better defined in the low salt preparation with GraFix (figure 3.9). In

addition, density for eEF2, though not with full occupancy, can be observed in the

GraFixed low salt model. Besides, an additional density next to the peptide exit tun-

nel was observed in both low salt models (figure 3.10). Different factors which bind

to the peptide exit tunnel on the eukaryotic ribosomes have been reported, such as

nascent chain-associated complex (NAC) (Pech et al., 2010) or Hsp70-based chaperone
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system (also known as the ribosome-associated complex (RAC)) (Leidig et al., 2013).

From the result of mass spectrometry analysis of the sample, besides the regular ribo-

somal proteins and the common ribosomal associating factor (e.g. eEF2), both RAC

and NAC were identified in our low salt ribosomal preparations (appendix A.2).
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Figure 3.10: Nascent chain-associated complex (NAC) or ribosome-associated complex

(RAC) was copurified under low salt condition (a) and was further stabilized by GraFix (b).

Model of the ribosome purified under high salt condition was manually segmented into 60S

(blue) and 40S (yellow), and the extra density, which represented NAC/RAC (labeled with

*) and extension of ES27, was shown in indigo (low salt purification without fixation) or red

(low salt purification with GraFix).
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Discussion

4.1 Structural Analysis of the Human Spliceosomal C Com-

plex

4.1.1 Regions with high structural heterogeneity might represent the

functional domains

Since the structure of human spliceosomal C complex was previously solved by RCT

(Golas et al., 2010), it was aimed here to determine the structure of the C complex

at higher resolution by analyzing and separating molecules in different conformational

and compositional states. The structure of the C complex was reconstructed by angu-

lar reconstitution using the previously solved structure obtained by RCT as the anchor

set. With a large amount (200,000) of recorded particles, different heterogeneous states

were able to be resolved by resampling and 3D MSA classification. The heterogeneity

mainly localized in three regions: “belly”, “head”, and “platform”. The “belly” showed

compositional heterogeneity. Interestingly, most structures which lack of the belly re-

gion had in other regions less defined density, indicating that deprival of components

might destabilize the full assembly. There are two possibilities for the absence of com-

ponents in the belly region. One possibility is that those components are not rigidly

73
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Figure 4.1: Comparison of heterogeneity domains and the localization of pre-mRNA in

human spliceosome C complex. (a) Highly heterogeneous domains of the C complex which

were analyzed in this work are labeled the circles. (b) Localization of pre-mRNA in the RCT

reconstructed C complex. Adapted from (Wolf et al., 2012) with permission.

incorporated in the complex, therefore they can be easily removed during purification.

The disruption during purification might also have less dramatic effect on the other

regions, and this can explain the instability of the structure. The other possibility is

that the belly region might be the active center of the C complex, hence assembly and

disassembly occur frequently here. The states which lack of the belly density might be

a transition state, with global compositional alterations.

Indeed, these highly heterogeneous regions might correspond to the critical catalytic

domains. Recently, antibody labeling on human spliceosomal C complex was performed

by Wolf et al. (2012). The possible anchoring site was shown to locate in the belly

region (figure 4.1). The anchoring site is located upstream of the branch site, and

serves as the anchor for U2 snRNP for assembly (Gozani et al., 1996). Hence, it is

very probable that intensive compositional alterations occur in this region. In addi-
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tion, the “head” is the region with the highest heterogeneity level, where the 5’ exon is

located. The composition and location of the 5’ exon binding components can be very

dynamic, so that the 5’ exon can be positioned for ligating to the 3’ exon in the second

step of the splicing reaction. Last but not least, the upper part of the “platform”

also displayed high heterogeneity in contrast to the relatively stable lower part of the

“platform”, which belongs to the 35S U5 snRNP. The heterogeneity in the upper part

of the “platform” might indicate structural rearrangements which might be involved

in the regulation of the catalytic activity of the core.

4.1.2 Outlook

Due to the unexpected high heterogeneity level, the structural analysis of human

spliceosomal C complex was not able to be performed at higher resolution. Resolving

all the heterogeneous states in silico requires a much larger dataset and new image

processing tool that are currently not available. With current hardware and software,

image recording and analysis of such a large dataset might be very inefficient. There-

fore, it is important to reduce the heterogeneity of the sample.

The heterogeneity of the C complex sample might be a combination of its intrinsic

dynamic nature and extrinsic disruption of the molecules. One force causing disruption

might be the salt concentration, and this could be proven by previous publication from

Golas et al. (2010) showing deprivation of C complex components from high salt treat-

ment. The other disruption force might come from the surface interaction of the affinity

column. To minimize the disruption introduced during purification, it is essential to

optimize the preparation procedure. Unfortunately, the current purification procedure

of the spliceosomal C complex requires high specificity, and no alternative strategy has

been developed so far. Besides the stabilization during purification, post-purification

stabilization is equally important. GraFix has been performed in our lab to enhance

the intramolecular stability (Kastner et al., 2008). Moreover, p-maleimidophenyl iso-
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cyanate (PMPI) was shown to further stabilize the ribosomes as an additional fixative

for GraFix. In fact, same PMPI-based GraFix was also performed on the C complex;

however, no significant improvement was observed. It is possible that the heterogeneity

of the C complex sample was too high, so that the stabilization effect of PMPI was too

subtle to be noticed.

4.2 Purification and Structure of Yeast Endogenous snRNP

4.2.1 Sucrose might be a better crowding agent for snRNP purifica-

tion

A living cell is full of biomolecules such as proteins or RNP complexes. Therefore, the

biomolecules function natively in a crowded environment. To preserve the complexes

in their native states during purification, the crowded environment is best simulated

with addition of crowding agents. Since the distribution of molecules in the cell is not

homogeneous, different molecules might have different behavior in different crowding

agents. For spliceosome or snRNP purification, glycerol has been often used as the

crowding agent and for gradient sedimentation in our department (Bach, 1989), whereas

sucrose has been used instead in some of the other labs (Schrier et al., 1985). In this

work, glycerol, sucrose, and glucose were tested as crowding agents for HeLa snRNP

purification, and the snRNP molecules were recovered in the sucrose solution with the

highest amount (figure 3.4(a)). The environment changing during the cell lysis might

be inevitable, but the sucrose could better prevent the snRNP from degradation than

glycerol. This finding can be helpful for future purification improvement of snRNP or

spliceosomes.
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4.2.2 Purification without affinity-based procedure reduces sample

degradation

The assembly of a snRNP or spliceosome complex might be based on surface interac-

tions of every component. Therefore, disruption on a single component might cause

global destabilization of the complex. The philosophy of the new purification strategy

performed in this work is to minimize the disruption force. Besides the optimization of

the crowding agent, the high specificity affinity-based method was replaced by a series

of PEG precipitation and gradient sedimentation. The new purification procedure has

led to a better yield of snRNP compared to the conventional affinity-based purification

method, suggesting snRNP particles might be degraded during the affinity purification.

During affinity purification, a new surface interaction is created between the antibody

and the epitope component. If the component is not tightly bound in the complex, the

component can be easily destabilized.

With the new purification strategy, not only the snRNP yield was increased, but also

the distribution of particle orientation was improved in single particle EM analysis.

The yeast tri-snRNP purified with the conventional method has displayed a highly

preferred orientation (Häcker et al., 2008). Though preference in the angular distribu-

tion facilitates antibody labelling in the 2D level, lacking different orientations makes

3D reconstruction very difficult. The broader angular distribution of the particles pu-

rified with the new strategy has made the 3D reconstruction of yeast snRNP first time

possible. The orientation of particles is affected by the interaction between the carbon

film and the surface charge distribution of particles. One of the observed views of the

particles purified with the new strategy (figure 3.4(c), second row) showed structural

similarity to the preferred view of particles from the old preparation (figure 3.4(d)),

indicating the overall structure was almost unchanged. Therefore, the improvement in

the angular distribution might be due to minor changes on the surface of the particles.
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According to the mass spectrometric analysis, the composition of the newly pu-

rified snRNP is undistinguishable from the conventionally purified yeast U4/U6·U5

tri-snRNP, so the minor structural difference might come from different intramolecular

interactions of the components.

4.3 Crosslink RNP with PMPI: HeLa 80S ribosomes as

an example

4.3.1 GraFix of 80S ribosome with PMPI

In this work, p-maleimidophenyl isocyanate (PMPI) was innovatively used on ribosome

as an RNA-protein crosslinker for single particle EM analysis. Theoretically, PMPI

was reported to react rapidly with water and lose the activity for hydroxyl crosslinking

(Annunziato et al., 1993). Besides, PMPI might crosslink proteins to sucrose in the

gradient solution instead of RNA. Nevertheless, the crosslinking effect of PMPI on the

80S ribosome was observed here. The expansion segment ES7L was tightly linked to

the protein L7A, indicating potential RNA-protein crosslink (figure 3.5(c)). In fact,

under very low density threshold, the ES7L-L7A linkage could be visualized in the

other two models of samples without PMPI fixation, as well as the high-resolution

model solved by Anger et al. (2013), suggesting that ES7L might natively have a weak

interaction with L7A. This interaction was probably fortified by crosslink with PMPI,

and was strong enough to sustain the force introduced by the carbon film adsorption,

therefore created an extra landing surface for the particle (figure 3.6). Unfortunately,

the ES7L in the high-resolution model (Anger et al., 2013) was not stable enough to

provide a reliable atomic model simulation, therefore the exact crosslink could not be

clarified.

The L1 stalk is one of the most flexible domains of the ribosome and is usually less
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well resolved compared to the global ribosome structure. In the PMPI-fixed sample

here, more structural details of the L1 stalk were visualized, suggesting a significant

stabilization effect of PMPI. Besides, the L1 stalk position in this model was slightly

different from the other models. It was generally believed that the L1 stalk could func-

tion as a lateral gate for the E site tRNA (Spahn et al., 2004; Chandramouli et al.,

2008). Coherently, the E site tRNA here also showed higher occupancy. With the

current model, the resolution was not high enough to tell if the stabilization of E site

tRNA came from direct crosslinking or indirect stabilization by the L1 stalk.

4.3.2 The 80S ribosome might be stabilized by polyamines

Many researches in prokaryotic systems have shown that polyamines are important

for ribosome stabilization. For example, the polyamines might inhibit the subunits

from dissociation (Umekage and Ueda, 2006). The crystallization condition for E.

coli ribosome also contains polyamines (Schuwirth et al., 2005). Polyamines, which

are positively charged, might stabilize ribosomes by neutralizing the negative charge

of the RNA. A research from Watanabe et al. (1991) also indicated that polyamines

could form complexes with RNA. In contrast, much less has been known about the

effect of polyamines on eukaryotic ribosome structures. Our experiments here showed

that the polyamine-treated ribosomes seemed to have better-stabilized RNA expansion

segments (figure 3.5(c)). This result can be a proof of the electrostatic stabilization.
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4.4 Structure of HeLa 80S ribosome purified under low

salt condition

4.4.1 Purification of ribosomes under low salt conditions stabilizes

the flexible stalks

In an RNP complex, electrostatic interaction between components is probably the most

important force to stabilize the full assembly. Therefore, high concentration of salt can

cause destabilization of the complex through disrupting the intramolecular electrostatic

force. In this work, HeLa 80S ribosomes were purified in a low salt concentration

environment, and the reduction of structural instability was demonstrated by the single

particle cryo-EM analysis. Even in the absence of any fixatives, the flexible L1 and P

stalks were stabilized not worse than those of the “PMPI-GraFixed” ribosome purified

with high salt (figure 3.9). Though the L1 and P stalks have been considered to be the

most flexible domains of the ribosome, part of the observed flexibility might come from

destabilization during the purification. Hence, avoiding electrostatic disruption during

the purification might preserve the native stabilization force of the stalks. Furthermore,

GraFix with both glutaraldehyde and PMPI has provided extra structural stabilization

of the P stalk so that the P stalk could be completely visualized at the same threshold

level as the ribosome core.

4.4.2 Tunnel exit bound factor was preserved on the ribosome with

low salt preparation procedure

Conventional purification procedures of the ribosome involves the so called “salt wash”

step, and this is based on the understanding that the ribosome is relatively salt-stable.

This applies to the ribosome core; however, some of the periphery components can be

salt sensitive, like the L1 and P stalks as mentioned above. Moreover, the eukaryotic

ribosome is a very delicately regulated machinery, and regulation factors might interact
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with the ribosome through direct binding. Because surface interaction of the factors

and the ribosome is mostly based on electrostatic force, salt wash can potentially cause

dissociation of the factors. In the salt-wash free purified ribosomes, an extra density

was found next to the tunnel exit of the nascent peptide chain, between the ribosomal

protein L19 and L23A, but the exact binding position was not able to be identified.

Mass spectrometry analysis indicated this factor can be the nascent chain-associated

complex (NAC) or the ribosome-associated complex (RAC). Since these two factors

have similar binding location on the ribosome, the observed additional density can also

be an averaged structure of both factors.

The tunnel exit bound factor also displayed a connection with the extension of the

RNA expansion segment ES27. In the reconstructed structure of yeast ribosome, the

terminal ES27 could be visualized in two positions: near the L1 arm or close to the

tunnel exit (Beckmann et al., 2001). In addition, in vitro assembled Chaetomium ther-

mophilum ribosome-RAC complex also showed a possible interaction between ES27

and RAC (Leidig et al., 2013). It is very likely that this tunnel exit bound factor on

the human ribosome had direct interaction with ES27 in vivo. Since electrostatic force

is critical for non-covalent RNA-protein binding, association of ES27 and this factor

can easily be broken during the conventional salt wash procedure, and further results

in the dissociation of this factor from the ribosome.
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Chapter 5

Conclusions and Perspectives

Single particle cryo-EM is so far an ideally suited method to study structures of large

dynamic RNP complexes. Sub-states representing the sample heterogeneity can the-

oretically be resolved in silico. However, in silico sorting reaches its limit when the

heterogeneity level is too high. Therefore, it was aimed to stabilize the sample at the

biochemical level. Two approaches were performed in this work: (1) to stabilize the

sample during purification, and (2) to prevent macromolecular complexes from disrup-

tion during the sample preparation for transmission electron microscopy (TEM). Both

methods have shown improvements on the sample quality.

Avoiding purification methods involving strong surface interaction (e.g. chromatogra-

phy) or electrostatic disruption (e.g. high salt concentration) keeps the integrity of the

particles and further stabilizes the full assembly of the complexes. The RNA-protein

crosslinker, p-maleimidophenyl isocyanate (PMPI), further strengthens the intramolec-

ular interaction of the particles. In the dataset of the ribosomes purified under low salt

condition and crosslinked with PMPI and glutaraldehyde, in silico sorting has been

performed efficiently so far. Two ratcheting states could be clearly observed, coupled

with the occupancy of eEF2 and E-site tRNA. Following these in silico sorting steps,

calculation of high-resolution ribosome structures is in progress.

83



84 5 | Conclusions and Perspectives

These biochemical methodologies do not only facilitate structural studies of RNP com-

plexes by cryo-EM, but might also benefit high-resolution structural studies by X-ray

crystallography. Due to the dynamic nature, few of full RNP complexes have been

solved by crystallography so far. With the structural stabilization, crystallization of

large RNP complexes can be more feasible in the future.
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Appendix

A.1 Mass spectrometry analysis of yeast snRNP sample

Table A.1:

Protein

name

GenBank

accession no.

MW (kDa) Number of

peptides

sequenced

Complex

Prp3 gi—6320681 56 kDa 24 U4

Prp31 gi—51830339 56 kDa 29 U4

Prp4 gi—207340214 (+1) 52 kDa 32 U4

Brr2 gi—6321020 246 kDa 125 U5

Prp6 gi—151946445 (+1) 104 kDa 40 U5

Prp8 gi—151944111 [4] 280 kDa 110 U5

Snu114 gi—151941746 (+1) 114 kDa 63 U5

Prp38 gi—256269086 (+1) 28 kDa 8 U4/U6·U5

tri-snRNP

Snu23 gi—6320105 23 kDa 12 U4/U6·U5

tri-snRNP

Sm B gi—256271132 (+1) 22 kDa 13 U1, U2, U4, U5

Continued on next page
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Table A.1 – Continued from previous page

Protein

name

GenBank

accession no.

MW (kDa) Number of

peptides

sequenced

Complex

SmD1 gi—6321510 16 kDa 4 U1, U2, U4, U5

A.2 Mass spectrometry analysis of low salt purified HeLa
80S ribosome sample

Table A.2:

Protein name GenBank accession no. MW (kDa) Number of

peptides

sequenced

40S proteins

S2 gi—15055539 31 kDa 231

S3a gi—4506723 (+1) 30 kDa 219

S4 gi—119592221 (+1) 43 kDa 256

S5 gi—119592989 (+2) 22 kDa 68

S6 gi—337514 29 kDa 135

S7 gi—4506741 22 kDa 95

S8 gi—119627428 (+1) 27 kDa 204

S9 gi—14141193 23 kDa 213

S10 gi—4506679 19 kDa 89

S11 gi—4506681 18 kDa 107

S12 gi—14277700 15 kDa 52

S13 gi—4506685 17 kDa 89

Continued on next page
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Table A.2 – Continued from previous page

Protein name GenBank accession no. MW (kDa) Number of

peptides

sequenced

S14 gi—5032051 16 kDa 101

S15 gi—119589905 (+2) 14 kDa 10

S15A gi—119570641 (+2) 29 kDa 142

S16 gi—119577297 (+1) 16 kDa 185

S17 gi—4506693 16 kDa 79

S19 gi—4506695 16 kDa 58

S20 gi—4506697 13 kDa 59

S21 gi—4506699 9 kDa 39

S23 gi—4506701 16 kDa 76

S24 gi—119575003 (+8) 15 kDa 44

S25 gi—119569329 (+1) 14 kDa 73

S27 gi—119611832 (+1) 10 kDa 96

S27-like gi—13277528 (+1) 9 kDa 61

S28 gi—4506715 8 kDa 29

S29 gi—4506717 7 kDa 19

60S proteins

P1 gi—49457412 12 kDa 29

P2 gi—4506671 12 kDa 87

L3 gi—119580717 49 kDa 357

L4 gi—62087534 49 kDa 392

L5 gi—14591909 (+1) 34 kDa 318

L6 gi—16753227 (+2) 33 kDa 292

Continued on next page
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Table A.2 – Continued from previous page

Protein name GenBank accession no. MW (kDa) Number of

peptides

sequenced

L7 gi—119582155 (+2) 29 kDa 240

L7a gi—119608470 35 kDa 340

L8 gi—4506663 28 kDa 218

L9 gi—15431303 22 kDa 244

L10 gi—119593144 (+4) 25 kDa 110

L11 gi—59896138 20 kDa 82

L12 gi—4506597 18 kDa 183

L13 gi—15431295 (+1) 24 kDa 127

L14 gi—12653649 24 kDa 166

L18 gi—4506607 22 kDa 120

L18a gi—11415026 21 kDa 150

L19 gi—119580972 (+3) 26 kDa 69

L21 gi—18104948 (+1) 19 kDa 82

L22 gi—119583342 32 kDa 124

L22e gi—33150766 (+1) 15 kDa 86

L23a gi—119571516 (+3) 22 kDa 118

L24 gi—119600188 (+3) 13 kDa 136

L26 gi—292435 (+2) 17 kDa 83

L27 gi—4506623 16 kDa 103

L27a gi—119568094 (+3) 17 kDa 88

L28 gi—13904866 (+1) 16 kDa 38

L29 gi—119585586 (+4) 18 kDa 34

L30 gi—4506631 13 kDa 139

Continued on next page



A.2 Mass spectrometry analysis of low salt purified HeLa 80S ribosome sample 89

Table A.2 – Continued from previous page

Protein name GenBank accession no. MW (kDa) Number of

peptides

sequenced

L32 gi—4506635 16 kDa 116

L32 gi—16117787 13 kDa 37

L35 gi—119608008 (+2) 22 kDa 62

L35a gi—119612656 (+1) 16 kDa 26

L36 gi—16117794 (+1) 12 kDa 43

L36a gi—119623264 (+1) 14 kDa 33

L38 gi—4506645 8 kDa 149

Translation factors

eIF1A gi—33356163 (+2) 16 kDa 3

eIF2 subunit 1 gi—4758256 36 kDa 4

eIF3 subunit 6 gi—62896617 67 kDa 24

eIF3 subunit A gi—4503509 (+1) 167 kDa 100

eIF3 subunit I gi—4503513 37 kDa 12

eIF3 subunit K gi—10801345 (+2) 25 kDa 6

eIF3 subunit M gi—23397429 (+1) 43 kDa 6

eIF3 subunit 7

zeta

gi—119580514 (+3) 64 kDa 16

eIF3 p35 subunit gi—3264861 (+1) 29 kDa 7

eIF3 p44 subunit gi—3264859 (+2) 36 kDa 2

eIF beta gi—182067 (+2) 38 kDa 5

eEF2 gi—4503483 95 kDa 553

eRF1/eRF3 gi—237823782 51 kDa 71

Continued on next page
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Table A.2 – Continued from previous page

Protein name GenBank accession no. MW (kDa) Number of

peptides

sequenced

Tunnel exit binding factors

heat shock 70

kDa protein

1A/1B

gi—167466173 (+2) 70 kDa 25

heat shock cog-

nate 71 kDa pro-

tein isoform 1

gi—5729877 71 kDa 38

nascent

polypeptide-

associated com-

plex subunit

alpha isoform b

gi—5031931 (+1) 23 kDa 106



List of Symbols and Abbreviations

1D one-dimensional

2D two-dimensional

3D three-dimensional

Å Ångstrom (1 Å = 1−10 m)

Bact activated spliceosomal B-complex

B∗ catalytically activated spliceosomal B-complex

CCC cross correlation coefficient

CCD charge coupled device

cryo-EM cryogenic electron microscopy

Cs spherical aberration constant

CTF contrast transfer function

DMSO dimethyl sulfoxide

DNA deoxyribonucleic acid

DTT dithiothreitol

e− electron(s)

eEF1a eukaryotic elongation factor 1A

eEF2 eukaryotic elongation factor 2

E. coli Escherichia coli

EF-G elongation factor G

EF-Tu elongation factor Tu

e.g. exemplo gratia
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EM electron microscopy

ES expansion segment

FFT fast Fourier transformation

FSC Fourier shell correlation

GraFix gradient fixation

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

kDa kilo Daltons

kV kilo Volts

MBP maltose binding protein

MRA multi-reference alignment

mRNA messenger-RNA

MSA multivariate statistical analysis

NAC nascent chain-associated complex

NMR nuclear magnetic resonance

OD optical density

PCA principal component analysis

PDB Protein Data Bank

PEG polyethylene glycol

PhCTF phase-contrast transfer function

PMPI p-maleimidophenyl isocyanate

pre-mRNA precursor messenger-RNA

RAC ribosome-associated complex

RCT random conical tilt

RNA ribonucleic acid

RNP ribonucleoprotein

rpm rotations per minute

rRNA ribosomal RNA

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis
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SF splicing factor

SNR signal-to-noise ratio

snRNA small nuclear ribonucleic acid

snRNP small nuclear ribonucleoproteins

TEM transmission electron microscopy

tri-snRNP triple small nuclear ribonucleoprotein

tRNA transfer-RNA

U2AF U2 auxiliary factor

v/v volume per volume

w/v weight per volume
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