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Abstract

The subject of this thesis is the transition to turbulence and turbulence con-

trol in pipe flow.

In pipes turbulence arises despite the linear stability of the laminar flow (subcrit-

ical transition) and directly from onset the flow is spatio-temporally complex. Given

sufficiently strong perturbations, turbulence appears in localized patches (puffs) at

low Reynolds numbers. At high Reynolds number, patches aggressively grow (slugs)

and eventually render the flow fully turbulent. The questions of when and how tur-

bulence starts to grow have long challenged scientists and will be discussed in-depth

in this thesis. Turbulence causes higher friction drag and consequently higher energy

losses than laminar flow. Control strategies that prevent the formation of turbulence

and that relaminarise turbulence are desirable for applications. Some of these strate-

gies were developed in the course of this thesis.

In order to study the transition to fully turbulent flow, the growth of turbulence in

terms of the speed of the laminar-turbulent interfaces (fronts) was measured at a va-

riety of Reynolds numbers with highly resolved direct numerical simulations (DNS).

The front speed data were compared to experimental measurements from my col-

leagues and excellent agreement was obtained. These front speeds can be perfectly

described by a one dimensional pipe flow model developed by Dwight Barkley, which

was inspired by the strong analogy between pipe flow and excitable media (such as

nerve axons). A collective effort of theory, DNS and experiments showed that the

transition from localized puffs to expanding fully turbulent flow (slugs) is

a transition from excitability to bistability. This transition is continuous

and a special role is played by nonlinear advection, which masks the tran-

sition point. The nonlinear advection was studied in the DNS and related to the

selection of weak or strong downstream fronts.

Based on the transition scenario studied in the first part of the thesis, a forc-

ing strategy was developed to achieve an inverse transition from turbulent to laminar

flow. A forcing was used that decelerates the flow near the pipe center and accelerates
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the flow near the pipe wall, modifying the velocity profile into a plug-like one. This

modification was found to greatly weaken the turbulence self-sustaining mechanism.

In particular it reduces the so-called transient growth (linear streaks amplification) of

the flow and is capable of relaminarising turbulence at high Reynolds numbers. A sta-

tistical study showed that the minimum transient growth for turbulence to be

sustained stays almost constant across a wide range of Reynolds numbers,

suggesting that this constant transient growth sets the boundary between

excitable and refractory (i.e., unexcitable). By pushing the transient growth

below the critical value, pipe flow becomes refractory so that excitation ceases to be

sustained and the flow relaminarises. A number of other control strategies have been

developed that modify the shear profile.

Another method to relaminarise turbulence is to impose partial slip at the pipe

wall. The dynamics of turbulence largely depends on the boundary conditions. The

effects of this slip boundary condition on the dynamics of pipe flow turbulence were

investigated with DNS. The results showed that azimuthal slip intensifies turbulence,

whereas streamwise slip suppresses turbulence. The smallest slip length that suf-

fices to relaminarise turbulence was studied up to Reynolds number 2×104

and a linear dependence on Reynolds number was found. While the neces-

sary slip length to achieve relaminarisation is too large to be realized in experiments,

the same effect could be achieved by other means, for example by accelerating the

fluid near the pipe wall.
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Chapter 1

Introduction

The motion of fluids can typically take one of two states, laminar flow which is smooth

and quiescent, and turbulent flow which is erratic and manifests strong velocity fluc-

tuations, high mixing rates and dissipation. Flows tend to be laminar at low speeds,

such as water flows in the vascular systems of plants and blood flows in animals’

vessels, and turbulent at high speeds, such as water, gas, and oil flows in pipe-lines.

The transition between these two states is one of the central, however, most difficult

problems scientists and engineers have been facing in this area. It is still not fully

understood even in very simple geometries such as in pipes, channels, and boundary

layers.

Shear flow turbulence perhaps is the most common type of turbulence in nature

and applications. Pipe, channel, boundary layer, and Couette flows all fall in this

class and are usually referred to as ’canonical’ shear flows. Pipe flow is probably the

most extensively studied amongst these, not least because of its technological rele-

vance. The smooth, steady, and axisymmetric laminar motion in a straight circular

pipe was already found by Hagen and Poiseuille in the mid 19th century (Hagen,

1839; Poiseuille, 1840). However, at high flow rates the fluid motion in pipes is usu-

ally turbulent and exhibits highly complex spacial and temporal dynamics. The great

difficulty of solving the nonlinear partial differential Navier-Stokes equations strongly

limited the analytic exploration of the turbulent fluid dynamics. Besides experi-

ments , numerical simulation has become one of the main approaches to turbulence

research following the development of computers and efficient numerical algorithms.

Especially, the direct numerical simulation (DNS) of turbulence becomes affordable

thanks to the high performance computers, and is playing an important role in fun-

damental turbulence research.

In this thesis, I carried out DNS of pipe flow and studied the transition to fully

1



Chapter 1. Introduction

Figure 1-1: Reynolds’ 1883 experiment on the transition to turbulence in pipe flow.
Flow is from left to right and the ink is injected near the inlet. The shape of the
ink illustrates the flow state and vividly shows the changes from steady and smooth
laminar state (a) to turbulent state (b). (c) shows a turbulent flow visualized with
an electric spark instead of ink as used in (a) and (b).

turbulent flow and explored control strategies that relaminarise turbulence. In what

follows, the rise of turbulence in pipe flow will first be briefly summarized. Then the

subjects of this thesis, the emergence of fully turbulent flow and turbulence control,

will be introduced.

1.1 The rise of turbulence in pipes1

One central question to be answered is how turbulence arises in simple shear flows.

which has been under investigation for over a century, In 1883, Osborne Reynolds

published the groundbreaking paper regarding the transition to turbulence and the

scaling of frictional drag in pipe flow (Reynolds, 1883a). In his experiment he in-

jected dye into the flow in a straight circular glass tube (see Fig. 1-1) so to visualize

the flow. He studied the flow state under different circumstances: various velocities,

pipe diameters, and viscosities (water at different temperatures). Reynolds realized

that the flow state was determined by the dimensionless group Re = UD/ν, which is

now called the Reynolds number. Here U is the mean velocity, D the pipe diameter,

and ν the kinematic viscosity of the fluid (in this thesis all velocity/speed will be

normalized by 2U , length by the pipe radius R = D/2 and time by R/2U = D/4U ,

1Materials are mainly adapted from the paper Song & Hof (2014)

2



Chapter 1. Introduction

Figure 1-2: Intermittency of pipe flow in the transitional regime observed by Reynolds
1883. He termed the localized patches ’flashes’.

unless explicitly specified). He observed that the dye flows downstream in a straight

line when Re is sufficiently low (see Fig. 1-1(a)). When Re was increased to a certain

value, the straight and smooth dye streak suddenly broke down and mixed up with

the surrounding water (see Fig. 1-1(b,c)), suggesting that at certain Re the transition

from laminar flow to turbulence took place abruptly. The other important finding of

his experiments was that perturbations above certain magnitude were necessary to

trigger turbulence while the flow was stable to smaller disturbances (Reynolds 1883b).

In fact, laminar flow can be maintained up to Re as large as 100000 by minimising

the inlet flow and background disturbances (Pfenniger, 1961), whereas, turbulence

usually occurs at much lower Reynolds number at Re ≃ 2000 if the experiment is

less controlled. Besides, Reynolds (1883b) also observed that when turbulence first

appears it’s spatially localized and parts of the flow were still laminar (see Fig. 1-2),

a phenomenon nowadays referred to as spatio-temporal intermittency. Following his

seminal experimental work, he also attempted to explain the abrupt transition and

instability of the flow theoretically but failed (Reynolds, 1895)2. Despite more than a

century of further research the critical Reynolds number Recr at which the transition

to turbulence occurs could only be determined very recently (Avila et al., 2011).

The fact that perturbations with finite amplitude are necessary to trigger turbu-

lence equally applies to other shear flows such as channel flow and Couette flow as

well. This fact condemned the attempts of some leading theorists (e.g. Rayleigh,

Kelvin, Sommerfeld, Heisenberg, and Lorenz) (Eckert, 2010) to explain the emer-

gence of turbulence by investigating the linear stability of the laminar flow. After

many unsuccessful attempts, it became clear (Drazin & Reid, 1981) that the occur-

rence of turbulence in these flows is unrelated to the linear stability of the lami-

2However, in the course he proposed an important method to investigate turbulence by decom-
posing the flow velocity into a temporal mean and fluctuations with respect to this mean, and
subsequently developed the important Reynolds-averaged Navier-Stokes equations (RANS) and the
concept of Reynolds stress. Nowadays, the RANS are still the main equations that are used in
engineering-oriented computational fluid dynamics.

3



Chapter 1. Introduction

nar state as Reynolds had already concluded from his experimental observations. It

should be pointed out that in Plane Poiseuille flow, i.e., the flow between two plates

driven by pressure gradients or constant mass flux, linear instability occurs at about

Re ≃ 5800 (Orszag & Kells, 1980), however, turbulence is usually observed far below

this Reynolds number at Re ≃ 1000 (Davies & White, 1928; Kao & Park, 1970). All

these results indicate that linear instability is irrelevant for the occurrence of turbu-

lence in these shear flows and the transition in the absence of a linear instability is

called subcritical transition.

Two recent theoretical developments provided a plausible scenario for the rise of

turbulence in linearly stable flows. In a first stage, because of the non-normality

of the linear operator of the linearized Navier-Stokes equations, small perturba-

tions amplify greatly via transient growth before the asymptotic exponential de-

cay (Trefethen et al., 1993; Reddy & Henningson, 1993; Schmid & Henningson, 1994;

Grossmann, 2000; Meseguer & Trefethen, 2003). The optimal amplification was found

to be through streamwise rolls that generate near wall streaks (Schmid & Henningson,

1994; Meseguer & Trefethen, 2000). The amplification could be large such that non-

linear effects are no longer negligible and can potentially trigger turbulence, bypass-

ing the linear instability (Grossmann, 2000). Nonlinear effects must be taken into

account when considering how turbulence becomes sustained. Streamwise rolls gen-

erate streaks, then the inflectional instability of streaks leads to streak breakdown

and nonlinear interaction between streamwise dependent modes regenerate stream-

wise rolls (the near wall turbulence self-sustaining cycle by Hamilton et al. (1995);

Waleffe (1997); Jimenez & Pinelli (1999)).

In addition, the application of ideas from dynamical systems theory have lead to

further insights into this problem. In this perspective, invariant solutions (steady,

traveling wave and periodic solutions) to the Navier-Stokes equations are significant

for the theoretical description of the transition to turbulence and fully turbulent flow

(Kawahara et al., 2012). Since the first exact steady solution for Couette flow by

Nagata (1990), many invariant solutions have been found in shear flows (see the

reviews by Kerswell (2005); Eckhardt et al. (2007); Kawahara et al. (2012)). These

solutions appears as the Reynolds number increases and are all of finite amplitude,

and so completely disconnected from the laminar flow. A proposition is that turbulent

motion may arise from the instabilities of these solutions (Kerswell, 2005). Besides,

these solutions, which consist of quasi-streamwise rolls and streaks, were lately re-

lated to the near wall coherent structures in shear flows by Waleffe (1998, 2001, 2003);

Itano & Toh (2001). They are believed to be the building blocks of turbulence that
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organize turbulent dynamics. The dynamical systems approach to turbulence postu-

lates that turbulence can be viewed as a flow winding around and visiting all these

invariant solutions (Gibson et al., 2008).

These deep insights into the mechanism underlying the rise of turbulence, how-

ever, don’t provide an estimate of Recr (the critical Reynolds number at the onset

of turbulence) and a picture of the detailed behaviours of turbulence at the onset.

The progress on these aspects have been made mainly via experiments and direct

numerical simulations.

1.1.1 Turbulent puffs

One important feature of pipe flow is that turbulence first appears surrounded by

laminar flow. Reynolds for the first time observed localized structures in the tran-

sitional regime at Re ≃ 2000 and termed them ’flashes’, see Fig. 1-2 (Reynolds,

1883b). Perhaps the first quantitative investigation to this intermittency is by Rotta

(1956). He measured the dependency of the intermittency factor so to determine

the critical Reynolds number and claimed that turbulence stays localized up to

Re ≃ 2000, above which turbulence grows and assuming that for long enough pipes

flows would eventually becomes fully turbulent. Wygnanski & Champagne (1973);

Wygnanski et al. (1975) termed the localized structure turbulent ’puffs’ and claimed

that puffs can not be sustained (decay) below Re ≃ 2200 and stay in ’equilibrium’

keeping a constant length at 2200 . Re . 2300. The lower limit of the presence of

puffs differs in the literature, ranging from about 1700 (Darbyshire & Mullin, 1995;

Avila et al., 2010) to about 2000 (Lindgren, 1969; Wygnanski et al., 1975). Nev-

ertheless, it is a consensus that puffs have a sharp upstream front signaling an

abrupt transition from laminar flow to turbulence, and a rather diffusive down-

stream front where turbulence gradually decays followed by the slow recovery of

the velocity profile (Lindgren, 1969; Wygnanski et al., 1975; Bandyopadhyay, 1986;

Darbyshire & Mullin, 1995; Nishi et al., 2008). Wygnanski & Champagne (1973), in

light of this fact, referred to puffs as ’incomplete relaminarisation’. Fig. 1-3 shows

the arrow-headed structure of a typical puff depicted by the kinetic energy of the

cross flow q(z) =
∫ ∫

(u2r +u2θ)rdrdθ (see the red line) and the centerline velocity (the

blue line) at the pipe axis. Collectively, these studies showed that turbulent puffs

are usually observed at Reynolds numbers 1700 . Re . 2300 and keep an almost

constant length while propagating along the pipe roughly at the mean flow speed.

Readers are referred to Mullin (2011) for a detailed review on relevant experimental
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Figure 1-3: The structure of a puff at Re = 2000. On the top the magnitude of
the cross flow

√

u2r + u2θ is plotted on the r-z cross section. Only a length of 40R
is shown from a 266R pipe. On the bottom, the red line shows the distribution of
q(z) =

∫ ∫

(u2r +u
2
θ)rdrdθ along the pipe axis for the puff shown on the top. The blue

line is the streamwise velocity u at the pipe centerline.

studies.

Recent studies showed that the dynamics of puffs sensitively depends on the initial

conditions (Darbyshire1995, Faisst2004). Fig. 1-4 shows this chaotic dynamics. Two

runs starting with very close initial conditions (two puffs at Re = 1850) separated

by ∼ 10−10 in velocity depart from each other considerably after evolving indepen-

dently about 200 convective time units. The separation becomes even more drastic

when one of them suddenly relaminarises (see the blue line) at t ≃ 1200 while the

other persists (the red line). A quantitative measure of this chaotic characteristics,

the Lyapunov exponent, was determined in simulations in small periodic domains

and shown to be positive (Faisst & Eckhardt, 2004; Eckhardt et al., 2007), indicating

an exponential growth of the separation for two puff trajectories initiated with very

close initial conditions. This feature implies that it is impossible to experimentally

reproduce a run, instead one should resort to statistical studies for the characteristic

behaviours of puffs (Faisst & Eckhardt, 2004).

More interestingly, both numerical simulations (Brosa, 1989; Faisst & Eckhardt,

2004) and experiments (Hof, 2004; Mullin & Peixinho, 2006; Peixinho & Mullin, 2006)

indicated the transient nature of a turbulent puff under Re . 2000, i.e., a puff

may stay in ’equilibrium’ for a long time before it suddenly decays (see the blue

line in Fig. 1-4). Statistical studies showed that the probability that puffs sur-

vive up to time t (Faisst & Eckhardt, 2004), or equivalently up to an observation
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Figure 1-4: Sensitive dependence on the initial conditions of puffs at Re = 1850
depicted by the the time series of the kinetic energy of the transverse flow Ec =
∫

V
(u2r + u2θ)dV of two runs. These two runs are initiated with very close initial

conditions separated by ∼ 10−10 in velocity while they depart from each other quickly
after about 200 time unit. One of them decayed abruptly at t ≃ 1200 (the blue line).

position along a pipe (Peixinho & Mullin, 2006), follows an exponential distribu-

tion at a given Reynolds number, a signature of memoryless processes. Given such

a distribution, the mean lifetime of puffs can be extracted. The scaling of this

mean lifetime τ(Re) with Reynolds number has been the subject of both experimen-

tal studies (Mullin & Peixinho, 2006; Hof et al., 2006, 2008) and numerical studies

(Eckhardt & Faisst, 2004; Willis & Kerswell, 2009; Avila et al., 2010). There are no

definite theoretical predictions of this scaling (Eckhardt et al., 2007), and has been

mainly studied by experiments and simulations. It was a consensus that the lifetime

of a single puff increases as Re increases. While a main debate among these studies

was whether the lifetime of a single puff will diverge at a finite Re so that turbu-

lence gets sustained or not. Conflicting opinions were held regarding this question.

Faisst & Eckhardt (2004) in numerical simulations found that the mean lifetime of

puffs diverges at Re ≃ 2250, indicating the onset of sustained turbulence at finite Re.

Later experimental results by Mullin & Peixinho (2006); Peixinho & Mullin (2006)

supported this divergence of the mean lifetime and suggested τ ∼ 1/(Recr−Re), how-
ever, gave a different critical Reynolds number about Re ≃ 1750. Willis & Kerswell

(2007) studied the lifetime with DNS in a periodic pipe considerably longer than a

puff, about 50D, and also supported the τ ∼ 1/(Recr−Re) scaling with a Recr = 1870.

On the other hand, Hof et al. (2006) questioned the above claims by both experiments

in very long pipes (7500D) and numerical simulations (in a 5D-long pipe) and ar-

gued that the lifetime of puffs scales exponentially with the Reynolds number as

τ ∼ exp(cRe) for some constant c. This is a clear indicator that a single puff stays

transient at any Reynolds number hence, never becomes sustained. In even longer
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pipes, Hof et al. (2008) found that the lifetime increases super-exponentially with the

Reynolds number. Willis & Kerswell (2009) argued that the pipe in the simulations

of Hof et al. (2006) was too short to contain a puff and the lifetime was affected by the

limited domain size. With a reduced numerical model, they studied the effect of the

pipe length on lifetime statistics and claimed that turbulence always stays transient

in short pipes, however, undergoes a divergence in lifetime and becomes sustained at

some Re in pipes longer than ∼ 50D. Nevertheless, Avila et al. (2010) improved the

statistics of Willis & Kerswell (2009) using larger sample sizes and observation times

and demonstrated the super-exponential scaling found by Hof et al. (2008). This scal-

ing has been later confirmed in experiments by Kuik et al. (2010). Goldenfeld et al.

(2010) related the transition to turbulence to extremal statistics and theoretically

reproduced the super-exponential behaviour of the lifetime of puffs.

The transient nature of localized turbulence is clearly at odd with the classic

picture of turbulence of a chaotic attractor (Ruelle & Takens, 1971). This was ques-

tioned much earlier by Crutchfield & Kaneko (1988), who suggested a ’long tran-

sients’ nature of turbulence. Instead, the dynamics of puffs can be better related to

a chaotic saddle, which has unstable directions in which the chaotic dynamics can

escape and revert to the resting state, i.e., the laminar flow (Faisst & Eckhardt, 2004;

Eckhardt et al., 2007).

1.1.2 The onset of sustained turbulence

Lindgren (1969); Wygnanski & Champagne (1973); Nishi et al. (2008) observed that,

localized turbulence tends to grow and split into more puffs above Re ≃ 2400. Fig. 1-5

shows the splitting process of a puff at Re = 2400. At the downstream front vortical

structures are shed downstream. Usually they decay but occasionally they may escape

far enough to seed another puff, which is called puff splitting. Moxey & Barkley

(2010) proposed that turbulence becomes sustained by this spatial proliferation at

Re ≃ 2300 (puff splitting). Interestingly, puff-splitting is also a memoryless process

and can be observed at Remuch lower than what former studies reported (Avila et al.,

2011). Similar statistics as that of lifetimes unveiled the super-exponential decrease

of the characteristic time for puff splitting with Reynolds number. A simple picture

was then obtained: the competition between the transient nature and the splitting

nature of puffs determines when turbulence becomes sustained. If splitting occurs on

a shorter time scale than puff decay, turbulence will tend to proliferate rather than

decay, and it will be sustained in the thermodynamic limit when the system size is
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Figure 1-5: The splitting process of a puff at Re = 2400. The isosurfaces of the
streamwise vorticity are plotted, and yellow and cyan represent±1.0 of the streamwise
vorticity. Time goes up and panels are separated by 80 time units.

large. The intersection point of the time scales of these competing processes pins the

critical Reynolds number at Recr = 2040, at which the onset of sustained turbulence

occurs (Avila et al., 2011).
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Figure 1-6: The onset of sustained turbulence determined by the competition of puff
decay and splitting. Symbols are DNS and experimental data from Hof et al. (2008);
Avila et al. (2011) and lines are super-exponential fitting. The intersection point is at
Re = 2040. To the right of this point, splitting occurs on a shorter time scale than puff
decay so that turbulence becomes sustained via this spatio-temporal intermittency.

1.2 Mechanism of turbulence localization

Besides pipe flow, localized turbulent states were also found in other shear flows if

initiated with finite-amplitude perturbations. For example, turbulent stripes tilted
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with respect to the streamwise direction in Couette flows (Bottin & Chaté, 1998;

Bottin et al., 1998; Barkley & Tuckerman, 2005; Duguet et al., 2010a), and turbu-

lent spot in channel and boundary layer flows (Emmons, 1951; Wygnanski et al.,

1976; Henningson et al., 1987). In fact, spatially localized states are also found in

other dissipative systems. These include spiral waves and target patterns in chemi-

cal reactions (Zaikin & Zhabotinskii, 1970; Winfree, 1972; Müller et al., 1985) and in

cardiac tissues (Davidenko et al., 1992; Cherry & Fenton, 2008), action potential on

nerve axon (Hodgkin & Huxley, 1952; FitzHugh, 1961; Nagumo et al., 1962), spread-

ing of epidemics (Murray et al., 1986), binary fluid convection (Niemela et al., 1990;

Batiste et al., 2006), ferrofluid under magnetic fields (Richter & Barashenkov, 2005),

and even nonlinear optics (Tlidi et al., 1994, 1997). For a discussion on localized

states in dissipative systems see (Knobloch, 2008) and references therein, and for a

review on the theoretical treatment of wave propagation and wave fronts in excitable

medium see (Tyson & Keener, 1988).

In pipe flow localization takes the form of puffs at low Reynolds numbers. A fea-

ture of puffs is the asymmetry in upstream and downstream edges: a sharp upstream

front while a not well-defined downstream front (see the sharp upstream front on the

left and the diffusive downstream front on the right in Fig. 1-3). Wygnanski et al.

(1975) gave a physical explanation on the localization of puffs based on an energy

budget analysis. The parabolic velocity profile upstream of the trailing edge is able

to support strong turbulence, however, the plug-like velocity profile inside the puff

suppresses the energy production due to a mismatch in the location of large radial

velocity gradient and the Reynolds stress. Consequently, turbulence keeps decreasing

following the upstream front and the flow gradually relaminarises downstream, result-

ing in a less well-defined diffusive downstream front. Following the relaminarisation,

the velocity profile gradually relaxes to a parabola. A recent study (Hof et al., 2010)

explicitly showed that a puff feeds on the adjacent laminar shear profile upstream

of its upstream front. If the upstream laminar flow is modified and replaced by a

plug-like profile, the puff decays. Equally if two puffs are too close to each other, the

upstream puff will modify the laminar profile adjacent to the downstream puff into

a plug-like profile, and consequently eliminate the downstream puff (evidenced by

Hof et al. (2010)). As a consequence, there is a puff-puff interaction distance, below

which the downstream puff will not survive. This distance was shown to be about

20D (Samanta et al., 2011). The same mechanism is also present in other shear flows

such as duct flow and channel flow (Hof et al., 2010).

An interesting analogy between pipe flow turbulence and phenomena in excitable
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media such as the action potential of a nerve axon, was realized by Barkley (2011b).

Excitable systems have a spatially extended resting (quiescent) state that will persist

without perturbations. However, perturbed above a certain threshold, there will be

an excited state propagating through the system. For a nerve axon, the resting state

is a negatively polarized cell membrane. If stimulated sufficiently with an electric

current, a localized excitation will propagate along the axon. After being excited,

the membrane is depolarized and will not be able to support excitation anymore, and

subsequently the excitation decays. The polarization will gradually relax to the rest-

ing state with the absence of excitation, and the membrane regains the susceptibility

to excitation, when the polarization has sufficiently recovered. The generic features of

excitable media can be summarized as (for more details see Tyson & Keener (1988)):

• a unique spatially extended resting state (e.g. fully polarized cell membrane);

• small perturbations damp out but suprathreshold perturbations can excite the

system (e.g. by sufficiently strong electric current);

• a recovery variable, or a controller (e.g. membrane potential);

• a trigger variable, or a propagator, whose level is controlled by the recovery

variable (e.g. ionic conductance by membrane potential);

• a refractory period (or region) following an excitation within which excitation

decays. The excited area returns to the resting state after a (slow) recovery

process.

• the localized state can only maintain itself via the trigger front continuously

exciting the unperturbed region on one side.

Fig. 1-7 illustrates such features of (one dimensional) excitable media. The generic

dynamics of such kind of systems has long been studied using low-dimensional model

equations. For example, the FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al.,

1962) for the action potential of a nerve axon (Hodgkin & Huxley, 1952).

Turbulent puffs bear a surprising analogy to the nerve axon mentioned above.

Laminar pipe flow (the resting state) can be excited by finite-amplitude perturba-

tions to an excited state (puff). A sharp trigger front continuously excites laminar

flow at the upstream front of puffs. The velocity profile will be disturbed such that

the profile is plug-like. This plug-like profile can not support turbulence, so that

turbulence decays downstream of the trigger front and gradually flow relaminarises.

The velocity profile slowly recovers towards a parabola as turbulence decays and it

does not support new excitations before it has sufficiently recovered (the refractory
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Figure 1-7: The generic features of excitable media exemplified by the action potential
(the depolarization of the cell membrane) of a nerve axon. Small perturbations damp
out (see the gray dashed line), and suprathreshold ones excite the system to an
excited state followed by a refractory period (region) within which excitation decays
and system relaxes to the resting state.

period). Fig. 1-8 together with Fig. 1-7 illustrate the analogy between pipe flow and

excitable media (e.g. action potential of a nerve axon). In Fig. 1-8 the deceleration

0 50 100 150 200 250
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−
u∂
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resting state 
(laminar) refractory

excited

Figure 1-8: The deceleration of a puff at the pipe centerline (the red line). On the
bottom the velocity profile at several positions in the pipe are plotted showing the
unperturbed profile (left one) and the recovery following the excitation (the three on
the right). The aspect ratio of the pipe is changed for the purpose of visualization

at the pipe centerline is plotted, which resembles the shape of the action potential in

Fig. 1-7. Below, the velocity profile of the resting state (laminar flow), of the excited

state (puff), inside the refractory region, and the recovered profile are compared.

This analogy suggests to view pipe flow in the context of excitable media and to

model pipe flow with equations with low order nonlinearities (Barkley, 2011b). An

apparent difference is that the self advection of turbulence in pipe flow is clearly ab-

sent in the action potential models for a nerve axon. Besides, there is no parameter
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corresponding to the Reynolds number in the models, so that no transition of the dy-

namics has been discussed in there. Barkley’s model incorporated these two factors

and for the first time suggested the transition from puffs to slugs is a transition from

excitability to bistability (Barkley, 2011b).

1.3 The emergence of fully turbulent pipe flow

Turbulence is usually initiated with localized perturbations, which will develop into

turbulent patches. Localized turbulence becomes sustained via puff splitting above

the critical Reynolds number 2040, however, turbulence still stays localized in the

vicinity of the onset of sustained turbulence. At higher Reynolds numbers (above

∼ 2800), another type of structure was observed, slugs, which have a very different

structure and behaviour from puffs (Rotta, 1956; Wygnanski & Champagne, 1973;

Wygnanski et al., 1975; Darbyshire & Mullin, 1995). Slugs were observed to have

both well-defined upstream and downstream fronts. Once formed, they will continu-

ously grow and eventually fill arbitrarily long pipes. Fig. 1-9 shows a puff atRe = 2000

and a slug at Re = 4500 in a Lz = 360 pipe. The differences in the structure and

downstream front are apparent. The slug has a spatially extended plateau in both

the turbulence intensity and centerline velocity in the core region, while the puff has

none of them. It indicates that the interior part of slugs is in a stabilized turbulent

state. Besides, the slug has a well-defined downstream front which looks similar to

its upstream front. Wygnanski et al. (1975) showed that the interior of slugs is the

0  360Pipe axis, z
 

 

u
q

Figure 1-9: The different structures of a puff at Re = 2000 (left) and a slug at
Re = 4500 (right). The local turbulence intensity q and the centerline velocity u are
plotted.

same as fully developed turbulence and considered slugs as the predecessor of fully

turbulent flow, while they called puffs an incomplete relaminarisation.

The development from localized structures to fully turbulent flow can be illus-

trated by the speed of the upstream and downstream fronts (also referred to as trail-
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ing and leading edges in the literature). In attempts to study the transition to fully

turbulent pipe flow, the front speed has been studied at a wide range of Reynolds num-

bers (Lindgren, 1969; Wygnanski & Champagne, 1973; Sreenivasan & Ramshankar,

1986; Durst & Ünsal, 2006; Nishi et al., 2008; Duguet et al., 2010b). Speed mea-

surements gave rough agreement among the several data sets. Collectively, these

speed measurements showed that turbulence approximately starts to grow at about

Re = 2300 ∼ 2500, and the downstream front speed smoothly changes from the value

for a puff to that for a slug. No sharp transition and clear critical point were ob-

served. Sreenivasan & Ramshankar (1986) claimed a square root scaling of the growh

rate with the distance to a ’critical’ Reynolds number at which the growth starts, and

a later study supported this claim (de Lozar & Hof, 2010).

Besides performing speed measurements, Lindgren (1969) estimated the upstream

front speed based on energy considerations, but the agreement between the two was

poor. Wygnanski & Champagne (1973); Wygnanski et al. (1975) gave much more

detailed properties of the fronts of slugs and puffs based on an energy budget analysis

and stressed the difference in their downstream fronts. It may be worth mentioning

that two different kinds of slug seem to be observed by (Duguet et al., 2010b), yet

this has never been stressed in the literature.

In fact, because of the complex interval between puff and slug regimes and the

intrinsic turbulent fluctuations which create holes even in growing turbulence at rel-

atively high Reynolds numbers (around 2700 ∼ 2800) (Avila & Hof, 2013), a well

defined onset of slug (continuous growth of turbulence) is still lacking in measure-

ments, let alone the mechanism that gives rise to the growth. The lack of a critical

scaling or a clear critical point makes the transition to fully turbulent flow still poorly

understood after decades of research.

Inspired by the analogy between puffs and action potential of a nerve axon dis-

cussed in Section 1.2, Barkley (2011b,a) developed two-variable one-dimensional mod-

els (both continuous and discrete) that successfully capture some large-scale be-

haviours of puffs (decay and splitting) and of slugs. The continuous model nicely

depicts the bifurcation scenario that gives rise to the appearance of slugs and al-

lows to view the transition from puffs to slugs as a transition from excitability to

bistability. It should be pointed out that, Barkley’s models for the first time pro-

vide a framework in which the problem of transition to fully turbulent flow may be

tackled. The fluctuations, which are intrinsic to turbulence but may cover the most

fundamental dynamics, are absent in the PDE model. This fact allows the model to

give a clear bifurcation scenario as Re increases. However, the model failed to pre-

14



Chapter 1. Introduction

dict correct behaviours of the fronts documented in the literature 3 (Lindgren, 1969;

Wygnanski & Champagne, 1973; Durst & Ünsal, 2006; Nishi et al., 2008).

With an attempt to improve the model and to put forward the understanding of

the onset of fully turbulent flow, I carried out extensive DNS of puffs and slugs and

accurately computed the front speeds. Besides, a detailed study on the dynamics of

the fronts was carried out. Together with experimental results from colleagues (by

Mukund Vasudevan), the data allowed a new model by Barkley to capture the essen-

tial behaviour of turbulent fronts in all flow regimes. Finally, a deep understanding

of the emergence of fully turbulent flow has been obtained (Barkley et al., 2014).

1.4 Turbulence control

One important feature of turbulence is its high energy dissipation compared to lam-

inar flow. As a consequence, the friction (drag) is higher in case of turbulence than

for laminar flow. In the latter, the friction factor decreases with Reynolds number

as Cf ∝ Re−1, whereas Cf ∝ Re−1/4 in fully turbulent flow. For example, in water

pipelines with diameter 50cm and an average speed of 1m/s, the Reynolds number

is about 5× 105. The friction loss and hence the pumping costs are almost 100 times

larger for turbulent than for laminar flow. Although in pipelines the laminar flow

state is linearly stable at all Reynolds numbers, in practice all flows at high Re are

fully turbulent because of the unavoidable disturbances.

The high friction drag caused by turbulence does not only causes much higher

drag in pipes, but also causes much higher energy consumption of aircraft and ships

than if the flow were laminar. Effective turbulence control methods are hence of huge

interest for practical applications and could lead to very large energy saving. The

development of control strategies relies on the in-depth investigation into both the

emergence of fully turbulent flow and the self-sustaining mechanism of wall shear

turbulence.

Over the years a variety of control strategies have been developed for wall shear

flows and drag reduction has been achieved. These roughly can be categorized

into passive and active controls. Passive control includes wall roughness and riblets

(Michael & Walsh, 1983; Bechert et al., 1997; Sirovich & Karlsson, 1997; Fransson et al.,

2006), active control includes open-looped boundary blowing and suction control

(Antonia et al., 1988; Sumitani & Kasagi, 1995), transverse wall movement (Choi et al.,

3private communication with Dwight Barkley
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2002; Quadrio et al., 2009), optimal and suboptimal control (Choi et al., 1993, 1994;

Lee et al., 1998; Bewley et al., 2001; Högberg et al., 2003), and linear model-based

feedback control (Bewley et al., 2001; Högberg et al., 2003; Moarref & Jovanovic, 2010;

Lieu et al., 2010; Semeraro et al., 2013). Readers are referred to Collis et al. (2004);

Gad-el Hak (1996); Bewley (2001); Kim (2003); Kim & Bewley (2007); Kasagi et al.

(2009) for comprehensive references. From the point view of the drag-reduction mech-

anism, these strategies fall in two approaches: delay (or prevent) the transition to

turbulence by suppressing the growth of initial disturbances, and suppress fully tur-

bulent flow by interrupting its self-sustaining process

1.4.1 Delay of transition

One approach to turbulence control is to suppress or delay the energy growth of ini-

tial perturbations so to subdue the transition to turbulence. Both passive and active

control strategies have been proposed. Fransson et al. (2006) proposed a passive con-

trol mechanism using wall roughness that generates moderate streaks in the bound-

ary layer, which in turn stabilize the flow and delays the breakdown to turbulence.

Moarref & Jovanovic (2010); Lieu et al. (2010) developed open-looped modal-based

control strategies in channel flow that delay the onset of transition with well-designed

downstream traveling waves via boundary blowing/suction (active control). Feed-

back (active) control strategies that delay the linear stage of energy amplification are

mostly based on control theory combined with linearized Navier-Stokes equations (for

a review on this topic see Kim & Bewley (2007)). For example, Semeraro et al. (2011,

2013); Belson et al. (2013) designed active feedback control strategies to suppress the

energy growth of both 2- and 3-dimensional disturbances in boundary layer flow with

sensors and actuators in combination with reduced-order models. However, very often

we have to deal with fully turbulent flow in the first place in real applications due to

prevailing disturbances and the low disturbance threshold for triggering turbulence

at high Reynolds numbers.

1.4.2 Suppression of fully turbulent flow

An alternative is to suppress turbulence or even relaminarise fully turbulent flow.

One class of control is a systematic approach based on modern control theory such as

optimal feedback control (Bewley et al., 2001; Högberg et al., 2003; Kim & Bewley,

2007). These authors achieved drag reduction and even relaminarised fully turbulent

channel flow. However, those control strategies require the flow information in the in-
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terior of the flow domain for the optimization, which are usually not easily measurable

in experiments. Ideally, practical control system should rely on minimal information

from the flow, such as quantities that can be measured on the wall.

Another class of control strategies do not rely on rigorous control theory, instead,

rely on the knowledge of the self-sustaining mechanism of wall shear turbulence, which

has been extensively studied in recent decades but is still not fully understood. It was

found that the near wall region is characterized by coherent structures, i.e., low speed

and high speed streaks, quasi-streamwise vortices (Kline et al., 1967; Kim et al., 1987;

Robinson, 1991). Quasi streamwise vortices generate streaks by convecting the mean

shear, however, the vortices regeneration mechanism is still not completely clear.

Through studies of the minimum turbulence unit (Jimenez & Moin, 1991), which

greatly reduces the complexity of the turbulence whilst keeping the main features

of the turbulent dynamics, Hamilton et al. (1995); Waleffe (1997); Jimenez & Pinelli

(1999) proposed a near wall turbulence self-sustaining cycle and argued that the quasi

streamwise vortices are generated by the instability of low speed streaks. Fig. 1-10

illustrates this wall cycle. Schoppa & Hussain (2002) argued that the normal-mode

Figure 1-10: The near-wall turbulence self-sustaining cycle proposed by
Hamilton et al. (1995); Waleffe (1997) (the cycle on the right). The process of streak
formation is sketched on the left in the red frame.

instability of the streaks does not contribute significantly to vortex generation and

instead a linear streak transient growth mechanism is responsible for the amplifica-

tion of the streamwise dependent perturbations and streamwise vortices regenera-

tion. Berhard et al. (1993); Brooke & Hanratty (1993); Zhou et al. (1999) proposed

instead a parent-offspring mechanism in which the near wall vorticity sheet induced

by parent (hairpin) vortices directly generates (hairpin) vortices. Collectively in these

models, however, it is clear that the quasi-streamwise vortices extract energy from
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Chapter 1. Introduction

the mean shear to feed the near wall structures and are responsible for the high drag

and Reynolds stresses in turbulence (Kim et al., 1987).

Control on vortices: wall blowing/suction. In light of the important role

that streamwise vortices play in the drag and shear stress production, Choi et al.

(1994) proposed an opposition control technique which aims at counteracting the

wall normal velocity components (of streamwise vortices) by blowing/suction at the

wall and achieved drag reduction about 25%. However, this control needs the informa-

tion inside the flow at y+ = 10 which is not easily available in experiments. Similarly,

Kim & Lim (2003) claimed that a linear mechanism that couples wall normal velocity

and wall normal vorticity is essential for generating the wall-layer streaks, which in

turn are essential for regeneration of vortices. They found that without this coupling

mechanism turbulence can not sustain itself. They suggested to suppress turbulence

with proper opposition control (Choi et al., 1994) so to minimize this coupling effect.

Nevertheless, it also requires the information inside the flow for the optimization. To

avoid these restrictions, Lee et al. (1998) proposed a numerical suboptimal control

strategy that only requires the pressure or shear stress on the wall. This strategy

can be implemented with wall blowing/suction and was shown to lead to 16 ∼ 22%

drag reduction in channel flow. Xu et al. (2002) applied suboptimal opposition con-

trol to pipe flow at Reτ = 150 and achieved drag reduction about 13% to 23% in

DNS. With the development of micro-electromechanical systems (MEMS), these con-

trol techniques that only require the information on the wall can be implemented

in experiment using small scale sensors/actuators on the wall (Kasagi et al., 2009).

Unfortunately, in experiments drag reduction has barely been achieved with MEMS

(Kasagi et al., 2009).

Control on streaks. Besides controls that act on the wall normal velocity (so

that on vortices), another type of control is based on the streak-instability vortices-

regeneration mechanism. Efforts have been taken in weakening or stabilizing the

near-wall low-speed streaks which were found to be inflectionally unstable, gener-

ating new streamwise vortices following their breakdown. Du & Karniadakis (2000);

Du et al. (2002) showed that near-wall streaks can be eliminated by means of a trans-

verse traveling wave, and that low-speed streaks can be weakened by a spanwise flow

oscillation. Numerically their traveling waves and oscillation were simulated by forc-

ing the flow in spanwise direction within the sublayer, and experimentally they used

an array of electromagnetic tiles (permanent magnets and electrodes) distributed on

the wall in conductive salt water. They claimed substantial net energy gain with

this technique. However, it is still a challenge to implement sensors/actuators-based
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control on very small length scales in engineering applications, and large scale control

is desired (Schoppa & Hussain, 1998).

Iuso et al. (2002); Schoppa & Hussain (1998) respectively tested large-scale vor-

tices control experimentally and numerically in channel flow. In experiment stream-

wise vortices were generated by injection from the wall and numerically by forc-

ing. They respectively reported about 30% and 20% reduction in skin friction and

Schoppa & Hussain (1998) even observed up to 50% skin friction reduction in their

simulation with wall jet collision control. They attributed the skin friction reduction

to the reorganizing and stabilizing effect of the large scale vortices on the low speed

streaks and the attenuation of the streamwise vortex formation in the near wall re-

gion. Willis & Hwang (2010) also found a possibility to reduce drag by forcing the

large scale streaks in pipe flow and reported a power saving up to 11%. However,

to my knowledge, so far there is no report of relaminarisation of fully turbulent flow

with large scale controls.

Control on the velocity profile. Another possible approach is to develop large

scale control methods that target the velocity profile because it is the energy source

in near wall turbulence. If this energy supply can be subdued then turbulence will

certainly decay or even relaminarise. The velocity profile also is a crucial factor in

the linear-coupling mechanism suggested by Kim & Lim (2003), which they argued is

essential for fully turbulent flow sustaining itself. It was also shown that a change in

the mean shear (or mean velocity profile) causes a great change in the energy balance

in channel flow (Tuerke & Jimenez, 2013). Although these authors did not report

relaminarisation, their results imply that by forcing the mean velocity profile to an

unnatural shape the energy balance may be perturbed so much that relaminarisation

occurs. These findings are consistent with the observation in pipe flow in the transi-

tional regime (Hof et al., 2010). These authors argued that the streamwise vorticity

of a turbulent puff is mainly produced at the trailing edge by an inflectional insta-

bility, which results from the distortion of the parabolic velocity profile immediately

upstream the sharp rear of the puff by the streamwise vortices. They developed both

experimental and numerical methods to flatten the velocity profile at the upstream

edge of the puff to intercept this mechanism and successfully relaminarised the puff.

They also applied their experimental strategy to channel and duct flows and achieved

relaminarisation of localized turbulence. Moreover, their control in numerical simu-

lations was shown to work in fully turbulent flow at Reynolds numbers Re ∼ 3000 if

the force was imposed globally.

Based on the insights we gained into the emergence of fully turbulent pipe flow
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and the self-sustained mechanism of near wall turbulence, one of the goals of this

thesis is to develop large scale control methods to relaminarise fully turbulent pipe

flow by modifying the velocity profile and altering the flow structures.

1.5 The outline

This thesis mainly discusses two problems: the emergence of fully turbulent flow

and turbulence control. In Chapter 2 the DNS codes used for this thesis will be

introduced. A primitive-variable pipe flow DNS code based on projection and time-

splitting schemes was developed and tested. In Chapter 3 the problem of the emer-

gence of fully turbulent pipe flow will be discussed. The detailed work on the front

speed measurement and spatial-temporal properties of turbulence fronts will be pre-

sented. Besides, the bifurcation scenario, together with Barkley’s model, will be in-

troduced. In Chapter 4, some turbulence control strategies that completely eliminate

turbulence are presented. The relaminarisation of fully turbulent flow under partial-

slip boundary conditions is investigated in Chapter 5, where a literature review on

superhydrophobicity will be given.
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Numerical methods

Turbulence is a multi-scale phenomenon. In wall shear turbulence, large scale struc-

tures extract energy from the wall shear and transfer the energy down to structures of

smaller length scales until the energy gets dissipated by the structures at the viscous

length scale. According to Kolmogorov’s theory, the smallest length scale in turbu-

lence, the so-called Kolmogorov length scale, η ∼ (ν3/ǫ)1/4, where ǫ is the dissipation

rate of the kinetic energy. Further, Taylor (1935) pointed out that ǫ ∼ u3/l where u

and l are the characteristic velocity and length scales of the largest eddies, in pipe

flow case u ∼ U and l ∼ D. With these relations, the ratio of the kolmogorov length

scale to that of the largest eddies, or the length scale of the width of the flow, will be

η/l ∼ Re−3/4 (Tennekes & Lumley, 1972). In three dimensional flow, this means a

number of grid points N ∼ (Re3/4)3 = Re9/4 if the smallest length scale should be re-

solved. At large Re, the kolmogorov length scale is orders of magnitude smaller than

the geometry of the flow. Hence, to resolve turbulence at all length scales requires

efficient high-resolution algorithms and a huge number of grid points. In engineer-

ing related CFD, where the Reynolds number is usually high, it is unaffordable to

resolve all scales directly. As a compromise, Reynolds-Averaged-Navier-Stokes equa-

tions (RANS) based approaches are usually adopted for these problems, in which the

mean velocity and turbulent kinetic energy are solved, whereas the fluctuations are

modeled with turbulence models that relate the Reynolds stress to the mean quan-

tities. Another approach, the Large Eddy Simulation (LES), truncates the length

cascades at a certain point. It solves the large energy containing scales and models

smaller structures with sub-grid models (Moin & Mahesh, 1998).

With the rapid development of computers and numerical methods, it became pos-

sible to resolve all length scales of turbulence at moderate Reynolds numbers by

directly solving Navier-Stokes equations without introducing any turbulence models
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as RANS and LES do (Orszag & Patterson, 1971). Nowadays, with high performance

computers, direct numerical simulations (DNS) of Navier-Stokes equations have be-

come a main tool in fundamental research of turbulence. In this thesis, DNS is per-

formed with hybrid spectral-finite difference methods as explained in the following

sections.

2.1 DNS Code 1: a pressure-free formulation

This code was developed by Ashley P. Willis (Willis & Kerswell, 2009). It has been

used in this thesis (Chapter 3 and Chapter 4) with minor modifications.

We consider the motion of incompressible fluid driven through a circular pipe with

a fixed mass-flux. Normalizing length by the radius R and velocity by Umax = 2U ,

the Navier-Stokes equations read

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∆u, ∇ · u = 0 (2.1)

where u is the velocity of the fluid and p the pressure. These equations are solved

in cylindrical coordinates (r, θ, z) using spectral-finite difference method with no-slip

boundary conditions at the pipe wall u(1, θ, z, t) = 0 and periodicity in the axial

direction. The pressure term is eliminated from the equations by using a toroidal-

poloidal potential formulation of the velocity field (Willis & Kerswell, 2009), in which

the velocity is represented by toroidal ψ and poloidal φ potentials, such that u =

∇× (ψẑ) +∇×∇× (φẑ). After projecting the curl and double curl of the Navier-

Stokes equations on the z-axis, a set of equations of the potentials ψ and φ is obtained.

A difficulty, due to the coupled boundary conditions on the potentials, is solved

with an influence-matrix method. Assuming the periodicity in azimuthal and axial

directions, the unknowns, i.e., the potentials, are expanded in Fourier modes,

A(r, θ, z, t) =
K
∑

k=−K

M
∑

m=−M

Âk,m(r, t)e
(iαkz+imθ) (2.2)

where αk and m give wave numbers of the modes in axial and azimuthal direc-

tion respectively, 2π/α gives the pipe length Lz, and Âk,m is the complex Fourier

coefficient of mode (k,m). With this expansion, the differential equations of the po-

tentials ψ and φ reduce to a set of linear systems for each (k,m) mode, which are

solved with a pseudo-spectral method. The nonlinear term is evaluated using the
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pseudo-spectral technique with the 3
2
-rule for the de-aliasing. In the radial direc-

tion spatial discretization is performed using finite difference method with a 9-point

stencil. The time-dependent equations are integrated in time using a second-order

predictor-corrector scheme with a dynamic timestep size, which is controlled using

the information from a Crank-Nicolson corrector step. See (Willis & Kerswell, 2009)

For the details of the formulation and integration.

2.2 DNS Code 2: a primitive-variable formulation

Mainly for the work in Chap. 5, I developed a primitive-variable code in which the

boundary condition can be easily modified. Here I adopt an efficient time-splitting

pseudo-spectral algorithm for incompressible flow, a so called ’improved projection

scheme’ developed by Hugues & Randriamampianina (1998).

2.2.1 Formulation

The primitive Navier-Stokes equations Eqs. (2.1) are solved in cylindrical coordinates

(r, θ, z). Rewrite Eqs. (2.1) in the following form:

∂u

∂t
+N(u) = −∇p+

1

Re
L(u), ∇ · u = 0, (2.3)

and no-slip boundary condition is adopted (Neumann and hybrid conditions are also

possible and easy to implement)

u = W on ∂Ω, (2.4)

where Ω is the flow domain and ∂Ω the boundary of Ω, i.e., r = 1 in pipe flow.

An important issue for incompressible Navier-Stokes solver is correctly treating

the pressure term that couples with velocity field. To solve the pressure p, a Poisson

equation for p is derived from Eqs. (2.3) by taking the divergence on both sides:

∆p = −∇ ·N(u), (2.5)

note that linear terms vanish thanks to the incompressibility condition. A Neumann

boundary condition can be derived by taking the derivative of Eqs. (2.3) with respect
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to the wall normal (radial) direction:

∂p

∂r
= r̂ ·

(

−∂u
∂t

−N(u) +
1

Re
L(u)

)

at r = 1. (2.6)

The spatial discretization is the same as in Code 1. In radial direction we use

finite-difference method for the radial derivative with a 9-point stencil for a lower

computation cost compared to fully spectral algorithm. With the periodic boundary

condition in axial and azimuthal directions, velocity is represented as Fourier expan-

sion as shown in Eqs. (2.2). However, the pressure p usually is not periodic in pipe

flow case. Pipe flow is usually driven by a constant pressure gradient or by a constant

mass flux with a variable pressure gradient. An overall axial pressure gradient, which

is not periodic in the axial direction and can not be expanded as Fourier series, is

present in either case. Throughout my thesis the pipe flow is driven by a fixed mass

flux, which requires a time dependent axial pressure gradient. Denoting this pressure

gradient as Pz, the pressure field finally takes the form:

p(r, θ, z, t) =
K
∑

k=−K

M
∑

m=−M

p̂k,m(r, t)e
(iαkz+imθ) + zPz(t), (2.7)

where the first term on the right hand side is the periodic part and zPz the non-

periodic part of the pressure field.

2.2.2 Integration

The temporal integration is carried out with a second-order-accurate scheme based

on a combination of backward differentiation schemes and Admas-Bashforth (the

nonlinear term is treated with the Admas-Bashforth scheme). It reads:

3un+1 − 4un + un−1

2∆t
+ 2N(un)−N(un−1) = −∇pn+1 +

1

Re
∆un+1 (2.8)

Given a proper initial condition u0 and set u−1 = u0, the time-splitting steps

proceed as following.

1. The predictor of the periodic part of a preliminary pressure field p̄n+1. The

discrete form of the Poisson equation for pressure is:

∆p̄n+1 = ∆ · [−2N(un) +N(un−1)] (2.9)
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with Neumann boundary condition (discretized form of Eqs. (2.6))

∂p̄n+1

∂r
=r̂ · {−3W n+1 + 4un − un−1

2∆t
− 2N(un) +N(un−1)

+
1

Re
[2L(un)− L(un−1)]} at r = 1.

(2.10)

Here the diffusion term is treated in the same way as the nonlinear term is.

Furthermore, to improve the stability, the L(u) is written in the following form

(see Hugues & Randriamampianina (1998)):

L(u) = ∆u = ∇(∇ · u)−∇× (∇× u) = −∇× (∇× u) (2.11)

2. The predictor of a preliminary velocity field u∗ with no-slip boundary condition

Eqs. (2.4) and the preliminary pressure p̄n+1 solved in the above step:

3u∗ − 4un + un−1

2∆t
+ 2N(un)−N(un−1) = −∇(p̄n+1 + zPz) +

1

Re
∆u∗ (2.12)

with

u∗ = W n+1 at r = 1. (2.13)

In this step, the axial pressure gradient Pz will be solved by imposing the

constant mass flux condition:

∫ 1

0

∫ 2π

0

u∗zrdrdθ =M, (2.14)

where M is the constant mass flux. Since this pressure gradient Pz is only time

dependent, ∇(zPz) = Pzẑ only acts on the (k = 0,m = 0) mode of the axial

velocity component uz. In addition, the constant mass flux condition Eqs. (2.14)

also only concerns the (k = 0,m = 0) mode of uz for the following reasons. Due

to the Fourier representation of the velocity u∗, the terms with azimuthal wave

number m 6= 0 do not contribute to the mass flux since
∫ 2π

0
eimθdθ = 0 if m 6= 0.

In addition, the mass flux on the pipe cross section should be axially invariant.

Consequently, the terms with axial wave number k 6= 0 should neither contribute

to the mass flux. Finally,

∫ 1

0

∫ 2π

0

u∗zrdrdθ = 2π

∫ 1

0

u∗z,00rdr =M. (2.15)

uz,00 can be solved combining Eqs. (2.12) and Eqs. (2.15). Other modes of uz,
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and components ur,km and uθ,km can be obtained by solving Eqs. (2.12) alone

because Pz is not directly involved in their dynamics.

3. Correct the predicted pressure p̄n+1 to enforce the incompressibility of the ve-

locity field. Note that in the previous step, the condition ∇ ·u∗ is not imposed,

hence, the predicted velocity field is generally not divergence free. In this step,

the pressure filed p̄n+1 will be corrected to enforce the incompressibility. Con-

sider the following equation

3un+1 − 3u∗

2∆t
= −∇(pn+1 − p̄n+1) in Ω and at r=1, (2.16)

and

∇ · un+1 = 0 in Ω, (2.17)

with boundary condition

r̂ · un+1 = r̂ · u∗ at r = 1, (2.18)

Defining an intermediate variable φ = 2∆t/(3(pn+1 − p̄n+1)) and taking the

divergence of Eqs. (2.16) with boundary condition Eqs. (2.18) result in a Poisson

equation for φ:

∆φ = ∇ · u∗ in Ω (2.19)

with a Neumann boundary condition

∂φ

∂r
= 0 at r = 1. (2.20)

Eqs. (2.20) is derived from the boundary condition Eqs. (2.18). In fact, un+1 −
u∗ = −∇φ according to the definition of φ. Projecting this relation on the

radial direction, one obtains

r̂ · (un+1 − u∗) =
∂φ

∂r
= r̂ · (W n+1 −W n+1) = 0, (2.21)

note the boundary condition u∗ = W n+1 in the previous step. Once obtaining

φ, one can correct the pressure and velocity fields in Ω as well as on the wall by

pn+1 = p̄n+1 +
3

2∆t
φ, un+1 = u∗ −∇φ. (2.22)

In this corrector step, the mass flux does not change. In fact, the Poisson
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equation Eqs. (2.19) reduces to Laplace’s equation ∆φ = 0 for the (k = 0,m =

0) mode. Given the homogeneous Neumann boundary condition, the solution

will be φ00 = const. in the whole domain. Clearly, this will not modify the

(k = 0,m = 0) mode of the velocity u∗z predicted in step 2, which satisfies the

fixed mass flux condition subject to Eqs. (2.15). In a word, uz,00 = u∗z,00 and

at the end of integration the velocity field satisfies both the constant mass flux

and incompressibility condition.

In what follows, the laminar Hagen-Poiseuille flow, and the wall friction factor of fully

turbulent flow will be tested.

2.2.3 The Hagen-Poiseuille flow

Given a pressure gradient, the Hagen-Poiseuille flow starts to develop. This test was

carried out at Re = 4000 with 64 Chebyshev points in the radial direction. The initial

flow is one at still, i.e., u = 0 and the axial pressure gradient is set to be − 4
Re
. The

analytic steady solution to the Navier-Stokes equations under these conditions is the

parabolic Hagen-Poiseuille flow u = (1 − r2)ẑ, where ẑ is the unit vector in axial

direction. Fig. 2-1(a) shows the evolution of the velocity profile in numerical simula-
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Figure 2-1: (a) The development of the velocity profile under pressure gradient ∂p
∂z

=
− 4

Re
starting from u = 0. (b) The error of the converged numerical solution.

tion. The velocity profile at t = 4000 (the cyan line which overlaps with the blue line

at t = 10000) is almost the parabolic flow (with an error below %0.5). Fig. 2-1(a)

shows the error of the converged solution. With this radial resolution the error is on
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the order of magnitude of 10−12.

A second test is to fix the flow rate at
∫ 2π

0

∫ 1

0
uzrdrdθ =

π
2
and solve the correspond-

ing driving pressure gradient. The resolution and Re are the same as the previous

test. The code gives accurately 1× 10−3 = 4/Re (relative error below 10−12). These

two tests show that this code can accurately produce the Hagen-Poiseuille flow.

2.2.4 Wall friction of fully turbulent flow

The wall friction factor is calculated for fully turbulent flow at several Reynolds

numbers so to test the code. Simulations are performed at Re =3000, 5000, 7500,

10000, 15000, and 20000. For Re=3000 and 5000 a pipe with Lz = 8π is used, and

at other higher Reynolds numbers a pipe with Lz = 4π is used considering the high

computation cost. The domain size, resolutions , viscous Reynolds number Reτ , and

comparison of DNS Cf and that given by Blasius law Cf = 0.3164Re−0.25 are listed

in Tab. 4.1. Clearly, this code can accurately capture the friction factor and the

agreement with the Blasius law is very good (within an error of 1.6% at all these

Reynolds numbers).

Re Lz N M K Reτ = uτR
ν

Cf Cf,Blasius

3000 8π 64 40 192 109.35 0.0423 0.0427
5000 8π 80 60 256 172.77 0.0382 0.0376
7500 4π 128 128 128 245.01 0.0342 0.0340
10000 4π 144 144 144 315.20 0.0318 0.0316
15000 4π 160 160 160 448.20 0.0286 0.0286
20000 4π 192 192 160 580.69 0.0270 0.0266

Table 2.1: The domain size Lz, resolutions (N,M,K) with N the number of Cheby-
shev point in radial direction, the viscous Reynolds number Reτ based on time-
averaged friction velocity uτ at the wall, the time-averaged Cf and Cf given by
Blasius law. Note that the actual resolution in spectral space is N × 2M × 2K with
N × 3M × 3K grid points in physical space because of the 3

2
-dealiasing. The domain

size in wall unit is L+ = LzReτ .
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Chapter 3

The emergence of fully

turbulent flow

After a century of extensive studies, the origin of fully turbulent flow in pipes has

not yet been resolved. Research in recent decades showed the intermittent na-

ture associated with the localized turbulence, puffs, that appear at Re ∼ 2000

(Wygnanski & Champagne, 1973; Wygnanski et al., 1975; Darbyshire & Mullin, 1995;

Faisst & Eckhardt, 2004; Hof et al., 2006; Peixinho & Mullin, 2006; Willis & Kerswell,

2007; Hof et al., 2008; Avila et al., 2010). It has been speculated (Moxey & Barkley,

2010) and clarified (Avila et al., 2011) that localized turbulence becomes sustained

via spatiotemporal intermittency. The competition between puff decay and split-

ting determines that the onset of sustained turbulence is at Re = 2040 (Avila et al.,

2011). However, at the onset individual turbulence patches still stay localized keeping

a constant axial extension. At higher Reynolds numbers above Re ∼ 2800, studies

showed that turbulence grows continuously as slugs and pipe flow eventually becomes

fully turbulent. Puffs and slugs are bounded by upstream and downstream fronts,

and the development of turbulence can be depicted by the speed of these fronts which

has been the subject of extensive studies (Lindgren, 1969; Wygnanski & Champagne,

1973; Sreenivasan & Ramshankar, 1986; Nishi et al., 2008; Duguet et al., 2010b). The

speed data of these studies roughly agree and collectively showed a smooth change

from puffs to slugs. However, so far no clear scenario of transition to fully turbu-

lent flow has been obtained and no bifurcation point has been determined. In order

to better understand this transition process, in this chapter, I first show accurate

front speed data from extensive DNS measurement. Then a new pipe flow model

by Barkley, a descendant of the the earlier models of Barkley (2011b,a), will be in-
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troduced and the results from theoretical modeling will be compared with my DNS

results and experimental results from Mukund Vasudevan at IST Austria. At the

end, combining all these approaches, the transition scenario to fully turbulent flow

will be explained.

3.1 Speed measurement

3.1.1 Detection of the fronts and thresholding

In the following I will discuss the procedure developed to determine the speed of the

turbulence fronts. To study the front speed, the laminar flow was locally perturbed

and the evolution of the resulting turbulent patch was studied. As initial perturba-

tions, we selected velocity fields from localized turbulent structures (i.e., puffs) at

lower Re, Re=1950 and 2000. Here puffs remain in equilibrium for very long times.

They keep a constant size and travel downstream at an almost constant speed. At

the same time they are intrinsically chaotic and memoryless (Faisst & Eckhardt, 2004;

Song & Hof, 2014). This makes them ideally suited as initial localized perturbations

for statistical studies at higer Re. To make sure initial conditions are not strongly

correlated with each other, consecutive ones are separated by approximately 80 time

unit. To detect the turbulent fronts, here the quantity q(z) :=
∫ ∫

(u2r + u2θ)rdrdθ

is chosen as the local turbulence intensity which is zero in laminar regions and of

a finite value in turbulent regions. By setting a proper threshold above which flow

will be considered as turbulent, the downstream and upstream fronts can be easily

detected. Other quantities such as centerline velocity and streamwise vorticity ωz

could be equally well used.

To illustrate the procedure of locating the fronts, an example is shown in Fig. 3-1.

It shows a puff at Re = 2000 in a pipe with a length Lz = 266, which is characterized

by a sharp upstream front and a more diffusive downstream front. Fig. 3-1(a) shows

the distribution of the local turbulence intensity q along the pipe, and Fig. 3-1(b)

shows the distribution of the centerline velocity. As mentioned above, in principle

both of them can be chosen for locating the fronts. In Fig. 3-1(a) three dashed lines

are plotted corresponding to three different thresholds 5× 10−4, 10−5 and 10−6. Ob-

viously they give different lengths of the structure, 5× 10−4 gives a length about 18,

10−5 gives about 40, and 10−6 about 65. Because of the periodic boundary condition

imposed in the axial direction, structures can be followed for long times. On the

other hand, the downstream and upstream fronts are eventually going to meet for
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Figure 3-1: (a) The distribution of the local turbulence intensity q as a function of
axial position z at Re = 2000. The data are taken at a random time instant in a pipe
with Lz = 266. The three dashed lines show three possible thresholds for locating
the downstream and upstream fronts. Other proper values are also eligible. (b) The
streamwise velocity on the pipe axis taken at the same time as (a) is.

slugs. Therefore, the measurement has to stop when these two fronts get too close

to each other because the interaction between them may affect their intrinsic speeds.

In run time, the q(z) will be calculated frequently in order to give a detailed time

series of the locations of fronts, based on which front speed will be calculated. In the

following, the position and the speed of fronts will be determined with these three

thresholds, and the influence of the thresholding on the front speed will be studied.

Front positions and speeds resulting from the three different thresholds as plotted

as dashed line in Fig. 3-1(a), are compared in Fig. 3-2. The position is plotted in

a frame of reference co-moving with the mean flow (see Fig. 3-2(a)). By doing so,

the speed of the fronts relative to the mean flow can be seen straightforward from

the figure. Apparently, three thresholds result in different positions of the fronts as

well as different lengths of the puff. However, it is quite obvious that in Fig. 3-2(a),

the lines for either the upstream or downstream front are overall parallel to each

other, indicating that different thresholds indeed give the same overall speed of the

fronts. As known, puffs are usually characterized by a sharp upstream edge and a

relatively more diffusive downstream edge, which is also reflected in this figure. The

three dotted lines for the upstream front are smoother than those three for the down-

stream front, regardless of the threshold. The fluctuations of positions are due to the

fact that at the fronts, turbulent eddies keep shedding off and escape from the main

structure, or disconnected turbulent islands even merge into to the main structure.

This fluctuation is also partially a consequence of the simple treatment of the fronts

31



Chapter 3. The emergence of fully turbulent flow

0

500

1000

1500

0 60 120 180 240

tim
e

z

(a)

TE 5×10-4

LE 5×10-4

TE 10-5

LE 10-5

TE 10-6

TE 10-6

0.3

0.5

0.7

0 500 1000 1500 2000

sp
ee

d

time

(b)

TE 5×10-4

LE 5×10-4

TE 10-5

LE 10-5

TE 10-6

LE 10-6

mean flow speed

Figure 3-2: (a) The streamwise propagation of the puff shown in Fig. 3-1 in a frame
comoving with the mean flow (at a speed of 0.5). The axial position of the downstream
(LE, as solid line on downstream) and upstream (TE, as dashed line on upstream)
fronts are detected based on three thresholds, 5 × 10−4, 10−5, and 10−6 (as shown
in Fig. 3-1(a) as dotted lines), which are separated from each other by an oder of
magnitude or even more. (b) The average speed of the fronts detected with all three
thresholds in some time intervals based on the information in (a)

as a threshold. As a matter of fact, a simple cut-off clearly can not capture the full

features of the highly convoluted laminar-turbulent interfaces (Holzner et al., 2013).

The other piece of information from this figure is that the puff propagates down-

stream at a speed very close to the mean flow speed. From the beginning to about

t = 1200, and after about t = 1500 the positions of both fronts are rather constant in

the comoving frame. However, between t = 1200 and 1500 the puff accelerates a bit

and moves downstream slightly faster than the mean flow. Then it decelerates and

regains the mean speed of the flow. This can be more quantitatively demonstrated

by the time series of the front speed, as shown in Fig. 3-2(b). Considering the fluctu-

ations in the front position, the time window in which the speed is averaged should

be large compared to the characteristic time scale of the fluctuations. In this figure,

for thresholds 5 × 10−4 and 10−5 the speed is averaged over 250 time unit, and for

threshold 10−6 a larger time interval 400 is adopted to avoid the front speed being

affected by the bigger fluctuations in the downstream front, as shown by green lines in

Fig. 3-2(a). Fig. 3-2(b) indicates that the speeds measured with different thresholds

agree well with each other. The most straightforward estimation of the overall mean

speed of the fronts is zend−z0
tend−t0

. In this estimation, the threshold 5 × 10−4 gives 0.502

and 0.502 for the upstream and downstream fronts respectively, 10−5 gives 0.503 and

0.502, and 10−6 gives 0.502 and 0.503. All of them give very close overall mean speed

of the fronts. Here it is concluded that the specific threshold does not considerably
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affect the result of the front speed. In what follows, 5×10−4 is chosen as the threshold

at all Reynolds numbers for the sake of comparison.

It should be noted that in the splitting regime and the early slug regime (up to

about Re ≃ 2800), only the most upstream and the most downstream fronts will be

detected, ignoring laminar gaps or low intensity holes that may appear inside the

structures(Avila & Hof, 2013).

Here, pipe flow is treated as a quasi one-dimensional flow (as q(z)) because the

front dynamics of pipe flow are indeed rather one-dimensional and can be very well

modelled by one-dimensional models (Barkley, 2011b,a). In fact, it is possible to treat

the actual 3-dimensional fronts and calculate the local propagation speed of the fronts.

Holzner et al. (2013) developed a quantitative Lagrangian approach to calculate the

local propagation speed of turbulence. By defining the laminar-turbulent fronts (in-

terfaces) as isosurfaces of the local enstrophy, the fronts, especially the downstream

front, were found to be highly convoluted and stretched in the streamwise direction

by the mean shear. The local propagation speed of the fronts was calculated and

found to be distributed differently on the upstream and downstream front. Besides,

the contributions from different mechanisms (e.g. diffusion and linear advection) to

the propagation speed can be investigated with this method. Unfortunately, it re-

quires extremely high resolution for the isosurfaces construction and interpolation

from grid points onto isosurfaces, which makes it unaffordable for studies at higher

Re and in long pipes (for details see Holzner et al. (2013)). Nevertheless, the overall

propagation speed of the fronts of puffs at Re = 2250 was evaluated as the speed of

the mass center of the complex 3-dimensional fronts, which is 0.47 and turned out to

agree with the DNS result here as will be shown in the following.

3.1.2 Temporal behavior of the front speed, t0 and L0

In this section I discuss the temporal evolution and some statistics of the front speed

of puffs and slugs. Tab.4.1 lists the domain size and resolution at all Reynolds num-

bers considered in this study.

Fig. 3-3 shows the time series of the speed of the two fronts at Reynolds numbers

2200, 2400, 3000, and 5500. At each Reynolds number, the time series of the front

speed from 6 runs are plotted and at any data point the speed is averaged over 80 time

units. Overall it shows that the speed of the upstream front undergoes less fluctua-

tions than that of the downstream front even at Re as high as 5500, indicating that

the upstream front is always energetically more stable than the downstream front.
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Re Lz N K M Re Lz N K M
1910 48π 48 640 32 3000 360 72 2560 48
1920 48π 48 640 32 3200 360 72 2560 54
2000 48π 48 768 40 3500 360 72 2560 54
2200 48π 48 768 40 3750 266 72 2048 54
2300 266 64 1536 40 4000 266 72 2048 54
2400 266 64 2048 48 4250 360 80 3072 60
2500 266 64 2048 48 4500 360 80 3072 64
2600 266 64 2048 48 5000 360 80 3072 64
2800 360 72 2560 48 5500 360 96 3840 80

Table 3.1: The domain size and resolution for the simulation. Note that in physical
space there are 3K and 3M grid points in axial and azimuthal directions.

Interestingly the downstream front of puffs at Re = 2200 seems to be more stable

than that at Re = 2400 and even up to 3000. It implies that slugs at low Reynolds

numbers (below 3000) have a puff-like downstream front which is even more erratic

and less well-defined than that of puffs. In fact, these slugs were referred to as puffs

out of equilibrium or puffs that grow (Wygnanski & Champagne, 1973; Duguet et al.,

2010b). Later we will clarify that they are actually slugs and are significantly different

from puffs. It is worth mentioning that, at Re ≃ 2400, the downstream front mani-

fests huge fluctuations and may even temporarily almost go backward relative to the

laboratory frame due to fast decay (destruction) of the structures at the downstream

edge. As pointed out earlier, this is partially a consequence of the simple treatment

of the front as a cutoff, nevertheless, the huge fluctuations indicate the erratic nature

of the downstream front in this regime.

Statistics were performed for a clearer trend of the front speed in time. The speed

was first measured in individual runs, then the speed was averaged over all runs

(about 20 for each Re) and finally a time series of the sample-averaged speed was

obtained. In each individual run, the speed at any time instant was averaged within a

time window of 80 time units. The length of the structure was concurrently measured

for further analysis. Fig. 3-4 shows the temporal evolution of the sample-averaged

front speed at Re=2200, 2400, 3000, 3750, 4250, and 5000, from the puff regime

to slug regime. As shown in (a-c), at low Re the front speed does not show much

transients on average after the initiation. At Re = 2200 this is expected since initial

conditions are puffs nearby at Re = 2000. However, it could be that at Re = 2400

and 3000 as shown in (b) and (c), the fluctuations of the erratic downstream front

mask the initial transients (see also Fig. 3-3). At higher Re, on the contrary, the

front speed, particularly that of the downstream front increases after the initiation,
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Figure 3-3: Time series of the front speed at Reynolds numbers 2200, 2400, 3000, and
5500. The red points represent downstream front and the blue ones upstream front.
At any time instant, speed is averaged over 80 time units with the time instant in the
middle of the averaging window. Only 6 runs are plotted at each Reynolds number
to avoid overcrowding.

and saturates after a certain time. This duration from initiation to speed saturation

is referred to as t0, i.e., the structure formation time. As can be seen, at Re = 3750

the speed saturates at about t = 300, 400 at Re = 5000, and about 500 at Re =5500.

This trend indicates that it takes longer for slugs to reach a stable growth rate as Re

increases. If the speed should be measured, this t0 has to be considered and excluded.

Nishi et al. (2008) (figure 14) also observed the drastic velocity increase in the initial

transient stage up to time 600 at Re > 4530, and the higher the Reynolds number,

the longer the initial transients. Above Re = 9000, the downstream front speed has

not even stabilized within their Lz = 1066 pipe. However, in their experiment, this

initial transients is partially due to the development of the Hagen-Poiseuille flow since

the pipe inlet. In the DNS simulation on the other hand, the basic flow is already

parabolic from the very beginning. Therefore, the t0 in these two studies are not di-
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rectly comparable. My DNS results suggest that even starting with a fully developed

parabolic flow, measurement should start at least 400 time units after the initiation

below Re = 5000, and at least 600 time units at Re = 5500.

The relationship between front speed and the structure length was also studied.

The results are shown in Fig. 3-5. Since puffs do not grow in time, they are not

considered here. As shown in the figure, the relationship between the front speed and

structure length behaves similar to that between the front speed and time. At low Re,

for example at 2400, on average there is not significant change from the initiation. As

mentioned before, the intrinsic large fluctuations of the downstream front speed may

have masked the initial transients. However, from Re = 3000 on, a clear increasing

trend in the downstream speed can be observed during the initial transients. The

speed saturates after the structure has picked up a certain length, which is referred to

as L0, i.e., the formation length of slugs. At Re = 3000, L0 ∼ 60 and as Re increases

L0 also increases significantly. At Re = 5000 and 5500, L0 gets as large as about 200

and 220. In order to have a sufficiently long measurement duration, the flow domain

must be considerably longer than L0. These results may provide both numerical and

experimental measurements with a criterion for avoiding the effects of system size

and initial transients.

Overall, the upstream front is rather stable since the initiation at any Reynolds

number and is not even affected (at least not noticeable in this study) by the puff/slug

formation period, however, Nishi et al. (2008) observed transients for both fronts.

Besides the development of the Hagen-Poiseuille flow in their experiments, another

possible reason for this is that all simulations were initiated with puffs simulated at

Re = 2000, which already have well-defined sharp upstream fronts. Nevertheless, the

t0 and L0 obtained from the analysis on the downstream front should be sufficient

for getting rid of the initial transients, as the upstream front is expected to form and

stabilize faster than the downstream front if initiated with featureless perturbations

(see figure 14 in Nishi et al. (2008)).

3.1.3 Speed PDFs

The front speed manifests different levels of fluctuations at different Reynolds numbers

(see Fig. 3-3), which can be best depicted by the probability density function (PDF)

of the speed. As shown in Sec. 3.1.2, the t0 and L0 have to be taken into consideration

for accurate measurements. The speed was measured after t0 = 400 for puffs, which

do not grow, and after L0 = 80 for slugs at Re ≤ 3000, 120 at 3000 < Re ≤ 4000,

36



Chapter 3. The emergence of fully turbulent flow

 0

 0.2

 0.4

 0.6

 0.8

 1

1000 2000

sp
ee

d

(a) Re=2200

Upstream front
Downstream front

 0

 0.2

 0.4

 0.6

 0.8

 1

0 1500 3000 4500

(b) Re=2400

 0

 0.2

 0.4

 0.6

 0.8

 1

0 500 1000 1500 2000

sp
ee

d

(c) Re=3000

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200 400 600

(d) Re=3750

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200 400 600 750

sp
ee

d

time

(e) Re=4250

 0

 0.2

 0.4

 0.6

 0.8

 1

0 200 400 600 800

time

(f) Re=5000

Figure 3-4: Time series of the averaged front speed at Re= 2200, 2400, 3000, 3750,
4250, and 5000. Each data point is an average over about 20 runs at the same time
instant. While in each individual run, the speed at any time instant is averaged over
80 time units.
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Figure 3-5: Time series of the averaged front speed at Re= 2400, 3000, 3750, 4250,
5000, and 5500. Each data point is an average over about 20 runs at the same length
instant.
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160 at 4000 < Re < 5000, and 240 at Re ≥ 5000. The results are shown in Fig. 3-6.

The PDFs of the upstream front are similar at all Reynolds numbers, showing

a sharp peak (actually slim bell-shaped distribution) symmetric to the mean. As

Reynolds number increases, the PDF becomes slimmer and taller, indicating that the

speed undergoes smaller fluctuations relative to the mean. This is consistent with the

time series of upstream front speed shown in Fig. 3-3. However, above Re = 3750 the

PDF seems to have saturated. On the other hand, the PDFs of the downstream front

speed are much fatter and shorter than that of the upstream front speed, indicating

larger fluctuations in speed. The PDF is the fattest at about Re = 2400 because
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Figure 3-6: PDF of the front speed of puffs/slugs at Re= 2200, 2400, 3000, 3750,
4250, 5000. The same binning is used for all Reynolds numbers and the ruggedness
in PDFs of the downstream front speed is due to the small sample size.

of the erratic downstream front resulting from the complicated immature slugs, and

puff-puff/puff-slug interactions. Above Re = 2800 slugs tend to become mature and

grow continuously. Consistent with the information conveyed in Fig. 3-3, the PDF of

the puff is slimmer than that of slugs below Re ≃ 3000 and is similar to that of slugs at

Re ≃ 3000, suggesting that the downstream front of puffs is surprisingly more stable

than that of early slugs, at least in the respect of front speed. As Reynolds number

increases further, the PDf becomes slimmer and closer to that of the upstream front

speed. The downstream front becomes more stable and undergoes less fluctuations

when Reynolds number increases, implying that at high Reynolds numbers (above

Re ≃ 5000) slugs possess a downstream front similar to the upstream front, which

will be discussed in more detail later in this chapter.
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3.1.4 The front speed as a function of Re

Because of the fluctuations of the fronts, especially the downstream front, sufficient

observation time are needed to obtain an accurate mean speed. In this study, pipe

lengths of 266 and 360 are adopted for simulations above Reynolds number 2300 and

48π for puffs below 2200 (note that puffs do not grow). The details of the domain

size and resolutions are shown in Tab. 4.1.

For each Reynolds number, data from about 20 runs were collected. In the puff

regime, for each run, the speed measurements started after the puff had evolved about

400 time units in order to get rid of the initial transients. In the slug regime, mea-

surements was started after the structure grew above 160 radii with the threshold

5 × 10−4. In Lz = 266 pipe the measurements stopped when the structure length

reached 240, and 320 in Lz = 360 pipe so to avoid the interactions between the up-

stream and downstream fronts when they get too close (Note the periodic boundary

condition used in DNS and eventually the two fronts will meet each other and the

pipe will be completely filled with turbulence). More details on the spatial properties

of slugs are about to be discussed in the next section. The speed was first averaged

in each run and denoted as v̄i, and further averaged over all runs and is denoted as

< v̄i >=
∑

i v̄i/N . Because the initial conditions are uncorrelated, it is assumed that

the speed measured in each run is independent of that in others. Besides, the mean

speed of a single run is considered as a random variable and speeds of all runs are

subject to an identical probability distribution. Under these assumptions, when N ,

the number of runs, is large, the population mean speed can be approximated by the

sample mean < v̄i > and 1.96σ/
√
N gives a %95 confidence interval for the mean,

where σ is the standard deviation of the sample v̄i. This confidence interval is taken

as the uncertainty of our statistics as shown in Fig. 3-7.

Fig. 3-7 plots the front speed against the Reynolds number. Up to Re = 2200,

the speed of the two fronts are identical, resulting in a fixed length for puffs. From

Re ≃2300 on, the speed of the two fronts starts to depart considerably. This overall

agrees with former measurements (Lindgren, 1969; Wygnanski & Champagne, 1973;

Durst & Ünsal, 2006; Nishi et al., 2008). As a consequence, localized turbulence

starts to grow at a noticeable rate. This indicates that the onset of spreading turbu-

lence is close to Re ≃ 2300. Unfortunately, in this regime, the turbulence spreading

process occurs on very large time scales (Avila & Hof, 2013), which makes numerical

measurement very expensive. The speed from only a single run (without statistics)

at Re = 2300 is shown in Fig. 3-7. Small changes in the curvature could be seen for
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Figure 3-7: The front speed as a function of Reynolds number. For each point,
about 20 runs are carried out and the error bars are uncertainties which give a 95%
confidence interval of the mean speed as explained in the main text.

above Re > 2300. This point will be stressed later.

The growth rate of turbulence as a function of Reynolds number is also inves-

tigated (see Fig. 3-8). The growth rate is given simply by the difference in the

speed of the two fronts. The data show that the growth rate above the onset of the

growth of turbulence (Re ∼2300) increases approximately linearly until Re ∼ 3200.

A linear fit (the black line in Fig. 3-8) very well represents the trend of the growth

rate near the onset of growing turbulence. This disagrees with the results reported

by Sreenivasan & Ramshankar (1986); de Lozar & Hof (2010), where the authors

claimed a square root scaling between the growth rate and the distance to the ’critical’

Reynolds number where the growth of turbulence first occurs. If taking the growth

rate as the order parameter, this linear scaling suggests that this transition process

does not fall in any universality class of non-equilibrium phase transition as reviewed

by Hinrichsen (2010).

To my knowledge this is the first extensive DNS measurements of the front speed of

puffs/slugs and the DNS data overall agree with former experimental measurements.

In addition, the DNS speed data show much less scattering than those reported and

give a nice estimation of the uncertainty of the statistics. However, the speed measure-

ment alone does not suffice to explain the transition to fully turbulent flow. Besides,

at Re ≃ 2300, puff splitting contributes to the difference between the speed of the

two fronts, but structures still remain localized. Consequently, puff splitting does not

signal the emergence of slugs. Actually there is no clear division between puffs and
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Figure 3-8: The growth rate of puffs/slugs. The black line is a linear fit with the data
at Re ∈(2300 3200).

slugs between Re ≃ 2300 and 2500. They may coexist and puffs may temporarily

grow while slugs may degenerate into puffs. The speed and growth rate measurements

do not show any typical scaling at a critical point, such as the square-root scaling of

the percolation type processes. The front speed of puffs just smoothly changes to that

of slugs. All these facts make the transition scenario to fully turbulent flow unclear.

In what follows, I will show that a perspective of viewing pipe flow as an excitable

media, as proposed by Barkley (2011b), eventually helps to clarify this problem.

3.2 Modelling puffs and slugs: Barkley’s model

In excitable media, excited states are bounded by sharp fronts. The dynamics of such

fronts has long been studied with low dimensional model equations, mostly in chemical

reactions and electrophysiological systems (see Tyson & Keener (1988)). As discussed

in Sec. 1.3, pipe flow bears a strong analogy to one-dimensional excitable media such

as a nerve axon (see Fig. 1-7 and Fig. 1-8). The action potential of a nerve axon

has long been modeled as reaction-diffusion systems (FitzHugh, 1961; Nagumo et al.,

1962; Tyson & Keener, 1988). Inspired by this analogy and the fact that on large

scale pipe flow is rather one dimensional (fronts only move in one direction), Barkley

(2011b) proposed to view pipe flow in the context of excitable and bistable media.

As shown below that pipe flow indeed can be modeled by one-dimensional advection-

reaction-diffusion equations, and its large scale behaviours such as puffs, transition
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from puffs to slugs and the growth of slugs can be very well captured. The chaotic and

transient nature of puffs, puff splitting, and slugs with holes can also be successfully

captured by either a discrete coupled map lattices type model (Barkley, 2011b) or

ODE models with an additional noise term (Barkley, 2011a). However, a factor that

will be demonstrated intrinsic to pipe flow, the nonlinear advection of turbulence, is

missing in these models. It turns out that this nonlinear advection deprives these

models of correctly predicting the scaling of the front speed as the flow transitions

from puffs to slugs (private communication with Barkley). With the accurate (both

DNS and experimental) measurements of the front speed of puffs/slugs, a new model

proposed by Barkley that takes account for the nonlinear advection, correctly captures

the scaling of the front speed in all flow regimes and predicts two types of slugs with

different downstream fronts. In this section, this model will be introduced and the

bifurcation scenario that gives rise to slugs and two types of slugs within the model

will be discussed in details. A comparison between structures in the asymptotic limit

and that from DNS will be made at the end of this section.

3.2.1 The model equations

In pipe flow, perhaps the most important two elements are turbulent fluctuations

and the velocity (shear) profile, which interact nonlinearly with each other via the

Navier-Stokes equations. Modeling aims to replace the full Navier-Stokes equations

by simpler model equations with low-order nonlinearities whilst capturing the basic

dynamics of the flow. Realizing that the velocity profile can be modeled by a scalar,

the centerline velocity, Barkley (2011b) developed the two-variable one-dimensional

model which successfully applied to pipe flow. By introducing a nonlinear advection,

a new model is developed as the following:

∂q

∂t
+ (u− ζ)

∂q

∂x
= f(q, u; r) + Γ

∂2q

∂x2
,

∂u

∂t
+ u

∂u

∂x
= ǫg(q, u), (3.1)

where variables q and u depend only on the streamwise coordinate x and time t.

q models the level of turbulent fluctuations and u models the centerline velocity of

the flow. u plays two important roles, it accounts for the nonlinear advection in the

streamwise direction and it measures the state of the velocity (or shear) profile (u = 1

for parabolic flow while u < 1 for plug flow). Using the concepts from excitable media,

u is the control variable which control the level of q and accounts for the refractory

nature. q is the trigger variable, or the propagator (Tyson & Keener, 1988), that
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propagates through the system. The parameter ζ is a positive number and accounts

for the fact that turbulence is advected more slowly than the centerline velocity,

which was evidenced by our numerical simulation (see Appendix B). So, u− ζ is the

nonlinear advection of the propagator q, as shown in the first equation of Eqs. (3.1).

The parameter ǫ gives the ratio of time scales between the fast excitation of q and

the slow recovery of u in the absence of q. Γ is the diffusion coefficient of q and is a

constant. The functions f(q, u; r) and g(q, u) account for the nonlinear interactions

between q and u and should be modeled to capture the most fundamental features of

pipe flow with minimal nonlinearities, where r is a system parameter that corresponds

to the Reynolds number in pipe flow and accounts for the transition from excitability

to bistability.

Barkley proposed the following forms for f(q, u; r) and g(q, u):

f(q, u; r) = q(u+ r − 1− (r + δ)(q − 1)2) (3.2)

g(q, u) = (1− u)− ρqu (3.3)

where ρ sets the ratio between the time scale at which u decreases in response to q

and that at which u recovers in the absence of q. δ is a small positive number that

assures the linear stability of resting state for any value of r. If we consider only the

local dynamics of the system Eqs. (3.1) (without spatial variations):

q̇ = f(q, u; r) (3.4)

u̇ = ǫg(q, u), (3.5)

then the local dynamics will be organized by the nullclines f = 0 and g = 0. Clearly

the q-nullcline f = 0 has three branches because f is cubic in q, a trivial branch

q = 0 (denoted as q0) and two non-trivial branches from a parabola, a stable upper

branch q+ and an unstable lower branch q−. This captures the basic features of

subcritical shear flow that small amplitude perturbations will be damped out and

flow falls back to laminar state, however, perturbations above a certain threshold will

trigger turbulence. This unstable lower branch depicts such a threshold in q. The

u-nullcline g = 0 tells how u decreases as the fluctuation level q increases and the

other way around. The parameter r plays a role as the Reynolds number. At all r,

the system has a stable fixed point u = 1; q = 0 corresponding to the resting state

(laminar flow) and it will be the only fixed point when r is small. As r increases

above certain point, q-nullcline moves such that the u-nullcline intersect the upper

44



Chapter 3. The emergence of fully turbulent flow

branch of q-nullcline q+. By then a new fixed point other than u = 1; q = 0 appears

in the q-u phase space, which corresponds to a stable excited state, i.e., the stabilized

turbulent flow. As this happens, the system becomes bistable and specifically in pipe

flow transition from localized turbulence to expanding turbulence (the predecessor of

fully turbulent flow) occurs. See Fig. 3-9(b) for an example.

Fronts are the regions that connect the solutions on the branch q0 and q+, in
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Figure 3-9: u-nullcline and q-nullcline in q-u space. The q-nullcline (the two non-
trivial branches) moves with the change in the parameter r. At low r there is only
one fixed point at u = 1; q = 0 (the blue dot) but a stable fixed point appears on the
upper branch of q-nullcline as r increases (the red dot).

pipe flow, they are the laminar-turbulent interfaces bounding the turbulent area. The

standard asymptotic analysis of the fronts and the calculation of the front speed can

be found in Tyson & Keener (1988).

3.2.2 Speed asymptotics

Here I just summarize the core results of the asymptotic analysis of the front speed,

for details see Tyson & Keener (1988); Barkley et al. (2014). The asymptotic limit

corresponds to ǫ → 0, i.e., sharp front case. In the situation of a front propagating

in the system, the flow region can be divided into two regions, the outer region that

corresponds to either the laminar solution q0 or turbulent solution q+(u), and the

inner region (within the front) with a width on the order of magnitude of ǫ that

connects the laminar and turbulent solutions. In the limit ǫ → 0, u does not change

across the front because of the separation of time scales: q changes fast across a front,

while u responses to q much slower so that is constant to the leading order in ǫ. The
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Chapter 3. The emergence of fully turbulent flow

front speed in the asymptotic limit is given by

c = uf − ζ ±
√
Γs(uf ; r), (3.6)

where uf is the u at the front, + corresponds to the downstream front and - the

upstream front. s is defined as
c−(uf−ζ)√

Γ
and given by the non-linear eigenvalue problem

q′′ + sq′ + f(q, uf ) = 0 (3.7)

subject to the boundary equations

q(−∞) = q0, q(+∞) = q+(uf ). (3.8)

The shape of the front q can also be obtained from this equation.

The fact in pipe flow is that the upstream front of puffs/slugs is always a sharp

front (see e.g. Wygnanski & Champagne (1973); Wygnanski et al. (1975)) and the

jump from q0 to q+ is relatively abrupt at u = 1, because u = 1 upstream of the

front and has not had changed across the sharp front. However, the drop (sharp in

the asymptotic limit) from q+ to q0 at the downstream front is not abrupt at low

Re and does not occur at uf = 1, it however becomes sharp in the large Re limit.

Two kinds of slugs with different downstream fronts have also been documented by

Duguet et al. (2010b). At Re = 3000 there is not an intensity peak at the downstream

front, while there is at Re = 4500 (figure 13 and 16 in there). The one without an

intensity peak will be referred to as a weak front, and the one with an intensity peak

a strong front hereafter. Considering this fact, two choices of uf were proposed: for

the weak front uf = uss where uss is the u at the upper stable fixed point (in the puff

regime this fixed point does not exist), and for the strong front uf = 1 as the case

for the upstream front. One may notice that the speeds of the upstream and strong

downstream front are symmetric about the value 1− ζ according to Eqs. (3.6), which

will be called the neutral speed and denoted as CNE hereafter.

3.2.3 Three types of structure in the asymptotic limit

The above discussion leads to three kinds of structure, puff, slug with a weak down-

stream front (will be referred to as slug I), and slug with a strong downstream front

(slug II). Here the shape of these three structures will be described.

1. Puffs, correspond to (A) and (D) in Fig. 3-10. Although there is no upper
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Figure 3-10: Model fronts of puffs, slug I and slug II in the asymptotic limit. (A)-(C)
show fronts that connect the laminar branch q0 and turbulent upper branch q+ in
q-u space. (D)-(F) show the shape of fronts and turbulence structures in q-x physical
space, where the length of arrows represents the magnitude of the speeds. In physical
space, if one goes from upstream to downstream along a-e as shown in panel (D), the
route in (A)-(C) follows the corresponding sequence (counterclockwise). All fronts
and speeds are shown in a moving frame of reference with the neutral speed CNE. In
this frame, the upstream and downstream fronts speed are mirror reflection of each
other for strong fronts, see panel (F).

fixed point, system can still be locally excited to the upper branch q+ by finite-

amplitude perturbations, forming an upstream front (the vertical arrow-lines a-b

in Fig. 3-10(A)) while u stays unchanged across the front. Then the centerline

velocity u decreases in response to q and the dynamics evolves on the upper

branch q+ (b-c) until it falls off and q drops to 0, forming the upstream front

(c-d). Finally, u relaxes towards 1 and the velocity profile recovers to a parabola

(d-e). q falls off the upper branch at a point such that the speed of two fronts

are identical, giving rise to a fixed length of puffs. The shape of the puff in the

asymptotic limit is shown in Fig. 3-10(D).

2. Slug I, corresponds to (B) and (E) in Fig. 3-10. The upstream front (vertical

a-b) is similar to that of puffs, however, a fixed point appears on the upper

branch q+ where turbulence can stabilize, resulting in a plateau in the q-x

space as shown in Fig. 3-10(E). At relatively low Re, q drops from this fixed

point to q0 at a certain distance downstream of the upstream front, forming a

downstream front which is similar to that of puffs (c-d). But, the speed of this

front is determined by Eqs. (3.6) with uf taking the value at this fixed point

and in general CUF 6= CDF . While for puffs, the downstream front just adjusts
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Chapter 3. The emergence of fully turbulent flow

the uf to match the speed of the upstream front.

3. Slug II, corresponds to (C) and (F) in Fig. 3-10. At high Reynolds numbers, at

the downstream front q first climbs up on the upper branch q+ (c-d) and drops

to q0 at u = 1 (d-e), forming a front that is exactly the same as the upstream

front (see the shape in panel (F)).

3.2.4 Three types of structure from DNS

The three types of structure predicted by the model, i.e., puff, slug I and slug II

are indeed observed in real pipe data from DNS. Some space-time plots of these

structures and the shape of the fronts are shown in Fig. 3-11. (a)-(c) show the space-
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Figure 3-11: Three types of structure depicted by space-time plots of the local in-
tensity q(z) in a logarithmic color scale (a-c), distribution of the local turbulence
intensity q(z) (red lines) and the centerline velocity u (blue lines) in (d-f), and the
shape of the fronts (lines) and fixed point (black circle) in q-u phase space in (g-i).
Flow is from left to right and the space-time plots are in a frame of reference with
the neutral speed CNE = 0.53 (see Barkley et al. (2014)). Left column is for a puff
at Re = 2000, middle column for a slug at Re = 2500 and right column for a slug at
Re = 5500. The ’mean’ front shape in (g-i) are averaged over time and all runs.

time plot of the three types of structure in the neutral frame of reference, i.e., the

one moving at the neutral speed CNE = 0.53 (for details see Barkley et al. (2014)),

at Reynolds number 2000, 2500 and 5500. The local intensity q(z) is plotted along

the pipe axis in a logarithmic color scale with blue representing laminar region and
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bright colors for turbulent area. (a) and (b) show a puff and a slug I with both

upstream and downstream fronts moving upstream in this neutral frame. A slug II

at Re = 5500 (c) has a sharp downstream front depicted by the right-tilting red

stripe. These observations agree well with the weak and strong fronts predicted by

Barkley’s model. (d)-(f) show the distribution of q(z) along the pipe axis, which

visualizes the shape of the structures in physical space and shows the difference in

the fronts. As can be seen, the upstream front is always sharp and looks the same

for puffs and slugs (see the red stripes in the space-time plots and the sharp peaks

in (d-f)). However, the downstream front changes as Re increases, from a rather

diffusive one for a puff, to a weak front that resembles puffs’ front, and eventually

to a strong front that is symmetric to the upstream front at high Reynolds numbers.

Fig. 3-11(g-i) plot the fronts in q-u phase space. To obtain these shapes, puffs were

averaged over time and all runs at Re = 2000 and are shown as a single black curve

in (g). Slugs at Re = 2500 and 5500 as shown in (h) and (i), were divided into

three parts: the upstream front (blue), the turbulence core (the black circle), and the

downstream front (red). These three parts were averaged respectively over time and

all runs. The core of these slugs is a plateau on average, which corresponds to the

stable fixed point on the upper branch q+, and is only shown as a single black circle.

These front shapes qualitatively agree with the three shapes predicted by the model

in the asymptotic case, as shown in Fig. 3-10 (A-C). One difference is that the drop

of q at the downstream front is not sharp in real pipe flow at low Reynolds numbers

(as will be shown in the next section, the speed of finite-width fronts can be well

captured by the model with finite ǫ). Instead, the downstream front of puffs and of

slug I smoothly connects the turbulent state and the laminar flow. Nevertheless, the

speed selection mechanisms are totally different according to the asymptotic analysis,

as discussed in Sec. 3.2.2 and Sec. 3.2.3.

3.3 Transition scenario in pipe flow

Barkley’s model is a generic model for a wide class of advection-reaction-diffusion

systems and has a few parameters that can not be fixed without real data from spe-

cific systems. The DNS and experimental measurements provide accurate front speed

data, which agree with each other very well and allow the model to select correct pa-

rameters so to capture the main features of pipe flow turbulence. The speeds from

DNS, experiments, and the model are shown in Fig. 3-12.
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By choosing correct parameters, the model can very well capture the scaling of
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Figure 3-12: Comparison between between DNS, experiment and Theory (with the
courtesy of Mukund and Barkley). Excellent agreement has been obtained.

the front speed of pipe flow turbulence, as shown by the good agreement between all

three data sets in Fig. 3-12. The symbols are speeds from DNS and experimental

measurements. The dotted lines are the speed in the asymptotic limit which form

(branches of) parabolas. The black solid line represents the speed of the downstream

front with finite ǫ (=0.2), i.e., the front with finite thickness, which is the case in real

pipe flow (see Fig. 3-11).

The upstream front is always a strong front and the measured speed just falls on

the asymptotics (the red dotted line in Fig. 3-12), however, the blue dotted line, which

represents the speed of the strong downstream front, is not visited by the real pipe flow

data at low and moderate Reynolds numbers (< 3500). This is a consequence of the

fact that puffs do not have a strong downstream front and slugs at moderate Reynolds

numbers also have rather diffusive downstream fronts (see Fig. 3-11). Instead, at low

Reynolds numbers below about 2600, the downstream front speed is governed by the

asymptotics for the weak front (the violet dotted line in Fig. 3-12), which infers that

slugs at low Re fall in slug I. At high Reynolds numbers (above ∼3500) the measure-

ments for both downstream and upstream fronts perfectly fall on the asymptotics for

strong fronts, indicating slugs of type II. The data collectively demonstrate a smooth

change of downstream front from a weak to a strong one as Re increases, which is

captured by the finite-ǫ curve (the solid black line) from the model. The asymptotics

for the upstream and strong downstream front are the reflection of each other about
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the neutral speed which was found to be CNE = 0.53. The downstream front speed

of real pipe flow is regulated by the strong and weak asymptotics, with the speed

smoothly swinging up from the weak branch to the strong branch as Re increases.

No sharp transition was found. Because of this smooth change from the weak branch

to the strong branch, two inflectional points appear on the downstream front speed

curve following the twice curvature change (see the black line). This has not been ob-

served in former sparser data sets (Lindgren, 1969; Wygnanski & Champagne, 1973;

Durst & Ünsal, 2006; Nishi et al., 2008). No bifurcation point and critical scaling at

a bifurcation point were observed. We argue that two factors may contribute to it.

The bifurcation point in the model, at which the system becomes bistable, is

masked by the nonlinear turbulence advection. This can be best illustrated by the

comparison between the speed asymptotics with and without non-linear advection,

as the front speed of real pipe flow is regulated by these asymptotics. Fig. 3-13 shows

the speed asymptotics in these two situations. In the presence of nonlinear advection,
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Figure 3-13: The speed asymptotics with and without nonlinear advection. Blue and
violet lines for strong and weak downstream fronts and red lines for upstream front.
The bifurcation point where the fixed point first appears on the upper branch q+ is
denoted by a black circle.

the asymptotics for the weak downstream front crosses that for the upstream front

at Re ∼ 2300, see the intersection of the violet line and the red line in Fig. 3-13(left).

The part of the weak front together with the critical (bifurcation) point below the

upstream branch is totally masked, as the structure with a downstream front slower

than the upstream front is unstable and can not exist. Instead, q drops from the

upper branch q+ before it reaches the fixed point for the downstream front to match

the speed of the upstream front. Turbulence appears as puffs whose downstream

front simply follows the upstream front at a fixed distance. On the contrary, without
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nonlinear advection, the critical point is above the downstream front branch so that

would not be masked. In this case, there would be a sharp transition in the front

speed at the bifurcation point, which is in fact not observed in real pipe flow. In

conclusion, the results indicate that this nonlinear advection, which has not been

documented in other excitable media, masks the bifurcation point and is one of the

reasons for the absence of typical behaviours near a bifurcation point.

Another factor is fluctuations. They are intrinsic to turbulence but are not con-

sidered in the current PDE model. In fact, fluctuations become significant at low

Reynolds numbers between about 2300 and 3000. Fluctuations lead to puff split-

ting and dig holes inside slugs, and tend to obscure puffs and slugs in the regime

2300 . Re . 2600. As a consequence, there is no clear distinction between puffs and

slugs so that a critical point that clearly divides the two is absent.

Based on the turbulence and laminar length statistics, Avila & Hof (2013) stud-

ied the intermittent nature of turbulence and proposed that there is only a universal

turbulent state, which manifests strong fluctuations (spatiotemporal intermittency)

at low Reynolds numbers and rare intermittency at high Reynolds numbers. For

example, the space-time plot in Fig.3-11(b) shows a slug with holes (low turbulent

intensity wells or even laminar gaps), which can be attributed to fluctuations. This

strong spatiotemporal intermittency can be observed up to Re ≃ 2800 (Avila & Hof,

2013). In fact, fluctuations can be incorporated in models. Barkley (2011b) captured

this intermittent nature of pipe flow with a discrete model, where the q+ nullclines

was replaced by a wedge-shaped chaotic area that local dynamics can escape from.

Alternatively, Barkley (2011a) showed that by adding a noise term to the PDE model

(Barkley, 2011b), the equations could also capture the puff splitting and holes inside

slugs. However, these fluctuations make the theoretical understanding of the transi-

tion scenario difficult.

The DNS simulations here show that at some Reynolds numbers fluctuations may

even cause transient changes in the properties of the downstream front of slugs. Here

a space-time plot at Re = 3000 illustrates such a case in Fig. 3-14. The spacetime

diagram (a) shows the switching between weak and strong downstream fronts, where

the weak front is almost vertical and strong fronts manifests itself as a right tilting red

stripe. The tilting to the right indicates that the speed of the strong front is higher

than the neutral speed CNE. On the right, in Fig. 3-14(b) the speeds of these two

fronts are plotted on the speed diagram and they almost perfectly lie on the speed

asymptotics from the theory. The front transiently takes one of the two forms and

result in an overall mean sitting between the speeds of these two kinds of front (the
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Figure 3-14: The transient switch between weak front and strong front at Re = 3000.
(a) The space time plot. The two white bars shows the slope of the weak and strong
fronts, i.e., the speed. (b) the speed of the weak and strong front shown as two white
circles, corresponding to the slope of the white bars in (a).

cyan symbol between the two white circles in Fig.3-14(b)). While the model does not

capture the instantaneous dynamics which are strongly influenced by statistical fluc-

tuations, it does capture the average quantities (e.g., see the black curve in Fig. 3-12)

and explains the underlying bifurcation scenario leading to fully turbulent flow.

The transition scenario was drawn as the following. At low Reynolds numbers

(below ∼2200) pipe flow is excitable and turbulence takes the form of localized tur-

bulence, i.e., puffs. As Re increases the system becomes bistable, turbulence can

locally stabilize and slugs start to emerge. Turbulence first takes the form of slugs

with weak downstream front, and smoothly picks up a strong downstream front as

Re increases above Re ≃ 3500. No bifurcation point was found because the nonlinear

advection and intrinsic fluctuations mask the bifurcation point. Fluctuations also

contribute to the smooth change of weak downstream fronts to strong ones for slugs.

3.4 Discussion

In this chapter, one of the central problems in fluid dynamics that how fully turbulent

flow arises, was investigated in great details. In order to study the transition from

puffs to slugs, the speed of the laminar/turbulent fronts was measured in long pipes at

a variety of Reynolds numbers Re ∈(1910 5500) with DNS. The speed agrees well with

accurate experimental measurements from my colleagues. The unprecedentedly accu-

rate data from both DNS and experiments allow a generic advection-reaction-diffusion
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model developed by Barkley (Barkley et al., 2014) to fit the model parameters and

capture the general features of pipe flow in all flow regimes. The asymptotic analysis

of the front predicted three types of structures on the route to fully turbulent flow:

puffs, slugs with a weak downstream front, and slugs with a strong downstream front,

which were all observed in DNS and shown to have the properties predicted by the

model. The smooth change from a weak downstream front to a strong one, as a

consequence of fluctuations, was very well captured by the finite ǫ solution from the

model. Collectively, these results showed that pipe flow undergoes a smooth transi-

tion from excitability to bistability, where puffs are localized excitations that feed on

the surrounding laminar flow and eventually turbulence arises as the second stable

state. No bifurcation point and typical behaviours at a bifurcation point were ob-

served. Neither the front speed nor the growth rate bears a square-root scaling as in

the percolation type of non-equilibrium phase transition. The nonlinear turbulence

advection and intrinsic fluctuations mask the bifurcation point, depriving the system

of a critical scaling at the onset of fully turbulent flow, which caused great difficulties

in earlier relevant studies (e.g. Lindgren (1969); Wygnanski & Champagne (1973);

Durst & Ünsal (2006); Nishi et al. (2008)).

Besides, the transition scenario also suggests possibilities of turbulence control

that forces the inverse transition. In the model system, the fully turbulent state cor-

responds to a fixed point on the upper branch q+, which allows spatially extended

turbulence to stabilize. If, by some control mechanisms, the nullclines can be changed

such that the fixed point disappears, the bistable system will revert to excitable sys-

tem. Since in an excitable system turbulence can exist only in localized form, great

friction drag can be achieved if fully turbulent flow degenerates to localized puffs.

Further, the excitable media requires the control variable to sufficiently recover for

supporting new excitation, this suggests that the system can be rendered refractory if

the control variable is controlled below the value that excitation requires to survive.

In next chapter, this possibility will be explored and implemented.
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Turbulence control

The previous chapter deals with the transition to fully turbulent pipe flow. In this

chapter the opposite problem will be addressed: how to relaminarise fully turbulent

flow, or in other words, how to force an inverse transition at high Reynolds numbers.

This study is motivated by the fact that in practice flows at high Reynolds numbers

are usually turbulent despite the linear stability of the laminar flow. Turbulence at

high Reynolds numbers causes much higher friction loss than laminar flow due to its

highly dissipative nature, and hence the energy consumption for fluid transport and

vehicle propulsion is significantly increased.

In the previous chapter, it was clarified that the transition to fully turbulent pipe

flow is a transition from excitability to bistability. As Re increases, a fixed point

appears in the system aside from the laminar flow, which results in the stabilization

of spatially extended turbulence. Naturally, one may infer that if this fixed point can

be removed from the system with some control strategies, turbulence will undergo

inverse transition to a localized state which will eventually decay due to its transient

nature.

First recall the nullclines of the model system explained in Sec. 3.2.1. The q+

branch crosses the u-nullclines above the bifurcation point. If the nullclines can be

shifted by some control strategies, this fixed point may be removed and the system

may become excitable or even refractory. Considering that in this model system, there

are only two variables q and u, which represent turbulent fluctuations and the center-

line velocity, or more fundamentally the shear profile, clearly the centerline velocity

is an easier target than the fast fluctuations on small length scales from the point of

view of control. To some extent, this strategy has been implemented by Hof et al.

(2010) where the localized puffs were successfully eliminated by a modification of the

velocity profile at the rear of puffs. A body force was imposed at the rear of puffs,
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decelerating the flow at the pipe center and accelerating the flow close to the wall.

The velocity profile was modified into a plug-like one and puffs relaminarised. It will

be shown below that in the model system, such a strategy corresponds to a change

of the nullclines of the system, see Fig. 4-1.

In case of localized puffs, the forcing changes the u-nullcline but does not affect
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Figure 4-1: The change in the nullclines in case of forcing.

the q-nullcline as it only directly acts on u but not on q. It decreases the centerline

velocity such that when u relaxes to the resting state in the absence of q, it no longer

relaxes to 1 but to some lower value, for example 0.8 as shown in Fig. 4-1(a). In

the forced case, the upstream front no longer occurs at uf = 1 but 0.8 because the

velocity profile upstream of it can not fully recover, consequently the speed of the

upstream front also changes. The downstream front will in principle also change the

position (not shown in the figure) on the upper branch q+ so to match the speed of

the upstream front. However, when the force is strong enough, i.e., the upstream

front is shifted to the left sufficiently, the downstream front speed may not be able

to match the upstream front speed anymore and causes puffs to collapse. Similarly,

for the bistable case at higher Reynolds number, as shown in Fig. 4-1(b), a forcing

may push the u nullcline to the left and remove the fixed point on the upper branch

q+ and cause an inverse transition from bistability to excitability. Spatially extended

turbulence is no longer a stable state, hence, will collapse and degenerate to localized

states, or simply completely relaminarise given sufficiently strong force.

Following this line of argument it may hence be possible to intercept the turbulence

self-sustaining mechanism (Hamilton et al., 1995; Waleffe, 1997; Jimenez & Pinelli,

1999) and to relaminarise turbulent flow using a suitable deformation of the velocity

profile. The main topic of this chapter is to test forcing strategies in fully turbulent

56



Chapter 4. Turbulence control

flow at high Reynolds numbers and gain a better understanding to the near-wall tur-

bulence self-sustaining process. The Reynolds numbers, domain size, and resolution

considered in this study are shown in Tab. 4.1.

Re Reτ = uτR
ν

Lz N M K
3000 109.1 32π 64 48 640
4000 141.1 8π 80 64 192
4500 157.2 8π 80 64 192
5000 172.8 8π 80 64 192
7500 245.1 4π 128 128 128
10000 315.1 4π 144 144 144

Table 4.1: The domain size and resolution for the simulation at all the Reynolds
numbers considered, in which Reτ is the friction Reynolds number, uτ the friction
velocity, and N the number of grid point in the wall normal direction. Note that in
physical space there are 3K and 3M grid points in axial and azimuthal directions,
and the domain size in wall unit is L+ = LzReτ .

4.1 Forcing experiments

In the following I introduce a volume force that flattens the mean velocity profile, then

test the effect of the force on fully turbulent flow as a function of Reynolds number.

Starting with a fully turbulent velocity field, this force is activated gradually until it

reaches the desired amplitude. The simulation stops if the flow relaminarises, or the

time exceeds a predefined maximum time tmax = 4000. At each Re different force

amplitudes will be tested in an attempt to find the critical force amplitude, with

which the flattened velocity profile cannot sustain turbulence anymore and finally

the flow reverts to the laminar state.

4.1.1 Forcing

An incompressible fluid in a pipe is subject to a driving force (usually the pressure

gradient required to maintain fixed flux in pipe flow) and no-slip boundary conditions.

The mean velocity profile can be manipulated by adding a body force in addition to

the pressure. A radially dependent body force F = F (r)ẑ is considered. F will be

chosen such that the streamwise velocity decreases in the pipe center and increases

near the pipe wall, while the mass flux is kept fixed. Now the Navier-Stokes equations

become
∂u

∂t
+ u ·∇u = −∇p+

1

Re
∆u+ F , ∇ · u = 0, (4.1)
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which will be used to determine the specific form of the force once the target velocity

profile is given. At first an F is chosen such that the force deforms the velocity profile

of laminar flow into a chosen target velocity profile, which is flatter and more plug-

like than the parabola. The shape of this target velocity profile may be freely chosen.

Once the target velocity profile uβ is completely determined, the desired force F is

easily obtained by substituting uβ in Eqs. (4.1). In this thesis I choose a family of

profiles parametrized with a parameter β as following,

uβ(r) = (1− β)

(

1− cosh(cr)− 1

cosh(c)− 1

)

ẑ. (4.2)

The parameter β is chosen to be the centerline velocity difference between the laminar

profile and the target profile, which can be considered as a measure of the amplitude of

the force (note that β is normalized as velocity is, by Umax, unless explicitly stated).

Given β, the parameter c is determined by imposing the aforementioned constant

mass-flux condition
1

π

∫ 2π

0

∫ 1

0

uβ(r)rdrdθ =
1

2
. (4.3)

As an example, the velocity profiles of the unforced laminar flow, and that of the

forced laminar flow at Re = 3000 with β = 0.2 are compared in Fig. 4-2.
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Figure 4-2: (a) The shape of the force chosen to decrease the centerline velocity of
the laminar flow by 20% at Re=3000. The force is negative (pointing upstream) in
the center and positive (pointing downstream) near the wall. For comparison, the
pressure gradient in a laminar flow |∂p

∂z
| = 4/Re = 1.33 × 10−3 (the dashed line) is

also shown. (b) Comparison of the parabolic profile and the forced profile of laminar
flow at Re = 3000, β = 0.2.
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4.1.2 Response of fully turbulent flow to the forcing

Upon turning on the force, the turbulence undergoes a sharp decrease in the enstro-

phy associated with the streamwise vorticity, as shown in Fig. 4-3(a). This indicates

that this force indeed suppresses turbulence, and may or may not remove turbulence

completely depending on the forcing amplitude and the specific details in initial con-

ditions. A possible explanation of the turbulence suppression is that in the reduced

mean shear streamwise vortices of a certain amplitude can only generate compara-

tively weaker streaks, which in turn through nonlinear self interaction generate weaker

streamwise vortices according to the turbulence self-maintaining mechanism, reduc-

ing the turbulence intensity. To look deeper into this dynamics, the effect of the force

on the vorticity is analyzed. The equations governing the vorticity ω are

∂ω

∂t
+ (u ·∇)ω − (ω ·∇)u =

1

Re
∆ω +∇× F , (4.4)

Since the force F is in axial direction and only radially dependent, i.e., F = F (r)ẑ,

one can easily work out the last term in Eqs. (4.4)

∇× F = −∂F (r)
∂r

θ̂, (4.5)

which only appears in the azimuthal component of the vorticity equations Eqs. (4.4).

The force does not directly contribute as a source term to the generation of stream-

wise vorticity. Instead, it depresses the streamwise vorticity generation indirectly, via

the convection and stretching of the vorticity, represented by terms (u · ∇)ω and

(ω ·∇)u in Eqs. (4.4) respectively.

To evidence the suppression of the steamwise vorticity generation, forcing exper-

iments are conducted on fully turbulent flow at Re = 4000 with a forcing parameter

β = 0.22, and the effects of this force on vorticity dynamics is observed. Two time

series of the value
∫

V
ω2
zdV in the whole domain and axial distributions of the quan-

tity
∫ ∫

ω2
zrdrdθ, which are considered as measures of the intensity of the streamwise

vorticity, at several time instants are plotted in Fig. 4-3(b). To examine the dynam-

ics, the radial distribution of the ω2
z and ω2

θ integrated over z and θ are compared

at several instants (see Fig. 4-4). From Fig. 4-4(a), one can see that the region of

most vorticity is approximately r ∈ (0.5, 0.9) (in wall unit y+ ∈ (14, 70), the buffer

layer and the lower logarithmic layer, consistent with the autonomous region found

in channel flow by Jimenez & Pinelli (1999)), where most of streamwise vortices are

located. This region can be interpreted as the near wall region where vortices and
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Figure 4-3: (a) Time series of ω2
z integrated over the whole domain for two runs, the

force is switched on at t=400. O ne survives under the force up to about 2400 and the
other relaminarises more or less directly. Parameters for these two runs: Re=4000,
pipe length Lz = 8π, and forcing parameter β = 0.22. (b) Axial distribution of ω2

z

integrated over cross sections at three time instants: t=200 (red), 448 (blue), and 500
(black), from the solid line in (a).
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Figure 4-4: ω2
z (a) and ω

2
θ (b) integrated over z and θ as a function of radial position r.

At each radial position, the ordinate represents the contribution of a cylindrical shell
located at this radial position to the volume integral

∫

V
ω2
zdV . These four lines are

taken at 4 time instants in the time series represented by the solid line in Fig. 4-3(a),at
t=200 (blue), 448 (red), 500 (black), and 1000 (green). On the top axis the radial
position y+ in wall units (measured from the wall) is also plotted. The inset in (b) is
a zoom-in window with logscale in y-axis

streaks interact with each other, sustaining turbulence. Clearly, the generation of

the streamwise vorticity is effectively suppressed in the presence of the force, both

temporarily and spatially. The level of streamwise vorticity decreases considerably

in the area r > 0.3, as shown in Fig. 4-4(a). In Fig. 4-4(b), the ω2
θ as a function of

r can be interpreted as a measure of the mean shear. After the force is turned on,
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Figure 4-5: Contour of streamwise vorticity ωz and in-plane velocity field plotted on a
cross section at two time instants: t=200 (left) and 1000 (right) from the time series
represented by the solid line in Fig. 4-3(a). They are taken at the most vortical area
in the pipe at respective instant, where

∫ ∫

ω2
zrdrdθ is at a maximum.

the mean shear slightly increases in the sublayer (y+ < 10) but decreases in the area

(y+ ∈ (14, 70)), which can be seen in the comparison of the red line (t = 200) and

the blue line (t = 448). Afterwards, the turbulence intensity decreases and the mean

shear approaches that of the laminar profile, so that the mean shear ends up being

lower in the sublayer but slightly higher above the sublayer compared to the unforced

case (see the green and the red lines). The changes in the flow field are depicted in

Fig. 4-5, where the suppression on the streamwise vortices due to the force is very

clear.

For small forcing amplitude β, the flow remains turbulent, although turbulence

does experience a decrease in its kinetic energy. When β is increased, relaminarisation

is observed. However, in certain range of β, turbulence may either completely decay

or survive at a lower kinetic energy level after the initial decrease in its intensity

depending on the specific initial conditions. This sensitive dependence of the final

flow state on the initial condition is also clearly shown in Fig. 4-6, and implies that

in marginal forcing amplitude regime, besides the shape of the velocity profile, the

details of the flow field, such as the positions and sizes of the vortices, also affect the

maintenance of turbulence. However, it is found that with sufficiently large parameter

β, the forcing always eliminates turbulence directly. For example, at Re = 3000 and

under the force with amplitude β = 0.20, the fully turbulent flow relaminarised in all

10 runs studied here.

Note that although the flow is forced here, the mean velocity profile of the tur-

bulence is by no means fixed. A fixed mean velocity profile means imposing a time-
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Figure 4-6: The time series of the kinetic energy of z-dependent turbulent fluctuations
Ek 6=0 for 10 runs with parameters Re = 4000 and forcing amplitude β = 0.22 in a
Lz = 8π pipe. The force (normalized by its desired amplitude) is turned on at t = 400,
as shown by the black line. The criterion for relaminarisation is Ek 6=0 < 2.5 × 10−4,
below which the turbulence is believed to be beyond recovery. Energy is normalized by
the total kinetic energy of laminar flow in the same pipe. There are 7 relaminarisation
cases (denoted by blue lines) out of 10 runs.

dependent but axially and azimuthally invariant force which sets the time derivative

of the 0-0 mode of axial velocity to zero as explained in (Tuerke & Jimenez, 2013).

It was found that a fixed ’unnatural’ mean profile breaks the equilibrium of radial

momentum transport of turbulence, resulting in significant changes in turbulence in-

tensity, but no relaminarisation was reported in their paper. In this work, the force

is time-independent once it reaches the desired amplitude.

At the beginning of this chapter, we speculated that forcing may remove the

fixed point that corresponds to the fully turbulent flow so that revert pipe flow from

bistable to excitable. If this speculation is correct a full reverse transition including

the reappearance of puffs, should be observed. For the example shown in Fig. 4-3(b),

however, the domain size was too small to allow for localized puffs. An example in a

Lz = 32π pipe at Re = 3000 with a β = 0.15 force is investigated. Fig. 4-7 shows the

space-time plot of the local turbulence intensity q(z) (left) together with the compar-

ison between the flow states at t = 0 and 2000 (right). Clearly fully turbulent flow

indeed becomes localized after the force is activated and eventually degenerates to a

puff, which closely resembles that of puffs observed in normal flow at much lower Re

with a sharp upstream front and a more diffusive downstream front.
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This is a clear indication of changes in the ’nullclines’ of the system, which is in

Figure 4-7: The localization of turbulence under forcing at Re=3000. The left is the
spacetime plot of q(z) =

∫ ∫

(u2r + u2θ)rdrdθ in a frame of reference moving with the
mean flow, at t = 0 flow is fully turbulent and force is activated at t = 40. On the
right, the q(z) is plotted along the pipe at t = 0 and t = 2000.

excellent agreement with the speculation at the beginning of this chapter. This result

strongly supports the theoretical interpretation of the transition to fully turbulent

pipe flow as a transition from excitability to bistability as discussed in Chapter 3.

4.1.3 Statistical investigation and critical forcing amplitude

For the purpose of turbulence control, a minimum effort that suffices to remove tur-

bulence is desirable. Here, this minimum effort is given by the weakest force that re-

laminarises turbulence. The minimum forcing parameter β that suffices to eliminate

turbulence, defined as βc hereafter, is to be determined. Considering the stochastic

behaviour of the flow under forces with marginal amplitudes, for each point (Re, β),

10 runs with different but statistically identical initial conditions are executed. These

initial conditions are taken from a long time series of turbulence simulation and con-

secutive snapshots are separated by a time interval about 200, which is considered long

enough for them to be statistically uncorrelated. Because of the stochastic dynamics

of turbulence it is not possible to find a precise critical forcing amplitudes above which

the flow always relaminarises and otherwise always stays turbulent. Therefore, here

the critical amplitudes is defined as the one at which the probability of relaminari-

sation is equal to that of turbulence surviving, i.e. βc =: {β|Prelaminarisation ≃ 0.5},
within 4000 time units. Considering the stochastic behaviour of turbulence under

marginal forcing as shown in Fig. 4-6, one should perform lifetime statistics to ac-

curately determine the critical forcing amplitude β with which the lifetime of forced
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Figure 4-8: The dependence of the critical forcing parameter βc on Reynolds number
Re. The upper bounds and lower bounds of each bar correspond to about 80% and
20% relaminarisation rate respectively.

turbulence for the first time diverges. However, given high Reynolds numbers and

many β’s to explore, lifetime statistics is unaffordable. Here we take 4000, which is

slightly arbitrary but reasonable since it is close to usual observation time in labo-

ratory experiments and should be able to give a reasonable estimate of the critical

forcing. Furthermore, considering the small sample size and limited observation time,

which is due to the cost of simulations at high Reynolds numbers, I search for the in-

terval in β that corresponds to relaminarisation rate of (20%, 80%) at each Reynolds

number and consider this interval in β as the critical ’amplitudes’. The dependence

of the critical forcing amplitude on Reynolds number is depicted in Fig. 4-8. A clear

trend is seen: the larger the Reynolds number is, the larger the forcing amplitude

necessary to relaminarise the flow, meaning it takes higher energy input to eliminate

stronger turbulence. Although the trend is expected, relaminarisation remains possi-

ble at all Reynolds numbers investigated. The highest Re tested was Re = 25000 and

given sufficiently strong force (β = 0.48) turbulence still decays. Note that the βc

must saturate at the mean velocity U=0.5 when Re approaches infinity, but this does

not mean the actual energy input is going to saturate. One should keep in mind that

dimensionally speaking, both the centerline velocity drop and the energy input keep

increasing with the increase of the mean velocity, which defines the Reynolds number

Re. With further increase in Re, βc asymptotically approaches 0.5 (dimensionally the

mean velocity U) because of the choice of the cosh-shaped target profile, which limits

the centreline velocity to be above U . In the limit of β → U , the velocity profile
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is a flat plug-like one. All shear is pushed towards the wall and confined within an

infinitely thin layer, in which no vortices can exist. Streamwise vortices near the wall

can no longer generate streaks since there is no velocity difference in the mean flow,

leading to the complete breakdown of the turbulence self-sustaining process. Obvi-

ously, under this extreme circumstance turbulence resembles shear-free turbulence

which eventually decays due to energy dissipation and the lack of an energy supply.

In other words, turbulent pipe flows are bound to relaminarise in the absence of a

mean shear in the core region.

Different target profiles, such as plug flows approximated by polynomials, can be

chosen. Hof et al. (2010) managed to relaminarise localized turbulence in pipe flow

with a force that locally flattened the profile to a polynomial.

4.1.4 Linear mechanism interpretation: transient growth

Although the full turbulence self-sustaining cycle is a nonlinear process, linear mech-

anisms play very important roles in the cycle (Jimenez, 2013; Kim & Lim, 2003;

Schoppa & Hussain, 2002). In pipe flow, despite the linear stability of the basic

laminar flow, infinitesimal disturbances can be transiently amplified before the vis-

cous decay because of the nonnormality of the normal modes (Trefethen et al., 1993;

Reddy & Henningson, 1993; Grossmann, 2000; Meseguer & Trefethen, 2003), the so-

called transient growth. It is believed to play an essential role in streak formation

and amplification. Normal mode analysis shows that transient growth is most effi-

cient through streamwise vortices. These optimal disturbances are found to generate

streaks (Meseguer & Trefethen, 2003; Willis & Hwang, 2010) by lifting up low speed

fluid from the wall to the faster core region, and weak streamwise streaks can be

greatly amplified via the transient growth. This ’lift-up’ process is believed to play

important roles not only in the transition to turbulence but also in the sustaining

cycle of fully turbulent flow. For a review on this topic see Brandt (2014).

Linear studies show that the amplitude of streaks generated by optimal streamwise

vortices scales with Reynolds number G(Re) ∝ Re (Meseguer & Trefethen, 2003).

The optimal growth G(Re) is defined as the maximum amplification of disturbances

with respect to a given basic flow about which the linearization is performed (here

the forced laminar flow). Consider the amplification of a disturbance as a function of

time, then

G(t) =

(

sup‖κ(0)‖6=0
‖κ(t)‖2
‖κ(0)‖2

)
1

2

(4.6)
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where κ(0) is the initial condition, κ(t) is the output at time t and ‖ · ‖ is a cer-

tain energy norm. By appropriately defining this norm, the optimal growth up to

time t and the optimal κ(0) can be derived directly from a singular value decom-

position (SVD) analysis of the linearized system, see Schmid & Henningson (1994);

Meseguer & Trefethen (2003)). There exists an optimal initial disturbance that max-

imizes the amplification G(t) over time for each individual mode. By going through

all normal modes, one can find the global optimal growth G(Re) and the shape of

the global most amplified disturbances. The maximum G(Re) usually is associated

with low wave number modes.

To perform the analysis, the Navier-Stokes equations are linearized about the
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Figure 4-9: The optimal growth of the unforced basic flow (solid line) and of the
critical forced basic flow (black symbols for this force and red symbols for a different
type of force), i.e., the basic flow forced with critical forcing amplitudes. It should be
pointed out that the intervals (uncertainty) in optimal growth corresponding to the
intervals in critical forcing amplitudes shown in Fig. 4-8 are much smaller than the
symbols so that can not be seen.

basic flow, usually the laminar flow. In unforced pipe flow as usual, it is just Hagen-

Poiseuille flow. However, in a forced flow the velocity profile of the basic flow is

no longer a parabola, see Eqs. (4.2). Subsequently, the optimal growth is calcu-

lated for all ’critical basic flows’, namely, the laminar flows under the force with

critical amplitudes βc here. For the algorithm of transient growth calculation see

Meseguer & Trefethen (2003).

Fig. 4-9 shows the critical value of G as a function of Re. The optimal growth

of the unforced parabolic laminar flow (the solid line) scales linearly with Re in the

Reynolds number range explored, agreeing well with the linear scaling G = Re/117.7

66



Chapter 4. Turbulence control

proposed by Meseguer & Trefethen (2003), where they investigated larger Re up to

107. In the forced basic flow (red and black symbols in Fig. 4-9) the transient growth

is greatly reduced. The critical optimal growth at all Reynolds number studied here

shows an almost constant value of 15 ± 3, much smaller than that of the parabolic

basic flow. For example, at Reynolds number about 104, the optimal growth in the

absence of forcing is approximately 102, which is an order of magnitude higher than

that of the forced flow.

To test the significance of this constant transient growth at critical forcing, or in

other words, to probe if turbulence requires a minimal transient growth to sustain

itself, a different type of forcing was also tested, which is referred to as force 2. This

force results in velocity profiles described by a family of polynomials parameterized

with the decrease in the centerline velocity if the force acts on the laminar flow. The

target velocity profile in laminar flow under this force is uz = 1−r2−β(1−4r2+3r4).

The corresponding force is determined in the same way as the force discussed before.

Due to the different shape of the target velocity profiles, the critical amplitude βc

is not directly comparable to the other force. Nevertheless, the resulting transient

growth of the basic flow should be a fundamental mechanism and should not be de-

pendent of the specific force. The same statistics were carried out and this force was

shown to work as well as the former force, however, only up to Re = 5000. The

target profile develops inflection points when β becomes large (above 0.25). Above

R = 5000, the β (above 0.4) is large such that the inflectional instability starts to

affect the flow and the force no longer can relaminarise turbulence. As a test to the

influence of the time cutoff tmax on the statistics, for this type of force, tmax was

chosen to be 5000 instead of 4000 as for the first force. The transient growth at the

critical forcing is also shown in Fig. 4-9 (red filled circles). Surprisingly, the data agree

very well with the critical transient growth under force 1 and stays approximately

constant between 3000 and 5000. This result supports the argument that a constant

transient growth, or streak amplification, is needed for turbulence self-sustaining. By

forcing the transient growth to drop below this level, flow relaminarises and will stay

laminar thanks to the linear stability.

Next we will perform yet another test of the hypothesis that turbulence requires

a minimum level of transient growth. To do so we consider transient growth lev-

els in spatially intermittent flows in the absence of any forcing. Hof et al. (2010)

showed that puffs feed on the adjacent laminar profile upstream of them. If two puffs

get too close to each other, the laminar profile in between will be rendered more

plug-like by the upstream puff, which may kill the puff on the downstream. Indeed,

67



Chapter 4. Turbulence control

Samanta et al. (2011) studied the interaction between a sequence of puffs separated

by given distances and demonstrated that there is a minimum distance, about 40

(20D) within which the laminar profile can not fully recovered and a second puff can

not be generated or survive. As shown in Sec. 1.2 this can be interpreted as analo-

gous to the refractory length (or period) in excitable media (Hodgkin & Huxley, 1952;

Tyson & Keener, 1988), within which the control variable can not sufficiently recover

to support new excitation. Here we propose that transient growth plays the role of

the control variable, and show that the minimum transient growth of the laminar flow

feeding a puff is also approx 15, the same as at higher Reynolds numbers as shown

in Fig. 4-9.

Fig. 4-10(a) shows a pipe flow (pipe length Lz = 360) at Re = 2200 globally

Figure 4-10: (a) A set of puffs result from global perturbations at Re = 2200. At t =
2800 (the white line), the two puffs in the middle which are separated approximately
by a distance of 40 (the puff-puff interaction distance according to Samanta et al.
(2011)) are investigated. (b) The local turbulence intensity q and the centerline
velocity u at t = 2800 are plotted along the pipe axis. The velocity profiles at two
positions (marked by the black and cyan lines) are probed. The black one is within
the puff-puff interaction distance and the cyan one is slightly beyond this interaction
distance. (c) The velocity profiles at the two positions shown in (b).

perturbed at t = 0. The space time plot is in a frame co-moving with the mean flow.

At this Re flow is excitable (see Chapter. 3) and only can locally support localized

turbulence, as evidenced by the figure. Laminar gap quickly opens up in the pertur-

bation and 4 puffs appear and survive. The flow at t = 2800 (marked by the white

line in figure (a)) is considered since the two puffs in the middle are separated by

a distance of about 40, the puff-puff interaction distance (Samanta et al., 2011). In

Fig.4-10(b) the local intensity q(z) and centerline velocity u are plotted. Two posi-
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tions in the laminar gap between the middle two puffs are investigated, denoted by

vertical black and cyan lines. The cyan one is taken right at the upstream front of

the second puff from right. The velocity profiles are shown below in Fig.4-10(c) with

the same color settings. As can be seen the velocity profile is relaxing to but not yet

a parabola as it moves away from the upstream puff, so is the transient growth to

the value for a parabola (about 19 at Re = 2200). The transient growth of these two

laminar profiles are 10.66 (black) and 15.32 (cyan). Since the distance between those

two puffs is already the puff-puff interaction distance (i.e., the minimum possible

distance), no puff can survive on the left of the cyan vertical line. In another word,

also in pipe flow in the absence of any forces, no puff can survive in a laminar flow

with a transient growth smaller than about 15. If viewing pipe flow in the context of

excitable media, laminar flow that has a transient growth smaller than ∼ 15 is not

even excitable, at any Reynolds number.

This study demonstrates that, surprisingly a linear argument, i.e., the transient

growth, sets a threshold for pipe flow turbulence to be sustained (for the system to

become excitable).

4.1.5 The control efficiency: energy saving

The forcing control is a type of active control, which needs an energy input into

the flow. To assess the efficiency of this forcing strategy, the energy input and the

pumping energy reduction were calculated respectively. The power input is evaluated

as

< f · u >=

∫

V

f · udV (4.7)

where f is the force per unit volume and u is the velocity field. On the one hand,

the force tends to increase the wall friction drag because the force tends to acceler-

ate the flow near the wall and generate a higher velocity gradient than the unforced

turbulence. On the other hand, once the force is applied it also causes a decrease in

turbulence intensity, and consequently the decrease in the driving pressure gradient

and the velocity gradient at the wall. Hence, the velocity gradient at the wall, equiv-

alently the friction drag, under the forcing may end up even lower than the unforced

turbulent flow. In any case, the force itself balances a part of the friction drag, and

the energy consumption due to this fact is included in the term < f · u >. In fact,

only the drop in the energy (power) of the driving pressure gradient on the flow and

the energy input term < f · u > need to be calculated. If the former outweighs the

latter, an energy saving is achieved.
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Figure 4-11: (a) The time series of the energy (power) per unit pipe length of the
driving pressure gradient (blue) and of the force 2 (red) for a run at Re=4000 with
β = 0.20. (b) The net energy saving against forcing amplitude β.

Clearly, the energy input is dependent of the forcing amplitude, and the pres-

sure gradient needed to fix the mass flux changes as the turbulence intensity changes.

Fig. 4-11(a) shows the power of the driving pressure gradient and of the force from

one run for the case Re = 4000; β = 0.20 ; force 2. The blue line represents the

power of the pressure gradient per unit pipe length, which decreases as the turbu-

lence intensity decreases as a consequence of the activation of the force (the red line).

Both the blue and red lines stabilize at a certain level after the turbulence survives

and levels off under the force. The drop in the blue line is larger than the increase

of the red line, as can be seen in the figure (a), giving a net energy saving even if

turbulence does not completely collapse. Fig. 4-11(b) shows the energy saving for dif-

ferent forcing amplitudes. Surprisingly, the forcing always gives a net energy saving

regardless of the amplitude. It indicates that the effect of the drop in the turbulence

intensity always outweighs the tendency of increase in the wall friction due to the

force. Besides, this figure shows that the energy saving increases as the amplitude

increases.

The net energy saving at the critical forcing at all Reynolds numbers we con-

sidered are shown in Fig. 4-12 (b) for both forces. The symbols represent the case

where turbulence survives under the force (as the case in figure (a)), and the black

line represents the ultimate energy saving if the flow relaminarises and force is deac-

tivated. The flow will stay laminar unless again strongly perturbed because of the

linear stability. The results show that these two forcing strategies can achieve about

40% energy saving with the critical force amplitude for those cases where turbulence
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Figure 4-12: The net energy saving against Reynolds number in case of critical forc-
ing. Symbols represent the energy saving at the critical forcing in case of turbulence
survives. The black line represents the ultimate energy saving after turbulence re-
laminarises and force is removed.

marginally survives. It should be pointed out that, the energy saving roughly stays

constant for all these cases, about 40%.

4.1.6 Localized forcing

In experiments, global forcing would be difficult to implement. While above the forc-

ing was applied globally throughout the pipe, in principle relaminarisation can be

achieved by a local forcing. If the flow is forced fully relaminarised at one location

it will remain laminar downstream owing to the linear stability of the flow. In light

of the fast relaminarisation in some cases as shown in Fig. 4-6, it is inferred that

turbulence can be relaminarised over a short region under sufficiently strong force.

This strategy was tested at Re = 8000 in a long pipe with an axial length of Lz = 360

and the force is confined in a short region 10 < z < 90. A strong force with β = 0.47

is chosen here. As shown in Fig. 4-13(a), the local turbulence intensity q(z) starts

decreasing once the force is activated at t = 60 and a laminar gap (blue region)

quickly opens up downstream the forcing area. Turbulence keeps coming from the

upstream, it relaminarises when passing through the forcing area and stays laminar

downstream (unless perturbed) because of the linear stability of the laminar pipe

flow. Fig. 4-13(b) shows the change in the centreline velocity at several time instants.

At t = 100, the force has been on for 40 time units, the centreline velocity has already

dropped significantly in the forcing area. As time elapses, the force keeps tearing up

the turbulence as it passes by. At t = 400 and 900, the centreline velocity downstream
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the forcing area has closely approached to the laminar value. The results here also

show that it takes hundreds of radii for the parabolic profile to develop.

Note that the turbulence downstream develops a strong interface (the red stripe

Figure 4-13: A localized control at Re = 8000. The pipe length Lz = 1360, the force
(β = 0.47) is activated from t = 60 on and is confined in the region 10 < z < 90
(between the two vertical black lines in (a)). (a) The quantity Ec =

∫ ∫

(u2r+u
2
θ)rdrdθ

is plotted in a logarithmic color scale with blue showing laminar region and red and
brown showing turbulent region. (b) Centreline velocity uz,c plotted at several time
instants: t =100 (red), 400 (black), and, 900 (blue).

in Fig. 4-13(a)) because the velocity profile immediately upstream of the turbulent

flow is nearly parabolic and the vortices can extract more energy from the recovered

mean shear. This is the same mechanism giving rise to the sharp upstream edge seen

in puffs and slugs. Inside the forcing area, the basic flow is altered such that the

linear transient growth is reduced and consequently streak formation is suppressed

as discussed before. The system is rendered unexcitable (refractory) and no turbu-

lent excitation can survive, which results in relaminarisation. Ideally, this control

mechanism can keep the downstream flow laminar in an arbitrarily long pipe so that

drastically reduces the friction drag with a fixed energy consumption due to the forc-

ing, which will be much smaller than the energy saving in long pipes. This implies

that relaminarisation can be achieved in experiments by locally perturbing the flow

and creating a velocity profile that redistributes the mean shear as the force does

here.

4.2 Control with streamwise vortices

The body force in Sec. 4.1 is not easy to implement in practice with non-electric-

conductive fluids. In this section I seek other possibilities of achieving relaminarisa-

tion. It is known that in wall-bounded turbulence, structures with different length
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scales, located at different wall distances, organize themselves so that the momentum

transfer in the wall-normal direction stays in balance, resulting in a certain ’natural’

velocity profile. A fixed ’unnatural’ velocity profile breaks this balance and causes

substantial changes in the turbulence intensity (Tuerke & Jimenez, 2013). This im-

plies that there may exist a way of driving turbulence far from or even out of its

attraction basin by disturbing it in such a way that the perturbed flow fields (either

the mean velocity profile or structures, or both) are ’unnatural’.

In Sec. 4.1 it was shown that if the velocity profile was forced unnatural (flatter

than that in normal turbulence), turbulence decays. This implies that a flow field

from a very high Reynolds number, which has a very flat velocity profile, may decay

if Re is reduced to a much lower value (still in the turbulent regime), at which tur-

bulence naturally has a less flat velocity profile. To test this idea, a set of Reynolds

number reduction tests was conducted where the velocity field from higher Reynolds

numbers (above 3000) were taken as the input at Re = 3000. These velocity field

possess flatter velocity profiles and smaller structures than the normal turbulence at

Re = 3000. Relaminarisation was indeed observed if the Reynolds number drop is

large enough, i.e., if the velocity field is sufficiently ’unnatural’. Statistics showed that

the larger the reduction in Re is, the more likely turbulence will decay. For details of

these tests see Appendix A.

Turbulent pipe flow has a more plug-like mean velocity profile than that of the

laminar flow because of the increased radial momentum transport via streamwise

vortices. This suggests that by introducing extra streamwise vortices on top of an

existing turbulent flow, the vortices will intensify the radial momentum transfer and

flatten the mean velocity profile of the flow further. From the discussion in Sec. 4.1 we

would expect that this equally leads to a reduction in transient growth and reduce tur-

bulence level. We aim at designing streamwise vortices which perturb the turbulence

sufficiently to lead to relaminarisation. Furthermore, experimental implementation of

streamwise vortices is possible with vortex-generation techniques (Iuso et al., 2002).

4.2.1 Configuration and generation of the vortices

A family of two-dimensional streamwise rolls is designed. The flow field of these rolls

has to comply with the incompressibility condition. For two dimensional flows, it is

only needed to specify either the radial component ur or the azimuthal component

uθ, the other component is readily obtained by imposing the incompressibility condi-

tion. For the spectral code and boundary conditions, it is convenient to specify the
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radial component ur and derive uθ from the mass equation. For the first study, ur

is chosen arbitrarily, subject to the no-penetration boundary condition at the wall.

Because of the cylindrical coordinates and the accompanying singularity problem at

the pipe center, the parity of ur as a function of r has to be chosen carefully to avoid

singularities. For these purposes, the following functions for ur is chosen:

ur(r, θ) =



















sin(π
2
r)(1− r2)2 cos(mθ)a

maxr∈[0,1](sin(
π
2
r)(1− r2)2)

, m is even

cos(π
2
r)(1− r2)2 cos(mθ)r2a

maxr∈[0,1](cos(
π
2
r)(1− r2)2r2)

, m is odd

(4.8)

where m is the azimuthal wave number, which gives the number of pairs of counter-

rotating vortices, and a the amplitude. In both cases, the profile is normalized by its

maximum for the convenience of manipulating the amplitude, namely, the amplitude

is defined as the maximum of ur over r ∈ [0, 1]. Fig.4-14(a) shows the profiles chosen

for ur. ur(r, θ) is odd for even m, but even for odd m. The maxima of both profiles

are located approximately at the center of the radii. However, it is not difficult to

tune the position of the maxima. Fig. 4-14(b) shows the resulting vortices with an

azimuthal wave numberm = 4, consisting of 4 pairs of counter-rotating vortices filling

the pipe. The elongated structure in the radial direction enables the vortices to mix

the slow and high speed flow, as explained above. With the vortices given by (4.8)

we expect to control the size and positions of the structures in turbulence.

Once the configuration of the vortices is determined, the next thing to do is to

generate these vortices in the numerical implementation. Here the force is an in-

plane force F (r, θ). To determine this force, one can choose the target flow field as

the vortices themselves u(r, θ), and finally derive F by putting the target flow u in

Eqs. (4.1).

4.2.2 Deforming the mean velocity profile with vortices

Given the desired force F , the flow will be driven to form the desired streamwise

vortices. The effect of these vortices on fully turbulent flow is first explored at Re =

5000 in a Lz = 4π pipe. The force is imposed on top of the turbulence gradually until

it reaches its desired amplitude, by giving a time-dependent prefactor to the force.

Fig. 4-15(a) shows how this prefactor changes with time (the red line). Before the

force is turned on, the flow evolves freely for about 40 time units. Then the force is
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Figure 4-14: (a) Profiles of the radial velocity component ur of the vortices. Note that
the parity of the profiles are different for different m, the azimuthal wave number of
the vortices, to circumvent singularity at the pipe center r = 0. (b) In-plane velocity
field plotted on a cross section of the vortices with azimuthal wave number m = 4.
It looks the same at any axial position because of the absence of an axial variation
(2-dimensional rolls). The magnitude of the velocity (the length of the arrow) is of
no importance.

activated sharply but smoothly. As explained, the vortices are designed to deform

the velocity profile into a more plug-like one. To verify this, streamwise rolls with

azimuthal wave number m = 2 and amplitude 0.05 are tested on the turbulence at

Re = 5000. Then the centreline velocity is measured and also shown in Fig. 4-15(a).

One can clearly see that it decreases by about 9% from approx 0.67 to 0.62. The mean

velocity profile before and after the forcing are displayed in Fig. 4-15(b). The velocity

indeed is flattened and deformed in a similar way to the previous forcing experiment,

which is a positive signal for relaminarisation. In the previous section, it was shown

that with a flatter mean velocity profile, the intensity of the turbulent fluctuations

tends to decrease. In the current case, a similar phenomenon is also observed (see

Fig. 4-15(c)). The kinetic energy of the turbulent fluctuations Ek 6=0 decreases by

approx one third after the force is activated. We argue that this is because the

force affects the mean velocity profile and the mean shear, which is crucial for the

production of streaks (Hof et al., 2010; Tuerke & Jimenez, 2013).

Streamwise rolls with different azimuthal wavenumbers and amplitudes obviously

deform the flow field differently. The effects of the azimuthal wave number and

amplitude are investigated separately (see Fig.4-16). On the one hand, it is found

that for a given azimuthal wave number, the larger the amplitude of the vortices,

the more the mean velocity profile will be deformed, as shown in Fig.4-16(a). On

the other hand, for a specific amplitude of the vortices, Fig.4-16(a) indicates that the
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Figure 4-15: The effects on the turbulence at Re = 5000 of the forced vortices with
azimuthal wave number m = 2 and amplitude 0.05. (a) The realization of the force
(red) and the time series of the centerline velocity (black). The force is activated
at t=40. It is turned on quickly but smoothly to its desired amplitude (normalized
by the desired amplitude). (b) The comparison between the time-averaged mean
velocity profile of the free turbulence and that of the forced turbulence. The dashed
line represents the time-averaged mean velocity profile measured between time t = 200
and t = 1000. (c) The kinetic energy of the turbulent fluctuations Ek 6=0, normalized
by the kinetic energy of the Hagen-Poisseuille flow. The energy due to the force,
which is axially invariant, is then excluded.

vortices with higher wavenumber affects the shape of the mean velocity profile less.

At this point, it can be concluded that low-wave-number vortices are more efficient

in deforming the mean velocity profile than vortices with higher wave numbers.

4.2.3 Control with vortices at Re=3000

One should note that, from the point of view of turbulence control, the force should

be removed after a while, otherwise it keeps disturbing the flow and is not energy

efficient. The mean velocity profile is only one aspect of the flow, the detailed struc-

tures are also important. The imposed force clearly ’injects’ structures into the flow,

which may support the turbulence if the scales of the structures are natural to the
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Figure 4-16: The time averaged mean velocity profile of the turbulence under the
force compared to that of the free flow. (a) The azimuthal wave number of the forces
(also the vortices) is fixed at m = 2 and amplitudes A = 0.02, 0.05, and 0.08 are
tested. (b) The effect of vortices with different azimuthal wave numbers but the same
amplitude is tested. Wave number m = 2, 4, and 6, and amplitude A = 0.05 are
tested.

turbulence, or counteract the turbulence if the structures are unnatural.

Two controls with streamwise rolls with azimuthal wave number m = 2 and

m = 12 and the same amplitude A = 0.18 are tested (see Fig. 4-17). The centreline

velocity decreases from about 0.68 to 0.58 in the m = 2 case (solid line, between

t = 40 and 100), but only to 0.65 in m = 12 case (dashed line). However, the m = 2

vortices fail to relaminarise the flow after the force is turned off. The turbulence

intensity, here measured by the kinetic energy of the transverse velocity fluctuations

Ec =
∫

V
(u2r + u2θ)dV , recovers to the natural level at this Reynolds number (see

Fig. 4-17(b), solid line). Note that during the forcing, Ec is much higher than the

natural level because the force generates ur and uθ components and clearly injects

energy into the flow. Surprisingly, the m = 12 vortices manage to remove turbulence

from the flow. The turbulence intensity decreases quickly and monotonically after the

force is removed. To look into the details of this process, isosurfaces of the stream-

wise velocity deviation from the basic flow δuz = ±0.2 at some instants are plotted in

Fig. 4-18. The survival case (the solid line in Fig. 4-17), the m = 2 case, is on the left.

4 snapshots are taken at t = 0, 96, 208, and 400. At t = 0, turbulence is unforced and

one can see the configuration of the streaks. Approximately four high speed streaks

can be seen near the wall. At t = 96, the force has been on for 50 time units and

the flow is drastically perturbed by the vortices. Four large high speed streaks are
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Figure 4-17: Control with vortices with azimuthal wave number m = 2 (solid line)
and m = 12 (dashed line), and amplitude A = 0.18 for both. The force (vortices)
is activated at t = 40 and deactivated at t = 100. (a) Time series of the centreline
velocity of mean velocity profile of these two controls. (b) Time series of the kinetic
energy of the in-plane velocity fluctuations in the whole pipe, Ec =

∫

V
(u2r + u2θ)dV .

Figure 4-18: Control with vortices at Re = 3000 with azimuthal wave numbers m = 2
and m = 12, starting from the same initial condition. The flow is from bottom to top
and the isosurfaces of streamwise velocity deviating from the basic flow δuz = ±0.2
are plotted. Red color represents positive value and blue represents negative value.
Note that the force is activated at t = 40 and is off after t = 100. Left: m = 2 (solid
line in Fig. 4-17), snapshots are taken at t = 0, 96, 208, and 400. Right: m = 12
(dashed line in Fig. 4-17), snapshots are taken at t = 0, 96, 160, and 208.

formed by four large vortices. It is worth noting that the wave number of the energy

containing structures in turbulence at Re = 3000 is approximately in the range (2, 7)
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and peaks at m = 4, which embraces the wave number of the introduced vortices,

as shown in the energy spectra in Fig. 4-19. At t = 208 the force is off and the tur-

bulence intensity almost reaches its minimum, but only slightly lower than unforced

turbulence (see Fig.4-17(b)). Quickly the turbulence recovers to its natural level.

On the right is the m = 12 case. During the control period, the original turbulence

structures are broken down into smaller structures by the high-wave-number vortices,

which is obvious in the t = 96 snapshot. At this moment there are much more fine

high speed streaks filling the pipe. After t = 100, force is off and the turbulence

decays quickly and at t = 208 the turbulence almost relaminarises. We argue that

this is because with low-wave-number vortices, in this case m = 2, the forced large

streaks have similar wave number to the original energy containing structures, so that

they will support turbulence after the force is removed. However, high wave number

structures created by the high-wave-number vortices are more likely to dissipate out

rather than to form larger structures that favour turbulence. This is consistent with

the observation made in the Reynolds number reduction section, where the initial

conditions drawn from Reynolds number much higher than 3000 contains structures

that do not favour turbulence at Re = 3000, so that cause relaminarisation.

Looking at it from a different perspective, the introduced vortices changed the
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Figure 4-19: Energy spectra of the uncontrolled flow (black), of the flow controlled
with vortices with wave number m = 2 (red) and m = 12 (blue). The x-axis is
azimuthal wave number m and the y-axis is the energy associated with m

energy spectra, or in other words, redistributed the energy over structures with dif-

ferent sizes. This is evidenced by Fig. 4-19. Based on the energy spectra of the

uncontrolled flow, it is clear that the energy containing structures are of azimuthal
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wave number m ≤ 7, which account for about 90% of the total kinetic energy of tur-

bulence at this Re. The control drastically changes the energy spectra in the m = 12

case, the original peak at m = 4 disappears and and a new peak forms at m = 12

because the forcing is exciting this mode. Under control, the energy spectra suggests

that energy is redistributed such that the original energy containing structures are

greatly suppressed by the vortices. A great amount of energy is shifted to structures

with wave number around m = 12, far way from the energy containing structures.

After the control is removed, this amount energy will be transfered downwards to

smaller structures and get dissipated rather than go upward back to large structures.

On the contrary, in the m = 2 case the energy spectra does not change much so that

turbulence recovers after the control stops.

The same vortices are imposed in more runs to test efficiency. A stochastic be-

havior is also observed. With parameters m = 12 and A = 0.18, the turbulence

relaminarises in 9 out of 20 runs. Based on the logic described above, it should be

more efficient to control with streamwise vortices of even higher azimuthal wavenum-

bers or higher amplitude. First, a higher amplitude enable the vortices to flatten the

mean velocity profile more. Second, higher wave number vortices generate smaller

structures which will alter the flow field more drastically, pushing the flow farther

from the natural turbulence. Once the flow is freed from the force, a flatter velocity

profile and smaller structures are more likely to dissipate out. Indeed, if the wave

number increases, relaminarisation occurs in 14 out of 20 runs with m = 16, A = 0.18

vortices. If the amplitude is increased to 0.22, relaminarisation is achieved in 13 out

of 20 runs with m = 12 vortices, and in 19 out of 20 runs with m = 16 vortices.

This process of force on being turned on for a short time (15D/U here) and then

turned off is a good approximation of the process of a flow passing a segment of a pipe

where turbulence is persistently perturbed. This implies the possibility of relaminar-

ising turbulence in a long pipe with vortices-control confined in a short segment of

the pipe. It is worth mentioning that this result is astonishing because one can drive

a turbulent flow field out of the attraction basin of turbulence by stirring it.

4.3 Discussion

Following the study of transition to fully turbulent flow in Chapter 3, here I explored

control mechanisms that force inverse transition, i.e., to relaminarise fully turbulent

flow.
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First, I extended the forcing strategy adopted by Hof et al. (2010) to much higher

Reynolds numbers. Fully turbulent flow up to Re = 25000 was relaminarised by the

force. Two types of forces were tested and proven equally effective, suggesting that the

details of the forcing are not crucial for the relaminarisation. I carried out the critical

forcing statistics in light of the stochastic behavior of turbulence under the forcing. In

an effort to interpret the mechanism underlying the decay of turbulence, I calculated

the transient growth of the forced basic flow and compared it to that of the unforced

basic flow. The results show that the force greatly reduces the transient growth,

which despite being a linear mechanism, is essential for turbulence to be sustained.

This is consistent with the claim that transient growth is essential for the turbulence

self-sustaining mechanism in fully developed turbulence (Schoppa & Hussain, 2002).

It is worth mentioning that the results (Fig. 4-9) showed that the transient growth

of the ’critically’ forced flow stays roughly constant at about 15 ± 3 all across the

Re range explored here. This value was also found to be the minimum for puffs to

survive in unforced flows. Therefore, we proposed that the transient growth of 15

sets a boundary between excitable and refractory. This also suggests that a universal

minimum streak amplification is necessary to sustain pipe-flow turbulence at all Re.

By pushing the transient growth below this value with certain control techniques,

the energy amplification can be suppressed and the flow relaminarises. Under the

force, the mean velocity profile of turbulence is also greatly altered, which results in

a great change in turbulence intensity (see Fig. 4-6). It is consistent with the finding

of Jimenez (2013) that a change in the mean shear will break the energy balance and

create a different turbulence intensity. Our results also showed that under a different

velocity profile, not only the amplitude of disturbances changes a lot, but also the

flow structures (see Fig. 4-5).

This critical forcing amplitude, which is measured by the centreline velocity de-

crease on the basic flow, may provide experiments with some information on how

control techniques should be designed. Unfortunately, global body force implemen-

tation is practically impossible in experiments. I further showed that only localized

forcing is necessary for relaminarising turbulence, and successfully relamianrised tur-

bulence with a localized force up to Re = 8000. This localized forcing can be applied

in experiments by using control methods that locally modify the velocity profile in a

similar way.

Second, a streamwise vortices (rolls) control method is developed with which fully

turbulent flow at Re = 3000 is relaminarised. In addition, the control duration is

short, which means low energy consumption. The simulation justifies that by per-
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turbing the velocity profile, as well as the sizes, positions, and spacing of the near wall

streamwise vortices and streaks properly, one can create a flow field that is out of the

attraction basin of turbulence and realize relaminarisation. This is in line with the

observation of Tuerke & Jimenez (2013), who showed that unnatural velocity profiles

result in abnormal turbulent intensities and structures. However, Tuerke & Jimenez

(2013) did not report relaminarisation. A possible link may be made between this

result and the transient growth argument in Sec. 4.1. Here the high wave number

vortices broke the flow into small structures, which are far smaller than the opti-

mal perturbation (usually of low wave numbers, see Schmid & Henningson, 1994;

Meseguer & Trefethen, 2003; Willis & Hwang, 2010). This suppressed the energy

growth in the unnatural flow field and caused relaminarisation. In addition, analysis

into the energy spectra shows that the control greatly alters the energy spectra if the

flow is controlled with vortices of an azimuthal wave number far away from that of

the energy containing structures in normal turbulence. The introduced vortices act

as to suppress low wave number structures and excite high wave number structures.

The latter are likely to dissipate after the control is deactivated.

Large scale vortex control can be implemented experimentally by injection from

the wall (Iuso et al., 2002). Iuso et al. (2002); Schoppa & Hussain (1998) showed that

vortices can reduce the wall drag. However, they did not report relaminarisation of

turbulence. In their experiment/simulation, the control has to be kept on forever in

order to achieve a persistent drag reduction. Our control is a large scale technique

that may be implemented experimentally also by injection (and extraction if neces-

sary). Besides, it is strong but short perturbation to the flow which accomplishes

drag reduction only after the force is off and the flow relaminarises. However, the

high azimuthal wave number is a challenge to experimental implementation. The

optimal configuration of the vortex-control method needs to be further investigated

in future studies.
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Slip boundary condition

5.1 Introduction

Besides controls that act directly on flows, an alternative is to control the boundary

conditions. The mean shear is largely determined by the boundary condition, imply-

ing that modifications of the mean shear can be achieved by manipulating the bound-

ary condition. On macroscopic scale, viscous flow tends to stick to the wall on smooth

hydrophilic surfaces, resulting in no-slip boundary condition, which is well accepted

and widely used in fluid dynamics. However, on hydrophobic surfaces or finely tex-

tured surfaces, especially in microfluidics, considerable slippage or effective slippage

can take place on the liquid-solid interface (Vinogradova, 1999; Cottin-Bizonne et al.,

2002; Zhu & Granick, 2002; Joly et al., 2006; Cottin-Bizonne et al., 2005; Joseph et al.,

2006; Qu & Rothstein, 2005). The far-field effects of the hydrophobicity or fluctuat-

ing surfaces can be modelled by an “effective partial slip” applied on smooth surfaces

(Vinogradova, 1999; Stone et al., 2004; Bazant & Vinogradova, 2008; Kamrin et al.,

2011). Drag reduction has been observed on hydrophobic and patterned surfaces in

both laminar flow and turbulence thanks to this slippage on the wall (Min & Kim,

2004; Qu & Rothstein, 2005; Jung & Bhushan, 2010; Jovanovic et al., 2011). Slip

length was usually reported to be on nanometer scale (Cottin-Bizonne et al., 2002;

Zhu & Granick, 2002; Cottin-Bizonne et al., 2005; Joly et al., 2006) or micrometer

scale in extreme conditions (Joseph et al., 2006; Qu & Rothstein, 2005). These slip

lengths are small compared to macroscopic length scales, so that the resulting slip

velocity on the wall, and consequently the reduction in the mean shear are far from

being sufficient to affect the turbulence self-sustaining process significantly in large

devices (Min & Kim, 2004). Recently, with the technique of surfaces texturing with
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the micro-nano hierachical structures a much larger slip length up to 400µm has been

achieved (Lee et al., 2008; Lee & Kim, 2009), which may be large enough to consider-

ably affect flow systems even on macroscale. Park et al. (2013) pointed out that the

drag reduction in laminar flow is directly due to the slip, so that the drag reduction

is independent of the Reynolds number. They numerically investigated the effect of

textured surfaces with microgrates and trapped air pockets on turbulent dynamics

and claimed that the drag reduction is not a direct result of the velocity slip, but

mainly because the slip affects the turbulence structures, which in turn results in a

reduced skin friction. They also reported that above a slip length about 40 viscous

unit the drag reduction effect diminished. To our knowledge, there is no report of re-

laminarisation of fully turbulent flow due to this slippage on the wall. In the following

we apply an effective slip boundary condition to normal pipes and go far beyond the

slip length that current technologies can achieve, to study what slip length is needed

to relaminarise turbulence and explore possible turbulence control methods.

5.2 Methods

We solve the nondimensional incompressible Navier-Stokes equations

∂u

∂t
+ u ·∇u = −∇p+

1

Re
∆u, ∇ · u = 0 (5.1)

in cylindrical coordinates (r, θ, z) in a straight pipe with Navier slip boundary condi-

tion (Stone et al., 2004) on the wall for axial velocity

(λ∂uz + uz)|r=1 = 0 (5.2)

and no-slip boundary condition for azimuthal and radial velocities, uθ(1, θ, z, t) = 0

and ur(1, θ, z, t) = 0, where λ is called Navier slip length. DNS Code 2 is em-

ployed for this study since it allows easier manipulation on the slip boundary con-

dition than Code 1. Generally speaking, effective slip boundary condition in three

dimensional case has been proposed to appear in tensorial form Stone et al. (2004);

Bazant & Vinogradova (2008); Kamrin et al. (2011). Nevertheless, here the slip bound-

ary condition is only imposed on uz because 1) we only aim at affecting the turbulence

self-sustaining process by modifying the mean shear and uz determines the mean

shear. The simple boundary condition employed here, which raises no difficulty in

numerical implementation, very well satisfies this need; 2) the slip in azimuthal di-
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rection actually tends to increase turbulence intensity (see Fig. 5-1), which is hence

unfavourable in the context of turbulence control; 3) potentially for comparison to

ongoing control experiment in our group where one pipe segment is moved in the

streamwise direction which generate streamwise velocity at the wall. In fact, as

shown later, the streamwise slip dominates the flow in case of slip in both azimuthal

and streamwise directions is imposed. The periodic boundary condition is imposed in

the axial direction, hence, a Fourier-Fourier-finite difference scheme is employed for

the spatial discretization. The equations are integrated in time with a 2nd order semi-

implicit scheme and the incompressibility is imposed using a time-splitting scheme,

while the mass flux is kept constant (see Chapter 2 for details).

5.3 Results

With the forementioned partial slip boundary conditions, normalization, and con-

stant mass flux, the velocity profile of the laminar flow can be derived analyti-

cally as u = (1 − r2 + 2λ)/(1 + 4λ)ẑ, the corresponding mean pressure gradient

∇p = −4/Re(1+4λ)ẑ, and the velocity slip on pipe wall uw = 2λ/(1+4λ)ẑ. There-

fore, λ = 0 corresponds to no-slip condition uz = 0, recovering the Hagen-Poiseuille

flow, and λ = ∞ gives full slip condition ∂uz/∂r = 0 under which the velocity pro-

file is completely flat, uz(r) = 1
2
, as in inviscid pipe flow. In turbulent flow, these

quantities fluctuate and can only be determined by numerically solving the governing

equations.

The influence of the azimuthal slip is first explored. Intuitively, the azimuthal slip

favours streamwise vortices, which are then more efficiently creating streaks. There-

fore, azimuthal slip will intensify turbulence, so that is unfavourable in the context

of turbulence control. This is actually observed in our simulation, as illustrated in

Fig. 5-1. A comparison between a turbulent flow with only azimuthal slip boundary

condition λ∂uθ/∂r + uθ = 0 with λ = 0.22 and one with no-slip condition is made at

Re =7500. The kinetic energy of the in-plane velocity components of the turbulence,

Ec =
1
2

∫

V
(u2r + u2θ)dV , is depicted in Fig. 5-1(a). Once the azimuthal slip is turned

on, Ec experiences a sharp increase and then stabilizes on a level twice as high as

that with no-slip boundary condition. Fig. 5-1(b) compares the contours of stream-

wise vorticity in a cross section in each case, an intensification of the vorticity in near

wall regions due to the azimuthal slip is apparent. Similar effects were also observed

in channel flow (Min & Kim, 2004). Imposing slip in both directions however leads
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Figure 5-1: Azimuthal slip intensifies turbulence. Simulations conducted at Re =
7500. (top) Time series of kinetic energy of the transverse flow Ec normalized by the
energy of Hagen-Poisseuille flow for two turbulent flows: one with no-slip boundary
condition (blue) and the other with azimuthal slip condition with slip length λ = 0.22
(red). In the latter, the azimuthal slip is turned on at t=600; (bottom) contour
of streamwise vorticity ωz plotted on the cross section at the axial position where
∫ ∫

ω2
zrdrdθ takes the maximum: (b) the flow with no-slip boundary condition, and

(c) the flow with azimuthal slip boundary condition. Note that red and blue region
represents strongly vortical regions and both of (b) and (c) are taken at t=700 from
the time series shown in (a).

to an overall reduction of turbulence, and the streamwise slip totally dominates the

flow (see Fig. 5-2). Since this study is partially motivated by experiments where

relaminarisation was achieved by moving pipe segments in the streamwise direction,

here we will only focus on the effect of slip in the streamwise direction.

We initiate our study with fully turbulent flow simulation with no-slip boundary

condition at various Reynolds numbers ranging from 3000 to 20000. At each Re, the

resolution is ensured high enough by requiring the time averaging friction coefficient
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Figure 5-2: Time series of the kinetic energy of the transverse flow Ec normalized by
the energy of Hagen-Poisseuille flow for a run at Re =7500, with both azimuthal and
axial slip length λ = 0.22 (the blue line), and with only axial slip length λ = 0.22 (the
red line). Azimuthal slip tends to intensify turbulence, however, this figure shows the
dominance of the axial velocity slip.

to agree well with the Blasius law and no energy accumulation at high wave number

modes. The simulations are carried out in a 8π-long pipe at Re = 3000 and 5000,

and the pipe length is reduced to 4π at all higher Reynolds numbers considering

the enormous computing resources needed. At these Reynolds numbers for usual no-

slip boundary condition turbulence is well self-sustained. Subsequently, we increase

the slip and study how the original turbulence reacts to the new boundary condition.

Turbulence either quickly adjusts to the new boundary condition or relaminarises, de-

pending on whether the reduced mean shear can feed it or not. This process roughly

mimics the situation where turbulence flows through a pipe part of which allows slip

on the wall. If the turbulence relaminarises during passing by, the flow will stay lam-

inar forever downstream because of the linear stability of the laminar flow.

A set of runs starting from different initial conditions at the point (Re, λ) =

(7500, 0.22) are shown in Fig. 5-3. Upon turning on the slip at t = 0, the turbulence

intensity undergoes a sharp decrease, which is expected since the mean shear is re-

duced sharply by the slip on the wall. As mentioned before, the mean shear is the

main energy source for the turbulence sustenance, the decrease in the mean shear

reduces the energy that the streamwise vortices can extract to form streaks, hence

weakens the streaks. In turn, weaker streaks generate weaker streamwise vortices.

It turns out that with sufficiently large slip length turbulence will not be able to

sustain itself and finally relaminarises. However, given marginal slip length, as the

one used in Fig. 5-3, turbulence reacts in a probabilistic manner, i.e., in some runs it

completely decays, but in some others manages to recover from the initial decaying
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Figure 5-3: Time series of kinetic energy of the transverse flow normalized by the
energy of Hagen-Poisseuille flow for 10 different runs at Re =7500, with a marginal
slip length λ = 0.22. 7 relaminarisations are observed.

and eventually stabilizes at a lower energy level than the original turbulence which

does not slip on the wall, as depicted by the energy trajectories of the transverse fluc-

tuations in Fig. 5-3. It is likely that the surviving cases would eventually also decay,

however, lifetimes just like in ordinary pipe flow around Re ∼ 2000 can be extremely

long. To keep computational cost manageable we used a time cutoff tmax = 4000 and

define the critical slip length as λc, where turbulence in 50% runs decays.

A statistical study is conducted on the dependence of the critical slip length λc on

Reynolds number, which is illustrated in Fig. 5-3. With such a criterion, extensive

DNS studies are carried out at Re=3000, 5000, 7500, 10000, 15000, and 20000. At

each Re, the λc is searched with a bisection method with about 50-100 realisations and

for each parameters combination (Re, λ), 10 runs starting with uncorrelated initial

conditions are conducted. The small size of the sample is a compromise of the expen-

sive computation due to the high resolutions needed to fully resolve the turbulence at

such high Reynolds numbers. To compensate the small sample size, we extrapolate λc

for the 50% relaminarisation rate from all λ values that gives relaminarisation rates

in the interval 30% to 70%. Surprisingly, the dependence of λc on Re appears to be

linear, as shown in Fig. 5-4(a). A linear fitting λc = aRe+ b gives a = 1.8752× 10−5

and b = −0.037622, resulting in an intercept on the Re-axis of about 2000. This

intercept represents the maximum Re at which turbulence will naturally relaminarise

without any slip on the wall, i.e., Recr, which considering statistical uncertainties and
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Figure 5-4: (a) The critical slip length λc versus Reynolds number. The red dashed
line is a linear fitting λc = aRe + b using the middle points of those bars which
presumably lead to about 50% relaminarisation rate; (b) The slip velocity on the wall
resulting from the slip lenghts shown in (a).

limited sample size is in very good agreement with the critical Recr = 2040 proposed

by Avila et al. (2011). Fig. 5-4(b) depicts the critical slip velocity on the wall in

turbulence resulting from the critical slip lengths. The other way round, turbulence

is likely to relaminarise in the presence of these amounts of velocity slip on the wall.

This suggests that instead of reaching the currently unachievable huge slip length on

the wall, turbulence may be relaminarised by moving pipe segments or a foil covering

the pipe wall in a segment in the stream wise direction. Such experiments have indeed

been carried out successfully in our group, and publication is in preparation.

5.4 Discussion

The relaminarisation of pipe flow turbulence under partial slip boundary condition

was studied. The effect of both azimuthal slip and streamwise slip were investigated

and the results show that the former tends to strengthens turbulence and on the con-

trary the latter weakens turbulence. Similar effect is also found in Min & Kim (2004);

Park et al. (2013). The streamwise velocity dominates the mean shear, consequently

a streamwise velocity slip significantly affects the turbulence self-sustaining process in

which shear play a role as the energy source. However, on normal superhydrophobic

surfaces the effective slip length is very small (below a micron) and the resulting ve-

locity slip is not enough to significantly affect the turbulence self-sustaining process,

though drag reduction indeed was achieved. The DNS result shown in this chapter

indicates that to relaminarise turbulence, slip lengths comparable to the pipe radius

(see Fig. 5-4(a)) and velocity slip comparable to the mean flow speed (Fig. 5-4(b)) are
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needed. Surprisingly, a statistical study showed a linear scaling of the minimum slip

length for relaminarisation with Re, and the λc = 0 occurs at Re ≃ 2000, very close

to the critical point for onset of sustained turbulence (Avila et al., 2011). In addition,

the scaling of the critical velocity slip on the wall may give a hint to experimental

relaminarisation of turbulence by accelerating the flow on the wall.
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Chapter 6

Summary

The transition to fully turbulent flow and turbulence control are of fundamental

importance in fluid dynamics and have been challenging scientists and engineers for

over a century. This thesis is dedicated to them.

DNS is the tool for the studies presented in this thesis. Two DNS codes were

adopted, one employs a pressure-free formulation (Willis & Kerswell, 2009) and the

other is a primitive-variable formulation (Hugues & Randriamampianina, 1998). The

latter was developed from scratch for cylindrical configuration and tests showed good

performance of this new code. Both of them employ finite-difference method in the

radial direction, which lowers the computation cost, and spectral methods (Fourier)

in the periodic azimuthal and axial directions. In time-stepping, both are of the

second-order of accuracy.

6.1 Main conclusions

1. The emergence of fully turbulent flow. The problem of transition to fully

turbulent flow was lately understood through a collective work of theoretical model-

ing, DNS and experiments (Barkley et al., 2014). In this thesis, the DNS aspect of

this work was discussed in detail and the transition scenario was explained.

Extensive DNS has been performed to accurately measure the speed of the up-

stream and downstream fronts of turbulence at a wide range of Reynolds number

between 1900 and 5500, covering the regime of localized turbulence (puffs) and fully

the turbulent regime. The speed was compared to that measured in experiments

by my colleague Mukund Vasuvedan at IST Austria and excellent agreement was ob-

tained (Fig. 3-12). The well-resolved speed data facilitated Barkley’s model to capture

91



Summary

the main features of pipe flow turbulence. The main findings are the following.

• Transition from puffs to slugs is explained as a transition from excitability to

bistability. At low Reynolds numbers (Re . 2200), pipe flow is excitable with

puffs being localized excitations that feed on the surrounding laminar flow.

Above Re ≃ 2300 pipe flow is bistable and turbulence can locally stabilize,

which results in the growth of turbulence.

• However, the bifurcation point at which the system becomes bistable in the

model, is masked by the turbulence nonlinear self-advection (see Fig. 3-13).

Besides, fluctuations in real pipe flow, which are intrinsic to turbulence, lead

to puff splitting and dig holes inside slugs, and tend to obscure puffs and slugs

in the regime 2300 . Re . 2600. Consequently, a clear critical point is ab-

sent and no simple scaling such as a square-root scaling or a scaling related

to directed percolation exponents was observed. This nontrivial scaling has

been a major obstacle for the clarification of the transition scenario in former

studies (Lindgren, 1969; Wygnanski & Champagne, 1973; Durst & Ünsal, 2006;

Nishi et al., 2008). Sreenivasan & Ramshankar (1986); de Lozar & Hof (2010)

claimed square root scaling of the turbulence growth rate but we argue that

it was due to their under-resolved speed data. In this thesis the growth rate

was shown to be rather linear during the emergence of fully turbulent flow (see

Fig. 3-8).

• Our results (Barkley et al., 2014) clarified that the front speed selection mech-

anism for slugs is totally different from that for puffs. Both upstream and

downstream fronts of slugs are trigger front whose speed is determined by the

interplay between turbulence diffusion and production (see Sec. 3.2.2). These

two speeds are usually different so that turbulence grows. Whereas the down-

stream front of puffs simply follows the upstream front at a fixed distance. For

the definition of a trigger front see Tyson & Keener (1988).

• There are two types of slug. One with a puff-like weak downstream front at

moderate Reynolds numbers 2350 . Re . 2800, and the other with strong front

at high Reynolds number above about 3500. The former was referred to as puffs

that grow or puffs out of equilibrium (Wygnanski et al., 1975; Duguet et al.,

2010b).

• The somewhat complicated scaling of the downstream front speed of slugs is

caused by an adjustment from the weak to the strong front state that takes

place in this Re regime (2300 . Re . 5000). The speed of the downstream front
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of slugs are regulated by the speed of weak and strong fronts in the asymptotic

limit. The average speed of the downstream front is precisely captured by

Barkley’s model in a finite-ǫ case (corresponding to finite front width) (see

Fig. 3-12). Fluctuations may even cause transient switch between weak and

strong front at Re ≃ 3000 (see Fig. 3-14).

The transition scenario can be summarized as: at low Reynolds number the system

is excitable and sufficiently strong disturbances create localized puffs. At higher

Reynolds numbers the system becomes bistable and turbulence takes the form of slugs

with a weak downstream front at moderate Re and eventually of slugs with a strong

front at high Reynolds numbers (above ≃ 3500). There is no critical point because

the turbulence self-advection and the intrinsic fluctuations mask the bifurcation point,

and there is no sharp transition from weak to strong downstream front because of the

finite front widths and strong fluctuations at low and moderate Reynolds numbers.

2. Turbulence control. Motivated by the fact that turbulence at high Reynolds

numbers is highly dissipative and causes much higher friction loss than laminar flow,

in the second part of this thesis, turbulence control strategies were developed to

relaminarise turbulence. Following the studies in the transition to fully turbulent

flow, a forcing strategy was devised to modify the velocity profile and reduce the

transient growth of the flow, which was found to relaminarise turbulence in fully

turbulent regime given sufficiently strong force. Statistical studies were performed

for determining the minimum forcing amplitude and the resulting transient growth of

the forced flow was also calculated. Besides, a vortex control was developed based on

our observation that certain velocity fields, even with strong fluctuations, may decay

at high Re (discussed in Appendix A). The vortices were designed such that they

alter the flow structures and flatten the velocity profile, resulting in an unnatural flow

field that relaminarises after the control is deactivated. Results are summarized as

follows.

• A force that decelerates the flow near the pipe center and accelerates the flow

near the pipe wall, deforming the velocity profile into a plug-like one, can relam-

inarise turbulence if the force is strong enough. This corresponds to changes in

the nullclines of the model system, which remove the fixed point on the upper

branch q+ and render the originally bistable system excitable, or even refractory

(see Fig. 4-1). Indeed, inverse transition from fully turbulent flow to puffs was

observed under such kind of forcing (see Fig. 4-7).

• Sufficiently strong force always relaminarises turbulence. Under marginal forc-
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ing, turbulence behaves stochastic (see Fig. 4-6).

• A transient growth analysis showed that this forcing strategy greatly reduces the

transient growth, which is an important part for the turbulence self-sustaining

cycle (Schoppa & Hussain, 2002). Here results suggested that sufficiently low

transient growth can not sustain this cycle and leads to relaminarisation.

• The minimum transient growth that sustains turbulence was investigated and

was found to be constant, about 15, at all Re we considered (see Fig. 4-9). This

transient growth was also found to be the minimum one for puffs to survive

in unforced flow at low Re (Fig. 4-10). We argue that this constant transient

growth sets a boundary between excitable and refractory, below which the sys-

tem is refractory so that no disturbances can survive.

• Streamwise vortices, when imposed on top of a turbulent flow, can flatten the

velocity profile and alter the number and size of streaks. Our study implies that

if the number and size of streaks of the original flow are sufficiently changed,

flow may relaminarise (see Appendix A). This was indeed achieved at Re=3000

with 12 pairs (azimuthal wavenumber 12) of counter-rotating vortices. This is

consistent with the transient growth argument above in the sense that on the

one hand, streamwise vortices flatten velocity profile so that reduce the transient

growth. On the other hand, near wall structures are altered such that they are

far from the optimal perturbations. Both result in lower energy amplification

via transient growth and may lead to relaminarisation.

3. The partial-slip boundary condition. The effects of the partial-slip bound-

ary condition on turbulence were studied. Results showed that azimuthal slip intensi-

fies turbulence, whereas streamwise slip weakens turbulence and can even relaminarise

turbulence if the slip is large enough (see Fig. 5-1 and Fig. 5-3). The minimum slip

length that leads to relaminarisation was studied up to Re = 20000. Results showed

that a slip length comparable to the radius is needed to relaminarise turbulence and it

increases linearly as Re increases, see Fig. 5-4. The corresponding velocity slip on the

wall may suggest experimental control that relaminarises turbulence by generating

similar velocity at the pipe wall.

6.2 Future work

A couple of problems require future work to be clarified.
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• The front speed of slugs at high Re form a parabola (see Fig.3-12). Clearly

this can not hold forever as Reynolds numbers increases further since the two

branches of this parabola will keep increasing and decreasing, which means the

front speed will approach infinity as Re → ∞. This clearly can not happen.

The front speed at higher Reynolds numbers (above 6000) needs to be studied,

which requires very expensive simulation and more efficient parallel codes. The

reason for the deviation from the asymptotic analysis (which gives the parabola)

should also be investigated.

• How fluctuations cause puff splitting is still unknown. Presumably, vortices

shed off from the seeding puff at the downstream front and occasionally reach

far enough (beyond the puff-puff interaction distance) to generate a new puff.

However, quantitative studies are still lacking.

• The speed of turbulence self-advection at higher Reynolds number (above Re =

10000) is worth investigating. The result in Appendix B showed that this ad-

vection speed is lower than the mean flow speed above Re = 10000 and it still

keeps decreasing. The implication of this result needs to be interpreted. Be-

sides, it is a factor in Barkley’s model and may be related to the discrepancy

between the model and real flow when Re gets large.

• Vortex control was shown to be able to relaminarise turbulence at Re = 3000

and are possible to be implemented via wall injection-suction It should be a

promising control technique for practical applications, however, it fails at higher

Reynolds numbers. Control with vortices at higher Reynolds numbers is worth

studying.

• In Chapter 5 it was shown that the minimum slip length that suffices to re-

laminarise turbulence scales linearly with Re. This scaling should be better

interpreted. Besides, this work should be related to the transient growth ar-

gument proposed in the forcing study, i.e., the minimum slip length may be

related to the minimum transient growth for turbulence to be sustained. The

transient growth analysis in case of partial slip boundary condition needs to be

performed.
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Appendix A

Reynolds number reduction

Studies in Chapter 4 showed that turbulence decays in case of a flatter velocity profile

under forcing. One implication of this finding on relaminarisation is that a turbulent

flow at very high Reynolds number which consequently has a very flat velocity profile

may relaminarise after a reduction to a lower Reynolds number (still in the turbulent

regime) where turbulence naturally would have less flat profile. If this is true, this may

suggest control methods that perturb turbulence impulsively such that the flow field

has unnatural velocity profile and structures (as those from higher level of turbulence

at higher Re), which will decay after the control is removed. In what follows, we

first study the different velocity profiles and structures of turbulence at different Re,

then implement the Re reduction and show that flow field from higher Re indeed

relaminarises after the reduction, though it contains very strong disturbances.

A.1 Difference between different levels of turbu-

lence

It is known that in wall-bounded turbulence, structures with different length scales,

located at different wall distances, organize themselves so that the momentum transfer

in the wall-normal direction stays in balance, resulting in a certain ’natural’ velocity

profile. A fixed ’unnatural’ velocity profile breaks this balance and causes substantial

changes in turbulence intensity (Tuerke & Jimenez, 2013). This implies that there

may exist a way of driving turbulence far from or even out of its attraction basin by

disturbing it in such a way that the flow field is somehow ’unnatural’ to a turbulence.

We already showed the possibility of this in the previous section. Considering that

velocity profile differs at different turbulence intensities, an alternative way to obtain
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a plug-like (flatter) velocity profile, which does not require an additional forcing, is

to expose the flow to a higher level of turbulence. since nondimensionally speaking,

at higher level turbulence the velocity profile is flatter because of the stronger radial

momentum transfer. To achieve this situation we initiate a turbulent flow at a high

Reynolds number, such as Re = 10000. Then, we abruptly reduce the Re to a much

lower one, to Re = 3000, at which the flow field from Re = 10000 is supposed to be

unnatural to the turbulence in the sense that the velocity profile is flatter and the

size and wall-distances of the turbulent structures are not expected at this Re. By

doing so, we can study how this flow field adjusts to the new Reynolds number and

if it can jump out of the attraction basin of the turbulence at Re = 3000.

Fig. A-1 gives more details of the differences between a flow field at Re = 3000

and one at Re = 10000. Fig. A-1(a) compares the mean velocity profiles at these two

Reynolds numbers, showing that the profile at Re = 10000 is more plug-like than that

at 3000, due to the stronger radial momentum transfer at higher Reynolds number.

Fig. A-1(b) depicts the flow details in terms of the size and number of the near wall

streaks by showing the axial velocity relative to the mean velocity at y+ = 30 from

the wall, where the center of streaks (Kim et al., 1987). Usually, the quantities with

superscript + are ones normalized by kinematic viscosity ν and friction velocity uτ .

Here the distance y+ is normalized by ν/uτ . The data are taken arbitrarily at axial

position z = 0 and however considered as typical at their respective Reynolds number.

The streaks are defined as the areas in which the velocity is lower or higher than

the mean velocity of their surroundings, corresponding to negative areas (low speed

streaks) and positive areas (high speed streaks) in Fig. A-1(b). Roughly speaking,

we can see that at Re = 3000 there exist about 4 high speed and 4 low speed streaks

at the chosen axial position, however about 10 of each at Re = 10000. The in-plane

velocity fields and the contours of the deviation of the streamwise velocity uz from

the mean velocity profile are shown in Fig. A-1(c)(d). The difference between the size

and number of streaks and vortices is vividly shown. Another point to note is that the

streamwise vortices convect mean shear, distorting the mean velocity profile such that

a maximum of curvature appears near the wall rather than at the pipe center as in

laminar flow. The location of the maximum of the curvature is found approximately

to coincide with the position of streaks that are generated by streamwise vortices. As

a matter of fact, y+ = 30 gives a position r = 0.719 at Re = 3000, and 0.908 at 10000,

which roughly coincide with the position of the the maximum of the curvature, or the

’corner’ of the mean profiles, as can be seen in Fig. A-1(a). To conclude, the higher

azimuthal wave number and being closer to the wall make the streaks smaller in size
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Figure A-1: (a) Typical mean velocity profiles at Re=3000 and 10000. (b) The
depiction of the size and number of streaks at Re=3000 and 10000. The deviation
of axial velocity from the mean axial velocity profile at a distance of y+ = 30 from
the wall, plotted against azimuthal position. Note that all velocities are normalized
by the velocity Umax at their respective Re. The in-plane velocity field together with
the contour of axial velocity uz relative to the mean velocity profile are plotted in (c)
(Re = 3000) and (d) (Re = 10000). They are taken on the same cross sections as (a)
and (b).
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than they are at lower Reynolds number.

A.2 Implementation of the Re reduction

For the purpose of generating initial conditions, there are at least two ways to reduce

the Re. First, we simply take a nondimensional velocity field of a flow at a higher

Re and rerun it at the desired Re, which is not a physical reduction because the

normalization of the velocity field is changed rudely. This one can be referred to

as the unphysical reduction. The other way to implement the reduction is to keep

the dimensional velocity field. In this case, the nondimensional velocities have to be

scaled appropriately o keep the reduction physical. This will be a good approximation

of reducing the flow rate abruptly in the experiment while keeping the magnitudes

of the fluctuations on top of the mean flow. However, it needs an infinite force

pulse to change the mass flux (also the velocity profile) at the moment of reduction.

Both of these two ways serve well for the purpose of generating unnatural flow field

with undesired velocity profiles and structures, so they are all eligible for the current

numerical study. The former will be referred to as unphysical reduction and the latter

physical reduction.

A.2.1 Unphysical reduction

Once Re is reduced to 3000, a sharp decrease in the turbulence kinetic energy must oc-

cur. Presumably, smaller structures and flatter mean velocity profile from Re = 10000

will lead to a higher level of dissipation, causing an excessive destruction of kinetic

energy at Re = 3000. Fig. A-2 shows the history of the kinetic energy of turbulent

fluctuations of the reduction from Re = 10000 to 3000. The initial transients show

a sharp decrease in the kinetic energy. 10 runs with different initial conditions were

carried out among which 7 relaminarised. In the other 3 runs turbulence managed

to recover from the initial decaying and reach a ’natural’ intensity at Re = 3000. As

mentioned before, we attribute the initial decaying and the final relaminarisation to

the ’unnatural’ flow structures in the initial conditions, which are much more dissipa-

tive than the turbulence expects after the reduction. It is worth mentioning that the

difference from the forcing experiment is that here if turbulence survives, it recovers

to the level of the natural turbulence at the this Reynolds number, whereas to a lower

level in the forcing study. This is because here the velocity profile is free to evolve

after the reduction, but was forced all the time in the earlier forcing study.
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Figure A-2: The Re reduction experiment from Re = 10000 to 3000. Here the time
series of the kinetic energy of the x-dependent fluctuations Ek 6=0 are plotted, which
is normalized by the kinetic energy of the Hagen-Poisseuille flow. 10 realisations
are shown here with statistically independent initials conditions drawn from a long
simulation of fully turbulent flow at Re = 10000. 7 relaminarisations out of 10 runs
were observed (dashed lines).

As shown above, the abnormally sized and located structures combined with flat-

ter mean velocity profiles in initial conditions lead to relaminarisation, which implies

that the bigger the difference from the normal turbulence, the more likely for the

turbulence to relaminarise. Following this thought, the likelihood of relaminarisation

as a function of Reynolds number before the reduction was studied. Considering the

stochastic behavior of the flow after the reduction, as shown in Fig. A-2. , statistics

were carried out for reductions from a variety Reynolds numbers. Initial conditions

were prepared at Reynolds numbers Re = 15000, 12000, 10000, 7500, 6500, and 5000.

At each Re, tens of sufficiently separated snapshots were produced. Subsequently, the

Re was to 3000 and the probability of the relaminarisation was estimated as the frac-

tion of runs that ended with turbulence. For each reduction, 30 ∼ 50 realizations with

uncorrelated initial conditions were performed for the statistics. Results are shown

in Fig. A-3, which gives a clear trend that the lager the reduction in Re, the more

likely the relaminarisation is to occur. Note that for the reduction from Re = 15000

to Re = 3000, almost in all runs turbulence completely decayed. This indicates that

if the velocity field at Re = 3000 can be perturbed appropriately, generating flatter

mean velocity profile and finer structures (streaks and vortices), turbulence can be

efficiently eliminated. This study suggests experimental control technique which aims

at flattening the velocity profile and breaking the existing structures into finer ones.
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Figure A-3: Statistical study of the Re reduction experiment from various Reynolds
numbers to 3000. 30 ∼ 50 realizations for each point. The errorbars represent the
95% confidence interval associated with the estimation of the probability of relami-
narisation by dividing the total sample size by the number of relaminarisation.

A.2.2 Physical reduction

In unphysical reduction, nothing was done to the initial condition drawn from higher

Reynolds numbers. To be more realistic, physical reduction should be adopted. In

experiment, if the flow rate can be abruptly changed, the mean velocity profile must

also change immediately since the conservation of mass and the incompressibility.

However, the lack of direct control on turbulent fluctuations will leave the fluctua-

tions almost unchanged at the right moment of the flow rate reduction. So, a more

realistic way to conduct the reduction in numerical simulation will be rescaling the

flow flied appropriately before running the simulation at a different Re. In this thesis,

the velocity is normalized by Umax = 2U , so the ratio between the velocities are the

same as that between Re if the pipe radius R and flow viscosity ν are kept constant.

Therefore, what should be done is to rescale the fluctuations (with respect to the

mean velocity profile) by a factor of Rei
Re

where the Rei is the Reynolds number before

reduction. After the rescaling, fluctuations are very strong in amplitude, yet the size

of the structures such as vortices and streaks are still small as shown in Fig. A-1.

The same statistics as for the other reduction were carried out at the same

Reynolds numbers. The results are shown in Fig. A-4. Again, relaminarisation oc-

curs, but with a lower rate compared to the unphysical reduction, which is expected

as in current reduction the initial disturbances, though are of the same structures,

are much stronger than that in the unphysical reduction case. Nevertheless, it is sur-
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prising that at Re = 3000 such strong perturbations fail to create turbulence instead

decays.
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Figure A-4: Statistical study of the physical Re reduction experiment (blue) from a
variety of Reynolds numbers to 3000. For comparison, the result of the non-physical
reduction is also shown (black). 30 ∼ 50 realizations for each point. The errorbars
represent the 95% confidence interval associated with the estimation of the probability
of relaminarisation by dividing the total sample size by the number of relaminarisa-
tion.

A.3 Discussion

Turbulence arrange the sizes and positions of the near wall coherent structures ac-

cording to the specific Reynolds number, balancing the momentum transport in the

radial direction and creating a ’natural’ flow field of certain mean velocity profile (in a

time-averaged sense) (Tuerke & Jimenez, 2013). A Reynolds number reduction study

shows that an ’unnatural’ flow field which has a flatter mean velocity profile and finer

near wall coherent structures leads to relaminarisation, implying possible flow control

mechanisms that aim at rendering the flow field unnatural.
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Advection speed of turbulence

Because of the general symmetries of the Navier-Stokes equations and the pipe ge-

ometry, pipe flow bears continuous translational and rotational symmetries. A pure

translation and rotation about the pipe axis will not change the intrinsic dynamics

of the flow. For example, the laminar pipe flow advects downstream at a constant

speed, and the profile is independent of the specific location along the pipe axis and

rotationally symmetric. This fact allows the freedom of choice of frame of reference.

A traveling wave solution in the laboratory frame can be turned into an equilibrium

state by choosing a frame co-moving with the structure and the solution can be better

investigated in this frame. In more complex turbulent flow, the turbulent dynamics

are usually entangled with these symmetries. Ideally, if the trivial degree of freedom

due to symmetries can be removed in an appropriately chosen frame of reference, the

intrinsic dynamics of the flow can be revealed. The symmetry reduction has been

discussed for invariant traveling wave and relative periodic solutions (Willis et al.,

2013; Mellibovsky & Eckhardt, 2012)

However, for complex turbulent flow, it is not straightforward to define a global

advection speed (also called convection speed or propagation speed) of turbulence

since eddies of different sizes may advect at different speeds. Del Álamo & Jiménez

(2009) developed methods to determine the advection speed of individual modes (with

individual wave lengths). Besides, in wall shear turbulence, the advection speeds of

turbulent fluctuations are likely to be dependent of the distance to the wall. Pei et al.

(2012) studied the advection speed profile of the streamwise velocity fluctuation based

on the space-time correlation of the streamwise velocity fluctuation in channel flows.

These authors showed that this speed stays approximately constant for y+ < 10 and

much higher than the local mean flow speed, and increases above the viscous sublayer.

Nevertheless, it would be convenient if an overall advection speed on large scale of
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turbulence can be calculated.

Recently, Kreilos & Eckhardt (2013) proposed a method to remove the transla-

tional symmetry and evaluate the overall advection speed of turbulence in parallel

shear flows. The procedure is summarized as following:

1. Rewrite the Navier-Stokes equations as

∂tu(r, θ, z, t) = f(u(r, θ, z, t), t). (B.1)

2. Approximate the flow u(r, θ, z +∆z, t+∆t) with Taylor-expansion

u(r, θ, z +∆z, t+∆t) ≈ u(r, θ, z, t) + ∆z∂zu(r, θ, z, t) + f(u(r, θ, z, t), t)∆t.

(B.2)

3. Assume the turbulence is advected at a speed of c, then ∆z = c∆t, then we

have

u(r, θ, z +∆z, t+∆t) ≈ u(r, θ, z, t) + (c∂zu(r, θ, z, t) + f(u(r, θ, z, t), t))∆t.

(B.3)

4. Projecting with ∂zu(r, θ, z, t), the advection speed c can be obtained as

c = −< ∂zu(r, θ, z, t) · f(u(r, θ, z, t), t) >
‖∂zu(r, θ, z, t)‖2

, (B.4)

where

< u · f >=

∫

V

(u · f)dV (B.5)

and ‖u‖2 =< u · u >. Note that u(r, θ, z + ∆z, t + ∆t) and u(r, θ, z, t) are

required to equal according to the definition of advection, however, in the weak

form

< ∂zu(r, θ, z, t) · (u(r, θ, z +∆z, t+∆t)− u(r, θ, z, t)) >= 0. (B.6)

This procedure allows to evaluate the instant advection speed of turbulence, which

itself is likely to be time-dependent. In this chapter, this method will be used to

approximate the speed of self-advection of pipe flow turbulence, which is an important

factor in Barkley’s one-dimensional pipe flow model as discussed in Sec. 3.2. DNS

Code 2 is employed for this study.
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B.1 Advection speed vs. Re

The advection speed is calculated at several Reynolds numbers (in slug regime) in the

range Re ∈ (2600, 10000). The time series of the advection speed at several Reynolds

numbers are shown in Fig. B-1. The results show that at Re . 7000 the advection
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Figure B-1: Time series of the advection speed at several Reynolds numbers.

speed is higher than the mean flow speed, and as Re increases the advection speed of

turbulence decreases. The other apparent trend is that as Re increases the advection

speed undergoes smaller fluctuations. At low Reynolds numbers such as Re = 2600,

the speed shows huge fluctuations, however, at Re = 7000 the advection speed is

very stable. This is consistent with the fact that at low Reynolds numbers turbulence

manifests large spatio-temporal intermittency while at high Re intermittency becomes

very rare (Avila & Hof, 2013).

To have the advection as a function of Re, the mean advection speed is estimated

from these time series and the fluctuations are measured by the standard deviation.

The speed is measured up to Re = 10000 and the results are shown in Fig. B-2. As we

can see, the advection speed decreases as Re increases. Interestingly, at Re = 10000,

the advection speed of turbulence is even lower than the mean flow speed, i.e., the

turbulence advects slower than the mean flow. However, the implication of this fact

is still unclear. From the trend one can infer that the advection speed of turbulence

will decrease as Re increases further. To clarify if the speed eventually saturates at

certain Re or keeps decreasing forever, future investigations are needed.
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Figure B-2: The advection speed as a function of Re. The speed are measured at
Re =2600, 2800, 3000, 3200, 4000, 5000, 5500, 6000, 6500, 7000, and 10000. The
errorbars are standard deviations.

B.2 Advection speed vs. the centerline velocity
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Figure B-3: (a) The comparison between the advection speed and the centerline
velocity. (b) The difference between the advection speed and the centerline velocity.

In Barkley’s pipe flow model as shown in Sec. 3.2, it is assumed that the turbu-

lence is advected nonlinearly at a speed lower than the centerline velocity, depicted

by the u − ζ in the model equations, where u represents the centerline velocity and

ζ is the amount by which the advection speed is lower than the centerline velocity

and is a positive number. In this section, the relation between the advection speed

of turbulence and the centerline velocity in real pipe flow is investigated.
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The centerline velocity of the mean velocity profile is measured in the Reynolds

range Re ∈ (2800, 7000), in which the model correctly predicts the pipe flow as

discussed in Chapter 3. The comparison between the advection speed and the cen-

terline velocity are presented in Fig. B-3(a). As shown, turbulence indeed propagates

at a lower speed than the centerline velocity at any Reynolds number investigated

here. Fig. B-3(b) shows the difference between these two speeds. Surprisingly, in this

Reynolds number range, the difference stays approximately constant, about 0.145,

just as assumed in Barkley’s model. These results qualitatively justify the assump-

tions in the model.

B.3 Advection speed vs. the front speed

The advection speed formulated above applies to fully turbulent flow but not to in-

termittent flow with fronts (turbulent-laminar interfaces) because the speed of fronts

is not just a result of advection but instead is determined by the interplay of autocat-

alytic production and diffusion of turbulence at the fronts (Tyson & Keener, 1988),

for the details for pipe flow please see Sec. 3.2. Nevertheless, the advection speed

with the formulation Eqs. (B.4) still applies to the core region of the turbulence with

fronts. For examples, it applies inside of slugs sufficiently far from the fronts. In

order to view the fronts in the frame of reference co-moving with turbulence, the

comparison between the front speed and the advection speed is made and shown in

Fig. B-4.

It is clearly shown that the advection speed (black squares) decreases as Re

increases and crosses the speed of the downstream front at about Re ≃ 2900. Below

this Re, the advection speed of turbulence in the core region of slugs is higher than

both upstream (cyan triangles and blue circles) and downstream (green triangles and

red circles) fronts, whereas sits between the speed of upstream and downstream fronts

above Re ≃ 2900.

Now we look at turbulence in the frame of reference comoving with the advection

speed. As shown in Fig. B-5. Note that the turbulence self-advection is a nonlinear

and time-dependent (see Fig. B-1). Here the advection speed means the mean ad-

vection speed. In such a frame of reference, the structure in the bulk of slugs overall

stay still, while the fronts move. Below Re ≃ 2900, both the upstream and down-

stream front move to the left and the upstream front moves faster (see Fig. B-5(a)).

Hence, overall turbulence production occurs at the upstream front, or, the produc-
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Figure B-4: The comparison between the advection speed (black squares) and the
front speed from DNS (triangles), experiment (circles) and asymptotics (dashed lines).

tion outweighs the diffusion of turbulence. On the contrary, the downstream front

moves into turbulence, implying that overall relaminarisation occurs at the down-

stream front, in other words, the diffusion dominates there. Above Re ≃ 2900, the

upstream front moves to the left and the downstream front moves to the right (see

Fig. B-5(b)) and turbulence is being produced at both fronts, which means turbulence

production dominates at both fronts. Roughly speaking, slugs take a weak front be-

low Re ≃ 2900 and a strong front above, see Fig. B-4. However, the fluctuations may

make this division blurry and may be responsible for a smooth change from a weak

front to a strong front. To summarize, these facts suggest that below Re ≃ 2900, the

diffusion outweighs turbulence production at the downstream front and slugs have

weak fronts, and above Re ≃ 2900, turbulence production outweighs diffusion and

slugs have strong fronts. The competition between the autocatalytic production and

diffusion of turbulence not only determines the speed of the fronts (Tyson & Keener,

1988), but also selects the shape of the fronts.

B.4 Discussion

In this chapter the nonlinear self-advection of turbulence is studied, which is an

intrinsic factor for pipe flow turbulence and was found to be responsible for the

absence of a clear critical point in the transition from puffs to slugs, as discussed

in Chapter 3. Based on the method proposed by Kreilos & Eckhardt (2013), to my
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Figure B-5: Slugs looked at the advection frame of reference, i.e., the frame comoving
with turbulence itself. (a) Slugs below Re ≃ 2900. (b) Slugs above Re ≃ 2900.

knowledge, the advection speed of pipe flow turbulence is for the first time computed.

Compared to the average centerline velocity of turbulence, the advection speed is lower

by approximately a constant at a wide range of Reynolds number, which justifies the

assumption in Barkley’s model that the self-advection is slower than the centerline

velocity by a constant. Further, the advection speed is compared to the front speed

and the fronts are viewed in the frame of reference of turbulence advection. It is

speculated that below Re ≃ 2900 the diffusion outweighs turbulence production at

the downstream front, resulting in a weak front. Above Re ≃ 2900, turbulence

production dominates and slugs take a strong front. This is roughly agrees with the

former studies (Wygnanski & Champagne, 1973; Duguet et al., 2010b) where slugs

with diffusion-dominant weak front below Re ≃ 2800 were referred to as puffs out of

equilibrium.
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Willis, A. P., Cvitanović, P. & Avila, M. 2013 Revealing the state space of
turbulent pipe flow by symmetry reduction. J. Fluid Mech. 721, 514–540.

Willis, A. P. & Hwang, Y. 2010 Optimally amplified large-scale streaks and drag
reduction in turbulent pipe flow. Phys. Rev. E 82, 036321.

Willis, A. P. & Kerswell, R. R. 2007 Critical behavior in the relaminarization
of localized turbulence in pipe flow. Phys. Rev. Lett. 98, 014501.

Willis, A. P. & Kerswell, R. R. 2009 Turbulent dynamics of pipe flow captured
in a reduced model: puff relaminarisation and localised ’edge’ states. J. Fluid Mech.
619, 213–233.

Winfree, A. T. 1972 Spiral waves of chemical activity. Science 175, 634–636.

Wygnanski, I, Sokolov, M. & Friedman, D. 1976 On a turbulent ’spot’ in a
laminar boundary layer. J. Fluid Mech. 78, 785–819.

Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. part 1.
the origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59,
281–335.

Wygnanski, I. J., Sokolov, M. & Friedman, D. 1975 On transition in a pipe.
part 2. the equilibrium puff. J. Fluid Mech. 69, 283–304.

Xu, C.-X., Choi, J. & Sung, H. J. 2002 Suboptimal control for drag reduction in
turbulent pipe flow. Fluid Dynam. Res. 30, 217–231.

Zaikin, A. N. & Zhabotinskii, A. M. 1970 Concentration wave propagation in
two-dimensinonal liquid-phase self-oscillating system. Nature 225, 535–537.

Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mecha-
nisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid
Mech. 387, 353–396.

Zhu, Y. & Granick, S. 2002 Limits of the hydrodynamic no-slip boundary condi-
tion. Phys. Rev. Lett. 88, 106102.

122



Curriculum Vitae

Baofang Song

Date of birth: July 20, 1985

Max Planck Institute for Dynamics and Self-Organization

Gerog-August-Universität Göttingen

Current address:

Institute of Science and Technology Austria (IST Austria),

Am Campus 1, 3400 Klosterneuburg, Austria

+43 2243 9000 5808, bsong@ist.ac.at

Professional experience

Research Assistant October 2013 to present

Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400

Klosterneuburg, Austria

• Performed DNS study on the transition to fully turbulent flow in pipes

• Guided a first-year PhD student on his rotation project ”Transient Growth in

Channel Flow”

Research Assistant October 2010 to September 2013

Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077

Göttingen, Germany

• Developed turbulence control strategies in pipe flow

• Implemented a Lagrangian approach to investigate the local dynamics on the

laminar/turbulent interfaces

• Wrote parallel DNS channel flow and pipe flow codes with Fortran90 and MPI

• Examined the influence of partial slip boundary condition on turbulence in pipes

• Searched for localized exact solutions in Plane Poiseuille and pipe flow

Education

PhD Candidate, Physics, Expected in September 2014

Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077

Göttingen, Germany

123



• PhD project: Direct numerical simulation of transition to turbulence and tur-

bulence control in pipe flow. Supervisor: Prof. Björn Hof.

• Hold a Chinese Scholarship Fund (10.2010-09.2013), Max Planck Fellowship

(09.2013-05.2014)

Master of Engineering, Computational Fluid Dynamics, April 2010

Department of Fluid Dynamics, School of Aeronautics, Northwestern Polytechnical

University, 710072 Xi’an, China

• Thesis: Numerical Analysis of the Effects of Wings Oscillation on its Aero-

dynamic Characteristics in Wind Tunnel Tests. Supervisor: Prof. Zhengyin

Ye

• GPA 3.77/4

Bachelor of Engineering, Aeronautical Engineering, July 2007

School of Aeronautics, Northwestern Polytechnical University, 710072 Xi’an, China

• Thesis: Numerical Simulations of the Transonic Unsteady Flow Around an

Airfoil. Supervisor: Prof. Zhengyin Ye

• Outstanding graduate of the year 2007

• Outstanding Bachelor’s Thesis of the School of Aeronautics

• GPA 3.5/4, top 3%

Publications

1. Song B., Willis A. P., Hof B., & Avila M. Relaminarisation of fully turbulent

pipe flow by manipulation of the mean shear, under preparation
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